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Chapter 7

REAL FUNCTIONS

7.1 Mathematical Mappings

The word mapping has a very special and important meaning

in mathematics. You recall from Course I that if we are given

two sets S and T and a process which assigns to each element in

S a unique element in T, we say that this defines a mapping h of

S to T. We write this in the form

h: S T.

The set S is called the domain of the mapping h, and the set T

is called the codomain of h. If s E S and h assigns t E T to s,

t is called the image of s and s is a pre-image of t. To indi-

cate that h assigns t to s we write

t.

Example 1. If the set S consists of the students in your

school and the set T consists of the teachers

in your school, the assignment of a homeroom

teacher to each student in the school is a

mapping h from S to T. Every student is assigned

a homeroom teacher, and no student is assigned

more than one teacher. There will be teachers

who serve as the homeroom teacher for many stu-

dents--perhaps 25 or 30--and there might be a

teacher who does not have responsibility for

a homerooms. However, each student is assigned

a unique homeroom teacher by the mapping h.

fl
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The domain of h is the set of students in your

school. The codomain of h is the set of teachers

in your school.

Example 2. Another example of a mapping is the assignment

of postal zip codes. In this case, set S is the

set of all postal address in the United States.

The set T could be the set of whole numbers.

Each element of S is assigned one and only one

element of T; that is, one and only one zip

code number. There are whole numbers which do

not serve as zip codes; for example, 1,267,893.

There are many addresses which are assigned the

same code number; for example, all homes in

Wisconsin Rapids, Wisconsin have zip code 54494.

But the important point is that each address is

assigned one, but not more than one, zip code

number.

Questions. (1) What is the domain of the zip code mapping?

(2) What is the codomain of the mapping?

In the first mapping illustrated, the letters "S," "T," and

"h" have a natural relation to the sets and the mapping they

symbolize:

S

T

h

the set of students

the set of teachers

the set of homeroom assignments

In this example S and T are chosen for the moment, in this context,

as names for particular sets. But the letter "S" is not bound
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forever to be the name of a set of students. It is also used in

Example 2 to name the set of postal addresses. Here, however,

"Se is not suggestive of addresses so a different letter, "A,"

may be used to be suggestive of the set of addresses. "z" then

is a natural candidate to represent the zip coding assignment.

Using "W" to represent the set of whole numbers the second mapping

can be indicated by

z: A

By contrast to S, T, h, z, and A, we will always use W as a

proper name. It represents the set of whole numbers each time

that it is used.

Choosing meaningful symbols for the domain, the codomain,

and the mapping is a convenient device when we deal olith spe-

cific sets and mappings. When the domain or codomain is a fa-

miliar number system such as Z or Q, these names are proper names

and always name the same set. By contrast, "S" and "T" may be

used to name different sets in different examples or problems.

But in each new situation it must be explained what sets the let-

ters name.

The process which assigns an element in the codomain T to

each element in domain S can be one of several types. If S con-

tains only a few elements, a chart or table will give a concise

summary of the assignments. For example, the assignment of addi,

tive inverses to elements of (Z5,+) is illustrated in Table 7.1.
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x E Z Inverse of x

0 0

1 4

2 3

3 2

4 1

Table 7.1

In other cases there may be a rule which tells row, given

an element of S, you can determine its image in T. For the home-

room assignment mapping, the rule probably would involve alpha-

betical and age ranking. The first 30 ninth graders are assigned

Mr. Anderson, the next 30 ninth graders are assigned Mr. Charles,

and so on.

A third form of assignment process is the arrow diagram.

Figure 7.1 (indicating only a few of the correspondences) illus-

trates that mapping p: A1 ----04,2 assigns At as the image of A,

B! as the image of B, and C! as the image of C by projection a-

long lines parallel to A3.

A2
B' C'

Figure 7.1

U V W X
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Questions. (1) Can you find an image for each point of Al?

If so, how?

(2) Can you find a pre-image for each point of

A2? If so, how?

A fourth common form of assignment process is that given by

a formula. For example, if S and T are both the set of rational

numbers Q, we can assign to each element in Q its double. Under

the mapping d

or in general,

7 d
-7

1.35 27

q
d

2q for all q E Q.

The following exercises test your ability to recognize

assignments which are mappings and some which are not. You will

also be asked to compute iyages and pre-images using various as-

signment processes.

7.2 Exercises

1. For each of the following explain why the given assignment

process does or does not define a mapping from set S to set

T.

(a) S 6 2 3 .3 10 7 5

T 1 12 2 9 2 12

(b) Students in mathematics 9X are assigned grades.

S is the set of students) T = CA, B, C, D, F).



(c)

T = (t, y, v, w, x, y, z1 S = fa, b, c, d, el

(d) S = T = the set of rational numbers with assignment

f 1

process q

2

9

2

12

T

6

2

3

10

7

5

2. If mapping g: has assignment process x g x + 2,

find the image under g of each of the following nurC)ers.

(a) -12 (d)

(b) - (e) 0

(c) 12

3. Using the mapping defined in Exercise 2, find a pre-image

(if any ex'sts) for each of the following numbers. (Remem-

ber: x is a pre-image of y if x---E--.y.)

(d) 156

(e) 0

4. Repeat the directions of Exercises 2 and 3 using the mapping
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f: Q Q with assignment formula x f 1x - 6-2.
5. Repeat the directions of Exercises 2 and 3 using the mapping

h: with assignment formula x---1 h --*-Ix1

7.3 Properties of Real Functions

As you saw in Section the mathematical concept of mapping

appears in a variety of settings with a variety of representations.

In this section and for the remainder of the chapter, we will fo-

cus our attention on a special class of mappings -- those whose

domain end codomain are Joth some subset (frequently al:) of the

real numbers, R. These mappings are called real functions. The

term "function" is synonymous with "mapping," and the adjective

real" is used to indicate that the domain and range set are both

subsets of the real numbers. Whenever the domain or codomain of

a real function is not specified it is understood to be all of R.

The restriction to real functions may seem like a severe li-

mitation of our study. But the real number system (R,-1-,) is a

system rich in assignments which are mappings. Since the whole

numbers, integers, and rational numbers are subsets of R, many

of the mappings you have studied previously are examples of real

functions. One of these was the function which assigns to each

real number its square,

x2.

To find the image of any real number x under this mapping, we

simply compute x x. Thus



and

_8_

71 f 225
-1 '

6o
f

3600,

-2
f

4.

Instead of writing out the expression "3 9," you

recall from Chapter 2 we use the notation

f(3) = 9 (read: "f of 3 equals 9"),

to say that, "the image of 3 under the mapping f is 9." Follow-

ing this notational convention we have

=

f(60) = 3600

f(-2) = 4

and so on.

Questions. (1) What is f(0)? f(A-)? f(-d7)?

(2) Find a replacement of "x" such that f(x)

4= .

If you thought carefully about question (2), you found that

2 2'
i

4
xn could be replaced by 7 or - ; that s, D- does not have a

unique pre-image under the function f. In Exercise 5 of Section

7.2 the function xh Ix1 gave rise to a similar situation.

The number 6 has two pre-images under the function h; namely, -6

and 6. On the other hand, for the function + 2, every

real number has only one pre-image. The problem with functions

like x x2 and
h

is that they assign the same

image to each of two distinct domain elements (see Figure 7.2).

13
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Figure 7.2

The function + 2 assigns distinct images to distinct

domain elements. For example, g(2) = 4, g(-2) = 0,

8 18

g(5) ' g( 79.) 5" ' g(°)

8 2
= 2, and so on.

This property, which distinguishes the function x---E--0-x + 2

from the absolute value function and the square function, is an

important one. Functions such as g, which assign distinct images

to distinct domain elements, are called one-to-one functions.

Each element of the domain is assigned its own private image.

Definition. A function f: S-----T is said to be one-to-one

if and only if for all a, b E S, a / b implies

that f(a) / f(b).

If a function f is not one-to-one, this fact can be demonstrated

by finding two elements a and b of S such that a / b but f(a) =

f(b); that is, two distinct elements of the domain which are

assigned the same image. For example, is not one-to-one

because 2 / -2 but f(2) = f(-2) = 4. Similarly, x----12--P-Ix1 is

not one-to-one because 3 / -3 but h(3) = h(-3) = 3.

If you suspect that a function is one-to-one, one way to

prove this is the case is to calculate the images of all domain

elements and check to see that they are distinct. For example,

inspection of Table 7.2 shows quickly that it does define a one-

14to-one mapping.
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S 1 2 3 4 5 6 7

T 3 5 7 9 11 13 15

Table 7.2

If the domain of a function happens to be a large finite set,

this procedure will be of little use. If the domain is an 'xi-

finite set, proof by this approach is impossible. Checking

images of several domain elements can give evidence (but not proof)

that classification of the function as one-to-one is probably

correct.

The function x

and x

max + 2 can be distinguished from

Ix1 by one other important property.

Although all three functions have the same domain and codomain R,

the images under f and h are always positive numbers or zero.

For example,

f(-2) = 4, h(-2) = 2,

f(-16) = 256 h(-16) = 16,

f(-,/7) = 7, and h(-..17) =

The function g uses every real number at least once as an image

for a domain element.

10 has pre-image 8,.

77 has pre-image 75

-32 has pre-image -34,

-752,466 has pre-image -752,468,

and so on. For this reason g is called a function from R onto

R.

15



Definition 2. A function k: S------1T is a function of S

onto T if and only if for each t E T there

is at least one s E S for which k(s) = t.

If a particular function is not onto, this fact can be ver-

ified by exhibiting one element of the codomain which is not

assigned as an image. For example, f: R-----4R with rule

is not a function from R onto R because there is no

real number whose square is -2. ((-2)(-2) /

Question. Can you show that the mapping with rule

is not a function from R onto R?

As was the case with one-to-one functions, if a function

is suspected to be onto, this is usually not easy to prove. If

the codomain of the function is finite, it may be possible to

check that each element is used as an image. Table 7.3 illus-

trates a mapping from Z3 to Zs, clearly showing it is an onto

function.

k:

Z0 0 1 2 3 4 5

Z/ 2 3 4 5 0 1

Table 7.3

Questions. (1) Is k also one-to-one?

(2) Is there any function from Z/ onto Ze which

is not one-to-one?

(3) Is there any function from Za to Z6 which

is one-to-one but not onto?

If the codomain of the given function is an infinite set (or

even a large finite set) it is impossible to check all codomain

11(1
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elements. One approach would be to select elements at random from

the codomain and check whether or not they serve as images. How-

ever, this would only give evidence, not proof, that the mapping

is onto.

When a mapping is not onto its codomain, it is often impor-

tant to specify and name the elements of the codomain which do

serve as images.

Definition 3. If k: S T, the range of k is the set of

all t r T for which there is an s E S such

that k(s) = t.

According to this definition, the range of and of

x 'h 1x1 is (x: x g R and x > 01. The range of x--=E--s.x + 2

is R, the same as the codomain of g. In fact, if you put toge-

ther the definitions of codomain, range, and onto function, you

will see that a function is onto if and only if its codomain and

range are the same set.

The following exercises are concerned with one-to-one and

onto real functions.

7.4 Exercises

1. Let f: R R have rule of assignment x---1.--rlx1 + 2.

For example, f(-3) = 1-31 + 2 = 3 + 2 = 5.

(a) Find standard names for:

(i) f(0) (iv) f(-4)

(ii) f(5) (v) f(27)

(iii) f(-5) (vi) f(-632)

17
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(b) Find a pre-image (if there is one) for:

(c) Describe the range of f.

(d) Is f: an onto function? Why or why not?

(e) Does each element of the range have only one pre-image?

(f) Is f: R R a one-to-one function? Why or why not?

2. Let g: R R have rule of assignment x -x.

(a) Find standard names for:

(iv) g(1-51)

(v) g(AT)

(vi) g(-7)

(b) Is g: R 'R a one-to-one function? Why or why not?

(c) What is the range of g?

(d) Is g: an onto function? Why or why not?

(e) Are there any real numbers x for which g(x) = x?

3. Let h: f-3, -2, -1, 0, 1, 2, 31-----4.Z have the rule of assign-

ment given by the following arrow diagram.

18



(a) Find standard names for:

(i) h(-2)

(ii) h(-1)

(iii) h(1)

(iv) h(o)

(v) h(3)

(b) Find a pre-image (if there is one) for:

( 1) -1 (ii) 2 (iii) 0

(c) Is h a one-to-one function? Why or why not?

(d) Describe the range of h.

(e) Is h an onto function? Why or why not?

4. Mappings other than real functions can also be classified as

one-to-one, onto, or both. Recall the zip code mapping of

Section 7.1, z:

(a) Is z a one-to-one mapping? Why or why not?

(b) Is z an onto mapping? If not, describe the range of z.

5. Let S= (x: x E R and 1< x< 21 and T= Cx: x E R and 0

< x < 11. k: is the function with rule of assign-

ment
k 1

(a) Find the standard names for:

(b) Find a pre-image (if there is one) for:

19
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(c) Is k a one-to-one function? Why or why not?

(d) What is the range of k?

(e) Is k an onto function? Why or why not?

6. Examine the function + 2; that is calculate some

images and pre-images to get an idea of the action of the

function.

(a) Do you think f: is one-to-one?

(b) Do you think f: is onto?

Be prepared to defend your conclusions.

7. Answer (a) through (d) as true(T) or false(F) .

If f: A-----11-B is a real function with range C, then

(a) C c B always.

(b) C E B always.

(c) C = B implies that f is onto.

(d) B c C implies that f is one-to-one.

7.5 Representing Real Functions

When mappings of W and Z were discussed in the first course,

arrow diagrams were a convenient device for picturing the assign-

ment process. For instance, the mapping (it could also be called

a function) d: Z Z with rule of as ;; 2x could

be partially represented as an incomplete arrow diagram on a single

number line as in Figure 7.3(a) or as an arrow diagram betw-en two

number lines as i Figure 7.3(b).

20 Figure 7.3(a)
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1 2

Figure 7.3(b)

However, when functions have is or even Q for domain arid co-

domain, the arrow diagram is a misleading, or at best incomplete,

picture of the function, since only a few assignments can be in-

dicated. Fortunately, a better tool is available.

Now return to the function f: R----*-11 with rule of assign-

ment xrxa. The domain and range of f are both infinite sets.

An incomplete arrow diagram is shown in Figure 7.4.

-3 -2 0

Figure 7.4

But this only shows five assignments. What happens to all the do-

2 4

main numbers between 0 and 1? between 1 and 2? between -1 and -2?

greater than 2?
21
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The basic problem is representing an infinite number of

assignments with a drawing of limited size. To get a rough

picture of the function, let's first make a table of some assign-

ments.

x -f

f (x)
25
T. 179

4
1 171

4
1
4

1 2
4

5

Table 7.4

Table 7.4 indicates only a small number of the assign-

ments of f, but it does have a form that suggests different repre-

sentation procedures.

The function f determines a collection of ordered pairs of

numbers -- each real number paired with its square. We can write

(3, 9), ,

or, for any x E R, (xlf(x)) = (x, )0).

From your work in coordinate geometry you know that the set

of all ordered pairs of real numbers, R x R, can be represented by

the points of a coordinatized plane. Therefore, if we locate on

a coordinatized plane those points which represent ordered pairs

generated by the function x---1.--0-x21 we will have a picture or

graph of the function. Unless otherwise specified when graphing

a function, we will label the domain axis "x," and the codomain

axis "y."

As a start, let's locate (see Figure 7.5) the points repre-

senting integer pairs: ( -3,9), (-2,4)0 (-1,1), (0,0), (1,1),

(2,4), and (3,9).
22
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Figure 7.5

(Note: We have chosen perpendicular axes, but

for convenience the units on the two axes are

not equal. Can you see what would happen if

the vertical unit were made as long as the pre-

sent horizontal unit?)

This is a start, but we are far from finished. The points (4, 16),

(-16, 256), (10000, 1,000,000), and many others generated by f are

not trot graphed. In fact, this last point would require a graph

so large that we clearly must satisfy ourselves with representing

only a limited number of the ordered pairs--perhaps ((x, x2):

-3 x 31.

In one respect then, this new method of representing a function

23
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has the same limitation as an arrow diagram. However, for x

between -3 and 3 it will do very much better. Let's locate

(Figure 7.6) the points corresponding to (-4, ),

Figure 7.6

We now have a procedure for obtaining still more points in

our graph of the function. We could next locate the points ob-

tained when x increases from -3 by steps of then by steps of
1

, and so on. However, even if we had the patience to carry out

those computations, we could not hope to obtain all points with

rational number coordinates, much less the points generated by

r r2irrational numbers, such as (off, 2), (17, p-), and so on.

The points already located give a strong indication of the

24
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pattern remaining points will fit. Therefore, the standard pro-

cedure is to locate these remaining points without explicitly com-

puting their coordinates. If a and b are both positive or both

negative, and if x is between a and b, then x2 is between a2 and

b2. Thus it seems reasonable that the graph should look like

that in Figure 7.7.

Figure 7.7

x

This method of representing a function by points in a coordin-

atized plane is called graphing the function or drawing the graph

of the function.

Definition If f: S --0T is a real function, the graph

of f is the set of all points in the plane with

coordinates (x, f(x)) for x E S.

25
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Thus the graph of x------o-x2 is the set of all points in the plane

with coordinates (x, x2) for x E R.

Question. How does the graph of x .x2 show that as

Ix' gets larger, f(x) gets larger (whether x is

positive or negative)?

In addition to providing a picture of the thnction xf x2,

graphing has an interesting bonus. The graph of f, if conF..ucted

carefully, allows us to calculate approximations to certaln irra-

tional numbers. For example, we can approximate ,f7 as follows:

(See Figure 7.8.)

(1) ,5 is the real number whose square is 3. Therefore, the

point with coordinates (A5, 3) lies on the graph of

f
x2.

(2) To locate the point A with coordinates (15, 3) we move

horizontally along a line 3 units above the x-axis un-

til we meet the graph of the function. This line f(x)

3 intersects the graph at two points. However, since

,/5 is by definition a positive number, we choose the

point of intersection over the positive x-axis.

(3) To locate the point with x-coordinate A. on the x-axis,

we move vertically from A(j3., 3) until we intersect that

axis.

26
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y

Figure 7.8

3
On the given graph /3 is located at approximately IT. Checking,

(4)2 = = 346,

so 1 is a reasonable approximation of ,f3.

What we have done is to use the graph of f to locate a posi-

tive pre-image of 3. The graph can also be used to locate images

of numbers in the domain of f. For example, to find f(-2.5), be-

gin at the point on the x-axis with coordinate -2.5. Then follow

the vertical line through that point until it intersects the graph

off. To locate the point with coordinate (-2.5)2 on the y-axis,

we move horizontally from B(-2.5, (-2.5)2) until we intersect the

y-axis. The y coordinate there is approximately 6.3. Since (2.5)2

= 6.25, this is a reasonable approximation. Note that in this
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process there is no choice as to the point of the graph to be used

since a function assigns exactly one image to each element in its

domain.

What we have done for the function x--.-x2 may be done

for any real function whatsoever. One note of caution'. After we

located 13 points, we "filled in the graph" assuming that the

pattern already established would continue. In the exercises

you will be asked to check that this is indeed the case (at least

for a number of other points), with that function. However, you

will also encounter several functions that might fool you if you

are not careful.

7.6 Exercises

In these exercises, and hereafter, we will write "the point

(a, b)" to mean the point with coordinates (a, b).

1. From the following graph of determine approximate

coordinates of:

(a) A

(b) B

(c) C

(d) D

(e) E
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2. Using the graph in Exercise 1, compute approximate valus for:

(a) ,../ff (b) J5 (c) Af6 (d)

Then check each approximation by squaring it.

3. For each approximation in Exercise 2, one measure of the

error can be calculated as follows: (your estimate of .J )2

- ni.

For example 1(1 )2 -
1

31 lb'
For each of your estimates,

find this measure of error.

4. Let g: R R have rule x 3x + 2.

(a) Complete the following table.

x 0 3 -3

g(x) 2 0

(b) Construct a pair of equally scaled perpendicular COOT-

dinate axes.

(c) Locate the points (x, g(x)) generated in (a) on the set

of axes,

(d) Join the located points in the pattern you feel is like-

ly to continue (i.e. fill in the graph).

(e) Find standard names for g(5), g(-5), and g(4-) .

(f) Locate (5, g(5)), (-5, g(-5)), and (4, g(;)) on your

graph of g.

5. Let h: R R have rule x Ixl.

(a) Complete the following table.

x 0 2 4 6

h(x)

(b) Locate the points (0, h(0)), (2, h(2)), and (6, h(6))

in a plane rectangular coordinate system; that is, a

9g
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plane coordinatized with equally scaled perpendicular

axes. (See Chapter 6, Section 6.20.)

(c) Complete the graph in the pattern you feel is likely

to continue.

(d) Locate the points (-1, h(-1)), (-3, h(-3)), and (-5, h(-5)).

(e) Is the graph of h the graph you drew for part (c)?

6. Let p1: R-----R be the function which assigns to each

real number x the nearest integer greater than or equal

to x. For example, pi q0 1, pi (4) = 2, pi(- = 0,

p1(7) = 7, and so on.

(a) Complete the following table

x -41-
2

-31-
2

_21-
2

_11
2

1
-ff

1
-ff

, 1
.1..--

,1
G--

PI ( X) 0 1 2

(b) Locate the points (x, p1(x)) generated in (a) in a plane

rectangular coordinate system.

(c) Complete the graph in the pattern you feel is likely to

continue.

(d) Find standard names for:

(i) Pi(1) (v) Pi(-

(ii) P1() (vi) P1(10

( iii) CO (vii) pi(1 )

(iv) p1(- ( viii) (

(e) Locate the points (x, p1(x)) calculated in (d) on your

graph of part (c).

7. Graph the function k: R R with rule xk -2x - 3.

30
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8. Graph the function m: R with rule x - 2.

9. Which of the following graphs are graphs of functions?

10. Try to formulate a geometric rule for determining whether or

not a graph represents a function.

31
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11. Which of the following functions from R to R are one-to-one?

(Explain each answer.)

(a) x---0,-x2 (d) m----i.p(x) (See Exercise 6.)

(b) -1- 2 (e) 2x - 3

(c) ixi (f) - 2

12. Inspect the graphs of the functions listed in Exercise 11.

Try to develop a geometric rule for determining whether or

not a graph represents a one-to-one function.

13. Which of the following are graphs of one-to-one functions?

Why?

32



-28-

7.7 Composition of Real Functions

The interesting function pl: which appears in

Exercise 6 of Section 7.6 has a familiar interpretation. Called

the postal function, it is the E.ssignment process used in calc La-

ting postal charges for letters. Since postal rates are figured

on the basis of a cost per ounce or partial ounce, it is necessary

to round off weight measures in ounces to whole numberr, in the

following manner:

(1) Weights bctween 0 and 1 (including 1) round off to 1;

(2) Weights between 1 and 2 (including 2) round off to 2;

(3) Weights between 2 and 3 (including 3) round off to 3;

and so on.

The function p: R+ R with p(x) = pi (x) for all x E R+

(p is called a restrictior of pl) satisfies the postal weighing

requirements. For example,

14) = 1, p(1) = 1, P(13)
1%

= 21) 2,
3

p(103) = 11,

and so on.

Calculating the weight in whole ounces of a letter is the

first step in determining the postage required. This whole number

weight must then be multiplied oy the rate per ounce, currently

6 cents for first class mail. In other words, the function

nr 6n is used. The two step procedure can be summarized as

follows:

actual weight p whole ounce weight 4.postage charge

In practice these functions produce

1
3 1

r cu
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31 p4 24

174 -L3 --,18 108

p(x)
r

r(p(x)).

This application of two functions in sequence should be fa-

miliar. It is really composition of functions. You recall that

if f: A-----0-13 and g: B-----0-C are mappings, there is a com-

posite mapping h: which assigns images as follows:

If f(a) = b and g(b) = c, then h(a) = g(f(a)) or h(a) = c. The

fact that h is the composite of g with f (or g following f) is

indicated

h = g o f. (See Figure 7.9.)

a b c

\\\
h

Figure 7.9

h is a function which has the same domain as f, the same codomain

as g, and makes the same image assignments as the two step process,

g following f.

As another illustration of composition, consider functions

x2 and ± 2, where f and g have R for domain

and codomain.

(1) f(-2) = 4 and g(4) = 14

so g°f (-2) = 14.
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(2) f(6) = 36 and g(36) = 110

so g °f ( 6) = 110.

(3) f( - iff) = 2 and L;( 2) = 8

so g°f (-./) = 8.

In general,

f(x) = x2 and g( x2) = 3x2 + 2

so g °f (x) = 3x2 2.

The composite g °f is a function from R to R with rule of assign-

ment

gOf
X 3X2 -1- 2.

Composing two real functions to obtain a third is s:imilar

to another familiar mathematical process. If F is the set of all

functions with the real numbers for domain and codomain, then com-

position is a binary operation on F. (F,°) is an operational sys-

tem because if f: R-----13 and g: R-----rR, then g °f is a func-

tion from R to R.

For instance, if m and n are functions from R to R given by

x m x - 2 and x x + 3

then n o m is a function from R to R given by

n o m
x

In a similar fashion,

+ 1.

( 1 ) if x m 3x + 2 and x x2, then x n o m
+ 2)2.

(2) if x n n o m
5x and x -x, then x -5x.

The composite, n o m, is a function from R to R in each case.

You should check these indicated compositions for various values

of "x" to see that the rule of n o m makes the same assignments as

35
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the two step process "n following m."

Since (F,°) is an operational systempit is natural to ask

what properties it has in common with other operational systems.

Is ° an associative operation? Is a commutative operation? Is

there an identity element for (F,°)? Are there inverses under 0

for each element of F? Before reading ahead, make a guess, based

on your experience with functions, about the answers to these

questions.

The easiest question to answer is that concerning the exist-

ence of an identity element in (F,°). Consider the function

g: R R rule of assignment x x.

g(0) = 0, g(5) = 5, g(-11) -11

and in general, g(x) = x. If g is composed with any other real

function f, then for all x in R,

g o f(x) = g(f(x)) = f(x)

and f o g(x) = f(g(x)) = f(x).

Therefore, gof=fog= f.
In a particular case let x---2--0-3x + 2. Then we have

1 ra
-7 -20

1 g 20-
1
2

and
,1 g 1 1-20

2

Since identity functions will be important in other situations,

we make the following definition.

Definition 5. A real function j: given by

x Jx is called an identity function

on S.

36



37
-32-

This definition actually defines an infinite number of identity

functions, one for each choice of subset S of R. The identity

function on W (written "jW" is a different function from the i-

dentity function on Z (written "jz"). The difference, however,

is in the domain and codomain, not in the method of assigning

images.

Associativity of composition of functions is also easy to

demonstrate. In fact, composition is associative for mappings

in general, not just real functions, whenever the compositions

are defined. Let's assume that four sets -- A, B, C, and D --

are given with mappings f: g: B C, and h: C D.

(Note that the domain of g is the same as the codomain of f and

the domain of h is the same as the codomain of g. This is nec-

essary because g must assign images to all range elements of f

and h must assign images to all range elements of g.) (See

Figure 7.10.)

Figure 7.10

To show that (h ° g) o f = h o (g o we must show that

the two functions assign images in the same way (clearly they have the

same domain. A and codomain D.) The picture illustrates the steps
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in the proof. (h o g) f assigrs the image of a by following

f to b and then (h o g) directly to d. The function h 0 ( g 0 0

assigns the image of a by following (g 0 f) directly to c and

then proceeding to d by function h. Regardless of the procedure

used -- (h 0 g) o f or h 0 (g 0 -- the final assignment of

the image for a is the same.

Thus 0 is an associative operation on F with identity j.

The question of commutativity is considered in the following

exercises. Inverses are the subject of Section 7.9.

7.8 Exercises

1. g
If + 75 and x ----- 4

1
x

'

find a standard name for:

(f) 0 f(15)

(g) g ° f( -30)

(h) g f(24.9)

(i) g ° f(6)

(j) g ° f(-25.8)

p is the postal function, find a standard

(a) f(15)

(b) f(-30)

(c) f(24.9)

(d) f(6)

(e) f(-25.8)

2. If x x2 and

name for:

( a) f( 11)

(b) f(;)

(c) f(- 73)

(d) P(4)

(e) p(;)

(f) PCP

38

(g) p o f(4)

(h) p 0 f(;)

(i) P ° f(- 73)

(j)

(k)

(1)

f 0 70(4)

f 0 10(;)

f 0 p($)
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3. Copy and complete the following table for real functions

x 24.5, and x x + 15.75.

x h( x) k( x) hok( x) koha ( x)

0

19

-33

-17.25

3.14

-2.7

Doeshok=k0 h?

4. Copy and complete the following table for real functions

18x, x------0-x - 7.

x m( x) n( x) mon( x) nom( x)

0

43

-15

12

Does m 0 n = n m?

5. Is 0 a commutative operation on F? Why or why not?

6. Calculate first class postage for letters weighing:

(a) ounce (b) -P6. pound (c) 34 ounces (d) 317 pound

To calculate airmail charges, one needs a function k which

counts the weight of a letter in number of half-ounces plus

a fractional part (if there is one). For example,

k(4) = 1, k(;) = 2, k(173.) = 4, etc.
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(a) Find the standard name of:

(v) k(4)

(vi) k(4")

(vii) k(2)

(viii) k(3)

(b) Graph k: S-----0-11 where S is the set of real numbers

greater than zero and less than 5. (Be careful.)

(c) Airmail letters currently cost 10 cents per half-ounce.

At this rate, what is the postage cost of letters weigh-

ing:

(i) ounces (ii)
8 3

ounce (iii) 32. ounces

(d) Which of the following (if any) relates the airmail

function k to the first class function p? For all x > 0:

(i) k(x) = p(2x) (ii) k(x) = p(2x) (iii) k(x) =

1
p(x) (iv) k(x) = 2p(x)

2

8. In New York, as in most states, there is a 3% state sales

tax. The function x---L--0.03x assigns to each purchase

price the corresponding tax.

(a) Compute the tax t(x) on items costing

(i) $ 5.00 (ii) $ 4.30

(iii) $ 17.25 (iv) $ 99.95

(b) Graph the function t: S R where S is the set of

real numbers between 0 and 90 using scales like the follow-

ing:

Liu



-36- 41

9. In practice, the tax calculated as .03x must be rounded off

to the nearest penny. If r: R-1-----0R is the desired round-

ing function, r(.135) = .14, r(17.133) = 17.13, etc.

(a) Find a standard name of:

(i) r(95.999) (ii) r(32.095) (iii) r(762.012)

(b) Find a standard name of:

(i) r ° t(.10) (ii) r 0 t(.16) (iii) r 0 t(.17)

(iv) r ° t(.49) (v) r ° t(.50) (vi) r 0 t(.83)

(vii) r 0 t(.84)

(c) Each computation in (b) yields an ordered pair (x, r 0 t(x)).

Draw the graph of these pairs using a scale like the

following.

$ tax (rounded off)
A

.03

.02

.01

.33 .67 1.00
$ cost
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Does this graph of r ° t resemble any other familiar graph?

10. Let x '3x + 2 and x g 1.(x - 2) be functions from

R to R.

(a) Find standard names for:

(i) f(0) (iv) g(2)

(ii) f(i) (v) g(7)

(iii) f(-2) (vi) g(-4)

(b) Find standard names for:

(i) g(f(0)) (ii) g(f(i)) (iii) g(f(-2))

(c) Find the rule for the composite function g ° f.

(d) Find the rule for f 0 g.

11. A mimeographing service advertized the following prices for

printing copies of term papers, reports, and similar items:

(a) 50 cents per page for mimeo stencil

(b) 1 cent per printed page for printing

What is the rule which assigns to each whole number n the

cost of printing 40 copies of an n page paper?

7.9 Inverses of Real Functions

The set F of all functions from R to R is an operational sys-

tem under composition. ° is associative and has an identity jR.

Therefore, if it can be shown that each element of F has an inverse

under -- that is, if for each f E F there is a g E F satisfying

fog=g0f=
(F, °) can be called a group. But it this

possible?

Let' s look at some simple functions in F and try to find their

inverses. For example, let x -max . This function adds 5

42
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t.) every real number. Thus a natural choice for the inverse

of f is x x - 5 which subtracts 5 from every :eal number.

0f 0

10---1--15---g--1.10

-10 ---g---10

For all real numbers x,

g° f (x) =g (x + 5) = (x + 5) - 5 x

and

f ° g (x) = f (x - 5) = (x - 5) + 5 x.

Therefore g is an inverse for f in (F, °) and f is an inverse for

g in (F, °).

2
As another example, if x

f
7x, then x g 2x is a

likely candidate for its inverse.

= x

gand x--).-2x-o- ) x.
2 3 2

Therefore f and g are inverses in (F, °).

If you look back at Exercise 10 of Section 8.8, you will see

that x 3x + 2 and x
3

- 2) are also inverses of each

other in (F,°). Is (F,°) a group? If you are suspicious that you

are being enticed into a false conjecture by carefully chosen e-

xamples, your suspicion is justified. (F,0) is not a group.

Consider f: with rule x x3. If f is to have

an inverse in (F,°), then there must be a function g: R

wit.: the propertygof=fog= jR. But how will this inverse

function be defined, for example at 4? We must have

43
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-2 f )4 g -2,

and

2.

For this to be true, g must somehow assign two images to a single

real number 4. Any such assignment is not a function, so f cannot

have the desired inverse.

Another function without inverse is the constant function

x O. c assigns 0 as the image of every real number so c

is a real function. However, the arrow diagram of Figure 7.11

shows quickly why it is impossible to have an inverse for c.

R

R

Figure 7.11

The inverse of assignment c, illustrated in Figure 7.12 is clearly

not the diagram of a function.

R 4

R
0

Figure 7..12

If some real functions have inverses and others do not, it

would be helpful to have a method of testing functions to see

11
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whether or not they have inverses. Looking carefully at the e-

xamples of functions which do not have inverses, you will no-

tice one common difficulty. Function x---1-0-x2 has no inverse

because f(-2) = f(2) = 4, and no function can assign both 2 and

-2 as images of 4. Functions x 0 has no inverse because

0 = c(p4) = c(3) = c(-77) = ... and no function can assign two

or more images to the real number 0.

