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ABSTRACT

The research on covariance structure analysis is
reviewad, and various restrictions on the parameter matrices of the
aeneral model are delineated. Models employing two particular
restrictions (where the matrix of weights is completelv specified and
is either scalcd--by some unknown hut estimable matrix of scalirg
weights~-~o_ unscaled) are discussed ir particular, and their
application to test development techniques is considered. It is
suggested that more precise measuring instruments can be developed
through these procedures by studying the characteristics of the test
and the test items, the latent variables, and the ensuing
relationships. An examole is provided. ? computer vrogram for solvinag
likelihool equations an? for testing fit is available. (GS)
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Covarjiance Structure Models

Covarilance structure analysis is a generic construct describing a variety of
statistical procedures for determining sources of latent variation and covariation
among a set of variables. The basic data for covariance structure analysis are p-
variate response vectorr for each of N subjects. The generic structural nodel for
the population covariance matrix in this type of analysis is

(1 L = A ¢ A+ Y
PXP PXmM mMX®m MmXP pXPp

In equation (1) I is the p x p population covariance matrix, A is a matrix of weights
relating the observed p variables to a set of m latent variables, ¢ is the m x m co-
variance matrix for the latent variables, and ¥ is a diagonal matrix of errof variances
for the p observed variables. A set of covariance structural models is generated when

alternative restrictions are placed on the parameter matrices of the general model.

Wiley (1967) reviewed the work of Bock and Bargmann (1966), Scheffe (1956), Lawley
(1940, 1942), and Joreskog (1967) and delineated a sst of sixteen §ossib1e covariance
structure models based on the following restricticns on the parameter matrices of the
general 1nodel:

(a) Restrictions of the matrix of weights on the latent variables (A);

(1) A may be completely unspecified (all elements of A
to be estimated).
(2) A rmay contain some specified elements and have othrr

elements which must be estimated (represented by A¥),
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(3) A may be completely specified, but scaled by some unknown but
estimable matrix of scaling weights (represented by TA).

(4) A may be completely specified and unscaled (represented by A).

(b) Restrictions on the covariance matrix for the latent variables (¢).

(1) The latent variables are assumed uncorrelated (orthogonsl case)
and thus & is diagonal (¢ = 42).

(2) The latent variables are assumed correlated (oblique case) and
thus ¢ is not restricted to a diagonal matrix (thus we merely
use ¢ in this case).

tc) Restrictions on the matrix of error variances.

(1) The p error variances are assumed homogeneous (¥ = 10?).

(2) The error variances are assumed heterogeneous (¥ general diagonal).

In the above restrictions those on A depend on the theoretical preconceptions of
the experimenter, the situation, and the form of the data. The general A matrix in
which all elements are estimated is typically employed in classical factor analysis
(see Harman, 1967) and in maximum likelihood factor analysis (see Lawley, 1940, 1942).
Including the reastricted case of A (i.e., A*) provides a variant of thesge frocedurea.

"In the case of A completely specified (A = A) the usual form of A is that of a repa-
ramaterized mixed model analysis of variance design matrix where some m-factor design
is employed and the p variables are the p treatment combinations of the m-factor
deQign. If there ig a problem with varying metvic across the p treatment combinations
the design matrix may be rescaled (A = TA). The present paper involves models in
which the latter two resttictions on A are employed (A = A and A = TI'A)., The feetric-
tions émployed on the other two paremeter matrices {4 aand Y)have to do with assump-
tions that are made about these parameter matrices rather than preconceptions of the’

ERIC

IToxt Provided by ERI



-3

experimenter. In addition we-want to have the opportunity to test the validity of
these assumptions in empirical situations. The procedures presented in this paper

provide us this opportunity.

The class of covariance structure models described here is the 2 x 2 x 2 array

of eight models presented in Table 1,

TABLE 1

THE CLASS OF COVARIANCE STRUCTURE MODELS

Restrictions on A

A TA
Restrictions on ¢
A? & A2 ®
Yat0?2 IAAZA 4142 E=AdA'+10? I=TAAATHE0?| I=lAA'T+Io%
Restrictions
on ¥
¥ I=AAZA Y I=AGA'+Y E=TAAZA'T+Y| EwTA®A'T+Y

Notice in Table 1 that the models range in degree of restriction from I = AA2A' + lo?

