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ON THE GENERAL "ORTHOMAX" CRITERION
FOR ORTHOGONAL FACTOR TRANSFORMATION

A. RALPH HAKSTIAN

University of Alberta

WILLIAM M. BOYD

Memorial University of Newfoundland

In this paper, the results of an investigation into some special cases

-of the general "orthomax" formulation are presented. In particular, the

effects of manipulating a parameter in this formulation on various aspects

of factor sqlutions are identified through the use of four sets of data,

varying considerably in size, and reliability and factorial complexity of

the variables. The implications for practical purposes of the results are

subsequently discussed.

The appropriateness of orthogonal transformation has, in the authors'

opinion, been somewhat misrepresented over the years, by the large number

cif studies conducted with little methodological consideration, using the

standard computing center package providing eith.:r principal coLpenents or

common-factors, rotated using the varimax technique. It is seldom true that

anything approaching an optimal simple structure will result when orthogon-

ality is imposed upon a solution. This is largely because it is unlikely

that, if allowed unconstrained expression, the important factors underlying

a set of variables will turn out to be mtually orthogonal, although if this

conaition does, in fact, obtain, a solution resulting from a proven oblique

transformation, such as provided by the methods of Herr's and Kaiser (1964),

will reflect this. Orthogonality of factor axes should most properly be

considered a constraint imposed upon a set of data for a particular purpose.

'This book was completed while both authors were at the University of
Massachusetts.
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The purpose may involve the development of an instrument or set of theoretical

constructs in which the independence of the component parts is an important

feature. Al_ t an orthogonal solution may be desired as an intermediate

step from which to proceed to an ultimate oblique resolution; in the afore-

mentioned Harris-Kaiser technique, for example, such a step permits oblique

solutions with no risk of transforming to singularity. In the context of the

general factor analytic study, however, an orthogonal solution--as the final

result--will seldom permit 'he maximum clarity of factor interpretation for

the data at hand, end it is only for the special purposes noted that

paper was written.

The history of automatic or non-subjective orthogonal traTI-Aormation

has fo'lowed two major paths. The first, in the direction of "blind"

transformation, has had, as its guideposts, the quartimax (Carloll, 1953;

Ferguson, 1954; Neuhaus and Wrigley, 1954; Saunders. 1953), varimax (Kais

1958), and epamax (Saunders, 1962) criteria. The second, directed towar-

hypothesis confirmatory transformation, generally referred to as the orthc_

Procrustes problem, has been most thoroughly charted in the work of SchiinemaA

(1966a). A possible third path, having the same goal as the first but

crossing the second in places, is represented by ''.1e varisim technique

(SchOnemann, 1966b). The work reported in this paper is clearly an extension

of the first alternative.

The three aforementioned analytic criteria in the "blind" approa h can be

seen as special cases of a, more general, "o. homax" criterion" (Harman, 196);

Harris and Kaiser, 1964):

4

j=1 P=I

-

m n

E
N2

E / bi ) = maximum,

P=I

where b is the loading of variable 1 in orthogonally transformed factor k,

1
The idea and name for this criterion appear to have originated with

John B. Carroll. See Harman (1960, p. 334). 3
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n is the number of variables, and m, of factors. The parameter w, regulating

the weight given the second term, determines the special case of the formulation,

with a value of 0 giving the quartimax criterion, 1 giving varimax, and m/2,

equamax. The work reported in this paper was directed at assessing the

effects o varying w widely, on three aspects of the final solution--variance

dispersion, exemplification of simple structure, aid interpretation of the

obtained factors.

Method

Comparing the Solutions

For each set of data, the unrotated centroid matrix was transformed to

several orthogonal simple structure solutions, the w parameter being 7aried

between 0 or less than 0 and m or greater than m (the exact values of w for

each data set are given with the results). The obtained factors were then

matched with the factors of a graphically transformed solution, the latter

determining the positions of the columns of all obtained factor matrices.

The matching was accomplished by cross-correlating the factors of each

analytic solution with those of the graphic, using the following rationale.