This same difficulty will accompany any other function which

is not one-to-one. Therefore, we can make the general statement:

A function which is not one-to-one has no invers... Is the follow-

ing statement true? "A function which is one-to-one always has

an inverse"?

Let f: R R have rule of assignment x---`./x1-.1_

According to this rule

0
f(0) 0 + 1

_ 0

a.N

f(7) -3-

-3 3f(-3) = 3-77 7
f(10) 10 10

10 +1 -11

f(200)
-200 200

200 + 1 201

The graph of this function is illustrated in Figure 7.13.

45
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Figure 7.13

If you compute the images of many more real numbers, you will

notice an interesting pattern developing. First, the images

assigned by the rule x
ix1 + 1 are all numbers between -1 and

1. Second, no number is used as an image more than once and each

number between -1 and 1 is the image under f of some real number.

Surprising as it may seem, f is a one-to-one function with domain

R and range I = x E R and -1 < x < 11.

Question. Why is "<" used rather than "<."?

There are functions from R to R which reverse the assign-

ments of xf x However, any such function will make
'xi + 1
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additional assignments unwanted for the inverse of f. If

g: reverses the assignments of f,

g(0) = 0 since f(0) = 0

g(i) = 1 since f(1) = 2"

g(- = -2 since f(-2) = -

and so on. For all x in R,

g ° f(x)

f assigns an image between -1 and 1 and g assigns to each number

between -1 and 1 its pre-image under f. But g: R-----0-13 must

also assign images to numbers outside I, like 10, -237, etc.

This is where g fails as an inverse of f.

If g assigns a real number m as the image of 10, then

f g(10) f(m)
. Since the range of f is I, f 0 g(10),

or f(m), is in I, and f 0 g(10) / 10. Therefore f 0 g ja and

f and g are not inverses in (F,°).

Although f: R-----043 does not have an inverse, the function

h: with rule of assignment x TEr=---F.1 has the same

domain as f, makes the same assignments as f, and has an inverse

k: with rule of assignment x k
1 -

such that

k 0 h = and h 0 k = ji

Even though k and h are not inverses in the operational sys-

tem (F, 0) the notipn of an inverse of a function is extended to

include functions such as k and h as inverses under composition.

Definition 6. If f: A------B is a real function, g is called

an inverse of f if and only if g 0 f = jA and

f 0 g = 47
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It is clear, by the definition of composition, that g must be a

mapping of B to A. This definition, although stated for real

functions, describes function inverses in general. The following

theorem expresses the fact, which has been illustrated many times,

that a function f has an inverse if and only if it is one-to-one

and onto.

Theorem A real function f: A B has an inverse, g, if

and only if f is one-to-one and onto.

Since the theorem is in the form of a biconditional, we break the

statement into its two component conditions, and prcve each one

separately.

Proof.

1.

Figure 7.14

Is the assignment constructed by reversing the assign-

ments made by f a mapping of B to A? Since f is onto, for

any t B, t is the image of some element s in A. Since f

is one to one, t is the image of exactly one element of A.

Hence, the assignment constructed by reversing the assign-

ments is a mapping. Call it g.

48
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Figure 7.15

Since f and g reverse assignments, for any element b E B,

f o g (b) = b and for any element a E A, g o f (a) = a (see

Figure 7.15). Thus, g o f = jA and f o g = jB. By defini-

tion, then, g is the inverse of f. Conversely, if a mapping

f: A B has an inverse g, then f is one to one and

onto.

1.

B

If f has an inverse g, we know by definition that g 0 f

= jA and f 0 g = jB. To show that f is onto, take any t E B.

Since f 0 g = jB, we have f o g = j(t) = t. But f o g (t)

= f(g(t)) where g(t) = a is in A (see Figure 7.16). Hence, for

any t E B, t = f(s) for some a E A.

49
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Figure 7,17

To show that f is one to one, we proceed indirectly.

Suppose f is not one to one. Then there must be two dis-

Unct elements r and s of A that have the same image t in

B under f. That is, f(r) = f(s) = t. (See Figure 7.17)

Since g o f = jA, r = g o f(r) = g(f(r)) = g(t).

That is, the image of t under g is r. But we also have that

s = g o f(s) = g(f(s)) = g(t).

But r = g(t) and s = g(t) is a contradiction, because g

is given to be a mapping. Hence, f is one to one.

Definition 7. If f: and g: A-----10-C are functions

with the propert'r that f(a) = g(a) for every

a E A, then f and g are called equivalent

functions.

A pair of equivalent functions are f: R-----R and g: R R
o

where both f and g have the rule

Does every one-to-one function have an inverse? The answer

to this question must be "No, a function f: has an in-

verse if and only if it is one-to-one and onto." If f is one-to-one



but not onto B, f is equivalent to a function which doe have an

inverse; namely, the function with the same domain and assignment

process as f, but with codomain equal to the range of f.

The interrelationships of one-to-one, onto, range, codomain,

and inverse function are illustrated in the following exercises.

7.10 Exercises

1. The following arrow diagrams, graphs, and tables, represent

functions from A to B. Explain for each wh., the given func-

tion (i) is or is not one-to-one; (ii) is or is not onto;

(iii) has or does not have an inverse.

(a)

(b)

(c)

51

A = fa, b, c, d, el

B = (at , , ,

A = (a, b, c, dl

B = Ca', , c', d', I

A (x: -5 < x < 31

B= fy: -2 < y < 41
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(e)
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x

1A= (x: 1
x 2f1

B = fy: -3 y < 31

x 1 2 3 4 5 6 7 8

f(x) 10 11 13 16 20 25 31 38

= (1, 2, 3, 4, 5, 6, 7, 81
B = (10, 11, 13, 16, 20, 25, 31, 38, 46, ...1

2. For each function in Exercise 1 that does not have an inverse

because it is not onto its codomain, describe the codomain of

an equivalent function which does have an inverse.

3. Let g: R-----40-1( have rule x. Graph g.

(a) Is g one-to-one? Why?

(b) Is g onto? Why?

(c) Does g have an inverse? If not, 14hyT If so, give its

rule.

4. Graph x---11--0-3x.

(a) What is the rule for the inverse of h?

(b) Graph the inverse of h on the same Luordinatized

plane as h. ry)
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x with a red pencil on the same

coordinatized plane.

5. Repeat the directions of Exercise 3 with x

6. Repeat the directions of Exercise 3 with x

g
2x.

f

7. Do you see any pattern in the geometry of the graphs of

Exercises 3, 4, and 5? Try to state it in the language of

reflections or symmetry.

8. Sketch the graph of x
h 1 1

(a) Does h have an inverse? Why or why not?

(b) If your answer to (a) was "yes," make a table

showing 10 assignments of the inverse of h.

(c) If you Lnswer to (a) was "no," can you modify

the codornain of h to get a function which does

have an inverse? If this is impossible, can you

restrict the function by choosing a smaller domain,

thus producing a function with the same rule of

assignment, but having an inverse?

9. The postal function (see Section 7.7) p: R±----e-W has the

following graph:
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(a) Ia p one-to-one? Why or why not?

(b) Is p onto? Why or why not?

(c) Does p have an inverse? Why or why not?

(d) If your answer to (c) was "no," can p be modified to

have an inverse by restricting the domain or codomain?

(Make the minimal restriction needed.)

1
10. The function with rule

r
i has domain and codomain

R\(01.

(a) Why can 0 not be in the domain of r?

(b) Complete the following table.

x 1 2 3
1-
2

1
I-
2

12-
2

-1 -2 -3
1

- f
11

---g
1

-2f

1
x

1
(c) Graph r R- using the values computed in (b).

(d) Is r a one-to-one function? An onto function?

Why or why not?

(e) Does r have an inverse? If not why not? If so, what

is its rule, domain, and codomain?

11. Let h: R T
h

74
x

; 1
have rule x and k: I -----0-R

have rule

(a) Find

x I= R and -1 < x < 11.x 'xi . x E

a standard name of:

(i) h(0) (vi) k(0)

(ii) h(1) (vii) k(1)

(iii) h(-1) (viii) k(

(iv) h(2) (ix) k(lir)

(v) h(-2) (x)

(Recall: etc.)
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(b) Find a standard name of:

(i) koh(0) (vi) hok(0)

(ii) k °h(l) (vii) hokM

(iii) koh(-1) (viii) hok(..1)

(iv) k °h(2) (ix) hok(;)

(v) koh(-2) (x) hok(-i)

(c) Is koh(x) = x for x = 0, 1, -1, 2, -2?

(d) Is hok(x) = x for x = 0, - ?

(e) Can you find x E R for which koh(x) x?

(f) Can you find x E I for which hok(x) x?

7.11 [f + g] and [f - g]

One salesman nsked to estimate the cost of printing this ma-

thematics book derived the following price formulas:

(1) Cost of printing and binding: $6000,00 plus an additional

$3.00 per book.

(2) Cost of delivery: $.10 per book.

These formulas are actually rules of assignment for two functions

from W to R given by

+ 6000 (printing and binding cost),

and

x
d

.10x (delivery cost).

To present his estimate to the project director, the sales-

man had to combine these two price functions into a single estimate

function E: You are familiar with one way of combining
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two functions to produce a single function -- that is composition.

However, composition doesn't seem to be the appropriate operation

in this situation.

p 0 d(x) = p(. lox) = .3x + 6000

and

d 0 p(x) = d(3x + 6000) .3x + 600.

Both compositions yield cost functions which assign costs lower

than the cost of printing alone:

The natural operation on functions in this case is what we

will call addition of functions. The estimated cost of produc-

ing and delivering x books is given by the formula

(3x + 6000) + (,lox)

or

p(x) + d(x).

Here are some sample prices calculated with this new sum function.

E(x)

x 212.0 LILO a(x) + d(x)

100 6300 10 6310

500 7500 5o 7550

1000 9000 100 9100

3000 1500o 300 1530o

Question. In the formula $6000.00 plus $3.00 per copy, what

does the $3.00 per copy represent?

Addition of real functions occurs naturally in many other

settings. For instance, if two pumps produce 500 gallons per

hour and 1000 gallons per hour respectively and they are run for

x hours, then their combined production P is given by the sum of
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two functions

P2X PL---0-500x and x 1000x

x P (500 x ± 1000x) = 1500x

In other cases, it is natural to combine two functions by

subtraction. For inutance, a fuel dealer buys oil at 15 cents

per gallon and sells it at 23 cents per gallon. If he sells x

gallons, his gross profit function P: W R is the difference

of his sales function x .23x and his cost function x .15x.

(.23x - .15x) = .08x

Addition and subtraction of real functions occur often

enough to merit more systematic study.

Definition 8. If f: R-----R and g: R R, the function

h: R R with rule of assignment h(x) =

f(x) + g(x) is called the SUffl of f and

We use "(f + g]" to name the sum of the functions f and g.

Therefore, for all repa numbers x, [f + g](x) = f(x) 4 g(x).

[f + g] is definitely a function from R to R because for each

real number x, f(x) and g(x) are real numbers, and + is an opera-

tion on R.

Definition 9. If f: and g: the function

h: R R with rule of assignnPnt h(x) =

f(x) g(x) is called the difference of f and E.

We use "[f - g]" to name the difference of functions f and g.

Therefore, for all real numbers x, [f - g](x) = f(x) - g(x) . A-

gain we know [f - g] is a real function since subtraction is an

operation on (11,+).
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Question. Is it possible to define subtraction as an opera-

tion on the set of all functions from W to W?

From Z to Z?

It is important to keep in mind the double use of the symbols

"+" and "-" in expressions such as

(1) + g](x) = f(x) + g(x)

and

(2) [f - g](x) = f(x) g(x).

On the left in (1) and (2) "+" and "-" indicate operations on

functions; on the right in (1) and (2), "Jr' and "-" are the fam-

iliar arithmetic operations on real numbers. The symbols are

used for both operations because addition and subtraction of func-

tions are defined in terms of addition and subtraction of the

real number images of the functions. The brackets "[ ]" are used

to indicate that [f ± g] is a function -- not to be confused with

"f(x) + g(x)" which is the sum of two real numbers.

Let' s study one more instance of addition and subtraction

of functions. Let f and g be function from R to R with rules of

assignment x f 1x and x =.x - 2,
2

In general

+ g](0) = f(0) + g(0) = 0 + (-2) = -2

[f + g](17) = + 15 =

[f + g](-12) = -6 -14 = -20

[f - g](0) = f(0) - g(0) = 0 - (-2) = 2

[f - g](17) = 8 - 15 =

[f - g](-12) = -6 - (-14) = 8.

[f + g] [f g] 1- 2; x - x + 2.

iy.



The sum and difference of two functions can be illustrated

graphically (see Figure 7.18).

Figure 7.18

The graphs of f and g intersect at the point (4, 2) showing that

f(4) = g(4) = 2.

This in turn implies that [f + g](4) = 2 + 2 = 4. Checking the

graph of [f + g] you see that (4, 4) is one of the indicated

points. Similarly [f - g](4) = 2 - 2 = 0 and (4, 0) is one of

the points of the graph of [f - g]. Notice that f(0) = 0. Thus

[f + g](0) = f(0) + g(0) = -2. This means that the graphs of

[f + g] and g intersect at (0, -2). In the following exercises

you will be given practice computing sums and differences of func-

tions, both algebraically and graphically.
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7.12 Exercises

1. Let -3 and x--L-1.0-1x1 have domain and codomain R.

(a) Find a standard name for:

(1) f(0) (vi) g(0)

(ii) f(1) (vii) g(1)

(iii) f(-1) (viii) g(-1)

(iv) f(161) (ix) g(163.,)

(v) f(-23) (x) g(-23)

(b) Find a standard name for:

(i) [f g](0) [f - g](0)

(ii) [f gl(1) (vii) [f - g](1)

(iii) [f ± g}(-1) (viii) [f g](-1)

(iv) [f M(16) (ix) [f g] (1.6a;)

(v) [f -F g}( -23) (x) [f g)(-23)

(c) Find a standard name for:

(v)

fog(0)

fog(1)

fOg(-1)

f°g( 16?-,)

fog( -23)

(d) Find a standard name for:

(i) [g + f](0)

(ii) [g -1- f ](1)

( [g + fl(-1)

(iv) [g f 164)

(v) [g + f](-23)

(vi) gof(0)

(vii) gof(1)

(viii) g°f(-1)

( ix) gof(

(x) gof(-23)
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(e) What 82e the rules of assignment for:

[f + g]

(ii) [g +

(iii) [f - g]

(iv) [g - f]

(v) g °f

(vi) fOg

(f) Graph f, g, [f + g], and [f - g] on a single coordina-

tized plane as was done in the text. (You might find

it easier to use different colors for the graph of each

function.)

2. Let x x3 and x 3x 1 have domain and codomain R.

(a) Complete the following table.

x h( x) k( x) [h + k] ( x) [h lc] ( x) [k h.] ( x)

0

7

12.5

14

3

(b) Find standard names for:

(i) hok(0) (iv) koh(5)

(ii) koh(0) (v) hok(-2)

(iii) hok(5) (vi) koh(2)

(c) Give the general rule of assignment for:

(i) [h + k]

(ii) [h k]

(iii) [k + h]

(iv) [k h]

(d) Graph h, j, [h + k] and [h - k] on a single coordinatized

plane. (Hint: Make the vertical scale unit smaller than

the horizontal scale unit.)
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Let x 2x + 1 and x k
0
1x - 2.

(a) Graph f and g on a single coordinatized plane.

(b) Graph [f + g] and [f - g] on the same plane.

Try to do (b) using the graphs of f and g.

4. Copy the graphs below. Then draw the graphs of [f + g]

and [f - g] using the same axes.

5, Sketch the graph of the postal function p and the graph of

x---1--.x on separate pairs of axes.

(a) Complete the following table.

x 1

7
2

7
57 2

77 87 3
107

p( x) 1 3

p( x) - x 2
7

1

gr)
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(b) On a third pair of axes graph [p - j]:

(Recall R-4- = x E R and x 01.)

6, Sketch the graph of [p + t]: where

7. Graph + 1 and x
a

x2.

(a) Find standard names for:

(i) [f + g](0) (iv) [f + g](-1)

(ii) [f + g](1) (v) [f + g](-2)

(iii) [f + g](2)

(b) Graph [f + g].

In Exercises 8 - 10, you are asked to explore the following ques-

tion: "Is (f,+) a group, where, F is the set of all functions

from R to R?"

8. Is + associative on F?

(a) If + 2, x 3x and x2,

find the rule for:

(i) [f + g] (iii) [[f + g] + h]

(ii) [g + h] (iv) [f + [g + h] ]

(b) Is + g] + h] equal to [f + [g + h]]?

(c) For any functions f, g, and h from R to R, and any x E R,

[[f + g] + h](x) = [f + g](x) + h(x) (1)

= (f(x) + g(x)) + h(x) (2)

by Definition 8.

Show that [f + [g + h] ] (x) is equal to (2).

(d) Does (c) help you conclude anything about the associa^

tivity of + on F? Explain your answer.

9. Is there a function c: such that

[c + f] = [f + c] = f

for any function f E F? Do you see that the rule for c is
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0?

10. Is there an additive inverse for each element of F?

(a) If x x2 and find a standard name

for

[f + g](0) (iii) [f + g](-22.5)

(ii) + g](17) (iv) [f +

(b) Complete: x Ef 4- gip

(c) For any function h: R R, let [-h] be the func-

tion which makes assignments x [-h] h(x). Is [-h]

in F for every h in F? Explain your answer.

(d) Complete: x
h + [ -h]

a

(e) Does (d) help answer the question "Is there an additive

inverse for each element of F?" If so, how?

(f) Is (f,+) a group?

11. Copy each of ne following graphs of functions and sketch

the graph of the corresponding additive inverse in F on the

same axes.
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12. Is addition of real functions commutative? Explain your

answer. Is subtraction of real functions commutative? Ex-

plain your answer.

7.13 [fg] and fp

In Section 7.11, addition and subtraction of functions were

defined so that [f g](x) = f(x) + g(x) and [f - g](x) = f(x) -

g(x) for all real numbers x. These definitions depend upon the

fact that all images under f and g are real numbers. Addition

and subtraction of functions can therefore be defined in terms

of addition and subtraction of the images of the functions.

Following the pattern set in defining [f + g], there is a

natural definition of the product of two functions.

If xf xs and x g 3x - 1, then f(2) = 8 and g(2) = 5.

Therefore if k is to be the product of f and g, k(2) should equal
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f(2).g(2) (=8.5 = 40). Similarly

k(-5) = f(-5)0g(-5) = (-125) ( -16) = 2,000; k(10) = 1000.29

29,000;

and in general,

for all x E R, k(x) = f(x).g(x) = x3(3x - 1).

Definition 10. If f: R R and g: the function

k: R R with rule of assignment

x k f(x).g(x) is called the product of

1: and E.

We use "[f.g]" to name the product of functions f and g.

Therefore, [fg](x) = f(x).g(x) for all real nurri'ers x.

Addition, subtraction, and multiplication are all operations

on the set F of functions from R to R. Can division be defined

in a natural way as an operation on F? If x----0.-x3 and

x g 3x - 1, then it is reasonable to expect that the quotient

of f and g will be defined so that

and in general

Ng-)(2) - 12) 8

g 2) "9

[ -11](-5) =
g -5 7=DE

(1)( x) = g(x _ x - 1

Question. Evaluate f(*), g(.), and [..)(t).

What difficulty does this present to defining

a new function [ ?

(7]
Although x u---131 assigns images to most real numbers,

g x

it does not define a function from R to R because there is no real
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1
number assigned as the quotient of f(A.-) = -27 and g(-k) = 0. In

another case, when ;:fain fails to define

a function from R to R because no number is assigned as the quo-

tient of f(2) = 8 and c(2) = 0 or f(-3) = -27 and c(-3) = 0 or

any other pair f(x) = x3 and c(x) 0.

These examples show that division of functions is not an

operation on F.

However we can make the following definition.

Definition 11. If f: R and g: then the

function r A --R with rule of assignmentLg

[.7]
x

x)
is called the quotient of f and EL.

(A = (x: x E R and g(x) 0))

We write m[f]" with the understanding that the domain of this

function is always restricted to those real numbers x for which

g(x) / 0.

The restrictions on dividing functions suggest that (F,e) is

not a group because some functions in F don't have multiplicative

inverses. The function c: with rule is a

certain troublemaker, but since this is the identity for (F,+;,

we should investigate (F\(c),.)

Before we can look for inverses in (F\(c)0) we must know

if there is an identity. You recall that jR was the identity for

(F0°), and x c 0 the identity for (F,1-). (See Exercise 9 of

Section 7.12.) Let i: R-----1R have the rule x 1. Then

for any function f in f \(cl
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[ i ]( x) = f ( x) i( x) = f( x) a. = f ( x)

and

[if](x) = i(x)f(x) = 1f(x) = f(x)

for all real numbers x. Therefore x 1 is the required

identity of (F,.).

Let x---11---11-2x be a function from R to R. If h is a function

proposed ES the multiplicative inverse of k, then we must have

for all real numbers x

[11k](x) = h(x)k(x) = 1.

But k(0) = 0 and

D-110(0) = h(0).(0) = h(0).0 = 0

and '1 is net the required inverse. Thus no function in F will

do the job. Thus (F\(c1,.) is not a group. Since there are ele-

ments in F\tcl without inverses, (F,+,.) is not a field. (See

Chapter 4, Section 4.1.) However, (F,+) is a group (see Exercises

8-10 Section 7.12), and it is natural to ask just what structure

the two-fold system (F,+,.) has. This question is the theme of

the following set of exercises.

7.14 Exercises

1. Let x 2x and x
___k 3xx oe functions from R to R.

(a) Find standard names for:

(i) h(0) (vi) k(0)

(ii) h(6) (vii) k(6)

(iii) h(8.0 (viii) k(8.4)

(iv) h(-12.6) (ix) k(-12.6)

(v) h(-27) (x) k(-27)
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(b) Find standard names for

(i) [h 10(0) (vi) [k h](0)

(ii) [h. 10(6) (vii) [k h](6)

(iii) [h k](8.4) (viii) [k h](8.4)

(iv) [h k](-12.6) (ix) [k h](-12.6)

(v) [h k](-27) (x) [k h](-27)

(c) Find standard names for:

(i) [1-12c-](0)

(ii) (1D(6)

(iii) [0(8.4)

(d) Find standard names for:

(i) hok(0)

(ii) hok(6)

(iii) koh(8.4)

(iv) koh(-27)

2. Graph the functions h and k of Exercise 1 on a single coor-

dinatized plane. Then graph [h k] on the same axes.

2(Note: x [h.k]
0--
2x2 but x

hok
3 3

3. Complete the following table.

x f(x) g(x) Ef + g](x) [f4(x)

2 13
1

2

-7- -24 4-

5 20 -17

r 0 1

4. Let x lx1 + 1 and x
1x1

1
+ 1 be assignment pro-

cess for functions from R to R.
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(a) What is the range of h? of g? of [h g] ?

(b) Complete the following table.

x

Ix1+1

1

ix1+1

(c) Graph h and g on the same coordinatized plane.

(a) Graph x---L-41 (see Section 7.13) on the same plane

(perhaps in red).

5. Let x 2x2 + .3 and x---1 o-1 be functions from R to R.

(a) Find standard names for:

(i) f(-5) (iv) i(-5)

(ii) f(14) (v) i(1.4)

(iii) f(-6.5) (vi) i(-5)

(b) Find standard names for:

(i) [f i]( -5) (iv) [i f](-5)

(ii) [f i](14) (v) Ci f](lk)

(iii) [f i](-6.5) (vi). [d. f](-6.5)

6. Graph xf rx2 + 1 on a large coordinatized plane

(a) Compute
1

-r---- for x equal to:
x +



(b) Graph x
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a 1

x2 + 1
using the same set of axes as

used for f.

7. Below is a graph of a function h: Copy the given

sketchgraph, and using the line i:

the graph of x---0-h(.3)-) on the same axes.

8. If f, g and h are functions from R to R, then for every

real number x, f(x), g(x) and h(x) are real numbers. It is

also true that for each x E R,

[[f g] . 11](x) = ([f . g](x)) h(x) (1)

= (f(x) g(x)) h(x) (2)

(a) Show that [f [g h]](x) is equal to (2).

(b) What, if anything, does (a) suggest about a property

9.

of .on F?

if x g 3x - 1, and x 2x are functions

from R to R, copy the following table, and complete it.

x f( x) g( x) h( x) f gj ( ) f h] ( x) f g] ( x)+ Ef h ( x)

2

0

-2
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10. Extend the table in Exercise 9 to include:

[g + h](x) [f. [g + h] ] (x)

11. What property of (F,+,.) is suggested by Exercises 9 and 10?

12. Re-examine Sections 7.11, 7.12, 7.13, and the preceding

exercises in this section. Try to list all the significant

properties of (F,+,.) and also those familiar properties of

two-fold operational systems that are not true in (F,+,.).

13. If f: R R, we can define a new function [3f]: R

as follows: x3f 3f(x). In general, for any real

number a, [af]: R R has rule of assignment

[af] af(x). This new function [af] is called the scalar

product of f by the real number a. Let x 2x + 3 be a

function from R to R.

(a) Find standard names for:

(i) [3±](0) (ii) [3f](5) (iii) [3f](-7)

(b) What is the rule for [3f]?

Let x---5-0-x2 be a function from R to R.

(c) Find standard names for:

(i) [3g](0) (ii) [3g](5) (iii) [3g](-7)

(d) What is the rule for [3g]?

(e) Find standard names for:

(i) [3[f + g])(0) (ii) [3[f + g]](5)

(iii) [3[f + g]](-7) V (iv) [3f](0) + [3g](0)

(v) [3f](5) + [3g](5) (vi) [3f](-7).4. DM( -7)
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7.15 The Square Root and Cube Root Functions

The function x x2 was studied in Sections 7.3 and 7.5.

This squaring function does not have an inverse for composition

because it is not one-to-one. However, if the domain is restricted

to the positive real numbers, the restricted function does have

an inverse. You recall that an accurate graph of x x2 was

used to calculate rational approximations of jff and J5 (see Figure

7,19).

Figure 7.19

Following this procedure we could theoretically obtain an approx-

imation to the square root of any non-negative real number. Given

a positive real number, we can locate its square root as the x-coor-

dinate of a point on the x-axis.
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Therefore, we can define a new function with domein and

codomain Ro
+

This function has the property that b---=2:4-a if

and only if a > 0 and b = a2. Instead of the usual function no-

tation, with which we would write "r- (b) = a," we will write

"JE = a" to indicate that the square root function assigns a as

the image of b or that the square root of b is a. Some square

roots are easy to compute. For example, vt- = 0, 4. = 1, = 2,

An easy way to obtain the graph of the dr- function is to use

the fact that for a > 0 and b Z 0, a------ob if and only if

when xf ix2 . That is, (a, b) is in the graph of

,f- if and only if (b, a) is in the graph of f restricted to R40. .

For example, we found off and ,./3" from the graph of f by finding

the points (df, 2) and (,50 3) in the graph of f. Thus, (2, jff)

and (3, 4) are in the graph of dr-. Hence, we graph the reversed

ordered' pairs of f restricted to R10- to obtain the graph of dr-.

But, even better, there is a nice geometric relationship be-

tween the graph of f and the graph of Ar . This is illustrated

in Figure 7.20, where g and h are any two functions such that

A(x, y) is in the graph of h if and only if 160(y, x) is in the

graph of g.
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X

This can occur if and only if A' is the image of A under the

reflection of the plane in the line y = x. To see this, observe

that rectangle 0 B' A' C' must be the image of 0 B A C under the

reflection in the line y = x. Since the coordinates of A are

(x, y), the coordinates of A' must be (y, x). Likewise, A is

the image of A' under the same reflection so that the figure formed

by the graphs of f and g is its own image under this reflection and

hence symmetric with respect to the line y = x.

Question. Are g and h inverse functions if their domain

and codomain are both R
o (assuming the graphs

continue symmetrically)?

The graph of ,/ is now constructed from the graph of f re-

stricted to R
o

+
using the reflection in the line y = x. See if you

can figure out a neat way to construct this graph yourself using

paper folding or tracing paper.
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We saw how a rational approximation of J3 and if can be found

using a graph of x------.x2. A similar procedure can be used for

finding a rational approximation to 3iff, the real number (and there

is only one) which when cubed yields 2. The graph of x g x3

is shown in Figure 7.21.

Figure 7.21

There are two important differences between x f
x2 and

x g -04:3 that are evident from a comparison of the graphs of the

two functions. (See Figures 7.19 and 7.21.) The squaring func-

tion is n...ither one-to-one nor onto R. The cubing function is

one-to-one and onto R and thus has an inverse Vr--: R R which

assigns to each real number its cube root; that is b = a3 if and

only if VE = a.

Some cube roots are easy to = 0, VT = 1, VZT = -1,
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7 3 IT i , and so on. But, as with ,/r-, the graph of

,/-- can best be constructed by reflecting the graph of g in the

line y = x(see Figure 7.22).

Figure 7.22

X

The graphs of and r are used in the following exercises to

find rational approximations of the cube and square roots of cer-

tain real numbers. Both the functions .f have a special

property, called the multiplicative property. A real function h

has the multiplicative property if and only if for every a and b

in the domain of h, h(ab) = h(a) h(b). The function f: R

given by xf x2 has this property.

flab) = (ab)2 = (ab)(ab) = (aa)(bb) = a2b2 = f(a) f(b). This

argument follows from the rule of f and the associative and commu-

tative laws of (R,).
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The function / "inherits" this multiplicative property from

its inverse, f restricted to R
+

in the following way.

For a Z 0 and b Z 0 Wab = Ari, jg if and only if (da7E)2 =

(g ,)92 by definition of jr... But,

( EU)a = ab by definition of dr;

and,

(jg: ,5)2 = (ja) 2 (5)2 (f has the multiplicative property)

a b (definition of I- and

"4t7" and ",.TIP (called radicals) are names for range ele-

ments of j and V-.

The domain element on which / or V acts is called the radi-

cand. "3I" is said to be a radical of index 3 with radicand 12.

"AY is a radical of index 2, even though the 2 is not written.

The multiplicative property of dr- and 3/ allow many useful

transformations of radical names for real numbers.

Example 1. J17 = 1473 = j4. ,5 = 2,5

Example 2. = JF73 = A J3 =

Example 3. f=g-41 = *A.i5

Example 4. 2=

Example 5. 37 = Vf7 Vff = 3Vff

Example 6.

Some real functions have an analogous additive property e. g.

for all a and b in the domain of the real function h, h(a + b) =

h(a) + h(b) . For example, f: R-----041 given by x---1--17x has this

property since f(a + b) = 7(a + b) = 7a + 7b = f(a) +

a
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Air; however, does not have the additive property. One counter-exam-

ple suffices.

Take a = 4 and b = 9. Then,

9 = j175. But ,fiT ,5 = 2 + 3 = 5. Clearly,

/ 5.

The distributive law aids in simplifying some expressions in-

volving radicals.

Example 7. 3J d5 + 4,T = (3 - 1 4 0,5 = 6,T5.

Example 8. (jff - 3)(A- + 3) (jff - + (j -3)3

jf dff - + 3j - 9

. 2 - 9 -7.

7.16 Exercises

1. Use the graph of ,T": 11-10. R given by x Jr- to find

rational approximations for:

(a) y

(b)

(c)

(a)

(e) ,147.
.2
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2. Check each approximation in Exercise 1 by squaring. For

example, if you found 15 Z 2* then (21)(2+) = = 54-6.

3. Use the graph of x tr----o-25 to find rational approximations

for:

(a) VF

(b)

(c)

(d) 3).4.

(e)

4. Check each approximation in Exercise 3 by cubing. For exam-

ple, if you found NE 7. 2i, (2.03 = 212 158.
8.

5. Answer the following questions about the square, cube, square

root, and cube root functions. For which real numbers x is:

(a) x2 > x

(b) x2 < x

(c) x2 = x

(d) = x(and x 0)

(e) jR. < x(and x 0)

( f) A > x(and x 0)

(j) x3 > x

(k) x2 < x

(1) x2 = x

(g) jic> x2(and x 0) (p) P5>

(h) < x2(and x 2. 0) (q) 3x < x3

(i) JR. = x2(and x 0)

O
(r) 25 = x2
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(Hint: It might help to graph the functions on a single

coordinatized plane, and also to draw the line y = x.)

6. Transform each of the following so that the radicand is the

smallest possible positive integer and so that the radical

does not app3ar in the denominator of any fraction (as done

in Examples 1--3, 5, 6).

(a) d121 (e) /47 (i) (m)

(b) 000 (f) da7 (j) (n)

(c) J67 (g) d'500 (k) (o)

(d) ,V64 (h) V-108 (1) g (p)
W-9

7. Perform the following operations. Use the properties of

T and r and the real numbers to write your final answer

compactly.

(a) AT 47 (e) 5AF 32 (i) (K J3)( AP + A)
(b) 2g - 3,5 (f) 2/47 + 51 (j) (8 - AT)(4 +

(c) - (g) (2 + d9)(5 -

(.d) + J53 (h) (4X - 5)(4A-6 + 4)

8. Prove that g: R R with rule x x3 is multiplicative.

Use this to show that its inverse, r : is multipli-

cative.

7.17 Summary

In this chapter we have studied some properties of real func-

tions -- those with domain and codomain contained in R. Since real
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functions are a special class of mappings, the properties con-

sidered were often familiar: one-to-one, onto, inverse, identity,

and composition. To illustrate these properties a number of real

functions were studied in some detail: the postal

function p,
'

The fact that all real functions assign images that are real

numbers permits definition of many new operations on functions:

[f 4 g], [f - g], [f g], and [af]. The operational systems

(F, 0), (F, (F,.), and (F,+,.) have familiar structures.

Some important points of the chapter are the following:

(1) A fanction f: R------1R has an inverse if and only if

it is one-to-one and onto. However, if f is one-to-one

and not onto, it is equivalent to a function which has

an inverse.

(2) F, the set of all functions from R to R, is an opera-

tional system under composition. (F, 0) ts not a group.

(3) Any real function f can be represented partially by a

graph -- the set of points on a coordinatized plane

with coordinates of the form "(x,f(x))."

(4) The functions x x2 and x
a

x2 and their graphs

can be used to obtain rational approximations of ./iE for

any non-negative real number x and of 'VT: for any real

number x.

