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ABSTRACT
Under some circumstances, it is desirable to compare

the factor patterns obtained from different factor analyses. To date,
the best method of simultaneously achieving simple structure and
maximum similarity is the technique devised by Bloxom (1969). This
technique simultaneously rotates different factor patterns to maximum
similarity and varimax simple structure and is applicable when the
number of factors and variables are the same for each suhpopulation.
The technique is described and the computer algorithms ace given. A
numerical example compares the results of different factor analyses.
If the limitations of the method are observed, Bloxom's rotation
technique has the potential for wide application in studies involving
comparison of factor patterns. A small loss in simple structure
through the use of Bloxom's method often pays off in factors which
can be much more meaningfully compared. (CK)
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Under some circumstances it is desirable to compare the
factor patterns obtained from different factor analyses. When
the number of factors and variables are the same for each sub-
population, it is often possible to apply a rotation technique
developed by B1-,xom which simultaneously rotates different
factor patterns to maxiLlum similarity and varimax simple struc-
ture. The technique is described, computer algorithms are out-
lined, and a numerical example is given.
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A review of a rotation to obtain maximum similarity and

simple structure among factor patterns

Carl Jensema

University of Washington

Introduction

Factorial invariance is important in a variety of common research

situations involving factor analysis. For example, an investigator

may give the same questionnaire or test to several subpopulations and

wish t) know how stable the underlying factors arc across these sub-

populations. Alternatively, a researcher may give several simUar

questionnaires or tests to the same group and wish to determine Oiether

they all measure the same factors.

In both of these two general situations or variations of them,

the investigator has a ctoice: He may rotate each of his factor pattern

matrices to simple structure or he may rotate them to maximum similarity

with each other. 4 multitude of rotations: techniques, both orthogonal

and oblique, have been proposed for achieving s%mple structure transforms

which are unique for a given data set. Methods for achieving maximum

similarity between factor patterns are somewhat less tumelous. They

hkve developed along two general lines. The first is caulnical correla-

tions, which rotates cerrelational matrices to mutual maximum similarity.

The second approach involves rotation to maximum similarity in relation

to a target matrix. This later method is commonly known as Procrustes

rotation.
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As mentioned above, rotation techniques which are designed to

achieve simple structure for a given data set tend to produce highly

unique results. Comparison of different factor structure is usually

difficult unless all factors are extremely similar. On the other hand,

if rotation is none to achieve maximum similarity between factor

patterns, simple Etrusture is almoLit always destroyed and meaningful

interpretation is nearly iroossible. Under certain conditions

Procrustes rototicn may produce results which are an exception to this

geneyal observations, but ever here, the target matrix is arbitrary and

there is no way of ascertaining if it is the best possible one.

It is highly desirable to have a rotational technique which will

achieve both maximum simple structure and maximum similarity between

different factor patterns. This has been recognized and several psycho -

metriciens have considered the problem. An article by Ahmavaraa (1954)

provided some basic groundwork on the topic. Meredith (1964a)

generalized Ahmavaraa's work using Iawley's Selection theorem and

proposed a rotational technique (Meredith, 1964b). Unfortunately,

Meredith's solution has some rather severe limitations. It requires

that the regression of the variates being factored on the variates de-

fining the subpopulations be linear and homscedastic. The solution

collapses if these conditions are not met.

bliff (1966) considered the problems of 1) rotating two solutions

to maximum similarity and 2) rotating a solution orthogonally to a

specified target matrix. He suggested a sequential procedure to obtain

maximally similar simple structure solutions for two factor matrices.
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The problem with this treatment is that it may tend to be cumbersome

and time consuming.

To date, the best method of simultaneously achieving simple

structure and maximum similarity is the technique of Bloxom (1968).

He reversed Meredith's approach and instead of assuming a constant

factor pattern matrix while allowing the factor axore variance-

covariance matrices to vary, he allowed the factor pattern matrices

to vary across subpopulations while holding the factor a -cre variance-

co-variance matrix arbitrarily constant. This effectively circumverted

the limitations in Meredith's procedure while being more convenient

and generally applicaole than the treatment suggested by Cliff.

However, Bloxom's method appears to have escaped the general notice

of psychologists. This paper will attempt to correct that situation

by outlining the method and demonstrating its usefulness.

