O

ERIC

Aruitoxt provided by Eic:

ED G47 020

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
RTPO’RT NO
BUREAU NO
PHUPE DATE
CONTRACT
NOTE

EDRS PRICE
DFSCRIPTOES

IDENTIFIFRS

ABSTRACT

DOCUMENT RFSUME
2y TM 000 408

Flashoff, Janet Dixon; Flashoff, Rohert ¥.

2 Model for nuadratic Outliers in Linear Recression.
Stanford Univ., Calif. Stanford Center for Research
and Development in Teachinag.

Office of Education (DFTW), Washington, D.C.
RDM=-CO

BR-5-0252

Dec 70

OFC-6-10-07¢

£5p.

EDRS Price MF-$0.85 HC-$2,2¢

¥*Correlation, *Mathematical Models, *Multiple

Regression Analysis,
*Statistical Pnalvsis,
*Outliers

*Research Yethodoloagy,
Statistical Data

This paper introduces a model €for describing

outliers (observations which are extreme in some serse or violate the
aprarent pattern of other observations) in linear regression which
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The maximum likelihood estimators of the parameters in the model are
derived and their asymptotic properties discussed. Small samole
behavior of the model and robustness to inaccurate specification of
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describe outliers and estimating their rarameters provides an
interesting alternative to procedures of outlier detection followed

by ordinary least squares proczdures.
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Intrnductory Statement

The ceniral mission of the Stanford Zenter for Research and Develop-
ment in Teaching is to contribute to the improvement of teaching in
American schools. Given the urgency of the times, technological develop-
ments, and advances in knowledge from the behavioral sciences about teach-
ing and learning, the Center works on the assumption that a fundamental
reforzulation of the future role of the teacher will take place. The
Center's mission is to specify as clearly, and on as empirical a basis as
possible, the direction of that reformulation, to help shape it, to fashion
and validate programs for training and retraining teachers in accordance
with it, and to develop and test materials and procedures for use in thkese
new training programs.

The Center is at work in three interrelated problem areas:
(a) Heuristiz Teaching, which aims at promoting self-motivated and sus-
tained inquiry in students, emphasizes affective as well as cognitive
processes, and places a high premium upon the uniqueress of each pupil,
teacher, and learning situatioa; (b) The Environment for Teaching, which
aims at making schools more flexible so that pupils, teachers, and learn-
ing materials can be brought together in ways that take account of their
many differences; and (¢) Teaching Students from Low-Income Areas, which
aims to determine whether more heuristically oriented teachers and more
open kinds of schools can and should ve developed to improve the education
of those currently labled as the poor and the disadvantaged.

This paper grew out of the activities of the Center's Methodology
Unit and represents a methodological development generated in amnswer
to problems encountered in the reanalysis of the Rosenthal-Jacobson
Pygmalion in the Classroom study. Such data analyses problems pose
frequent difficulties in data gathered by Center projects.
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Abstract

This paper introduces a model for describing outliers in linear
regression which can be viewed as a mixture of a quadratic and a linear
regression. The maximum likelihood estimators of the parameters in the
model are derived and tneir asymptotic properties discussed. Small
sample behavior of the model and robustness to inaccurate specification
of the mixing parameter were investigated using Monte Carlo techniques.
The asymptotic properties provide reasonable indications of behavior for
n as small as 21 and the procedure appeaxrs quite robust to the in-
accurate specification of the mixing parameter. Building models to de-
scribe outliers and estimating their parameters provides an interesting
alternative to procedures of outlier detection followed by ordinary

least squares procedures.
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INTRODUCTION

The standard linear regression model for fixed x's is given by

yi =G+B(xi—;) +€1 1= 1, 2, seey N (1)
where
Cov (eigj) =0 14 (2)
2
€, v N(0,0%) 3)

Occasionally the data may contain observations inconsistent with the
apparent pattern of the rest of the observation-. Such aberrant
observations or outliers could lead in extreme cases to rejection of

(1) as the form of the regression relationship. Even if (1) is assumed,
estimators of o and B by standard least squares procedures based on
assumptions (2) and (3) may have unsatisfactory distributional properties
such as large bias and large variance in the presence of outliers.

In this paper we formulate some models to describe outliers in
regression problems, give a brief review of previous work in this area,
and propose a particular model suggested by some resl data., Then we
derive the maximum likelihood estimators of the parameters in the model
and their asymptotic properties. Monte Carlo investigations to determine
the small sample properties of rhe maximum likelihood eatimators and
their robustness to inaccurate specification of the mixing parameter are

reported. Large sample and small sample comparisons under our quadratic



outlier model of the maximum likelihood estimators and the ordinary
least squares estimators for linear regression are discussed. Finally
the model is applied to some data obtained in the Rosenthal-Jacobson

teacher expectancy study.

Some Models for Qutliers in Linear Regression

We begin by outlining some simple models for outliers in linear
regression problems suggested by those proposed in the single sample
case (see, e.g., Grubbs, 1969, or Dixon, 1962). Retaining assumptions
(1) and (2), alternatives to (3) which generate outliers are models with

skewed error distributions such as:

v (1 - YIND,0%) + YN(A,0?) )
€~ (1 - YIN(,0D) + YN(A(x),0%) (5)
e (1 - YEDNG,0%) + YEINQ,0) 6)
e (L - YOOING,0D) + YEON(x),0%) )

models like (4) or (5) in which it is known that
n-k of the € observations are N(O,oz) and that

k of the observations are N(A,oz) or N(A(x),oz). (8)

With assumptions 1 and 2, error model (4) describes a process in which there
is a constant probability that a y observation will be biased by an

smount A . In model (5) the probability is constant but the smount of
1Mas depends un x . 1In model (6) the bias is constant but the probability
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of a biased observation depends on x . Model (7) is a combination of (5)
and (6).
We can propose analogous models with syumetric error distributions

for the scale contaminated case:

e (1~ YIN(O,0%) + yr(o,0%?) (9)
€~ (1 - YINO,0%) + YN (0,22 (x)0?) (10)
en (1 - Yx)IN0,0% + YN0, %6?) (11)
e~ (1 - Y(x)IN©,0%) + ()N, %0?) (12)

models like (9) or (10) in which it is known that
n-k of the € observations are N(O,oz) and k

are N(0,0%0%) or N(0,A%(x)0?). (13)

models like (9) where AZOZ follows some distribution. (14)

Model (9) describes a procese in which occasional y observations come
from a population with a larger variance. In model (10) the variance of
aberrant y obaervations depends on x . In model (11) the probability
that a y observation has a larger variance depends on Xx . Model (12)
is a combination of (10) and (11).

