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Preface

Mathematics used to be considered as a study of separate
braaches called arithmetic, algebra, geometry, calculus and so
on. Each of these subjects was studied separately for a year or
more., Today mathematlics 1is looked upon in a different manner--
as a set of systems or structures which are common to all the
classical branches. In these systems the ideas of set, oper-
ation, mapping, and relation are fundamental. In this manner
of looking at mathematics, the subject gains a sense of unity,
and the learning of it is made more efficient.

This is the first course of a series in which a start is
made in building the fundamental structures. In this book we
examine the arithmetic studied in the elementary school along
with new clock arithmetics to see the nature of arithmetic and
operational systems. To aid all subsequent learning we intro-
duce the language of sets and mappings of sets. We develop the
structure called a group, and an extended set of numbers called
the integers which has an ex*ended structure. We make mappings
of points and relate points and numbers--on a line and in a lat-
tice framework. Gradually arithmetic, algebra, and geometry merge
into a unified study. As an additional study we consider proba-

bility and number theory.
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CHAPTER 1

FINITE NUMBER SYSTEMS

1.1 Jane Anderson's Arithmetic

Mr. Anderson was helping his deughter, who was in first
grede, with her arithmetic homework. He asked, "Jane, what is
seven plus three?"

Jene looked over her father's shoulder and soon answered,
"Seven plus three is ten."

"That is correct," said her father, "Now, what is eleven
plus two?"

Jane agein glanced over her father's shoulder and said,
"eleven plus two is one."

| "My hearing must be bad," said her father. "I thought
you said 'Eleven plus two is one,'"

"I d4id," said Jane.

Her father, of course, wanted to know why she made such =
statement. Jane walked over to the clock cn the shelf behind
her father's shoulder. She explained how she found the sum of
7 end 3. She first pointed to "7" on the face of the clock
end then moved her finger clockwise over three numerals. Since
she was then pointing at "10" she sald "Seven plus three is
ten." Jane procceded in the same way to find the sum of 11 and
2. She first pointed to "11" on the clock snd then moved her
finger clockwise over two numerals. Since she was then point-

O ng at "1," she said, "Eleven plus tuwo is one."

8

——



1.2 Clock Arithmetic

In answering questions relating to time we probably all
have performed an operation quite similar to Jane's procedure.
If you are asked what time it is three hours after seven
o'clock, you naturally answer ten o'clock. We could express
this result using the notation "7 + 3 = 10." But what if you
were asked what time it ig two hours after eleven o'clock?
Now the answer is one o'clock, and using the same notation as
above we have

l1+2 =1,
In the whole numbers it mekes sense to assign 13 as the sum of
11 and 2, but on & clock it makes sense to essign 1 as this
sum. To express the fact that nine hours after seven o’'clock
is four o'clock, we shall write

7+ 9 =14,

Question: On a clock, what is expressed by
"11 + 6 =5"°?

What would you reply if you were asked what time it is
seven hours after eight o'clock? 1Is this the same as finding
the sum of 8 and 7 using the arlthmetic on a clock?

Question: What is the sum of 8 and 7 using the numbers
on a clock? Explain how you obtained your
answer,

One way to answer the above question would be to place a

pointer on a clock face with the pointer directed at "12." 1In

order to compute 8 + 7, move the pointer clockwise through 8

[]{i -intervals and then follow this by moving the pointer ciockwise

9
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through 7 intervals. The pointer will then be directed at
"3," Thus 3 is the number assigned as the sum of 8 and 7.

(see ®igure 1.1)

n_12 ., n 12, n 12,
10 2 2 W 2
3 9 3 9 3
s 4 s 4 s 4
7 P 7 o s 7 s 5

Figure 1.1: Using a dial to determine 8 + 7

The numbers represented on the face of a clock are the
elements of the familiar set of clock numbers, We will
represent the set {1,2,3,4,5,6,7,8,9,10,11,12} by the symbol
"Z1a." The "Z" is suggested by the Germsn word for number,
Zahl. The subscript ",," indicates the number of elements

in this set.

1.3 Exercises

1. Compute the following sums by the procedure used on the

clock:

() 9+ 4 (e) 10 + 11 (1) 11 + 11
(b) 7+9 (f) 11 + 10 {(3) 12 +9
(¢) 7+ 8 (g) 1+ 12 (k) 9 + 12
(d) 5+ 6 (h) 12 +1 (1) 12 + 12

10
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2. Determine the clock numbers which, when placed in the

boxes, yleld true statements.

(a) 10 +0 =6 (¢) D+6=12
(b) 8+0=3 (d) 11 + 12 =D
(e) M4+MN=0 (The same clock number is to be

inserted in all three boxes.)

(f) M+0 =28 (The same clock number is to be

inserted in both boxes. There are two answers.)

3. To avoid thinking of a moving pointer for each clock
computation, we can construct a Z,, addition table similar
to those you have seen for whole numbers. We indicate
that the sum of 11 and 2 is 1 by placing "1" in the cell
determined by row 11 and column 2. (see Figure 1.2) Examine
the table and note how the sum of 7 and 3 is entered.

by 8 9 10 11 12

| 1 5 6 7T
56@891011 12 1

2
2 3

oW oW o e+
_—_— e — — — ||

w

Figure 1.2 Addition Table for 2Z,,

11
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(a) Does the encircled "7" in the body of the table
represent 1 + 6 or 6 + 1?2 Explain your answer.

(b) Discuss why the cells in row 1 were assigned the
sums shown in Figure 1.2.

(c) Copy the table in Figure 1.2 snd compute the
entries for the second row, third row, etc. Do
you notice any pattern emerging? Can you make
any conjectures that can be tested?

(d) What interesting pattern relates the entries in
the first column? The last column? The last
row? How are these columns and rows related to
other columns and rows?

(e) Complete the table.

(f) What differences casn you see between the addition
table constructed sbove and an sddition table for

the whole numberns?

1.4 (255,+) and(W,+)

If we compare the set of clock numbers, Z,3, with the
set of whole numbers
W ={0,1,2,3,4,5,...}
we notice one immediate difference. The set of whole numbers
is endless or infinite. If a set is not infinite, we say
that it is finite.
It is importent that you do not confuse & large finite
X set with an infinite set. Some common examples of finite sets
ERIC are: )
e 1;
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(a) the set of vowels in the English alphabet,
(b) the set of words in a dictionary,
(c) the set of all sentences which have ever been
written.
Question 1: Give some examples of large finite sets.
Question 2: What is the largest finite set you can
describe?
Question 3: What, besides W, would be an example of an
infinite set?
The set of numbers that Jane Anderson was using when
she said that 11 + 2 = 1 is a finite number system. Such
finite systems have many interesting properties and appli-
cations. You have probably already observed similarities
and contrasts between clock addition (Zi3,+) and whole number
addition (W,+). As we study the clock and other finite number
systems, feel free to make guesses or conjectures about proper-
ties that appear familiar or unusual. You will find both if
you are alert.
Using the familiar whole number addition, you will surely

agree that the following computations are correct:

10 + 7 = 17 7+ 10 = 17
3+6= 9 6+3 = 9
11 + 4 = 15 4 +11 =15

The pattern demonstrated by these six computations can
be stated in general. For any whole numbers X and y,
X+ y=y+Xx

This is the commutative property of addition in W.

12
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Now use the table you constructed for Z,, addition to

determine each of the following sums:

(a) 10+ 7 (da) 7+ 10
(b) 346 (e) 6+ 3
(e) 11 + 4 (rf) 4411

Does it appear that addition is commutative in Z,,?
What patterns can you find in the (Z,,,+) table to support
your answer?

The easiest whole number addition problems are those

involving zero.

94+ 0=9 0+9 =9
756 + 0 = 756 04+ 756 = 756
27 + 0 = 27 0+ 27 =27

Because of the special way that zero behaves in whole number

addition, 1t is called the additive identity element for W,

For any whole number Xx,
x+0=0+x=x
Zero is not a clock number, but the Z does have an
additive identity element. Look closely at the rows and
columns of your (Zia’+) table to find the clock number which

acts the same in clock addition as zero in (W,+).

1.5 Calendar Arithmetic

The traffic manager of the nation-wide Bee-Line Trucking
Company of New York City was faced with the following situation.
Trucks would return to New York City after extended road trips

Q
]fRJ(}ound the country and the manager had to arrange for garage

1A

IToxt Provided by ERI
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space, the hiring of loaders and extra drivers, servicz on the
truck engines, cargo assignment, etc. The manager found that
he needed a fast way of determining the day of the week a
truck would return if he knew (1) the day of the week that the
truck left New York City and (2) the number of days that the
truck would be on the road.
A typical problem was the following: A truck was to leave
New York City for Indianapolis, Indiana (2 days); go on to
Dallas, Texas (3 days); then to Washington, D.C. (4 days); and
finally return to New York City (1 day). If this truck leaves
New York City on Friday, on what day of the week does it return?
The manager soon struck on the idea of using a dial with

days of the week assigned to numbers as in Fig. 1.3.

SUN

SAT

TUE
FRI

THUR WED

Figure 1.3: Calendar Numbers

To solve the above problem he proceeded as follows. Since the

truck left on Friday, he set the pointer at "5." Since the

total trip took 10 days (check this') he then moved the pointer
lszkjclockwise through ten intervals. The pointer then was directed

IToxt Provided by ERI

at "1," so he concluded the truck would return on Monday.
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The set of numbers used by the mansger, {0,1,2,3,4,5,6)
we will call the calendar numbers. We will refer to this set
as Zq.

Consider the following easy prcblem., If a truck left
New York City on Thursday and returned six days later, then
on what day of the week would it return? This problem can be
interpreted as asking "What number in Z, should be assigned
as the sum of 4 (the number associated with Thursday) and 6
(the time of the trip)?" We see that the sum obtained from
use of the dial agrees with the obvious answer to the originsl

problem, namely Wednesday. Thus in Z, we have that 4 + 6 = 3.

1.6 Exercises

1. The manasger of the Bee-Line Moving Company obtained the -

following data for one of his routes:

Time of
Travel
Depart Arrive (days)
New York City Cleveland, Ohio 2
Cleveland Jacksonville, Fla. 3
Jacksonville Atlenta, Ga 1
Atlantea El Paso, Texas 5
El Paso Des Moines, Iowa 4
Des Moines Chicego, TI11l. 1
Chicago New York City 3

Assume that a truck leaves New York City on & Wednesdey.
(a) On what day of the week will it arrive in
Jacksonville? 1In El Paso?
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(b) On what day of the week will the truck return to
New York City?

(¢) If there is a two-day 1lsy over in El Paso, on
what day will it return to New York City?

(d) If a truck leaves on a Saturday, mekes the complete
route, lays over in New York City for two deys, and
then makes a second complete route, on what day of
the week will it return to New York City?

2. Compute the following in Z,

(a) 6 +1 (£) 5 + 4 (k) o+6
(b) 2+6 (g) 5+5 (1) 1+6
(¢) 3+5 (h) 5+ 6 (m) 2 +5
(a) 4 +2 (1) 6 + 6 (n) 5 +¢2
(e) 4+5 (J) o+1 (o) 0 +0

3. Determine the calendar numbers which, when placed in
the boxes, yleld true statements,

() 5+0=23  (e) O+ 6

(b) 2+0=6 (a) O+ 3

2

I

1

Y, Copy the following addition table for Z, and complete it
by filling in the remeining cells. Note how 4 + 6 = 3 1is

recorded already.

+/lo 1 2 3 4 s 6
D Jlo I 2 3 & § b6
I
1l I
|
2 I
i
3 I
T | I
5
6 17
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(&) Explain why we can dispense with the dial once the
table is completed.

(b) Is there en identity element for (Z,,+)? Explein
your answer.

(e) Is addition commutative in (Z.,+)?

(d) Wnat interesting pattern relates the entries in row
1 and row 2? Row 2 and row 37

(e) How are the entries in column 1 related to the
entries in column 2%

(f) Explain why the upper right to lower left diagonal of
the table turns out the way it does. Why is the
upper left to lovwer right diagonal different?

Compare your tables for (Z,,,+) and (Z,,+)

() Do they have similar patterns relating row and
column entries? If so, in what ways are they similar?

(b) Do they heve corresponding diegonal properties?

COﬁpéré (27;+) end (W,+). How are they alike? How are
they different?

It might be easier to compare (Z»,+) and (Zy,,+) if we

replaced the edditive identity, 12, in 2, by 0. Then

Zys = (0,1,2,3,4,5,6,7,8,9,10,11}. Construct a new

(Zy 5,+) table as follows:

18
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8 9 10 1
8 9 10 1

10
11

(2) Do the sums in the two (Z,5,+) tables agree -- with
the exception that O takes the place of 127

(v) Is (Zy,+) more similar to this new (Z,,,+) table
than to the one in Section 1.37?

19
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1.7 Open Sentences

How could you contrast the following mathematical

sentences?
2+3 =5 (1)
5+ 6 =17 (2)
11+2=0 (3)

It is obvious that sentence (1)} is true in (W,+) end that
sentence (2) is false in (W,+). However, we don't know
whether (3) is true or false until the "DO" is replaced by a

symbol for & number., Both (1) and (2) are called mathematical

statements since they are mathematical sentences that are
either true or false (but not both).

Sentence (3) above, and others like it which contain a
variable, appear frequently in mathematics. When we say that
"O" is e varisble in (3), we mean that the "M cen be replaced
by & symbol for a number from a particular set of numbers, This

set of numbers we call the domain of the variable.

If the domain of our variable is Z,5, then we could replace
"O" in (3) by "1" and obtain a true sentence
i1 +2 =1.
However, if the domain of our variable is W, then replacement
of "O" by "1" would yield a false sentence. To obtain a true
statement in W we should replace "O" by "13" since
11 + 2 = 13,
In dealing with sentences such as (3), always be aware of

the domain of the variabile(s) which you are considering.
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A sentence such as "11 + 2 =[," which is neither true nor

false, is called an open sentence. Note that such a sentence

will become either true or false after replacement of the box.
It is easy to write down open sentences, that is, sentences
which contain at least one varisble and which are neither true

nor false. Examples of open sentences are

mM+2 =6,
34+ 4 =04,
7T+ 0=11,
A +0 =14,
and 01 = O.

An open sentence, like those above, with the equality
sign is cealled an equation. Another kind of sentence used
frequently in mathematics deals with the inequality relations
"is less than" and "is greater than." For example, in the set
of whole numbers we can write such sentences as "3 is less
than 4" and "8 is greater than 6." We use the symbols
"<" and ">" to denote, respectively, "is less than" and "is
greater than." Thus we can rewrite the above sentences as
"3 < 4" and "B > 6." Examples of open sentences using these
relations are

5 >0+ 1,
4 <8 +6,
and O > 0.

An open sentence with an inequality symbol, like those above,

is called an inequation or an inequality.

91 R
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Frequently you will be asked to solve an open sentence.
This means that you are to determine those numbers in the
domainsg of the variables which, when substituted for the
variables, yield true statements, The set of numbers which
yield true statements is called the solution set of the
open sentence,
Question 1: Why is {0} the solution set of the open
sentence O + 4 = 4, where the domain of
"O" 1s W?
Question 2: What is the solution set of the open
sentence A + 3 = i, if the domain of
"A" is Zyy?
Question 3: What is the solution set for the open
sentence 2 =0 + 5, where the domain of
"O" is W?
You heve probably already determined that the solution
set for the open sentence in Question 3 has no members. It is
an example of the empty or null set. Some other ways of descrit-
ing the empty set are: the set of all men who are thirty feet
tall, and the set of all whole numbers between % and % . We
usually indicate the empty set by the symbols "@" or "[ }."
Question 4. Discuss why the solution set for Question 1,
{0}, is nct the same as the solution set for
Question 3, d.
We have been using '"M" and "A" to denote varisbles. It is
more usual in mathematics to denote a variable by such a symbol

If we use these symbols to rewrite the
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examples of open sentences given earlier, they would be

X+2=6,
3+4=y,
X +y =4,

and 5 >n + 1.

Let us review some of the above ideas by considering the

following.
Example 1.

Example 2.

Example 3.

Let the domain of the variable be W. If we
are asked to solve I + 5 = 12 and O is
replaced by 7, we obtain 7 + 5 = 12, which is
true. Hence 7 is the solution of the open
sentence, or {7} is the solution set, since no
other replacement from W would giQe a true
statement.

Let the domain of the variable be Z,. 1In the
open sentence 0 + 4 =3, 1f O is replaced by 6,
we obtain 6 + 4 = 3 which is true. Hence 6 is
the solution or {6} is the solution set, since
no other replacement of U makes the sentence
true.

Let the domain of the variable be W. For the
open sentence O + 4 = 3, we find that there is
no replacement from W which yields a true
sentence. Hence there is no solution in W or

the solution set is the empty set.

23
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Example 4, TLet the domain of the variable be Z;, with
"12" replaced by "0." That is
Z1.=(0,1,2,3,4,5,6,7,8,9,10,11}. 1In the
equation x + x = 10, 1f x is replaced by 5 we
obtain 5 + 5 = 10, which is true. Hence 5
i1s a solution of the open sentence. If X is
replaced by 11, we obtain 11 + 11 = 10, which
is also true. Hence 11 is another solution of
the open sentence. If we replace X by any
other clock number, we will obtain false state-
ments., We conclude that the solution set of
the given equation is {5,11}.

Example 5. If the domain of the variable is W, then the
solution set of the inequation
n+3<8is {0,1,2,3,4}.

Example 6. If the domain of the variable is W, then the
solution set of y + 3 > 8 is the set of whole

numbers greater than 5, that is, {6,7,8,9,...)

1.8 Exercises

1l. Label each of the following sentences as true, false, or
open in (W,+):
(a) 12 +3 =14 +1 D+0 =0

) 395 + 682 > 1051 + 86

(
(b ( o
(¢) OD+87T =9 (
(d (

1 +0

)
)
) 1262 + 2384 = 2126 + 3248
)

) 765 = 700 + 65 A+D=0+a

o

241
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2. Explain why or why not the following are true sentences:

(a) 11 +7 =5 in (Z,,,+)
(b) 5+5=3 in (Z7,+)
(¢) 2+3=4+1in (Z,,+)
(d) 10+ 8 =2+ 4 in (Z,,,+)

3. Solve the following open sentences given that the domain of
the varisble is W: (If the same symbol for a varisble
appears more than once in a sentence, then it represents

the same number each time that it occurs.)

(e) D+7 =15 (f) z+1>3
(b) O+0D = 6 (g) D+1>1
(¢) 13=0+1 (h) n< 4

(d) 7+x=15 (1) x+1<1
(e) 35 +y =25 (3) x+ x=10

4, Solve the following open sentences given that the domain of

the vearieble 1is Z,:

(a) 2+5=0 (d) 6+x=1
(b) O+3 =3 (e) 6+6=y
(c) D+4 =1 (f) N+0=5

5. Solve the following open sentences given that the domain of

the variable is Z,,:

() 5+8=n (d) 9 +2z =2
(b) 4 +3=x (e) 7T+x=7
(¢) y+3=9 (f) x=x+1

"

6. Using the symbol "x," write an open sentence whose solution
set is (6) where the domain of the variable is

T (&) W (v) 2, (c) Zio

29
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7. Using the symbol "x," with the domain W, write an open
sentence whose solution set is
(a) W (b) the empty set (¢) the set (0}.
8. If two open sentences have the same solution set then we
say they are equivalent. Find the solution set of each
pair of sentences below. Then determine if the sentences

are equivalent. Let the domain of the variables be W.

() 12 + M =131 (¢) 2z+2¢<5
D+ 7 =236 8>2+5
() x+3 =3 (d) x=3+0
4 +x=2 0+3 =x

(e) y=2+0

y+2 =0

1.9 New Clocks

In Section 1.2 we constructed a "clock arithmetic" for the
familiar clock which uses twelve numerals on its face. If we
wanted a clock with exactly seven numerals on its face, one
possibility would be to use the system constructed in Section
1.5. There, for the calendar numbers, we made use of a pointer
and the set {(0,1,2,3,4,5,6}. We have already explored how the
arithmetic for such a 7-clock would proceed. (See Section 1.6
Exercises 1,2,3, and 4,)

Our previous work with a 12-clock and a 7T-clock indicates
that we could easily construct other clocks, For exsmple, a
J-clock is suggested by a lamp switch which has four positions:

I“Off," "Low," "Medium," and "Bright." If we assign, in order,
LS

»
. op
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the numerals "O," "1," "2," and "3" to these four positions and
again introduce a pointer we can draw a picture of such a

Y-clock. (We will refer to the set {0,1,2,3) as Z;.)

Figure 1.4: A l-clock

1.10 Exercises

1. (a) Construct an addition table for the 4-clock.

(b) Use your addition table to do these computations.
(1y)1+2 (3)2+1 (5)2+2 (7)1+3
(2)3+1 (4)3+3 (6)o+3 (8 3+2

(c) Use your table to determine the position a lamp
switch would be in if, starting from the "Off"
position we turmed it clockwise through 3 intervals
and followed this with another cleckwise turm
through 2 intervals.

(d) How can sn examinetion of the table help you decide

whether or not addition in Z, is commutative?

2. (a, Compare (Z4,+) with (Z,,+).
(b) Compare (Z¢,+) with (W,+).

27
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3. (a) Make up an addition table for a 5-clock using the
set Zg = {0,1,2,3,4).

(b) Using your addition teble for Zs compute the following:
(1) 2 +4 (3) 3+2 (5) 3+3
(2) 1 +4 (4) 4 +4 (6) 4+ 3

(c) Compare (Zs,+) with (Z4,+).

(d) A burner on an electric stove is controlled by &
circular switch. The five possible positions are
arranged and labeled in the following order: "Qff,"
"Simmer," "Low," "Medium," and "High." Msake up three
problems which the table constructed in 3 (a) can
help you solve (see Exercise (b) above).

4, (a) What kind of a clock is suggested by the channel
selector knob on a T.V. set?

(b) Can you find eny everyday applications of any clocks
that have been, or could be, constructed?

5. Examine the tables for addition of clock numbers thet you
have constructed.

(a) What properties of addition tables can you find which
make them easy to construct?

(b) Make up an asddition table for Z¢ = (0,1,2,3,4,5}.

NOTE: Keep this table for (Ze,+), end all other tables

that you construct, for future use.
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1.11 Rotations

In Figure 1.5 a six sided geometric figure called a
regular hexagon is drawn in a circle with center point labeled
C. We say that C is also the center of the regular hexagon.

The polnts of the hexagon which are on the circle are called the

vertices of the regular hexagon and are labeled 0,1,2,3,4 and 5.

Figure 1.5: A regular hexagon inscribed in a circle

If we keep the center C of the hexagon fixed and rotate the
hexagon in a clockwise direction until the vertex at "O" is moved
to "1," and the vertex at "1" is moved to "2," ete. then we say
that we have a rotation of the regular hexagon through 60° about
C. Let us denote this rotation by r;("r" to suggest rotation
and "1" to suggest 1 interval of 600). The point C is called
the center of rotation. If our rotation about C passes through
1200 (or 2 intervals) we shall denote this by ra. Another way
to view rzis as the result of performing an r;rotation and then
following it with another r, rotation. What would ra denote?

What would rydenote? rsis of particular interest since then we

would be in what position?

29
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Let us examine what rg denotes. We could say that in 1y
we have an instruction to rotate the regular hexagon sbout C
through five intervals or 300°. If we followed the rs in-
struction by the ry instruction, then we would have completed a
rotation of 360o which is, of course, one complete rotation. If
we exemine the subscripts of rg and r, we find that rs is
suggested as the result of following rs by ry. But rs, con-
sidered &lone, means that we are once sgain at our original
position. 1In other words, the instructions reg and ry have the
same effect. We choose to call such en instruction "ro." We
say that L is the result of foliowing rs by r, or that ry is

assigned tors and r,.

1.12 Exercises

1. What result would you assign to the following?
() r, followed by r,
(b) r, followed by ra
{(e) r, followed by rg
(d) r, followed by r;
(e) r» followed by r
2. (a) Why was r, sald to be the same instruction as rg?
(b) What is the result if any instruction is followed by
ro?
(¢) What special name might be given to r_? Justify

o
your answer,

4

o f
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3. Exemine the partially completed table below.

rot. r ry Ty Ta Ta rs

(o} Ts

ra
Ty

I‘s r1

You will note that "rg," "ro," "ry," and "rs" have Dbeen
made entries in the table,
(2) Explain the following:
(1) Why was r, assigned to r, and 1,7
(2) Why wes r, assigned to r; and ry?
(3) VWhy was r, assigned to rs end ry?
(4) VWhy was rg assigned to r, and rs?
{(b) Complete the table.
(¢) In what way, if any, does the sbove table suggest a
clock arithmetic?
4. Let the rotations of a square through 90°, 180°, 270°

and 360° sbout a fixed center be designated by

1 1t

rl s n III,= s nn rs s Gnd n

1A

r
o'
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() If we label the vertices of the square with tte
numerals "0," "1," "2," and "3" as in r_s then

describe what is indicated by ry, ry, end rs (Figure 1.7).

(b)

rot. L r, b ) Ta
ro

r
ry o
Iy
ra

In the above table why has r, bheen assigned to r,
and ra? Copy this teble and complete it (as was done
in Exercise 3 (b) above).

{(¢) In what weys does this system of rotations correspond
to a system studied earlier?

%5, A regular heptagon has 7 sides. Explain how we could use &
similar system studied earlier to help complete & table for
the rotations of this figure.

*6. Place two rulers next to eech other and determine how a
slide-rule can be developed that will let you add certain

whole numbers.

How can the sbove be used to find the sum of 2 and 5°?

For finite arithmetics the most eppropriate slide-
rules are circular. Why? Uslng two concentric cardboard
disks (that is, circles and their interiors) see if you can

Q devise a "slide rule" that will enable you to add in 21,

20
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(or any other clock arithmetic).

1.13 Subtraction in Clock Arithmetic

From your experience in srithmetic you know that given
eny two whole numbers, X and y it is always possible to find
their sum, x + y. For instance,

75 + 36 =111
235 + 831 = 1066
1,637,428 + 78,423 = 1,715,851

Furthermore, the sum is always unique. There is only one

number which is assigned as the sum cf X and y. Subtraction,
on the other hand, is a res%ricted operation. For example,
"2 - 4" does not name an element in the set W since there is no
whole number which we can add to 4 to yield 2.

In each of the clock systems studied so far, addition has
always been a possible operation. Is subtraction also always
possible in the clock systems, or must it be restricted as it
was in W?

In particular, let us determine if "2 - 4" nemes & number
in the set Zg. Our experience with subtresction in the whole
numbers suggests that we agree to the following:

If there is one and only one number in Zg which when added to 4
yields 2 we shall say that "2 - 4" names this number. In order
to see that such a number does exist, we can mske use of the

addition table for (Zg,+). First locate "U4" at the left in the
teble for {Ze,+). (See the partially completed table below.)

33



Move across the row headed by this "4" until you find the
entry "2" in the body of the teble. The number heading the
column in which we find this "2" is 3.

+ /o 1 2 3 &4

|

4 > 2

We conclude that 2 - 4 = 3 in Zg because 3 is the number in Zg
which when added to 4 yields 2.

In order to find the number named by "1 - 2" in Zg we seek
the riumber in Zg which when added to 2 yields 1. From the table

for (Zg,+) we see that 2 + 4 = 1.

m
}
1

Thus we conclude that 1 - 2 = 4 in Zg. Note that 4 is the only

2 2 3 4 0

number in (Zg,+) which when added to 2 yields 1. Thus the
difference 4 is unique. There is one and only one number, 4,
which when added to 2 ylelds 1.

In order to find the number named by "4 - 1" in Zs we seek
the one and only one number which when added to 1 yields 4,
Since 1 + 3 = 4 in (Zg,+) we conclude that 4 - 1 =3 in Zg. Do
you see that the difference 3 is unique?

In order to compute O - 3 in Zg we seek the one and only
one number which when added to 3 yields O in (Zg,+). Since
3+2 =0 1in (Zg,+) we conclude that O = 3 =2 in Zg.

34



-28-

NOTE! 1In many exercises in this chapter we shall use the word
"compute” to mean "find the simplest name.” For example,
we expressed the result of computing O - 3 in Zg by

using the simplest name "23" that is, 0 - 3 = 2 in Zg.

1.14 Exercises

1. Using your addition table for (Zs,+) find the simplest

name for
() 1 -4 (f£) 3 -0
(b) 4 -3 (g) o-4
(¢) 3-14 (h) 2 -3
(d) 4 -2 (1) 1-3
(e) 4 -4 (j) o+ 2
2. Below is a partially completed subtraction table.

- 0 1 2 3 4

0 2

1 ®

2

3

b 3

Note that the encircled 4 in the table indicates

that 1 - 2 = 4 in Zg.

(e) Copy the above table and compute the remaining
entries in this subtraction table,

(p) Is subtraction always possible in the set Zg?
Explain your answer.

Q (¢) How does subtraction in Zg compare with subtraction in W?

512 .
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3. You recall that we introduced addition for our finite sets
by making use of a clock. Then we constructed addition
tables, However, subtraction in Zg was first introduced by
using the idea of a table., The following exercises relate
this subtraction to a 5-clock.

(a) If the pointer of a 5-clock is placed on the numeral 2
and then moved counter-clockwise through 3 intervals,
then at what numeral is the pointer directed? What
subtraction problem in Zg does this solve?

(b) Can you state how we could find the simplest name for
"1 - 2" on a 5-clock?

(c) Find the simplest name for each of the followlng and

then describe how to check your results using a 5-clock.

(1) 1-24 (3) 4-1
(2) o0 -3 () 2 -4
4, Use your table for (Zs,+) to find the simplest name for
(2) 5 -2 (e) 3 -4
(b) 2 -5 () o-4
(¢) 4 -1 (g) 2 -3
(@) 1-4 (h) 1-5
5. Use your table for (Z,,+) to find the simplest neme for
() 1 -6 (g) 0-6
() 5-6 (h) 6-6
(c) 4 -6 (1) 3 -5
(d) 2-6 (3) 3-6
(e} 6 -2 (k) 0-0
(f) 6 -0 (1) 1-4&

PAruntext provia c g
L ’Ena
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6. Is there an identity element for subtraction in
(a) 2Zg?
(b) Zs?
(e) Zn2
Justify your answer;
7. Is subtraction commutative in
(a) 2Zg?
(b) Ze?
(e) Zy?
Justify your answers,
8. Solve the following open sentences given that

the domain of the varieble is Zg:

() 2 -4 =x (g) 3-x=3
(b) vy-4=1 (h) 3-y=4
(¢) 3-2=1 (1) 3-2z=0
(d) 3 -x=2 (J) 0-x=0
(e) 1 -b=y (k) 1-3=y
(£) 2 -3 =2 (1) z-4=14

G. Solve the folilowing open sentences where the

domain of the varieble is Za:

() 3 -5=x (£) y-4=24
(b) 2-5=y (g) z-U4=5
(e) 1 ~-2=12 (h) 1 ~-x=3
(d) 0 -x =2 (1) o~y=2
(e) 5-2=y (3) 0-2z=0
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1.15 Multiplication in Clock Arithmetic

We shall now consider how multiplicaetion will be defined
in clock arithmetic. From your previous study of the whole
numbers, you know that given the pair of whole numbers 3 and 4
you would assign the whole number 12 to this pair as their
product. In short, 3 - 4 =12 in (W, -).

But how should we define the product 3 - 4, for example,
in Zg? Even though we could assign any number in Zg as this
product, let us egree that the product 3 * 4 = 2 in Zg. Why
we select 2 &8 the product cen be seen if we note the following
relationship between (¥, ) and the 5-clock. In (W, <) we have
that 3 - 4 = 12, If we place the pointer of a 5-clock on "O"
and then move 1t clockwise through 12 intervals the pointer
will be directed at "2." Using this result we define 3 * 4 =2
in Zg.

We shall use the above relationship between (W, -) and the
5-clock to define 2 - 4 in 2Zg. Since 2 * 4 = 8 in (W, -) we
move the pointer of a 5-clock clockwise through 8 intervals
from "0." The pointer is then directed at "3." Using this
result we define 2 « 4 = 3 in Zg.

How should we define 4 . 4 in Zg? Since 4 - 4 = 16 in
(W, -) we move the pointer of a 5-clock clcckwise through 16
intervaels from "0." The pointer is then directed at "1." Thus
we define 4 - 4 =1 in Zg.

There is another approach to multiplication in Zg that does
not use the idea of & clock. The key idea in this second

18
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approach is that of remainder. Do you remember how this term
was used in your earlier study of mathemetics? For exampie, if
the whole number 8 is divided by the whole number 5 we obtain

a quotient of 1 and & remainder of 3. Recall that in defining
2 « 4 in Zg we moved a pointer on a 5-clock through 8 intervals
and the pointer was directed at "3." We see that in this
example the resulting product given by use of the clock is
precisely the remainder obtained when 8 is divided by 5. Will
the remainder approach continue to give results equivalent to
the clock approach?

We can test to see if the products defined earlier on
pairs of numbers in Zg are related to "remainders." For exesmple,
earlier we defined 4 « 4 to be 1 in Z,. By the remainder
approach we first note 4 « 4 = 16 in (W, ). Then we divide
16 by 5 and obtain a quotient of 3 end a remsinder of 1. 1If we
disregard the quotient and exemine the remainder we see that
this remeinder, 1, is the same number which we defined earlier
a8 the product of 4 and 4 in Z¢.

If we apply this remainder epproach in order to define
3 » 4 in 2y, we proceed as follows: Compute 3 * 4 in (W, °)
and obtain 12; divide 12 by 5 obtaining & quotient of 2 and a
remainder of 2: we record the remeinder 2 as the product: thus
3 « 4 =2 1in Zg. Again this agrees with an earlier result.

Let us now indicate a scheme whereby We can assign s
"product" to any pair of numbers in Zg. If a end b are any two
numbers in Zs = {0,1,2,3,4), we first form their product in
This product is then divided by 5, and we note the
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remeinder., From above, we know that this remainder i: also a
number in Zs. We record this remainder and call it "the product

of & and b," which we write as "a + b."

Exemple 1. If we wish to compute the product of 3 and 3
in 25 we note first that 3 - 3 =9 in (W, -).
When 9 is divided by 5 we obtain a quotient of
1l and a remainder of 4. We disregard the
quotient end record the remainder 4 as the
product we are seeking.

Thus,
3 +3=41in (2Zg, )

Exemple 2. The product of 2 and 2 in (Zs, -) is found by
noting that 2 . 2 = 4 in (W, +) and 4 divided
by 5 yields a quotient of 0 and a remainder of
4, We disregard the quotient and record the
remainder 4 as the product.

Thus,
2.2 =4in (Zz, .).

Example 3. The product of 3 and O is O in Zg because
3.0=04in (W, -) and O divided by 5 yields

& remainder of O,

1.16 Exercises
1. Below is a partially completed multiplication table for
pairs of numbers in Zz. Some of the products obtained

above have been recorded.

40
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. 0 1 2 3 4
0
1
2 . 4 3
3 0 4 2
M 1

(a) Copy the sbove teble and compute the remaining entries,

(b) Do you notice any interesting patterns relating the
entries of a single row or column? Relating pairs of
rows or columns?

2. Solve the following open sentences in (Z,, -):

() 3-x=1 (e) 3-x=2 (1) 3 -x=3
(b) 4 . x =14 (f) 3. x=0 (3) 4 -2z=1
() y-2=0 (g) 4 -x=2 (k) 4 .y=3
(d) 0+ x=0 (h) 1 .-y =3 (1) o.-x=2

3. If we wish to construct e multiplication table for (Z, °)
we record remainders resulting from division by 4. Thus,
to determine the product of 2 and 3 in (2., -) we note that
6, the product of 2 and 3 in (W, .), when divided by 4,
gives quotient 1 and remainder 2.

