ED 048 634 EM 008 881
AUTHOK Friend, Jamesine

TITLE INSTEUCT Coders' Manual.

INSTITUTION Stanfcrd Uriv., Calif. Inst. for Mathematical

SPONS AGENCY

DCCUMENT RESUHE

Studies 1in Social Science.

Naticnal Aeronautics and Sgace Administration,
Washington, [.C.; Cttice ot Education (DHEW),
Washingtcn, D.C.

FEFCRT NO TR=-172

PUE LATE 1 May 71

GRANT CEG-0-70-4797 (607)

NOTE 111p.; Psycholcgy Series

ELRS PFRICE EDRS Price MF-35C.65 HC-$6.58

DESCRIFTIOES *Computer Assisted Instruction, Curriculum
Development, *Manuals, Programing, *Frograming
Languages

IDENTIFIERS *INSTRUCT (Coding language)

AESTRACT

The coding language INSTRUCT is a high-level

programing langquage designed fcr fprograning ccmputer-assisted

instruction lessons.
a "lesscn processor"

computer,

As it is presently implemented on the PDP-10
transfcrms the INSTRUCTI lessons into

numeric code that can be understood by a teaching prograuw called

INST.

INST ccrntrcls the interaction ketween the student and the

computer at the time the student i=s taking a programed lesson. The

main steps in preparing an INSTRUCT lesson are:

coding the lesson,

assemkling the lesscn, correcting assembly errors, reassembling,

loading, and debugging. This manual is designed both as an
instructional ranual for beginning ccders and as a reference manual
fcr the INSTRUCT coding langquade. It provides an overview of the
language, a definiticn of the INSTRUCT ccmmands, directions for
pFrocessing and debugging INSTERUCT lessons, and instructions fcr
advenced coding techniques which exrand the routines available from
the INST rrogram. (JY)

a

ED04963 4

INSTRUCT CODERS' MANUAL
- BY

JAMESINE FRIEND

TECHNICAL REPORT 172
MAY 1, 1971

PSYCHOLOGY SERIES

 INSTITUTE FOR MATHEMATICAL 'S'TUDIES IN THE SOCIAL SClENCE_S
STANFORD UNIVERSITY " |
STANFORD, ‘CALIFORNIA

T s 88

Q

ERIC

Aruitoxt provided by Eic:

50
51

52
53
54
55
56
57
58
59
60
6l

63

64
65

66

67
68

69
70
7l

73
74
75
76
77
78
80

8i
82

83
84
85
86

87
88

89
90

9

92
93

95

TECHNICAL REPORTS
PSYCHOLOGY SERIES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses; If pu!;ilshed title Is different from title of Technical Report,
this ls also shown In parentheses.)

(For reports no. .~ 44, see Technical Report no. 125,)

R. C. Atkinson and R, C, Calfee. Mathematical learning theory. January 2, 1963, (in 8, B. Wolman (Ed.), Sclentific Psycholégx. lew York:
Baslc Books, Inc., 1965, Pp. 254-275))

P. Suppes, E. Crothers, and R, Welr. Application of mathematical learning Ihecry and [inguistic analysis to vowel phonema matchins in
Russtan words. Oecember 28, 1962.

R. C. Atkinson, R, Calfee, G. Sommer, W, Jeffrey and R, Shoemaker, A test of three models for stimulus compounding with children,
January 29, 1963. (. exp. Psychol,, 1964, 67, 52-58)

E. Crothers. General Mtkov models fnr learning with Inter-trial forgetting. April 8, 1963,

J. L. Myers and R, C, Atkinson. Cholce behavior and reward structure. May 24, 1963. (Journal math. Psychol., 1964, I70-203)

R. E. Roblison, A set-theoretical approach to emplrical meaningfulness of measurcment statements . June 10, 1963.

E. Crothers, R. Weir and P, Palmer. The role of transcription In the learning of the orthographic representations of Russian sounds. June 17,. 1963,

P. Suppes. Problems of ptimization In tearning a [ist of simple items. July 22, 1963. (In Maynard W. Shetly, Il and Glenn L. Bryan (Eds.),
Human Judgments and Optimality. New York: Wiley. 1964, Pp. li€-126)

R. C, Atkinson and E. J. Crotiers. Theoretical note- all-or-none learning and intertrial forgetting, July 24, 1963,

R. C. Calfee. Long-term behavior of rats under probabilistic relnforcement schedules. October [, 1963.

R. C. Atkinson and E. J, Crothers. Tests of acquisition and retention, axioms for paired-associate learning. October 25, 1963. (A comparison
of paired-associate leaming models having different acquisition and retention axioms, J. math. Psychot., 1964, 1, 285-315)

W. J. McGIlf and J. Gibbon,. The Jeneral~gamma distributlon and recction times. November 20, 963, (J. math. Psychol., [965, 2, I-18) -

M. F. Norman. Incremental learning on random trials. Oecember 9, 1963. (. math. Psychol., 1964, 1, 336-35D

P. Suppes. The develop of mathamatical pts in chlidren. February 25 1964. (On the behavloral foundatlons of mathamatical concepts.
Monographs of the Soclety for R h in Child Devel t, 1965, 30, 60-96)

P. Suppes. Mnu\emaucnl concept formation In children. April 10, 1964. (Amer. Pszchologlst, 1966, 21, 139-150)

R. C. Calfes, R, C, Atkinson, and T. Shelton, Jr. Mathematlcal model;.!ng(erbaj learning, August 21, 1964, (In N. Wierier and J. P. Schoda
(Eds.), Cybernetics of the Nervous System: Progress In Braln Reum:h Amsterdam,” The' Ne!hﬂlagd: Elsevier Publishing Co., 1965,
Pp. 333-349)

L. Keller, M., Cole, C. J, Burke, and W, K. Estes. Paired Tate learning with diffi fal rewards. August 20, 1964, (Reward and
Information values of trial ou in patred fearn! (Psychol. Monow., 1965, 79, 1-21) ’

M.'F. Norman. A probabilistic mede! for free-responding. Oecember [4,1964.

W. K. Estes and H. A. Taylor. Visual detection In relation to display size and redundancy of critical elements, January 25,1965, Revised
7-1-65. (Perception and Psychophysics, 1966, I, 9-16)

P. Suppes and J. Qonlo. Foundlllons of :llmulu:-nmpllng theory for conunuous-ume processes, Februnry 9, 1965, (J. math, Pszcho’., 1967,
4, 202-225) '

R. C. Atkinson and R. A, Kinchia. A learning model for forced-cholce detection experiments. February 10, 1965, (Br. J, math stat, Psychol.,
1965, 18, 184-206)

E. J. Crothers. Presentation cedess for [tems from different categories. March 10, 1965.

P, Suppes, G. Groen, and M, Schhg-Rey Some models for response latency In palred-associates learning, May 5, l965. (J. ‘math. Psychol.,
1966, 3, 99-128).

M. V. Levlne. The generalization function In the probability learning experiment. June 3, 1965,

0. Hansen and T. S. Rodgers. An exploration of psycholingulstic units in initlal reading. July 6, 1965.

B. C. Amold. A correlated urn-scheme for a continuum of responses. July 20, 1965. .

C. lzaws and W. K. Estes. Relnforcement-test sequences in paired-associate learning. August |, 1965. (Psychol. Reports, 1966, 18, 879-919)

" S. L. Blehart. Pattern discrimination learning with Rheeus monkeys. September!, (965, (Ps!'chol. Peports, 1966, 19, 311-324) -

J. L, Philtips and R, C. An_(lmon. The e :ts of display size on short-term memory. August 31, 1965.
R. C. Atkinson and R, M, Shiffrin. Mathematical models for memory and lelrnlng. September 20, 1965,
P. Suppes. The psychologlcal foundations of mathematics. October 25, 1965. (Colloques Intenationaux du Centre National de Ia Recherche

Sclantifique. Editlons du Centre Natlonal de Ia Recherche Sclentifique. Parls: { s67. Pp. 213-242)
P, Suppes. Computer-assisted Instruction In the schools: potentialities, problems, prospects.” October 29, 1965.

R, A. Kinchia, J. Townsend, J, Yeilott, Jr., and R. C. Atkinson. Influence of correlated visual cues on auditory signal detection,
November 2, [965. (Perception and Psychophysics, 1966, |, 67-73)

P. Suppes, M. Jerman, and G. Groen, Arithmetic drllls and review on a based teletype. N ber 5, 1965, (Arithmetic Teacher,
April 1966, 303-309, '

P. Suppes and L., Hyman. Concept Ieamlng with non=verbal geometrical stimuli. Nowember 15, {968.

" P, Holland. A variation on the minimum chi-square tast, (. math, Psychol., 1967, 3, 377-413),

P, Suppes. Accel d pA inel y-sthool math ics == the second year. Novemher 22, (965, {Psycholoyy in the Schools, 1966,
3 294-307)

B, Lmnzen and F. Binford. Loglc as a dialoglcal game. November 29, 1965.

L. Keller, W, J. THomson, J, R. Tweedy, and R. C. Atkinson. The effects of reinforcement Interval on the acqu!sition of palred-nssoclate
responses. Omnbeflo, 1965, (J. exp. Ps xcho ., 1967, 73, 268-277

J. 1. Yellott, Jr. " Some effects on noncomlngont success in human probnblllty learning. Oecember 15, 1965.

P. Suppes and G. Groan. Some counting models for flrst-grade performance data on slmple addition facts. January (4, (966, (InJ. M. Scandura
(Ed.), Research ln Mathematics Education. Washington, 0. C.: NCTM, 1967. Pp. 35-43,

P. Suppes. Tnformation ‘processing and cholce behavior, January 31, 1966,

G. Groen and R. C, Atkinson. Mode!s for optimizing the learning peocess. February I1, 1966, (Psychol, lullenn, 1966, 66, 309-320)

R. C. Alkinson and 0. Hansen. Computer-assisted instruction in initlal reading: Stanford project. March |7 1966, (Reudlug Research
" Quaiterty, 1966, 2, 5-25))

p. Suppes. Probabifistic infi and the nt of total evid March 23, 1966. fIn J. Hintikka and P, Suppes (Eds.), Aspects of
AInductive Loglc. Amsterdam: North-Holland Publishing Co., l966. Pp. 49-65,

P. Suppes, The axfomatic method In high=school mathematics. Apell 2, 1966, (The Role of Axiomatics and Problem Solving in Mathematics.
The Conference Board of the Mathematical Sclences, Washington, D, C, Ginn and CO., 1966, Pp. 69-76. .

{Continued on fnside back cover)

2

ST

L.

[
’ B

IW PRt ‘

if

ED049634

U.S. DEPARTMENT OF HEALTH. EDUCATION
& WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRNDUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

INSTRUCT CODERS' MANUAL

by

Jamesine Friend

TECHNICAL REPORT 172
May 1, 1971

PSYCHOLOGY SERIES

Réproduction in Whole or in Part is Permitted for

any Purpose of the United States Gecvernment

Copyright 1969, 1970 by the Board of Trustees of

the Leland Stanford Junior University

This research has been supported by National Aeronautics
and Space Administration Grant NGR-05-020-24k and
U. S. Office of Education Grant OEG-0-70-4797(607)

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Bt < |

L e |

¥ rsmcam i

IT.

III.

Iv.

Introduection . « . « + « « o« & . .

The Coding Language » . o .
A. TFormat of Commands

B. Classification and Order of Commands . . o

C. Examples of Coding
D. Problem Statement Commands

E. Analysis Commands

F. Action Commands
G. Miscellaneous Commands . . « « o » o« . o o
H. Lesson © ore Counters and X Problem Statement Commands
J. Top-level Commands and Oxrder of Execution of Commands
K. Summary of Commands .« . o « . & @ . .
The PDP-10 Implementation . . . o « o & .
A, The Lesson Processor = - « « o a o & . o o
B. INST: The Teaching Program . . . o . .

C. Limitations Imposed by the Implementation o s
How to Process a Lesson =« s ¢ o o o o o . . o
Debugging a Lesson . « « « « o o & o . . .

A. Location of Lessons and Coding

TABLE OF CONTENTS

Advanced Coding Techniques . « « « &

A.

