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similarity and simple structure amcng

factor patterns1

Carl Jensema

University of VWashington

Under some circumstances it is desirable to compare the
factor patterns obtained from different factor analyses. When
the number of factors and variables are the same for each sub-
population, it is often possible to apply a rotation techuique
aeveloped by Bluxom which simultanecously rotates different
factor patrerns to maxinmum similarity and varimax simple struc-
ture. 7he technique is described, conputer slgorithms are out-
lined, and a numerical example is given,

»
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A review of a rotation to obtain maximum similarity and

simple structure among factor patterns

Carl Jensema

University of washington

Introduction

Factorial invariance is inmportant in a variety of comnon research
situations involving factor analysis. For example, an tnvestigator
may glve the same questionnaire or test to several subpopulations and
wish t> know how stable the underlying factors are across these sub-
populations, Alternatively, a researcher may give several similar
questionnaires or tests to the same group and wish to determine vhether
they all measure the same factors.

In both of these two general sit.ations or variations of them,
the investigator has 2 croice: He way wrotate each of his factor pattein
matrices to simple structure or he may rotate them to maximum similarity
with each other. 4 pmultitude Of rotationa! techuiques, both orthogonal
and oblique, have heen proposed for achieving s mple structure tiansforms
waich are unique for a given data set. Methods for achieving maximun
similerity between Iactor patterns are somewhat less tumeious., They
H\ye developed along two general lines, The first is canuonical correla-
tions, which rotatec correlational matrices to mutual maximum similarity.
The second approech involves rotation to maximum similarity in relation
to a target matrix. This later method is commonly known as Procrustes
rotation.
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As mentioned above, rotation techniques which are designed to
achieve simple structure for a given data set tend to produce highly
unigue results. Comparison of different factor structure is usually
difficult unless all factors are extremely similar. On the other hand,
if rotation is rlone to achicve maximum similarity between factor
patterns, simple structure is almost always destroyed and meaningful
interpretation is neariy innossible. Under certain cenditions
Procrustes rotaticn may produce results which are an exception to this
general observations, but ever here, the target matrix is arbitrary and
there is no way o3 ascertaining if it is the best possible one.

It is highly desirable to have a rotational technique which will
achieve both maximum simple structure and maximum similarity between
different faetor patterns. This has been recognized and several psycho-
metricisrns have considered the problem. An article by Ahmavaraa (1954)
provided some basic groundwork on the topic. Mervdith (1964a)
generalized Ahmavaraa's work using Iawley's Selection theorem and
proposed a rotational technique (Meredith, 1964b). Unfortunately,
Meredith's solution has some rather severe limitations. It requires
that the regression of the variates being factored on the variates de-
fining the subpopulations be linear and homscedastic. The solution
collapses if these conditions are not met.

tl1iff (1966) considered the problems of 1) rotating two solutions
to maximum similarity and 2) rotating a solution orthogonally to a
specified target matrix. He suggested a sequential procedure to obtain

maximally similar simple structurc solutions for two factor matrices.
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The problem with this treatment is that it may tend to be cumbersome
and time consuming.

To date, the best method of simultaneously achieving simple
structure and maxinmum similarity is the technique of Bloxom (1968).
He reversed Meredith's approach and instead of assuming a constant
factor pattern matrix while allowing the factor axore variance-
covariance matrices to vary, he allowed the factor pattern matrices
to vary across subpopulations while holding the factor s~cre variance-
co-variance matrix arbitrarily constant. This effectively circumverted
the limitations in Meredith's procedure while being more convenient
and generally applicaple than the treatment suggested by Cliff.
However, Bloxom's method appears to have escaped the gencral notice
of psychologists. This paper will attempt to correct that situation

by outlining the method and demonstrating its usefulness.
General Method

Rotation of factor patterns is usually described as:
1) b = aK
wheve 8 is the factor loading matrix, H is the orthonormal transforma-
tion matrix, and b is the rotated simple structure matrix. 1If there
are m subpopulation factor pattern matrices, each having the same number
of variables and factors, the problem is to determine a transformation
matrix, H, for each of the m pattern matrices such that the resulting
rotated matrices will be maxinally similar and yet conform to tle re-

quirements of simple structure.
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The varimax method of rotation, as described hy Horst (1965), maximizes