Let A, of order n x m, be the matrix of unrotated (centroid) factors,

B, of order n x m, the final transformed orthogonal solution, and T, of

order m x m, the orthonormal (T'T = TT' = I) transformation matrix, such

that B = AT. Further, let subscripts a and 2, denote, respectively, analytic

and graphic solutions. Then

4 = AT
a

B = AT .

g g

Now, since both B
a

and B are the results of orthonormally transforming the

SEMO initial matrix A, then there exists 6n orthonormal matrix K, of order

m x m, that maps B
a

into B Thus,

4



Bg = Ba K, or, from (1)

ATg = AT
a
K, and

K = T'T .

a g

(2)

(3)

(4)

4

Since both /3
a

and B
g

are orthogonal solutions, element 11,A. of K =

1, 2, ..., m) is the cosine of the angle between graphic factor a and analytic

factor ja. Thus, K = T'a`g is also the matrix of correlations (r = cos 0 )

between the factors of the two solutions. The analytic factors were matched

with the graphic, for each data set, by maximizing tr(K).

Once the factors of a given solution were arranged to correspond co

those of the graphic solution, the common-factor variance accounted for by

each factor in ':he solution was deg-ermined (Var[Factor
j

= Pg-

1
b2 p 1, 2, ..., in

= jp'

Solutions were compared by studying the particular allotments of variance to

the factors in each and the overall equalization of the variance among the

factors.

Next, an attempt was made to assess the degree of simple structure

exemplified by a given solution by studying (1) the hyperplane-counts (number

of loadings, by factor and for the total solution in the range 0 ± .10) and

(2) the previously mentioned correlations of the obtained factors with those

of the graphic solution--converted to angular separations (0 = arccos r )--

and the mean angular separation for a solution (over the m factors in the

solution). The assumption was thus made that a graphic solution was likely

to be the best manifestation of simple structure for a data set.

Finally, the interpretation of each factor for a given solution. was

studied. A factor was interpreted in terms of the iariables found to load

.30 or higher, in absolute value, on the factor. Solutions for a given data

set 'sere compared in terms o: how each factor was interpreted.
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Data Used

Four sets of data were used in this study--varying in (1) the number

of variables and factors and (2) the reliability and factorial complexity

of the variables:

(A) Eight Physical Variables (8 x 2). These anthropometric variables

were highly reliable, with a median communality of .81. Each variable had

factorial complexity of one in all solutions. The centroid matrix and

graphic orthogonal solution were obtained from Harman (1960).

(B) Twenty -Four Psychological Tests (24 x 4). These well-known

variables were of typical reliability for mental tests, with a median com-

munality--an underestimate, of course, of reliability - -of .47. Their

factorial complexity--as determined for each variable from the number of

loadings V .30 or larger, in absolut^ value, in the graphic solution (an

imperfect index, of course, being somewhat dependent upon the communality

and largely dictated by interpretive practices)--was moderately high, with

17 variables having complexity greater than one. The centroid matrix and

graphic orthogonal solution (obtained by a graphical nethod due to Zimmerman)

were found in Harman (1960.

(C) Wittenborn Data (20 x 7). These variables, representing measures

of attention, were analyzed by Wittenborn (1943), using a graphic orthogonal

solution. The reliability of the variables was moderate--the mediml com-

munality was .44--and they were factorially quite simple, only S of the 20

variables having complexity greater than one.

(D) PM Data (57 x 13). These well-known variables were first analyzed

by Thurstcne (1938). The graphic orthogonal solution used in this study,

however, was perform2d by Zimmerman (1953), and was accomplished by starting

from the point at which Thurstone had stopped (not having rotated all 13

factors) and finishing the rotational procedures, obtaining a clearer

resolution of the factors than in the earlier study. The 57 variables were
U
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highly reliable, with a median communality of .71. They also.tended to be

factorially quite complex, with 45 having complexity--as assessed by the

procedure just described--greater than one. This apparent complexity was a

function, in part, of the large cummunalities.

Results

Eight ,Physical Variables

Four orthomax solutions were obtained for this data set, with w set

to 6, 1, 2, and 4. The summary results are presented in Tabl3 1. It can

be seen from this table that the larger the value of w, the more evenly the

variance was dispersed across the two factors, the quartimax solution (w = 0)

showing the most unaqua.: variance allotment.

On the two simple structure criteria--hyperplane-counts and overall

closeness to the graphic solution--discrimination among the orthomax solutions

was difficult. No solution, including th...! graphic, had any entries on the

hyperplane of either factor. The correlations between the orthumax and graphic

factors were taken to five places of decimals to permit some discrimination.

The quartimax solution was considerably further (4' 17') from the graphic

position than were the other orthomax solutions, the latter being almost

identical to the graphic. Overall, it would seem that the solutions with

w set to 1, 2, and 4 exemplified simple structure equally well, with the

quartimax solution perhaps slightly inferior on this criterion.