General Method

Rotation of factor patterns is usually described as:

(1) b= all

where a is the factor loading matrix, H is the orthonormal transforma-

tion matrix, and b is the rotated simple structure matrix. If there

are m subpopulation factor pattern matrices, each having the same number

of variables and factors, the problem is to determine a transformation

matrix, H, for each of the m pattern matrices such that the resulting

rotated matrices will be maximally similar and yet conform to tLe re-

quirements of simple structure.
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The Varimax method of rotation, as described by Horst (1965), maximizes

0 = tr ib
(2) (

II - b
1) (2)]

where b
(2)

is a matrix of the squared elements of the rotated loadings

( 1111
and \I - --/ Is an indempotent matrix. Bloxom has generalized this

criterion across m loading matrices. His index of similarity between two

factor loading matrices, ib and jb, is given by

(3)

ij n
0 = tr b

(2) ( 11) (2)1
I - b

j

which gives the sum of covariances of corresponding columns of

b
(2)

and b
(2)

.

By combining (2) and (3), Bloxom obtained

m m

(4)
_V (2)' (1

-
i

n

i)
j

b(21
- b

13.1 J=1 i

as an expression of similarity between all m factor loading matrices and

the extent to which the ' iarimax criterion is maximized for each of the m

loading matrices. Ey maximizing (4) with the constraint that

(5)
i 1H I

H 11/:-- I,

maximum similarity and maximum simple structure are achieved among the

m rotated factor loading matrices.



5

Computation

Initially, each of the k x k transformation matrices are set to

identity matrices. The n x n indempotent matrix, V
11

- , is cal -

culated by setting each diagccal element to and each off

diagonal element to
n1

where n is the number of variables. After these

initial'-ations are completed the iteration procedure is begun. Taking

the unrotated loadings, la, of each of the m matrices, the rotated

matrices, ib, are obtained from

(6) ib = is H

Squaring each element in each ib matrix, we calculate

at m

(7) * = / tr 1,I b
(2)/

J
V b

i=i j=.1
,

where V is the indempotent
1

ent matrix, (I - This is the criterion

we seek to maximize. Iterations will be halted when * stabilizes.

Continuing the iterative procedure, equations (8) through (11) are

looped through m times, once for each transformation matrix. Calculating

a
i
/01 matrix asr_

. (2 (2)1
(8) .,-) \m-,, .

i re .k L 0 ib.k V I b.k + 2 Dib.k v i b .k i

,11 1
..;

multiplication by the unrotated loading matrix, 1a, gives

(9)
i
a r, .

All roots and vectors of the minor product moment of this matrix are

obtained, as iLiicated by

(10) ,e2 e

iclid ia (kaI,e)



From this the new estimate of the transformation matrix is calculated as

,

(11 iH =
is

1 -1
iq id ic;) .

Il

As previously indicated, equations (8) through (11) are carried out

for each of m loading matrices. When this has been accomplished,

equation (6) is returned to and a new iteration is begun. This process

is continued until successive iterations indicate that 4' has stabil-

ized and final rotated matrices ib are the best possible.

Once the maximally similar varimax patterns have been found, it

is usually desirable to have some measure of the degree of factorial

similarity that has been achieved. The most common statistical index

of similarity is the cosine between two factor vectors. The relation-

ship between two factor pattern matrices, A and B, is given by

(12) AT = B t E

where T is a transformation matrix and E is a matrix of error terms.

The T matrix may be viewed as an estimate of the cosines between factor

pattern matrices A and B, and, as such, can be considered an index of

factorial similarity. Scheinemann (1966) has given a solution for T

utilizing the constraints that

(13) T'T = T T'= I

and

(14) tr (E'E) a min.

Briefly, SchOnemannts T solution is calculated in the following manner:

(15)

(16)

S a A' B,

S'S = VD V ,

6
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(17) S S = W DsW

and

(18) T = W Vi.

The W matrix of eigennectors in (17) must be reflected before (18) is

computed. This may be done by obtaining the diagonal

(19) = W'SV

and examining D! for negative elements. If an element of D! is negative,

reflect the corresponding column in W. When computed as described

above, the T matrix has been found to be a useful index of factorial

similarity for evaluating the output of Bloxom's rotation.

Application

Semantic differential data were used to demonstrate the usefulness

of Bloxom's method in comparing the results of different factor analyses.

