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CHAPTER 1
MATHEMATICAL LANGUAGE AND PROOF

1.1 Introduction

Oh Yeah? Prove It!

How many times have you made a debatable statement and
faced a challenge to prove your statement, to convince a
doubting listener? When you told some friends you think
Willie Mays is a better baseball player thar Mickey Mantle?
When you told ycur science teacher that helium is lighter than
air? When you told your parents that all the other kids get
to stay out late? When you told your mathematics teacher
that adding two even numbers always gives an even number?

In each of these situations someone wants to be convinced;
he wants proof of your statement, The kind of evidence or
argument you present depends on the area of disagreement:
Comparison of batting averages drawn from a baseball book of
records might settle the Willie Mays-Mickey Mantle argument.

A simple experiment with a helium filled balloon might convince
the science teacher. And testimony from your best friend
might swing your parents to a later Friday night curfew.

Your conjecture about sums of even numbers would be proven
according to rules of argument accepted in mathematics. You
have already seen and been asked to supply proofs of mathematical
statements. In fact, the "even plus even is even" statement

O
FRIC:s Justified as follows: b
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l, If a and b are even, then a = 2m and b = 2n,

2, Then a + b = 2m + 2n,

3. a+b=2(m+n),

L, or a + b = 2k, where k = m + n.

5. This implies that a + b is even.
What is it that makes this argument an acceptable mathematical
proof? What are the rules governing proof in mathematics?
Since proof will become an increasingly important part of
your work in mathematics, this chapter is designed to explain

and illustrate the ground rules of mathematical proof.

1.2 Mathematical Statements

To understand mathematical proof, we must first understand
the meaning of the language used in proofs. In ordinary
English we frequently allow & word, or a sentence, to have
different meanings depending on the context in which it is
used. For example, suppose we hear a weather forecast of
fair and warm. What does "warm" mean in this sentence? In New
York in July "warm" might mean 80°F., while in January we consider
45°F, to be warm. In Miami, Rio, or Casablanca entirely
different standards would prevaill. The meaning of a simple
English sentence often depends in a complex way on the context
in which it 1s used.

Mathematics 1s a baslic tool of scilence, so mathematical
language must be precise. We cannot allow ourselves the

freedom of ordinary English usage. For example, the mathematical

)




statement

A naturel number is prime if and only if

it has exactly two distinct factors
gives clear dirsctions for determining whether a gilven
natural number is or is not prime, 13 has two factors,
13 and 1, and so it is prime, 12 has 6 factors--1, 2, 3, 4,
6, 12--s0 it is not prime. The mathematical statement

defining prime number is precise enough to determine primeness

of 12, 13 and any other natural number,

The example Jjust given led to a conclusion that might

be written
12 is not prime,.
This 1s an example of a kind of sentence used in mathematics
called a statement. Another mathematical statement is
6 is prime.

Of course, this is false, since 6 has four distinct factors:
1, 2, 3, and 6,

In mathematics, a statement is a sentence

that is either true or falsg, but not both.

It may seem strange to be at all interested in false state-
ments. But often wr 40 not know immediately whether a
statement is true or false., What about the following statement?

15283 is prime. ‘
One task of the mathematician is to determine the truth or
falsity of a glven statement, so he must be willing to allow
for the possibility that it could be false. However, it must

O one or the other: not both and not maybe.
ERIC
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Example 1. "2 < 5." This is a statement, and clearly
it is true.
Example 2, "5<2.," This is false--but it is still a
statement.
Example 3. '"x is a rational number less than %."
For x, try %: since % is rational and less
than %, the sentence is true if X is equal
to %. Now try %: since % is rational and
greater than %, the sentence is ralse if X
equals %u However, the sentence itself does
not tell us the value of x. Therefore, as the
sentence is written, it is neither true nor
false; it is not a statement. This type of
sentence is called an open sentence,

Example 4., "Trenton is the state capital of New Jersey."
Although not a mathematical sentence, this
sentence is a statement., It is true,

Example 5. 'Cross the street!" This.sentence is a command,
but not a statement, since there is no meaning-
ful way it can be said to be true or false,

Often in this chapter we will want to refer to the same

statement several times. To save writing, it is often easier
to assign statements ietter names such as P, @, R, etc., and

to refer to each statement by writing its letter name rather

than the whole statement.
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For example, we could write
S: "15,735 is divisible by 5."

Then in future discussions, instead of writing, "15,735 is
divisible by 5" we may write simply S. A note of caution:
To avoid confusion it must always be clear to which statement
a given letter refers, so we must be careful never to use the
same letter to refer to more than one statement in the same
discussion,

Consider now the statement P: "1271 is prime." At first
glance you are probably not able to tell whether P is true or
false, though you know that it will be one or the other. If
it turns out that P is false, then the statement Q: "1271 is

"will be true. But what if P is true after all?

not prime,’
Certainly then Q will be false, Thus P and Q are opposites in
the sense that if P is true then Q is false and if P is false
then Q is true. Given any statement R we can always form a
new opposite statement by the same process, and we call this
new statement the negation of R. Instead of being assigned a
new letter, the negation is called '"not R." The relation

between a statement and its negation is summarized in Table 1,

called a truth table.

R | not R
true false
false true

Table 1

f;,ill)
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Example 6, Suppose S: "2 + 3 = 4" (false of course).
Then not S: "2 4+ 3 #£ 4" (true).
Example 7. Suppose T: "U371 is divisible by 9" (false).
Then not T: "U371 is not divisible by 9" (true).
Example 8. If not T: "4371 is not divisible by 9," then
not(not T): "4371 is not not divisible by 9"
or "U4371 is divisible by 9," and

not(not T) is the same as T.

1.3 Exercises

In Exercises 1l~-11 determine. whether or not the given
sentence is a statement. If it is a statement, tell whether
it is true or false. If it is not a statement, give a reason why.
1. 15283 is a prime number.

2, I%(% + g + %) is a rational number greater than %.

. Shut the door.
. X is a whole number less than 9,

23 2 1.
- 30 + 7 + 5 is not greater than 1.

3

L

5

6. 243 is not prime.

7. It is false that 243 is not prime.
8. It is true that it is false that 243 is not prime.
9. 243 is prime.

10. It is false that it is false that 243 is not prime,

11. It is not true that 15283 is prime.

‘ 1
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In Exercises 12-18, find the negation of each of the given

statements and determine which (the original and its negation)

are true and which are false,

120
13.
14,

15.
16.
17.

18.
19.

20,

21,

22,

721 is prime,

71 x 27 = 1917.

1 2 3
3t5<5

It is false that it is true that 71l is not less than

38 + 35.

T: "1001 is divisible by 13."

not T. (See Exercise 16.)

not(not T). (See Exercise 16.)

If Ais "Tx 3 =3 in 29," write a statement expressing
(a) not A

(b) not(not A)

(¢) not(not(not A))

If R is "29 is not prime,"

write a statement expressing
(a) not R

(v) not(not R)

(¢) not{not(not R))

Complete the following: When S is a statement,

(a) not(not S) is the same as

(b) not(not(not S)) is the same as

1

Suppose you had the statement "not(not(not(... Q) ... )
where the word "not" appeared 37 times. What should
this be the same as? Can you state a general rule if

"not" appeared n times?

12
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1.4 Connectives: And, Or

The compound mathematical sentence
5 is prime and 5 is a multiple of 3,
is composed of two simple statements Jjoined by the connective
"and." Is the compound sentence a statement? Is it true or
false?

Clearly the statement "5 is prime" is true and "5 is a
multiple of 3" is false. It seems reasonable that for the
compound sentence to be true both parts must be true. According
to this, then the given sentence is false (but is a statement).
What probably suggested that both parts had to be true if the
whole sentence is considered to be true is the word "and"
connecting the two parts. In this case, mathematics agrees
with intuition. Statements of the form "P and Q" are true if
both P and @ are true and false if either one of them or both,
are false.

Example 1. The compound statement "5<3 and 2>7" is

false since neither "5<3" nor "2>7" is true.
Example 2. The compound statement S: "2 + 3 =5 and

L # 7" is true. Since "2 + 3 = 5" is true

and "4 # 7" is true, both parts of S are

true and therefore S is true.

Example 3. S: "x is a whole number greater than 5 and

X is a whole number less than 8." Of course,

thig is not a statement--it is an open

13
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sentence. If x is replaced by 2, the
resulting statement is "2 is a whole number
less than 8. The second part of this
statement is true, but the first part is
false, so the compound statement is false.
To emphasize: When 2 was substituted for
the variable X, the compound open sentence
became a false statement. Different sub-
stitutions for x might lead to different
truth values for the resulting statement.
In ordinary language, another common connection between
two parts of a compound sentence is the word "or." This
connective is also useful in constructing compound
sentences and statements in mathematics. However, when
we try to define carefully the use of "or" (as we did for

"and"), starting from intuition, we run into

use of
difficulties. In everyday usage, "or'" can mean quite
different things. When we say, "It is raining or the

sun is shining," we mean that one or the other is happen-
ing, but not both. However, when we say, '"Maria is

' we do not want to exclude the

always singing or dancing,’
possibility that she could be doing both.,

Since mathematics demands definitions that are
independent of context, we must be arbitrary and exclude
(in mathematical sentences) one of the possible interpre-

tations for "or." Following the usage agreed upon by

14

O
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mathematicians, we shall say that when P and Q are
statements, "P or Q" is a statement that is true whenever
P is true or Q is true or both ares true.

Example 4. The compound sentence "2 = 3 or 4 + 1 = 5"
is a statement. The first part of this
statement is false, but the second part
is true, so the compound statement is
true,

Exampie 5. Suppose P is "6 is prime" and Q is "Line
reflections preserve direction." P is
falze, and s0 is Q. Therefore, the
compound statement "P or Q" is false.

Example 6. Suppose S is "2/3 is rational" and T is
"-4«¢3," Both S and T are true, so by
definition, the compound statement "S or T"
is also true.

Example 7. "x is a whole number greater than 6 or x
is a whole number less than 3" is a
compound open sentence. If X is replaced
by 2, the first part of S is false, but
the second part is true, TFrom the
definition, since this is an "or" compound,
the statement is true if x is replaced by
2, Similarly if x is replaced by 7, the
first part is true and the second part is

false, so 7 makes the whole statement true.

15
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If x is replaced by U4, both parts are
false and so the whole sentence is false,
To get all the replacements for x that
make the sentence & true statement (i.e.

the solution set or truth set for x), we

need only take all replacements that make
the iirst part true and then all other
replacements that make the second part true,
This turns out to be the set of whole num-

bers excluding 3, 4, 5, and 6.
If P and Q are statements, the compound statement "P

and Q" is true if both P and Q are true. The compound
statement "P or Q" is true if either P or Q or both are
true. These conventions are summarized in Table 2., (Recall

such a table is called a truth table.)

P Q P and Q P or Q

T T T T

T F F T

F T ¥ T

F F F F
Table 2

Close inspection of Table 2 will reveal an interesting
and useful relationship between "and," "or," and the
process of negation., The statement "P and Q" is false
when P is false ('"not P" is true) or Q is false ('"not Q"
is true) or both are false. But this is the same as

Q " 1 1 1"
‘ P
lzRi(jing P and Q" is false when "not or not Q" is true,.

16
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On the other hand, the statement "P or Q" is false when
P is false ('"not P" is true) and Q is false ('"not Q" is
true). But this is the same as saying "P or Q" is false
when "not P and not Q" is true. Summarizing,
When "not P or not Q" is true then "not (P and Q)"is true.
and

When "not P and not Q" is true then "not (P or Q)" is true.

1.5 Exercises

In exercises 1-10 determine whether the given compound
statement is true or false,
. 3#T7Tor5< Uk,
. 3#7 and 5< 4,
. 23 is prime and is divisible by 5.

"ll 10!!

n" .
. "U or V" where U is T?'< 3 and V is oz > -

1

2

3

4, 23 is prime or is divisible by 5.
5

6. "U anda V"

7

. "A or B" where A is "Line reflectiun R does not Preserve

parallelism" and B is "R preserves direction.”

(98]

"A and B." (See Exercise T.)
9. "P or Q" where P is "The image of 6 under the dilation

D, is 4," and Q is "The image of 3 under D is 3."
2 _

10. "P and Q." (See Exercise 9.)
11. Suppese that for some statements S and T the compound
statement "S or T" is false. What conclusion (if any)

. can be drawn about the compound statement "S and T"?

17 —
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What conclusion (if any) can be drawn about "S and T"

if "S or ™ is true®

12, Suppose that for some statements G and H, the compound
statement "G and H" is true. What conclusion (if any)
can be drawn about "G or H"? What conclusion (if any)
can be drawn about "G or H" if "G and H" is false?

13. Complete the following truth table.

Pl Q |[ntP |notQ |Por@ | (not P) and (not Q)
T T F F T F

T F |

F T

F T

What relationship do you notice between the last two
columns of the table? What can you conclude from this
about the relationship between "(not P) and (not Q)"
and "P or Q"?

14, Complete the following truth table.

not P |not Q | P and Q | (not P) or (not Q)

F T F

=H = 3 3 |
H = 3 O
=

F

Compare the last two columns of the table. What does

18



15.

16.

17.

18.
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this tell you about the relationship between "(not

P) or (not Q)" and "P and Q"?

Find the solution sets for the following open sentences:
P: '"x is a whole number greater than 5."

Q: "x is a whole number less than 9."

Now find the solution set for the open sentence "P and
Q". What relationship do you notice between the
solution set for "P and Q" and those for P ané Q
individually?

Suppose you are told that the solution set for open
sentence S(x) is set A and that the solution set for
open sentence T(x) is set B. What will be the solution
set for the open sentence "S(x) and T(x)" in terms of
sets A and B?

Pind the solution sets for the following open sentences.
V: "y is a whole number between 3 and 7."

W: "y is a whole number between 5 and 10."

Find the solution set for the open sentence "V or W."
What relationship do you notice between the solution
set for "V or W" and those for V and W individually?
You are told that the solution set for open sentence
M(x) is set C and that the solution set for open
sentence N(x) is set D. What will be the solution

set for the open sentence "M(x) or N(x)" in terms of

set C and set D?

19
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1.6 Conditional and Bi-conditional Statements

Recently, the science editcr of a newspaper made the
following prediction: "If the United States sends an astronaut
to Mars by 1976, then it will send one to Venus by 1980." Right
now, of course, no one can say whether this prediction will
turn out to be true or false., After 1980, we will know. Under
what circumstances will the prediction turn out to be true?
turn out to be false?

Suppose, first of all, that the United States does send
an astronaut to Mars by 1976 and then goes on to send one to
Venus by 1980, The prediction will then have turned out to bhe
true. On the other hand, suppose that while an astronaut is
sent to Mars by 1976, none has reached Venus by 1980, 1In this
case, the prediction must be judged false.

These two possibilities are clear enough, but there are
two more that require careful thought. Suppose that everything
goes wrong, so that not only does an astronaﬁt not make it
to Venus in 1980, but none gets to Mars by 1976. Was the
science editor wrong? Think carefully. Remember he did not
say an astronaut would get to Mars by 1976 or that one would
get to Venus by 1980; he only said that if one were sent to Mars
by 1976, one would get to Venus by 1980. So in this case,
since no astronaut got to Mars by 1976, we cannot say that the
science editor's prediction.about Venus was false,

Suppose no astronaut gets to Mars by 1976, but one does

20



get to Venus by 1980. Here again, the prediction is certainly
not wrong, so we cannot say that it was false.

Consider the following cconjecture made about the sum of
two whole numbers a and b:

If a and b are odd, then a + b is even.
Imegine that to test this assertion for a large number of
cases (that is, different replacements for a and g) you are
given an adding machine that will add any two whole numbers and
print the result. For each case you must decide whether the
assertion was true or false. To make the job easier,
the machine automatically selects numbers to be added end
prints them before adding. However, 1t does not always select
odd numbers. (Perhaps the same machine is to be used to test
other assertions about the sum of two whole numbers.)

The first two numbers the machine selects are 3 and 5.
If the assertion is correct at all, since 3 and 5 sre indeed
odd whole numbers, the result of the addition should be even.
And, of course, it is. The machine prints "8." ©Next, the
machine selects -4 and 7 and prints "11" as the sum. We know
11 is not even. 1Is the assertion wrong in this case? No,
all that is wrong is that the machine did not select two odd
numbers to start with. The assertion is still good.

When would you decide that the machine had come up with a
case for which the "assertion” was false? This would happen
only if the machine found two odd numbers with a sum
that was not even. Thus, you would have to find two numbers,

Q . " ]
lzRi(:g_and b, such that "a andi b arg'odd numbers’ is true, but

21
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"a + b is an even number” is false. For any other situation
the assertion is certainly not false.
What do the two examples discussed above have in common?
Both are compound sentences of the form
If P, then Q.
In each case it seems reasonable to consider the compound
sentence a true statement when P is true and 0 is true, and
it seems reasonable to consider the compound sentence a false
statement when P is true and Q is false. 1In the case that both
P and G are false or in the case that P is false and @ is true, the
truth or falsity of the compound sentence is less clear. However,
In these cases it wouid not be reasonable to say the given
predictions were false. Therefore, so that every mathematical
sentence of the "If P, then Q" form will be classified as
true or false, mathematicians have adcpted the following
convention:
When P end Q are statements, "If P,
then Q" is a statement that is true
unless P is true and Q is false.

Statements of the "If P, then Q. form are called conditional

statements. Statement P is called the antecedent and statement
Q@ i3 called the consequent.

If you are pﬁzzled by the agreement to call conditional
statements true when the antecedent is false or when both
antecedent and consequent are false, it may be of some hLelp
to re-read the discussion of the two examples. Then, if you

.8till have doubts, remember that in mathematics it is sometimes
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necessary to make or accept arbitrary definitions that may not

always agree with intuition. (Recall the case of "or'

compound statements.) As you gain experience in working with

conditional statements, the definition will become more and more

acceptable,

Example 1.

Example 2.

Example 3.

Example 4,

Example 5.

Suppose S is "2+ 33 =5"and Tis "2 =5 - 3.,"
Then the conditional

If S, then T
is true because S and T are both true.
"If 3 = -4 in Z7, then -3 = -4 in Z7." Here
the antecedent "3 = -4 in 27” is true but

the consequent "-3 = -4 in Z," is false, so the

7
conditional is false.
"If1+4+1=31in W, then5 + 4 = 8 in w."

Here both the antecedent and consequent are

false. The conditional is true by our definition.
"If 4 +3 =2 in ZS, then 5 + 4 =1 in Z7.”
Although the two parts of this conditional
statement do not seem to be related, "4 + 3 =2

in Z_" is certainly true, and "S5 + 4 = 1 in

5
Z." is false, so that the conditional statement

7

is false.

"If set S = {a, b, ¢} is not a subset of itself,
then S has 5 elements." Both antecedent and
consequent are false (recall that every

set is a subset of itself), so the given conditional
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is true! The definition must be followed
strictly. This points out that Jjust because
a conditional is true does not mean that its
consequent is automatically true. This
follows only if it is also known that the
antecedent is true.

As was the case with "and," "or," and "not." the rules

for determining truth or falsity of a conditional statement

can be summarized in a truth table,

P Q If P then Q

T T T

T F F

F T T

F F T
Table 3

Close inspection of this table reveals an important relationship
between conditional statements, "and," and the process of
negation.

The statement "If P, then Q" is false only when P is
true and Q is false (not Q is true). But this is the same
as saying "not (If P, then Q)" is true when "P and not Q" is
true. Thus, if we can show that the compound sentence "P and
not Q" is true, it follows that the conditional "If P, then
Q" is false.

Example 6, "If 72 and 27 are multiples of 3, then

72 + 27 is a multiple of 6." Both 72 and

Q 27 are multiples of 3, so the antecedent
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is true; but 72 + 27 = 99 is not a multiple
of 6, so the consequent is false. Thus,
ad the conditional is false.
Example 7. "If &8 | <G, then ED” ! BZ”." This
is an open conditional sentence. The
sketch below shows that the sentence is not

true for all points A, B, C, D,
C D

>

< I o7, but @D ¥ 5.

From the conditional it is just a short step to another

kind of statement called the bi-conditional. As its name

hints (bi is a prefix meaning two), it is in a sense two
conditional statements given in one sentence.
Example 8. "A quadrilateral ABCD is a parallelogram if
and only if its opposite sides are parallel.”
This compound statement says "If ABCD
is a paralielogram, then its opposite sides
are parallel” and "if quadrilateral ABCD
has opposite sides parallel, then it is a
parallelogram."” The original statement of
the form "P if and only if Q" stands for
two conditionals "If P, then §" and "If
Q, then P."
Example 9. "A mapping is an isometry if and only if it
o 2D preserves distances between points." This
ERIC

Full Tt Provided by ERIC.

statement may be broken down into the
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following two conditionals, both of which
must be true if the statement is true:

(1) If a mapping is an isometry, then it
preserves distances.

(2) If a mapping preserves distances, then it is
an isometry.

Exumples 8 and 9 illustrate a statement form common in
mathematics: If P and Q are statements, "P if and only if

Q" is a bi-conditional statement that is true when and only

when "If P, then Q" and "If Q, then P" are true.

Suppose for given statements P and Q it is known that
"If P, then Q" is true, and suppose furthermore it is known
that "If Q, then P" is true. Since "If P, then Q" is true,
it is impossible that P is true and Q@ false. Since "If
Q, thern P" is true, it is impossible that Q is true and P
flase. Since no other possibility is excluded, combining these
two conclusions yields either P and Q are both true or
both are false. Therefore, the bi-conditional, "P if and only
if Q" is a statement that is true whenever P and Q are
either both true or both false (otherwise it is false). This

is clearly illustrated in Table &4,

Pl Q |IfP, thenQ | If P, then P | P if and only if Q
T} T T T T
TI|F F T X
FIT T F F
FI|F T T T
Table &
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The definition of the hi-conditional is simpler than it
appears to be at first. For, suppose that "P if and only if
Q" is true. Then if either P or Q is true, the other must
automatically be true. Also, if P is false, then Q is false
and vice versa, When this happens, that is, when the
bi-conditional "P if and only if Q" is true, P and Q are

said to be equivalent statements.

The bi-conditional statement, "P if and only if Q," is
much stronger than the conditional statement, "If P, then
Q." If the conditional statement is true and P is true, then
Q@ will be true. However, if nothing is known about P, ‘
but Q@ is true, we cannot draw any conclusion about P fromi
the conditional. Compare this with the bi-conditional where
if Q is true, P must be true.

Example 10, In a plane two lines are parallel if and only
if they do not meet.” If EB” | <G> then
<EP n<op” =g, 1t BB n <GP = 4, then
w1 @,

Example 11, "If a and b are even, then a - b is even."
8 and 6 are even and 8 - 6 = 48 is even.
However 6 = 3 « 2 is even and 3 is not even!
(Note: We did not claim a * b is even if
and only if a and b are even.)

At the end of Section 1.4 it was pointed out that

when a compound statement '"not P or not Q" is true, then

the statement "not (P and Q)" is true. This was & hint that

)
]ERE(?"nOt P or not Q" is the negation of "P and Q." 1In the

o/
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exercises that followed you proved that this 1s so by using
truth tables (Page 13 , Exercise 14). This can now be stated
in a different way: '"not (P and Q)" and "not P or not Q" are
ejquivalent statements. The importance of this is that P and
Q can be any statements whatsoever, whether true or false.
Thus if you wished to show for some statements S and T, that
"S and T" is false, (that is, that "not (S and T)" is true),
you could show instead that "not S or not T" is true. Similarly,
you saw in Exercise 13 on Page 13 , that "not {P or Q)" and
"not P and not Q" are equivalent statements, so that if

for some statements C and D you wished to show that "C or D"
is false, you could show instead that "not C and not D"

is true.

Earlier in this section you saw that when the compound
sentence "P and not Q" is true, the conditional sentence "if
P, then Q" is false (and therefore that "not (if P, then Q)"
is true. This suggests that "P and not Q" is the negation of
"if P, then Q," or in other words that "P and not Q" and

~"not (if P, then Q)" are equivalent statements. In the
exercises you will be asked to prove this by means of a truth
table.

Suppose that two statements are each constructed
in some complex way from other statements. For example,
suppose that one of these complex statements is "S or (T and
U)" and the other is "(S or T) and (S or U)." If it is known

that these two complex statements are equivalent, then to

O
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show that "S or (T and U)" is true 2= could show instead

that "(S or T) and (S or U)" is true. Again, the importance
of this is that (if the two complex statements ares %in fact
equivalent) the equivalence must hold for any statements S,
T, and U. (You will be asked to prove this equivalence using
a truth table,) The procedure of showing a statement to

be true by showing an equivalent statement true is common.y

used,

1.7 Exercises

In Exercises 1-13, determine whether the given statement
is true or false,

. If2<5, then2 + 3 < 5 + 3,
2

. If 7 is a rational number, then & <

7

. If a number is odd, then three times the number is odd also.

~jw

1

2

3

L, 1If 6 is odd, then 3 x 6 is odd also.

5. If wishes were horses, then beggars would ride.

6. "If S, then T" where S is "3 is even and 5 odd" and T
is "3 + 5 is even,"

7. "If T, then S." (See Exercise 6.)

8. 'S if and only if T." {See Exercise 6.)

9. "If Q, then R" where Q is "4 is odd" and R is "3 x & ig
odd."
10. "If R, then Q." (See Exercise 9.)
11. "R if and only if Q." (See Exercise 9.)
12, "Q if and only if R." (See Exercise 9,)
© . 13, If 7 is a prime, then 2 does not divide 7.

‘ 9 B T e DRSS ek
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14, Write a negation of the conditional statement in Exercise 4.
15, Write a negation of the statements appearing in

(a) Exercise 6,

(b} Exercise 7.

(¢} Exercise 8.
16, Write a negation of the statements appearing in

(a) Exercise 9,

(v) Exercise 10.

(c) Exercise 11.

17. Complete the following truth table,

P|l Q] notQ | if P, then Q | not(if P, then Q | P and (not Q)
T T F T F F

T{|F

LT

F F

Compare the last two columns, What do you observe? What
does this tell you about the relationship between "not(if
P, then Q)" and "P and (not Q)"?

18, s = {a, b, ¢, d}. The following relation R is defined on S:

{(asa), (v,b), (c,c), (d,a)}.

Note that R is a reflexive relation on S, since xRx 1s true
for every element x in S. Recall that R is symmetric, if when
X and y are elements of S and xRy is true, then yRx is true,
Is R symmetric? Is R transitive? Explain your answer.

19. Show, by using a truth table, that "S or (T and U)" and
"(8 or T) and (8 or U)" are equivalent.

Q@ D, Show that "if A, then (B or C)" and "if (not C), then

1] )
(1if A, then B)" are equivalent. an
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1.8 Quantified Statements

Recall an example of the previous section: "If a and
b are odd whole numbers, then a + b i1s an even whole number."
You were asked to imagine a machine which would test this
assertion for a large number of cases by substituting various
numbers for a and b. This assertion 1s in fact true no matter
what whole numbers are chosen to replace a and b. There-
fore, the following is true: "For all whole numbers a and D,
if a and b are odd, then a + b is even." If someone doubted
this assertion, how could he try to prove it false? 1If he
could find one pair of odd whole numbers that had an odd sum,
the entire assertion would be false. Even though there might
be many pairs which would not contradict it, the given state-
ment claims that for all odd whole numbers a and b, a + b 1s even.
A single contradictory case would defeat the assertion.

The assertion "For all whole numbers x, x + 5 > 5" actually
falls victim to such a criticism. Certainly 0 is a whole
number, but O + 5 is not greater than 5. Therefore, the state-
ment "For all whole numbers x, x + 5 > 5" is false. Note that
0 1s the only whole number which contradicts the assertion!

This points out that whenever you make an assertion of the

"for all" type you must be certain that you have considered
every possible cise. Note also that by including the phrase

for all, the assertions given become statements (called universal

statements) that are true or false. This is in contrast to
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open sentences like "3x + 2 = 4" which are true for some
replacements of x and false for others.

Many mathematics theorems are universal statements;

for example:

Theorem: For every natural number n, n{n + 1) is an
even natural number.
Notice that although the theorem uses the
words "for every" instead of "for all," the
meaning is the same. Other phrases used
having the same meaning are "for each" and
"for any," or sometimes simply "each," "any,"
etc. When these phrases are used to form
universal statements, they are called universal

quantifiers.

Example 1. "Every natural number is a positive integer.”
From the definitions of natural number and
positive integer, you know that this 1s true.
Note that this statement is not about every
rumber, but about every natural number. Thus
the universal quantifier "every" is applied
to the set of natural numbers., The set to
which the quantifier applies is called the
domain of the quantified statement, so the
domain of this statement is the set of

natural numbers.
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Example 2. "Every whole number is a positive integer.”
This is false, since there is a whole number
(0) that is not a positive integer. The
universal quantifier used is "every" and the
domain of this universal statement 1is the
set of whole numbers,

Example 3. "All line reflections are isometries.”
As you saw in Course I this is true. 1t is
impossible to find a line reflection that is
not an isometry. The domain of this universal
statement is the set of line reflections,

Example 4. "Any even number greater than 2 is the sum
of two primes.”
To show that this is false, you would have to
find an even number that cannot be written as
the sum of two primes, No one has yet bezan
able to do this (as of 1969); on the other
hand, no one has been able. to prove this
universal statement--known as Goldbach's
Conjecture. Note that the domain of this
statement is the set of even numbers greater
than 2.

Example 5. "For all x and Y in Zg, if x.y = O, then
x=0o0ory=0,"
Fortunately, since ZG is a small system, you
will be able to test the truth of this conjecture

easily.
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Now consider the open sentence, "x + 3 > 7." By
introducing a universal quantifier, the open sentcnce becomes
a statement: "For all whole numbers X, x + 3 > 7." This is
false, since 3 is a whole number and "3 + 3 > 7" is false.

The open sentence could be converted into a true statement

in two different ways. One approacn is to change the domain

and state "For all whole numbers x greater than 4, x + 3 > 7."
" Another approach involves a change of guantifiers.

' changing

Instead of "For all x" we could write "For some x,'
the universal statement to a new form

For some X in W, x +3 > Te
Of course, "for some” is not a universal quantifier, and the
meaning of the sentence is completely changed. The new
sentence will be true if there is one or more whole numbers
X for which x + 3 >7. Certainly 5 is one such--so there is
no need to look further. The new statement is true.

The phrase "for some" that we used to construct the new

statement is called an existential gquantifier, because it

asserts that something exists--in this case, a whole number
x for which "x + 3 > 7" is true. The statement itself is
called an existentially quantiflied statement, or more simply,
an existential statement.
Example 6. "For some x in Z;,, x?= 4."
In Z,,, 2°%= 4% =82 = 4,

Therefore the existential statement 1s true.
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Example 7. "For some integer a, a-a is negative,"
To show that this is true, you would have to
iind at least one integer, which when
multiplied by itself, would give a negative
number., If & is negative, then a-a is
positive (recall that the product of two
negative numbers is positive) and if a
is positive, th=sn a-«a is positive also., If
a = 0, then a+a = 0., Therefore there is no
integer a such that a® < 0. Conclusion:
The existential statement of this example
is false.

Example 8. "There is an isometry that is not a line
reflection.”
Since there are isometries which are not
line reflections (rotations and translations,
for example), this existential statement is
true. Note that the quantifier is "there is.”
This has essentially the same meaning as

!

"for some,'" as you have seen, and is considered

to be mathematically the same. Another form

of the existential quantifier is "there exists."

Example 9. "There exists an integer x for which x:x = 9."
Now 33 =9 and (-3)+(-3) =9, so there are in

fact two integers X for which X+:x = 9; namely
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3 and -3. Do not be fooled by the words, "There

n

exists an integer ... This really means,

n and

"There exists at least one integer ...
therefore the given existential statement is true.
Example 10. "For some odd whole numbers X and y, x + y is
is even,"
At the beginning of this section, you saw that
the universal statement, "For all odd integers
x and ¥y, x + y is even," is true. Since
"X + y is even" is true for all odd whole
" numbers X and y, it is certainly true for
some of them. The given existential statement
is also true,
The negations of the existential and universal statements
can be found easily. Suppose that some given statement is,
"For all x, P(x)." 1If this is false, then there must be at
least one replacement for X which makes P(x) & false
statement. But this is simply saying that "For some x, not
P(x)" is true.

" is the negation of "For

Then, "For some X, not P(x)
all x, P(x)." The negation of "For all whole numbers n,
n is prime" is "For some whole number n, n is not prime."

It follows in exactly the same way that the negaticn
of "For some x, Q(x)," is "For all x, not Q(x)." For
example, the negation of the statement "For some integer

a, ara is negative," is the statement "For all integers a,

o~+a is non-negative."
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1.9 Substitution Principle for Zquality (SPE)

Suppose you are asked to do the following arithmetic
problem: 1234 x 72 + 1234 x 28, Naturally, this inwdves
a lot of computation unless some shortcut can be found.
Perhaps you see one using a property you studied in Course I:

1234 x 72 + 1234 x 28 = 1234(72 + 28)

1234(100)
123,490,

What justifications can be given for these steps? The first
is an application of the distributivity of multiplication
over addition in the set of integers. 1In the second step,
"100" has been written in place of "72 + 28", What reason
could be given for this? Perhaps you would say that this

is a known fact of addition of integers. However, more than
this is actually involved. For the known fact of addition
used here is "72 + 28 = 100." Another way of saying this is
that "100" is another name for "72 + 28", AThen this name
"100" is used in place of the previous name "72 + 28."

That is, we have replaced one name for a particualr thing by
another name for the same thing. In Course I, the guarantee

that this is allowable was called replacement assumption.

However, there is a more general principle in mathematics
that will permit this kind of replacement and can be applied
in a greater variety of situations. This is called the
Substitution Principle for Equality (abbreviated SPE) and

can be stated as follows:
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If any part of statement is replaced by an expres-
sion to which it is equal, the resulting statement is
equivalent to the original one. In other words, if the
original statement is true, the resulting statement
is true; 1if. the original statement is false, then the
new one is false also.

In the example given above, 72 + 28 is equal to 100, and
since "1234 x 72 + 1234 x 28 = 1234(72 + 28)" is true, then
1234 x 72 + 1234 x 28 = 1234(100)" is true also. In the next
step of the example, since 1234(100) = 123,400 and "1234 x 72
+ 1234 x 28 = 1234(100)," by SPE, "1234 x 72 + 1234 x 28 =
123,400" is true also.

To see how this principle can be applied to a different
kind of problem, consider how you might find the solution
set to the open sentence, "3 + a = 5" in Z7. One way to do this

is to add the opposite of 3 to both sides. Since the opposite

of 3 in Z, is 4,
4 +(3+a) =4+5
so (4+3)+a=2 (Why?)
so O+ a=2 (Why?)
or a =2 (Why?)

What Jjustifies adding the opposite of 3 to both sides? This
is an application of a direct conseguence of SPE--the Left

Operation Property.

If (S,0) is an operational system and if x and y
are elements of S and X =y, then if 2z 1is also in

O S,ZOX=ZOY.
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In the above example, the operational system is (27,+),
and we started with 3 + a =5 (so x is 3 + a and y is 5).
Then z was 4, and "o" was addition, so z O x = z © y becomes
4 + (3 +a) =4 + 5.

To see that left operation is a result of SPE, start with
an operational system (S,0) and x = y, with both x and y in
S. Now if z is in S, then surely z © x = z © x, since
equality is reflexive, Since x = y, by SPE any X 1n
z 0 x = z O x may be replaced by y. Replacing the one on

the right by y, the result is z © x = z 0 y. That is, this

is true if x = y. But this is Just what left operation says.

1.10 Exercises

Determine the truth or falsity of the statements in
Exercises 1~15. Then state whether the given statements are
universal or existential (or neither) and give the domain.

. Every line reflection is an isometry.
. Every isometry is a line reflection,

. There i1s a line reflection which is an isometry.

. For all integers x and y, x2y? is even,

1
2
3
4. There is an isometry which is a line reflection.
5
6. For some integers x and y, x?y? is even.

7

. For each 1nteger_5_greater than -3 and less than 4,

8. There exists an element x in 27 for which x® = 3.
9. There exists an element x in Zg for which x2® =2,
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10. For all mappings s and £t, s o t =t o s.

11. For some mappings g and h, g o h # h o g.

12, For all line reflections &y, 1f A is a point in the
plane, then (zm o Lm)(A) = A,

13, For every operational system (S,o), if a and b are in

S, thena ob =Db o a,

14, There is an operational system (T,o) such that for all
a,b, and c in T, a o (b o ¢c) # (a ob) o c.

15, For every operational system (U,o), and for all x, ¥y,

and z in U, x o (y 0 z) = y o (x o 2z).

16. UWrite statements that are negations of the statements
in Exercises 1-4. State whether each of your state-
ments is a universal statement, an existential state-
ment, or neither,

17. Write statements that are negations of the statements
in Exercises 5 and 6.

18. Write statements that are the negations of the statements
in Exercises 10 and 1l.

19. Determine the truth or falsity of the followling state-
ment and write its negation:

For each integer_§, there exists an integer &
such that t > s.

20. Determine the truth or falsity of the following
statement and write its negation:

There exists an integer X such that for all

integers y, ¥ > X.
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21. For the following arithmetic problem tell where and
how SPE 1s used:
37 x 53 = (30 + 7) x (50 + 3)
(30+7) x50+ (30+7) x3
(30 x 50) + (7 x 50) + (30 x 3) + (7 x 3)
1500 + 350 + 90 + 21
= 1961

il

22, A proof is given below of the theorem:
For every integer r, r-0 = O,

Identify the steps in which SPE is used and tell how

it is used,
r«0 =r.0 ?
r-(0 + 0) = r.0 ?
r-(0+0) =r0+0 ?
r<0 + r+«0=r'0+ 0 ?
r.0 =0 Cancellation Law in
(z,+)
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1.11 Inference
Suppose a swimming pool has the following sign posted

at the entrance:

L If it is a Rainy Day
Then the Pool Will Be Closed

Since we have no reason to believe that the manager of the
pool would post false statements, we consider this a true
conditional. Now knowing also that it is a reiny

day will allow us to draw the conclusion that the pool will
be closed. Two statements, both considered true, have given
us another true statement.

Look at the above example again, bu¥ this time assume
we know that the pool is closed. Using only the information
given, what conclusions can be drawn about whether it is or
is not a rainy day? If you think for a moment, you will
realize that the pool could be closed for many reasons other
than a reiny day; it might be the middle of winter! Thus, no
conclusion can be drawn on the basis of these two true
statements.

Let us analyze these two instances closely. Let P
represent the statement "it is a rainy day" and Q represent
the statement "the pool will be closed."” Thus, "if P then Q"
represents the statement made by the swimming pool manager,
"If it is a rainy day, then the pool will be closed." Knowing
only that the compound sentence "if P then Q" is a true
statement does not tell us the truth value of the statement P,

or the truth value of the statement Q. Howéver, "{f P then Q"
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is‘a true statement in each of the following 3 cases:

(1) when both P and Q are true,

(2) when P is false and Q is true, and

(2) when both P and Q are-false.
Thus, one of the 3 cases must hold when "if P then Q" is true.
If in addition to knowing "if P then Q" is true, we also know
P is true (as in the first situation) then the only case which
could hold is (1), since it is the only éase of the three in
which P is true. Thus according to Case (1), both P and Q
must be true and we have obtained additional information;
namely that Q is a true statement. To repeat, knowing that
both statements, P and "if" P then Q" are true, we can
conclude that the statement Q is also true. We express this,
the first of our inference rules, as:

(1) From "If P, then Q" and "P," we infer "Q."

In mathematics, reasoning from & true conditional statement
"if P then Q" and a true antecedent P to the truth of the
consequent Q is following a basic rule of inference called the

rule of detachment or modus ponens.

If we again consider the three cases in which "If P, then
Q" is true, we can see why it is impossible to draw a conclu-
sion from knowledge that Q is true. When "if P then Q" is
true and Q is true, two possibilities exist for P -- P true
or P false -- and we cannot draw & conclusion from the
information given. To repeat, having as true the conditional
"if P then Q" and the consequent Q, does not give any

information about the truth value of P,
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For each of the following accept the

following conditional statement as true:

If it is Saturday, then the school is closed.

e)

Accepting also as true in addition to the
conditional, the statement "It is Saturday"
leads us to infer the conclusion "The
school is closed."” This is a direct
application of the rule of detachment.
Accepting as true the statement "The

school is closed" along with the condi-
tional does not allow us to make any
inferences about what day of the week it
is. This is an example of the form "If

P then Q" and "Q."

In each of the follow.ing accept the first two

statements as true.

a)

b)

If 7 has exactly two distinct factors, then
7 is a prime number. 7 has exactly two
distinct factors.

Conclusion:

7 is & prime number.

IY a natural number has exactly two
distinct factors,

Then it is & prime number,

T has exactly two distinct factors.
Conclusion:

T is a prime number.
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Discussion: 1In each of the above examples the rule or
detachment has been used. However, example (b) does not fit
the form exactly. Another rule of inference has been used.
The conditional statement "If a natural number has exactly
two distinct factors, then it is a prime number," can be
considered as a perfectly legitimate true statement. However
it cannot be expressed as a compound of simpler statements
since the simple sentences contained within, "A natural

number has exactly two distinct factors," and "It is a prime

number, "

are not statements. That is they are not ejther
true or false but open sentences.

Conditionals of this form are called general or
universal statements. Accepting them &s true means we
interpret them to be true for all substitution instances.

We are saying "If a natural number x has exactly two distinct
factors, then xis a prime number," is a true statement for
any and every substitution for the variable x from the domein
of natural numbers.

Thus in example (b), from the universal conditional
alone we can infer the conditional "If 7 has exacily two
distinct factors then 7 is a prime number." Making this
inference first we can then proceed as in example (a) to use
the rule of detachment and conclude "7 is a prime number."

This inference rule called inference from & universal
statement is often used in mathematics since many statements

are universal conditionals. Often the particular statement

QO nferred from the universal is not mentioned as was done in

ERIC
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example (b). In most cases the argument will be clear
enough without adding extra steps. However, it is important
to realize when you are making inferences from universal
statements.
Example 3. For each of the following accept the
following conditional steatement as true:

If & number is divisible by 8, then

it is divisible by L.

(a) If, in addition to the above conditional,
the statement "256 is divisible by 8"
is accepted as true, then the conclusion
"256 is divisible by 4" must be accepted
as true.

(b} However, if the statement "68 is divisible
by 4" is accepted as true, no conclusion
about divisibility of 68 can be inferred.

(¢) In the same way, if "736 is divisible
by 4" is accepted as true, then no
conclusion about divisibility of 736
by 8 can be inferred. |

(d) If the statement "25 is divisible by 8"
is arcepted as true, then the conclusion
"25 is divisible by 4" must be accepted
as true.