Changing the Standard Messages

Page

10
20
27
31
38
L6
51

>
61
62
63
6L
66

73
76
78

B. Macros Without Arguments . + + « & + « &« « s o o & o & 80
C. Macros with Arguments . . « + « « v & & & &« o o o o & 83
D. Macros Using IFIDN and IFDIF + &+ ¢ « o & o o o o o = 87
E, ©Storage and Processing of Macros « « « o o o o ¢« &+ o . 90
F. Other Notes for the Advanced Coder . . . « + &+ o &+ « 91
VII. Course TYyDPES o v 4 o v o o o o o o o o o o o o o s o o o 93
A, Control CharaCters « « « o« o o s o o o o o o & o o o gh
B. Standard MESSAEES « & « o + + s o 4 0 4 o4 4 4 e 4 o4 s 96

C. Other Course Type VariableS « ¢ « o o o ¢ & o o « « & 99

Tndex e e e s e e e e e e e e e e s e et e e e e e e e e e 101

ii

IV

I. INTRODUCTION

This manual is designed both as an instructional manual for beginning
coders and as a reference manual of the coding language, INSTRUCT.

Part I (pp. 1 to 3) is a brief introduction; a better introduction
would be to sign on as a student for one of ihe programming courses
(Introduction to Programming: AID, or Introduction to Programming: BASIC)
and to take a few lessons.

Part IT is devoted to a description of the coding language. The
first few sections (Seciions IIA to IIC, mp. L4 to 26) give an overall
picture of the coding language and should be read quite thoroughly, per-
haps even read twice. The remainder of Part II (Sections IID to IIK,
pp. 27 to 60) is a reference manual of the coding languesge; on first
reading, this section should be skimmed rather than read thoroughly.

Part IIT discusses the major programs necessary to implement the
teaching system and also lists the limitations of the current implemen-
tation on such things as number of lessons, number of exercises per
lesson, and length of problems. The beginner need not concern himself
too much with the details in Part III, since they are not likely to have
immediate effect on his coding efforts. Therefore, on first reading,
skim Part III and return to it later when guestions arise.

Part IV, of utmost importance to the new coder, describes in detail
exactly how to code a lesson, what buttons to push, and what utility
programs to use.

Part V, the operator's instructions, must be thoroughly understood
by everyone (machine operators, coders, writers, etc.) working on the

project.

Part VI, the section on advanced coding techniques, is best read

after considerable coding experience.

The ccding language INSTRUCT is a high-level programming language
designed for programming computer-assisted instruction. Instructions
that must be given to the computer about how to present a lesson to
students include:

1. what exercises to type and when to wait for an answer;

2. how to analyze the student's answer to determine whether or

not it is correct;

3. how to respond to the different possible answers a student may

glve;

4, wkat exercise to present next.

These instructions to the computer must be written in a language the
computer understands, and INSTRUCT is one such programming language.
After the instructions are written, they must be entered into computer
memory (see Part IV) where they will be stored until some student needs
them. The student takes the lesson by using a computer program called
INST which interprets the language INSTRUCT into machine language so
that the computer can operate. The lessons are grouped into "courses"
in computer storage.

Each course consists of a number of strands and contains a number
of lessons. Fach lesson consists of a series of exercises, written in
the language INSTRUCT. In addition to interpreting the coded lessons,
the program INST also keeps track of which students are enrolled for
which courses, how far each student has progressed, and how well ne is

doing.

A number of optional features included in the INST program allow
the student to request the correct answer to an exercise or allow him
to do exercises in any order he wishes. Which optional features are

' and each course is identificd as

used depends upon the "course type,'
one of six possible types. Some course types give the studen® control
over his own sequence of exercises, others allow him to request addi .
tional instruction before he responds to an exercise. Some permit an
unlimited number of trials on each exercise, while still others restrict
the number of allowable trials, etc. In addition to the content of
certain "standard messages,” the course type determines what characters

are designated as "student control keys."

For example, one student
control key is the "tell" key; the student types the "tell" key to get
an answer. In other instances, the student types the CTRL key and the
letter G simultaneously or he types a slash (/) to get the answer. The
end of a respcnse may also be indicated by typing an "enter" character;
in one couvse type the "enter" character may be the RETURN key; in
another it may be a space or a period.

A complete list of student control characters, standard messages,

etc., associated with each course type is given in Part VII.

IT, TnE CODING LANGUAGE

A. Format of Commands

A lesson is coded by using a series of commands or instructions
that cause the computer to present problems, via teletype, to students.
For example, commands cause a problem statement to be typed; commands
cause student answers to be analyzed (checked for correctness); commands
cause specified messages to be typed if the student is correct, etc.

Each command must begin with an "op code" followed by a space. Op
codes, the vocabulary of the coding language, are mnemonic words, such
as EXER, HINT, and EQ, and serve to specify the kind of command. EXER,
for example, is the op code for a command that causes an exercise to be
displayed. Of course, the text for the exercise must also be supplied
by the coder, so an EXER op code is followed by a text string containing
the text of the prublem. The text must be enclosed in text delimiters,
such as + or /. These text delimiters serve as "guotation marks"--in
fact, quotation marks may be used as text delimiters.

EXER + WHAT I3 THE SUM OF 15 AND 127 +
The above command causes the computer to type the following on the
student's teletype:

WHAT IS THE SUM OF 15 AND 129
and then to wait for a response from the student.

As another example, an EQ command is used to find out if the stu-
dent's answer is equal to a certain number. The command

EQ /3.1416/
causes the teaching program to check the student response, which must

be equal to 3.1416 in order to be correct. ;
L

The correct answer command
CA "GOOD THINKING."
cavses the teaching program to type
GOOD THINKING.
on the student's teletype if he makes a correct answer.
All commands must follow these rules:
1. FEach command must begin on a new line, although the command is
not limited to a single line.
Note: Blank lines are allowed between commands and should be
used wherever necessary to improve the readability of the coding.
2. The first word in the command is an op code (op codes are listed
in Section IIK, p. 57).

3. The op code must be followed by a space to separate it from the

rest of the command.

4, The first text delimiter, if there is any text, must be on the

first line of the command, although the text itself may start
on any line.

All commands in the coding language have the same form. The first
word of eaci. command is an op code that defines the kind of command.
Following the ép code are "arguments" that serve to modify the op code
by adding further specifications. !Ihe op code is separated from the
following arguments by a space. Most op codes require only one argument,
usually a text string. For example, in the command,

CA /VERY GOOL/
the text string /VERY GOOD/ is the argument for the CA op code. For

many op codes (CA, WA, and other action op codes) the argument is

40

optional. For some op codes (YES, NO, TRUE, FALSE) no arguments are
needed. Some op codes, such as BRCA, require more than one argument;

the first argument for a BRCA is a strand identifier, the second a lesson
number, the third a problem number, and the fourth an optional text
string. The exact form and number of arguments for each op code are
given in the following pages (Sections IID to IIG). If an op code re-
gquires more than one argument, the arguments must be separated by commas.

Text strings must always be contained between text delimiters. Text
delimiters may be any characters not contained in the text string. For
example, one may use quotation marks around a text string, if there are
no quotation marks in the text itself:

HINT "TO FIND INTEREST, USE THE FORMULA . =P X R X T"
Usually special characters like + or % or / are easier to read than
letters or numbers or standard punctuation marks. A few special charac-
ters like < > (: , < cannot t: used as text delimiters, for
various obscure reasons. Letters within text strings may be typed in
either upper or lower case, since the lesson processor translates all
letters to upper case.

Text strings are handled by the computer in one of two ways, de-
pending upon the kind of op code that has the text string as an argument.
Sonie text strings specify what is typed for the student (if the op code
is EXER, HINT, CA, etc.) and others specify what should be typed by the
student (if the op vode is EXACT, EQ, etc.).

Text strings used as arguments for the problem statement commands
and the action commands specify the text typed on the teletype by the

computer. In such text strings, the coder should pay close attention

6

1 —y

.

to spacing and carriage returns, since the text typed on the teletype
reflects the exact text put into the text string by the coder. In par-
ticular, if you want the type bar on the teletype positioned at the
beginning of a new line before the message is typed, the first character
in the text string should be a carriazge return, i.e., start your text on
the line after the op code; otherwise, the teletype will start typing
from whatever position it was left, which may result in the message
running over the end of a line and being unreadable. Also, if you want
an empty line or two after the message, end the text string with a few
carriage returns.

There is one exception to the rule about beginning a text string
with a carriage return. Before an NEXER text string is sent to a tele-
type, three carriage returns and the problem number are displayed
automatically on the teletype. Hence, the coder can assume that the
NEXER text is sufficiently set off from the preceding text. (¥or more
about problem numbering, see Section ITH, p.-Sh,)

A few examples of recommended ways to code text strings for teletype
displays follow:

NEXER /NAME A STATE EAST OF THE MISSISSIPPI AND WEST OF THE. :

ALLEGHENTES.

/

HINT /
HINT: WHICH STATE IS CHICAGO IN?

/

EXACT /ILLINOIS/
cA /
GOOD/

WA /
WRONG. TRY AGATIN

/

After you have coded one lesson and tried it on a teletype, you will be
in a better position to decide where to put spaces and carriage returns.
An additional cautionary word about the characters used in text

strings. Although any character, except the character you are using as

a text delimiter, may be used in a text string, quite a few characters

on the Philco or IMLAC keyboards have no equivalents on the teletypes.

If an untranslatable character is used in a text string, it is translated
into a guestion mark (?) and may cause your text to look peculiar.

Also, a comment about upper-case and lower-case letters. Since there
are no lower-case letters on Model-33 or 35 teletypes, both lower-case
and upper-case letters are translated to upper-case letters. In other
words, you may type your text in either capitals or small letters as you
prefer. In fact, capital and lower-case letters are equivalent every-
where in the coding, so op code names, etc., may also be typed in lower
case if desired. (Upper case is used for op codes throughout this
manual only for the purpose of making examples more readable.) The form

exer /what is the sum of 1 and 22/
is quite acceptable.

Not all text strings used in the coding specify text to be typed on
a teletype by the computer. Text strings may also be used to specify
what should be typed by the student. The text strings used as arguments
for the analysis op codes (EXACT, MC, EQ, etc.) are all of this kind.

In such text-strings, do not use unnecessary spaces or carriage returns,

.....
| SRy

for though they are not prohibited, the computer must sort out and dis-
card extra spaces and carriage returns before it checks the student answer,
Here are some examples of recommended ways to code text strings for

analysis commands:

EXACT /ELEPHANT/
MC /Ac/

EQ /3.1418/

KW /RICHARD NIXON/

Note that in the last example, the space befween the two words

"Richard" and "Nixon" is a necessary part of the text string and should
not be omitted.

Caution: Text strings for MC, NOIMC, EQ, NOTEQ, KW, NOTKW, EXACT,
and NOTEXACT must be on the same line as the op code; these commands

must not use mecre than one line,

>l

14

B. Classification and Order of Commands

The commands for problem coding are of four kinds:
Problem Statement Commands (p. 10)
Analysis Commands (pp. 10-13)
Action Commands (pp. 13-16)
Miscellaneous Commands (pp. 16-18)

1. Problem Statement Commands

The problem statement commands cause either a display of the problem
statement or 2 display of additional instruction or information about the
problem and must be the first command in a problem. The op codes for
problem statement commands are EXER, ILEXER, NEXER and SEXER.

EXER causes the coded text to be typed and then causes the computer
to wait for a student response. For example, the cominand

EXER +
HAVE YOU EVER STUDIED PROGRAMMING BEFORE? +

causes the computer to type
HAVE YOU EVER STUDIED PROGRAMMING EBEFORE?
and then to wait for a student response.
LEXER, NEXER and SEXER are all variants of the EXER command; they
all cause a display of text and a pause for student response. The dif-
ferences between these commands are described in Section IID, p. 27.

2. Analysis Commands

Analysis conmands cause a student's response to be analyzed to

determine whether it is correct. The analysis op codes are

10

3y

Sl 3
f

s m—— et it baliapited Sttt ek
. . . \ '

EXACT NOTEXACT

MC NOTMC (MC means "multiple choice")
EQ NOTEQ (EQ means "equal number")
KW NOTKW (KW means "key word")

YES NO

TRUE FALSE

Some examples of analysis commands are:

(1)

(2)

(3)

(4)

(5)

EXACT /COMPUTER/

(The student's response is marked correct if he types the word
"computer" and marked wrong otherwise. The student response
must match the coded answer exactly, character by character,
gpace by space.)