(2) ~ / )
‘ ¢=tr|b® \ --1—1) b (2

where b(z) is a matrix of the squared clements of the rotated loadings

[
and \I = %é/ is an indempotent matrix. Bloxom has generalized this
criterion across m loading matrices. His index of similarity between two

factor loading matrices, ib apd b, is given by

J
(3) [ @y ( n) @)
1:j¢=t!' lib - Jb _jl ,
which gives the sum of covariances of corresponditg columns of
(2) (2)
1b and Jb .

By combining (2) and (3), Bloxcm obtained

n m ~ , )
L , .
(4) LN Y {b(Z) [y - H) b(z)]
£ i nsd

\

as an expression of similarity between all m factor loading matirices and

-

/
=1 j=1
the extent to which the varimax criterion is maximized for each of the m
loading matrices, Ey maximizing (4) with the constraint that

‘e /.
(5) 1H iH = 1“1“ =1,

maximum similarity and maximum simple structure are achieved among the

m rotated factor loading matrices.
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Computation

Initially, each of the k x k transformation matrices are set to

I’ ’
identity matiices. The n X n indempotent matrix, \! - %}) , is cal=-

n-1

cuiated by setting each diagcral element to and each off

diagonal element to %% where n is the number of variables. After these
initial ~ations are completed the iteration procedure is begun. Taking

the unrotated loadings, _a, of each of the m matrices, the rotated

1

matrices, .b, are obtained from

i
(6) b= _a H

Squaring each element in each 1b matrix, we calculate

m L s

\

~ i (@) @),
<)) vo= ) P PR J

i=1 =1

where V is {he indcmpoient matrix, (1 - %#) . This is the criterion

we seck to maximize. Iterations will be helted when  stabilizes.
Continuing the iterative procedure, equations (8) throvgh (11) are
looped through m times, once for each transformation matrix. Calculating

L .
&, P watrix as

r ‘ -
= @ f @)

3) I Y + |2 .
1 Dk T /. Dib.k V. §p.k pib.kv ib .k
7 |

nultiplication by the unrotated lcadiag matrix, 1a, gives

y

17
9) 184 ¢ -
All roots and vectors of the minor product moment of this matrix are
obtained, as iniicated by

Qo) 2

g ’ / ,;/ ‘ ’ )
13949 = \1‘/‘ 1% L1 7
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From this the new estimate of the transformation matrix is calculated as

/ 2! -1 )

Q1 M= \1® 1) " K i% .
As previously indicated, equations (8) through (11) are carried out
for each of m loading matrices. When this has been accomplished,
equation (6) is returned to and a new iteration is begun. This process
is continued until successive iterations indicate that ¥ has stabil-
ized and final rotated matrices 1b are the best possible.

Once the maximally similer varimax patterns have been found, it
is usually desirable to have some measure of the degree of factorial
similarity that has been achieved. The most common statistical index

of similarity is the cosine between two factor vectors. The relation-

ship between two factor pattern matrices, A and B, is given by

(12) AT = B + E

where T 1s a transformation matrix and E is a matrix of error terms.
The T matrix may be viewed as an estimate of the cosines between factor
pattera matrices A and B, and, as such, can be considered an index of
factorial similarity, Schonemann (1966) has given a solution for T

utilizing the constraints that

(13) T T=T7=1
and
Q14) tr (EE) = min.

Briefly, Schonemann's T solution is calculated in the following manner:
15) S=A’B,

(16) 8s = VDV ,



(17) SS=W D_W 4
and
(18) T=WV’.

The W matrix of cigennectors in (17) must be reflected before (18) is
computed, This may be done by obtaining the diagonal
(19) Dé = W’'svy

s
é for negative elements. If an element of D%

and examining D
s s

is negative,
reflect the correspcending column in W. When computed as described
above, the T matrix has been found to be a useful iundex of factorial

similarity for evaluating the output of Bloxom's rotation.

