
DOCUMENT RESUME

ED 049 634 EM 008 881

AUTHOE Friend, Jamesine
TITLE INSTEUCT Coders' Manual.
INSTITUTION Stanford Univ., Calit. Inst. for Mathematical

Studies in Social Science.
SPONS AGENCY Naticnal Aeronautics and Space Administration,

Washington, D.C.; Office of Education (DHEW) ,
Washingtcn, D.C.

EEPCRI NO TR-172
PUB LATE 1 May 71
GRANT CEG-0-70-4797(607)
NOTE 111F.; Psycholcgy Series

EERS PRICE EDRS Price MP -$C.65 HC-$6.58
DESCRIPTOES *Computer Assisted Instruction, Curriculum

Development, *Manuals, Programing, *Programing
Languages

IDENTIFIERS *INSTRUCT (Coding language)

ABSTRACT
The coding language INSTRUCT is a high-level

programing language designed fcr programing computer-assisted
instruction lessons. As it is presently implemented on the PDP-10
computer, a "lesscn processor" transfcrms the INSTRUCT lessons into a
numeric code that can be understood ty a teaching prograiii called
INST. INST ccrtrols the interaction bet*Eeen the student and the
computer at the time the student is taking a programed lesson. The
main steps in preparing an INSTRUCT lesson are: coding the lesson,
assemtling the lesscn, correcting assembly errors, reassembling,
loading, and debugging. This manual is designed both as an
instructional manual for beginning ccders and as a reference manual
.fcr the INSTEUCT coding language. It provides an overview of the
language, a definiticn of the INSTRUCT ccmmands, directions for
processing and debugging INSTRUCT lessons, and instructions fcr
advanced coding techniques which expand the routines available from
the INST program. (JY)

1'
\

0.%

CD

w INSTRUCT CODERS' MANUAL

BY

JAMESINE FRIEND

TECHNICAL REPORT 172

MAY 1, 1971

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TECHN I CAL REPORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses; if published title is different From title of Technical Report,
this Is also shown in parentheses.)

(For reports no. I.- 44, see Technical Report no. 125.)

50 R. C. Atkinson and R. C. CalFee. Mathematical learning theory. January 2, 1963. (In B. B. Wolman (Ed.), Scientific Psychology. New York:

Basic Books, Inc., 1965. Pp. 254-275)
51 P. Suppes, E. Crothers, and R. Weir. Application of mathematical learning theory and linguistic analysis to vowel phoneme matching in

Russian words. December 28, 1962.
52 R. C. Atkinson, R. entree, G. Sommer, W. Jeffrey and R. Shoemaker. A test of three models for stimulus compounding with children.

January 29, 1963. W. exp. Psychol., 1964, 67, 52-58)
53 E. Crothers. General Markov models For learning with inter -trial Forgetting. April 8., 19631
54 J. L. Myers and R. C. Atkinson. Choice behavior and reward structure. May 24, 1963. (Journal math. Psychol., 1964, 1,170-203)
55 R. E. Robinson. A set-theoretical approach to empirical meaningfulness of measurement statements. June 10, 1963.

56 E. Crothers, R. Weir and P. Palmer. The role of transcription In the learning of the orthographic representations of Russian sounds. June 17,. 1963.

57 P. Suppes. Problems of optimization In teaming a list of simple Items. July 22, 1963. (In Maynard W. Shelly, 11 and Glenn L. Bryan (Eds.),
Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-126)

58 R. C. Atkinson and E. J. Croti.ers. Theoretical note, all-or-none learning and intertrial forgetting. July 24, 1963.
59 R. C. CalFee. Long-term behavior of rats under probabilistic reinforcement schedulei. October I, 1963.

60 R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms For paired - associate learning. October 25,1963. (A comparison
of paired-associate learning models having different acquisition and retention axioms, J. math. Psychot., 1964, I, 285-315)

61 W. J. McGill and J. Gibbon.. The general-gamma distribution and reaction times. November 20, 1963. (J. math. Psycho!., 1965, 2, 1-18)
62 M. F. Norman. Incremental teaming on random trials. Oecember 9, 1963. (J. math. Eyehol. , 1964,1;336-351)
63 P. SuppeS. The development of mathematical concepts in children. February 25, 1964. (On the behavioral foundations of mathematical concepts.

Monographs of the Society for Research In Child Development, 1965, 30, 60-96)

64 P. Suppes. Mathematical concept formation In children. April 10,19647 (Amer. psychologist) 1966, 21,139-150)
65 R. C. Calf's', R. C. Atkinson, and T. Shelton, Jr. Mathematical modelalouerbal learning. August 21, 1964. (In N. Wiener and J.-P. Schoda

(Eds.), aL,t.netles of the Nervous System: Progress in Brain Research. Amsterdam, The'Netherliteds: Elsevier Publishing Co.,'I965.
Pp. 333-349)

66 L. Keller, M. Cole, C. J. Burke, and W. K. Estes. Paired associate learning with differential rewards. August 20, 1964. (Reward and
information values of flat outcomes In paired associate learning. (Psycho!. Monogr., 1965, 79,1-21)

67 M. F. Norman. A probabilistic model for free-responding. Oecember 14,1964.

68 W. K. Estes and H. A. Taylor. Visual detection In relation to display size and redundancy of critical elements. January 25,1965, Revised
7-1-65. (Perception and Psychophysics, 1966,1, 9-16)

69 P. Supper and J. Oonio. Foundations of stimulus-sampling theory kw continuous -time processes. February 9, 1965. (J. math. Psychol., 1967,

4, 202-225)
70 R. C. Atkinson and R. A. Kinchia. A learning model for forced-choice detection experiments. February 10, 1965. (Br. J. math scat. Psychol.,

1965, 18, 184-206)
71 E. J. Crothers. Presentation orders For Items from different categories. March 10, 1965.
72 P. Suppes, G. Groen, and M. Schlag-Rey. Some models For response latency In paired - associates learning. May 5, 1965. (J. math. Psychol.,

1966, 3, 99 -128).
73 M. V. Levine. The generalization function in the probability learning experiment. June 3,1965.

74 0. Hansen and T. S. Rodgers. An exploration of psycholinquIstle units In Initial reading. July 6, 1965.

75 B. C. Arnold. A correlated urn-scheme For a continuum of responses. July 20, 1965.

76 C. Izawa and W. K. Estes. Reinforcement -test sequences in paired-associate learning. August I, 1965. (Psyehol. Reports, 1966, 18, 879-919)

77 S. L. Blehart. Pattern discrimination learning with Rhesus monkeys. September 1, 1965. (Psychol. Reports, 1966, 19, 311-324)

78 J. L. Phillips and R. C. Atkinson. The a ° .:its of display size on short-term memory. August 31, i%5.
79 R. C. Atkinson and R. M. Shiffrin. Mathematical models for memory and kerning. September 20, 1965.

80 P. Suppes. The psychological foundations of mathematics. October 25, 1965. (Colloques Intemationaux du Centre National de la Recherche

Scientifique. Editions du Centre National de la Recherche Sclentlflque. Paris: 1,67. Pp. 213-242)
81 P. Suppes. Computer-assisted instruction In the schools: potentialities, problems, prospects." October 29, 1965.

82 R. A. Kinchla, J. Townsend, J. Yellott, Jr., and R. C. Atkinson. Influence of correlated visual cues on auditory signal detection.
November 2,1965. (Perception and Psychophysics, 1966, 1, 67-73)

83 P. Suppes, M. Jerman, and G. Groan. Arithmetic drills and review on a computer-based teletype. November 5, 1965. (Arithmetic Teacher,

April 1966, 303-309.
84 P. Suppes and L. Hyman. Concept learning with non-verbal geometrical stimuli. November 15, (968.

85 P. Holland. A variation on the minimum chi-square test. (J. math. Psychol., 1967, 3, 377-413).

86 P. Suppes. Accelerated program In elementary-school mathematics -- the second year. November 22,1965. (Psychology In the Schools, 1966,

294-307)
87 P. Lorenzen and F. Binford. Logic as a dialogical game. November 29, 1965.

88 L. Keller, W. J. Thomson, J. R. Tweedy, and R. C. Atkinson. The effects of reinforcement Interval on the acquisition of paired-associate

responses. December 10, 1965. (J. exp. Psychol., 1967; 73, 268-277)
89 J. 1. 'Mott, Jr. Some effects on noncontingent success)n human probebillty learning. December 15,1965.

90 P. Supper and G. Gran. Some counting models For first-grade performance data on simple addition Facts. January 14, 1966. (In J. M. Scandura

(Ed.), Research In Mathematics Education. Washington, 0. C.: NCTM, 1967. Pp. 35-43.

91 P. Super's. infmmatIon processing and choice behavior. January 31, 1966.

92 G. Groin and R. C. Atkinson. Models For optimizing the learning process. February II, 1966. (Psycho). 3ulletin, 1966, 66, 309-320)

93 R. C. Atkinson and 0. Hansen. Computer-assisted Instruction in Initial reading: Stanford project. March 17, 1966. (Rendlm Research

Oueiter(y, 1966, 2, 5-25)
94 P. Suppes. Probabilistic inference and the concept of total evidence. March 23, 1966. (In J. Hlntikka and P. Suppes (Eds.), Aspects of

inductive Logic. Amsterdam: North-Holland Publishing Co., 1966. Pp. 49-65.

95 P. Suppes. The axiomatic method In high-school mathematics. April 12, 1966. (The Role of Axiomatics and Problem Solving in Mathematics.

The Conference Board of the Mathematical Sciences, Washington, D. C. Ginn and Co., 1966. Pp. 69-76. ,

(Continued on inside back cover)

2

U.S. DEPARTMENT OF HEALTH. EDUCATION
& WILFARE

OFFICE OF EDUCATION

14\ THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF

%.1.) VIEW OR OPINIONS STATED DO NOT NECES
SARILY REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

INSTRUCT CODERS' MANUAL

by

Jamesine Friend

TECHNICAL REPORT 172

May 1, 1971

PSYCHOLOGY SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

Copyright 1969, 1970 by the Board of Trustees of

the Leland Stanford Junior University

This research has been supported by National Aeronautics.

and Space Administration Grant NGR-05-020-244 and

U. S. Office of Education Grant 0EG-0-70-4797(607)

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TABLE OF CONTENTS

Page

I. Introduction 1

II. The Coding Language

A. Format of Commands 4

B. Classification and Order of Commands 10

C. Examples of Coding 20

D. Problem Statement Commands 27

E. Analysis Commands 31

F. Action Commands 38

G. Miscellaneous Commands 46

H. Lesson c" ore Counters and X Problem Statement Commands 51

J. Top-level Commands and OrJ,er of Execution of Commands 55

K. Summary of Commands 57

III. The PDP-10 Implementation 0.0 . 61

A. The Lesson Processor . 0 0 0 62

B. INST: The Teaching Program 63

C. Limitations Imposed by the Implementation . . 64

IV. How to Process a Lesson 66

V. Debugging a Lesson 68

A. Location of Lessons and Coding 73

VI. Advanced Coding Techniques 76

A. Changing the Standard Messages 78

B. Macros Without Arguments 80

C. Macros with Arguments 83

D. Macros Using IFIDN and IFDIF 87

E. Storage and Processing of Macros . 90

F. Other Notes for the Advanced Coder 91

VII. Course Types 93

A. Control Characters 91

B. Standard Messages 96

C. Other Course Type Variables 99

Index

5

ii

101

I. INTRODUCTION

This manual is designed both as an instructional manual for beginning

coders and as a reference manual of the coding language, INSTRUCT.

Part I (pp. 1 to 3) is a brief introduction; a better introduction

would be to sign on as a student for one of 1,he programming courses

(Introduction to Programming: AID, or Introduction to Programming: BASIC)

and to take a few lessons.

Part II is devoted to a description of the coding language. The

first few sections (Sections HA to IIC, pp. 4 to 26) give an overall

picture of the coding language and should be read quite thoroughly, per-

haps even read twice. The remainder of Part II (Sections IID to IIK,

pp. 27 to 60) is a reference manual of the coding language; on first

reading, this section should be skimmed rather than read thoroughly,

Part III discusses the major programs necessary to implement the

teaching system and also lists the limitations of the current implemen-

tation on such things as number of lessons, number of exercises per

lesson, and length of problems. The beginner need not concern himself

too much with the details in Part III, since they are not likely to have

immediate effect on his coding efforts. Therefore, on first reading,

skim Part III and return to it later when questions arise.

Part IV, of utmost importance to the new coder, describes in detail

exactly how to code a lesson, what buttons to push, and what utility

programs to use

Part V, the operator's instructions, must be thoroughly understood

by everyone (machine operators, coders, writers, etc.) working on the

project.

1

Part VI, the section on advanced coding techniques, is best read

after considerable coding experience.

The coding language INSTRUCT is a high-level programming language

designed for programming computer-assisted instruction. Instructions

that must be given to the computer about how to present a lesson to

students include:

1. what exercises to type and when to wait for an answer;

2. how to analyze the student's answer to determine whether or

not it is correct;

3. how to respond to the different possible answers a student may

give;

)4. what exercise to present next.

These instructions to the computer must be written in a language the

computer understands, and INSTRUCT is one such programming language.

After the instructions are written, they must be entered into computer

memory (see Part IV) where they will be stored until some student needs

them. The student takes the lesson by using a computer program called

INST which interprets the language INSTRUCT into machine language so

that the computer can operate. The lessons are grouped into "courses"

in computer storage.

Each course consists of a number of strands and contains a number

of lessons. Each lesson consists of a series of exercises, written in

the language INSTRUCT. In addition to interpreting the coded lessons,

the program INST also keeps track of which students are enrolled for

which courses, how far each student has progressed, and how well he is

doing.

2

A number of optional features included in the INST program allow

the student to request the correct answer to an exercise or allow him

to do exercises in any order he wishes. Which optional features are

used depends upon the "course type," and each course is identified as

one of six possible types. Some course types give the student control

over his own sequence of exercises, others allow him to request addi

tional instruction before he responds to an exercise. Some permit an

unlimited number of trials on each exercise, while still others restrict

the number of allowable trials, etc. In addition to the content of

certain "standard messages," the course type determines what characters

are designated as "student control keys." For example, one student

control key is the "tell" key; the student types the "tell" key to get

an answer. In other instances, the student types the CTRL key and the

letter G simultaneously or he types a slash (/) to get the answer. The

end of a response may also be indicated by typing an "enter" character;

in one cou-"se type the "enter" character' may be the RETURN key; in

another it may be a space or a period.

A complete list of student control characters, standard messages,

etc., associated with each course type is given in Part VII.

3

8

II. TnE CODING LANGUAGE

A. Format of Commands

A lesson is coded by using a series of commands or instructions

that cause the computer to present problems, via teletype, to students.

For example, commands cause a problem statement to be typed; commands

cause student answers to be analyzed (checked for correctness); commands

cause specified messages to be typed if the student is correct, etc.

Each command must begin with an "op code" followed by a space. Op

codes, the vocabulary of the coding language, are mnemonic words, such

as EXER, HINT, and EQ,and serve to specify the kind of command. EXER,

for example, is the op code for a command that causes an exercise to be

displayed. Of course, the text for the exercise must al3o be supplied

by the coder, so an EXER op code is followed by a text string containing

the text of the problem. The text must be enclosed in text delimiters,

such as or /. These text delimiters serve as "quotation marks"--in

fact, quotation marks may be used as text delimiters.