KW /COMPUTER/

"

(The student.'s response must contain the key word computer.")
TRUE

(The student's response must be either the word "true" or the
letter "t.")

MC /BDE

(MC is used for multiple-choice problems. The student's response
must be a 1list of the letters B, D, and E, in any order.)
NOTEXACT /ELEPHANT/

(The student's response is wrong if it is the word "elephant."
Any other response, such as “happy,” is marked correct. This
analysis command would be used in a problem such as "TYPE

ANYTHING EXCEPT 'ELEPHANT'."! Less trivial uses of the NOT

commands will be discussed later.)

11

16

The analysis commands work something like this: A counter in the
computer called SCORE is capable of storing either positive or negative
numbers. As soon as the student's response is checked for correctness,
a number is put into the counter SCORE; if the student's response is
correct, a positive number (usually +1) is put into SCORE, and if the
respopse is incorrect a negative number (usually -1) is put into SCORE.
This counter is later used by the computer to decide whether to type a
"correct" message or a "wrong" message for the student.

Generally, the analysis commands ciause the student's response to
be checked and an appropriate number to be put into SCORE (this is all

done "behind the scenes,"

i.e., the student sees no action whatsoever).
However, some analysis commands also check the student's response to see
if it is in the correct "form" and type an error message if it is not.
For example, if the equal command
EQ /5/
is used in the coding, the correct response is the number 5. If the
student types "5," SCORE is set to +1. If the student types "4," SCORE
is set to -1. However, if the student types "five," the answer is not
in the correct form, so an immediate error message is typed for the
student:
WRONG, PLEASE TYPE A DECIMAL NUMBER TO ANSWER THIS PROBLEM.
The commands that send error messages if the student makes an error

in form are

MC NOTMC (The answer must be a letter or list of letters.)

EQ NOTEQ (The answer must be in the form of a decimal
rumber or in scientific notation.)

YES No (The answer must be "YBES," "Y," "NO," or "N,")
TRUE FALSE (The answer must be "TRUE," "7 " "FALSE," or "F.")

If an analysis command causes an error message to be typed, it also
causes another pause for a new response from the student.

The analysis commands come in pairs (EQ and NOTEQ, TRUE and FALSE,
EXACT and NOTEXACT, YES and NO). The two related commands cause exactly
the same analysis of a student's response, but if the op code has a NOT
prefix, the last thing done is to negate the value of SCCRE. For example,
the command

NOTEQ /T7.5/
checks the student response to find out if it is equal to 7.5. (If the
student's response is not a number, an error message will be sent.) If
the response is 7.5, SCORE is set *o -1; otherwise it is set to +l. The
NOT op codes are generally used in locking for expected wrong answers,
so that if a student makes a specific mistake, he can be given a wrong-
answer message related to the kind of mistake he makes.

If a NOT command is used to check for an sxpected wrong aunswer,
other analysis commands are usually used to check for the correct answexr.

The analysis commands are described in more detail in Section IIE,
p. 31l |

3. Action Commands

Since the analysis commands ordinarily give the student no visible
indication of whether his answer is correct, a third type of command is
needed. The "action command” tells the student the result of the analysis

of his answer.

13

18

Some action commands are either for correct answers Or wrong answers.

These are

CA WA (C means "correct," W means "wrong")

Cl Wl

c2 w2

c3 W3

BRCA BRWA (BRCA means "BRanch if Correct Answer")
WS (WS means "Wrong but Skip to next problem")
WR (WR means "Wrong. Retype exercise")

These commands cause a specified message to be typed only if SCORE

is set to the appropriate value. For example,
CA /GOOD./

causes the méssage
GOOD.

to be typed only if SCORE is a positive number.

The Cl, C2, and C3 commands are similar to the CA command, except
that action is taken only if SCORE is a specific positive number. A C2
command causes action only if SCORE is +2, a Cl command causes action if
SCORE is +1, etc., whereas a CA command causes action if SCORE is any
positive number.

The WA, W1, W2, and W3 commands are similar to CA, Cl, C2, and C3,
except that the action takes place only if the value of SCORE is an
appropriate negative number.

The correct-answer commands, CA, Cl, C2, and C3, cause a branch to
the next problem in sequence after the correct-answer message is typed,
whereas the wrong~answer commands, WA, W1, W2, and W3, cause a branch
back to the part of the problem where the student was expected to make

a response.

1k

S ——

poasean g e T Ny yar——_y YRS

ey

ey [oy vy

e

e T T T o D i

P

Porgusmed

e

r

pr——

Tt is sometimes desirable to branch to problems other than the next
ones in sequence. To accomplish this, a BRCA or BRWA command must be
used. "BRCA" means "BRanch if Correct Answer" and "BRWA" means "BRanch
if Wrong Answer." As an example, the command

BRCA 1,2,15,/0.K./
causes a display of the message
0.K.
followed by a branch to Strand L, Lesson 2, Problem 15.

The WS command is used if the student is to be given the next prob-
lem in sequence, even if he makes an incorrect response. "Ws" stands
for "Wrong but Skip to next problem."

The text string (message) that follows a C or W op code is optional.
For each of these action commands, a "standard message" 1s used if the
coder does not supply a message. The short form of the WA command,
name Ly,

WA
causes the standard message

WRONG
to be typed if a student makes an incorrect response.

The short form of the W2 command

w2
causes the following standard message

SOME OF THOSE ARE WRONG.
to be typed if a student makes an incorrect response. The short form
of an action command may be used whenever the standard message is satis~

factory. (The standard messages are listed in Section IIF, p. LO).

15

20

Examples of short forms of action commands:

CA
WA
BRCA L,2,12
Wl
BRWA 1L,15,7

Other action commands, btw:rides the C and W kind, :‘hat do not depend
upon the value of SCORE, are HINT, TELL, BRTELL, and REPET. All of these
commands cause the text to be typed at the request of the student. TEIL,
for example, is used to code whatever text the coder wants typed for a
student who asks the computer to "tell the answer." (Whether or not a
student is allowed to do this, and exactly what he must type to get the
answer, depends upon the course type.) A TELL command might look like
this:

TELL /THE CORRECT ANSWER IS 27./
A HINT command specifies the text that will be typed if a student asks
for a hint, and a REPET command specifies the text that will be typed
if a student asks to have the problem repeaied; if a student reguests a
repeat, the original problem statement will also be retyped.

The action commands are described in detail in Section IIF, starting
on p. 38.

4, Miscellaneous Commands

Besides the commands used in coding a problem (problem statement
commands, analysis commands, action commands), the coding language also
contains several miscellaneous commands:

LESSON
EOL
TYPE
JMPGE
JMPL

16

DEFINE

COMMENT

CRUNCH

NEXT
The two most important of these are LESSON and EOL. The LESSON command
is the first command in a lesson and serves to identify the lesson by
strand and by number like this:

LESSON T,5

The EOL (End of Lesson) command is the last command in a lesson.

The use of the DEFINE ccmmand is discussed in Section VI, ©p. 76,
since it need not be used by the beginning coder, and a discussion of its
use might be more confusing than enlightening. Suffice it to say that a
DEFINE command is used to redefine a standard message or to define a macro.
After the beginning coder has coded and processed a few lessons and has
seen them from the viewpoint of a student, he may begin to feel some dis-
satisfaction with the standard messages; at that time, he should study
Section VI , p. 76, rather thoroughly and then redefine the messages to
suit himself.

The TYPE command is used for text display, and the JMP commands are
used for branching, which is conditional upon the student's performance
in & lesson. The COMMENT command is used to put comments intc a lesson;
the comments have no effect on how the lesson is presented to the students.
The CRUNCH command removes all spaces from the student's response., NEXT
sets the student's restart point at the next problem.

This brief discussion of miscellaneous commands has been inserted
here only to round out the picture of the types of commands. In summary,

the coding language contains four different types of commands:

17

Problem Statement Commands
Analysis Commands

Action Commands
Miscellaneous Commands

5. Ordering of Commands

There are only a few rules about the ordering of commands:
(1) Every lesson starts with a LESSON command.

(2) The second command in a lesson must be a TYPE command, ar EXER
command, an NEXER command, an LEXER command, or a COMMENT.

(3) The last command in a lesson must be an EOL command.

A "problem" is defined as any string of commands starting with an
EXER, an LEXI'R, an NEXER, or an SEXER command; the end of a problem is
signalled by one of these commands:

EXER, IEXER, NEXER, SEXER
TYPE, JMPGE, JMPL, EOL

Commands within a problem must obey these rules:

(1) Every problem must begin with a problem statement command (EXER,
LEXER, NEXER, SEXER). Only one problem statement command is
used in a problem.

(2) IT there are several HINT comnands, they must be coded in a
group, with the first hint first, then the second, etc. (If
cther commands are used between two HINT commands, all of the
nints eXcept those in the first group will be lost.)

(3) The @nalysis and action commands may be given in any order,
depending on the desired sequence of events.

Note: The only mandatory command in a problem is an EXER (or LEXER or

VEXER or SEXER) command. Thus a problem could consist of a single com-

mand. TFor example, here is an entire lesson (containing Jjust one problem):

LESSON L,1
EXER /TYPE ANYTHING TO START LESSON 2./
EOL

18

a T s DR

il

Since no .analysis of the student response is coded, there will be no
analysis, responses will not be considered either correct or wrong, and
anything the student types will allow him to go on to the next exercise,

which is the first problem in Lesson L2.

19

'
Lt i 4 P

C. Examples of Coding

Example 1. 4 simple problem using an "EXACT" analysis. -
EXER /APOLLO AND WERE TWINS. R4

/
TELL /DIANA/ i

HINT /APOLLO'S TWIN WAS A GODDESS. WHAT WAS HER NAME?R/ ~r

HINT /THE NAME OF APOLLO'S SISTER STARTED WITH THE LETTER D-
WHAT WAS HER NAME?/ .

e

EXACT /DIANA/ .

CA
WA /WRONG. TRY AGAIN. r
/ ;
Notice that the short form of the CA command was used; this is equivalent 7
to -5
CA /CORRECT "
/ 'E
Example 2. An arithmetic problem. 4}
EXER /5 - 2 = '
/)
TELL /3/ E

HINT /SUBTRACT 2 FROM 5./

i i
| v

NOTEQ /7/
WA /WRONG. YOU MUST SUBTRACT, NOT ADD. TRY AGAIN./

EQ /3/
CcA /VERY GOOD/
WA

e e

Notice that in example (2) a check for the expected wrong answer (1)
was made before the check for the correct answer. It is generally easier

to put the check for an expected wrong answer first. Notice also that

there is no CA command between the NOTEQ and the EQ commands. If there

were, and if the student typed the wrong answer L, the NOTEQ command

Q 20

would cause SCORE to be set to 41, since it is true that 4 is not equal
to 7. Then the misplaced CA command would take action (because SCORE
would be positive), causing the student to get a correct-answer message

even though he typed the wrong answer.

Example 3. A problem with several correct answers.
EXER /WHAT IS THE OPPOSITE OF "ABOVE?"
/
TELL /CORRECT ANSWERS: BELOW, BENEATH, UNDER/

EXACT /BELOW/
CA /GO0L/

EXACT /BENEATH/
CA /VERY GOODL/

EXACT /UNDER/

CA /RIGHIT/

WA /WRONG. TRY AGAIN./
Notice that there is a CA command after each EXACT command. Since a
CA action includes an immediate branch to the following problem, the
student will go on if he has typed any of the correct answers. Notice
also that there is only one WA command, which comes after all of the
EXACT analyses. If there were a misplaced WA after, say, the first
EXACT commaﬁd, then the student who typed the second correct answer,
"beneath,” would get a wrong-answer message.

No HINT command is used in the above problem; if a student requests

a hint, he is given the standard hint message, "NQ HINT WAS WRITTEN,"

Example 4. An exercise using a YES command and a BRCA command.
The following probler. from Lesson 2 of Strand L illustrates the

use of the YES command and the BRCA command.

21

St

EXER /THE REST OF THIS LESSON IS REVIEW. DO YOU WANT TO DO
THE REVIEW?