Discussion: Both Exemples 3(a) and 3(d) are of the following
form: "If P, then Q" is accepted as true and P is accepted

~true. This implies that Q must be accepted as true. 1In
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Example 3 (d), 25 is in fact not divisible by 8 nor is it
divisible by 4. However, accepting 25 as divisible by 8 must,
by the rule of detachment, lead to accepting it as divisible
by 4. The use of inference is correct and the statements are
consistent.

Examples 3 (b) and 3(¢c) are of the form: "If P, then Q"
is accepted as true and Q is accepted as true. On the basis

of this information alone we cannot make any inferences about

the truth or falsity of P. In Example 3(c), although 736
is divisible by 8, this additional information is not a
logical consequence of the two statements accepted as true.
Example 4. For each of the following, accept as true the
conditional statement: "If a and b are both
even integers, then a + b is an even integer.”

(a) Accepting as true "6 and 10 are both even
integers" leads to the conclusion "6 + 10
is an even integer."

(b) Accepting as true "13 + 3 is an even
integer" does not imply tha* 13 and 3 are
even, a good thing, since they are clearly
both odd.

(c) 4ccepting as true "12 + 4 is an even

integer" does not itself imply that 12

and 4 are even -- although they are, in
fact, both even.
Let us again consider the swimming pool example, However,

Q this time, in addition to assuming that, "If it is a rainy

Ay .
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day, then the pool will be closed," is a true statement,
assume that we know the pool is not closed. We can then
conclude that it is not a rainy day:! We may write this, the
second of our inference rules, as:
(2) From "If P, then Q" and "not Q" we infer "not P."
Looking again at the three cases in which "If P, then
Q" is true, we can see that in only
1. P true and Q true
2. P false and Q true
3. P false and Q false
one (Case 3) is @ false. In that case P‘;iso is false, so
"If P, then Q" is true and "not Q" is true must imply "not P"
is true. Again, knowledge about the truth of two statements
have allowed us to draw a conclusion about a third statement.
If, instead of knowing the pool is not closed, we know it
is not & rainy day, then we are again in a situation where
no conclusion can be drawn. The pool could be open or closed.
This is the form "if P then Q" true and P false, and can be
eithur Case (2) where Q is true or Case (3) where Q is false.
Example 5. Assume "If a whole number is divisible by 8,
then it is divisible by 4."
(a) Accepting as true "82 is not divisible
by 4" leads to the conclusion "82 is
not divisible by 8."
(b) Accepting as true "876 is not divisible
by 8" leads to no conclusion about

divisibility about 4.

AR
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(c) Accepting as true "534 is not divisible
by 4" leads to the conclusion "534 is
not divisible by 8".
Example 6. "For all integers p > 2, if p is prime, then
p is odd."
(a) 257 is a prime greater than 2, so 257
is odd.
(b) 684 is greater than 2 and not odd, so
684 is not prime.
Example 7. "All isometries preserve angle measure."
(a) Line reflections are isometries, so
they preserve angle measure.
(b) Mappings that don't preserve angle
measure are not isometries.
(¢) Dilations preserve angle measure, but
they are not isometries!
Example 8. A mapping assigns only one image to each
domain element. In the diagram below, &4

has two assigned images, so the dlagram does

not define a mapping from A to B.
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The Law of Detachment is the most common and importent
type of logical inference in mathematics. There are, however,
several other basic reasoning patterns used in mathematical
argument.

Suppose we accept the following compound statement as true:

25 is an odd number and 25 is a perfect square.
From this one statement alone, we may certainly conclude that
25 is a perfect square. (We may also conclude that 25 is an
odd number.) Here, accepting as true & compound statement,
where the connective used is and, allows us to accept as true
each of the simple statements involved. The reverse is also
useful. That is; accepting as true two statements allows us

to infer that the compound and statément fcrmed by them is

also true.

Suppose we accept as true the compound statement:

529 is a perfect square or 529 is divisible by 13.

From this statement alone, no inferences can be made. However,
if we also accept as true the statement "529 is not divisible
by 13," then we must accept as true the statement "529 is a
perfect square."

The three inference rules described above may be expressed
as follows:

(3) From "P and Q" we infer "P."

(4) From "P" and "Q" we infer "P and Q."

(5) From "P or Q" and "not Q" we infer "P."
The five rules .of inference are valuable tools in the analysis

O
ERJC reasoning problems.
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Example 9. Assume the following three statements are true:
(a) If we have an art class, then it is Friday.
(b) We have a music class or we have an art

class.
(¢) It is not Friday.
Conclusion: We have a music cless.
Discussion: From the conditional statement
(a) and the negation of its consequent,
(¢), we infcr, by inference rule (2), that
we do not have an art class. Using this
fact and (b), we infer, by inference rule(5),
that we have a music class. If P is "We have
an art'class" and Q "It is Friday" and R "We
have a music class" the argument takes the
following form"

(a) If P then @ ASSUMED TRUE

(bp) Ror P ASSUMED TRUE
(c) Not @ ASSUMED TRUE
(d) Not P From (a) and (c¢); rule (2).
(e) R From (b) and (d); rule (5).

1.12 Exerclses

In Exercises 1-14 assume the given statements are true.
(1) state the inferences (if any) that can be made,
(2) Assign letter names to each of the component
simple statements and state the inference

rules used in drawlng your conclusions.

01




~47-

1. If I toss & falr coln, then the probabillity of gettiig ﬁ
tail is %.
I toss a fair coin.

2, If set A 1s a subset of every set, then set A is the empty set.
Set A is not the empty set.

3. If sets A and B are the complements of each other, then the
union of the two sets is the universe.
The unior of set A and set B 1is the universe.

L, If the image of point A under a reflection in point P is A!',
then P is the midpoint of ER',
The image of point A under a reflection in point P is A',

5. m is parallel to n or m 1s parallel to p.
m is parallel to n.

6. If B is between A and C, then AB + BC = AC.
AB + BC # AC.

T. The natural number 7 is even or it is odd.

~r

{ is not even.

8. If x and y are both positive, then thelir product is positive.
The prodﬁct of X and y is positive.

9, If the sum of_g and b is negative, then at least one of g,b
is negative.
The sum of a and b 1s positive.

10. If x and y are both positive, then their product is positive.
X and Yy are not both positive.

*11. If a and b are rational numbers, then there is a rational

number between them.

a and b are rational numbers greater than 5.

I=49




#12,

13.

14,

15.

16.

48

If x 2 8, then y 2 5.
|x - 5] >3 and y < 5.
If a number is divisible by 8, then it is divisible by &4,
If a number is divisible by 4, then it is divisible by 2,
88 is divisible by 8.
x=3o0orx=4, If x=3, theny = 7.
y#ET.
Ir AC” = B, then B is on AG .
AC” = KB or 0 n KB = A.
B not on KE>.
A mathematics teacher, moonlighting as a detective, was
investigating a crime. He had come to accept the following
statements as true:
(1) The butler or the stepson murdered Mr. X.
(2) 1If the butler murdered Mr. X, then the murder
did not occur before midnight.
(3) 1If the stepson's testimony is correct, then the
murder occurred before midnight.
(4) If the stepson's testimony is incorrect, then the
house lights were not turned off at midnight.
(5) The house lights were turned off at midnight,
and the butler is not wealthy.
Using his knowledge of loglc and prooi, the mathematico-
detective quickly inferred who the murderer was. Who
was the murderer and what rules of inference did the

sleuth use to discover this?
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1.13 Direct Mathematical Proof

Section 1.1 of this chapter sketched an argument justi-

fying the statement:
If a and b are even whole numbers,
then a + b is even.

What made that argument acceptable as a mathematical proof?
Let's examine that argument.

The statement to be proven is a conditional of the form
"If P, then @ where P is "a and b are even whole numbers"
and Q is "a + b is even." The conditional will be true unless
P 1s true and Q@ is false. Therefore the strategy of argument
is to assume P true and show that then Q must also be true.

l. a and b are even 1. Assume P true.

whole numbers.

2. a = 2x for some X 2. Definition: A whole
in W. number n is even 1f
b = 2y for some y and only if n = 2m
in W, for some m in W.

3. a+b=2x+0D, 3. Right operation on

a = 2x by b in (W,+).

=
o
+
o'
i

2x + 2y. 4, SPE in Step 3 since

b = 2y.
5. 2x + 2y =2(x +y). 5. Distributive property
of (Wy+,-).

o4



6. a+b =2(x+y). 6. SPE using Step 5 in
Step 4,

7. X +y is in W. 7. (W,+) is an operational
system.

8. a + b is even 8. Definition in Step 2.

Analysis: The proof is a sequence of statements leading to
the desired conclusion "a + b is even." Each step of the argu-
ment is Jjustified by some known fact, axiom, definition, or
theorem about whole numbers, or by an acceptable inference
from earlier statements in the proofr.
Step 1. & and b are even whole numbers.
The strategy of proof is to assume the truth of
this statement and show that "a + b is even"
must then be true also.

Step 2. From "a and b are even whole numbers," we infer
"a is an even whole number” by rule (3) of
inference. Similarly we infer "b is an even
whole number." The definition of even whole number
states that n is even if and only if n = 2m for
some m in W. In particular, since a is even,

a

2x for some X in W; and since b is even,

b

2y for some y in W,

Step 3. The right operation principle states that for any
X, ¥y, 2in S, if x =y, thenx o z =y o z in the
operational system (S,0). In particular, if z =

b, then a + b =2x + b in (W,+).

99
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Step 4. Since step 2 states that b = 2y, S P E and
step 3 justify inferring the statement:
a+b=2x + 2y.

Step 5. The distributive property of (W,+,:) states that
if p, 4, r are in W, then p(a + r) = pq + pr.
Since 2, X, and y are in W, the rule of
detachment justifies the statement:
2x + 2y = 2(x + y).

Step 6. Using the statements of steps 5 and 4, S P E
justifies inferring: a + b =2(x + ¥y).

Step 7. If X and y are in W, then (x +y) is in W
because (W,+) is an operational system. In
step 2, X and y were guaranteed to be in W;
thus the law cf detachment Jjustifies the
assertion:

(x +y) in W.

Step 8. The definition of even number given in step 2
also states that if n = 2m for some m in W,
then n is even. In particular, a + b = 2(x +y)
and X + y is in W, so the law of detachment
Justifies the inference: a + b is even,

The point of the above discussion is to indicate the
many inference rules used in constructing a mathematical proof.
Axioms and theorems are usually conditional statements;

definitions are usually biconditional statements. Thus, in

9b
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using an axiom, theorem, or definition to justify a step in
a proof, we are in reality using the rule of detachment

and possibly other rules of inference depending on whether
we have compound or simple statements.

It is important to realize that all steps in a proof
must be Jjustifiable. However, only rarely is every reason
stated. Rather, an abbrevieted form is usually offered.

The degree of abbrevietion used in a proof depends to a

great extent on the individuals to whom the proof is directed.
Thus, in advanced mathematics books, we are likely tn find
the words, "It is obvious that ... follows," where quite a
few statements and inference rules are called for.

The next sample proof gives another mathematical argument.
ramine it to see how rules of inference, axioms, theorems,
and definitions are used in the steps leading to the desired
conriusion. This proof has another feature--an argument

by cases--that is worth c¢lose attention.

Theorem. Let & and b be whole numbers. If a orb is

an even number, then a.b is even.

Proof. The conditional is true unless the ante-

cedent is true and the consequent is false.
Therefore, the strategy is to assume "a or
b even" is true and show that "a<b even"
must follow.

1. aorbd even 1. Assumption

9/
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2., Assune a is even 2., One of a or b must be even,
so we give an argument for
the case & is even. A
similar argument works for

the case b is even,

3. & = 2x for some X in W, 3. Definition of even whole
number.

4, a.b = (2x)v 4, Right operation.

5. (2x)b = 2(xb) 5. Assoclativity of multiplica-

tion in (W,.).

6. ab = 2(xb) 6. S PE step 5 in step k.

7. xb is in W. 7. (W,*) is an operational
system (x is in W by step 3
and b is in W by assumption).

8. a-b is even 8. Definition of even number and

results of step 6 and 7.

1.14 Indirect Mathematical Proof.

The preceding examples of proofs illustrated a direct
approach to proof of a conditional statement like "If P,
then Q." The strategy was to asgsume P true and show that Q
must then also be true. There is a more devious approach,

suitably called indirect proof, which is often very useful.

The conditional "If P, then Q" is true unless P is true

03
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and Q is false. To show the conditional true, one must show
that any time the consequent Q is false, the antecedent P
must also be false. Assume "not Q" and show "not P’ follows,
(Recall that this is rule (2) of inference.) This is the
strategy used in the following proof.
Theorem. Let & and b be whole numbers. If a.b is odd,

then 2 is odd and b is odd.
Proof. In this conditional, P is "a-b is odd" and Q

is "a odd and b odd." The strategy is to

assume Q false and show that then P must be false

also.
1. not (& odd and b odd). 1. Assumption.
2. & even or b even 2. An and compound statement

is false if one of its
component statements is

; false.

UV}

3. a*b is even The preceding theorem
stated that if a or b is
even, then a*b is even.

4, a-b is not odd 4, By definition every whole
number is even if and only
if it is not odd.

Check the role of inference patterns, such as detachment,
in this proof.

The next theorem is proven by another form of the indirect

method. It rests again, however, on the fact that & conditional

59
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"If P, then Q" is true unless P is true and Q is false. In
this proof we assume that the worst has happened--P is true
and Q is false--and show that such a situation is impossible
because it leads to a contradiction of an axiom, theorem,

or definition,

Theorem. If n is a whole number, then n{n + 1) is even.

Proof.

l. n is a whole number and 1. Assumption

n(n + 1) is odd.

2. n odd and (n + 1) odd 2. By the preceding theorem,
if ab is odd, then a is
odd and b is odd.

3. n+ {n + 1) is even 3. By a theorem discussed in
Section 1.6, the sum of

two odd integers is even.

4y, n+ (n+1i)=2n+1 4, Properties of (W,+,-).

5. 2n + 1 is odd 5. Equivalent to definition of
odd number.

6. n+ (n + 1) is odd 6. S PE step 4 in step 5.

7. n+ (n + 1) is both even 7. Steps 3 and 6.

and odd.
Step 7 cannot be true since every even whole number is not
odd and every odd whole number is not even. Therefore, the
assumption "P and (not Q)" has led to a false statement

and must itself be false.
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In your future study of mathematics you will ot'ten be
asked to prove conditional statements of the form "If P, then
Q." The most successful strategy depends on the nature of the
given statement. It will be helpful to keep in mind these facts:
1. "If P, then Q" is true unless P is true and Q is false.
2. To show "P and (not Q)" impossible, one might try
the following:
(a) Assume P true and show that Q follows.
(v) Assume '"not Q" and show that "not P" follows.
(¢c) Assume "P and (not Q)" and show this leads to

contradiction of an axiom, theorem, or definition.

1.15 Exercises

In this chapter we have discussed the following five
theorems about whole numbers:
Theorem A. If a and b are even, then a + b is even (1.13).

Theorem B, If

®

and b are odd, then a + b is even (1.6).

Theorem C, If

[®

or b is even, the a‘b is even (1.13).
Theorem D, If a.b is odd, then a is odd and b is odd (1.14).
Theorem E, If n is a whole number, then n(n + 1) is

even (1.14).
1. Give a step by step analysis of the following proofl of
Theorem C, taken from the text. Use the analysis of Theorem A
as a guide and give both justifications and explanations

of the inference rules used.
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1. aor b is even,

2, Assume a is even,

3. a = 2x for some x in W,
L, a.b = (2x)b,

5. (2x)b = 2(xb).

6. a<b = 2(xb),

7. xb is in W,

8

a+*b is even,.

2, Follow the directions of Exercise 1 in giving analysis of
the following proof.
Theorem. Let a, b, and ¢ be whole numbers. If g
divides b and b divides ¢, then a divides c.
Proof. A direct strategy is used.

1. & divides b and b divides ¢.

2, a divides ).

3. b = ax for some x in W,
L, b divides c.

5. ¢ = Dby for some y in W.
6. c = (ax)y.

7. (ax)y = a(xy).

8. ¢ = a(xy).

9. xy is in W.

10. a divides c.
In Exercises 3-5 use only theorems A - E and known facts
of arithmetic to prove the given assertions.
3. If a+ b is odd and a is even, then b is odd.

" o7f a + b is even, then a is even and b 1s even.

:f a, b, and ¢ are odd, then ab + ac 1s even.
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1.16 Summary

The purpose of this chapter is to illustrate and
explain the most common forms of statement and reasoning used
in mathematics. The content of mathematical statements may
range from facts about number systems to geometry, sets,
relations, mappings, or probability. Yet, in each of thcse
areas the statements and methods of reasoning have similar
forms and obey common rules of usage.

i. A statement is a sentence that is either true

or false, but not both.

2, If P and Q are statements, then "not P," "P and
Q," "If P, then Q," and "P if and only if Q" are
also statements, The truth or falsity of these
compound statements can be determined from the
truth or falsity of P and Q according to rules

summarized in the following table:

P Q| not P P and Q P or Q If P, then Q P iff Q¥

T| T F T T T T

T ¥ - F T F F

F T T l F T T F

FIF — F F T T
#("iff" is a common abbreviation for "if and §nly if,")

3. If P(x) is an open sentence, the universal statement
"For all x, P(x)" is true if each replacement of x
(from the appropriate domsin) makes P(x) a true

statement. The existential statement "For some X,

P(x)" 1s true if at least one replacement of x (from
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the appropriate domain) makes P(x) 2 true statement.
L, The rules of inference used are as follows:
(1) From "If P, then Q" and "P" we infer "Q."
(2) TFrom "If P, then Q" and "not Q" we infer "not P."
(3) From "P and Q" we infer "P."
(4) From "P" and "Q" we infer "P and Q."
(5) From "P or Q" and "not Q" we infer "P."
5. The substitution principle of equality (SPE) is a basic
inference rule,
6. Conditional statements "If P, then Q" are true
except when P is true and Q@ is false. Three
strategies of proof are used to establiish truth
of such conditionals.
(a) Assume P true and show, by a sequence of
inferences, that Q must then be true also.
(b) Assume Q false and show that P must in that
caese be false also.
(¢) Assume P true and Q false and show that such
a situation leads to the contradiction of

an axiom, definition, or theorem.

1.17 Review Exercises

1. For each of the following sentences, determine whether or
not the sentence is a statement. If a sentence is a
statement, determine whether it is true or false, If
a sentence is not & statement, explain why it is not.

(a) 3+ 5=28,

£A
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(b) New York is larger than Chicago.
(¢) Go to the store.
(a) (w,s) is an operational system.
(e) 5 is a perfect square.
2, For each of the following pairs of sentences write each
of "P or Q," "P and Q," "not P," "not{P or Q)," "not(P and Q),"
"not P," in idiomatic English.
(a) P: 5 and 6 are consecutive integers.

Q: The sum of two negative integers is negative.

(£) P: In tossing a fair coin, P(Heads) = 3.

Q: Every prime number has exactly two factors,
(e) P: 9 +8> 19,

Q: Some triangles have four sides.
(d) P: Paris is a beautiful city.

Q: All cats have nlne lives.

3. For each of the foilowing pairs of statements, form "If P,
then Q" and determine the truth of the resulting conditional.
{Assume that a, b, ¢, and x are whole numbers.)

(a) P: a > b,
Q: a+c¢c>Db +c.

(v) P: x # 0.

Q: x¥* > 0.

#(c) P: }’-2# 1.

Q: x =0,

4, Use your knowledge of the conditional statement to draw
whatever inference is valid in the following situations.

If no inference can be made, explain why.

6o
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If the water is cold, then I do not go swimming.

The water is cold.

If the water is cold, then I do not go swimming.

I am swimming.

If the water» is cold, then I 40 not go swimming.

The water is not cold.

If angle A and angle B are right angles, then they have
equal measure.

Angle A and angle B have equal measure,

If the Yankees play well, then they will win the pennant.
Either the Yankees or the Tigers will win the pennant.
The Yankees and the Tigers will not both win the pennant.
The Tigers won the pennant,

If x is an integer, then x®* is an in%ager.

742 is an integer.

bb



CHAPTER 2

GROUPS

2.1 Definition of & Group

Evariste Galois (1811-1832) is generally given credit
for first using the group concept and teginning a systemetic
study of groups. At'the sge of 19, using group ideas, he
resolved a problem regarding solving equstions that had
challenged the best mathematicians of his time. He was killed
in a duel before the age of twenty-one. You may want to read
& history of this brilliant mathematician who made an outstand-
ing contribution to mathematics before he reached the age of
20. (Almost any book on the history of mathematics talks about
E. Galois; alsc, most large encyclopedias.)

We shall soon see that a grcup is a special kind of
mathematical system having certain properties. In fact you
have already met a number of groups in earlier caapters, one
being (Z,+). What mekes a mathematical system a group? Why
take time to study groups? This chapter will answer these %two
questions. Let us try to answer the second question first,
namely, vhy take time to study groups.

We often invest time and money with the hope that the in-
vestment will, in the long run, save both time and money.
Witness the tremendous investments made in constructing bridges,
tunnels, skyscrapers, supersonic planes, atom smashers, etc.

Not only have these investments saved time and money but

b7
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they have also reduced discomfort and increased our enjoyment

of life, A study of groups will serve & similar function. It
will help ue save time by enabling us to solve many problems all
at once inst:ad of having to work each problem separately. A
study of groups will also give us a deeper insight into the
nature of mathematics and enable us tc view & great many ap-
parently isolated operational systems as a single entity.

A very simple example of solving a large class of problems
simultaneously follows., Suppose you had a great many equations
tc solve, like the following:

2x + 3 = 19 473% + 297 = 163
Tx - 11 = 28 8.76x - 4,92 = 7.89
You could solre each one separately, or you could recognize
that all of these equations take the form
where 8, b, ¢, are rational
ax + b =¢
numbers, a # 0.
Solving the last equation for X in terms of a, b, ¢ will give
us a formula for solving all such equations. You can imitate
the solution for the first equation to obtain & solution for

the last one as follows:

2x + 3 =19 a&x +b =-¢c
2x =19 - 3 ax =¢Cc «Db

x -19.-3 % —e=b
Solution Set = (&) Solution Set = {&— b]

_ a
Hence whenever we know the values of &, b, ¢ with a # 0, a

solution may be obtained by using these values in the formula
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¢ -b

. For example, for the equation 7x - 11 = 28 we have

¢c -b 28 - (-11) _ 39 _ .4
a - 7 “_’7‘57’

a=T, b==11, ¢ = 28, Hence
and our solution set is [5%&.. Formulas like this are useful in
programming a computer to solve our problems.

Let us now give a very simple example of iwo different

equations whose sclutions have a striking similarity of another

kind.
3x = 12 3+x =12
$(3%) = $(12) (-3) + (3 +%) = (3) +12
(33)% = 4 ((-3) +3) +x =9
l-x =4 0+x =9
x =4 X =9
Solution Set = {4} Solution Set = {9}

Note the parallel steps in both solutions. A study of groups
will show how both equations are essentially of the same type.

We now look at some mathematical systems that are groups
and some that are not. Perhaps you will recognize the proper-
ties that are common to the groups.

, It will be convenient to adopt the following abbreviations.
If S is any set of numbers let

st = {Positive numbers of S}
S” = {Negative numbers of S}
st - {Non-zero numbers of S}.

The left column below wlll have examples of operational systems
that are groups, while the right column will have operational

systems that are not groups.
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These are groups: These are not groups:
Ex. 1 (Z,+) Ex, 1' (2,-)

Bx. 2 (QF,°) Ex. 2 (Q%,+)

Ex. 3 (&%,.) Ex. 3' (Q%,+)

Ex. 4 (2,,+): Ex. 4r  (Z,\(o}, -):
+ 0 1 2 3 1 2 3

0 0] 1 2 3 1 1 2 3

1 1 2 3 0 2 2 0 2

2 2 3 0 1 3 3 2 1

3 3 0 1 2

Ex. 5 ({e,x,y,z},0): Ex. 5' ({e,x,y.z},0):
o e X y z o e X y z
e e X y z e e X y A
X X e z y X e X y A
y y z e X y e X y z
z z y X e A e X y z

You mey want to try to discover for yourself why the sys-
tems on the left are groups while those on the right are not.
What do the groups have in common?

1., First of all a group must be an operational system.

Recall that this requires that 1t be a set together
with a binary operation defined on the set. Thus, to
every pair of elements (a,b) in the set, there is
assigned a unique element of the set. If we agree to
use "o" for the operation of the group whose elements

compose set S, then whenever a€S and b€S, it follows
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that aob€ S, This statement jnciudes the possibility
thet a = b, Note that in (Z,+), Z is the set of
integers while + (addition) is the group operation on
zZ. Hénce, whenever g and b are integers a + b is a

unique integer.

The group operation is associative. Thus whenever a,

b, ¢ are in S we have (aob)oc = ao(boc). For (Z,+)
this condition becomes the familiar property that
whenever 8, b, ¢ are integers,

. {a+b)+c=a+ (b+ec).
For (Q+,-), the associative property becomes

{a<b):c = a-(b-c)

whenever a, b, ¢ are positive rational numbers.
Among the elements of S, there 18 an element which
we shall denote by e such that

aoe=¢eo0a=a for every element a€Ss,
For (Z,+), e =0 and a + 0 = 0 + a = a for every
integer &. For (Q+,°), e =1and 21 = 18 = a
for every positive rational number a. We call e

the identity or the identity element, and refer to

possession of the ldentity element gs having the

identity property.

There is only one more requirement for a group (S,o).
With evgyy element a€S there is associated a unique
element in S, which we shall denote by aI, having the

property
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where e is the identity element in S. We call aI

the inverse of a, and refer to possession of an
inverse element (for each element) as having the

inverse property. For (Z,+) we have aI = -g and a +

(-a) = (-a) + a = O for every integer a. For (QF,)
we have aI = %- and a-%-= %-a = 1, for every positive
rational number a.
We summarize by giving a definition of a group. Recall
that an operational system ($,0) consists of a set S, and a
binary operation o defined on the elements of S such thet for
every pair of elements a, b in S, aob 1s a uniquely determined
element of S,
Definition. A group is an operational system (S,0) with |
the following three properties:

1. Associative Property. For all a, b, ¢ in S

(aob)oc = ao(boc).

2. Identity Property. There is exactly one

element in S, denoted by e, such that
for every element a in S,

aoe = eoa = &
e 1s called the identity element of the
group.

3. Inverse Property. To each element a in S,

there corresponds exactly one element in

S, denoted by aI, such that

aoaI = aIOa = e,

aI is called the inverse of a.
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Note: The e in Property 3 is of course the
identity element described in Property
2.
Another example of a group is (Z8,+). (You should be able
to show that this system possesses &ll of the properties of a
group. Perhaps you can convince yourself that associativity holds
by trying a few cases; consideration of every possible case here
is too time consuming.) Now the set Z8 contains the following
elements:
0, 1, 2, 3, 4, 5, 6, T.
Suppose we take the following subset of 28:
T = {0,2,4,6},
and keep the original group operation. We can then construct the

following table:

4 6

4 6 "+" here is
5 0 Z8 addition.
0 2

O & M|

0
0
2
i

N = N O | +

6 0 2 4
Every ordered pair of elements in T has an assignment in T.

Therefore, (T,+) 1s an operational system in its own right.

Furthermore, it is a group. Showing that (T,+) possesses the
group properties is eagy:
1) (T,+) is of course associative since it
"comes from" the group (28,+).
2) The identity element O is an element of T.
3) 0 is its own inverse; 4 is its own inverse;

2 and S:are inverses of each other,
beie)



_69_

Since T is a subset of the original set 28, we say that the group
(T,+) is a subgroup of the group (Zg,+). And we make the following
definition of a subgroup:
Definition. (T,o) is a subgroup of (S,o0) if and only if
both (T,0) and (S,0) are groups, and T € S,
Example 6. (Z,+) is the group of integers under addition.
Let E denote the set of even integers, a subset
of Z. Is (E,+) a subgroup of (Z,+)?
First, (E,+) is an operational system, since
every pair of elements of E 1s assigned an
element of E. (The sum of two even integers
is an even integer.)
Second, (E,+) has the associate property,
since (Z,+) has.
Third, the identity element O is in the set
E of even integers.
Fourth, every element of E has an inverse in
E. For instance, the inverse of the even
integer 2 is the even integer -2.
Therefore, (E,+) is a group; it is a subgroup
of (Z,+).
Example 7. (Z5\{01,°) is a group; the table is shown below.

]

m

w = &= MNP
N EH W W

y
3
2
1

E W v
5 W oD |

=y, |
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Let T = (1,2). 1Is (T,*), where « is the
original group operation, & subgroup of
(z5\{o},°)? Examination of the table below

shows that we do

-l 1 2
1|1 2
2|2 4

not even have an operational system; the pair
(2,2) is assigned 4, which is not an element
of T. Therefure, (T,*) is not a subgroup of
(z5\(0}).

In the exercises, you will have an opportunity to identify
other subgroups. Also you may want to try to prove the following
theorem (see Exercise 13) which is often useful in making & decision
as to whether or not a system is a subgroup of a given group.

Theorem. If (S,0) is a group, eand T c S,

then (T,0) is a subgroup of (S,o0) if
(T,0) is an operational system, and

every element of T has its inverse in T.

2.2 ExXercises
1. Find the identity element for each of the following:
(a) (%)
(b) Ex. 4 of text: (Z4,+)
(¢) Ex. 5 of text: ({e,x,y,2},0)
2. Find the inverse
o (a) for 5 in (Z,+).

P75



~71-~

(b) for 5 in (QF,-).

(c) for 3 in Ex. U4 of text: (Z,,+).

(d) for x %n Ex. 5 of text: ({e,x,y,z},0).
(e) for 5 in (z,\{0},).

3. Why is each of the following not & group?
(a) (2,-) (h) (z%,4)
(v) (@7,-) (1) (2,-)

(e) () (3) (Q+)

(a) (@%,+) () (z7,+)
(e) Ex. 4! of text (1) (2e\(0},-)
(f) Ex. 5' of text (m) (Q~,+)

(g) (z7%,+) (n) (Z4,)
b, Complete the following table for the operation "followed
by" denoted by "o" where:
S is the command "Stand Still."
L is the command "Left Face."
A is the command "About Face.,"

R is the command "Right Face."

o|S L A R
S

L R

A

R

The entry in the table shows that "Left Face"
followed by "About Face" is equivalent to "Right
Face" or that L o A = R,

P‘/ﬁ
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(a) What is the set of elements here?
(b) What is the binary operation?
(c) What is the identity element?
(d) Does each element have an inverse?

{e) Is it true that:

(1) (LCA)oR = L o(AcR)
(2) I - R
(3) al = 4

(4)  (aoR)T = RToal
(f) Do you think that we have a group here? The possession
of which property is most difficult to deduce? Why?
Construct an addition table for {(0,0), (0,1), (1,0), (1,1)}
where addition is defined by
(a,b) + (c,d) = (at+c, b+d) and the table

+ |0 1
01| O 1
1 1 0

Thus, (1,1) + (1,0) = (0,1).

(a) What is the identity element?

(b) What is the inverse of (0,1)?

(¢) Check associativity of a triple,

(d) Do you think that we have a group here?
Consider (Q,av) where av is the average operation

defined by
a a+b
(a:b) ad 5

Y

77



~-73=-

(2) 1Is av a binary operation on the set of rational
numbers?
(b) 1Is (Q,av) a group? Why?

7. (ze\(0},°) is a group, and T = (1,4}<Zg\{0}. Decide
whether or not (T,:) is a subgroup of {Zg\{0},) by
answering the foliowing questions:

(2) Is (T,-) an operational system?

(b) 1Is the operation - associative in (T,<)?

(c) Does (T,°) have an identity element?

(d) What is the inverse of 1? of 4°?

(Compare your results here with Example 7 in the text.)

#8, Try to find an operational system

having these properties but not these:

(a) Associative, Identity Inverse

(b) 1Identity, Inverse Associative

(e) Associative Identity, Inverse
(d) Identity Associative, Inverse

9, (a) 1s ((1,3,5,7,),+) & subgroup of (Zg,+)?
(v) 1Is ({0,4),+) a subgroup of (Zg,+)?
(c) Construct en operational table for (Z»\{0},°).
Is this operationel system a group? If so, can you
find & subgroup?
10. Let D be the set of odd integers. Is (D,+) a subgroup of
(Z,+)? (Compare your answer here with Example 6 in the text.)
11. Decide whether or not each of the following is a subgroup
of (Z,+):
Q () (Multiples of 3,+) 78
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(b) (Multiples of 5,+)
(c) ((1,4,7,10,13},+)

12, Ir we let 5Z denote the multiples of 5, 3Z the multiples of
3, etc., do you think that (nZ,+) is & subgroup of (Z,+)
for any n € W?

*13, Frove the theorem in the text. That is, show that (T,o0) is
a subgroup of the group (S,0) provided that:
(T,0) is an operational system, and
if x € T, then the inverse of x is in T,
(Hints. How do you know that (T,0) must possess the
associative property? How do you know that the identity
element of the group (S,o)must be in the set T?)

14, Consider all the subsets of {a,b}. If A and B are two
subsets, define AAB to be the set of elements that are
elther in A or in B but not in both. For example,
(a,b}a{a) = {b].

(2) Construct a teble for the operation A with 211 sub-
sets of {s8,b} for elements.

(b) What is the identity element in the table?

(¢) What is the inverse of (b}?

(d) Check associativity.

(e) Do you think that this is a group? Why?

15. Do Exercise 14 for the subsets of {a,b,c}.

16. Consider the following set:

((x ,y): x€{0,1}, y€(0,1,2}}, and define addition of

ordered pairs by
S (50) + (%25 ¥a) ={x 4, X5 N+ ¥e)

"9
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where the addition ty of elements is Za clock addition and

+3 is Z, clock addition.

(2) List 211 possible ordered pairs.

(b) Construct an addition tesble for this operation.
What is the identity element?

Show that each of the following is & group, end find

its identity element.

() (2,4)

(v) {q\{o0},")

Define 2N in the usual way (2= 2 22= 4, 2= 8, ete.)

when n is & positive integer. Define 20 = 1. For

negative exponents, define 2 * =< =—, 2 =" 7>
s 1 1 : 2 2 22 4
2 =% =7, etc. We now have 2" gefined for ell posi-

tive, zero and negative integers n.

b a+b
We now define the operation by 28- 2 =2 ,» for

exsmple, 2° 26 = 28, 277. 28 = 0™, 20.p-e=p"e

27277 = 20 = 1,

(a) Show that the system ({2": n€Z},.) is an
operational system

(b) Show that it is a group.

{c) Find the identity element

(d) Find the inverse of 2¢, 272, 21, 20,

Prove that (Zn:°) is never & group, for eny positive

integer n > 1.

Prove that (Z,\{o},*) is not a group for any even positive

integer n.

Prove thet (Zn\{o},-) is not a group if n can be written

n = p.-q, where p and q ere both positive integers greater

then 1. R0
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2.3 A Non-Commutative Group

Each of the groups (S,0) so far considered has had an
operation that was commutative. By this we mean that for every
pair of elements a and b in 8, 2a o b = b o a. Our definition of
& group does not insist upon this condition. In fect, there are
important groups with operations that are not commutative.

A gym floor has these marks on it.

Pictured are 3 spots for 3 students to occupy. Instructions
are given to the students occupying these spots by flashing

a2 card., The following card, for example

|

) e |
| — 1)

is an instruction for:
the student at spot 1 to move to spot 3.
the student at spot 2 to move to spot 1.

the student at spot 3 to move to spot 2.
Let us simplify this instruction card by writing

1 2 3
3 1

M)

Similarly, the instruction

|

o at——N\)

IWﬂ—W

51
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which we simplify to
/1 2 3
S
is the instruction for:
the student at spot 1 to move to spot 2.
the student at spot 2 to move to spot 1.
the student at spot 3 to stay at spot 3.

We would like to know what single instruction would result in

the seme final position as the instruction

1 2 3 ' 1 2 3
followed by
3 1 2 2 1 3

We may use the following diagram to help us visualize what is

happening. 1 2 3

P
A% 2.
= N
w W
SNS——

1
3

2

1

1 2 3 1 2 3

cen be read from this dlagram es ,
2 1 3 3 2 1

The effect of the two instructions, first(
2

3), then

We may also view the effects of the instructions by the fol-

lowing diagram:

O
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1 2 3 1 2 3
3 1 2 2 1 3
1 > 3 > 3
2 > 1 > 2
3 - 2 » ]
Comparing the first and last columns we obtain the combined
instruction
1 >3
1 2 3
2 -2 or
3 2 1
3 > ]

In other words, using "o" to mean "followed by," we mey sum-

marize as follows:

1 2 3 1 2 3 1 2 3
(3 1 2)0(2 1 3)—(3 2 1)
Note that the first instruction is written to the left of the
operstion sign.
There are but 6 possible instruction cards for 3 spots.
You may want to find them yourself before resding on. Ve

list them below and for convenience use the abbrevistions: e,

P, Qs T, S, t.

1 2 3
e=
(1 3
\

N

n =~
w N
- W
S—

83
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t =

1 2 3
2 1 3

With these abbreviations we may now construct en operation

First note that

1 2
3 1

corresponds to

teble.

our illustrative exercise

3z /1 2 3\ /1 2 3
2/°\2 1 3/ 7 \3 2 1

qot=s.
Let us compute r o s, or
1 2 3 1 2 3
o
1 3 2 3 2 1
which may be visuelized by :
1 -1 >3 80 that 1 ——3
2 >3 >1 so that 22—
3 —-2 »2 go that 3—2
1 2 3 1 2 3 1 2 3
Hence o =
1 3 2 3 2 1 3 1 2
or ros=aq.

© e P q r 8 t
e e p q r s t
p p q e 8 17 r
q q e p t r S
r r t 8 e q D
8 8 r t p e q
t 17 3 r q p e

84




-80-

The teble informs us thet o is a binary operation on the
set {e,p,q,r,s,t}, and that ({e,p,q,r,s,t},0) is an operetional
system. This binary operation does not have the usual con-

mutative property that most of our previous operations had. 1In

fact

t o s =p,
while

s ot=q.
Hence

tos £sot.
This one counterexample suffices for the operation o to be
classified as a non-commutative operation.

The instructions €,p,q,r,s,t are often called permutations

because each one permutes or rearranges the locetions

of the students. Thus, we may think of the permutation p es

an instruction that shifts the students a, b, ¢ initially ordered
as abc to the new order bca. We say that bca is an arrangement
of ebc. We shall slso say that abc is an arrangement of sabc.
Note that each permutation is a 1-1 mapping whose range is the
same as its domain. For our example, each permutation produces
an arrangement of abc having a different order, Corresponding

to the six permutations we have six arrangements of abc:

e: abe
p: bca
q: cab
r: acb
CE cba
t: bac

8D



-81-

In general a permutstion defined on a set S is & 1-1 mapp:ng
having S for both its domein and range. A permutetion is thus
a one-to-one onto mapping

A permutation may heve an infinite domain. For exsmple on

Q@ the following mappings are permutations:
n ——n + 2

n — 3n
n -—=3n + 2
n—an + b, a #0,
Esch is a 1-1 mapping with O for its domain and range. We shell
say more about permutations a little later.
Let us extend our notation for permutetions on a set of
three elements to a set of four. We could have begun with four

spots on a gym floor. The instruction

1 2 3 4
<3 L 2 1)
would then correspond to the instruction for the student:
at spot 1 to move to spot 3
et spot 2 to move to spot 4
at spot 3 to move to spot 2
at spot 4 to move to spot 1,
which we may also view as:
1 ——3
2 ——

3—2

Y ——

o Tf this instruction is followed by

K6
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1 2 3 4
2 3 4 1

we obtain ss the combined instruction

1 o 3 4 1 2 3 u (1 2 3 4
o =
3 4 2 1 2 3 4 1 4 1 3 2

because:
1 > 3 > U so that 11—}
2 > U > 1 8o that 2—1
3—2 >3 so that 3 ——3
y—m— s > 2 go that 4—»2

If the four students a, b, ¢, d, had initiaelly the arrangement
abcd, then the first permutation would result in the arrangement
cdba. As you can guess, there are just as many arrangements

of 8, b, ¢, d as there are permutations defined on {a,b,c,d},
Can you guess how many there actually are?

One way of finding out is by writing them all out. Before
doing this, let us see 4f we can obtain this number by a rea-
soning process. It gets quite tedious to write out &ll the
arrangements when we have 5 or more elements.

For each arrangement of abc we have U4 arrsngements of abcd
where a, b, ¢ have the same relative order. For the arrangement

abc we may insert d into any of 4 places shown by the 4 arrows:

to give the 4 arrangements of abed:

87
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d 8 b c
e d b c
a b d c
g b c d

Whet we did for ebc holds true for esch of the 6 srrengements

abe cen hsve, yielding:

d a b c d b c e d ¢c a b
a d b c b d c & c d a b
a b 4 c b ¢ d a c & 4 b
a b ¢c @& b ¢ a 4 c & b d
d £ ¢ b d ¢ b s d b e ¢
g 4 ¢ b ¢c d4d b a b d & ¢
a ¢ d b c b 4 =& b a 4 c
e ¢ b 4 c b a d b & ¢ d

The total is 4 x 6 or 24 possible errangements. Now thet we
know how meny errengements (or permutetions) there are for four
elements, how do we figure out the number for 5 elements? The
seme kind of reasoning tells us that the fifth element may be
inserted into sny one of 5 pleces, so that there ought to be
(end there are) 24 x 5 or 120 arrengements (or permutetions)
for 5 elements. If we orgenize our information on this point

you mey see & pesttern.

Number of Elements Number of Arrangements
1 1
2 1.2 or 2
3 1:2:3 or 6
4 1:2:3:4 or 24
5 88 1-2:3-4+5 or 120
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We denote 1:2.3.4.5 by "5!" &and read it "five factoriel."
If n is a positive whole number we have & symbol to denote
the product 1-2:3-4 --. n; namely "n!" reed "n factorisl”
or "factorial n." Thus

e +ee n

(5!)-6 = 120-6 = 720

nt = 1-2-
In particular 6! = 1°2°3°4:5°6

(WS

The sbove pattern suggests that the number of permutstions
on a set of n elements is n!, which is elso the number of arrange-
ments of n things on & line,

We now would like to show thst the system ({e,p,q,r,s,t},o0)
consisting of the set of permutetions on 3 elements, with the
operation "followed by " (denoted by "o") is & group. The tsble
shows that for any permutations x and y in the set {e,p,q,r,s,t],
Xoy is also a permutation in that set, which mesns thst we have
an operational system. We must still show three things.

1. Does the system ((e,p,q,r,s,t},c) have the identity

property? Examining the teble we see that there is

exactly one ldentity element, namely,
1 2 3
e =
1 2 3

We conclude that our system has the identity property.