Thus,
2.3 =21in (2, )
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(a) Copy and complete the following (multiplication) tsble

for (Z4,-)
. 0 1 2 3
0
1
2 2
3

(b) Do you notice any interesting patterns relating the
entries of a single row or column? Relating pairs of
rows and columns?

4, Construct multiplication tables for (Ze, -) end for

(Z7, -).

() Examine the tables for (Z¢, *) and (Ze, -). In what
ways are these tables similar? 1In what ways are they
different?

(b) Examine the tebles for (Zg, -) end (Z,, .). What
properties do they have in common? Can you find some
essential differences between the tables?

5. Solve the following open sentences

(a) In (Za, °):

(1) 3-x=2 (2) 2-y=2
(3) 2-2=0 (4) 3 - x=1
(5) 0o-x=0 (6) 0 .2z =3
(7) 2 -y=3 8) 2-x=3
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(v) In (Zy, °):

(1) 6 - x=3 (2) 3 -y =5
(3) 5-y=1 (#) y-2=0
(5) #-y=2 (6) x-0=5
(7) 6+ 2z=5 (8 6 -x=0
(¢) In (Z¢, -):
(1) 5 x=3 (2) & -y=5
(3) 4-2=3 (#) & -x=0
(5) 4 -h-=2 (6) 4 -z =1
(7) 3 - x=3 (8 3 +y=0
(9) 3-y=5 (10) 2+ z =
(11) 2 - x=0 (12) 2. y=14

1.17 Comparison of (W, -) and Clock Multiplication

In Section 1.4 we found that addition of whole numbers was
similar in meny respects to addition of clock numbers. Each
operation was commutative and each had an identity element.
From your earlier work in arithmetic, you probably recsll
similar properties of whole number multiplication:

For any whole numbers Xx snd y, X . ¥ =¥ -+ X.

This is the commutative property of multiplication in W.

For every whole number z, 1 - z =2 . 1 = 2z,

We therefore call 1 the multiplicative identity in W.

Examine the second row and second column of your (Zs, .)
table. What is true when s number in Zg is multiplied by 1°?

What is true when 1 is multiplied by any number in Zg?

43,
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How does examination of the table provide evidence of =«
commutative property for (2Z,, -)? Try to formulate a reason
why you think commutativity is or is not a property of (Zg, ).
Then repeat your investigation in the (Za . ) table. Does it
have an identity 2nd commutativity? What about (Zgs +),

(Zy, )2

If your multiplication tables were carefully constructed,
you will be led to observe that multiplication is commutative in
(Zg, ), end indeed in 8ll the clock "arithmetics,” and that in
each, 1 is the multiplicative identity.

Multiplication of whole numbers has another interesting
property which has an analogy in clock arithmetic., Examine the
entries in the first row and column of the (Zg, ), (24, -),
(Ze, +) and (Z,, ) tebles. What is true when any clock number
is multiplied by 0? What is true when O is multiplied by any
clock number? Ageain, if your multiplication tables were
constructed carefully, you will have observed that for any
clock number X,

O.x=x.0=0,

This property is the multiplication property of zero, and

it is also true in (W, +) if x is any whole number.
We have seen three multiplication properties which hold in
each clock arithmetic and the arithmetic of whole numbers:
(1) Multiplication has the commutative property.
(2) There is a multiplicative identity, denoted by "1" in
each arithmetic.

(3) The multiplication property of zero holds.
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The tebles for (Zs, +) end (24, -) differ in et least one
essential way from the tables for (Zs, +) and (Z,, *)}. If we
disregard the rcw and column headed by "0" in (Zg, <) or in
(Z», *) we see that there is no repetition of the entries in
the remaining rows end columns. But there is a repetition of
some entries in the rows and columns of the tables for (Z, .)
and (Ze¢, *). An interesting problem is to predict what other
clock multiplication systems will be of the "(Zs, °*) type" and
which of the "(Z,, ) type."” What other tasbles besides those
for (Zs, ) and (Zg,+) have the "repetition of entries”
property? Experiment by examining the tebles for (Zs, +) and
(Ze, *).

As you examine these tebles, consider the following
questions:

(a) Does the (Zs, +) table behave as the "(Zs, ) type"
table or as the "(Z,, *) type" table with regard to
entries?

(b) Does the (Zs, °*) table behave as the "(Zs, *) type"
teble or as the "(Z,, +) type" table?

(c} Can you detect any pattern developing? Cen you make a
conjecture concerning which tables behave as did the
(Ze» +) teble end which behave as did the (Z,, )
table?

(d) After you have a conjecture, test it out by consi-
dering the multiplication table for (Ze, °). Does
your conjecture still hold true?

(e) You might want to experiment further in order to find

i)
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a pattern that predicts how clock multiplication
tables will behave as regards "repetition of the
entries." Can you predict which elements in a given
clock number system will repeat as entries in the
multiplication table?

If you have become very familiar with the methods of clock
arithmetic, try the following research problem involving secret
codes:

Suppose you wanted to make up a code in order to send a
secret message to a friend. One type of code is called a
substitution code. In such a code one letter of the alphabet 1s
substituted for another letter by means of a key or by writing
some formulsa which indicates how the substitutions are made.
For example, if each letter is replaced by the one that follows
it in the alphabet, then we can describe this substitution by the
formula

X' =x+11in (Zye, +).

This means that any letter x is replaced by the letter x' (read
"x prime") which follows it. Thus "b," "k," and "q" would be
replaced, respectively, by "c," "1," and "r."

(a) How would you encode, that is, put into code, the word

"DANGER, ?"

{b) How would you decode the word "IFMQ?"

(c) By what letter would you replace "z?"

(d) Why was Zse used in the above formula?

(e) What would the formula be if "a&" is replaced by "d,"

46
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A similar type of code in which we use only number

symbols, and which we have special symbols for

it n "

"space," "comma," and "period" is the following:
Assign O to a, 1 to b, 2 to c,..., 23 to x, 24 to y,
25 to z, 26 to "space," 27 to "comma," and 28 to
"period." Using the formula X' = X + 1 in (Zgq, +)
we would then encode "JAMES BOND'" as
10113 519 27 2 15 14 4,
{Note that 27 represents the word "space.")
Examine the following coded messages. The system
(Zges +) 1s used., Can you find the formula that
tells how substitutions are made and then decode the
message? Hint: Try x: =x +n, n =20, 1, 2, etc.
(1) 614 14 6 14 11 26 8 18 26

19 7 4 26 18 15 24 28
(2) 11160 716 9 14 11 21 100

22 7262210221070

14 72222720070

175523 2021 0

15 17 21 22 O

17 822 716 2
Explain why using a formula such as x' =2 + x in
(Zgas *) will not work. What goes wrong? Would the

same problem arise if we had used the same formula

X! =2 + X but instead worked in (Zge, °)°?

1
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1.18 Division in Clock Arithmetic

Suppose we wish to divide 3 by 4 in Zs. Let us recall our
experience with division in the whole numbers and use the
symbols "3 + 4" or " % " to denote such a quotient. We read
these symb-1ls as "3 divided by 4" or "3 over 4" and assume they
mean the same thing. What follows 1s suggested by how the
division process was carried out in W. Let us agree that to
evaluate % in Zz we seek the one and only one number in Zg
which when multiplied by 4 yields 3. The partially completed
multiplication table given below indicates how we can search
for such a number. First locate "4" at the top of the table.
Move down the column headed by this "4" until yocu find the
entry "3." The number heading the row in which we find +“his "3"
is 2. Thus we conclude that " % " and "2" are two names for the

seme number in (Z,, -).

. 0 1 2 3 4
2 < 3
We can express this by the equation %-= 2. Note that there is

3

one and only one number in Zg, namely 2, which is equal to T,

since "3" appears once and only once in the column headed by "4."
Example 1. How do we evaluate % in Zg? In order to
evaluate % in Zg we proceed as follows. We ask,
"Does there exist one and oniy one number in Zg

which when multinlied by 3 in (2g, -) yields 42"

BE)
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3.3 =U41n (Zs, +), and no other numver in Zg
has this property. Thus we conclude that % =3
in Zg.

Example 2. How do we evaluate %Oin Zs ? We seek the one
and only one number in Zs which when multiplied
by 3 in (Zg, +) yields O. Since 0 - 3 =0 in
(Zs; .), &nd no other number in Zs has this

property, we conclude that g-= O in Zg.

1,19 Exercises

1. PFind the simplest nemes in Zs for

(2) % (2) % (X) 3
(b) 4+ 2 (g) 2 + 4 (1) 2 +1
(c) 3 (n) # (m) 3
(@) 1+3 (1) 2 (n) 3
(e) 2 (1) 2 (0) S
2, Try to find the simplest names in Zg for
() § () 3
() 2 (@) 2

3. Is division an unrestricted operation in Zs? That is, is
it always possible to find the quotient of two given Zs
numbers? How is division like or unlike subtraction in

this respect?
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4. Solve the following open sentences in Zy:

o+

jw <

(a) % e x =1 (e) 4

i
=

(b) % =2 . x () %

5. What do you notice when you try to construct a division
teble for paires of numbers in Z3? How does this table
compare with the multiplication table for (Zs, -)?

6. In Zs we have g =5 pbecause 5 « 2 = 4 in (24, +). Make en
investigation of the process of division in other pairs of

numbers in Zs. Write a brief report on your findings.

1.20 Inverses in Clock Arithmetic

If we examine the tables given below for (%4, +) and

(Za, ) certain properties are easily found.

+]/]0 1 2 3 -J10 1 2 3
ojjlo 1 2 3 o{jo 0 0 O
1}]]1 2 3 0 1jjo 1 2 3
212 3 0 1 2110 2 0 2
3113 0 1 2 3110 3 2 1

For example, there is an additive identity element, namely
oy in (Ze, +). There is also & multiplicative identity element,
namely 1, in (Zs, °*). We find thst addition is commutetive in
(24, +) and that multiplication is commutative in (Zs¢, °*). We
have observed these properties previously.

Let us now examine & property which may be new to Yyou.

O Tirst, check that the following equations are true statements in

ERIC
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(Za, +):

(1)
(2)
(3)
(4)

In each of the above mathematicel statements we have a pair of

0+0=0
2+2=0
1+3=0
3+41=0

numbers whose sum is O in (Z4, +). Or, we could say that we
have found pairs of numbers in Z, whose sum is the identity
element O in (Z¢, +). The numbers in such a pair, whose sum in
(Za, +) is the identity element, are called inverses of

each other under addition in Z¢. The numbers 1 and 3 are
inverses of each other since 1 + 3 =0 in (Zs¢, +). \We also say
that 1 is the inverse of 3 and 3 is the inverse of 1. Note that
(1) shows that 0 is its own inverse and (2) shows that 2 is its
own inverse. Each of (3) and (4) show that 1 and 3 are inverses
of each other,

We can search for inverses in any arithmetic which has an
identity element. Thus in (Z¢, *) Wwe will say that a pair of
numbers are inverses if their product is the identity element 1.
The inverse of 3 is easily obtained by examining the table for
(Zss °). We simply go along the row headed by "3" (the last row
in the table) until we find the identity element "1." Then the
number heading the column which contains this "1" is the inverse
of 3. We find a "3." Thus 3 is its own inverse. If we seek
the inverse of 2, we go along the row headed by "2" until we
find the identity element "1." But no "1" appears in this row.

Thus 2 has no inwverse under multiplication in Z,.
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Let us use the symbol "-3" to name the inverse of 3
under addition in Z,. The symbol is read "the additive inverse
of 3." Earlier we said thet the inverse of 3 is 1 under
eddition in Z,. Thus "-3" and "1" are different names for the
same number in (Z,,+). Because of this, another way of writing
"3 +1 = 0" would be "3 + (-3) = 0" The following examples
show some uses of this new symbol.
Example 1. In (Z,,+) we have 2 + (=2) = 0, To justify
this statement examine the definition of "-2."
Example 2. In (Z,,+) we have -1+ (-2) = 1, To justify
this statement we {irst note that -1 = 3 and
-2 = 2 in (Z4,+). Why? Convince yourself
that "3 + 2 = 1" is a true statement in (Z,,+).
If we replace "3" by "-1" and if we replace "2"
by "-2," then we conclude that -1+ (-2) =1
in (Z4,+).
Example 3. - (1 + 2) = =1 + (~-2) in (Z,,+). The symbol
"- (1 + 2)" means the additive inverse of 1 + 2
or, what is the same thing, the additiva inverse
of 3. We have then - (1 +2 ) = -3 = 1.
We saw in Exemple 2 that -1+ (-2) = 1. Since
both - (1 + 2) and -1+ (-2) are equal to 1 we
conclude that - (1 + 2) = -1+ (-2),
Example 4, "3 - 1" and "3 + (-1)" neme the same number in
Zs. We know that 3 - 1 =2. Also
34 (-1) =3 +3 =2, Since both 3 - 1 and
3 + (-1) are equal to 2, we have 3 = 1 =3 + (-1).
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Now that we have a special symbol to represent add.tive
inverses in (Zs, +), let us select a symbol to represent inverses
in (24, °*). Since we know that in (Zs, +) 3 - % = 1, let us
select the symbol " % " to designate the inverse of 3 under
multiplication in Z,. We read this symbol as "1 over 3." Since
3 is its own inverse in (Z4, <) it is clear that % = 3 in
(Zay-). Similarly-% =1 1in (Z¢, ). The following examples
1llustrate some uses of this new symbol.

Example 1. In (Zs, °) we have %‘- « 2 =2, Note that %—, the
the multiplicative inverse of 3 under multipli-
cation in Z4, is 3 in (Z4, °*). 1In short, % =3
in (Z¢, ). Furthermore, 3 + 2 = 2 is a true
statement in (24, *). If we replace "3" in this
statement with " %,"
% «2=21n (24, °).

then we conclude that

Exsmple 2. The solution set for x - % =1 1s (3) in (Z¢, -).
Example 3. The symbol " % " does not neme any number in Z,.
This is true because /) does not have an inverse

under multiplication in Z,.

1l.21 Exercises

Note: Unless otherwise stated, a2ll of the exercises in this
section should be considered using Zg arithmetic.
1, Using your addition table for (Zs, +) determine the additive

inverse of:

R
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() 2 (a) 3
(b) 1 (e) 4
(¢) © (£) -2

2. Using your table for (Zs ) determine the multiplicative

inverse of:

(a) 2 (a) 3
(b) 4 (e) O
(e) 1 () 3
3. Find the simplest names for the following:
(a) in (Zs, +) (b) in (26, *)
(1) -1 (1) 3
(2) -4 (2) 1
(3) o© (3) #
(4) -2 () 3
(5) -3 (5) &

I, Compute the following in (Zg, +):

(a) 3 + (-2) (d) -3 +3
(b) -4 +1 (e) -2 + (=4)
(¢) -1+ (-3) (f) 0+0

5. Compute the following in (Zg, *):
(a) 3 4 (c) 33
(b) 3 -3 (@) -7

o4
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6. Solve the following open sentences:

(a) in (zZ., +) (b} in (Zs, *)
(1) 3+ (-3) =x (1) 3+ %=x
(2) -b+1=y (2) 3°+¥=3
(3) -2+z=4 (3) z §=3

7. Note in (Zg, +) that the symbol - (-2) means the additive

inverse of the additive inverse of 2,

(a) If we replace the neme "-2" in the sbove symbol with
the name "3," then what number in Zg do we have?

(b) What numbers in Zg do the following represent?
(1) - (-4) (3) - (-3)
(2) - (-1) (4) - (-0)

(¢) What is the additive inverse of the additive inverse
of 37

(d) Form a generalization from exemining (a), (b) end (c)

above,
8. (a) Explain why the symbol " % " does not nsme a number in
Zg .
(b) Does " % " neme a number in W?

(¢) Which whole numbers have inverses in (W, +)?
(d) Which whole numbers have inverses in (W, -)?

9. 'The additive inverse of (3 + 1) in (Zg, +) can be nsmed
I!_ (3 + 1)" or "-4 1

(a) In (Zs, +) give the simplest name for each of the

following:

(1) - (1 +3) (k) -2 + (-b)

(2) -1+ (-3) (5) - (0 +2)
ERIC (3) - (2+4) (6) -0+ (-2)

T
-
-




*¥10.

*11.

12.

-49-

(b) What is the additive inverse of the sum of 2 and 3
in (Zg,+)?
(c) What is the sum of the additive inverse of 2 end the
additive inverse of 3 in (2Zg,+)?
(d) PForm a generalization from examining 9 (a), (b), and
(¢c) above.
After you have solved 9 (d) experiment with multiplicative
inverses in (Zs,*). Can you find evidence for a corres-
ponding generalization about multiplicative inverses?
Two examples of true statements about (Zg,+) are the
following:
(1) If x and y are elements of Zg, X +y =y *~ X in (Zs,+).
(11) If "-x" means the additive inverse of X then
x + (-x) = 0 in (2s,+), where X 15 sny element in Zg.
Explein why the following sentences sre true or not
true for every X and y in Zg.
(&) In (Zs,+), the difference x ~ y is the same as
the sum of x + (-y). (7o subtract y from X, we
mey add to X the additive inverse of y. That is
x -y =x+(-y).)
() In Zg erithmetic x -y = - (y - x). (The sdditive
inverse of y - x is x - y.)
(¢) In (Zg,°) x ° % = 1, for all x in %z exceyt x = 0.
An important property of (W,-) is the following:
Let x end y be any elements in W, If x - y =0 then x =0
or y = 0, Explain why there is, or is not, a corresponding

property in the following:

() (2s,7) B (Ze)

AL
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1.22 The Associative and Distributive Properties

The following is a famous grammatical puzzle. "Can you
punctuate the string of words in the box so that a correct

English sentence is formed?"

John where James had had had had had had had

It turns out we can solve the above puzzle by using the

grammatical symbols,. Try it!

In mathematics we also make use of symbols which, like
grammatical symbols, allow us to write expressions which are
clear and correct. The most common "grammatical" symbols used
in mathematics are parentheses. Consider the two expressions
given below where addition is to be performed in (Z,,+).

(2 +3) +1 (1)
2+ (3+1) (2)
In (1) we see that "2 + 3" has been enclosed in parentheses.
The parentheses are used to "signal" that we should consider
"2 + 3" as naming a single number. Since we are to perform
addition in (Z,,+) this number is 1. Thus, we have
(2+3)+1=1+1=21in (Z,,+).
In (2) the parentheses are used to signal that we should consider
"3 + 1" as naming a single number. Thus, we have
2+ (3+1)=2+0 =2 1in (Z,,+).
We note *that the result of adding the numbers in (1) was the
same as the result of adding the numbers in (2). A question
that we might ask is the following: If a, b, and ¢ are any
triple of numbers in Z,, will it always be true that

a+ (b+c)=(a+0b)+cin (Z,+)?

X,
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If the answer to the question is "Yes," for all triples of
numbers in Z,, then we say that additicn 1s associative in
(24 5+).

Next let us examine the same triple of numbers in Z, but

ask if subtraction is associative in (24,+).
{-3)-1 3)
2 - {3 -1) (&)

We are asking if the result of computing (3) in @zg,+) is
the same as the result of computing (4) in (Z,,+). Because of
the parentheses in (3) we rirst compute 2 - 3 in (Z4.+).
Carrying out the subtractions in (3) we have

(2 -3)=-1=3-1=21in (Z,+)

However from (4) we have
2-(3-1)=2-2=0
Teag 2« (3-1)#(2 «3)-11in (Z¢,+)
and we say that subtraction is not associative in (Z4,+): not
associative, because it failed for st least one triple of numbers.
Up to now when we sought out such properties as
"commutativity" or "associativity" we confined ourselves to a
single operation on a set of numbers. The next property that
we shall investigate has a different role to play. It deals
with two operations on a set of numbers. Let us consider the
following two expressions where addition is to be performed in
(24 ,+) and multiplication is to be performed in (Zgs*). We shall
indicate that we are working with one set and two operations by

Writing " (Z‘ ’+’ * ) . "
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2+ (3+1) (5)
(2 - 3)+ (2 1) (6)

Again, the parentheses "signal" how our computations
should proceed, In (5), since 3 + 1 is considered a3 a single
number, we compute as follows:

2 (3+1)=2-0=01n (Z¢,+,°).
We compute (6) as follows:

(2*3)+(2°1)=2+2=01n (Z4,+,°).
Since the computation in (5) and (6) both resulted in 0, we
conclude that

2+ 3+1)=1(2"°3)+(2-1).

If for every triple of numbers g, ‘b, and ¢ in Z4 it is

true that

a*(b+c)=1(a- b))+ (a-°c)in (Zs,+,.),
then we say that multiplication is distributive over addition in
(Zasts-).

Let us examine the same triple of numbers in Z; but ask

instead, "Is addition distributive over multiplication in
(Z4,+5+)?" Here we must compute the following in (Z4,+,-):
2+ (3 1) (7)
(2 +3) - (2 +1) (8)
In (7) we have 2 + (3 * 1) =2 + 3 = 1 in (Z,,+,*).
In (8) we have (2 +3) * (2 +1) =1 ° 3 =3 1in (Z4,+,°).
We conclude that 2 + (3 * 1) # (2 + 3) » (2 + 1) and that
addition is not distributive over multiplication in (Zg s+s5°).

09
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Compute the following in (Z,,+,°):

2 (3 -1) (9)

(2 +3)-(2-1) (10)
From (9) we have 2 » (3 = 1) =2 *+ 2 =0
From (10) we have (2 * 3) - (2 * 1) =2 -2 =0
Note: Although 2 * (3 -1) = (2 * 3) - (2 * 1) in (Ze,+,*) we
cannot yet conclude that multiplication is distributive over
subtraction in Z,. Recall that the property must hold for all
triples of numbers in Z,. Experiment further with other triples
of numbers asnd make a conjecture concerning the cxistence of a

distributive property of multiplication over subtraction in Z,.

1.23 Exercises

1. Compute the following in (Zg,+):

(a) (2 +4)+3 () (3+0)+4
(b) 2+ (4 + 3) (£) 3+ (0 + 4)
() 1+ (2+3) (g) 4+ (3 +3)
(¢) (L +2)+3 « (h) (4 +3)+3
2. Compute the following in. (Zg,*):
() (2 4) -3 () (3-0) b
(0) 2 - (4 - 3) (£) 3 - (0 - 1)
(¢) 1° (2" 3) (g) 4 - (3-3)
(@) (1 -2)-3 (h) (4 -3)-3
3. Compute the following in (Zs,+,):
() 2+ (4 +3) fe) 3 - (0+4)
(b) (2 - 4) + (2 - 3) (£) (3-0)+ (3-4)

. 60



*6.

*7.

1.24

-5k~

(¢) 1 - (2+3) (g) 4 - (3+3)

(¢) (1 -2)+ (1 - 3) (h) (4 - 3)+ (4 3)
Compute the following in (Zg,+,°):

() -4 - (3 + (-3)) () -2« (4 - (-3))
(b) (-4 - 3) + (-4 - -3) (@) (-2 - &) - (-2 . -3)

(a) Is multiplication distributive over subtrsction

in Zg?

(b) 1Is division distributive over subtraction in Zg?

The property & - (b +¢c) = (a * b) + (& * ¢) is more

properly referred to as a "left hand" distributive pro-

perty of mal+iplication over addition. Is there a ccrres-

ponding "right hand" distributive property namely,

(a+b) "c=(a*c)+ (b*c), in (Ze,+,-)?

Assume that for all 8, b, and ¢ in Zg that

a-*(b+c)=1(a-:Db)+ (a.c)in (Zg, +,°).

() Using known properties of (Zs,+) and (Zs,-) can you
prove that a * (b+c) = (c . a) + (b * a)?

(b) Would a * (b +c) =(c * a)+ (b a) "hold" in
(Zys+,+) vhere &, b, and c are any elements of Z, and

m is a whole number greater than 1?

Summary

In this chapter we studied a collection of finite sets
celled "clock numbers.” We found that there were appli-
cations of these sets dealing with dials, rotations,

codes, etc.
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2. We defined addition, subtraction, multiplication, sand
division on these finite sets.

(a) We found there were similarities between clock number
arithmetic and whole number arithmetic: In (W,+) and
in the clock arithmetics we studied such as (2,,+) and
(Zg ,+), we saw that addition is an unrestricted
operation. There are corresponding properties for
both whole number arithmetic and the clock arithmetics
dealing with an ldentity element for multiplication,
an identity element for addition, commutative proper-
ties for addition and multiplication, assocliative
properties for both addition and multiplication, a
distributive property of multiplication over addition.
Division by the additive identity is not defined in
either whole number or clcck arithmetic.

(b) We found there were differences between clock number
arithmetic and whole number arithmetic: The sets
Z4s Zg, 21,5, etc. are finite, whereas the set W is
infinite. Subtraction is a restricted operation on
the set W but not on Z;, or Z,.

Every element in Zm has an additive inverse
whereas only O in W hed an additive inverse. The
solution sets for corresponding open sentences in
whole number arithmetic and clock arithmetic can
differ greatly. For example: The open sentence
3 * x = 3 has the solution set {1} in (W,:) whereas

the corresponding open sentence in (Zs,*) has the

ERIC o




1.25

-56-

solutics set (1,3,5).
New terms were introduced and used. Among these were
"statement," "variable," "open sentence," "is less than,"
"is grester then," "equation," "inequation," "solution

1mnon

set," "empty set," "additive inverse," "multiplicative
inverse," "commutativity," "associativity," "distribu-
tivity." Check over the avbove terms to see if you under-
stand what they mean. Where there is doubt recheck the
meanings given in the text.

As yocu continue to study mathematics many of the ideas
and terms found in this chapter will be given precise
definitions and meanings. 1In particular, Chapter 2 will

explore the idea of "unrestricted operation” by consider-

ing many new and interesting operations on sets.

Review Questions

Make up tables for {(Ze,+) and (Zs,°).
Compute the following in (Ze,+):

(a) 6+7 (@) 7+ (7 + 6)

(b) 5+ 3 () 3+ (7T + -5)
(c) (T+7)+6 (£) -3+ (-5 + (-3))
Compute the following in (Ze,°):

(a) 67 (@) (3 - 4) -5

(b) 24 () 5- @ -3
(c) 3+ (4 5) (£) - 31
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Compute the following in (Zg,+,*):
() 3 - (7 +5) (¢) 6 (7 -5)
(®) (3 :7)+(3:5) () 6 (7 + (-5))
Let a and b be any elements of Zg. Explain why
the following is true or false in (Zg,*).
Ifa+b =0, thena =0 orb = 0.
List all the elements of Zg and their corresponding inverses
in (Zg,+).
Tist all the elements of Zg and their corresponding inverses
in (Zs,*).

Solve the following open sentences in (Zg,+,°).

(a) 3+x=5 (£) 4 - z=0

(b) y+2=26 (g)3-x=17

(¢) 3°-x=5 (h) -5 * x=7
() 2..y=0 (1)2-y=3

(e) 3 -7=x (J) 4+ (3 +5) =x

If today is Sunday, what day of the week is 1000 days from
today? Explain your answer.

A circular bus route has 20 stops each 5 minutes apart,
Which stop should the relief bus driver go to after the bus
has been out seven and one quarter hours? Call the place
where the route begins "stop 0," and call the first stop
after this "stop 1," etec.
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CHAPTIER 2
SETS AND OPERATIONS

2,1 Ordered Pairs of Numbers and Assignments

Suppose you were given e peir of numbers, say 6 and 2,
and were asked to assign a third number to this pair. Such an
instruction might seem unclear, and indeed there are an endless
number of answers thet could be given. For example, one person
might assisn the number 8, since 6 + 2 = 8, We could show this
assignment simply by writing
(6,2) — 8
to indicate that the pair of numbers (6,2) yields the number 8
if one is thinking of addition.
Another parson, given the pair of numbers (6,2), might write
(6,2) ——3
and say that the pair (6,2) yields the number 3. We would pro-
bably guess that such 2 person is thinking of division, and we
could write "6 + 2 = 3,"
If we were given the pair (2,6) and thought of division,
we would write

1

(2,6) — 3

since 2 + 6 = %. Thus, the pair (2,6) does not produce the
seme number a&s the pair (6,2). The order of the numbers in the

peir is importent. For this reason, we speak of zn ordered palr

of numbers. In the ordered peir (6,2), 6 is the first component
of the pair and 2 the second.
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Question: Are the ordered pairs (6,2) and (2,6) assigned
the same number if one is thinking of addition?

Belcw are several ordered pairs of rumbers, Each pair has

been ascigned a third number. In each case, tell how you

think the third number was assigied.

(3,2)

(3,2) —— 1

—.—,.5

(.50,.25) ———> .125
(3:2) —_ 9
(2,3) — 8
The last two assignments in the above list result from
raising a number to & power. Given the ordered pair (3,2),
raising 3 to the power 2 means that we are to use 3 as a factor
twice-- that is, 3 x 3, obtaining 9. This is often written as

32 = 9 (9 is a power of 3; specifically,
9 is the s¢cond power cf 3.)

Similarly, given the ordered pair (2,3), we may think of 2
raised to the power 3. This means that we ars to use 2 as a
factor 3 times. Thus,

28 =2 x2x2 =8 (8 is the third
power of 2.)

This explains the assignments (3,2)—=9 and (2,3)—=8. Clearly,
if one is thinking of raising a number to a power, the ordered

pairs (3,2) and (2,3) are not assigned the same number.
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What number is assigned to the ordered pair
(2,2) by the process of raising to a power?

To (3,3)? (Notice that the same number may be
usad for both the first and second component

of an ordered pair.)

It is often convenient to use a tsble (as we did in Chapter

1) to show numbers assigned to pairs of numbers. For example,

at the left below 1s a table showing some of the assignments

made if one thinks of addition. At the right is a table showing

some assignments if one is thinking of ralsing to a power.

sfola]2] 3] pover || 11203 |4 |5
olffolala] 3] & 1 1111 |1
112l 3)4)s 2 ol 4 |(® |16 | 32
22| 3]|&|s5] 6 3 3((@ 27|81 | 283
S| 4|5]6]7 T | 5[ 16| 6k |256| 102k
yffels|{e6] 7] 8 5 5 | 25| 125|625 | 3125

Do you see how the entries in the tables were obtained? No-

tice that in the second table the entries "9" and "8" have been

circled, emphasizing that (3,2) and (2,3) yield different results.

Question:

Suppose & is some whole number. What number is
assigned to the ordered pair (a,1) by the process
of raising to a power? How is this shown in the
table of powers above? What number is assigned
to the ordered pair (1,a) by raising to a power?
How is this shown in the table of powers?
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Below is still enother table showing assignments of
numbers to pairs of numbers. These assignments should be

femiliar from your work in Chapter 1. Do you see how they were

obtained?
ol 1} 2] 3
oHol1l1f 2] 3
1{fr{2f 3]0
2112|310} 1
3130, 1} 2

2.2 Exercises

1. Tell what number is assigned to the following ordered pairs
by usual addition.
(a) (5,0) (v») (0,5) (¢) {6,6) (d) (218,365)
(e) (365,218) () (750,250) (&) (5:3)
(h) (42,23) (1) (.83,.27)
(3) (2000000, 8000000)
2, (a) Working with whole numbers only, list 21l ordered
pairs of whole numbers to which the number 5 is
assigned by addition. (Remember that (a,b) and (b,a)
are different ordered pairs.)
(b) Agein using whole numbers only, 1list all ordered
palrs to which the number 1 is assigned by addition.
(¢) List a2ll ordered pairs of whole numbers to which the
number O is assigned »y addition.
3. (a) List 211 ordered pairs of whole numbers to which
Q 24 is assigned by multiplication.
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(b) List all ordered pairs of whole numbers to which the
number 13 is assigned by multiplication,

(c) List all ordered peirs of whole numbers to which O is
assigned by multiplication.

b, Tell what number is assigned to the following ordered

pairs by multiplication,

(a) (5,0) (b) (0,5) (¢) (8,6) (d) (51,106)

(&) (106,51) (£) (52D (@ G ) (2

(1) (.6,.5) (3} (.83,.27)

5. In the text, we explained raising a whole number to a

power, %" meens 4 x 4 or 4 used es a factor 2 times.

Often in mathematics, we use a raised dot "*" instead of

an "x" to indicate multiplication. Thus, we may #rite
)

%

the t power," and the number b is called an exponent. We

=4 « L = 16, An expression such sas "ab" is reed "a to

are assuming that bcth 2 and b are whole numbers. With
this in mind, tell what numbers the following name.
@) 2 () 2 () 2 (@) 10 () 10
() 10 (@) 1 @ 1 @) 5 @) 2
W F W3 @3 (1

6. If we think of "raising to a power" es assigning numbers to
ordered pairs of numbers, what number is assigned to the
following pairs by "raising to a power?" Remember that we
teke the second number as the exponent.
(2) (3,4) (b) (4,3) (c) (4,2) (¢) (2,4)
{e) (3,5) (£) (5,3)

7. (a) List all ordered pairs of whole numbers which are

assigned the number 16 under "raising to a power."
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(b) List all ordered pairs of whole numbers which are
assigned the number 10 by "raising to a power."

We know that assignmenta of numbers to pairs can be shown

by a teble. Fill in all the cells in the following table

for addition. (Notice in this case that the numbers are

not listed in any particulasr order.)

+ 5 682 17 8 0 1 1720

5

682

17

8

0

1

1720

Copy the table in Exercise 8. Then fill in the cells by
using multiplication instead of addition.
(a) In what cases do the ordered pairs of whole numbers
(a,b) and (b,a) produce the same number under addition?
(b) In what cases do the ordered pairs of whole numbers
(a,b) and (b,a) produce the same number under "raising
to a power?"
In the list of expressions below, n represents a number.
3+ (n)
[3 - (n)] +2
3+ ()] -2
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[E‘T—?;ES] + 8

[2 - (n°)] +5
() Find what number each expression represents if n = O.
(b)
(c

)
)
(d) Find what number each expression represents if
)
)

i
n

Find what number each expression represents if n

Find what number each expression represents if n = 5.

fo
1 it
l._l
5 &
(@] .

Find what number each expression represents if n

(e
(£ Find what number each expression represents if n = 5o
In this problem, we look at another way of assigning a
number to an ordered pair of numbers, specifically an

ordered peir of naturasl numbers (the whole numbers except

zero). Consider the ordered pair (24,16) of whole numbers.
The set of whole numbers which divide 24 is
{1, 2, 3, 4, 6, 8, 12, 24}
The set of whole numbers which divide 16 is
{1, 2, 4, 8, 16)

Notice there are some numbers (1, 2, 4, and 8) which divide
both 24 and 16. Of these, 8 is the greatest. Therefore, we
cell 8 the greatest common divisor of 24 and 16. If we

agree to assign the greatest common divisor to the ordered

pair (24,16), we will write |
(24’ 16) —_— 8.
Under this same scheme, we would make the assignment

(12,18) ——— 6. (Do you see why?)
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Use the "greatest common divisor" idea to make assignments
to the following ordered pairs:

(a) (6,8) (v) (6,12) (e) (10,15) (4) (100,200)
(e) (21,45) (£) (7,9) (g) (1,10) (h) (4,4)

(1) (21,42) (§) (b2,21)

2.3 What Is An Operation?

You know from arithmetic that given an ordered pair of
whole numbers, we can assign a numbeyr called their sum. For
example,

(3,5) — 8.

Addition assigns to every ordered pair in W one and only one

whole number which is their sum. We call addition an operation
on W and refer to the ordered pair (W,+) as an operational
_system.

There are many interesting operations on the set of whole
numbers. As an example, consider the "maximizing" operation.
To illustrate the way the maximizing operation assigns whole
numbers to ordered pairs of whole numbers, consider the ordered
pair (6,2). Of the two numbers making up the pair, 6 is the
larger. Therefore, we assign 6 to the pair.

(6,2) == 6.
As another illustration, under this operation we assign 10 to

the ordered pair (3,10). To every ordered pair (a,b), we assign
the larger of the two numbers, a and b. It is possible that a

and b may be the ssme number, as in the pair (3,3). In such a
case, we shall simply assign the number itself to the peair.