/

YES

CA /HERE ARE THE REVIEW PROBLEMS./

NO

BRCA L,3,1,/0.K./

In the above problem "yes" is considered a "correct answer" and
causes the student to branch to the next problem in sequence, namely,

" causes a branch to the

the beginning of the review. An answer of "no
beginning of the next lesson, i.e., Lesson 3, Problem 1 in Strand L,

skipping the review section.

Example 5. An exercise that allows the student response to be typed on

the same line as the eXercise.

EXER /
2+3=/
TELL /
5/ '
EQ /5/
CA

WA

Notice that the text string for EXER has no carriage return at the
end. This means that the student response for the problem is displayed
right after the symbol "=." Notice also that the text string for TELL
contains no carriage return at the end. No argument is used with either
CA or WA; the standard messages are used. There is no HINT command so

the standard message, "NO HINT WAS WRITTEN," is used.

22

Pomey by e bewrey ey b

Example 6. A typical example of YES and NO coding.

SEXER /

DO YOU REMEMBER HOW TO GET A HINT?
/

HNT /

YES, I SEE YOU DO REMEMBER. SO TYPE "YES" TO ANSWER THE QUESTLON,

YES
CA /GOOD/

NO
CA /
TO GET A HINT, HOLD DOWN THE CTRL KEY WHILE YOU TYPE "H."/

Notice that the TELL command is not used. Also, there is no WA
command since all possible student responses are already accounted for.

If the student response is "yes," the YES routine sets SCORE to 1
and the first CA causes a display of "GOOD" and a branch to the next
problen.

If the student response is "no," the YES routine sets SCORE to -1,
the first CA is not executed because SCORE is not positive, and control
passes to the next command, the NO command. The NO routine sets SCORE
te 1, so the following CA is executed and there is a branch to the next
problem.

If the student response is neither "yes" nor "no," the YES routine
sends an error message and awaits another response,

The reauon for using a NO command followed by a second CA command
is to allow the student to go on to the next problem, regardless of

whether he answers "yes" or "no." However, the student receives dif-

ferent messages for the different expected responses.

23

oo -

o]

Example 7. An exercise that checks for an expected wrong answer and
responds with a specific wrong-answer message.

NEXER /
COMPIETE THIS AID COMMAND TO ASSIGN THE VALUE OF PI TO THE

VARIABLE P.

... = 3.1416.
/

TELL /
SET B/

HINT /HINT: HOW DO YOU DEFINE A CONSTANT IN AID?

/

NOTKW /LET/

WA /

YES, THE "LET" COMMAND WILL WORK BUT THERE IS A MORE EFFICIENT

WAY. TRY AGAIN. ~
/

EXACT /SET p/
CA
WA
The text strings for NEXER, HINT, and WA all include a final car-
riage return in order to position the teletype at the left of a new line.

Note that a check for the expected wrong answer "LET" was made

before any check for the correct answer.

Example 8. A problem that uses an EQ command with a specified tolerance.

EXER /
SUPPOSE YOU WANT TO INSERT A NEW LINE EETWEEN LINES 17.65 AND
17.9 IN AN ATID PROGRAM. WHAT LINE NUMBER WOULD YOU USE?

TEILL /

17.7 WOULD BE OK. OR 17.8. OR 17.77, ETC./
HINT /

PICK A NUMEER BETWEEN 17.65 AND 17.9.

/

2k

et

by b b by e s

oy

EQ /17.775,0.125/
CA
WA
Notice that the EQ command has two arguments, 17.775 and 0.125;
. this is interpreted as 17.775 + 0.125, which includes all the numbers
: petween 17.65 and 17.9. 17.775 is found by taking the average of 17.65

and 17.9.

Example 9. An exercise with a subsequent subexercise that is not given
to all students.

Here is a series of two problems using a KW analysis and a BRCA.
(The first problem is assumed to be L3-1h4 followed by a subexercise that
has no number.)

: EXER /
L; WHO IS THE PRESIDENT OF THE UNITED STATES?

/
; TELL, /RICHARD NIXON/

HINT /
HIS NICKNAME IS "DICK."

. /

! KW /NIXON/
L I WA /WRONG, TRY AGAIN.

/

| KW /RICHARD/
BRCA L,3,15,/ CORRECT/

. KW /DICK/
BRCA 1,3,15,/CORRECT/

{ SEXER /HIS LAST NAME IS NIXON, WHAT IS HIS FIRST NAME?/

. TELL, /RICHARY/

5 HINT /WHAT IS PRESIDENT NIXON'S FIRST NAME?

i /

25

KW /RICHARD/
CA

KW /DICK/
CA
WA
The first KW command in the problem causes a check for the key word
"Nixon." Next there is a check for either the word "Richard" or the
word "Dick." In either case, there is @ branch to the next numbered
problem (caused by the BRCA commands). The effect of the BRCA commands

is to allow the student who types the entire answer correctly to bypass

the foliowing subproblem which asks for the President's first name.

Example 10. A multiple-choice problem using the short form of Wl, Wz,

and W3 action commands.

EXER /

WHICH NUMBERS ARE GREATER THAN 72
A. 7 - 15
B. 15 -7
C. 7-9
D. 7 -(-2)

/

MC /B I/

CA

Wl

W2

W3

The standard messages are used for the CA, W1, W2, and W3 action
commands. The standard message for W1 is "WRONG," the message for W2
is "SOME OF THOSE ARE WRONG," and the standard message for W3 is "YOU

HAVEN'T FOUND ALL OF THEM."

26

S N aEE ewm

D. Problem Statement Commands

The problem statement commands are:

EXER (exercises)

LEXER (long exercise)
NEXER (numbered exercise)
SEXER (subexercise)

The only command required in a problem is one of the problem statement
commands. The four problem statement commands all have the seame form
(op code)(space)(text string).

Problems are numbered automatically for the coder. Each EXER,
LEXER, NEXER and TYPE command is assigued an internal problem number;
the first one in a lesson becomes Problem 1, the second becomes Problem 2,
etc. A problem that begins with an SEXER command does not receive a
problem number. The implications of this are these: first, because an
SEXER (subexercise) has no number, there is no way for a student to
specify the problem number when he is at the choice point, i.e., when
the computer types the "WHERE TO?" message, the student cannot request
a subproblem by number. Second, for an SEXER, a number cannot be stored
in the student's restart record (the record of his current location in
each of the strands), and consequently, if a student signs off during a
subexercise, his restart point on that strand will be the preceding
numbered problem; the next time the student signs on and asks to continue
his lessons, he will backtrack to the last numbered problem rather than
start at the subexercise he was last working on.

With a judicious use of SEXER's the student may be asked to make

multiple responses, such as constructing tables, using more than one

27

32

line for his response. The entire set (one EXER and any number of
SEXER's) appears as a single problem to the student.

The difference between EXER and NEXER is that although they are both
numbered problems the problem numeer is displayed automatically if an
NEXER (numbered exercise) op code is used, but it is not displayed if an
EXER op code is used.

l. The EXER Command

The foxm of the EXER command is
EXER /the problem statement is given here./
Several lines may be used for this statement.

This command causes these actions:

(1) The text is typed on the teletype.

(2) The "reedy" character is typed. Fox most course types the
ready character is an asterisk. This signals the student
that the computer is ready for him to type a response.

(3) The computer waits for the student response. No further action
is taken until the student finishes his response and indicates
that he is finished %y typing the "enter" character. For most
course types the enter character is the RETURN key.

(4) The student's response is edited by removing all spaces at the
beginning and end of the response and deleting all invisible
characters in the response. At this time there is a check for
control characters, such as hint or erase requests, and the

appropriate action is taken.

28

2. The NEXER Command

The form of the NEXER command is Jjust like the form of the EXER
command ¢

NEXER /the exercise is written here, using as many lines
as needed./

Any problem that begins with an EXER, an LEXER or an NEXER command
is automatically numbered by the system (gee Section IID, pp. 27 - 30).
When an NEXER command is encountered, the first action is a display of
the problem number.

First, there are 3 carriage returns (CR's), resulting in 3 blank
lines.

Second, the strand identification letter is typed.
Third, the lesson number is typed.

Fourth, a dash is typed.

Fifth, the problem rumber is typed.

Sixth, a colon and one space are typed.

Seventh, the text string following the NEXER op code is typed
exactly as specitied.

For example, if the third problem in Lesson 12 of Strand T starts with
this command

NEXER / WHAT IS THE VALUE OF X SQUARED PLUS Y?
/

the display appears as
T12-3: WHAT IS THE VALUE OF X SQUARED PLUS Y?
If the text for the NEXER command begins on the second line, like
this,
NEXER /

WHAT TS THE VALUE OF X SQUARED PLUS Y?
/

29

the display is
T12-3:
WHAT IS THE VALUE OF X SQUARED PLUS Y7

3. Tne LEXER Command

The LEXER (long exercise) command is used for exercises with an
exceptional amount of text. The form is the same as for EXER and NEXRix.
This command is rarely used; see Section TIIC, p. 65, for further
explanation.

Lk, The SEXER Command

The SEXER (subexercise) command is identical to the EXER command.

The form 1is

SEXER /Problem statement is put here, using several lines
if necessary./

There is no automatic problem number or blank lines before the text of
an SEXER is displayed. If blank lines are desired, they must be put in
the text string by the coder, like this

SEXER /

To ensure several blank lines between this problem and the

last problem, put blank lines at the beginning of this text

string./

As mentioned before, an SEXER is not numbered internally (and, of

course, no number is typed for the students). This means there is no
way to get to an SEXER other than by an automatic branch from the pre-

ceding exercises; there can be no branch command directly to an SEXER,

nor can the student request an SEXER as he can other kinds of eXxercises.

Since an SEXER can be reached only by going through the previous

exercise, it cannot be the first exercise in a lesson. It must always

follow an EXER, an LEXER, an NEXER, a TYPE, or another SEXER. Any number

o f SEYBRS may be used in a string.

‘ 30

s IR e D i B e T T

by s

E. Analysis Commands

Tn a problem the analysis commands must come somewhere after the
problem statement command. Analysis and action commands may be combined
in any order within the problem.

None of the analysis or action commands are used until after the
student completes his response. The duties of the analysis commands are
as follows.

First, the student response is analyzed for correctness. If the
response is correct, as specified by that analysis command, a positive
number is put intoe the counter SCORE; if the student response is wrong,
a negative numuer is put into SCORE. Note: the number is not added to
the existing number in SCORE; rather, the existing value of SCORE is
replaced by the new value.

Second, if the analysis routine includes a check on the form of
the answer, and if the student's response 1s in the wrong form, an error
message is sent and there is a branch back to the part of the problem
that pauses for a student response.

Third, if no error message is sent, control passes to the next
command in sequence.

The analysis commands come in pairs (EXACT and NOTEXACT). In
general, both related commands do the same analysis, 1.e., send the same
"error-in-form" messages. However, the command with the NOT-prefix sets
the value of SCORE to the negative of the value which is set by the un-
prefixed command; if EXACT causes SCORE to be set to 1, then NOTEXACT

puts -1 in SCORE, and vice versa.

31

1., EXACT and NOTEXACT Commands

EXACT and NOTEXACT are aralysis op codes that require text strings
as arguments. These commands, like the other analysis commands, are not
executed until after the student completes his response.

EXACT (NOTEXACT) determines whether the student response matches
the coded text string and sets the counter SCORE to +1 (-1) if there is
a match, and -1 (+1) otherwise. Leading and following spaces are ignored
in the student response.

The form of the commands is:

EXACT /Correct answer is coded here./
NOTEXACT /Put expected wrong answer here./

The text string in an EXACT command may not contain the "enter"
character; otherwise, there are no restrictions. The EXACT and NOTEXACT
commands do not cause any analysis of the form of a student response.

No "error-in-form" messages are sent.

20 Mg and NOTMC Commands

MC is an analysis op code ordinarily used for multiple-choice
problems. The argument for MC or NOTMC is a text string containing one
or more letters, which may be separated by commas or spaces.

M” compares the set of student responses to the set of coded letters.
The counter SCORE is set to 1 if the student response is completely cor-
rect, -1 if compietely wrong, -2 if partially wrong, -3 if partially
correct. NOTMC, of course, causes these values to be negated.