These models with A(x) , Yy(x) suitably defined can descridbe a

wide variety of cases.




Review of Literature

We define an outlier as an observation which is extreme in some
sense or violates the apparent pattern of the other observations. Most
of the statistical literature on outliers is concerned with two basic
problems: detection of cutliers and eatimation of parameters in the
presence of outliers.

There are several approaches to the detection problem when we have
two variables. let y and x derote the two variables and suppose at
first that both y and x are random variables, For bivarfate and mul-
tivariate models where x or y are distributed as in (8) or (13) with
at most one outlier, a test statistic for outlier detection which maxi-
mizes the probability of making the correct decision has been discussed;
see Ferguson (1961b), Karlin and Truax (1960). When more than one outlier
is suspected there is little information on how to proceed. One technique
is to apply the method described above repeatedly. Another is to have
some prior information that particular observations are suspect aﬁd, then,
possibly appiy teats developed by Wilks (1963) that generalize Grubbs
(1950). $Still another alternative is to treat each variable separately
and apply univariate single sample techniques.

When x 18 the independent variable and is measured without error
and the regression of y on x 1is given by (1) vhere e, are distri-
buted as in one of models (4)-(14), a number of suggestions for locating
possible outliers have been m;de in the literature. One suggestion is
to compute the maximum squared studentized residual and reject the obser-

vation corresponding to this r-sidual if it is significantly large.




Clearly, this procedure has its difficuities; see Mickey et al. (i967).
Arother suggestion made by Mickey et al, (1967) is to find the single
observation whose deletion causes the greatest reduction in the sum of
gquared residuals. Having found and deleted this observation, the pro-
cedure finde the next observation whose deletion reduces the sum of squared
residuals as much as possible. No theory for the procedure is available,
The procedure can be carried out on the computer by using a standard step-
wise regression program such as BMDO2R. The regressiou relation must have
a known form (e.g., linear); but no distributional assumptions need to be
made for x and the distribution of y may follow any of the models
outlined above.

The problem of detecting outliers in the regression setup requires
much more work. Little theoretical guidance for consumers of statistical
regression analysis is available, A very interesting approach to outliers
in calibration analysis is suggested by Youden (see Barnett, 1965).

A review of how to estimate «@,B and a measure of their variability
in the general case becomes a rather large problem. In our brief review
we will restrict consideration to the model defined by (1), (2) and some
choice of (4)-(13). So far the only work appears to be for symmetric
error models such as those in (9)-(13).

The main lines of attack on the problem of choosing estimators for
o,B are essentially generslizations of the approaches to the single
sample problem, Anscombe's {1967) paper applies when the e1 are a
random sample from a t distribution or a distribution in some sense

well-approximated by a t (an example of model (14)). Anscombe indicates



that minimization of the Huber metric may be used and, generally, will
give estimates "close" to those obtained by his Bayesian approach using
the t as the basic data distribution. If the € are distributed as a
scale contaminated compound normal distribution (model (9)), then the
methods of Box and Tiao (1968) may be extended to derive estimators for
o,B . Anscombe's (1960a) paper is useful when we want to test for skew-
ness, kurtosis or heteroscedasticity. A few suggestions on estimation
procedures for a,8 based on ranks or signs have been investigated, see
Mood (1950), Adichie (1967a), Sen (1968), Theil (1950).

Estimators for a,R may also be deduced by first screening the
data for outliers by one of the techniques suggested in the section on
detection and then estimating a,8 by minimizing some metric. Not much
is known about this approach except the paper by Anscombe and Barron
(1966) for estimating the population mean from a single sample.

A QUADRATIC OUTLIER MODEL

Our interest in the problem of outliers in linear regression
problems was kindled by two examples of data problems in which aberrant
observations seemed to occur only on one side of the regression line and
at one extreme of the x's (see Figures 5, 6, 7). Thus we were led to
consideration of error models (4)-(7). Model (5) seemed to describe
best §ur impression that outliers were increasingly far from the line
for more extreme x and we were led to an examination of model (5) with a
reasonable specification of A(x) .

This paper, then, is concerned with estimation of the parameters in
the quadratic outlier model (15). Since the adoption of such a model

implies the occurrence of a similar pattern of outliers across several




sets of data and the model may generate many nonextreme "aberrant"
observations, 1t seems more profitable to concentrate our efforts
directly on parameter estimation rather than on any two-stage detection
of outliers and parameter estimation procedures.

Quadratic outlier model:

yy =@+ Blx, - X) +¢€ 1=1,2, ..., n

i

Cov (ei, ej_‘ =0 143

€~ (1 - YING,0%) + YN((x),09) - (15)

Ax) = ¢ (x ~ m)2

m and Yy known
x's fixed

We choose A(x) = ¢ (x1 - m)2 with m known, as a simple function
which describes our impression of the data. We assume that the general
pattern of outliers, and thus m , is known. Model (15) describes a

bias which increases rapidly for extreme x . By defining m as x

min °’

Xy Xoax and forcing ¢ to be positive or negative we can obtain the
bias patterns shown in Figure 1.
The assumption of known Y 1is not so restrictive as might at first

appear. The literature indicates that its accurate estimation is

difficult and our own results indicate that incorrect specification is



not serious. The problem of estimating the parameters of a mixture of
distributions has been around a long time. Pearson (1894) discussed
estimates based on the method of moments. Rao (1952) reviewed this
approach but pointed out that the estimate of the proportion of the wix-
ture has a large variance and its estimation requires very large samples.
Hil11l (1963), usinyg scme expansions of the information for the

estimation of the mixing probability ¥y for two exponentizl distribu-
tions, shows that unless the mixed distributions are very well separated,
extremely large samples are needed even for moderate precision when all
other parameters are known. Larger samples are needed if the other
parameters must be estimated as well. Box and Tiao (1968) exploring

the estimation of © 1in the mixture (1 - Y)N(e,oz) + YN(B,kzoz) by
Bayesian methods assuming k and ¥y known and then using various values
of k and y showed that the estimator of © 1is not unduly sensitive

to changes in k or ¥ in a reasonable range.