(3:3) __"’ 3.
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Do you see that here again there is no doubt about the number to
be assigned? Every ordered pair of whole numbers is assigned
one and cnly one whole number. Therefore, like addition, maxi-
mizing is an operation on the set of whole numbers, and (W,max)
is an operational system,

Now suppose we consider "taking the average" of two whole
numbers. (The average we are speaking of here is more properly

called the arithmetic mean,) The aversge of 5 and 13 is 9, the

average of 6 and 10 is 8, If we write these as assignments, we
have the following:

(6,10) — 8;

(5,13) —— 9.

Now take a pair such as (5,8). There is no whole number which

is the average of 5 and 8. You may know that 6% is the average
here, but 6 % is not a whole number. If we are working only with
whole numbers, there is no number to be assigned to the pair
(5,8). Therefore averaging is not an operation on the whole
numbers, because we have a pair of whole numbers to which no
assignment can be made. However, averaging is an cperation on
the set of numbers of arithmetic, since the average of any two
such numbers can be computed. (See Exercise 17.)

Let us look at each of these examples again:

Addition: Here we have (3,5) —> 8. Since we have the
well known symbol "+" for addition, we could
just as well write

(3,5} — 3 + 5.
In this case it is easier to write "8," but suppose we want to

© _ talk about any pair of whole numbers. We might designate this
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pair as "(a,b)" and then write
(a;b) ——= a + b, for every whole number
8 and every whole
number b
under the operation of addition,.

Maximizing: In working with this operation on the whole
numbers, we can write (8,3) — 8. If we
use "max(a,b)" to mean the greater of the two
numbers & and b, we can write

(a,b) —— max(a,b), for every whole
number a and every
whole nurber b
under the operation of maximizing. In the case of addition, the
symbol "+" is written between the symbols "a" and "b." We can
also do this in the case of "max" and write
(a,b) —— a max b, for every whole number
8 and every whole num-
ber b.

Aversging: We dec not have a symbol for the average of two
numbers. But again we can invent one. Let us
agree that "u\." shall mean, "the averesge of the
whole numbers a end b." Thus "6V8 = 7" is just
snother way of indicating the assignment

(6,8) —— =7
if one is thinking of averaging. As we saw
earlier, however, 5V8 is not a whole number. and
V is not an operation on the whole numbers.
Question: Name five other ordered pairs (a,b) of whole

numbers for which aVvb is not a whole number.
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Below are three tables showing the assignhments for
certain pairs of whole numbers under the "+" and "max" operations
and fqr averaging. An important point to notice is that there
are open cells in the table for V (averaging), The fact that
these cells ere open emphasizes once again why averaging is not
an operation on the whole numbers; there just are not any whole

numbers which properly gc in these cells.

+|/l0 1 2 3 4 mex|lOo 1L 2 3 4 V|0 1 2 3 4
offlo 1 2 3 & o fjlo 1 2 3 4 ol 1 2
11 2 3 4 5 1{r 12 3 4 1 1 2
2112 3 4 5 6 2 l2 2 2 3 4 2i) 2 3
313 4 5 6 7 33 3 3 3 4 3 2 3
Lils 5 6 7 8 4 f4 o4 4 o4 o4 42 3 4

We have seen three symbols "+," "max," and "V" used to
denote schemes for assigning whole numbers to ordered pairs of
whole numbers. V is not en operation since aVb is not a whole
number for every ordered pair (a,b) of whole numbers. On the
other hand, + and max are operations since a + b and a max b are,
for every pair (a,b), unique whole numbers. These examples lead
us to a genersl definition of an operation on the set of whole
numbers.

Definition: Let * be & scheme for assigning numbers to
ordered pairs of whole numbers. If * assigns
to each ordered pair (a,b) of whole numbers one
and only onevhole number then * is a binary
operation on the set of whole numbers.
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The word "bin~ry" in this definition is worth some attention.
The prefix "bi-" is associated with the idea of a pair, or two
things (think of "bicycle" and "biped," for instance). Thus, a
binary operation is one which assigns a number to a pair of
numbers., Suppose ¢ is the whole number assigned to the ordered
pair (a,b) by operation *. Then we write

a*b=c.
(If you think again apout addition of whole numbers, you will
see that this is what we have always done there. For instance,
+ assigns the number 10 to the ordered pair (6,4), and we write
"6 + U4 = 10.")

The notion of operation is a very general one and may be
applied to any set, not just the set W of whole numbers. As one
example, consider again the operation of maximizing. This time
we shall work with the set S = {1,2,3,4,5}, which is a finite
subset of the whole numbers. The table below shows a max b for
the ordered pairs (a,b) of numbers in S.

max|| 11| 2 3

Umlvylvliwv|wvilwm

vl &= =| = =l &

Ul &= Wl |
V| & W V|
Nl & Wl v o
V| i Ww]lw]w

Notlice from this table that for every ordered pair (a,b) of num-
bers in S, a max b is a number in S. Therefore, "max" is an

operation on the set S as well as on the set W of whole numbers.

O
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The last example suggests a more general definition of
operation.
Definition: A binary operation * on a set S is an
assignment which assigns to each ordered pair
(a,b) of elements in S, one and only one
element c in S,
The definition says essentially the same thing zs the earlier
one, except that this time we did not restrict ourselves to
the set W of whole numbers, In fact, the elements of S need not
be "numbers" at all! (See Exercise 16.) We denote the operation-

al system consisting of the set S and the operation ®* by "(S,*)."

2.4 Exercises

1. What number dces each of the following ordered pairs of
whole numbers produce under the operation of maximizing
discussed in the text? (When "a" is used, it is meant to
be a whole number.)

(a) (0,0) (v) (0,1) (c) (1,0) (@) (5,15) (e) (15,5)
(f) (30,100) (g) (2010,2008) (h) (999,1000)
(1) (a2 +1) (J) (e,1 -+ a) (k) (a,0).

? 2. Tvaluate each of the following in W:

| (a) Gmax 2 (b) 6 +2 (c) 6-2 (d) 6 -2 (e) 6+2

(f) 588 + 92 (g) 1001 - 865 (h) 88 x 97 (1) u83 + 3

(3) 82 x 10,000

: 3. 1Is subtraction an operation on the set of whole numbers?

(Hint: Does subtraction assign a whole number to the

o ordered pair (2,5)7)
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Is division an operation on the set of whole numbers?
Suppose we decide to assign to every ordered pair of whole
numbers (a,b) a whole number which divides both & and b.
Explain why such a procedure does not define an operation,
(Hint: Consider the pair (8,12). Is there more than one
possible assignment?)
In this problem, let "a*b" mean "the greatest common di-
visor of & end b." (See Exercise 12 of Section 2.2.)
(a) Is * an operation on the set
Ww=1{0,12, 3, 4 ...} 7
(b) 1Is * an operation on the set
N=1{1, 2,3, 4,5, ...} *
In this problem, we shall consider a new way of assigning a
number to en ordered pair of netural numbers (the whole
numbers except zero). To explesin it, we shall use the
ordered pair (6,8). Nowl x 6 =6, 2 x 6 =12, 3 x 6 = 18,
etc. Therefore 6, 12, 18, etc., are cslled multiples of 6.
The list of multiples of 6 may be indicated as follows:
6, 12, 18, 24, 30, 36, 42, 48, 54, ...
In the seme way, the multiples of 8 may be shown in the
following way:
8, 16, 24, 32, 4o, U8, 56, 64, ...
Of course, 6 and 8 have some multiples in common, such as
24, 48, 96, etc. OFf these, 2U4 is the smallest, and we shall
call it the least common multiple of 6 and 8. In this

problem, let us use

lem(a,b)

8
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to mean "the least common multiple of & and b." For example
lem(8,6) = 24, 1em(10,15) = 30. Do you see why? Evaluate
the following:

() 1em(2,3) (£) 1em(1,5)

(v) 1em(5,10) (g) 1lem(5,1)

(¢) 1em(10,5) (h) 1em(100,1000)
(@) 1em(7,11) (1) 1em(90,70)
(e) 1em(11,7) (3) 1lem(14,42)

Suppose we continue with the notion of least common multiple
used in Problem 7. But this time let us work with the set W
of whole numbters, which means that O is now included in our
set. Thus, the set of multiples of 6 is

(0, 6, 12, 18, 24, 30, 36, ...}
Zero is included since 0 x 6 = 0. Similarly, the set of
multiples of 8 is

(o, 8, 16, 24, 32, 40, 48, ...}
Now, with the understanding thet "lcm{a,b)," means "least

common multiple of & and b,"

where a and b are whole numbers,
evaluate the following:

(a) 1lem(2,3) (¢) 1em(1,5)

(v) 1em(5,10) (d) 1em(5,1)

Do you see why lcm should be used for natural numbers and
not for e&ll whole numbers?

Answer the following questions on the basis of your work in
Problems 7 and 8:

() Is 1cm en operation on the set N of natural numbers?

(b) 1Is lcm an operation on the set W of whole numbers?
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Be prepared to defend your answers.
10. Consider the set § = {0, 1} which is a finite set containing
exactly two numbers.
(a) Is ordinary eddition en operation on set S? Construct
a table showing all possible sums.
(b) Is ordinary multiplication en operation on set 8? Con-
struct a table showing all possible products.
11. The set of even whole numbers is indicated below:
(0, 2, 4, 6, 8, 10, ...}
(2) Is addition an operation on the set of even whole
numbers?
(b) Is multiplication an operation on the set of even
whole numbers?
(c) 1Is raising to a power an operation on the set of even
whole numbers?
3 12. The set of odd whole numbers is indicated below:
(1, 3, 5, 7, 95 11, ...}
(a) Is asddition an operation on the set of odd whole
numbers?
(b) Is multiplication en operation on the set of odd whole
numbers?
(¢) Is raising to a power an operation on the set of odd
whole numbers?
13. In Chapter 1 we worked with some finite systems. In this

problem, we shall use the system (Zz,+). {A physical model

for this system is furnished by & clock face with numerals
l!oll and !Il N)
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(a) Construct a table for (Za,+).

(b) According to the definition of operation in Section
2.3, is + an operation on the set Zy? Why or why not?

Let S be a set that has two elements, a and b. That is,

S = {a, b}, We don't know what "things" a and b are, but

suppose we are *old that 2 is assigned to the ordered pair

(a,a) and to the ordered pair (b,b) and b is assigned to

the ordered pair (b,a) and to the ordersd pair (a,b).

These assignments are displayed in the table below:

a b
a a o]
b b a

Does this table define an operation on the set (a,b)?
Compare the table tc that in part (a) of Problem 13. Do
you see any similarities?

"

In the following "assignment" table, "a," "b," and "c

denote three different objects.

a b
a a b
b b C

(a} Does this table define an operation on the set {a,b}?
(b) Does the table define an operation on the set {a,b,c}?
Although we have not yet talked about geometry in this

course, you probably have some idea of wnat a point is.
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Given two points, you can find the point midway between
them. This point is called the midpoint of the two given
points. For example, P and Q are two points in the drawing
below, and M is their midpoint.

P M Q

ol s

p

(a) Given an ordered pair of points (P,Q), where P and @
are different points, do P and Q have one and only one
midpoint?

(0) If P and Q are different points, is the midpoint
assigned to the ordered pair (P,Q) the same point as
is assigned to the ordered pair (Q,P)?

(¢) What midpoint would you assign to the ordered pair (@,Q)7

(d) Consider the set of all ordered pairs of points. If
mid(P,Q) means "the midpoint of P and Q," is mid an
operation on the set of all points?

(e) If P, Q and R are three points as below, locate
mid(mid(P,Q),R).

. R
Is mid(mid(P,Q),R) the same point as mid(P,mid(Q,R))?
17. While averaging is not an operation on the set W of whole
numbers, it is an operation on the set of numbers of arith-
metic. Compute the following, where "V" means the assign-

ment is to be the average of the two numbers m2king up
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the peir.
(a) 3V4 (b) 23 V5% (c) 2.8V 6.4

(d) 103V 103 (e) .62V .875 (f) 95V 10}

2.5 Computations with Operations

You know by now what is meant by a binary operation on a
set. You have seen that the symbol "*" is often used for en
operation. (We have used special symbols such as "+" and "max"
also.) In fact, any symbol at all may be used for a particular
operation, as long as it is clear to what operation the symbol
refers. In this and following sections, we are going to work
with several different operations, and it would be troublesome
to invent a new symbol for each one of them. On the other hand,
we cannot use "#" for all of them. Therefore, we shall make use
of subscripts, and denote the operations by symbols such as

*,, *,, ¥, , ete.

Now let us define six different operations, some of them
familiar and others probably new to you.

*: a%b=8a-Db In other words, the *, operation
is ordinary multiplication of

whole numbers. For example,

5%,3 = 15.
*,: g%, b =8 + b For exemple, 5*;3 = 8.
*,: a%*sb = amax b For example, 5%33 = 5.
¥,: a¥,b = a In other words, this operation
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resigns to every ordered pair
the first number of the pair.

For example 5%,3 = 5, but

3%,5 = 3.
¥s: a¥gb = 17 Notice that this operation
assigns the same number to
every pair.
#_ . ¥ = % 3 * = g2 3 _
e: a%eb = 28*° + b For example 5%¢3 = 5% + 3% =
25 + 9 = 34,

In order to see how to compute with these six operations, we
look at some examples.
Example 1: Find 3%e2,
The *o operation assigns to every ordered pair
(a,b) the number & + b®. 1In our exsmple, s
is 3 and b 1s 2. Therefore
3%e2 = 3% + 2% =9 + U4 =13,
Example 2: Find (3%s2)*»4.
The fact that "3%¢2" has been enclosed in paren-
theses means that we are to consider this as s
single number. And, from Example 1, we know
that this number is 13. Hence we may write
(3*e2)*24 = 13%,4,
But the *; operation is ordinary addition of
whole numbers; so 13%;4 = 17, Therefore, we

have (3%g2)%4 = 13%,4 = 17,
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Find 3% (2%,4).

Compare this with Example 2. Although the same
numbers and the same operations are involved,
the parentheses have been differently placed.
In this example, we are to consider "2%,U4" as

a single number. Since ¥; 1is ordinary addition,

this number is 6. Thus we have

3*a (2%4) = 3*6
=3 +6 (Rember how the
=9 + 36 operation is defined.)
= 45

We see that the results in Examples 2 and 3 are not the

same. This points up the importance of parentheses in mathe-

matical expressions.

Example U4:

Find ( (4*,7)*e2)*,10.

This expression contains two different
"signals" in the form of parentheses. When we
have parentheses within parentheses, it is
always understood that the innermost pair is to
be dealt with first.

We begin with (4*,7) which is to be taken as a
single number. From the way in which the *,
operation is defined, we know that 4*,7 is U4,
since U is the first number of the pair (4,7).
So, we have for a first step:

((U*e7)#2)%,10 = (U*e2)*, 10

20%, 10
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"4*,2" has been replaced by "20." Finally,
we know that 20%*,10 is 200. If all the steps
are written together, we have the following:
((U*,7)*a2)*,10 = (U*g2)*, 10

20%,10

= 200.

Sometimes, but not always, when an expression involves
more than one pair of parentheses, a pair of brackets may re-
place a pair of parentheses. For instance, the expression of
Example 4 might be written

[ (4%,7)*e2]%, 10,

In the following example, the steps have been listed with-
out any additional explanation. Be sure that you can explain
each step.

Example 5: Find (4*,7)*, ((3*,2)*15).

(U*a7)%, ((3*,2)%35) = 11%*, (6*a5)
11*%,6

11.

2.6 Exercises

In problems 1 through 20, the operations are those defined
in Section 2.5 of the text.

1. (a) 5*%2 = (e) 5*s2 =
(b) 5*,2 = (f) 5%e2 =
(c) 5*2 =
(d) 5*2 =
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2. (a) (7*23)*8 = (c) 2*¢(3*s5)
(b) T7*a(3*s8) = (d) (2*a3)%*e5
3. (a) 109%;111 = | (c) 109%4111
(b) 111%#3109 = (a4) 111%*,109
b, (a) 58%32 = (c) 58%g32 =
(b) 32%,58 = (d) 32%s58 =
5. (a) 42%,1 = (a) 615*%,1 =
(b) k4o*,0 = (e) 615*%;0 =
(c) U4o*,0 = (f) 615%,0 =
6. (a) (3*25)*4 = () 3*s(1*sl4)
(b) 3*3(5%:4) = (@) (3*s1)*sl

7. (a) (7*25)*28 =
(b) T*a (5%:8) =

: 8. (a) 5% (02*,3) =
(b) (5*a2)¥,3 =
9. (a) (420%s3)*,85

(b) L20%s (3%, 85)
10.  ((14*g3)*,2)*,10
11. 15%5 ((3*25)*2889)
12. [(8*310)*s15]*,87
13. ((2*a3)*e4)%e5 =
15. 3%, (5%6) =
] 16. 3*;(5%.6) =
: 17. (5% (2%23)1%a(5% (2%, 3] =
. 18, (8%,12)%, (8*512) =
19.  ((((2%2)%32)%2)%2)%s2 =
: 20.  (((((2%,2)%52)*22)*s2)*s2)*s2 =

87
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Parentheses are also important in expressions involving
the ordinary computations in arithmetic, as the following

probliems illustrate,
(a) 3-(5+9) =
(®) (F-5) +(3 9 =

(¢) [(65+3)+3]-10-=

(a) (%+2%)+%=
(e) 4%-(2% 1) =
(f) %+(2+% =
(g) (%—+2)+%=
(h) (((23-13) +3) +3) -5~

Make up an operation over the whole numbers, and call it *,.
(Caution: Be sure that it is an operation!) Then compute
the following:
(a) 8%15 = (c) 5% (2%3)
(b) 15%8 () (5*42)%,3
Consider the following expressions:

2(n®); (2n)®

They are not the same. The first one 1s often written as

)

]
Il

"2n® ," without parentheses.
(a) 1If these expressions are in (W,+) are there any values
of n for which
2n® = (2n)2°?

(b) what is your answer if the expressions are in (Za,*)?

88
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2.7 Open Sentences

Consider an open sentence in W such sas
5¥.x = 8
The operation *,, according to our definition, is ordinary
addition of whole numbers. Therefore, the question posed (and
it is an easy one) is this:
Is there en ordered peir (5,x) to which 8 is assigned by
the operation of addition?
The answer is cbvious; x must be 3 in order for this assignment
to ve made. Therefore we say that 3 is a solution of the open
sentence "5%;x = 8," 1In this case, it is easy to see that 3 is
the only solution. But some open sentences have more than one
solution; so you must be careful when "solving" en open sen-
tence that you indicate all the solutions, not just some of them.
Example 1: Solve 3*sn = 3 in W,
The *s operation assigns max(e,b) to every
ordered peir (a,b). Therefore, the open sen-
tence will be true if and only if mex(3,n) = 3.
But this in turn will be true if n is 0, 1, or
2. It will elso be true if n is 3, since
max(3,3) = 3. Do you see, however, that it will
no longer be true if n is & whole number greater
then 3? Therefore the solution set of the open
sentence is
{0, 1, 2, 3}.

In this case, we have exactly four solutions.
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Solve 2%,8 = @a in ¥
Under the *; operation, the assignment (2,a)—a
means that a is the greater of the two numbers,
2 and a. Therefore, in order to make the state~
ment true, & must be 2 or any number greater
than 2. There are infinitely many solutions!
The solution set is |

(2, 3, 4, 5, ...}.
Solve a%*42 = 29 in W.
From the definition of the operation *s we
know that if this sentence is to be true, then
8® + 2° must be 29, But 2° = 4; so &° + 4
must be 29. Now, if &° + 4 is 29, do you see
that & must be 25?7
However, 25 is not & solution; we are looking
for a, not &®. But of course if &® is 25,
then a is 5.

The complete list of steps might be written as

follows:
a® +4 =29
a® =25
a=>5

Is 5 the only whole number solution?
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2.8 Exercises

In 1-26 find the solutions of the open sentences using the

indicated operetions as defined in Section 2.5. If there is

more than one solution, be sure to find all of them. Use only

whole numbers,

1.

7.

8%, 8 = 11 14, 85%a = 17
11%,a = 8 15. 85%ga = 18
5%,a = 10 16. 2%a = 13
0%, 2 = 5 17. a*%2 = 13
n*,81 = 103 18. 3%;a = 25
n*;103 = 81 19. 3%a = 30
n*, 17 = 187 20. 5%,a =10
n*,187 = 17 21. n%* 15 = 60
5% 8 =5 22. 3*n =3
a¥36 = 6 23, 52%3n =1
ok, a = 21 2k, 32*%,n = 321
a* 42 = 42 25. n¥*;32 = 321
Jot, e = l2

(a) 832%,a = 832 (d4) 832°,a = 832
(b) 832%,a = 832 (e} 832%ga = 832
(c) 832%,a = 832 (f) B832*4a = 832
Before solving the following open sentences in W, it

is important to understand the following: Suppose you
are asked to solve the open sentence "a + a = 6," where
"+" 1s ordinary addition. Since 3 +3 =0, 3 is a
solution. Notice that "a" is used more than once in

the sentence, snd the same number must be used for each
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"a" in the sentenice. Thus, although 4 + 2 = 6, this does

not give us a solution to the sentence.

(a) 3* 2 = a*;3 () 3*sn = n*,3
(b) 3%*3a = a*;3 (e) 3*sx = x*g3
(c) 3%*sn = n*,3 (£) 3*ax = x*43
28. (a) a*ga = T2 (£) a*,a =2
(b) a*a =25 (g) x*ex = 17
(¢) n*;n =24 (h) x¥3x =5
(d) n*;n = 242 (1) a*¢a =5
(e) ea*,a = 243 (3) e*sa =5
29. (a) n*;(n*;n) = 8 (d) a*s (a*sa) = 68
(b) a*s(a*sa) = 17 (e) n*, (n*4n) = 108
(c) n*;(n*sn) = 23 (£) a*; (a*za) = 9

2.9 Properties of Operations

Referring to the operations defined in Section 2.5, tell

what number cach of the following expression names:

5%,2 5% 2
2%35 2345
8%57 | 8%, 7
T*38 T*, 8
15%53100 15%, 100
100%515 100%, 15

In the *, operation, does the order of the numbers affect
the number produced? It is easy to see from the way *,5 was
defined, that the ordered pair (a,b) will always produce the
: -Rjkj seme number as the ordered pair (b,a). We may state this

99




-86-

formally as follows:
For every whole number a and every whole number b

This is a statement of the commutative property of *,, and we
say that #, is a commutative operation on W, (You will recall
the use of the word “commutative" from Chapter 1.)

From the list above, we see at once that the *, cperation
is not commutative. This conclusion followzs from the fact that
5%,2 # 2%,5, even without looking at the rest of the examples.
We say that "5%,2 # 2¥,5" is a counterexemple; that is, it is

an exsmple counter to {or against) the commutativity of *,. It
is often easy to show that some general statement is false
simply by finding one counterexample.

Again referring to the operations of Section 2.5, tell

what nvmuer cach of the following éxpression names:

(2%63)%5 (2%43)%:5
2% (3%5) 2%, (3%45)
i#g (1%43) I (1%,3)
% (4%¢1)*e6 (4%1)%,3
i (2%g2)#¢ 6 (2%,2)%,6

2%q (2%46) 2%, (2%, 6)

From these examples, we see, for instance, that (2%43)%,5
; o*, (3*,5); that is, the result is the same whether the last two
numbers or the first two numbers are associated by parentheses.
The same is true for the other examples using the *, opereation.
It is 3n fact true no matter what three numbers are selected.

We may state this as follows:
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For every whole number g, every whole number b, and every
whole number c,
(a*sb)%sc = a*4 (b*,c).
This is & statement of the associative property of *;, and we
say that *; 1is an associative operation on W.

Question: From the 1list above, can you find a counterexample

showing that ¥*s is not an associetive operation?
Next, tell what number each of the following

expressions names:

5%10 5%¢0
0*35 0%e5
142%,0 142%40
O*; 142 O*g 142
55%,0 55%¢0
0*3 55 0*¢55

" of the number O under the *, oper-

How may the "behavior'
ation be described? Do you see (from the way the *; operation
was defined, not just from the illustrations sbove) that for eny
whole number g, #*, assigns to the peir (a,0) the number a it-
self? It also assigns a to the pair (0,a). In other words, for
any whole number 8 e*,0 = a, and O*3;8 = a. We often put these
statements together in the following way:

For every whole number &, 8¥,0 = O*,a = a.

This statement says that O is an identity element for *s. (When

0 is put in & pair with any number a, *, produces "{dentically"
the seme number a.)
Question: Can you give a counterexample to show that O is

not en identity for *s? Is there a number which
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is an identity element for *,?
Let us look again at the operational system (Zs,+) studied
in Chapter 1. The appropriate teble is shown below:

+14 O 1} 2
Ol O 1| 2
1 1120
212 01

The teble shows clearly that + is an operation on the set Za.
Why? Furthermore, we see that O is the identity element. Now,
note the following assignments:

(0,0) ——— 0

(,2) ————— 0

(2,1) —— o0
What we have done is to list the ordered pairs of numbers which
are assigned the identity element O. As you recall, the numbers

inksuch a peir are called additive inverses. The numbers 2 and

1 are inverses, since 2 + 1 = 0, We also say that "2 is the
inverse of 1" and "1 is the inverse of 2." This is the same way
we shall use the word "inverse" when speaking of any operational
system.

Question: What is the inverse of 0 in (Za,+)?

In this section, we have looked at four important features
of operations: commutativity, sssociativity, identity element,

end inverse elements. Let us now try to summarize them by using

the "*" symbol to denote & binary operation on a set S.



In the exercises, you will have a chance to apply these defini-

tions to many
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Commutativity

* is commutative if for every
2 in S, and every b in S,
a¥*b = b*a,

Associativity

* is associative if for every

2 1n S, every b in S, and every
¢ in §,
(a*p)*c = a*(b*c).
Tdentity

Suppose e is an element of the
set S. e is an identity element
for (S,*) if for every a in S,
a*e = e*a = a.
Inverse
Suppose e is an identity element
of *. Then g and b are inverses of
each other if

a*b = b*g = e,

different operations. This should help you to

see clearly what they mean.

2.10 Exercises

1. Tell what whole number is named by each of the following.

Warning:

Some of the expressions do not name any whole

number at all.
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(a) 82 + 517 (e) 82 x 517
(b) 517 + 82 (f) 517 x 82
(¢) 517 - 82 (g) 816 + 8
(a) 82 - 517 (h) 8 + 816
2. Which of the following are true for every whole number

a, and every whole number b?
(a) a+b=Db+a
(b) a~b=Db-a
(c) a+b=Db-a
(3) a+b=b=:a
3. Which of the following statements are true?
(a) Addition of whole numbers is commutative.
(b) Subtraction of whole numbers is commutative.
(c) Multiplication of whole numbers is commutative.
(d) Division of whole numbers is commutative.
b, (a) Are there any whole numbers a and b for which
a~-b=D>b ~ a?
(b) Are there any whole numbers a and b for which
a+b=D>b=%+ a?
5. Look again at the six operations defined in Section 2.5.
| Which of these are commutative operations? (Give a
g counterexample for each operation which is not commutative. )

E 6. Tell what whole number is named by each of the following:

é (a) (12 +6) +2 (e) (12 x6) x2
| (b) 12 + (6 + 2) (£) 12 x (6 x 2)
(¢) 12 - (6 - 2 (g) (12 + 6) + 2
(a) (12 - 6) -2 (h) 12 + (6 + 2)
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Which of the following are true for every whole number

a, every whole number b, and every whole number c?

(a) (a+Db)+c=2a+(b+c)

(b) (2 =-b) =-c=2a-=-(b=~c)
(¢c) (a+Db)e-c=a-+(b-c)
(d) (a+Db)+c=a+ (b+c)

Which of the following statements are true?
(a) Addition of whole numbers is associative,
(b) Subtraction of whole numbers is associative.
(c) Multiplication of whole numbers is associative.
(d) Division of whole numbers is associative.
(a) Are there any whole numbers &, b and ¢ for which
(a ~b)=c=8a=(b=-2c)?
(v) Are there any whole numbers a, b and ¢ for which
(e +b) sc=a=+ (b+c)?
Look again at the six operations defined in Section
2,5, Which of these do you think are sassociative
operations? Try to find a counterexample for each
operation which 1s not associative.
() Evaluate the following:
15 + 0; O + 15; 312 + 0; O + 312.
(b) Name an identity element for additiom of whole
numbers, Is there more then one identity element?
(¢) Evaluate the following:
15 x1; 1 x15; 312x1; 1 x 312,
(d) Neme an identity element for multiplication of

whole numbers. Is there more than one ldentity

element? 98
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12. Give a counterexample showing that the number 1 is not
an identity element for the operation ¥; on the set
of whole numbers,

13. Notice that although 2 - 0 =2, it is not true that
O - 2 yields 2. Therefore, O is not an identity ele-
ment for subtraction of whole numbers. (Look again
at the definition of identity element if you do not
see why this is the case.) Is there an identity
element for division of whole numbers?

14, Construct a table for (Zs,+).

(a) Is + a commutative operation here? (How does
the table show this?

(b) Is + an associative operation? (Is there a
counterexample?)

(c) Is there an identity element in (Ze,+)?

(d) List all pairs of numbers which are inverses
for +.

15. Construct a table for (Zs,°).

(a) Is . commutative?

(b) Is ° associative?

(¢) Is there an identity element in (Zg,+)?

(d) List all pairs of numbers which are inverses
for ° .

16. Look again at exercises 16 of Section 2.4, where we
introduced an operation which assigned to every pair
(P,Q) of poinits a midpoint. Call this operation mid

in this problem.
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() Is it true that PmidQ = QmidP for every point P
and every point Q2%
(b) Is it true thet (PmidQ)midR = Pmid (QmidR) for every
point P, every point Q, and every point R?
In this problem, we introduce & new operation on the set
of peirs of points in a plane. (Think of e plesne as simply
a flat surface like the top of a desk.) Let P and Q be two
points as below. Draw a line through these two points. We
shell define P*Q for this problem as follows:
P*Q is the point R which is on the line through P snd Q, on

the "other side" of Q from P and at the seme distance from

Q as P,

We say in this cese that "R is the reflection of P in Q."

() How could you define P*P?

(b) Show * is an operation on the set of points in the
plene,

() 1Is this operstion commutative?

(d) Is this operstion associative?

(e) Does the operstion have sn identity element?

The table below defines an operetion A over the set

{a, b, c}.




19.

(a)
(v)
(c)
(d)

(v)

.-gu_

Is A an associative operation?

Is A a commutative operation?

Does A have an identity element?

If there

is an identity element, list all peirs of

inverse elements.

Consider

of whole
Does the

Does the
Consider
of whole
Does the
Is there

system?

the system (W,+); that is, addition

numbers.

number 8 have an inverse in this system?

number O have an inverse in this system?

the system (W,+); that is, multiplication
numbers,
number 8 have an inverse in this system?

a number which does have an inverse in this
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2.11 Cancellation Lews

+f#0 1 2 3 4 *JJo 1 2 3 4
offo 1 2 3 & offlo ¢ o o0 o
141 2 3 4 o 1§40 1 2 3 4
242 3 4 o 1 2o 2 4 1 3
3(13 4 o 1 2 310 3 1 4 2
L4y o 1 2 3 Lifo 4 3 2 1
(Zg 5 +) (Zg,-)
+lo 1 2 3 lo » 2 3
ojflo 1 2 3 offo 0 0 O
11 2 3 0 1Jlo 1 2 3
22 3 o0 1 219 2 o 2
33 o 1 =2 3o 3 2 1
(Z45+) (Zas-)

Suppose that two people are asked to choose &n element
from Zg without telling what number they heve chosen. Eech,
however, is to write some true sentence sbout his "unknown'
number. The first person cells his number a and writes the
following statement:

3+ 8 =2,
The second person, Without knowing what the first has written,
cells his number b and writes the following:

34+b=2.
What conclusion cen be drawn? It is apparent, from a glance at
the (Zg,+) table, that a is 4 end that b is also 4, because 4 is
the only number which, when added to 3, yields the number 2 in
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(Zg s+). 1In order words, a and b name the same number, and we
may write
a = b.
There is an important idea suggested here. Notice that
from the statements made by the two people, we knew the following:
3 +a=3+hb,

"=" sign were

since the expressions on the two sides of the
both given as equal to 2. We were then able to conclude:
a ==t.

Would we have been able to draw the same conclusion if
3 + a and 3 + b had both been given as equal to 3, instead of
2? The answer is "yes," since in such a case both & and b
would have to be 0. In fact, as you csn verify yourself, cs
long 8s 3 + a = 3 + b, we may conclude that a and b are the
same number. Thus, we write:

in (Zg,+), if 3 + a=3 + b, then a = b,

There is nothing special about the number 3 in this
argument. If, for instance, we know 2 + a = 2 + b or that
O+a=0+borthat 1 +a=1+Db or that 4 + a = 4 + b, we
can still conclude that & and b are the same number. To
summarize, let a, b, ¢ be numbers in Zg.

Ifc+a=c+bin (Zs,+), then a = b,

This is known as the cancellation law for addition in Zg.

Now let us look at (Z,,°). Suppose we know that a and b
are two numbers in Z,, and we know further that
2 a=2"hb,
Can we conclude that a and b are the same number? Be careful!
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At first, it might seem that this conclusion is justified. But
look at the table for (Z,,:). Do you see that

2 ¢+ 1=22and also 2 - 3 = 2?
This shows up clearly in the table since the number 2 appears
more than once in a row:

. 0 1 2 3

0

1

2 | —@—0
In this case, 2 «+ 1 =2 « 3, but 1 # 3. Hence, there is no
cancellation law for multiplication in (Z,,+). (Note also
2 -0=2.+2, but 0 ¥ 2.)

Next, look at the table for (Zg,°). Is there any number
which appears more then once in any row of tk~ table? Surely
O does, since every entry in the first row is "0." So, even
if we know

O *a=0"*b,

we cennot conclude that a = b. (For example, a might be 2, and
b might be 3; yet 0« 2 =0 - 3.) However, no number except O
appears more than once in any row. Therefore,

In (Zg,*)s ifc#0 andc - a=¢ * b,

then a = b,
Thus we have a cancellation law in (Zg,*) provided the numbers
we "cancel" are not zeros.

Question: Examine the table for (Z,,+). Is there a

cancellation law in this system? Is there an
easy way to tell from the table?

@ In the following examples, we:investigate some cancellation
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laws involving whole numbers, Specificall&, we shall work
with the systems (W,+) and (W,.).
Example 1: If 4 + a =4 + b, is it true thet a = b?
The answer, of course, is "yes." Recall that
in the addition table for whole numbers, no
number appears more then once in any row (al-

though the table goes on without end).

Example 2: If a + 4 =b + 4, does a = b?
The answer again is "yes." In fact, since + is
a8 commutative operation on W, this is essentisal-
1y the same as Example 1.
Example 3: If 4 * a =4 - b, does a = b?
Once again, the answer is "yes." TFor instance,
if 4 * a =20, and 4 * b = 20, then both & and
b are 5. Because of commutativity, we can also
say, "If a* 4 =b * 4, then a = b,"
Example 4: If 0 * a =0 - b, does a = b?
NO! Recall that in the multiplication table
for whole numbers, "O" is the entry in every
cell of the first row. Thus O * 2 = 0 - 58,
since both products are 0; but 2 # 58.
From examples such as these, it seems reasonable to formulate
the following cancellation laws for asddition and multiplication
of whole numbers.
If a, b and ¢ are whole numbers, and

if ¢ +a=c¢+ b, then a = b.
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Tf a, b and ¢ are whole numbers with ¢ # 0, and
if ¢ .- &2 =¢ + b, then a = b,
Are you clear as to why we require ¢ # 0 in the cancellation
law for multiplication of whole numbers? (If not, see Example
4 gbove.)