With this particularly simple data set, the four analytic solutions and

the graphic admitted to the same interpretation of the factors. That is,

Factor I would be interpreted in terms of variables 1, 2, 3, and 4, and Factor II,

in terms of variables 5, 6, 7, and 8.

Twenty-Four Psychological Tests

Ten orthomax solutions were obtained for these data, with w set to

7
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TABLE 1.

'Dispersion of Variance, Hyperplane-Counts, and Correlations
and Angular Separations with the Graphic Solution for
the Orthomax Solutions of the Eight Physical Variables

Variance Dispersion

Factor

Solution I II Range
...Graphic 3.352 2.612 .740

w= 0 3.556 2.411 1.145
1 3.317 2.649 .668

2 3.314 2.651 .663
4 3.311 2.654 .657

Hyperplane-Counts

Factor

Solution I II Total
Graphic 0 0 0

w= 0 0 0 0

1 0 0 0

2 0 0 0
4 0 0 0

Correlations with Graphic Factors

Graphic Factor

Solution I II

w = 0 .99721 .99721
1 .99990 .99990
2 .99990 .99990
4 .99980 .99980

Angular Separations with Graphic Factors

iiraphic Factor

Solution I II Mean
w N. 0 4° 17' 4° 17' 4° 17'

1 0° 49' 0° 49' 0° 49'

2 0° 49' 0° 49' 0° 49'

4 1° 9' 1° 9' 1° 9'
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-8, -2, 0, 1, 2, 4, 8, 24, 48, and 96. Summary results appear in Table 2.

The actual graphic, quartimax, and varimax solutions appear in Table 3. Solutions

obtained with w set to 2 (yielding an equamax solution) and 24 are presented

in Table 4. From Table 2, tt can be seen that, again, as w was increased,

the variance dispersion tended to become increasingly more level, although

with these solutions, the relationship was not perfect. The variance equal-

ization of the graphic solution was exceeded by only two orthomax solutions- -

those with the highest values of w, 48 and 96. It is interesting to note

that not only was there variability among the solutions in terms of equalization

of variance over the factors, but the factor receiving the largest allotment

of variance varied (Factor III for w ,-- -8, -2, and 0; Factor 1 for w = 1, 2,

4, 8, 24, 48, and 96) as did that accounting for the least variance (Fee-or IV

for w = -8, -2, 0, 1, 2, 4, Inn r, and the graphic solution; Factor III for

w = 24, 48, and 96).

The hyperplane-counts presented would seem to have little correspondence

with simple structure for the solutions with w = -8, -2, and 0, since, in these

solutions, large counts, as one might expect, were recorded for factors

accounting for very small amounts of variance. For the solutions with fairly

equitable variance dispersion, however, the varimax solution (w = 1) had the

largest hyperplane-count (20), even larger than the graphic (18). The

varimax solution was also closest overall to the graphic, although the solutions

with w " 2, 4, and 8 were almost as close and clearly in the same general

position. The solutions with w = '4, 48, and 96 were quite different, however,

although somewhat similar among themselves. These latter solutions may well

exhibit as clear a simple structure as those closer to the graphic, suggesting,

perhaps, that closeness to a graphic position is not the only possible

orthogonal position exemplifying a simple structure.

Probably the most relevant basis of comparison lies in the comparability
9



TABLE 2

Dispersion of Variance, Hyperplane-Counts, and Correlations and
Angular Separations with the Graphic Solution for the Orthomax

Solutions of the Twenty-Four Psychological Tests

Variance Dispersion

Factor

Solution I II III IV Range

Graphic 3.240 2.570 3.272 2.374 .898
w = - 8 1.525 1.315 7.563 .980 6.583

- 2 1.560 1.343 7.490 .990 6.500
0 2.056 1.759 6.245 1.323 4.922
1 3.504 2.441 3.082 2.356 1.148
2 3.579 2.667 2.775 2.361. 1.218
4 3.586 2.830 2.605 2.362 1.224