EXER WHAT IS THE SUM OF 15 AND 12?

The above command causes the computer to type the following on the

student's teletype:

WHAT IS THE SUM OF 15 AND 12?

and then to wait for a response from the student.

As another example, an EQ command is used to find out if the stu-

dent's answer is equal to a certain number. The command

EQ /3.1416/

causes the teaching program to check the student response, which must

be equal to 3.1416 in order to be correct.

4

The correct answer command

CA "GOOD THINKING."

causes the teaching program to type

GOOD THINKING.

on the student's teletype if he makes a correct answer.

All commands must follow these rules:

1. Each command must begin on a new line, although the command is

not limited to a single line.

Note: Blank lines are allowed between commands and should be

used wherever necessary to improve the readability of the coding.

2. The first word in the command is an op code (op codes are listed

in Section IIK, p. 57).

3. The op code must be followed by a space to separate it from the

rest of the command.

I. The first text delimiter, if there is any text, must be on the

first line of the command, although the text itself may start

on any line.

All commands in the coding language have the same form. The first

word of eaci command is an op code that defines the kind of command.

Following the op code are "arguments" that serve to modify the op code

by adding further specifications. The op code is separated from the

following arguments by a space. Most op codes require only one argument,

usually a text string. For example, in the command,

CA /VERY GOOD/

the text string /VERY GOOD/ is the argument for the CA op code. For

many op codes (CA, WA, and other, action op codes) the argument is

5

optional. For some op codes (YES, NO, TRUE, FALSE) no arguments are

needed. Some op codes, such as BRCA, require more than one argument;

the first argument for a BRCA is a strand identifier, the second a lesson

number, the third a problem number, and the fourth an optional text

string. The exact form and number of arguments for each op code are

given in the following pages (Sections lID to IIG). If an op code re-

quires more than one argument, the arguments must be separated by commas.

Text strings must always be contained between text delimiters. Text

delimiters may be any characters not contained in the text string. For

example, one may use quotation marks around a text string, if there are

no quotation marks in the text itself:

HINT "TO FIND INTEREST, USE THE FORMULA = P X R X T"

Usually special characters like + or % or / are easier to read than

letters or numbers or standard punctuation marks. A few special charac-

ters like < > (: 4- cannot t>. used as text delimiters, for

various obscure reasons. Letters within text strings may be typed in

either upper or lower case, since the lesson processor translates all

letters to upper case.

Text strings are handled by the computer in one of two ways, de-

pending upon the kind of op code that has the text string as an argument.

Some text strings specify what is typed for the student (if the op code

is EXER, HINT, CA, etc.) and others specify what should be typed by the

student (if the op code is EXACT, EQ, etc.).

Text strings used as arguments for the problem statement commands

and the action commands specify the text typed on the teletype by the

computer. In such text strings, the coder should pay close attention

6

to spacing and carriage returns, since the text typed on the teletype

reflects the exact text put into the text string by the coder. In par-

ticular, if you want the type bar on the teletype positioned at the

beginning of a new line before the message is typed, the first character

in the text string should be a carriage return, i.e., start your text on

the line after the op code; otherwise, the teletype will start typing

from whatever position it was left, which may result in the message

running over the end of a line and being unreadable. Also, if you want

an empty line or two after the message, end the text string with a few

carriage returns.

There is one exception to the rule about beginning a text string

with a carriage return. Before an NEXER text string is sent to a tele-

type, three carriage returns and the problem number are displayed

automatically on the teletype. Hence, the coder can assume that the

NEXER text is sufficiently set off from the preceding text. (For more

about problem numbering, see Section IIH, p. 54.)

A few examples of recommended ways to code text strings for teletype

displays follow:

NEXER /NAME A STATE EAST OF THE MISSISSIPPI AND WEST OF THE.

ALLEGHENIES.

/

HINT /
HINT: WHICH STATE IS CHICAGO IN?

EXACT /ILLINOIS/
CA /
GOOD/

7

WA /
WRONG. TRY AGAIN

After you have coded one lesson and tried it on a teletype, you will be

in a better position to decide where to put spaces and carriage returns.

An additional cautionary word about the characters used in text

strings. Although any character, except the character you are using as

a text delimiter, may be used in a text string, quite a few characters

on the Philco or IMLAC keyboards have no equivalents on the teletypes.

If an untranslatable character is used in a text string, it is translated

into a question mark (?) and may cause your text to look peculiar.

Also, a comment about upper-case and lower-case letters. Since there

are no lower-case letters on Model-33 or 35 teletypes, both lower-case

and upper-case letters are translated to upper-case letters. In other

words, you may type your text in either capitals or small letters as you

prefer. In fact, capital and lower-case letters are equivalent every-

where in the coding, so op code names, etc., may also be typed in lower

case if desired. (Upper case is used for op codes throughout this

manual only for the purpose of making examples more readable.) The form

exer /what is the sum of 1 and 2?/

is quite acceptable.

Not all text strings used in the coding specify text to be typed on

a teletype by the computer. Text strings may also be used to specify

what should be typed by the student. The text strings used as arguments

for the analysis op codes (EXACT, MC, EQ, etc.) are all of this kind.

In such text- strings, do not use unnecessary spaces or carriage returns,

8

3

for though they are not prohibited, the computer must sort out and dis-

card extra spaces and carriage returns before it checks the student answer.

Here are some examples of recommended ways to code text strings for

analysis commands:

EXACT /ELEPHANT/

MC /AC/

EQ /3.1416/

KW /RICHARD NIXON/

Note that in the last example, the space between the two words

"Richard" and "Nixon" is a necessary part of the text string and should

not be omitted.

Caution: Text strings for MC, NOTMC, EQ, NOTEQ, KW, NOTKW, EXACT,

and NOTEXACT must be on the same line as the op code; these commands

must not use more than one line.

t

B. Classification and Order of Commends

The commands for problem coding are of four kinds:

Problem Statement Commands (p. 10)

Analysis Commands (pp. 10-13)

Action Commands (pp. 13-16)

Miscellaneous Commands (pp. 16-18)

1. Problem Statement Commands

The problem statement commands cause either a display of the problem

statement or a display of additional instruction or information about the

problem and must be the first command in a problem. The op codes for

problem statement commands are EXER, LEXER, NEXER and SEXER.

EXER causes the coded text to be typed and then causes the computer

to wait for a student response. For example, the cmliand

EXER

HAVE YOU EVER STUDIED PROGRAMMING BEFORE?

causes the computer to type

HAVE YOU EVER STUDIED PROGRAMMING BEFORE?

and then to wait for a student response.

LEXER, NEXER and SEXER are all variants of the EXER command; they

all cause a display of text and a pause for student response. The dif-

ferences between these commands are described in Section IID, p. 27.

2. Analysis Commands

Analysis commands cause a student's response to be analyzed to

determine whether it is correct. The analysis op codes are

10

EXACT NOTEXACT

MC NOTMC (MC means "multiple choice")

EQ NOTEQ (EQ means "equal number")

KW NOTKW (KW means "key word")

YES NO

1_ TRUE FALSE

El

Some examples of analysis commands are:

(1) EXACT /COMPUTER/

(The student's response is marked correct if he types the word

"computer" and marked wrong otherwise. The student response

must match the coded answer exactly, character by character,

space by space.)

(2) KW /COMPUTER/

(The student's response must contain the key word "computer.")

(3) TRUE

(The student's response must be either the word "true" or the

letter "t.")

(4) MC /B D E/

(MC is used for multiple-choice problems. The student's response

must be a list of the letters B, D, and E, in any order.)

(5) NOTEXACT /ELEPHANT/

(The student's response is wrong if it is the word "elephant."

Any other response, such as "happy," is marked correct. This

analysis command would be used in a problem such as "TYPE

ANYTHING EXCEPT 'ELEPHANT'."! Less trivial uses of the NOT

commands will be discussed later.)

11

7

The analysis commands work something like this: A counter in the

computer called SCORE is capable of storing either positive or negative

numbers. As soon as the student's response is checked for correctness,

a number is put into the counter SCOPE; if the student's response is

correct, a positive number (usually +1) is put into SCORE, and if the

response is incorrect a negative number (usually -1) is put into SCORE.

This counter is later used by the computer to decide whether to type a

"correct" message or a 'wrong" message for the student.

Generally, the analysis commands cause the student's response to

be checked and an appropriate number to be put into SCORE (this is all

done "behind the scenes," i.e., the student sees no action whatsoever).

However, some analysis commands also check the student's response to see

if it is in the correct "form" and type an error message if it is not.

For example, if the equal command

EQ /5/

is used in the coding, the correct response is the number 5. If the

student types "5," SCORE is set to +1. If the student types "4," SCORE

is set to -1. However, if the student types "five," the answer is not

in the correct form, so an immediate error message is typed for the

student:

WRONG, PLEASE TYPE A DECIMAL NUMBER TO ANSWER THIS PROBLM.

The commands that send error messages if the student makes an error

in form are

MC NOTMC (The answer must be a letter or list of letters.)

EQ NOTEQ (The answer must be in the form of a decimal
number or in scientific notation.)

12

is

L

YES NO (The answer must be "YES," "Y" "NO," or "N.")

TRUE FALSE (The answer must be "TRUE," "T," "FALSE," or "F.")

If an analysis command causes an error message to be typed, it also

causes another pause for a new response from the student.

The analysis commands come in pairs (EQ and NOTEQ, TRUE and FALSE,

EXACT and NOTEXACT, YES and NO). The two related commands cause exactly

the same analysis of a student's response, but if the op code has a NOT

prefix, the last thing done is to negate the value of SCORE. For example,

the command

NOTEQ /7.5/

checks the student response to find out if it is equal to 7.5. (If the

student's response is not a number, an error message will be sent.) If

the response is 7.5, SCORE is set to -1; otherwise it is set to +1. The

NOT op codes are generally used in looking for expected wrong answers,

so that if a student makes a specific mistake, he can be given a wrong-

answer message related to the kind of mistake he makes.

If a NOT command is used to check for an expected wrong answer,

other analysis commands are usually used to check for the correct answer.

The analysis commands are described in more detail in Section 11E,

p. 31.

3. Action Commands

Since the analysis commands ordinarily give the student no visible

indication of whether his answer is correct, a third type of command is

needed. The "action command" tells the student the result of the analysis

of his answer.

13

`18

Some action commands are either for correct answers or wrong answers.

These are

CA WA (C means "correct," W means "wrong")

Cl W1
C2 W2
C3 W3
BRCA BRWA (BRCA means "BRanch if Correct Answer")

WS (WS means "Wrong but Skip to next problem")
WR (WE means "Wrong. Retype exercise")

These commands cause a specified message to be typed only if SCORE

is set to the appropriate value. For example,

CA /GOOD./

causes the message

GOOD.

to be typed only if SCORE is a positive number.

The Cl, C2, and C3 commands are similar to the CA command, except

that action is taken only if SCORE is a specific positive number. A C2

command causes action only if SCORE is +2, a Cl command causes action if

SCORE is +1, etc., whereas a CA command causes action if SCORE is any

positive number.

The WA, Wl, W2, and W3 commands are similar to CA, Cl, C2, and C3,

except that the action takes place only if the value of SCORE is an

appropriate negative number.

The correct-answer commands, CA, Cl, C2, and C3, cause a branch to

the next problem in sequence after the correct-answer message is typed,

whereas the wrong-answer commands, WA, Wl, W2, and W3, cause a branch

back to the part of the problem where the student was expected to make

a response.

19

F

It is sometimes desirable to branch to problems other than the next

ones in sequence. To accomplish this, a BRCA or BRWA command must be

used. "BRCA" means "BRanch if Correct Answer" and "BRWA" means "BRanch

if Wrong Answer." As an example, the command

BRCA L,2,15,/0.K./

causes a display of the message

O.K.

followed by a branch to Strand L, Lesson 2, Problem 15.

The WS command is used if the student is to be given the next prob-

lem in sequence, even if he makes an incorrect response. "WS" stands

for "Wrong but Skip to next problem."

The text string (message) that follows a C or W op code is optional.

For each of these action commands, a "standard message" is used if the

coder does not supply a message. The short form of the WA command,

namely,

WA

causes the standard message

WRONG

to be typed if a student makes an incorrect response.

The short form of the W2 command

W2

causes the following standard message

SOME OF THOSE ARE WRONG.

to be typed if a student makes an incorrect response. The short form

of an action command may be used whenever the standard message is satis-

factory. (The standard messages are listed in Section IIF, p. 40).

15

20

Examples of short forms of action commands:

CA
WA
BRCA L,2,12
W1
BRWA L,15,7

Other action commands, hz,.,,,ides the C and W kind, that do not depend

upon the value of SCORE, are HINT, TELL, BRTELL, and REPET. All of these

commands cause the text to be typed at the request of the student. TELL,

for example, is used to code whatever text the coder wants typed for a

student who asks the computer to "tell the answer." (Whether or not a

student is allowed to do this, and exactly what he must type to get the

answer, depends upon the course type.) A TELL command might look like

this:

TELL /THE CORRECT ANSWER IS 27./

A HINT command specifies the text that will be typed if a student asks

for a hint, and a REPET command specifies the text that will be typed

if a student asks to have the problem repeated; if a student requests a

repeat, the original problem statement will also be retyped.

The action commands are described in detail in Section IIF, starting

on p. 38.

4. Miscellaneous Commands

Besides the commands used in coding a problem (problem statement

commands, analysis commands, action commands), the coding language also

contains several miscellaneous commands:

LESSON
EOL
TYPE
JMPGE
JMPL

taA

16

DEFINE
COMMENT
CRUNCH
NEXT

The two most important of these are LESSON and EOL. The LESSON command

is the first command in a lesson and serves to identify the lesson by

strand and by number like this:

LESSON T,5

The EOL (End of Lesson) command is the last command in a lesson.

The use of the DEFINE command is discussed in Section VI, p. 76,

since it need not be used by the beginning coder, and a discussion of its

use might be more confusing than enlightening. Suffice it to say that a

DEFINE command is used to redefine a standard message or to define a macro.

After the beginning coder has coded and processed a few lessons and has

seen them from the viewpoint of a student, he may begin to feel some dis-

satisfaction with the standard messages; at that time, he should study

Section VI , p. 76, rather thoroughly and then redefine the messages to

suit himself.

The TYPE command is used for text display, and the JMP commands are

used for branching, which is conditional upon the student's performance

in a lesson. The COMNENT command is used to put comments into a lesson;

the comments have no effect on how the lesson is presented to the students.

The CRUNCH command removes all spaces from the student's response. NEXT'

sets the student's restart point at the next problem.

This brief discussion of miscellaneous commands has been inserted

here only to round out the picture of the types of commands. In summary,

the coding language contains four different types of commands:

17

22

Problem Statement Commands
Analysis Commands
Action Commands
Miscellaneous Commands

5, Ordering of Commands

There are only a few rules about the ordering of commands:

(1) Every lesson starts with a LESSON command.

(2) The second command in a lesson must be a TYPE command, an EXER
command, an NEXER command, an LEXER command, or a COMMENT.

(3) The last command in a lesson must be an EOL command,

A "problem" is defined as any string of commands starting with an

EXER, an LEXFR, an NEXER, or an SEXER command; the end of a problem is

signalled by one of these commands:

EXER, LEXER, NEXER, SEXER
TYPE, IMPGE, JMPL, EOL

Commands within a problem must obey these rules:

(1) Every problem must begin with a problem statement command (EXER,
LEXER, NEXER, SEXER). Only one problem statement command is

used in a problem.