Each of 176 subjects responded to the same 25 semantic differential

birolar word pairs for each of 3 concepts. These concepts were "Blind

person", "Deaf person", and "Amputee". A principle components factor

analysis was performed on each concept and three factors per concept

were extracted. The factors for each concept were rotated with varimax

and then with Bloxom's rotation. Table 1 gives the factor patterns

obtained with each of these methods. Visual examination of the Bloxom

rotation patterns readily demonstrates the close similarity between

the three factors involved in each concept. This similarity is not

nearly so apparent in the varimax factor patterns.

8
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Further evidence of similarity between factors is given by the

os'nes in Tabli 2. These provide a 1-.,re precise me7.sure of factorial

similarity than simple visual examination. Cosines can take values

ranging from +1.00 to -1.00. A cosine of +1.00 indicates perfect align-

ment of factor vectors, .00 represents orthogonal factors, and -1.00

means the poles of the factor vectors are reverses. From Table 2 it

can be seen that the Bloxom method of rotation does an excellent job

of producing factor patterns which can be compared across concepts.

As with any statistical technique, Bloxom's rotation has limita-

tions. Bloxom has pointed out that in some cases the method gives

preferential treatment for facts having a large number of high load-

inFs. He suggested that this might be caused by a covariance "tug-of-

war" between larger and smaller factors. If this happens, the factor

patterns may tend to be varimax-covarimax for larger factors and

varimax for smaller factors. Caution must be used in applying the

method where factors within subpopulations are not of comparable

magnitude.

If the limitations of the method are observed, Bloxom's rotation

technique has the potential for wide application in studies involving

comparison of factor patterns. A small loss in simple structure through

the use of Bloxom's method often pays off in factors which can be much

more meaningfully compared.
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Table 1

Facto.' Patterns Obtained with Two Rotation Methods

Va:Amax 31oxon

Blind Deaf Blind Deaf
Person Person Amputee Person Person Amputee

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

18

52--

13

30

68

22

09

66

-16

48

43

15

57

45

54

46

21

59

69

28

-17

19

27

52

48

2

54

-05

16

04

12

-15

-16

06

30

-43

20

-56

-38

-08

-18

46
- -

-55

28

24

64

12

37

46

04

-04

3

00

19

50

30

03

-04

65

20

31

49

54

-02

18

41

17

20

-09

-06

-13

13

50

52

49

22

38

1

02

28

66

58

22

07

55--

22

05

37

67_
06

39

16

06

64--

13

09

11

35

44

58

69

23

67

2

47

-18

-16

01

13

-48--

-04

-10

71

-41

16

53

-33

-13

02

21

36

18

02

64

33

37

33

12

02

3

05

54--

14

20

55

16

34

63--
10

50

28

09

38

63

69

16

-16

66

79

10

01

07

14

64

23

1

23

05

65

72

02

04

79

11

24

16

68--

43

-06

13

00

68

-26

06

-11

46

58

79

78

20

E6

2

00

71

20

2)

58

18

03

73

-16

70

33

-29

75

75

79

06

37

70

72

04

-17

-17

16

63

32

3

62

10

30

18

-02

-80_
-10

-18

-64

-28

24

26

-01

-16

04

26

-41

-13

05

58

11

-07

11

-i.:

30

1

23

21

53

50

15

-07

54_
28

38

32

62--
-22

08

39

14

41

-28

12

05

46

48

64

66

28

38

2

50

-12

-06

-17

09

-12

-41

-03

15

-59

-04

-51

-42--
-24

-24

34

-47

27

27

50

-09

13

22

-05

-419

2.

16

50

07

25

67

24

03

63

-20

44

36

17

56

41

53

41

24

58

69

23

-23

12

20

50

44_

1

15

21

58

56

24

-07

51

18

25

24

68

21

28

11

06

67

23

12

10

51

51

66

75

24

64

2

45

-22

-32

-14

10

-47

-17

-12

67

-47

-01

50

-40

-14

04

03

30

18

04

52

20

20

13

03

-19

3

02

55
--
16

21

55

18

35

64

07

53

29

07

41

64

69

17

-17

65

79

08

01

07

14

64

25

1

28

08

68

74

04

-02

78

12

28

15

71

44

-04

14

03

70

-28

08

-08

50

58

78

79--

21

CO

2

60

09

25

12

-02

-80

-17

-19

62--
-30

16

23

01

-18

03

20

-39

-14

06

54

07

-14

04

-12

25

3

00

71

18

18

58

18

00

73

-16

69

31

-30

75
-_.