(5) : R'
-;

R
o

is the inverse of f: Ro=---.R0J where

And r".: R R is the inverse of g:

where x 8 x3.

(6) (F,-1,.) is not a field.
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7.18 Review Exercises

1. Let x
h

-78--

x' and x
c.

2x - 1 be functions from R to R.

Copy and complete the following table.

x h(x) g(x) goh(x) [h + 4(x) Eh g] (x)

0

1

-1
1

2-
2

-4
12

-19

V2

1-31

2. Graph the function x----h---0-21x1 for -3 < x < 3.

3. Graph x---1--0-3x - 1.5 for -4 < x < I.

4. For each of the graphs given below:

(a) is the function one-to-one?

(b) what is the image of 2?

(c) what is the pre-image (if any) of -2?

(d) copy the given graph and sketch the graph of
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5. For each of the following functions from R to R determine:

(a) Is it one-to-one? If not, show why by counterexample.

(b) Is it onto? If not, show why by counterexample.

(c) Give a rule for the inverse if it exists.

(1) x f Ix' (4) +

(2) g (5) m 3.14x x3 x

(3) - 289 (6)x-11-4.17x x 5x

6. For the functions given in Exercise 5 find a standard name

for:

(a) f(-7.51)

(b) g(-13)

(c) h(17)

(d) k(-J)

(0) m(752)

(f) n(.25)

(g) A011(.25)

(h) nom(.25)

84

(i) h°g(2)

(j) hog(-2)

(k) [f I g](15)

(1) [f -I- [-g]](15)

(m) [n g](15)

(n) [g n](10)

(o) [4h](12)

(p) [f g](-3)
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7. For the functions given in Exercise 5, determine the rule

of assignment for:

(a) [h n]

(b) [h n]

(c) nom

(d) mon
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( ef) [g:n. g]

(g) [5g]

(h) gQic



CHAPTER 8

DESCRIPTIVE STATISTICS

8.1 Introduction

You have often heard, on radio and television, the warning:

Don't be a "statistic"! What does that mean? What are statistics?

What ere statistical data? The World Almanac and daily newspapers

are of statistical data end of statistics. You are a walking bundle

of statistical data. Your age, your height, the number of members

in your family, your street address, cre all examples. In all

of these cases we are using the words statistical data (in brief,

data) to stand for numbers used to describe observations.

A statistic (descriptive statistic) is a number computed

from statistical data. Thus en "average" of two bits of statis-

tical data is a statistic.

In this chapter we will study the gathering of statistical

data, its presentation in the form of tables and graphs, and the

calculation of certain statistics such as the average and the standard

deviation (a measure of the spread of statistical data).

8.2 Examples of Sets of Data and their Graphical Presentation

A mathematics teacher gave the same test on Probability to

two different classes each of which had 35 students. There were

ten question each of which was worth five points for a correct

answer end zero points otherwise. The set of possible test
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(0, 5, 10, , 45, 501

The results for Class I end Class II are recorded in

Table 8.1 and Table 8.2 respectively:

20

5

30

45

10

5o

3o

0

0

25

20 35 4o 20 35

25 4o 35 30 3o

15 25 45 15 4o

4o 4o 35 35 35

25 35 25 4o 20

Table 8.1

TEST GRADES FOR CLASS I

20 15 15 10 45

15 10 20 25 20

25 25 35 20 15

35 20 25 20 15

15 15 30 10 5

20 20 3o 3o 20

20 30 20 20 15

Table 8.2

TEST GRADES FOR CLASS II
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There were only eleven possible grades for the test Dia

probability. It would not make sense for this type of measure

to assign other real numbers between two consecutive multiples

of five as test grades. You would be quite puzzled, if on such

e test your teacher assigned you a grade of the square root of

twenty-nine. The test data is an example of one type of discrete

data. Later you will work with date gathered from heights, weights,

time and other measures where we will think in terms of subsets

of the real numbers which include all real numbers within some

interval.

This type of date is said to be continuous data.

The data in Table 8.1 and Table 8.2 was taken directly from

the teacher's record book in alphabetical order of the students

names. For this reason it is difficult to get much of the infor-

mation that e teacher might desire about the test results. The

Frequency Table, Table 8.3, presents the data in such e way that

much information is readily obtained from the table.

Grades

0

5

10

15

20

25

30

CLASS I

Frequency

Cumulative

Frequency

CLASS II

Frequency

Cumulative

Frequency

2

1

1

2

4

5

4

2

3

6

10

15

19

88

0

1

3

8

12

4

4

0

1

4

12

24

28

32
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35 7 26 2 34

4o 6 32 0 34

45 2 34 1 35

50 1 35 0 35

Table 8.3

FREQUENCY TABLE FOR TEST GRADES OF

CLASS I AND CLASS II

Question. Use Table 8.3 to find the difference between the

greatest and the least grade received in Class I.

Do the same for Class II. Are the differences the

same for Class I end Class II?

Definition 1. In any set of date the difference between the

greatest and the least measure is called the

range of the set of data.

Question. Use the cumulative frequency column for Class I

in Table 8.3 to find the middle grade for Class I.

Do the same for Class II. For which class was the

middle grade greater?

Definition 2. If a discrete set of data has an odd number of

measures, the middle measure is called the

median of the set of date. If the number of

measures is even, the "average" of the two

middle measures is the median.

Question. Again use Table 8.3 to find the grade with the

greatest frequency in Class I. Do the same for

Class II. Are these numbers the same for both

classes?
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Definition 3. In a set of data a measure that occurs with

a frequency at least es large as the frequency

of any other measure in the set is called a

mode of the set of date.

Example. In the set of date (3,4,4,4,5,5,6,6,6,7,8) both

4 and 6 are modes. Note the three 4,s represent

different measurements and therefore ere different

elements of the set of data. The frequency diagrams

in Figures 8.1 and 8.2 represent graphically the

same set of data that was represented in tabular

form in Table 8.3. Some aspects of the data that

are obscure in the table ere more apparent in the

figures.

Frequency 7

6

5

4.
3.

2

0 5 10 15 20 25 30 35 40 45 50 Grades

Figure 8.1

Frequency Diagram For Data in Table 8.3

Grades For Class I
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Frequency 12

11

10,

0 5 10 15 20 25 30 35 40 45 50 Grades

Figure 8.2

Frequency Diagram For Data in Table 8.3

Grades For Class II

Notice that in the graphs, or frequency diagrams, in Figures

8.1 and 8.2 the lengths of segments represent the frequencies of

the various grades. Notice also that the range end mode ere very

easy to determine from the graph. But in addition to this, it is

also easy to get some idea of how the grades are scattered or spread

by examining the diagram. The two diagrams are placed on the page
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in such a way that it is easy to compare the sets of data that

are represented.

When you take a test, you may be interested in how well you

did on the test with respect to the rest of the class. One way

is to find out how many students in the class received a grade that

was less than or equal to the grade that you received. The cumu-

lative frequency diagrams in Figures 8.3 and 8.4 provide this

information for Class I and Class II. For example, suppose you

were in Class I and received a grade of 25. You would look along

the horizontal axis until you come to the grade 25. Then you would

look et the point on the y-axis which is the same dis,,ance from the

x-axis as the length of the segment above the grade 25. In Figure

8,3 this shows that there are 15 grades which ere which are less

than or equal to the grade of 25 for this test. Another way to

think of your standing is that you did at least es well as about

43 percent of the class. Looking at it another way, about 57% of

the class did better then you.
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a

0 5 10 15 20 25 30 35 40 45 50 Grades

Figure 8.3

CUMULATIVE FREQUENCY DIAGRAM FOR GRADES

OF CLASS I
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0 5 10 15 20 25 30 35 40 45 50 Grades

Figure 8.4

CUMULATIVE FREQUENCY DIAGRAM FOR GRADES

OF CLASS II

94



-90-

Next we give an example of a set of data which is lased on

continuous measure of time. We will illustrate appropriate types

of graphical representation for such data.

The quality control engineer in a light bulb manufacturing

plant took 50 bulbs from a large lot of 60-watt bulbs manufactured

during a day (making sure to select bulbs in such a way that the

likelihood of getting a representative sample would be high), and

determined the length of life for each of the 50 bulbs by burning

them until they expired. To simplify the presentation each of

the 50 measurements was rounded off to the nearest multiple of

ten, (See Table 8.4.)

910 1110 1010 1070 1290

1000 990 880 780 1150

1150 1030 1030 1270 1310

1050 1170 1180 1380 1080

1230 1060 1130 86o 960

1220 930 1050 1080 940

1230 1030 1010 1200 10 60

1220 1320 1290 1110 1100

1020 1120 1110 1070 1210

1130 96o 1170 950 1070

Table 8.4

50 BULB-LIVES IN HOURS TO NEAREST MULTIPLE OF TEN



-91-

Here we have 50 observations. How can we picture ald study

them? We notice that the shortest life is 780 and the longest

1380. Since the range is fairly large and there are not too many

repetitions, we simplify the presentation by grouping the data in

intervals of 50 hours with the agreement that the right end-point

of each interval belongs to that interval. That is, if a bulb

should "expire" at the end of one interval and the beginning of

the next, it belongs to the lower interval. If ele group the data

into intervals of 50 hours starting with 775--825, 825 -875, 875--

925 etc. that have mid-points 800, 850 etc. we get 13 intervals.

Table 8.5 shows a frequency table for the data on the lives

of light bulbs grouped into intervals of 50 hours.

Interval Midpoints Frequency
Cumulative
Frequency

775 - -825 800 1 1

825 - -875 85o 1 2

875 -925 900 2 4

925- -975 95o 5 9

975-1025 1000 5 14

1025 - -1075 1050 10 24

1075-1125 1100 7 31

1125--1175 1150 6 37

1175--1225 1200 5 42

1225- -1275 1250 3 45

1275- -1325 130o 4 49

1325- -1375 1350 0 49

1375-1425 1400 1 5o

Table 8.5

FREQUENCY TABLE FOR THE GROUPED DATA ON LIGHT RULES
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In getting information from this table note that the sixth

entry in the cumulative frequency column, 24, tells us that there

were 24 bulbs that had lives of 1075 hours or less. The last entry

in this column shows us that there were 50 light bulbs that had

lives of 1425 hours or less.

We can represent the data of Table 8,5 graphically and

illustrate certain aspects of the data more clearly by use of a

frequency polygon, frequency histogram and a cumulative frequency

polygon.

Figure 8.5 shows both a frequency histogram and a frequency

polygon.
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Figure 8.5

FREWENCY HISTOGRAM AND FREQUENCY POLYGON

FOR THE DATA ON THE LIVES OF THE 50 BULBS
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The frequency histogram consists of e number of rectangles,

one for each interval whose frequency is not zero in our teble.

The base of e rectangle is the width of the interval, end the

height of the rectangle is the number of bulbs with burning time

within the interval.

In Figure 8.5 certain points have been assigned letters

to call etention to the Frequency Polygon ABCDEFGHIJKLMNOPQ.

Each such labeled point except the first two (A end B) end the

last two (P end Q) is the midpoint of either the upper base of

a rectangle of the frequency histogram, or of en interval of the

histogram (when there is no rectangle over that interval). The

points A and B are the lower left-hand vertex end upper lefthand

vertex, respectively, of the first rectangle; the points P and

Q are the upper right-hand vertex and lower right-hand vertex,

respectively, of the last rectangle of the histogram.

Question. Can you give en informal argument to show

that the area of the frequency polygon is the

same number as the sum of the areas of the

rectangles in the histogram?

Question. Can you describe what will happen to the frequency

polygon if you keep increasing the number of data

end decreasing the size of the intervals?

It is often the case that one wishes to know the number of

measures in a set of data that are less than or equal to some

particular number. For example in the data on light bulbs, one

may be interested in the number of bulbs that had a burning time

99



-95-

less than or equal to 1175 hours. It is also very possible

that a quality control engineer might be interested in knowing

what percent of the lot of 50 bulbs had a life which was less

than or equal to 1150 hours. The cumulative frequency polygon

in Figure 8.6 can provide this information. For example the number

of bulbs associated with 1175 hours by the polygon is 37.
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From the cumulative frequency polygon in Figure 8.6 it is

possible to get many types of information:

(1) You can find the number of bulbs that had a burning

time less than or equal to some particular number of

hours. For example if you follow the dotted line in

Figure 8.6 from 1175 on the horizontal axis up to the

graph end then horizontally to the vertical axis you

will see that there were 37 bulbs that had a life which

was less than or equal to 1175 hours.

(2) You can find the percent of the bulbs that had a life

which was less then or equal to some particular number

of hours. For example you can see also from the graph

(polygonal) that if we label the vertical axis in

percent, es we did in Figure 8.6, with 50 bulbs on

the original scale corresponding to 100%, we can read

off the median and the quartiles. For example, to get

the median, we start at the 50% coordinate on the

vertical scale, move horizontally until we meet the

graph; then move straight down until we hit P point on

the horizontal axis. The hours-coordinate of this point

is the median for the grouped data. (This means that

50% of the bulbs had lives of 1075 hours or less.)

Definition 4. The 25th percentile is called the first

quartile (or lower quartile). The 50th

percentile is called the second quartile

102



-98-

(or th'i median). The 75th percentile is

called the third quartile (or upper quartile).

Question (1). From the cumulative frequency polygon in

Figure 8,6 what is the 8th percentile of the

set of data represented on the horizontal

axis?

(2). Between which two numbers represented on the

horizontal axis does the median lie?

8.3 Exercises

After you do the following exercises, save the results. They

will be used in later exercises.

1. The length (number of words) of 40 sentences taken from e

certain portion of Toynbee's A Study of History were es

follows:

24 39 46 22 51 20 48 38 39 60

28 19 44 54 80 35 36 23 15 21

43 18 12 19 26 38 25 7 17 22

17 70 42 12 15 65 39 73 26 42

(a) Make e frequency diagram and a frequency table of these

numbers.

(b) Determine the range and median of the sentence lenghts.

2. In e deck of cards let t1 Ace, 2, ..., 10 be assigned

measurements 1 through 10 respectively, and let Jack, Queen,

King be assigned 11, 12, 13, respectively. Drew 25 samples
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of 3 cards each and record the sum of the measurements

on the three cards. Shuffle before each draw. Before

beginning write down your guess for the median of these

date.

(a) Make e frequency diagram end a frequency table of

your date.

(b) Determine the range end median of the data.

(c) Compare your guess with the actual result.

3. Throw 20 pennies 25 times and record the total number of

heads obtained on each throw. Before beginning write down

your guess for the median of your data.

(e) Make 8 frequency diagram and a frequency table of these

data.

(b) Indicate the median from the frequency table and compare

this with your guess.

4. Throw 3 dice 20 times and count the total number of dots which

turn up on each throw. Before beginning write down your guess

for the median of your date.

(a) Make a frequency diagram and a cumulative frequency

table for the 20"meesurements" thus obtained.

(b) Indicate the median from the cumulative frequency table

and compare it with your guess.

5. Open e telephone directory at random end select one column

on the chosen page.
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(e) Meke e listing of the last digit of each telephone

number in the chosen column.

(b) Before you list the digits, can you make a prediction

of what you'll find?

(c) Summarize your observations in 3 different ways.

6. The heights of the 14 year - old boys (in inches, to the

nearest inch) in e junior high school were recorded as follows:

58 53 56 53 57 51 60 55

61 54 65 58 54 54 56 57

54 55 59 54 56 57 55 54

57 53 54 55 62 59 58 58

53 59 56 52 55 55 55 55

55 54 57 57 53 56 56 50

63 52 61 55 55 53 52 56

56 57 56 6o Go 58 57 59

(a) Group these measurements into intervals of the same

length and construct a frequency table es shown in

Table 8.5.

(b) Make e frequency histogram end a frequency polygon

for the data in part (a) similar to the one in

Figure 8.5.

(c) Construct a cumulative frequency polygon for the date,

end on it find the median end the quartiles.

7. Check the construction of the frequency histogram (Figure 8.5)

end the cumulative frequency polygon (Figure 8.6) for the
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illustrative example in Section 8.2.

8 From the cumulative frequency polygon of Exercise 7 estimate

the median, the upper quartile, and the lower quartile,

9. Suppose the Scholastic Aptitude Test scores of 180 seniors

of e certain school range from 330 to 788.

What interval mid-points and interval boundaries would you

use for e frequency table? Mrke up the first two columns

for such a table.

10. Each of 50 measurements is given to four decimal places,

the smallest measurement being 0.9967 inches and the largest

being 1.0048 inches. Determine equal intervels for grouping

the measurements, and suggest interval boundaries and interval

midpoints for e frequency table that you might construct.

11. TPbulate the set of weight-measures for students in your

class (include yourself).

(a) Decide on intervels end midpoints to condense the

observations.

(b) Construct a frequency table.

(c) Construct e frequency histogram end e cumulative

frequency polygon.

(d) Determine the median and the 1st end 3rd quartiles.

8.4 The symbol end summation.

So far in this chapter you have been working with finite sets
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of date and representing them in various ways. You will

frequently deal with sums of such sets of data and represent

the sums in various ways. Some of these ways will be more

convenient then others depending on your purpose.

Consider the data 5, 3, 11, 8. This can be represented

more generally by the symbols xl, x2, xs, x4 which is reed "x-sub-

one, x-sub-two, x-sub-three, x-sub-four". This is e representation

for any set of data with four elements and each of the sub-scripts,

1, 2, 3, end 4 serves PS en index here for the purpose of distin-

guishing among the four elements. Moreover we can relate the

specific and general representations by writing, x1.5, x,.(-3),

X3 =al, X4 =8.

Question. How can you interpret the above representations

PS a mapping of e set of data onto a subset of

the natural numbers?

Similarly we now have two representations for the sum of

the above date:

xi + xp + xs + x4 = 5 + 3 + + 8.

Now, if we let i be e variable for the set of natural numbers

we can use the symbol xi, read "x-sub-i", to stand for any definite

number in e set of data that we do not wish to specify (and do not

really need to).

You will agree that if we had e very large set of data, the

above representation would be quite awkward. Suppose we had a

set containing 99 numbers. We could improve our notation some by

the following:
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xi + x2 + xs + + xi + + x99. In this

case the "x
i
" as used here, is sometimes called a typical element

of the summation. The subscript i is called the index of

summation.

Mathematicians take the notation one more step to this

shorthand form of representing a sum:

99
7' x

i = 1

This symbol represents the same sum of 99 numbers represented

above. Actually both symbols can represent any 99 element sum.

This is read:

"The summation Of x-sub-i es i goes from 1 through 99".

The symbol L is the capital Greek letter, Sigma, which

corresponds to the English capital letter S.

The "1" below the sigma and the "99" above represent the

limits of summation.

Now let us use our new notation on the four element set

that we mentioned at the beginning of this section, (5, -3, 11,

8). We write:

4

7 X
i

=x1 +x2 +x3 +x4 = 5 4. 11 8 = 21

i = 1

Example 1. Suppose xl = 1, x2 = 2 and in general xi = i up

to the upper limit of summation. It then is

sensible to replace xi by i in the summation

notation:
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i = 1 + 2 + + n

= 1

Example 2. Suppose the typical element is some function of

x
i

such as x
i

- n. Then the summation will be

as follows:

n

(xi a) = (x1 a) (x2 a) (xn a)

i = 1

Example 3. In general:

n

f(xi) = f(xl) + f(x2) + + f(xn).

= 1

8.5 Exercises.

1. If x1 = 5, x, = 6, x3 = 3, x4 = 1 find:

4

(a)

xi

= 1

S 4

7 x4' 2 5xi
(b) L (c)

i = 1 i = 1

4 4

(d) L
7 (xi + 5)

(e)
7 (x4

J-

+ k)

i = 1 i = 1

7 i
2. From illustrative Example 1, L._ means 1 + 2 + 3 + 4 + 5.

i = 1

Using this idea, find:
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5 4

(b)
i(i + 1) 12

1 = 1 1 = 0

n n

3. Show that
/ kxi = k xi, when k is a constant.

i = 1 i =1

(See Exercise 1 (c).)

n n n

7 cc

4. Show that 4.- (a
i

+ bi) a
i
+

= 1
b
i

i =1 i =1

(a) First try this using the value n = 3.

(b) Can you state the equation in words?
n n n
7 7

5. Show that (a. - b ) L bi,
i= 1 1 i= 1 1 i= 1
n

6. Show that k = kn, where k is a constant. (Compare
i =1

with a pert of Exercise 1 (d).)

7. Show that
n n n
7
-L

(xi - m)2 = 7 X
i

2 15
7

Xi + nm2

i = 1 i = 1 i= 1

8.6 The Arithmetic Mean, its Computation and Properties.

An important descriptive statistic of a set of numbers is

its arithmetic mean. Suppose that the members of a club pooled

all the dollars that each of them possessed and then distributed

these dollars equally among the members. (A very unlikely event!)

The number of dollars that they would then each have wo'ild be the

lib
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arithmetic mean of the set of numbers of dollars that they

originally had individually. A more likely event is that your

teacher would assign you the arithmetic mean of your monthly

grades as a -Pinel grade for the year.

Definition 5. The arithmetic mean (or just mean) of a

set of n numbers, xl, xp, , xn, is:

n
1 1/L xi iikx1 + xp + x3 4 + xn)

= 1

Using 3-(7, read "x-bar," es a symbol to express the arithmetic

mean of a set of n numbers, the definition can be expressed as

follows:

=
xin

= 1

From the formula above we immediately get a new formula.

n

n x = x.

which states that the sum of the measures in an experiment is

equal to the product of the mean and the number of measures.

Example 1. Given the numbers

xi = 7, x, = 10, x3 = 15

x, = 7 + 10 + 15 = 32
L
i = 1

3

1 1
3

n
2

c x
i

= . 32 = 107

i = 1

ill
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Then n x = (3) (14) = 32 =/ xi.

1=1

The problems we have done and the symbolism we have

introduced give us shortcuts for computation.

Example 2. Suppose we find a set of 15 scores which are

distributed as follows:

Score Frequency

6o

55

50

5

7

3

How do we find the mean? The definition of mean is the sum

of the scores divided by the number of scores.

It is easy to see from this data that:

- 60(5) + 55(7) + 50(3)
5 + 7 + 3

This suggests e more general procedure outlined es follows:

Scores Frequency

xi fl

x2 t2

x2

It follows from the definition of mean that we multiply each

score by its frequency, add the products, and divide by the

total of the frequencies, thet is

11,2
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x
1
f

1
+ x2 f2 + x3 f3

x

f + f, +

3

xifi
L
i=1

For our problem, the computation can he presented by intro-

ducing another column:

x
i

f
i

xi fi

6o 5 300

55

50 3

i

i=1

7 385

150 3

15 835 = Lxifi

i=1

Then the mean would be:
3

xifi

1=1 = 835
= 55? .

15 3

x=1
fi

We can use the technique illustrated above to advantage with

the data of Table 8.5 as illustrated'in Table 8.6.

xi (midpoints) fi yi = xi-1100

800 1 -300

85o 1 -25o

900 2 -200

95o 5 -150

zl
=yi fi zi f z 2

50

-6 -6 36

-5 -5 25

-4 -8 32

-3 -15 45
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1000

1050

5

10

-100

- 50

-2

-1

-10

-10

1100 7 0 0 0

1150 6 50 1 6

1200 5 100 2 10

1250 3 150 3 9

1300 4 200 Li 16

1350 0 250 5 0

1400 13 1 300 6 13 6

fi -50 f
i

7 = -7

20

10

0

6

20

27

64

0

13 36

L..
7f

i
Z
i
2 =321

=1 i=1 i=1

Table 8.6

When you look at the xi column and the f. column in the table it

may seem that the computation of the mean would be formidable but re can

use what we learned about summation to obtain two ideas about the mean

that will simplify the process.

n n
Since 7(xi + k) + nk (see Section 8.5 Exercises 1(d)

and 1(e)),1=1 i=1

it follows that -(xi + k) = n(xi + nk) =
nLxi

+ k.

i=1 i=1 i=1

In other words, adding the same number to every element in a set

of data increases the mean of the set la that number.

Also since 7kxi = kExi (See Section 8.5 Exercise 3.)

1=1 1=1

it follows that Ekxi = k

i=1 i=1

In other words, multiplying every element in a set of data by the

same number multiplies the mean of the set LE the same number. The above

two generalizations can also be shown to apply to subtraction and divi-
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sion since they are defined in terms of addition and muitip:.ication.

Notice in Table 8.6 we subtracted 1100 from each of the

xi to get the yi. This means that the mean of the yi is 1100

less than the mean of the xi. We then divided each of the yi

by 50 to get the zi. This means that the mean of the zi's is

one-fiftieth of the mean of the yils.

Note. To better understand the transformations that we have

been using on the sets of date above, see Section 6.4,

Relating Two Coordinate Systems on e Line in Chapter

6, Coordinate Geometry in this text.

Now we have e set of small integers, the zi, whose mean we can

L find by the formula:

z
i
f.

z = i=1

13

Ifi
i=1

13

In our example = -7, it% = 50

i=1 i=1

Then I = = - 14
5o

We previously learned the following facts:

Multiplying each of a set of numbers by c, multiplies

their mean by c.

Adding h tc each of a set of numbers increases their

mean by h.

In our example:

5o z = 50(-.14) -7

+ 1100 = -7 + 1100 = 1093 115



We have found the mean of the set of bulb-lives from

the grouped data, We assumed that all the measurements in an

interval were concentrated at the midpoint.

We clos"?. this section with an important theorem about the

sum of the deviations of the numbers in a set from the mean of

the set. That is, you subtract the mean of the set from each

of the members in the set, and then add the differences. (Note

that some of the differences will be negative.)

Theorem 1. The sum of the deviations from the mean is

equal to zero.

Given the n measurements xi, x2, . . , xn

and their mean 5T, to prove

Proof.

n

7 (xi - TO =

i=1

(xi - 5T) = L xi - x . (Exercise 5 in

1=1 1=1 1=1

Section 8.5.)

I xi = n 5F. (Why?)

1=1

n

1=1

(Since 5F is a. constant; see Exercise 6 of Section

8.5).
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Thus:

- 7-(x x ) x - Lx -nx-nx= 0
1=1 i =1 1=1

8.7 Exercises

1. Fins; the mean of the measurements 1,6, 8. If 7 is added

to each of these measurements, what is the mean of the new

set of measurements?

2. Given the two sets of measurements 10,9,2 and 3,5,1 find the

mean of each set. Now form a new set of measurement by adding

corresponding measurements in the two sets (the first number

in the new set is 10 + 3 = 13.) Find the mean of the new

set of three measurements, and relate it to the means of the

first two sets.

3. Given the measurements 1,6,8 form a new set of measurements

by multiplying each of the original ones by 7. Find the

means of the two sets and compare them.

4. Given the measurements 4,5,9 find the mean. Also find the

mean of e new set of measurements obtained by multiplying

each measurement by 7 and then adding 5 to the result.

Relate the new mean to the old mean.

5. In changing from the Centigrade temperature scale to the

Fahrenheit Scale, the relation is F = C + 32 where C
5

is the measurement on the Centigrade scale end F the corre-

sponding measurement on the Fahrenheit scale. In a chemical
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experiment the following 10 measurements (in degrees

centigrade) were taken:

4o, 35, 38, 36, 42, 41, 37, 42, 37, 35.

(a) Find the mean of these measurements.

(b) What is the mean of these measurements ir. the

Fahrenheit scale?

6. The number of students in five different algebra classes

36, 30, 41, and 38. Find the mean number of

students per class, and compare it with the median number

of students.

*7. Suppose that you have a mapping, + h) where i=1,

n and where c and h are real numbers. How will the

mean of the domain be related to the mean of the range? Try

to prove your conjecture!

8. Find the average (arithmetic mean) of the life-lengths

of the bulbs in the illustrative example of Section 8.2.

(a) Now group these 50 numbers into groups of 5, and

compute each group average; then average the 10

averages. What do you find?

(b) Can you think of some other short cut for finding

the average of the 50 measurements?

9. Find the mean of the numbers given in Exercise 1 of

Section 8,3,

10. Find the mean of the observations in your experiment

in Section 8.3 (Exercise 2,3 or 4). Use any short cut you

can think of.
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11. Find the mean of the heights of 14-year old boys in

Exercise 6 of Section 8.3.

(e) Before you do your calculations try to guess the

mean.

(b) Can you find a shortcut by using your frequency

table?

(c) Compare the mean of these measurements with the

median end the mode.

12. Find the mean of the observations in Exercise 11 of

Section 8.3.

13. Find the mean and the median for the numbers: 15, 18,

18, 21, 45, 63, 69, 78, 45, 45, 27, 36, 6o.

14. Find the mean and the median for the numbers:

5.7, 4.6, 8.2, 5.7, 3.6, 2.8, 4.9, 5.7, 6,2, 9.1.

15. In a class of 30 pupils, on a certain examination, 5 got

grades of 65, 10 got 70, 12 got 8o end 3 got 90.

Calculate the mean of these marks by using the formula

n
1 7L xi fi

i=1

16. In a certain plant employing 100 workers the average

salary is $90 per week. In another plant, employing

50 workers, the average salary is $110 per week.

(a) What is the total weekly payroll for the two plants?

(b) What is the average salary for all the workers in

the two plants?
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(c) Do you get the same result by averaging $90 anT

$110? Why?

17. The table below gives the frequencies of pupils of ages

12 - 17 in a certain school.

Age Frequency

12 10

13 4o

14 175

15 105

16 55

17 10

(a) What interval limits are indicated by this frequency

table?

(b) Construct a histogram and a cumulative frequency

polygon for these data.

18. A chicken farmer found that his hens averaged 350 eggs

per day in a certain week. His records for six days

of that week show the following counts:

347, 351, 358, 345, 350, and 353, but he lost the record

for the seventh day. What must it have been?

n n

19. Prove: (xi - 02 = ' (x
i .... i

-
-502 n(i

-
8)2

i=1 i=1

Hint: Expand (xi - a)2 and (xi - 502. Then apply results

of the preceding section to simplify.

20
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8.8 Measures of Dispersion

We have studied certain descriptive statistics of sets of

data that measure central tendency such as the mode, median and

the arithmetic mean. So far the only measure of dispersion or

scatter of a set of data that hes been mentioned is the range which

does not seem to be too significant since the computation of the

range is completely dependent on only two numbers of the set.

Before looking for a good measure of dispersion let us

examine the frequency diagrams (as (e) in Figure 8.7. If you

compute the mean from the diagram for each of the seta of data,

you will discover that each set of data has the same mean. See

if you can find a line of symmetry for each of the diagrams!

It is apparent from the diagrams that what we should like to cell

the dispersion of these sets differs for any pair.

1 2 3 7 8 9

1_ 1 1 1

2 3
11. 5 6 7 8

I
2 3 4 5 6 7 8

1 2 3 1 5 6 7

1 2 3 4 5 6 7

Figure 8.7

Frequency Diagram (T=5)

121
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In Figure 8.8 (f) and (g) have the same mean but are

dispersed differently and likewise for (h) and

(f)
1 2

(g) 1

1 2

(h) 1

1 2

i
3 4 5

1

6 7 0

3 4 5 6 7 8

3 4 5 6 7 8

1 1

3 4 5 6 7 8

I I

9 10 11 12 13

9 10 11 12 13

1

9 10 11 12 13

I
9 10 11 12 13

Figure 8.8

Another Frequency Diagram

(i).

14 15 16 17

14 15 16 17

14 15 16 17

14 15 16 17

18 19

1

18 19

18 19

18 19

The examples above should be enough to convince us that

any measure of dispersion must be independent of the arithmetic

mean. We would like to find a measure that is small when the

numbers seem to cluster and large when they are scattered.

An obvious suggestion for measuring the dispersion of a

set of numbers is to find how their measures differ, on the average,

from the mean. However, we already know that this is not useful.

We know that the sum of the deviations from the mean is zero.

(See Theorem 1 in Section 8.6)

One way around this difficulty is to disregard the signs of

the deviations. You will be asked to work out the averages of

the absolute deviations for the sets represented in Figures 8.7

and 8.8 in the exercises of Section 8.9. The measure found in this
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way is called the mean absolute deviation.

Although the mean absolute deviation has the advantage of

always being non-negative, it has disadvantages. One is that it

is not feasible to compute the mean absolute deviation of large

sets of data from the mean absolute deviations of their proper

subsets.

Another measure of dispersion, one that is widely used,is

called the variance of the set of data.

Example.
xi - X (x.

1
- T)2Xi

4 -1 1

5 0 0

5 0 0

5 0 0

6 +1 1

Ex = 25; 3c- =g5 2 =

Variance = (xi - 502 =

1=1

Table 8.7

Definition 6. The variance of a set of numbers x1, x
n

,

denoted 0, is defined:

7s2 = (xi - 2

1=1

There is one objection to the variance as a measure of

dispersion. This objection is that, since the computation of the

variance involved squaring the deviations from the mean, we have

1 f:.3
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in a sense changed the dimension of the original. That is, the

variance is not expressed in the same units of measure as the

numbers in the original set of data. Fortunately, this is easily

remedied. Simply finithe square root of the variance and you

have a measure of dispersion that is in the same units as the

original data. This new measure is called the standard deviation

of a set of data.

Definition 7. The standard deviation s is the square root

of the variance s2.

Sometimes the variance is referred to as the "average. of the

squared deviations". Similarly, the standard deviation is sometimes

expressed as the 'Square root of the average of the square devia-

tions".

121
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8.9 Exercises

1. Complete the Table below for the observations given in

Figures 8.7 and 8.8.

Measures

n

x

Range

E1xi 71

Elxi - 7c1

E(xi - Fer

variance s

Standard
Deviations

e) (h),-, ._, . , .

4,5,
5,5,
6

3,4,
6,7

(1)

5 4 5 4 6 5 5 5 5 (2)

5 5 5 5 5 10 10 8 8 (3)

2 4 4 2 8 5 17 13 11 (4)

-1,o,
0,0,
+1 (5)

2 6 (6)

.4 1.5 (7)

10
0,0
+1

4,1
1,4 (8)

2 10 (9)

.4 2.5 (10)

.63
app.

1.6
app.

(11)
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(a) Lines 7, 10 and 11 give us several different measures

of dispersion. Compere them. Do they rank the

dispersions of the sets as you would intuitively? Are

they easy to compute?

