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Chapter 7
REAL FUNCTIONS

7.1 Mathematical Mappings

The word mapping has a very special and important meaning
in mathematies. You recall from Course 1 that if we are given
two sets S and T and a process which assigns to each element in
S a unique element in T, we say that this defines a mapping h of
S to T. We write this in the form

h: S=— T,
The set S is called the domain of the mapping h, and the set T
is called the codomain of h., If s € S and h assigns t ¢ T to s,
t is called the image of s and s is a pre-image of t. To indi-
cate that h assigns t to s we write

§ ———1t,

Exauple 1, If the set S consists of the students in your
school and the set T consists of the teachers
in your school, the assignment of a homercom
teacher to each stvdent in the school is a
mapping h from S to T. Every student is assigned
a homeroom teacher, and no student is assigned
more than one teacher, There will be teachers
who serve as the homeroom teacher for many stu-
dents--perhaps £5 or 30--and there might be a
teacher who does not have responsibility for

a homerocin, However, each student is assigned

a unique homeroom teacher by the mapping h,

N
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The domain of h 1s the set of siudents in your
gchool. The codomain of h 1s the set of teachers
in your school.

Example 2. Another example of a mapping is the assignment
of postal zip codes. In this case, set S is the
set of all postal addresczs in the United States,
The set T could be the set of whole numbers.

Each element of S is assigned one and only one
element'of T; thst 1s, one and only one zip
code number, There are whole numbers which do
not serve as zip codes; for example, 1,267,893.
There are many eddresses which are assigned the
same code number; for example, all homes in
Wisconsin Rapids, Wisconsin have zip code 5449k,
But the important point is that each address is
assigned one, but not more than one, zip code
number,

Questions. (1) What is the domain of the zip code mepping?
(2) What is the codomain of the mapping?

In the first mapping illustrated, the letters "S," "T," and

"h" have & natural relation to the sets and the mapping they

gymbolize:
S - the set of students
1 (R the set of teachers
h ceccmccccccaaaa the set of homeroom agssignments

In this example S and T eare chosen for the moment, in this context,

as names for particular sets. But the letter "S" is not bound

O
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forever to be the name of a set of students, It is also used in
Example 2 to name the set of postal addresses., Here, however,
"S" iz not suggestive of addresses so a different letter, "A,"
may be used to be suggestive of the set of addresses, "z" then
is a natural candidate to represent the zip coding assignment.
Using "W" to represent the set of whole numbers the second mapping
can be indicated by

z2: A—mmm—V
By contrast to S, T, h, z, and A, we will always use W as a

proper name, It represents the set of whole numbers each time

that it is used,

Choosing meaningful symbols for the domain, the codomain,
and the mapping 1is a convenient device when we deal with spe-
cific sets and mappings. When the domain or codomain is a fa-
miliar number system such as Z or Q, these names are proper names
and always.name the same set. By contrast, "S" and "T" may be
used to name different sets in different examples or problems.
But in each new situation it must be explained what sets the let-
ters name,

The process which assigns an element in the codomain T to
each element in domain S can be one of several types., If S con-
tains only a few elements, a chart or table will give a concise
summary of the assignments, For example, the assignment of addi-

tive inverses to elements of (Zs,+) is illustrated in Table 7.1l.




X € Zg Inverse of X
0 0
1 4
2 3
3 2
4 1
Table 7.1

In other cases there may he a rule which tells row, given
an element of S, you can determine its imcge in T, For the home-
room assignment mapping, the rule probably would involve alpha-
betical and age ranking. The first 30 ninth graders are assigned
Mr. Anderson, the next 30 ninth graders are assigned Mr. Charles,
and so on,

A third form of assignment process is the arrow diagram,
Figure 7.1 (indicating only a few of the correspondences) illus-
trates that mapping p: 4,——/, assigns A! a3 the image of A,

B' as the image of B, and C' as the image of C by projection a-

long lines parallel to 4.

Figure 7.1



Questions., (1) Can you find an image for each point of g, ?
If so, how?
(£) Can you find a pre-image for each point of

227 If so, how?

A fourth common form of assignment process is that given by
a formula, For example, if S and T are both the set of ratiocnal
numbers Q, we can assign to each element in Q its double, Under

the mapping d

or in general,

g——23  +2q for all g € Q.

The following exercises test your ability to recognize
assignments which are mappings and some which are not., You will
also be ssked to compute images and pre-images using various as-

signment processes.

T.2 Exercises

1, For each of the following explain why the given assignment
process Jdoes or does not defin= a mapping from set S to set
T,
(a) S 6 2 3 10 7 5

T 1 12 2 9 2 12

(b) Students in mathematics 9X are assigned grades.

S is the set of students, T = {A, B, C, D, F},

AN
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X ¥ z

(Y

d e

O p—d—p=

=
i

{t’ y’ V’ W, x’ y’ 21 S = {a" b’ c’ d’ e‘l

(d) S = T = the set of rational numbers with assignment

f 1
process g ——> =

Y

(e) S T
1 6

12 2

2 3

9 10

2 7

12 5

2. If mapping g Q-—>Q has assignment process x—E »x 4+ 2,

find the image under g of each of the following nuwbers.,

(a) -12 (a) %
(0) - 2 (e) ©
(¢) 12

3. Using the mapping defined in Exercise 2, find a pre-image

(if any ex’'sts) for each of the following numbers, ( Remem-

ber: x is a pre-image of y if x——t—y.)
(a) 6 (a) 156
(b) -2 (e) O
7
(c) )

E]{[CLI-. Repeat the directions of Exercises 2 and 3 using the mapping

11




f: Q—Q with assignment formula x—f—>—é-x - 6,
5. Repeat the directions of Exercises 2 and 3 using the mapping

h: Q@——Q with assignment formula x——h—>-|x|

7.3 Properties of Real Functions

As you saw in Section 7., the mathematical concept of mapping
appears in a variety of settings with a variety of representations.
In this section and for the remainder of the chapter, we will fo-
cus our attention on a special class of mappings -- those whose
domain znd codomain are Joth some subset {freguently ali) of the

real numbers, R, These mappings are called real functions. The

' and the adjective

term "function" is synonymous with "mapping,'
"real" is used to indicate that the domain and range set are both
subsets of the real numbers., Whenever the domain or codomain of
a real function is not specified it is understood to be all of R,
The restriction to real functions may seem like a severe li-
mitation of our study. But the real number system (R,+,¢) is a
system rich in assignments which are mappings. Since the whole
numbers, integers, and rational numbers are subsets of R, many
of the mappings you have studied previously are examples of real

functions, One of these was the function which assigns to each

real number its square,
x._f_pxa .
To find the image of any real number X under this mapping, we

simply compute x ¢ x., Thus

3_f> 9,
12




and D —— 4

Instead of writing out the expression "3—L>9,” you
recall from Chapter 2 we use the notation

f(3) =9 (read: "f of 3 equals 9"),
to say that, "the image of 3 under the mapping f is 9," Follow-

ing this notational convention we have

£(-75) = 282
f(60) = 3600
£f(-2) =4

and so on,

Questions., (1) What is £(0)? f(J/2)2 f£(~f7)2

(2) Find a replacement of "x" such that f(x)
i

3 -9— *
If you thought carefully about question (2), you found that

x" could be replaced by % or - %3 that is, L9—L- does not have a

unique pre-image under the funetion f, In Exercise 5 of Section

7.2 the function x—h-—>|x| gave rise to a similar situation,

The number A has two pre-images under the function h] namely, -6
and 6, On the other hand, for the function X—L»x + 2, every
real number has only one pre-image. The problem with functions
like xf—f—>x2 and x——h—->|x| is that they assign the same

image to each of two distinct domain elements (see Figure 7.2).

13
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FPigure 7,2

The function Xe—&px + 2 assigns distinet images to distinct

domain elements, For example, g{2) = 4, g(-2) = 0,
g(%) = %? ,  gl- %) = %-, g(0) = 2, and so on,

This property, which distinguishes the function X—x + 2

from the absolute value function and the square funetion, is an
important one, Funections such as g, which assign distinet images
to distinet domain elements, are called one-to-one functions,

Each element of the domain is assigned its own private image.

Definition, A function f: S——T is said to be one-to-one
if and only if for all a, b € S, a # b implies
that f(a) # f(b).

If a function f is not one~to-one, this fact can be demonstrated
by finding two elements a and b of S such that a # b but f(a) =
f(b); that is, two distinct elements of the domain whiech are
assigned the same image. For example, x-———f——>x2 is not one-to=-one
because 2 £ =2 but f(2) = f(-2) = L4, Similarly, x——-ﬁ——>|x| is
not one-to-one because 3 # -3 but h(3) = n(-3) = 3.

If you suspect that a function is one-to-one, one way to
prove this is the case is to calculate the images of all domain
elements and check to see that they are distinet, For example,

O aspection of Table 7.2 shows ifickly that it does define a one=
L
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Table 7,2

If the domain of a function happens to be a large finite set,

this procedure will be of little use, If the domain is an ‘n-
finite set, proof by this approach is impossible, Checking

images of several domain elements can give evidence (but not proof)
that classification of the function as one-to-one is brobably
correct,

The function x——f—»x + 2 can be distinguished from

Lt %2 and x-——E——>|x| by one other important property.
Although all three functions have the same domain and codomain R,
the images under f and h are always positive numbers or zero,

For example,

f(-2) =4, h(-2) = 2,
f(-16) = 256 h(-16) = 16,
£(=fT) =7, and h(-/T) = .A.

The function g uses every real number at least once as an image
for a domain element.
10 has pre-image 8,
T7 has pre-image 75
-32 has pre-image -34,
-752,466 has pre-image -752,468,

and so on., For this reason g is called a function from R onto

15
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Definition 2, A funection k: E&——T is a function of S
onto T if and only if for each t € T there
is at least one s € S for which k(s) = t.

If a particular function is not onto, this fact can be ver-
ified by exhibiting one element of the codomain which is not
assigned as an image., For example, f: R—R with rule
x-——f——>x2 is not a funetion from R onto R because therc is no
real number whose square is -2, ((-2)(-2) # -2.)

Question. Can you show that the mapping with rule

x———E——>|x| is not a function from R onto R?

As was the case with one-to-one functions, if a function
is suspected to be onto, this is usually not easy to prove, If
the codomain of the function is finite, it may be possible to
check that each element is used as an image. Table 7.3 illus-
trates a mapping from Z, to Z,, clearly showing it is an onto

~

funection,

z, | ol 1| 2| 3|4 |5

zZ. |l 2| 3| 4|50 {1

Table 7.3

Questions, (1) Is k also one-to-one?
(2) 1Is there any function from Z, onto Z, which
. is not one-to-one?
(3) Is there any function from Z, to Z, which

is one=-to-one but not onto?

If the codomain of the given function is an infinite set (or

]ZRjkj a large finite set) it is impossible to check all codomain

106
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elements, One approach would be to select elements at random from
the codomain and check whether or not they serve as images. How-

ever, this would only give evidence, not »roof, that the mspping
is onto,

When a mapping is not onto its codomain, it is often impor-
tant to specify and name the elements of the codomain which do
serve as images,

Definition 3., If k& S——>T, the range of k is the set of

all t « T for which there is an s € S such
that k(s) = t.
According to this definition, the range of x-——f——>xa and of

l o)

x——;E——>!x| is {x* x R and x> 0}, The range of x X + z

is R, the same as the codomain of g. In fact, if you put toge-
ther the definitions of codomain, range, and onto function, you
will see that a function is onto if and only if its codomain and
range are the same set,

The following exercises are concerned with one-to-one and

onto real functions.

7.4 Exercises

1. Let f: R—R have rule of assignment x—f>|x| + 2,
For example, f(-3) = |-3| +2 =3+ 2 =5,
(a) Find standard names for:
(1) £(0) (iv) £(-75)
(i1) £(5) (v) f£(27)
(iii) £(-5) (vi) f£(-632)

17
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2. Let
(a)

3. Let

-13~

Find a pre-image (if there is one) for:

10 (iv) ©
-2 (v) -7
4 (vi) 2
Describe the range of T,
Is f: R—=R &n onto function? Why or why not?
Does each element of the range have only one pre-image?
Is f: R——»R a one-to-one function? Why or why not?
g: R—>R have rule of assignment x—i>--x.
Find standard names for:
(1) (o) (iv) g(]-5])
(11) &(73) (v) ()
(iii) g(-2) (vi) e(-m)
Is gg¢ R—R a one-to-one function? Why or why not?
What is the range of g?
Is gg R——R an onto function? Why or why not?
Are there any real numbers x for which g(x) = x?
he {-3, -2, -1, 0, 1, 2, 3}=—=Z have the rule of assign-

ment given by the following arrow diagram.

A

-3 -

2 -1 0 1
h \\\\\:\\\\;////[
2 -1 0 1

18
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(a) Find standard names for:

(i) h(-2) (iv) h(0)
(ii) h(-1) (v)  h(3)
(iii) h(1)

(b) Find a pre-image (if there is one) for:

(i) -1 (i1) 2 ) (iii) o©
(e) Is h a one-to-one function? Why or why not?
(d) Dnscribe the range of h.
(e) Is h an onto function? Why or why not?
Mappings other than real functions can also be classified as
one-to-one, onto, or both., Recall the zip code mapping of
Section 7.1, z: A——W,
(a) Is z a one-to-one mapping? Why or why not?
(b) Is z an onto mapping? If not, describe the range of z.
Let S={xt xeRand 1 {x<2Yand T={xx x €R and 0
<x< 1}, ki S——T is the function with rule of assign-
ment x——k—>% .

(a) Find the standard names for:

(1) k(1) (v) K@)
(11) ®(1g) (vi) K(3P)
(111) k(13) (vii) k(%)
(iv) k(l%) (viii) k(2)
(b) Find a pre-image (if there is one) for:
(1) 3 (1v) 1
(i1) § (v) 3
(iii) © (vi) 553

19
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(e) 1Is k a one=to-one function? Why or why not?
(d) What is the range of k?
(e} 1Is k an onto function? Why or why not?

6, Examine the function O S %x + 2; that is calculate some
images and pre-images to get an idea of the action of the
function.

(a) Do you think f: R———R is one-to-one?
(b) Do you think f: R——R is onto?
Be prepared to defend your conclusions.,

7. Answer (a) through (d) as true(T) or false(F),

If f: A——B is a real function with range C, then

(a) C < B always.

{b) C € B always.

(e¢) C = B implies that f is onto,

(d) B = C implies that f is one-to-one.

7.5 Representing Real Functions

When mappings of W and Z were discussed in the first course,
arrow diagrams were a convenient device for picturing the assign-
ment process, For instance, the mapping (it could also be called
a function) d: Z———7 with rule of assignment ;:—d>2x could
be partially represented as an incomplete arrow diagram on a single
number line as in Figure 7.3(a) or as an arrow diagram betw.en two

number lines as i Figure 7.3(b).

T~~~ 0 N>
S < -3 -2 -1 o 1 2 3 L 5

N

v

9() Figure 7.3(a)

o
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A

J

Ao

-1 0 1 2 3 I 5
Figure 7.3(b)

v

However, when functions have ii or even Q for domain ard co-
domain, the arrow diagram is a misleading, or at best incomplete,
picture of the function, since only a few assignments can be in-
dicated. Fortunately, a better tool is available,

Now return to the function fi: R——R with rule of assigi-
ment x———f——>x3. The domain and range of f are both infinite sets.

An incomplete arrow diagram is shown in Figure 7.4,

0 1 2 3 L

N
b

¥

-3 -2 -1 0 1 2 3 L
Figure 7.4

But this only shows five assignments. What happens to all the do-
1 main numbers between O and 1? between 1 and 2? Dbetween -1 and =27
LS .

[MC greater than 2°? 21

Full Tt Provided by ERIC.
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The basic problem is representing an infinite number of
assignments with a drawing of limited size, To get a rough

picture of the function, let's first make a table of some assign-

ments,
x |-3 -2% -2 -1% |- o 32"- 1 1-32-— 2 2-32"-
25 9 1 1 9 25
£(x)| 9 m 4 7 I R I I b g
Table 7.4

Table 7.4 indicates only a small number of the assign-
ments of f, but it does have a form that suggests different repre-
sentation procedures,

The function f determines a collection of ordered pairs of
numbers -- each real number paired with its square., We can write

(3, 9), (-3.8, (25, 92,
or, for any x € R, (x, f(x)) = (x, x2).

From your work in coordinate geometry you know that the set
of all ordered pairs of real numbers, R X R, can be represented by
the points of a coordinatized plane, Therefore, if we locate on
a coordinatized plane those pcints which represent ordered pairs
generated by the function x———sx2, we will have a picture or
graph of the function., Unless otherwise specified when graphing

' and the codomain

a function, we will label the domain axis "x,'
axis "y."

As a start, let's locate (see Figure T7.5) the points repre-
senting integer pairs: (-3,9), (-2,%), (-1,1), (0,0), (1,1),

‘4), and (3,9). a9

IToxt Provided by ERI
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A\y
("3,9) . °
5
. * (2,)4)
3
('1,1) * 1 *
1 - S —— > X
-3 -l 1 3 5
-3
Figure 7.5

(Note: We have chosen perpendicular axes, but
for convenlence the units on the two axes are
not equal., Can you see what would Lappen if
the vertical unit were made as long as the pre-
sent horizontal unit?)

This 1s a start, but we are far from finished, The points (4, 16),
(-16, 256), (1,000, 1,000,000), and many others generated by f are
not ycot graphed. In fact, this last polnt would require a graph
so large that we clearly must satisfy ourselves with representing
only a limlted number of the ordered pairs--perhaps {(x, x®);

-3 < x< 3%,

In one respect then, this new method of representing a function

23
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has the same limitation as an arrow diagram, However, for x
between -3 and 3 it will do very much better. Let's locate

(Figure 7.6) the points corresponding to (-2 l 25) (-1 1 2),

-
l 25
(" 2’ E) (2’ ) ( 2; )_I) ( T).
AY
8
. (ol 25
. 6 (2—2—, )
(-2,4) 1k '
: 2 (D)
® L L, ? x
-3 -1 1 3
Figure 7.6

We now have a procedure for obtaining still more points in
our graph of the function, We could next locate the points ob-
tained when x increases from -3 by steps of %, then by steps of
% » and so on. However, even if we had the patience to carry out
these computations, we could not hove to obtain all points with
rational number'coordinates, much less the points generated by
irrational numbers, such as (.2, 2), (g; £f), and so on,

Q The points already located give a strong indication of the

24
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pattern remaining points will fit, Therefore, the standard pro-
cedure is to locate these remaining points without explicitly com-
puting their coordinates, If a and b are both positive or both
negative, and if x is between a and b, then x® is between a? and
b3, Thus it seems reasonable that the graph should look like

that in Figure 7.7.

$

| /
6
h
2

— » X
-3 -1 1 3
-2
Figure 7.7

This method of representing a function by points in a coordin-

atized plane is called graphing the function or drawing the graph

of the function.

Definition If fi S—T is a real function, the graph
of f is the set of all points in the plane with

coordinates (x, f(x)) for x ¢ S.

20
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Thus the graph of x-—--é.——>x2 is the set of all points in the plane

with coordinates (x, x2) for x e R,

Question., How does the granh of x-——i;->x2 show that as
|x| gets larger, f(x) gets larger (whether x is

positive or negative)?

In addition to providing a picture of the function x———f->x2,
graphing has an interesting bonus, The graph of f, if consl:iucted
cerefully, allows us to calculate approximations to certaxin irra-
tional numbers, For example, we can approximate J3 as follows:
(See Figure 7.8.)
(1) 3 is the real number whose square is 3., Therefore, the
point with coordinates (./3, 3) lies on the graph of
X e—-X 2 ,

(2) To locate the point A with coordinates (./3, 3) we move
horizontally along a line 3 units above the x-axis un-
til we meet the graph of the function, This line f(x)
= 3 intersects the greph at two points., However, since
J3 is by definition a positive number, we choose the
point of intersection cver the positive x-axis,

(3) To locate the point with x-coordinate ./3 on the x-axis,

we move vertically from A(.3, 3) until we intersect that

axis,

20
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J
F 3
B(-2.5,(-2,5) el
, 6
|
| L
| — — > - A(\[3_93)
| 2 i
: N
4 — . > x
-3 T -1 1 V3 3
-2 E
) -
Figure 7.8

On the given graph 3 is located at approximately 1%. Checking,
(1)2 = 32 = 3%,
S0 lg-is a reasonable approximation of J3.

What we have Gone is to use the graph of f to locate a posi-
tive pre-image of 3. The graph can also be used to locate images
of numbers in the domain of f., For example, to find f(-2.5), be-
gin at the point on the x-axis with coordinate -2.5. Then follow
the vertical line through that point until it intersects the graph
of-f. To locate the point with coordinate (-2.5)2 on the y-axis,
we move horizontally from B(-2.5, (-2.5)2) until we intersect the

y-axis., The y coordinate there is approximately 6.3. Since (-2.5)2

= 6.25, this is a reasonable approximation. Note that in this

21



-23-

process there is no choice as to the point of the graph to'be used
since a function assigns exactly one image to each element in its
domain,

What we have done for the function x———?-——»x2 may be done
for any real function whatsoever., One note of caution'| After we
located 13 points, we "filled in the graph" assuming that the
pattern already established would continue, In the exercises
you will be asked to check that this is indeed the case (at least
for a number of other points), with that function. However, you
will also encounter several functions that might fool you if you

are not careful.

7.6 Exercises

In these exercises, and hereafter, we will write "the point
(a, b)" to mean the point with coordinates (a, Db).
1. From the following graph of x-——£——>x2, determine approximate

coordinates of:

(a) A \y
(b) B 1
(e) ¢
(@) D D 6 BC
(e) E E N
2 A
= — 1 3 - x
A -2
23
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Using the graph in Exercise 1, compute approximate valuecs for:

(a) .2 (v) /5 (e) S (a) J7

Then check each approximation by squaring it,

For each approximation in Exercise 2, one measure of the

error can be calculated as follows: |(your estimate of ./f)2

- nl.

For example |(1%)8 - 3] = %E- For each of your estimates,

find this measure of error,

Let §¢ R——R have rule x——e—3x + 2,

(a) Complete the following toble.
x | o 3 [ -3

gx) | 2| 0

(b) Construet a pair of equally scaled perpendicular coor-

dinate axes.

{e) TLocate the points (x, g(x)) generated in (a) on the set
of axes,

(d) Join the located points in the pattern you feel is like-
1y to continue (i.e. fill in the graph).

(e) Find standard names for g(5), g(-5), and g(%).

(£) Tocate (5, &(5)), (-5, &(~5)), and (3, &(3)) on your
graph of g.

Let hy R——R have rule x—02—|x]|.

(a) Complete the following table.

X 0 2 L 6

h(x)
(b) Locate the points (0, h(0)), (2, nh(2)), and (6, n(6))

=

in a plane rectangular coordinate systemy that is, &

918
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plane coordinatized with equally scaled perpendicular
axes, (See Chapter 6, Section 6,20,)

(¢) Complete the graph in the pattern you feel is likely
to continue,

(d) Locate the points (-1, h(-1)), (-3, n(-3)), and (-5, h(-5)).

(e} Is the graph of h the graph you drew for part (c)?

6. Let p,: R——R be the function vhich assigns to each

real number x the nearest integer greater than or equal
to x. For example, pl(%) 1, P1(1%) =2, p,(- %) = 0,
p,(7) =7, and so on,

{(a) Complete the following table

1 1 1 1 1 1 1 1 1 1
x [ |35 |5 -B|-5l3]|%B(|%5|[3%|%
p:.(x) 0 1 2

(b} Locate the points (x, p,(x)) generated in (a) in a plane
rectangular coordinate system,

(e) Complete the graph in the pattern you feel is likely to
continue,

(d) Find standard names for:

(1) (1) (V) py(- )
(11) p,(3) (vi) B, (1)
(311) py () (vi1) p,(13)
(iv) p,(- ) (viii) p,(-2F)

(e) Locate the points (x, p,(x)) calculated in (d) on your
graph of part (c¢).
)
El{[C Graph the function ki R——R with rule N S Y 3.

30
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8. Graph the function m: R——R with rule X

I »x2 -2,

9, Which of the following graphs are graphs of functions?

(a)

»

d
AN
\
<

(b)

(d)

MY

10, Try to formulate a geometric rule for determining whether or

not a graph represents a function,

d1
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11, Which of the following functions from R to R are one-to-one?

(Explain each answer,)

(a) x—»x2 (d) »——p(x) (See Exercise 6.)
(b) x——3x + 2 (e) x—>-2x -3
(c) x——>|x] (f) X——-x2 -2

12. Inspect the graphs of the functions listed in Exercise 11,
Try to develop a geometric rule for determining whether or
not a graph represents a one-to-one function.

13, Which of the following are graphs of one-to-one functions?

Why ?
s ¥ Ty
(a) (b)
,////// —~x 4////////;x
—
v + ¥ rY
(c) | (d) |
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7.7 Composition of Real Functions

The interesting function p,: R——R which appears in
Exercise 6 of Section 7.6 has a familiar interpretation., Called

the postal function, it is the assignment process used in calc.la-

ting postal charges for letters, Since postal rates are figured
on the hasis of a cost per ounce or partial ounce, it is necessary
to round off weight measures in ounces to whole numbers in the
following manner:
(1) Weights petween O and 1 (inecluding 1) round off to 1;
(2) Weights between 1 and 2 (including 2) rouird off to 2;
(3) Weights between 2 and 3 (including 3) round off to 3;
and so on,
The function p: R—R with p(x) = p,(x) for all x e R"

(p is called a restriction of P1) satisfies the postal weighing

requirements., For example,
1

p(d =1,  pn=1,  pd) =2  pliof) =1,
and so on,

Calculating the weight in whole ounces of a letter is the
first step in determining the postage required. This whole number
weight must then be multiplied oy the rate per ounce, currently
6 cents for first class mail, In other words, the funection
rr——l;—>6n is used, The two step procedure can be summarized as
follows:

p

actual weight —=— whole ounce weight L +postage charge

In practice these functions produce

- 1 D > rf6

39
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or in general,
D

X »p(x) ——1(p(x)).

This applicacion of two functions in sequence should be fa-
miliar. It is really composition of funections. You recall that
if f1 A——>B and gg¢ B—>»C are mappings, there is a com-
posite mapping hi A—C which assigns images as follows:

If f(a) = b and g(b) = ¢, then n(a) = g(f{a)) or h(a) = e. The
fact that h is the composite of g with f (6r g following f) is

indicated

h=gof, (See Figure 7.9.)

f g
4 m———————» b —m—mmm—m

h

Figure 7.9

h is a funetion whiech has the same domain as f, the same codomain
as g, and makes the same image assignments as the two step process,
g following f.
As another illustration of composition, consider functions
g

x—f>x2 and ¥ ——=—s3x + 2, where f and g have R for domain

and codomain,

(1) f(-2) = 4 and g(4) = 14
so gOf (-2) = 14,

21
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(2) f£(6) = 36 and g(36) = 110
so gOf (6) = 110.
(3) £(-72) =2 and g(2) =8
so g°f (-.2) =8,
In general,
f(x) = x® and g(x®) = 3x® + 2
so gOf (x) = 3x® + 2,
The composite gOf is a function from R to R with rule of assign-
ment
x—LE2T _3x2 4 2,
Composing twc real functions to obtain a third is similar
to another familiar mathematical process, If F is the set of all
functiocns with the real numbers for domain and codomain, then com-
position is a binary operation on F. (¥,°) is an operational sys-
tem because if ft R——>R and gt R—»R, then gOf is a funec-
tion from R to R,
For instance, if m and n are functions from R to R given by
X—2 X - 2 and x——sx + 3
then n om is a function from R to R given by
x—20 T l.
In a similar fashion,
(1) if x—23x + 2 and x—2—+x2, then x——2" »(3x + 2)2,
(2) if X 5x and X——D—-x, then x—2 o _5x.
The composite, n o m, is a function from R to R in each case,

You should check these indicated compositions for various values

of "x" to see that the rule of n o m makes the same assignments as

O

do
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the two step process "n following m."

Since (F,°%) is an operational system, it is natural to ask
what properties it has in common with other operational systems.
Is © an associative operation? Is © a commutative operation? Is
there an identity element for (F,°)? Are there inverses under ©
for each element of F? Before reading ahead, make a guess, based
on your experience with functions, about the answers to these
questions,

The easiest question to answer is that concerning the exist-
ence of an identity element in (F,®). Consider the function
gs R—R wit’. rule of assignment x—E >x,

g(0) =0, g(5) =5, g(-11) = -11
and in general, g(x) = x. If g is composed with any other real

function f, then for all x in R,

g o £f(x) = g(f(x)) = £(x)
and f o g(x) = f(eg(x)) = £f(x).
Therefore, gof=fog=F*".
In a particular cass let x—=»3x + 2. Then we have
73— > 201 & , 20t
and
Tp—E s 7r B, 20l .

Since identity functions will be important in other situations,
we make the fnllowing definition,
Definition 5. A real function j: S——S given by

J

Xt epXx is called an identity function

on S,

G
o)
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This definition actually defines an infinite number of identity
functions, one for each choice of subset S of R, The identity
function on W (written "jw” is a different function from the i-
dentity funetion on Z (written "jZ"). The difference, however,
is in the domain and codomain, not in the method of assigning
images.

Associativity of composition of functions is also easy to
demonstrate. In fact, composition is associative for mappings
in general, not just real functions, whenever the compositions
are defined. Let's assume that four sets -- A, B, C, and D --
are given with meppings f: A—B, g¢ B=—»C, and h: C———D,
(Note that the domain of g is the same as the codomain of f and
the domain of h is the same as the codomain of g. This is nec-
essary because g must assign images to all range elements of f
and h must assign images to all range elements of g.) (See

Figure 7.10.)

Figure 7.10

To show that (h © g) o f = h O (g © f), we must show that

)
]ERj()he two functions assign images in the same way (clearly they have the

gsame domain A and codomain D.) The picture illustrates the steps
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in the proof., (h © g) © f assigrs the image of a by folluwing
f to b and then (h © g) directly to d. The function h © ( g o f)
assigns the image of a by following (g © f) directly to ¢ and
then proceeding to d by function h, Regardless of the procedure
used -- (L9 g) o f or h © (g © f) -- the final assignment of
the image for a is the same,

Thus © is an associative operation on F with identity Jj.
The question of commutativity is considered in the following

exercises, Inverses‘are the subject of Section 7.9.

7.8 Exercises

1. If x-——f——px 4+ 75 and x~——5—+-3x, find a standard name for:
(a) £(15) (£f) & © £(15)
(b) £(-30) (g) e © £(-30)
(c) f(24.9) (h) g © £(24.9)
(a) £(6) (i) g © £(6)
(e) £(-25.8) (j) g © £(-25.8)
2. If x-——f—->x2 and p is the postal function, find a standard
name for:
(a) £(13) (g) p ©° £(13)
(0) £(5) (n) p o £(§)
(c) £(- %) (1) po£(-§)
(a) p(2% (3) £ o p(1})
(e) p(3) (k) £ o p(5)
(£) p(§) (1) £ °p(g)

38
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3. Copy and complete the following table for real functions

x—D L% - 24,5, and x—L+x + 15,75,

X h( x) k( x) hok( x) k% ( x)

0

19

-33
-17.25
3.14

-2.7

Does h O k =k © h?

4, Copy and complete the following table for real functions
X——18%, XK——Dx - 7.
X n{ x) n{ x) mon( x) n°n( x)
0
43
-15
12

Does mOoOn=n"°%n?
5. Is © a commutative operation on F? Why or why not?
6. Calculate first class postage for letters weighing:

(a) g-ounce (b) %pound (c) 3-]3-} ounces (d) 3]-'-2—pound '

7. To calculate airmail charges, one needs a function k which
counts the weight of a letter in number of half-ounces plus

a fractional part (if there is one), For example,

k(%) =1, k(%) =2, k(1) =4, etc.
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(a) Find the standard name of:

(1) %(7) (v) k(13)
(11) k(9g) (vi) ®(23)
(1i1) k(3§) (vii) k(2)
(iv) k(%) (viii) x(3)

(b) Graph kit S——R where S is the set of real numbers
greater than zero and less than 5. (Be carefull,)
(e} Airmail letters currently cost 10 cents per half-ounce,

At this rate, what is the postage cost of letters weigh-

ing:
(i) 5& ounces  (ii) T ounce (iii) 32 sunces
8 3
(d) Which of the following (if any) relates the airmail

function k to the first class function p? For all x > O:
(1) ®(x) = p(3x) (i1) k(x) = p(2x) (iii) k(x) =
Io(x) (iv) k(x) = 2p(x)

In New York, as in most states, there is a 3% state sales
tax., The function x-——E——>.O3x assigns to each purchase
price the corresponding tax.
(a) Compute the tax t(x) on items costing

(1) § 5.00 (i1) $ 4.30

(iii) $ 17.25 (iv) $ 99.95
(b) Graph the function t: S——R where S is the set of

real numbers betwcen O and 90 using scales like the follow-

ing:



a6 4]

B tax

30 60 90

9. In practice, the tax calculated as ,03x must be rounded off
to the nearest pemny. If r: Ri;———a—R is the desired round-
ing function, r(.135) = .14, r(17.133) = 17.13, etc.

(a) Find a standard name of:
(1) r(95.999) (ii) 1r(32.095) (iii) r(762.n12)
(b) Find a standard name of:

(i) r © t(.20) (ii) r © £(.16) (iii) r o t(.17)
(iv) r © t(.49) (v) r © t(.50) (vi) r © {(.83)
(vii) r o t(.84)

(c) Each computation in (b) yields an ordered pair (x, r © t(x)).
Draw the graph of these pairs using a scale like the

following.

$ tax (rounded off)
h

.03

.02

.01
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Does this graph of r © t resemble any other familiar griaph?
10. Let x—f—>3x + 2 and x—g>%(x - 2} be functions from
R to R,

(a) Find standard names for:

(1) £(0) (iv) g(2)
(i1) f(%) (v) &)
(111) f£(-2) (vi) g(-4)

(b) Find standard names for:
(1) e(£(0)) (1) e(£(9))  (ii1) e(£(-2))
(e) Find the rule for the composite function g © f.
(d) Find the rule for f © g,
11. A mimeographing service advertized the following prices fnr
printing copies of term papers, reports, and similar items:
(a) 50 cents per page for mimeo stencil
(b) 1 cent per printed page for printing
What is the rule which assigns to each whole number n the

cost of printing 40 copies of an n page paper?

7.9 Inverses of Real Functions

The set F of all functions from R to R is an operational sys-

tem under composition, ©

is associative and has an identity jR.
Therefore, if it can be shown that each element of F has an inverse
under ° -- that is, if for each f € F there is a g € F satisfying
£%°g=g0°f=jy -~ (F,°) can be called a group. But it this
possible?

Let's look at some simple functions in F and try to find their

]ERjkfrses. For example, let x-——z;—>x 5., This function adds 5

T Proied b e 1142
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ty every real number, Thus a natural choice for the ir.verse

of £ is x—g>x - 5 which subtracts 5 from every :'eal number,

o—Lf—s5—L 0

10— 15—8 10

~10 >-5—8 .10

For all real numbers X,

g ° f (x) (x +5) -5

i
<

g (x + 5)

and
fOg(x)=f(x=-5)=(x-5)+5=x,

Therefore g is an inverse for f in (F,°) and f is an inverse for

g in (F,0). .

As another example, if x—f—>§x, then x——°—>—g-x is a
likely candidate for its inverse,

x— :%x g _, %(%x) = X
and x—= :%x :%(%x) = X,

Therefore f and g are inverses in (F,©°),
If you look back at Exercise 10 of Section 8.8, you will see

9
that x—f——>3x + 2 and :{—é’—»:(x - 2) are also inverses of each

3
other in (F,°)., Is (F,°) a group? If you are suspicious that you
are being enticed into a false conjecture by carefully chosen e-
xamples, your suspicion is Jjustified. (F,9) is not a grcup,

Consider f: R—R With rule X———»x3.

