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IMPLICATIONS OF A CLASS OF
COVARIANCE STRUCTURE MODELS FOR THE
DEVELOPMENT OF MEASURING INSTRUMENTS

William J. Bramble David E. Wiley
University of Kentucky University of Chicago

Covariance Structure Models

Covariance structure analysis is a generic construct describing a variety of

statistical procedures for determining sources of latent variation and covariation

among a set of variables. The basic data for covariance structure analyst*. are p-

variate response vectorr for each of N subjects. The generic structural nodel for

the population covariance matrix in this type of analysis is

(1) E - A 0 A' + 't
p x p pxm mxm mxp p x p

In equation (1) E is the p x p population covariance matrix, A is a matrix of weights

relating the observed p variables to a set of m latent variables, 0 is the m x m co-

variance matrix for the latent variables, and T is a diagonal matrix of error variances

for the p observed variables. A set of covariance structural models is generated when

alternative restrictions are placed on the parameter matrices of the general model.

Wiley (1967) reviewed the work of Bock and Bergmann (1966), Scheffe (1956), Lawley

(1940, 1942), and Joreskog (1967) and delineated a sat of sixteen possible covariance

structure models based on the following restrictions on the parameter matrices of the

OC)
general model:

(a) Restrictions of the matrix of weights on the latent variables (A);

Csa) (1) A may be completely unspecified (all elements of A

to be estimated).

<::
(2) A may contain some specified elements and have othrr

elements which must be estimated (represented by At).
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(3) A may be completely specified, but scaled by some unknown but

estimable matrix of scaling weights (represented by re).

(4) A may be completely specified and unsealed (represented by A).

(b) Restrictions on the covariance matrix for the latent variables (t).

(1) The latent variables are assumed uncorrelated (orthogonal case)

and thus 0 is diagonal (0 = A2).

(2) The latent variables are assumed correlated (oblique case) and

thus is not restricted to a diagonal matrix (thus we merely

use 0 in this case).

(c) Restrictions on the matrix of error variances.

(1) The p error variances are assumed homogeneous (T = 1o2).

(2) The error variances are assumed heterogeneous (f general diagonal).

In the above restrictions those on A depend on the theoretical preconceptions of

the experimenter, the situation, and the form of the data. The general A matrix in

which all elements are estimated is typically employed in classical factor analysis

(see Harman, 1967) and in maximum likelihood factor analysis (see Lawley, 1940, 1942).

Including the restricted case of A (i.e., A*) provides a variant of these procedures.

In the case of A completely specified (A = A) the usual form of A is that of a repa-

ramaterited mixed model analysis of variance design matrix where some m-factor design

is employed and the p variables are the p treatment combinations of the m-factor

design. If there is a problem with varying metric across the p treatment combinations

the design matrix may be resealed (A = rA). The present paper involves models in

which the latter two restrictions on A are employed (A = A and A = rA). The Vootric-

tions kmployed on the Other two parameter matrices (4 and ')have to do with assump-

tions that are made about these parameter matrices rather than preconceptions of the
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experimenter. In addition we want to have the opportunity to test the validity of

these assumptions in empirical situations. The procedures presented in this paper

provide us this opportunity.

The class of covariance structure models described here is the 2 x 2 x 2 array

of eight models presented in Table 1.

Taio2

Restrictions
on T

qi

TABLE 1

THE CLASS OF COVARIANCE STRUCTURE MODELS

Restrictions on A

A

rA

A2

-11

Restrictions on 4
0 A2 4

E.AAA2A14402 E0A0A'+Io2 E=FAA2AT+Io2 En1AOA'r+Io2

bqiA2A/44 EmA0A'+T ErAA2A'r+T EftrA4Air+1,

Notice in Table 1 that the models range in degree of restriction from E AA2A' Io2

(most restricted) to E a rAtAir + T (least restricted).

The data for the set of eight covariance structure models is like that depicted

in Figure 1. It is obtained from the p repeated measures of an analysis of variance

design for each of n subjects. If we assume that the observation vectors (yi) are

randomly drawn from a multivariate normal population with mean vector (p) and popula-

tion covariance matrix , we can apply maxim= likelihood procedures in estimating the
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Figure 1. Data for a repeated measures analysis of variance design.

elements of the parameter matrices of the structural model for E. The log likelihood

is given as

(2) Log L --1- log 211 - lool- tr S,

where S is the sample covariance matrix. The general expression for the first deriva-

tives of the likelihood functions with respect to a general element x is

(3) t. - 2 tr (4 1E-1 S E-1 - E-1))

Using this expression the first derivatives of the log likelihood function with respect

to each of the parameter matrices of the model have been obtained by Bramble, Schmidt,

and Wiley (1969, 1970).
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An efficient numerical method for solving the likelihood equations was found by

these authors in the quasi-Newton method originated by Davidon (1959) and modified by

Fletcher and Powell (1963). A FORTRAN IV program has been developed which implements

these procedures obtaining point estimates for the elements of the parameter matrices

of the structural model.