8 3.582 2.923 2.509 2.368 1.214

24 3.523 3.036 2.404 2.420 1.119

48 3.114 3.029 2.327 2.913 .787

96 3.051 3.040 2.339 2.952 .712

Hyperplane-Counts

Factor

Solution I II III IV Total

Graphic 6 7 3 2 18

w = - 8 9 8 0 8 25

- 2 13 10 0 8 31

0 12 12 0 9 33

1 3 8 4 5 20

2 3 5 3 5 16

4 3 3 3 4 13

8 3 2 3 4 12

24 5 2 4 4 15

48 7 2 4 6 19

96 7 1 4 6 18

10

9
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TABLE 2---Continued

Solution

Correlations with Graphic Factors

Graphic Factor

I II III IV

w = -8 .8149 .7560 .6319 .7164

-2 .8236 .7663 .6660 .7137
O. .8618 .8274 .8779 .7899

1 .8968 .8358 .9990 .8374

2 .8902 .8412 .9853 .8473
4 .8853 .8429 .9809 .8542

8 .8827 .8419 .9778 .8598
24 .7637 .6166 .9288 .6865
48 .5952 .7379 .6782 .75
96 .5305 .6919 .6360 .7744

Solution

Angular Separations with Graphic Factors

Graphic Factor

III IV MeanI II

w = -8_ 35°25' 40 °53' S0 °49' 44 °1S' 42°51'
-2 34°33' 39°59' 48014' 44°23' 41°49'

0 30°29' 34°10' 28°37' 37°4' 32°46'
1 26°16' 33°18' 2°34' 33° 8' 23°49'

2 27° 6' 32°44' 9°50' 32° 5' 25°26'
4 27°43' 32°33' 11°13' 31°18' 25°42'
8 28° 2' 32°40' 12° 6' 30°42' 25°53'

24 40013' 51°56' 21045' 46°39' 40° 8'
48 53°28' 42°27' 47 °18' 37° l' 45° 4'

96 57°58' 46°13' 50°30' 39°15' 48°29'

11
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TABLE 4

Orthogonally Rotated Solutions, using Values cf 2 (=m/2--Equamax) and
24 (=6m) in the Orthomax Criterion, for the Twenty-Four Psychological

Tests (Leading Decimal Points Omitted)

w = 2

Factor

w = 24

Factor

TI III IV I II III IV

1 15 23 65 18 17 34 62 12

2 11 09 42 11 14 17 40 05

3 17 05 53 09 20 17 51 01

4 21 11 53 08 23 24 49 01

5 75 23 18 13 72 37 08 12

6 75 12 20 22 15 25 13 16

7 82 18 17 08 79 35 06 05

8 55 28 35 12 52 41 25 11

9 80 03 19 26 82 17 13 18

10 14 70 -10 22 03 62 -17 40

11 17 62 04 34 09 54 00 48

12 01 70 20 09 -09 68 10 24

13 18 61 38 06 10 68 27 14

14 22 18 01 49 24 10 06 50

15 12 09 12 51 17 02 19 47

16 09 12 39 44 15 12 '44 38

17 14 . 20 03 64 17 OS 11 64

18 00 29 29 54 03 22 34 54

19 13 17 22 39 16 15 25 38

20 36 14 45 26 38 23 43 19

21 16 40 39 26 14 43 35 28

22 37 07 39 J7 42 14 4J 28

23 36 24 54 23 37 36 49 17

24 34 46 18 33 30 46 14 39

Variance 3.58 2.67 2.78 2.36 3.52 3.04 2.40 2.42

13



13

of interpretation given the factors in the different solutions. The solutions

presented in Tables 3 and 4 will be used for this purpose. The following

tabulation gives the identifying number of the variables that would be used

to provide an interpretation of the factors in each of the five solutions

(that is, those variables with loadings greater than .30, in absolute value):

Factor

Solution I II III IV

Graphic 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 8, 5, 6, 7, 9, 14,
10, 11, 13, 23, 14, 17, 18, 21, 13, 16, 18, 20, 15, 16, 17, 18,
24 24 21, 22, 23. 19, 20, 22

Quartimax 5, 6, 7, 8, 9 10, 11, 12, 13, all but 10 and 14, 15, 17, 18
24 14

Varimax 5, 6, 7, 8; 9, 10, 11, 12, 13, 1, 2, 3, 4, 8, 11, 14, 15, 16,
20, 22, 23; 24 21, 24 13; 16, 18, 20, 17, 18, 19, 22,

21, 22, 23 24

w = 2 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2,,3, 4; 8, 11, 14, 15, 16,
(Equamax) 20, 22, 23, 24 21, 24 13; 16, 20, 21, 17, 18, 19, 22,

22, 23 24

w = 24 5, 6, 7, 8, 9, 1, 5, 7, 8, 10, 1, 2, 3, 4, 16, 10, 11, 14, 15,
20, 22, 23, 24 11, 12, 13, 21, 18, 20, 21, 22, 16, 17, 18, 19,

23, 24 23 24

The varimax, equamax, and w = 24 first factors would be interpreted

identically, but differently from those of the graphic and quartimax solutions.

