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PREFACE

The study reported in this Memorandum is part of the initial phase

of Rand's work in Air Force Technical Training. A primary objective of

that work is to determine ways in which technology can be used to aid

in the design of instruction for formal technical training. Education

and training systems are complex organizations of facilities, instruc-

tors, equipment, routines, and students. Because of this complexity,

mathematical models--both existing and future--can be used effectively

to explain the behavior of educational systems and to assist in making

decisions relative to better design and operation, and improved cost-

effectiveness, capacity, and quality.

This Memorandum presents an assessment of the present state of the

art of modeling educational systems. The existing models have been de-

veloped outside of the military; however, the modeling concepts are

applicable and of importan'.e to all areas of educational research.

Therefore, this study sh)uld be of use to those concerned with policy

and planning at DCS/Technicsl Training and the Training Development

Directorate, Headquarters Air Training Command,

The text of this Memorandum is written as a general introduction

to the field, in relatively nontechnical terms, and is intended pri-

marily for administrators who are assumed not to have strong mathemat-

ical backgrounds. A technical appendix is included for those readers

who wish to pursue the actual construction of models in greater depth.



SUMMARY

Present-day mathematical models of educational systems can provide

useful answers to limited but important quantitative queutions concern-

ing budgeting, resource allocation, and enrollment planning. Such mod-

els are designed, at the conceptual level, by deterening the major

features of the system, outlining their interrelationships with a flow

chart, and choosing the variables to be used. If, in addition, specific

assumptions embodying the educational "rhysics" of the model or empiri-

cal relationships are included, the model can then be solved; that is,

each dependent variable can be stated as a function of the independent

variables, and the consequences of the assumptions can be determined.

The model structures that result can be characterized by their scope

and complexity, by the degree of aggregation of the variables employed,

by the model inputs and outputs, and by the purpose for which the model

is to be used.

A number of representative existing models of various types are

discussed. Input-output models can be a convenient way to examine large

amounts of data on enrollments and student flows, but these models are

limited in that a current cross-sectional analysis is generally used to

predict the futvre time series of the variables. Input-output models

may find wide application for analyzing systems with relatively static

structures, however, such as training institutions for specific purposes.

Manpower planning models seem to be less useful than many other mod-

els. Because these models do not provide explicit allocations of educa-

tional resources and because they do not describe actual student flows,

Cley are perhaps too simplified for the problem they attempt to solve.

Optimization models have the advantage of making explicit the basic

choices of a resource-allocation problem, when the desired benefits can

be quantitatively described. Since such models yield priorities and

plans as output, they are more likely to stimulate discussion at the

policy level. Simulation models will be of considerable Lssistance in

management and short-term planning for educational systems, but they run

the :.4qk of foundering in a wealth of detail. It nay well be that opti-

mizatior. and simulation models can serve in complementary ways in
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educational planning, one operating on the policy level and the other

on the detailed operational level. Finally, where specific educational

mechanisms can be identified, relatively simple models can be extremely

effective. The usefulness of simple models for flogs of students and

teachers can be extended further by including cost factors and other

simple economic variables, but without attempting to model all aspects

of an educational system.

More research is needed to increase our understanding of the dy-

namics of educational systems. The appropriate mathematical basis for

the research suggested here would be very simple; stochastic models for

probabilistic problems and simple difference and differential equations

fol. deterministic problems, coupled with optimization or simulation

techniques where, appropriate, should be adequate for most modeling of

educational systems in the near future. These techniques and the math-

ematical structure of educational-system motels are discussed in the

Appendix. A selected bibliography is also included.

The author is a Consultant to The Rand Corporation.
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I. INTRODUCTION

It is only in the past few years that researchers and analysts

have begun to develop models of educational systems--that is, quanti-

tative, systematic descriptions of the operation of educational systems

and the behavior of their component parts. T11,. growing body of liter-

ature on the quantitative cnaracteristics, or system character, of

educational and instructional systems teflEcts a change in the focus

of educational research, which was previously concentrated almost ex-

clusively on individual instructional processes. Not that administra-

tors and educational planners have not had to concern themselves with

enrollment figures, costs, and other quantitative variables in the past;

their decisions, however, have all too often been based on guesses or

the crudest of estimates.

Present-day models are a long way from being able to reliably re-

late the variables in educational systems (students, subject matter,

teaching methods, teachers) to the immediate outputs of education (the

learning of facts, skills, and attitudes), because the "physics" of

learning remain unknown. The model-makers can, however, provide some

impetus for research into basic questions, such as how learning is

brought about by the instructional process, and how that process should

be organized to serve the needs of the nation (or state, or institution)

and those of the students. Although few explicit answers to such basic

questions are available, models can often yield quite definite answers

for a host of subsidiary questions. Our primary interest here, there-

fore, will be in these subsidiary questions.

any of the educational-system models that have been published

do not accurately represent the behavior of educational systems, or

they represent that behavior only in sharply limited ways. Nonethe-

less, such models are the beginning of a Lore consistent, analytic

approach to educational planning than has heretofore existed, and they

can be of great help in answering certain kinds of questions if their

uses and limitations are understood. To the administrator faced with

his yearly budget crisis, for example, a model may provide a more ac-

curate estimate of the next year's enrollment; for the national planner

7
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in a developing country, a model may enable a more effective alloca-

tion of scarce educational resources, such as teachers. While prob-

lems of budgeting and resource allocation are subordinate to more

basic educational concerns, they are important issues in an educational

system and both are characteristic of types of problems that are amen-

able to modeling at present.