(b) Can you find the standard deviation from the variance

by intelligent guessing?

2. The numbers of students in 5 different mathematic classes

ere 22, 26, 20, 31, and 26.

(a) Find the mean number of students per class and compare it

with the median.

(b) Find the mean absolute deviation.

(c) Find the variance.

(d) Find the standard deviation.

3. Find the standard deviation of the seven measurements in

Exercise 18 Section 8.7.

4. Given the measurements 8, 10, 24 compute the mean, the

variance, and the standard deviation.

(a) Now subtract 3 from each of the measurements and

compute the mean, the variance, and the standard

deviation.

(b) What observation do you make?

5. Compute the mean and the variance of the three measurements

1,6, and 8. If 9 is added to each of these measurements

what is the variance of the new set?

6. Show that the variance of a set of measurements is unchanged

when the same constant is added to each measurement in the

set.

126
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7. Compute the mean and the variance of the measurenents

8999, 8997, 9001. Choose a convenient number, say 9000,

and subtract it from each of the measurements, getting -1,

-3, +1. Compute the mean and the variance of the new

triple. Can you obtain the mean end the variance of the

original measurements from your results?

8. If each measurement in a set is multiplied by the same

constant k, show that the variance is multiplied by k2,

and that the standard deviation is multiplied by Ikl.

8.10 Simplified Computation of the Variance and the Standard Deviation

While the definitions of the variance and the standard

devintion are simple enough, the computations for any sizeable

number of data are formidable. For example, using the data in

Table 8.6 to calculate the variance and standard deviation would

seem tc require the following computations:

1. Add the fifty measurements and divide by fifty to find

their mean.

2. Calculate the differences of the fifty individual scores

from the mean.

3. Square each of the fifty differences thus obtained.

4. Sum these squares, and divide the sum by fifty to find the

variance.

5. Take the square root, of the variance to get the standard

deviation.

Are there any shortcuts we can use?

_-..-,w ........ean.1.
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The problems in the preceding section and the shortcuts we used

in calculating the mean in Section 8.6 may give us some ideas.

Our definition for the variance is, using subscripts and

the sigma notation;

s2 j.17

i=1

We can expand this in the following way: (Review Sections 8.4

nnd 8.5.)

1 2
xs

2
= (x - 2 + )72 )

n = i

1[7 2 77.7 7-21= - 2x + x

3=
1

/ X
i

- 2 )7 riT) +
n

_
r1-...; 1

- 25a + 3{2

= , ;Xi -,
a

n

You may have observed that we replaced 7 by 7. When the content

of the problem leaves no room for'doulAlle will often drop the

limits of the summation,

Question: Can you show:

2s = iX12

n2

128
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For data grouped into k classes the formula for variance

1 7 1
S
2

= 5E)2 where 3F =
a.

f.x.
a.

and 7f. = n.
L._

1=1 i-1 1-1

For computation we use 1 7
s
2 = f.x.2 372.

n - a.

1=1

Using these results on the date in Tal)le 8.6 we find that:

fizi2 = 321

Then the variance for the z scores is:

s2 = n fizi2 - Z2 = 6.42 - (-.14)2 = 6.42 - .0196 " 6.42-.02=6.40

Now using the results of Exercises 6 and 8 in Section 8.g,

we get the variance of the original x-scores by multiplying

the variance for the z-scores by (50)2. Thus the variance for

the x-scores is approximately 16 000.

The standard deviation of the z-scores is approximately

equal to
47i3 14 2.5

The standard deviation of the x-scores, then, is

50 (2.5) = 125.

(neck thatisii71555 gives the same result.)

8.11 Exercises

Use shortcuts where possible in your computations.

1. Check the computations for the variance and standard

deviations of the data in Table 8.6.

2. Find the variance end the standard deviations of the data

in Exercise 11 of Section 8.3.
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3. Find the variance and the standard deviation of the

observations in any experiment that you performed in

Section 8.3, for example Exercises 3,4 or 5.

*8..12 The ehebyshev Inequality

In this section we will prove an inequality, that illustrates

the fact that the standard deviation, s, is a measure of scatter

(or dispersion) in a set of observations.

Suppose that the observations are x1, x 2, xn and that

the mean is 7 and the standard deviation is s. Thus we have:

(1) x = x and s2n i (xi
i.1 i=1

Note. You will notice that previously we have represented the
Om.

variance as the sum of the squared deviations multiplied by

l/n. Now we are multiplying by 1/(n-1). The reason is

beyond the scope of this chapter. For large n the numerical

difference is slight.

Let It be a real number greater than 1, i.e. k > 1.

We define the following two sets A and B:

A = (xi:lxi - 5E1<ks) ; B = (xi:lxi - il>ks)

In Figure 8.9 we have illustrated the two sets A and B:

B ---

A >0

i+ks

x- 742s

Figure 8.9
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We see that A is the set cf observations with a distance

from rc less than ks and B that set of observations with a distance

at least ks from Ye.

Let m(B) be the number of observations in B.

The Chebyshev inequality now says that:

(2) m(B)'' 1
n < ka

This means that the relative frequency, m(B), of observations
n

in B is less than 1/e. To prove this we split the sum in s2 in

two parts as follows:

(3) 02 2 1 7 1
n-1 0 461.

*,-; =
n-1

(xi - 3.0
2

/
\ (xi - 302

1=1 x EA xiEB

In the first part we sum over the observations in A and in

the second part we sum over the observations in B. We now drop the

first sum, (i.e. the mean of the squared deviations of all observa-

tions between Fc ks and i + ks, see Figure 8.9) which certainly

is non-negative (can it be equal to zero?). We then get the

inequality:

(4) s2 > n4t (xi i)2

x
i
EB

But for xiEB we have lxi - 5] > ks or (xi - 3-02 > es2.

(see Figure 8.9)

Thus we get:

131
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(5) k2s2 a
1 n-1

mkB)k-s-

x
i
EB

Note: k2s2 is a constant. Also note the theorem in the

section on summation about the summation of a constant.

Here m(B) plays the role of the n in the theorem.

If we multiply both sides of this inequality by
n-1

we get:
ns2 k

> n1131re n

which gives:

m(B) n-1 1 1
.

k2
<

Which in turn gives:

(8) m(B) e 1 .
. -F

By this time you may be somewhat mystified about the meaning of

this theorem. Perhaps if we describe the final result in English,

it will help. First of all notice that set B is the set of all

observations which are at least k standard deviations from the mean.

This is quite apparent from Figure 8.9. Then notice that
m(B)

is the relative frequency of observations in set B. Putting these

two ideas together we see that the final result says, in effect,

that the relative frequency with which an observation is at least k

standard deviations from the mean is less than 1/k2.

Example: Let k = 2

The thaorem then states that the relative frequency

with which an observation is at least 2 standard

1
deviations from the mean is less than Ir.

132
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Question: What does the theorem state if k = 3?

We summarize in

Theorem 2. Given observations x1, xn with mean .i4Exl

1
and variance s2 = F7 r(xl-i)2; let k > 1 and let

B = (xi:Ixi-il>ks). If m(B) is the number of xi

in B then
n

1

8.13 Summary

In this chapter we reviewed and extended ideas about the

collection and presentation of data, the definitions and computations

of several descriptive statistics of sets of data and mathematics

that you needed in connection with this work such as summation.

1. Statistical data can be represented in the form of freaumn

tables, cumulative frequency tables, frequency diagrams,

frequency ArAggtamsk, cumulative frequency polygons, and in

other forms depending on the nature of the data and the purpose

of the particular presentation.

2. The mean, median and mode of a set of data are statistics and

examples of measures of central tendency of the set.

3. The range, mean absolute deviation, variance and standard

deviation are statistics and examples of measures of the

dispersion or spread of a set of a data.

4. Summation is used so extensively in the presentation of statis-

tical ideas and statistical computation that the theorems about

summation and the symbolism of summation are necessary parts

of the study of statistics.

133
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*5, The Chebyshev inquality is an example of a statistic

that gives information both about central tendency and

dispersion of data.

8.14 Review Exercises

1. A sample of 25 thermostatic switches was taken at random

from a lot just manufactured and the "trigger" temperature

was determined for each with the following results (in

degrees Fahrenheit):

55 56 56 56 54

49 56 54 52 51

55 57 50 52 54

50 53 56 55 56

52 56 57 54 53

(a) Construct a frequency diagram.

(b) Construct a cumulative frequency polygon. Mark the

vertical axis in frequencies and percentages.

(c) Determine the median and the two quartiles. Show these

on your graph.

(d) What is the mode of these measurements?

(e) Find the range.

(f) Construct a frequency table and from it calculate the

mean.

(g) Compute the variance and the standard deviation by

using a shortcut with the original data.

1 34
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2. A sample of 30 aluminum castings, when tested, yielded the

following tensile strengths in pounds per square inch --

to the nearest 100 pounds:

29,300 37,700 25,80o

34,90o 34,90o 23,700

36,80o 26,700 28,700

30,100 34,80o 32,400

34, 00o 38,000 28,20o

30,80o 25, 700 34, 000

35,40o 25,800 34,50o

31,30o 26,50o 29,20o

32, 20o 28,00o 28,70o

33,40o 24,60o 29,80o

(a) What is the range of the given data?

(b) Group the data using convenient intervals and

midpoints and construct a frequency table. (Suggestion:

use either intervals 23,000-- 24,00o with midpoint

23,500 etc., or intervals 22,000-- 24,000 with midpoint

23,000 etc.)

(c) What is the mode of the distribution?

(d) Construct a frequency histogram.

(e) Construct a cumulative frequency polygon.

(f) Estimate the median from your cumulative frequency

polygon. Calculate the median from your frequency table

and compare your results.
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(g) Compute the variance and the standard deviation by

first transforming the measurements by an equation

yi = axi + b

(choose convenient constants a and b), and then

using the formula

f 2
y = -1'

f
i
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CHAPTER 9

TRYJZFORMATIONS IN THE PLANE: ISMETRIES

9.1 What is a Transformation?

A transformation is a special kind of mapping. Under a

plane transformation each point of a plane is mapped onto one

point, of the plane. Because we learn much about properties of

geometric figures through the study of plane transformations,

this chapter is a continuation of our study of geometry.

To clarify the nature of transformations, let us look at

two examples that illustrate transformations and one that does not.

Example 1. Let 0 be a given point of a plane. For any point

A in the plane there is exactly one point A' such

that 0 is the ,didpoint of AA'. (See Figure 9.1.)

A' ic the image of A.

C

, /V\ 0.0

'1

IC

Figure 9.1
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3y this method of assigning images to points, B is mapped

onto B' and C is mapped onto C'. It happens that by this

mapping the image of A' is A, that is, the image of the image of

A is A. But this is not a feature of all transformations. that

makes this a transformation are the following characteristics:

(1) Every point of the plane is assigned exactly one point

of the plane.

(2) Every point of the plane is the image of exactly one

point in the plane.

We can summarize these two characteristics by saying that the

Plane is mapped ontc itself by a one-to-one mapping*.

Example 2. In this example we use a plane rectangular coor-

dinate system. Let P have coordinates (1,2).

We assign P' to P, if the x-coordinate of P' is

twice that of P and its y-coordinate is 1 more

than that of P, that is, if P' has coordinates

(2:3). The rule of assignment is

or (x,y).------(2x,y 1)

A rule, such as this one, is called a coordinate rule.

Study Figure 9.2 to see how this rule assigns images to

* Some use the term transformation to include many-to-one

mappings.

go



Al 3, C:

-134-
109

Figure 9.2

Does every point of the plane have exactly one image in the

plane by this method of assignment? Is every point in the plane

the image of exactly one point in the plane? If both answers are

yes (as they are), then this is indeed a transformation.

Example 3. Again we use a rectangular plane coordinate sys-

tem. Let the rule of assignment be

(x,y)------0-(x2, 2y).

Does every point in the plane have a unique assignment by

this rule? If so (and it is so), this is a mapping. To determine

whether or not this mapping is a transformation, we ask if every

point serves as the image of exactly one point. Consider Pi (4,6).

It serves as the image of P1(2,3) because 4 = 22 and 6 = 2.3.

And it also serves as image of P2(-213) because 4 = (-2)2 and 6 =

23. But P2 / P2. We conclude that this mapping is not a trans-

formation because it is not one-to-one. For that matter, does
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q(-913) serve as an image? If not (and it does not) then neither

is this mapping onto the plane.

9.2 Exercises

1. Make a drawing like Figure 9.1 showing the images of points

A, B and C in a plane rectangular coordinate system under the

mapping whose rule is as follows: Given point 0 in the

plane, then the image of 0 is 0, and the image of any point

P 0 in the plane is P', where 0 is between P and PI and

OP' = 20P. Determine whether or not this mapping is a trans-

formation. If yrJu think it is, describe how to locate a point

whose image is known.

2. Repeat the instructions in Exercise 1 using all its data with

the modification OP' = OP.

3. Make a drawing showing points and their images, as is done

in Figure 9.2 for the points A(-2, -1), B(0,4), C(3,2) and

D(1,-3) if the rule of assignment is (x,y)-----(x + 3, y - 2).

Is this procedure of assigning images to the points of a

plane a mapping? a transformation?

4. Carry out the instructions of Exercise 3 and answer its

questions for each of the following coordinate rules, making

a different diagram for each.

(d)

(e) (xyY) (-x2y-Y) 140



-136-

(f) (x1Y)-----4-(x3/Y)

(g) (x,y)--0-(x3, y 1)

(h) (x,y)-----0-(x20y2)

(i) + 1, y - 3)

(j)

(k) (x,y)-----o.(x d y, x - y)

(1) - y, x 2y)

5. Let 01 and 02 be two distinct points of a plane. Make a

drawing that shows the images of two points A and B where

the following assignment rule is used: For any point P

find P1 such that 01 is the midpoint of PlP and then find

Pt such that 02 is the midpoint of PlPt. Take P, to be the

image of P. Is this a mapping? a transformation?

6. Repeat Exercise 5 with the modification that 01 is between

P and P1 with P101 = 2.P010 and 02 is the midpoint of PIP,.

Is this a mapping? a transformation? if you think it is a

transformation, describe the rule of the inverse transfor-

mation.

7. Consider transformations f, g, and h. Suppose for point

A in a plane

g A2 A3

Show that the image of A under gof, followed by h is the

same as the image of A under f followed by hog. What does

this show about composition of transformations?

8. Let A and B be distinct points, and let A be assigned to B,

and B to A, while each other point of the plane is assigned

to itself. Is this a transformation?
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9.3 Reflections in a Line

For the greater part of this chapter we study isometries,

which are transformations that preserve distance. We shall

examine this property more carefully as we examine various

kinds of isometries, the first of which is a reflection in a

line. Let us agree that all transformations in the remainder

of this chapter have a plane as domain and range.

We approach a reflection in a line with a paper folding

exercise.

On paper Ti we make three ink dots, shown in Figure 9,3 as

points A, B, C. If we fold the paper along line t, a line that

contains C, then the ink spot at A leaves its mark (image)

Figure 9.3

at A' and the spot at B leaves its image at B', while C is its

own image. We call this correspondence a reflection in a line.

We designate it R
t,

the subscript naming the axis A of the re-

flection. We call A' the reflection of A in A and B' the re-

flection of B in 2, while C, being its own reflection, Ls called

a fixed point. 1 12
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Let us describe some mathematical features of R
A'

(1) For any point A not in A, A is in one of the half planes de-

termined by A, A' is in the other.

(2) AA, intersects A in a point, say M, and AM = MA'.

(3) A j AAt.

We summarize these features in one statement:

A is the perpendicular bisector of AN

It is easy to give a coordinate rule for a reflection in the

x-axis of a rectangular coordinate system. In Figure 9.4 the

x-axis is the perpendicular bisector of AA, and also of BB'. Thus,

under this reflection, A-----At and Since C is on

the x-axis C = Ct, If you study the coordinates of a point and

its image you will see the rule
R

-y)

where Rx
is read: the reflection in the x-axis.

y

c=c' (4,o)

Bi(33-14)

Figure 9.4

143
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If you draw a diagram like the one in Figure 9.4, showing

reflection in the y-axis, denoted R
Y

, you will see that its coor-

dinate rule is: (x, y) (-x,Y).

Let us consider whether or not a line reflection is an iso-

metry. It is, if it preserves distance. Suppose that for a

given line A
RA

, A A', B
RA

. (See Figure 9.5)

Figure 9.5

We take A as the x-axis of a rectangular coordinate system.

In this system, let A acquire coordinates (x1, y1) and B(x2, y2).

Then A' will have coordinates

ing the distance formula,

AB =

and AI B1 =

Clearly, AB = A' B' if

(x1, -yi) and B' (x2,-y2).

we can write:

Recall-

Ni(xl - X2)2 + (y1 - y2)2

1,1( x2) 2

(y1 - y2)2 =

±

((-y1)

) -y2))

- (-y2))2.

2

144
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We leave it to you to show that the last two terms are equal,

and we conclude that a line reflection is indeed an isometry.

In the exercises that follow you will be asked to estab-

lish some of the properties of line reflections. Having done

so you may use these properties in subsequent investigations;

that is, they may be used as theorems.

9.4 Exercises

1. Find the coordinates of the image of each point listed

below under the reflection in the x-axis.

(a) A(3,5) (b) B(-3,5) (c) C(-3,-5) (d) D(A-5)

(e) E(3,0) (f) F(0,-3) (g) G(0,0) (h) 14a,b).

2. Find the coordinates of the image of each point listed

in Exercise 1 under the reflection in the y-axis.

3. You can see in the figure below that the reflection

of A(-1,1) in the line e with equation x = 2, is A,(5,1).

To calculate the coordinates of A', knowing those of A, we

use the fact that P is the perpendicular bisector of AA'

Ay A

A -1

2

Af(5,1)

145
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146
This implies that M, the intersection of t and AA', is the

0

midpoint of AA' and that the y-coordinate of A' is the same

as the y-coordinate of A. To calculate the 7'.-coordinate of

M we recall the midpoint formula xm = (xl + x2). In this

problem xm = 2 (because M is on t) and xl = -1. Therefore

2 = -3ff"( -1 + x2).

Solving for x2, we get x2 = 5, and A' has coordinates (5,1).

Using this method of calculation, find the coordinates of the

image of each point listed below under the line reflection

in 4, the line with equation x = 2.

(a) A(3,-2) (b) B(-2,5) (c) C(42, 3) (d) D(a,b)

4, Adapt the method of calculating coordinates of images in

Exercise 3 to find the coordinates of the images of

A(3,-2) and B( -2,5) under a reflection in a line whose

equation is:

( a) x = -3 (b) y -1 (c) y -2

5. Verify that AB = At B' , where A' and B' are images of A and 3

respectively under R if A and B have coordinates:

(a) (4,2) and (-1,5) (b) (0,5) and (4,-1) (c) (-2,0) and (0,-5)

6. Suppose distinct points A, B and C are collinear, and their

images under R,e, when 9. is a given line, are respectively

A' , B' and CI . We can prove A' , B' and C1 are also colli-

near by using the fact that a line reflection is an isometry.

Study the proof below and answer the questions. One of' the

points Al B or C is between the other two. Say it is B.

Then AB -F BC = AC. But AB = A' B' , BC = B' C' and AC = AT Cl

Why? Therefore A' B' + B' C' = A' C' . Why? But the last state-

ment implies that B' is between A' and C', because otherwise
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B' B' C' A, C, . Explain why this inequality is true if:

(a) °IT is not in A' CI- or ( b) 3 is in AI C' but not in

NCI. This proof also shows that a line reflection preserves

the betweeness relation for points.

Show that the set of images of the points in a line, under a

.line'reflection, forms a line. You may remember this basic

property as follows: The reflection of a line in a line is

a line.

8. Show that the reflection of a ray in line is a ray, and the

reflection of a segment in a line is a segment.

9. (a) Show that the reflection of the sides of an angle, in

a line, are the sides of an angle. While an isometry, by

definition, preserves distance, the question whether or not

it preserves angle measure is open. We shall assume that it

does. We do not prove it because we do not have the mathe-

matical machinery to do so. But it is quite plausible, so

we are encouraged to assume this until we have the necessary

machinery to prove it.

Isometries preserve angle measures.

(b) Of particular interest is the statement: Each side of

an angle is the reflection of the other in the bisector of

the anglejthat is in the line containing the midray. This

statement is equivalent to the statement: The x-axis bi-

sects the angle determined by the two lines with equations

y = mx and y = -mx for m 74 O. Draw diagrams that illustrate

1the plausibility of this statement for m = -f-, m = 3.

10. Let Li and be lines such that L. f L. Show that /1
I I

L2

RA
if .21 /2, (You may use coordinates if you wish.)
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11. Let Al and A be lines such that Al 1 A. Show that ,G1 = A2
R
Aif 111--042

Note. Every point in A is its own reflection in A. Hence

the axis is fixed under a line reflection. In this exercise

we prove that a line perpendicular to the axis is also fixed,

but not every point in the perpendicular is fixed. How many

points are ? To distinguish between the two cases we say

that the axis is fixed pointwise, while the perpendicular

is fixed, but not pointwise.

12. Let A be a line and P and point. If P__21&._-).P1 and

P'
RA

-.P1, show that P = P1. A transformation that leaves

every point fixed is called the identity transformation and

is designated by the symbol i. Thus the composition of RA

with itself is the identity transformation. A transformation

f that has the property fof = i, is called an involution

if f is not itself the identity transformation. Verify that

R
A

is an involution.

Before going on to the next section let us review some of the

properties that were mentioned in the above exercises. A

line reflection in A preserves (a) distance (b) the betweeness

relation for points (c) collinearity, (mapping lines onto

lines, rays onto rays, segments onto segments, angles onto

angles) (d) angle measures (e) A, pointwise (the axis) (f)

lines perpendicular to the axis, fixing them but not point-

wise. Finally, a line reflection is an involution; that is

RA 0 RA = i.
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9.5 Translations

149

Let us mark some dots on a sheet of paper, say A, B, C, and

D, as shown in Figure 9.6(a). Imagine a transparent paper placed

over the sheet of paper and dots made on the transparent paper

to locate the positions of A, B, C, D. Now imagine that the

transparent paper is moved in a certain direction a certain dis-

tance. Then the dot over A is moved to a new positir, called

At (see Figure 9.6(a)). Similarly the dot over B is moved to 13.1

and this happens for all dots on the sheet of paper. If we think

of the sheet of paper as a plane, we have described a method of

assigning an image point to each point of the plane. Thus we have

a mapping of the plane onto itself. Moreover every point of the

plane serves as the image of exactly one point. This :lapping there-

fore is a plane transformation. It is an example of a translation.

A'

D

P

(a)

5

II

3

2

1

,

A'(315) P

..
..,

..,

...,

A(1,)4)
C1(2,3)

..-s B1( ),21-_.)
.., .

. .0-
.

(02) .'''.
B(2,1) .pi

..,

D(3,0)-

1 2 3 4

Figure 9.6

(b)

The rule of assignment of a translation is easily stated if

we use coordinates. In some rectangular coordinate system let A
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have coordinates (1,4) and let A' have coordinates (3,5). (See

Figure 9.6(b).) B has coordinates (2, and B' has coordinates

(4, 21). If we add 2 to the x-coordinate of a point we get the

x-coordinate of its image and if we add 1 to the y-coordinate of

a point we get the y-coordinate of its image. Thus (1,4)------11-(3,5)

and (0,2)----(2,3). What are the coordinates of D', the image

of D(3,0)? The rule of this mapping is (x,y) (x J. 2, y 4 1).

In general the coordinate rule of a translation is

(x,y)-----0-(x -1- a, y b)

where a and b are fixed numbers. For each different choice of a

and b we have a different translation. Note when a = 0 and b =

0, the translation is the identity transformation.

It is startling that every translation can be expressed as

the composition of two line reflections whose axes are parallel.

We illustrate this fact for a. particular translation.

Suppose in the particular translation, point A has image A'

and that AA' = 8. We can take 1 .A1 (or any line parallel to rt)
as the x-axis of a coordinate system, and let A have coordinates

(-1,0) which implies that A' has coordinates (7,0). (See Figure

9.7.) Further, let the y-axis be A, the axis of the first line

reflection, and let the line m with equation x = 4 be the axis

of the second line reflection.

150
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A(-1,0 A,(1,0) A,(7,0)

Figure 9.7

Let us follow the effects of R
A
on A, and of Rm on the image of

A.

A( -1, 0 )

R
A mAl(1,0) Al (7,0)

We see that A has been assigned A' by Rm 0 RA, just as by the ori-

ginal translation. Let us find the image of B(-3,1) under

Rm 0 Rt .

B( -3,1)
RA Rm

B1(3,1) B' (5,1)

and again we see that Rm 0 R assigns to B the same image as does

the translation whose rule is

(x,Y) (x+8,y)

Note that the distance of the translation is twice the distance

between the axes of reflection, and the translation is in the same

direction as the direction from the first axis to the second. It

is interesting that we might have chosen other pairs of axes that

were 1. units apart. For instance, you might try taking the lines

with equations x = 1 and x = 5 as the axes, in that order.

The reasoning used in this particular case can be used in

any case, and we conclude with the'tollowing statement. Every
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translation can be expressed as the composition of two line re-

flections whose axes are parallel. The distance of the translation

is twice the distance between the axes, and the direction of the

translation is the same as the direction from the first axis to

the second. Any two axes may be chosen, if they are perpendicular

to the direction of the translation, if the distance between them

is half the distance of the translation, and if the direction

from the first to the second is the same as the direction of the

translation.

There is an important bonus in this statement: Every pro-

perty of a line reflection that is retained by the composition

of two line reflections is therefore a property of all transla-

tions.

Since each line reflection preserves distance, the compo-

sition of any number of line reflections also preserves distance,

and hence is an isometry. It follows that a translation is an

isometry. All the properties that follow logically from isometries

therefore belong to translations. Among these properties are:

translations preserve collinearity, the betweeness relation for

points, and map lines onto lines, rays onto rays, segments onto

segments, and angles onto angles of the same measure.

9.6 Exercises

1. The coordinate rule of a translation is (x0y)------0-(x + 1,

y + 1). Find the coordinates of the images of the following

points under the translation:

(a) A(3,2) (b) B( -3,2) (c) C( -3, -2) (d) D(80
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(e) E(la, 1) (f) F(-1,0) (g) G(0,0) (h, H(-11)

2. Find the coordinate rule of a translation that maps:

(a) A(3,2) onto A,(2,3) (b) B(0,0) onto B'(-3,5)

(c) C(-305) onto C,(0,0) (d) D(2k, 3) onto D' ( -2,

(e) E(alb) onto E'(010) (f) F(alb) onto F,(2a,3b)

3. Let A and B have coordinates (0,2) and (5,1) respectively

in some rectangular coordinate system. Find the coordinates

of At and B', the images of A and B, under the translation

whose rule is - 1, y ± 2).

Justify each of the following statements:

(a) AB = AIBI

(b)

(c) AB II A'B' (You may use the slope formula Y1 Y2 .)
X2

(d) AA' 11 BB'

(e) AA' = BB'

(f) ABB,A1 is a parallelogram.

(g) AB, and A'B bisect each other.

This exercise suggests that in general, if A' and B' are the

images of A and B under a translation, and Al B, A' are not

collinear, then ABB'AI is a parallelogram. Prove it.

4. Let translation T1 have the rule (xly)------1.(x + 3, y - 2)

and let translation T2 have the rule (xly)-----0-(x + 1, y + 3).

Investigate the nature of T2 0 T1, showing its effect on points

A(3,2), B(-4,0), and C(-2, -5).

5. Let translation T1 have the rule (xly) (x + 3, y 2) and

let translation T2 have rule (x,y)-----(x - 3, y 2). Let

A have coordinates (2,3). Find the coordinates of A' if

r.
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A
T
1

T2
Show that A' _A. Does this suggest that

T2 is the inverse of T1? Verify that Tp 0 T1 = i using points

B(-2,8) and C(a,b). Also verify Tl 0 T2 = i.
6. In Exercise 5 we can represent T1 as T3,_2 and T2 as T..3,2.

In general the translation with rule (x,y)-----1.-(x 4- a, y b)

can be represented Tab. Using this notation represent:

(a) The composition of Tab and Ted.

(b) The inverse of Tab.

(c) The identity transformation.

7. Show that composition of translations is commutative.

8. Using the data in Figure 9.7, show that Rm 0 RI maps each

of the following points onto the same point as does the

translation that maps A (-1,0) onto A,(7,0).

(a) C(210) (b) D(3,-4) (c) F(10,-3).

9. Show that composition of line reflections having parallel

axes is not commutative. If these line reflections are R
m

and R
A
how is Rm 0 RA related to R

2
0 R

m
?

10. Is the composition of line reflections associative? Is the

composition of translations associative? (See Exercise 7

of Section 9.2,)

11. Is the composition of two translations a translation? If so

how can you find the rule of the composition from the rules

of the two translations?

12. Is the composition of two line reflections a line reflection?

If so, how can you describe the rule of the composition?

13. Before answering this exercise, recall that a set of elements,

together with a binary operation defined on that set, is a

group if 154
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(i) the set and binary operation constitute an operational

system;

(ii) the operation on this set is associative,

(iii) there is an identity element in the set, and

(1.14 each eleillent in the set has an inverse, also in the set.

(a) Is the set of all translations in a plane, with com-

position of translations as the operation, a group?

(b) Is the set of all line reflections, with composition

as the operation, a group?

14. T
o o

is a translation. that are two line reflections from
,

which it is composed?

9,7 Rotations and Half-Turns

We extend our study of isometries (so far consisting of re-

flections in a line and translations) to rotations. Let us select

on a sheet of paper r a point 0 on y at which we attach a trans-

parency (called v4). (See Figure 9.8).

1

Figure 9.8 155
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Select any two points (other than 0) in r, say A and B, and mark

dots on the transparency over A and B. Now turn the transparency

about 0 as pivot, in the counterclockwise direction, through an

angle of 30°. The "A dot" on the transparency ends at a point

A'. We assign At to be the image of A under this rotation.

The image of B is 8,. If we think of the paper as a plane then

we have a method by which each point of r is assigned exactly

one point of 7, and each point of r serves as the image of one

point in r. Thus we have a transformation of the plane onto

itself. The essential data that determine this transformation

are point 0 and 30°, that is the center or pivot of the rotation,

and the measure of the angle through which the rotation takes

place, in the counterclockwise direction if the angle measure is

positive. To indicate a clockwise rotation we use negative

numbers as angle measu:.es. The above transformation can be de-

signated r(0,30). (Capital R denotes a line reflection, lower

case r will denote a rotation.) What does r(0,-30) mean?

You should note the following about r(0,30) in Figure 9.8:

For any point A and its image A', OA = OA' and mLAOA' = 30.

In particular, OB = 03 and mLBOB' = 30.

We saw that a translation is a composition of two reflections

in parallel axes. It is surprising that every rotation is also

the composition of two reflections in axes, but not in parallel

axes.

We offer here a discussion, not a proof, of this fact. It

is intended to illustrate, using Figure 9.9, that a rotation is

the composition of two reflections whose axes intersect.

156
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We examine a particular rotation, r(0180). ISee Figure 9.9.)

Let r(0180) map A onto A,. Then OA = OA' and mLAOA' = 80.

Let OM and ON be rays, with the angle of counterclockwise

rotation from OM to 01 measuring 40, that is of 80. Label

m, Ol = n. We shall see that if then

o 117,
which shows that A

R,
A7, or that Rn 0 Rm maps A onto

the same point as does R(0,80).

Figure 9.9

Since Rm maps A, 0, M onto Al, 0, M respectively, Rm maps

L AOM onto L A10M; hence mLAOM = mLA10M = e, say, and mLA0A1

2e. Since mLAOA' = 80, it follows that

(1) mLA10A1 = 80 - 20.

But mLMON = 40 and mLMOA = e imply

(2) mLA10N = 40 - 0.

(1) and (2) yield mLA,ON = 40 - A. Thus ON is the bisector of

157



-153-

LA1011', so that Rn maps CM, onto OA (Exercise 9(b) of Section 9.4).

R R
Since OA = °Ai = ON, Af----u--1A'. This, and A-----111--0-A1, yield

°Rn Rm
A A'. A discussion like this can be given for all

80)
A and A', where A

R(01
),A1 . We conclude r(0,80) = Rn 0 Rm.

We conclude that every rotation, r(0, 20), can be regarded

as the composition of two line reflections whose axes meet at 0

and determine an angle of measure 9, where 0 is positive if the

rotation is in the counterclockwise direction, and negative if

in the clockwise direction. We will call 20 (whether positive or

negative) the measure of the rotation.

We deduce from this that a rotation is an isometry, and has

all the properties possessed by the composition of two reflections

in intersecting axes. Among them are the preservation of distances,

lines, rays, segments, angles, and angle measures.

An important special case of a rotation is the composition

of two reflections in perpendicular axes. In this case 9 = 90

and the rotation has measure 180. Then A, 0 and A' are collinear,

and OA = OA' . This implies that 0 is the midpoint of AA'. This

transformation is called a half-turn with cenuer 0, and is denoted

Ho. For a diagram of a half-turn see Figure 9.1.

A coordinate rule for a half-turn is easily determined if

the center of the half-turn is the origin of a rectangular coor-

dinate system: Ho = Ry 0 Rx Since the rule for Rx is

(x,y)-----(x,-y), and the rule for R is (x,y) (-x,y), the

effect of the composition on (x,y) is:

(x,Y)
R
x

Therefore the rule of H
o

is (x,y)

158
(-x,-Y).
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If we wish A(a,b) to be the center of a half-turn that

maps P(x,y) onto Pt(x's y'), then, because A is the midpoint

of PP':

a = ( x + ) and b = + yt )

this leads to

x' = 2a - x and y' = 2b - y or

(x, y) (2a - x, 2b - y) .

9.8 Exercises

1. Make a drawing which shows non-collinear points A, B, and C,

and their images under a rotation with center 0 and measure

65, if 0 is in the interior of AABC. Use a protractor.

2. Suppose A, B, and C are three collinear points, and B is

between A and C. Let r(P,O) assign images A', B1 and C'

respectively. Are the images collinear? Is B' between At

and C'? Compare AB with A'BI, AC with A' C' and BC with B'C'.

3. Let P be a given point. Is the composition r(P,20)o r(P,30)

a rotation? If so, what is its center and what is its mea-

sure?