Since eddition and multiplication of whole numbers are
each commutative operations, these cancellation laws could Just
as well have been stated in the following way

If 2 +¢c=b+c, then a = b,
If e - c=b - c (end c #0), then a = b,

We have now seen several systems in which cancellation
laws are possible, end ot least one, (Z,,'), where there is no
cancellation law. The notion of a cancellation law in éen
operational system may be defined in general &s follows:

Definition: 1If (S,*) is &en operational system, we sey

that there is & cancellstion lew in (S,¥*)

provided that the following holds. If &, b,
¢ ere in § and

if a ¥c =b * ¢, then a = b.

2.12 EBxercises

1. Suppose that z and b ere whole numbers such that
58

What number is a? What number is Db?

% and 5 * b = 95

2. Suppose that x and y asre whole numbers such that
X + 79 = 117 end y + 79 = 117

o What number is x? What number is y?
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3. Suppose a, b, and ¢ are whole numbers. What conclusions
can you draw from the following?

(a) c+a=c+h0.

(b) ¢* a=c ° b, where ¢ # 0.

(c) 0-2a=0 " b.

4, Consider again the "maximizing" operation on the whole
numbers.
(a) Suppose there are two whole numbers & and b such that
4 max a = 4 max b,

Can you conclude that a b?

(b) 1Is there a cancellation law for (W,max)?

5. Let mid be the operation which assigns to every pair of
points (P,Q) their midpoint. (See problem 16 of Section 2.4.)
Is there a cancellation law for this operation; that is, if
Pmid @ = P mid S, where P,Q, and S are points, can you be
sure that @ and S name the same point?

6. For which of the following systems are there cancellation laws?
(a) (Zg,+) (b)) (2Zq,+) (c) (Ze,-) (d) (Ze,*)

7. PFrom which of the following statements can you conclude that

= b? (Parts (a) through (g) refer to whole numbers.)

a

(a) 2+a=2+01

(b) O+a=0+0D

(¢) 2 a=2-+0b

(d) 0 - a=0"1

(e) 2max a =2 max b

) 2& = 2P (where a and b are not zero)
, (g) & =1b°
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(h) 2+ a=2+bin (Zs,+)
(1) 2+ a=2"+Db in (Zs,°)
(j) 2+ a=2+Dbin (Z4,+)
(k) 2+ a=2"*bin (Z,-)

Let * be the operation which assigns to any ordered pair
of points (P,Q) in & plane the reflection of P in Q. (See
exercise 17 of Section 2.10.) 1Is there a cancellation law
for this operation?
The following table defines an operation on the set

(a, b, c}.
Is there a cancellation law for this operation?

% al b e

a a b c

bjfb|c}| Db

c c a b

Make up two new operations over the set W of whole numbers,
so that one of the operations has a cancellation law and
the other one does not.
The sum of two even whole numbers is an even number. We
might sbbreviate this statement as

even + even = even.
In the same way, We can state

odd + odd = even;

even + odd = odd;

odd + even = odd.
Now we consider the set S = {even, odd} having two elements.

We can construct the following operational table:

i'\
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+ even odd
even even odd
odd odd even

(a) In (S,+), is + associative?

(b) TIs + commutative?

(¢) Is there an identity element?

(d) Does each element have an inverse?

(e) Does the system (S,+) have a cancellation law?
12. Using the set S = (even, odd} from problem 11, construct

an operational table for the system (S,-) suggested by

multiplication of odd and even integers.

(a) In (8,*), is * associative?

(b) Is * commutative?

(¢) 1Is there an identity element?

(d) Does each element have an inverse?

(e) Does the system (5,°) have & cancellation law?

2.13 Two operational Systems

Let S be the set
(6, 8, 2, 4},
a8 subset of the set of even whole numbers. We are going to
introduce an operation on this set which we shall denote by the
symbol K:)" since it is closely related to multiplication of

whole numbers. To begin with an illustration, consider the
problem of meking an assignment to the ordered pair (8,4). The
product of 8 and 4 is 32. We shall keep only the last digit,
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and write
8(D4 = 2.

As enother example, the ordered pair (2,8) shall be assigned
the number 6 by the(:)operation, since the ordinary ﬁroduct of
2 and 8 is 16, and the last digit of the numberal "16" is "6."

As you can see, the(:)operation makes its assignments on
the basis of certain digits; so we can call it digital multipli-
cation. Printed below is sn operational table showing the
assignments for all ordered pairs of elements of S under digital

multiplication.

©

B EIVE Ne o 28 o)

£ [P [o] ol o
N oy || o]l
o |F vl
o oo |0 FEHF

From the table, you can see that we were justified in calling(:)
an operation on S. In the exercises that follow, you will be
asked to investigate some of the properties of the operational
system (5,0).

For the second operational system, we use the set P of all
points in a plene. For example, R and S are two points in the
plane of this sheet of paper. If we are to have a binary oper-
ation on this set P of points, we must be able to assign to every
ordered pair of points such as (R,S) some particular point of

the plane. Let us agree to make the assignment in the following

way:
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Move your pencil from R to S

(that is, from the first point of the R ./-—-73
ordered pair to the second). Then Q /
move your pencil (in a clockwise sense)

to a point T so that R, S, and the point (R;Z—DT

T are corners (or vertices) of an equi-
lateral triangle. This point T is the one we shall assign to
the pair (R,S).

What assignment could we make to an ordered pair such as
(R,R)? 1If in such a case we agree simply to assign the point
R itself, then we are able to make an assignment -- and only one
assignment -- to every ordered pair of points. We now have an
operation. Since a triangle helped us to define this operation,
let us call the operation "tri." Thus, for the points above,
we have

Rtri S =T,

Is S tri R the same as R tri S? 1In the exercises that follow,
you will have a chance to answer questions such as this atout

the system (P,tri).

2.14 Exercises

Questions 1-6 are about the operational system (S,©)
explained in the text.
1. (a) Is(:)commutative? If not, give & counterexample.
(b) How does the pattern of the operational table show

that your answer in (a) is correct?

2. (a) compute 8()(6(D4) ana (80D 6)ODu.
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(v) Is(:)aSSOciative? Is there any way you can tell with-

out testing every possible case?

3. (a) 1Is there an identity element in (S,(:))?

(o) Is there more than one identity element in (S, ())?
4., (a) What is the inverse element of 8 in (S,(:))?

(b) What number is its own inverse in (S,())?

Is there another?
5. (a) 1If 2(:)a = 2(:)b, what can you conclude about a and b?
(b) Is there a cancellation law in (S, (5))? How can this
question be answered by inspecting the table?
6. Solve the following open sentences in (S,<:>):
(a) x(:)2 6 (d) x(:)x = 8
(v) 2(Dx =2 (e) xOx)Ox
(c) xOx 6 (£) xO(xOx)

Questions 7-11 refer to the operational system (P,tri)

it

[

2

2

discussed in the text.
T. Is tri commutative? If not, give a counterexample.
8. 1Is tri associative? (Try at least two different cases.)
9. 1Is there an identity element for (P,tri)? Is there more
than one identity element?
10. Does every point have an inverse in (P,tri)? Defend your
answer,
11. 1Is there a cancellation law in (P,tri)?
12. (a) Does the system (S,(:>) have any properties which
(P,tri) does not have?
(b) Does the system (P,tri) have any properties which
(s, (:)) does not have?
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2.15 What is a Group?

In this chepter we have studied many different operational
systems and we have called attention to such properties as
associativity, identity elements, and inverse elements. Because
operational systems which possess these three properties play an
important role in mathematics we give the special name group to
any such system. That is, if (S,*) is an operational system
such that

(1) * is associative;

(2) there is an identity element; and

(3) each element has an inverse,
then (S,*) is said to be a group.

Questions: Is (Zs, +) a group?
Is (W,+) a group?
Notice that the operation in a group does not have to be
commutative. However, it may be, and if it is, the group is

called a commutative group.

Questions: Is (Za,+) a commutative group?

Is (W,+) a commutative group?

2.16 Exercises

Decide which of the following aie commutative grcups.
Remember that there are four necessary properties, and each must
be verified.

1. (Zoo+) 2. (Z4,°) 3. (W,max)
b, (S,*), where S = {6, 8, 2, 4} and - is digital multipli-
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cation. (See Section 2.13.)
(P,tri) (See Section 2.13.)

Summary

An operation on a set S is an assignment of one and only
one element of S to every ordered pair of elements of S.
If an operation assigns‘g to the ordered pair (a,b), we
may show the assignment as

(a,b)—c.
If a symbol such as "*" is used to identify the operation,
the assignment may be shown as

a*b=oc,

When * is an operation on set S, we denote the operational

system by the pair (S,*).
If a and b are elements of S, and (S,*) is an operational
system,; then a sentence such as
a*x="»

is an open sentence in the system. Any element of S which,
when substituted for x, gives a true statement, is called
a solution of the open sentence.
There are certain properties of operations which are
important. For example, if (S,*) is an operational system
and we let a, b and ¢ represent elements in S, then

* i1s commutative if a * b = b * a for every a and b;

* is assoclative if (a * b) * ¢ = a * (b * c) for

every a, b and ¢,
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e 1s an identity element of (S,*) if e * g =
a¥® e = a for every sa;

a and b are lnverse elements in (S,*) if

a®*®b=Db% a=-¢e where € 1s an identity element.
If in this system a * ¢ = b * ¢ always implies a = b, we

say that (S,*) has a cancellation law.

4, (w,+) and (W,.) are two important systems involving the
whole numbers, These operational systems have the following
properties:

In (W,+), + is associative;
+ is commutative;
there is an identity element, O;
there is a cancellation law.
In (W,*), * is associative;
+ 1s commutative;
there is an identity element, 1;
ifc #0, a+c=D>b- c inplies a = b.

2,18 Review Exercises

1. Tell what number is assigned to the ordered pair (7,2) in

each of the followling systems:

(e) (W,+) (o) (w,-) (¢) (W,max)
(@)  (Zy2,+) (e) (Zyas+)
2. Iist all pairs which are assigned the number 4 in each
of the following systems:
(a) (w,+) () (w,*) (c) (W,max)
Q- (@) (Z1p,+) (e) (Zya,*)
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3. Tell what whole number (if any) is named by each of the

following:

(a) 867 + 2u5 (h) 5 - 87
(b) 245 + 867 (1) 87 + 5
(c) 867 - 25 (3) 5 = 87
(d) o45 - 867 (k) 3°

(e) 867 mex 245 (1) 3*

(f) 245 max 867 (m) 4

(g) 87 -5

4, Which of the following are operations on the set W of
whole numbers?
(a) addition
(v) multiplication
(c) subtrsction
(d) division
(e) maximizing
(f) reising to a power
5. Which of the following statements are true for every whole
number a, every whole number b, and every whole number c?
(2) a+b=">b+a
(b) a*-b=Db- a
(¢) s ~-b=Db -2
(d) a+b=>b+ a

il
o’
=
3]
b
Q

(e) amax®
(f) &P = p®
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6. Find the whole number nemed by each of the following, if
a i3 12, b is 6, and ¢ is 2.

—

(a) (a+Db) +c (f) a - (b - ¢c)
{b) 2+ (b +c) (g) (a+Db)+ec
(e) (a -Db) -c (h) a + (b s+ ¢)
(d) a - (b - ¢c) (i) (a mex b) max c
{e) (a -+ Db) ¢ (i) a mex (b max c)

7. Find the number named by each of the following if a is 4,
b is 2, and ¢ is 3.
() (s%)° (6) o)

8. Which of the following are associative?
(2) addition of whole numbers
(b) division of whole numbers
{c) subtraction of whole numbers
(d) multiplication of whole numbers
(e) meximizing with whole numbers
(f) raising to a power with natural numbers

9. "Averaging' is not an operation on the whole numbers, but
assignments can be made to certain pairs. Let "aVb" mean
"the average of a and b."
(a) What is 8 v (12 v 20)? (¢) 1Is averaging associative?
(b) what is (8 V¥ 12) V 20°

10. Find what number each of the following names in W.

(a) ((6+7).3)+16
(b) ({9 . 5) max 46) + 156

{(e) 100 - ((2°) + 17)
(@) ((5+7) - (3+17)) - 10
(e) ((5 max 7) - 8) + ((5°) + 3)
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11. Find all whole number solutions of the following open

sentences. If there is no whole number solution, say so.

(a) 156 + x = 217 (k) &° =8

(b) 89 + a = 89 (1) 3% =38

(c) 89 +a = 88 (m) 1% =1

(d) a - 14 = 98 (n) 1% =2

(e) & - 14 =99 (o) a + a = 100
(f) 14 - a = 14 (p) a - a =100
(8) 14 - a=0 (q) &% = 100

(h) 4 max n =4 (r) n" =27

(1) 4 maxn =5 (s) a max a = 100
(3) 4 max n =3 (t) (2 max a)® =4

12. Find what whole number is named by each of the following if

-~ 2and b =5. (See Section 2.6, Exercise 23.)

a

(a) & +2 (g) a + b

(b) 28’ (h) 28° +5

(e) (2a)® (1) 2 - [(&®) + 5]
(d) (a +Db)® (3) (a max b)?

(e) & +7Vv° (k) a max (b?)

(

£) & +[ 2 (& b)] +1V°
13. 1If each of the following is taken to be a true statement

about the whole numbers a and b, from which can we conclude

that a = b?

(a) 5+a=5+b (d) 0-8=0-0b

(b) O+a=0+b>o () 3 max a = 3 max b
(¢) 5-a=5"-0 (£) & =1v°

118



14,

15.

-112-

Consider all ordered pairs of points in a plane. If

(P,Q) is an ordered pair of points, let P*Q be found in

the following way:

Take P and @ as corners of a square,

and let R be the third corner of the
square if you move in a "clockwise"

way from P to @ to R. (See diagram

at right.) Then P*¥0 = R. Answer

the following questions:

(a)
(b)
(c)
(d)
(e)
(£)

What point can be assigned to a pair such as (Q,0)?
Is * an operation on the set of points in a plara?
Is * commutative?

Is * associative?

Is there an identity eiement?

Is there a cancellation law?

Take the set S = {0, 1)}, and construct tables for all

possible binary operations on S.
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CHAPTER 3

MATHEMATICAL MAPPINGS

3.1 Assignments snd Msppings

In Chapter 2, assignments to the ordered pairs of elements
of a set were studied. For exsmple, the operation of addition
of whole numbers sssigns to esch ordered pair of whole numbers
a unique whole number, cslled the sum. Thus, (18,9) — 27
by the operstion of eddition.

In this chepter we shall examine other kinds of essignments
eand, in particulsr, the special kind of assignment that is
called & mapping. Now let us look at some examples of assign-
ments, some of whizh are mappings and some of which are not.

Exsmple 1. There are 5 tebles in & home economics room in

in & school labelled Cl, C2, C3, CU4 and C5.
The chart below gives the assignment of girls

in 8 home economics clsss to the tables.

Table Name
Cl --

c2 Judy
0723 Mary
23 Helen
ch Louise
cl Sandra
C5 Janice
C5 Csrol

%0

puah
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A convenient way to represent this assignment

is to construct an arrow diagram for the

assignment. To show that Helen is assigned tc
table C3 by this assignment, we draw an arrow

from "C3" to "Helen" as shown.
— T
Cc3 Helen

We say that C3 is at the origin of the arrow

and that Helen is at the terminus of the arrow.
Then, listing the two sets given, we construct

the arrow disgram showing all the assignments.

Judy

Mary
Helen
Louise
Sandra

Janice

Carol

Figure 3.1

The diagram shows. for instance, that both
Louise and Sandra are assigned to table Ci.

A basketbsll program lists the heights of the
boys in the first team as follows:

|
FaNS]
A
a4
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Name Height in inches
John Hammond 73
Al Parks 77
Bert Moyer 70
Fred Clark 73
Steve Hanson 68

By this chart a whole number is assigned to
each boy.
Figure 3.2 shows an arrow diagram for this

assignment.

Figure 3.2

Example 3. Assign to each whole number in the set of whole
numbers {2, 3, 4, 5, 6, 7} each whole number in
the set (1, 2, 3, 4, 5, 6, T} which it divides
exactly. The arrow disgram for this assignment

is shown in Figure 3.3,

bt
Fa\e!
Pate
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Figure 3.3

The diagram shows, for instance, that 3

divides 3 and 3 divides 6.
Example 4. Assign to each state of the United States its

capital city.

Alabama Montgomery
California Sacramento
New Jerseye Trenton
New York e —e¢ Albany
Texas & H-o Austin

: Figure 3.4 :

In this case the arrow disgream does not give
the complete assignment but the complete as-
signment could be given, perhaps with the aid
of an atlss.

Example 5. Assign to each whole number a whole number that

is 5 more thsn the given whole number.
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© 1234567891011
012 3 4 5 6

Figure 3.5

In this arrow diegram only part of the assign-
ment is given. It is impossible to give the
complete assignment by an arrow diagram because
the set of whole numbers could never be com-~
pletely listed in this way.

Example 6. Consider the set of children {Mary, Steve, Joe,
Janet, Peter, and Harry), and assign to each
child his father. The complete assignment is

given by an arrow diagram in Figure 3.6.

Mr, Brown

e Mr, White

Figure 3.6

We could list meany examples of assignments, but some things
should be clear to you from the preceding examples. In each
example there is a first set and a second set. Sometimes each

element of the first set is assigned an element of the second
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set, and sometimes not. 1In Example 1, the table Cl is sssigned
no student. Sometimes an element of the first set is assigned
more than one element of the second set, 1In Example 3, 2 is
assigned 2, 4, and 6. These assignments are not mappings.

Now let us focus our attention on Example 4. In this ex-
ample note that to each element in the first set is assigned at
least one element of the second set. Furthermore, to each ele-
ment of the first set is sssigned only one element of the second
set. We say then that to each element of the first set there is

assigned exactly one element of the second set. Assignments

heving this property are of great importance, both in mathe-
matics and in its applications. Such an assignment is called e
mapping of the first to the second set. (Which of the assign-
ments given in Examples 2, 4, and 5 ere also mappings?)

More formally, given two sets A and B, to have a mepping of

A to B, to easch element of A there must be assigned exactly one
element of B. The method of assignment is often called s rule
of assignment, or simply & rule for the mepping.

The first set, A, in a mepping s called the domain of the
mapping. In Example 6, the doma‘n A is the set of children
(Mary, Steve, Joe, Janet, Peter, Harry}. Since, in this mapping,
Steve is assigned Mr. Jones, we say that Mr. Jones is the imags,

mathematically speaking, of Steve.

Steve /_$\ Mr, Jones

We see that Steve, the member of the domain, appears at the

origin of the arrow and that Mr. Jones, the image, appears at
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the terminus of the arrow.

The second set, B, in a mapping 1s often called the co-
domain. For Example 6, the codomein B = {Mr. Brown, Mr. Jones,
Mr. Ross, Mr. White}. In some mappings each element of the
second set is an image, as is the case in Example 6, but this
is not tke case for the assignment in Exemple 5, which is also
a mepping. Notice that the set of images in a mapping, which is
called the range of the mapping, may be either all of the second
set, or a part of it.

In this section we have shown you several examples of as-
signments, and have begun the study of those specisl assignments
which are called mappings. Leater, we will study other mappings,

particularly those in which the sets A and B are sets of numbers.
3.2 Exercises

1. Answer the following questions for each of the assignments

in Exemples 1-6 given in section 3.1.

(a) Is each element of the first set assigned at least one
element of the second set? If not, which elements are
not assigned?

(b) Is any element assigned more than one element of the
second set? If so, which ones, and what are the ele-
ments of the second set assigned? (You mey answer this
question by using arrows.)

(¢) Is the assignment a mapping of the first set to the

second set?
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(d) For each assignment that is a mapping
(1) 1list the domgin and range;
(2) state whether or not the range is all of the
second set,
set A = (1, 3, 5, 7, 9} end B = {2, 4, 6, 8, 10}. Which of
the following arrow diagrems represent mappings of A to 37

In each case explsin why the arrow diagram does or does not

represent a mapping of A to B.
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(a) —
—
1 3 5 7 9
N\ ' /'//
Y s
2 y 6 8 10
()

AN

3. The following charts give the assignments to tebles Cl, C2,
C3, C4, end C5 in the home economics room of the girls in
three different classes.
(a)
(v)
(c)

For each assignment
draw an arrow diagrem;
state whether or not the sssignment is a mapping;

give a reason for your answer to (b).

1. |Teble | C1 c2 c2 C3 ch c5
Name Jane Elaine Karen | Marthe Peggy | Alison
2. |Table C1 cz C3 ch c5
Q Name |Noreen | Betty Theress | Eileen
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3. | Table cl c2 C3 c4 c5

Neme Dolores Cheryl Betsy Ann Veronics

4, Let A be the set of weights, in ounces, of 5 letters to be
mailed. Let B be a set of possible costs, in cents, of mail-
ing letters by first class meil., Recsgll that post offices
charge 6 cents per ounce or fractional part of an ounce.

Draw an arrow disgram for the mapping of A to B if
A=(3, 4 6 5 5.

5. Let A=1{1, 2, 3, 4, 5} and let B = A,

(a) Drew an arrow diagram of the mapping of A to B given by
the following table, where each member of A has sssigned

as image the corresponding table entry for B,

A 1 2 3 b 5

) What is the image of 3 in this mapping?
) What is the range of this mapping?
(d) Is the range the same as set B? Why?
) Is any element of B the imaege of more than one element

of A?

3.3 Mzappings of Sets of Whole Numbers

In Section 3.1 mappings of A to B were considered 1or
which the set A or the set B was not a set of numbers. For in-
stance, in Example 2, the domein A is a set of boys, snd the co-

domain B is & set of whole numbers. There are many other map-~
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pings with both the sets A and B sets of numbers. We shall now
consider mappings of A to B in which the sets A and B are sets
of whole numbers.

Example 1. Let the domain A = (2, 3, 12, 7, 4}, and let
the codomain B = {6, 9, 12, 21, 36}. Let the
method of assigning images be: to find the
image of a number in A, multiply the number by
3. An arrow diagream for this meapping could then
be given as is shown below. (In this example
and hereafter we shall write 3n to mean 3 * nj;

similarly, %n means % - n, 7x means 7 - X, etec.)

kD
S T

9 36 12
(3-2) (3-3) (3-12) (3:7) (3-4)
\\—J
Figure 3.7

It is convenient tc designate the method of
assigning images in this mepping as n———3n
where n is any number in the domain A of the
mapping. We can read "'m——3n" in any one of
the following ways:

(L) The image of n is 3n.

(2) n is mapped onto 3n.
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(3) To n is sssigned 3n.
We refer to "'n———»3n" as the rule for the
mapping.

Example 2. Let A be the set of whole numbers, W, and let
B also be the set of whole numbers. Let the
rule of the mavping be: to each whole number
in A is assigned 3 times that whole number.
Since the domain of this mapping is infinite,
we can only give an incomplete arrow disgram ss
showr in Figure 3.8, where we sgree that the
assignments continue in the same way for the

remaining elements of the domain.

e
N e

. . . . [ . . L . . )
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Figure 3.8

Note that for this mapping the domain is W and

the range is (0, 3, 6, 9, ...}; that is, the

set of multiples of 3. It is clear that even

though the mappings in Examples 1 end 2 have

the same rule, n-—~7a-3n, they are not the same

mepping; one is finite, the other is infinite.
Q In what other way do they differ?

1 R1l
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Exsmple 3. Let A = (6, 8, 10, ...} and let B = W. Let the
rule of assignment be n-—-—»(%n) - 3. First,

let us find the images of some of the numbers

in A.
The image of 6: 6_—>(%-6)-3=3-3=o
The image of 8: 8————»(%—-8)—3=4—3=1
The image of 10: 10 ~(2+10) -3=5-3=2

Thus, an incomplete arrow diagram would be:
12
N

Figure 3.9

(o)}

}...J:——-—(——.m
) s —ma— )

(@)

You should be able to supply the missing images
in this diagram.

Now suppose we construct an assignment of W to
W using the rule n-—-—ﬂ»(%n) - 3. Then this
assignment is not a mapping, for there are

many whole numbers that are assigned no image

by this rule. Consider T.

T—>(5+7) -3=33-3=5.

GV T

is not a whole number. Is any odd number

assigned a whole number by this rule? Now,
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consider 4.
4————*-(% - 4) -3 =2 -3,
At present, we can give no number for the
difference 2 - 3. 1Is any whocle number less
than 6 assigned a whole number by this rule?
From these examples we see that giving a rule of assignment
is not enough to define a mapping completely. We must also be
given two sets A and B so that the given rule
(1) assigns to each element of A at least one
element of B; and
(2) assigns to each element of A only one
element of B.
Then we can say that the rule of assignment defines a mapping of
A to B.

We now consider another kind of arrow diagram.

Example 4,

Figure 3.10

Even though the last number shown on this num-
ber line is 12, you are expected tc assume that
we are talking here about the set of all whole
numbers, and that the arrows continue 1in the
same pattern. Look at the arrow starting at

the point labelled 0. where does it end? This
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arrow shows that the lmage of 0 1s 2; that is,
0 =2, For the .wmbers shown in the diagram,
the rule n-—en + 2 1s satisfactory. Lel us
use this rule for all of W. Does each whole
number, shown or not in the diagram, have an
image? Exactly one image? If we intevpret
each arrow as connecting two whole numbers we

have an example of an arrow diagram cf a map-

ping of W to W on a line. Using the diagram,
find the image of 3, of 4, of 7. 1Is there a
number whose image is 3? 42 72
Since every whole number is at the origin of an
arrow, the domain of the mapping is W. O and 1
are not at the terminus of any arrow so the
range of this mapping is {2, 3, 4, 5, 6, ...},
that is, all whole numbers greater than 1.
Example 5. Let A = {0, 1, 2, 3, 4, 5}, B =W, and let the
rule »f assignment be n—5 - n, We then ob-

tain the following arrow diagram on a line.

Figure 3.11

You should check to be sure that it is indeed a
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mapping of A to W. Every member of the set A
is at the origin of an arrow and also at the

terminus of an arrow. Hence, the domain and

the range are the zame set, A.

Let M = {0, 1, 2, 3, 4, 5, 6, 7) and consider
the mapping of M to the whole numbers W given

by ¢the following arrow diagram on a line.

Figure 3.12

You can easily check that this diagram repre-
sents a mapping by noting that each number in
M is at the origin of exactly one arrow of the
diagram. In this case there is no easily seen
rule of the form n—»= ? for this mapping. How-
ever, the diagram itself serves quite nicely

as a rule. Thus we find the image of 3 1is 2,
since 2 e, 3 on the diagram. what is the
image of 2? of 5? of 6?2 Wwhat is the range of

this mapping?
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Example 7. Let S = {0, 1, 2, 3, 4}, and consider the
mapping of S to W given by the following

arrow diagram.

Figure 3.13
It is easy to see that there is & rule of the
form n—»0 Tor this mapping, it is n— 3n.
For instence, 0 —=3 * 0 =0, 1—3 ¢« 1 = 3,
and 2-——»3 * 2 = 6,
Looking at our examples we see that in an arrow diagram of
a mapping, each element of the domain appears at the origin of
an arrow. Because of this we agree from now on that whenever
we are given an arrow diagram for a mapping, the domain is
understood to be the set of elements which appear at the origzins
of the arrows. The codomein, unless otherwise given, will be

W, the set of whole numbers,

3.4 Exercises

“. Take W for the first set in a mepping and N = {1, 2, 3, ... }
for the second set. Let n —»n + 3 be the rulé for the
mapping.

(a) What is the image of 0? of 382 of 1359%
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(h) Meke an incomplete arrow diagrsm on a line for this
niapping, showing the image of each whole number less
than 13,

Try to repeat exercise 1 using sets W and N and the rule

n—>n - 2, Dc O end 1 have images? Choose a set A of

whole numbers so that n—sn - 2 is a rule of assignment for

a8 mepping of A to N. (More then one answer is possibie.)

Make an incomplete arrow diagrem on a line for the mapping

of W to W having the rule n—» (2n) + 1. Show the image of

each whole number less than 13 on your diagram.

In this exercise you are asked to map A = {3, 4, 5} into the

set of whole numbers for each of the rules given below. Tell

whether the statement accompanying each rule is true or false.

(2) n—=2n. The image of 4 is between the image of 3 and
the image of 5.

(b) n—=(3n) + 1. The imsege of 4 is one-half the sum of
the images of 3 and 5; thst is, their average.

(¢) n—»(3n) - 1. The imasges of 3, 4, 5 are consecutive
numbers,

(d) n—»n®. The image of 4 is the aversge of the images
of 3 and 5.

() n—=12 - n. The images of 3, 4, 5 are in increasing
order.

For each of the following rules of assignment, choose a set

of whole numbers A as the domain of a mapping from A to W

having the given rule of assignment. Construct an arrow

diagram for each cf your mappings. (Note: more than one
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answer is possible. Try tc choose as "large" a set as you

cen for the domain A, )

(a) n-—2n (d) n—n -2
(b) n—=3n (e) n—(2n) +3
(¢) n—-n +2 (f) n— (3n) - 2

Study the arrow diagrams below and for each of them answer

the following questions as far as they apply.

(1) Does the diagram represent a mapping? If nct, why not?

(2) If it represents a mapping, what is its domain? Its range?

(3) If it is a mapping and it has a rule that is easily
expressed in *he form n—»? state the rule.

(4) 1If it is a mapping, is every element of the range the

image of exactly one element of the domein?

(a)

NN
S N B

(b)

(The arrow at O starts and ends at 0.)

(c)

NN~
o b ¢ d e £ 9 h i

(d)

aAA S avalaal
o n 12 13 4 1§ 6 17 18
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For (e) and (f) let the dotted partial arrow
indicate that the domain is the whole numbers,
W, and assume a rule that holds for the numbers

shown holds for gll of W.
(e)

/7 {7 ] /
I 1 I\ I,/I [ AN
! 1 | [
[

01 2 3 4 5 7 8 91001 1213141516

() <

’
N /W‘R\’/
¥ L] L L  § L} ‘: 1 4 L L4 77"2
0 1\\2/4 4 5 ¢ 7 %8 ¢ “‘IO 11)/;3
N\ \ \
S Su

!

1N_/8 /%

7. Meke an arrow diagram on a line for each of the following
mappings of the given set A to the set of whole numbers, W.
Show the image of each number in A, if possible. If this is
not possible, show the images of at least five elements of
the set A, (You may choose any convenient scale on your

! number line.)

i (a) ne—sn+3; A =W.

(b)- n—= (2n) + 1; A = W.

(¢) n— (2n)

]
l._l
e

A=(1, 2, 3, 4, 5].

: (d) n—=n® =n * n; A =W,

139
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(e) n

=3 -n; A={0, 1, 2, 3}.
(f) n—"’%n s A= {O: 2, )“‘, 6: 8, 10]-

3.5 Meppings of Clock Numbers

In Chapter 1 we studied finite systems consisting of clock
numbers and operations on those numbers. In this section we

examine mappings for such systems.

Figure 3.14

Let the domain of & mapping be the set Zg of numbers on a
clock as shown esbove and let us map this set to itself by the
rule n—= n + 2 where "+" means addition in (Zg, +). What is
the image of 0? of 2?2 of 3? What is the domain of this mapping?
What is its range? For convenience let us name this mapping h.

Recall the mapping of W to W given by the rule n—»-n + 2.
(0f course, "+" in this rule is ordinary addition.) Let us
name this mapping f.

Compare the answers to the following questions as each
is applied first to f and then to h.

(1) Is the domain of the mapping finite or infinite?

Is the range finite or infinite?

140




-134-

(2) 1Is the range of the mepping the same as the domain?
(3) 1Is every element of the range of the mapping the image
of exactly one element of the domain?
Now make an arrow diagram on & clock like the one in Figure 3.14
for the mapping of Zg to itself given by the rule n—sn - 3.
Let us call this mapping k. You should get the same arrow dia-
gram as for the mapping h. Since the first set and the second
set are both Zg for the mappings h and k, and since they assign
the same images to the elements of Zg, we see that they are
really the same mapping. Thus, we see that the same mapping
can be given by rules that appear to be different. You should
try %o find out why, in this case, the two different rules

actually make the same assignments.

Figure 3.15

Study the mapping (call it s) of the set Zg of clock numbers
(0, 1, 2, 3, 4, 5} by the rule n—2n (Figure 3.15). Explain
why there are two arrows connecting 2 and 4, Notice that there
are no arrows with tips at 1, 3, 5. Why do you think this is so?
The mapping t, illustrated in Figure 3.16 maps W to W by the
rule n==»2n, Explain why there are no arrow tips at 1, 3, 5,
7, and the other odd numbers. Answer the following questions as

they apply to s and t.
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PMgure 3.16

) What is the domain of the mapping? What is its range?
(2) Is the range the same as the domein?

) Is there any whole number thaet is the image of more
than one whole number?
You can answer this last question easily by checking to see

whether or not there 1s any whole number at the tip of more than

one arrowv.

3.6 Exercises

1. Why do the mapprings h and k of Zg to Zs given by the rules
N—»n + 2 and n—»n ~ 3, respectively, turn out to be the
same mepping?

2. Study the arrow diagrams below and answer the following
questions as they spply to each diagram.

(1) Does the diagram represent a mepping? If not, why not?
(2) If it represents a mapping, what are the domain end range?
(3) If it is 2 mepping and it has an easily expressed rule

in the form n—> ? state the rule.
(4)y If it is a mapping, is any clock number in the mapping

the image of more thsn one clock number? If so, which

~ ones? 142
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(a) . (e)
(v) (f)
(c) (&)
(a) . (n)
3.7 Sequences
The multiples of 3, that is, 3, 6, 9, 12, ... considered

in the order written are the images in a mapping of N to N given

Sv the rule h—>3n, where N is the set of natural numbers

14d
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(1, 2, 3, 4, 5, ...}. This is but one example of a situation
we meet many times in mathematics. That 1s, we have a set of
numbers given in an order, or an ordered set. Another example
is 2, 5, 8, 11, ... . In this case, as well as in the first,
it is possible to think of these numbers as the range of a map-

ping of N to N. What is the rule for this mapping? Do you see

that it is n—=(3n) - 1? As a third example, consider<%, g, %,
%, %l, «es o« Since these are not natural numbers, they are not

images in a mapping of N to N. However, they are images in a
mapping of N to a different set of numbers. The rule of this
mapping is ne—-n + %-

These special mappings, that 1s, mappings whose domain is
N but whose range may be in some other set, are called sequences.
The examples given, where the domain is all of N, are called
infinite sequences. If the domain 1is a set of natural numbers
from 1 up to some fixed natural number k, the sequence 1s called
finite.

In <och of the examples of a sequence given, the range was
contained in a set of numbers. This need not be the case. For
example, when a teacher records the names of the students in his
c.ass in alphabetical order in his register, he constructs a
mapping whose domain is the set of natural numbers from 1 up to
the natural number which is the number cof students in his class.
However, even though the range of & sequence inay not be a set of
numbers, the domain of a sequence must be a set of natural num-
bers. Since this 1s the case; we may often omit specific men-

G*ion of the domain of the sequence and instead merely give the

JERJ(;dered range. We often call this ordered set the sequence.

Full Tt Provided by ERIC.
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Below are some other sequences together with the rule of

the mapping that determines them.

Rule Sequence
(1) n—>(2n) + 1 3, 5, 7, 9, 11, 13, 15, 17, ...
(2) n——(3n) + 2 5, 8, 11, 14, ...
(3) n—(3n) + 2 2%, 3, 3%, 4, 4.
(4) n—-n? 1, 4, 9, 16, 25, ...
(5) n—(n®) - n 0, 2, 6, 12, 20, 30.

(6) n—=0 if n is even
1, 0, 1, 90, 1, 0, 1, O, 1, O, ...

n—-1 1if n is odd
In (6), a new kind of rule is used, with two parts. We see
that by this rule, for example 17 —1 and 26— 0.

