LOCOMENT RESOBE

```
TITLE Graduate Student Support and Mampower Resources in
INSTITUTION
FEFORT NO
PUE DATE
NOTE
AVAIIABLE FRCN.
EDRS PRICE
DESCRIETOES
ILENTIFIERS
```

```
Graduate Science Educaticn, Fall 1969.
```

Graduate Science Educaticn, Fall 1969.

```
National Science Foundation, Washington, D.C.
```

National Science Foundation, Washington, D.C.
NSF-7C-40
NSF-7C-40
Sep 70
Sep 70
91F.
91F.
Superintendent cf Documents, U.S. Gcvernment
Superintendent cf Documents, U.S. Gcvernment
Printing Office, Washington, D.C. 20402 (\$1.00)
Printing Office, Washington, D.C. 20402 ($1.00)
EDRS Price MF-$C.65 HC Not Available trom EDES.
*Doctoral Frograms, Enrollment, Faculty,
Fellcwshirs, *Financial Support, *Graduate Students,
*Higher Education, *Sciences
*Naticnal Science Fcurdaticn Traineeships

```
AESTRACT

This report summarized statistical data on graduate student suppcrt, fcstdoctorals, and graduate faculty as ot fall 1969 in 224 doctorate granting institutions applying fcr traineeshif grants from the Naticnal Science Foundation tor 19\%0. These 224 include virtually all U.S. doctoral granting institutions. Information is presented cn: (1) graduate enrollment in the sciences; (2) types of major support of full-time graduate students in dcctoral departments \(1 n\) terms cf fellcwships and traineeships. research assistantshifs, teaching assistartshifs, and cther types of support; (3) sources of major support for full-time graduate students in doctoral departments in terms of U.S. Gcvernment support, irstituticnal support, other outside support, and self-support; and (4) faculty ard fcstdcctorals in dcctcral departments. The appendices include: (1) a list of the institutions participating in the graduate traineєship frcgram; (2) some technical notes presenting definitions of the terms used in this report and some comparative tables; (3) statistical tables; (4) instructions and consolidated departmental data shéts cf doctcral defartments; and (5) consolidated defartmental summaries. (AF)


\section*{GENERAL NOTES}
- Statistical data presented in this report relate solely to the 2,894 doctorate science departments of 224 institutions that furnished data on NSF traineeship applications for 1970.
- All data published in this report on student enrollment, faculty, and postdoctorals for 1969 refer to the fall of that year.
- The term "support" as used here refers in all cases to major support, which is defined as a total stipend of \(\$ 1,200\) or mon:, excluding tuition. In cases of multiple support, the major source was reported, and a graduate student was counted only once under one category.
- Information on degrees awarded refers to the academic year ended June 30 of the designated year.
- For convenience, the term "sciences" is used to denote both science and engineering.
\(\%\)
\(N\)
\(\infty\)
\(\bigcirc\)
0
-
总

\title{
Graduate Student \\ Support and Manpower Resources in Graduate Science Education, Fall 1969
}

\author{
An Analysis of Student \\ Enrollments, Sources of \\ Student Support, Faculty, and Postdoctorals in \\ Doctorate Departments
}


Surveys of Science
Resources Series
NATIONAL SCIENCE FOUNDATION
MSF 70-40

\section*{For aale by the Superintendent of Documents, U.S. Government Printing Office} Washington, D.C. 20402 - Price \(\$ 1\)

4

\section*{Foreword}

This report summarizes statistical data on graduate student support, postdoctorals, and graduate faculty as of fall 1969 in doctorate-granting institutions applying for traineeship grants from the National Science Foundation for 1970. Virtually all doctorate-granting institutions in the United States applied for traineeships and submitted information on their graduate programs. The primary purpose of such information is to facilitate the administration of the NSF's traineeship grant program. Secondarily, however, the data constitute a fund of information on graduate science education that is not available from any other source, particularly with reference to the types and major sources of financial support of graduate students.

Information on the characteristics and support of graduate science education is importani to officials in government, education, and other organizations concerned with assuring an adequate supply of highly trained scientists and engineers to meet present and future manpower requirements of the U.S. economy. The types and sources of support available to graduate students are of interest to all concerned with the financing of higher education, including prospective graduate students, guidance counsellors, and the general public.

Data on the types and sources of financing of graduate education are particularly important today, because of the various pressures being placed on the structure of higher education by such public issues as inflation, selective service policies, leveling off of Federal support of higher education, student unrest, and competing demands for public funds to alleviate and solve problems faced by society. The present study provides some insight into the resultant impact of changing patterns of public and private support programs on graduate education in the sciences and engineering in doctorate-granting institutions.

This is the third in a series of published reports analyzing data submitted in traineeship grant applications by doctorate-granting institutions. The first covered graduate student support and manpower resources in graduate science education, fall 1965 and fall 1965, while the second was limited to an analysis of the support of full-time graduate students in the sciences, fall 1967.

This report on fall 1969 characteristics of graduate enrollment in doctorate institutions was prepared in the National Science Foundation's Office of Ec.nnomic and Manpower Studies, Thomas J. Mills, Head. The basic data on which the report is based were supplied by the NSF's Division of Graduate Education, Howard D. Kramer, Division Director. Special recognition is accorded Dr. Douglas S. Chapin, Program Director, Graduate Fellowships and Traineeships Program, whose cooperation and assistance greatly facilitated the preparation of this report.

\author{
Charles E. Falk \\ Director, Division of Science Resources and Policy Studies
}

\section*{ACKNOWLEDGMENTS}

This report was prepared by Penny D. Foster under the supervision of Joseph H. Schuster, Study Director, Universities and Nonprofit Institutions Studies Group. Guidance and review in the preparation of the report were provided by Kenneth Sanow, Head, Statistical Surveys and Reports Section.

\section*{Contents}
Summary
Page
Section
I. Introduction ..... 1
II. Graduate Enrollment in the Sciences ..... 3
III. Types of Major Support of Full-Time Graduate Students in Doctorate Departments ..... 6
Fellowships and Traineeships ..... 8
Research Assistantships ..... 9
Teaching Assistantships ..... 11
Other Types of Support ..... 12
IV. Sources of Major Support of Full-Time Graduate Students in Doctorate Departments ..... 14
U.S. Government ..... 15
Institutional Support ..... 17
Other Outside Support ..... 17
Self-support ..... 18
V. Faculty and Postdoctoral in Doctorate Departments ..... 19
Faculty ..... 19
Postdoctoral ..... 21
Appendixes
A. Institutions Participating in the Graduate Traineeship Program ..... 24
B. Technical Notes ..... 27
C. Statistical Tables ..... 37
D. Instructions and Consolidated Departmental Data Sheets (NSF Form 345) -Doctorate Departments ..... 67
E. Consolidated Departmental Summaries ..... 77

\section*{Text Tables} ..... Page
Table
Table
1. Percent change in enrollment of graduate students in doctorate departments,by area of science and enrollment status, 1967-68 and 1968-693
2. Percent distribution of full-time graduate students in doctorate departments, by area of science, citizenship, and type of support, 19697
3. Proportion of full-time graduate students in doctorate departments receiving major support from fellowships and traineeships, ranked by field of science, 1967 and 1969 ..... 9
4. Percent change in the number of full-time graduate students receiving major support as fellows and trainees, by citizenship and level of study, 1967-68 and 1968-69 ..... 9
5. Proportion of full-time graduate students in doctorate departments receiving major support from research assistantships, ranked by field of scienc?, 1967 and 1969 ..... :0
6. Percent change in the number of full-time graduate students receiving major s? port as research assistants, by citizenship and level of study, 196'-68 and 1968-69 ..... 11
Table
7. Proportion of full-time graduate students in doctorate departments receiving major support from teaching assistantships, ranked by field of science, 1967 and 1959 ..... 12
8. Percent change in the number of full-time graduate students receiving major support as teaching assistants, by citizenship and level of study, 1967-68 and 1968-69 ..... 12
9. Percent change in the number of full-time graduate students receiving major support through "other" mechanisins, by citizenship and level of study, 1967-68 and 1968-69 ..... 13
10. Full-time graduate students in doctorate departments, by principal source and type of support, 1969 ..... 14
11. Full-time graduate students in doctorate departments, by principal source of support and area of science, 1969 ..... 16
12. Percent change in the number of full-time graduate students in doctorate departments supported by the U.S. Government, 1967-68 and 1968-69 ..... 16
13. Trends in the number of full-time faculty in doctorate departments, by area of science, 1967-69 ..... 20
14. Trends in the number of postdoctorals in doctorate departments, by area of science, 1967-69 ..... 21
Charts
Chart
1. Number of graduate students in doctorate departments, by enrollment status, 1969 ..... 3
2. Characteristics of graduate students in doctorate departments, 1969 ..... 5
3. Percent distribution of types of major support of full-time graduate students in doctorate departments, by area of science, 1967-69 ..... 6
4. Full-time graduate students holding fellowships and traineeships in doc- torate departments, 1969 ..... 8
5. Full-time graduate students holding research assistantships in doctorate departments, 1969 ..... 10
6. Full-time graduate students holding teaching assistantships in doctorate departments, 1969 ..... 11
7. Full-time graduate students receiving major support through " "her" mechan- isms, 1969 ..... 13
8. Major sources of support of full-time graduate students in doctorate depart- ments, 1969 ..... 15
9. Percent distribution of graduate students supported by the U.S. Government, 1969 ..... 15
10. Percent distribution of graduate students supported by institutions and State and local governments, 1969 ..... 17
11. Percent distribution of graduate students depending upon self-support, by area of science, 1969 ..... 17
12. Number of full-time faculty in doctorate departments, 1969 ..... 19
13. Number of full-time faculty in doctorate departments, 1967-69 ..... 19
14. Full-time graduate faculty in doctorate departments, 1969 ..... 20
15. Number of postdoctorals in doctorate departments, 1969 ..... 21
- Data in percent terms are rounded \(t u\) the nearest whole number in the text and charts, but are shown in tables to one decimal. Annual percent changes and ratios are shown to one decimal throughout the report.
- Data may not add to subtotals and totals because of rounding.

\section*{Summary}

\section*{Number of Science Graduate Students}

Graduate enrollment in 2,894 science doctorate depart.|uents of 224 universities and colleges that submitted information to the National Sci:nce Foundation for fall 1969 totaled 184,845 . These students were distributed as follo 's:

Area of scierce-Engineering, 28 percent; social scientes, 20 percent; physical sciences, 19 percent; life sciences, 17 percent; rathematical sciences, 8 percent; psychology, 7 percent.
Enrollment status-Full-time students, 76 percent; pa -time students, 24 percent.
Citizenship-U.S. citizens, 83 percent; foreign studen
\(\begin{aligned} & \text { Level of study-First-year students, } \\ & \text { percent. }\end{aligned}\)
Fall 1969 graduate enrollment in reporting science doc brate departments was 2.8 percent higher than in fall 1968, or slightly below the 3 . -percent increase from 1967 to 1968. The annual rates of increase in graduate enroll aent i.ı psychology, the social sciences, and the life sciences were substantially higher than the averages prevailing for ail areas of science combined for 1967-68 and 196\&
\[
69 \text {, respectively. }
\]

Types of major support of full-time graduate stufents. Principal mechanisms utilized for full-time graduate student support in 196 were: Fellowships and traineeships ( 30 percent), teaching assistantships ( 23 percen ), research assistantships (22 percent), and "other" types, including principally self-support (26 percent).


The relative change in the number of students utilizing various types of support during 1967-69, based on 2,338 identical departments reporting for each of the 3 years, was as follows:
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Typle of support} & \multicolumn{2}{|l|}{Percent change} \\
\hline & 1967-68 & 1968-69 \\
\hline Fellowships-trainceships. & 1.8 & --6.0 \\
\hline Research assistantsl.ips. & -1.1 & -. 8 \\
\hline 'Teaci. ing assistantships. & 5.0 & 3.6 \\
\hline Other types of support. & 6.0 & 11.6 \\
\hline
\end{tabular}

Sources of major support of full-time graduate students. More than fourfifths ( 81 percent) of the full-time graduate science students received major financial assistance ( \(\$ 1,200\) or more annually, exclusive of tuition) from outside sources. The iT.S. Government financed 37 percent of the full-time graduate students in 1969; instituions and State and local governments, 36 percent; and other outside sources, such as industry, private foundations, etc., 9 percent. The remaining 19 percent relied upon self-support, including loans, savings, and family assistance, to finance their education.

The Federal Government provided major support to 51,620 full-tine graduate students through the following mechanisms: Fellowships-taaineeships, 55 percent; research assistantships, 38 percent; teaching assistantships, 1 percent; and other types, 6 percent.

The relative change in the iumber of students receiving support from various sources, based on the 2,338 identical departments reporting from 1967 to 1969, was as follows:
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Source of support} & \multicolumn{2}{|l|}{Percent change} \\
\hline & 1967-68 & 1968-69 \\
\hline U.S. Government. & -1.6 & -5.9 \\
\hline Other U.S. sources, including institutional and self-support. & 6.4 & 6.0 \\
\hline Foreign sources. & -12.0 & 11.6 \\
\hline
\end{tabular}

The leveling off of U.S. Government support was a factor in the reduction of growth rate in graduate science enrollment from 1967-69. However, the impact of the decline in number of federally supported students was offset principally by increases in institutional support and in self-suppor:

\section*{Number of Faculty}

The doctorate departments of institutions covered in the study reported 54,549 faculty members in 1969, an increase of 5.1 percent over the comparable total for 1968. The 1968-69 increase was somewilat less than the 7.4 -percent increase from 1967 to 1968 . Graduate faculty members totaled 45,687 , or 84 percent of total faculty in doctorate departments. They were distributed by area oi science as follows: Life sciences, 25 percent; engineering and physical sciences, 21 percent each; social sciences, 17 percent; mathematical sciences, 10 percent; and psychology, 6 percent.

\section*{Number of Postdoctorals}

Postdoctoral appointments totaled 8,517 in the doctorate departments of respondent institutions in 1969, an increase of 10.3 percent over the total for 1968. The 1968-69 ratc of increase was higher than the 8.1-percent increase from 1967 to 1968.

Postdoctoral appointments were most heavily concentrated in the physical sciences and the life sciences, which accounted for 44 percent and 38 percent, respectively, of the total.

\section*{Section I. Introduction}

The 224 science doctorate-granting institutions that applied for 1970 NSF traineeships included virtually all the institutions granting such degrees. At least one institution from each of the 50 States and the District of Columbia was represented in the roster of applications, as is shown in the list of institutions in appendix A. Doctorate departments in the \({ }^{\wedge}\) udy account for approximately 76 percent of the graduate enrollment and 94 percent of the doctorates granted in the sciences and engineering by U.S. universities and colleges. \({ }^{1}\)

The present report for fall 1969 has a number of features in common with the two previous reports in this series. \({ }^{2}\) For example, the information requested on Departmental Data Sheets that have been used to collest data on science departments for each of the years since 1966 has remained unchanged. Among the differentiating features in each of the reports issued in the series are the differences in coverage of graduate science education resulting from the increase in the number of applicant doctorate institutions, as well as the number of participating science departments. The number of participating institutions and departments for recent years was as follows:
\begin{tabular}{ccccr} 
Year & \begin{tabular}{c} 
Number of \\
institutions
\end{tabular} & \multicolumn{3}{c}{ Number of departments } \\
\cline { 4 - 6 } & Tntal & Master's & Doctorate \\
\(1966 \ldots \ldots\) & 204 & 2,866 & 441 & 2,425 \\
\(1967 \ldots \ldots\) & 209 & 3,016 & 436 & 2,580 \\
\(1968 \ldots \ldots \ldots\) & 219 & 3,190 & 454 & 2,736 \\
\(1969 \ldots \ldots \ldots\) & 224 & 3,354 & 460 & 2,894
\end{tabular}

As previously mentioned, not all eligible institutions nor all science departments within an applicant institution request NSF trainceship grants. Nevertheless, the coverage of science departments, though not complete, has become increasingly comprehensive.

\footnotetext{
\({ }^{1}\) See appendix \(B\) for a description of the coverage of graduate enrollment and degree statistics presented in this report.
\({ }^{2}\) National Science Foundation, Graduate Student Support and Manpower Resources in Graduatc Science Education, Fall 1965 and Fall 1966 (NSF 68-13), and Support of Full-Time Graduate Students in the Sciences, Fall 1967 (NSF 69-34) (Washington, D.C., 20402: Supt. of Documents, U.S. Government Printing Office).
}

The Departmental Data Sheets and Departmental Summaries submitted by the 224 institutions seeking grants for 1970 under the NSF's Graduate Traineeship Program provided the fall 1969 data upon which this report is based. \({ }^{3}\) (Graduate enrollment characteristics reported in NSF traineeship grant: applications aggregate data for the year prior to the one for which the grant is requested.) The Departmental Data Sheet was the principal source of information on full- and part-time graduate students, faculty, postdoctorals, and related characteristics of graduate science education. The Departmental Summary provided trend statistics on enrollment, faculty, and postdoctorals, 1967 to 1969, in the doctorate departments of institutions covered in this report.

This report is devoted to an analysis of graduate student support and manpower resources in the 2,894 doctorate departments of participating institutions. Moreover, the educational characteristics of these doctorate departments can be considered reasonably representative of the universe, since stat:stical coverage was virtually compiete. In contrast, the 460 master's department* accounted for a relatively minor share of the degree output or of inanpower resources of the doctorate institutions. \({ }^{4}\)

Figures on graduate enrullment in doctorate departments contained in this report include virtually all graduate students enrolled in degree-credit programs with the direct objective of attaining a doctorate degree in the sciences or engineering. They, of course, also include students whose current educational objective is the attainment of master's degrees, and who may or may not plan to continue to the doctorate level at some later time.

Trends in selected characteristics of graduate enrollment in doctorate science departmonts during 1967-69 are covered in the report. These trend data relate to data for an identical group of dep rtments

\footnotetext{
\({ }^{3}\) The Departmental Data Sheets and the Departmental Summaries are reproduced in appendixes D and E , respectively.
\({ }^{4}\) In the fall 1969, the 460 master's departments accounted for only 6 percent of the graduate enrollment, 8 percent of the full-time graduate science faculty, and 1 percent of the postdoctorals in the 224 doctorate-granting institutions.
}
for each of the 3 years. For example, the Departmenal Summary provided selected overall data on graduate enrollment and manpower resources during 1967-69 for the 2,894 doctorate departments that applied for traineeship grants for 1970. Other trend data, such as type and sources of major support, are based on information reported by the 2,338 doctorate departments that applied for NSF traineeships for each of the years, 1968, 1969, and 1970. Thus, all trend data shown in the report relate to identical groups of departments.

The university and college science departments that supplied the information utilized a wide variety of titees. To organize the statistical data reported by departments in a convenient form, the system used in the two earlier NSF studies of graduate student support was adopted. Departments were class fred in 41 fields of science, which, in turn, were grouped for some purposes in six areas of science, as follows:

Engineering
Aeronautical
Agricultural
Chemical
Civil
Electrical
Engineering science
Industrial
Mechanical

Metallurgical and materials
Mining
Nuclear
Petroleum Other engineering
Physical sciences
f.st.onomy

Atmospheric sciences


Geosciences Oceanography Physics
Mathematical sciences
Applied mathematics Mathematics Statistics Life sciences Agriculture Biochemistry
Biology
Botany
Microbiology
Pharmacology
Physiology
Zoology
The appendixes provide somewhat more statistical information than is contained in the text of the report and provide reference materials that may be useful to persons concerned with details on characteristics of graduate education in doctorate departments in specific areas or fields of science. Appendix A lists by State the 224 doctorate institutions that supplied the information on which the report is based, while appendix \(B\) contains information regarding the definitins and extent of coverage. Appendixes C, D, and E consist of statistical aggregates reported by doctorate departments, including the Instructions, Consolidated Departmental Data Sheets, and Departmental Summaries for each of the six areas of science.

\section*{Section II. Graduate Enrollment in the Scienses}

This section of the report is primarily concerned with four important characteristics of graduate science enrollment in doctorate departments, as follows: (1) Distribution of graduate students among areas and fields of science; (2) relative nu. aber of full- and part-time students; (3) citizenship of students, U.S. or foreign; and (4) proportions of firstyear and beyond-first-year students.

Graduate enrollment in the science doctorate departments covered in this study increased 2.8 percent between 1968 and 1969, compared with a rate of increase of 3.7 percent between 1967 and 1968 (table \(1)\). The foregoing annual rates of increase were substantially beiow the 9.3 -percent annual rate of increase in enrollment for advanced degrees in the sciences and engineering in all institutions of higher education that prevailed during the 7 -year period 1960 to 1967.5 The reduced rate of increase in graduate enrollment in science doctorate departments during 1967-69 was contrary to expectations based on demographic factors. The populatior. base that includes most graduate students, persons ranging in age from 22 through 27 years, increased 3.0 percent from 1967 to 1968 and at a substantially higher rate of 8.0 percent from 1968 t \(1969 .{ }^{6}\)

\footnotetext{
\({ }^{5}\) Based on U.S. Office of Education statistics contained in National Science Foundation, Science and Engineering Doctorate Supply and Utilization, 1958-80, (NSF 69-37) (Washington, D.C. 20402: Supt. of Documents, U.S. Government Printing Office, 1969), page 14.
\({ }^{0}\) Based on data published in U.S. Bureau of the Census, Current Population Reports, Series P-25, Nos. 314, 385, and 441.
}

Table 1.-Parcent change in enrollment of graduate students in doctorafe departments, by area of science and enrollment status, 1967-68 and 1968-69 a
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Area of acience} & \multicolumn{2}{|r|}{Total} & \multicolumn{2}{|l|}{Full time} & \multicolumn{2}{|l|}{Part time} \\
\hline & 1967-68 & 1968-69 & 1967-68 & 1968-69 & 1967-68 & 1968-69 \\
\hline Total & 3.7 & 2.8 & 3.8 & 2.1 & 3.3 & 4.9 \\
\hline Engineering- & 1.0 & 1.9 & 1.4 & 1.6 & . 5 & 2.6 \\
\hline Physical sciences- & 1.6 & -1.2 & 2.0 & -2.4 & -1.2 & 7.4 \\
\hline Mathematical sciences.-. & 2.8 & . 5 & 3.1 & . 2 & 1.6 & 1.2 \\
\hline Life sciences. & 5.8 & 3.9 & 4.5 & 3.7 & 13.3 & 5.0 \\
\hline Paychology-- & 8.5 & 7.0 & 7.9 & 5.3 & 18.5 & 19.0 \\
\hline Social sciences. & 7.3 & 6.4 & 6.7 & 5.8 & 9.4 & 8.7 \\
\hline
\end{tabular}
- Based on appendix table C-1.

\section*{Chart 1. Numbus of graduate students in toctorate departments, by gnrollment status, 1969}


SOUACE NATIONAL SCIEMISE FOUNOATION IAPPENDIX TABLE C-1):

It is also noteworihy that graduate enrollment in nonscientific fields far outstripped the relatively small increases experienced in the sciences and engineering in recent years. Graduate enrollments in the arts, humanities, and other nonscientific fields increased 10.3 percent from 1967 to 1968 and 9.4 percent from 1968 to \(1969 .{ }^{7}\) As will be seen in sections III and IV of this report, there was a notable reduction in the number of federally financed fellowships-traineeships and research assistantships which could have been a principal factor responsible for tis- lowered rate of growth in graduate enrollment in the sciences and engineering since 1968.

In the analysis of various characteristics of graduate education coverecl in this report, such as relative change in enrollment and relative numbers of part-

\footnotetext{
T Based on statistics of the U.S. Office of Education, Survey of Students Enrolled for Master's and Higher Degrees, various years, and preliminary data for fall 1969.
}
time students, foreign students, etc., the wide differences in graduate enrollment in the various areas of science should be taken into account. For example, the number of students in the six areas of science ranged from a high of 52,567 in engineering to a low of 13,763 in psychology (chart 1).

As might be expected with respect to the 41 fields of science, the disparity amo \(\sigma\) fields in number of students was much greater than was the case with the six areas. \({ }^{8}\) For example, the six fields with 10,000 or more students were electrical engineering ( 16,162 ), chemistry \((15,813)\), psychology \((13,763)\), physics \((12,804)\), mathematics \((12,123)\), and political science \((10,546)\). The foregoing accounted for 44 percent of the students in doctorate departments. In contrast, the six fields with the fewest graduate students-petroleum engineering (331), mining engineering (334), astronomy (531), agricultural engineering (533), history and philosophy of science (766), and atmospheric sciences (815)-accounted for less than 2 percent of the graduate enrollm, it in the doctorate departments covered in the study (appendix table C-2).

Of the 184,845 graduate students in doctorate departments, 76 percent were full-time students and 24 percent part-time students (chart 2). It should be noted that the foregoing proportions indicatie relatively more full-time and fewer part-time students than do those developed by the U. S. Office of Education in its enrel!ment survey. This is attributable to the fact that ine NSF's Departmental Data Sheet de. fines a full-time graduate student as a "bona fide graduate student (not a regular staff member, e.g., an instructor) who is cagaged entirely in training activities in his field of science; these activities may embrace any appropriate combination of study, teaching, and research." In contrast, the U.S. Office of Education's definition is more restrictive and excludes many research assistants and teaching assistants counted as: full-time students in this report. \({ }^{9}\) It is difficult to

\footnotetext{
* There is considerable arbitrariness in defining the 41 fields of science. The number of students shown for a given field could depend on the fineness of the classification and the extent to which subdisciplines or related disciplines were grouped together or shown separately. For example, the classification used in this report does not break the area of science, "psychology," into any separate fields.
\({ }^{0}\) The U.S. Office of Education's Higher Education General Information Survey (IEGIS), Students Enrolled for Advanced Degrees, Fall 1969 (OE Form 2300-2.5), defined a full-time graduate student as follows: "A full-time student is one whose academic load in terms of course work or other activity (such as a thesis, research, or teaching) is at least 75 percent of that normally required of such students. Time spent by teaching fellows should be included only if such teaching is performed as a requirement for a degree. Employment which is not a part of the prescribed activity for an advanced degree or time svent on work required because of lack of undergraduate background should not be counted as time spent on graduate work. A part-time student is one who is carrying an academic schedule of less than three-fourths the normal load."
}
make exact comparisons of enrollment data contained in this report with U.S. Office of Education data, because these data include only students in doctorate departments that applied for NSF traineeships for 1970, while the latter include all graduate studer \(\dot{j}\), including those in both master's and doctorate departments.

One of the noteworthy aspects of the reduced rate of increase in overall graduate enrollments from 1968 to 1969 was that part-time enrollment increased 4.9 percent, or more than double the 2.1-percent rate of increase for full-time enrollment. The foregoing differing rates of increase may partly reflect career choices made by male graduate students to avoid the impact of 1967 Selective Service Act changes, which increased their vulnerability to the draft. Some male graduate students, both first-year and beyond-firstyear, may have chosen to pursue graduate study on a part-tiine basis in order to take deferrable full-time jobs. The increase in graduate enrollment-both fulland part-time-in psychology was the most dramatic shift upward during 1968-69. In contrast, the decline in full-time enrollment in the physical sciences of 2.4 percent more than offset the increase in part-time enrollment of 7.4 percent from 1968 to 1969.
U.S. citizens comprised 83 percent of graduate enrollment in the sciences and engineering, and foreign students constituted the remaining 17 percent (chart 2). In both absolute and relative terms, students of foreign citizenship in engineering far exceeded the comparable number in the other areas of science. In terms of enrollment status (full-time and part-tine) the differences among areas of science in the citizenship of graduate students were quite pronounced.

First-year graduate students in doctorate departments comprised 35 percent of the total in 1969, and beyond-first-year students, 65 percent. Among areas of science, the relative number of first-year students ranged from a high of 43 percent in engineering to a low of 28 percent i. 1 the physical sciences. Interpreting the significance of the foregoing data requires that a number of divergent factors be taken into account. For example, the proportion of first-year students tends to be highest in growing areas of science where ample stipend-support is available to attract new students, as well as in areas of science where relatively large numbers of students view master's degrees as a terminal degree. On the other hand, the proportion of beyond-first-year students will be highest in ficlds where a relatively large number of students seek doctorates and the time required to earn the advanced degree is relatively long.

In terms of enrollment status, there were sizable dif-

Chart 2. Characteristics of graduate students in doctorate departments, 1969


SOURCE: NATIONAL SCIENCE FOUNDATION (APPENOIX TABLES C.2, C.3, ANO C.5).
ferences among areas of science, and, on an overall basis, in the relative numbers of first-year and be-yond-first-year students. Full-time graduate enrollment consisted of 33 percent first-year students and 67 percent beyond-first-year, compared with 42 percent and 58 percent, respectively, for part-time enrollment. Engineering exceeded all other areas in the relative numbers of first-year students on both a full-time basis
( 39 percent) and a part-time basis ( 50 percent). This is probably related to the large number of terminal master's degrees awarded in engineering. The physical sciences had the highest proportion of full-time graduate students in the beyond-first-year category ( 73 percent), while the life sciences ranked first in terms of part-time graduate students in the beyond-first-year level of study ( 72 percent) (appendix table C-6).

\title{
Section III. Types of Major Support of Full-Time Graduate Students in Doctorate Departments
}

As part of their requests for NSF traineeship grants, institutions provided information about the number of full-time graduate students supported by the following mechanisms: Fellowships-traineeships, \({ }^{10}\) research assistantships, teaching assistantships, and "other" types of support (e.g., self-support, loans, family support, etc.). This section will consider these support mechanisms in conjunction with the following characteris-

\footnotetext{
\({ }^{10}\) See definitions in technical notes, appendix \(B\), for further explanation of the two categories of stipends.
}
tics: Area of science, citizenship, and level of study. The section that follows will analyze the sources of financing of the four categories of support mechanisms.

Chart 3, which utilizes information supplied by 2,338 identical doctorate departments for each of the years 1967-69, indicates that the decline in the relative number of full-time science graduate students with fellowships and traineeships was offset principally through an increase in the relative number dependent primarily upon self-support. Among the ex-
ceptions to this overall pattern were psychology and the life sciences in which the proportion of fellowstrainees remained rather stable. The data also indicate that graduate students in the physical sciences tended to shift from fellowships-traineeships to teaching assistantships for their principal support during the period.

Of the four different classifications of student aid used in this report, fellowships-traineeships were the type of major support utilized by the largest number of students, followed in order by "other" types (primarily self-support), teaching assistantships, and research assistantships (appendix table C-7).

There were wide variations among areas of science in the types of support used by full-time students to finance their graduate education in 1969. For instance, in engineering and the social sciences, the largest relative number of full-time students were supported primarily by "other" mechanisms; in the physical and mathematical sciences, by teaching assistantships; in the life sciences and psychology, by fellowships and traineeships. In none of the six areas of
science were research assistantships the leading mechanism of major support.
U.S. citizens were predominantly supported by fel-lowships-traineeships, and more of these students were studying in the life sciences than any other area. The largest numbers of U.S. citizens on research and teaching assistan tships were in the physical sciences, while the social sciences enrolled the largest number relying on "other" support mechanisms (table 2).

Foreign students, who are not eligible for NSF or AEC fellowships-traineeships, relied primarily upon research assistantships for their support and concentrated their efforts in engineering. Those utilizing fellowships and traineeships were mainly in the social sciences, those relying upon teaching assistantships were most heavily engaged in the physical sciences. Those depending upon other types of support were predominantly in engineering.