4. Express as a single rotation:

(a) r(P,40)or(P,20) (b) r(Q,30)or(Q, -20)

(c) r(P,90)or(P,80) (d) r(Q040)or(Q,-40)

5. Let r(P,e) represent a rotation. Does it have an inverse?

If so, how is its designated?

6. Is the set of rotations with center 0 and with the operation

of composition a group? Justify your answer.

159



-155- 160

7. Let the origin 0 of a rectangular coordinate systcm be the

center of a half-turn. Find the coordinates of the images

of the following points:

(a) A(3,-2) (b) B(-2,3) (c) C(0,-2) (d)

8. Find the coordinates of the images of the points in Exorcise

7 under the half-turn where center is (l, -2).

9. Repeat Exercise 8 for the center (-1,3).

10. Prove that a half-turn is an involution.

11. Let P and Q be distinct points. Show that the composition

HQ 0 HP is a translation in the direction from P to Q a

distance of 2PQ.

12. Using the data of Exercise 11 show that if P / Q, HQ 0 Hp

/ Hp ° H. Further show that HQ 0 Hp and Hp 0 H1, are

inverses of each other.

13. Are any lines fixed under a half-turn" If there are des-

cribe them. Are they fixed pointwise?

14. Given: H line A not containing 0, and
Ho

0

Prove .e At. (You may wish to use coordinates in this

proof. If you do, recall the formula for the slope of a

line: m = 71 72)
xl - x;j

15. Let Hp be a half-turn, and A and B be two points not collinear
Hp Hp

with P. Let A At, and B 3. Prove ABA' B' is

a parallelogram.

*16. We have given coordinate rules for line reflections in the

x-axis and in the y-axis. There are also coordinate rules

for reflections in other lines passing through the origin,

bwhich we give in this exercise. If has equation y = a+1"

where a2 -I- b2 = 1 and a 1 -1 (in a rectangular coordinate
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system), the rule for Rz is (x,y)-----i.(ax + by, bx - ay).

Verify that this rule:

(a) maps P(1,0) onto Q(a,b).

(b) maps Q(a,b) ont- P(1,0).

(c) maps any point of L onto itself.

(d) has the property R2 0 Ro = i.

If we assume that a transformation that is an involution

and has a line fixed pointwise is a line reflection, then

(c) and (d) verify that the mapping described above is a

line reflection.

*17. Consider the mapping with the rectangular coordinate rule

(x, y) (ax - by, bx + ay)

where a2 b2 = 1. To help verify that this mapping is a

a rotation with center 0, the origin of the coordinate system,

prove the following: If (a,b) = (1,0) then the mapping is

i. In all other cases:

(a) 0 is the only fixed point.

(b) If A , then OA = OA'.

(c) For further verification show (1,0) (a0b),

(0,1)-----)-(-b,a) and (a,-b)-----0-(1,0). You should

draw a diagram to understand the significance of

these results.

18. Let line have slope m / 0 relative to a rectangular coor-

dinate system. Show that the slope of Al, the reflection

of A in the x -axis, is -m. Is the slope of £2, the reflection

of A in the y -axis, also m?

*19. Copy Figure 9.9. Select a point B in the interior of LMON.

Use a protractor to find its image under the rotation r(0,80).



-157-

Noy find the image of B under the composition Rn 0 Rm.

You should get the same image point by both methods. Re-

peat the above starting with point Co the image of Al under

the half-turn H0.

20. Show that (x,y)-----(y,x) is the coordinate rule for the

reflection in the line with equation y = x. (Hint: See

Exercise 16.)

9.9 Composing Isometriesj Glide Reflections

We have seen that translations and rotations can be regarded

as compositions of line reflections. It is natural to wonder

what results if we compose a line reflection with a rotation or

with a translation, or if we compose a rotation with a transla-

tion. (There are other possibilities.) No matter what isometries

we compose we know that the composition will be an isometry. Why?

Since translations and rotations (including half-turns) can be

constructed out of reflections only, it would seem that the line

reflection is the basic isometry and we might wonder if every

isometry can be composed of line reflections only. The answer is

yes. But this idea is worthy of careful attention and we pursue

it in another section.

Meanwhile, we investigate the composition of a line reflec-

tion with a translation in a direction of the axis of the line

reflection. In exercises you will be asked to investigate other

compositions.

Let A be a line. (See Figure 9.10).

162
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Figure 9.10

If R
A

and T represent the reflection and translation then:

R
A

ToR
A

A
, or A

R
A

ToRA
Bi B1, or B

Since RI and T are isometries, so is ToRl. The composition is

different in its apparent effect from any other isometry we have

seen so far. It is called a glide reflection (in A). ("Glide"

is synonomous with "translation.") It has the properties of pre-

serving distance, lines, betweeness for points, rays, segments,

angles and angle measures. It is instructive to note, in Figure

9,10, that AlBiBIA, is a parallelogram, or to say this another

way the reflection of A3 in A is translated to AIBI.

9.10 Exercises

1. We have defined a glide reflection as a line reflection

followed by a translation. Show that the glide reflection

may also be described as a translation followed by a line

reflection, where the translation is in a direction of the

axis of the reflection.

2. Show that a glide reflection may be regarded as the compo-

sition of three line reflections, Where ths.: first two have
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parallel axes, each perpendicular to the third axis. Will

a glide reflection result if the 1:.3t two have parallel axes,

each perpendicular to the axis of the first reflection?

*3. Let A be a line and P any point not in A. Let F be a glide

reflection in A, and let P P' Show that A bisects

4. Given a glide reflection. Describe how it may be regarded

as the composition of two half-turns and a line reflection.

(See Exercise 11 of Section 9.8 for a hint if you need one.)

5. Show that the composition of a glide reflection vitki itself

is a translation. Del,cribe the tar...31Ltion.

To show that a half-turn followed by a translation is a

half-turn, you might start with two points A and B, and
Ho Ho

point 0 not in AB. If A and what

kind of figure is ABA1B1? Let the translation that maps Al

onto A2 map B1 onto B2. In general what kind of figure is

B2

A1A2B2B1? How are AB and B2A2 related? What kind of figure

is ABA2Ba? What is the isometry that maps A onto A2 and B

onto B2? What would your answers be if 0 is on 111:1?

7. Investigate the composition of a translation followed by a

half-turn.

8. Show that the composition of three line reflections in three

parallel axes is a line reflection.
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9, Show that the composition of three line reflections in lines

a, b, and c, where a 1 b and b 1 c, is a glide reflection.

*10. In this exercise we consider a coordinate rule for a glide

reflection. It is the composition of the reflection in

line A with equation y = ---x where a2 + b2 = 1, and the
a+1

translation that maps (0,0) onto ((a + 1)c, bc). Its rule

is

(xa) (ax + by + (a + 1)c, bx - ay + bc)

Verify the following:

(a) The direction of the translation is a direction of the

axis of the reflection.

(b) The glide reflection assigns a point of A to a point

of A. Explain why it should.

(c) The rule actually combines the rules of a reflection

and a translation. (Hint: See Exercise 16 of Section

9.8.)

11. Let A, B, C be three noncollinear points as shown, and let
HA

P be any point in the plane. Consider P 1,
HB Hc

p P2 Pa. Show that there is a point D
HD

such that P Pa 0

165
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(Hint: Take D as the fourth vertex of parallelogram ABCD.)

How does this show that H
C
oH

B
oH

A
= H

D'
that is, the compo-

sition of three half-turns is a half-turn?

12. Let F be the midpoint of AB. Prove HAoHFoHBoHF = i, where

i is the identity transformation.

9.11 The Three Line Reflection Theorer

In this section we will keep our promise to show that any

isometry may be constructed as the composition of line reflections;

and, in fact, no more than three. We do this in 'cwo stages. First

we prove a preliminary theorem, which is called a lemma. In it,

and in the theorem that follows, we make use of the following re-

sult, which was given in Course 1, Section 10.14, Exercises 4

and 5:

A point is on the perpendicular bisector of a segment if and

only if it is as far from one endpoint of the segment as it

is from the other.

Lemma. Let A, B, C be three noncollinear points, and let F and G

be isometries such that (A, B, B', C') and

B, C)G (A', B', C'). Then F = G. (For isometries

we need only prove: For any point X, if then

.)

The significance of the theorem is this: Given three non-

collinear points A, B, C and their respective images A', BI, CI

under an isometry, then that isometry is the only one that effects

the mapping of (A, B, C) onto (Al, BI, C'). Even though an isometry

of the plane has infinitely many points in its domain, it is uniquely
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determined by its effect on only three noncollinear points.

*(A, B, C) (A', B', C') is an abbreviation of A

Proof of Lemma.

We use the indirect method. Suppose X --4-X", where

X" / X' Since F is an isometry, AX = A' X' , BX = B' X' ,

CX = C' X' Since G is also an isometry, AX = A' X", BX =

B1 X", CX = CI X" Thus .A1 = X", B' X' = B1 X" and CT =

C' X". Put into words, this means that A' is as far from

X' as from X", also B' is as far from X' as from X", and

C' is as far from X' as from X". We have assumed X' / X.

Thus RT57 is a segment and A', B', C' are on the perpendi-

cular bisector of TT-. But this implies that A, 13, C are

collinear, contrary to the information given in the theo-

rem. Therefore X' = X". Since F and G make the same assign-

ment to all points of the plane (X is any fourth point),

F = G.

And now for the key theorem:

Theorem.

Every isometry may be constructed as he composition of at

most three lino reflections.

Proof.

We know from the preceding lemma that an isometry is uniquely

i67
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determined by its effect on three noncollinear point:;. Let

the isometry f map A onto /1', B onto 8' and C onto C,, where

A, B, C are noncollinear points. Figure 9.11(a) shows points

A, 13, C and their images A', B1, CI.

B'

A A'

C'

Figure 9.11(a)

A3 . A'B', AC = A'C', BC = B'C'

We demonstrate in a sequence of figures the line reflections

whose composition maps (A, B, C) onto (A', B1, CI). First we con-

sider the trivial case in which A' = A, B' = B, and C' = C. Here

the identity transformat4on i maps (A, B, C) onto (A', B', C').

We may regard i as the composition of two reflections in the same

line. This proves the theorem for this trivial case.

Now suppose that at least one of the points A, B, C is diff-

erent from its image, say A' / A. The line reflection in J, the

perpendicular bisector of AA', maps A onto A'. This is shown in

Figure 9.11(b), along with logical consequences stemming from
,

the reflection. (A, B, C)---RA--1--(All Bl, C1).

168
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AB = A''31

1
Figure 9.11(b)

AC =A'C1 BC =B1C1

If Bl = B' and Cl = C', only one line reflection is needed

to prove the theorem. Suppose B1 B1 A second reflection in

22, the perpendicular bisector of BO' maps Bl onto B1 (See Figure

9.11(c )). Since Al B1 B1., 111 is as far from B as from 131 , so

that A' is on 22 and hence A' is mapped onto itself. So
Bo

( 111 C1) ( 131 , C2) . Again note the logical con-

sequences of this reflection.

Figure 9.11( c)

1 E9
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If C2 = Ct, then two line reflections effect the desired iso-

metry. If C2 / C', then the line reflection in 0,3 . A1B1 effects

the isometry. (See Figure 9.11(d)), for A' C3 = A' C' and J3' C3 =

BICI; that is, each of A' and B' is equidistant from C2 and CI.

Hence 23 is the perpendicular bisector of C2C' and

, c2)

R
A

- - - , B', )
Ave3

A

Figure 9.11(d)

You may find it instructive to see the three line reflections

in one diagram. They are shown together in Figure 9.11(e).

7123

1,4

Figure 9.11(e)
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9.12 Exercise

Our artist took great pains to get Figure 9.11 to convey

clearly the sequence of line reflections that map (A, B, C) onto

(A', C,). We issue this challenge to you. Using a cardboard

triangle trace it in two different positions and then show clearly

the sequence of line reflections that map one of these triangles

onto the other. As you do this follow the proof given above.

9.13 Directed Isometries

In Figure 9.12 you see a pennant, a triangle, and a ray,

each reflected in L. Each has been flipped over.

A

11,

A

Figure 9.12
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How can we describe thin mathematically? We can see that the rays

are directed in opposite directions. So are the pennants. To des-

cribe the "flipped over" position of the triangle we look at 41ABC

reading the vertices from A to 3, then to C and note that the

direction of reading the vertices in that order resembles the mo-

tion of the hands of a clock. But if we read the image of AABC,

from A' to B' to C' we note the direction to be opposite that of

the hands of a clock. We see that the isometry has reversed the

direction, or sense, of the three vertices. If a line reflection

changes the sense of &ABC, it will change the sense of any three

noncollinear points. Because a line reflection reverses the sense

of three noncollinear points we call it an opposite mapping.

Definition 1. If a mapping preserves collinearfty and non-

collinearity it is called opposite if it

reverses the sense of three non-collinear

points; otherwise it is called a direct mapping.

Figure 9.13.

It is clear from Figure 9.13 that a translation is a direct

isometry. Figure 9.14 shows that a half-turn is also a direct

172isometry.
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C,

5'

Figure 9.14
At

These observations however should not surprise us, for a trans-

lation is the composition of two line reflections, each of which

is an opposite isometry. The second reflection reverses the re-

versal, and so restores the sense of the original triangle. Hence

a translation must be a direct isometry.

Since a half-turn or for that matter, any rotation, is also

the composition of two line reflections, then half-turns and ro-

tations in general are direct isometries.

9.14 Exercises

1. Prove that the composition of three line reflections is an

opposite isometry.

2. Investigate the nature of the composition of an even number

of line reflections and of the composition of an odd number

of line reflections. For verification see Figure 9.11(e).

3. What kind of isometry is a glide-reflection?

4. What kind of isometry is the composition of any number of:

(a) translations? (b) rotations? (c) half-turns?

5. (a) Show that the composition of two line reflections and a

half-turn, in any order, is a direct isometry.



-169-

(b) Should we use an even number or an odd number of line

reflections in composition with a half-turn to produce

an opposite isometry?

6. Prove that the composition of half-turns cannot be a line

reflection.

7. Prove that the composition of rotations is never a line re-

flection.

8. What should you compose with a glide-reflection to obtain

a direct isometry? An opposite isometry?

9. Is the identity isometry direct or opposite? Show that an

isometry and its inverse isometry are either both direct or

both opposite. (An isometry f is the inverse of isometry g

if fog is the identity isometry.)

10. Prove: A direct isometry with two fixed points is the iden-

tity isometry.

9.15 Groups of Isometries

You know that a group is an operational system (S,0) with

the three properties of associativity, existence of an identity

element in S, and the existence in S of an inverse for each ele-

ment in S. The set of all isometries in a plane with composition

as the operation is, as we shall see, a group.

Let us first see whether this system is an operational sys-

tem. To do this we must convince ourselves that the composition

of any two isometries is an isometry. Remembering that all iso-

metries are one-to-one mappings of the plane onto itself, it is

174
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clear that the composition of two isometries is also a one-to-one

mapping of the plane onto itself. Since distance is preserved

under under an isometry, it continues to be preserved under the

composition of two isometries. Thus composition of isometries

preserves distance and hence is an isometry.

Now let us check whether or not the operational system has

the group properties. First the associative property. Since

composition of transformations in general is associative, so is

composition of isometries.

The isometry that leaves all points of the plane fixed is

the identity isometry, designated i. It is clear that, ff f is

an isometrysiof or foi has the same effect as f alone, So iof =

foi = f. Thus the identity requirement is satisfied.

Let f be any isometry. Since f is a one-to-one mapping of

the plane onto itself, it follows that the inverse mapping f-1

exists, and is a one-to-one mapping of the plane onto itself.

f-1
Now let A, B be distinct points,

f-
and B D.

Then D---=B. Since f is an isometry, CD = AB.

Thus f
f-1 f-1

-1 has the property that if A C and B D,

then AB = CD. Thus f-1 is an isometry, and clearly forl = f-10f

= i. Thus the set of all isometries is a group.

As an example of a subgroup (see Chapter 2 Section 2.1) of

the group of isometries we offer T, the set of translations.

Let Taub represent the translation with rule (x,y)-----(xia, y+b).

Then for all T
a,b'

T
cod

(1) Teld 0 T
a0b Ta+c, b +d

which is in T, proving (Too) is

an operational system. 1.75
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(2) T
o,o

0 T
a,b

= T
a,b

0 T
o,o = Ta,b. Hence

To,oo,o i.

(3) T-a,-b
0 T

a,b
= T

a,b
0 T

-a,-b
= T

o,o
= i.

Thus T is a subgroup of the group of isometries.

9.16 Exercises

1. Consider the set of translations in a plane. Let T(A,B)

represent the translation that maps A onto B.

Interpret: (i) T(A,A) (ii) T(B,A) (iii) T(B,c) T(A,B).

2. Prove the set of direct isometries is a group under composi-

tion.

3. Does the set of opposite isometries form a group?

4. Is the set of half-turns a subgroup of the group of isometries?

(Hint: Consider the composition of two half-turns.)

5. Is the set consisting of half-turns and translations a sub-

group of the group of isometries?

6. Does the set of rotations with the same center form a sub-

group? In your investigations designate a rotation kith. cen-

ter P and measure a by r(P,a). Interpret r(P,a) to be in

the counter-clockwise direction when a > 0, in the clockwise

direction when a < 0.

7. Prove: If f and g are isometries, then

(f
1

og) = g
-1

of
1

.

8. Generalize the theorem in Exercise 7 for n isometries.

9. The groups we have considered so far are infinite. In this

exercise we consider a finite group of isometries. Let AABC
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be equilateral. Observe that each median* of an equilateral

triangle lies in the perpendicular bisector of a side and in

the bisector of an angle. Let the medians of AABC be AAll

A

BBil and CC1. The medians meet at a point; call it O.

mLAOB = mLBOC = mLCOA = 120, and OA = OB = OC. Consider the

rotation r(00120), which we abbreviate rl.

C---11--0.A. Therefore AB
ri

ABC,

and CAI:Ib.AB. In short, AABC---E1.ABCA. Therefore

the image of AABC under r1 is AABC itself. We describe this

by saying that r1 leaves the triangle invariant.

(a) Let r2 = r(00 -120). Show that r2 leaves AABC invariant.

(b) Let R1 be the reflection in AAl. Show that R1 leaves

AABC invariant.

(c) Let R be the reflection in BB1. Show that R2 leaves

AABC invariant.

(d) Let R3 be the reflection in CC1. Show that R3 leaves

AABC invariant.

A median of a triangle is a line segment whose endpoints
are a vertex of the triangle and the midpoint of the side
of the triangle opposite that vertex.
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(e) Make a table showing all possible compositions of

two isometries in the set S = (i, r1, r2, R1, Ra, R3 }.

(f) Show that (S o) is a group.

(g) Find all the subgroups of (S, o)

9.17 Isometry, Congruence and Symmetry

A congruence is a relation between figures. In everyday

life we describe two such related figures as being exact copies

of each other, or as having the same shape and size. It is quite

difficult to give a precise mathLraatical definition of "same

shape and size," as you might convince yourself if you were to

try. However, the notion of an isometry is helpful.

Definition 2. Two figur..s are called congruent if there is

an isometry that maps one of these figures

onto the other. If there is an isometry that

maps figure F onto figure Ft we designate

the congruence

F= Ft,

and read it: F is congruent to Ft.

In Figure 9.15 we illustrate such a congruence for two tri-

angles. Note first that the isometry is a translation.
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Figure 9.15

Under this isometry B IT, and Since

isometries preserve segments:

, BC ---0.-Frer, and CA

In short, QABC -0-AA' DC,. Therefore pABC

Each part (side or angle) of AABC is mapped onto a part of

AA'B'C'. These parts are called corresponding parts. In parti-

cular, each side of pABC corresponds to a side of AA'B'C'. Since

isometries preserve both distance and angle measures, we conclude

that corresponding sides and corresponding angles of these con-

gruent triangles, or congruent figures in general, have the same

measure.

It is customary in designating a congruence to indicate the

correspondence of parts by the order of the vertices. Thus ABC

ADEF indicates A D, B E and These corre-

spondeneas determine all other correspondences that involve ver-

tices, such as AB DE.

An important instance of a congruence occurs in a parallelo-

gram. We shall use it often.
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If ABCD is a parallelogram then AABD g ACDB. To prove this

statement we have to find an isometry under which AABD----ACDB.

(See Figure 9.16.)

Figure 9.16

The isometry is HM, the half-turn about M, the midpoint of BD;

B
H. ;

and, since the diagonals of a parallelogram
Hy Hm

bisect each other, A C. Thus AABD ApDB, and

finally, AABD g ACDB.

Symmetry is a property of a figure.

Definition 3. A figure is symmetric if there is an isometry,

other than the identity, that transforms the

figure onto itself.

If the isometry is a line reflection we say the symmetry is

a line symmetry, or symmetry in a line. See Figure 9.17 for symme-

tries related to different isometries.
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(b)

line symmetry

in /4

(c)

point symmetry

in 0

Some figures, like the rectangle, have a variety of symmetries

because there are more isometries than one that map the the figure

onto itself.

9.18 Exercises

1. Draw a diagram of AC and DE, bisecting each other at B.

Prove AABD = CBE..

2. Let CD be the perpendicular bisector of AB. Prove:

(a) PACD = ABCD

(b) LCAD and LCBD have the same measure.

C
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(c) AC = BC.

(d) If AB 076 = M, prove AACM = ABCM and mLCAB = mLCBA.

(e) Show that ADBC laas line symmetry.

3. Would your proof in Exercise 2 be different if D were between

C and M in the diagram?

4. Suppose two circles have radii of the same length. Do you

think they are congruent? Support your answer with a draw-

ing.

5. (a) Let ABCD be a rectangle. Prove AABD = ABAC,, (Assume

that the perpendicular bisector of AB is also the per-

pendicular bisector of DC.)

(b) List all the symmetries in ABCD.

6. Let AABC be equilateral, and let its medians intersect at

O. Assuming that m LAOB = m L BOC = m L COA = 120, prove

4A0B = ABOC, and AA0B = ACOA.

7. Prove:

(a) 4ny figure is congruent to itself.

(b) If F z F', then F' z F.

(c) If Fl z F2 and F2 = F3, then F1 z F3.

Is the congruence relation an equivalence relation?

In how many ways can one consider an equilateral triangle to

be symmetric? An isosceles triangle? A circle? (See Definition

3 and Figure 9.17.)

9.19 Other Transformations: Dilations and Similarities

We would not like to leave the impression that all transfor-

mations are isometries. Indeed there are many more that are not.
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In this section we examine just one set of transformations that

are not isometries, although it bears many resemblances to the

set of isometries.

Let point 0 be given, and also a fixed non-zero number, say

2, for purposes of illustration. Then to point A (see Figure 9.18)

we assign A', where At is in OA and OA' is 20A. B' is assigned

to B if B' is in OB and OB' = 20B, and so on.

CI

T3

I

A

\ I I/

/-

11/0

Figure 9.18

/

C

If the given number is negative we take the image of A in the ray

opposite 0A. Clearly every point in the plane is assigned a point

of the plane, and every point serves as the image of one point.

Thus this method of assignment is a transformation; but as you can

readily see by comparing AC with A'C', it is not an isometry. This

transformation is called a dilation with center 0 and scale factor

2.

We can form a composition of a dilation with any isometry,

and the result is called a similarity. Note that if the scale
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factor of the dilation component is 1 or -1, a similarity is an

isometry. When it is -1, then the dilation is a half turn. (See

Figure 9.19.)

Figure 9.19

9.20 Exercises

1. Make a drawing of two triangles related by a dilation with

scale factor

(a) 3 (b) (c) -1 (d) -2

2. Show that a dilation with scale factor -1 is a half-turn.

3. Using a drawing show that if a dilation with scale factor

2 maps points A and B onto A' and B' , then A' B' = 2AB.

Generalize this result.

4. Show that a dilation maps three collinear points onto three

collinear points. (Hint: Use the generalization in Exercise

3. If necessary review the proof of the analogous statement

in Exercise 6, Section 9.4.)

5. Show that the set of dilations with center 0 is a group under

the operation of composition.

6. Draw a picture of a dilation with scale factor fir, followed

by a translation, as it affects three noncollinear points.
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7. Draw a picture of a dilation with scale factor followed

by a reflection in a line, as it affects three noncollinear

points.

8. Suggest a definition for direct and opposite similarities.

9. You may have observed that a similarity preserves the ratio

of distances. Does it seem to preserve the measure of angles?

Base your answer on the drawings you have made in these

exercises.

9.21 Summary

1. A plane transformation is a mapping of the plane onto itself

that is one-to-one. A transformation is an isometry if it

preserves distance.

2. Among isometries are compositions of line reflections,

translations, glide-reflections, and rotations. The half-turn

is a special case of a rotation.

3. The line reflection is the basic isometry in the sense that

any isometry is the composition of line reflections of which

no more than three are needed. A rotation is a composition

of two reflec:.ons with intersecting axes. In the case of a

half-turn the axes are perpendicular. A translation is the

composition of two line reflections in parallel axes. A

glide reflection is composition of a line reflection and

a translation with a direction of the axis of the reflection.

4. All isometries preserve collinearity of points, the betwe'ness

relation among points, rays, segments, angles, and angle mea-

sure, in addition to distance. 185
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5. Under the identity transformation all points are fixed,

Under a line reflection the axis is fixed pointwise, and

lines perpendicular to the axis are fixed, but not point-

wise. Under a rotation the center is fixed; under a trans-

lation no points are fixed; under a glide reflection the

axis is fixed, but not pointwise. Under a half-turn all

lines through the center are fixed, but not pointwise.

6. Half-turns, rotations and translations are direct isometries,

that is, they preserve the sense of three non-collinear

points. All other isometries we discussed are opposite.

7. The set of isometries, with the operation of composition,

is a grow). The set of translations and half-turns is a

subgroup. The set of translations is a subgroup.

8. Two figures are congruent if an isometry maps one onto the

other. A figure is symmetric if an isometry maps the figure

onto itself.

9. Not all plane transformations are isometries. For instance,

the composition of a dilation with an isometry, called

a similarity, is not in general an isometry. Similarities

preserve collinearity, betweeness, ratio of distances

and angle measure.

186



-182-

9.22 Review Exercises

1. Given three noncollinear points 3, C. For each part below

make a different diagram showing how to find:

(a) the reflection of A in.

(b) the image of A under the translation that maps B onto C.

(c) the image of AB under the half-turn in C.

(d) the image of A under the glide reflection whose axis

is andand that maps B onto C.

2. (a) Given parallelogram nBcp. Show that the parallelogram

is preserved under the half-turn whose center is the

ridroint of

(b) Is the parallelogram preserved under the translation

that maps A onto B?

(c) Is the parallelogram preserved under the line reflec-

tion whose axis contains the midpoints of AB and CD?

3. Given ABCD is a sauare, and let AC intersect 3D in E. Show

that the square is invariant under:

(a) a rotation with center E and measure 90 (counterclock-

wise), (r1).

(b) a half-turn with center E(r2).

(c) a rotation with center E and measure -90 (clockwise),

(1'2).

(d) a reflection in the axis through the midpoints of

AB and CD (R1).

(e) a reflection in AC (R3) .

(f) Name three more isometries that preserve the square.

1S1
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(Did you remember that the identity transformation is

an isometry?)

(g) Let the symbols in parentheses name the respective iso-

meivies. They are rl, r2, r3 for rotations; R1, R2 for

the reflections in axes passing through midpoint3 of

sides; R, R4 for reflections in diagonals. Show that

(fi, r1, r2, r3, R1, R2, R3, R41,°) is a group, where

0 denotes composition of transformations, by displaying

the table showing all possible compositions.

(h) Find a subgroup containing 4 elements.

(i) Find five subgroups each containing 2 elements.

4. Given ABCD is a parallelogram. Show Hp 0 HA = Ha 0 HD.

5. Given point P is on line a. Show Hp o Ra = Ra 0 H.

6. Prove that the composition of four line reflections cannot

be a glide reflection.

7. Given line A. Under which isometries is the image of L para-

llel to A? Do not consider such cases as line reflections

where L is parallel to the axis, nor half-turns whose cen-

ters are on L.

8. Describe isometries under which each of the following con-

ditions is satisfied:

(a) All points are fixed.

(b) All points in one line are fixed.

(c) There are no fixed points.

(d) There is exactly one fixed point.

9. (a) Which isometries are direct? Which are opposite?

(b) An isometry is an involution. Is it necessarily an

opposite isometry? May it be? wi
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10. Let line b be the perpendicular bisector of PQ.

Show HpoRb = RboHQ.

*11. Let J1 and m represent mirrors at right angles. A ray of light

issues from point P in the direction indicated in the figure,
RLOHA

strikes A in A, and is reflected as follows: Let P P2.

Then the beam of light follows the path AP2 until it strikes
Rm o H

Bm, say at B. Let Pa P4. Then the beam of light

follows the path BP4. Show that AP I BP4.

12. What is meant by saying that two figures are congruent?

Give an example, in a drawing, of:

(a) two triangles that are congruent under a line reflec-

tion.

(b) two parallelograms that are congruent under a half-turn.

13. What is meant by saying that a figure has symmetry?

(a) Give an example of a figure that has line symmetry.

(b) Give an example of a figure that has both line and point

symmetry.

(c) Give an example of a figure that has line, point, and

rotation symmetry. 189



CHAPTER 10

LENGTH, AREA, VOLUME

10.1 Introduction

Kepler (1571-1630) said: "To measure is to know," and

scientists and technicians have worked successfully by this

dictum. As a result of their experiences in measuring various

things, a number of questions have arisen for which they look

to mathematicians for answers. Some of these questions are;

(1) What is the mathematical meaning of a measurement?

(2) What kind of numbers are needed for measuring?

(3) How are the operations of addition and multiplication

related to measurement?

We lookfor answers to these questions in this chapter

as we measure segments, regions, and solids.

10.2 Measures on Sets

The first mathematical process we learn to use is that

of counting. Counting is not only the first process we learn,

but it is one we continue using as we progress in mathematics,

developing new uses and new techniques at various stages of

our development. In this section we use counting as a tool

for assigning measures to finite sets and unions, intersections,

and cartesian products of such sets. Later in the chapter we

apply these measures of sets to the measurement of line segments,
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planar regions, and solids.

Two sets, X and Y, are said t;) be equipotent (denoted

X cz; Y) if there exists a one-to-one mapping of X onto Y.

If X and Y are finite sets then X c:.; Y if and only if X and Y

have the same number of elements.

We define the counting measure of a finite set, X, to

be the number of elements in X. We denote this by n(X).

If X = (1, 2, 3) then n(X) = n01, 2, 30 = 3; n(0) = O.

If A = (1, 2, 3) and B = i2, 3, 5), then n(A) = 3 and n(B) = 3

and A B. In general,

n(X) = n(Y) if and only if X ti Y.

With sets A and B as given above, consider A U B and

A n B. A U B = (1, 2, 3, 5) . n(A U B) = 4. A n B = (2, 31

and n(A 0 B) = 2. Thus n(A) + n(B) = n(A U B) + n(A n B),

or n(A U B) = n(A) + n(B) - n(A n B) .

If the set C = (4, 5, 6, 7), then n(C) = 4. What is the

counting measure of A U C? A U C = (1, 2, 3, 4, 5, 6, 7), so

n(A U C) = 7 and n(A U C) = n(A) + n(C). Does this result

differ from the one we obtained using sets A and B? No, because

A n C = 0 and n(0) = 0. This illustrates:

If X and Y are disjoint sets, then n(X U Y) = n(X) + n(Y).

This property is called additivity cf measures, and is used

only with reference to disjoint sets.

If P C A it follows that n(p) n(Q). (When is n(p)

n(Q)?)

Now let us consider the set A x B = ((1, 2), (1, 3), (1, 5),

(2,2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5)). This set has 9

elements, each of which is an ordered pair of elements, the
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first from A, the second from B. n(A) = 3, n(B) = 3,

n(A x B) = 3.3 . 9. In general, if X and Y are finite sets,

then

n(X x Y) = n(X) n(Y).

Note that in the case of cross products, we are not concerned

with disjointness of the original sets. We shall extend these

counting techniques in Chapter 11 on Combinatorics.

In any section dealing with sets, we select one set, which

we call the universal set (for that section), and restrict the

discussion to subsets of the universal set. In this section

we might have selected U = [1, 2, 3, 4, 5, 6, 7, 8, 9) for our

universal set.

10.3 Exercises

Let X = [positive integers less than 50) be our universal

set with A, B, C, D a X where:

A = ix E X: X is a multiple of 3)

B = tx E X: X is a multiple of 5)

C = tx E X: X is a multiple of 61

D = [x E X: X is a multiple of 11)

Find the number of elements in:

1. A, B, C, D.

2. A n B, A n C, A n B n CI B n D, COD.

3. A U B, A U (, A U D, B U C, B U D, C U D.

4. A x B, A x C, A x D, B x C, B x D, C x D.

5. AxBx D.

6. AnBnD,AUBU D.

192



-188-

10.4 Lengths of Line Segments

You know how to measure a line segment with a ruler.

Nevertheless, let us review the procedure with the hope of

finding clues that will suggest answers to the questions

of Section 10.1 as they apply to segments.

Suppose we are to measure the segment in Figure 10.1

with a ruler marked only in inches. Our first assumption is

that each segment on the ruler between consecutive marked

points is congruent to a unit segment whose measure, we say,

is 1, and therefore each segment has a length of 1 inch.

This observation, though obvious, embodies two principles

of measure, important enough to formulate:

The unit principle: To measure a segment we must start

with a unit segment. (To measure an angle we must start with a

unit angle. To measure anything we must start with a unit of

that thing.) The measure of that unit is 1.

The congruence principle: Segments congruent to the

unit segment have measure 1. In general, congruent segments

have the same measure. So do congruent rectangles, congruent

triangles, congruent cubes; and so any congruent figures

have the same measure.

We have used the term "measlre" in a precise way. It

means a number. However the number is associated with a

unit. When we say that the length of AS. is 3 inches, the

"3h is the measure, and the "inch" is the unit. When the

unit is clearly understood we say: "The measure of A$ is 3",

and write m(TS) = 3, or AB = 3. 193
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A

Figure 10.1

Returning to the measurement of segment Al in figure

10.1, we place the zero point of the ruler on A, and see if

B is at one of the points marked on the ruler. If B is at 3,

we say that the measure or length of A$ is 3; or AB = 3.

