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Chapter 1
INTRODUCTION TO MATRICES

l.1 What is a Matrix?

Some things have an amazing number of uses, The wheel, for
instance, reduces the force needed to move an ancient man's cart
cr a modern man's automobile; it is used as a steering wheel, in
the gear system of a machine, in a roulette wheel, and so on. In
mathematics, matrices also have many uses. First recognized and
used 100 years ago by a British mathematician, Arthur Cayley (1821-
1895), today they are useful to physicists, biologists, econo-
mists, agronomists, soclologists, psychologists, and many others.
Our complex society requires many numerical records, For
instance, a manufacturing concern has three plants each
meking electronic equipment. The equipment requires 4 distinet
parts called A, B, C, and D, Factory I uses 30 A-parts, 43
B-parts, 37 C-parts, and 16 D-parts daily; Factory II uses
25 A-parts, 15 B-parts, 30 C-parts and 12 D-parts daily; Factory III
uses 61 A-parts, 50 B-parts, 55 C-parts and 30 D-parts daily.
It is difficult to remember these date or compare them whan
presented in this manner, However, if we write them in a

rectangular table, we obtaln a compact summary of all the data.,




Factory
I II ITI
A 30 25 61 FEO 25 £
Part 3 3 15 50 43 15 50
c 37 20 55 37 30 55
D [ 16 12 30 | 16 12 30 |
Figure 1.1

If we separate the rectangular table from the headings and
place it in brackets we obtain a matrix.

Definition; A matrix is a rectangular table of numbers

arranged in rows (horizontal alignments) and
columns (vertical alignments),

The matrix in Figure 1,1 has 4 rows and 3 columns. We say
it has dimension 4 x 3, read "four by three." The number of
rows is always given first in stating the dimension. The
first row is the top row; the first column is at the left,
The names of the factories and of the parts, given at the )
left in Figure 1.1, are not a part of the matrix; they merely
describe the numbers which make up the matrix,

For a second example of a matrix, let us consider the
problem of a traffic manéger for a company with factories in
Bridgéport, Conn,, Newport, R.I., Salem, Mass,, and Brattleboro,
Vt. He must khow the‘distance between any pair of factories;

A chart provides him with easy access to the data (see Figure 1.2).
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Bridge- Newport Salem Brattle-

port boro
| o 70171 15 [To 71 171 115
Newport | T1 0 85 135 | 71 0 85 135
Salem 171 85 0 104 171 85 0 104
pratiled 115 135 104 o |15 135 104 o
Figure 1.2

As you see, the matrix of this chart has dimension 4 x 4,
The number in the first row, first column is O. There is also a
0 in the second row, second column; also in the third rew, third
column; also in the fourth row, fourth column, This last
statement cen be abbreviated if we say: The number in the
ith row, ith column is O for i = 1,2,3,4, Another interesting
feature of this matrix is the fact that the number in the
first row, second column and the number in the second row,
first column is the same number (71). We can abbreviate this
statement too, 1f we let a,, represent the number in the first
row, second column, and a,, represent the number in the second
row, first column, by saying a,, = a,,. Using simllar repre-
sentation we note: &,s = 83y, 8y, = 8,45 835 = 8335 844 = 8,35
834 = 8,5, In fact we can dbbreviate all these statements
s8t1ll further hy writing 844 = 0 for 1 = 1,2,3;4'and aiJ = aji
for 1,§ = 1,2,3,4,

For a third example of a matrix you are reminded of a
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table, used in Course I (see Figure 1.3), for the operational
system (2,,°). (It is called a "Cayley Table," named after

Arthur Cayley who first used the name "matrix.")

o 1 2 3
ol ¢ o o o o o o O]
1l o 1 2 3 o 1 2 3
2 0 2 0 2 (o} 2 0 2
3] o 3 2 1 o 3 2 1}

Figure 1.3

Like the preceding matrix this 1s a square matrix having

the same number of rows as columns. We say it has order 4,

1l,2 TF©xercilises

1. The Department of lLabor reported the following table
to show, 1in percents, the educational level of workers

in various occupations, for 1966.

None Elen. H.8. College Graduate

Professional and technical| © 1.4 21.5 b9.o 28.0
Fermers and farm menagers 1.1 52.6 39.9 6.0 .3
Menagers, except farms .2 12,6 ho.8 32.8 b.7
Clerical _ .l 5.5 73.3 20.4 .8
Sales , .2 11.4 61.6 25.3 1.4
Craftsmen and foremen .2 26,5 64,4 8.6 . .3
Opérativ_es ‘ .8 32.7 61.6 4.6 .2
Service | .8 35 578 1.7 .2
. Farm laborers and foremen | 5.1  50.9 39.3 4.7 )
Laborers, except farm
Q. and mine 1.9 4.0  49.7 k2 .2

9




2.

(a)
(v)
(e)
(a)
(e)
(£)
(g)

(a)

s
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What are the dimensions of the matrix of this table?
What 1s ag¢? 8447

Whet is the set [a.:‘_'j ¢ 1 =3, ;'g,s}? Compare
this with the set {a,y : 1 { 5J.

What is the greatest entry in the first row?

What deces 1t signify?

What is the greatest entry in the first column?
What does it signify?

What are the greatest and least numbers in the
fifth row? What do they signify?

What are the greatest and least numbers in the
fifth column? “What do they signify?

Obtain an example of a matrix tnat appears in a
newspaper or another similar source, What are

the dimensions of the matrix? }

Does the stock market report tnat appears daily in

: & newspaper contain a matrix? ‘Support your answer,

3. Study the table below, which Iists the continents {except

. Tﬁe [ne‘ga'.t:‘lj.'y

Antarctica)
Area in 4" Hignest - ghast t.np Lowest temp
‘ aq. mi. po:lnt in ft, point in ft* :l.n degrees Flin degrees F
asta 16,000,000 29,028 . -1,206 127.1 ~89.9
Atrica  |i1,500, ooofnf19,3uoff;«°"t};-ass.ﬁnlJﬁf 136.0 -1
N. Amnrica; 8,&40,000 j20,320?%; ’ '?}19228-_ntujf iSh.O - -81.0 t “
- 'S. America 6;800'0O0Lg+22;83h1-{;f_' A3 1200 278
meme o0 wam e o o
nMWMf?%, | ”“Mﬂﬁfﬁnm5 *%¢‘



-6 -

(a) What are the dimensions of the matrix of this table?
(b) Let 8y 4 be the number in the ith row, Jth column. Find

812, 831, S48

(c) List the set of numbers {aij :1=2, J< 5}

(d) List the set of numbers {a;4 3 1< 5}

(e) List the set of numbers {a.ij : i=j3+1, jg5}

(f) List the set of numbers [aiJ $t J=1+1 for all
possible values of i}

(g) List the set of numbers [aij : 1=23, 3<3)

1.3 Using Matrices to Describe Complex Situations

This is an important use for matrices as our examples will
show, For our first example we take what 1s called a pay-off ma=-
trix, used in Game Thebry. Suppose Joe and Pete play a game in
which each tosses a coin. They agree on the following rules: if
both coins fall heads, Joe pays Pete 3 cents; if both fall tails,
Joe pays Pete 4 cents;eif‘Pete{s_coinrfalls heads and Joe's coin
falle“teils, Pete paye Joe 2 cents; fiﬁally if Pete's coin falls
' tails and Joe's coin falls heads “then’ Pete pays Joe 5 cents.
Indeed fcr some, these rules may be bewildering._ How much

clearer they become when organized as a matrix (see rigure 1 4)

Joe ,
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The numbers in this matrix tell how much Pete receives. If the
number is positive he gains; if negative he "receives" a negative
amount, which of course means he loses and forfeits an amount
to Joe.

For our second example consider four cities, A, B, C, and D

that are connected, if at all, by two-way bus routes, as shown in
Figure 1.5,

‘ Figure 1.5 _ .
As you see there ere three bus routes out of A, one of them to
B, one to D, end one to c. Out of B there are three routes,
two of them to D, the othef to A A complete description of .
‘this network or routes may overwhelm some reeders. How much

cleerer to put the description 1n matrix form (aee Figure 1.6).

O Q wWw >
N o o  od
:iﬁsftob » F;Jt

‘v o o w




In this matrix we write a "1" for &g to show one bus route between
A and B; we write a "2" in e.e to show two bus routes between D
and B, and so on. For all i, &gy = 0 to show no bus routes
between a toﬁn end itself. Note that aij = aJi for all 1 and J.
Why is this so?
| our third example shows how to use matrices to describe
a pair of linear equations in two variables, Suppose the pair of
equations is: |
3x+2y = 8
bx - y = -2
If we detach the coefficients from x and y, leaving each
in its position we get a coefficient matrix, neamely |3 2].
y -1
The brackets sbout the coefficients are there to denote a matrix.
This matrix, you see, is written without an explanatory column
or row. These are omitted on the agreement that the first row
displays the coefficients of ths first equation and the second
row displays those of the second equation, while the first column
| displays the coefficients of x and the second those of y.
= If e write a third column giving the constants that appear
at the right of the equal sign, then we obtein a 2x3 matrix (see
'.Figurel'T) R |
| 3 2 8

. Figure 1.7

S SR




1.4  Exercises

1. Three people; A,B, and C play & geme, By the rules, if A"
beats B, A gets 40 cents from B; if A beats C, A gets 30
cents from C; if B beats A, B gets 35 cents from A; if B

beats C, B gets 25 cents from C; if C beats A, C gets 38
cents from A; if C beats B, C gets 32 cents from B. Display

these pay-offs es & matrix in which the winner is read at
the left of each row, and the loser at the top of each
column. For &,, write 0. 1Is 844 = 84y for any values of
. ior j?

2, A and B play a game in which each rolls a single die

(having six faces showing numerals 1,2,3,%,5,6). If
~ the sum of the numbers sppearing on the top faces is even

B pays A that number of dollars., If the sum 1s odd, then
A pays thet number of dollars to B. Uéing positive
and negative numbers disuiey these pay-offs ina6x6
matrix. (See the first example in Section 1.3 for a
suggestion.) | | :

3. The diagrems below represent two way bus routes connecting

towns A, B, c, a.nd D Describe, ina 4 o matrix, the .

number of routes between each pair of towns.




(c) (@) B

(o) ¢

k, F"or‘éact'l set of equ&ti‘uons listed below write a |
. matrix of coefficients and constants.

-(ra.); 3x+5y=8 - (d) X+y+z=3"
f[%f?t?d" _,' xty=2
.(b)..:,ax.* 2y-z=3 T y+za= 1-
,_ﬂjé#1Wfﬁf5*_(ﬂ°%-v=5 :

(o) ex+3y =4 (f) 2x - uy +z =8 |

| ",17‘5}‘- _gerations on Matrices

Aliee :|.s ~13-' :ears old and Dan:l.el 13 10.__ One m:lght ask:
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So too with matrices and operations on matrices.
In this section we see, using an example, how three operat.'ons
involving matrices are designed to give informetion beyond that
given by each matrix., This example is about a man who contracts
to build two models of homes that we call A and B, He operates

in three towns, Huntington, Smithtown, end Merrick. Matrix P,
shown in Figure 1.8,tells how many homes of each model he

built in each town in 1966. Matrix Q tells the same story
for 1967.

1966 - 1967
A B A B
Huntington 8 3 I 6 3
Smithtown 4 5 f | 2 7
Merrick 3 3 |43
| »Matrix‘? \i” .  _  Matrix Q
Figure 1 8

One'mightvask. How many of each model hame, in each town, did
he build in both years" Tb find the answer it is naturel to add
' 'the entries in P and Q that occupy corresponding places, and to
write the answer in the same space of o third matrix which ve ' '

'”»vcall R in Figure 1 9

R
16 12

:_;_8 + 6 3 + 3.
o N‘,_rgzu’+ 2 5 + 7:'
i 3+ l& 3 + 3
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Addition of Matrices ' ‘
It is important to note that P, Q, and R have the same dimen- |
sions, namely 3 x 2. - Matrices can be added only'when they
have the same number of rows and the same number of columns, f

that is the same dimensions.
A second question might be asked. How many of each model

should the man build in 1968, in each town, to double his 1966

p_roduction? It is natural, in enswering this question, to double

each number in P, And it is also natural to call this newly formed
matrix 2P. We illustrate with Figure 1.10.

8 3 16 6
ep=2(4 5| = |8 10 |
3 3 | 6 6 »
Figure 1.10

Multipliea‘tion of a Matrix by a Scalar
Note we hsve multiplied a- matrix- by another kind of ob.ject, the
.'resl number 2. 1In this. context we csll the resl number a s_cal_sz;,
- and. the operstion is cslled multiplyi% 8a mstrix by & scsla.r.
Continuing our example, suppose the model A home requires

6 doors and 8 windows, while the model B home. requires 5 doors

E ‘end 7 windows. ‘ This infomation can be eas:lly displs.yed 1n tsbu- :
"‘flar form (see F:I.gure 1. 11) We call the matrix of this table S.

 'Doors  Windows -
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A third question is: Hoﬁ many doors did the men use in

each town in 1967, end how many windows? To obtain the unswer

| 6 8
and S =1} :
5 7

A common sense way to find the answer is to calculate as follows:

we use:

¥ >

]
= NN O
w N Ww

For Huntington we need 6:6 doors for model A and 3:5 doors for
model B, making e total of 66 + 3.5 or 51 doors. For Smithtown
we need 2:6 for model A and T7-5 doors for model B, making a total
of 26 + T°5 or 47 doors. For Merrick we need 4:6 + 3°5 or a to-
tal of 39 doors.

A similar calculation finds the numbers of windows.

For Huntington we need 6:-8 + 3.7 or 69 windoﬁs. |

For Smithtown we need 2: ‘8 + 7:7 or 65 windows.

For Merrick we need 48 + 3 7 or 53 windows.

'Putting these results together in metrix rom; we get
. D W ' :

8 I 65 Ve "ele.ll_tnie-‘jna".trix 0.

'l‘heee ca.lcula.tions involve multiplications and a.dditione '-

BN on. sca.lars.':"*nut ’e;, rege.rd the entire ce.lculation as our ma.trix”

operetion, called multiplication on me.trices. The operation, S

1s‘"‘ ‘shovm in Figure 1 12
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6 3 . 3 6.6 + 3.5 68 + 37 lE 69
2 7 * [; é] = 2:6 + 75 2.8 + 7.7 = | 47 65
43 46 +3:5 4B+ 3.7 39 53
Q . S 2 P - T
Figure 1,12

This matrix multiplication is possible because the number of
columns in Q is the same as the number of rows in S, and the
product matrix T has as many rows as Q and as many columns as S.
Multiplying matrices may seen strange end complicated, With
experience it becomes familiar and easy. This will happen sooner
if you see a pattern in the operation. Study the three partial
multiplicatiors in Figure 1.13 and try to find that pattern.

R S T
63 T 6°6+3-5 :
| le -] N |
. . e 5 . » .
first row  first column  first row, first column entry

 fi#St nbw’.,17§é¢¢nd7c§iﬁﬁﬁ;f”ffirSt,rbwszsgéond'cQ}umpventty
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In general, to find the entry in the product matrix for
the ith row, jth column, multiply in pairs, the first number in

the ith row of the first matrix and the first number in the Jjth
column of the second matrix, do the same for the second numbers,

the third rumbers, end so on. Then add these products.

Cost

Door 8 C = 8
WVindow 10 10

Figure 1,14

Continuing our example, suppoée doors cost $8 each and
windows coét $10 eech. This informatibn can be displayed in a
2x1 matrix, shown in Figure 1. 14 end nemed C. We ask another
Question. What, in 1967, for each town, was the total cost of
| doors and uindows? It 19 8 happy fact that the three answers
are round by the matri: multiplication 111ustrated as Figure

oL 157' Cost

| 51{8*4'69f101
D fﬁ?éaﬂtw§5;;o“ : 1025
39848310 |

log8| H
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The essential features concerning dimeneions are:
(1) The number of columns of T is equal to the number
of rows of C.
(2) The dimensions of D are the number of rows of T and

the number of columns of C.

1,6 Exercises
1. A man builds 3 model homes A,B, and C, in two towns P and
" Q. His contruction progrem for two years'is given below

and the associated matrices are named D and E,

1967 | 1968
A B C A BC
P 3 21 P 2 1 2
e |80 2 @ |35 0
Metrix D ‘ _ Matrix E

This need for doors and windows for each model is given

by Matrix B,
‘ T DoOr “w:tndow
Ca e s
"'c"--fLs I B
Matrix F o

and the cost 1n dollars of doors and wﬁndows are given in Mstrix G.
Cost L ” ,
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(b) Using an operatiaﬁ on matrices, £ind the number of each

model home built in both years in each town.
(c) Cen one add D and F? Explain,

(d) Using an operation on matrices find how many doors
end how meny windows were used in each town in 1967.

(e) Cean one muitiply D and E? Explain, |

(£) Interpret‘the'meaning of E°F, of F:G.

(g) Interpret the meening of (E-F)-G aﬁd express it as a
single matrix. Do the same for E.(F-G)

(h) Find the matrix tﬁat displgys:the 1969 construction .
programffor each town 1f'the_1969 program is three
'times the 1967 program. o |

2. If possible, add. If not explain why not.

() -1 21:‘ + -1 2 o (b) }‘1 2 + -l .
) 3 4} ‘Q' 3 2| o ;é | 3]

L2 . ‘a

oo i BN B R 1 1
e ®} - J]O Of
IR ¢ o I CERRREEY I A IS o

3. 1r bbésibié mu1f;piy. If not possible explain why not.

,u_;  1 2W'v;-f 4 o2 %]

LU it L3 .6
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. 1 2] -
(e) |4 2].|3 & (£)
5 ﬁd
(g)
) 3 2 1 -3 -1 2 ) e b] 8 b
4 6 8/ Jo o 1| Dl af e o]

0 0 a b v v,h ' fO 1] (& b
(k) . : (1) .
e Lo 0 c a - L1 0 c d

b, 1f possibie”expréss‘e;éh of the following as a single
matrix, If not possible explein why not.

' : | 4
. (8 u[32] ®a| (e 0[20 _J
B S T ] A S 2 0 -
@ 2 f . .3[2 3] @ 3[1 o] . e[o
e B 41 ih ‘? 0 lo 1] | 1
| 2
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Do you think the product will be the same if matrices

are commuted? Try it and see.

L 3 5 3 -
6. Is the product[ ;l[ :I the same as the product
1l -1 2 ’

. ? Try it and see.
1 24 |1 2 .

7. Find ‘A if A is the matrix:
. o 1 .o ‘

@ | ’()[“’
* 1 4] T le 8] ¢ ¢ d
| o ' 1 0
8. Using the data in Exercise 7 find A- E) ;Ifor each A.

ot |

1.7 Matrices end Coded Messages

A simple way to code a messege is to substitute for each
',ffletter in the messege a numeral, as given, for 1nstance, in
Figure 1. 16 '

. D E F G H I 3 K L M
3ok 5 61 ;'3”,-.» B "'; o ou 2

N o P @ RS TOUV WX Y 2z o
!5 16 17 18 19 203 o1 22 3 2 @ 26

12-21- \ ’of the messege then decodes using the |




inverse substitution in Figure 1.16. An outsider cen easily
decode & message of this type by noting the frequency of nuerals.
One would expect, in generel, the most frequent numeral to
correspond to E, the next frequent numeral to T, and so on. To
meke it more difficult for en outsider to decode a message one

cen use & coding matrix in conjunction with the substitution

transformetion described above; After using the substitution

determined by Figure 1.16 the numerals are arranged in 2x2 matrices.

For GOOD LUCK this gives
7 15 12 21|
15 ‘u_ 3 11j{.

Then we introduce a coding metrix, say C = I: :I, multiplying
_ . - l1 2

(On‘the right) each matrix in the_message by C.

(7 15] [2 3] [#+15 =20+30] [29 sI]
15 4] |1 2f |30+ 4 45+ 8 |3 s3],
12 2i] [2 3] [as+21 36+u2] [b5 78]
|3 1 G% CLe+u 9+22 ot .

The coded. message is 29-51-3&-53 .ku5-78-l7-31 The recipient

of this message has the problem or decoding it. First he restores
‘7ithe matrices and then multiplies eech resp,ged trix by a
ecoding metrix, which in this case is D =

The process then is the following-‘t .
' «_-__]_g’; 58 + (-51) (-87) + 100 7 15
68+( 53) i -102) + 106 J




45 78] [2 - 90 + (~78) (~135)+156 12 21
17 31| |-1 2 NE (-31) (-51)+ 62 ) 3 11

Finally the inverse substitution, according to Figure 1.16,
reveals the message GOOD LUCK.
The choice of coding and decoding matrices involves some

mathematics that we will consider in Chapter 3.

1.8 Exercises

1. Using the coding method described above with the coding
matrix C s[i Z:l, code each of the following messages:

(a) COME HOME o
(b) WHERE ARE YOU. (Group es follows: WHER|EARE|YOUX.
The X fills the empty space in the last 2x2 matrix).
o, Using the decoding metrix D = |;§ 2]decode the following
 messages. - =
(a) 58-97-27-53 as-u9-27-53
~(b) 30-51-52-89 35-65-51-87 -
. 3 "-vIn this exercise we describe a method for solving a. pair of
- ‘linear equs.tions in two :eriables whose cocfficient matrix

- ‘~-ii is C, the coding matrix in Exercise 1 'i‘he equa.tions a.re .

, _ o x+2y 7 ARERELTN S
7‘.','Mu1tip1y|: ] [ ] where the first matrix is the decod- .

- ing. matri "it’ho.t decodes‘kmessa.ges 'coded by c, and the second

?"*’_i,-ms.trix onsists or the constants in _the equations. The
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2
next chapter we shall explain some of the mathematics

involved in this solution. Using this method solve each

product matrix [3] tells us x = 3, y = 2, Check. In the

of the following pairs of. equations and check. .
(8) 2x+3y=5 (b) 2x+3y=-5 (¢) 2x+3y=12

x+2y =4 X+ 2y = <2 x+2y= 6
(d) 2x+3y=0 (e) 2x+3y=0
| xX+2y =5 X+2y =0

4, In this exercise the coefficient matrix is the decoding
' matrix of Exercise 2. What matrix do you think should

be used to solve each of the following equations? Solve

- and check.
(e) 2x-3y=5 (b) 2x-3y=7  (¢) 2x -3y =4
-X + ey =a2 o - =X + 2y :-2 =X+ 2y =w?

5. Note that 1n‘cbding the.message GOOD LUCK in Section 1.7
~ the first 0 became 51 and the second O became 34, (One
'wletter became two. different numbers ) Can you write a |
‘?ffmessage in which two different letters, coded in this fashion,
- "":"'become the ssme number? . e
‘hGerﬁrThe recipient of the secret message 1n 2(a) did his mul- |
.Hvxfﬁvetiplicetion with the decoding matrix at the. left(instead of
'”:fn ifat the right) Did the message get throush?

formstions efﬂths“plsne onto 1tse1f.a T help you recall them we 11st
,d one or tuo others 1n Figure 1.17.- The last co;unn glves
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the coordinate rule in convenient matrix form. We are using a
rectangular coordinate sy_stem with origin at 0. The matrix
gives both x end y coefficients. When these are missing in the

coordinate rule we give the missing varieble the coefficient

0. For example, in the first row of Figure 1. 17 the rule ;:: fy
X' = 1x + Oy
may be written y'. = 0x - 1y
, | X' = x (1 0]
1. Rx Reflegtion in x-axis.
y' ==y [0 -1
2. Ry' Reflection in y-axis. | X = % 1 0
T T e -y Lo o
: _ o oo X! = ox 1 G
3. H, Half-tum about 0.
. e ‘ y' = -y Lo '-]--
4, D; Dilation with centero(x' =3x) [3
‘ahd_scqle factor 3. y' =3y | O | 3
5.;;r9°“dRot¢tiOn‘ab0ut O;fwf X' = =y [0 =1]
S throush 9o° y'=x}) [1 0
5;5 R‘;:,Ref1ection in t the ‘o= o T
| :"?;'line with equation yax y'3é x S I )
| Fisure 1 17

g Now considerfthe imageiof (3,5) under R¥ We can use

Fthe: matrix of R, 1w write""'f(3,5) o8 the 2x1 ma.trix [:] A

A multiplication yields the'image as follows:  '~ 
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1 0 3 3

MERRN
end [;:l is interpreted as the point (3,-5). Why this works will
be explained in Chapter 3.

For enother example let us find the image of (3,-2) under
The calculation is

AEEREIN
. = or (2,3). Check by
1 o] |- 3

plotting (3,-2) and (2, 3) and see if the results are reasonable.

r% .

Now suppose we are to £ind the image of (4,-1) under a
composition of D3 followed by HS. The computation,is.

21 6B 6 u [+ o] [12 -12

[ RN N

_The inage 1s (-12,3) i;‘ v”', - o
Did you wonder whether we could have multiplied the first

"vtwo matrices first, and then this productxuith the third matrix?
Let us try.;, ; o '

| -[i-iJ-L‘:J-['sz- iR

},Again the answer is (-12,3) It would seem that multiplication

~tffon matrices.is?associative. we consider this question further in
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This discussion suggests that 2x2 matrices may determine

11

other transformations. Let us investigate 1 s by noting how

1t meps 0(0,0), B(0,1), A(1,0) and D(1,1).
Q1 11 [o] [o]

b ];J l-oJ -o.n |

[
LandiiLad |

Lad
1
=
L
1

'o
|
'O
i
Lo

0 1 fi_‘l-

_(See Figure l 18 ) In genera,]_ [l ] []= [a- :b] -

{we write this._x' =% + y, y' =¥

o1 [1] _ra-'
1
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This means that the y-coordinate of a point is unchanged in the
image, while the x-coordinate is increased by the y-coordinate.
This is a new transformation to us, it is an example of & shear,
It maps the square OADB onto the tarallelagram OAED.,

Using matrices we can compose the shéar, with metrix [: :ll:l
followed by rg,, whose matrix is |© “1|. A multiplication of

1 o
thelir matrices, in correct order, gives “the matrix of the com~

TR

If we reverse the order of the matrices we get

lo 1] "Jn o] |1 o]
“We end. this section with the observation that[3 0] oy

| 0 -1 1 o 3
be rr‘garded as 3 : end also that ; may be ,

: regarded as ' -1[" o l? ﬂ 'I'his shows how the operations

position, ;

o | 0] |00
: ,on matrices are intertwined

o 1 10 Exercises

;In doing these exercises you may WiSh t° refer to Figure 117

] '**_‘f“f'_"j"to »recall matrices associated with various transformations.




~ (e) D 2 followed by D .
,I"'ind the imeges of (0,0), (1,0), (0,1), and (1,1), under

. . -each of ‘the transform@tiona whose matrix 13 given below,

'f;ftDetermine whcther or not the mapping with matrix [? f]

o "";;Inveatigate ‘the transromation with_matr:lx [3 O]
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[OOSR PP

Using matrices find the image of (-2,0) under each of

the compositions listed below., (£ has the equation y = x.)
(a) Reo H (v) RpoH, (e) roooH,

(a) Hor90 (e) DyoR, (£) RoDy -

Express with a single matrix the matrix of each of the
following‘composition:

(a) The shear with matrix [? 1

0 1‘_|
(v) H, followed by the shear in {(a).
(¢) D_, followed by the sheer in (a). (D_, is the dilation

followed by Hb.

with center 0 and scale factor -2.)
() The shear in (a) followed by D,

-2°

.- Then, 1f you think you have surficient 1nfonmation, describe

| ,the transformation.-,

(a)[;] ()[1 ]’() [ ] ) [1 ﬂ

e <f>f 1] ® QF ] ""F ik ]

11}

gnf;1, o transformation. (Hint° Find the 1mages of (3.2)
. end. (2 3) )_'3".»

';fffInvestigate (describe)fthe transformation whose matrix

0.1
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#8, Investigate (describe) the transformation whose matrix

is the coding matrix C = 2 3 s and the transformation
1 2

whose matrix is the decoding matrix D =.[? 'i] « Then
-1

descrive the transformations whose matrices are the
products C+D and D-C. :

9. We have confined ourselves in this section to plane
transformations whose matrices are 2x2, Suggest a kind

~of matrix that might be used for space transformations.