A dissimilar pattern was discernible in the mechanism utilized by first-year students as opposed to those beyond their first year. In rank order, first-year stulents depended mostly upon "other mechanisms," fel-

Table 2.-Percent disfribution of full-time graduate students in docto:ate departments, by area of science, cifixenship, and type of support, ; 969 a
\begin{tabular}{|c|c|c|c|c|c|}
\hline Area of science & Total & Fellowahips and
traineeships & Research assistantahips & Teaching assistantships & Other types of support \\
\hline \multirow[t]{2}{*}{Total (number)-------------} & 141,199 & 41,794 & 80,471 & 32,991 & 86,003 \\
\hline & \multicolumn{5}{|c|}{Percent distribution} \\
\hline Engineering--.--- & 21.8 & 19.3 & 29.7 & 12.8 & 26.4 \\
\hline Physical sciences.-.-- & 21.4 & 17.0 & 30.9 & 30.5 & 10.0 \\
\hline Mathematical sclences. & 8.8 & 6.7 & 8.8 & 14.5 & 8.8 \\
\hline Life sciencea... & 19.5 & 23.2 & 21.0 & 18.5 & 15.0 \\
\hline Paychology -- & 8.4 & 11.4 & 5.6 & 6.9 & 9.0 \\
\hline Soclal sciences. & 20.5 & 22.4 & 9.1 & 16.9 & 31.4 \\
\hline \multirow[t]{2}{*}{U.S. eitizens (number).} & 113,167 & 36,462 & 21,466 & 26,485 & 28,754 \\
\hline & \multicolumn{5}{|c|}{Percent distribution} \\
\hline Engineering-- & 17.6 & 18.1 & 22.5 & 9.8 & 20.9 \\
\hline Physical sclences & 21.6 & 17.3 & 34.1 & 80.1 & 10.0 \\
\hline Mathematical sciences_ & 8.5 & 6.6 & 3.8 & 14.6 & 8.7 \\
\hline Life sciences... & 20.6 & 24.0 & 22.2 & 20.2 & 15.5 \\
\hline Paychology...- & 10.1 & 12.7 & 7.8 & 8.1 & 10.8 \\
\hline \multirow[t]{3}{*}{Social sciences .-.-........-.} & 21.6 & 21.3 & 10.2 & 17.8 & 34.2 \\
\hline & 28,082 & 5,272 & 9,005 & 6,506 & 7,249 \\
\hline & \multicolumn{5}{|c|}{Percent distribution} \\
\hline Engineering----- & 88.9 & 27.6 & 46.9 & 27.0 & 48.0 \\
\hline Phyalcal scjences-- & 20.4 & 15.2 & 23.2 & 82.4 & 10.1 \\
\hline Mathematical sciences. & 7.6 & 7.1 & 3.9 & 14.8 & 6.6 \\
\hline Life melences & 15.2 & 17.7 & 18.1 & 11.5 & 18.1 \\
\hline Paychology-... & 1.8 & 2.3 & 1.5 & 2.0 & 1.8 \\
\hline Social sciences.. & 16.0 & 80.1 & 6.4 & 12.9 & 20.3 \\
\hline
\end{tabular}

\footnotetext{
- Based on Departmental Data Sheets appearing in appendix D.
}
lowships-traineeships, teaching assistantships, and finally, research assistantships. The beyond-first-year students were supported first by fellowships-traineeships, then rescarch assistantships, teaching assistantships, and last, "other mechanisms," reflecting the increased experience and qualification gained after further study which improved their opportunities for the more desirable forms of support.

\section*{Fellowships and Traineeships}

Two of the most common types of graduate student assistance are fellowships and trainceships, both of which offer the student considerable freedom during his studies to pursue his advanced training without having to provide any specific services to his institution. Financial aid is offered with "no strings" attached, which allows the student to attain his educational goal more rapidly than any other form of assistance. The terms "fellowships" and "traineeships" are frequently used interchangeably, and, as mentioned previously, are considered together in this report for purposes of simplification.

Fellowships and trainceships were the predominant types of major support of full-time graduate students in doctorate departments in 1969. The 41,734 fellows and trainees comprised 30 percent of full-time enrollment in such departments. The ranking of areas of science in terms of number of fellowship-traineeship holders is shown in chart 4. Particular fields of science with the largest numbers of fellows-trainees were: chemistry, 3,293; physics, 2,415; biology, 2,389; political science, 2,304; mathematics, 2,124; and economics, 2,092 (appendix table C-7).

When the detailed fields of scierse were ranked from highest to lowest for all doctorate departments -in terms of relative numbers of full-time students supported primarily by fellowships and traineeshipsbiochemistry placed at the top of the list, and received slightly more supp;rt in 1969 than in 1967. Students in applied mathematics received the least amount of support through this mechanism, 18 percent in 1969, a decrease from 24 percent in 1967 (table 3).

The number of U.S. citizen fellows and trainees totaled 36,462 , or 32 percent of total graduate students of U.S. citizenship. Of fellows and trainees with U.S. citizenship, 24 percent were enrolled in the life sciences, 21 percent in the social sciences, 18 percent in engineering, 17 percent in the physical sciences, 13 percent in psychology, and 7 percent in mathematics. When classified according to their level of study, 29 percent of those U.S. citizens supported by fellowships and traineeships were in their first year of study and 71 percent were advanced students.


Less than 19 percent of foreign students studying in this country relied upon fellowships and traineeships for their support. As stated previously, foreign students are not eligible for support of this type under two Federal agency programs, the Atomic Energy Conmmission and the National Science Foundation. Of the 5,272 foreign fellows and trainees, the social sciences enrolled 30 percent; engineering, 28 percent; life sciences, 18 percent; physical sciences, 15 percent; mathematical sciences, 7 percent; and psychology, 2 percent (appendix table C-8).

An analysis of 2,338 doctorate departments reporting consistently since 1967 indicated an overall reduc-

Table 3.-Proportion of full-time graduate students in doctorafe departments receiving major support from fellowshlys and traineeships, ranked by field of science, 1967 and 1969 a
\begin{tabular}{|c|c|c|}
\hline Field of science \({ }^{\text {b }}\) & 1967 & 1969 \\
\hline \multirow[t]{2}{*}{Number of departments} & 2,580 & 2,894 \\
\hline & \multicolumn{2}{|l|}{(Persent)} \\
\hline All fields & 32.6 & 29.6 \\
\hline Biochemistry & 53.4 & 56.7 \\
\hline Physiology - & 54.1 & 50.8 \\
\hline Microbiology & 44.7 & 47.4 \\
\hline Nuclear engineering & 50.0 & 45.7 \\
\hline Pharmacology & 46.8 & 45.1 \\
\hline History and philosophy of science. & 48.8 & 42.0 \\
\hline Other life sciences. & 44.8 & 41.7 \\
\hline Paychology & 41.7 & 39.8 \\
\hline Biology. & 40.7 & 38.0 \\
\hline Anthropology & 41.8 & 36.4 \\
\hline Sociology-- & 40.8 & 36.0 \\
\hline Astronomy & 35.6 & 34.6 \\
\hline Linguistics & 36.8 & 34.6 \\
\hline Statistics.. & 35.6 & 34.1 \\
\hline Chemical engineericg & 38.8 & 32.8 \\
\hline Engineering science. & 35.7 & 32.8 \\
\hline Other engineering - & 33.7 & 31.5 \\
\hline Political science. & 33.8 & 30.7 \\
\hline Economics.-..--- & 34.7 & 30.4 \\
\hline Petroleum engineering & 38.6 & 29.2 \\
\hline Civil engineering . & 35.3 & 28.4 \\
\hline Mining engineering - & 29.6 & 28.4 \\
\hline Sociology and anthropology. & 32.1 & 28.0 \\
\hline Aeronautical engineering - & 31.15 & 26.4 \\
\hline Geography .- & 29.1 & 25.5 \\
\hline Agricultural engineering & 29.3 & 25.4 \\
\hline Geosciences. --. & 29.6 & 24.6 \\
\hline Oceanography .- - & 31.1 & 24.6 \\
\hline Agricultural economics. & 24.1 & 24.5 \\
\hline Chemistry & 28.6 & 24.2 \\
\hline Zoology. & 26.3 & 24.1 \\
\hline Industrial science. & 23.25 & 23.4 \\
\hline Mathematics & 26.8 & 23.4 \\
\hline Metallurgical and materials engineer & \(28 . \%\) & 22.9 \\
\hline Botany & 26.9 & 22.0 \\
\hline Mechanical engineering & 27.0 & 21.9 \\
\hline Physics...-- & 25.4 & 21.9 \\
\hline Agriculture. & 22.6 & 21.6 \\
\hline Atmospheric sciences & 23.6 & 21.4 \\
\hline Electrical engineering & 26.8 & 21.0 \\
\hline Applied mathematica. & 24.1 & 18.2 \\
\hline
\end{tabular}
a Data for 1967 were published in Support of Full-Time Graduate Students in the Sciences, Fall 1967 (NSF 69-34), p. 119; data ior 1969 are shown in appendix table \(\mathbf{C - 7}\).
b See appendi: table B-9 for list of departmental titles grouped into fields of scierice.
tion of 6.0 percent in the number of graduate students with fellowship-traineeship support in the period 1968-69, after showing a slight increase of 1.8 percent from 1967 to 1968. The number of U.S. citizens in this category decreased from 1968 to 1969 after increasing from 1967 to 1968 . In contrast, foreign students increased in enrollment from 1967 to 1968 and from 1968 to 1969, but at a lower rate in the latter period (table 4).

Table 4.-Percent change in the number of full-itme graduate students receiving major support as fellows and trainees, by citizenship and level of study, 1967-68 and 1968-69 a
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Citizenship and level of atudy} & \multicolumn{2}{|l|}{Percent change} \\
\hline & 1967-68 & 1968-69 \\
\hline Total. & 1.8 & -6.0 \\
\hline First year . & -11.5 & -1.2 \\
\hline Beyond first year. & 8.0 & -7.9 \\
\hline U.S. citizens & 1.2 & -7.2 \\
\hline First year. & -12.8 & -2.3 \\
\hline Beyond first year & 7.6 & -9.0 \\
\hline Foreign atudents & 6.5 & 3.4 \\
\hline First year. & -2.6 & 5.3 \\
\hline Beyond first year. & 12.2 & 2.4 \\
\hline
\end{tabular}
- Based on data for 2,338 departments that accounted for 87 percent of full-time graduate enrollment in foctorate departments in 1969.

\section*{Research Assistantships}

An appointment as a research assistant requires services on research projects and often affords the graduate student the opportunity to apply this research toward his thesis requirement. Students in this category accounted for almost 22 percent of the fulltime enrollment in doctorate departments in 1069, and the largest numbers were primarily engaged in studies within the - ical and engineering areas of science (chart 5). Fields of science with large numbers of research assistants were physics, 4,051 ; chemistry, 3,647; agriculture, 2,840; and electrical engineering, 2,027 (appendix table C-7).
For all doctorate departments reporting in 1967 and 1969, the field "metallurgical and materials engineering" ranked first in terms of relative number of full-time students supported through research assistantships. Ranking lowest on the scale in both years was "history and philosophy of science," in which research assistants comprised only 4 per ent of the field total in 1967 and 3 percent in 1969 (table 5).

Relatively more foreign students than U.S. citizens held research assistantships in 1969. Of the 113,167 full-time students with U.S. citizenship, only 21,466, or 19 percent, received major support through research assistantships in 1969. Foreign students using this mechanism comprised 32 percent of the 28,032 total number of foreign graduate students (appendix table \(\mathrm{C}-8\) ).
For U.S. students, the physical sciences accounted for 34 percent of the research assistantships, but engi-

\section*{Chart 5. Full-time graduate students hoiding research assistantships in doctorate departments, 1969 d \\ PERCENT DISTRIBUTION \\ A REA OF SCIENCE}


AS PERCENT OF FULL-TIME GRADUATE


in: Refirs to graduate students receiving thẹir major support through ressarch assistantstips.
hource: national science founoation (ÂPpenoix table efol.
neering provided 47 percent of research assistantships held by foreign students. Mathematical sciences ranked lowest with U.S. citizens, 4 percent, and psychology ranked lowest with foreign students, less than 2 percent.

Further analysis of students holding research assistantships indicated that 24,132 , or 79 percent, were in their second year of study or beyond. Of these, 35 percent were studying in the physical sciences, 28 percent in engineering, 20 percent in the life sciences, 8 percent in the social sciences, 5 percent in psychology, and the remaining 4 percent in the mathematical sciences. First-year students were distributed in a similar

Toble 5.-Proportion of full-time graduate students in doctorate departments receiving major support from resaarch assistantships, ranked by fiald of scie.ace, 1967 ond 1969 a
\begin{tabular}{|c|c|c|}
\hline Field of acience * & 1967 & 1969 \\
\hline \multirow[t]{2}{*}{Number of departments.} & 2.580 & 2,894 \\
\hline & \multicolumn{2}{|l|}{(Percent)} \\
\hline All fields & 23.1 & 21.6 \\
\hline Metallurgical and materials engineeri & 58.2 & 59.5 \\
\hline Atmospheric sciencen.----- & 51.2 & 47.8 \\
\hline Agriculture-- & 50.2 & 47.6 \\
\hline Agricultural economics. & 48.8 & 46.1 \\
\hline Oceanography. & 46.9 & 46.1 \\
\hline Agricultural engineering & 41.9 & 45.6 \\
\hline Astronomy & 99.7 & 39.6 \\
\hline Physics & 86.3 & 36.8 \\
\hline Mining engineering & 43.0 & 33.4 \\
\hline Aeronautical engineering & 32.4 & 33.0 \\
\hline Chemical engineering & 32.2 & 31.4 \\
\hline Other engineering - & 81.3 & 30.1 \\
\hline Engineering science. & 29.4 & 29.7 \\
\hline Petroleum engineering & 38.5 & 28.6 \\
\hline Applied mathematics & 32.6 & 28.1 \\
\hline Electrical engineering & 25.5 & 27.0 \\
\hline Mechanical engineering & 26.4 & 26.8 \\
\hline Chemistry. & 27.8 & 26.7 \\
\hline Botany - & 30.0 & 26.0 \\
\hline Civil engineering & 28.7 & 26.5 \\
\hline Blochemistry. & 81.1 & 84.9 \\
\hline Nuclear engineering & 22.9 & 24.2 \\
\hline Geoaciences. & 19.1 & 21.1 \\
\hline Statiatics. & 20.4 & 18.9 \\
\hline Microbiology & 22.6 & 18.8 \\
\hline Industrial science. & 15.9 & 17.4 \\
\hline Pharmacology. & 18.6 & 17.1 \\
\hline Zoology & 17.3 & 15.6 \\
\hline Physiology & 15.6 & 14.4 \\
\hline Psychology. & 16.9 & 14.2 \\
\hline Other life sciences & 14.6 & 13.8 \\
\hline Economics. & 12.9 & 11.9 \\
\hline Sociology. & 14.0 & 9.8 \\
\hline Biology - . - & 11.5 & 9.6 \\
\hline Sociology and anthropology & 10.6 & 8.5 \\
\hline Linguistics & 7.6 & 7.3 \\
\hline Political science. & 6.2 & 7.3 \\
\hline Geography. & 6.6 & 5.9 \\
\hline Anthropology & 6.9 & 5.7 \\
\hline Mathematics. & 6.6 & 5.7 \\
\hline History and philosophy of science. & 8.6 & 2.6 \\
\hline
\end{tabular}
- Data for 1967 were published in Supporl of Full-Time Graduate Students in the Sciences, Fall 1967 (NSF 69-34), p. 119; data for 1969 are shown in appendix table C-7.
\({ }^{\text {b }}\) See appendix table B-3 for list of departmental titles grouped into fields of science.
pattern, although engineering ranked first (appendix table C-9b).

The number of students supported by research assistantships declined 1.1 percent from 1967 to 1968 and 0.8 percent from 1968 to 1969 , as reported by the 2,338 doctorate departments applying consistently for 3 years in the NSF traineeship program. This decline was considerably less than that experienced by fellow-
ship-traineeship students in the latter period (table 4). Even though first-year U.S. students increased in numbers from 1968 to 1969 by 2.2 percent, the decline in the number enrolled beyond their first year offset the increase and resulted in a net decrease of 4.4 percent of U.S. citizen research assistants. Table 6 shows that foreign research assistants increased substantially, while U.S. citizen-research assistants declined.

Table 6.-Percent change in the number of fult-time gradurte sfudents receiving major support as research assistants, by citizenship and level of sfudy, 1967-68 and 1968-69a
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Citizenship and level of study} & \multicolumn{2}{|l|}{Percent r sange} \\
\hline & 1967-68 & 1968-69 \\
\hline Total & -1.1 & -0.8 \\
\hline First year - ...... & -7.8 & 2.8 \\
\hline Beyond first year. & . 6 & -1.6 \\
\hline U.S. citizens. & -4.2 & -4.4 \\
\hline First year. & -13.4 & 2.2 \\
\hline Beyond first year. & -1.9 & \(-5.9\) \\
\hline Foreign gtudeats & 8.4 & 9.1 \\
\hline First year. & \(\times .7\) & 4.0 \\
\hline Be rond first year.-- & 8.3 & 10.4 \\
\hline
\end{tabular}
a Based on data for 2,338 departments that accounted for 87 percent of full-time graduate enrollment in doctorate departments in 1969.

\section*{Teaching Assistantships}

Teaching assistantships tend to be a demanding form of financial assistance, in terms of time and effort required from graduate students. They are the least popular support mechanism, since the duty assignments are of such a nature that they tend to lengthen the time interval required for students to complete their graduate work. However, 32,991 students in 1969-or 23 percent of full-time enrollment -were supported through teaching assistantships. These students, like those holding research assistantships, were concentrated in the physical sciences (chart 6). The nelds providing the most teaching assistants were chemistry, 5,540 ; mathematics, 4,276 ; and physics, 3,284 (appendix table \(\mathrm{C}-7\) ).

In a ranking of the 41 detailed fields of science reported by all doctorate departments, the field "mathematics" was first in both 1967 and 1969. "History and philosophy of science," which ranked last in research assistantship support, was ranked ninth in both 1967 and 1969 in relative number of teaching assistantships.


Table 7.-Proportion of full-time graduate sfudents in doctorate departments receiving major support from teaching assistantships, ranked by field of science, 1967 and 1569 a

a Data for 1967 were published in Support of Full-T'ime Graduate Students in the Sciences, Fall 1967 (NSF 69-34), p. 119; data for 1969 are shown in appendix table C-7.
\({ }^{\mathrm{b}}\) See appendix table B-3 for list of departmental hitles grouped into fie!ds of science.
pecially with foreign students, in contrast to the net declines in both fellowship-traineeship support and research assistantships. An examination of the doctorate

Table g .-Percent change in the number of full-ime graduate sfudents receiving major support as feaching assistanio, by citizenship and leval of spudy, 1967-68 and 1968-69 a
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Citizenship and level of study} & \multicolumn{2}{|l|}{Percent change} \\
\hline & 1967-68 & 1968-69 \\
\hline Total & 5.0 & 3.6 \\
\hline Firat ycar & -. 7 & 2.9 \\
\hline Beyond firat year & 8.3 & 4.0 \\
\hline U.S. citizens. & 2.7 & 1.4 \\
\hline Firat year. & -3.9 & 1.3 \\
\hline Beyond first year- & 6.6 & 1.5 \\
\hline Foreign stucients & 16.6 & 13.4 \\
\hline First year. & 17.0 & 9.8 \\
\hline Beyond first year. & 16.3 & 15.2 \\
\hline
\end{tabular}
- Based on data for 2,338 departments that accounted for 87 percent of full time graduate enrollment in doctorate departments in 1969.
departments reporting consistently for 3 years indicated an increase of 5.0 percent from 1967 to 1968 and 3.6 percent from 1968 to 1969 in full-time graduate students surported through teaching assistantships (table 8).

\section*{Other Types of Support}

The remaining 26 percent of full-time students attending doctorate-granting institutions in 1969 were supported by a variety of "other" mechanisms which were outside the three major types discussed previously. These students were primarily dependent upon themselves, loans, or their families for support. The social sciences enrolled the largest number of students in this category, and engineering ranked next (chart 7). Fields of science with the largest numbers of students in this category were politica. science ( 3,470 ), psychology ( 3,227 ), electrical engineering \((2,573)\), economics \((2,492)\), and mathematics \((2,169)\) (appendix table C-7).

Of the 36,003 full-time students primarily supported by "other" mechanisms, including self-support, 80 percent were U.S. citizens. These students concentrated their studies in the social sciences area, while foreign students emphasized engineering.

\section*{Chart 7. Full-time graduate students receiving major support through "other"mechanisms, 1969 a/ \\ PÉRCENT DISTRIBUTION \\ AREA OF SCIENCE}


I'hysical sciences 10

!/ Primarily selfrsupport.
! OURCE: NATIONAL SCIEINCE FOUNOATION IAPPENOIX TABLE C-9D).

The doctorate departments that reported consistelitly for 3 years experienced marked increases in the number of students supported by other mechanisms. This contrasts with the reductions in the number of sludents supported by fellowships-traineeships and research assistantships, and the reduced rate of growth in the number of teaching assistantships. This difference seems to indicate that when outside support tafers oli, graduate students rely more upon themselves and their families to finance their graduate education. I'able 9 indicates the changes in enrollment by citizenship and level of study for the period 1967-68 and 1968-69.

Further details on this form of support will be disrussed in the succeeding section, where types of supbort are related directly to the various sources of financial support utilized by graduate students.
rable 9.-Percent change in the number of full-time graduate students receiving major support through "other" mechanisms, by cifizenship and level of study, 1967-68 and 1968-65: 5
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Citizenship and level of study} & \multicolumn{2}{|l|}{Pereent change} \\
\hline & 1967-68 & 1968-69 \\
\hline Total. & 6.0 & 11.6 \\
\hline First year..... & -. 3 & 13.6 \\
\hline Beyond first year. & 11.6 & 10.0 \\
\hline U.S. citizens & 4.1 & 10.5 \\
\hline First jear & -4.2 & 12.7 \\
\hline Beyond first year.-.- & 11.2 & 8.9 \\
\hline 1"oreign atudents, & 14.5 & 16.2 \\
\hline First year. & 15.6 & 16.9 \\
\hline Beyond first year. & 13.4 & 15.6 \\
\hline
\end{tabular}
- Based on data for 2,338 departments that aecounted for 87 percent o! full-time graduate enrollment in doctorate departments in 1969.

\section*{Section IV. Sources of Major Support of Full-Time Graduate Students in Dociorate Departments}

It is generally recognized that one of our nationa: goals is nurturing and fostering the development and growth of graduate education, in order to improve our social, economic, and cultural position. Without question, the future scientific and technological potentials of the economy are closely interlinked with the strength and vitality of the Nation's universities and colleges. Recently, the I'resident's National Goals Research Staff presented its report, Toward Balanced Growth: Quanti'y with Quality, \({ }^{11}\) in which it was stated that:
"Taken all in all, the educational system, which is the crucial single institution for the development of our citizenry

\footnotetext{
\({ }^{2}\) U.S. President, Toward Balanced Growth: Quantity with Quality, Report of the National Goals Research Staff (Washington, D.C. 20402: Supt. of Documents, U.S. Government Printing Office, 1970), p. 99.
}
so that they can live happily, shape our system wisely, and contribute to both the direction and rate of its growth, is in a state of severe stress. The educational system is having its own 'growth' problems which, if not solved, will have a profound impact on the growth of the Nation as a whole."

The Nation's universities and colleges have always been heavily dependent upon private and public support, since tuition and other student charges, endowment earnings, and other regular income sources cover only a small part of their total outlay. The pressures of increased demands in recent years for cuucation, research, and public services, coupled with inflationary pressures and competing demands for public and private philanthropy, have presented formidable problems for U.S. higher education. Graduate education imposes particular financial burdens because of heavy outlays to retain qualified faculty, to purchase i.nd

Table 10.-full-fime graduate sfudents in doctorate departments, by principal source and type of support, 1969


\footnotetext{
- See appendix tables C-11a and C-11b for separate data on Industry, private foundations, foreign, and other outaide sources of support.
}
maintain costly facilities and equipment, and to provide stipend support for graduate students. Financial stringencies of recent years, including the leveling of Federal support of graduate education, have had consequential impacts on graduate enrollment and the methods used by graduate students to finance their education. This section is concerned with the major sources of financing utilized by full-time graduate science students in doctorate institutions, by type of support, area of science, ard citizenship in 1969, and trends in such financing, 1967-69 (appendix tables C-10a through \(\mathbf{C - 1 5 g}\) ).

In 1969, outside sources provided major support to 81 percent of the full-time science graduate students; \({ }^{12}\) the remaining 19 percent relied upon self-support, including savings, loans, part-time employment, and family and other types of assistance. The U.S. Government was the predominant source of major financial support for 37 percent of the full-time graduate students. Ranking next were institutions and State and local governments ( 36 percent), and other outside sources, such as industry, private foundations, and foreign organizations ( 9 percent) (table 10 and chart 8).

12 The term "outside sources," as Lided in this report, refers to all sources of support other than self-support.

Chart 8. Major sources of support of full-time graduate students in doctorate


\footnotetext{
SOURCE: NATIONAL SGIENCE FOUNDATION TTABLE 1O),
}

\section*{U.S. Government}

Federal agencies were reported as supporting 51,620 full-time graduate students in doctorate departments in 1969. The principal agencies, in terms of the relative number of students supported, were the Department of Health, Education, and Welfare (HEW), 40 percent ; National Science Foundation (NSF), 25 percent; Department of Defense (DOD), 10 percent; Atomic Energy Commission (AEC), 6 percent; and National Aeronautics and Space Administration (NASA), 5 percent. The HEW programs supporting the largest number of students were those of the National Institutes of Health (NIH) and those funded through the National Defense Education Act (NDEA), which accounted for 24 percent and 13 percent, respectively, of all federally supported students (appendix table \(\mathrm{C}-12\) ).

The large majority of full-time graduate students supported by Federal agencies were fellows and trainees, and research assistants (chart 9). The principal

\section*{Chart 9. Percent distribution of graduate students supported by the U.S. Government, 1I69}


Table 11 .-Full-fime graduata sfudents in dactarafe departments, by principal source of suppiort and area af science, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Principal source of support & Total & Engineering & Physical sciences & Mathematical sclences & \[
\underset{\text { Lclences }}{\text { Life }}
\] & Psychology & Social sciences \\
\hline & \multicolumn{7}{|c|}{Number} \\
\hline  & 141,199 & 80,820 & 30,175 & 11,727 & 27,588 & 11,918 & 28,971 \\
\hline U.S. Government. & 51,620 & 12,334 & 13,187 & 3,223 & 11,513 & 5,127 & 6,236 \\
\hline Institutions and State and local governments- & 50,471 & 8,025; & 12,497 & 5,886 & 9,879 & 3,902 & 10.282 \\
\hline Other outside sources \({ }^{\text {a }}\). & 12,801 & 4,979 & 1,990 & 578 & 2,085 & 708 & 2.461 \\
\hline Self-qupport. & 26,307 & 5,48: & 2,501 & 2,040 & 4,111 & 2,181 & 9,992 \\
\hline & \multicolumn{7}{|c|}{Percent distribution, by principal source} \\
\hline Total. & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline U.S. Government. & 36.6 & 40.0 & 43.7 & 27.5 & 41.7 & 43.0 & 21.5 \\
\hline Institutions and State and local governments- & 35.7 & 26.0 & 41.4 & 50.2 & 35.8 & 32.7 & 35.5 \\
\hline Other outside sources.. & 9.1 & 16.2 & 6.6 & 4.9 & 7.6 & 6.9 & 8.5 \\
\hline Self-rupport.- & 18.6 & 17.3 & 8.3 & 17.4 & 14.9 & 18.3 & 34.5 \\
\hline & \multicolumn{7}{|c|}{Percent distribution, by area of science} \\
\hline Total & 100.0 & 21.8 & 21.4 & 8.3 & 19.5 & 8.4 & 20.5 \\
\hline U.S. Government. & 100.0 & 23.9 & 25.5 & 6.2 & 22.3 & 9.9 & 12.1 \\
\hline Institutions and State and local governments. & 100.0 & 15.9 & 24.8 & 11.7 & 19.6 & 7.7 & 20.4 \\
\hline Other outside sources.. & 100.0 & 38.9 & 15.5 & 4.5 & 16.3 & 5.5 & 19.2 \\
\hline Self-support--------. & 100.0 & 20.8 & 9.5 & 7.8 & 15.6 & 8.3 & 38.0 \\
\hline
\end{tabular}
- See appendix tables C-10a and C-10b for separate data on industry, private foundations, foreign, and other outside sources of support.

Federal agencies in terms of fellowships and traineeships awarded were HEW, 16,895, and NSF, 7,255. Agencies supporting the largest number of research assistants were NSF, 5,225 ; DOD, 3,525 ; HEW, 3,492 , and AEC, 2,395 (appendix tables C-11a and C-11b).

Nearly three-fourths of graduate students with major support from the Federal Government were enrolled in the physical sciences, engineering, and the life sciences (table 11). As might be expected, the allocation of Federal support among areas of science reflected the scientific interests of individual agencies. For example, students supported by the Department of Agricuiture and NIH were principally in the life sciences, while those supported by AEC, DOD, and NASA were principally in engineering and physical sciences. NSF support was quite diffused among areas of science, but nearly three-fifths of the studenits supported were in the physical sciences and engineering (appendix tables \(\mathrm{C}-10 \mathrm{a}\) and \(\mathrm{C}-10 \mathrm{~b}\) ).

The number of graduate students receiving Federal support declined 1.6 percent from 1967 to 1968 and 5.9 percent from 1968 to 1969 . The decrease in Government support of graduate students reflect: the corresponding slowdown of Federal funding of scien-
tific activities in universities and colleges that began in the mid-1960's (table 12).

Table 12.-Percent change in the number of full-time graduate students in doctorate depariments supperted by the U.S. Government, 1967-68 and 1968-69 a
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Item} & \multicolumn{2}{|l|}{Percent change} \\
\hline & 1967-68 & 1968-69 \\
\hline Total & -1.6 & -5.9 \\
\hline Type of support: & & \\
\hline Fellowships and traineeships & . 1 & -10.2 \\
\hline Research яssistantships. & -3.1 & -2.0 \\
\hline Teaching assistantships_ & -22.5 & 30.9 \\
\hline Other types of support. & -6.9 & 13.1 \\
\hline Area of science: & & \\
\hline Engineering - & -5.6 & -5.3 \\
\hline Physical aciences & -3.6 & -8.9 \\
\hline Mathematical sciences. & -2.8 & -8.2 \\
\hline Life sciences. & 1.2 & -5.0 \\
\hline Psychology. & 5.6 & 3.0 \\
\hline Social sciences & 2.6 & -7.3 \\
\hline Citizenship: & & \\
\hline U.S. citizens & -2.6 & -7.6 \\
\hline Foreign students & 6.7 & 6.8 \\
\hline
\end{tabular}
* Based on 2,388 doctorate departmenta, as shown in appendix tahles C-15s through C-15g.

\section*{Institutional Support}

In publicly supported institutions of higher education, it is often difficult to separate the funds received from the State or local government from those that might be considered the institution's own funds that are not under the direct control of the government. As a consequence, funds from these sources are grouped, for the purposes of this report, into a single category, "institutional support." The 50,471 students receiving such support constituted 36 percent of all full-time students in doctorate departments in 1969, or nearly as large as the number of U.S. Government-supported students (appendix table C-10b).

The physical sciences, social sciences, and life sciences accounted for nearly two-thirds of all graduate students supported by institutions (chart 10). Chemistry, with 6,438 students, ranked first in terms of institutional support, followed by mathematics \((4,916)\) and physics \((4,185)\) (appendix table C-14).

\section*{Chart 10. Percent distribution of graduate studerits supported by institutions and \(\$\) tate and local grvernments, 1969}


Trend data developed in this report to examine certain characteristics of graduate students were grouped in three categories: U.S. Government, other U.S. sources, and foreign sources. Students receiving institutional support comprised the largest group (about 58 percent) of the category "other U.S. sources." Thus, trend data applying to the overall category may be considered reasonably representative of students receiving institutional support (appendix tables C-15a through \(\mathrm{C}-15 \mathrm{~g}\) ).

The number of graduate students receiving support from other U.S. sources increased 6.4 percent from 1967 to 1968 and 6.0 percent from 1968 to 1969, while students supported by U.S. Government sources declined in both periods, as mentioned earlier. In each of the areas of science, the number of graduate students supported by "other U.S. sources" increased. The increase was greatest in the sccial sciences, which rose \(7 .{ }^{9}\) percent from 1967 to 1968 , and 11.5 percent from 1968 to 1969.

\section*{Other Outside Support}

Graduate students relying upon all other outside support totaled 12,801, or 9 percent of the total in 1969. Those supported by private industry ranked first in number ( 4,568 ), followed by private foundations \((3,836)\), foreign sources ( 2,245 ), and all other U.S. sources (2,152), as indicated in appendix table C-10a.

\section*{Chart 11. Percent distribution of graduate students depending upon self-support, 1969}
\begin{tabular}{|c|c|c|c|c|c|}
\hline AREA OF SCIENCE & 0 & 10 & 20 & 30 & 40 \\
\hline SOCIAL SCIENCES & & & & & \\
\hline ENGINEERING & & & 21 & & \\
\hline LIFE SCIENCES & & & & & \\
\hline PHYSICAL SC,IENCES & & 10 & & & \\
\hline PSYCHOLOGY & & 8 & & & \\
\hline MATHEMATICAL SCIENCES & & 8 & & & \\
\hline
\end{tabular}

Fellowships and traineeships were the predominant form of student assistance in this category, 46 percent; followed by "other" mechanisms, 35 percent; rasearch assistantships, 19 percent; and teaching assistantships, only 1 percent (table 10).