The foxm of the MC and NOTMC commands is

MC /List of correct choices coded here./

NOTMC /Incorrect choice coded here./

32

E

RIC 37

FullToxt Provided by ERI

bomie maei B s S e S DEY S

&
v

poiiiad (uad o

[P

The student, if he wishes, may use spaces or commas to separate the
letters in his response. The letters in the student response may be given
in any order.

The MC and NOTMC commands send an error message if the student types
anything other than letters, spaces, or commas. There are five possible

results of an MC analysis:

(1) There is an error in form. An error message is sent. (The
exact content of the error message depends on the course type.
See Part VIL.)

(2) The student response is completely correct. .SCORE is set to +1.

(3) The student response is completely wrong, i.e., not one of the
letters he typed is correct. SCORE is set to -1.

(4) The student response is partially wrong, i.e., he typed some
Y g s
and possibly all the correct answers, but also some incorrect
answers. SCORE is set to -2.

(5) The student response is partially correct, i.e., he typed some,
but not all, of the correct answers. SCORE is set to -3.

To inform the student whether he was partially correct, completely
wrong, etc., an MC command must be followed by W1, W2, and W3 commands,
as well as a CA command.

Generally, NOTMC is used to lock for expected wrong answers to
multiple-choice questions and has only one letter in the text string,
€8s

NOTMC /D/
WA /NO, D IS NOT CORRECT BECAUSE .../

If you use more than one letter in the text string for a NOTMC command,
be sure you know the meaning of the various possible values for SCORE:
-1, +1, 42, +3. (This is left as an exercise in logic for the adven-
turous coder.)

33

o~

Caution: For MC and NOTMC, the entire command must be on one line, un-
like most other commands, which may use any number of lines. (This is
not much of a restriction, since all 26 letters of the alphabet may be

typed on one line!)

3. EQ and NOTEQ Commands

The argument for the EQ and NOTEQ op codes is a text string that

may contain either one or two decimal numbers.
EQ /7.56/
EQ /7.56..04/
NOTEQ /10,5/

If the text string for an EQ command contains only one number, then
the correct response must be a number exactly equal to the number in the
coded text string.

If two numbers are coded in the text string, the second number is
used as the tolerance, i.e., the allowable difference between the student
response and the first coded number.

The command

EQ /10,2/
defines the correct answer as a number different from 10 by no more than
2, i.e., any number between 8 and 12, inclusive.

If the second number is omitted in the coding, it is assumed to be
0, i.e., there is no tolerance allowed; thus, these two commands are
equivalent,

EQ /57.5,0/
EQ /57.5/

3k

ER— |

O——

oo [JES—Y [—

Vs

“-"’.""{ }v-w--_,-:,

ot I by

T e T e B e T)

If two numbers are in the text string, they must be separated by a
comma.

As an example of NOTEQ, the command

NOTEQ /100,2/
means that any number not between 98 and 102 is a correct answer.

The EQ and NOTEQ commands cause a check on the form of the student
response. If the response is not an acceptably formed number, an error
message is sent.

In the argument for an EQ command, any of the usual ways of writing
a decimal nuaber are acceptable (no fractions, however). All of the
following are equivalent decimal numbers:

D
0.5
.50
+.5
+.500.
Negative numbers, of course, are indicated by a preceding minus sign:
-5
"500
-5.
Scientific notation may also be used for numbers:
2.3%10%5 (meaning 2.3 times 10 to the power 5).
Thus, all of the following are equivalent:
-3.156%10%k
-.3156%10%5
-31560
-31560.0.
One restriction on decimal numbers is that they must be limited to nine

significant digits. Thus

.00000000000123

35

40

is an acceptable decimal number, since it contains only three significant
digits, but
1234 .567891
is unacceptable.
Caution. For EQ and NOTEQ, the entire command must be on one line. The

same restriction applies to MC, NOTMC, KW, NOTKW, EXACT, and NOTEXACT.

L, KW and NOTKW Commands

KW and NOTKW are analysis op codes requiring text strings as argu-
ments. The text string may contain carriage returns.

The KW routine determines whether the student response contains the
coded character string; if it does, SCORE is set to 1, if it does not,
SCORE is set to -1, NOTKW negates the value of SCORE.

The foxrm of the commands is

KW /keyword or phrase/
NOTKW /undesired word or phrase/

These commands cause no analysis of the form of a student response.
No error messages are sent.

Caution: Spaces may be used as a meaningful part of the text string.
The command

XW /under/
classifies responses, such as "UNDERHANDED," "UNDERDOG," and "WUNDERFUL,"
as correct. If you want to look for the word "UNDER" surrounded by
spaces, use spaces in the command

XKW / under /
If there is a possibility that the words you are looking for will occur

at the end of a sentence, you may want to use an additional analysis for

36

.
[e———

'

. i
Py P §

b

o

T L T e T e B S

oy e e peemey e

the key word followed by a period:

KW / UNDER./

5. YES and NO Commands
There are no arguments for the YES and NO op codes. The forms of
the commands are

YES
NO

The YES command causes SCORE to be +1 if the student response is "y"
or "yes" and -1 if the response is "n" or "no." NO does the opposite.
If the student response is in the wrong form, i.e., anything other

than "y" cr "yes" or "n" or "no," an error message is sent.

6. TRUE and FALSE Commands

The TRUE and FALSE commands are similar to YES and NO, except that
TRUE defines the correct answer as "t" or "true." TFALSE is used if the
correct answer is "f" or "false."

An error message is sent for any other response.

37

42

F. Action Commands

The action commands, which may be interspersed with analysis com-
mands, are used to tell the student the result of the analysis of his
response znd to branch him to other problems if appropriate.

There are two classes of action commands: those which are contingent
upon whether a student response is correct or wrong, and those which act
when the student types a student control character. The first class,
the contingent action commands, are executed, i.e., take action, only if
the value of SCORE is appropriate. For example, a C2 command is executed
only if the value of SCORE is +2; if the value of SCORE is not +2, the
command is simply skipped.

The usual order for analysis and action commands is one analysis
command followed by one or two contingent action commands, followed by
a second analysis command, etc. Any order that achieves the desired
result is acceptable. The coder, however, must be aware that after any
action command is executed, there is an immediate branch to the next
problem, or back to the pause for student response, or to some other
specified problem.

Summary of when contingent action commands are executed:

0Op code command executed if SCORE -
CA any positive number
WA any negative number
Cl +1

Wl ~1

c2 +2

we ~2

C3 +3

W3 -3

BRCA any positive number
BRWA any negative number
WS any negative number
WR any negative number

Y S

i
g

tum—) oy Ly treay brrnesy e i

All of the above action commands have two forms: a long form (with

a text string) and a short form (no coded text string). For example, the
long form of a WA might look like this: |

WA +I'M SORRY BUT YOUR ANSWER IS WRONG.+
The short form would be

Wi
with no text string. Whenever the short form is used, a standard message
is automatically inserted. The standard message for the WA is WRONG so
the short form

WA
is equivalent to

WA +WRONG
+

There are two kinds of standard messages: those used in the action
command (CA, WA, etc.) and those which are dependent upon the course
type. The standard action messages are added by the lesson processor
wherever a short form of an action command is used; for example, the
command

WA
is transformed into

WA /WRONG
/

by the lesson processor.

39

Standard Action Messages

Action Command Content of Message
CA "CORRECT"
BRCA
WA "WRONG"
BRWA
WS
WR
cl "CORRECT"
c2 "CORRECT"
C3 "CORRECT"
Wl "WRONG"
w2 "SOME OF THOSE ARF WRONG"
W3 "YOU HAVE NOT FOUND ALL

THE CORRECT ANSWERS"

The content of the standard action messages may be changed by the coder

by use of the DEFINE command (see Section VI, Advanced Coding Techniques).

Standard messages determined by the course type are uot inserted
into the lesson coding by the lesson processor and cannot be changed by
the coder. A complete list of fixed standard messages is given in Part
VII.

Besides the action commands discussed above, a second group of
action commands are independent of the value of SCORE. Action commands
HINT, TELL, BRTELL, and BEPET are used only if the student requests the
specific action by typing the appropriate student control character (the
"hint" character, the "tell" character, or the "repeat" character). These
commands, like the CA and WA type of action commands, cause a text dis-
play and a branch, either to another exercise or back to the beginning

of the same exercise.

4o

£ .

| I

loopmy @l beeme be—m L

Summary of the kinds of branching done by action commands:

0Op code If executed causes a branch to

CA, Cl, next problem in sequence

c2, C3, Ws

WA, W1, same problem, pause for student

Wz, W3 response

WR same problem, with REPET text, if any,
and repeat of problem statement

BRCA whatever problem is specified by the

BRWA coder

HINT same problem, pause for student response

TELL next problem in sequence

BRTELL whatever problem 1s specified by the
coder

REPET same problem, with REPET text, if any,

and repeat of problem statement

1. CA Command
CA is an action op code with one optiocnal argumeﬁt that is a text
string. The forms of the CA command are
CA /Goon/
and
CA
The CA command is executed only if SCORE is positive and causes a
display of the message in the text string, followed by a branch to the
next problem. TIf there is no argument, the CA routine displays the
standard CA message "CORRECT" before branching to the next problem.

The text string for & CA command may contain carriage returns, i.e.,

may take several lines.

k1

18

2, E}, C2, and C3 Commands
Ccl, C2, and C3 are similar to CA except that Cl is executed only

if SCORE = 1, C2 is executed only if SCORE = 2, and C3 is executed only

if SCORE = 3.

3. WA, Wl, W2, and W3 Commands

The wrong-answer action commands are similar to the correct-answer
action commands, except that they cause a branch to the pause for student
response after the coded message is displayed. If the course type has
specified a small number of permitted trials and the student gets a wrong
answer on his last trial, he is branched to the TELL routine instead.

(See Section VII, p. 93.)

WA is executed if SCORE < O.
Wl is executed if SCORE = -1.
W2 is executed if SCORE = -2.
W3 is executed if SCORE = -3.

4. BRCA and BRWA Commands

BRCA has four arguments: the first is a strand identifier, the second

a lesson number, the third a problem identifier, and the fourth an op-
tional text string. The arguments must be separated by commas. The BRCA
command is executed if SCORE is any positive number.

BRCA L,3,15,/VERY GOOD/
causes a branch to Problem 15 of Iesson 3 in Strand L after the message
"YVERY GOOD" is displayed.

BRCA L,3,15
also causes a branch to Problem 15 of Iesson 3 in Strand L; however, the

standard CA message "CORRECT" is displayed first.

Lo

prrmesmny

amewy peww o

o T T

There are two special forms of the BRCA commiand. The command
BRCA 0,0,0,/optional message/
causes a branch to the choice point after the message is displayed.
The command
BRCA L,0,0,/optional message/
causes a branch to the student's restart point in Strand L.
The form and effccts of a BRWA command are exactly like those of a

BRCA, except that a BRWA is executed only if SCORE is negative.

5. WS Command

The WS command (Wrong, but Skip to next problem) is executed if
SCORE is negative, The message is displayed and there is a branch to
the next problem; if no text string is coded, the standard wrong answer
message is used. Example:

WS /WRONG. THE CORRECT ANSWER IS 5./

6. The WR Command

The WR command (Wrong: Repeat) is executed if SCORE is negative.
The coded message is typed and there is a branch to the REPET routine,
which causes the REPET text to be typed and the problem statement to be
retyped.

The form of the command is the same as other W commands:

WR /YOUR ANSWER IS WRONG./
If the short form (without text string) is used, the standard

wrong-answer message 1is used.

k3

T N

7. TELL and BRTELL Commands

TELL has one argument that cannot be omitted; the argument is a text
string.

TELL /The correct answer is written here, using several
lines if needed./

A TELL command causes the following action if a student types the
"tell" key:
First, the coded message is displayed.
Second, there is a branch to the next problem in sequence.
The TELL command is optional. If it is omitted, the following
actions take place, if the student types the "tell" key:
First, the standard TELL message "NO ANSWER WRITTEN" is displayed.
Second, there is a branch back to the pause for student response.
Notice that a branch to the next problem occurs only if a TELL
command is specified in the coding.
The BRTELL command is similar in format and action to the BRCA and
BRWA commands.
BRIELL T,5,2,/
THE CORRECT ANSWER IS 23.7./
The above command causes the text to be typed; then there is a branch to
problem T5-2.

Caution: Only one TELL or BRTEIL may be used in a problem.