An estimate of the asymptotic variance - covariance matrix of the estimates is

provided from the negative of the ?reverse of the final estimate of the matrix of second

derivatives or its expected value. The computer program is written using the matrix

subroutine package of Bock and Peterson (1967) and is available from either of the

authors.

Testing the Fit of Covariance Structure Models

The computer program also provides a chi square approximation of the likelihood

ratio test of fit of a particular model

(4) x2 = -2 In A

-N In

*bete the degrees of freedom are equal to the difference in the number of parameters

estimated between the alternative and null models. Model testing can also be carried

out sequentially, that is, the relative fit of alternative models can be tested using

the likelihood ratio statistic

/2N
(5) X Iti+11

2N

In equation (5) the estimated covariance matrix for the less .restricted of the two Models

being considered is denoted by ii+1 and that for the more restricted model by ti. The

chi square approximation for this statistic is



(6) x2 tun Tti I .

ii+11

2

Thus the relative fit of any two models can be tested by the difference between the x2

approximations for the likelihood ratio tests of fit for the two models. Sequential

model testing of this type has been developed by Bramble (1970) and is useful in many

applications of covariance structure analysis including applications to measurement

problems.



APPLICATION OF THE COVARIANCE STRUCTURE MODELS TO

MEASUREMENT PROBLEMS

Using the procedures outlined in the foregoing sections we can develop measuring

instruments in which we know the relationships among traits and item characteristics

more precisely than has heretofore been possible. Using these procedures the item to

be included in the test must be written or selected in such a way as to very exactly

represent within the test the types of variance and covariance which are of signifi-

cant interest to merit study. Thus, we do not begin with a loose conglomerate of =-

selected items, but oue in which properties of interest are built into the test

systematically. This procedure in and of itself is an apparent improvement in test

development techniques, but the information made available from a covariance structure

analysis of an instrument designed in this way is of considerably more value.

Not only can we obtain an estimate of the relative amounts of variance in the

latent traits represented in a set of items, but we get an estimate of the covariance

between these latent traits (not merely between the observed traits) and have the

opportunity to test the hypothesis that the covariances between latent traits are

zero. We do this by testing the assumptions about the 0 matrix in the structural

model (i.e., by looking at whether this matrix should be oblique or orthogonal). The

relative sizes of the diagonal elements of 0 tell us the importance of (i.e., the

variance contributed by) each of the latent traits. Information about the latent traits

can guide us in the future development of the instrument. The form of I yields homogenei

information about the error variances.

Characteristics of a test which can be studied in this way include the number

and importance of the latent variables included in the teat and the relationship among
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these variables. We may also study characteristics of the items such as phrasing,

direction of wording, etc. and we can look at the relation of these characteristics,

treated as latent variables, tc the clubstantive traits which are represented.

To give a simple example of an application of the procedures to a measur_ment

problem consider the case of constructing a test battery to measure two types of latent

ability (e.g., computational ability and logical reasoning). A test constructor may

be aware of several methods which have been tried out to measure each type of ability.

Let us say that two measures of computational ability (C1 and C2) and two of logical

reasoning (111 and R2) seem particularly appropriate for a given application. Thus a

teat might be designed which contained four subtests of homogeneous items which measure

each of the four traits (C1, C2, R1, and R2).

The matrix of weights (A) for the structural model is

(7) A

C R

Alternatively, the matrix A could have taken the form of a reparameterized analysis of

variance design matrix. An A matrix of this type would include a column for the grand

mean and a column for the contrasts of the fixed effect part of the analysis of vari-

ance design. If we administered the items to a group of subjects and computed the

sample covariance matrix we could then obtain maximum likelihood estimates for the

elenents of particular structural models. We could test the assumption that the latent

variables (C and R) are uncorrelated by testing the assumption that a model with
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orthogonal fits the data. We could test the assumption that the subtests have equal

variances by testing the assumption that W is homogeneous.