In passing we note that if AB = 3, then is is made up of

three unit segments, each having measure 1. To get 3, we add

1 + 1 + 1. This illustrates the next measure principle.

The additive principle: The measure of a segment is the

sum of the measures of the parts into which it is subdivided.

For example, if E is between C and D, as in Figure 10.2

then CE + ED = CD.

C E D

Figure 10.2

Going back to our measurement of AS, suppose B does

not fall on one of the inch marks of our ruler. Does this

mean we have failed in our measurement? Not entirely; for

suppose B falls somewhere between 3 and 4, as it actually

does in Figure 10.3. Then we know that the measure of 73.,

is somewhere between 3 and 4. We can use 3 as a first approxi-

mation to m(AS), and 3 < m(TS). We recognize that 4 is an upper

bound for m(AS) .

Suppose the 3" mark on our ruler falls on a point D of

XS. Then D is between A and B, with ragT5) = 3, and AD + DB = AB.
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D

A 1 2 3 B 4

Figure 10.3

To get a better approximation to m(Ar), we examine the

segment Mr which we have not yet measured. A part of Figure

10.3 containing DM is magnified and shown in Figure 10.4, in

which a ruler marked in tenths of an inch is used.

D

3 3.1 3.2 3.3 3.4 3.5 4
B

Figure 10.4

If B is at one of the points marked on the ruler, say at 3.3,

we take m(711) = 3.3 If B falls between two of the marks say

between 3.3 and 3.4, as in Figure 10.4, we get a second approxi-

mation, 3.3, for m(717), and 3.3 < m(NS). We next use a ruler

marked in hundredths of an inch, etc. This procedure is con-

tinued, and it may happen that ultimately B coincides with a

point of division of a ruler. We then get a measure for AS

such as 3.37 or 3.372. In this case m(Ar) is a rational number.

It may however happen that B never coincides with a point of

division of a ruler, and we get a sequence of approximations

to m(Ar): 3, 3.3, 3.37, 3.372,..., each less than m(Ar).

Since m(T) is bounded above (by 4), the completeness property

of the real number system assures us that this sequence has a

least upper bound, which is a real but not necessarily rational

number. The way the sequence was constructed suggests that this

least upper bound be called the measure (or length) of the line

segment. This leads to:
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The real number principle: The measure of a segment is

a positive real number.

Our examination of the procedure for measuring a line

segment has led us to a number of measurement principles. We

stated them as applying to segments. It is remarkable that the

same principles operate when we measure other geometric figures.

You are asked to be alert in noting that this is so when

we examine areas and volumes. To review these principles

we list their names: the unit principle, the congruence

principle, the additive principle, the real number principle.

10.5 Areas of Rectangular Regions

The next object for measure study is the union of a

rectangle with its interior, which we call a rectangular

region. Such a region is not a set of collinear points, and so

we cannot use a segment as the unit of measurement. It is

a set of coplanar points. A unit principle for measuring

regions requires a unit that is a region. A convenient unit

region is a square region; that is, the union of a square

with its interior. To be definite we can use a square region

each of whose sides is 1 inch long. We call this unit a

square inch. It is also possible to use other units such as

a square foot or a square meter.

If we put six square inches together as shown in Figure

10.5, we form rectangular region ABCD.
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4 5 6

1 2 3

C

B

Figure 10.5

By a congruence principle for regions corresponding to the

one used for line segments, the measure of each square inch is 1.

By the corresponding additive principle for r-gions, the measure

of th2 rectangular region ABCD is 6. It is convenient to have

a brief symbol for the measure of the region bounded by rectangle

ABCD. We use K
ABCD' The combination of the measure with the

unit region, like 6 square inches, is called the area of the

region. The word "area" is synonymous with "measure of region".

As a second example of the way in which the additive principle

works for regions, look at Figure 10.6. Let D be a point in

the interior of AABC. The union of AABC with its interior is

called a triangular region ABC. We have not yet shown how to

assign measures to triangular regions.

A

Figure 10.6
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Nevertheless, we can be sure that by the additive principle

for regions, in this case triangular regions, the measure of

triangular region ABC is equal to the sum of the measures of

triangular regions ABD, BDC, and CDA.

To develop the technique for finding the measure of

a rectanglAlar region, called the area of the region, let us use

PQRS (see Figure 10.7 (a)) as our unit square.

S R

P Q

(a)
A

(b)

Figure 10.7

Since we have a unit square, it seems repvonable for each of

its sides to have unit measure of length, and we assume this to

be so.

Case 1: The sides of ABCD have whole number measures.

In this case we subdivide ABCD, as in Figure

10.7 (b), into squares each of which is congruent

to PQRS. If m(1.13) = p and m(17) = n, then we count

p n of these squares and we see that the measure

of ABCD, denoted
KABCD,

is p n = m(703)m(11.5).

Case 2: m(705) and m(A7) are rational numbers, say

121. and Here p, s, and q are positive integers.
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In this case we introduce a square, whose side

measures 1
as our new unit square. As in Case

1 there are p . s such unit squares. Since our

original unit square can be subdivided into

q
2 of these new unit squares we have by additivity

the area of each of the new unit squares to be

A,. (Confirm this.) Therefore (again by additivity)

the area measure of ABCD is p . s (p = ;I-

= mCKENT15).

Case 3: m(775) and m(730 are real but at least one of

them not rational. In this case we define the area

measure of ABCD to be m(AE) m(715). That such

a definition is reasonable is illustrated in

Figure 10.8, namely for any rational approximations

m(XSI) and m(A15') with m(M) < m(Ar) and m(M) < mgD)

the area of ABCD is larger than the area of

AB'C'D' and as B' gets closer to B and D' closer

to D the area of AB'C'D' which is equal to

nicATM m(7051) gets closer to the area of ABCD.

Since in all three cases the area is given by m(113) m(115)

we can state, if we write m(AR) . L, m(0) = w that:

K = KABCD
= Lw

is called the length of ABCD, w the width.

and w are called the dimensions of the rectangular region.
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Figure 10.8

You should observe that and w in this formula are measures

that refer to the same segment (or linear) unit. If both are

in inches, then the area measure is in square inches. However,

if the length of one side of a rectangle is given as 4 inches,

and another as 2 feet, we convert one unit into the other,

say 2 feet into 24 inches, and then proceed by the formula

K = Zw.

Note that measures of two sides of a rectangle can also

be used to find the perimeter of a. rectangle, that is, the

sum of the measures of all sides, the sum being given in the common

unit. Thus the perimeter of a rectangle, whose dimensions are

7 inches by 8 inches, is 7 + 8 + 7 + 8 or 30 inches. Here too,

we cannot find a perimeter unless all measures of sides are given

in the same unit.

In this discussion we have an answer to question (3) of

Section 10.1: How are the operations of addition and multiplication

of numbers related to measurement?

In the exercises that follow, and thereafter, we will

use K
ABC

to denote the measure WA the region bounded by 6 ABC;

21A,
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and if P, Q, R and S are the successive vertices of a quadrila-

teral, KFtes will denote the measure of the region bounded by

quadrilateral PQRS.

10.6 Exercises

1. Let h be the inch-measure of one side of a rectangle and

b the inch-measure of an adjacent side. For each pair of

values listed below find the area of the related rectangular

region:

1
(a) h = 3, = 7 (b) h = 7, b = 3 (c) h = 37, b = 6

(d) h 4.1, b= 3.2 (e) h b ,vf (f) h= b= 375'

1 .

(g) h = 6, b 1; (h) h b 2-
5

(1) h = B = 2+

2. Prove that the area of a square region, each of whose sides

has length s is given by the formula K
square =

8
2

3. The rectangular region ADEH is subdivided into 9 congruent

rectangular regions. Let m(17) = 15, and m(TR) = 6. Find the

area of each of the following rectangular regions:

(a) ADEH (b) ACMN

D

(c) ABGH (d) BCLK

(e) The rectangular region with diagonal Tr.

4. Using the figure in Exercise 3, tell why each of the

following is true:
201
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(a) KABGH KBCFG (C) KBCLK KKLFG KBCFG

2,
(c) KBCLK 75"ADEH (d) KADEH KCDEF KACFH

5. In the figure, the regions R1 and are bounded by squares,

and. R2 and R3 are bounded by rectangles. Let a be the measure

of each side of R1, and b the measure of each side of R4.

b

a

a

In terms of a and b, express:

(a) the area of R1 (b) the area of R2

(c) the area of R3 (d) the area of R4

(e) The entire figure which is subdivided into R1, R*, Rs

and R4, is itself a square region. Show that the area

of the entire square region is equal to the sum of

the areas of the subdivisions.

6. Let d represent the inch-measure of a diagonal of a rectan-

gle and s the inch-measure of one side of that rectangle.

Find the area of the corresponding rectangular region for

the values of d and s given below.

(a) d = 5, s = 4 (b) d = s = 5 (c) d = 13, s = 12

(d) d = 10, s =6 (e) d= s = \r5 (f) d = 25, s = 15

7. ABCD is a rectangle. Prove: KACD KCAB'
and KACD

illABCD*

(Hint: Use a halfturn about midpoint of AC to prove triangle

b

ACD congruent to triangle CAB.) 202



A -198- B

D C

8. pQRS is a parallelogram. Prove: KPRS = KRpQ, and Kpos

= 2KPQR.

S

9. In the figure of Exercise 8, let Srq intersect 7,1 in T.

Compare Ki.,TQ with KRTS.

10. Discuss the validity of the statement: If two rectangular

regions have the came area they are congruent.

11. Show: (a) The area of a square foot is 144 square inches.

(b) The area of a square yard is 9 square feet.

(c) The area of a square centimeter is 100 square

millimeters.

12. Compare the areas of two rectangular regions if each of

th,,, dimensions of one is twice a dimension of the other.

13. Let Ai and id/ be the dimensions of a rectangular region,

and 12 and w2 the dimensions of a second rectangular region.

Find the ratio of the area of the first region to that of

the second region if:

(a) 12 = L. and w2 = 2w1 (b) 12 = 2L1 and w2 = 3w1

1
(c) 12 = -241 and w2 = 2w1 (d) A2 = 7-1 and W2 = 4W1
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14. Find the area of a square region whose diagonal is:

(a) 12 inches long

(c) 6J miles long

(b) 8J feet long

i
4

i15. Prove the area of a square region s if d represents

the measure of a diagonal.

10.7 Volumes of Rectangular Solids

You know the shape of a box. It has 6 faces or regions

each of which is rectangular. The union of such a figure with

its interior is called a rectangular solid. It is a set of

points, not all in one plane. Some of its subsets are in a

plane and these have areas. But the entire set can be measured.

Such a measurement is called a volume.

The unit principle demands that the unit of volume be a solid.

We take a cubic solid for convenience. In Figure 10.9 you see a

cubic soll.d. Each of its six faces is a square region. The

solid itself consists of all points in the faces and all points

H G

Figure 10.9

in the interior. If each of its edges measures 1 inch, it is

called a cubic inch; and the measure of its volume is 1.
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No doubt you have observed that the units we have dealt

with are an inch (a segment), a square inch (a region) and

now a cubic inch (a solid).

In Figure 10.10 we put together 6 cubic inches.

E

A

I

I

4

/ /I
/ I

71_ L ___21 ±...

/ I /
/

I

/
D...

/

,- p _,//
1

1

i.

,

__)__,
Figure 10.10

The result is a rectangular solid. The six cubic inches

are congruent to each other, so the measure of each is 1. The

rectangular solid is subdivided into the six cubes. By the

additive principle its volume is 6 cubic inches.

In this rectangular solid the region ABCD can be taken

as the base of the rectangular solid. The length and width of

this region is also the length and width of the rectangular

solid. For the base ABCD, the height of the solid is BF. Note,

in this case, if A is the measure of w the measure of SU,

and h the measure of 17, then the measure of the solid is

Lwh, that is 3.1.2 = 6.

Can we use this method for finding the volume of any

rectangular solid? The answer is yes. In a method analogous

ofir
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to that used in Section 10.5 for finding the area of a rectangular

region, we work with the measures of three edges of a rectangular

solid that meet in a point (vertex), say WE, 171, and T37 in

Figure 10.11, and arrive at an entirely analogous result;

H /'
A

Figure 10.11

namely, if m(A7) = k, m(nU) = w, m( 7) = h, anJ if V denotes the

volume of the rectangular solid, then:

V = m(0) m(IT) m(SP) = Lwh

The measures of three edges of a rectangular solid that meet in

a vertex are called the dimensions of the Lolid.

10.8 Exercises

1. Find the volume of a rectangle solid if its dimensions,

in feet, are given below:

(a) A = 3, w = 4, h = 2 (b) A = w = 4, h= 5

(c) A = w = h = 2 (d) L = 3.1, w = 2.3, h =

2. The dimensions of a box are 21, 121, 1'. The dimensions of a second

3 3box are 17 t
, 17 r , 1'. Which has the greater volume? How much larger?

3. I want to have a measure that tells me how much water a

tank can hold. Is the measure length, area, or volume?

4. Assume the question asked in Exercise 3 if I want to know

how much:
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(a) fencir.g I need to enclose a yard.

(b) seed I need to plant a lawn.

(c) air there is in a room.

5. Prove: The volume of a cube each of whose edges is e units

long, is e3 cubic units.

6. (a) Prove there are 1728 cubic inches in one cubic foot.

(b) How many cubic feet are there in one cubic yard?

(c) How many cubic decimeters are there in one cubic meter?

(d) Show that the number of cubic yards in a cubic mile

is about 5.109.

7. The coordinates in a rectangular space coordinate system,

listed below in each part are those of vertices of a

rectangular solid. Find the volume of each.

(a) (0,0,0), (3,0,0), (3,2,0) , (0,2,0), (0,0,5), (3,0,5),

(3,2,5), (0,2,5)

(b) (-2,1,-3), (2,1,-3), (2,4,-3), (-2,4,-3), (-2,1,2),

(2,1,2), (2,4,2), (- 2,1.1,2)

10.9 Areas of Triangular Regions

Using the formula for finding the area of a rectangular

region, we can derive formulas for areas of triangular regions.

Formula 1: If a and b are the measures of the legs of a

right triangle, and K the measure of the related

triangular region, then K = apb.

Derivation: Let the triangle have vertices A,B,C,

with the right angle at C (See Figure 10.12).

Let AC = b, CB = a. 207
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Figure 10.12

If D is the image of C under a half turn in the midpoint M

of A$, we can show (using the sum of the degree measures of the

angles of a triangle is 180), that ACBD is a rectangle and that

OACB OBDA. This implies:

KACB %DA (by the congruence principle)

But KACB KBD, KACBD
(by the additive principle)

KABCD
ab (since ACBD is a rectangle)

Therefore: KACB e
1
7.-ab

To be able to state Formula 2 we define altitude of a triangle.

In each triangle of Figure 10.13, the perpendicular from

A to BC meets BC in D. Note in Figure 10.13 (a) that D is in

the interior of $T, in Figure 10.13 (b) D = C, and in Figure

10.13 (c) D is not in For each figure AT5 is the altitude of

LABC from A to BC. The word altitude is also used to mean the

measure of Ate.

(a) (b)

Figure 10.13

(c)
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Definition 1. If A is a point and a line, the point in

which the perpendicular from A to t intersects

A is called the foot of the perpendicular

from A to A.

In each of the triangles in Figure 10.13, P is the foot

of the perpendicular from A to BC.

Definition 2. The segment that joins a vertex of a triangle

to the foot of the perpendicular from that

vertex to the line containing the opposite

side, is called the altitude of the triangle

from that vertex.

How many altitudes does a triangle have?

Formula 2; If a is the measure of an altitude of a triangle

from one vertex, b the measure of the side opposite

that vertex, and K the measure of the triangular

region, then

K =
1
ab.
2

Derivation:We have to consider three cases: an acute

triangle (each of its angles has measure less than

90), a right triangle (one of its angles has

measure 90), and an obtuse triangle (one of its

angles has measure greater than 90). In all three

cases we consider OABC with altitude AU from A.

Case 1. AABC is an acute triangle. In this case we assume,

from Figure 10.13 (a), that D is between B and C.

We use the preceding theorem to calculate the areas

KABD and KACD. For each AD = a; and by the additive
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principle of areas, their sum is
KABC.

Thus

1 1
KABD 2a BD, KAcp = Ts. DC.

Therefore

1 1
K
ABC

=
2 2
a BD + a DC

= 2a(BD + DC).
2

Since D is between B and C, BD + DC = BC or b, and

1
K =

2
abABC

Case 2. tABC is a right triangle. D must coincide with C

since LC is a right angle. (See Figure 10.13 (b).)

This shows Formula 1 is a special case of Formula 2.

Case 3. ABC is an obtuse triangle with obtuse angle at

C. In this case we assume, from Figure 10.13 (c) that

C is between D and B, so that DC + CB = DB.

1 1
KADB 2

a DB
'
K
ADC = 2a DC,

and

or

KADB = K
ADC + KACB

KACB KADB - KKADC

2a
2

1DB - a DC

1
=

2
a(DB - DC).

Since (in Figure 10.13 (c)) C is between D and

B, DB - DC = CB or b. Therefore,

1

KACBACB 2
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10.10 Exercises

1. For each of the following figures use the indicated infor-

mation to find KABC.

(b)

2

201
A

13cm.

(e)

2. In finding KABC one can use Iltr as base or AC' as base. Draw

a large triangle with two altitudes 115 andITZ, and measure iT,

T17, M., and BE (preferably in millimeters or tenths of an

inch).
A

Using these measures, calculate KABC in two ways and compare

the results.
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3. Find the area of a right triangular region if its hypotenuse

is 26 inches long and one of its legs is 10 inches long.

4. The length of the hypotenuse of a right triangle is h and

the length of one of its legs is A. Prove the area of the

triangular region is 4-4A2 - £2.

5. The legs of a right triangle are 6 and 8 inches long. How

long is the altitude to the hypotenuse?

6. A field has the shape of ABCD, as shown. If AZ is 40 yards

long, Er an altitude of 6ABC, is 20 yards long and 317, an

altitude of 6ABC, is 30 yards long, what is KABCD?

7. The measure of each leg of an isosceles triangle is 10

and that of the base is 8. Find the area of the triangular

region.

8. Each side of an equilateral triangle measures 12. Show

(a) the length of any of its altitudes is 6J, and

(b) the area of the triangular region is 3645.

9. The measure of each side of an equilateral triangle is s.

Prove the area of the triangular region is 0)2/5 or

212



-208-

10.11 Areas of Parallelogram and Trapezoidal Regions

Now that we have a formula for the area of a triangular

region, we can use it to find the area of any region that can

be subdivided into triangular regions. Simple examples of such

regions are those bounded by parallelograms and trapezoids. A

trapezoid is a quadrilateral ABCD for which one of AB 11 DC,

AD IL BC holds. If both hold, the quadrilateral is a parallelogram.

In trapezoid (or parallelogram) ABCD let<AB>11<br P E<AI,

Q E<DC>, PQ 1 AB and PQ then P is called an altitude of the

trapezoid (or parallelogram). In Figure 10.14 (a) we show a paral-

lelogram with three altitudes, and in Figure 10.14 (b) we show a

trapezoid, also with three altitudes. The altitudes are all shown

as dotted lines.

(a) (b)

Figure 10.14

Observe that the altitudes of a parallelogram or a trapezoid are

congruent, since any two altitudes are opposite sides of a rectangle.

Definition 3. The sides of a parallelogram or a trapezoid

that contain the endpoints of an altitude are

called bases for that altitude. (In the case of

a parallelogram, there are two pairs of bases,
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and the bases in each pair are congruent.)

Formula 1: If the measure of a base of a parallelogram is

b, the measure of an altitude to that base is a,

and the area of the parallelogram region is K,

then:

K = ab

Derivation: Let ABCD be the parallelogram, with AB taken

as base, and DM as altitude to AB. (We assume from

Figure 10.15 that ME divides ABCD into two triangles

to which we may apply the additive principle

for areas.) Then DE = a and AB = b. Since AABC

ACDB, by the congruence principle for areas,

b

Figure 10.15

KABDABD -LAMB'
Also by the additive principle for

areas, KABCD = KABD KCDB However, KABD
KCDB'

Therefore KABCD
= 1. ab + ab = ab.

2

Formula 2: If the measures of the bases of a trapezoid are

b and c, the measure of its altitude is a, and the

measure of its region is K, then

K = .ia(b + c)
214
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Derivation: Let the trapezoid be ABCD, with bases AT

and UM. (We make the same assumption here

from Figure 10.16, that we made in the proof

of Formula 1.) Then AB = b, CD = c, and each

altitude drawn, Mr and 1-31.! (see Figure 10.16),

has measure a.

Figure 10.16

'ABCD
= KABD + KBDC

1 1

KBDCBDC

Therefore:

=1ab +1acKABCD 2 2

= 1a(b + c)
2

10.12 Exercises

1. For each of the parallelograms, assume that all indicated

segment measures have the same unit, and find the area of the

region bounded by each.
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10

(b) (c)

2. For each trapezoid below, assume all indicated segirmt measures

have the same unit and find the area of the trapezoidal

region.

10

-10

(a)

12

(b)

(e)

3. In a certain plane rectangular coordinate system, the vertices

of a quadrilateral have coordinates as listed below. Find the

area of the region bounded by each such quadrilateral.

(a) OM, (8,0), (7,5), (2,5)

(b) (8,o),(1o,6), (2,6)
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(c) (-3,o), (o,-3), (3,o), (0,3)

(d) (-3,-2), (5,-2), (6,3), (0,3)

(e) (0,0), (5,0), (5,8), (0,4)

(f) (-3,-1), (5,-3), (5,4), (-3,3)

4. For each figure below a piece of metal is to be made having

inch measures as indicated. If this metal costs 15 cents per

square inch, what is the cost of each?

(a)

(c)

(e)

12

10

(f)

a square

5. Find the ratio of the areas of two regions, each bounded by

a square, if the length of the side of the first square is n

times the length of a side of the second, and n is equal to:

(a) 2 (b) 3
2

(c)

'217
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6. Find the ratio of the areas of two regions, each bounded by

an equilateral triangle, if the length of a side of the

first is n times the length of a side of the second, and

n is equal to:

(a) 2 (b) 3 (c)
5

(d) k

10.13 Areas of other Regions

Having seen how to measure some simple regions, we get

some notions about area which apply to more general figures.

First of all we see that area is a function that maps

regions into the set of positive real numbers. It is determined

as soon as a unit region is selected. The domain has been

vaguely defined, but it certainly includes rectangular regions and

such other regions that can be subdivided into triangular regions.

Moreover, if figure A is congruent to figure B, and they have areas,

then they have the same area. Also, if a figure can be subdivided

into a finite number of regions, each having an area, then the area

of that figure is the sum of the areas of the subdivisions.

Now we go on to see how these notions can be used to

determine the area of a plane figure that cannot be subdivided

into triangular regions, say a map of Africa. Our first step

is to choose a unit region, preferably a square region. We have

1
chosen a square each of whose sides is - g inch long, and shall

call it a square unit. Our next step is to overlay the map of

Africa with a grid whose squares are the square units we have

chosen. See Figure 10.17. Observe that every square unit region

can be classified as belonging to one of three sets: First,
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there are square units al2 of whose points are points of the map.

Let us call these inner square units. Second, there are square

Figure 10.17

units that have some points in common with the map, but not all.

Let us call these border square units. Finally, there are square

units that have no points in common with the map. We disregard

these.

The unit squares are congruent to each other. Hence the area

of each is 1. Now consider the union of the inner square units.

It consists of 4 such regions and hence its area is 4. We call this

an approximation of the area of the map. Now consider the union

of all inner and border square units. There -re 19 of these.

The area of this union is therefore 19. This is an upper bound

of the area of the map. In finding the approximation and the upper

bound we used the additive property of areas. Let M be the area of

the map. We can then say
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4 < M c 19.

To get a closer approximation than 4 we use a smaller square region.

We can bisect the sides of the square units by lines midway between

the parallel lines in the grid. We get a new grid where square

1regions have areas of square unit. See Figure 10.18.

A count of the inner squares shows them to number 23. Hence,

3the approximation by the grid is 23 square units, or 5-
4

square

units.

Figure 10.18

We continue with a grid of still smaller square regions, each of

which has an area ()fit square unit. See Figure 10.19.

1
By actual count we find the approximation to be 121

16
square units or 71 square units.
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Figure 10.19

If we continue improving our approximations by using a finer

grid, we get a sequence of rational numbers which has an upper bound.

Therefore this sequence has a least upper bound, and this least upper

bound we define to be M, the area of the map of Africa.

10.14 Circumference of a Circle and r

You may recall that a circle C is a set of points in a plane

(see Figure 10.20) such that the distance OP, from any point P

of the set to a fixed point 0, is the same for all choices of P.

The point 0, though not a point of C, is called the center

of C. UP is called a radius of C, and all radii (plural of

radius) of a circle have the same length, and hence are congruent.

221



-217-

Figure 10.20

The term "radius" is also used to denote the length of segment

15V. The context will make clear whether "radius" means a segment

or a measure. It is clear that if we place a string along a

circle, and cut the string when it makes one turn of the circle,

we can find the length of the section of string that was cut off.

It would certainly seem reasonable to take this length as the

length of the circle. The length of a circle is called its

circumference.

In this section we will outline a method for finding the cir-

cumference of a circle. Since a circle is not a set of collinear

points, nor is it a union of segments, we cannot measure a circle

as we measure segments. But, as you might anticipate, we can use

the method of approximations, which have an upper bound.

In Figure 10.21 we have drawn square ABJD so that its vertices are

points of circle C with center 0, and radius r and a second square,

EFGH whose sides touch the circle at A, B, J and D. Let C

represent the circumference of C. The perimeter of ABJD is
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Figure 10.21

an approximation of C and the perimeter of EFGH is taken as upper

bound of C. We can see that AAOB is a right triangle. By the

Pythagorean property (AB)'I = r3 + r2 or AB = r12. We can also

see that EF = 2r. So the perimeter of EFGH is 8r. Thus

<. C c 8r or 5.656r < C < 8r

To improve our approximation of C, we take additional points

on the circle (see Figure 10.22) and form a new polygon by drawing

line segments joining consecutive points.

Figure 10.22
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Q, and R are such points in Figure 10.22. Since P, B, and J

are the vertices of a triangle we know that BP + PJ > BST. Thus

each time we choose another point on the circle and use it to form

a new polygon, the new polygon has a greater perimeter than did the

old one. This process of choosing additional points is restricted

in only one way. The sides of the polygon must all become arbitra-

rily small as the process goes on. This process gives us an

increasing sequence of numbers, bounded above by 8r, the perimeter

of the circumscribed square. Therefore, there is a least upper

bound for the sequence and this least upper bound we define to be

the circumference of the circle,

No matter how the points are chosen, except for the restriction

above, it turns out that the least upper bound of the resulting

sequence of numbers will be the same, a constant multiple of the

radius of the circle. It is convenient to represent half of this

number by the symbol ,r (Greek letter pi) and we conclude

C = 2rr.

We saw above:

4r,,5 < C =271-r <8r

Dividing the inequalities by 2r yields:

2 <ir <4

Since 1.4 < 2 (why?), it follows that:

2.8 < <4

It is known that r is not a rational number. A better approxi-

mationmation to r than the above is 3 or 3.14. A still better approxima-

tiontion is 3.1416. The formula relating r to C and r is C = 2rr.
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To illustrate: The circumference of a circle with radius

5 is C = 2r 5 = 10r. This is the exact

circumference. An approximation to C is

(10)(3.14) or 31.4.

10.15 Exercises

1. For each radius below find, in terms of ir, the circumference

of the circle of which it is the radius.

(a) 10 (b) 8 (c) 1 (d) (e)

2. Using 3.14 as an approximation for ir, find to the nearest

unit, the circumrerence of a circle whose radius is:

(a) 6 inches (b) 12 yards (c) 100 miles (d) ,/- cm.

3. Using 37,7
1 as an approximation for r find the circumference of

a circle whose radius is:

(a) 7 inches (b) 4- feet (c) 1400 miles (d) 28 miles

4. You probably know that the segment that joins two points of

a circle, and contains the center of the circle, is called

a diameter of the circle. The term diameter is used also to

denote the length of this segment. If d is the diameter and

r is the radius of a circle, what is the ratio of d : r?

5.. Find the circumference of a circle whose diameter is:

(a) 12 inches (b) 50 feet (c) yard .(d) .1 foot

6. Only that part of a circle is shown below that lies

on one side of<AY, a line that contains diameter WS. That

part, including the end points A and B, is called a semicircle,

and it too has a length.
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Find the length of a semicircle on a diameter whose length is:

(a) 20 inches (b) 50 feet (c) d

7. A square is drawn inside a circle with its vertices on the circle.

If the radius of the circle is 10 inches, by how many inches,

to the nearest inch, does the circumference exceed the perimeter

of the square? (Assume a diagonal of the square is a diameter

of the circle.)

8. ABCD is a rectangle with its vertices on a circle. Assume

that a diagonal of this rectangle is also a diameter of the

circle. Find the circumference of the circle if AD = 3 and

DC = 5.

9. Find the radius of a circle if its circumference is

( a) 24r ( b) 33r ( c) 24 (d) 2Tk

10. Find the radius of a circle if a semicircle of the circle

has length:

(a) 18r (b) 4r (c) 18 (d) 2Tk
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10.16 Areas of Circular Regions

The union of a circle with its interior is a circular

region. A model of a circle is a ring; a model of a circular

region is a coin or a phonograph record.

Once again we outline the method of approximations and

upper bounds, this time to derive a formula for the area of a circular

region.

For our first approximation we use the two square regions in

Figure 10.21. Since AB =rte, KABCD (r,Z)2 or 2r2. Since EF

2r,
KEFGH

(2r)a, or 4r2. Hence if we let Ice denote the area

of the circular region:

2r2 < < 4r2

Here 2r2 is a first approximation to ISC and 4r2 an upper bound for

K.

We improve our approximation in the same way as before,

except that we use regular polygons. Since the computations are

difficult and not important at this time, we state the results.

If a regular octagon is inscribed in the circle, it encloses a

region with area about 2.828r2, which is our second approximation

to K,C. If a regular polygon with 180 sides is used we get the

approximation 3.141r2 for the area enclosed by the circle.

It seems that Ka is related to r. Indeed it has been proved

that

KC = rr
a

To illustrate the use of this formula, we find the area of

a circular region with radius 8. It is r 83 or 64r. To the nearest

.1 this is 201.1 (v.sing 3.1416 as an approximation for r.)
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10.17 Exercises

1. For each radius listed below find, in terms of r, the area

of a circular region of which it is the radius.

(a) 10 (b) 8 (c) 1 (d) 22: (e) ATS'

2. Using 3.14 as an approximation for r, find the area of a

circular region whose radius is:

(a) 6 inches (b) 8 yards (c) 10 miles (d) cm.

1
3. Using 3 as an approximation of ,r find the area of the

7

circular region whose radius is:

(a) 7 inches (b) 31 feet (c) 140 yards (d) AT'T miles
2

4. Find the area of a circular region whose diameter is:

(a) 2 (b) 1 (c) 5 (d) /El

5. Find the radius of a circular region whose area is

(a) 25r (b) 64r (c) 49 (d) 20

6. Find the circumference of a circle whose region has area:

(a) 25r (b) 4r (c) r (d) ter

7. Find the area of a circular region if the circumference of

its circle is:

(a) 16r (b) 26r (c) 8r (d) 8

8. The region bounded by a diameter and a semicircle on one

side of the diameter is a semicircular region. Find the area

of a semicircular region to the nearest unit if its diameter is:

(a) 10 (b) 8 (c) 100 (d) 6

9. The ratio of the radii of two circles is 2 : 1.

(a) Find the ratio cf. their circumferences.

(b) Find the ratio of the areas of their regions.
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10. Find the two ratios called for in Exercise 9 if the ratio

of the radii is:

(a) 3 : 1 (b) 3 : 2 (c) 4 : 3 (d) 5 : 1

11. Points A, B, C, D are on a circle with center 0 and radius

10; and ABCD is a square.

(a) Find
KABCD.

(b) Find the area of the circular region.

(c) Find the area of the region bounded by 'AM and that part

of the circle that is on the opposite side ot*iefrom

B.

(d) Find the area of the region bounded by ID and that part

of the circle that is on the same side ot*ADas B.

10.18 Summary

1. We have discussed four basic measurement principles.

(a) The unit principle: The unit of measurement should be

of the same kind as the object being measured. The measure

of the unit is 1.

(b) The congruence principle: If two figures are congruent

and have measures, they have the same measure.
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(c) The additive principle: If a figure is subdivided and

the subdivisions have measures, then the measure of the

figure is the sum of the measures of the subdivisions.

(d) The real number principle: The measure of a figure is a

non-negative real number.

2. The basic method for measurement is the approximation and least

upper bound method. If the approximations have a least upper

bound, then that least upper bound is the measure of the

figure.

3. Formulas for regions.

ReCtangular: K = Lw (A and w are the dimensions of

the rectangular region.)

1
Triangular: K

2
ab (a is the measure of the altitude

to the base with measure b.)

Parallelogram: K = ab (a is the measure of t altitude

to the base with measure b.)

1
Trapezoidal: K -

2
s,(b + c) (a is the measure of an

altitude; b and c the

measures of the bases.)

Circular: K = ,rr2

Z. Formula for circumference of a circle:

C = 2 ,rr

5. Formula for volume of a rectangular solid:

V = Lwh (A, w, h are the dimensions of

the rectangular solid.)
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10.19 Review Exercises

1. State the additive principle as it applies to:

(a) segments (b) regions (c) volumes

2. Find the area of the region bounded by an isosceles right

triangle whose hypotenuse is 8 inches long.

3. Find the circumference of a circle, and the area of the

circular region if the radius of the circle is:

(a) 8 (b) 5 (c) 12

4. Find the circumference of a circle if the area of its region

is 100r.

5. Find the perimeter of a square, and the area of its region,

if the measure of one of its diagonals is 12.

6. Show that a median of a triangle subdivides it into two

triangles whose regions have the same area.

7. In 6 ABC, median AZ meets median SS in G. Find KADB %DC'

8. The vertices of quadrilaterals have coordinates in a plane

rectangular coordinate system as listed below, in the order

given. Find the area of the region bounded by the

quadrilateral.

