
ED 046 774

DOCUMENT RESUME

24 SE 010 735

TTTT,E Unified Modern Mathematics, Course 2, Part 1.
INSTITUTION Secondary School Mathematics Curriculum Improvement

Study, New York, N.Y.
SPONS AGENCY Columbia Univ., New York, N.Y. Teachers College.;

Office of Education (DREW), Washington, P.C. Pureau
of Research.

BUREAU NO BR-7-0711
PUB DATE 69
CONTR1CT 0PC-1-7-070711-u/00
NOTE 337p.

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price ME-$0.65 RC-$13.16
Algebra, *Curriculum Development, Geometric
Concepts, Geometry, Graphs, *Instructional
Materials, Mathematical Logic, *Modern Mathematics,
*Secondary School Mathematics, *Textbooks

This is Part 1 of the second course in a series
which focuses on building fundamental mathematical structures. Topics
considered in this book include: an introduction to mathematical
logic and mathematical proof, a continuation of the study of groups,
an introduction to axiomatic affine geometry, fields, the real number
system, and coordinate geometry. The discussion of groups contains an
example of a non-commutative group, theorems about groups, and the
concept of isomorphism. Axioms for an affine geometry are given
together with some logical consequences of these axioms and finite
and infinite models for the axioms. The chapters on fields and the
real number system include solving equations and inequalities,
properties of the real number system and calculation with irrational
numbers. (FL)



--1° Secondary School Mathematics

E,1 Curriculum Improvement Study

UNIFIED MODERN

MATHEMATICS

COURSE II U.S. DEPARTMENT OF HEALTH. EDUCATION
& WELFARE

OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR

PART I
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

TEACHERS COLLEGE COLUMBIA UNIVERSITY



Secondary School Mathematics

Curriculum Improvement Study

aQ

CD

UNIFIED MODERN MATHEMATICS

Course II

Part I

Financial support for the Secondary School Mathematics

Gurriculum Improvement Study has been provided by the United

States Office of Education and Teachers College, Columbia

University.



UNIFIED MODERN MATHEMATICS, COURSE II was prepared by the

Secondary School Mathematics Curriculum Improvement Study with

the cooperation of

Nicholas Branca, Teachers College, Columbia University

Gustave Choquet, Universite de Paris, France

Ray Cleveland, University of Calgary, Canada

John Downes, Emory University

Howard F. Fehr, Teachers College, Columbia University

James Fey, Teachers College, Columbia University

Alan Gewirtz, City University of New York

Abraham Glicksman, Bronx High School of Science, New York

Vincent Haag, Franklin and Marshall College

Thomas Hill, University of Oklahoma

Peter Hilton, Cornell University

Julius H. Hlavaty, National Council of Teachers of Mathematics

Michael Hoban CFC, Iona College, New York

Meyer Jordan, City University of New York

Burt Kaufman, Southern Illinois University

Howard Kellogg, Teachers College, Columbia University

Erik Kristensen, Aarhus University, Denmark

Howard Levi, City University of New York

Edgar R. Lorch, Columbia University

Lennart RRde, Chalmers Institute of Technology, Sweden

Myron F. Rosskopf, Teachers College, Columbia University

Harry Ruderman, Hunter College High School, New York

Harry Sitomer, C. W. Post College

Hans-Georg Steiner, University of Karlsruhe, Germany

}!arshall H. Stone, University of Massachusetts

Stanley Taback, New York University

H. Laverne Thomas, State University College at Oneon,.

Albert W. Tucker, Princeton University

Bruce Vogeli, Teachers College, Columbia University

Lucian Wernick, Teachers College, Columbia University

PERMISSION
TO REPRODUCE THIS Copy. Copyright, 1969, Teachers College, Columbia University

IGHTED MATERIAL HAS BEEN GRANTED

Howard F. Fehr

J ERIC AND ORGANIZATIONS OPERATING

'NDER AGREEEr-NTS WITH THE U.S. JFFICE

EDUCATION FURTHER REPRODUCTION



CONTENTS

Chapter I: MATHEMATICAL LANGUAGE AND PROOF

1.1 Introduction page 1
1.2 Mathematical Statements 2
1.4 Connectives: And, Or 8
1.6 Conditional and Bi-conditional Statements 15
1.8 Quantified Statements 26
1.9 Substitution Principle for Equality (SPE) 32
1.11 Inference 37
1.13 Direct Mathematical Proof 49
1.14 Indirect Mathematical Proof 53
1.16 Summary 58

Chapter II: GROUPS

2.1 Definition of a Group 62
2.3 A non-Commutative Group 76
2.5 More on Permutations 8 9

2.6 Functional Notation 92
2.7 More Notation 93
2.9 Some theorems About Groups 101
2.11 Isomorphism 109
2.13 Summary 115

Chapter III: AN INTRODUCTION TO AXIOMATIC AFFINE GEOMETRY

3.1 Preliminary Remarks 119
3.2 Axioms 120
3.4 Some Logical Consequences of the Axioms 128
3.6 A Non-Geometric Model of the Axioms 135
3.8 Other Models of the Axioms - Finite and Infinite 142
3.10 Equivalence Classes of Parallel Lines 156
3.12 Parallel Projection 162
3.14 Vectors - An Intuitive Introduction 174
3.16 Summary 188

Chapter IV: FIELDS

4.1 What is a Field? 193
4.3 Getting Some Field Theorems Painlessly 197
4.4 Trouble with 0 199
4.6 Subtraction and Division in Fields 202
4.8 Fractions in Fields 206
4.10 Order in Fields 208



4.12 How Many Ordered Fields? 21
4.13 Equations and Inequations in (Q,+,.,<) 214
4.15 Solving Quadratic Equations 219
4.17 Summary 223

Chapter V: THE REAL NUMBER SYSTEM

5.1 The Equation X2 = 2 in (Q,+,) 227
5.3 The Measuring Process 230
5.5 The Length of a Line Segment 236
5.7 Three Illustrative Cases 239
5.9 The Real Number System 244
5.11 Some Properties of the Real Number System 249
5.13 Arithmet:c of Irrational Numbers 257
5.15 Summary 260

Chapter VI: COORDINATE GEOMETRY

6.1 Introduction 265
6.2 Axiom 4. Uniqueness of Line Coordinate Systems 266
6.4 Axiom 5. Relating Two Coordinate Systems on a

Line 271
6.6 Segments, Rays, Midpoints 279
6.8 Axiom 6. Parallel Projections and Line Projec-

tions 288
6.10 Plane Coordinate Systems 291
6.12 An Equation for a Line 298
6.14 Intersections of Lines 303
6.16 Triangles and Quadrilaterals 309
6.18 The Pythagorean Property 314
6.20 Plane Rectangular Coordinate Systems 318
6.22 Summary 325



CHAPTER 1

MATHEMATICAL LANGUAGE AND PROOF

1.1 Introduction

Oh Yeah? Prove It

How many times have you made a debatable statement and

faced a challenge to prove your statement, to convince a

doubting listener? When you told some friends you think

Willie Mays is a better baseball player than Mickey Mantle?

When you told your science teacher that helium is lighter than

air? When you told your parents that all the other kids get

to stay out late? When you told your mathematics teacher

that adding two even numbers always gives an even number?

In each of these situations someone wants to be convinced;

he wants proof of your statement. The kind of evidence or

argument you present depends on the area of disagreement.

Comparison of batting averages drawn from a baseball book of

records might settle the Willie Mays-Mickey Mantle argument.

A simple experiment with a helium filled balloon might convince

the science teacher. And testimony from your best friend

might swing your parents to a later Friday night curfew.

Your conjecture about sums of even numbers would be proven

according to rules of argument accepted in mathematics. You

have already seen and been asked to supply proofs of mathematical

statements. In fact, the "even plus even is even" statement

was justified as follows:
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1. If a and b are even, then a = 2m and b = 2n.

2. Then a + b = 2m + 2n,

3 . a + b = 2(m + n),

4. or a + b = 2k, where k = m + n.

5. This implies that a + b is even.

What is it that makes this argument an acceptable mathematical

proof? What are the rules governing proof in mathematics?

Since proof will become an increasingly important part of

your work in mathematics, this chapter is designed to explain

and illustrate the ground rules of mathematical proof.

1.2 Mathematical Statements

To understand mathematical proof, we must first understand

the meaning of the language used in proofs. In ordinary

English we frequently allow a word, or a sentence, to have

different meanings depending on the context in which it is

used. For example, suppose we hear a weather forecast of

fair and warm. What does "warm" mean in this sentence? In New

York in July "warm" might mean 80°P., while in January we consider

45°F. to be warm. In Miami, Rio, or Casablanca entirely

different standards would prevail. The meaning of a simple

English sentence often depends in a complex way on the context

in which it is used.

Mathematics is a basic tool of science, so mathematical

language must be precise. We cannot allow ourselves the

freedom of ordinary English usage. For example, the mathematical



statement

A natural number is prime if and only if

it has exactly two distinct factors

gives clear directions for determining whether a given

natural number is or is not prime. 13 has two factors,

13 and 1, and so it is prime. 12 has 6 factors--1, 2, 3, 4,

6, 12--so it is not prime. The mathematical statement

defining prime number is precise enough to determine primeness

of 12, 13 and any other natural number.

The example just given led to a conclusion that might

be written

12 is not prime.

This is an example of a kind of sentence used in mathematics

called a statement. Another mathematical statement is

6 is prime.

Of course, this is false, since 6 has four distinct factors:

1, 2, 3, and 6.

In mathematics, a statement is a sentence

that is either true or false, but not both.

It may seem strange to be at all interested in false state-

ments. But often We do not know immediately whether a

statement is true or false. What about the following statement?

15283 is prime.

One task of the mathematician is to determine the truth or

falsity of a given statement, so he must be willing to allow

for the possibility that it could be false. However, it must

be one or the other: not both and not maybe.
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Example 1. "2 < 5." This is a statement, and clearly

it is true.

Example 2. "5<2." This is false--but it is still a

statement.

2
Example 3. "x is a rational number less than 3.

11

For x, try 7: since 7 is rational and less

than, the sentence is true if x is equal

to Now try since is rational and

2
greater than 7, the sentence is False if x

equals However, the sentence itself does

not tell us the value of x. Therefore, as the

sentence is written, it is neither true nor

false; it is not a statement. This type of

sentence is called an open sentence.

Example 4. "Trenton is the state capital of New Jersey."

Although not a mathematical sentence, this

sentence is a statement. It is true.

Example 5. "Cross the street:" This. sentence is a command,

but not a statement, since there is no meaning-

ful way it can be said to be true or false.

Often in this chapter we will want to refer to the same

statement several times. To save writing, it is often easier

to assign statements letter names such as P, Q, R, etc., and

to refer to each statement by writing its letter name rather

than the whole statement.
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For example, we could write

S: "15,735 is divisible by 5."

Then in future discussions, instead of writing, "15,735 is

divisible by 5" we may write simply S. A note of caution:

To avoid confusion it must always be clear to which statement

a given letter refers, so we must be careful never to use the

same letter to refer to more than one statement in the same

discussion.

Consider now the statement P: "1271 is prime." At first

glance you are probably not able to tell whether P is true or

false, though you know that it will be one or the other. If

it turns out that P is false, then the statement Q: "1271 is

not prime," will be true. But what if P is true after all?

Certainly then Q will be false. Thus P and Q are opposites in

the sense that if P is true then Q is false and if P is false

then Q is true. Given any statement R we can always form a

new opposite statement by the same process, and we call this

new statement the negation of R. Instead of being assigned a

new letter, the negation is called "not R." The relation

between a statement and its negation is summarized in Table 1,

called a truth table.

R not R

true false

false true

Table 1

10



Example 6.

Example 7.

Example 8.

1.3 Exercises

Suppose S: "2 + 3 = 4" (false of course).

Then not S: "2 + 3 4" (true).

Suppose T: "4371 is divisible by 9" (false).

Then not T: "4371 is not divisible by 9" (true).

If not T: "4371 is not divisible by 9," then

not(not T): "4371 is not not divisible by 9"

or "4371 is divisible by 9," and

not(not T) is the same as T.

In Exercises 1-11 determine whether or not the given

sentence is a statement. If it is a statement, tell whether

it is true or false. If it is not a statement, give a reason why.

1. 15283 is a prime number.

7,1 + 7
+ 2.

is
1

2. r3k7 s a rational number greater than 7.

3. Shut the door.

4. x is a whole number less than 9.

23 2
u i5. 115 + + is not greater than 1.

6. 243 is not prime.

7. It is false that 243 is not prime.

8. It is true that it is false that 243 is not prime.

9. 243 is prime.

10. It is false that it is false that 243 is not prime.

11. It is not true that 15283 is prime.

11
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In Exercises 12-18, find the negation of each of the given

statements and determine which (the original and its negation)

are true and which are false.

12. 721 is prime.

13. 71 x 27 = 1917.

1 2 3
14. + 5 < 5.

15. It is false that it is true that 71 is not less than

38 + 35.

16. T: "1001 is divisible by 13."

17. not T. (See Exercise 16.)

18. not(not T). (See Exercise 16.)

19. If A is "7 x 3 = 3 in Z9," write a statement expressing

(a) not A

(b) not(not A)

(c) not(not(not A))

20. If R is "29 is not prime," write a statement expressing

(a) not R

(b) not(not R)

(c) not(not(not R))

21. Complete the following: When S is a statement,

(a) not(not S) is the same as

(b) not(not(not 0) is the same as

22. Suppose you had the statement "not(not(not(... Q) )"

where the word "not" appeared 37 times. What should

this be the same as? Can you state a general rule if

"not" appeared n times?

12



1.4 Connectives: And, Or

The compound mathematical sentence

5 is prime and 5 is a multiple of 3,

is composed of two simple statements joined by the connective

and." Is the compound sentence a statement? Is it true or

false?

Clearly the statement "5 is prime" is true and "5 is a

multiple of 3" is false. It seems reasonable that for the

compound sentence to be true both parts must be true. According

to this, then the given sentence is false (but is a statement).

What probably suggested that both parts had to be true if the

whole sentence is considered to be true is the word "and"

connecting the two parts. In this case, mathematics agrees

with intuition. Statements of the form "P and Q" are true if

both P and Q are true and false if either one of them or both,

are false.

Example 1. The compound statement "5<3 and 2>7" is

false since neither "5<3" nor "2>7" is true.

Example 2. The compound statement S: "2 + 3 = 5 and

4 7" is true. Since "2 + 3 = 5" is true

and "4 7" is true, both parts of S are

true and therefore S is true.

Example 3. S: "x is a whole number greater than 5 and

x is a whole number less than 8." Of course,

this is not a statement - -it is an open

13



sentence. If x is replaced by 2, the

resulting statement is "2 is a whole number

less than B. The second part of this

statement is true, but the first part is

false, so the compound statement is false.

To emphasize: When 2 was substituted for

the variable x, the compound open sentence

became a false statement. Different sub-

stitutions for x might lead to different

truth values for the resulting statement.

In ordinary language, another common connection between

two parts of a compound sentence is the word "or." This

connective is also useful in constructing compound

sentences and statements in mathematics. However, when

we try to define carefully the use of "or" (as we did for

use of "and"), starting from intuition, we run into

difficulties. In everyday usage, "or" can mean quite

different things. When we say, "It is raining or the

sun is shining," we mean that one or the other is happen-

ing, but not both. However, when we say, "Maria is

always singing or dancing," we do not want to exclude the

possibility that she could be doing both.

Since mathematics demands definitions that are

independent of context, we must be arbitrary and exclude

(in mathematical sentences) one of the possible interpre-

tations for "or." Following the usage agreed upon by

14



mathematicians,

statements, "P

P is true or Q

Example 4.

Example 5.

Example 6.

Example 7.

-10-

we shall say that when P and Q are

or Q" is a statement that is true whenever

is true or both are true.

The compound sentence "2 = 3 or 4 + 1 = 5"

is a statement. The first part of this

statement is false, but the second part

is true, so the compound statement is

true.

Supposey is "6 is prime" and Q is "Line

reflections preserve direction." P is

false, and so is Q. Therefore, the

compound statement "P or Q" is false.

Suppose S is "2/3 is rational" and T is

"-4<3." Both S and T are true, so by

definition, the compound statement "S or T'

is also true.

x is a whole number greater than 6 or x

is a whole number less than 3" is a

compound open sentence. If x is replaced

by 2, the first part of S is false, but

the second part is true. From the

definition, since this is an "or" compound,

the statement is true if x is replaced by

2. Similarly if x is replaced by 7, the

first part is true and the second part is

false, so 7 makes the whole statement true.

15



If x is replaced by 4, both parts are

false and so the whole sentence is false.

To get all the replacements for x that

make the sentence a true statement (i.e.

the solution set or truth set for x), we

need only take all replacements that make

the :irst part true and then all other

replacements that make the second part true.

This turns out to be the set of whole num-

bers excluding 3, 4, 5, and 6.

If P and Q are statements, the compound statement "P

and Q" is true if both P and Q are true. The compound

statement "P or Q" is true if either P or Q or both are

true. These conventions are summarized in Table 2. (Recall

such a table is called a truth table.)

P Q P and Q P or Q

T T T T

T F F T

F T F T

F F F

Table 2

Close inspection of Table 2 will reveal an interesting

and useful relationship between "and," "or," and the

process of negation. The statement "P and Q" is false

when P is false ("not P" is true) or Q is false ("not Q"

is true) or both are false. But this is the same as

saying "P and Q" is false when "not P or not Q" is true.

16
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On the other hand, the statement "P or Q" is false when

P is false ("not P" is true) and Q is false ("not Q" is

true). But this is the same as saying "P or Q" is false

when "not P and not Q" is true. Summarizing,

When "not P or not Q" is true then "not (P and Cris true.

and

When "not P and not Q" is true then "not (P or Q)" is true.

1.5 Exercises

In exercises 1-10 determine whether the given compound

statement is true or false.

1. 3 7 or 5 < 4.

2 . 3 7 and 5 <

3. 23 is prime and is divisible by 5.

4. 23 is prime or is divisible by 5.

ll 13 15
5. "U or V" where U is

n and V is
n >
f6 IF'

0

6. "U and V"

7. "A or B" where A is "Line reflectiJn R does not preserve

parallelism" and B is "R preserves direction."

8. "A and B." (See Exercise 7.)

9. "P or Q" where P is "The image of 6 under the dilation

1
D2 is 4," and Q is "The image of 2. under D6 is 3."

10. "P and Q." (See Exercise 9.)

11. Suppose that for some statements S and T the compound

statement "S or T" is false. What conclusion (if any)

can be drawn about the compound statement "S and T"?

17
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What conclusion (if any) can be drawn about "S and T"

if "S or T" is true?

12. Suppose that for some statements G and H, the compound

statement "G and H" is true. What conclusion (if any)

can be drawn about "G or H"? What conclusion (if any)

can be drawn about "G or H" if "G and H" is false?

13. Complete the following truth table.

P Q not P not Q P or Q (not P) and (not Q)

T

T

F

F

T

F

T

T

F F T F

What relationship do you notice between the last two

columns of the table? What can you conclude from this

about the relationship between "(not P) and (not Q)"

and "P or Q"?

14. Complete the following truth table.

P not P not Q. P and Q not P) or not Q

T T F F T

T F

F T

F F

Compare the last two columns of the table. What does

18
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this tell you about the relationship between "(not

P) or (not Q)" and "P and Q"?

15. Find the solution sets for the following open sentences:

P: "x is a whole number greater than 5."

Q: "x is a whole number less than 9."

Now find the solution set for the open sentence "P and

Q". What relationship do you notice between the

solution set for "P and Q" and those for P and Q

individually?

16. Suppose you are told that the solution set for open

sentence S(x) is set A and that the solution set for

open sentence T(x) is set B. What will be the solution

set for the open sentence "S(x) and T(x)" in terms of

sets A and B?

17. Find the solution sets for the following open sentences.

V: "y is a whole number between 3 and 7."

W: "fir is a whole number between 5 and 10."

Find the solution set for the open sentence "V or W."

What relationship do you notice between the solution

set for "V or W" and those for V and W individually?

18. You are told that the solution set for open sentence

M(x) is set C and that the solution set for open

sentence N(x) is set D. What will be the solution

set for the open sentence "M(x) or N(x)" in terms of

set C and set D?

19
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1.6 Conditional and Bi-conditional Statements

Recently, the science editor of a newspaper made the

following prediction: "If the United States sends an astronaut

to Mars by 1976, then it will send one to Venus by 1980." Right

now, of course, no one can say whether this prediction will

turn out to be true or false. After 1980, we will know. Under

what circumstances will the prediction turn out to be true?

turn out to be false?

Suppose, first of all, that the United States does send

an astronaut to Mars by 1976 and then goes on to send one to

Venus by 1980. The prediction will then have turned out to be

true. On the other hand, suppose that while an astronaut is

sent to Mars by 1976, none has reached Venus by 1980. In this

case, the prediction must be judged false.

These two possibilities are clear enough, but there are

two more that require careful thought. Suppose that everything

goes wrong, so that not only does an astronaut not make it

to Venus in 1980, but none gets to Mars by 1976. Was the

science editor wrong? Think carefully. Remember he did not

say an astronaut would get to Mars by 1976 or that one would

get to Venus by 1980; he only said that if one were sent to Mars

by 1976, one would get to Venus by 1980. So in this case,

since no astronaut got to Mars by 1976, we cannot say that the

science editor's prediction about Venus was false.

Suppose no astronaut gets to Mars by 1976, but one does

20
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get to Venus by 1980. Here again, the prediction is certainly

not wrong, so we cannot say that it was false.

Consider the following conjecture made about the sum of

two whole numbers a and b:

If a and b are odd, then a + b is even.

Imagine that to test this assertion for a large number of

casas (that is, different replacements for a and b) you are

given an adding machine that will add any two whole numbers and

print the result. For each case you must decide whether the

assertion was true or false. To make the job easier,

the machine automatically selects numbers to be added and

prints them before adding. However, it does not always select

odd numbers. (Perhaps the same machine is to be used to test

other assertions about the sum of two whole numbers.)

The first two numbers the machine selects are 3 and 5.

If the assertion is correct at all, since 3 and 5 are indeed

odd whole numbers, the result of the addition should be even.

And, of course, it is. The machine prints '.8." Next, the

machine selects 4 and 7 and prints "11" as the sum. We know

11 is not even. Is the assertion wrong in this case? No,

all that is wrong is that the machine did not select two odd

numbers to start with. The assertion is still good.

When would you decide that the machine had come up with a

case for which the "assertion" was false? This would happen

only if the machine found two odd numbers with a sum

that was not even. Thus, you would have to find two numbers,

a and b, such that "a and b are odd numbers" is true, but
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"a + b is an even number" is false. For any other situation

the assertion is certainly not false.

What do the two examples discussed above have in common?

Both are compound sentences of the form

If P, then Q.

In each case it seems reasonable to consider the compound

sentence a true statement when P is true and 0 is true, and

it seems reasonable to consider the compound sentence a false

statement when P is true and Q is false. In the case that both

P and Q, are false or in the case that P is false and Q. is true, the

truth or falsity of the compound sentence is less clear. However,

in these cases it would not be reasonable to say the given

predictions were false. Therefore, so that every mathematical

sentence of the "If P, then Q" form will be classified as

true or false, mathematicians have adopted the following

convention:

When P and Q are statements, "If P,

then Q" is a statement that is true

unless P is true and Q is false.

Statements of the "If P, then Q. form are called conditional

statements. Statement P is called the antecedent and statement

Q i.f.s called the consequent.

If you are puzzled by the agreement to call conditional

statements true when the antecedent is false or when both

antecedent and consequent are false, it may be of some help

to re-read the discussion of the two examples. Then, if you

still have doubts, remember that in mathematics it is sometimes

22
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necessary to make or accept arbitrary definitions that may not

always agree with intuition. (Recall the case of "or"

compound statements.) As you gain experience in working with

conditional statements, the definition will become more and more

acceptable.

Example 1. Suppose S is "2 + 3 = 5" and T is "2 . 5 - 3."

Then the conditional

If S, then T

is true because S and T are both true.

Example 2. "If 3 = -4 in Z7, then -3 = -4 in Z7." Here

the antecedent "3 = -4 in z
7

is true but

the consequent "-3 = -4 in z
7
" is false, so the

conditional is false.

Example 3. "If 1 + 1 = 3 in W, then 5 + 4 = 8 in W."

Here both the antecedent and consequent are

false. The conditional is true by our definition.

Example 4. "If 4 + 3 = 2 in Z
5

, then 5 + 4 = 1 in z
7
."

Although the two parts of this conditional

statement do not seem to be related, "4 + 3 = 2

in Z
5

" is certainly true, and "5 + 4 = 1 in

Z
7
" is false, so that the conditional statement

is false.

Example 5. "If set S = (a, b, 0 is not a subset of itself,

then S has 5 elements." Both antecedent and

consequent are false (recall that every

set is a subset of itself), so the given conditional
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is true! The definition must be followed

strictly. This points out that just because

a conditional is true does not mean that its

consequent is automatically true. This

follows only if it is also known that the

antecedent is true.

As was the case with "and," "or," and "nut," the rules

for determining truth or falsity of a conditional statement

can be summarized in a truth table.

P Q

T T

T F

F T

F F

If P then Q

T

F

T

T

Table 3

Close inspection of this table reveals an important relationship

between conditional statements, "and," and the process of

negation.

The statement "If P, then Q" is false only when P is

true and Q is false (not Q is true). But this is the same

as saying "not (If P,then Q)" is true when "P and not Q" is

true. Thus, if we can show that the compound sentence "P and

not Q" is true, it follows that the conditional "If P, then

Q" is false.

Example 6. if 72 and 27 are multiples of 3, then

72 + 27 is a multiple of 6." Both 72 and

27 are multiples of 3, so the antecedent
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is true; but 72 + 27 = 99 is not a multiple

of. 6, so the consequent is false. Thus,

the conditional is false.

Example 7. "If <AB> P <CD>, then <AU> <n>.' This

is an open conditional sentence. The

sketch below shows that the sentence is not

true for all points A, B, C, D.

A

<AB> n <CD>, but <AD> I' <13c>.

From the conditional it is just a short step to another

kind of statement called the bi-conditional. As its name

hints (bi is a prefix meaning two), it is in a sense two

conditional statements given in one sentence.

Example 8. "A quadrilateral ABCD is a parallelogram if

and only if its opposite sides are parallel."

This compound statement says If ABCD

is a parallelogram, then its opposite sides

are parallel" and if quadrilateral ABCD

has opposite sides parallel, then it is a

parallelogram." The original statement of

the form "P if and only if Q" stands for

two conditionals If P, then Q" and "If

Q, then P."

Example 9. "A mapping is an isometry if and only if it

25 preserves distances between points." This

statement may be broken down into the



-21-

following two conditionals, both of which

must be true if the statement is true:

(1) If a mapping is an isometry, then it

preserves distances.

(2) If a mapping preserves distances, then it is

an isometry.

Examples 8 and 9 illustrate a statement form common in

mathematics: If P and Q are statements, "P if and only if

Q" is a bi-conditional statement that is true when and only

when "If P, then Q" and "If Q, then P" are true.

Suppose for given statements P and Q it is known that

"If P, then Q" is true, and suppose furthermore it is known

that "If Q, then P" is true. Since "If P, then Q" is true,

it is impossible that P is true and Q false. Since "If

Q, then P" is true, it is impossible that Q is true and P

flase. Since no other possibility is excluded, combining these

two conclusions yields either P and Q are both true or

both are false. Therefore, the bi-conditional, "P if and only

if Q" is a statement that is true whenever P and Q are

either both true or both false (otherwise it is false). This

is clearly illustrated in Table 4.

P Q If P, then Q I If P, then P P if and only if Q

T T T T T

T F F T F

F T T F F

F F T T T

Table 4
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The definition of the bi-conditional is simpler than it

appears to be at first. For, suppose that "P if and only if

Q" is true. Then if either P or Q is true, the other must

automatically be true. Also, if P is false, then Q is false

and vice versa. When this happens, that is, when the

bi-conditional "P if and only if Q" is true, P and Q are

said to be equivalent statements.

The bi-conditional statement,. "P if and only if Q," is

much stronger than the conditional statement, "If P, then

Q." If the conditional statement is true and P is true, then

Q will be true. However, if nothing is known about P,

but Q is true, we cannot draw any conclusion about P from'

the conditional. Compare this with the bi-conditional where

if Q is true, P must be true.

Example 10. In a plane two lines are parallel if and only

if they do not meet." If <AB> 11 <CD> then<><>Ø= If <AB> n <CD> = 0, then

<Af> II <5>.

Example 11. "If a and b are even, then a b is even."

8 and 6 are even and 8 6 = 118 is even.

However 6 = 3 2 is even and 3 is not even:

(Note: We did not claim a b is even if

and only if a and b are even.)

At the end of Section 1.4 it was pointed out that

when a compound statement "not P or not Q" is true, then

the statement "not (P and Q)" is true. This was a hint that

"not P or not Q" is the negation of "P and Q." In the
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exercises that followed you proved that this is so by using

truth tables (Page 13 , Exercise 14). This can now be stated

in a different way: "not (P and Q)" and "not P or not Q" are

equivalent statements. The importance of this is that P and

Q can be any statements whatsoever, whether true or false.

Thus if you wished to show for some statements S and T, that

"S and T" is false, (that is, that "not (S and T)" is true),

you could show instead that "not S or not T" is true. Similarly,

you saw in Exercisel3 on Page 13 , that "not (P or Q)" and

"not P and not Q" are equivalent statements, so that if

for some statements C and D you wished to show that "C or D"

is false, you could show instead that "not C and not D"

is true.

Earlier in this section you saw that when the compound

sentence "P and not Q" is true, the conditional sentence "if

P, then Q" is false (and therefore that "not (if P, then Q)"

is true. This suggests that "P and not Q" is the negation of

"if P, then Q," or in other words that "P and not Q" and

"not (if P, then Q)" are equivalent statements. In the

exercises you will be asked to prove this by means of a truth

table.

Suppose that two statements are each constructed

in some complex way from other statements. For example,

suppose that one of these complex statements is "S or (T and

U)" and the other is "(S or T) and (S or U)." If it is Known

that these two complex statements are equivalent, then to
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show that "S or (T and U)" is true could show instead

that "(S or T) and (S or U)" is true. Again, the importance

of this is that (if the two complex statements are in fact

equivalent) the equivalence must hold for any statements S,

T, and U. (You will be asked to prove this equivalence using

a truth table.) The procedure of showing a statement to

be true by showing an equivalent statement true is commonly

used.

1.7 Exercises

In Exercises 1-13, determine whether the given statement

is true or false.

1. If 2 < 5, then 2 + 3 < 5 + 3.

2. If 7 is a rational number, then 7 < 7.

3. If a number is odd, then three times the number is odd also.

4. If 6 is odd, then 3 x 6 is odd also.

5. If wishes were horses, then beggars would ride.

6. "If S, then T" where S is "3 is even and 5 odd" and T

is "3 + 5 is even."

7. "If T, then S." (See Exercise 6.)

8. "S if and only if T." (See Exercise 6.)

9, "If Q, then R" where Q is "4 is odd" and R is "3 x 4 is

odd."

10. "If R, then Q." (See Exercise 9.)

11. "R if and only if Q." (See Exercise 9.)

12. "Q if and only if R." (See Exercise 9.)

13. If 7 is a prime, then 2 does not divide 7.

1111111111=11111111111111111111111111111111M
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14. Write a negation of the conditional statement in Exercise 4.

15. Write a negation of the statements appearing in

(a) Exercise 6.

(b) Exercise 7.

(c) Exercise 8.

16. Write a negation of the statements appearing in

(a) Exercise 9.

(b) Exercise 10.

(c) Exercise 11.

17. Complete the following truth table.

P Q not Q if P, then Q not(if P, then Q P and (not Q)

T

T

F

F

T

F

T

F T F F

Compare the last two columns. What do you observe? What

does this tell you about the relationship between "not(if

P, then Q)" and "P and (not C) "?

18. S = (a, b, c, d). The following relation R is defined on S:

((ala), (b,b), (c,c), (d,d)).

Note that R is a reflexive relation on S, since xRx is true

for every element x in S. Recall that R is symmetric, if when

x and y are elements of S and xRy is true, then yRx is true.

Is R symmetric? Is R transitive? Explain your answer.

19. Show, by using a truth table, that "S or (T and U)" and

"(S or T) and (S or U)" are equivalent.

*20. Show that "if A, then (B or C) ". and "if (not C), then

(if A, then B) " are equivalent.
911



-26-

1.8 Quantified Statements

Recall an example of the previous section: "If a and

b are odd whole numbers, then a + b is an even whole number."

You were asked to imagine a machine which would test this

assertion for a large number of cases by substituting various

numbers for a and b. This assertion is in fact true no matter

what whole numbers are chosen to replace a and b. There-

fore, the following is true: "For all whole numbers a and b,

if a and b are odd, then a + b is even." If someone doubted

this assertion, how could he try to prove it false? If he

could find one pair of odd whole numbers that had an odd sum,

the entire assertion would be false. Even though there might

be many pairs which would not contradict it, the given state-

ment claims that for all odd whole numbers a and b, a + b is even.

A single contradictory case would defeat the assertion.

The assertion "For all whole numbers x, x + 5 > 5" actually

falls victim to such a criticism. Certainly 0 is a whole

number, but 0 + 5 is not greater than 5. Therefore, the state-

ment "For all whole numbers x, x + 5 > 5" is false. Note that

0 is the only whole number which contradicts the assertion'.

This points out that whenever you make an assertion of the

"for all" type you must be certain that you have considered

every possible cc:se. Note also that by including the phrase

for all, the assertions given become statements (called universal

statements) that are true or false. This is in contrast to
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open sentences like "3x + 2 = 4" which are true for some

replacements of x and false for others.

Many mathematics theorems are universal statements;

for example:

Theorem: For every natural number n, n(n + 1) is an

even natural number.

Notice that although the theorem uses the

words "for every" instead of "for all," the

meaning is the same. Other phrases used

having the same meaning are "for each" and

"for any," or sometimes simply "each," "any,"

etc. When these phrases are used to form

universal statements, they are called universal

quantifiers.

Example. 1. "Every natural number is a positive integer."

From the definitions of natural number and

positive integer, you know that this is true.

Note that this statement is not about every

number, but about every natural number. Thus

the universal quantifier "every" is applied

to the set of natural numbers. The set to

which the quantifier applies is called the

domain of the quantified statement, so the

domain of this statement is the set of

natural numbers.
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Example 2. "Every whole number is a positive integer."

This is false, since there is a whole number

(0) that is not a positive integer. The

universal quantifier used is "every" and the

domain of this universal statement is the

set of whole numbers.

Example 3. "All line reflections are isometries."

As you saw in Course I this is true. It is

impossible to find a line reflection that is

not an isometry. The domain of this universal

statement is the set of line reflections.

Example 4. "Any even number greater than 2 is the sum

of two primes."

To show that this is false, you would have to

find an even number that cannot be written as

the sum of two primes. No one has yet been

able to do this (as of 1969); on the other

hand, no one has been able. to prove this

universal statement--known as Goldbach's

Conjecture. Note that the domain of this

statement is the set of even numbers greater

than 2.

Example 5. "For all x and Lin Z6, if xy = 0, then

x = 0 or y = 0."

Fortunately, since Z6 is a small system, you

will be able to test the truth of this conjecture

easily.
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Now consider the open sentence, "x + 3 > 7." By

introducing a universal quantifier, the open sentence becomes

a statement: "For all whole numbers x, x + 3 > 7." This is

false, since 3 is a whole number and "3 + 3 > 7" is false.

The open sentence could be converted into a true statement

in two different ways. One approach is to change the domain

and state "For all whole numbers x greater than 4, x + 3 > 7."

Another approach involves a change of quantifiers.

Instead of "For all x" we could write "For some x." changing

the universal statement to a new form

For some x in W, x +3 > 7.

Of course, "for some" is not a universal quantifier, and the

meaning of the sentence is completely changed. The new

sentence will be true if there is one or more whole numbers

x for which x + 3 > 7. Certainly 5 is one such--so there is

no need to look further. The new statement is true.

The phrase "for some" that we used to construct the new

statement is called an existential quantifier, because it

asserts that something exists--in this case, a whole number

x for which "x + 3 > 7" is true. The statement itself is

called an existentially quantified statement, or more :Amply,

an existential statement.

Example 6. "For some x in Z12, x2= 4."

In Z
12,

22= 42 = 82 = 4.

Therefore the existential statement is true.
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Example 7. "For some integer a, aa is negative."

To show that this is true, you would have to

find at least one integer, which when

multiplied by itself, would give a negative

number. If a is negative, then aa is

positive (recall that the product of two

negative numbers is positive) and if a

is positive, then aa is positive also. If

a = 0, then aa = 0. Therefore there is no

integer a such that a2 < 0. Conclusion:

The existential statement of this example

is false.

Example 8. "There is an isometry that is not a line

reflection."

Since there are isometries which are not

line reflections (rotations and translations,

for example), this existential statement is

true. Note that the quantifier is "there is."

This has essentially the same meaning as

"for some," as you have seen, and is considered

to be mathematically the same. Another form

of the existential quantifier is "there exists."

Example 9. "There exists an integer x for which xx = 9."

Now 3.3 = 9 and (-3).(-3) = 9, so there are in

fact two integers,x for which xx = 9; namely
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3 and -3. Do not be fooled by the words, "There

exists an integer ... " This really means,

"There exists at least one integer ... " and

therefore the given existential statement is true.

Example 10. "For some odd whole numbers x and y, x + y is

is even."

At the beginning of this section, you saw that

the universal statement, "For all odd integers

x and y, x + y is even," is true. Since

ft x + y is even" is true for all odd whole

numbers x and y, it is certainly true for

some of them. The given existential statement

is also true.

The negations of the existential and universal statements

can be found easily. Suppose that some given statement is,

"For all x, P(x)." If this is false, then there must be at

least one replacement for x which makes P(x) A false

statement. But this is simply saying that "For some x, not

P(x)" is true.

Then, "For some x, not P(x)" is the negation of "For

all x, P(x)." The negation of "For all whole numbers n,

n is prime" is "For some whole number n, n is not prime."

It follows in exactly the same way that the negation

of "For some x, Q(x)," is "For all x, not Q(x)." For

example, the negation of the statement "For some integer

a, aa is negative," is the statement "For all integers a,

a.a is non-negative."
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1.9 Substitution Principle for Equality (SPE)

Suppose you are asked to do the following arithmetic

problem: 1234 x 72 + 1234 x 28. Naturally, this inuives

a lot of computation unless some shortcut can be found.

Perhaps you see one using a property you studied in Course I:

1234 x 72 + 1234 x 28 = 1234(72 + 28)

= 1234(100)

= 123,400.

What justifications can be given for these steps? The first

is an application of the distributivity of multiplication

over addition in the set of integers. In the second step,

"100" has been written in place of "72 + 28". What reason

could be given for this? Perhaps you would say that this

is a known fact of addition of integers. However, more than

this is actually involved. For the known fact of addition

used here is "72 + 28 = 100." Another way of saying this is

that "100" is another name for "72 + 28". Then this name

"100" is used in place of the previous name "72 + 28."

That is, we have replaced one name for a particualr thing by

another name for the same thing. In Course I, the guarantee

that this is allowable was called replacement assumption.

However, there is a more general principle in mathematics

that will permit this kind of replacement and can be applied

in a greater variety of situations. This is called the

Substitution Principle for Equality (abbreviated SPE) and

can be stated as follows:
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If any part of statement is replaced by an expres-

sion to which it is equal, the resulting statement is

equivalent to the original one. In other words, if the

original statement is true, the resulting statement

is true; if the original statement is false, then the

new one is false also.

In the example given above, 72 + 28 is equal to 100, and

since "1234 x 72 + 1234 x 28 = 1234(72 + 28)" is true, then

"1234 x 72 + 1234 x 28 = 1234(100)" is true also. In the next

step of the example, since 1234(100) = 123,400 and "1234 x 72

+ 1234 x 28 = 1234(100)," by SPE, "1234 x 72 + 1234 x 28 =

123,400" is true also.

To see how this principle can be applied to a different

kind of problem, consider how you might find the solution

set to the open sentence, "3 + a = 5" in Z7. One way to do this

is to add the opposite of 3 to both sides. Since the opposite

of 3 in Z
7

is 4,

4 + (3 + a) = +5

so + 3) + a = 2 (Why?)

so 0 + a = 2 (Why?)

or a = 2 (Why?)

What justifies adding the opposite of 3 to both sides? This

is an application of a direct consequence of SPE--the Left

Operation Property.

If (S,o) is an operational system and if x and y

are elements of S and x = y, then if z is also in

S,z0x=z0 y.
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In the above example, the operational system is (Z
T'
+),

and we started with 3 + a = 5 (so x is 3 + a and y is 5).

Thenzwas 4, and "o" was addition, so z o x = z 0 y becomes

4 + (3 + a) = 4 + 5.

To see that left operation is a result of SPE, start with

an operational system (S,o) and x = y, with both x and y in

S. Now if z is in S, then surely z 0 x = z 0 x, since

equality is reflexive. Since x = y, by SPE any x in

z0x=z0xmay be replaced by y. Replacing the one on

the right by y, the result isz0x=z0 y. That is, this

is true if x = y. But this is just what left operation says.

1.10 Exercises

Determine the truth or falsity of the statements in

Exercises 1-15. Then state whether the given statements are

universal or existential (or neither) and give the domain.

1. Every line reflection is an isometry.

2. Every isometry is a line reflection.

3. There is a line reflection which is an isometry.

4. There is an isometry which is a line reflection.

5. For all integers x and y, x2y2 is even.

6. For some integers x and yy, x2y2 is even.

7. For each integer x greater than -3 and less than 4,

-2 - x 0.

8. There exists an element x in Z
7

for which x3 = 3.

9. There exists an element x in Z6 for which x2 = 2.
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10. For all mappings s and t, s o t = t o s.

11. For some mappings g and h, g o h h o g.

12. For all line reflections Am, if A is a point in the

plane, then (Am 0 Lm) (A) = A.

13. For every operational system (Soo), if a and b are in

S, thenaob=bo a.

l4. There is an operational system (T,o) such that for all

a,b, and c in T, a o (b o c) (a o b) o c.

15. For every operational system (U,o), and for all x, 2,

and z in U, x o (y o z) = y o (x o z).