N

Does the system ({e,p,q,r,s,t,},0) have the inverse

property? From the tsble, it is easy to see

eI = e rI =T
pl = q sl = s
qI = p 'tI = 't

Hence the system has the inverse property.

3. Does the system ({e,p,q,r,s,t,},0) have the sssociative
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property? To test this completely requires e zrest
meny tests. (How many?) We try just one. From the
table we see:

(por) ot=sot

aq

]
i

po(roet)=pop=g
Thus (P o r) ot =p o (r ot). If we test all triples of
elements, we will find that the system does indeed hsve
the associative property.

All the conditions for ({e,p,q,Tr,s,t},0) to be a group are satis-

fied, snd so ({e,p,q,r,8,t},0) is & group, and, in fect, a non-

commutative group. Since its elements are permutstions on 3

objects we refer to this group as the group of permutstions

on 3 objects.

2.4 Exercises

1. This exercise will be based on the permutstion group

on 3 elements: ({e,p,q,r,5,t},0) ofe p q r s

e=(12 3 r=(12 3) ele » q » s
1 2 3

1 3 2

ko)
11
N
n |l
w
= W
~—
0
]
P
w |l
n n
|l w
S————
e}
£
<t o
o
(0] <t
Ly}

1 2 3 s8]s r» t p e
t=
(2 1 3 tit 8 r 4q p

(a) We cean think of the 6 elements of the permutation
group as acting on objects occupying spots 1, 2, 3,
For example, the effect of t on the arrangement abc
is to change it to bac, List the effect of each
element of the permutation group on abc,
Yl
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() Which permutetions do not alter the originel posi-
tion of the first element? the second? the third?

(¢) Find the solution set for each of the following

equations.

(1) pox=r (11) pox=xo00p
(2) xop=r (12) rox=xo0or
(3) xoq-=1t (13) (pox)oa=r
() qox =1t (14) (qox)op-=r
(5) xox=ce (15) (x op)ox=p
(6) xox=7p (6) (xor)ox=r
(7) xox=1r (17) xop=4qqox
8) xI=por (18) (x o p)I =r

(9) xI=ros (19) (xop)l=x0gq
(10) xL o p=r (20) (x opo x)I =Xo04q

(a) Compute:
(1) (po Q)I P PI o q; s qI o pI Which sre equal?
(2) (por)l, pl orl, rI o pl Which ere equal?
(3) (aot)l, af ot I 0 ql Which are equal?
Conjecture 8 generglization from your
answers to (1), (2), and (3).
(@) (1), (eI) , (rI)I and conjecture e

generalization,

(e) Prove that ({e,p,qa},0) is a subgroup of ({e,p,q,r,s,
t],O)u o

e |
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*(f) Find sll the subgroups of ({e,p,q,r,s,t},o).

(g) One of the subgroups of ({e,p,q,r,s,t},o) is
({e,r},0). We mey partition (e,p,q,r,s,t} using
{(e,r} as follows:

(1) Select an element of (e,p,q,r,s,t} not in
(e,r}, sey p.

(i1) Form a new set by opersting on easch element
of {e,r} with p on the left getting
{poe por})or (p,s} .

(11i) Select en element not in {e,r} or (p,s},
say t.

(iv) Form a new set by operating on each element
of {e,r} with t on the left, getting
{toe tor} or(tal.

We have partitioned {e,p,q,r,s,t} into sets {e,r},
{p,r}, {t,q) . No two of these sets has an element
in common.

(1) Carry out a partitioning of {e,p,q,r,s,t} bY

using {e,r} and elements other than p and t.

(2) Cearry out a partitioning by opersting on the

right, instead of on the left,.

(3) Try to carry ont a partitioning by starting

with the subset:
(2) (e,s)
(b) (e, t}
(c) (e,p,q
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2. Compute the following:

(o) (1 2 3 u)o
2 1 3 Yy
(1 2 3 u)
(o]
4 2 3

1 2 3 4)
and

]
£=
o
e

|

T N —
S B
\V] Ll |V
w w
= &
~———

o [l

D

I~

w =

N——
(o}

w
=
_ W
oo
e
o

o
o o
=W
('S} I
\g_/
[}
N
o [
[l o
=
w F

W
=

oW
N &=

(o]
e
&
o o
[l w w
w =
— N—

(
[(
o

d)

N
N =2 N
w =W
w w
—— . S
o]
©
(o} 3
Q,
/—\/——‘\
w w
= n =
= W - W
N e A WI
I\_—/l\/
Iy -
3
[ N

2 1 L

. 1 2
3 4 1 2 2 1 4 3

Are they equal?

(3}

=
\__/
o]

-
o
w
&~
SN———t
(o]

3. ¥ Let x and y be perpendiculsr lines
. B in a plane, end A,B,C,D the points
indicated., Consider the following:

0 e the identity mapping

ﬂx the reflection in line x

Ly the reflection in line y
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Po  the half turn with center o
These mappings effect permutations on points A,B,C,D. For exasmple
the effect of e on A,B,C,D may be written:

A B c D
e =
A B c D

(a) Complete the expression for 4x or a permutation of

A B C D
Ax =
D C

(b) Write 4y as s permutation of ABCD.

ABCD:

(¢) Do the same for Po.
(d) Complete the operstion table, where "o" means
"followed by."

¢] e

e

Lx

Ly

Po

(e) Check whether ({e,%x,%y,Po},0) is a group.

2.5 More on Permutations

Let S be the finite set (a,b,c,d,e}. Let f be a one-to-
one mapping of S into S. In particular, suppose f is the mapping
illustrated in Figure 2.1.

A



Figure 2.1

We cannot help noticing that f is also the permutation
a b c d e

( ) If we try other one-to-one mappings of S into
c a d b e/,
S, each would yield a corresponding permutation, This suggests
that if S is any finite set, and f any one~to-one mapping of S
into S, then S is a permutation; that is, a one-to-one mapping in
which S is both the domain and range, To prove that a one-to-one
mapping of S into S is a permutation, it is sufficient to show
that it is an onto mapping. (Do you see why?) This can be proved
as follows:

Let S be a finite set having n elements x,, Koseaes KXo

We may write
S = {X:, XE, cee xn"

Let £ be any 1-1 mapping of S into S, f maps each element Xy of
S into some element, call it x'i, of S, We diagram the mapping

on Figure 2,2,

Figure 2,2
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Note thst X, Xz, ... , x, ere the elements of S, and x' ,,
X'ay ... s X', are also elements of S.

To show that the mapping f is onto, we must show that esch
element of S is the image of some element of S, under f. Take
eny element X, of S. Suppose it is not the imege, under 1,
of any element of S. Then f maps the n points of S onto (at
most) n-1 points of S, since it doesn't map eny point on x,.,
Thus f meps at least 2 of the points of S onto 1 point. This
cortradicts the fact that S is & one-to-one mepping. Our
supposition must therefore be false, and we conclude that f
is an onto mapping. Since f is given as a one-to-one mapping,
it is therefore e permutation.

We have thus proved thet if S is a finite set, and f @
one-to-one mapping of S into S, then f is an onto mapping.

It is not hard to prove a similar result; that is, if S
is a finite set end f is an onto mepping from S to S, then f
is & one-to-one mapping. 1In this cese, if S contains n elements,
then the renge of f, being S, conteins n elements. If the mep-
ping vere not one-to-one, there would be at least two elements
in the domein S of f which map into the same element. Since
each element of S is the imsege of at least one element of S (by
the definition of onto), it follows that the domain of the map-
ping would have to contein more then n elements. This is impos-
sible, since the domein is S. We conclude that if S is & finite
set, and f is an onto mapping from S to S, then f is one-to-one.

Combining the two results we have that if S is a finite

Q set, eand f a mapping from S to S, then f is a one-to-one if, and
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only if, it is onto. (This meens thet if f is one-to-cne, then
it is ontoj;end if f is onto, then it is one-to-one.)

We will sbbreviste one-to-one as "1l-1."

The situetion for infinite sets is, as you might suspect,
different. It is possible for e mapping f to be 1-1 end not
onto or onto end not 1-1. Consider the following examples,

Exemple of & mepping which is 1-1 but not onto:

Let s = {1,2,3,...}.
f: N——— 2n is & mepping from
S into 8.

Exemple of & mepping which is onto but not 1-1:

(1,2,3,...]

Let S .
n —>-2rl if n is even

I

£
: 1
n —— _n_;___ if n iS Odd

is & mepping from S into S.
We mey picture this mapping as

5 6 cos

NS NS N

3 oo

2.6 Functional Notstion

The elements of the system ({e,p,q,r,s,t},o) are easch

defined on {1,2,3}. Thus, the permutetion p scted as follows:

l ———p-2
p: 2 —3

3——1

We also wrote thils as

O
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<1 2 3
p:
),

It is 8lso convenient to adopt the notation

p(l) =2
which is read "the imsge of 1 under p is 2,” or "p takes 1 into

2" or " p at 1 is 2," or "p meps 1 onto 2," or "p of 1 equals 2."
It also follows that

p(2) = 3 &nd p(3) = 1,
The very same notetion is used for q, r, s, t. Thus

r{l1) = 1, r(2) = 3, r(3) = 2.

Observe that
3, p(r(2)) = p(3) = 1.

g
)
=z
!
g
™
-
0

2 7 More Notation

You may receall thst 73 means 7.7, that 73 means T-T7-T.
More generally, &® mesns s-a.a and if n is a whole number

greater than 1,
n

a = a‘'e* ... *a As multiplication is associa-
tive, the grouping symbols hsve
& is used as a been omitted.

factor n times.
On the other hand, na may be interpreted to mean
na=&a+a+ ... + a8 As addition is associative,
the grouping symbols have been
8 is used an omitted.
addend n times,

When n = 0 eand n = 1 we will sgree to use

38
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e® =1 and & = g,

While O+a 0 and l:a = g,

What interpretation can we give to p® for ({e,p,q,r,s,t},0)?
As you may have guessed we teake
P=pop=ga
Similarly = (poplop=aqop-=e.
And in general if (S,0) is any operationsal system with just one

operation, let us egree to the following meaning of a" if 8€S:
2% e, the identity element in (S,0) if it has
one. If (S,0) has no identity, then
a° names no element in S,
a = a
8® = a! o al
a® = a2 o8& = (a0 a)o a
gt = a3 o a
g = "t o al
We must be careful sbout this convention. Suppose the system
is (Zs,+). Then
23 means 2 + 2 + 2 which is 1.
It could not mean 2°2°2, because for this system the only
operation we have is +, However, if the system is (Zg,°). then
2*meens 2-2:2 which is 3. Hence, the
meening and value of 22 depends on the operational system in
use. If a system has two binary operations (S,+,°*) then we adopt

the convention we have been using:

9



MYV g

e TR

-95-

8° = identity element under * (if tlere is one)
al = g

a® = ara

a® =8 . &= (é-a)-a

T L Y

In other words, in the system (S,+,+) the value of a” is the
same as its velue in the system (S,:). It should be very clear
from the context exactly what is meent by a® when we are dealing

with a specific operational system.

2.8 Exercises
1. Tell whether each of the following meppings from (1,2,
3,4,5} into (1,2,3,4,5} is 1-1, onto, and whether it

is a permutstion:

(a) 1 2 3 4 5
S O
p) 1 2 3 4 5
AR S O
1 2 3 4 5
(e) 1 2 3 L 5
A O A
1 2 3 4 5
AR S T S A
2 1 4 3 5
(e) 1 2 3 4 5
S A A
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Tell whether each of the following msppings from Z
into Z is 1-1, onto, &nd whether 1t is e permutetion:
(2) f3: n—n?
(b) f3: n—2n
(¢) fa: n——>n +1
(d) f¢: n——-n
*(e) 0 —0
‘.. n—=[T+%+ ... +2] 1fn>0
n—-»-[%+%+ +;]J=] ifn<goO
Note: [a] is the greatest integer not exceeding a,
2] =0, (hol=4, (4] =4 .
(a) For what domein and rsnge will esch of the mep-
pings in Exercise 2 become onto meppings if
they are not to begin with?
(b) For what domein and renge will each become map-
pings that sre not onto if they heppen to be onto?
Tell whether esch of the following mappings from Q into

Q is 1-1, onto, and whether it is a permutation:
(a) fli n-—bnz

(b) fa: 1 e e

for n £ 0, O——30

. -1
(d) fg. n—-»-(nz+l)

(¢) fg: n—>{n]

101

(¢) fa: n—>

Sl s

([n] is the greatest integer
that does not exceed n --
see exercise 2,)
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5. Using the definitions of f,, f,, f,, f,, and fy given in Exercise

L4, compute:

(a) (3 (1) £a(£:(5))
(b) £.(7.5) (m) £2(£2(3.6))
(¢) f,(23.45) (n) fa(£2(3.6))
CORENCES (o) £2()

(e) £1(£:(3)) (p) f£s(1.25)
(£) £2(£4(2)) () £3(£s(3))
(8) £2(13) (r) £4(£s(1.25))
(b) £3(1.3) (s) £3(£4(7))
(1) £2(£(6)) (8) £1(£2(7))
(3) £1(£5(5)) (u) f£u(fa(7))

(k) £2(£4(6))
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6. Let the following mappings be from O\{0,1} into Q:

Compute each of the following

(a) £,(5) (3) fe(fs(5))
(b) f£a(5) (k) fe(fq(5))
(e) £5(5) (1) fa(fe(5))
(a) £4(5; (m) fe(f2(5))
(e) feg(5) (n) f£3(£.(5))
(£) f£e(5) (o) f£4(fa(5))
(8) fa(£:(5)) (p) fo(fas(5))
(h) f£3(fa(5)) (a) fa(£a(5))
(1) fo(fa(5)) (r) fuo(£4(5))

*7. (a) Complete the composition table using the definitions

103
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Note: Interpret (fa o fs)(x) to be fs(fz{x)) here.
For exsmple fg o fs {n) = fs(fg(n)) = £s(1-n) =
I%; 80 that fo 0 fa = fs.
(b) How does this table resemble the operation table for
({e,p,q,r,8,t),0)?

_(c) Does the system ({fy,f2,fs,fs,fs,fa),0) have the pro-

verties of a group?
(d) Compute (fs o fh)I.
Interpret end compute 3° for each of the following operational

systems: .

(8) (Zs,-) (a)  (Zs,+)

(v)  (Zs,+) (e) (Zs,*)

(e) (Z,+,°) (£)  (Zs,+,9)
Using the definitions of Exercise 6, compute:

() (fs)? (5) ()  (fe)® (5)
(®)  (f4)® (5) (@)  (fs)® (5)

Express all the elements of the group (Z,\{0},:) as
powers of 3. Is there another element in Z,\ {0} with the pro-

perty that {u, t2, t2, t4, %, t8} = Z,\{0}?
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11. A mechanical device cen be constructed to compute in
(2o\{0},*). Corresponding to powers of 3, we use two

peculiar rulers:

ofw

2
-5

) (o

e

We have here 2 rulers with markings equally spaced
and labeled ¢s indicated The setting shown may be
uged to find 2.x for any x€{1,2,3,4,5,6). Thus,
under "5" of the upper scale we see "3" on the lower
scale, telling us that
2:5 = 3,
Similarly, 26 =5, 2°h=1, etc.
() Construct such a "slide rule" end compute 3-4,
3:5, 3-6.
(b) Try to construct a "circular" slide rule that
looks 1like this:
The central disc turns
around its center while
the disc in back may
be held fixed.

12. Work Exercise 11 but use instead (Z,,\(0},-} and

powers of 2,

(a) Could you heve used powers of 3?
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(b) Whet other numbers could be used for our slide
rule

(¢) Check your slide rule by computing:

(1) 7.7
(2) 9.5
(3) 48
(4) 6.10

2.9 Some Theorems About Groups

In the previous sections we beceme awere of the existence
of meny groups, That 18 we saw many operationel systems which
have 81l the basic properties required of & group. We shall,
in this section, deduce some consequences of the basic group
properties which will therefore apply to &ll groups. Each con-
sequence (or theorem) will then have an interpretation for every
group; and in particular, the groups we have mentioned.

In what follows we shall assume that a, b, ¢, d are arbi-
trery elements of some group (S,o0) %ith e as its identity element.

Theorem 1. If & ='o thenaoc =b o e.

We may refer to this theorem as "Right Operation."

Proof. a="» By assumption
aocC=8o0¢C Equelity is reflexive
aoc=boec Substitution Principle of

Equelity (& = 1)
As you might expect there is & companion theorem in which

we heve a "Left Operation."
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Theorem 2. If a = b thenc o&a =c¢ o b,

We refer to this theorem as "Left Operation."

Proof a=">" Assumption
coa=¢co0¢8 Equality is reflexive
coa=cob S. P. E. (a =1)

Theorems 1 end 2 will be used frequently in what follows, expe-
cially in solving equations.

Whenever s mathematician establishes a theorem he invaria-
bly considers the possibility of a converse also being a theorem.
The next two theorems are converses of Theorems 1 end 2,

Theorem 3. If a8 o ¢ = b o ¢ then & = b.

We will refer to this theorem as "Right Cancellation."
Proof saoc=boc Assumption
(aocloel =(boc)oel Every element in a group
has an inverse, and

Right Operation.

2o (coel)="bol(coct) Associativity and S.P.E.
| (aoc)ocl =20
; (c o el)
s (boc)oel =bo
§ (c o el)
% soe=boe Definition of cI and
i S.P.E. (e o cl =e)
a=">" Definition of e and

S.P.E. (e oe =a,
boe="5)

Theorem 4. Ifcoea =c¢cob then a = b,

10 .
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We will refer to this theorem ae "Left Cancellation."
Proof coa=cob Assumption
To(e o a) = elo(e o b) Every element in a group
hes an inverse, and

Left Operation.

(cIo c)oa = (cIo c) o b Associstivity and
S.P.E.
cIo(c o8) = (cIo c)oa
clofe 0 b) = (eIoe) o b
eosa=e0b Definitio& of ¢I end
S.P.E, (elo ¢ = &)
a=D> Definition of e and

S.P.E, (eoa=a, eob="D)

Frequently, we shall not mention S.P.E. &8 & reason for
a2 statement. It is hoped that you will be able to recognize
that substitutions have been made and supply this part of the
reason by yourself, Such omissions are common in mathemsatics
and make for shorter proofs

Theorems 1, 2, 3, 4 are more frequently used than any
others., Before proving any others let us see how they may be
used to solve & variety of equations. If we look back to the
beginning of this chapter, two equations were solved

3x = 12 and 3 +x =12
We mentioned that through & study of groups these equations masy
be considered essentially of the same type. We are now in e
position to show in what sense they are the same. We need
one general result:

Theorem 5. If (S,0) is & group, and a2 and b sre elements

108




-104-

of S, then there is one and only one solution x in §
of the equation a 0 x = b, and that is x = sl o b.

Proof. Suppose there is an element X€S such that

a0 x=2>» Supposition
al o(a 0 x) =38 ob Left Operation
(el 0 a)o x = al oD Associativity
eox=29l ob Definition of el
x=28lob Definition of e

We have shown thet if there is an element x€S such thet 2 o x =
b, the only possible "value" for x is e o b; that is, there is

at most one such element x. Thet al o b has the desired property
el o b, then

is easy to check, for if x

2 0 X

e o(el o b) S.P.E.
(a0 8l) o b Associativity

=eob Definition of ol

=b Definition of e,
This shows that eIot>(which is an element of S) is the one and
only solution X in S of @ 0o x = b,

Returning to the problems 3 + x = 12 gnd 3°* x = 12, we
will deal with each as an application of Theorem 5 to a par-

ticular group. Theorem 5, as we proved, holds in all groups.
Since 3 and 12 are elements of the set Z, and since (Z,+)
is a group (Exercise 17 of Section 2.2), we apply Theorem 5
to this case, and get that the equation 3 + x = 12 has one and
only one solution in Z, nemely x = 31 + 12, Since in (2, +),
3l = -3, we have x = (-3) + 12 = 9,
Precisely the same solution epplies in the second case.

Q ) 1
JERJ(: Since 3 and 12 are elements of Q\{0}, and since (@Q\{0},+) is
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a group (Exercise 17 of Section 2.2), there is one end orly
one solution X in A\ (0] of the equetion 3.x = 12, nemely
x = 3L, 12, Since 3T =% 4in our group, x = 1,12 = 4.
A slight change in ihe argument gives us3
Theorem 6. If (S,o0) is a group, and 2 and b are elements
in S, then there is one snd only one solution x in
S of the equation x o & = b, and thet is x = b o al,
Since the proof follows the pattern of proof in Theorem %;
we start it off, and leave it to you to complete it.

Proof. Suppose there 1s en slement x €S such that

xoe=2>» Supposition
(x 0 a)o el = b o &l Why?
x ola oal) =bo el Why?

Xoe=5bo al Why?
Complete the proof, imitating the proof of Theorem 5.

The next two theorems may heve been suggested to you in
working out Exercise 1(d) in Section 2.4 For exsmple, you should
heve observed that

(pI)X =p enda (por)l =rlopl
while (p o,r)I #pl orl.

These theorems will be proved by meking use of the property
that each element of & group has exactly one inverse. The
method consists of proving thet if x and y are both inverses
of a, then x = ¥y,

Theorem 7. For every element g in & group (aI)I = &,

Proof. We are going to show thet (al)l and & are both
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inverses of aI.

of (al)l 1s the inverse of al by the very meaning
the symbol "(aIl)I,"
a 1s the inverse of al because al o a = a o al
= e,
Since al has exactly one inverse, we conclude (aI)I
= a,
Theorem 8. For every pair of elements & and b in a
group ( a o b)I = bl o al.
Proof, We shall show that (2 o b )T and bl o al

are inverses of the same element, namely, (a o b).

As each element of a group has exactly one inverse,

1t will then follow that (s o )l = bl o al.

(a o b)I 1s the inverse of (a o b) by definition
of the symbol "(a o b)I."
We now prove that (bI o) aI) is also the inverse

of (a o b).

)
o'
(]

(bl 0 al)o (a o b) = o [al o (a o b)lAssociativity

- bl o [(aI o a) o b]Associativity

=bl o [e o b] Def. of al
=bl ob Def. of e
= e Def. of bl

Also:
(2 0b) o (b* 0al) =ao[bo (bl o0al)]

Assoclativity
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=ao [(bo bI) @ aI]Associati.vity

= a o [e o al] Def. of bl
= aoal Def, of e
= e Def, of aI

1 and

(a o b)I are inverses of a o b, we conclude (a o b)I = bl o al,

As a o b has exactly one inverse, and since vl o a

Let us give interpretations of this result in (Z,+) and
(Q",-).

Let a = 2 and b = 3 be elements of Z, Then (a o b)I
becomes -(2 + 3) = -5 and bI o a' become (=3) + (-2) = -5.

Let a = 2 and b = 3 be elements of Q. Then (a o b)L

=1 and bl o o’ becomes L . 1 . 1
2

becomes ——
2+3 6 3 6.

In the exercises that follow, and hereafter, we shall
say for brevity "a is an element of group (S,0)" or simply
"a is an element of a group" to mean "a is an element of S,

where (S,0) is a group."

2,10 Exercises
1, For the groups (Z,,+) and (2,\{0},+) show that:
(a) (3HT-=3
(b) (3 +4)I =yl 4 31
(e) (3.4)% = 4T3t
2, If a group is commutative (for every a and b,
aob=0>bo a) prove that (a o b)I = al o bl.

Prove the converse. of Exercise 2, namely, if for
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every a and b,(a o b)I = al o bI, then the group is

commutative, [Hint: Let x = aI, y = bI. Then
yox=>bloal=1{(ao00b)l,)

4, Supply the reasons for the following proof that
(aI)I = a,

(a 0 al) o (aI)I

a o [aI o (aI)I]
eo(al)I=aoce
(a1)I = a
5. Supply the reasons for the following proof that
(a 0o b)) = bl o al,
(a"b)I = (a© b)I
(aeb)of(aob)e(bie al)] = [(aob) e (a0b)] o (blo al)

(a o b)Ia[(a ob)ebIo al] = e o(bIO aI)

(aob)Io [ao(b obI)oaI] =b oaI
(za.ob)I [meal] =b oaI
(aob)Io[aoaI] =bIo aI
(aob)Ice =bI¢:aI

(a.eb)I =ble aI

6. For the group ({e,p,4q,r,s,t},0) in Section 2,3,

(a) check that (p o r)I £ pI o ri.

(b) check that (p o r)T = rf o pI,
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(c) find two other elements of the group which dis-
play the property indicated in (a) and (b).
T. Let (S,0) be a commutative group. Let (S,0) be an
operational system defined by: a o b= a o vl for every
a and b in S, Prove the following:
(a) aoa=c¢e
(b) aoe=a

(¢) aocoal=2ao0a

(d) If a=bthenaoc=boec,
(e) Ifa=Dbthencoa=cob,
(f) Ifaoc=bocthena=>h
(g) Ifcoa=cobthena=h
(h) (aob)ob=a

(1) (aob)ob=a

(3) ao(boec) =(aob)oec
(k) ao(boc) =(apob)oec
(1) (aoec)o(cod) =aod

(m) (aob)o(cod =(aoec)o(bod)
(n) (aob)o(cod) =(aod o(boec)
8. (a) Interpret each of the resultsin Exercise 7 if
(s,0) 1s (Z,+), a =0, b=4, ¢ =5, a =6,
(b) Do the same if (S, o) is (Q*,.), a =3, b = 4,
c=5,d4d=6,

lo

2,11 Isomorphism

In looking at some of our operation tables you probably

El{fc«recognized a great similarity. Consider these examples.
- 114
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Example 1.
+ Even odd X Positive Negative
Even Even odd Positive Positive Negative
0dd odd Even Negative Negatlve Positlve
(Z3,+) + 0 1 (Z5\{0}, ) - 1 2
0 0 1 1 1 2
1 1 0 2 2 1
Exeample 2.
(Zas+) +fO0 1 2 3 (Zg\{0},-) |1 2 3 4
0j0 1 2 3 111 2 3
11 2 3 0 212 4 1 3
212 3 o0 1 313 1 4 2
313 0 1 2 ity 3 2 1

Exemple 3.
(2,+), ((2n: n€z}, )

(See Section 2.2 Exercises 17 (a) and 18.)

In each exsmple there is a code that "translzies" each
group into cne of the other groups in that example. In Example
1 it is clear that the code could be:

§ e ¢
0 +—1

] ———p D
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meaning that if the symbols at the left +, O, 1 are replaced
in order by the symbols at the right . , 1, 2, then the table
for (Z3,+) converts into the table for (2a\{0},°). The

replacement in the opposit: direction converts the table for
(2,\(0},°) into the tabie for (Z;,+).

In Exemple 1, what is the code relating the odd-even group
to (Z,,+)?

In Exemple 2 the code is not as obvious. A rearrangement
of columns and rows for one of the tables, say the second, will

reveal the code. Thus

(Zs,+) +10 1 2 3 (zs\{01,*) < |1 2 4 3
0(0 1 2 3 1|11 2 4 3
111 2 3 0 212 4 3 1
212 3 0 1 L4 3 1 2
3|3 0 1 2 313 1 2

A code that serves to show that these groups are of the same
type is:

e e o




-1l1l2-
In Example 3 the code seems to be
+ —

n-<——->2n for each n&z

where 2 =1, 2 ' = 1,27
2

= l L] 2-3 = l = _]; K] etC.
4 2® 8
A code is of little value if the "message" does not get

=1
o2

through. We would like each "message" or expression in the
coded text tc translate "faithfully" into the original language.
We will now try to indicate what we mean by "faithful" trans-
lation. In Example 3, let us consider a coded text, say

2%.2* which is 2°™ or 27,

A translation of this message is

3+ 4 orT.

We may diegram th's as follows:
2% .« 24 = 27
| A A
3 0+ 4 =7

The notion of being & "faithful" code requires that the mean-
ing of the message 27 and 7 should &lso correspond. In this

case, 27 and 7 do correspond. In general, we have

o8 2b - 2a+b
P 1t !
a + b =a+bd

for all a, b in Z. This guarantees faithful coding and decoding.
When such faithful codes exist between two groups we call the
groupe isomorphic and the correspondence an isomorphism. More
precisely we have this definition:

Definition. Let (S,0).and (8,0, ) be groups. A mapping
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f of S to 8, 1is an isomopghism from(S, o) to

(S35 0) if and only if

(1) f is 1-1 and onto.

(2) for every pair of elements & and b in 8
f(a o b) = £(a)°, f(v).

The groups (S, o) and (S,, o) are then said to

be isomorphic.

We may picture an isomorphism as follows.

(SJO) (Sly ol)

In Example 3 the mapping f defined by

n — 20
is an isomorphism from (Z,+) to ({27 n€Zz},*) because for each n
there is exactly one image 2n, different n's give different
images, each 20! is the image of some n, and for every pair of
integers a, b in Zt

a+ b

fla + b) =2

r(a)r(b)

The groups (Z,+) and ({2™ n€z},.) are‘thus isomorphic.
When two groups are given, the problem of determining
whether or not they are isomorphic may be very difficult, Not
[}{J:ery 1-1 onto mapping £ is an isomorphism between two groups.

A_d )
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The property (2), f(a o b) = f(a)o, f(b) must be shown to hoid.

In some cases there may be two different mappings of the elements
of one group into those of another, each of which is an isomor-
phism. In some of the exercises that follow you will be gilven

two groups, and asked to find an isomorphism between them.

2.12 Exercises

l. Show that mapping f defined for every n€Z by

n Where 3° =1, 371 = l, 3= lb = %,
f: n—3 3 3
3-3 = }“3 = ']-" etC.
3 27

is a 1-1 mapping from the group (Z,+) into the group
(Q\(0}s°). Does it follow that (Z,+) and (Q\(0},*) are
isomorphic groups? Why?

2. Show that the following groups are isomorphic:
(a) (2s,+) and ol|le x vy

e |le x vy

X |x y e

vyily e x
(b) (The subsets of {a,b},A) and o e x y z

(See Section 2.2, Ex. 14.) e e X y zZ

X X e z y
y y z e X
Z z y X e

(c¢) (2Z,+) and ((3™ n€z},*) (See Exercise 1. How can
you how ({3™ n€z},-) is a group?)

3. Show that the following groups are not isomorphic:

ERJ(j (a) (2z4,+) and (Zs,+)
o 119




4,

-115-

*(b) (Ze,+) and ({esp,q,rss,t},0)
*(c) (Ze,+) and either group in Exercise 2(b)
*(d) (2,+) and (Q,+)

The order of a group (S, o) is the number of elements in
S, if S is finite. The order of an element a €S is the
smallest positive integer n for which a' = e, Thus

for the group (Z¢,+) the order of the group is 4,

while the order of the element 2 in (zg,+) is 2.

Find the order of each of the following groups

and the order of each element in the group:

(a) (Z,+) (d) (25 ,4)
(b) (2s,+)
(c) (ZG:"')

2.13 Summary

1,

A group is an operational system (S, o) such that:
(1) For all a, b, cin S{(aob) oc =a o(bo c).

Associative Property.

(2) There is exactly one element in S, e, such that
for every a€S, a oe =e 0 a = a. Identity
Property.

(3) For each a€S there is exactly one al in S, such

that aoa =8a o0 a=-e, Inverse Property.

The permutation group ({e,p,asr,s,t},o) is an example
of a nonj%ommutative group.

The total number of arrangements of n objects in a row
is n! =1.2.3.4....n,

In particular, the total number of arrangements of 4
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objectss &, b, ¢, d, is 4! or 24,

4, I f is a mapping, f(a) is the image of a under this
mapping.

5. If a €S and (S, o) is an operational system, a® means
(a 0oa) oa.

6. If (S, o) and (S,, o) are groups with S,a subset of S,
then (S, o) is called a subgroup of (S, o).

T. A number of theorems were deduced for groups.
If a=bthenaoc=boscandcoa=c¢co b,
Ifaoc=Dboc then a = Db,
If coa=c¢cob then a = b.
X 6 a =Dband a o x = b have exactly one solution each,

boal and al o b respectively.

I, I I I
(a”) " =a(ao b)I =b o0 a

8. A mapping f from group (S, o) into group (Sy, 0,) is
an isomorphism if
(1) f is 1-1 and onto.
(2) f(a ob) =f(a) o f(b) for all a, b in S,
The groups (S, o) and (S, 0y) are then called isomorphic

groups.

2.14 Review Exercises

1. Decide whether or not the following operational systems
are groups
! (a) (Ze,+)
| (b) (z2\{0},-)
(c) (Z,+)

(@) (z* ,+ 121
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2, How many different arrangements in a row are there
for the five letters a, b, c, 4, e?

3. Compute:

(a) (1 2 3 4)I
2 4 1 3

(b) (1 2 3 4) (1 2 3 4
2 L 1 3 ° 2 3 4 1

4, Compute 32 for:
(a) (2,+)
(p) (2 ,+)
{e) (Z\(0},")
5. Pind all the subgroups of (Zs,+).
Does the definition of subgroup allow us to say that

a group is a subgroup of itself?

6. Solve:
(a) t ox=pin ({e:p.oQ:r'ssst}:O)o
(b) xot =pin ({e,psq,rss,t},0).

(e) (pox)ot=aqin ({e,p,a,r,s,t],0).

(a) /1 2 3 4 1 2 3 4
Q
2 1 4 3 ? ? ? ?
1 2 3 4
3 1 4 2

Prove that the groups (Zs,+), (Z»\{0},+) are isomorphic.

Prove that for a, b, ¢ in a group,

(aox)ob=c
bas exactly one solution, ato ( ¢ o T,

Prove that for a, b in a group,

I)I I

(a 0D =bo a", 199
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Let P be a set of groups. "Is a subgroup of" is
then a relation in this set. (Recall the definition
of a relation from Course I.) Is this relation
an equivalence relation? That is, is it reflexive,
symmetric, and transitive?
Let (S, o) be an operational system with the
associative property, the identity property, and the
additional prorerty that for any a, b € S, each of
the equations

aox=bandyoa=>
has a unique solution in S. Prove that (S, o) is
a group. Hint: If e is the identity element, and
a 1s any element in S, and Xs ¥ the respective solu-
tions of a 0 x = e and y 0 a = e, it is sufficient
to prove x =y. (Why?) Then start with (y o0 a) o x

y o (aox).




CHAPTER 3
AN INTRODUCTION TO AXIOMATIC
AFFINE GEOMETRY

3.1 Preliminary Remarks

In this course, there have been a number of occasions when
we deduced theorems from axioms. For example, in the chapter on
Elementary Number Theory (Course I, Chapter 11) we derived impor-
tant divisibility properties of natural numbers by listing some
axioms for (N,+,°) and then proceeding to reason in a logical
fashion from these axioms. Similarly, in Chapter 2 on Group
Theory we deduced some important theorems about groups, using the
assoclative, identity and inverse properties as axioms. The
logical ideas used in carrying out deductions, such as these, were
analyzed and dlscussed in Chapter 1 on Proof.

In this chapter once again we develop a deductive system,

We shall begin with some familiar words like plene, line, and

point. However, instead of trying to define what these things
are, we shall merely stipulate that they obey certaln axioms.
The axioms or assumptions about these objects will state a few
significant properties already familiar from experience. Our task
will be to show that a number of other properties of points, lines,
and planes follow by deduction from the assumptions,

Since the axioms are suggested by our experience with points,
lines, and planes, whatever can be deduced from the axioms should
also correspond with experience, However, we are limiting the

number of properties to be used as axioms. Therefore there will
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be properties of lines and points which cannot be deduced from
the limited number of axioms we will adopt. Although we will be
deeling with objects called points, lines, and planes, we will
not make use of any properties of these objJects except those

stated precisely in the axioms.

3.2 Axioms

We shall limit our discussion to the points and lines of a
single plane which will be denoted by 7 (the Greek letter Pi).
If you insist upon thinking of this plane as a flat surface like
a floor, you may do so. However, the only real requirement
imposed upon this plane is that it is a set of points which sat-

isfies the axioms stated below.

/./ _ /

Figure 3.1

A Picture of a Plane

We will focus attention on certain subsets of the plane
which have special properties.

Among these subsets are the lines (straight lines) of the
plane. Again, if you insist upon thinking of a line &as a taut
wire, you may do sBo. We only insist that the 1line possess the

Qo properties which will be mentioned in the axioms.

ERIC \
== 125
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Figure 3.2
A Picture of a Line

The first axiom is given in two parts. 1In the first place,
it requires that the plane contain at least two lines. A plane
with only one line in 1t would hardly be much of a plane. The
axiom also requires thaet each line contein at least two points.
This certainly seems like a reasonahle requirement. 1In fact,
you probably feel that lines ought to have infinitely many points;
we will not demand quite this much at present.

Axiom 1. (a) Plane 7 is a set of points, and it contains

at least twc lines.
(b) Each line in plane 7 is a set of points con-

taining at least two points.

Plane 7 contains

at least two lines.

Figure 3.3 (a)
I WaTh
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Fach line contains

at least two pointe.
Figure 3.3 (b)

A Picture for Axiom 1

The second axiom also expresses a property that is reasonable to
expect of lines and points. You will see that it plays an im-
portant part in our reasoning.

If someone were to ask you how meny stiraight lines there
were containing one particular point of a plane, you would prob-
ably say, "As mrny as you want." But if you were asked how
many straight 1lines there were containing two different points,
you would undoubtedly agree, "Just one." Certainly, whenever
you draw a straight line through two points, A and B, you feel
that there should be just one line, even though your drawing
might not be accurate., At present we are not concerned about
drawings. We are concerned only with ideas. The second axiom
expresses a convietion about points and lines that you probably
already have.

Axiom 2. TFor every two points in plane 7 there is one and

only one line in 7 containing them,
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/

For every two points
there 1s one and only
one line contalning then,
Figure 3.4
A Picture for Axiom 2

When we say "two points" we shall always mean two distinct points.

When we say "two lines " we shall mean two distinct lines. On

the other hand when we say "lines m and n (without using "two")

we shall allow the possibility that "m" and "n" namne the same line,
Our third axiom deals with perallel lines. After we state

it below, you will probably agree that it is a very reasonable

requirement. 1In fact, for two thousand years this axiom appeared

so reasonable that many of the finest mathematicians thought

that it was unnecessary to assume it. They felt that it should

be possible to prove this particular property from the other axioms

which had been adopted for Geometry. In other words, they thought

that 1t ought to be a theorem rather than an additional axiom,
Before we state tThis axiom we should be clear about what we

mean by "parallel lines." When we draw two lines, call them "m"

and "n," on a sheet of paper, they may appear to intersect, as in
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/m
P'\n

Figure 3.5
A Picture of Intersecting Lines
or they may appear not to intersect, as in Figure 3.6.

Figure 3.6

A Plcture of Parallel Lines

Of course, in the second case it is possible that m and n
really do intersect. Perhaps if each line were extended suffi-
ciently far beyond the confines of our sheet of paper, we would
see that they actually meet. On the other hand, it might be
difficult or perhaps ilmpossible to decide this question in some

Q cases. We certainly can conceive that 1lines m and n might never
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intersect; that is m N n = #. In such a case we call lines m

and n parallel. It is convenient as you will see to ccnsider a

iine to be parallel to itsélf. Accordingly, let us state the

following definition.

Definition 1. Lines m and n in 7 are said to be parallel

ifm=nor ifm0On=¢. When lines m and
n are parallel, we express this fact by
writing "m || n."

Oour third axiom can now be stated.

Axiom 3, For every line m and point E in the plane T,

there is one and only one line in 7 contain-
ing E and parallel to m.
E

‘-.——-———-‘-—-r——"

Figure 3.7
A Picture for Axiom 3

The need for such an axiom dealing with paraliel lines was
first recognized by Euclid who lived during the third century B.C.
The axiom he adopted was the fifth in his list of axioms for geo-
metry, and it corresponds closely to the one we have introduced
Here as our third axiom. The choice of this assumption was one
of Euclid's great accomplishments for as we have noted, mathe-
maticians for thousands of years after Euclid tried in vain to

deduce this reasonable property from the other axioms.
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That all these efforts were destined to failure was proved
in the nineteenth century when a number of great mathematicians
(Gauss, Bolyal, Lobachevsky) showed that Euclid's fifth axiom did
not follow from his other axioms. They proved this by creating
perfectly good systems of geometry which did not have the property
demanded by that axiom. Such systems are called non-Euclidean
Geometries. If a system of geometry includes Euclid!s fifth axiom,
or any axiom equivalent to it, then that axiom is referred to as
the Euclidean Axiom in the system.

Before proceeding further, 1let us pause to examine our
three axioms and our definition of parallel lines. We rust not
only be very clear about what these axioms and definition actually
say -- we must be equally clear about what they ¢o not say!

Axioms 1 and 2 express the idea that a certain set called a
blane contains as subsets other sets called lines and that these
lines contain points. The idea that a point is contained in a

line, a line in a plane, etc., is called an incidence relation.

Hence Axioms 1 and 2 are often called Incidence Axioms. Axiom 3,

deals with another relation, namely parallelism, A system of

geometry in which our Axioms 1, 2 and 3 hold is called an affine
geometry.

Let us look again at Axiom 1, It asserts that the plane 7
contains at least two lines, and that each line in 7w contains at
least two points, You may feel that a plane ought to contain more
than two lines, perhaps infinitely meny, and similarly a line
should contain more than two points. Nevertheless, you must admit
- that Axiom 1 does not assert either of these possibilities, nor
does 1t deny either of these possibilities. As far as Axiom 1
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is concerned, the plane 7 may or may not contain more than two
lines, Similarly, neither Axiom 2 by itself, ncr Axiom 3 by
itself, tells us how many lines there are in the plsne, nor how
many points there are in a line., We must keep an open mind on
such matters. We must agree that we will accept only what is
asserted by our axioms and definitions,

In Section 3.4 we shall study some statements that can be
deduced logically from our exioms and definitions. Meanwhile
you must try not to read into them any more than they actually
say. The following exercises will test ycur understanding of

this important point.

3.3 Exercises

1. (&) According to our definition of parallel lines, if line
m is parallel to line n, can m and n have points in
common? Explain,

(v) If m || n does it follow that n || m?
2. If point E is contained in line m of plane m, is there a
line containing E and parallel to m?

3. Which axiom, if any, asserts that a line can contain three

points?

L, Which axiom, if any, asserts that there are more than two

lines in plane 7, containing any given point of ?

5. Which axiom if any, implies that each line in 7 contains at

least one point?

6. Which axiom, if any, implies that given two distinct points,

there cannot be two distinct lines, each containing both of

these points? 132
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7. which axiom, if any, asserts that given two distinct lines,
there is one and only one point contained in both of these
lines? |

8. Axiom 1 asserts that plane m contains at least two lines and
that each of these lines contains at least two points. From
the fact that the first line contains two distinct points
and the second line alsc contains two distinct points can
we logically conclude that there are at least four distinct
points in plane 7? (After all doesn't 2 + 2 = 4?) Explain.