If £ is to have
an inverse in (F,°), then there must be a function gg R—=R
wit.: the property g © f = £ 0 g = .jR. But how will this inverse

function be defined, for example at 4? We must have

ERIC 43




and

o—Lf Ly & Lo,

For this to be true, g must somehow assign two images to a single
real number 4, Any such assignment is not a function, so f cannot
have the desired inverse,

Another function without inverse is the constant function
x——ii—>0. c assigns O as the image of every real number so ¢

is a real function, However, the arrow diagram of Figure 7,1l

shows gquickly why it is impossible to have an inverse for c.

0]

Figure 7,11

The inverse of assignment ¢, illustrated in Figure 7.12 is clearly

not the diagram of a funetion.
R & > —3

/

e

0
Fipure T.12

If some real functions have inverses and nthers do not, it

wmld be helpful to have a method of testing functions to see

2
—l
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whether or not they have inverses, Looking carefully at the e-
xamples of functions whieh do not have inverses, you will no-
tice one common difficulty. Function x———j?-—>x2 has no inverse
because f(-2) = f(2) = 4, and no function can assign both 2 and
-2 as images of 4, TFunctions x———E—a-O has no inverse because
0 =¢(.2) =c(3) =c(-7) = ... and no function can assign two
or more images to the real number O,

This same difficulty will accompany any other funetion which
is not one-to-one. Therefore, we can make the general statement:
A function which is not one-to-one has no invers., Is the follow-
ing statement trus? "A function which is one-to-one always has
an inverse"?

] -

Let f: R—R have rule of assignment x *-;-TXIX+ T -

According to this rule

£(0) - 55T =0

(3 33
£(-3) = 3-% i 13%
£(20) = 1012 T~ icl)
2(200) = 75751 = - Sov

The graph of this funection is illustrated in Figure 7.13.
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Figure 7.13

If you compute the images of many more real numbers, you will

notice an interesting pattern developing. First, the images

assigned by the rule x £ > [XIX+ T are all numbers between -1 and

1. Second, no number is used as an image more than once and each
number between -1 and 1 is the image under f of some real number,
Surprising as it may seem, f is a one-to-one function with domain
R and range I = {x* x € R and -1 < x < 11,

Question. Why is “<" used rather than "<"?

There are functions from R to R which reverse the assign-

ments of x-—4£—> X . However, any such function will make

B3 iy
A6




=lo.

additional assignments unwanted for the inverse of f. If
gs R—R reverses the assignments of f,

g(0) =0 since f(0) =0

]
POf-

g(%) = since (1) =

(- 2) = o0 si 2) =- %2
gl %) 2 since f(-2) 3

and so on, For all x in R,
g © £f(x) = x.

f assigns an image vetween -1 and 1 and g assigns to each number
between -1 and 1 its pre-image under f. But g§g R—R must
also assign images to numbers outside I, like 10, -23, .ff, etc.
This is where g fails as an inverse of f,

If g assigns a real number m as the image of 10, then
£ 0 g(10) = f(m) = m—’f:}——f . Since the range of f is I, £ © g(10),
or f(m), is in I, and f © g(10) # 10. Therefore f O g # jg and
f and g are ot inverses in (F,°),

Although f: R—R does not have an inverse, the function

h: R=—>T with rule of assignment x h =;!xlx+ 7 has the same

domain as f, makes the same assignments as f, and has an inverse

k: I——R with rule of assignment x—= -7 _x]x], such that

k O h = Jg and h Ok = It

Even though k and h are not inverses in the operational sys-
tem (F, ©) the notign of an inverse of a function is extended to
include functions such as k and h as inverses under composition,

Definition 6, If f: A-———B is a real function, g is called

an inverse of f if and only if g © f = jA and

fog=jB' 4'?
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It is clear, by the definition of composition, that g must te a
mapping of B to A. This definition, although stated for real
functions, describes function inverses in general. The following
theorem expresses the fact, which has been illustrated many times,
that a function f has an inverse if and only if it is one-to-one
and onto,
Theorem A real function f: A——B has an inverse, g, if
and only if f is one-to-one and onto.
Since the theorem is in the form of a biconditional, we break the
statement into its two component conditions, and prcve each one
separately.
Proof.

“
Lo

Figure T7.14

Is the assignment constructed by reversing the assign-
ments made by f a mapning of B to A? Since f is onto, for
any t € B, t is the image of some element s in A, Since f
is one to one, t is the image of exactly one elcment of A,
Hence, the assignment constructed by reversing the assign-

ments is a mapping. Call it g.

43
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FPigure 7.15

Since f and g reverse assignments, for any element b € B,

f og (b) = b and for any element a2 € A, g o f (a) = a (see
Figure 7.15). Thus, g o f = j, and f o g = jp. By defini-
tion, then, g is the inverse of f. Conversely, if a mapping
f: A——B has an inverse g, then f is one to one and

onto, B

fog

Figure 7.16

If £ has an inverse g, we know by definition that g © f
= jA and f o g = jB. To show that f is onto, take any t € B.
Since f © g = jg, we have f o g (t) = j(t) =t. But f o g (t)
= f(g(t)) where g(t) = a is in A (see Figure 7.16). Hence,for
any t € B, t = f(s) for some a € A.
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Pigure 7,17

To show that f is one to one, we proceed indirectly.
Suppose f is not one to one., Then there must be two dis-
tinct elements r and s of A that have the same image t in
B under f. That is, f(r) = f(s) = t. (See Figure T7.17)

Since g 0 f = j,, r =g o f(r) = gif(r)) = g(t).

That is, the image of t under g is r. But we also have that
s =g o f(s) = g(f(s)) = g(t).
But r = g(t) and s = g(t) is a contradiction, because g

is given to be a mapping. Hence, f is one to one,

Definition 7. If f: A—B and g&¢ A—C are functions
with the propertr that f(a) = g(a) for every
a € A, then f and g are called equivalent
functions,
A pair of equivalent functions are f: R—R and g: R-—-»R:
where both f and g have the rule X—»x2,

Does every one~to-one funetion have an inverse? The answer

to this question must be "No, a function f: A——B has an in-

verse if and only if it is one-to-one and onto," If f is one-to-one



U6

but not onto B, f is equivalent to a function which doe: have an
inverse; namely, the function with the same domain and assignment
process as f, but with codomain equal to the range of f,

The interrelationships of one-~to-one, onto, range, codomain,

and inverse function are illustrated in the following exercises.

T7.10 Exercises

1. The following arrow diagrams, graphs, and tables, represent
functions from A to B, Explain for each wh, the given func-
tion (i) is or is not one-to-one; (ii) is or is not onto;

(iii) has or does not have an inverse,

a b c d e
(2)
A= {a, b, ¢, d, e}
B={a"b',c"d"}
;I ‘bl c! 4t .
(D) a b c d e
A={a, b, c, a1
B':[a',b',c',d',e']
al b? c! ar e!

N
il
~~y
>
i
Ul
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1
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5
1
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lsy
(d)
1 1
-23 21 Ao e e
_ Z .
1I \1' * B={y: -3<y< 3}
| |
| |
| |
—_— e ol
-3
(e) X 1 2 3 I 5 6 7 8

f(x) {10 J11 {13 |16 |20 {25 |31 |38

o
|

= {l, 2; 35 LI': 5: 6: 7, 81
B = {10, 11, 13, 16, 20, 25, 31, 38, .46,...}

2. For each function in Exercise 1 that does not have an inverse
because it is not onto its codomain, describe the codomain of
an equivalent function which does have an inverse,

3. Let &&¢ R—>K have rule x—E&—-x, Graph g.

(a) Is g one-to-one? Why?

(b) 1Is g onto? Why?

(c) Does g have an inverse? If not, why? If so, give its
rule,

4,  Graph x-——bh—>3xt

(a) What is the rule for the inverse of h?

{b) Graph the inverse of h on the same coordinatized

plane as h.
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(e} Graph X—Y»x with a red pencil on the same

coordinatized plane,

5. Repeat the directions of Exercise 3 with x——Ji—*-% .

6. Repeat the directions of Exercise 3 with Xe————m -lix,

7., Do you see any pattern in the geometry of the graphs of
Exercises 3, 4, and 59 Try to state it in the language of
reflections or symmetry.

8. Sketeh the graph of x———E——>|x|.

(a) Does h have an inverse? Why or why not?

(b) If your answer to (a) was "yes," make a table

showing 10 assignments of the inverse of h.

n n

(e) If yowr cnswer to (a) was "no," can you mo:lify
the codomain of h to get a function which does
have an inverse? If this is impossible, can you
restrict the function by choosing a smaller domain,
thus producing a function with the same rule of
assi,nment, but having an inverse?

9. The postal function (see Section 7.7) p: REf— W has the

following graph:

W
L —
o—ro
9 ——
—
-1 1 3 R -
-2 0d
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11.
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(a) TIa p one-to-one? Why or why not?

(b) Is p onto? Why or why not?

(c) Does p have an inverse? Why or why not?

(d) If your answer to (c¢) was "no," can p be modified to

have an inverse by restricting the domain or codomain?
(Make the minimal restriction needed.)

The function with rule x-——z;a—%-has domain and codomain

R\ {0O}.

(a) Why can O not be in the domain of r?
(n) Complete the following taole,
1
X
(¢) Graph x———z—a>%-using the values computed in (b).
(d) Is r a one-to-one function? An onto function?
Why or why not?
(e) Does r have an inverse? If not why not? If so, what
is its rule, domain, and ccdomain?
Let ht R———T have rule x ;|X|x+1 and k: I——R
have rule x—- 1 -X|i1 . I ={x xeRand -1< x< 1},
(a) Find a standard name of:
(1) n(0) (vi) %(0)
(i1) n(1) (vii) k(%)
(iii) n(-1) (viii) k(-%)
(iv) n(2) (1x) (5
(v) n(-2) (x) k(-5

1
(Recall: £ = %+

v
T

1 ete.)

[

54
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(b) Find a standard name of:

(1) kon(0) (vi) hok(0)
(ii) k©°n(1) (vii) hnok(%)
(iii) kOh(-1) (viii) hok(-3)
(1v) kOn(2) (ix) hok(3)

(v) kon(-2) (x) nok(-5)

(c) Is kOh(x)

x forx =90, 1, -1, 2, =27

(d) Is hok(x) = x for x =0, %, -4, §3 - % ?
(e) Can you find x € R for which kOh(x) # x?
(f) Can you find x € I for which hOk(x) # x?

7.11 [f + g] and [f - g]

One salesman asked to estimate tne cost of printing this ma-
thematics book derived the following price formulas:
(1) Cost of printing and binding: $6000,00 plus an additional
$3.00 per book.
(2) Cost of delivery: $.10 per book.
These formulas are actually rules of assignment for two functions
from W to R given by
x—2L ,3x + 6000 (printing and binding cost),
and
XL . 10x (delivery cost).

To present his estimate to the project director, the sales-

man had to combine these two price functions into a single estimate

1function E: W—R., You are familiar with one way of combining
\‘ .

00
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two functions to produce a single function -- that is composition.
However, composition doesn't seem to be the appropriate operation
in this situation.

p © d(x) = p(.10x) = .3x + 6000

and

d o p(x) = d(3x + 6000) = ,3x + 600.
Both compositions yield cost functions which assign costs lower
than the cost of printing alone!

The natural operation on functions in this case is what we
will call addition of functions, The estimated cost of produc=
ing and delivering x books is given by the formula

x—= o+ (3x + 6000) + (,10x)
or
X-———EL——’-p(x) + d(x).

Here are some sample prices calculated with this new sum function.

E(x)

x p(x) a(x) p(x) + d(x)
100 6300 10 6310
500 7500 50 7550

1000 9000 100 9100
3000 15000 300 15300

Question., In the formula $6000.00 plus $3.00 per copy, what
does the $3.00 per copy represent?
Addition of real functions occurs naturally in many other
settings, For instance, if two pumps produce 500 gallons per
‘@ r and 1000 gallons per hour respectively and they are run for

ERIC

emmEEEours, then their combined production P is given by the sum of
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two functions
X ——P’~—>-500x and X——K?——>lOOOX
X —P—->(5oo x + 1000x) = 1500x
In other cases, it is natural to combine two functions by
subtraction, For instance, a fuel dealer buys oil at 15 cents
per gallon and sells it at 23 cents per gallon., If he sells x
gallons, his gross profit function Pt W——=R is the difference
of his sales function x———§——¢323x and his cost function XF——E——hlBX.
}:—P—>(.23x - .15x) = ,08x
Addition and subtraction of real functions occur often
enough to merit more systematic study.
Definition 8, If f: R—R and g¢ R——>R, the function
h: R——R with rule of assignment h(x) =
£f(x) + g(x) is called the sum of f and g&.
We use "[f + g]" to name the sum of the functions f and g.
Therefore, for all resl numbers x, [f + gl(x) = f(x) + g(x).
[£f + g] is definitely a function from R to R because for each
real number x, f(x) and g(x) are real numbers, and + is an opera-
tion on R.
Definition 9, If fi R—R and g1 R——>R, the function
h: R——R with rule of assignment h(x) =
f(x) - g(x) is called the difference of f and g.

We use "[f - g]" to name the difference of functions f and g.
Therefore, for all real numbers x, [f - gl{x) = f(x) - g(x). A-
gain we know [f - g] is a real function since subtraction is an

9/

operatior on (R,+).
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Question, Is it possible to define subtraction as an opera-
tion on the set of all functions from W to W?
From Z to 47

It is important to keep in mind the double use of the symbols

"4 and "-" ir expressions such as

(1) (£ +gl(x) = £(x) + g(x)

and

(2) [f - glx) = £(x) - g(x).
On the left in (1) and (2). "+" and "-" indicate operations on
functions; on the right in (1) and (2), "+" and "-" are the fam-

1liar arithmetic operations on real numbers, The symbols are
used for both operations btecauce addition and subtraction of func-
tions are defined in terms of addition and subtraction of the
real number images of the functions. The brackets "[ ]" are used
to indicate that [f + g] is a function -- not to be confused with
"f(x) + g(x)" which is the sum of two real numbers.

Let! s study one more instance of addition and subtraction
of functions, TLet f and g be function from R to R with rules of

f 1

. o
assignment ¥»——>=x 2nd X—=-—x - 2,

2

[f + g)(0) = £(0) + g(0) =0 + {-2) = -2
[f + gl(17) = 8% + 15 = 23%
[f + g](-lQ) = -6 =14 = -20

[f - g](0) = £(0) - g(0) =0 =~ (-2) =2
[f - g](17) = 8% - 15 = -6%
[f - g]l(-12) = -6 - (-14) = 8,
In general

o 3 -
‘ X [f + gl > ZX - 23 X [£ g]g;:_ %x + 2,
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The sum and difference of two functions can be illustrated

graphically (see Figure 7.18).

‘F y

Figure 7.18

The graphs of f and g intersect at the point (4, 2) showing that
r(4) = g(4) = 2.

This in turn implies that {f + gl(4) = 2 + 2 = 4, Checking the

graph of [f + g] you see that (4, 4) is one of the indicated

points. Similarly [f - g]{(4) =2 - 2 =0 and (4, 0) is one of

the points of the graph of [f - g]., Notice that £(0) = 0. Thus

[f + gl(0) = £(0) + g(0) = -2, This means that the graphs of

[f + g] and g intersect at (0, -2). In the following exercises

you will be given practice computing sums and differences of func-

Q
JERJﬂ:ions, both algebraically and graphically,

a4



T.1l2 Exercises

1.

Let x———»3 and x—&—»|x| have domain and codomain R.
(a) Find a standard name for:
(1) £(0) (vi) g(0)
(11) £{1) (vii) g(1)
(1ii) f£(-1) (viii) g(-1)
(iv) f£(163) (ix) g(163)
(v) £(-23) (x) g(-23)
(b) PFind a standard name for:
(i) [f + gl(0) (vi) [f - g](0)
(i) [f + gl(1) (vii) [f - g)(1)
(iii) ([f + gl(-1) (viii) [f - gl(-1)
(iv) [f + gl(163) (ix) [f - gl(16%)
(v) [f + gl(-23) (x) [f - g](-23)
(¢) Find a standard name for:
(i) f£9g(0) (vi) gof(0)
(ii) fog(1) (vii) gof(1)
(iii) fog(-~1) (viii) gOf(=1)
(iv) fOg(163% (ix) gOf(16%)
(v) fog(-23) (x) gof(-23)
(a) find a standard name for
(1) [g + £1(0) (vi) [g - £1(0)
(ii) [g + £1(1) (vii) (g - £13(1)
(iii) [g + £1(-1) (viii) [g - £1(-1)
(iv) [g -+ £1(163) (ix) [g - £1(16%)
(v) [g + £](-23) () [g - £1(-23)

-55~
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(e) What s-e the rules of assignment for:

(1) [f + 2] C(iv) [g - f]
(ii) [g + f] (v) gor
(iii) [f - g] (vi) fog

(f) Graph f, g, [f + gl, and [f - g] on a single coordina-
tized plane as was done in the text. (You might find
it easier to use different colors for the graph of each
funetion, )

h

2. Let x=———x3% and x——lL—>3x - 1 have domain and codomain R,

(a) Complete the following table.

X h( x) k( x) [h + k](x) h - x](x) [k - n](x)

12.5
=14
-3

i

(b) Find standard names for:

(1) hok(0) (iv) kon(s)
(1i1) xon(o0) (v) hok(-2)
(iii) hok(5) (vi) kon(-2)

(e) Give the general rule of assignment for:
(1) [h + k] (iii) [k + h]
(ii) [h = k] (iv) [k = h]

(d) Graph h, j, [h+ k] and [h - k] on a single coordinatized

plane., (Hint: Make the vertical scale unit smaller than

61

the horizontal scale unit,)
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3. Let x—Li 2% + 1 and x—k-»%—x -2,
(a) Graph f and g on a single coordinatized plane.
(b) Graph [f + g] and [f - g] on the same plane,
Try to do (b} using the graphs of f and g.
L, Copy the graphs below. Then draw the graphs of [f + g]

and [f - gl using the same axes.

(a) 1 y (b) ¢ y
£
\\
g T
> X -» X
g
(¢) $ ¥

5. Sketch the graph of the postal function p and the graph of

X——3+x on separate pairs of axes.

(a) Complete the following table,

li2 4 |5 718 10
x 313(31312(31]3(3|73
p(x) 1 3
o p(x)-x % %

£3°)
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(b) On a third pair of axes graph [p - jl: RL— g,

(Recall RT = {xt x € R and x > 0}.)

Sketch the graph of [p + t]: Ri——P, where x——t—s2,

(oX}

7. Graph i—t %% + 1 and X2y %2,
(a) Find standard names for:
(1) [f + g](0) (iv) [f + g)(-1)
(i1) [f + gl(1) (v) [f +gl(-2)
(iii) [f + gl(2)
(v) Graph [f + gl.
In Exercises 8 - 10, you are asked to explore the following gues-
tion: "Is (f,+) a group, where, F is the set of all functions
from R to R?"
8. Is + associative on F?
(a) 1Ir X—F x4 2, x—2 3% and x—h—z—-xz,
find the rule for:
(1) [f + g] (iii) [[f + g] + h]
(i1) [g + h] (iv) [f + [g + h]]
(b) Is [[f + gl + h] equal to [f + [g+ h]]?
(e) For any functions f, g, and h from R to R, and any x € R,
[f + 8l(x) + n(x) (1)
(£(x) + g(x)) +n(x) (2)

[[f +g] + nl(x)

by Definition 8.
Show that [f + [g + h]](x) is equal to (2).
(d) Does {c) help you conclude anything about the associae
tivity of + on F? Explain your answer,
9. Is there a function ¢: R——=R such that

[c+f)l=[f+c]=TF

for any function f € F? Do you see that the rule for c is
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11.
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X0 ?

Is there an additive invers~ for each element of F?

(a) 1If x—7L +x2 and X-m = -x2, find a standard name

for
(i) [f + gl(0) (1ii) [f + gl(-22.5)
(i) [f + gl(17) (iv) [f + gl(-.5)

[f + gl

(b) Complete: x

(¢) For any function h: R—R, let [-h] be the func-
tion which makes assignments x-——LZEJ——>-h(x). Is [-h]

in F for every h in F? Explain your answer,
h + {=h]

(d) Complete: x

(e) Does (d) help answer the question "Is there an additive
inverse for each element of ®?" If so, how?

{f)y 1Is (f,+) a group?

Copy each of the following graphs of functions and sketch

the graph »>f the corresponding additive inverse in F on the

same axes,

(a) » Y (b) p
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v

RN

12, 1Is addition of real functions commutative? ZExplain your
answer, Is subtraction of real functions commutative? Ex-

plain your answer,

7.13 [f.g] and [gl

In Section 7,11, addition and subtraction of functions were
defined so that [f + gl(x) = f(x) + g(x) and [f - gl(x) = f(x) -
g(x) for all real numbers x. These definitions depend upon the
fact that 211 images under f and g are real numbers., Addition
and subtraction of functions can therefore be defined in terms
of addition and subtraction of the images of the functions.

Following the pattern set in defining [f + g], there is a
natural definition of the product of two funections,

If x—L—x® and x—LB 3% - 1, then £(2) = 8 and g(2) = 5.

O __ Therefore if k is to be the product of f and g, k(2) should equal
M
bo
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f(2)+g(2) (=8+5 = It0)., Similarly
k(-5) = £(-5)+g(-5)
29,0003

(-125)(-16) = 2,000; k(10) = 1000.29 =

and in general,
for all x € R, k(x) = f(x)-g(x) = x3(3x - 1{.
Definition 10. If f: R———R and gt R———R, the function
K¢ R—>R with rule of assignment
x—2 »f£(x)-g(x) is called the product of
£ and g.
We use "[f.g]' to name the product of functions f ard g.
Therefore, [f.gl(x) = f(x).g(x) for all real num“ers X,
Addition, subtraction, and multiplication are all operations
on the set F of functions from R to R. Can division be defined

o

. . T
in a natural way as an operation on F? If x——x? and

x—E—»3x - 1, then it is reasonable to expect that the quotient
of f and g will be defined so that

£ _f(2) _ 8
[E](Q) = g >y ~ 5°

£ _f(-5) _ - 125
[g](-5) = E%:g} =35 ’

f £ 3
BIORF SR

Question, Evaluate £(%), g(%), and [é](%&.

and in general

What difficulty does this present to defining

a new function [é]?

[Z) | 2(x)
Although x :=g(x) assigns images to most real numbers,
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number assigned as the quotient of f(1) = é%—and g(3) =0, In
£
another case, when x-——E—-»O, b e ¢ ¢7f(x) azain fails to define

c(x)
a function from R to R because no number is assignhed as the quo-

tient of f(2) = 8 and ¢(2) = 0 or £(-3) = -27 and c(-3) = 0 or
any other pair f(x) = x® and c(x) = 0.

These examp;les show that division cf functions is not an
operation on F,
However we can make the following definition,

Definition 11, If f: R-—R and gg R——R then che

function [g]z A———>R with rule of assignment
f

(5] £(x)
g fix) . A
X > gEX) is called the guotient of f and g.

(A =1{x:x x €R and g(x) # 0})

We write "[é]" with the understanding that the domain of this
function is always restricted to those real numbers x for which
g(x) # 0.

The restrictions on dividing functions suggest that (F,.) is
not a group because some functions in F don' t have multiplicative
inverses, The function ¢: R——>R with rule x——0 is a
certain troublemaker, but since this is the identity for (F,+),
we should investigate (F\{c},-).

Before we can look for inverses in (F\{c},*) we must know
if there is an identity. You recall that jR was the identity for
(F,°), and x—=—=0 the identity for (F,+). (See Exercise 9 of
Section 7.12.) Let it R——R have the rule x———i—->l. Then

for any function f in f\{c}

O

b7
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[t£eil(x) = £f(x).i(x) =

and

[i-£](x) = i(x).2(x) =

f(x)+1 =

1f(x)

£(x)

for all real numbers x, Therefore x—=—»1 is the reguired

identity of (F,-).
k

Let x—»2x be a function from R to R.

If h is a function

proposed ¢s the multiplicative inverse of k., then we must have

for all reai numbers x
[hkl(x) = h(x)k(x) =
But k(0) = 0 and

1,

[hek](0) = h(0)-x(0) = n(0):0 =0

and 1 is nct the required inverse,

do the job.

merts in F\ {cl without inverses, (F,+,¢) is

Chapter 4, Section 4.1,)

Thus {F\{c},+)} is not a group.

However, (F,+) is

Thus no function in F will

Since there are ele-
not a field, (See

a group (see Exercises

8-10 Section 7.12), and it is natural to ask just what structure

the two-fold system (F,+,+) has,

the following set of exercises,

7.1l4 Exercises

This question is the theme of

1,
(a) Find standard names for:
(1) h(0) (vi)
(i1) h(6) (vii)
(i11) n(8.4) (viii)
(iv) h(-12.6) (ix)
(v) h(-27) (x)

Let x———E——>2x and x-——E—a-lx be functions from R to R,
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6l

(b) Find standard names for:

(i) [h . x](0)
(ii) [h - k1(6)
(iii) [n - k](8.4)
(iv) [h - k](-12.6)
{(v) [h - x](-27)

(e) rind standard names for:
(1) [21(0)
(11) [21(6)
(111)  [21(8.4)
(d) Find standard names for:
(1) noxk(0)
(ii) nok(6)

(vi)
{vii)
(viii)
(ix)

(x)

(iv)
(v)

(vi)

(iii)

(iv)

h]
[k « h]
[k - h]
[k » h](-12.6)
[k « nl(-27)

K
[£1(8.4)

kOh(8,4)
kOnh(-27)

Graph the functions h and k of Exercise 1 on a single coor-

dinatized plane. Then graph [h .

(Note: x hek] 3x2 but x

Complete the following table.

hok 2

e =

3

k] on the same axes.

L)

x| £(x) | elx)| [£+el(x) | [£el(x)
2| 13 -3
-7 | 24 %
5 20 -17
T 0 1
h g, 1 . ‘
Let x——|x| + 1 and x -5 T be assignment pro-

cess for functions from R to R,
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What is the range of h? of g°?

of [h « gl?

(b) Complete the following table.
1 1
x|ol1 -1 12 -2 31-3|5 |~5F
fx]+1 2
1 £y
[xT+1 3

(e)
(o)

L

(perhaps in red),
f

Graph h and g on the same coordinatized plane.

Graph X1 (see Section 7.13) on the same plane

Let x———2%2 + 3 and Xn——&—ﬁbl be functions from R to R,

(a) PFind standard names for:
(1) 2(-5) (1)
(11)  £(14) (v)
(iii) £(-6.5) (vi)

(b) Find standard names for:
(i) [£ « 1](-5) (iv)
(1) . [£ - 1](14) (v)
(iii) [f » 1](-6.5) (vi)

[i - £](-5)
[1 . £](14)
[i . £](-6.5)

Graph x-——:—ﬁ-——>xa + 1 on a large coordinatized plane,

(a) Compute }?‘%5ff for x equal to:
(1) (v)
(i1) % (vi)
(iii) -% (vii)
(iv) 1 (viii)
(ix)
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(b) Graph x—E » using the same set of axes as

x2 + 1
used for 7T,

T Below is s graph of a function h: R——>=R. Copy the given

graph, and using the line i: R—»R, Xx—=—s1, sketch

the graph of x_'*'H(%T on the same axes.

ry
2 h

(=N

I N

8. If f, g and h are functions from R to R, then for every
real number x, £(x), g(x) and h(x) are real numbers. It is
also true that for each x € R,
[[f- 8]l nlx)=({f.gllx)) .« h(x) (1)
(£(x) + &(x)) + h(x) (2)
(a) Show that [f « [g « h]l}(x) is equal to (2).

]

]

(b) What, if anything, does (a) suggest about a property

of » on F?

f

9. If x »x3, X g

—-3x - 1, and x—DD 2% are functions

from R to R, copy the following table, and complete it.

x | f(x) | &(x) | h(x) [feg](x)| [£-n](x) | [f-g](x)+[f-n](x)

2

o




10.

11,
12.

13,
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Extend the table in Exercise 9 to include:

g + h](x) | [f. [g + h]](x)

What property of (F,+,.) is suggested by Exercises 9 and 102
Re~examine Sections 7.11, 7.12, 7.13, and the preceding
exercises in this section. Try to list all the significant
properties of (F,+,+) and also those familiar properties of
two-fold operational systems that are not true in (F,+,.),
If f1 R—R, we can define & new function [3f]: R——R
as follows: x——;ii——>3-f(x). In general, for any real
number a, f[af}l: R——R has rule of assignment
x———LEEJ—->a-f(x). This new function [af] is called the scalar
product of f by the real number a. Let X*—L »2% + 3 be a
funection from R to R,
(a) PFind standard names for:

(1) [3r}o)  (ii) [3r}(5) (1it) [3£)(-T7)
(b) What i1s the rule for [3f]?
Let x—E&—»x® be a function from R to R.

{e¢) PFind standard names for:
(1) [3el{o)  (ii) ({[3gl(5) (iii) [3gl(-7)

(d) What is the rule for [3g]?
(e) PFind standard names for:
(1) [3[f + gl)(0) (i1) [3[f + g]}(5)
(1) 030¢ +@)-n) T8 (1) [3)0) + [3)(0)
(v} [3c1{5) + [3g)(5) (vi) [321(-7) "+ [3e](-7)
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7.15 The Square Root and Cube Rcot Functions

The function X__;E__,Xa was studied in Sections 7.3 and 7.5.
This squaring function does not have an inverse for composition
because it is not one-to-one, However, if the domain is restricted
to the positive real numbers, the restricted function does have
an inverse, You recall that an accuratgce graph of x———ﬁ;—>x2 was

used to calculate rational approximations of ,2 and .3 (see Figure

7.19).

Ary
3 = — — (5,3)
21— — = 1(/2,2)
I
L1 —
1112
Z 3

Figure 7.19

Following this procedure we could theoretically obtain an approx-
imation to the square root of any non-negative real number, Given
a positive real number, we can locate its square root as the x-coocr-

dinate of a point on the x-axis.

3
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Therefore, we can define a new function gr with domezin and
codomain R; . This function has the property that b——JL;—>a,if
and only if a > O and b = a®, Instead of the usual function no-

" we will write

tation, with which we would write "J (b) = a,
w/fo = a" to indicate that the square root function assigns a as
the image of b or that the square root of b is a, Some square

roots are easy to compute. For example, .0 =0, JI =1, JF =2,

An easy way to obtain the graph of the ./ function is to use

the fact that for a > O and b > O, a——AL;—#b if and only if

f

b f-——a, when x——=—x?, That is, (a, b) is in the graph of

Jr.if and only if (b, a) is in the graph of f restricted to R: .
'For example, we found .2 and ./3 from the graph of f by finding
the points (.2, 2) and (3, 3) in the graph of f. Thus, (2, .f2)
and (3, ./3) are in the graph of .,/ . Hence, we graph the reversed
ordered pairs of f restricted %o RZ to obtain the graph of J’.

But, even better, there is a nice geometric relationship be-
tween the graph of f and the graph of J— . This is illustrated
in Figure 7.20, where g and h are any two functions such that
A{x, ¥) is in the graph of h if and only if A'(y, x) is in the
graph of g,
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h y =X
g
(I,Z)
1 1 l
B'(0,x) Al (y,x) g l___ (Z,X)
A
/|
c(0,y)
d / AC,3)
|
!
| |
|
¢ >X
00,0071/ ¢'(5,0)  (3,0)
B(x,0)

Figure 7.20

This can occur if and only if A' is the image of A under the
reflection of the plane in the line y = x, To see this, observe
that rectangle 0 B' A' C' must be the image of 0 B A C under the
reflection in the line y = %, Since the coordinates of A are
(x, ¥y), the coordinates of A' must be (y, x). Likewise, A is
the image of A' under the same reflection so that the figure formed
by the graphs of f and g is its own image under this reflection and
hence symmetric with respect to the line y = x.

Question. Are g and h inverse functions if their domain

and codomain are both RZ (assuming the graphs
continue symmetrically)?

The graph of ./  is now constructed from the graph of f re-
stricted to RZ using the reflection in the line y = x, See if you
can figure out a neat way to construct this graph yourself using

O .aper folding or tracing paper.
C 5
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We saw how a rational approximation of ./3 and ./2 can be found
using a graph of x———£——>xa. A similar procedure can be used for
finding a rational approximation to 32, the real number (and there
is only one) which when cubed yields 2, The graph of x——Ji—a-xa

is shown in Figure 7.21,

FPigure 7.21

There are two important differences between x———f-—>x2 and

S

+x3 thal are evident from a comparison of the graphs of the
two functions, (See Figures 7.19 and 7.21.) The squaring func-
tion is na2ither one-to-one nor onto R, The cubing function is
one-to-one and onto R and thus has an inverse ¥ : R——R which
assigns to each real number its cube root; that is b = a2 if and
onlt}if M = a,

Full Tt Provided by ERIC.

£]{U:Some cube roots are essy to cq?%fte: o =0, 3@ =1, 3T = -1,
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3 al
2l = ; s =27 - _.§ , and so on, But, as with ./, the graph of
3 - 8 2

ﬂ— can best be constructed by reflecting the graph of g in the

line y = x(see Figure 7.22),

Figure 7.22

The graphs of ./ and 3 are used in the following exercises to
find rational approximations of the cube and square roots of cer-
tain real numbers, Both the functions ,/ and ¥ have a special
property, called the multiplicative property. A real function h
has the multiplicative property if and only if for every a and b
in the domain of h, h(ab) = h(a) h(b). The function f: R—=R
given by x———f—->x2 has this property.

f(ab) = (ab)2 = (ab)(ab) = (aa)(bb) = a2p? = f(a) f(b). This
argument follows from the rule of f and the associative and commu-

tative laws of (R,*).
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The function .,/ "inherits" this multiplicative property from

its inverse,

For a > 0 and b > O 4ab =
(J/a + )2 by definition of ./ .

f restricted to R:

in the following way.
Ja « Jo if and only if (./ab)Z2

But,

(,/ab)?® = ab by definition of ./,
and,
(Jfa o Jo)2 = (J2)2 « ()2 (f has the multiplicative property)
= a <+ b (definition of ./ and )
"JI2" and "#12" (called radicals) are names for range ele-

ments of ./ and ¥ .

The domain element on which ./ or ¥ acts is called the radi-

cand.

1 \ﬂ—é\l

is a radical of index 2,

"3ff5" 415 gaid to be a radical of index 3 with radicand 12,

even though the 2 is not written.

The multiplicative property of ./ and ¥ allow many useful

transformations of radical names for real numbers.

Example 1.
Example 2,
Example 3.
Example 4.

Example 5.

Example 6,

A2 = B3 = K. B=28

BoET- K. B
$-[5 -5 pas
R R

Y5 - BT - O = HE

gﬁ;—= J@%E=={7%T' A

Some real functions have an analogous additive property e, g.

for all a and b in the domain of the real function h, h(a + b) =

h(a) + h{b). For

]:R\ﬂ:rty since f(a + b) =

R——>R given by x———ﬁ——>7x has this

= Ta + Tb = £(a) + £(b).
F40)

f:
7(a + b)

example,
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VF) however, does not have the additive property. One counter-exam-
ple suffices,

Take a = I} and b = 9. Then,

JE+9 = /A3, But S +.,8=2+3 =5, Clearly,

J13 # 5.

The distributive law aids in simplifying some expressions in-
volving radicals.