1.11 Transition Matrices

As the word "transition" implies, transition matrices
describe huw uiset of circumstances change from one state to
another, As an example of a transition let us consider people

" moving from a city to its suburbs and back, ‘and as this
happens population totals change. Suppose, to keep the example
"simple, we disregard numbers of deaths and births and assume
:;that, 1n one year, 90% of city people stay 1n the city and 10%
'»ullmove to the suburbs, while 20% of suburb people move back to
:fthe city and 80% remain there.ffrh;s,dutafigucqnvenigpu;y

“;displayed 1n Figure 1 19 o :

c:lty - suburb

'u}Suburb,.‘,_.é;'f: .8

: Froﬁ:u




Further suppose that at the end of 1963 the city had a

population of 5 million and that the suburbs had a populution
of 2 million. We cen calculate what the population should be

at the end of 1964 as follows. .
From city to city ~ .9x5,000,000 = 4,500,000

From suburb to city .2x2,000,000 = 400,000
Totel to city | 4,900,000
From city to suburbs .1x5,000,00C = 500,000
From suburb fo suburb .8x2,000,000 = 1,600,600
Total to suburb : 2,100,000

As you no_doubf recognize this calculation resembles what
heppens when we multiply matrices. We try then to set up. a
product of two metrices that calls for this calculation. After

some effort we hit on

city  Suburb  City  Suburb
: . : 09 01
[5:00.0500,0 ,2:000,000] . [2 8] E" %O:OQO 2:100,00€l
1963[p6§u1gtion':' tfansition' : 195u populqtion'
SRR S St AT matrix Lo .
You might try ’9: -1 . 5’°°°’°°° to see that this product
L2 .8 |2,000,000 |

does not yield the desired result

end of 1965 (on the basis of the same assumptions) 1s no differ-

ent ‘We cen write t.;;

o
RN

ctty  Swburb o~ o 01ty ~ Suburb
[‘&,900,000 2,100,004 [2 ] E# 830,000 2, 170,00(3
196#'popu1gtion o trana;tion& ; 1965 population

natrix




We might slso have written this product as follows,

City Suburbd
[5,000,000 2,000,00{' *

City Suburd

9 .11[9 .1
. = [4,830,000 2,170,000]

1963 population transition matrix 1965 population
Assuming multiplication of matrices is associativé, we have a
choice of two neighboring matrices in the left member. If we
group the two trunsition matrices, then we can write

City ‘ Suburd - 2 City Suburb

. 09 01 I
Eé,ooo,ooo 2,000,005]' = [%,830,000 2,17o,ooé]

. L]

1963 population trensition 1965 population
o i 2 matr?x |

end | ’8 ] can be interpreted as & transition matrix for a
2 . - .

2 yeer period. Do you see how this can be éxtended for a 3
year period? Or en  _year period? |

As you see, the changes in population during the second
year were not as great gg;pbose of the first year. In fact,
the changes aré less and less, end the popu;:l.ation' tends to becoine
stable. | R | : o -

For a second example of'a-tfan31tionvm§tr;x consider some
waﬁer_in a closed tank end the watéf'vaﬁoffthat naturally comes
from 1t. Aséume'thA£'2% of the water evaporates in one hour
‘while 1% of the vepor condenses to water. Study the transition
matrix in Figure 1.20 to see how this dats is displayed in matrix
form.ioﬁ‘ére’asked 1h exercises to use this metrix tbicaléuléte

amOuntb1of'iéter'éhd”vapér_at_fhe end;of houflyﬂbefiodé.

35
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To

- water wvapor

water .08 . | M a
From o 9 02 .98 _ .02
| vapor 01 .99 Ol .99
| ' Transition Matrix
Figure 1.20.
1.12 Exercises
A 09 01
1. (a) Using the transition matrix 8 calculate
: 2

the 1966 population if the 1965 cify population
vas 4, 83,000 and the suburb population was
2,170,000, | |
(b) Compare the changes in the city population for

_the years 1963, 1964, 1965, 1966. Also for the

| su‘burb‘ population. Explein how these ‘chenges seem
to indicate thet the population in each place tends

~-to becoxne stable. -

98 .02 I
2. Using the transition matrix: [ - 99] for water-vapor

states,” and starting with 200 units of water a.nd 0 units ‘
of vapor (when ‘the units are suitably chosen) calculate
“the amounts of water and vapor at the end of (a) one hour.
(b)) two hours. (c) three hours, | |
3. . Using your ‘data found in’ Exercise 2, discuss the question
for s atability between water and vapor.- |
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b, (a) ' What is the single transition matrix that
_determines population changes over a two year
period, for the situation discussed in Section 1.117?
(b) What is the single transition matrix that describes
| the water-vapor changee'in a 2 hour period in
Section 1,117 | o
5. Without supplying the details, explain how you wculd go
about finding the transition matrix needed to find the
1962 population from the 1963 population.

1.13 Summary

In this chapter we discussed
1. the prevalence of matrices as they occur in charts.and
tables of numbers.
2. how matrices can be used to display clearly 8 set of
- complex data such as pay-offs and bus route networks.
3. ~_howwmatrices/can be used to code and decode messages,
| and howvthey san handle-some problems of the builder of
homes, and related economic problems. '
Lk, how matrices help in the study of plane transformations,
.'and An. eolving a pair of linear equations in tuo variables.
5. . how matrices. can be used to describe transition from one
state to another, - o :
.In the ‘course of this discussion three operations on
matrices were introduced, namely, addition, multiplication by

a scalar,vand multiplicatiqn_of.matrices. This raised a number

7
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of mathematical questions concerning the properties of these

operations. Some answers will be suggested in Chapter 3,

1.14 Review Exercises

¥

Express as & single matrix A.B.and B-A for each pair of

matrices listed below.

(a) A = 3 8 R B = u "'2 R
-1 2] 2 6]
p— - - -

(b) A = u .2. ‘s B = 1 ’
2 1] J1 0
v it Ty -

(C) A = 1 0 » B = p qw ’
| 0 1 lr 8_|

(d) A = 1 9], p =[° -I] |
Cobkwy s

_ For.each peir ofimatrices listed 1n,Exercise 1 express,

as & single ma.trix, A+B and B+A.

?Express as & single matrix 2A+2B, when A end B are the

ma.tr:lces 1n Exercise l(a.)

Express a.s a single matrix. |

TIET eped

(a) Using C =[3 ]] es e coding matrix and the

5 .2

ee;f,subatitution mapping of Figure 1 16 code the following
»message.. WILI. COME SOON.. |

i ‘, a2
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(b) Using D = [2 "’] a8 & decoding metrix end the

inverse mapping of Figure 1.16, decode the message
that was coded in (a), '
6. Using the sppropriate matrix C or D of Exercise 5 solve
the following equations and check:

(a) 3x+y=.9 (b) 3x+y=3
5% + 2y = 16 5x + 2y = U
(c) 2x -y = -1 (d) ex -y =0
Sx +3y=1 -5x + 3y =0

7. Express as a single'matrix
0 10| [ebe
1 6 of+|a e ¢
oo 1 |gh 1,
Describe the change on the second matrix resulting from
multiplication.

'8, Describe each of the following two-way bus routes between

towna by a,matrix.

Y
3
AR \D c
B ﬂ(a) , ' - "  _’V(B) e R (e)
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9., 'The population of a city at the end of 1968 is 3,000,000, |
and that of its suburbs is qlso 3,000,000. Assume that
70% of the city people in any year remein in the city
and 30% of them move to the suburb, while 80% of the

suburban population remain in the suburbs and 20% of them
move to the city. Using matrices, calculate the population
in both places at the end of

(e) 1969

(b) 1970 ' ' o 1
(¢) 1971. _. | | |

Bl LT S R LT,




Chepter 2
LINEAR EQUATIONS AND MATRICES

2.1 ILinear combine.tions of Eguations

You may recall working with equations of lines, and that
they had le form ax + by = ¢, where not both & and b are zero.
To find the coordinates of the point of intersection of two
intersecting lines, we solved a system of two such equations,
This need to solve a system of lin‘ea.r{equa.tione occurs fre-
quently in mathematical situations. In this chapter we
examine a method to solve these systems which leads to &
procedure-that can be programmed efficiently for
automatic computa.tion,_ . |

‘,This. method depends on two basic opera.tions which we
1llustrate in this section, We work with linear equa.tions of
the form ax + by =c. At the right are Az 2x + 3y = 6
- three examples of linea.r equa.tions that By: x. ;‘ 14y %’-

: ha.ve this form.,‘ B : - - Cy: n—x + Ey
| The first opera.tion is multiplying the coefficients of x

o and - v (the va.ria.bles) and the r'onsta.nt term by a non-zero number.

If the multiplier for equation A; ie 3, the resulting equa.tion
is celled 3A;. : Study the equa.tions a.t 3A;s 6:: + 9y = 18
the right noting the multiplier for ea.ch. -23; -2x + 8y =
' ,' ‘f 40,:3x+2y 48
It is na.tura.l to a.sk how the solution set of an equa.tion
is a.ffected when it is multiplied in this me.nner. To get a

Q

e e e
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suggestion of the answer let us see if (x,y) = (0,2) satisfies
both A, and 3A;, If x 1s replaced by O and y by 2 in Ay then
we get 2(0) + 3(2) = 6., This is a true statement. Therafore
(0,2) satisfies A,. If we make the same replacements in 3A,
we get 6(0) + 9(2) = 18, This too is a true statement. On
the other hand, (1,2) does not satisfy A, for 2(1) + 3(2) =6
1s a false statement. Neither does it satisfy 3A,, for
6(1) + 9(2) = 18 is also a false statement, This illustrates
a little theorem:
If A, ‘represents, the linear equation ax + by =
~and m#0, then Ay;: ax + by =.¢ and mA;: max + mby = me
have the same solution set,
Cen you prove this theorem?

‘This 1little theorem is useful in converting a coefficient
in a linear equatj.en to 1 (or eny non-zero number), without
disturbing the solution set of the equation. For instance, if
we wa.ht the coefficient of ¥ in 2x +'3y = 6 to be 1 we take
m= 3-, yielding 3-x + y = 2. ~ Now suppose we have a system A of

linear equa.tions, such as A, and A, .
2x + 3y 6
x - 4y 5 A,

: -(Observe the name of the system a.nd of :l.ts component equa.t:l.ons )

_ ,The system has a solution :I.f a.nd only i that solut:l.on satisfies

" each of its component equstions. §upposef that A, 1is replaced by

‘call :I.t B,

§A1 and A2 remains unchenged. | A‘ new system v,j.ﬁs,.:ornied“.. Let us

i
i
{
]
1
1
i

AN A L 13NN e 2 Y
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3

X+ 3y =3 (Q)Ax
B 1
x-l'l'y=-§' B2=A2
Its component equations are B; = %A; and B, = A, How do the

solution sets of systems A and B compare? Clearly all the
solutions that satisfy both equations A, and A, must also
satisfy B, and By, since by the little theorem above, no |
solutions are either gained or lost when A, is replaced by B,.
" Theorem 1, If an equation in a system of linear
equations is replaced by e non-zero
‘multiple of itself, the new system and
' the original system have the same solution
set. B
The second operation replaces an ‘equat:l;on in a system
by the sum of itself and a constant multiple of a.nother
- equation. For’ mstance, 1in the 11lustration below, A, is
replaced by B, = A, + (-2 )A, ' o |

. 2x+3y 6
A e o
x-w :.‘%' 'Aa, o
_m+1m=7-31;h+x¢m@'”

x—"*y--% B.,, “hy

'rhe actua.l work in: finding A.1 + (-2)A, 18: o

A i (&+3fiﬂ+(éﬂx-%=-§fﬂ_ '

(2x'+ 3y “':‘6) + (-2x + 8y )
'0x+11y 7 s
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Definition 1, The two operations, called Elementary
Operations, are:
(1) replacing en equation in a system by
a non-zero constant multiple of itself
(2) replacing an equation in a system by
the sum of 1tse1f. and a constant multiple
of another. | |
- As one or both of the elementary operations are performed,
e new system of equations is generated. Theéé operations
ma& be rebeated, thus generating a sequence of systems,

Definition 2. Two systems of equations are equivalent 1

if an only if one can be obtained from the
* other by a finite sequence of elementary

ek i

_ operations,
Example 1, | o
- 3x+6y=9 . A
System A | L
7 lex -3y =<1 A,
| : x'-:-‘ay’f,: 3. B, = ‘(%-)A,‘
~ 'System B BT
o o | ox =Ty = =T Bo = Ay + (~2)B,
o ke ey =3 0y = By
ox +.'_.y\:= 1 - '.{j;,cﬂ = (- 7)33
Systems A, B, and c are equivalent. ;
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It was also used to get equation C,» giving y the coefficient

1, The second operation was used to obtain equation B, = A, + (-2)B,,
giving x the coefficient 0. rThese two stretegies are crucial

in solving a system of equations. But before we can use them

we have to satisfy ourselves that equivalent systems have the

same solution set., o ‘

Let us examine the three systems above, From C,(0x + y =1)
it is clear that y= l. _This}is used in C, to replace y, |
yielding x + (21 =3, From,this x =1, It is clear that
(x,y) = (l,l) satisfies C, for C, and C, are both true when
(x,y) = (1,1) Let us see if (l,l) also satisfies B, and B,.
Since Bg =G there is no need to check By, and for B
(0(1) - 7(1) = -7) is true. Now to check A, On replacing
(x,y) by (l,l) A, becomes 3(1) + 6(1) = 9, a true statement, and
A, becomes 2(1) - 3(1) = -1, alsc a true statement, This
suggests the next theorem, which is a special case for a
"system of two linear equations in two variables. But it is
true for any number of equations in any number of variables,

Theorem 2.' If System A has linear equations A, and A,,
‘ in two variables,.and Sysvem B has linear equa~-
. tions B, =1 and B, = A, + A, witam # O,
. then A and B (equivalent systems) have the same
solution sét.

Can you verify this theorem for 8 special case?

» Examine this verification, and explain how each equation
18 obtained.ﬂk:_ijiséj_' SRR




3x -2y =-1 A,
A |
X+y=3 A,
3x -2y = -1 B, =A
B .
ox+3y =32 B, =4A,+ (-3

From B,, show that y = 2. Using this and B,, show x = 1,
Now check (x,y) = (1,2) in systems A and B,

" While Theorem 2 applies to two systems having two
equations, 1t is possible to apply i1t to two systems having
a different number of equations, and two or more variables
as we show in Examples 2 and 3., In studying these examplcs
you should do all detalls not shown,

Exemple 2. x+2y =5 A,
A {2x -y =5 A,
| x + ¥ = -2 A,
X+2y =5 B, = A,
B {(0x=~5y=-5 ' B, =4, + (-2)B,
Ox + 3y = 3 ‘B, = A, + B,

Find y from B,. Does 1t agree with what.you obtain for y in
B,? Find x from B,. Now show (x,y) = (3,1) satisfies all
equations in Systéms,A and B,
Example 3. | H
| ‘ ”"33 +2y -2 = N A,
"Kf& #f+ Y +'z =,1 j»‘A2

’ -)'I'x -y --‘-'7 ) Aﬂa

;._‘4(;3;“
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0X - Yy - L"Z =1 Bl a A-a + ("'3)Aa
B X + y + 2 = 1 Bfa sy Ag
Ox + 3y + Uz = =3 B, = A, + (4)4,

Did you supply the details explaining how B, and B, are ob=-

tained? Show that (x,y,z) = (2,-1,0) satisfies both systems
A and B,
Example 4,
Given
3x+y=2 A,
A
(2x -3y = -3 A,
(a) Find k such that in kA, the x-coefficient
will be 1.
(b) PFind m such that in A, + mA,, the y-coefficient
will be 0. '
Solutions.

(a) k = %, the multiplicative inverse of the
coefficient of x,

(b) m =2, for in A, + 3(A;),

v (2% - 3y = =3) + {9x + 3y =6) or 1l1x + Oy = 3,
If the coefficient of y in A, is 1, (as it is),

~m 1s the additive inverse of the y-coefficient
» 1n Azo' .

2,2 Exerclses

1.

Given equation A;: 5x + y = 3. Fbrm the equation

defined by (a) QA, '(b)> %A; (e) = %A;

4



2.

3.

5.
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Given equation B,: 3x - 2y = -6, Form the equivalent
equation whose

(a) x--oefficient is 1. (b) y-coefficient is 1.
Given equations A;: 2x -y =7 and Ag: x + 3y = 7.

Form the linear equation defined by:

(a) A, + 4, (c) A, + (-2)4, (e) A, + %-Az
(b) 2a, + A, (4) 24, + (-1)a, (£) 3a, + A,
Using the given equations A, and A, of Exercise 3, find m
such that in A, + mA,

(a) the y-coefficient is zero.

(b) Find n such that in A, + nA, the x-coefficient is O,
Given equations A,: x + 2y + 2 = -2 and A,: 2x -y + 32 =
(2) Find m so that in A, + mA, the x-coefficient is zero,
(b) Find n so that in A, + nA, the y-coefficient is zero.
(c) Pind k so that in A, + kA, the z-coefficient is zero.

Given A {ax + by =c¢ A

a'x + b'y = c! A;‘
By elementary operations obtain the equivalent system:

1C - !
lex + 0y = §5$-:-§$5

B

ac! - a'c
Ox + 1y = ggr—arp

if ab' # a'b, Discuss what'happens if a'b = a'b,

2.3 Pivotal Operations.

It has probably occurred to you that we can generate a

sequence of equivalent systems, in which the last system has

coefficients 1 and 0 only. In that case it would be a simple

48:
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matter to see the solution of a system, if there were one. 1In
some of the exercises in the preceding section we saw how this
can be done by a judicious choice of elementary operations., ” :
In our next example we illustrate how this can be done in
general,

A

X+2y =0 A,
Solution., Let us choose system B as follows, B, = A,

and B, = A, + (-2)B,.

Ox -y=1 B, =4, + (-2)B,

B ,
X + 2y

For B, we obtain

it

A,

(2x +'3y 1) + (=2)(x + 2y = 0)

1) + (-2x - 4y = 0)

or (2x + 3y
or -y =1 vwhich implies y = -1,

Using this value in B, we get .
x+2(-1) =0orx=2,
So the solution is (x,y) = (2,-1).
Does this check in system A? in system B?
Exemple 2. Solve . 2x + 3y =1 A,
A
XxX+2y =0 A,
Solution. We have already seen how this system can be
| transformed by elementary operations to.
B{ - o
x+2y =0 By = A,

49
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This introduced a O coefficient in B,,
and this was quite helpful, We can also introduce
a 0 coefficient in B, by transforming system B

to system C as follows:
‘ Ox + y

-1 €, =(-1)B,

C

X+ 0y =2 C, = B, + (-2)c,

Check this carefully.
From C it 1s a simple matter to see that the solu-.
tion of A 1is (x,y5) = (2,-1).
Can you see how the following table shortens
and highlights all the operations we have
gone through?

2x + 3y =1 A,
A
x+2y =0 A,
Ox -y =1 B, = A, + (-2)B, (Note that
B B, was ob-
tained be-
XxX+2y=0 B, = Ay fore B, .)
[ox+y = c, = (-1)B;
c .
X+ 0y =2 C, = B, + (-2)c,

solution (x,y) = (2,-1)

Before we make precise the details of the method of Example 2,
let us examine another example. We shall use the table

_ form we discussed in Example 2. If you have trouble with it
e . ‘ .
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lay it out in detail as we did in the previeus example,
cirecle around a coefficient in the table is explained
later,

Example 3. Solve: 2x + 3y =1

, -2y =8

Solution: This can also be written
2x + 3y -1 =0
3x -2y -8=0

1
A .
3x -2y -8=0 Ag
B
Ox-@y-:-gi=0 B, = A, + (=3)B,
(X + 0y =2 =0 c,=13,l+(---g-)c':g
C .
OxX+y+1l=0 Cs = (- &5)B,
. (X:Y) = (2;-1) _
Check A,: 2(2) + 3(-1) =1 =0 is true.
A 3(2) -2(-1) -8 =0 is true,

Note that in this case C, was obtained prior to C, and

in fact was used‘tovobtain C,.
In the first operatidn‘we chose to convert the cosfficient
2 in 2x of A, to 1 in B,. This cholce 15 indicated by the

circle around the 2. Another such cholce, also marked by a
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circle, was made in B, to convert =- %;-to l1in C,. This
choice, to convert a coefficient to 1, 1s the first step

in an operation called pivoting. The numbers 2 and - %;

are called the pivots. Having chosen a pivot, say an xe
coefficient, we then try to convert the x-coefficients of the
other equations to zero. The two steps in pivoting are the
elementary operations. In this way, 1f possible, we end with
& system in which one x-coefficient is 1, and all others

are zero, 'By pivoting on a y-coefficient we can also try to

convert one y-coefficient to 1 and all others to zero. This

can be done, as Example 3 shows,witheut disturbing the effects

of pivoting on x-coefficients. In this mamner we arrive,
if possible, at an equivalent system whose solution set
is obvious.

v To summarize, the pivotal operations on a nen-zero pivot
consist of elementary operations which replace a given system
by an equivalent system in which each pivot is converted to
1 and all other coefficients of the variable of the pivot are
- converted-to-zeros, When pivotal.operations.erg_pngQEEEQ_as
far as they canvgo, the last system is called the Gauss-Jordan
reduced form, or simply the Gauss-Jordan form. If there'is
a solution the Gauss-Jordan form shows what it is. _

The name Gauss-Jordan form is after Gauss who invented

the pivoting operations, and Jordan who used it ro get only

1 and O coefficients as far as possible. Becausk this method

is used extensively, ge write only what is essential, namely

b s
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coefficients and constants, This leads to a sequence of
matrices which, together with the instructions, we call a
tableau, Example 3 is rewritten in both equation and tableau
form so that you may see what is stripped off and what remains.
The middle column explains what happens in both forms.

We continue to draw lines between. successive systems but

we do not name them any more,

Equation Form Instructions 'Tableau Form
e X \'4 -
@x+3y -1=0 A, () 3 l1(=0
3x -2y -8=0 A, 3 -2 8] =0
3 1 1 | 3 1 ,:
X + 5y = 5 = 013 | B, = (E)Al 1 ; 53 =0 |
1
Oox. + -(5%) - =0 B, = A, + (=3)B 0 =0 i
G F =0l B+ (3B 3 ¥
X0y =2=0 C, =B, +(-3)C, [1 0 2| =0
0X+y+1=0 €, = (- &), 0 1 l=0

Comxhent 1, Note the headings x, y, and -1 in the ta.b-

bleau. "‘hey are there to help us retrieve
an equation from the tableau. To retrieve
(,1, f‘or example, multiply each number in row
| F-C by its heading and set the sum of the products
equal to zero. System C is, by this method
o ofretrieval,0x+y+l Oa.ndx+0y-2
Co’m'nentl 2; The -1 heading may startle you, It actua.lly

saves you the effort of solving y + 1 0 and
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X =2 =0, Simply read the solutions in
the -1 column, Can you explain how the -1
heading does this?

Comment 3, Note, in passing, that the first two columns
in system A of the tableau comprise the
coefficient matrix of the original system
of equations,

The pivotal method is not restricted to solving a system

of two equations in two variables. It can also be used '

to solve a system containing any number of linear equations in
any number of variables, if there is a solution, Our next
example shows how this is done, in tableau form, for three
equations in three unknowns., You may expect three pivoting
operations, . The row operationc are explained in the last
column. |

Example 4, Solve |
4

2x + 3y + z

X+'y -~z =1

. x=2y+2 =1

Solution. Writing the equations in the form ax + by + cz + d

=0 we get in tableau form:

54
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g -33r H"l =0 A,
A ® 1 a2 2 =0 A,

1 2 2 7 =0 A,

o 5 3 2 =0 B, =A, +(-2)B,
B 1 1 -1 2 =0 B, =A,

o €) 3 6 =0 By =A, + (-1)B,

"0 o (@ -8 =0 €, =B, +5C,

c 1 o o 3 =0 Cy =B, + (-1)c,

0 1 -1 -2 =0 Cy =(-3)B;

5 0.1 & =0 D, =(-3)0c,
D 1 ©c o =0 D, =C,+ OD,

0 1 o0 2 =0 D, =Csy +D

Now system D can be rewritten as:
0x + Oy +za-b=o
X+0y +0z2 «3 =0
OX+y+0z -2 - 0
Tt is evident from the -1 column of system D that
(2,y,2) = (3,2,4) |

Check tha.t this solution satisfies system A, T

| Ca.n you write out in t‘ull detail how we obtain system B from
system A? | “
Cean you write it out in equation form? _
Can you explain how system C is obtained from system B? Can
~ you write it out in equation form? |
Do the same in going from system C to system D,
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Solve the systems of equations in Exercises 1-14 by the

pivotal method, using only the tableau form,

your solutions,

1. x+3y=10

2x + 5y = 16
2. 2x+31'=10
y+2x =6

3. 5x-3y-12
2X =y =-5=20
L, 50 + 3v - 27

6u - 2v - 10 =
5 2r + 4 = 1

4r - 35 = 1
6., 3x =13 - 4y

y=5x+4

Te x‘+y-z:=-2
x-_2y-2zu1

2x + 3y + 2z =1

o

8.

9.

10,

1l1.

12,

13,

i,

Check all

x+4z=4
2x+y +2=3

X+y+2z=1

]
o

X+y-2-6
2y + 2z - 20 =

B
o

0
5X =y -2z + 3
+1

X -3y + 22
2y =3z -3 =(
3x+52+2=0

Xy + Uxy + 2x, - 19
2X, + X5 + 2%y ~ 19
2x,+3x,+x, - 18
3x =bz =0

6x + 4y = <1

8y +2z = 5.
x-y+z=3
3x+2y-'z=1

bx « 2y = 32 = <2
x+y+z+w'%5
2x +y -z+w=4

x+y-wv=5
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2.5 Solving Systems of Linear Hquations: Continued

In this section we consider two basic questions,

1. Do all linear equations having as many equations as

variables have solutions?

2, Can we solve a system of m linear equations in

n variables if m # n?

The pivotal method helps to answer both questions,
Consider, by way of answering the first question, the
system in Example 1. |

Example 1. Solve: 3x + 2y =8

6x + 4y =9
Solution, é j2[ ;& - o A,
A 6 L 9 =0 A,
L F oy o mem
1o 0 =7 =0 B, = Ay + (-6)B,
The last row‘répresen‘ts the equation Ox + Oy = =7,

Clearly, there are no values of (x,¥) that satisfy this:
equation. Inasmuch as oxX+0y =0#T7 for ali iralues )
of (x,y). ' since tﬁere:'are no solutions for this equation
(B,), thore_ can be none for the system A.
Let us try séiﬂng é.nother palr of linear equations, one that
ciosely- resembles the | first‘ pair,
Example 2‘. Sélife 3x+2y =8
| . 6x+ 4y =16
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Solution, X y -1
@ -2 8l =0 a,
A
6 L 6] =0 .
2 8 1,
gt 3 IO B=3h
0 0 0f =0 B, =4, + (-6)B,

This time the last row represents the equation
Cx + Oy = O which is satisfied by all values of (x,y).
Hence whatever satisfies B, also satisfies B, and the
original system consisting of A,,A,. Equation B,,
which is x + %y - §.= 0 1is equivalent to x = = %y + g.
Any value assigned to y yields a value for x, For in-
stance,
iry=3 =x=-=2+$=%
1fy =-50, x=33%$
if y = 0, x=§-.
Thus (§33) (36, =50), (g, 0) are among an infinite number of
values of (x,y) that satisfy the original equations.
Check this for (§33) and (ng). The entire solution set
may be designated |
((x,¥): x=-§3+§uy=s, s € R}
or more compactly
((-§s+§-:8): s ¢ R).
Summarizing the results of Examples 1 and 2 we see that
there are no solutions if a row in the Gauss=Jordan form
contains only zeros except for the last nﬁmber. If a row
contains only zeros, we may delete it and work with the remaining

row or rows in the tableau,

O
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Below are two more examples, this time for three
linear equations in three variesbles., Note that their coeffi-
cient matrices are the same. This makes it possible to use

the same pivotal operations for both,

Example 3. Example 4, !
Solve: x + 2y - 3z = 4 Solve: x + 2y - 3z = 4
2x = 3y + 52 =5 2x = 3y + 52 =5
3x =y +2z =10 3x =y+2z2 =9
Soluticn, Solution
X y 2 -1 x y 4 -1
@D 2 -3 L]=o0 a @D 2 -3 1§ =o0
2 -3 5 5|=0 A, 2 -3 5] =0
3 -1 2 1l0|=0 A, 3 <1 2 9|=0
1 2 -3 4]=0 B, =4, 1 2 -3 4 =0
0 ) 1 -3]=0 B, =a,+(-2)B]0 ) 1 -3} =0
0 =T 11 2| =0 B, =A,+(-3)B,|]0 -7 11 3] =0
1 0 } ?.? =0 C, =B,+(-2)C,{| 1 0 71_5-7-5 =0
o 1-3% 3-00=(-p5 [0 1B 3 -0
0O O 0 1] =0 Cy =B,+T7Cs 0o o0 o o]=o0

There is no solution to the system of Example 3. In

Example 4 delete the last row., The remaining rows
representy-%l-z -;=Oa.ndx+%z .-%2-=

or x=-Ye+2,y-Heu3

Any value of 2z produces one value for x and one for y.