Applicaticn

Semantic differential data were used to demonstrate the usefulness
of Bloxom's method in comparing the results of different factor analyses.
Each of 176 subjects responded to the same 25 sermantic differential
bipolar word pairs for each of 3 concepts. These <oncepts were "Blind
person", "Deaf person', and "Amputee'. A principle components factor
analysis was performed on each concept and three factors per concept
were extracted, The factors for each concept were rotated with varimax
atnd then with Bloxom's rotation. Table 1 gives the factor patterns
obtained with each of thes2 methods. Visual examination of the Bloxom
rotation patterns readily demonstrates the close similarity between
the three factors involved in each concept. This similarity is not

nearly so apparent in the varimax factor patterns.
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Further evidence of similarity between factors is given by the
0sines in Table 2. These provide a ure precise mezsure of factorial
similarity than simple visual cxaminaticen. Cosines can take values
ranging from +1.00 ¢o -1,00. A cosine of +1.00 indicates perfect align-
ment of factor vactors, .00 represents orthogonal factors, and -1.00
means the poles of the factor vectors are reversei. From Table 2 it

- can be seen that the Bloxom nethod of rotation does an excellent job
of producing factor patterns which can be compared across concepts.

As with any statistical technique, Bloxcm's rotation has limita-
tions. Bloxom has pointed out that in some cases the method gives
rreferential treatment for facti:-s having a large number of high load-
ings. He suggested that this might be caused by a covariance ''tug-of-
war" between larger and smaller factors. If this happens, the factor
patterns may tend to be varimax-covarimax for lsrger factors ard
varimax for smaller factors, Caution must be used in applying the
method where factors within subpopulations are not of comparable
magnitude.

If the limitations of the method are observed, Bloxom's rotation
technique has the potential for wide application in studies involving
comparison of factor patterns. A small loss in simple structure through
the use of Bloxom's method often pays off in factors which can be much

more weaningfully compared,
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Blind

Person
1 2 3
1 18 54 00
2 22 -05 19
3 13 16 50
4 30 04 30
5 68 12 o3
6 22 -15 -04
7 09 -16 65
8 66 06 20
9 -16 30 31
10 48-13 49
11 43 20 54
12 15 ~56 ~02
13 57 =38 18
14 45 -08 41
15 54 -18 17
16 46 46 20
17 21 -55 -09
18 59 28 -06
19 69 24 -13
29 28 64 13
21 =17 12 22
22 19 37 52
| 23 27 46 49
24 52 04 22
25 48 -04 38

Table 1

Factor Patterns Obtaincd with Two Rotation Methods

Va:rimax

Deaf
Person

02
28
66
58
22
07

55 -

22

37
67
06
39
16
06
6
13
09
11
35
44
58
69
23
67

2

az
-18
=16
01
13

-48

3

05
54
14
20
55
16
31
63
10
50
28
09
38
63

69
16
~16
66
79
10
01
07
14
64

23

Amputece

23
05
65
72
02

-26

06

=11

46
58
19
78
20

Note--Loadings with absolute values
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00 62
71 10
20 30
26 18
58 -02
18 ~80
03 -10
73 -18

-16 -64
70 -28
33 24

-29 26
75 -01
75 -16
79 04
06 26
37 -41
70 -13
72 05
04 58

-17 1

-17 -07
16 11
63 -1
32 30

greater than .40

10

Biind
Person

50
-12
-08
-17

(0}2]
-12
-a1
-03

15
-59
-04
-51
-a2
-24
-24

34
-a7

27

27

50
-09

13

22
-05
«19

16
50
07
25
67
24
03
63
-20
44
36
17
56
41
53
4
24
58
69
23
-23
12
20
50
44

3loxomn

Deaf

Person

2

ié
-22
-32
~14
10
-47
-17
-12
67
-a7
-01
50

-0
-14
04
03
30
18
04
52
0
20
13
03

-19

arc underlined

3

02
55

16
21
55

18
35
64

n7
53
29
07
41

64

69

17

Amputee

1l 2

28 60
08 09
68 25

74 12
04 - 02
-02 -80
78 -17
12 -19
28 52
15 -30
71 18
44 23
-04 01
14 -18
03 03
70 20
-28 -39
08 -14
-08 06
50 54
58 07
78 -14
79 04
21 -12
€0 25