(2) If there are several HINT commands, they must be coded in a
group, with the first hint first, then the second, etc. (If

other commands are used between two HINT commands, all of the
hints except those in the first group will be lost.)

(3) The analysis and action commands may be given in any order,
depending on the desired sequence of events.

Note: The only mandatory command in a problem is an EXER (or LEXER or

VEKER or SEXER) command. Thus a problem could consist of a single com-

mand. For example, here is an entire lesson (containing just one problem):

LESSON L,1
EXER /TYPE ANYTHING TO START LESSON 2./
EOL

18

23

I

is

L

Since no analysis of the student response is coded, there will be no

analysis, responses will not be considered either correct or wrong, and

anything the student types will allow him to go on to the, next exercise,

which is the first problem in Lesson L2.

19

-24

C. Examples of Coding

Example 1. A simple problem using an "EXACT" analysis.

EXER /APOLLO AND WERE TWINS.

/
TELL /DIANA/

HINT /APOLLO'S TWIN WAS A GODDESS. WHAT WAS HER NAME?/

HINT /THE NAME OF APOLLO'S SISTER STARTED WITH THE LETTER D.

WHAT WAS HER NAME?/

EXACT /DIANA/
CA
WA /WRONG. TRY AGAIN.

Notice that the short form of the CA command was used; this is equivalent

to
CA /CORRECT

Example 2. An arithmetic problem.

EXER /5 - 2 =

TELL /3/

HINT /SUBTRACT 2 FROM 5./

NOTEQ /7/
WA /WRONG. YOU MUST SUBTRACT, NOT ADD. TRY AGAIN./

EQ /3/
CA /VERY GOOD/
WA

Notice that in example (2) a check for the expected wrong answer (7)

was made before the check for the correct answer. It is generally easier

to put the check for an expected wrong answer first. Notice also that

there is no CA command between the NOTEQ and the EQ commands. If there

were, and if the student typed the wrong answer 4, the NOTEQ command

20

23

I

I

I

f

f

would cause SCORE to be set to +1, since it is true that 4 is not equal

to 7. Then the misplaced CA command would take action (because SCORE

would be positive), causing the student to get a correct-answer message

even though he typed the wrong answer.

Example 3. A problem with several correct answers.

EXER /WHAT IS THE OPPOSITE OF "ABOVE?"
/
TELL /CORRECT ANSWERS: BELOW, BENEATH, UNDER/

EXACT /BELOW/
CA /GOOD/

EXACT /BENEATH/
CA /VERY GOOD/

EXACT /UNDER/
CA /RIGHT/
WA /WRONG. TRY AGAIN./

Notice that there is a CA command after each EXACT command. Since a

CA action includes an immediate branch to the following problem, the

student will go on if he has typed any of the correct answers. Notice

also that there is only one WA command, which comes after all of the

EXACT analyses. If there were a misplaced WA after, say, the first

EXACT command, then the student who typed the second correct answer,

"beneath," would get a wrong-answer message.

No HINT command is used in the above problem; if a student requests

a hint, he is given the standard hint message, "NO HINT WAS WRITTEN."

Example 4. An exercise using a YES command and a BRCA command.

The following problem from Lesson 2 of Strand L illustrates the

use of the YES command and the BRCA command.

21

28'

EXER /TIE REST OF THIS LESSON IS REVIEW. DO YOU WANT TO DO
THE REVIEW?

/
YES
CA /HERE ARE THE REVIEW PROBLEMS./
NO
BRCA L,3,1,/0.K./

In the above problem "yes" is considered a "correct answer" and

causes the student to branch to the next problem in sequence, namely,

the beginning of the review. An answer of "no" causes a branch to the

beginning of the next lesson, i.e., Lesson 3, Problem 1 in Strand L,

skipping the review section.

Example 5. An exercise that allows the student response to be typed on

the same line as the exercise.

EXER /
2 + 3 =/

TELL /
5/

EQ /5/
CA
WA

Notice that the text string for EXER has no carriage return at the

end. This means that the student response for the problem is displayed

right after tine symbol "=." Notice also that the text string for TELL

contains no carriage return at the end. No argument is used with either

CA or WA; the standard messages are used. There is no HINT command so

the standard message, "NO HINT WAS WRITTEN," is used.

22

.27

Example 6. A typical example of YES and NO coding.

SEX-ER /
DO YOU REMEMBER HOW TO GET A HINT?

HINT /
YES, I SEE YOU DO REMEMPRR. SO TYPE "YES" TO ANSWER THE QUESTION,

YES
CA /GOOD/

NO
CA /
TO GET A HINT, HOLD DOWN THE CTRL KEY WHILE YOU TYPE "H."/

Notice that the TELL command is not used Also, there is no WA

command since all possible student responses are already accounted for.

If the student response is "yes," the YES routine sets SCORE to 1

and the first CA causes a display of "GOOD" and a branch to the next

problem.

If the student response is "no," the YES routine sets SCORE to -1,

the first CA is not executed because SCORE is not positive, and control

passes to the next command, the NO command. The NO routine sets SCORE

to 1, so the following CA is executed and there is a branch to the next

problem.

If the student response is neither "yes" nor "no," the YES routine

sends an error message and awaits another response.

The reaLon for using a NO command followed by a second CA command

is to allow the student to go on to the next problem, regardless of

whether he answers "yes" or "no." However, the student receives dif-

ferent messages for the different expected responses,

23

2R

Example 7. An exercise that checks for an expected wrong answer and

responds with a specific wrong-answer message.

HEXER /
COMPLETE THIS AID COMMAND TO ASSIGN THE VALUE OF PI TO THE
VARIARLE P.

3.1416.

TELL /
SET P/

HINT /HINT: HOW DO YOU DEFINE A CONSTANT IN AID?

/

NOTKW /LET/
WA /
YES, THE "LET" COMMAND WILL WORK BUT THERE IS A MORE EFFICIENT
WAY. TRY AGAIN.

EXACT /SET P/
CA
WA

The text strings for NEXER, HINT, and WA all include a final car-

riage return in order to position the teletype at the left of a new line.

Note that a check for the expected wrong answer "LET" was made

before any check for the correct answer.

Example 8. A problem that uses an EQ command with a specified tolerance.

EXER /
SUPPOSE YOU WANT TO INSERT A NEW LINE BETWEEN LINES 17.65 AND
17.9 IN AN AID PROGRAM. WHAT LINE NUMBER WOULD YOU USE?

TELL /
17.7 WOULD BE OK. OR 17.8. OR 17.77, ETC./

HINT /
PICK A NUMBER BETWEEN 17.65 AND 17.9.

/

24

29

I
3.,

EQ /17.775,0.125/
CA

WA

Notice that the EQ command has two arguments, 17.775 and 0.125;

this is interpreted as 17.775 0.125, which includes all the numbers

oetween 17.65 and 17.9. 17.775 is found by taking the average of 17.65

and 17.9.

Example 9. An exercise with a subsequent subexercise that is not given

to all students.

Here is a series of two problems using a KW analysis and a BRCA.

(The first problem is assumed to be L3-14 followed by a subexercise that

has no number.)

EXER /
WHO IS THE PRESIDENT OF THE UNITED STATES?

TELL /RICHARD NIXON/

HINT /

1_

HIS NICKNAME IS "DICK."

/
KW /NIXON/
WA /WRONG. TRY AGAIN.

KW /RICHARD/
BRCA L,3,15,/CORRECT/

KW /DICK/
BRCA L,3,15,/CORRECT/

SERER /HIS LAST NAME IS NIXON. WHAT IS HIS FIRST NAME?/

TELL /RICHARD/

HINT /WHAT IS PRESIDENT NIXON'S FIRST NAME?

25

1

KW /RICHARD/
CA

KW /DICK/
CA
WA

The first KW command in the problem causes a check for the key word

"Nixon." Next there is a check for either the word "Richard" or the

word "Dick." In either case, there is a branch to the next numbered

problem (caused by the BRCA commands). The effect of the BRCA commands

is to allow the student who types the entire answer correctly to bypass

the following subproblem which asks for the President's first name.

Example 10. A multiple-choice problem using the short form of Wl, W2,

and W3 action commands.

EXER /
WHICH NUMBERS ARE GREATER THAN 7?

A. 7 -15
B. 15 - 7

C. 7 - 9
D. 7 - (-2)

MC /B D/
CA
W1
W2
W3

The standard messages are used for the CA, Wl, W2, and W3 action

commands. The standard message for W1 is "WRONG," the message for W2

is "SOME OF THOSE ARE WRONG," and the standard message for W3 is "YOU

HAVEN'T FOUND ALL OF THEM."

26

3,1

The problem

EXER
LEXER
HEXER
SEXER

D. Problem Statement Commands

statement commands are:

(exercises)
(long exercise)
(numbered exercise)
(subexercise)

The only command required in a problem is one of the problem statement

commands. The four problem statement commands all have the same form

(op code)(space)(text string).

Problems are numbered automatically for the coder. Each EXER,

LEXER, HEXER and TYPE command is assigned an internal problem number;

the first one in a lesson becomes Problem 1, the second becomes Problem 2,

etc. A problem that begins with an SEXER command does not receive a

problem number. The implications of this are these: first, because an

FEXER (subexercise) has no number, there is no way for a student to

specify the problem number when he is at the choice point, i.e., when

the computer types the 'WHERE TO?" message, the student cannot request

a subproblem by number. Second, for an SEXER, a number cannot be stored

in the student's restart record (the record of his current location in

each of the strands), and consequently, if a student signs off during a

subexercise, his restart point on that strand will be the preceding

numbered problem; the next time tie student signs on and asks to continue

his lessons, he will backtrack to the last numbered problem rather than

start at the subexercise he was last working on.

With a judicious use of SEXER's the student may be asked to make

multiple responses, such as constructing tables, using more than one

27

line for his response. The entire set (one EXER and any number of

SEXER's) appears as a single problem to the student.

The difference between EXER and NEXER is that although they are both

numbered problems the problem numoer is displayed automatically if an

NEXER (numbered exercise) op code is used, but it is not displayed if an

EXER op code is used.

1. The EXER Command

The form of the EXER command is

EXER /the problem statement is given here./

Several lines may be used for thi; statement.

This command causes these actions:

(1) The text is typed on the teletype.

(2) The "reedy" character is typed. Fo:' most course types the

ready character is an asterisk. This signals the student

that the computer is ready for him to type a response.

(3) The computer waits for the student response. No further action

is taken until the student finishes his response and indicates

that he is finished by typing the "enter" character. For most

course types the enter character is the RETURN key.

(4) The student's response is edited by removing all spaces at the

beginning and end of the response and deleting all invisible

characters in the response. At this time there is a check for

control characters, such as hint or erase requests, and the

appropriate action is taken.

28

2. The NEXER Command

The form of the NEXER command is just like the form of the EXER

command:

NEXER /the exercise is written here, using as many lines
as needed./

Any problem that begins with an EXER, an LEXER or an NEXER command

is automatically numbered by the system (See Section IID, pp. 27 - 30).

When an NEXER command is encountered, the first action is a display of

the problem number.

First, there are 3 carriage returns (CR's), resulting in 3 blank
lines.

Second, the strand identification letter is typed.

Third, the lesson number is typed.

Fourth, a dash is typed.

Fifth, the problem number is typed.

Sixth, a colon and one space are typed.

Seventh, the text string following the NEXER op code is typed
exactly as specified.

For example, if the third problem in Lesson 12 of Strand T starts with

this command

NEXER / WHAT IS THE VALUE OF X SQUARED PLUS Y?

/

the display appears as

T12-3: WHAT IS THE VALUE OF X SQUARED PLUS Y?

If the text for the NEXER command begins on the second line, like

this,

NEXER /

WHAT IS THE VALUE OF X SQUARED PLUS Y?

/

29

the display is

T12-3:

WHAT IS THE VALUE OF X SQUARED PLUS Y?

3. The LEXER Command-----

The LEXER (long exercise) command is used for exercises with an

exceptional amount of text. The form is the same as for EXER and NEXhi.

This command is rarely used; see Section IIIC, p. 65, for further

explanation.

4. The SEXER Command

The SEXER (subexercise) command is identical to the EXER command.

The form is

SEXER /Problem statement is put here, using several lines

if necessary./

There is no automatic problem number or blank lines before the text of

an SEXER is displayed. If blank lines are desired, they must be put in

the text string by the coder, like this

SEXER /

To ensure several blank lines between this problem and the
last problem, put blank lines at the beginning of this text

string,/

As mentioned before, an SEXER is not numbered internally (and, of

course, no number is typed for the students). This means there is no

way to get to an SEXER other than by an automatic branch from the pre-

ceding exercises; there can be no branch command directly to an SEXER,

nor can the student request an SEXER as he can other kinds of exercises.

Since an SEXER can be reached only by going through the previous

exercise, it cannot be the first exercise in a lesson. It must always

follow an EXER, an LEXER, an HEXER, a TYPE, or another SEXER. Any number

of SEXERS may be used in a string.

30

I
E. Analysis Commands

In a problem the analysis commands must come somewhere after the

problem statement command. Analysis and action commands may be combined

in any order within the problem.

None of the analysis or action commands are used until after the

student completes his response. The duties of the analysis commands are

as follows.

First, the student response is analyzed for correctness. If the

response is correct, as specified by that analysis command, a positive

number is put into the counter SCORE; if the student response is wrong,

a negative nuffoer is put into SCORE. Note: the number is not added to

the existing number in SCORE; rather, the existing value of SCORE is

replaced by the new value.

Second, if the analysis routine includes a check on the form of

the answer, and if the student's response is in the wrong form, an error

message is sent and there is a branch back to the part of the problem

that pauses for a student response.

Third, if no error message is sent, control passes to the next

command in sequence.

The analysis commands come in pairs (EXACT and NOTEXACT). In

general, both related commands do the same analysis, i.e., send the same

"error-in-form" messages. However, the command with the NOT-prefix sets

the value of SCORE to the negative of the value which is set by the un-

prefixed command; if EXACT causes SCORE to be set to 1, then NOTEXACT

puts -1 in SCORE, and vice versa.

31

1. EXACT and NOTEXACT Commands

EXACT and NOTEXACT are analysis op codes that require text strings

as arguments. These commands, like the other analysis commands, are not

executed until after the student completes his response.

EXACT (NOTEXACT) determines whether the student response matches

the coded text string and sets the counter SCORE to +1 (-1) if there is

a match, and -1 (+1) otherwise. Leading and following spaces are ignored

in the student response.

The form of the commands is:

EXACT /Correct answer is coded here./

NOTEXACT /Put expected wrong answer here./

The text string in an EXACT command may not contain the "enter"

character; otherwise, there are no restrictions. The EXACT and NOTEXACT

commands do not cause any analysis of the form of a student response.

No "error-in-form" messages are sent.

2. MC and NOTMC Commands

MC is an analysis op code ordinarily used for multiple-choice

problems. The argument for MC or NOTMC is a text string containing one

or more letters, which may be separated by commas or spaces.

MC compares the set of student responses to the set of coded letters.

The counter SCORE is set to 1 if the student response is completely cor-

rect, -1 if completely wron6, -2 if partially wrong, -3 if partially

correct. NOTMC, of course, causes these values to be negated.