Another interesting way to construct a sequence 1is to
choose its terms by tossing a coin. For instance, we toss a
coin and if the coin comes up "heads," we take 1 for the first

term; if the coin comes up "tails" we take O for the first term.

Then the coin is flipped again and the second term of the se-

th term of

quence 1s determined in the same way. Thus for the n
the sequence, we get O or 1 depending on whether the coin comes
up "heads" or "tails." This process repeated, say, a hundred
times ylelds a finite sequence.

Some of the examples of sequences given above are finite,
and some are infinite. In (5), the domain is (1, 2, 3, 4, 5, 6}.
Thus, this sequence is finite. 1In (6), the domain is all the

natural numbers. Hence this sequence 1s infinite.

* 140
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3.8 Exercises

(a) what is the domain of each of the sequences in examples
(1) - (6)2

(b) which of the sequences in examples (1) - (6) are
finite and which are infinite?

(¢) How 1s your answer to (b) related to your answer to
(a)?

For each of the following sequences the domain is {1, 2, 3,

4, 5, 6, 7, 8, 9, 10}. Find the range of this sequence

using the "coin-flip" rule. Compare your sequence with that

obtained by someone else. Would you eXxpect your sequences

to be the same? Why?

For each of the following sequences the domain is {1, 2, 3,

4, 5, 6] and the range is contained in the set of numbers

of arithmetic. Find the range of each sequence with the

given rule of assignment.

(a) n—n

(b) n—>12 - n

(¢) n— (173n) + 312

(a) n—>= (n) + 37

(e) n-—— (n3) + 156

(f) N e— [%-(n")] + 79

The rule of a sequence is given as n—2n if n is ¢dd and

n-—v-%n if n is even.

(a) Write down the first 10 numbers in the range of this

sequence. 148
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(b) PFind the 78th number in the range of this sequence.
(By this is meant the image of 78 in the sequence. )
*#G, Suppose we start with 1= 7 and use the rule that to find
the image of 2 we multiply 7, the image of 1, by 3 and then
subtract 5 from the product. Thus 2 —(3 . 7) - 5 = 16,
Then we repeat the process with 16, the image of 2, to get
the image of 3. That is, 3—»(3 - 16) - 5 = 48 - 5 = 43,
Repeating the process for each natural number in turn, a
sequence 1s okbtained in yet a different way.
(a) write down in crdev the first 4 numbers in the range
of this sequence.
(b) We can describe the way that the images are obtained
in this mapping as follows:
(1) 1—>7 =2
(2) ©rLet =i represent the image of the natural number
k. that 1s K~ a . Then
Now find as

k + 1—=[(3a,) - 5] Byt |

1096.

]

and as given that as

3.9 Composition of Mappings

Recall the mapping in Example 6 of Section 3.1. Here the
domain, set A was (Mary, Steve, Joe, Janet, Peter, Harry}, and
the codomain, set B was {Mr. Brown, Mr. Jones, Mr. Ross,

Mr. White}. Now, each of these men has a wife, so that we also
may have a mapping of 8 to C, where C 1s the set of wives

(Mrs. Brown, Mrs. Jones, Mrs. Ross, Mrs. White}. The mapping of
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A to B we will call f and the mapping of B to C, we will call g.
We can draw an arrow diagram for these mappings as in Figure

3.17, with the solid arrows showing the assignments for f and g.

Brown

Mrs,

e Mrs, Jones

Mrs, Ross

Mrs, White

Figure 3.17

Now to each child in A we can assign a person, the mother, This
is done for Steve as follows:
, -
/ —
Steve Mr. Jones Mrs. Jones

Do you see that this method of assignment assigns to each child
in A exactly one person in set C? Because this is true we have
constructed a new mapping of A to C from the given mappings f

and . The "dashed" arrows in Figure 3.17 represent this mapping.

148
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To indicate that this new mapping 1s obtained from the mappings
f and g by following the mapping f with the mapping g, we call
it "g following f," and write g © f. This new mapping may also

be described as the composition of g with f. Now let us look at

some examples of finding the composition mapping from two given

mappings.

Example 1.

Figure 3.18

On the three number lines a, b, and ¢ in Figure
3.18, are shown arrow diagrams for three map-
pings. The arrow diagram on line a represents
a mapping f of M = {0, 1, 2, 3, 4} to W. The
arrow diagram on line b represents a mapping
g of Q={0,1,2, 3, 4, 5, 6, 7) to W. The
arrow diagram on line ¢ represents the mapping

g following £, g9 f, of M to W. It 1s easy to
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see how the arrow diagram for g 0 f is obtained
In fact, the process 1s the same whenever we
wish to construct an arrow diagram for the com-
position of two mappings. We simply take each
element in M and apply f, and follow it by g.
Thus for the element O in M,  maps O onto 2;

in turn g maps 2 onto 4,

g0f

so we draw the arrow from O to 4 in the arrow
diagram for g © £ on line c. Likewise, for the

element 3 in M

by g
3 e 6 ey 4
—— A—a

g °f

Continuing in the same way, the arrow diagram

for g © £ is constructed

In the example above we have used some new no-
tation. 8ince there are two mappings involved
in the problem simply writing O —>»-2 does not

indicate which of the mappings f and g is in-

volved. By writing O-—£+-2 we indicate that

O is mapped onto 2 by £, or f maps O onto 2, or

the image of O by f 1s 2.

Also, the order in which f and g appear in the

150



-1kl

symbol "g © f" is chosen for a very specific
reason, of which you will become aware later.
For the moment, always read g o f as "g fol-
lowing " and remember that the mapping f is
applied first.

In this example, note that in order for the
composite mapping g © £ to be meaningful the
renge of f must be a subset of the domain of
g, and this is always the case. Observe that

the domain of g © f is the domain of f but the

range of g © f is contained in the range of g.

Figure 3.19

‘ In Figure 3.19 h end k are mappings of Ze to Ze
; given by the corresponding arrow disgrems. The
? procedure is the same as in Example 1. Consider




h K
k °n

We see that 2528 5. Gheck the diagram for

k © h to see whether or not it is correct.
Now take a sheet of paper and construct for

k. Is h %k

yourself the arrow diagram for h
the same mapping as k © h? What does this tell
you about the importance of the order in com-
position of mappings?

If you examine carefully the mappings h and k
you may be able to find a rule of the form
a—»0 for each of them. The image of each
element of Zg by h may be found by "adding 2,"
and the image of each element in Zg by k may

be found by "multiplying by 2," where the oper-
ations are in (Zs,+,+). Thus, we may write
N——n + 2 and n-—=2n as rules for h and Xk,
respectively. It is convenient to indicate the
mapping associsted with the rule by writing
'Hl—fh»n + 2" and "n —2n." These are read
"the image of n by h is n + 2," and "k meps n
to 2n."

In this case we can obtain a rule for k ° h of
the form n—=0. To find this rule directly

for k ° h, let z be any element of Zg. Then,
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h k Loy o
Z-—*-)MZ+2-——)2(Z » 2) = (22) + 4.

k ©h

o)
Thus, n k2h (2n) + 4 is a rule for k © h.

In the same way, we can find a rule for h ° k.

z_.l-{—-p 2z N N (2z) + 2

hok

o)
Thus, n -P———k->(2n)+ 2 is a rule for h © k.

Now you can answer the question es to whether
h©k =k©h in a different way by using these
rules to find the imege of 2 under h © k and
k © h. Do you get the szme image? If not, then
h©kend k © h sre not the same mapping.

Example 3. Two mappings f and g of W to W are given by the
rules n-—f—»(en) + 1 and n—&+ 3n. We shell
meet many mappings given in this way and there
are several kinds of questions that are commonly
asked sbout such mappings.

“ (1) Find the image of 27 by f, by g.

’ n--—f—>(2n) + 1. Therefore,

7S (2 - 27) +1=54+1 =55,

n ._g_..3n. Therefore

27 -£,.3(27) = 81.
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(2) List the set of whole numbers, each of
which has, by g, the image (2) 51 (b) 103.
(a) n—8+3n. We need a whole number x
such that 3x = 51, The solution set
of this equation is {17}.
(b) The solution set of the equation
3x = 103 in (W,+,+) is & or {}.
(3) What is the image of 5 by (a) g © £ and
(b) £ O g?
(a) n’-——f—->(2n) + 1 end n—8+3n. There-
fore 5—i(2 + 5) + 1 =10+ 1 = 11,
end 11—&»3 . 11 = 33, We have, then
52531 €533 so that 5825 .33,
(b) 5—E+3 + 5 =15, and
15—fe(2 - 15) + 1 =30 + 1 = 31.
Hence, 15__1‘_0_g_,_31‘
If we wish to find many images by £ © g or by
g O f it is more efficient to first find rules
of the form n—>=0 for f O g and g © f. This
is done in the seme way as in Example 2. We
begin by letting w represent a whole number,

Then

We—ts(2w) + 1—8 43 (2w + 1)

(3(2w)) + (3 * 1)

= (6w) + 3
Thus, a rule for g © f is n-j—g—f—>(6n) + 3.
Also,
L g £ 3 =
[MC W 3W——(2(3W)) + 1 = (6w) + 1

154
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o}
Thus, a rule forf © g is n—il——§L>(6n) + 1.

Using these rules,

58°% (6.5) 43=304+3 =33, and
55128 (6.5) +1=3041=31.

3.10 Exercises

1.

Two mappings f and g are given by the following arrow

diagrams, In each mapping the codomain is W.

(a)
(b)
(c)
(d)
(e)

11
8 9 1 1.
2 3 4 5 6 8 9 0 11

Find the image of 3 by f.

Find the image of 3 by g.

Find the image of 3 by g © f,

Draw an arrow diagram on a line for go f.

If possible, draw an arrow diagram on a line for

fO g.If it is not possible, what goes wrong?

Two mappings £ and g of Z4 to Zs4 are given by the follow-

ing arrow diagrams:
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(a) Construct an arrow diagrem for g © f.
() Construct an arrow diagram for f © g.
(¢) Is £ ° g the seme mapping as g © £7 Why?
In questions 3 end 4 £, g, and h are meppings of W to W
given by the following rules:
n—%»3n, n—&,.n + 2, n—2s(2n) + 1.

3, Find the image of 67

(a) vy £ (d) by £ g (g) pygof
(b) vy g (e) by £°h (h) pvyhoft
(¢) by h (f) pygh (1) by h © g.

4, Find e whole number, or explain why there is none
(a) whose image by g is 13,
(b) whose image by h is 101.
§ (c) whose image under £ O h is 33.
§ (@) whose image under g © f is 14.
(e) whose image under £ © h is 12.
5. Let r be the mapping of Z;3 to Z;3 given by the rule
n—I—Un,
(a) Find the image of 7 by r.
(b) Find the image of 10 by r.
(c) List the set of elements of 2,5 each of which has by

Q r, the image

156
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(1) 4 (3) 8
(2) 6 (4) 3.

3.11 Inverse and Identity Mappings

You learned in arithmetic if you add 5 to a certain number
and then suvtract 5 from the sum, you end at the same number with
which you began. In other words the effect of adding 5 is nulli-
fied by subtracting 5. Similarly the effect of multiplying by
a number is nullified by division by that same number. This sug-
gests the question: Is there for each mapping anothzr, such
that when one is followed by the other the effect of the first is
nullified by the second? It is easy to see that this may be the

case by looking at an example.

Example 1,
Ww: T i T 3 ‘oo n cee
E: 0 2 4 6 cos 2n cen

Figure 3.20

Here the first set, or domain, is W and ©he
codomain is the set E = {2, 4, 6, 8, ...}. It
is easy to see, calling this mapping f, that
the range of f 1is all of the set E, silnce each
even number would be at the tip of an arrow.
Now, to nullify the effect of f we must carry
each image back to its source, In terms of an

arrow diagram this means that each arrow in the

107
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diagram must be reversed, as shown in Figure

3.21.

C o—p—eO
N et |-
I ey O
O\ o—p—a ()

Figure 3.21

Is this an arrow dlagram for a mapping of E to
W? Since each number in E 1s assigned exactly
one whole number the answer is "yes." Czll
this mapping g. Its rule is n-—ga—%n. Thus
we have two mappings f of W to E, and g of E
to W such that g nullifies the effect of f.
When we say that g nullifies the effect of f,
we mean that g©f maps W to W and that each ele-
ment n of W is mapped onto itself. That is,
n—n is the rule for g@f. It is easy to see
that this is the case for, if n——2n, then
2n»——f->-;-(2n) =n so that n——g—o—f» n.

Whenever we have a set A given it is possible
to construct the mapping J of A to A with the
rule n—n. For example, the arrow dlagram
for the mapping J of Ze to Ze is shown in
Figure 3.22. Each element of Ze is mapped

onto itself.
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Figure 3.22

An incomplete arrow diagram on a line for this

mapping J of W to W is shown in Figure 3.23.

0000000

Figure 3.23

It is clear that the mapping J of Ze to Ze 1is
not the same as the mapping j of W to W even

though they have the same rule, n—sn. To

38N R g v
g Rt 2. T Rt Il

indicate that we are talking about the iden-

tity mapping on a given set A, we may write

e

i "JA“ for that particular identity mapping.
Thus, the identity mapping on W is written
"3y

Now we can describe the situation in our first
example more economically. To say that g "nul-

; lifies" f is to say that g © f is the identity
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mapping on W. That is g ©f = JW‘

Is £ also the inverse mapping to g? That is,

does fo g = JE‘? Now, for any element n in E,

n—g—>%-n, which is a whole number, since n

must be even to be a number in E. Then

%n~—£L>2(%n) = n., Thus we have n—L°8,n as

a rule for the mappingf©g of E to E., This

means that £0g = JE and £ is the inverse map-

ping to g.

Does every mapping have an inverse? Consider

the following example.

h is a mapping of Zs to Zg given by the rule
h

N=——-2n, An arrow diagram for this mapping

is shown in Figure 3.24,

Figure 3.24

(This diagram should be an old friend by now.)
We could begin by reversing the direction of
each arrow in the diagram to "nullify" the

effect of h. The following arrow diagram

160
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resul ts:

Figure 3.25

But we see that this assignment is not a mapping,
for O is assigned O and 3, 2 is assigned 1 and
4, 4 is assigned 2 and 5. Furthermore, 1, 3.

and 5 are each assigned no elemert in Zs. What

went wrong? If we look carefully at Figure 3.24

we see that each of 0, 2 and 4 is the image of
. two elements of Ze. since each has two arrows
pointing to it. Also, each of 1, 3 and 5 is

the image of no element in Zs.

We conclude, then, that for a mapping f of A

to B to have an inverse both of the following

must hold:

(1) Each element of B must be the image of an
element of A. 1In an arrow diagram this
means that every element in B is at the
tip oi an arrow. Thus, the range of f is
2ll of B. We say then that f maps A

Q onto B.

- 161
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(2) Each image in the mapping must be the
image of only one element of A, This
means that in an arrow diagram no ele~-
ment of B is at the tip of more than one
arrow. We say then that f is a one-to-
one mapping of A to B.

Thus, in order for a mapping of A to B to have

an inverse, it must be a one-to-one mapping

of A onto B.

3.12 Exercises

1.

Determine whether or not each of the following mappings
has an inverse mapping. In each case which of the condi-
tions (1) and (2) above holds or does not hold, and why.
(a) The mappings in Examples 2, 4, 5 and 6 of Section 3.1.
(b) The mapping f of Zs to Zg given by the rule
n —»3n.
(¢c) The mapping g of Ze¢ to Zs given by the rule
n—8wn + 3.
(d) The mapping h of Zes to Ze given by the rule
n-—2—>3n.
(e) Let A be the set of living persons on earth and let
B be the set of countries. Consider the mapping
defined by assigning to each person the country in

which he lives.

For each mapping in Exercise 1 that has an inverse, de-

- 1be
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seribe that inverse and if npossible, give a rule of the

form n——?,

Let f be the mapping of W to W with the rule n—2n. Let

J be the identity mapping of W to W.

(a) Show that the compositions j following f and f follow-
ing j are the same as f.

(b) Suppose you do not know the rule for f. Do you think
that the compositions j o £ and £ 0o J are the same
as F? Why?

Make an arrow diagram of the identity mapping of the set

of numbers {0, 1, 2, 3} onto itself.

(a) Make an arrow diagram on a line of the mapping h of
Wonto R =(2, 3, 4, ...} with the rule n—sn + 2,

(b) Make an arrow diagram for the inverse mapping k.

]

(e¢) Show by an arrow diagram that k © h = j..

]

(d) Show by an arrow diagram that h © k = jp.
The rule of a mapping of W to W is n- +(3n) + 2. To find
the image of a given number you perform two operations.
(1) multiply the given number by 3. (3n)

(2) add 2 to the product. ((3n) + 2)

What is R, the range of the mapping?

To find a number given its image, you reverse these oper-
ations and the order.

(1) subtract 2 from the given image. (n - 2)

(2) divide the difference by 3. LQ—§J11

Since every mapping is onto its range R, and each number

in the range R of this mapping is the image of only one
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number in the domain W, pe—s 2 5 2 is a rule for the inverse

mapping R to W of the mapping W to R with rule n—(3n) ¢+ 2,
(The domain R of the inverse mapping is {2, 5, 8, 11, ...}.)
For each of the following rules find a domain D and a

range R consisting of whole numbers, so that the rule con-
stitutes a one-to-one mapping of D onto R. Then find the

rule of the inverse mapping of R ontb D.

(a) n—s{2n) +1 (b) n—s(3n) - 2
(¢) n—sn -2 (d) n—=n ¢+ 2
(e) n—(48n) + 25 (e) n—(8n) + 1800
T. Make an arrow diagram of the mapping of the set of clock

numbers Z5 to itself for each of the following rules, and
determine whether it has an inverse. Explain in each case
why the mapping does or does not have an inverse, If the
mapping has an inverse give a rule for the inverse mapping.
(2) n—sn + 1 (b) Nne—sn - 3

(c) n—3 (4) n—>(2n) + 1

3.13 Special Mappings of W to W

é Emong the various kinds of mappings of W to W that we have
i loocked at so far there are two that deserve special attention.
One of these is the class of mappings which have rﬁles such as
n—»n + 4, Ne—»n 4 13, n—n ¢ 137, etc, We may describe
this class of mappings as those mappings of W to W which have a

rule of the type n—=n + a for a fixed whole number a.
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Figure 3.26

In the above (incomplete) arrow diagram on a line for the
mapping of W to W with the rule n—»n + 4, we see that each
numbered point on the line is assigned a point 4 units to the
right. We could represent this mapping by two "slide rules" as
shown in Figure 3.27, where the upper slide rule has been moved

over 4 units to the right.
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Pigure 3.27

This interpretation of the mapping of W to W with the rule
n—»n + 4 suggests that each assignment of an image may be
thought of as a "jump" or a "move" 4 units to the right. Another
way to look at this mapping is to draw two parallel number lines
using the same scale, as shown in Figure 3.28, then drawing the

arrows from one line to the other.

Figure 3.28

Now let us look at the composition of two such mappings
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and consider whether these compositions have any special pro-
perties as mappings of W to W. Let f and g be mappings of W to
W with the rules n——»n + 1 and n—&»n + 3.

The rule for g © £ is found as follows, where W represents

any whole number:

W W 4 1Ly (w+1)+3=w+ (1+3)=w+l

\ got e

o}
Thus n-—gL——E;>n + 4 is a rule for g © £ and the composition of

the mappings f and g is again a mapping of the same kind. 1In &an
arrow diagram for this mepping, each point of the number line is
mapped onto a point 4 units to the right.

An interesting diagrem for g © £ results if we construct the

diagram on three parsllel number lines a, b, ¢ as in Figure 3.29.

Figure 3.29

In the diagram we have located the image of 1 end the

image of 3 by g O f, Since 1—-£;>1 + 1 =2 we draw an arrow from

1l on 1ine a to 2 on 1line b. Then 2 g 5 so we draw an arrow

from 2 on 1line b to 5 on 1line ¢. To indicate that 1—4542—£—>5 we
draw an arrow from 1 to line & to 5 on line c¢. The same process

O
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is shown for the image of 3 by g o f. If we were to fill in all
the arrows, f would be represented by an arrow diagram from

line a to line b, g by an arrow diagram from line b to line c,
and g o f by an arrow diagram from line a to line c. Again, we
see that g o f maps each whole number onto a point 4 units to the
right on line c.

You should check to see whether or not f o g is a mapping
of the same kind as f and g. Also is f o g =g o f?

A second special class of mappings are those which have
rules such as n—»3n, N—»47n, n—»1309n, etc. We may de-
scribe this class of mappings as those mappings of W to W which
have a rule of the form n—san, for a fixed non-zero whole
number a.

In Figure 3.30 we show an arrow diagram from one number
line a to a parallel number line b with the sam= scale for the
mapping of W to W having the rule n—»2n. Note that each point
on a is mapped onto a point on b that is twice as far away from O,

10 11 12 . b

5]

c— 1 2 3 4 5 6 7 8 9 110 1 12

Figure 3,30

Let f and g be two mappings of this type given by rules
n——£->3n and n-—§L>5n. We leave it to you as an ~xercise to
answer the following questions:

(1) Are £ o g, g o f mappings of the same kind as f and g?

(2) Does f o g‘=‘g o f? jﬁ;?
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Each of the special mappings we have considered has a par-
ticular interpretation that is important in many applications of
mappings. We have seen that a mapping of W to W having a rule
such as n—s»n + 7 may be interpreted as a "move"” 7 units to the
right on the number line. Since we can move 7 units to the right
on the line, we would expect to be able to nullify this move by
a move 7 units to the left on the line. But this would require a
rule n—=n - 7, which cannot be a rule for a mapping of W to W.
why not? Thus, this mapping has no inverse.

Looking at the question another way, suppose we pick the
point 5 on the line. We see that the range of the mapping given
above is not all of W, since there is no whole number X such that
X—>X + T = 5.

In general, a mapping of W to W with a rule n—sn ¢ a has
no inverse if a is greater chan O. 4 parallel problem is solving
the equation x + a = b, which arises in trying to find a number
whose image is b in a mapping with the rule n—sn + a. These
problems, and their solutions, will be considered in Chapter 4,

We observed that a mapping of W to W with a rule such as
n—7Tn may be interpreted on a number line as mapping each point
to a point 7 times as far from the O point.

As above, we can see that a mapping of W to W having a rule
such as n—Tn does not have an inverse since the range is not
all of W.. For example, there is no whole number x whose image is
24, The parallel problem in terms of equations is that of solv-
ing the equation 7Tx = 24, These problems, and their solutions,

will be considered in Chapter 12.
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3.14 Exercises

1. For each of the following mappings of W to W:
(a) find the range of the mapping;
(b) state whether or not the mapping is one having a rule
of the type n—n + a or n—an and if so, give the
value of a;
(c) draw an arrow diagram for the mapping on two parallel

lines. (Choose your scale carefully.)

(1) n—n+7 (4) n—=(4n) + 3
(2) n—s(2n) + 1 (5) n—sn + 25
(3) n—s5n (6) n—60n
2. Consider the mapping h of the clock numbers Z,2 to Z;»2

given by the rule n—n + 7.

(a) 1Is every number of Z,z an image in tais mapping; that
is, is h a mapplng of Z;» onto Z,a ?

(b) Is any number of Z,» an image for more than one clock
number; that is,is h a one-to-one mapping of Z,, to
Zy2?

(c) Dozs the mapping h have an inverse mapping g so that
g o h =J, the identity mapping on Z,,? How 1s your
answer related to your answer to parts (a) and (b) of
this question?

(d) Can you describe this mapping in terms of "moves" on
the face of the clock? Tllustrate your answer on a

drawing of a clock face.

(e) For each "move” in this mapping, is there a "move"
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that nullifies it? 1Is there a mapping of Z,2 to Z)»
that corresponds to the nullifying "moves"? 1If so,
what 1s a rule for this mapping?
Below is a slide rule arrangement for the mapping of W
into W with the rule n—2n. Notice that the lower ruler
is scaled by a unit that is twice as long as the unit of

the upper ruler,.

o 1

-

H + N
w e O\
I

b CO
40
=

o
rr,rr'"‘

0

(a) How would you place the lower ruler so as to make a
slide rule arrangement for n—(2n) + 1?
(b) Make a slide rule arrangement for each of the map-
pings of W to W given by the rules
(1) n—sn +5 (3) n—=(4n) + 5
(2) n—4in (4) n—(4n) 4 20
Using three parallel number lines a, b, and ¢, as in
Figure 3.29, find the arrow diagrams for g o f if f and g
are mappings of A = (0, 1, 2, 3, 4, 5} to W given by the
rules

(a) n—Len 4+ 6 and n—8+7n

(p) n——f->4n and n—&,on 4 2
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The figure above shows an incomplete arrow diagram, on

lines a and ¢, of the mapping h of W to W given by the

rule n—8>(3n) + 1. Copy this figure on your paper.

(a) Construct, on lines a and b, an incomplete arrow
diagram for the mapping f of W to W given by the rule
rh—£L>3n.

(b) Construct, on lines b and ¢, an incomplete arrow dia-
gram for the mapping g of W to W with the rule
n—8sn + 1,

(c) Does g o £ = h?

(d) Given any mapping f of W to W with a rule like that
of h, that is, of the form n-—z*-(pn) + q for p and
q fixed whole numbers, p # 0. Can you write f as the
composition of two mappings of W to W having rules of
the form n~——an and n—-n + b for fixed whole numbers
a and b, a # 0? If so, how would you do so for the
mapping £ of W to W given by the rule n—s(77n) 4 1306°?

(e) Try to give an argument to show that the composition
of any two mappings of W to W having rules of the form

n——san 4 b and n—n + b will have a rule of the

form n—(pn) + q.

Summary

A mapping involves two sets A and B and the assignment to
each member of the first set 2 exactly one image, taken

from the second set B, The first set A 1s the domain of

1
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the mapping, and the set of images is the range of the
mapping. The domain is all of liie first set 2 but the
range may be only part of the second set B.

2. Many mappings are given by a rule involving arithmetic
operations. In this chapter we considered mappings of A
to B, for A and B sets of whole numbers. Many mappings
were given by rules of the form n—=(an) + b, where a
and b are fixed numbers in each mapping and n takes on
whole number values, For a particular mapping f of A to
B the rule is often written as nr—£;>(an) + b,

3. For a mapping of A to W given by a rule we may also con-
struct other representations of the mapping. Among these
are arrow diagrams, arrow diagrams on a number line, arrow

iagrams on a "clock," arrow diagrams between parallel
number lines, charts, and tables. On the other hand, a
mapping may be given by one of these representations for
which there is no easily seen rule or method of assignment
other than that given by the diagram, table or chart.

4, Whenever the range of a mapping f is contained in the
domain of a mapping g we can construct the mapping g o f,
(g following f or the composition of g with f) by first
applying £ to each element in the domain of f and then
applying g to the image. The domain of g o f is the do-
main of f. The range of g o f is contained in the range
of g.

5. In order that a mapping f of A to B have an inverse f
must map £ onto B and f must be a one-to-one mapping of A

JERJﬂj to B. Since every mapping may be considered as a mapping
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onto its range R, a one-to-one mapping f of A to R has an
inverse mapping g of R to A.

Mappings of W to W having rules of the type Ne—m—n + b
may be interpreted as "moves" to the right on the number
line, Since they are not onto W (except for b = 0), they
do not have inva2rse mappings. However, the composition
of any two such mappings is a mapping of the same kind.
Mappings of W to W having rules of the type n———an,
(a # 0) may be interpreted as "stretching" the number
line. These also are not onto W (except for a = 1) and do
not therefore have inverse mappings. However, the compo-
sition of any two such mappings 1s a mapping of the same
kind.

Any mapping of W to W with a rule n—————»(an) + b can be
considered as the composition of a mapping with rule

n———-an followed by the mapping with rule n———n + b.

Review Exercises

Let f and g be mappings of W to W with rules n-—f—»-n + 3

and n——E&—»2n.

(a) Make an arrow diagram on a number line for f, g and
gof.

(b) Find rules for g o f and f o g of the form n——"?,

(¢) Pind the image of 637 by g o f and f o g. Are the two
images the same? Does f o g =g o f? Why?

(d) Find the set of values X such that the image of x by

173

g o f is 24,
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(e) Find the set of values x such that the image of x by
f og is 24,

Let a and b be parallel number lines scaled with the same

unit and in the same direction.

(a) Make an arrcw diagram from a to b for the mapping f
of W to W with the rule n——»n + 4,

(b) Is f an onto mapping? Why?

(c) 1Is £ a one-to-one mapping? Why?

Draw an arrow diagram from number line a to number line a'

for each of the following mappings of W to W with the

lines a and a' drawn as indicated.

(a) a is parallel to a'; the lines are scaled with the
same unit wiih the same direction; the rule is
n——————2n - .,

{b) a is parallel to a'; the unit scale on a is twice as
long as the unit scale on a'; the lines are scaled in
the same direction with zero points opposite each
other; the rule is n———2n,

(c) a intersects a' at poin% A; the lines are scaled with
the same unit from A; the rule is n———2n.

(d) a is parallel to a'; the lines are scaled with the
same unit in opposite directions; the rule is
N ———n + 2.

Make an arrow diagram for each of the following mappings

where 2  is the set of n clock numbers and the operations

are the clock operations, + and -.
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From Zs to Zs with the rule n——2n + 1.

From Z& to Z& with the rule n——2n.

which of the meppings in (a) and {b) are one-to-one?
Is either an "onto" mapping? Do you now know that
one of these mappings has an inverse? Why? Find

the rule of the inverse mapping.
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CHAPTER 4

THE INTEGERS AND ADDITION

4,1 Introduction

In Chapter one, we studied the system (Zy,+), and also
worked with equations in that system. For example, the
solution set of

6 + x

]
=

in (Zy,+) is (2} since
6+ 2

]

1
is a true sentence in (Z,,+). Study the following examples of

equations and their solution sets in (Z,,+).

Equation Solution Set in (Z,,+)
3+x=5 {2}
5+ x =3 (5}
X+6=2 {3}
x+2=26 (4)

Each of these equations has a solution in (Z,,+); the solution set
is not empty. 1In fact, if you choose any two elements a and b
from the set Z,, then the equation x + a2 = b has a solution
in (Z,,+). 1In other words, in (Z,,+) it is always possible to
solve an equation of the type "x + a = b."

Also in Chepter one, we worked with equations in the system

(W,+). Scme examples of such equations are listed below.

Equation Solution Set in (W,+)
5 + x = 14 {9}
X + 21 = 42 (21}
X + 98 = 103 (5)
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However, look at the equation "6 + x = 1." 1In (W,+),
this equation has no solution; the solution set is empty.
There is no whole number which may be added to 6 to produce 1.
From this example, we see an important difference between
the systems (Z,,+) and (W,+). If a and b are elements of Z,,
we know that the equation "x + a = b" has a solution in (Z,,+).
But if a and b are elements of W, the equation "x + a = b" may
not have a solution. (As we have just seen, if a is 6 and b is
1, there is no whole number solution.) Study the following
examples which help to make this difference between the two

systems clear.

Equation Solution Set in (Zy,+) Solution Set in (W,+)
5+ x=6 (1} (1}
6+x=5 (6} (]}
x+2=5 (3} (3}
x+5 =2 {4} {}

4,2 Exercises

1. Find the solution set of each of the following equations

in (Zy,+):

(a) 3 +x=0 (d) 6 +x =6 (g) x+1=0
(p) x+5 =1 (e) a+5=2 (h) 3 +x=1
(¢) n+3 =6 (f) s +2=5 (1) y+4=1

2. Find the solution set of each of the following equations

in (Za,+):
(a) x+1=0 (c) x+2=0
(b) 2+x=1 (d) x+1=2
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3. Does every equation of the type "x + a = b" have a
solution in (Za,+)?

4, Make up five different equations of the type "x + a = b"
in the system (Z,,+), and find the solution set of each,

5. Does every equation of the type "x + a = b" have a
solution in (Z,,+)?

6. Find the solution set of each of the following equations

in (W,+):

() x+8=19 (d) x + 101 = 213 (g) x + 53 = 1006
(b) 25 + x = 44 (e) x + 213 = 101 (n) 97 + x = 408
(¢) 44 + x = 25 (f) x + 17 = 39 (1) 408 + x = 97

7. Make up five equations of the type "x + a = b" which have
solutions in (W,+). Then meke up five equations of the
type "x + a = b" which do not have solutions in (W,+). 1In
both cases, use equations which are different from those

in Exercise 6.

4,3 Some New Numbers

There are many games in which you may either win or lose
points, Suppose that you are playing such a game, and on the

first play you win 6 points. You agree that you will add your

score on the second play
score on first
to the 6 points you already have play

Y

add score on
second play

in order to obtain your total score

at the end of two pleays. That 1s,

\ 4

sum is total score
after two plays

if x represents your score on the

second play of the game, theqﬂ
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6 + x
is your total score at the end of two plays. Now suppose

that at the end of the second play your total score is 1;

that is,

6 +x = 1.
Did you win or lose on the second play? It is rather easy to
see that you must have lost 5 points. But having agreed to
add the second score to the first to get the total score, then
X must be a number which added to 6 produces 1. Since there is
no whole number that will do this, we shall create a new number
called

negative five
and written 5.
This is to be a number which, added to 6 gives the sum 1.
That is,

6+ 5 =1.
This is read "Six plus negative five equals one."

Continuing with our example of the game, suppose another
person scores 10 points on the first play, X points on the
second play, and has a total score of 7 points at the end of
two plays. That is,

10 + x = 7.
Again, we are keeping our agreement to always add scores to get
the total score. In this case, we see that the person lost 3
points on the second play. However, X is not the number 3, since

10 + 3 = 13, not 7. So again we create a new number, 3 (read

"negative three"), which added to 10 produces a sum of 7. That is,

O

10 + "3 = 7.
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In our examples of winning and losing points, we have
introduced two numbers, 5 and ~3. But we are not going to
stop with just these two numbers. Instead, we are going to
produce a whole new set by creating many new numbers to Jjoin to
the whole numbers. In this new set every equation of the type
"X + a = b" will have a solution. This will be progress, since
(as we noticed in the last section) we cannot solve every such
equation with just the whole numbers alone.

Before trying the exercises, study the following equatlons
and the new numbers which we create as solutions to them. Be
sure that you can interpret each of the equations in terms of the

game in which you gain or lose points.

Equation Solution
5 +x=1 s

6 +x =0 "6
21 + x = 14 7

5 +x =28 3

b,4 Exercises

1. Tell what number is a solution of each of the following

equations:
(a) 17 +x=3 (@) 105 + x = 83
(b) 21 + x = 28 (e} 83 +x =105
(¢) 28+ x =21 (£) 47 + x = 33
2. How would you describe the equation " x + 7 = 4" in terms

of a geme in which you win or lose points? What must the

Q score have been on the first play?
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How would you describe the following equations in terms of

the game?

il

5+ x=5

6 + x = 0,

il

Suppose you score 5 polnts on the first hand, then lose

7 points on the second hand. Then your total score is 5 + "7,
What number can be used to show your total score at the end
of two hands?

Add the following numbers:

(a) 8+ 74 (g) 13 + "18
(b) 8 + 78 (h) 5 4+ 20
(¢) 8+ "12 (1) 5+ 725
(@) 7+76 (3) 12 + 737
(e) 7+ 77 (k) 11 + "18
(£) 7+ 78 (1) 126 + 7315

The temperature at 8 in the morning of a cold winter day is

5 degrees below zero. We should not use the number 5 to show
this temperature, since most people would think this meant
five above; but i1t would be reasonable to use -5 (negative
five) to mean five degrees below zero. So, we'll say the

8 o'clock temperature is 5.