3

00
71

18
18
58
18
00
73

-16

31
-30
75

PN—

74

79

04
37
70

72
02
-18
-19
13
62

30
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Blind
Person 1

2

3
Deaf
Person 1

2

3

Amputee 1
2

3

Varimax
Blind Deaf
Person Person
1 2 3 1 2 3
100 00 20 14 -02 99
100 00 08 100 01
100 99 -08 -14
106 00 00
w0 00
100

Table 2

Cosines Between Factors

Amputee
1 2 3
04 99 10
20 ~-11 97
98 -02 -20
98 10 -15
17 -17 97
-07 98 18
100 00 00
100 00
100

Blind
Perzon

100 00 00

100 00

100

100

-06

01

100

Deaf
Person
2 3
06 =01
100 00
G0 100
o0 00
100 00
100

Amputcc
1 2 3
99 13 01
~13 100 =08
-02 08 100
100 032 01
-03 99 -13
<01 13 99
100 00 00
100 00
100

Aruitoxt provided by Eic:
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"MaxSIM"

Program Setup Instructions

A. Title Card--Any alphanumeri. .essage to be printed at beginning of output.

B. Problem Card

Column Item
1 -7 Punch "PROBLEM"
8 -9 Number of matrices (Max = 10)
10 - 11 Number of variables in each Matrix
(Max = 50)
12 - 13 Number of factors in each Matrix
(Max = 15)
14 - 16 Maximum number of iterations to be allowed.
17 - 21 Iteration tolerance (try 00100 or 00010)
22 - 23 Number of input unit

C. Input Format Card. Any F-type format

D. Data--Matrices should be read in one at a time with factors arranged in
columns and variables in rows

This 18 a repeating program. Steps A through D can be repeatced as often
as desired.

E. At the end of all problems put a card with "FINISH" punched in columns 1-6.
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A

RUNIS),
SETCORE.,
LGO.
-00
PRUGKAM MAXSIM{INPUTUUTPUT yPUNCH, TAPES=INPUT s TAPES=VUTPUT » TAPE 7=
*#*PUNCH) .
DIMEMSTUN ALl0s50915) 58109504153 sBVI10»1535039H{10s15915)
¥V{5U350)+BRI5Cs15)sARI15515)9BAAR{30915)+E(15]1+TITLELB)sFMTI(8B)
THIS PROGKAM WAS WRITTEN BY JARL JENSEMA IN JUNEs197V.
17 TRANSFURMS FACTOR LOADING MATRICES OF DIFFERENT GROUPS TO
MAXIMALLY SIMILAR ORTHOGONAL SIMPLE STRUCTURES.
THE MSTHOD IS5 GUTLINED BY BLUXOM IN PSYCHOMETRIKA
IVOL.33sNU 2y JUNE,1968), THE SIMPLE STRUCT!'RE CRITERION
/S THF SAME AS FUR VARIMAX TRANSFORMATIONG.
M=MUMBERY OF GROUPS (MAX=10:
NV=NUMBER OF VARIABLES (MAX=50)
HF=NUMBER OF FACTORS {(MAX=15)
A=ORIGINAL FACTOR LOADING MATRICES
H= { PANSFORM/ TION MATRICES
B=NEW FACTOR LOADING MATRICES
READ (6 91) TITLEsPRURLEMsMyNVINFyMAXsTOLSNT»FMT
FORMAT(LAL0/AT5312+13,F545912/8A10]
IF{TITLEC1)«FQ,JUHFINESH ) GO 70 10000
IF{FMT{1}+EQ.YOHFINISH } GO TO 10000
IF(PROBLEMLEGL,THFINISH ) GO TO 10000
IF (PROBLEMNFE, 7THPRORLEM) GO TO 10
WRITE(S92) TITLE M sNVINFsMAXsTOLWNT sFMT
2 FORMAT{45HIUNIVERSITY uF WASHINGTON BUREAU OF TESTING
177/ 76H PRUGRAM TU TRANSFORM FACTUR LUADINGS TU MAXIMALLY SIMILAR 51
*MPLE STRUCTURES //71Xs8A10
2//719H NUMBER OF GROUPS = 17X»173
3/736H NUMBER OF VARIABLES IN EACH GROUP = |3
4/736H NUMBER OF FACTORS IN EACH GROUP = 13
5//736H MAXIMUM NUMBER OF ITERATIONS = I3
6/7/22H ITEKATION TOLFRANCE = 14X9F 9.5
7/7/713H INPUT UNIT = 23aX\13
8/715H INPUT FORMAT = 10X»8A10)