16. Write statements that are negations of the statements

in Exercises 1-4. State whether each of your state-

ments is a universal statement, an existential state-

ment, or neither.

17. Write statements that are negations of the statements

in Exercises 5 and 6.

18. Write statements that are the negations of the statements

in Exercises 10 and 11.

19. Determine the truth or falsity of the following state-

ment and write its negation:

For each integer s, there exists an integer t

such that t > s.

20. Determine the truth or falsity of the following

statement and write its negation:

There exists an integer x such that for all

integers y, y > x.
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21. For the following arithmetic problem tell where and

how SPE is used:

37 x 53 (30 + 7) x (50 + 3)

= (30 + 7) x 50 + (30 + 7) x 3

(30 x 50) + (7 x 50) + (30 x 3) + (7 x 3)

1500 + 350 + 90 + 21

1961

22. A proof is given below of the theorem:

For every integer r, r0 = 0.

Identify the steps in which SPE is used and tell how

it is used.

r0 = r0

r.(0 + 0) = r.0

r.(0 + 0) = rO + 0

r.0 + r.0 = r'0 + 0

r.0 = 0 Cancellation Law in

(Z,+)
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1.11 Inference

Suppose a swimming pool has the following sign posted

at the entrance:

If it is a Rainy Day

Then the Pool Will Be Closed

Since we have no reason to believe that the manager of the

pool would post false statements, we consider this a true

conditional. Now knowing also that it is a rainy

day will allow us to draw the conclusion that the pool will

be closed. Two statements, both considered true, have given

us another true statement.

Look at the above example again, bul this time assume

we know that the pool is closed. Using only the information

given, what conclusions can be drawn about whether it is or

is not a rainy day? If you think for a moment, you will

realize that the pool could be closed for many reasons other

than a rainy day; it might be the middle of winter; Thus, no

conclusion can be drawn on the basis of these two true

statements.

Let us analyze these two instances closely. Let P

represent the statement "it is a rainy day" and Q represent

the statement "the pool will be closed." Thus, "if P then Q"

represents the statement made by the swimming pool manager,

"If it is a rainy day, then the pool will be closed." Knowing

only that the compound sentence if P then Q" is a true

statement does not tell us the truth value of the statement P,

or the truth value of the statement Q. However, "if P then Q"
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is a true statement in each of the following 3 cases:

(1) when both P and Q are true,

(2) when P is false and Q is true, and

(3) when both P and Q arefalse.

Thus, one of the 3 cases must hold when "if P then Q" is true.

If in addition to knowing "if P then Q" is true, we also know

P is true (as in the first situation) then the only case which

could hold is (1), since it is the only case of the three in

which P is true. Thus according to Case (1), both P and Q

must be true and we have obtained additional information;

namely that Q is a true statement. To repeat, knowing that

both statements, P and "if' P then Q" are true, we can

conclude that the statement Q is also true. We express this,

the first of our inference rules, as

(1) From "If P, then Q" and "P," we infer "Q."

In mathematics, reasoning from a true conditional statement

"if P then Q" and a true antecedent P to the truth of the

consequent Q is following a basic rule of inference called the

rule of detachment or modus ponens.

If we again consider the three cases in which "If P, then

Q" is true, we can see why it is impossible to draw a conclu-

sion from knowledge that Q is true. When "if P then Q" is

true and Q is true, two possibilities exist for P P true

or P false -- and we cannot draw a conclusion from the

information given. To repeat, having as true the conditional

"if P then Q" and the consequent Q, does not give any

information about the truth value of P.
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Example 1. For each of the following accept the

following conditional statement as true:

If it is Saturday, then the school is closed.

a) Accepting also as true in addition to the

conditional, the statement "It is Saturday"

leads us to infer the conclusion "The

school is closed." This is a direct

application of the rule of detachment.

b) Accepting as true the statement "The

school is closed" along with the condi-

tional does not allow us to make any

inferences about what day of the week it

is. This is an example of the form "If

P then Q" and "Q."

Example 2. In each of the following accept the first two

statements as true.

a) If 7 has exactly two distinct factors, then

7 is a prime number. 7 has exactly two

distinct factors.

Conclusion:

7 is a prime number.

b) If a natural number has exactly two

distinct factors,

Then it is a prime number.

7 has exactly two distinct factors.

Conclusion:

7 is a prime number.
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Discussion: In each of the above examples the rule of

detachment has been used. However, example (b) does not fit

the form exactly. Another rule of inference has been used.

The conditional statement "If a natural number has exactly

two distinct factors, then it is a prime number," can be

considered as a perfectly legitimate true statement. However

it cannot be expressed as a compound of simpler statements

since the simple sentences contained within, "A natural

number has exactly two distinct factors," and "It is a prime

number," are not statements. That is they are not either

true or false but open sentences.

Conditionals of this form are called general or

universal statements. Accepting them as true means we

interpret them to be true for all substitution instances.

We are saying "If a natural number x has exactly two distinct

factors, then xis a prime number," is a true statement for

any and every substitution for the variable x from the domain

of natural numbers.

Thus in example (b), from the universal conditional

alone we can infer the conditional "If 7 has exactly two

distinct factors then 7 is a prime number." Making this

inference first we can then proceed as in example (a) to use

the rule of detachment and conclude "7 is a prime number."

This inference rule called inference from a universal

statement is often used in mathematics since many statements

are universal conditionals. Often the particular statement

inferred from the universal is not mentioned as was done in
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example (b). In most cases the argument will be clear

enough without adding extra steps. However, it is important

to realize when you are making inferences from universal

statements.

Example 3. For each of the following accept the

following conditional statement as true:

If a number is divisible by 8, then

it is divisible by 4.

(a) If, in addition to the above conditional,

the statement "256 is divisible by 8"

is accepted as true, then the conclusion

"256 is divisible by 4" must be accepted

as true.

(b) However, if the statement "68 is divisible

by 4" is accepted as true, no conclusion

about divisibility of 68 can be inferred.

(c) In the same way, if "736 is divisible

by 4'' is accepted as true, then no

conclusion about divisibility of 736

by 8 can be inferred.

(d) If the statement "25 is divisible by 8"

is accepted as true, then the conclusion

"25 is divisible by 4" must be accepted

as true.

Discussion: Both Examples 3(a) and 3(d) are of the following

form: "If P, then Q" is accepted as true and P is accepted

as true. This implies that Q must be accepted as true. In
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Example 3 (d), 25 is in fact not divisible by 8 nor is it

divisible by 4. However, accepting 25 as divisible by 8 must,

by the rule of detachment, lead to accepting it as divisible

by 4. The use of inference is correct and the statements are

consistent.

Examples 3(h) and 3(c) are of the form: "If P, then Q"

is accepted as true and Q is accepted as true. On the basis

of this information alone we cannot make any inference;; about

the truth or falsity of P. In Example 3(c), although 736

is divisible by 8, this additional information is not a

logical consequence of the two statements accepted as true.

Example 4. For each of the following, accept as true the

conditional statement: "If a and b are both

even integers, then a + b is an even integer."

(a) Accepting as true "6 and 10 are both even

integers" leads to the conclusion "6 + 10

is an even integer."

(b) Accepting as true "13 + 3 is an even

integer" does not imply that 13 and 3 are

even, a good thing, since they are clearly

both odd.

(c) Accepting as true "12 + 4 is an even

integer" does not itself imply that 12

and 4 are even -- although they are, in

fact, both even.

Let us again consider the swimming pool example. However,

this time, in addition to assuming that, "If it is a rainy
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day, then the pool will be closed," is a true statement,

assume that we know the pool is not closed. We can then

conclude that it is not a rainy day! We may write this, the

second of our inference rules, as:

(2) From "If P, then Q" and "not Q" we infer "not P."

Looking again at the three cases in which "If P, then

Q" is true, we can see that in only

1. P true and Q true

2. P false and Q true

3. P false and Q false
1'

one (Case 3) is Q false. In that case P also is false, so

"If P, then Q" is true and not Q" is true must imply "not P"

is true. Again, knowledge about the truth of two statements

have allowed us to draw a conclusion about a third statement.

If, instead of knowing the pool is not closed, we know it

is not a rainy day, then we are again in a situation where

no conclusion can be drawn. The pool could be open or closed.

This is the form "if P then Q" true and P false, and can be

eitht.r Case (2) where Q is true or Case (3) where Q is false.

Example 5. Assume "If a whole number is divisible by 8,

then it is divisible by 4."

(a) Accepting as true "82 is not divisible

by 4" leads to the conclusion "82 is

not divisible by 8."

(b) Accepting ai true "876 is not divisible

by 8" leads to no conclusion about

divisibility about 4.
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(c) Accepting as true "534 is not divisible

by 4" leads to the conclusion "534 is

not divisible by 8".

Example 6. "For all integers p > 2, if p is prime, then

p is odd."

(a) 257 is a prime greater than 2, so 257

is odd.

(b) 684 is greater than 2 and not odd, so

684 is not prime.

Example 7. "All isometries preserve angle measure."

(a) Line reflections are isometries, so

they preserve angle measure.

(b) Mappings that don't preserve angle

measure are not isometries.

(c) Dilations preserve angle measure, but

they are not isometries!

Example 8. A mapping assigns only one image to each

domain element. In the diagram below, 4

has two assigned images, so the diagram does

not define a mapping from A to B.
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The Law of Detachment is the most common and important

type of logical inference in mathematics. There are, however,

several other basic reasoning patterns used in mathematical

argument.

Suppose we accept the following compound statement as true:

25 is an odd number and 25 is a perfect square.

From this one statement alone, we may certainly conclude that

25 is a perfect square. (We may also conclude that 25 is an

odd number.) Here, accepting as true a compound statement,

where the connective used is and, allows us to accept as true

each of the simple statements involved. The reverse is also

useful. That is, accepting as true two statements allows us

to infer that the compound and statement formed by them is

also true.

Suppose we accept as true the compound statement:

529 is a perfect square or 529 is divisible by 13.

From this statement alone, no inferences can be made. However,

if we also accept as true the statement "529 is not divisible

by 13," then we must accept as true the statement "529 is a

perfect square."

The three inference rules described above may be expressed

as follows:

(3) From "P and Q" we infer "P."

(4) From "P" and "Q" we infer "P and Q."

(5) From "P or Q" and "not Q" we infer "P."

The five rules of inference are valuable tools in the analysis

of reasoning problems.
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Example 9. Assume the following three statements are true:

(a) If we have an art class, then it is Friday.

(b) We have a music class or we have an art

class.

(c) It is not Friday.

Conclusion: We have a music class.

Discussion: From the conditional statement

(a) and the negation of its consequent,

(c), we infer, by inference rule (2), that

we do not have an art class. Using this

fact and (b), we infer, by inference rule(5),

that we have a music class. If P is "We have

an art class" and Q "It is Friday" and R "We

have a music class" the argument takes the

following form"

(a) If P then Q ASSUMED TRUE

(b) R or P

(c) Not Q

(d) Not P

(e) R

ASSUMED TRUE

ASSUMED TRUE

From (a) and (c); rule (2).

From (b) and (d); rule (5).

1.12 Exercises

In Exercises 1-14 assume the given statements are true.

(1) State the inferences (if any) that can be made.

(2) Assign letter names to each of the component

simple statements and state the inference

rules used in drawing your conclusions.
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1. If I toss a fair coin, then the probability of getting a

tail is r.

I toss a fair coin.

2. If set A is a subset of every set, then set A is the empty set.

Set A is not the empty set.

3. If sets A and B are the complements of each other, then the

union of the two sets is the universe.

The unior of set A and set B is the universe.

4. If the image of point A under a reflection in point P is A',

then P is the midpoint of AA'.

The image of point A under a reflection in point P is Al.

5. m is parallel to n or m is parallel to p.

m is parallel to n.

6. If B is between A and C, then AB + BC = AC.

AB + BC / AC.

7. The natural number 7 is even or it is odd.

7 is not even.

8. If x and y are both positive, then their product is positive.

The product of x and is positive.

9. If the sum of a and b is negative, then at least one of a,b

is negative.

The sum of a and b is positive.

10. If x and are both positive, then their product is positive.

x and y are not both positive.

*11. If a and b are rational numbers, then there is a rational

number between them.

a and b are rational numbers greater than 5.

me=1Mar
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*12. If x ?. 8, then y 5.

Ix - 51 > 3 and y< 5.

13. If a number is divisible by 8, then it is divisible by 4.

If a number is divisible by 4, then it is-divisible by 2.

88 is divisible by 8.

14. x = 3 or x = 4. If x = 3, then y = 7.

y 7.

15. If AC> = AB>, then B is on AC>.

AC> = AB> or AC> n AB> = A.

B not on AC>.

16. A mathematics teacher, moonlighting as a detective, was

investigating a crime. He had come to accept the following

statements as true:

(1) The butler or the stepson murdered Mr. X.

(2) If the butler murdered Mr. X, then the murder

did not occur before midnight.

(3) If the stepson's testimony is correct, then the

murder occurred before midnight.

(4) If the stepson's testimony is incorrect, then the

house lights were not turned off at midnight.

(5) The house lights were turned off at midnight,

and the butler is not wealthy.

Using his knowledge of logic and proof, the mathematico-

detective quickly inferred who the murderer was. Who

was the murderer and what rules of inference did the

sleuth use to discover this?
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1.13 Direct Mathematical Proof

Section 1.1 of this chapter sketched an argument justi-

fying the statement:

If a and b are even whole numbers,

then a + b is even.

What made that argument acceptable as a mathematical proof?

Let's examine that argument.

The statement to be proven is a conditional of the form

"If P, then Q where P is "a and b are even whole numbers"

and Q is "a + b is even." The conditional will be true unless

P is true and Q is false. Therefore the strategy of argument

is to assume P true and show that then Q must also be true.

Proof:

1. a and b are even 1. Assume P true.

whole numbers.

2. a = 2x for some x 2. Definition: A whole

in W. number n is even if

b = 2y for some y and only if n = 2m

in W. for some m in W.

3. a + b = 2x + b. 3. Right operation on

a = 2x by b in (W,+).

4. a + b = 2x + 2y. 4. SPE in Step 3 since

b = 2y.

5. 2x + 2y = 2(x + y). 5. Distributive property

of (W,+,.).
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6. a + b = 2(x + y). 6. SPE using Step 5 in

Step 4.

7. x + y is in W. 7. (w,+) is an operational

system.

8. a + b is even 8. Definition in Step 2.

Analysis: The proof is a sequence of statements leading to

the desired conclusion "a + b is even." Each step of the argu-

ment is justified by some known fact, axiom, definition, or

theorem about whole numbers, or by an acceptable inference

from earlier statements in the proof.

Step 1. a and b are even whole numbers.

The strategy of proof is to assume the truth of

this statement and show that "a + b is even"

must then be true also.

Step 2. From "a and b are even whole numbers," we infer

"a is an even whole number" by rule (3) of

inference. Similarly we infer "b is an even

whole number." The definition of even whole number

states that n is even if and only if n = 2m for

some m in W. In particular, since a is even,

a = 2x for some x in W; and since b is even,

b = 2y for some in W.

Step 3. The right operation principle states that for any

x, bzin Sp ifx= y, thenxoz=yozin the

operational system (S,o). In particular, if z

b, then a + b = 2x + b in (W,+).
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Step 4. Since step 2 states that b = 2y, S P E and

step 3 justify inferring the statement:

a + b = 2x + 2y.

Step 5. The distributive property of (W,+,.) states that

if p, q, r are in W, then p(q + r) = pq + pr.

Since 2, x, and are in W, the rule of

detachment justifies the statement:

2x + 2y = 2(x + y).

Step 6. Using the statements of steps 5 and 4, S P E

justifies inferring: a + h = 2(x + y).

Stet 7. If x and x are in W, then (x + y) is in W

because (W,+) is an operational system. In

step 2, x and x were guaranteed to be in W;

thus the law of detachment justifies the

assertion:

(x + y) in W.

Step 8. The definition of even number given in step 2

also states that if n = 2m for some m in W,

then n is even. In particular, a + b = 2(x + y)

and x + y is in W, so the law of detachment

justifies the inference: a + b is even.

The point of the above discussion is to indicate the

many inference rules used in constructing a mathematical proof.

Axioms and theorems are usually conditional statements;

definitions are usually biconditional statements. Thus, in
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using an axiom, theorem, or definition to justify a step in

a proof, we are in reality using the rule of detachment

and possibly other rules of inference depending on whether

we have compound or simple statements.

It is important to realize that all steps in a proof

must be justifiable. However, only rarely is every reason

stated. Rather, an abbreviated form is usually offered.

The degree of abbrevietion used in a proof depends to a

great extent on the individuals to whom the proof is directed.

Thus, in advanced mathematics books, we are likely to find

the words, it is obvious that ... follows," where quite a

few statements and inference rules are called for.

The next sample proof gives another mathematical argument.

E:mmine it to see how rules of inference, axioms, theorems,

and definitions are used in the steps leading to the desired

conclusion. This proof has another feature--an argument

by cases--that is worth close attention.

Theorem. Let a and b be whole numbers. If a or b is

an even number, then ab is even.

Proof. The conditional is true unless the ante-

cedent is true and the consequent is false.

Therefore, the strategy is to assume "a or

b even" is true and show that "BA) even"

must follow.

I. a or b even I. Assumption
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2. Assume a is even 2. One of a or b must be even,

so we give an argument for

the case a is even. A

similar argument works for

the case b is even.

Definition of even whole

number.

Right operation.

Assoativity of multiplica-

tion in (W,.).

S P E step 5 in step 4.

(W,) is an operational

system (x is in W by step 3

and b is in W by assumption).

Definition of even number and

results of step 6 and 7.

3. a = 2x for some x in W. 3.

4. ab = (2x)b 4.

5. (2x)b = 2(xb) 5.

6. ab = 2(xb) 6.

7. xb is in W. 7.

8. ab is even 8.

1.14 Indirect Mathematical Proof.

The preceding examples of proofs illustrated a direct

approach to proof of a conditional statement like If P,

then Q." The strategy was to assume P true and show that Q

must then also be true. There is a more devious approach,

suitably called indirect proof, which is often very useful.

The conditional "If P, then Q" is true unless P is true
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and Q is false. To show the conditional true, one must show

that any time the consequent Q is false, the antecedent P

must also be false. Assume "not Q" and show "not P' follows.

(Recall that this is rule (2) of inference.) This is the

strategy used in the following proof.

Theorem. Let a and b be whole numbers. If ab is odd,

then a is odd and b is odd.

Proof. In this conditional, P is "a.b is odd" and Q

is "a odd and b odd." The strategy is to

assume Q false and show that then P must be false

also.

1. not (a odd and b odd). 1. Assumption.

2. a even or b even 2. An and compound statement

is false if one of its

component statements is

false.

3. ab is even 3. The preceding theorem

stated that if a or b is

even, then ab is even.

4. ab is not odd 4. By definition every whole

number is even if and only

if it is not odd.

Check the role of inference patterns, such as detachment,

in this proof.

The next theorem is proven by another form of the indirect

method. It rests again, however, on the fact that a conditional
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"If P, then Q" is true unless P is true and Q is false. In

this proof we assume that the worst has happened--P is true

and Q is false--and show that such a situation is impossible

because it leads to a contradiction of an axiom, theorem,

or definition.

Theorem. If n is a whole number, then n(n + 1) is even.

Proof.

1. n is a whole number and 1. Assumption

n(n 4.- 1) is odd.

2. n odd and (n + 1) odd 2. By the preceding theorem,

if ab is odd, then a is

odd and b is odd.

3. n + (n + 1) is even 3. By a theorem discussed in

Section 1.6, the sum of

two odd integers is even.

4. n + (n + 1) = 2n + 1 4. Properties of (W,+,).

5. 2n + 1 is odd 5. Equivalent to definition of
odd number.

6. n + (n + 1) is odd 6. S P E step 4 in step 5.

7. n + (n + 1) is both even 7. Steps 3 and 6.

and odd.

Step 7 cannot be true since every even whole number is not

odd and every odd whole number is not even. Therefore, the

assumption "P and (not Q)" has led to a false statement

and must itself be false.
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In your future study of mathematics you will orten be

asked to prove conditional statements of the form "If P, then

Q." The most, successful strategy depends on the nature of the

given statement. It will be helpful to keep in mind these facts:

1. "If P, then Q" is true unless P is true and Q is false.

2. To show "P and (not Q)" impossible, one might try

the following:

(a) Assume P true and show that Q follows.

(b) Assume "not Q" and show that "not P" follows.

(c) Assume "P and (not Q)" and show this leads to

contradiction of an axiom, theorem, or definition.

1.15 Exercises

In this chapter we have discussed the following five

theorems about whole numbers:

Theorem. A. If a and b are even, then a + b is even (1.13).

Theorem B. If a and b are odd, then a + b'is even (1.6).

Theorem C. If a or b is even, the ath is even (1.13).

Theorem D. If ab is odd, then a is odd and b is odd (1.14).

Theorem E. If n is a whole number, then n(n + 1) is

even (1.14).

1. Give a step by step analysis of the following proof of

Theorem C, taken from the text. Use the analysis of Theorem A

as a guide and give both justifications and explanations

of the inference rules used.



-57-

1. a or b is even.

2. Assume a is even.

3. a = 2x for some x in W.

4. a.b = (2x)b.

5. (2x)10 2(xio).

6. ab = 2(xb).

7. xb is in W.

8. ab is even.

2. Follow the directions of Exercise 1 in giving analysis of

the following proof.

Theorem. Let a, b, and c be whole numbers. If a

divides b and b divides c, then a divides c.

Proof. A direct strategy is used.

1. a divides b and b divides c.

2. a divides b.

3. b = ax for some x in W.

4. b divides c.

5. c = by for some z in W.

6. c = (ax)y.

7. (ax)y = a(xy).

8. c = a(xy).

9. xy is in W.

10. a divides c.

In Exercises 3-5 use only theorems A - E and known facts

of arithmetic to prove the given assertions.

3. If a + b is odd and a is even, then b is odd.

4. If a + b is even, then a is even and b is even.

5. If a, b, and c are odd, the

62
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1,16 Summary

The purpose of this chapter is to illustrate and

explain the most common forms of statement and reasoning used

in mathematics. The content of mathematical statements may

range from facts about number systems to geometry, sets,

relations, mappings, or probability. Yet, in each of these

areas the statements and methods of reasoning have similar

forms and obey common rules of usage.

1. A statement is a sentence that is either true

or false, but not both.

2. If P and Q are statements, then "not P," "P and

Q," "If P, then Q," and "P if and only if Q" are

also statements. The truth or falsity of these

compound statements can be determined from the

truth or falsity of P and Q according to rules

summarized in the following table:

P Q not P P and Q 1 P or Q If P, then Q P iff Q*

T

T

F

F

T

F

T

F

F

--

T

--

T

F

F

F

T

T

T

F

T

F

T

T

T

F

F

T

*("iff" is a common abbreviation for "if and only if.")

3. If P(x) is an open sentence, the universal statement

For all x, P(x)" is true if each replacement of x

(from the appropriate domain) makes P(x) a true

statement. The existential statement "For some x,

P(x)" is true if at least one replacement of x (from
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the appropriate domain) makes P(x) y true statement.

4. The rules of inference used are as follows:

(1) From "If P, then Q" and "P" we infer "Q."

(2) From "If P, then Q" and "not Q" we infer "not P."

(3) From "P and Q" we infer "P."

(4) From "P" and "q" we infer "P and Q."

(5) From "P or Q" and "not Q" '0:e infer "P."

5. The substitution principle of equality (SPE) is a basic

inference rule.

6. Conditional statements "If P, then Q" are true

except when P is true and Q is false. Three

strategies of proof are used to establish truth

of such conditionals.

(a) Assume P true and show, by a sequence of

inferences, that Q must then be true also.

(b) Assume Q false and show that P must in that

case be false also.

(c) Assume P true and Q false and show that such

a situation leads to the contradiction of

an axiom, definition, or theorem.

1.17 Review Exercises

1. For each of the following sentences, determine whether or

not the sentence is a statement. If a sentence is a

statement, determine whether it is true or false. If

a sentence is not a statement, explain why it is not.

(a) 3 4. 5 = 8.

IRA
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(b) New York is larger than Chicago.

(c) Go to the store.

(d) (W,÷) is an operational system.

(e) 5 is a perfect square.

2. For each of the following pairs of sentences write each

of "P or Q," "P and Q," "not P," "not (P or 0," "not (P and Q),"

"not P," in idiomatic English.

(a) P. 5 and 6 are consecutive integers.

Q: The sum of two negative integers is negative.

(b) P: In tossing a fair coin, P(Heads) =

Q: Every prime number has exactly two factors.

(c) P: 9 + 8 > 19.

Q: Some triangles have four sides.

(d) P: Paris is a beautiful city.

Q: All cats have nine lives.

3. For each of the following pairs of statements, form "If P,

then Q" and determine the truth of the resulting conditional.

(Assume that a, b, c, and x are whole numbers.)

(a) P: a > b.

Q: a+ c > b + c.

(b) P: x 0.

Q: > 0.

*(c) P: .}cc. / 1.

Q: x = 0.

4. Use your knowledge of the conditional statement to draw

whatever inference is valid in the following situations.

If no inference can be made, explain why.
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(a) If the water is cold, then I do not go swimming.

The water is cold.

(0) If the water is cold, then I do not go swimming.

I am swimming.

(c) If the water is cold, then I do not go swimming.

The water is not cold.

(d) If angle A and angle B are right angles, then they have

equal measure.

Angle A and angle B have equal measure.

(e) If the Yankees play well, then they will win the pennant.

Either the Yankees or the Tigers will win the pennant.

The Yankees and the Tigers will not both win the pennant.

The Tigers won the pennant.

(f) If x is an integer, then )e is an intager.

742 is an integer.
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CHAPTER 2

GROUPS

2.1 Definition of a Group

Evariste Galois (1811-1832) is generally given credit

for first using the group concept and beginning a systematic

study of groups. At the age of 19, using group ideas, he

resolved a problem regarding solving equations that had

challenged the best mathematicians of his time. He was killed

in a duel before the age of twenty-one. You may want to read

a history of this brilliant mathematician who made an outstand-

ing contribution to mathematics before he reached the age of

20. (Almost any book on the history of mathematics talks about

E. Galois; also, most large encyclopedias.)

We shall soon see that a group is a special kind of

mathematical system having certain properties. In fact you

have already met a number of groups in earlier chapters, one

being (z,+). What makes a mathematical system a group? Why

take time to study groups? This chapter will answer these two

questions. Let us try to answer the second question first,

namely, vhy take time to study groups.

We often invest time and money with the hope that the in-

vestment will, in the long run, save both time and money.

Witness the tremendous investments made in constructing bridges,

tunnels, skyscrapers, supersonic planes, atom smashers, etc.

Not only have these investments saved time and money but
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they have also reduced discomfort and increased our enjoyment

of life. A study of groups will serve s similar function. It

:gill help us save time by enabling us to solve many problems all

at once instad of having to work each problem separately. A

study of groups will also give us a deeper insight into the

nature of math,matics and enable us to view a great many ap-

parently isolated operational systems as a single entity.

A very simple example of solving a large class of problems

simultaneously follows. Suppose you had a great many equations

to solve, like the following:

2x + 3 = 19 473x + 297 =

7x - 11 = 28 8.76x - 4.92 = 7.89

You could solye each one separately, or you could recognize

that all of these equations take the form

where a, b, cs are rational
ax + b = c

numbers, a / 0.

Solving the last equation for x in terms of a, b, c will give

us a formula for solving all such equations. You can imitate

the solution for the first equation to obtain a solution for

the last one as follows:

2x + 3 = 19 ax + b = c

2x = 19 - 3 a x = c - b

19 - 3 c b= ,2 a

Solution Set = (8) Solution Set = (c b)

Hence whenever we know the values of a, b, c with a 1 0, a

solution may be obtained by using these values in the formula
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a
. For example, for the equation 7x - 11 = 28 we have

- 39 4a = 7, b = -11, c = 28. Hence
c b 28 -

7

(-11)

-7 57'
4

and our solution set is (57). Formulas like this are useful in

programming a computer to solve our problems.

Let us now give a very simple example of two different

equations whose solutions have a striking similarity of another

kind.

3x = 12

4(3x) = §(12)

(4-3)x = 4

1x =4

x =4
Solution Set = (4)

3 + x = 12

(-3) + (3 + x) . (-3) + 12

((-3) + 3) +x = 9

0 4 x = 9

x = 9

Solution Set = (9)

Note the parallel steps in both solutions. A study of groups

will show how both equations are essentially of the same type.

We now look at some mathematical systems that are groups

and some that are not. Perhaps you will recognize the proper-

ties that are common to the groups.

It will be convenient to adopt the following abbreviations.

If S is any set of numbers let

S
+

= (Positive numbers of 5)

S = (Negative numbers of 0

S = (Non-zero numbers of S).

The left column below will have examples of operational systems

that are groups, while the right column will have operational

systems that are not groups.
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These are groups: These are not groups:

Ex. 1 (z,+) Ex. 1' (z,-)

Ex. 2 (e,.) Ex. 2' (e,+)

Ex. 3 (Q±,.) Ex. 3' (Q±,-1-)

Ex. 4 (Z4,+): Ex. 4' (Z4\(o), .):

0 1 2 3 1 2 3

0 0 1 2 3 1 1 2 3

1 1 2 3 0 2 2 0 2

2 2 3 0 1 3 3 2 1

3 3 0 1 2

Ex. 5 ((e,x,y,z),o): Ex. 5' ((e,x,y,z),o):

o e x y z e x y

e e x y z e x y z

x x e z y x e x y z

y y z e x y e x y z

z z y x e z e x y z

You may want to try to discover for yourself why the sys-

tems on the left are groups while those on the right are not.

What do the groups have in common?

1. First of all a group must be an operational system.

Recall that this requires that it be a set together

with a binary operation defined on the set. Thus, to

every pair of elements (a,b) in the set, there is

assigned a unique element of the set. If we agree to

use "o" for the operation of the group whose elements

compose set S, then whenever aES and bES, it follows
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that aobE S. This statement includes the possibility

that a = b. Note that in (z0+), Z is the set of

integers while + (addition) is the group operation on

Z. Hence, whenever a and b are integers a + b is a

unique integer.

2. The group operation is associative. Thus whenever a,

b, c are in S we have (aob)oc = ao(boc). For (Z,+)

this condition becomes the familiar property that

whenever a, b, c are integers,

(a + b) +c = a + (b + c).

For (Q
+
1.), the associative property becomes

(ab)c = a(bc)

whenever a, b, c are positive rational numbers.

3. Among the elements of S, there is an element which

we shall denote by e such that

aoe=eoa=afor every element aES.

For (Z,+), e = 0 and a + 0 = 0 + a = a for every

integer a. For (Q+,), e = 1 and a1 = 1.a = a

for every positive rational number a. We call e

the identity or the identity element, and refer to

possession of the identity element as having the

identity property.

4. There is only one more requirement for a group (S,0).

With eve :'y element aES there is associated a unique

element in S, which we shall denote by a', having the

property

aoaI,=aloa=e
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where e is the identity element in S. We call a'

the inverse of a, and refer to possession of an

inverse element (for each element) as having the

inverse property. For (Z,+) we have aI = -a and a +

(-a) = (-a) + a = 0 for every integer a. For (e,)

we have aI = 1- and a.-1 1= --a = 1, for every positive
a a a

rational number a.

We summarize by giving a definition of a group. Recall

that an operational system (S,o) consists of a set S, and a

binary operation o defined on the elements of S such that for

every pair of elements a, b in S, aob is a uniquely determined

element of S.

Definition. A group is an operational system (S,o) with

the following three properties:

1. Associative Property. For all a, b, c in S

(aob)oc = ao(boc).

2. Identity Property. There is exactly one

element in S, denoted by e, such that

for every element a in S,

aoe = eoa = a

e is called the identity element of the

group.

3. Inverse Property. To each element a in S,

there corresponds exactly one element in

S, denoted by a
I
, such that

aoa
I = aIoa = e.

a
I
is called the inverse of a.
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Note: The e in Property 3 is of course the

identity element described in Property

2.

Another example of a group is (Z8,+). (You should be able

to show that this system possesses all of the properties of a

group. Perhaps you can convince yourself that associativity holds

by trying a few cases; consideration of every possible case here

is too time consuming.) Now the set Z8 contains the following

elements:

0, 1, 2, 3, 4, 5, 6, 7.

Suppose we take the following subset of Z8:

T = (0,2,4,6),

and keep the original group operation.

following table:

We can then construct the

+ 0 2 4 6

0 0 2 4 6 "+" here is

2 2 4 6 0
Z8 addition.

4 4 6 0 2

6 6 0 2 4

Every ordered pair of elements in T has an assignment in T.

Therefore, (T, +) is an operational system in its own right.

Furthermore, it is a group. Showing that (T,+) possesses the

group properties is easy:

1) (T, +) is of course associative since it

"comes from" the group (z8,+).

2) The identity element 0 is an element of T.

3) 0 is its own inverse; 4 is its own inverse;

2 and 6,are inverses of each other.
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Since T is a subset of the original set Z8, we say that the group

(T,+) is a subgroup of the group (Z8,+). And we make the following

definition of a subgroup:

Definition. (T,o) is a subgroup of (S,o) if and only if

both (T,o) and (S,o) are groups, and T C S.

Example 6. (z,+) is the group of integers under addition.

Let E denote the set of even integers, a subset

of Z. Is (E,+) a subgroup of (Z,+)?

First, (E,+) is an operational system, since

every pair of elements of E is assigned an

element of E. (The sum of two even integers

is an even integer.)

Second, (E,+) has the associate property,

since (Z,+) has.

Third, the identity element 0 is in the set

E of even integers.

Fourth, every element of E has an inverse in

E. For instance, the inverse of the even

integer 2 is the even integer -2.

Therefore, (E0+) is a group; it is a subgroup

of (Z,+) .

Example 7. (z5\(00.) is a group; the table is shown below.

° 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1
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Let T = (1,2). Is (T0), where is the

original group operation, a subgroup of

(Z
5
\(0),')? Examination of the table below

shows that we do

1 2

1

2

1 2

2 4

not even have an operational system; the pair

(2,2) is assigned 4, which is not an element

of T. Thereft.,re, (T0.) is not a subgroup of

(Z5\(0),).

In the exercises, you will have an opportunity to identify

other subgroups. Also you may want to try to prove the following

theorem (see Exercise 13) which is often useful in making a decision

as to whether or not a system is a subgroup of a given group.

Theorem. If (S,o) is a group, and T c S,

then (T,o) is a subgroup of (S,o) if

(T,o) is an operational system, and

every element of T has its inverse in T.

2.2 Exercises

1. Find the identity element for each of the following:

(a) (Q±,°)

(b) Ex. 4 of text: (z4,+)

(c) Ex. 5 of text: ((e,x,y,z),o)

2. Find the inverse

(a) for 5 in (Z,+).
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(b) for 5 in (Q+,*)

(c) for 3 in Ex. 4 of text: (4,-0.

(d) for x -1.n Ex. 5 of text: ((e,x,y,z),o).

(e) for 5 in (z7\(0),)

3. Why is each of the following not a group?

(a) (Z,-) (h) (Zt,+)

(b) (Q,°) (1) (z,')

(c) (Q,.) (j) (ep+)

(d) (Q±,-1-) (k) (Z-,+)

(e) Ex. 4' of text (1) (Ze\(0),-)

(f) Ex. 51 of text (m) (Q-,+)

(g) (Z+,+) (n) (Z4,.)

b. Complete the following table for the operation "followed

by" denoted by "o" where:

S is the command "Stand Still."

L is the command "Left Face."

A is the command "About Face."

R is the command "Right Face."

0 S L A R

S

L R

A

R

The entry in the table shows that "Left Face"

followed by "About Face" is equivalent to "Right

Face" or that L o A = R.
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(a) What is the set of elements here?

(b) What is the binary operation?

(c) What is the identity element?

(d) Does each element have an inverse?

(e) Is it true that:

(1) (L0A)oR = L o(AoR)

(2) L
I = R

(3) A = A

(4) (AoR)I = RIoAI

(f) Do you think that we have a group here? The possession

of which property is most difficult to deduce? Why?

5. Construct an addition table for ((0,0), (0,1), (1,0), (1,1))

where addition is defined by

(a,b) + (c,d) = (a+c, b+d) and the table

0 1

0 0 1

1 1 0

Thus, (1,1) + (1,0) = (0,1).

(a) What is the identity element?

(b) What is the inverse of (0,1)?

(c) Check associativity of a triple.

(d) Do you think that we have a group here?

6. Consider (Q,av) where av is the average operation

defined by

av a + b
(a,b)

2

77
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(a) Is av a binary operation on the set of rational

numbers?

(b) Is (Q,av) a group? Why?

7. (4\(0),.) is a group, and T = (1,4)cZ5\(0). Decide

whether or not (T,.) is a subgroup of (Zs\(0),.) by

answering the following questions:

(a) Is (T,.) an operational system?

(b) Is the operation associative in (T,)?

(c) Does (T,') have an identity element?

(d) What is the inverse of 1? of 4?

(Compare your results here with Example 7 in the text.)

*8. Try to find an operational system

having these properties but not these:

(a) Associative, Identity Inverse

(b) Identity, Inverse Associative

(c) Associative Identity, Inverse

(d) Identity Associative, Inverse

9. (a) Is ((1,3,5,7,),+) a subgroup of (Z8,+)?

(b) Is ((0,4),+) a subgroup of (Z8, +)?

(c) Construct an operational table for (Z7\(0),).

Is this operational system a group? If so, can you

find a subgroup?

10. Let D be the set of odd integers. Is (D, +) a subgroup of

(Z,+)? (Compare your answer here with Example 6 in the text.)

11. Decide whether or not each of the following is a subgroup

of (Z,+):

(a) (Multiples of 3, +) 78
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(b) (Multiples of 5,+)

(c) ((104,7,10,13),+)

12. ir we let 5Z denote the multiples of 5, 3Z the multiples of

3, etc., do you think that (nZ,+) is a subgroup of (Z,+)

for any n E W?

*13. Prove the theorem in the text. That is, show that (T,o) is

a subgroup of the group (S,o) provided that:

(T,o) is an operational system, and

if x E T, then the inverse of x is in T.

(Hints. How do you know that (T,o) must possess the

associative property? How do you know that the identity

element of the group (S,o)must be in the set T?)

14. Consider all the subsets of (a,b). If A and B are two

subsets, define AAB to be the set of elements that are

either in A or in B but not in both. For example,

(a,b)A(a) = (b).

(e) Construct a table for the operation A with all sub-

sets of (e,b) for elements.

(b) What is the identity element in the table?

(c) Whet is the inverse of (b)?

(d) Check associativity.

(e) Do you think that this is a group? Why?

15. Do Exercise 14 for the subsets of (e,b,c).

16. Consider the following set:

((x ,y): xE(0,1), yE(0,1,2)), and define addition of

ordered pairs by

(x1 , yi ) + (x20 ye) = (x1 +2 ,Cg yl +3 A)

79
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where the addition -Fs of elements is Zs clock addition and

+ is Z clock addition.

(a) List all possible ordered pairs.

(b) Construct an addition table for this operation.

What is the identity element?

17. Show that each of the following is a group, and find

its identity element.

(a) (Z,+)

(b) (Q\(0),)

18. Define 2n in the usual way (21= 2' 22= 4, 23= 8, etc.)

when n is a positive integer. Define 20 = 1. For

-2 1
negative exponents, define 2

-1 1 1
= = ---, 2 =

1
_= 7-

-3 1 1
21 2 24

2 = = 8- , etc. We now have 2
n

defined for all posi-

tive, zero and negati7e integers n.

We now define the operation by 2
a

21) = 2
a+b

, for

example, 23-25 = 25, 2-7. 26 = 2-2, 2°.2-e=2-13

27.2-7 = 20 = 1.

(a) Show that the system ((21: nEZ),) is an

operational system

(b) Show that it is a group.

(c) Find the identity element

(d) Find the inverse of 24, 2-3, 211 2°.

19. Prove that (Zn/) is never a group, for any positive

integer n > 1.

*20. Prove that (Zn\(o),) is not a group for any even positive

integer n.

*21. Prove that (Z
n
\(o),) is not a group if n can be written

n = pq, where p and q are both positive integers greater

than 1. Sol
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2.3 A Non-Commutative Group

Each of the groups (S,o) so fax considered has had an

operation that was commutative. By this we mean that for every

pair of elementsaandbin S, a o b = b o a. Our definition of

group does not insist upon this condition. In fact, there are

important groups with operations that are not commutative.

A gym floor has these marks on it.

E LJ
Pictured are 3 spots for 3 students to occupy. Instructions

are given to the students occupying these spots by flashing

a card. The following card, for example

is an instruction for:

the student at spot 1 to move to spot 3.

the student at spot 2 to move to spot 1.

the student at spot 3 to move to spot

Let us simplify this instruction card by writing

(1 2

3 1

Similarly, the instruction

1 2 3

/ I /
2 1 3 81
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which we simplify to

/1 2 3

\2 1 3

is the instruction for:

the student at spot 1 to move to spot 2.

the student at spot 2 to move to spot 1.

the student at spot 3 to stay at spot 3.

We would like to know what single instruction would result in

the same final position as the instruction

2
followed by

2 3

3 1 2 2 1 3

We may use the following diagram to help us visualize what is

happening.

2 3

3 1 2

2 3

2 1 3

2

The effect

2

1 3

of the two instructions, first
(1 2

3 1

2
can be read from this diagram as

3 2

3)
,

2

3

1

We may also view the effects of the instructions by the fol-

lowing diagram:

82
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2

2

1

3

3

1 3 3

2

3

1

2

2

1

Comparing the first and last columns we obtain the combined

instruction

1 3

3-----------4-1

In other words, using "o" to mean "followed by," we may sum-

marize as follows:

2 3
or

3 2 1

2 2 2

3 1 2 2 1 3 3 2 1

Note that the first instruction is written to the left of the

operation sign.

There are but 6 possible instruction cards for 3 spots.

You may want to find them yourself before reading on. We

list them below and for convenience use the abbreviations: e,

p, q,

e=

13=

r,

1

(1

\2

s, t.

2

2

2

3

3

3

1

r=
1

( 1
S=

3

2

3

2

2

3

2

3

1

R3
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1 2 3 1 2 3

q = t =
3 1 2 2 1 3

With these abbreviations we may now construct an operation

table. First note that our illustrative exercise

(

1 2 3 1 2 ".1 1 2 3

o =
3 1 2 2 1 3 3 2 1)

corresponds to

q o t = s.