8
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THE EDUCATIONAL-SYSTEM MODEL: DESIGN AND STRUCTURE

MODEL DESIGN

Models can range in complexity from the simplest drawing to a full

computer simulation of a complex system. All models seek to idealize

reality as a structure comprising sets of elements and relationships

among them. Model building is the selection and definition of the ele-

ments and their interconnections. For example, a model-maker mtght

choose to view a school as a series of grade levels through which groups

of students wove, with rules specifying how many are to proceed to the

next grade level. Or he might choose to divide a school into subject

areas, such as language arts, social studies, and physical education,

with rules which relate the number of teachers, budget dollars, and

stip-lent hours allocate.1 to each area.

It is important to emphasize the arbitrary character of both the

choice of the major features for the model and the nature of the formal

relations between these features, or variables. As the exanple above

shows, which variables will be useful depends entirp'y on the purpose

of the model and on the type of questions it will be used to address.

Similarly, it is not necessaryand, in fact, in educational models is

rarely t-:ue--that the Formal statements or functional relationships as-

sumed between the variables really express directly the "physics" of

the process, the true causes and effects; all that is necessary is that

these relationships give the Lorre:A empirical answer.

A specific exampls will help to illustrate this characterization

of an educational-system mniel and will serve as a useful framework for

some additional terms and concepts to be discussed later. Let us as-

sume that we are a federal administrator concerned with the progress

of graduate schools throughout the country, and in particular with the

production of Ph.D.'s. We wish to study the factors that influence

the functioning of graduate schools, with special attention to those

factore over which we might have some control; and we wish to be able

to estimate or uredict the numbers of graduate students and Ph.D.'s iri

future years.

9



-4-

The first step is to divide the process with which we are con-

cerned into internal and external features. This division may be

indicated symbolically on a flow chart, as shown in Fig. 1. Those

features pertaining to the internal workings of graduate schools are

enclosed in a box labeled graduate schools; the external features are

divided between outputs and inputs, signified by arrows. The inputs

are further divided into "federal" and "other," since we are specif-

ically concerned with the federal influences.

Graduate schools

Output, D

Federal inputs, F
-.4

Variables, G, A, B

Other inp" U

Hg. 1 Flow chart ror illustrative educational-system model

Next we identify the variables (the items whose nmerical value

provi,:s a measure of a quantity relevant to the educational process)

that we will use to characterize the -tate of each part of the proces!:.

In educational models, the choice of variables is often strongly lim-

ited by the types of data that are available. For our example, we,

might identify the following as useful variables:

For the model as a whole

k = time, in units of academic years

Items within the graduate schools

G = the number of graduate students

A = the nil,ber of professors in graduate schools

B = the budget of graduate schools, in dollars

10
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Inputs to the graduate schools

F total federal funds allocated to graduate schools

U = the number of individuals entering graduate schools

Output from the graduate schools

D = the number of Ph.D.'s awarded

Here we have chosen time, k, as the independent variable, chat is the

one which can assume any given value; this is a variable over which we

hare control. The other variables are dependent variables, since their

value depends on which year k we ere talking about. We express this

mathematically by saying that G and the other dependent variables are

funitions el k; we represent this relationship by, for example, G(k)

or Gk.

It should be evident that the choics of variables in this example

is somewhat arbitrary and would vary widely with the specific purpose

cl the model and with the tastes of the model-maker. Although the most

common independent variable in models of educational systems is time,

other possibilities include variables representing. subject matter, stu-

dent ability, teacher ability, money (or budget levels), and even

school-bus routes. Common dependent variables are numbers of students,

numbers of teachers, materiel-resource variables (including money, class-

room space, supplies), and national economic indicators such as gross

national product. The variety in the exact definitions of the, variables

used is almost as great as the number of models extant. When deallng

with simple models of complicated phenomena--as is always the case in

modeling educational systems--there is no unique formulation of a model,

no necessarily best choice of variables and assumptions. The test of

a model is its accuracy in reproducing or predicting behavior and its

usefulneso to the problem at hand.

In trying to model the complexities of educational systems, it is

well worth while to master a very limited model, whose assumptions and

limitations can be easily held in mind, before attempting to include

more variables. In the hypothetical example given above, the real out-

put of graduate education to the society may include the production of



research, advanced training even for those who do not complete the doc-

torate, and assistance for undergraduate training--much more than is

measured by the number of Ph.D.'s produced. However, these additional

features are not easy to characterize or measure and .-ould greatly com-

plicate the model. The basic rule is always to try the simplest thing

first.