The form of the MC and NOTMC commands is

MC /List of correct choices coded here./

NOTMC /Incorrect choice coded here./

32

The student, if he wishes, may use spaces or commas to separate the

letters in his response. The letters in the student response may be given

in any order.

The MC and NOTMC commands send an error message if the student types

anything other than letters, spaces, or commas. There are five possible

results of an MC analysis:

(1) There is an error in form. An error message is sent. (The

exact content of the error message depends on the course type.
See Part VII.)

(2) The student response is completely correct. SCORE is set to +1.

(3) The student response is completely wrong, i.e., not one of the
letters he typed is correct. SCORE is set to -1.

(4) The student response is partially wrong, i.e., he typed some
and possibly all the correct answers, but also some incorrect
answers. SCORE is set to -2.

(5) The student response is partially correct, i.e., he typed some,
but not all, of the correct answers. SCORE is set to -3.

To inform the student whether he was partially correct, completely

wrong, etc., an MC command must be followed by Wl, W2, and W3 commands,

as well as a CA command.

Generally, NOTMC is used to look for expected wrong answers to

multiple-choice questions and has only one letter in the text string,

e.g.,

NOTMC /D/
WA /NO, D IS NOT CORRECT BECAUSE .../

If you use more than one letter in the text string for a NOTMC command,

be sure you know the meaning of the various possible values for SCORE:

-1, +1, +2, +3. (This is left as an exercise in logic for the adven-

turous coder.)

33

Caution: For MC and NOTMC, the entire command must be on one line, un-

like most other commands, which may use any number of lines. (This is

not much of a restriction, since all 26 letters of the alphabet may be

typed on one line!)

3. EQ and NOTEQ Commands---

The argument for the EQ and NOTEQ op codes is a text string that

may contain either one or two decimal numbers.

EQ /7.56/

EQ /7.56..04/

NOTEQ /10,5/

If the text string for an EQ command contains only one number, then

the correct response must be a number exactly equal to the number in the

coded text string.

If two numbers are coded in the text string, the second number is

used as the tolerance, i.e., the allowable difference between the student

response and the first coded number.

The command

EQ /10,2/

defines the correct answer as a number different from 10 by no more than

2, i.e., any number between 8 and 12, inclusive.

If the second number is omitted in the coding, it is assumed to be

0, i.e., there is no tolerance allowed; thus, these two commands are

equivalent,

EQ, /57.5,0/

EQ /57.5/

3I

39

I

If two numbers are in the text string, they must be separated by a

comma.

As an example of NOTEQ, the command

NOTEQ /100,2/

means that any number not between 98 and 102 is a correct answer.

The EQ and NOTEQ commands cause a check on the form of the student

response. If the response is not an acceptably formed number, an error

message is sent.

In the argument for an EQ command, any of the usual ways of writing

a decimal nu,aber are acceptable (no fractions, however). All of the

following are equivalent decimal numbers:

.5

0.5
.50

+.5

+.500.

Negative numbers, of course, are indicated by a preceding minus sign:

5
- 5.0

5.

Scientific notation may also be used for numbers:

2.3*10t5 (meaning 2.3 times 10 to the power 5).

Thus, all of the following are equivalent:

- 3.156*10t4
-.3156*10t5
- 31560

- 31560.0.

One restriction on decimal numbers is that they must be limited to nine

significant digits. Thus

. 00000000000123

35

40

is an acceptable decimal number, since it contains only three significant

digits, but

1234.567891

is unacceptable.

Caution. For EQ and NOTEQ, the entire command must be on one line. The

same restriction applies to MC, NOTMC, KW, NOTKW, EXACT, and NOTEXACT.

4. KW and NOTKW Commands

KW and NOTKW are analysis op codes requiring text strings as argu-

ments. The text string may contain carriage returns.

The KW routine determines whether the student response contains the

coded character string; if it does, SCORE is set to 1, if it does not,

SCORE is set to -1. NOTKW negates the value of SCORE.

The form of the commands is

KW /keyword or phrase/

NOTKW /undesired word or phrase/

These commands cause no analysis of the form of a student response.

No error messages are sent.

Caution: Spaces may be used as a meaningful part of the text string.

The command

KW /under/

classifies responses, such as "UNDERHANDED," "UNDERDOG," and "WONDERFUL,"

as correct. If you want to look for the word "UNDER" surrounded by

spaces, use spaces in the command

KW / under /

If there is a possibility that the words you are looking for will occur

at the end of a sentence, you may want to use an additional analysis for

36

41

the key word followed by a period:

KW / UNDER./

5. YES and NO Commands

There are no arguments for the YES and NO op codes. The forms of

the commands are

YES

NO

The YES command causes SCORE to be +1 if the student response is "y"

or "yes" and -1 if the response is "n" or "no." NO does the opposite.

If the student response is in the wrong form, i.e., anything other

than "y" or "yes" or "n" or "no," an error message is sent.

6. TRUE and FALSE Commands

The TRUE and FALSE commands are similar to YES and NO, except that

TRUE defines the correct answer as "t" or "true." FALSE is used if the

correct answer is "f" or "fa:1'3e."

An error message is sent for any other response.

37

43

F. Action Commands

The action commands, which may be interspersed with analysis com-

mands, are used to tell the student the result of the analysis of his

response r.Ind to branch him to other problems if appropriate.

There are two classes of action commands: those which are contingent

upon whether a student response is correct or wrong, and those which act

when the student types a student control character. The first class,

the contingent action commands, are executed, i.e., take action, only if

the value of SCORE is appropriate. For example, a C2 command is executed

only if the value of SCORE is +2; if the value of SCORE is not +2, the

command is simply skipped.

The usual order for analysis and action commands is one analysis

command followed by one or two contingent action commands, followed by

a second analysis command, etc. Any order that achieves the desired

result is acceptable. The coder, however, must be aware that after any

action command is executed, there is an immediate branch to the next

problem, or back to the pause for student response, or to some other

specified problem.

Summary of when contingent action commands are executed:

Op code Command executed if SCORE

CA any positive number

WA any negative number

Cl +1
Wi
C2 +2

W2 -2

C3 +3
W3 -3
BRCA any positive number

BRWA any negative number

WS any negative number

WR any negative number

38

All of the above action commands have two forms! a long form (with

a text string) and a short form (no coded text string). For example, the

long form of a WA might look like this:

WA +I'M SORRY BUT YOUR ANSWER IS WRONG.+

The short form would be

WA

with no text string. Whenever the short form is used, a standard message

is automatically inserted. The standard message for the WA is WRONG so

the short form

WA

is equivalent to

WA +WRONG

There are two kinds of standard messages: those used in the action

command (CA., WA, etc.) and those which are dependent upon the course

type. The standard action messages are added by the lesson processor

wherever a short form of an action command is used; for example, the

command

WA

is transformed into

WA /WRONG

by the lesson processor.

39

44

Standard Action Messages

Action Command Content of Message

CA "COREECT"
BRCA

WA
BRWA
WS
WR

"WRONG"

Cl "CORRECT"

C2 "CORRECT"

C3 "CORRECT"

W1 "WRONG"

W2 "SOME OF THOSE ARE WRONG"

W3 "YOU HAVE NOT FOUND ALL
THE CORRECT ANSWERS"

The content of the standard action messages may be changed by the coder

by use of the DEFINE command (see Section VI, Advanced Coding Techniques).

Standard messages determined by the course type are riot inserted

into the lesson coding by the lesson processor and cannot be changed by

the coder. A complete list of fixed standard messages is given in Part

VII.

Besides the action commands discussed above, a second group of

action commands are independent of the value of SCORE. Action commands

HINT, TELL, BRTELL, and REPET are used only if the student requests the

specific action by typing the appropriate student control character (the

"hint" character, the "tell" character, or the "repeat" character). These

commands, like the CA and WA type of action commands, cause a text dis-

play and a branch, either to another exercise or back to the beginning

of the same exercise.

4o

45

Summary of the kinds of branching done by action commands:

Op code If executed causes a branch to

CA, Cl,
C2, C3, WS

WA, Wl,
W2, W3

next problem in sequence

same problem, pause for student
response

WR same problem, with REPET text, if any,
and repeat of problem statement

BRCA
BRWA

HINT

TELL

BRTELL

whatever problem is specified by the
coder

same problem, pause for student response

next problem in sequence

whatever problem is specified by the
coder

REPET same problem, with REPET text, if any,
and repeat of problem statement

1. CA Command.

CA is an action op code with one optional argument that is a text

string. The forms of the CA command are

CA /GOOD/
and

CA

The CA command is executed only if SCORE is positive and causes a

display of the message in the text string, followed by a branch to the

next problem. If there is no argument, the CA routine displays the

standard CA message "CORRECT" before branching to the next problem.

The text string for a CA command may contain carriage returns, i.e.,

may take several lines.

48

2. Cl, C2, and C3 Commands

Cl, C2, and C3 are similar to CA except that Cl is executed only

if SCORE = 1, C2 is executed only if SCORE = 2, and C3 is executed only

if SCORE = 3.

3. WA, Wl, W2, and W3 Commands

The wrong-answer action commands are similar to the correct-answer

action commands, except that they cause a branch to the pause for student

response after the coded message is displayed. If the course type has

specified a small number of permitted trials and the student gets a wrong

answer on his last trial, he is branched to the TELL routine instead.

(See Section VII, p. 93.)

WA is executed if SCORE < 0.
W1 is executed if SCORE = -1.
W2 is executed if SCORE = -2.
W3 is executed if SCORE = -3.

4. BRCA and BRWA Commands

BRCA has four arguments: the first is a strand identifier, the second

a lesson number, the third a problem identifier, and the fourth an op-

tional text string. The arguments must be separated by commas. The BRCA

command is executed if SCORE is any positive number.

BRCA L,3,15,/VERY GOOD/

causes a branch to Problem 15 of Lesson 3 in Strand L after the message

"VERY GOOD" is displayed.

BRCA L,3,15

also causes a branch to Problem 15 of Lesson 3 in Strand L; however, the

standard CA message "CORRECT" is displayed first.

42

There are two special forms of the BRCA command. The command

BRCA 0,0,0,/optional message/

causes a branch to the choice point after the message is displayed.

The command

BRCA L,0,0,/optional message/

causes a branch to the student's restart point in Strand L.

The form and effects of a BRWA command are exactly like those of a

BRCA, except that a BRWA is executed only if SCORE is negative.

5. WS Command

The WS command (Wrong, but Skip to next problem) is executed if

SCORE is negative. The message is displayed and there is a branch to

the next problem; if no text string is coded, the standard wrong answer

message is used. Example:

WS /WRONG. THE CORRECT ANSWER IS 5./

6. The WR Command

The WR command (Wrong: Repeat) is executed if SCORE is negative.

The coded message is typed and there is a branch to the REPET routine,

which causes the REPET text to be typed and the problem statement to be

retyped.

The form of the command is the same as other W commands:

WR /YOUR ANSWER IS WRONG./

If the short form (without text string) is used, the standard

wrong-answer message is used.

43

18

7. TELL and BRTELL Commands

TELL has one argument that cannot be omitted; the argument is a text

string.

TELL /The correct answer is written here, using several
lines if needed./

A TELL command causes the following action if a student types the

"tell" key:

First, the coded message is displayed.

Second, there is a branch to the next problem in sequence.

The TELL command is optional. If it is omitted, the following

actions take place, if the student types the "tell" key:

First, the standard TELL message "NO ANSWER WRITTEN" is displayed.

Second, there is a branch back to the pause for student response.

Notice that a branch to the next problem occurs only if a TELL

command is specified in the coding.

The BRTELL command is similar in format and action to the BRCA and

BRWA commands.

BRTELL T,5,2,/

THE CORRECT ANSWER IS 23.7./

The above command causes the text to be typed; then there is a branch to

problem T5-2.

Caution: Only one TELL or BRTELL may be used in a problem.

8. HINT Command

The HINT commands are optional and must follow one another.

HINT has one argument that is not optional; the argument is a text

string containing a message that is displayed on the teletype if called

44

49

by the student (usLng the "hint" key).

HINT /Put the first hint here./

HINT /A second hint may be coded after the first hint./

After the text is displayed there is a pause for a student response.

The second time a student requests a hint he is given the second hint,

etc. In no case is there a branch to the next problem in sequence.

If no HINT command is given, the student who requests a hint gets

a standard message "NO HINTS WERE WRITTEN."

If HINT commands are given, but a student requests more hints than

are available, he gets a standard message "THERE ARE NO MORE HINTS."

9. The REPET Command

The REPET command, like HINT and TELL, is optional. The form of

the command is

REPET /READ CAREFULLY./

If a student requests a repeat of the exercise, the text frcm the

REPET command is displayed, followed by the text from the problem state-

ment. If a student requests a repeat and no REPET command was coded,

only the problem statement is typed.

The REPET text is also used if a WR action command is executed.

(See WE, Section IIF, p. 43.)

145

so

r

G. Miscellaneous Commands

All commands discussed so far in Part II (problem statement commands,

analysis commands, action commands) are used in coding an individual exer-

cise. A lesson, however, also contains commands which are not properly

part of any exercise in the lesson. These commands are

LESSON, EOL

TYPE

JMPGE, JMPL

DEFINE

COMMENT

CRUNCH

NEXT

Only the LESSON and EOL commands are required in a lesson; all others

are optional.

1. The LESSON and EOL Commands

A course consists of several strands, each of which is divided into

lessons; strands are simply a device for organizing the lessons into

different categories with a provision for duplicate lesson numbers, e.g.,

there may be a Lesson 1 in each strand.

Each course may be divided into many strands. The strands are iden-

tified by a "strand identifier," a word of one to six letters. For example,

a strand may be named "INTRO" or "TEST" or simply "L" or "T."

Lessons within a strand are identified by the strand identifier,

followed by a lesson number. For example, if a strand is identified by

the letter "L," then the eighth lesson in the strand would be identified

as "L8." The lesson numbers must be natural numbers (1,2,3,...,999),

but the lessons need not be numbered consecutively.

46

When a lesson is coded, it must be identified by strand and lesson

number. This is accomplished by putting a lesson command at the begin-

ning of the coded lesson. For example, to code Lesson 25 in Strand T,

start with this command:

LESSON T,25

The problem coding (described in the preceding sections) in a lesson

starts immediately after the identifier command for the lesson. After

all the problems for the lesson are coded, the lesson ends with the "end

of lesson" command:

EOL

2. The TYPE Command

TYPE commands are used for text display only and are similar to the

EXER command, except that there is no pause for student response. For

example, the command

TYPE

LESSON 1

INTRODUCTION TO PROGRAMMING

causes the following to be typed on the student's teletype.

LESSON 1

INTRODUCTION TO PROGRAMMING

There is no pause for a student response.

3. The JMP Commands

The commands JMPGE (Jump if Greater than or Equal to) and JMPL

(Jump if Less than) are used to specify branching contingent upon the

student's performance in the lesson. For example,

47

52

53

JMPGE 75,T,5,1,+

END OF LESSON

GOOD WORK+

checks the student's performance record. If he has a score of greater

than 75 percent on the lesson, the message

END OF LESSON

GOOD WORK

is typed and the next exercise given is Strand T, Lesson 5, Problem 1.

A JMP command may be used after any exercise in a lesson, not neces-

sarily just at the end. For example, if the following command is used

after the fourth exercise in a lesson, it is executed if the student has

achieved 60 percent or better for the first four exercises.