Let us compute r o s, or

( )

'1 2 3 1 2 3
o

1 3 2 3 2 1

which may be visualized by :

1-0-1 3 so that 1

2 3 1 so that 2 1
3 -0-2 2 so that 3-----2

Hence

)(

1 2 3 1 2 3 1 2 3

o
1 3 2 3 2 1 3 1 2

or r o s = q.

Proceeding in this manner we may compute the operation table:

o e p q r s t

e e p q r s t

P P q e s t r

q q e p t r s

r t s e q p

s r t p e q

t t s r q p e

84
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The table informs us that o is a binary operation on the

set (e,p,q,r,s,t), and that ((e,p,q,r,s,t),o) is an operational

system. This binary operation does not have the usual con-

mutative property that most of our previous operations had. In

fact

while

Hence

to s = p,

s o t = q.

tos/so t.

This one counterexample suffices for the operation o to be

classified as a non-commutative operation.

The instructions e,.p,q,r,s,t are often called permutations

because each one permutes or rearranges the locations

of the students. Thus, we may think of the permutation p as

an instruction that shifts the students a, b, c initially ordered

as abc to the new order bee. We say that bca is an arrangement

of abc. We shall also say that abc is an arrangement of abc.

Note that each permutation is a 1-1 mapping whose range is the

same as its domain. For our example, each permutation produces

an arrangement of abc having a different order. Corresponding

to the six permutations we have six arrangements of abc:

e: abc

p: bca

q: cab

r: acb

s: cba

t: bac

85
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In general a permutation defined on a set S is a 1-1 mappThg

having S for both its domain and range. A permutation is thus

a one-to-one onto mapping

A permutation may have an infinite domain. For example on

Q the following mappings are permutations:

n + 2

n 3h

n + 2

n + b, a 0.

Each is a 1-1 mapping with Q for its domain and range. We shall

say more about permutations a little later.

Let us extend our notation for permutations on a set of

three elements to a set of four. We could have begun with four

spots on a gym floor. The instruction

(1 2 3

3 4 2 1

would then correspond to the instruction for the student:

at spot 1 to move to spot 3

et spot 2 to move to spot 4

st spot 3 to move to spot 2

at spot 4 to move to spot 1,

which we may also view as:

1

2

3 2

4 1

If this instruction is followed by
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2 3 4

2 3 4 1

we obtain as the combined instruction

)(

1 2 3 4 1 2 3 4 1 2 3
o

3 4 2 1 2 3 4 1 4 1 3

because:

1 so that 1

2 -0- 4 --)P 3. so that 2 3.

3 ----43 so that

4-3.1o-2 so that 4-1.2
If the four students a, b, c, d, had initially the arrangement

abcd, then the first permutation would result in the arrangement

cdba. As you can guess, there are just as many arrangements

of a, b, c, d as there are permutations defined on (a,b,c,d).

Can you guess how many there actually are?

One way of finding out is by writing them all out. Before

doing this, let us see if we can obtain this number by a rea-

soning process. It gets quite tedious to write out all the

arrangements when we have 5 or more elements.

For each arrangement of abc we have 4 arrangements of abed

where a, b, c have the same relative order. For the arrangement

abc we may insert d into any of 4 places shown by the 4 arrows:

a' b L cl
4 4

to give the 4 arrangements of abcd:

87

42)
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dabc
adbc
abdc
abcd

Whet we did for abc holds true for each of the 6 arrangements

etc can have, yielding:

dabc dbce dcab
adbc bdca cdab
abdc bcda cadb
abcd bcad cabd
decb dcba dbac
adcb cdba bdec
acdb cbde badc
acbd cbad bacd

The total is 4 x 6 or 24 possible arrangements. Now that we

know how many arrangements (or permutations) there are for four

elements, how do we figure out the number for 5 elements? The

same kind of reasoning tells us that the fifth element may be

inserted into any one of 5 places, so that there ought to be

(and there are) 24 x 5 or 120 arrangements (or permutations)

for 5 elements. If we organize our information on this point

you may see a pattern.

Number of Elements Number of Arrangements

1

2

3

5 88

1

1.2 or 2

1.2.3 or 6

1.2.3.4 or 24

1.2.3.4.5 or 120
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We denote 1.2.3.4.5 by "51" and read it "five fectoritl."

If n is a. positive whole number we have a symbol to denote

the product 1.2.3.4 n; namely "n!" read "n factorial"

or "factorial n." Thus

n! = 1.2.3.4 n

In particular 6: = 1.2.3.4.5.6 = (506 = 120.6 = 720

The above pattern suggests that the number of permutations

on a set of n elements is n!, which is also the number of arrange-

ments of n things on a line.

We now would like to show that the system ((e,p,q,r,s,t),o)

consisting of the set of permutations on 3 elements, with the

operation "followed by " (denoted by "o") is a group. The table

shows that for any permutations x and y in the set (e,p,q,r,s,t),

xoy is also a permutation in that set, which means that we have

an operational system. We must still show three things.

1. Does the system ((e,p,q,r,s,t),o) have the identity

property? Examining the table we see that there is

exactly one identity element, namely,

2 3
e =

1 2 3

We conclude that our system has the identity property.

2. Does the system ((e,p,q,r,s,t,),o) have the inverse

property? From the table, it is easy to see

e/ = e r = r

pI = q sI = s

= p ti = t

Hence the system has the inverse property.

3. Does the system ((e,p,q,r,s,t,),o) have the associative



property? To test this completely requires a great

many tests. (How many?) We try just one. From the

table we see:

(por)ot=sot= q
po(rot) =pop= q

Thus (p o r) o t = p o (r o t). If we test all triples of

elements, we will find that the system does indeed have

the associative property.

All the conditions for ((e,p,q,r,s,t),o) to be a group are satis-

fied, and so ((e,p,q,r,s,t),o) is a group, and, in fact, a non-

commutative group. Since its elements are permutations on 3

objects we refer to this group as the group of permutations

on 3 objects.

2.4 Exercises

1. This exercise will be based on the permutation group

on 3 elements: ((e,p0q,r,s,t),o) o e p q r s

2 2 3
e e p q r s te=(

1 2 3
r=

1 3 2
p p q e s t r

1)=(

1 2
s=

2 3 1 3

l

2

2 3

1

qqeptrs
r r t s e q p

q=(1
2

t=
3 1 2 2

1

1

2

3 )

s s r t p e q

t t s r q p e

(a) We can think of the 6 elements of the permutation

group as acting on objects occupying spots 1, 2, 3.

For example, the effect of t on the arrangement abc

is to change it to bac. List the effect of each

element of the permutation group on abc.

can .
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(b) Which permutations do not alter the original posi-

tion of the first element? the second? the third?

(c) Find the solution set for each of the following

equations.

(1) pox= r (11) pox=xop

(2) xop= r (12) rox=xor
(3) x o q = t (13) (p o x) o q = r

(4) q o x = t (14) (q o x) o p = r

(5) xox= e (15) (x o p) o x = p

(6) xox= p (16) (x or)ox=r

(7) xox= r (17) xop=qox

(8) xi =por (18) (x o p)I = r

(9) xi =ros (19) (xop)/ .xoci

(10) xI o p = r (20) (xopox)I =xoq
(d) Compute:

(1) (p o
col

,

pI gI qI pI
Which are equal?

(2) (p o r)/ , pi o r/ , ri o pI Which are equal?

(3) (q o t)1 , qi o ti ti o ci/ Which are equal?

Conjecture a. generalization from your

answers to (1), (2), and (3).

(4) (1)1)1 , (c1I)I , (rI)I and conjecture a

generalization.

(e) Prove that ((e,p,q),o) is a subgroup of ((e0p,q,r,s,

t),o).
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*(f) Find all the subgroups of ((e,p,q,r,s,t),o).

(g) One of the subgroups of ((e,p,q,r,s,t),o) is

((e,r),o). We may partition (e,p,q,r,s,t) using

(e,r) as follows:

(i) Select an element of (e,p,q,r,s,t) not in

(e,r), say p.

(ii) Form a new set by operating on each element

rs4" (e,r) with p on the left getting

(p o e, p o r) or (p,$) .

(iii) Select an element not in (e,r) or (p,$),

say t.

(iv) Form a new set by operating on each element

of (e,r) with t on the left, getting

(t o e, tor) or (t,q).

We have partitioned (e,p,q,r,s,t) into sets (e,r),

(13,1), (t,q) . No two of these sets has an element

in common.

(1) Carry out a partitioning of (e,p,q,r,s,t) by

using (e,r) and elements other than p and t.

(2) Carry out a partitioning by operating on the

right, instead of on the left.

(3) Try to carry ont a partitioning by starting

with the subset:

(a) (e,$)

(b) (e,t)

(c) (e,p,q)

92



-88-
2. Compute the following:

(e)

(b)

(d)[(

(:

1

(1

:

3

1

(2

1

2

1

(3

2

1

2

4

2

1

2

2

2

4

2

1

2

1

2

4

3

3

3

2

3

4

3

1

3

1

3

4

3

14-

3

1

4

4

4

3

4

3

4

1

4

2

4

3

4.

3

4

2

o

I

1

1

1

1

2

1

3

2

1

4

and

o

o

2

4

2

1

2

4

2

1

2

2

3

1

3

2

Are they equal?

A .

D

3 4
and

2 3

3 4

3 4

3 4
o

1 2

3
0

4 3

3 4

1 3

I
2 3 4

4 1 2

I
2 3 4

4 1 2
and

2 3 4 I

1 4 3

Y Let x and y be perpendicular lines

.B in a plane, and A,B,C,D the points

indicated. Consider the following:

0 e the identity mapping

Ix the reflection in line x

A
Y

the reflection in line y

X
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Po the half turn with center o

These mappings effect permutations on points A,B,C,D. For example

the effect of e on A,B,C,D may be written:

B C D
e =

A B C D

(a) Complete the expression for /x or a permutation of

ABCD:

B C D
Ax =

D C

(b) Write /y as a. permutation of ABCD.

(c) Do the same for Po.

(d) Complete the operation table, where "o" means

"followed by."

0 e Ax A Po

e

x

A

Po

(e) Check whether ((e,/x,ly,Po),o) is a group.

2.5 More on Permutations

Let S be the finite set (a,b0c,d,e). Let f be a one-to-

one mapping of S into S. In particular, suppose f is the mapping

illustrated in Figure 2.1.
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S

95

Figure 2.1

We cannot help noticing that f is also the permutation

(abcde
If we try other one-to-one mappings of S into

c a d b e).

S, each would yield a corresponding permutation. This suggests

that if S is any finite set, and f any one-to-one mapping of S

into S, then S is a permutation; that is, a one-to-one mapping in

which S is both the domain and range. To prove that a one-to-one

mapping of S into S is a permutation, it is sufficient to show

that it is an onto mapping. (Do you see why?) This can be proved

as follows:

Let S be a finite set having n elements x1, xe,..., xn.

We may write
S = [x1, x6, , xn3

Let f be any 1-1 mapping of S into S, f maps each element xi of

S into some element, call it xli, of S. We diagram the mapping

on Figure 2.2.

f:

S
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Note that x1, x2, , xn are the elements of S, and x' 1,

x'2, , x'n are also elements of S.

To show that the mapping f is onto, we must show that each

element of S is the image of some element of S, under f. Take

any element xr of S. Suppose it is not the image, under f,

of any element of S. Then f maps the n points of S onto (at

most) n-1 points of S, since it doesn't map any point on xr,

Thus f maps at least 2 of the points of S onto 1 point. This

contradicts the fact that S is a one-to-one mapping. Our

supposition must therefore be false, and we conclude that f

is an onto mapping. Since f is given as a one-to-one mapping,

it is therefore a permutation.

We have thus proved that if S is a finite set, and f a

one-to-one mapping of S into S, then f is an onto mapping.

It is not hard to prove a similar result; that is, if S

is a finite set and f is an onto mapping from S to S, then f

is a one-to-one mapping. In this case, if S contains n elements,

then the range of f, being S, contains n elements. If the map-

ping were not one-to-one, there would be at least two elements

in the domain S of f which map into the same element. Since

each element of S is the image of at least one element of S (by

the definition of onto), it follows that the domain of the map-

ping would have to contain more than n elements. This is impos-

sible, since the domain is S. We conclude that if S is 8. finite

set, and f is an onto mapping from S to S, then f is one-to-one.

Combining the two results we have that if S is a finite

set, and f a mapping from S to S, then f is a one-to-one if, and
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only if, it is onto. (This means that if f is one-to-cne, then

it is onto;and if f is onto, then it is one-to-one.)

We will abbreviate one-to-one as "1-1."

The situation for infinite sets is, as you might suspect,

different. It is possible for a mapping f to be 1-1 and not

onto or onto end not 1-1. Consider the following examples.

Example of a mapping which is 1-1 but not onto:

Let S = (1,2,3,...).

f: n 2n is a mapping from

S into S.

Example of a. mapping which is onto but not 1-1,:

Let S = (1,2,3,...)

n
a

if n is even
2

1
if n is odd

f:

is a mapping from S into S.

We may picture this mapping as

f:

1 2 5V6

2.6 Functional Notation

The elements of the system ((e,p,q,r,s,t),o) are each

defined on (1,2,3). Thus, the permutation p acted es follows:

p: 2

1 2

3

3

We also wrote this as
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2 3

P:
2 3 I).

It is also convenient to adopt the notation

p(1) = 2

which is read "the image of 1 under p is 2," or "p takes 1 into

2" or " p at 1 is 2," or "p maps 1 onto 2," or "p of 1 equals 2."

It also follows that

p(2) = 3 and p(3) = 1,

The very same notation is used for q, r, s, t. Thus

r(1) = 1, r(2) = 3, r(3) = 2.

Observe that

P(p(i)) = p(2) = 3, p(r(2)) = P(3) = 1.

2 7 More Notation

You may recall that 7
2
means 7.7, that 7

3
means 7.7.7.

More generally, 0 means .9,e,a and if n is a whole number

greater than 1,

a
n = a a As multiplication is associa-

tive, the grouping symbols have
a is used as a been omitted.

factor n times.

On the other hand, na may be interpreted to mean

na = a + a + + a As addition is associative,
the grouping symbols have been

a is used an omitted.

addend n times.

When n = 0 and n = 1 we will agree to use

98
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a° = 1 and al = a,

While 0.a = 0 and = a.

What interpretation can we give to p2 for ((e,p,q,r,s,t),o)?

As you may have guessed we take

p2=pop= q

Similarly p3= (pop)op=qop= e.

And in general if (S,o) is any operational system with just one

operation, let us agree to the following meaning of an if eES:

a° e, the identity element in (S,o) if it has

one. If (S,o) has no identity, then

a° names no element in S.

al =a

a2 = ai o

a3 = a2 o at = (a o a)o a

a4 = a3 o

an = a o al

We must be careful about this convention. Suppose the system

is (4,+). Then

2
s
means 2 + 2 + 2 which is 1.

It could not mean 2.2.2, because for this system the only

operation we have is +. However, if the system is (Z5,). then

2
3
means 2.2.2 which is 3. Hence, the

meaning and value of 23 depends on the operational system in

use. If a system has two binary operations (S,+,) then we adopt

the convention we have been using:

99



-95-

a° = identity element under (if tlere is one)

a

a2 = aa

a3 = a2 a = (aa)a

a
n
= a .a

n-1

In other words, in the system (S,+,) the value of an is the

same as its value in the system (S,). It should be very clear

from the context exactly what is meant by an when we are dealing

with a specific operational system.

2.8 Exercises

1. Tell whether each of the following mappings from (1,2,

3,4,5) into (1,2,3,4,5) is 1-1, onto, and whether it

is a permutation:

(a) 1 2 3 4 5311.4
1 2 3 4 4

(b) 1411i
1 2 3 4 5

(c) 1 2 3 4 5

5t3 2 I

(d) 1 4 54114 I
2 1 4 3 5

(e)

2

2 3 4 544 4 44
1 4 3 4 1OD
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2. Tell whether each of the following mappings from Z

into Z is 1-1, onto, and whether it is a permutation:

(a) f1: n n2

(b) f2: n. 2n

(c) f3: n .n + 1

( d ) f 4 : n-----11.-n

*(e) 0 ----10

1 1
n---..41 + + ... + T] if n > 0

fs:

n---0--[-
1
+

1
+ +

1
if n < 0

1

Note: [a] is the greatest integer not exceeding a.

= 0, [4.9] = 4, [4] = 4 .

3. (8) For what domain and range will each of the map-

pings in Exercise 2 become onto mappings if

they are not to begin with?

(b) For what domain and range will each become map-

pings that are not onto if they happen to be onto?

4. Tell whether each of the following mappings from Q into

Q is 1-1, onto, and whether it is a permutation:

(a) fl: n----0-n2

(b) f2:
2

(e) f3: for n p 0, 0
n

(d) f 4:
n---4"(214- 1)

(e) fe:

101

([n] is the greatest integer
that does not exceed n --
see exercise 2.)
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5. Using the definitions of fl, f2 f3, f4,

4s compute:

(a) fl(;) (1) f2(f1(5))

(b) fl(7.5) (m) f2(f2(3.6))

(c) fl(23.45) (n) f2(f2(3.6))

(d) xj) (0) f3()
7'

(e) fl(f1(3)) (p) f3(1.25)

(f) fl(f1(8)) (q) f3(f3(1))

(g) f2(13) (r) f3(f3(1.25))

(h) f2(1.3) (s) f3(ft(7))

(i) fi(f2(6)) (t) fi(f3(7))

(3) fi(fo(5)) (u) f4(f3(7))

(k) f2(f1(6))

102

and fis given in Exercise
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6. Let the following mappings be from QM0,1) into 0:

22: n 1 - n

f3:
1

f4: n
1

1-n

f6: n
n-1

f3: n---,..
n-1

n

Compute each of the following

(a) f1(5)

(b) f2(5)

(0) f3(5)

(d) f4(5i

(e) fa(5)

(2) re(5)

(g) f2(22(5))

(h) f2(23(5))

(i) f4(26(5))

(J) 25(f2(5))

(k) fe(f4(5))

(1) 22(fe(5))

(m) fe(f2(5))

(n) f2(f4(5))

(0) 24(f2(5))

(P) 22(f2(5))

(q) 23(f2(5))

(r) 24(f4(5) )

*7. (a) Complete the composition table using the definitions

in Exercise 6.
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fl

fo

f3

ft

f
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£1 f2 f3 ft f6 f

Note: Interpret (f2 o fs)(x) to be f3(f2(x)) here.

For example fo o f3 (n) = f3(f2 (n)) = f3 (1 -n) =

1
so that fel o f3 = ft.

1-n

(b) How does this table resemble the operation table for

((e,p,q,r,s,t),o)?

(c) Does the system ((flpfs,fs,fs,fs,fs),o) have the pro-

perties of a group?

(a) Compute (f3 o

8. Interpret and compute 32 for each of the following operational

systems:

(a) (Zs,.) (d) (z., +)

(b) (Z3, +) (e) (Z1,.)

(c) (Z,+,*) (Ze.,+,0)

9. Using the definitions of Exercise 6, compute:

(a) (f4)2 (5)

(b) (r4)2 (5)

(c) (fa )2 (5)

(d) (fs)2 (5)

10. Express all the elements of the group (Z7M0),) as

powers of 3. Is there another element in Z7\(01 with the pro-

perty that N t2, t20 t4, ts, tell . Z.,,\(0)?
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11. A mechanical device can be constructed to compute in

(Z,A(0),.). Corresponding to powers of 3, we use two

peculiar rulers:

Il 1 3 2 6 14. -51
Ii. 3 2 6 4 5 1 3

We have here 2 rulers with markings equally spaced

and labeled as indicated The setting shown may be

used to find 2.x for any xE(1,2,3,4,5,6). Thus,

under "5" of the upper scale we see "3" on the lower

scale, telling us that

2.5 = 3.

Similarly, 2'6 = 5, 2'4 = 1 , etc.

(a) Construct such a "slide rule" end compute 3.4,

3.5, 3.6.

(b) Try to construct a "circular" slide rule that

looks like this:

The central disc turns

around its center while

the disc in back may

be held fixed.

12. Work Exercise 11 but use instead (Z11\(0),) and

powers of 2.

(a) Could you have used powers of 3?
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(b) What other numbers could be used for our slide

rule

(c) Check your slide rule by computing:

(1) 7.7

(2) 9.5

(3) 4.8

(4) 6.10

2.9 Some Theorems About Groups

In the previous sections we became aware of the existence

of many groups, That is we saw many operational systems which

have all the basic properties required of a group. We shall,

in this section, deduce some consequences of the basic group

properties which will therefore apply to all groups. Each con-

sequence (or theorem) will then have an interpretation for every

group; and in particular, the groups we have mentioned.

In what follows we shall assume that a, b, c, d are arbi-

trary elements of some group (S,o) with e as its identity element.

Theorem 1. Ifa=bthenaoc=bo c.

We may refer to this theorem as "Right Operation."

Proof. a = b By assumption

aoc=aoc Equality is reflexive

aoc=boc Substitution Principle of

Equality (a = b)

As you might expect there is a companion theorem in which

we have a "Left Operation."
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Theorem 2. Ifa=bthencoa=co b.
We refer to this theorem as "Left Operation."

Proof a = b Assumption

coa=coa Equality is reflexive

coa=cob S. P. E. (a = b)

Theorems 1 and 2 will be used frequently in what follows, expe-

cially in solving equations.

Whenever a mathematician establishes a theorem he invaria-

bly considers the possibility of a converse also being a theorem.

The next two theorems are converses of Theorems 1 and 2.

Theorem 3. Ifaoc=boc then a= b.

We will refer to this theorem as "Right Cancellation."

Proof aoc=boc Assumption

(a o c)o cI = (b o c) o ci Every element in a group

has an inverse, and

Right Operation.

a o (c o CI) = b o(c o c1) Associativity and S.P.E.

(a o c) 0 cI a o

(c o cI)

(b o c) o cI = b o

(c o cI)

aoe=boe Definition of cI and

S.P.E. (c o cl = e)

a = b Definition of e and

S.P.E. (a o e = a,

b o e = b)

Theorem 4. Ifcoa=cobthena= b.
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We will refer to this theorem ex "Left Cancellation."

Proof coa=cob Assumption

(7o(c o a) = cIo(c o b) Every element in a group

has an inverse, and

Left Operation.

(cIo c)oa = (cIo c) o b Associativity and

S. P.E.

c
Io(c o a) = (cI o c) o a

cio(c o b) = (cIo c) o b

eoa=eob Definitiop of c/ and
S.P.E. (c lo c = e)

a = b Definition of e and
S.P.E. (e o a = a, e o b = b)

Frequently, we shall not mention S.P.E. as a reason for

a statement. It is hoped that you will be able to recognize

that substitutions have been made and supply this part of the

reason by yourself, Such omissions are common in mathematics

and make for shorter proofs

Theorems 1, 2, 3, 4 are more frequently used than any

others. Before proving any others let us see how they may be

used to solve a variety of equations. If we look back to the

beginning of this chapter, two equations were solved

3x = 12 and 3 + x = 12

We mentioned that through a study of groups these equations may

be considered essentially of the same type. We are now in a

position to show in what sense they are the same. We need

one general result:

Theorem 5. If (S,o) is a group, and a and b are elements
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of S, then there is one and only one solution x in S

of the equation a o x = b, and that is x = a/ o b.

Proof. Suppose there is an element xES such that

sox= b Supposition

a' o(a o x) = 81 o b Left Operation

(a' o a)o x = al o b Associativity

e o x= ai o b Definition of sI

x = a' o b Definition of e

We have shown that if there is an element xES such that a o x =

b, the only possible "value" for x is EA o b; that is, there is

at most one such element x. That a/ o b has the desired property

is easy to check, for if x = al o b, then

Elox=eo(aTiob) S.P.E.

= (a o aI) o b Associativity

= e o b Definition of eI

= b Definition of e.

This shows that Job (which is an element of S) is the one and

only solution x in S of a o x= b.

Returning to the problems 3 + x = 12 and 3. x = 12, we

will deal with each as an application of Theorem 5 to a par-

ticular group. Theorem 5, es we proved, holds in all groups.

Since 3 and 12 are elements of the set Z, and since (Z,+)

is a group (Exercise 17 of Section 2.2), we apply Theorem 5

to this case, and get that the equation 3 + x = 12 has one and

only one solution in Z, namely x = 31 + 12. Since in (Z, +),

31 = -3, we have x = (-3) + 12 = 9.

Precisely the same solution applies in the second case.

Since 3 and 12 are elements of WO), and since (Q\{O),) is

1
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a group (Exercise 17 of Section 2.2), there is one and only

one solution x in Q\(p) .f the equation 3.x = 12, namely

x = 31. 12. Since 31 =
3 3

in our group, x = 1..12 = 4.

A slight change in the argument gives us

Theorem 6. If (S,o) is a group, and e and b are elements

in S, then there is one end only one solution x in

S of the equation x o a = b, and that is x = b o a/.

Since the proof follows the pattern of proof in Theorem 5,

we start it off, and leave it to you to complete it.

Proof. Suppose there is an element x ES such that

x o a = b Supposition

(x o a)o ai = b o a' Why?

x o(a o aI) = b o a' Why?

xoe=bo ai Why?

Complete the proof, imitating the proof of Theorem 5.

The next two theorems may have been suggested to you in

working out Exercise 1(d) in Section 2.4 For example, you should

have observed that

(pi )I = and (p o r)I = ri o p/

while (p o r)I / pi o ri.

These theorems will be proved by making use of the property

that each element of a group has exactly one inverse. The

method consists of proving that if x and y are both inverses

of a, then x = y.

Theorem 7. For every element a in a group (8.1)1 = a.

Proof. We are going to show that (a')1 and a are both

110



-106-

inverses of aI.

of (aI)I is the inverse of aI by the very moaning

the symbol "(aI)I."

a is the inverse of aI because Joa=ao aI

= e.

Since aI has exactly one inverse, we conclude (aI)I

= a.

Theorem 8. For every pair of elements a and b in a

group ( a o b)I = bI o aI .

Proof. We shall show that (a o b )I and bI o aI

are inverses of the same element, namely, (a o b).

As each element of a group has exactly one inverse,

it will then follow that (E3 o b)I = bI o aI.

(a o b)I is the inverse of (a o b) by definition

of the symbol "(a o b)I."

We now prove that (bI o aI) is also the inverse

of (a o b).

(bI o aI)o (a o b) = bI o [aI o (a o b)]Associativity

= bI o [(aI o a) o b]Associativity

= bI o le o b] Def. of aI

=bI ob

= e

Def. of e

Def. of bI

Also:

(a o b) o (bl o aI) = a o [b o (bI o aI) ]

Associativity
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= a o [(b o b/) o ai]Associat.vity

= a o [e o aI] Def. of bI

= a o aI

= e

Def. of e

Def. of a
I

As a o b has exactly one inverse, and since bI o a/ and

% x
(a o b)

I are inverses of a o b, we conclude (a o b) I = bI o aI.

Let us give interpretations of this result in (Z,+) and

Let a = 2 and b = 3 be elements of Z. Then (a o b)I

becomes -(2 + 3) I= -5 and b o a' become (-3) (-2) = -5.

Let a = 2 and b = 3 be elements of e. Then (a o b)/

becomes 1 - 1 and bI o a/ becomes 1 . 1 1

23 6 3 2 6.

In the exercises that follow, and hereafter, we shall

say for brevity "a is an element of group (S,o)" or simply

"a is an element of a group" to mean "a is an element of S,

where (S,o) is a group."

2.10 Exercises

1. For the groups (Z7,+) and (Z7\(01,.) show that:

(a) (31)/ = 3

(b) (3 + 4)1 41 + 31

(3.01 41.31

2. If a group is commutative (for every a and b,

aob=boa) prove that (a o b) I= a' bI.

3. Prove the converse, of Exercise 2, namely, if for
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every a and b, (a o b)
I

aI o b
I, then the group is\

commutative. [Hint: Let x = aI, y = bI. Then

y o x = bI o aI = (a o b)I.]

4. Supply the reasons for the following proof that

(aI)I = a.

(a o aI) o (aI)I = a o [aI o (aI)I]

eo(aI)I=aoe

(aI)I = a

5. Supply the reasons for the following proof that

(a o b) I = bIo aI.

(a ob)i = (a o b)I

(a ob)I0[(ao b) (bio al)] = ((a o b)I (a o b) 0 (bio aI)

(a o b)io[(a ob)obio al] =
(bI0 aI)

(a o b)Io [a 0 (b o bI) 0 aI ] =
bIoaI

(a b)I (a 0 e 0ai] = bIo aI

(a o b)I ("al] bIo aI

(a b)I o e = blo aI

(a ob)i = bio aI

6. For the group ( (e, p, q, r, s, t), o) in Section 2.3,

(a) check that (p o r)I o

(b) check that (p o r)I = rI o pl.

113



-109-

(c) find two other elements of the group which dis-

play the property indicated in (a) and (b).

7. Let (S,o) be a commutative group. Let (S,o) be an

operational system defined by: a o b = a o b' for every

a and b in S. Prove the following:

(a) aoa. e

(b) a o e = a

(c) aoaI .aoa

(d) Ifa=bthenaoc= b o c.

(e) Ifa=bthencoa=co b.

(f) Ifaoc.bocthena. b

(g) Ifcoa.cobthena.= b

(h) (a o b) o b = a

(i) (a o b) o b = a

(j) a o (b o c) = (a o b) oc

(k) a o (b o c) = (a o b) o c

(1) (aoc)o(co,d)=aod

(m) (a o b) o (c o d) = (a o c) o. (b o d)

(n) (a o b) o (c o d) = (a o d) o (b o c)

8. (a) Interpret each of the results in Exercise 7 if

(S,o) is (z,+), a = Oa b = 4, c = 5, d = 6.

(b) Do the same if (S, o) is (Qta), a = 3, b = 4,

c = 5, d = 6.

2.11 Isomorphism

In looking at some of our operation tables you probably

recognized a great similarity. Consider these examples.
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Example 1.

Even Odd x Positive Negative+

Even Even Odd Positive Positive Negative

Odd Odd Even Negative Negative Positive

(Z2,+) + 0 1 (Z3\(03,) 1 2

0 0 1 1 1 2

1 1 0 2 0 2 1

Example 2.

+ 0 1 2 3 (zs\(0),) 1 2 3 4(z4,+)

0 0 1 2 3 1 1 2 3 A.

1 1 2 3 0 2 2 4 1 3

2 2 3 0 1 .3 3 1 4 2

3 3 o 1 2 4 4 3 2 1

Example 3.

(z,+), (On: nEZ)0.)

(See Section 2.2 Exercises 17 (a) and 18.)

In each example there is a code that "translates" each

group into one of the other groups in that example. In Example

1 it is clear that the code could be:



meaning that if the symbols at the left +, 0, I are replaced

in order by the symbols at the right , 1, 2, then the table

for (z2,+) converts into the table for (Z3\(0),.). The

replacement in the opposite direction converts the table for

(Z3\(0),) into the table for (Z2,+).

In Example 1, what is the code relating the odd-even group

to (z2,+)?

In Example 2 the code is not as obvious. A rearrangement

of columns and rows for one of the tables, say the second, will

reveal the code. Thus

(z4,+) + 10 1 2 3 (zs\foll) 1 2 4 3

o o 1 2 3 1 1 2 4 3

1 1 2 3 0 2 2 4 3 1

2 2 3 o 1 4 4 3 1 2

3 3 0 1 2 3 3 1 2 1!.

A code that serves to show that these groups are of the same

type is:
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In Example 3 the code seems to be

.4111.

n 211 for each nEZ

where 2 = 1, 21 = 1 , 2-2 = 1 = 1 , 2" = 1 = 1 , etc.

2 22 4 23 8

A code is of little value if the "message" does not get

through. We would 1.J.ke each "message" or expression in the

coded text to translate "faithfully" into the original language.

We will now try to indicate what we mean by "faithful" trans-

lation. In Example 3, let us consider a coded text, say

23.24 which is 23 +4 or 2'.

A translation of this message is

3 + 4 or 7.

We may diagram th'.s as follows:

23 24 = 2'

I I I

3 + 4 = 7

The notion of being a "faithful" code requires that the mean-

ing of the message 27 and 7 should also correspond. In this

case, 2' and 7 do correspond. In general, we have

2a 2b 2a+b

I I I

a + b =a+ b

for all a, b in Z. This guarantees faithful coding and decoding.

When such faithful codes exist between two groups we call the

groups isomorphic and the correspondence an isomorphism. More

precisely we have this definition:

Definition. Let (S,o).and (E1,o1) be groups. A mapping
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f of S to Si is an isomo15ghism from(s, o) to

(S1, ic) if and only if

(1) f is 1-1 and onto.

(2) for every pair of elements a and b in S

f(a o b) = f(a) °1 f(b) .

The groups (S, o) and (SI, o) are then said to

be isomorphic.

We may picture an isomorphism as follows.

In Example 3 the mapping f defined by

n -0-2n

is an isomorphism from (Z,+) to ((2n: nEZ),*) because for each n

there is exactly one image 2n, different n's give different

images, each 2n is the image of some n, and for every pair of

integers a, b in Z:

f(a + b)
2a + b

= 2a. 2b

= f(a).f(b)

The groups (Zs+) and ((2n: nEZ)) are thus isomorphic.

When two groups are given, the problem of determining

whether or not they are isomorphic may be very difficult. Not

every 1-1 onto mapping f is an isomorphism between two groups.
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The property (2), f(a o b) = f(a)olf(b) must be shown to hold.

In some cases there may be two different mappings of the elements

of one group into those of another, each of which is an isomor-

phism. In some of the exercises that follow you will be given

two groups, and asked to find an isomorphism between them.

2.12 Exercises

1. Show that mapping f defined for every nEZ by

Where 3° = 1, 3-1= , 3-2. =
f: n

3n
2
3 3 9'

3-3 = = 1, etc.
33 27

is a 1-1 mapping from the group (Z,+) into the group

(0(0),*). Does it follow that (Z,+) and (Q\(0),') are

isomorphic groups? Why?

2. Show that the following groups are isomorphic:

(a) ( z3 j+) and e x y

e

x

e x y

x y e

y y ex
(b) (The subsets of (a,b),A) and o e x y z

(See Section 2.2, Ex. 14.) e e x y z

x x e z y

y y z e x

z z y x e

(c) (Z,+) and ((3n: nEZ),*) (See Exercise 1. How can

you ;how ((3n: nEZ),0) is a group?)

3. Show that the following groups are not isomorphic:

(a) (z4,+) and (45,+)
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*(b) (Z8,+) and ((e,p,q,r,s,t),o)

*(c) (Z4,+) and either group in Exercise 2(b)

*(d) (Z,+) and (Q,+)

4. The order of a group (S, o) is the number of elements in

S, if S is finite. The order of an element a ES is the

smallest positive integer n for which an = e. Thus

for the group (Z4,+) the order of the group is 4,

while the order of the element 2 in (24,+) is 2.

Find the order of each of the following groups

and the order of each element in the group:

(d) (2,1+)

2.13 Summary

1. A group is an operational system (S, o) such that:

(1) For all a, b, c in S (a o b) o c = a o(b o c).

Associative Property.

(2) There is exactly one element in S, e, such that

for every aES,aoe=eoa= a. Identity

Property.

(3) For each aES there is exactly one a/ in S, such

that a o a =a oa= e. Inverse Property.

2. The permutation group ((e,p,q,r,s,t),o) is an example

of a non-neommutative group.

3. The total number of arrangements of n objects in a row

is rv! = 1.2.34....n.

In particular, the total number of arrangements of 4
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objects, a, b, c, d, is 4! or 24.

4. If f is a mapping, f(a) is the image of a under this

mapping.

5. If a ES and (S, o) is an operational system, a3 means

(a o a) o a.

6. If (S, o) and (SI, o) are groups with Sla subset of S,

then (SI, o) is called a subgroup of (S, o).

7. A number of theorems were deduced for groups.

Ifa=bthenaoc=b.Jcandcoa=co b.
Ifaoc=bocthena= b.

Ifcoa=cobthena= b.
xoa=bandaox=bhave exactly one solution each,

b o a' and a' o b respectively.

I)I I I I
(a o b) =b o a

8. A mapping f from group (S, o) into group (Si, 01) is

an isomorphism if

(1) f is 1-1 and onto.

(2) f(a o b) = f(a) of f(b) for all a, b in S.

The groups (S, o) and (Si, ol) are then called isomorphic

groups.

2.14 Review Exercises

1. Decide whether or not the following operational systems

are groups

(a) (U3 +)

(b) (ZeA(0)9)

(c) (z,)

(d) (z+ ,+) 121
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2. How many different arrangements in a row are there

for the five letters a, b, c, d, e?

3. Compute:

(a)

(1 2 3

2 4 1 3)

(b)

(1 2 3 2 3

2 11. 1 3 2 3

4. Compute 32 for:

(a) (Zs+)

(b) (74 3+)

(e) (74\(0),)

5. Find all the subgroups of (Ze,+).

Does the definition of subgroup allow us to say that

a group is a subgroup of itself?

6. Solve:

(a) t o x = p in ((e,p,q,r,s,t1,o).

(b) x o t =p in ((e,p,q,r,s,t},o).

(c) (p o x) o t = q in ((e,p,q,r,s,t),o).

(d) 2 3 2 3 4

2 3. 4 3 ? ? ? ?

2 3

3 1 4 2

7. Prove that the groups (Ze,+), ( Zry 01 3 ) are isomorphic.

8. Prove that for a, b, c in a group,

(a o x) o b = c

has exactly one solution, Jo ( c o

9. Prove that fbr a, b in a group,

(a o bi)-1 = b o aT. 122I1It
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10. Let P be a set of groups. "Is a subgroup of" is

then a relation in this set. (Recall the definition

of a relation from Course I.) Is this relation

an equivalence relation? That is, is it reflexive,

symmetric, and transitive?

11. Let (SI o) be an operational system with the

associative property, the identity property, and the

additional property that for any a, b E S, each of

the equations

aox=bandy0a= b
has a unique solution in S. Prove that (S, o) is

a group. Hint: If e is the identity element, and

a is any element in S, and x, y the respective solu-

tions ofaox=eandyoa= e, it is sufficient

to prove x = y. (Why?) Then start with (y o a) o x =

yo (a o x).

123



CHAPTER 3

AN INTRODUCTION TO AXIOMATIC

AFFINE GEOMETRY

3.1 Preliminary Remarks

In this course, there have been a number of occasions when

we deduced theorems from axioms. For example, in the chapter on

Elementary Number Theory (Course I, Chapter 11) we derived impor-

tant divisibility properties of natural numbers by listing some

axioms for (N,+,) and then proceeding to reason in a logical

fashion from these axioms. Similarly, in Chapter 2 on Group

Theory we deduced some important theorems about groups, using the

associative, identity and inverse properties as axioms. The

logical ideas used in carrying out deductions, such as these, were

analyzed and discussed in Chapter 1 on Proof.

In this chapter once again we develop a deductive system.

We shall begin with some familiar words like plane, line, and

point. However, instead of trying to define what these things

are, we shall merely stipulate that they obey certain axioms.

The axioms or assumptions about these objects will state a few

significant properties already familiar from experience. Our task

will be to show that a number of other properties of points, lines,

and planes follow by deduction from the assumptions.

Since the axioms are suggested by our experience with points,

lines, and planes, whatever can be deduced from the axioms should

also correspond with experience. However, we are limiting the

number of properties to be used as axioms. Therefore there will
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be properties of lines and points which cannot be deduced from

the limited number of axioms we will adopt. Although we will be

dealing with objects called points, lines, and planes, we will

not make use of any properties of these objects except those

stated precisely in the axioms.

3.2 Axioms

We shall limit our discussion to the points and lines of a

single plane which will be denoted by r (the Greek letter pi).

If you insist upon thinking of this plane as a flat surface like

a floor, you may do so. However, the only real requirement

imposed upon this plane is that it is a set of points which sat-

isfies the axioms stated below.

Figure 3.1

A Picture of a Plane

We will focus attention on certain subsets of the plane

which have special properties.

Among these subsets are the lines (straight lines) of the

plane. Again, if you insist upon thinking of a line as a taut

wire, you may do so. We only insist that the line possess the

properties which will be mentioned in the axioms.

1_2u
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Figure 3.2

A Picture of a Line

The first axiom is given in two parts. In the first place,

it requires that the plane contain at least two lines. A plane

with only one line in it would hardly be much of a plane. The

axiom also requires that each line contain at least two points.

This certainly seems like a reasonable requirement. In fact,

you probably feel that lines ought to have infinitely many points;

we will not demand quite this much at present.

Axiom 1. (a) Plane r is a set of points, and it contains

at least two lines.

(b) Each line in plane r is a set of points con-

taining at least two points.

Plane r contains

at least two lines.
Figure 3.3 (a)

'11`
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Figure 3.3 (b)

A Picture for Axiom 1

Each line contains

at least two points.

The second axiom also expresses a property that is reasonable to

expect of lines and points. You will see that it plays an im-

portant part in our reasoning.

If someone were to ask you how many straight lines there

were containing one particular point of a plane, you would prob-

ably say, "As mi.ny as you want." But if you were asked how

many straight lines there were containing two different points,

you would undoubtedly agree, "Just one." Certainly, whenever

you draw a straight line through two points, A and B, you feel

that there should be just one line, even though your drawing

might not be accurate. At present we are not concerned about

drawings. We are concerned only with ideas. The second axiom

expresses a conviction about points and lines that you probably

already have.

Axiom 2. For every two points in plane ,r there is one and

only one line in r containing them.
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Figure 3.4

A Picture for Axiom 2

For every two points

there is one and only

one line containing them.

When we say "two points" we shall always mean two distinct points.

When we say "two lines " we shall mean two distinct lines. On

the other° hand when we say "lines m and n (without using "two")

we shall allow the possibility that "m" and "n" name the same line.

Our third axiom deals with parallel lines. After we state

it below, you will probably agree that it is a very reasonable

requirement. In fact, for two thousand years this axiom appeared

so reasonable that many of the finest mathematicians thought

that it was unnecessary to assume it. They felt that it should

be possible to prove this particular property from the other axioms

which had been adopted for Geometry. In other words, they thought

that it ought to be a theorem rather than an additional axiom.