Example 7. 3.5 - .6+ LB = (3 - 1+ 4).55 = 6./5,

Example 8. (J2 - 3)(,/2 + 3) = (& - 3).B + (B -3)3
S 2-32+32-9
2 -9 = -7,

7.16 Exercises

1, Use the graph of vr'= Rg;——->R given by x——Ji:—¢-JE to find

rational approximations for:

(a) B T ¥
(v) B
(c) ﬁ 3 .
(a) /2%
(e) M |,

1

1 3 5 7 9 >
"9
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Check each approximation in Exercise 1 by squaring. For

example, if you found ,/5 ¥ 2% then (2%)(2%) = % = 5—13
Use the graph of x——jz;—>5§'to find rational approximations
for:
+ ¥
(a) 38
(v) 2B
(e) 27
(a) 2B
(e) y§ : — X

Check each approximation in Exercise 3 by cubing. For exam-

ple, if you found ¥ = 2%, (23)2 = 3%5- =1 553

Answer the following questions about the square, cube, square

root, and cube root functions. For which real numbers x 1is:

(a) x2 > x (3) x> x
(b) %2 < x (k) =x® < x
(e) x2® =x (1) x® =x
(a) Jx = x(and x > 0) (m) %k =x
(e) Jx < x(and x> 0) (n) %k < x
(£f) Jx> x(and x > 0) (o) k> x
(g) Vx> x*(and x » 0) (p) %> x®
(h) & < x2(and x > 0) (a) #x < x3
(i) & = x2(and x > 0) (r) 3k = x8

()
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(Hint: It might help to graph the functions on a single

coordinatized plane, and also to draw the line y = x.)

6. Transform each of the following so that the radicand is the

smallest possible positive integer and so that the radical

does not appzar in the denominator of any fraction (as done

in Examples 1--3, 5, 6),

(a)
(p)
(e)
(d)

RN

(e)
(f)
(g)
(h)

JOTE
T
J500

W g w k2
) E B

1
5
(k) @ (o) £
1
g8

I8 (0 3 o B

Te Perform the following operations. Use the properties of

J and ¥ and the real numbers to write your final answer

compactly.
(a) J7 - JIB
(b) QAB- = 34E

8. Prove that g

(e)
(£)

(g)
(h)

5/2 + 318 (1) (/2 - BIE + B
2B% + JIT (3) (8 - JI2) (4 + .f3)

(2 + 3)(5 - J2)
(/& - 8)(JIO + 4)

R——R with rule x——x% 1is multiplicative.

Use this to show that its inverse, ¥ : R—R is multipli-

cative,

T7.Y7 Summary

In this chapter we have studied some properties of real func-

)
]ERi(j tions =~ those with domain and codomain contained in R, Since real

IToxt Provided by ERI
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functions are a special class of mappings, the properties con-
sidered were often familiar: one-to-one, onto, inverse, identity,

and composition, To illustrate these properties a number of real

functions were studied in some detail: xp——E——>|x], the postal
function p, x-——']—>x, x—-—c—-o, X f ., [xlx—l~ T2 X i —1,

The fact that all real functions assign images that are real
numbers permits definition of many new operations on functions:
[f + gl, [f - g], [f+« gl, and [af]. The operational systems
(r, ©), (F, +), (F,+), and (F,+,°) have familiar structures,

Some important points of the chapter are the following:

(1) A function f: BR——R has an inverse if and only if
it is one-to-one and c¢nto, However, if f is one-to-one
and not onto, it is equivalent to a function which has
an inverse,

(2) F, the set of all functions from R to R, 1s an opera-
tional system under composition. (F, ©) is not a group,

(3) Any real function f can be represented partially by a
graph -- the set of points on a coordinatized plane
with coordinates of the form "(x,f(x))."

o

(4) The functions x———ﬁ——>x? and x—<=—»x® and their graphs

can be used to obtain rational approximations of ./Xx for
any non-negative real number X and of Y% for any resl
number Xx.

(5) V : Rg——————»-RZ is the inverse of f: Rg—————>R+ where
x——f-—>x3. And ¥ : R———=R is the inverse of g: R—R

where x—=S »x? .

(6) (F,1,+) is not a field,
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T7.18 Review Exercises

1. Let x——ll—>x” and x—25 4 2x - 1 be functions from R to R,

Copy and complete the following table,

x (h(x) | e(x) | en(x) | [h+el(x) | [h- gx
0
1

W2
|-3]

2. Graph the function x——il—>2|x\ for -3 ¢ x £ 3.
3.  Graph x——3x - 1.5 for -4 < x < 4.
4, For each of the graphs given below:
(é) is the function one-to-one?
(b) what is the image of 2?
(¢) what is the pre-image (if any) of -2°?
(d) copy the given graph and sketch the graph of -f.
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- -» X y A

5. For each of the following functions from R to R determine:
(a) Is it one-to-one? If not, show why by counterexample,
(b) Is it onto? If not, show why by counterexample.

(e) @Give a rule for the inverse if it exists.

(1) x-——f;—blxl (4) b x4 B
(2) x—2FB (5) x—2—3,14
(3) x—-h—->17x - 289 (6) x—2es5x

6. For the functions given in Exercise 5 find a standard name

for:
(a) £(-7.51) (1) n9%(2)
() g(-13) (J) nog(-2)
(¢) h(17) (k) [f + gl(15)
(d) ®(-2) (1) [f + [-g]1(15)
(e) m(752) - (m) [n. gl(15)
(£) n(.25) (n) [g - nl(10)
(g) mon(.25) (o) [4n](12)
(h) nom(,25) (p) [f - g)(-3)
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7. For the functions given in Exercise 5, determine the rule

of assignment for:

(a) [h + n] (e) [n-. gl
(b) [h » n] (f) gon
(e) nOm (g) [5g]
(d) m°n (h) &%




CHAPTER 8
DESCRIPTIVE STATISTICS

8.1 Introduction

You have often hesrd, on radio and television, the werning:
Don't be 8 "statistic”! What does that mean? What are statistics?
What 2re statistical data? The World Almansc snd daily newspapers
are of statistical data end of statisties. You are a walking bundle
of statistical data. Your age, your height, the number of members
in your family, your street address, are all exsmples. In 211

of these cases we are using the words stetisticsl data (in brief,

data) to stand for numbers used to describe observations.

A statistic (descriptive statistic) is & number computed

from statistical dats. Thus en "aversge" of two bits of statis=-
tical date is a statistic.
In this chepter we will study the gathering of statistical
data, its presentation in the form of tables and graphs. and the
calculation of certain statistics such ss the average and the standard

f deviation (a measure of the spread of statistical data).

8.2 Exsmples of Sets of Data and their Graphicel Presentation

A msthematics tescher gave the same test on Probsbility to
two different classes each of which hed 35 students. There were
ten question each of which wes worth five points for a correct

answer ond zero points otherwise. The set of possible test
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grades was:
{0, 5, 10, 1T e s £ 45.’ SO]

The results for Class I &nd Clsss II are recorded in

Table 8.1 and Teble 8.2 respectively:

20 30 10 30 0

5 45 50 0 25
20 35 4o 20 35
25 Lo 35 30 30
15 25 45 15 Lo
bo 4o 35 35 35
25 35 25 ko 20

Teble 8.1

TEST GRADES FOR CILASS I

20 15 15 10 45
15 10 20 25 20
25 25 35 20 15
35 20 25 20 15
15 15 30 10 5
20 20 30 30 20
20 30 20 20 15
Tsble 8,2

TEST GRADES FOR CLASS II

81
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There were only eleven possible grades for the test on
probebility. It would not make sense for this type of measure
to assign other real numbers Between two consecutive multiples
of five as test grades. 7You would be quite puzzled, if on such
2 test your teacher assigned you s grade of the square root of
twenty-nine., The test dete is an example of one type of discrete
deta. Later you will work with dstas gethered from heights, weights,
time and other measures where we will think in terms of subsets
of the real numbers which include 211 real numbers within some
interval,

This type of dete is said to be continuous data.

The dats in Teble 8.1 snd Teble 8.2 was taken directly from
the teacher's record book in zlphabeticsl order of the students
names. For this reason it is difficult to get much of the infor-
mation that a teacher might desire sbout the test results. The
Frequeney Teble, Tsble 8,3, presents the data in such & way thet

much information is resdily obtained from the table.

CLASS I CLASS IT

Cumulative Cumulstive

Grades Frequency Frequency Frequency Frequency
0 2 2 0 o)
5 1 3 1 1
10 1 4 3 4
15 2 6 8 12
20 'u 10 12 24
25 5 15 b 28
30 4 1?3 4 32

8
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35 7 26 2 3

Lo 6 32 0 34

Us 2 34 1 35

50 1 35 0 35
Teble 8.3

FREQUENCY TABLE FOR TEST GRADES OF
CLASS I AND CLASS 1II

Question. Use Teble 8.3 to find the difference between the
greetest and the least grade received in Cless I.
Do the sasme for Cless II. Are the differences the
seme for Class I a2nd Class II?

Definition 1. In any set of dste the difference between the
grestest and the least measure is called the
range of the set of data.

Question. Use the cumulative frequency column for Cless I

in Teble 8.3 to find the middle grade for Class I,
Do the seme for Class II. For which class was the
middle grade greater?

Definition 2, If & discrete set of data has an odd number of
measures, the middle measure is called the
medisn of the set of date. If the number of
measures is even, the "aversge" of the two
middle measures is the median.

Question. Again use Teble 8.3 to find the grede with the

greatest frequency in Class I. Do the same for

[]{U:‘ Class II. Are these numbers the seme for both

classes? o 89,7
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Definition 3. In a set of desta a measure that occurs with
a frequency at least as large s the frequency
of eny other measure in the set is called @
mode of the set of data.
Example. In the set of dete (3,4,4,4,5,5,6,6,6,7,8} both
4 and 6 are modes. Note the three 4's represent
different measurements and therefore ere different
elements of the set of data. The frequency diagrams
in Figures 8.1 and 8.2 represent graphicslly the
same set of data that was represented in tabular
form in Tseble 8.3. Some esspects of the data that
are obscure in the table are more zpparent in the

figures.

Frequency 7 ;

1L LT

0O 5 10 15 20 25 30 35 40 45 50 Grades

Figure 8.1

£}{U:‘ Frequency Diagram For Dets in Table 8.3

Grades For Class I
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Frequency 12 | .
11.

10 -

0O 5 10 15 20 25 30 35 40 45 =&p Grades

Figure 8.2
Frequency Diagrem For Data in Tsble 8.3
Grades For Class II

Notice that in the grephs, or frequency diagrams, in Figures
8.1 and 8.2 the lengths of segments represent the frequencies of
the various grades. Notice also that the renge and mode sre very
easy to determine from the graph. But in sddition to this, it is
also easy to get some idea of how the grades sre scattered or spread

by examining the diagram. The two diagrems are placed on the page

9
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in such & way that it is easy to compare the sets of data that
are represented.

When you take a test, you may be interested in how well you
did on the test with respect to the rest of the class., One way
is to find out how many students in the class received s grade that
was less than or equal to the grade that you received. The cumu-
lative frequency diasgrsms in Figures 8.3 and 8.4 provide this
information for Class I end Class TII. For example, suppose you
were in Class I and received s grade of 25. You would look elong
the horizontsl axis until you come to the grade 25. Then you would
look at the point on the y-axis which is the same discence from the
x-axis as the length of the segment sbove the grade 25. 1In Figure
8.3 this shows that there are 15 grades which ere which are less
than or equal to the grade of 25 for this test. Another way to
think of your standing is that you did at lesst as well as about
43 percent of the clsss. Looking at it another way, sbout 57% of

the class did better then you.

92
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quency

4o

30

10

N
o
HENEINE ||| Ll b1t lll Lot s e g (N

0 5 10 15 20 25 30 35 4o 45 50 G@rades

Figure 8.3
CUMULATIVE FREQUENCY DIAGRAM FOR GRADES
OF CLASS I

33
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Frequency

40

20

10

LllllllllllllllllllIllllllllllllllllllll

0 5 10 15 20 25 30 35 4o 45 50 Grades

Figure 8.4
CUMULATIVE FREQUENCY DIAGRAM FOR GRADES
OF CLASS II
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Next we give an example of 8 set of data which is tased on
continuous measure of time. We will illustrate appropriate types
of graphical representation for such data.

The quality control engineer in a light bulb manufacturing
plant took 50 bulbs from & large lot of 60-wstt bulbs manufsctured
during 2 dey (meking sure to select bulbs in such a way thet the
likelihood of getting 2 representative sample would be high), and
determined the length of life for esch of the 50 bulbs by burning
them until they expired. To simplify the presentation egeh of
the 50 measurements was rounded off to the nezrest multiple of

ten, (See Table 8.4.)

910 1110 1010 1070 1290
1000 990 880 780 1150
1150 1030 1030 1270 1310
1050 1170 1180 1380 1080
1230 1060 1130 860 960
1220 930 1050 1080 oo
1230 1030 1010 1200 1060
1220 1320 1290 1110 1100
1020 1120 1110 1070 1210
1130 960 1170 950 1070

Teble 8.4

50 BULB-LIVES IN HOURS TO NEAREST MULTIPLE OF TEN

Q. R
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Here we have 50 observations. How can we picture aid study
them? We notice that the shortest life is 780 and the longest
1380, Since the range is fairly large and there are not too many
repetitions, we simplify the presentestion by grouping the data in
intervals of 50 hours with the sgreement that the right end-point
of each interval belongs to that interval. That is, if & bulb
should "expire" at the end of one interval and the beginning of
the next, it belongs to the lower interval. If we group the dats
into intervals of 50 hours stesrting with 775--825, 825--875, 875--
925 etec. that have mid-points 800, 850 etc., we get 13 intervals.

Teble 8.5 shows & frequency teble for the data on the 1ives

of light bulbs grouped into intervals of 50 hours.

Cumulative
Interval Midpoints Prequency Frequency
775--825 800 1 1
825--875 850 1 2
875--925 900 2 4
925--975 950 5 9
975--1025 1000 5 14
1025--1075 1050 10 2L
1075--1125 1100 7 31
1125--1175 1150 € 37
1175--1225 1200 5 h2
1225--1275 1250 3 b5
1275--1325 1300 n 4o
1325--1375 1350 0 49
1375--1425 1400 1 50

Teble 8.5 96

FREQUENCY TABLE FOR THE GROUPED DATA ON LIGHT RULRS
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In getting information from this table note thet the sixth
entry in the cumulative frequency column, 24, tells us that there
were 24 bulbs that hsd lives of 1075 hours or less. The last entry
in this column shows us that there were 50 light bulbs thﬁt had
lives of 1425 hours or less.

We can represent the data of Table 8.5 graphically and
illustrate certain aspects of the data more clearly by use of a

frequency polygon, frequency histogram and a cumulative frequ:2ncy

polygon.
Figure 8.5 shows both a frequency histogram and a frequency

polygon.

97
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Figure 8.5
\ FREQUENCY HISTOGRAM AND FREQUENCY POLYGON
LS
]ERJ(? FOR THE DATA ON THE LIVES OF THE 50 BULBS
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The frequency histogram consists of 2 aumter oi rectengles,
one for each interval whose frequency is not zerc in our teble.
The base of e rectengle is the width of the intervel, and the
height of the rectangle is the number of bulbs with burning time
within the intervsl.

In Figure 8.5 certain points have been essigned letters

to call estention to the Frequency Polygon ABCDEFGHITKLMNOPQ.

Each such labeled point except the first two (A 2nd B) end the
last two (P and Q) is the midpoint of either the upper hase of
a rectangle of the frequency histogram, or of an interval of the
histogram (when there is no rectangle over that interval). The
points A and B are the lower left-hand vertex end upper left-hend
vertex, respectively, of the first rectengle; the points P and
Q sre the upper right-hand vertex and lower right-hand vertex,
respectively, of the last rectangle of the histogram.
Question. Can you give an informal srgument to show
that the area of the frequency polygon is the
same number as the sum of the aress of the
rectangles in the histogram?
Question, Can you describe what will hasppen to the frequency
polygon if you keep increasing the number of datsa

eand decregsing the size of the intervsls?

It is often the case that one wishes to know the number of
messures in a set of data that are less then or equal to some
particular number. For example in the data on light bulbs, one

may be interested in the number of bulbs that had 2 burning time

93
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less than or equal to 1175 hours. It is slso very possible

that & quality control engineer might be interested in knowing

what percent of the lot of 50 bulbs had a life which was less

then or equal to 1150 hours. The cumulative frequency polygon

in Figure 8.6 can provide this information. For exsmple the number

of bulbs associated with 1175 hours by the polygon is 37,
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CUMULATIVE FREQUENCE POLYGON FOR THE DATA IN Table 8.5
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From the cumulative frequency polygon in Figure 8.6 it is

possible to get many types of information:

(1)

(2)

You c¢an find the number of bulbs that hsd a burning
time less than or equal to some psrticular number of
hours. For example if you follow the dotted line in
Figure 8,6 from 1175 on the horizontal axis up to the
graph end then horizontally to the verticsl exis you
will see that there were 37 bulbs that had s 1life which
was less thsn or equsal to 1175 hours.

You can find the percent of the bulbs that hsd a life
which was less then or equal to some particulsr number
of hours. TFor example ycu cen see slso from the graph
(polygonal) that if we label the verticel exis in
percent, as we did in Figure 8.6, with 50 bulbs on

the original scale corresponding to 100%, we can read
off the median and the quartiles. For example, to get
the median, we start =2t the 50% coordinate on the
verticel scale, move horizontslly until we meet the
graph; then move straight down until we hit a point on
the horizontsl exis. The hours-coordinate »f this point
is the median for the grouped deta. (This meens that
50% of the bulbs had lives of 1075 hours or less.)

Definition 4. The 25th percentile is called the first

quartile (or lower quartile). The 50th

percentile is called the second quartile

102



-98-

(or th: medien). The T75th percentile is

celled the third quertile (or upper quartile).

Question (1). From the cumulstive frequency polygon in
Figure 8.6 what is the 8th percentile of the
set of detes represented on the horizontel
exis?

(?2). Between which two numbers represented on the

horizontal 2xis does the mediasn lie?

8.3 Exercises

After you do the following exercises, save the results. They
will be used in later exercises.

1. The length (number of words) of 40 sentences taken from s
certain portion of Toynbee's A Study of History were as

follows:

24h 39 46 22 51 20 U8 38 29 60
28 19 44 sh B0 35 36 23 15 21
43 18 12 19 26 38 25 T 17 22
17 70 42 12 15 65 39 73 26 L2

(a) Meke & frequency disgram and a frequency table of these
numbers,
(b) Determine the renge end median of the sentence lenghts.
2. In e deck of cards let th2 Ace, 2, ..., 10 be sssigned
measurements 1 through 10 respectively, and let Jeck, Queen,

King be essigned 11, 12, 13, respectively. Drew 25 samples
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of 3 cards each and record the sum of the messurcments

on the three cards. Shuffle before each draw. Before

beginning write down your guess for the medien of these

data.

(2) Maske & frequency diegrem end a frequency table of
your deta.

(b) Determine the range snd median of the data.

(c) Compere your guess with the asctual result.

Throw 20 pennies 25 times and record the totai number of

heads obteined on each throw. Before beginning write down

vour guess for the medisn of your data.

(2) Meke a frequency diagrem end a frequency table of these
data.

(b) 1Indicste the medisn from the frequency table and compare
this with your guess.

Throw 3 dice 20 times snd count the total number of dots which

turn up on each throw. Before beginning write down your guess

for the medien of your dete.

(s) Mezke & frequency diegram end 2 cumulative frequency
teble for the 20"meesurements" thus obtained.

(b) Indicate the median from the cumulative frequency table
and compare it with your guess.

Open o telephone directory at random end select one column

on the chosen pege.

ey
o
N
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(2) Meke 2 listing of the last digit of each telephone
number in the chosen column.

(b) Before you list the digits, can you mske a prediction
of what you'll find?

(c) Summerize your observations in 3 different ways.

6. The heights of the 14 year - o0ld boys (in inches, to the

nesrest inch) in & junior high school were recorded as follows:

58 53 56 53 57 51 60 55
61 54 65 58 54 54 56 57
54 55 59 54 56 57 55 5k
57 53 54 55 62 59 58 58
53 59 56 52 55 55 55 55
55 SU 57 57 53 56 56 50
63 52 61 55 55 53 52 56
56 57 56 60 60 58 57 59

(a) Group these measurements into intervals of the same
length and construct e frequency table &s shown in
Teble 8.5.

(b) Meke o frequency histogram snd & frequency polygon
for the data in part (e) similar to the one in
Figure 8.5.

(c) Construct & cumulative frequency polygon for the data,
end on it find the median end the quartiles.

7. Check the construction of the frequency histogram (Figure 8.5)

snd the cumulative frequency polygon (Figure 8.6) for tihe

o 100
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illustrative exsmple in Section 8.2,

From “he cumulative frequency polygon of Exercise 7 estimste

the medien, the upper qusrtile, and the lower quartile,

Suppose the Scholastic Aptitude Test scores of 180 seniors

of & certsin school range from 330 to 788.

What interval mid-points snd interval boundsries would you

use for e frequency table? Meke up the first two columns

for such s table.

Each of 50 messurements is given to four decimal plsaces,

the smallest meesurement being 0.9967 inches and the largest

being 1.0048 inches. Determine equsl intervels for grouping

the measurements, snd suggest interval boundaries snd intervel

midpoints for a frequency teble that you might construct.

Tebulate the set of weight-measures for students in your

class (include yourself).

(2) Decide on intervels end midpoints to condense the
observations, )

(b) Construct a frequency tehle.

() Construct e frequency histogram and 2 cumulative
frequency polygon.

(d) Determine the median =»nd the 1lst 2nd 3rd quertiles.

<
The symbol L end summation,

So far in this chepter you have been working with finite sets
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of dats and representing them in various ways. You will
frequently deal with sums of such sets of dstz snd represent
the sums in verious weys. Some of these weys will be more
convenient then others depending on your purpose.

Consider the data 5, -3, 11, 8. Thils can be represented
more generally by the symbols X,, Xz, Xa, X, which is resd "x-sub-
one, X-sub-two, x-sub-three, x-sub-four". This is & representation
for any set of data with four elements and each of the sub-scripts,
1, 2, 2, end 4 serves as en index here for the purpose of distin-
guishing smong the four elements. Moreover we can relate the
specific and general representations by writing, x,=5, X,=(-3),
Xq=11, x4 =8.

Question. How can you laterpret the above representations

es a mepping of 2 set of data onto e subset of
the natursl numbers?

Similarly we now have two representations for the sum of

the above data:
Xy + Xo + Xq + X4 =5+ =3 + 11 + 8,

Now, if we let 1 be e variable for the set of natural numbers
we can use the symbol x4y, read "x-sub-i", to stand for sny definite
number in 2 set of data that we do not wish to specify (snd do not
reslly need to).

You will agree that if we had e very large set of data, the
above representation would be quite swkward. Suppose we had &8

set containing 99 numbers. We could improve our notetion some by

(y?

the following: A
v
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Xy + Xo + X9 + .., + Xy ot ..t XQB. In this

"t "

case the Xy es used here, is sometimes called & typical element

of the summation. The subscript i1 is called the index of
summation.
Mathematicisns take the notstion one more step to this

shorthend form of representing a sum:

99

This symbol represents the same sum of 99 numbers represented
above. Actueally both symbols can represent sny 99 element sum.
This is read:

"The summation of x-sub-i es 1 goes from 1 through 99".

The symbol E.is the capital Greek letter, Sigma, which
corresponds to the English capitsl letter S.

The "1" below the sigma snd the "99" above represent the

limits of summation.

Now let us use our new notation on the four element set
that we mentioned at the beginning of this section, {5, -3, 11,
8}. We write:

X, = X3 +Xg +Xg + X =5+-3+11+8=21

f~1 5=

Example 1. Suppose X = 1, X; = 2 end in general Xy = i up
to the upper limit of summation. It then is

sensible to replsce Xy by 1 in the summation

notation:

108
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Example 2. Suppose the typicel element is some function of
Xy such as Xy = 8. Then the summstion will be

as follows:

(kg ~a) = (%1 - 0) + (xa - 2) + ... + (x, - 2)
1

Example 3. 1In general:

£(x;) = £(x ) + £(x3) + ...+ £(x).

1

-]

Using this idea, find:

109
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Y W
(a) E 1 (b) £ i(1 +1) (c) L 1®
i =1 i =1 i =0
n n
< <
3 Show that L kxi = k; Xy when k is a constant.

1 =1 1 =1

(See Exercise 1 (c).)

n n n
¥ = N )Y
b, Show that - (a, + bi) i ay + & by
i=1 ° i=1 i=1
(a) TFirst try this using the value n = 3.
(b) Can you state the equation in words?
n n n
Y ( ) AN )
5. Show that < a, - b T L a8, - .. b, .
1=1 b gty
n
v
6. Show that . k = kn, where k is a constant. (Compsre
i=1

with a part of Exercise 1 (d).)

7. Show that
n n n
% 3 < 2 ¥ 2
i (xi -m)® = ) % -2m’ X, + nm
i:l i=l izl

8.6 The Arithmetic Mean, its Computation and Properties.

An important descriptive statistic of & set of numbers is

its arithmetic mean. Suppose that the members of & club pooled

all the dollars that each of them possessed and then distributed
these dollers equally among the members. (A very unlikely event!)

The number of dollars that they would then each have wonld be the

O
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arithmetic mesn of the set of numbers of dollers that they
originelly had individually. A more likely event is that your
teacher would essign you the arithmetic mean of your monthly

grades as a finsl grade for the year.

Definition 5. The arithmetic mean (or just mean) of a

set of n numbers, X1, Xo, ... , X is:
n

1 v _ 1 _

= %y = H(xl + Xp + Xg + ... F xn)
i=1

Using X, read "x-bar,"

es a symbol to express the arithmetic
mean of a set of n numbers, the definition cen be expressed as

follows:
n
- 1
X = 'H ZXi
1 =1

From the formula above we immediately get & new formula.

which states that the sum of the meessures in an experiment is
equal to the product of the mean snd the number of measures.

Example 1. Given the numbers

Xy =T, Xy = 10, X3 = 15
3

Y‘xi =7+ 10 + 15 = 32
L
i=1

X =

Sl

3
ZX =%.32=1o§
1 =

1
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Then n ¥ = (3) (105) =32 =) x,.
i=1

The problems we have done and the symbolism we have
introduced give us shortcuts for computation.
Example 2. Suppose we find a set of 15 scores which are
distributed as follows:

Score Frequency
60 5
55 7
50 3

How do we find the mean? The definition of mean is the sum
of the scores divided by the number of scores,

It is easy to see from this dats that:

X = 60(5) +55(7) + 50(3)
5+ 7 + 3

This suggests a more general procedure outlined es follows:

Scores Frequency
X fl
Xg fa
Xa fq

It follows from the definition of meen thet we multiply eech
score by its frequency, e2dd the products, end divide by the
total of the frequencies, thet is

112
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3
\Z xifi
7 - X.l fl + Xzfa + XaTa _ 5=1
£ f f i
+ ? + !
1 3 y fi
i=1

For our problem, the computetion cen he presented by intro-

ducing enother column:

Xy £y X 5
60 5 300
55 7 385
50 \3_ 2 150 %
Lfi = 15 835 = /_xifi
i=1 i=1
Then the mean WOuldsbe:
T x.f
4 i1 8
¥- =1 = 833 . 552,
15
f
X=1 i

We can use the technique illustrated sbove to edvantage with
the date of Table 8.5 as illustrated in Teble 8.6,

x4 (midpoints) £, y, = x,-1100  *17Yy f,2,  £,2,°
- 50
800 1 -300 -6 -6 36
850 1 -250 -5 -5 25
Qo 900 2 -200 -4 -8 32
950 5

-150 ]18 -3 -15 45
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_]_09..
1000 5 ~100 -2 -10 20
1050 10 - 50 -1 -1¢ 10
1100 7 o 0 0 0
1150 6 50 1 € 6
1200 5 100 2 10 20
1250 3 150 3 9 27
1200 Yy 200 it 16 6l
1350 0 250 5 0 0
1400 13 1 300 6 13 6 1a 26
- fy= 50 E‘fizi= -7 Eﬁgziz = 321
i=1 i=1 i=1
Table 8,6

When you look at the Xy column and the fi column in the table it
may seem that the computation of the mean would be formidable but we can
use what we learned about summation to obitain two ideas about the mean

that will simplify the process,

n n
Since S(xi + k) =Exi + nk (see Section 8.5 Exercises 1(d)

—~ ~ and 1{e)),
i=1 i=1 n n

7 1 7
it follows that ﬁi(xi + k) = E(E}i + nk) = ﬁi?i + k.
i=1 i=1 i=]

In other words, adding the seme number to every element in a se

———

of data increases the mean of the set by that number,

n n
Also since ?kxi = kai (See Section 8,5 Exercise 3.)
i=1 i=1
I

n

1 _ 7
1t follows that ékai =k . Dx,.
121 1=1

In other words, multiplying every element in a set of data by the

\‘1
EMCE number multiplies the mean of the set by the same number, The above

IText Provided by ERIC

two generalizations can also Be showvn to apply tc subtraction and divi-
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sion since they are defined in terms of addition and multipl.ication,

Notice in Table 8.6 we subtrected 1100 from esch of the
Xs to get the Yy This means that the mean of the yi is 1100
less than the mean of the Xy We then divided each of the Yy

by 50 to get the z This meens that the mean of the z,'s is

i.
one-fiftieth of the mean of the ¥y

i

i's.

Note. To better understand the transformastions that we have
been using on the sets of dste sbove, see Section 6.4,

Relating Two Coordinate Systems on a Line in Chspter

6, Coordinste Geometry in this text.

Now we have s set of small integers, the Zys whose mesn we can

i find by the formuls:

13
2 2;%y
5. 1i=1
13
Xfi
i=1
, g
In our example infi = -7, Lfi = 50
i=1 i=1

Then 2z = 'E% = -,14

We previously learned the following facts:

Multiplying each of & set of numbers by c, multiplies
their mean by c.

Adding h tc each of a set of numbers incresses their
mean by h.

In our example:

Yy =50 z = 50(-.14) = -7

1093 1 15

¥ + 1100 = =7 + 1100

M|
[
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We have found the meen of the set of bulb-lives from
the grouped data, We assumed that sll the measurements in éen
intervel were concentrated at the midpoint.

We clog: this section with an important theorem sbout the
sum of the deviations of the numbers in s set from the mesn of
the set. That is, you subtract the meen of the set from each
of the m:mbers in the set, and then 2dd the differences. (Note
that some of the differences will be negative.)

Theorem 1. The sum of the deviations from the meen 1is
equal to zero.
Given the n measurements X,, Xa, . . . , X

and their mesn X, to prove

n
L (xi--f):o
i=1
Proof. 2 - %1 n_
E; (xj -X) = ) Xy - §:x (Exercise 5 in
i=1 i=1 i=1
Section 8.5.)
n
Xy =N X, (Why?)
i=1
n
YX =n¥x
i=1

(Since X is a constant; see Exercise 6 of Section

8.5).
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Thus:
n n n
Z (xi - X) =-z Xy - Z?' =nX-nx=0
i=1 1=1 i=1

Exercises

Fin¢ the mear. of the measurements 1,6, 8, If 7 is edded

+0o each of these measurements, what is the mesn of the new
o T

—_—_—

set of measurements?

Given the two sets of measurements 10,9,2 snd 3,5,1 find the
mean of each set. Now form & new set of measurement by adding
corresponding meesurements in the two sets (the first number
in the new se+ is 10 + 3 = 13.) Find the mean of the new
set of three measurements, and relate it to the means of the
first two sets.

Given the measurements 1,6,8 form a new set of measurements
by multiplying each of the original ones by 7. Find the
means of the two sets and compare them.

Given the measurements 4,5,9 find the mean. Also find the
meen of & new set of measurements obteined by multiplying
each measurement by 7 and then adding 5 to the result,
Relate the new mean to the ©ld mean.

In changing from the Centigrade temperature scale to the
9
5

is the measurement on the Centigrede scalzs and ¥ the corre-

Fahrenheit Scale, the relation is F = C + 32 where C

sponding measurement on the Fshrenheit scale. In a chemicsl

137
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experiment the following 10 measurements (in degrees

centigrade) were taken:

4o, 35, 38, 36, 42, 41, 37, 42, 37, 35.

(2a) Find the mean of these messurements.

(b) What is the mean of these measurements ir. the
Fahrenheit scale?

The number of students in five different slgebra classes

- —are32, 36, 30, 41, and 38. Find the mean number of

%7 ,

10.

students per class, and compare it with the median number

of students.

Suppose that you have a mapping, xi——-r-b(cxi + h) where i=1,

..» n and where ¢ and h are real numbers, How will the
mean of the domain be related to the mean of the range? Try
to prove your conjecture!

Find the everage (arithmetic mean) of the life-lengths

of the bulbs in the illustrative example of Section 8.2.

(s) Now group these 50 numbers into groups of 5, end
compute each group average; then aversge the 10
everages. What do you find? |

(b) Cen you think of some other short cut for finding
the average of the 50 meesurements?

Find the mean of the numbers given in Exercise 1 of

Section 8.3.

Find the mean of the observations 1ln your experiment

in Section 8.3 (Exercise 2,3 or 4). Use any short cut you

can think of.
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Find the mean of the heights of l4-year o0ld boys in

Exercise 6 of Section 8.3.

(2) Before you do your calculations try to gusss the
mean.

(b) Cen you find & shortcut by using your frequency
teble?

(c) Compare the mean of these measurements with the
medisn and the mode.

Find the mean of the observations in Exercise 11 of

Section 8.3.

Find the mean and the median for the numbers: 15, 18,

18, 21, 45, 63, 69, 78, 45, 45, 27, 36, 60.

Find the mean and the medisn for the numbers:

5.7, 4.6, 8.2, 5.7, 3.6, 2.8, 4.9, 5.7, €.2, 9.1,

In 8 class of 30 pupils, on a certain examination, 5 got

gredes of 65, 10 got 70, 12 got 80 and 3 got 90.

Celculate the mean of these marksg by using the formule

S
15

[ I Bl

1l

In a certain plant employing 100 workers the aversge

salary is $90 per week. 1In another plant, employing

50 workers, the sverage salary is $110 per week.

(a) What is the total weekly payroll for the two plants?

(b) What is the average salary for all the workers in
the two plants?
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(e) Do you get the same result by sveraging $9O anil
$110? Why?

The tasble below gives the frequencies of pupils of ages

12 = 17 in a certain school.

Age Frequency
12 10
13 4o
14 175
15 105
16 55
17 10

(a) What interval limits are indicated by this frequency
table?

(b) Construct 2 histogram and a cumulative frequency
polygon for these data.

A chicken farmer found that his hens sversged 350 eggs

per day in a certasin week. His records for six days

of thet week show the following counts:

347, 351, 358, 345, 350, and 353, but he lost the record

for the seventh day. What must it have been?

-1

n

Y - 2= _"‘2 T . 3

Prove: E:(xi 8) ! (xi x)® + n(X - 8)
i=1 i=1

Hint: Expand (x, - a)® and (xi - X)®. Then epply results

i
of the preceding section to simplify.
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8.8 Measures of Dispersion

We have studied certain descriptive statisties of sets of
deata that measure central tendency such as the mode, median and
the arithmetic mean. So fer the only measure of dispersion or
scatter of 2 set of dats that hes been mentioned is the range which
does not seem to be too significant since the computation of the
range is completely dependent on only two numbers of the set.

Before looking for a good measure of dispersion let us
examine the frequency diagrams (2’ -- (e) in Figure 8.7. If you
compute the mean from the diagrem for each of the sets of data,
you will discover that each set of data has the sesme mesn. See
if you cen find a2 line of symmetry for each of the diagrems!

It is epparent from the diagrams that what we should like to csll

. the dispersion of these sets differs for any pair,

(a) ] ]
1 2 3 g 5 [$) d & 9
(b) ] ] ! ]
1 2 3 1L 5 A 7 2 Q
(c) 1 | 11
1 2 3 L 5 6 7 8 Q
I I
@

1 2 3 4 5 6 7 8 9
Figure 8.7

Frequency Diagrem (X=5)
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In Figure 8.8 (f) and (g) have the same mean but are
dispersed differently and likewise for (h) and (i).

(£) 11 I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(g) ] l ] ) ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(h) ] | L1 ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(1) __1 I ] 1

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 8.8

Another Frequency Diagram

The examples above should be enough to convince us that
any measure of dispersion must be independent of the arithmetic
mean. We would like to find a messure that is small when the
numbers seem to cluster and large when they are scattered.