9. Can two (distinct) lines intersect in two (distinct) points?
Explain your answer by referring to the appropriate axiom
or axioms,

*10. Using Axioms 1 and 2 only, give a logical argument to show

that there are at least three points in plane 7.

3.4 Some Logical Consequences of the Axioms

Statements which can be deduzed logically from axioms are
called theorems. As an example of a theorem which we cen deduce
fairly simply from our incidence axioms, consider the statement:

If m is a line in plane 7, then there is a point in 7 which

is not in m.

Notice that no one of our axioms actually asserts this fact.
Let us see what light Axiom 1 can throw on the situation. Since
m 18 a line in plane 7, Axiom 1l(a) assures us that there is at
least one other line besides m in plane . Let us call such an-
other line n. Now Axiom 1(b) assures us that each of the lines

m and n contains at least two distinct points. We are seeking a

Q
[1{“: point not in line m, 8o we conslider two points that are in line

IToxt Provided by ERI
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n. Let us call these points A and B. Our search will be ended
if we can prove that st leasi one of these two points, A or B,

is not in line m. Axiom 2 has something tc say about this matter.
Axiom 2 asserts that there can be only one line containing the
two distinct points A and B. Therefore, since these two points
were chosen in line n to start with, they cannot both also be in
line m. At least one of them is therefore not in line m and that
is what we wanted to prove.

We have spelled out the proof of our first theorem in consider-
able detail because we wanted to point out to what extent each
axiom helped in the proof., It is customary to present a theorem
and its proof in somewhat briefer form.

For example our first theorem might be displayed as follows:

Theorem 1. If m is a line in 7 then there is a point in 7

which is not dn m.
Proof. By Axiom 1(a) there is a line n distinct from

the given line m; that is, m ¥ n. By Axiom 1(b)
there are distinct points A and B in n; that is,
A £# B. If both A and B were in m, then by Axiom
2 we would have n = m, which is not the case.
Hence at least one of thz points A or B is not
in m.

You may have noticed that we proved Theorem 1 without draw-
ing any diagrems. Perhaps it seems a bit queer that we should
make statements about points and lines without even drawing a
figure to picture these points and lines. Actually, we did so

on purpose, We wanted to emphasize the fact that our proof depends
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solely on the axiomg. When w2 draw diegrams, there is always the

danger that we might use in our reasoning some property of the

diagram which really does not follow from the axioms. For example,

when we draw & line as in Figure 3.8

Figure 3.8
it appears to contain very many points -- surely more than two'!
However, Axiom 1 merely tells us that there are at least two
points in each line, and we have no right to assume that there
are actually more than two Jjust because it looks that way in the
drawing.

Does this imply we must always avoid drawing a figure? We
shall make no such rule! A diagram cen often be a great help in
suggesting importent or useful relationships and it can frequently
serve to guide us when things get complicated or when it is diffi-
cult to see what should come next. We should not hesitate to use
a diagram in such cases but we should be very careful to avoid
introducing into our reasoning any properties of the diagram
which we cannot deduce from our axioms and definitions.

To help you capture the cpirit of the deductive method let

us prove another simple incidence theorem in full deteil. When

135




-131-~

we are finished, we shall then display the theoremn and its proof

more briefly as we did with Theorem 1. Consider the statement:
There are at least three points in plane 7 which are
not all containred in the same line.

Notice again, that none of our axioms actuslly makes this
asgertion. Axiom 1(b) asserts that therec are at least two points
in every line of w7, and Axiom 1(a} guarantees that there are at
least two lines in w. Let us therefore select one of these lines,
call it m. We know there are at least two points, call them A
and B, in line m. The two points A and B are surely contained
in plane 7 since line m is contained in 7. The situation thusa

far may be pictured as in Figure 3.9.

Polnts A and B
~: A

\ B

\5‘\‘““-~; ~Line m

S~

~~Plane 7

Figure 3.9

We still need to prove that there is, in plane #, a third point
that is not in line m. But that is easy because we have already
proved Theorem ) which states that if m is a line in 7, then
there is a point in 7 which is not in m. Since Theorem 1 was
deduced =olely from the axioms, we may use Theorem 1 in our rea-
soning. We conclude tha" there is, in plane 7, a point C which-

Q ‘
]ERJK} not in line m:
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B ‘~\\\\* ~~New point C

Figure 3.10

Because line m is the only line containing A and B (Axiom 2),
and the point C is not in line m, it follows that C must be dis-
tinct from A and B. We have therefore proved that there are at
least three pcints in plene 7, which are not all contained in
the same line.

Before we restate this theorem and others like it, it will
be convenient to introduce a single word to express the idea that
three (or more) points are contained in the same line. We call
such points collinear.

Definition 2. (a) A set of points is called collinear, if

there i8 & 1line containing alil of them.

(v) A set of points is called non-collinear,

if there is no line containing all of
them.
We can now restate our second theorem more compactly and
summarize its proof.

Theoren 2. There are at least three non-collinear points

in plane 7. l£y7
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Proof. By Axiom 1(a), 7 contains at least two lines,

Let m denote one of these lines. By Axiom
1(b), m contains at least two points, A and B.
By Theorem 1, there is a point C in 7 which
is not in m. This point C must be different
from either A or B because by Axiom 2 m is
the only line containing A and B, and C is
not in m., Thus 7 contains (at least) the
three non-collinear points A, B, and C,

For later use (see e.g. Exercise 4 belew)} we shall find it
convenient to introduce & single word to describe three (or more)
lines which have a point in common. We c=ll such lines concurrent.

Definition 3. (a) Three (or more) lines in 7 are called

concurrent if there is a point in # which

e —— v s————.

is contained in all of them.

(b) Three lines in 7 are called non-concurrent,

if there is no point in 7 which is con-
tained in all of them,
Now try your skill at proving a few theorems by yourself.
You may draw diegrams if you wish, but remember to base your rea-
soning solely on the axioms, definitions and theorems previously

deduced.

3.5 Exercises

Prove each of the following theorems.

(Note: In the first two exercises we will suggest statements
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for the proof and ask you to justify these statements, i.e.
to cite the appropriate axiom or theorem. After you ccmplete
these two exercises, you are on your own.)

1. (Theorem 3) Two (distinct) lines in plane 7 cannot have

more than one point in common.

Proof
Iet m and n be any two Question: Which axiom
distinct lines in . guarantees that there are
such lines in 7?7
Let A and B be any two Which exiom guerantees
points in m. that there sre two such
points in m?
Line m is the only line Which exiom &pplies here?

containing A and B.

Since line n is distinct from m, n cannot also contain both

A and B. This means that n cannot have more than one point

in common with m.

2. (Theorem 4) If A is a point in plane w, there is a line in

7 which does not contain A.

Proof (Supply reasons). There are at least two lines in
plane w. (Why?) Call these lines m and n. If either
of these lines does not contain A, there is nothing
more to prove. On the other hand if both m and n
contain A, then each of these lines miast contain an
additional point. (Why?) Call these points B and C.
Since m and n are distinct lines, B and C must be dis-

tinct points. (Why?) There must therefore be a 1line
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containing B and C. (Why?) This line does not con-

tain A. (Why?)
(Thecrem 5) If A is a point in plane 7, there are at least
two lines in 7 each containing point A.
(Theorem 6) There are at least three non-concurrent lines
in 7. (Note: Refer to Definition 3(b) above.)
(Theorem 7) If each of two lines in 7 is parallel to the
seme line in 7, then they are parallel to each other.
(Theorem 8) If m is any line in plane 7, then there are at
least two points in 7 which are not in line m. (Hint: You
will need to use Axiom 3 in your proof.)
(Theorem 9) If A is any point in plane 7, then there are at
least two lines in 7 which do not contain A,
(Theorem 10) If £, m and n are lines in 7 such that m is
parallel to n, then it £ is not parallel tom, it follows
that £ is not parallel to n.
(Theorem 11) If £ 1is any line in plane 7 and A is any point
in 7 which 18 not in line £, then there is a one-to-one
correspondence between the set of all points in 4, and the
set of all lines in w which contain A and are not parallel
to 4.
(Theorem 12) If A is any point in plane 7, then there are

at least three distinct lines in 7 each containing A.

A Non-Geometric Model of the Axioms

An army captain wishes to set up and train a commando
squad from which he will Select teams to go out on various
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dangerous missions. It will be necessary to have avail-
able at least two teams for varicus missions in the
future. For each mission he will need a team of at
least two trained commandcs. It is desirable that each
man in the commando squad be trained to work smoothly
with any of the other men, so the captain orders that
every two commandos must serve together in exactly one
team, Moreover since any one of the teams might be out
on a-mission at any given time, the captain rules that
for each of the remaining commandos there must be exactly
one completely distinct team available to which this
commando belongs.

We expect that as you were reading the above paragraph you
were wondering what all this had to do with geometry!: What do
commando teams going out on dangerous missions have to do with
points, lines, planes and axioms? Let us go over the above para-
graph once more and summarize the requirements the captain has
laid down:

1. (a) The commando squad is a set of commandos, and it

must contain at least two teams.
(b) Each team in the squad is a set of commandos and
it must contain at least two commandos.

2. For every two commandos in the squad there must be one
and only one team’(exactly one team) in the squad to
which they both belong.

3. For every team in the squad, and for each commando in

the squad, but not in the team, there must be one and
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only one (exactly one) completely distinct team in-the
squad to which the commando belongs,
As you read this summary doesn't it sound a bit familiar?
Let us compare these requirements with our axioms for points and
lines in the plane 7. The first of these was:

Axiom 1, (a) Plane 7 is a set of points, &nd it contains

at least two lines,

(b) Each line in plane 7 is a set of points con-

taininz at least two points.

The similarity between this axiom and the captain's first require-
ment is indeed striking! If we merely replace threzs terms:

"plane 7" by "the commando squad"

"line" by "team"

"point" by "commando"
then Axiom 1 turns precisely into the statements which express
the captain's first requirement above.

Now let us make these very same replacements in the next
axiom for points, lines and plane .

Axiom 2. For every two points in plane 7 there is one and

only one line in m containing them.
After such replacement we obtain:

For every two commandos in the commando squad, there is one

end only one team in the squad containing them,
This expresses precisely the captain's second requirement.
Next, let us look at the captain's third requirement:

For every team in the commando squad and for each commando

in the squad, but not in the team, there must be one and
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only one completely distinct team to which the commando be-
longa.
Let us replace the underlined words by their counterparts listed
above getting:

For every line in plane m and for each point in 7 but not

in that line there must be one and only one completely
distinct line in 7 to which the point belongs.
You will recognize that this statement is essentialy the same
as our geometric Axiom 3, The phrase "completely distinct line"
refers now to a line that has no points in common with the original
line. In Definition 1 we defined such & line to be parallel to
the original line. If we had so desired we could have defined

two completely distinct teams to be parallel teams and also

agreed to call any team parallel to itself. 1In that case we
would have expressed the captain's third requirement in a manner
analogous to the way we expressed Axiom 3,

Now you may still feel that what we are doing here appears
somewhat peculiar. Isn't it silly to replace well established
words like "point" and "line" by other words such as "commando"
and "team," which really have completely different meanings?
This question deserves an answer and it merits a bit of careful
discussion,

Let us look back again at how we have used the familiar
words "point," "line" and "plane" in this chapter. We have taken
great pains to emphasize the idea that in a deductive system we
agree to accept only our axioms and what we can deduce logically

from them. Although our axioms refer to points, lines, and planes,
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we have tried to be very careful (especially when referring to

diagrams of these items) not to use any information about points,

lines and planes that does not follow logically from the axioms.
Because of this point of view, we made no attempt to define

the words point, line or plane. We required merely t-at they

obey Axioms 1, 2 and 3. Since these are the only requirements
we have laid down thus far, it is perfectly logical to interpret

the words point, line and plane to mean any objects and sets

of objects which satisfy the requirements laid down by our axioms.
If the requirements imposed by the captain on his commandos, his
teams of commandos, and the commando squad are exactly the re-
quirements which our axioms imposed on points, lines, and planes,
then it is not at ali silly to re-interpret one set of words in
terms of another. On the contrary, we can often learn a great
deal in this way by using what we know about one system of objects
to shed light on another system,

As a simple example of how useful it car be to interpret our
geometric ideas in non-geometric terms, let us look at some of the
theorems we have deduced from our axioms.

Theorem 3 asserted:
Two (distinct) lines in plane 7 cannot have
more than one point in common.

If we replace: "plane 7" by "the commando squad”

"1ine" by "team"
"point" by "commando"
this theorem becomes:

Two (distinct) teams in the commando squad

cannot have more than one commando in common. ] 4 4
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Although the captain did not list this restriction among
his requirements, it is important that he realize that this
restriction is implied by his requirements. The theorem tells
him that in forming his teams he must avoid assigning the same
two commandos to two different teams. Failure to understand this
point would either make it impossible for him to meet his require-
ments or cause him to waste a great deal of time assigning and
then re-assigning his men by trial and error.
Other rules which the captain must follow, and pitfalls

which he must avoid, are illustrated by Theorems 5 and 9, Translating
these theorems into the language of commandos, teams, etc.
Theorem 5 asserts:

If A is a commando in the commando squad then there are

at least two teams in the squad each containing that

commando.
In other words:

Eech commando must belong to at least two teams.
Similarly, Theorem 9 asserts:

For each commando, there must be at least two teams

to which he does not belong.
You should verify each of these rules by "translating" Theorems
5 and 9 from the "point" and "line" language to the '"commendo"
and "team" terminology. The exercises below.will indicate further

results which can be obtained in this way.
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Exercises

Interpret ("translate") Theorems 1 and 2 in terms of commandos
and teams.
By translating Theorem Y4, show that no commando in the squad
can be a member of all the teams.
Would it be possible for the captain to set up his teams so
that any three tcams share at least one commando? (Which
theorem or axiom sheds light on this?)
By interpreting the appropriate thecrem, show that no matter
which team is selected, there will always be at least two
commandos in the squad who are not assigned to that team.
By interpreting Theorem 10, show that if two teams have no
members in common, then any team that has a commando in
common with one of these two teams, must share a commando
with the other team also.
Show that the number of teams to which any commando in the
squad belongs must be one greater than the number of commandos
in any team to which he does not belong. (Hint: Refer to
Theorem 11.)
Suppose the captain selects three men, Jones, Kelly and Levy
as his commando squad and forms three teams as follows:

Team 1: {Jones, Kelly)

Team 2: {Jones, Levy)

Team 3: {Kelly, Levy)
Does this arrangement satisfy all of his requirements? If

not, which requirement is not satisfied and why?
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8. Suppose the captain adds an additional commando to the squad
(in Exercise 7) so that the commando squad now consists of
four men:

Jones, Kelly, Levy and Mason.
Arrange these four commandos into teams in such a way that
all the axioms, i.e., all the captain's requirements, are
satisfied,

9. (a) Prove (Theorem 13): There are at least four points in

plane 7, no three of which are collinear.

(b) 1Interpret this theorem in relation in Exercises 7 and 8.

3.8 Other Models of the Axioms -- Finite and Infinite

The somewhat unorthodox interpretation of our "geometry"
axioms in terms of commandos, teams, etc. is an example of a
odel for these axioms. In this section we shall study a number
of other interesting models that can be constructed by giving

various interpretations to the words point, line, plane 7, and

the incidence relations involving points, lines and the plane .

Four "Point" Models

I. Four businessmen, Mr. Adams, Mr. Brown, Mr. Crane and
Mr. Drake get together to form a corporation. They invest in
six different business enterprises and agree to share equally in
the management of these enterprises. To do this they agree to
set up two-man boards of directors to supervise the enterprises,
a different two-man board for each. The corporation and its

various boards of directors can be pictured as in Figure 3.11.
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The Corporation
{Adams, Brown, Crane, Drake}

Business
Enterprises

\

Directors Directors Directors Directors Directors Directors
(Adams , (Adams, Adams (Brown Brown (Crane,
Brown Crane rake “Crane {Drake} Drake

Figure 3.11

To see that this corporate structure is indeed a model for

our axioms let us observe the following:

1. (a) The corporation is a set of businessmen, and it has
at least two boards of directors {that manage enter-
prises owned by the corporation).

(b) Each board of directors includes at least two of
the business men -- in fact exactly two.

2, For every two business men in the corporation there is

one and only one board of directors containing these two

men. 1 48
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3. For each board of directors of one of the enterprises
and each businessman in the corporation who is not in
this board of directers, there is one and only one other
board of_directors containing this businessman but not
containing any man in the first board of directors.
(Note: You should verify this by taking specific cases.)

Once again we see the familiar pattern of our axioms exhibit-

ed in these statements. We can obtain these statements from our
axioms by making the following interpretations:

Replace: ' plane 7 by the corporation

line by board of directors
(of an enterprise)

point by dusinessman

You may also have to make a few minor grammatical changes in
order that your interpretation be expressed in good English,
The pairing of the four business men into the six boards of

directors might be conveniently pictured as in Figure 3.12.

‘ ]
\ /\& /
8 r
M we_» A’
Figure 3.12
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II. In Figure 3.12, each of the six double headed arrows
indicates one of the 8ix boards of directors. An even isimpler
diagram results if we use a dot (point) to represent each busi-
nessman and a segnent connecting each pair of dots to indicate

each of the directorships.

N
I / L
- — N,

Figure 3.13

The diagram in Figure 3.13 can be viewed on its own merits
as a set of four dots and a scheme for pairing these dots. This
set of dots along with the scheme for pairing them two at a time,
is still another model for our affine geometry. The dots in the
model are the "points" of the geometry. The "lines" in this model -
are not the ordinary lines we draw with pencil and ruler. Here
each "1line" is simply a set of two dots with no other dots be-
tween the two. Certain “"lines," such as the pairs of dots

{a,B} ana {c,D}
which have no dot in common, are called "parallel lines." Notice
that the two "lines"

{a,c} and {B,D}
are parallel according to this definition even though that may

appear o bit queer, looking at the diagram. If we call the set
O
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of four dots "the plane 7" we can then readily verify that this
model satisfies Axioms 1, 2 and 3.

III. Let us look again at Figures 3.11, 3.12, and 3.13.
You will observe that in each of these diagrams we deal with a
basic set of four elements
{a,B,cC,D}
and with the six subsets, each containing exactly two of the six
elements:
{a,B}, {a,c}, {a,n}, {B,c}, {B,D}, {c,nl.
If we call any set of four elements "the plane 7" and call each
of the four elements a "point," and each of the six subsets, i.e.
each pair of two elements, a "line," then we have still another
model of a four point affine geometry. It does not matter what
objects are used for this purpose. What does matter is that this

scheme satisfies Axioms 1, 2 and 3 as can readily be verified.

A Nine Point Geometry

I. The corporation formed by our four enterprising business-
men is very successful. It expands by adding six more
business enterprises and in doing so adds five new direc-
tors. In the course of this reorganization, it is decided
to assign boards, consisting of three of the nine direc-
tors to manage the twelve business enterprises, a differ-
ent set of three for each different enterprise. Once
again, the assignments are to be made so that all nine
directors will share equally in these management respon-

Q
EMC sibilities.
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Working out the details of the new organization turned out
to be a bit tricky. Fortunately, one of the new directors had
been a mathematics major at a university specializing in mathe-
matical economics. He tackled the problem by viewing it as a

nine point geometry. He represented the directors of the cor-

poratim by nine "points" labeled "A, B, C, D, E, ¥, G, H, I" and
connected the "points" in sets of three by means of segments as

indicated in Figure 3.1%4.

A B ¢ A B
I ~ ~ ~ ~ ~ ~
< I > g
_ ~ - |~ //D ~.
) ~
I // ‘/>\ ‘ />\ ~
Gk_____ﬂk_..._&l \ \O
G H

Figure 3.14

In this diagram the small circles do not represent new points,

Each little circle represents the same point as the correspond-
ingly labeled heavy dot. Placing these extra small circles along-
side the actual array of nine dots is merely a convenient device
for assigning the points in sets of three by connecting them with
12 segments as indicated, Each of the 12 segmenta now conveniently
represents a board of directors assigned to one of the 12 business
enterprises. The new corporate structure is displayed in Figure

3.15.
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The Corporation
{A. B, C, D, E, F, G, H, I}

{A,B,C} {G,H.I}
Directors
of Business
{A,D,G} Enterprises {D,E,F}
{A,E,I} {C,F,I}
{A,F,H} {c,E,G]
{B:E:H} {C’D’H}
{B,p,1}] }{B,F,G]
Figure 3,15

II. Now let us look again at Figures 3,14 and 3.15. In
each diagram there is a basic set of 9 elements and

certain specially selected subsets:

Plane v: {4,B,C,D,E,F,G,H,I)

Lines in w: {A,B,c} ({(B,E,H} {c,E,G)}
{a,p,6¢} {B,p,1} f{c,F,I)
{a,8,1} {B,F,6} {(D,E,F}
{a,F,8} {c,p,H} {G,H,I)

Point: Any element in plane 7.
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Once again, it really does not matter what objects are chcsen for
the nine elements. What does matter is that this scheme is still
another model for Axiom 1, 2, and 3 and therefore all the theorems
that can be deduced frcm these axioms must hold in the model.

This particular scheme is a "nine-point geometry."

Infinite Models

Models of this type will be described briefly in Section 3.1L4
and in greater detail in Chapter 6 (Coordinate Geometry). We
mention these models at this point so that you will be aware of
the fact that there are infinite models as well as finite ones.

You will recall that you used ordered pailrs of integers as
coordinates for lattice points in Chapter 7 of Course I (Lattice
Points in the Plane). Any ordered pair (x,y) were x € Z and
y € Z determined a unique lattice "point." Now there is no reason
to confine ourselves to ZxZ, i.e. to integer values for X and_;\_r;
we can also consider ordered pairs (X,y) where X and y are

rational numbers. These ordered pairs of rational numbers can

also be considered as coordinates for "points" in the more exten-
sive set QxQ. This set contains all the lattice "points" of ZxZ
a8 well as many other "in-between points."

Now it is possible to interpret plane 7 to be an infinite
set of points such as 9xQ, and to define certain (infinite) sub-
sets of this plane 7 to be lines. This can be done in such a way
as to satisfy Axioms 1, 2 and 3, thereby obtaining an infinite

model for our axiomatic geometry. 1In Exercises 8 and 9 below

you will have an opportunity to investigate infinite sets which

© HObey some or all of our axioms. (The same technique can also be
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used to obtain interesting finite models. This is done by con-
fining the coordinates X and y to finite number systems (clock
arithmetics) such as Z; or Zs instead of infinite systems such

as Z or Q.)

2.9 Exercises

1. Al, Bill, Carl and Don are tennis enthusiasts. The four

boys organize themselves into a club called The Pioneers,

The Pioneers plan to compete this season in a series of

six tennis matches against doubles teams sponsored by other

tennis clubs in town. The four boys are all excellent tennis

players, so they agree to participate equally in the six
tennis matches.

(a) For each of the six tennis matches, specify a doubles
team which the Pioneers might assign to play that match,
(Remember that each of the four boys must play equally
often.)

(b) Show that this organization of the Pioneers into doubles
teams can be interpreted as a model of our axiomatic
geometry. Which model? What are the "points," "lines"
and the "plane 7" in this case?

(c) Express each of Axioms 1, 2 and 3 in the language of
this model and verify that the axloms actually fit
the model.

(d) Interpret each of the following terms in the tennis club

model:
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(1) parallel lines
(2) collinear points
(3) non-collinear points
(4) concurrent lines
(e) Interpret Theorems 1, 2 and 3 in the language of this
model. Why are Theorems 2 and 3 "trivial" in this case?
(£f) Which of the theorems of axiomatic geometry could you
use to prove that cach of the Pioneers will play in at
least two matches and will not play in At least two
(other) matches.

Consider the following "three-point geometry" (see Figure

below)
Plane 7: {A,B,C}
Lines: {A,B}, {a,c}, {s,c}
Points: A, B, C

e ———— N,

(a) Does this model satisfy the requirements of Axiom 1?
Axiom 27 Axiom 3%
(b) Do there exist two {distinct) parallel lines in this
model? Explain.
(c) Are the three points of this model collinear or are
they non-collinear?

(d) Which of the following theoreme is valid for this model?
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(In each case try to explain why the theorem is valid
or not valid by referring back to your answer to part

(a) of this exercise.)

(1) Theorem 1 (4) Theorem 8
(2) Theorem 3 (5) Theorem 9
(3) Theorem 5 (6) Theorem 10

3. (a) Set up a geometry model using just two points A and B.
In this model what is plane 7? What are the lines?

Which of our axioms are satisfied by this model?

#(b) Prove that any model which satisfies Axioms 1, 2 and 3
must contain at least four points.

4., In the figure below, let us call each vertex A, B, C, D, I
a point and let us call each of the following pairs of
vertices a line (the solid segments merely indicate which
pairs of points are lines):

{a,B}, {a,c}, {a,n}, {a,E}, {B,c}, {B,D}, {B,E}, {C,D},
{c,e}, {D,El.
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By the plane 7 we mean the set {A,B,C,D,E}.

(a) Verify Axiom 1 (a).

(b) Verify Axiom 1 (b).

(c) Which of the following pairs of "lines" are parallel

and which are not parallel?

(1) {a,B} {B,C}
(2) {a,c} {B,CY
(3) {a,c} {B,D}
(4) {a,c} {B,E}

(d) Is Axiom 2 satisfied?

(e) Is Axiom 3 satisfied? Explain,

(f) PFor each point and each line not containing this point,
how many lines are there containing the point and
parallel to the line?

Theorem 13 asserts that there are at least four points in

plane 7, no three of which are collinear. Show that there

need not be more than four. (Which model verifies this?)

Let the values ofli and y be chosen from the number system

{25 ,+,+} where Z; = {0,1}. Define point to be any ordered

pair (i,y) in ZgxZy; define the plane m to be ZgxZ;, and

define line to be the solution set of any equation of the
form ax + by = ¢ where a, b and ¢ are numbers in Z,, and not
both a and b are zeros.

(a) List all "points" in plane .

(b) Plot these points on a graph using only the numbers in

Z, as coordinates (See figure.)
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(c) List all pessible equations of the form ax + by = c
where &, b and ¢ are in Z; and not both & and b are
zeros., (Hint: There are six such equations. One of
them is 1x + Oy = 1. List the others.)

(d) For each of the six equations you listed in (c), deter-
mine its "line," i.e. the set of "points" (ordered
pairs) in its solution set.

(e} Indicate these "lines" on your graph, connecting the
points with dashed segments,

*7. Repeat each part of Exercise 6 using Zs instead of 2Z,.

There will be 9 points in this model.)

8. Let plane 7 consist of all ordered pairs of integers; i.e.
T = ZXZ, and define a line to be the sclution set in ZxZ of
any equation of the form ax + by = ¢ where a, b, ¢ are
integers and a and b are not both zeros.

(a) Verify that this model satisfies Axiom i{a), (Hint:
you must find two equations of the form ax + by = ¢
with a and b not both zero, such that these two equa-

o tions define two distinct "lines" i.e. the solution
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sets must not be the same. Try the two equations
1x + 0y = 0 and Ox + 1y = O.

What are the solution sets for these "lines"?)
Verify Axiom 1 (b) for the "line" defined by each of
the following:

(1) x-y=0

(2) x+y=2

(3) 2x-y =0

(4) 3x+ by =5
Verify Axiom 2 for each of the following pairs of
points. (I.e.,for each pair of points show that there
is one and only one line conteining both points.)

(1) (0,0) and (1,1)
*(2) (b,-1) and (2,0)

Set up a counter example to show that Axiom 3 is not
satisfied in this model.
In Exercise 8, if we define the plane m to be 0xQ
(instead of ZxZ), will your answers to parts (a) and
(b) still be correct? Explain,
Will your counter example for Exercise 8 (d) still be
valid? Explain.
Given the "line" m defined by 3x + 4y = 5 and the "point"
E = (2,1) which is not contained in line m., Verify
Axiom 3 for this case. (To do this you must find an
equation in the form ax + by = ¢ where & and b are
rational numbers not both zero, such that this equation

is satisfied by the coordinates of E, but is not
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satisfied by the coordinates of any point in m. Then
you must show that the line defined by this equation
is unique, i.e. that any other equation which meets
the requirements defines the same line.)

10. Suppose that a family is divided into committzes such that:

(1) Each committee has at least 2 members.

(2) There arz at least two committees and one committee
has exactly 3 members.

(3) Each committee has one member from each otaer comwlittee,

(4) Each two family members serve together on exactly one
committee,

(a) Using dots to represent individual members of the
family and segments connecting these dots to represent
committees, draw a model for these instructions.

(b) Prove there must be at least four people in the family.

(c) If we call each person a point and each committee a
line, are there any parallel lines in this model? Why?

11. (a) Prove (Theorem 14): There are at least six lines in
plane 7.
(b) 1Interpret this theorem in relation to the four point

geometry model.

3.10 Equivalence Classes of Parallel Lines

According to Definition 1, two lines are parallel if they
have no points in common, and each line is parallel to 1tself.
The latter part of this definition asserts that

m || m for every iine m,
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You will recall that this can alsoc be expressed by saying that
parallelism is & reflexive relation on the set of lines in 7.
(See Course 1, Chapter 8, Sets and Relations)
Definition 1 also implies that
ifm || n thenn || m,
which can also be expressed by saying that
parallelism iz e eymmetric relation on the set of lines in 7.
This is easily proved as follows: if m || n then by Definition 1
elther m N n=¢g or m = n,
But both of these alternatives are symmetric, i.e. m N n = ¢ or
n=mSoif m || n, it follows that n || m,
A third important property of parallelism is the following:
Ifm || nendn || £ thenm || £
As you will recall, this property can also be expressed by say-
ing that
parallelism is a bransitive relation on ths set of lines in 7.
This is most readily proved by showing that it is impossible for
parallelism not to be transitive. In other words if m || n and
n || £ could it be possible that m }{ £ (m not parallel to £)?
This would mean that m and £ are distinct lines which have
a point, A, in common. But then there would be two lines m and
. containing A and parallel to n. (See Figure 3.16.) This
violates Axiom 3 which says that there can be only one line con-
talning A parallel to n. Therefore it follows that m and 4 can-

not have a point in common or m || £.

162




-158-

m «— ——————_——__ b,
’/*9
| €&— —_——
n €— —
Figure 3.16

Ifm || nand n || 4, is it possible that m 4 42

You will recall (see Course 1, Chapter 8, Sets and Relations)

that a relation which is reflexive, symmetric, and transitive is

also called an equivalence relation. We can therefore summarize

what we have proved above in the following theorem:

Theorem 15. Parallelism is an equivalence relation on the

set of all lines in plane 7.

The most significant property of an equivalence relation in
a set is that it always partitions the set into disjoint subsets.
A relation R puts elements a and b in the same subset or equiva-
lence class if and only if aRb. How does the equivalence relation
"ig parallel to" partition the set of lines in 7 into disjoint
subsets?

To get a picture of the way the equivalence classes are

determined by "||," consider Figure 3.17,
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Figure 3.17

If lines which are related by "||" are put into the same class,
the five lines pictured would be split into two classes, one con-
taining a, b, and ¢, the other containing ¢ and e. In a similar
manrier "||" partitions the set of all lines in 7 into disjoint
equivalence classes; each class consists of all the lines in 7
that are parallel to a given line. We shall refer to "an equiva-
lence class of parallel lines" here simply as "en equivalence
class."

It is interesting to see what these equivalence classes are
like in the various models we have constructed for our axioms.
Consider the example, the four point model (Figure 3.18).
| R

K A
PN 7z

N\

[ )g/ l
1,0
l » N
g — — = =N,
Figure 3.18
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In this model the "plane" 7 = {A,B,C,D} is partition:d by the
parallelism relation into three equivalence classes each con-
taining two "lines" of w. These equivalence classes can be

pictured as in Figure 3.19.

R — — — B A‘ tB A'\ /B
| \\</
|
| | // ~N
™ — — — ¢ pd b 0’ A
Figure 3.19

More precisely, each equivalence class is simply a set of sub-
sets of m:

({a,B} f{c,p}} (f{a,p}, (B,c}} ({a,c}, (B,DY}
If we re-interpret our "points," "lines," etc. in terms of our
first business corporation model (see Section 3.8) the equivalence
classes serve to partition the six boards of directors into three

pairs as in Figure 3.20. (See also Figure 3.11.)

1 6 3 [] 2 5
Adams Crane Adams Brown Adams Brown
Brown Drake Drake | | Crane Crane Drake

Figure 3.20

Within each pair, the directorships are completely distinct, i.e.
they have no director in common ('"parallel lines").
In the exercises that follow you will be asked to interpret
£]{U:‘ the equivalence classes for other models.
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3.11 Exercises

l'

Which of the following are equivalence relations for the

specified sets?

(a) "is the brother of" in the set of males.

(b) "is the same age as" in the set of living people.

(c) "is smaller than" in the set of students in your class.

(d) "has the same number of pages &s" in the set of books,

(e) "is lighter than" in the set of students in your school.

(f) "is the 1line reflection of (in a fixed line)" in the
set of points in a plane.

(g) "is perpendicular to" in the set of lines in a plane.

(h) "has a point in common with" in the set of lines in
a plane,

(1) "is in the same grade as" in the set of students in
your school.

For each relation that actually is an equivalence relation,

determine what kind of equivalence classes are formed.

Show that the relation "has the same author as" is an equiva-

lence relation in the set of books in a bookstore. What

kind of equivalence classes are determined by the relationg

Interpret the equivalence classes for the tennis club model

(the Pioneers) of Exercise 1 in Section 3.9.

(a) Draw a diagram similar to Figure 3.19 showing all the
equivalence classes for the nine-point geometry de-
picted in Figure 3.14,

(b) By drawing a diagram similar to Figure 3.20, interpret

these equivalence classes to show how the set of twelve
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business enterprises can be partitioned into subsets
consisting of businesses whose directorships do not
overlep.
5. Prove (Theorem 16): There are at least three distinct
equivalence classes in plane w. (Hint: Use Theorem 12.)
6. Let D be an equivalence class which does not contain line
m. If a second line n is parallel to m can D contain n?

Prove your answer.

3.12 Parallel Projection

Because we will need the result of Exercise 5 in Section
3.11, it will now be proved. You may want to compare your proof
with the proof given below,
Theorem 16. There are at least three equivalence classes
E in plane .
% Proof, Surely there is at least one point A in ». (In
% fact Theorem 13 asserts that there must be at
least four points in 7.) By Theorem 12 there
are at least three (distinct) lines in 7 con-
taining A. No two of these lines are parallel,
since they are distinct and have point A in
common. But in an equivalence class any two
lines are parallel{ Hence no two of these
lines belong to the same equivalence clasgs.

Therefore the three lines belong to three (dis-

tinct) equivalence classes.
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We shall now use the information that m has at least tihree
different equivailence classes. Let m be any line in 7 and D
any equivalence class not containing m. Let E be any point in .
Prom Axiom 3 we know that for every point E in 7 there is one and
only one line, call it n, containing E which is in the equivalence

class D (i.e. n is parallel to a line in D).

77 7

'y r
/4)/ / 4
/// / m
<7 77 ,f%m —
v v

Figure 3.21

Moreover, n cannot be parallel tom. If it were, then m would

be in the equivalence class of n which is D, We assumed that D
was an equivalence class not containing m. If n and m are in
different equivalence classes, n end m are distinect lines that
have a common point Em' So for every lin< m in 7 and equivalence
cless D not containing m, we have a mapping that sends each point
E in the plane into a point Em of line m, If we call this map-

ping "Dm," we have

D
m
]!:--—-—Em

We can visualize the mapping Dm as projecting the point E from

its position in plane 7 into a place in line m, by "moving" the

1noint E "elong" line n; and since n is parallel to all the lines
LS
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in the equivalence class D, we call the mapping Dm a parsallel
projection.

Definition 4. Let m be any line in plane w, D any equiva-
lence class in 7 that does not contain m, E
any point in 7, and n the line in D that con-
tains E. The mapping

D
m
E———»-Em

of 7 into m that maps E into Ej = n N m, is

called the parallel projection of 7 into m

determined by D.

We now come to a very important theorem which makes use of
almost all the information we have accumuleted. It asserts that
for any lines m and n in 7, there is a parallel projection that
maps n one-to-one onto m,

Theorem 17. In 7, let m and n be any lines and let D be any

equivalence class that contains neither m nor n.
Then Dm is a parallel projection which maps n
onto m. When the domain of Dm is restricted fo
n, Dm is one-to-one.

Proof, We must show two things:

1) Dm maps each point of n onto some point of m.
2) Under the "restricted" mapping D, each point

of m 18 the image of exactly one point in n.
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Figure 3.22

Let us first show that Dm maps each point of
n onto some point of m. Let E be any point of
n. (See Figure 3.22.) By Axiom 3 there is
exactly one line in D, call it r, which con-
tains E. We have selected equivalence class

D so that m and n are not in D. Theorem 16
guarantees that such an equivalence class
exists. It follows then that r 0 m £ & and

r £ m, Hence by Theorem 3, r N m contains
exactly cne point, Em' We have thus shown
that Dm maps each point E of n onto some point,
Em, of m. To complete the proof we must show
that when the domain of Dm is restricted to n,
each point A of m is the image of exactly one
pdint in n under this restricted mepping. Let

8 be a line in D which contains A. By Axiom 3

170
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there is one and only one such line, As n is
not in D, s N n £ @ and s £ n, It follows
again by Theorem 3 that s N n contains exactly
one point, An. If there were another point in n
which mapped onto A under Dm we wouid have two
lines in D which contain A. This is impossible
by Axiom 3 because the lines of D are parallel.
We have completed the proof.
As proved in Theorem 17, the mapping Dm restricted to 1line
n, establishes a one-to-one correspondence between the points in

line n and the points in line m (see Figure 3.23).

V4
\o\ !
S|
SRR W
« — 1 ) n, Vi
P Q R
Figure 3.23

Each point, say A, B or C, in n has a unique image in m under Dm‘
Conversely, each point, say P, @ or R in m has a unique image in
n, under Dn‘ The mapping Dn restricted to m, is the inverse of
the mapping Dm restricted to n. Each of these mappings is called

a parallel projection from one line onto the other line,

Definition 6. Let m and n be lines in plane 7, and let D
be any equivalence class in 7 which does not

Q contain either m or n. The mapping Dm
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restricted to n is called‘g parallel piojection

from line n onto line m. 1Its inverse mapping

(namely L restricted to m) is called a paral-
lel projection from line m onto line n.

It is an interesting logical consequence of Theorem 17 that
all lines in 7 have the same number of points. For example, in
a four point geometry, the plane 7 consists of four points. Each
line in this plane 7 contains exactly two points. {How many
points are there in each line of the nine-point geometry?) If
even one line in 7 has infinitely many points, then every line n
must have infinitely many points.

The notion of parallel projection constitutes the mathematical
foundation on which to bulld coordinate systems for locating points
in a plane. We can choose any two lines m and n in different
equivalence classes and use these lines as "coordinate axes."

(See Figure 3.2L4.)

Figure 3.24

It can now be shown that for each point Q@ in the plane, there is

o° unique ordered pair of points (X,Y) where X is in m and Y is in N.

E MC P
T 4:1152
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Point X i1s the image of Q under the parallel projection Dm of 7
into m determined by the equivalence class D that contains n.
Point Y is the imege of Q under the parallel projection Dn' of
7 into n determined by the equivalince class D' that contains m.
The pair of points (X,Y) then serve as "coordinates" of point Q.
This idea of locating a point © in plane 7 by referring to
its "projections" on some chosen pair of 'coordinate axes" is
already familiar to you from your experience in drawing graphs.
However you usually used a pair of numbers (x,y) rather than a
pair of points (X,Y) for this purpose, To do this requires that
there be some way of assigning a definite numnber to each point
on everj line in 7 (since any line in 7 could be chosen as one
of the coordinate axes). The kind of numbers one may use for
this purpose will depend on the geometric model being studied,
For example, in a four-point geometry model, every line consists
of exactly two points., Therefore there will be exactly two points
on each coordinate axis and it will be appropriate to select a
number system such as {Z;,+,:} from which to assign numerical

coordinates.

Figure 3.25
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We may then‘assign the following coordinates (see Figure 3.25).

A(0,1) B(1,1) c(1,0) D{0,0)

For more complicated geometric models more extensive number
systems are needed, For infinite models infinite number systems
such as the rational numbers or the real numbers are required.
We shall return to this subject briefly in Section 3.14. 1In

Chapter 6 we will discuss coordinates more extensively.

3.13 Exercises

(Copy each of the following diagrams in your notebook and
use your notebook diagr..ns to answer the questions.)
1. Find the image of each of the points A, B, C and & under

the parallel projection Dm‘

g S\
® \\\
v\

o\

W\

vV Yy

[ X

m.

L4

S
]

[
¢
2. If D is sn equivalence class containing line n and if m is

a line not in D

Fy
)
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(a) what is the image of each point of n under the parallel

projection Dm?
(b) what is the image of each point of m under the parallel
projection Dm?
3. Let m || n and let D be any equivalence class which does

not contain either m or n,

‘m /)
oy

) , Ly

*n ,I/

(a) If A and B are points in m, find their images under
the parallel projection Dn‘ Call these image points
C end D respectively.

(b) What are the images of C and D under the parallel pro-
Jection Dm?

(¢} What relationship is there between the mapping D re-
stricted to m and the mapping Dm restricted to n?

L, Let £, m, n be three distinct parallel lines and let D, and
D, be two equivalence classes neither of which contains the

lines 4, m or n., Let A be any point in line £.

‘*4* —p )
ps —pp M
¢ —p 1)
ppr o W\
/77 \\\Dz
/110 N\

W YWY
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(a) Determine the image of A under each of the following

parallel projections:
(D1 ) s (D2 )ms (D1 )n., (D2)n

(b) PFind the image of A under each of the following composite

mappings:
(l) (Dl )m 0 (Dz)n (2) (Dz)m ° (Dl )n
(3) (D) © (D2)m (4) (Da)y © (Dy)m

(¢) Choose any point B in 4, other than point A, and repeat
parts (a) and (b) of this exercise using point B. Try
to formulate a general rule concerning the commuativity
of parallel proJjections.

5. Copy the diagram in Exercise 4 on a large sheet of paper.
et £ be the parallel projection from line 4 to line m de-
fined by restricting (D, )y, to line £, Let g be the paral-
lel projection from line m to line n defined by restricting
(D2 ) to line m,

(a) Choose 2 different points A and B on line £ and deter-
mine the image of each of these points under the
composite mapping g o f. Call these image points A!
and B'. Draw segments EAT and BE'.

(b) Repeat the experiment in (a) starting with at least
two other pairs of points A,, B,and Ay, B, on line 4.
On the basis of your experiment does it appear that
the composite mapping g o f is also a parallel project-

ion from line 4 to line n?
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6. Let £, m, n be three concurrent 1lines and let D, and D, be
two equivalence classes not containing any of these lines.
(See figure.)
l\i\n\/

m€—

: 777 N\

7r/ \\\p,
7778 A\
oo W\

Let £ and g be parallel projections from £ to m snd from m
to n respectively as defined in Exercise 5.