<

< READ IN ORIGINAL LOADINGS,
DN 20 I=19M
WRITC(693) |
3 FORMATIS5({/1v28H ORIGINAL LOADINGS FChk GROYP 13}

DO 20 J=1sNV
READINTIFMTI(ALT 9 JsK)2sK=19NF
wRITELGraY JolAlT9JsK)sK=19NF)

4 FORMAT(//9H VARIABLE13s{/ 15F9.3}))

20 CONTINUE
+ WRITE(6s5)
5 FORMAT(S5{/)s32H COSINES BETWEEN INPUT MATRICES. )

CALL COSiNEST{A BAARIAB:EsTOL»MsNV 4 NF)
WRITE(616)

!

6 FORMAT(5{/ 938K SUCCESSIVE ITERATIUN CRITERIUN vALUES )

C: CALCULATE IDEMPUTENT MATRIX USED [N CRITERION FUNCTIUN,

C THE CRITEKION 1S THE SAME AS fHE ONE USED IN VARIMAX TRANSFURMS,
DO 40 1=279NV
DG 30 J=1NV
VIi19Jd}=s0,0-1,0/NV

O
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"50
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100
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&

C

CONTINUE

ViIsl)=1.0-1.0/NV

CONTINVE

SET TRANSFORMATION MATRIX H TO AN IDENTITY MATRIX.
DO 6V I=1M

DO 60 J=1:NF

DO sU K=1NF

H(l 9JsK)=2040

CONTINUE

Hils»JsJ)=140

CONTINUE

LOOP=~1

PS1=C.0

BEGIN ITERATION LOOP.

MUL TIPLY URIGINAL LOADINGS BY TRANSFORMATION MATRIX.
THES 1S EWUATION 3 OF BLOXOMS ARTICLE.
LOOP=LOOP+1

DD 8C I=19M

DO 80U J=1eNV

00 8V K=1sNF

B{I+JyK}=0.0

DO 80 w=1NF

B{lJyKi=t(]y J,NI+A(I5J:L)*H(IgL9Kl

CONTINUE

BEGIN CALCULATIUN OF CRITERION FUNCTION PSI.
THIS 1S GIVEN [N EQUATION 5 OF BLOXOMS ARTICLE,
PO 90 I=1"M

DO 90 J=1sNF

00 90 K=1+AV

BVIiT1+JsK})=Ce0

DO 9U L=1sNV

BV TaJsK)=BV( 1, JsK)+{BL1sL s J)1 %% )8V (LK)
CONTINUE .

OLDPSI=PSI

PS1=0,.0

DO 1Vl I=1M

.00 100 JU=1sM

DO 100 K=1NF

DO 100 L=1sNV

PSI=PSI+8VIIsK L I#{RIJsL oK) *#2)

CONTINUE ’

PSI IS NOW THE CRITERION FUNCTION VALUE SPECIFIED BY EQUATION 5e
WRITE(6sT7) PSI

FORMAT(F1546)

CHECK TO SEE IF ITERATION TOLERANCE HAS BEEN REACHED.
IF(ABS(PSI-OLDPSE«LE.TOLY GO TO 200

CHECK TO SEE IF THE MAXIMUM NUMBER OF ITERATIONS HAS BEEN REACHED.
IF(LOOP.GE.MAX) GO TO 200

BEGIN INNER LOOP TO GET A NEW TRANSFORMATION MATRIX FOR tACH GROUP
DO 190 Il=1M

DO 110 I=1NF

DO 110 J=1NV

83(1sJ)=20.0

CONTINVE

£O 120 1=1M

DOUGLE=1.0

15
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WRITE(6911)