For instance, 1fz=7,x=}75-,y=-879

99



ifz=0, x= N y = %-
ifz=1, x=3, y =2,

The solution set mey be designated

{((%,y,2): 2 = = %s + 3;5 y = l%e %, zZ =8, s € R},

or briefly as (- % s + g;u l%s ” s); s ¢ R},

This answers the first of the two questions, and also
part of the second, since we solved two linear equatlons
in three variables in Example 4, Now to see how pivotal
operatlons handle three linear equ:tions in two
variables, Again we use two examples having the

seme coefficient matrix.

Example 5, Example 6.

Solve: x + 2y = 5§  Solve: x +2y =5
2X =y =5 2x =y =5
3x + 4y =13 3 + 4y =11

Solution Solution

X y =1 X y =1

[@ 2 51 =0 A @ 2 5}=0

2 -1 5| =0 A 2 -1 =0

3 b 13 | =0 A, 3 b 11(=0

1 2 5] =0 B, =A, 1 2 5|=0

0 @ 5| =0 B, =4a,+(-2)B, 0 @ S5]=0

0 -2 <2 | =0 B, =A,+(-3)B, 0 -2 =b]|=0

1 0 3| =0 € =B,+(-2)C, 1 0 3}f=o0

0 1 =6‘ca=(--;-)132 o 1 1|=o0

0 0 0] =0 C, = By+2C, 0 0 -2]=0

(x,5) = (3,1) no solutions
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The snlution (x,y) = (3,1) checks in all of the three
original equaticns of Example 5,

Oour last example illustrates how to handle one linear

equation in three variables,

Example 6. Solve: x + 2y - 32 = 5

Solution For all (x,y,2), x = =2y + 3z + 5, If we

assign a value to y and one to z, not necessarily the same
as the one we assign to y, we find a value that corresponds
to (y,z). For instance,

1fy=3,z

l, then x = -6 + 3 + 5 = 2,
ify=0,z

20, then x = 0 + 6C + 5 = 65,
Thus (2,3,1) and (65,0,20) are in the solution set.
The entire set can be designated by
((x,y,2): x = 28 + 3t + 5, ¥ = s,z = t, and s,t € R},
or {(-2s + 3t + 5, s, t): s,t € R},

2.6 Exercises

Solve and check., If the solution set contains an infinite

number of solutions represent it in set notation.

1,

2x + 5y = 3 b, x+y-2z=1

4y + 10y = 7 22X -ey+z=1

3x =2y =3 X+ 2z +2y =2

6x = My = 6 ‘ 5. 2x, + X, +2x, = 4
X+2y+2z=1 2%, + 2%, + x5 = T
2x +y =3 X, = Xy =3

3x+b4y+22=4



6. 2%, + X, + 3x, = =3
3x, + 4x, = 24
T« X, +x, =5
2X, =3%, =15
5x, + 2x, = 28
8. x+y=5
2x - 3y =15
3x - 2y =10
9. 3r+s -Ut =6
10, 2u =-Tv =4
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1l.

12.

13,

14,

2.7 Homogeneous Linear Equations

5a + 2b

28 - 3¢

o

+ 52

+ 9z

+ 2y +

+ 5y +
+ 2y +
+ 3y +

=14 - ¢
=1+
5
-1
3z = 5
5z = 3
9z = =l
3z =5
5z = 3

Homogeneous linear equations have constant terms which

are zero. They present no special problem that cannot be

solved by the pivotal method.

We make special mention of

them because they occur gquite frequently and occupy an impor-

tant place in mathematical theory.

The specisal thing to notice is that the -1 column of the

related tableaus contains nothing but zeros,

This follows from

the fact that results of elementary operations on zeros are

zero. Hence we can omit the -1 column when solving homogeneous

equations and work only with the coefficient matrix.

Tet us agree, from now on, to omit the "=0" that follows

each row, ILet it be understood hereafter, also, for systems

that are not homogeneous.
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Exauple 2.
Solve: x+ 2y + 2 =0
2X -~y =3z =0
3x+Uy+2z2=0
y z
1

n

=
n

2 1

e -

-2 =1

b 4
.2:)
2 -1 3
3
1
0
0
i
0
0
1
0
0

= o Jo ¥ o

0
0

0 1 | Dy =0

Exemple 1.
Solve: x+2y + 2 =0
2X =y =32=0
x+ Uy +2z=0
x y z
@ 2 1 A,
2 -1 -3 A,
3 1 A,
1 2 1 By = A,
o € -5 By = A,+(-2)B,
0 -2 =2 Fg = Ay+(-3)B,
1 -1 ¢, = B,+(-2)C,
o 1 1 | ¢, =(- %-)}3a
0O 0 0 C, = By+2C,
Y+ 2=00ry= <2
X=-2=00rx=2
let z = 8
(x,5,2) = (8,-8,8)

Perhaps you anticipated that all

(x,y,2) = (0,9,0)

homog:aneous systems

having 3 equations in 3 unknowns necessarily had the solution

(0,0,0) only.

Indeed this happened in Example 2,

But in

Example 1 there are an infinite number of solutioas, including
not only (0,0,0), but also (2,-2,2), (W5, /5, ¥5) and so on.
Had you known that one of the equations in Example 1 is the

sum of multiples of the other two, you might have guessed
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%Az. (Verify this). Thus
the system in Example 1 is equivalent to the sy:item containing

otherwise. Indeed, Ay = %—Al +

only A, and A,. On the other hand, try as you will, you will
not be able to express an equation in Example 2 as the sum of
multiples of the other two. This is an essential difference

between the two systems.

2.8 Exercises

In Exercises 1-4, solve by the pivotal method, and check.

1. 2x +3y =0 3, 2x+3y=0
X+2y =0 £+ 3y -0
2. 2x+3y =0 b, 2x +3y =0
3x +2y =0 3x -2y =0

5. Prove: 1If g‘- = g-, where a,b,c,d are non-zero, then
the system ax + by = 0 has an infinite solution set.
| cx+ dy =0
Express its solution set in set notation.

In ixercises 6-11 solve by the pivotal method

6., x =3y +22 =0 9. 2a+3b ~-5¢ =0
X -2y -2=0 ’ a=-2b+¢c=0
2% -y +3z =0 ' 4a + 13b - 17¢c = 0

Te X4 + %4 =0 . 10 X, + %3 + x4 =0
2X, + 3%, - %y =0 : 2%, + X5 = X, =0
bx, + 5% + %3 =0 X, =X, + X, =0

8, 2x+ Ty +4z =0 11, X, + X3 + X3 + X, =0
X+y+2=0 o ' Xy + Ux, + 3xy +2x, =0
3x -2y +2 =0 Xy =X =X, =0

]
o

64 4?:,. + X, + 2Xy + 3x,
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12. Let a system of three eguations in three variables be
such that one of the egquations can be obtained from the
other two via elementary operations,

Prove that the system has an infinite sclution set.

2.9 Matrix Multiplication Derived from Linear Equations in

Matrix Notation

2x + 3y =
We return to the system s that we have
X+2y = 0
previously examined. We write this system in terms of
matrices, as follows:

2 31[x 1
l 2 y 10O
In doing this we have detached the coefficients from their

variables, leaving a 2 x 2 coefficient matrix , and instead of
X

writing x y at the top of a tableau we wrote as a2 x1
matrix to ve =ultiplied by the coefficient matrix. Note

that, 1T we perform the multiplication ,as we did in Chapter 1,

then
2x + 3y
X+ 2y] , a2 x 1 matrix,

Then when we -gset |2x + 3y we have corresponding
X + 2y _ 0o

components equal (as required by the definition of matrix equality),
and we have retrieved the two original equations.
It often happens that people who use systems of linear

equations to solve problems in science, industry, and other

d?ctivities, have to solve many systems that have the same
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coafficlent matrix., To illustrate with our simple coding

me trix, suppose one has to solve

2x, + 3x, =1 2y, + 3y, =0 2z, + 3z, = 4
and and
X, +2x, =0 y, +2y, =1 z, +22, =3
We can write them as follows:
2 3] [x, 1 2 3] [+, 0 y
1 2 b 0 1 2 Vs 1 3

Now the astonishing thing is that all three of these matrix
equations can be combined into one, as follows:
2 31x ¥y, 2 1 0 4
B P R
provided we accept the definition of multiplication of
matrices as suggested in Chapter 1. Perhaps you recall that
we multiplied row terms by corresponding column terms and
added, to get the terms in the product. For the last multiplica-
tion this would be:
2x, + 3x, 2y, + 3y, 22z, + 3z, 1 0 4
X, +2x, ¥y, + 2y, z, + 2z, = 01 3
Do you see, when corresponding terms in the two matrices_are

equated, we retrieve the six equations we started with?
2.10 ixercises

1. Write a matrix equation for each of the following systems:

3x+ 5y =8 3x =5y =2 ax + by =¢
(a) (v) (c)
x+2y =3 x=3y=4 dx + ey = f
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2. Write one matrix equation for all of the following
systems whose coefficient matrices are the same:
3x + 5y =8 3x + 5y = 3, 3x + 5y =
X+ 2y =3 xX+2y =1 X+2y =0

2.11 Matrix Inversion

In this section we show how to determine whether or not a
(square) matrix has an inverse, and if it does, how to find

2
it, We illustrate the method with [ .

@Eﬂmmmmmm[]rﬂ=gj

This is equivalent tov

LAl -E - G- B

In tableau form these can be written:

X z2 =1 y w -1
2 3 1] =0 : 2 3 0]=0
and
{1 2 01 =0 1 2 1}]=0

Since the coefficient matrices are the same in both tableaus,
we shall be performing the same pivotal operations. Hence
we can combine them into one tableau with two -1 columns, if
we are careful to read the first -l‘cqlumn for variables

x and z, and the second for y and w.

b7
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2 3 1 o A,
A

1 2 0o 1 A,

3 1 _1

B J. g ']é." 0 B1 - '2-A1

0 5 [-7 1 B, = A, + (-1)B,

1 o0 2 -3 6, = B, + (- 3)C,
c

0 1 -1 2 C, = 2B,

We see from C that there are indeed unique solutions
for x,y,z and w, Hence [? g] has a (uniqu:) inverse. When
the identity matrix emerges at the left of C we read the inverse
of |2 3| 1in the right haif of c.
Note that we started with a tableau -
. [ ;;aj
where A is the matrix whose inverse we seek, and ended with

I, | A

We can therefore describe this ﬁethod as. the appiication of
pivotal operations on A that ultimately produce I,. If this
can be done then these operaiions will transform I, into A%,
We illustrate the procedure by'trying to find the inverse, if:

2 0
0
1

any, of

1
o1l
0 3

7:*ﬁ af%§..;fff
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1 2 0 1 0 O A,
o @ o o 1 0 A,
o 3 1 0 0 1 As
1 o o 1 -2 O B, = 4, + (-2)B,
0 1 o0 o 1 ol B, = A,
0 0 1 c -3 1l B, = Ay + (-3)B,

Ncte that the first and third columns have one 1 and two

zeros, Hence we need only pivot on the second column. We

see that 1l =2 0
g =10 1 0
0 -3 1 [

Verify this by showing that A-A" = %A = I, .
In the next example we try to find the inverse of & matrix
that has no inverse. Can you anticipate how this will show

itse’.f? let n » 3

M = 2 -1 -2
- 3 1 1 .
Before starting note that the third row is the sum of the

first two. Doés this arouse any suspicions?

® 2 3 [1 o o | a

2 -1 -2 0 1 0 A,

3 1 12 o 0 1 A,

1 2 3 1 0 0 B, = A,

o & -8 2 1 o B, = A + (-2)B,
0 -5 -8 3 0 1 By = Ay + (-3)B,
1 0- ;:- ;:- ;‘;. 0. ¢, = B, + (-2)C,
0.1 % £-% o c, = (- 3)B,

0 o0 o0 |1 a2 1 Cs' = By + 50,
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It is hopeless. The three zeros in the last row proclaim that
we shall never obtain I, via pivotal operations, Can you
explain why it is futile to continue? (Can you pivot on such
a row?) . If we try to retrieve the equations impliecit in
the last row they would be:
0x, + 0x, + Ox, = ~1
0x, + Oxgy + Oxg = =1
Ox, + OX, + Oy = 1
Why? (See the beginning of this section.)
Clearly there are no solutions for (xl,xg,xa,x4,xg,xs,x,,xg,xg).

Hence M has no inverse,

2.12 Exercises
In Exercises 1-12, find the inverse, if it exists, of

the matrices listed.

1.8 12 6.[2 1 K]

-1

o M

7.

(9]

(abe #

o © O

DL I\).‘IO o ollw \.'n

o ‘

2 2
4 1
_53 ;2 
119

9.

| N

Nw hi:lvltéﬁ'ﬂ)”'“llzi o ol
_ . .
-

o + gl +

"0

EREC IV SEHRINI S S S R
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10,

L
O
[ ]
| &

11, -1l -1
1 11
2 2 2
12, {1 o1 &
01 01
1 011
110y
13, (a) Solve for matrix X:
3 2 6
112 « x = 1,
2 2 5
(b) Verify that
3 2 6
xe 11 2] = 1,
2 2 5]

2,13 Word Problems

Problems in the real world do not come to us in the form
of equations or 1nequa11ties.: To solve these problems we first
have to formulate them 1n words, and then translate these words
into the language of mathematics. This gives a problem the

I

form of en equation or 1nequa11ty. If we are able to solve

’7_1 TR
. . i
. iy
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these we are led to a solution of the original problem, In

this section we illustrate how this works. '"Real" problems are

usueily too complex to illustrrte siwmply, so we avail ourselves

of "puzzle" problems that resemble "real" problems in some

ways,

Problem 1,

Solution,

Mr. Ross said to his son Pater "For every
exam you pass this term I will give you 50
cents, But for every exam you fail you must
forfeit 20 cents,”" At the end of the term,
Mr. Ross erroneously interchanged the number
of exams passed and failed and paid Peter

bo cents. Peter objected, claiming $3.20.

How many exams did Peter pass and how many did
he fail? Assume that Mr, Ross and Peter made
no arithmetic mistakes, |

Part I,

Our first goal is to express the conditions

in this problem in. the form of equations. We
cannot do this without using & -symbol that

,represents_the,number»of exams passed and one

for the number failed. So we start with:

Let P represent the number of exams passed,
(We choose p to remind us that At represents
the number of exams passed ) Let f represent
the number of exams failed._ To determine

hqw much he was to receive Peter multiplied

.50 and p, then 20 and f, and finally subtracted

: ,ff??; L?ii. ?fjigl,“.

o SR AT i S
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This can be represented by 50p - 20f,
Peter claimed $3.20. This should be written
320 because the 50 and 20 are in cgnts. Thus
50p - 20f = 320,
On the other hand, Mr. Ross interchanged p and
f. For him then
50f - 20p = 40,
Rearranging for matrix solution:
-20f + 50p = 320
50f - 20p = 40
It is convenient to divide each member by 10,
This reduces the coefficients and constan:s
without changing the solutior set.
-2f + 5p = 32
5f - 2p = 4
This completes the first part of the solution.
We have succeeded in describing the conditions
of the problem as equations.
Part II
- Now to solve these equations. We use the pivotal

-'operation method,

f p -1
-2 5 32\“ L‘A,
5 2 k| a0
1-3 6| B - (-dn,
o?éleu a f-"'Bé = A"‘;‘“+' (.‘5)31'
| ""1'f °¢f74f_>'j :Cﬁ7;‘Bi +f§cé,
0 1 8 J'ie =25,
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Therefore Peter failed 4 exams and passed 8,
These satisfy the conditions of the problem.
Next semester the terms of the agreement were
revised, For each grade of 90 or better,
reported as E (excellent), Peter was to receive
50 cents. For each grade between 70 and 90
reported as P (passing), including 70, he was

to receive 10 cents, For each failing grade
reported as F, he was to forfeit 30 cents,

At the end of the term Peter (the best mathema-
tician in the family) claimed $2.20. His father,
a8 usual, reversed the number of E, P, and F
reports and claimed a forfeit of 20 cents, They
both appealed to Mre. Ross, who erroneously
interchanged the number of E and P reports and |
said Peter should receive .§1.40. How many of
each type of report did Peter earn? Assume no

arithmetic mistekes were made.

Part )

" Let B represent the number of excellent.reports,

let P represent the number of passing reports,

and let F represent the number of failing re-

ports, By Peter's calculation

50E + 10P - 30F = 220
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By Mr. Ross' cadiculation

50F + 10P - 30E = =20,
By Mrs. Ross' calculation

50P + 10E - 30F = 140,
Arranging these for solutions, after

dividing by 1o,

BE+ P - 3F = 22

-3E+ P+ 5F = =2

E 4 5P = 3F = 14,
Part 11

This system can now be solved by the pivotal
method., The solution is

(2P,F) = (5,3,2).
Does this agree with the conditions of the
original problem?

In'doing the exercises that follow try to see your
solutionvas consisting of‘tﬁo parts, as above._‘You may find it
necessary to reﬁd some probléms several'times béfore you un¢er-
‘stand the conditions well enough to»write‘équations that des-
cribe them,  fhié‘w111‘bevthe more difficult part, Do not
get discouraged, Good luck.

2.14 Exercises f,: ,

1. A CIaésroom hés 36'desks,;éomevsingle, others_dduble
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7.
3 dues of 25 cents, and all others pay monthly dues of 35
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(seating two). The seatin: capacity is o, How many
desks of each kind are there?

I-bought 15 postage stamps paying 72 cents, some 4 cent
stemps, the others 6 cent stamps. How many of each did

I buy?

For $1.06 I bought some 4 cent stamps, some 5 cent stamps
and some 6 cent stamps, 21 stamps altogether., Had the
price of 5 and 6 cent stemps been increased 1 cent I would
have paid $1.20. How many of each stamp did I buy?
A'grocer wants to mix two brands of coffee, one selling
at 70 cents per pound, the other at 80 cents per pound.
He wants 20 pounds of mixture to sell st 76 cents per
pound, and he wahts the net revenue from sales to be

the same whether the coffee 1s sold mixed or unmixed.

How many pounds of each brand should be mixed?

A collection of dimes and quarters amounts to $2.95. If

- the dimes were quarters and the quarters dimes, the amount

collected would be 30 cents less., How many of each coin
are there in the collection? |

A col_ie'ction of nickels, dimes, and quarters, 13 coins in
all, amounts to $2.40, If the dimes were nickels, the
quafters‘dimes,’and‘the nickels quarters, the collection
wcﬂld'ambuht to $1.45,  How many of each kind are there?

A club has 28 members. TIts junior members pay monthly

cents.‘ Dur1ng one month vwhen all paid dues, the collection

%
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9.

10,

11. !
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was $8.70. How many junior members are there?
A manufacturer makes two kinds of toys, A and B, using

three machines M,, M,, M, in the manufacturing process

- of each toy. The table displays the number of minutes

needed on each machine for cne toy of each kind, In

meking a batch of toys M, was used 4 hours 20 minutes;

Ml M2 M.‘.!
A 4 8 6
B 6 5 3

M, was used 5 hours 10 minutes, and M, was used 3

hours 30 minutes, How many toys of each kind were

there in the batch? .

Relative to acoordinate system, an equation of & line

is ax + by = 7. The line contains points with coordinates
(-2,3) and (4,5). Find a end b.

Relatilve to a space coordinate system, a plane has equation

ax + by + cz =12, Find a, b, ¢ if the plane contains

points with coordinates (1,2,-3), (1,-3,2), (3,1,-2).

~ A contractor employed 12 men; some he paid $15 per day,

some $18 per day, and the rest $20 per day, ei:pecting to
pay & total of $219 per _day. | His bookkeeper erroneously

*_ interchanged the number of men earning the least with the
 umber earning the most and prepared a payroll of §2o4,

- How meny .were hired at each rate?

- f??f‘ .
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There were twice as meny men on & bus &s women, At the
next stop four men got off and five women got on. Then
there were as many womén as men, How many men and women
were there at first?

There were a total of 46 passengers on a bus, consisting
of men, women, and children, At the next stop two men
got off. Then there were as many adults as children, At
the next stop 12 children got off. Then the number of child-
ren was equal to the difference between the numbers of
women and men. How many men, women, and chiidren were
there at first?

Said a young boy: "I am thinking of two numbers. Whether
I take four times the first minus the second, plus 2; or
twice the first plus the second, plus 4; or three times
the first minus the second, plus 1, I always get zero,"
What numbers did the young boy have in mind?

The sum of the ages of man, wife, and son is 64 years.

In 6 years the father will be three times as old as the
son. Four years ago the mother was 12 times as 0ld as
the son. How old 1s each now?

A contractor plans to spend $295,000 to build three

‘types of houses, 16 in all. It costs $15,000 to build one

house of the first type, $20,000 to bulld one house of
the second type, and 25,000 to build one Z0use of the
third tiwe. How meny of each type should he build if
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there are to be as many of the first type as the
other two together?

17, A restaurant owner plans to use x tables each seating 4,
y tables each seating 6, and z tables each seating 8;
altogether 20 tables. If fully occupiled,the tables

% of the x tables, L of the

y tables and %'of the z tables aré used, each fully

will seat 108 customers, If only

occupied, then 46 customers will be seated. Find (x,y,z).

2.15 Summary

This chapter presented the plvotal method for solving a
system of m linear equations in n variables, m §_3 and n §_3.
(The method can be used for any m and any n.) This involved
(a) The notion of pivotal operations on equations, and
equivalent systems of linear equations. %
(b) TWo'elementary operations on equations in a system ?

of equations; the first replaces an equation with

one in which a coerficient is 1; the other
replaces an equation with one in which a coefficient
1s O, |

(¢) These pivotal operétions are repeated as far as
posslible, ' The last system then has the Gauss-Jordan
reduced form, 'in which each column has zeros and

_ possibly one 1, -

"9



-75 -

(a) The convenj.ence of & tableau arrangement that records
the operation results ani equivalent systems.

The pivotal operation method enables us to

(a) solve systems thet have one, none, or an infinite
number of solutions,

(b) solve a set of systems'of linsar equations that have
the same coeffieienf metrix,

(¢) find the inverse of a square matrix, if it has one,

The chapter ended with word problems, that were solved

with the ald of systems of linear equations,

2.16 Review Exercises

Using the pivotal method 1n tableau form solve the
, vsystema in Exercises 1-6. Express infinite sets, if any, in

set notation. ;

v 1. x - hy o s 4, 1)
. -?J! + 3y,—.— :' ' | c

xeeyeons e e

3x + 7y + 52 -’6‘[#§>

= 3. =x :,Y_fw?? ?TEQA
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Find the inverses of each of the matrices in Exerclses 7-10,

if any.
7.]3 2 10.[1-1 2
17 3 12 1
8.]3 1 lo 1 3
11 2 — —
p— 11.11 1 1 O
9.11 -2 i
1 11 1 0 1
12 1
l1 01 1
-l T :
= o1 1 .l _
12, Solve the systems'listed below in one Ser, after writing
~a matrix equation. (Hint: wuse the result of Excrcise 7.)
3x+2y =4 3x + 2y = 7 3x + 2y =0
TX +5y =11 . - Tx+ 5y =17 Tx + 5y =0
13, Without.solving,;showuthat

.ﬁnd€13xwhéﬁrx

3x'+ y -2=0

ll‘
o

S iff“x - Y =0 ;
has an 1nfin1te nnmber of solutions.“
‘The value of ax’ + bx +e 18 0 when X = 1, 5 when X = 23

’j Find (a,0,¢)..

vy dealer puts up pens and pencils in two kinds of packages{
fnh pencils and 3 pens,in one, 3 pencils and 5 Pens 1" the
:'”ifOther' How many of each package snould one buy to obtain
7i§ﬁa‘totai of 38 “encils and hs pens? ’

A I R A Sk T
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16, To be adnitted to a goncert, elementary school students
pay 25 cents each, high school students pay 50 cents each,
and college students pay one dollar each, One hundred
students paid 63 dollars and 75 cents. Had the price
of admission for high School students been reduced 15

cents and that for college students 25 cents, the receipts

would have been 48 dollars and 50 cents. How many students.

at each level attended the concert?

ALy iy

i el b o o i




Chapter 3
THE ALGEBRA OF MATRICES

3.1 The World of Matrices

In Chapters 1 and 2 of this course, we have come across a
new kind of entity--the matrix (plural, matrices), We have seen
them arising in a variety of circumstances and have observed
how matrices can be used to organize and express complex sets
of facts easily, simply, and clearly, furthermore, we have
gone through various processes and activities in analyzing
and solving the problems that we expressed by means of these
matrices, These activities may have reminded us of activities
that we used in many areas in mathematics such as addition and
multiplication of numhers.

- In this chapter we will organize what we have learned about
‘matrices in a mathematical way and will explore to see what
structures we. are led _to, In this study we will proceed by

,means of definitions, theorems, and proofs.

Av1Definition»l,'fLet‘m7and n'be natural numhers,er rectangular
R Z -array (arrangement) of . mn elements chosen from
v;;}a set s, and arranged in m rows and n columns

L is a.n mxn S m, or an. mxn matrix over ,'

v_iﬁthe set s, or simply, if the set s is clearly

71?ﬁ;understood,_an m x n matrix.A The elements of

'tpfs are called scalars.
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Definition 2, m and n are ealled the dimensions of the matrix,
If m = n, the matrix is called a square matrix
and m is its order,

Notation. We use capital letters A,B,C,..,. YO name matrices
and lower case letters a,b,c,,,., to nome scalars,
The scalar in the ith row jth column of A is
denoted aij, where capitel A and lower case &
correspond, Thus the scalar in the ith row jth

column of matrix B is biJ’ and so on,

For example, the 2 X 3 matrix B should be:

and the m x n matrix A would be:

— o
83y 839 . 8y

a 1 a’.,. ““,":.a"n

' <
A =] S

" Definition 3, fTwo matrices A end B are egual, written A = B,
‘ IR ’?:fif and only 1f they have the same dimensions,

"'-mQJ{and for: all 1 and J, aid - bid. NtE

'.:STheoremJ1{_ 'f@Eqnelity_of matrice '13 an equivalence relation.

":To'provemthis We must prove three thinge.1.~

(a)‘ For all}matricesﬁa,

A}- A (the reflexive f, o
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(b) If A=B, then B = A (the symmetric
property).

(¢) IfA=B and B= C, then A = C (the
transitive property),

Prooi, . The proof of each part depends on the corre-
sponding properties of equality for scalars,
You are asked to supply the proofs in an

.exercise,

We have not yet specified the nature of S, the set of
scalars, Let us agree, from now on, unless otherwise specifieu,
that 5 is the field of real numbers, k; +In-some exercises

the field may be (Z.,+, ) or other finite fields.

3,2 Exercises

1, Corisider . 1 7 5 1 0— |
o : 2 -.1’116 6 1 0 .
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3. Solve the following equations:

X + 3 1
a) =

2 - ¥ 3

x* oy 1 -
b) =

x y? -1 1

4, Write the matrix whose entries are the sums of the

corresponding entries of the mat:ices:

1 0 -1 0 1 1]
2 1 0 -1 0 1
and
o} ™ 2| ‘1 o -l

5. Prove that eqhelity of matrices 18
(a) 'éefléxivei  for all A, A=A
’,__(b) symmetrics af A - B, then B - A
” ‘(c) transitive. 1f A = B and B - c, then A = C

3.3 mhe*Additionadf,M,triéesj-
Ve have already seen that addition of two matrices of the

“-'same dimenslons by adding corresponding elements of the two

atdral operation and 1ends 1tself to"

and_B be_m x{nlmetrices. By the sum‘ |



3
Example 1, . -1 4
| 5
ERE
Exampie 2, -2 1
-3

™ add[ ]

-1

I
2

3 4] =}2 0
:2 0 3 1
-5 =3 1 o O
+ | 2 -1 4| = |0 0
-7 3 <2 0O O O

11 ,
makes no sense because our

definition for addition applies only to matrices having the same

dimensions,

Definition 5, A matrix is called & zero matrix if each of its

entries is O; The zero matrix is denoted 0.