(a) (0,0), (3,0), (3,7), (0,2)

(b) (-2,-2), (4,-2), (5,3), (-1,3)

(c) (-2,0), (l, -3), (3,0), (1,3)

(d) (-3,0), (-1,-4), (4,0), (3,5)

9. Find the volume of a rectangular solia wriose uimenSlonS are

- %-

gn
"'
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10. Find the volume of a rectangular solid whose vertices have

the coordinates listed below, in some rectangular space

coordinate system.

(3,-1,-2), (3,4,-2), (0,4,-2), (0,-1,-2)

(3,-1,4), (3,4,4), (0,4,4), (0,-1,4)
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Chapter 11

Combinatorics

11.1 Introduction

The study of combinatorics had its origin in problems

involving counting. Problems such as finding the number of

one-to-one mappings of a set onto itself, and finding, for a

given set, the number of subsets that have some specified

number of members are examples.

The above mentioned types of problems come from a class

of mathematical ideas known generally as combinatorial counting.

Although combinatorics today encompasses a much wider range of

ideas and overlaps such studies as group theory, graph theory

and topology as well as others, we will restrict our interest

in this chapter to combinatorial counting. Sometimes com-

binatorial counting is referred to as sophisticated counting.

This means that instead of counting each member of a set indi-

vidually, when counting its members, it is sometimes possible

to find this number more efficiently.

11.2 Counting Principle and Permutations

Example 1. Suppose that A, B and C are three cities, and

you wish to travel from City A to City C by

passing through City B. There are exactly

three roads from A to B -- the red road, the

blue road, and the yellow road. There are

exactly two roads from City B to City C
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the green road and the orange road. How

many ways are there to make the trip from

A to C? (See Figure 11.1.)

Figure 11.1

One way is to take the red road from A to B, and then the

green road from B to C; we shall call this route the red-green

route. All the possible routes are shown in Table 11.1.

Roads from A to B Roads from B to C Routes from A to C

red green red-green

blue orange red-orange

yellow blue-green

blue-orange

yellow-orange

yellow-green

The total number of routes is 6. Notice that 6 = 3 2,

where 3 is the number of ways to make the first part of the

trip, and 2 is the number of ways to make the second part of

the trip.
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Example 2. Let S be the set (a,b,c,d) consisting o' four

different letters of the alphabet. How many

two-letter "words" can you make using the

letters in this set? Before answering the

question, we must agree to certain rules. One

rule is that the "word" does not necessarily

have any meaning; another rule is that a letter

may not be used more than once in the same

"word." Thus, while we accept "bd" as a "word"

we do not accept "dd."

All possible "words" follow:

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc. There is a

total of 12 words, As in Example 1, there are two choices to

be made in forming a word. First, choose the first letter of

the word. There are 4 choices, since you may use any one of the

four letters in the set. Next, choose the second letter of the

word. How many choices are there in this case? Not 4, since

the second letter cannot be the same as the first. Therefore,

there are just 3 choices for the second letter, once the first

letter has been selected. Do you see from Table 11.2 that we

have the same sort of situation as we had in the earlier example

about the roads?

Number of Choices

for First Letters

Number of Choices

for Second Letter

Total Number

of Words

4 3 12 = 4 3

Table 11.2
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Specifically, in this case we have 12 = 4 ' 3 words. The

"tree" diagram, Figure 11.2 is another way to make this clear.

There are 4 ways to

ab
ac
ad

ba
be
bd

ca
cb
cd

da
db
dc

make the first choice.

The total number

of words is 120

For each of these, there are

3 ways to make the second choice.

Figure 11.2

The two examples just discussed illustrate a principle called

the counting principle. It may be stated as follows:

CP If an activity can be accomplished in r ways, and after

it is accomplished, a second activity can be accomplished,

in s ways, then the two activities can be accomplished,

one after the other, in r.s ways.

Example 3. Suppose in Example 2 we lift the restriction

that no letter can be selected twice. If we

do so we would have four ways to select the

first letter, and then the second letter

91E
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could be selected in four different ways.

Therefore we would have 4.4 = 16 distinct

possible words. This result is illustrated

in the tree diagram of Figure 11.3 and suggests

we state a more general counting principle.

aC
Figure 11.3

as
ab
ac
ad

ba
bb
be
bd

ca
cb
cc
cd

da
db
dc
dd

CFA Let Al and A2 be sets with rt and r2 elements respec-

tively, where rl, r2 E Z. Then Al x A2 = t(al, a2):

alEA1 and a2EAgi contains rl.r2 elements.

Example 4. Given the set of letters (a,e,i,o,u), how many two

letter "words" can be formed, using the samg rules

as in (a) Example 2? The first letter may be

chosen in 5 ways (r1 = 5). The second letter may

then be chosen in 4 ways (r2 = 4). The total

number of words is 5.4 = rl .1.0= 20 (b) Example 3?

Here r, = 242 = 5 and thus the total is 25 = 5.5.
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One might well wonder if the counting principle CP and its

generalization CP' can be extended to more than two sets Al

and A. For instance suppose, in Example 4 (a) we wanted

to form 3 letter words. Is the number of such words 543 =

rl.rar3 = 60? Would the number in Example 4(b) b9. 5.5.5 =

ri.r2.r3 = 125? The answer is yes, to both questions. Per-

haps you might confirm this with a tree diagram. Suppose in

Example 4 (b) we ask how many words 15 letters long can you

form? Is the answer 5.5. .5 = 520 . ri.r2. .r15.

The answer again is yes. You could of course prove it by draw-

ing a tree diagram and counting the 30,517,578,125 possible

words. However to prevent you from tiring we state as Theorem

1 our general counting principle for a finite number of non-

empty sets, each with a finite number of elements. The proof

would require the principle of mathematical induction, which

is not yet available to us. To facilitate the writing of the

theorem and subsequent statements we adopt the following

notation. If a set S contains s elements we will write n(S)

= 8' Theorem 1. CP Let Al, Ak be non-empty sets and

let n(Ai) ri for i = 1,2, ---, k.

where each riE Z
+

. Let Al x Az x

Ak = t(a1, , ak): ai E Ai i =

1, 2, ..., 0 Then n(Al x Am x Ak)

= rl ra --- rk.

Example 5. A direct mail firm plans to send out one

million letters, each containing the same four

pieces of literature, one piece each from the

four companies this firm represents. Company

Al has made available six different pieces of
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literature, Company A, three pieces, Company A3

two pieces and Company A4 eight pieces. How

many different mailings are possible? We have

n(Ai) = rl = 6, n(A2) = r2 = 3,

n(A3 ) = r3 = 2, n(A4 ) = r4 = 8. Therefore

n(Aj x A2 x A3 x A4) = ri ra ra r4 =6.3.2.8=

288.

Example 6. In a certain school, the student council decides

to give each student an ID number consisting of

a letter of the alphabet followed by two digits.

Will there be enough ID numbers so that each

student in the school may have one?

Let Al = (all letters in the alphabet), Ag = A3 =

(ell digits). Therefore n(A1) = 26, n(A2) = n(A3)

= 10. Therefore the number of ID numbers is

n(Al x J!L x A3) = 26.10.10 = 2600.

So, unless the school has more than 2600 students, there will

be enough ID numbers to go around.

In Chapter 2, Section 2.3 we defined e permutation of e set

S as a one-to-one mapping of the set onto itself; and saw that if

the set contains n elements, then there are n! = n(n - 1) --- 2. 1

such permutations. In Example 7, we shall see that the counting

principle may be used to get the same result.

Example 7. How many permutations are there of the set

S = (e,b,c)?
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Figure 11.4

/10

As illustrated in Figure 11.4 we may choose any

one of the 3 arrows starting et a; that is, there

are 3 choices. Next, we move to b. We do not

have 3 choices, since we cannot choose the arrow

that goes to the same image we chose before, if

we went a one-to-one mapping. So, the number of

choices here is 2. Next, we move to c. Two of

the images have now been used. So here we have

only 1 choice.

To summarize: At a we have 3 choices; at b we

have 2 choices; et c we have 1 choice. The total

number of one-to-one mappings is 3.2.1 = 6 = 3!

In the language of our theorem, n(A1) = 3,

n(A2) .---, 2, n(A2) = 1, and therefore

n(Al x A2 X A3) = 3 2 ' 1 = 3! .

Example 8. Given the sets in Figure 11.5 how many ways are

there to make a one-to-one mapping from set a

to set B?
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We may choose any one of the 5 arrows start-

ing at 1; there are 5 choices. Then we may

choose any one of 4 arrows, starting at 2; we

cannot choose the arrow which goes to the

same image as our first arrow. Therefore, the

total number of one-to-one mappings from A to

B is 5.4 = 20.

We often use the word permutation also to describe a sit-

uation such as that in example 8. Specifically, we would say

that the number of permutations of elements taken 2 at a time

is 20. In Example 8, the 5 elements are a, b, c, d, and e. And

the 20 permutations of these elements taken 2 at a time are listed

in Table 11.3.

ab ac ad ae

ba be bd be

ca cb cd ce

da db dc de

ea eb ec ed

Table 11.3

Each of these, of course, corresponds to one of the 20 mappings

mentioned in Example 8. For instance, "ab" refers to the mapp-

ing in Figure 11.6 (a).

(a)

Figure 11.6 241
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(b)

Figure 11.6

On the other hand "ba" refers to the mapping in Figure 11.6 (b).

Thus, "ab" and "ba" are different permutations (1.e., they are

different mappings).

Example 9. What is the number of 4-letter words that can

be formed from the set (a,b,c,d,e,f,g)? The

number is 7.6.5.4. (Express in the language of

theorem 1.) This is the number of permutations

of 7 elements taken 4 at a time.

Example 10. What is the number of permuations of 10 elements

taken 3 at a time?

1098 = 720

This is the number of one-to-one mappings from

a set containing 3 elements to a set containing

10 elements.

Example 11. What is the number of permutations of 5 elements

taken 5 at a time?

This is the number of one-to-one mappings from

set A to set B, where both A and B have 5

elements. (See Figure 11.7)
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A

Figure 11.7

But the number of such mappings is the same as

the number of mappings of A onto itself. There-

fore, the answer is 5: or 120.

Example 12. Suppose you had five colored flags, one in each

of the following colors: red, white, blue, green,

yellow. If you agree that a given signal is

to be represented by a particular arrangement

of three colored flags, how many different

signals could you devise using the five flags?

For example, the arrangement

RED YELLOW BLUE

might mean "Help." This problem really asks

for the number of one-to-one mappings from a

set containing 3 elements to a set containing

5 elements. This number is:

5 4 3 . 60

In Examples 8 to 12 we have been considering the number of

one-to-one mappings from a set A, with r members, to a set B,

with n members, where r < n. Another way to describe the number

of one to-one mappings from a set with r members to a set with

2,43
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n members (r S n) is the number of permutations of n elements

taken r at a time.

We found that there were n ways of finding an image in B

for which every member of A is selected first, (n - 1) ways

to find an image for the second selection from A, and so on

until each of the r members in A was selected and assigned an

image. We then used the counting principle to compute the de-

sired number of permutations by finding the product of r numbers

starting with n;

The first factor was n.

The second factor was 1 less than n (or n - 1).

The 3rd factor was 2 less than n (or n - 2).

and so on until

the rth factor was (r-1) less than n (or n - (r - 1).

In brief n(Ak) = n - (k - 1), where k = 1, ... r.

Since n - (r - 1) = (n - r 1) the product number

n(AlxxAr) = n(n - 1) (n - 2) (n - r + 1).

The symbol (n)r is used to represent the number of

permutations of n elements taken r at a time. We write:

(n)r = n(n - 1) (n - r + 1)

Example 13. (a) (8)15 = 8,7.6.5.4 = 6720

(b) (4)4 4.3.2.1 = 41 = 24

The exercises in Section 11.3 will contain specific ex-

amples of permutations of n elements taken r at a time. An

alternative form of the general formula for (n)r will be de-

veloped in Ti;xercise 17 of Section 11.3.
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11.3 Exercises

1. Given the set of letters (r,s,t,u,v,w,x), how many "words"

can be formed having:

(a) one letter (d) four letters

(b) two letters (e) five letters

(c) three letters (f) six letters

(g) seven letters

2. If set B contains seven elements, how many one-to-one

mappings are there from set A to set B if set A contains:

(a) one element (e) five elements

(b) two elements (f) six elements

(c) three elements (g) seven elements

(d) four elements

3. Use the results of Exercises 1 or 2 to answer the following:

(a) What is (7)1? (b) What is (7)3? (c) What is (7)3?

(d) What is (7)4? (e) What is (7)0 (f) What is (7)3?

(g) What is (7)7?

4. How many permutations are there of the set (a,b,c,d,e,f,g,h)?

taken 5 at a time?

5. Suppose you have 5 books to put on a shelf. In how many

orders can the 5 books be arranged?

6. In Exercise 5, suppose there is room for only 3 of the books

on the shelf, but you may use any 3. How many arrangements

are possible? That is, what is the number of permutations

of 5 elements taken 3 at a time?

7. In a certain state, the license tags consist of two letters

of the alphabet followed by three digits.
2,45
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(a) How many different license "numbers" are possible?

(b) How many are possible if the letters 0 and 2 are

not used?

8. A telephone number consists of 10 digits.

(a) How many numbers are possible if there are no restric-

tions?

(b) How many are possible if the digit "0" cannot be used

as the first digi'c?

(c) How many are possible if the digit "0" cannot be used

as the first digit and also cannot be used as the

fourth digit?

9. If a baseball team has 10 pitchers and 4 catchers, how

many batteries (pitcher-catcher pairs) are possible?

10. If a girl has 5 blouses and 4 skirts, how many blouse-skirt

combinations can she get?

11. If you toss one die for a first number, then toss a second

die for a oecond number, how many results (ordered number

pairs) are possible?

12. Find:

(a) (5)4 (b) (8)3 (c) (8)s (d) (20)2 (3) (9)s

1 . (a) What is (8)3 (b) What is 8 ! ?

(c) What is (8 - 3)1? (d) What is 8!

(8 - 3)!

14. What is: (a) (6)4? (b) 6 ? (c) (6 - 1?

(d) 6
9

(6 - 4)
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15. What is: (a) (10)3 (b) 10 1 (c) (10 - 3) I

(d) 10V

(10 - 3):

16. Let n and r be positive integers and r < n. Give an

argument to justify:

n = n(n - 1) (n - 2) ... (n - r + 1) [(n - r)]

17. Using the result in Exercise 16, give an argument to

justify:

(n)
r

n

(n - r) I

18. Use the formula in Exercise 17 to find:

(a) (11)3 (b) (7)5 (c) (15)3 (d) (100)2

19. Make up permutation problems for each of the following

answers:

(a) 8

(8 - 2)

(b) 9 (a) 9!
(9 - 3) 5:

(d) _15 (e) 7
13 6

20. Use the formula in Exercise 17 to find the number of

permutations of 5 elements taken 5 at a time. Do you

see that the denominator is 0 1? 0 I has no meaning. We

define 0 = 1

so that the formula in Exercise 17 holds for all whole

numbers n,r with r < n without exception.

21. Find a standard name for each of the following:
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(a) t (c) 3 + 2 ! +1 + 0

(8 - 8) t

(b) 12 1 (d)

(12 - 12)

11.4 Number of Subsets, of a Given Size

Before considering the number of subsets of a set S that

are of a given size (here n(s) E Z -(43) we will first consider

another set, the set whose elements are all of the subsets, of

S. This is called the power set of S and contains the empty set,

S itself, all of the one-membered subsets, two-membered subsets

and so on to include every subset of S.

Definition. The power set of a set 5, denoted P(S), is

the set whose elements are the subsets of S.

(Thus A E P(S) if and only if A C S.)

We summarize in Table 11.4. Copy and complete this table.

S n( S e s n S

() = 0 o (0) 1

(a) 1 [0,[a)) 2

(a,b) 2 (0,(a),(b),(a,b)) 4

(a,b,c) 3

(a,b,c,d) 4

Table 11.4

Once again the counting principle is useful in the general

case of finding the. number of subsets of a set S with n(S) = n
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E Z. Selecting any subset of S can be thought of as a set of

n tasks. Tasks consist of a decision for each member of S;

either you select the first member or reject it, and likewise for

the second, third and so on. In other words, there are two

possibilities for each member of S. Then, since S has n members,

the counting principle tells us that the product of n factors,

each equal to 2, is the number of ways of performing these tasks

one after the other. Each subset of S is the result of exactly

one performance of the tasks, and each performance of the tasks

results in exactly one subset of S. Accordingly the number of

subsets of a set S with n elements is:

2 2 2 = 2n

n factors

Is this the conclusion you drew when you completed Table

11.4? In the language of Theorem 1, for each i E Sli = 1,, n

let Ai = (select, reject). Therefore r1 = r2 = = rn = 2 = n(Ai).

Thus n(A1 x A2 x "' x An) = rl r2 .rn = 2n. If we replace

the word select by the digit 1 and the word reject by the digit

0 then A
i

= (1,0) and we can reason as follows:

The number of elements in the power set of S is equal to

the number of mappings with domain S and codomain (0,1). The

elements in S that map onto 1 are selected and those that map

onto 1 are selected and those that map onto 0 are rejected for

the subset selected by that particular mapping. Here we do not

require that the mappings be one-to-one, nor do we require that

they be onto. For example, each member of S may be mapped onto

1 and the set S itself would.be the selected subset. Likewise
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each member of S may be mapped onto 0 and then the empty set

would be selected.

Example 1. Figure 11.8 exhibits some mappings from (a,b,c) to

(0,1) and the sets they generate.

0

generates ( ) = 0

generates (a,b,c)

generates (a,b)

b generates (c)

Figure 11.8

Complete the rest of the mapping diagrams from (a,b,c) to (0,1)

as an exercise.

We will now turn our attention to the number of subsets

of S that have some given number of elements; for example the

number of subsets of (a,b,c) that have exactly two elements.

From your mapping diagrams you can see that this number is 3.

to general we will be concerned with the number of r-member

subsets of a set S with n members.

250



-246-

Example 2. Suppose that (a,b,c,d,e) is a set of club members.

How many committees can be formed which have

exactly two members? The committees are listed

below:

(a,b), (a,c), (a,d), (a,e), (b,c), (b,d),

(b,e), (c,d), (c,e), (d,e)

The number in this case is 10. This question is the same

as asking how many subsets of 2 elements can be formed from a

set of 5 elements.

In general questions such as this may be phrased as follows:

Given a set containing n elements, how many of its sub-

sets contain exactly r elements?

In order to answer the general question, let's look again

at the original question, a question whose answer we already

know. Given the set (a,b,c,d,e), how many different subsets of

2 elements can be formed? We introduce the symbol

(5)
2

to represent this number. That is,
(2)

is the number of subsets

of 2 elements that can be formed from a set of 5 elements.

Figure 11. 9 shows a one-to-one onto mapping from the set

(1,2) to the subset (a,b) . The set (1,2) is used since

Figure 11.9

.251
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We want a subset having two elements. However, the diagram

shows only one such mapping. How many one-to-one onto mappings

are there from (1,2) to the subset (alb)? Since (a,b) has the

same number of elements as (1,2), this is the same as the number

of permutations of a set of 2 elements -- that is 2 So there

are 2 different one-to-one onto mappings from (1,2) to (a,b).

(Be sure that you can draw a diagram for each.)

Also there are 2 different one-to-one onto mappings from

(1,2) to the subset (a,c), to the subset (a,d), etc. In fact,

there are 2 t different one-to-one onto mappings from (1,2) to

every subset of S containing two elements. Now how many such

5)
subsets are there? We have agreed to let (2 represent this

number. Thus if we form the product

2t

we should get the total number of ways to form a one-to-one

mapping from (1,2) to the set S. However, from CP we know

this number is:

Therefore we have:

(5)3

2I. (52 ) = (5)2

Then dividing by 2 t we get :

() = = = 1 0
2 t

Of course this agrees with our earlier observation that

there are 10 possible subsets, each with 2 persons that can be

formed from a club of 5 persons.
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Example 3. Consider the problem of finding how many

subsets of 3 elements can be formed from a set

of 7 elements. Again, let ( 7 represent this

number. To find the standard name for(3)we be-

gin by examining the mapping of Figure 11.10.

Figure 11.10

The diagram shows e one-to-one onto mapping from

(1,2,3) to the subset (a,b,c). The diagram shows

only one such mapping, but there are 3! of them.

(Why?) Furthermore, there are 3! different one-to-

one onto mappings from (1,2,3) to every one of

the (7) subsets having 3 elements. Therefore,

3 t (3 7)= (7)3

where (7)3 is obtain from the counting principle.

Dividing by 3! gives,

(73)
(7)3
3:

-35

Therefore, a set of 7 elements has 35 different

3-element subsets.

The two preceding examples suggest a perfectly general

argument for finding the number of subsets having r elements

that can be formed from a set having n elements, where
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r 5
(

n. Using 11/,) to represent this number, we have,

Theorem 2.
r ' ( n)kr/

Proof: Exercise

From Theorem 2, dividing by rt we obtain

( n)
r

r;
(n - r)t

r
nt

r'. (n - r)I

Example 4. In a club with 12 members, how many 5 member

subsets are there::

(1g) (12)5 = (12 -

St

= 12.11.10.9.8 (7t

7! 5

12.11.10.9.8
5.4.3.2.1

792

Notice that in Example 4 each time you selected a subset

of 5 elements from the set of 12 elements, there were 7 elements

remaining that were not selected. In general, whenever you se-

lect a subset of r elements from a set of n elements

there are n - r elements remaining that are not selected. This

means that there are just as many subsets with n - r elements

as there are subsets with r elements. This is expressed math-

ematically:

9.54
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(n nr)

255

Proof: Exercise

(
Example 5. (a) Compute 7

5
) end 7

2

(b) Did you get the same number for each

of the computations in part (e)?

(c) If the nnseler to (b) is yes explain

why. If not, do your computations

again.

(d) Which of the two computations in (e)

was easier? Why?

11.5 Exercises

1. In a voting body of 7 members, how many 3-men subsets

ere there?

2. In e voting body of 12 persons, how many 5-men subsets

ere there?

3. If set S has 6 elements, how many elements nre in e (S)?

How many of these subsets have exactly 3 elements?

Find e standard name for each of the following:

5\
(c ) (3 )

5. There ere 8 books lying on the table, and you gyre to choose

3 of them.

(P) How many ways are there to choose 3 books from 8?
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(b) How many ways are there to choose the 3 books and

arrange them on P shelf?

6. (a) Verify thefollowing formula for special cases of n

end m (e.g.n = 5 end m = 3):

n +

m
+

- 1 m

*(b) Now show by using the formula,

(n)r

r

that formula in 6(a) is true when m < n.

7, Use the fact that the formula in exercise 6 is true for all

natural number replacements for m and n, m < n, to complete

the following:

- -

y y + 1

whet relation must hold between x and y?

8, If n is e non-negative integer, then W=
9. If you can move only along the drawn A

segments down and to the right, how

many paths are there from A to B?

(Do this by figuring the number of

paths to each point.)

10. If the numerals recorded at right

indicate the length of the segments, 3

B

A 4

find the shortest distance from A

to B. (Travel rules are those of

Exercise 9.)
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II. If n is a positive integer, then

12. For n 4, expand

(r)

n /n\

)k (Hint: The first two terms of the summa-

k --.o (4)
tion are (

40 )

and
lii

into e sum where each term rakes use of the formula for _

(0;
then evaluate the sum end express the result in

standard form.

*13. Prove:

(n/
2n

k 0 ,k (Hint: Fora set with n elements

for any positive integral n, count the number of subsets in

two different ways.)

14. If n is P non-negative integer, then ( n -
n

(

1
15. What meaning can we give to

5
? From a set of 3 elements,

how many 5-sets can be formed? Obviously there are none.

Therefore, we shall define ( g )= 0, What standard name would

you suggest for each of the following?

(a)

(2) (b) (7) (c) (3) (d) (0) (e) (1)

8 \8
g"

4

*16. In r deck of 52 playing cards, how many 13-card hands

are possible?

17. Draw diegrems for each of the possible mappings from P set

of 3 elements to a set of 2 elements. Don't restrict the

mappings to one-to-one or onto.
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18. Use the counting principle to suggest P way of expressing

the number 3f mappings in Exercise 17 in exponentirl form.

19. Use the counting principle to construct en argument that

justifies the following:

The number of mappings from E set of b elements to

r set of P elements is F b

20. In the diagram below there are two graphs each consisting of

four nodes (points) and paths connecting the nodes by pairs:

C

A Graph I Graph II

(a) Explain why each graph has (24 ) paths, and the total

number of paths for the two graphs is 2(1).

In the next diagram node B is connected with each node

E

in Graph II to illustrate how each node of Graph I may be

connected with a path to each node in Graph II.

C

D
A Graph I Graph II

(b) Use the counting principle to explain why there are

16 or 43 paths required to connect each node of Graph

I with each node of Graph II (that is to complete it).

(c) Assuming that the above graph is completed, explain

(2/ 2
why the number of paths is 8 \ or

(2;)

H
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(d) Use en argument concerning the above graphs to

justify the statement: 2
(42 ) 42 (2

2

1
Use computation to justify the statement.

*21, Use the graphs end explanations in Exercise 20 for this

exercise.

(a) Suppose that you repeated the procedures in

Exercise 20 using 5 nodes in each graph. Write

the statement in Exercise 20(d) for the case of 5

nodes.

(b) Revise the statement in Exercise 20(d) for n nodes.

(c) Revise the statement in Exercise 20(d) for the case

where Graph I has 6 nodes and Graph II has 4 nodes.

(d) Repeat part (c) where Graph I has n nodes end Graph

II has m nodes,

*22. Show that the following statements (a) and (b) are

equivalent:

(e) ,n(n) n2 (.2n)

a 2 2

(b) n(n - 1) + n2 = n(2n - 1)

23. Use what you have learned in this chapter on combinetorics

in addition to whet you learned in the chapter on affine

geometry to justify the following:

(e) If each line in the affine plane r contains

k points, then r contains k2 points.

(b) If the affine plane r contains k2 points, then it

contains k(k + 1) lines.

*24. Prove Theorem 2.

25. Prove Theorem 3. (Hint: Use the formula developed from

Theorem 2.)
259
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11.6 The Binomial Theorem

Example 1. Suppose that you were given the problem of ex-

pending the following power of a binomial:

(e+b)5 (e+b)(e+b)(r+b)(a+b)(a+b).

After some labor you would find that the

expansion of the above expression is:

e5 + 5a4b + 10e3b2 + 10c2b3 + 5ab4 + b5.

The symmetry of the coefficients in the above

terms (1,5,10,10,5,1), and the decreasing

powers of a (5,4,,2,1,0) with the corresponding

increasing powers of b (0,1,2,3,4,5) leads us to

suspect that there might be a more efficient way

to get the result without resorting to brute

force multiplication of binomials. Note also

that the sum of the exponents of a and b in

each term is 5.

In this section, we are going to develop a theorem, known

as the Binomial Theorem, which will be useful in expanding powers

of binomials. It also has other applications in mathematics,

for example, to probability theory. The development of the

Binomial Theorem will make use of many ideas which you have learned

such as the power set of a given set, the number of r-member sub-

sets of a set with n elements, and the use of the symbol E to in-

dicate summation.
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Examp e 2. To illustrate the general theorem we expand
3

(a + b) by using the distributive property:

(1) ( a+b) ( a+b) ( a+b) = a( a+b) ( a+b) + b( a+b)( a+b)

= a(a(a+b) +b(a+b)) +b(a(a+b)

+ b(a+b) ]

= a(aa + ab + ba + bb)

+ b(aa + ab + ba + bb)

= aaa + aab + aba + abb

+ baa+ bab + bba + bbb

=a3 + a2b + aab + ab a + aab

+ ab2 + aba + b3 .

a3 3a2 b + 3ab2 4 b
3

= ( as b + aba
2

3 b3
3

3
0-rbr

rJJ

r 0

We can get the same result using the following combinational

argument. We could get the terms in (4) directly from the left

side of (1) by selecting just one of a or b from each of the

the binomial factors and recording them in the order of the factors

from which they were chosen. The mapping diagrams in Figure 11.11

show all the ways that this selection can be made, where 1,2 and

3 stand for the 1st, 2nd and 3rd factors respectively and the

mapping is from (1,2,3) to (a,b).
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3

Note that the total number of mappings is 2 = 8.

(cp)

Figure 11.11

The number Df times that b is selected as an image a

mapping determines the number of times that a is selected.

If b is chosen r times, then a is chosen (3-r) times. Check

this in the diagrams. Each mapping then is determined by the

assignments of b.

The number of mappings in which

b is the image of 0 elements is 1. ("0).= 1.

b is the image of 1 element is 3.
(31)= 3.

b is the image of 2 elements is 3.
(23) 3.

b is the image of 3 elements is 1. = 1.

Total 8 = 23

If b is the image of zero elements then a is the

image of three elements, and thus the term which has

)coefficient (3 0 is a3.

If b is the image of one element then a is the image

of two elements, and thus the term with coefficient

262
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1
a2 b.

If b is the image of two elements then we deduce
3 2as above that the term with coefficient(2)is ab.

Similarly if b is the image of three elements

then the term with coefficient()is b3. Multiplying

each term by its coefficient and adding again yields

3 3\

Vfl) a3-r br = ( a + b) 3

r - 0

You should recognize the above as a special case of ideas

presented in this chapter:

(a) The number of subsei-s of a set with n elements is 2n.

(b) The number of r-member subsets of a set with n

elements is (n) . The binomial theorem can now be expressed.

Theorem 4. For any pair of real numbers, a and b, and

any whole number n:

,n (n) n-r r
(a+b) = r a b =

r = 0

(n) an A an-lb N
k0/ VL/ V4

bn

Example 3. Expand (a+b)5.

( a+b) n = a5 + a4 b + a3 b2 + a2 b3 +

(.4) ab4 + bs

, as + 5a4b + 10a3 b2 + 1021? + 5ab4 + b5

Example 4. Expand (p+q)1

p+q)1 -rcir (1,1) (1) qt
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Example 5. Expand ( l+k)1
,3

=
(3)

13 + (31) 12k + + (( 1+k) 33) k3

-= 1 + 3k + + k
3

Example 6. Expand 1.034.

(1+.03)4 = ((1)3-4 + (41)
13

( .03) +N la

( .03)2 + (t) 1( .03)3 +0( .03)4

= 1 + .12 + .0054 + .000108 + .00000081

= 1.12550881

Example 7. Expand (a - b)5.

(a - b) 5 = (a + (-b))5. Then apply example 3.

11.7 Exercises

1. Show that (a+b)2 = a2 + 2ab + b2 is correct when a = 3 and

b = 2.

2. Show that (x+y)3 = x3+ 3x2y + 3xy2 + y3 is correct when

x = 1 and y = 2.

3. Expand the following:

(a) (a+b)4 (b) (x+y)5

(c) (c+d)7 (d) (a+b)1°

4. (a-b)2 = (a + (-b))2 = a2 + 2a( -b) + (-b)2 = a2 - 2ab + b2

Using a similar approach, expand the following:

(a) (a-b)3

(c) (a-b)5

(b) (x-y)4

(d) (x-y)6
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5. The coefficients in the expansion of (a+b)n are as 'ollows:

1 11 55 165 330 462 462 330 165 55 11 1

What is n?

6. Expand (x+1)3.

7. Expand (x-1)3.

8. Expand (x+2)4.

9. Expand (x-2)4.

10. Expand (1+1)n to show that it equals E (111). 2n.
k = 0

11. Use the binomial empansion to find (1.01)'; also (.99)5.

*12. Show that (1+x)n> 1 + nx, for x > 0 and n

*13. Use the combinational argument to prove (a+b)6 =

(6)
as

-r
b
r

rr = v

11.8 Summary

1. The counting principle was illustrated for two and three

finite sets and stated as a theorem for any finite number

of sets.

2. If a set A contains a elements and set B contains b elements

(a < b), the number of different one-to-one mappings from

A to B is called the number of permutations of b elements

taken a et a time (a and b are whole numbers)

If a = b, then the number of permutations is b! .

If a < b, then the number of permutations is b(b-1)(b-2)...

(b-a+1).
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3. 0 is defined to be 1.

4
ri

(n) represents the number of subsets with r elements which

can be formed from a set of n elements, where n and r are

whole numbers.

If n < r, then (r).= O.

n
If n = r, then '

/

) = 1.
\r,

If r = 0, then for any n, (g)= 1. In general(r) = .(n)r for n >r .

r.

5. (The Binomial Theorem). If a and b are real numbers and

n is a whole number then

,C)) 4)

an-
b (nn) bn

(a+b)n an 41\ 1

n

(rx1)

r = 0

n-r r
a b

11.9 Review Exercises

1. How many six-letter "words" can be formed from the set

(t,h,e,o,r,y) if

(a) letters may not be repeated?

(b) letters may be repeated?

2. A man conducts a probability experiment in which he does the

following three things: he draws a marble from a bag of

five differently colored marbles and records its color; then

he tosses a die, recording the number the die shows; then

he tosses a coin, recording the result "head" or "tail."

How many possible outcomes are there in this experiment?
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*3. In Exercise 2, what is the probability he will get in even

number and a head?

4. If the call letters of a radio station must begin with "W"

and contain three other letters (repetitions allowed) how

many such arrangements of letters are there?

5. What is the answer to Exercise 4 if the call letters may

begin with either "W" or "K"?

6. A person wishes to select 2 books from a set of 6 books.

How many possible selections are there?

7. There are 5 points in a plane, no three of them in a straight

line. How many lines can be drawn, with each line passing

through exactly 2 of the points?

8. How many ways are there to arrange 3 books on a shelf if

you have 8 books to choose from?

9. How many possible committees of 3 are there in a class of

8 persons?

10. Draw a "tree" diagram showing all the 2-letter words (no

repetition) which can be formed from the set (a,e,i,o,u).

(See Section 11.2.)

11. If, from a set of 7 mathematics books and 5 history books,

you must choose 1 mathematics book and 1 history book, in

how many ways can you make your choice?

12. How many fractions can be formed having a numerator

greater than 0 and less than 10, and a denominator greater

than 0 and less than 15?
0

13. How many 3-digit numbers are there? (There are 10 digits

to choose from, but the first digit cannot be 0.)
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14. Referring to Exercise 13:

(a) How many 3-digit numbers have no two digits alike?