8. HINT Command
The HINT commands are optional and must follow one another.
HINT has one argument that is not optional; the argument is a text

string containing a message that is displayed on the teletype if called

Ly

: '
e n

——

Iy
v

[Eaae | ooy,

fromon:] fmaeny] b

Rriind

by the student (using the "hint" key).
HINT /Put the first hint here./
HINT /A second hint may be coded after the first hint./
After the text is displayed there is a pause for a student response.
The second time a student requests a hint he is given the second hint,
etc. In no case is there a branch to the next problem in sequence.
If no HINT command is given, the student who requests a hint gets
a standard message "NO HINTS WERE WRITTEN."
If HINT commands are given, but a student requests more hints than

are available, he gets a standard message "THERE ARE NO MORE HINTS."

9. The REPET Command

The REPET command, like HINT and TELL, is optional. The form of

the command is
REPET /READ CAREBFULLY./

If a student requests a repeat of the exercise, the text frcm the
REPET command is displayed, followed by the text from the problem state-
ment. If a student requests a repeat and no REPET command was coded,
only the problem statement is typed.

The REPET text is also used if a WR action command is eXecuted.

(See WR, Section IIF, p. k43.)

b5

50

G. Miscellaneous Commands

11 commands discussed so far in Part II (problem statement commands,
analysis commands, action commands) are used in coding an individual exer-
cise. A lesson, however, also contains commands which are not properly
part of any exercise in the lesson. These commands are

LESSON, EOL
TYPE

JMPGE, JMPL
DEFINE
COMMENT
CRUNCH

NEXT

Only the LESSON and ECL commands are required in a lesson; all others

are coptional.

1. The LESSON and EOL Commands

A course consists of several strands, each of which is divided into
lessons; strands are simply a device for organizing the lessons into
different categories with a provision for daplicate lesson numbers, e.g.,
there may be a Lesson 1 in each strand.

Each course may be divided into many strands. The strands are iden-
tified by a "strand identifier," a word of one to six letters. For example,
a strand may be named "INTRO" or "TEST" or simply "L" or "T."

Lessons within a strand are identified by the strand identifier,
followed by a lesson number. For example, if a strand is identified by
the letter "L," then the eighth lesson in the strand would be identified
as "I8." The lesson numbers must be natural numbers (1,2,3,...,999),

but the lcssons need not be numbered consecutively.

L6

: 3 o

PRI S
. ‘

When a lesson is coded, it must be identified by strand and lesson
number. This is accomplished by putting a lesson command at the begin-
ning of the coded lesson. For example, to code Lesson 25 in Strand T,
start with this command:

LESSON T,25

The problem coding (described in the preceding sections) in a lesson

starts immediately after the identifier command for the lesson. After

"end

all the problems for the lesson are coded, the lesson ends with the
of lesson" command:

EOL

2. The TYPE Command

TYPE commands are used for text display only and are similar to the
EXER command, except that there is no pause for student response. For
example, the command

TYPE +

LESSON 1
TNTRODUCTION TO PROGRAMMING +

causes the following to be typed on the student's teletype.

LESSON 1
INTRODUCTION TO PROGRAMMING

There is no pause for a student response.
3. The JMP Commands

The commands JMPGE (Jump if Greater than or Equal to) and JMPL
(Jump if Less than) are used to specify branching contingent upon the

student's performance in the lesson. For example,

k7

e

JMPGE 75,T,5,1,+
END OF LESSON
GOOD WORK+

checks the student's performance record. If he has a score of greater
than 75 percent on the lesson, the message

END OF LESSON
GOOD WORK

is typed and the next exercise given is Strand T, Lesson 5, Problem 1.

A JMP command may be used after any exercise in a lesson, not neces~
sarily just at the end., For example, 1f the following command is used
after the fourth exercise in a lesson, it is executed if the student has
achieved 60 percent or better for the first four exercises.

JMPGE 60,CALC,6,1,+GOOD WORK.+

Notice that the JMP commands are similar in format and action to
the BR commands. The main difference is that BRCA and BRWA depend only
upon one student response whereas JMP depends upon a cumulative record.

Several JMP commands may be given in sequence. Suppose, for example,
that a certain lesson is used as a pretest and that students take Lesson
Pl if they scored less than 50 percent correct, they take Lesson P2 if
they scored between 50 percent and 80 percent correct, and they take
Lesson P3 if they scored better than 80 percent correct. The following
commands accomplish the desired result.

JMPL 50,P,1,1,+
YOU SCORED LESS THAN 50%
HERE ARE SOME PRACTICE PROBLEMS FOR YOU.+

JMPL 80,P,2,1,+
YOU DID QUITE WELL BUT YOU NEED A LITTLE MORE PRACTICE.+

48

b

i
o

ey jwew e e e

JMPGE 80,P,3,1,+
EXCELLENT WORK.+

A detailed explanation of how the student's percentage score is

calculated is given in Section ITH, p. 51.

L. The DEFINE Command

The DEFINE command is used by the coder to define new op codes. Any
combination of commands may be grouped together and given a single name,
which may then be used as a new op code. DEFINE is actually an assembly
language op code used as a command to the lesson processor. The use of
DEFINE is relatively complex and is discussed in detail, with examples,

in Section IIT, Advanced Coding Techniques.

5. The COMMENT Command

The COMMENT command is used to insert comments or notes to yourself.
They do not affect the way the lesson is presented to students. For
example, you might want to use comments like this:
COMMENT /

1LESSON CODED JAN. 1, 1929
REVISED DEC. 31, 19%0
REVISED JULY 4., 1980 /

COMMENT commands may be used anywhere in a lesson including before

the LESSON command (a most useful place) or after an EOL.

6. The CRUNCH Command

The CRUNCH command is an editing command and is ordinarily executed
before any analysis commands. All it does is request INST to remove

spaces from the student response. For example, the following student

k9

responses might all be considered as reasonably correct responses to

some exercise.

243 =5
2+ 3= 5
2 + 3 =5
2 + 3 =5

To facilitate the analysis of such responses, code the exercise like this:
EXER / WRITE IN SYMBOLS:

TWO PLUS THREE EQUALS FIVE.

/

CRUNCH

EXACT /2+3=5/
CA

WA

7. The NEXT Command

The NEXT command is used to manipulate a student's restart record.
Usually, when a student starts a new day's work, he restarts at the same
exercise he was last working on. In some cases, it is best to start the
student at the following exercise. To accomplish this, use a NEXT op
code in the exercise, like this:

EXER / DO YOU WANT TO START A NEW LESSON NOW?

/
YES
CA /OK/
WA /TYPE CTRL-Z TO STOP FOR TODAY/
NEXT
The NEXT command may be placed anywhere in the problem coding with

the same effect.

50

'
PR

i“"-‘:«

e T e T S

H. Lesson Score Counters and X Problem Statement Commands

As mentioned before, the INST program which interprets lessons coded
in the INSTRUCT language also keeps a record of how well each student is
doing on each lesson. JMP commands are used to compare a student's per-
formance to some specified criterion and to decide what lesson (or
exercise) he should take next derending upon whether or not he met the
specified criterion. For example, the command

JMPGE 70,T,5,1,/G0OD WORK!/
causes the following actions.

First, LESCOR, the student's percentage score in the lesson, is
calculated. Then his score 1s compared to the specified criterion, in
this case 70 percent. If the student's score is greater than or equal
to 70 percent, he is branched to Exercise T5-1 after seeing the message

GOOD WORK!
If the student's score is less than 70 percent, no action is taken; he
simply continues with the same lesson (of course, there may be a JMPL
command or another JMPGE command right after the first one, in which case
the student might be branched to elsewhere and not really continue the
same lesson).

To understand exactly how the student's percentage score is calcu-
lated, one must know the kind of student performance record kept by the
INST program. Basically, the percentage score is calculated by dividing
the number of exercises correct by the number of exercises done. The
complications arise when one asks exactly what constitutes an exercise

"done," or an exercise "correct." If the student's first response is a

51

56

request for the correct answer, was the exercise "done"? If the student
responds incorrectly the first time and then makes a correct response,

ig the exercise vounted as "correct"? Or must the first response be
correct? If the student's response is a request for a repeat, and his
second response is correct, should not the response be considered correct?

The INST program makes these decisions by considering some student
actions to be unresponsive, i.e., not genuine responses; in particular,
all uses of control commands are considered to be unresponsive, sO a
student is not penalized if he asks for a repeat, or a hint.

If the student makes any genuine response to an exercise, then the
exercise is counted. If his first response is correct, it is counted as
an exercise correct, otherwise the exercise is marked wrong, even if the
student eventually gives a correct response.

The lesson score counter is used for only one lesson at a time and
may be checked (by using JMP commands) at any time within the lesson.
The JMP commands do not disturb the value of the counter, so any number
of JMP commands may be used at any desired places. The counter is reset
to zero whenever a student changes lessons, or even if he starts the
lesson again from the beginning; however, if the student recycles through
part of the lesson without going all the way back to the first exercise,
the counter is not reset to zero, so the score simply accumulates.

There may be times when you do not care what a student responds to
an exercise. For example, if you want to ask the student's opinion with

a question like

DID YOU LIKE THIS LESSON? -

52

——

-y

v~y

|

},«.&,g

Yl?*""ﬂ """"!

and ycu want any answer he makes to be ignored as far as scoring is
concerned, use an X in front of the op code, like t:is:

XEXER /
DID YOU LIKE THIS IESSON?
/

The X is a signal to the INST program to leave the value of the
lesson score counter unchanged. Any of the EXER op ~odes may be pre-

fixed with an X: XEXER, XNEXER, XLEXER, XSEXER.

53

o8

TYPE

EXER

XEXER

NEXER

XNEXER

LEXER

XLEXER

SEXER

XSEXER

*Lf TYPE is the first command in a lesson, LESCOR will be set at zero.

Summary of Numbered Op Codes

Display problem Internally Wait for Changes
number? numbered? student response? LESCOR?
No Yes No No¥*
No Yes Yes Yes

No Yes Yes No
Yes Yes Yes Yes
Yes Yes Yes No
No Yes Yes Yes
No Yes Yes No
No No Yes Yes
No No Yes No

5k

J. Top-level Commands and Order of Execution of Commands

D
./'p’l’[

&

Certain commands are known as top-level commands:

TYPE
EXER, XEXER
SEXER, XSEXER
LEXER, XLFXER
NEXER, XNEXER
JMPGE, JMPL
EOL

In the ordinary course of events, each command in a lesson is exe-
cuted in order. There are a number of exceptions, such as WA, which
causes a branch back to a previous section of ccde, and BRCA, which
causes a branch to a specified problem. In some cases, a branch to the
next top-level command bypasses all intervening commands. Commands that
cause a branch to a following top-level command are

CcA, C1, C2, C3
WS

TELL

TYPE

JMPGE and JMPL also cause a branch to a top-level command, but not neces-
sarily the immediately following one. The branch is to a command specified

by the coder.

25

o e
o

TYPE

EXER, XEXER

SEXER, XSEXER

LEXER, XLEXER

NEXER, XNEXER

JMPGE

JMPL

EOL

Summary of Top-level Commands

Displays Wait for student Branches to
text? response? whexre?
Yes No Next top-level command.
Yes Yes Next command, either top
level or low level.
Yes Yes Next command, either top
level or low level.
Yes Yes Next command, either top
level or low level.
Yes Yes Next command, either top
level or low levzl.
If criterion is met, goes
Yes No to specified problem.
(optional) Else, goes to next top-
level command.
If criterion is met, goes
Yes No to specified problem.
(optional) Else, goes to next top-
level command.
Goes to first problem of
No Mo next lesson on same strand.
If none, gces to "end of
strand" routine.
56

- ———

K.

Summary of Commands

Top-level commands are marked with an asterisk *,.

Number of
Op code arguments
LESSON 2
*EQL none
*EXER 1
*LEXER
*SEXER
*NEXER 1
*TYPE 1
TELL 1
BRTELL L
REPET 1
HINT 1

Kind of
argument

Strand identifier
(1 to 6 letters).
Lesson number.

Text string.

Text string.

Text string.

Text string.

Strand identifier.
Lesson number.
Problem number.
Text string.

Text string.

Text string.

o7

Comments

Pseudo op code. Marks
beginning of a lesson.

Pseudo op code. Marks
end of lesson.