\section*{Self-Support}

The 26,307 graduate students who were reported as self-supporting in doctorate departments in 1369 ac-
counted for 19 percent of the total number of fulltime graduate students and were concentrated in the social sciences as shown in chart 11 . All of these students were, obviously, classified into the "other" mechanisms form of support. Particular fields of science with the largest numbers of self-supporting students were political science \((3,114)\), economics ( 2,270 ), psychology ( 2,181 ), electrical engineering \((1,637)\), and mathematics \((1,591)\), as shown in appendix table \(\mathrm{C}-14\).

\section*{Section V. Faculty and Postdoctorals in Docitorate Deparfments}

\section*{Faculty}

The term "faculty," as used in this report and for the purposes of the NSF traineeship program, refe-s to staff with an academic rank of instructor or above who are significantly involved in the graduate or undergraduate program of the institution in teaching one or more courses or seminars, or in directing the research of one or more students. Those with full-time appointments are differentiated from part-time faculty whose major responsibilities are outside of the department, such as university administrators, deans, affiliate professors, extension service staff, museum staff, etc. "Graduate" faculty refers to those who teach one or more graduate courses or seminars and/or direct the research of one or more graduate students.

The number of full-time faculty in doctorate departments totaled 54,549 in 1969, of which 84 percent

Chart 12. Number of full-time faculty in doctorate departments, 1969


\footnotetext{
SOURCE: NATIONAL SCIENCE FOUNDATION (APPENDIX TABLE C.17)
}
were identified as full-time graduate faculty (chart 12). Fields of science reporting the largest numbers of faculty members were mathematics, 4,963 ; physics, 4,361; chemistry, 4,077; agriculture, 3,771; and psychology, 3,317 (appendix table C-16).

As stated earlier, although total graduate enrollment in the sciences increased from 1967 to 1969 in doctorate departments, it has shown a slowdown in its rate of growth. This reduced growth rate was also apparent in the number of full-time faculty reported by these same doctorate departments. Mathematical sciences experienced the greatest change, from an increase of 7.1 percent during 1967-68 to only 2.3 per-

Chart 13. Number of full-time faculty in doctorate departments, 1967-69


\footnotetext{
SOURCE: NATIOMAL SCIENCE FOUNDATION (TABLE 13),
}
cent for 1968-69. Every area of science showed a declining rate of increase from 1968 to 1969 (table 13 and chart 13).

A look at the full-time graduate faculty alone shows a similar pattern with, again, a rather consequential drop in the rate of increase in mathematical sciences faculty for 1968-69. In an carlicr discussion of teaching assistantships, it was pointed out that in the mathematical sciences there was more concentration of students using this aid mechanism than any other type in 1969, and it may be due to the lessening amount of faculty involvement in this field, which has resulted in a greater dependence upon teaching assistaits (appendix table \(\mathrm{C}-7\) ).

Relationship to graduato enrollment and Ph.D. degrees awarded. A comparison of full-time gracuate enrollment with full-time graduate faculty in 1969 reveals an overall ratio of 3.1 graduate students per faculty member, a slight reduction from the ratio of 3.3 to 1 reported for 1966 in the first report of this series. \({ }^{13}\) The highest graduate student-faculty ratio occurred in psychology, and the lowest in the life sciences (chart 1:).

\footnotetext{
\({ }^{13}\) National Science Foundation, Graduate Student Support and Manpower Resources in Graduate Science Education. Fall 1965 and 1966 (NSF 68-13) (Washington, D.C. 20402: Supt. of Documents, U.S. Government Printing Office), p. 59.
}

Table 13.-Trends in the number of full-fime faculty in doctorafe deparfments, by area of science, 1967-69 a
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Area of science} & \multirow{2}{*}{1967} & \multirow{2}{*}{1968} & \multirow{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} \\
\hline & & & & 1967-68 & 1968-69 \\
\hline \multirow[b]{3}{*}{Total---------} & \multicolumn{5}{|c|}{Total faculty} \\
\hline & 48,354 & 51,923 & 54,549 & 7.4 & 5.1 \\
\hline & 10,540 & 11,155 & 11,562 & 5.8 & 3.6 \\
\hline Physical aciences.- & 9,558 & 10,185 & 10,583 & 6.0 & 4.4 \\
\hline Mathematical science & 5,169 & 5,537 & 5,667 & 7.1 & 2.3 \\
\hline Life aciences. & 12,224 & 13,251 & 14,075 & 8.4 & 6.2 \\
\hline Psychology - & 2,815 & 3,081 & 3,317 & 9.4 & 7.7 \\
\hline \multirow[t]{2}{*}{Social sciences-.-.--} & 8,048 & 8,764 & 9,345 & 8.9 & 6.6 \\
\hline & \multicolumn{5}{|c|}{Graduate faculty} \\
\hline Total. & 39,078 & 42,674 & 45,687 & 9.2 & 7.1 \\
\hline Engineering---- & 8,395 & 9,034 & 9,665 & 7.6 & 7.0 \\
\hline Physical aciences .-. & 8,303 & 8,874 & 9,414 & 6.9 & 6.1 \\
\hline Mathematical scienc & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3,804 \\
& 9,723
\end{aligned}
\]} & 4,268 & 4,471 & 12.2 & 4.8 \\
\hline Life sciences .-- & & 10,681 & 11,497 & 9.9 & 7.6 \\
\hline Psychology & 2,385 & 2.707 & 2,902 & 13.5 & 7.2 \\
\hline Social sciences.- & 6,468 & 7,110 & 7,738 & 9.9 & 8.8 \\
\hline
\end{tabular}

\footnotetext{
* Basei on Departmental Summaries from 2,894 doctorate departments, as shown in appendix \(\mathbf{E}\).
}

\section*{Chart 14. Full-time graduate faculty in doctorate departments, 1969}

FULL. TIME GRADUATE STUDENTS PER FACUL'TY MEMBER


A study of the interrelationship between Ph.D. degrees granted in the academic year ended June 1969 and the number of graduate faculty in fall 1968 indicated that staffing of doctorate departments averaged 2.8 facuity members per Ph.D. degree awarded. \({ }^{14}\) In 1968 the ratio of faculty-to-degrees awarded was highest in mathematical sciences and lowest in psychology.

\footnotetext{
\({ }^{14}\) Because fall 1968 faculty comprise the departmental staff for academic year 1968-69, it was relevant to compare faculty data for the beginning of the academic year with Ph.D. output for the entire year.
}

\section*{Posidoctorals}

Postdoctorals, or research associates as they are sometimes called, are essentially full-time researchers without academic rank and with no permanent status with the host institution. \({ }^{16}\) A postdoctoral appointment allows the scholar to a-quire new skills and experience ini his chosen research field and enhances his qualification for a faculty position in a major university or a top research position in other sectors of the economy. Science departments depend upon these postdoctorals to carry on high quality research and bring new techniques to the laboratory that otherwise might not be available.

Number of postdoctorals. Pcistdoctoral appointments in doctorate departments totaled 8,517 in 1969, of whom more than four-fifths were in the physical sciences and the life sciences (chart 15). As might be expected, the number of postdnctorals was rather closely associated with the availability of research funds. For example, the area-of-science distribution of separately budgeted research expenditures totaling \(\$ 2.1\) billion in nuiversities and colleges in academic year 1967-68 was as follows: Physical and life sciences combined, 69 percent; engineering, 13 percent; and social, mathematical, psychological, and other sciences combined, 18 percent. \({ }^{16}\)

While graduate enrollment and faculty snowed declining rates of increase in the period 1967-69, the increase in the number of postdoctorals in doctorate departments accelerated each year. The total number reported by the doctorate departments in this study increased 8.1 percent from 1967 tc 1968 and 10.3 percent from 1968 te 1969 (table 14).

Relatinnship to enrollment, Ph.D. degrees, and faculty. Data on postdoctorals were compared with related educational variables, including graduate students, doctorate degrees granted, and graduate faculty. The social sciences attracted 21 percent of all graduate students but only 3 percent of the postdoctorals, with a student-to-postdoctoral ratio of 112.3 to 1, the highest of any major area of science. With 45 percent of the postdoctorals and 21 percent of the students in the physical sciences, this area exhibited the

\footnotetext{
15 For a comprehensive analysis of postdoctoral appointments in universities and colleges, government, industry, and independent nonprofit institutions, see National Academy of Sciences, The Invisible University. Postdoctoral Education in the United States (Washir.ston, D.C.: National Academy of Sciences, 1969).
\({ }^{10}\) National Science Foundation, Resources for Sciontific Activities at Universities and Colleges, 1969 (NSF 70-16) (Washington, D.C. 20402: Supt. of Documents, U.S. Government Printing Office), table 17.
}

\section*{Chart 15. Nuniber of postdoctorals in doctorate departments, 1969}


SOURCE: NATIONAL SCIENCE FOUNOATIOM (APPENOIX TABLE C-19)
lowest student-to-postdoctoral ratio ( 8.0 to 1), followed by the life sciences with 8.6 to 1 (appendix table C-20).

In a detailed examination of the 41 fields of science in which postdoctorals were engaged in research, only tivo fields, chemistry \((2,236)\) and physics \((1,203)\), had more than 1,000 postdoctoral appointees. In contrast, fewer than 10 postdoctorals were reported in doctoral departments in the following fields: Sociology and anthropology combined, \(2 ;{ }^{17}\) petroleum engineering, 4; mining engineering, 7; and agricultural economics, 9, as shown in appendix table C-19.

\footnotetext{
\({ }^{17}\) This figure does not include the 54 postdoctorals in departments of sociology.
}

Table 14.-Trends in the number of postdocforals in doctorate departments, by area of science, 1967-69²
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Area of science} & \multirow{2}{*}{1967} & \multirow{2}{*}{1968} & \multirow{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} \\
\hline & & & & 1967-68 & 1968-69 \\
\hline Total & 7,140 & 7,720 & 8,517 & 8.1 & 10.3 \\
\hline Engineering -- & 617 & 690 & 781 & 11.8 & 13.2 \\
\hline Physical sciences & 3,407 & 3,615 & 3,786 & 6.1 & 4.7 \\
\hline Mathematical science & 225 & 236 & 247 & 4.9 & 4.7 \\
\hline Life sciences. & 2,491 & 2,743 & 3,214 & 10.1 & 17.2 \\
\hline Psychology. & 170 & 214 & 231 & 25.9 & 7.9 \\
\hline Social sciences. & 230 & 222 & 258 & -3.5 & 16.2 \\
\hline
\end{tabular}

Source: Departmental Summaries from 2,894 doctorate departments, as shown in appendix \(E\).

An almost one-to-one ratio existed in both the physical and life sciences in the number of doctorate degrees granted per postdoctoral in academic year 1968-69. \({ }^{18}\) The highest ratio was in the social sciences, where 9.7 doctorate degrens were awarded per postdoctoral appointment (appendix table C-21).

Comparisons of the numbers of postodoctorals and graduate faculty provided another illustration of the concentration of postdoctoral appointees in the physi-

\footnotetext{
10 It was relevant to compare fall 1098 postdoctoral data with Ph.D. degrees awarded for the entire yoar, as in similar correlations made between faculty and Ph.D. def ceea.
}
cal and life sciences. The physical sciences, with the largest number of postdoctorals, reported 2.5 faculty members per postdocatoral. The ratio was highest in the social sciences, with 30.0 faculty rnembers per postdoctora! (appendix table \(\mathbf{C}-22\) ).

About two-thirds of the postdoctorals counted here received their doctorates in 1965, or later, and were termed "recent postdoctorals" for the purposes of this study. The highest proportion of recent postdoctorals among areas of science was in the physical sciences, 77 percent, while the lowest proportion was in the social sciences, 38 percent (appendix table C-19).

\section*{APPENDIXES}
A. Institutions Particifating in the Graduate Traineeship Program, Fall 1969
B. Techniral Notes
C. Statistical Tables
D. Instructions and Consuiidated Departmental Data Sheets
E. Consolidated Departmental Summaries

\title{
APPENDIX A \\ Institutions Participating in Graduate Traineeship Program, Fall \(1969^{1}\)
}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Alabama} & Auburn University \\
\hline & University of Alabama \\
\hline Alaska & University of Alaska \\
\hline \multirow[t]{2}{*}{Arizona} & Arizona State University \\
\hline & University of Arizona \\
\hline Arkansas. & University of Arkansas, Fayettcville \\
\hline \multirow[t]{19}{*}{California} & California Institute of Technology \\
\hline & Claremont Graduate School and University Center \\
\hline & Loma Linda University \\
\hline & Stanford University \\
\hline & University of California, Berkeley \\
\hline & University of California, Davis \\
\hline & University of California, Irvine \\
\hline & University of California, Los Angcles \\
\hline & University of California, Riverside \\
\hline & University of California, San Diego \\
\hline & University of California, San Francisco \\
\hline & \\
\hline & University of California, Santa \\
\hline & \\
\hline & University of California, Santa Cruz \\
\hline & University of the Pacific \\
\hline & University of Santa Clara \\
\hline & University of Southern California \\
\hline & U.S. International University \\
\hline \multirow[t]{5}{*}{Colorado.} & Colorado School of Mines \\
\hline & Colorado Statc University \\
\hline & University of Colorado \\
\hline & University of Denver \\
\hline & University of Connecticut \\
\hline \multirow{2}{*}{Connecticut.} & Wesleyan University \\
\hline & Yalc University \\
\hline Delaware & University of Delaware \\
\hline
\end{tabular}

\footnotetext{
1 The 224 science doctorate institutions listed here may differ from similar listings published elsewhere for the following principal reasons: (1) Differences in classifying branches, affiliates, or other organlzational components of university systems; (2) variations in definitions of science and engineering flelds; (3) differences in the time-period covered by the classification (e.g., single year or longer period); and (4) differences in classifications based on level of degree offered or level of degree granted, respectively, in a particular period.
}
\begin{tabular}{|c|c|}
\hline District of Columbia. & American University Catholic University George Washington University Georgetown University Howard University \\
\hline \multirow[t]{5}{*}{Florida.} & Florida State University \\
\hline & Nova University \\
\hline & University of Florida \\
\hline & University of Miami \\
\hline & University of South Florida \\
\hline \multirow[t]{5}{*}{Georgia.} & Atlanta University \\
\hline & Emory University \\
\hline & Georgia Institute of Technology Georgia State College \\
\hline & Medical College of Gcorgia \\
\hline & University of Georgia \\
\hline Hawaii. & University of Hawaii \\
\hline Idaho................ & University of Idaho \\
\hline \multirow[t]{11}{*}{Illinois.} & DePaul University \\
\hline & Illinois Institute of Technology \\
\hline & Illinois State University \\
\hline & Loyola University \\
\hline & Northern Illinois University \\
\hline & Northwestcrn University \\
\hline & Southern Illinois University \\
\hline & University of Chicago \\
\hline & University of Illinois, Urbana \\
\hline & University of Illinois Mcdical Cienter \\
\hline & University of Illinois, Chicago Circle \\
\hline \multirow[t]{3}{*}{Indiana.} & Indiana University \\
\hline & Purdue University \\
\hline & University of Notre Dame \\
\hline \multirow[t]{2}{*}{Iowa.} & Iowa State University \\
\hline & University of Iowa \\
\hline \multirow[t]{2}{*}{Kansas.} & Kansas State University \\
\hline & University of Kansas \\
\hline \multirow[t]{2}{*}{Kentucky.............} & Univcrsity of Kentucky \\
\hline & University of Louisville \\
\hline \multirow[t]{4}{*}{Louisiana} & Louisiana Polytechnic Institute \\
\hline & Louisiana State University, Baton Rougc \\
\hline & Louisiana State University, New Orleans \\
\hline & Louisiana State University Medical Center, New Orleans \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Loui iana-Cont.} \\
\hline & Loyola University \\
\hline & Tulane University \\
\hline Maici \({ }^{\text {a }}\) & University of Mainc \\
\hline \multirow[t]{2}{*}{Maryland} & Johns Hopkins University \\
\hline & University of Maryland \\
\hline \multirow[t]{11}{*}{Massachusetts.} & Boston College \\
\hline & Boston University \\
\hline & Brandeis University \\
\hline & Clark University \\
\hline & Harvard University \\
\hline & Lowell Tichnnological Institute \\
\hline & Massachusetts Institute of Technology \\
\hline & Northeastern University \\
\hline & Tufts University \\
\hline & University of Massachusctts \\
\hline & Worcester Polytechnic Institute \\
\hline \multirow[t]{6}{*}{Michigan.......} & Michigan State University, East Lansing \\
\hline & Michigan Technological University \\
\hline & University of Detroit \\
\hline & University of Michigan \\
\hline & Wayne State University \\
\hline & Western Michigan University \\
\hline Minnesota. & University of Minnesota, Minneapolis \\
\hline \multirow[t]{3}{*}{Mississippi.} & Mississippi State University \\
\hline & University of Mississippi \\
\hline & University of Southern Mississippi \\
\hline \multirow[t]{4}{*}{Missouri.} & St. Louis University \\
\hline & University of Missouri, Columbia \\
\hline & University of Missouri, Kansas City \\
\hline & University of Missouri, Rolla Washington University \\
\hline \multirow[t]{2}{*}{Montana.} & Montana State University \\
\hline & University of Montana \\
\hline Nebrask: & University of Nebraska \\
\hline Nevada & University of Nevada \\
\hline \multirow[t]{2}{*}{New Hampshire.} & Dartmouth College \\
\hline & University of New Hampshire \\
\hline \multirow[t]{4}{*}{New Jersey} & Newark College of Engineering Princeton University \\
\hline & Rutgers, The State University \\
\hline & Seton Hall University \\
\hline & Stevens Institute of Technology \\
\hline \multirow[t]{3}{*}{New Mexico.} & New Mexico Institute of Mining and Technology \\
\hline & New Mexico State University \\
\hline & University of New Mexico \\
\hline \multirow[t]{11}{*}{New York} & Adelphi University \\
\hline & Alfred University \\
\hline & City University of New York \\
\hline & Clarkson College of Technology \\
\hline & Columbia University \\
\hline & Cooper Union \\
\hline & Cornell University \\
\hline & Fordham University \\
\hline & New School of Social Research \\
\hline & New York Medical College \\
\hline & New York University \\
\hline
\end{tabular}

Polytechnic Institute of Brooklyn Rensselacr Polytechnie Institute Rockefeller University
St. Bonaventure University
St. Johns University
State University of New York at Albany
State University of New York at Binghamton
State University of New York at Huffalo
State University of New York, College of Forestry at Syracuse
State University of New York, Downstate Medical Center
State University of New York, Stony Brook
State University of New York, Upstate Medical Center
Syracuse University
Union College and University
University of Rochester
Yeshiva University
North Ca: Jlina. . . . . . . \(\quad \begin{aligned} & \text { Duke University } \\ & \text { University of North Carolina, }\end{aligned}\) Chapel Hill
University of North CarolinaNerth Carolina State University, Ralcigh
\(\begin{array}{ll} & \text { Wake Forest University } \\ \text { North Dakota. . . . . . . . } & \text { North Dakota State University }\end{array}\)
University of North Dakota
Ohio. . . . . . . . . . . . . . Bowling Green State University
Case-Western Reserve University
Kent State University
Mianii University
Ohio State University
Ohio University
University of Akron
University of Cincinnati
Universitv of Dayton
University of Toledo
Oklahoma. . . . . . . . . . . Oklahoma State University
University of Oklahoma
Oregon. . . . . . . . . . . . . Oregon Graduate Center
Oregon State University
Portland State University
University of Oregon
University of Portland
Penusylvania . . . . . . . . Bryn Mavir College
Carnegic-Mellon University
Drexel Institute of Technology
Duquesne University
Hahnemann Medical College and Hospital
Lehigh University
The Medical College of Pennsylvania
Pennsylvania State University
Philadelphia College of Pharmacy and Science
Temple University
Thomas Jefferson University
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Pennsylvania-Cont.} \\
\hline \multirow{5}{*}{Rhode Island........} & University of Pennsylvania \\
\hline & University of Pittsburgh \\
\hline & Villanova University \\
\hline & Brown University \\
\hline & Providence College \\
\hline \multirow{3}{*}{South Carolina .} & University of Rhode Island \\
\hline & Clemson University \\
\hline & Medical University of South Carolina \\
\hline \multirow[b]{2}{*}{South Dakota.} & University of South Carolina \\
\hline & South Dakota School of Mines and Technology \\
\hline \multirow{5}{*}{Tennessee} & South Dakota State University \\
\hline & University of South Dakota \\
\hline & George Peabody College \\
\hline & Menıphis State University \\
\hline & University of Tennessee, Knoxville \\
\hline \multirow{7}{*}{Texas} & University of Tennessee, Memphis \\
\hline & Vanderbilt L'niversity \\
\hline & Baylor University, Waco \\
\hline & Baylor College of Medicine, Houston \\
\hline & North Texas State University \\
\hline & Kice University \\
\hline & Southern Methodist University \\
\hline
\end{tabular}
\(\left.\begin{array}{ll} & \begin{array}{l}\text { Texas A\&M M University } \\ \text { Texas Christian University }\end{array} \\ \text { Texas Tech University } \\ \text { Texas Woman's Unive sity } \\ \text { University of Houston } \\ \text { University of Texas, Arlington }\end{array}\right\}\)

\section*{APPENDIX B Technical Notes}
TableB-1. Doctorates awarded in the sciences and engineering by the 224 institutionscovered in the study, compared with total science doctorates granted byall U.S. institutions of higher education, by area of science, academicyears ended June 30, 1967-69
B-1. Doctorates awarded in the sciences and engineering by the 224 institutions years ended June 30, 1967-6930
B-2. Graduate student enrollment (full-time and part-time) in the sciences and engineering in 224 doctorate institutions covered in the study, compared with estimated U.S. enrollment for advanced degrees, by area of science and department degree level, 196930
B-3. Number of science departments in the 224 doctorate institutions covered in the study, by area and field of science and department degree level, 1969

\section*{Definitions}

Highest degree offered. The department was asked to state whether the master's or doctor's degree was the highest degree offered by the department at the time the statistics were supplied (October 1969). Institutions in which at least one department offered science doctorates were eligible for NSF traineeship grants. In such institutions, departments offering master's as their highest science degrees were also eligible. Statistics on which this report is based, however, relate only to science doctorate departments of eligible institutions that elected to apply for NSF Traineeships for 1970.

Degrees conferred. Degrees conferred during the previous 12 -month period ending in June of the current year are reported. Degrees conferred jointly by two or more departments were recorded by one department only, at the discretion of the departments. The present report does not analyze the degree output of doctorate departments included in the study. However, statistics on this subject, by area of science, are summarized in the Consolidated Departmental Data Sheets (appendix D) and the Consolidated Departmental Summaries (appendix E).

Enrollment status of graduate students. A full-time graduate student is a bona fide graduate student (not a regular staff member; e.g., not an instructor) who is engaged entirely in training activities in his field of science; these activities may embrace any appropriate combination of study, teaching, and research. (Some institutions use the phrase, "geographical full-time student" to describe such students.) All other graduate students are considered parttime.

Level of study of graduate students. A firstyear graduate student is one who in the fall of the year of application is entering graduate school for the first time, or has completed less than a normal year of graduatic study. All graduate students who had completed a normal year of graduate study, or more, were classified as beyond-first-year graduate students.

Types and sources of major support. Iniormation on graduate student suppert was requested for fulltime students only. In cases of multiple support, the major source of support was requested. Major support is defined as a total stipend of \(\$ 1,200\) or more, exclusive of tuition and self-support during a particular academic year. A given student should be counted only once, and for each department the sum of full-
time graduate students enrolled should equal the sum of full-time graduate students listed by sources of major support. Four types of major support were indicated, without definitions, as follows: Fellowships and trainceships, teaching assistaniships, research assistantships, and all other types of support. Separate data on number of graduate fellows and trainees, respectively, were not requested from institutions applying for NSF traineeships because of the problem of making meaningful distinctions between the two types of awards. The Federal Interagency Committee on Education (FICE) (as does NSF in its fellowship and traineeship programs) differentiates between the two categories of stipends, as follows: (1) A fellowship is " \(c \mathrm{n}\) award made directly to or on behalf of a student, selected in a national competition, to enable him to pursue postbaccalaureate training," and (2) a traineeship is "an educational award to a student selected by his university." Except for the student selection process, the terms and conditions of the two types of awards are generally identical, according to the Federal Interagency Committee on Education's Student Support Study Group, Report on Federal Predoctoral Student Support, Part 1, Fellowships and Traineeships, April 1970, page 3. For purposes of analysis of major sources of support, four sources were used: \({ }^{1}\) (1) U.S. Government; (2) institutional support (includes State and local government and "This" institution) ; (3) other outside sources; and (4) self-support, including loans and family support.

Citizenship of graduate students. Citizens of the United States or native residents of a possession of the United States are considered U.S. citizens. All others, including those who have applied for U.S. citizenship, are considered foreign.

Faculty. Faculty are staff of academic rank, instructor or above, who are significantly involved in the graduate academic program of the department (i.e., teaching one or more graduate courses or seminars and/or directing the research of one or more graduate students), including faculty on sabbatical leave who were expected to return. Visiting professors were excluded. Full-time faculty are those staff (including the departmental head) of academic rank, instructor or above, with a full-time appointment in that department and whose major responsibilities are in the academic programs of that department. Research professors (and research associates with academic rank) were included in the full-time faculty count and also

\footnotetext{
\({ }^{1}\) See appendixes \(D\) and \(E\) for the application forms used for NSF Traineeships and instructions used to complete the Departmental Data Sheet (NSF Form 345).
}
separately counted as those who met the definition for full-time faculty but did not teach any regularly scheduled courses. Part-time faculty are those who met the faculty definition but have major responsibilities or activities outside the department (includes deans, affiliate or adjunct professors from other departments or outside the university, professors emeriti, experiment laboratory or extension service staff, museum staff, etc.). Any one faculty member was counted as full-time in only one department.

Postdoctorals and research associates. All individuals who devote essentially full-time effor \({ }^{2}\) to research activities within that department, whose appointment is nonpermanent, not of academic rank (instructor or above), and usually for a specific time period, are postdoctorals or research associates. Such individuals usually hav an earned doctorate (or the equivalent in experience) and may contribute to the academic program through seminars, lectures, or working with graduate students, but their postdoctoral activities are considered to have an element of additional training for them.

\section*{Statistical Coverage of Graduare Science Education}

Statistics on graduate enrollment, faculty, and postdoctorals in the sciences and engineering submitted by the 224 doctorate institutions that applied for 1970 NSF traineeship grants, upon which this report is based, represent nearly the complete universe for doc-torate-granting departments. As mentioned elsewhere in the report, the graduate educational characteristic. of master's departments of the 224 institutions were not included for two principal reasons: (1) Tiney constitute only a small fraction of the educational activities of doctorate-granting institutions, and (2) the data for these master's departments could not be considered representative of similar departments of the approximately 200 institutions granting master's degrees in the sciences and engineering that were not covered in this study, since they were not eligible for NSF traineeship grants.

The 2,894 doctorate departments of these 224 institutions awarded well over 90 percent of the doctorate degrees awarded by all U.S. institutions of higher education in each of the 3 academic years ended June 30, 1967-69 (appendix table B-1). Coverage in terms of proportion of doctorates awarded was quite consistent in each area of science throughout the 3 -year period. It was weakest in the life sciences, in which slightly more than three-fourths of the doctorates were awarded by institutions in the study. In this regard, it
shou'd be noted that many departments granting doctorat:s in the basic-medical and clinical-medical sciences do not apply for NSF traineeships. In the social scierses and engineering for each of the 3 years, and in mathematical sciences for 1969 only, the indicated docterate output of institutions in the study was higher than that shown for each of the areas of science by U.S. Office of Education statistics. This apparent discrepancy may be attributed to the differences in the classifications of scientific fields used by NSF and OE, respectively.

Enrollment statistics provide another measure of the coverage of graduate science education characterizing the present study. The 224 doctorate institutions in this study enrolled 196,341 graduate students, or 81 percent of total U.S. enrollment for advanced degrees in all institutions in 1969. Doctorate departments of the 224 institutions accounted for 76 percent of the U.S. total, and their master's departments accounted for an additional 5 percent (appendix table \(\mathrm{B}-2\) ). \({ }^{2}\)

\footnotetext{
\({ }^{2}\) As noted elsewhere, statistics on the characteristics of master's departments of the doctorate institutions are not presented in this report.
}

Among areas of science, coverage of graduate enrollment in doctorate departments ranged from a high of 88 percent in the social sciences to a low of 53 percent in the mathematical sciences. As mentioned earlier, the foregoing area-of-science comparisons do not include enrollment in master's departments of the 224 institutions in the study and of other institutions outside the scope of the traineeship program. It should also be noted that some differences in the foregoing comparisons if enrollment data may be due to differences in institutional reporting of such information to the U.S. Office of Education and to the National Science Foundation, respectively, as well as differences in definitions of scientific fields used by the two agencies.

The classification of departments, by area and field of science, used in the present study is shown in appendix table B-3. In addition to providing details regarding the system used to classify the data on graduate science education contained in this report, the listing of titles used by the 2,894 doctorate departments and the 460 master's departments provides useful information on the organizational structure of U.S. higher education in the sciences and engineering.

Table B-I.—Doctorates, , marded in the sciences and ongineoring by the 224 insfitutions covered in the study, compared with total science dectorates granted by all U.S. institutians of higher oducation, by area of science, academic years ended June 30, 1967-69
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Area of acience and acadernis year} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { U.S. } \\
& \text { totai, } \\
& \text { null } \\
& \text { nnatitu- } \\
& \text { tions }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Institutions covered in atudy} & \multirow{2}{*}{Area of ac,ence and academic year} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { U.S. } \\
& \text { total, } \\
& \text { and } \\
& \text { institu- } \\
& \text { tions a }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Institutiona covered in study} \\
\hline & & Doctorates awarded & Percent of total & & & Doctorates awarded & Percent of total \\
\hline Total: & & & & Life aciences: & & & \\
\hline 1967 & 12,981 & 12,121 & 93.4 & 1967.- & 3,116 & 2,442 & 78.4 \\
\hline 1968. & 14,420 & 13,364 & 92.7 & 1968 & 9,681 & 2,802 & 76.1 \\
\hline 1969 & 15,982 & 14,998 & 93.8 & 1969 & 4,116 & 3,154 & 76.6 \\
\hline Engineering: & & & & Paychology: & & & \\
\hline 1967. & 2,581 & 2,731 & 105.8 & 1967 & 1.293 & 1,058 & 81.8 \\
\hline 1968. & 2,883 & 3,003 & 106.0 & 1968. & 1,452 & 1,186 & 81.7 \\
\hline 1969. & 3,234 & 8,514 & 108.7 & 1969 & 1,728 & 1,398 & 80.9 \\
\hline Phyaical sciences: & & & & Social sclences: & & & \\
\hline 1967------- & 3,478 & 3,327 & 95.7 & 1967. & 1,685 & 1,755 & 104.2 \\
\hline 1968. & 3,642 & 3,495 & 96.0 & 1968. & 1,842 & 1,929 & 104.7 \\
\hline 1969. & 3,901 & 3,704 & 95.0 & 1969 & 1,940 & 2,157 & 111.2 \\
\hline Mathematical aciences: & & & & & & & \\
\hline 1967.-.-- & 828 & 808 & 97.6 & & & & \\
\hline 1968. & 970 & 949 & 97.8 & & & & \\
\hline 1969 & 1,063 & 1,071 & 100,8 & & & & \\
\hline
\end{tabular}
a Based on U.S. Office of Education atatiatics on earned degrees gra nted by U.S. inatitutions of higher education.

Table :-2.-Graduate student enrollment (full-time and part-time) in the sciences and engineering in 224 dectorate institutions covered in the sfudy, compared with estimated U.S. enroliment for odvanced degrees, by area of science and department degree level, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Area ol acience} & \multirow[t]{3}{*}{Estimated
U.S.
total
earouments
for
advanced
degrees,
fall 1969} & \multicolumn{6}{|c|}{Graduate atudents enrolled in 224 doctorate inatitutions covered in atudy, 1969} \\
\hline & & \multicolumn{2}{|l|}{All departments} & \multicolumn{2}{|l|}{Doctorate departments} & \multicolumn{2}{|l|}{Master's departments} \\
\hline & & Number & Percent of total & Number & Percent of total & Number & Percent \\
\hline Total & 243,715 & 196,341 & 80.6 & 184,845 & 75.8 & 11,496 & 4.7 \\
\hline  & 65,048 & 55,597 & 85.4 & 52,567 & 80.8 & 2,970 & 4.6 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Physical aciences. \\
Mathematical ilencea.