(b) How many 3-digit numbers have 3 digits alike?

*(c) How many 3-digit lumbers have exactly 2 digits alike?

15. For each of the following, tell how many one-to-one mappings

are possible from set A to set B.

(a) (b) ( c)

16. What is the number of permutations of 8 elements taken

2 at a time?

17. What is the number of permutations of 10 elements taken

6 at a time?

18. A set S has 10 elements.

(a) How many of its subsets have exactly 3 elements?

(b) How many of its subsets have exactly 7 elements?

(c) How many of its subsets have exactly 10 elements?

(d) How many of its subsets have exactly 1 element?

(e) How many of its subsets have exactly 0 elements?

19. Find a standard name for each of the following:

(a)
9 () 1)

6

(7) (6) (16)

2 0

20. A student is instructed to answer any 8 of 10 questions

on a test. How many different ways are there for him to

choose the questions he answers?
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21. A basketball squad consists of four centers, five forwards,

and six guards. How many different teams may the coach

form if players can be used only at their one position?

(A basketball team consists of 1 center, 2 forwards and

two guards.)

22. A sample of five light bulbs is to be taken from a set

of 100 bulbs. How many different samples may be formed?

23. Complete the following: W (!)
7

24. Expand (a+b)4.

25. Expand (a-b)4.

,n
26. Write the first 6 terms in the expansion of (a+b) , where

n is a positlye integer greater than 6.

*27. Expand (2u + v)0.
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APPENDIX A

MASS POINTS

You have studied geometry from a number of viewpoints during

Course I and Course II. First there were mappings on a line, then

lattice points. This geometric study was enlarged by considering

segments, angles, and isometries of the plane and transformation

geometry of translations, reflections, rotations and dilations.

Next you had an introduction to axiomatic affine geometry, followed

by a more formal study of transformations using coordinate

geometry. This appendix gives yet another kind of geometry, com-

bining numbers and ratios with points.

A.1 Mass Points

What is a mass point? We get our initial ideas of such

an object by looking at physical examples in the world around

us. For example, a girl poised at the end of a see-saw, the

earth at a particular point in its orbit, a carbon atom at a

particular position inside a complicated molecule.

To establish something of the essential nature of each of

these interpretations, we note that in each case a number and a

position can be assobiated. For the girl it could be her weight

and her position on the see-saw. For the earth it could be its

mass and its position in orbit. For the carbon atom it could

be a number, perhaps its electrical charge, and its location.

Each of these cases has the property that a number and a point
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are associated. This is what we mean by a mass point.

Definition 1. A mass point is an ordered pair consisting

of a positive number mid a point.

Can you find additional illustrations of mass points?

As you see, different physical interpretations have some

properties in common and some that differ. Faced with such a

situation a mathematician lists what he thinks are the basic pro-

perties common to all and proceeds to make deductions from this

list. The basic property statements are called axioms. Those

that are deduced are called theorems.

A.2 Notations and Procedures

First, it is convenient to have a concise way of referring

to a mass point. The mass point with number 4 at point A could

be written (4,A), since it is an ordered pair. But we find

it convenient to designate it "4A," keeping in mind that this

does not mean 4 times A, but represents the ordered pair (4,A).

In general the mass point with number a at point P will be desig-

nated "aP." If in the course of deductions we conclude that

aP = bQ,this will mean two things: a and b name the same number,

and P and Q name the same point; that is, a = b and P = Q. If

A and B name different points then 3A = 3B must necessarily be

false; and also 4A = 2A must be false since 4 A 2. We some-

times refer to the number of a mass point as its weght, from

the idea of a girl at one end of a see-saw.

We now have a set of objects, mass points, very much as we

had elements in clock arithmetic and in various operational sys-
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tems. The question arises whether we can define some opera-

tions on these elements. What could we mean by "adding" two mass

points?

We get an idea by examining the see-saw illustration. Sup-

pose in Figure A.1 two weights are placed in the positions

shown.

30 lb.

A

2 ft. 3 ft.

20 lb.

Figure A.1

It is an experimentally verifiable fact that they will balance

at the point shown in the diagram; that is, if the weight of

one object in pounds multiplied by its distance to the balancing

point in feet is equal to the product of the weight of the other

object in pounds and its distance to the balancing point in

feet. In our example the first product is 30 x 2, the second

product is 20 x 3 and they are equal.

This suggests what we mean by adding two mass points. (Don't

confuse this with adding two numbers'.) We will illustrate

addition for two mass points as follows:

Suppose 3A and 2B are two mass points, points A and

B, as in Figure A.2.
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3A

Figure A.2

2B_a

To add them and to represent 3A 2B as a single mass point

we will do two things,

(1) Add the weights 3 and 2; 3 -; 2 or 5 will be

of 3A -; 2B.

(2) Find point C in AB such that AC: CB = 2:3.

the weight

(Note the

reversal of 3 and 2 in the ratio 2:3.) If La measuring

AB we find its measurein inches to be 5, then AC =

5
5 = 2 and CB =

5
. 5 ..., 3. C is therefore two inches

from A and 3 inches from B. C is the point in 3A 2B.

Thus 3A 23 has weight 5 and is at C, or 3A 2B = 5C.

The sum is represented in Figure A.3 as follows:
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5C

Figure A.3

2B

(The equally spaced marks should help you to see that

AC = 2 and CB = 3.)

We call C the center of mass of the mass points at A and B.

(In physics such a "balancing" point is also called the center

of mass of the masses at A and B.)

Consider a second Illustration (Figure A.4).

4Q 7R 3P

3igure A.4

Suppose the measure of QP in yards is 4. As in the first

illustration we find the weight of 4Q + 3P to be 7. If R is the

center of mass then QR: RP = 3:4; that is QR = 4.4 or 24 and

4 h 16 5RP = 7.,* or =7. Thus = 17 and we can approximate the loca-

tion of R with a yardstick.

Returning to our first example of the see-saw, we would

find the sum of the two mass points to be 30A + 20B, for which

20
AB = 5. The point C, the center of mass will be 3-5.5 feet from

A toward B. This is the point at which the see-saw will balance
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for weights of 30 and 20 pounds respectively, at A and B. The

sum is 50C.

In this way we are led to define the sum of two mass points.

Definition 2. If A and B are two points ard a, b positilre

numbers, then by aA bB (the sum of mass points

aA and bB), we mean the mass point oC such

that a b = c, and C is the point In AB such

that AC: CB = b: a. We then write aA bB = cC.

Furthermore, aA bA = (a b) A.

The definition aA bA = (a + b)A (for example 4A 3A = 7A), turns

out to be the most useful way of having aA bB defined for all

possible mass points aA, bB.

We emphasize that C is in AB. Furthermore, we might guess

that each interior point of AB (that is, a point of AB distinct

from A and B) can be determined by a correct choice of a and b.

Thus, whenever we add two mass points, the center of mass of the

sum will be found in the segment determined by the mass point

addends.

We have defined the addition of two mass points. The ques-

tion arises whether we can add three or more mass points. We

will explore the addition of three or more mass points on the

same line in the exercises below. In Section. A.4 we will

investigate the addition of non-collinear mass points in the

plane, and in Section A.12 the addition of non-coplanar mass

points in space.

A.3 Exercises

1. In each part below you are given the length in inches of
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a segment for which you are to draw a diagram. On this

diagram represent the sum of the two mass points at a

single point.

(a) AB = 6, 5A + 1B

(b) AB = 6, lA + 5B

(c) CD = 3, 2C + 1D

(d) CL = 3, 1C + 2D

(e) EF = 5, lE + 1F

(f) GH = 3, 2G + 4H

(g) GH = 3, 3G + 2H

(h) KL = 5, 2K + 4L

(i) KL = 5, 1K + 2L

(j) KL = 5, 12K + 1L

(k) AB = 7, 3A + 4B

(1) CD = 10, 2C + 3D

(m) EF = 15, 5E + 2F

(n) GH = 7, 2G + 4H

(o) KL = 6, 5K + 41,

2. (a) You are given mass points 3A and 4B, where A and

B are distinct poini;s. Is their center of mass nearer

to A or to B? Try to answer without calculating the po-

sition c the center of mass.

(b) Answer the same question for mass points 8A and 5B.

(c) Is the center of mass nearer the point with the greater

cr lesser weight?

3. For each of the following compute AG:GB, if A j B.



-272-

(a) 3A + 2B = 5G

(b) lA + 6B = 7G

(c) 2A + IB = 3G

(d) 5A + 5B = 10G

4. In this exercise you are given one of two mass points

and the sum. You are to find the other mass point. To

illustrate, suppose xX is the missing mass point and

3A + xX = 5B. Thus 3 + x = 5, from which we deduce

x = 2. (The weights of 3A and xX are 3 and 2.) B is the

point in AX such that AB: BX = 2:3 and X is in AB with

B in between A and X, and with BX = 2AB, shown below.

A B X

Solve for x and locate X from each of the following equations.

(a) 3A + xX = 4B

(b) 4A + xX = 6B

(c) xX + 4A = 6B

(d) lA + xX = 3B

(e) 2A + xX ='B

xX + 9A = 12B

5. Suppose 12A + bB = cC. What must be true about b and c

in the following cases?

(a) C is the midpoint of AB

(b) C is the trisection point of AB nearer A.

(c) C is the trisection point of AB nearer B.

(d) C is the point of division of AB such that AC: CB = 3:4.
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6. Let weight 3 be assigned to A in AB,

(a) If C is the midpoint of AB, what weights should one

assign to A and B so that C is then the center of mass?

(b) If C is the trisection point of AB nearer B, what

weight should one assign to A and B so that C is the

center of mass?

7. Given segment AB and point C in it, so that C is the center

of mass.

(a) If AC:CB = 2:3 and C has weight 5, what weights should

be assigned to A and B?

(b) If AC:CB = 2: 3 and C has weight 7, what weights should

be assigned to A and B?

(c) If AC:CB = 3: 4 and C has weight 10, what weights should

be assigned to A and E?

*(d) If AC:CB = x:y and C has weight 5, what weights should

be assigned to A and B?

*(e) If AC:CB = x:y and C has weight z, what weights should

be assigned to A and B?

8. Draw a segment AB 3 inches long and take C in AB such that

AC is 741- inch long.

A

(a) Represent 1A + 2B at one point. Name it D.

(b) Represent .V) + 3C at one point. Name it E.

(c) Represent 2B + 3C at one point. Name it F.

(d) Represent lA + 5F at one point. Name it G.

(e) Do E and G name the same point?

(f) If so, how does this exercise show

B
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(1A + 2B) + 3C = lA (2B + 3C)

*9. Given mass points 2A, 3B, 5C on a line, with B between

A and C.

(a) Represent 2A + 3B at one point. Call it D.

(b) Represent 5D + 5C at one point, Call it E.

(c) Represent 3B + 5C at one point. Call it F.

(d) Represent 2A + 8F at one point. Call it G.

(e) Prove that E and G name the same point.

(f) What does the proof in (e) show?

A.4 Axioms for Mass Points

We now investigate the system (M,+), where M is the set

of mass points and + denotes mass point addition, to see if it

is an operational system. The basic requirement is that the

sum of, two mass points be a unique mass point. Otherwise such

a sum as 5A + 6B may be assigned more than one mass point, and

any computation with mass points would become impossible.

We know that 5A + 6B must have the unique weight 5 + 6 or 11.

But is there exactly one location for the center of mass?

From our definition 5A + 6B = 11C, where C is a point in AB such

ofthat AC:CB = 6:5. Stated another way, C is on AB--
6

, of the way

from A to B. Since it seems clear that there is one and only

6
one point of AB which is 11 of of the way from A to B, we are led

to conclude that there is exactly one location for the center of

mass. Note in the special case aA + bB = (a 4- b)A, the point

A is assigned as the center of mass for mass points aA and

bA, We thus take as our first axiom
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Axiom 1. For any mass points aA and bB there is exactly one

mass point cC such that aA + bB = cC.

In effect we are saying that the set M of mass points, with the

operation of addition of mass points defined above, is an opera-

tional system (M,+) .

Our construction of aA + bB leads us to accept that aA + bB =

bB + aA. We will state this property as an assumption and call

it the Commutativity Axiom.

Axiom 2. For any mass points aA and bB, aA + bB = bB + aA.

With these two assumptions (M,-) is beginning to look like

some other operational systems we know. Another characteristic

of these other systems was the associative property. Before we

can raise that question here we need to explore what we mean

by the addition of three mass points.

In Section A.3 Exercises 8 and 9 we examined the problem of

adding aA, bB, and cC when A, B, and C are collinear. We even

found it plausible that

(aA + bB) + cC = aA + (bB + cC).

We now examine the problem of adding aA, bB, and cC when

A, B, and C are /NW collinear.

Suppose we have three mass points aA, bB, and cC, with A,

B, C not collinear, as in the diagram below.
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cC

Figure A.5

We can find the sum aA + bB, and we know that we would get

a mass point, say dD, with D in AB. Now we can obtain dD + cC,

and this would give us a mass point eE, with E in CD. So the sum

of the three mass points, constructed as (aA + bB) + cC would

give us a mass point eE, with E in the interior of the triangle

ABC. What would happen if we considered the sum aA + (bB + cC)?

It is reasonable that we would again get a mass point, say fF,

with F an interior point in triangle ABC. But would it be the

same mass point as eE?

We shall perform an experiment. We want to see for instance

whether (3A + 2B) + 1C = 3A + (2B + 1C), where A, B, C are points,

not necessarily collinear, as shown in Figuro A,6.
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IC

Figure A.6

To facilitate this experiment we have subdivided AB into

5 segments of the same length and BC into 3 segments of the

same length.

First we find 3A + 2B to be 5D, where D is in AB, with

AD:DB = 2:3 as shown in Figure A.6. Then subdividing DC into

6 segments of the same length we see (again in Figure A.6) that

5D + 1C = 6G, where G is on DC, with DG: GE = 1: 5.

On the other hand we first find 2B + 1C, and find it to be

3E where E is on BC, with BE:EC = 1:2 'see diagram), We have

only to test whether 3A + 3E = 6G. To convince ourselves that

this is true, or false, we place our ruler on AE and see whether

G is in AE with AG: GE = 3:3. A test shows it to be true. Try

it. Note that this experiment gave us

(3A + 2B) + 1C = 5D + 1C = 6G,
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and

3A + (2B + 1C)= 3A + 3E = 6G.

This experiment and our experience with collinear points

lead us to state the Associativity Axiom:

Axiom 3. For all mass points aA, bB, and cC

(aA bB) + cC = aA + (bB + cC).

The axiom means that aA + bB + cC represents the same

mass point no matter how we associate the individual mass points.

This mass point has weight a + b + c and its point is called the

center of mass of the three mass points at A, B and C.

We have not proved the associativity axiom. We have not

deduced it. The purpose of the experiment was not to prove

the axiom. It was to make it easier to accept it as an axiom.

(Mathematicians may even accept as axioms statements which cannot

be experimentally tested as being either true or false.)

In adding mass points we are also adding positive num-

bers, It should be understood that we are allowing ourselves

to use those properties of (Q,+) which we need.

A.5 Exercises

1. Make an exact copy of the three mass points 3A, 2B and 1C

used in the experiment above. (See Figure A.6.) Show by

experiment that 3A + 2B + 1C can also be found by any of

the following procedures:

(a) Find 2B + 1C first; then (2B + 1C) + 3A.

(b) Find 3A + 1C first; then (3A + 1C) + 2B.
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2. Justify each of the following statements by citing tha ap-

propriate axiom or axioms:

(a) (2B + 1C) + 3A = (1C ± 2B) + 3A

(b) (2B + 1C) + 3A = 1C + (2B + 3A)

( c ) 2B + 3A + 1C = 3A + 2B + 1C

3. Represent aA + bB + cC in 6 different ways.

4, Make a diagram which shows 2A + 1B + 2C at a single point.

Take A, B, C as any three noncollinear points,

A.6 A Theorem

As you recall, we called a statement that is deduced from

other statements a theorem. Our first theorem for mass points,

is about any triangle and it may come to you as a surprise.

Suppose the triangle is ABC. Let D be the midpoint of AB, E

the midpoint of BC and F the midpoint of CA. Make such a diagram

and draw CDs BF and AE. Do they meet in one point? We shall prove

that they do; that is, we shall deduce this from our axioms.

To make it easier to talk about the segments CD, BF, and AE,

we shall call them medians.

Figure A.7

2S/1
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Definition 3. A segment is a median of a triangle it

connects a vertex to the midpoint of the

side opposite the vertex.

Theorem 1. The three medians of a triangle meet in one

point.

To prove this theorem let us start by assigning weights

to vertices, thus convertinL; the. to Lass points. Let us assign

1 to A, 1 to B and also 1 to C. (You will see why we choose

1 as the weight of each point as the proof develops.) We re-
--

imind you that D is the midpoint of AB, E is the midpoint of Er,

and F is the midpoint of CA. (See Figure A.7.)

By the Associativity axiom (1A + 1B) + 1C =

lA + (1B + 10). Let us first calculate (1A + 1B) + 1C. The

mass. of lA + 1B is clearly 2j and the point in lA + 1B is

the point in AB,
1

the way from A to B. This is, of course,

the midpoint D of AB. Thus lA + 1B = 2D, so that (1A + 1B)

+ 1C = 2D + 1C. By the same reasoning, the mass of 2D + 1C

is 3, and the point of 2D + 1C is a point G in DC, with

DG:GC = 1:2. Thus 2D + 1C = 3G. In summary

(lA + 1B) + 1C = 2D + IC = 3G,

and G divides DC in the ratio 1:2 from D to C.

Now we calculate lA + (1B + 1C) . First, the point of

1B + 1C is the midpoint E of BC, so that 1B + 10 = 2E. Then,

lA + (1B + 1C) = lA + 2E. The point of lA + 2E is the point

H in AE such that AH: HE = 2:1. Thus

lA + (1B + 1C) = lA + 2E = 3H,
285
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But by the Associativity Axiom,

(1A + 1B) + 1C = lA + (1B + 1C) , or 3G = 31-i,

acid we conclude G = H. Thus AG: GE = 2: 1. (Why?)

Now we calculate (1A + 1C) + 1B. As abolis, lA + 1C = 2F,

where F is the midpoint of AC.

(1A + 1C) + 1B = 2F + 1B = 3K

where K is the point in BF that divides BF in the ratio 2:1

from B to F.

On the other hand

(lA + 1C) + 1B = lA + (1C + 1B)

= lA + (1B + 1C)

= (lA + 1B) + 1C

by Axiom 3

by Axiom 2

by Axiom 3

But, by above, (1A + 1B) + 1C = 3G. Thus 3G = 3K, and we

conclude G = K, so that G is also in BP, and BG:GF = 2:1.

We have not only proved that the three medians meet in

a point (the point G), but that this point divides each

median in the ratio 2:1 from vertex to midpoint of opposite

side.

We can also use the axioms to solve problems. This

means we will discover other theorems. Since we won't find it

necessary to use these theorems in proving others, we will not

list them formally as theorems. We consider them only as exer-

cises.

Suppose in tABC, D divides BC in the ratio 1:2 from B to

C, and E divides AC in the ratio 1:1. (See Figure A.8.) Let 51

intersect BE in G. What are the numerical values of DG: GA and BG:GE?
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We can solve this problem as follows. In order that D nay be the

trisection point of BC nearer B, we assign the weights 2 to B and

J. to C. Then 2B + 1C = 3D. In order that E be the midpoint of

CA we assign the same weight to A as to C. Having assigned 1 to

C we assign 1 to A also. Then 1C + lA = 2E. The point of (2B + 1C)

+ lA is the same as the point 2B + (1C + 1A); that is, the point

of 3D + lA is the same as the point of 2B + 2E. This point is on

AD and BE; that is, this point is the intersection of AD and BE,

and it is named G. Therefore (2B + 1C) + lA = 3D + lA = 4G, and

thus DG: GA = 1:3. Also 2B + (1C + 1A) = 2B + 2E = 4G, and thus

BG: GE = 1: 1. 1A

2B

2E

3D 1C

Figure A.8

We can extend our discoveries in this problem. Let CG n

AB = F. By Axioms 2 and 3, (2B + 1A) + 1C = 4G. Now 2B + lA = 3H,

where H is in BA. But

4G = (2B + 1A) + 1C = 3H + 1C

implies G is in HC, so that H is in CG. We thus have that H

is in BA and in CG, and therefore H = F. Thus 2B + lA = 3F

and BF: FA = 1: 2. From 3F + lC = 4G, it follows that FG: GC = 3.

If we omit explanations, the solution of the above problem
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can be written briefly as follows:

1. 2B + 1C = 3D and 3D -1 lA = 4G. Therefore DG: GA = 1:3.

2. 1C + lA = 2E and 2B + 2E = 4G. Therefore BG:GE = 1:1.

3. 2B + lA = 3F. Therefore BF: FA = 1:2.

4. 3F + 1C = 4G. Therefore

A.7 Exercises

FG: GC = 1: 3.

1. Review the proof of the theorem about the medians

of a triangle, then tell whether you think the proof

applies only to the triangle represented in the

diagram or to all triangles.

2. This is an experimental exercise. Draw any triangle,

locate the midpoint of each side and draw tne medians.

In your diagram, do the medians meet at one point?

Suppose they did not, or they did not in a drawing

by your classmate. Try to find why the drawing does

not agree with the theorem.

3. The tenths of the medians of a triangle are 15, 12,

and 18 inches long ;. How long are the segments into

which each median is divided by the point in which

they meet?

4. Answer the question in Exercise 3 if the medians are 12,

13, and 14 inches long.
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5. In AABC, D is in AB and AD:DB = 1:2. E is in BC and

BE:EC = 1:2. Let AE fl CD = G.

Prove that AG: GE = 3: 4, and that CG: GD = 6: 1.

(Hint: Assign weight 4 to A, 2 to B and 1 to C.)

6. Using the data in Exercise 5, let BG n CA = F and find

the numerical waue of BG:GF and AF:FC.

*7. Add to the data in Exercise 5 that K is in CA and

CK:KA = 1:2. Let BK n AE = L and BK n CD = M. Prove:

BL = LM = 3MK (This is a difficult exercise.)

A.8 Another Theorem

Our definition for addition of mass points applies to

pairs of mass points. In other words, addition is a binary

operation. To make it possible to add three mass points we

introduce the Associativity Axiom, which says that aA + bB + cC

can be found by either finding (aA + bB) first or (bB + cC) first.

Either of these sums can be found and then a second addition

completes the calculation by which aA + bB + cC is expressed as

a mass point with one weight and one point. For our next theorem

we need to know how to add four mass points. This can be done by
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a repeated application of the Associativity Axiom as follows:

aA + bB + cC + dD (aA + bB) 4 (cC + dp).

There are also other ways to associate. For instance,

aA + (bB + cC) + dD. This reduces the addition from four to

three mass points. We now prove a second theorem.

Theorem 2. The segments joining the midpoints of op-

posite sides of a quadrilateral bisect each

other.

Proof. Let ABCD be the quadrilateral (Figure A.9) and let

E be the midpoint of AS, F the midpoint of BC, G

the midpoint of CD, and H the midpoint of DA. We

have to prove that EG bisects HF, and that HF

bisects EG.

Figure A.9

We assign the weight 1 to each of A, B, C, D.

Then we have the following equations.

(1) lA + 1B = 2E
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(2) 1B + 1C = 2F

(3) 1C + 1D'= 2G

(4) 1D + lA = 2H

By Axioms 3 and 2 we can show that

(1A + 1B) + (1C + 1D) = (1D + 1A) + (1F + 1C).

Thus

2E + 2G = 2H + 2F

If K is the midpoint of id then 2E + 2G = 4K.

If L is the midpoint of HF than 2H + 2F = 4L.

Thus 4K = 4L
and

K = L

Do you see that this completes the proof?

A.9 Exercises

1. The purpose of this exercise is to see if an experi-

ment agrees with Theorem 2. In performing the experi-

ment you should be careful to draw straight lines

and to locate midpoints accurately. Perform the ex-

periment on two different quadrilateral figures having

shapes like these:
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2. Verify whether or not the theorem is true for such figures

like those below. They are named ABCD to tell you that the

sides are AB, BC, CD, DA, in that order. This means that
EYED111.1A

AB and CD are a pair of opposite sides and BC and DA are

another pair of opposite sides.

3. In the quadrilateral ABCD below, AE:EB =.1:2,

BF: FC = 2: 1, CG: CD = 1: 2, and DH; HA = 2: 1.

Prove: EG and FH bisect each other. (Hint:

Assign weights 2 to A, 1 to B, 2 to C, and 1 to D.)

4. In the quadrilateral PQRS below, PA: AS = 1: 3, SB: BR = 3: 1,

RC: CQ = 1: 3, QD: DP = 3: 1. Prove: AC and BD bisect each other
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5. As shown for the quadrilateral ABCD below, AP:PB = 1:2

I3Q: QC = 2: 1, CR: RD = 1: 1, DS: SA = 1: 1. Let SQ (.1 PR = E.

Find the numerical values of RE:EP and SE:EQ.

A.10 Using a Definition

Consider the following problem:

In AABC (Figure A.10) D is the midpoint of

AB, E is the midpoint of AC, and F is the

trisection point of BC nearer B. Let DE n AF

= G. We are required to show that G is the

midpo.L'It of AF and also the trisection point of

DE nearer D.

Al

Figure A.10

We begin by assigning a weight of 1 to C. In order that
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F be the trisection point of BC nearer B we assign 2 to B.

Thus 2B + lC = 3F.

Let us now consider what weight to assign to A. First,

in order that D be the midpoint of AB we should assign to A

the same weight that we assigned to B, that is, 2. In order

that E be the midpoint of AC we should assign to A the same

weight that we assigned to C, that is 1. Thus, we find ourselves

assigning two weights to A, or to put it another way, at A we

need two mass points: one is 2A, the other is 1A.

Suppose we add the mass points:

1A + 2A = 3A,

by our definition. [Recall: aA + bA = (a + b)A.] Then as-

signing weight 3 to A, we note that 2B + 1C + 3A can be

calculated either as

(2B + lC) + 3A (1)

or as

(2A + 2B) (lA + 1C) (2)

Since 2B + 1C = 3F, (1) becomes 3F + 3A, which is equal to

6H, where H is in FA, such that FE: HA = 1:1.

Since 2A + 2B = 4D and lA + 1C = 2E, (2) becomes 4D + 2E

which is equal to 6K, where K is in DE such that DK:KE = 1:2.

But whichever way we calculate 2B + 1C + 3A, we get the same

result. Thus 6H = 6K and H = K. Since H is on both FA and DE,
011.1

H= FA n DE = G.

nn(
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The actual calculations are few and can be written bxief-

ly as follows.

2B + 1C + 3A is equal to:

(2B + 1C) + 3A or (2A + 2B) + (1A + 1C)

= 3F + 3A = 4D + 2E

6H = 6K

Therefore H = K = G.

Thus FG: GA = 1: 1, and DG: GE = 1: 2.

A.11 Exercises

1. (a) In the problem discussed in Section A.10 above

we started by assigning a weight of 1 to C.

Give the solution starting instead with the as-

signment of weight 2 to C.

(b) In the solution of the above problem we calcu-

lated (1) (2B + 1C) + 3A and (2) (2A + 2B) +

(1A + 1C). There are at least two other possibil-

ities: (3) (2B + 3A) + 1C and (4) (1C + 3A) + 2B.

Perform the calculations suggested in (3) and

(4) and interpret your results.

(c) Perform the calculation (3A + 1B) + (1B + C)

and interpret the results.

(d) There is still another calculation for locating

G, in which the mass point at B is "split" into

1B + 1B. What is it? What is its interpretation?

(e) Still another calculation for locating G is sug-
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ge;3ted by (2B + 1A) + (1C + 2A) , Interpret the s,

2. Suppose in 1ABC, D is the midpoint of AB and E is

the midpoint of AC, and F is in BC such that BF:FC

5:4 and DE fl AF = G. (See the figure below.) Prove that

G is the midpoint of AF, and that DG: GE = 5:4.

(Hint: Assign 4 to B and 5 to C.)

3, State a theorem which seems to be suggested by

exercise 2 and the problem of section A.10,

4. Investigate the case in which we take D and E as

trisection points of AB and IT, both nearer A,

instead of the midpoints. If BF:FC = 5:4, what

is the ratio AG:GF? Would the ratio AG:GF change

if D and E are trisection points of AB and AC but

we take BF: FC = 2: 3?

BD .

in
CB

5. In AABC, D is in BC and ru
3

E is n CA and

= AD and BE meet in G. CG meets AB at F.
1

296



-292-

AF
(a) Find T13

AF. BD. CE = 1.
(b) Prove: FB DC EA

(Hint: Assign 1 to B. What should you assign

then to C? Then to A?)

6. Solve Exercise 5 under the altered suppositions

BD
3 and a = 5-

DC 2 EA 3

*7. Exercises 5 and 6 are special cases of a theorem

called Ceva's theorem, named after an Italian who

is said to have discovered it. Ceva's theorem says:

In AABC, if F, D, E are interior points of AB, BC

and CA respectively and AD, BE, and CF meet in one

point then

AF BD CE = 1

FB DC EA

Try to prove it. (Hint: Let BD = a, DC = b,

CE = c, EA = d.) (Difficult)

*8. For the data in Cevals Theorem prove 22 + + = 1,
AD BE CF

where G is the point in which AD, BE, and CF meet.

(Difficult)
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A.12 Mass Points in Space and a Theorem

At the beginning of this chapter we worked with mass

points on a line. Then we worked with mass points in a plane.

We end this chapter by discussing mass points in space.

We have considered the addition of four mass points in a

plane. Suppose we have four points not all in the same plane

as shown in Figure A.11.
dD

bB

Figure A.11

Adding sets of three of these mass points, as we saw in

Section A.4, determines points in the interiors of the trian-

gles ABC, BCD, ABD, and CAD. Suppose eE in triangle ABD is

the sum of the mass points aA, bB, and dD. Then the sum of

eE and cC would be a mass point fF with F on segment EC. Then

fF is in the interior of the space figure ABCD (a triangular

pyramid or tetrahedron)..

We now prove a theorem about such a space figure which

will remind you of the theorem about the medians of a triangle

and its consequences.
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Figure A.12

We begin with four points A, B, C, and D not in a p2ane

(see Figure A.12). Look at AABC and its medians AE, BE, and

UP. We know from Theorem 1 that these medians meet in a point;

name it G. The point in which the medians of a triangle meet

is called the centroid of the triangle. In what ratio does

the centroid G divide AH, from A to H? Now, ABCD, AABD, and

AADC also have centroids. Consider the segments joining the

centroid of one of these triangles to the fourth point. One

such segment is GD since it joins the centroid of AABC to D.

How many such segments are there? Do you think that these

four segments meet at a point? Indeed they do and that is

what our space theorem says.

Theorem 3. If A, B, C, D are points in space, not in a

plane, and G, is the centroid of AABC, G2 the

centroid of ADAB, G3 the centroid of /1DEC and

G4 the centroid of ADCA, then DGI, CG2, AG3,

and BG4 meet in a point which divides each

299



-295-

of these segments La the ratio 1: 3 from

centroid to the point.

To prove this theorem we assign weight 1 to each of A,

B, C, D. Then we consider lA 1B : 1C 1D.

One way to calculate this is to associate (1A 113 1C)

which is 3G1. Then 3G1 D = 4H, where H is a point in GiD

such that G1H:Hd = 1: 3. Thus lA -. 13 1C in = 4H, and

whether we calculate it as (1A 1B -, 1D) -; 1C, or (13 1C

1D) 1A, or (1A 1C , 1D) 16, we continue to get 4H.

no you see that this ccupletes the proof?

A.13 Summary

In this chapter we studied some properties of mass points

deductively. We started by defining :class points and addition

of mass points. The first axiom assured us that we had

an operational system. The second and third provided the proper-

ties of commutativity and associativity. We deduced three state-

ments which you may find useful to remember. We labeled them

theorems. One asserts that the medians of a triangle meet in

a point. Another asserts that the segments joining midpoints

of opposite sides of a quadrilate-cal bi.sect each other. The

third is about four points in space, not in a plane, and the

centroids of the four triangles determined by each triple of

four points. It asserts that the segments joining the centroid

of each triangle to the fourth point meet in a point that

divides each segment in the ratio 1:3 from the centroid to
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the point.

We also solved many exercises by deductions and

thus proved many other statements which however we did not

call theorems, even though they are theorems.

A.14 Review Exercises

1. Draw AB making it 3 inches long. Let C be its mid-

point. Locate the centers of mass for the following

mass points:

(a) 2A 1B (d) 1A 1B -; 1C

(b) lA 2B (e) lA 2C 3B

(c) 2A 1C (f) 2A 4B 3C

2. Solve for x and locate X in a drawing of AB where

An is a one inch segment.

(a) 3A xX = 4B (c) xX 2A = 4B

(b) 2A xX = 3B (d) xX 3A = 5B

3. Let A have weight 8 and let AB be a given segment.

Let C be the center of mass for mass points at A and

B. What weight should you assign B for each of the

following descriptions of C't

(a) C is the midpoint of A3.

(b) C is the trisection point of AB nearer A.

(c) C is the trisection point of AB nearer B.

(d) C is the point of T5 such that AC: C3 = 2:3.
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4. In AABC, D is the midpoint of BC and E is the

point in 67 such that CE: EA = 4: 1.

( a) If weight 1 is assigned to B, what weights

should you assign to C and A so that D is the

center of mass of the mass points at B and C,

and E is the center of mass of the mass points

at C and A?

(b) If AD fl BE = G, compute the values of AG: GD and

BG: GE.

( c) If CG fl AB = F, compute AF: FB.

5. In AABC, D is in AB and AD: DB = 1: 2, E is in BC

and BE: EC = 2: 1. F is in CA and CF: FA = 1: 2. Prove

that DF and AE bisect each other.

6. In quadrilateral ABCD, E, F, G, H, are respectively

in AB, BC, CD, DA. Each of AE: EB, BF, FC, and CG: GD

is equal to 2: 1, DH: HA = 1: 8, and EG fl FH = K.

Prove EK: KG = 4: 1 and FK: KH = 3: 2.
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