Repeat parts (a) and (b) of Exercise 5 for these con-
current lines. Does the composite mapping g o f appear to
be a parallel projection from £ to n in this case?

7. Suppose line £ intersects each of two parallel lines m and n
and suppose D, and D, are two equivalence classes which do

not contain any of the lines 4, m, n, (See figure.)

¥ N
”/////rtTI XN

N\
|1 N\
i N
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Let £ and g be parallel p-ojections from £ to m and from
m to n, respectively, =3 defined in Exercise 5.

Repeat parts (a) and (b) of Exercise 5 for this situation.
Does the composite mapping g o £ appear to be a parallel
projection from £ to n in this case?

Suppose £, m, and n intersect in pairs as indicated, and
suppose once again that D, and D; are distinct equivalence
classes which do not contain any of the lines 4, m, n,

(See figure.)

\

L\ m

AW "
"\ I
W,y

Let f and g be parallel projJections from £ to m and from
m to n respectively as defined in Exercise 5,

Repeat parts (a) and (b) of Exercise 5 for this situation.
Does the composite mapping & o  appear to be a parallel

projection from £ to n in this case?
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3,14 vVectors -- An Intuitive Introduction

So far in this chapter we restricted our attention to some
properties of the plane m which can be deduced logically from
Axioms 1, 2 and 3 only. Because of this restriction we found it
possible to admit a variety of models of our set of axioms, some
of which may have been a bit unexpected,

In this section we are going to work with the "everyday"
model that you would probably expect for the plane 7w, Our Axioms
l, 2 and 3 were selected so as to express some of the familiar
properties of this everyday model, but by no means all of then,
For example, in the everyday model the plane 7 actually contains
infinitely many lines. In each line there are infinitely many
points and "between" any two points there are always other points,
In this section we shall assume some of these other properties,
put such additional assumptions do not alter the fact that the
"everyday" system is also a model for our original axioms.

Our specific reason for considering the "everyday" geo-
metric model at this point is to use it in helping us understand
the important concept of a vector. The notion of a vector is a
remarkably useful one, not only for mathematicians but for
physicists, engineers, economists and other scientists., For
example physicists and engineers study forces and velocities as
"vector quantities." Economists speak of "supply and demand

" "price vectors," etc, In this brief discussion, how-

vectors,
ever, we shall confine oursleves to "geometric vectors.," 1In
Course IIT (in the chapter on Affine Geometry and Vector Spaces)

O
FERJIC we shall define a vector precisely
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To see how geometric vectors arise consider the following
physical problem, The current in & river is flowing at a uniform
rate. A rowboet, located originally at point A, is carried by the
stream to point A' in one minute. A Second rowboat, located
originally at point B, is carried by the stresm to point B' dur-
ing the same minute of time. (See Figure 3.26.)

s s s SLE

i ® A 1

S /S Z
/_{._/

4

-

NN YR

Figure 3.26

We may conveniently portray the motion of each boet by means of
e "directed segment." This is simply a straight line segment
Joining the initial position of the boat to its final position.
An arrow- head is placed at the terminal point of each segment to
indicate the direction each boat has moved., It is convenient to
use the symbols "AR'" and "BB'" to refer to these directed seg-
ments,

There 1s clearly a strong resemblance between these two

o directed segments. This resemblance is due to the fact that when

- the first boat moves from point A to point A' it 1s moving in the
, . 4100
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same direction and by the same amount as the second boat moves
from point B to point B'., Mathematically, we neay think of the

river current as effecting a translation which maps point A onto

point A', and also maps point B on to point B'., We can think of
either of the directed segments AR' and BB! as "representing"
this translation. Because AA' and BB' are "equally good" for
this purpose we shall call these directed segments "equivalent."
Our use of the word "equivalent" is quite intent:onal.
Whether & boat starts from point A, point B or any other point
in the river, it is clear that the directed segments which
represent the motion of each boat during let us say one minute,
will all have the same length as well as the same direction.
Iet us imagine all possible directed segments drawn in an oirdinary
"everyday" plane w. The property, that a pair of segments shall

"have the seme length as well as the same direction" defines a

bona fide equivalence relation in the set of all directed segments

of v. To prove this, recall that you must show that the property

in question is reflexive, symmetric and transitive. You should

have no difficulty establishing each of these properties in the
present situation. Equivalence of directed segments is therefore
indeed an equivalence relation.

Th¥s equivalence relation partitions the set of all directed

segments in plane m into equivalence classes. These equivalence

classes are also called vectors. Since equivalent directed seg-
| ments belong +to the same equivalence class (1.e. the same vector)
f we also say that they represent the same vector. We express the
i Q idea that Eﬁ and 63 represent the same vector by writing EE = 63.
I

161
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For exemple in Figure 3.26 sbove we have AA' = BB'. Notice that
this equation does not mean that AA' and Eﬁ' are the same directed
segment, because they are not! It does mean that KK' and ﬁﬁ'

represent the same vector: these directed segments belong to the

seme equivalence class.

For some further examples, suppose that A, B, C and D are
points in plane 7 such that Kg = EB. Figure 3.27 shows various
possibilities for the directed segments.

Ao
b
C
v S
/T
B D A A

Figure 3.27

%’

On the other hand, in Figure 3.28(a) and 3.28(b) we have AB £ cD.
(Explein why.)

N

(a) Figure 3.28 (b)

A
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Similarly if A, B, C, D and E are such that
AB = CD = DE

then these three directed segments might appear as in Figure 3,29

E
B
D
A
¢
Figure 3,29
but not like any of these (in Figure 3,30)
c C
B E B
B
/ D D
A D
A
A
¢ (a) (b) (c)
E E

Figure 3,30

[ [ I

It is often convenient to denote vectors by symbols such as "a,"
"g," "X," etc, This notation uses 2 single symbol to denote an
entire equivalence class of directed segments, Thus, if the

—— e )

directed segments AB, CD, EF, etc. each represent the same vector

i o . W
i.,e, if AB = CE = EF, etc,, then this vector, let us call it "a,
184
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corresponds to a translation which maps A onto B, C onto D, E

onto F, etc. (See Figure 3.31)

Figure 3.31

Observe that the symbol "a" next to each of the directed segments,
signifies that they all represent (i.e., belong to) the same
vector a., A particularly useful thing we can do is "add" vectors.
How shall we define such "addition"?

We can take our cue from the idea that a vector corresponds

fo a translation which maps the plane 1 onto itself. To see

this in a "practical" setting let us return to our illustration
of a rowboat in a river flowing at a uniform rate. Temporarily,
suppose there were no current flowing. The boat would of course
remain motionless, unless someone in the boat started to row,

If the occupant of the boat were to row at a uniform rate, the
boat would move in the direction of rowing as long as there was
no current, For example, after one minute the boat might move

from point A to point B as in Figure 3.32.
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Figure 3,32

Suppose now that the river is actually flowing at the uniform
rate. Then, during this time, zach point along the path of the
boat is "translated" by the current to a new position, For ex-
ample, point A is translated to A' and point B to B' (as Figure
3.33). The resulting ("resultant") path actually traveiled by
the boat is indicated in the following diagram (Figure 3.33).

11y g L ILLLL LS g LF
SLLL L

(Path of boat due to Al
current only) g Actual path of boat.
S ("resultant”of both
: A A’!g.B1 motions)

(Path of boat -

; /iue to rowing only) g ‘/7'7 : / / W
g 7 /// J) 177/

§E l{fC‘ Figure 3.33

100 &




-181-

As we have previously indicated, the directed segments K&
and Eg’ are equivalent i.e. they represent the same vector, Let
us call this vector a, We write:

(1) a=3m =Bp
Similarly the directed segments Eg and Erﬁ are also equivalent,
Let us call the vector they represent EE

(2) b =AiB = AP
The "resultant" directed segment AR represents still another
vector which we shall call ¢, It is only natural that we agree
to call this new vector, c, the sum of vectors a and b, and write:

(3) a+b=c

As we have already noted in (1}, the vector a can be repre-~

sented by any directed segment in the equivalence class 3, and
similarly, as in (2), the vector (equivalence class) b can be
represented by any of its directed segments., We may therefore
express the relationship (3) above in various alternative ways:

——

Ki‘ + KE = AB

or EX‘ + KTE; = Eﬁ
or KE + E§ = Eﬁ

The first alternative here is usually described as the parallel-
ogram rule for addition of vectors, because the directed segments
KE and Eﬁ form two adjacent sides of a parallelogram whose
diagonal Eg represents their sum (see Figure 3.33). The second
and third alternatives are usually referred to as the triangle
rule for addition of vectors because for example AA and Krg'form
two slides of a triangle whose third side E@ represents their

sum (see Figure 3.33),
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Observe however that the sum

—

a + b
of a pair of vectors is defined even if these vectors are repre-
sented by directed segments which do not form a triangle, For

example, in Figure 3,34 if KE represents vector a and if CD repre-
sents vector b, then the sum a +.g is represented by the segment

— — — —

EF even though AB, Cb and EF do not form a ftriangle,

Figure 3,34

Notice however that the sum a +-g is most conveniently obtalned

by choosing a new pair of directed segments such as EG and GF
which do form a triangle and which also represent vectors'E and
b respectively, Furthermore since

—_  — —

EG + GF = EF

and EG = AB, GF = CD
we may also write AB + CD .= EF,

This equation simply means that the vector represented by EF is

the sum of the vectors represented by AB and CD.
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Figure 3,35 illustrates what happens if we reverse the

order of addition of a pair of vectors,

Figure 3.35

Notice that AC = DF, In fact we can imagine that triangle DEF
is "moved" alongside triangle ABC as indicated in Figure 3,36,

FPigure 3. 36

These diagrams illustrate the important fact that addition;éf
vectors is commutative,

S+T-3+3 |
for all pairs of vectors a and b, Looking at Figure 3.36 we see
that the commutative law for addition of vectors is actually a

consequence of the parallelogram law.

O

188
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The triangle law can be extended so as to obtain a sum of
any number of vectors. For example to add vectors a, b and c,
in Figure 3,37 we use the triangle law to find a + b and then

use the triangle law again to find (; + D) + c.

Figure 3,37

In Exercise 4 you will be asked to verify that the same sum is
obtained by adding a to the sum (b + ¢). The fact that
(a+0b)+c=a+(b+0)

for all vectors ;, Tao*, Z is called the associative law for addition

of vectors,
Because of the appearance of Figure 3,37 this method of

determining a sum of vectors is often called the vector polygon

method,
In the exercises that follow you will be asked to discover
other interesting properties »f vectors.,

3,15 Exercises

1, Suppose that the figure below is a parallelogram., How many

distinet vectors are represented by
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(a) AB and DC (d) AB and AD
(b) AB and CD (e) AD, AC, BC
(C) A—B’ and Ep’. and aio
B al
A D

Assume the figure below is a regular hexagon, This is a

six sided polygon which possesses line symmetry about each

of its diagonals, (See Course 1, Chapter 10, Segments,

Angles and Isometries.)

(a) How many distinct vectors are represented by EE, Eﬁi
CA, FE, ED, DF?

(b) Which of these directed segments represent the same

vector? A B

E D
ww sultable diagrams to find the following sums {by the

triangle law):

-—

(a) 2+b (d) b +a
(b) D+ o (e) G +2
(¢) 2 +7¢
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(a) For the vectors in the preceding figire draw diagrams
to find each of the following sums:
(2 +D) +c
a+(b+c)
(b) Compare the sums obtained in (a)., What law is
illustrated here?
(c) Check your conclusion by using various other directed

- -

segments to represent vectors a, b and c,

- —

For vectors a, b and —c>, as indicated in the adjoining

figure, draw suitable diagrams to determine the following

sums:
- —» —» — — —
(a) a+ b (b) a+c (¢) pP+ec
8
—
. 2 —be
—
*—-—j———e-
T
- . A C
Figure for 5 Figure for &
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Using this figure draw diagrams to find the following; sums:

(a) AB + BC (d) AB + CB
(b) AB + AC (e) (AB + BC) + AC
(c) AB + CA (f) (AB + BC) + CA

Is there anything uausual about this last result? Explain,
For vector a represented in this figure draw diagrams to
obtain:

(a) 2a+a (b) (2 +2a) +a (¢) (2+2a) +(2+a)

Describe how each vector you obtain compares with vector
Z. (Note: these new vectors are conveniently called 23;

3a and 4a,)

—

Let AB represent vector a and let BA represent vector b

(in the adjoining figure ).

P —y

(a) Draw a diagram to represent a + b,

— -
\\\a
A ~ - _
- -3
-
—_— B
—
T T

Note: 1In situations such as this we call the sum the zero
vector and we denote it by "6:" The zero vector can
be viewed as the equivalence class containing all
"directed segments" of the form KK, EE; etc. (i.e.

all directed segments XY were X = Y)o
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—_—

(b) What is the sum a + 0? b+ 0? O+ a? O +b? O+ 0
State a general rule concerning addition of any vector
to the zero vector,

By using equivalent directed segments or by reasoning from

properties of translations, give an argument to show that

if a is any vector, there is a unigue (one and oniy one)
vector X such that
a+x=0

Note: the unique vector X which satisfies this equation

is called the negative of vector a and is designated
by ¥Z° The vector -a has the property

-~

a+(-a) =(-2) +a=0.

Summary

This chapter has dealt with axiomatic affine geometry, where
a plane 7 is simply a set of points with certain interest-
ing subsets ct.led lines., The lines were assumed to have
the properties mentioned in three axioms and from these
properties we were able to deduce a number of other proper-
ties, It is important to note, however, that we were not
able to deduce 21l the properties that we generally associ-
ate with lines and planes. In fact we studied a variety

of moaels of affine geometry, in which the three axioms
were satlsfied, but in some of these models there were only
four points, in other models there were exactly nine points

in plane 7 and each line contained exactly three points;
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still another model is the "everday" system of geometry in
which the plane 7 contains infinitely many lines, each
line contains infinitely many points, etec,
The three axioms used were
Axiom 1, (a) Plane 7 is a set of points, and it
contains at least two lines,
(b) Each line in plane 7 is a set of points,
containing at least two points,
Axiom 2, For every two points in plane w there is
one and only one line in m containing them,
Axiom 3, For every line m and every point E in plane
T there is one and only one line in 7 con-
taining E and perallel to m,
Axioms 1 and 2 are called incidence axioms,
Paraliel lines were defined as follows:
Lines r and s 1n 7 are parallel if and only if r = s or
rnNs=4g
Using this definition we were able to prove that
parallelism is an equivalence relation on the set of lines
in 7. This relation partitions the set of lines in 7 into
equivalence classes, two lines being in the same equiva-
lence class if and only if they are parallel,
The notion of an equivalence class of lines in 7 led
to the following important consequences of the axioms:
(a) There are at least three equivalence classes in T,
(b) To every equivalence class D in 7 and line m in 7 but

Q jot in D there is a parallel projection, Dm’ which maps
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all the points m onto m.

(¢) For every two lines m and n in m there is a parallel
projection that maps n onto m and is one-to-one,
Coordinate systems for locating points in the plane
T are based on these theorems concerning parallel pro-
jections,

If additional assumptions are added to the axioms for
an affine plane, it will become possible to study the
notion of a vector more precisely, We shall do this in
Course III in the chapter on Affine Geometry and Vector
Spaces, Meanwhile we have seen that we can base the
notion of a vector on the idea of a directed segment. In
fact a vector is an equivalence class of directed segments.,
It corresponds to a translation of the points of plane 7,
Addition of vectors corresponds to composition of trans-
lations, It is commutative, associative, and possesses an
identity element (the zero vector 6) as well as an inverse

(-2) for each vector a.

3.17 Miscellaneous Exercises

1,

Prove that any “plane 7" which obeys Axioms 1 and 2 must
contain at least 3 non-collinear points and at least 3 non-
concurrent lines,

Consider the following "six-point geometry':

Plane P, The set of 6 vertices:

(A,B,C,D,E,F)
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Any one of the 6 vertices,

3

Any pair of distinct vertices,

(a) Indicate which of the Axioms 1, 2, 3 are true in this

model and which are not true.

(b) Consider the line {A,B} and the point F not in *his

line,

are parallel to {A,B}?

Name them,

How many lines are there which contains F and

(¢c) Name all lines that contain A and are parallel to the

line {F,B] .

3. Prove that in sny model which satisfies Axioms 1, 2, 3 there

must be at least four lines no three of which are concurrent.

4, (a) Complete the following table for affine geometries:

No. of points
in each line

No, of lines
containing
each point

No. of points
in nlaie 7

No, of lines
in plane 7,

Four Point Geometry

Nine Point Geometry

2
3

m
9

(p) Try to formulate & general rule (see the next exercise).
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In an affine geometry prove that if one of the lines
plane P contains exactly k noints then:

(a) every line contains exactly k points,

(b) each point is contained in exactly k + 1 lines,
(e) the plane T contains exactly k® points,

(d) the plane 7 contains exactly k ° (k + 1) lines,
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CHAPTER &4
FIELDS

4,1 What is a Field?

In Chapter 2 you saw that much of your knowledge of number
systems can be expressed in the language of operational systems
and groups. For instance, the set of integers under the opera-
tion of addition, (Z,+), constitutes a group. The set of integers
under the operation of multiplication, (Z,'), does not constitute
a group, since only 1 and -1 have multiplic.:tive inverses; but
the ncn-zero rational numbers under the operation of multipli-
cation, (Q\ {o},*) does constitute a group.

Such observations are helpful summaries of crucial properties
in the various number systems, but they do not tell the whole
stooy, Group theory only deals with properties of operational
systems (S,«) involving & set and a single operation. Most num-
ber systems with which you are familiar consist of a set S and
two operations +,:; the operations interacting via a distributive
property, such as

a*(b + c) = (ab) + (a'c)
for all a,b,c in S.

In this chapter we will focus attention on a class of two-
fold operational systems called fields. The study of groups
brings insight and economy to the gtudy of operational systems
by developing properties common to a variety of specific systems.
In the same way, the study of fields will develop properties

to many, but not all, two-fold operational systems.
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Definition 1. A two-fold operational system (F,+,-) is
called g field if and only if it satisfies
the following axicms.

Axiou 1. For all a, b, ¢ inF, (a+ b) + ¢ =a + (b + ¢c).

Axiom 2, There is an element 0 in F such that for all

aiaF, a+0= a.

Axiom 3. PFor each a in F there is an element -a in F such

O.

that & + (-a)
Axiom 4, For all a , b inF, a + b =D + a.

Axiom 5., For all a, b, ¢ in F, (a*b).-c = a-(b-c).

Axiom 6. There is an element 1 in F (1 # 0) such that for

all a in ¥, a<l = a.

Axiom 7. PFor each a in F (a # 0), there is an element a !

in P such that a.a"! = 1,
Axiom 8, For all a, b in F, a*b = b-a,

Axiom 9. For all a, b, ¢ in F, a*(b + ¢) = (a*b) + (a-c).
There are three questions suggested immediately by this
definition. First, why was this particular collection of axioms
chosen? Second, are there any familiar two-fold operational sys-

tems that obey the field axioms? Third, what is the signiri-
cance of choosing "+" and "-" to name the operations in a field
and "0" and "1" to name the respective identity elements?

If you look closely at Axioms 1 through 4, you see that they
guarantee that the system (F,+) is a commutative group with
identity element 0. Furthermore, unless O causes some unforeseen
difficulties in multiplicsation, it appears that the system
(F\{O},-) is a commutative group with identity element 1. Thus in
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a sense, a field is two groups which interact via a distributive
property.

The most familiar examples of fields are the system (Q,+,*)
of rational numbers under addition and multiplication and several
finite number systems, such as (Za,+,-) and (Zs,+,*).

These examples indicate why the symbols "4," ".," "Q,"
and "1" are used instead of some more general symbols like "% ,"
P ”e*f" and "e*z." But as you know, the "+" in (2,+) has quite
a different meaning than the "+" in (Zs,+). Thus, although for
convenience "a + b" is often read "a plus b" and "a-b" as
"a times b," it is important to keep in mind that there are fields
in which "+" and "+" represent operations bearing little resem-
blance to addition or multiplication of rational numbers.

Similarly "O" and "1" might represent cbjects quite different from

rational numbers.

4.2 Exercises

1. In (Q,+,*) find the standard name for each of the following:

(a) the additive inverse of

7

(1) § (4) (1) =2~ (9) o
T2

(2) =3 (5) 2111 o

(3) =% (6) =3+ =%

(b) the multiplicative inverse of each number in (a).
2. Compute in (Q,+,-):

CE-RCR)




In (Zs,+,°) compute
(a) 3:(2 + (-4))
(b) (3:2) + (3+(-4))
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(£) (-2 L) + (2T
(8) (2 + D)Ly
(h) (-g + :%5)'(% + :%5)

(c) 3 + (2+(~4))
(a) (2 + 3)+(-4 + 3)

In (Zs,+,') find the standard name for each of the following:

{a) the additive inverse of

(1) o
(2) 1
(3) 2

(4) 3
(5) 4
(6) 5

(b) the multiplicative inverse of each number in (a).

In (Z,,+,*) find the standard name for:

(a) -3 (a) 37 (g) (-4 +6)7
(v) -5 (e) 57 (h) 2 + (3+5)
(e) -0 (£) 0" (i) (2 + 3)+(2 + 5)

Determine whether or not each of the following two-fold
operational systems is a field. If the system is not a
field,
(1) state each property that does not hold, and
(2) give an example in which the property fails to hold.
(a) (Wy+,°)
(b) (Z,+,°)
(¢) (QF,+,-) (See Chapter 2.)
)

(a) (at,+,-) (See Chapter 2.)
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(e) (Z3s+") (i) (Zas+:‘)
(f) (ZA:+:') (j) (Zs:+:')
(g) (Zv:+:') (k) (210:+:')

(h) (Zyas+5°)
In which of the above two-fold operational systems is there
an element X such that x® = 29
In which of the above two-fold operational systems are there
non-zero elements a and b such that a°b = 0? 1In such systems,
find as many of these elements as you can. Also, are any of
the systems in which you find such elements fields?

Show that in any system (Zn,+,), if n = p + g where p and g

are integers (not = 1), there are elements a and b such that
a*b = 0,
The operational system ({z,b,c,d,),+,+) has operations defined

by the following tables:

+ a b c d : a b c d
a a b c a a a a a a
bl1b a 4 c bja b ¢ 4
c c d a b c a c d b
d d c b a d a 4 b c

Is this operational system a field? Why or why not?

4,3 Getting Some Field Theorems Painlessly

In any field (F,+,+), the additive structure (F,+) is a com-
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mutative group with identity element 0. Therefore, any theorem
proven in Chapter 2 for groups is automatically a theorem for
(F,+) and thus for {F,+,-).

For instance, in a group (S,*), for each a in S, (aI)I = a,
Translating this theorem into the language of (F,+) yields
Theorem 1. |

Theorem 1. For all a € F, -(-a) = a,

This is a familiar theorem in (Q,+,*). TFor a more interesting
illustration and check, consider -(-2) in (Zy,+,°*):
(-2) = -(5) =2
Another theorem of Group Theory states that for all

I aI. This leads to Theorem 2 for fields.

a,b in S, (a * b)l = b
(Note: In this chapter it is understood that all oper.tions are
in (F,+,.) unless otherwise specified).
Theorem 2. For all a,b 1In F,
-(a + b) =(-b) + (-a).
Question. Why can we conclude also that
-(a + b) =(-a) + (-b)?
The third automatic consequence >f the group properties
in (F,+) is a theorem about so~lvability of equations.
Theorem 3. For all a,b in F, the equation x + a = b has
a unique solution x = b + (-a).
In the language of groups, the Jjustifying theorem states that
every equatinn x ¥ a2 = b has a unique solution x = b * aI.

In the case of a particular field, (Z,,+,~), Theorem 3 implies

that x + 6 = 2 has a unique solution x =2 + (-6) =2 + 1 = 3,
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One of the most useful properties of any grcivo is cancella-
tion: For all a,b,c in S, if a * b = a * ¢, then b = ¢, This
leads to an important theorem in (F,+,+).

Theorem 4. (cancellation) For all a,b,c in F,if a + b = a + ¢,

then b = c.
Question. Which axiom allows us to deduce a right cancel-

lation property now for "+" in (F,+,.)?

4,4 Trouble with O.

Although this chapter was advertised as a study of certain
two-fold operational systems, there has been a conspicuous
ahsence of results concerning the second field operation "."
or results which relate addition and multiplication. You might
well ask why multiplicative counterparts of the group theorems
were not presented for (F\{O},‘). Isn't this system a group?
The troublemaker in this situation is that single exception
lurking inside the set brackets, the additive identity.element o.

In (F\{O],g)'multiplication is associativej it has an iden-
tity element, 1, and each element has an inverse. The only
question is whether (F\{0},*) is an operational system, If
a and b are elements of F\{0}, then we know that a*b € F. But
could a*b = 0? The answer is "no," but the proof is not trivial}

it requires knowledge of the strange behavior of the additive

identity under the operation of multiplication. As you might

expect, the distributive property makes its grand entrance at
this point.

)
JERE(: Theorem 5. For all a in F, a*0 = 0*a = 0,
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Proof. 1. Since 0 1s the additive identity element,
0+ 0 =20 and (a.0) + 0 = a.0.
2, Also a*0 = a+(0 + 0) = a*0 + 2°0.
3. By SPE, a*0 + a*0 = a:0 + 0.
4, Then Theorem 4 (cancellation) implies a+d = O,
5. Since multiplication is commutative,
a:0 = 0-a, and thus O.a = 0.

Theorem 5 shows clearly why, in any field, 0 has no mul-
tipiicative inverse, There can be no element a in F such that
O*a = 1, because 0*a = 0 for all a in F and 0 # 1.

Next, Theorem 6 is a converse of Theorem 5; it states if
a product is 0, then one of the factors must be O.

Theorem 6. For all a, b in F, if a'b = 0,

then 3 0O orb=0.

Proof. 1. If a*b =0 and a # O, then a has multiplicative
inverse g‘i and a-*.(a*b) = a”t- 0 = 0.
2. also a-i(a-b) =(g-1-a)b =1lb =b
3. Thus we conclude that b =0. (SPE)
4, If a*b =0 and b # 0, then right multiplication
by b-1 leads similarly to the conclusion a = O,
Since a+sb = 0 if and only if a = 0 or b = O, we are now
justified in claiming that (F\{0},+) is a group, Theorems
7 through 9 are the multiplicative counterparts of Theorems
1 through 3, proofs rest on the group theorems of Chapter 2,

1, =1
Theorem 7. For all a in F\{0}, (a~ ) = a,

- - _1
Theorem 8. For all a,b in M\{0), (a*b)™} = v~ .a” .

Q Theorem 9. For all a,b in F\{ 0} the equation x<a = b has
-1
a unique solution x = bea .
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The following examples interpret these theorems, which apply
to all fields, in specific situations.

-1 1
Example 1. 1In (Zy s+5°), 3 =5 and 5 = 3, since
1

3 -5 =1, Thus (3"1)-1 =(5)" =3.
2 21 -t 24
Exanple 2. In (Q+,°), (5 - g =& = 10, but

@737 <83 .2 a..

Example 3. 1In (Z,,+,+) the equation x+3 = 2 has unique solu-
tion x = 2-3-1 =25 = 3,
The following exercises explore several other appiications
of field theorems to specific situations. In ezch, be sure to

check the definition of "+" and "+" in the field being studied.

4.5 Exercises

1. Find the standard name for each of the following in (Zy, ,+,*):

(a} =(3 +7) (a) 47
(0) (-3 + (7)) (e) ((47)™)7
(¢) ~(-(~(8))) (£) (497)7
2. State the group theorems (using (S,*) and aI notation) which
Justify
{a) Theorem 7 (b) Theorem 8 (c) Theorem 9.

3, Prove: In (F-*), if a # 0 and a*b = a‘c, then b = c.
(Hint: As in Theorem 6, a # 0; try a similar proof.,)

4, Pind the standard name for each of the following in (Q,+,'):

(a) (-3)7 () (B)(H)
(b) -(3+7) (e) g%
(e) 3+(-7) () (-5)-(-2)

[]ihzo. Prove a® # 0 in (F\{0},+) [a® = a-a]
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6. Compute in (Zy ,+,°):

(a) 12 (a) 42
(p) 22 (e) 5°
(c) 3 (r) 6°

7. Compute 4% in (Zg,+,°).
8., Prove: For any a in F, if a + b = a, then b = 0.
9. Prove: For all a,b,c in F, (b + cla = bra + c-a.
*#10., FProve: If n = p-q (when p,q are integers different from 1)
then (Zn,+,‘) is not a field.
(Hint: Consider Theorem 6 and the result of Exercise 9 in

Section 4,2),

4.6 Subtraction and Division in Fields

As you have noticed already, much of the theory for fields
is suggested by observations in particular fields, often (Qs+,5+).
In the rational number system you found that a - b = a + (-b).
(Q,+) 1s a group: and it is possible to introduce a similar
subtraction in any group, (F,+) in particular,

Definition 2. For all a,bin F, a - b =a + (-b).

To see that this definition is reasonable in fields other than

(Qa4,‘), study these examples drawn from (Z,,+,°).

Exampie 1. 3 -1 =3+ (-1)
=3+6
=2

Example 2, 4 - 6 =4 + (-6)
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Many of the properties of subtraction in (Q,+,‘) carry

intc the theory of fields.

Theorem 10. For all a,b,c in F:

a=20

(a) a
(b) a-0=a
(c) 0-a=-a

(@) a-b=a-c implies b = ¢

*(e) a- b =c if and only if a = ¢ + b,

Proof. EXercises,

There are many properties that could be listed, such
as a-(b-2c) =(a-0>b) +c., See if you can discover

some ¢f these and prove them. You will find some in the

‘exercises that follow this section.

The definitlion of subtraction is fairly simple, but to work

this operation effectively, two more theorems are necessary.

Theorem 11, ©For all a,b in

(a) -(a<Dp)
(b) -(a*b) = a«(-b)
(c) a*b = (-a)+(-b)

(-a)p

Proof. 8ince this theorem involves the behavior of additive

inverses under multiplication, the proof of part

(a) uses the distributive property. Parts (b)
and (c) follow easily from (a), and those proofs
are left as exercises.
(1) -(a*b) + (a*b) = 0 and
(-a + a)*b = 0'b =0,
(2) By distributivity, (-a + a)+b =
90K {-a)+b + (a-b).
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(3) Therefore, using SPE
-(a*b) + (a*b) = (-a)+b + (a-b).
(4) Then right cancellation implies that
-(a*b) = (-a)-b.
Theorem 12. For all a,b,c in F, a'(b - ¢c) =a'b - a‘c.
Proof. Exercises.
It might surprise you, but Theorem 12 {and Theorem 11 on which
it depends) is necessary to justify simplifications like
7x - 5x = 2x or to solve equations like x2 - 2x = 0.
Example 3. 7x - 5X = X7 - X5
x(7 - 5)
0 implies

2

Example 4, x® - 2x
X*X - x*2 = 0 which implies
x(x - 2) =o0.
By Theorams 5 and 6, the product x(x - 2) can
equal zero if and only if at least one of the
factors is zero; in other words, if x = O or
if x =2,
Just as subtraction can be defined in the additive structure
of any field, a kind of generalized division can be intro-
duced in terms of multiplication.
Definition 3. For all a,b in F (b # 0},
a+ b =a°b-1.
As you probably expect, there are theorems about division
analogous to those for subtraction.
Theorem 13. For all a,b,c in F\{0}:

(g) a+ a=1

ONQ
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(b) a+1=a
(¢c) 1+ a= a2
(d) a+ b =a+ c implies b = ¢

(e) a+ b=-c if and only if a = c+b,

Proof. Exercises.

4.7 Exercises.

1, Find stardard names for each of the following in (Q,+,°):

11 2 2 , 14
(2 15-5 (a) 3+
() L - 15 (e) B+
() (3 -5 (£) 11+(53)
2. PFind standard names for each of the following in (Z,,+,*):
(a) (-3)(5) (c) (-3)(-5) (e) 5+ 3

() -(-3)(5) (a) -(-3)(-5) (£) 3+5

3. Simplify the following expressions in (Q,+,¢):

(a) %x + %x (e) (8x + %x) - %x
(b) %x - %x (da) 14 - (-8x - 7x)

4, Pind the solution set of the following open sentences in
| (Q,+,*). (Hint: See Examples 3 and 4 of Section 4,6.)
(a) 8x+%>c=7 (d)%x::xa
(b) 3x® ~2x =0

o

3 -
(c) gx - 3% =0 (&) (xv 3)(x - 2)

() (2x - (Zx+3) =0

5. Prove Theorem 10, (Hint: Part (a) is given as an example here,
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The trick is to change subtraction expfessions to equivalent

addition expressions.)

Proof. a - a = a + (-a) Definition 2 "-"
=0 Definition of inverse

Prove Theorem 13. (Hint: Use a trick similar to that in Ex-

(o)

ercise 5)

7. Prove Theorem 12,

*4 8 FPractions in Fields

ity 1t
In the rational number system the notation E is com-

monly used to indicate the multiplicative inverse of a. Simi-
1.
larly, the aotation % is used instead of "a + b." This idea

'
Il

is generalizable to all fields as follows.
Definition #. For all a,b in F (b # 0),

-1 ;
a<+ b=a'b Ia).' /

The division fheorems can be translated into the 1anguage of
fractions, Although this will then look very much 1ike (Qs+5+),
some oddiga;s result when the symbolism is interpre;ed in finite
fields. /%he following results are provable by application of
Definition 4 and some algebraic manipulation., No proofs are
given, but the exercises of Section 4,9 illustrate several

of the properties and the techniques used in proofs.

Theorem 14, For all a,b,c,d in F (b # 0, d # 0):

(a) & = % if and only if a+d = bec.,
ac _awc
(») 53 = 5a
dy-! _b
Q (C) (B’) _d
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a c _ a*d + c-b
() §+3=""pa

log
[}

Theorem 15, For all a,b in F (b # 0):

(a) 5 =%
() -(=3) =3
(e) =3

(a) -(3) = =5

#4 9 Exercises

}. Find the standard name for each of the following in (Z,,+,*)

by direct computation:

(a) -g- (ans.-g-== 3-2‘1 =3°4=50rg=3+2 = 5 since
3 =5-2)

(v) 2 (e) 5

() -2 (£) =

() %

2., Again in (Z,, +,*), find the standard name for each of the

following by direct computation:

(a) 2 (c) 55 (e) 22
(b) 2 (a) 6.3 () 2.3

Now look back at Theorems 14(a) and 14(b) !
3. Prove %.g =1 in every field (F,+,-).

d - b -1
(Hint: Write ¢ as d*b  and § as b*d  and simplify.)

4, Using Exercise 2 to save some work, compute in (Zy,+,°):

(2) 2+ 32 (b) 25503

Using a = 5 and b = 2, check each part of Theorem 15 in Z,,
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by direct computation. (For example: :% = (=5)27 =2.4 =1

and: —§-= 5-(-2)-l = 5-(5)"l

6. Prove: For all a,b in F, -(:2) = % (b # 0). (Hint:

b
- 1
—% = (-a)+b and use Theorem 11.)
7. Prove: For all a,b in F, -(%) = :% .

4,10 Order in Fields

One of the most useful properties of the rational number
system is the fact that the elements are ordered; 7 < Eg’ :g < %,

1 1
1,000 < 395 and so on. For this reason, whenever the rational numbers

are used for measurement (such as length, area, probability,
or weight) measures in the same unit can be compared. For

example, in an earlier dice tossing game you found that for

a toss of two dice P(5 or 6 or 7 or 8 or 9) = %g and P( 2 or 3 or
12

4 or 10 or 11 or 12) = 35° The conclusion was that the player

who wins with sum 5,6,7,8 or 9 would win in the long run be-

12 24
cause ?6 < §6°

The order relation "<" in (Q,+,+) has the following basic
properties:

0.1, Transitive Property. For all a,b,c in Q, if a < b and

b < ¢, then a < c.

0 2. Trichotomy Property. For each a in Q, exactly one of the

following holds:
a £ 0, a =0, 0< a

]ERi(j 0 3. Additive Property. For all a,b,c in Q if a < b then

213
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a+c<b +c,

O 4. Multiplicative Property. For all a,b,c in @ if a < b

and 0 ¢ ¢, then ac < be,
We say that (0,+,*) is an ordered field. Any field (F,+,-)

for which there is an order relation "<" satisfying 0 1 -- 0 &4
(as axioms)for elements in F is called an ordered field. We
indicate this by "(F,+,*,<)." In any ordered field the statements
"a < b" and "b > a" are equivalent. ("a < b" is read "a is
less than b" and "b > a" is read "b is greater than a.")
2 < § is equivalent to I>5.

What sort of theorems can be proven about ordered fields?
As is often the case in mathematics, conjectured theorems
appear in examination of specific situations. The following

discussion exercises involving order in (0,+,*,<) should suggest

sone theorems that are true in all ordered fields.

Discussion Exercises

In each of the following, choose the symbol "<" or ">"

that completes the statement correctly.

1. (a) F__ 2 (e) =F 28

3
(0yo__ -7 @2 3
2. () 5__3 (®) 85 __ 33
3. (8) 3 ___ 3 ) L__ 3 )3+ 5 __3+7
§. (a) £ i (b)_g-.?; 1

1234(?. (13)°____ 0

214



-210-

Now try formulating some tentative ordered field theorems.
Several of your propositions will probably appear in the fol-

lowing sequence:

Elementary Inequality Theorems

The solution set of the inequation "2x + 3 ¢ 7" in (Q,+,.,<)
is easy to calculate:
1. 2x + 3 < 7 implies (2x + 3) + (-3) < 7 + (-3)
[by property (0 3)].
2. (2x + 3) + (-3) < 7 + (-3) implies 2x < &4
[by associativity and arithmetic].
3. 2x < 4 implies %(2x) < %-4 or x < 2
[by property (O 4)].
Thus if x satisfies "2x + 3 < 7," it also satisfies "x < 2,"
and you can check that the converse is true also. On a num-

ber line, th2 solution set is a ray.

=4 -3 -2 -1 0 1 2 3
‘ 2 -y P 2 Py a

b =

v

But this open sentence was quite easy to solvej; you might
have guessed the answer. To deal with more intricate inequalities
it is handy to have other methods of transforming inequalities
into equivalent simpler inequalities.

Theorem OF 1. For all a,b in ordered field (Fyt,°,<):

(a) a < b if and only if 0 < b - a
(b) a < 0 if and only if 0 < -a

210
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(c) a < b if and only if -b < -a,
Proof. (a) First, if a < b then a + (-2) < b + (-a)
by 0 3. But a+ (-a) =0 and b + (-a) = b - a,
Thus a < b implies O ¢ b - a. -
Conversely, if 0 < b - a then O + a < (b - a) + a
and simplifying both sides we get a < b.
The proofs of (b) and (c¢) involve similar strategies.
Theorem OF 2. For all a,b,c,d in ordered field (F,+,°,<):
(a) a > b and ¢ > d implies a + ¢ > b + d.
(b) 2 >0 and b > O implies a + b > O,
Proof., Exercises
Theorem OF 3. For all a,b,c,d in ordered field (F,+,*,<):
(a) 2 > 0 and b > 0 implies a:b > 0.
(p) a > b and ¢ < 0 implies ac < be.
Proof. We prove part (b).
(b) ¢ < 0 implies O < -c. But then applying O 4,
a(-c) > b(-c) or -(ac) > -(bec) or ac < be
{by OF 1].
Theorem OF 4, For all a in ordered field (F,+,°,<),
& > 0 or &® = 0.
Proof. Exercise.
Theorems OF 1--4 are but a few of the many properties
useful in dealing with inequalities. Others appear in the ex-

ercises that follow.

4,11 Exercises

)
[]{B:‘In each of the following, insert the symbol "," "»,"

IToxt Provided by ERI
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">" (means greater than or equal to), or "<" that malkes a

true statement for all a,b,c,d in an ordered field,

(a) a:b > 0 and a > O implies b 0.
(b) a*b < 0 and a > O implies b __ 0.
{c) ay,b>0andc>dy 0 implies ac ____ bd,
(a) 2* ___ o.

(e) 1 0.

(f) a+ c< b+ c impliesa Db,

(g) a > 0 and ac > ab implies ¢ __ D,
(h) a < 0 and ac > &b implies ¢ b,
(1) a> 0 and b » 0 implies a + b ____ O.
(3) a> 0 end b > 0 implies a-b __ O.
(k) a<0and b > 0 implies a-b ___ O.

2. Use the ordered field properties to transform each of the
following inequalities to a simpler equivalent inequality.
(a) -7x + 3 < 14
(b) 3(x - 4) < 12(x + 5)
(c) 3@ - 5<% + 3
. Prove Theorem OF 1, part (D).
Prove Theorem OF 1, part (c).

. Prove Theorem OF 2, part (a).

3

i

5

6. Prove Theorem OF 2, part (b).

7. Prove Theorem OF 3, part (a).

8. Prove Theorem OF 4,

9. For all a,b in ordered field (Q,+,:,<) if 0 < a < b,

there is an element t in @ such that 0 < t < 1 and a = tb.

ey

<1/




(a) Find t in case
(1) a
(2) a
(3) a=Zandb =12 .

7a.ndb=1h,
12 and b = 20,

(b) State a rule for finding t in terms of & and b in
any case.
10. For all a,b in ordered field (Q,+,.,<), if 0 < a ¢ b, there

is an integer n such that na > b. This is the Archimedean

Property of the rational numbers.
(a) Find a value for n in case

(1) a = 3 and b = 12,

(2)3:1—émalldb=37.
w)a=§mmb=1%.

(b) State a general rule for finding a value for n in terms
of a and b,
11. Try to formulate a definition of absolute value that is wvalid
in any ordered field.
12. Try to formulate a definition of positive and negative

elements valid in any ordered fieild.

4,12 How Many Ordered Pields?

The definition of an ordered field, like the definition of
field itself, suggests two questions. Why was the particular
collection of properties 0 1 -- O 4 chosen? What examples of
ordered fields (other than the rational numbers) are familiar?

The first answer is easy -- the rational number system is

218
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ordered in a way that makes the chosen properties fundamental, and
we would like order in other fields similar to that in (Q,+,-.,<).
The answer to the second guestion, however, takes the wind out
of the argument just given. (Q,+,',<) is the only orderable
field we have studied so far!

The proof of this surprising fact is really quite easy.
Teke (2s,+,+) as an example, By Theorem OF 4 we know that if Zg
is ordered &> O for all a # 0 in Zg¢. In particular, 1° = 1 > O.
But if 1 » O then

2=1+1>»0 (Theorem OF 2)
and 3=1+25>0
andh=l+3>0

and 0 = 1+ 4> 01!