\end{tabular}} & 39,885 & 35,642 & 89.4 & 34,696 & 87.0 & 946 & 2.4 \\
\hline & 29,175 & 17,383 & 59.6 & 15,417 & 52.8 & 1,966 & 6.7 \\
\hline Life sciences.----------------------- & 44,203 & 32,129 & 72.7 & 30,810 & 69.7 & 1,319 & 3.0 \\
\hline Paychology. & 22,726 & 14,487 & 63.7 & 13,763 & 60.6 & 724 & 3.2 \\
\hline Social sciences. & 42,678 & 41,163 & 96.5 & 37,592 & 88.1 & 9,571 & 8.4 \\
\hline
\end{tabular}

\footnotetext{
- Based on preliminary data of the U.S. Office of Education, fall 1969.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Field of science and departmental title & Total & Doctorate & Master's & Field of science and departmental title & Total & Doctorate & Master's \\
\hline Total & 3,354 & 2,894 & 460 & Engineering science, total. & 50 & 45 & 5 \\
\hline Engineering & 765 & 665 & 100 & Applied mechanics. & 6 & 5 & 1 \\
\hline Aeronautical, total. & 33 & 33 & & Applied science---.-- & 1 & 1 & \\
\hline & & & & Enginerring mechanica_ & 20 & 18 & 2 \\
\hline Aeronautical and astronautical engineering & 3 & 3 & & Engineering science..--- & 10 & 8 & 2 \\
\hline Aeronautics -- & 1 & 1 & & Engintoring and applied physics. & 1 & 1 & \\
\hline Aeronautics and astronautics & 6 & 6 & & Mechanical science.. & 2 & 2 & \\
\hline Aeronautics and engineering mechanics & 1 & 1 & & Mechanics - .-. & \({ }^{6}\) & 6 & \\
\hline Aerospace engineering.-.....-------- & 16 & 16 & & Mechanics and hydraulics. & 1 & 1 & \\
\hline Aerospace engineering and engineering physica & 2 & & ------- & Theoretical and applied mechanics & & 2 & \\
\hline Astronautics.-. Space science.- & \({ }_{3}^{1}\) & 1 & & Industrial, total.- & 53 & 47 & 12 \\
\hline Agrieultural, total. & 32 & 24 & 8 & Administrative science- & 1 & 1 & \\
\hline & & & & Applied analysis .- & 1 & 1 & \\
\hline Agricultu, und irrigation engineering. & 1 & 1 & & Industrial communication engineering - & 1 & 1 & \\
\hline Agricultural engineering.-- & 28 & 21 & 7 & Industrial engineering .-. & 28 & 21 & \\
\hline Chemical and paper engineering- & 1 & & 1 & Industrial engineering and management scien & 4 & \(\stackrel{3}{3}\) & \\
\hline Wood technology.. & 1 & 1 & -..------ & Industrial engineering and operations research & 7 & 5 & 2 \\
\hline Wood products engineering & 1 & 1 & & Information engineering. & 1 & & \\
\hline & & & & Management. .......... & 1 & 1 & \\
\hline Chemical, total & 101 & 91 & 10 & Management engineering & 1 & 1 & \\
\hline Chemical engineering- & 91 & 83 & 8 & Operations research. & 4 & & \\
\hline Chemical engineering and materials science & 2 & 2 & & Organization behavior. & 1 & 1 & \\
\hline Chemical and metallurgical engineering- & 5 & 4 & 1 & Systems engineering. & & 6 & 1 \\
\hline Chemical and nuclear engineering Plastics. & 2
1 & & 1 & Mechanical, total & 120 & 102 & 18 \\
\hline Civil, total & 104 & 88 & 16 & Aerospace and mechanical engineering & 22 & 22 & \\
\hline & & & & Marine engineering and naval architecture. & & 1 & \\
\hline Civil engineering-- & 89 & 74 & 15 & Mechanical engineering--.--.-----...- & 92 & 75 & 17 \\
\hline Civil engineering bydraulics & 1 & & & Mechanical and industrial engineering. & 1 & 1 & \\
\hline Civil engineering and engineering mechanica & 3
5 & 3 & & Naval architecture.-. & 2 & 2 & \\
\hline Civil and environmental enginoering- & & 4 & 1 & Structural engineering & 1 & & 1 \\
\hline Civil and geological engineering- & 2 & 2 & & Transportation.-... & 1 & 1 & \\
\hline Environmental engineering--..-- & 2 & 2 & & & & & \\
\hline Environn.ental sciences and engineering & 2 & 2 & & Metallurgical, totai. & 53 & 51 & 2 \\
\hline Electrical, total. & 125 & 108 & 17 & Ceramic engineering. & & & 1 \\
\hline Electrical computer scie & & & & Ceramics------ & \(\stackrel{2}{8}\) & 2 & \\
\hline Electrical engineering-... & 120 & 106 & \({ }_{14}^{14}\) & Material science. & 8 & & \\
\hline Electronic engineering & 2 & & 2 & Metallurgical engineering & 7 & 7 & \\
\hline Electronics. & 1 & 1 & & Metallurgical and materials engineering & 10 & 10 & \\
\hline & & & & Metallurgy---..........---- & 10 & 9 & 1 \\
\hline & & & & Solicic state science and technology- & & 1 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{- Although the present report covers oniy the \(\mathbf{2 , 8 9 4}\) doctorate departmenta, information on the 460 master's departments is also included in the table.}} & Mining, total & 14 & 9 & 5 \\
\hline & & & & Mineral engineerin & 3 & 1 & 2 \\
\hline
\end{tabular}
Table B-3.-Number of science departments in the 229 doctorate intilutions covered in the study, by area and field of science and department degree level, 1969 a
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Field of science and departmental title & Total & Doctorate & Master's & Field of acience and departmental title & Total & Doctorate & Master's \\
\hline Mining -- & 1 & 1 & &  & 133 & 100 & 33 \\
\hline Mining engineering- & 5 & 3 & 2 & & & & \\
\hline Mining and geological engineering- & 3 & 3 & & Earth and planetary science. & 4 & 4 & \\
\hline Mining and metallurgy -.-.-.-..... & 2 & 1 & 1 & Earth sciences.. & 6 & 5 & 1 \\
\hline & & & & Geodetic science. & 1 & 1 & \\
\hline Nuclear, total. & 31 & 29 & 2 & Geochemistry. & 1 & 1 & \\
\hline & & & & Geochronology - & 1 & 1 & \\
\hline Nuclear engineering- & 26 & 24 & 2 & Geological science. & 18 & 14 & 4 \\
\hline Nuclear science and engineering & 4 & 4 & & Geology -- & 69 & 46 & 23 \\
\hline Nuclear studies...- & 1 & 1 & & Geology and geography. & 6 & 4 & 2 \\
\hline & & & & Geology and geological engineering. & 3 & 3 & \\
\hline Petroleum, total-.-.....-. . & 8 & 8 & -..------ & Geology and geophysics .-..--..... & 7 & 7 & \\
\hline & & & & Geophysical instruction. & 1 & & 1 \\
\hline Petroleum engineering & 4 & 4 & & Geophysics... & 6 & 5 & 1 \\
\hline Petroleum and chemical engineering & 4 & 4 & & Geophysics and planetary physics. & 1 & 1 & \\
\hline & & & \(\underline{\square}\) & Geosciences-.-...-....-........... & 5 & 4 & 1 \\
\hline Other enginecring, total & 35 & 30 & 5 & Hydrology. & 1 & 1 & \\
\hline & & & & Mineralogy.. & 1 & 1 & \\
\hline Applied physica & 3 & 3 & -------- & Paleontology. & 1 & 1 & \\
\hline Bioengineering-- & 3 & 3 & .-.--.-... & Sedimentary structure. & 1 & 1 & ---------- \\
\hline Biomedical engineering . & 7 & 7 & & & & & \\
\hline Economics of engineering & 1 & 1 & -.------ & Oceanography, total.............. & 23 & 20 & 3 \\
\hline Energy engineering.. & 2 & 2 & ....-.-- & & & & \\
\hline Engineering..... & 11 & 11 & & Marine biology & 2 & 1 & 1 \\
\hline Engineering design.. & 2 & & 2 & Marine science. & 5 & 5 & \\
\hline Engineering mathematics. & 1 & 1 & .----- & Ocean engineering. & 4 & 2 & 2 \\
\hline Engineering physics and physics. & 1 & 1 & & Oceanography .. & 11 & 11 & \\
\hline Polymer science and engineering. & 1 & 1 & & Water chemistry. & 1 & 1 & \\
\hline Technology --..... & 1 & & 1 & & & & \\
\hline Textile engineering & 2 & & 2 & Physics, total & 185 & 165 & 20 \\
\hline Physical sciences. & 583 & 509 & 74 & Astronomy and space science. & 1 & 1 & --------- \\
\hline & & & & Chemical physics... & 3 & 3 & -..---...- \\
\hline Astronomy, total.-- & 23 & 22 & 1 & Electrophysics....... & 1 & 1 & .......... \\
\hline Atmospheric sciences, total. & 20 & 20 & -......... & Mathematical physies & 1 & 1 & --.------ \\
\hline & & & & Molecular physics. & 1 & 1 & \\
\hline Aeronautics and planet atmospheres. & 1 & 1 & & Optics...-- & 1 & 1 & \\
\hline Astrogeophysics. & 1 & 1 & ------.--- & Physics.....-...----- & 161 & 141 & 20 \\
\hline Astrophysics........ & 1 & 1 & ---.-...-. & Physics and astronomy .- & 14 & 14 & --.-----. \\
\hline Atmospheric sciences... & 5 & 5 & -...------ & Physics and astrophysics. & 1 & 1 & -...------ \\
\hline Atmospheric and space sciences. & 1 & 1 & & Plasma physics. & 1 & 1 & \\
\hline Meteorology .-..-- .- & 9 & 9 & & & & & \\
\hline Meteorology and oceanography. & 2 & 2 & & Mathematical sciences & 253 & 203 & 50 \\
\hline Chemistry, total. & 199 & 182 & 17 & Applied mathematics, total.. & 37 & 27 & 10 \\
\hline Chemistry --- & 193 & 177 & 16 & Applied mathematics.. & 6 & 6 & \\
\hline Chemistry and physics & 1 & & 1 & Applied mathematies and computer science. & 2 & 2 & \\
\hline Crystallography & 1 & 1 & & Computer science .-...------ & 29 & 19 & 10 \\
\hline Paper technology... & 1 & 1 & & & & & \\
\hline Polymer science... & 3 & 3 & -- & Mathernatics, total.-- & 175 & 139 & 36 \\
\hline
\end{tabular}
Table B-3.-Number of science departments in the 224 dectorate institufions covered in the study, by area and field of science and department degree level, \(1969^{\circ}-\) continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Field of science and departmental title & Total & Doctorate & Master's & Field of science and departmental title & Total & Doctorate & Master's \\
\hline Mathematical science... & 2 & 2 & ---------- & Silviculture. & 1 & 1 & \\
\hline Mathematics. & 169 & 133 & 36 & Soil science & 3 & 3 & \\
\hline Mathematics and statistics. & 4 & 4 & & Soil and water science. & 1 & & 1 \\
\hline & & & & Soils & 4 & 4 & \\
\hline Statisties, total & 41 & 37 & 4 & Soils and meteorology & 1 & 1 & \\
\hline & & & & Vegetable crops. & 2 & 2 & --------- \\
\hline Biostatistics. & 3 & 1 & 2 & Water resources. & 1 & 1 & \\
\hline Experimental statistics & 1 & 1 & ---------- & Watershed management & 3 & 3 & \\
\hline Mathematical biology & 2 & 2 & - & Wildlife. & 2 & 2 & \\
\hline Mathematical statistics. & 1 & 1 & & Wildlife management & 1 & 1 & \\
\hline Statisties & 32 & 30 & 2 & & & & \\
\hline Statistics and computer science-----.--- & 2 & 2 & & Biochemistry, total. & 120 & 119 & 1 \\
\hline Life sciences. & 949 & 874 & 75 & Agricultural biochemistry & 2 & 2 & \\
\hline & & & \(=\square\) & Biochemical science. & 1 & 1 & \\
\hline Agricultural, total. & 225 & 198 & 27 & Biochemistry & 79 & 78 & 1 \\
\hline & & & - & Biochemistry and biophysics. & 6 & 6 & \\
\hline Agricultural chemistry & 4 & 4 & -------- & Biochemistry and nutrition. & 2 & 2 & ---------- \\
\hline Agronomy----.-- & 22 & 20 & 2 & Biological chemistry & 3 & 3 & --------- \\
\hline Agronomy and genetics. & 2 & 2 & --------- & Biophysics. & 12 & 12 & ---------- \\
\hline Animal husbandry . & 3 & 2 & 1 & Biophysics and microbiolony. & 2 & 2 & \\
\hline Animal industry - & 1 & 1 & --------- & Biophysics and physical biochemistry & 1 & 1 & \\
\hline Animal nutrition. & 1 & 1 & --------- & Medical biochemistry. & 2 & 2 & - \\
\hline Animal science. & 30 & 25 & 5 & Medical physics. & 1 & 1 & \\
\hline Conservation. & 1 & 1 & --------- & Molecular biophysics. & 1 & 1 & \\
\hline Crop and soil science & 1 & 1 & & Molecular biophysics and biochemistry & 1 & 1 & \\
\hline Dairy science. & 5 & 2 & 3 & Plant nutrition & 1 & 1 & --------- \\
\hline Entomology. & 30 & 27 & 3 & Radiation biology. & 4 & 4 & \\
\hline Entomology and parasitology & 2 & 2 & ---------- & Radiation biology and biophysics. & 1 & 1 & \\
\hline Farm crops.- & 1 & 1 & --------- & Radiation biophysics. & 1 & 1 & \\
\hline Floriculture. & 1 & 1 & & & & - & \\
\hline Food science. & 9 & 7 & 2 & Biology, total. & 140 & 116 & 24 \\
\hline Food science and technology.... & 6 & 6 & & & - & & \\
\hline Food technology..- & 1 & 1 & --------- & Biological science & 27 & 21 & 6 \\
\hline Food and nutrition. & 8 & 5 & 3 & Biological structur & 1 & 1 & \\
\hline Forest chemistry. & 1 & 1 & ---------- & Biology & 93 & 75 & 18 \\
\hline Forest economics. & 1 & 1 & ---------- & Biomedical science & 3 & 3 & --.------ \\
\hline Forest management & 2 & 2 & & Cellular biology. & 5 & 5 & --------- \\
\hline Forest resources. & 4 & 3 & 1 & Experimental biology & 1 & 1 & ---------- \\
\hline Forestry.. & 15 & 13 & 2 & Molecular basis of biological phenomena. & 1 & 1 & \\
\hline Forestry and horticulture. & 1 & 1 & ---------- & Molecular diology. & 7 & 7 & \\
\hline Home economics. & 1 & 1 & & Organismic biolegy .-.- & 1 & 1 & \\
\hline Fiorticulture. & 16 & 16 & - & Population anci environmental biology-- & 1 & 1 & \\
\hline Nutrition. & 10 & 9 & 1 & & \(\cdots\) & & \\
\hline Parasitology. & 1 & 1 & ---------- & Botany, total & 79 & 74 & 5 \\
\hline Plant breeding--- & 2 & 2 & & & & & \\
\hline Plant science. & 6 & 6 & & Botanical science. & 1 & 1 & \\
\hline Plant and soil science. & 4 & 3 & 1 & Botany - - & 38 & 37 & \\
\hline Poultry - & 1 & 1 & --------- & Botany and microbiology. & 7 & 6 & \\
\hline Poultry science. & 9 & 7 & 2 & Botany and plant pathology & 10 & 9 & \\
\hline Range science. & 2 & 2 & ---------- & Plant pathology---.----- & 20 & 18 & 2 \\
\hline Recreation parks..- & i & 1 & ---------- &  & 3 & 3 & \\
\hline  & 1 & 1 & --- & & & & \\
\hline
\end{tabular}
Table B-3.-Number of science departments in the 224 docforate institutions covared in the study, by area and field of science ond departmentsegree level, 196: \({ }^{2}\)-sentinued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Field of science and departmental title & Total & Doctorate & Master's & Field of science and departmental title & Total & Doctorate & Master's \\
\hline Microbiology, total.-- & 81 & 79 & 2 & General science. & 2 & 2 & \\
\hline & & & & Genetics. & 14 & 14 & \\
\hline Bacteriology..-- & 8 & 7 & 1 & Health science. & 1 & 1 & \\
\hline Cell physiology . & 1 & 1 & & Health and physical education........... & 2 & 2 & \\
\hline Medical microbiology & 6 & 6 & & History of medicine. & 1 & & \\
\hline Microbiology . & 65 & 64 & 1 & Immunology... & 2 & 2 & \\
\hline Virology .- & 1 & 1 & & Life sciencea.. & 3 & 3 & \\
\hline & & & & Medical aciences & 1 & 1 & \\
\hline Pharracology, total. & 74 & 72 & 2 & Natural resources. & 2 & 2 & \\
\hline & & & & Neurobiology.. & 2 & 2 & \\
\hline Biochemical \({ }^{\text {a harmacology }}\) & 1 & 1 & & Occupational health & 1 & & \\
\hline Biopharmaceutical sciences... & 1 & 1 & & Pathology...-... & 11 & 10 & \\
\hline Chemistry and pharmaceutical chemistry & 1 & 1 & & Planetary and space science...-. --. & 1 & 1 & \\
\hline Medicinal chemistry -------..---------- & 3 & 3 & & Preventive medicine and public health. & 2 & 1 & \\
\hline Pharmaceutical chemistry. & 10 & 10 & &  & 1 & 1 & \\
\hline Pharmacognosy .- & 1 & 1 & & Radiology .- & 2 & 1 & \\
\hline Pharmacology...... & 42 & 41 & 1 & Science. & 1 & 1 & \\
\hline Pharmacology and toxicology. & 1 & 1 & & Science education. & 1 & 1 & \\
\hline Pharmacy--.-------.....-. & 14 & 13 & 1 & Toxicology. & 1 & 1 & \\
\hline & & & & Tropical medicine-- & 1 & 1 & \\
\hline Physiology, total.. & 65 & 65 & & Veterinary medicine. & 1 & & \\
\hline & & & & Vet rinary science. & 2 & 1 & \\
\hline Animal physiology . & 2 & 2 & & & & & \\
\hline Medical physiology.... & 3 & 3 & --------- & Psychology. & 160 & 141 & 19 \\
\hline Physiologicel chemistry. & 1 & 1 & & & & & \\
\hline Physiological optics & 2 & 2 & & Psychology, tetal & 160 & 141 & 19 \\
\hline Phygiology . ....... & 37 & 37 & & & & & \\
\hline Physiology and anatomy. & 2 & 2 & & Animal behavior. & 1 & 1 & \\
\hline Physiology and biophysics & 13 & 13 & & Ciiild development & 3 & 3 & \\
\hline Physiology and pharmacology. & 5 & 5 & & Educational paychology-- & 1 & 1 & \\
\hline & & & & Experimental social psychology & 1 & 1 & \\
\hline Zoology, total. & 58 & 54 & 4 & Human development... & 2 & 2 & \\
\hline & & & & Paychiatry and neurulogy & 1 & 1 & \\
\hline Fish and wildife. & 3 & 3 & & Psycholegy-. & 150 & 132 & 18 \\
\hline Fisheries. & 1 & 1 & & Social psychology - & 1 & & \\
\hline Forest zoology .. & 1 & 1 & & & & & \\
\hline Zoology...--... & 45 & 42 & 3 & Social sciences & 614 & 502 & 142 \\
\hline Zoology and entomology & 5 & 5 & & & & & \\
\hline Zoology and physiology & 3 & 2 & 1 & Agricultural eennomics, total. & 21 & 16 & \\
\hline Other life sciences, total. & 107 & 97 & 10 & Agricultural economics & 13 & 11 & 2 \\
\hline & & & & Agricultural econcries and economics. & 2 & 1 & \\
\hline Administration medicine. & 1 & 1 & & Agricuitural economics and sociology . & 6 & 1 & \\
\hline Anatomy-----.-- & 38 & 37 & 1 & & & & \\
\hline Animal genetics. & 1 & 1 & & Anthropology, total. & 67 & 56 & 11 \\
\hline Arts and sciences... & 1 & 1 & & Economics, total. & 126 & 104 & 22 \\
\hline Audiology......-. & & & 1 & & & & \\
\hline Bacteriology and public health. & 1 & 1 & -....-.-. & Business economics & 1 & 1 & --------- \\
\hline Biometrics. - & 2 & 2 & & Economics.......- & 118 & 96 & 22 \\
\hline Dentistry. & & & & Economics and business administration & 2 & 2 & \\
\hline Ecc:ogy & 5 & 5 & & If lustrial relations & 2 & 2 & \\
\hline Embryology. & : & & 1 & Mineral economics. & 1 & 1 & \\
\hline Endocrinology. & 1 & 1 & & Political economy .-.- & 2 & 2 & ...------- \\
\hline
\end{tabular}
Table B-3.-Numbor af science departments in the 224 doctorate institutions covered in the study, by area and field of science and department degree ievel, \(1969^{a}\)-continued
\begin{tabular}{|c|c|c|c|}
\hline Field of science and departmental title & Total & Doctorate & Master's \\
\hline Political science, total. .- & 125 & 97 & 28 \\
\hline Government. & 17 & 12 & 5 \\
\hline Government and foreign affairs. & 1 & 1 & --------- \\
\hline International relations.. & 2 & 2 & --------- \\
\hline International studies & 3 & 3 & \\
\hline Political science. & 92 & 72 & 20 \\
\hline Politics. & 4 & 4 & \\
\hline Public administration. & 3 & 2 & 1 \\
\hline Public affairs. & 3 & 1 & 2 \\
\hline Sociology, total & 113 & 85 & 28 \\
\hline Area studies. & 1 & & 1 \\
\hline City planning & 1 & 1 & .-------- \\
\hline Demography. & 1 & 1 & --------- \\
\hline Folklore. & 1 & 1 & ---.------ \\
\hline Interdigciplinary studies. & 1 & 1 & \\
\hline Labor and industrial relations. & 1 & 1 & \\
\hline I eadership and human behavier & 1 & 1 & --------- \\
\hline Regional science. & 1 & 1 & \\
\hline Rural sociology. & 2 & 2 & \\
\hline Social relations. & 2 & 2 & \\
\hline Social sciences. & 2 & 1 & 1 \\
\hline Sociology .-.-. & 93 & 70 & 23 \\
\hline Urban planning & G & 3 & 3 \\
\hline Sociology and anthropology, total. & 32 & 12 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Field of science and departmental title & 1 , tal & Doctorate & Master's \\
\hline Geography, total. & 59 & 44 & 15 \\
\hline Geography - & 58 & 43 & 15 \\
\hline Geography and anthropology. & & & \\
\hline History and philosophy of science, total & 36 & 34 & 2 \\
\hline History ... & 1 & 1 & \\
\hline History and philosophy of science. & 5 & 5 & \\
\hline History of science.. & 10 & 9 & 1 \\
\hline Logic and methodology of science. & 1 & 1 & \\
\hline Philosophy-.--. & 15 & 14 & 1 \\
\hline Philosophy of science. & 4 & 4 & \\
\hline Linguistics, total.. & 65 & 54 & 11 \\
\hline Communication. & 2 & 2 & \\
\hline Communications & 3 & 3 & \\
\hline English....-. & 1 & -- & 1 \\
\hline Information science. & 5 & 3 & 2 \\
\hline Interpersonal communication. & 1 & 1 & \\
\hline Journalism.... & 1 & 1 & - \\
\hline Linguistics.. & 38 & 32 & 6 \\
\hline Mass communications & 1 & 1 & -------- \\
\hline Psycholinguistics & 2 & 2 & \\
\hline Sensory communication. & 1 & 1 & \\
\hline Speech.. & 6 & 5 & 1 \\
\hline Speech and pathology & 4 & 3 & 1 \\
\hline
\end{tabular}

\section*{APPENDIX C Statistical Tables}
Table ..... C-1
Graduate students in doctorate departments, by area of science and en- rollment status, 1967-69 ..... Page
C-2. Graduate students in doctorate departments, by field of science and enrollment status, 1969 ..... 59
Graduate students in doctorate departments, by field of science and citizenship, 1969 ..... ,
C.-4. Graduate students in doctorate departments, by field of science, citizen- ship, and enrollment status, 1969 ..... 42
C-5 Graduate students in doctorate departments, by field of science and level of study, 1969 ..... 43
C-6 Graduate students in doctorate departments, by field of science, level of study, and enrollment status, 1969 ..... 44
C-7. Full-time graduate students in doctorate departments, by field of science and type of support, 1969 ..... 45
C-8. Full-time graduate students in doctorate departments, by type of support, lcvel of study, and citizenship, 1969 ..... 46
C-9a. Full-time graduate students in doctorate departments, by area of science, type of support, and level of study, 1969 ..... 46
C-9b. Percent distributions of full-time graduate students ir doctorate depart- ments, by area of science, type of support, and level of study, 1969 ..... 47
C-10a. Full-time graduate students in doctorate departments, by source of sup- port and area of science, 1969 ..... 48
C-10b. Percent distributions of fuli-time graduate students in doctorate depart- ments, by source of support and area of science, 1969 ..... 49
C-11a. Full-time graduate students in doctorate departments, by source and type of support, 1969 ..... 50
C-11b. Percent distributions of full-time graduate students in doctorate depart- ments, by sourre and type of support, 1969 ..... 51
C-12. Full-time graduate students in doctorate departments supported by U.S. Government sources, by Federal agency and citizership, 1969 .. ..... 51
C-13a. U.S. Government sources, by field of science and Federal agency, 1969 ..... 52
C-13b. Percent distribution of full-time graduate students in doctorate depart- ..... 53
C-13c. Percent distribution of full-time graduate students in doctorate depart- ments supported by U.S. Government sources, by Federal agency, 1969 ..... 54
C-14. other U.S. sources, by field of science, 1969 ..... 55
C-15a. Total full-time graduate students in 2,338 science doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69 ..... 56
C-15b. Full-time graduate students in 566 engineering doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69 ..... 57
C-15c. ..... C-15d. 1968-69 ..... 58
C-15e. by type and source of support and citizenship, 1967-68 and 1968-69 ..... 59
type and source of support and citizenship, 1967-68 and 1968-69 ..... 60
\begin{tabular}{|c|c|c|}
\hline E & & Pago \\
\hline C-15f. & Full-time graduate students in 128 psychology doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69 & 61 \\
\hline C-15g. & Full-time graduate students in 397 social science doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69 _- & 62 \\
\hline C-16. & Full-time faculty in doctorate den....aents, by field of science, \(1969 \ldots \ldots\) & 63 \\
\hline C-17. & Full-time graduate students in doctorate departments, compared with full-time graduate faculty, by area of science, 1969 \(\qquad\) & 63 \\
\hline C-18. & Full-time graduate faculty in doctorate departments, 1968, compared with number of Ph.D. degrees granted, academic year 1968-69, by area of scier ce \(\qquad\) & 6 \\
\hline C-19. & Postdoctorals in doctorate departments, by field of science, 1969 & \\
\hline C-20. & Full-time graduate students in doctorate departments, compared with postdoctorals, by area of science, 1969 \(\qquad\) & 65 \\
\hline C-21. & Postdoctorals in doctorate departments, 1968, compared with number of Ph.D. degrees granted, academic year 1968-69, by area of science & 65 \\
\hline C-22. & Full-time graduate faculty in doctorate departments, compared with number of postdoctorals, by area of science, 1969 \(\qquad\) & 65 \\
\hline
\end{tabular}

Table C-1.-Graduate students in doctorate departmenta, by area of scionce and onrollmont status, 1967-69


Table C-2.-Graduata students in doctorate departments, by field of science and enrollment stafur. 1969
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area and field of sclence} & \multicolumn{2}{|c|}{Total} & \multicolumn{2}{|c|}{Full time} & \multicolumn{2}{|c|}{Part time} \\
\hline & Number & Percent distribution & Number & Percent of total & Nurnber & Percent of total \\
\hline Total.------------- & 184,845 & 100.0 & 141,199 & 76.4 & 43,646 & 23.6 \\
\hline Engineering & 52,567 & 28.4 & 30,820 & 58.6 & 21,747 & 41.4 \\
\hline Acronautical. & 2,162 & 1.2 & 1,504 & \(6{ }^{\text {r }}\) & 658 & 30.4 \\
\hline Agricultural.- & b33 & . 3 & 433 & 8 i .2 & 100 & 18.8 \\
\hline Chemical. --- & 4,819 & 2.6 & 3,204 & 66.5 & 1,615 & 33.5 \\
\hline Civil. & 6,546 & 3.5 & 4,543 & 69.4 & 2,003 & 30.6 \\
\hline Electrical & 16,162 & 8.7 & 7,518 & 46.5 & 8,644 & 53.5 \\
\hline Engineering aclence----- & 1,792 & 1.0 & 1,207 & 67.4 & 585 & 32.6 \\
\hline Industrial. & 5,017 & 2.7 & 2,405 & 47.9 & 2,612
3,779 & 52.1 \\
\hline Mechanical. & 8,326 & 4.5 & 4,547 & 54.6 & 3,779 & 45.4 \\