An obvious suggestion for measuring the dispersion of a
set of numbers is to find how their measures differ, on the aversge,
from the mean., However, we already know that this is not useful.
We know that the sum of the deviations from the mean is zero.
(See Theorem 1 in Section 8.6)

One way around this difficulty is to disregard the signs of
the deviations. You will be asked to work out the averages of
the absolute deviations for the sets represented in Figures 8.7

¥
]ERi()d 8.8 in the exercises of Section 8.9. The measure found in this

199



-118-

way 1s called the mean sbsolute deviation.

Although the mean sbsolute deviation has the advantage of
always being non-negative, it has disadvantages. One 1s that it
is not feasible to compute the mean absolute deviation of large
sets of data from the mean absolute deviations of their proper
subsets.

Another measure of dispersion, one that is widely used,is

called the variance of the set of data,

Example.
—_— Xy X, - X (xi - X)?
4 -1 1
5 0 0
5 0 0
5 0 0
6 +1 1
nxy = 253 X =5 2 = %(x,-%)?
Variance = = (%, - %)? = %
i=1
Table 8.7

Definition 6. The variance of & set of numbers X,, ---, X

denoted s3 is defined:

s? =

i=

S
15

Prat-]
(x; - x)

There is one objection to the varisnce as a measure of
dispersion, This objection is thet, since the computation of the

Q@  varisnce involved squaring the deviations from the mean, we have

1 ed
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in a sense changed the dimension of the original. Thst ia, the
variance is not expressed in the same units of measure as the
numbers in the original set of data. Fortunately, this is easily
remedied. Simply finl the square root of the variance and you
have a measure of dispersion that is in the same units as the

origingl data. This new measure is called the standard deviation

of a set of data.

Definition 7. The stsndard deviation s is the square root

of the variance s?2.
Sometimes the variance is referred to as the "average. of the
squared deviations", 8imilarly, the standard deviation is sometimes
expressed s the 'square root of the average of the squsre devie-

tions".




-120-

8.9 Exercises

1. Complete the Teble below for the observations given in

Figures 8,7 and 8.8,

(2)

()

(g) (h) (1)

Measures %:g: 2:3’ W
n 5 b |5 |4 |6 [ 5 |5 |5 |5 (2)
x 5 5 5 |5 |5 |10 |10 |8 8 (2)
Range 2 4 4 |2 |8 5 |17 |13 |11 (4)
% | ool | i )
tx, - | 2 6 (6)
tx, - % A 1.5 (7)
n
(g - 7° | 00 | b (8)
Z(x; - X)? 2 10 (9)
variance s?| .4 2.5 (10)
gtandard .63 1.6 (11)
eviations app. app.

-2
w1
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(a) Lines 7, 10 and 11 give us seversl different meascures
of dispersion. Compere them. Do they rank the
dispersions of the sets &as you would intuitively? Are
they easy to compute?

(b) can you find the standard deviation from the variance
by intelligent guessing?

The numbers of students in 5 different mathematic classes

ere 22, 26, 20, 31, and 26.

(a) Find the mean number of students per class and compere it
with the median.

(b) Find the mean absolute deviation.

(¢) Find the variance.

(d) Find the standard devietion.

Find the standard deviation of the seven measurements in

Exercise 18 Section 8.T.

Given the measurements 8, 10, 24 compute the meen, the

variance, and the standard deviation.

(a) Now subtract 3 from each of the measurements and
compute the meen, the variasnce, and the standard
deviation.

(b) What observation do you meke?

Compute the mean and the variance of the three measurements

1,6, and 8. If 9 is added to each of these measurements

what is the variance of the new set?

Show that the variance of & set of measurements is unchanged

when the same constant is added to each measurement in the

set.
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7. Compute the mean and the variance of the messurenents
8999, 8997, 9001. Choose & convenient number, say 9000,
snd subtract it from eech of the meesurements, getting -1,
-2, +1. Compute the mean end the variance of the new
triple. Can you obtain the meen end the variance of the
originsl measurements from your results?

8. If each measurement in & set is multiplied by the same
constant k, show that the veriance is multiplied by k®,

and that the standard deviation is multiplied by Ikl.

8.10 Simplified Computation of the Vsriance and the Standard Deviation

While the definitions of the variance and the standard
devintion are simple enough, the computstions for eny sizeable
number of data are formidable. For example, using the data in
Teble 8.6 to calculste the varience and standard deviation would
seem tc¢ require the following computations:

1. Add the fifty measurements and divide by fifty to find
their mean,
2. Cslculate the differences of the fifty individual scores

from the mean.

3. Square each of the fifty differences thus obtained.

b, Sum these squares, and divide the sum by fifty to find the
variance.

5. Teke the square root of the variance to get the standard
deviation.

Are there any shortcuts we can use?




_]_23_

The provlems in the preceding section and the shortcuts we used

in calculeting the mean in Section 8

.6 mey give us some ideas.

Our definition for the variance is, using subscripts and

the sigma notation;

n
a o 1Y% - %2
s =2 ) (xi X)
=]
We can expand this in the following way: (Review Sections 8.4
and 8.5.)
a _ 1V, 2 _ =, =
s == i(xi 2x,X + X )
1S, 2 - ‘1%3
-—-ﬁ[—xi - 2X /X +LX_|
_ 1N, = 1 VT e -3
—-Hin-(HOQ X nX)+x
n"i

You may have observed that we replaced'$tby'5; When the content

of the problem leaves no room for doubt We will often drop the

limits of the summation,

Question: Can you show:

s? = ix-ia - (Exi)a?
2

n

128
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For dats grouped into k classes the formuls for variance

is:

1=

k
— — S

(f Xy X)° where X = % £,%, end
=1 1

2 _ 1%
§° = n f

l

]

n.

l ]
T

i

oy

For computation we use s° = %

gl

LER 1 B
=]

Using these results on the dats in Te»le 8.6 we find that:
Y 2 _
s fizi = 321
Then the varience for the z scores is:

g: - 2% = 6.42 - (-.14)® = 6.42 - ,0196 ™= 6.42-,02=6.40

5“4

Now using the results of Exercises 6 and 8 in Section 8.9
we get the variance of the original Xx-scores by multiplying
the variance for the z-scores by (50)°. Thus the varisnce for
the x-scores is approximestely 16 000.

The standard deviation of the Z-scores is zpproximately

equal to V?rﬂa % 0.5

The standard deviation of the x-scores, then, is
50 (2.5) = 125,
(Check that /16000 gives the same result.)

8.11 Exercises

Use shortecuts where possible in your computations.
1. Check the computstions for the variance and standard
deviations of the data in Table 8.6.

o 2. Find the variance and the standsrd deviations of the dste

in Exercise 11 of Section 8.3.

1249
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3. Pind the varisnce and the standard deviation of the
observations in any experiment that you performed in

Section 8.3, for example Exercises 3,4 or 5.

#8.1.2 The Chebyshev Inequality

In this section we will prove an inequality, that illustrates
the fact that the standard deviation, s, is a measure of scatter
(or dispersion) in a set of observations,

Suppose that the observations are Xys Xgs vees X and that

the mean is ¥ and the standard deviation is s, Thus w2 have:

A

(1) ¥ = (xi - XJj*

1

o

LB
W >~1s

2 _ L
xi and s = 5T
] i

gggg. You will notice that previously we have represented the
variance as the sum of the squared deviations multiplied by
1/n. Now we are multiplying by 1/(n-l). The reason is
beyond the scope of this chapter., ¥For large n the numerical
difference is slight,
Let k be a real number greater than 1, i.e. K > 1,

We define the following two sets A and B:

A= {xg:]x, -~ X[<ks) 5 B = {x,:]x; - X|>ks)

In Figure 8.3 we have illustrated the two sets A and B:

o— A >0
X~ks X X+KS
Y — *—0—0—+» -8
X=38 X425
B o— B —
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We see that A 1s the set cf observations with a distance
from X less than ks and B that set of observations with a distance
at least ks from X,

Let m(B) be the number of observations in B,

The Chebyshev inequality now says that:

(2) m()

1
n ;<

k'd

This means that the relative frequency, mgB), of observations
n

in B is less than 1/k®, To prove this we split the sum in s® in

two parts as follows:

n
— — 1 —
(3) & = % - F® =) (x -0 + 27 ) (% - D°

i=1 xieA xiEB

In the first part we sum over the observations in A and in
the second part we sum over the observations in B, We now drop the
first sum, (i.e. the mean of the squared deviations of all observa-
tions between X - ks and X + ks, see Figure 8.9) which certainly

is non-negative (can it be equal to zero?). We then get the

inequality:

(8) & >2r) (% - B)?

xiEB

But for x;€B we have Ixi - X| > ks or (x; - X)? > K2s?,

(see Figure 8,9)
Thus we get:

131
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(5) sa_n>—1—'rz kK2 = B-J_J-j_ m(B)k?s?
X,€B
i

Note: ks® is a constant. Also note the theorem in the
section on summation about the summation of a constant,
Here m(B) plays the role of the n in the theorem,
If we multiply both sides of this inequality by ;;3;—3— we get:
(6) —BL 5 mB)
nk® — n

which gives:

(7) mIgB) _<._ n;ll

1 1
o

Which in turn gives:

(8) m8) ¢ L.
n k2

By this time you may be somewhat mystified about the meaning of
this theorem, Perhaps if we describe the final result in English,
it will help. First of all notice that set B is the set of all
observations which are at least k standard deviations from the mean.
This is quite apparent from Figure 8.9, Then notice that—mégl
is the relative frequency of observations in set B, Putting these
two ideas together we see thet the final recgult says, in effect,
that the relative freguency with which an observation is at least k
standard deviations from the mean is less than 1/k?,

Example: Let k = 2

The theorem then states that the relative frequency

with which an observation is at least 2 standard

deviations from the mean is less than %.
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Question: What does the theorem state if k = 37
We summarize in

Theorem 2, Given observations Xi, ..., X, with mean §$%-Zx1

and variance s® = H%T (%, ~X)?; let k > 1 and let

B = {xi:|x1-§lzgs}. If m(B) is the number of Xy

in B then u{B). <-—l

n K2 °

8.13 Summary

In this chapter we reviewed and extended ideas about the
collection and presentation of data, the definitions and computations
of several descriptive statistics of sets of data and mathem&tics

that you needed in connection with this work such as summation.

1. Statistical data can be represented in the form of fregquency

tables, cumulative frequency tables, frequency diagrams,

frequency histograms, cumulative frequency polygons, and in

other forms depending on the nature of the data and the purpose
of the particular presentation,
2, The mean, median and mode of a set of data are statistics and

examples of measures of central tendency of the set,

3. The range, mean absolute deviation, variance and standard

deviation are statistics and examples of measures of the

dispersion or spread of a set of a data.

L, Summstion is used so extensively in the presentaticn of statise
tical ideas and statistical computation that the theorems about
summation and the symbolism of summation are necessary parts

of the study of statistics,
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*5 The Chebyshev in2quality is aa example of a statistic
that gives information both about central tendency and

dispersion of data,

8.14 Review Exercises

1. A sample of 25 thermostatic switches was taken at random
from a lot Just manufactured and the "trigger" temperature
was determined for each with the following results (in
degrees Fahrenheit):

55 56 56 56 54
b9 56 54 52 51
55 57 50 52 54
50 53 56 55 56
52 56 57 54 53
(a) Construct a frequency diagram,
(b) Construct a cumulative frequency polygon, Mark the
vertical axis in frequencies and percentages.
(c) Determine the median and the two quertiles, Show these
on your graph,
(d) Wrat is the mode of these measurements?
(e) Pind the range.
(f) Construct a frequency table and from it calculate the
mean,
(g) Compute the variance and the standard deviation by

using a shortcut with the origilnal data,
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2, A sample of 30 aluminum castings, when tested, yielded the
following tensile strengths in pounds per square inch --

to the nesrest 100 pounds:

29,300 37,700 25,800
34,900 34,900 23,700
36,800 26,700 28,700
30,100 34,800 32, koo
34, 000 38,000 28, 200
30,800 25,700 34, 000
35, 400 25,800 34,500
31,300 26,500 29, 200
32, 200 28,000 28, 700
33, 4oo 2k, 600 29,800

(a) What is the range of the given data?

(b) Group the data using convenient intervals and
midpoints and construct a frequency table, (Suggestion:
use either intervals 23,00C-- 24,000 with midpoint
23,500 etc,, or intervais 22,000-- 24,000 with midpoint
23,000 ete,)

(e¢) What is the mode of the distribution?

(d) Cconstruct a frequency histogram,

(e) Construct a cumulastive frequency polygon,

(f) Estimate the median from your cumulative frequency
polygon, Calculate the median from your frequency table

end compare your results,
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(g) Compute the variance and the standard deviation by

first transforming the measurements by an equation

yi=a.xi+b

(choose convenient constants a and b), and then

using the formulsa

136



CHAPTER 9

TRANSFORMATIONS TN THE PLANE: ISOMETRILS

9.1 What is a Transformation?

A transformation is a special kind of mapping. Under a
plane transformation each point of a plane is mapped onto one
point of the plane, Because we learn much about properties of
geometric figures through the study of plane transformations,
this chapter is a continuation of our study of geometry.
To clarify the nature of tranzformations, let us look at
two examples that illustrate transformations and one that does not.
Example 1, Let O be a given point of a plane, For any point
| A in the plane there is exactly one point A' such
that 0 is the uidpoint of AA', {See Figure 9.1.)

A' iz the image of A,

1
C\

Ao \ ~B
o \ -
S~ \ e
\\ \ 7~

\\\ O //
14
//\ \\\
”~ A ~
et \ T~
P \‘OA'
B ‘
\o
Figure 9.1

137



-133-

By this method of assigning images to points, B is mapped
onto B and C is mapped onto C', It happens that by this
mapping the image of A' is A, that 1is, the image of the image of
A is A, But this is not a feature of all transformations. What
makes this a transformation are the following characteristics:

(1) Every point of the plane is assigned exactly one point

of the plane.

(2) Every pecint of the plane is the image of exactly one

point in the plane,
We can summarize these two characteristics by saying that the
plane is mapped ontc itself by a one-to-one mapping.

Example 2., In this example we use a plane rectangular coor-

dinate system. Let P have coordinates (1,2).
We assign P to P, if the x-coordinate of P' is
twice that of P and its y~coordinate is 1 more
than that of P, that is, if P' has coordinates
(2,3). The rule of assignment is
X 2X, Yy ]
A or (x,y)—(2x,y + 1)
A rule, such as this one, is called a coordinate rule,

Study Figure 9.2 to see how this rule assigns images to

# Some use the term transformation to include many-to-one

mappings.
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A, 3, Cs
y
P1(2,3)
A (=2,2) /”'
* p(1,2)
\-
ALY B1(L,0)
_ 7 X
C1(0,-1) -
’ Bl2,-1)
Clu,=2)

Figure 9.2

Does every point of the plane have exactly one image in the
plane by this method of assignment? Is every point in the plane
the image of exactly one point in the plane? If both answers are
yes (as they are), then this is indeed a transformation.

Example 3. Again we use a rectangular plane coordinate sys=-

tem, Let the rule of assignmrent be
(x,y)—(x, 2y).

Does every point in the plane have a unique assignment by
this rule? If so (and it is so), this is a mapping, To determine
whether or not this mapping is a transformation, we ask if every
point serves as the image of exactly one point. Consider P (4,6).
It serves as the image of P,(2,3) because 4 = 2° and 6 = 2.3,

And it also serves as image of Pa(-2,3) because 4 = (-2)® and 6 =
2¢3, But P, # Pa. We conclude that this mapping is not a trans-

formation because it is not one-to-one, For that matter, does
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Q (~9,3) serve as an image? If not (and it does not) then neither

is this mapping onto the plane.

9.2

Exercises

Make a drawing like Figure 9.1 showing the images of points

A, B and C in a plane rectangular coordinate system under the

mapping whose rule is as follows: Given point O in the

plane, then the image of 0 is O, and the image of any point

P # 0 in the plane is P', where O is between P and P' and

OP' = 20P, Determine whether or not this mapping is a trans-

formation, If you think it is, describe how to locate a point

whose image is known,

Repeat the Instructions in Exercise 1 using all its data with

the modification OP' = %OP.

Make a drawing showing points and their images, as is done

in Figure 9.2 for the points A(-2, -1), B(0,4), ¢(3,2) and

D(1,-3) if the rule of assignment is (x,y)——(x + 3, y - 2).

Is this procedure of assigning imeges to the points of a

plane a mapping? a transformation?

Carry out the instructions of Exercise 3 and answer its

questions for each of the following coordinate rules, making

a different diagram for each.

(a) (% y)——(x,-y)

(0) (%, y)—(-x,7)

(e) (x,y)—(-x,-y)

(4) (x,y)——(x%,y)
)

(e) (x,y)—(-x2,-y) 140



(£) (xy)—(x*,y)

() (xy)——(x*, y 4+ 1)

(h)  (x,y)}—(x%,y2)

(1) (xy)———(2x + 1, y - 3)
() (x,y)—(y,x)

(k) (x,y)—(x 4y, x =)
(1) (xy)——(2x -y, x & 2y)

Let 0, and 0, be two distinct points of a plane. Make a
drawing that shows the images of two points A and B where
the following assignment rule is used: For any point P
find P, such that O, is the midpvint of P, P and then find
P' such that Oz is the midpoint of P,P'. Take P' to be the
image of P, Is this a mapping? a transformation?

Repeat Exercise 5 with the modification that 0, is between
P and P, with P,0, = 2°F0,, and Oz is the midpoint of P, P,
Is this a mapping? a transformation? if you think it is a
transformation, describe the rule of the inverse transfor-
mation,

Consider transformations f, g, and h., Suppose for point

A in a plane
f g h

A — Ay » Ao > g

Show that the image of A under gof, followed by h is the
same as the image of A under f followed by hog. What does
this show about composition of transformations?

Let A and B be distinct points, and let A be assigned to B,
and B to A, while each other point of the plane is assigned

to itself. Is this a transformation?

1A1
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9,3 Reflections in a Line

For the greater part of this chapter we study isometries,
which are transformations that preserve distance, We shall
examine this property more carefully as we examine various
kinds of isometries, the first of which is a reflection in a
line. Let us agree that all transformations in the remainder
of this chapter have a plane as domain and range.

We approach a reflection in a line with a paper fclding
exercise,

On paper 7 we make three ink dots, shown in Figure 9,3 as

points A, B, C. 1If we fold the paper along line 4, a line that

contains C, then the ink spot at A leaves its mark (image)

Figure 9.3

at A' and the spot at B leaves its image at B', while C is its
own image. We call this correspondence a reflection in a line.

We designate it R the subscript naming the axis £ of the re-

E’
flection. We call A' the reflection of A in £ and B' the re-

]ZRjkfction of B in £, while C, being its own reflection, is called

“a fixed point. - 1AD
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Let us describe some mathematical features of Rz.

(1) For any point A not in £, A is in one of the half planes de-
termined by £, A' is in the other,

(2) &R intersects # in a point, say M, and AM = MA',

(3) s | Ei.

We summarize these features in one statement:

4 is the perpendicular bisector QQ_EE

It is easy to give a coordinate rule for a reflection in the
x-axis of a rectangular coordinate system, In Figure 9.4 the
x-axis is the perpendicular bisector of AA' and also of BB', Thus,
under this refleetion, A—=»A' and B———»B', Since C is on
the x-axis ¢ = C', If you study the coordinates of a point and
its image you will see the rule .

(%,y)——Z—s(x, -y)

where Rx is read: the reflection in the x-axis.

‘Y
B(3,I~l)
!
A'g‘2:3) |
| |
| I
! -
. ! 1 —
| I ¢=¢'(L,0)
| |
|
]
! |
A('2:‘3) i
B'(B:",-l-)
Pigure 9.4
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If you draw a diagram like the one in Figure 9.4, showing

reflection in the y-axis, denoted Ry, you will see that its coor-

R
dinate rule is: (x,y).—y—->(-x,y).

I.et us consider whether or not a line reflection is an iso-

metry. It is, if it preserves distance, Suppose that for a

. : Ry Ry .
given line 4, A—————A', B——=—»B', (See Figure 9.5)

A(X]_JYJ_)
1

B,(X2JY2)

dy

(x-axis)

B! (XZ’-YQ)
A'(Xl,'yl)

Figure 9.5

We take 4 as the x-axis of a rectangular coordinate system,
In this system let A acquire coordinates (%, yl) and B(xs, ya).
Then A' will have coordinates (x,, =-y,) and B' (xsz,-y, ). Recall-

ing the distance formula, we can write:

8B = (xy - x2)® + (y, - y2)?

and A'B = Af(x, - x2)® + ((- ) - (-y2))?

Clearly, AB = A'B' if (y, - y2)® = ((-yy) - (-y2))%.

oo
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We leave it to you to show that the last two terms are equal,

and we conclude that a line reflection is indeed an isometry.,

In the exercises that follow you will be asked to estab-

lish some of the properties of line reflections, Having done

so you may use these properties in subsequent investigations;

that is, they may be used as theorems.

9.4 Exercises

1,

Find the coordinates of the image
below under the reflection in the
(a)  A(3,5) (b) B(-3,5) (e)
(e) E(3,0) (£) F(0,-3) ()

Find the coordinates of the image

of each point listed

X-axis,
C("B: "'5) (d> D(«/-Q_: "'5)
G(0,0) (h) Hia,b).

of each point listed

in Exercise 1 under the reflection in the y-axis,

You can see in the figure below that the reflection

of A(-1,1) in the line ¢ with equation x = 2, is A'(5,1).

To calculate the coordinateé of A', knowing those of A, we

use the fact that £ is the perpendicular bisector of AN ,

Pt
|
A(-1,1) M A1(5,1)
Tx
N
(]
x
‘b .
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This implies that M, the intersection of ? and KK', is the
midpoint of BAA', and that the y-coordinate of A zs the same
as the y-coordinate of A, To calculate the v-coordinate of
M we recall the midpoint fermula x = -i,-‘-(x1 + X2). In this

problem x, = 2 (because M is on g) and x, = -1, Therefoxe

2 = %(-l + X5).
Solving for xz, we get Xz = 5, and A' has coordinates (5,1),
Using this method of calculation, find the coordina%es of the’
image of each point listed below under the line reflection
in 4,the line with equation x = 2,
(a) A(3,-2) (v) B(-2,5) (e) ©(v2, 3) (d)} D(a,b)
Adapt the method of calculating coordinates of images in
Exercise 3 to find the coordinates of the images of

A(3,-2) and B(-2,5) under a reflection in a line whose
equation is: .
(a) x = -3 (b) v =1 (e) y=-2
Verify that AB = A'B', where A' and B' are images of A and B3
respectively under Ry if A and B have coordinates:
(a) (4,2) and (-1,5) (b) (0,5) and (4,-1) (c) (-2,0) and (0,-5)
Suppose distinect points A, B and C are collinear, and their
images under Rz’ when £ is a given line, are respectively
A, B and C', Ve can prove A', B' and C' are also colli-
near by using the fact that a line reflection is an isometry,
Study the proof beilow and answer the questions, One of the
points A, B or C is between the other two, Say it is B,
Then AB + BC = AC, But AB = A'B', BC = B C' and AC = A'C',
Why? Therefore A'B' + B'C' = A'C', Why? But the last state-

ment implies that B' is between A' and C', because otherwise
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ArB 4 RC S ArC, Explain why this ineguality is true if:

Arer

(a) *B is not in A'C

or (b) B is in A C' but not in
A'C', This proof also shows that a line reflection preserves
the betweeness relation for points,

7. Show that the set of images of the pcints in a line, under a
‘line'reflection, forms a line, You may remember this basic
property as follows: The reflection of a line in a line is
a line,

8. Show that the reflection of a ray in line is a ray, and the
reflection of a segment in a line is a segment,

9. (a) Show that the reflection of the sides of an angle, in
a line, are the sides of an angle, While an isometry, by
definition, preserves distance, the gquestion whether or not
it preserves angle measure is open, We shall assume that it
does, Ve do not prove it because we do not have the mathe-
matical machinery to do so, But it is quite plausible, so
we are encouraged to assume this until we have the necessary
machinery to prove it,

Isometries presexrve angle measures,

(p) Of particular interest is the statement: Each side of
an angle is the reflection of the other in the bisector of
the angle,that is in the line containing the midray, This
statement is equivalent to the statement: The x-aXxis bi-
‘ sects the angle determined by the two lines with egquations

v =mx and ¥ = -mx for m # O. Draw diagrams that illustrate
the plausibility of this statement for m = -, m = 3,

© 0. Let #, and £ be lines such that £, || £. Show that 4, || 42

if 21___B£_->£3. (You may use coordinates if you wish,)
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Let £, and & be lines such that £, | #. Show that 4, = £,

if zl-lwag .

Note. Every point in £ is its own reflection in £, Hence
the axis is fixed under a line reflection. In this exercise
we prove that a line perpendicular to the axis is also fixed,
but no* every point in the perpendicular is fixed. How many
points are 7 To distinguish between the two cases we say

that the axis is fixed pointwise, while the perpendicular

is fixed, but nnt pointwise.

Let £ be a line and P and point. If P__;E&_*.P' and

PL_—;E&——>P1, show that P = Py, A transformation that leaves

every point fixed is called the identity transformation and

is designated by the symbol i, Thus the composition of Rz
with itself is the identity transformation., A transformation
f that has the property fof = i, is called an involution

if £ is not itself the identity transformation., Verify that
Rz is an involution,

Before going on to the next section let us review some of the
properties that were mentioned in the above exercises., A
line reflection in 4 preserves (a) distance (b) the betweeness
relation for points (e¢) collinearity, (mapping lines onto
lines, rays onto rays, segments onto segments, angles onto
angles) (d) angle measures (e) ¢, pointwise (the axis) (f)
lines perpendicular to the axis, fixing them but not point-
wise., Finally, a line reflection is an involution; that is

R, ©R, = 1,
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9.5 Translations

Let us mark some dots on a sheet of paper, say A, B, C, and

D, as shown in Figure 9.6(a). Imagine a transparent paper placed
over the sheet of paper and dots made on the transparent paper

to locate the positions of A, B, C, D, Now imagine that the
transparent paper is moved 1in a certain direction a certain dis-

tance, Then the dot over A is moved to a new positi-r, called
At (see Figure 9.6(a)). Similarly the dot over B is moved to B',
and this happens for all dots on the sheet of paper., If we think

of the sheet of paper as a plane, we have described a method of

assigning an image point to each point of the plane,

a mapping of the plane onto itself.
plane serves as the image of exactly one point.

fore is a plane transformatiorn.

Thus we have
Moreover every point of the
This apping there-

It is an example of a translation.

At P A‘V A'(.3,5) P
,/ 5 //0
A 7
) A
‘ e1(2,3)
-t B! 3t - B1 (1, 2%)
¢ /’ P < // //.
) g7 2k(0,2) .-~
Dl l B(z’l;-"‘-) D‘
~° -*
-7 D(3,0)~ "
. < 3V -
D U 1 2 3 h 5 —¥
v
(a) (b)
Figure 9.6

we use coordinates,

In some rectangular coordinate system let A

The rule of assignment of a translation is easily stated if
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have coordinates (1,4) and let A' have coordinates (3,5). (See
Figure 9.6(b).) B has coordinates (2, l%) and B' has cocrdinates
(4, 2%). If we add 2 to the x-coordinate of a point we get the
x=-coordinate of its image and if we add 1 to the y-coordinate of
a point we get the y-coordinate of its image. Thus (1,4)—(3,5)
and (0,2)——(2,3). What are the coordinates of D', the image
of D(3,0)? The rule of this mapping is (x,y)—(x + 2, y + 1).
In general the coordinate rule of a translation is

(%, y)—>(x + a, y + D)
where a and b are fixed numbers, For each different choice of a
and b we have a different translation. Note when a = 0 and b =
0, the translation is the identity transformation,

It is startling that every translation can be expressed as
the composition of two line reflections whose axes are parallel,
We illustrate this fact for a particular translation.

Suppose in the particular translation, point A has image A'
and that AA' = 8, TWe can take AA' (or any line parallel to A7)
a3 the x-axis of a coordinate system, and let A have coordinates
(-1,0) which implies that A' has coordinates (7,0). (See Figure
9.7.) Further, let the y-axis be 4, the axis of the first line
reflection, and let the line m with equation x = 4 be the axis

of the second line reflection.

130
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t=y-axls  m

x=4

> — i — . N . > X

A(-1,0) A4,(1,0) A1{7,0)

& Y Pigure 9.7

Let us follow the effects of Rz on A, and of Rm on the image of
A,
Ry n
A(-l,O) 'AI.(]-sO)_'_'Ae (7:0)
We see that A has been assigned A' by R © R,, just as by the ori-
ginal translation, Let us find the image of B(-3,1) under

R OR .

mo4 R R

B(-3,1) —4—5,(3,1) —B— 5 (5,1)
and again we sae that Rm 0 Rz assigns to B the same image as does
the translation whose rule is

(%,) —( x+8,¥)

Note that the distance of the translation is twice the distance
between the axes of reflection, and the translation is in the same
direction as the direction from the first axis to the second. It
is interesting that we might have chosen other pairs of axes that
were 4 units apart. For instance, you might try taking the lines
with equations x = 1 and X = 5 as the axes, in that order.

The reasoning used in this particular case can be used in

any case, and we conclude with tHeffollowing statement., Every
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translation can be expressed as the composition of two line re-

flections whose axes are parallel, The distance of the translation

is twice the distance between the axes, and the directiown of the
translation is the same as the direction from the first axis to
the second, Any two axes may be chosen, if they are perpendicular
to the direction of the translation, if the dlstance between them
is half the distance of the translation, and if the direction

from the first to the second is the same as the direction of the
translation,

There is an important bonus in this statement: Every pro-
perty of a line reflection that is retained by the composition
of two line reflections is therefore a property of all transla-
tions,

Since each line reflection preserves distance, the compo-
sition of any number of line reflections also preserves distance,
and hence is an isometry. It follows that a translation is an
isometry. All the properties that follow logically from isometries
therefore belong to translations, Among these properties are:
translations preserve collinearity, the betweeness relation for
points, and map lines onto lines, rays onto rays, segments onto

segments, and angles onto angles of the same measure.

9.6 Exercises

1. The coordinate rule of a translation is (x,y)——(x + 1,
y + 1), Pind the coordinates of the images of the following

points under the translation:

ERIC (o) a3,2)  (0) B(-3,2) () O(-3,-2) (a) D(8%, 33)




-148-

(e) B(J2, 1) (f) F(-1,43) (&) ¢(0,0) (h, H(-1,1)

Find the coordinate rule of a translation that maps:

(a) A{3,2) onto A'(2,3) (v) B(0,0) onto B (-3,5)

(c¢) ¢(-3,5) onto ¢'(0,0)  (d) D(2%, 3) onto D' (-2%, 1%‘
(e) E(a,b) onto E'(0,0) (f) F(a,b) onto F (2a,3Db)

Let A and B have coordinates (0,2) and (5,1) respectively

in some rectangular cocrdinate system. Find the coordinates
of A' and B', the images of A and B, under the translation
whose rule is (X,y)—(x - 1, ¥y + 2).

Justify each of the following statements:

(a) AB = A'B

(b) AB~——ATH"

(c) Kﬁ II E:g (You may use the slope formula %t—{7¥§ .)

(a) Za' || BB

(e) AA' = BB

(f) ABB'A' is a parallelogram.

(g) AP and A'B bisect each other,

This exercise suggests that in general, if A' and B' are the
images of A and B under a'translation, and A, B, A' are not
collinear, then ABB'A' is a parallelogram, Prove it,

Let translation T, have the rule (x,y)}——(x + 3, y - 2)

send let translation Ts have the rule (x,y)—=(x + 1, y + 3).
Investigate the nature of Tz © T,, showing its effect on points
A(3,2), B(-4,0), and C(-2, -5).

Let translation T, have the rule (x,y)——(x + 3, y = 2) and

let translation Tz have rule (X,y)——(x - 3, y + 2). Let

A have coordinates (2,3). Find the coordinates of A' if

—_— 153 |




10.

11,

12,

-149-

A—Ti LA, Show that A—2 .4, Does thic suszest that

Tz is the inverse of T;? Verify that T © T, = i using points
B(-2,8) and C(a,b), Also verify T, o T, = i,

In Exercise 5 we can represent T, as Tz,_p and Tz as T.z,=2.

In general the translation with rule (x,y)—(x -+ a, y + b)
can bs represented Ta,b‘ Using this notation represent:

(a) The composition of T and T,

a,b

m . .
(b) The inverse of Ta,b‘

(e} The identity transformation.

»d’

Show that composition of translations is commutative,
Using the data in Figure 9,7, show that Rm o RL maps each
of the following points onto the same point as does the
translation that maps A (-1,0) onto A'(7,0).

(a) €(2,0) (v) D(3,-4) (e} P(10,-3).
Show that composition of line reflections having parallel
axes is not commutative, If these line reflections are Rm

and R, how is Rm O R, related to R

2 2 2
Is the composition of line reflections associative? Is the

O R ?
m

composition of translations associative? (See Exercise 7

of Section 9.2,)

Is the composition of two translations a translation? If so
how can you find the rule of the composition from the rules
of the two translations?

Is the composition of two line reflections a line reflection?
If so, how can you describe the rule of the composition?
Before answering this exerclse, recall that a set of elements,

together with a binary operatlion defined on that set, is a

group if - 154
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(i) the set and binary operation constitute an operational
system;

(i1) +the operation on this set is associative,

(i) there is an identity element in the set, and

(iv) each elewent in the set has an inverse, also in the set.

(a) 1Is the set of all translations in a plane, with com-
position of translations as the operation, a group?

(b) Is the set of all line reflections, with composition
as the operation, a group?

w, T is a translation, What are two line reflections from

0,0
which it is composed?

9,7 Rotations and Half-Turns

We extend our study of isometries (so far consisting of re-
flections in a line and translations) to rotations, Let us select
on a sheet of paper 7 a point O on 7 at which we attach a trans-

parency (called 7 ), (See Figure 9.8).

lli‘iggre 9,8 155
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Select any two points (other than 0) in %, say A and B, and mark
dots on the transparency ovexr A and B. Now turn the transparency
about 0 as pivot, in the counterclockwise direction, through an
angle of 30°. The "A dot" on the transparency ends at a point
A', We assign A' to be the image of A under this rotation,

The image of B is B, If we think of the paper as a plane then
we have a method by which each point of 7 is assigned exactly
one point of 7, and each point of T serves as the image of one
point in m, Thus we have 2 transformation of the plane onto
itself, The essential data that determine this transformation
are point O and 300, that is the center or pivot of the rotation,
and the measure of the angle through which the rotation takes
place, in the counterclockwise direction if the angle measure is
positive, To indicate a clockwise rotation we use negative
numbers as angle measu:res, The above transformation can be de-
signated r(0,30), (Capital R denotes a line reflection, lower
case r will denote a rotation.) What does r{0,-30) mean?

You should note the following about r(0,30) in Figure 9,8:

For any point A and its image A', OA = OA' and m/ACA'" = 30,
In particular, OB = 0B' and m/BOB' = 30,

We saw that a translation is a composition of two reflections
in parallel axes, It is surprising that every rotation is also
the composition of two reflections in axes, but not in parallel
axes,

We offer here a discussion, not a proof, of this fact, It
is intended to illustrate, using Figure 9.9, that a rotation is

O the composition of two reflections whose axes intersect,

ERIC
= 156
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We examine a particular rotation, r(0,80), (See Figure 9.9.)
Let r(0,80) map A onto A', Then OA = OA' and mZAOA' = 80,

Let O and oN be rays, with the angle of counterclockwise
rotation from OM to ON measuring 40, that is % of 80, Label O
=m, O8 = n. We shall see that if A-i»Al, then Al__Rn—>Av ,

R, o R
which shows that A i m

->-A! , or that Rn © R, maps A cnto

the same point as does R(0,80).