"(The bar indicates its matrix nature and

distinguishes it from the letter 0 and the

';numeral o, ) To emphasize its dimensions m X n,

'"fwe write Uﬁn’ or i1f it is a square matrix of

 '{order m, we write'U

s

3 - []

. Definition Alma"'ix B Iszcalledzthe additive inverse of A
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Proof,

- 83 -

Let M be the set of m x n matrices., Then (M,+)
1s an abelian (commutative) group.
The proof of this theorem has five parts, four

of them to prove the group properties, and one

"to prove it commutatives

(a) (M,+) is an operational system, That is, the
‘sum of eny two matrices in M is in M,

(v) For any two matrices A, B € M, A +B = B + A,
( commutativity)

(e) For any three matrices A, B, C € M, (A + B)
+C= A+ (B +C), (associativity)

(d) There exists a matrix Z in M, such that for
gll Ain M, A+ 2 =2 + A=A, (existence
of identity) (2 of course is U' )

(e)- For each A in M there exists a B in M, such that

'p_A+B-B+A T, (we denote B as -A or A
a8 -B) (existence of inverse element)

‘»i‘Proofs of each of ‘these parts are based on

:‘H,the field properties of the set of scalars.
the prove (a) to show how this 1is done, and

L :ryou ere asked to prove the other properties

- as an exercise. ,‘ SRS

. proofof(a) 1

Let A and B be in M. Then, for each i - 1,
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The existence of an additive inverse (property (e)) makes

possible the operation of subtraction of matrices,

Definition 7, If A and C are m x n matrices then A - C =
A+ (=), |

Just as there is a unique solution for the equation
X +a=Db in the group (R,+) (namely x = b+-a), and a unique
solution for the equation ax = b, a # 0, in the group (r/{0},°)
‘(namely, Xmb o %‘;) g0 there is a _t;n:l,que" solution for the equa-
tion |

X4+ A=B

where A and B are 1n M, na.mely

: ”‘,,““.‘ X=B+ (-A) =B - A, 1 hy?
: Example 5. Solve x + [ j I: :I

3 Exercises
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a b ¢ 0 o0 O a b -8 =D
a e f|] Jo o o ¢ ¢ |- -a

Subtract, if possible,

B 2 8 [ 3 8 I3
SN N d “”[2]":3 9

Let A and B be matrices having the same dimensions,

Prove:

(a) =(A + B) = (-A) + (-B)

(b). ~(-A) = A

(c) -U=07
aFLnB values of a, b, ¢, and .d that satisfy:

[a-2 4+1] B -5
a3 16 e 3a-2
o f"f '3a' 10 s 2b

(v) ] -[ | :l
; :ii 2a + c 2b - 10 O

?Let M be the set of ‘m’ x n matrices._ Proves

g :'-«.:.:-..:'(;.xar:)“?;-_f'-iFor all'A: and BinM, A+B=B+A,

_'“>:_1(b) For all A, B, c 1n M, (A + B) + c - A + (B + c).
o 3.'::*,;(c).:!;;»_-For a1l A,;lin M, A +Tp = 'b‘ + A=A
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e b c 1l 0
3b -8~ =2b
(¢) a e f|l+]0 1 o} (q) [: :] [: :]
La a+b b a-b

3 h i 0 1

3.5 Multiplication by a Scalar

From our definition of the addition of matrices we have:

R R

We can express this in another form:

KR ] i ::i]{i )

We define formally & new operation on matrices.-

Definition 8. If'A is an m x n matrix and k is a scalar,
'Vfthen by KA. 1s meant the mXxn matrix c

where ¢,y = kajy.

| Example 1. 3fr

He should notice that this new operation of multiplying a. matrix

by a scalar 1s different‘fram the operations we have seen, Ih\muﬂous _
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We combine them to obtain new members of

one of the sets - the set of matrices, Why does it not make

sense to talk of closure in connection with this operaticn?

However, though this is a new kind of operation, it has

many properties simiiar.to propertiee we have studied before,

* Theorem 3, ‘Let A and B be m x n metricee, and let k and

L be scq;ars._

(a)

(v)

= —;,(c)j
(e
}“:~(¢)f
S
| ”"hfcancellation).

-ﬁLet c - A +: B, then for all 1, 43

'*uPreoffofA(e);?

o ciﬂ . kaiJ + k‘oi‘1 (distributive property

k(fﬂ +B) = kA '+ kB (distributive law)

J(k + L)A = KA + tA (another distributive
"71aw) |

fk(zA) - (kz)A (e kind of associativity)
KA = Uifandonlyifk-OorA T
1l+Aa A |

._j-:fIf kA = kB and k ,l 0 then A = B (scalar

;J - 313 + bid (definition of +)
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Comment, Let m=n =2, To illustrate what {kA : ke€R}

e 1L ]

. 2
k-' ’kA =
for k= & ”?[ v Le W;I

For k.= 0, kA = Ty

.. B z
For k = 1, kA = ' R
‘ ‘ v E l]

Similarly for each k € R ue.obtain a matrix
1n":.{kA‘}_o'-~ Lo

. Proof, _-Remember, (Course II, Chapter 2) to prove
o 'xthat a subset of a group is a subgroup we
'tneed prove only.v
| 'Jﬁ (a) ' the subset is an operational system
’ijreﬂunder the operation of the group. |
‘Vf”;;(b)f for . every element of ‘the subset, its

tzfsfgroup 1nverse 1s 1n the subset

. Proof of (a) ,;._i;_,ALet k, and k, be scalars. ‘I‘hen k,A + k,A -

Since

N PRI R
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(¢) The subset {U} is a subgroup of C,

Example 2, With the aid of Theorem 3 we can solve a

matrix equation such as

N S

f | where X is a 2 X 2 matrix,
Solution, By Theorem 3(a) tﬁé left member can be

written

SR a0

Adding 3X to both members,

- 1
3x-3x+'|: ]. 3x+2x+|: °:l

'By Theorem 3(b)

B e bl
f'*°|fs.._-]' - = [ ]

- Adding | ;], the additive 1nverse of
"5.;;331 ;:1;‘;, , : LR -

ftﬁbiEOthAmembe?s gives
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Multiplying both members by,%5 we get by
Theorem~3(c) and 3(e)

1 .

‘This completes -the -solution, See if it

checks,
3.6 ‘Exercises

l, LetAm= | - Express kA as a single matrix,
: | o2 ~/3 |

if k 'is ‘equal to.l‘ | S
(@2 (3 (c) (@ o
o) B (r) 2+J3 (&) -;. (n) .2

.‘ a.;.m.[ ] [l] [ ] P—

‘<3each of the following as a. single matrix.
o ;..(a) 2A +B "9 (b);f 3A+2B-uc
(c) 2n+ 2_c) :- 3c ey ;ﬁ(A +B+ c) 3 A

:i § £s1ng1e matrix.
. , (c) A - (B + C)
) (e):,t. 3(A B) + 2c .

i etk i ey
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4, (a) Verify the statement:

a b 1 O o 1 o0 o] o 0
- a ]+ b + ¢ + 4a

Le. 0 1 O 0 1

‘(b) Express [: -:] as the sum of four 2 X 2 matrices,

each containing three zeros and one 1, and each
multiplied by a suitable scalar,
(¢) Expressf ® ‘j as the sum of six 2 X 3
d e f} - -
" matrices whose entries are all zeros except for
ohe 1, each multiplied by a sﬁitable scalar,
5. Let A, B, C be the matricee of Exercise 2, Solve each
.of the following equations for x |
(a) A +X=B + c: (b) A+ 2x B-C

(c) -(A+x)-3x+23 . -(d)gB(B-x)-Q(x-C)-B

‘_6“ Let A and B be m x n matrices and let K and £ be scalars,

Prove.,‘, S . L c
(a.) (x + z)A - kA + zA o (c)' ”kA'- 1] ,v'iffv Kk = 0 or
5 T A=T.
(b) (xz)A - x(m) | (d) 1A= A

(e) kA = _kB ,and 3 ;l o mply A= B. o
7. Let A o

'{kA k E R}. Prove that -
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8. Consider the field {Zs,+,*} and the set P of 2 X 2
matrices over Zs, ’
(a) How many matrices are there in P?
(v) 1Is (P,+) a group? Why?
(¢) List the members of {kA} if A = [ ] and kK € 24,
Is {kA} a group? Why? |
(d) List the membera of [kB] where B= l; ;] and

k. € Z,. Is [kB? a group? Why?
Find [kA} ﬂ [kB}.

o B 1 E 2 o 9 |
(e) Show tha.t‘ . . - form a sub-

group of P, o
(f) Solve in [Z, ,+,°} the }matrix equ.a.tion.

el 1

9, Is {kA: 1: e z. and A 1a a speciﬁc 2x 3 matrix with

' i".entries 1n Z.} a. group under addition? “Be prepared to

aupport your anawer.. ,,

3-7Mu.lt:g:lms.t:j.on¢,fm,,t,.1¢es

| 'In th.ts aection we ¢ ‘nc.entrate malnly on 2 x 2 ma.trices.

| ..";;i.‘",vv.'rhe reasoh
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We have seen in Chapters 1 and 2 how matrices are
multiplied, Recall that the entry in the product matrix is
found by multiplying numbers in a row of the first matrix by

numbers in a column of the second, and adding the products,

You may wish to remember this procedure as: "multiply row by

column,"

Example 1, As you follow this example, note the

Q dimensiens‘written below each matrix,

3 4 o o1 3¢l + 42 + 0:3 11
ST I W I LR GRS o
§2x3' 3Ix1 B " 2x1

'An m x n matrix times annxp matrix produces an m x P

matrix.

o ae + bg f af + bh
- Example 2 :
: ce +dg cf + dn o

_ _ Example 2 may serve as the definition for multiplication
i*'pf.z‘x_zvmgtriees. .The generel definition follows. L

.

Ve 7bef1nitiehf§;e-Let A be an m x n matrix and B an n x P
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ith row
Jth column - jth column

p—— e—— p— i —

by | . .
by, | . | 1

ith Irow a'11 aiﬁo,o oalkoooain ka 0'0 ocidooo

A B . cC |

with o Z“m‘% B

Fisure 31

, Let us examine in aome detail the set My of 2 X 2 matrices
’ }under multiplication. Our first question is. Is multiplication
_f:of such metrices commutative? Perhape you noted in Chapter l
"'lthat it A8 not To shon that it is not we need exhibit but one

i;‘counter-example. vTo this end 1et




W
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and observe whether or not the product matrix of (CD)E is thz
same as that of C(DE), You will find, if you carry out the
details of these mnltiplication35 that the two products are
indeed the same, We urge you to find these products yourself

as a profitable exercise and thus prove

Theorem 6, Multiplication in M, is associative,

Is there a multiplicative identity in M,? We easily show

la b 1 0 1 a b a b
e af "o 2] Jo 2f " fe a] [e¢ 4qf
| 1 0 o
Let us denote | by I, This leads to our next theorem,

'Theorem 7. For any matrix A in Mg, Al, = I,A = A,
Is ‘there perhaps another matrix in M, that behaves like
I, in this respect? If the"e were, say [: :] , then

s % _57 TR V1'
B DU would equal : But
Hence .r{. :l equals[ :| tha.t 13, I,.. This

| ﬁ o

7ffiproves our next theorem and permits the definition that follows .

s the only matrix in M, such that for all

T N A e e A e M A
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e nti s e o

Definition 10, The multiplicative identity (or unit

matrix in Mg is I3 = |: ]

Having established a unique identity matrix in My we go

on to investigate whether or not for every ‘matrix in My there
is a multiplica.tive inverse in M, We can exhibit a matrix in
M, that has no such inverse, Let A = [ ]. If B is its

inverse, let it be represented by I: ] ~Then

LaC ] [ ]
AR =
& .';
f"x+2z Cyeew
S B |x + 22 y 42w
’vbr-‘-}» o Vi
(l) X + 2z =1 - : (2) y + 2w‘-‘Q
(3) x+ez = T (u> yHaw=1

) .."Look a.t (l) and (3) Are there any values of x and z for which .
'if‘v'both (l) a.nd (3)' :-ja.re simultaneously true? Clea.rly not 'l‘here-
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To summarize what we have said about (Mz,°):

1,

1,

It is an operational system, This follows directly from

the definition of multiplication,

2, It is not commutative,
3, It is associative,
4, It has a unique identity I,.
5. Some matrices in M, do not have inverses in Ma; some
do,
Exercises
COmpute each of the following.
(a) AB o (b) AC - (e) BC
(a) BA (e) CA ) cB.
' err A B C in nxercise 1, determine whether or not

HHQ'AB , -BA: AC -‘-CA, Bc - -CB., Do you think that . for

”all matrices D and E in M,, DE - -ED? if not, exhibit

fltwo matrices for which this is not true.
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i 3 o 1 0 1
1 3 -1 0 1 o0

Determine whether each of the following statements is
true or false,

(a) A(B+C)=AB+AC (c) A(B+ C) = AB + CA
(v) (B + C)A = AB + AC (d) A(B + C) = BA + CA,

N

(a) Prove EF = FE,
(b) Note for E that ey, = ez and é,, = -€,,3 8also
‘note a similar statement for the elements of F,
3 Shdw that EF has the same property,
v(c) Let b =0, Show EF = aF,
7. Show by a direct substitution that.‘

e lf;'3;1:f . t - f";'q 0

o
.'J-
M)

B f‘_'[{'(b) A' i 2A - 31, - 'O', when A= .

"17f3ff(c) As - 2A + 21, - U; when A féf

ot
L= g

8-LetA'[: | :] and B - [:1 «

jfsnow by, direct substitution that.
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- a% - b? and (a + b)(a + b) = a? + 2ab + b? are
equalities when a and b are real numbers,
. 5 o .
9, Show that A = satisfies X* = U, Find another
l O
matrix that satisfies this equation,

10, Find the following products:

1 o] [ o [ o] [ o
(a') o (b) L .

I A
( R o] A 0 o o]l [ 0]
o ol ol L ol 4

How many square roots does the matrix have?
Are there any others? [ _-_I
‘Discuss the solutions of the equa.tion N

' I' | x. - I, =T, |
[x. is a2 x2 ma.trix.] |

39 "Multipliéaw..tive. Ihvérsésl-‘ih 'M,_ :

k ' In this sect:l.on we present a test by which one can deter- o
' -mine whether or not a. ma.trix in M, ha.s an inverse. If it does,
| 'd,then we want to know wh.ether or not it is unique, and how to
find it f
We have seen in Section 3.7 that [ ] ha.s no inverse.

' -,On the other hand we have seen that [ ] (our friend, the

o coding matrix in Chapter :I.) does ha.ve an. inverse. . How do Wwe go N
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' X y-
about finding that inverse? Let us assume that [ is that
zZ w
inverse, Then
B Y
should equal
1

. 2x + 32 2y + 3w
That is, should equal
X + 2z -y + 2w

This equality between the two matrices demands equality
of corresponding elements, That is,

(1) 2x+3z=1 (2) 2y + 3w =0

(3) x+2z=0 .(ll) Y+ 2w=1
Obserue that equations (1) and (3) have the same variables, x
and z, We have solved systems of equations before,

(l) 2x + 3z = 1 ‘

(3) x+2z=0

(1') -2x = 32 = =1 (multiplying ‘each member of (1) by -1)

(3') 2x + bz = 0 (multiplying each member of (3) by 2)

zZ = -l (adding members of (1') end (3'))
When we replace z with -1 in (3) We readily find X = 2

Now (x,z) - (2,..1) satisfies both equations (1) and (3).
‘By the same method used on equations (2) and (u) we get (y,w) =
- (- 3, 2),

Thus we find l: > J [ :| (the decoding matrix)

Finally 'de note that l: ] [ :I does indeed equal I, and

[ :I , I,, and our search is ended..‘

105
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2 3 2 .
The “inverse of : is R
- l 2 -1 2

Let us broaden our investigation to include any matrix

T b | x ¥
A = in My, As above, assume its inverse is I_ .
e o T : v
a b
Then
c ‘3.

This leads to four equations
(1) ax +bz =1 {(2) ay +bow =0
(3) ex+dz=0 (4) ey +dwal

Let us assume that a a‘ 0.

a b L A,
¢ d o =0 4
b 1 1

1 ry T (=0 B, = (‘a‘)Al

o ad-be e Vo5 B,a A + (-¢)B,
. & a : . : 7
| at b
o e 5 S a

O i e = 0. G~ (3T

Letad-bc-h, andassumeh;lo
Thenx--g-“, z _H' - |

smuarly y= ..g. , W ﬁ. : (Question._ whgt i a=0r)
Tnu.s equa.tions (l) - (4) can be solved for x, y, W, 2
(hence an i.nversla matrix can be found) 1f and only if

i-bc-h#o. E
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- a b
Theorem 9, The matrix A = [: :] has an inverse in M,
¢ d

iff ad - bc ¥ O,

Notation, We denote a multiplicative inverse of A by A™Y,
Definition 11, A matrix that has no inverse is said to be
singular, ‘A matrix that has an inverse is

called non-si_n_gfula.r or invertibie.

Continuing our 1nvestigation to find what the inverse of

a D] | | X ¥y
A = is, we assume ad - bc # 0, and check =
¢ d z W

d _b |4 _D ad - bc -ab + ab

R h B t] R h T h
.¢c a c afle & led-ca -bc +ad

h  h|. h N h h .

Keeping in mind h = ad - be, the last matrix is seen to be

E o]
s Or Iy, ,
0 1 v b - '
‘ ‘ hl [ ~bd]
e . - also be I,? Try
-~ alle d :
R| o

One more point, will |
1t, You will find it 1ls‘.'5-5“86f’comee our nej'ct‘»theozi'em.'

A A Y [ e
Theorem 10, If A~ -[ | and h = ad = bc ¥ 0, then
Yy ‘ I
: ok R Y _
AT = ' and_AA‘-A‘A-I,.
. a
It 1«8 convenient ‘t0- write A -1 l-— ] ‘In this

| form the formula. for an. 1nverse 1n M, 1s easlly remembered
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Theorem 11, A~} is unique,

You will be asked to prove this as an exercise,

Example, Solve: 3x +2y =6

x+U4y=5

Solution, Let A be the coefficient matrix [: :] '

x
Let X =] |andC =
y 5
The equation can then be written
AX = C (check).

Since in A, h = 344 = 2+1 = 10 £ O, A has

an inverse,
. : - . 1 u =2
Itlis A = Y0 .
Then A~ Ax A"c (left operatlon) and
We can easily show
X = Atc,
To find what x 1s we need only obtain the

fproduct A"c as follows.,

R | 1a=gpfx"w_,
. ~Finally we write :].

S - 42 . 18 o

Check., ( ) + 2(]xﬂ 1o - 6
<>+u(9) lﬁ&a’—ﬁ 5

 (compare this method of ‘solution with that in

CMmmra) '1108
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3.10 Exercises

1.

3.

Determine whether or not each of the following

matrices has an inverse, if so, find it,

) 3 9 2 2
(a) (b)l: (c)[

o 1 2 6 2 2]

-2 [ ol 2 F
(d) (e) [: | (£) [:
R FRS ; oy a3
N I 1] a 1)
(g) | (h) (ab # 0)
R S R | 11 1}

For what value(s) of x will each of the following

matrices be singular (non-invertible)é

2
x-2
o
(a) Let A = [: :] Prove A” = 1] e

(b)q Let B = kI,, k 1s a non-zerovscaiar.

Prove B~ EI,.,v-.

‘ Investigate this question. Is I, the only matrix in

Ma that is its own inverse?

‘=Prove that U; is & singular matrix.lb

'Let A and B be non-zero ma»riees in My such that AB = T,

- Prove that neither A nor B is invertible. (Hint: Use

'an indirect proof )




O

10 Prove Theorem 11.57jj;f'}
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7. Let A be an invertible matrix and B a'singular me trix,
both in M;, Determine whether AB and BA are invertible
or singular. Support your answer with examples (or a
proof if you can find one)

8, (a) Let A and B be invertible matrices in M,. Show
that AB and BA are also invertible by displaying
some examples, |

(b) Prove: (AB)™* = B”'eA™ if A and B are invertible
, matrices in My,
9, Using the method of multiplication by inverses, solve
each of the following pairs of equations, and check,
(a) x+3y=5 | (b) 3x+2y =5
2X + 5y = 8 o 2x + y =3
(¢) B5x+3y=13 - = (d) 2x-T7y=3
2x+ y=5 . x-3ya=2
(e) 3x+ y=14 (f) U4x+3y =26
- lx + ay,s._ 20' : e BX -y = 4
(g) 3r+ls=1 ' (n) 5u-3y=27
C Bpadsmal2 0 Bu+2y =10

(1) ex+byea  (§) eax+by=1l

 bx+ay=b  bx +"ay; 2

(k) ax _by-b . .. (1) éx 3y i 20,

bx e _,.1.x + Ey - 1
a,ﬂ ¥bﬂ>'@-3 o '
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3.11 The Ring of 2 X 2 Matrices

The set of all matrices is so rich that we find it advisable,
both for possible applications as well as further mathematical
study, to restrict our investigation to various subsets of the
set of all matrices, |

We have already found that the set of m x n matrices,

M for a given m and n, and with addition as we defined it,

m X n?
constitutes a commutative ( ebelian) group, For m # n we cannot.
define a multiplication for this subset of matrices, though we
can define a multiplication of m x n by n x p matrices, But in
this latter‘case if A is an m x n matrix and B an n x p matrix,
we cen multiply them to obtain AB and the result is an m X P
matrix, but BA is a meaningless expression unless p = m, (Why?)
Ifm=nap we have squarefmatrices° Then both AB and BA are
defined, but~in general AB # BA, If we restrict our investiga-
tion to square matrices - and*we‘will further restrict this to
considering 2X2 matrices, elements of Mg - we find that we
‘have e richer structure than a group since we have two opera-
tions, addition'and multiplication. We will symbolize this
structure as (M,,+, )e We know that (M,,+) is an abelian group,
: and that (M,, ) is an operational system in which multiplication
',is associative. Moreover,‘it is not hard to see that in (M,+,°)
multiplication distributes over addition (both from the left
‘and the right), | | |

A structure like (M2,+ ) with the properties given above

is called a ring. S
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Definition 12, A system (B,+,¢) 1s called a ring if:
(a) (B,+) is an abelian (commutative)
groups
(v) (B,¢) is an operational system in
which a«(bec) = (asdb)ec
(e) In (B,+,+)
(1) ae(b+c) = asb + asc

(11) (b + c)ea = bea + cea

Theorem 12, The system (M,,+,+) is a ring,

We found earlier in this chapter that the set M; has an
'identity element under multiplication, This property is not an
essential characteristic of a ring. When a ring does have a

multiplicative identity element usually called a unity of the

ring, we call the ring a ring with unity,

. Theorem l3; The set (M,,+, ) is a ring with unity,

 We will see in the exercises that there are rings which do
not have multiplicative identity elements.

In Section 3. l3 we will study a subset of 2 X 2 matrices
which includes all invertible 2 X 2 matrices. One interesting
property of this set 13.,,;1 '

Theorem 1u The set of invertible matrices of order 2 is

°vaugroup:(nongcommutative) under_multiplication.

: j3 12 Exercises

l Give a complete formal proof that (M,,+, ) is CR ring

'v,;i with unity.,;._
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Consider the set. of -matrices:
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Give a complete formal proof that the set of invertible
matrices of order 2 is a group under multiplication,
Investigate the set of all integers to see if it is a
ring under addition and multiplication, Discuss
commutativity and a unity element,

Investigate the set of even integers (E,+,¢), Discuss
commutativity and a unity element,

Investigate (R,+,*) to see if it is a ring. Commuta-
tivity? Unity? Group property?

Investigate the set of integers mod T (25,+,+). Ring?

Unity? Field? Group under multiplication?

Investigate the set of integers'mod 6, (Zgy+,°). Ring?
Identit&? Fleld? If a«b e=o, what can you say about
a or b or both? IfaZ0and b #£ 0 and asb = 0, then

-a and b are called ‘divisors of zero.‘

il PR B R

= == | e

R '”_1}33"15:' PO 0 u*iy
| : ea; = o o N €3 = | o

:‘(a) Construct a table of all possible products

eiJ°ekz-

fﬁf i;(b)ijiscuss the table ﬁihg stru¢ture? Divisbrs of

zero" L

IS RPPI SN ROV Y
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3,13 A Field of 2 X 2 Matrices

In our previous experience in mathematics we have met many
instances of an algebraic structure called a field, Let us
recall the definition of a field, The ring of 2 X 2 matrices
is not a field, because multiplication is not commutative,

The subset of invertible’matrices is not a field for the same
reaeon, and also because this subset does not contain the iden-
tity element for addition, namely

0 0

e o

Are there subsets of 2 X 2 matrices that are fields? ‘What
'ccnditicns must we satisfy to get such a subset?
| If we take the set of invertible 2 X 2.matrices and add to
them the identity element for addition we will have a set which

may have a subset in which multiplication is commutative.

Consider the set Y of matrices of the form

x -5 | - ,
:] - where x, y € R, This set contains
X f . -

‘ S - or ;
[ ] (xso, y= O), ,and 8.180[ ’]](xsl, y=0).

It is not hard to verify that (Y,+) is an abelian group. ‘Since

R4 contains Io. e know that for every A € Y, ATy = A =Ig0A, We
"'also know that x'.+ yﬂ = h is either zero or positive. It is
B ;:positive for all elements of Y except U;.‘ Therefore, by Theorem
'i.,}9, for every A € Y, A #~ U;,_we have an A 1 such that
. pUY =‘1, = a7 ‘A, :

\)




It remains to prove that for every Y,, Yo € Y
(l) Y;’Yg € Y
(2) Yy¥; = Y,oY,

Xy, =)y Xa =Ya
Let Ya = 9 Y, = Calculate Y; .Ya and
Ya X Ya X! o

Y;°Y, and verify points (1) and (2) directly above, We therefore
have:
Theorem 15, The system (Y,+,+) is a field,

3,14 Exercises

1, Which of the following matrices belong to Y?

v T 23 o 7
(a) .. (b)
: 4 5 6 - L§ fﬂ
. Fi T ) -6
(e) | ! () N
FRE 1N o 9
fo 1 [ Tl
(e) | (2) |
O - 0 9
(&) |. | (h) ;
. a3 m - fF+1 1-
(1) F o - (J) z * | ﬂ
Sl d S e v

”_2.f F&nd the 1nverses of those matrices in Exercise 1 which
ko belong to Y S
vj ;3;'”G1ve a complete and formal proof that Y is a fleld,
.4;“ Study the subset of Y consisting of matrices

B -:fbr‘which x§‘+vy! = 1.
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#5, Consider the transformation whose matrix is

-

where a® + b® = 1, Prove that under this mapping
every point of the unit circle maps into a point of

the unlt circle,

3.15 Summary

1, Matrices, the equality of matrices, and their addition
were defined formally,

(a) Equality of matricgs is an equivalence relation,: *
(b) There exists an additive identity,

:(c) The set of m x n matrices is a commutative group

: under addition,

2., Scalar multiplication is & novel mapping which meps a
pair consiéting-of‘an element from a set of scalars
and one element from a set of matrices into the set
of matrices,
i(q)‘»There‘are'two sets involved in this operation,
(5)} Scdlb;ﬁmultiplication has 4wo .distributive

' __properties and one associative one,
| (é)f‘The set of all scalar multiples of a glven matrix
A I'1s an abelian group..

3. A definition of multiplication of matrices was made
formally.ﬁﬂz_ L | E
,(a) It céh be performed only if the first matrix has

- a8 many columns as the second has rovws,

16
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(b) Therefore, square matrices of the same corder can

always be multiplied,

(c) It is associative when it is possible,
bk, For multiplication in the set M; of 2 X 2 matrices,
we found
(a) (M;,°) is an operational system,
(b) It is not commutative,
(¢) It is associative,
(d) It has a unique identity, I,.
(e) Some matrices in M, do not have inverses;.if they
do, the inverse is unique,
a b
(f) A matrix A = [; QJ in M, has an inverse iff

) d B
h =ad - bc £ 0. Then the inverse A™! = & .
: Bl e

5. We defined a new algebraic structure called a ring,

(a)
(v)

(c)

The set (My,+,) is a ring with unity,
The set of invertible mniatrices of order 2 is a
non-commutative group under multiplication,

We found rings with and without commutativitys

. with and without a unity; with and without

divisors of zero,

6. It is possible to find subsets of My which are fields,

3.16 Review Exercises

1. Solve for matrix X and check,

2X + [i z]- 3 X -[; ii] |
o B | A




3.

5.