Before we state this axiom we should be clear about what we

mean by "parallel lines." When we draw two lines, call them "m"

and "n," on a sheet of paper, they may appear to intersect, as in

Figure 3.5; 128
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Figure 3.5

A Picture of Intersecting Lines

or they may appear not to intersect, as in Figure 3.6.

4

Figure 3.6

A Picture of Parallel Lines

Of course, in the second case it is possible that m and n

really do intersect. Perhaps if each line were extended suffi-

ciently far beyond the confines of our sheet of paper, we would

see that they actually meet. On the other hand, it might be

difficult or perhaps impossible to decide this question in some

cases. We certainly can conceive that lines m and n might never
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intersect; that is m n n = 0. In such a case we call lines m

and n parallel. It is convenient as you will see to consider a

line to be parallel to itself. Accordingly, let us state the

following definition.

Definition 1. Lines m and n in r are said to be parallel

if m = n or if m n n = 0. When lines m and

n are parallel, we express this fact by

writing "m II n."

Our third axiom can now be stated.

Axiom 3.

.1111". 11111

For every line m and point E in the plane r,

there is one and only one line in r contain-

ing E and parallel to m.

E
OMR=

m

n mier sim =mops

Figure 3.7

A Picture for Axiom 3

The need for such an axiom dealing with parallel lines was

first recognized by Euclid who lived during the third century B.C.

The axiom he adopted was the fifth in his list of axioms for geo-

metry, and it corresponds closely to the one we have introduced

here as our third axiom. The choice of this assumption was one

of Euclid's great accomplishments for as we have noted, mathe-

maticians for thousands of years after Euclid tried in vain to

deduce this reasonable property from the other axioms.

130



131
-1.26-

That all these efforts were destined to failure was proved

in the nineteenth century when a number of great mathematicians

(Gauss, Bolyai, Lobachevsky) showed that Euclid's fifth axiom did

not follow from his other axioms. They proved this by creating

perfectly good systems of geometry which did not have the property

demanded by that axiom. Such systems are called non-Euclidean

Geometries. If a system of geometry includes Euclid's fifth axiom,

or any axiom equivalent to it, then that axiom is referred to as

the Euclidean Axiom in the system.

Before proceeding further, let us pause to examine our

three axioms and our definition of parallel lines. We rust not

only be very clear about what these axioms and definition actually

say -- we must be equally clear about what they do not say:

Axioms 1 and 2 express the idea that a certain set called a

plane contains as subsets other sets called lines and that these

lines contain points. The idea that a point is contained in a

line, a line in a plane, etc. is called an incidence relation.

Hence Axioms 1 and 2 are often called Incidence Axioms. Axiom 3,

deals with another relation, namely parallelism. A system of

geometry in which our Axioms 1, 2 and 3 hold is called an affine

geometry.

Let us look again at Axiom 1. It asserts that the plane r

contains at least two lines, and that each line in r contains at

least two points. You may feel that a plane ought to contain more

than two lines, perhaps infinitely many, and similarly a line

should contain more than two points. Nevertheless, you must admit

that Axiom 1 does not assert either of these possibilities, nor

does it deny either of these possibilities. As far as Axiom 1
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is concerned, the plane r may or may not contain more than two

lines. Similarly, neither Axiom 2 by itself, nor Axiom 3 by

itself, tells us how many lines there are in the plane, nor how

many points there are in a line. We must keep an open mind on

such matters. We must agree that we will accept only what is

asserted by our axioms and definitions.

In Section 3.4 we shall study some statements that can be

deduced logically from our axioms and definitions. Meanwhile

you must try not to read into them any more than they actually

say. The following exercises will test your understanding of

this important point.

3.3 Exercises

1. (a) According to our definition of parallel lines, if line

m is parallel to line n, can m and n have points in

common? Explain.

(b) If m n does it follow that n II m?

2. If point E is contained in line m of plane r, is there a

line containing E and parallel to m?

3. Which axiom, if any, asserts that a line can contain three

points?

4. Which axiom, if any, asserts that there are more than two

lines in plane r, containing any given point of r?

5. Which axiom if any, implies that each line in r contains at

least one point?

6. Which axiom, if any, implies that given two distinct points,

there cannot be two distinct lines, each containing both of

these points? 132
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7. Which axiom, if any, asserts that given two distinct lines,

there is one and only one point contained in both of these

lines?

8. Axiom 1 asserts that plane r contains at least two lines and

that each of these lines contains at least two points. From

the fact that the first line contains two distinct points

and the second line also contains two distinct points can

we logically conclude that there are at least four aistinct

points in plane r? (After all doesn't 2 + 2 = 4?) Explain.

9. Can two (distinct) lines intersect in two (distinct) points?

Explain your answer by referring to the appropriate axiom

or axioms.

*10. Using Axioms 1 and 2 only, give a logical argument to show

that there are at least three points in plane r.

3.4 Some Logical Consequences of the Axioms

Statements which can be deduced logically from axioms are

called theorems. As an example of a theorem which we can deduce

fairly simply from our incidence axioms, consider the statement:

If m is a line in plane r, then there is a point in r which

is not in m.

Notice that no one of our axioms actually asserts this fact,

Let us see what light Axiom 1 can throw on the situation. Since

m is a line in plane r, Axiom 1(a) assures us that there is at

least one other line besides m in plane r. Let us call such an-

other line n. Now Axiom 1(b) assures us that each of the lines

m and n contains at least two distinct points. We are seeking a

point not in line m, so we consider two points that are in line
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n. Let us call these points A and B. Our search will be ended

if we can prove that st least one of these two points, A or B,

is not in line m. Axiom 2 has something to say about this matter.

Axiom 2 asserts that there can be only one line containing the

two distinct points A and B. Therefore, since these two points

were chosen in line n to start with, they cannot both also be in

line m. At least one of them is therefore not in line m and that

is what we wanted to prove.

We have spelled out the proof of our first theorem in consider-

able detail because we wanted to point out to what extent each

axiom helped in the proof. It is customary to present a theorem

and its proof in somewhat briefer form.

For example our first theorem might be displayed as follows:

Theorem 1. If m is a line in r then there is .a point in r

which is not .in

Proof. By Axiom 1(a) there is a line n distinct from

the gi -'en line m; that is, m n. By Axiom 1(b)

there are distinct points A and B in n; that is,

A A B. If both A and B were in m, then by Axiom

2 we would have n = m, which is not the case.

Hence at least one of the points A or B is not

in m.

You may have noticed that we proved Theorem .1 without draw

ing any diagrams. Perhaps it seems a bit queer that we should

make statements about points and lines without even drawing a

figure to picture these points and lines. Actually, we did so

on purpose. We wanted to emphasize the fact that our proof depends
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solely on the axioms. When draw diagrams, there is always the

danger that we might use in our reasoning some property of the

diagram which really does not follow from the axioms. For example,

when we draw a line as in Figure 3.8

Figure 3.8

it appears to contain very many points -- surely more than two

However, Axiom 1 merely tells us that there are at least two

points in each line, and we have no right to assume that there

are actually more than two just because it looks that way in the

drawing.

Does this imply we must always avoid drawing a figure? We

shall make no such rule: A diagram can often be a great help in

suggesting important or useful relationships and it can frequently

serve to guide us when things get complicated or when it is diffi-

cult to see what should come next. We should not hesitate to use

a diagram in such cases but we should be very careful to avoid

introducing into our reasoning any properties of the diagram

which we cannot deduce from our axioms and definitions.

To help you capture the spirit of the deductive method let

us prove another simple incidence theorem in full detail. When

135



-131-

we are finished, we shall then display the theorem and its proof

more briefly as we did with Theorem 1. Consider the statement:

There are at least three points in plane r which are

not all contained in the same line.

Notice again, that none of our axioms actually makes this

assertion. Axiom 1(b) asserts that there are at least two points

in every line of r, and Axiom 1(a) guarantees that there are at

least two lines in r. Let us therefore select one of these lines,

call it m. We know there are at least two points, call them A

and B, in line m. The two points A and B are surely contained

in plane r since line m is contained in ir. The situation thug

far may be pictured as in Figure 3.9.

Points A and B

Figure 3.9

-Plane r

Line m

We still need to prove that there is, in plane ir, a third point

that is not in Aim m. But that is easy because we have already

proved Theorem 1 which states that if m is a line in ir, then

there is a point in r which is not in m. Since Theorem 1 was

deduced eolely from the axioms, we may use Theorem 1 in our rea-

soning. We conclude tha:-, there is, in plane r, a point C which.

is not in line m:

136
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Figure 3.10

Because line m is the only line containing A and B (Axiom 2),

and the point C is not in line m, it follows that C must be dis-

tinct from A and B. We have therefore proved that there are at

least three pc1nts in plane r, which are not all contained in

the same line.

Before we restate this theorem and others like it, it will

be convenient to introduce a single word to express the idea that

three (or more) points are contained in the same line. We call

such points collinear.

Definition 2. (a) A set of points is called collinear, if

there is aline containing all of them.

(b) A set of points is called non-collinear,

if there is no line containing all of

them.

We can now restate our second theorem more compactly and

summarize its proof.

Theorem 2. There are at least three non-collinear points

in plane r.
137
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Proof. By Axiom 1(a), r contains at least two lines.

Let m denote one of these lines. By Axiom

1(b), m contains at least two points, A and B.

By Theorem 1, there is a point C in r which

is not in m. This point C must be different

from either A or B because by Axiom 2 m is

the only line containing A and B, and C is

not in m. Thus r contains (at least) the

three non-collinear points A, B, and C.

For later use (see e.g. Exercise 4 below) we shall find it

convenient to introduce a single word to describe three (or more)

lines which have a point in common. We call such lines concurrent.

Definition 3. (a) Three (or mo.ee) lines in r are called

concurrent if there is a point in r which

IS contained in all of them.

(b) Three lines in r are called non-concurrent,

if there is no point in r which is con-

tained in all of them.

Now try your skill at proving a few theorems by yourself.

You may draw diagrams if you wish, but remember to base your rea-

soning solely on the axioms, definitions and theorems previously

deduced.

3.5 Exercises

Prove each of the following theorems.

(Note: In the first two exercises we will suggest statements
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for the proof and ask you to justify these statements, i.e.

to cite the appropriate axiom or theorem. After you complete

these two exercises, you are on your own.)

1. (Theorem 3) Two (distinct) lines in plane r cannot have

more than one point in common.

Proof

Let m and n be any two Question: Which axiom

distinct lines in ir. guarantees that there are

such lines in r?

Let A and B be any two Which axiom guerentees

points in m. that there ere two such

points in m?

Line m is the only line Which axiom applies here?

containing A and B.

Since line n is distinct from m, n cannot also contain both

A and /L This means that n cannot have more than one point

in common with m.

2. (Theorem 4) If A is a point in plane r, there is a line in

r which does not contain A.

proof (Supply reasons). There are at least two lines in

plane ir. (Why?) Call these lines m and n. If either

of these lines does not contain A, there is nothing

more to prove. On the other hand if both m and n

contain A, then each of these lines must contain an

additional point. (Why?) Call these points B and C.

Since m and n are distinct lines, B and C must be dis-

tinct points. (Why?) There must therefore be a line
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containing B and C. (Why?) This line does not con-

tain A. (Why?)

3. (Theorem 5) If A is a point in plane r, there are at least

two lines in r each containing point A.

4. (Theorem 6) There are at least three non-concurrent lines

in r. (Note: Refer to Definition 3(b) above.)

5. (Theorem 7) If each of two lines in r is parallel to the

same line in r, then they are parallel to each other.

6. (Theorem 8) If m is any line in plane r, then there are at

least two points in r which are not in line m. (Hint: You

will need to use Axiom 3 in your proof.)

*7. (Theorem 9) If A is any point in plane r, then there are at

least two lines in r which do not contain A.

8. (Theorem 10) If A, m and n are lines in r such that m is

parallel to n, then if A is not parallel to m, it follows

that A is not parallel to n.

*9. (Theorem 11) If A is any line in plane r and A is any point

in r which is not in line A, then there is a one-to-one

correspondence between the set of all points in A, and the

set of all lines in r which contain A and are not parallel

to A.

*10. (Theorem 12) If A is any point in plane r, then there are

at least three distinct lines in r each containing A.

3.6 A Non-Geometric Model of the Axioms

An army captain wishes to set up and train a commando

squad from which he will select teams to go out on various
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dangerous missions. It will be necessary to have avail-

able at least two teams for various missions in the

future. For each mission he will need a team of at

least two trained commandos. It is desirable that each

man in the commando squad be trained to work smoothly

with any of the other men, so the captain orders that

every two commandos must serve together in exactly one

team. Moreover since any one of the teams might be out

on a mission at any given time, the captain rules that

for each of the remaining commandos there must be exactly

one completely distinct team available to which this

commando belongs.

We expect that as you were reading the above paragraph you

were wondering what all this had to do with geometry. What do

commando teams going out on dangerous missions have to do with

points, lines, planes and axioms? Let us go over the above para-

graph once more and summarize the requirements the captain has

laid down:

1. (a) The commando squad is a set of commandos, and it

must contain at least two teams.

(b) Each team in the squad is a set of commandos and

it must contain at least two commandos.

2. For every two commandos in the squad there must-6e one

and only one team (exactly one team) in the squad to

which they both belong.

3. For every team in the squad, and for each commando in

the squad, but not in the team, there must be one and
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only one (exactly one) completely distinct team in:the

squad to which the commando belongs.

As you read this summary doesn't it sound a bit familiar?

Let us compare these requirements with our axioms for points and

lines in the plane r. The first of these was:

Axiom 1. (a) Plane r is a set of points, and it contains

at least two lines.

(b) Each line in plane r is a set of points con-

taining at least two points.

The similarity between this axiom and the captain's first require-

ment is indeed striking! If we merely replace three terms:

"plane r" by "the commando squad"

"line" by "team"

"point" by' "commando"

then Axiom 1 turns precisely into the statements which express

the captain's first requirement above.

Now let us make these very same replacements in the next

axiom for points, lines and plane r.

Axiom 2. For every two points in plane r there is one and

only one line in r containing them.

After such replacement we obtain:

For every two commandos in the commando squad, there is one

and only one team in the squad containing them.

This expresses precisely the captain's second requirement.

Next, let us look at the captain's third requirement:

For every team in the commando squad and for each commando

in the squad, but not in the team, there must be one and

142



-138-

only one completely distinct team to which the commando be-

longs.

Let us replace the underlined words by their counterparts listed

above getting:

For every line in plane r and for each point in r but not

in that line there must be one and only one completely

distinct line in r to which the point belongs.

You will recognize that this statement is essentially the same

as our geometric Axiom 3. The phrase "completely distinct line"

refers now to a line that has no points in common with the original

line. In Definition 1 we defined such a line to be parallel to

the original line. If we had so desired we could have defined

two completely distinct teams to be parallel teams and also

agreed to call any team parallel to itself. In that case we

would have expressed the captain's third requirement in a manner

analogous to the way we expressed Axiom 3.

Now you may still feel that what we are doing here appears

somewhat peculiar. Isn't it silly to replace well established

words like "point" and "line" by other words such as "commando"

and "team," which really have completely different meanings?

This question deserves an answer and it merits a bit of careful

discussion.

Let us look back again at how we have used the familiar

words "point," "line" and "plane" in this chapter. We have taken

great pains to emphasize the idea that in a deductive system we

agree to accept only our axioms and what we can deduce logically

from them. Although our axioms refer to points, lines, and planes,
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we have tried to be very careful (especially when referring to

diagrams of these items) not to use any information about points,

lines and planes that does not follow logically from the axioms.

Because of this point of view, we made no attempt to define

the words point, line or plane. We required merely 1",at they

obey Axioms 1, 2 and 3. Since these are the only requirements

we have laid down thus far, it is perfectly logical to interpret

the words point, line and plane to mean any objects and sets

of objects which satisfy the requirements laid down by our axioms.

If the requirements imposed by the captain on his commandos, his

teams of commandos, and the commando squad are exactly the re-

quirements which our eidoms imposed on points, lines, and planes,

then it is not at all silly to re-interpret one set of words in

terms of another. On the contrary, we can often learn a great

deal in this way by using what we know about one system of objects

to shed light on another system.

As a simple example of how useful it can be to interpret our

geometric ideas in non-geometric terms, let us look at some of the

theorems we have deduced from our axioms.

Theorem 3 asserted:

Two (distinct) lines in plane r cannot have

more than one point in common.

If we replace: "plane r" by "the commando squad"

"line" by "team"

"point" by "commando"

this theorem becomes:

Two (distinct) teams in the commando squad

cannot have more than one commando in common.
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Although the captain did not list this restriction among

his requirements, it is important that he realize that this

restriction is implied by his requirements. The theorem tells

him that in forming his teams he must avoid assigning the same

two commandos to two different teams. Failure to understand this

point would either make it impossible for him to meet his require-

ments or cause him to waste a great deal of time assigning and

then re-assigning his men by trial and error.

Other rules which the captain must follow, and pitfalls

which he must avoid, are illustrated by Theorems 5 and 9. Translating

these theorems into the language of commandos, teams, etc.

Theorem 5 asserts:

If A is a commando in the commando squad then there are

at least two teams in the squad each containing that

commando.

In other words:

EEch commando must belong to at least two teams.

Similarly, Theorem 9 asserts:

For each commando, there must be at least two teams

to which he does not belong.

You should verify each of these rules by "translating" Theorems

5 and 9 from the "point" and "line" language to the "commando"

and "team" terminology. The exercises below will indicate further

results which can be obtained in this way.
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3.7 Exercises

1. Interpret ("translate") Theorems 1 and 2 in terms of commandos

and teams.

2. By translating Theorem 4, show that no commando in the squad

can be a member of all the teams.

3. Would it be possible for the captain to set up his teams so

that any three teams share at least one commando? (Which

theorem or axiom sheds light on this?)

4. By interpreting the appropriate theorem, show that no matter

which team is selected, there will always be at least two

commandos in the squad who are not assigned to that team.

5. By interpreting Theorem 10, show that if two teams have no

members in common, then any team that has a commando in

common with one of these two teams, must share a commando

with the other team also.

*6. Show that the number of teams to which any commando in the

squad belongs must be one greater than the number of commandos

in any team to which he does not belong. (Hint: Refer to

Theorem 11.)

7. Suppose the captain selects three men, ,;'ones, Kelly and Levy

as his commando squad and forms three teams as follows:

Team 1: (Jones, Kelly)

Team 2: (Jones, Levy)

Team 3: (Kelly, Levy)

Does this arrangement satisfy all of his requirements? If

not, which requirement is not satisfied and why?
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8. Suppose the captain adds an additional commando to the squad

(in Exercise 7) so that the commando squad now consists of

four men:

Jones, Kelly, Levy and Mason.

Arrange these four commandos into teams in such a way that

all the axioms, i.e., all the captain's requirements, are

satisfied.

9. (a) Prove (Theorem 13): There are at least four points in

plane r, no three of which are collinear.

(b) Interpret this theorem in relation in Exercises 7 and 8.

3.8 Other Models of the Axioms -- Finite and Infinite

The somewhat unorthodox interpretation of our "geometry"

axioms in terms of commandos, teams, etc. is an example of a

model for these axioms. In this section we shall study a number

of other interesting models that can be constructed by giving

various interpretations to the words point, line, plane r, and

the incidence relations involving points, lines and the plane r.

Four "Point" Models

I. Four businessmen, Mr. Adams, Mr. Brown, Mr. Crane and

Mr. Drake get together to form a corporation. They invest in

six different business enterprises and agree to share equally in

the management of these enterprises. To do this they agree to

set up two-man boards of directors to supervise the enterprises,

a different two-man board for each. The corporation and its

various boards of directors can be pictured as in Figure 3.11.
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The Corporation

[Adams, Brown, Crane, Drake)

Business
Enterprises

Directors Directors Directors Directors Directors Directors

Adams,
Brown

rAdams 1

Crane)

fAdams,

'Drake
I

fBrownl
rane' {Drake1-Drakei

Crane)
'Drake

Figure 3.11

To see that this corporate structure is indeed a model for

our axioms let us observe the following:

1. (a) The corporation is a set of businessmen, and it has

at least two boards of directors (that manage enter-

prises owned by the corporation).

(b) Each board of directors includes at least two of

the business men -- in fact exactly two.

2. For every two business men in the corporation there is

one and only one board of directors containing these two

men. 148
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3. For each board of directors of one of the enterprises

and each businessman in the corporation who is not in

this board of directors, there is one and only one other

board of directors containing this businessman but not

containing any man in the first board of directors.

(Note: You should verify this by taking specific cases.)

Once again we see the familiar pattern of our axioms exhibit-

ed in these statements. We can obtain these statements from our

axioms by making the following interpretations:

Replace: plane r by the corporation

line by board of directors

(of an enterprise)

point by businessman

You may also have to make a few minor grammatical changes in

order that your interpretation be expressed in good English.

The pairing of the four business men into the six boards of

directors might be conveniently pictured as in Figure 3.12.

Figure 3.12
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II. In Figure 3.12, each of the six double headed arrows

indicates one of the six boards of directors. An even aimpler

diagram results if we use a dot (point) to represent each busi-

nessman and a segment connecting each pair of dots to indicate

each of the directorships.

Figure 3.13

The diagram in Figure 3.13 can be viewed on its own merits

as a set of four dots and a scheme for pairing these dots. This

set of dots along with the scheme for pairing them two at a time,

is still another model for our affine geometry. The dots in the

model are the "points" of the geometry. The "lines" in this model

are not the ordinary lines we draw with pencil and ruler. Here

each "line" is simply a set of two dots with no other dots be-

tween the two. Certain "lines," such as the pairs of dots

(A,H) and (C,D)

which have no dot in common, are called "parallel lines." Notice

that the two "lines"

(A,C) and (D,D)

are parallel according to this definition even though that may

appear a bit queer, looking at the diagram. If we call the set

150



-146-

of four dots "the plane r" we can then readily verify that this

model satisfies Axioms 1, 2 and 3.

III. Let us look again at Figures 3.11, 3.12, and 3.13.

You will observe that in each of these diagrams we deal with a

basic set of four elements

(A,B,C,D1

and with the six subsets, each containing exactly two of the six

elements:

(A,B1, (A,C1, CA,D1, (B,C1, (B,D1, (C,D1.

If we call any set of four elements "the plane r" and call each

of the four elements a "point," and each of the six subsets, i.e.

each pair of two elements, a "line," then we have still another

model of a four point affine geometry. It does not matter what

objects are used for this purpose. What does matter is that this

scheme satisfies Axioms 1, 2 and 3 as can readily be verified.

A Nine Point Geometry

I. The corporation formed by our four enterprising business-

men is very successful. It expands by adding six more

business enterprises and in doing so adds five new direc-

tors. In the course of this reorganization, it is decided

to assign boards, consisting of three of the nine direc-

tors to manage the twelve business enterprises, a differ-

ent set of three for each different enterprise. Once

again, the assignments are to be made so that all nine

directors will share equally in these management respon-

sibilities.
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Working out the details of the new organization turned out

to be a bit tricky. Fortunately, one of the new directors had

been a mathematics major at a university specializing in mathe-

matical economics. He tackled the problem by viewing it as a

nine point geometry. He represented the directors of the cor-

poratkn by nine "points" labeled "A, B, C, D, E, F, G, H, I" and

connected the "points" in sets of three by means of segments as

indicated in Figure 3.114.

A B C AA 0°
B

. ..00 I ....,. 0°. 401. °...

\w 00...D t- _ le
... /F

...\
_

... I ..,, D ,,.

I . -.*.' I > I > N..
N,

MEM INEMD MW

G H I

Figure 3.114

In this diagram the small circles do not represent new points.

Each little circle represents the same point as the correspond-

ingly labeled heavy dot. Placing these extra small circles along-

side the actual array of nine dots is merely a convenient device

for assigning the points in sets of three by connecting them with

12 segments as indicated. Each of the 12 segments now conveniently

represents a board of directors assigned to one of the 12 business

enterprises. The new corporate structure is displayed in Figure

3.15.
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The Corporation
bk. B, C, D, E, F, G, H, I

(A,D,G)

Directors
of Business
Enterprises

Figure 3.15

(C,D,H)

II. Now let us look again at Figures 3.14 and 3.15. In

each diagram there is a basic set of 9 elements and

certain specially selected subsets:

Plane r:

Lines in r: (A,B,C) (B,E,H) (C,E,G)

(A,D,G) (B,D,I) (C,F,I)

(B,F,G) (D,E,F)

(A,F,H) (C,D,H) (G,H,I)

Point: Any element in plane r.
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Once again, it really does not matter what objects are chcsen for

the nine elements. What does matter is that this scheme is still

another model for Axiom 1, 2, and 3 and therefore all the theorems

that can be deduced from these axioms must hold in the model.

This particular scheme is a "nine-point geometry."

Infinite Models

Models of this type will be described briefly in Section 3.14

and in greater detail in Chapter 6 (Coordinate Geometry). We

mention these models at this point so that you will be aware of

the fact that there are infinite models as well as finite ones.

You will recall that you used ordered pairs of integers as

coordinates for lattice points in Chapter 7 of Course I (Lattice

Points in the Plane). Any ordered pair (x,y) were x E Z and

y E Z determined a, unique lattice "point." Now there is no reason

to confine ourselves to ZxZ, i.e. to integer values for x and ye4
we can also consider ordered pairs (x,y) where x and i are

rational numbers. These ordered pairs of rational numbers can

also be considered as coordinates for "points" in the more exten-

sive set Qx0.. This set contains all the lattice "points" of ZxZ

as well as many other "in-between points."

Now it is possible to interpret plane r to be an infinite

set of points such as OxQ, and to define certain (infinite) sub-

sets of this plane r to be lines. This can be done in such a way

as to satisfy Axioms 1, 2 and 3, thereby obtaining an infinite

model for our axiomatic geometry. In Exercites 8 and 9 below

you will have an opportunity to investigate infinite sets which

obey some or all of our axioms. (The same technique can also be
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used to obtain interesting finite models. This is done by con-

fining the coordinates x and y to finite number systems (clock

arithmetics) such as Z2 or Z3 instead of infinite systems such

as Z or Q.)

3.9 Exercises

1. Al, Bill, Carl and Don are tennis enthusiasts. The four

boys organize themselves into a club called The Pioneers.

The Pioneers plan to compete this season in a series of

six tennis matches against doubles teams sponsored by other

tennis clubs in town. The four boys are all excellent tennis

players, so they agree to participate equally in the six

tennis matches.

(a) For each of the six tennis matches, specify a doubles

team which the Pioneers might assign to play that match.

(Remember that each of the four boys must play equally

often.)

(b) Show that this organization of the Pioneers into doubles

teams can be interpreted as a model of our axiomatic

geometry. Which model? What are the "points," "lines"

and the "plane r" in this case?

(c) Express each of Axioms 1, 2 and 3 in the language of

this model and verify that the axioms actually fit

the model.

(d) Interpret each of the following terms in the tennis club

model:
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(1) parallel lines

(2) collinear points

(3) non-collinear points

(4) concurrent lines

(e) Interpret Theorems 1, 2 and 3 in the language of this

model. Why are Theorems 2 and 3 "trivial" in this case?

(f) Which of the theorems of axiomatic geometry could you

use to prove that each of the Pioneers will play in at

least two matches and will not play in at least two

(other) matches.

2. Consider the following "three-point geometry" (see Figure

below)

Plane r: [A,B,C)

Lines: (A,B), (A,C), [B,C}

Points: A, B, C

(a) Does this model satisfy the requirements of Axiom 1?

Axiom 2? Axiom 3?

(b) Do there exist two (distinct) parallel lines in this

model? Explain.

(c) Are the three points of this model collinear or are

they non-collinear?

(d) Which of the following theorems is valid for this model?
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(In each case try to explain why the theorem is valid

or not valid by referring back to your answer to part

(a) of this exercise.)

(1) Theorem 1 (4) Theorem 8

(2) Theorem 3 (5) Theorem 9

(3) Theorem 5 (6) Theorem 10

3. (a) Set up a geometry model using just two points A and B.

In this model what is plane r? What are the lines?

Which of our axioms are satisfied by this model?

011100 INII11 --eft

*(b) Prove that any model which satisfies Axioms 1, 2 and 3

must contain at least four points.

4. In the figure below, let us call each vertex A, B, C, D,

a point and let us call each of the following pairs of

vertices a line (the solid segments merely indicate which

pairs of points are lines):

(A,B1, (A,C), (A,D), (A,E1, (B,C1, (B,D), (B,E), (C,D),

(C,E10 (D,E1.

15'7
awm.mlinicus1111111.1
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By the plane r we mean the set (A,B,C,D,E1.

(a) Verify Axiom 1 (a).

(b) Verify Axiom 1 (b).

(c) Which of the following pairs of "lines" are parallel

and which are not parallel?

(1) (A,B1 (B,C)

(2) (A,C1 (13,0

(3) (A,C) (B,D1

(4) (A,C1 (B,E)

(d) Is Axiom 2 satisfied?

(e) Is Axiom 3 satisfied? Explain.

(f) For each point and each line not containing this point,

how many lines are there containing the point and

parallel to the line?

5. Theorem 13 asserts that there are at least four points in

plane r, no three of which are collinear. Show that there

need not be more than four. (Which model verifies this?)

6. Let the values of x and be chosen from the number system

(Z2 ,+, q where Z2 = (0,1) . Define point to be any ordered

pair (x,y) in Z2xZ2; define the plane r to be Zona, and

define line to be the solution set of any equation of the

form ax + by = c where a, b and c are numbers in Z2, and not

both a and b are zeros.

(a) List all "points" in plane r.

(b) Plot these points on a graph using only the numbers in

Z2 as coordinates (See figure.)
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(c) List all possible equations of the form ax + by = c

where a, b and c are in Z2 and not both a and b are

zeros. (Hint: There are six such equations. One of

them is lx + Oy = 1. List the others.)

(d) For each of the six equations you listed in (c), deter-

mine its "line," i.e. the set of "points" (ordered

pairs) in its solution set.

(e) Indicate these "lines" on your graph, connecting the

points with dashed segments.

*7. Repeat each part of Exercise 6 using Z3 instead of Z2.

There will be 9 points in this model.)

8. Let plane r consist of all ordered pairs of integers; i.e.

r = ZxZ, and define a line to be the solution set in ZxZ of

any equation of the form ax + by = c where a, b, c are

integers and a and b are not both zeros.

(a) Verify that this model satisfies Axiom 1(a). (Hint:

you must find two equations of the form ax + by = c

with a and b not both zero, such that these two equa-

tions define two distinct "lines" i.e. the solution
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sets must not be the same. Try the two equations

lx + Oy = 0 and Ox + ly O.

What are the solution sets for these "lines"?)

(b) Verify Axiom 1 (b) for the "line" defined by each of

the following:

(1) x - y 0

(2) x + y . 2

(3) 2x - y 0

(4) 3x + 4y = 5

(c) Verify Axiom 2 for each of the following pairs of

points. (I.e.,for each pair of points show that there

is one and only one line containing both points.)

(1) (0,0) and (1,1)

4(2) (4,-1) and (2,0)

4(d) Set up a counter example to show that Axiom 3 is not

satisfied in this model.

9. (a) In Exercise 8, if we define the plane r to be QxQ,

(instead of ZxZ), will your answers to parts (a) and

(b) still be correct? Explain.

(b) Will your counter example for Exercise 8 (d) still be

valid? Explain.

(c) Given the "line" m defined by 3x + 4y = 5 and the "point"

E = (2,1) which is not contained in line m. Verify

Axiom 3 for this case. (To do this you must find an

equation in the form ax + by = c where a and b are

rational numbers not both zero, such that this equation

is satisfied by the coordinates of E, but is not
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satisfied by the coordinates of any point In m. Then

you must show that the line defined by this equation

is unique, i.e. that any other equation which meets

the requirements defines the same line.)

10. Suppose that a family is divided into committees such that:

(1) Each committee has at least 2 members.

(2) There are at least two committees and one committee

has exactly 3 members.

(3) Each committee has one member from each other coltlYittee.

(4) Each two family members serve together on exactly one

committee.

(a) Using dots to represent individual members of the

family and segments connecting these dots to represent

committees, draw a model for these instructions.

(b) Prove there must be at least four people in the family.

(c) If we call each person a point and each committee a

line, are there any parallel lines in this model? Why?

11. (a) Prove (Theorem 14): There are at least six lines in

plane r.

(b) Interpret this theorem in relation to the four point

geometry model.

3.10 Equivalence Classes of Parallel Lines

According to Definition 1, two lines are parallel if they

have no points in common, and each line is parallel to itself.

The latter part of this definition asserts that

m I I
m for every line m.
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You will recall that this can also be expressed by saying that

parallelism is a reflexive relation on the set of lines in r.

(See Course 1, Chapter 8, Sets and Relations)

Definition 1 also implies that

if m II n then n II m,

which can also be expressed by saying that

parallelism is a symmetric relation on the set of lines in r.

This is easily proved as follows: if m II n then by Definition 1

either m n n = 0 or m = n.

But both of these alternatives are symmetric, i.e. m fl n = 0 or

n = m. So if m II n, it follows that n II m.

A third important property of parallelism is the following:

If m n and n A then m II A

As you will recall, this property can also be expressed by say-

ing that

parallelism is a Aransitive relation on the set of lines in r.

This is most readily proved by showing that it is impossible for

parallelism not to be transitive. In other words if m II n and

n II could it be possible that m ,kr A (m not parallel to A)?

This would mean that m and I are distinct lines which have

a point, A, in common. But then there would be two lines m and

A containing A and parallel to n. (See Figure 3.16.) This

violates Axiom 3 which says that there can be only one line con-

taining A parallel to n. Therefore it follows that m and A can-

not have a point in common or m A.
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MOIR MIMI al.. --

Figure 3.16

If m II n and n II 1, is it possible that mkt' 1?

You will recall (see Course 1, Chapter 8, Sets and Relations)

that a relation which is reflexive, symmetric, and transitive is

also called an equivalence relation. We can therefore summarize

what we have proved above in the following theorem:

Theorem 15. Parallelism is an equivalence relation on the

set of all lines in plane r.

The most significant property of an equivalence relation in

a set is that it always partitions the set into disjoint subsets.

A relation R puts elements a and b in the same subset or equiva-

lence class if and only if aRb. How does the equivalence relation

"is parallel to" partition the set of lines in r into disjoint

subsets?

To get a picture of the way the equivalence classes are

determined by "II," consider Figure 3.17,
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Figure 3.17

If lines which are related by "11" are put into the same class,

the five lines pictured would be split into two classes, one con-

taining a, b, and c, the other containing d and e. In a similar

manner "11" partitions the set of all lines in r into disjoint

equivalence classes; each class consists of all the lines in r

that are parallel to a given line. We shall refer to "an equiva-

lence class of parallel lines" here simply as "an equivalence

class."

It is interesting to see what these equivalence classes are

like in the various models we have constructed for our axioms.

Consider the example, the four point model (Figure 3.18).

I \ / 1

I

I / \ I

/ \
QF

Figure 3.18



-160-

In this model the "plane" r = (A,B,C,D1 is partitiond by the

parallelism relation into three equivalence classes each con-

taining two "lines" of r. These equivalence classes can be

pictured as in Figure 3.19.

_eB AT

D4

Figure 3.19

More precisely, each equivalence class is simply a set of sub-

sets of r:

( (A,B) (CID)) CLA,D11 (B,C1) ((A,C), (B,D1)

If we re-interpret our "points," "lines," etc. in terms of our

first business corporation model (see Section 3.8) the equivalence

classes serve to partition the six boards of directors into three

pairs as in Figure 3.20. (See also Figure 3.11.)

1 6 3 4 2 5

Adams Crane Adams Brown Adams Brown
Brown Drake Drake Crane Crane Drake

Figure 3.20

Within each pair, the directorships are completely distinct, i.e.

they have no director in common ("parallel lines").

In the exercises that follow you will be asked to interpret

the equivalence classes for other models.
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3.11 Exercises

1. Which of the following are equivalence relations for the

specified sets?

(a) "is the brother of" in the set of males.

(b) "is the same age as" in the set of living people.

(c) "is smaller than" in the set of students in your class.

(d) "has the same number of pages as" in the set of books.

(e) "is lighter than" in the set of students in your school.

(f) "is the line reflection of (in a fixed line)" in the

set of points in a plane.

(g) "is perpendicular to" in the set of lines in a plane.

(h) "has a point in common with" in the set of lines in

a plane.

(i) "is in the same grade as" in the set of students in

your school.

For each relation that actually is an equivalence relation,

determine what kind of equivalence classes are formed.

2. Show that the relation "has the same author as" is an equiva-

lence relation in the set of books in a bookstore. What

kind of equivalence classes are determined by the relation?

3. Interpret the equivalence classes for the tennis club model

(the Pioneers) of Exercise 1 in Section 3.9.

4. (a) Draw a diagram similar to Figure 3.19 showing all the

equivalence classes for the nine-point geometry de-

picted in Figure 3.14.

(b) By drawing a diagram similar to Figure 3.20, interpret

these equivalence classes to show how the set of twelve

4
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business enterprises can be partitioned into subsets

consisting of businesses whose directorships do not

overlap.

5. prove (Theorem 16): There are at least three distinct

equivalence classes in plane r. (Hint: Use Theorem 12.)

6. Let D be an equivalence class which does not contain line

m. If a second line n is parallel to m can D contain n?

Prove your answer.

3..12 Parallel Projection

Because we will need the result of Exercise 5 in Section

3.11, it will now be proved. You may want to compare your proof

with the proof given below.

Theorem 16. There are at least three equivalence classes

in plane r.

Proof. Surely there is at least one point A in r. (In

fact Theorem 13 asserts that there must be at

least four points in r.) By Theorem 12 there

are at least three (distinct) lines in r con-

taining A. No two of these lines are parallel,

since they are distinct and have point A in

common. But in an equivalence class any two

lines are parallel. Hence no two of these

lines belong to the same equivalence class.

Therefore the three lines belong to three (dis-

tinct) equivalence classes.
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We shall now use the information that r has at least three

different equivalence classes. Let m be any line in r and D

any equivalence class not containing m. Let E be any point in r.

From Axiom 3 we know that for every point E in r there is one and

only one line, call it n, containing E which is in the equivalence

class D (i.e. n is parallel to a line in D).

t

D ,n

÷ Em

4

Figure 3.21

Moreover, n cannot be parallel to m. If it were, then m would

be in the equivalence class of n which is D. We assumed that D

was an equivalence class not containing m. If n and m are in

different equivalence classes, n and m are distinct lines that

have a common point Em. So for every Un-,: m in r and equivalence

class D not containing m, we have a mapping that sends each point

E in the plane into a point Em of line m. If we call this map-

ping "Dm," we have
Dm

-E Em

We can visualize the mapping Dm as projecting the point E from

its position. in plane r into a place in line m, by "moving" the

point E "along" line n; and since n is parallel to all the lines

168



-164-

in the equivalence class D, we call the mapping Dm a parallel

projection.

Definition 4. Let m be any line in plane r, D any equiva-

lence class in r that does not contain m, E

any point in r, and n the line in D that con-

tains E. The mapping

DmE 10" Em
of r into m that maps E into Em = n n m, is

called the parallel projection of r into m

determined by D.

We now come to a very important theorem which makes use of

almost all the information we have accumulated. It asserts that

for any lines m and n in r, there is a parallel projection that

maps n one-to-one onto m.

Theorem 17. In r, let m and n be any lines and let D be any

equivalence class that contains neither m nor n.

Then Dm is a parallel projection which maps n

onto m. When the domain of D
m

is restricted to

Proof.

n, Dm is one-to-one.

We must show two things:

1) Dm maps each point of n onto some point of m.

2) Under the "restricted" mapping Dm, each point

of m is the image of exactly one point in no

169
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Figure 3.22

Let us first show that Dm maps each point of

n onto some point of m. Let E be any point of

n. (See Figure 3.22.) By Axiom 3 there is

exactly one line in D, call it r, which con-

tains E. We have selected equivalence class

D so that m and n are not in D. Theorem 16

guarantees that such an equivalence class

exists. It follows then that r fl m 4 0 and

r m. Hence by Theorem 3, r fl m contains

exactly one point, Em. We have thus shown

that Dm maps each point E of n onto some point,

E
m'

of m. To complete the proof we must show

that when the domain of Dm
is restricted to n,

each point A of m is the image of exactly one

point in n under this restricted mapping. Let

s be a line in ] which contains A. By Axiom 3
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there is one and only one such line. As n is

not in D, s fl n 0 and s n. It follows

again by Theorem 3 that s fl n contains exactly

one point, An. If there were another point in n

which mapped onto A under Dm we would have two

lines in D which contain A. This is impossible

by Axiom 3 because the lines of D are parallel.

We have completed the proof.

As proved in Theorem 17, the mapping Dm restricted to line

n, establishes a one-to-one correspondence between the points in

line n and the points in line m (see Figure 3.23).

P Q R

m

11
I

ID%

11
11

4,14

Figure 3.23

Each point, say A, B or C, in n has a unique image in m under Dm.

Conversely, each point, say P, Q or R in m has a unique image in

n, under Dn. The mapping Dn restricted to m, is the inverse of

the mapping Dm restricted to n. Each of these mappings is called

a parallel projection from one line onto the other line.

Definition 5. Let m and n be lines in plane r, and let D

be any equivalence class in r which does not

contain either m or n. The mapping Dm



restricted to n is called a parallel projection

from line n onto line m. Its inverse mapping

(namely DTI restricted to m) is called a paral-

lel projection from line m onto line n.

It is an interesting logical consequence of Theorem 17 that

all lines in r have the same number of points. For example, in

a four point geometry, the plane ,r consists of four points. Each

line in this plane ,r contains exactly two points. (How many

points are there in each line of the nine-point geometry?) If

even one line in r has infinitely many points, then every line n

must have infinitely many points.

The notion of parallel projection constitutes the mathematical

foundation on which to build coordinate systems for locating points

in a plane. We can choose any two lines m and n in different

equivalence classes and use these lines as "coordinate axes."

(See Figure 3.24.)

01.01111,

I
X

Figure 3.24

M

It can now be shown that for each point Q. in the plane, there is

a unique ordered pair of points (X,Y) where X is in m and Y is in N.

172



-168-

Point X is the image of Q under the parallel projection Dm of r

into m determined by the equivalence class P that contains n.