Consider, for ease of explanation, the case where only the restriction , on A is

employed (i.e., four models are run) and where the most general model fits and more

restricted models do not. The parameters to be estimated are those in

7.
1 0

(8) E = 0 1to 1
ger or 2 L

r 1 0 0 1

0 0

a

0

el 2

ge2

cr,2:
0

°2
0

e3

0 ---- 0 ,2

The relative amount of variance for the latent variables can be assessed by looking at

the diagonal elements of 0. The degree of relationship between the two latent variables

is assessed by looking at the off-diagonal element
0CxR

in 0. The error components can

be compared by looking at the diagonal elements of T.

To expand the problem somewhat, the investigator might also be interested in some

item characteristics, e.g., direction of wording D and strength of the item S, and their

relationship to the latent variables. Strength refers in this case to the level at

which a positive response to an item manifests a particular resronse (e.g., agreeing

with very positively phrased items may represent a stronger response than agreeing

with a more mildly stated form of the same item). A 22 factorial design for the

characteristics of the items crossed with the original design yields
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R

+1

+1

+1

+1

+1

+1

-1

-1

+1

-1

+1

-1

+1

+1

+1

+1

C2n. +1 +1 +1 +1

C212 +1 +I +1 -1

C221 +1 +1 -1 +1

C222 +1 +1 -1 -1

R111 +1 -1 +1 +1

8112 +1 -1 +1 -1

8121 +1 -1 -1 +1

R122 +1 -1 -1 -1

R211 +1 -1 +1 +1

8212 +1 -1 +1 -1

8221 +1 -1 -1 +1

R222 +1 -1 -1 -1

Analyzing the model containing the above A matrix, a 4 x4 0 matrix and a 16 x 16

' matrix we can investigate the structure of the latent traits having to do with ability,

those having to do with item characteristics, as well as the interrelationships between

the two types of traits. In this way more precise measuring instruments can be developed.

One question we can answer has to do with the positively and negatively phrased items.

Does the reflection of an item mean that we merely reflect the scoring of an item or

alternative forms of response be weighted differently? Looking at the covariance

10



between the C vs R contrast and D sheds light on this issue. Similar questions

can be asked about item st<angth and investigated in an analogous manner.

11
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NUMERICAL EXAMPLE

An investigation of content acquiescence in the MMPI has been reported by Bock,

Dicken, and Van Pelt (1969). These authors studied response acquiescence in two scales

(Pt and Hy) most representative of the two orthogonal factors which repeatedly occur

in factor analyses of the MMPI. The 108 non-overlapping items of the Pt and Hy scales

were administered to a group of 81 undergraduates from San Diego State College in

both their original and reversed forms. Item reversals were taken from the reversal

of the complete MMPI by Dicken and Van Pelt (1967). The 216 item test was administered

twice to the students, a week '-ipart, and the results analyzed separatelybyMNPI scale.

Thus S and E are 4 x 4 covariance matrices.

and

For the two directions of'wording within an MMPI scale the response models are

(10) xit = px + yi + aft + dit + cit,

(11) yit = py + yi v*. ait + (Sit + ;it,

where and py are the fixed means for the scales, yi As the content component for

subject i, ai is the acquiescence component for subject i, 61t is the component on

occasion t due to trait instability for subject i, and eft and ;it are the components

within - form response error for the two scales. This is a typical mixed model anova

and the usual restrictions on y, a, and 6 apply. The A matrix is

(12) A

1/2 1/2 1/2

1/2 1/2 -1/2

1/2 -1/2 1/2

1/2 -1/2 -1/2

12



and 4 is given as

(13)

O
02

symmetric

a2
Ya a

0.0 ca4- a2
6

The sample covariance matrices reported by Bock, Dicken, and Van Pelt for the two

scales are given in tables 2 and 3.

TABLE 2

Pt Sample

Form . Administration

Covariance Matrix

Original Reversed

1 3 4

Original 34.819

symmetric
2 30.319 34.997

Reversed 1 28.178 24.844 29.376

2 25.519 27.612 22.323 26.780

TABLE 3

By Sample

Form Administration

Covariance Matrix

Original

1 2

Original 1 12.3698

2 7.6503 14.0059

Reversed 1 8.3625 8.1625

2 5.6961 11.5017

Reversed

I 3 4

symmetric

12.7000
13

8.6750 14.8725
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A covariance structure analysis was performed on the two covariance matrices given

in tables 2 and 3 using the four covariance structure models that contain an unsealed A

matrix, The chi square tests of fit for the individual models are reported in table 4.