7.

by a
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Prove that (2,,+,°) is a ring,
For each of the following either give its inverse or

explalr why it has no inverse,

Express as a single matrix:

= A0 I

(Hint: It is a 1 X 1 matrix,)

| | 1 &) |
Show that A = satisfies A® - 4A - 51, = T,,
' 3
omud

2
1 2] [1- 1
3 3115 5 (3 3
Verify that . =
1 2 2 3 1l 2
3 3115 5 3 3
1 L
_ 5 5 ,
Does this mean that 5 ' 3 is a multiplicative iden-
| 5 5 |

tity? Explaln your.answer‘
Construct a 5 X 4 matrix whose elements a.i_.1 are given

13 = min (j"J)O

" If X% + X -« 1 = 0, show that

ForodL 7

If we switch around the elements of a matrix so that
its rows become coiumns and its columns become rows (in

the same order),.we obtain a second matrix called the

transpose of the original matrix,

1 L 6 b 6 L .2
(a) (v) (c) (a)
11 3 2 3 3 2 -2 21



10,

11,

12,

13,

- 14 -

3 -1

IfA = |O 0 ,'construcf the transpose of A, What:
1l 2

is the transpose of B = [i 2 3} ?

Show that the matrix

(o) 0
A =
| 1 0
satisfies the equation A? = O, Can you find other
matrices in My, that satisfy this equation?

o l 0 -1
IfTA = s B = » find AB and BA,
1 0 1 0

What do you observe? Can you find other matrices that

behave thir way with each other - or with A or B?

Determine whici: of the following sets are rings under

addition and multiplication:

(a) the set of'humbers of the form a + b3, where a
and b are 1nteger§;

(v) the set of numbers %’, where a is an integer,

Show that 1f A € My, B € My, B # U, and AB = U,, then

A cannot have an inverse, Can B have an inverse?

119




Chapter 4

GRAPHS AND FUNCTIONS

4,1 Conditions and Graphs

In this chapter we will study many questions and problems
wﬁich involve graphs, You have constructed graphs already in
several situations: (1) 1lattice point graphs where only points
with integer coordinates were used, (2) graphs in coordinate
geometry where oblique coordinate axes were used much of the
time, and (3) graphs of functions where perpéndicular coor-
Adinate axes with equal units were used. In this chapter we

will consider only graphs in a rectangular coordinate system,

y

P(a,b)

N ST 1
—_——F + —— + 4 + + > X

A -3 -2 -l 1 2 3%y

..2.F

Figure 4.1

Recall that for each ordered pair (a,b) ¢ R x R, P(a,b) is
the point of the plane whose x~coordinate is a and whose

O
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y-coordinate is b, (See Figure 4.1.) Since the assignment of
ordered pairs of real numbers to points of the plane is a
one-to-one correspondence, we often talk about the point (a,b)

when we mean the point with coordinates (a,b).

Example 1, Given the condition 2x + y ¢ 3, what is its
solution set? What is its graph?.

One way to write the solution set is, of course,
S = {(x,¥): 2x + y < 3}. (Unless the contrary is stated we
tate X, ¥ € R to be understood.)
Since ,

2x +y < 3iff yg -2x+3 iff y = -2x+ 3 or y < -2x + 3,

we can write,

S = {(x,y): ¥y =-2x + 3 or y < -2x + 3}

= {(x,¥): y = -2x + 3}V u {(x,¥): ¥y < =-2x + 3}

This is about as far as we can go in this direction in examin-
ing the solution set,'S. Now let us see what the graph, T, of

The graph of {(X,¥):y = -2x + 3} is easy to draw since it is a
line with slope ~2 and must intersect the y axis at (0,3). Now,
the line y = =2x + 3 divides the plane into 3 subsets: (1) the
line itsel?, (2) the open halfplane "above" the line, and (3) the
open hélfplane'"below" the liﬁe.> Take first a point (u,v) ing%he
open halfplane below the line (see Figure 4,2), ' 7

. r———— —— s
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Figure 4.2

The point on the line with the Same x-coordinate, u, has y-coor-
dinate -2u + 3. Clearly, v < -2u + 3. That is, all points below
the line must have coordinates satisfying the condition y < -2x

+ 3. The graph of our solution set for‘y £ =2x + 3 is thus thg
line plus all points “"below" the line. This is indicated by
"shading in" the graph below the line. On the other hand, it is
easy to see that points "above" the line must have y-coordinates

satlisfying v > -2x + 3, as is shown in the diagram for the point

(w,2). In this chapter we will be studying conditions, which
are open sentences in two variables, denotud C(x, y). |
Exémplé 2, Construct the g;aph-bf the cbndition c(x,y): .
x+3y>, S ‘
We first solve the pondition -x + 3y > 12 for y, Thus
X + 3y >-12 iff 3y D x¢L 12 iff y D %x + 4, We t@gn grabh
y= %x + 4, The graph'gf y‘) %x + 4 is the set éffbointé-above

3

2
H

o “he line y = %x + 4 (thé‘shaded reglon is Figure 4.3),
ERIC o | |
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To indicate that the line is not paft of'the greph, 1t :s "broken"

or "dashed,"

-~ 4
a0 8 5

Figure 4.3

Thus, given the condition for a non-vertical line, y = ax + b,
we can write the conditions for the halfplanes determined by the
line:

(1) y > ax + b is the condition for the halfplane above

the line, y > ax + b is the condition for the open
halfplene ebove the line,

(2) vy < ax + b is the condition for the halfplane below
77T the line, y < aX ¥ b is the condition for the open

haelfplane below the line,
Bécause of the ¢orrespondence between lines, halfplanes, and

their conditions we often speak of the line y = 3x + 2 or the

open haifpiane ¥y > 3x + 7, and so forth,

Example 3. Graph the condition (x,y): y < |x]|.
Since o

y < x| 1££y = x| or y < |x|,

493
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the solution set is
((x y): y= 1z} U Uz ¥): ¥ < Ix]).
To graph y , |x|, break the problem into two parts,
1, If x> 0, |x| = x; so that the
graph of y = |x| is the same as
the graph of y = x for x 2 0,
2, If x< 0, |x] = -x so that the
graph of y = |x| is the same as
the graph of y = -x for x < O,

The graph of y = |x| is shown in Figure 4.,4(a). Notice
that this graph partitions the plane into three sets of points -
the points of the graph of y = |x|, those above this graph, and
those below it, The coordinates of all points below the graph
of y = |x| satisfy the condition y < |x|. The graph of y { |x]|

is shown in Figure 4,4(b), \ 'ﬁ r

N\ a,lal)
|

0

% I t<ial

Flgure 4.4 (a) o Figure /4 (b)
Example 4, Graph the condition |x] + Jy] = 2,

‘It 1s best to do this problem by constructing the graph one
quadrant at a time, Figure 4.5(a) shows the details of the analy-
sis, and the graph is constructed in Figure 4,5(b),

|
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.x<°,y>0 x>0, y>0
x| + [yl =-x+y =2 [x] + |yl =x+y=2

y=x+ 2 14 y=-x+2 :
0 i — X 1
x<0,y<o0 x>0, y< O

Ix] + |yl =X -y=2 x| + |yl =x -y =2

x =2

y = -x -2 | y

(v)

Figure 4,5

Thus, the graph is constructed in "pieces," one for each

. quadrant.,
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Questions. (1) For what points is |x| + |y] < 22
(2) For what points is |x| + |y| > 22

The answer to (1) 1s the points inside the square, and for
(2) the answer is the points outside the square, Check several
points to see that this is a reasonable answer,

The graphs in Figures 4,i(a) and 4,5(b) both have symmetry
with respect to the y-axis and the graph in Figure 4,5(b) has
several other symmetries, Knowledge of these symmetries in ad-
vance is helpful in constructing graphs of conditions, For
exanple, in graphing y { {x| we could have plotted the points
for x > O and drawn in the part for x < O so as to produce the
required symmetry with respect to the y-axis,

A figure is symmefric with respect to a line if it is its
own image under the reflection in the line, For the y-aﬁis, the
rule of the line reflection is (x, y) = (=x, ¥). This means
that for a graph to be symmetric with respect to the y-axis,

(%, ¥) is in the graph if and only if (-x, y) is in the graph
(see Figure 4.4 (a)). In terms of the condition y { |x|, this
means that (x, y) satisfies the condition if and only if (-x, y)
satisfies the condition, Since |-x| = |x] for all x € R, the
desired property holds for y { |x|; that is

Y ﬁ'lxl iff y  |-x].
The graph of C(x, y) is then symmetric with respect to the
y-axis if and only if C(x, ¥) and C(-x, ¥y) are equivalent

126
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(that is, have the same solution set).

Hence, the graph of. |x| + |y| = 2 is symmetric with respect
to the y-axis since

|-x| + |yl =2 1ff [x| + |y¥] = 2.
Again, the reason is that |-x| = |x| for all x ¢ R, What about
the graph of y = x*? Is it true that

y=x® iff y = (-x)??

Yes, since (-x)2 = x2, Therefore, the graph of y = x® is Symme t-

ric with respect to the y-axis.

Questions, (1) 1Is the graph of |x| + |ly| = 2 symmetric
with respect to the x-axis?
(2) what is the test that you apply?
(3) How is the test stated for any condition
n(x,¥)?

The. graph of |x| + |y| =2 is also symmetric with respect
to the line y = x, A coordinate rule for the reflection in the
line y = x is (x,y)=——>(y,x). As before, then, the graph of a
condition a(x,y) has symmetry with respect to the line y = x if
and only if a(x,¥) and ¢(y,x} are equivalent, It is clear that

x| + Iyl = 2 122 |y| + |x] = 2.

L,2 Rxercises

(411 graphing is to be done in a rectangular coordinate
system, ) | '
1f Construct a graph for each of the following conditions on the

9
ERIC same set of coordinate axes.

IToxt Provided by ERI
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(a) y = 3x (a)
(b) y=3x-1 (e)
(c) Do you see any pattern in (r)

your results?

3x + 2
3x+ 7

y

y

What does the number a in
the equation y = ax + b
for a line tell you about

the graph?

Construct the graph of each of the following conditions

on the same set of coordinate axes.,
(a) y=3x+4 (a;
() y=-4x+4 (e)
(c) Do you see any pattern in (f)

your results?

Construct the graph of each of the
Use symmetry as an aid in graphing

y=-3x+4

y=2x + 4

What does the number b in
the equation y = ax + b
for a line tell you about

the éraph?

following conditions,

whenever possible,

(a) 3x -2y 6 () x -5y > 10

(b) y= Ix| +3 (h) y= |x} -2

(e) y= 2|x| - (1) v = <2|x|

(d) y= |x - 2] (3) v = Ix+ 3|

(e) x= |yl (k) x = -|y|

(£) x= |yl +1 () x= |yl -2

Construct the graph of each of the following conditions,
(a) ¥y <3x () y 2 3x+ 2

(b) y < -3x + & (&) y{-3x+UondxD0

(¢) y{-3x+L4andx g0
and y > O
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Construct the graph of each of the following cenditions:

(a) x| + [2y]l =5 (e) x| - 1yl =3
(b) Ix+2]l +y=1 *e) x| - ly -1 = -2
(c) Ix+2y] =4 (g) 2y =Ix| +x
(@) Iyl > Ixl (n) Ixl +x<ey

The rule for the reflection in the origin (a point re-

flection) is (x,y) —»(-%x, -y). A graph has symmetry

with respect to the origin 1f and only if it is its own
imege under the reflection in the origin,

(a) If a graph is symmetric with respect to the origin '
and (=3, 4) is in the graph, must (3, -4) be in the
graph? Must (4, -3) be in the graph?

(b) What must be true of a condition C(x,y) in order that
its graph be symmetric with respect to the origin?

(¢) 1Is the graph of |x| + |y| = 2 symmetric with respect
to the origin?

Construct the graph of each of the following conditions,
Before graphing, determine whéther or not the graph is
symmetric with respéct to (1) the y-axis, (2) the x-axis,
(3) the origin, and (4) th: liney =x,

(a) Ix| + |yl =5 (e) Ix| + ley| =3

() Ix-2| + |yl =4 #(q) lx+yl =1

Regions of the Plane and Translations

In Section 4.1 the condition |x| + |y| = 2 was found to
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have a square as its graph, It was observed that points interior
to this square have coordinates satisfying the condition |x| + |y|
< 2, Similarly, points exterior to the square have coordinates
satisfying the condition {x| + |y| » 2. Thus, the graph of

[x] + |y| = 2 can be considered as dividing the plane into two
parts of which it is the common boundary.

You also saw that a conditicn such as y = =%x + 4 divides the
plane into two open halfplanes of which 1t is the common boundary.
Sets of points in the plane such as the closed halfplanes deter-
mined by a line, or the union of a square and its interior, or the
unionof a sguare and its exterior, as in the examples above, are
called regions of the plane. In these cases they are regions

determined by conditions in x and y.

Example 1, Graph the solution set of the condition
y<-¥x+4andy2xand y> 0, We first
graph the boundary lines y = =%x + 4, y = 2x,

and y = O,
y
6 /47/7///////
[TT 7T TTTT77/
/T 7T T T T 777 77
;ﬁ ,74L/*/f/’/ / /S S/
™S IS NNS
-/ /(1[ 3
3\ AVAVAV. ) A X
-2| ¥ o—-L+6 10412
_?4_ 1 ¥ | T
Figure 4.6
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The shaded areas in Figure 4,6 show the graphs of the solu=
tion sets of y ¢ -dx + 4 ([[[]), vy ¢ 2x (), and y > 0 (////).
The triply-hatched triangular region OAB (FEEE) is (with the
boundary lines) the graph of the given condition. The condition
thus determines a triangular region; that is the union of a tri-

angle and its interior,

12$Y
40 66)

]o. T:T
8t c
6{ (x',y') (a +45 ) A' (16,6)
uf

T
2'/ ~-
O/ (x'-b,y'-6) Ha®)~p ., , &

2 4 6 8 10 12 14 16 1

Figure 4,7

In Figure 4.7, AO' A'B' is given by the coordinates of its
vertices, We refer to this triangle and its interior as the re-
gion O' A'.B,

Question. Region O'A'B' is the intersection of three half-

planes, What are they?

We know that any line in a coordinate plane is the graph of an

equation y = ax + b or an equation x = ¢ (if the line is vertical).

Using the methods of coordinate geometry, we find that
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(1) O A* iz the graph of y = 6
(2) ‘OB is the graph of y = 2x - 2
(3) I B is the graph of y = =%x + %#

(See Course II, Section 6.15, Exercise 6,)

Thus, region O'A'B' is the graph of the compound condition y > 6
and y { 2x = 2 and y £ -%x + %# . Let us denote this condition
by € (x,y).

A C' A'B' was obviously chos:n with malice aforethought for
it is easy to see that aA0' A'B' is the image of AOAB under the
translationTeT4,a._,Let us now explorerthe relationship of this fact
to the conditions ¢(x,y) and c’(x,y) which determine the triangu-
lar regions OAB and O'A'B', respéctively.

First, let (a,b) be any point in the triangular region OAB,
Then 1ts image point under T in the region O' A'B' is the point
(a + 4, b + 6), Since T is a translation (and hence a one-to-one
mapping of ‘“he plane onto the plane), it has an inverse T‘1=T'16.
Then we have, by coordinate rules, *

(x,y) —=—>(x + 4, y + 6)

-}
(%,¥) ——>(x - 4, y - 6)
‘How is this related to the conditions? PFirst, consider
any point (a,b) in region OAB, 1Its image (a + 4, b + 6) must
satisfy the condition ¢ (x,y) for region O' A B', This is stated,

and the equivalents worked out below,

(1) (b+6)>6iffb>0
(2) (b+6)2(a+4) -21ff b 2a
(3) (b+6) g -k(a+h) +3
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4=
W
=

iff b + 6 £ ~%a =

[WSRUL)
w

0
=
iff b + 6 £ -ka + 10

iff b + 6 ¢ -%a +

iff b -+ 4
The equivalents give us precisely the condition C(x,y) for re-
gion OAB, stated in terms of a and b, What does this say? 1In
particular, it says that knowledge of the condition ¢'(x,y) for
region O'A'B' enables us to find the condition ¢{x,y) for region
OAB, given that region O'A'B 1is the image under a translation
of region 0AB.

Now take (x%y') any point in region O'A'B', Its pre-image
under T (its image under T°!), (x* - 4, y» - 6), is in region
0A% and must satisfy e(x,y). This is stated and the equivalents
worked out below,

(1) (y -6)>0iffy > 6
(2) (y =6) 2~ U4) iff y -6 ¢ 2x' -8 iff

yV £ 2x' -2
(3) (y -6) < ~¥x'=-4) +4iff y -6 -4x'+
i

3 + 4 iff y -k + %#-. (Check the computations,)
Again, from the condition ¢(x,y) for region OAB and know-

ledge of the translation T the condition ¢ (x,y) for the image

region O'A'B' is obtained, This is a general result concerning

the graphs of conditions ¢(x,y) and translations,
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Figure 4.8

If G is the graph of a condition €(x,y) and T is a translation

such that

(x,y)-—2—>(x +a,y+b) or (u-a,v- b)—T—>(u,v)
and G is the image of G under T, then a condition ¢'(u,v) whose
graph is @ is given by

e (u,v) = ¢(u - a, v - b)
(see Figure 4.8.)

To prove this, note that i1f (u, v) is in G' then it has a
pre-image in G, since T is an ‘“onto" mapping., Since T is
one-to-one, that pre-image is precisely one point, (u = a,

v -b)., But (u -a, v = b) is in G if and only if it satisfies
the condition C¢(x, y). That is, C(u - a, v - b) is true,

Exemple 2, Graph the condition |x = 5| + |y - 3| =2

(See Figure 4.,9.)
Using what we have observed about translations, this graph

can be constructed easily from the graph constructed in Example

4 of Section 4.1,
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Figure 4.9

The condition is in the form ¢(x - 5, y - 3). This suggests that
we graph the condition ¢(x,y), that is, |x| + |y| = 2 and then
apply the translation T whose coordinate rule is

(%,y) —=—(x + 5, y + 3).
The graph of the image should then satisfy the condition c(x - 5,
y - 3) (i.e. |x=-5]| + ]y - 3] =2). To accomplish this, as
shown in Figure 4.9, we find the image of each vertex of the graph

under T and connect them in the proper order,

Question. What is the graph of the condition |x - 5| + |y - 3|
< 27 (See Figure 4.9.)

4,4 Exercises

1. Graph each of the following conditions.

AP
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(v)
(c)
{a)

(e)
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Xx£0and y > 0and y £ -X.
y>0and x < 4 and y £ x.
y<Oandy > -6 and x > 0 and x <
Yy>0undy<5andy<2x and y { =3x + 18,
x<0andx >-6andy<lbandy>2x+ Ll and
y £2x + 12,

Graph each of the following conditions:

(a)

£

(c)

- (4)

(a)

(v)

(a)

(v)

x>0and 3y -2x < 6 and 5y - 3x > -3 and Uy + x £ 20
and y 2'0.

3y +2x <9 and y <landy >x-T.

(Use a "dashed" line to show that & boundary does not

belong to the graph of a vondition,)

Find a condition for the complement of the region
graphed in (a). ('The complement of a region is the
set of points of the plane that are not in the region.)
Find a condition for the complement of the region

graphed in (b).

Graph the compound condition y  =3x + 4 and x > O and
¥y > 0. Find the image of the graph under the transla-
tion T with coordinate rule

(x,y)—=—>(x + 5, ¥y = T)

Find a condition whos graph is the set of points found

as the answer to 3(a).

Graph the condition |x| + |y| = 5.
Find the image of the set of points in this graph under
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(v)
(c)
6. . (a)
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(c)
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the translation T given by (x,y)—-—T—>(x + 6, y + 6),
Find a condition in x and y for the image set,

Answer: |x - 6f + |y - 6| = 5.

Graph the condition |x + 2| + |y + 3| ¢ 3.

Find the image set of this set of points under the
translation T with coordinate rule (x,y)—T—b(x -7,
y - 3).

Find a condition in x and y for the image set.

Graph the condition |x| + |yl ¢ 3.

Find the image of this set of points under the trans-
lation T with coordinate rule (x,y)——T—>(x -2,y - 3).
Do you see how the translation T can be used to graph
the condition |x + 2| + |y + 3| ¢ 3 from the graph of
the condition |x| + |y| ¢ 32

A If (a,b) € &, and (x,y) is
' its pre-image under T, how
may (a,b) be written in
.(x,Y)
= e  ox terms of x and y? What con-
T dition must hold for x and y
(=5,-3) (a,b) P(L-B) in the pre-image set G?
Graph G of |x + 2| + |y + 3] ¢ 3

(-2,6) | (the union of the square and its

interior)

7. (a) Use the graph of y = 3x and the translation T, ¢ to
3
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graph the condition y - 5 = 3(x - 4),

(v) Why must the image be a line?

(¢) What is the slope of the image line?

(d) Do you think you ean get the graph of any line with
slope 3 by a translation of the line y = 3x? Why?

4,5 Functions and Conditions

In Course II you learned liow to represent a real function
f: A—>B by its graph in the coordinate plane, For example,
consider the real function gz R— R with rules x—E—|x|,

The graph of tinls function is shown in Figure 4.10,

4 g(x)

6..
g(x) = x|
h..

(x,1x] )

-i "é ”E -2: é i‘ X é :8
‘ .2--
- Figure 4.10

Thus, the function g R—R determines the set of ordered pairs
(x, {x|), for x € R, Since g(x) represents the image of x under
g, we writeg for any X € R, |

(x, g(x)) = (x, Ix| .

Also, given domain R a.nd codoma.in R, a,nd the set of ordered

pairs, {(x, g‘(vx)) : .g(x) = |x| and x € R}, ‘the function g R——=R

O
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is completely determined, This means that from the set of ordered
pairs we can obtain the assignment of exactly one real number g(x)
to each real number x £ R, This is illustrated graphically in
Figure 4,10, The process consists of locating the point (ordered
pair) whose first coordinate is x and taking the s=cond coor-
dinate of the point as the image, g(x), of x under g.

Now consider the condition, the equation, y = |x|. Here
both y and x are variables whose allowable replacements are
real numbers. . The solution set of this equation is precisely
the same set of ordered pairs as the set of ordered pairs deter-
mined by g R=—»R., In this way there is assoclated with g the
equation y = a{x) = |x|.

Now suppose we consider the function g': [-3, 3]—=R, whose
rule of assignment is x-—£2—>|x|. The associated equation for
this function is also y = |x|. But the solution set of y = |x|
is far larger than the set of ordered pairs determined by g'.

This can be patched up by restricting the solution set of y = |x|
by adding the obvious restriction that x must be in [-3, 3]. Then
the solution set, {(x,y): y = |x| and x € [-3, 3]} is the set

of ordered pairs of g'. But still, the solution set of the con-
dition y = |x| and x € [-3, 3] does not determine a function com-
pletely since ;t could be the set of orcered pairs for any func-
tion with rule x=——|x|, domain [-3, 3] and a codomain which con-
tains the interv.l [0, 3]. However, all these functions would
have the same range, [6, 3], and would thus be equivalent, In
this sense, the solution set of the condiéion y = |x| and x ¢

[-3, 3] determines a function.

Q ' B
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In general, if f: A—>R is a real function with donain
A, there is associated with this function the equation, called

a function equation, y = f(x) such that the solution set of the

sondition y = f(x) and x € A is the set of ordered pairs deter-
mined by f: A—>R, Thus, graphing the function f: A —B
means graphing the solution set of the associated function equa-
tion, with the restriction that x ¢ A, Graphing a function then

becomes a special case of graphing a condition €(x,y).

y 3... —

y:. . (%1,¥3) ' 2t B

2t 1
1 . ; p——p X ' et 3 t t +—>
2 4Lxo6 8 =2 <18 <12 -6 6 12 18

-2t

-4t »

N4Y I(xl. :yl)
(a) - (v)

Figure 4,11

Question, Which of the‘grapns in Figure 4,11 can be
the graph of a function?

_ - In (a), if we pick a point x1 on the x-axis whose X=-coor-
dinate is posittve, we find that there are two ordered pairs
(x,, ¥,) and (x,, ya) which have X, as a first element This,'

then, cannot be the graph of a function with domain R since a

140
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function must assign exactly one image to each element of its do-
main., In the set of ordered pairs determined by a function, no
two distinct ordered pairs can have the same first element.

Geometrically, this means that any line perpendicular to
the x-axis intersects the graph of a function in at most one
point, You can readily see that Figure 4,11(b) can be the gréph
of a function,

A condition for the graph in Figure 4,11(a) is |y| = x. A
condition for the graph in Figure 4.11(b) is y® = x and
x € [-27, 27]. ‘(Different scales are used on the axes of Figure
4.,11(b) to make a reasonable display on the text page.) y* = x
is certainly not an equation in the form y = £(x) but its solu-
tion set and graph satisfy the conditions for a function £ with
domain [-27, 27].

Questions. (1) Can the condition y*® = x and x ¢ [-27, 2T]
| define a function with ccdomain less exten-
fgive than R?
(2) What is the range of any function determined
by this condition?

As before, y® = x and x ¢ [-27, 2T] determines a set of
equivalent functions. Any function whose domain is [-27, 27] and
whose codomain contains [-=3, 3] would be a function determined by

the given condition, ¥* = x'and ¥]é'[-27, 27] is called a

function condition.

1M1
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Definition 1. A condition €(x,y) with solution set S is a
function condition if and only if no two
distinct ordered pairs of S have the same
first element., The condition ¢(x,y) is then
said to determine a functicn with domain

A =[x (x,y) ¢ sl.

If the codomain of the functions considered is R, that is,

we consider only functions f: A > R, then the function
condition y® = x and x € [-27, 27) defines a single function.
Likewise, any function condition then determines a function with

‘domain A = {x: (x,y) € S},

Example 1. Consider the conditions
(a) x| + Iy} =-7 () Ix| + |yl =5 ana
"y > 0and x € [-5, 5]. What are the graphs
of these conditions? Are they function

conditions?

(a) The solution set of this condition is empty,
since |x| 2 0, |yl > 0 and hence |x| + |y| 2 ©
for all x, y.

\Y

(1,2(1) N, 2(x))

X

N s
N
\\ : //'”
{7
'.5\/

1 42 N \ms’ix'ré'#.la'
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(b) The restriction y > O makes this a function
condition. Otherwise, the dotted lines in
Figure 4,12 would be part of the graph, in
which case the condition would not be a
function condition.
You may have noticed that function graphs as well as graphs
of conditions may have symmetry with respect to the y-axis or with
respect to the origin. For example, in Figure 4,12, the graph
has symmetry with respect to the y-axis. That is ¢(x,y) is equi-
valent to c(-x,j) so that the graph of the condition is mapped

onto itsell’ by the line reflection (x,y) S -x,y). It is

easy to see that a corresponding criterion for the graph of a

function to be symmetric with respect to the y-axis is that for

all x in the domain of f, f(x) = £(=x), The graph of a function

cannot have symmetry with respect to the x-axis. Do you see why?
Also, in Figure 4,11(b), the graph has symmetry with respect

to the origin, since

(-y)® = (-x) 1fe y* =

‘For a function graph the criterion for such symmetry is that for

all x in the domain of f, -x is in the domain of f and f(-x) =

-f(x). - Thus, note that for (x,y) in the graph of f,

(x,y) = (x,£(x))
so that, ' ‘ ,
C (ex =y) = (oxy =8(x)) = (-x, £(-x)).
If f(x) = xa ‘the test is | -.

f(-x) - (-x)‘ = -(x) = -f(x)

143
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Example 2, Test the graph of (a) f(x) = |x| + 2
(v) a(x) = %, for symmetry with respect tc

the y-axis and with respect to the origin,

(a) f£(-x) = |-x| +2 = |x| + 2 = f(x). Therefore the graph
is symmetric with respect to the y-axis, but not symme-
tric with respect to the origin,

(b) .g(-x) =_% = - % = -g(x). Therefore the graph is symme-

tric with respect to the origin but not the y-axis,

In Course II, when you studied real functions, a special
function called the postal function p: RY——W was introduced,
The rule for p was that if b - 1 < x { b, where b - 1 and b are
consecutive natural numbers, then x ;-R—bb. "Thus p(.5) = 1,
p(Q%) = 3,_etc. This function is a variation on a spccial func=-
tion that is a useful and interesting one to study in develiop-
ing a deeper understanding of real functions, called the "grea-
test integer function." The greatest integer function assigns
to each real number x the greatest integer that is smaller than
or equal tn x. It is usually denoted by the symbol [x], whence
it is called the bracket function.