Figure 1: Biass patterns generated by modsl (15)
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Maximum Likelihood Estiuators

Assuming m specifled, Y known, and the x's fixed, the maximum

l1ikelihood estimators of a, 8, c, 02 are given by the following

equations:
Gey-LErx, - _ (16)
O R S O T
B = — 2 - p 2 (17)
Z(xi - x) Z(xi - X)
A A —, 2
R I(y, - @ - B(x, - x)) ~2
02 - i a i - ﬁ E(x1 - m)4 vy (18)
2 - -
R Z(x, = m)" (y, - a - B(x, - X)) w
Cc = i i A i i (19)
Z(x1 - m) vy
where
L 128k, - ::a)”(y1 -6 - Blxyx) + Gz(xi-m)l']
-1 20
wi =Y + (1-Y)e (20)

A Portran IV computer program to obtain iterative solutiona to these

equations was written.

Asymptotic Properties of the Maximum Likelihood Estimators

Asymptotically the maximum likelihood estimators of o , B, ¢, 02

have & multivariste normsl distridution. Thst is, for fixed x's 1in the

interval (a, b) the estimators

/e Gg-0) » /8 BB , /A Gg-0) , /A Gh-o”
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have an asymptotic multivarfate normal distribution with varience-

covariance matrix V given by n g’l

matrix. Letting A = 04M , the terms in A are given by the following

where M is the information

formulas:
a, " no2 - Y(l—y)czz(xi-m)"l1
a,, » =y(1- )c2 I(x -m)a(x -x)1
12 © TYEY ) 7%
8y, = Y02 L(x,-m)2 + y(1-y)eI(x,~m)? [J,~c(x,-m)°L,]
137 Y 1 vil=y 1 §7¢ %y 1
- Y1) 2 b (0 L€ 32
814 02 c Z(xi-m) ( Ji + 3 (x1 m) Ii)
8y = 0% 207 - ya-peEm® (x-0%,
8, = O2YE(x,-%) (x,~m) % + y(1-y)cE(x,-%) (x,-m) *[J,-¢ (x,~m) °L, ]
23 yuix, 1 vil=y 1 1 TRt 1

8y = l(:—‘zl)- c2£(x1-;) (xi-m)" -3, +% (xim)zli)

833 = W0 -mY - YOI K -2etxm? 34l x w1

2
¢ =) 4 3 2 c Ry
%34 =T 7 Hxpa) (K - gelxm)® 3y 4 g (g Ey)

: 2
WL E 1%‘1?- et Ik - cow? 3 v S pw'np
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1 -212/202
1, = f e f (z,) dz
L e R |
1 ; —2521202
J, = z, e f (z,) dz
3 Tio i i i
1 ; 2 —212/202
K, =——fu," e f (z,) dz
i T i i i
and
-e(x,-m)> 2
i [22i - c(xi-m) ]
202 -1
£(z;) = [(1-y)e + v) .

To demonstrate the way in which the asymptotic varianc:s vary with
the parameters Y, f and to gain an iGea of variances we night expect
in small samples we evaluated the formulas for the asymptotic variences

of a, ﬁ, 3, 32 at several values of n (these numbers are then taken

1 ). As we shsll see in later sections these asymptotic

from y-
formulas for the variances may provide very good approximations to the
actual variances for n's as small as 21,

Asymptotic formulas for the variances were computed for some
illustrative cases. We set a=0.0, B=1,0, m= Xoin * and ¢
positive. The x's i'2re equally spaced from ~1.0 to +1.0 with one y

observation at each x . The asymptotic variances were evaluated for

sample sites, n , of 15, 21, 4l and ¥y of .10, .20, .30, .40, Values



12

2
of 02 were chosen so that gf = .50, .20; that is, values of 02 were

o]
y

chosen to produce relationships between x aund y accounting for 20%,
50% of the variation in y «representing a range from fair to good fit
of the line. Values of ¢ were chosen so that the mean of the largest
possible residuals or f = c(xmax - xmm)2 would take on values of 0 ,
0,2 ,3 , 40,50, 60, 70, 80 . The obtained variances for aML .
EHL , and EML are given in Tables 1-3.

The asymptotic formula for £he variance of aML can be written as
02 times a function of Yy, f, n and the spacing of the x's; it does not
depend on a, 8, or A= Xnax = *min ? the scaiing of the x's. Therefore
in Table 1 in which %'s were equally spaced for all calculations, we show

var OML

o®

ss K(y, f, n) .

Examination of Table 1 shows that the asymptotic variance of aHL

decreases monotonically from a maximum © “ue at ¢ = 0 but remains

relatively stable across a wide range of f values from 20 to 80 . The

variance of aNL increases with Y and decreases with n .

2
The asymptotic variance of can be written as g times a
AZ

function of Y, f, n and the spacing of the x's; it does not depend on
a or B . Table 2 shows that the change in the variance of EHL with
f, Y, n 1is very similar to that for variance aML .

A 02

The asymptotic variance of Sq, €80 be written as % times a
A

function of Y,f, n and the spacing of the x's., The asymptotic
variable of EHL decreases repidly as £ 1increases until about 40 or

ERIC
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50 at which it begins to approach an asymptote. The variance of EML
decreases as n 1increases but it also decreases as Y increases. TFor

larger Y , the effective sample size for the estimation of c¢ increases. \

Table 1

Asymptotic Variance Formula for & Evaluated for Equally Spaced x's
yup X q

var aML
02

2
Y= .2 c(xrnax " *nin

)

n 0 "] 20 30 4g 50 60 1¢ 8o

21 .8798 .0963 .0659 .0626 .0620 .0613 .0607 .0602 .0599

max wmin
n Y .10 .2C .30 - .40
15 .0760 0847 0946 .1067
21 0544 .0607 0679 0767

41 .0279 .0312 .0350 .0396
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Table 2

Asymptotic Variance of éML for Equally Spaced x's

var éML
°2
Y= .20 cx -x )2
* max nin
n 0 o 20 Kls] 4o 50 60 10 80

21 1.912 .2346 .1738 .1684 .1623 ,1552 .1505 .1479 .1466

c(xmax - xmin)2 = 60

Y .10 +20 .30 . 40
?5 . 1886 2024 .2194 «2414
21 .1402 +1505 .1631 .1795

41 0754 +0809 .0878 .0966




Table 3

Asymptotic Variance of EML for Equally Spaced x's

~
var CML

Y= .20 (X pax = Xnin)
n 0 a 20 30 4a 60 70 8a
21 11.14 .6545 ,2249 .1490  .1204 0974 .0931  .0907
c(xmax - xmin)2
y _ .10 .20 .30 .40
?s .2502 .1315 .0963 .0823
21 .1860 .0974 .0713 .0609
41 .1000 .0522 .0381 .0325
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SMALL SAMPLE PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATORS

We undertook a Monte Carlo study to investigate the properties of
the maximum likelihood estimators of a, B, ¢ in small samples. We set
a=00, B=1.0 and m= Xoin throughout., Eight parameter sets
specifying the values of n, Yoo 02, ¢ and the spacing of the x's were
defined and used to generate y sanples, see Table 4, For each parameter
set, evaluation cf the properties of the estimators were made for several
choices of YE » the value of Yy actually used in estimation. The basic
parameter set involved 21 equally spaced x's from 1 to 21, Yp = .20 ,

02 = 36 , and c(xmax - xmin)2 = 60 . We chose 02 = 36 to obtain a
representative situation in which x predicts 50% of the variance in y .
The values f = 60 and Yr = .20 were chosen because unless outliers ore
occasionally obvious by inspection it is unlikely that an outlier model
would be applied (this is also approximately the value observed in the

RJ data). Tne variations from this basic set of parameters include cases
in which 02 is reduced, ¢ is reduced, n 1is reduced, the x's follow

8 normal distribution, n 1is increased, and Yr is varied.

For each rarameter set and choice of Yg o 200 random samples of vy
observations were generated using a random normal generator developed for
the IBM 360 by Chen (1969). For some parameters, several sets of 200
samples were generatel. The maximum likelihood estimators were obtained

for each sample and the observed means and variances of the estimators

across the 200 samples were calculated.
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Table &
Parameter Sets

a=00 B=1.0 m= X in

No. of samples
Yg

2
' -’
Set n Y x's 02 c(x X xmin) c YE

.01 .05 .10 .20 .30 .40

1, Basic 21 .20 equally 36 6 .09 200 200 600 200 200
spaced
1l to?l

2. Reduce 02 21 .20 equally 9 60 .045 200 200 400 200 200
spaced
1to21

3. Reduce ¢ 21 .20 equally 36 3o .045 200 200 200 200 200
spaced
1lto2l

4, Reduce n 15 .20 equally 18,67 60 .1322 200 200 400 200 200
spaced
1ltols

5. Vaiy x's 15 .20 expected .85 60 .45 200 200 400 200 200
normal
order
statis-
tics

6. Increase n 41 .20 equally 140 60 .04437 200 200 400 200 200
spaced
1 to 41

7. Reduce Y 21 .05 equally 36 60 .09 200 200 200 20C
spaced
ltol

8. Increaae Y 21 .40 equally 36 60 .09 200 200 200 200
spaced
1lto 21
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The initial estiniates used in the iterztive maximum likelihnod

A 2

solutions were & BLS s g0 and ¢ was estimated from the largest

Ls *
residual from the least squares line in the appropriate quadrant. In
general the iterative solution converged to six significaat digits in each
estimator fairly rapidly. The procedure was automatically terminated
afiter 100 iterations. Table 5 shows the number of iterations required

for convergence for the basic parameter set with Yg = Yo = .20 and with

T
Yg = .40, Yg = .05 . The median number of ifterations was in the range
20-29. The number of iterations required seems to increase somewhat as

YE increases.

Tables 6, 7, and 8 show the results for &ML , ﬁML , and EML .
respectively. Part (a) of each table shows the ratio of the asymptotic
variance to 02 for each parameter set for several Y values, (Note
that this ratio is independent ~f 02). These figures have been scaled
to allow comparisons with figures in Tables 1, 2, and 3 (i.e., they all corre-
spond to calculations made for x ranging from -1 to +1.). Part (b) of
each table shows the ratio of the obaerved variance using Yg to the
asymptotic variance calculated with YE . Part {c) of each table shows
the ratio of the observed variance using YE to the asymptotic variance
calculated with YT . Part (d) of each table shows the observed bias
(due to gcale changes these figures are not necessarily comparahble from
row to row)., Part (e) shows the ratio of the squared bias to the
agy~ptotic varlance calculated with Yp o

A guideline to the interpretation of the ratios between observed
and asymptotic varfances can be obtained by the following argument. If
an estimator 8 {is normally distributed, the atandard deviation of its

agtimated variance based on p samples is JZIp var 6 . Thus the




Table 5
Number of Iterations Required for Convergence to Six

Significant Digits in All Estimators for Basic Parameter Set

YT = ,20
g = .20 Y = .40 Yg = .05
No. of
Iterations Frequency Frequency Frequency
1-9 1 0 2
10 - 19 63 25 94
20 - 29 82 69 53
306 - 39 27 | 33 21.
40 - 49 7 22 14
50 - 59 5 13 9
60 - 69 2 7 1
70 - 79 4 8 1
80 - 89 0 3 4
90 - 99 2 4 0
100+ 7 _16 1

200 200 200
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/N

standard deviation of 335—% is approximately v2/p . So for p 200
a

we would expect the observed variances to be within +20% of the true
variance; for p = 400 and p = 600 , the observed variances should be
within +14% or +12% respectively.

Behavior when Yg = Yp

The properties of GML are shown in Table 6. Note that the
asymptotic variance of aML is not strongly affected by ¢, Y, or the
spacing of the x's. For the parameter sets investigated here the actual
variance is only 14% to 35% larger than the asymptotic variance when
Yg " Yp * The bias is generally positive but contributes less than 1%
to the MSE &ML .

The asymptotic variance of BML depends more heavily on ¢ and the
spacing of the x's than does the variance of aML + With the exception
of two cases the observed varisnce is no more than 15X larger than the
asymptotic variance. The bias is numerically quite small and makes a
negligible contribution to MSE.

The asymptotic variance of GML is fairly strongly affected by
changes in the parameters, especially by changes in ¥ . The observed
variance is considerably larger than the asymptotic variance--about 2 to
6 timea larger for these casea. The bias is generally negative
indicating that ¢ is underestimated on the average. The contribution
of bias to MSE ranges from 4 to 22X except for the case where Yp .05 .