The second factors of the varimax and equamax (and probably the quartimax)

solutions would be interpreted identically, but again quite differently from

those of the graphic solution (which has, additionally, variables 14, 17,

and 18) and the w = 24 solution (with variables 1, 5, 7, 8, and 13 additionally).

The same situation is true for Factors III and IV, with the quartimax

factors quite different, largely because of the very unequal variance

dispersion (more than 50% on Factor III, and less than 12% on Factor 1V).

It is probably true, of course, that the differences in interpretation noted

are to a large extent a function of the differences among the solutions in both

the equalization and specific allotments of the total variance. Thus, variance

14
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dispersion and factor interpretation are to some degree two sides of the

same coin.

Wittenborn Data

Four orthomax solutions were obtained for this data set, with w set

to 0, 1, 3.5, and 7. Summary results appear in Table 5. It can be seen

from this table that, again, the size of w was directly related :o the degree

of variance equalization. The graphic solution for these data brought about

far less variance equalization relative to the orthomax solutions than have

the previously presented graphic solutions. As hnfore, therd was consider-

able variability over the solutions in terms of which factors accounted for

the most and least, etc., variance.

With the possible exception of that of the quartimax solution, hyperplane-

counts were very similar for the graphic and urthomax solutions. The varimax

solution again was closest--in terms of mean angular separations--to the graphic,

followed by the quartimax, equamax, and the w = 7 (m) solutions. The fact that

the quartimax solution was closer, overall, to the graphic than were the

equamax and w = 7 solutions would appear to be further evidence that closeness

to a graphic solution may be a very imperfect index of simple structure for

orthogonal solutions, since it is unliYely that the quartimax solution with

the very unequal variance dispersion represents a superior simple structure

to the equamax and w = 7 solutions. As with the Twenty-Four Psychological

Tests, the interpretation of a given factor, for these data, was somewhat

dependent upon the particular soluticn in which it was found.

PHA Data

Six orthomax solutions wc-re obtained for this well-known data set, with

w set to -10, 0, 1, 6.5, 13, and 26. Summary results appear in Table 6.

As might be expected with a large number of factors, the matching of the

thirteen factors obtained in each vaution, with these of the graphic solution

was fairly difficult, and was accomplished, in several cases, only by strict



TABLE 5 15

Aispersien of Variance, Hyperplane-Counts, and Correlations and Angular Separations
with ttc Graphic Solution for the Orthomax Solutions of the Wittenborn Data

Variance Dispersion

Factor

Solution I II III IV V VI VII Range

Graphic 1.265 .910 .954 2.665 1.240 1.510 .819 1.846
w = 0 1.303 .590 .919 3.291 1.222 1.082 .760 2.531

1 1.427 .915 .959 2.254 1.320 1.426 .866 1.388
3.5 1.351 1.102 1.031 1.655 1.401 1.558 1.068 .624

7 1.308 1.112 1.082 1.485 1.452 1.574 1.154 .492

Hyperplane-Counts

Factor

Solution I 7I III IV V VI VII Total

Graphic 10 10 12 3 11 8 7 61

w = 0 10 9 11 0 13 13 10 66

1 8 7 12 5 10 9 11 62

3.5 8 7 12 9 10 9 7 62

7 8 7 9 11 8 9 6 58

Correlations with Graphic Factors

Graphic Factor

Solution I II III IV V VI VII

w = 0 .9966 .7848 .9566 .9628 .9738 .9470 .7628

1 .9873 .8818 .9588 .9344 .9759 .9614 .8590

3.5 .9753 .7654 .9529 .8696 .9764 .9555 .8577

7 .9715 .7340 .9471 .8452 .9766 .9491 .8488

Angular Separations with Graphic Factors

Graphic Factor

Solution I II III IV V VI VII Mean

w = 0 4°45' 38°17' 16°56' 15°20' 13° 9' 18°44' 40°17' 21° 4'

1 9° 9' 28° 8' 16°30' 20°52' 12°36' 15°58' 30°47' 19° 9'

3.5 12°45' 40° 3' 17°39' 29°35' 12°29' 17°10' 30°56' 22°57'

7 13°43' 42°46' 18°43' 32°18' 12°25' 13°?2' 31°55' 24°19'

16
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adherence to the rule of maximizing tr(K).