Displays problem text.
Pauses for student
response.

Displays problem number
and problem text. Pauses
for student response.

Displays text. Branches
to next top-level command.

Displays text of correct
answer when requested by
student. Branches to
next top-level command.
Default routine causes
branch to pause for
student response.

Displays text when re-
quested by student.
Branches to specified
problem.

Displays text when
student requests a
repeat. Branches to
beginning of same
exercise.

Displays text for hint
when requested by student.
Pauses for student response.

Number of Kind of

bp code arguments argument Comments
EXACT 1 Text string. Analyzes student response
for exact match. Sets
SCORE.
MC 1 Text string. Analyzes response to
containing list multiple-choice problems.
of letters. Sets SCORE to 1 if com-

pletely correct, -1 if
completely wrong, -2 if
partially wrong, -3 if
partially correct. Checks
form of response.

EQ 1 Text string Analyzes response for
containing: equality with coded
number and number, within tolerance
optional number, specified by second
giving tolerance. number. Sets SCORE.

Checks form of response.

KW 1 Text string. Analyzes response for
existence of coded text
string. Sets SCORE.

NO 0 fnalyzes response for
"no" or "n." Sets SCORE.
Checks foxrm of response.

YES 0 Similar to NO.
TRUE 0 Checks for "true® or "t."

Sets SCORE. Checks form
of response.

FALSE 0 Similar to TRUE.
LIST *unde fined¥*

SET ¥undefined¥

NOTEXACT

. Similar to op codes
. described above, with
. negation of SCORE.

NOTKW

58

{ e

4 stmninich

Op code

CA

Cl

c2

C3

WA

wl

w2

w3

BRCA

BRWA

WS

Number of
arguments

1

Kind

of

argument.

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

text

text

text

text

text

text

text

text

string.

string.

string.

string.

string.

string.

string.

string.

Strand identifier.

Lesson number.

Problem number.
Optional text string.

Strand identifier.

Lesson number.

Problem number.
Optional text string.

Uptional text string.

Optional text string.

59

Comments

Executes only if

SCORE > 0. Dispiays
message. Branches to
next top-level command.

Executes only if
SCORE = 1. As for CA.

Executes only if
SCORE = 2. As for CA.

Executes only if
SCORE = 3. As for CA.

Executes only if
SCORE < 0. Branches to

pause for student response.

Executes only if
SCORE = -1. As for WA.

Executes only if
SCORE = -2. As for WA,

Executes only if
SCORE = -3. As for WA.

Executes only if
SCORE > 0. Displays
message. Branches to
specified problem.

Executes only if
SCORE < 0. Displays
message. Branches to
specified problem.

Executes only if

SCORE < 0. Displays
message. Branches to
next top-level command.

Executes only if
SCORE < Q0. Displays
messages., Branches to
REPET routine.

Op_code

*JMPGE
*JMPL

CRUNCH

NEXT

DEFINE

COMMENT

Number of Kind of

arguments argument
5 Percentage criterion.

Strand identifier.
Lesson number.
Problem number.
Opticnal text string.

variable

1 Text string.

60

Comments

Compares student score
with criterion. If
condition met, branches
to specified problem.
Else, branches to next
top-level command.

Removes spaces from
student response.

Sets student restart
point to next problem.

Defines macros.

Allows insertion of
notes to coder. No
effect on lesson
presentation.

s P

ITI. THE PDP-10 IMPLEMENTATION

Two major programs &re needed for the implementation of the INSTRUCT
coding language. One of these, the teaching program, controls the inter-
action between the student and the computer at the time the student is
taking a programmed lesson. The teaching program is actually an inter-
preter that interprets the problem coding and interacts with the student
in accordance with coded instructions. This program is called INST,

The teaching program is not equipped, however, to interpret problem
coding as originally coded in the language described previously. The
coding as written by the coder must first be transformed into a numeric
code that can be understood by the teaching program. This transformation
into a numeric code is known as "processing!. and is done by a program
called the "lesson processor." Processing takes place before a lesson
is used by a student and & lesson is processed only once, whereas it is

interpreted (by INST) every time the student takes the lesson.

61

56

A. The Lesson Processor

After a lessor is coded, the lessor. processor must be used to put
the coding into a form that can be used by the teaching program (for
detailed instructieons on how to use the iesson processor see Section IV,
pp. 66-67). Each op code is translated into a numeric code; KW, for
example, becomes 13,* NOTEQ beccmes 22, an@ so on. FEach character in a
text string is *ranslated into a teletype &haracter code; the letter A
becomes 101, B ba2comes 102, etc.

In additior to making the relatively étraightforward translation
described above, the processor also performs the task of inserting stan-
dard messages in all appropriate places, that is, wherever the coder has
used the short form of an sction command.

The lesson processor also makes a directory of each lesson, giving
the exact location of each numbered problem, and makes a few necessary
calculations, such as the length of each text string and the length of
each problem.

The processor then creates a new file containing the processed code
for the lesson. The new file is named with the strand identifier and

lesson number; if a lesson begins with the command

LESSCYW TEST,29
the processed code is put on a file named:

TEST.029

As for nomenclature, before processing the ccaed lesson is known as
a "text file"; after processing into numeric code, the lesson is known

as a "binary file."

¥For those who are interestcd, the numeric codes used as examples here
are octal numbers. The numeric code produced by the lesson preprocessor
is nevertheless knowi as "binary code."

62

Laniionid

B. INST: The Teaching Program

After a coded lesson is processed, it can be used by INST as inr-
structions for interacting with students. As soon as a lesson is put
on the lesson file, it becomes evailable to the students.

The purpose and branching structure of the teaching program have
been described in detail in previous sections. The teaching program is
actually an interpreter that acts in real-time to interpret lesson

coding in order to interact with students in the desired way.

63

58

C. Limitations Imposed by the Implementation

The implementation of any programming language necessarily imposes
some restraints that are not a logical result of the language itself.
Rather, the restraints result from considerations of space and time,
which present themselves to any programmer working with a real machine.
The implementation of the coding language described in this manual is no
exception. Every system designer hopes, of course, to provide a system
in which the limitations are as innoctuous as possible, and here again
there is no exception. Following is a list of those limitations that
_ are of interest to the coder.
| 1. There is no restriction in the number of strands, but restart

information is permanently saved for no more than six strands.
(The "restart information" simply tells where each student is
on each strand.)

2. There are no more than 128 numbered problems per lesson (but
there is no restriction on the number of SEXERs).

3. Lesson numbers must be between 1 and 999.

b, Iessons need not be conseccutively numbered, but en empty lesson
is interpreted as the end of the strand if encountered during
an automatic skip from the last problem of the previous lesson.
Lessons that follow an empty lesson may be requested by number
by the student or-may be accessed by a branch command in the
coding.

5. The student response is limited to 80 characters.

6. Strand identifiers must be one to six letters.

6h

bsind

[T E X FER]
v

Padiodcict nkiiiizd
' v N

{

The amount of coding used in an exercise is restricted to LOO
computer words of processed code. In practice, only unusually
long exercises will exceed this limit, and since it is impossible
for the coder to calculate how long his processed code is, the
lesson processor checks the length and gives an error nessage
if the exercise is too long. If the error is caused by an ex-
ceptional amount of text in the EXER command, you may be able
to get around the restriction by using an LEXER (longlexercise)
command in place of the EXER. The LEXER allows &an unlimited
amount of text in the problem statement itself, but is more
inefficient in operation than other EXER commands. Thus it

should be used only whe:i needed.

65

70

HOW TO PROCESS A LESSON

The main steps in coding a lesson are:

1 Coding the lesson, using TVEDIT or ED, the PDP-10 text editors.
g P g P)

(2) Assembling the lesson (the first stage of processing).

3) Correcting assembly errors, using TVEDIT or ED, and assembling
3 3

again.

(4) Loading the lesson (the second stage of processing).

(5) Debugging, using INST.

The coder must be able to sign on and off the PDP-10, use TVEDIT

or ED, use the PDP-10 assembler for lessons, use the LOADER program,

list lesson files, use INST, and use PIP. Manuals are available for

TVEDIT, ED, and PIP.

by an experienced person.

Instructions for signing on and off are best given

Once a lesson has been coded, using TVEDIT or ED, the lesson must

be assembled by the following method.

You type
R FAIL 30 (CR)

T <« PRO,L15(CR)

CTRL-C

Explanation

Start the FAIL assembler.

Assemble Lesson L15. It will be put on a
temporary file named T. If there are syntax
errors in the lesson, error messages will

be printed. The error must be corrected

and the lesson assembled again before pro-
ceeding. If there are no syntax errors
(unlikely), the computer will print another

asterisk.

Stop the FAIL assembler. At this point, the
first stage of processing is complete unless
there were error messages. LI there were
errors, you must correct them and assemble
the lesson again before you proceed.

66

ey

Fv—

frvry

s hmin e

I
L

After the first stage of processing is completed, the processed

lesson must be loaded as follows:

You type

LOAD (CR)
T$

S (CR)

Explanation
Start the loader program.

Type T followed by alt-mode (alt-mode is
Ctrl-Shift-K on the teletypes). If there
are no errors, the computer will respond
with

LOADER nKCORE

m+nK MAX xxxx WORDS FREE
EXIT

tC

which indicates that the lesson is loaded
into core.

Type S to save a lesson file. When the
computer types

LESSON SAVED
tC

the lesson is completely processed ard ready
for student use.

After the lesson is completely processed, you may get a s.aort form

of the lesson listed by using the PRINT program; the PRINT program lists

just the problem numbers and the text of the exercise statements without

all the other coding.

67
72

V. DEBUGGING A LESSON

The first stage in debugging a lesson is to remove syntax errors
detected by the FAIL assembler or syntax errors found by the coder try-
ing to save the lesson by typing S.

These are some common syntax errors which will be found by FAIL:

Error FAIL prints
no LESSON command UNDEFINED VALUE AFTER

TOO MANY BENDS

UNREC SPC CHR

TWO ADDRESS FIELDS OR UNDEF OPCODE
UNBAL PARENS

TLLEGAL CHAR STARIS EXPRESSION

°
.
.

FATAL
END OF FILE & NO END STMT

no EQL command FATAL
END OF FILE & NO END STMT

missing comma in BR command FAIL prints the 8 and then prints
(e.g., BRCA L,11,8/VERY GOOL/) the text string. Also,

TWO ADDRESS FIELDS OR UNDEF OPCODE
ILLEGAL CHR AFTER OPERATOR

Then each word of the text string is
listed separately like

VERY UNDEF 000000

GOOD UNDEF 000151

misspelled op code (e.g., FAIL prints the misspelled op code
HNT + USE THE...) and the delimiter if there is one.
Then --
68

TR W S,

“"»'-'C'U ""-—'-‘1 ‘-':-’-,.-u,

[T |
. '

it bz A et } VasAwdiiionn }
. . . . h . '

pmaaat pemes

i
L

TLLEGAT, CHR AFTER OPERATOR

e

TWO ADDRESS FIELDS OR UNDEF OPCODE

°
°

UNREC SPC CHR
HNT UNDEF 000000
USE UNDEF 000517
THE UNDEF 000465

a
0
°

One other error that FAIL will detect is an error in using FATL.
If you do not specify a large enough number in your command
R FAIL 30
FAIL will stop processing the lesson and print

ILL MEM REF AT USER nnnnn
AC

Simply increase the number so the command reads
R FAIL 35 (or R FAIL 4O, etec.)
35 or 40 should be lesrge enough for almost all lessons and it is best
to use the smallest number possible.
You may see these error messages after you type S to start the

lesson file:

Message What to do-
PROBLEM NUMEER XXX IS TOO LONG. Change the EXER or NEXER to an LEXER.
LESSON NUMBER TOO EIG. LIMIT Fither revise your numbering scheme
IS 999. if the number is too large or else

check the IESSON command to make sure
you have a comma between the strand

nzme and lesson number; there must be
no extra spaces in the LESSON command.

69

74

Message What to do

ERROR: TOO MANY CHARACTERS IN Change your strand name to six letters

STRAND NAME, LIMIT IS 6. or fewer; if it already is, check the
commas and spacing in the LESSON
command .

DISK ERROR Not much can be done about this ex-

cept to try again, including starting
over with the processing if necessary.