\hline Metallurgica' and materials & 2,411 & 1.3 & 1,802 & 74.7 & 609 & 25.3 \\
\hline Mining-.---------- & 334 & . 2 & 299 & 89.5 & 35 & 10.5 \\
\hline Nuclear.. & 1,307 & .7 & 1,002 & 76.7 & 305 & 23.3 \\
\hline Petroleum.- & 931 & .2 & 192 & 58.0 & 139 & 42.0 \\
\hline Other engineering - & 2,827 & 1.5 & 2,164 & 76.5 & 663 & 23.5 \\
\hline Physical sciences & 34,696 & 18.8 & 30.175 & 87.0 & 4,521 & 13.0 \\
\hline Astronomy- & 531 & .3 & 512 & 96.4 & 19 & 3.6 \\
\hline Atmospheric aciences.. & 815 & 4 & 739 & 90.7 & \(\begin{array}{r}76 \\ \hline 2179\end{array}\) & 9.3 \\
\hline Chemistry--------- & 15,813 & 8.6 & 13,634 & 86.2 & 2,179 & 13.8 \\
\hline Gcosciences -- & 3,625 & 2.0 & 3,297 & 91.0 & 328 & 9.0 \\
\hline Oceanography .-... & 1,108 & . 6 & \({ }^{984}\) & 88.8 & 124 & 11.2 \\
\hline Phyaics..-... & 12,804 & 6.9 & 11,009 & 86.0 & 1,795 & 14.0 \\
\hline Mathematical sciences . & 15,417 & 8.3 & 11,727 & 76.1 & 3,690 & 23.9 \\
\hline Applied mathematics.- & 1,804 & 1.0 & 1,447 & 80.2 & 357 & 19.8 \\
\hline Mathematics.-.-..-- & 12,123 & 6.6 & 9,091 & 75.0 & 3,032 & 25.0 \\
\hline Statistics. & 1,490 & . 8 & 1,189 & 79.8 & 301 & 20.2 \\
\hline Life sciences & 30,810 & 16.7 & 27,588 & 89.5 & 3,222 & 10.5 \\
\hline Agriculture. & 6,856 & 3.7 & 5,963 & 87.0 & 893 & 13.0 \\
\hline Biochemiatry - & 3,481 & 1.9 & 3,256 & 93.5 & 225 & 6.5 \\
\hline Biology---- & 7,197 & 3.9 & 6,282 & 87.3 & 915 & 12.7 \\
\hline Botany-.--- & 2,588 & 1.4 & 2,316 & 89.5 & 272 & 10.5 \\
\hline Microbiology & 1,998 & 1.1 & 1,838 & 92.0 & 160 & 8.0 \\
\hline Pharmacology & 1,304 & . 7 & 1,195 & 91.6 & 109 & 8.4 \\
\hline Phyviology.-- & 1,337 & . 7 & 1,250 & 93.5 & 87 & 6.5 \\
\hline Zoology .-- & 3,902 & 2.1 & 3,659 & 93.8 & 243 & 6.2 \\
\hline Other lite sciences. & 2,147 & 1.2 & 1,829 & 85.2 & 318 & 14.8 \\
\hline Psy chology - -----------------------------------------------------------
Social & 13,763 & 7.4 & 11,918 & 86.6 & 1,845 & 13.4 \\
\hline Social aciences------------------------------------ & 37,592 & 20.3 & 28,971 & 77.1 & 8,621 & 22.9 \\
\hline Agricultural economics & 893 & . 5 & 785 & 87.9 & 108 & 12.1 \\
\hline Anthropology .-.--- & 3,511 & 1.9 & 3,116 & 88.7 & 395 & 11.3 \\
\hline Economics (except agricultural) & 8,834 & 4.8 & 6.881 & 77.9 & 1,953 & 22.1 \\
\hline Geography -- -------- & 1,997 & 1.1 & 1,709 & 85.6 & 288 & 14.4 \\
\hline History and philoaophy of acience. & 766 & . 4 & 688 & 89.8 & 78 & 10,2 \\
\hline Linguistics------------- & 2,845 & 1.5 & 2,191 & 77.0 & 654 & 23.0 \\
\hline Political science ---- & 10,546 & 5.7 & 7,503 & 71.1 & 3,043 & 28.9 \\
\hline Sociology---- & 6,896 & 3.7 & 5,366 & 77.8 & 1,530 & 22.2 \\
\hline Sociology and anthropology -- & 1,304 & . 7 & 732 & 56.1 & 572 & 43.9 \\
\hline
\end{tabular}

Table C-3.-Graduate students in dectorate departments, by field of science and citizenship, 1969
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area and field of science} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|c|}{U.S. citizens} & \multicolumn{2}{|l|}{Foreign students} \\
\hline & & Number & Percent of total & Number & Percent of total \\
\hline \multirow[t]{2}{*}{} & 184,845 & 153,306 & 82.9 & 31,539 & 17.1 \\
\hline & 62,537 & 39,486 & 15.1 & 13,081 & 24.9 \\
\hline Aeronautical. & 2,162 & 1,715 & 79.3 & 447 & 20.7 \\
\hline Agricultural. & 533 & 326 & 61.2 & 207 & 38.8 \\
\hline Chemical. & 4,819 & 3,248 & 67.4 & 1,571 & 32.6 \\
\hline Civll.-. & 6,546 & 4,300 & 65.7 & 2,246 & 34.3 \\
\hline Electrical. & 16,162 & 13,116 & 81.2 & 3,046 & 18.8 \\
\hline Engineering science. & 1,792 & 1,263 & 70.5 & 529 & 29.5 \\
\hline Industrial.--- & 5,017 & 3,962 & 79.0 & 1,055 & 21.0 \\
\hline Mechanical.. & 8,326 & 6,356 & 76.3 & 1,970 & 23.7 \\
\hline Metallurgical and materials & 2.411 & 1,642 & 68.1 & 769 & 31.9 \\
\hline Mining.... & 334 & 152 & 45.5 & 182 & 54.5 \\
\hline Nuclear- & 1,307 & 1,059 & 81.0 & 248 & 19.0 \\
\hline Petroleum.-- & 331 & 224 & 67.7 & 107 & 32.3 \\
\hline Other engineering & 2,827 & 2.123 & 75.1 & 704 & 24.9 \\
\hline Physical sciences----------------------------------------------------- & 34,696 & 28,678 & 82.7 & 6,018 & 17.3 \\
\hline Astronomy - & 581 & 464 & 87.4 & 67 & 12.6 \\
\hline Atmospheric sciences & 815 & 694 & 85.2 & 121 & 14.8 \\
\hline Chemistry.-- & 15,813 & 13,072 & 82.7 & 2,741 & 17.3 \\
\hline Gensciences. & 3,625 & 3,080 & 85.0 & 545 & 15.0 \\
\hline Oceanography & 1,108 & 1,018 & 91.9 & 90 & 8.1 \\
\hline Physics..-.-- & 12,804 & 10,350 & 80.8 & 2,454 & 19.2 \\
\hline  & 15,417 & 13,109 & 85.0 & 2,308 & 15.0 \\
\hline Applied mathematics. & 1,804 & 1,511 & 83.8 & 293 & 16.2 \\
\hline Mathematics. & 12,123 & 10,584 & 87.3 & 1,539 & 12.7 \\
\hline Statistics & 1,490 & 1,014 & 68.1 & \(4{ }^{\circ}\) & 31.9 \\
\hline Life sciences. & 30,810 & 26,389 & 85.5 & 4,471 & 14.5 \\
\hline Agriculture & 6,856 & 5,131 & 74.8 & 1,725 & 25.2 \\
\hline Biochemistry . & 3,481 & 2,925 & 84.0 & 556 & 16.0 \\
\hline Biology .-. & 7,197 & 6,561 & 91.2 & 636 & 8.8 \\
\hline Botany --.-- & 2,588 & 2,138 & 82.6 & 450 & 17.4 \\
\hline Mierobiology . & 1,998 & 1,774 & 88.8 & 224 & 11.2 \\
\hline Phar macology & 1,304 & 996 & 76.4 & 308 & 23.6 \\
\hline Physiology & 1,337 & 1,222 & 91.4 & 115 & 8.6 \\
\hline Zoology .-.- & 3,902 & 3,649 & 93.5 & 253 & 6.5 \\
\hline Other life sciences & 2,147 & 1,943 & 90.5 & 204 & 9.5 \\
\hline  & 13,763 & 13,202 & 95.9 & 561 & 4.1 \\
\hline Social sciences-------------------------------------------------------- & 37,592 & ¢2,492 & 86.4 & 5,100 & 13.6 \\
\hline Agricultural economics. & 893 & 642 & 11.9 & 251 & 28.1 \\
\hline Anthropology.---- & 3,511 & 3,324 & 94.7 & 187 & 5.3 \\
\hline Economics (except agricultural). & 8,834 & 6,799 & 77.0 & 2,035 & 23.0 \\
\hline Geography ------- & 1,997 & 1,692 & 84.7 & 305 & 15.3 \\
\hline History and philosophy of science. & 766 & 698 & 91.1 & 68 & 8.9 \\
\hline Linguistics .-.-. & 2,845 & 2,422 & 85.1 & 423 & 14.9 \\
\hline Political science... & 10,546 & 9,608 & 91.1 & 938 & 8.9 \\
\hline Sociology - & 6,896 & 6,133 & 88.9 & 763 & 11.1 \\
\hline Sociology and anthropology . & 1,304 & 1,174 & 90.0 & 130 & 10.0 \\
\hline
\end{tabular}

50

Table C-4.-Graduate sfudents in doctorete departments, by field of science, citizenship, and enrollment status, 1969


Table C-5.-Graduate students in doctorate deparments, by field of science and levol of study, 1969
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Arca and field of science} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|c|}{Firat year} & \multicolumn{2}{|l|}{Moyond first year} \\
\hline & & Number & Percent of total & Number & Percent of total \\
\hline \multirow[t]{2}{*}{Total.} & 184,845 & 64,654 & 36.0 & 120,191 & 65.0 \\
\hline & 52,567 & 22,757 & 43.3 & 29,810 & 56.7 \\
\hline Aeronautical. -.-. & 2,162 & 779 & 36.0 & 1,383 & 64.0 \\
\hline Agricuitural. & 533 & 149 & 28.0 & 884 & 72.0 \\
\hline Chemical. & 4.819 & 1,851 & 38.4 & 2.968 & 61.6 \\
\hline Civil.. & 6,546 & 3,055 & 46.7 & 3,491 & 53.3 \\
\hline Electrical. & 16,162 & 7,406 & 45.8 & 8,766 & 54.2 \\
\hline Engineering acience. & 1.792 & 596 & 33.3 & 1,196 & 66.7 \\
\hline Industrial......... & 5.017 & 2,624 & 52.3 & 2,393 & 47.7 \\
\hline Mechanical..- & 8.326 & 3,775 & 45.3 & 4, 551 & 54.7 \\
\hline Metallurgical and materials. & 2,411 & 687 & 28.5 & 1,724 & 71.5 \\
\hline Mining -.....----- & 334 & 141 & 42.2 & 193 & 57.8 \\
\hline Nuclear-.------- & 1,307 & 460 & 35.2 & 847 & 64.8 \\
\hline Petroleum-----.--- & 331 & 134 & 40.5 & 197 & 59.5 \\
\hline Other engineering. & 2,827 & 1.100 & 38.9 & 1,727 & 61.1 \\
\hline Physical melences & 34,696 & 9,576 & 27.6 & 25,120 & 72.4 \\
\hline Astronomy --- & 531 & 142 & 26.7 & 389 & 73.3 \\
\hline Atmospheric sciences.. & 815 & 234 & 28.7 & 581 & 71.3 \\
\hline Chemistry .-- & 15,813 & 4,431 & 28.0 & 11,382 & 72.0 \\
\hline Geosciences. & 3,625 & 1,151 & 31.8 & 2,474 & 68.2 \\
\hline Oceanography .-... & 1,108 & 368 & 33.2 & 740 & 66.8 \\
\hline Phybica & 12,804 & 3,250 & & 9.554 & 74.6 \\
\hline Mathematical sciences_ & 15,417 & 5,572 & 36.1 & 9.845 & 63.9 \\
\hline Applied mathematics & 1,804 & 720 & 39.9 & 1,084 & 60.1 \\
\hline Mathematics ------ & 12,123 & 4,401 & 36.3 & 7.722 & \(63 .{ }^{-}\) \\
\hline Statistics.- & 1,490 & 451 & 30.3 & 1,039 & \(6^{\circ}\) \\
\hline Life sciences. & 30.810 & 9,297 & 30.2 & 21,513 & \\
\hline Agriculture.. & 6,856 & 2,085 & 30.4 & 4.771 & . 6 \\
\hline Biochemistry. & 3,481 & 897 & 25.8 & 2.584 & 74.2 \\
\hline Biology.- & 7,197 & 2,296 & 31.9 & 4,901 & 68.1 \\
\hline Boteny ---- & 2,588 & 620 & 24.0 & 1,968 & 76.0 \\
\hline Microbiology - & 1,998 & 644. & 32.2 & 1,354 & 67.8 \\
\hline Pharmacology & 1,304 & 300 & 27.8 & 941 & 72.2 \\
\hline Physiolozy-. & 1,337 & 393 & 29.4 & 944 & 70.6 \\
\hline Zoology & 2,902 & 1,205 & 30.9 & 2,697 & 69.1 \\
\hline Other \({ }^{\prime} \times\) - iences & 2,147 & 794 & 37.0 & 1,353 & 63.0 \\
\hline Paychology.- & 13,763 & 4,118 & 29.9 & 9,645 & 70.1 \\
\hline Social sciences. & 37,592 & 13,334 & 35.5 & 24,258 & , . 5 \\
\hline Agricultural economics.. & 893 & 247 & 27.7 & 646 & 72.3 \\
\hline Anthropology ......-.... & 3,611 & 1,084 & 30.9 & 2,427 & 69.1 \\
\hline Economics (except agricultural)- & 8,834 & 3,180 & 36.0 & 5.654 & 64.0 \\
\hline Geography---.--- & 1,997 & 560 & 28.0 & 1,437 & 72.0 \\
\hline History and philosophy of saience. & 766 & 233 & 3 Cr .4 & 533 & 69.6 \\
\hline Linguistics.------ & 2,845 & 1,054 & 37.0 & 1,791 & 63.0 \\
\hline Political science. & 10,546 & 4,164 & 39.5 & 6,382 & 60.5 \\
\hline Sociology .... & 6,896 & 2,301 & 33.4 & 4,595 & 66.6 \\
\hline Sociology and anthropology & 1,304 & 511 & 39.2 & 793 & 60.8 \\
\hline
\end{tabular}

Table C-6. -Graduate sfudents in doctorate departments, by field of science, level of sfudy, and enrollment status, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Area and field of scienee} & \multicolumn{5}{|c|}{Full time} & \multicolumn{5}{|c|}{Par' time} \\
\hline & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|r|}{First, year} & \multicolumn{2}{|l|}{Beyond first year} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|c|}{First year} & \multicolumn{2}{|l|}{Beyond first year} \\
\hline & & Number & Pereent of total & Number & Percent of total & & Number & \begin{tabular}{l}
Percent \\
of total
\end{tabular} & Number & Pereent of total \\
\hline Total & 141,199 & 46,371 & 32.8 & 94,828 & 67.2 & 43.646 & 18,283 & 41.9 & 25,3:3 & 58.1 \\
\hline Engineering & 30,820 & 12,000 & 38.9 & 18,820 & 61.1 & 21,747 & 10,757 & 49.5 & 10,990 & 50.5 \\
\hline Aeronautical. & 1,504 & 521 & 34.6 & 983 & 65.4 & 658 & 258 & 39.2 & 400 & 60.8 \\
\hline Agrieultural. & 433 & 138 & 31.9 & 295 & 68.1 & 100 & 11 & 11.0 & 89 & 89.0 \\
\hline Chemical & 3.204 & 1,079 & 33.7 & 2,125 & 66.3 & 1,615 & 772 & 47.8 & 843 & 52.2 \\
\hline Civil. & 4,543 & 2,147 & 47.3 & 2,396 & 52.7 & 2,003 & 908 & 45.3 & 1,095 & 54.7 \\
\hline Electrical. & 7.518 & 2,986 & 39.7 & 4,532 & 60.3 & 8,644 & 4,420 & 51.1 & 4,224 & 48.9 \\
\hline Engineering acience & 1.207 & 337 & 27.9 & 870 & 72.1 & 585 & 259 & 44.3 & 326 & 55.7 \\
\hline Industrial. & 2,405 & 1,190 & 49.5 & 1,215 & 50.5 & 2,612 & 1,434 & 54.9 & 1,178 & 45.1 \\
\hline Mechanical. & 4,547 & 1.789 & 39.3 & 2,758 & 60.7 & 3,779 & 1,986 & 52.6 & 1,793 & 47.4 \\
\hline Metallurgical and materials. & 1,802 & 483 & 26.8 & 1,319 & 73.2 & 609 & 204 & 33.5 & 405 & 66.5 \\
\hline Mining & 299 & 135 & 45.2 & 164 & 54.8 & 35 & 6 & 17.1 & 29 & 82.9 \\
\hline Nuclear & 1,002 & 332 & 33.1 & 670 & 66.9 & 305 & 128 & 42.0 & 177 & 58.0 \\
\hline Petroleum. & 192 & 72 & 37.5 & 120 & 62.5 & 139 & 62 & 44.6 & 77 & 55.4 \\
\hline Other engineering & 2,164 & 791 & 36.6 & 1.373 & 63.4 & 663 & 309 & 46.6 & 354 & 53.4 \\
\hline Physical selence & 30,175 & 8,098 & 26.8 & 22,077 & 73.2 & 4,521 & 1,478 & 32.7 & 3,043 & 67.3 \\
\hline Astronomy & 512 & 141 & 27.5 & 371 & 72.5 & 19 & 1 & 5.3 & 18 & 94.7 \\
\hline Atmospheric sciences & 739 & 217 & 29.4 & 522 & 70.6 & 76 & 17 & 22.4 & 59 & 77.6 \\
\hline Chemistry. & 13,634 & 3,619 & 26.5 & 10.015 & 73.5 & 2,179 & 812 & 37.3 & 1,367 & 62.7 \\
\hline Geosciences. & 3,297 & 1,074 & 32.6 & 2,223 & 67.4 & 328 & 77 & 23.5 & 251 & 76.5 \\
\hline Oceanography & 984 & 352 & 35.8 & 632 & 64.2 & 124 & 16 & 12.9 & 108 & 87.1 \\
\hline Physics & 11,009 & 2.695 & 24.5 & 8.314 & 75.5 & 1,795 & 555 & 30.9 & 1,240 & 69.1 \\
\hline Mathematical sciences & 11,727 & 4,199 & 35.8 & 7.528 & 64.2 & 3,690 & 1,373 & 37.2 & 2,317 & 62.8 \\
\hline Applied mathematics & 1.447 & 578 & 39.9 & 869 & 60.1 & 357 & 142 & 39.8 & 215 & 60.2 \\
\hline Mathematics. & 9,091 & 3,247 & 35.7 & 5,844 & 64.3 & 3,032 & 1,154 & 38.1 & 1,878 & 61.9 \\
\hline Statistics. & 1,189 & 374 & 31.5 & 815 & 68.5 & 301 & 77 & 25.6 & 224 & 74.4 \\
\hline Lite sciences & 27,588 & 8,393 & 30.4 & 19,195 & 69.6 & 3,222 & 904 & 28.1 & 2,318 & 71.9 \\
\hline Agriculture. & 5,963 & 1,917 & 32.1 & 4,046 & 67.9 & 893 & 168 & 18.8 & 725 & 81.2 \\
\hline Biochemistry & 3,256 & 826 & 25.4 & 2,430 & 74.6 & 225 & 71 & 31.6 & 154 & 68.4 \\
\hline Biology . & 6,282 & 1,936 & 30.8 & 4,346 & 69.2 & 915 & 360 & 39.3 & 555 & 60.7 \\
\hline Botany . & 2,316 & 583 & 25.2 & 1,733 & 74.8 & 272 & 37 & 13.6 & 235 & 86.4 \\
\hline Microbiology & . 838 & 605 & 32.9 & 1,233 & 67.1 & 160 & 39 & 24.4 & 121 & 75.6 \\
\hline Pharmacology & 1.195 & 342 & 28.6 & 853 & 71.4 & 109 & 21 & 19.3 & 88 & 80.7 \\
\hline Physiology & 1,250 & 371 & 29.7 & 879 & 70.3 & 37 & 22 & 25.3 & 65 & 74.7 \\
\hline Zoology. & 3,659 & 1,134 & 31.0 & 2,525 & 69.0 & 243 & 71 & 29.2 & 172 & 70.8 \\
\hline Other life sciences. & 1,829 & 679 & 37.1 & 1,150 & 62.9 & 318 & 115 & 36.2 & 203 & 63.8 \\
\hline \multirow[t]{2}{*}{Prychology-.--} & 11.918 & 3,592 & 30.1 & 8,326 & 69.9 & 1,845 & 526 & 28.5 & 1,319 & 71.5 \\
\hline & 28,971 & 10,089 & 34.8 & 18,882 & 65 ! & 8,621 & 3,245 & 37.6 & 5,376 & 62.4 \\
\hline Agricultural economics..-............. . & 785 & 237 & 30.2 & 548 & 69.8 & 108 & 10 & 9.3 & 98 & 90.7 \\
\hline Anthropology- & 3.116 & 965 & 31.0 & 2,151 & 69.0 & 395 & 119 & 30.1 & 276 & 69.9 \\
\hline Economics (except agricultural) & 6,881 & 8,465 & 35.8 & 4,416 & 64.2 & 1,953 & 715 & 36.6 & 1,238 & 63.4 \\
\hline \multirow[t]{2}{*}{Geography -.-.---.....-----} & 1.709 & 520 & 30.4 & 1,189 & 69.6 & 288 & 40 & 13.9 & 248 & 86.1 \\
\hline & 688 & 219 & 31.8 & 469 & 68.2 & 78 & 14 & 17.9 & 64 & 82.1 \\
\hline  & 2,191 & 830 & 37.9 & 1,361 & 62.1 & 654 & 224 & 34.3 & 430 & 65.7 \\
\hline Politieal science. & 7,503 & 2,819 & 27.6 & 4,684 & 62.4 & 3,043 & 1,345 & 44.2 & 1,698 & 55.8 \\
\hline Sociology & 5,366 & 1,779 & 33.2 & 3,587 & 66.8 & 1,530 & 522 & 34.1 & 1,008 & 65.9 \\
\hline Soeiology and anthropology ----........ & 732 & 255 & 34.8 & 477 & 65.2 & 572 & 256 & 44.8 & 316 & 55.2 \\
\hline
\end{tabular}

Table C-7.-full-time graduafe sfudents in dectorate deparements, by fiold of science and type of supporl, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Area and field of science} & \multicolumn{2}{|c|}{Total} & \multicolumn{2}{|l|}{Fellowshipa and traineeships} & \multicolumn{2}{|l|}{Research assistantahips} & \multicolumn{2}{|l|}{Teaching assistantahips} & \multicolumn{2}{|l|}{Other types of support} \\
\hline & Number & Percent distribution & Number & Percent of total & Number & \[
\begin{aligned}
& \text { Perc it } \\
& \text { of to }
\end{aligned}
\] & Number & Percent of total & Number & Percent of total \\
\hline Total. & 141,199 & 100.0 & 41,734 & 29.6 & 30,471 & 21.6 & 32,991 & 23.4 & 36,003 & 26.5 \\
\hline Engincering - & 30,820 & 21.8 & 8.072 & 26.2 & 9,048 & 29.4 & 4,213 & 13.7 & 9.487 & 30.8 \\
\hline Aeronautical. & 1,504 & 1.1 & 397 & 26.4 & 497 & 38.0 & 202 & 13.4 & 408 & 27.1 \\
\hline Agric Ittural. & 433 & . 3 & 110 & 25.4 & 197 & 45.6 & 36 & 8.3 & 90 & 20.8 \\
\hline Chemical. & 3,204 & 2.3 & 1,050 & 32.8 & 1,007 & 31.4 & 522 & 16.3 & 625 & 19.6 \\
\hline Civil. & 4,543 & 3.2 & 1,289 & 28.4 & 1,205 & 26.5 & 465 & 10.2 & 1,584 & 34.9 \\
\hline Electrical. & 7,518 & 5.3 & 1,578. & 21.0 & 2,027 & 2.0 & 1,340 & 17.8 & 2,573 & 34.2 \\
\hline Engineering sclence. & 1,207 & . 9 & 396 & 32.8 & 358 & 29.7 & 268 & 21.9 & 189 & 15.7 \\
\hline Industrinl. & 2,405 & 1.7 & 663 & 23.4 & 418 & 17.4 & 285 & 11.9 & 1,139 & 47.4 \\
\hline Mechanical. & 4.547 & 3.2 & 996 & 21.9 & 1.218 & 26.8 & 658 & 14.5 & 1,675 & 36.8 \\
\hline Metallurgical and materials & 1,802 & 1.3 & 412 & 22.9 & 1,072 & 69.5 & 156 & 8.7 & 162 & 9.0 \\
\hline Mining---------------- & 299 & .2 & 85 & 88.4 & 100 & 33.4 & 32 & 10.7 & 82 & 27.4 \\
\hline Nuclear. & 1,002 & . 7 & 458 & 45.7 & 242 & 24.2 & 88 & 8.8 & 214 & 21.4 \\
\hline Petroleum & 192 & . 1 & 56 & 29.2 & 55 & 28.6 & 31 & 16.1 & 50 & 26.0 \\
\hline Other engineering & 2,164 & 1.5 & 682 & 31.5 & 652 & 30.1 & 134 & 6.2 & 696 & 32.2 \\
\hline Physical sciences. & 30,175 & 21.4 & 7.096 & 23.5 & 9,404 & 31.2 & 10,072 & 33.4 & 3,603 & 11.9 \\
\hline Astronomy & 512 & . 4 & 177 & 34.6 & 203 & 39.6 & 91 & 17.8 & 41 & 8.0 \\
\hline Atmospheric sclences. & 739 & . 5 & 158 & 21.4 & 353 & 47.8 & 41 & 5.5 & 187 & 25.3 \\
\hline Chemistry & 13,634 & 9.7 & 8, 293 & 24.2 & 3,647 & 26.7 & 5,540 & 40.6 & 1,154 & 8.5 \\
\hline Geosciences. & 3,297 & 2.3 & 811 & 24.6 & 696 & 21.1 & 1,072 & 32.5 & 718 & 21.8 \\
\hline Oceanography & 984 & . 7 & 842 & 24.6 & 454 & 46.1 & 44 & 4.5 & 244 & 24.8 \\
\hline Physics. & 11,009 & 7.8 & 2,415 & 21.9 & 4,051 & 06.8 & 3,284 & 29.8 & 1,259 & 11.4 \\
\hline Mathematical sciences. & 11,727 & 8.3 & 2,794 & 23.8 & 1,154 & 9.8 & 4.798 & 40.9 & 2,981 & 25.4 \\
\hline Applicd mathematics & 1,447 & 1.0 & 264 & 18.2 & 407 & 28.1 & 272 & 18.8 & 504 & 34.8 \\
\hline Mathematics & 9,091 & 6.4 & 2.124 & 23.4 & 522 & 5.7 & 4,276 & 47.0 & 2,169 & 23.9 \\
\hline Statistics. & 1,189 & . 8 & 406 & 34.1 & 225 & 18.9 & 250 & 21.0 & 308 & 25.9 \\
\hline Life sciences. & 27,588 & 19.5 & 9,692 & 35.1 & 6,399 & 23.2 & 6,088 & 22.1 & 5,409 & 19.6 \\
\hline Agriculture & 5,963 & 4.2 & 1,286 & 21.6 & 2,840 & 47.6 & 497 & 8.3 & 1,340 & 22.5 \\
\hline Biochemistry & 3,256 & 2.3 & 1,812 & 55.7 & 811 & 24.9 & 344 & 10.6 & 289 & 8.9 \\
\hline Biology. & 6,282 & 4.4 & 2,389 & 38.0 & 595 & 9.5 & 1,895 & 30.2 & 1,403 & 22.3 \\
\hline Botany. & 2,316 & 1.6 & 514 & 22.2 & 602 & 26.0 & 819 & 35.4 & 381 & 16.5 \\
\hline Microbiology & 1,888 & 1.3 & 871 & 47.4 & 346 & 18.8 & 361 & 19.6 & 260 & 14.1 \\
\hline Pharmacology & 1,195 & . 8 & 539 & 45.1 & \(: 94\) & 17.1 & 256 & 21.4 & 196 & 16.4 \\
\hline Physiology & 1,250 & . 9 & 635 & 50.8 & 180 & 14.4 & 181 & 14.5 & 254 & 20.3 \\
\hline Zoology...- & 3,659 & 2.6 & 883 & 24.1 & 569 & 15.6 & 1.439 & 39.3 & 768 & 21.0 \\
\hline Other life sciences. & 1,829 & 1.3 & 763 & 41.7 & 252 & 13.8 & 296 & 16.2 & -18 & 28.3 \\
\hline Psychology.... & 11,918 & 8.4 & 4,738 & 39.8 & 1,593 & 14.2 & 2,260 & 19.0 & 3,227 & 27.1 \\
\hline Socinl sciences & 28,971 & 20.5 & 3:342 & 32.2 & 2,773 & 9.6 & 5,560 & 19.2 & 11,296 & 39.0 \\
\hline Agricultural cconomics & 785 & . 6 & 192 & 24.5 & 362 & 46.1 & 26 & 3.3 & 205 & 26.1 \\
\hline Anthrolpology . & 3,116 & 2.2 & 1,135 & 36.4 & 178 & 5.7 & 548 & 17.6 & 1,255 & 40.3 \\
\hline Economics (except agricultural). & 6.881 & 4.9 & 2,092 & 30.4 & 819 & 11.9 & 1.478 & 21.5 & 2,492 & 36.2 \\
\hline Geography .. & 1,709 & 1.2 & 435 & 25.5 & 101 & 5.9 & 572 & 33.5 & 601 & 35.2 \\
\hline History and putiosor hy of science & 688 & . 5 & 289 & 42.0 & 17 & 2.5 & 180 & 26.2 & 202 & 29.3 \\
\hline Linguistics......----- & 2,191 & 1.6 & 757 & 34.6 & 160 & 7.3 & 412 & 18.8 & 86:? & 39.3 \\
\hline Political science. & 7.503 & 5.3 & 2,304 & 30.7 & 549 & 7.3 & 1.180 & 15.7 & 3,470 & 46.2 \\
\hline Sociology... & 5,366 & 3.8 & 1,933 & 31.0 & 525 & 9.8 & 1.041 & 19.4 & 1,867 & 34.8 \\
\hline Sociology and anthropology . & 732 & . 5 & 205 & 28.0 & 62 & 8.5 & 123 & 16.8 & 342 & 46.7 \\
\hline
\end{tabular}

Table C-8.-Fuli-time graduate students in doctorate departments,
by type of support, level of study, and citizenship, 1969


Table C-9b.-Perrent distributions of full-time graduate students in dotiorate departments, by area of sience, type of support, and level of study, 1964
\begin{tabular}{|c|c|c|c|c|c|}
\hline Area of science & Tota & Fellowships and trainee ships & \[
\begin{aligned}
& \text { Research } \\
& \text { asgistant- } \\
& \text { Bhips }
\end{aligned}
\] & Teaching assistantships & Other types of support \\
\hline \multirow[t]{3}{*}{Total.-.-......--} & \multicolumn{5}{|l|}{All full-time students} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l|l|}
100.0 & 100.0
\end{tabular}} & 100.0 & 100.0 & 100.0 \\
\hline & 21.8 & 19.3 & 29.7 & 12.8 & 26.4 \\
\hline Physical sciences.- & 21.4 & 17.0 & 30.9 & 30.5 & 10.0 \\
\hline Mathematical sciences... & 8.8 & 6.7 & 3.8 & 14.5 & 8.3 \\
\hline Life sciences. & 19.5 & 23.2 & 21.0 & 18.5 & 15.0 \\
\hline Psychology -- & 8.4 & 11.4 & 5.6 & 6.9 & 9.0 \\
\hline Social sciences. & 20.5 & 22.4 & 9.1 & 16.9 & 31.4 \\
\hline \multirow[t]{2}{*}{Total} & \multicolumn{5}{|l|}{First year} \\
\hline & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline \multirow[t]{2}{*}{Engineering-------------------} & 25.9 & 24.7 & 36 & 13.4 & 31.5 \\
\hline & 17.5 & 13 」 & 14.0 & 36.0 & 8.6 \\
\hline Mathematical sciences.. & 9.1 & 1.7 & 3.3 & 13.7 & 9.1 \\
\hline Life sciences. & 18.1 & 18.1 & 25.6 & 18.6 & 14.8 \\
\hline Psychology .- & 7.7 & 11.0 & 8.8 & 6.0 & 6.0 \\
\hline \multirow[t]{2}{*}{Social suiences} & 21.8 & 24.6 & 12.3 & 199 & 3.9 \\
\hline & \multicolumn{5}{|l|}{Beyond first year} \\
\hline Total & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline Engineering & 19.8 & 17.1 & 28.0 & 12.4 & 22.1 \\
\hline Physical sciences & 23.3 & 18.3 & 35.3 & 27.7 & 11.1 \\
\hline Mathematical sciences. & \multirow[t]{2}{*}{7.9
20.2} & 6.3 & 3.9 & 15.0 & \multirow[t]{2}{*}{7.6
15.2} \\
\hline Life sciences..- & & 25.4 & 19.8 & 18.4 & \\
\hline Psychology & 8.8 & 11.5 & 4.7 & 7.3 & \multirow[t]{2}{*}{11.4
32.6} \\
\hline Social sciences & 19.9 & 21.5 & 8.3 & 19.3 & \\
\hline
\end{tabular}

Table C-10a,-wfull-ime graduafe sfudents in dactorate departments, by source of support and area of science, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Source of support & Total & Engineering & Phyaical sciences & \(\underset{\text { Mathematical }}{\text { Mases }}\) & \[
\underset{\text { sciences }}{\text { Lifo }}
\] & Paychology & Soclal sclences \\
\hline Total & 141,199 & 30,820 & 30.175 & 11,727 & 27,588 & 11,918 & 28,971 \\
\hline All U.S. sources, total. & 138,954 & 29,815 & 29,881 & 11.601 & 27,232 & 11,876 & 28,550 \\
\hline U.S. Government & 51,620 & 12,334 & 13,187 & 3.223 & 11.513 & 5,127 & 6.296 \\
\hline Atomic Energy Commission..............- & 2,940 & 845 & 1,819 & 40 & 223 & 1 & 12 \\
\hline Department of Agriculture--.-.-.........- & 1,091
4,963 & 61
2,732 & 63
1,438 & 13 & 766 & & 188 \\
\hline Department of Health, Education, and Welfare, total & 20,611 & 2,229 & 1,488 & 324
748 & 131
7,237 & 178
3,580 & 160
8,725 \\
\hline National Defe, ar Gducation Act. ... & 6,858 & 1,059 & 1.353 & 506 & 1,325 & 563 & 2,058 \\
\hline National Instite s of Health....... & 12,189 & 1,025 & 1,679 & 186 & 5,614 & 2,487 & 1,198 \\
\hline Other HEW..... & 1,564 & 151 & 60 & 56 & 298 & 530 & 469 \\
\hline National Aeronautics and Space Administration. \(\qquad\) & 2,683 & & & & & & \\
\hline National Science Foundation .-. . & 12,981 & 3,055 & 4,664 & 1,708 & & 52 & 42 \\
\hline All other U.S. Government agencies. & 6,351 & 2,104 & 1,201 & 202 & & 849 & 1,192
917 \\
\hline Other U.S. sources. & 87,384 & 17,481 & 16,694 & 8,378 & 15.719 & 6,748 & 22,314 \\
\hline Institutions and State and local governments. & 50,471 & 8.025 & & & & & \\
\hline Private foundations. & 3,836 & 641 & 12,493 & 5,886
125 & 9,879 & \(\begin{array}{r}3.902 \\ 252 \\ \hline\end{array}\) & 10,282
1,495 \\
\hline Industry-...-.-.-...-.................. & 4,568 & 2,930 & 715 & 200 & 488 & 69 & 172 \\
\hline Sell-support. & 26,307 & 5.482 & 2,601 & 2,040 & 4,111 & 2,181 & 9,992 \\
\hline All other U.S. sources. & 2,152 & 403 & 338 & 127 & 501 & 350 & 433 \\
\hline Foreign sources, total.- & 2.245 & 1,005 & 294 & 126 & 356 & 43 & 421 \\
\hline
\end{tabular}

Table C-10b.-Percent distributions of full-fime graduate sfudents in doctorate departments, by sourco of aupport and area of science, 1969

- Less than 0.05 percent.