As with previous data sets, the graphic solution of the PMA Data was

obtained with less equalization of common-factor variance than were several

of the orthomax solutions. Again also almost a perfect inverse relationship

can be seen between size of w and variance equalization, using the range:

(largest variance allotment - smallest allotment) as the index of equalization.

One could, of course, use the variance or standard deviation of the variances

as an alternative index. As before, the variance was dispersed not only more

or less equitably as a function of w, but also differently. One can see, for

example, that Factor X in the graphic solution had 2.66 units of variance

associated with it--resulting in eight loadings large enough (greater than

.30) to serve in interpreting the factor. The corresponding varimax factor,

however, accounted for only 1.00 unit of variance -- resulting in only two

loadings greater than .30. The corresponding equamax factor had roughly

as much variance (2.60 units) associated with it as had the graphic, and

consequently had nine marker loadings. The orthomax solutions with w set

to 13 and 26 had more variance associated with this factor (3.16 and 3.09

units, respectively) than had the graphic and, consequently, would allow a

broader interpretation of the factor--with 11 and 13 significant: loadings,

respectively. Thus, with w set to 1, Factor X accounted for little variance

(the least variance of the 13 varimax factors) and would be narrowly inter-

preted, whereas with w set to 13, for example, Factor X accounted for more

variance than eight of the remaining 12 factors and would be broadly inter-

preted. Conversely, varimax Factor VI can be seen to account for more variance

(4.06 units) than nine of the remaining factors, whereas the corresponding

factor with w set to 13 accounted for mo.e of the variance (3.10 units) than

only five of th-, remaining factors.

As with the previous data sets, it appears true with the PMA Data that

19
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simple structure was probably equally well exemplified in the orthomax solutions

with w = 1 or greater. Again, there is evidence that hyperplane-counts signify

little with orthogonal solutions. Also, with as many factors as in the PRA

Data and the restriction to orthogonality, it sums true that, rather than

there existing one optimal position for the axes, to which the various

analytic functions transform, more or less well (as would appear to be true

for oblique solutions), there exist many possible positions that exemplify

simple structure equally, but not very, well. It is seen, fel: example, from

Table 6, that virtually none of the orthomax solutions had axes in the same

general position as the graphic solution, although the orthomax solution

with w set to 13 was the closest.

Since simple structure would appear to be somewhat of a constant--for

w = 1 or greater--and quite likely a characteristic on which little if any

choice can, for practical purposes, be made among several orthomax solutions,

it may wel' be true that such a choice most logically should be made in terms

of interpretability and specific interpretation of the factors among the

several possible solutions. In Table 7, the graphic Factor XII and the factors

from the orthomax solutions with w set to 1, 6.5, 13, and 26 that were matched

with this factor are presented. The reader will recall that this matching was

accomplished by maximizing tr(K); oLviously, from Table 6, the match involving

this graphic factor was not very close for the solutions with w = 1, 6.5, and

26, although the factor matched from these solutions was, in each case, that

which was closest to graphic Factor XII. From Table 7, it can be seen that,

if the factor is interpreted in terms of the variables loading on it to the

extent of .30 or larger, in absolute value, the Factor XII from the orthomax

solution with w set to 13 is almost identical to the corresponding graphic

factor, the interpretation in either case being a Visualization factor. The

varimax Factor XII, however, is much more narrowly defined (1.72 units of

20



TABLE 7 21. 20

'Factor XII of the Graphic and Orthomax PMA Solutions (Decimal Points Omitted)