After a lesson has been completely processed without errors, it
must be carefully debugged before it is ready for student use. There
is a variety of ways that this can be done, but we suggest only one
method that has proved useful.
To debug a lesson thoroughly, the coder should go through the lesson
as a student several times, checking each time for different things. To

take a lesson, sign on to the computer and wait for it to print

ANC
You type Explanation
. L INST (CR) Load the INST program.
WHAT COURSE? The computer will only ask coders and

programmers "What course?" Real
students will never see this message.
Answer by typing a carriage return if
you are signed on to the same user
number used when coding and processing
the lesson. Otherwise, answer by
typing the user number where the
lessons were coded.

* G,COD (CR)

WHAT IESSON DO YCU WANT? Type the strand name and lesson number
(or "WHERE TO?") of your lesson.
* 115 (CR)

70

i ; ; .

dozisu §

At this point the computer will type out the first problem of your

lesson, and you are ready to begin debugging. These steps are a useful

approach to lesson debugging.

(1)

(2)

(3)

()

Take the lesson as if you were a student, making a few reason-
able mistakes, asking for a few hints, repeats, and answers.
This is a good way to see how the lesson would look to a stu-
dent and to see if the overall lesson is reasonable and
consistent.

Take the lesson again asking for all repeats and hints and
giving all correct answers.

Take the lesson a third time to check all the wrong answers

for which there was special coding and then check each TELL.

If necessary, take the lesson once more to check anything else,

such as branching with JMP commands.

At any point in your lesson INST may detect some kind of coding

error and print an error message like this:

I'M SORRY, THERE IS SOMETHING WRONG WITH THIS LESSON.
PLEASE TRY ANOTHER LESSON.
L15-4 --- 3-18

On the last line INST, if possible, identifies the specific problem where

the error occurs, then gives the error type (see list of error numbers

on p. 7k4), and finally the op code number (see p- 75). So the above

error in problem L15-4 is of type 3 in op code 18. After printing the

message the program will branch to the choice point.

You may also get an error message that looks like this:

I'M SORRY, THERE IS SOMETHING WRONG.
9

71

76

The numbers will range from 1 to 10. The program will stop. Errors
which cause this message to be printed are either system errors, machine
érrors, or program errors. There is very little you can do aboat these
errors except reprocess your lesson and try again.

After you have debugged your lesson, correct your errors using
TVEDIT or ED. Then process the lesson again. This time when you type
S tu save the lesson the processor will print

TO REPLACE L15 TYPE "REE,"
tC

After you have typed "REE(CR)" and the program has printed

LESSON SAVED.
1C

you are ready to look at your lesson once more to see that you made all

the changes you intended.

72

bremong

ro—ag

i
1.

1
r

i
Frrvm—

[

ot i

£. TLocation of Lessons and Coding

Iessons should be coded, processed, and debugged on a user number
different from the user number available fox student use. Thus a student
will not accidentally get a lesson which has not been debugged.

In order for the lessons to be available to students, they must be
in the directory for the LES user number (e.g., Q. ES) for your vroject.
Use PIP to transfer the final binary files to this user number.

If the user number used for coding and debugging lessons has the
same project number as the LES user number (e.g., A,LES and A,COD), the
same opticuns and messages will be available to the students. Otherwise,
the gereral set of options specified for course type @ (see Course Types,

Sectinon VII) will be in effect.

73

8

T

Coding Error Types

Error

Problem too long

Error in MC argument
Error in EQ argument
Error in form of branch

command

Branch to non-existent
problem

Error in op code number

Unidentifiable coding
error

Possible Remedy

Use an LEXER;for the problem statement.
!

Check fonnat% Are all arguments

there? Are {2ere unnecessary

spaces?

Check to see
there, or the

named.

Probably caus

process the

First try pr
If that does
text of your

the error.

that problem is really

t proper problem is

2d by the processor, so

Jesson again.

icessing the lesson again.

not help, look over the

coding until you find

U S
. e, A

Th

et

=

B

St]

.
[ramemtngy

]

Py oy g

oW o

O O N O\

10

11
12
13
14
15

16
17
18
19
20

21
22
23
2y
25

NEXER
SEXER
HINT
TELL
CRUNCH

Op Code Numbers

LEXER, TYPE, EXER

BRTELL
MC
EQ

TRUE
NOTMC
NOTEQ
NOTKW
NOTEXACT

NOTMIN*
NO
FALSE
CA

*Not yet implemented.

7>

26
27
28
29
30

31
32
33
34
35

36
37
38
39
Lo

41
42
43
Ly
45

46
b7
48
49
50

Cl
c2
BRCA

o0

VI. ADVANCED CODING TECHNIQUES

In addition to the op codes used in INST another available coding

' A macro is a string of text with a name and

device is the "macro.’
optional substitutable arguments. Macros are part of the FATL essembler
language and are processed in the same way as op codes and other FAIL
commands. Coders may regularly use three different kinds of macros.
(1) The first kind is not actually part of the coding, but may
be used to redefine the standard action (CA, WA, etc.)
messages. Using one of these macros saves a coder from
having to code a special message for each action code.
(2) The second kind is one without any arguments. It is used
to duplicate a section of coding without having to retype
the section each time it is used.
(3) The third kind may hav. a variable number of arguments.
This kind of macro is effective where a set of exercises
uses the same format, instructions, etc., and where the
content varies only in minor ways.
DEFINE is the command used to generate macros. The most basic form

of a macro is

DEFINE now <
text
>

The symbols < and > are used as delimiters. Braces, Sand} , may
be used instead, but since they are not available on teletype keybozxds,

it seems better touse < and > .

76

Every macro is given an identifying name which must begin with a

"now." The macro name is

letter. In the example the macro name is
limited to six characters and may consist of any combination of letters
and numbers beginning with a letter. The text may be any string of

characters, but for our purposes it is generally either the definition

of a standard message or & segment of lesson coding.

T

82

A. Changing the Standard Messages

You may perhaps wish to change the standard WA message from "WRONG"
to "NO. TRY AGAIN." To do this, write a macro like this:

DEFINE STDWA <
ASCIZ / NO. TRY AGATN.
/ >

1

"STDWA™ is the macro name for "standard wrong answer," and < and > are

the macro delimiters. The INSTRUCT delimiter is /; since you may use
almost any character as a delimiter in INSTRUCT, the same is true lere.
However, since > is the closing delimiter for macros, do not use it as
an INSTRUCT delimiter within a macro. ASCIZ is a special command to
the FATL assembler which must be included, so that the message is trans-
lated into the proper teletype code.

The standard messages for the following action codes may be re-

defined by the coder:

Op codes Names for macros
CA STDCA
Cl STDCL
c2 STDC2
C3 STDC3
WA STDWA
WS STDWS
Wl STDW1
w2 STDW2
W3 STDW3

The WR standard message is always the same as the WA standard message.
After the standard message has been redefined for an action code,

the lesson processor will insert the new standard message every time

\)‘ . 78

,i-Q.—\,"

et T e Tt

ey

L i 2 [

U N

L

dacks |
¥

[PPAT)

the short form of that code is used. No change will be ﬁade in the

standard messages of lessons processed earlier. These standard message
definitions should be put on & TVEDIT or ED file that is different from
your coding files and the file used in your processing (see Section VII,

Part F, Storage and Processing of Macros).

79

e

B. Macros Without Arguments

In coding you may find that certain segments of code are freguently
used. For example, in the programming courses problems often ask a
student to stop the INST program and use either the AID interpreter or
the BASIC compiler to do a program. TFor these problems a macro such as
this may be useful: .

DEFINE USEAID <
EXACT ++

WA + USE AID FOR THIS PROELEM.
+

NOTEXACT ++

WA + USE AID FOR THIS PROELEM.
+

NEXT >

To use the macro;, insert its name into your ccding in the appropriate

rlece:

XEXER + WRITE A PROGRAM THAT WILL PRINT THE CIRCUMFERENCE
AND AREA OF A CIRCLE GIVEN THE RADIUS. TEST YOUR PROGRAM
ON AID. +

USEAID

When the lesson is processed, the code will be expanded to this:

XBEXER + WRITE A PROGRAM THAT WILL PRINT THE CIRCUMFERENCE
AND THE AREA OF A CIRCLE, GIVEN THE RADIUS, TEST YOUR
PROGRAM ON AID. +
EXACT ++
WA + USE AID FOR THIS PROELEM.
+
NOTEXACT ++
WA + USE AID FOR THIS PROBLEM
-
NEXT
80

Fre—i LA

o e

By using EXACT and NOTEXACT with empty arguments and WA's, we insure that
fhe student cannot go directly on to the next problem. If he types any-
thing besides what is necessary to use AID, he will be reminded to use
ATD. Since programming problems like this occur frequently in the AID
and BASIC courses, a macro 1like this is used regularly.

Another example of & macro with no arguments is the ENDHW (END
Home Work) macro used in other courses.

DEFINE ENDHW <

EXACT ++

BRCA 0,0,Q,+ GIVE YOUR HOMEWORK TO YOUR TEACHER WHEN
YOU HAVE FINISHED. +

NOTEXACT ++

BRCA 0,0,0,+ GIVE YOUR HOMEWCRK TO YOUR TEACHER WHEN
YOU HAVE FINISHED. +

EQOL

>

The above macro is used only for exercises that a student is to
tear off and take home to do. For example:
LESSON HW,1

XEXER + THIS IS YOUR HOMEWORK. TEAR ON THE DOTTED LINE
AND TYPE RETURN. '

XSEXER + HOMEWORK

USE THESE WORDS IN SENTENCES THAT SHOW YOU UNDERSTAND
THEIR MEANINGS.

READY

ALWAYS

ALONE

81

2R

TEAR ON THE DOTTED LINE AND TYPE RETURN.
+
ENDHW

The lesson consists of only two problems. Since the first problem (XEXER)
has no analysis or action commands, anything the student types causes

the program to go immediately to the XSEXER. The EXACT and NOTEXACT in
the macro are part of the XSEXER problem. Anything a student types for

that problem causes the program to print

GIVE YOUR HOMEWORK TO YOUR TEACHER WHEN YOU HAVE FINISHED.
and then to branch to the choice point. (Remember: any branch command
which gives strand, lesson, problem as 0,0,0 causes a branch to the

choice point.)

82

g

Foeemsd

—y

b, e

e I

[pxiasakf

C. Macros with Arguments

Some portions of coding may be baslically the same with only minor
text variations. Macros may be used for this kind of coding, too, using
arguments to substitute for the variations. In the following example
TEXT is the argument name. Whatever is substituted for TEXT is the
actual argument.

DEFINE NP2 (TEXT) <

EXER +
THE NOUN PHRASES IN THIS SENTENCE ARE UNDERLINED.
TYPE THE SECOND NOUN PHRASE.

TEXT

+

>
To use the macro, type the macro name, followed by a space, followed by

the argument. TFor example,

NP2 <
OUR PARENTS ARE TAKING A VACATION
>

This is processed as

EXER +
THE NOUN PHRASES IN THIS SENTENCE ARE UNDERLINED.
TYPE THE SECOND NOUN PURASE.

OUR PARENTS ARE TAKING A VACATION.

+
Notice that carriage returns are an important part of the argument. If
a macro argument requires more than one line it must be enclosed by the

delimiters.

83

88

SERIC

IToxt Provided by ERI

A macro may use the same argument in more than one place. That is,
an argument will be inserted wherever the argument name is specified in
the macro. Further, there may be more than one argument in a macro.

For an argument name to be identifiable to the processor, it must
be set off by spaces. If an argument is used which should not be set
off by spaces (for example, the text string for an EXACT), identify it
to the processor by a special character called the concatenation char-
acter, which is chosen by the coder. The character must be specified
in the macro definition between the macro name and the argument list.

DEFINE CHECK $ (ANS,MISSP) <
NOTEXACT +$MISSP$+
WS +NO. YOU MISSPELLED THE ANSWER.
THE CORRECT SPELLING IS
ANS
+
EXACT +ANS+
CA
WA +WRONG. TRY AGAIN.
+
>

CHECK is a macro with two arguments, ANS and MISSP. ANS is
used twice, in the WS message and in the EXACT. $ is the concatenation
character. Since it is used when MISSP is the NOTEXACT text string, the
processor recognizesg thav the argument should be substituied there with-
out spa