It is not difficult to generalize this result to any field
(Zp:+:')~

In the sections on solving equations and inequations
that follow, attention is focused in the ordered field (Q,+,:,<).
However, you will see that the techniques for solving equations
depend only on field theorems and are thus applicable in the
finite, non-ordered fields.

4,13 Equations and Inequations in (Q,+,:,<)

The manufacturer of ZOND X Motorcycles wants to bring out
a new model for the "65 and Over" set. He calculates that
design, re-tooling, and advertising will involve a fixed cost of
1 $75,000 and then each cycle will cost $165 for labor and ma-
];Bi(; terials. If the f.o.b, price is to be $179.50, how many

IToxt Provided by ERI
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220
cycles must Mr. Zond make and sell to at least break even?
To break even the number n of cycles must satisfy the condition.
(1) 75,000 + 165n = 179.50n.
To make a profit, n must satisfy the inequation

(2) 75,000 + 165n < 179.50n.
To advise the manufacturer, we must solve the equation (1) or
the inequation (2); that is, we must find roster names for the
elements in the domain of the variable which make the given equation
or inequation true when they are used as replacements for the
variable.

In earlier work you have had experience solving similar
equations and inequations. The purpose of this section and the
next several sections is to develop some systematic procedures
(based on the properties of an ordered field) useful in solving
several important classes of equations and inequations.

Before tackling Mr. Zond's problem, let's examine a slightly
easier example
Example 1, Find the solution set of "7x + 10 = 15."

7X 4+ 10 = 15 implies 7x = 15 - 10
(Theorem 10(e)}
implies 7x = 5
(Arithmetic fact)
implies x = ;
(Theorem 9(e))
At this stage we have proved that for any X in
@, 7X + 10 = 15 implies x =-;, or equivalently,
{x: 7x + 10 = 15} & {x: x = %]

Another way of stating this result 220
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is: The only possible rational number x such
that 7x + 10 = 15 is ?. This does not guar-

antee that ; is a root (solution) of this equa-

tion. In order to establish this we must prove
that x = _?. implies that 7x = 10 = 15.

7'$ Left operation

X = % implies Tx
implies 7x = § Arithmetic fact

implies 7x + 10 5 + 10 Right Operation

implies 7x + 10

15 Arithmetic fact
So we have just proved that if x is in Q, then
X =-? implies 7x + 10 = 15, or equivalently,
{x: x =-;] c {x: 7x + 10 = 15]}.
The two proofs together now give us that
{x: x =-$} = {x: 7x + 10 = 15}
In the last proof we had to show that
{x:x = ?} < {x: 7x + 10 = 15} and did so by a chain
of implications. Since {x: x = g} = [;}, it would have been
sufficient to prove that ,? € {x: 7x + 10 = 15}. But 7~$ +10 = 15

end thus the statement is proved. We call this method "the

é"

check method" since in essence we plugged "7

into the equation
for “x" to see if it "worked."
Example 2, Find the solution set for the equation
2
-2=7
2 5 _ o Cop _ 5
3x -E= 7 implies 3x =7 + 3
5
[

) 3

implies x = 3

(7 +
implies x = E%

Qﬂl e —
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47 n 3] 47
Since — "checks" we have as solution set {—H]'
Example 3., Find the solution set of the equation
n 1, "
13 - 2x = 3 4x,
(1) 13 - 2x = 3x - Ux implies
13 - 2x =-l%x
impliies 13 = 2x - 1ly
-3
implies 13 = -%x
implies '§% = X.
. _ o(=39y _ 1/-39y _ /-39
(3) The solution set is {72%3.
With these examples under your belt, Mr., Zond's problem
should be a snap.
(1) 75,000 + 165n = 179.50n if and only if
75,000 = 179.50n - 165n

(2) 75,000 = 179.50n - 165n if and only if

75,000 = 14,50n

(3) 75,000 = 14.50n implies n =~ 5172.4,
The only question is whether or not such & solution makes sense,
It says Mr. Zond should make 5172.4 motorcycles! We can do
better with the inequation,

(1) 165n + 75,000 < 179.50n implies

75,000 < 14.50n [Add -165n to both sides by 0 3.]
(2) 75,000 < 14.50n implies III%5.5,75,000 <n
[Multiply both sides by IE%Sﬁ by 0 4]

(3) or 5172.4 < n.

Thus Mr. Zond will profit on any number of cycles greater than

5172.4. The solutior set of the inequation is {n: 5172.4 < n}.

O
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There are two important aspects of this example. PFirst
the solution set is infinite and cannot be given a roster name.
Second, the strategy used in solving the inequation is very
similar to that used in solving the corresponding equation.

In the Zond problem wé first analyzed the problem to obtain
an equation from the given information in which the wvariable cor-
responded to the quantity which we wished to find, "n" for the
number of cycles., This methematical equation was solved.

Then the root of the equation was interpreted as the quahtity
required by the problem. Thus, when solving such a problenm

we go from a "real-life" or "physical" situation to an equation
in a mathematical system. The properties of the mathematical
system are used to find the root of the given equation in the
system and this root is then interpreted in terms of the given
problem, This is a brief sketch of a process that is constantly
recurring when a mathematical model is used to solve problems

from the real world.

L .14 Exercises

1. For each of the following, write an expression of the form

"ax + b" or "ax® + bx + ¢" that is equivalent to the given

eXxpression,

(a) (3% - 7) + 5% (d) 8 + 58 - § - 11

(o) §+ (17x - 32x) (e) 17 + 11x - 23x + 43 - %x
(e) %x - (7x - 8x) (f) 8(x® - 3x) + x(7 + Xx)

2, Solve each of the following equations in (Q,+,-).

ﬂgz(z




-210-

(a) 3x + 5= 3 (e) 7(x - 58) =x(5 - 17)
2

(b) 3 - g% = 2 (£) 13x + 7(3 - x) = 12x - 2

(c) 18 = x~5§ (&) %x + 2 =T

(d) 8x - 11 = % + X (h) 7x - 8x + 9X - 10x = 7 -

8 +9 - 10

3. Solve each of the following inequations in (Q,+,:,<).

(a) 3x < %% (e) 7(x -~§) < Ux

(b) -7x < 3 (£) 3x +5< 3

(c) 8 - 3x < 12 (8) 18 < 3«

() § < 15x - & (h) 7x - 8%x + 9 - 10 < 9% - 10X

+7-38

4., Solve each of the following equations in (Zaze,+,*).

(a) 15x + 23 = 8 (c) 8x + 5 =13 - 22x

(v) 15x - 23 = -17 (d) 8(x - 2) = 19

5. Zond's competitor designed a cheaper cycle which costs
$90 to make and sells for $99.50. If the competitor cuts
his fixed cost to $45,000, what is his break-even

point in sales?

4,15 Solving Quadratic Equations

None of the equations we have considered thus far have
contained symbols such as "x®," "¢?," "y2 " etc. and each
equation has involved only a single variable. These equations

are examples of linear equations in a single variable. Without
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attempting to define such equations precisely we note only that

for 8ll such equations there was an equivalent open sentence

of the type "ax + b = ¢ and a # 0." The roster name of the solution

¢ -b
~_by,

There are certain equations involving "x*" that can be

set is {

solved at this time. For instance, "x® = 16" has solution

set {4, -4}, The equation "x? - % = 0" has solution set {g, -g].
The equation "x2 + %x = 0" has solution set {0, -%} which is
determined as follows:

(1) ®+ %x = 0 if and only if x(x + g) =0

(2) x(x +<%) = 0 if and only if x = 0 or (x + %) =0

(3) (x + %) = 0 if and only if x = -g.

Furthermore, the equation "(x + %)(3x - %) = 0" has solution

set {-%, %}, obtained by reasoning similar to that Jjust above.
But this last equation is a queer duck. It has two solutions --
not one like the linear equations--but does not seem to involve
any "x*" terms.

The following calculation involving the distributive
property shows that the equation is equivalent to one that does
involve "x* "

(LY(x + %)(3:: - %) = 0 if and only if

(x + %).BX - (x + %).% = 0 [Theorem 12]

(2) if and only if 3x° +'g%x - %x - I% =0

[Theorem 2 and the commutative and distributive
properties in a field]

(3) if and only if 3x° +-l%x - I% = 0.

Q@  This observation can be generalized to solve a wide range of

S— 229
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quadratic equations in a single variasble, those involving'x®" and

no higher power of "x."
Exampie 1. "x® + 6x + 8 = 0" has solution set {-4, -2}
since the equation is equivalent to
"(x + 4)(x + 2) = 0" (check this as above)
and the latter equation is satisfied if and
only if x +4=0o0orx+2 =0,
Example 2. "x® + 3x - 10 = 0" has solution set {-5, 2} since
it is equivalent to "(x + 5)(x - 2) = 0."
These examples make it clear that solving quadratic
equations of the form "ax® + bx + ¢ = 0" will be easier if you
develop some facility in writing these equations in factored
form.
An expression of the form "(x + a)(x + b)" is equivalent
to "X® + (a + b)x + ab" as the following calculation shows.

(x + a)(x + b) = (x + a)x + (x + a)b

= X® + ax 4+ bx + ab
=x* + (a + b)x + ab
Therefore to factor an expression in the form "x® + cx + d,"
we must find two numbers, a and b, such that a + b = ¢ and
a*b = d.
Example 3, For all x, x® + 11x + 24 = (x + 8)(x + 3)
Since 8 + 3 =11 and 8 * 3 = 2k,
Example 4., For all x, x? -'§x + % = (x - %)(x - %) since
-3+ (-3) = -5 and (-3)(-3) = 3.
Example 5. For all x, x® - 25 = (x - 5)(x + 5) since
5+ (-5) = 0 and (5)(-5) = -25.
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4,16 Exercises

1. Write each of the following expressions in an equivalent

"ax? + bx + c¢" form, In some cases a, b, or ¢ might be

zerc,
(a) (x + 7)(x + 11) (f) (8 - x)(22 - x)
(B) (x-3)Nx+g) - (8) (x + 3)(x - 3)
(¢) (x - 3)(x - 3) (n) (x + 5)(x - b)
(d) (x - 8)(x + 22) (1) (3x + 2)(hx + 5)
(e) (x + 8)(x - 22) (3) (2% - 10)(22x + u)
2. Factor each of the following expressions.
(a) x®* + 9x + 20 , (d) ¥* - x - 20
(b) x* - 9x + 20 (e) x¥* - 8x - 20
(¢) x* + x - 20 (£f) ¥* + 12x + 20
3. Solve each of the following equations,
(a) ¥ - 11x = 0 (d)x’-,2-5=o
(b) (x - 5)(3x +4) = 0 (e) (x - 8)(x + 8) =
(e) 3x + 4x* =0 (£) 4x®* - 3x = 7%* + 10x
4., Solve each of the following equations.
(a) * + 8x + 15=0 (e) ® -6x+9=0
(b) x** - 6x+ 8=0 (£f) ¥® - 4x -12=0
(e¢) ¥ + 11x = 26 (g) x* + 4x -12=0
(d) @ + 6x+9=0 (h) ¥ - 7x + 12 =0
5. Solve each of the following equations,
(8) 3x - 7= 12 () 72 - x= 7% + 3
(b) 3x* - 7x = 12x (e) 8x + 3 - x=1Tx - 12

(c) x -'% = ng "I%

w2
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*6, Find the solution set of each of the following inequations,
[Hint: First solve the corresponding equations, locate the
roots on a number line, and then try numbers in the three
regions determined. )

(a) 2 +3x+2<0
(b) x¥* +5x - W >0
(¢} ¥ -25<0

(d) 3x®* - 4x+1<0

7. Solve the following equations where the domein of x is

(Zii :+:°)-
(a) 2 -4 =0 (c) ¥ + 3+ 4 =0
(b) x* +3x+2=0 (d) ¥® - 3=0

Note: 5 is a root of (d) in (2,1 ,+,°) but is not a root in
(Q,+,°). Can you find another root of x* - 3 = 0 in (231 ,+,°)?
Does (d) have any roots in (Q,+,°)?

*8, Try to solve each of the following equations by factoring.
Since the coefficient of x® is not 1 in the quadratic

expressions, you might need factors of the form (ax + b){cx + d).

(a) 3x*=14x + 8 =0 (c) 4x* +6x+2=0
(b) 4x* - 7Tx - 2 =0 (d) 9x* - 25 =0
4,17 Summary

1. A field is any two-fold operational system (F,+,:) which has
the nine properties enumerated in Section L.1. The structure
of a field can be summarized as follows.
(a) (F,+) 1s a commutative group with identity 0.
ERIC (v) (FM\{o},-) is a commutative group with identity 1.
_ SO .
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(c¢) Multiplication is distributive over addition; that is,
for all a,b,c in F
a(b + c) = (ab) + (ac).
The most familiar examples of fields are the rational
number system, (Q,+,*), and the finite systems (Z5ts+),
(Zs,+,'), (Zs ,+,*), and (29 ,+,°). Of these, only (Q,+,+) can
be ordered. In Q there is a relation, <, defined by Axioms
01l -- 04, which are listed in Section 4.10.
Some of the major field theorems are:
(2) For all a in F, a°0 = 0,
(b) For all a,b in F, a.b = 0 implies a = 0 or b = O,
(c) For all a,b in F, (-a):b = a:(-b) = -(a-Db).
(d) Every equation of the form "ax + b = c¢" has solution

¢ =B} irago.

set {

Some of the major ordered field theorems are:

(a) If 2 and b are in F, then a » 0 and b > O implies
a+b>0and ab > 0.

(b) If a,b, and c are in F, then a > b and ¢ < O implies
ac < be.

(c) If a, b, ¢, and d are in F, then a > b and ¢ > d
implies a + ¢ > b + d.

(d) For all x in F, x¥* > O.

In any field (F,+,°) subtraction and division are defined

as follows:

(a) If 2 and b are in F, then a - b = a + (-b)

(v) If a and b are in F and b # 0, then

1
a+b=%= a-b” -

399
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Many properties of subtraction and division follow fron
these definitions and the properties of (F,+,:). Some
of these are (where a, b, and c are in F):

(1 a+b=cif and only ifa=¢c - b

(2) For b £ 0, a+ b = c if and only if a = b.c
(3) 0 - a=-a

(4 For b#£ 0, 1+ b

1

1
=0

6. Summary item 3(d) allows us to find exactly one root for
each linear equation in one variable whose domain is F.
Also, item 3(b} allows us to find roots for some equations
involving "x®" guch as "x* - 4 = 0," "x® - 3x - 10," =0

and "(x - 2)(x + 3) = 0."

4.18 Review Exercises

‘1: Ewvaluate each of the following where a = 2, b = 5, and
¢ = 3 in (Zq,+,*).
(a) e+ D (c) a® - lpe
(b) be(-c) (d) &~ b~
2. Evealuate each of the following where a = %, b -%,
¢ =15 in (Q,+,*).
(a) a+ D (c) a® - lbc
(b) be(-c)™ (@) & v~

3. Prove each of the following theorems for any field (F,+,-).

(a) For &1l a in F, -(-(-a)) = -a.

(b) For all a,b,c in F (a ¥ 0), if a'b = a.c then b = c,

(c) For all x,a,b in F. (x - a)(x - b) = x* - ax - bx + ab.
©  (d) For all x,ain F, (x - a)(x + a) = x¥* - &°.
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Ly, Prove each of the following theorems for the ordecred field
(Qs+,+,<).
(2) For all a,b, a < b implies a—;—b- < b,
(b) For all a,b, a < 0 and b > O implies ab < O.
(c) For all a, a > O implies %— > 0.

5. Solve each of the following equations in (Q,+,:).

(2) g% - 21 = 23 () 3 - 7x =0
(b)%X+5=11x-13 (e) ¥* +17x + 72 =0

Lo _ £f) 2x® + 10x + 12 = O
(¢) ¥ - g =0 (f)




Chapter 5
THE REAL NUMBER SYSTEM

5.1 The Equation x*® = 2

The rational number system, (Q,+,°), is an ordered field,
the second step in an expension of the familiar whole number
system, (W,+,+). In (W,+,+) neither addition nor multiplication
satisfy the group properties and, as & result, simple equations
like X + a = b and x.a = b have no whole number solutions,
Extension of W to Z and then to Q yielded an operational system
without these inadequacies; both (Q,+) and (Q\{0},+) are groups,
and in the system (Q,+, ) every equation of the form

ax +b =c¢c
has a unique solution (unless a = 0).

Many more complicated equations have solutions in (Q,+,).
For example, 3x ~ Tx + 23 = 45 ~ 18x has solution set {l%} and
x2 + 6x + 8 has solution set {-2,-4}, But what is the solution
set of the equation x® = 2 in (Q,+,+)? This equation certainly
looks much simpler than the prevlious ones. How would you begin
to solve this prroblem?

You might guess at a whole number. But 1° <2and 2 > 2,
so you would be forced to guess again, A likely second guess
would be some rational number between 1 and 2. Try x = % = 1.5,

(3 =9 - 2.,
Since % is too large, you might try % = 1,25 or = = 1.4 next.

- 25 7v _ 49
(3 =3 (LY =%

@ close to 2, so your next choice might be close to %.

232
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You might feel that you could find a rational number whose
sqguare is 2, given a few more guesses., It may surprise or even
shock you to learn than, no matter how many guesses you make,
you wilil never find a rational number whose square is 2. The
solution set S = {x: x € Q and x* = 2} is empty.

In order to convince you that this solution set is empty,
let us assume that it is possible tec find an x € Q such that
¥® = 2 and show that this assumption leads to a contradiction.
It is a principle of logic, which you have encountered before,
that if an assumption leads to a contradiction, the assumption
must be false, Thus, if we reach a contradiction with our
assumption, we will be able to conclude that there is no x € Q
such that ¥ = 2,

Theorem: f{x € Q: x® =2} =g

Proof: Assume there is an x € Q such that x2 = 2, Then

there are positive integers p and q, with q # O,
such that x = g. By substitution in "x® = 2", we
get (g-)2 = g: = 2, This tells us that p? = 292,
Imagine the complete factorization of p into
primes, For example, if p = 600, then p = 23°3'5;
if p = 252, then p = 22 . 32 . 7, Now consider
the complete factorization of p® into primes., If
p = 60C, then p?® = (600)(600) = (2°.3.53)(2%.3.5%) =
2°.32.5%, whereas if p = 252, then (252)2 =
(252)(252) = (22.3%.7)(2.32.7) = 2.3*.7°, In
general, no matter how many factors of 2 that

Q the prime factorization of p contains, p® contains

<1 .




-229-

twice as many factors of 2 in its prime factor-
ization. Thus p® must contain an even number
(possibly zero) of factors of 2 in its complete
factorization into primes. Similarly, ¢® must
contain an even number (possibly zero) of

factors of 2 in its complete factorization into
primes., Thus 2¢®, since it contains one more
factor of 2 than g®, it must contain an odd number
of factors of 2 in its complete factorization
into primes. Now, if p® = 2qg3®, the Unique
Factorization Property would require that both

p® and 2g® have the same factorizations into
primes; in particular, both should contain the
same number of factors of 2. But p? contains an
even number of factors of 2 while 2¢° contains an
odd number of factors of 2,

The assumption, that there is a rational number whose
square is 2, led to a statement which contradicts an established
principle of mathematics. The assumption must therefore be
false. There is no rational number whose square is 2,

Just as the equation x + 5 = 4 had an empty solution
set in (W,+,°) and 2x = 5 had an empty solution set in (Z,+,¢),
the equation x® = 2 has an empty solution set in (Q,+,°). The
extension to (Q,+,°*) is not sufficient to solve all equations
that might reasonably occur. The next section presents a

o Very different inadequacy of the rational number system, one

with a strong geometrical flavor. 234
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5.2 Exercises

1. For each of the following natural numbers n, find the
complete factorization into primes of n and of n®., How
many factors of 3 are in each factorization? What relationship
do you observe?
(a) 20 (b) 42 (e) 2250 (d) 270 (e) 891
2, (a) Use the Unique Factorization Property to show that the
solution set of each of the following equations is

empty in (Q,+,+).

(1) x®* =3 (i1) £ =5 (i1i1) x® =6
(b) Why doesn't the same reasoning apply to the equation
X = U2

3. Find the solution set of each of the following equations
in (Q,+,°).
(a) x® + 122 =132 (c) 8 + y?
(b) 3* + ¥ =22 (d) 22 +x®
L, ¥ind two elements in each of the following sets.
(a) {x:x€Q and |2~ x2] < .1}

1t

17 (e) 17 + 12 = x°
23

(p) {x: x€Q and |2 - x2| < .01}
(¢) {x:xe€eQq and [3 - x?| < .1)
(d) {x: x€Q and [3 - x2| < .01}

5.3 The Measuring Process

In Figure 5.1, you will find a square whose side has a
length of 1 unit, say 1 centimeter. What is the length of the

PR 1]
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1l cm.
Figure 5,1

diagonal, labeled "d", in the diagram? Mathematicians have
known since 500 B.C. that there is a relationship among the
lencths of the three sides of a right triangle. If "a" and
"p" represent the lengths of the two shorter sides of a
right triangle and "c'" represents the length of the hypotenuse,
then ¢® = a® + b®. This is called the Pythagorean property.
Applying this property to one of the two right triangles in the
square above, we see that
@@ =12 + 12
a? = 2,

The length of the diagonal 1s, therefore, a number whose square
is 2., However, in Section 5.1, we proved that {x: x € Q and
x® = 2} = @, This means that no element in Q is the measure of
d. What does this result imply? 5hall we say that the diagonal
of this square has no length? Would you be willing to accept
this? In order to shed light on this situation, we examine
the process of measuring length of a line segment in terms of
a given unit length.

Suppose we want to measure the length of a line segment iB
using & unit segment u of length one centimeter. First, start

ikjat point A and lay off a string of segments along AB, each
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congruent to the unit segment, until the end point of & segment

falls on or passes B. (See Figure 5.2.)

u
e
& - P (a)
A B
i — | 3 (b)

Figure 5.2

If (as in 5.2a) some collection of segments exactly covers
AB, count the number of segments used, This is the length
in centimeters of AB; in example 5.2a the length is 8 centimeters.
If (as in 5.2b) the last segment used goes beyond B, count
the number of unit segments up to this last. This number is
not the length of AB, but a first approximation to the desired
length; in the case of 5.2b the lower approximation is 7
centimeters.

If the first step in the measuring process produced only
an approximation to the length of £B, label the end point of
the last counted segment "D", (See Figure 5.3.)

. . DF

Figure 5.3

The lengthk of DB is _ess than one centimeter. To obtain a

measure of the length of DB we use & new unit p with length

o f% centimeter. We start at D and lay off a string of segments

Wl e LY |
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along DB, each congruent to new unit p, until the end point of

s segment falls on or passes B. (See Figure 5..4.)

. ¥ M )
. ¥ (b)
Figure 5.4

If (as in 5.4a) the resulting collection of segments covers
DB exactly, count the number of segments used. This is the
length in tenths of centimeters of DB and combined with the
measure of AD it gives the length of AB., 1In the case of 5.la,
the length of DB is I%-centimeters and the length of AB = 7 + T%
= 7.3 centimeters.

If (as in 5.4b) the last segment goes beyond B, count the
number of unit segments used up to this last. This number is not
the length of DB, but an approximation. Together with the length
of AD obtained in the first phase of measurement, it gives a
second approximation to the length of BB, In the case of 5.4b
the approximation to length DB is T% centimeter and the approxi-
mation to length AB is 7 + I% = 7.2 centimeters.

If this measuring process has still not produced an exact
length measure for AB, we label the end point of the last segment
"E" and repeat the procedure with a unit q of length Iéb centimeter,
At the end of tinis step we might get an exact measure for the
length of AB or a third approximation.

'~ In the next few sections, you will see that if we continue

~measuring AB by this Process, we encounter one of two possibilities:

398 .
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(1) The process ends after a finite number of measurements,
in which case we have found the length of AB. For
example, if we used 7 segments each of length 1 cm,,

2 segments sach of length I%»cm., L segments each of

— ; 1
length T00 cm.,. and 3 segments each of length 666 cm,
in order to reach Just to point B, we have the centimeter

. 2 4 _ .
measure of AB is 7 + ot T0 Y 1856 = 7.234, Notice

that 7.234 = 7234 and is therefore a rational number.
If the measuring process does end, as in this examplie
what can you say about the length?

(2) The measuring process does not end; it produces an
infinite set of rational numbers each of which is viewed
as an approximation to the length of AB, These arproxi-
mations would look as follows:

First approximation: k (k is the number of segments
of length 1 cm. used.)

Second epproximation: k + ;% (a, is the number of
segments of length T% cm, used.)

Third approximation: k + %h + I%%
a
Fourth approximation: k + ;% + Tﬁ% + TGE6'

If the measuring process does not end, how could we
then determine the length of AB? Surely, we want to assign
a length to this segment., 1Is this length in centimeters
expressible by some number in the field of rational numbers?
The problem considered in Section 5.5 is developing a procedure
which will allow us to use the set of rational numbers produced

by the measuring process to assign a length to the segment.
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5.4 Exercises

1.

Each of the following rational numbers represents the
centimeter length of a line segment. For each number, give the
set of rational numbers produced by the measuring process;
explain what each digit in the number represents.
Example: 7.031
The: measuring process produces the set: {7, 7.0, 7.03, 7.031}.

7 segments each of length 1 cm,; O segments each of length

T% cm.; 3 segments each of length E%B cm.; 1 segment of

length 1036

(a) 6.1 (v) .32 (e) 47.503 (a) 2.15398

For each of the following sets, find a number in Q which

is greater than or equal to every element in the set.

(Assume the patterns in b and c continue.)

(a) {3, 3.7, 3.72, 2.728} (e) (1, 1.7, 1.71, 1.717, 1.7171,...]

(v) {0, .9, .99, .999, .9999,...} (&) &

For each of the sets listed in Exercise 2, find the smallest

number in Q which is greater than or equal to every element

in the set,

Use the Pythagorean relationship "c® = a? + b*" to find the

missing length in each of the following:

{a) b=3,¢c=5 (v) a =10, c =26

(¢) a=7,b=24 (a) a
(e) b =15, ¢ =17

Find all integers x which satisfy the following inequations:

(e) 0<F5< 15
R0 () o< i<

1, b=1
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5.5 The Length of a Line Segment

The measuring process, When applied to a particular line
segment, produces a set of rational numbers, If the process
ends, then this set is finite and includes the length of the
segment, If the process does not end, then the set is
infinite and each rational number produced may be viewed as an
approximation to the length of the segment, We now seek a
general mathematical procedure which will allow us to determine
the length of a segment using this set of rational numbers generated
by the measuring process, whether finite or infinite, Let

T = {1, 1.5, 1.52, 1.58,,.],

where T may be finite or infinite, be one such set arising
from the measuring process, Although we cannot establish a pattern
that will enable us to state the next element in T, we can say
several things about it, Each element in T is a rational number
which cannot exceed the actual length of the segment being measured,
(Why?) If we call the length "#" then, for each t in T, we
know that t S 2, A number that 1s greater than or equal to each

element of & set 1s called an upper bound of the set.

Definition 1, ILet (F,+,*,<) be an ordered field and let
S< F, An element b in F is an upper bound
of S if and only if for each s€S, s < b,
If such an upper bound exists, then S is

said tuv be bounded from above,

The length of & segment is an upper bound for the set of

rational numbers which arises from the measuring process,
O
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Consider set T listed above, Though we have listed only 4
elements in T, we may say that 2 is an upper bound of this set
since every element in T must be less than 2. (Why?) But
every element in T is also less that 10 or 20 or even 1.6,
So we see that if a set has one upper bound, it has many upper
bounds. The length of a segment is, therefore, one of the many
upper bounds that exist for a particular set of rational numbers
arising from the measuring process,

Which upper bound shall we choose? Suppose b, and b, are any
two different upper bounds for set T. Thus, if t€T then,
t < b, and t < b,. Which of the two upper bounds is "closer"
to the elements of T? In other words, which of the upper
bounds, b, or b,, differs from the elements of T by a small
amount? Isn't it reasonable to expect the smaeller of the two
upper bounds to be "closer" to the elements of T? What we

are looking for is the least upper bound of set T.

Definition 2., b is the least upper bound of set T if

and only 1if':
(1) b is an upper bound of T.
(2) If v' is any upper bound of T, then
b b, [least upper bound is usually
abbreviated "1,u.b.,"]
The first property says that if b is to qualify as the least upper
bound of T, it must first be an upper bound of T. The second
property tells us that in order for b to be the least of the
upper bounds of T, it cannot exceed any other upper bound.

The preceding discussion suggests the following definition

of the length of a line segment: 2 42
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Definition 3. The length of a line segment is the least

upper bound of the set of ratinnal numbers
which arises from applying the measuring
process to the segment.
Now we have a procedure for finding the length of any given
line segment:

(1) Apply the measuring process to the line segment, If
the process ends, it generates a finite set S of
rational numbers, one of which is the actual length of
the segment., If the process does not end, it generates
an infinite set S of rational numbers, each of which
is an approximation to the length of the segment.

(2) In either case the least upper bound of set S is the
length of the segment. 1In Section 5.7 we will consider

several concrete applications of this procedure.

5.6 Exercises
1. Find an upper bound in Q for each of the following sets
(not all of which were obtained by the measuring process)
(a) {x: x € Qand ¥ =16) (d) {1,2,3,4,...)
(v) @ (e) (2,2.3,2.37,2,371,2.3718,...}
(c) (L1.1,1.2,..,1.9)  (£) (B-md-of...)
2, Find the least upper bound in @ of each of the sets in
Exercise 1,

3. Each of the following sets consists wf the rational numbers

produced by the measuring process as approximations to the
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length of a line segment. 1In each case, find the
actual length, in Q, of the segment
(a) (2] (e) (7, 7.1, 7.14, 7.145)
(b) (.3, .33, .333, .3333,...} (a) {1, 1.6, 1.66, 1.666, 1.5668)}
b, Let A end B be subsets of Q. Show that if A and B are both
bounded from above, then
(a) A U B is bounded from above.
(b) A N B is bounded from above.
Give an example to illustrate each of these statements.
5. Let A€ Q. Prove that if x is an upper bound of A in Q
and if y € Q and y > x, ther y is an upper bound of A.
6. Let Ac Q. Let x, y € Q. Show that if x is a least upper
bound of A and y is a least upper bound of A, then x = y.

5.7 Three Illustrative Cases

In this section, you will encounter three cases that illus-
trate the use of least upper bounds to find the length of a
line segment. These cases also reflect different problems in
assigning a numerical value to this length.

Case 1. The measuring process ends.

Suppose the measuring process, when applied to a line segment

€D, produces the following finite set of rational numbers:

n, A
b o+ T%’
S = T I% + 185, A }
4+ 15 + 1i5 *+ Tos0°
T A . e B



-2hn_
In decimal fraction notation, we can display set S as
S = (4, 4.7, 4.73, 4.735, 4.7358}.
Notice that set S contains only 5 rational numbers. This means
that in the fifth step of the measuring process, when laying off a
string of congruent segments, each of lerngth 16%55 centimeters,
the last point falls directly on point D of segment CD, elimi-
nating the need for further measurements. The length, in centi-
meters, of CD is 4,7358,
What is the least upper bound of set S? It is easy to see that
4 .7358 is an upper btound of S and that if x is any upper bound,
then 4.7358 < x. This means that 4.7358 is the least upper bound
of S. If A is any non-empty finite set of rational numbers and
if a is the greatest element in A, then a is the least upper bound
of A.
Case 1 shows that if the measuring process produces a finite
set S of rational numbers, then the greatest rational number
in S is both the length of the segment being m2asured and the
least upper bound of S.
Case 2. The measuring process may produce an infinite s;t
T of rational numbers approximating the length of
a line segment. It may happen that
(1) fThere is a rational measure for the given
segment.
(2) There is a rational least upper bound of T.
Let us consider a line segment EF whose length we know is
% centimeter. If we follow the measuring process, with a unit u

of length 1 centimeter, we get the following set of rational numbers
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approximating the length of EF.

T = {0,0.3,0.33,0.333,0.3333,...]).
You may want to check the first few approximations yourself.
From your study of rational numbers you can deduce that % is
the l.u.b. of T.

In this case we knew the centimeter measure of & line
segment to be % even tefore we applied the measuring process
to the segment. We considered the infinite set T of rational
numbers produced by the measuring process and found that % is
the least upper bound of T.

Case 3. The measuring process produces an infinite set

of rational numbers approximating the measure
of a line segment. It may happen that there is
no rational number which represents the least
upper bound of the set.

Re-examine the problem of calculating length of a
diagonal in & square, the question posed in Section 5.3 which
initially led to a study of the measuring process. Instead
of considering just the case of a square whose sides have
length 1 centimeter, let us look at the side of any square
and at one of its two congruent diagonals (see Figure 5.5).
Suppose it were possible %o find a common unit of measurement
for the side and the diagonal, whether it be a segment of
length 1 centimeter or 1 inch or of any other length. Then,
the length of the side of the square could be expressed as

an integral number of these units, say X units, and the length

of the diagonal as y units.
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y segments, each congruent to
a unit u

7

"]

& [~ X segments, each congruent to
— a unit u

Figure 5.5
By the Pythagorean property, we know that

x2 4+ x? =y®

2x* = y?.
But, earlier in this chapter, we saw that for any positive
integers x and y, 2x? # y’. This means that regardless of
the unit used for measuring, it is impossible to express both
the length of a side and the length of & diagonal of a squeare
in terms of this unit. Thué we cannot express the ratio of
the length of the diagonel to the length of the side as a
rational number.
Now, consider a square with sides 1 centimeter long.
The measuring process pr.duces the fcliowing set of rational
numbers approximating the length of the diagonal.
A = (1,1.4,1.41,1.414,1. 4142, ---]}

The exact length of this diagonal cannot be expressed by a
rational number. More specifically, the centimeter length

of the diagonel is a number whose square is 2 and we have

shown that there is no such number in @. Definition 3

24
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states that the length of this diagonal is the least upp:r
bound of set A. But, while set A has many upper bounds in Q
such as 2, 4%, and 7, there is no number in Q which is the
least upper bound of A. Set A is a non-empty set of rational
numbers which is bounded from above but which has no least
upper bound.

In Section 5.9, we will begin to see what can be done to

remedy this situation.

5.8 Exercises
1. Find the least upper bound in Q of each of the following

sets (assume that the pattern in (d) continues).

(a) .3} (e) {.3,.33,.333)
(p) (.3,.33] (d) (.3,.33,.333,.3333,...}.
2 Find all integers x which satisfy the following inequations.
(8) 0 <-<Z () 0 <yi5< L
(b) °<Té>(‘6<§' (@) 0 < 1500 <151'o

3. Suppose Yyou begen with a segment CD whose length is %
centimeters. Without doing any measuring, list the first
3 approximations to the length of CD that would be produced
by the measuring process,

L. Suppose the measuring process, when applied to a particular
line segment, does end. What can you say about the length
of the segment? Support your answer.

5. Express each of the following rational numbers as a decimal

fraction.
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5.9 The Real Number System

In each of the three situations studied in Section 5.7,
the length of & line segment was being measured. The
measuring process was always the same, but the sets of
rational numbers were quite different. We examined two aspects
of each situation:

(1) The set of rational numbers involved

(2) The least upper bound of this set (length of the

segment )
We were guided throughout our examination by Definition 3 which
states that the length of a given line segment is the least
upper bound of the set of rational numbers generated by the
measuring process. However, we observed that for one of the
three line segments, there is no rational number which is the
least upper bound of the corresponding set of approximations.
Thus, the ordered field (Q,+,°*,<) is inadequate to express
accurately the length of every line segment we encounter. In
other words, it 1s possible for us to have a non-empty set of
rational numbers which is bounded from above but has no least
upper bound in (Q,+,*,<).

Overcoming this difficulty requires another extension of
the number system--this time from the rational numbers to a

new ordered field (R,+,°,<) called the real number system.

The real numbers contain the rational numbers as a subfield

new elements to serve as least upper bounds for trouble-
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some sets of rationals arising from the measuring process.

There would be little virtue in creating & new system to
supply least upper bounds for sets of rationals if the new
system produced new sets of numbers without least upper bounds.
Therefore, in the real number system every non-empty subset
of R that is bounded from above has a least upper bound in R.
For this reason, the ordered field (R,+,°',<) is called
complete.

What kind of new objects are introduced by this extension
of @ to R? How are the new numbers to be named? What rules
govern operations and order in (R,+,*,<)?

Let us turn our attention to the names of the real numbers
in R. First of all, remember that @ € R; every rational number
is & real number. We have already seen that some rational

numbers can be expressed by a terminating decimal fraction while

others have decimal fraction representations that are infinite

and repeating. For example,

5=.5

== b

= .125

3 - 3333
3'? = .2h242k

Each rational number, whether it is named by an infinite,
repeating decimal fraction or by a terminating decimal fraction,
is an element in R. Thus, .4, .325, .018018018,and .6666 are
all elements in R, The bar "-" indicates the digits which
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repeat. For example:

.3 = .3333 = .33333, and .20 = .2UDh = .2424D%, otc.

We already know that R contains other real numbers which
are not in Q, that is, real numbers which are not rational
numbers. These real numbers are called irrational numbers,
For example, we saw that when measuring a diagonal of a square
whose side has length 1 centimeter, the measuring process pro-
duced the following set of rational numbers:

T ={1,1.4,1.41,1.414,...}.
We saw that there was no rational number which is the least
upper bound of T. If we denote this least upper bound by "#"
then we know £ € R, and that £ is an irrational number.
However, we would like to be able to name this least upper
bound more explicitly than by calling it "£", perhaps in such
a way that the name would remind us of the elements of T.
Since we have listed only 4 elements in T, we are restricted
to these few rational numbers in naming £. We write
" = 1.414..." The dots, as usual, indicate that the digits
in this decimal representation continue indefinitely, just as
the set T contains infinitely many elements. The fact that
no bar "-" appears indicates that no block of digits continues
to repeat indefinitely. Unfortunately the name "1.414,.."
for £ does not indicate any pattern which might be used to
determine the next digit in the decimal. If the list of
elements in T contained another approximation to the length of
the diagonal, then we would have

T =(1,1.4,1.41,1.414,1. 4142, ..}

«ol
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and we would be able to name the least upper bound £ by
"1.4142..." Thus, the name used for the least upper bound of
T depends upon the number of elements in the set actually listed.
In practice, if you wanted to use £ in a problem involving
computations, you would "round off" this infinite decimal to a
finite number of places, depending upon the accuracy desired.
1.4142, for example, would be considered a more accurate approx-
imation to £ then 1.414. The more accuracy needed, the greater
the number of approximations in T that must be considered.
We will name 4 another way in Section 5.11.
It appears that each real number can be named by a decimal
representation in one of the following forms:
(1) A terminating decimal such as .5 or 2.7518.
(2} An infinite, repeating decimal such as .717171 or
.1838383.
(3) An infinite decimal which does not repeat such as
.8125749016638. ... (Since there is no bar "-" we
cannot establish & pattern that will enable us to state
the next digit in this infinite decimal)
Since we could take any terminating decimal such as .7518
which 1s listed above, and write it as the infinite decimal
. 75180000 where the zeros continue indefinitely to the right,
we are really able to view every decimal representation as an
infinite decimal. You will see, &as you gain experience
working with real numbers, that some real numbers will have two
different decimal representations; that is, there will be two

infinite decimal names for the same real number. For example,

207
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"1.0000" and ".999999" both name the same real number, likewise
".41300000" and ".4129999" both name the same real number,

5.10 Exercises
1. For each of the following properties, tell whether the
property is true of W, Z, Q or R. A given property may
be true for more than one of these sets.
() For each positive element a in the set, there is a
positive integer N so that N > a.
(b) Every element in the set may be written as % where
p, Q4 are integers and q # O.
(¢) Every non-empty subset which is bounded from above
has a £.u.b.
(d) Every element in the set has an infinite decimal
representation.
2. In each case, tell whether x represents & rational number,
an irrational number or neither.
0
. 6666
2. (f) x =y + 3 where y € R and y*® = 2,

]
]

(a) x € R and x*
(b} x = .9817 (e} x
(¢) x € Q and x*

2. (a) x

3. Prove that if a is an irrational number and b is a rational
number but b # 0, then a + b is an irrational number.

4, Give an example to show that the product of two irrational
numbers may be rational.

5. Yrove that if x and y are both rational numbers, then x * ¥y
is a rational number,

O 6. For each of the following pairs of infinite decimals, tell
T )
09
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which represents the greater real number.
(2) .4139; .LoT7481 (¢) .4; .4oo0  (e) 1.000; .999
(b) .333; .3384888  (d) 0.3614; .3644F

7. In which of the following decimals do you know the digits
that follow?

(a) 474707 (d) 2.343...
(b) 8.37474... (e) .7575T5
(¢) .12333 (f) .333"""

5.11 Some Properties of the Real Number System

Ordering of the Real Numbers

One way to order a pair of rational numbers is by
inspecting their corresponding decimal fraction representations.
Remember that

8.3 < 8.4, .2563 < .2567
and, in general, for two terminating decimal fractions

.818,8,8;, and .Dybp0,by
you look for the first place (reading from left to right) in
which they disagree; the one which has the smaller zntry in
that place represents the smaller number. This same procedure
mey be used to compare any two decimals, infinite or terminating.

Exemple 1. Which is smaller, .7183Q46°°" or .7184623°°"?

Notice that the first three digits of these
infinite decimals agree place by place. The
fourth decimal place is the first one in which
they differ and 3 < 4.

Therefore, .7183946... < .7184623...

204
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Example 2. Which is smaller, .8163 or .8163419,..? The
first decimal, though terminating, may be
written as .8162000. If we compare " ,8163000"
and ",8163419..." we find that the fifth decimal
place is the first one in which they differ.
Since 0 < 4, we conclude that

.8163 < .8163419.

We mentioned, in Section 5.9, that certain real numbers
have two different infinite decimal representations. For
these numbers we will have to modify the above mentioned
procedure,

Example 3. We know that 1.00000 = 0.99999. Yet, if you
follow the procedure for comparing infinite
decimal representations, you will conclude
erroneously that 0.99995 < 1.00000.

Example 4, We know that

.23000 = .229999.
Again, if you compare these decimals, place by
place, you will conclude erroneously that
.229999 < .230000.
When the bar is sbove a zero there are two distinct decimal

representations for the same real number., In all other cases if

X and

cbibgbsb‘ e .,

1}

y

you can decide which of the two decimals represents the smaller
real number by looking for the first place (reading from left
to right) in which they disagree; the one which has the smaller

G
L an
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entry in that place represents the smaller number.