74

79

04

37

70

72

02

-18

-19

13

62

30

Note--Loadings with absolute values greater than .40 are underlined

1



0
T
a
b
l
e
 
2

C
o
s
i
n
e
s
 
B
e
t
w
e
e
n
 
F
a
c
t
o
r
s

B
l
i
n
d

P
e
r
s
o
n

V
a
r
i
m
a
x

D
e
a
f

P
e
r
s
o
n

A
m
p
u
t
e
e

B
l
i
n
d

P
e
:
 
o
n

D
e
a
f

P
e
r
s
o
n

A
m
p
u
t
e
e

1
2

3
1

2
3

1
2

3
1

2
3

1
2

3
1

2
3

B
l
i
n
d

P
e
r
s
o
n
 
1

1
0
0

0
0

0
0

1
4

-
0
2

9
9

0
4

9
9

1
0

1
0
0

0
0

0
0

1
0
0

0
6

-
0
1

9
9

1
5

0
1

2
1
0
0

0
0

0
8

1
0
0

0
1

2
0

-
1
1

9
7

1
0
0

0
0

-
0
6

1
0
0

0
0

-
1
3

1
0
0

-
0
8

3
1
0
0

9
9

-
0
8

-
1
4

9
8

-
0
2

-
2
0

1
0
0

0
1

G
O

1
0
0

-
0
2

0
8

1
0
0

T
-
1

D
e
a
f

/
(

P
e
r
s
o
n
 
1

1
0
0

0
0

0
0

9
8

1
0

-
1
5

1
0
0

0
0

0
0

1
0
0

0
3

0
1

2
1
0
0

0
0

1
7

-
1
7

9
7

1
0
0

0
0

-
0
3

9
9

-
1
3

3
1
0
0

-
0
7

9
8

1
8

1
0
0

-
0
1

1
3

9
9

A
m
p
u
t
e
e
 
1

1
0
0

0
0

0
0

1
0
0

0
0

0
0

2
1
0
0

0
0

1
0
0

0
0

3
1
0
0

1
0
0



11

Bibliography

Bloxom, Bruce. Factorial rotation to simple structure and maximum

similarity. Psychometrika, 1968, 33, 237-247.

Cliff, Norman. Orthogonal rotation to congruence. Psychometrika

1966, 31, 33-42.

Horst, Paul. Factor analysis of data matrices. San Francisco:

Holt, Rinehart, and Winston, 1965.

Meredith, William. Notes on factorial invariance. Psyr.thometrika

1964, 29, 177-186 (a).

Meredith, William. notation to achieve factorial invariance.

Psychometrika 1964, 29, 187-206 (b).

Sadnemann, Peter H. A generalized solution of the orthogonal

procrustes problem. Psychometrika 1966, 31, 1-10.

1 9



12

"MAXSIM"

Program Setup Instructions

A. Title Card--Any alphanumeric Aessage to be printed at beginning of output:

B. Problem Card

Column Item

1 - 7 Punch "PROBLEM"

8 - 9 Number of matrices (Max = 10)

10 - 11 Number of variables in each Matrix
(Max = 50)

12 - 13 Number of factors in each Matrix
(Max = 15)

14 - 16 Maximum number of iterations to be allowed.

17 - 21 Iteration tolerance (try 00100 or 00010)

22 - 23 Number of input unit

C. Input Format Card. Any F-type format

D. Data--Matrices should be read in one at a time with factors arranged in
columns and variables in rows

This is a replating program. Steps A through D can be repeated as often
as desired.

E. At the end of all problems put a card with "FINISH" punched in columns 1-6.

13



RUN(S).
SETCORE.
LGO.
00

PRUGRAM MAXSIM(INPUT.OUTPUT,PUNCH.TAPE5=INPUToTAPE6mvUTPUT,TAPE7=
*PUNCH)
DIMENSION A(10,50,15)18(10,50.15),BV(10,15,50),H(10,13,15),

. *V(50,50).88150,15).AR( 15,15),BAAB(30,15),E11511TITLE(8),FMT(8)
C THIS PROGRAM WAS WRITTEN BY CARL JENSEMA IN JUNE,197U.
C IT TRANSFuRMS FACTOR LOADING MATRICES OF DIFFERENT GROUPS TO
C MAXIMALLY SIMILAR ORTHOGONAL SIMPLE STRUCTURES.
C THE METHOD IS OUTLINED BY BLOXOM IN PSYCHOMETRIKA
C (VOL.331N0.21JUNE.1968). THE SIMPLE STRUCTURE CRITERION
C :S THE SAME AS FA VARIMAX TRANSFORMATION:).
C M=NUMBER OF GROUPS (MAX =10
C NV=NUMBER OF VARIABLES (MAX=50)
C NF=NUMBER OF FACTOR.5 (MAX=15)
C A=ORICJINAL FACTOR LOADING MATRICES
C H.(RANSFORMITION MATRICES
C B=NEW FACTOR LOADING MATRICES
10 READ(c,,I) TITLE,PROBLEM,MoNVOF,MAX.TOLOT,FMT