Now between 8 o'clock and noon, the temperature changes.
Suppose X is the number of degrees the temperature changes.
Then the temperature at noon is

5 + X,

With this as a stesrt, try to answer the following questions,
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temperature rises 5 degrees, what is x? What
noon temperature?
temperature rises 7 degrees, what is x? What
noon temperature?
temperature falls 5 degrees, what is x? What

noon tempereture?

Explain why x is not the same in parts (a) and (c).

If the

temperature does not change at all between

8 o'clock and noon, what is X? What is the noon

temperature?

7. Add the following. Be sure that you can describe each one

in terms of old temperature, temperature change, and new

temperature.
(a) "2 +3
(b) 2+ 73
(¢) "2 40
(@) 5+5

(e) 5+ 75

(£) "5 +5 (k) "2+ 72
(g) 10 + 712 (1) "1+ 10
(h) "10 + 12 (m) "15 + 19
(1) o+ "2 (n) 715 + 30
(3) "2 +2 (o) "15 + 45

8. A merchant buys a television set for 200 dollars, and he

sells it for 200 + x dollars. Answer the following

questions,

(a)

(v)

(c)

If he sells the set for 25 dollars more than he paid

for it,

what is X? What is 200 + x ?

If he sells the set for the same price he paid for it,

what is X? What is 200 + x?

If he sells the set for 25 dollars less than he peaid

for it,

what is x? What is 200 + x?
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(d) Why is x not the same in parts (a) and (c)?

9. A football team has gained 9 yards on the first three downs.
If x is the number of yards the team gets on the fourth
down, then the total number of yards for the four downs is

9 + x.
Answer the following questions.
(a) If the team gains 5 ysrds on the fourth down, what
is x? What is 9 + x?
(b) If the team loses 5 yards on the fourth down, what

is X? What is 9 + x?

(¢) Why is X not the same in parts (a) and (b)?

(d) If the team loses 9 yards on the fourth down, what
is x? What 1s 9 + x°?

(e) If the team loses 15 yards on the fourth down, what
is x? What is 9 + x?

10. Add the following:

(a) 37 + 85 (g) "18 + 38 (m) 100 + "25
(b) 37 + 78 (h) "14 + "92 (n) T100 + 725
(¢) 737 + 8 (1) 14 + 92 (o) ~200 + 300
(d) 737 + 785 (3) T2 + 12 (p) 200 + ~300
(e) T102 + 84 (k) 72 + "12 (q) T1250 + 250
(£) 767 + 735 (1) 100 + "85 (r) ~1250 + 250

11. Make up & problem about each of the following situations

which uses negative numbers as well as whole numbers:
(a) elevation above and below sea level

(b) geining and losing weight

(¢) 1increasing and decreasing speed

(d) gains and losses in the stock market
'ﬁtﬂj
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L,5 The Integers and Opposites

The exercises in Section 4.4 suggest that for every whole
number (except O) it is useful to create a new negative number.
If we put these numbers together with the whole numbers, we have
a new set which may be shown as follows:

{o,1, 71, 2, 72,3, 73, 4, Th,...}
This new set of numbers is called the set of integers, and is
referred to as the set Z. The new numbers we have created are

called negative integers; for instance, ~1, 2, and "3 are

negative integers. The other numbers in the set sre simply the
whole numbers. However, in this new set we shall call the whole

numbers (except O) positive integers; for instance 1, 2, and 3

are positive integers. The number O is neither positive nor
negative. You mey remember that in our illustrations, O repre-
sented neither a gain nor a loss. So the set Z of integers is
made up of the positive integers, the negative integers, and zero.

Suppose that a person scores 5 points on the first play of
a game, and X points on the second play. What must X be if his
total score at the end of two plays is 0? X must be a number
such that

5+ x =0,

And since we know that 5 + 5 = 0, we see that X must be -5.
It is also true that 5 + 5 = 0, (What kind of scoring on the
two plays does 5 + 5 show?)

Since 5 and 5 add to O, they are called opposites, or

184
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the opposite of 5 is 5, and
the opposite of "5 is 5.

In general,

Two integers are opposites if their sum is zero.

What number must be added to O in order to produce a sum of 09
Since O + O = 0, we shall say that the integer 0 is its own
opposite. That is,

The opposite of 0 is 0.

Instead of writing "the opposite of,” we shall use the

symbol "-" to mean "opposite of)' So, "-2 = 2"
may be read as

the opposite of two is negative two.

Then "-("2) = 2"
may be read as

the opposite of negative two is two.

n

If we use a to stand for an integer, what does "-a" mean?

"-a" stands for the cpposite of the integer a. Here are some

examples:
if a = 3, then -a = ~3;
if a = "3, then -a = 3;
if a = 75, then -a = 5;
if a = 5, then -a = 5;
if a = 0, then -a = 0,

Notice that -a may be a positive integer, a negative integer,

or zero,
Questions: What kind of integer is a if -a 1s positive?

What is a if -a is zero?
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What is a if -a is zero?
We already know that the sum of sn integer and its opposite

is 0. So, if a is an integer, we have

0

[}

| a + (~a)

i-a + a = 0

What kind of meaning can we give to "~(-a)," where a is an
integer? Let us try to build this expression plece by pilece,
as follows:

a &a i1s an integer.

~a This is the opposite of
the integer a.

-(-a) This is the opposite of
the integer -a.

So "-(-a)" may be read as "the opposite of the opposite of a."
Example 1: 3 is an integer.
-3 = "3 This is the opposite of the integer 3.

~(-3) = =(73) This is the opposite of the

integer "3;
3 that is, 3.

]

Notice that the opposite of the opposite of 3 is 3! 1In Example
2, we begin with & negative integer.
Example 2: "5 is an integer,.
-("5) = 5 This is the opposite of 5.
~( =("5)) = -5 And this is the opposite of
the cpposite of 5. Note again that the opposite of the opposite

of 5 is 75, 1In general, if a is an integer, we have

- (-a) = a
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4,6 Exercises

1. Find the solution of each of the following equations.

(a) 3+x=0 (d) 72 +vp=0
(b) x+ "2 =0 (e) T13 +13 =x
(c) a+5=0 (f) 0=15+n

2. Copy and complete the following diagram in which an arrow
i1s to be drawn from each listed integer to its opposite.

3. If x is an integer, -(-x) =
b, -(-(-30)) =

5. If & is an integer, -(-(-a)) =

6. Copy and complete the following diagrem, showing assignments

made by adding pairs of integers.

(3, <2)
(=5, 6) (=5, 25)
(=10, = 10)

(10, 10)

7. (ayb) ———L4
Name five different pairs of integers to which 4 is
assigned by additior. of integers.

8. (ab)———0

Q. Name five different pairs of integers to which O is

essigned by addition of integers.
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9. (2) By using set notation and listing several elements in
the set, show the set Z of integers.
(b) Show a set A having five elzments, all of them
negative integers.
(¢) Show a set B having five elements, all of them
positive integers.
(d) Show a set C which contains all integers that are

neither positive nor negative.

4,7 Properties of (Z,+)

We have ceen how physical situations suggest a way in which
any two integers may be added. That is. to each ordered pair
of integers may be assigned an integer which is their sum. So,
addition .is a binary operation on the set Z of integers: and
(Z,+) is an operational system.

The system (Z,+) has some properties which we have met
before. For exsmple, scoring 8 points on the first play of a
game and then losing 5 points on the second play gives the same
total score as losing 5 points on the first play and winning 8

on the second. That is, 8 + 5 = 5 + 8, And in general,

a+b="D>b+ a Addition of integers
is commutative.

If you score & points on the first hand, snd then O points on
the second, the total score remains a. This suggests the

following property:

0 is the identity
a+0=0+2a=a element of (Z,+).
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From Section 4.5, we already know that every integer 8 has

an opposite -a, such that

— For every irteger a,
a+ (~a) = -a+a=0 -a is its inverse.

You will remember from Chapter 2 that two elements are inverses
in a system if they combine to give the identity element.
If a football team gains 5 yards on the first down, loses
3 yards on the second down, and gains 4 yards on the third down,
then the total yardage for the three downs may be found in the
following way:
(5+73)+4=2+14

= 6.
We get the same result in the following way:
5+ (3+4)=5+1
= 6.

This example suggest the following property:

Addition of integers
(a +b) +c=28+ (b +c) is associative.

Because addition of integers 1s assoclaetive, we usually omit
the parentheses and write simply "a + b + ¢" to show the sum of
three integers.

4,8 Exercises

1. Find the following sums in the way indicated by the

parentheses.
(a) (8+7T)+73 (e) (1 + "18) +5
() (C6 + 76) +9 (f) 30 + (110 + 750)
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() 76+ (76 + 9) (g) 86 + (736 + "85)
(d) 14 + (78 + 5) (h) 85 + (78 + ~36
(1) (8 + 75) + -36
2. Find the following sums.
(a) "8 + 10 (g) 18 + 165 + "18
(b) "8+ 10+ 75 (h) -615 + 108 + 312
(e) 15+ 2+ 7 (1) =3 +5 + 77 + 14
(d) -3 + 75 + Tu2 (3) 8+ "7+ 784+ 77
(e) "9+7+18 (k) 715 + "4 + 6 + 11
(£) 42 + 731 + 17 (1) 102 + -33 + 25 + 61
3. Copy and complete the following assignments, illustrating

that addition is a binary operation on Z.

4, We have seen that (Z,+) has the following properties:
(1) Associativity
(11) There is an identity element
(111) For each element, there is an inverse element
(iv) Commutativity
(a) Tell which of these properties the system (Z,,+) has.
(b) Tell which of these properties the system (W,+) has.
(¢) Review the operational system using rotations of a

square (see Exercise 4 in Section 1.12) and tell which

of these ?our properties it has.
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(d) Review the definition of a commutative group in

Section 2.15. Which of the following operational
systems are commutative groups?

{z,+), (Z,,+), rotations of a square

4,9 The Integers and Translations on & Line

We have already seen that positive and negative integers
may be used to represent situations in which "opposites" are
involved (winning and losing, rising and falling, forward and
backward). Now we shall look at some mappings of the points on
a line which the integers may be used to describe.

Below is a number line with some of the whole number points

labeled.

k. & & - o
i >

In Chapter 3, we saw that the mapping
Ne—————p-n + 1

may be illustrated as follows:

o N NN NN,
0 1 2 3 4 L] 6 7 8

In this mapping, each whole number point is mapped onto a point

of the line located one "step" to the right. Also, as a result

of this mapping, each whole number n has an image n + 1. Notice

especially that the image of 0 is 1 under the mapping n—»n + 1.
Now what happens to the points of the line under the rule

n »n + 17
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It is reasonable to say that this rule sends the points of the

line one step in the direction opposite to that of the mapping

n——n + 1, since 1 and "1 are opposite integers. This may be
shown as below.

L NN TN T

o 1 2 3 4 5 6

Notice the point marked P in the diagram. So far we have not
associated a number with this point, but now it seems reasonsable

to assign the number "1, as below.

~=<
< gA.W\, >
"1 0 1 2 3 4 5 6
n+ 11is "1.

In this way, the image of O under the rule n

Next, consider the rule

Ne————n + 2,

W\Q
1 —— >

The point marked Q is the image of the "zero point" under this

rule. So with the point Q we associate the number ~2,
By using rules such as those sbove, we may associate every
integer -- positive, negative, and zero -- with & point of the

line. A part of this number line is shown below.

. \
— 7

Thus every rule of the kind
Ne———n + 2,

O 1ere a is an integer, is a mapping of the integers into the
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integers. Furthermore, such a mepping may be used to describe

a2 translation of the line,

Example 1: Describe the translation of the line given by

n———=n + 4,

This transletion meps every point of the line
onto the point 4 steps to the left. Do you see
that every point is the image of exactly one
point?
Using the integers associated with some of these
points, we may say:

the image of 0 is "4;

the image of 10 is 6;

the image of “204 is ~208;

3 is the imege of 7;

T107 is the image of ~103.
In fact, in a translation of the 1line, every
point of the line has exactly one image, and
every point of the line is the image of exactly
one point., Every point has an image, and every
point is an image. This includes points other
than those associated with the integers, as
suggested in the picture below, for the mapping

n——»n + 4
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Example 2: Suppose that f is the trasnslation
n ——n + 3,
and g is the translation
N =——n + -5

What is the 1mage of 10 under the composition

g ° f (g following f)? First, the translation
n—L o+ 3 "shifts" each point of the line

three places to the right.
f f

N ﬂfii:—e>i§::)t e ——ma 1\\~t~1(/”:—e’j:\::>'-i»
6 7 8 10 1 1271
2 N1 0 1 23 & 5 Ny ¥ 3

g - |
4

Then g shifts each point five places to the left.
So, under this composition of translations the
image of 10 is 8. Notice also that the image of
0 is "2,
From Example 2, we can see that the composition
g © f is the same as the single translation
n——n+ 2, This shows us another way to
interpret addition of integers, since the sum
3+ 5 is 2.

Questions: If n L s "2 and n—&4n + 77, what single
translation 1s the same as g ° £? What single
translation 1s the same as £ o g?

Example 3: Suppose n—sn+2and n-Lsn + 2. The

composition g o £ is illustrated below.
f f
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Each point of the line is its own image under
this composition. 1In other words g o f is the
identity trenslation. It is also easy to see
that £ o g is the identity translation.
Therefore,

Ne—sn + 2 and n—sn + 2
are inverse translations. {Notice also that

2+ 2 =0.)

4,10 Exercises

l.

Draw a line, and show the points associated with the follow-
ing integers: 4, "3, "2, "1, 0, 1, 2, 3, 4. By mesns

of arrows, show the images of these points under the
trenslation n—= sn + "3,

Using the translation f and the diagram from Exercise 1,
show the composition g o f, where n—&—sn + 7.

What single translation is the same as g o £ in Exercise 27
Draw a line, and use srrows to show the imeges of points
under the trenslation n———n + 0. What is the name of
this translation?

If n—2 +n + "7 end n—&—>n + 7, whot is £ o g? Whst
iIsgo £?

If n—n + 8, gi * & description of a trenslation g so
that g o £ is the identity trsnslastion of a line.

For each of the following peirs of trenslations, tell the
single trensletion which is the ssme ss g o f, and the

single translation which is the same as f o g.
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11.

£ g
(2) n——n + °7; N———n + 5
(b) ne——n + 728; Ne———n + 15
(¢) n——n + 7; n———»n + 38
(d) ne———n + 75; n——n + 71
() n——n + 8; n——n + b
(f) n———n + 63; n———n + 0
(g) n——n + 63; n——n + 63

In Exercise 7, is f o g the same s g o £? Is composition

of translations commutative?

For each of the following, describe a trenslation g so

that g o £ is the translaeation Ne—msn + 27.

() n——n + 13 (d) n—n + 100
(b) Ne—>n + 27 () n——n + "17
(¢) n——n + 727 (f) n—sn + 8

Suppose the following translations of the line are given:

n——f—>n + -8

n—8& .n + 17

n—1L>n + —5
(a) What single translstion is the ssme ss h o (g o f)?
(b) What single trenslation is the seme ss (ho g) o £?

We have already seen that addition is a binary operation

on

Z; that is, a sum may be assigned to every ordered pair of

integers. Line translestions maey be used to illustrete ad-

dition. As an exsmple, tske the sum 5 + 8,

}.,_-k
e
<
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If we first apply the translation
5 n—-sn + 5, and then follow it with

1//,/”’i,~\\\\\ the translation n——en + ( 8), the
diagram at the left shows that the

imnge of O is 3.

The coi.vosition of these trans-
lations n—»n + ( 3). And this
tells us that the sum 5 + (78) = 73,

Draw diagrams like the one sbove to illustrste the following

sums.

(a)
()
(c)
(a)
(e)

-2 + -8 (f) "18 + 5
7+ 73 (g) 18 + 75
4 +5 (h) "7 +0
10 + "10 (1) (2 +5) +3
-6 + 77 (3) 2+ (5 + 3)

Let T be the set of all translations of a line which are of

the form

Ne———n + 3,

where @ 1s an integer.

(a)

(v)

I two of these trenslstions are spplied, one after the
other, is the result another such translation?

If "o" is used to mean composition of translastions in
T, is (T,0) an operationsl system?

Is composition of these transletions sssociative? (See
Exercises 11i snd 11j.)

Is composition of these translations commutative?

Is there an identity translation in T?
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(f) Does each of the translations in T have an inverse?

(g) Is the system (T,0) & commutative group?

4,11 Subtrsction in (Z,+)

We know that the opposite of 3 is ~3. That is,
-3 = 3.
so "-3" and ""3" are simply names for the same number; they

both refer to the same point on the number line:

-3 0 3
B N e o * L
a -
o

-1 =2 -

1)
[

Since we do not need two different names for the same number, we

"

shall from now on use "-3" to mean not only "opposite of 3" but
also "negative 3." In the same way, '"-10" may be read as either
"opposite of 10" or "negative 10." Be very careful, however,

about a symbol such as "-a"; this symbol refers to the opposite

of the integer a, which is not necessarily a negative number.

(When is -a a positive number?)
So far we have worked only with addition of integers. 1Is
it possible to subtract integers? For example, what if you
were asked to subtract -3 from 5; do you know what the difference
should be? Let us loock at this guestion carefully.

First, we write

5 = (<3)
This "-" appears \\ This "-" is part of
between two num- the symbol "-3," a
bers, and means | name Yor negative 3
to subtract the (or the opposite of
second number from 3).
the first.

— A
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Let us Jjust admit that we do not know what this difference is,
and call it a. Then we can write
5 - (-3) = a.
Now compare this subtraction problem with one which uses only
positive integers. For example, we know that
5«4 =1,
since 1 + 4 = 5, In other words, subtracting 4 from 5 means
finding a number to which 4 may be adled to produce 5. You may
have checked subtraction problems in arithmetic by using this

idea:
5 Check 1
b +h
1 5

This gives us a clue as to how to find the number in our problem,
for we would like subtraction to behave the same way in our new
set Z of integers as it did with Jjust the whole numbers. So,

if 5 - (-3)

we want a + (=3)

|

a,

5.

In other words, a must be a number to which -3 can be added to

product 5. The diagram below should help you tc see that this

number is 8. 8

= 0 5~ ~
-3
Therefore, 5 - (=3) = 8, since 8 + (-3) = 5.
Let us look at another problem in subtraction of integers.
4 -7 =18
The number a must be such that a + 7 = 4. What number can be

@ added to 7 so that the sum is 47 The only such number is -3.
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Therefore, we have
bo-7 =3
since we already know
-3 + 7 = 4.
These examples show that you can always subtract integers
simply by using your knowledge of addition. Study the following
examples.

Exemple 1: 3 - (-14) = 17, since 17 + (-14) = 3

Example 2: 28 - 13 = 15, since 15 + 13 = 28
Example 3: -17 - 5 = -22, since -22 + 5 = -17

Example 4: -33 - (-15) = -1& since -18 + (-15) = -33

4,12 Exercises

Find the differences.

1. 5 -2 8. 5 -13

2. 5 - (-2) 9. -3 - (-2)

3. -5 - 2 10. -3 -2

4, -5 - (-2) 11. -i5 - (-8)
5. 10 - 7 12. 100 - (-100)
6. 7 - 10 13. 100 - 100

7. 13 - 5 14, 100 - 200

15. 100 - (-200)
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4,13 Subtraction as Addition of Opposites

Our work with subtraction has suggested that we can always
subtract by adding., And in fact there is an important mathe-
matical principle which shows this relationship. For example,

5 - (-3) = 8, as we saw earlier. But notice that instead of

subtracting -3 we can add the opposite of -3; that is 5 + (3) = 8.

In other words,
5.~ (-3) =5 + (3).

subtracting is the same adding
an integer as its opposite

To look at another case, we know that -7 - (2) = -9, However,
instead of subtracting 2, we may add its opposite;
-7 + (-2) = -9.
=7 =2 = -7+ (-2) = -9
In this way, we may exnress every subtraction problem as
an addition problem. Instesd of subtracting a number, we may

add its.opposite. We state this in the following way:

a -b =23+ (-b).

Use this principle in exercises which follow.

4,14 Exercises

1. 80 - (-20) 11, -167 - 82

2, -25 - 75 12. 55 - (-55)

3. -25 - (-75) i3. 55 - 55

u, 14 -7 14, 1,681,352 - (-2,684,917)

5. % - (-7) 15. -3,066,502 ~ (-8,300,070)
]ZRjk? 6. 14 - (-7) . 6. a - (-2) =
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8. -87 - 9%
9. =87 - (-95)
10. 167 - 82

17. -2 - (-a) =
18, -a - (-b) =
19. x - (=7) =

20. a - [-(b + ¢c)] =

21. Is subtraction an operation on the set Z of integers? 1Is

(Z,~) an operationsl system? Explain your answer, Is sub-

traction of integers commutative? Is it associstive?

Consider the expression

5 +2 -4+ 7,

In this expression, the "-" between "2" and "4" means to subtract

4, And in an expression involving additions and subtractions,

we agree to perform the operstions in order from left to right.

Hence we have

-5 +2 -4

+T7T=-3-4+7
= =T +7
= 0.

Also we may rewrite the original expression as one involving

addition:

-5 +2 + (-

since we have seen that adding
subtracting 4, Since addition
ative, we may take the numbers

-5 + 2+ (=U4) +7 =

L) + 7,

the opposite of 4 is the same as
is both commutative and associ-
in any order. For example,
[(-5) + (-¥)} + [2 + 7]

-+ 9

0.

In Exercises 22-35, rewrite each expression as one involving

only addition. Then simplify.
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22, 7 -8+2
23. -4 +5 - (-3)
24, 42 - (-2) - 7
25. 216 - 38 - (-10)
26. -316 - 55
27. =316 + 55
28, 8+ 7 - 15 - 32
29. -28 - 32 + 17 - (-3)
30. 15 -7+8-3+4
31. 23 + 31 - 45 + 51 - 87
32, 18 - 19+ 25 -T2 + 33 - 80
33. 3+5-3-5
M, 7T -2+7T+2
35. -8+3+8-3
What is 5 + 2 = 5§ = 27 It is the same as
54+ 2+ (-5) + (-2).
And since addition of integers is both associstive and
commutative, we may think of this as
(5 + =5) + (2 + -2},
which is O + O, or 0. 1In other words, we have
(5 +2) + (-5 + -2) = 0.
Therefore, we know thnat (-5 + -2) is the opposite of (5 + 2),
since the sum is zero. 1In symbols, we may write this as
-5 +2) = (-5) + (-2).
Now let & and t be any two integers. What is - (a + b)?
as skove, we sgee that

a+b+ (-a) + (-b) =0.
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Therefore, the opposite of a + b is (-a) + (-t). In

symbols, we hav:

- (a +b) = (-a) + (-b).

Use this principle in Exercises 36-45. All letters represent

integers.
36. -(x +y)
37. =(-x + )
38, =[-x + (-y)]
39. =(7 + a)
4o, -(a - 4)

41, -(a - 1)

o, - (a+ b+ c)
43, <(a+ b -c)

4a, -(a -Db - c)

45, - [-(x +¥)]

4,15 Equations in (Z,+)

Below is a diagram illustrating the line translation
f

nNe—————n + 3,

We studied such translations in Section 4.9, and we saw at that

time that each of them has an inverse translation. The inverse

of the translation
\‘1

A
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n-f—>n+3

1s n—L8—sn - 3. (This of course is
the same as
n——sn + (-3).)
We know that the composition g o £ is the identity translation;
this is illustrated below.

<4>< s(<>-§-e< .?—-(-e/

Now look at the equation
X + 3 = =14,
Does this equation have a solution in the set Z of integers?
You see below that we may picture this equation in terms of

the line translation n—£—>n + 3.

< ’//,/””’—_e’-_~§\\\\\\‘ —»

X =15

In other words, X must be a number whose image under f is -15.

Now if we follow n——=n + 3 by its inverse n——n - 3 we have

the following:

-

-3
From this diagram, we see that we may start at X and write

X+ 3 = <15
or we may start at -15 and write
-15 - 3 =
In other words, any X which is a solution of one of these

Q equations is a solution of the other also. Therefore, to solve

<05




~-199-

the original equation we may proceed as follows:

x+3=-=15
Xx==15 =3
x = -18

since -15 - 3 is the same as -15 + (~3). This is easy to check,
becaure we know
-18 + 3 = =15,
Below are two more examples of scolving equations of the

type "x + & =Db," wirere & and b are integers.

Exemple 1: X - 5= 2
5
-2 ~— - X
5
-2 + 5 =x
3=x
{3) is the solution set.
Exemple 2: x+ 18 =13
18
- e
X 3

— -

-1
3-18

X
- 15 =x
(-15} is the solution set.

k.16 Exercises
Solve the following equations in (Z,+).
1. x+3 =1 11. a + (~5) = 8

j \‘1 . (3 ®X = 2 - = 8
JERJ(: 2. x+3 =73 12, a =5
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3. 3 +x=1 13. a - 27 = 33
4, 3 +x =3 U, a -27 = -4
5. x+2 =7 15. x - 15 = =2
6. x +8 = -2 16. x - 15 =0
7. x + (-2) =8 17. » - 15 = -3
8. x-2=28 18. x +15 = =3
9. a+ 4 =4 19. 3 + a = ~100
10. 4 +a =<4 20. 3 - 8 = ~100

Look at the equation

X 4+ 2 =Db>, (’\
- >
Can you solve it for x? X )b

N~
-2

We see that if x + 2 =b, thenb - 2 = x, Also if
b -2 =x, then x + 2 =b. So to solve the equation
"x + 2 = b" we write
X+ 2 =D
X=Db - 2,

Now work Exercisos 21-30, solving for Xx.

21, x+3 =D 26. x +15 =D
22, X +5="5 27. x + (-10) = b
23. X + 100 = Db 28, x -10 =DV
24h, x + (-6) =0v 29. x - 14 =b
25. x -6=09 30. x+a=>»

31, Use Exercise 30 to answer the following question:
Does every equation of the type "x + & = b," where a eand b

are integers, have a solution X in the set of integers?
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32, Make up ten diiferent equations of the type
X+ a-=>»,

where a and b are integers, and solve the equations.

4,17 Cancellation Law

Suppose that g and b are integers, end that
54+a=5+h1n
What conclusion can you draw? If your conciusion is that a and
b are actually the same integer (that is, a = b), then you are

using a cancellation law. (You may went to review Section 2.11

if you do not remember what a cancellation law is.) Is it
correct to use a cancellation law in the case above? We start
by knowing thst
54+ a=5+0b,
The lnverse of the integer 5 is -5, and we may write
5+ (5+8)=-5+(5+0n)

t

Do you see that on both sides of "=," we have the same sum?
We know that 5 + 9 1s the same as 5 + b, and certainly -5 is
the same as -5. Now we may write
(-5 +5) +a=(5+5)+0,

since addition of integers is associative. Then

0+a=0+4hb0,
since the sum of an integer and its opposite is O, Do you see
now why we chose the integer -5 at the beginning? Since 0 1is
the identity element of (Z,+), we may finally write

a = b,

So, if5 +a=5+Db, then 2 = b; and we see that our use

208




~202-

of a cancellation law in this case was correct. Can we always
use a cancellation lazw in such & case? That 1s, 1s there a
cancellation law in (Z,+)? Study the foliowing steps, where

a, b, and ¢ are integers.

IFPc+a=¢c+b

TYEN
-c + (c + a) = =c + (c +0b) Why?

THEN
(-c +c)+a=(-c+c)+D Why?

THEN
O+a=0+Db Why?
THEN

a=> Why?

You should be sble to answer each »~f the questions "Why?"
since the argument here is the same as the earlier one, except
in this case ¢ represents any integer. So we may write, where

8, b, and ¢ are integers,

IF c+a=¢c+b Cancellation Law

THEN a=b of (Z,+)

Example: Use the cancellation law of (Z,+) to solve the
equation
-3 +x = -1,
First, we may rewrite the equation asg
s34+ X =<3+ 2,
since -3 + 2 = -1, We now have -3 on both sides
of "=," and we may use the cancellation law to get

X = 2.
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Therefore we have another way in which to solve equations in

(Z,+) besides the method we used in Section 4.15.

4.18 Exercises

1. May the cancellation law of (Z,+) be stated in the follow-
ing way: If a4+ c¢c =Db + ¢, then a = b?
2. (a) Give an example of an operational system besides (Z,+)
in which there is a cancellation law.
(b} Give an example of an operationsl system in which
there is no cancellation law.

3. Use the cancellation law of (Z,+) to solve the following

equations.

(a) 2 +x =2 + (-5) () n -5 =-10 -5
(b) 2+x=2-5 (f) v + 43 = -14 + 43
(c) x+ (-7) = -3 + (-7) (g) =2+t =-2+19
(@) x-7=-3-7 (h) -2 +t=-2-19

4. Use the cancellation law of (Z,+) to solve the following

equations.

(a) 5+ x =17 (8) 3 +n =47

(b) -4+ x=12 (h) n - 10 = -5

(c) x+ (-3) = -6 (1) y-14 =7

(d) x -3 = -6 (3) =32 + x = 32

(e) -13 + x = Y42 (k) x+3 =7

(f) 19’+ x = =13 (1) x + a =b (Solve for x.
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4,19 oOrdering the Integers

It is important to recognize that numbers can be compared
in the sense of saying that one number is less than another.
For instance, 3 is less than 7 and we write

3<T.
We may also show the comparison of these numbers by saying that
"7 is greater than 3" and writing

7> 3.
3 and 7 of course are positive integers, but it should be
possible to compare any two integers, positive, negative, or
zero, For example, which of the two integers, 3 and -7 is
greater? 1Is -10 less than -3 or greater than -3? After study-
ing this section, you should be able to answer guestions such
as these.

We think of 7 as being greater than 3 because we must add

a positive integer to 3 to get 7. Specifically, 3 + 4 =17; 4

is the number we add to 3 to get 7. Of course, saying 3 + 4 =7
is the same as saying 7 - 3 = 4. Thus, 7 > 3, and the difference
7 - 3 is the positive integer 4. 1In the same way, 10 > 8, and
the difference 10 - 8 is the positive integer 2.

We should like to keep this same pattern in comparing any
two integers. Therefore, we shall say that if a and b are

integers

a - b is a positive integer
means
a > b, and
b < a.

With this agreement, let's return to the two questions we asked

<11
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earlier., Which is greater, 3 or -7°7

-7 + =3 = -10, -10 is a negative integer; so -7 is not
greater than -3.

3 - (-7) = 10. 10 is a positive integer; so 3 is greater
' than -T.

We may write 3 > -7
-7 < 3.
The number line may also be used to show that the difference

3 - (=7) is 10.

7 6 -5 -4 =2 -1 0 1 2 3 4 5 6
3 - (-7) = 10 means that 10 + (-7) = 3, or by commutativity,

-7 + 10 = 3, as shown above. You must add 10 (or shift to the
right 10 steps) to get 3. This means that the point associated
with -7 is to the left of the point associated with 3.

Which is greater, -10 or -3? The number line below

illustrates that -10 + 7 = =3,
7

T T

. — —3
10 -9 -8 -7 -6 -5 -4 3 -2 -2 0 1 2 3 4 5 6

In other words, -3 - (-10) = 7, a positive integer. Therefore,

-

"'3 > —10, and
"lo < -3 .
By looking at the number line below, can you tell at a

glance which of the two numbers, -3 and 2, is greater?

Y
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Having decided on a way to order the integers, we see that
we can also use this ordering to order the points of the number
line to which integers have been assigned. 1In this way, given
two different points, the one to the left is said to come before
the one to the right. And the integer assigned to the left point

is less than the integer assigned to the right point.

P Q

) - i o

a b

Point P comes before point Q.
The integer a is less than the integer b.

4,20 Exercises

1. For each of the following pairs of integers, tell which

is greater and why.

(a) -6, 2 (d) o, -1
(b) 6, -2 (e) 0,1
(e) -6, -2 () -6, -7
2. List the following integers in order from le.'t to right,

beginning with the least integer listed, and ending with
the greatest integer listed.
2, -2, 3, -5, 0, ~i, 4, -4, -3, 5, 1.
3. If a -~ b is a positive integer, which is the greater integer,
a or b?
If r - s is a negative integer, which is the greater
integer, r or s?
What conclusion can you draw if ¢ - d = O, where ¢ and d

213
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Copy the following pairs of integers, and insert the symbol

"=," """ or ">," whichever makes a true sentence.

(a) 7 -3 (g) 5 14
(b) -5 -15 (h) -5 =14
(¢) -8 0 (1) 7 15
(@) 8 o (3) -7 -1F
(e) -100 2 (k) -3 5
(f) 1 -2500 (1) 3 -5

Look at the number line diagram below. Which integer

a, or b, is greater?

C— —e — >,
~b ) 0 a b
Can you complete the following sentence: If a < b, then
-8

For each of the following pairs of integers, tell which is

greater:
(a) 7, -7 (d) 52, -52
b) -5, 5 (e) 33, =33

) -13, 13 (£) =97, 97
a) If X 1s a negative integer, and y is a positive integer,

which is greater, x or y?

(b) If x is a negative integer, and y = O, which is greater,

X or y°?

(¢) 1If X 1s a positive integer, and y = 0, which is greater,
X or y?
Suppose that a, b, and c are three integers, end you know

- 214

the following:



-208-

a < b, eand b < ¢,

What other fact do you know? Illustrate on a number line.

4,21 Absolute Value

In Chapter 2 we studied an operation on the whole numbers
called the "max" operation. For example,
(2,6) ———=6, or 2 max 6 = 5,
since 6 is the greater number of the pair. Instead of

" we may also write "max(2,6) = 6"; the meaning is
&

"2 max A = A,
the same. "Max"” is also an operation on the integers. Given
the pair (-3,-7), for instance, the "max" operation assigns the
number -3, since -2 > -7. In the diagram below, illustrating
the "max" operation, we use only a special kind of pair; each

pair consists of an integer and its opposite.

(6, =6) < > 6

(3: "3) — 3

(=17, 17) -+ - 17
) ()-1: ")-l)
(151, ~-151) —~ I
("'h: L) }
> 151
(0, 0) A—0

g

Fach of these pairs (except (0,0)) is assigned a positive integer.
Why? Of the two numbers in each pair, one is positive and the

other negative; and the positive number is the greater.
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Example 1: Suppose a is a positive integer.
Then max (a,-a) = a, since a is the greater
integer of the pair.

Example 2: Suppose a is a negative number.
Then max (a,-a) = -a. In this case, since a is
a negative number, -a i1s a positive number,
And the positive number is greater than the
negative number.

It is often useful in mathematics to work with the number

max (a,-a) where a is an integer; and this number is called the

absolute value of a.

Example 3. What is the absolute value of -10? The opposite
of -10 is 10. And max (-10,10) = 10. Therefore,
the absolute value of -10 is 10.
Instead of writing the words "absolute value of," we shall
simply use the symbol "|a|" to mean "absolute velue of a."
max (-7,7} = 7.
mex (25,-25) = 25

Example 4: [|-7|

Example 5: |25]
On the number line below, it is reasonable to say that

it

5 5 —
—y———C T T 5 5 T 0

the distance between points P and Q is 4, since it takes 4
"steps" to get from one point to the other. We could find this
distance by subtraction 7 - 3 = 4, where 7 and 3 are the integers
associated with the points P and Q. Notice that if we subtract
in the other order, 3 - 7, we get -4. We do not use this for

the distance between two different points.
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Example 6. What is the distsnce between R and S?

W o

S
-
-3 -

-1 0 1 2 L 5 6

Here too the distance can be found by subtract-
ing the numbers associated with the points,

3 - (-2) = 5. Again notice that if we sv“tract
in the other order, we get -2 - 3, or -5, But
the distance is the positive number 5.

Now suppose that we want to find the distance between two
points, point W which is associated with the integer a on the
number line, and point Y, which is associated with the integer
b. Is the distance a - b or b -~ a? We cannot be sure in this
case; one of these numbers is positive, and one is negative.
However, if we take the absolute value, we are sure to get a
positive number, regardless of which of the two numbers we
choose. So it is correct to say the distance is |a - bl; it is
also correct to say the Cistance is |b - al.