The equation "x” = a" in (Ry+,5<)

Suppose that we are interested in the solution of the
equation x® = 3. We know that the solution set A = {x: x € Q
and x®* = 3} is empty. (See Section 5.2, Exercise 2.) Let
us examine the solution set B = {x: x € R and x? = 2}. Consider
the following approximations to an element x in B. Since
1 = 1 and 22 = 4, we see thet 1 < x < 2., Let us take 1 as a
first approximation to x. Since (1.7)%® = 2.89 while (1.8)% = 3,24;
1.7 < x < 1.8,
Take 1.7 as a second approximation to x. If we continue this
procedure, we geierate the following set of approximations to
X:
¢ ={1,1.7,1.73,1.732,1.7320,- -+ }.
We see that set C is non-empty and is bounded from above.
(Verify this statement.) By the completeness property of R, we
mey say that the least upper bound £ of ¢ 1is in R. Using
the five approximations in C, we may name 4 as "1,7320°°°"
Notice again, that we cannot predict the next digit in "1.7320-.."
without calculating another approximation in CG. Since £° = 3

and 1 > 0, £ is called the positive square root of 3 and is

written "4 =4/3." Thus, ~/3 € R. In the same way, we write

x =+/% if and only if x > 0 and x®* = 5. 1In general, if a and

b are reel numbers and a, b > 0, then b is a positiﬁe square

root of &, written b =+a, if and only if b® = a, The £ of
@ Section 5.9 can be renamed, £ =+/2, Also, b =47 if and only

255
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if > 0 and b® =7 and b = V¥ if and only if b > 0 and b® = %.
Notice that if x = /7, then x* = 7; x is called the negative

square root of 7. For every positive square root of a number,

there is also a negative square root which ig the additive inverse
of the positive square root.
Each square root of a number mentioned above is in R. If
a Jis a positive real number, then the positive square root of
a (written 'Va") and the negative square root of a (written
"Va") are in R,
In fact, if n 1s a positive integer and if a is a positive
real number, the equation x? = a has a unique positive solution
in R. Tbhis solution is written "x = Va" or "x = al/n.” For
example, the solution to the equation x®* = 4, x = ¥4, is in

7
R; the solution to the equation x = 10, x =Vv10, is in R.

The Archimedean Property of (R,+,°,<)

Example 5., Is there a positive integer greater than the
real number 7.813942,,.7 It is easy to answer
this question simply by naming one positive
integer, say 8, which is greater than 7.813942,.,
Example 6. 1Is there a positive integer greater than the
real number 128,1717I7? Again, we simply name
the integer 129, which is greater than 128,1717I7.
Example 7. Is there a positive integer greatzr than the
real number v3? Since 1 =1 and 22 = 4 we
know that 1 <+/3 < 2, 1In fact we have seen
that V3 = 1.7320..,. Thus 2 > V3,




-253-

New let us state this idea in a more general form,
(1) ©civen any positive real number a, there is a positive
integer N such that N > a,

This statement is called the Archimedean Property of the complete

ordered field (h,+,+,<); consequently, the system of real numbers
is sometimes referred to as a complete Archimedean ordered

field. (Archimedes himself attributed this "Archimedean Property"
to Eudoxus, a contemporary of Plato {c. 350 B.C.).)

Sometimes the Archimedean property is stated in an apparently
different form. Before we state it, consider the following
problem,

Draw any two line segments, Let "m" represent the length
of one segment and "n" the length of the:other. (See Figure
5.4(a).) We know that m € R and n # R. (Why?) Do you think
it is possible to lay off a string of congruent segments,
say N segments, each having length m so that the total length of
the segments is greater than n?

If we lay off a string of 11 congruent segments each
having length m, we get a segment XY whose length is greater
than n. (See Figure 5.4{Db).)

An alternate form of the Archimedean property guarantees that
given segments of lengths m and n, we can always put together some
number of congruent segments, each of length m, to construct
a segment of length greater than n. This 1s stated more

succinctly as:
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(a)

Comparison of segments of length m and length n

oS r

(v)
11 congruent segments each of length m

Figure 5.6
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(2) If m and n are positive real numbers, there is a
positive integer K such that Km > n.
Actually, statements (1) and (2) are equivalent; that is, each
one implies the other. (See Section 5.12, Exercises 9 and 10.)
The following examples also serve to illustrate this alternate form
of the Archimedean property:
Example 8. Given a = % and b = 17, is there a positive
integer N such that N - 2 > 17? If N =7,
then 7 + 2 > 17.
Example 9. Given a =+/2 and b = 20, is there a positive
integer N such that N * ~/2 > 20? Take N = 20.

Since /2 > 1, 202 > 20 * 1. Thus 20 - &2 > 20.

5.12 Exercises

l. List the following decimals in ascending order.
() 3.1847
(b) 3.19999
(e) 3.201
(a) 3.0222
2. Find five approximations to V5. How is the set of
_roximations used to name /5 by an infinite decimal?
? 3. Which of the following represent rational numbers?
(a) .74321... (c) ~2 ++3 (e) ©
| () VI3 (d) ~T.2T
§ . Prove that 4 + 3¥2 is irrational.
5. For each of the following real numbers, find a positive

260
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(8) WII (b) 2 +47 (e) 63 (d) 4999 (e) (IT)?
Indicate how the least upper bound of each of the following
sets is named:

(a) (1, 1.4, 1.41, 1.414, 1.4142,...)

(v) (o0, 0.3, 0.33, 0.333,...])

{e) (3, 3.1, 3.14, 3.141, 3.1415,...}

(a) (6, 6.1, 6.16, 6.161, 6.1616,...}

(e) f1, 1.78, 1.783}

(£) ¢

Find the following square roots:

(8) Y9 (e) ¥35 () NF (&) Yot

() v3  (4) y7 (£) \z= (h) WO
Find the following square roots:
(8) ¥ (c) VBT 36 (o) VO 16 (s) y35

(b) NIET T (d) VIBT B8 (£) ~I 35  (h) ‘/@E
Assume that if x 1s a positive rational number, you can
always find a positive integer N such that N > x. Prove
that if a and b are positive rational numbers, there is a
positive integer N such that Na > b. (Hint: Consider g.)
Assume thet if & and b are positive rational numbers, there
is & positive integer N such that Na > b, Prove that if

X is & positive rational number, there is a positive integer

N such that N > x. (Hint: Teke a = 1.)
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5.13 Arithmetic of Irrational Numbers

In any field, equations of the type ax + b = ¢ {(a # 0) have

unique solutions given by the expression S ; ®  For example,
the equation 3x + 12 = -18 has solution
.18 - 12 _ (1)
in (Q,+,+). The equation (%W6)x + WIZ = W1Z has solution
w12 - W12 (2)
w6

in (R,+,+). The expression giving the solution in (1) was
easily simplified by application of arithmetic facts. But any
comparable simplification in (2) depends on knowledge of
arithmetic facts and rules involving irrational numbers.
In any field (F,+,+), the distributive property of
multiplication over addition implies
ax + b'x = (a + b)-x.
Therefore, in the real number field,
wWIZ - WIZ = WIZ + (-4 NVI2
(7 + (-4N12
V12,

I

And, in general
For all a, b, ¢ in R, if b>0,
then a/b + cv/b = (a + ¢ NVb.
Thils rule for calculating with irrational nuusbers permits simplifi-
cations like
1W6 - W6 = 13/6,

W5 + a5 = s,

£
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-1aV3 + -J = --/3, ete.

The following computations suggest another arithmetic rule
useful in simplifying expressions with irrational components,

No/l= 32 = 6 =36 =

L2
i rg st ]
NIB/ZE = 4 + 6 = 24 =576 =16°36.
The rule suggested by thrse examples is ~/a/b = +&b. But,

in each example, a end b were perfect squares of rational

numbers. Does the rule hold for 2 and «/3 and ~/6?

(1) ~va/3 =4/6 if and only if

W2«/2)? = W6)® = 6.
(2) But W2w3)* = W/3)WavV3) (Why?)
Wa/2)W3/3) (Why?)
=23 (Why?)
= 6.

A similar argument c¢~ be used to prove
For 81l a,b in R, if a 20 and b 2 0
then v/a/b = +/ab.
This rule for calculating with irrational numbers permits simpli-

fications like

58 _ W2 _ 4,
A2 V-

WI2 _ 36 _ 3
%7e 22,

- 222 -
NBE Y = JW AN R
= 2xW2x, ete.

263



-259-

Another enticing conjecture about rules for manipulating
radicals is+~a ++b =+/@a + F. But be careful! Complete the
following computations to check this tentative rule.

Vi +49 =2 +3 #413
N5 + V36 =5 + 6 #451
NIE + 41 £41I6 since W1 = 1 and~15 > 3.
As you can see, ¥a ++b #+a ¥ b for most real numbers a and b.

Question. Check some specific cases of these conjectures:

Na = b =+a -b? ‘J§§ =:§%?

These rules for manipulating radicals permit simplification

of expressions and solution of equations in (R,+,°).

5.14 Exercises

1. Simplify the following radical expressions:

(a) ~¥O5 (= 3V5) (e) WX - 2x + 1
(b) ~2& (£) VEBXV

(c) ~IZFT (g) V8

(d) V3B (h) ~32

(e) §=25* (1) yz=x°

2., Write each of these expressions in equivalent radical form.

(a) /3 (=~W3 =4T12) (e) 2xw5

() w9 (£) 3x%y
(¢) 3w/2 (g) 5a%b®
(d) sV1ET
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Solve each of the following equations in (R,+,*).
3. W3x + 8 =14

4, s5Bx - 3ex = 1a/2

5. x® -5x =1

6. 4x* -9 =0

7. x® - 12 =0

8 3x* - 17 = 12

9. x® 4+ 9x +20 =0

0. Ux® 4+ 7x - 12 =3x* +15 + x
11. 4/3%x7 =6+ 5

12, VXx¥ - I2x + 32 =0

Prove.

#13., If a,b are real numbers greater than or equal to O,

JE _a
1 EA)
14, Ja -~b #4JE - b for some a,b in R.

¥15, 1If a,b are real numbers greater than or equal to O,

Nab = vJalb.

5.15 Summary

In this chapter we introduced the real number system

(R,+,',<). This system is an ordered field which contains the
ordered field of rational numbers as a subset. An essential
difference between the two systems is the completeness property
of (R,+,:,<).

1. The ordered field (Q,+,°,<) is inadequate to answ r certain

mathematical problems we encounter. In particulear:

() The equation X® = 2 has &n empty solution set in
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(Qs+s+5<) .

(b) There is no number in Q which expresses the length of
a diagonal of & square whose side has a length of one
unit.

An examinastion of the process we use to measure the length

of a line segment indicated that a set of rational numbers

is produced. If the process ends, the set is finite and
jncludes the length of the segment. If the process does
noct end, then each rational number is an approximation to
the length of the segment. We saw that, in all cases,

the length of the segment being measured could be defined

as follows:

The length of a line segment is the least

upper bound of the set of ratinnal numbers

which arises from the measuring process.
We considered several cases in which the measuring process
was applied to various line segments and observed that
there was not always a rational number to measure each
length, Thus, certain sets of rational numbers produced
by the measuring process do not have a least upper bound
in (Q,+,+,<).
To overcome this difficulty we introduced a new ordered
field (R,+,+,<) in which every set of rational numbers
arising from the measuring process would have a least upper
bound. Thus, in this new ordered field, we can measure the
length of every line segment. 3Since some line segments

have rational numbers as measures, Q © R.

I66
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The elements of R are called real numbers, Sirce @ € R,
some real numbers are also rational numbers. Those real
numbers which are not rational numbers are called
irrational numbers,

(Rs+, *s<) has the Archimedean Property.

If n is a positive integer and if a 1s a positive real
number, the equation xn = g has a unlique positive solution

in R.

5.16 Review Exercises

1.

Let n be a natural number which contains 6 factors of 2
in its complete factorization into primes, For each of
the following numbers, determine the number of factors

of 2 in its complete factorization into primes.

(a) 20 (b) n®* (c) 7 (d) n°

®rove that W2 is not a rational number, (Hint: Assume
there are integers p and q, q # O, so that g = W2,)

Prove that the solution set {x: x € Q and x* = 17} is empty.
What does it mean to say that (Q,+5+) is inadequate to
gsolve an equation?

Find the length of a diagonal of a square whose side has
a length of:

(2) 2 cm, (b) 5 em, (¢) V2 em, (d) a cm.

Let "d" represent the centimeter length of a diagonal of
a square whose sides have length 1 cm. How many congruent

segments each having a length of d centimeters, would you
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have to use if you wanted to form a segment whose length
would be greater then 10 centimeters?

7. PFind four approximations to V7. For example Since 2¢ < 7
but 32 > 7, 2 is the first approximation,

8. Find the least upper bound in (Q,+,-,<) {if there is one]
of each of the following sets: (assume that the pattern
continues in parts (a) and (b))

(a) {1, b, 5,...3  (e) (7, 7.1, 7.13, 7.138}
(v) (3 2230 (&) fxxeqasa® <7,
9. (a) Find an upper bound for Z in (Q,+,*,<); in (R,+,*,<).

NS

s 3
3
i’

2

i no

(b) Find the least upper bound of @ in (Q,+,,<); in
(RJ+:'J<)-
10. Now that you have worked with the definition of an upper

bounu =nd the least upper bound of a set S in an ordered

field (F,+,*,<), suggest a definition for:
(a) x is a lowsr bound of S.
(b) x is the greatest lower bound of S,

11, Suppose the measuring process produced the following infinite
set of rational numbers: S = {0, .1, .11, .11, .1111, ...)
where the indicated pattern is assumed to continue indefinitely,
{a) What is the next approximation in S?

(b) 1Is there a greatest rational number in S?
(¢) Give an upper bound of X.
(d) What would you guess is the least upper bound of S%

12, For each of the fo}lowing equations, represent its positive
real number solution:

O (a) x® =13 (b) x® =8 (e¢) x® = 25 (d) x® = 32
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13, Which of the solutions in Exercise 11 are rational?
14, Explain why the least upper bound of a finite set of

rational must be a rational numbers.




CHAPTER 6

COORDINATE GEOMETRY

6.1 Introduction

You saw in Chapter 3 (Section 3.6) that if we replace "point"
with "commando," "line" with "team," and "plane P" with "the com-
mando squad” we obtain & system that satisfies the incidence
axioms. In fact, you saw that there are other meanings for lines
and points which also result in models that satisfy those axioms.
It is therefore clear that those axioms are not sufficient by
themselves to characterize points and lines as we~ordinarily
think of them. In this chapter we add three more axioms to our
list of axioms. This increased collection of axioms will indeed
characterize the lines and points of our experience, and some of
the models which satisfied the incidence axioms will not satisfy
the six axioms. We are going to be guided in our choice of the
additional axioms by our experiences with rulers and with our
enlargement of the rational number system to the real number system.

This does not mean that we are making obsolete the theorems
we proved in Chapter 3. In fact, they are still in force and
are available in our continuing study of geometry in this chapter.

We repeat the incidernce axioms here for convenient reference,
Recall that v was the name of the plane.

Axiom 1. (a) Plane 7 is a set of points, and it contains

at lesst tﬁo lines.

(b) Each line in plane 7 is & set of points,

P
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containing at least two points,
Axiom 2, For every two points in plane 7 there is one
and only one line in 7 containing them,
Axiom 5, For every line m and point E in the plane u,
there 1s one and only one line in 7 containing

E and parallel to m,

6.2 Axiom 4. Uniqueness of Line Coordinate Systems

As we sald, our experiences with rulerssuggest this axiom.
Suppose you wish to draw a ruler on a line, You start with
an ‘mmarked line, as in Figure 6,1,

P I—

<

Figure 6,1

assuming it to be endless, Then you choose any two points, call

one 0 and the other I, Perhaps the line then looks like Figure

6.2,

»n

{t

Figure 6.2

or perhaps like Figure 6,3.

O

| 2

I 0
Figure 6.3

Then you assign O (zero) to 0 and 1 to I. Hawing done this

ou will have no other choices in assigning all other real numbers
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to points of the line. For the ruler in Figure 6.2 some of the

assignments are shown in Figure 6.4,

-1 ) 0 1 JZ 2 3

Figure 6.4

For the ruler in Figure 6,3 these assignments are shown in
Figure 6,5,

_ 2l
3 2 0 7 -1

1
i

1

I 0]
Figure 6,5

In assigning a different number to each point we are actu-

ally assuming that there are as many points on a line as there
are real numbers, Only under this assumption can we set up a
one~-to-one correspondence between the set of points on a line
and the set of real numbers, Recall that Axiom l(b) tells us
that each line contains at least two points, Axiom 4 adds in-
formation about the number of points on a line, But it does
more than that., It says also that once you have chosen the two
points to which are assigned O and 1, there is exactly one
way to make all other assignments of numbers to points, in

order to get the one-to-one correspondence in which we are

interested, Of course there are many oné-to-one correspondences

between a line and a set of real numbers, even after O and I

have been chosen, In Figure 6.6 we indicate some of these one-

to=one corre Spond ences,
O

272
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& o I >

- -1 0 1 2 -2 -

& o I S

) -1 0 1 -2 2 i

- o I —_

B 2 0 1 -1 -2 ]
Figure 6.6

but not all of them are acceptable, Let us call the acceptable

one-to=-one correspondences coordinate systems on a line, We

are now ready to state Axiom 4 precisely.
Axiom 4, For each pair of distinct points A and B of
a line there is exactly one coordinate system
on that line in which A corresponds to ¢ and
B corresponds to 1,
The 1line coordinate system described in Axiom 4 is called
the A,B-coordinate system on the line, taking its name from
the ordered pair of points (A,B), called the base. A and B

are called the base points, The point A that corresponds to

zero 1s called the origin and the point b that corresponds to
one is called the unit-point. The number assigned to a point of
7ﬁ§ is called its A,B-coordinate,

These terms are illustrated in Figure 6.7. Note that there
are two coordinate systems indicated on one line, (A,B) is the

base of one, What is the base of the other?

2 1 0
-1 0 1 2 3 L
D A B c E F

Figure 6.7 ("73
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In the A,B-coordinate system the origin is A, the unit-
point 1s B and the A;B-cocrdinate of C 1s 2, In the F,C-coord.-
nate system, the origin is F, the unit point is C and the F,C-coordi-
nate of A is 2,
Definition. Let line 4/ have an A,B-coordinate system and
let P and Q be any two points ¢f 4, Suppose
their A,B-coordinates are p and q respectively.

Then the number given by |p - q| is called the

A,B-distance between P and Q.
Examples, In Figure 6,7 the A,B-distance between C and E
is |2 - 3] =1 = |3 - 2| which is the A,B-distance
between E and C.
Theorem 1. (a) The A,B-distance between A and B is 1.
(b) The A,B-distance between P and Q is equal
to the A,B-distance between Q and P.
(¢) The A,B~distance between P and Q is equal
to 0 1f and only if P = Q.

Prcof., Exercise.

6.3 Exercises

In these exercises assume that all line coordinate systems
look 1like the number lines you have been using,
1, Assume an O,I-coordinate system, What is its origin?
What is its unit-point? What do you think is the 0,I-
coordinate of the midpoint of 0I?
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2. (a) Draw a horizontal line3 on it choose two points % inch
apart; call cne A, the other B. Locate the points whose
A,B-coordinates you think are -1, 2, 3%, -2%, V3.

(b) Draw another line below KE, and name th: points below
A and B, C and D respectively. On this line locate the
points whose D,C-coordinates you think are -1, 2 3%,
-23, V3.

3. In this exercise use the diagram below, assuming that the

points named ars evenly spaced,

A B C D E F G

ﬂk

v ol -

(a) What is the C,D-coordinate of E? of B?
(b) What is the D,C-coordinate of E? of B?
(e¢) What is the B,D-coordinate of F? of G2
(d) What is the G,D-coordinate of A? of E?
(e) What is the A,Gecoordinate of B? of E?
I, Tell whether each of the following statements is true or false.
In each, A,B, and C are names of distinect points on a line £,
(a) fThere is exactly one coordinate system on £ that has A
as origin,

(b) For each choice of a point X on £, other than A, there
is a different A,X-coordinate system,

(c) For each choice of a point Y on 4, other than B, there
is a different Y,B-coordinate system,

(d) There are as many coordinate systems on a line as there
are ordered palirs of distinct.points on the line,

(e) There are exactly two coordinate systems whose base

points are found in the set {A,B}, if A #£ B,
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(f) There are exactly three coordinate systems on line £
whese base points are found in the set {A,B,C}.

(8) There is exactly one point on line £ whose A,B-coordinate
is 2562.8,

(h) fThere is no point on line # whose A,B-coordinate is
the same as its B,A~coordinate,

5. We defined the A,B-distance between points P and Q with

A,B-coordinates p and q to be |p - qi.

(a) Prove Theorem 1.

(b) Find possible coordinates of S on Kg if the A,B-distance
from S to B is twice the A,B-distance from S to A,

6.4 Axiom 5, Relating Two Coordinate Systems on a Line

If we brought together an inch-ruler and a foot-ruler,
edge to edge, as shown in Figure 6.8, they would suggest two

t
coordinate systems on a line { - coordinite system

12 18 24 30 36
1 2 3

01

0

Fy

oji= 1 o

f - coordinate system
Figure 6.8

Note that they have the same origin, but not the same unit-
point. Let us call them the f-coordinate system (foot) and
the i-coordinate system (inch), Can we relate the two coordi-
nates of any point? No doubt you see that the i-coordinate of
; each point is 12 times its f-coorrdinate, This suggests that
4 the set of f-coordinates can be mapped onto the set of i-

i Q
- E}Sg; coordinates by a dilation given by i = 12f, (This applies ry?{s
[ ]
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to all i- and f-coordinates, including negative numbers., )

Let us move the inch-system to the rignt a distance of

6 inches, Then the two systems appear as in Figure 6.9.
1 ~ coordinate system
-18 -6 0l 6 12 18 pell] 30
) 0 1 1 1 2 1 3 >
5 15 23

f - coordinate system
Figure 6.9
To distinguish the two inch-systems, let us call the one

shown in Figure 6,9 the i' -coordinate system, If we map

d
f-coordinates by the dilation d used above with rule f————12f,

then we note the following:

d d d

-l — 212, O0—>0; 11— 12,

; 4@

l'é' ~18=
Do you notice that each image has overshot the 1i'-~coordinate

in Figure 6.9 by 6? This can be corrected by a translation, call

t
it t, having the rule x —— x - 6,

The composition of the dilation d followed by the trans-
lation t maps f-coordinates onto i' -coordinates, For each
value of f the succession of images can be written

d t

f —-12F - 12f -~ 6,

Therefore

t od
f ——— 12f -~ 6,

The rule for converting £ values in Figure 6,9 to i' values is
therefore
' =12f - 6,
1 sl i)
Check this result with f = 2, with f = 13, e

p JR—-7 N
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Recall that i' represents coordinates in an inch-coordinate
system and f reprcsents coordinates in a foot-coordinate system.
If we generalize what we found for these two coordinate systems
to any pair of coordinate systems on a line we have Axiom 5,
But we must know how to generalize the formula i' = 12f - 6
correctly. T¢ do this we consider any dilation followed by any
translation, both on the same line, Any dilation has a rule of
the fornm x —ax, where 4 is any nonzero real numberj; and any
translation has a rule of the form x—-—x + b,where b is any
real number, The composition of both mappings then has & rule
of the form

X ——38X + b,
Letting 3 represent the coordinate of any point on the line in
one system, and x' its coerdinate in the other system, we can
write
x' = ax + b,
We now state Axiom 5 precisely.
Axiom 5, I: (A,B) and (A',B') are bhases for coordinate
systems on a liney, then there 1s a relation
¥ = ax + b with a # 0 which, for each
point X of the line, relates its A,B-coordinate
X to 1ts A',B' ~coordinate x'.

The composition of a dilation and a translation on a line

is known as an affine mapping or affine transformation on a line.
Axiom 5 therefore says that the coordinates of a line coordinate
system can be mapped onto the corresponding coordinates of any
coordinate system on that line by an affine transformation,
ljRjkj Knowing that there is such a transformation is not the

IToxt Provided by ERI
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same &as knowling what it is. But it helps as we show with an
example, Suppose we are given two coordinate systems, as shown

in Figure 6.10, and we call the coordinates

1
1 = 0 5 X - coordinates
-1 0 1 2 X' = coordinates
A B

Figure 6,10

shown above the line the x-coordinates, and those below the
x' =coordinates, We seek a value of & and a value of b such
that for the coordinates x and X of each point, x* = ax + b,

Axiom 5 tells us there are such values, 50 we start with

x* = ax + b, Choosing a point on the line, say A, we replace
x and x' by the two coordinates X =ax+Db

of A. This gives us equation (1). (1) o= a(-%) + b

A second point, say B, yields (2) 1 =a(C) + Db
equation (2). As you will see, (3) %a =b

these two equations are sufficient (4) 1 =01

to lead us to determining the val- (5) %a =1

ues of a and b, Lock at equation (6) a=2

(3) and tell how it was obtained from equation (1). How is equa-
tion (%) obtained from (2)? Equation (%) tells us that b is 1,
Using this information show how equation (5) follows from (3).
Finally (6) tells us that a is 2, The formula that should relate
the x-coordinates to X' -coordinates is

¥ =2x + 1.

Check it with x = -1, with X = 5. If you wish to interpret
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the affine transformation that maps x-coordinates onto x' -coordi-

nates, you can see from the formula that it is the composition

of the dilation with rule x —s 2x, followed by the translation

with rule X —» x 4+ 1, Try to explain how this was determined

from the formula @ = 2x +4

Let us look at another similar problem,

1.

problem are given in Figure 6,11,

A

=
o

Figure 6

We start with x = ax + b,

The coordinates of A lead to equa~

tion (1). The coordinates

to equation (2), Equation

that 1 - 4a and 2 - 2a are

the reason being that each

same as b, Study the rest

solution, Finally we see
1

X = =5X + 3o

Check with x = 0, with x =

of B lead

(5) says
equal,
is the
of the

A1

v

The data for this

X = coordinates

X' = coordinates

l

(1)
(2)
(3)
(#)
(5)
(6)
(7)
(8)

1

2

1 -~ 4a
2 -~ 2a
1 - 4a
-1

a

b

=a(4) + 1
= a(2) + b
=Db

=Db

=2 - 2a

= 24

"

T2

1 - 4(-%) or 3

-2, Describe the affine

transformation

in terms of a dilation followed by a translation that maps x-

coordinates onto corresponding x' -coordinates,

6.5 Exercises

O

FERIC. The relation between x-coordinates and x'-coordinates in two

IToxt Provided by ERI
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systems on a line is x' = 3x - 1,

(a) The x-coordinate of point A is 2, What is its x' -

coordinate?
(b) The x-coordinate of B is 4, what is its x' -coordinate?
(¢) The x' -coordinate of C is 8, What is its x-coordinate?
(d) The x' -coordinate of D is -22., What is its x-coordinate?
(e) Find the x -coordinate of the point whose x-coordinate

is 3000.
(f) TFind the x-coordinate of the point whose X' -ccordinate is
3000,
(g) PFind the x' -coordinate of the point whose x-coordinate
is +/10.
(h) Find the x-coordinate of the point whose X' -ccordi-
nate is V11,
(1) Find the x-coordinate of a point whose x- and x' -
coordinates are equal, (Hint: 1let x' = Xx.)
(3) Find the x-coordinate of a point whose x' -coordinate
is twice its x-coordinate,
Do Exercise 1 for the two coordinate systems on a line with
x- and x' -coordinates, if x' = %x + 3 relates the x-
coordinate of any point on the line with the x'-coordinate
of that point.
For each pair of coordinate systems on a line indicated below,
find the formula that converts the x-coordinate of each
point to its X' -coordinate, Check each formula with data

not used in deriving the formula,
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1 X - coordlnates

——

4y x' - coordinates

10 X - coordinates

—
>

o

—

no
O’\O we O

-3 -2 - 1 x' - coordinates
(c)‘ -2 0 2 X - coordinates
) 2 o) -2 ﬁ'x' - coordinates
(a) 2 1 0 -1 -2 x - coordinates
) 4 2 0 -2 ! ;' - coordinates
1 2
(e) x: 0 3 3 (£) x O 3 6
x: 0 1 > wr 1 b 7
() = 2 I 6 (h) =x -1 0 1
x': 0 17 2 i xf: 6 4 >
(1) x: =50 0 50 (3) x: 14 15 16 ‘
x: 100 200 300 x: 8 -6 4
b A B C D E R
- -2 -1 0] 1 2 ] X - coordinates
% 1l % %— 0 y - coordinates

The diagram above indicates two coordinate systems on
a line., Let x be the C,D-coordinate of a point and y the
E,B-coordinate of the point,
(a) Find a formula that converts x-coordinates to y-

coordinates,

(p) Find a formula that converts ¥-coordinates to x-

282
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A B c D E

- -2 -1 0 1 5 - X - coordinates
2 % 1 % o y - coordinates
-2 8 2 b 6 z - coordinates

The diagram above indicates three coordinate systems

on one line, Using the data shown find a formula that converts

(a) y-coordinates to x-coordinates,
(b) =z~coordinates to x-coordinates,
(c) z~coordinates to y-coordinates,
(d) =x-~-coordinates to z-coordinates,
(e) X-=coordinates to y-coordinates,

(f) y~coordinates to z-coordinates,

0 100 Celsius C

A

32 212 Fahrenheit F

Let the dlagram indicate a thermometer with the Celsius
(Centigrade) and Fahrenheit scales showing the freezing and
boiling points of water, Assume that each scale 1s a model
of a line coordinate systemn,

(a) Find a formula that converts C-coordinates (Celsius
readings) to F-coordinates (Fahrenheit readings).

(b) Find a formula that converts F-coordinates to C-
coordinates.

Using the formulas found in a or b, find
(c) the Fahrenheit reading that corresponds to the Celsius

reading of 50, -20, 1000,
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(d) the Celsius reading that corresponds to the Fahrenaeit
reading of 50, -14, 2000.

(e) Find the reading for which the F- and the corresponding
C-~coordinates are the same,

(f) What is the F-coordinate which is 20 more than its
corresponding C-coordinate?

(g) Wnat is the name that describes the kind of mapping
that relates Fahrenheit and Celsius readings?

Given two points A,B. Find the formula that converts A,B-

coordinates to B,A-coordinates and find the point whose

A,B-coordinate is the same as its B,A-coordinate,

n 2 X - coordinates
-5 3 x! - coordinates
P Q

Using the data indicated in the above figure, find the
x' -distance between P and Q and the x-distance between
P and Q. What_is the ratio of these distances? Find the
formula x* = ax + b that converts x-coordinates to x' -
coordinates and show that the distance ratio is equal to |aj.
Let points P and Q have coordinates p and g in some coordinate

system on PQ, with base (A,B). Let P and Q have coordinates

p' and ¢ in another coordinate system with base (&' ,B' ),

and let X' = ax + b convert A,B-coordinates to A',B -

coordinates, Prove that the A' ,B'-dlstance between P and Q

is |a| times the A,B-distance between P and Q.

6.6 Segments, Rays, Midpoints

O

We usually think of segment AB {where A # B) as the set

284
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consisting of A, B and the points of Kﬁ'between A and 3, Up to
now the word "between" has not been defined mathematically;
rather we have tnought of hetweeness of points intuitively, in
terms of physical models of points and lines. In this chapter
we can define the betweeness relation for points in a line
formally, without relying on properties of physical models,
Definition. Point P is between two points A and B,
if the A,B-coordinate of P is between
0 and 1,
Definition, If P # Q, then segment PQ is the set of
points consisting of P, Q and all points of
Fa that are between P and Q. P and Q are
called endpoints of the segment$ the points
between P and Q are called interior points of

the segment.

We can think o:' AB as the set of points whose coordinates
X satisfy 0 < x £ 1 in the A,B-coordinate system,

Note that we use Axiom 4 to introduce the coordinate system
in which A and B have coordinates 0 and 1 respectively, and then
we rely on our knowledge of the betweeness relation for numbers,
in terms of inequalities.

Thus, if p is the coordinate of P in the A,B-coordinate
system, then P is between A and B if and only if 0 { p < 1,

But you probably ask, suppose we look at A, B, and P from the
point of view of another coordinate system in which the coordinate
of P is between the coordinates of A and B in the second system,

lszkj will P be between A and B? Axiom 5 helps to answer this question,

S 2R7 —




-281-

We show how with a particular example, Suppose A and B .ave
coordinates 7 and -3 as shown in Figure 6,12, and P has a coordinate

X between 7 and -3,

A B
. 7 -3 x - coordinates
< 5 3 —

Figure 6,12

Will P be between A and B, as defined above? To answer we
should find the A,B-coordinate of P. To do this we first

find the formula X! = ax + b that converts the x-coordinate

of A to 0 and the x-coordinate of B to 1., This means finding
an a and a b such that 0 = a*7 + b and 1 = a(-3) + b, Solving,
as we d’d in Section 6.4, we get a = -I% and b = "T%’ The co-

ordinate of B x, satisfies condition (l) at the right. Now

we convert X-coordinates to A,B-coordinates by the formula:

| L -
A,B-coordinate = -z5x + 75 (1) 3.< x<7
The first step is to multiply by (2) ‘Té < -T%X < T%
1 1 7
-5+ This produces (2). Wwhy is (3) o< X+ 75 < 1

the order reversed? Then adding
T%’ we get (3), which shows that
the A,B-coordinate of P is between O and 1. We conclude that
P is between A and B, in accerdance with our definition.
The definition we gave for a line segment is now on sound
mathematical ground, Moreover, we can use any coordinate system

to define a segment, For instance, using x-coordinates in

)
]ERi(ﬂgure 6.12 we can say:

280
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AB is the set of points whose x-coordinates satiufy
the condition -3 < x < 7.
Or we can say
AB is the set of points whose A,B-coordinates X' satisfy
the condition 0 < X' < 1.
We can also use Axioms 4 and 5 to give a precise definition for
ray.
Definition, If P and Q are distinct points of a line £,
then the subset of £ whose P,Q-coordinates
X satisfy the condition x > O is called a ray,
designated PQ. The point P is the endpoint
of the ray, and all of its remaining points

are called interior points of the ray.

If we convert these x-coordinates by the dilation with
formula x* = =X, we are led to another coordinate system with
the same origin as the x-coordinate system. Applying our
definition of a ray to the x'-coordinate system we see that
the set of points with x' ~coordinates satisfying x* > 0 is also
a ray., Thus the point P serves as a common endpoint of two

rays whose interiors have ne points in common. Naturally, we call

them opposite rays,

Q! P Q

Figure 6,13

— —
PQ and PQ' are opposite rays

IR
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We know now that the coordinates x of the points of fa
satisfy the condition x > O in the P,Q-coordinate system on
53. You might reasonably ask what condition these coordinates
would satisfy in other coordinate systems on 55. By Axiom 5,
the coordinatz X' of a point in another coordinate system is
related to the coordinate x of the same point in the P,Q-
coordinate system by an affine transformation x* = ax + b, with

a#0, Thus a< 0ora >0, In either case X > 0. Computing:

x20 x>0
a>o a<o
ax > 0 ax < 0
ax + b2>Db ax +b<b

(Do you see why x > 0 and a < 0 implies ax < 0?) We conclude that in
any coordinate system, the points of fa satisfy a condition
x > b or x < b (but not both),
If you look back at Course 1, Chapter 10, Section 10,2,
you will find that we first introduced rays there, and then
defined'iﬁ as AB N BR. 1In this chapter AB and BA are the sets
of points whose A,B~coordinates satisfy x > 0 and x < 1, respec-
tively, (Verify this.) Thus in this chapter, KE n EK is the
set of points whose A,B-coordinates x satisfy 0 < x < 1, which
is of course AB,
Theorem 2, If C is between P and Q, then the
A,B-distance between P and C, plus the
A,B-distance between C and Q, is equal to

the A,B-distance between P and Q.

The "then" part of this theorem can be written PC + CQ = PQ.
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Proof., Exercise

You have probably anticipated the delfinition of a midpoint
of a segment,

Definition. The midpoin% of AB is the point whose

NS

A,B-coordinzte is

°

But you will probably ask, what will its coordinate be in any other
coordinate system? Let us see. Suppose in thz x' -coordinate
system the X' -coordinates of A and B are respectively a and b,

(See Fgure 6,14)

a ? b  x'-coordinates
A 1 B
0 2 1 x-coordinates

Figure 6,14

You can check that ¥ = (b - a)x + a converts X-coordinates
to x' -=coordinates, What is X' when x = 0? when x = 1? Thus
the x' -coordinate of the mid-point of AB is found by replacing

X by %o Show that the result is x* = a g b « This proves a

theorem we shall find useful.
Theorem 3. (Midpoint) If the coordinates of A and B are a
and b respectively in some line coordinate system,
then the coordinate of the midpoint of Kﬁ, in that

system, 1s a ; bo

You can recall this formula easily if you think of a ; L as the

mean or average of a and b.
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6,7 Exercises

1,

3.

- 3

~1 0 1 2

A

Using the data indicated in the above diagram for a
line coordinate system, and letting x represent coordi-
nates in that system, write the inequality or equality
that is satisfied by the coordinate(s) of the points

in each of the following:

(a) AC (b) 7D (¢) DC (d) AD
(e) CA () CB (g) the midpoint of AC
(h) the midpoint of AD (1) AC N BD (j) AC 1 CD

Find the x-coordinate of the midpoint of AB if the

X-coordinates of A and B are the following pairs of

numbers:
(a) 3 and 8 (b) =3 and 8 | (¢) -3 and -8
() 3 ana -8 (e) 152 and -152 (f) 5 and %

(g) -2% and 3% (h) 8.2 and =3.6 (i) ~2 and V3

In a certain coordinate system the coordinzte of A is
3. Find the coordinate of B if the midpoint of AB has
coordinate:

(a) 8 (v) -8 (e) © (a) 2
Below are sets of three points on a line. Each is
accompanied by its coordinate in a certain coordinate
system on the line. For each set tell which point is
between the other twc.

ia) A -12, B —4, C 1o (b) PJ-Q, Q'f3’ R 1050

290
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(c) L -3 M-3.5, N-3.4. (a) Dv2-+2, E O,
F 3 -2,
5. Consider three coordinate systems on a line, the first
having x-coordinates, the second y-coordinates, and
the third z-coordinates., If the formula y = 3x - 2
converts x- to y-coordinates and the formula z = %y + 1
converts y- to z-coordinates, find the formula that

converts x-coordinates to z-coordinates.

6. -2 -1 0 1 2 3 L
A B C D

»
¥

=

F

Let X represent the C,D-coordinates of a point X on
line 4. Using names of points of 4, designate the
subsets of £ listed below. The first of these is read:
the set of points X such that their x-coordinates satisfy
the condition x > -1.
(a) (X x> -1} (p) (X =x< 3} (e) {x x =3)
(¢) {(xx o< x<e2)le) {x -2<x<x}
(r) (X =x>1) (g) (x 0<x<?2} (h) (X2 -2<x<-1}
7. Usiggacocrdiﬁates prove that if point X is in AB, then
X is in AB.
8. Using coordinates rrove that if distinct points X
and Y are interior points of AB, then every point of
XY is an interior point of 3B,
9. Prove Theorem 2,

*10, Let P, Qs R be points of a line with P distinct from

Q R, having respective coordinates p, Qs Iy in some

m el aedtnr
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coordinate system. We call the ratio %—E—% the ratio

in which Q divides PR from P to R,

(a) What is the special name given to Q if-%~§-§ = %?

If you have difficulty answering, solve for q in terms
of p and Q.

(b) PFind an interpretation for Q if %—E—% = %, %.

(¢) Point Q is an interior point of PR if m < %—E—g < n,

What are the values of m and n?

P R
) -2 8
Check your answer with p = -2 and r = 8 as

shown above, When Q is between P and R we say that Q

divides PR internally.

(d) Using the data in (c) and a coordinate of Q for

which P 1is between Q and R, find-%—%—g.' Is the value

negative? Show that P is between Q and R if =5 <o,

() Show that R is between P and Q if =2 > 1,

When @ is not between P and R, then we say that Q
divides PR externally.

(f) Show that %—E—g does not: change when p,q, and r are
replaced by their images under an affine transformation,
(Hint: Use the rule x* = ax + b, Then q is replaced
by aq + b, etc,)

(8) Prove: %—E—% is the P,R=coordinate of Q.

Prove that =% = 0 if and only if Q = P, and that

4-P -1 if and only if Q =R,

roP 599
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6.8 Axiom 6, Parallel Projections and Line Projections

We need only one more axiom to complete the set of axioms,
Let 4 and &' be any two lines in a plane, and take (A,B) as

base of a coordinate system on 4, (See Figure 6.15,)

/f 2
Xl
x(
Bl
1
AI
@]
-« 0 1 X > ,Q
A B X

Figure 6,15

Consider a parallel projection from 4 to 4'; call it f,
(see Chapter 3, Section 3.12) Then A —~ » A', B —L o 7,
Let {(A', B') be the base of a coordinate system of #', If X
has A,B-coordinate 13 and X ——»X', 1t seems reasonable that
the A', B -coordinate of X' is also 1%9 If Y has A,B-coordinate
=1, and Y -—£—>‘T , 1t seems likely that the A!',R' -coordinate
of Y' is also =1, and so on for all points of & and their

images in £' under f,
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We can describe this state of affairs by saying that »aral-
lel projections preserve relative positions of points and ratios
of distances. To put it briefly, parallel projections preserve
coordinate systems., This is the content of Axiom 6, which we
now state precisely.

Axiom 6., Let f be a parallel projection from line £ to

line &', Let A,B be distinect points of £ and
let A' ,B be their images under f. Then for
every point X of 4; the A', B -coordinate of its

image, X', is the same as the A,B-coordinate of X,

An immediate consequence of this axiom is the following
theorem,
Theorem 4, Under a parallel projection from line £ to line #',
(a) the set of images of the points of a segment
on £ is a segment,
(b) the image of the midpoint of a segment is
the midpoint of the image segment,
(¢) the set of images of the points in a ray
is a ray.,

Proof. Exercise,

For convenient reference in working the exercises, we restate
the six axioms,
Axiom 1, (a) Plane 7 is a set of points, and it contains
at least two lines,
(b) Each line in plane 7 is a set of points,

containing at least two points,

Axiom 2, For every two points in plane 7 there is one
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and only one line in 7 containing them,

Axiom 3. For every line m and point E in the plane T,
there 1s one and only one line in m containing
E and paraliel to m,

Axiom #, Por each pair of distinct points A and B of

a line there is exactly one coordinate system
on that line in which A corresponds to 0 and
B corresponds to 1,

Axiom 5, 1If {A,B) and (A',B') are bases for coordinate
systems on a line, then there is a relation
X =ax + b with a # 0 which, for each point
X of the line, relates its A;B-coordinate x to
its A' ;,B' -coordinate x' .