N T

Figure 9.9

Since P‘m maps A, O, M onto Ay, O, M respectively, P‘m maps
L AOM onto L A,OM; hence mLZAOM = mLA,OM = ©, say, and mLAOA, =
28. Since mLAOA' = 80, it follows that
(1) mLA'0A, = 80 - 28,

But miMON = 4O and m/MOA = & imply
' (2) mLA,ON = 40 - o,
(1) and (2) yield m/A'ON = 40 - 5, Thus OF is the bisector of

197
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LA, 00", so that Ry maps OA, onto OA (Exercise 9(b) of Section 9.4),

R R
Since 0A = 0f; = 0A', A,——L—-A', This, and A—"—-p,, yield
R, °R
A 1 it —>/\' , A discussion like this can be given for all

R(0,80)

A and A', where A

—-/', Ve conclude r(0,80) = Ry OR
WWe conclude that every rotation, r(O, 28), can be regarded

as the composition of two line reflections whose axes meet at O

and determine an angle of measure 8, where 9§ is positive if the

rotation is in the counterclockwise direction, and negative if

in the clockwise direction. We will call 26 (whether positive or

negative) the measure of the rotation,

We deduce from this that a rotation is an isometry, and has
all the properties possessed by the composition of two reflections
in intersecting axes. Among them are the preservation of distances,
lines, rays, segments, angles, and angle measures,

An important special case'of a rotation is the composition
of two reflections in perpendicuiar axes. In this case 8 = 90
and the rotation has measure 180. Then A, O and A' are collinear,
and OA = OA', This implies that O is the midpoint of BAT, This
transformation is called a half-turn with cenver 0, and is denoted

H For a diagram of a half-turn see Figure 9.1.

OO
A coordinate rule for a half-turn is easily determined if

the center of the half-turn is the origin of a rectangular coor-

dinate system: Hy =R 0 Rx Since the rule for R, is

¥
(x,y)=——(x,-y), and the rule for Ry is (x,y)=—>(-x,¥y), the
effect of the composition on (x,y) is:

o (%, ¥)—Z e (, -y) —L (%, ).
Eﬂ&ygfefore the rule of Hy is (x,y)——(-x,-y).

o 158
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If we wish A(a,b) to be the center of a half-turn that
meps P(x,y) onto P'(x', y'), then, because A is the midpoint
of PP :

a=%x+x)and b= %y +y)
this leads to

XX =2a -xand y' =2b -y or

(x,y)——>=(2a - x, 2b - y).

9,8 Exercises

1. Make a drawing which shows non-collinear points A, B, and C,
and their images under a rotation with center 0 and measure
65, if O is in the interior of AABC, Use a protractor,

2, Suppose A, B, and C are three collinear points, and B is
between A and C, Let r{(P,8) assign images A', B' and C!
respectively, Are the images collinear? Is B' between A!
and C'? Compare AB with A'B', AC with A'C' and BC with B'C',

3. Let P be a given point, Is the composition r(P,20)o r{P,30)
a rotation? If so, what is its center and what is its mea-
sure?

4, TExpress as a single rotation:

(a) r(P,40)or(P,20) (b) r(Q,30)or(q,-20)
(¢) r(P,90)or(P,80) (d) r(e,40)or(Q,-40)
5, Let r(P,0) represent a rotation, Does it have an inverse?
If so, how is its designated?
6. Is the set of rotations with center O and with the operation

of composition a group? Justify your answer,

159
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T Let the origin O of a rectangular coordinate system be the
center of a half-turn. Find the coordinates of the images
of the following points:
(a) A(3,-2) (b) B(-2,3) (e) c(0,-2) (a) D(v2,-.3)
8. Find the coordinates of the images of the points ii IExercise
7 under the half-turn where center is (1,-2).
9. Repeat Exercise 8 for the center (-1,3),.
10, Prove that a half-turn is an involution,
11, Let P and & be distinet points. Show that the composition

HO o HP is a translation in the direction from P to Q a

14

distance of 2PC,

12, Using the data of Exercise 11 show that if P # Q,HQ o HP
# Hp © HQ. Further show that HQ © Hp and Hp o HQ are
inverses of each other,

13, Are any lines fixed under a half-turn? If there are des-
cribe them. Are they fixed pointwise?

Ho

14, Given: H line 4 not containing O, and §——yg',

0
Prove & || #'. (You may wish to use coordinates in this

proof, If you do, recall the formula for the slope of a

line: m = Ya——=J¥2)

Xy = Xz
15, Let HP be alhalf-turn, and A and B be two points not collinear
with P, Let A-—EEL—>A', and B——Eﬁl—bB'. Prove ABA'B' is
a parallelogram,
#16, We have given coordinate rules for line reflections in the
x-axis and in the y-axis, There are also coordinate rules

for reflections in other lines passing through the origin,

which we give in this exercise, If g has equationy = E%IX’

where a? + b® =1 and a # -1 (in a rectangular coordinate
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system), the rule for R, is (x,y)——(ax + Ly, bx - ay).
Verify that this rule:

(a) maps P(1,0) onto Q(a,b).

(b) maps @Q(a,b) ont~ P(1,0).

(¢) maps any point of # onto itself,

(d) has the property R, © R, =1i.

If we assume that a transformation that is an involution

and has a line fixed pointwise is a line reflection, then

(e) and (d) verify that the mapping described above is a

line reflection.

Consider the mapping with the rectangular coordinate rule
(x,y) =———>(ax - by, bx + ay)

where a® + b2 = 1, To help verify that this mapping is a

a rotation with center O, the origin of the coordinate system,

prove the following: If (a,b) = (1,0) then the mapping is

i, In all other cases:

(a) O is the only fixed point,

(p) If A———A', then OA = 0A',

(e} For further verification show (1,0)—(a,b),
(0,1)———>(-b,a) and {a,-b)=—(1,0). You should
draw a diagram to understand the significance of
these results,

Let line 2 have slope m # O relative to a rectangular coor-
dinate system. Show that the slope of £,, the reflection

of 4 in the x-axis,is -m, Is the slope of g5, the reflection
of £ in the y-axis,also m?

Copy Figure 9.3. Select a point B in the interior of Z4MON,

Use a protractor to find its image under the rotation r(0,30),
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Now find the image of B under the composition Rn o Rm‘
You should get the same image point by both methods., Re-
peat the above starting with point C, the image of A, under
the half-turn HO.

20, Bhow that (x,y)=——(y,x) is the coordinate rule for the
reflection in the line with equation y = x, (Hint: See

Exercise 16,)

9.9 Composing Isometries, Glide Reflections

We have seen that translations and rotetions can be regarded
as compositions of line reflections., It is natural to wonder
what results if we compose a line reflection with a rotation or
with a translation, or if we compose a rotation with a transla-
tion, (There are other possibilities,) No matter what isometries
we compose we know that the composition will be an isometry. Why?
Since translations and rotations (including half-turns) can be
constructed out of reflections only, it would seem that the line
reflection is the basic isometry and we might wonder if every
isometry can be composed of line reflections only. The answer is
yes. But this idea is worthy of careful attention and we pursue
it in another section,

Meanwhile, we investigate the composition of a line reflec-
tion with a translation in a direction of the axis of the line
reflection, In exercises you will be asked to investigate other
compositions,

Let £ be a line. (See Figure 9.10).

162
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Figure 9,10

If R, and T represent the reflection and translation then:

2
R T TOoR

Jp— ~A, or A4 s p
R, T TOR

B »B, B, orf B———2 B

Since Rz and T are isometries, so is TORL.

different in its apparent effect from any other isometry we have

The composition is

seen so far, It is called a glide reflection (in £), ("Glide"

is synonomous with "translation,") It has the properties of pre-
serving distance, lines, betweeness for points, rays, segments,
angles and angle measures, It is instructive to note, in Figure
9.10, that A,B;B'A' is a parallelogram, or to say this another

way the reflection of AB in 4 is translated to AT B,

9,10 Ixercises

1. e have defined a glide reflection as a line reflection
followed by a translation, Show that the glide reflection
may also be described as a translation followed by a line
reflection, where the translation is in a direction of the
axis of the reflection,

2, Show that a glide reflection may be regarded as the compo-

sition of three line reflections;'ﬁhere the first two have
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parallel axes, each perpendicular to the third axis, Will
a glide reflection result if the last two have parallel axes,
each perpendicular to the axis of the first reflection?
Let £ be a line and P any point not in 2. Let F be a glide
reflection in ¢, and let P———EL—>P'. Show that 4 bisects
PP,
Given a glide reflection, Describe how it may be regarded
as the composition of two half-turns and a line reflection,
(See Exercise 11 of Section 9.8 for a hint if you need one,)
Show that the composition of & glide reflection with itself
is a translation, DNescribe the transletion,
To show that a half-turn followed by a translation is a
half-turn, you might start with two points A and B, and
point O not in BB, If A—E-IO—>A1 and BLB“ what
kind of figure is ABA,B,? Let the translation that maps A,

onto Az map B; onto Bz, In general what kind of figu.e is
B A
2

),

A,AzB;B,? How are AB and B;A; related? What kind of figure
is ABA3Bz? What is the isometry that maps A onto Az and B
onto B;? What would your answers be if O is on AB?
Investigate the composition of a translation followed by a
half-turn,

Show that the composition of three line reflections in three

parallel axes is a line reflection.
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Show that the composition of three line reflections in lines
a, b, and c, where a l b and b l ¢, is a glide reflection,
In this exercise we consider a coordinate rule for a glide
reflection, It is the composition of the reflection in
line £ with equation y = E%ix where a® + b® = 1, and the
translation that maps (0,0) onto ((a + 1l)ec, be). Its rule
is
(x,y)—(ax + by + (2 + 1l)e, bx = ay + be)
Verify the following:
(a) The direction of the translation is a direction of the
axis of the reflection,
(b) The glide reflection assigns a point of £ to a point
of £, Explain why it shou.d,
(e) The rule actually combines the rules of a reflection

and a translation. (Hint: See Exercise 16 of Section

9.8.)
Let A, B, C be three noncollinear points as shown, aad let
P be any point in the plane, Consider P——E&L—>Pl,
Pl—HB—>Pa, PQ—HC—>P,. Show that there is a point D

Hp
such that P————F,.

e
=
N
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(Hint: Take D as the fourth vertex of parallelogram ABCD,)

How does this show that HCoH oH, = HD, that is, the compo-

BYA T
sition of three half-turns is a half-turn?

12. Let F be the midpoint of AB. Prove H,oH_oH_oH

ACHpOHROH, = i, where

i is the identity transformation.

9.11 The Three Line Reflection Theorer:

In this section we will keep our promise to show that any
isometry may be constructed as the composition of line reflections;
and, in fact, no more than three, We do this in t¢cwo stages. First
we prove a preliminary theorem, which is called a lemma, In it,
and in the theorem that follows, we make use of the following re-
sult, which was given in Course 1, Section 10,14, Exercises 4
and 5:

A point is on the perpendicular bisector of a segment if and

only if it is as far from one endpoint of the segment as it

is from the other,
Lemma, Let A, B, C be three noncollinear points, anﬂ let F and G
be isometries such that (A, B, C)——w(A', B', C') and

(A, B, C)—=2—=(A', B, C'), Then F = G, (For isometries

we need only prove: For any point X, if X-——EL—>X', then

G )

X—X'.

The significance of the theorem is this: Given three non-
collinear points A, B, C and their respective images A', B', C
under an isometry, then that isometry is the only one that effects

ljRitpe mapping of (A, B, C) onto (A', B, C'). Even though an isometry

IToxt Provided by ERI

of the plane has infinitely many points in its domain, it is uniquely
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determined by its effect on only three noncollinear points,

#(A, B, C)—I—s(A', B', C') is an abbreviation of A——»ar,

¥ F

B———B', ,——(,

Proof of Lemma,

G

We use the indirect method. Suppose X -=—>X" | where

X" # X, Since F is an isometry, AX = A'X', BX = B X',

CX = C'X', Since G is also an isometry, AX = A'X", BX =
BX'", ¢CX=0CX", Thus A'X' = AX", BX =BX" and C'X' =
c'X", Put into words, this means that A' is as far from
X' as from X", also B' is as far from X' as from X", and
C' is as far from X' as from X'. We have assumed X' # X",
Thus X' X© is a segment and A', B', C' are on the perpendi-
cular bisector of X' X', But this implies that A, B, C are
collinear, contrary to the information given in the theo-
rem. Therefore X' = X", Since F and G make the same assign-

ment to all points of the plane (X is any fourth point),
' =G,

And now for the key theorem:

Theoremn,

Every isometry may be constructed as *he composition of at

most three lino reflections.

Proof.

Q. We know from the preceding lemma that an isometry is uniquely
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determined by its effect on three noncollinear pointu. Let
the isometry f map A onto A', B onto 3 and C onto C!', where
A, B, C are noncollinear points, Figure 9.11(a) shows points

A, B, C and their images A', B, C',

BI

Figure 9.11(a)
AR = B, AC = A1C', BC =B C

We demonstrate in a sequence of figures the line reflections
whose composition maps (A, B, C) onto (A', B', C'). First we con-
sider the trivial case in which A' = A, B' = B, and C' = C, Here
the identity transformat’on i maps (A, B, C) onto (A', B, C'),

We may regard i as the composition of two reflections in the same
line, This proves the theorem for this trivial case,

Now suppose that at least one of the points A, B, C is diff-
erent from its image, say A' # A, The line reflection in 4, the
perpendicular bisector of AA", maps A onto A', This is shown in
Figure 9,11(b), along with logical consequences stemming from

) . Ry
¢ . reflection. (4, B, C)——2—p(A'", By, C,).
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Figure 9,11(b)

AB = A' B, AC = A'C, BC = B,C,

If B, = B and C, = C', only one line reflection is needed
to prove the theorem. Suppose B, # B'., A second reflection in
L2, the perpendicular bisector of B;B' maps B, onto B (See Figure
9.11(c)). Since A'B, = A3, A is as far from B as from B', so
that A' is on $, and hence A' is mapped onto itself, So
(A, By, Cl)———Eﬁ——>(A', B', Cz). Again note the logical con-

sequences of this reflection.

N 1,
B _ | B
|
|

C; CB

Figure 9.11(c)
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If C3 = C', then two line reflections effect the desired iso-

metry, If Cz # C', then the line reflection in ¢ = A'B

effects
the isometry. (See Figure 9,11(d)), for A'Cz = A'C' and B'Cz =
B Ct; that is, each of A' and B' is equidistant from C; and C'.
Hence ¢, is the perpendicular bisector of C,C' and

R
(a1, B, Cp)—Pap(nr, B, o).

Figure 9.11(d)

i You may find it instructive to see the three line reflections
in one diagram. They are shown together in Figure 9.11(e).

‘£]{U:‘ Figure 9.11(e)
— 170
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9,12 Exercise

Our artist took great pains to get Figure 9.11 to convey
clearly the sequence of line reflections that map (A, B, C) onto
(Ar, B', C'), We issue this challenge to you. Using a cardboard
triangle trace it in two different positions and then show clearly
the sequence of line reflections that map one of these triangles

onto the other., As you do this follow the proof given above,

9,13 Directed Isometries

In Figure 9.12 you see a pennant, a triangle, and a ray,

each reflected in £, Tach has been flipped over,

Figure 9,12‘
Aot g -
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How can we describe thi~ mathematically? We can see that the rays
are directed in opposite directions. So are the pennants. To des~
cribe the "flipped over" position of the triangle we look at AABC
reading the vertices from A to 3, then to C and note that the
direction of reading the vertices in that order resembles the mo-
tion of the hands of a clock. But if we read the image of AABC,
from A' to B' to C' we note the direction to be opposite that of
the hands of a clock., We see that the isometry has reversed the
direction, or sense, of the three vertices. If a line reflection
changes the sense of AABC, it will change the sense of any three
noncollinear points, Because a line reflection reverses the sense

of three noncollinear points we call it an opposite mapping.

Definition 1, If a mapping preserves collineari’y and non-
collinearity it 1s called opposite if it
reverses the sense of three non-collinear

pointsy otherwise it is called a direct mapping.

Figure 9.13.

It is clear from Figure 9.13 that a translation is a direct

O sometry. Figure 9.14 shows- that a half-turn is also a direct

T2

1sometry.
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Figure 9,14

These observations however should not surprise us, for a trans-
lation is the composition of two line reflections, each of which
is an opposite isometry. The second reflection reverses the re-
versal, and so restores the sense of the original triangle, Hence
a translation must be a direct isometry,

Since a half-turn or for that matter, any rotation, is also
the composition of two line reflections, then half-turns and ro-

tations in general are direct isometries,

9,14 Exercises

1, Prove that the composition of three line refiections is an
opposite isometry,

2, Investigate the nature of the composition of an even number
of line reflections and of the composition of an odd number
of line reflections. For verification see Figure 9,11(e).

3. What kind of isometry is a glide-reflection?

4, What kind of isometry is the composition of any number of:
(a) translations? (b) rotations? (c) half-turns?

o 5. (a) Show that the composition of two line reflections and a

half-turn, in any order, is a direct isometry,
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(b) Should we use an even number or an odd number of line
reflections in composition with a half-turn to produce
an opposite isometry?

Prove that the composition of half-turns cannot be a line

reflection,

Prove that the composition of rotations is never a line re-

flection,

What should you compose with a glide-reflection to obtain

a direct isometry? An opposite isometry?

Is the identity isometry direct or opposite? Show that an

isometry and its inverse isometry are either both direct or

both opposite, (An isometry £ is the inverse of isometry g

if fog is the identity isometry.)

Prove: A direct isometry with two fixed points is the iden-

tity isometry.

Groups of Isometries

You know that a group is an operational system (S,0) with

the three properties of assoclativity, existence of an identity

element in S, and the existence in S of an inverse for each ele=~

ment

in S, The set of all isometries in a plane with composition

as the operation is, as we shall see, a group.

ten,

Let us first see whether this system is an operational sys=

To do this we must convince ourselves that the composition

of any two isometries is an lsometry. Remembering that all iso-

O

ies are one-to-one mappings of the plane onto itself, it is
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clear that the composition of two isometries is also a one-=-to-one
mapping of the plane onto itself, Since distance is preserved
under undey an iscmetry, it continues to be preserved under the
composition of two isometries, Thus composition of isometries
preserves distance and hence is an isometry.

Now let us check whether or not the operational system has
the group properties. TFirst the associative property. Since
composition of transformations in general is associative, so is
composition of isometries,

The isometry that leaves all points of the plane fixed is
the identity isometry, designated i. It is clear that, iI f is
an isometry, iof or foi has the same effect as f alone. So iof =
foi = £, Thus the identity requirement is satisfied.

Let f be any isometry. Since f is a one-to-one mapping of
the plane onto itself, it follows that the inverse mapping f~'
exists, and is a one-to-one mapping of the plane onto itself,

-l -1
Now let A, B be distinet points, A————=C and 3————»D,

Fa)

Then C=——i——3, D——=—sB, Since f is an isometry, CD = AB,

- , -1 -1
Thus £~ ! has the property thet if A——f-——*C and Bf—>D,

then AB = CD, Thus f~! is an isometry, and clearly fof~' = f=tor
= i, Thus the set of all isometries is a group.
As an example of a subgroup (see Chapter 2 Section 2.1) of

the group of isometries we offer T, the set of translations.
Let T, , represent the translation with rule (x,y)——=(x+a, y+b).
3

Then for all T T

a,b’ “c¢,d

¢,d ° Ta,b = Ta+c, biq Which is tﬂ*T, proving (T,0) is
an operational system. ]_/C)

(1) T
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0 = = 3
a,b To,o Ta,b‘ Hence To,o i,

(3) T oq, =T

oT
s D a,b

=T = i,

-a,=b -a,~b 0,0

Thus T is a subgroup of the group of isometries.

Exercises

Consider the set of translations in a plane, Let T(A,B)
represent the translation that maps A onto B.

Interpret: (i) T(A,A) (ii) T(B,A) (iii) T(s,c) o T(A,B).
Prove the set of direct isometries is a group under composi-
tion,

Does the set of opposite isometries form a group?
Is the set of half-turns a subgroup of the group of isometries?
(Hint: Consider the composition of two half-turns.)
Is the set consisting of half-turns and translations a sub-
group of the group of isometries?
Does the set of rotations with the same center form a sub=-
group? In your investigations designate a rotation with cen-
ter P and measure a by r(P,a). Interpret r(P,a) to be in
the counter-clockwise direction when a > 0, in the clockwise
direction when a < 0,
Prove: If f and g are isometries, then

(tog)™" =g tof™,
Generalize the theorem in Exercise T fér n isometries,
The groups we have considered so far are infinite, In this

exercise we consider a finite group of isometries. Let AABC
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be equilateral, Observe that each median®* of an equilateral
triangle lies in the perpendicular bisector of a side and in

the bisector of an angle., Let the medians of AABC be Eﬁh,

(]

§§;, and Eﬁ;. The medians meet at a point; call it O,
mZAOB = mLBOC = mLCOA = 120, and OA = OB = OC, Consider the

rotation r(0,120), which we abbreviate ry., A——k—sB,
Iy

B »C, C—I% 4, Therefore AB—X1 B, BC—Z1 . CA,

and CA—3—7B, In short, AABC—Ii L ABCA, Therefore

the image of AABC under r, is AABC itself, We describe this

by saying that r, leaves the triangle invariant,

(a) Let rj = r(0, -120), Show that r, leaves AABC invariant,

(b) Let R, be the reflection infﬁzl. Show that R; leaves
AABC lnvariant,

() Let R be the reflection in BBy. Show that R; leaves
AABC invariant,

(d) Let Ry be the reflection inﬁEE:. Show that R, leaves

AABC invariant.

* A median of a triangle is a line segmeni{ whose endpoints
are a vertex of the triangle and the mldpoint of the side
of the triangle opposite that vertex,
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(e) Meke a table showing all possible compositions of

two isometries in the set S = {i, r,, r;, R,, Rg, Ryl.
(f) Show that (S, o) is a group.
(g) Find all the subgroups of (S, o)

9,17 Isometry, Congruence and Symmetry

A congruence is a relation between figures, In everyday
life we describe two such related figures as being exact copies
of each other, or as having the same shape and size. It is quite
difficult to give a precise mathcmatical definition of "same
shape and size," as you might convince yourself if you were to
try. However, the notion of an isometry is helpful,

Definition 2, Two figur.e are called congruent if there is
an isometry that maps one of these figures
onto the other, If there is an isometry that
maps figure F onto figure F' we designate
the congruence

rPEM,
and read it: F is congruent to Ft'.
In Figure 9,15 we illustrete such a congruence for two tri-

angles, Note first that the lsometry is a translation,
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Figure 9,15

Under this isometry A——At, B——B', and C—>C', Since
isometries preserve segments:

AB——>1AT1 , BC—BC", and CA——C &
In short, AABC——AA'B'C', Therefore AABC = AA'B!C',

Each part (side or angle) of AABC is mapped onto a part of

AA'B'C', These parts are called corresponding parts, In parti-

cular, each side of AABC corresponds to a Side of AA'B'C', Sincc
isometries preserve both distance and angle measures, we conclude
that corresponding sides and corresponding angles of these con-
gruent triangles, or congruent figures in general, have the same
measure,

It is customary in designating a congruence to indicate the

correspondence of parts by the order of the vertices, Thus AABC

2 ADEF indicates A »D, B —+ and C—>F, These corre-
spondencas determine all other correspondences that involve ver-
tices, such as AB——DE,

An important instance of a congruence occurs in a parallelo-

Q
ERICam, We shall use it often,

19
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If ABCD is a pr.rallelogram then AABD = ACDB, To prove this
statement we have to find an isometry under which AABD-—»ACDB,

(See Figure 9,16.)

Figure 9,16

The isometry is Hy, the half-turn about M, the midpoint of BD;

H. H
B————EL—>D, D-———M——>B, and, since the diagonals of a parallelogram

bisect each other, A—HL—i>C. Thus AABD—ﬂ'I—>ACDB, and
finally, AABD = ACDB,

Symmetry is a property of a figure,

Definition 3., A figure is symmetric if there is an isometry,
other than the identity, that transforms the
figure onto itself,

If the isometry is a line reflection we say the symmetry is

a line symmetry, or symmetry in a line, See Figure 9,17 for symme-

tries related to different isometries,
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S
//g\\\

)

(a) (c)
rotation symmetry (b) point symmetry
(through 120°) line symmetry in 0

in %

Some figures, like the rectangle, have a variety of symmetries
because there are more isometries than one that map the the figure

onto itself,

9.18 Exercises

1, Draw a diagram of AC and DE, bisecting each other at B,
Prove AABD = ACBE,

2, Let CD be the perpendicular bisector of AB, Prove:
(a) AACD 2 ABCD

(b) £CAD and /CBD have the same measure.
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(e) AC = BC,
(d) If AB NnTD = M, prove AACM = ABCM and mLCAB = m/CBA.
(e) Show that ADBC has line symmetry.

3. Would your proof in Exercise 2 be different if D were between
C and M in the diagram?

4, Suppose two circles have radii of the same length. Do you
think they are congruent? Support your answer with a draw-
ing.

5. (a) Let ABCD be a rectangle. Prove AABD = ABAC, (Assume
that the perpendicular bisector of AB is also the per-
pendicular bisectcr of DC.)

(b) List 211 the symmetries in ABCD.

6. Let AABC be equilateral, and let its medians intersect at
0, Assuming that m LAOB =m £ BOC = m £ COA = 120, prove
AAOB = ABOC, and AAOB = ACOA,

T. Prove:

(a) Any figure is congruent to itself,
(b) IfFF=FM, then I = F,
(¢) IfF, =EF and § = F,, then F, 2 F;,
Is the congruence relation an equivalence relation?
8.‘ AIn how many ways can one consider an equilateral triangle to

be symmetric? An isosceles triangle? A circle? (See Definition

3 and Figure 9,17.)

9.19 Other Transformations: Dilations and Similarities

We would not like to leave the impression that all transfor-

O
[]{U:tions are isometries, Indeed there are many more that are not.

182
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In this section we examine just one set of transformations that
are not isometries, although it bears many resemblances to the
set of isometries.

Let point O be given, and also a fixed non-zero number, say
2, for purposes of illustration. Then to point A (see Pigure 9.18)
we assign A', where A' is in OA and OA' is 20A., B' is assigned

to B if B' is in OB and OB' = 20B, and so on,
Cl

\

\ly
\/

0
Figure 9,18

If the given number is negative we take the image of A in the ray
opposite 53. Clearly every point in the plane is assigned g point
of the plane, and every point serves as the image of one point.
Thus this method of assignment is a transformation; but as you can
readily see by comparing AC with A'C', it is not an isometry, This

transformation is called a dilation with center O and scale factor

2.

We can form a composition of a dilation with any isometry,

and the result is called a similarity. WNote that if the scale
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factor of the dilation component is 1 or -1, a similarity is an
icometry. When it is -1, then the dilation is a half turn. (See

Figure 9.19.)

B!

A
iy Ai////xi\\\\\\\\‘“ 0 g
B

“‘\\\\\\\\\\\}L////’

Al
Figure 9,19

9,20 Exercises

1. Make a drawing of two triangles related by a dilation with
scale factor
(a) 3 (v) % (e) -1 (a) -2

2. Show that a dilation with scale factor -1 is a half-turn,

3. Using a drawing show that if a dilation with scale factor
2 maps points A and B cnto A' and B', then A'B' = 24B,
Generalize this result,

4, Show that a dilatlion maps three collinear points onto three
collinear points, (Hint: Use the generalization in Lxercise
3. If necessary review the proof of the analogous statement
in Exercise 6, Section 9.4.)

Be Show that the set of dilations with center O is a group under
the operation of composition,

6. Draw a plcture of a dilation with scale factor %, followed

]ERJK? by a translatlon, as it affects three noncollinear points,
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Draw a picture of a dilation with scale factor 1%, followed
by a reflection in a line, as it affects three noncollinear
points,

Suggest a definition for direct and opposite similarities,

You may have observed that a similarity preserves the ratio
of distances, Does it seem to preserve the measure of angles?
Base your answer on the drawings you have made in these

exercises,

Summery

A plane transformation is a mapping of the plane onto itself
that 1s one-to-one, A transformation is an isometry if it
preserves dilstance,

Among isometries are compositions of line reflections,
translations, glide-reflections, and rotations., The half-turn
is a special cas=e of a rotation, |

The line reflection is the basic isometry in the sense that
any isometry is the composition of line reflections of which
no more than three are needed, A rotation is a composition
of two reflect’ons with intersecting axes., In the case of a
half-turn the axes are perpendicular, A translation is the
composition of two line reflections in parallel axes. A
glide reflection is composition of a line reflectinn and

a translation with a direction of the axis of the reflection,
All isometries preserve collinearity of points, the betwesness
relation among points, rays, segments, angles, and angle mea-

sure, in addition to distance, 185
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Under the identity transformation all points are fixed,
Under a line reflection the axis is fixed pointwise, and
lines perpendicular to the axis are fixed, but not point-
wise. Under a rotation the center is fixed; under a trans-
lation no points are fixed; under a glide reflection the
axis is fixed, but not pointwise. Under a half-turn all
lines through the center are fixed, but not pointwise.
Half-turns, rotations and translations are direct isometries,
that is, they preserve the sense of three non-collinear
points. All other isometries we discussed are opposite.

The set of isometries, with the operation of composition,

is a groun. The set of translations and half-turns is a
subgroup. The set of translations is a subgroup.

Two figures are congruent if an isometry maps one onto the
other, A figure is symmetric if an isometry maps the figure
onto itself,

Not all plane transformations are isometries, For instance,
the composition of a dilation with an isometry, called

a similarity, is not in general an isometry. Similarities
preserve collinearity, betweeness, ratio of distances

and angle measure,
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9.22 Review Lixercises

1. Given three noncollinear points &, 3, C, For each part below
make a different diagram showing how to find:
(s) the reflection of A in TC.
) the image of A\ under the translation that meps 3 onto C.
(¢) the image of A5 under the half-turn in C,
) the image of A4 under the glide reflection whose axis
is'ﬁg, and that maps B onto C,
2. (a) Given parallelogram ABCD. Show that the parallelogram

is preserved under the half-turn whose center is the

midroint of “C,

(v) 1Is the parallelogram preserved under the translation
that maps A onto B?

(e) It the parallelogram preserved under the line reflec-
tion whose axis contains the midpoints of AB and CD°

3. Given ABCD is a square, and let AC intersect BD in E, Show

that the square is invariant under:

(a) a rotation with center E and measure 90 (counterclock-
wise), (ry).

(b) a half-turn with center E(rz2).

(e) a rotation with center E and measure =90 (clockwise),
(ra).

(d) a reflection in the axis through the midpoints of
3B and CD (R,).

(e) a reflection ianE'(Ra).

(f) Name three more isometries that preserve the square.
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(Did you remember that the identity transformatisn is
an isometry?)

(g) Let the symbol:s in parentheses name the respective iso-
metries, They are r,, rz, r, for rotations; R,, Ry for
the reflections in axes passing through midpoints of
sides; R., Ry for reflections in diagonals, Show that
(fi, r,, r2, ry, Ry, Ra, Ry, Re1,°) is a group, where
O denotes composition of transformations, by displaying
the table showing all possible compositions.

(n) Find a subgroup containing 4 elements.

(i) Find five subgroups each containing 2 elements.

4.  Given ABCD is a parallelogram. Show Hp O Hy = H, 0 Hp.

5. Given point P is on line a. Show HP o] Ra = Ra o] HP'

6. Prove that the composition of four line reflections cannot
be a glide reflection,

T. Given line 4. Under which isometries is the image of 2% para-
llel to £? Do not consider such cases as line reflections
where £ is parallel to the axls, nor half-turns whose cen-
ters are on 4,

8. Describe isometries under which each of the following con-
ditions is satisfied:

(a) All points are fixed.
(b) All points in one line are fixed.
(¢) There are no fixed points.
(d) There is exactly one fixed point.
9., (a) wWhich isometries are direct? Which are opposite?

Q (b) An isometry is an involution, Is it necessarily an

opposite isometry? May it be? ,188
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Let line b be the perpendicular bisector of PQ,

(o) = (o]
Show Hp R Rb HQ'

b

Let £ and m represent mirrors at right angles. A ray of light

issues from point P in the direction indicated in the figure,

strikes 4 in A, and is reflected as follows: Let P

m

A
|3

3 h

R,0H
4O08A P2,

Py
5 ]/A 4
Pl
Then the beam of light lgollolv{qs the path AP, until it strikes
m ° OB

m, say at B, Let P
—_—
follows the path BP,,

»P,., Then the beam of light
Show that 3B || B5,.

Whet is meant by saying that two figures are congruent?

Give

(a)

()
What

(a)
(b)

(c)

an example, in a drawing, of:

two triangles that are congruent under a line reflec-

tion,

two parallelograms that are congruent under a half-turn.

1s meant by saying that a figure has
Give an example of a figure that has
Give an example of a figure that has
symmetry,

Give an example of a figure that has

rosation symmetry. 189

symmetry?
line symmetry.

both line and point

line, point, and



CHAPTER 10
LENGTH, AREA, VOLUME

10.1 Introduction

Kepler (1571-1630) said: "To measure is to know," and
scientists and technicians have worked successfully by this
dictum., As & result of their experiences in measuring varicus
things, & number of questions have arisen for which they look
to mathematiclans for answers. Some of these questions are:
(1) what is the mathematical meaning of a measurement?

(2) What kind of numbers are needed for measuring?
(3) How are the operations of addition and multiplication
related to measurement?

We look: for answers to these questions in this chapter

as wWe measure segments, regions, and solids.

1.2 Measures on Sets

The first mathematicel process we learn to use is that
of counting. Counting is not only the first process we learn,
but it is one we continue using as we progress in mathematics,
developing new uses and new techniques at various stages of
our development. 1In this section we use counting as a tool
for assigning measures to finite sets and unions, intersections,
and cartesian products of such sets. Later in the chapter we

]jRjkjly these measures of sets to the measurement of line segments,

1960
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planar regions, and solids.
Two sets, X and Y, are said to be equipotent (denoted
X = Y) if there exists a one-to-one mapping of X onto Y.
If X and Y are finite sets then X =~ Y if and only if X and Y
have the same number of elements,

We define the counting measure of a finite set, X, to

be the number of elements in X. We denote this by n(X).
If X = {1, 2, 3} then n(X) = n({1, 2, 3}) = 3; n(g) = o.
1f A = {1, 2, 3} anda B = 12, 3, 5}, then n(A) = 3 and n(B) = 3
and A =~ B. In general,
n(X) = n(Y) if and only if X =~ Y.

With sets A and B as given above, consider A U B and
ANB, AUB=1{1,2, 3,5}, n(AUB)=4, anB= {2z, 3
and n(A n B) = 2, Thus n(A) + n(B) = n{A U B) + n(A N B),
or n(A U B) = n(A) + n(B) - n(A D B).

If the set ¢ = {4, 5, 6, 7}, then n(C) = 4. What is the
counting measure of A U c? AUcC = {1, 2, 3, 4, 5, 6, T}, so
n(A UC)=7and n(AUC)=n(a) + n(C). Does this result
differ from the one we obtained using sets A and B? No, because
ANC=¢g and n(@) = 0. This illustrates:

If X and Y are disjoint sets, then n(X U Y) = n(X) + n(Y).
This property is called additivity of measures, and is used
only with reference to disjoint sets.

If P < Q it follows that n(ﬁ[s n(Q). (When is n(P)
= n(Q)?)

Now let us consider the set A x B = {(1, 2), (1, 3), (1, 5),
(2,2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5)}. This set has 9

L}{ﬁ:aments, each of which is an ordered pair of elements, the

| 191
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first from A, the second from B. n(A) = 3, n(B) = 3,
n(A x B) = 3:3 =9. 1In general, if X and Y are finite sets,
then
n(X x Y) = n(X) - n(Y).

Note that in the case of cross products, we are not ccncerned
with disjointness of the original sets. We shall extend thcse
counting techniaques in Chapter 11 on Combinatorics.