Point Y is the image of Q under the parallel projection Dnt of

r into n determined by the equivalnce class D' that contains m.

The pair of points (X,Y) then serve as "coordinates" of point Q.

This idea of locating a point 0 in plane r by referring to

its "projections" on some chosen pair of "coordinate axes" is

already familiar to you from your experience in drawing graphs.

However you usually used a pair of numbers (x,y) rather than a

pair of points (X,Y) for this purpose. To do this requires that

there be some way of assigning a definite number to each point

on every line in it (since any line in r could be chosen as one

of the coordinate axes). The kind of numbers one may use for

this purpose will depend on the geometric model being studied.

For example, in a four-point geometry model, every line consists

of exactly two points. Therefore there will be exactly two points

on each coordinate axis and it will be appropriate to select a

number system such as U0,+,.) from which to assign numerical

coordinates.

Figure 3.25

173 10_
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We may then assign the following coordinates (see Figure 3.25).

A(011) B(1,1) C(1,0) D(0,0)

For more complicated geometric models more extensive number

systems are needed. For infinite models infinite number systems

such as the rational numbers or the real numbers are required.

We shall return to this subject briefly in Section 3.14. In

Chapter 6 we will discuss coordinates more extensively.

3.13 Exercises

(Copy each of the following diagrams in your notebook and

use your notebook diagnAs to answer the questions.)

1. Find the image of each of the points A, B, C and E under

the parallel projection Dm.

B
NIC/C

\
A D,

%

zLy

E

C

2. If D is an equivalence class containing line n and if m is

a line not in 1)
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(a) what is the image of each point of n under the parallel

projection Dm?

(b) what is the image of each point of m under the parallel

projection Dm?

3. Let m 11 n and let D be any equivalence class which does

not contain either m or n.

A B t t

/
iv/

(a) If A and B are points in m, find their images under

the parallel projection Dn. Call these image points

C and D respectively.

(b) What are the images of C and D under the parallel pro-

jection Dm?

(c) What relationship is there between the mapping Dn re-

stricted to m and the mapping Dm restricted to n?

4. Let A, m, n be three distinct parallel lines and let Dl and

D2 be two equivalence classes neither of which contains the

lines A, m or n. Let A be any point in line A.

A

fit \\\
/// \ \ \ °z\\\2

III 1 ii5 \\,\.

m
n



-171-

(a) Determine the image of A under each of the following

parallel projections:

(D*, )m2 (D2)m, (D1)n, (D2)n

(b) Find tI image of A under each of the following composite

mappings:

(1) (D1)m 0 (D2)n (2) (DOm ° (D1 )n

(3) (Di)n ° (D2)m (4) (D2)n ° (D1)111

(c) Choose any point B in L, other than point A, and repeat

parts (a) and (b) of this exercise using point B. Try

to formulate a general rule concerning the commuativity

of parallel projections.

5. Copy the diagram in Exercise 4 on a large sheet of paper.

;et f be the parallel projection from line L to line m de-

fined by restricting (D1)m to line L. Let g be the paral-

lel projection from line m to line n defined by restricting

(D2)n to line m.

(a) Choose 2 different points A and B on line k and deter-

mine the image of each of these points under the

composite mapping g o f. Call these image points At

and B'. Draw segments AAT and T.

(b) Repeat the experiment in (a) starting with at least

two other pairs of points Al, Bland A2, B2 on line A.

On the basis of your experiment does it appear that

the composite mapping g o f is also a parallel project-

ion from line A to line n?

17 6
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6. Let L, m, n be three concurrent lines and let D1 and D2 be

two equivalence classes not containing any of these lines.

(See figure.)

I

m

\\\
\\\02\\\

1111 4\1\4

Let f and g be parallel projections from A to m and from m

to n respectively as defined in Exercise 5.

Repeat parts (a) and (b) of Exercise 5 for these con-

current lines. Does the composite mapping g o f appear to

be a parallel projection from k to n in this case?

7. Suppose line A intersects each of two parallel lines m and n

and suppose Di and D2 are two equivalence classes which do

not contain any of the lines A, m, n. (See figure.)

ITT sk,
I 1 lc c\\ D

1
\.\\ 2

III \\\
Ili \\)*
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Let f and g be paralle1 p-ojections from L to m and from

m to n, respectively, =, defined in Exercise 5.

Repeat parts (a) and (b) of Exercise 5 for this situation.

Does the composite mapping g o f appear to be a parallel

projection from A to n in this case?

8. Suppose A, m, and n intersect in pairs as indicated, and

suppose once again that D1 and D2 are distinct equivalence

classes which do not contain any of the lines A, m, n.

(See figure.)

pip

\\\

D1\\\ 11,11
).1N, III

Let f and g be parallel projections from A to m and from

m to n respectively as defined in Exercise 5.

Repeat parts (a) and (b) of Exercise 5 for this situation.

Does the composite mapping g o f appear to be a parallel

projection from A to n in this case?

178
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3.14 Vectors -- An Intuitive Introduction

So far in this chapter we restricted our attention to some

properties of the plane r which can be deduced logically from

Axioms 1, 2 and 3 only. Because of this restriction we found it

possible to admit a variety of models of our set of axioms, some

of which may have been a bit unexpected.

In this section we are going to work with the "everyday"

model that you would probably expect for the plane r. Our Axioms

1, 2 and 3 were selected so as to express some of the familiar

properties of this everyday model, but by no means all of them.

For example, in the everyday model the plane r actually contains

infinitely many lines. In each line there are infinitely many

points and "between" any two points there are always other points.

In this section we shall assume some of these other properties,

but such additional assumptions do not alter the fact that the

"everyday" system is also a model for our original axioms.

Our specific reason for considering the "everyday" geo-

metric model at this point is to use it in helping us understand

the important concept of a vector. The notion of a vector is a

remarkably useful one, not only for mathematicians but for

physicists, engineers, economists and other scientists. For

example physicists and engineers study forces and velocities as

"vector quantities." Economists speak of "supply and demand

vectors," "price vectors," etc. In this brief discussion, how-

ever, we shall confine oursleves to "geometric vectors." In

Course III (in the chapter on Affine Geometry and Vector Spaces)

we shall define a vector precisely./
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To see how geometric vectors arise consider the following

physical problem. The current in a river is flowing at a uniform

rate. A rowboat, located originally at point A, is carried by the

stream to point A' in one minute. A second rowboat, located

originally at point B, is carried by the stream to point B' dur-

ing the same minute of time. (See Figure 3.26.)

.41
A

13I
B

Figure 3.26

We may conveniently portray the motion of each boct by means of

a "directed segment." This is simply a straight line segment

joining the initial position of the boat to its final position.

An arrow-head is placed at the terminal point of each segment to

indicate the direction each boat has moved. It is convenient to

use the symbols "AA'" and "BB," to refer to these directed seg-

ments.

There is clearly a strong resemblance between these two

directed segments. This resemblance is due to the fact that when

the first boat moves from point A to point A' it is moving in the
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same direction and by the same amount as the second boat mores

from point B to point B'. Mathematically, we nay think of the

river current as effecting a translation which maps point A onto

point A', and also maps point B on to point B'. We can think of

either of the directed segments and BB' as "representing"

this translation. Because AA' and BB' are "equally good" for

this purpose we shall call these directed segments "equivalent."

Our use of the word "equivalent" is quite intent:Lonal.

Whether a boat starts from point A, point B or any other point

in the river, it is clear that the directed segments which

represent the motion of each boat during let us say one minute,

will all have the same length as well as the same direction.

Let us imagine all possible directed segments drawn in an ordinary

"everyday" plane r. The property, that a pair of segments shall

"have the same length as well as the same direction" defines a

bona fide equivalence relation in the set of all directed segments

of r. To prove this, recall that you must show that the property

in question is reflexive, symmetric and transitive. You should

have no difficulty establishing each of these properties in the

present situation. Equivalence of directed segments is therefore

indeed an equivalence relation.

This equivalence relation partitions the set of all directed

segments in plane r into equivalence classes. These equivalence

classes are also called vectors. Since equivalent directed seg-

ments belong to the same equivalence class (i.e. the same vector)

we also say that they represent the same vector. We express the
-10

idea that AB and CD represent the same vector by writing AB = CD.

161
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For example in Figure 3.26 above we have A7' = BB'. Notice that

this equation does not mean that AI' and BB' are the same directed

segment, because they are not It does mean that AA' and BB'

represent the same vector: these directed segments belong to the

same equivalence class.

For some further examples, suppose that A, B, C and D are

points in plane r such that AB = CD. Figure 3.27 shows various

possibilities for the directed segments.

A

it°

Co/

B A/
D

Figure 3..27

On the other hand, in Figure 3.28(a) and 3.28(b) we have AB / CD.

(Explain why.)
A

B D

(e) Figure 3.28

9 c,10

(b)



-178-

Similarly if A, B, C, D and E are such that

AB = CD = DE

then these three directed segments might appear as in Figure 3.29

C

Figure 3.29

but not like Rya of these (in Figure 3.30)

A
(b)

Figure 3.30

It is often convenient to denote vectors by symbols such as "g,"

"Z" etc. This notation uses a single symbol to denote an

entire equivalence class of directed segments. Thus, if the
11..

directed segments AB, CD, EF, etc, each represent the same vector
-gm

i.e. if AB = CE = EF, etc., then this vector, let us call it "a,"

1 C.n
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corresponds to a translation which maps A onto B, C onto D, E

onto F, etc. (See Figure 3.31)

Figure 3.31

Observe that the symbol wall next to each of the directed segments,

signifies that they all represent (i.e, belong to) the same

vector -ar. A particularly useful thing we can do is "add" vectors.

How shall we define such "addition"?

We can take our cue from the idea that a vector corresponds

to a translation which maps the plane r onto itself. To see

this in a "practical" setting let us return to our illustration

of a rowboat in a river flowing at a uniform rate. Temporarily,

suppose there were no current flowing. The boat would of course

remain motionless, unless someone in the boat started to row.

If the occupant of the boat were to row at a uniform rate, the

boat would move in the direction of rowing as long as there was

no current. For example, after one minute the boat might move

from point A to point B as in Figure 3.32,

184
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B

Figure 3.32

of the boat if
no current is flowing.)

Suppose now that the river is actually flowing at the uniform

rate. Then, during this time, each point along the path of the

boat is "translated" by the current to a new position. For ex-

ample, point A is translated to A' and point B to B' (as Figure

3.33). The resulting ("resultant") path actually travelled by

the boat is indicated in the following diagram (Figure 3.33).

(Path of boat due to
current only)

A B

(Path of boat
due to rowing only)

.

Figure 3.33

Actual path of boat.
( "resultaneof both

motions)

/
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-111.

As we have previously indicated, the directed segments AA'

and BB' are equivalent i.e. they represent the same vector. Let

us call this vector -al% We write:

(1) a = = BB'

Similarly the directed segments AB and A' B' are also equivalent.

Let us call the vector they represent

(2) b = AB = A'B'

The "resultant" directed segment AV represents still another

vector which we shall call It It is only natural that we agree

to call this new vector, c, the sum of vectors a and b, and write:

(3) a + b = c

As we have already noted in (1), the vector a can be repre-

sented by any directed segment in the equivalence class 3, and

similarly, as in (2), the vector (equivalence class) 17;* can be

represented by any of its directed segments. We may therefore

express the relationship (3) above in various alternative ways:

AA' + AB = AB'

or AA' + A' B' = AV

or AB + BB' = AB'

The first alternative here is usually described as the parallel-

ogram rule for addition of vectors, because the directed segments
of 1
AA' and AB form two adjacent sides of a parallelogram whose

diagonal AB' represents their sum (see Figure 3.33). The second

and third alternatives are usually referred to as the triangle

rule for addition of vectors because for example AA' and A' V form

two sides of a triangle whose third side AB' represents their

sum (see Figure 3.33).

186
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Observe however that the sum

a + b

of a pair of vectors is defined even if these vectors are repre-

sented by directed segments which do not form a triangle. For

example, in Figure 3.34 if AB represents vector a and if CD repre-

sents vector b, then the sum a + b is represented by the segment
--
EF even though AB, CD and EF do not form a triangle.

c

G
Ii*

))01,F

Figure 3,34

D

Notice however that the sum a + b is most conveniently obtained

by choosing a new pair of directed segments such as EG and GF
-

which do form a triangle and which also represent vectors a and

b respectively. Furthermore since
41,
EG + GF = EF
-, -, .. -

and EG AB, GF = CD

we may also write AB + CD.= EF.

This equation simply means that the vector represented by EF is

the sum of the vectors represented by AB and CD.

187
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Figure 3035 illustrates what happens if we reverse the

order of addition of a pair of vectors.

B V
eti

.--) -I' I

-41 13+ a -4
34.i, a

I

I

Figure 3.35

_143- E

Notice that AC = DF0 In fact we can imagine that triangle DEF

is "moved" alongside triangle ABC as indicated in Figure 3.36.

A, D

Figure 3.36

These diagrams illustrate the important fact that additionof

vectors is commutative.

a +b=b+ a

for all pairs of vectors a and b. Looking at Figure 3.36 we see

that the commutative law for addition of vectors is actually a

consequence of the parallelogram law.

188
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The triangle law can be extended so as to obtain a sam of
-.

any number of vectors, For example to add vectors a, b and c,

in Figure 3.37 we use the triangle law to find a + b and then

use the triangle law again to find (a + b) + c.

a

Figure 3.37

In Exercise 4 you will be asked to verify that the same sum is
-

obtained by adding a to the sum (b + c). The fact that

(a + b) +c = a + (b + c)

for all vectors a, b, c is called the associative law for addition

of vectors.

Because of the appearance of Figure 3.37 this method of

determining a sum of vectors is often called the vector polygon

method,

In the exercises that follow you will be asked to discover

other interesting properties )f vectors.

3,15 Exercises

1. Suppose that the figure below is a parallelogram, How many

distinct vectors are represented by
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(a) AB and DC

(b) AB and CD

(c) AB and BA

A

(d) AB and AD

(e) AD, AC, BC

and CA,

2. Assume the figure below is a regular hexagon. This is a

six sided polygon which possesses line symmetry about each

of its diagonals. (See Course 1, Chapter 10, Segments,

Angles and Isometries.)

(a) How many distinct vectors are represented by AB, BC,

CA, FE, ED, DF?

(b) Which of these directed segments represent the same

vector?

3. lw suitable diagrams to find the following sums (by the

triangle law):

(a) a + b

(b) b+ c

(c) a + c

(d) b + a

(e) c + a
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40 (a) For the vectors in the preceding fipire draw diagrams

to find each of the following sums:

(a + b) +c

3 + (3 + ;)

(b) Compare the sums obtained in (a)0 What law is

illustrated here?

(c) Check your conclusion by using various other directed
--,1

segmentS to represent vectors a, b and co
- 10

50 For vectors a, b and c, as indicated in the adjoining

figure, draw suitable diagrams to determine the following

sums:

(a) a + b

a

(b) a + c (c) b + c

A

Figure for 5 Figure for 6
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6. Using this figure draw diagrams to find the following; sums:

(a) AB + BC (d) AB + CB

(b) AB + AC (e) (AB + BC) + AC

(c) AB + CA (f) (AB + BC) + CA

Is there anything unusual about this last result? Explain.

7. For vector a represented in this figure draw diagrams to

obtain:

(a) a + a (b) + + (c) (a + a) + (a + a)

Describe how each vector you obtain compares with vector

a, (Note: these new vectors are conveniently called 2a,

3a and 4Z)

8. Let AB represent vector a and let BA represent vector b

(in the adjoining figure ).

(a) Draw a diagram to represent a + b.

A

F
b

a

B

Note: In situations such as this we call the sum the zero

vector and we denote it by "0." The zero vector can

be viewed as the equivalence class containing all

"directed segments" of the form AA, BB, etc. (i.e.

all directed segments XY were X = Y).

192



-188-

(b) What is the sum a + 0? b + 0? 0 + a? 0 + b? 0 + 0?

State a general rule concerning addition of any vector

to the zero vector,

9. By using equivalent directed segments or by reasoning from

properties of translations, give an argument to show that

if a is any vector, there is a unique (one and only one)

vector x such that

a + x = 0

Note: the unique vector 1 which satisfies this equation

is called the negative of vector a and is designated

by -a. The vector -a has the property
- --

a + (-a) = (-a) + a = O.

3.16 Summary

1. This chapter has dealt with axiomatic affine geometry, where

a plane r is simply a set of points with certain interest-

ing subsets cCaed lines. The lines were assumed to have

the properties mentioned in three axioms and from these

properties we were able to deduce a number of other proper-

ties, It is important to note, however, that we were not

able to deduce all the properties that we generally associ-

ate with lines and planes. In fact we studied a variety

of mdels of affine geometry, in which the three axioms

were satisfied, but in some of these models there were only

four points, in other models there were exactly nine points

in plane r and each line contained exactly three points;
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still another model is the neverday" system of geometry in

which the plane r contains infinitely many lines, each

line contains infinitely many points, etc.

The three axioms used were

Axiom 1. (a) Plane r is a set of points, and it

contains at least two lines.

(b) Each line in plane r is a set of points,

containing at least two points.

Axiom 2. For every two points in plane r there is

one and only one line in r containing them.

Axiom 3. For every line m and every point E in plane

r there is one and only one line in r con-

taining E and parallel to m.

Axioms 1 and 2 are called incidence axioms.

Parallel lines were defined as follows:

Lines r and s in r are parallel if and only if r = s or

r n s 0,

Using this definition we were able to prove that

parallelism is an equivalence relation on the set of lines

in ir. This relation partitions the set of lines in r into

equivalence classes, two lines being in the same equiva-

lence class if and only if they are parallel,

The notion of an equivalence class of lines in r led

to the following important consequences of the axioms:

(a) There are at least three equivalence classes in ir.

(b) To every equivalence class D in r and line m in r but

not in D there is a parallel projection, Dm, which maps
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all the points r onto m.

(c) For every two lines m and n in r there is a parallel

projection that maps n onto m and is one-to-one.

Coordinate systems for locating points in the plane

r are based on these theorems concerning parallel pro-

jections.

If additional assumptions are added to the axioms for

an affine plane, it will become possible to study the

notion of a vector more precisely. We shall do this in

Course III in the chapter on Affine Geometry and Vector

Spaces. Meanwhile we have seen that we can base the

notion of a vector on the idea of a directed segment. In

fact a vector is en equivalence class of directed segments.

It corresponds to a translation of the points of plane r.

Addition of vectors corresponds to composition of trans-

lations. It is commutative, associative, and possesses an

identity element (the zero vector 0) as well as an inverse

(--a..) for each vector a.

3.17 Miscellaneous Exercises

1. Prove that any "plane r" which obeys Axioms 1 and 2 must

contain at least 3 non-collinear points and at least 3 non-

concurrent lines.

2. Consider the following "six-point geometry":

Plane P. The set of 6 vertices:

(A,B,C,D,E,F)
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Line. Any pair of distinct vertices.

Point. Any one of the 6 vertices.

(a) Indicate which of the Axioms 1, 2, 3 are true in this

model and which are not true.

(b) Consider the line (AO) and the point F not in this

line. How many lines are there which contains F and

are parallel to (AO)? Name them.

(c) Name all lines that contain A and are parallel to the

line (FO) .

3. Prove that in any model which satisfies Axioms 1, 2, 3 there

must be at least four lines no three of which are concurrent.

4. (a) Complete the following table for affine geometries:

No, of points
in each line

No. of lines
containing
each point

No. of points
in plaha r

No, of lines
in plane r.

Four Point Geometry 2 4

Nine Point Geometry 3 9

4 .

(b) Try to formulate a general rule (see the next exercise).
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*5. In an affine geometry prove that if one of the lines in

plane P contains exactly k points then:

(a) every line contains exactly k points.

(b) each point is contained in exactly k + 1 lines.

(c) the plane r contains exactly le points.

(d) the plane r contains exactly k o (k + 1) lines,
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4.1 What is a Field?

CHAPTER 4

FIELDS

In Chapter 2 you saw that much of your knowledge of number

systems can be expressed in the language of operational systems

and groups. For instance, the set of integers under the opera-

tion of addition, (Z,+), constitutes a group. The set of integers

under the operation of multipl.cation, (Z,'), does not constitute

a group, since only 1 and -1 have multiplic..tive inverses; but

the non -zero rational numbers under the operation of multipli-

cation, (o\ Col,) does constitute a group.

Such observations are helpful summaries of crucial properties

in the various number systems, but they do not tell the whole

st6,y, Group theory only deals with properties of operational

systems (S,a) involving a set and a single operation. Most num-

ber systems with which you are familiar consist of a set S and

two operations the operations interacting via a distributive

property, such as

a(b + c) = (ab) + (ac)

for all a,b,c in S.

In this chapter we will focus attention on a class of two-

fold operational systems called fields. The study of groups

brings insight and economy to the study of operational systems

by developing properties common to a variety of specific systems.

In the same way, the study of fields will develop properties

common to many, but not all, two-fold operational systems.
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Definition 1. A two-fold operational system (F,+,.) is

called a field if and only if it satisfies

the following axioms.

Axiom 1. For all a, b, c in F, (a + b) + c = a + (b + c).

Axiom 2. There is an element 0 in F such that for all

a 1.1 F, a + 0 = a.

Axiom 3. For each a in F there is an element -a in F such

that a + (-a) . 0.

Axiom 4. For all a , b in F, a + b = b + a.

Axiom 5. For all a, b, c in F, (ab)c = a(bc).

Axiom 6. There is an element 1 in F (1 0) such that for

all a in F, a1 = a.

Axiom 7. For each a in F (a 0), there is an element a1

in F such that aa-1 = 1.

Axiom 8. For all a, b in F, ab = ba.

Axiom 9. For all a, b, c in F, a(b + c) (ab) + (ac).

There are three questions suggested immediately by this

definition. First, why was this particular collection of axioms

chosen? Second, are there any familiar two-fold operational sys-

tems that obey the field axioms? Third, what is the signifi-

cance of choosing "+" and "" to name the operations in a field

and "0" and "1" to name the respective identity elements?

If you look closely at Axioms 1 through 4, you see that they

guarantee that the system (F,+) is a commutative group with

identity element 0. Furthermore, unless 0 causes some unforeseen

difficulties in multiplication, it appears that the system

(F\(0),) is a commutative group with identity element 1. Thus in
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a sense, a field is two groups which interact via a distributive

property.

The most familiar examples of fields are the system (Q,+,)

of rational numbers under addition and multiplication and several

finite number systems, such as (Z3,+,.) and (4,+,).

These examples indicate why the symbols "+," ".," "0,"

and "1" are used instead of some more general symbols like "1,"

"2," "e*," and "e* ." But as you know, the "+" in (Z,+) has quite
1 2

a different meaning than the "+" in (Z3,+). Thus, although for

convenience "a + b" is often read "a plus b" and "a.b" as

"a times b," it is important to keep in mind that there are fields

in which "+" and "." represent operations bearing little resem-

blance to addition or multiplication of rational numbers.

Similarly "0" and "1" might represent objects quite different from

rational numbers.

4.2 Exercises

1. In (Q,+,.) find the standard name for each of the following:

(a) the additive inverse of
7

(7)-
n

(8) 1

(b) the multiplicative inverse of each number in (a).

2. Compute in (Q,+,.):

(a) 3.(T55 + i)
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(b) 3 i-(13.4)

(c) (3.13) + (4.4)

(d) (; + /3)*(-25 +4)

(e) + _712

3. In (Z8,+,) compute

(a) 3.(2 + (-4))

(b) (3.2) + (3.(-4))

4 ,5 ,

(f) (-3' -12) kE177)

4 5

(g) E) -172

4 5

( h)
( -3 + -12) (.6 +

(c) 3 + (2(-4))

(d) (2 + 3).(-4 + 3)

4. In (zs,+,) find the standard name for each of the following:

(a) the additive inverse of

(1) 0 (4) 3

(2) 1 (5) 4

(3) 2 (6) 5

(b) the multiplicative inverse of each number in (a).

5. In (z7,+,°) find the standard name for:

(d) 3-1 (g)

(e) 5-1 (h)

(f) 01 (i)

(-4 + 6)1

2 + (35)

(2 + 3).(2 + 5)

6. Determine whether or not each of the following two-fold

operational systems is a field. If the system is not a

field,

(1) state each property that does not hold, and

(2) give an example in which the property fails to hold.

(a) (14*+3°)

(b) (z,+,)

(c) (Q+,+,.) (See Chapter 2.)

(d) (Q±,+,.) (See Chapter 2.)
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(e) (Z3,+,*) (i) (z8,+,.)

( f) (Z4 ,+, ) (j) (Z9/4-,')

(g) (21 ,+, ) ( k) ( Z1 o,+, )

(h) (212,+,*)

*7. In which of the above two-fold operational systems is there

an element x such that x2 = 2?

*8. In which of the above two-fold operational systems are there

non-zero elements a and b such that eb = 0? In such systems,

find as many of these elements as you can. Also, are any of

the systems in which you find such elements fields?

y. Show that in any system (zyll+,..), if n = p q where p and a

are integers (not = 1), there are elements a and b such that

ab = 0.

**10. The operational system ((a,b,c,d,),+,) has operations defined

by the following tables:

+ a b c d a b c d

aabcd a a a a a

bbadc b a b c d

c c dab
d d c b a

c a c d b

d a d b c

Is this operational system a field? Why or why not?

Getting Some Field Theorems Painlessly

In any field (F,+,.), the additive structure (F,+) is a com-
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mutative group with identity element 0. Therefore, any theorem

proven in Chapter 2 for groups is automatically a theorem for

(F,+) and thus for (F,+,.),

For instance, in a group (S,*), for each a in S, (a ) = a.

Translating this theorem into the language of (F,+) yields

Theorem 1.

Theorem 1. For all a E F, -(-a) = a.

This is a familiar theorem in (Q, +,.). For a more interesting

illustration and check, consider -(-2) in (Zi,+,):

-(-2,) = -(5) = 2

Another theorem of Group Theory states that for all

b)I bI * aI.
a,b in S, (a as This leads to Theorem 2 for fields,

(Note: In this chapter it is understood that all oper.tions are

in (F,+,.) unless otherwise specified).

Theorem 2. For all a,b in F,

- (a + b) = (-b) + (-a).

Question. Why can we conclude also that

- (a + b) = (-a) + (-b)?

The third automatic consequence pf the group properties

in (F,+) is a theorem about s,_0.vability of equations.

Theorem 3. For all a,b in F, the equation x + a = b has

a unique solution x = b + (-a).

In the language of groups, the justifying theorem states that

every equation x * a = b has a unique solution x = b * aI.

In the case of a particular field, (Zy,+,.), Theorem 3 implies

that x + 6 = 2 has a unique solution x = 2 + (-6) . 2 + 1 = 3.
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One of the most useful properties of any grollp is cancella-

tion: For all a,b,c in S, if a * b = a * c, then b = c. This

leads to an important theorem in (F,+,.).

Theorem 4. (cancellation) For all a,b,c in F,if a + b = a + c,

then b = c.

Question. Which axiom allows us to deduce a right cancel-

lation property now for "+" in (F,+,)?

4.4 Trouble with O.

Although this chapter was advertised as a study of certain

two-fold operational systems, there has been a conspicuous

absence of results concerning the seconl field operation

or results which relate addition and multiplication. You might

well ask why multiplicative counterparts of the group theorems

were not presented for (FN(0),). Isn't this system a group?

The troublemaker in this situation is that single exception

lurking inside the set brackets, the additive identity element O.

In (FN(0),!) multiplication is associative; it has an iden-

tity element, 1, and each element has an inverse. The only

question is whether (FN(0J0') is an operational system. If

a and b are elements of F\(011 then we know that a.b E F. But

could ab = 0? The answer is "no," but the proof is not trivial;

it requires knowledge of the strange behavior of the additive

identity under the operation of multiplication. As you might

expect, the distributive property makes its grand entrance at

this point.

Theorem 5. For all a in F, a.0 = 04a = O.
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Proof. 1. Since 0 is the additive identity element,

0 + 0 = 0 and (a.0) + 0 = a.0.

2. Also aO = a(0 + 0) = a0 + a0.

3. By SPE, a0 + a0 = a.0 + O.

4. Then Theorem 4 (cancellation) implies a0 = O.

5. Since multiplication is commutative,

a0 0a, and thus 0.a = O.

Theorem 5 shows clearly why, in any field, 0 has no mul-

tiplicative inverse. There can be no element a in F such that

Oa = 1, because 0a = 0 for all a in F and 0 g 1.

Next, Theorem 6 is a converse of Theorem 5; it states if

a product is 0, then one of the factors must be O.

Theorem 6. For all a, b in F, if ab = 0,

then a = 0 or b = O.

Proof. 1. If ab = 0 and a g 0, then a has multiplicative

inverse a and a-1.(a.b) = a-I. 0 = O.

,

2. also a (ab) .(a a)b = 1b = b

3. Thus we conclude that b = 0. (SPE)

4 If ab = 0 and b g 0, then right multiplication

by b leads similarly to the conclusion a = O.

Since ab = 0 if and only if a = 0 or b = 0, we are now

justified in claiming that (F\(0),) is a group. Theorems

7 through 9 are the multiplicative counterparts of Theorems

1 through 3; proofs rest on the group theorems of Chapter 2.
, 1,-1

Theorem 7. For all a in F\(0), ka ) = a.

, -1
Theorem 8. For all a,b in F\(0) , (a b) = b

-1
.

Theorem 9. For all a,b in "(0) the equation xa = b has

a unique solution x = ba .
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The following examples interpret these theorems, which apply

to all fields, in specific situations.
_1

Example 1. Ia (z,,+,.), 3 = 5 and 5 = 3, since
_1

3 5 = 1. Thus (3- ) = (5)- = 3.

Example 2. In (Q,+,'), (2-- /3)-1
3 10, but

(i)-1.(4)-1 ..c4 also.

Example 3. In (L,,+,.) the equation x.3 = 2 has unique solu-
_i

tion x = 2.3 = 2.5 = 3,

The following exercises explore several other applications

of field theorems to specific situations. In each, be sure to

check the definition of "+" and "." in the field being studied.

4.5 Exercises

1. Find the standard name for each of the following in (Z11,+,.):

(a) -(3 + 7)

(b) -(-3 + (-7))

(c) -(-(-(8)))

(d) 4-1

(e) ((41)-1)-1

(f) (4.9-1)-1

2. State the group theorems (using (8,*) and a' notation) which

justify

(a) Theorem 7 (b) Theorem 8 (c) Theorem 9.

3, Prove: In (F-'), if a A 0 and b = a'c, then b = c.

(Hint: As in Theorem 6, a A 0; try a similar proof.)

4. Find the standard name for each of the following in (Q,+,):

(a) (-3)'7

(b) -(3'7)

(c) 3.(-7)

5. Prove a2 0 in (F\(0),") = a. a]
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6. Compute in (74,+,.):

(a) 12 (d)

( b) 22 (e) 52

(c) 32 (f) 62

7. Compute 42 in (z.,+,.).

8. Prove: For any a in F, if a + b = a, then b = 0.

9. Prove: For all a,b,c in F, (b + c)-a. = ba +

*10. Prove: If n = pq (when p,q are integers different from 1)

then (2; ,+,') is not a field.

(Hint: Consider Theorem 6 and the result of Exercise 9 in

Section 4.2).

4.6 Subtraction and Division in Fields

As you have noticed already, much of the theory for fields

is suggested by observations in particular fields, often (Q,+,).

In the rational number system you found that a - b = a + (-b).

(Q,+) is a group; and it is possible to introduce a similar

subtraction in any group, (F,+) in particular.

Definition 2. For all a,b in F, a - b = a + (-b).

To see that this definition is reasonable in fields other than

(Q0+,1, study these examples drawn from (Zry,+,).

Example 1. 3 - 1

- 6

=

=

=

=

3

3

2

+ (-1)

+ 6

+ (-6)Example 2 .
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Many of the properties of subtraction in (Q,+,*) carry

over into the theory of fields.

Theorem 10. For all a,b,c in F:

(a) a- a = 0

(b) a- 0 = a

(c) 0 - a = -a

(d)a-b=a-cimpliesb= c

*(e) a - b = c if and only if a = c + b.

Proof. Exercises.

There are many properties that could be listed, such

as a - (b c) = (a - b) + c. See if you can discover

some of these and prove them. You will find some in the

`exercises that follow this section.

The definition of subtraction is fairly simple, but to work

with this operation effectively, two more theorems are necessary.

Theorem 11. For all a,b in'F:

(a) -(a.b) = ( -a) b

(b) -(a.b) = a.(-b)

(c) ab = (-a)(-b)

Proof. Since this theorem involves the behavior of additive

inverses under multiplication, the proof of part

(a) uses the distributive property. Parts (b)

and (c) follow easily from (a), and those proofs

are left as exercises.

(1) -(a-b) + (ab) = 0 and

(-a + a).b = 0.b =0.

(2) By distributivity, (-a + a)b =

(-a)b + (a.b).
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(3) Therefore, using SPE

- (a.b) + (ab) = (-a)b + (ab).

(4) Then right cancellation implies that

- (a.b) = (-a).b.

Theorem 12. For all a,b,c in F, a' (b - c) = a'b - a'c.

Proof. Exercises.

It might surprise you, but Theorem 12 (and Theorem 11 on which

it depends) is necessary to justify simplifications like

7x - 5x . 2x or to solve equations like x2 - 2x = 0.

Example 3. 7x - 5x = x.7 - x.5

= x(7 5)

Example 1i. x2 - 2x = 0 implies

x'x - x*2 = 0 which implies

x(x - 2) =0.

By Theorems 5 and 6, the product x(x - 2) can

equal zero if and only if at least one of the

factors is zero; in other words, if x = 0 or

if x = 2.

Just as subtraction can be defined in the additive structure

of any field, a kind of generalized division can be intro-

duced in terms of multiplication.

Definition 3. For all a,b in F (b 0),

_1
a 4- b = a.b .

As you probably expect, there are theorems about division

analogous to those for subtraction.

Theorem 13. For all a,b,c in F\(0):

(a) a 4. a = 1



-205-

(b) a 1 = a
_1

(c) 1 a = a

(d)a+b=a+cimpliesb= c

(e) a b = c if and only if a = c.b.

Proof, Exercises.

4.7 Exercises.

1. Find stardard names for each of the following in (Q,+,):

2. Find standard names for each of the following in (27,+,0):

(a) (-3)(5) (c) (-3)(-5) (e) 5 + 3

(b) -(-3)(5) (d) -(-3)(-5) (f) 3 + 5

3. Simplify the following expressions in (Q,+,):

(a) 3x + 5x (c) (8x + ;Ix) -

(b)
2

3
7_(b) x
5'

(d) l4 - (-8x - 7x)

4. Find the solution set of the following open sentences in

(Q,+,$). (Hint: See Examples 3 and of Section 4.6.)

(a) 8x + x = 7 (d) x =x2

(b) 3x2 - 2x = 0

(c)
(e) (x + 3)(x - 1) =0

73x - = 0

(f) (2x - 4)(5x + 2) = 0

5. Prove Theorem 10. (Hint: Part (a) is given as an example here.
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The trick is to change subtraction expressions to equivalent

addition expressions.)

Proof. a - a = a + (-a) Definition 2 "-"

= 0 Definition of inverse

6. Prove Theorem 13. (Hint: Use a trick similar to that in Ex-

ercise 5)

7. Prove Theorem 12.

*4.8 Fractions in Fields

nin
In the rational number system the notation -6: is com-

monly used to indicate the multiplicative inverse of a.! Simi-

n .6

nan
Simi -

larly, the otation is used instead of "a b." This idea

is generalizable to all fields as follows.

Definition 4. For all a,b in F (b 0),

1 a
a b = a.b .15.

The division theorems can be translated into the language of

fractions. /Although this will then look very much like (Q,+,.),

some oddities result when the symbolism is interpreted in finite

fields. /The following results are provable by application of

Definition 4 and some algebraic manipulation. No proofs are

given, but the exercises of Section 4.9 illustrate several

of the properties and the techniques used in proofs.

Theorem 14. For all a,b,c,d in F (b 0, d 0):

(a) = § if and only if ad = bc.

(b)

(C) (g)-1 =
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I,) a c ad + c.b
'"' TS + d

Theorem 15. For all a,b in F 0):

(a)

*4.9 Exercises

J,. Find the standard name for each of the following in (Z4,+,.)

by direct computation:

(a) (ans. = 3.2 = 3.4 = 5 or = 3 2 = 5 since

3 5.2)

(b) 3

(c) -5

-4
(d)

2. Again in (Z4, +0), find the standard name for each of the

following by direct computation:

(c) 5.5

(d) 6.3

Now look back at Theorems 14(a) and 14(b)

3. Prove Td5.1d = 1 in every field (F,+,).

(Hint: Write b as d.b1 and --) as bd-1 and simplify.)

4. Using Exercise 2 to save some work, compute in (Z70+1):

(a) + (b) 5'5b.53'6

5, Using a = 5 and b = 2, check each part of Theorem 15 in Z7.
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/ _1
by direct computation. (For example: = k-5).2 = 2.4 = 1

5
and: = 5.(-2) 5.(5)

_1

= 5.3 = 1.)

6. Prove: For all a,b in F, -(11) = Tac"-) ( b 0). (Hint:

-1
= (-a)10 and use Theorem 11.)

7. Prove: For all a,b in F, -(t) = .

4.10 Order in Fields

One of the most useful properties of the rational number

3 1
system is the fact that the elements are ordered; 7 <

25
y - < 3,

1,000
,

'
and so on. For this reason, whenever the rational numbers

777

are used for measurement (such as length, area, probability,

or weight) measures in the same unit can be compared. For

example, in an earlier dice tossing game you found that for

a toss of two dice P(5 or 6 or 7 or 8 or 9) = -3,
24
6 and P( 2 or 3 or

4 or 10 or 11 or 12) The conclusion was that the player

who wins with sum 5,6,7,8 or 9 would win in the long run be-

-3-6.

12 24
cause < 76.

The order relation "<" in (Q,+,.) has the following basic

properties:'

O 1. Transitive Property. For all a,b,c in Q, if a < b and

b < c, then a < c.

O 2. Trichotomy Property. For each a in Q, exactly one of the

following holds:

a < 0, a = 0, 0 < a

O 3. Additive Property. For all a,b,c in Q if a < b then
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a + c <b + c.

0 4. Multiplicative Property. For all a,b,c in 0 if a < b

and 0 < c, then ac < bc.

We say that (0,+, is an ordered field. Any field (F,+,)

for which there is an order relation "c" satisfying 0 1 -- 0 4

(as axioms)for elements in F is called an ordered field. We

indicate this by "(F,+,,<)." In any ordered field the statements

"a < b" and "b > a" are equivalent. ("a < b" is read "a is

less than b" and "b > a" is read "b is greater than a.")

2 < 7 i 7Es equivalent to > .

What sort of theorems can be proven about ordered fields?

As is often the case in mathematics, conjectured theorems

appear in examination of specific situations. The following

discussion exercises involving order in (0,+,,<) should suggest

some theorems that are true in all ordered fields.

Discussion Exercises

In each of the following, choose the symbol "<" or ">"

that completes the statement correctly.

1. (a) ; 123
(c)

-12

3

-1; - ; 2 3
(b) 0 (d) 12

6 -2 -6
2. (a) - -,,; (b) -3

73.1
5

3.

4.

5.

i (b) 1 -1
7

(b) ;.123

(c) i
1(a) ?5 '-ic

(1)2 0

214



-210-

Now try formulating some tentative ordered field theorems.

Several of your propositions will probably appear in the fol-

lowing sequence:

Elementary Inequality Theorems

The solution set of the inequation "2x + 3 < 7" in (Q, +,., <)

is easy to calculate:

1. 2x + 3 < 7 implies (2x + 3) + (-3) c 7 + (-3)

[by property (0 3)].

2. (2x + 3) + (-3) < 7 + (-3) implies 2x < 4

[by associativity and arithmetic].

3. 2x < 4 implies i(2x) <.i.4 or x < 2

[by property (0 4)].

Thus if x satisfies "2x + 3 < 7," it also satisfies "x < 2,"

and you can check that the converse is true also. On a num-

ber line, tbB solution set is a ray.

-2 -1 0 1 2

But this open sentence was quite easy to solve; you might

have guessed the answer. To deal with more intricate inequalities

it is handy to have other methods of transforming inequalities

into equivalent simpler inequalities.

Theorem OF 1. For all alb in ordered field (F,+,.,<):

(a) a < b if and only if 0 < b - a

(b) a < 0 if and only if 0 < -a
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(c) a < b if and only if -b < -a.

Proof. (a) First, if a < b then a + (-a) < b + (-a)

by 0 3. But a + (-a) = 0 and b + (-a) . b - a.

Thus a < b implies 0 < b - a.

Conversely, if 0 < b - a then 0 + a < (b - a) + a

and simplifying both sides we get a < b.

The proofs of (b) and (c) involve similar strategies.

Theorem OF 2. For all a,b,c,d in ordered field (F,+,,<):

(a) a > b and c > d implies a + c > b + d.

(b) a > 0 and b> 0 implies a + b> O.

Proof. Exercises

Theorem OF 3. For all a,b,c,d in ordered field (F,+,,<):

(a) a > 0 and b> 0 implies ab > O.

(b) a > b and c < 0 implies ac < be.

Proof. We prove part (b).

(b) c < 0 implies 0 < -c. But then applying 0 4,

a(-c) > b(-c) or -(ac) > -(bc) or ac < be

[by OF 1].

Theorem OF 4. For all a in ordered field (F,+,,<),

> 0 or a 2 =0.

Proof. Exercise.

Theorems OF 1-4 are but a few of the many properties

useful in dealing with inequalities. Others appear in the ex-

ercises that follow.

4.11 Exercises

1. In each of the following, insert the symbol "<," ">,"
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5" (means greater than or equal to), or "<" that males a

true statement for all a,b,c,d in an ordered field.

(a) ab > 0 and a > 0 implies b O.

(b) ab < 0 and a > 0 implies b O.

(c) a > b > 0 and c > d > 0 implies ac bd.

(d) 12 O.

(e) 1 O.

(f)a+c<b+cimplies a b.

(g) a > 0 and ac > ab implies c b.

(h) a < 0 and ac > ab implies c b.

(i) a> 0 and b Z 0 implies a+ b O.

(i) a> 0 and b k 0 implies a.b O.