Axiom 6, Let f be a parallel projection from line 4 to
to 1line 4#', Let A,B be distinct points of 4 and
let A' ,B' be their images under f. Then for
every point X of 4, the A' ,B' -coordinate of its

imagey, X', 1is the same as the A,B-coordinate of X,

6.9 Exercises

In Exercises 1 - 5 assume that f is a parallel projection
from line 4 to line 4'; that A, B, C are points of £; that their
respective images under f are A', B ', C'; and that A and C are
distinct points,

1, Prove that B' is between A' and C' if B is between A and C.
2. Prove: If B is the midpoint of AC, then B' is the midpoint

290

of M,




LS e AR TIRE AT e e T e 20 T e e e e e e

-291-

Prove: The image of KE is a ray.

Let B divide AC, from A to C, in the ratio r. Prove that
B' divides ATC', from A' to C', in the ratio r.

Prove: the ratio of the A,B-distance from A to C to the
A,B-distance from C to B is equal to the ratio of the

A' ,B' ~distance from A' to C' to the A',B' -distance from

C' to B, This theorem is sometimes known as Thales'
theorem, after the Greek mathematician Thales (¢, 624 - 543
B.C.) who is called the father of genmetry.

A, B, C are three non collinear points with D the midpoint
of AB, as shown below. Prove that the line containing D

and parallel to BC passes through the midpoint of AC.

3

VAN

A\

Modify the data in Exercise 6 to the effect that D is the
trisection point nearer A, and prove the appropriately

modified conclusion.

6.10 Plane Coordinate Systems

You saw how line coordinate systems enable us to prove

theorems about sets of points on a line. In this section we
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construct another kind of coordinate system, this time for a
plane, and you may expect that it will enable us to prove theorems
about point sets in a plane, As we construct a plane coordinate
system, it will be instructive to note analogies between line
coordinate systems and plane coordinate systems. We urge you

to look for them,

We start by choosing any ordered triple of three non collirnear
points in a plane., Let us name it {(0,I,J) and call the ordered
triple the base of the system, Ve call Sf the x-axis, and
07 the y-axis. On the x-axis,base (0,I) determines a line
roordinate system, On the y-axis,base (0,J) determines a line
coadrdinate system, It may surprise you that this is &ll
the equipment we need to assign to every point in the plane an
ordered pair of numbers. We illustrate how this is done for

point P, ({See Figure 6.16.)

» X = axis

»

-1

Q Figure 6,16
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Consider the line through P parallel to BEﬂ Is there
one? More than cne? Why? This line intersects 6; in ex-
actly one point, See Chapter 3, Section 3,5, Theorem 10, for
the Justification of this assertion, Let this point have 0,I-
coordinate X. X is assigned to P. 1In the same manner, by
considering the line through P parallel to gf and noting its
intersection with 63 we assign the O,J-coordinate y of this

point to P also., The pair of coordinates, in the order men-

tioned, (x,y), is called the 0,I,J-coordinates of P. The

first of these, x, is called the x-coordinate of P; the second,
¥, is called the y-coordinate of P, It is clear from this
description that to each point of the plane there corresponds
exactly one such ordered pair of numbers,

Let us reverse the procedure, Given an ordered pair of
real numbers, (a,b), is there exactly one point that has 0,I,J-
coordinates (a,b)? The answer is "yes" and we leave the
proof of this assertion as an exercise,

The net result of this discussion is this: For every
choice of base (0,I,J) in a plane the method by which we assign
an ordered pair of real numbers to a point of the plane pro-
duces a one-to-one correspondence between the set of polints
in the plane and the set of ordered pairs of real numbers,

The significance of this ¢lose kinship between points of a plane
and ordered pairs of numbers lies in this fact: Once we have
chosen a base for a plane coordinate system, we can identify

precisely and clearly any point or any set of points of the
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plane. For this reason we can study points by studying cheir
plane coordinates, In fact, we name a point such as P, along
with its coordinates, say (2,-3), and write them together in

the symbol "P(2,-3)." It is read: ¢the point P with coordinates
(2,-3). Also we can designate a set of points such as

(P(x,y): x>0 and y > 0}; and this is read: the set of points
P with coordinates (x,y) such that x is greater than zero and

¥y is greater than zero. You have probably noted that these
points are the interior points of LI0J. This set is called

the first quadrant of the 0,I,J-coordinate system, T.et us

Jook at some other examples of point sets,
Example 1, Each point in the x-axis has O as its y-
coordinate, and its x~coordinate can be any
number, Therefore x-axis = {P(x,y): y = 0,
x is any real number}.

Example 2, By the positive x-axis we mean 63 without point

0. Using coordinates we can describe it as
(P(x,y):x > 0, y = 0},

Example 3, Consider the segment whose end points are A(-2,2)
and B(3,2). Since both points have 2 as y-
coordinate they rniust be in the line which is
parallel to the x-axis and passes through the
point of 0J whose 0,J-coordinate is 2, (See
Figure 6,17.)

o
o
de
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y -~ axis

»N
.
}
b

s -1 f I 2 3 x - axis

Figure 6,17

Therefore all points of AR have y=-coordinate 2, Do you
see that all x-coordinates of points in AB satisfy the con~-
dition -2 < x < 3? Then AB = {P(x,y): -2 < x< 3 and y =2},

Example 4., Figure 6,18 is a graph of {P(x,y): 0 < x < 2

and -1 < ¥ £ 3}, Study it carefully, noting
that it 1is the shaded region., Note carefully

fhow the base (0,I,J) was chosen before studying

\x? - axis

3
2
J
< 2 \\\\\ » X = axis

NN\

Figure 6,18

300
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6.11 Exercises

l. Explain why the set of points on the y-axis can be described
as {P(x,y): x = 0}.
2. Where do we find all points belonging to {P(x,y): y = 0

and x < 0}. This set is called the negative x-axis.

3. Using set notation give a reasonable description of each of

the following:

(a) the y-axis.

{b) the positive y-axis.

(c) the negative y-axis,

(d) the second quadrant. (Hint: It contains P(-2,5).)
(e) the third quadrant. (Hint: It contains P(-3,-7).)
(f) the fourth quadrant.

4, Choose a base (O,I,J) for a coordinate system on your paper
angd draw the line that contains I and is parallel to 63;
call it £,

(a) Show that every point in £ has 1 as x-coordinate.
Also show that every poirt having 1 as x-coordinate
is on 4, Write a set notation description of 4,

(b) Draw the line m that contains J aad is parallel to g?n
Give a set notation description of m.

(c) Give a set description of £ N m,

5. Given a base {(0,I,J) for a plane coordinate system, and
an ordered pair (a,b) of real numbers. Prove that there
is exactly one point that has 0,I,J-coordinates {a,b).

6. Let (3,4) be the 0,I,J-coordinates of noint P, Give
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a set notation description of the line that contains P and
L e ]
(a) is pnarallel to OI.
L e d
(b) is parallel to 0J.
(¢) Describe, in words, the set {Q(x,y): y > 4 and x > 3}.
(d) Describe also (R(x,y): y < 4, x > 3).
Repeat Rxercises 6(a) and 6(b) for the point P whose 0,I,J-
coordinates are (-3,2).
Repeat Exercises &(a) and 6(b) for the point P whose 0,I,J-
coordinates are (-4,-3),
Make a drawing of each of the following sets using a plane

coordinate system of your choice,

(a) (P(x,y): x>0, ¥

]

2}

(b) (P(x,y): x >0, y = -4)
(e¢) (P(x,y): x =0, ¥y £ 3)
(a) {(P(x,y): x =3, -1 <y<2)
(e) (P(x,y): y=-2, -2 < x< 2}
(£) (P(x,y): x< 2, y>1)
(g) (P(x,¥y): vy <2, x>1}

)

7N

2, ‘2Sys2}

(n) (P(x,y
(1) (P(x,y): -2 < x

Draw an (O,I,J)-coordinate system and a line £ that inter-

P =2 <X

2, "3S_ys3}

IN

sects the y-axis. Consider only the x-c¢ohordinates of
points on 4., Show that the correspondence between the
set of these x-coordinates and the set of vpoints on £ is

a line coordinate system.

(3]

302



-298-

6.12 An Eguation for a Line

Your work in Section 6,10 and 6.11 no doubt convinced
you that some sets of points can be defined precisely in set
notation by using equations, inequalities or both., In particular,
we used egquations to describs sets of points on lines parallel
to the x-axis or the y-axis. 1In this section we look into
the question of whether other lines, lines that intersect both
axes, ca also be described in set notation using equations. Let
us try to find the answer for a varticular line, and then for

any line.

t

X - axis

Figure 6.19

In Figure 6.19 line 4 contains points A,B,C,I,D,E, among others,

O
ERJC The coordinates of the named points are Tecorded in the table

IToxt Provided by ERI

fa Y81




_299_

below,
A B c I E
X - coordinate|- % 0 % 1 L% 2
y - coordinate 3 2 1 0 -1 -2

While the table shows x-coordinates of only 6 points,
let it suggest the set of x-coordinates of all points of £,
By Axiom 6 the correspondence between the set of x-coordinates
and points of £ is a line coordinate system. (See Exercise
10 of Section 6.11). 30 too, is the correspondence between
the set of y-coordinates and points of 4. Hence we have
here two coordinate systems on £. By Axiom 5 there is an
equation y = ax + b that relates y-coordinates to x-coordinates.
It 1s a simple problem to find a and b. By a method we have
already studied, a = -2 and b = 2, (Check this with the coordi-

nates in the above table.) Thus the coordinates of all points

of 4 satisfy y -2Xx + 2., But we cannot claim, yet, that

b= (P(X:Y)‘ y

whose coordinates (x,y) also satisfy y = -2x + 2. To show that

-2x + 2}, for there may be a point not on 1,

this cannot be, we argue as follows: For each number p
there is a point S on 4 that has p as x-coordinate. (why?)
There is exacﬁly one number g such that (p,q) satisfies
y = =-2x + 2. (Why?) Therefore S must have g as y-coordinate,
We conclude that all points whose coordinates satisfy
y = =2X + 2 are on 4, We are now justified in writing

L = {P(x,y): ¥y = -2x + 2}.

The argument we gave for £ is the same for any line in the

901 _
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plane that cuts both axes. We call the equation used in set
notation to describe £ as an egquation for 4. Note we said
an, not the, for there are other equations which can also be
used to describe &4, For instance, 2x + y = 2, or 4x + 2y = 4,
or 1000y + 2000x - 2000 = 0. Do you seec that these equations
are equivalent to y = -2x + 2. Note: {(x,y): ¥y = -2x + 2} =
{((x,y): 4x + 2y = 4},

In Sections 6.10 and 6.11 we saw that we can use an equation
of the form x = r to describe lines parallel to the y-axis,
and equations of the form y = s to describe lines parallel to
the x-axis, We can therefore claim that every line has an
equation of the form ax + by + ¢ = 0. For lines parallel to the
x-axis a = 0, and b # O, For lines parallel to the y-axis a # 0,
and b = 0, For all other lines a # 0 and b # O.

We end this section with three examples in which set nota-
tion is used to describe a line, when we know the 0,I,J~co-
ordinates of two of its points. Why are only two points
needed?

Example 1. Line 4 contains A(3,-2) and B(3,7).
Since AB 1 63, L = ({P(x,y): x = 3}.
Example 2., Line m contains A(3,-2) and ¢(8,-2).
Since AC | Bf, m={P(x,y): ¥y = -2}.
Example 3. Line n contains P(-1,2) and Q(3,1).
Assuming both (-1,2) and (3,1) satisfy y = ax + b,
we get (1) and (2) below. Study the rest of

the solution,




=
it
w
)
+
o’

Therefore n = [R(x,y): y = - %x + %].

6.13 Exercises

Assume that all coordinates and equations in these exercises
are related to a plane coordinate system with base (0,I,J).
1. A line 4 has an equation 3x + 2y - 6 = 0. For =ach point

listed below, determine whether or not it is a point of L,

(a) M0,3)  (b) B(2,0) (o) o(2,3) (&) D(-2,6)
(e) B(4,6)  (£) F(4,-3) (&) 6(1,3)  (n) H(1,-3)

(1) K(10,12) (3) 1(10,-12) (k) M(3,3) (1) (22,3 - 3V2)
2. Which of the following can be an equation fur a line?
(a) 4x - 2y + 5 =0 (b) 4x* -2y +5 =0
(c) 8x - ¥* +5=0 (a) »/3 =5
() w2 45y =9 (£) my =2

3. For each equation listed below, write an equivalent equation

having the form y = ax + b, if possible.

(a) 3x =5 -y (b) 8 =3x+y
() 3x =8 (d) 5y = 2
]ZRjkj (e) x + %y =4 (r) ax + by = ¢
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4, For each equation of a line listed below, find the coordi-
nates of a point that is on the line, and the coordinates

of a point that is not on the line,

(a) 2x + 3y = 6 (b) 2x - 3y = 12
(c)x+-;}y=4 (a) 3x = 28
(e) %x + %y =4 (£) 5y = V7
5. Determine whether or not, for each equation listed below,
the line for which it is equation contains point P(2,-3).
(a) x =2 (b) y = -3 (e) x +y = -1
(d) x -y = -1 (e) 2x -y = 0 (r) 2x + 2y =0
2 3 2 3
. 4 4
(g) 3x + 2y = 6 {h) 3x + 2y = 0 (1) 5X +3¥ =0

() ex+y+1=0(k)3x+2y+1=0(1)2x - V3y =

6. Which of the following lines pass through 0, which pass
through I, and which pass through J, where (0,I,J) is the

base of the plane coordinate system?

(a) (P(x,y): y = 3x}
(b) (P(x,y): y = 3x + 1)
(e) {P(x5¥): ¥y = x - 1}

(a) {P(x,y): 58x + 69y = 0}

(e) (P(x,y): x =1}
(£) (P(x,y): y =1}
(g) (P(x,¥): ¥y = -3x)
(n) (P(x,¥): x = 0)

7. For each palr of points give.l below, together with their

0,I,J-coordinates, find an equation for the line that
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contains them.

(a) A(3,0), B(5,0) (b) c(4,2), p(2,0)

(c) E(4,2), #(2,4) (d) ¢(-3,3), H(3,-3)

(e) k(6,2), 1(0,3) (£) M(12,-2), N(6,10)

(g) P(4,-1), q(8,1) (h) r(0,5), s(-3,0)
8. Find an eguation for each of the following:

(a) OT (b) oF (¢) IJ

9. Using set notation describe each of the following segments:
(a) OT (b) 0OJ (c) TIJ

10. What are the coordinates of the midpoint of 0I? of 0J? of

IJ?
3(0,1)

0(0,0) 1{(1,0)

11, Find the coordinates of the midpoin%t of AB, if A and B have

coordinates listed below,

(a) A(0,2), B(4,0) (b) A(2,3), B(6,1)
(c) -A(‘ex."ﬁ): B(0:5) (d) A('23‘3): B(61‘2)
(e) A(-2,3), B(2,-3) (£) A(4,3), B(5,-4)

6,14 Intersections of Lines

Knowing equations for lines, it is a simple matter to
determine the coordinates of their point of intersection, if
any. The simplest case concerns two lines, one having an

\)equation such as x = -1 the other having an equation such as
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y = 2, Their intersection consists of a single point whose
coordinates are (-1,2). This is readily seen in Figure 6.20.
For anothier case, let us take one line not paraiic. to «ither
axlis, and the other parallel to one of the axes, For example,
let the first of these lines have equation 2x + 3y = 6, and let
the second have eguation x = 2. (See Figure 6.21,) If they
intersect, they must intersect in a point whose x-coordinate

is 2, Using this information, we can get the y-coordinate of

the point of intersection by replacing x with 2 in the first

win

equation, This yields 2.2 + 3y = 6, from which we find y = %.

Since (2,%) satisflies both equations, the point with these

coordinates lies on both lines, It is point B.

¥y = axis

£

y - axis

J=2 m

) ('132) / !
J

s

X = axis
N 1 0 I "
x = =1
Figure 6,20 Figure 6.21
£ = (P(x,y): x = -1} p = {P(x,y): 2x + 3y = 6}
m={Q(x,y): y=2) - q = {Qx,y): x =2)
£ 0m = (A(-1,2)] p N q=(B2,5)]
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Finally consider the case of two lines, neither of which is
parallel to either axis. ILet the first, for instance, have
equation 2x + 3y - 5 = 0 and let the second have equation
X + 2y - 3 = 0. Such equations always have equivalent equations
of the form y = ax + b, (why?). Study the process by which

these forms are found for each equation, as carried out below.

2x + 3y -5 =0 X+2y -3 =0
3y = -2x + 5 2y = =x + 3
y = -%X + % y = -%x + %

Assuming that the lines intersect, the point of intersection
can have only one y-coordinate, The value of x for which

this is true must therefore satisfy the condition

or

~4x + 10

il

-3x + 9,

or

l =%, and y = -%'1 + % or 1,

Therefore the intersection of the two lines is {P{1,1)]}.

Check to see whether (1,1) satisfies both 2x + 3y - 5 =0
and x + 2y -3 = 0,

Our discussion would not be coimplete without considering
a pair of lines that do not intersect, for instance lines with
equations y =8x + 2 and y = 8x - 4, If we assume that they do
intersect, in an attempt to find the point of intersection, we
would have to solve |

8x + 2 =8x - &4,

O s this equation have a solution?
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In general two lines Z and m are parallel if they iiave
equations of the form (1) x =a and x = b, or (2) y = a and
y=b,0r(3) y=ax+ band y = ax + ¢. In each case, if
4 and m are distinect lines with the equations specified,

then 2 N'm = @,

6,15 Exercises

Assume an (0,T,J) coordinate system in these exercises.
1, For each pair of lines listed below, find the coordinates
of their point of intersection, if any.

(a) (P(x,y): x =8} and (P(x,y): ¥y = 3]

g) (P(x,y): x -y =7} and (P(x,y): 4x - 2 = y)

(b) (P(x,y): x = -2} and (P(x,y): x =2}
(e¢) (P(x,y): x =2} and {P(x,y)= X +y= 8}
(d) (P(x,y): y = 3} and {P(x,y
(e) (P(x,¥): ¥y =3 - x} and (P(x,y): ¥y = x - 3)
(£) (P(x,y):
( (
(

):
(
x+y =T} and {P(x,y): 2x - y = 2}
(
X,y): 2x - 3y = 4} and {P(x,y): 6y = 4x + 8)
2. Let A have coordinates (2,2). Find the coordinates of
the point of intersection, if any, of
N - «~—p - «—
{(a) 0A and 1J. (v) JA and OI.
-~ —
(e¢) IA and OJ,
3. Determine whether or not A(3,2), B(1,1) and ¢(-3,-1) are
on one line. (Hint: Use an equation for AB.)
4, Determine whether or not the triple of points in each
part listed below is a collinear set,
o (a) A(0,-5), B(3,1), c(-2,-9).

il
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(b) D(2,4), =(0,8), FR(3,1).
(e¢) x(0,0), 1(12,12), M(-1,-1).
(a) P(a,-b), &(0,0), R(-a,b), where a # 0, b # 0,
5. (a) Copy the table below and fill in your copy, given that
the point with coordinates (x,y) lies on the line with
equation y = 2x - 3.
x | -« } o | 2 N | 3
"2 I R I B I

Calculate the value of ¥§~:—%L when (x,,y,) = (2,1)
- X

(that ist x, =2, y; = 1), and {X:,¥,) = (3,3).
Calculate the value of %f—f—%f for any two pairs of
coordinates in your table, if (x,,y,) is one pair, and
(x55¥2) is the other. Are the results the same? Are

they equal to 2, the coefficient of x in the equation?

() If x, = p, theny, =2p - 3, If X, =q, then y, =2q - 3.

L S

Find the value of 22——~%f for these values of (x,,y)
and (xe,yg). Is the result still equal to 2? Complete
the statement which this proves: If (x%,,¥;) and (%Xp,¥2)
are coordinate of any two points of line £ with eguation
y =2x - 3, then ...

(c) Prove the statement: If (%,,y,) and (x;,y.} are
coordinates of any two points on £ with equation
y = ax + b, then %:—5—%? = a, The value of a is
called the 0,I,J-slope of the line. If a line has
no equation of the form y = ax + b, we say that the
line has no slope. Thus the line with equation x = 3

has no slope. But the slope of the line with equation
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y =3 1is 0,

(d) For each equation listed below, what is the slope of
the line for which it is an equation?
y=5x-2, y=-2x+2, y=5, Y= %x - 8.

(e) Show that two lines with equations y = ax + b and

y = ax + 2 are parallel,
Let line Z contain A(2,3) and B(4#,7). We can find an
eguation for 4 by using the fact that the slope of
a line is independent of the choice of the two points
used to calculate it. Thus if P(x,y) is any point of %,

other than A, we cen claim, since x - 2 # 0

yv-3 _T-3
V-2 T -5 or 2,
and y-3=2(x-2).

Note that the last equation is satisfied by (2,3), as

well as by the coordinates of all other points of 2,

Hence 1t is an equation for £. The form of this equation

is called the point-slope form. Vhat 1s an equation for

m, if 1t contains C(6,2) and B{5,3)? (Hint: Calculate the

slope and use the peint-slope form directly with either (6,2)

or (5,3).)

A line contains points A(1,-2) and B(3,-5).

(a) Find the slope of this line.

(v) Write an eguation for the line.

(c) What 1s the y-coordinate of a point of this line if
its x-coordinate is 207

(d) What is the x-coordinate of a point of this line if

its y-coordinate is 89
413
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8. Write two equations, one for a line with no slope, the
other for a line with zero slope, 1f the lines intersect

in point A(-2,3).

6.16 Triangles and Quadrilaterals

In this section you will see how the mathematical machinery
now at our disposal can be used to prove statements azbont tri-
angles and quadrilaterals, We start with the fecllowing definitions.

Definitions. Let A,3,C be three non-collinear points,

Then BB U BC U CA is a tr.angle. Tt is denoted

AABC. A median of a triangle is a segment

that joins a vertex of the triangle to the
midpoint of the side opposite that vertex.
How many medians does a triangle have?

Theorem 5. The medians of a triangle meets in a point,

¢, (0,1)

A(0,0) D(%,0) (1,0)B
Figure 6.22
Proof. Let the vertices of the tringle be A, B, C (see
Figure 6.22), Since points A, B, C are noncollinear,
(A,B,c) may serve as the base of a plane coordinata
system. The soordinates of D, the midpoint of AB,

are (%,O); the ccordinates cf ¥, the midpoint of AC,

are (O,% . Let E be the midpoint of BC. Its x-co-

14
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ordinate is its C,B-cnordinate, and its yv-coordinate

is its B,C-coordinate., Thus its A,B,C-coordinates are

11
(51'2‘) .

- o0
An equation for AE is (1) y - 0 =$——(x - 0), or y = x.
£-0
0 1
. i -2 1
An equation for BF is (2) v - 0 = T 5 (X - 1), or ¥y = -5(x - 1).

L - o(x - 0), ory -1 = -2x,

0 -3

An egquation for CD is (3) y - 1

Solving equations (1) with (2) we get the solution ( @).
Solving equations {1) with (3) we get the solution (3,q)
Solving eguations (2) with (3) we still get the solution (3,%).
We conclude: Ar N BF AF N CD EE n EB, and the theorem is
proved. Let us call the point in which the medians meet G.
Furthermore we see, by studying, say only x-coordinates of
points in AE that G divides BE, from A to E, in the ratio
2:3. In fact ¢ divides every median, from vertex to opposite
midpoint in the ratio 2:3, This is a bonus we did not expect.

As a second example of the usefulness of coordinates, we
prove a theorem alout any parallelogram, which you know is a
special case of a guadrilateral.

Definition. Let A, B, C, D be four points of a plane such

that no three are collinear, AB N CD = @ and

BCNAD = @. Then ABYU BC U CD U DA is a guadri-

lateral. It is named ABCD, BCDA, CDAB, DABC,

DCBA, CBAD, BADC, or ADCB. The diagonals of this

guadrilateral are AC and BD.

oA
S i)
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Note: In each name of the quadrilateral, a cyclic
order of the vertices is kept. ABDC, for example,
does not name the same quadrilateral. (See Figure 6.23.)

Definition, A quadrilateral ABCD is called a parallelogram

-~ < > <>
if AB || DC and AD || BC. (See Figure 6.23 (d).)

B
D
C
A C
A
\ B
D

(a) (b)
A D D(0,1) ¢ (1,1)
| N
P 4(0,0) B (1,0)
(c) (d) Parallelogram

Figure 6,23

Some Pictures of Quadrilateral ABCD

316




-312-

Theorem 6. The diagonals of a parallelogram bisect each other
(See Figure 6.23 (d).)

Proof. The A,B,D-coordinates of A, B, and D are (0,0),
(1,6) and (0,1) respectively. Since C is on the
parallel to KB that passes through B, its x-coordinate
is 1. Since C is on the parallel to Kg that passes
through D, its y-coordinate is 1. An equation for
AC is (1) y = x. An equation for BD is (2) x+ y =1,

Solving (1) with (2) gives the solution set [(%,%)}.

We conc.ude that the diagonals bisect each other., Explain why.
Note in both proofs we chose a base for a plane coordinate

system that was convenient for our purposes. In doing the

exercises that follow you should alsc try to choose a base

that is convenient for your purposes,

6.17 Exercises

1, Prove: The line that passes through the midpoints of
two sides of a triangle is parallel to the third side.
2. Prove: If a line is para.lel to one side of a triangle
and passes through the midpoint of a second side, then
it passes through the midpoint of the third side.
3. In AABGC,D is in AB and E is in AC such that BD: DA =2 : 1,

and CE: EA =2 : 1,

ok
-
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(a) Prove: DE || BC.
(b) Let BE N CD = (F).
Show BF +: FE=CF: FD =3 : 1.
4, ©Prove: ABCD is a parallelogram if the A;B,D-coordinate
of C is (1,1).
5. Prove: Quadrilateral ABCD is a parallelogram if AC and BD
bisect each other.
6. Prove: Let ABCD be a parallelogram} let E be the midpoint
of BB, and F the midpoint of DC. Prove AECF is a parallelogram.

- e
(Hint: Using slopes show AF || EC.)

7. Using the data in Exercise 6 show that if A% N DB = (G},
Then G divides K?, from A to F, in the ratio 2:3,
8. In gquadrilateral ABCD let the midpoints of AB, BC, CD
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and DA be E, F, G, and H respectively. Prove that EFGH,

if it forms a quadrilateral, is a parallelogram,

6.18 The Pythagorean Property

So far in this chapter we have made no references to
perpendicular lines (see Course I, Sections 9.6 and 10.13), nor
have we compared lengtHs of segments on different lines. 1In
spite of this we have managed to develop a considerable body of
geometry, But there are relations in geometry that do use per-
pendicular lines and do compare lengths of segments on different
lines. This is done for instance in a statement about right
friangles named after a famous Greek mathematician Pythagoras
(c. 580 - 500 B.C.).

In Figure 6.24, assume that EE is perpendicular to EE

(written BC | AC). Then AABC is a right triangle, LBCA is a right

angle, AC and BC, the sides that lie in the perpendicular lines,
are called legs of the triangle and AB is called the hypotenuse

of the right triangle.

Q . N
E MC Figure 6 .2
. 219
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If the length of BC is a, the length of AC is b, and the length
of AB is ¢, then the Pythagorean property of right triangles
is given by the equation
a® + b® = c2,

If you like you can measure the lengths of the three
sides of a right triangle, square each length and see if the
equation is approximately true. But we present another
approach which is based on the idea that if the side of
a square has length s, then the 8rea of the square is s®.

We start with a right triangle as shown in Figure 6.25,
whose legs have lengths a and b and whose hypotenuse has length

c.

Figure 6,25

We can arrange four copies of this triangle to form a square

as shown in Figure 6.26, or Figure 6.27.

b a a b
7.7
Iv IIT al”a2 kb G a
a /// IT
b a // b
: 1 / /
b b b y b
I
I T |2 / //
a b a b

Figure 6.26 3‘20 Figure 6.27

P P YT
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What is the area of the large square in each diagram? In Figure
6.26 the shaded region is the uncovered part of the large square
after setting the four triangles in position. VWhat is its area?
In Figure 6.27 two shaded regions are the uncovered parts of the
large sguare. V“hat is the sum of their areas? But no matter
how the four triangles are positioned within the large square,
as long as they do not overlap, the uncovered region should have
the same area. Therefore
c® = a? + b2,

We have not deduced this from statements in our system,
and hence we cannot call it a theorem. In recognition of this,
let us call it the Pythagorean property of right triangles,

and you may regard it as an axiom hereafter in our system.

6.19 Exercises

1. In each of the following right triangles, £C is the right
angle, and the lengths of two sides are indicated in terms

of the same unit. Find the length of the third side.

(a) (b) {c)

(d) (e) (1)

13 30 18 25

C

(%24

a2l
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2. Find x in each of the following right triangles. If it is

irrational, leave it in radical form.

(a) (b) (c)

(d) (e)

(g)

{23

3. Let the base of a plane coordinate system be (O,I,J) for

—r > ———
which OI l 0J and the length of 0I is egqual to the length of
0J. Find the length of AB if A and B have the coordinates

listed below. Leave irrational answers in radical form.

(a) A(4,0), B(3,0) (b) A(-%,0), B(3,0)
(c¢) A(5,0), B(12,0) (a) aA(2,0), B(0,-2)
FRIC (&) A(T,0), B(0,-3) (£) A(0,-2), B -1,0)
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4, Using the coordinate system in Exercise 3, find the co-

ordinates of A, a point in the positive y-axis if

(a) AB = 10 and B has coordinates (6,0).
(b) AB = 13 and B has coordinates (12,0).
(c) AB = 4 and B has coordinates (-2v2,0).
(d) AB = 12 and B has coordinates (-6,0).

5. 1In each figure below are two right triangles. Find x and

¥ in each. Right angles are marked by a square corner.

(2) (b)

15 17T\

6.20 Plane Rectangular Coordinate Systems

We are ready now to consider a special kind of plane coordi-
nate system that enables us to investigate whether or not two
lines in the plane are perpendicular, and to compare lengths
of segments on different lines. Figure 6.28 shows such a system.
Note that the axes are perpendicular to each other, and the length

of OI is equal to the length of 0J.
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4 y-axisg

Figure 6.28

Definition. A plane coordinate system with base (0,I,J)

—s >
is called rectangular if OI | OJ and OI = 0J = 1,

The coordinate formulas we used for midpoints and slopes
continue to be operative for rectangular coordinate systems, and
we continue to describe lines by equations of the form
ax + by + ¢ = 0. Rectangular coordinate systems have the added
advantage over other systems in that we can study perpendicularity
of lines, and we can compare distances on different lines.

To compute theze distances we use the distance formula given

below. Note that we call the coordinates rectangular. This

means we are using a rectangular cocrdinate system.
If P, and P; have rectangular coordinates (xl,yl) and
(%2 ,¥2) respectively, then the length of P, P, is

P1Ps =\/ (% - Xz)a + (yy - Yz)a .

We consider four cases:

Case 1. P, = P,. (For other cases P, # P,.)

b L and

Case 2. P,P, || oOI.
Q
ERIC
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G L d
case 3. PP, || OJ.

— - *-r
Case 4. P, P, is not parallel to either OI or OJ.

Case 1. If P, = Py, then x; = X5 and y, and yz. The

formula to be proved then takes the form

\F(Xl -x)? + {nn - ) =“/63 + 0° =0,
This 1s exactly what the distance should be, so the formula

works when P, = P,.
——tp [
Case 2, (See Figure 6.29.) Since P,P, || OI, ¥, = ¥a.

Then y, - ¥y» = 0 and the formula becomes

M{x, - %)? + 0 = |x - xi.
|
Py P,
J
< 4 g
o | I x X2

Figure 6,29

-
The parallels to 53 through P, and P, intersect 0OI in two points,

A and B whose 0,I-coordinates are X, and X,. S0 AB = |x, - X»].

| 925
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It i3 reasonable to assume (we do not prove) that the 0,I-
length of P; P, is also |x, - Xa|. If we do, then the formula
works for Case 2,

Case 3, By a similar argument it works for Case 3.

Case 4, TFor this case Xy # Xs and y, # Y., See Figure 6.30,

Take point A with coordinates (xb,yl). Since the x-coordinates

«—> ' <>
of P» and A are the same, AP, || 0J.
4 y~axis
P2(%p,¥p)
g Pilxsy1) A(x2,77)
S0 I xiﬁis
v
Figure 6,30
L o >
Since the y-coordinate of P, and A are the same, AP, || OI.

L g o4

We assume that every line parallel to 0J is perpendicular to
every line parallel to 6?. So AP, AP, is a right triangle,
with right angle at A. Thus the Pythagorean property is
available and we have

ERIC
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(1) (P P2)2 = (AP )® + (AP;)2.
Ry the preceding cases (AP, )% = (x, - x,)? and (AP,)% = (y, - y.)2.
Making these substitutions for (AP, }* and (AP,)?® in (1) and taking

the square roct of each member yields the desired result.

6.21 Exercises
1. Find the distance between each pair of points listed below

17 the coordinates given are rectangular coordinates.

(a) A(0,0), B(3,4) (p) c(2,1), p(-2,4) (e) =(3,2), #(3,7)
(a) p(4,-2), Q(8,-2) (e) Rr(6,1), 5(0,-1) (£) T(4,3), v(4,3)
(g) a(1,-3), B(-4,7) (n) c(2,0), D(0,-3) (1) =(a,0), F(0,b)
(3) a(asp), H(a,c) (k) k(a,b), L{c,b) (1) M(a,b), N(c,d)

2. The vertices of AABC are listed below with rectangular
coordinates. For each triangle show that two of its sides
have equal lengths.

(a) A(-1,3), B(5, 1), c(9,5)
(v) A(1,-1), B(-4,4), c(3,5)
(e) A(3,5), B(1,-3), c(-6,3)
(a) a(5,0), B(3,4), ¢(1,0)
(e) a(0,2), B(3,1), ¢o(1,-1)

3. ABCD is a rectangle, which by definition is a parallelogram
that has at least one right angle. If in a rectangular
coordinate system A has <oordinates (0,0), B has coordinates
(3,0) and D has coordinates (0,4), what coordinates should
C have? Using the distance formula show that the diagonals
AC and BD have the same length.

Q (4. (a) Assume rectangular coordinates for the vertices of AABC

")
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to be as follows: €(0,0), B(6,0), A(0,8). Find the
coordinates of the midpoint of AB and show that the
length of the median from C is one-half the length of
AB.

(b) Repeat for c(0,0), B(12,0), A(0,5).

(c) Repeat for ¢(0,0), B(a,0), A(O,b).

(d) Complete the sentence which seems indicated by these results:
The length of the median to the hypotenuse of a right
triangle is ...

Assume rectangular coordinates for the vertices of AABC to be

as follows: A{4,0), B(C,6), C{-4,0). Find the coordinates

of the midpoints of AB and BC. Show that the length of

the median from A is equal to the length of the median from C.

Show that ABCD is a parallelogram if A, B, C, D have rectangular

coordinates (0,0), (3,2), (7,6), (4,4) respectively.

Then show that AB = CD and BC = DA,

Suppose for AABC, (AB)® = (AC)® + (BC)?. As you recall, this

is the equation that 1is a property of right triangles.

In this exercise we investigate whether or not a triangle that

has this property is necessarily a right triangle. If so,

which of the three sides, Eﬁ, EE, or CA, would you eXpect

to be the hypotenuse? To begin this investigation, let us

consider the line through A that is perpendicular to EE,

<>
and let it intersect CB in D.
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A(0,8)

¢(e,0) D(0,0) B(b,0)

If C = D, there is nothing left to prove. Suppose then

‘> L e
C # D. Using the perpendiculars CB and AD as axes we set

up a rectangular coordinate system. In this system D

has coordinates (0,0).
(0,2), (b,0) and (c,0).
(AB)® = (b - 0)®
(AC)?

(BC)?

it
—
Q
!
(@]
P
o

(c - b)?

Using the equation (AB)

Let A,B,C have respective coordinates
By the distance formula
+ (0 - 2)® = b® + a3,

+ (0 - a)®

c” + a
+ (0 - 0)® = c® - 2¢cb + b2,

2 = (AC)? + (BC)®, the given information,

show ¢ = 0, What conclusion does this allow you to make?

The three numbers in each part of this exercise are lengths

of sides of a triangle.

Identify those that are lengths of

sides of right triangles, and for these, identify the hy-

potenuse,

(a) 15, 20, 25
(d) 3,3, 3
(g) 32, V3, 34

O

(b) 24: 25: 7 ( C) \/"3 s \/21': \'/7
(e) 4: 5 6 (f) 2, 2\",_3, 4
(n) 4o, 9, 41 (i) 3a, 4a, 5a (a > 0)

329



-325-

6.22 Summary

This chapter continues the development of the axiomatic
system begun in Chapter 3. This was done by adding three
axioms concerning coordinate systems on lines,

Axiom 4 states that for each base (0,I) on a line there
is exactly one coordinate system.

Axiom 5 asserts that if two coordinate systems are in-~
troduced on a line, then their respective coordinates x and X'
are related by a rule of the form x =ax + b {a # J) of an
affine transformation; that is, a dilation followed by a trans-
lation.

Axiom 6 describes a property of a parallel projection
from one line to another. If A and B are points of the first
line and A' and B' are their respective images under a parallel
projection, then for every point X of the first line, the A,B-
coordinate of its image X' is the same as the A,B-coordinate of
X.

These axioms enabled us to use numbers to express relations
among geometric objects. This was done in the following
definitions: The betweeness relation for points, line segment,
ray, midpoint <. segment, and the ratio in which a point divides
a segment.

The six axioms enabled us to construct a plane coordinate
system which was determined by a choice of a base (O,I,J). Be-
cause of the one-to-one correspondence between the set of points

in the plane and the set of ordered pairs of real numbers in each
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plane coordinate system, we are able to describe a set of points
precisely by describing relationships of coordinates of the
points in the set. We did this with equations and inequalities
for lines, segments, rays and regions.

Of particular importance was the theorem that an eguation
of the form ax + by + ¢ = O (where a and b are not both zero),
can be used to describe any line in the plane. This opened the
door for investigating lines by working with their equations. We
did this in investigating triangles and parallelograms.

After accepting informally the notion of perpendicular
lines and the Pythagorean property of right triangles (and some
other properties), we were able to describe a plane rectangular
coordinate system. This system has the virtue, not possessed
by other coordinate systems, of enabling us to compare lengths
of segments on different lines. This is done by the distance
formula, Also:we can establish whether or not a given triangle
is a right triaﬁgle by using the converse of the Pythagorean

proparty.

6.23 Review Exercises

1., Using the data indicated in the figures below, which show
two coordinate systems on a line, find the formula that

converts x-coordinates to y-coordinates.

y=coordinates

n

(a) -3

1
'—l
o
[y N

x-coordinates

L y-coordinates

‘ 0
= 2 lt, 31 6 x~-coordinates




2,

-327-

Using the data in Exercise 1, find the formula for each part
that converts y-coordinates to x-coordinates.

Using set notation, and letting x represent C,D-coordinates,
desceribe each of the sets of points designated below as it

applies to the figure below.

A B c D E
< =2 =1 5 1 é —
(a) 7D (b) AD (c) DA (a) 4D
(e) BD n BC (r) By BC (g) EC U BD
(n) AC n TD (i) BB N CD (j) the midpoint of BE
(k) the point that divides BE, from A to E, in the ratio of 3:4,

Let f be a parallel projection from line £ to line 4' and let
f
A, B, C be distinct points on 4. Purthermore let A-—+D,
f f
B—E and C—F.

Show that B divides AC, from A to C, in the same ratio as E
divides DF from D to F. Also show that C divides BA, from
B to A, in the same ratio as F divides ED from E to D.

Using a plane coordinate system of your choice make a graph

dd2
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of each of the following sets of points. Use a different
coordinate system for each part,
(a) {(P(x,y): ¥y =3, -2 < x< 1)
(p) (P(x,y): vy =1, x> 1}

(e) (P(x,¥y): x = 3}

(d) (P(x;y): y = x and -1 < x < 1}

(e) (P(x,y): y=3x-1and -1 <y<?2)]
(r) (P(x,y): x + 2y -2 = O}

(g) (P(x,y): 2x - 3y - 6 = 0}

(h) {P(x,y): -2 < x< 2 and -2 < y < 2}

6. For each pair of points listed below, with coordinates in a
2ertain plane coordinate system, find an equation for the line

that contains the points in each pair.

(a) A(3,2), B(8,2) (b) c(-2,4), D(-2,-4)
(C) D(3:3): E("3:"3) (d) F(3"3): G('3’3)
(e) G(0,2), H(3,0) ' (f) x(-2,3), L(0,-2)

7. Using the data in Exercis: 6 find the coordinates of the
midpoint of
—— i
(a) AB, and the slope of AE,
e >
(b) DE, and the slope of DE,
— <>
(¢) KL, and the slope of KL,
8. In AABC let D be the midpoint of BC and E the trisection point
of AB nearer A. Using eguations for lines prove that CE bisects

7D. ¢

A E 33‘3 B

U
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9. Let TD be the median of AABC from C, and E is the midpoint
of CD. Let AE intersect BC in F. Find CF: FB.

Y

A D B
10. In parallelogram ABCD, let E be the trisection point of AB
nearer B, and F the trisection point of CD nearer D. Prove:

C, BD and FE meet in a point.

11, Let £C in AABC be a right angle. For the lengths given
below for two sides of the triangle find the length of the
third side.

(a) AC = 30, BC = 40 (b) AC

2, BC =3

(c¢c) B =5, AB =28 (d) AB =12, BC =5

12. Find the distance between the points in each pair listed
below, if the coordinates given are for a certain rectangular

coordinate system.

o (2) A(3,2), B(9,2) | (b) c(-4,8), D(-4,-8)
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(e) E(3,2), F(7,-1) (a) 6(-2,8), H(3,-2)

13, A man walks 3 miles east, then 2 miles north, then 2 miles
east., How far is he from his starting point. (Hint: Use

a rectangular coordinate system and the distance formula,)

14, In a rectangular coordinate system the vertices of guadri-

lateral are A(0,0), B(2,4), c(8,6), D(6,2).

(a) Prove that ABCD is a parallelogram.

(b) If E is the midpoint of AB, ¥ is the midpoint of BC, G
is the midpoint of CD and H is the midpoint of DA, show
that EF = GH and FG = HE.

15, Prove that the line segment joining the midpoints of two sides

of a triangle is half as long as the third side.
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Isomorphic, 1132
Isomorphism, 90, 112

Lettice points, 149

Least upper bound, 237

Left operation property, 23
Length of a line segment, 238
Line, 120, 121, 149

Linear equation, 219

Median of triangle, 309
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Point, 120, 121, 149
Pythagorean property, 316
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Quadrilateral, 310
Quantified statements, 26

Ratio, 287

Ray, 282

Real number system, 244
Rectangle, 222

Right triangle, 314
Rule of detachment, 38
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Square root, 251
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