How nearly normal are the distributiona of a, ﬁ, ¢ 1in small samples?
Hiotograms of the distributicns of aHL' ﬁHL’ EML for the 600 samples
generated by basic parameter get with y = ,20 n = 21 are shown in

ERIC

IToxt Provided by ERI
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Table 6
Properties of aML

a) Ratio of asymptotic variance of &ML to 02

Parameter set Y

.01 05 .10 .20 .30 .40

-4
°
E]
<
=

1 21 .2 .0485 .0513 .0544 .0607 .0679 .0767
2 21 .2 .0485 .0513 0544 .0607 .0679 .0767
3 21 .2 .0486 .0515 .0550 .0626 .0716 .0828
4 15 .2 .0679 .0717 .0760  .0847 .0946 .1067
5 15 .2 .0681 .0726 0777 .0882 .0998 .1137
6 41 .2 . 0248 .0263 .0279 .0312 .0350 .0396
7 21 .05 .0485 .0513 .0544 .0607 .0679 .0767
8 21 .4 .0485 .0513 0544 0607 .0679 0767

b) Ratio of observed variance using Yg to asymptotic variance with YE

Parameter set Yg

No. n YT .01 .05 .10 .20 .30 .40
1 21 .2 1.37 1.62 1.21 1.06 1.07
2 21 .2 2,02 1.38 1.14 1.24 .93
3 21 .2 1.08 1.41 1.27 1.28 .95
4 15 .2 1.46 1.66 1.34 1.08 1.29
5 15 .2 1,66 1.56 1.17 1.14 1.06
6 41 .2 1.63 1,06 1.18 .92 1.18
7 21 .05 1.12 1.19 1.03 .89

8 21 .4 3.86 2.07 1.38 1.31

¢) Ratio of observed variance using Yg in estimation to asymptotic
variance with Yp

Parameter set YB

No. a 't .01 .05 .10 .20 .30 .40
1 21 .2 1.16 1.45 1.21 1.19 1.35
2 21,2 1.72 1.23 1.14 1.39 1.17
3 21 .2 .89 1.24 1.27 1.47 1.24
4 15 .2 1.23 1.49 1.34 1.21 1.63
s 15 .2 1,37 1.38 1.17 1.29 1.37
6 41 .2 1,37 .95 1.18 1.03 1.52
7 21 .05 1,05 1.19 1.09 1.06

8 21 .40 2.73 1.64 1.22 1.31
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Table 6 (Continued)

Properties of aML

d) Bias in &ML when Y, 1s used in estimation

Parameter set YE

No. n IT .01 .05 .10 .20 .30 .40
1 21 .20 .548 .532 066  -.281  -.540
2 21 .20 477 .268 021 -.166  -.157
3 21 .20 749 .200 135 -.415 ~.625
4 15 .20 .493 .365 033 -.330 -.212
5 15 .20 117 .099 .007  -.044  -,103
6 41 .20 1.354 .691 072 -.595  -.947
7 21 .05  .024  -.047 012 -.338

8 21 .40 2.111 .931 .315 .056

e) Squared bias in aML as a percent of the asymptotic variance using

Yr
Parameter set YE
No. n 'T .01 .05 .10 .20 .30 40
1 21 .2 14 13 0 4 14
2 21 .2 50 13 0 5 5
3 21 .2 25 2 1 8 17
4 15 .2 16 8 0 6 3
5 15 .2 18 14 0 3 14
6 41 .2 42 11 0 3 21
7 21 .05 0 0 0 6
8 21 40 162 31 4 1
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Table 7

Properties of éML

a) Ratio of asymptotic variance of ﬁML to 02

Parameter set Y

No. n T .01 .05 .10 .20 .30 .40

1 21 2 1314 1354 . 1402 .1505 .1631 .1795
2 21 .2 1314 .1354 . 1402 .1505 .1631 .1795
3 21 o2 1327 . 1409 .1500 .1684 .1893 .2148
4 15 .2 .1770 .1823 .1886 .2024 2194 2414
5 15 .2 .2389 .2468 .2559 2752 .2983 .3276
6 41 .2 .0705 .0728 0754 .0809 .0878 .0966
7 21 .05 .1314 .1354 .1402 .1505 1631 .1795
8 21 oh .1314 1354 .1402 .1505 1631 1795

b) Ratio of observed variance of aML using Yg to asymptotic variance

using YE
Parameter set Y
No. n T .01 .05 .10 .20 .30 A0
1 21 .2 1.60 1.34 .97 1.11 1.20
2 21 .2 2,34 1.52 1.05 1.31 .88
3 21 .2 1.24 1.36 1.10 1.30 .89
4 15 .2 2,04 1,88 1.49 1.11 1.17
5 15 .2 1,95 1,56 1.14 1.18 1.34
6 41 .2 1,36 1,37 1,09 .81 .87
7 21 .05 1.14 1,15 .89 1.16
8 21 4 4,52 1,88 1.45 1.43

¢) Ratio of observed variance when YE used in estimation to asymptotic
variance using YT

Parameter set Yg
No. n YT ,01 .05 .10 .20 .30 .40
1 21 .2 1.44 1.25 .97 1.21 1.43
2 21,2 2,12 1.42 1.05 1.43 1.05
3 1,2 1.02 1.21 1.10 1.47 1.14
4 15 .2 1.83 1.74 1.49 1.20 1.39
5 15 .2 1.76 1.45 1.14 1.27 1.59
6 41 .2 1.22 1.28 1.09 .88 1.04
o 17 21 .05 1.10 1.15 .92 1.28
8 21 .4 3,50 1.56 1.31 1.43
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Table 7 (Continued)
Properties of §ML

d) Bias in ﬁML when Yg used in estimation

Parameter set YE

No. n YT .01 .05 .10 .20 .30 .40

1 21 .20 . 0445 .0151 -.0007 .0095 ~.0363
2 21 .20 0444 .0160 .0075 .0108 .0125
3 21 .20 .0608 .0348 .0335 -.0540 .0560
4 15 .20 0434 .0631 0332 -,018% -.0473
5 15 .20 .0507 .0187 0038 -,0091 -.0414
6 41 .20 .0226 .0308 ~-.0035 -.0061 ~-.0171
7 21 .05 .0009 .0236 -,0266 -,0027