JMPGE 60,CALC,6,1,+GOOD WORK.+

Notice that the JMP commands are similar in format and action to

the BR commands. The main difference is that BRCA and BRWA depend only

upon one student response whereas JMP depends upon a cumulative record.

Several JMP commands may be given in sequence. Suppose, for example,

that a certain lesson is used as a pretest and that students take Lesson

P1 if they scored less than 50 percent correct, they take Lesson P2 if

they scored between 50 percent and 8o percent correct, and they take

Lesson P3 if they scored better than 80 percent correct. The following

commands accomplish the desired result.

JMPL 50,P,1,1,+

YOU SCORED LESS THAN 50%

HERE ARE SOME PRACTICE PROBLEMS FOR YOU.+

JMPL 80,P,2,1,+

YOU DID QUITE WELL BUT YOU NEED A LITTLE MORE PRACTICE.+

48

JMPGE

EXCELLENT WORK.4-

A detailed explanation of how the student's percentage score is

calculated is given in Section IIH, p. 51.

1. The DEFINE Command

The DEFINE command is used by the coder to define new op codes. Any

combination of commands may be grouped together and given a single name,

which may then be used as a new op code. DEFINE is actually an assembly

language op code used as a command to the lesson processor. The use of

MFINE is relatively complex and is discussed in detail, with examples,

in Section III, Advanced Coding Techniques.

5. The COMMENT Command

The COMMENT command is used to insert comments or notes to yourself.

They do not affect the way the lesson is presented to students. For

example, you might want to use comments like this:

COMMENT /

LESSON CODED JAN. 1, 1929

REVISED DEC. 31, 1940

REVISED JULY 4, 1980 /

COMMENT commands may be used anywhere in a lesson including before

the LESSON command (a most usefUl place) or after an EOL.

6. The CRUNCH Command

The CRUNCH command is an editing command and is ordinarily executed

before any analysis commands. All it does is request INST to remove

spaces from the student response. For example, the following student

49

55

responses might all be considered as reasonably correct responses to

some exercise.

2+3 = 5

2+ 3= 5

2 + 3 =5

2 + 3 = 5
,L.

To facilitate the analysis of such responses, code the exercise like this:

EXER / WRITE IN SYMBOLS:

TWO PLUS THREE EQUALS FIVE.

CRUNCH

EXACT /2+3=5/

CA

WA

7. The NEXT Command

The NEXT command is used to manipulate a student's restart record.

Usually, when a student starts a new day's work, he restarts at the same

exercise he was last working on. In some cases, it is best to start the

student at the following exercise. To accomplish this, use a NEXT op

code in the exercise, like this:

EXER / DO YOU WANT TO START A NEW LESSON NOW?

YES
CA /OK/
WA /TYPE CTRL -Z TO STOP FOR TODAY/
NEXT

The NEXT command may be placed anywhere in the problem coding with

the same effect.

50

1

H. Lesson Score Counters and X Problem Statement Commands

As mentioned before, the INST program which interprets lessons coded

in the INSTRUCT language also keeps a record of how well each student is

doing on each lesson. JMP commands are used to compare a student's per-

formance to some specified criterion and to decide what lesson (or

exercise) he should take next derending upon whether or not he met the

specified criterion. For example, the command

JMPGE 70,T,5,1,/GOOD WORM/

causes the following actions.

First, LESCOR, the student's percentage score in the lesson, is

calculated. Then his score is compared to the specified criterion, in

this case 70 percent. If the student's score is greater than or equal

to 70 percent, he is branched to Exercise T5-1 after seeing the message

GOOD WORM

If the student's score is less than 70 percent, no action is taken; he

simply continues with the same lesson (of course, there may be a JMPL

command or another JMPGE command right after the first one, in which case

the student might be branched to elsewhere and not really continue the

same lesson).

To understand exactly how the student's percentage score is calcu-

lated, one must know the kind of student performance record kept by the

INST program. Basically, the percentage score is calculated by dividing

the number of exercises correct by the number of exercises done. The

complications arise when one asks exactly what constitutes an exercise

"done," or an exercise "correct." If the student's first response is a

51

56

request for the correct answer, was the exercise "done"? If the student

responds incorrectly the first time and then makes a correct response,

is the exercise counted as "correct"? Or must the first response be

correct? If the student's response is a request for a repeat, and his

second response is correct, should not the response be considered correct?

The INST program makes these decisions by considering some student

actions to be unresponsive, i.e., not genuine responses; in particular,

all uses of control commands are considered to be unresponsive, so a

student is not penalized if he asks for a repeat, or a hint.

If the student makes any genuine response to an exercise, then the

exercise is counted. If his first response is correct, it is counted as

an exercise correct, otherwise the exercise is marked wrong, even if the

student eventually gives a correct response.

The lesson score counter is used for only one lesson at a time and

may be checked (by using JMP commands) at any time within the lesson.

The JMP commands do not disturb the value of the counter, so any number

of JMP commands may be used at any desired places. The counter is reset

to zero whenever a student changes lessons, or even if he starts the

lesson again from the beginning; however, if the student recycles through

part of the lesson without going all the way back to the first exercise,

the counter is not reset to zero, so the score simply accumulates.

There may be times when you do not care what a student responds to

an exercise. For example, if you want to ask the student's opinion with

a question like

DID YOU LIKE THIS LESSON?

52

57

I

and ycu want any answer he makes to be ignored as far as scoring is

concerned, use an X in front of the op code, like tlis:

XEXER /

DID YOU LIKE THIS LESSON?

/

The X is a signal to the INST program to leave the value of the

lesson score counter unchanged.. Any of the EXER op codes may be pre-

fixed with an X: XEXER, XNEXER, XSEXER, XSEXER.

53

58

TYPE

EXER

XEXER

NEXER

XLEXER

LEXER

XLEXER

SEXER

XSEXER

Summary of Numbered Op Codes

Display problem
number?

Internally
numbered?

Wait for
student response?

Changes
LESCOR?

No Yes No No*

No Yes Yes Yes

No Yes Yes No

Yes Yes Yes Yes

Yes Yes Yes No

No Yes Yes Yes

No Yes Yes No

No No Yes Yes

No No Yes No

*If TYPE is the first command in a lesson, LESCOR will be set at zero.

54

59

I

J. Top-level Commands and Order of Execution of Commands

Certain commands are known as top-level commands:

TYPE

EXER, XEXER

SEXER, XSEXER

LEXER, XLFXER

NEXER, XSEXER

JMPGE, JMPL

EOL

In the ordinary course of events, each command in a lesson is exe-

cuted in order. There are a number of exceptions, such as WA, which

causes a branch back to a previous section of code, and BRCA, which

causes a branch to a specified problem. In some cases, a branch to the

next top-level command bypasses all intervening commands. Commands that

cause a branch to a following top-level command are

CA, Cl, C2, C3

WS

TELL

TYPE

pax

IMPGE and JMPL also cause a branch to a top-level command, but not neces-

sarily the immediately following one. The branch is to a command specified

by the coder.

55

60

TYPE

EXER, XEXER

SEXER, XSEXER

LEXER, XLEXER

NEXER, XNEXER

JMPGE

JMPL

EOL

61

Summary of Top-level Commands

Displays Wait for student
text? response?

Branches to
where?

Yes No Next top-level command.

Yes Yes Next command, either top
level or low level.

Yes Yes Next command, either top
level or low level.

Yes Yes Next command, either top
level or low level.

Yes Yes Next command, either top
level or low level.

Yes
(optional)

No

If criterion is met, goes
to specified problem.
Else, goes to next top-
level command.

Yes
(optional)

No

If criterion is met, goes
to specified problem.
Else, goes to next top-
level command.

No No
Goes to first problem of
next lesson on same strand.
If none, gees to "end of
strand" routine.

56

K. Summary of Commands

Top-level commands are marked with an asterisk *.

Number of Kind of
Op code arguments argument Comments

LESSON 2 Strand identifier. Pseudo op code. Marks
(1 to 6 letters). beginning of a lesson.
Lesson number.

*EOL none Pseudo op code. Marks
end of lesson.

*EXER 1 Text string. Displays problem text.
*LEXER Pauses for student
*SERER response.

*NEXER 1 Text string. Displays problem number
and problem text. Pauses
for student response.

*TYPE 1 Text string. Displays text. Branches
to next top-level command.

TELL 1 Text string. Displays text of correct
answer when requested by
student. Branches to
next top-level command.
Default routine causes
branch to pause for
student response.

BRTELL 4 Strand identifier. Displays text when re-
Lesson number. quested by student.
Problem number. Branches to specified
Text string. problem.

REPET

HINT

1 Text string. Displays text when
student requests a
repeat. Branches to
beginning of same
exercise.

1 Text string. Displays text for hint
when requested by student.
Pauses for student response.

57

62

Number of Kind of
Op code arguments argument Comments

EXACT 1 Text string. Analyzes student response
for exact match. Sets

SCORE.

MC 1 Text string. Analyzes response to
containing list multiple-choice problems.
of letters. Sets SCORE to 1 if com-

pletely correct, -1 if
completely wrong, -2 if
partially wrong, -3 if
partially correct. Checks

form of response.

EQ 1 Text string Analyzes response for
containing: equality with coded
number and number, within tolerance
optional number, specified by second
giving tolerance. number. Sets SCORE.

Checks form of response.

KW 1 Text string. Analyzes response for
existence of coded text
string. Sets SCORE.

NO 0 Analyzes response for
"no" or "n." Sets SCORE.
Checks form of response.

YES 0 Similar to NO.

TRUE 0 Checks for "true" or "t."
Sets SCORE. Checks form
of response.

FALSE 0

LIST *undefined*

SET *undefined*

NOTEXACT
Similar to op codes
described above, with
negation of SCORE.

NOTKW

58

61

Similar to TRUE.

Op code
Number of
arguments

Kind of
argument Comments

CA 1 Optional text string. Executes only if
SCORE > 0. Displays
message. Branches to
next top-level command.

Cl 1 Optional text string. Executes only if
SCORE = 1. As for CA.

C2 1 Optional text string. Executes only if
SCORE = 2. As for CA.

C3 1 Optional text string. Executes only if
SCORE = 3. As for CA.

WA 1 Optional text string. Executes only if
SCORE < O. Branches to
pause for student response.

W1 1 Optional text string. Executes only if
SCORE . -1. As for WA.

W2 1 Optional text string. Executes only if
SCORE = -2. As for WA.

W3 1 Optional text string. Executes only if
SCORE = -3. As for WA.

BRCA 4 Strand identifier. Executes only if
Lesson number.
Problem number.
Optional text string.

SCORE > O. Displays
message. Branches to
specified problem.

BRWA 4 Strand identifier. Executes only if
Lesson number.
Problem number.
Optional text string.

SCORE < O. Displays
message. Branches to
specified problem.

WS 1 Optional text string. Executes only if

WR Optional text string.

59

SCORE < O. Displays
message. Branches to
next top-level command.

Executes only if
SCORE < O. Displays
messages. Branches to

REPET routine.

Number of Kind of

Op code arguments argument Comments

*JMPGE 5 Percentage criterion. Compares student score

*JNOL Strand identifier. with criterion. If

Lesson number. condition met, branches

Problem number. to specified problem.
Opticnal text string. Else, branches to next

top-level command.

CRUNCH 0

NEXT 0

DEFINE variable

COMMENT 1

65

Text string.

60

Removes spaces from
student response.

Sets student restart
point to next problem.

Defines macros.

Allows insertion of
notes to coder. No

effect on lesson
presentatioil.

III. THE PDP-10 IMPLEMENTATION

Two major programs ere needed for the implementation of the INSTRUCT

coding language. One of these, the teaching program, controls the inter-

action between the student and the computer at the time the student is

taking a programmed lesson. The teaching program is actually an inter-

preter that interprets the problem coding and interacts with the student

in accordance with coded instructions. This program is called INST.

The teaching program is not equipped, however, to interpret problem

coding as originally coded in the language described previously. The

coding as written by the coder must first be transformed into a numeric

code that can be understood by the teaching program. This transformation

into a numeric code is known as "processing"_and is done by a program

called the "lesson processor." Processing takes place before a lesson

is used by a student and a lesson is processed only once, whereas it is

interpreted (by INST) every time the student takes the lesson.

61

qG

A. The Lesson Processor

After a lesson is coded, the lessor processor must be used to put

the coding into a form that can be used by the teaching program (for

detailed instructions on how to use the lesson processor see Section IV,

pp. 66-67). Each op code is translated into a numeric code; KW, for

example, becomes 13,* NOTEQ becomes 22, ana so on. Each character in a

text string is translated into a teletype liaracter code; the letter A

becomes 101, B b.acomes 102, etc.

In addition to making the relatively straightforward translation

described above, the processor also performs the task of inserting stan-

dard messages in all appropriate places, that is, wherever the coder has

used the short form of an action command.

The lesson processor also makes a directory of each lesson, giving

the exact location of each numbered problem, and makes a few necessary

calculations, such as the length of each text string and the length of

each problem.

The processor then creates a new file containing the processed code

for the lesson. The new file is named with the strand identifier and

lesson number; if a lesson begins with the command

LESSON TEST,29

the processed code is put on a file named:

TEST.029

As for nomenclature, before processing the coded lesson is known as

a "text file"; after processing into numeric code, the lesson is known

as a "binary file."

*For those who are interested, the numeric codes used as examples here
are o...!tal numbers. The numeric code produced by the lesson preprocessor
is nevertheless knovu as "binary code."

62

67

B. INST: The Teaching Program

After a coded lesson is processed, it can be used by INST as in-

structions for interacting with students. As soon as a lesson is put

on the lesson file, it becomes available to the students.

The purpose and branching structure of the teaching program have

been described in detail in previous sections. The teaching program is

actually an interpreter that acts in real-time to interpret lesson

coding in order to interact with students in the desired way.

63

68

C. Limitations Imposed by the Implementation

The implementation of any programming language necessarily imposes

some restraints that are not a logical result of the language itself.

Rather, the restraints result from considerations of space and time,

which present themselves to any programmer working with a real machine.

The implementation of the coding language described in this manual is no

exception. Every system designer hopes, of course, to provide a system

in which the limitations are as innocuous as possible, and here again

there is no exception. Following is a list of those limitations that

are of interest to the coder.

1. There is no restriction in the number of strands but restart

information is permanently saved for no more than six strands.

(The "restart information" simply tells where each student is

on each strand.)

2. There are no more than 128 numbered problems per lesson (but

there is no restriction on the number of SEXERs).

3. Lesson numbers must be between 1 and 999.

4. Lessons need not be consecutively numbered, but en empty lesson

is interpreted as the end of the strand if encountered during

an automatic skip from the last problem of the previous lesson.

Lessons that follow an empty lesson may be requested by number

by the student or may be accessed by a branch command in the

coding.

5. The student response is limited to 80 characters.

6. Strand identifiers must be one to six letters.

64

69

7. The amount of coding used in an exercise is restricted to 400

computer words of processed code. In practice, only unusually

long exercises will exceed this limit, and since it is impossible

for the coder to calculate how long his processed code is, the

lesson processor checks the length and eves an error message

if the exercise is too long. If the error is caused by an ex-

ceptional amount of text in the EXER command, you may be able

to get around the restriction by using an LEXER (long exercise)

command in place of the EXER. The LEXER allows an unlimited

amount of text in the problem statement itself, but is more

inefficient in operation than other EXER commands. Thus it

should be used only whey. needed.