MODEL STRUCTURES

The types of models with which we are concerned may be divided

into three classes: conceptuai models, mathematical models, and gaming

models. I conceptual model is one that establishes an idealized frame-

work of tne process under study and identifies the variables but does

not include assumptions nnd specific statements on how the variables

are related; it contains no mathematics. Such models do not produce

operationally useful results, so Cher-1 is no way to compare the ideal-

ization to reality. A mathematical model includes, in addition to the

above, specific assumptions connect:.ng the variables to each other,

stated in mathematical form. These assumptions embody either the ed-

ucational "physics" of the model or, more commonly, arbitrary relation-

ships for which there is empirical justification. Mathematical models,

properly formulated, can be solved, meaning that each dependent vari-

able can be stated as a function of the independent variable, and thus

the consequences of the assumptions can be determined. A gaming model

is a mathematical model in which some of the variables ace human beings

playing decision-making roles. A gaming model is usually "solved" by

computer simulation. or other means, as part of a total environment to

aid decision-makers. This type of model, often used in military and

busihess contexts, has had as yat little application in educational

systems; therefore we will not discuss gaming models further except to

point out their potential usefulness.

The illustrative graduate-school model we have been discussing is

an example of a conceptual model. Though num?rous in the literature,

models of thia class ara useful only as a first stage In the construe-

cion of a mathematical model. Tc illustrate the evolution, let us

There must be as many assumptions as dependent variables.

12
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continue with our example. Using the variables previously defined and

the flow chart given in Fig. 1, we make assumptions relating the vari-

abl4s, thus constructing a mathematical model:

1. The number of graduate students grows at a constant rate, a,

given by

G
k+1

- G
k

= a.

2. A constant fraction, d, of the number of graduate students

graduates every year with a Ph.D.; thus

Dk = d Gk.

3. The number of faculty is proportional to the graduate-school

budget, i.e.,

Ak = e Bk.

4. The graduate - school budget is proportional to the amount of

federal aid, i.e.,

Bk = f Fk.

5. Federal aid to graduate schools grows linearly with time,

thus

Fk = FO + g k.

Here we have left out any explicit mention of U, the number of

persons entering graduate schools, and instead we have made an assump-

tion abot the overall growth rate of the graduate school. In formu-

lating these equations we have also introduced some parameters into the

model: a, d, e, f, and g. These parmlvtere are constants that express

the relationships between the variables and are usually determined from

data on the actual operation of the system being modeled. For examplo,

d, which can be viewed as a passage fraction f-r the graduate school

"class," would be given the value of the ratio D/G for the most recent

year for which data on degrees and graduate students were available.

We are primarily interested in predicting the number of Ph.D.'s

that will be granted. For this number the solution of the model gives

13
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Gk

A k

k

Time, k ',years) Time, k years}

fig.2-- Solutions of the model

the formula Dk = Do + a . d k, which predicts a linear growth (one

described by a straight line) in degrees awarded. In fact, the assump-

tions in this model were chosen so that all the variables would grow

linearly (see Fig. 2), giving the same predictions as would linear pro -

jctions from past data. Linear projections are one of the easiest,

if crudest, methods of estimating future values, and are still widely

used ; our model shows the kinds of assumptions that are implicit in

these estimates. Since such estimates have erred seriously on the low

side when zompared to the actual data for the past twenty years, it is

instructive to consiuer an alternate set of assumptions, which .ead to

rather different predictions:

1. The number of graduate students in year k + 1 is -,1) the

number in the previous year plus the number of incoming stu-

dents, minus the number that graduated, minus that fraction

of students, b, who left without receiving a degree:

Gk +l
Gk + Uk

+l
- D

k
- b Gk.

The U.S. Office of Lducation annually publishes linear projections
of enrollments, degrees, and related figures, extrapolated ten years into
the future.
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6. The number of students enering graduate school increases like

a
k
, where a > 1:

Uk U0 ak.

Assumptions 2 through S are unchanged from the previcus model.

In this model the input of new students is assumed known and is

modeled by an exponentially increasing function of time. The equation

modeling the number of graduate students expresses the principle of

conservation of students (the increase equals the number entering less

the number leaving). These equations can also be solved to give, for

the number of Ph.D.'s, the formula

D
k

= D o( -
(a + b + d - 1)D0) (1

b d) +
d a Uo d Uo a

k+1

(a + b + d '

This formula, more complicated than the corresponding result of

the earlier model, has two parts: The first becomes rapidly smaller

as k increases, while the second increases in proportion to the growth

in the number of incoming

studen:s. The present (re-

vised) model, therefore,

predicts exponential growth

(after an initial equilibra-

tion period) in the number

of Ph.D.'s (see Fig. 3);

this results in many more

Ph.D.'s than would be pre-

dicted by the previous mod-

el. Many of the models in

the literature that are con

cerned with numbers of stu-

dents use similar assumptions,

including "conservation of

students," constant "passage"

and "dropout" fractions

a.
a.

a

_o
E

2

Dk Revised model

(exponential

growth)

Original model

(linear growth)

Time, k (years)

Fig 3Predictions of numbers of Ph.D.'s
in original and revised model
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(d and b in this model), and exponential growth of numbers of incoming

students.

We could construct other sets of assumptions for this illustrative

mathematical model; instead we recommend to the reader a study of the

literature,* a guide to which is provided in Section IIi of this Memo-

randum. Before discussing particular models, however, we shall intro-

duce several additional concepts that are useful in distinguishing one

model from another.

