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THE GRNERIALIn9 JOHN=;01'1-NMN PROCU7t73:
AN APPROACH TO COVAII'lATE r:1ODSTW:r3

!Ni) INTERACTION ANALMS

The purpose of this paper is to describe statistical

methods for diagnosing and treating three important problems

in covariate tests of significancecurvilinoarity, covariable

effectiveness and treatment-covarinble interactionl.

Assumptions Sunportn Covariate Analyses

Some recent articles have described the funlnmentel

assumptions of most covsriate models
2

, but they neglected to

explore the relative importance (or unimportance) of each

assumption especially when applied to qu.,si-experimental dosigns3
,

Exploring the relative importance of the nssumptions is crucial

because the quasi-experimental design places added domando r.nd

stresses upon the analysis. While the reason for employing

covariate test in experimental desigrs in to improve statistical

precision (rarely of criticcl concern), the reason for employ-

ing a coveriate test in quasi-experimental designs is to adjust

for unknown group biases due to non-random nnsignment (alveys

of critical concern).

1
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In brief, the major assumptions behind a coveriate

procedure are the following:

1. Normalitycriterion and covariables are assumed.
to be normally distributed.

2. Homogeneity of variancesthe variances of
criterion and covariables are assumed riot to
differ among groups.

3. Covariable-rY,roun indonendencethe groups are
assumed to be drawn from a single underlying
population, and ef:ch pyoup reflects the popu-
lation covariable-dependent variable relation-
ship.

11. Reliabilitythe covariables are assumed to he
free of measurement error.

5. Linearity - -the covariables are assumed to be
linearly related to the criterion.

6. Homogeneity of rogscion--tl-ie rTPOUp
equations are as:lumed to be indenendent of
treatmentalt.

Each of these assumptions will now bo discussed in detail.

Normality and Homogeneity of Variance

Happily it has been shown that Analysis of Covariance

(hereafter called ANCOVf) is robust to violations of normality

and homogeneity of variance for experiments and quasi-experi-

ments unless the deviations among groups are bi zarre, and

therefore neither of those assumptions need be of critical

concern
5 ,6
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Covariablo-Group Independence

Covari.ahle -group independence is o sine qua non for

quasi-experimental cov-,riato amlyses7. A situation which

may seem to refute this assumption is the Rscignment of

subjects to groups entirely on the basis of covariable scores 8
.

College
Performance

FIGURE 1

THE ARBITRARILY PARTITIOI&D
SINGLE POPULATION

Not Receiving Receiving
Scholarship Scholarship

; \ ,

% ' ,_-----------

High School Achievement

a = Adjusted group
differences

As shown in Figure 1, this design is most rppropriato when

a scarce commodity (like academic scholarships) is dispensed
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on the basis of previous achievement. The differertial

performance represented by n is a measure of the extra effect

of the scholarship beyond the impact of the covarinble. The

power of this analysis depends on the frIount of data near the

cut points and, consequently, on the continuity between the

group regression lines. For that reason the example of

Figure 1 !. s an ideal situation since tho data is most plentiful

at the cut point, The success of this antilysis depends on the

fact that the groups represent distinct segmentr_; of a siry7le

norwilly distributed nosulati.on so that the assumption is not

. violated (only stretched a little),

Figure 2 illustrates a hypothetical example of Lord's

Final
Weight

FIGURE 2

LORD'S ANCOVA PARADOX

BOYS

Initiel Weight

a = Adjusted !-Lroup
differences

ANIIII.
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about the problems which can result when this assumption is

violated
9 A researcher attempting to contrast the effect

of two diets makes his initial weight measurements and then

assigns one diet to n boys dorm and the other to a girls dorm.

Although the initial and final weight distributions of both

groups are identical, AIICOVA would load to the conclusion that

boys gained more than girls. Skipping the statistical artifacts,

it is clear that criterion and covariable have been hopelessly

confounded with group membership (boys as a group outweigh

girls). The point of this discussion is that in e quasi- -

experiment it must make sense to equate the groups, i.e. the

groups must represent the same basic population.

Reliability

Although errors in measurement are important, they are

usually beyond the control of the researcher. It has been

shown that coveriable reliability levels above .75 are

sufficient for most situations although a reliability estimate

.can always be used to improve the precision of the analysas10 .