8 21 .40 .2201 .0716 .0283 .0186

e) Squared bilas in GML as a percent of the asymptotic variance using Yr

Parameter set YE

No. n Tt .01 .05 .10 .20 30 .40
1 21 .2 4 0 0 0 0
2 21 .2 15 2 1 1 0
3 21 .2 5 2 2 5 3
4 15 .2 3 6 2 0 3
5 15 .2 4 0 0 0 2
6 4 .2 2 3 0 0 1
7 21 .05 0 1 1 0

8 21 .4 7% 8 2 1
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Table 8

Properties of EML

a) Ratio of asymptotic variance of EML to 02

Parameter set Y

No. n T .01 .05 .10 .20 .30 .40

1 21 .2 2.0367 .3754 .1860 0974 Q713 ,0609
2 21 .2 2.0367 3754 .1860 .0874 .0713 .0609
3 21 .2 4,0500 .6515 .3046 .14%0 ,1040 .0859
4 15 .2 2.7203 .5037 .2502 .1315 ,0963 .0823
5 15 .2 3.6619 .6705 .3309 .1721 ,1252 .1065
6 41 .2 1.1051 +2024 .1000 .0522 .0381 .0325
7 21 .05 2.0367 3754 .1860 .0974 .0713 .0609
8 21 .4 2.0367 .3754 .1860 0974 .0713 .0609

b) Ratio of observed variance using Ye to asymptotic variance using Y,

Parameter set Y

No. n_ T .01 .05 .10 .20 .30 .40
1 21 .2 1.07 2.90 4.47 5.30 8.55
2 21 .2 1.29 2.46 5.25 6.49 6.72
3 21 .2 «55 1.04 1.95 6.07 2.74
4 15 .2 1.46 1.89 6.10 5.30 7.58
5 15 .2 1.29 2.36 3.78 5.C8 4.80
6 41 .2 .99 .50 2.97 5.95 8.41
7 21 .05 55 2.77 6.12 9.90

8 21 .4 1.24 1.19 1.37 3.32

¢) Ratio of observed variance \.hen Yg used in estimation to asymptotic
variance using Yy

Parameter set Y

No. n T .01 .05 .10 .20 .30 .40
1 21 .2 4.50 5.51 4.47 3.86 5.33
2 21 .2 4.97 4,69 5.25 4,74 4,20
3 21 .2 2.41 2.31 1.2 4,24 1.58
4 15 .2 5.57 3.61 6.10 3.88 4.74
5 15 ,2 5.04 4.54 3.78 3.70 2.97
6 41 o2 3.84 2.87 2.97 4.35 5.24
7 21 .05 3.00 2.77 3.02 2.56

8 21 A 3.79 1.90 1.60 3.32
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Table 8 (Continued)
Properties of GML

d) Bias in EML when Yg used in estimation

Parameter set YE

No. n IT .01 .05 .10 .20 .30 .40

1 21 .20 -,0071 -.0131 -.0087 -.0116 -.0149
2 21 .20 -,.0N25 -.0026 -.0028 -.0081 -,0087
3 21 .20 -,0072 -,0018 -.0071 .0050 -.0082
4 15 .20 -.0121 -.0217 -.0138 -.0158 -.0295
5 15 .20 -.0525 =-,0493 -.0570 -.0397 -.0832
6 41 .20 -.0017 ,0015 =-,0018 -.0042 -.0067
7 21 05 -.0347 -.0364 -.0363 -.0339

8 21 .40 -.0072 -.0021 -.0003 ~-.0032

e) Squared bias in eML as a percent of the asymptotic variance using Yo

Parameter set YE

No. n IT .01 .05 .10 .20 .30 .40
1 21 .2 14 49 22 38 63
2 21 .2 7 8 9 75 87
3 21 .2 10 1 9 4 13
4 15 .2 15 46 19 24 86
5 15 .2 17 15 20 10 43
6 41 .2 6 5 7 39 99
7 21 .05 88 98 98 75

8 21 .4 24 2 0 4
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Figures 2-4. These distributions appear reasonably symmetric and
well-behaved, especially the distribution of éML . Note the second
peak at zero in the distribution of c .

In summary then, for vy known, aML and éML appear to behave
well for samples as small as 21. The bias is not large and the asymp-
totic variance formula if inflated by 20 to 50% could reasonably be used
to provide some estimates of precision. The estimator of ¢ performs
poorly by contrast, it is an underestimate on the average and much more
variable than asymptotic results would indicate. This is hardly
surprising oince the effective sample size for the estimation of c¢ 1is
of the order of %; .

Robustness to Inaccurate Specification of y

Now that we have assessed the small sample behavior of aML s ﬁML ,
and GHL when the true Yy 1is known we need to evaluate how misled we
will be if the wrong value of Yy is used in the estimation procedure.
For each parameter set we have run sets of 200 samples when the value of
Y used in the estimation procedure, Yg s is not equal co the true Y
value, Yp oo Changes in the observed variance and observed bjas due to
inaccurate specification of Yy are shown in Tables 6, 7, 8.

For aML we note that inaccurate specification of Yy does not
seem to have an appreciable effect on the size of the variance. Table 7t
shows that the ratio of the observed to the asymptotic variance using Yy
was generally less than 1.7. The bias in aHL is much more directly
affected by YE 3 it 18 quite close to zero when YE = YT , becoming
moderate and positive for Yg < Yp (Y underestimated), and moderate and

negative for Yg > Yp (Y overestimated). That is, underestimation of
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Y leadé to overestimation of o and overestimation of Yy 1leads to
underestimation of o . Although using a Yy of .05 or .40 when the
true value is .20 is quite a large error, the bias at these extremes
generally contributes only about 20% to the MSE.

The situation for ﬁML is very similar although inaccurate
specification of Yy seems to have a somewhat larger effect on the
variance. Again, the bias tends to switch from positive to negative as
we go from underestimation to overestimation of Yy ; however, the bias
is generally of negligible size even at the extremes.

For aML , Inaccurate specification of Yy does not exhibit any
appreciable tendency to inflate the variance. The observed variance is
much more strongly influenced by the value of Yr than by Yg tending
to be comparatively stable across a row. The effect on the size of the
consistently negative bias is variable, with overestimation of Y
considerably worse than underestimation.