The scope and complexity of a model are measures of how much it

tries to include. The most ambitious models have dealt with an educa-

tional system imbedded in a national economy. Others have dealt with

an entire educational system, including interlocking levels of educa-

tion but treating the system as an isolated phenomenon. Still others

are concerned only with a small part of an educational system, such as

the logistics of bussing students from one school to another. The scope

of a model relates to the size of the system being modeled, usually in

terms of the numbers of people involved.

Regardless of its scope, a model may include many types of phenom-

ena and many kinds of variables, or it may deal with only a few variables.

The complexity of a model indicates the number of relationships and the

variety of phenomena explicitly included in the model.

Related to the scope of a model is the degree of aggregation of its

variables; a variable with c high degree of aggregation combines in one

symbol many items of the same type which may be physically distinct or

independent. For example, a variable that represents the total number

of graduate students in a country, even though those students are en-

rolled in mzny different states, has a high degree of aggregation, while

a variable which represents the first -year graduate students in a partic-

ular subject at a particular school has a much lower degree of aggrega-

tion. In using highly aggregated variables, the model-maker incurs

additional problems with data collection and interpretation of results

but gains the advantage of increasing generality. Although it may not

See for example Bolt's model for predicting the production of
Ph.D.'s,(1) which le-ads to more accurate predictions than either of
the two models discussed above.

16



be intuitively clear, we feel that the use of highly aggregated variables

often results in more accurate models, at least for the types of assump-

tions and the relatively simple models of educational systems ...at have
*

been attempted to date.

The inputs required by a model are those pieces of information that

the model-maker must supply from empirical data sources, such as param-

eter values and initial values of One variables. Inputs in this context

are to be distinguished from input variables, which refer to particular

external variables on a flow chart. If the inputs, required by a model

are not obtainable from empirical data, they, the model is of little use.

Similarly the outputs of a model are those pieces of tnformation that

are provided by the solution of a model, namely preutctions of the values

of the dependent variables.

The goals of a model relate to how and in what way its output will

be useful. For example, a normative model r,urports to describe some

optimizing system, to show what might or ought to happen; a dePoriptive

model purports to describe an existing system. ..c) predict what will

actually happen. The examples discussed earlier are descriptive models.

Both types of models, common in analyses of educational systems, have

their uses; it is difficult to check the assumptions in a normative

model, however, since they do not have to correspond to actual systems,

and hence it is difficult to guard against unrealistic ur meaningless

cases in such models.

Finally, the mathematical techniques used to express the assump-

tions of the model should be appropriate for predictive purposes. The

most common techniques for modeling educational systems have been the

probabilistic tools of stochastic processes and the deterministic tools
**

of difference equations and linear programming. Specifically excluded

here are the statistical methods of regression or correlation analysis.

*
This opinion is essentially based on the assumption that by deal-

ing with aggregates, most of the local, small-scale variability will
cancel out; while this is not always true, much of the success of input-
output economic analysis depends upon the stability of aggregate eco-
nomic quantities.

**
These techniques are discussed in the context of specific exam-

ples in the Appendix.

17



-12-

Statistical studies are often useful for preliminary examination of

large amounts of data and may lead to valuable insights or indicators.

The implied predictive character of these studies is that a change in

input variables will shift performance to a different. position on the

distribution of the output variable, but it is usually difficult to

distinguish between causal and merely associative relationships, Hence

such statistical studies, while they may be a useful basis on which to

construct a model, do not in themselves constitute predictive models.

*
See Ref. 2 for an example of such e statistical study applied to

educational syatems.

1.0
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III. SELECTED EDUCATIONAL-SYSTEM MODELS: A GUIDE

TO THE LITERATURE

Thus far we have discussed the educational-system model in terms

of scope, complexity, degree of aggregation, inputs, o.tputs goals,

and typesconceptual and mathematical models, normative and descriptive

models. In this section, we shall examine some existing models which

we believe to be representative of the literature. These models are

often mixtures of the various types defined in Section II, so although

the above list may serve as an implicit set of dimensions for describing

and differentiating among them, no attempt is made here to use these fac-

tors in establishing a formal classification scheme. Instead, we shall

be concerned with the contey, in which each model was developed and the

problem to which each is addressed. Mathematical details of the models

are not included here but are presented in the context of specific exam-

ples in the Appendix.

Thonstad's mathematical model of the Norwegian educational system (3)

exemplifies a class of models that deals primarily with the flow of stu-

dents through a system. The major goal of the model is to examine the

long-range implications of present educational policies in terms of the

numbers of students attaining various levels of education. Although wide

in scope, this model is mathematically simple and explicit; it is descrip-

tive in purpose and requires as input data on the flows of students be-
*

tween different levels or activities within the educational system.

The model yields predictions of the numbers of students to be expected

in each activity in future years, the average number of years of educa-

tion remaining for a student in a given activity, and the percentage of

students finishing each level of schooling.