As with all tho assumptions that follow, reliability is for

more critical en issue for quasi-experimental designs than

for true experiments.
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Curvilineurity

In principle, curvilinearity should not he a problem

since al] covarirte models can be easily extended to include

nonlinear terms. In practice, the problem of detecting

curvilinearity and then systematically testing; alternative

regression models requires n. good denl of efforq. The much

cited preetice of " eyeballing" scotterplots though intuitively

appealing is just not reliable enough for most, nnalytic

purposes. A more effective detection method utilizes tests

for fit cnd departure from fit11 . if those tests are

ineorpOrated into a s,:epwise model (sL,y an inoveesing

polynomi:q) than toi,ms can b3 adLloCt uniii the fit is most

significant and the departure from fit is not significant.

Figure 3 illustrates this stepwise analysis applied to

two variables of teacher performance where the best fit has

been identified as a cubic polynomial. After the best

FIGURE 3

A STEPWISE TEST FOR CURVILINEARITY

Step 1: y = 1)0 + bix; r = -.261

ANOVA Table

Source df of __Sos. Moon Sn._ _ _F_ r
Regression 1

_Su__ _m___
52.1015 5P.1!45 2113 .119

Departure 12 445.079 37.090 1.919 022
Errors 114 270.583 19.327
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FIGURE 3--Con ti.nued

Step 2: y = 130 + blx + 6;,x2 ; Etc = .339

A1OVA Table

Source df Sum of Sos. Ma an Se. F .

Regression 2 88.177 gt..089 2.281 .138
Departure 11 1!09.3h7 37.213 1.925 .12h
Error:. 14 270.583 19.327

Total 27 768.107

Step 3: y = 130

df

+ blx 4 h.,x2 b3x 3

ANOVk Tab) e

Sum of Sos.

; ,7;ta =

119"_2192_

.09

F__Sow,ce
Rogres;:ion 3 176.035 58.678 3.036 .0611

Departure 10 321.1489 32.10 1.663 .186
Errors 14 270,583 19.327

Total 27 768.107

statistics.l model has been identified in this way, it is

important to " think throu,,!h" the re3stionshlp and seuaro it

with the theoretico) framework of the study. The justification

of a model chosen by an arbitrary procedure like this lies in

its shape, not its order. For exrmple, although the fit between

age and income in Figure )4 is clearly curvilinear, the

quadratic equation should bo viewed as only a good first

approximation to the true relationship12.
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IIIGURE h.

EXAMPLE OP A CURVILINj.ilAR FIT

/

4 /
Model: y=b -1-

o
1)
1 e:

0

Ago

Sufficienc7 and Efficiency

Although sufficiency and efficiency are not assumptions

made by covariato analysis they pose special problems for

quasi-experimontal designs. Sufficiency essentially depends

on tho ability of the researcher to identify covariables which

account for every rnjor bins which o)'sts because of nonrandom

assignment to groups. Efficiency, on the other hand, is::

important because coverlets mothods aro unusually susceptible

to inaccuracies due to redundancy among the covarir,'Aes. In

9
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fact, if two perfectly correlated covariables are used the

calculations will completely break down13 . Once a sufficient

set of covariebles is available two procedures can be used

to locate and remove redundancy. Firet, all covariOple pairs

can be prescreened to identify peirs wherp the gain from the

second covariEble is less then a specified amount (say 109/10

of its zero order contribution. When a problem pair is

identified, the least meaningful eoverieble can be deleted or

a new variable can be created combining both variables14.

Second, a stepwise regression can be performed groupuise co

identify the efficient set for each group. To be consistent

in this ona]ynis all terms of a curvilinear coveriable should

be added in a single step. Finally, the union of the efficient

covariable sets for each group is taken as the covariable set

for the analysis. As with curvilineerity, the final set of

coverisbles must be related to the theoretical model to insure

that results will be interpreteble and meaningful.

Homogeneity of Regression

When the criteria' described above heve been satiefied,

the threat of nonhomogeneity of regression still remeine.

Although ignored by many critics of ANCOVA, e. powerful series

of tests was developed by Palmer O. Johnson and Jersey Unymin

to detect treatment-regeession interections end perform the

10
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required, tests of significance for two groups and two

5
covariobles

1
Wnet follows is the mathoratical derivaLion

of the author's generalization Of these tests to cover any

number of covariables and groups.

Assum k groups, n efficient covari0)2es (ra, xn)

and a group regression vector B. = (boy hii, hni,
) 36

.

sec of four useful hypotheses cPn he established as follows:

Ha: El B,, / ; each group hqs a untgue

regression vector.