Example 7: What is the distance between the points shown

below?

o 1 2 3 4 5 6 T 8 9° 10

|18 - 2| = |6], or |2 - 8|

| -6
= 6
We may subtract in either order as long as we

use the absolute value for the distance.
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4,22 Exercises

1. (a) max (7, -7) = (g) |-83] =
(®) |-71 = (h) max (-83,83) =
(c) |215| = (1) {100| =
(a) |-215] = (j) [|-100| =
(e) max (-215,215) = (k) |max (-3,-6)| =
(£) 3] = (1) max (-3, [-6]) =
2. Since we have previously agreed that O is its own
opposite, what is [0]?
(Remember that max {(a,a) = a.)
3. Find the simplest name for each of the following:
() 3 -7] (g) -7 - 14|
(b) |7 - 3| (h) |-14 - (-7)]
(¢) {100 - 18| (1) |62 - 37|
(a) {18 - 1c0|| (3) 137 - 62|
(e) |5 - (-2)] (k) |10 - (-38)]
(£) [-2 - 5] (1) [-38 - (-10)]

i, Using the number line below, find the distance

B A c D

-32 -9 11 21

between the following points:

(2) B end C
(b) C and D
(¢) B and A
{d) B and D
[RIC ) 4

and C | 218
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5., PFind the simplest name for each'of the following:

(a) |7 - 0] (g) 118 - of
(b) o - 7] (nh) fo - 18|
(¢) |-7 - 0] (1) {100 - of
(@) 1o - (-7)] (J) o - 100|
(e) |-18 - o} (x) |-100 - O]
(£) o - (-18)] (1) |o ~ (-100)]
6. Using the number line belcw, find the distance
S P T K Q R W
-~ e -~ — < O ® ——
=20 12 -7 0 7 12 20

between the following points:

(&) T and K
(b) Q and K
(¢) P and K
(d) R and K
(e) s and K
(f) W and K
(g) P and W
7. In the diagram below, if the distance between C and A is the
C, A B
B &1 5 % —>

same as the distance between B and A, what 1s x?

8. On a number line, point O is associated with the integer 0,
and point P 1s associated with the integer p. What is the
distance between O and P?

9. Complete the following drawing, in which an arrow is drawn

from each of the given integers to its absolute value.
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10. Which of the following is not true for any integer a?
[a] > 0; ja]l = 0; ' la] < 0.
1l. Find solution sets for the following equations:

(a) la] =5 (g) In+2] =3
(v) lal =0 (h) In| +2=3
(c) la] = -5 (1) la -1 =5
() la] =100 (3) lal -1=5
(e) |x|] +1 =09 (k) |In+7] = -2
(£) |x+1) =9 (1) In+7] =0

‘ 12. Describe the integers which are solutions of the following:
(It may help to use the number line.)

i () faf <2 (e) Jaj <o
| (b) |a] > 2 (£) lal >0
§ (¢} lal <5 (g) la] < 100
§ (a) la] >5 (h) lal > 100

b *¥13, Describe the 1ntégers which are solutions of the following:
(a) |x+2] <2
: (b) |x-2]| <2
g (c) |x-3] <71
ﬁ' (@) lx+3l<7
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14. Answer true or false, where a is an integer:

la] = [-a

Tllustrate your answer on the number line.

15. Answer true or false:

(a)
(b)
(c)
*16. (a)

(v)

(c)

lal = a, if a is a positive integer.

l2]

lal = a, if a 1s 0.

-a, 1f & is a negative integer.

6 + 2 = 8. This example illustrates that the sum of
two positive integers is positive. What is |6]? What
is |2]? what is [6] + |2|? What is |8]? Notice

that the absolute value of the sum is the same as the
sum of the absoiute values., Make up a rule for finding
a + b, where both & and b are positive integers.

-6 + (-2) = -8. This example illustrates that the sum
of two negative integers is negative., What is |-6|?
What is |-2]? What is |-6]| + |-2|? What is |-8|?
Notice that the sum of the absolute values is the same
as the absolute value of the sum.

Make up a rule for finding a + b, where both a and b
are negative integers,

6 + (-2) = 4, Here we are adding a positive integer
and a negative integer. WNotice that

|6 + |-2] = 6 + 2 = 8, and this is not the same as
|#]. In other words, the sum of the absolute values

in this case is not the same as the absolute value of

21
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Which has the greater absolute value, 6 or =27
Notice that the sum, 4, is a positive integer, Jjust
as 6 is (and, of the two numbers being added, 6 has
the greater absolute value). What is |6] - |-2]?
Make up a rule for finding a2 + b, where & is a
positive integer, b is a negative integer, and
lal > |v].

(d) -6 + 2 = =4, Here we are adding a positive integer
and a negative integer, and the sum is negative.
Which has the greater absolute value, -6 or 2? Notice
that the sum. -4, is a negative integer just as -6 is
(and of the two numbers being added, -6 has the great-
er absolute value). What is |-6| - |2|? Make up a
rule for finding a + b, where a 1s a negative integer,
b is a positive integer, and |a| > |b].

When is it true that [a + b| = [a] + |[b|? (Be sure to

consider cases in which either a or b, or both, are zero,)

Summary

The set Z of integers is made up of the positive integers,
zero, and the negative integers.

Every integer a has an opposite, -a&, such that

a + (-a) = 0. If a2 is positive, -a is negative. If a is
negative, -g is positive., If a is zero, -a is zero.

~-(-a) = a.

The absolute value of an integer a is written as "|a]."

la] = max (a,-a). Therefore, |a| is never negative.
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The distance on the number line between the points &ssoci-
ated with the integers a and b is |a - b|. This distance
is also |b - a|, since |a - b] = |b - 2a].
Addition is an operation on the set Z of integers. That is,
to every ordered pair of integers is assigned an integer

called their sum. Therefore, (Z,+) is an operational

system.
The operational system (Z,+) has the following properties:
(i) Associativity
(ii) Commutativity
(3ii) Identity element
(iv) Inverse element for each element.

Therefore, (Z,+) is a commutative group.

There is a cancellation law in (Z,+). If c + a =c¢ + b,
then a = b,

The integers may be used in many kinds of problems in which
the idea of "opposites" occurs. Also the integers may be

used to describe certain translations on & line, such

translations being denoted by n=——n + a, where a is an
integer. A line translation is a mapping, since every
point of the line is the image of exactly one point.

Subtraction is an operation on the integers. However, it

is not associative and it is not commutative.
a-b=a+ (-b). Every subtraction may be expressed as an
addition.
The opposite of a sum is the sum of the opposites.
- (8 + b) = (-a) + (~b).
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The integers are ordered. a < b if énd only if b - a

is a positive number. All negative numbers are less than
zZzero; all positive numbers are greater than zero.

Every eguation of the kind "x + a = b," where a and b are

integers, has a solution in the set of integers.

EXxercises

In Exercises 1-10, find the sums.
-18 + (-15)

=34 + (-83)

32 + (-19) + 58

107 + 89 + (-16)

-217 + 88 + (-365) + 47

-18 + 52 + (-43) + 108 + (-92)
195 + (-195) + 208 + (-208) + 66
1257 + (-13335)

251 + 375 + (-801) + 455

5681 + 4355 + (-11652)

In Exercises 11-22, find the differences.

32 - (-8)

-55 - 17

-82 - (-19)
17 - 38

17 - (-38)
-45 -~ 110
-187 - (-258)
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18. -258 - 312

19. -47 - 85
20. =47 - (-85)
21. 0 - 15

22. 0 - (-15)

23. 15 -8+ 7T =22+ 13 =
2, - 154+ 8 -7 +22 -13 =
25. 106 + 42 - 38 + 15 - 62

26. 52 + 18 - 93 + 106 - 84
27. =124 - 35 + 87 - 78 + 39 =
28, 168 - 3835 + 2106 =
29. 9857 - 3462 - 2118 =

30. 12385 - 14689 + 5206 =
31. Write the following integers in order from left to right,
| beginning with the least integer listed and ending with
the greatest integer listed:
72, -3, =109, 3, 0, -42, 68, -10, -88, 215, -1000.
32. Between each of the following, insert "<&," ">," or "="

whichever results in a true sentence.

(a) [-3] -3 (£) |-10] + |-3] |-10 + (-3)]
) I71 7 (g) (42 + (-18)) (42 - (-18))
(c) (-2 +8) (-2 -8) (n) 17 + (-2} (7} + [-2])
(@13 -7 |7 - 3] (1) (2 + (-a)) (b + (-b})
(e) (0 - 18) (0 - (-18)) () 0 la + (-a) |

33. For each of the following, draw a number line. By using
arrows, show the translation of the line which 1t describes.
() n———n +5 (¢) ne——sn + (-3)

o (b) n=————an -7 . (a) n————n + 0,
o
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34, For each of the following, drsw a number line. By using

arrcws, show the composition g o f of the given trans-

lations.

() n—i—mn + 6; N8 _on - 4,
(b) netsn + 10; n—=©S +n - 10.
(c) n—Lf—>n - 9; N—=©&—»n + 5.
(d) ntn - 4; n—-=~—pn - 3,
(e) n—EL->r14-H; n—=e—»n + 3,

35. Tell what single line translation is the same as each of
the compositions in Exercise 34.
36. Find the solution set of each of the following equations.

(Solve for x.)

() x+3 =7 (g) x - 81 = 106

(b) x+7=3 (h) x - 106 = 81

() x-3=7 (1) x+7 =0

(d) x-7=3 (j) x +a =13

(e) x + 81 = 106 ' (k) x+a=">

(f) x + 106 = 81 (1) x+t=r
37. Find the solution set of each of the following. (Solve

for-z.)

(a) |x| =5 (e) |x+2] =7

(o) [x| = -5 (£) x| = x

() Ix| =0 (g) |x] = -x

(@) Ix| +2=7 (h) x| = |-x|

38, Tell what integers are solutions of the following sentences:
(a) |x] <15 (e) Ix| > -2
(v) x| > 15 (d) Ix| < -2
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*(e) [x-2] <5
¥(f) |x+5] <2
39. Simplify the following:

(a) - (a + b)

(b) - (a - b)

(¢) - (-a +1v)
(@} -~ (-a - p)
(e) ~ (x - y+ z)

40, The figure below can be used as an addition table for the

integers if properly completed and extended.

8
~2 1 6
4 8
0 L
O 12{3] |5
1 2[3
-3 5[ -3kol-1] of 1| 2] 3| % 7
S EK]
210
-3 L32[ [0
13 =5
J*O'

(a) Copy the table and fill in all the entries,

(b) What do you notice about all the cells having the same
number (for example, all cells in which "4" is entered)?

(c) In what way does the table show that addition of
integers is commutative?

(d) 1In what way does the table show that every integer has

01




-221-

exactly one inverse for addition?
(e) Try to find at least one other pattern which shows
up in the table,
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CHAPTER 5

PROBABILITY AND STATISTICS

5.1 Introduction

The Fish and Game Commission often must estimate the number
of fish in a lake, But they certainly cannot catch all the fish
in the lake and count them. Instead, they catch a sample in a
net, tag them, and throw them back into the lake. After allowing
time for the first sample to mix thoroughly with the fish popu-
lation, they catch & secona sample and court the number of tagged
fish in this sample., The fraction of tagged fish in the second
sample is an estimate or a guess of the fractlon of tagged fish
in the lake. For example, if the first sample numbers 100 and
the second sample 200, of which 50 are tagged, it is assumed

that about g%% or % of the fish in the lake are tagged. Only

100 fish were tagged, so 100 is about % of the fish in the lake.

Question:\ On the basis of the above estimate, how many
fish are in this lake?

A similar estimation problem is often met in industry. For
instance, in the manufacture of light bulbs 1t is important to
control the equality of the bulbs coming off the assembly line.
Since it is not practical to test the burning time of each bulb,
a sample of several bulbs is selected and tested. The fraction
of defective bulbs in the sample is then used as an estimate of
the fraction of defective bulbs in the lot of bulbs being pro-
duced. This fraction is called the relative frequency of
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defective bulbs, If the sample consisted of 50 bulbs, of which
5 were defective then %5 or .1 is the relative frequency of
defective bulbs in thz sample.

Today many users of mathematics need the ability to make
estimates with a high degree of confidence, in situations where
the actual results are uncertain. Important decisions are often
based on these estimates.

Question: What are some ways relative frequencies might be

used by

(a) the weather bureau;

(b) an auto insurance company;

(¢) the National Safety Council;
(d) a 1ife insurance company;
(e) the manager of a supermarket?

5.2 Discussion of an Experiment

The experiment that we discuss here is that of tossing a
die. You may think of the experiment as a set of trials and an
associated set of outcomes. In this case a trial consists of one

toss of the die. The possible outcomes are pictured below:

/
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We say that the outcome is 2 if the die comes to rest with

two dots on the "up" face. The outcome set is {1,2,3,4,5,6].

For each trial the outcome is the number of dots on the up face.
If a trial results in a certain outcome, we say that this out-
come occurs,

The set of outcomes {1,2,3,4,5,6} is also called the out-
come space. Any subset of the outcome space is called an event.

Thus, {2,4,6} can be described as the event that the out-
come 1s an even number. An event is said to occur if any one
of its outcomes occurs.

We can simplify the description of event [2,4,6} by letting
{2,4,6) = K. Then if an outcome is an even number, we say that
K occurred. For example, if the outcome of a trial was 2 we say
that K occurred.

Since any subset of an outcome set is an event, the outcome
set (1,2,3,4,5,6) is itself an event. It could be described as
the event that the outcome was & whole number between zero and
seven. A subset containing a single outcome is called a simple
event, or a point in the outcome space. For example, in this
experiment {2} is a simple event or a point.

Below is a table showing the results of an experiment that
wes performed. The experiment consisted of rolling a die 24
times with the outcome set {1,2,3,4,5,6.} The first column of
the table shows the outcomes, the second shows the tally of the
occurrences of each outcome; the third shows the frequency of
number of occurrences of each outcome; the fourth shows the

relative frequency of each outcome.

31




-225.

Table 1 24 Tosses of a Die
OQutcomes Tally Freguency Relative Frequency

1 /7/ 3 5 "3

2 71X 5 =2

3 /111 4 & =}
v F -2

5 I 5 2

6 M 5 =2

5.3 Exercises

1.

Tabulate
That is,
(a) The
(b) The
(¢) The
nop!
leas
(d) The
"and
both

the following events of the die tossiing experiment,
list all outcomes that satisfy the condition.
outcome is less than 3. Ans, {1,2}

outcome is greater than 5.

outcome is less than 3 or greater than 5. Where
is used, tabulate all outcomes thet satisfy at

t one of the two conditions,

outcome is greater than 1 and less than 4. Where

" is used, tabulate only outcomes that satisfy

conditions,

- (e) The outcome is greater than 2 and less than 3,
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The outcome is a member oi- the outcome set.

The outcome is a prime number.

Describe the following tabulated events.

(a)
(v)

{2,4,6} (¢) (1,6}
(1,3,5)} (a) (2,3,5)

Perform the experiment of tossing a die 24 times and record

the results in a table like Table 1, Compare your results

with those in Table 1.

(a)

(v)

(c)

(a)

(e)

(f)

Which of your frequencies were the same as those in
Table 17

Which of your relative frequencies were the same?

Do you think that you will always get the same relative
frequencies in repeating this experiment? If you have
doubts, try it!

Add the relative frequencies in the last column of
your table. Add the relative frequencies in Table 1.
Were the sums the same?

Find out what the other students in your class found
as the sum of the relative frequencies in their tables.
If you all found the same sum, try to explain why this
happened.,

Suppose that you had a coin with a "head" on both sides and

performed the experiment of tossing this coin 100 times.

(a)
(v)
(c)
(a)

What would be the frequency of the outcome "heads-up ?"
What would be the relative frequency of this outcome?
Would you say that the outcome, heads, was certain?

What is the relative frequency of any event that is

tain? \
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In the same experiment of tossing the "two-headed" coin:
() What is the frequency of the outcome "tails¢"
(b) What is the relative frequency of this outcome?
(¢) If "heads" was a certain event for this experiment,
how would you describe the event, "tails ?"
What i1s the relative frequency of an event that is
impossible?
In the die tossing experiment, what is the relative frequency
of 2% of 4? of 67
What 1s the sum of the relative frequencies in Exercise 77
In the die tossing experiment, what is the relative frequency
of the event that the outcome is an even number?
What conjecture might you make on the basis of the answers
to Exercises 7, 8, and 9?
Class Discussion Exercise:
It is interesting to find out what happens to relative

frequencies as you increase the number of trials. Instead

of repeating an experiment meny times, you may save time by
combining your results with those of the other students in
the class.

Use the results for the event (5} in your die-tossing
experiment (Exercise 3) for the following experiment.

First, draw this chart on the chalkboard:
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ve Number Cunulative Relative
als Frequency Frequency

24
u8

72
96
et

(a)

C.,

Have one student go to the board and enter his
frequency and relative frequency for the outcome 5 in
the columns to the right of 24,

Have another student go to the board, add his frequency
for the same event to the frequency of the first student,
and enter the sum in the second row of the cumulative
frequency column. Then divide this sum by 48, and
enter the quotient (in fraction-form) in the relative
frequency column.

Have a third student follow the same procedure in the
third row and so on.

If the first three students had 4,3 and 5 respectively,
for the frequency of the outcome {5}, entries would

look like this:

24 L E%' or %
48 7 Eg
72 12 %’- or %
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Question: If you have 20 students in your class, how many
trials will you have by the time each student
has recorded his results on the chart?

(e) Experience indicates that as you increase the number
of trials in an experiment to very large numbers, the
relative frequencies of an event tend to vary less and
less from some specific number, Even though your
class project does not involve very large numbers,
compute the differences of consecutive pairs of rel-
ative frequencies to see if they tend to decrease.
(See the illustration below for a suggestion on how

to proceed.,)

Relative Consecutive
Number of trials Prequencies Differences
24 8-«
la - v}
}48 b=
T2 C - Ib - CI
96 de le - 4
ete. ete, ete,

(f) The property discussed in this exercise is called the
stebility of relative frequencies.

(g) The following statements summarize the ideas of the
preceding exercises,
1. The relative frequency of an event is
(a) 0, 1 or a number between O and 1;
(b) 1 if the event is certain;
(c) 0 if the event is impossible;
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(d) the sum of the relative frequencies of its
simple outcomes.
2. The sum of the relative frequencies of the outcomes
in an experiment is 1.
3. Relative frequency has the property of stability.
This idea will be explored further in experiments
and illustrated graphically.

5.4 An Experiment to be Performed by Students

For this experiment students should work in groups of two

or three, but each one should perform the trials while his

teammates help him tally the results. In this way you can do

experiments where you need a large number of trials but want

to use the same experimental object such as the same die, coin

or thumbtack. The large number of trials can be achieved by

combining the results of the three members on a team.

(1)

Experiment: 20 tosses of a thumbtack repeated 5 times.
Toss a thumbtack on a hard surface where it will bounce
before coming to rest. (We hope that this will take
all of the prejudice out of the way you toss.) The

simple outcomes will be "Up" and "Down."

Each student should make a chart like the one beluw
and tabulate his results, When each student on a
team has completed 5 groups of 20 tosses, the three
students working together should fill in Table 2 for

the cumulative results, using the outcome UP. (Is

PRY}
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information lost by only considering the outcome UP?

Why or why not?)

(2)

Tables

We illustrate how this might begin.

Twenty Tosses of A Thumbtack Repecated Five Times

Up DOWN
HFre- Relative Fre- Relatilve
Trials Tally quency Frequenc Tally |quency Frequency
1st 20 4L, 12 3 8
12 = = ! 8 — = 2
St =5 | LI =2
and 20| 4L/ 2 11
9 TRL TR 11 20
111/ 20 20
/
374 5g
yth 20
Table 2

238




-232-

Cumulative Results for 300 Tosses of a Thumbtack

( grours of twenty)

Cumulative Cumulativer Relative Consecutive
Number of Frequency Frequency Differences
Trials for UP for UP
12 3_ 6
20 12 -5 ° 3
40 21 %= .53 4o
60 27 o7 - s i
80 ete.
100
120
140
160
180
200
220
240
260
280
300
Table 3
(3) Graphs

The best way to illustrate the stebility of relative
frequency is through the use of graphs, Each student
will make two graphs to show the results of the thumb-
tack experiment. The relative frequencies for UP,

tebulated in Tebles 2 and 3 will be used.
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The first graph will show the relative frequencies
for UP for each group of twenty tosses, The second
graph will show the relative frequeincies for UP for
increasing numbers of trials. The two graphs below
illustrate the procedure using results of an imaginary

experiment.
Relative
Frequencies
1.00
090 ¢
0.80 |
0.70
0.60 ¢
0.50
0.40
0.30
0.20 |
0.10 4
©.00 | ! ! Group
I1st 2nd 3rd 4th  5th  Number
twenty
tosses

Graph 1

This graph shows that for the five groups of
tosses the relative frequency did not vary much. Point
A shows that in the first group of twenty tosses the
relative frequency of UP was .6. For the five groups
illustrated in the graph, the greatest relative fre-
quency was about 0.62 and the least about 0.48. The
difference between the greatest and least is 0.14.

Now construct & graph similar to that in Graph 1
using the results of your experiment tabulated in

Table 2.
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Relative
Frequency

1.00
0.90
0.80

0.70
0.60
0.50
0.40

0.30
0.20
0.10
0.00

!
L

220 ¢
240 ¢t
260
280
300

— — e - -

Graph 2

This graph shows that as the number of tosses
increased in this particular experiment, the relative
frequencies did indeed "stabilize" around a number
(about 0.62). With a different thumbtack, the number
might have been different. Now construct a greph
similar to Graph 2 using the results of your team tab-
ulation in Table 3. Do your relative frequencies tend
to stabilize around a number? 1Is this number near
.62? If not, can you explain the difference? Compare
your cumulative relative frequency with those of other
teams,

Question: What do you think the results might be with a
thumbtack that has a very small head and & long
pin?
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5.5 The Probability of an Event

The thumbtack experiment provided us with one example of
the tendency of relative frequencies to "stabilize" as the
number of trials increases. This tendency 1is sometimes called

the law of large numbers. This law can be verified by many

types of experiments.

Our findings about the stability of relative frequencies
suggest that we might be able to predict relative frequencies
in some cases where they can't be observed or where 1t would
be very impractical to observe them, For example, if you were
manufacturing firecrackers, you wouldn't want to test the quality
of your product by exploding each one. (Or maybe you would!)
The prediction of relative frequencies is an assighment of

numbers to events. The number is called the probability of the

event. If you like shorthand, you may use the symbol "P(E)" to
stand for the "probability of the event E."

All rights involve responsibilities, and the right to
assign probabilities to events obligates us to obey certain laws.
Suppose you feel, on the basis of experience, that one of your
coins will come up heads about % of the time. You decide to
assign % to P(H) (the probability of heads). What must you then
assign to P(T)? 1In other words, about how often would you expect
tails?

In short, since probabilities are predictions of relative
frequencies we must expect them to obey all of the properties
that we have developed for relative frequencies. Thus P(E),

O 1e probability of event E, must satisfy the following:

242




-236~

1. 0<p(s) S,

2. P(E) =1, if E is certain to occur.

3. P(E) = 0, if E cannot occur.

4, The sum of the probabilities of the outcomes

in an outcome set is 1.
5. P(E) is equal to the sum of the probabilities of

the simple outcomes in E.

5.6 A Game of Chance

Play the following game with another student in your class
and decide if it is fair or unfair. Toss a pair of dice (or
wooden cubes with numerals from "1" to "6" on the faces if any-
one objects to dice), and observe the sum of the outcomes.

Player A gets one point if the sum is 2,3,4,10,11 or 12.
Player B gets one point if the sum is 5,6,7,8 or 9. Notice
that there are 6 sums that will give player A a point and only
5 sums that will give player B a point. The first person to
get 10 points wins the game.

(a) Pick a partner and play the game 4 times.

(b) How often did player A win? player E?

(¢) Is the game fair? If not, who had the advantage?

(d) If one player has the advantage try to discover why.

5.7 Equally Probable Outcomes

You have seen that we can assign protabilities to the simple
outcomes of an experiment on the basis of experience with

o relative frequencies, But even without such experience, it is
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often reasonable to assign the same probability to each of the
simple outcomes in an experiment. For example; in tossing a
coin, we often assign equal probabilities to heads and teils.

Question: In this case¢, what is the probability of heads?

tails?

In tossing a die we often agsign the same probabilities to
1,2,3,4,5,and 6.

Question: In this case what is the probability of each

outcome?

Question: If “Mere are n equally probable ocutcomes in an

outcome set, what is the procbablility of each?
If we say that a coin or a die is fair, we mean that each element
in the outcome set has the same probability.

If we toss a fair die, what is the provability of the event
that the outcome is greater than 4? In this event {5,6} there
are 2 simple events, {5}, {6}. P({5}) = % and P({6)) = %.

Since the probability of an event is the sum of the probabilities

of its simple outcomes, P({5,6}) = % + % % .

When the selection of a member from a2 set is made so that

each possible choice is equally likely, we say that we are
selecting & member at random. Consider the experiment of select-
ing a letter of the alphabet at random, Each letter is equally
likely to be chosen. Let V be the event that a vowel is selected,
C the event that a consonant 1s selected, and A the event that
a letter in the alphabet is selected.

Questions: What is P(V)? What is P(C)?

What is P(A)?

What is P(V) + P(C)?
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5.8 Exercises

1. Toss & palr of dice of different color, for example one
white and the other blue. The outcomes occur in ordered
pairs (W,B). There are 6 outcomes for the white die and
for each of these there are 6 outcomes for the blue die,
Question: How many ordered pairs of outcomes are there for

the two dice? Use the order (white,blue). You
could record the outcome set in a square pattern
as follows:
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,4) (2,4) (3,4) (b,4) (5,4) (6,4)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(a) Copy the above diagram of the outcome space.
(b) Use a ruler to draw a red line through all of the
pairs for which the sum is 7. Do the same for sums
of 5,6,8 and 9.
{c) Now draw a green line through all the pairs for which
the sum is 10. Do the same for sums of 2,3,4,11 and 12.
(d) Let each outcome in the diagram represent a point. How
many points are on green lines?
(e) How many poirts are on red lines?
(f) How many points are in the total outcome set?
(g) If you select a point at random what is the probability
Q that i1t will be a green line? a red line?
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(h) What is the probability that when you toss a pair of
dice, the sum of the outcomes for each die will be
5,6,7,8 or 92 2,3,4,10,11 or 127

(1) Now look back at the dice game of Section 5.6. Was it
a fair game?

2. () Using your diagram from Exercise 1 draw é closed curve
around the set of points for the event "The white die
outcome is less than the blue die outcome" and call
this event "A!

(b) Repeat the directions in (a) for event "The white die

' and

outcome is greater than the blue die outcome,'
call this event "B."
(c) Let C be the event that "A occurs or B occurs."
(a) What is P(A)? P(B)? P(A) + P(B)? note that
P(A) + P(B) = P(C) and that A and B have no outcomes
(or points) in common.
3. Make another diagram of the outcome set bput this time, to

simplify mattars, use dots for the points as below:

6. .« .« . . .

Die Outcomes

5
n
Blue 1 P
2
1

1 2 3 4 5 6 White Die Outcomes
Point A in the diagram is associated with (2,3). To avoid

confusion between single outcomes and pairs of outcomes we

ERIC 246
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will call 2 the first coordinate of point A and 3 the second

coordinate of point A.

(a) Draw a line through the points with equal first and
second coordinates. Call the set of points on this
line "event R."

(b) Draw a line through the points with coordinate sum 8.
Call the set of points on this line "event T."

(¢) Do R and T have a point in common? If so, what are
the coordinates of this point? Call the set with only
this common point "event Q."

(d) what is P(R)? What is P(T)? What is P(Q)?

(e) Let X stand for the event "R occurs or T occurs,"”
What is P(K)? What is P(R) + P(T)? 1Is
P(K) = P(R) + P(T)? '

(f) Does P(K) = P(R) + P(T) - P(Q)?

(g) Compare the results of this exercise with Exercise 2
and try to discover why in Exercise 2,
P(A) + P(B) = P(C) and in Exercise 3, P(K) =
P(R) + P(T) - P(Q).

It is a well-known fact that the probability of a newborn

child being a girl is sbout 3 . What probability does

this leave for boys?

(a) What do you think the probability might be of a family
having Boy-Girl-Boy (BGB) in that order?

(b} The outcome set for the event of having three
children is

{BBB, BBG,BGB,BGG, GBB,GBG, GGB, GGG].

pLY
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(c) How many ordered triplets are in the above outcome set?

(1) Assuming all outcomes to be equally probable, what is
the probability of each?

(e) How many of the triples tabulated in {b) have G as
the second letter?

(f) What is the probability that the second child is a
girl?

(g) Suppose that we change our outcome set to include only
those cutcomes where we know that the first child was
a boy.

{BBB, BBG, BGB, BGG}

How many outcomes are in this set?

(n) What is the probability, using the outcome set of (g)
that the second child is a girl?

(1) In questions (f) and (h), the answers should be the
same, In other words, the fact that the first child

was a boy did not influence the likeljhood that the

second was a girl.

5.9 Another Kind of Mapping

In Chapter 3 you studied mappinss from one set of numbers
onto another set of numbers and mappings from one set of points
onto another set of points. Below is a diagram that portrays a

mapping from a set of outcomes onto a set of numbers:
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(XY B

N

{T}

wlw

Domain Ronge

Figure 5.2

Notice that the outcomes seem to be those resulting
from the toss of & coin. The images in the range could be the
probabilities of the corresponding members of the domain. Is
the colin a fair coin? Are the images between O and 1? If so,
is the sum of the images equal to 1°?

The mepping illustrated below shows the probabilities for

certain events in a three-child family:

Domain Range
{exactly three boys) %
{exactly two boys} %
{exactly one boy) %

1
{no boys) B

Swn ® 00 0 0 00 l
Question: Why is the probability of exactly two boys 3
times as great as the probability of exactly

three boys?
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Question: Make up an outcome set with 16 outcomes for the
children in a four-child family. One of the out-
comes, for example, will be BBGB. Tllustrate
the mapping of the outcomes, "exactly four boys,"
"exactly three boys," etc. onto their probabili-
ties,

5.10 Counting with Trees

If an experiment involves several activities each having
several alternatives, it 1s often & complicated task to count
all of the possible outcomes and identify them. Below are some
tree diagrams for coin tossing experiments. If you follow every
path in the tree for an experiment you will discover all possible

outcomes,

1. Tossing one coin

H
Start 2 paths
here
T
2. Tossing 2 coins
H
H
T
Start 4 paths
here




Start
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3. Tossing 3 coins

T 8 paths

here

Exercise:

Question:

5.11 Preview

Figure 5.3

Make a tree diagram for the possible outcomes

of tossing first a die, then & coin, and then a
thumbtack., You will have six branches to choose
from at the starting point. Then each of these
branches will have a certain number of branches,
ete.

How many paths are there?

The following ideas, which were illustrated in some of the

preceding exercises, will be developed in more detail in your

later study of mathematics:

l. If two events, A and B, have no outcomes in common

then the probability that at least one of them occurs

is the sum of the probabilities of the two events:

P{A or B) = P(A) + P(B)

2ol
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2. If two events C and D, have outcomes in common, then
the probability that at least one of them occurs is
the sum of the probabilities of the two events minus
the probability that both occur:

P(C OR D) = P (C) + P(D) - P(C and D)

5.12 Exercises

1. (a)

The tetrahedron has four faces. Imagine that on each
face is a numersl from 1 to 4 respectively. Will the
probability of the outcome 4 ve greater for tossing the
die or the tetrahedron? What are the probabilities in

these two cases?

(v)

Which of the above dice would give the greater probability

to the outcome 1%

| ERIC PaY
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(c)

Which tack pictured above would be more likely to come to
rest, pin-up? Why?
2. Use tree diagrams to make up an outcome set, using the
simplest outcomes, for each of the following experiments:
(a) Toss a die and a tetrahedron, as in Exercise 1l(a).
((L,1),. . .}

(b) Toss a coin, spin the dial, select & vowel at random.

Think of each trial having an ordered triple as out-
come, such as (H, 3,u).
3. 3 2 1 6 01 2 3
(a) Copy the above diagram and place a disk on the point
labeled "0."

(b) Spin the dial. If the result is R, move the disk to
the next point on the right. If the result is L,
move the disk to the next integer on the left.

ERIC 953




h,

247~

(c) Repeat moves until you reach 3 or -3. The outcome is
whichever of 3 or -3 you reach first.

(d) Play the game several times and find the relative
frequency of 3.

A bag contains 3 yellow marbles and 5 green marbles.

(a) 1If you select a marble without looking in the bag,
what is the probability of selecting & yellow marble?
a green marble?

(b) If you select a yellow marble on the first draw, and
do not replace it, what is the probability of drawing
a green marble on the second draw?

White rhincceroses are very rare; the probability that

one will be found among the rhinos of any African plain is

so5y - The Serengeti Plain in Africa has 10,000 rhinos.

Estimate the number of Serengeti white rhinos.

If a letter is selected at random from the alphabet, what

is the probability that the chosen letter is a vowel? a

consonant?

On a page containing 2000 letters, about how many will be

vowels ?

An experiment is performed with outcome set {a,b,c}. If

P(a) = £ and P(b) = 7, than what is P(c)?

Try to explain the meaning of the probabilities in the

following situations:

(a) An engineer says: The probability that the lamps we
manufacture will burn more than 1000 hours is .05.

(b) According to Laplace (1749-1827), a famous French

oRA
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mathematician, the probability that a baby will be

a girl is %%.

When you toss two dice the probability that you will
get the sum 7 is equal to .17,

A mathematician who has been consulted concerning
inventory problems in a supermarket says: The
probability that more than 1000 units of this kind
will be so0ld during a day is .1,

A meterologist says: When the weather conditions are
what they are today, the probability that it will

rain tomorrow is .15.

Use the probabilities given in Exercise 9 to answer the

corresponding questions below.

(a)

(6)

(c)

A city useuw 200 of the light bulbs described in

5 (a) to light one of its parking lots, If the lot
opened on June 1 and the lights burned 24 hours a
day, how many bulbs would probably burn out before
July 127

If Bables Hospital registered 750 births in a two
month period, how many would you expect to be girls?
A pair of dice are tossed 50 times. On approximately

what number of tosses will the sum be seven?
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(a) For which of the above dials is the probability
of the spinner stopping on a red the greatest?

(o) Estimatethe probability of the event "dial stops on
red" for each of the above dials.

Make a tree diagram for Exercise 2.(b).

In a family with 6 children, what is the probability that

all children are boys?

Toss a pair of dice of different colors (green and red).

(a) What is the probability that at least one die will
show 1 on the up-face?

(b) Draw a rectangular diagram of the 36 point outcome
set and draw a closed curve enclosing the points for
the event described in (a).

(¢) What is the probability of the event, "green die 1
and red die 1?"

What is the probability that two people selected at random

will both have birthday anniversaries on a Wednesday in

19682

A coin and die are thrown, both feir. The outcome set for

this experiment may be shown by the following:

T o o & o o
H., . . . . D
1l 2 3 4 5 6
(a) What outcome is represented by point A? point B?
(b) Place an oval around the points for the event:
"the die shows fewer than 3 dots."
(c) wWhat is the probability for the event in (b)?
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(d) What is the probability that the event in (b) does
not occur?

(e) 1If in this experiment an event has 8 outcomes,
what is its probability?

(f) If in an experiment there are exactly n possible
outcomes, all equally likely, what is the probabllity
of an event having r outcomes?

(g) What is the probability that a tail and an even
number of dots show?

17. A die and 2 coins are thrown.

(a) Using a dot array represent all the outcomes of
this experiment.

(b) What is the probability that 2 heads and an even
number shows?