65

7n

IV. HOW TO PROCESS A LESSON

The main steps in coding a lesson are:

(1) Coding the lesson, using TVEDIT or ED, the PDP-10 text editors.

(2) Assembling the lesson (the first stage of processing).

(3) Correcting assembly errors, using TVEDIT or ED, and assembling

again.

(4) Loading the lesson (the second stage of processing).

(5) Debugging, using INST.

The coder must he able to sign on and off the PDP-10, use TVEDIT

or ED, use the PDP-10 assembler for lessons, use the LOADER program,

list lesson files, use INST, and use PIP. Manuals are available for

TVEDIT, ED, and PIP. Instructions for signing on and off are best given

by an experienced person.

Once a lesson has been coded, using TVEDIT or ED, the lesson must

be assembled by the following method.

You type Explanation

R FAIL 30 (CR) Start the FAIL assembler.

T *-PRO,L15(CR) Assemble Lesson L15. It will be put on a

temporary file named T. If there are syntax

errors in the lesson, error messages will

be printed. The error must be corrected
and the lesson assembled again before pro-
ceeding. If there are no syntax errors
(unlikely), the computer will print another

asterisk.

CTRL -C

71

Stop the FAIL assembler. At this point, the

first stage of processing is complete unless
there were error messages. If there were

errors, you must correct them and assemble

the lesson again before you proceed.

66

After the first stage of processing is completed, the processed

lesson must be loaded as follows:

You type Explanation

LOAD (CR) Start the loader program.

T$ Type T followed by alt-mode (alt-mode is
Ctrl-Shift-K on the teletypes). If there
are no errors, the computer will respond
with

S (CR)

LOADER nKCORE
m +nK MAX xxxx WORDS FREE
EXIT
tC

which indicates that the lesson is loaded
into core.

Type S to save a lesson file. When the

computer types

LESSON SAVED
tC

the lesson is completely processed and ready
for student use

After the lesson is completely processed, you may get a snort. form

of the lesson listed by using the PRINT program; the PRINT program lists

just the problem numbers and the text of the exercise statements without

all the other coding.

67

72

V. DEBUGGING A LESSON

The first stage in debugging a lesson is to remove syntax errors

detected by the FAIL assembler or syntax errors found by the coder try-

ing to save the lesson by typing S.

These are some common syntax errors which will be found by FAIL:

Error FAIL prints

no LESSON command UNDEFINED VALUE AFTER

TOO MANY BENDS

UNREC SPC CHR

TWO ADDRESS FIELDS OR UNDEF OPCODE

UNBAL PARENS

ILLEGAL CHAR STARTS EXPRESSION

FATAL

END OF FILE & NO END STMT

no EOL command FATAL

missing comma in BR command
(e.g., BRCA L,11,8/VERY GOOD/)

misspelled op code (e.g.,
HNT + USE THE...)

73

END OF FILE & NO END STMT

FAIL prints the 8 and then prints
the text string. Also,

TWO ADDRESS FIELDS OR UNDEF OPCODE

ILLEGAL CHR AFTER OPERATOR

Then each word of the text string is
listed separately like

VERY UNDEF 000000

GOOD UNDEF 000151

FAIL prints the misspelled op code
and the delimiter if there is one.
Then --

68

F

ILLEGAL CHR AFTER OPERATOR

TWO ADDRESS FIELDS OR UNDEF OPCODE

UNREC SPC CHR

HNT UNDEF 000000

USE UNDEF 000517

THE UNDEF 000465

One other error that FAIL will detect is an error in using FAIL.

If you do not specify a large enough number in your command

R FAIL 30

FAIL will stop processing the lesson and print

ILL MEM REF AT USER nnnnn

A c

Simply increase the number so the command reads

R FAIL 35 (or R FAIL 40, etc.)

35 or 40 should be large enough for almost all lessons and it is best

to use the smallest number possible.

You may see these error messages after you type S to start the

lesson file:

Message What to do

PROBLEM NUMBER XXX IS TOO LONG. Change the EXER or NEXER to an LEXER.

LESSON NUMBER TOO BIG. LIMIT

IS 999.

Either revise your numbering scheme
if the number is too large or else
check the LESSON command to make sure
you have a comma between the strand
name and lesson number; there must be
no extra spaces in the LESSON command.

69

74

Message What to do

ERROR: TOO MANY CHARACTERS IN
STRAND NAME. LIMIT IS 6.

DISK ERROR

Change your strand name to six letters
or fewer; if it already is, check the
commas and spacing in the LESSON
command.

Not much can be done about this ex-
cept to try again, including starting
over with the processing if necessary.

After a lesson has been completely processed without errors, it

must be carefully debugged before it is ready for student use. There

is a variety of ways that this can be done, but we suggest only one

method that has proved useful.

To debug a lesson thoroughly, the coder should go through the lesson

as a student several times, checking each time for different things. To

take a lesson, sign on to the computer and wait for it to print

c

You type Explanation

. L INST (CR) Load the INST program.

WHAT COURSE?

* G,COD (CR)

WHAT LESSON DO YOU WANT?
(or "WHERE TO?")

* L15 (CR)

7 5'

The computer will only ask coders and
programmers "What course?" Real
students will never see this message.
Answer by typing a carriage return if
you are signed on to the same user
number used when coding and processing
the lesson. Otherwise, answer by
typing the user number where the
lessons were coded.

Type the strand name and lesson number
of your lesson.

70

At this point the computer will type out the first problem of your

lesson, and you are ready to begin debugging. These steps are a useful

approach to lesson debugging,

(1) Take the lesson as if you were a student, making a few reason-

able mistakes, asking for a few hints, repeats, and answers.

This is a good way to see how the lesson would look to a stu-

dent and to see if the overall lesson is reasonable and

consistent.

(2) Take the lesson again asking for all repeats and hints and

giving all correct answers.

(3) Take the lesson a third time to check all the wrong answers

for which there was special coding and then check each TELL.

(1k) If necessary, take the lesson once more to check anything else,

such as branching with JMP commands.

At any point in your lesson INST may detect some kind of coding

error and print an error message like this:

I'M SORRY, THERE IS SOMETHING WRONG WITH THIS LESSON.

PLEASE TRY ANOTHER LESSON.

L15-4 --- 3-18

On the last line INST, if possible, identifies the specific problem where

the error occurs, then gives the error type (see list of error numbers

on p. 74), and finally the op code number (see p. 75). So the above

error in problem L15-4 is of type 3 in op code 18. After printing the

message the program will branch to the choice point.

You may also get an error message that looks like this:

I'M SORRY, THERE IS SOMETHING WRONG.

9

76

The numbers will range from 1 to 10. The program will stop.. Errors

which cause this message to be printed are either system errors, machine

errors, or program errors. There is very little you can do about these

errors except reprocess your lesson and try again.

After you have debugged your lesson, correct your errors using

TVEDIT or ED. Then process the lesson again. This time when you type

S to save the lesson the processor will print

TO REPLACE L15 TYPE "REE."

C

After you have typed "REE(CR)" and the program has printed

LESSON SAVED.

tC

you are ready to look at your lesson once more to see that you made all

the changes you intended.

72

77

A. Location of Lessons and Coding

Lessons should be coded, processed, and debugged on a user number

different from the user number available for student use. Thus a student

will not accidentally get a lesson which has not been debugged.

In order for the lessons to be available to students, they must be

in the directory for the LES user number (e.g., Q; XS) for your project.

Use PIP to transfer the final binary files to this user number.

If the user number used for coding and debugging lessons has the

same project number as the LES user number (e.g., A,LES and A,COD), the

same options and messages will be available to the students. Otherwise,

the general set of options specified for course type 0 (see Course Types,

Section VII) will be in effect,

73

'78

Coding Error Types

Error Possible Remedy

1 Problem too long Use an LEXER;for the problem statement.
1

1

2 Error in MC argument Check format Are all arguments

3 Error in EQ argument there? Are mere unnecessary

4 Error in form of branch spaces?
command

5 Branch to non-existent Check to see that problem is really
problem

there, or thit proper problem is

named.

6 Error in op code number Probably cauEted by the processor, so

Iprocess the :.esson again.

777 Unidentifiable coding
error

79

First try pri)cessing the lesson again.

If that does not help, look over the

text of your coding until you find

the error,

74
I

Op Code Numbers

1 NEXER 26 Cl

2 SEXRR 27 C2

3 HINT 28 BRCA

4 TELL 29 C3

5 CRUNCH 30

6 LEXER, TYPE, EXER 31

7 BRTELL 32 --

8 33 WA

9 MC 34 W1

10 EQ 35 W2

11 KW 36 BRWA

12 EXACT 37 WS

13 38 NEXT

14 39 W3

15 YES 4o WR

16 TRUE 41

17 NOTMC 42

18 NOTEQ 43 --

19 NOTKW 44 JMPGE

20 NOTEXACT 45 JMPL

23 NOTMN* 46 REPET

22 47 --
23 NO 48

24 FALSE 49

25 CA 50

*Not yet implemented.

75

20

VI. ADVANCED CODING TECHNIQUES

In addition to thn op codes used in INST another available coding

device is the "macro." A macro is a string of text with a name and

optional substitutable arguments. Macros are part of the FAIL assembler

language and are processed in the same way as op codes and other FAIL

commands. Coders may regularly use three different kinds of macros.

(1) The first kind is not actually part of the coding, but may

be used to redefine the standard action (CA, WA, etc.)

messages. Using one of these macros saves a coder from

having to code a special message for each action code.

(2) The second kind is one without any arguments. It is used

to duplicate a section of coding without having to retype

the section each time it is used

(3) The third kind may hay,: a variable number, of arguments.

This kind of macro is effective where a set of exercises

uses the same format, instructions, etc., and where the

content varies only in minor ways.

DEFINE is the command used to generate macros. The most basic form

of a macro is

DEFINE now <

text

The symbols < and > are used as delimiters. Braces, andl may

be used instead, but since they are not available on teletype keyboards,

it seems better to use < and > .

76

81

Every macro is given an identifying name which must begin with a

letter. In the example the macro name is "now." The macro name is

limited to six characters and may consist of any combination of letters

and numbers beginning with a letter. The text may be any string of

characters, but for our purposes it is generally either the definition

of a standard message or a segment of lesson coding.

77

82

83

A. Changing the Standard Messages

You may perhaps wish to change the standard WA message from "WRONG"

to "NO. TRY AGAIN." To do this, write a macro like this:

DEFINE STDWA <

ASCIZ / NO. TRY AGAIN.

/ >

"STDWA" is the macro name for "standard wrong answer," and < and > are

the macro delimiters. The INSTRUCT delimiter is /; since you may use

almost any character as a delimiter in INSTRUCT, the same is true '.ere.

However, since > is the closing delimiter for macros, do not use it as

an INSTRUCT delimiter within a macro. ASCIZ is a special command to

the FAIL assembler which must be included, so that the message is trans-

lated into the proper teletype code.

The standard messages for the following action codes may be re-

defined by the coder:

Op codes Names for macros

CA STDCA

Cl STDC1

C2 STDC2

C3 STDC3

WA STDWA

WS STDWS

W1 STDW1

W2 STDW2

W3 STDW3

The WR standard message is always the same as the WA standard message.

After the standard message has been redefined for an action code,

the lesson processor will insert the new standard message every time

78

L

fi

j

the short form of that code !..s used No change will be made in the

standard messages of lessons processed earlier. These standard message

definitions should be put on a TVEDIT or ED file that is different from

your coding files and the file used in your processing (see Section VII,

Part F, Storage and Processing of Macros).

79

84

B. Macros Without Arguments

In coding you may find that certain segments of code are frequently

used. For example, in the programming courses problems often ask a

student to stop the INST program and use either the AID interpreter or

the BASIC compiler to do a program. For these problems a macro such as

this may be useful;

DEFINE USEAID <

EXACT ++

WA + USE AID FOR THIS PRORLEM.

NOTEXACT ++

WA + USE AID FOR THIS PROTERm.

NEXT >

To use the macro, insert its name into your coding in the appropriate

place:

XEXER + WRITE A PROGRAM THAT WILL PRINT THE CIRCUMFERENCE

AND AREA OF A CIRCLE GIVEN THE RADIUS. TEST YOUR PROGRAM

ON AID. +

USEAID

When the lesson is processed, the code will be expanded to this:

XEXER + WRITE A PROGRAM THAT WILL PRINT THE CIhCIDIFERENCE

AND THE AREA OF A CIRCLE, GIVEN THE RADIUS. TEST YOUR

PROGRAM ON AID. +

EXACT ++

WA + USE AID FOR THIS PROWPm.

NOTEXACT ++

WA + USE AID FOR THIS PROBLEM

NEXT

8o

85

By using EXACT and NOTEXACT with empty arguments and WA's, we insure that

the student cannot go directly on to the next problem. If he types any-

thing besides what is necessary to use AID, he will be reminded to use

AID. Since programming problems like this occur frequently in the AID

and BASIC courses, a macro like this is used regularly.

Another example of a macro with no arguments is the ENDHW (END

Home Work) macro used in other courses.

DEFINE ENDHW <

EXACT ++

BRCA 0,0,0,+ GIVE YOUR HOMEWORK TO YOUR TEACHER WHEN

YOU HAVE FINISHED. +

NOTEXACT ++

BRCA 0,0,0,+ GIVE YOUR HOMEWORK TO YOUR TEACHER WHEN

YOU HAVE FINISHED. +

EOL

The above macro is used only for exercises that a student is to

tear off and take home to do. For example:

LESSON HW,1

XEXER + THIS IS YOUR HOMEWORK. TEAR ON THE DOTTED LIRE

AND TYPE RETURN.

XSEXER + HOMEWORK

USE THESE WORDS IN SENTENCES THAT SHOW YOU UNDERSTAND

THEIR MEANINGS.

READY

ALWAYS

ALONE

81

PP

TEAR ON THE DOTTED LINE AND TYPE RETURN.

ENDHW

The lesson consists of only two problems. Since the first problem (XEXER)

has no analysis or action commands, anything the student types causes

the program to go immediately to the XSEXER. The EXACT and NOTEXACT in

the macro are part of the XSEXER problem. Anything a student types for

that problem causes the program to print

GIVE YOUR HOMEWORK TO YOUR TEACHER WHEN YOU HAVE FINISHED.

and then to branch to the choice point. (Remember: any branch command

which gives strand, lesson, problem as 0,0,0 causes a branch to the

choice point.)

82

87

C. Macros with Arguments

Some portions of coding may be basically the same with only minor

text variations. Macros may be used for this kind of coding, too, using

arguments to substitute for the variations. In the following example

TEXT is the argument name. Whatever is substituted for TEXT is the

actual argument.

DEFINE NP2 (TEXT) <

EXER +

THE NOUN PHRASES IN THIS SENTENCE ARE UNDERLINED.

TYPE THE SECOND NOUN PHRASE.

TEXT

To use the macro, type the macro name, followed by a space, followed by

the argument. For example,

NP2 <

OUR PARENTS ARE TAKING A VACATION

This is processed as

EXER +

THE NOUN PHRASES IN THIS SENTENCE ARE UNDERLINED.

TYPE THE SECOND NOUN PHRASE.

OUR PARENTS ARE TAKING A VACATION.