0 Orthogonal

0 Oblique

TABLE 4

Chi Square Tests of Pit for the Pt and Hy Data

021 C general

Pt' d.f.gm 6 p<.025 12.70 d.f. -3 p<.01

Hy 9.35 d.f. 26 p<.20 6.04 p<.15

Pt 2.64 d.f. -3 p<.55 .72

By 3.77 3 p<.35 .07

In table 4 it is seen that the moat restricted model fits for Hy, but not for Pt. The

model containing f oblique and T 102 fits for Pt and the difference chi square con-

trasting this model with the most restricted model is 11.99 (d.f. -3). The latter value

is significant beyond the .01 level. Thus, the oblique case of is necessary for the

Pt data, but not for the By data.

The estimates for the elements of the parameter matrices are given in table 5.

The estimates given for Pt and }y are those obtained by using the appropriate model for

each.

14
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TABLES

Parameter Estimates for the Pt and Hy Data

Paramtter
Raw Estimates*

Pt

S.E. Full
Parameter

Estimate
Pt . Ey Pt 2tE

1
10.42 6.02 .72 .50 411 108.56 36.20

t21
.72 0.00 .21 -- 421 7.52 0.00

t22 1.40 6.02 .25 .26
4
22 2.48 2.47

t31 .08 0.00 .26 .., #
31 .86 0.00

t32 -.78 0.00 .42 --
#
32 -1.03 0.00

t33 2.19 4.90 .28 .27 433 5.43 6.00

0e 1.54 1.52 .11 .12 02 e 2.36 2.32

4 The raw estimates include the.elements of the Cholesky factorization of (which

are represented by tij) and the square root of the error variance.

From the full parameter estimates we can see that the content variance for both teats

was quite large (108.56 for Pt and 36.20 fot Hy) relative to the acquiescence variance

(2.48 for Pt and 2.47 for Hy) and variance due to trait instability (5.43 for Pt and

6.00 for Hy). The error variances for the two tests were relatively consistent (2.36

for Pt and 2.32 for Hy). The interesting off-diagonal term is is 021 in Pt (7.52).

In this case even though the variance due to acquiescence is relatively small the con-

tent by acquiescence covariance is rather large.

15



-16-

REFERENCES

Bock, R. D. and Bergmann, R. E- (1966). Analysis of covariance structures.
Psychometrika 31, 507-534.

Book, R. D., Dicken, C., and Van Pelt, J. (1969). Methodological implications of
content-acquiescence correlation in the MMPI. Psychological Bulletin 71,
127-139.

Bock, R. D. and Peterson, A. (1967). Matrix operations subroutines for statistical
computation (Fortran IV subroutinee for IBM 7694). Chicago: Statistical
Laboratory, Dept. Educ.

Bramble, W. J., Schmidt, W. H., and Wiley, D.E. (1969). A class of covariance struc-
ture models. Paper presented at the annual meeting of the American Educational
Research Association, February.

Bramble, W. J., Schmidt, W. H., and Wiley, D. E. (1970). A class of covariance struc-
ture models. To be submitted for publication in Psychometrika.

Bramble, W. J. (1970). Sequential testing of a iels for the analysis of covariance
structures. Dissertation -- University of Chicago.

Davidon, W. C. (1959). Variable metric method for minimization. A. E. C. Research
and Development Report, ANL-5990.

Dicken, C. and Van Pelt, J. (1967). Further evidence concerning acquiescence and
the MM. Psychological Reports 20, 935-941.

Fletcher, R. and Powell, M. J. D. (1963). A rapidly coverging descent method for
minimization. Computer Journal 2, 163-168.

Harman, H. H. (1967). Modern Factor Analysis. Chicago: University of Chicago Press.

JOVeshog, K. G. (1967). Some contributions to maximum likelihood factor analysis.
Psychometrika 32, 443-482.

Lawley, D. N. (1940). The estimation of factor loadings by the method of maximum
likelihood. Proc. B. Soc. Edinb. A 59, 176-155.

Lewley, D. N. (1942). Further investigations in factor estimation. 10r111oc.
WO. A j1, 176-185.

Schefff, H. (1956). Alternative models for the analysis of variance. lino. Math.
Statist. 27, 251-271.

Wiley, D. E. (1967). Analysis of covariance structures. N.S.F. Research Grant
Application.

16