In summary then, even for relatively small samples the maximum
likelihood estimators of «, B, ¢ are robust to inaccurate specification
of Yy . Their variances are only moderately affected by differences
between Yg and YT , and bias becomes a serious problem only for EML

when Yy 1s overestimated.
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COMPARISON OF MAXIMUM LIKELIHOOD ESTIMATORS AND ORDINARY IEAST
SQUARES ESTIMATORS OF o, B

How much can we generally expect to gain by using the maximum
likelihood estimators of a, 8 rather than the ordinary least squares
estimators whose computation ignores the presence of outliers. The

ordinary least squares estimators are given by

als =y

Exy - X)(yy - ¥)

1s -2
Z(xi - X)

. - R4

2 i-(yi -y - Bls (xi = %))
[o] =
1s n-2

To derive the expected values and variances of these estimators under

the quadratic outlier model we note that

E(yi) =0+ B(xi - %) + e (xi - m)2
and

Var (yi) = 02 + y(l-y)c2 (xi - m)“ .

Thus under the outlier model

B@y,) = o + LS 5(x, - m) 2

' 2
a = 0 2 ISI-IZ R 4
Var (als) "y +c “2 E(xi m)
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I(x, - %) (x, - n)2

EB, ) = B +ye

2(xi - §)2
o 02 Z(xi - ;)2 (x1 - m)4
var (B,.) = ———+c Yyl -vy) p— )
£(x, %) [2(x, - 0]
a2 2 153 1 4 2.2
E(0))) =0 + 155 E(xi-m) n(n-2) [Q-Y)Z(x;-m)" + y[E(x;-m)"] ]
2
_____jL_______
[Q-Y)E(x, 2 (xy w* + YIE(xg -x) (x-m) 2] ],
E(x —x) (n-2)
The estimators of o and B are inflated by terms in yc and the x's,
their variances are increased by terms in czy(l-y) and the x's.
The maxiwmum improvement obtainable from using the maximum likelihood
uSE & usk B,
estimators can be assessed by looking at ——= and ———— where the

MSE & MSE Ry

asymptotic formuias for the ML cstimators are used. (Since aML ’ éML
are asymptotically unbiased, MSE = var .) Calculations for a =0 ,
B = 1, equally spaced x's between -1.0 and +1.0, m = -1.0 , are
displayed for several values of Y, n, c¢ 1in Table 9. Improvement from
using the ML estimators is rapid with incresses in Y, ¢, n. For n=21,
Y=.2, f =60, the mean squared error using the least squares estimators
is almost five times that using ti.e maximum likelihood estimators.

The ratios of mean squared errors observed in the Monte Carlo study
are shown in Tables 10 and 11. Although the observed advantage of the

Q maximum likelihood estimators of o and B 18 less than indicated
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Table 9
MSE (&LS)
a) Asymptotic formulas for EEE‘TEQ‘T
L
Y= .20
2
c(xmax - xmin)
0 o 200 30 4o 53 6o
n=21 .06 «Sb 1.11 1.67 2.39 3.34 4.52
ce(x - X )2 = 60
max min
n Y W1 W2
21 2,26 4,52
41 2.90 6.97
MSE (BLS)
b) Asymptotic formulas for ﬁEE—?E;;T
Y= .20
2
c(xmax - xmin)
0 g 20 30 4o 50 60
n=21 .07 .62 1.14 1.63 2,47 3.59 4,96
2
c(xmax - xmin) ~ 60
n Y .1 .2
21 2,57 4.96

41 3.08 6.95



Table 10
MSE &
LS
Observed NSE
L
Parameter set YE
No. n_ YT .01 .05 .10 .20 .30 .40
1 21 .2 3.09 3.34 3.90 3.45 2.67
2 21 .2 2.34 3.68 4,01 2.70 3.96
3 21 2 1.39 1.37 1.36 1,08 1.04
4 15 .2 2.47 2.52 3.05 2.64 2.30
5 15 2 1.87 2.24 2.48 2.61 2.23
6 41 .2 3.52 6.78 8.31 6.06 4.01
7 21 05 1,24 1.22 1.44 1.20
8 21 N 2,68 5.67 8.72 7.95
Table 11
MSE B
LS

Obsexved SE
Parameter set YE
No. n 'T .01 .05 .10 .20 .30 .40
1 21 .2 3.02 4,09 4,78 4.28 3.38
2 21 .2 2.55 3.87 4.76 3.47 4.94
3 21 «2 1.28 1.36 1.68 1.12 1.39
4 15 o2 2.37 2,77 3.44 3.53 2.77
5 15 .2 2,20 2,35 2.92 2.69 2.74
6 41 2 4,36 5.92 6.33 8.06 6.28
7 21 .05 1,38 1,61 1.28 1.48
8 21 Wb 2.86 6.77 8.81 7.46

35
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by asymptotic results, it is still considerable. The MSE usiny standard
least squares is at least 2.4 that using the maximum likelihood estima-
tors with the true vy for all but the cases with f = 30 and ¥ = .05 .
The maximum 1likelihood estimatcrs still perform better than the least
squares estimators even when the estimated <Y i3 way off. The advantage
of the maximum 1likelihood estimators increases rapidly with small
increases in sample size.

Comparisons were also made between the maximum likelihood
estimators and the ordinary least squares estimators for a quadratic
regression. However, for x's symmetric aboue % s the two least squares
estimators are identical and MSE & was little different in the two

situations,
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APPLICATIONS

I became interested in the problem of outliers in regression when I
undertook with Professor Richard Snew at Stanford a reanalysis of the
data reported on by Rosgenthal and Jacobson in their book Pygmalion in
the Classroom. All the children in a particular grade school were given
a preliminary I1.Q. test. Then, one-fifth of the children were selected at
random and their teachers told that these experimental children were
expzcted to bloom intellectually very soon. Months later all the
children, both experimental and control groups, were retested witk the
same I1Q test. One way to assess differences between the two groups is
to compare the regression of posttest IQ on pretest 1Q. However, we soon
found that although a straight line seemed to describe the majority of
children fairly well, some children had excessively high 1Q's on the
retest.

Look at Figure 5 which shows pre and post Total IQ scores for the 19
erperimental group children in the first and second grades. One child with
a pretest IQ score of 139 has a posttest IQ score of 202. Figure 6 shows
the Verbal IQ results for the third- and fourth-grade experimental group.