(k) a < 0 and b 0 implies ab O.

2. Use the ordered field properties to transform each of the

following inequalities to a simpler equivalent inequality.

(a) -7x + 3 < 14

(b) 3(x - 4) < 12(x + 5)

( c) 3x' - 5 < x2 +3

3. Prove Theorem OF 1, part (b).

4. Prove Theorem OF 1, part (c).

5. Prove Theorem OF 2, part (a).

6. Prove Theorem OF 2, part (b).

7. Prove Theorem OF 3, part (a).

8. Prove Theorem OF 4.

9. For all a,b in ordered field (Q,+,.,<) if 0 < a < b,

there is an element t in Q such that 0 < t < 1 and a = tb.
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(a) Find t in case

(1) a =7 and b= 14.

(2) a = 12 and b = 20.

(3) a = and b 4; .

(b) State a rule for finding t in terms of a and b in

any case.

10. For all a,b in ordered field (0,4.,.,<), if 0 c a < b, there

is an integer n such that na > b. This is the Archimedean

Property of the rational numbers.

(a) Find a value for n in case

(1) a= and b . 12.

(2) a litoo and b . 37.

(3) a= and b 136.

(b) State a general rule for finding a value for n in terms

of a and b.

11. Try to formulate a definition of absolute value that is valid

in any ordered field.

12. Try to formulate a definition of positive and negative

elements valid in any ordered field.

4.12 How Many Ordered Fields?

The definition of an ordered field, like the definition of

field itself, suggests, two questions. Why was the particular

collection of properties 0 1 -- 0 4 chosen? What examples of

ordered fields (other than the rational numbers) are familiar?

The first answer is easy -- the rational number system is
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ordered in a way that makes the chosen properties fundamental, and

we would like order in other fields similar to that in (Q,+,.,<).

The answer to the second question, however, takes the wind out

of the argument just given. (Q0+,00 is the only orderable

field we have studied so far:

The proof of this surprising fact is really quite easy.

Take (Zs,+0) as an example. By Theorem OF 4 we know that if Z5

is ordered a5 0 for all a

But if 1 0 then

0 in Z. Xn particular, 13 = 1 > O.

2 = 1 + 1 > 0 (Theorem OF 2)

and 3 . 1 + 2 > 0

and 4 . 1 + 3 > 0

and 0 = 1 + 4 > 0

It is not difficult to generalize this result to any field

(Zp0+0)

In the sections on solving equations and inequations

that follow, attention is focused in the ordered field (Q, +,., <).

However, you will see that the techniques for solving equations

depend only on field theorems and are thus applicable in the

finite, non-ordered fields.

4.13 Equations and Inequations in (Q, +,., <)

The manufacturer of ZOND X Motorcycles wants to bring out

a new model for the "65 and Over" set. He calculates that

design, re-tooling, and advertising will involve a fixed cost of

$75,000 and then each cycle will cost $165 for labor and ma-

terials. If the f.o.b. price is to be $179.50, how many
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cycles must Mr. Zond make and sell to at least break even?

To break even the number n of cycles must satisfy the condition.

(1) 75,000 + 165n = 179.50n.

To make a profit, n must satisfy the inequation

(2) 75,000 + 165n < 179.50n.

To advise the manufacturer, we must solve the equation (1) or

the inequation (2); that is, we must find roster names for the

elements in the domain of the variable which make the given equation

or inequation true when they are used as replacements for the

variable.

In earlier work you have had experience solving similar

equations and inequations. The purpose of this section and the

next several sections is to develop some systematic procedures

(based on the properties of an ordered field) useful in solving

several important classes of equations and inequations.

Before tackling Mr. Zondls problem, let's examine a slightly

easier example

Example 1. Find the solution set of "7x + 10 = 15."

7x + 10 = 15 implies 7x = 15 - 10

(Theorem 10(e))

implies 7x = 5

(Arithmetic fact)

implies x =

(Theorem 9(e))

At this stage we have proved that for any x in

Q, 7x + 10 = 15 implies x =;, or equivalently,

(x: 7x + 10 = 15) C (x: x = 4:1

Another way of stating this result 220
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is: The only possible rational number x such

that 7x + 10 = 15 is ;. This does not guar-

antee that -.1-21 is a root (solution) of this equa-

tion. In order to establish this we must prove

that x = implies that 7x = 10 = 15.

x = implies 7x = Left operation

implies 7x = 5 Arithmetic fact

implies 7x + 10 = 5 + 10 Right Operation

implies 7x + 10 = 15 Arithmetic fact

So we have just proved that if x is in Q., then

x = ; implies 7x + 10 = 15, or equivalently,

(x: x = *71 c (x: 7x + 10 = 15).

The two proofs together now give us that

(x: x = ih = (x: 7x + 10 = 15)

In the last proof we had to show that

(x:x 7= 51 = (x: 7x + 10 = 151 and did so by a chain

of implications. Since (x: x = (1;1, it would have been

sufficient to prove that E (x: 7x + 10 = 15). But 74 + 10 = 15

and thus the statement is proved. We call this method "the

check method" since in essence we plugged into the equation

for "x" to see if it "worked."

Example 2. Find the solution set for the equation

2 5
.3x - -6 = f.

2 5 2
-3x - r = 7 implies -3x = 7 + 5

implies x = (7 +

47implies x =

in 1
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47 (.471Since 17 n
Vchecks" we have as solution set -wl

4

Example 3. Find the solution set of the equation

"13 - 2x = ix 4x."

(1) 13 - 2x = -23x - 4x implies

13 - 2x . --4x

implies 13 = 2x - 33-x

implies 13 .

implies --35 = x.

(2) Check: 13 - 2(1) . ( ) - 4(1).

(3) The solution set is op.
With these examples under your belt, Mr. Zond's problem

should be a snap.

(1) 75,000 + 165n = 179.50n if and only if

75,000 = 179.50n - 165n

(2) 75,000 = 179.50n - 165n if and only if

75,000 = 14.50n

(3) 75,000 = 14.50n implies n 5172.4.

The only question is whether or not such a solution makes sense.

It says Mr. Zond should make 5172.4 motorcycles! We can do

better with the inequation.

(1) 165n + 75,000 < 179.50n implies

75,000 < 14.50n [Add -165n to both sides by 0 3.]

(2) 75,000 < 14.50n implies 14150.75,000 < n

[Multiply both sides by 14150 by 0 4]

(3) Or 5172.4 < n.

Thus Mr. Zond will profit on any number of cycles greater than

5172.4. The solutior set of the inequation is (n: 5172.4 < n).
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There are two important aspects of this example. First

the solution set is infinite and cannot be given a roster name.

Second, the strategy used in solving the inequation is very

similar to that used in solving the corresponding equation.

In the Zond problem we first analyzed the problem to obtain

an equation from the given information in which the variable cor-

responded to the quantity which we wished to find, "n" for the

number of cycles. This mathematical equation was solved.

Then the root of the equation was interpreted as the quantity

required by the problem. Thus, when solving such a problem

we go from a "real-life" or "physical" situation to an equation

in a mathematical system. The properties of the mathematical

system are used to find the root of the given equation in the

system and this root is then interpreted in terms of the given

problem. This is a brief sketch of a process that is constantly

recurring when a mathematical model is used to solve problems

from the real world.

4.14 Exercises

1. For each of the following, write an expression of the form

"ax + b" or "ax! + bx + c" that is equivalent to the given

expression.

(a) (3x - 7) + 5x

(b) + (17x - 32x)

(c) 3x - (7x - 8x)

(d) 8 + 5x2 -2- 11x2

(e) 17 + llx - 23x + 43 -

(f) 8(x2 - 3x) + x(7 + x)

2. Solve each of the following equations in (Q, +,.).
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(a) 3x + 5 = 3 (e) 7(x - 5) = x(5 - 7)

(b) - (f) 13x + 7(3 - x) . 12x -

(c) 18 -xq (g) -;oc = 7

(d) 8x - 11 . + 7x (h) 7x - 8x + 9x - 10x = 7 -

8 9 - 10

3. Solve each of the following inequations in (Q,+,.,<).

(a) 3x <

(b) -7x <

(c) 8 - 3x < 12

(d) < 15x - 4

(e) 7(x - < 4x

(f) 3x + 5 < 3

(g) 18 <

(h) 7x - 8x + 9 - 10 < 9x - 10x

4.

+ 7 - 8

Solve each of the following equations in (Z291+,).

(a) 15x + 23 = 8 (c) 8x + 5 = 13 - 22x

(b) 15x - 23 = -17 (d) 8(x - 2) . 19

5. Zond's competitor designed a cheaper cycle which costs

00 to make and sells for 09.50. If the competitor cuts

his fixed cost to $45,000, what is his break-even

point in sales?

4.15 Solving Quadratic Equations

None of the equations we have considered thus far have

contained symbols such as "x2," "02," "y2," etc. and each

equation has involved only a single variable. These equations

are examples of linear equations in a single variable. Without
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attempting to define such equations precisely we note only that

for all such equations there was an equivalent open sentence

of the type ."ax + b = c and a 0." The roster name of the solution

set is fc ; 13)

There are certain equations involving "x2" that can be

solved at this time. For instance, "x2 = 16" has solution

set (4, -4). The equation "x2 - = 0" has solution set (;),

3The equation "x2 + .gx = 0" has solution set (0, 71 which is

determined as follows:

(1) x2 +x = 0 if and only if x(x + i) = 0

(2) x(x +i) = 0 if and only if x = 0 or (x + i) = 0

(3) (x .) = 0 if and only if x

Furthermore, the equation "(x + IT)(3x - i) = 0" has solution

r 7 1 1
set 1-E, -J, obtained by reasoning similar to that just above.

But this last equation is a queer duck. It has two solutions --

not one like the linear equations--but does not seem to involve

any "x2" terms.

The following calculation involving the distributive

property shows that the equation is equivalent to one that does

involve "x2."

(1) (x + ;)(3x - 4) = 0 if and only if

(x + 8).3x - (x +:15)4 = 0 [Theorem 12]

(2) if and only if 3x2 + 2-13"x - - 7; = 0

[Theorem 2 and the commutative and distributive

properties in a field]

(3) if and only if 3x2 + -4x - -1:67 = 0.

This observation can be generalized to solve a wide range of
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quadratic equations in a single variable, those involving'x2" and

no higher power of "x."

Example 1. "x2 + 6x + 8 = 0" has solution set (-4, -2)

since the equation is equivalent to

"(x + 4)(x + 2) = 0" (check this as above)

and the latter equation is satisfied if and

only if x + 4 . 0 or x + 2 = O.

Example 2. "x2 + 3x - 10 = 0" has solution set (-5, 2) since

it is equivalent to "(x + 5)(x - 2) = 0."

These examples make it clear that solving quadratic

equations of the form "ax' + bx + c = 0" will be easier if you

develop some facility in writing these equations in factored

form.

An expression of the form "(x + a)(x + b)" is equivalent

to "x2 + (a + b)x + ab" as the following calculation shows.

(x + a)(x + b) = (x + a)x + (x + a)b

= x2 + ax + bx + ab

= 4- (a + b)x + ab

Therefore to factor an expression in the form "x2 cx d,"

we must find two numbers, a and b, such that a + b = c and

ab = d.

Example 3. For all x, x2 + llx + 24 (x + 8)(x + 3)

Since 8 + 3 .= 11 and 8 3 . 24.

Example 4. For all x, x2 - -x + 9 = (x - -;)(x ;) since

1 / I% 2 , 1% 1 1
-3 + ( -3) . -3 and k..-3)(-3) =

Example 5. For all x, x2 - 25 = (x - 5)(x + 5) since

5 + (-5) = 0 and (5)(-5) = -25.
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4,16 Exercises

1. Write each of the following expressions in an equivalent

"ax2 + bx + c" form. In some cases a, b, orl might be

zero.

(a) (x + 7)(x + 31)

(b) (x - i)(x +15)
(c) (x - 3)(x 3)

(d) (x - 8)(x + 22)

(e) (x + 8)(x - 22)

(f) (8 - x)(22 - x)

(g) (x + 3)(x - 3)

(h) (x + 5)(x - 4)

(i) (3x + 2)(4x + 5)

(j) (ix - 10)(24x + 4)

2. Factor each of the following expressions.

(a) x2 + 9x + 20

(b) xa - 9x + 20

(c) x2 + x - 20

(d) - x - 20

(e) xta - 8x - 20

(f) x21 + 12x + 20

3. Solve each of the following equations.

(a) x2 - llx = 0 (d) x2 - 16

(b) (x - ;)(3x + 4) = 0 (e) (x - 8)(x + 8) = 0

(c) 3x + 4x3 = 0 4x2 - 3x = 7x2 + lox

4. Solve each of the following equations.

(a) x2 + 8x + 15 = 0

(b) x3 - 6x + 8 = 0

(c) x3 + lix = 26

(d) x2 + 6x + 9 = 0

(e) x3 - 6x + 9 = 0

(f) x2 - 4x - 12 = 0

(g) x2 + 4x - 12 = 0

(h) x2 - 7x + 12 . 0

5. Solve each of the following equations.

(a) 3x - 7= 12

(b) 3x2 - 7x = 12x

(c) x- = Tgx _

(d) 7x2 - x= 7x2 + 3

(e) 8x + 3 - 4x = 7x - 12

6 7
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*6. Find the solution set of each of the following inequations.

[Hint: First solve the corresponding equations, locate the

roots on a number line, and then try numbers in the three

regions determined.]

(a) x2 + 3x + 2 < 0

(b) x2 + 5x - 14 > 0

(c) x2 - 25 < 0

(d) 3x2 - 4x + 1 < 0

7. Solve the following equations where the domain of x is

(Zxx,+,').

(a) x? -4 . 0 (c) xa + 3x + 4 . 0

(b) e + 3x + 2 = 0 (d) x2 - 3 = 0

Note: 5 is a root of (d) in (Z11,+,1 but is not a root in

(Q,+,1. Can you find another root of x2 - 3 = 0 in (41,+,.)?

Does (d) have any roots in (Q, +,.)?

*8. Try to solve each of the following equations by factoring.

Since the coefficient of e is not 1 in the quadratic

expressions, you might need factors of the form (ax + b)(cx + d).

(a) 3e= 14x + 8 . 0 (c) 42e + 6x + 2 = 0

(b) - 7x - 2 = 0 (d) 9x2 - 25 = 0

4.17 Summary

1. A field is any two-fold operational system (F,+,.) which has

the nine propertie3 enumerated in Section 4.1. The structure

of a field can be summarized as follows.

(a) (F,+) is a commutative group with identity 0.

(b) ("(OL.) is a commutative group with identity 1.
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(c) Multiplication is distributive over addition; that is,

for all a,b,c in F

a(b + c) (ab) + (ac).

2. The most familiar examples of fields are the rational

number system, (Q,+,.), and the finite systems (Zw+,.),

(Z3,+,11 (4,+,), and (Z7,+,'). Of these, only (Q,+,.) can

be ordered. In Q there is a relation, <, defined by Axioms

0 1 -- 0 4, which are listed in Section 4.10.

3. Some of the major field theorems are:

(a) For all a in F, a°0 = O.

(b) For all a,b in F, ab = 0 implies a = 0 or b = O.

(c) For all a,b in F, (-a)b = a(-b) -(a.b).

(d) Every equation of the form "ax + b = c" has solution

set (L-=
a

12) if a O.

4. Some of the major ordered field theorems are:

(a) If a and b are in F, then a > 0 and b > 0 implies

a + b 0 and ab O.

(b) If a,b, and c are in F, then a > b and c < 0 implies

ac < be.

(c) If a, b, c, and d are in F, then a > b and c > d

implies a + c b + d.

(d) For all x in F, xa > O.

5. In any field (F,+,.) subtraction and division are defined

as follows:

(a) If a and b are in F, then a - b = a + (-b)

(b) If a and b are in F and b 0, then

a
a + b = ab- .
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Many properties of subtraction and division follow from

these definitions and the properties of (P,+1), Some

of these are (where a, b, and c are in F):

(1) a + b = c if and only if a = c - b

(2) For b t0, a + b= c if and only if a= b.c

(3) 0 - a = -a

(4) For b 40, 1 b = b-1.

6. Summary item 3(d) allows us to find exactly one root for

each linear equation in one variable whose domain is F.

Also, item 3(b) allows us to find roots for some equations

involving "x2" such as "le - 4 = 0," "x2 - 3x - 10," = 0

and "(x - 2)(x + 3) = 0."

4.18 Review Exercises

Evaluate each of the following where a = 2, b = 5, and

c = 3 in (Z.7,+,).

(a) a 4 b (c) a° - 4bc

(b) b(-c)-1 (d) a b

2. Evaluate each of the following where a = 2 b

c = 15 in (Q,+,*).

(a) a 4 b (c) as - 4bc

(b) b.(-c)-1 (d) a-1.b-1

3. Prove each of the following theorems for any field (F,+,.).

(a) For all a in F, -(-(-a)) = -a.

(b) For all a,b,c in F (a 0), if ab = ac then b = c.

(c) For all x,a,b in F. (x - a)(x - b) = x2 - ax - bx + ab.

(d) For all x,a in F, (x - a)(x + a) = x2 - a2.
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4. Prove each of the following theorems for the ordtred field

(Qy+,,<).

(a) For all a,b, a < b implies a b < b.

(b) For all a,b, a < 0 and b> 0 implies oh < 0.

(c) For all a, a > 0 implies I. > 0.

5. Solve each of the following equations in (0 +,.).

(a) 1-6x - 11 = 23

(b) ix + 5 = lix - 13

(c) =0

(d) 3x' - 7x = 0

(e) + 17x + 72 0

(f) 2x1I + 10x + 12 = 0



Chapter 5

THE REAL NUMBER SYSTEM

5.1 The Equation x2 = 2

The rational number system, (Q,+,), is an ordered field,

the second step in an expension of the familiar whole number

system, (W,+,). In (W,+,) neither addition nor multiplication

satisfy the group properties and, as a result, simple equations

like x + a = b and xa = b have no whole number solutions.

Extension of W to Z and then to Q yielded an operational system

without these inadequacies; both (Q,+) and (QX(0),) are groups,

and in the system (Q,+,.) every equation of the form

a.x + b = c

has a unique solution (unless a = 0).

Many nore complicated equations have solutions in (Q,+,.).

For example, 3x - 7x + 23 = 145 - 18x has solution set (141 and

xl + 6x + 8 has solution set (-2,-4). But what is the solution

set of the equation = 2 in (Q,+,.)? This equation certainly

looks much simpler than the previous ones. How would you begin

to solve this problem?

You might guess at a whole number. But 12 < 2 and 22 > 2,

so you would be forced to guess again. A likely second guess

would be some rational number between 1 and 2. Try x = = 1.5.

= 2.25.

Since is too large, you might try = 1.25 or i = 1.4 next.

.!1.9 is close to 2, so your next choice might be close to ;.
Z5
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You might feel that you could find a rational number whose

sauare is 2, given a few more guesses. It may surprise or even

shock you to learn than, no matter how many guesses you make,

you will never find a rational number whose square is 2. The

solution set S = (x: x E Q and x2 = 2) is empty.

In order to convince you that this solution set is empty,

let us assume that it is possible to find an x E Q such that

X2 = 2 and show that this assumption leads to a contradiction.

It is a principle of logic, which you have encountered before,

that if an assumption leads to a contradiction, the assumption

must be false. Thus, if we reach a contradiction with our

assumption, we will be able to conclude that there is no x E Q

such til9t x2 = 2.

Theorem: (x E Q: x2 = 2) = 0

Proof: Assume there is an x E Q such that x2 = 2. Then

there are positive integers p and q, with q 0,

such that x = i. By substitution in "x2 = 2", we

get $2 = = 2. This tells us that p2 2q2.

Imagine the complete factorization of p into
3

primes. For example, if p = 600, then p = 2 .3.5;

if p = 252, then p = 22 32 7. Now consider

the complete factorization of pa into primes. If

p = 60G, then p2 = (600) (600) = (0.3.52)(0.3.52) =

26.32.54, whereas if p = 252, then (252)2 =

(252)(252) (22.32.7)(22.32.1
f = 24.3 72 In

general, no matter how many factors of 2 that

the prime factorization of p contains, p2 contains
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twice as many factors of 2 in its prime factor-

ization. Thus p2 must contain an even number

(possibly zero) of factors of 2 in its complete

factorization into primes. Similarly, q2 must

contain an even number (possibly zero) of

factors of 2 in its complete factorization into

primes. Thus 2q2, since it contains one more

factor of 2 than q2, it must contain an odd number

of factors of 2 in its complete factorization

into primes. Now, if p2 = 2q2, the Unique

Factorization Property would require that both

p2 and 2q2 have the same factorizations into

primes; in particular, both should contain the

same number of factors of 2. But 0 contains an

even number of factors of 2 while 2q2 contains an

odd number of factors of 2.

The assumption, that there is a rational number whose

square is 2, led to a statement which contradicts an established

principle of mathematics. The assumption must therefore be

false. There is no rational number whose square is 2.

Just as the equation x + 5 = 4 had an empty solution

set in (W0+0) and 2x = 5 had an empty solution set in (z,+,),

the equation x2 = 2 has an empty solution set in (Q,+,). The

extension to (Q1+,) is not sufficient to solve all equations

that might reasonably occur. The next section presents a

very different inadequacy of the rational number system, one

with a strong geometrical flavor.
234
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5.2 Exercises

1. For each of the following natural numbers n, find the

complete factorization into primes of n and of n2. How

many factors of 3 are in each factorization? What relationship

do you observe?

(a) 20 (b) 1t2 (c) 2250 (d) 270 (e) 891

2. (a) Use the Unique Factorization Property to show that the

solution set of each of the following equations is

empty in (Q,+,.).

(i) x2 = 3 (ii) x2 = 5 (iii) x? = 6

(b) Why doesn't the same reasoning apply to the equation

xa = 4?

3. Find the solution set of each of the following equations

in (Q,+,-).

(a) x2 + 122 = 132 (c) 82 + 312 = 172 (e) 12 + 12 = x2

(b) 34 + 4P = as (d) 22 + x2 = 22

Li. Find two elements in each of the following sets.

(a) tx: x E Q and 12 - x21 < .1)

(b) (x: x E Q and 12 - x21 < .01)

(c) Cx: x E Q and [3 ,e1 < .1)

(d) cx: x E Q and 13 - x21 < .01)

5.3 The Measuring Process

In Figure 5.1, you will find a square whose side has a

length of 1 unit, say 1 centimeter. What is the length of the
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d

1 cm.

Figure 5.1

diagonal, labeled "d", in the diagram? Mathematicians have

known since 500 B.C. that there is a relationship among the

lengths of the three sides of a right triangle. If "a" and

"b" represent the lengths of the two shorter sides of a

right triangle and "c" represents the length of the hypotenuse,

then c2 = a2 b2. This is called the Pythagorean property.

Applying this property to one of the two right triangles in the

square above, we see that

da = 12 +

d2 = 2.

The length of the diagonal is, therefore, a number whose square

is 2. However, in Section 5.1, we proved that fx: x E Q and

x2 = 2) = 0. This means that no element in Q is the measure of

d. What does this result imply? ;;hall we say that the diagonal

of this square has no length? Would you be willing to accept

this? In order to shed light on this situation, we examine

the process of measuring length of a line segment in terms of

a given unit length.

Suppose we want to measure the length of a line segment 0

using a unit segment u of length one centimeter. First, start

at point A and lay off a string of segments along AT, each
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congruent to the unit segment, until the end point of a segment

falls on or passes B. (See Figure 5.2.)

u

A

Figure 5.2

B
.

If (as in 5.2a) some collection of segments exactly covers

AB, count the number of segments used. This is the length

in centimeters of AB; in example 5.2a the length is 8 centimeters.

If (as in 5.2b) the last segment used goes beyond Fs,. count

the number of unit segments up to this last. This number is

not the length of AB, but a first approximation to the desired

length; in the case of 5.2b the lower approximation is 7

centimeters.

If the first step in the measuring process produced only

an approximation to the length of AB, label the end point of

the last counted segment "D". (See Figure 5.3.)

A
. DI'sI . .

Figure 5.3

The length of M. is ...ess than one centimeter. To obtain a

measure of the length of DB we use a new unit p with length

centimeter. We start at D and lay off a string of segments
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along DB, each congruent to new unit p, until the end point of

a segment falls on or passes B. (See Figure 5.4.)

A

A

D B
(a)

Figure 5.4

(b)

If (as in 5.4a) the resulting collection of segments covers

DB exactly, count the number of segments used. This is the

length in tenths of centimeters of DB and combined with the

measure of AD it gives the length of AB. In the case of 5.4a,

the length of DB is 70 centimeters and the length of Ag = 7 +

= 7.3 centimeters.

If (as in 5.4b) the last segment goes beyond B, count the

number of unit segments used up to this last. This number is not

the length of DB, but an approximation. Together with the length

of AD obtained in the first phase of measurement, it gives a

second approximation to the length of M. In the case of 5.4b

the approximation to length M
2

is centimeter and the approxi-

2
mat'Lon to length AB is 7 + Iu = 7.2 centimeters.

If this measuring process has still not produced an exact

length measure for AB, we label the end point of the last segment

"E" and repeat the procedure with a unit q of length Tuu centimeter.

At the end of this step we might get an exact measure for the

length of AB or a third approximation.

In the next few sections, you will see that if we continue

measuring AB by this process, we encounter one of two possibilities:

91 1Q
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(1) The process ends after a finite number of measurements,

in which case we have found the length of AB. For

example, if we used 7 segments each of length 1 cm.,

12 segments each of length 1-70 cm., 4 segments each of

1
0

length
10
--- cm.,.

1000
and 3 segments each of length ---- cm.

in order to reach just to point B, we have the centimeter

measure of Aff is 7 + Tg + + Triu = 7.234. Notice

7234
that 7.234 = 37-000 and is therefore a rational number.

If the measuring process does end, as in this example

what can you say about the length?

(2) The measuring process does not end; it produces an

infinite set of rational numbers each of which is viewed

as an approximation to the length of AR. These approxi-

mations would look as follows:

First approximation: k (k is the number of segments

of length 1 cm. used.)

Second approximation: k + al (a
1

is the number of
TU

1
segments of length To- cm. used.)

Third approximation: k + !tr+

a a
Fourth approximation: k + Tly + Tot +

If the measuring process does not end, how could we

then determine the length of AM Surely, we want to assign

a length to this segment. Is this length in centimeters

expressible by some number in the field of rational numbers?

The problem considered in Section 5.5 is developing a procedure

which will allow us to use the set of rational numbers produced

by the measuring process to assign a length to the segment.
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5.4 Exercises

1. Each of the following rational numbers represents the

centimeter length of a line segment. For each number, give the

set of rational numbers produced by the measuring process;

explain what each digit in the number represents.

Example: 7.031

The; measuring process produces the set: (7, 7.0, 7.03, 7.03]).

7 segments each of length 1 cm.; 0 segments each of length

1000 cm.; 3 segments each of length cm.; 1 segment of

length you cm.

(a) 6.1 (b) .32 (c) 47.503 (d) 2.15398

2, For each of the following sets, find a number in Q which

is greater than or equal to every element in the set.

(Assume the patterns in b and c continue.)

(a) (3, 3.7, 3.72, F.728) (c) (1, 1.7, 1.71, 1.717, 1.7171,...)

(b) (0, .9, .99, .999, .9999,...J (d) 0

3. For each of the sets listed in Exercise 2, find the smallest

number in Q which is greater than or equal to every element

in the set.

4. Use the Pythagorean relationship "c2 = + b2" to find the

missing length in each of the following:

(a) b = 3, c = 5 (b) a 10, c =26

(c) a = 7, b = 24 (d) a = 1, b = 1

(e) b= 15, c = 17

5. Find all integers x which satisfy the following inequations:

(a) 0 < TA.< (c) 0 < <
100 0

240 (a) o < wag <(b) o < <
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5.5 The Length of a Line Segment

The measuring process, when applied to a particular line

segment, produces a set of rational numbers. If the process

ends, then this set is finite and includes the length of the

segment. If the process does not end, then the set is

infinite and each rational number produced may be viewed as an

approximation to the length of the segment. We now seek a

general mathematical procedure which will allow us to determine

the length of a segment using this set of rational numbers generated

by the measuring process, whether finite or infinite. Let

T = Cl, 1.5, 1.52, 1.528,),

where T may be finite or infinite, be one such set arising

from the measuring process. Although we cannot establish a pattern

that will enable us to state the next element in T, we can say

several things about it. Each element in T is a rational number

which cannot exceed the actual length of the segment being measured.

(Why?) If we call the length "A" then, for each t in T we

know that t < A. A number that is greater than or equal to each

element of a set is called an upper bound of the set.

Definition 1. Let (F,+,,<) be an ordered field and let

S c F. An element b in F is an upper bound

of S if and only if for each sES, s < b.

If such an upper bound exists, then S is

said to be bounded from above.

The length of a segment is an upper bound for the set of

rational numbers which arises from the measuring process.

241



-237-

Consider set T listed above. Though we have listed only 4

elements in T, we may say that 2 is an upper bound of this set

since every element in T must be less than 2. (Why?) But

every element in T is also less that 10 or 20 or even 1.6.

So we see that if a set has one upper bound, it has many upper

bounds. The length of a segment is, therefore, one of the many

upper bounds that exist for a particular set of rational numbers

arising from the measuring process.

Which upper bound shall we choose? Suppose bl and b2 are any

two different upper bounds for set T. Thus, if tET then,

t 5 bl and t b2. Which of the two upper bounds is "closer"

to the elements of T? In other words, which of the upper

bounds, bl or b2, differs from the elements of T by a small

amount? Isn't it reasonable to expect the smaller of the two

upper bounds to be "closer" to the elements of T? What we

are looking for is the least upper bound of set T.

Definition 2. b is the least upper bound of set T if

and only if:

(1) b is an upper bound of T.

(2) If b' is any upper bound of T, then

b b'. (least upper bound is usually

abbreviated "1.u.b.")

The first property says that if b is to qualify as the least upper

bound of T, it must first be an upper bound of T. The second

property tells us that in order for b to be the least of the

upper bounds of T, it cannot exceed any other upper bound.

The preceding discussion suggests the following definition

of the length of a line segment:
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Definition 3. The length of a line segr:ent is the least

upper bound of the set of rational numbers

which arises from applying the measuring

process to the segment.

Now we have a procedure for finding the length of any given

line segment:

(1) Apply the measuring process to the line segment. If

the process ends, it generates a finite set S of

rational numbers, one of which is the actual length of

the segment. If the process does not end, it generates

an infinite set S of rational numbers, each of which

is an approximation to the length of the segment.

(2) In either case the least upper bound of set S is the

length of the segment. In Section 5.7 we will consider

several concrete applications of this procedure.

5.6 Exercises

1. Find an upper bound in Q for each of the following sets

(not all of which were obtained by the measuring process)

(a) (x: x E Q and )0 16} (d)

(b) 0 (e) (2,2.3,2.37,2.371,2.3718,...)

(c) (1,1.1,1.2,...,1.9) (f)
ri 3 4 5 6 7 1

-wy 3..

2. Find the least upper bound in Q of each of the sets in

Exercise 1.

3. Each of the following sets consists vf the rational numbers

produced by the measuring process as anproximations to the
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length of a line segment. In each case, find the

actual length, in Q, of the segment

(a) (2) (c) (7, 7.1, 7.14, 7.145)

(b) (.3, .33, .333, .3333,...) (d) (1, 1.6, 1.66, 1.666, 1.6668)

4. Let A and B be subsets of Q. Show that if A and B are both

bounded from above, then

(a) A U B is bounded from above.

(b) A n B is bounded from above.

Give an example to illustrate each of these statements.

5. Let A C Q. Prove that if x is an upper bound of A in Q

and if y E Q and y > x, then y is an upper bound of A.

6. Let A C Q. Let x, y E Q. Show that if x is a least upper

bound of A and y is a least upper bound of A, then x = y.

5.7 Three Illustrative Cases

In this section, you will encounter three cases that illus-

trate the use of least upper bounds to find the length of a

line segment. These cases also reflect different problems in

assigning a numerical value to this length.

Case 1. The measuring process ends.

Suppose the measuring process, when applied to a line segment

CD, produces the following finite set of rational numbers:

S =

4,

+
10 '

4 + ILO +

4 +
10

+
000
--5

1716 +1 '

4 + 7 + 3 + 5 +
8

MrTM5 10000 244
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In decimal fraction notation, we can display set S as

S = (4, 4.7, 4.73, 4.735, 4.7358).

Notice that set S contains only 5 rational numbers. This means

that in the fifth step of the measuring process, when laying off a

string of congruent segments, each of length
10000 centimeters,

the last point falls directly on point D of segment CD, elimi-

nating the need for further measurements. The length, in centi-

meters, of 0 is 4.7358.

What is the least upper bound of set S? It is easy to see that

4.7358 is an upper bound of S and that if x is any upper bound,

then 4.7358 < x. This means that 4.7358 is the least upper bound

of S. If A is any non-empty finite set of rational numbers and

if a is the greatest element in A, then a is the least upper bound

of A.

Case 1 shows that if the measuring process produces a finite

set S of rational numbers, then the greatest rational number

in S is both the length of the segment being measured and the

least upper bound of S.

Case 2. The measuring process may produce an infinite set

T of rational numbers approximating the length of

a line segment. It may happen that

(1) There is a rational measure for the given

segment.

(2) There is a rational least upper bound of T.

Let us consider a line segment EF whose length we know is

3- centimeter. If we follow the measuring process, with a unit u

of length 1 centimeter, we get the following set of rational numbers
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approximating the length of EF.

T = (0,0.3,0.33,0.333,0.3333,).

You may want to check the first few approximations yourself.

From your study of rational numbers you can deduce that 1 is

the l.u.b. of T.

In this case we knew the centimeter measure of a line

1
segment to be 3- even before we applied the measuring process

to the segment. We considered the infinite set T of rational

1
numbers produced by the measuring process and found that 7 is

the least upper bound of T.

Case 3. The measuring process produces an infinite set

of rational numbers approximating the measure

of a line segment. It may happen that there is

no rational number which represents the least

upper bound of the set.

Re-examine the problem of calculating length of a

diagonal in a square, the question posed in Section 5.3 which

initially led to a study of the measuring process. Instead

of considering just the case of a square whose sides have

length 1 centimeter, let us look at the side of any square

and at one of its two congruent diagonals (see Figure 5.5).

Suppose it were possible to find a common unit of measurement

for the side and the diagonal, whether it be a segment of

length 1 centimeter or 1 inch or of any other length. Then,

the length of the side of the square could be expressed as

an integral number of these units, say x units, and the length

of the diagonal as y units.
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y segments, each congruent to
a unit u

x segments, each congruent to
a unit u

Figure 5.5

By the Pythagorean property, we know that

x2 + x2 = y 2

2x$ = y2.

But, earlier in this chapter, we saw that for any positive

integers x and y, 2x2 y'. This means that regardless of

the unit used for measuring, it is impossible to express both

the length of a side and the length of a diagonal of a square

in terms of this unit. Thus we cannot express the ratio of

the length of the diagonal to the length of the side as a

rational number.

Now, consider a square with sides 1 centimeter long.

The measuring process pr)duces the following set of rational

numbers approximating the length of the diagonal.

A = (1,1.4,1.41,1.414,1.4142,)

The exact length of this diagonal cannot be expressed by a

rational number. More specifically, the centimeter length

of the diagonal is a number whose square is 2 and we have

shown that there is no such number in Q. Definition 3

?Xi



-213 -

states that the length of this diagonal is the least upper

bound of set A. But, while set A has many upper bounds in Q

such as 2, 42, and 7, there is no number in Q which is the

least upper bound of A. Set A is a non-empty set of rational

numbers which is bounded from above but which has no least

upper bound.

In Section 5.9, we will begin to see what can be done to

remedy this situation.

5.8 Exercises

1. Find the least upper bound in Q of each of the following

sets (assume that the pattern in (d) continues).

(a) (.3)

(b) (.3,.33)

(c) (.3,.33,333)

(d)

2 Find all integers x which satisfy the following inequations.

x 2
(a) 0 <10 < (c) 0 < <

15

x x
(b) 0 e rco- (d) 1000

2
3. Suppose you began with a segment CD whose length is

centimeters. Without doing any measuring, list the first

3 approximations to the length of CD that would be produced

by the measuring process.

4. Suppose the measuring process, when applied to a particular

line segment, does end. What can you say about the length

of the segment? Support your answer.

5. Express each of the following rational numbers as a decimal

fraction.
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, 1 2 475
(a) kb) 7 (c) (d) (e)

1000

5.9 The Real Number System

In each of the three situations studied in Section 5.7,

the length of a line segment was being measured. The

measuring process was always the same, but the sets of

rational numbers were quite different. We examined two aspects

of each situation:

(1) The set of rational numbers involved

(2) The least upper bound of this set (length of the

segment)

We were guided throughout our examination by Definition 3 which

states that the length of a given line segment is the least

upper bound of the set of rational numbers generated by the

measuring process. However, we observed that for one of the

three line segments, there is no rational number which is the

least upper bound of the corresponding set of approximations.

Thus, the ordered field (Q,+,,<) is inadequate to express

accurately the length of every line segment we encounter. In

other words, it is possible for us to have a non-empty set of

rational numbers which is bounded from above but has no least

upper bound in (Q,+,,<).

Overcoming this difficulty requires another extension of

the number system--this time from the rational numbers to a

new ordered field (R,+,.,<) called the real number system.

The real numbers contain the rational numbers as a subfield

and new elements to serve as least upper bounds for trouble-

0. 49
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some sets of rationals arising from the measuring process.

There would be little virtue in creating a new system to

supply least upper bounds for sets of rationals if the new

system produced new sets of numbers without least upper bounds.

Therefore, in the real number system every non-empty subset

of R that is bounded from above has a least upper bound in R.

For this reason, the ordered field (R,+,,<) is called

complete.

What kind of new objects are introduced by this extension

of Q to R? How are the new numbers to be named? What rules

govern operations and order in (R,+,,<)?

Let us turn our attention to the names of the real numbers

in R. First of all, remember that Q a R; every rational number

is a real number. We have already seen that some rational

numbers can be expressed by a terminating decimal fraction while

others have decimal fraction representations that are infinite

and repeating. For example,

1
'5

2 .4

.125

= .3333-

87..242424'
Each rational number, whether it is named by an infinite,

repeating decimal fraction or by a terminating decimal fraction,

is an element in R. Thus, .4, .325, .018016517,and .666E are

all elements in R. The bar "-" indicates the digits which

950
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repeat. For example:

.7 = .3333 = .33333, and .2-4. = .2474- = .242474-, etc.

We already know that R contains other real numbers which

are not in Q, that is, real numbers which are not rational

numbers. These real numbers are called irrational numbers.

For example, we saw that when measuring a diagonal of a square

whose side has length 1 centimeter, the measuring process pro-

duced the following set of rational numbers:

T=

We saw that there was no rational number which is the least

upper bound of T. If we denote this least upper bound by "A"

then we know £ E R, and that A is an irrational number.

However, we would like to be able to name this least upper

bound more explicitly than by calling it "A", perhaps in such

a way that the name would remind us of the elements of T.

Since we have listed only 4 elements in T, we are restricted

to these few rational numbers in naming A. We write

"A = 1.414..." The dots, as usual, indicate that the digits

in this decimal representation continue indefinitely, just as

the set T contains infinitely many elements. The fact that

no bar "-" appears indicates that no block of digits continues

to repeat indefinitely. Unfortunately the name "1.414..."

for A does not indicate any pattern which might be used to

determine the next digit in the decimal. If the list of

elements in T contained another approximation to the length of

the diagonal, then we would have

T = (1,1.4,1.41,1.414,1.4142,)

L- A1

at, al.
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and we would be able to name the least upper bound A by

"1.4142..." Thus, the name used for the least upper bound of

T depends upon the number of elements in the set actually listed.

In practice, if you wanted to use I in a problem involving

computations, you would "round off" this infinite decimal to a

finite number of places, depending upon the accuracy desired.

1.4142, for example, would be considered a more accurate approx-

imation to A than 1.414. The more accuracy needed, the greater

the number of approximations in T that must be considered.

We will name L another way in Section 5.11.

It appears that each real number can be named by a decimal

representation in one of the following forms:

(1) A terminating decimal such as .5 or 2.7518.

(2) An infinite, repeating decimal such as .717171 or

.1838383..

(3) An infinite decimal which does not repeat such as

.812574916638.... (Since there is no bar "-" we

cannot establish a pattern that will enable us to state

the next digit in this infinite decimal)

Since we could take any terminating decimal such as .7518

which is listed above, and write it as the infinite decimal

.75180005 where the zeros continue indefinitely to the right,

we are really able to view every decimal representation as an

infinite decimal. You will see, as you gain experience

working with real numbers, that some real numbers will have two

different decimal representations; that is, there will be two

infinite decimal names for the same real number. For example,

'J wt.
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"1.0000" and ".999997" both name the same real number, likewise

".41300000 and ".4129957 both name the same real number.

5.10 Exercises

1. For each of the following properties, tell whether the

property is true of W, Z, Q or R. A given property may

be true for more than one of these sets.

(a) For each positive element a in the set, there is a

positive integer N so that N > a.

(b) Every element in the set may be written as P. where

p, q are integers and q 0.

(c) Every non-empty subset which is bounded from above

has a L.u.b.

(d) Every element in the set has an infinite decimal

representation.

2. In each case, tell whether x represents a rational number,

an irrational number or neither.

(a) x E R and xi = 2. (d) x = 0

(b) x = .9817 (e) x = .66E6

(c) x E Q and x2 = 2. (f) x = y + 3 where y E R and y2 =

3. Prove that if a is an irrational number and b is a rational

number but b 0, then a b is an irrational number.

4. Give an example to show that the product of two irrational

numbers may be rational.

5. 1-rove that if x and y are both rational numbers, then x y

is a rational number.

6. For each of the following pairs of infinite decimals, tell

2.



which represents the greater real number.

(a) .4139; .407481 (c) .4; .4000 (e) 1.000; .997

(b) .333.; .3384888 (d) 0.3614; .36444'

7. In which of the following decimals do you know the digits

that follow?

(a) .474747 (d) 2.343...

(b) 8.37474... (e) 757575

(c) .12333 (f) .333

5.11 Some Properties of the Real Number System

Ordering of the Real Numbers

One way to order a pair of rational numbers is by

inspecting their corresponding decimal fraction representations.