FORMAT{5(/7)+33H COSINES BETWEEN OUTPUT MATRICES. }
CALL COSINES({ByBAABIABSE» TOLslMaNV I NF)
GO TO 10

WRITEL6s12])

FORMAT(20(/1512H END OF J0B.)
STOP

END

SUBROUTINECOSINES{ByBAABABSE»TOLsMsNV 4NF)
THl& SUBRUUTINE CALCULATES ORTHUGONAL PRUCRUSTES TRANSFORMATION
{COSINE) MATRICES. THE METHCD COMES FRUOM SCHONEMANN (PSYCHOMETRIKA»
MARCHy 1966}

DIMENSION BllUs2usl5)sBAABI3V1H)sABBAI30.5)»AB(15:15)9E(15)
DO 70 1iI=1M

DO 7V Jd=11M

CBTAIN MINOR PRUDUCT OF TwU LOADING MATRICES.
DO 10 I=1NF

DO 10 J=1sNF

ABLTsJ)=0eD

D0 11U K=1NV

ABLT s ) =AB{I s N4BIIT Ky 1I*B(IJIKyJ)

CONTINUE

OBTAIN MINOR AND MAJUR PRODUCTS OF AB.

DO 2V I=1sNF

00 2U J=1»sNF

BAA3(1sJ)=0.0

ABBA{I»J)=0,0

DO 20 K=1sNF
BAAB(I»J)=BAAR{ I »J)+AB(K» 1) ¥AB{K) J)
ARBA(I9sJ)=ABBA(I»J)+AB{]sK)*ABLJK)

CONTINUVE

OBTAIN ROOTS AND VECTORS.

CALL JACSIMIBAABSE s TOL sNF)

CALL JACSIM(ARBASE s TOL ,NF}

BEGIN REFLECTION OF ARBA VECTORS.,

(SEEF P.8» BUTTOM PARAGRAPH OF SCHONEMANN ARTICLE.)
MULTIPLY TO OBTAIN WSV,

D0 30 I=1sNF

DO 30 J=1»NF

ABBA(I»0)=0.0

DO 30 K=1NF

KNF =K+ NF

ABBAT1+J)=ABBAL] »J)+ABRBACKNF [ ) *AB(KyJ)
CONTINUE

DO 4C I=1>sNF

DO 4C JU=1sNF

AB8(1+J1=0.0

DO 40 K=1sNF

KNF=K+NF

ARLTI s )=ABTT»J)+ABRA T K )*¥BAAR(KNFJ)

- CONTINUE
. CHECK DIAGONAL VUF WwsV, REFLECT COLUMN IF DIAGONAL ELEMENT 1S NEGATIVE

DO 5C 1=1.NF
IF(ABIIs1)eGELOs ! GO TO 50
DO 5V J=1sNF

16



1F{1.EQell} DOUBLED?2,0

DO 120 J=1sNF

DO 120 K=1NV

TEMP=E(I19KsJ)

DO 120 L=1sNV

88((9J)-88(KiJ}*TEMP*V(k LI¥(B{l Lo J}#%21¥DOUBLE
20 CONTINUE

WE NOw HAVE THE BETA MATRIX GIVEN IN EQUATIZN 18.

MULTIPLY THFE BETA MATRIX BY THE ORIGINAL LOADINGS»

THEN CALCULATE THE MINOR PRODUCT MOMENT OF THIS NEW MATRIX.