In any section dealing with sets, we select one set, which

we call the universal set (for that section), and restrict the

discussion to subsets of the universal set. In this section
we might have selected U= {1, 2, 3, 4, 5, 6, 7, 8, 9} for our

universal set,

10.3 Exercises

Let X = {positive integers less than 50} be our universal
set with A, B, C, D € X where:

A=1lx €X: X is a multiple of 3}

B=1{x €X: X is a multiple of 5}

C =1x € X: X is a multiple of 6}

D= {x €X: X is a multiple of 11}

Find the number of elements in:

1. A, B, C, D.

2., A0NB, ANC,AO0D BNOC,BND, CND,
3. AUB, AUG,AUD,BUC,BUD, CUD,

4, AxB, AxC,AxD,BxC, BxD, CxD.
5. A xBXxD.

© ANBOD,AUBUD,
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10.4 TLengths of Line Segments

You know how to measure a line segment with a ruler,
Nevertheless, let us review the procedure with the hope of
finding clues that will suggest answers to the questions
of Section 10.1 as they apply to segments,

Suppose we are to measure the segment in Figure 10.1
with a ruler marked only in inches. Our first assumption is
‘that each segment on the ruler between consecutive marked
points is congruent to a unit segment whose measure, we say,
is 1, and therefore each segmeni has a length of 1 inch.

This observatior, though obvious, embodies twn principles
of measure, important enough to formulate:

The unit principle: To measure a segment we must start

with a unit segment. (To measure an ungle we must start with a

unit angle. To measure anything we must start with a unit of
that thing.) The measure of that unit is 1.

The congruence principle: Segments congruent to the

unit segment have measure 1. In genaral, congruent segments
have the same measure. So do congruent rectangles, congruent
triangles, congruent cubes; and so any congruent figures

have the same measure,

We have used the term "measure" in a precise way. It
means a number. However the number is associated with a
unit. When we say that the length of AB is 3 inches, the
"3% i{s the measure, and the "inch" is the unit. When the
unit is clearly understood we say: "The measure of B is 3",

and write m(EB) = 3, or AB = 3. 193
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Figure 10.1

Returning to the measurement of segment AB in figure
10.1, we place the zero point of the ruler on A, and see if
B is at one of the polnts marked on the ruler. If B is at 3,
we say that the measure or length of AB is 3; or AB = 3.

In passing we note that if AB = 3, then AB is made up of
three unit segments, each having measure 1. To get 3, we add
14+ 1+ 1., Thls illustrates the next measure principle.

The additive principle: The measure of a segment is the

sum of the measures of the parts into which it is subdivided.
For example, if E is between C and D, as in Figure 10.2

then CE + ED = CD.
Cc E D

Figure 10.2

Going back to our measurement of KB, suppose B does
not fall on one of the inch marks of our ruler. Does this
mean we have failed in our measurement? Nou entirely; for
suppose B falls somewhere between 3 and 4, as it actually
does in Figure 10.3. Then we know that the measure of 3B,
is somewhere between 3 and 4. We can use 3 &as a first epproxi-
mation to m{AB), and 3 < m(AB). We recognlze that 4 is an upper
bound for m(AB).

Suppose the 3" mark on our ruler falls on a point D of

EB. Then D is between A and B, with m(AD) = 3, and AD + DB = AB.
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Lnﬁ
e
=

A 1 2
Figure 10.3
To get a better approximation to m(AE), we examine the
segment DB which we have not yet measured. A part of Figure
10.3 containing DB is magnified and shown in Figure 10.4, in

which & ruler marked in tenths of an inch is used.
D

= 4

3 3¢1 3.2 3.3 v3.h 3;5
B
Figure 10.4

If B is at one of the points marked on the ruler, say at 3.3,
we take m(AB) = 3.3 If B falls between two of the marks say
between 3.3 and 3.4, as in Figure 10.4, we get a second approxi-
mation, 3.3, for m(AB), and 3.3 < m(AB). We next use a ruler
marked in hundredths of an inch, ete. This procedure is con-
tinued, and it may happen that ultimately B coincides with a
point of division of a ruler. We then get a measure for AB
such as 3.37 or 3.372., 1In this case m(AB) is a rational number.
It may however happen that B never coincides with a point of
division of a ruler, and we get a sequence c¢f approximations
to m(AB): 3, 3.3, 3.37, 3.372,..., each less than m(EB).
Since m(ZB) is bounded above (by 4), the completeness property
of the real number system assures us that this sequence has a
lecast upper bound, which is a real but not necessarily rational
number. The way the seqQuence was constructed suggests that this
least upper bound be called the measure (or length) of the line

O segment. This leads to:
ERIC®*®
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The real number principle: The measure of a segmenu is

a positive real number.

our examination of the procedure for measuring a line
segment has led us to a number of measurement principles, We
stated them as applying to segments, It is remarkable that the
same principles operate when we measure other geometric figures.
You are asked to be alert in noting that this is so when
we examine areas and volumes. To review these principles
we list their names: the unit principle, the congruence

principle, the additive principle, the real number principle.

10.5 Areas of Rectangular Regions

The next object for measure study is the union of a

rectangle with its interior, which we call a rectangular

region. Such a region is not a set of collinear points, and so
we cannot use a segment as the unit of measurement. It is

a set of coplanar points, A unit principle for measuring
regions requires a unit +*hat is a region. A convenient unit
region is a square region; that is, the union of a square

with its interior. To be definite we can use a square region
each of whose sides is 1 inch long. We cell this unit a

square inch., It is also possible to use other units such as

a square foot or a square meter,
If we put six square inches together as shown in Figure

lo.5, we form rectangular region ABCD.
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Figure 10.5

By a congruence principle for regions corresponding to the
one used for line segments, the measure of each square inch is 1.
By the corresponding additive principle for r-zions, the measure
of th2 rectangular region ABCD is 6. It is convenient to have
a brief symbol for the measure of the region bounded by rectangle
ABCD. We use KABCD' The combination of the measure with the
unit region, like 6 square inches, is called the area of the
region. The word "area" is synonymous with "measure of region".

As a second example of the way in which the additive principle
works for regions, look at Figure 10.6. Let D be a point in
the interior of AABC. The union of 8ABC with its interior is
called a triangular region ABC. We have not yet shown how to

assign measures to triangular regions.

ERIC Figure 10.6
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Nevertheless, we can be sure that by the additive principle
for regions, in this cace triangular regions, the measure of
triangular region ABC is equal to the sum of the measures of
triangular regions ABD, BDC, and CDA.

To develop the technique for finding the measure of
a rectangular region, called the area of the region, let us use

PQRS (see Figure 10.7 (a)) as our unit square.

D C

o e

(2) (1)

Figure 10.7
Since we have a unit square, it seems reeconable for each of
its sides to have unit measure of lzngth, and we assume this to
be so. |

Case 1: The sides of ABCD have whole number measures.

In this case we subdivide ABCD, as in Figure
10.7 (b), into squares each of which is congruent
to PQRS. If m(AB) = p and m(AD) = n, then we count
p + n of these squares and we see that the measure
of ABCD, denoted Kypop, 1S P - n = m(AB)m(AD).
Case 2: m(EB) and m(AD) are rational numbers, say
Q

P and-E

g T Here p, S, and q are positive integers.
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In this case we introduce a square, whose side
measures -fli’ as our new unit square. As in Case
1 there are p . s such unit squares. Since our
original unit square can be subdivided into

2

q® of these new unit squares we have by additivity

the area of each of the new unit squares to be

-%‘z. (Confirm this.) Therefore (again by additivity)
the area measure of ABCD is p . s - (?Ji'a) = % . .%
= m(AB)m(AD).

Case 3: m(AB) and m(AD) are real but at least one of

them not rational. 1In this case we define the area
measure of ABCD to be m(AB) . m(AD). That such
a definition is reasonable is illustrated in
Pigure 10.8, namely for any rational approximations
m(AB') and m(AD') with m(AB') < m(AB) and m(AD') X m(AD)
the area of ABCD is larger than the area of
AB'C'D' and as B' gets closer to B and D' closer
to D the area of AB'C!'D' which 1s equal to
m(AB') * m(ED') gets closer to the area of ABCD.

Since in all three cases the area is given by m(AB) - m(AD)

we can state, if we write m(AB) = 4, m(AD) = w that:

K = Kppop = #¥
£ is called the length of ABCD, w the width.

4 and w are called the dimensions of the rectangular region,
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D c
D1l o1
A B
Bt
Figure 10.8

You should observe that 4 and w in this formula are measures
that refer to the same segment (or linear) unit. If both are
in inches, then the area measure is in square inches. However,
if the length of one side of a rectangle is given as 4 inches,
and another as 2 feet, we convert one unit into the other,
say 2 feet into 24 inches, and then proceed by the formula
K = 2w,
Note that measures of two sides of a rectangle can also
be used to find the perimeter of a rectangle, that is, the
sum of the measures of all sides, the sum being given in the common
unit. Thus the perimeter of a rectangle, whose dimensions are
7 inches by 8 inches, is 7 + 8 + 7 + 8 or 30 inches. Here too,
we cannot find a perimeter unless all measures of sides are given
in the same unit.
In this discussion we have an answer to question (3) of
Section 10.1: How are the operations of addition and multiplication
of numbers related to measurement?

o  In the exercises that follow, and thereafter, we will

to denote the measure {?‘the region bounded by & ABC;

0
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and if P, Q, R and S are the successive vertices of a quadrilaa

teral, K will denote the measure of the region bounded by

PQRS
quadrilateral PQRS.

10.6 Exercises
1. XLet h be the inch-measure of one side of a rectangle and
b the inch-measure of an adjacent side. For each pair of

values listed below find the area of the related rectangular

region:

() h=3,b=7 (b) h=17, b=23 () h=35 b=6

(d) h = 4.1, b= 3.2 (e) h=42, b=+3 (f) h=2/5 b= 3/5
(g) h=6, b= 1% (h) h = 1%, b = 2% (1) h = 2-4/3, B = 242

2. Prove that the area of a square region, each of whose sides

. «®
has length s is given by the formula quuare = 8",

3. The rectangular region ADEH is subdivided into 9 congruent

rectangular regions. Let m(AD) = 15, and m(AH) = 6. Find the

area of each of the following rectangular regions:

H G r E
K L |
M
. .
A B c D
(a) ADEH (b) ACMN (c) ABGH (d) BCLK

(e) The rectangular region with diagonal AL.
L, Using the figure in Exercise 3, tell why each of the

following is true: ;
201
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() Eppey = Xacwo (®) Fperk * Xxwre = Kpore
2
(¢) Xpork = g%apem () Kuppy - Yeper = Kacrn

5. In the figure, the regicns Ry and Rs are bounded by squares,

and Rs and Ra are bounded by rectangles. Let a be the measure

of each side of Ry, and b the measure of each side of Rs.

b Ro Ry,
a Ry Ry
a b

In terms of a and b, express:

(a) the area of R, (b) the area of R»

(c) the area of Rs (d) the area of Ra

{e) The entire figure which is subdivided into Ri, Ra, Rs
and Re, 1s itself a square region. Show that the area
of the entire square region is equal to the sum of
the areas of the subdivisions.

6. Let d represent the inch-measure of a diagonal of & rectan-
gle and s the inch-measure of one side of that rectangle.
Find the area of the corresponding rectangular region for

the values of d and s given below,

(a) d=5,s=4 (b) @ =vl41, s =5 (e) da =13, s =
(d) d =10, =6 (e) d=+11, s =45 (f) d=25, s =
. - —.]_'.."
T. ABCD is a rectangle. Prove: KACD KcAB,and KACD = QLABCD'

1 ————
]ERi(j(Hint: Use a halfturn about midpoint of AC to prove triangle
ACD congruent to triangle CAB.) 202
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N

~

D G

PQRS is a paralilelogram, Prove: K and K

PRS = KRpQ’ PQRS

= QKPQ,R .

S R
In the figure of Exercise 8, let SQ intersect PR in T,
2TQ with KRTS'
Discuss the validity of the statement: If two rectangular

Compare K

regions have the came area they are congruent.
Show: (a) The area of a square foot is 144 square inches,
(b) The area of a square yard is 9 square feet.
(¢) The area of a square centimeter is 100 square
millimeters,
Compare the areas of two rectangular regions if each of
the dimensions of one is twice a dimension of the other.
Let 41 and w; be the dimensions of a rectangular region,
end %2 and w, the dimensions of a second rectangular region.
Find the ratio of the area of the first region to that of
the second region if:
3wy

(a) 42 = 4, and w2 = 2w (b) 42 = 243 and wa

i
]

]

"]q'zl and we = 4wy

-

(c) #; = +4 and wa = 2w (d) 4a
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14, Find the area of a square region whose diagonal is:
(a) 12 inches long (b) 842 feet iong
(c) 642 miles long
3

15. Prove the area of a square region is-g— if d represents

the measure of a diagonal.

10.7 Volumes of Rectangular Solids

You know the shape of a box. It has 6 faces or regions
each of which is rectangular. The union of such a figure with

its interior is called a rectangular solid. It is a set of

points, not all in one plane. Some of its subsets are in a
plane and these have areas. But the entire set can be measured.

Such a measurement is called a volume,

The unit principle demands that the unit of volume be a solid.
We take a cubic solid for convenience, 1In Figure 10.9 you see a

cubic sol'd, Each of its six faces is a square region. The

solid itself consists of all points in the faces and all points

H G

!

|

o] Jo
/

Figure 10.9
in the interior, If each of its edges measures 1 inch, it is

Q@ lled a cubic inchy and the measure of its volume is 1.

204
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No doubt you have observed that the units we have dealt
with are an inch (a segment), a square inch (a region) and
now a cubic inch (a solid).

In Figure 10.10 we put together 6 cubic inches.

H G
| 1
B | ; |
| ' |
6
I T TN
/ | /| 7|
| i l
D)A.__)_?-_._3____c
/ / /
A

Figure 10.10

The result is a rectangular solid. The six cubiec inches
are congruent to each other, so the measure of each is 1. The
ractangular solid is subdivided into the six cubes. By the
additive principle its volume is 6 cubic inches.

In this rectangular solid the region ABCD can be taken
as the base of the rectangular solid. The length and width of
this rcgion is also the length and width of the rectangular
solid. For the base ABCD, the height of the solid is BF. Note,
in this case, if £ is the measure of AB, w the measure of EC,
and h the measure of BF, then the measure of the solid is
L+weh, that is 3-1:2 = 6.

Can we use this method for finding the volume of any

rectangular so0lid? The answer is yes. In a method analogous
O

o 1 18
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to that used in Section 10.5 for finding the area of a rectangular
region, we work with the measures of three edges of a rectangular
solid that meet in a point (vertex), say AB, BC, and BF in

Figure 10.11, ané arrive at an entirely analogous result;

H
.G
I
D
e c
A B

Figure 10.11
namely, if m(&AE) = 4, m(BC) = w, m(BF) = h, and if V denotes the
volume of the rectangular solid, then:
V = m(AB) *+ m(BC) . m(BF) = 4wh
The measures of three edges of a rectangular solid that meet in

a vertex are called the‘dimensions of the colid.

10.8 Exercises
1. Find the volume of a rectangle solid if its dimensions,
in feet, are given below:
(&) £ =3, w=4, h=2 (b) £
(c) 4 =+2, w=4¥3, h=2 (d) 4

2. The dimensions of a box are 2!, L%', 1', The dimensions of a second

%,W:“—,h:S
3.1, w=2.3, h =4

box ave 13', 13', 1'. Which has the greater volume? How much larger?
3. I want to have a measure that tells me how much water a
tank can hold. Is the measure length, area, or volume?

4., Assume the Question asked in Exercise 3 if I want to know

[]{ﬁ:‘how much: '
| 206
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(a) fencirg I need to enclose a vard,

(b) seed I need to plant a lawn.

{c) air there is in a room.

Prove: The volume of a cube each ¢of whose edges 1s e units

long, is €®

cubic units.

(a) Prove there are 1728 cubic inches in one cubic foot.

{b) How many cubic feet are there in one cubic yard?

(¢) How many cubic decimeters are there in onz cubic meter?

(d) Show that the number of cuhic yards in a cubic mile
is about 5.10°,

The coordinates in a rectangular space coordinate system,

listed below in each part are those of vertices of a

rectangular solid. Find the volume of each.

(a) (0,0,0}, (3,0,0), (3,2,0) , (0,2,0), (0,0,5), (3,0,5),
(3,2,5), (0,2,5)

(v) (-2,1,-3), (2,1,-3), (2,4,-3), (-2,4,-3), (-2,1,2),
(2,1,2), (2,4,2), (-2,4,2)

10,9 Areas of Triangular Regions

Using the formula for finding the area of a rectangular

region, we can derive formulas for areas of triangular regions.

Formula 1: If a and b are the measures of the legs of a

right triangle, aad K the measure of the related

.
triangular region, then K = ;ab.

Derivation: Let the triangle have vertices A,B,C,

with the right angle at C (See Figure 10.12).
Let AC = b, CB = au “\ te
<07



Figure 10,12

If D is the image of C under a half turn in the midpoint M
of AB, we can show (using the sum of the degree measures of the
angles of a triangle is 180), that ACBD is a rectangle and that
OACB = ABDA., This implies:

KACB = KBDA (by the congruence principle)
Bul Kyog + Kppy = Kpcpp (by the additive principle)

Kygop = @0 (since ACBD is a rectangle)

Therefore: KACB ='%ab
To be able tn state Formula 2 we define altitude of a triangle.
In each triangle of Figure 10.13, the perpendicular from
A to BC meets BC in D, Note in Figure 10.13 (a) that D is in
the interior of BT, in Figure 10.13 (b) D = C, and in Figure
10.13 (c) D is not in BU. For each figure AD is the altitude of
AABC from A to BC. The word altitude is also used to mean the

measure of AD.

A D=¢C B A
|
B r; C A D —1 c B
(a) (o) (c)

208
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Definition 1. If A is a point and £ a line, the point in
which the perpendicular from A to £ intersects
L is called the foct of the perpendicular
from A to £,

In each of the triangles in Figure 10.13, D is the foot

of the perpandicular from A to BC.

Definition 2. The segment that joins a vertex of a triangle
to the foot of the perpendicular from that
vertex to the line containing the opposite
side, is called the altitude of the triansgle
from that vertex.

How many altitudes does a ftriangle have?

Formula 2; If a 1s the measure of an altitude of a triangle
from one vertex, b the measure of the side opposite
that vertex, and K the measure of the triangular
region, then

K = %ab.

Derivation:We have to consider three cases: an acute
triangle (each of its angles has measure less than
90), a right triangle (one of its angles has
measure 90), and an obtuse triangle (one of its
angles has measure greater than 90). In all three
cases we consider 8ABC with altitude AD from A.

Case 1. AABC is an acute triangle., In this case we assume,

from Figure 10.13 (a), that D is between B and C.
We use the preceding theorem to calculate the areas

For each AD = &; and by the additive

209
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principle of areas, their sum is KABC' Thus

— l ) — l [ ]
Therefore
1 1
KABC = Ea BD + Ea + DC

= %a(BD + DC).
Since D is between B and C, BD + DC = BC or b, and

1
KABC = -é-ab

. AABC is a right triangle., D must coincide with C

since £C is a right angle., (See Figure 10.13 (b).)
This shows Formula 1 is a special case of Formula 2.
AABC is an obtuse triangle with obtuse angle at

C. In this case we assume, from Figure 10.13 (c) that

C is between D and B, so that DC + CB = DB.

1 1.
KADB = Ea - DB, KADC = Ea DC,
and
KapB = Kapc * Xacn
or
KaeB = Kapp ~ Xanc

X 1
-é-a'DB--éa'DC

1
Since (in Figure 10.13 (c)) C is between D and
B, DB - DC = CB or b. Therefore,
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10.10 Exercises

1. For each of the following figures use the indicated infor-

mation to find KABC'

A A A
gn / gn gn
A
¢ 12t S — T p— B ° 12n »B
(a) (v) (¢)
c c
bt ' Sem
A ot B A 13cm. B
(a) (£)

2. In finding KABC one can use BC as base or AC as base, Draw
a large triangle with two altitudes ED and BE, and measure BC,

AC, ED, and BE (preferably in millimeters or tenths of an

inch),

o Using these measures, calculate KABC in two ways and compare

Lo,

o1l

the results,
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Find the area of a right triangular region if its hypotenuse
is 26 inches long and one of its legs is 10 inches long.

The length of the hypotenuse of a right triangle is h and
the length of one of its 1legs is 4. Prove the area of the
triangular region is %EJHE_?_TF.

The legs of a right triangle are 6 and 8 inches long. How
long is the altitude to the hypotenuse?

A field has the shape of ABCD, as shown. If AC is 40 yards
long, BE an altitude of AABC, is 20 yards long and DF, an

altitude of AABC, is 30 yards iong, what is Knpop?

B

i
=g — —

S
Q

The measure of each leg of an isosceles triangle is 10

and that of the base is 8. Find the area of the triangular
region.

Each side of an equilateral triangle measures 12. Show

(a) the length of any of its altitudes is 6.3, and

(b) the area of the triangular reglon is 364/3.

The measure of each side of an equllateral triangle 1s s.

Prove the area of the triangular region is (S)EJE or

2. 712



-208-

10.11 Areas of Parallelogram and Trapezoidal Regions

Now that we have a formula for the area of a triangular
region, we can use it to find the area of any region that can
be subdivided into triangular regions. Simple examples of such
regions are those bounded by parallelograms and trapezoids, A
trapezoid is a quadrilateral ABCD for which one of AB I DC,
AD || BC holds. If both hold, the quadrilateral is a parallelogram.
In trapezoid (or parallelogram) ABCD let<K§>H<ﬁUE P €<K§?
Q €<35? Ea.lﬁiﬁf and 5511555% then P§ is called an altitude of the
trapezoid (or parallelogram). In Figure 10.1l (a) we show a paral-
lelogram with three altitudes, and in Figure 10.14 (b) we show a
trapezoid, also with three altitudes, The altitudes are all shown

as dotted lines,

O

Q
P

|

I / |
I

h

P

o — . . Do

(a) (v)

:‘Figure 10.14
Observe that the altitﬁdes of a parallelogram or & trapezoid are
congruent, since any two altitudes are opposite sides of & rectangle.
Definition 3. The sides of a parallelogram or & trapezoid
that contain the endpoints of an altitude are

called bases for that altitude. (In the case of

a parallelogram, there are two pairs of bases,
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and the bases in each pair are congruent.)
Formula 1l: If the measure of a base of a parallelogram is
b, the measure of an altitude to that base is a,
and the area of the parallelogram region is K,
then:
K = ab
Derivation: Let ABCD be the parallelogram, with AB taken
as base, and DE as altitude to AB. (We assume from
Figure 10.15 that DB divides ABCD into two triangles
to which we may apply the additive principle
for areas.) Then DE = a and AB = b, Since AABC

* OCDB, by the congruence principle for areas,

Flgure 10.15
KABD = KbDB' Also by the additive principle for

—— — l . —
areas, Kppop = Kppp + Kgppe  However, Kypp = 58b = Kupp.

=1 1y =
Therefore KABCD —-Eab + §ab = ab,
Formula 2: If the measures of the bases of a trapezold are
b and ¢, the measure of its altitude is a, and the

megsure of its region is K, then

=2 &y
K= Ea.(b +'e). 214
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Derivation: Let the trapezold be ABCD, with bases AB
and CD. (We make the same assumption here
from Figure 10.16, that we made in the proof
of Formula 1,) Then AB =D, CD = ¢, and each
altitude drawn, DE and BF (see Flgure 10.16),

has measure a.

D+ c > C

Pigure 10.16

¥apep = Xapp + Xppe

1 1
Kapp = 52P» ¥ppe = 32°€
Therefore:
1 1
KABCD = Eab +-§ac
1
= 2&(b + c)

10.12 Exerclses
1. For each of the parallelograms, assume that all indicated
segment measures have the same unit, and find the area of the

region bounded by each.
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v

10 10 3 e 7
(2) (v) (c)
2. For each trapezoid below, assume all indicated segr~=nt measures

have the same unit and find the area of the trapezoidal

region,

(8.) x}

12

(b)

3. 1In a certain plane rectangular coordinate system, the vertices
of a quadrilateral have coordinates as 1isted below., Find the
area of the region bounded by each such quadrilateral,

(a) (0,0), (8,0), (7,5), (2,5)
(v) (0,0), (8,0),(10,6), (2,6)

216




4,

5.

-212-

(e) (-3,0), (0,-3), (3,0), (0,3)
(d) (-3,-2), (5,-2), (6,3), (0,3)
(e) (0,0), (5,0), (5,8), (0,4)

(£f) (-3,-1), (5,-3), (5,4), (-3,3)

For each figure beiow a plece of metal is to be made having

inch measures as indicated., If this metal costs 15 cents per

square inch, what is the cost of each?

(a) (b) 10
8 1 10
-
- 10 - i —
(c) (d) -
6 ¢ 15 20
(e) (f)
102
20 20
12 a square

Find the ratio of the areas of two regions, each bounded by
a square, 1f the length of the side of the first square is n
times the length of a side of the second, and n 1s equal to:

(a) 2 (v) 3 () % (a) &
o 91v
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6. Find the ratio of the areas of two regions, each bounied by
an equilateral triangle, if the length of a side of the
first is n times the length of a side of the second, and
n is equal to:

(a) 2 (b) 3 (c) (d) k

wmir

10.13 Areas of other Regions

Having seen how to measure some simple regions, we get
some notions about area which apply to more general figures.

First of all we see that area is a function that maps
regions into the set of positive real numbers. It is determined
as soon as a unit region is selected. The domain has been
vaguely defined, but it certainly includes rectangular regions and
such other regions that can be subdivided into triangular regions.
Moreover, if figurg A is congruent to figure B, and they have areas,
then they have the same area. Also, if a figure can be subdivided
into a finite number of regions, each having an area, then the area
of that figure is the sum of the areas of the subdivisions.

Now we go on to see how thgse notions can be used to
determine the area of a plane figure that cannot be subdivided
into triangular regions, say a map of Africa. Our first step
is to choose a unit region, preferably a square region. We have
chosen a square each of whose sides is % inch long, and shall
call it & sQuare unit. Our next step is to overlay the map of
Africa with a grid whose squares are the square units we have

chosen. See Figure 10.17. Observe that every square unit region

O
]}Ri(ﬁ be classified as belonging to one of three sets: First,

18
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there are square units al! of whose points are points of the map.

Let us call these inner square units. Second, there are square

|

Figure 10,17

units that have some points in common with the map, but not all.
Let us call these border square units., Finally, there are square
units that have no points in common with the map. We disregard
these.

The unit squares are congruent to each other. Hence the area
of each is 1, Now consider the union of the inner square units.,
It consists of 4 such regions and hence its area is 4, We call this
an approximation of the area of the map. Now consider the union
of all inner and border square units. There =re 19 of these.

The area of this union is therefore 19. This is an upper bound

of the area of the map. In finding the approximation and the upper
bound we used the additive property of areas. Let M be the area of

the map. We can then say

219



-215~

L <M« 19,
To get a closer approximation than 4 we use a smaller square region.,
We can bisect the sides of the square units by lines midway between

the parallel lines in the grid. We get a new grid where square

regions have areas of-% square unit. See Figure 10.18.
A count of the inner squares shows them to number 23. Hence,
the approximation by the grid is 23'% square units, or 55 square

units,

I
+

/
—-1-

Figure 10.18

We continue with a grid of still smaller square regions, each of

i
16 1
By actual count we find the approximation to be 121 18

which has an area of square unit, See Figure 10.19.

square units or 7i% square units.

220
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| !
- U S

-

Figure 10,19
If we continue improving our aepproximations by using a finer
grid, we get a sequence of rational numbers which has an upper bound.
Therefore this sequence has a least upper bound, and this least upper

bound we define to be M, the area of the map of Africa.

10,14 Circumference of a Circle and 7

You may recall that a circle C is a set of points in a plane
(see Figure 10.20) such that the distance OP, from any point P
of the set to a fixed point 0, is the same for all choices of P.
The point 0, though not a point of C, is called the center
of C. OF is called a radius of C, and all radii (plural of

radius) of a circle have the same length, and hence are congruent.

221
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Figure 10.20
The term "radius" is also used to denote the length of segment
OP. The context will make clear whether "radius" means a segment
or a measure, It is clear that if we place 2 string along a
circle, and cut the string when it makes one turn of the circle,
we can find the length of the section of string that was cut off,
It would certainly seem reasonable to take this length as the
length of the circle. The length of a circle is called its

circumference,

In this section we will outline a method for finding the cir-
cumference of a circle. Since a circle is not a set of collinear
points, nor is it a union of segments, we cannot measure a circle
a8 we measure segments. But, as you might anticipate, we can use
the method of approximations, which have an upper bound.

In Figure 10.21 we have drawn square ABJD so that its vertices are
points of circle C with center 0, and radius r and a second square,
EFGH whose sides touch the circle at A, B, J and D, Let C
[]{ﬁ:present the circumference of C. The perimeter of ABJD is

R 999
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E A F

D B
c

H J G

Figure 10.21
an approximation of C and the perimeter of EFGH is taken as upper
bound of C. We can see that 8A0B is a right triangle. By the
Pythagorean property (AB)® = r® + r®, or AB = rvb. We can also
see that EF = 2r. So the perimeter of EFGH is 8r. Thus
hrds < C < 8 or 5.65r < C < 8r

To improve our approximation of C, we take additional points

on the circle (see Figure 10.22) and form a new polygon by drawing

line segments Jjoining consecutive points.

ez
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P, @, and R are such points in Figure 10.22. Since P, B, and J
are the vertices of a triangle we know that BP + PJ > BJ. Thus
each time we choose another point on the circle and use it to form
a new polygon, the new polygon has a greater perimeter than did the
old one., This process of choosing additional points is restricted
in only one way. The sides of the polygon must all become arbitra-
rily small as the process goes on. This process gives us an
increasing sequence of numbers, bounded above by 8r, the perimeter
of the circumscribed square., Therefore, there is a least upper
bound for the sequence and this least upper bound we cdefine to be

the circumference of the circle.

No matter how the points are chosen, except for the restriction
above, it turns out that the least upper bound of the resulting
sequence of numbers will be the same, a constant multiple of the
radius of the circle. It is convenient to represent halt of this
number by the symbol 7 (Greek letter pi) and we conclude

C = 27r.

We saw above:

Ur2 < C =2rr ¢ 8r

Dividing the inequalities by 2r yields:
| 202 < T < H

Since 1.4 < 2 (why?), it follows that:
2.8 <1 <4

It is known that 7 is not a rational number. A better approxi-
mation to 7 than the above is 3% or 3.14, A still better approxima-
tion is 3.1416. The formula relating m to C and r is C = 27r.

294




-220~

To illustrate: The circumference of a circle with radius
51is C =271 + 5 = 10mr. This is the exact
circumference, An approximation to C is

(10)(3.14) or 31.4,

10.15 Exercises

1.

For each radius below find, in terms of w, the circumference
of the circle of which it is the radius.

(a) 10 (b) 8 (c) 1 () 3 (e) 3
Using 3.14 as an approximation for m, find to the nearest
unit, the circunierence of a circle whose radius is:

(2) 6 inches (b) 12 yards (e¢) 100 miles (d) 3 cm.

Using 3% as an approximation for m find the circuuference of

a circl; whose radius is:

(2) 7 inches (b) 3% feet (c¢) 1400 miles (d) 28 miles
You probably know that the sezment that joins two points of

a circle, and contains the center of the circle, is called

a diameter of the circle, The term diameter is used also to
denote the length of this segment. If d is the diameter and

r is the radius of a circle, what is the ratio of d : r?

.. Find the circumference of a circle whose diameter is:

(2) 12 inches (b) 50 feet (c) ‘% yard . (d) .1 foot
Only that part of a circle is shown below that lies

on one side of<F§? a line that contains diameter AB, That
part, including the end points A and B, is called a semicircle,

and it too has a length.

225
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0

Find the length of a semicircle on a diameter whose length is:
(&) 20 inches (b) 50 feet (¢) 4

7. A square is drawn inside a circle with its wvertices on the circle.
If the radius of the circle is 10 inches, by how many inches,
to the nearest inch, does the circumference exceed the perimeter
of the square? (Assume & diagonal of the square is a diameter
of the circle.)

8. ABCD is a rectangle with its vertices on a circle. Assume
that a diagonal of this rectangle is also a diameter of the
circle. Find the circumference of the circle if AD = 3 and

DC = 5.

9. Find the radius of a circle if its circumference is:
(a) 2ur (b) 33r (c) 2b (d) ork

10. Find the radius of a circle if a semicircle of the circle
has length:
(a) 18r (v) lr (c) 18 (a) ermk
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10.16 Areas of Circular Regions

The union of a circle with its interior is a circular

region. A model of a circle is a ring; a model of a circular

region is a coin or a phonograph record.

Once again we outiine the method of approximations and
upper bounds, this time to derive a formula for the area of a circular
region.

For our first approximation we use the two square regions in

Figure 10.21. Since AB = /2, X = (r+2)? or 2r®. Since EF

ABCD
= 2r, Kppay = (2r)®, or 4r®. Hence if we let K, denote the ares
of the circular region:

or® ¢ Ko < 4r®
Here 2r® is a first approximation to K and 4r® an upper bound for
K@‘

We improve our approximation in the same way as before,
except that we use regular polygons. Since the computations are
difficult and not important at this time, we state the results.

If a regular octagon is inscribed in the circle, it encloses a
region with area about 2.828r®, which is our second approximation
to Ka. If a regular polygon with 180 sides is used we get the
approximation 3.141r® for the area enclosed by the circle,

It seems that Ko, is related to wv. Indeed it has been proved
that

Ko, = 71°
To illustrate the use of this formula, we find the area of

a circular region with radius 8. It is 7 + 8% or 6l4wr. To the nearest

.1 this is 201.1 (using 3.1416 as an approximation for .)

0
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10,17 Exercises

1.

For each radius listed below find, in terms of 7, the area

of a circular region of which it is the radius.

(8) 10 (D) 8 () 1 (d) £ (o) 3

Using 3.14 as an approximation for 7, find the area of a
circular region whose radius is:

(a) 6 inches (b) 8 yards (c) 10 miles (d) 5 em.
Using 3% as an approximation of 7 find the ares of the
circular region whose radius is:

(2) 7 inches (v) 3% feet (c) 140 yards (d) 7 miles
Find the area of & circular region whose diameter is:

() 2 (b) 1z (¢) 5 () 12

FPind the radius of a circular region whose area is:

(2) 257 (b) 6Ur (c) 49 (a) =20

Find the circumference of a circle whose region has area:

(2) 257 (b) Ur (c) (a) 3r

Find the area of a circular region if the circumference of
its circle is:

(2) 167 (v) 26r (c¢) 8r (d) 8

The region bounded by a diameter and a semicirecle on one

side of the diameter is a semicircular region. Find the area
of a semicircular region to the nearest unit if its diameter is:
(a) 10 (p) 8 (e) 100 (d) 6

The ratio of the radii of two circles is 2 : 1.

(2) Find the ratio cof their circumferences.

(b) Find the ratio of the areas of their regions.

29K
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10, Find the two ratios called for in Exercise 9 if the ratio
of the radii is:
(a) 3:1 (b) 3: 2 (e¢) 4 : 3 (a) 5: 1

11, Points A, B, C, D are on a circle with center 0 and radius

10; and ABCD is a square,

(a) PFind Ky pop*

(p) Pind the area of the circular region.

(¢) Find the area of the region bounded by AD and that part
of the circle that is on the opposite side of<K5>from
B.

(4) Find the area of the region bounded by AD and that part

of the circle that is on the same side of<AD as B.

10.18 Summary

1. We have discussed four basic measurement principles.
(2) The unit principle: The unit of measurement should be
of the same kind as the object being measured. The measure
of the unit is 1,

o (v) The congruence principle: If two figures are congruent

and have measures, they have the same measure,
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(¢) The additive principle: If a figure is subdivided and
the subdivisions have measures, then the measure of the
figure is the sum of thie measures of the subdivisions.