Ithough Thonstad includes 60 different categories of educational

activity in this model, the only phenonema modeled are the flows of stu-

dents from one activity to another. Ho -cunomic limitations or Lortraints

based on school capacity, availaoility of teachers, or °thee resource lim-

itations are included. The variables are highly aggregated, representing

*
Activities include primary schools, college-preparatory secondary

cchools, vocational secondary schools, technical institutes, universities,
and similar educational divisions.

1.J
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all students in a particular activity or level of education, regardless

of subject matter, student ability, or the ?articular school attended.

Hence Thonstadts model is not a complex model in the sense defined

earlier. While this severely limits the range of questions that the

model can help answer, it does not necessarily imply that the predic-

tions will be any less accurate than those of a more complex ,nodel: in

fact, the reverse will generally be true, given the cuvrent level of

understanding of educational systotis and cdu:ational processes.

A more basic difficulty "ith lhonstadt< model and wit other input-

output modelr whether formulated in terms of stochastic processes, as

Thonstadts is, or in terms of input-output tables like those often used

in economic analysis, is that they do not model the specific educational

mechanisms that cause change. Such models can be very accurate in de-

scribing a system that is essentially static or changing smoothy or

slowly, but they are very inaccurate for systems where rapid changes

can occur or where influences other than the demand of tudents for more

education play a substantial role. Thonstad, for example, found that

his model gave relatively good predictions for primary and secondary

schools in Norway, which are part of compulsory education, yet gave retch

poorer predictions for higher education, where enrollments were limited

by the capacity of the system, which depended In turn on administrative

decisions. These comments also apply to models similar to Thonstr.dts,

such as Zabronski and Zinterts stndant-teacher population growth model,
(4)

and Gani's model for projecting enrollments. (5)

The model of doctoral feedback into higher education developed by

Bolt
(1)

is even simple*. than those discussed above, but it surmounts

two of the oifficulties of those models: It is reasonably accurate

To build an accurate complex model, the model-builder needs in-
formation about many aspects of the phenomenon being modeled, whereas
for a simple model, he can focus on only one aspect of the phenomenon
and parameterize the others, thereby requiring less information; the
model-builder has more control over the limited model with fewer vari-
ables and can use what information he has in extending the accuracy of
the model. This point applies particularly to descriptive models, since
in normative models the complexity may be of more interest than the ac-
curacy of the predictions.



-15-

for higher education, and it fmcludes a specific educational mechanism.

Bolt's model seeks to describe the relationship between the number of

degrees awarded and the numbers of persons involved in training gradu-

ate students. The model is national in scope and uses very highly ag-

gregated variables; it requires as input information on the flows of

students leaving graduate school and can be used to predict the numbers

of degrees awarded and the numbers of faculty required in future years.

Although the model is primarily descriptive, it is also used in a Lor-

mative fashion to suggest suitable policy alternatives for arriving at

planning objectives. It does not include any economic considerations

and is limited to situations where the demand for more education is

larger than the supply (that is, where the supply of graduate students

is not input-limited). Nevertheless, it would seem to be a. improvement

over input-output models like Thonstcd's for studying higher educational

systems, both in terms of accuracy and in terms or identifying the sig-

nificant policy variables, because of its use of a specific mechanism.

In contrast to these descriptive models, Stone's model of the ed-

ucational system
(6)

is purely normative. Based on an analysis of the

number of trained persons of each type needed in the economy at a fu-

ture date and on the growth of demand for education due to population

increases, Stone has attempted to calculate how the English educational

system should change to accomodate these demands. The model is partly

mathematical and partly only conceptual (that is, not yet finished) in

form, and national in scope. It would require a great deal of informa-

tion about future industrial manpower demands and student flows as in-

put; the output would be a plan for the long - range_ development of the

educational system. Despite the economic basis for this study, the

model itself is relatively simple, dealing only with flows of students

and excluding economic variables.

The underlying assumption in Stone's model, which is also implicit

in many other manpower planning models, is that students can be induced

to seek. whatever kind of education is envisioned for them in the plan,

through scholarships and admission policies. At the level of higher
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education, this assumption is probably not very realistic. In the

United States, for example, the fraction of all Ph.D.'s awarded in

science and engineering has not changed appreciably during this cen-

tury (except during World War I and II), despite the massive amounts

of federal money that have been put into academic science since 1945,

particularly since the beginning of the Sputnik era. It has been pos-

sible to increase the production of trained persons in science only as

fast as the educational system could be expanded as a whole. Whether

the encouragement of students to seek particular training can be more

successful in areas such as vocational training, or in countries with

centrally controlled economies and educational systems, is still unclear.

A similar but more elaborate planning model than Stone's is that of

Tinbergen and Bos for planning tha educational requirements of economic

development. (7) The goal of this model is to project the flows of

trained manpower that will be required by the economic growth of the

country and rapid expansion of the educational system. It is a very

sinplified model of the relations oetween production, labor force, and

the educational system, using highly aggregated variables, such that all

types of training and all types of labor skills are lumped together.

The outputs of the model are plans for the expansion of the educational

system; these results are obtained by a mathematical method that is ex-

tremely crude, particularly compared to the optimization methods used

in models discussed below. (However, this in itself does not necessarily

imply that Tinbergen and Bos's model is less accurate or applicable.)