Remember that

8.3 < 8.4, .2563 < .2567

and, in general, for two terminating decimal fractions

.alapase4 and .bib2b1b4,

you look for the first place (reading from left to right) in

which they disagree; the one which has the smaller entry in

that place represents the smaller number. This same procedure

may be used to compare any two decimals, infinite or terminating.

Example 1. Which is smaller, .7183946"' or .7184623?

Notice that the first three digits of these

infinite decimals agree place by place. The

fourth decimal place is the first one in which

they differ and 3 < 4.

Therefore, .7183946... < .7184623...
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Example 2. Which is smaller,.8163 or .8163419...? The

first decimal, though terminating, may be

written as .8163000. If we compare ".8163007"

and ".8163419..." we find that the fifth decimal

place is the first one in which they differ.

Since 0 < 4, we conclude that

.8163 < .8163419.

We mentioned, in Section 5.9, that certain real numbers

have two different infinite decimal representations. For

these numbers we will have to modify the above mentioned

procedure.

Example 3. We know that 1.00000 = 0.99997. Yet, if you

follow the procedure for comparing infinite

decimal representations, you will conclude

erroneously that 0.99997 < 1.0000U.

Example 4. We know that

.23000 = .229997.

Again, if you compare these decimals, place by

place, you will conclude erroneously that

.229997 < .230000.

When the bar is above a zero there are two distinct decimal

representations for the same real number. In all other cases if

x = .ala2a3a4'' and

y = .bib2bsb4'"',

you can decide which of the two decimals represents the smaller

real number by looking for the first place (reading from left

to right) in which they disagree; the one which has the smaller

nrr
je:c)(.70
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entry in that place represents the smaller number.

The equation "xn = a" in (R,+,,<)

Suppose that we are interested in the solution of the

equation x2 = 3. We know that the solution set A = (x: x E Q

and x2 = 3) is empty. (See Section 5.2, Exercise 2.) Let

us examine the solution set B = (x: x E R and x2 = 3). Consider

the following approximations to an element x in B. Since

12 = 1 and 22 - 4, we see that 1 < x < 2 Let us take 1 as a

first approximation to x. Since (1.7)2 = 2.89 while (1.8)2 = 3.24;

1.7 < x < 1.8.

Take 1.7 as a second approximation to x. If we continue this

procedure, we gaLerate the following set of approximations to

x:

C = (1,1.7,1.73,1.732,1.7320,).

We see that set C is non-empty and is bounded from above.

(Verify this statement.) By the completeness property of R, we

may say that the least upper bound A of C is in R. Using

the five approximations in C, we may name A as "1.7320'""

Notice again, that we cannot predict the next digit in "1.7320..."

without calculating another approximation in C. Since A* = 3

and 1 > 0, A is called the positive square root of 3 and is

written "A =NI-3." Thus, /3 E R. In the same way, we write

x =Ni5 if and only if x > 0 and x2 = 5. In general, if a and

b are real numbers and a, b > 0, then b is a positive square

root of a, written b = /a, if and only if b2 . a. The A of

Section 5.9 can be renamed, A .12. Also, b =Nr7 if and only

25
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if b > 0 and b2 = 7 and b = if and only if b > 0 and b2 =

Notice that if x = -,/7, then x2 = 7; x is called the negative

square root of 7. For every positive square root of a number,

there is also a negative square root which is the additive inverse

of the positive square root.

Each square root of a number mentioned above is in R. If

a is a positive real number, then the positive square root of

a (written Vie) and the negative square root of a (written

are in R.

In fact, if n is a positive integer and if a is a positive

real number, the equation xn = a has a unique positive solution

in R. This solution is written "x = Ria" or
1/n

a For

example, the solution to the equation x3 = 4, x = 4, is in

R; the solution to the equation x7 = 10, x = rair, is in R.

The Archimedean Property of (R,+,.,<)

Exam le 5. Is there a positive integer greater than the

real number 7.813942...? It is easy to answer

this question simply by naming one positive

integer, say 8, which is greater than 7.813942...

Example 6. Is there a positive integer greater than the

real number 128.171717? Again, we simply name

the integer 129, which is greater than 128.171717.

Example 7. Is there a positive integer greater than the

real number ./-3? Since 12 = 1 and 22 = 4 we

know that 1 <J3 < 2. In fact we have seen

that f3 = 1.7320... Thus 2 >
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Nnw let us state this idea in a more general form.

(1) Given any positive real number a, there is a positive

integer N such that N > a.

This statement is called the Archimedean Property of the complete

ordered field (h,+,<); consequently, the system of real numbers

is sometimes referred to as a complete Archimedean ordered

field. (Archimedes himself attributed this "Archimedean Property"

to Eudoxus, a contemporary of Plato (c. 350 B.C.).)

Sometimes the Archimedean property is stated in an apparently

different form. Before we state it, consider the following

problem.

Draw any two line segments. Let "m" represent the length

of one segment and "n" the length of the other. (See Figure

5.4(a).) We know that m E R and n g R. (Why?) Do you think

it is possible to lay off a string of congruent segments,

say N segments, each having length m so that the total length of

the segments is greater than n?

If we lay off a string of 11 congruent segments each

having length m, we get a segment ff whose length is greater

than n. (See Figure 5.4(b).)

An alternate form of the Archimedean property guarantees that

given segments of lengths m and n, we can always put together some

number of congruent segments, each of length m, to construct

a segment of length greater than n. This is stated more

succinctly as:
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(a)

Comparison of segments of length m and length n

m m m m m m m m m m m

(b)

11 congruent segments each of length m

Figure 5.6
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(2) If m and n are positive real numbers, there is a

positive integer K such that Km > n.

Actually, statements (1) and (2) are equivalent; that is, each

one implies the other. (See Section 5.12, Exercises 9 and 10.)

The following examples also serve to illustrate this alternate form

of the Archimedean property:

Example 8. Given a = and b = 17, is there a positive

integer N such that N ;- > 17? If N = 7,

.then 7 5 > 17.
2

Example 9. Given a =,/.2 and b . 20, is there a positive

integer N such that N */2 > 20? Take N = 20.

Since /-2 > 1, 20/2 > 20 1. Thus 20 V.2 > 20.

5.12 Exercises

1. List the following decimals in ascending order.

(a) 3.1847

(b) 3.19997

(c) 3.201

(d) 3.0227

2. Find five approximations to [5. How is the set of

roximations used to name #15 by an infinite decimal?

3. Which of the following represent rational numbers?

(a) .74321...

(b) Nn.3

(c ) 12 + Nr3

(d) Nr1.21

(e) 0

4. Prove that 4 + 3/2 is irrational.

5. For each of the following real numbers, find a positive

integer N such that N > x:
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(a) N/171 (b) +/7 (c) 6,43L (d) .4999 (e) ( rr)2

6. Indicate how the least upper bound of each of the following

sets is named:

(a) (1, 1.4, 1.41, 1.414, 1.4142,...)

(b) (0, 0.3, 0.33, 0.333,...)

(c) (3, 3.1, 3.14, 3.141, 3.1415,...)

(d) (6, 6.1, 6.16, 6.161, 6.1616,...)

(e) 11, 1.78, 1.783)

(f) Ql

7. Find the following square roots:

(a) f9 (c) Nrg5 (e)
(g)

(b) Nr4 (d)
(f) 17 (h) Nr0

8. Find the following square roots:

(a) Nr4 9 (c ) Nita 36 (e) V.0 16
4ig

(b) ',rib 4 (d) iNr.71776V (f) 25 (h)

9. Assume that if x is a positive rational number, you can

always find a positive integer N such that N > x. Prove

that if a and b are positive rational numbers, there is a

positive integer N such that Na > b. (Hint: Consider 114.)

10. Assume that if a and b are positive rational numbers, there

is a positive integer N such that Na > b. Prove that if

x is a positive rational number, there is a positive integer

N such that N > x. (Hint: Take a = 1.)
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5.13 Arithmetic of Irrational Numbers

In any field, equations of the type ax + b = c (a / 0) have

-
unique solutions given by the expression

c b
. For example,

the equation 3x + 12 = -18 has solution

-18 - 12
= -10 (1)

3

in (Q,+,). The equation (516)x + 4/ig = 7,TE2 has solution

702 4/1f
516

( 2 )

in (R,+,). The expression giving the solution in (1) was

easily simplified by application of arithmetic facts. But any

comparable simplification in (2) depends on knowledge of

arithmetic facts and rules involving irrational numbers.

In any field (F,+,), the distributive property of

multiplication over addition implies

ax + bx = (a + b)x.

Therefore, in the real number field,

7117 - Lhirj = 7 r17" + (-4 )./3.7

(7 + ( -4)JT

= 3/17.

And, in general

For all a, b, c in R, if b>0,

then a/b + c = (a + cub .

This rule for calculating with irrational nulilbers permits simplifi-

cations like

1V6 - 4/6 13/6,

14/-5 + 2r5 =
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-12/3 + 14/3 = 4/3, etc.

The following computations suggest another arithmetic rule

useful in simplifying expressions with irrational components

N/9/4= 3.2 = 6 =-/36 = N./9. 4

,194 = 3.2 = 2 = = -161:

Til 4 6 = 24 = ..157b = N/16.36.

The rule suggested by those examples is Nfafb NATE. But,

in each example, a and b were perfect squares of rational

numbers. Does the rule hold for #/72 and Ni3 and -/6?

(1) Nr2./-3 = N/-6 if and only if

-/-3 )2 = (N/ 6 )2 = 6.

(2) But (,/-2,./8)2 (s/-2,[)(f2/-3) (Why?)

= ([2f2) (f3/3) (Why?)

= 23 (Why?)

= 6.

A similar argument ctn be used to prove

For all a,b in R, if a > 0 and b > 0

then NJ-alb =Ntar.

This rule for calculating with irrational numbers permits simpli-

fications like

5/8 _ 5/4127-ff 10,

asira 3Nr216
5ib ye,

tax' ya = Nilkiaries/ril?

2xy/MT, etc.
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Another enticing conjecture about rules for manipulating

radicals is A/a + Nrb + h. But be careful: Complete the

following computations to check this tentative rule.

Nr4 + -19 = 2 + 3 71

A+ %/7 -= 5 + 6 Nr5-7:

+ NITE since Nil = 1 and ,../15 > 3.

As you can see, A/a + b for most real numbers a and b.

Question. Check some specific cases of these conjectures:

=Nia Nrb?
a Nra

Nrb.'

These rules for manipulating radicals permit simplification

of expressions and solution of equations in (R,+,°).

5.14 Exercises

1. Simplify the following radical expressions:

2. Write each of these expressions in equivalent radical form.

(a) 2f3 (= 411.13 = 4.1.2) (e) 2xyki5

(b) 719 ( f ) 3x2Nry

( c ) 3 Ai2 (g) 5a2b3

(d) 5 3.../75.14-
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Solve each of the following equations in (R,+,).

3. 7,1-3x + 8 . 14

4. 5x - 3,i2x lai2

5. x2 - 5x = 14

6. 4x2 - 9 = 0

7. x2 - 12 = 0

8. 3x2 - 17 = 12

9. x2 + Px + 20 = 0

10. 4x2 + 7x - 12 =3x2 + 15 + x

11. N/37r = + 5

12. 'Tx' - 12x + 32 = 0

Prove.

*13. If a,b are real numbers greater than or equal to 0,

ig Nra

%5

14. Nrb - b for some a,b in R.

*15. If a,b are real numbers greater than or equal to 0,

515 =

5.15 Summary

In this chapter we introduced the real number system

(R,+,,<). This system is an ordered field which contains the
-or

ordered field of rational numbors as a subset. An essential

difference between the two systems is the completeness property

of (R,+,,<).

1. The ordered field (Q,+,,<) is inadequate to answ'r certain

mathematical problems we encounter. In particular:

(a) The equation x2 = 2 has an empty solution set in
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(Q,+,',<).

(b) There is no number in Q which expresses the length of

a diagonal of a square whose side has a length of one

unit.

2. An examination of the process we use to measure the length

of a line segment indicated that a set of rational numbers

is produced. If the process ends, the set is finite and

includes the length of the segment. If the process does

not end, then each rational number is an approximation to

the length of the segment. We saw that, in all cases,

the length of the segment being measured could be defined

as follows:

The length of a line segment is the least

upper bound of the set of rational numbers

which arises from the measuring process,

3. We considered several cases in which the measuring process

was applied to various line segments and observed that

there was not always a rational number to measure each

length. Thus, certain sets of rational numbers produced

by the measuring process do not have a least upper bound

in (Q,+,,<).

4. To overcome this difficulty we introduced a new ordered

field (R,+,,<) in which every set of rational numbers

arising from the measuring process would have a least upper

bound. Thus, in this new ordered field, we can measure the

length of every, line segment. Since some line segments

have rational numbers as measures, Q c R.
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5. The elements of R are called real numbers. Since Q c R,

some real numbers are also rational numbers. Those real

numbers which are not rational numbers are called

irrational numbers.

6. (R, +, , <) has the Archimedean Property,

7. If n is a positive integer and if a is a positive real

number, the equation xn = a has a unique positive solution

in R.

5.16 Review Exercises

1. Let n be a natural number which contains 6 factors of 2

in its complete factorization into primes. For each of

the following numbers, determine the number of factors

of 2 in its complete factorization into primes.

(a) 2n (b) n2 (c) (d) n3

2 Prove that 712 is not a rational number. (Hint: Assume

there are integers p and q, q 0, so that E = 712.)

3. Prove that the solution set (x: x E Q and x3 = 17) is empty.

4. What does it mean to say that (Q,+,.) is inadequate to

solve an equation?

5. Find the length of a diagonal of a square whose side has

a length of:

(a) 2 cm. (b) 5 cm. (c) 12 cm. (d) a cm.

6. Let "d" represent the centimeter length of a diagonal of

a square whose sides have length 1 cm. How many congruent

segments each having a length of d centimeters, would you

`)67
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have to use if you wanted to form a segment whose length

would be greater than 10 centimeters?

7. Find four approximations to O. For example Since 22 < 7

but 32 > 7, 2 is the first approximation.

6. Find the least upper bound in (Q,+,,<) (if there is one]

of each of the following sets: (assume that the pattern

continues in parts (a) and (b))

(a) (1, 2, 3, 4, 5,...) (c) (7, 7.1, 7.13, 7.138)

(b) ;,...) (d) (x: x E Q x2 < 7) .

9. (a) Find an upper bound far 0 in (Q,+,',<); in (R,+,',<).

(b) Find the least upper bound of 0 in (Q,+,,<); in

10. Now that you have worked with the definition of an upper

bounc, and the least upper bound of a set S in an ordered

field (F,+,,<), suggest a definition for:

(a) x is a lower bound of S.

(b) x is the greatest lower bound of S.

11. Suppose the measuring process produced the following infinite

set of rational numbers: S = (0, .1, .11, .111, .1111, ...)

where the indicated pattern is assumed to continue indefinitely.

(a) What is the next approximation in S?

(b) Is there a greatest rational number in S?

(c) Give an upper bound of X.

(d) What would you guess is the least upper bound of 5?

12. For each of the following equations, represent its positive

real number solution:

(a) x2 = 13 (b) x3 = 8 (c) x5 = 25 (d) x5 =
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13. Which of the solutions in Exercise 11 are rational?

14. Explain why the least upper bound of a finite set of

rational must be a rational numbers.
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CHAPTER 6

COORDINATE GEOMETRY

6.1 Introduction

You saw in Chapter 3 (Section 3.6) that if we replace "point"

with "commando," "line" with "team," and "plane P" with "the com-

mando squad" we obtain a system that satisfies the incidence

axioms. In fact, you saw that there are other meanings for lines

and points which also result in models that satisfy those axioms.

It is therefore clear that those axioms are not sufficient by

themselves to characterize points and lines as we ordinarily

think of them. In this chapter we add three more axioms to our

list of axioms. This increased collection of axioms will indeed

characterize the lines and points of our experience, and some of

the models which satisfied the incidence axioms will not satisfy

the six axioms. We are going to be guided in our choice of the

additional axioms by our experiences with rulers and with our

enlargement of the rational number system to the real number system.

This does not mean that we are making obsolete the theorems

we proved in Chapter 3. In fact, they are still in force and

are available in our continuing study of geometry in this chapter.

We repeat the incidence axioms here for convenient reference.

Recall that y was the name of the plane.

Axiom 1. (a) Plane 7T is a set of points, and it contains

at least two lines.

(b) Each line in plane 7T is a set of points,
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containing at least two points.

Axiom 2, For every two points in plane r there is one

and only one line in r containing them.

Axiom ":;. For every line m and point E in the plane v,

there is one and only one line in r containing

E and parallel to m.

6,2 Axiom 4. Uniqueness of Line Coordinate Systems

As we said, our experiences with rulers suggest this axiom,

Suppose you wish to draw a ruler on a line. You start with

an mmarked line, as in Figure 6.1,

Figure 6.1

assuming it to be endless. Then you choose any two points, call

one 0 and the other I. Perhaps the line then looks like Figure

6.2,

0 I

Figure 6.2

or perhaps like Figure 6.3.

Figure 6.3

Then you assign 0 (zero) to 0 and 1 to I. Having done this

you will have no other choices in assigning all other real numbers
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to points of the line. For the ruler in Figure 6.2 some of the

assignments are shown in Figure 6.L..

_1
-1 7 0 1 A/7 2 3

4 )P

0 I

Figure 6.4

For the ruler in Figure 6.3 these assignments are shown in

Figure 6.5.
_1

3 2 'If 1 0 -1

I 0

Figure 6.5

In assigning a different number to each point we are actu-

ally assuming that there are as many points on a line as there

are real numbers. Only under this assumption can we set up a

one-to-one correspondence between the set of points on a line

and the set of real numbers. Recall that Axiom 1(b) tells us

that each line contains at least two points. Axiom 4 adds in-

formation about the number of points on a line. But it does

more than that. It says also that once you have chosen the two

points to which are assigned 0 and 1, there is exactly one

way to make all other assignments of numbers to points, in

order to get the one-to-one correspondence in which we are

interested. Of course there are many on-to-one correspondences

between a line and a set of real numbers, even after 0 and I

have been chosen. In Figure 6.6 we indicate some of these one-

to-one correspondences,
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0 I

-1 0 1 2 -2

0 I

-1 0 1 -2 2

0 I

2 0 1 -1 -2

Figure 6.6

but not all of them are acceptable. Let us call the acceptable

one-to-one correspondences coordinate systems on a line. We

are now ready to state Axiom 4 precisely.

Axiom 4. For each pair of distinct points A and B of

a line there is exactly one coordinate system

on that line in which A corresponds to 0 and

B corresponds to 1.

The line coordinate system described in Axiom 4 is called

the A,B-coordinate system on the line, taking its name from

the ordered pair of points (A,B), called the ba3e. A and B

are called the base points. The point A that corresponds to

zero is called the origin and the point b that corresponds to

one is called the unit-point. The number assigned to a point of

AB is called its A,B-coordinate.

These terms are illustrated in Figure 6.7. Note that there

are two coordinate sysems indicated on one line. (A,B) is the

base of one. What is the base of the other?

2 1 0

-1 0 1 2 3 4

D A

Figure 6.7 273
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In the A,B-coordinate system the origin is A, the unit-

point is B and the AsB-coordinate of C is 2. In the F,C-coordi-

nate system, the origin is F, the unit point is C and the F,C-coordi-

nate of A is 2.

Definition. Let line 4 have an A,B-coordinate system and

let P and Q be any two points cf A. Suppose

their A,B-coordinates are p and q respectively.

Then the number given by 1p - ql is called the

A,B-distance between P and k,

Examples. In Figure 6.7 the A,B-distance between C and E

is 12 - 31 = 1 = 13 - 2( which is the A,B-distance

between E and C.

Theorem 1. (a) The A,B-distance between A and B is 1.

(b) The A,B-distance between P and Q is equal

to the A,B-distance between Q and P.

(c) The A,B-distance between P and Q is equal

to 0 if and only if P = Q.

Proof. Exercise.

6,3 Exercises

In these exercises assume that all line coordinate systems

look like the number lines you have been using.

1, Assume an 0,I-coordinate system. What is its origin?

What is its unit-point? What do you think is the 0,I-

coordinate of the midpoint of OI?
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-j
12. (a) Draw a horizontal line; on it choose two points inch

apart; call one A, the other B. Locate the points whose

1A,B-coordinates you think are -1, 2, 1/2, -21 ,

(b) Draw another line below AB, and name tha points below

A and B, C and D respectively. On this line locate the

points whose D,C-coordinates you think are -1, 2 37
'

-23,

3. In this exercise use the diagram below, assuming that the

points named are evenly spaced.

A

(a) What is the C,D-coordinate of E? of B?

(b) What is the 1),C-coordinate of E? of B?

(c) What is the B,D- coordinate of F? of G?

(d) What is the G,D- coordinate of A? of E?

(e) What is the AsG.coordinate of B? of E?

4, Tell whether each of the following statements is true or false.

In each, A Bs and C are names of distinct points on a line A.

(a) There is exactly one coordinate system on A that has A

as origin.

(b) For each choice of a point X on A, other than A, there

is a different A,X- coordinate system.

(c) For each choice of a point Y on A, other than B, there

is a different Y,B-coordinate system.

(d) There are as many coordinate systems on a line as there

are ordered pairs of distinct points on the line.

(e) There are exactly two coordinate systems whose base

points are found in the set (A,B), if A B.
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(f) There are exactly three coordinate systems on line A

whose base points are found in the set [A,B,C).

(g) There is exactly one po1.nt on line A whose AO-coordinate

is 2562,8,

(h) There is no point on line A whose AO-coordinate is

the same as its B,A-coordinate.

5. We defined the AO-distance between points P and Q with

A,B-coordinates p and q to be 1p - ql.

(a) Prove Theorem 1.

(b) Find possible coordinates of S on AB if the A,B-distance

from S to B is twice the A,B-distance from S to A,

6.4 axiom 5. Relating Two Coordinate SysteasonaLlE2

If we brought together an inch-ruler and a foot-ruler,

edge to edge, as shown in Figure 6.8, they would suggest two

coordinate systems on a line
i - coordinate system

01 6 12 18 24 3o 36

o 1 1 2 3

2
f - coordinate system

Figure 6.8

Note that they have the same origin, but not the same unit-

point. Let us call them the f-coordinate system (foot) and

the i-coordinate system (inch). Can we relate the two coordi-

nates of any point? No doubt you see that the i-coordinate of

each point is 12 times its f-coordinate. This suggests that

the set of f-coordinates can be mapped onto the set of i-

coordinates by a dilation given by i = 12f. (This applies
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to all i- and f-coordinates, including negative numbers.)

Let us move the inch-system to the right a distance of

6 inches. Then the two systems appear as in Figure 6.9.

- coordinate system

-18 -6 01 6 12 18 24 3o

0 1 1 1
1-2

2
2-1

3

2

f - coordinate system

Figure 6.9

To distinguish the two inch-systems, let us call the one

shown in Figure 6.9 the it-coordinate system. If we map
d

f-coordinates by the dilation d used above with rule f 12f,

then we note the following:

d d d
1

-1 -12, 0$ 1.12, lf 18, 2 -----.24.

Do you notice that each image has overshot the 11-coordinate

in Figure 6.9 by 6? This can be corrected by a Lranslation, call
t

it t, having the rule x x - 6.

The composition of the dilation d followed by the trans-

lation t maps f-coordinates onto it-coordinates. For each

value of f the succession of images can be written

d t

f 12f - 6.

Therefore

t o d
12f - 6.

The rule for converting f values in Figure 6.9 to i' values is

therefore

= 12f - 6.

Check this result with f = 2, with f =
orn
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Recall that I! represents coordinates in an inch-coordinate

system and f represents coordinates in a foot-coordinate system.

If we generalize what we found for these two coordinate systems

to any pair of coordinate systems on a line we have Axiom 5.

But we must know how to generalize the formula = 12f - 6

correctly. To do this we consider any dilation followed by any

translation, both on the same line. Any dilation has a rule of

the form x-4-ax, where a is any nonzero real number; and any

translation has a rule of the form x--- -x + bo where b is any

real number. The composition of both mappings then has a rule

of the form

x + b.

Letting x represent the coordinate of any point on the line in

one system, and x' its coordinate in the other system, we can

write

x! = ax + b.

We now state Axiom 5 precisely.

Axiom 5. I: (A,B) and (A!,B!) are bases for coordinate

systems on a line, then there is a relation

x! = ax + b with a 0 which, for each

point X of the line, relates its A,B-coordinate

x to its AI,B0-coordinate x'.

The composition of a dilation and a translation on a line

is known as an affine mapping or affine transformation on a line.

Axiom 5 therefore says that the 000rdinates of a line coordinate

system can be mapped onto the corresponding coordinates of any

coordinate system on that line by an affine transformation.

Knowing that there is such a transformation is not the

(118
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same as knowing what it is. But it helps as we show with an

example. Suppose we are given two coordinate systems, as shown

in Figure 6.10, and we call the coordinates

x - coordinates

-1 0 1 2 x' - coordinates

A

Figure 6.10

shown above the line the x-coordinates, and those below the

x' -coordinates. We seek a value of a and a value of b such

that for the coordinates x and x of each point, x' = ax + b.

Axiom 5 tells us there are such values, so we start with

x' = ax + b. Choosing a point on the line, say A, we replace

x and x' by the two coordinates

of A. This gives us equation (1).

A second point, say B, yields

equation (2). As you will see,

these two equations are sufficient

to lead us to determining the val-

ues of A and b. Lock at equation

ax + b

( 1 ) 0 = a(4) + b

(2) 1 = a(0) + b

(3) 2a = b

(4) 1 = b

(5) 22-la

(6) a = 2

(3) and tell how it was obtained from equation (1). How is equa-

tion (!4) obtained from (2)? Equation (!4) tells us that b is 1.

Using this information show how equation (5) follows from (3).

Finally (6) tells us that a is 2. The formula that should relate

the x-coordinates to x' -coordinates is

x! = 2x + 1.

1
Check it with x = -1, with x = 17. If you wish to interpret

279
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the affine transformation that maps x-coordinates onto x'-coordi-

nates, you can see from the formula that it is the composition

of the dilation with rule 2x, followed by the translation

with rule x + 1. Try to explain how this was determined

from the formula x' = 2x + 1.

Let us look at another similar problem. The data for this

problem are given in Figure 6.11.

4 2 0 -2 x - coordinates

1 2 3 4 xi - coordinates
A

Figure 6.11

We start with x' = ax + b.

The coordinates of A lead to equa-

(1)

(2)

1 = a(4) + b

2 = a(2) + b

tion (1). The coordinates of B lead (3) 1 - 4a = b

to equation (2). Equation (5) says (4) 2 - 2a = b

that 1 - 4a and 2 - 2a are equal,

the reason being that each is the

(5)

(6)

1 - 4a = 2 - 2a

-1 = 2a

same as b. Study the rest of the (7) a = 1

solution. Finally we see

1

(8) b = 1 - 4.-1) or 3

xl = + 3.

Check with x = 0, with x = -2. Describe the affine transformation

in terms of a dilation followed by a translation that maps x-

coordinates onto corresponding x'-coordinates

6.5 Exercises

1. The relation between x-coordinates and x' -coordinates in two

2S0
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systems on a line is x' = 3x - 1.

(a) The x-coordinate of point A is 2. What is its x' -

coordinate?

(b) The x-coordinate of B is 4. What is its x' -coordinate?

(c) The x'-coordinate of C is 8. What is its x-coordinate?

(d) The x'-coordinate of D is -22. What is its x-coordinate?

(e) Find the x'-coordinate of the point whose x-coordinate

is 3000.

(f) Find the x-coordinate of the point whose x' -coordinate is

3000.

(g) Find the x' -coordinate of the point whose x-coordinate

is 10.

(h) Find the x-coordinate of the point whose x' -coordi-

nate

(i) Find the x-coordinate of a point whose x- and x'-

coordinates are equal. (Hint: let x' = x.)

(j) Find the x-coordinate of a point whose x'-coordinate

is twice its x-coordinate.

2. Do Exercise 1 for the two coordinate systems on a line with

1
x- and x' -coordinates, if x' =

2
x + 3 relates the x

coordinate of any point on the line with the x' -coordinate

of that point.

3, For each pair of coordinate systems on a line indicated below,

find the formula that converts the x-coordinate of each

point to its x' -coordinate. Check each formula with data

not used in deriving the formula.
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(a) -3 -2 -1 0

0 1 2 3

(b) 6 7 8 9

-3 -2 -1 0

(c) -2 0 2
4

2 0 -2

(d) 2 1 0
. .

4 2 0

1

(e) x: 0 3
4

XI : 0 1

(g) x: 2 4
4

X1 : 0 1

(i) x: -50 0
..

V : 100 200

-277-

1 x - coordinates

4 x' - coordinates

10 x- coordinates

1 - coordinates

x - coordinates

xt - coordinates

-1 -2 x - coordinates
-----,

-2 -4 xl - coordinates

2
3 (0

+
2

6 (h)
---+

2

50 (j)
-.----1.

30o

x: o 3 6
4--.--

xt : -1

x: -1

-4

0

s

-7

1
4

xi :

x:

6

14

4

15

4,
2

16
4

xl : -8 -6 -4

4. A B C D E
,c

-2

4
7

-1

1

0

2

7

1

7
1

2

0

x - coordinates

y- coordinates

The diagram above indicates two coordinate systems on

a line. Let x be the 0,D-coordinate of a point andlLthe

E,B-coordinate of the point.

(a) Find a formula that converts x-coordinates to y-

coordinates.

(b) Find a formula that converts Y-coordinates to x-

coordinates.
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A B C D E
4

-2

2

-2

-1

3-
c

0

0

1

2

1

2

1

4

2

0

6

x - coordinates

y- coordinates

z- coordinates

The diagram above indicates three coordinate systems

on one line. Using the data shown find a formula that converts

(a) y-coordinates to x-coordinates.

(b) z-coordinates to x-coordinates.

(c) z-coordinates to y-coordinates.

(d) x-coordinates to z-coordinates,

(e) ?c-coordinates to y-coordinates.

(f) y-coordinates to z-coordinates.

0 100 Celsius C

32 212 Fahrenheit F

Let the diagram indicate a thermometer with the Celsius

(Centigrade) and Fahrenheit scales showing the freezing and

boiling points of water. Assume that each scale is a model

of a line coordinate system.

(a) Find a formula that converts C-coordinates (Celsius

readings) to F-coordinates (Fahrenheit readings).

(b) Find a formula that converts F-coordinates to C-

coordinates.

Using the formulas found in a or b, find

(c) the Fahrenheit reading that corresponds to the Celsius

reading of 50, -20, 1000.

283
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(d) the Celsius reading that corresponds to the Fahrenheit

reading of 50, -la, 2000.

(e) Find the reading for which the F- and the corresponding

C-coordinates are the same.

(f) What is the F-coordinate which is 20 more than its

corresponding C-coordinate?

(g) What is the name that describes the kind of mapping

that relates Fahrenheit and Celsius readings?

7. Given two points A,B. Find the formula that converts A,B-

coordinates to B,A-coordinates and find the point whose

A,B-coordinate is the same as its BA-coordinate.

8.

4 2 x - coordinates

-5 3 xt - coordinates
P Q

Using the data indicated in the above figure, find the

x' - distance between P and Q and the x-distance between

P and Q. What is the ratio of these distances? Find the

formula x' = ax + b that converts x-coordinates to x'-

coordinates and show that the distance ratio is equal to lad.

9. Let points P and Q have coordinates p and q in some coordinate

system on PQ, with base (A,B). Let P and q have coordinates

p' and q' in another coordinate system with base (A1,B'),

and let x' = ax + b convert A,B-coordinates to A' ,B'-

coordinates. Prove that the AI,B'-distance between P and Q

is lal times the A,B-distance between P and Q.

6.6 Segments, Rays, Midpoints

We usually think of segment AB (where A B) as the set

284
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consisting of A, B and the points of AB between A and 3. Up to

now the word "between" has not been defined mathematically;

rather we have thought of betweeness of points intuitively, in

terms of physical models of points and lines. In this chapter

we can define the betweeness relation for points in a line

formally, without relying on properties of physical models.

Definition. Point P is between two points A and B,

if the A,B-coordinate of P is between

0 and 1.

Definition. If P Q4 then segment PQ is the set of

points consisting of P, Q and all points of

PQ that are between P and Q. P and Q are

called endpoints of the segments the points

between P and Q are called interior points of

the segment.

We can think of AB as the set of points whose coordinates

x satisfy 0 < x < 1 in the A,B-coordinate system.

Note that we use Axiom 4 to introduce the coordinate system

in which A and B have coordinates 0 and 1 respectively, and then

we rely on our knowledge of the betweeness relation for numbers,

in terms of inequalities.

Thus, if p is the coordinate of P in the A,B-coordinate

system, then P is between A and B if and only if 0 < p < 1,

But you probably ask, suppose we look at A, B, and P from the

point of view of another coordinate system in which the coordinate

of P is between the coordinates of A and B in the second system,

will P be between A and B? Axiom 5 helps to answer this question.

9S5
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We show how with a particular example. Suppose A and B .lave

coordinates 7 and -3 as shown in Figure 6.12, and P has a coordinate

x between 7 and -3.

A

7 -3 x - coordinates

0 1

Figure 6.12

Will P be between A and B, as defined above? To answer we

should find the A,B-coordinate of P. To do this we first

find the formula x' = ax + b that converts'the x-coordinate

of A to 0 and the x-coordinate of B to 1. This means finding

an a and a b such that 0 = a7 + b and 1 = a(-3) + b. Solving,

as we d:',d in Section 6.4, we get a = 4 and b = 4. The co-

ordinate of pox, satisfies condition (1) at the right. Now

we convert x-coordinates to A,B-coordinates by the formula:

1 7A,B-coordinate = 37x + (1) -3 < x < 7

The first step is to multiply by (2) -4 < <

10°
This produces (2). Why is (3) 0 < 70x + < 1

111..
the order reversed? Then adding

7755, we get (3), which shows that

the A,B-coordinate of P is between 0 and 1. We conclude that

P is between A and B, in accordance with our definition.

The definition we gave for a line segment is now on sound

mathematical ground. Moreover, we can use any coordinate system

to define a segment. For instance, using x-coordinates in

Figure 6.12 we can say:

286
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AB is the set of points whose x-coordinates sati:Xy

the condition -3 < x < 7.

Or we can say

AB is the set of points whose A,B-coordinates x' satisfy

the condition 0 < x' < 1.

We can also use Axioms 4 and 5 to give a precise definition for

ray.

Definition. If P and Q are distinct points of a line A,

then the subset of whose P,Q-coordinates

x satisfy the condition x > 0 is called a ray,

designated PQ. The point P is the endpoint

of the ray, and all of its remaining points

are called interior points of the ray.

If we convert these x-coordinates by the dilation with

formula x' = -x, we are led to another coordinate system with

the same origin as the x-coordinate system. Applying our

definition of a ray to the x'-coordinate system we see that

the set of points with x' -coordinates satisfying xl > 0 is also

a ray. Thus the point P serves as a common endpoint of two

rays whose interiors have no points in common. Naturally, we call

them opposite rays.

4

Q' P Q

Figure 6.13

PQ and PQ' are opposite rays

28'7
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We know now that the coordinates x of the points of PQ

satisfy the condition x > 0 in the P,Q-coordinate system on

PQ. You might reasonably ask what condition these coordinates

would satisfy in other coordinate systems on PQ. By Axiom 5,

the coordinal- x' of a point in another coordinate system is

related to the coordinate x of the same point in the P,Q-

coordinate system by an affine transformation x' = ax + b, with

a 0. Thus a < 0 or a > 0. In either case x > 0. Computing:

x > 0

a > 0

x > 0

a < 0

ax > 0 ax < 0

ax + b > b ax + b < b

(Do you see why x > 0 and a < 0 implies ax < 0?) We conclude that in

any coordinate system, the points of PQ satisfy a condition

x > b or x < b (but not both).

If you look back at Course 1, Chapter 10, Section 10.2,

you will find that we first introduced rays there, and then

defined AB as AB fl BA. In this chapter AB and BA are the sets

of points whose AA-coordinates satisfy x > 0 and x < 1, respec-

tively. (Verify this.) Thus in this chapter, AB fl BA is the

set of points whose A,B-coordinates x satisfy 0 < x < 1, which

is of course AB.

Theorem 2. If C is between P and Q, then the

A,B-distance between P and C, plus the

A,B-distance between C and Q, is equal to

the A,B-distance between P and Q.

The "then" part of this theorem can be written PC + CQ = PQ.
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Proof. Exercise

You have probably anticipated the definition of a midpoint

of a segment.

Definition. The midpoint of TE is the point whose

A,B-coordincte is
1

But you will probably ask, what wall its coordinate be in any other

coordinate system? Let us see. Suppose in tha xi-coordinate

system the x'-coordinates of A and B are respectively a and b.

(See Figure 6.14)

a

A

0

b x'-coordinates

1

2 1 x-coordinates

Figure 6.14

You can check that x' = (b - a)x + a converts x-coordinates

to x'-coordinates. What is x' when x = 0? when x = 1? Thus

the x'-coordinate of the mid-point of AB is found by replacing

x by 2.
a

2+ bShow that the result is x' = . This proves a

theorem we shall find useful.

Theorem 3. (Midpoint) If the coordinates of A and B are a

and b respectively in some line coordinate system,

then the coordinate of the midpoint of AB, in that

+ b
system, is

a
2

b+
You can recall this formula easily if you think of as 2

---- as the

mean or average of a and b.
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-1 0 1 2

1. Using the data indicated in the above diagram for a

line coordinate system, and letting x represent coordi-

nates in that system, write the inequality or equality

that is satisfied by the coordinate(s) of the points

in each of the following:

(a) AC (b) AD (c) DC (d) AD

(e) CA (f) CB (g) the midpoint of AC

(h) the midpoint of AD (i) AC n BD (j) AC u CD

2, Find the x-coordinate of the midpoint of AB if the

x-coordinates of A and B are the following pairs of

numbers:

(a) 3 and 8 (b) -3 and 8 (c) -3 and -8

(d) 3 and -8 (e) 152 and -152 (f) and 1

(g) -22 and 3. (h) 8,2 and -3.6 (i) 41 and NO

3. In a certain coordinate system the coordinate of A is

3, Find the coordinate of B if the midpoint of AB has

coordinate:

(a) 8 (b) -8 (c) 0 (d) f2

4, Below are sets of three points on a line. Each is

accompanied by its coordinate in a certain coordinate

system on the line. For each set tell which point is

between the other twc.

( a) A -12, B -4, C 1. (b) P 421 Q R 1.5.
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(c) L M -3.5, N -3.4. (d) DNi2 -Nr2, E 0,

F Nr3 -

5. Consider three coordinate systems on a line, the first

having x-coordinates, the second y-coordinates, and

the third z-coordinates. If the formula y = 3x - 2

converts x- to y-coordinates and the formula z = + 1

converts y- to z-coordinates, find the formula that

converts x-coordinates to z-coordinates.

6. -2 -1 0 1 2 3

A 13

A

Let x represent the C,D-coordinates of a point X on

line /. Using names of points of £, designate the

subsets of £ listed below. The first of these is read:

the set of points X such that their x-coordinates satisfy

the condition x > -1.

(a) (X: x > -1) (b) (X: x < 3) (c) (X: x = 3)

(d) (X: 0 < x < 2) (e) ,(X: -2 < x < x)

(f) (X: x> 1) (g) (X: 0 < x < 2) (h) (X: -2 < x < -1)

7. Using coordinates prove that if point X is in AB, then

X is in AB.

8. Using coordinates prove that if distinct points X

and Y are interior points of Ali, then every point of

XY is an interior point of AB.

9. Prove Theorem 2.

*10. Let P, Q, R be points of a line with P distinct from

R, having respective coordinates p, q, r, in some

qi
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coordinate system. We call the ratio q
-

2 the ratio
r p

in which Q divides PR from P to R.

(a) That is the special name given to Q if 2-z-2 . 19r - p 2

If you have difficulty answering, solve for q in terms

of p and q.

P

1 2
(b) Find an interpretation for Q if q =r - p 3' 76

(c) Point Q is an interior point of PR if m <p < n.r -

What are the values of m and n?

P R

-2 8

Check your answer with p = -2 and r = 8 as

shown above, When Q is between P and R we say that Q

divides PR internally.

(d) Using the data in (c) and a coordinate of Q for

which P is between Q and R, find p.". - Is the value

negative? Show that P is between Q and R if q - pP < O.r

(e) Show that R is between P and Q if > 1.r - p

When Q is not between P and R, then we say that Q

divides PR externally.

(f) Show that q
- p

does not change when p,q, and r are
r

P

replaced by their images under an affine transformation.

(Hint:Use the rule x' = ax + b. Then q is replaced

by aq + b, etc.)

(g) Prove: q
-
-P is the P,R-coordinate of Q.

r p

(h) Prove that = 0 if and only if Q P, and that
r - p

2=2
p

1 if and only if Q =R.
r -

2,92
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6.8 Axiom 6. Parallel Projections and Line Projections

We need only one more axiom to complete the set of axioms.

Let A and V be any two lines in a plane, and take (A,B) as

base of a coordinate system on A. (See Figure 6.15.)

Figure 6.15

Consider a parallel projection from A to tl; call it f.

(See Chapter 3, Section 3.12) Then A

Let (A', B') be the base of a coordinate system of A' If X

has A,B-coordinate IT and X Jt seems reasonable that

1
the A', B' -coordinate of X' is also 17.. If Y has A,B-coordinate

-1, and Y Vs it seems likely that the A',B'-coordinate

of Y' is also -1, and so on for all points of A and their

images in .' under f.

0013
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We can describe this state of affairs by saying that paral-

lel projections preserve relative positions of points and ratios

of distances. To put it briefly, parallel projections preserve

coordinate systems. This is the content of Axiom 6, which we

now state precisely.

Axiom 6. Let f be a parallel projection from line A to

line £'. Let A,B be distinct points of A and

let A',B' be their images under f. Then for

every point X of A; the A', B'-coordinate of its

image, X', is the same as the A,B-coordinate of X.

An immediate consequence of this axiom is the following

theorem,

Theorem 4. Under a parallel projection from line A to line A',

(a) the set of images of the points of a segment

on A is a segment.