(d) The real number principle: The measure of a figure is a
non-negative real number.

2., The basic method for measurement is the approximation and least
upper bound method. If the approximations have a ieast upper
bound, then that least upper bound is the measure of the
figure,

3. Formulas for regions.

Rettangular: K = 4w (4 and w are the dimensions of
the rectangular region.)
Triangular: K = %ab (a is the measure of the altitude
to the base with measure b.)
Parallelogram: K = ab (a is the measure of t.e altitude
to the base with measure b.)
Trapezoidal: K --%a(b + c¢) (a is the measure of an
altitudey b and c the
measures of the bases,)
Circular: K = 7r°
L4, Formula for circumference of a circle:
C =27r

5. Formula for volume of a rectangular solid:

V = 4iwh (£, w, h are the dimensions of

the rectangular solid.)
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10.19 Review Exercises

1.

State the additive principle as it applies to:

(a) segments (b) regions (¢) volumes

Find the area of the region bounded by an isosceles right
triangle whose hypotenuse is 8 inches long.

"ind the circumference of a circle, and the area of the
circular region if the radius of the circle is:

(2) 8 (b) 5 (c) 12

Find the circumference of a circle if the area of its region
is 1007,

Fina the perimeter of a square, and the area of its region,
if the measure of one of its diagonals is 12,

Show that a2 median of a triangle subdivides it into two
triangles whose regions have the same area.

In A ABC, median AD meets median BE in . Find Kape ° Kapc®
The vertices of quadrilaterals have coordinates in a plane
rectangular coordinate system as listed below, in the order
given, Find the area of the region bounded by the

»
quadrilateral.

() (0,0), (3,0), (3,7), (0,2)

(b) (-2,-2), (4,-2), (5,3), (-1,3)

(e) (-2,0), (1,-3), (3,0), (1,3)

(d) (-3,0), (-1,-4), (&,0), (3,5)

Find the volume of a rectangular solia whose almensions are

3" , 6" , 2" .
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10. Find the volume of a rectangular solid whose vertices have
the coordinates listed below, in some rectangular space
coordinate system.

(3,-1,-2), (3,4,-2), (0,4,-2), (0,-1,-2)
(3,-1,4), (3,4,4), (0,4,4), (0,-1,4)

232



Chapter 11

Combinatorics

11.1 Introduction

The study of combinatorics had its origin in problems
involving counting. Problems such as finding the number of
one-to-one mappings of a set onto itself, and finding, for a
given set, the number of subsets that have some specified
number of members are examples,

The above mentioned types of problems come from a class

of mathematical ideas known generally as combinatorial counting,

Although combinatorics today encompasses a much wider range of
ideas and overlaps such studies as group theory, graph theory
and topology as well as others, we will restrict our interest
in this chapter to combinatorial counting, Sometimes com-
binatorial counting is referred to as sophisticated counting,
This means that instead of counting each member of a set indi-
vidually, when counting its members, it is sometimes possibie

to find this number more efficiently.

11,2 Counting Principle and Permutations

Example 1, Suppose that A, B and C are three cities, and
you wish to travel from City A to City C by
passing through City B. There are exactly
three roads from A to B == the red road, the
blue road, and the yellow road. There are

exactly two roads from City B to City C --

019
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the green road and the orange road. How
many ways are there to make the trip from

A to ¢? (See Figure 11.1.)

Red Green
Yellow Orange

Figure 11.1

One way 1s to take the red road from A to B, and then the
green road from B to C; we shall call this route the red-green

route. All the possible routes are shown in Table 11l.1.

Roads from A to B oad rom B to Routes from A to C

red green red-green
blue orange red-orange
yellow blue-green

blue-orange

yellow-orange

yellow-green

The total number of routes is 6, Notice that 6 =3 + 2,
where 3 1s the number of ways to make the first part of the

trip, and 2 is the number of ways to make the second part of

the trip.

O
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Example 2, Let S be the set {a,b,c,d} consisting o four
different letters of the alphabet. How many
two-letter "words" can you make using the
letters in this set? Before answering the
question, we must agree to certain rules, One
rule is that the "word" does not necessarily
have any meaning; another rule is that a letter
may not be used more than once in the same
"word," Thus, while we accept "bd" as a "word"
we do not accept "dd;"

All possible "words" follow:

ab, ac, ad, ba, be, bd, ca, cb, c¢d, da, db, dc, There is a
total of 12 words, As in Example 1, there are two choices to

be made in forming a word., First, choose the first letter of
the word, There are 4 choices, since you may use any one of the
four letters in the set. Next, choose the second letter of the
word. How many choices are there in this case? Not 4, since
the second letter cannot be the same as the first, Therefore,
there are Jjust 3 choices for the second letter, once the first
letter has been selected, Do you see from Table 11,2 that we
have the same sort of situation as we had in the earlier example

about the roads?

Number of Choices Number of Choices Total Number
for First Letters for Second Leftter of Words
4 3 12 =43
Table 11l.2
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Specifically, in this case we have 12 = 4 * 3 words. The

"tree" diagram, Figure 11.2 is another way to make this clear.

\-ﬁ-““‘-bd The total number

of words is 12,

There are U ways to For each of these, there are

make the first choice. 3 ways to make the second choice.

Figure 11.2

The two examples just discussed illustrate a principle called

the counting principle. It may be stated as follows:

CP If an activity cen be accomplished in r ways, and after

it is accomplished, a second activity can be accomplished,

in s ways, then the two activities can be accomplished,

one after the other, in r.s ways.

Example 3.

Suppose in Example 2 we 1ift the restriction
that no letter can be selected twice, If we
do so we would have four ways to select the
first letter, and then the second letter

DR
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could be seiected in four different ways.
Therefore we would have 4.4 = 16 distinct
possible words, This result is illustrated
in the tree diagram of Figure 11.3 and suggests

we state a more general counting principle.

aa

a ab
ac

ad

ba

b bb
-§§;;;;;;;;;;;;;;bc
bd

ca
c/Cb
\CC
cd

a éb
<dc
ad

Figure 11.3

CP Let Ay and A; be sets with r, and r, elements respec-
tively, where ry, rp € z+, Then Ay X Ay = {(a1, ag):

a) €A, and ap€As} contains r,.rp; elements,

Example 4, Given the set of letters {a,e,i,o,u}, how many two
letter "words" can be formed, using the same rules
as in (a) Example 2? The first letter may be
chosen in 5 ways (r, = 5). The second letter may
then be chosen in 4 ways (r; = U4). The total

number of words is 5.4 = ry.rg= 20 (b) Example 3?

Q- Here ry = rs = 5 and thus the total is 25 = 5+5,

PRY
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One might well wonder if the counting principle CP and its
generalization CP' can be extended to more than two sets A;
and A;. For instance suppose, in Example 4 (a) we wanted
to form 3 letter words. Is the number of such words 5:4.3 =
ry+Yz.ra = 60? Would the number in Example 4(Db) 03 5.5.5 =
ry:ra.ra = 125? The answer is yes, to both questions, Per-
haps you might confirm this with a tree diagram. Suppose in
Example 4 (b) we ask how many words 15 letters long can you
form? 1Is the answer 5.5. ... -5 = 515 =Ty Ty 0 18,

The answer again 1s yes. You could of course prove it by draw-
ing a tree diagram and counting the 30,517,578,125 possible
words. However to prevent you from tiring we state as Theorem
1 our general counting principle for a finite number of non-
empty sets, each with a finite number of elements., The proof
would require the principle of mathematical induction, which
is not yet available to us. To facilitate the writing of the

theorem and subseqQuent statements we adopt the following

notation., If a set S contains s elements we will write n(8)

= 5. Theorem 1. CP Let Ay, ---, Ay Dbe non-empty sets and
let n(Ay) - ry for 1 = 1,2, ---, k,
where each ry € Z+. Let Ay X Ay X ---
Ay = t{ay, 83, ... , ak): a4 €Ay 1=
1, 2, «.., k} Then n(A X Az ... X &)
=T " Tpco--- t T
Exemple 5. A direct msil firm plans to send out one
million letters, each containing the same four

pleces of literature, one piece each from the

four compenies this firm represents. Company
A, hss made avesileble six different pieces of
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literature, Company A« three pleces, Company A,
two pleces and Company A, eight pieces. How
many different msilings are possible? We heve
6, n(Ay) =13 =3,

n(Az) =ra =2, n(Ay) = r, = 8. Therefore
n(Ay X Ap X As X A) =Ty -Tg Ta-7y = 6.3.2.8
288,

]

n(Ay) = n

Exemple 6. 1In a certain school, the student council decides
to give each student 2n ID number consisting of
a letter of the alphabet followed by two digits.
Will there be enough ID numbers so that esch
student in the school msy have one?
Let Ay = {all letters in the 2lphasbet}, A = Ay =
{811 digits}. Therefore n(A,) = 26, n(A;)

]
=
P
fe=3
[
p -

= 10. Therefore the number of ID numbers is
n(A, x A, x As) = 26.10.10 = 2600,
So, unless the school has more than 2600 students, there will
be enough ID numbers to go sround.

In Chepter 2, Section 2.3 we defined & permutation of 2 set

S 8s 8 one-to-one mepping of the set onto itself; snd sew thst if
the set contsins n elements, then there szre n! = n(n - 1) «+ --—- 21
such permutstions, In Exesmple 7, we shall see that the counting
principle may be used to get the same result.
Exsmple 7. How many permutations sre there »f the set

S = {a,b,C}?

\
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Figure 11.4

As illustrated in Figure 11.4 we may choose sany
one of the 3 arrows starting et a; thst is, there
are 3 choices. Next, we move to b. We do not
heve 3 choices, since we cannot choose the arrow
that goes to the ssme image we chose before, if
we want 8 one-to-one mapping. So, the number of
choices here is 2. Next, we move to c. Two of
the images have now been used. So here we have
only 1 choice.

To summsrize: At s we have 3 choices; at b we
have 2 choices; st ¢ we have 1 choice. The totel
number of one-to-one mappings is 3:2.1 = 6 = 3!
In the language of our theorem, n(A, ) = 3,

n(As) = 2, n(As) = 1, and therefore

n(A; x Ay x8) =3+2"'1=3!

Given the sets in Figure 11.5 how many ways are
there to make & one-to-one mapping from set 8

to set B?

e
Figure 11.5 (-' S
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We may choose any one of the 5 arrows start-
ing at 1; there are 5 choices. Then we may
choose any one of 4 arrows, starting at 2; we
cannot choose the arrow which goes to the

same image as our first arrow. Therefore, the
total number of one-to-one mappings from A to
B is 5.4 = 20,

We often use the word permutation also to describe a sit-

uation such as that in example 8., Specifically, we would say

that the number Ef.permutations of 5 elements taken 2 at a time
is 20, In Example 8, the 5 elements are a, b, ¢, d, and e, And
the 20 permutations of these elements taken 2 at a time are listed
in Table 11.3.

ab ac ad ae

ba be bd be

ca cb cd ce

da db de de

ea eb ec ed
Table 11,3

Each of these, of course, corresponds to one of the 20 mappings
mentioned in Example 8, For instance, "ab" refers to the mapp-

ing in Figure 11.6 (a).

(a)
Figure 11.6
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Figure 11.6

On the other hand "ba" refers toc the mapping in Figure 11.6 (b).
Thus, "ab" and "ba" are different permutations (l.e., they are
different mappings).

Example 9. What is the number of 4-letter words that can
be formed from the set {a,b,c,d,e,f,g}? The
number is 7.6.5.4, (Express in the language of
theorem 1.) This is the number of permutations

of 7 elements taken 4 at a time.

Example 10. What 1s the number of permuations of 10 elements

taken 3 at a time?
10°9+8 = 720

This is the number of one-to-one mappings from
a set containing 3 elements to a set containing
10 elements,

Example 11. What is the number of permutations of 5 elements
taken 5 at a time?
This 1s the number of one~to-one mappings from
set A to set B, where both A and B have 5
elements. (See Figure 11.7)
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Figure 11.7

But the number of such mappings is the same as
the number of meppings of A onto itself. There-
fore, the answer is 5! or 120.
Suppose you had five colored flags, one in eech
of the following colors: red, white, blue, green,
yellow. If you agree that a given signal is
to be represented by a particular arrangement
of three colored flags, how many different
signals could you devise using the five flags?
Por example, the arrangement

RED YELLOW BLUE
might mean "Help." This problem really asks
for the number of one-~to-one mappings from a
set containing 3 elements to a set containing

5 elements. This number is:

54 - 3=60

In Examples 8 to 12 we have been considering the number of

one-to-one mappings from a set A, with r members, to a set B,
with n members, where r < n. Another way to describe the number

Q nf one-to-one mappings from a set with r members to a set with

949
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n members (r < n) is the number of permutations of n elements

taken r at a time.

We found that there were n ways of finding an image in B
for which every member of A is selected first, (n - 1) ways
to find an image for the second selection from A, and so on
until each of the r members in A was selected and assigned an
image. We then used the counting principle to compute the de-
sired number of permutations by findiag the product of r numbers
starting with nj

The first factor was n.

The second factor was 1 less thann (or n - 1).

The 3rd factor was 2 less than n (cr n - 2),

and so on until

the rth factor was (r-1) less than n (or n - (r - 1),

In brief n(A,) =n - (k - 1), where k =1, ... , I

Sincen - {r - 1) = (n - r + 1) the product number

n(AyxeeexA,) =n(n - 1) (n-2) «ee(n-r+ 1),

The symbol (n)r is used to represent the number of
permutations of n elements taken r at a time. We write:

(n)r =n(n - 1) ese (n=1r + 1)

Example 13. (a) (B)s =8:7+6+5:4 = 6720

(b) (#4), = 4.3.2.1 =41 =24
The exercises in Section 11.3 will contain specific ex-

amples of permutations o n elements taken r at a time, An

alternative form of the general formula for (n%, will be de~

vsloped in &ixercise 17 of Section 11,3.
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11.3 Exercises

1. Given the set of letters [r,s,t,u,v,w,x}, how many "words"

can be formed having:

(a) one letter (d) four letters
(b) two letters (e) rive letters
(e) three letters (f) six letters

(g) seven letters
2. If set B contains seven elements, how many one-to-one

mappings are there from set A to set B if set A contailns:

(a) one element (e} five elements
(b) two elements (f) six elements
(c) three elements (g) seven elements

(d) rfour elements

3. Use the results of Exercises 1 or 2 to answer the following:
(a) What is (7),? (b) Wwhat is (7)s? {(c) What is (7}a?
(d) what 1s (7),? (e) wnat is (7)s? (f) What is (7)e?
(g) what is (7)-?

4, How many permutations are there of the set {a,b,c,d,e,f,g,h}?
teken 5 at & time?

5. Suppose you have 5 books to put on a shelf. 1In how many
orders can the 5 books be arranged?

6. In Exercise 5, suppose there is room for only 3 of the books
on the shelf, but you mey use any 3. How many asrrangements
are possible? That is, what is the number of permutations
of 5 elements taken 3 at a time?

0" Ina certain state, the license tags consist of two letters

240
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(a) How many different license "numbers" are possible?

(b} How many are possible if the letters O and £ are
not used?

A telephone number consists of 10 digits.

(a) How many numbers are possible if there are no restric-
tions?

(b) How many are possible if the digit "0" cannot be used
as the first digic?

(c) How many are possible if the digit "0" cannot be used
as the first digit and also cannot be used as the
fourth digitc?

If a baseball team has 10 pitchers and 4 catchers, how

many batteries (pitcher-catcher pairs) are possible?

If a girl has 5 blouses and 4 skirts, how many blouse-skirt

combinations can she get?

If you toss one die for a first number, then toss a second

die for a second number, how many results (ordered number

pairs) are possible?

Find:
(a) (5)e (b) (8)a (c) (8)s (da) (20)2 (3) (9)s
(a) Wnat is (8)s (b) what is 81!°
(e) Wwhat 1s (8 = 3)!? (d) Wwhat is 8! ?
(8 - 3)
What is: (a) (6).? (b) 61° (¢) (6 - 4) 12

(a) 6t .
(6 - 4) 1 °
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15. What is: (a) (10)s (b) 10! (e) (10 - 3)

(a) 101 0
(10 - 3)

16. Let n and r be positive integers and r < n. Give an
argument to Justify:
n' =nn-1) (n-2) ... (n-r+1) [(n-r)]

17. Using the result in Exercise 16, give an argument to

Justify:
(n) =_._ Dt
Y (n-r)t

18. Use the formula in Exercise 17 to find:

(a) (11)a (b)) (7)s (c) (15)a (d) (100)s
19. Make up permutation problems for each of the following

answers:
(a) 8¢ (v) 9! (¢) 9%
(8 -2)1 (9 - 3)! 5 1
() _151 (e) _7¢
13 ! 61

20. Use the formula in Exercise 17 to find the number of
permutacions of 5 elements taken 5 at a time, Do you
see that the denominator is O '? O ! has no meaning. We

1

define O !
so that the formula in Exercise 17 holds for all whole
numbers n,r with r < n without exception.

21. Find a standard name for each of the following:
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(a) &1 (¢) 3tV +2! +11 +0
(8 - 8) ¢

(b) 12 ! (a)
(12 - 12) ¢ 12?

11.4 Number of Subsets. of a Given Size

Before considering the number of subsets of a set S that
are of a given size (here n(s) € z 3) we will first consider
another set, the set whose elements are all of the subsets, of
S. This 1is called the power set of S and contains the empty set,
S itself, all of the one-membered subsets, two-membered subsets
and so on to include every subset of S.

Definition, The power set of a set S, denoted P(S), is

the set whose elements are the subsets of S.
(Thus A € P(S) if and only if A < 8.)

We summarize in Table 11.4. Copy and complete this table.

S n(s) #(s) n(é(s))
(} =8 0 (8) 1
(a) 1 {g,(a}]} 2
{a,Db} 2 (8,(a},(Db},{a,b}) 4
{a,b,c} 3
{a,b,c,d)} 4
Table 11.4

Once again the counting principle is useful in the general

case of finding the number of subsets of a set S with n(8) =n

248
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€ Z+. Selecting any subset of S can be thought of as a set of

n tasks. Tasks consist of a decision for each member of S;
either you select the first member or reject it, and likewise for
the second, third and so on. 1In other words, there are two
possibilities for each member of S. Then, since S has n members,
the counting principle tells us that the product of n factors,
each equal to 2, is the number of ways of performing these tasks
one after the other, Each subset of S is the result of exactly
one performance of' the tasks, and each performance of the tasks
results in exactly one subset of S. Accordingly the number of
subsets of & set 5 with n elements is:

2.2....2___21'1

LG

n factors

Is this the conclusion you drew when you completed Table

11.47? In the lenguage of Theorem 1, for each i € 5,1

l,..., n
let A, = {select, reject}. Therefore r, = rg = *** = r,=2-= n(Ai).
Thus n(A, x Ag X **° X An) =1 + 1y **e or_ =20, If we replsce

n
the word select by the digit 1 and the word reject by the digit
0 then Ai = {1,0} and we can reason as follows:

The number of elements in the power set of S is equal to
the number of mappings with domain S end codomein {0,1}. The
elements in S that mep onto 1 are selected ané those that map
onto 1 are selected and those that mep onto O are rejected for
the subset selected by that particular mapping. Here we do not
require that the mappings be one-to-one, nor do we require that

they be onto. For example, each member of S may be mapped onto

]ZRit:and the set S itself would.be the selected subset. Likewise

H AL
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each member of S may be mapped onto O and then the empty set
would be selected.

Example 1, Figure 11.8 exhibits some mappings from {a,b,c} to

(0,1} and the sets they generate.

:::;;77 generates {( Y =¢
P 1
c
a 0
b:::::::> generates {d,b,c]
1
C/
a
0]
b generates (a,b}
1
c
e
0]
b"’*”’ generates (e}
1
c”””’

Figure 11.8
Complete the rest of the mapping diagrams from (a,b,c} to (0,1}
as an exercise,

We will now turn our attention to the number of subsets
of S that have some given number of elementss for example the
number of subsets of {a,b,c} that have exactly two elements.
From your mapping diagrams you can see that this number is 3.

Tn general we will be concerned with the number of r-member

lszk?bsets of a set S with n members.
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Example 2. Suppose that (a,b,c,d,e} is a set of club members.
How many committees can be formed which have
exactly two members? The committees are listed
below:
(a,b}, (a,c}, (a,d}, {a,e}, {b,c}, {b,d},
{b,e}, {c,d}, (c,e}, (d,e]}
The number in this case is 10. This question is the same
as asking how many subsets of 2 elements can be formed from a
set of 5 elements,

In general questions such as this may be phrased as follows:

Given a set containing n elements, how many of its sub-

sets contain exactly r elements?

In order to answer the general question, let's look again
at the original question, a question whose answer we already
know. Given the set {a,b,c,d,e}, how many different subsets of
2 elements can be formed? We introduce the symbol

2)
to represent this number. That is,(g) is the number of subsets
of 2 elements that can be formed from a set of 5 elements.

Figure 11, 9 shows a one-to-one onto mapping from the set

(1,2} to the subset {a,b}. The set (1,2} 1is used since

Figure 11.9
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We want a subset having two elements. However, the diagran
shows only one such mapping. How many one-to-one onto mappings
are there from {1,2) to the subset {a,b}? Since {a,b} has the
same number of elements as {1,2}, this is the same as the number
of permutations of a set of 2 elements -- that is 2 !. So there
are 2 different one-to-one onto mappings from {1,2} to {a,b}.
(Be sure that you can draw a diagram for each.)

Also there are 2 | different one-to-one onto mappings from
(1,2} to the subset {a,c}, to the subset {a,d}, ete. In fact,
there are 2 ! different one-to-one onto mappings from {1,2} to
every subset of S containing two elements. Now how many such

2
subsets are there? We have agreed to letK?)represent this

number. Thus 1f we form the product

()

we should get the total number of ways to form a one-to-one
mapping from {1,2} to the set S. However, from CP we know
this number is:
(5)a
Therefore we have:
o1

5
2} =(5)2
Then dividing by 2 ! we get :

8 2o -3

T
21

Of course this agrees with our earlier observation that

there are 10 possible subsets, each with 2 persons that can be

Y _,rmed from a club of ersons.
ERIC > F

IToxt Provided by ERI
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Example 3. Consider the problem of finding how many

subsets of 3 elements can be formed from a set

3

of 7 elements. Again, let<7)represent this
number. To find the standard name for(3)we be-

gin by examining the mapping of Figure 11,10.

Figure 11.10

The diagram shows a2 one-to-one onto mapping from
{1,2,3} to the subset {a,b,c}. The diagram shows
only one such mapping, but there are 3! of then.
(Why?) Furthermore, there are 3! different one-to-
one onto mappings from {1,2,3} to every one of

the (7) subsets having 3 elemenis. Therefore,

3
31 (g)= (7)3
where (7)as 1s obtain from the counting principle,

Dividing by 3! gives,

()3 -

Therefore, a set of 7 elements has 35 different
3-element subsets.
The two preceding examples suggest a perfectly general
argument for finding the number of subsets having r elements

ﬁ3°t can be formed from a set having n elements, where

PN
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r § n. Using (?) to represent this number, we have,
Theorem 2. n
Proof: Exercise

From Theorem 2, dividing by r! we obtain

,
e

R e

rt (n - r)t

Example 4, In a club with 12 members, how mény 5 member

subsets are there::
12}
(12) - _(12)s _ (1= s)
5 514 5!

e 12.11.10.9.8 (7!)

7! 5\
12-11‘10‘9'8
5.4.3.2.1
= 792

Notice that in Example 4 each time you selected a subset
of 5 elements from the set of 12 elements, there were 7 elements
remaining that were not selected. In general, whenever you se-
lect a subset of r elements from a set of n elements
there are n - r elements remaining that are not selected. This
means that there are Just as many subsets with n - r elements

as there are subsets with r elements, This is expressed math-

ematically:

O
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Theorem 3.

Proof: Exercise

Example 5. (e) Compute (;) end(Z)

(b) Did you get the same number for each
of the computations in part (a)?

(c) If the ansser to (b) is yes explain
why. If not, do your computations
again,

(d) Vhich of the two computations in (z)

was easier? Why?

11.5 Exercises

1.

In o voting body of 7 members, how meny 3-men subsets
are there?

In 2 voting body of 12 persons, how many 5-men subsets
gre there?

If set S has 6 elements, how many elements are in @ (S)?
How meny of these subsets have exsctly 3 elements?

Find e standard name for each of the following:

\
o) el el

There sre 8 bonks lying on the tsble, and you sre to choose
3 of them,

(p) How many weys are there to choose 3 books from 89
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(b) How meny ways are there to choose the 3 books and

arrange them on 2 shelf?
6. (2) Verify thefollowing formule for specisl ceses of n

endm (e.g.n =5 end m = 3):

ARG

*(b) Now show by using the formuls,

A .
(r) r !

that formule in 6(e) is true when m < n,

il

7. Use the fact that the formulas in exercise 6 is true for all
natural number replacements for m sand n, m < n, to complete

the following:

(39643 -

whet reletion must hold between x end y?

8, If n is e non-negative integer, then (8):

9., If you can move only along the drawn A

segments down and to the right, how

many paths are there from A to B?

(Do this by figuring the number of

paths to each point.) B
. 4 6 5
10. If the numerals recorded at right
indicate the length of the segments, 3 6 4 2
2 4 5
find the shortest distance from A
" 4 5| 5 3
to B. (Travel rules are those of 3 7 g
O
FRIC Exercise 9.) 2| 4 3 2

256 s
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il. If n is & positive integer, then (i):

12. For n = 4, expend

/n)
\k (Hint: The first two terms of the summe-
o)

h
tion ere (4) end (A),)
0 1

into z sum where esch term rmekes use of the formuls for -

llpvq S

k

(n); then evaluate the sum 2nd express the result in
r

stenderd form.

¥12, Prove:

i 1o

(n < oh
kK = 04K (Hint: For 2 set with n elements

T .
for any pesitive integral a. count the number of subsets in

two different ways.)

14, If n is 2 non-negative integer, then (g) -

2
15. What meaning can we give to (')? From s set of 3 elements,

5

how many 5-sets cen be formed? Obviously there sre none.
Therefore, we shall define G§== 0. Vhet standard neme would

you suggest for esch of the following?

R )

#16., In o deck of 52 playing cerds, how many 13-cerd hends
are possible?
17. Draw disgrams for each of the possible meppings from e set
of 3 elements to a2 set of 2 elements. Doa't restrict the

meppings to one~to-one or onto.

257



18.

20.

-253-

Use the counting principle to suggest ¢ wey of exXpressing
the numter of meppings in Exercise 17 in exponentisl form,
Use the counting principle to construct en asrgument that
justifies the following:

The number of meppings from & set of b elements to
b

¢ set of 2 elements is &

In the diagrsm below there are two grephs esch consisting of

four nodes (points) and paths connecting the nodes by pairs:

c
B )
D H
E
A Graph T Graph II

(a) Explain why each graph has (g) paths, and the total
number of paths for the two graphs is 2 .

In the next diagram node B is connected with each node
in Graph II to illustrate how each node of Graph I may be

connected with a path to each node in Graph II.

C — G
B __———
\-\\
H
N
A Graph I Graph II

(b) Use the counting principle to explain why there are
16 or 47 paths required to connect each node of Graph
I with each node of Graph II (that is to complete it).

(¢) Assuming that the above graph is completed, explain

why the number of paths is (g) or (2;*) .
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(d) Use 2n ergument concerning the sbove grephs to
Justify the statement: 2(3) + 4* = (?éu>.
Use computastion to justify the statement. "
Use the graphs end explanetions in Exercise 20 for this
exercise.
(2) Suppose thet you repeated the procedures in
Exercise 20 using 5 nodes in each greph. Write
the stetement in Exercise 20(d) for the case of 5
nodes.
(b) Revise the statement in Exercise 20(d) for n nodes.
(c) Revise the statement in Exercise 20(d) for the case
where Graph I has 6 nodes and Graph II has U4 nodes,
(d) Repeet part (c) where Graph I has n nodes end Graph
II has m nodes,
Show that the following stetements (&) end (b) are
equivalent:
(e) 2(2) + n® = [(;n)
(b) n(n-1) + n® =n(en - 1)
Use what you heve learned in this chepter on combinatorics
in eddition to whet you lesrned in the chapter on affine
geometry to justify the following:
(2) If esch line in the affine plane T contains
k points, then m contains k2 points.
(b) If the affine plene 7 conteins k® points, then it
contains k- (k + 1) lines.
Prove Theorem 2.

Prove Theorem 3. (Hint: Use the formula developed from

Theorem 2. ) 259
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11,6 The Binomiel Thecrem

Example 1. Suppose that you were given the probhlem of ex-
pending the following pover of & binomial:

(e+b)° = (2+b) (e+b) (#+b) (a+b) (0+b).

After some lebor you would find that the
expension »f the 2hove expression is:
2° + 5&*b + 102°b + 10£2%° + 5eb* + 1°,
The symmetryv of the coefficients in the shove
terms (1,5,10,10,5,1), and the decressing
powers of ¢ (5,4,2,2,1,0) with the corresponding
increasing powers of b (0,1,2,3,4,5) leads us to
suspect that there might be 2 more efficient wey
to get the result without resorting to brute
force multiplication of binomials. Note also
that the sum of the exponents of a and b in
each term is 5.
In this section, we are going to develop a theorem, known
as the Binomial Theorem, which will be useful in expanding powers
of binomials. It also has other applications in mathematics,
for example, to probability theory. The development of the
Binomial Theorem will make use of many ideas which you have learned
such as the power set of a given set, the number of r-member sub-

sets of a set with n elements, and the use of the symbol ¥ to in-

dicate summation.
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Exampie 2. To illustrate the general theorem we expand

3
(a + b) by using the

(1) (a+b)(a+b)(a+b)

(2)

(3)

(4)

(5)

(6
(1)

(8)

distributive property:

a(a+b)(a+b) + b(a+b)(a+b)

ala(a+b) +b(a+b)] +b[a(a+b)
+ b(a+b) ]

a(aa + ab + ba + bb)

+ blaa + ab + ba + bb)

aaa + aab + aba + abb

+ baa+ bab + bba + bbb

a’> + a®b + a®b + ab® + a°b
+ ab® + ab® + v°,

a’ + 3a%b + 3ab® 4+ b

<8> a2 + @) a®b + @ ab?

3,3
+ 3 b
3 a=0. r
&) a?"'p
0

~Jw

We can get the same result using the following combinational

argument., We could get the terms in (4) directly from ths left

side of (1) by selecting just one of a or b from each of the

the binomial factors and recording them in the order of the factors

from which they were chosen. The mapp:ng diagrams in Figure 11.11

show all the ways that this selection can be made, where 1,2 and

3 stand for the 1lst, 2nd and 3rd factors respectively and the

mapping is from {1,2,3} to {a,b}.
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3
Note that the total number cof mappings is 2 = 8.

%o o (o 0

% B0 [P0 0¢

Figure 11.11

The number 5f times that b is selected as an image in a
mapping determines the number of times that a is selected.
If b is chosen r times, then a is chosen (3-r) times. Check
this in the diagrams. Each mapping then is determined by the
assignments of Db.

The number of mappings in which

il
|

b is the image of 0O elements is 1.

b is the image of 1 element is 3.

b is the image of 2 elements is 3.

LR WEWwo W
I I
w

i
=W

b 1s the image of 3 elements is 1.

Total 8 =2°
If b is the image of zero elements then a 1s the
image of three elements, and thus the term which has
coefficient (g) is a?.
If b is the image of one element then a is the image

o of two elements, and thus the term with coefficient
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(%)is a®b.
If b is the image of two elements then we deduce
as above that the term with coefficlientip/is ab®
Similarly if b is the image of three elements
then the term with coefficient(g)is b®. Multiplying
each term by its coefficient and adding again yields
3 3
Z (r') a®Tpl = (a + b)?
r =20
You should recognize the above as a special case of ideas
presented in this chapter:
(a) The number of subset*s of a set with n elements is 20,
(b) The number of r-member subsets of a set with n
elements is (?) . The binomial theorem can now be expressed.
Theorem 4, For any pair of real numbers, a and b, and

any whole number n:

n
(a+b)n = r‘Z 0 (?) an-r'br- =

(g) a® + (rl‘) PR (Q) ph

Example 3. Expand (a+b)®.
(a+b)” = (?))aa + G_) a*b + <g>af’b2 + (g) a®b® +

5‘ 4 5 5
ab* +
(4) (5 b
a® + 5a*b + 10a°b° + 10a°b° + Sab’ + b
Example 4. Expand (p+q)®

1 1 1 - 1 1
(p+a)” = % (r') p' """ = <o>p1 + (1)q‘ = p+q

Q r

‘O
PA
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Zxample 5. Expand (l+k)?ﬁ
(1+k)° (g) 1+ G) 1"k + (g) 1K+ @) K

1 + 3k +3ka +1c3

Fxample 6., Expand 1.03%,
I 4 4y 43
((J s (1) 1 (.03) *'<2> .

4 4
(.03)° + (3) 1(.o3)a+-(4)(.o3)‘.
1+ .12 + ,0054 + ,000108 + ,00000081

(1+.03)*

]

1.12550881

"

Zxample 7. Expand (a - b)®,
(a - b)°® = (a+ (-0))°. Then apply example 3.
11.7 Exercises

1. Show that (a+b)® = a® + 2ab + b® is correct when a = 3 and

b =2,

2. Show that (x+y)® = x3+ 3x°y + 3xy° + y* 1is correct when
x=1and y = 2.

3. Expand the following:
(a) (a+b)* (b) (x+y)°
(c¢) (c+a)’ (a) (a+b)lo

4L, (a-b)? = (a + (-b))? = a® + 2a(-b) + (-b)® = a* - 2ab + ©°
Using a similar approach, expand the following:

(a) (a-p)°® (b) (x-y)*

(¢) (a-b)° (d) (x-y)°
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5, The coefficients in the expansion of (a+b)n are as "ollows:
1 11 55 165 330 462 462 330 165 55 11 1
What is n?

. Expand (x+1)?.

. Expand (x-1)%.

. Expand (x-2)4.
n
. Expand (1+1)" to show that it equals £, (ﬁ): an.

6
7
8. Expand (x+2)*.
9
0 z
1 )5 also (.99)°.

. Use the binomial expansion to find (1.0l
+
*12, Show that (1+x)™> 1 + nx, for x > 0 and n €2,

*13. Use the combinational argument to prove (a+b)° =

(6> a® b’

0

litg O

11.8 Summary

1. The counting principle was illustrated for two and three

finite sets and stated as a theoren for any finite number

of sets.
2, If a set A contains a elements and set B contazins b elements
(a < b), the number of different one-to-one mappings from

A to B is called the number of permutations of b elements

teken a et a time (& and b are whole numbers)
If a = b, then the number of permutations is b!.
If a < b, then the number of permutations is b(b-1)(b-2)...

(b-a+l).

o P o
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3. 0! is defined to be 1,

4, (?) represents the number of subsets with r elements which

can be formed from a set of n elements, where n and r are

whole numbers.

n
If n< r, then (r)” 0.

n
If n = r, then {\r) = 1.

If r = 0, then for any n, (P)= l. In gener'al(?) = -(n)p s forn >r.

r.

5. (The Binomial Theorem). If a and b are real numbers and

n is a whole number then
n - b
(a+b)" = (8) a® o+ G’) o L (n) B

11.9 Review Exercises

1. How many six-letter "words" can be formed from the set
{t,hye,o,r,y} if
(a) letters may not be repeated?

(b) letters may be repeated?

2. A man conducts a probability experiment in which he does the
following three things: he draws a marble from a bag of
five differently colored marbles and records its color; then
he tosses a die, recording the number the die shows; then
he tosses a coin, recording the result "head" or "tail,"

How many possible outcomes are there in this experiment?

266



¥3.

10,

11.

13,

~-262-

In Exercise 2, what 1s the probability he will get an even
number and a head?