FORMATILA10/A703I2+11oF5.5+12/8A10/
IF(TITLE(1).E0.1(%HFINISH ) GO TO 10000
IF(FMT(11.E0.10HFINISH ) GO TO 10000
IFIPROBLEM.F0.7HFINISH ) GO TO 10000
IF(PROBLEM.NEOHPROPLEM) GO TO 10
WRITE(6,21 TITLE,MoNV,NF.MAX,TOLOT.FMT

2 FORMAT(45HIUNIVERSITY :JE WASHINGTON BUREAU OF TESTING
11/76H PROGRAM TU TRANSFORM FACTOR LOADINGS TO MAXIMALLY SIMILAR SI
*MPLE S'RUCTURES //1X,8A10
2//19H NUMBER OF GROUPS = 17X,I3
3//36H NUMBER OF VARIABLES IN EACH GROUP = 13

4//36H NUMBER OF FACTORS IN'EACH GROUP = 13

5//36H MAXIMUM NUMBER OF ITERATIONS = 13

6//22H ITERATION TOLERANCE.= 14X,F9.5
7//13H INPUT UNIT = 7'4)011
8//15H INPUT FORMAT = 10Xe8A10)

C READ IN ORIGINAL LOADINGS.
DO 20 I=11M
WRITE(60) 1

3 FORMATI5(/1.2BH ORIGINAL LOADINGS FOK GROUP I3)
DO 20 J=1.NV
READ(NT,FMI1(ACI.J.K1.K=10F1
4RITE(6,4) UrIAIIsJoK),K=1.NF)

4 FORMAT(//9H VARIABLE/3,(/ 15F9.3))
20 CONTINUE

. WRITE(6.5)
5 FORMAT(51/) 02H COSINES BETWEEN INPUT MATRICES.

CALL COSiNES(A,BAARIAB:E.TOL.MoNVoNF)
WRI TE(6,6)

6 FORMAT(5(/),38H SUCCESSIVE ITERATION CRITERION VALUES )

C: CALCULATE IDEMPOTENT MATRIX USED IN CRITERION FUNCTION.
C THE CRITERION IS THE SAME AS rHE ONE USED IN VARIMAX TRAASFOKMS.

DO 40 I=1,NV
DO 30 J=I.NV
V(I,J)=0.0-1.0/NV

14



:0 CONTINUE
VII.11=1.0-1.0/NV

40 CONTINUE
C SET TRANSFORMATION MATRIX H TO AN IDENTITY MATRIX.

DO 60 I=1*M
DO 60 J=1*NF
DO 5U K=1,NF
H(I.J1K)=0.0

50 CONTINUE
HiI,J.0)=1.0

.60 CONTINUE
LOOP=-1
PSI=0.0

C BEGIN ITERATION LOOP.
C MULTIPLY ORIGINAL LOADINGS BY TRANSFORMATION MATRIX
C THIS IS EQUATION 1 OF BLOXOMS ARTICLE.
70 LOOP=LOOP+1

DO 80 1=1.M
DO BU J=1,NV
00 8J K=1,NF
B(I.J.K) =0.0
DO 80 L=1oNF
B(1,J,K) =B(I,J,N)+A(I.J.L1*H(11L,K)

80 CONTINUE
.0 BEGIN CALCULATION OF CRITERION FUNCTION PSI.
C THIS IS GIVEN IN EQUATION 5 OF BLOX0MS ARTICLE.

DO 90 1=1.M
DO 90 J=1,NF
00 90 K=1.NV
BV(I.J.K)=0.0
DO 90 L=1*NV
6V(I.J.K)=BV(1,O.KI-1.(BII,L,J1**21*V(LoK)
CONTINUE
OLDPSI=PSI
PSI=0.0
DO 1%.$0 I=1.M
DO 100 J=1.M
DO 100 K=1,NF
DO 100 L=IINV
PSI=PSI+BV(I.K.LI*(BIJ.LIK)**2)

100 CONTINUE
C PSI IS NOW THE CRITERION FUNCTION VALUE SPECIFIED BY EQUATION 5.

WRITE(6.7I PSI
7 FORMAI-U.15.6/
C CHECK TO SEE IF ITERATION TOLERANCE HAS BEEN REACHED.