58

Table C-11a,-Fulf-time graduate sfudents in doctorate depariments, by source and type of support, 1969
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source of support & Total & Fellowships and trainee ships & Research assistantships & Teaching assistantships & Other types of support \\
\hline Total & 141.1.9 & 41,734 & 30,471 & 32,991 & 36,003 \\
\hline All U.S. sourcee, total & 138,954 & 40,465 & 30,414 & 32,991 & 35,084 \\
\hline U.S. Government. & 51,620 & 28,707 & 19,646 & 327 & 2,940 \\
\hline Atomic Energy Commission. & 2,940 & 500 & 2,395 & & 45 \\
\hline Department of Agriculture. & 1,091 & 56 & 949 & & 86 \\
\hline Department of Defense.-- & 4,963 & 370 & 3,525 & & 1,068 \\
\hline Department of Health, Educstion, and Welfare, total. & 20,611 & 16,895 & 3,492 & 64 & 160 \\
\hline National Defense Education Act & 6,858 & 6,753 & 94 & & 11 \\
\hline National Institutes of Health & 12,189 & 9,086 & 2,965 & 29 & 109 \\
\hline Other HEW. & 1,564 & 1,056 & 433 & 35 & 40 \\
\hline National Aeronautics and Space Administration.- & 2,683 & 1,353 & 1,242 & & 88 \\
\hline National Science Foundation. & 12,981 & 7,255 & 5,225 & 122 & 379 \\
\hline All other U.S. Government agencies & 6,351 & 2,278 & 2,818 & 141 & 1,114 \\
\hline Other U.S. sources & 87,384 & 11,758 & 10,768 & 32,664 & 32,144 \\
\hline Institutions and State and local governmenta. & 50,471 & 7,191 & 8,451 & 32,524 & 2,305 \\
\hline Private foundations & 3,836 & 2,515 & 872 & 78 & 371 \\
\hline Industry.. & 4,568 & 1,663 & 1,142 & 9 & 1,754 \\
\hline Self-support. & 26,307 & & & & 26,307 \\
\hline All other U.S. sources & 2,152 & 389 & 303 & 53 & 1,407 \\
\hline Foreign sources, total. & 2,245 & 1,269 & 57 & & 919 \\
\hline
\end{tabular}
Orable C－llb．－Percent diatributions of full－time graduate sfudents in doctorate departments，by source and type of support， 1969

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & & 10 & 芯 & & ب®o & こ & \(\cdots\) & \(\dot{\infty}\) & ¢ & & & & ํ．｜\({ }_{\text {¢ }}^{\text {¢ }}\) & － & \\
\hline  & & \(\stackrel{\circ}{\circ}\) & \[
\begin{aligned}
& \hline \stackrel{\circ}{\dot{0}} \\
& \hline ্ .
\end{aligned}
\] & \(\stackrel{-}{-}\) & ¢ & & －\(\quad \%\) & \％ & ¢¢ ¢ ¢ ¢ ¢ & & & ¢ & กั่ & & ¢ ¢ูู \\
\hline  & \[
\begin{aligned}
& \text { \% } \\
& \stackrel{y y}{8}
\end{aligned}
\] & |o & \[
\stackrel{\infty}{\dot{\infty}} \underset{\dot{o}}{ }
\] & \[
\begin{array}{|c}
n \\
\text { in }
\end{array}
\] & \(\stackrel{9}{9-m}\) & & －7 & \[
\begin{aligned}
& \text { m } \\
& \mathrm{m}
\end{aligned}
\] &  &  & － & \(\stackrel{\square}{\text { ¢ }}\) & －\(\stackrel{\square}{\text { a }}\) & （1） & \(\stackrel{\square}{-}\) \\
\hline  & 㐫 & -̀ & \[
\begin{aligned}
& \stackrel{\circ}{\dot{\circ}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \underset{心}{\infty}
\end{aligned}
\] & \[
\underset{\sim}{\text { Nat }} \boldsymbol{\sim}
\] & －\％ & ¢900 & が &  & 㐫 & \％ & \(\stackrel{\circ}{\text { a }}\) & 寅 & － &  \\
\hline  & & Io & \[
\stackrel{\rightharpoonup}{\infty} \underset{\sim}{\dot{o}}
\] & \[
\begin{aligned}
& \hline \stackrel{\infty}{\circ} \\
& \hline
\end{aligned}
\] &  & & & \(\stackrel{9}{6}\) & \(\stackrel{\square}{\text { ¢ }}\) & & & － & －｜｜ör &  & O． 0 － 0 \\
\hline  & & 惑 &  & \[
\begin{aligned}
& \text { B } \\
& 0 \\
& \text { Nix }
\end{aligned}
\] &  &  &  &  &  & & & \[
\begin{aligned}
& \frac{5}{5} \\
& \stackrel{\text { git }}{ }
\end{aligned}
\] &  &  &  \\
\hline
\end{tabular}
Table C-13a.-Full-time graduate students irs doctorate departments supported by U.S. Government sources, by field of science and Federal agency, 1969

Tablr -i-13b.-Percent distribution of full-time graduate students in doctorate departments supported by U.S. Government sources, by field of science, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area and field of scien} & \multirow[t]{2}{*}{Total} & \multirow[t]{2}{*}{Department oi
Defense} & \multicolumn{2}{|l|}{Department of Health, Education, and Welfare} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { National } \\
\text { Science } \\
\text { Soun- } \\
\text { Fation }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Othe } \\ \text { ogencies }}}{\substack{\text { oghe }}}
\]} & \multirow[t]{2}{*}{Area and fild of science} & \multirow[t]{2}{*}{Total} & \multirow[t]{2}{*}{DepartDefense} & \multicolumn{2}{|l|}{Department of Health, Education, and Welfare} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { National } \\
\text { Science } \\
\text { Soun- } \\
\text { dation }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { All } \\
\text { agher } \\
\text { agencies }
\end{gathered}
\]} \\
\hline & & & \[
\begin{aligned}
& \text { Nations } \\
& \text { Defense } \\
& \text { Educa- } \\
& \text { tion Act }
\end{aligned}
\] & National \(\substack{\text { of } \\ \text { Health }}\) & & & & & & National Efucation Act & \[
\begin{array}{|c|c|}
\text { National } \\
\text { Institutes } \\
\text { of } \\
\text { Health }
\end{array}
\] & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
Engineering
\end{tabular}} & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & \(100 . \mathrm{C}\) & Mathematicu. & 4.4 & 2.6 & 5.8 & . 3 & 10.7 & 2.1 \\
\hline & 23.9 & 55.0 & 15.4 & 8.4 & 23.5 & 30.5 & \multirow[t]{2}{*}{Lite sciences---.---------} & & & & & & \\
\hline Aeronautical. & 1.6 & 5.1 & & & & & & 22.3 & 2.6 & 19.3 & 46.1 & 14.6 & 7.4 \\
\hline Agricultural. & . 3 & . 1 & .4 & . 1 & .
. & . 5 & Agriculture & 4.1 & . 6 & 4.3 & 3.2 & 1.8 & 7.9 \\
\hline Chemical.... & 2.4 & 2.0 & 2.3 & 1.0 & 3.5 & 2.7 & Biochemistry & 4.2 & . 3 & 2.1 & 12.7 & 1.9 & 1.5 \\
\hline Civil. & 3.3 & 5.3 & 1.4 & 2.4 & 2.5 & 5.0 & Biolozy & 4.6 & .3 & 4.0 & 9.5 & 4.3 & 2.5 \\
\hline Electrical. & 5.3 & 13.2 & 3.5 & 1.5 & 6.7 & 5.4 & Botany-- & 1.3 & .1 & 2.2 & 1.1 & 1.8 & 1.3 \\
\hline Engineering science... & 1.0 & 1.6 & . 9 & . 3 & 1.1 & 1.5 & Microbiology - & 2.0 & .3 & 1.2 & 5.7 & . 8 & 1.0 \\
\hline Industrial. & \multirow[t]{2}{*}{1.4
3.4} & 5.8 & 1.0 & . 2 & \multirow[t]{3}{*}{3.1} & 1.4 & Pharmacology & 1.1 & . 2 & . 8 & 3.3 & . 3 & . 3 \\
\hline Mechanical.-..... & & \multirow[t]{2}{*}{9.8} & \multirow[t]{2}{*}{2.6} & \multirow[t]{2}{*}{. 9} & & \multirow[t]{2}{*}{3.9} & Physiology-..---...--- & 1.3 & \({ }^{.6}\) & . 8 & 3.9 & . 5 & . 4 \\
\hline Metallurgical and materials & & & & & & & \multirow[t]{2}{*}{Zoology-...............-} & 2.1
1.6 & .1
.1 & 2.4
1.4 & 3.1
3.5 & 2.2
1.1 & 1.7
.9 \\
\hline Mining- & 2.0
.1
1. & 6.3
.2 & \(\begin{array}{r}1.2 \\ .1 \\ \hline 1\end{array}\) & .4 & 1.6
.2 & 2.7
.2 & & & & & & & \\
\hline Nuclear--- & 1.2 & 1.2 & . 5 & . 1 & . 7 & 2.7 & \multirow[t]{2}{*}{\begin{tabular}{l}
Psychology. \\
Social sciences.
\(\qquad\)
\(\qquad\)
\end{tabular}} & 9.9 & 3.6 & 8.2 & 20.4 & 3.6 & 9.8 \\
\hline Petroleum.....-.-...- & . 1 & . 3 & . 1 & (*) & . 2 & . 1 & & 12.1 & 3.2 & 30.0 & 9.8 & 9.2 & 11.1 \\
\hline \multirow[t]{2}{*}{Other engineering . .-.} & \multirow[t]{2}{*}{1.7} & \multirow[t]{2}{*}{4.2} & . 6 & \multirow[t]{2}{*}{1.4} & \multirow[t]{2}{*}{1.5} & 1.7 & \multirow[t]{4}{*}{\begin{tabular}{l}
Agricultural economics Anthropology \\
Economics (except
\end{tabular}} & \multirow[t]{3}{*}{.5
1.7} & & & & & \\
\hline & & & & & & & & & \multirow[t]{2}{*}{(2)} & \multirow[t]{2}{*}{.7
3.2} & \multirow[t]{2}{*}{3.1} & \multirow[t]{2}{*}{1.4} & \multirow[t]{2}{*}{1.3} \\
\hline \multirow[t]{2}{*}{Physical sciences} & 25.5 & 29.0 & 19.7 & 13.8 & 35.9 & 27.7 & & & & & & & \\
\hline & \multirow[t]{2}{*}{1.1} & . 2 & . 4 & -....... & 1.2 & & & \multirow[t]{2}{*}{2.1
.7} & \multirow[t]{2}{*}{\begin{tabular}{l}
. \\
.4 \\
\hline
\end{tabular}} & 5.9 & \({ }^{.} 3\) & \multirow[t]{2}{*}{2.7
.5} & \multirow[t]{2}{*}{2.0
.8} \\
\hline Atmospheric sciences.- & & 3.1 & . 2 & . 3 & 1.4 & 1.1 & agricultural Geography
\(\qquad\) & & & 2.3 & . 1 & & \\
\hline Chemistry ---....--- & 10.3 & \begin{tabular}{l}
3.1 \\
6.3 \\
\hline 2.6
\end{tabular} & 8.7 & 12.6 & 13.8 & 7.4 & \multirow[t]{2}{*}{History and philosophy of scisnce.-.} & \multirow[t]{2}{*}{. 3} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{1.7} & \multirow[t]{2}{*}{(a)} & & \multirow[t]{2}{*}{(2)} \\
\hline Geosciences-.------.-- & 2.1 & 2.6 & 3.0 & . 1 & 3.7 & 1.8 & & & & & & . 4 & \\
\hline Oeeanography -...... & 1.0 & 1.5 & . 5 & . 2 & 1.5 & 1.3 & Linguistics--........-- & 1.2 & . 4 & 3.3
8.2 & \(\stackrel{4}{4}\) & . 8 & 1.4 \\
\hline Physics- & 10.5 & 15.3 & 6.9 & . 6 & 14.5 & 15.4 & Political science----Sociology
\(\qquad\) & 2.3
2.8 & 1.9
.2 & 8.2
4.0 & .3
4.9 & 1.5 & \begin{tabular}{l}
1.9 \\
\hline 2.9
\end{tabular} \\
\hline Mathematical sciences & 6.2 & 6.5 & 4 & 1.5 & 13.2 & 3.4 & Sociology and anthropolog & . 4 & & . 7 & . 8 & . 1 & . 2 \\
\hline Applied mathematics & 1.0 & 2.6 & . 6 & . 2 & 1.6 & . 8 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
a Less than 0.05 percent
}
Table C-13c.-Percent distribution of full-time graduate students in doctorate depariments supported by U.S. Government sources, ty Federal agency, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area and field of science} & \multirow[t]{2}{*}{Total} & \multirow[t]{2}{*}{DepartDent of} & \multicolumn{2}{|l|}{Department of
Health, Education, and Welfare} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { National } \\
& \text { Science } \\
& \text { Soun- } \\
& \text { Fation }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { All } \\
\text { ather } \\
\text { agencies }
\end{gathered}
\]} & \multirow[t]{2}{*}{Area and field of science} & \multirow[t]{2}{*}{Total} & \multirow[t]{2}{*}{Depart ment of} & \multicolumn{2}{|l|}{Department of Health, Education, and Welfare} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { National } \\
\text { Scence } \\
\text { Foun- } \\
\text { Fittion }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { All } \\ \text { other } \\ \text { agneles }}}{\text { ancen }}
\]} \\
\hline & & & National Defense tion Act \(\qquad\) & National Institute Health & & & & & & National Defense tion Act
\[
--
\] & National Institutes Health & & \\
\hline Total. & 100.0 & 9.6 & 13.3 & 23.6 & 25.1 & 28.3 & Mathematics Statistics. & \[
\begin{aligned}
& 10 c .0 \\
& 100.0
\end{aligned}
\] & \[
\begin{array}{r}
5.8 \\
15.1
\end{array}
\] & \[
\begin{aligned}
& 17.6 \\
& 14.6
\end{aligned}
\] & 1.5
29.2 & 62.4
25.1 & 13.7
15.0 \\
\hline Enginee-ing- .-. & 100.0 & 22.2 & 8.5 & 8.3 & 24.8 & 36.2 & Life sciences.......- & 100.0 & 1.1 & 12.5 & 48.8 & 16.5 & 22.1 \\
\hline Aeronautical---......- & \multirow[t]{2}{*}{100.0
100.0} & 30.0 & 6.3 & 1.0 & 17.3 & 45.4 & \multirow[t]{2}{*}{Agriculture-...-.-...--} & \multirow[t]{2}{*}{100.0} & \multirow[t]{2}{*}{1.4} & \multirow[t]{2}{*}{14.2} & \multirow[t]{2}{*}{18.2} & \multirow[t]{2}{*}{11.1} & \multirow[t]{2}{*}{55.1} \\
\hline Agricultural. & & 2.1 & 18.5 & 8.2 & 17.8 & 53.4 & & & & & & & \\
\hline Chemical... & 100.0 & 8.2 & 12.8 & 9.9 & 36.8 & 32.3 & Biochemistry & 100.0 & . 7 & 6.5 & 71.4 & 11.6 & 9.8 \\
\hline Civil- & 100.0 & 15.4 & 5.5 & 17.3 & 18.9 & 42.9 & Biology & 100.0 & .7 & 11.5 & 48.8 & 23.5 & 15.4 \\
\hline Electrical. & 100.0 & 23.9 & 8.8 & 6.8 & 31.7 & 28.8 & Botany-- & 100. & . 4 & 22.1 & 19.9 & 30.8 & 26.9 \\
\hline Engineering science.. & 100.0 & 15.0 & 11.3 & 6.0 & 26.3 & 41.5 & Microbiology & 100.0 & 1.2 & 8.0 & 66.7 & 10.2 & 13.9 \\
\hline Industrial. ........... & 100.0 & 38.6 & 9.6 & 2.8 & 21.7 & 27.3 & Pharmacology & 100.0 & 1.6 & 10.5 & 73.7 & 6.9 & 7.3 \\
\hline Mechanical. & \multirow[t]{2}{*}{100.0} & \multirow[t]{2}{*}{28.0} & \multirow[t]{2}{*}{10.3} & \multirow[t]{2}{*}{6.2
4.8} & \multirow[t]{2}{*}{22.8} & 32.7 & Physiology - & \multirow[t]{2}{*}{\[
\begin{array}{r}
100.0 \\
100.0
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{r} 
+ \\
\hline .5 \\
.9
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 15.4 \\
& 12.0
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 34.7 \\
& 52.9
\end{aligned}
\]} & 9.3 & 8.8 \\
\hline Metallurgical and materials & & & & & & & Zoology Other life sciences & & & & & \[
\begin{aligned}
& 26.7 \\
& 17.7
\end{aligned}
\] & 22.7
16.6 \\
\hline Mining--- & 100.0 & 11.7 & 13.0 & & 28.6 & \begin{tabular}{l}
37.4 \\
46.8 \\
\hline 6.8
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pischology \\
Social sciences.
\(\qquad\)
\(\qquad\)
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 100.0 \\
& 100.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3.5 \\
& 2.6
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 11.0 \\
& 33.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
=-=
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
9.1 \\
19.1
\end{array}
\]} & \multirow[t]{3}{*}{27.9
26.1} \\
\hline Nuclear.- & 100.0 & 9.8 & 6.8 & 2.5 & 16.0 & 65.8 & & & & & & & \\
\hline Petroleum. & 100.0 & 23.0 & 6.6 & 4.9 & 32.8 & \multirow[t]{2}{*}{\begin{tabular}{l}
36.8 \\
29.5 \\
\hline
\end{tabular}} & & & & & & & \\
\hline Other engineering & 100.0 & 23.8 & 4.5 & 19.9 & 22.2 & & \multirow[t]{3}{*}{Agriculturai economics. Anthropology.-....... Economics (except} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 100.0 \\
& 100.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
-\cdots
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 17.6 \\
& 24.7
\end{aligned}
\]} & \multirow[t]{3}{*}{41.6} & \multirow[t]{3}{*}{7.8
20.5} & \multirow[t]{3}{*}{74.5
13.0} \\
\hline \multirow[t]{2}{*}{Physical sciences} & 100.0 & 10.9 & 10.3 & 12.7 & 35.4 & 30.7 & & & & & & & \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& 100.0 \\
& 100.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
3.6 \\
27.9
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 9.6 \\
& 2.8
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\ldots\)} & \multirow[t]{3}{*}{53.9
33.9} & \multirow[t]{2}{*}{32.9} & & & & & & & \\
\hline Astronomy & & & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Economics (except } \\
& \text { agricultural) }
\end{aligned}
\]
Geography.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100.0 \\
& 100.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 1.5 \\
& 5.2
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 36.8 \\
& 41.5
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.9 \\
& 2.3
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 31.7 \\
& 18.5
\end{aligned}
\]} & \multirow[t]{3}{*}{27.0
32.4} \\
\hline Atmospheric sciences. & & & & 5.7 & & 29.7 & & & & & & & \\
\hline Cbemistry... & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100.0 \\
& 100.0
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{r}5.9 \\ 12.1 \\ \hline 1\end{array}\)} & \multirow[t]{2}{*}{11.2
18.7} & \multirow[t]{2}{*}{28.9
.6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 33.6 \\
& 44.5
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 20.4
\end{aligned}
\]} & \multirow[t]{2}{*}{History and philosophy of science...} & \multirow[t]{3}{*}{100.0
100.0} & & \multirow[t]{3}{*}{66.1
37.5} & \multirow[t]{4}{*}{1.7
8.2
3.4} & \multirow[t]{2}{*}{30.5} & \\
\hline Geosciences.-- & & & & & & & & & .-. & & & & \multirow[t]{3}{*}{1.7
34.1
24.1} \\
\hline Oceanography & 100.0 & 14.0 & 7.0 & 4.4 & 38.1 & 36.4 & Linguistics & & 3.6 & & & 17.1 & \\
\hline Physics .-.-- & 100.0 & 14.0 & 8.8 & 1.4 & 34.2 & 41.7 & Political science & 100.0 & 8.0 & 47.7 & & 16.8 & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Mathematical sciences. -- - \\
Applied mathematics
\(\qquad\)
\end{tabular}} & \multirow[t]{3}{*}{\[
\frac{100.0}{100.0}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 10.1 \\
& \hline 24.6 \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
15.7 \\
\hline 8.1 \\
\hline
\end{array}
\]} & 5.8 & 53.0 & 15.5 & Sociology and & \multirow[t]{3}{*}{\[
100.0
\]} & . 6 & \multirow[t]{3}{*}{25.1} & \multirow[t]{3}{*}{\[
48.2
\]} & \multirow[t]{3}{*}{\[
8.9
\]} & \multirow[t]{3}{*}{17.8} \\
\hline & & & & & & & anthropology. & & & & & & \\
\hline & & & & 4.8 & 39.7 & 22.8 & & & & & & & \\
\hline
\end{tabular}

Table C-14.-Full-fime graciuate students in doctorate departments supported by other U.S. sources, by field of science, 1960
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Aren and field of science} & \multicolumn{2}{|c|}{Total} & \multicolumn{2}{|l|}{Institutions and State and local governments} & \multicolumn{2}{|c|}{Self-support} & \multicolumn{2}{|l|}{\begin{tabular}{l}
All other \\
U.S. вources
\end{tabular}} \\
\hline & Number & Percent distribution & Number & Percent of total & Number & Percen: of total & Number & Percent of total \\
\hline Total... & 87,334 & 100.0 & 50,471 & 57.8 & 26,307 & 30.1 & 10,566 & 12.1 \\
\hline Engincering---------- & 17,481 & 20.0 & 8,025 & 45.9 & 5.482 & 31.4 & 3,974 & 22.7 \\
\hline Aeronautical. & 647 & . 7 & 344 & 53.2 & 169 & 26.1 & 134 & 20.7 \\
\hline Agricultural. & 257 & .3 & 179 & 69.6 & 46 & 17.9 & 32 & 12.5 \\
\hline Chemical. & 1,889 & 2.2 & 961 & 50.9 & 438 & 23.2 & 490 & 25.9 \\
\hline Civil & 2,580 & 3.0 & 1,303 & 50.5 & 990 & 38.4 & 287 & 11.1 \\
\hline Electrical. & 4,629 & 5.3 & 2,028 & 43.8 & 1,637 & 35.4 & 964 & 20.8 \\
\hline Engineering science. & 647 & . 7 & 458 & 70.8 & 115 & 17.8 & 74 & 11.4 \\
\hline Industrial.. & 1,509 & 1.7 & 576 & 38.2 & 553 & 36.6 & 380 & 25.2 \\
\hline Mechanical & 2,633 & 3.0 & 1,121 & 42.6 & 1,025 & 38.9 & 487 & 18.5 \\
\hline Metallurgical and materials & 718 & . 8 & 300 & 41.8 & 96 & 13.4 & 322 & 44.8 \\
\hline Mining--.-.---.-.------ & 206 & . 2 & 131 & 63.6 & 45 & 21.8 & 30 & 14.6 \\
\hline Nuclear-. & 382 & .4 & 225 & 58.9 & 100 & 26.2 & 57 & 14.9 \\
\hline Petroleum. & 119 & . 1 & 57 & 47.9 & 29 & 24.4 & 33 & 27.7 \\
\hline Other engineering-.-. & 1,265 & 1.4 & 342 & 27.0 & 239 & 18.9 & 684 & 54.1 \\
\hline Physical sciences-------------------- & 16,694 & 19.1 & 12,497 & 74.9 & 2,501 & 15.0 & 1,696 & 10.2 \\
\hline Astronomy ---------------------- & 228 & .3 & 187 & 82.0 & 25 & 11.0 & 16 & 7.0 \\
\hline Atmospheric sciences. & 183 & . 2 & 97 & 53.0 & 65 & 35.5 & 21 & 11.5 \\
\hline Chemistry-- & 8,240 & 9.4 & 6,438 & 78.1 & 863 & 10.5 & 939 & 11.4 \\
\hline Geosciences & 2,119 & 2.4 & 1,413 & 66.7 & 500 & 23.6 & 206 & 9.7 \\
\hline Oceanography & 438 & . 5 & 177 & 40.4 & 116 & 26.5 & 145 & 33.1 \\
\hline Physics_ & 5,486 & 6.3 & 4,185 & 76.3 & 932 & 17.0 & 369 & 6.7 \\
\hline Mathematical sciences & 8,378 & 9.6 & 5,886 & 70.3 & 2,040 & 24.3 & 452 & 5.4 \\
\hline Applied mathematica & 922 & 1.1 & 554 & 60.1 & 256 & 27.8 & 112 & 12.1 \\
\hline Mathematics & 6,748 & 7.7 & 4.916 & 72.9 & 1,591 & 23.6 & 241 & 3.6 \\
\hline Statiatics & 708 & . 8 & 416 & 58.8 & 193 & 27.3 & 99 & 14.0 \\
\hline Life aciences...- & 15,719 & 18.0 & 9,879 & 62.8 & 4,111 & 26.2 & 1,729 & 11.0 \\
\hline Agriculture--- & 3,678 & 4.2 & 2,097 & 57.0 & 943 & 25.6 & 638 & 17.3 \\
\hline Biochemistry. & 1,058 & 1.2 & 704 & 66.5 & 193 & 18.2 & 161 & 15.2 \\
\hline Biology --- & 3,885 & 4.4 & 2,483 & 63.9 & 1,083 & 27.9 & 319 & 8.2 \\
\hline Botany --- & 1,577 & 1.8 & 1,173 & 74.4 & 305 & 19.3 & 99 & 6.3 \\
\hline Microbiology & 778 & . 9 & 484 & 62.2 & 218 & 28.0 & 76 & 9.8 \\
\hline Pharmacology & 638 & . 7 & 393 & 61.6 & 144 & 22.6 & 101 & 15.8 \\
\hline Physiology- & 553 & . 6 & 290 & 52.4 & 178 & 32.2 & 85 & 15.4 \\
\hline Zoology---- & 2,549 & 2.9 & 1,721 & 67.5 & 669 & 26.2 & 159 & 6.2 \\
\hline Other life sciences & 1,003 & 1.1 & 584 & 53.2 & 378 & 37.7 & 91 & 9.1 \\
\hline Paychology & 6,748 & 7.7 & 3,902 & 57.8 & 2,181 & 32.3 & 665 & 9.9 \\
\hline Social sciences & 22,314 & 25.6 & 10,282 & 46.1 & 9,992 & 44.8 & 2,040 & 9.1 \\
\hline Agricultural economics & 519 & . 6 & 325 & 62.6 & 125 & 24.1 & 69 & 13.3 \\
\hline Anthropology---- & 2.204 & 2.5 & 873 & 39.6 & 1,166 & 52.9 & 165 & 7.5 \\
\hline Economics (except agricultural)--- & 5,565 & 6.4 & 2,841 & 51.1 & 2,270 & 40.8 & 454 & 8.2 \\
\hline Geography --------------------- & 1,300 & 1.5 & 723 & 55.6 & 498 & 38.3 & 79 & 6.1 \\
\hline History and philosophy of science- & 506 & . 6 & 294 & 58.1 & 175 & 34.6 & 37 & 7.3 \\
\hline Linguistics---------------------- & 1,573 & 1. & 724 & 46.0 & 755 & 48.0 & 94 & 6.0 \\
\hline Political sclence ------------------ & 6,270 & 7.2 & 2,488 & 39.7 & 3.114 & 49.7 & 668 & 10.7 \\
\hline Sociology .--------------------- & 3,846 & 4.4 & 1,813 & 47.1 & 1,606 & 41.8 & 427 & 11.1 \\
\hline Sociology and anthropology ------ & 531 & . 6 & 201 & 37.3 & 283 & 53.3 & 47 & 8.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\underset{\substack{\text { Type and source of } \\ \text { and citizenship }}}{\text { apport }}\)} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{1968} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} & \multirow[t]{2}{*}{Type and source of su nort} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{1968} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent chargt} \\
\hline & & & & 1967-68 & 1968-69 & & & & & 1967-68 & 1968-69 \\
\hline Alu Sources, total-...- & 118,367 & 121,661 & 123,311 & 2.8 & 1.4 & U.S. Government & \multirow[t]{2}{*}{\[
\begin{gathered}
14,134 \\
6,356
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
13,2 G 1 \\
6,432
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
12,439 \\
6,321
\end{array}
\]} & \[
\begin{array}{r}
-6.6 \\
1.2
\end{array}
\] & \multirow[t]{2}{*}{-5.8
-1.7} \\
\hline U.S. Government & \multirow[t]{2}{*}{49,179
67,294} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 48,402 \\
& 71,592
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 45,554 \\
& 75,897
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-1.6 \\
6.4
\end{array}
\]} & \multirow[t]{2}{*}{-5.9
6.0} & Foreign sources & & & & \[
1.2
\] & \\
\hline Other U.S. sources & & & & & & & & & & & \\
\hline Foreign mources.-. & & 1,667 & 1,860 & -12.0 & 11.6 & Foreign students & 6,681 & 7,242 & 7.898 & 8.4 & 9.1 \\
\hline U.S. citizens...-.-.----.-- & 98,398 & 99,442 & 98,714 & 1.1 & -. 7 & \multirow[t]{3}{*}{U.S. Government..... Other US. sources. Foreign source3..} & \multirow[t]{3}{*}{\[
\begin{array}{r}
4,360 \\
2,279 \\
42
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
4,716 \\
2,480 \\
46
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5,111 \\
& 2,742
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 8.2 \\
& 8.8 \\
& \hline 0
\end{aligned}
\]} & \multirow[t]{3}{*}{8.4
10.6
-2.2} \\
\hline & \multirow[t]{4}{*}{\[
\begin{array}{r}
43,871 \\
54,493 \\
34
\end{array}
\]} & & & & & & & & & & \\
\hline U.S. Government.... & & \multirow[t]{3}{*}{\[
\begin{array}{r}
42,739 \\
56,677 \\
26
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 39,507 \\
& 59,172 \\
& 35
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-\overline{2.6} \\
4.0 \\
-23.5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-7.6 \\
4.4 \\
34.6
\end{array}
\]} & & & & & & \\
\hline Other U.S. sources... & & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Foreign source3...-.... \\
Teaching Assistantships, total
\end{tabular}} & & & & & \\
\hline Foreign sources & & & & & & & 26,984 & 28,338 & 29,356 & 5.0 & 3.6 \\
\hline Foreign students.-.-..-.-. & 19,969 & 22,219 & 24,597 & 11.3 & 10.7 & \multirow[t]{4}{*}{\begin{tabular}{l}
U.S. Sovernment. \\
Other U.S. sources Foreign sources.-
\end{tabular}} & & & & & \\
\hline & & & & & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
284 \\
26,700
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
220 \\
28,118
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
288 \\
29,068
\end{array}
\]} & -22.5 & 30.9 \\
\hline U.S. Government & \multirow[t]{2}{*}{5,308
12,801} & \multirow[t]{2}{*}{\[
\begin{array}{r}
5,663 \\
14,915
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
6,047 \\
16,725 \\
1,825
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
6.7 \\
16.5 \\
-11.8
\end{array}
\]} & & & & & & 5.3 & 3.4 \\
\hline Other U.S. sources. & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 12.1 \\
& 112
\end{aligned}
\]} & & & & & & \\
\hline Foreign sources_- & 1,860 & 1,641 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Fellowships and TraineesHIPs, total} & & & \multirow[t]{2}{*}{36,615} & \multirow[t]{2}{*}{1.8} & & U.S. citizens & 22,551 & 23,171 & 22,497 & 2.7 & 1.4 \\
\hline & 38,284 & 38,963 & & & -6.0 & U.S. Government & \multirow[t]{2}{*}{\[
\begin{array}{r}
231 \\
22,320
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
173 \\
22,998
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
215 \\
23,282
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-25.1 \\
3.0
\end{array}
\]} & \multirow[t]{2}{*}{24.3
1.2} \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
27,982 \\
9,257 \\
1,065
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
27,955 \\
9,896 \\
1,072
\end{gathered}
\]} & & & & Other U.S. sources.... & & & & & \\
\hline Other U.S. sources & & & \multirow[t]{2}{*}{\[
\begin{gathered}
25,448 \\
10,398 \\
1
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
.1 \\
6.9 \\
.7
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-i 0.2 \\
5.1 \\
-.3
\end{array}
\]} & \multirow[t]{2}{*}{Foreign students.} & & & & & \\
\hline Foreign sources & & & & & & & 4,433 & 5,167 & 5,859 & 16.6 & 13.4 \\
\hline U.S. citizens --- & 34,158 & 34,569 & 32,071 & 1.2 & -7.2 & \multirow[t]{3}{*}{U.S. Government..... Other U.S. sources. Foreign sources} & \multirow[t]{2}{*}{\[
\begin{array}{r}
53 \\
4,380
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
47 \\
5,120
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
73 \\
5,786
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-11.3 \\
16.9
\end{array}
\]} & \multirow[t]{2}{*}{55.3
13.0} \\
\hline U.S. Government. & \multirow[t]{3}{*}{\[
\begin{array}{r}
27,302 \\
6,822 \\
34
\end{array}
\]} & & \multirow[t]{3}{*}{\[
\begin{array}{r}
24,512 \\
7,527 \\
32
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
.1 \\
5.9 \\
-23.5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-10.3 \\
4.2 \\
23.1
\end{array}
\]} & & & & & & \\
\hline Other U.S. sources & & \multirow[t]{2}{*}{\[
\begin{array}{r}
27,321 \\
7,222 \\
26
\end{array}
\]} & & & & & & & & & \\
\hline Foreign sources. & & & & & & Other Support, total-.......-- & 25,928 & 27,485 & 30,680 & 6.0 & 11.6 \\
\hline Foreign students & 4,12r & 4,394 & 4,544 & 6.5 & 3.4 & \multirow[t]{3}{*}{U.S. Government ..... Other U.S. sources Foreign sources........} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,439 \\
22,702 \\
787
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,270 \\
24,666 \\
549
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
5,568 \\
27,368 \\
744
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
-6.9 \\
8.7 \\
-30.2
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
13.1 \\
11.0 \\
35.5 \\
\hline
\end{tabular}} \\
\hline U.S. Government. & \multirow[t]{3}{*}{\[
\begin{array}{r}
660 \\
2,435 \\
1,031
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
674 \\
2,674 \\
1,046
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
636 \\
2,871 \\
1,037
\end{array}
\]} & & \multirow[t]{3}{*}{\[
\begin{array}{r}
-5.6 \\
7.4 \\
-.9
\end{array}
\]} & & & & & & \\
\hline Other U.S. sources & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.1 \\
& 9.8 \\
& 1.5
\end{aligned}
\]} & & & & & & & \\
\hline Foreign source & & & & & & U.S. citizens.-.-.-....... & 21,199 & 22,069 & 24,384 & 4.1 & 10.5 \\
\hline Research Assistantships, total. & 27,171 & 26,875 & 26,660 & -1.1 & -. 8 & \multirow[t]{2}{*}{Other U.S. sources Foreign sources.} & 2,204
18,995 & 2,044
20,025 & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,341 \\
22,042 \\
1
\end{array}
\]} & -7.3
5.4 & 10.1 \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
18,494 \\
8,635 \\
42
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
17,917 \\
8,912 \\
46
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
17,550 \\
9,063 \\
47
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-3.1 \\
3.2 \\
9.5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-2.0 \\
1.7 \\
2.2
\end{array}
\]} & & & & & & \\
\hline Other U.S. sources. & & & & & & \multirow[t]{2}{*}{Foreign students.-.-.------} & 4,729 & 5,416 & 6,296 & 14.5 & 16.2 \\
\hline \multirow[t]{4}{*}{U.S. citizens----.-.} & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{20,490} & \multirow[t]{3}{*}{19,633} & \multirow[t]{2}{*}{18,762} & \multirow[t]{2}{*}{-4.2} & -4.4 & \multirow[t]{2}{*}{Other U.S. sources.... Foreign Bources.----.-} & \multirow[t]{3}{*}{\[
\begin{array}{r}
3,707 \\
187
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
226 \\
4,641 \\
549
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
227 \\
5,326 \\
743
\end{array}
\]} & \multirow[t]{3}{*}{25.2
-30.2} & \multirow[t]{3}{*}{\begin{tabular}{r}
. \\
\hline 14.8 \\
85.3
\end{tabular}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
Table C-15b.-Full-time graduate students in 566 engineering doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69

\({ }^{2}\) Percent change was not shown when base was less than 25.