This model is entirely normative and hence has no descriptive base

for the assumptions it makes about student flows. :or this reason, the

results of the mo..:21 are suspect and there is little to guarantee their

applicability. (The comments made above in connection with Stone's model

apply here also.) Furthermore, the method used in Tinbergen and Bos's

model (and in many manpower planning m-.:.t1s) to obtain a plan for future

development of the eudcational system does not allow the particular plan

adopted to be compared with alternative policies, nor does it provide p

feeling for the tradeoffs involved in choosing a particular plan. In

this t.!spect, Tinbergen and Bus seem to have oversimplified their ap-

proach; or at least they have not chosen an appropriate simple model.



-17-

A rather different method is used by Bowles
(8) to develop planning-

policy proposals for the efficient allocation of resources in education.

Bowles attempts to apply optimization techniques such as linear program-

ming to educational problems. His model seaka to determine what amount

of a country's resources should be devoted to educational development

and how such resources should be distributed within the educational sys-

tem. The model is national in scope, including students at all levels

of the educational system, and also including (in a parameterized way)

the labor force of the entire country. It is both a descriptive and a

normative model, since the flows of students and teachers are modeled

descriptively in the input-output manner, but the model as a whole pro-

duces normative proposals fot the distribution of resources. It is a

complex model in that it includes flows of students among parts of the

educational system, the cost relations of that system to the national

economy, and the economic-benefit relations of such education to the

national economy. The inputs required include descriptive data for the

student-flow model, as well as information on cost factors and estimates

of income by educational level.

Bowles's model attacks the same problem as that of Tinbergen and

Bos. However the planning projections of the latter model are of lit-

tle use, as mentioned above, sinze they are not based on a description

of the educational system as it actually operates, whereas the norma-

tive results of Bowles' model take into consideration a description

of the actual system and its constraints. rn this respect optimization

models offer an improvement over manpower planning models, although their

applicability depends upon A" Adequate characterization of the benefits

that are to be maximized. Both Adelman's ]:near - programming model of

educational planning: (a case study of Argentina)
(9)

and Schliefelbsin's

multiperiod linear-programming model for forecasting the quantitative

results of alternative national educational policies
(10)

are similar in

most respects to Bowles' model.

Most of the models introduced so far have been national in scope;

in contrast, Koenig's systems approach to higher education
(11)

and Judy's

model for resource allocation in uriversities
(12)

bath deal with the

more restricted scope of a single university. Koenig's model is a very

(4":1
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complex mathematical model which considers many relationships and inter-

actions, including flows of students and faculty, economic and resource

limitations, controls of student flows such as fellowship and grant money,

and the demands for research supervision as well as for teaching. The

model is primarily descriptive but cen be used repetitively to comparl

the consequences of competing policies and hence to select the most de-

sirable. The model is not applied to a specific situation, since some

of the required input data are unavailable; like most models that ulti-

mately involve computer simulation, an enormous data base is required,

so that the inputs necessary to run the model are substantial.

Judy's model is similar to Koenig's in most respects. However,

Judy places greater emphasis on categorizing expenses by function rather

than by department, in accordance with the administrative management

philosophy known as planned program budgeting (PPB).

The wealth of practical detail in these and other simulation models

is both their great advantage and their major limitation: Without a

well-developed information-gathering system to provide accurate and reg-

ularly updated parameters and input dat'i, such models are comparatively

useless. Furthermore, it is important to distinguish between a wealth

of bookkeeping detail and a real knowledge of the mechanisms relating

imp cs to outputs in a complex system, which can only come from such

models after considerable confidence has been gained as to their accu-

racy. To make effective use of a simulation model for planning purposes,

a planner must have in mind specific policies that he wants to evaluate,

whereas with optimization models, normative proposals are an output of

the model rather than an input. The desired goals and the specific

priorities involved in arcomplishing them must originate with the planner;

if it does not occur to him to test alternative goals and priorities, the

simulation model can be of little help.

Other models of similar scope and aggregation include Nordell's

dynamic input-output model of the California educational system(13) and

Weatherstly's university cost simulation model.
(14)

Effective models of educational systems need not be large or of

This model has been applied to the University of Toronto.
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wide scope, although the majority of the models available so far have

these characteristics. Brooks, for example, has developed and ap?lied

mathematical models of a training program for automotive mechanics.
(15)

The model is normative, since it simulates the effects of alternative

policies on a proposed system rather than describing the operation of

an ex-sting training system. The model deals with the flows of students

and the numbers of instructors and training resources needed. The vari-

ables are not highly aggregated, and the model is relatively simple in

the kinds of interactions it tries to represent. It yields predictions

of how fast trained mechanics could be produced, although, since the

para,aeter values assumed as input .ire hypothetical, the results have

no import for any particular system.

Another limited-scope model is that of Fulkerson et al.,
(16)

which

is concerned with the bussing of students in Los Angeles so that exist-

ing schools may be adequately used. The model takes as input a given

distribution of schools and pupils, then finds the bus routes over which

a given amount of pupils can be transported in the shortest time or for

the lowest cost. And finally, we have Bruno's models for optimizing

various objective functions of founqation-type state support programs,
(17)

which deal with the design of funding programs to Achieve desired state-

wide goals by encouraging particular policies at the district level.
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tV. CONCLUDING REMARKS

The educational-system models discussed in Section III do not be-

gin to exhaust the rapidly growing literature, Lut they do give an in-

dication of the types of models that have been constructed, the variety

of purposes for which models have been used, and the difficulties of

adequately modeling educational systems. None of the models examined

here ale entirely adequate, bdt some have less serious faults than others

and some are more useful than others in particular situations.