Variable Graphic w = 1 w = 6.5 w = 13 w = 26

1 01 04 01 10 37

2 16 22 05 24 49

3 07 -03 12 10 20

4 00 07 15 1:1 21

5 15 02 32 23 13

6 -14 -14 09 -05 -03

7 -11 06 02 00 07

8 16 09 27 16 13

9 24 90 18 22 08

10 04 02 19 10 -01

11 -13 12 -07 -04 -02

12 -01 10 07 -03 -21

13 -06 12 04 02 06

14 30 -04 53 34 19

15 30 -0; 34 26 13

16 54 30 31 61 66

17 37 06 23 32 32

18 62 34 64 65 40

19 30 14 17 30 30

20 35 01 32 33 29

21 62 29 54 68 61

22 40 12 66 47 25

23 19 -05 20 13 14

24 15 -22 29 16 10

25 26 12 48 29 10

26 26 17 33 23 19

27 13 11 28 18 14

28 -03 -05 C4 -02 -01

29 01 09 -10 07 15

30 11 04 02 02 -03

31 04 -16 01 -05 04

32 11 02 21 11 12

33 -04 04 07 06 15

34 -03 03 18 09 11

3! 21 05 13 15 19

36 13 -01 33 15 12

37 14 21 17 30 38

3F -02 04 24 16 28

IS -02 03 06 10 20

,',0 21 20 21 25 37

41 24 13 46 33 21

A';' 13 -13 18 15 27

, ) 04 11 08 09 -03

4t 08 26 06 13 12

45 -01 20 09 -10 -06

46 34 50 15 37 25

47 27 59 07 27 19

48 04 16 65 01 -09

49 13 22 -05 20 35

50 11 19 02 07 -02

51 05 06 -07 08 15

52 -04 11 -12 05 19

53 -06 03 -06 00 02

54 -09 07 -07 -01 04

55 31 07 11 34 56

56 00 -08 03 01 05

57 10 21 12 10 17
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variance, as opposed to 1.24 for the w = 13 factor), and has large loadings

by only two of the va-Aables that defined the Visualization factor--the

Lozenges A (variable 16) and Form Board (variable 18) tests. .

This varimax factor may be somewhat better characterized as a Visual Memory

factor since its most significant loadings are the memory tests, Word

Recognition (variable 46) and Figure Recognition (variably 47). Each of the

remaining two orthomax solutions--with w set to 6.5 and 26-has a Factor XII

that would be both more broadly and somewhat differently interpreted than would

the graphic factor. In the w = 26 solution, for example, a verbal facet has

been added with large loadings by the Reading I and Reading II tests (variables

1 and 2). In summAry, it may well be trt:e that the most important feature

.of an orthogonal solution is not how well the interpretation-free criteria

of simple structure are fulfilled, but rather how meaningful an interpretation

each obtained factor permits.

Conclusions and Implications

The following conclusions appear warranted from the results.

(1) In general, as w is increased, the variance dispersion among the

factors tends to become increasingly more level (this possibility was first

suggested by Saunders, 1962). Solutions with small values of w (for example,

less than 1) hive large first factors, precluding a clear-cut simple structure.

(2) Because of conclusion (1), hyperplane-count is a poor index of

simple structure for orthogonal solutions, at least if one includes solutions

with w very smell, since these solutions yield large counts because of small

variance allotments to fa,:tors other than the first.

(3) There is little evidence to suggest thet one special case of the

orthomax criterion will, in general, yield solutions more closely aligned

with a graphic solution for the data than any other, or, for that matter, to
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suggest that, for orthogonal solutions, this criterion corresponds closely

to exemplification of simple structure.

(4) Simple structure would appear to be somewhat of a constant for

orthogonal solutions with w set to 1 or larger.

(5) Interpretation of the factors (as with variance dispersfon),however,

can be expectedto change substantially--partly because of the differences

in (a) equalization of factor variance and (b) the variability in order of

allotr;ent of variance to the factors in a given solution--as w is varied.

The implications appear clear. Since any orthomax solution represents

as mathematically legitimate an orthogonal transformation as another, it would

seem reasonable, if an orthogonal solution is desired, to obtain several

orthomax solutions with w varied between 1 and 2m or even larger (values of

w less than 1 do not appear promising). If one can specify a priori (perhaps

from the purposes to which the factors are to be put) an optimal variance

allotment (strict equalization is seldom optimal), the choice will be clear-cut.

Iti the construction of a multi-factorial test, for example, the user could

conceivably desire either a broader or narrower interpretation for a given

factor than afforded by a single given solution. Barring the possibility of

a preferable variance allotment, one obtained solution will undoubtedly have

factors that are, in sume sense, more interpretable, interesting, or in line

with theory than those in the other solutions. Choosing this solution (which

stops far short of a procrustean approach), then, would appear t-o be a less

"blind" approach to orthogonal transformation than accepting the solution

obtained by only one special case, for example, varimax, of this general

criterion.
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