Notice that carriage returns are an important part of the argument. If

a macro argument requires more than one line it must be enclosed by the

delimiters.

83

88

89

A macro may use the same argument in more than one place. That is,

an argument will be inserted wherever the argument name is specified in

the macro. Further, there may be more than one argument in a macro.

For an argument name to be identifiable to the processor, it must

be set off by spaces. If an argument is used which should not be set

off by spaces (for example, the text string for an EXACT), identify it

to the processor by a special character called the concatenation char-

acter, which is chosen by the coder. The character must be specified

in the macro definition between the macro name and the argument list.

DEFINE CHECK $ (ANSMISSP) <

NOTEXACT +$ MISSP$+

WS +NO. YOU MISSPELLED THE ANSWER.

Ti .E CORRECT SPELLING IS

ANS

EXACT +$ANSS+

CA

WA +WRONG. TRY AGAIN.

CHECK is a macro with two arguments, ANS and MISSP. ANS is

used twice, in the WS message and in the EXACT. $ is the concatenation

character. Since it is used when MISSP is the NOTEXACT text string, the

processor recognizes that the argument should be substituted there with-

out spaces. But in the WS message MISSP also occurs as part of the

message in the word MISSPELLED. Since MISSP is not surrounded on both

sides by either a space and/or a $ it is not confused with the argument.

The same is true for ANS and ANSWER. Notice that ANS in the Zest line

of the WS has no $ on either side. Since it has places on both sides,

84

it is clearly an argument. Here is an example of the macro's use:.

CHECK PLANNER,PLANER

Since neither argument has a carriage return, no delimiters are necessary.

The arguments must be separated by commas, and spaces are still important.

The above example would be expanded by the processor to this:

NOTEXACT +PLANER+

WS +NO. YOU MISSPELLED THE ANSWER.

THE CORRECT SPELLING IS

PLANNER

EXACT +PLANNER+

WA +WRONG. TRY AGAIN.

Since spacing is important in analysis codes, dc not code the above like

this:

CHECK PLANNER, PLANER

You can, of course, write macros which include all the coding for a

problem, such as this one for irregular plurals:

DEFINE IRRPLU $ (TEXT,WANS,ANS,REG) <

EXER +

TYPE THE NUMBER UNDER THE IRREGULAR PLURAL

TEXT$+

TELL +

THE CORRECT ANSWER IS "ANS."

NOTEQ +$WANS4

WA +WRONG. "$REGe IS A REGULAR PLURAL.

EQ +ANS+ .

CA

WA

85

90

This would be coded as

IRRPLU <

HIS PARENTS HAD FIVE CHILDREN.
1 2 3 4 5

>,2,5,PABENTS

Notice that thc. first argument require delimiters, since it con-

tains carriage returns, but commas are sufficient to separate the other

arguments.

86

91

D. Macros Using IFIDN and IFDIF

Two macro commands may be used to express conditions that must or

must not be fulfilled before the code will be processed, and these are

contained within the macro definition. IFIDN means "if identical," and

IFDIF means "if different." Each of these has three arguments:

IFIDN < macro argument >, < value >, < code to be processed >

"Macro argument" is the name of one of the arguments of the macro.

"Value" is a possible value of that argument, and "code to be processed"

is the last argument if the specified argument has the specified value.

IFDIF is similar, but the code is processed only if the value of the

argument is different from the value specified here.

IFIDN <LETTER>, <VOWEL>, < EXACT +ANS+

CA

WA + WRONG. REMEMBER THE VOWELS ARE A, E, I, 0, U.

The EXACT, CA, and WA axe processed only if the macro call has specified

the value of "letter'' to be "vowel." Otherwise, that section of code

is ignored.

htamember that IFDIF's and IFIDN's are embedded within the macro

definition (they may also be embedded within other IFIDN's and IFDIF's.

Be careful when you do this; it becomes complicated quickly). Here is

a complete sample macro showing an IFDIF and the use of an empty argument.

DEFINE DRILL (TEXT,ANS,BR) <

EXER +

TYPE THE NUMBER OF THE WORD THAT IS CLOSEST TO THE
FIRST WORD.

87

q2

TEXT

IFIDN
, < >, <TELL +

THE ANSWER IS "ANS."

EQ +ANS+

CA

WA >

IFDIF
, < >, <BRTELL BR$,+

THE ANSWER IS "ANS."

EQ +ANS+

BRCA BR

WA >

Coded with the DRILL macro, a problem would look like this:

DRILL <

SIBLING

1. FATHER

2. COUSIN

3. BROTHER

>,3

The above problem has no value specified for the BR argument so

BR is considered empty. The conditions for the IFIDN are fulfilled;

i.e., BR is empty, so the code for the IFIDN is processed. The con-

dition for the IFDIF is not fulfilled; i.e., BR is not different from

the empty argument, so the code for the IFDIF is not assembled.

88

3

DRILL <

PARENT

1. SISTER

2. MOTH2R

3. UNCLE

>,2,<WORDS,2,0>

This problem specifies a value for the BR argument so the condition

for the IFIDN is not fulfilled, but the condition for the IFDIF is ful-

filled: BR is different from the empty argument. The BR specifies the

arguments for the BRTELL and BRCA commands. In the macro call it is

enclosed in delimiters, since the commas would otherwise be interpreted

as separating macro arguments.

Other macro commands may be found in the PDP-10 MACRO manual.

89

94

E. Storage and Processing of Macros

Some macros, such as the USEAID and ENDHW macros mentioned in the

previous two sections, may be used frequently in your coding. These and

any redefinitions of standard messages should be put on a special TVEDIT

or ED file (perhaps with a name like DEFS). When you process your lessons

you must also process this extra file. The commands are

.R FAIL 35

*T *-PRO,DEFS,I,15

-x A C

This tells FAIL to process the DEFS

file and then L15 so that macros on

the DEFS file will be available for

the lesson text file, L15.

It is not necessary, and is in fact wasteful, to keep macros on the

DEFS file which are not regularly used. Any macros on the DEFS file

are processed every time the DEFS file is used, even if the macros them-

selves are never called. One way to avoid this, but to still keep the

macros available, is to put all rarely used macros on a separate file,

perhaps called MACROS. When a macro is needed in a lesson, use the

MERGE program to copy it onto the lesson file. After creating or copying

all the macros needed onto the text file, you can begin coding the lesson.

Then when you process your lesson, including the DEFS file if necessary,

the macros will be processed just before the actual lesson.

90

95

F. Other Notes for the Advanced Coder

The more experienced coder should remember the less frequently used

options of certain op codes to permit more answers or branching schemes.

For example, in many situations an EQ with one argument is sufficient.

But always keep in mind the optional argument which specifies a permitted

range of answers (see Section TIES p. 34).

The BR and JMP commands have two special forms which should be re-

membered.

JMPL 50,DRILL,0,0

will cause the student to be branched to his restart point in the DRILL

strand. For example, if a student is in a TEST strand and gets less than

50 percent correct, he should go back to the DRILL strand for more re-

view on that concept, starting wherever he left off before he took the

test.

If a student has never worked on the DRILL strand before, the above

command uses the first lesson and the first problem of the strand as his

restart point.

The other branching commands which can use this "branch to restart

point" form are BRCA, BRWA, and JMPGE.

The same branching commands have a form which specifies a branch to

the choice point in this way:

BRCA 0,0,0

Here is an example of the use of thf.s command in the last problem of a

lesson:

91

XEXER +

DO YOU WANT TO GO TO THE NEXT LESSON NOW?

YES

CA

NO

BRCA 0,0,0,+0.K.+

EOL

When setting up more intricate branching schemes based on percent-

ages, the coder should remember several points about the operation of

counters in INST. The SCORE counter is changed for every trial of a

problem and s only used by the action commands.

The IMP commands use LESCOR. LESCOR has two counters: one contains

the total number of problems the student has attempted in the lesson and

the other contains the number of problems in that lesson for which he

gave a correct answer on the first trial. These counters are reset only

after all trials on a problem have been completed. The two counters are

carried over from day to day. Both counters are reset to zero when a

student changes to a different lesson. Both are also set to zero if the

student is branched to the first problem of the current lesson. Any

other branching within a lesson maintains the counters.

Finally, the advanced coder may want to look in the FAIL manual

and review other macro commands which are available to him. In par-

ticular., there are a variety of other conditional commands besides IFIDN

and IFDIF.

92

97

VII. COURSE TYPES

In order to allow different control characters, different standard

messages, etc., INST provides for different course types. Each course

type determines a set of definitions for control characters, for standard

messages, and for a few other variables. Each course has a letter iden-

tifier (the same as the project number) and a course type number. For

example:

Course type Letter ID Course

1 Q AID

2 W BASIC

3 G Grammar

4 K Kendall language arts

5 A Algebra

0 none all unassigned courses

New courses require new course types.

93

Q8

A. Control Characters

There are nine control characters. The sign-off character for all

courses is CTRL-Z. Each course must define an "enter" character. All

other control characters are optional.

The "enter" character terminates a student's response so that INST

will know it is ready to be checked.

The "hint" character calls the HINT routine in INST to print the

coded HINT message or the appropriate standard HINT message.

The "tell" character calls the TELL routine to print the coded mes-

sage or the standard no-tell message..

The "skip" character allows the student to skip to the next problem

without d..)ing the current problem,

The "go" character causes a branch to the choice point and prints

the standard choice point message.

The "erase" character erases single characters and prints a slash

(/) for each character erased.

The "zap" character erases the entire line, prints the standard

message, "....ERASED," and gives a new line.

The "repeat" character calls the REPET routine.

If a new course type has not been defined for your course, use the

control characters and standard messages for course type 0. The chart

on page 95 gives the definitions of control characters for the current

course types.

911.

99

I

Enter

Hint

Tell

Skip

Go

Erase
(single characters)

Zap
(line erase)

Repeat

Sign-off

Definitions of C)ntrol Characters

0 1

Course Type

2 3 5

Return Return Return Return Return Return

? ? ? None None ?

Ctrl-G Ctrl-T Ctrl-G Ctrl-G None None

Ctrl-H Ctrl-H Ctrl-H Ctrl-H Ctrl-L Ctrl-H

Ctrl-J Ctrl-G Ctrl-J Ctrl-J Ctrl-G Ctrl-J

Rubout Rubout Rubout None None Rubout

Ctrl-U Ctrl-U Ctrl-U Rubout Rubout Ctrl-U

Ctrl-A Ctrl-A Ctrl-A Ctrl-A Ctrl-A Ctrl-A

Ctrl-Z Ctrl-Z Ctrl-Z Ctrl-Z Ctrl Z Ctrl-Z

95

100'

B. Standard Messages

Standard action messages, the messages defined for CA, WA, etc.,

have already been defined for all users of INST (see Section IIF, p. 40).

Another set of fixed standard messages that cannot be changed is defined

for all courses.

INST message ID Function Message

MM4 MC error message WRONG. TYPE LETTERS ONLY.

MM5 EQ error message WRONG. ANSWER BY TYPING A
NUMBER.

MM11 No-Tell message NO ANSWER WAS WRITTEN.

MM14 Disk or file error I'M SORRY. THERE IS SOMETHING

message WRONG.

Response too long
(i.e., more than 80
characters)

TOO MUCH ... START OVER.

MM19 Line erased ...ERASED.

MM23 Course choice WHAT COURSE?
(coders only)

MM24 Temporary name PAL
(for sign-on)

MM25 Name request for TYPE LOUR FULL NAME, THEN

automatic enroll THE RETURN KEY.

MM26 Name check for DO I HAVE YOUR NAME RIGHT?

automatic enroll TYPE YES OR NO, THEN THE
RETURN KEY.

MM28 Drill time expired THAT'S ALL FOR TODAY.

MM29 Time-out message PLEASE ANSWER SOON.

MM30 Not enrolled message SORRY. I CANNOT FIND YOUR
ENROLLMENT RECORDS.

96

101

The last set of standard messages is the set which varies by course

type. For every new course type these messages must be specified.

INST message ID Function Example

M1 Choice point message WHAT LESSON DO YOU WANT?

M2 Choice point hint TYPE THE NAME AND NUMBER OF
message THE LESSON YOU WANT.

M3 Choice point error I DON'T UNDERSTAND YOU. TRY

message AGAIN OR TYPE A QUESTION MARK
FOR HELP.

M6 Yes-No error message WRONG. TYPE "YES" OR "NO."

M7 Sign-off message GOODBYE.

M8 True-False error WRONG. TYPE "TRUE" OR "FALSE."
message

M9 No-Hint message NO HINTS WERE WRITTEN.

M10 No-More-Hints message THERE ARE NO MORE HINTS.

M12 Sign-on message HELLO,
(the sign-on routine then
fills in the student's name).

M13 Bug message THERE IS A BUG IN THIS PROGRAM.
TRY ANOTHER PROBLEM.

M15 Lesson not available SORRY. THAT LESSON IS NOT
READY YET.

M16 Problem not available SORRY. THAT EXERCISE IS NOT
READY YET.

M17 End-of-strand message YOU HAVE REACHED THE END OF
THIS STRAND.
(After printing the message,
the end-of-strand routine
then branches to the choice
point.)

M20 Number too long PLEASE LIMIT NUMBERS TO 9
SIGNIFICANT DIGITS. TRY AGAIN.

97

INIMIIMr in7

M21 Exponent too large EXPONENT TOO LARGE. TRY
AGAIN.

M22 Number base too large SIZE OF NUMBER IS OUT OF
BOUNDS. TRY AGAIN.

M27 Ready message
(This is the character
printed when the program is
ready for the student's
response.)

Note: ID numbers preceded by MM are fixed; those preceded by M are course

variables.

98

C. Other Course Type Variables

A few other features of INST are variable and must therefore be

established for each course type.

Each course type must specify whether or not a student begins at

the choice point each day. If yes, a student is asked what lesson he

wants as soon as he signs on. If no, he starts immediately at the pro-

blem he was working on when the previous session ended.

Another variable is the maximum number of trials per exercise. This

is to be specified either as a number or as "MAX." MAX is an extreme3y

large number so it appears to the student that he has unlimited chances.

Otherwise, the number specifies how many trials are allowed. If the

student uses the maximum number of trials permitted him, INST prints the

TELL message, if any, and then branches to the next problem.

The time allowed per session must also be set. The time is ex-

pressed in minutes, and after the indicated number of minutes the student

is automatically signed off. He may sign on again if he or his teacher

wants him to.

Each course also identifies up to six named strands as course

variables. The restart points of these specific strands are saved. For

the coder this means that there may be branches to the restart point in

one of these strands (i.e., BRCA L,0,0) instead of a specific problem.

It also permits a student working on one strand to go to his res art

point in a different strand, e.g., LES, by going to the choice point and

simply typing LES. Other strands may be used by the coder, but restart

points will not be saved for strands not specifically named as course

variables.

The chart on page 100 shows the values given for these variables by

each course type.