H P = B9 = B, ; all groups have a common

regression vector,

IL A A = = kb b.,
/ /

2'
.

1 -2 ' 1
h
k '

ell

groups have a cral,lon within group regression
and diffe,,ont H?ouprleans.

H :B
A

.X'112 / .

k '
XB=XB, = =XP

- -
each group has e unique .regression vector c'ld
the groups do not, di ffer at the point X.

Then the following set of powerful tests can be employed:

Test 1: Are there anv significant differences among
groups (I {t vs Ma)?

Calculations: Proceeding from the r,,nnor0
model Y=XB

A
+e whore (I, Y 1 9 )

- -
and B = (b

oi,
h "" bpi) for each of the

k groups, then under H, the rrYiylvm likelihood
A

estimqtc P = T -3 where R. = X . X. rnd
03-Y1 1j ; :

the sum of squqres deviation from II iS

1/4

S- =
1

y.. .2
s

- Y R.11
11 j-=.

11
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where S is distributed
1 =1

N. - k(n + I) .

a

Under H
3

the mr,ximum likelihood estimste

R T-1 where H= F R and T = X T and.

i=1 i=1

the sum of squares deviation from H, is

2 k Ni 2 A .2

S1 = X Y. - R B. aS' =
S].

and
)=1 J=3 lj 3

AS
)

2
is iistributed ts X ?[ (I: - 1)(n + 1)]. 6S1

represents the increase in the sum of seugreq

deviations duo to 111 vs Ha can he tested

by forming ,152 /df
1

Fl
e/df
A

where df = (k - 1)(n + 1) and df
p

= N N - k(n +

If F
3

is statistically signigicant, then

it will be fruitful to proceed with the analyeic.

If F
1
is not statistically significant the

analysis can be terminated since there ore no

sirznigicant differences in group nennr] or

regressi ons.

Test 2: Assuming differences among (!rour n,7-m2, ern there
any signiTTenETifreroriCes an,.) ff)c eeveriable
coefficients among groups (H2 vs Hp)? This test

is commonly referred to as the test for
homcT,enei.tv of regression.

Calculations: H, requires 9 partitioning of the group

12
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B. vectors into the Prom, moan b
oi

&nd a common

within group regrer,sion A, i.e. Bi = (bet, A).

Under H
2

the msximum likelihood estimatc of
A

12
H

IN1 1 is EH
m a where= (t

oi' bok' L' .=-H

= (X1, X2, Xn);

(.141

k Ni

iZ = Y. Y.. ... 4 Y. 7, > 7' 7
'

'

-H j=1 1.1' 1=1 j=] =ij

-H

N10 ...0

0 N2...0
.

0 0 ...Nk
4 -
2,1

7
-13

Ni Nk
zf.

L.
j=1 -1 J j-1

Nj
Y 7! Z.

1=1 irr-1 i -)j

Likewise `.he sum of squares deviation due to 112 is

2 k Ni 2

j

2 2 2
S-

12 i=
r-
i

- R
H -H'

LIS
2

= S - S
a

where
-

2
632 is distributed X2[n(k - 1)), and AS

roprosents the gain in sum of squares dovintions
due to H H

2
vs H

a
can be tested by

S2/df2
77-
S.,df
a a

where df2 = n(k 1).

13
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If F
P

is not statistically significant

then Fischer'', ANCOVA may be employed. If F2

is statistically significant then an alternative

to ANCOVA must he employed.

Test 2A: Given that the covariable coefficients are the
same for all groups, do the group means
differ (H

1
vs H2)? This is Fischer's Analysis

of Covariance. It should be used only when
F
2

is not st.tintinnlly significant.

Calculations: LS2 = Si -
2
where 4S

2
is distributed

)L-(k-1) end AS' represents the gain in sum of
squares deviations duo to H, over H2. H

1
vs H

can he tested by

ps2/(k - 1)F22a =
S-/dr
2 -2a

where df
Ra

= H (k + n).

If P2 was significant then this test

should be ignored. It has been shown that
applying Fla when F2 is statistically signif-

icant consistently errodes thR power of ANCOVA
and generally leads to a finding of " no
significant differences" If F0 is not

significant then one of the two following
alternatives applies:

1. If F2() is statistically significant.

the groups differ according to the

14



Criterion

adjurte'l r,roun rePns or sunup

P. If F
Po not statisticelly signif-

icant, then the adjusted group menns
do not differ significantly.