Table C-15c.-full-time graduate students in 452 physical science doctorate deparlments, by type and source of support and citizenship, \(1967-68\) and 1968 - 69

a Percent change was not shown when base figure was less than 25.
Table 15d.-Full-time graduate students in 176 mathematics doctorate departments, by fype and source of support and citizenship, 1967-68 and 1968-59
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type and surce of support
and citizenship
cit} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{1968} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} & \multirow[t]{2}{*}{- .nd source of support} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{1968} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} \\
\hline & & & & 1967-68 & 1968-69 & & & & & 1967-68 & 1968-69 \\
\hline Total & 10,600 & 10,668 & 10,508 & 0.6 & -1.5 & U.S. Government-...
Other
U.S. sources.. & \begin{tabular}{|}
526 \\
235
\end{tabular} & 437
215 & 466
202 & -16.9
-8.5 & 6.6
-6.0 \\
\hline \multirow[t]{4}{*}{} & 3,244 & 3,154 & 2,896 & -2.8 & -8.2 & Foreign buarcea & & & & & \\
\hline & 7,259 & 7,415 & 7,515 & \({ }_{2} 2.1\) & 1.3 & Foreign students. & 235 & 267 & 297 & 13.6 & 11.2 \\
\hline & 97 & 99 & 97 & 2.1 & -2.0 & & & & & & \\
\hline & 3,181 & 9,019 & 8,619 & -1.8 & -4.4 & U.S. Government_ & 173
60 & 203
64 & 221
76 & 17.3
6.7 & 8.9
18.8 \\
\hline U.S. Government. & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3,014 \\
& 6,166 \\
& 1
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2,905 \\
& 6,114
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,625 \\
5,990 \\
4
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -3.6 \\
& (\text { (n) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -9.6 \\
& -2.0
\end{aligned}
\]
(a)} & \multirow[t]{3}{*}{} & & & & & \\
\hline Other U.S. sources _- & & & & & & & & & & & \\
\hline Foreign sources. & & & & & & & 4,225 & 4,410 & 4,396 & 4.4 & -. 8 \\
\hline Foreign students & 1,419 & 1,649 & 1,889 & 16.2 & 14.6 & U.S. Government & \multirow[t]{2}{*}{\[
\begin{array}{r}
36 \\
4,189
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
!9 \\
4,391
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
49 \\
4,356
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-47.2 \\
4.8
\end{array}
\]} & (') \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
230 \\
1,093 \\
96
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
249 \\
1,301 \\
99
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
271 \\
1,525 \\
93
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
8.3 \\
19.0 \\
3.0
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
8.8 \\
17.2 \\
-6.1
\end{array}
\]} & \multirow[t]{3}{*}{Foreign sources---....-} & & & & & \\
\hline Other U.S. sources & & & & & & & & & & & \\
\hline Foreign sources. & & & & & & & 3,608 & 3,710 & 3,561 & 2.8 & -4.0 \\
\hline Fellowship and Traineeshirs, total & 2,837 & 2,906 & 2,543 & 2.4 & -12.5 & Other U.S. sources Foreiga sources. & \[
\begin{array}{r}
35 \\
3,573
\end{array}
\] & 13
3,697 & \[
\begin{array}{r}
38 \\
3,523
\end{array}
\] & -6.5 & \({ }^{(9)}\) \\
\hline U.S. Government- & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,255 \\
524 \\
58 \\
5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,222 \\
617 \\
67 \\
67
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1,829 \\
648 \\
66
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-1.5 \\
17.7 \\
15.5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-17.7 \\
5.0 \\
-1.5
\end{array}
\]} & & & & & & \\
\hline Other U.S. sources & & & & & & Foreign students & 617 & 300 & 835 & 13.5 & 19.3 \\
\hline Foreign sources & & & & & & & & & & & \\
\hline U.S. citizens & 2,597 & 2,615 & 2,201 & . 7 & -15.8 & Other U.S. sources Foreign sources & 1
616 & 694 & \[
\begin{gathered}
2 \\
853
\end{gathered}
\] & \[
\stackrel{(4)}{12.7}
\] & \[
{ }^{(n)} 20.0
\] \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,220 \\
376 \\
1
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|}
2,204 \\
411
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1,802 \\
\quad 395 \\
4
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
-.7 \\
9.3 \\
(\mathrm{a})
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -18.2 \\
& -8.9 \\
& \text { (a) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Other Support, total...-.-.---} & & & & & \multirow[t]{2}{*}{7.0} \\
\hline Other U.S. sources. & & & & & & & 2,542 & 2.433 & 2,604 & -4.3 & \\
\hline Foreign sources. & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Foreign students} & 240 & 291 & \multirow[t]{2}{*}{342} & \multirow[t]{2}{*}{21.3} & 17.5 & U.S. Government---- & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,251 \\
37
\end{array}
\]} & & & & \\
\hline & & & & & & Other U.S. sources-... Foreign sources & & \[
\begin{array}{r}
2,128 \\
32
\end{array}
\] & \[
\begin{array}{r}
2,233 \\
31
\end{array}
\] & -5.5
-13.5 & 4.9
-3.1 \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
35 \\
148 \\
57 \\
58
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
18 \\
206 \\
20 \\
67
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
27 \\
253 \\
62
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-48.6 \\
39.2 \\
17.5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { (4) } \\
& 22.8 \\
& -7.5
\end{aligned}
\]} & \multirow[t]{2}{*}{U.S. eitizers .----.-------} & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-7.8 7.2}} \\
\hline Other U.S. sources & & & & & & & 2,215 & 2,042 & 2,189 & & \\
\hline \multirow[t]{3}{*}{Research Assistantships, total} & & & & & & U.S. Government & & 251 & 319 & 7.7 & \\
\hline & 996 & 919 & 964 & -7.7 & 5.0 & Other U.S. sources .. & 1.982 & 1.791 & 1,870 & -9.6 & 4.4 \\
\hline & \multirow[t]{4}{*}{\[
\begin{array}{r}
699 \\
295 \\
2
\end{array}
\]} & & & & & Foreign sources......... & & & & & \\
\hline U.S. Government & & \multirow[t]{3}{*}{\[
\begin{aligned}
& 610 \\
& 279
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 487 \\
& 278
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -8.4 \\
& -5.4 \\
& \text { (a) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
7.3 \\
-.4
\end{array}
\]} & \multirow[t]{2}{*}{Foreign students-..--....-} & \multirow[t]{2}{*}{327} & \multirow[t]{2}{*}{391} & 415 & 19.6 & 6.1 \\
\hline Other U.S. sources. & & & & & & & & & & & \\
\hline Foreign sources_ & & & & & & U.S. Government & \multirow[t]{3}{*}{21
269
37} & \multirow[t]{3}{*}{22
337
32} & \multirow[t]{3}{*}{21
363
31} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { (1) } \\
\text { 25.E } \\
-13.5
\end{gathered}
\]} & \multirow[t]{3}{*}{\({ }^{(4)} \begin{array}{r}7.7 \\ -3.1\end{array}\)} \\
\hline U.S. eitizens-- & 761 & 652 & 668 & -14.3 & 2.5 & Other U.S. sources. & & & & & \\
\hline & & & & & & Foreign sources & & & & & \\
\hline
\end{tabular}

\footnotetext{
- Percent change was not shown when base figure was less than 25.
}
Table C-15e.-Full-time graduate students in 619 life science doctorate departments, by fype and source of support and citizenship, 1967-68 and 1988-69
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{1968} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} & \multirow[t]{2}{*}{Type anil source of support and citizenship} & \multirow[t]{2}{*}{1967} & \multirow[t]{2}{*}{\({ }^{1968}\)} & \multirow[t]{2}{*}{1969} & \multicolumn{2}{|l|}{Percent change} \\
\hline & & & & 1967-68 & 1968-69 & & & & & 1957-68 & 1968-69 \\
\hline Tот & 20,377 & 21,067 & 21,486 & 3.4 & 2.0 & U.S. Government & 2,281 & 2,122 & 1,881 & -7.0 & -i1.4 \\
\hline \multirow[t]{4}{*}{U.S. Governmen....
Other U.S. sources...
Forelgn sources....} & \multirow[t]{3}{*}{\[
\begin{array}{r}
9,337 \\
10,704 \\
336
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
9,452 \\
11,343 \\
272
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
8,978 \\
12,251 \\
257
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1.2 \\
6.0 \\
-19.0
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-5.0 \\
8.0 \\
-5.5
\end{array}
\]} & Foreign sources..- & 1,721 & 1,752 & \[
\begin{array}{r}
1,737 \\
2
\end{array}
\] & 1.8 & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & \multirow[t]{2}{*}{1,236} & & \\
\hline & & & & & & Foreign students & 1,261 & 1,278 & & 1.3 & -3.3 \\
\hline & 17,365 & 17,933 & 18,236 & 3.3 & 1.7 & \multirow[t]{2}{*}{U.S. Government.....Other U.S. sources
\(\qquad\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 686 \\
& 551
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 690 \\
& 563
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 609 \\
& 610
\end{aligned}
\]} & .6
2.2 & \multirow[t]{2}{*}{-11.7
8.3} \\
\hline U.S. Government & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8,361 \\
& 8,999
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8,484 \\
& 9.444
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
8,078 \\
10,152
\end{array}
\]} & \multirow[t]{2}{*}{1.5
4.5} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-4.8 \\
7.5
\end{array}
\]} & & & & & (1) 2.2 & \\
\hline \multirow[t]{2}{*}{Forerign sources...} & & & & & & Foreign sources........ & & & & & \\
\hline & & & 6 & (') & (2) & Teaching assistantships, total- & 4,315 & 4,487 & 4.845 & 4.0 & 8.0 \\
\hline Foreign students & 3,012 & 3,134 & 8,250 & 4.1 & 3.7 & \multirow[t]{2}{*}{U.S. Government --.-Other U.S. sources..Foreign sources} & \multirow[t]{2}{*}{\[
\begin{array}{r}
29 \\
4,286
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
29 \\
4,458
\end{array}
\]} & \multirow[t]{2}{*}{34
4.811} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c|c}
\hline 17.2 \\
\hline 4.9
\end{tabular}}} \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
976 \\
\substack{975 \\
\\
331}
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
968 \\
1,899 \\
807
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
900 \\
2,995 \\
251
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-.8 \\
11.4 \\
-19.3
\end{array}
\]} & \multirow[t]{2}{*}{-7.0
10.5} & & & & & & \\
\hline Other U.S. sources & & & & & & & & & & & \\
\hline Foreign sources.. & & & & & -6.0 & U.S. citizens & 3,866 & 3,968 & 4,268 & 2.6 & T. 5 \\
\hline Fellowships and traineeshirs, total & 7,286 & 7,731 & 7,629 & 6.1 & -1.3 & U.S. Government--..-Other U.S. sources & - \(\begin{array}{r}24 \\ 0\end{array}\) & \[
\begin{array}{r}
24 \\
3,944
\end{array}
\] & \[
\stackrel{84}{8 / 241}
\] & \[
{ }^{(\mathrm{a})}{ }_{2.7}
\] & \({ }^{(2)} 7.5\) \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{aligned}
& 5,982 \\
& 1,153 \\
& 151
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
6,320 \\
1,257 \\
154
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 6,171 \\
& 1,316 \\
& 142
\end{aligned}
\]} & \multirow[t]{3}{*}{5.1
9.0
2.0} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-2.4 \\
4.7 \\
-7.8
\end{array}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{449} & & & & \multirow[t]{2}{*}{11.2} \\
\hline Other U.S. sources & & & & & & & & 515 & 577 & 15.6 & \\
\hline Foreign sources-- & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{6,593} & \multirow[t]{2}{*}{6,981} & \multirow[t]{2}{*}{6,892} & \multirow[t]{2}{*}{5.9} & \multirow[t]{2}{*}{\(\stackrel{-1.3}{ }\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
U.S. Government---...- \\
Forcign soūces
\end{tabular}} & \multirow[t]{2}{*}{5
444} & \multirow[t]{2}{*}{\[
\begin{array}{r}
5 \\
514
\end{array}
\]} & \multirow[t]{2}{*}{7
570} & \multirow[t]{2}{*}{\[
\stackrel{(1)}{15.8}^{2}
\]} & \multirow[t]{2}{*}{\[
{ }^{(\mathrm{z})} 10.9
\]} \\
\hline & & & & & & & & & & & \\
\hline U.S. Government & \multirow[t]{3}{*}{\[
\begin{array}{r}
5,787 \\
801 \\
\quad 5
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
6,120 \\
850 \\
\hline 5 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
5,949 \\
\quad 939 \\
4
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 5.8 \\
& 6.9 \\
& (\mathrm{a})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-0.8 \\
(A) \\
\hline .7
\end{array}
\]} & \multirow[t]{2}{*}{Other Support, total .-.--} & & \multirow[t]{2}{*}{3,697} & \multirow[t]{2}{*}{4.156} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{12.4}} \\
\hline Other U.S. soures & & & & & & & 3,513 & & & & \\
\hline Foreign sources. & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Foreign students .-........--} & 693 & 750 & \multirow[t]{2}{*}{797} & 8.2 & -1.7 & \multirow[t]{2}{*}{Other U.S. sources...Foreign sources} & \multirow[t]{2}{*}{\[
\begin{array}{r}
359 \\
2,993 \\
161
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
291 \\
3,313 \\
93
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
283 \\
3,777 \\
96
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-189 \\
10.7 \\
-42.2
\end{array}
\]} & \multirow[t]{2}{*}{-2.8
14.0
3.2} \\
\hline & & & & & & & & & & & \\
\hline U.S. Government & \multirow[t]{2}{*}{\[
\begin{aligned}
& 195 \\
& 352 \\
& 146
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 200 \\
& 401 \\
& 149
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 222 \\
& 377 \\
& 138
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2.6 \\
13.9 \\
2.1
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
11.0 \\
-6.0 \\
-7.4
\end{array}
\]} & \multirow[t]{2}{*}{U.S. citizens.} & \multirow[t]{2}{*}{2,904} & \multirow[t]{2}{*}{3,110} & \multirow[t]{2}{*}{3,456} & \multirow[t]{2}{*}{7.1} & \multirow[t]{2}{*}{\({ }^{11.1}\)} \\
\hline Other U.S. sources
Foreign sources._. & & & & & & & & & & & \\
\hline Foreign sources & & & & & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
269 \\
2,635
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
218 \\
2,892
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
221 \\
3,235
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-19.0 \\
9.8
\end{array}
\]} & \multirow[t]{2}{*}{1.4
11.9} \\
\hline Research assistantships, total. & 5,263 & 5,152 & 4,856 & -2.1 & -5.7 & \multirow[t]{2}{*}{Other U.S. 8ources Foreign sources} & & & & & \\
\hline U.S. Government. & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,967 \\
2,272 \\
24
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,812 \\
2,315 \\
25
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2,490 \\
2,347 \\
\hline 19
\end{array}
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-11.5 \\
1.4 \\
-24.0
\end{array}
\]} & & & & & & \\
\hline Other US. s. sources.. & & & & & & \multirow[t]{2}{*}{For: fg students} & \multirow[t]{2}{*}{609} & 587 & 700 & -3.6 & 19.3 \\
\hline Foreign sources & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{U.S. citizens-----.....} & \multirow[t]{2}{*}{4,002} & \multirow[t]{2}{*}{3,874} & 3,620 & -3.2 & \(\underline{-6.6}\) & \multirow[t]{2}{*}{Other U.S. sources..... Foreign snurces.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 358 \\
& i 61
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
421 \\
93
\end{gathered}
\]} & \multirow[t]{2}{*}{542
96} & & \multirow[t]{2}{*}{28.7
3.2} \\
\hline & & & & & & & & & & 17.6
-42.2 & \\
\hline
\end{tabular}
a Percent change was not shown when base was less than 25.
Table C-15f.-Full-time graduate students in 128 psychology doctorate departments, by type and source of support and citizensiiip, 1967-68 and 1968-as


\footnotetext{
a Percent change was not shown when base figure was less than 25.
}

70
Table C-15g.-Full-time gradgate students in 397 social science doctorate departments, by type and source of support and citizenship, 1967-68 and 1968-69

* Percent change was not shown when base figure was less than 25.
Table C-16.-full-fime faculty in doctorate departments, by fiold of science, 1969

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area of science} & \multicolumn{2}{|l|}{Full-time graduate
students} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Full-time graduate } \\
& \text { faculty }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Number } \\
\text { suof of ents } \\
\text { par } \\
\text { faculty } \\
\text { member }
\end{gathered}
\]} \\
\hline & Number & Percent distribution & Number & \[
\begin{aligned}
& \text { Percent } \\
& \text { distri- } \\
& \text { bution }
\end{aligned}
\] & \\
\hline Total & 141,199 & \(1{ }^{10.0}\) & 45,687 & 100.0 & 3.1 \\
\hline Engineering- & 30,820 & 21.8 & 9,665 & 21.2 & 3.2 \\
\hline Physical sciences.- & 30,175 & 21.4 & 9,414 & 20.6 & 3.2 \\
\hline Mathematical sciences & 11,727 & 8.3 & 4,471 & 9.8 & 2.6 \\
\hline Life sciences & 27,588 & 19.5 & 11,497 & 25.2 & 2.4 \\
\hline Psychology & 11,918 & 8.4 & 2,902 & 6.4 & 4.1 \\
\hline Social sciencez. & 28,971 & 20.5 & 7,738 & 16.9 & 3.7 \\
\hline
\end{tabular}

72
Table C-18.-Full-time graduate faculty in doctorate depcrtmonts, 1968, comparad with number of Ph.D. degrees granied, academic year 1968-69, by area of science

Source: Departmental Summaries from 2,894 doctorate depa:tments, as shown in appendix E. Table C-19.-Postdoctorals in doctorate departments, by field of seience, 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area and field of science} & \multicolumn{2}{|l|}{Totai postdoctorals} & \multicolumn{2}{|l|}{Recent postdoctorals} & \multirow[t]{2}{*}{Area and feld of science} & \multicolumn{2}{|l|}{Total postdoctorals} & \multicolumn{2}{|l|}{Recent postdoctorals} \\
\hline & Number & \[
\begin{aligned}
& \text { Percent } \\
& \text { distri- } \\
& \text { bution }
\end{aligned}
\] & Number & \[
\begin{gathered}
\text { Percent } \\
\text { of } \\
\text { oftal }
\end{gathered}
\] & & Number & \[
\begin{aligned}
& \text { Percent } \\
& \text { distri. } \\
& \text { bution }
\end{aligned}
\] & Number & \[
\begin{gathered}
\text { Percent } \\
\text { of } \\
\text { otal }
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Total. \\
Engineering-
\end{tabular}} & 8,517 & 100.0 & 5,746 & 67.5 & Applied mathematics.- & \multirow[t]{2}{*}{\(\begin{array}{r}26 \\ 190 \\ \hline\end{array}\)} & . 3 & \multirow[t]{2}{*}{111} & \multirow[t]{2}{*}{42.3
58.4} \\
\hline & 781 & 9.2 & 504 & 64.5 & Mathematics................ & & 2.2
.4 & & \\
\hline Aeronautical. & 43 & . 5 & 33 & 76.7 & Life sciences. & 3.214 & 37.7 & 1,936 & 60.2 \\
\hline Agricultural. & 11 & . 1 & 7 & 63.6
73.7 & Agriculture ---. & & \multirow[t]{2}{*}{\[
\begin{array}{r}
3.5 \\
10.9
\end{array}
\]} & & \\
\hline Civil. & 80 & . 9 & 47 & 58.8 & Biochemistry ... & \({ }_{932}^{296}\) & & & \multirow[t]{2}{*}{67.3
49.9} \\
\hline Electrical. & 99 & 1.2 & 64 & 64.6 & Biology .- & 766 & 9.0 & 382 & \\
\hline Engineering science & 74 & . 9 & 31 & 41.9 & Botany .-. & \multirow[t]{2}{*}{160
251} & \multirow[t]{2}{*}{1.9} & 91 & 46.9 \\
\hline Industrial. . & 20 & . 2 & 11 & 55.0 & Microbiology.. & & & 157 & \multirow[t]{2}{*}{62.5
63.6} \\
\hline Mechanical - & 79 & . 9 & 51 & 64.6 & Pharmacology... & \multirow[t]{3}{*}{\[
\begin{aligned}
& 214 \\
& 160
\end{aligned}
\]} & 2.6 & 140 & \\
\hline Metallurgical and materials & 122 & 1.4 & 89 & 73.0 & Physiology-- & & 2.5 & 114 & \multirow[t]{2}{*}{63.6
53.3
55.6
65.6} \\
\hline Mining- & 7 & . 1 & 4 & 57.1 & Zoology .-. & & 1.9 & 89 & \\
\hline Nuclear- & 25 & . 3 & 10 & 40.0 & Other life sciences. & 215 & 2.5 & 189
140 & 65.1 \\
\hline Petroleum.-1 & 4 & (2) & 3 & 75.0 & & & & & \\
\hline Other engineering & 103 & 1.2 & 70 & 68.0 & Psychology & \multirow[t]{2}{*}{\[
\begin{aligned}
& 231 \\
& 258
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.7 \\
& 3.0
\end{aligned}
\]} & \multirow[t]{2}{*}{139
97} & \multirow[t]{2}{*}{60.2
37.6} \\
\hline \multirow[t]{2}{*}{Physical sciences.} & & & & & Social sciences & & & & \\
\hline & 3,786 & 44.4 & 2,923 & 77.2 & Agricultural economics & 9 & . 1 & 3 & 33.3 \\
\hline Astronomy & 69 & . 8 & 43 & 62.3 & Anthropology---...... & 27 & \multirow[t]{2}{*}{.1
.3
.9} & \multirow[t]{2}{*}{13
27} & \multirow[t]{2}{*}{\({ }_{35.5}^{48.1}\)} \\
\hline Atmospheric sciences & 43 & . 5 & 24 & 55.8 & Economics (except agricultural). & \multirow[t]{2}{*}{76
13
13} & & & \\
\hline Chemistry-- & 2,236 & 26.3 & 1,851 & 82.8 &  & & . 9 & \(\begin{array}{r}27 \\ 7 \\ \hline\end{array}\) & 35.5
53.8 \\
\hline Geosciences. & 174 & 2.0 & 109 & 62.6 & Histury and philosophy of science & 14 & . 2 & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{50.0
32.4} \\
\hline Oceanography & & . 7 & 33 & 54.1 & Linguistics-.--------1...----1. & 34 & \({ }^{.} 4\) & & \\
\hline Physics.-- & 1,203 & 14.1 & 863 & 71.7 & Political science & 29 & \({ }^{-3}\) & 9 & 31.0 \\
\hline Mathematical sciences & 247 & 2.9 & 147 & 59.5 & Sociology and anthropology --..-. & 54
2
2 & (a) \({ }^{-6}\) & \multicolumn{2}{|l|}{\(\begin{array}{ccc}19 & 35.2 \\ 1 & 50.2 \\ 50 .\end{array}\)} \\
\hline
\end{tabular}

\footnotetext{
\(\rightarrow\) Less than 0.05 percent.
}
Table C-21.-Pastdoctorals in doctorate departments, 1968, compared with number

Source: Departmental Summaries from 2,894 doctorate departments, as shown in appendix E
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area of science} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Filll-time graduate } \\
& \text { stud } 3 n t s
\end{aligned}
\]} & \multicolumn{2}{|l|}{Postdoctorals} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Number } \\
\text { students } \\
\text { per } \\
\text { port- } \\
\text { doctoral }
\end{gathered}
\]} \\
\hline & Number & \[
\begin{aligned}
& \text { Percent } \\
& \text { distri- } \\
& \text { bution }
\end{aligned}
\] & Number & Percent distribution & \\
\hline Total. & 141,199 & 100.0 & 8,517 & 100.0 & 16.6 \\
\hline Engineering & 30,820 & 21.8 & 781 & 9.2 & 39.5 \\
\hline Physical sciences & 30,175 & 21.4 & 3,786 & 44.5 & 8.0 \\
\hline Mathematical sciences & 11,727 & 8.3 & 247 & 2.5 & 47.5 \\
\hline Life sciences. & 27,588 & 19.5 & 3,214 & 37.7 & 8.6 \\
\hline Psychology-..... & 11,918 & 8.4 & 231 & 2.7 & 51.6 \\
\hline Social sciences... & 28,971 & 20.5 & 258 & 3.0 & 112.3 \\
\hline
\end{tabular}
Table C-20.-Full-time graduate students in doetorate departments, compared with
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area of science} & \multicolumn{2}{|l|}{Full-time graduate
faculty} & \multicolumn{2}{|l|}{Postdoctorals} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Number } \\
& \text { of } \\
& \text { graduate } \\
& \text { faculty } \\
& \text { per } \\
& \text { post- } \\
& \text { doctoral }
\end{aligned}
\]} \\
\hline & Number & Percent distri- & Number & Percent
distri- & \\
\hline Total & 45,687 & 100.0 & 8,517 & 100.0 & 5.4 \\
\hline Engineering-.--- & 9,665 & 21.2 & 781 & 9.2 & 12.4 \\
\hline Physical sciences & 9,414 & 20.6 & 3.786 & 44.5 & 2.5 \\
\hline Mathematical sciences. & 4,471 & 9.8 & 247 & 2.9 & 18.1 \\
\hline Life sciences.-- & 11,497 & 25.2 & 3,214 & 37.7 & 3.6 \\
\hline Psychology-- & 2,902 & 6.4 & 231 & 2.7 & 12.6 \\
\hline Social sciences & 7,738 & 16.9 & 258 & 3.0 & 30.0 \\
\hline
\end{tabular}

\section*{APPENDIX D}

\title{
Instructions and Consolidated Departmental Data Sheets \\ (NSF Form 345)-Doctorate Departments
}TablePage
69
D-1. All sciences, 2,894 departments
70
D-3. Physical sciences, 509 departments ..... 71
D-4. Mathematical sciences, 203 departments ..... 72
D-5. Life sciences, 874 departments ..... 73
D-6. Psychology, 141 departments ..... 74
D-7. Social sciences, 502 departments ..... 75

\section*{Instructions for Completing the Departmental Data Sheet}

For further information on the Graduate Trainceship Program, refer to the Announcement ( \(\mathbf{E}\) 69-G-6). Completed copies of the Departmental Data Sheet should be forwarded to the designated Coordinating Official at the institution. Copies of the form should be prepared in sufficient numbers and in time so that the institution can complete ite review and forward five coples (reproductions of the original, not carbons) of each sheet being submitted, to reach the National Science Foundation not later than October 24 , 1969.

Item 5-Give the numbers of degrees conferred between 7/1/68 and 6/30/69. Under \(A\) insert the number of bachelor's degrees (include 5-year professional degrees). Under \(B\) insert the number of master's degrees (excluding degrees in the teaching of science, e. g. M.A.T.). Under C insert the number of master's degrees in the teaching of science (e.g., M.A.T.). Under \(D\) insert. the number of doctoral degrees. Degrees awarded joinlly by two or more departments should be recorded on one departmental data sheet only.

Item 6.-A full-time graduate student is defined here as a bona fide gradunte student (not a regular staff member, e.g., an instructor) who is engaged entirely in training activities in his field of science; these activities may embrace any appropriate combination of study, teaching, and research. (Some institutions use the phrase "geographical full-time student" to describe such students.)

A firsi-year graduate student is defined for this program no one who will have completed less than one normal year of graduate study as of the beginning of the Fall term of 1969. All other students should be considered beyond first level.

Insert in each appicpriate box the number of students who are simultaneously (a) full-time graduate students (defined above), (b) enrolled in an advanced degree program, and (c) receiving a total stipend of \(\$ 1,200\) or more-not counting tuition and excluding personal, family and loan sources-during the 1969-70 aendemic year.