Input-output models such as Thonstad's can be a convenient way to

examine large amounts of data on enrollments and student flows. The

difficulty with such models is that a current cross-sectional analysis

is generally used to predict the future time series of the variables,

masking the causal mechanisms of the system. Any changes in conditions

that affect the system more than marginally necessitate a change in the

model parameters, and such models are limited to slowly changing situa-

tions or short time periods, if they are to provide accurate results.

Nonetheless, given the complexity of educational systems and the neces-

sity of attempting systematic planning even with sketchy data, such

models may be very useful if their limitations are understood and al-

lowed for. In particular, input-output models may find wide applica-

tion in analyzing systems with relatively static struc-dires, such as

training institutions for specific purpcses (Air Force technical train-

ing schools, for example).

Where educational mechanisms can be identified, such as in Bolt's

model, relatively simple models can be extremely effective. The useful-

ness of simple models for flows of students and faculty can be extended

further by including simple economic variable.. such as cost factors,

but without attempting to model all aspects of a system.

Nanpower planning models such as Stone's or that of Tinbergen and

Bos seem to be less useful than many other models, despite their popu-

larity in Europe and in some developing countries, Because these models

do not describe actual student flows, and because they do not provide

explicit allocations of educational resources, they are perhaps too sim-

plified for the problem they are attempting to solve.

26
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Optimization models such as that of Bowles have the advantage of

making explicit the basic choices present in any resource-allocation

problem. Fur,hermore, such models yield priorities and plans as output,

so they are likely to stimulate discussion and thought at the policy

level; this may will be one of the most important results of modeling

efforts. However, optimization models are limited to situations in

which the benefits of a given educational policy can be quanticatively

characterized. To date, such modeling has been performed only in terms

of national economics. It would seem useful to attempt similar models

using direct measures of student achievement.

It seems clear that simulation models such as those of Judy and of

Koenig can be improved as more data on a particular system become avail-

able, and that these models will be of considerable assistance in manage-

ment and short-term planning of education systems. The danger to be

avoided is that of foundering in the wealth of detail, both in verifying

a model, and in applying its results. It may well be that optimization

models and complex simulation models can serve in complementary ways in

educational planning, one operating on the policy level and the other

on the detailed operational level.

Finally, a variety of simple models may be useful tools in solving

subsidiary problems of all kinds in educational systems. This does not

mean that a model is always the preferable tool, but rather, that model

building often encourages more systematic examination of relationships

and assumptions and enables more accurate estimates to be made.

Further research is urgently needed to increase our understanding

of the dynamics of educational systems; on the basis of such additional

knowledge, it would be possible to model systems in increasing detail,

with some confidence. Attempts to model complex systems at the present

time have, in facts had an important impact as an aid to data collection,

in pointing out what kinds of data are needed, and in encouraging a sys-

tematic approach to data collection. It was not, for example, until

modeling efforts began that the importance of detailed information on

drJpout and failure rates was recognized, and universities are only now

beginning to collect such information.

The appropriate ratheratical basis for most of the research sug-

gested here would be very simple; stochastic models for probabilistic

2*i



problems and simple difference and differential equations for determin-

istic models, coupled with optimization techniques where appropriate,

should be adequate for most modeling of educational systems in the near

future. Where great detail, or ease of data manipulation is desired,

computer simulation offers a convenient tool for implementing and sup-

plementing the above techniques. This point of view--that the present

level of mathematical complexity is more than adequate if appropriately

used--is complementary to our belief that relatively simple models are

the best tools for attacking c mplem problems whose quantitative rela-

tionships are poorly understood.

20
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Appendix

MATHEMATICAL STRUCTURE OF EDUCATIONAL-SYSTEM MODELS

The mathematical structure of the models examined has been referred

to only briefly in the text of this Memorandum, although this is an im-

portant element in their construction and use. In this appendix the

mathematical structure and mathematical tools commonly used in models

of educational systems are discussed in more detail, with emphasis on

the implications of particular tools for the type of phenomenon being

modeled. We have assumed here that the reader has some familiarity with

simple stochastic pro,zesses (especially Markov chains), first-order

difference-equation systems, and optimization methods such as linear

programming.

To an outside observer, the movement of people through an educa-

tional systeL may well seem stochastic in character. It is often as-

sumed that the probability of movement from one educational activity

to another depends only on the present activity of the student, and

that the future state of the systen may thus be predicted by knowledge

of the present state and the transition probabilities; this assumption

characterizes the Markov process.