More formally, the "greatest intéger function" ,[ ], is the
function of R to R given by the rule x——[x] where [x] = a if
a is an integer and a {x<a+ 1. Hence [.5] = 0, [2%] =2,
[v8] =1, [-2.3] = =3, To satisfy yourself thdt this last is

true, locate =2.3 on a number line, The first integer to the
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of -2,3 (less than -2,3) is -3

2
SCe . 'J- 2
A Q SRS

Tigure 4,13

In terms of an arrow disgram, Figure 4,13, this function maps

each integer onto itself; and every real number between two con-

secutive integers is mapped onto the 1mmed1ately preceding inte-

ger.

utY .

3 —

2 —

1 —
'j'-él-z = S D G SRR R

' _f‘Figufé‘u;ih o

‘The,ggaghlof y = [x]; whichzis‘the graph of the greatest in-
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teger function, [ ], restricted to the interval [-4, 4] is shown
in Figure 4,14, Because of the appearance of this graph, this

functiqn is sometimes called a step function. Notice that there

'is only one point of the graph with first coordinate 3, for ex-
ample. The point (4, 3) is not in the graph., This is denoted
by the little circle (see arrow).

4,6 Exercises

1, Write the function equation for each of the real functions

of Rt to R given as follows:

(a) —Tt51 + x? (a) x——>|x|
(b) *x—= >§ () x—— >Il$li’

(¢) =x >3x + 5
2. Consider each of the following equations carefully, Which
of them are function equations for the domain specified?

Explain why or why not in each case,

(a) y=2x-7, x€R | (fg)\ys%,xen*'

(b) x*+y=7, x€eR "~ (n) Ixl =y, xeR

() Iyl =x,xer 1) lx+yl =7, x €R
(a) |x|,+ |yl =17, x eR (3) x* + |y| =10, x €¢R
(e) T*gzi"‘ 12,‘x €(x x €R, x>1)

(¢) 'ilili 108 x . ¢R'

, Graph ‘each condition.
3. ‘Discuss the symmetry of the graphs of each of the following
.functions with domain as given and codomain R.
(a) £(x) = 1xl5 x € R e f(x) =[x], x €R
,'(b): f(x) = x’,‘x,e_R o (4) - £(x) #.3x, X €R

45
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(e) f(x) =3x+4, xeR (f) f(x)=|x| -x x ¢R
- b4 <
f ={+i > 8 =
(g) £(x) 5 %% x>0 (n) £(x) =6, x €R
*l Graph each of the following conditions. Determine which of

them are function conditions with cofomain R. Give a

reason for your answer,

(a)
(v)
*(c)
(a)
(e)
(£)
(g)
*(h)

|x| and x € R.

|yl
[y] = x and x € 27,

[yl[x] =1 and x € [0, 1].

lyl] = |x| and y £ O and x ¢ R,

ly] = x and y > 0 and x ¢ Rt yfo}.
y¢¥ = xand y > 0 and x ¢ R+ u{ol.
y = x and x € R,

[y] = [x] and x € R,

- 4,7 Functions and Solution of Equations

There are many problems that can be solved using the graphs

of functions, Some of these applications are not readily seen

at first., Let us begin by examining a function given by its

graph. '

QY |

///ﬁ oo | mEIN_ S B |

:Figurelu;lsil v :
‘ N
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A basic problem that may be solved using a graph 1s finding
all values x in the domain of f such that f(x) = a. The points
that have these x-values are called a-points of f. The x-values
of the a-points constitute the x-values of the solution sét of
the system of equations y = f(x) and y = a. This is illustrated
in Figure 4,15, where X,s X, and x; are the x-values of the a-points
of f, An important Special case 1s the set of zero-points of f.
The x-values of these points represent the solutions of f(x) = O,
and these x-values are called the zeros of f. For our example, the
zeros of f are z,, 2z, and z,, and are the x-coordinates of the in-
tersection of the graphs of y = f(x) and y = O (the x-axis).

Given the graphs of two functions f and g (Figure 4,16) we may
solve the equation f(x) = g(x) graphically. The solution set is
{x2 f(x) = g(x) and x 1s in the domain of f and in the domain of
g)}. Graphically, these are the x-coordinates of the points of in-
tersection of the graphs of y = f(x) and y = g(x).

Ay

ﬁi

Figure 4.16

This process is illustrated in Figure 4.16. The solution set is
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fX,, Xa» X3, X, 3. Of course we may also read the y-coordinates
and obtain the solution set for the system y = £(x) and y = g(x).
Now let us look at some examples,

In Chapter 2 of Course III we solved systems of linear

equations such as:

12
27

3x + 2y

5x - 3y

Since the graphs of these equations are non-vertical lines, they
are function conditions and the solution of such a system can be
reconsidered from the point of view of functions. Solving each

equation for y we obtains

y=- g-x + 6
y= 2x-9

Since these are function conditions, they define two functions f

and g with domain R, Hence we write:

x—f—->-%x+6
‘.x-—E--yné Xx-9

We must, fhen, £ind all values of X such that f(x) = g(x). This
is‘eaéily done graphicaily since we kndw the slope and the y-inter-
cept for each line (Figure 4,17), We shall get‘only approximate:
solutions from the graph., It appeafs that the single value of x
is;approximately 4.7 and the cdrrespondingfvalue of y is about
-1.1, You should'check this in the original equations and also

solve the originalyequationskaigebraically as a check on this

149
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approximate solution,

W
-2} S (Le7,<2.1)

y 'nf(x)

from the graph of a s*ngle,function equation._ For example, the
£(x) = iven ir 'igure b.18; with ‘the unit

""axis, for convenience.,;-'7’
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49

£(x) = x*
84

<« 67 y=5 »
47
-3

+ +— — + + —-—t - X
-4 3 -2 -1 1 2 3 4
Figure 4.18
. Nowﬂsupﬁdse we‘wish to'501ve the equation X2 - 5=0, x® -5=0

1ff‘k3 5 so that the solution of the equation is the set of all
_values 3 such that f(x) = 5. Which, in turn, is the set of

‘t'5-points of f Thus, we draw the line 3y o= 5-on our graph and read

7tThese remapproximately x = 2 2 and x %j-2 2

What gedmetrical-rea-,

*Doés”f have any -3 points°



B S e e R R e e pa

"the t-coordinate )

- 147 -

Example 1. A car travelling in a straight line at a uniform
speed of 50 miles per hour passes point A at
2:00 P,M, Point A is ten miles from the start-
ing point O. How far is the car from A at
4:00 P M. ?

To set the stage with this simple example, we denote the path
along which the‘car is travelling by a vertical axis, the s-axis,
To denote the passage of time, we use a horizontal t-axis, t
being the time elapsed since the car passed point A (Figure 4.19).
The equation relating the s-coordinates and the t-coordinates

is s = 50t + 10, since the car ten miles from O when time be-
gins, and the speed, v, .is uniformly 50 miles per hour. This

is the equation for a line in the s t-system with slope 50 which

intersects the vertical axis at s = 10.

This line°has‘been'drewn"in ‘Figure b, 19. (It'is customary to

‘refer to this 48 an s,t-coordinate system, even though the first

coordinate of an ordered pair that designates a point is always
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This is a function graph., We denote the function by its equation
= f(t) = 50t + 10, To answer the question asked in the exam-

ple, we must find £(2). This is done graphically. f(2) = 110,

But this is the distance from O, Hence the car is 100 miles

from A at 4:00 P,M,

At what time is the car 70 miles from 0? This is a "70-point"
of f., Draw the line s = 70 and read the t-coordinate, 1.25, approx-
imately. Checking algebraically,

70 = 50t + 10
50t = 60 so that t = 1,20.

We have used this very simple example to introduce the ideas,

Now a more challenging application.

Example 2; A radar station located at point O picks up
airplane A 150 miles due east of O at 1:00
AM, The plane is‘approaching the station
at a. calculated speed of 6 miles per minute,
At l°16 AM. a ‘second airplane is picked up
T 240 miles due west of the station ‘and - approach-
"ing the stat*on at a calculated speel of 8
"»i miles per minute.n At what‘time will each
plane pass over the station? At whatvtime
"ff;will one pass over the other° We assume some

:fvertical separation to avoid collision'

A natur'l choice for the origin of an s,t—graph for this

C?

problem is the station, ‘iSince the radar operator becomes
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concerned about the problem at 1:16 A,M, when the second plane
appears, we have made the zero point for elapsed time ai 1: 16
A.M, Thus, 1::00 A,M, is -16 minutes elapsed time, On this s,t-
system the function grephs for the progcress of the two planes

are drawn,

s | (West)

(s P (t0))
(oo wotaas ’
am) | am) ﬁmfl(‘yn” N\
— . . N NN — >t
Il6 20 2’4 28 .

R




- 150 -

slope 6, For the plane B, approaching from the west, the s,t-
coordinates are (0, 240) and the function graph for s = £,(1)
is a line through (0, 240) with slope -8.

The distance between the planes can be determined for any
time, For time ty it is £2(typ) - f£,(t,) (See Figure 4,20),
For time t, it is £,(t,) - fa(t,). In general, it is
|£,(t) - £a(%) ],

To answer the questions in the problem one merely reads the

O-points of £, and f; and the time coordinate of the intersection

of their graphs, From these we obtain:
(1) A passes over station:at about 1:25 AM, 5
(2) B passes over station at about 1:46 A.M, |
(3) One plané-passes over the other at about
1-37 AM, at'a point about 70 miles west E
- of the station..'

i
Study the graph carefully and verify these results. |
TR : : S z

 -,,$ANj

800y

4;8 "Exerciéegl
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travelled against time as recorded on the instruments at the base
station,
(a) How far did the airplane travel in the first hour?
(b) How far did the airplane travel in the next three
hours? '
(¢) In approximetely how many hours was the plane 500
miles from the base station?
(d) Is there a functional relationship between elapsed
time and the distance the plane travels?
(e) What do you>know'about the planefs ground-speed
~ from time t = 0 to t = 1? From time t =1 to t = 42
From t = 4 to t = 5.5? |
(£) Can you make up a reasonable explanation for the
. fluctuation in ground speed from interval to inter-

l-val?,

'#2;5;eBeéauséfof?tﬁe“1nfiﬁénbe?6f;wind,‘SIightfcbﬁrsé“éhanges,
| .ééiniﬁé“dltitﬁdé;*Iééihé“éltitudé, and’ so forth?}it“is like-
| ly that an actual plot of the plane's progress would appear
-».fas in the graph below-'v” f ”‘ _" '
(a) Answer questions (a)--(c) of Exercise 1. We have

:fgghere a function s f(t) where a graph is known but

. 77_ no eqnation is given.*’

fiFind dhéoo-point of f

Igithére’ﬁéfeﬁﬁhénﬁbnejsbo4-’

,mIs itﬂpossi--



for Ex. 2. A Figure for Ex. 3.

‘H5,H,;Givénfthéfé&Stémfdf,équations:5rgﬁ it

Consider the graph (above right) showing the tracks of two

planes, Make up'a story to explain what the graph shows.

Given f(x) = %nxa -2, g(x) =x+1,

(a) Construct the graph of f and “he graph of g on the

same set of axes,

(b) Find graphically the O-points of f,

fc) Find graphically the O-points of g.
. , 1

‘_(9)¥;Us¢'phe,g:aph.of f to solve the equation T x3 =6,
. (e)f,Uéé;th¢Tsraphs'°£~f-and‘s.to solve the system of

. eauattons

L
px -2
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(c) Use the values of x found in part (b) to obtain the
solution set of the system given,

6. Repeat Exercise 5 for each of the following systems:

(a) x +2y =4 (b) 5x + y = 10 (c)2x+3y=10
2x -2y =3 2x+2y-8 %—X+%y=5

1
(@) X-39=1T () ¥=5%X*2 (g +¥=T
%x‘-%y-% ._x.szl;y+3 | x+3y=9

4.9 Operations on Functions

‘In the study of real functions in Course II Chapter 7,
various 'operatioris on mnc_tions’ of R to R were defined. We

summarize the'definition of tﬁese °Pefat1°“s'°“ functions below.

Definition 2..;‘  Iff: R—> R and 8 ' R —% R then [f + g],
R (£ -gl, and [f . g] are functions of R to R
‘kwith rules [f + g](x) - £(x) .+ g(x), [f - gl
(x) = f(x) - s(x) and (£ sl(x) = £(x) *g(x).
Furthermore, [E] A —) R is the function with
._,the rule [-](x) -{—} where the domain A
| 1 -'.- [x. xeRand g(x);‘o] '

E 'ANow each of these functions has an associated f‘unction equation.

j::"For [t +gl ‘11: 1y £(x) + s(x),‘ " For [fff'- sl 1t 1s y = f(x)
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The function equation for [f - g] is then

’ (2x® = 3)(x + 2) = (2x3 - 3)x + (2x® - 3)2
2 - 3x+ 4x2 -6

2x3 + 4x3 - 3x - 6.

y

The function equation for [%] is

2x2 - 3
X + 2

{x2x € R and x # -2}, since x + 2 = 0 if and

y = and the domain A of [é—] is

only if x = -2,

There are also some other ways that new functions can be con-
structed from given functions. You may recall that if f: R—DR,
then [af]: R—=R is the function defined by j[a.f].(x) = af(x).
For example, if £ ha.s the rule. f(x) = -2- X +2, and as=2 ‘then
[2f] has the rules [2f](x) 2(l x +2) =x + 4, This notion

can also be considered graphically as can the operations ‘of addi-
‘tion and subtraction of functions (which was done in Course II,

Chapter 7)

) a2
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~ In Figure 4,21, to drew the graph of [2f] from the graph of
f, each function value 1s doubled. That is, the distance of each

point of the graph from the x-axis is doubled,

Questions. (1) What is the relationship between the y-in-
tercept of y = [2f](x) and of y = £(x)?

(2) What is the relationship between the x-in-
tercept of y = [21‘]‘ x) and of y = £(x)?

In Course II, Chapter 7, a functi.on of R to R with rule
x—>-0 was denoted by c, Howei’rei‘, ‘since there are many such
funct:l_.ons, ¢ is inadequate to name all of them, The notation
Co 18.used to name the pa.rticula.r constant function in our

example. N

, vDefinition 3' For any real number a, y =8 18 a mnction equa-
- tion for the function ca : Re—>R, The functions
ca are’ called consta.nt functions. S

If f R-——»R e.nd c R—»R a.re given, [c f] 3 R—-»l_l

"hes the function equation yi= c (x) . f(x) a. . f(x) Hence, o

o [ . f] a.nd [af] make the same assignments, have the sa.me do-

"main and the same codoma.in. A 'I'hey are, therefore, two names
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% 3 2 4
Figure 4,22

Here f(x) = x® and a = 3, Thus, [f + c3)(k) = £(x) + ca(x)
=x2 +3, To ebta,in' the graph of [f +c¢,] = [£ + 3] from the
graph of £, each point of the graph is moved upwards 3 units,
Thus, the sra.ph of [f + 3] is the 1ma.ge under the translation
with rule (x,y)—»(x,y + 3) of the gra.ph of £,

Another operation defined on rea.l functions is composition
of functions. : If f A—-»B a.nd g B—»C are rea.l functions,v
g of e A——»C is the rea,l function defined by g o f (x)

i g(f(x))

s, e R—s RsR—> ~R, f(x) x4 3 and glx) =

(1) o g"(x) f(g(x)) _=f f(xa) 2(x) +3= 20 + 3 and
(2) goz (x)l"‘- g(f(x)) = g(2x + 3) """" (2x ¥ 3)= = xa + 12x

i .f.efms,"‘ o




| fgthe graph.

of their effects in graphing, Let g(x) = 2x be a rule for a

function from R to R, A partial arrow diagram for this function

is shown in Figure 4,23,

ﬁ%Om

-1 o 5. 1 2

¥

Figure 4,23

g determines, of course, a dilation of the line (COurse I,_
Section 6.9). Now let £ be any function of R to R, Then £ o g
has the rule . R o

£og(x)= 2(g(x)) = £(2x).
~ In general, if g has the rule g(x) = ax, £ o g has the rule
f o g (x) -—f(ex). If a = 0, fog (x) = ((0) for all x, so
we exclude a = 0 from our discussion." | o
| There 1is a strong relationship between the graph of £ and
‘Athe graph of f o g, where g(x) ax and a # 0. For example, let
RE X R--»R have the rule f(x) = |x| and g : R—>R have the
g_rule g(x) = 2x.: Then f o g (x) f(g(x));_ f(2x) = chl Thie’
;;is the algebraic story.‘ k-

%‘nﬁpigure u,zu  we show what heppens on
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Forrexample, to find £ o & (3), we find the image of 3 under
g on the x-axis, then find f(g(3)) = £(6) by going up to the graph

of T and then go back to locate the point (3, 6) in the graph of

fog Thatisfog(3)=2(6) =6 Also, fog(-2) =
f(s(-a)) f(-u) = 4, so that (-2, 4) is in the graph of £ o g.
Follow the arrows' The effect of g 1n the composition in this

'_'case is to ' accelerate the effect of f,

Next, consider what happens 1f g(x) =x+a, Thenf o g (x)
= f(g(x)) = f(x + a) Again, the only 1nteresting cases are for
a # o. Suppose a = 3 Then f o8& (x)= f(g(X)) = £(x + 3),
£ R—»R 1s again given by f(x) |x| . Thus,

fo g (x) = f(g(x)) f(x +3) = |x+ 3|
The graphic process 1s 111ustrated in Figure 4,25,

S A .
e" - ‘°8< ) =x + 3
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of £ og () = £(x + 3) are located in the same manner., It is
easy to see that the graph of f o g 1s the image of the graph of
f under the translation with rule (x,y)—(x - 3, y). In
general, the graph of £ o g (x) = £f(x + é) is the image of the
graph of £ under the translation with rule (x,y)—(x - a, y).
The-function equation for £ is y = f£(x) and the function equation
for £ 0ogis y = £(x +a), You should compare this result with
the work in Section 4.3 of this chapter.

4,10 Exercises

1, ”G1Ven the\fo11ow1ng functions of R to R ahd rules as shown:
et -|x| - X?EJL—>x]-,

f(a) write the function equation for each function.
| ‘(b) W'ite the function equation for-
B  -'(1) [t + sl (Vi) [f k]
i ?;(11)[f + h] i »
| :  ;1:--5(111) [h + k]

(xi) [q +.k + cJ
a;g(xii)[: . J]

h ,,;,(xiii)[.'! I 43 + 1]
'HAUiT ;(x1v) [h . k]




- 160 -

graph of [q # k + ¢,] by the graphic method.
#(e) Graph g and J on the same set of axes. Then find the
~graph of [J - g] by the graphic method.
(f) Use the graph of g to construct the graph of [-2g],
 where [-25](x) - -2[x] | | o
(g) Use the graph of q to construct the graph of [-% al,
where [-- ql(x) = -§x’ | . ,
(h) Use the graph of h to construct the graph of {h + c3],
where [h + c,](x) =(x+5)+3=x+8, . |
(1) uUse the graph of 8 to construct the,graph of [g + cal,

.'where [g + c,](x) = [x] + 2.

2. Use the graph of (see Exercise 1) o

‘.(a)- f to construct the graph or f o k. Note‘thet fok (x)
- £(k(x)) = £(4x) = |4x] . o x

h(b) £ to construct the graph of f o h (x) = f(h(x)) -
C Hmes) = lxesl. Ty ger i

‘-17(6) g to construct the graph or g ok,

’:' C(a) g to construct the. graph or & ,°'- h,

. q(é) q to construct the graph or Qo0 k{fl“'57

).':’-q to construct the graoh or q o h;fn_“¥*r”*%*3‘

ﬂ';:;3;; t;y ,.,k;‘anﬁeg”ere_oerined,



“7;’x € B,‘whereﬁB

"'16.1-.

(e) what do you observe about the effect of £ and m 12

| composition, as contrasted with k and h? (See Exercise 2.)
> R can be defined as follows: |ul
> x|,
of R to R, Thus |u| (x) = ¢ o u (x) = £ (u(x)) = |u(x)].

4, The function |u| : A

= f 0 u, where £ is the absolute value function, x

(a) Graph u: R
(v) Graph |u] : R
graph below the x-axis, (x, |u(x)|) is the image of the

> R where u(x) = x? - 3,
> R. “Hint: For each point of the

point by a reflection in the x-axis.
5. Given two real functions f and g.of A to R, a function
| > R is defined by max( £,g)(x) = max( £(x) ,&(x)).

max(f,g) : A
sThat is, for each x, the new function chooses the larger of
£(x) and &(x). 4 r(x) - s(x). max(£,g) (x) = . £(x) = g(x).
.’Copy the followins graph and construct from it the sraph of

| max(f,g) Use colored pencils.

“ ,4 ll Bounded FUnctions and Asxggtote

_ If f is any real runction of A to R then [—*] is by definition :
:,the real function of B to R with rule [—*](x) -5if%;yﬁ;' for all

[x 1 x e A and r(x) P o) Normally this function |

iis written simply [?] or ? and is called the reciprocal of f.
‘ 7The use of reciprocal is restricted since B is often a proper

'B. f(x) [ ](x) - 1- o

9 ubset of A But t‘or al i
ERIC @i v i
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The simplest reciprocal function 18‘% where j is the identi-~
ty function on R. Then 3]-'- : B—R has the rule x—»-li and
[x : x €¢R and x # 0}, A good picture of the action of %

may be_-_ob’ta.ined by looking at an arrow d;lagra.ml on a line for -3-‘- .

v

e b5

Study of Figure u 26 shows tha.t l a.nd -1 are fixed points

| 1n the mapping a.nd that if |x| > 1, J maps x onto the point i
| such that 0 < Ill < l and conversely._ Also, as le gets close

: to O, I—(x)l gets very large.. For example-

I

0001——J—>10":000.a.nd 00000001—L>100,000 000 ’

-J;_Conversely, as |x| gets very large, it I (x)l gets very close to

e AL




-— >
- =2 -
. A ~ : = -]
G %' ” - J —
f | v‘
AT
: - "3)\‘ -3
('3"‘3

R
‘ Figure”4.27

>¢ll—'

The points (-1, -1) and (1, 1) are in the graph of y = ‘

For each value of x between -1 and 1, the point on the graph

B of y = X lies between the lines ¥y = -1 and ¥y =1, Corresponding
to each of these points (except (0 O)) we will get a point

| v;;outside these lines whose y-coordinete is reciprocel to that of

| :;che given point. ] For example, from (i, ’b) we get (%, 2) and from

'"3) in the -,graph of Y= l. : Likewise, for

S 'l'"‘,inside the regionbetween the".'lines y -(_‘ 1 end Y = "1- me |




| k(x,,£(x,))

Xy

;%Fisu?e uraaf»:.u-”

~The 11nes y 1 and y '-1 are drawn and the 1ntersections

These 1ntersection points are

i s S PG I




(%)
(5)

(6)
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A' and B' are located by estimation of ?(-;'-'c—-)- and ?(-}c-_r-,-)- .
>3

A' is a local minimum for -}—' and B' is a local maximum for
%- . . The curve can be then sketched in between the fixed
points either‘side_of A' and either side of B',
Everywhere that |f£(x)| becomes close to 0, |T%;?)'| ‘becomes
larger and larger., Thus to the right of x,, as £(x) gets
close to £(x,) =0, T%ﬂ' gets very large so the graph of

% extends upwerd_ and ever closer to the iin_e X = X;. Note

alsd what,heppens near X,,but to the 1left of x,; also,

. _near x, and near Xs.

(1) 1

"-'the graph of ? are of special interest.

Where |f(x)| becomes large, lﬂ—)'l becomes ¢lose to O,
},‘I"hns ‘vfor X ‘5°¥'_‘3 to _the right of X3, the graph of ?:comes :
ever. closer' to the x-s.xis. For x. going to the left of x,,
_TT is negative but the graph also comes ever closer to

_ the x-a.xis.

‘I‘he vertica.l dashed lines drawn in the construction of _
| If we cerefully exemine

. _the graph of ? in the vicinity of one of these, sa.y x = Xgs We

1

- see that as xkgets closer to x, the graph of T gets closer to

% never a.ctually
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the graph of % .

We say that the function % is not bounded because, given any

number k > O we can find an x in the domain of % such that
|l(x)| > k. For examprle, 1f k is 1,000,000,000, we take a value
of x so close to X, on either side, that |—(x)| > 1, 000,000,000.
Do you believe this is possible? Think about it.

A‘function g is said to be bounded iff there is a real
k > 0 such that |g(x)| < k for all x in the domain of g.

\A:function, even?if not bounded on its entire domain, may be
bounded on some interval of its domain. For example, f is bounded
on the interval [x,, %3], A‘euiteblewvalue‘Of'k here is k = 3,
Then | £(x) | < k for all x- € (1) xa]. Geometrieally, for f to be
bounded, ‘the* graph of f must 1lie. entirely between the 11nes y=k
and y=-k for some k > O. o :

The following are examoles of bounded functions of R to R

g;;(;)f‘any constant function (trivial)

'szn (2), g(x) - -1 1f X < 0, g(x) - 0 if x - 0, and g(x) -1
| The graph of}(3)’11es entirelyix"'

1 and




2,

‘v:"__'_!main-[o- ':"lf],;giand codomain R-’--ii ‘1‘he graphs of: some examples

(2)
(v)
(c)
(d)
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x—-£—>|x| | (e) x_—C1.1
x—g->[x] o (f)~ Ix J—>3
x—2sy + 5 o (8) x—Saa b
lx—h-bll-x (h) x_;L.xa

For each greph in Exercise 1

(2)
(o)
(c)

(@)

Give the horizontal asymptotes, if any.

Give the vertical asymptotes, if any. _
Locate on the graph the points where the recipro-
cal function has a local maximum or & local mini-

mum, ifany

4.Determine whether the given function is bounded on-
, its domain. -

o

Y,-Determine whether each reciprocal function is bounded

on its domain.

(£)
:j‘,_.,;find an interval on which the function is bounded.

o ?_3'.1'", Let B represent the set of all bounded functions with do-

‘For each function and for each reciprocal ‘function -
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"has these properties, Is (b, +) an abelian group?
What is the identity? If £ € B, is the additive inverse
-f, defined by [-f](x) = -f(x) for alllx € [0, 1), also
in B?

(c) For every real number m and every f e B, is [mf]) in B;
that 1is, is [mf] bounded?

Su!mnegx‘ '

A conditlion ¢&(x, y) on R x R has a solution set S ¢ R x R and
& graph G, which is the set of points determined'b:,r S in a

»-"frectang'uler*eOoi‘dinate"plane.“ The "graph of a(x, y)" is

the graph of its SOIution set, S, The‘"ér’a’ph of &(x, y)
hesf'sv_ynnhetry-infthe y-axis 1f ¢(x, y) and o(-x, -y) are

: equivelen't, : symmetry in the origin if c(x, y) and G(-x, -y)

e are equivalent

- The 1ine y --' ‘ax: + b partitions the pla.ne into three sets:

”"its own graph, and two open helrplanes. The open half-

plane above the 1ine is the greph of y ) ax +b and the

" 'f_.‘-‘open half'ple.ne below the 1ine is the graph of y ( a,x + b,

L ;"other regions of the plane may be constructed as the

""f"}."_;‘graph of mpound conditions. =
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then ¢‘(x,y), the condition for G’, is c(x -8 ¥ - ).

If £ is a function of A to R with rule x _> f(x), then

y = £f(x) is the function equation of f. The condition

y = f(x) and x € A determines a function equivalent to f.

(The éraph of f is the same as the graph of y = f(x) and

x € A). A condition ¢&(x,y) is a function;condition if and
only if no two distinct ordered pairs in the solution set of
¢(x,y) have the same first element. The condition e x,y)

is then said to determine'a function with domain A = {x :(x,y)
is in the solution set of &(x,y)}.

The graph of a real function f: A —> R is symmetric with
respect to the‘y-axis 1rf f(-x) = £(x). It is symmetric

with respect to the origin iff f(-x) = -f(x).

> Ixl,

> %, x

The special functions of R to R~given by x

~> x?

>'1"": x

x - N [x], and X

- wWere. used to construct many other runctions of interest.

| The a-points or f are the solutions ror x of" the system

y = r(x) and y‘-~a. Ir r and 3 are any two functions, the

ﬁ,jgraphs or r and g may be used to rind the solution or

y = r(x) and y g(x) by rinding X such that r(x) - g(x)
If f is any function, a e R and a, ﬁ 0y s(x) - ax, and h(x)

- x + a, r o 8 and‘ '%h have special properties relative

s»‘to f The graph or r o g is similar to the graph of f in

&ﬁfthat r o g (x) & r(ax)*
:‘rto the right or to'tw

The graph or T o h is a translation

} lert or r, depending on whether Hf"



g.

b1y

1.