Figure 5 illustrates the importance of

using the adjusted group menas in finally

deciding how the groups differ, _Although the

FIGURE 5

ADJUSTED MEANS VS ACTUAL MTANs

u = Unadjusted
group differences

Group 2 > Group 1

a = Adjusted group differences
Group 1 > Group 2

Covariable

mean of Group 2 on the criterion is higher

than that of Group 1 (by u units), it is clear

that if they are equated on the covr-:ritb)o

then Group 1 would significantly outperform

Group 2 (by n units). It is impossible to

15
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estimate the embarrassment of e researcher when

he performes the lengthy and sophisticated

analysis suggested above, finds significant

differences, and then interpretes the rela-

tionship 1:,sckwards because cf a failure to

identify the adjusted means.

Test 3: Are there regions where the treatments differ
iheffectiveness(Hvs Ha )? tThis test is

only employed if F2 is statistically signif-

dant.) This is the r:enersiged Johnsen - Heyman
analysis for k groups, ncovsria.bles.

Calculations: 'Under Hj the rIximum likelihood
A

iiiestimate of B. = 1:3'? - C. T -1 X' where B. is
-1. -) 1 -1- - --).

the estimate under HI, and X is a specified

data point. C is en arbitrary set of coefficients

(C1, CC ..., Ck) such that C = U
-1

K where

- -1 ,XT : -XTX 0 0 0
I. 9 ...

U = 9
X T-1 XI - X T-1 X'... 0 0

.
'

.

0 0 0 ...XT k-1 x-XTk 1
X

. .
- f -

- -3

1 1 1 I 1 1

K = [x(131 Ba T11?.)
1 ), 61*, 2Y12k-1 0].

Likbilise the sum of squares deviation due to Hj is

16
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82 = sP + C. X le and
I a i=1 1 1

QS = S2 - PP -, 3.C,

r=1

C. X i?- where AS2 is
i --i -a i 1 J

distributed `k
2

(k - 1) and 4 S represents the

gain in sum of squares deviations duo to Hi . .

H1 vs H
a
can he tested by

6s:/(k - 1)
p =
ix

A a
eldf

If Pi is not significant then the groups
J.2f.

do not differ significantly at point X. If

F. is significant then the groups differ sig-
Jx

nificantly for the data point X, and the
A, nn

productElp buciP16 be
Pn

examined to determine the treatment which will

maximize performance for X.

The results of the analysis can be used

effectively to assign individuals, on the basis

of covarinblc scores, to treatments where

their predicted achievement is the highest.

In the simplist situation when k n = 2, the

solution reduces to a conic section and can

be graphed as illustrated in Figure 6. For

this example the treatment given Group 1 is

superior for students with 'ow IQ and initial

ability while the treatment given Group 2 is

superior for students with high IQ end initial

ability. Likewise, as nev students enter the

program they can ho directed to the teaching

method which promises the greeter success based

17
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on their initial ability and IQ.

FIGURE 6

EXAMPLE OF A JOHNSON-NEYMAN SOLUTION

Group 2

Group 1

Signifi-
cantly
higher

Significtntly highor

IQ

Use of the Johnson-Nevmqn Procedure for

Intersction Analysis

While the Johnson-Neyman Procedure might he considered

an overly complicated substitute for ANCOVA which must be

resorted to when regression slopes aro not homogeneous, it

can also ho viewed by educators as a powerful tool for

msasurinLY, 1-,he relationship between learner characteristics

1S
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end teaching strnegies. There has been a great deal of

interest in individual differences which affect learning

performance, but generally the analyses used do not give

necessary insight into the underlying dynamics. Using a.

computer to handle the computation, even a "nen-quantitative

type" can easily test, describe, and use ho Johnson-

Heyman methodology to classify students by their individual

needs as well as by the characteristics of teaching methods.

Hopefully, this kind of classification will solve some of thn

probloms which arise because current vicvs of educational

realities are too simplistic. It may well be thrt rather

than a nuisance in AWCOVA, treatment-covarieble interaction

is the key to understanding Ole aritcP.1 relationship oetweoo

teaching and learning.

Summary

The assumptions underlying covariablc methods were

analyzed and procedures were suggested for dealing with

curvilinearity, covariable selection, and nonhomogcneity of

regression. The procedure for handling nonhomogeneous group

regressions was shown to be of value in assigning students to

various instructional methods on the his of their individ



19

ual characteristics.