IFIABS(PSIOLOPSF.LE.TOL) GO TO 200
CHECK TO SEL IF THE MAXIMUM NUMBER OF ITERATIONS HAS BEEN REACHED.
IF(LOOP.GE.MAX) GO TO 200

C BEGIN INNER LOOP TO GET A NEW TRANSFORMATION MATRIX FOR EACH GROUP

DO 190 II=104
DO 110 1=1tNF
DO 110 J=1.NV
8R(I.J)=0.0
CONTINUE
DO 120 I=10M
DOU6LE=1.0



'ow

WRITE(6,11)
11 FORMAT(5(/)03H COSINES BETWEEN OUTPUT MATRICES.

CALL COSINES(R,BAAB,AR,EITOL,H,NV,NF)
GO TO 10

10000 WRITE(6,12)
12 FORMAT(20(/),12H END OF JOB.)

STOP
END

SUBROUTINECOSINES(B,BAABPAB,E,TOLIMOV,NF)
C TH1: SUBROUTINE CALCULATES ORTHOGONAL PROCRUSTES TRANSFORMATION
C (COSINE) MATRICES. THE METHOD COMES FROM SCHONEMANN (PSYCHOMETRIKA.
C MARCH, 1966).

DIMENSION B(1U,:)0,15),BAAB(30,15),ABBA(30,15)*A8(15s151,E(15)
DO 70 II=1,M
DO 70 JJ=1I*M

C OBTAIN MINOR PRODUCT OF TWO LOADING MATRICES.
DO 10 1=1INF
DO 10 J=1*NF
AR(I,J)=0.0
DO 10 K=1,NV
AB4I,J)=AB(1,J) +8(11,K,I)*B(JJ,K,J)

10 CONTINUE
C OBTAIN MINOR AND MAJOR PRODUCTS OF AB.

DO 20 I=I*NF
DO 20 J=1,NF
BAA3(I*J)=0.0
ABBA(I,J)=0.0
DO 20 K=1,NF
BAAd(I.J)=BAAR(1,J)+AB(K,1)*AB(K,J)
ABB4CI,J)=ARBA(I,0)+A8(1,K)*AB(J,K)

20 CONTINUE
C OBTAIN ROOTS AND VECTORS.

CALL JACSIM(RAAB,E,TOL,NF)
CALL JACSIM(ARBA,E,TOL,NF)

C BEGIN REFLECTION OF ARBA VECTORS.
C (SEE P.8, BOTTOM PARAGRAPH OF SCHONEMANN ARTICLE.)
C MULTIPLY TO OBTAIN WSV.

DO 30 I=1*NF
DO 30 J=10NF
ABBA(I,J)=0.0
DO 30 K=1,NF
KNF=K+NF
ABBA( I,J)=ABBA(111.1) +ARBA(KNF,1) *AB(K,J)

30 CONTINUE
DO 40 1=101sIF
DO 40 J=1,NF
AB(I,J)=0.0
DO 40 K=1NF
KNF=K+NF
AR(I0)=AB(I,J)+ABRA(I,K)*BAAB(KNF*J)

40 CONTINUE
C CHECK DIAGONAL OF WSVI REFLECT COLUMN IF DIAGONAL ELEMENT IS NEGATIVE,

DO 50 I=1.NF
IF(AR(1,11.GE.00G0 TO 50
DO 50 J=1*NF

16



IF41 .E0.1 I I DOUBLE02.0
DO 120 J=1,NF
DO 120 K=IIINV
TEMP=C(IloK.J1
DO 120 L =1 ,NV
BB(K,J)=BB(K.J)+TEMP*V(KIL)*(8(1.L.J) **2 *DOUBLE

120 CONTINUE
.0 WE NOW HAVE THE BETA MATRIX GIVEN IN EQUATI'..'N 18.
C MULTIPLY THE BETA MATRIX BY THE ORIGINAL LOADINGS,
C THEN CALCULATE THE MINOR PRODUCT MOMENT OF THIS NEW MATRIX*

DO 140 I =1,NF
DO 140 J:1 ,NF
ABII,J)=0.0
DO 140 K=1,NV
AB(1,J)=AB(1,J)+A(11.K.1)*(38(K,J)

. 14J CONTINUE
DO 150 1 =1,NF
DO 150 J=1,NF
BAAB(I.J)=0.0
DO 150 K=I,NF
BAAL3(1,J) =BAABII,J1+AB(KII)*AB(KoJ)

15%) CONTINUE
C DO A COMPLETE FACTORIZATION OF MATRIX BAAB.