2.
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In inyestigating the graph of %, where the graph of f is

glven it 1s found that

(a) if.f(a) =»0,?l(a) is not defined, but the line x = a
~ may be an asymptote of the grephyof-l.
(b) if £ has a local meximum (minimum) at x = b, then %

has a local minimum (meximum) at x = b,
Review Exercises -

Construct the graph of the condition |x| + |y - 2| = 6.
Use the methods of'this chapter to obtain the graph effi-
ciently. Determine the symmetries of the graph.

For each of the following symmetries, draw a graph having

the given symmetry.

’(a) Symmetry in the y-axis;

(v) Symmetry in the x-axis.

‘(c). Symmetry in the origin. _

y(d);dSymnetry in the x—axis and in the y-axis.
_,(e)_;Symmetry in the origin and in the x-axis.
':"(a);_Graph the compound condition ¥y -2>|x+ 3| and y < 6.
| 3(h)j‘Find the image of this region under the .translation

R -f_v‘.»g‘j(x.y)—>(x +3 5 2).

"‘59,[

E(c) What is. the condition for the image region?
Is. ya xa + 2 and x. €. R ‘8 function condition?

(e)e)Use the methods of this chapter to construct the graph

' fof the function ¥ of R to. R ‘with rule x—-—ﬁ-----ixa + 3

| 'from the graph of f R—»R with rule. x_—f>x3 .

*(h)?iUse the graph of g to solve the equations

15
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(1) -4x% +3=0 (i1) -Zx® +2

2x - 7 to solve

(¢) Use the graph of g and the graph of ¥y
the system:

-3x% + 3
2x - 7

. v
y

Given real functions having the domains specified and codo-

main R: '
£ . h 1
X———s-3%2, x € R x—3 » x € R\{0]
. 1l
Y- 2% + 3, x € R X=———t-§X, X € R

x—m—>x-2,xen

(a) Construct the graphs‘ of £, g, and h,
(b) Construct the graph of f 0 &4, of g o & and ho &,

(¢) Construct the graph of f om, gom, and h o m,

X

(a) 'I'race the graph or f above on your paper and sketch from
ot the graph of ?- et e | |
(b) Find the local maxima and minima of f and of ?- .

0 (111) -%x?4+5=¢
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(c) Write the equations x = a and y = b of the vertical

{ ~ and horizontal asymptotes of% (estimating a and b

; from your graph).

(d) Give an interval in which f is bounded. Give an
interval in which% is bounded.




Chapter 5
COMBINATORICS

5.1 Introduction

The study of combinatorics.had its origin in problems
involving counting. These problems may have involved, for
example, finding the number of one-to-one mappings of a set
onto itself or finding the total number of subsets of a given
set that have some specified numberpof members.

The above mentioned types of problems come from a class

of mathematical ideas known generally as combinatorial counting.
Although combinatoricswtoday.encompasses a much wider range of
ideas and overlaps such studies as group theory, graph theory,
'and topology, as well as others, we will restrict our interest
"in this chapter to combinatorial counting Sometimes combina-

torial counting is referred to as ophisticated counting. This

means that instead of counting each member of a set individually
when trying to determine its total number of members, it 1s

v-sometimes possible to find this number more efficiently.

5.2 Comttng Prinet -'1;;egma:rpe;-mmms»..~ i

fq;Example;i Suppose that A. B and C aze three cities, and
S - you wish to travel from City A to City c bY

- ;fpgssing ‘through- City B. There are exactly
u-ww{three roads from City A to. City B--the red

e e e et i,
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road, the blue road and the yellow road, There
are exactly two roads from City B to City C--
the green road and the orange road. How many
ways are there to make the trip from A to C?
(See Figure 5.1;)

Red

B Green ' c

; Orange
Yellow

Figure 5.1

Qne way is to take the red road from A to

B, and then the green road from B to C, we shall

call this route the red-green route. All the

o possible routes are shown in Table 5 1,

'Roads from | Roads from | Routes from
" Ato B ' "BtoC - AtoC -

'rgd =   ?  ”féreéﬁ: — “Tfédygrgehv.

~ "blue.’ .. |. -orange | red-orange

‘yellow 'y | blue-green

' blue-orange

yellow-green

L | yellow-orange
" Tavle 5.1

._._‘;;3T3r7£) :

PRNENEERESY

R TUNRNC PR
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The total number of routes is 6. Notice
that 6 = 3 + 2, where 3 1s the number of ways
tovmake the first part of the trip, and 2 is
the number of ways to make the second part of

| the trip. N
-Exemgle‘?. Let S be the set [a,b,c,d] consisting of four
o different letters of the alphabet. How many

two-letter "words" can you make using the

letters in this set? Before answering the

; | 'question, we must agree to certain rules. One
rule,is.thet a "word" does not necessarily have
any meaning; another rule is that a letter may

not be used more .than once in the. same "word."

B | Thus, whilenweleccept "bd" as a "word", we do
| not accept "da". | |

All possible "words" follow'

CERTRERE T

}”-ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, de.
Niﬁfjrhere 1s a total of 12 "words.“ As in Example 1,
| i?there are two choices to“be:made 1n forming a
"word," First, choose the first letter of the

'"word " There ere h choice

1¢since ‘you. mey use
"any one of the four letters in the set Next,
" _choose the second letter of the "word " How meny

"“?ﬁqchoices ere there 1n this case? Not L, since_ .

: ?twfthe second letter cannot be the seme as the
h”ffirst.‘ Therefore, there are Just 3 choices for

' r‘jjtthe second letter, once the first 1etter has
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been selected, Do you see from Teble 5.2 that

we have the same sort of situation as we had in

Example 1?

Number of Choices
for Firat Letters

Number of Choices
for Second Letter

Total Number
of Words

y

3

12=14 -3

Table 5.2

Specifically, in this case we have 12 =4 * 3

"yords," The "tree" diagram, Figure 5,2, is

another way to make this clear.

Gy B, ,“:H;;'. Fisure

The total number

| of "words“ is 12,

'For each of these, there are

3 ways to make the second choice.

5 2
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The two examples just discussed illustrate a principle called

the counting principle. It may be stated as follcws:

CP If an activity can be accomplished in r ways, and after

it 1s accomplished, a second activity can be accomplished,

in s ways, then the two activities can be accomplished,

one after the other, in r-s ways.

Example 3.

Suppose in Example 2 we 1ift the restriction

that no letter can be selected twice. If we

do so we will have four ways to select the

first letter, and then four ways to select

. the second letter. Therefore we will have
Yol =‘16 distinct possible words. This result
1s illustrated in the tree diagram of Figure
,~5,3Nand‘sqggests}tnat_we may State & more

 general counting principle, "CP'".

P e T
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CP' Let A, and A, be sets with r, and r, elements respec-
tively, where ry, r, € Z°. Then A, x A, = {(a,,8,):
8,€ A, and a, € A } contains r, -r, elements.
Example 4. Given the set of letters {a,e,i,0,u}, how many
two letter "words" can be formed, using the same
rules as in (a) Example 2? The first letter may
be chosen in 5 ways (r, = 5). The second letter
may then be chosen in 4 ways (r, = 4), The total
number of Mwords" 18 Selt = ryer; = 20, (b) Example
3?7 Here r, =r, = 5 and thus the total is 25 =
5-5. : ;
One might well wonder if the’countingéprinciple CP and its general-
ization CP’ can be extended to more than two sets A, and A_.
For instance suppose, in Example 4 (a"we wanted to form 3 letter
"words, " Is'the number of such "words" Sehe3 = ryeryeiy = 602
Would the number in Example- b (b) be 5 5°5 =Ty « Ty * Ty = 1257
‘ The answer is yes, to both questions. Perhaps you might confirm
this with a tree diagram. Suppose 4n Example L (v) we ask how
many words 15 letters long can you form? Is the answer

55 .. -5 = 51‘ ory !i,;,_' r,,? The ‘ansver again is yes.

You could of course prove it by draming a tree diagram and counting :
| the 30,517 578 125 possible words.{ However, to prevent you
frcn tiring, we state as Theorem 1 our general counting principle
:_for a finite number of non-empty sets, each with a finite ‘number
"‘of elements. The proof requires the principle of mathematical
induction, which is stated at the end of this chapter After
vou have gained some facility with this principle, you will be

188
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asked to write a proof of Theorem 1. To simplify the writing
of the theorem and subsequent statements we adopt the following

notation., If a set S contains r elements we will write n(S) =

Theorem 1, CP Let A, Aa, cee) AK be non-empty sets and
| let n(Ai) =ry fori =1, 2, ..., k.
where each ry e.z+.. Let A, x A9 X oo
Bg= ({81, 855 +o0 » &) 8 €A, 1=
1, 2, ..., k} Thenn(A, xA, ... x Ak)
=Ty T, eee ot Ty
Example 5. A direct mail firm plans to send out a letter to
| an assortment of people. : Each letter is to
contain four pieces of literature, one piece

?from each of the. four companies this firm

fre”fesents.J Company A, has made available six

.ﬂdifferent pieces ofiliterature, Company A three
_ ':Lpieces, Company A, fwo pieces and Company A,
‘iw'_sgeight pieces._ wa many different mailings are
o possib1e° We have
o n(ly) = r. - 6, n(A ) =Ty =3
. .:i:?“fn(Ai) = rb = 2 n(A.) = ; = 8 - Therefore
5.f>“2_5i3;n(A, x A X Aa x A.) = rio r,- Tye Ty = 6°3°2. 3 =

) »s;In a certain school, the student council decides

ﬂw—%to give esch student an ID number consisting of
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be accommodated by this procedure?
Let A, = {all letters in the alphabet], A,
(211 digits]}. Therefore n(4,) = 26, n(A))

Ay =

n(A;) = 10. Therefore the number of ID numbers
is n(A, x A, x Ay) = 26-10°10 = 2600.
In Course II Chapter 2, Section 2.3 we defined a permutation

of a set S as a one-to-one mapping of the set onto itself; and
saw that if the set contains n elements, then there are n! =
n(n -1) . .,,. +2 +« 1 such permutations. In Example 7, we shall

see that the counting principle may be used to get the same
-result,

Example 7. How many permutations are there of the set
S = {a,b,c)?

Figure 5.4

. As illustrated 1n Figure 5 h we may choose any
VVvﬂone of the 3 arrows starting at a; that 18, there
. ,a,‘z{e‘ 3 Icho:‘l_cg‘s\-.‘ : ,‘N‘,ext, }ye.mo,ve- to b. We do not
~ have 3 choices, sinée‘wé carnnot. assign the same |
«Fimage to b as we did to ay 4f we went. & ‘one~to~
. one mapping. SO, ‘the number of choices here is.
ey Next, we.. move to e, Two of_the,images have

-iﬁawnow been used So~herefwé'have onlyli choice,

180




- 181 -

To summarize: At a we have 3 choices; at b
we have 2 choices; at ¢ we have 1 choice. The
total number of one-to-one mappings is 3 - 2 « 1 =
6 = 3! In the language of our theorem,
n(a,) =3, n(A)) = 2, n(Ay) = 1, and therefore
n(Ay x Ay x Ay) =3 - 2.1 =3}

Example 8. Given the sets in Figure 5.5 how many ways are

there to make a one-to-one mapping from set A

to set B?

Figure 5.5
We may choose any one of %he'é arrows starting
at 1; there are 5 choices. Then we may choose
any one of 4 arrows, starting at 2; we cannot
| choosé.the arrow which goes t9 the same image
‘a8 our firsﬁ arrow, Tpéreforé, the total number
- of one-to-one mappings ffdm“A-to B‘is 5.4 = 20,

The word permutation is also used to describe a situation

such as that in Example 8, Specifically, we would sey that the
number of permutations of 5 elements taken 2 at a time is 20.

In Exemple 8, the 5 elements’gre-ﬁg‘b,fc, d, and e. And the 20

permutationsvof these eiements taken 2 at a time are listed in
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Table 5.3.

ab ac ad ae

ba be bd be

ca cb cd ce

da db de de

ea eb ec ed

Table 5.3

Each of these, of course, corresponds to one of the 20 mappings
mentioned in Example 8, For instance, "ab" refers to the

mapping in Figrre 5.6 (a).
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On the other hand "ba" refers to the mapping in Figure 5.6 (b).
Thus, "ab" and "ba" are different permutations (i.e., they are
differe: t mappings). |
Example 9. What is the number of 4-letter "words" that can
be formed from the set [a,b,c,d,e,f,g)? The
number is 7:6:5.4, (Express in the language of
Theorem 1.) This is the number of permutations
of 7 elements taken 4 at a time,
Example 10, What is the number of permutations of 10 elements
taken 3 at a time?
10-9-8 = 720
This is the number of one-to-one mappings from
& set containing 3 elements to a set containing
10 elements.
Egamg;e 11, What is the number of permutations of 5 elements
taken S_at‘a time?
This is the number. of one-to-one mappings from
set. A to set B, where both A and B have 5
elements. (See Figure 5.7.) S
. . : 5

. Figure 5.7
But”the numbér-of'su¢h mappings is the same as

the numbiifi mappings of A onto itself,
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Therefore, the answer is 5! or 120,

Example 12, Suppose you had five colored flags, one in each
of the following colors: red, white, blue,
green, yellow, If you agree that a given signal
is to be represented by a particular arrangement
of three colored flags, how many different
signals could you devise using the five flags?
For example, the arrangement

RED YELLOW BLUE
might mean "Help". This problem really asks for
the number of one-to-oné mappings from a set
"nontainiig 3 elements to & set containing 5
elements. This number is:
5+« 4 .3=60
In Examples 8 to 12 we have been considering the number of
one-to-one mappings from a set A, with r members, to a set B,
with n members, where r < n. Another way to describe the number
of one-to-one mappings from a set with r members to a set with
n members (r < n) is the number of permutations of n elements
taken r at a time, | |

Figure 5.8 indicates that there arernlways.of finding an

image in B for the first selection‘ffom 4, (n = 1) ways to find

the image for the second selection from A, and so on.

189

Figure 5.8
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This is expressed by Table 5.4,

Selection Trom A Tst [ 2nd [ 36d | oo T 06— T %6

- ways to find image in B| n n-<l | n2 | ... | n-9 eee |n=(r-l1)

Table 5,4 -
The symbol (n)r is used to represent the number of permutations
of n elements taken r at a time, Referring to the preceding
table and applying the counting principle, we can conclude that:
(n)p=n ¢ (n<1) ¢ (n-2) * ... (n=(r-1))
Since n = (r<l) = n = r + 1, we could express the above formuls
as follows: -
(n)r = n(n-l)(n-e)---(n-r+1)
Example 13. (a) (8)g =8-7°6°5-4 = 6720
(b) (W)g = be3°2:1 = 4y = 24
| The exercises in Section 5.3 will contain specific examples
of permutatiohs of n elements taken r at a time. An alternative
form of the general formula for (n), will be developed in
Exercise 17 of Section 5.3. | o
5.3 Exeréisés: o
1. C*v 1 the set of letters {r,s,t,u,y,w,x], how many ”ﬁords"

without repeated letters can be formed having:

(a) one letter = . (e) two letters
(pb) three letters © () four letters
(¢) five letters . (g) six letters

(d) seven letters |
2, If set B contains seven elements, how many one-to-one

Q mappings are there from set A to set B if set A contains:
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(a) cone element (b) two elements
(¢) three elements (d) four elements
(e) five elements (f) six elements

(g) seven elements.

Use the resulﬁs of Exercises 1 or 2 to answer the following:
(a) Wnat is (7),? (b) What 1s (7),? (c) What 1s (7)4?
(d) What is (7)¢? (e) What is (7)g? (£f) What is (7)e?
(g) Wnat is (7),2

How many permutations are there of the set {a,b,c,d,e,f,g,h)
taken 5 at a time?

Suppose you have 5 books to put on a shelf, In how many
orders can the 5 books be arranged?

In Exercise 5, suppose there. is rooh for only 3 of the books
on the shelf, but you may use any 3., How many arrangements
are possible? That is, what is the number pf permutations
of 5 elements taken 3 at a time?

In a certain state, the license tags consist of two letters
of the alphabet followed by threé digits.

(a) How many different license "numbers" are possible?

(b) How many are possible if the letters O and 1 are not
used? |

A telephoneinumber consists of 10+digits.

{a) How mény numbers are possible if there are no
restrictions? ;

(b) How many are possible if the digit "0" cannot be used
as the first digit? '

#jfyl.




S,
3
-
b
&
£
E:

9.

10,

11,

12,

13,

14,

15.

6.

7.

) What is (8 - 3)! ~ (d) What is 8! ?
‘(c s ( ) (d) at is T

- 187 -

(c) How many are possible if the digit "O" cannot be used
as the first digit aﬂd also canrnot be used as the
fourth digit?

If a baseball team has 10 pitchers and 4 catchers, how many

batteries (pitchér-catcher pairs) are possible?

If & girl has 5 blouses and 4 skirts, how many blouse-skirt

combinations can she arrange?

If you toss one die for a first number, then toss & second

die for a second number, how many reSults (ordered number

pairs) are possible?

Find:

(a) (5)s (0) (8)y (c) (B)g (a) (20), (e) (9)s

(2) What is (8),? (b) Wnat is 812

What is:_-(a) .(6)4? (b) 6 (e) (6 - U)1?
(0 gy

What is: (a) (10), (b) 10% (e) (10 - 3)¢

O e

Let n and r be positive 1ntegers and r{n, Give an
argument to Justify '
n! = n(n - 1)n - 2) coo (n-- T+ 1) [(n -1r)1]
Using the formula (n) = n(n. 1)..o(n -r+1) and Exereise 16, gl

sn argument to Justify this new formule for (n), : (n), = n —

492
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18, Use the formula in Exercise 17 to find:
(a) (11)5 (b) (7)s (c) (15)s (8) (100),
19, Make up permutation problems for each of the following

ainswers:

() ey ) ey () 2

20, Use the formula in Exercise 17 to find the number of
permutations of 5 elements taiken 5 at a time, Do you see
that the denominator is 0.? O! has nc meaning, We
define O, = 1 so that the formula in Exercise 17 holds
for all whole numbers n, r with r { n without exception,

21, Find a standard name for each of the folloWing;

(a) w—?‘-gn— () -y (¢) 3i1+2i 4140

(d) Express as a product in powers of 1, 2, 3, and 4:
(41)-(38)-(21)-(21) (e) Evaluate 4

Y 1

j=l

22, Computers use binary numbers where only O and 1 are used as digits, |

How many 2-digit binary numbers are there? 3-digit? 4-digit?

T g The “Power Set of a Set -

' Giveﬁ a set S with n elements, we knbw that there are various
subsets of S that may be formed, The empty set, S 1tse1f, as
/well as one-membér subsets, two-member subsets, and so on, are
_ examplég that might be considered. The set of all subsets of

8§ is called the power set of S,
| Definitioh. The power set of a set S, denoted #(S), is the
! | set whose elements are the subsets of S. (Thus,

A€ ¢ (S) if and only if A € S.)

S
Lt
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Table 5.5 lists the power set of S, for several different sets
S. Copy and complete the table in order to test your under-
standing of the notion of a power set. Perhaps you will see
a pattern that indicates how the number of elements in the

power set of S is reiated to the number of elements in S.

s n(s) 8(s) n(6(s))
=0 0 () 1 3
(a) 1 (g, (a)} 2
(a,b) 2 (4, (a,(v},(8,0}) 4
{a,b,c} 3 é
{a,b,c,d] Y §

Table 5.5

Once again, we may apply the counting principle to help
us'determine the total nunber of subsets of a given set S,
Suppose S contains k elements: that is n(S)'= k. We are
interested in forming every possible subset of S, Selecting
any one of these subsets mey be thought of as a sequence of
k tasks, A task is o decision for each member of S; either
you select tne first menber or reJect it, and likewise for the
second member, third member,;endhso on; In cther words, there
are two possibilities for each member of S, Then, since S has
k members, the counting principle tells us that the product
of k factors, each equel to 2, is the number of ways of performing

" these tasks one after thevother. Each subset of S is the result
of exactly one performance of the tasks, and each performance

of the tasks results in exactly one subset of S. Accordingly

o ‘the number of subsets of a set S with k elements is: ‘

104
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2.2 ,,, 2=2F

k factors

Is this the conclusion you drew when you completed Table.
55?7 In the language of Theorem 1, for each 1 € S, 1 =1, ...,
k let A, = (select, reject)}. Thereforer, =r, = ... = r, =
2 = n(Ai). Thus n(A, x A; X ... X AK) =TIy T, ... Ty = 2k,
If we replace the word select by the digit 1 and the word
reject by the digit O then A, = {1,0) and we can reason as
follows:

The number of elements in the power set of S is equal to
the number of mappings with domain S and codomain {0,1)}. The
elements in S that map onto 1 are selected and those that map
onto O are rejected for the subset generatedtby that particular
‘mapping. 'Here we do not require that'tﬁé mappings be one-to-one,
nor 4o we require that they be onto. For‘example, each member
of S may be mapped onto 1 and the sét S itself would be the
generated subset. Likewise each membeﬁ 6fis may be mapped onto
0 and then the'empty set would be selected.

Example 1, Figure 5.9 exhibits some mappings from {a,b,c]

| to {0,1) and the sets they generate,

195
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b///l generates { }1=¢
c
& 0
b N generates  {a,b,c}
c
& 0
b 1 generates {a,b]}
c .
>
b 1 - generates {c}
c

Figure 5.9

Complete the rest of the mapping diagrams from {a,b,c} to {0,1]}

as an exercise,

5.5 Number of Subsets of a Given Size

We will now turn our attention to the number of subsets
of S that have some given number of elements; for example the
number of‘sﬁbéets5o£ {a,b,c]} that have exactly two elements,
From:your mapping diagrams you can see that this number is 3.
In general we will be concerned with the number of r-member

gubsets of a seét S with n members.

196
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Example 2. Suppose that (a,b,c,d,e) is a set of cludb
members, How mény committees can be formed
which have exactly two members? The coﬁmittees

~ are iisted below:
(a,b), (e,c}, (8,d), (a,e), (v,c), (b,a],
(v,e), {c,a), (c,e), (d,e)
The number in this case is 10. This question is the same
as asking how many subsets of 2 elements can be formed from a
set of 5 elements,

In general, questions such és this may be phrased as

follows: Given a set contalning n elements, how many of its

subsets contain ex&ctly r elements? The word combination is

also used to describe this situation. Specifically, we would
ask, how many combinations are there o n elements, taken
r at a time? .

In order to answer the general question, let us first look
agairn: at the question raised in Example 2, a question whose
answer we already know. Given the set (a,b,c,d,e}, how many

different subsets of 2 elements can be formed? We introduce

e}

to represent this number, That is, (g) is the number of subsets

the symbol '

of 2 elements that can be formed from a set of 5 elements.

Figure 5,10 shows a one=-to-one onto mapping from the set

(1,2} to the subset {a,b)}. The set (1,2) is used since we want

a subset having two elements. However, the diagram shows oniy
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one such mapping. How many one-to-one onto mappings are there

from {1,2) to the subset {a,b}? Since (a,b} has the same number

Figure %.10

of elements as (1,2}, this is the same as the number of permutations
of a set of 2 elemenis--that is 2!, So there are 2 different
one-to-one onto mappings from {1,2)} to {a,b}. {Be sure that you
can draw a diagram for each,)

Also there are 2! different one-to-one onto mappings from
{(1,2) toc the subset {a,c}, to the subset {a,d}, etc. In fact,
there are 2! different one-to-one onto mappings from {1,2) to
every subset of S containing two elements. Now how many such
subsets are there? We have agreed to let (5) vepresent this
number, Thus if we form the product

@
we should get the total number of ways to form a one-to-one
mapping from {1,2) to the set S, However, from CP we know this
number is: (5),. Therefore we have: 2! Gg =(5),.
Then dividing by 2! we get:
@ -G -3
Of course this agrees with our earlier observation that

there are 10 possible subsets, each with 2 persons, that can be

O
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formed from a club of 5 persons. We may alsc say that the |
number of combinations of 5 persons, taken 2 at a time, is 10,
Example 3., Consider the problem of finding how many subsets
of 3 elements can be formed from a set of 7
elements. Again, let (g) represent this number.
To find the standard name for (g) we begin by
exanining the mapping of Figure 5.11,

Figure 5.11

The diagram shows a one-to-one mapping from
{1,2,3) to the subset [a?b,c]. The diagram

shows only one such mapping, but there are 3!

of them, (Why?) Furthermore, there are 3!
different one-to-one onto mappings from (1,2,3)
to every one of the (g) subsets having 3 elements,

~ Therefore,
3:(%) = (7)s

where (7)y 1s obtained from the counting
principle. Dividing by 3! gives:

(?) _(T)s _ 765 _ 35
3 3! 3.2.1

199
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Therefore, a set of 7 elements has 35 different
3-slement subsets,

The two preceding examples suggest & perfectly general
argument for finding the number of subsets having r elements
that can be formed from a set having n elements, where r < n.
Using (2) to represent this number, we have,

Theorem 2.

r!‘cg = (n)_,
Proof , Exercise 24, Section 5.6,

From Theorem 2, dividing by r! we obtain

n _ () T nt
G) Y “rr(n-7x)7

Example 4, In a club with 12 members, how meny 5 member
subsets are there?

12t
(?f) (12), (22 - 5)!
5/ = 5t 51
_12.11-10:9-8- (7!)
7! 5! '

_ 12.11.10:9.8
5‘"’0302‘1

= 792

Notice that in Example % each time you selected a subset
of‘5 elements from the set of 12 elements, there were 7 elements
remaining that were not selected. In general, whenever you
select a subset of r elements from a set of n elements there

o are n - r elements remaining that are not selected. This means

200
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that there are Just as many subsets with n - r elements as there
are subsets with r elements.
Example 5. (a) Compute (g) and (Z) .
(b) Did you -get the same number for each of
the computations in part (a)?
(¢) If the answer to (b) is yes explain why.
If not, do your computations again,
(d)  Which of the two zomputations in (a)
was easler? Why?

These results may be expressed more generally as:
Theorem 3.

& =6

The proof is left. as an exercise.

5.6 Exercises

1, In a voting body of 7 members, how many 3-man subsets are
| there?
2. In a voting body of 12 persons, how many 5-man subsets are
there?
3. If set S has 6 elements, how many elements are in &(S)?
How many of these subsets have exactly 3 elements?

4, Find a standard name for each of the following:

@ (] (b) (12) (@ (g)

5. There are 8 books lying on the table, and you are to choose
3 of them.




(2) How many ways are there to choose 3 books from 8°?
(b) How many ways are there to choose the 3 books and
arrange them on a shelf?
6. (a) Verify the following formula for special cases of n
and m(e.g. n=5endm-=3):
W2a) ¢ ) - (R
*(b) Now show by using the formula,

() - =

that formula in 6(a) 1s true when m < n,

7. Use the fact that the formula in Exercise 6 is true for all
natural number replacements for m and n, m < n, to complete
the following:

X - x -1} _ |
(Y)+(y+1) ( )

What relation must hold between x and y?

8. If n is a non-negative integer, then cn =

9. If you can move only along the drawn
- Afe

segments down end to the right, how

many paths are there from A to B?

(Do this by figuring the number of

paths to each point.,)

10, If the numerals recorded at right _ AW]T_AS_BT
~ indicate the length of the segments, 3 6-—1rﬁ 2
find the shortest distance fromA 2 | - ;r .
to B. ‘(Travel-rules are those of r-é 146
Exercise 9.) e 7 4 251 " 4;

ERIC 202
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11, If n is a positive integer, then ca =

12, For n = U, expand:

200

into a sum where each term makes use of the formula for

Gg ; then evaluate the sum and express the results in
standard form, (Hint: The first two terms of the
summation are c» and GD .)

#13, Prove: n on
L () -
k=20

for any positive integral n, (Hint: For a set with n
elements count the number of subsets in two different ways.)

14, If n is a non-negative integer, then 69 =

15. What meaning can we give to 63 ? PFrom a set of 3

elements, how many 5 element sets can be formed? Obviously

there are none, Therefore, we shall define~(;) = 0, What

standard name would you suvggest for each of the following?

@ @ o @ @@ @@ @ @

#16, In a deck of 52 playing cards, how many 13-card hands are
possible?

17. Draw diagrams for each Qf the possible mappings from a set
of 3 elements to a set of 2 elements. Doﬁ'f restrict the
mappings to one-to-one or onto.