(moat restricted) to £ = TA®A'T + ¥ (least restricted).

The data for the set of eight covariance structure models is like that depicted
in Figure 1, It is obtained frbm the p repeated measures of an analysis of variance
design for each of n subjects. If we assume that the observation vectors (yj) are
randomly drawn from a multivariate normal population with mean vector (E) and popula-
tion covariance matrix §, we can apply maximum likelihood procedures in estimating the

Q
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1 2 3 . v e i . . p
1 - . ' . . . .

y11 ?12 y13 ylj Y113
2 : . e e . . .

y21 yzz yza yzj yzp
3 : . e e . . .

yax yaz y33 ysj ysv
i . e .

Y10 Y42 Yy Y44 Y1p
n Tmg Yoy Yag 0 0 Yny Yop

~Figure 1. Data for a repeated measures analysis of variance design.

elements of the parameter matrices of the structural model for £, The log likelihood
is given as ‘ _

() Log L= ¥ 10g2m-§1ogle]-§ersrs,
vhere S is the sample covariance matrix. The general expression for the first deriva-

tives of the likelihood functions with respect to & general element X {ig

» $-d ec@Eurse -
Using this expression the first derivatives of the log likelihood function with respect
to each of the parameter matrices of the model have beén obtained by Bramble, Schamidt,
and Wiley (1969, 1970).
Q
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An etficien£ numerical method for solving the likelihood equations was found by
these authors in the quasi-Newcon method originatea by Davidon (1959) and modified by
Fletcher and Powell (1963). A FORTRAN 1V program has been developed which implements
these procedures obtaining point estimates for the elements of the parameter matrices
of the structural model.

An estimate of ‘the asymptotic variance = covariance ﬁatrix of the estimates is
rrovided from the negative of the inverse of the final estimate of the matrix of second
derivatives or its expected value. The computer program is written using the matrix
subroutine package of Bock and Feterson (1967) and is available from elther of the

authors.

Testing the Fit of Covariance Structure Models

The computer program also provides a chi square approximation of the likelihood
ratio test of fit of a particular model

(4) %2 = -2 1n

e -N 1In +§+
S

vhete the degrees of freedom are equal to the difference in the number of parameters
estimated between the alternative and null models. Model testing can also be carried
out sequentially, that s, the relative fit of alternative models can be tested using
. the likelihood ratio statistic
(5) A = |£m|”2“."
e 7N
In equation (5) the estimated covariance matrix for the less réstricted of the two todels
being considered is denoted by §1+1 and that for the more restricted model by £4. The
chi sq:zare approximation for this statistic is
¢
ERIC o
S 5



-6

() x2 = Mo 18 | = 25~ ¥y,
1141
Thus the relative fit of any two models can be tested by the difference between the x2
approximations for the likelihood ratio tests of fif for the two models. Sequential
model testing of this type has been developed by Bramble (1970) and is useful in many
applications of covariance structure analysis including applications to measurement

problems.
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APPLICATION OF THE COVARIANCE STRUCTURE MIDEL3 TO

MEASUREMENT PROBLEMS

Using the procedures outlined in the foregoing sectfons we can develop measuring
instruments in which we know the :elatfonships among traits and item characteristics
moxe prgcisely than has heretofore been possible. Using these pronedures the item to
be inclu&ed in the test must be written or selected in such a waj a8 to very exactly
represent within the test the types of vartance and covarfance which are of signifi-
cant interest to merit study. Thus, we do not begin with a loose conglomerate of un~
selectéd itemg, but oue in which properties of interest are built into the test
systematically. This procedure in and of itself is an apparent improvement in test
development techniques, but the information made avatlable from a covariance structure

analysis of an instrument designed in this way  is of considerably more value.

Not only can we thain an estimate of the relative amounts of variance in the
latent traits represented in a set of items, but we get an estimate of the covarisnce
between these latent tratts (not merely between the observed traits) and have the
opportunity to test the hypothesis that the covarfances between latent traits are
zero. We do this by testing the assumptions about the ¢ matrix in the structural
model (i.e., by looking at whether this matrix should be oblique or orthogonal). The
relative sizes of the diagonal elements of ¢ tell us the importance of (i.e., the
variance contributed by) each of the latent traits. Information about the latent traits

can guide us in the future develnpment of the instrument. The form of ¥ yields homogenei

information about the error variances.