CALL JACSIM(BAAB.E.TOLoNF)
C EIGENVECTORS ARE COLUMNS OF BAAB.
C EIGENVALUES ARE IN E.

DO 160 1=loNF
E(1)=1.0/SORTIE(11)

160 CONTINUE
DO 170 1=1.NF
INF=I+NF
DO 170 J=1,NF
JNF=J+NF
BAA;010J)=0.0
DO 170 K=1,NF
BAA0(1.J)=8AAR(1.J1+BAAB(INFIK)*E(K)*BAA6(JNF*K)

170 CONTINUE
DO 180 1=1,F F
DO 180 J=1,NF
11(II.I.JI=0.0
DO 180 K=1.NF
H(IIII,J)=H(II.I,J)+ABIIIKI*BAAB(K*J)

180 CONTINUE
C WE NOV HAVE NEW ESTIMATIONS OF THE TRANSFORMATION MATRICES.

C END OF INNER LOOP
19d CONTINUE

'C END OF ITERATION LOOP
GO TO 70

.200 WRITE(6,8) LOOP
8 FORMAT(//.UH NUMBER OF ITERATIONS NEEDED = 15)

. DO 210 1=101
WRITEI6,9) I

9 FORMAT(5(/),31H TRANSFORMED LOADINGS FOR GROUP 13)
DO 210 JmloNV
WRITE(6,4) J, (B(I.J.1(),KaloNF)

10 CONTINUE
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JNF=J+NF
ABBAIJNFO)=ABBAIJNF.1)*1-1.)

50 CONTINUE
C END OF REFLECTION.
C OBTAIN TRANSFORMATION MATRIX BY MULTIPLYING VECTORS.

DO 60 1=1,NF
INF=I+NF
DO 60 J=ltNF
JNF=J+NF
AR(I,J)=0.0
DO 60 K=1,NF
ABCI,J)=AB(I,J)+ABBA(INFIIK)*BAABIJNF,K)

60 CONTINUE
WRITE(6,1) II,JJ
FORMAT(///22H CUSINES 3ETWEEN GROUPI3,17H (ROWS) AND GROUPI3,

*11H (COLUMNS). I

DO 70 I=1,61F
WRI TE(6,2) ItIABII,J),J=1,NF)

2 FORMAT(//7H FACTOR.I31/15F9.3))
70 CONTINUE

RETURN
END

SUBROUTINE JACSIMIR.D.P.N)
C THIS SUBROUTINE CALCULATES ALL ROOTS AND VECTORS OF A MATRIX
C USING A JACOBI METHCI.

DIMENSION R(30,151.0(15)
N1=N+)
NI1=N-1
N2=N*2
DO 10 I =N 1,N2

DO 10 J=1,N
R(I,J)=0.0

10 CONTINUE
DO 20 I=10N
NI=N+I
R(NI.I)=1.0

20 CONTINUE
DO 90 L=1,100
DO 30 I=1,N

30 CONTINUE
DO 50 I=t,N11
11=1+1
DO la J=I1,N
DR=RII,I)-RIJ.J)
A=ORTIDR**2+4,*k(I.J1**21
A=SORT(IA+DR)/(2.*A))
B=SORT(1.-A**2)

DO 40 K=10N7
U=R(K,1)*A*C+RIK.J1*8
R(K,J)=-R(K,I)*B*C+RIK,J)*A
R(1011=U
CONTINUE
DO 50 KalN
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U=RII,KI0A*C+R(J,KI*8
R(J,K)=-R(IIK)*8*C+R(J,K)*A
RII,K)=U

50 CONTINUE
DO 60 I=1,N
D(I)=ABSID(II-R(III))

60 CONTINUE
5=04U
DO 70 1=1iN
5=MAX1IS,D(I))

70 CONTINUE
DO 80 I=1,N
D(11 =RiI,I)

80 CONTINUE
IF(, -PI 100,100,90

90 CONTINUe
100 RETURN

END
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