" Figure 7 shows the Verbal IQ results for the fifth~ and sixth-grade experi-
mental group. Other similar patterns appeéar fo) other groups in the experi-
ment; except for the first- and second-grade Reasoning subtest, which has
some excessively low pretest scores, the general picture is the same for
Verbal and Reasoning subtests for all grades. Most of the points seem to
lie on a straight line, but some children with high pretest scores have
excessively high posttest scores. Thus we have a problem where outliers

seem to occur onuly for high values of x .
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Figure 5: Pre and Post Total IQ scores for 19 experimental group children

in grades 1 & 2 (Note that both scales start at 50.)
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Figure 6: Pre and Post Verbal 1Q scores for 26 experimental group children

in grades 3 & 4 (Note that both scales start at 50.)
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Figure 7: Pre and Post Verbal IQ scores for 23 experimental group children

in grades 5 & 6 (Note that both scales start at 50.)
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In this problem the apparent outliers may be partially due to the IQ
transformation of the raw scores. At the extremes of the score distribu-
tion, one question right or wrong can make many points difference in IQ.
However, the raw scores were no longer available to us, and it is the IQ
scnres which generally receive the psychological interpretation.

We then applied our outlier model to the estimation of o and B
for three sets of data from the Rosenthal experiments. Tables 12, 13,
and 14 show the results for grades 1 and 2, grades 3 and 4, and grades
5 and 6, the data shown in the scatterplots. Thg iterative solutions of
the maximum likelihood equations converged to at least six significant
digits after 20-25 itevations.

Look first at Table 12. When standard least squares was used we
obtained & =117 , 8 = .93 and 82 = 376. When the one "obvious
outlier" was removed o = 112 , 8 = .58 and 82 = 159 using standard
least squares. The maximum likelihood estimates obtained with y = .05
are G =113, B= .58, 8% =141, c = .0126 . Notice that these
estimates change very little for values of Yy ranging from .0l to .20,
and how similar they are to those obtained by deleting the outlier and
using standard least squares. The estimate of ¢ 1s very close to that
obtained by fitting the bias term through the outlier point. We also
tried y = .001 and obtained & = 116.4 , B = .90 , 8 = 339 -- very
similar to standard least squares on all the data.

For grades 3 and 4 the data resemble the grades 1 and 2 data with
one outlier, but there are two y points nesr the line for very large
x; that is, the basic line appears better defined, and the outlier is

farther out. Here even for Yy = .001 the results were very little
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affected by choice of Yy and resembled those for standard least squares
with the outlier deleted.

Our results for grades 5 and 6 were very similar. The choice of
Y had little effect on the estimates of o, 8, ¢ for y = .01 to
.30; s2 was most affected. For Y = .001 results were close to the
standard least squares on all the data. These data do not look like a
one-outlier problem and the results obtained using our method do not
resemble those obtained by deleting one outlier. These data look much
more like our second interpretation-~a mixture of linear and quadratic
regression.

Our estimates of c¢ were similar for all three pleces of data:
.0126, .0112, and .0102.

In conclusion the model seems general enough to represent many
outlier problems. Choice of Yy 1in any reasonable range seems to make
little difference in the estimates. The data seem to dominate the
specification of y . Use of this model has reflected well our intui-
tive impressions of the data.

In general it seems desirable to fit a model which describes all
the data well--outliers and all--and regression problems with outliers

dependent on the x value could use considerable investigation.




Table 12
Regression Analyses for Grades 1 & 2

Experimental Group Total IQ 1 & 3, N = 19

Standard Least Squares

>
™

Sy.x
All Data 116.7 .93 19.39
Outlier reduced 114.5 .71 13,48
from 202 to 160
Outlier deleted 112.0 .58 12.63

Maximum Likelihood Estimates Under Outlier Model (m = 60)

Y a B o2 g
.001 116.4 .8997 338.96 .0098
.01 113.13 5771 141.59 .0127
.05 112,92 .5785 141.49 .0126
.10 112.65 .5796 142,13 .0124
.20 111.97 .5782 146.13 .0120
Outlier

deleted

Y = .05 111.82 .5698 150.01 .0024

43

Solutions converged to 6 significant figures after about 20 iterations.
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Table 13
Regression Analyses for Grades 3 & 4

Experimental Group Verbal 1Q 1 & 3, N = 26

Standard Least Squares

N
& 8

sy-x
All Data 115.65 1.07 26.92
1 Outlier deleted 109.60 .70 13.85

Maximum Likelihood Estimates Under Outlier Model (m = 60)

Y & é 32 ¢
.001 11

.01 110,97 7052 191.52 .0113
.05 110.70 .7123 191.48 .0112
.10 110.35 .7214 191.66 .0112
.20 109.59 . 7405 192.92 .0110
1 outlier

deleted

.05 109.21  ° ° .6708° ° ~ “190.93 7 .0022

’

[N



Table 14

Regression Analyses for Grades 5 & 6

Experimental Group Verbal IQ 1 & 3, N = 23
Standard Least Squares
& 3 e
All Data 115.35 1.14 20.8
1 Qutlier deleted 110.73 .98 15.9
Maximum Likelihood Estimates Under Outlier Model (m = 60)
Y & B o2 ¢
.001 115.24 1.137 408.7 .007
.01 108.65 .8455 97.40 .0102
.05 108.27 8444 93.07 .0102
.10 107.83 .8433 88.14 .0103
.20 106.99 .84 81.14 .0103
.30 106.31 .8405 76.13 .0104
.60 105.0 .8468 71.66 .0105
.70 ' lpﬁ.p . . .8503 71.95 .0105
.80 104.3 .8544 o 7;.;5 '.Bioé
1.0 114.4 1.136 414
1 Outlier
deleted ;
.05 107.72 i 8459 95.64 .0112

432.6

252.8

45



A Lspmmmmee ol B BT AT TR AR TRy e D e

O

ERIC

Aruitoxt provided by Eic:

46

CONCLUSIONS

We have proposed a model describing outliers in a linear regression
problem, derived the maximum likelihood estimators of the parameters,
and examined the asymptotic properties of the estimators. We have
examined the behavior of the estimators in small samples and their
robustness to ilnaccurate specification of Y . We have applied the
model to some real data.

Although this particular quadratic outlier model was suggested by
some real data and seems to be useful in the analysis of that data, the
importance of the paper does not lie in this particular model but in
the demonstration that models of this kind can be useful, that the
asymptotic properties provide not unreasonable indications of behavior
for samples as small as 21, and that the procedure may be quite robust
to inaccurate specification of Yy . Thus, building models to describe
outliers and estimating the parameters of these models provides an
interesting alternative to procedures of outlier detection followed by

ordinary least squares procedures.
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