! Characteristics of a test which can be studied f{n this way fnclude the nuaber

" importance of the latent variables included i{n the test and the relationship among
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these variables. We may also study characteristics of the ftems such as phrasing,
direction of wording, etc. and we can look at the relation of these characteristics,

treated as latent variables, tc the substantive traits which are represented.

To give a simple example of an apélication of the procedures to & measur:ment
problem consider the case of constructing a test battery to measure two types of latent
ability (e.g., computational ability and logiral reasoning). A test constructor may
be aware of several methods which have been tried out to measure each type of ability.
Let us say that two measures of computational abllity (C; and Cz) and two of logical
reasoning (R} and Ry) seem particularly appropriate for a given application. Thus a
teat might be designed which contained four subtests of homogeneous items which measure

each of the four traits (Cy, Cy, Ry, and Rp).

The matrix of weights (A) for the structural model {is

c R
- '
1 0
N A= 0 1
0 1

Alternatively, the matrix A could have taken the form of a reparameterized analysis of
variance degign matrix. An A matrix of this type would include a column for the grand
mean and 8 column for the contrasts of the fixed effect part of the analysis of vari-
ance deaign. If we administered the items to a group of subjects and computed the |
sample covariance matrix ve could then obtain maximum likelihood eatimates for the
elements of particular structural models. We could test the assumption that the latent
varisbles (C and R} are uncorrelated by testing the assumption that a model with ¢
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orthogonal fits the data. We could test the assumption that the subtests have equal

varianceg by testing the assumption that ¥ is homogeneous.

Consider, for ease of explanation, the case where only the restriction . on A is
employed (i.e., four models are run) and where the most general model fits and more

restricted models do not. The parameters to be estimated are those in

' 10 g2 — 0 == D0
1 0 - 0 0 &1 42, |
8) I = 01 o2 1 1] * Jo
01 °r o2 0
~ el
—_— 2
0 0 Geb

The relative amount of variance for the latent variables cun be assessed by looking at
the diagonal elements of ¢, The degree of relationship between the two latent variables
is assessed by looking at the off-diagonal element %cxr in ¢. The error components can

be compared by looking at the diagonal elements of V¥,

To expand the problem somewhat, the investigator might also be interested in some
item characteristics, e.g., direction of wording D and strength of the item S, and their
relationship to the latent variables. Strength refers in this case to the level at
which a positive response to an item manifests a particular resronse (e.g., agreeing
with very positively phrased items may represent a stronger response than agreeing

2

with a more mildly stated form of the same item). A 2° factorial design for the

characteristics of the items crossed with the original design yields
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Analyzing the model containing the above A matrix, a 4 x4 ¢ matrix and a 16 x 16

¥ matrix we can investigate the structure of the latent traits having to do with ability,

those having to do with item characteristics, as well as the interrelationships between

the two types of traits.

In this way more precise measuring instruments can be developed.

One question we can answer has to do with the positively and negatively phrased items.

Does‘the reflection of an item mean that we merely reflect the scoring of an item or

alternative forms of response be weighted differently? Looking at the covariance

ERIC

IToxt Provided by ERI

10



=11~

between the C vs R contrast and D sheds light on this issue. Similar questions

can be asked about item strength and investigated in an analogous manner.

Q
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NUMERICAL EXAMPLE

An investigation of content acquiescence in the MMPI has been reported by Bock,
Dicken, and Van Pelt (1969). These authors studied response acquiescence in two scales
(Pt and Hy) most representative of the two orthogonal factors which repeatedly occur
in factor analyses of the MMPI. The 108 non-overlapping items of the Pt and Hy scales
were administered to a group of 81 undergraduates from San Diego State College in
both their original and reversed forms. 1Item reversals were taken from the reversal
of the complete MMPI by Dicken and Van Pelt (1967). The 216 item test was administered
twice to the students, a week upart, and the results analyzed separatelybyMMPI scale.