All students meeting criteria (a) and (b), but not (c), should be counted under "Self, Loans and Family." Full-time graduate students working for an advanced degree who are employees of another organization, on leave of absence, and whose major support is provided by their employer, should be listed by type of employer (e.g., industry). If a graduate student receives stipend support from more than one source, choose the major source. For cases of two or more equivalent sources choose one major source category so that using only whole numbers the departmental data sheet will give a reasonably accurate average support picture for the department.

Care should be used in listing support sour ces accurately so that students (particularly research assistants) supported under U.S. Government grants are liated under the appropriate U.S. Government agency (e.g., atudents supported on an AEC research grant should apiear under AEC and students supported under an NSF Institutional Grant should appenr under NSF, not under '"This Institution').

Each row total given under \(A L L\) SOURCES is to be oplit into two components, Firs: Year and Beyond Firat. Thus every full-time graduate student enrolled for an advanced degree is counted only once by major source of support and once again in a separate breakout by level (First Year or Beyond First) of atudy.

Item 8-These students are often called "special" or "nondegree" students. "Special" or "nondegree" students are those studentr possessing
an undergradunte degree who are enrolled in one or more graduate courses in the department Fall 1968, but who are not enrnlled for an advanced degree (they have not been admitted to graduate achool).

Item \(8-\) The numbers of graduate students who are working for advanced degrees, but who are not purguing gradunte work full-time are enumerated under the four entries for part-lime. Do not include "special" students who are not enrolled for advanced degrees (given in item 8) or atudents who have left your institution but are completing their theses while engaged in other activities.

Item 1, -For items A, B, and C, only faculty of academic rank of instructor or above, who are significantly involved (i.e., teaching one or more courses or seminars and/or directing the research of one or more students) in the graduate and/or undergraduate academic program of the department as of the Fall 1969 should be counted, including faculty on sabbatical leave who are expected to return. Visiting professors should not be counted. Do not count postdoctorals or research nssocintes: they are counted under item 11. Under \(A\), give the number of full-time faculty who are ataff (including the department head) of academic rank instructor or above with a full-time appointment in the department and whose major responsibilities are with the academic programs of the department. (A faculty member should be counted as full-time in only one department.) Under \(B\), give the number of faculty included under \(A\) who do not teach any regularly acheduled courses (resenrch professors, research associates of professorial academic rank, etc.). Under \(C\), give the number of inculty included under \(A\), who are significantly involved in the graduate academic program of the department (i.e., teaching one or more uraduate courses or seminars and/ or directing the research of one or more graduale students).

Under \(D\), give the number of pari-time graduate faculty (part-time in this department), defined to include all faculty who are significantly involved in the graduate academic program (see C, above) but whose major responsibilities or activities are outside the department. Part-time will usually include senior university administrators (deans, etc.) affiliate or adjunct professors (from other departments or outside the universi'y), professors emeriti, experiment laboratory or extension service staff, museum staff, etc.

Item 11-Postdoctorals or Research Associates include individuals with a doctorate (including foreign degrees that are equivalent to U.S. doctorates) who devote full-time to research activities or atudy in the department under temporary appointments carrying no academic rank (instructor or above). Such appointments are usually for a specific lime veriod. They may contribute to the academic program through seminars, lectures, or working with graduate students. Their postdoctoral activities have an element of additional training for them.

Under A, give the total number of Postdoctorals and/or Research Associntes as defined above, as of the Fall of 1969. Of this number enter under \(B\) the number who are teaching one or more regularly scheduled courses; under C, give the number of Postdoctorals and/or Research Associates (defined nbove) who received their doctorates in 1965 or later.

Item 12-Give the number of NSF Graduate Traineeships in each category that your department could effectively use. Avoid unrealistic and inflated numbers, taking full cognizance of all other means of available support. Only U.S. citizens enrolled in an advanced degree program may be appointed. Under a new grant for 1970-71 an institution must appoint most of its 9 - or 12 -month Trainees p.t the first-year level.
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 Departmental Data Sheet
(Note: Before filling out please read ine instruetion


\footnotetext{
. Part-time graduate students enrolled for advanced degrees 10. Numbers of faculty members:
}
Fall 1969 by level of study; do not include "special" students.
 \(\begin{array}{lllllllll}16,911 & \text { (1) } & 23,228 & \text { (2) } & 1,372 & \text { (3) } & 2,135 & \text { (4) } & 43,646\end{array}\)
11. Numher of Postdoctorals/Research Associates:

NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 NATONAL SCIENGE Departmental Data Sheot


\footnotetext{
8. Number of "special" students eirolled for

The number of students included in the above table (item 6) who are:
}

in this department who are

\footnotetext{
10. Numbers of faculty members:

Graduate
D
\(1,528 \quad\) (4)
C \(\left.\begin{array}{c}\text { raduate } \\ \text { (3) }\end{array}\right)\)
9. Part-time graduate students enrolled for adoanced degrees

Fail 1969 by level of study; do not include "special" studer s.

1at year
9,817
11. Number of Postdoctorals/Research Associates:
}
\(\begin{array}{lll}\text { (A) supported with full tuition from this institu- } & \text { (B) performing some regular teaching } & \text { (C) receiving support from more }\end{array}\) \(\begin{array}{llll}\begin{array}{lll}\text { tion 6,578 (1). Include students in institutions } \\ \text { charging no tuition, but not those whose tuition }\end{array} & \begin{array}{l}\text { activity, but who do not reeeive } \\ \text { their major support trom a graduate }\end{array} & \begin{array}{l}\text { than one source, exclusive of } \\ \text { self, loans, and family } \\ 1,978\end{array} & \text { (3) }\end{array}\)

NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 Departmental Data Sheet
out please read the instruction
(Note: Be:ore filling out please read the instructions on the reverse)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1. Name and add \\
2, Department \\
3. Person in De \\
4. Highest degr \\
5. Number of d
\end{tabular} & dress of Ins or unit) cov partment (o effered in grees grant &  & \begin{tabular}{l}
224 D \\
this da \\
prepari \\
11 of 19 \\
68 thro
\end{tabular} & ata she 69: (ch ough 6 &  & \begin{tabular}{l}
ting In \\
Physi \\
Name \\
ly one) \\
BS 9 \\
also BA
\end{tabular} & \[
\underbrace{\mathrm{Mal}}_{9,256}
\] &  & \begin{tabular}{l}
ctoral \\
MS 3,9 \\
MA, etc
\end{tabular} & \begin{tabular}{l}
Depar \\
48 \\
(Ex.
\end{tabular} & 1970 G tments. Title Ph. D. ); AT, etc. &  & \begin{tabular}{l}
(2) \\
(3) \\
MAT,
\end{tabular} &  & \[
\underset{\text { PhD. }}{\text { D. }}
\] & \[
04 \quad \text { (4) }
\] & & & & & \\
\hline 6. Major supp & sourc & & & & U.S. Gov & ernment & (exctudin & g loans) & & & & Other & Usited & States (n & n-U.S. & Goven & nent) & & & 11 sour & \\
\hline ull-Time G & \[
\begin{aligned}
& \text { ion) of } \\
& \text { duate }
\end{aligned}
\] & & & & & HEW & & & & & & \({ }_{\text {This }}^{\text {Insti- }}\) & & & & & & & & & \\
\hline Advanced De and Ph.D.) in 1969 (see item structions) & \begin{tabular}{l}
rees (M.S. \\
the Fall
6-in-
\end{tabular} & &  &  & NDEA & (NHE: & Other & & NSF & \[
\begin{aligned}
& \text { Gove } \\
& \text { Gor. } \\
& \text { orn- } \\
& \text { ment }
\end{aligned}
\] & \[
\begin{gathered}
\text { Gov- } \\
\substack{\text { orrn- } \\
\text { ernt } \\
\text { sent } \\
\text { totatal }}
\end{gathered}
\] &  & \[
\begin{aligned}
& \text { vate } \\
& \text { vate } \\
& \text { nornit } \\
& \text { proint } \\
& \text { fation }
\end{aligned}
\] & \[
\underset{\substack{\text { Indus } \\ \text { Iny }}}{ }
\] &  & & \[
\begin{aligned}
& \text { Other } \\
& \text { O.S., } \\
& \text { Sub. } \\
& \text { sotatal }
\end{aligned}
\] & \[
\begin{gathered}
\text { ceron } \\
\text { sources }
\end{gathered}
\] & & First & \[
\begin{gathered}
\text { Be- } \\
\text { yond } \\
\text { firat }
\end{gathered}
\] \\
\hline TYPES OF S & UPPORT & (a) & (b) & (c) & (d) & (e) & (t) & (g) & (b) & (i) & (a-i) & (j) & (k) & & (m) & (a) & (i-n) & (o) & (p) & (q) & (r) \\
\hline Fellowehips and traineeships. & \begin{tabular}{l}
1 United \\
States. \\
2 Foreign_
\end{tabular} & & & & & & & & & & 4.811
62 & & & & & & 1,469 & 14
189 & 6.294
802 & & 4,825
534 \\
\hline Graduate research sssistantships. & \begin{tabular}{l}
3 United \\
States.
\end{tabular} & 1,359
346 & & & & & & & 1,994 & & 6,118 & 753
240 & 232
56 & & & & 1,197 & ----- & 7,315 & & 6.677
1.839 \\
\hline Graduate teaching & 5 United & & & & & & & & & & & 7,910 & & & & & 7,915 & & 7,967 & 3,27 & 4,695 \\
\hline sistantships. & States. & & & & & & & & & & & 2,090 & & & & & & & & & \\
\hline Other than above & 7 United & & & & & 3 & & & 47 & 58 & 372 & 86 & 20 & & 8 & & 2,497 & & 2.870 & 1,0 & 1,849 \\
\hline & 8 Foreign...- & & & & & & & & & 17 & & & & & & & & & \({ }^{733}\) & 384 & 349 \\
\hline Total-United & 9 United & 1,469 & & 1,167 & 1,341 & 1,444 & & & 4,076 & & 1,353 & & & & & & 13,07 & & 24 & 6,400 & \\
\hline Total-Foreign & & & & & & & & & & & & & & & & & & & & & \\
\hline Totals. & 11.... & 819 & & 1,438 & 1,362 & 1,6 & 60 & 910 & 4,664 & 1,201 & 13,187 & 12, & 643 & & 2,501 & & \% & & 30,17 & 8,098 & 22.077 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{5}{*}{7. The number of students included in the above (A) supported with full tuition from this institution 10,C46 (1). Include students in institutions chargivg no tuition, but not those whose tuition comes from the U.S. Government or a noninstitutional source.}} & \multicolumn{5}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
e iationion al whn gro. \\
(B) performing some zegular teaching activity, but who do not receive their major support from a graduate teaching assistantship 2,798 \\
(2)
\end{tabular}}} & \multicolumn{4}{|l|}{\multirow[t]{5}{*}{(C) receiving support from more than one source, exclusive of self, loans, and family 2,465}} & \multicolumn{7}{|l|}{\multirow[t]{5}{*}{8. Number of "special" students enrolled fo graduate course work (full or part-time) in this dejartment why are not enrolled for an advanced degree 1,240}} & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
9. Part-time graduate students enrolled for advanced degrees 10. Numbers of faculty members:

Fall 1969 by level of study; do not include "special" students
 \(\begin{array}{llllllll}1,365 & \text { (1) } & 2,867 & \text { (2) } & 113 & \text { (3) } & 176 & \text { (4) } 4,521\end{array}\)
11. Number of Postdoctorals/Research Assceiates:
\(\begin{array}{ccccccc}\text { Total } & & \text { Teaching } & \text { Recent doctorals } \\ \text { A } & & \text { B } \\ 3,786 & \text { (1) } & & 287 & \text { (2) } & 2,923 & \text { (3) }\end{array}\)
}
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 Departmental Data Sheet
(Note: Before filling out please read the instruction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
1. Name and address of In \\
2. Department (or unit) co \\
3. Person in Department \\
4. H:s.asi degree offered in \\
5. Number of degrees gran \\
6. Major support sources (excluding tuition) of All Full-Time Graduate Students enrolled for Advanced Degrees (M.S. and Ph.D.) in the Fall 1969 (see item 6-instructions)
\end{tabular}}} & \begin{tabular}{l}
itutio \\
ered b \\
unit) \\
the F \\
d 7-1
\end{tabular} &  &  & \begin{tabular}{l}
al Gran \\
eet: 20 s form: heck on -30-69
\end{tabular} & \begin{tabular}{l}
ting In \\
Math \\
Name \\
y one) \\
BS \\
also
\end{tabular} & \begin{tabular}{l}
stituti matic \(\qquad\) ,160 \\
M \\
BA, etc.
\end{tabular} & \begin{tabular}{l}
ons Ap \\
al Scien \\
asters \\
(1); \\
al
\end{tabular} & \begin{tabular}{l}
lying \\
ces D \\
(1) \\
MS 2 \\
MA,
\end{tabular} & \begin{tabular}{l}
in the ctoral \\
991 \\
c. (Ex.
\end{tabular} & \[
\begin{aligned}
& 970 \mathrm{G} \\
& \text { Depart } \\
& \text { Title } \\
& \text { Ph. D } \\
& \text { 2); } \\
& \text { MAT, e }
\end{aligned}
\] & \begin{tabular}{l}
TP. \\
ments. \\
MAT \\
c.)
\end{tabular} & \begin{tabular}{l}
(2) \\
602 \\
MAT
\end{tabular} & & \begin{tabular}{l}
Ph.D. \\
PhD
\end{tabular} & \[
\begin{aligned}
& 1,071 \\
& , \mathrm{DSc}
\end{aligned}
\] & & & & & \\
\hline & & \multicolumn{10}{|l|}{.S. Government (excluding loans)} & \multicolumn{6}{|l|}{Other United States (non-U.S. Government)} & & \multicolumn{3}{|l|}{All sources} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
AEC \\
(a)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
De-partment Agriculture \\
(b)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Dement of fense \\
(c)
\end{tabular}} & NDEA & \[
\frac{\text { HEW }}{\substack{\text { PAS } \\ \text { (NIH) }}}
\] & \begin{tabular}{l}
HEW \\
Other
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
NASA \\
(g)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
NSF \\
(b)
\end{tabular}} & \multirow[t]{2}{*}{Other U.S. Govment} & \multirow[t]{2}{*}{U.S. Gov-ern-subtotal
\[
(a-i)
\]} & \multirow[t]{2}{*}{This Institution and and local Gov-ernment} & \multirow[t]{2}{*}{Private non-foundation} & \multirow[t]{2}{*}{\(\substack{\text { Indus- } \\ \text { try }}\)
\(\vdots\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Self, loans, family \\
(m)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Other \\
(n)
\end{tabular}} & \multirow[t]{2}{*}{Other U.S., subcotal
(6-n?} & \multirow[t]{2}{*}{Foreign sources} & \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
(b)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
First year \\
(g)
\end{tabular}} & \multirow[t]{2}{*}{Beyond first
\[
(r)
\]} \\
\hline TYPES OF S & PPORT & & & & (d) & (s) & (5) & & & & & & & & & & & & & & \\
\hline Fellowihips and traineeships. & \begin{tabular}{l}
1 United \\
States \\
2 Foreign..
\end{tabular} & & & & & & & & & & 1,966
28 & & 46 & & & 10 & & & 2,419
375 & 798
160 & 1,621
215 \\
\hline Graduate research assistantships. & \begin{tabular}{l}
3 United \\
SLatuō. \\
4 Foreign
\end{tabular} & & & 156
80 & & & & 9 & \[
305
\] & & 562
261 & 225 & & 10 & & 5 & 243 & & 805 & 135 & 670
276 \\
\hline Graduate teaching assistantsh.ps. & 5 United States. 6 Foreign_-. & & & & & & & & 36
2 & & & 3,828
223 & 1 & & & & 3,829
927 & & 3,869
\(\mathbf{9 2 9}\) & 1,277
269 & 2.592
660 \\
\hline Other than above & 7 United States. 8 Foreign. & & & 68 & & & & & 175
12 & 72
11 & 335
29 & 436
38 & 7 & & 1,702
338 & 78
19 & 2,165
406 & & 2,500 & 1,262
225 & 1,238
256 \\
\hline Total-United States & 9 United States. & & & & & & & & & & & 4,643 & 65 & 183 & 1,702 & 93 & 6,686 & & 9,593 & 3,472 & 6,121 \\
\hline Total--Foreign Totals. & \begin{tabular}{l}
10 Foreign \\
11
\end{tabular} & & 13 & & & 13 18 & & 88888 & & 57
202 & 3,223 & & 60
125 & 17
200 & 338
2,040 & 34
127 & 1,692
8,378 & & & 4,299 & 1,407 \\
\hline
\end{tabular}
7. The number of students included in the above table (item 6) who are: \(\quad\) 8. Number of "special" students enrolled for graduate course work (full or part-time) gradui department who are not enrolled for an advanced degree 1,103

\section*{10. Number of faculty members:}
\(\begin{array}{ccc}\text { FULL-TIME } & \text { DEPARTMENTAL FACULTY } & \text { PART-TIME } \\ \text { Total } & \text { Nonteaching } & \text { Graduate } \\ \text { Graduate }\end{array}\)
\begin{tabular}{cccccccc} 
Total & & Nonteaching & \multicolumn{3}{c}{ Gradater } & & \multicolumn{2}{c}{ D } \\
A & & B & & C \\
5,667 & (1) & 122 & (2) & 4,471 & (3) & 480 & (4) \\
\hline
\end{tabular}
Fall 1969 by level of study; do not include "special" students.
\begin{tabular}{cccc} 
U.S. CITIZENS & \multicolumn{2}{c}{ FOREIGN } & TOTAL \\
1st year & Beyond 1st & 1st year & Beyond 1 st
\end{tabular} \(\begin{gathered}\text { Tart-time }\end{gathered}\)
\begin{tabular}{lllllll}
1,318 & (1) & 2,198 & (2) & 55 & (3) \\
\hline
\end{tabular}
11. Number of Postdoctorals/Research Associates:
\begin{tabular}{cccc}
\(\begin{array}{c}\text { Total } \\
\text { A }\end{array}\) & \(\begin{array}{c}\text { Teaching } \\
\text { B }\end{array}\) & \multicolumn{2}{c}{ Recent doctorala } \\
247 & (1) & 54 & (2) \\
\hline
\end{tabular}


\footnotetext{
7. The number of students included in the above table (item 6) who are: \(\quad\) 8. Number of "special" students enrolled for graduate course work (full or part-time) in this department who are not enrolled
for an advanced degree 1,052 for an advanced degree 1,052
}

\footnotetext{
9. Part-time graduate students enrolled for advanced degrees 10. Numbers of faculty members:
fullmime departmental faculty part-time
 \(\underset{\text { for year }}{\text { FOREIGN }} \underset{\text { Beyond 1st }}{ } \quad \begin{gathered}\text { TOTAL } \\ \text { Part-time }\end{gathered}\)
\(847 \quad\) (1) \(\quad 2,166\) (2) \(57 \quad\) (3) \(\quad 152 \quad\) (4) \(\quad 3,222\)
11. Number of Postdoctorals/Research Associates:

Teaching Recent doctorals

Beyo
\[
3,214 \quad \text { (1) }
\]
}
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 (Note: Before filling Dout please read the instruct


\footnotetext{
9. Part-time graduate students enrolled for advanced degrees 10. Numbers of faculty members:

Fall 1969 by level of study; do not include 'special" studen
fulletime departmental faculty part-time
 \(\underset{\text { let year }}{\text { FOREIGN }}\) Beyond let \(\quad \underset{\text { Patal }}{\text { Pathe }}\)

509 (1) 1,289 (2) \(17 \quad\) (3) \(\quad 30 \quad\) (4) 1,845
11. Number of Postdoctorals/Research Associates:

}
national science foundation graduate traineeships for 1970 (Nose: Before filling out please read the instruction


\footnotetext{
8. Number of "special" s+udents enrolled for
7. The number of students included in the above table (item 6) who are:
} graduate course work (full or part-time) in this department who are not enrolle for an advanced degree 1,617

\footnotetext{
9. Part-time graduate students enrolled for advanced degrees \(\quad\) 10. Numbers of faculty members:

FULLTTME DEPARTMENTAL FACULTY PART-TIME


1969 by level of study; do not include "special" students.
u.s. CITIZENS FOREIGN TOTAL
U.S. CITIZENS
\begin{tabular}{llllllrl}
\multicolumn{2}{l}{ 1st year } & Beyond 1st & \multicolumn{2}{l}{ 1st year } & Beyond 1st & Part-time \\
3,055 & (1) & 4,943 & (2) & 190 & (3) & 433 & (4) \\
\hline
\end{tabular} 11. Number of Postdoctorals/Research Associates:

} \(\begin{array}{lll}\text { (A) supported with full tuition from this institu- } & \text { (B) performing some regular teaching }\end{array}\) activity, but who do not receeve
their major support from a graduate
teaching assistantahip 1,069

\section*{APPENDIX E}

\section*{Consolidated Departmental Summaries}
(Selected trend data for doctorate departments requested as part of announcement of NSF graduate traineeships for 1970-E 69-G-6)
PageTable
E-1. All sciences, 2,894 departments ..... 78
-2. Engineering, 665 departments ..... 79
E-3. Physical sciences, 509 department ..... 80
E-4. Mathematical sciences, 203 departments ..... 81
E-5. Life sciences, 874 departments ..... 82
E-6. Psychology, 141 departments ..... 83
E-7. Social sciences, 502 departments ..... 84

\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY
}

\author{
Table E-1.--All sciences, 2,894 departments
}

\section*{1.}
\(\qquad\) (Name of Institution)
2. \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:

4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline Total Full-Time & & (1) & 133,200 & 138,283 & 141,199 \\
\hline Full-Time Students U.S. Citizens & Teaching Assistants & (2) & 25,845 & 26,781 & 26,485 \\
\hline & Self, Loans and Family & (3) & 18,950 & 20,274 & 21,175 \\
\hline Total Part-Time & & (4) & 40,259 & 41,605 & 43,646 \\
\hline
\end{tabular}

Corresponding Item on
DDS
Item Column Row
\begin{tabular}{lll}
6 & \(p\) & 9 \\
6 & \(p\) & 5 \\
6 & \(m\) & 7 \\
\hline \multicolumn{2}{l}{\(9-\) sum } &
\end{tabular}
5. Faculty and Postdoctoral Trends:

Total Faculty
Graduate Faculty
Postdoctorals
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline (1) & 48,354 & 51,923 & 54,549 \\
\hline (2) & 39,078 & 42,674 & 45,687 \\
\hline (3) & 7,140 & 7,720 & 8,517 \\
\hline
\end{tabular}
(2)
(3)
-

Corresponding Item on DDS

10A 10 C 11A
6. Person completing this form: \(\qquad\) Date: \(\qquad\) (Signature)

Title: \(\qquad\)

\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SIJMMARY
}

Table E-2.--Engineering, 665 departments
1. \(\qquad\) 2. \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:

4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline \multirow[t]{3}{*}{\[
\frac{\text { Total Full-Time }}{\text { Full-Time Students }}
\]
U.S. Citizens} & & (1) & 29,946 & 30,366 & 30,820 \\
\hline & \begin{tabular}{l}
Teaching \\
Assistants
\end{tabular} & (2) & 2,785 & 2,743 & 2,456 \\
\hline & Self, Loans and Family & (3) & 3,315 & 3,258 & 3,050 \\
\hline Total Part-Time & & (4) & 21,088 & 21,199 & 21,747 \\
\hline
\end{tabular}
5. Faculty and Postdoctoral Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} & Corresponding Item on DDS \\
\hline Total Faculty & (1) & 10,540 & 11,155 & 11,562 & 10A \\
\hline Graduate Faculty & (2) & 8,395 & 9,034 & 9,665 & 10C \\
\hline Postdoctorals & (3) & 617 & 690 & 781 & 11A \\
\hline
\end{tabular}
6. Person completing this form: \(\qquad\) Date: \(\qquad\)
\(\qquad\) Title: \(\qquad\)

Part of Announcement E-69-G-6

Pat of Ansuncement

\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY
}

\author{
Table E-3.--Physical sciences, 509 departments
}
1. \(\qquad\) 2. \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs frorn that previously submitted in this program, please explain.
2. Degree Productivity Trends:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Corresponding Item on 1970 DDS}} \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& \text { Jun e } \\
& 1964
\end{aligned}
\] \\
(a)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
June 1965 \\
(b)
\end{tabular}} & June & June & June & June & & \\
\hline & & & & 1966 & 1967 & 1968 & 1969 & & \\
\hline & & & & (c) & (d) & (e) & (f). & & \\
\hline BS (also BA, etc.) & (1) & 7,496 & 7,851 & 7,545 & 7,805 & 8,644 & 9,256 & 5-1 & \\
\hline MS (also MA, not MAT) & (2) & 3,329 & 3,537 & 3,660 & 3,796 & 3,869 & 3,948 & 5-1 & \\
\hline MAT, etc. & (3) & 199 & 226 & 212 & 321 & 316 & 326 & 5-3 & \\
\hline PhD (also DSc, etc.) & (4) & 2,367 & 2,676 & 2,947 & 3,327 & 3,495 & 3,704 & 5- & \\
\hline
\end{tabular}
4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline Total Full-Time & & (1) & 30,295 & 30,916 & 30,175 \\
\hline \multirow[t]{2}{*}{Full-Time Students U.S. Citizens} & Teaching Assistants & (2) & 8,102 & 8,316 & 7,967 \\
\hline & Self, Loans and Family & (3) & 1,870 & 2,091 & 2,018 \\
\hline Total Part-Time & & (4) & 4,261 & 4,210 & 4,521 \\
\hline
\end{tabular}

Corresponding Item on DDS Item Column Row
\begin{tabular}{lll}
6 & \(p\) & 9 \\
6 & \(p\) & 5 \\
6 & \(m\) & 7 \\
\hline \(9-\) sum &
\end{tabular}
5. Faculty and Postdoctoral Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} & Corresponding Item on DDS \\
\hline Total Faculty & (1) & 9,558 & 10,135 & 10,583 & 10A \\
\hline Graduate Faculty & (2) & 8,303 & 8,874 & 9, +14 & 10C \\
\hline Postdoctorals & (3) & 3,407 & 3,615 & 3.786 & 11A \\
\hline
\end{tabular}
6. Person completing this form: \(\qquad\) Date: \(\qquad\) \(\longrightarrow\) (Name typed) Title:

\section*{NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY}

Table E-4.--Mathematical sciences, 203 departments
1. \(\qquad\) (Name of Institution) 2. \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:

4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline Total Full-Time & & (1) & 11,346 & 11,700 & 11,727 \\
\hline \multirow[t]{2}{*}{Full-Time Students U.S. Citizens} & Teaching Assistants & (2) & 3,900 & 4,048 & 3,869 \\
\hline & Self, Loans and Family & (3) & 1,828 & 1,689 & 1,702 \\
\hline Total Part-Time & & (4) & 3,588 & 3,646 & 3,690 \\
\hline
\end{tabular}

Corresponding Item on DDS
Item Column Row

5. Faculty and Postdoctoral Trends:

Total Faculty Graduate Faculty Postdoctorals
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline (1) & 5,169 & 5,537 & 5.667 \\
\hline (2) & 3,804 & 4,268 & 4,471 \\
\hline (3) & 225 & 236 & 247 \\
\hline
\end{tabular}

Corresponding Item on DDS
6. Person completing this form: \(\qquad\) Date: \(\qquad\)

Title: \(\qquad\)

\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY
}

\author{
Table E-5.--Life sciences, 874 departments
}
1. \(\qquad\) 2.
(Name of Department or Unit)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & ------- & & M & Period En & ng & -------- & \multirow[t]{2}{*}{Corresponding Item on 1970 DDS} \\
\hline & & Jun e
1964
(a) & June
1965
(b) & June
1966
(c) & June
1967
(d) & June
1968
(e) & June
1969
(f) & \\
\hline BS (also BA, etc.) & (1) & 10,182 & 11,748 & 12,285 & 13,572 & 15,299 & 16,949 & 5-1 \\
\hline MS (also MA, not MAT) & (2) & 2,836 & 3,176 & 3,583 & 4,068 & 4,312 & 4,387 & 5-2 \\
\hline MAT, etc. & (3) & 245 & 308 & 293 & 295 & 360 & 318 & 5-3 \\
\hline PhD (also DSc., etc.) & (4) & 1,735 & 1,934 & 2,107 & 2,442 & 2,802 & 3,154 & 5-4 \\
\hline
\end{tabular}
4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Total Full-Time \\
Full-Time Students U.S. Citizens
\end{tabular}} & (1) & 25,456 & 26,597 & 27,588 \\
\hline & \begin{tabular}{l}
Teaching \\
Assistants
\end{tabular} & 5,064 & 5,214 & 5,339 \\
\hline & Self, Loans and Family & 3,021 & 3,296 & 3,519 \\
\hline Total Part-Time & (4) & 2,708 & 3,069 & 3,222 \\
\hline
\end{tabular}

Corresponding ltem on DDS
\begin{tabular}{lll}
6 & \(p\) & 9 \\
6 & \(p\) & 5 \\
6 & \(m\) & 7 \\
\hline \multicolumn{2}{l}{\(9-\) sum }
\end{tabular}
5. Faculty and Postdoctoral Treids:

Corresponding Item on

Fall 1967
(a)

Total Faculty Graduate: Faculty Postdoctorals
(3)
\begin{tabular}{l|c|c|c} 
& \multicolumn{1}{c}{ Fall 1967 } & \multicolumn{1}{c}{ Fall 1968 } & (a) \\
& (b) & (all 1969 \\
(c)
\end{tabular} DDS
6. Person completing this form: \(\qquad\) Date: \(\qquad\)
\(\qquad\)

\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY
}

\author{
Table E-6.--Psychology, 141 departments
}
1.
(Name of Institution)
2 \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:

4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
\[
\text { F. } 111967
\] \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline \multirow[t]{3}{*}{Total Full-Time: Full-Time Students U.S. Citizens} & (1) & 10,491 & 11,317 & 11,918 \\
\hline & \begin{tabular}{l}
Teaching \\
Assistants
\end{tabular} & 1,891 & 2,033 & 2,133 \\
\hline & Self, Loans and Family & 1,759 & 1,986 & 2,081 \\
\hline Total Part-Time & (4) & 1,367 & 1,551 & 1,845 \\
\hline
\end{tabular}
5. Faculty and Postdoctoral Trends:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Fall 1967 \\
(a)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} & Corresponding Item on DDS \\
\hline Total Faculty & (1) & 2,815 & 3,081 & 3.317 & 10A \\
\hline Graduate Faculty & (2) & 2,385 & 2,707 & 2,902 & 10C \\
\hline Postdoctorals & (3) & 170 & 214 & 231 & 11A \\
\hline
\end{tabular}
6. Person completing this form: \(\qquad\) Date: \(\qquad\)


\title{
NATIONAL SCIENCE FOUNDATION GRADUATE TRAINEESHIPS FOR 1970 DEPARTMENTAL SUMMARY
}

Table E-7.--Social sciences, 502 departments
1.
. \(\qquad\) 2. \(\qquad\)
This sheet should be completed in accordance with the relevant instructions for the corresponding items on the Departmental Data Sheet (DDS), NSF Form 345. Data for 1969 should be identical with that entered on the 1970 DDS. If any information supplied on this form differs from that previously submitted in this program, please explain.
2. Degree Productivity Trends:

4. Enrollment Trends:
\begin{tabular}{|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Fall 1967 \\
(9)
\end{tabular} & \begin{tabular}{l}
Fall 1968 \\
(b)
\end{tabular} & \begin{tabular}{l}
Fall 1969 \\
(c)
\end{tabular} \\
\hline Total Full-Time & (1) & 25,666 & 27,387 & 28,971 \\
\hline \multirow[t]{2}{*}{Full-Time Students U.S. Citizens} & \begin{tabular}{l}
Teaching \\
Assistants
\end{tabular} & 4,103 & 4,427 & 4,721 \\
\hline & Self, Loar:s and Family & 7,157 & 7,954 & 8,805 \\
\hline Total Part-Time & (4) & 7,247 & 7,930 & 8,621 \\
\hline
\end{tabular}
5. Faculty and Postdoctoral Trends:

Total Faculty Graduate Faculty Postdoctorals

Corresponding Item on
\begin{tabular}{ccc}
\multicolumn{3}{c}{ DDS } \\
Item & Column & Row \\
6 & p & 9 \\
6 & p & 5 \\
6 & m & 7 \\
\hline \multicolumn{2}{l}{\(9-\) sum }
\end{tabular}

Corresponding Item on DDS

10A
10C
11A
6. Person completing this form:
(Signature)```