Tnonstad's model
(3)

is developed as a discrete Markov chain, such

that the constant probability that a student in activity i at time t

will be in activity j at time t + 1 is given by cif thus defining a

transition matrix:

C =

cli
c
ln

. . . c
ij

cn1 cnn

(1)

The elements c
ij

are nonnegative (since they are probabilities),

and the row sums must equal unity (

jE 1
c 1), which can be viewed

as expressing conservstion of people (i.e., a student must be in one

of the states of the system). The Markov assumption embodied in Eq. (1) --

that the future state of the system depends only on the state of the
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system in the most recent time period--means that the expected number

ofstudantsleavilagagiverlactivityforanother(P..c .) is a con-

stant fraction (c
ij

) of the number of students in the original activity

(P.); this is equivalent to the input-output inethod of forecasting,

which assumes that the flows of interest are proportional to the rele-

vant stock variables, such as the numbers of students.

A Markov chain has the property that the state vector (in this

case the number of students in each activity) approaches an equilibrium

value, so that a purely stochastic model is inappropriate for modeling

a growth process such as an expanding educational system. Thonstad

avoids this difficulty by using a deterministic approach in the appli-

cation of his model, interpreting the elements of Eq. (1) as fixed tran-

sition ratios rather than probabilities, so that he arrives at a 'et of

difference equations for the number of students P
s

in activity s,

Ps(t) = E q
hs

P
h
(t - 1) + Y

s '

s = 1 ... N, (2)

11=1

where qhs are the transition ratios and Ys(t) represents the new entrants

from outside the system in year t. Equation (2) effectively predicts

the expected value of the state vector P due to the stochastic process

modeled by the transition ratios q
hs

and the forcing function Y of new

enrollments (assumed known empirically),

Most deterministic difference -- equation models of educational sys-

tems have the form of Eq. (2); that is, they are linear, first cyder,

constant-coefficient difference-equation systems. Bolt's model,
(1)

for

example, reduces to a two-equation system of this form without a forcing

function; .ind the model of Tinbergen and Bos (7)
is a six-equation system

with a forcing function, which in this case is the total volume of pro-

duction of a country.

Linearity means that P
s
(t) is a function of P

s
(t - 1), rather than

CP
s
(t - 1) ] or [P

s
(t - 1) ]2.5, or whatever. Since we do not know 'r rrr:r),

the functional dependence (we know no "physics" of education from which

to derive the mechanisms of educational systems), we have no basis for

choosing a model any more complicated than a linear one. However, linear

iU
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first-order difference systems, like first-order differential systems,

have the property of either growing exponentially without limit or de-

caying to zero (or to purely forced behavior if there is a forcing func-

tion) after a sufficient period of time, so that linear models may lead

to substantial error if applied over too long a time period. Nonlinear

systems and real systems of all kinds often have the property of limit-

ing their growth, and in general they display more complex behavior than

linear systems. Except where specific nonlinear mechanisms can be iden-

tified, however, linear models are adequate if only small changes are

considered.

First-order models of the movement of students through an educa-

tional system neglect the past history of the students, a simplifica-

tion usually necessary because of the lack of detailed information.

Assumption of a first-order model is implicit in a Markov chain and in

input-output tables, which are sometimes used to describe tle flow of

students or resources in a system; in both cases, the use of constant

coefficients means that a current cross-sectional analysis of system

operation is used to predict the future time series of the variables.

This difficulty can be overcome somewhat when the model is used in con-

nection with information systems, as is the case in the models proposed

by Koenig et al.
(11)

and Judy,
(12)

so that the coefficients are updated

every year.

Bowles' model (8) uses the simplest form of optimization theory,

linear programming. A benefit function (describing the economic bene-

fits of education) is formulated in terms of th- present value of the

estimated stream of lifetime earnings, Yj, associated with a level of

education, j, the present value of the foregone earnings with (lower)

educational level, j', and the present value of the costs to the society

of that education, Cj. The benefit function that Bowles uses is

Z EE (Y - Yr - C )P XP
P

all j and all p, (3)jpi JJ J

where XP is the planned enrollment in year p in level j. This function

is maximized over the planning period, subject to constraints on the

values of the X.Xj The constraints are of the form
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XP = minimumnimum [X
t

/aid], for all t and i, (4)
i

t,i

where X. is the amount of input i devoted to activity j in year t,
ij

and a.t i. is the minimum amount of input i required to maintain one stu-
3

dent in activity in year t. Equation (4) requires that the planned

enrollments do not exceed the resources allocated to the educational

system.Oncc.K1liciesconcerningX.are adopted and information re-

garding the other parameters is available, the programming problem can

be solved to give the "optimal" planned enrollments,

Just how optimal the results of a programming model are depends to

a great extent on the benefit function adopted. In educational systems,

it is particularly difficult to find quantitative measures of desired

benefits for which data are available, and most models so far have made

use of indirect measures (e.g., lifetime earnings as a measure of the

benefits of e6ucation). These difficulties are balanced by the advan-

tages of explicitly modeling the tradeoffs among competing needs in a

resource-allocation problem by optimization methods.

The mathematical techniques discussed here are those that have been

most widely used to date in published models of educational systems; they

are c-mvenient and suitable tools for many modeling situations, partic-

ularly those involving simple models. A host of additional techniques

exist that could also be applied to modeling educational system-; thus

this appendix is by no means exhaustive and should be viewed only as a

starting point for modeling efforts.
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