Thus S and I are 4 x 4 covariance matrices.
For the two directions of wording within an MMPI scale the response models are

(10) xit = ux + Yi + “:lt + 61t + E{t»
and |

11) y, = Mgt oYL T oage F o 8pr + Ly

where Yy and "y are the fixed means for the scales, Yy s the content component for
subject 1, ag is the acquiescence component for subject 1, 64¢ 1s the component on
occasion t due to trait instability for subject 1, and ey gnd Gy are the components
within -~ form response error for the two scales. This is a t&pical mixed model anova

and the usual restrictions on v, @, and & apply. The A matrix is

1/2 1/2 1/2 |
_ 1/2 1/2 -1/2
(12) A= :
1/2 -1/2 1/2
1/2 -1/2 -1/2__| ,
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and ¢ 1% given as

(13)

r— ——
02
Y symmetric
» = Oya o}
Oy L og
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The sample covariance matrices reported by Bock, Dicken, and Van Pelt for the two

scales are given in tables 2 and 3.

TABLE 2
Pt Sample Covariance Matrix
Form . Adninistration Original Reversed
1 2 3 4
Original 1 34.819
symmetric
2 30.519 34,997
Reversed 1 28.178 24,844 29.376
2 25.519 27.612 22,323 26.780
TABLE 3
Hy Sample Covariance Matrix
Form Administration Original Reversed
1 2 3 4
Original 1 12.3698
symmetric
2 7.6503 14,0059
O
MC‘:ed 1 © 8.3625 8.1625 12.7000 13
— 2 5.6961 11.5017 8.6750 14.8725
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A covariance structure analysis was performed on the two covariance matrices given
in tables 2 and 3 using the four covariance structure models that contain an uascaled A

matrix., The chi square tests of fit for the individual models are reported in tsble 4.

TABLE

————— T—

Chi Square Tests of Fit for the Pt and Hy Data

¥ = g21 ¥ jenersl

Pt 14.63 d.f.m 6 p<.025 12,70 d.f.=3 p<.01

Orthogonal
Hy 9.35 d.f.= 25 p<.20 6.04 d.f.=3 p<.15
Pt 2.64 d.f.=3 p<,55 .72 -— —

$ Oblique
o Hy 3.77 d.f.= 3 p<.35 .07 - ——

In table &4 it ig seen that the most restricted model fits for By, but not for Pt. The
model containing ¥ oblique and ¥ = Ig2 fits for Pt and the difference chi square con-

trasting this model with the most restricted model i{s 11.99 (d.f.=3). The latter value
is significant beyond the .01 level. Thus, the oblique case of ¢ is necessary for the

Pt data, but not for the Hy data.

Tre estimates for the elements of the parameter matrices are given in table 5.

The estimates given for Pt and Ey are those obtained by using the appropriate model for

each.

14



-15-

TABLE 3
Parameter Estimates for the Pt ahd Hy Data

Raw Estimates* S.E, Full Egtimate

Paramgter Pt Hy Pt . Hy  Parameter Pr Hy
£ 10,62 6.02 .72 .50 JTe 108.56  36.20
ty, 72 0.00 .21 - 2 7.52 0.00
tay 1.40  6.02 .25 .26 422 2.48 2.47
€31 .08 0.00 .26 - 1 .86 - 0.00
tay -78  0.00 .42 - 2 . .03 0.00
tas 219 4.90 .28 .27 TR 5.4 6.00
o, 1.54 1.52 11 12 02, 2.36 2.32

# The vav estimates include the elements of the Choicaky factorization of ¢ (which
are repreaented by tij) and the square root of the error variance.

from the full parsmeter estimates we can see that the content variance for both tests
was quite large (108.56 for Pt and 36.20 for Hy) relative to the acquiescence variance
{2.48 foxr Pt and 2.47 for Hy) and variance due to trait instability (5.43 for P.t and
6.00 for Hy). The error variances for the two tests were relatively cons:ls‘tent (2.36
for Pt and 2,32 for Hy). The interesting off-diagonal term ia ¢ 1s ¢, in Pt (7.52).
In this cass even thoﬁgh ths variance due to acquiescence is relatively small thé con~-

tent by acquiescence covarignce is rather large.
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