DD 40 I=1sNF

DO 140 J=1sNF

AB{I1,J)=0.0

DO 140 K=1yNV

ABL I »J)=AB{ I s J)+ALTT»K» 11 ¥BB{KsJ)

"Ana~

. 149 CONTINUVE

DO 150 [=1sNF
D0 150 J=1sNF
BAAB(]+J)=0,0
DO 150 X=1 sNF
BAAB(TsJI=BAAR( I 9 JI1+AB(K» 1) *AB(KsJ}
Sy CONTINVE
DO A COMPLETE FACTORIZATION OF MATRIX BAAB.
CALL JACSIM(BAABSE »TOL »NF)
EIGENVECTORS ARE COLUMNS OF HAAB.
EIGENVALUES ARE IN E.
DO 160 1=1sNF
E(I)'l.OISOQT(E(ll)
160 CONTINUE
DO 170 I=1sNF
INF=14+NF
DO Y70 J=1sNF
JNF=JaNF
BAAB(190120,0
DO 170 K=1sNF
BAAo‘[’J)-BAAR(lsJ)+BAAB‘INFIK)*E(KI*BAAb(JNFDK)
170 CONTINUE
DO 180 I=1sNF
DO 180 J=1»NF
H(ITs19J1=0.0
DO 180 K=1sNF
H{TTIs1sJ)=HITIsIsJ)4AB K1 *BAABIKJ}

180 CONTINUE ‘
“C WE NUW HAVE NEW ESTIMATIUNS UF THE TRANSFORMATION MATRICES.

[a¥a} 0y -

C END OF INNER LOOP
19v CONTINVE
C ° END OF ITERATION LOOP
GO TO 70
-200 WRITE(6+8) LOOP
8 FORMAT(//33UH NUMBER OF [TERATIONS NEEDED = 15)

DO 210 [=1sM

' WRITE(699) |

-9 FORMATI(5(/)»3)H TRANSFORMED LOADINGS FOR GROUP 113)
DO 210 JalsNV
WRITE(Gsu) Jy (BlI+JsK)sKalsNF)

210 CONTINUVE

17
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JNF = J+NF
ASBA{JUNF s 1)=ARBAIJNF I} ¥{=1s)

CONTINUE

END OF REFLECTION.

OBTAIN THANSFORMATION MATRIX BY MULTIPLYING VECTORS.

DO 6V I=12NF

INF=I+NF

DO 80 J=1NF

JNF = J+NF

AB(1sJ}=0.0

DO 60 K=1>5NF

AB(T9J)=AB{1»J) tABRA(INF oK1 #BAAB( UNF 3K )

CONTINUE

WRITE(G:]1) 11sJJ

FORMATI(///722H CUSINES BETWEEN GROUP13.17H (ROwS) AND GROuPla.

#11H (COLUMNS), 1}

DO 7V l=1sNF

WRITE(622) Is{ABLisJYrsd=2sNF)
FORMAT(//7H FACTOR131/15F9.3))
CONTINUE

RETURN

END

SUBROUTINE JACSIMIRYDsPIN)
TH15 SUBROUTINE CALCULATES ALL ROOTS AND VECTORS OF A MATRIX
USING A JACOBI METH(O.
DIMENSION R(30,19})»D{15)
N1=N+} ‘
Nil=N=-]

N2=N%*2

DO 10 I=N1lsN2

DO 10 J=1»N

RtisJ4)=0,0

CONTINUE

DO 206 I=1»N

NI=N+1

RfNI’I’=]-O

CONTINUE

DO 90 L=1+100

0 33 1=1sN

Dily=R{1,1)

CONTINUE

00 5U I=gsN11

Il=1+1

DO 58 J=l1N
DR=R(I»1)=R(JsJ)
A=SQRT{DR¥H# 44 ¥R {yJ) ##2)
A=SQRT((A+DR}/ (2. %*A))
B=SQRT{1.~A##2)
C=SIGN(1.,R{1,+J))

DO 4V K=1sN?
U=R(K, 1) #ARCH+R({K»J )} #B
RIKsJ)=~RIK+ 1) #B¥C+RIK+J ) ¥A
RiKsly=2U

CONTINUVE

DO 50 K=1»N
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U=R (T, X} HAXC+R(J 1K) #8
RiJpKy==RUT +K) #BEC+R{J2KIH*A
R({IsK)=U

CONTINUE

DO 60 I=1sN
DI1)1=ABSID{1)=R{Is11})
CONTINUE

S=U, 0L

DO 7U l=19N
S=MAX1(S5D{1))
CONTINUE

DO 80 I=1»N
D(I1=R{Is1}

CCNTINUE

IF{a=P) 100,100+9C
CONTINUE

RETURN

END
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