If the call letters of a radio station must begin with "W"
and contain three other letters (repetitions allowed) how
many such arrangements of letters are there?

what is the answer to Exercisse 4 if the call letters may
begin with either "W" or "K"?

A person wishes to select 2 books from a set of & books.
How many possible selections are there?

There are 5 points in a plane, no three of them in a straight
line, How many lines can be drawn, with each line passing
through exactly 2 of the points?

How many ways are there to arrange 3 books on a shelf if
vou have 8 books to choose from?

How many possible committees of 3 are there in a class of
8 persons?

Draw a "tree" diagram showing all the 2-letter words (no
repetition) which can be formed from the set {a,e,i,o,u}.
(See Section 11.2.)

If, from a set of 7 mathematics books and 5 history books,
you must choose 1 mathematizcs book and 1 history book, in
how many ways can you make your choice?

How many fractions can be formed having a numerator
greater than O and less than 10, and a denominator greater
than 0 and less than 15'.;‘0

How many 3-digit numbers are there? (There are 10 digits

to choose from, but the first digit cannot bhe 0.)
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Referring to Exercise 13:

(a) How many 3-digit numbers have no two digits alike?

(b) How many 3-digit numbers have 3 digits alike?
#(c) How many 3-digit rumbers have exactly 2 digits alike?
For =zach of the following, tell how many one-to-one mappings

are possible from set A to set B.

00 Op) 06

What is the number of permutations of 8 elements taken

2 at & time?

What is the number of permutations of 10 elements taken
6 at a time?

A set S has 10 elements.

(a) How many of its subsets have exactly 3 elements?

(b) How many of its subsets have exactly 7 elements?

(c) How many of its subsets have exactly 10 elements?
(d) How many of its subsets have exactly 1 element?

(e) How many of its subsets have exactly O elements?
Find a standard name for each of the following:

(a) @ (v) @) @ (I @ ) (f)
A student is instructed to answer any 8 of 10 questions
on a test. How many different ways are there for him to

choose the questions he answers?
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A basketball squad consists of four centers, five forwards,
and six guards. How many different teams may the ccach
rorm if players can be used only at their one position?

(A basketball team consists of 1 center, 2 forwards and
two guards.)

A sample of five light bulbs 1s to be taken from a set

of 100 bulbs, How many different samples may be formed?
Complete the following: (2) + @)

4
Expand (a+b) .

Expand (a-b)*.

n
Write the first 6 terms in the expansion of (a+b) , where
n is a positive integer greater than 6.

Expand (2u + v)®.

o
=g
<o



APPENDIX A
MASS FOINTS

You have studied geometry 1'rom a number of viewpoints during
Conurse I and Course II. First there were mappings on a line, then
lattice points. This geometric study was enlarged by considering
segments, angles, and isometries of the plane and transformation
geometry of translations, reflections, rotations and dilations.
Next you had an introduction to axiomatic affine geometry, followed
by a more formal study of transformations using coordinate
geometry. This appendix gives yet another kind of geometry, com-

bining numbers and ratios with points.

A.1 Mass Points

What is a mass point? We get our initial ideas of such
an object by looking at physical examples in the world around
us, For example, a girl poised at the end of a see-saw, the
earth at a particular point in its orbit, a carbon atom at a
particular position inside a complicated molecule.

To establish something of the essential nature of each of
these interpretations, we note that in each case a number and a
position can be assobiated. For the girl it could be her weight
and her position on the see-saw. For the earth it could be its
mass and its position in orbit. For the carbon atom it could
be a number, perhaps its electrical charge, and its location.

)
E}{B:Df these cases has the property that a number and a point
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are assoclated. This 1s what we mean by & mass point,
Definition 1. A mass point is an ordered pair consisting

of a positive number aild a point,

Can you find additional illustrations of mass points?

As you see, different physical interpretations have some
properties in common and some that differ. Faced with such a
situation a mathematician lists what he thinks are the basic pro-
perties common to all and proceeds to make deductions from this
list. The basic property statements are called axioms. Those

that are deduced are called theorems.

A.2 Notations and Procedures

First, it is convenient to have a concise way of referring
to a mass point. The mass point with number 4 at point A could
be written (4,A), since it is an ordered pair. But we find
it convenient to designate it "4A," keeping in mind that this
does not mean 4 times A, but represents the ordered pair (4,A).
In general the mass point with number a at point P will be desig-
nated "aP.," If in the course of deductions we conclude that
aP = bQ,this will mean two things: a and b name the same number,
and P and Q name the same point; that is, a = b and F = Q. If
A and B name different points then 3A = 3B must necessarily be
false} and also 4A = 2A must be false since 4 # 2, We some-
times refer to the number of a mass point as its weght, from
the idea of a girl at one end of a see-saw,

We now have a set of objects, mass points, very much as we

)
[]{B:ad elements in clock arithmetie and in various operational sys-

1
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tems. The question arises whether we can define some Opera-
tions on these elements. What could we mean by "adding" two mass
points?

We get an idea by examining the see-saw illustration. Sup-
pose in Figure A.1 two weights are placed in the positions

shown.

30 Ib. 20 Ib.
21, c 3.

]

b4
n
N
A
\
P
-]

Figure A.1l

It is an experimentally verifiable fact that they will balance
at the point shown in the diagram,; that is, if the weight of
one object in pounds mulbtiplied by its distance to the balancing
point in feet is equal to the product of the weight of the other
object in pounds and its distance to the balancing point in
feet. In our example the first product is 30 x 2, the second
product is 20 x 3 and they are equal.

This suggests what we mean by adding two mass points, (Don't
confuse this with adding two numbers.) We will illustrate
addition for two mass points as follows:

Suppose 3A and 2B are two mass points, points A and
B, as in Figure A.2.
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. C 28

Figure A.2

To add them and to represent 3A - 2B as a single mass point

we will do two things:

(1)

(2)

Add the weights 3 and 23 3 4 2 or 5 will be the weight

of 3A - 2B,

Find point C in AB such that AC:CB = 2:3. (Note the
reversal of 3 and 2 in the ratio 2:3.) If La neasuring
we find its measure-in inches to be 5, then AC =

«+ 5 =2 and CB = % « 5=3, C is therefore two inches

1613 1)V) bl
ws}

from A and 3 inches from B. C is the point in 3A @ 2B.
Thus 3A - 2B has weight 5 and is at C, or 3A + 2B = 5C,

The sum is represented in Figure A.3 as follows:

P
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O A M P A Y
Figure A.3

(The equally spaced marks should help you to see that
AC = 2 and CB = 3.)

We call C the center of mass of the mass points at A and B.

(In physies such a "balancing" point is also called the center
of mass of the masses at A and B.)

Consider a second illustration (Figure A.4).

4Q 1R 3p
. R . - a a . H
Mgure A4

Suppose the measure of 5? in yards is 4, As in the first
illustration we find the weight of 4Q + 3P to be 7. If R is the

center of mass then QR:RP = 3: 4} that is QR = %.4 or l% and

RP = %.4 or Egc Thus QR = 1% and we can approximate the loca-
tion of R with a yardstick.

Returning to our first example of the see-saw, we would
find the sum of the twe mass points to be 30A + 20B, for which
AB = 5, The point C, the center of mass will be %%.5 feet from

A toward B, This is the point at which the see-saw will balance
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for weights of 30 and 20 pounds respectively, at A and B., The
sun 1s 50C,
In this way we are led to define the sum of two mass points.
Definition 2, If A and B are two points ard a, b positive
nuibers, then by aA - bB (the sum of mass points
ali and 0B), we mean the mass point <C such
that a -+ b = ¢, and C is the point in AB such

that AC: CB

b:a. le then write aA - ©B = cC.
Furthermore, aA -+ bA = (a + b)A.

The definition aA + bA = (a + b)A (for example 4A -+ 34 = 7A), turns

out. to be the most useful way of having af -+ bB defined for all

possible mass points ah, bB,

We emphasize that C is in AB. Furthermore, we might guess
that each interior point of AB (that is, a point of AB distinct
from A and B) can be determined by a correct choice of a and b.
Thus, whenever we add two mass points, the center of mass of the
suin will be found in the segimnent determined by the mass point
addends,

Vle have defined the addition of two mass points. The ques-
tion arises whether we can add three or more mass points. Ve
will explore the addition of three or more wmass points on the
same line in the exercises below. In Section AL we will
investigate the addition of non-collinear wmass pnints in the
blane, and in Section A.l2 the addition of non-coplanar nass

points in space,

A.3 Exercises

In each pnart below you are given the length in inches of
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a segment for which you are to draw a diagram. On this
diagram represent the sum of the two mass points at a
single point,

(a) AB = 6, 5A + 1B

(p) AB = 6, 1A + 5B
{c) CD =3, 2C + 1D
(d) cC =3, 1C + 2D
(e) EF =5, 1E + 1F
(f) GH =3, 2G + 4H
(g) GH =3, 3G + 2H
(h) XKL =5, 2K + 41
(i) XL = 5, 1K + 2L
(§) KL =5, 13K + 1L
(k) AB =17, 340+ 4B
(1) ¢D =10, 2C + 3D
(m) EF = 15, 5E + 2F
(n) GH =7, 26 + 4H
(o) KL = 6, 5K + 4L
2. (a) You are given mass points 3A and 4B, where A and

B are distinet poinis. Is their center of mass nearer
to A or to B? Try to answer without calculating the po-
sition ¢ the center of mass.

(v) Answer the same question for mass points 8A and 5B.

(¢) Is the center of mass nearer the point with the greater
cr lesser weight?

3. For each of the following compute AG:GB, if A # B,
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5G
TG
(e) 2A + 1B = 3¢

(a) 3A + 2B

(b) 1A + 6B

(d) 5A + 5B = 10G

In this exercise you are given one of two mass points

and the sum, You are to find the other mass point. To
illustrate, suppose xx is the missing mass point and

3A + xX =5B., Thus 3 + x = 5, from which we deduce

x = 2, (The weights of 3A and xX are 3 and 2.) B is the
point in AX such that AB:BX = 2.3 and X is in AB with

B in between A and X, and with BX = %AB, as shown below,

A B X

—n

Solve for x and locate X from each ¢f the following equations,

(a) 3A + xX = 4B

(b) 4A + xX = 6B
(c) xX + 4A = 6B
(d) 1A + =X = 3B
(e) 2A + xX = 2B
(f) xX + 9A = 12B

Suppose 12A + bB = ¢C, What must be true about b and c

in the following cases?

(a) € is the midpoint of AB

(b) C is the trisection point of AB nearer A,

(¢) C is the trisection point of AB nearer B,

(d) ¢ is the point of division of AB such that AC:CB = 34,

2
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6. Let welght 3 be assigned to A in 4B,
{a) If C is the midpoint of AB, what weights should one
assign to A and B so that C is then the center of mass?
(p) If C is the trisection point of AB nearer B, what
welght should one assign to A and B so that C is the
center of mass?
T. Given segment AB and point C in it, so that C is thz center
of mass,
(a) If AC:CB = 2:3 and C has weight 5, what weights should
be assizned to A and B?
(b) If AC:CB = 2:3 and C hac weight 7, what weights should
be assigned to " and B?
(e) If KC:CB = 3td# and C has welght 10, what weights should
be assigned to A and E?
*(d) If AC:CB = xty and C has weight 5, what weights should
be assigned to A and B?
*(e) If AC:CB = xty and C has weight z, what weights should
be assigned to A and B?
8. Draw a segment AB 3 inches long and take C in AB such that

AC is % inch long.

A C
[ . a

(a) Represent 1A + 2B at one point, Name it D,

(b) Represent 3D + 3C at one point., Name it E,

(c) Represent 2B + 3C at one point. Name it F,

(d) Represent 1A + 5F at one point, Name it G,
©  (e) Do E and G name the same point?

s
If so, how does this exercise show 278
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(1A + 2B) + 3C = 1A + (2B + 3C)
*9, Given mass points 2A, 3B, 5C on a line, with B between

A and C.

(a) Represent 2A + 3B at one point. Call i%t D.

(b) Represent 5D + 5C at one point, Call it E,

(c) Represent 3B + 5C at one point, Call it F,

(d) Represent 2A + 8F at one point. Call it G.

(e) Prove that E and G name the same point.

(f) wnat does the proof in (e) show?

A4 Axioms for Mass Points

We now investigate the system {M,+), where M is the set
of mass points and + denotes mass point additicn, to see if it
is an operational system., The basic requirement is that the
sum of two mass points be a unique mass point. Otherwise such
a sum as 5A + 6B may be assigned more than one mass point, and
any computation with mass points would become impossible,
We know that 5A + 6B must have the unique welght 5 + 6 or 11,
But is there exactly one location for the center of mass?
From our definition 5A + 6B = 11C, where C is a point in AB such
that AC: CB = 6:5, Stated another way, C is on AB, T% of' the way
from A to B, Since it seems clear that there is one and only
one point of AB which is T% of the way from A to B, we are led
to conclude that there is exactly one location for the center c¢rl
mass. Note in the special case aA + bB = (a + b)A, the point
A 1s assigned as the center of mass for mass points aA and

JZRjij. We thgs take as our first axiom

a0
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Axiom 1. For any mass points aA and bB there is exactly one
mass point ¢C such that alA + bB = cC,
In effect we are saying that the set M of mass points, with the
operation of addition of mass points defined above, is an opera-
tional system (M,+).

Our construction of aA + bB leads us to accept that aA + bB =
bB + aA. We will state this property as an assumption and call
it the Commutativity Axiom,.

Axiom 2. For any mass points aA and bB, aA + bB = bB + aA.

With these two assumptions (M,+) is beginning to look like
some other operational systems we know. Another characteristic
of these other systems was the associative property. Before we
can raise that question here we need to explore what we mean
by the addition of three mass points.

In Section A.3 Exercises 8 and 9 we examined the prcblem of
adding aA, bB, and c¢C when A, B, and C are collinear., We even
found it plausible that

(ah + bB) + cC = aA + (bB + cC).

We now examine the problem of adding aA, bB, and c¢C when
A, B, and C are now collinear,

Suppose we have three mass points aA, bB, and cC, with A,

B, C not collinear, as in the diagram below,
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Figure A.5

We can find the sum aA + bB, and we know that we would'get
a mass point, say dD, with D in AB., Now we can obtain dD + cC,
and this would give us a mass point eE, with E in CD. So the sum
of the three mass points, constructed as (ad + bB) + cC would
give us a mass pcint eE, with E in the interior of the triangle
ABC, What would happen if we considered the sum aA + (bB + cC)?
It is reasonable that we would agaill get a mass point, say P,
with F an interior point in triangle ABC., But would it be the
same mass point as eE?

We shall perform an experiment, We want to see for instance
whether (3A + 2B) + 1C = 3A + (2B + 1C), where A, B, C are points,

not necessarily collinear, as shown in Figure A,6,
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/

3A 50

28

Figure A,6

To facilitate this experiment we have subdivided AB into
5 segments of the same length and BC into 3 segments of the
same length,

First we find 3A + 2B to be 5D, where D is in BB, with
AD:DB = 2:3 as shown in Figure A.6., Then subdividing DC into
6 segments of the same length we see (again in Figure A.6) that
5D + 1C = 6G, where G is on DC, with DG:GE = 1:5,

On the other hand we first find 2B + 1C, and find it to be
3E where E is on BC, with BE:EC = 1:2 {see diagram)., We have
only to test whether 3A + 3E = 6G. To convince ourselves that
this is true, or false, we place our ruler on AE and see whether
G is in AE with AG:GE = 3:3. A test shows it to be true. Try
it. Note that this experiment gave us

(3A + 2B) + 1C =5D + 1C = 6G,
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and
3A + (2B + 1C) = 3A + 3E = 6G.

This experiment and our experience with collinear points
lead us to state the Associativity Axiom:

Axiom 3., For all mass points aA, bB, and cC

(aA + bB) + cC = aA + (bB + ¢C),

The axiom means that aA + bB + cC represents the same
mass point no matter how we associate the individual mass points,
This mass point has weight a + b + ¢ and its point is called the
center of mass of the three mass points at A, B and C,

We have not proved the assoclativity axiom. We have not
deduced i1t, The purpose of the experiment was not to prove

" ‘the axiom, It was to make it easier to accept it as an axiom,

(Mathematicians may even accept as axioms statements which cannot
be experimentally tested as being either true or false,)

In adding mass points we are also adding positive num-
bers. It should be understood that we are allowing ourselves

to use those properties of (Q,+) which we need.

A.,5 Exercises

1. Make an exact copy of the three mass points 3A, 2B and 1C
used in the experiment abtove, (See Figure A.6,) Shov by
experiment that 3A + 2B + 1C can also be found by any of
the following procedures:

(a) Pind 2B + 1C first; then (2B + 1C) + 3A,
(b) Find 3A + 1C first; then (3A + 1C) + 2B,
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2. Justify each of the following statements by citing th: ap-
propriate axiom or axioms:

(a) (2B + 1C) + 34 = (1C + 2B) + 3A

1C + (2B + 3A)

(b) (2B + 1c) + 3A
(e) 2B + 34 + 1C = 3A + 2B + 1C

3. Represent af + bB + ¢C in 6 different ways.

4, Make a diagram which shows 2A + 1B + 2C at a single point,

Take A, B, C as any three noncollinear points,

A.6 A Theorem

As you recall, we called a statement that is deduced from
other statements a theorem, Our first theorem for mass points,
is about any triangle and it may come to you as a surprise,
Suppose the triangle is ABC., Let D be the midpoint of AB, E
the midpoint of BC and F the midpoint of CA, Make such a diagram
and draw Eﬁ, BF and BRE., Do they meet in one point? We shall prove
that they do, that is, we shall deduce this from our axioms,
To make it easier to talk about the segments CD, BF, and AE,

we shall call them medians.

A —

D

ERIC ) Figure A.T

ISy, |
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Definition 3. A segment is a median of a triangle i:* it
connects a vertex to the midpoint of the
side opposite the vertex,
Theorem 1. The three medians of a triangle meet in one
point.
To prove this theorém let us start by assigning weights
to vertices, thus converting the: to wass points. Let us assign
1l to A, 1 to B and also 1 to C. (You will see why we choose
1 as the weight of each point as the proof develops.) We re-
mind you that D is the midpoint of Eﬁ, E is the midpoint of EC,
and F is the midpoint of CA. (See Figure A.7.)

By the Associativity axiom (1A + 1B) + 1C =
1A + (1B + 1C). Let us first calculate (1A + 1B) + 1C. The
mass. of 1A + 1B is clearly 23 and the point in 1A + 1B is
the point in AB, 3 the way from A to B. This is, of course,
the midpoint D of Zﬁ. Thus 1A + 1B = 2D, so that (1A + 1B)

+ 1C = 2D + 1C, By the same reasoning, the mass of 2D + 1C
is 3, and the point of 2D + 1C is a point G in DC, with

D&:GC = 1:2. Thus 2D + 1C = 3G. In summary
(1A + 1B) + 1C = 2D + 1C = 3G,

and G divides DC in the ratio 1:2 from D to C.

Now we calculate 1A + (1B + 1C), PFirst, the point of
1B 4+ 1C is the midpoint E of EE, so that 1B + 1C = 2E, Then,
1A + (1B + 1C) = 1A + 2E, The point of 1A + 2E is the point

H in AE such that AH:HE = 2:1. Thus

1A + (1B + 1C) = 1A + 2E = 3H, 285
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But by the Assoeciativity Axiom,
(1A + 1B) + 1C = 1A + (1B + 1C), or 3G = 3H,

and we conclude G = H, Thus AGGE = 2:1, (Why?)

Now we calculate (12 + 1C) + 1B, As abovs 1A + 1C = 2F,
where F 1s the midpoint of KE.

(1A + 1C) + 1B = 2F + 1B = 3K

where X is the point in BF that divides BF in the ratio 2:1
from B to F.

On the other hand

(1A + 1C) + 1B = 1A + (1C + 1B) by Axiom 3
= 1A + (1B + 1C) by Axiom 2
= (1A + 1B) + 1C by Axiom 3

But, by above, (1A + 1B) + 1C = 3G. Thus 3G = 3K, and we
conclude G = K, so that G is also in BF, and BG:GF = 2:1,

We have not only proved that the three medians meet in
a point (the point G), but that this point divides each
median in the ratio 2:1 from vertex to midpoint of opposite
side,

We can also use the axioms to solve problems., This
means we will discover other theorems., Since we won't find it
necessary to use these theorems in proving others, we will not
list them formally as theorems. We consider them only as exer=-
cises.

Suppose in AABC, D divides BC in the ratio 1:2 from B to
C, and E divides AC in the ratio 1:1, (See Figure A.8.) Let AD

"Q rsect BE in G. What are the numerical values of DG: GA and BG: GE?

.
286
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We can solve this problem as follows. In order that D mnay be the
trisection point of 56 nearer B, we assign the welghts 2 to B and

1 to C. Then 2B + 1C = 3D, In order that E be the midpoint of

CA we assign the same weight to A as to C, Having assigned 1 to

C we assign 1 to A also. Then 1C + 1A = 2E, The point of (2B + 1C)
+ 1A is the same as the point 2B + (1C + 1A); that is, the point

of 3D + 1A is the same as the point of 2B + 2E, This point is on
AD and EE; that is, this point is the intersection of AD and BE,

and it is named G, Therefore (2B + 1C) + 1A = 3D + 1A = 4G, and

thus DG:GA = 1:3, Also 2B + (1C + 1A) = 2B + 2E = 4G, and thus
BG:GE = 1:1. 1A

2B 3D 1c
Figure 4.8

We can extend our discoveries in this problem. Let CG n
AB = F, By Axioms 2 and 3, (2B + 1A) + 1C = 4G, Now 2B + 14 = 3H,
where H is in BA, But

4G = (2B + 1A) + 1C = 3H + 1C
implies G 1s in ﬁE, so that H is in CG, We thus have that H

is in BA and in CG, and therefore H = F, Thus 2B + 1A = 3F

and BF: FA = 1: 2, From 3F + 1C = 4G, it follows that FG:GC = 1¢3,

If we omit explanations, the solution of the above problem
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cen be written briefly as follows:

AT

1. 2B 4+ 1C = 3D and 3D 4+ 1A = 4G, Therefore DG:GA = 1: 3.

li
It

i
il

2., 1C + 1A = 28 and 2B + 2E = 4G, Therefore BG:GE 1:1.

3. 2B + 1A = 3F., Therefore BF:F4 = 1:2,

L, 3r + 1C = 4G, Therefore FG:GC = 1:3,

Exercises

1. Review the proof of the theorem about the medians

of a triangle, then tell whether you think the proof
applies only to the triangle represented in the
diagram or to all triangles.

2, Tnis is an experinental exercise. Draw any triangle,
locate the midpoint of each side and draw tne medians,
In your diagram, do the medians meet at one point?
Suppose they did not, or they did not in a drawing
by your classmate. Try to find why the drawing does
not agree with the theorem,

3. The lengths of the medians of a triangle are 15, 12,
and 18 inches lons. How long are the segments into
which each median is divided hy the point in which
they meet?

L4, Answer the question in Exercise 3 if the medians are 12,

13, and 14 inches long.
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5. In 0ABC, D is in AB and AD:DB = 1:2. E is in BC and
BE:EC = 1:2. Let AE N CD = G.
C

A 8

)]
Prove that AG:GE = 3:4, and that CG:GD = 6: 1,

(Hint: Assign weight 4 to A, 2 to B and 1 to C.)

6. Using the data in Exercise 5, let BG n CA = F and find

the numerical value of BG: GF and AF: FC.
#7. Add to the data in Exercise 5 that K is in EZ and
CK:KA = 1:2. Let BKNAE =L and BK N GD = M. Prove:

BL = IM = 3MK (This is a difficult exercise.)

A.8 Another Theorem

Our definition for addition of mass points applies to

pairs of mass points. In other words, addition 1ls a binary
operation., To make 1t possible to add three mass points we
introduce the Associativity Axliom, which says that aA + bB + cC
can be found by either finding (aA + bB) first or (bB + cC) first.

Either of these sums can be found and then a second addition

completes the calculation by which aA + bB + ¢C is expressed as
a mass point with one weight and one point. For our next theorem

we need to know how to add four mass points. This can be done by
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a repeated application of the Associativity Axiom as follows:
ah + bB + cC + dD = (aA + bB) + (cC + dD).
There are also other ways to associate, For instance,

aA + (bB + ¢C) + dD, This reduces the addition from four to

- three mass points, We now prove a second theorem,

Theorem 2., The segments joining the midpoints of op-
posite sides of a quadrilatceral bisect each
other,

Proof, Let ABCD be the quadrilateral (Figure A,9) and let
E be the midpoint of KB, F the midpoint of BC, G
the midpoint of CD, and H the midpoint of DA, We
have to pirove that EG bisects ﬁf, and that HF

bisects EE.

Figure A,9

We assign the weight 1 to each of A, B, C, D,

Then we have the following equations,

ERIC (1) 1A+ 1B = 2E
o 2Q()
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(2) 1B + 1C = 2F
(3) 1¢ + 1D = 2G
(4) 1D+ 1A = 2H

By Axioms 3 and 2 we can show that
(1A + 1B) + (1€ + 1D) = (1D + 1A) + (1F + 1C).
Thus
2E + 2G = 2H + 2F

.

If X is the midpoint of EG then 2F + 2G = UK.
If L is the midpoint of HF then 2H + 2F = 4L,

Thus LK = 4L
and

K=1L

Do you see that this completes the proof?

A,9 Exercises

1.

The purpose of this exercise is to see if an experi-

" ment agrees with Theorem 2, In performing the experi-

ment you should be careful to draw straight lines
and to locate midpoints accurately, Perform the ex-
periment on two different quadrilateral. figures having

shapes like these:

2991
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2. Verify whether or not the theorem is true for such figures
like those below, They are named ABCD to tell you that the
sides are EE; EE, 55, 53, in that order, This means that
KE and 65 are a pair of opposite sides and BC and DA are

another pair of opposite sides,

A B

3. In the quadrilateral ABCD below, AE:EB = 1:2,
BF:FC = 201, C:CD = 1:2, and DH: HA = 2:1,
Prove; EG and FH bisect each other, (Hint:
Assign weights 2 to A, 1 to B, 2 to C, and 1 to D.)

& <

Q > T
L, In the quadrilateral PQRS below, PA:AS = 1:3, SB:BR = 3:1,
RC:CQ = 1:3, QD:DP = 3:1, Prove: AC and BD bisect each other

P, 4 o

\
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5. As shown for the quadrilateral ABCD below, AP: PB = 1:2
BQ:QC = 2:1, CR:RD = 1:1, DS:SA = 1:1, Let SQ n PR = E,

Find the numerical values of RE: EP and SE: EQ,

A P )
s
3
\
Q
D $ c

A.10 Using a Definition

Consider the following problem:
In AABC (Figure A,10) D is the midpoint of

AB, E is the midpoint of AC, and F is the
trisection point of BC nearer B, Let DE n AF

= G, We are required to show that G is the
midpoint of AF and also the trisection point of

— A
DE nearer D.

F

Figure A.10

We begin by assigning - a weight of 1 to C. In order that
Q

293



~-289-

F be the trisection point of BC nearer B we assignh 2 to B,
Thus 2B + 1C = 3F.
Let us now consider what weight to assign to A, First,
in order that D be the midpoint of Eﬁ we should assign to A
the same weight that we assigned to B, that is, 2. In order
that E be the midpoint of EE we should assign to A the same
weight that we assigned to C, that is 1. Thus, we find ourselves
assigning two weights to A, or to put it another way, at A we
need twomass points: one is 2A, the other is 1A,
Suppose we add the mass points:
1A + 2A = 34,
by our definition., [Recall: aA + bA = (a + b)A.] Then as-
signing weight 3 to A, we note that 2B + 1C + 3A can be
calculated either as
(2B + 1C) + 34 (1)
or as
(24 + 2B) + (14 + 1C) (2)
Since 2B + 1C = 3F, (1) becomes 3F + 34, which is equal to
6H, where H is in FA, such that FH:HA = 1:1,
Since 2A + 2B = 4D and 1A + 1C = 2B, (2) becomes 4D + 2E
which is equal to 6K, where X is in DE such that DK:KE = 1:2,
But whichever way we calculate 2B + 1C + 34, we get the same

result. Thus 6H = 6K and H = K. Since H is on both FA and DE,

H=TFANDE =G,
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The actual calculations are few and can be written brief-

1y as follows,
2B + 1C + 3A is equal tot
(2B + 1C) + 3A or (2A + 2B) + (1A + 1C)

i
I

3F + 3A 4D + 2E
= 6H = 6K

Therefore H = K = G,

Thus FG:GA = 1:1, and DG:GE = 1:2,

A,.11 Exercises

1. (a) 1In the problem discussed in Section A,10 above

we started by assigning a weight of 1 to C,
Five the solution starting instead with the as-
signment of weight 2 to C.

(b) In the solutior: of the above problem we calcu-
lated (1) (2B + 1C) + 3A and (2) (2A + 2B) +
(1A + 12). There are at least two other possibil-
ities: (3) (2B + 34) + 1C and (4) (1C + 3A) + 2B,
Perform the calculations suggested in (3) and

(4) and interpret your results.

(¢) Perform the calculation {34 + 1B) + (1B + C)
and interpret the results,

(d) There is still another calculation for locating
G, in which the mass point at B is "split" into

1B + 1B, What is it? What is its interpretation?

Still another calculation for locating G is sug-
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gested by (2B + 1A) + (1C + 2A), Interpret th:s,
2., Suppose in AABC, D is the midpoint of KB and E is
the midpoint of AC, and F is in BC such that BF:FC =
5:4 and DE n AF = G, (See the figure below.) Prove that
G is the midpoint of AF, and that DG:GE = 5:4,

A

(Hint: Assign 4 to B and 5 to C.)

3, State a theorem which seems to be suggested by

exercise 2 and the probiem of section A, 10,
L, 1Investigate the case in which we take D and E as

trisection points of AB and AC, both nearer A,
instead of the midpoints, If BF:FC = 5:4, what
is the ratio AG:GF? Would the ratio AG: GF change

if D and E are trisection points of AB and AC but

we take BF:FC = 2: 37

5. In AABC, D is in 56 and %g = %, E is in CA and %%

. AD and BE meet in G. CG meets AB at F.

-
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o AF
(a) Find =

AF , BD . CE = 1,
(b) Prove: ¥ DC EA
(Hint: Assign 1 to B, What should you assign
then to C? Then to A?)

Solve Exercise 5 under the altered suppositions

.:.B.]_D.=_3_andg§=.5..
DC 2 EA 3
Exercises 5 and 6 are special cases of a theorem

called Ceva!' s theorem, named after an Italian who
is said to have discovered it. Ceva's theorem says:
In AABC, if F, D, E are interior points of AB, BC

and CA respectively and Kﬁ, EE, ahd CF meet in one

point then

Try to prove it. (Hint: Let BD = a, DC = b,
CE = c, EA =d,) (Difficult)

GD , GE , GF _

. ' GE
For the data in Ceva' s Theorem prove BE | OF

where G is the point in which Kﬁ, EE, and CF meet.

(Difficult)

PRI
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A,12 Mass Points in Space and a Theorem

At the beginning of this chapter we worked with mass

points on a line, Then we worked with mass points in a plane.
We end this chapter by discussing mass points in space.

We have considered the addition of four mass points in a
plane. Suppose we have four points not all in the same plane

as shown in Figure A.1ll.

Figure 4,11

Adding sets of three of these mass points, as we saw in

Section A.L4, determines points in the interiors of the trian-
gles ABC, BCD, ABD, and CAD. Suppose eE in triangle ABD is
the sum of the mass points ad, bB, and dD. Then the sum of
eE and cC would be a mass point fF with F on segment EC. Then
fF is in the interior of the space figure ABCD (a triangular
pyramid or tetrahedron).,.

We now prove a theorem about such a space figure which

will remind you of the theorem about the medians of a triangle

and 1ts consequences.,
O

298



294

D

<

Figure A.12

>

We begin with four points A, B, C, and D not in a plane
(see Figure A.12). Look at AABC and its medians Kﬁ, ﬁﬁ, and
CF. We know from Theorem 1 that these medians meet in a point;
name it G. The point in which the medians of a triangle meet
is called the centroid of the triangle. In what ratio does
the centroid G divide AH, from A to H? Now, ABCD, AABD, and
AADC also have centroids. Consider the segments joining the
centroid of one of these triangles to the fourth point. One
such segment is GD since it joins the centroid of AABC to D.
How many such segments are there? Do you think that these
four segments meet at a point? Indeed they do and that is

what our space theorem says.

Theorem 3. If A, B, C, D are points in space, not in a
plane, and G, is the centroid of AABC, Gz the
centroid of ADAB, G, the centroid of ADBC and
G, the centroid of ADCA, then DGy, CGs, AGj,

and 554 meet in a point which divides each
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of thesc segients in tihe ratio 1: 3 from
centroid to the point.
To prove this theorem we assign weight 1 to each of A,
B, C, D. Then we consider 1A -~ 1B - 1C - 1D,
One way to calculate this is to associate (1A -+ 1B - 1C)

which is 3G,. Then 3G, - D = 4H, where H is a point in G D

such that G,i:1d = 1:3. Thus 14 - 1B 4 1C + 1D = 4H, and
whether we calculate it as (1A - 1B + 1D) - 1C, or (1B + 1C
4 1D) + 1A, or (1A < 1C + 1D) + 1B, we continue to get U4H,

Do you sce that this coupletes the proof?

A.13 Summary

In this chepter we studied some properties of wass points
deductively. We started by defining mass points and addition
of wass points, The first axiom assured us that we had
an operational system. The second and third provided the proper-
ties of commutativity and associativity. We deduced three state-
ments which you may find useful to remember, We labeled them
theorems., One asserts that the medians of a triangle meet in
a point. Another asserts that the segments Joining midpoints
of opposite sides of a quadrilateval bisect each other., The
third 1s about four points in space, not in a plane, and the
centroids of <the four triangles determined by each triple of
four noints. It asserts that the segments joining the centroid

of each triangle to the fourth pvint meet in a point that

Q . ] . . . . .
]ERJﬂ:ldes each segmenﬁ in the ratio 1:3 from the centroid to

200
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the point.

We also solved many exercises by deductions and
thus proved many other statements which however we did not

call theorems, even though they are theorems.

A.14 Review Exercises

1. Draw AB making it 3 inches long. Let C be its mid-

point. Locate the centers of mass for the following

mass points:

(2) 24+ 1B (d) 1A -4 1B -+ 1C
(b) 1A - 2B (e) 14+ 2C - 3B
(¢) 2A - 1C (f) 24 -+ 4B - 3¢C

2, Solve for x and locate X in a drawing of AB where
IB is a one inch segment.,

(a) 34 - xX = 4B (¢) =xX < 2A

4B
(b) 2A 4+ xX = 3B (d) xX -+ 3A = 5B

3. Let 4 have weight 8 and let AB be a given segment.
Let C be the center of mass for mass points at A and
B. What weight should you assign B for each of the
following descriptions of C¥
(a) C is the midpoint of AB.
v) C is the trisection point of AB nearer A.

(
(c) C is the trisection point of AB nearer B,
(

d) C is the point of AB such that AC:C3 = 2:3,

T30
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In AABC, D is the midpoint of BC and E is the

point in CA such that CE:EA = 4:1,

(a) If weight 1 is assigned to B, what weights
should you assign to C and A so that D is the
center of mass of the mass points at B and C,
and E is the center of mass of the mass points

at C and A?
(b) If AD N BE = G, compute the values of AG:GD and

BG: GE.
(¢) If CG n AB = F, compute AF:FB,
In AABC, D is in AB and AD:DB = 1:2, E is in BC
and BE:EC = 221, F is in CA and CF:F4 = 1:2, Prove
that DF and AE bisect each other,
In quadrilateral ABCD, E, F, G, H, are respectively
in AB, BC, CD, DA. Each of AE:EB, BF,FC, and CG:GD
is equal to 2:1, DH:HA = 1:8, and EG N FH = K.

Prove EK:KG = 4:1 and FK:KH = 3: 2,

J02
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