18, Use the counting principle to suggest a way of expressing

the number of_mappings in.Exercise 17 in exponential form,
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19. Use the counting principle to construct an argument that

Justifies the following:
The number of mappings from & set of b elements to a
set of a elements 1is ab.
20, - In the diagram below there are two graphs each consiéting

of four nodes (points) and paths connecting the nodes by

c G
B F

D H
AV E

Greph I Graph II

pairs:

(2) Explain why each graph has cg paths, and the total
number of paths for the two graphs is 2 (g) . .
In the next diagram node B is connected with each
node in Graph II to illustrate how each node of
Graph I may be connected with a path to each ncde“

in Graph IIX,
c
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(b) Use the counting principle to explain why there are
16 or U® paths required to connect each node of
Graph 1 with each node of Graph II (that is to
complete it).

(c) Assuming that the above graph is completed, explain
why the number of paths is (2) or (22) .

(d) Use an argument concerning the above graphs to

Justify the statement: 2 (g) + 42 = (222‘) .

Use computation to justify the stetement.
#21. Use the graphs and explanations in Exercise 20 for this
exercise,
(a2) Suppose that you repeated the procedures in Exercise
20 using 5 nodes in each graph. Write the statement
in Exercise 20(d) for the case of 5 nodes.
(b) Revise the statement in Exercise 20{d) for n nodes.
{c) Revise the statement in Exercise 20(d) for the case
where Graph I has 6 nodes and Graph II has 4 nodes.
(d) Repeat part (c) where Graph I has n nodes and Graph
II has m nodes.
#22, Show that the following statements (a) and (b) are

equivalent:
(a) 2 Gg + n? = c?j
(bp) n(n-1) +n® =n(2n - 1)

23. Use what you have learned in this chapter on combinatorics
in addition to what you learned in the chapter on affine
geometry to Justify the following:

<00
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() If each 1ine in the affine plane T contains k points,
then # contains k® points,

(v) If the affire plane T contains k® points, then it
conteins k+(k + 1) lines.

Prove Theorem 2,

Prove Theorem 3, (Hint: Use the formula developed in

Theorem 2,)

The Binomial Theorem

Example 1, Suppose that you were given the problem of
expanding the following power of a binomial:
(a +Db)8 = (a+ 0)(a +b)(a +Db)(a + b)(a +b),
After some labor you would find that the
expansion of the above expression is:
a® + 5a%b + 10asb2 + 10a2b® + 5ab* + bS8,
The symmetry of the coefficients in the above
terms (1,5,10,10,5,1), and the decreasing powers
of a (5,4,3,2,1,0) with the corresponding
increasing powers of b (0,1,2,3,4,5) leads us to
suspect that there might be a more efficient way
to get the result without resorting to brute
force multiplication of binomiels, Note also
that the sum of the exponents of & and b in
eacy term is 5,

In this section, we are going to develop a theorem, known

as the Binomial Theorem, which will be useful in expanding powers

O

2006
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of binomials. It also has other applications in mathematics,

for example, to probability theory. The development of t;hé

Binomial Theorem will make use of many ideas which you have

learned such as the power set of a given set, the number of

r-member subsets of a set with n elements, and the use of the'

syx:ibol v to indicate summation.

Exemple 2. To illustrate the general theorem we expand

(a + b)3 by using the
(1) (a+b)(a+b)(a+b)
(2) =

(3)

i

(4)

(5)

(6)
(7)

(8)

distributive property:
a(a+b)(a+b) + b(a+db)(a+b)
a[a(at+b) + b(a.+b)] +
b{a(a +.b) + b(a + b)]
a(aa + ab + ba + bb)

+ b(aa + ab + ba + bb)
aaa + aab + aba + abb

+ bas + bab + bba + bbd
8% + a%b + a%b + ab® + a%b
+ ab® + ab* + bs,

a® + 3a%b + 3ab® + b3

() oo+ () v+ (3) oo
+f) v

0
r2o0 W

We can get the same result using the following combinatorial

argument, We could get the terms in (4) directly from the left

side of (1) by selecting Jjust one of a or b from each of the

207
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vinomial facztors and recording them in the order of the factors
from which they were chosen., The mapping diagrams in Figure
5.12 show all the ways that this selection can be made2, where
1,2 and 3 stand for the 1lst, 2nd and 3rd factors respectively
and the mepping is from {1,2,3) to {a,b].

Note that the total number of mappings is 28 =8, {(CP)

{ £
C_®

Figure 5.12

The number of times that b 1is selected as an image in a
mapping determines the number of times that a 1is selected, If
b is chosen r times, then‘a is choéen (3-r) times, Check this in
the diagrams. Each mapping then is determined by the assignments
of b, | B

The number of mappings in which

b is the 1mage;of 0 elements‘isvl. | 63 =1,
b is the image of 1 element is 3. (3 =3,
b is the image of 2 elemehts_is:B.} o =3,

b is the image of 3 elements is 1. (3 =1,




;204-

If b is the imaze of zero elements then a is the image

of three elements, and thus the term which has coefficient
((3)) is ad, .

If b is the image of one element than a is the image
of two elements, and thus the term with coefficient G)
is a®b,

If b is the image of two elements then we deduce as
above that the term with coefficient (g) is ab®,

Similarly if b is the image of three elements then
the term with coefficient (g) 1s b®, Multiplying each
term by its coefficient and adding again yields

3
bR

You should recognize the above as a special case of ldeas
presented in this chapter:
(a.). The number of subsets of a set with n elements is 2“,
(b) The number of r-member subsets of a set with n elements
is (r;) . The binomial theorem can now be expressed.
Theorem 4, For ahy pair of real numbers, a and b, and any

whole number n:
‘ n .
(a+b)? = rZ o(r). Tt =

B R e ()
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Example 3. Expand (a+b)s,
(atb)® = (g)a.s + (?) atb + (g) asb?® + (;5) alv® +

(3) abd + (2) p®

= a® + 5a*b + 10a?b?® + 10a?b® + 5ab* + b

Example 4, Expand (p+q)?

1
(p+a) =rZ o(’}’) p'q" = (cl,) Pt + ({) Q! = ptq

Example 5. Expand (1l+k)s,
(1+k)s ((3)) 18 4 G) 13k + (g) 1k® + (g) K8

1+ 3k + 3k% + &8

Example 6. Expand (1.03)‘.
(1+.03)* = (g) ¢ + (‘1‘) 1s(.03) + (‘2‘) 18
(.03)2 +(§) 1(.03)s + (ﬁ (.03)¢
1+ ,12 + ,0054 + ,000108 + ,00000081
| | 1.12550881 |
Example 7. Expand (a - b)Ss,
(a - b)® = (a + (-b))®, Then apply Example 3.

5.8 Exercises

1. Show that (a+b)? = @8 + 2ab + b® 1is correct when a = 3 and

b=2,

2. Show that (x+y)®

X% + 3x% + 3xy® + y® 1s correct when . .
x=1 a.nd-:y'#?., IR I
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3. Expand the following:
(a) (a+b)* (b) (x+y)
(c) (e+d)” ©(d) (a+b)r®

4, (a-b)? = (a + (-b))? = a® + 2a(-b) + (-b)? = a? - 2ab + b?
Using a similar approach, expand the following:
(a) (a-b)® (b)  (x-y)*
(e) (a-b)® (a) (x-y)*
5. The coefficients in the expansion of (a+b)n are as follows:
1 11 55 165 330 U462 462 330 165 55 11 1
What is n? .
. Expand (a) (x + 1)* (b) (x-1)° |
Expand (a) (x+2)¢ (b) (x -2)* (e) (x - 5%,
. Expand (a) (2x +1)® (b) (2x - 1)°%,
. Fnd the first 3 terms of: (a) (x - 1)=° (6) (x + 3)° (c) (-2x ~1)7.
n
10. Expand (1+1)" to show that it equals z (k) ey

k=0
11, Use the binomial expansion to £1nd (1.01)%; also (.99)%.
#12, Show that (1+x)® > 1 + nx, for x > 0 and n € 2.

O O 3 O

#13. Use the combinatorial argument to prove'(a+b)‘ =

‘Eo(f,) ‘a";"’“’,rb.l".

r =

5.9 Mat‘hémat.{'célf’inductian o

An 1nteresting unsolved problem in mathematics is to find

| a function £ with the property that whenever n is a natural

5%i;;:32:1' =
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number then f(n) is a prime number, The story is told of the
student who presented the following proposition as a solution
to the problem:

If n is a natural number, then n2 -n+ 4 1is
& prime numbver,

The student had much cause to think he was correct. If n'is
replaced by 1, then n2 -n+ U1 = 13, which is prime. If n
is replaced by 5, then n2 - n+ 1 = 61, which is also prime,
In fact, if n is replaced by any natural number up to and
including 40, a prime number is produced. Not until n is
replaced by U4l does the expression n2 - n + 41 produce a
number that is not prime. This student had generalized his
argument to all natural numbers based upon his successful
experience with some of them.

We observe that we must be careful before stating such
generalizations. A statement may be true for many natural
numbers and yet not be true for all of them, How do we prove
that a given formula or statement is true for all natural
nﬁmbers?

‘Suppose»you were asked to find the sum of all natural
numbers, beginning with 1 and ending with 8; that is

1+2+3 +L4+5+6+ 7+ 8.

| After all the ehallenginsvworkfthat yen have been exposed to-in

vtrpreviOusﬂchaptersg this prdblemaprbbably appears trivial and:
routine. The sum is 36 You nay suspect thet instead of

‘1'f1nd1ng the sum by edding up the numbers, one by one, there 1is

"a much shorter way to arrive at the same answer. One way i: as

._{.;fsfgilggr
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follows:
(1) find the average of the first and last numbers in
your sum;
(2) multiply this average by the number of terms in your
sum,

Thus, we could'have found the average of 1 and 8

l1+8
-z
and then multiplied by 8:
8- Ll;tlil =82 _172_ 3
2 12 2

.If you now repeat the problem, ending the sum with 11 instead
of 8, you get

1+2+3+4+5+6+7+8+9+10+11 =11-(1+11)
=132 _ 66. 2
"2
Suppose we wish to establish a general formula for adding all
the naturel numbers, beginning with 1 and ending with n. The
process described above indicates that

1+2+3+ 44+ ,,,+n=n. (1) .

We now know that this formula. is true when n = 8 and

n = 11; we could even‘verify,that‘it is true for all natural
numbers up to and including ho, as in the first problem.
However, our experience tells us that this amount of evidence
is not conclusive--we still would not be sure that the formula
is true for all natural numbers._g,.‘

| Visualize a string of upright dominoes, equally spaced and
close enough together<so thet.eny‘falling,dominoﬁwould‘hit its .

O
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neighbor., (Assume that if a domino is hit from one side it
falls to the other side.) Now, if the first domino is pushed
over towards the second, the second will fall and push over the
third; the third will then push over the fourth which will then
push over the fifth, This would continue until all the
dominoes are down. The situation appears to fit the following
pattern:

(1) The first domino falls down:

(2) wWhenever a particular domino falls, the next one

falls too,
Thus, all the dominoes fall down,
Let us see how the "domino effect" can help us to formulate

a procedure for showing that

1+2+3+ ... +n-= n'!n+12
2

is true for all natural numbers n. Suppose we consider the set
of all natural numbers for which the above statement is true;
call this set S,
S = [x:x e_z* and 1 + 2+ 3+ ,,. +x=2x(x+1)}
' 2

We already know that 8 € S and 11 € S. We would 1like to show
" that S contains every natural number; that 1s 8 = z¥,
| ‘ vJust aé7thefdominoes wére eqpally‘spaced, the difference
petween‘¢b@secufiVekhathal numbers is always the same..,Just
as the fifsf dom;no hgd to_fa11vto;§t§rt the‘process; the
-_ﬁaturalyndmbér 1‘mnst,be'in'§;”?3ut the'ddmiﬁoééfhad to be

_arrahgéd:éd‘thgt ﬁhédevér a particular domino fell, the next

»oné‘wouldsfgli_tdo.nfThe énalogous»requirement-in,our,problem

Q
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is that whenever a particular natural number k is in S, then
the next larger natural number k + 1 must also be in 8. Just as
we could visualize that all the dominoes would fall, it seems
plausible to conclude here that all the natural numbers would be
in 8.

These thonghts are summarized and expressed in a postulate
about the natural numbers called the Principle of Mathematical
Induction. (We shail derote this by "PMI.") It is important

to note that the foregoing discussion does not constitute a
mathematical proof; it was designed simply to 1nd1cate the
plausibility of postulating PMI.

Axiom PMI. Let T be a set of natural numbers having the
following two properties:

(1) 1€ 7
(2) Whenever the natural number k € T, then (k + 1)
€T

_Then, T is the set of natural numbers. (T = 27)

We are now in a position}to show that set 8 defined in our original
problem is the set of natural numbers. We already know that 1 € S.
Let us now show that whenever the natural number k G S, then

(k + 1) € 8
L B A ,
~Proof. ,S;? [x:x e-z and 1‘+'2,+ 3-+.;;+vx‘a x.(1+x)}

| R _,_Let k €s. This neans that SR
R 1 +24+ 34 b4 k= k.(l + k)
ST -i‘-We would l:l.ke to show that: (x+1) es, “that 1

Q ‘_-,e'_ o II 1 + 2 + 3 +...+ k + (k + 1) : (k +,1)[1 + (k +1)]
- ERUURURE T S A ,..10 | o
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We notice that the left sides of I and II differ only by the
term (k + 1), Let us add (k + 1) to both sides of I anu see

what we obtain,
l+2+3+4+,,.+k+ (kx+1)

k(1 + k) '+ (k + 1)
2

k(k + 1) + 2(k + 1)
2 2

(k + 1)0c + 2)

(x + 1)[1 + '.—gk + 1))

Thus, (k + 1) € S,

zt.

By PMI, we may conclude that S In other words,

the statement 1 + 2 + 3 +,..+n = n(l + n) 1is true
=2

for all natural numbers.

Example 1. In Section 5.8, Exercise 12, you were asked to
show that (1 + x)n2 1+nx, for x >0 and n € zt.
At that time, you probably had to rely on the
| Binomia.l Theorem far your proof. Let us now

apply PMI, |
"Let'rs[xxez and (1+x)"21+nx] |
~ Since 1+ x)l =1+ 1x, we see that 1 € T,
' '-késnme k € T. This means »that

ERC AR LN R - T

But,’ '('1‘+'x)'k "'," = (1 4‘-‘x)k' 1+ x) > (1+ k‘x)(i + x).

" (1+kx)(1+x)==1+k.x+x+kx')l+kx+x=
1 +(c+ 2)x | |

: _.,Thus, (1 + x)k +1

2 1 + (k + 1)x which means that
B o (k+1)e '1'. ’ |
"By PMI, T=Z

016
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In Section 5.4 we discussed the power set of a set S,
denoted #(S). By means of the counting principle, it was shown
that if n(S) = p, then n(#(S)) = 2P, Let us now analyze this seme
problem in a different way. First, we define a function f whose
domein is Z¥ and whose codomain is & set of statements. If x € Z+,

then f£(x) or simply f, is the statement:
If n(S) = x, then n(@(8)) = 2¥.

For exemple, f, is the statement: If n(S) = 1, then n(@(s)) = 23,
and f, is the statement: If n(S) =9, then n(&(s)) = 2°.

Recall from Course I that a function whose domain is the set of
natural numbers is called a sequence. Thus f is a sequence.
Since the codomain of f is a set of statements, we refer to the !

images £y, fg» fa» f4s...f s... 88 & sequence of statements, We

n
are interested in showing that every statement in the sequence of

statements is true. Paralleling the discussion in the earlier part
of this section, 1t seems reasonable to expect the Principle of
Mathematical Induction to apply equally well to & seqnence of
statements. An equivelentl form of this principle, which we shall
denote by "PMI'"‘is stated as follows: ‘

Axion PMI'. Let Fy, Fy, By, ..., F,y ... be & sequence of
| statements having the following two properties-
(l) ‘Fy 18 true ' .
(2) Whenever Fk is true, then Fk+ is true. |

| Then, for eech netural number‘x, Fx,is true.

o ' ‘TwO statements, A and B, are said to be equivalent if A §
o implies B and B implies A. In this context, it is possible to |
]:R\ﬁjprove that PMI implies PMI' and PMI' implies PMI. E

nm*)



- 213 -

We now have the mathematical machinery available for showing that
the sequence of statements f3, £, £,, ..., fx, «s. Whera fx was

defined as the statement
If n(8) = x, then n(#(8)) = 2%,

is true for all netural numbers Xx.

Proof. f, is the statement:
If n(S) = 1, then (#(8)) = 2%,
If S consists of & singie element, say S = {a},
then the only subsets of S are {a) and #. Thus,
n(o(sy) =2 =2}, Ve see that f; is true. Let
us assumé that f, is true and show that f,
must then be true too. Assume that when n(S) = k,
then n(O(s)) =25, If e new element, say b, is
added to set 3, the resulting set S' will hsve'
(k + 1) elements. We are interested in determining
the total number of subaets of S'. Observe that each
subgset of S is also & subset of S', Thus, we obtain
the subsets of S', first by taking every subset of
S. 1In addition, the element b may be adjoined to
each of these subsets in snceeseion to form new
 subsets of S'. It 1s clear that if two subsets of
8 are distinct, then the adJunction of b to each
set produces two distinct subsets or s'. Thus, the
‘inumber ot suhsets of 8' 18 twice the number of

' subsets of 8. Since S contains 2k subsets, S' must '
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contein 2°2k = 2k+l subsets. Consequently, if

n(S) = k + 1, then n(@(8)) = 25" Thig means that
fk+z is true.

By PMMI', we conclude that every statement in the

sequence is true.

You have now seen two versions of the Principle of Math-
ematical Induction, PMI and PMI'. The one to use depends upon
your interpretation of a problem. For example, the theorem just
proved in the preceding discussion -- for every natural number x,
if set S contains x elements, then iis power set contains 2X
elements -- was interpreted as a sequence of statements f,, f,,
fgs+..5 one statement for each natural number x, Thus, the proor
depended upon PMI', An alternate interpretation and enalysis of

the same problem might have been as follows:

Let T = (x:x € 2¥ and n(#(8)) = 2* whenever n(s) = x}.
By showing that |
(&) 1 € Tand
(b) whenever k € T, then (k + 1) € T

we could have concluded, by PMI, that set T contains every

natural number.

Example 2. Show that for all natural numbers n, 5 - 2
—— , el - 7 e

-1s & natural number.
Proof.  Consider the sequence of statements £, fy, f5, ...

'fn,;.,-where £ﬁa1svthe;statement:

5 - 2“_1s_a natural number.

“. Q j‘k‘   , -'  L '.‘-_1;ffji SRS '
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Since 5% - 2} = % = 1, we see that f; 1s true.
Assume fk is true; that is

5% _ 2K 15 a natural number, sey p.

5 -2‘ =p.
Thus, sk = 3p + oK, (Why?)

We want to show that fk*a must also be true.

Now, KW _ okt gk.s _ gk.o
= (3p+ 25)3 - 2%
L oke ok
- 1p 2y - 252
- 5p 4"]?“},‘1”,-

=.,5p + 2k 1s &' natural number.¢ (Recall fhat (Z ,+)

'f[]and (z i ) are operational systems )

':'”1n the sequence f,"f g%3<
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The notation "..." within a mathematical statement about the
natural numbers is often a signal that the Principle of

Mathematical Induction mey be used to prove the statement.

Exemple 3, 2 +4 + 6 +...+ 2n = n(n + 1) is the assertion
that for all natural numbers n, the sum of the
even numbers, beginning with 2 and concluding
with 2n, is equal to the'product of n and the
next larger natural number, n + 1., Ifn =1,
the sum begins with 2 and ends with 2; consequently,
there is just one term to be considered. AIf
n =5, the sum becomes 2At 4 + 6+8+10. A
simple checkjof both the sum and the product
for n = 5 gives an answer of 30. Let us apply
PMI to prove that Example 3 is true for all

natural numbers.

Proof. Let T = [xxez and2+u+6+...+2x=x(x+1)]
 Since 2° 1 = 1(1 + 1), we see that 1 €T,
.Suppose k € T. This means that
. 2 + u + 6 +...+ 2k = k(k + 1)
""r‘?;‘;Add 2(k + 1) to. ‘both, sides._i_’ (Why?) |
. 2+u+6+...+2k+2(1§+1)=k(k+1)+2(k+1)'
= (k + 1)(k + 2)

 Thus, (k+1)€'1‘ By m, '.l‘ = z o
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Consider the following assertion:
For ell naturel numbers x, x! > 2%,
Let T = {x:x € 2* and x! > 2%} and suppose that k € T. This means
thet k! > 2%, Then,
(k + 1)t = (k+ 1)kt > (k + 1)25 > 2.2% = 25! (5my)e
Thus, (k + 1) € T. Could we conclude, at this point, that for
every natural number x, x! > 2¥2 Table 5.6 compares the value

of x! and 2¥ for x =1, 2, 3, 4, and 5.

X x! X
1 | 1 2
2 2 4
3 6 8
4 24 16
5 120 | 32
| Table 5. 6

It is not true that x! > 2% for every natural number X. Not‘until
x =4 do we get 8 true statement. What we were able to prove in
loc\the preceding discussion is that 12 k! > 2k, for some natural
‘; amber k, then a similar statement is true for the next larger
inatural nuMber (k + 1) However, we had not shown that x! > ¥ |
V[Ais ever true for any particular natural number k. Do you now see B
Z;f‘why the Principle or Mathematical Induction inc1udes the require- C

7ufiment that 1 E T?
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then
(a) LT 2¢ T3¢ T
(b) 4 €T
(c) whenever k € T, then (k + 1) € T,

How do we know that 5 € T 6 € T? in fact, any natural number
X2 42 This thinking leads to a modification of the Principle
of Mathematical Induction, allowing us to apply it to a greater
variety of situations involving the natural numbers.
Axiom General PMI. Let T be a set of natural numbers having
the following two properties:
(1) the natural number & € T

(2) Whenever the natural number k € T,
" then (k + 1) € T,

Then, T consists of all natural- numbers
greater then or equal to a.

i, 5. 10 Exercises

l,f; Use PMI or PMI' to prove each of the following-”

(a) n_ o U
) 7&1:= 7 5 ay forfeveryfn”€<zv.
\ i=z et 1=1 2 o |

(b) 1' + 2' + 5' ...+ nP = n n;+v1‘ 2n + 1‘ for every n € z .

S (c) 4 E-+...+ iL < n for every n e Z

— ﬁ_ 1s a natural number for every r € Z

(e)“ ?Tna*ﬂ;u‘is a natural number for everY n E Z
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2. Prove Theorem 1 in Section 5.2, using mathematical induction.

3. How does the principle of mathematical induction differ from
the usual meaning of the word "induction”?

4, Let T = (n:n € z¥ and n =n + 1}.
Assume k € T and show that (k + 1) € T. Does this mean that
T= z*? Defend your answer.

5. Consider a polygon of n sides, where n > 3. Prove that the
totel number of diagonals that can be drawn is n(n - 3) .

(A diegonal is a line segment that joins two non-consecutive
vertices.) '
6. Prove or disprove the fbllowing assertion:
o For every natural number n, 2" > 3n.
'If this stetement is not true, modify it so that a trne
N statement results. |
'5‘7,t Let a and T be real numbers, r # 1. Prote that for every
| Catar+a® ssa - e.(l r“*‘)
8. ff"“Each of the following statements 15 false. Attempt to prove
. ‘each one, using some form of ‘the principle of mathemeticel

1nduction. In eech case, te11 where the principle fails.

(a) -ﬂ- x = 0 fbr every x e zt
(b) The stetement o

the 10|(n + 1o)




(¢c) 3+5+ 7 +...+(2n + 1) = n* + 2 for every
nez',
(d) 100n > n® for every n € 2",

9. Given the statement
For every n € Z+, 2n 2“,

present two different proofs, using PMI in one case and PMI'
in the other. If the expression "2n < 2™ is replaced by
"2n < 2“"; is the result still true? If not, what changes
‘would you make so that a true statement emerges?

10. Prove that for every n € z',

1+2+3+4+.+n=n+(n-2) tv(n -2) +(n-3) +...+1

' 5.11 Summary
l;h The counting principle was illustrated for two and three rinite
"" _sets and stated as a theorem for any finite number of sets.
2. If a set A contains a elements and set B contains b elements
r(a < b), the number of different one-to-one mappings from
JA to B is called the number of permutations of b elements taken
,qfa at a time.(a and b are whole numbers) written (b)
';p;If a b, then the number of permutations is b..‘;
ftv If a < b, then the number of permutations is b(b - l)(b - 2)...;
b,wb{s(b _ a + 1) g ”r‘ _ . :
;"jifo' 18 defined to be 1.
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]
o

If n < r, then (2)
If n = r, then (2) =1l, §

- n\ _ n\ _ (n) :
If r = 0, then for any n, () = 1, In general (r) ,

forn > r.
5. (The Binomial Theorem). If a and b are real numbers and n

is a whole number then n
‘ n n-r, r
(a+bW=(ﬁﬂ+(ﬂﬂdbh“+cmﬂ=ib)a b.
0 1 n r=0

6. Principle of Mathematical Induction

(a) Let T be a set of natural numbers having the following
two properties:

(1) 1€ |
(2) Whenever the natural number k € T, then i
(k + 1) € T.. L

Then, T contains all’ the natural numbers.

(b) Let Fa, F;, Fb,...,F%,... be a sequence of statements

huving the following two properties.-

(1) F; 18 true. v : 1
(2) Whenever Fk 1e true, “then Fieyy 18 true. ”

uf»; Then“ f”r each natural nunber x, F is true.

‘ffv5}12*kevieug2iereisesvfug;ttf}f,fﬁ7
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A man conducts & probability experiment in which he does the
following three things: he draws a marble from & bag of five
differently colored marbles and records its color; then he
tosses a die, recording the number the die shows; then he
tosses a coin, recording the result "head" or "tail". How
meny possible outcomes are there in this experiment?

In Exereise 2, nhat is the probability he will get &n even
number end e head? |

If the call letters of a radio station must begin with "W"
and contains three other letters (repetitions allowed) how
many such arrangements of letters are there?

What is the answer to Exercise 4 if the call letters may

" begin with either "W" or "K"?

A person wishes'to select 2 books from a set of 6 books.

wa many possible selections are there?

~fvThere are 5 points in a plane, no three of them in a. line.
 How meny. lines can be drawn, with each line passing ‘through
-exactly 2 of the points? N '

- ngw many ways are there to arrange 3 books on a shelf 1f you
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13.

14,

15.

ﬁﬂ16.b

s
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wa many fractions can be formed having a numerator greater
then 0 and less then 10, and a denominator greater thaa 0
and less than 157
How many 3-digit numbers are there? (There are 10 digits to
choose from, but the first digit cannot be 0.)
Referring to Exercise 13:
(2) How meny 3-digit numbers have no two digits alike?
(b) How meny 3-digit numbers have 3 digits alike?

*(c) How many 3~digit numbers have exactly 2 digits alike?
For each of the folldwing, tell how many one-to-one mappings

are possible from set A to set B.

(a) (v)

What is the number of permutations of 8 elements taken 2 at

a time? of lo elements taken 6 at a time?

A set hao 10 elemenbs. e

'-’f(a)fTHow meny ol 1ts subsets have exactly 3 elements?

‘l-m(b) }wa many of its subsets have exactly 7 elements°

»;T ;;lHow many;oflits subsets

have.exactly lo elements?

'fhave'exactly 1 element? f‘l
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19. Find a standard name for each of the following:

B ol el o o

20. A student is instructed to answer any 8 of 10 questions on
a test. How many different ways are there for him to choose
the questions he answers?
2. A baskeﬁball squad consists of four centers, five forwards,
and six guards. How many different teéms ma& the coach form
if players can be used only at their onevposition? (A
basketball team consists of 1 center, 2 forwards and two
, guards. ) | |
22, A sample of five light bulbs 1is to be tgken from a set of
100 bulbs. How many different samples may be formed?
23. Cor_gi)igte the following: (2) + (.?) -
2y, Expand'(a + b)" '
25, Expend (a - b)¢. |
26, Write ‘the first. 6 terms 1n the. expansion of (a + b)", where
|  > f-n 1s & poaitive 1nteger greater than 6.
 ,*27.'1'Expand (2u + v)'

;28g”f7prove by 1nduction~ '».f
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]

The figure above represents a circuit diesgram which consists

of three switches a, d, ¢, If swltch a and switch 4 are

closed, the light will go on, If a, d, and c are closéd, .

the light will also go on, However, if only d and ¢ are

closed, the light will not go on,

(a) In how many different ways can the switches be closed
to turn on the light?

(b) In how many different ways cah the switches be closed
to turn on the light in the diegrams below?

.;%%%;ﬁ 
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(c) Diagram IV has 5 switches in parallel connections,
a parallel circuit had 8 switches in it, how many
ways could the light be turned on?
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