(b) the image of the midpoint of a segment is

the midpoint of the image segment.

(c) the set of images of the points in a ray

is a ray.

Proof, Exercise.

For convenient reference in working the exercises, we restate

the six axioms.

Axiom 1. (a) Plane r is a set of points, and it contains

at least two lines,

(b) Each line in plane r is a set of points,

containing at least two points.

Axiom 2. For every two points in plane r there is one
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and only one line in r containing them.

Axiom 3. For every line m and point E in the plane r,

there is one and only one line in r containing

E and parallel to m.

Axiom 4. For each pair of distinct points A and B of

a line there is exactly one coordinate system

on that line in which A corresponds to 0 and

B corresponds to 1.

Axiom 5. If (A,B) and (A1,131) are bases for coordinate

systems on a line, then there is a relation

x' = ax + b with a 0 which, for each point

X of the line, relates its A,B-coordinate x to

its A'A'-coordinate x' ,

Axiom 6. Let f be a parallel projection from line L to

to line AI. Let A,B be distinct points of A and

let A'pB' be their images under f. Then for

every point X of A, the A',V-coordinate of its

image, X', is the same as the A,B-coordinate of X.

6.9 Exercises

In Exercises 1 - 5 assume that f is a parallel projection

from line to line P; that A, B, C are points of A; that their

respective images under f are A', B', C'; and that A and C are

distinct points.

1. Prove that B' is between A' and C' if B is between A and C.

2, Prove: If B is the midpoint of AC, then B' is the midpoint

of Al CI .
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3. Prove: The image of AC is a ray.

4. Let B divide AC, from A to C, in the ratio r. Prove that

B' divides A' C' from A' to C' in the ratio r.

5. Prove: the ratio of the A,B-distance from A to C to the

A,B-distance from C to B is equal to the ratio of the

AllB,-distance from A' to C' to the A',B'-distance from

C' to B'. This theorem is sometimes known as Thales'

theorem, after the Greek mathematician Thales (c. 624 - 543

B.C.) who is called the father of geometry.

6. A, B, C are three non collinear points with D the midpoint

of AB, as shown below. Prove that the line containing D

and parallel to BC passes through the midpoint of AC.

A

7. Modify the data in Exercise 6 to the effect that D is the

trisection point nearer A, and prove the appropriately

modified conclusion.

6.10 Plane Coordinate Systems

You saw how line coordinate systems enable us to prove

theorems about sets of points on a line. In this section we
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construct another kind of coordinate system, this time for a

plane, and you may expect that it will enable us to prove theorems

about point sets in a plane. As we construct a plane coordinate

system, it will be instructive to note analogies between line

coordinate systems and plane coordinate systems. We urge you

to look for them.

We start by choosing any ordered triple of three non collinear

points in a plane. Let us name it (0,I,J) and call the ordered

triple the base of the system. We call OI the x-axis, and

O the y-axis. On the x- axis,base (0,I) determines a line

loordinate system. On the y- axis,base (0,J) determ:imes a line

coordinate system. It may surprise you that this is all

the equipment we need to assign to every point in the plane an

ordered pair of numbers. We illustrate how this is done for

point P. (See Figure 6.16.)

Figure 6.16

axis

1.11111all.-
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Consider the line through P parallel to OJ. Is there

one? More than one? Why? This line intersects OI in ex-

actly one point. See Chapter 3, Section 3.5, Theorem 101 for

the justification of this assertion. Let this point have 0,I-

coordinate x. x is assigned to P. In the same manner, by
4-11.

considering the line through P parallel to OT and noting its
4-11.

intersection with OJ we assign the 0,J- coordinate y of this

point to P also. The pair of coordinates, in the order men-

tioned, (x,y), is called the 0,I1J-coordinates of P. The

first of these, x, is called the x-coordinate of P; the second,

y, is called the z-coordinate of P. It is clear from this

description that to each point of the plane there corresponds

exactly one such ordered pair of numbers.

Let us reverse the procedure. Given an ordered pair of

real numbers, (a,b), is there exactly one point that has O,I,J-

coordinates (a,b)? The answer is "yes" and we leave the

proof of this assertion as an exercise.

The net result of this discussion is this: For every

choice of base (01I1J) in a plane the method by which we assign

an ordered pair of real numbers to a point of the plane pro-

duces a one-to-one correspondence between the set of points

in the plane and the set of ordered pairs of real numbers.

The significance of this close kinship between points of a plane

and ordered pairs of numbers lies in this fact: Once we have

chosen a base for a plane coordinate system, we can identify

precisely and clearly any point or any set of points of the
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plane. For this reason we can study points by studying their

plane coordinates, In fact, we name a point such as P, along

with its coordinates, say (2,-3), and write them together in

the symbol "P(2,-3)." It is read: the point P with coordinates

(2,-3). Also we can designate a set of points such as

(P(x,y): x > 0 and y > 0); and this is read: the set of points

P with coordinates (x,y) such that x is greater than zero and

y is greater than zero. You have probably noted that these

points are the interior points of LIOJ. This set is called

the first quadrant of the O,I,J- coordinate system. Let us

look at some other examples of point sets.

Example 1, Each point in the x-axis has 0 as its y-

coordinate, and its x-coordinate can be any

number. Therefore x-axis = (P(x,y): y = 0,

x is any real number).

Example 2. By the positive x-axis ve mean OJ without point

0. Using coordinates we can describe it as

(P(x,y):x > 0, y = 0) .

Example 3. Consider the segment whose end points are A(-2,2)

and B(3,2). Since both points have 2 as y-

coordinate they must be in the line which is

parallel to the x-axis and passes through the

point of OJ Whose 0,J-coordinate is 2. (See

Figure 6.17,)
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Figure 6,l7

Therefore all points of A13 have y-coordinate 2. Do you

see that all x-coordinates of points in AB satisfy the con-

dition -2 < x K 3? Then AB = (P(x,y): -2 < x < 3 and y = 2) ,

Example 4. Figure 6.18 is a graph of (P(x,y): 0 < x < 2

and -1 < Y < 3). Study it carefully, noting

that it is the shaded region. Note carefully

how the base (0,I,J) was chosen before studying

the graph.

Figure 6,18

300t,

axis
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6.11 Exercises

1. Explain why the set of points on the y-axis can be described

as (P(x,y): x = 0).

2. Where do we find all points belonging to (P(x,y): y = 0

and x < 0). This set is called the negative x-axis.

3. Using set notation give a reasonable description, of ean of

the following:

(a) the y-axis.

(b) the positive y-axis.

(c) the negative y-axis.

(d) the second quadrant. (Hint: It contains P(-2,5).)

(e) the third quadrant. (Hint: It contains P(-3,-7).)

(f) the fourth quadrant.

1L Choose a base (0,T,J) for a coordinate system on your paper
4-11b

and draw the line that contains I and is parallel to OJ;

call it A.

(a) Show that every point in A has 1 as x-coordinate.

Also show that every poirt havin 1 as x-coordinate

is on A. Write a set notation description of L.

(b) Draw the line m that contains J aid is parallel to OI.

Give a set notation description of m.

(c) Give a set description of 2 (1 m.

5. Given a base (O,I,J) for a plane coordinate system, and

an ordered pair (a,b) of real numbers. Prove that there

is exactly one point that has O,I,J- coordinates (a,b).

6. Let (3,4) be the 0,I,J-coordinates of point P. Give

301
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a set notation description of the line that contains P and

(a) is Parallel to 0I.

(b) is parallel to 0J.

(c) Describe, in words, the set (0(xa): y > 4 and x > 3).

(d) Describe also (R(x,y): y < 4, x > 3).

7. Repeat Exercises 6(a) and 6(b) for the point P whose 0,I,J-

coordinates are (-3,2).

8. Repeat Exercises 6(a) and 6(b) for the point P whose 0,I,J-

coordinates are (-4,-5).

9. Make a drawing of each of the following sets using a plane

coordinate system of your choice.

(a) (P(x,y): x > 0, y = 2)

(b) (P(x,y): x > 0, y =

(c) (P(x,y): x = 0, y <3)

(d) (P(x,y): x = 3, -1 < y < 2)

(e) (P(x,y): y = -2, -2 < x < 2)

(f) (P(x,y): x < 2, y > 1)

(g) (P(x,y): y < 2, x > 1)

(h) (P(x,y): -2 < x < 2, -2 < y < 2)

( 1 ) (P(x,Y): -2 < < 2 , -3 < Y <

10. Draw an (0,I,J)-coordinate system and a line A that inter-

sects the y-axis. Consider only the x-coordinates of

points on A. Show that the correspondence between the

set of these x-coordinates and the set of points on A is

a line coordinate system.
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6.12 An Equation for a Line

Your work in Section 6.10 and 6.11 no doubt convinced

you that some sets of points can be defined precisely in set

notation by using equations, inequalities or both. In particular,

we used equations to describe sets of points on lines parallel

to the x-axis or the y-axis. In this section we look into

the question of whether other lines, lines that intersect both

axes, can also be described in set notation using equations. Let

us try to find the answer for a particular line, and then for

any line.

- axis

Figure 6.19

x -axis

In Figure 6.19 line A contains points A,B,C,I,D,E, among others.

The coordinates of the named points are recorded in the table

nn K.)
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B C I D E

x- coordinate
1

-
2

0
2

1
1

11
2

2

y- coordinate 3 2 1 0 -1 -2

While the table shows x-coordinates of only 6 points,

let it suggest the set of x-coordinates of all points of 2.

By Axiom 6 the correspondence between the set of x-coordinates

and points of 2 is a line coordinate system. (See Exercise

10 of Section 6.11). So too, is the correspondence between

the set of y-coordinates and points of 2. Hence we have

here two coordinate systems on Z. By Axiom 5 there is an

equation y = ax + b that relates y-coordinates to x-coordinates.

It is a simple problem to find a and b. By a method we have

already studied, a = -2 and b = 2. (Check this with the coordi-

nates in the above table.) Thus the coordinates of all points

of 2 satisfy y = -2x + 2. But we cannot claim, yet, that

= (P(x,y): y = -2x + 2), for there may be a point not on /,

whose coordinates (x,y) also satisfy y = -2x + 2. To show that

this cannot be, we argue as follows: For each number p

there is a point S on 2 that has p as x-coordinate. (Why?)

There is exactly one number q such that (p,q) satisfies

y = -2x +2. (Why?) Therefore S must have q as y-coordinate.

We conclude that all points whose coordinates satisfy

y = -2x + 2 are on 2. We are now justified in writing

= (13(x,y): y = -2x + 2).

The argument we gave for 2 is the same for any line in the
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plane that cuts both axes. We call the equation used in set

notation to describe A as an eauation for 2. Note we said

an, not the, for there are other equations which can also be

used to describe L. For instance, 2x + y = 2, or 4x + 2y = 4,

or 1000y + 2000x - 2000 = 0. Do you see that these equations

are equivalent to y = -2x + 2. Note: ((x,y): y = -2x + 2) =

((x,y): 4x + 2y = 4).

In Sections 6.10 and 6.11 we saw that we can use an equation

of the form x = r to describe lines parallel to the y-axis,

and equations of the form y = s to describe lines parallel to

the x-axis. We can therefore claim that every line has an

equation of the form ax + by + c = 0. For lines parallel to the

x-axis a = 0, and b 0. For lines parallel to the y-axis a 0,

and b = 0. For all other lines a 0 and b 0.

We end this section with three examples in which set nota-

tion is used to describe a line, when we know the 0,I,J-co-

ordinates of two of its points. Why are only two points

needed?

Example 1. Line L contains A(3,-2) and B(3,7).

Since AB II OJ, L = (P(x,y): x = 3).

Example 2. Line m contains A(3,-2) and C(8,-2).

Since AC II OI, m = (P(x,y): y = -2).

Example 3. Line n contains P(-1,2) and Q(3,1).

Assuming both (-1,2) and (3,1) satisfy y = ax + b,

we get (1) and (2) below. Study the rest of

the solution.
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(1) 2 = -a + b

(2) 1 = 3a + b

(3) 2 + a = b =1 - 3a

(4) 4a = -1

(5) a =

(6) 2 = + b

(7) b =

7
Therefore n = [R(x,y): y = - 4x + 4).

6.13 Exercises

Assume that all coordinates and equations in these exercises

are related to a plane coordinate system with base (0,I,J).

1. A line L has an equation 3x + 2y - 6 = 0. For eac'l point

listed below, determine whener or not it is a point of /.

(a) A(0,3) (b) B(2,0)

(e) E(4,6) (f) F(4,-3)

(i) K(10,12) (j) L(10,-12)

(c) c(2,3) (d) D(-2,6)

(g) G(1,4) (h) H(1,-2)

(k) M(-1--, ?r) (1) N(2V-2,3 - 3/2)

2. Which of the following can be an equation for a line?

( a) 4x - 2y + 5 = 0

(c) 4x - y2 + 5 . 0

( e) + 5y . 9

(b) 4x2 - 2y + 5 = 0

(d) x13 = 5

( f) TY =f2

3. For each equation listed below, write an equivalent equation

having the form y = ax + b, if possible.

(a) 3x = 5 - y (b) 8 = 3x + y

(c) 3x = 8 (d) 5y = 2

(e) x + iy = k (f) ax + by = c
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4. For each equation of a line listed below, find the cootdi-

nates of a point that is on the line, and the coordinates

of a point that is not on the line.

(a) 2x + 3y . 6

(c) x + 4

(e) ;,,x = 4

(b) 2x - 3y = 12

(d) 3x = 28

( 5y =

5. Determine whether or not, for each equation listed below,

the line for which it is equation contains point P(2,-3).

(a) x = 2 (b) y = -3 (c) x + y = -1

(d) x - y = -1 (e) = 0 (f) 2x + 3y = 0

(g) 3x + 2y = 6 (h) 3x + 2y = 0 (i)
4x + 4

= 0
2

(j) 2x + y + 1 = 0 (k) 3x + 2y + 1 = 0 (1) sr2x - sny = 2

6. Which of the following lines pass through 0, which pass

through I, and which pass through J, where (0,I,J) is the

base of th?plane coordinate system?

(a) (P(x,y): y = 3x)

(b) (P(x,y): y = 3x + 1)

(c) (P(x,y): y = x - 1)

(d) (P(x,y): 58x + 69y = 0)

(e) (P(x,y): x = 1)

(f) (P(x,y): y =

(g) (P(x,y): y = -3x)

(h) (P(x,y): x = 0)

7. For each pair of points givLA below, together with their

O,I,J- coordinates, find an equation for the line that

rp
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contains them.

(a) A(3,0), B(5,0) (b) C(4,2), D(2,0)

(c) E(4,2), F(2,4) (d) G(-3,3), H(3, -3)

(e) K(6,2), L(0,2) (f) M(12,-2), N(6,10)

(g) p(4,-1), Q(8,1) (h) R(0,5), s(-3,0)

8. Find an equation for each of the following:

(a) OT (b) OJ (c) TJ

9. Using set notation describe each of the following segments:

(a) OI (b) OJ (c) 771

10. What are the coordinates of the midpoint of OT? of OJ? of

IJ?

J(0,1)

0(0,0) I(1,0)

11. Find the coordinates of the midpoint of AB, if A and B have

coordinates listed below.

(a) A(0,2), B(4,0) (b) A(2,3), B(6,1)

(c) A(-2,:f1), B(0,5) (d) A(-2,-3), B(6,-2)

(e) A(-2,3), B(2,-3) (f) A(4,), B(,-4)

6.14 Intersections of Lines

Knowing equations for lines, it is a simple matter to

determine the coordinates of their point of intersection, if

any. The simplest case concerns two lines, one having an

equation such as x = -1 the other having an equation such as
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y = 2. Their intersection consists of a single point whose

coordinates are (-1,2). This is readily seen in Figure 6.20.

For another case, let us take one line not paral to ,HAv2,.

axis, and the other parallel to one of the axes, For example,

let the first of these lines have equation 2x + 3y = 6, and let

the second have equation x = 2. (See Figure 6.21.) If they

intersect, they must intersect in a point whose x-coordinate

is 2. Using this information, we can get the y-coordinate of

the point of intersection by replacing x with 2 in the first

equation. This yields 2.2 + 3y = 6, from which we find y = 4.

Since (2,7) satisfies both equations, the point with these

coordinates lies on both lines. It is point B.

x = -I

Figure 6.20

A = (P(x,y): x = -1)

m = (Q(x,y): y = 2)

Ii m = (A(-1,2))

- axis

Figure 6.21

p = (P(x,y): 2x + 3y = 6)

q = (Q(x,y): x = 2)

p q = (13(2,4))

ova
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Finally consider the case of two lines, neither of which is

parallel to either axis. Let the first, for instance, have

equation 2x + 3y - 5 = 0 and let the second have equation

x + 2y - 3 = O. Such equations always have equivalent equations

of the form y = ax -4- b. (Why?) . Study the process by which

these forms are found for each equation, as carried out below.

2x + 3y -5 = 0

3y -2x + 5

2 5
y = --5x + 3

x + 2y -3 = 0

2y = -x + 3

1y = X + 3-
2

Assuming that the lines intersect, the point of intersection

can have only one y-coordinate. The value of x for which

this is true must therefore satisfy the condition

2 5 1 3
+ -5 = -Tx + -f

or

-4x + 10 = -3x + 9 ,

or

1 = x, and y = 4'1 + 3_ or 1.

Therefore the intersection of the two lines is (P(1,1)).

Check to see whether (1,1) satisfies both 2x + 3y - 5 = 0

and x + 2y -3 = 0.

Our discussion would not be complete without considering

a pair of lines that do not intersect, for instance lines with

equations y = 8x + 2 and y = 8x - 4. If we assume that they do

intersect, in an attempt to find the point of intersection, we

would have to solve

8x + 2 =8x - 4.

Does this equation have a solution?
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In general two lines 2 and m are parallel if they have

equations of the form (1) x = a and x = b, or (2) y = a and

y = b, or (3) y = ax + b and y = ax + c. In each case, if

2 and m are distinct lines with the equations specified,

then n m = 0.

6.15 Exercises

Assume an (0,T,J) coordinate system in these exercises.

1. For each pair of lines listed below, find the coordinates

of their point of intersection, if any.

(a) (P(x,y): x = 8) and (P(x,y): y = 3)

(b) (P(x,y): x = -2) and (P(x,y): x = 2)

(c) (P(x,y): x = 2) and (P(x,y): x + y = 8)

(d) (P(x,y): y = 3) and (P(x,y): 4x =

(e) (P(x,y): y = 3 - x) and (P(x,y): y = x - 3)

(f) (P(x,y): x + y = 7) and (P(x,y): 2x - y = 2)

(g) (P(x,y): x - y = 7) and (P(x,y): 4x - 2 = y)

(h) (P(x,y): 2x - 3y = 4) and (P(x,y): 6y = 4x + 8)

2. Let A have coordinates (2,2). Find the coordinates of

the point of intersection, if any, of

(a) OA and IJ. (b) JA and °I.

(c) IA and J.

3. Determine whether or not A(3,2), B(1,1) and C(-3,-1) are

on one line. (Hint: Use an equation for AB.)

4, Determine whether or not the triple of points in each

part listed below is a collinear set.

(a) A(0,-5), B(3,1), c(- 2, -9).
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(b) D(2,4), E(0,8), F(3,1).

(c) K(0,0), L(12,12), M(-1,-1).

(d) P(a,-b), Q(0,0), R(-a,b), where a 0, b 0.

5. (a) Copy the table below and fill in your copy, given that

the point with coordinates (x,y) lies on the line with

equation y = 2x - 3.

x -1 0 1 2 3

Y 1 3

Calculate the value of
X2
Y2 Y1 when (xi,y1) = (2,1)-

(that is: xi = 2, yi = 1), and (xo,y2) = (3,3).

Calculate the value of Yo Y1 for any two pairs of
Xp X1

coordinates in your table, if (xi,y1) is one pair, and

(x2,y2) is the other. Are the results the same? Are

they equal to 2, the coefficient of x in the equation?

(b) If xi = p, then yl = 2p - 3. If x; = q, then y2 = 2q - 3.

Find the value of Y2 Y1 for these values of (x1,Y1)
-

and (x2,y7). Is the result still equal to 2? Complete

the statement which this proves: If (xl,y0 and (x2 ,Y2)

are coordinate of any two points of line A with equation

y = 2x - 3, then ...

(c) Prove the statement: if (x1 ,y1) and (x2 ,y2) are

coordinates of any two points on A with equation

y = ax + b, then Y2 Y' = a. The value of a isX2 -
called the O,I,J -slope of the line. If a line has

no equation of the form y = ax + b, we say that the

line has no slope. Thus the line with equation x = 3

has no slope. But the slope of the line with equation
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y= 3 is 0.

(d) For each equation listed below, what is the slope of

the line for which it is an equation?

y 5x - 2, y = -2x + 2, y = 5, Y = -ffx - 8.

(e) Show that two lines with equations y = ax + b and

y = ax + 2 are parallel.

6. Let line 2 contain A(2,3) and B(4,7). We can find an

equation for L by using the fact that the slope of

a line is independent of the choice of the two points

used to calculate it. Thus if F(x,y) is any point of 2,

other than A, we cen claim, since x - 2 0

7 - 3-_ or 21

and y - 3 = 2(x - 2).

Note that the last equation is satisfied by (2,3), as

well as by the coordinates of all other points of 2.

Hence it is an equation for Q. The form of this equation

is called the point-slope form. What is an equation for

m, if it contains C(6,2) and D(5,3)? (Hint: Calculate the

slope and use the point-slope form directly with either (6,2)

or (5,3).)

7. A line contains points A(1,-2) and B(3,-5).

(a) Find the slope of this line.

(b) Write an equation for the line.

(c) What is the y-coordinate of a point of this line if

its x-coordinate is 20?

(d) What is the x-coordinate of a point of this line if

its y-coordinate is 8?
313
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8. Write two equations, one for a line with no slope, the

other for a line with zero slope, if the lines intersect

in point A(-2,3).

6.16 Triangles and Quadrilaterals

In this section you will see how the mathematical machinery

now at our disposal can be used to prove statements aboilt tri-

angles and quadrilaterals. We start with the following definitions.

Definitions. Let A,B,C be three non-collinear points.

Then AR U BC U CA is a triangle. It is denoted

AABd. A median of a triangle is a segment

that joins a vertex of the triangle to the

midpoint of the side opposite that vertex.

How many medians does a triangle have?

Theorem 5. The medians of a triangle meets in a point.

(0,1)

F(0,'1) (16,1J

A(0,0) D(1/2,0) (1,0)13

Figure 6.22

Proof. Let the vertices of the tri:Lngle be A, B, C (see

Figure 6.22). Since points A, B, C are noncollinear,

(A,B,C) may serve as the base of a plane coordinate

system. The coordinates of D, the midpoint of AB,

are (,0); the coordinates of F, the midpoint of AC,

are (04). Let E be the midpoint of BC. Its x-co-
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ordinate is its

is its B,C-coordinate.

1 1
(23-2)

An equation for AE is

C,B-coordinate,

Thus

( :) y - 0 =

(2) y - 0 =

(3) y - 1 =

and its

its A,B,C-coordinates

1
- 0

(x 0)

y-coordinate

are

or y = x.

or y = (x - 1).

or y - 1 = -2x.

0

- ,

- 0

1
-

1),An equation for BF is

An equation for CD is
1

(x -

- 0,
0),

0
1
k x -

-

/1 1)
..lolving equations (1) with (2) we get the solution k7/7).

,1 1)
Solving equations (1) with (3) we get the solution k7,7).

1 1)
Solving equations (2) with (3) we still get the solution (7,7i.

We conclude: AE fl BF = AE fl CD = BF fl CD, and the theorem is

proved. Let us call the point in which the medians meet G.

Furthermore we see, by studying, say only x-coordinates of

points in AE that G divides AE, from A to E, in the ratio

2:3. In fact G divides every median, from vertex to opposite

midpoint in the ratio 2:3. This is a bonus we did not expect.

As a second example of the usefulness of coordinates, we

prove a theorem about any parallelogram, which you know is a

special case of a quadrilateral.

Definition. Let A, B, C, D be four points of a plane such

that no three are collinear, AB in CD = 0 and

BC n AD = 0. Then AB U BC U CD U DA is a quadri-

lateral. It is named ABCD, BCDA, CDAB, DABC,

DCBA, CBAD, BADC, or ADCB. The diagonals of this

quadrilateral are AC and BD.

ct A r
.-4, ILL
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Note: In each name of the quadrilateral, a cyclic

order of the vertices is kept. ABDC, for example,

does not name the same quadrilateral. (See Figure 6.23.)

Definition. A quadrilateral ABCD is called a parallelogram

if AB 11 DC and AD BC. (See Figure 6.23 (d).)

(a)

(c)

C

(h)

D(0 1) C (1,1)

A(0,0)

Figure 6.23

B (1,0)

(d) Parallelogram

Some Pictures of Quadrilateral ABCD
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Theorem 6. The diagonals of a parallelogram bisect each other

(See Figure 6.23 (d).)

Proof. The A,B,D-coordinates of A, B, and D are (0,0),

(1,0) and (0,1) respectively. Since C is on the

parallel to AD that passes through B, its x-coordinate

is 1. Since C is on the parallel to AB that passes

through Ds its y-coordinate is 1. An equation for

AC is (1) y = x. An equation for BD is (2) x + y = 1.

Solving (1) with (2) gives the solution set ((24)1.

We con ...tide that the diagonals bisect each other. Explain why.

Note in both proofs we chose a base for a plane coordinate

system that was convenient for our purposes. In doing the

exercises that follow you should also try to choose a base

that is convenient for your purposes.

6.17 Exercises

1. Prove: The line that passes through the midpoints of

two sides of a triangle is parallel to the third side.

2. Prove: If a line is parallel to one side of a triangle

and passes through the midpoint of a second side, then

it passes through the midpoint of the third side.

3. In AABC,D is in AB and E is in AC such that BD : DA = 2 : 1,

and CE : EA = 2 : 1.
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(a) Prove: DE II BC.

(b) Let BE n CD = (F).

Show BF : FE = CF : FD = 3 : 1.

4. Prove: ABCD is a parall,,,logram if the A B,D-coordinate

of C is (1,1).

5. Prove: Quadrilateral ABCD is a parallelogram if AC and BD

bisect each other.

6. Prove: Let ABCD be a parallelogram; let E be the midpoint

of 11, and F the midpoint of DC. Prove AECF is a parallelogram.

(Hint: Using slopes show AF II EC.)

7. Using the data in Exercise 6 show that if AF n DB = (G),

Then G divides AF, from A to F, in the ratio 2:3.

8. In quadrilateral ABCD let the midpoints of AB, BC, CD
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and DA be E, F, G, and H respectively. Prove that EFGH,

if it forms a quadrilateral, is a parallelogram.

6.18 The Pythagorean Property

So far in this chapter we have made no references to

perpendicular lines (see Course I, Sections 9.6 and 10.13), nor

have we compared lengths of segments on different lines. In

spite of this we have managed to develop a considerable body of

geometry. But there are relations in geometry that do use per-

pendicular lines and do compare lengths of segments on different

lines. This is done for instance in a statement about right

triangles named after a famous Greek mathematician Pythagoras

(c. 58o - 500 B.C.).

In Figure 6.24, assume that BC is perpendicular to AC

(written BC i AC). Then AABC is a right triangle, LBCA is a right

angle, AC and BC, the sides that lie in the perpendicular lines,

are called legs of the triangle and AB is called the hypotenuse

of the right triangle.

Figure 6.24
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If the length of BC is a, the length of AC is b, and the length

of AB is c, then the Pythagorean property of right triangles

is given by the equation

a2 b2 c2

If you like you can measure the lengths of the three

sides of a right triangle, square each length and see if the

equation is approximately true. But we present another

approach which is based on the idea that if the side of

a square has length s, then the area of the square is s2.

We start with a right triangle as shown in Figure 6.25,

whose legs have lengths a and b and whose hypotenuse has length

c.

b

Figure 6.25

a

We can arrange four copies of this triangle to form a square

as shown in Figure 6.26, or Figure 6.27.

a

b

b a

a b

Figure 6.26

b

a

320

a

b

a b

at, a
.EI

I

a:EIT//;;;//
b

1/7
b

Figure 6.27

a



-316-

What is the area of the large square in each diagram? In Figure

6.26 the shaded region is the uncovered part of the large square

after setting the four triangles in position. What is its area?

In Figure 6.27 two shaded regions are the uncovered parts of the

large square. What is the sum of their areas? But no matter

how the four triangles are positioned within the large square,

as long as they do not overlap, the uncovered region should have

the same area. Therefore

c2 a2c = a + b2 .

We have not deduced this from statements in our system,

and hence we cannot call it a theorem. In recognition of this,

let us call it the Pythagorean property of right triangles,

and you may regard it as an axiom hereafter in our system.

6.19 Exercises

1. In each of the following right triangles, LC is the right

angle, and the lengths of two sides are indicated in terms

of the same unit. Find the length of the third side.

(a)

(d)

(b) (c)

(e)

30 18

021

10
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2. Find x in each of the following right triangles. If it is

irrational, leave it in radical form.

(a)

(d)

2 3

(e)

(i)

3. Let the base of a plane coordinate system be (0,I,J) for

which OI 1 OJ and the length of OI is equal to the length of

0J. Find the length of AB if A and B have the coordinates

listed below. Leave irrational answers in radical form.

(a) A(4,0), B(3,0) (b) A(-4,0),

(c) A(5,0), B(12,0) (d) A(2,0),

(e) A(7,0), B(0,-3) (f) A(0,-2),

322

B(3,0)

B(0,-2)

B(-1,0)
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4. Using the coordinate system in Exercise 3, find the co-

ordinates of A, a point in the positive y-axis if

(a) AB = 10 and B has coordinates (6,0).

(b) AB = 13 and B has coordinates (12,0).

(c) AB = 4 and B has coordinates (- 2f2,0).

(d) AB = 12 and B has coordinates (-6,0).

5. In each figure below are two right triangles. Find x and

y in each. Right angles are marked by a square corner.

x 12

(b)

6.20 Plane Rectangular Coordinate Systems

12

We are ready now to consider a special kind of plane coordi-

nate system that enables us to investigate whether or not two

lines in the plane are perpendicular, and to compare lengths

of segments on different lines. Figure 6.28 shows such a system.

Note that tha axes are perpendicular to each other, and the length

of OI is equal to the length of OJ.
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y-axis

3

IT

x-axis

0 1 2 3

-2

-3

Figure 6.28

Definition. A plane coordinate system with base(0,I,J)

is called rectangular if OI 1 OJ and OI = OJ = 1.

The coordinate formulas we used for midpoints and slopes

continue to be operative for rectangular coordinate systems, and

we continue to describe lines by equations of the form

ax + by + c = 0. Rectangular coordinate systems have the added

advantage over other systems in that we can study perpendicularity

of lines, and we can compare distances on different lines.

To compute these distances we use the distance formula given

below. Note that we call the coordinates rectangular. This

means we are using a rectangular coordinate system.

If PI and P2 have rectangular coordinates (xl,y1) and

(x,,y,) respectively, then the length of PIP, is

Pi P2 ( X1 X2 ) 2 + yl Y2 ) 2

We consider four cases:

Case 1. PI = P2. (For other cases PI P2.)

Case 2. PIP, 11 OI.

324
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4-41.

Case 3. P1 P, 11 OJ.

Case 4. P1 P2 is not parallel to either OI or OJ.

Case 1. If P1 = P2, then xl = x2 and yi and y2. The

formula to be proved then takes the form

(xi - x1)2 + (A Y1)2 =NriT74-02 =0.

This is exactly what the distance should be, so the formula

works when P1 = P2.

Case 2. (See Figure 6.29.) Since P1 P2 11 OI, yl = y2.

Then yl - y2 = 0 and the formula becomes

1r( xl - X2)2 02 = I x1 - X2I.

IC

J

PI 2

A
_

0 I x
1

x2

Figure 6.29

The parallels to OJ through P1 and P2 intersect OI in two points,

A and B whose 0,1-coordinates are xl and x2. So AB = I xl x2 I

325
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It is reasonable to assume (we do not prove) that the 0,I-

length of P1P2 is also Ix1 - x2I. If we do, then the formula

works for Case 2.

Case 3, By a similar argument it works for Case 3.

Case 4. For this case xl x2 and y1 Y2, see Figure 6.30.

Take point A with coordinates (x0/Y1). Since the x-coordinates
4-0

of Pp and A are the same, AP II OJ.

J

A y-axis

P2(x2)Y2)

P1(x1)Y1) A(x2,y1)

0

Figure 6.30

4-0

Since the y-coordinate of P1 and A are the same, API II OI.

We assume that every line parallel to OJ is perpendicular to

every line parallel to OI. So AP1AP2 is a right triangle;

with right angle at A. Thus the Pythagorean property is

available and we have
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(1) (p1P2)2 = (AP1)2 + (AP2)2.

7V the preceding cases (01)2 = (x1 - x2)2 and (AP2)2 = (y1 - y2)2.

Making these substitutions for (AP1)2 and (AP2)2 in (1) and taking

the square root of each member yields the desired result.

6.21 Exercises

1. Find the distance between each pair of points listed below

if the coordinates given are rectangular coordinates.

(a) A(0,0), B(3,4) (b) C(2,1), D(-2,4) (c) E(3,2), F(3,7)

(d) P(4,-2), Q(8,-2) (e) R(6,1), S(0,-1) (f) T(4,3), v(4,3)

(g) A(1,-3) , 13(-4,7) (h) C(2,0), D(0,-3) (i) E(a,0), F(0,b)

(j) G(a,b), H(a,c) (k) K(a,b), L(c,b) (1) M(a,b), N(c,d)

2. The vertices of AABC are listed below with rectangular

coordinates. For each triangle show that two of its sides

have equal lengths.

(a) A(-1,3), B(5, 1), C(9,5)

(b) A(1,-1), B( -k,24), C(3,5)

(c) A(3,5), B(1,-3), C(-6,3)

(d) A(5,0), B(3,4), C(1,0)

(e) A(0,2), B(3,1), C(1,-1)

3. ABCD is a rectangle, which by definition is a parallelogram

that has at least one right angle. If in a rectangular

coordinate system A has coordinates (0,0),. B has coordinates

(3,0) and D has coordinates (0,4), what coordinates should

C have? Using the distance formula show that the diagonals

AC and 135 have the same length.

4. (a) Assume rectangular coordinates for the vertices of AABC
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to be as follows: C(0,0), B(6,0), A(0,8) . Find the

coordinates of the midpoint of AB and show that the

length of the median from C is one-half the length of

AB.

(.b) Repeat for C(0,0) , B(12,0) , A(0,5) .

(c) Repeat for C(0,0), B(a,0), A(0,b).

(d) Complete the sentence which seems indicated by these results:

The length of the median to the hypotenuse of a right

triangle is ...

5. Assume rectangular coordinates for the vertices of AABC to be

as follows: A(4,0), B(0,6), c(-4,o). Find the coordinates

of the midpoints of AB and BC. Show that the length of

the median from A is equal to the length of the median from C.

6. Show that ABCD is a parallelogram if A, B, C, D have rectangular

coordinates (0,0), (3,2), (7,6), (4,4) respectively.

Then show that AB = CD and BC = DA.

7. Suppose for AABC, (AB)2 = (AC)2 + (BC)2. As you recall, this

is the equation that is a property of right triangles.

In this exercise we investigate whether or not a triangle that

has this property is necessarily a right triangle. If so,

which of the three sides, AB, BC, or CA, would you expect

to be the hypotenuse? To begin this investigation, let us
41--to

consider the line through A that is perpendicular to CB,

and let it intersect CB in D.
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c,0 D(0,0) B(b,O)

If C = D, there is nothing left to prove. Suppose then

C D. Using the perpendiculars CB and AD as axes we set

up a rectangular coordinate system. In this system D

has coordinates (0,0). Let A,B,C have respective coordinates

(0,a), (b,0) and (c,0). By the distance formula

(AB)2 = (b -
0)2 ( 0 a)2 b2 a2,

(AC)2 = (c - 0)2 + (0 - a)2 e2 a2

(BC)2 = (c - b)2 4 (0 - 0)2 = C2 - 2cb + b2.

Using the equation (AB)2 = (AC)2 + (BC)2, the given information,

show c = 0. What conclusion does this allow you to make?

8. The three numbers in each part of this exercise are lengths

of sides of a triangle. Identify those that are lengths of

sides of right triangles, and for these, identify the hy-

potenuse.

(a) 15, 20, 25 (b) 24, 25, 7 (c) V3, tip, \/7

(d) 13, v'3, 3 (e) 4, 5, 6 (f) 2, 4

(g) 3i2, 313, 314 ( 40, 9, 41 (i) 3a, 4a, 5a (a > 0)

tv 2t, 9
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6.22 Summary

This chapter continues the development of the axiomatic

system begun in Chapter 3. This was done by adding three

axioms concerning coordinate systems on lines.

Axiom 4 states that for each base (0,I) on a line there

is exactly one coordinate system.

Axiom 5 asserts that if two coordinate systems are in-

troduced on a line, then their respective coordinates x and x'

are related by a rule of the form xi = ax + b (a 0) of an

affine transformation; that is, a dilation followed by a trans-

lation.

Axiom 6 describes a property of a parallel projection

from one line to another. If A and B are points of the first

line and A' and B' are their respective images under a parallel

projection, then for every point X of the first line, the A!,BI-

coordinate of its image X' is the same as the A,B-coordinate of

X.

These axioms enabled us to use numbers to express relations

among geometric objects. This was done in the following

definitions: The betweeness relation for points, line segment,

ray, midpoint cA ,egment, and the ratio in which a point divides

a segment.

The six axioms enabled us to construct a plane coordinate

system which was determined by a choice of a base (0,I,J). Be-

cause of the one-to-one correspondence between the set of points

in the plane and the set of ordered pairs of real numbers in each
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plane coordinate system, we are able to describe a set of points

precisely by describing relationships of coordinates of the

points in the set. We did this with equations and inequalities

for lines, segments, rays and regions.

Of particular importance was the theorem that an equation

of the form ax + by + c = 0 (where a and b are not both zero),

can be used to describe any line in the plane. This opened the

door for investigating lines by working with their equations. We

did this in investigating triangles and parallelograms.

After accepting informally the notion of perpendicular

lines and the Pythagorean property of right triangles (and some

other properties), we were able to describe a plane rectangular

coordinate system. This system has the virtue, not possessed

by other coordinate systems, of enabling us to compare lengths

of segments on different lines. This is done by the distance

formula. Also we can establish whether or not a given triangle

is a right triangle by using the converse of the Pythagorean

property.

6.23 Review Exercises

1. Using the data indicated in the figures below, which show

two coordinate systems on a line, find the formula that

converts x- coordinates to y-coordinates.

(a) -3 2 7
y-coordinates

-1 0 1 x-coordinates

(b) 0 4 y-coordinates

2 4331 6 x-coordinates
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2. Using the data in Exercise 1, find the formula for each part

that converts y-coordinates to x-coordinates.

3. Using set notation, and letting x represent C,D-coordinates,

describe each of the sets of points designated below as it

applies to the figure below.

A

-2 -1 0 1 2

( a) 115 (b) AD (c) DA

)

(d) AD

(e) AD n BC (f) AB U BC (g) AC Li BD

(h) AC fl CD (i) AB n CD (j) the midpoint of BE

(k) the point that divides AE, from A to E, in the ratio of 3:4.

4. Let f be a parallel projection from line 2 to line /' and let
f

A, B, C be distinct points on £. Furthermore let A--4-D,
f f

and C--o-F.

Show that B divides AC, from A to C, in the same ratio as E

divides DF from D to F. Also show that C divides BA, from

B to A, in the same ratio as F divides ED from E to D.

5. Using a plane coordinate system of your choice make a graph

'332 -=71'
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of each of the following sets of points. Use a different

coordinate system for each part.

(a) (P(x,y): y = 3, -2 < x < 1)

(b) (P(x,y): y = 1, x > 1)

(c) (P(x,y): x = 3)

(d) (P(x,y): y = x and -1 < x < 1)

(e) (P(x,y): y = 3x - 1 and -1 < y < 2)

(f) (P(x,y): x 2y -2 = C)

(g) (P(x,y): 2x - 3y - 6 = 0)

(h) (P(x,y): -2 < x < 2 and -2 < y < 2)

6. For each pair of points listed below, with coordinates in a

certain plane coordinate system, find an equation for the line

that contains the points in each pair.

(a) A(3,2), B(8,2)

(c) D(3,3), E(-3,-3)

(e) G(0,2), H(3,0)

(b) c(-2,4), D( -2, -4)

(d) F(3,-3), G(-3,3)

(f) K(-2,3), L(0,-2)

7. Using the data in Exercise 6 find the coordinates of the

midpoint of

(a) AB, and the slope of ABIL

(b) DE, and the slope of E.

(c) KL, and the slope of KL.

8. In ABC let D be the midpoint of BC and E the trisection point

of AB nearer A. Using equations for lines prove that CE bisects

AD.
C

grIg
cox-,
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9. Let CD be the median of AABC from C, and E is the midpoint

of CD. Let AE intersect BC in F. Find CF:FB.

C

A

10. In parallelogram ABCD, let E be the trisection point of AB

nearer B, and F the trisection point of CD nearer D. Prove:

AC, BD and FE meet in a point.

11. Let LC in AABC be a right axle. For the lengths given

below for two sides of the triangle find the length of the

third side.

(a) AC = 3o, BC = 40 (b) AC = 2, BC = 3

(c) BC = 5, AB = 8 (d) AB = 12, BC = 5

12. Find the distance between the points in each pair listed

below, if the coordinates given are for a certain rectangular

coordinate system.

(a) A(3,2), B(9,2) (b) C( -4,8), D(- 4, -8)
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(c) E(3,2), F(7,-1) (d) G(-2,8), H(3,-2)

13, A man walks 3 miles east, then 2 miles north, then 2 miles

east. How far is he from his starting point. (Hint: Use

a rectangular coordinate system and the distance formula.)

14. In a rectangular coordinate system the vertices of quadri-

lateral are A(0,0), B(2,4), C(8,6), D(6,2).

(a) Prove that ABCD is a parallelogram.

(b) If E is the midpoint of AB, F is the midpoint of BC, G

is the midpoint of CD and H is the midpoint of DA, show

that EF = GH and FG = HE.

15. Prove that the line segment joining the midpoints of two sides

of a triangle is half as long as the third side.
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