Computer programs which perform the analyses discussed

in this paper are available upon request f;;,n the author.

!n extensive bibliography is also available.

20



FOOTNOTES

1As indicated by the title, curvilinearity and covariable
effectiveness are included as ancillary topics beeruse of
their considerable impact on the quality of the analysis.
For the purposes of this paper the term covariate method or
covariate proceduro will refer to a statistical test of
group differences based on group equations of the form
y bo + bl 7.

1
+ + bnxn.

2
Janet D. Elashoff. "Analysis of Covariance: A

Delicate Instrument" , American Edreational Research Journal,
VI (May, 1969) , 383-401, and James W. Wilson and Hay Cary,
" Homogeneity of Regression - -Its Rationale, CompoGation and
Use," American Educational Research Journal, VI (January,
1969) ; 80-90.

bore is considerable controversy surrounding the use
of covariate methods to analy7,e quasi-exporiments, but this
does not change the fact that alternative procedures are
even more difficult to apply and have not been proven superior.
See nrnold A. Ccmnbell and Julian " Exrerimental.
and Quasi-experimental Designs for Research on Teachin,"
Handbook of Research on Teachino:, ed. by N. L. Gage (Chicago:
Rand McNally and Company, 1963), pp. 171-2116.

14

The discussion of these assumptions parallels Eloshoff's
" Analysis of Covariance.'

5 . Atiqullnh, " The Robustness of the Covariance
Analysis of a One-way-Classification," Biometriko, LT(Decer,bcr,
1964), 365-372.

6
This is not true if the " spread" of coveriable values

is small or there are outlying ocses. In one situttion
whore the spread of values was small, 50 outliers causod tho
correlations to drop from .7 to .3 where 20.000 coves were
used in the analysis. Obviously problemsOriTi7-57e will
ruin eny covariable procedure.

7Independence is guaranteed in a true experiment by the
random assignment of subjects to groups.

20
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8
Campbell and " Experimentel and QuPsi-

Experimental Designs," pp. P.31-34.

9
Frederic Lord, " A Paradox in the Interpretation of

Group Comparisons," PsycholcTical Bulletin, LXVI1I (No. 5).
30/1-305.

10Andre Porter, The fffects of Usinr; Fathble Variables
in the Analysis of Covay-qance ClinpubTashed Pn.P. dissertafT6n,
University of 1:!isconsin), Ann Arbor, Michigan: University
Microfilms, 1967, No. 67-12.

11
William L. Hays, Statistics for Psychelor:!Ants (New York:

Holt, Rinehart and WinsloiT,----177)5T;

12Since an infinite number of regression equations can
be fitted to the dote, the exact relationship must Prise
from e careful study of theory rather then statistical
accidents.

13This corrosponds to a singular varinuce-covaripneo
matrix which cannot be inverted to complete the analysis.

lh
For example, the new variable could be the sum of the

normcl scores for ccch covariable,

3
T.ne derive ion here is eased on Jersey Neyman's method

for testing linear hypotheses es refined by Palirer O. Johnson.
See Palmer 0. Johnson, " The johncos-Honan Torbniero, Its
Theory end Application,". Psychometa, XV (December, 1950) ,
3h9-367; PCImer O. Johnson rrii7d iTobeFt 1!. P. Jackson, Modern
Statintics1 Methods (Dhica!;o: Pond Vellall,?, 199);
O. tlYhTiTion17,3-TY-T11 Hoyt, " On Determininr, Three Dimantional
Regions of Significance," Journal or ie,xre"imontal Y:ducatien.
XV (March, 1957), 203-212; 7.nd Palmer U. one? Cyril
Hoyt, The Theory of LineP.r Hypotheses with ;%pnlicptions to
Fducation.al ProbT7PErminresota: liniversfIy of flinnosota
Bureau of Eduetional Research, 195?).

16
Where a variable name is underlined, it, will refer to

a vector or matrix of vanes.

17
Percy D. Peckham, " An Inversiga.tion of the MTects of

Von-Homo,Tancous Regression Slopes Upon the V - Test. of Amlysis
of Covnripnce," Laboratory of !clucetionel Tieseareh Hororl:,
No. )6 (Boulder. Colorado: University of Colorado, 1`;m0).

18
The magnitude or the difference is identical for either

although the intercepts are generally less intuitively sati sfyi ng.
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