99

4

Definitions of Other Course-dependent Variables

0 1

Course Type

2 3 4 5

Does student start at
choice point each day? Yes Yes Yes No Yes Yes

Number of trials allowed
per exercise Max Max Max 3 3 5

Time allowed per day
(in minutes) Max 120 120 20 20 120

Time allowed for
response (in seconds) Max 600 600 180 180 180

Name of Strand 1 L L L INTRO INTRO LES

Name of Strand 2 None R H DIR SENT HW

Name. of Strand 3 None X T None QUES Q

Name of Strand 4 None S S None None T

Name of Strand 5 None None R None None None

Name of Strand 6 None None X None None None

105
100

1

INDEX

Action Commands, 13-16, 18, 38-45
Advanced Coding Techniques, 76-77
AID Interpreter, 80-81
Analysis Commands, 10-13, 18, 31-37

Score, 12, 31
Student response, 10-13, 31

Answer. See TELL and Student response
Asterisk, 28
Arguments, 5-6, 57-60
ASCIZ, 78

BASIC Compiler, 80
Binary File, 62, 73
Branching Commands. See BRCA, BRWA, BRTELL, WS, and Action Commands
BRCA, 14-15, 21-22, 25, '38, 40, 42-43, 59, 91
BRTELL, 40, 44, 57
BRWA, 14-15, 38, 4o, 42-43, 59, 91

CA. See also Action Commands, 14, 21, 23, 26, 38, 40-41, 55, 59;
Macro, 78

Cl, _2, C3. See also Action Commands, 14, 38, 40-41, 42, 55, 59;
Macro, 78

Capitalization.. See Punctuation
Carriage Return, 7, 22, 24, 83, 86
Choice Point, 27, 43, 97, 99
Classification and Order of Commands, 10
Coding Language, 2, 61, 64
Commands, 4-5
COMMENT. See also Miscellaneous Commands, 17, 46, 49
Concatenation Character, 84
Control Characters, 94-95
Control Keys. See also Control Characters, 3
Counter. See SCORE
CRUNCH. See also Miscellaneous Commands, 17, 46, 49-50

Course Types, 3, 93-95, 97-100
CTRL-C, 66
CTRL-Z, 94-95

Debugging, 66, 68-72, 74-75
Decimal Numbers, 34-35
DEFINE. See also Miscellaneous Commands, 17, 49, 76, 78, 80, 81, 83,

84, 85, 87.
Delimiter. See also Text Delimiter, 76, 78, 83, 85, 86

ED, 66, 72
ENTER, 3, 94-95
EOL. See also Miscellaneous Commands, 16-17, 18, 46-47, 55-57

101

106

Eq, 24-25, 34-36, 58
ERASE, 94-95
Error-in-Form Messages, 12-13, 31-33
Error Messages from FAIL, 68-70
Error Messages from INST, 65, 74
EXACT, 11, 21, 31-32, 58, 80-81
Examples of Coding, 20-26
EXER, 4, 10, 18, 22, 27-28, 54, 55-57, 65

F. See False
FAIL Assembler, 66, 68-70, 72, 76, 78
False, 11, 13, 37, 58

GO Character, 94-95

HINT Character, 94-95
HINT Commar.9, 16, 18, 21, 24, 40, 44-45, 52
HELP. Se, Hint

IFDIF, 87-89
IFIDN, 87-89
IMLAC Keyboards, 8
INSTRUCT, 1-2, 51
INST, 2, 51-52, 61, 63, 66, 70-71
JMPGE and JMPL. See also Miscellaneous Commands, 16, 18, 46, 47-49,

51-52, 55-56, 60, 91-92

KW, 11, 26, 36-37, 58

LES, 73
LESCOR, 51-53, 54, 92
LESSON. See also Miscellaneous Commands, 16-18, 46-47, 57
Lesson Driver, See Teaching Program
Lesson File. See Text File
Lesson Processor, 39-40, 61, 62, 65

Macro, 78-79
Lesson Score Counters. See LFSCOR
Lesson Number, 42, 46, 57, 59, 60, 62
LEXER, 10, 18, 27, 30, 54-57, 65
Limitations, 64-65
Linefeed. See Carriage Return
LOAD, 66-67
Lower-case Letters, 6, 8

Macro, 17, 76-79, 80-82, 83-86, 87-89
Arguments, 76, 83-89
Delimiters, 76

MC, 11, 26, 32-34, 58
MERGE Program, 90
Miscellaneous Commands, 16-18, 46-50
Multiple Responses,27-28

102

10 7

N. See NO
NEXER, 7, 10, 18, 24, 27-30, 54-57
NEXT. See also Miscellaneous Commands, 17, 46, 50
NO, 11, 13, 21-23, 37, 58
NOT Commands, 13
NOTEQ, 11-12, 20-21, 34-36, 58
NOTEXACT, 11, 31-32, 58, 80-81
NOTKW, 11, 36-37, 58
NOTMC, 11-12, 32-34, 58
Numeric Code, 61-'62

Op Code, 4-6, 8-10, 49, 54, 57-60
Numbers, 75

Ordering of Commands, 18-19

FDP-10, 61, 66
Percentage Score. See LESCOR
PIP, 66, 73
PRINT Program, 67
Problem Identifier, 42
Problem Number, 7, 28, 57, 59-6o, 64
Problem Statement Commands, 6, 10, 18, 27-30
Punctuation, 6

Quotation Marks, 4, 6

Readability, 5
REE, 72
Repeat, 94-95
REPET Command, 16, 4o, 43, 45, 57, 94
Return Key, 28

S (in assembly), 67
Scientific Notation, 35
SCORE, 12-14, 16, 21, 23, 31-33, 36-38, 4o, 58-59, 92
SEXER, 10, 18, 27-28, 30, 54-57
Significant Digits, 35
Sign-off, 95
Skip, 94-95
Spaces, 5, 36
Standard Messages, 15, 17, 26, 39-40, 45, 78-79, 93, 96-98

Macro, 78-79
STDWA, 78-79
Strand, 99-100
Strand Identifier, 6, 42, 46, 57, 59-6o, 62, 64
Student Response, 4, 10-13, 19, 28, 31, 33, 64
Summary of Commands, 57-60
Syntax Errors in FAIL, 68-70

103

1 .108

T. See TRUE
Teachtng Progra 4, 61-63
Teletype, 4, 7, 8
TELL, 16, 24, 4o, 44, 55, 57
TELL Control Character, 94-95
Text Delimiter, 4-6, 8, 78
Text File, 62-63, 90
Text String, 4-9, 24, 32-36, 39, 44, 57-60
Tolerance, 34
Top-level Commands, 55-56
TRUE, 11, 37, 58
TVEDIT, 66, 72
TYPE Command. See also Miscellaneous Commands, 16-18, 46-47, 54-57

Upper-case Letters, 6, 8
User Number, 73

WA. See also Action Commands, 14-16,
Macro, 78

WR. See also Action Commands, 14, 38
WS. See also Action Commands, 14-15,

Macro, 78
Wl, W2, W3. See also Action Commands

Macro, 78

EXER, XLEXER, XNEXER, XSEXER, 53-56

YES, 11, 13, 21-23, 37, 58

ZAP, 94-95

l04

109

21, 24, 38-41, 59

, 40-41, 43, 59
38, 4o-41, 43, 55, 59

, 14-15, 33, 38, 4o-41, 59

1

(Continued from inside front cover)

96 R. C, Atkinson, J. W. Breisford, and R. M. ShIffrin. Multi- process models or memory with applications to a continuous presentation task.
April 13,1966. (J. math. Psychol., 1967, 4, ,./7-300).

97 P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. June 12, 1966.

98 R. Bjork. All-or-none subprocesses in the learning of complex sequences. (J. math. Psychol. , 1968, I , 182.195).
99 E. Gammon. The statistical determination of linguistic units. July 1,1966.

100 P. Suppes, L. Hyman, and M. Jerman. Linear structural models for response and latency performance-in arithmetic. an J. P. Hill (ed.),

Minnesota Symposia on Child Psychology. Minneapolis, Minn.: 1967. Pp. 160-200).

101 J. L. Young. Effects of intervals between reinforcements and test trials In paired-associate learning. August!, 1966.
102 H. A. Wilson. An investigation of ilnguistin unit size in memory processes. August 3,1966.

1.03 J. T. Townsend. Choice behavior in a cued-recognition task. August 8,1966. _

104 W. H. Batchelder. A mathematical analysis of multi-level verbal learning. August 9,1966.

105 H. A. Taylor. The observing response In a cued psychophysical task. August 10, 1966.

106 R. A. Bjork . Learning and short-term retention of paired associates in relation to specific sequences of interpresentation intervals.

August 11, 1966.

107 R. C. Atkinson and R. M. Shiffrin. Some Two-process models for memory. September 30,1966.

108 P. Suppes and C. Hoke. Accelerated program in elementary-school mathematicsthe third year. January 30,1967.

109 P. Suppes and I, Rosenthal -Hill. Concept formation by kindergarten children in a card-sorting task. February 27,1967.

110 R. C. Atkinson and R. M. Shiffrin. Human memory: a proposed system and its control processes. March 21,1967.

141 Theodore S. Rodgers. Linguistic considerations in the design of the Stanford computer-based curriculum in initial reading. June I, 1967.

112 Jack M. Knutson. Spelling drills using a computer-assisted instructional system. June 30,1967.

113 R. C. Atkinson. Instruction In initial reading under computer control: the Stanford Project. July 14, 1967.

114 J. W. Brelsforci.. Jr, and R. C. Atkinson. Recall of paired-associates as a function of overt and covert rehearsal procedures. July 21,1967.

115 J. H. Stelzer. Some results concerning subjective probability structures with semiorders. August 1,1967

!I6 D. E. Rumelhart. The effects of interpresentation intervals on performance in a continuous pairedfassociate task. August 11,1967.

117 E. J. Fishman, L. Keller, and R. E. Atkinson. Massed vs. distributed practice in computerized spelling drills. August 18, 1967.

118 G. J. Green. An investigation of some counting algorithms for simple addition problems. August 21,1967.

119 H. ,k, Wilson and R. C. Atkinson. Computer-based instruction In initial reading: a progress report on the Stanford Project. August 25,1967.

12G F. S, Roberts and P. Suppes. Some problems in the geometry of visual perception. August 31,1967. (S Att, 1967, 17,173-201)
121 J. Jamison. Bayesian decisions under total and partial ignorance. D. Jamison and J. Kozielecki. Subjective probabilitiesnder total

uncertainty. September 4,1967.

122 R. C. Atkinson. Computerized instruction and the learning process. September 15,1967.

123 W. K. Estes. Outline of a theory of punishment. October 1,1967.

124 T. S. Rodgers. Measuring vocabulary difficulty: An analysis of Item variables In learning Russian-English a,,c1Japanese-EnglIsh vocabulary

parts. December 18,1967.
125 W. K, Estes. Reinforcement in human learning. December 20,1967.

126 G. L. Wolford, O. L. Wessel, W. K. Estes, Further evidence concerning scanning and sampling assumptions of visual detection

models. January 31,1968.

127 R. C. Atkinson and R. M. Shiffrin. Some speculations on storage'and retrieval processes in long-term memory. February 2,1968.

128 John Holmgren. Visual detection with imperfect recognition. March 29,1968.

129 Lucille B. Miodnosky. The Frostig and the Bender Gestalt as predictors of reading achieve7,1nt. April 12,1968.

130 P. Suppes. Some theoretical models for mathematics learning. April 15, 1968. (Journal of Research and Development in Education,

1967, I , 5-22)
131 G. M. Olson. Learning and retention in a continuous recognition task. May 15,1968.
132 Ruth Norene Hartley. An investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968.

133 P. Suppes. Stimulus-response theory of finite automata. June 19, 1968.

134 N. Maier and P. Suppes. Quantifier-free axioms for constructive plane geometry. June 20, 1968. (In J. C. H. Gettetsen and
F. Oort (Eds.), Compositio Mathematics. Voi. 20. Groningen, The Netherlands: Wolters-Noordhoff, 1968. Pp. 143-152.)

135 W. K. Estes and D. P. Horst. Latency as a function of number or response alternatives in paired - associate learning. July I, 1968.

136 M. Schlag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychom. Sci., 1968, 2, 141-142)

137 R. M. Shiffrin. Search and retrieval processes in long-term memory. August 15, 1968.
138 R. D. Freund, G. R. Loftus, and R.C. Atkinson. Applications of multiprocess models for memory to continuous recognition tasks.

December 18, 1968.
139 R. C. Atkinson, information delay in human learning. December 18, 1968.

140 R. C. Atkinson, J. E. Holmgren, and J. F. Juola. Processing time as influenced by the number of elements in the visual display.

March14, 1969.
141 P. Suppes, E. F. Loftus, and M. Jerman. Problem-solving on a computer-based teletype. March 25,1969.

142 P. Suppes and Mona Morningstar. Evaluation of three computer-assisted instruction programs. May 2,1969.

143 P. Suppes. On the problems of using mathematics in the development of the social sciences. May 12, 1969.

144 Z. Domotor. Probabilistic relational structures and their applications. May14,1969.

145 R. C. Atkinson ana T. D. Wickens. Human memory and the concept of reinforcement. May 20, 1969.

146 R. J. Titiev. Some model-theoretic results in measurement theory. May 22,1969..
147 P. Suppes. Measurement: Problems of theory and application. June 12, 1969.

148 P. Suppes and C. Ihrke. Accelerated program in elementary-school mathematics--the fourth year. August 7, 1969.

149 D. Rundus and R.C. Atkinson. Rehearsal in free recall: A procedure for direct observation. August 12, 1969.
150 P. Suppes and S. Feldman. Young children's comprehension of logical connectives. October 15, 1969.

(Continued on back cover

110

(C:ontinued from inside back cover)

151 Joaquim H. Laubsch. An adaptive teaching system for optimal item allocation. November 14, 1969.
152 Roberta L. Klatzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969.
153 John E. Holmgren. Respbnse latency as an indicant of information processing in visual search tasks. March 16, 1970.

154 Patrick Suppes. Probabilistic grammars for natural languages. May 15, 1970.
155 E. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.
156 Kenneth N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.
157 R. C. Atkinson and J. A. Paulson. An approach to the psychology of instruction. August 14, 1970.

158 R.C. Atkinson, J.D. Fletcher, H,C. Chetin, and C. M. Stauffer. Instruction in initial reading under computer control: the Stanford project.
August 13, 1970.

159 Dewey J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970.

160 R.L. Klatzky, J.F. Juola, and R.C. Atkinson. Test stimulus representation and experimental context effects in memory scanning.
161 William A. Rottmayer. A formal theory of perception. November 13, 1970.
162 Elizabeth Jane Fishn.aa Loftus. An analysis of the structural variables that determine problem-solving difficulty on a computer-based teletype.

December 18, 1970.

163 Joseph A. Van Campen. Tewards the automatic generation of programmed foreign-language instructional materials. January 11, 1971.

164 Jamesine Friend and R.C. Atkinson. Computer-assisted instruction in programming: AID. January 25, 1971.
165 Lawrence James Hubert. A formal model for the perceptual processing of geometric configurations. February 19, 1971.

166 J.F. Juola, I.S. Fleshier, C.T. Wood, and R.C. Atkinson. Recognition time for information stored.in long-term memory.
167 R.L. Klatzky and R.C. Atkinson. Specialization of the cerebral hemispheres in scanning for information in short-term memory.

168 J.D. Fletcher and R.C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.
169 James F. Juola and R.C. Atkinson. Memory scanning for words versus categories.
170 Ira S. Fleshier and James F. Juola. Effects of repeated tests on recognition time for information in long-term memory.
171 Patrick Suppes. Semantics of context-free fragments of natural languages. March 30, 1971.
172 Jamesine Friend. Instruct coders' manual. May 1, 1971.