(¢c) What is the probability that 1 head, 1 tail, and

an odd number shows?

5.13 Research Problems

In the dlagram below the circles are called states and
the routes for legally getting from one state to another are
called paths. The numerals in circles A, B, C, D, and E
indicate the number of paths from the start to the respective

states.




(1) Procedure

(a)

(b)
(c)

Place a small disk on the lower left state
labeled "start here."

Toss a coin,

If the coin lands heads-up, move to the next
state on the right. If the coin lands tails-up,
move to the next state above. (No moves to the

left or down are allowed.)

(2) Experiment

(2)

(v)

Toss & coin five times and make the proper moves
on each toss. What state did you reach?
Repeat the five-toss experiment 64 times and

each time record your destination.
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What was the relative frequency for each
destination?
What do you notice about the locatinpn of your

destinations?

(3) Experiment

(2)

(v)

(c)

Record your destinations for a two-toss experiment
with 32 repetitions.

What was the relative frequency of each desti-
nation?

What do you notice about the locatinon of these

destinations?

(4) Counting Paths

(2)

(v)

(c)

Using the rules of our game, there is only one
path to each of A, B, C and E but there are two
paths to D, State G would have 3 paths, A-C-G,
A-D-G, and B-D-G. Make a copy of the diagram of
states and record the number of legal paths to
each state inside the corresponding circles in
the diagram.

Except for the border states in the left column
and the bottom row, each state has exactly two
possible predecessors, the one below and the one
to the left. Find a method of computing the num-
ber of paths to a state by using the number of
raths to each predecessor,

There are 2 one-toss paths, A and B. There are

4 two~toss paths, A-C, A~D, B-D and B-E,
at:
RN
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How many three-toss paths are there? Four-toss?
There are 32 five toss paths and 10 of these go
to state Q. What is the probability of arriving
at @ in five tosses, 1f we assume each path to be
equally probable?

Compute the probabilities for each state in the
diagram.

The Birthday Anniversary Problem

How large a group of people would you need so that
the probability thatat least two people in the
group have the same birthday anniversary is % .
(Any person born on February 29 will not be con-
sidered in this problem. And twins don't count,)
A penny and a dime are tossed. You are informed
that at least one turns up tails. What is the
probability that both turn up tails? Plan and
carry out an experiment of 100 tosses. How does
the relative frequency of 2 tails compare with
your theoretical answer?

Consult Who's Who in America or a similar book
and pick ten samples of 20 people in alphabetical
order. Be sure to avoid overlap in your samples.
This is then random enough for our purpose. How
many of the ten samples contain a palir of people
with the same birthday anniversary? Record the

relative frequency of this occurrence,
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5.14 Statistical Data

"Seventy-five per cent of the automobile accidents in
fhis state happen within twenty miles of home."

Statements of this type, in which statistics are presumably
used, are often made and often misinterpreted. A fragment of
information, such as that mentioned above, leaves many important
questions unanswered,

What is the source of this information? Were the accidents
only those for which insurance claims were involved? Were they
the accidents recorded in police records? Was the information
acquired from some sample of accidents, or did it really include
every actual accident? Over what period of time did these
accidents occur? If the information was based on a sample, how
was the sample chosen? What conclusions should we draw? Is it
really more dangerous to drive near home, or is it possible that
seventy five percent of all driving is done within twenty miles
of home?

The above questions are related to the work done by
statisticians. The statistician makes a science of gathering
information, organizing i1t, analyzing it to see if there are any
patterns, presenting it in the manner that will be most inform-
ative, making predictions on the basis of i1t, and verifying these
predictions.

In this section we will illustrate some ways of presenting
information about events of various kinds, and ask you to gather
certaln data and present it in tables and graphs.

We will deal only with one aspect of statistics, namely

I8!
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descriptive statistics. And even in that area we will discuss
only the presentation of data by graphical and tabular methods.
How to analyze data by means such as averages, scattering, and
probability will be discussed in future courses.

There are many ways of presenting and displaying numerical
data., Tables, pictograms, and graphs of various kinds are the
usual ways. Some of these are tables, line graphs, bar graphs,
pictograms and circle graphs (pie-charts). |

In this chapter we will study dot frequency diagrams,

frequency histograms, and frequency polygons,

5.15 Presenting Data in Tables

During the summer playground programs, the children engaged
in many activities, including basketball foul-shooting. Near
the end of the program, the director organized a fcul-shooting
contest. A group of twenty boys and a group of twenty girls
were selected as the first to participate. Each one had ten

tries and the results were tabulated as below:
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Table 4 Number of Baskets out of Ten Tries in a Foul-Shooting

Contest
GIRLS
Contestant Score Contestant Score
1 4 11 7
2 10 12 1
3 6 13 5
4 8 14 3
5 2 15 2
6 8 16 7
7 9 17 8
8 1 13 8
9 8 19 8
10 4 20 9
BOYS
Contestant Score Contestant Score
1 1 11 T
2 3 12 8
3 3 13 1
4 5 14 3
5 9 15 1
6 7 16 7
7 9 17 10
8 7 18 6
9 6 19 6
10 9 20 10
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The scores in Table 4 occur in the same order as that

in which the players participated. As you look over the scores,

try to answer the following questionms.

(1)
(2)
(3)

(6)

Did the girls do better than the boys?

What is a good guess for the girls' average? boys' average?
What would you estimate as the middle score for the girls?
for the boys'?

What score occured most frequently for the girls? the boys?
How were the scores distributed? That is, were most of the
scores either very high or very low; or did most of them
cluster somewhere in between?

In Teble 5 below, the same scores are ranked by size. Now

try to answer the same questions for Table 5.

2
=
2
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Teble 5 Number of Baskets in Ten Tries in a Foul-Shooting
—_— Contest
GIRLS BOYS
1 1

O

O YW o W 0 0 o & N =N (o)W O] = &= W N P
l—l
O O OV O 0w =N =N =N N o000y W WwWw

10 10

Notice that Table 5 certainly gives more information about
the middle score and the scores that would occur at about the %

mark and %-mark. You also get the feeling than neither group

was unquestionably superior to the other.

“69
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The next table shows the frequency of scores grouped by
intervals. This type of table is particularly effective when
the data consists of large numbers of measures such as weights,

lengths, or time intervals.

Teble 6 Number of Baskets in Ten Tries in & Foul-Shooting Contest

(Scores Grouped into Five Intervais)

Frequency
Group Class Interval Girls Boys
I 1 -2 4 3
II 3 -4 3 3
IIT 5 -6 2 4
v 7 -8 8 5
v 9 - 10 3 5

Below are two dot frequency diagrams for the same infor-

mation represented in the Tables 4, 5, and 6.
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Graph 3
DOT FREQUENCY DIAGRAM
GIRLS BOYS
Frequency Frequency
I IT IIT IV V I IT ITI IV V
Group Group

5.16 Exercises

Discuss the following:

() The advantage of ranking date as in Table 5 or 6, or
Graph 3.

(b) The advantages of grouping data into class intervals.

Pind the number such that (use information in Table 5)

(a) 25% of the scores are less than or equal to the number;

(b) half of the scores are less than or equal to the
number;

(¢} 75% of the scores are less than or equal to the number:

<07
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3. Do the following for the set of test marks below:

(a) Rank the marks according to numerical order.

(v) Group the marks into intervals from 61 to 65; 66
to 70s etc.

(c) Make a frequency table showing the frequency for
each interval.

(d) Make a dot frequency diagram showing the frequency
for each interval,
Test Marks: 73, 67, 72, 88, 75, 89, 79, 81, 70,
93, 76, 79, 82, 98, 90, 72, TO, 83, 78, 85, 73,
84, 92, 8o, 69, 81, 78, 90, 93, 76, 78, 62, 83,
78 and £8.

5.17 The Frequency Histogram and the Cumulative Frequency

Histogram

The frequency histogram is very similar to the dot fre-
quency diagram. In place of the vertical columns of dots there
are rectangles with width equal to the length of the group
interval. The height of the rectangle is the frequency in the
interval. Study the histograms below and compare them with the
dot frequency diagrams of Graph 3 which present the same data.

268




-262-

Graph U4
FREQUENCY HISTOGRAMS
FREQUENCY OF SCORES IN FOUL-SHOOTING CONTEST

GIRLS BOYS
Frequency of Frequency of
Scores Scores
84 0-1
i i
6 6-]
—_—
4-J 4 -4
T b
2 2+
. -
A AIA Aatl Al aith o A5 Ala bio AIo O
12345678910 123456 782910
Contest Scores Contest Scores

The cumulative frequency histogram is similar to the
frequency histogram except that the second rectangle has
height equal to the sum of the heights of the first two in the
frequency histogram, the third is the sum of the first three,
etc, A table is included below which tabulates the cumulative

frequencies to help interpret the cumulative frequency histograms,
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TABLE 7 CUMULATIVE FREQUENCY TABLE FOR
FOUL-SHOOTING CONTEST SCORES

Class Interval Frequency Cumulatlve Frequency
Girls Boys Glrls Boys
i-2 4 3 4 3
3 -4 3 3 7 6
5 -6 2 4 9 10
7 -8 8 5 17 15
9 - 10 3 5 20 20
GRAPH 5 CUMULATIVE FREQUENCY HISTOGRAMS FOR

FOUL~-SHOOTING CONTEST SCORES

GIRLS BOYS
Cumulative Frequencies Cumulative Frequencies
204 204
.’ ’
18~ ’ - ’
4
— / - ’
14 7! 14 ’
! ’
- A - /
7 A
L # -
i pr (B S
6= ’ : :
=
'
2=4 / t [ ]
./ ' [
s ala einle o 2 oale pla alg o
2 4 6 8 10 2 4 é 8 10
Contest Scores Contest Scores
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In both of thg cumulative frequency histograms there is a
dotted segment connecting the upper right cormers of the

rectangles. This set of zegments is called a cumulative frequency

polygon. It is helpful in determining the number below which

25% of the scores fall. This number is called the first quartile.

It is likewise helpful in finding the comparable number for 50%

of the scores or in fact any particular percent of the scores.
Notice the horizontal dotted segments, going from 5, 10,

and 15 on the vertical scale over to the polygon and then docwn

to the horizontal scale. These determine the numbers which 25%,

50%, and 75% of the scores are less than or equal to. Other

names for these numbers are first quartile, median, and third

quartile respectively. They are very useful in classifying

scores for comparison purposes.

5.18 Exercises

1. Use the set of test marks in Section 5.16, Exercise 3 {d).
(a) Make a frequency histogram for the set of test marks,
grouped as in Section 5.16, Exercise 3 (b).
----- - (b) Meke a cumulative frequency histogram for the set of
grouped test marks.
2, Gather the following sets of data:
(&) The heights to the nearest inch of each member of
your class. -
(b) The ages to the nearest month of the members of your

class,

Q oy
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(¢) The number of cars passing a certain point in some

street during 20 five-minute intervals,
3. Present the data of Exercise 1 in the following ways:

() & cumulative frequency table with a seperate entry
for each measure;

(b) 2 cumulative freguency table with the data grouped
into intervals;

(¢) a cumulative frequency poiygon based on the table

of part a.

5.19 Summary

1. This chapter introduced several mathematical methods of
predicting the outcome of ectivities in situations involving
uncertainty. In the fish count prcblem it is impracticel to do
more than estimste on the basis of incomnlete knowlsdge. 1In
die tossing, the outcome of a given trizl can never be kKnown in
edvance.

2. To assist in making good estimates oxr predictions, we
performed a li- ted number of triasls and observed the relative
frequency of the various possible outcomes. We found that for
8 given experiment, the relative frequencies tended to
stabilize as {the number of trials increased.

3. On the bhasis of this stability of relative frequency, we

made predictions of the likelihood or probability of events,

The probability of an event, like the relative frequency, is a
number assigned to the event. The number is

(A) 0, 1 or a number between O and 1,

2ie
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(B) 0 for an impossible event;

(c) 1 for a certain event.

4, Furthermore, we found that probabilities and relative
frequencies had the following properties:

(A) The sum of the probabiiities (relstive frequencies)
of the outcomes in an outcome set is 1.

(B) If two events have no outcomes in common, the pro-
bablility that one of the two will occur on a given
trial is equal to the sum of the probabilities of
the individual events.

(C) If an experiment has n equally probable outcomes and
an event has s outcomes, the probabllity of the event
is s/n.

5. The presentation of results is an important part in
analysis of data collected from experiments. We saw how to
graph the results of experiments by

(A) dot frequency diagrams,

(B) frequency histograms,

(C) cumulative frequency histograms,

(D) freqQuency polysons,
(

E) cumulative frequency polygons.

K.,20 Review Exercises

1. Iist the members of an outcome set for each of the follow-
ing experiments:

(a) Select two means of transportation from {bus, train,

Qo plane}.
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(b) A dodecahedron (twelve-faced polyhedron) with faces
numbered from 1 to 12 is rolled and the numeral on
the up-face is observad.

(¢) A pair of vowels is selected from the alphabet,

(d) Two darts are thrown at a target with four scoring

possibilities:

s

_

(e) Three tags are selected from a box containing five
blue tags and two red tags.

(f) Each of three pecple vote for Jones or Smith (but
not both).

2. Two dials with sectors numbered from 1 to 5 are spun:

(a) Tabulate the outcome set.

(p) How many ordered pairs are in the outcome set?

(c) Assuming that each ordered pair in the outcome set
is equally likely, what is P ({(2,5)})?

(d) What is the probability that both dials will yield

an even number?
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(e) What is the probability that at least one of the
dials will yield an even numter?

(f) Make a rectangular arrangement of dots to represent
the outcome set, as in fection 5.8 Exercise 3,

() Draw a line through the dots of the rectangular
arrangement for which the sums for the outcome are
each six. Repeat for the sums five and seven. What
1s the probability of each of the above sums?

(h) Circle the dots for which at leest one dial yields
an even number,

3. Select two pages of a magazine article and separate the
text into sets of ten lines.

(a) Find the relative frequency of the.letter e, for each
set of ten lines.

(b) Find the relative freguency of the letter x, for
each of ten lines.

(¢) Compare the relative frequencies of e and x.

(d) Among the samples tested, were the relative frequercies
for e fairly uniform? Answer the sesme question for x,.

(e) What predictions could you make on the basis of the
above investigation?

. A coin and die are tossed simultaneously.

(a) Tabulate an outcome set which pairs each of the out-
comes for the die with each for the coin,

(b) Assume that each simple outcome is equally likely.

(c) What is the probability that the die will show six?

(d) Wwhat is the probability that the die will not show six?

1
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(e) What is the sum of the probabilities in (c¢) and (d)?
(f) For any event, E, what is the following sum,
P (E) + P (not E)?

(g) What is the probability that the die will show six,
given that the coia lands heads?

(h) Does the probability »f the ocutcome six for the die
depend on the event that the coin landed heads?

(1) What is the probability that the coin lands heads and
the die shows six?

(j) Is the probability of the event described in {1i)
equal to the product of the probabilities for the
coin landing heads and the die showing 6%

5. Describe two events, A and B, from the experiment in

Exercise 4 that have no outcomes in common.
(a) What is P (A)? P (B)?
(b) what is P (A) + P ( B)?
{c) What is the probability of the event, A occurs or
B occurs?
(d) What generalization is suggested by the answers to
(a), (v) and (c)?

6. Make a table showing the number of children in the family
of each student in your class. Then make & table showing
the relative frequency of one-child families, two-child
families, etc. The illustrative table below shows that
for a class of twenty students there were 5 one-child
families so that the relative frequency for one-child

femilles (in this semple) was z2 or j .

PALS
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NUMBER OF CHILDREN per FAMILY IN

A SAMPLE OF TWENTY FAMILIES

Numnber cf Children Frequency Relative Frecuency
1
1 5 =
Lr
2 4 1
5
=te, etc, ete,

Make a similar chart for the distances from home to school

for each student in your class, using the number of blocks

as a measure. Group the data into class intervals. For

example, all students living from O to 4 blocks from school

might be grouped together, then 5 to 9, etc. Make a

histogram and frequency polygon for this data.

In an agricultural experiment a

field is divided into four square
regions as pictured above. Two

of these are selected at random

and given a special treatment.

What is the probability that the

selected squares are

(a)
(v)
(c)
(a)

in the
in the
in the

one in

same row?
same column?
same row or the same column?

each row and one in each column?

P
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A AONC A A A

A —> ;.\\\\¢ —> >

In tracing a path in the above network from A to B, a

selection of direction is made at each corner by tossing
a2 coin. In how many ways can you go from A to each of
the diffecent corners?

10. In how many ways can three cars, A, B and C be parked in
a row? If the cars are parked at random, what is the

prcbebility that A and B are next to each other?
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CHAPTER 6

MULTIPLICATION OF INTEGERS

6.1 Operational Systems {W,:) and {Z,.)

In Chapter 4 we learned how to add and subtract integers,
It is natural to ask how integers should be multiplied.
The operational system (Z,+) is, for two reasons, the
natural extension of (W,+). First, since the set of integers
includes the set of whole numbers as a subset, addition of non-
negative integers is the same as addition of whole numbers.
Second, many of the important properties of (w,+) are also
properties of (Z,+). It seems reasonable to expect multipli-
cation in Z to be a similar extension of multiplication in W --
multiplication of non-negative integers will be the same as mul-
tiplication of whole numbers and (Z,.) should have properties
similar to the following properties of (W,<).
1. PFor all whole numbers a and b, a + b =b - a,
(Commutative Property of Multiplication)
For example: 3 « 7 =7 . 3,

2. For all whole numbers a, b, and ¢,
a+*(b+c)=(a.Dp) . c.
(Associative Prc,erty of Multiplication)

3. For every whole number a, 1 - a=a « 1 = a.
(1 is a Multiplicative Identity in W)

4., For every whole number a, a - 0 = 0 - a = O.

Qo (Multiplication Property of Zero)

RIC
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For example: 3 . 0 =0+ 3 = 0,
5. 1If a, b, and ¢ are whole numbers with ¢ # 0, and
C+«a=2¢6 s+ b, then a = b,
(Cancellation Property of Multiplication)
For example: If 7 + a =7 + 13, then a = 13,

There is one property of the operational system (W,+,-)
which relates the operations of addition and multiplication,
This property is illustrated in the following example,

Suppose we compute the product 7 x 13 in the usual way:

13

5t
In this computation, we have actually computed two simpler pro-
ducts:

7Tx3=21 and 7 x 10 = 70
and then computed their sum
21 + 70 =91

The reason this works is easy to understand if we plcture the

product 7 x 13 as a rectangular array that has been split into

two arrays:

-
o

3

® 0 0 0 o 0 0 0 0 0 e o o

e 00 0 0 0 0 0 o0 o o o o

e o 0 0 0 0 0 0 o o o o o

7 o o 0 0o ¢ 0 6 0 0 0 e o o

e 6 0 o 0 0 0 0 0 o s 0 0

® 0o 0 0 0 0 o 0 0 0 e o 0

e 0 0 0 0 0 0 0 0 0 o o o
7x10 7x3

Q 2%8()”
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On the left we have a 7 x 10 array and on the right a 7 x 3
array. The number of elements in the array does not change by
the splitting, so we have
7 - (104 3) =(7 - 10) + (7 - 3).
Similarly, we know that
7 . (4% + 6)
13 - (98 + 2)

(7 - %) + (7 - 6),
(13 - 98) ¢+ (13 - 2).

These examples are instances of the sixth impertant property of
(Wotse).
6. For any whole numbers a,b, and ¢,
a.(b+c)=(a.Db)+(a-.c).
(Distributive Property of Multiplication over Addition)
We should also like the distributive property to apply in
(Z,4,-).

6.2 Exercises

1. For each of the following state the property for multipli-
cation of whcle numbers that Jjustifies the equality.
(a) 87 x1 =1 x 87
(b) 87 x1 =87
(e) (98 -97) x 46 = 46
(1) 5x(2x83) =(5x2) x83
(e) (25 x38) x4 =(38x25) x4
(£) (38 x25) x4 =38 x (25 x 4)
2. Without computing justify:
(a) (43 x28) x 76 = (76 x 43) x 28

8
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(b) 87 x (43 x 76) = (87 x 76) x 43
(c¢) 8 x (69 x 25) =69 x (25 x 8)
3. State the commutative property for addition of whole
numbers,
4, State the assoclative property for addition of whole
numbers,
5. What is the identity element for addition of whole numbers?
6. What is the identity element (if there is one) for each of

the following systems?

(a) (Za,+) (e) (2Z,+)

(0) (Zs,-) (£) (W,+)

(c) (Zs,+) (g) (w,.)

(a) (Zs,-) (n) (z,-)

7. Compute each of the following:

(a) 8 x(9x7) (a) (8x7)x9

(b) 9 x(8 x7) (e) (47 x 73) + (47 x 27)
(¢) 7x(9 x8) (£) (47 x 73) - (47 x 27)

*8, Using the properties of this section, prove each of the
following, given that r, s, £ are whole numbers.
(a) (r «s) «t=(r.t) s
(b) (r+s)+t=(t.s)- r
(¢) (s« tj=(r-t)- s
) r (s -+t)=s.(t.r)
For example, exercise (a) may be done as follows:
‘(r+s) «-t=r.(s+t) Multiplication of whole num-
bers is associative.
=r . (t . s) Multiplication of whole num-

282
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=(r . t) s Multiplication of whcle num-
bers is associlative.

9. From your experience with multiplication of whole numbers
what seems to be true if the factors are ordered and
grouped differently? (The generalization referred to here
is sometimes called "the rearrangement property for multi-
plication of whole numbers.")

10, Compute:

(a) 7 x (20 +7)

(b) (7 x20) + (7 x7)
(c¢) (23 x87) + (23 x 13)
(d) (76 x 38) + (2% x 38)
(e) (47 x 39) - (47 x 29)
(£) (37 x 43) - (27 x 43)
(g) (65 x8) + (63 x 12)

i

(h) (6% x 33) + (6% x 63)
11. TIs it true that 5 + (2 x 4) = (5 + 2) x (5 + 4)°

12. Is addition distributive over multiplication in (W,+,«)?

6.3 Multiplication for Z

In order to define multiplication as an operetion in Z, we
must show how to assign to each ordered pair (a,b) of integers
a third integer ¢ called "the product of a and b." We will use
the definition of multiplication for whole numbers and the six
properties we want preserved as guides to the rule of assignment

for "+" in Z. We also want our definition to make sense in

283
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situations where the integers have applications to real 1life
problems. Under these circumstances, there are four cases which
must be considered in making our definition:

1. Both a and b are positive.

n

. Both a and b are negative.

1s positive and b is negative.

|

3.
4L, a or b (or both) is zero.
Question: Why is 1t unnecessary to consider the case
"a negative, b positive"?
We already know how to multiply positive integers and how
to multiply by zero. For example,
3x 4 =12
11 x 14 = 154
8x0=0
0x3=0
These examples suggest that we should make the following
definitions: The product of two positive integers is the unique
positive . teger whose absolute value is the product of the
absolute values of the factors. If a is either a positive in-

teger or zero, a » 0 =0 . a =0,

6.4 Multiplication of a Positivg Integer and a Negative Integer

Every integer is either positive, zero, or negative, 1In
other words, for every integer n, exactly one of these ‘ondi-
tions must hold:

0 >n, 0 = n, or n < O.
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Let us now write a few computations that may suggest what

the product of a positive integer and a negative integer should

be.
3x3=9
3x2 =6
3x1 =3
3x0=0
3x(-1) =7
3x(-2) =7
3 x(-3) ="

In this column of equalities, the second factor decreases by 1
as we move down. The corresponding products decrease by 3.

This list suggests that the products for the last three
lines should be -3, -6 and -9, if the products are to continue
to decrease by 3. It appears that the product of a positive
integer and a negative integer should be negative. Furthermore,
the absolute value of the product should again be the same as
the product of the absolute value of the factors. Since we want
multiplication in Z to be commutative, the product of a negative
integer and a positive integer should be computed in the same
way.

Later we shall give other reasons for adopting this defini-
tion, Let us now see some illustrative examples.

Example 1, Compute (-8) x 7.

1(-8) x 7] ={-8] x |7]
8 x 7
= 56
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Since -8 is negative and 7 is positive,

{(-8) x 7 is a negative integer. Hence

(-8) x 7 =-56.
Example 2. Compute 9 x (-6).
|9 x (-6}] = |9] x !-6]
=9 x6
= 54
Theréfore, 9 x (-6) = -54,
Example 3. Compute (4 x (-3)) x 2.
x(-3) x2 =(-12) x 2
= -2k

6.5 The Product of Two Negative

Integers

The only products remaining

volving two negative integers

or a

Once again, let us try to obtain a

pattern.
(-3) x 3 =
(-3) x 2 =
(-3) x 1=
(-3) x 0=
(-3) x (-1) =
(-3) x (-2) =
(-3) x(-3) =

In this column of equalities,

reduced by 1 in mocving down.

to be considered are those in-

negative integer and =zero.

clue by recognizing a

the second factor is again being

The corresponding products are

13ﬂveasing by 3. This list then suggests that the last four

286
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products should be 0, 3, 6 and 9, if the products are to con-
tinue to increase by 3.

These examples suggest the following definitions: The
product of a pair of negative integers is tne unique positive
integer which has absolute value equal to the product of the
absolute values of the factors. For every negative integer a,
a+«0=0+.a=0, Later we shall give other reasons for adop-
ting these definitions.

The definition of multiplication for Z which has been sug-
gested by the patterns in this and the preceding sections can be
summarized as follows:

For any integers r and s,

1. Jr - s} = r} - |s].

2. If r and s are both negative or both positive, r « s

is positive.

3. If one of r, s 1s positive and the other negative,

r « s is negative.

L, r-0=0-:r=0,

With the above definition as rules for the assignment, multi-
plication is an operation on Z. That is, f2r each ordered pair
(a,b) of integers there is a unique integer ¢ = a . b called
"the product of a and b." Furthermore, it can be shown that the
six properties of (W,+,+) stated in Section 6.1 are also pro-
perties of (Z,+,-), when "+ is defined in this way.

The general rules for multiplication of integers may be

clarified by the following illustrative examples,

<87
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Example 1. Compute (-3) x (-4).
[(3) x (-4)] = [-3] x |-4]
=3x4

= 12,
Since -3 and -4 are both negative, the product
is positive. Hence, (-3) x (-4) = 12,
Example 2. Compute ((-7) x (-2}) x (-3).
((-7) x (-2)) x (-2) =14 x (-3)
= -4z,
Example 3. Compute (-9) x (6 x {-4)).
(-9) x (6 x {-%)) = (-9) x (-24)

= 216,
6.6 Exercises
1. Compute:
(a) (-20) x 27 (a) (-8) x (-14)
(b) 33 x (-37) (e) (-14) - (-8)
(e) 27 x (-20) (£) (-37) x 33

2. Compute:

(a) -5 x (2 x (-47))

(v) ((-43) x (-4)) x (-25)

(e) (10 x(-6)) x5

(a) 10 x ((-6) x 5)

(e) ((-5) x2) x (-47)

() (-43) x ((-4) x (-25))
3. Compute:

() ((-17) x (-7)) + ((-17) x (-3))
<88




-282-

) (-17) x (-7 + (-3))
) ((-38) + 28) x (-37)
(a) ((-83) x67) + ((-17) x 67)
) (-100) x 67
) ((-38) x (-37)) + (28 x (-37))
(g) ((-27) + 73) x (27 + 73)
b, Without computing, determine whether the following products

are positive, negative, or =zero.
(a) (-6)(-3)(10)(-8)
() (5)(11)(7561)(-2)(-15)

(c) (-7)(-T)(=T)(-3)(-4)(-5)
(a) (-2)°°
(e) (-2)"

6.7 Multiplication of Integers through Distributivity

In Section 6.1 we thought it reasonable to require that
(Z,+,+) retain the distinctive properties of (W,+:-). In order
to extend the close relationship between (W,+) and the non-
negative integers, we assumed that the product of two positive
integers is a positive integer. Then by observing patterns of
multiplication, we were led to definitions of a * b in the cases
where one or both factors are negative or zero. We found that
these definitions did preserve the desired properties.

Are there cther possible ways to define multiplication in
7 and still retain those properties? Could such alternative
definitions lead to results differing from those we have already

obtained? For example, could r « O = r for every integer r?
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Could the product of two negative integers turn out to be a
negative integer? (For instance, could (-7) +« (-13) = -91?)

In this section we shall show that if "." 1is assumed to be
a commutative, associative, and distributive (over }) operation,
the customary rules for computing products are actually forced
on us.

Let us begin by stating a basic assumption which we have
been using over and over. To illustrate this assumption, which
we shall soon name, consider the easy computation

(2 +3) +4=54+4
=9,

The symbols "2 + 3" and "5" both name the same number so we

feel free to replace "2 + 3" by "5." 1In the last step we re-
placed "5 & 4" by "9" because they both name the same number.

In mathematics we frequently replace one name fdr an object
by another name for the same object, assuming that this kind of
replacement is permitted. This assumption can be stated as fol-
lows: The mathematical meaning of an expression is not changed
if in this expression one name of an object is replaced by an-
other name for the same object. This assumption will be called

the Replacement Assumption or simply Replacement. We shall be

making frequent use of this assumption without mentioning it.

Why must r « O = O for every integer? If r is positive or
zero, we definer « 0 = 0 « r = 0 so that multiplication of non-
negative integers is the same as multiplication of whole numbers.

But what about (-5) .« 0, (-32) « 0, (-2162) . O, etc.?
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Certainly
(-5) - 0=(-5) - o. (1)
Since 0 + O = 0, statement (1) implies that
-5(0 + 0) = (-5) + O, (2)

replacing "0" by "0 + 0." Because of the distributive property
of m:ltiplication over addition, -5(0 + 0) = (-5 + 0) + (-5 + 0).
Thus we can replace the left side of (2) to get
(-5« 0) + (-5 -0) =(-5) 0. (3)

By the additive property of 0, (-5) « 0 = (-5) « 0 + 0 and (3)
is equivalent to

(-5 -0) +(-5.0)=(-5-0)+0. (4)
Since addition of integers has the cancellation property, (4)
implies that

(-5) - 0 =o0.

The above argument shows that if (Z,+,*) is to satisfy the
properties of (W,+,+), in particular the distributive and can-
celiation properties, then (-5) . O must be defined to be 0. An
obviously true statement, (1), leads to a chain of true state-
ments, each of which follows from its predecessor because of a
property we demand of (Z,+,+).

The argument that is given seems to apply only to the pro-
duet (-5) - 0. Since we require multiplication of integers to
b2 commutative, O ¢ (-5) must also be 0. But what about
(-32) . 0, (-2162) - 0, and, in general, r . 0? If you study
the argument given for (-5) - 0, you will see that the argument

can be repeated in the same form for the other products.

Y
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Tl. For every integer r, r « 0 = O,

r+«0=1r-+0 Multiplication is an oper-
ation in Z.
re«-(0+#0)=1r-.0 0+ 0 =0, since 0 is ad-

ditive identity.
(r-0)+0 (r-0)+0=r-+0, since
O is additive identity.
(r + 0) + 0 Distributivity.

r + (0 4+ 0)

(r - 0) +# (r - 0)
r+«0=0 Cancellation for Addition.
This generalization or theorem says that the product of two
integers is zero whenever one of the integers (or both) is zero.
You recall that in Section 6.5 we defined r « 0 =0 « r =0, Tl
shows that if we make the desired assumptions about ":" there is
really no choice in the definition of r « 0., It must be zero!
These desired assumptions place further restrictions on the rules
for computing products. The product of a positive integer and a
negative integer must be a negative integer, For example,
5+ (-10) = =50, 32 . (-15) = -480, and 2162 . (-4) = -B8648,
Because of T1,
5.+.0=0 (1)
Since 10 + (-10) = 0, statement (1) implies that
5+ (10 + (-10)) = O, (2)
replacing "0" by "(20 + (-10))." Because of the distributive
property of multiplication over addition, 5 . (10 ¢ (-10)) =
(5 « 10) + (5 » (-10)). Thus we can replace the left side of

(2) to get
(5 - 10) + (5 (-10)) =o. (3)
We know that 5 . 10 = 50, Substituting in (3) yields
50 + (5 « (-10)) = o. (4)
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Statement (4) implies that 5 . (-10) must be the additive in-
verse of 50, or
5+ (-10) = -50.

Again you can see that this argument -- though valid only
for 5 *+ (-10) -- can be mimicked for any other prcduct of a posi-
tive and negative integer. 1In fact, a variation of this argument
can be used to show that the product of two negative integers
must be a positive integer. Consider, .. example, the product
(-5) - (-10).

(-5) « 0= T1

-5 « (10 + (-10))

((-5) - (10)) + ((-5) - (-10))
-50 + ((-5) - (-10))

0 =10 + (-10)

Distributivity

0
0
0
0 Proven above.

Therefore,

50 50 is the additive
inverse of -50.

(-5) « (-10)

Tl and the other arguments of this section show that if
(Z,+,+) is to retain the desirable properties of (W,+,*), the
definition of multiplication stated in Section 6.5 is the only

definition possible.

6.8 Exercises

1. Compute:

(a) (-10) - 7 (e) (-13) - 12
(p) 10 - (-7) (£) 13 - 12

(¢} (-8) + (-6) (g) 19 - (-22)
() 8 -6 (n) (-19) - 22
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2. Compute:
(a) 10(18 - 27)

(b) (10 . 18) - (10 - 27)
(e) (14 - 10) + (14 . 5)

(a) 14 . (32 - 17)

(e) (14 . 32) - (14 . 7)

(£) 10 - (18 + (-27))

(g) (10 - 18) + (10 - (-27))
(h) 14 . (32 + (-17))

(1) (14 . 32) + (14 - (-17))
3. Compute each of the following ifr = -4, s = -7 and t = 9,

(a) r+s (3)

(b) r + (-s) (k) r°

(e) r-s (1) (r®)s

(a) r(s + t) (m) r-¢t

(e) r(s - t) (n) -(r - t)
(f) (rs) - (rt) (o) -r+ ¢t

(g) (rs)t (p) -2r + (-3t)
(h) (rt)s (qa) r® + s?

(1) (st)r (r) r®- s?

4, Find the solution set from the set of integers for each of

the following conditions.

(a) x® =4 (£) (x+2)® =9
(b) x| =2 (g) (y-3)2 =0
(¢) y* =-4 (n) (x+2)(x-3)=0
(a) x®* <4 (1) (x+2)* <5
o e Ixl<az (J) (y-22<5
294 (k) (x) + (3x) =




*6,

*7.

*8,
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Picture the solution set for each of the exercises in 4 by
using a number line and enlarging dots. Thus, if your

solution set is {-1,2} its picture or graph is:

- o — - ——— >
0 12 3

-2 .

Using the methods of Section 6.7 prove the following:

(a) 3-0=0

(b) 3. (-2) =-6

(e) (-3) - (-2) =6

Prove that if the product of two integers 1s zero, then
one of the factors is zero. (Hint: What are the possible
signs of a product?)

If r, s and t are integers with r < s, which of the follow-

ing statements are true and which are false?

(a) 2r < 2s (d) rt > st when t < O
(b) -2r < -2s (e) r®> 0O whenr #C
(¢) rt < stwhenoO<t (f) r+t<s+t

Write equations for each of the following sentences, and

then find all integer solutions.

(a) The double of an integer is -12.

(b) The double of an integer is three less than the in-
teger,

(c) The square of an integer 1s less than 20 and greater
than 4,

(d) The sum of an integer and its successor is -7.

(e) The product of an integer and its successor 1is b,
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*10. Using the distributive property of multiplication over

addition, prove: (x is an integer)

(a) (2x) + (3x) = 5x (@) (2x) - (5x) = -3x
(b) (2x) + x = 3x (e) (5x) - x =4x
() (5x) - (2x) = 3x (£) x - (5x) = -4x
11, Solve for x from among the integers.
(a) (2x) + (3x) =20 (f) 2x = (3x) + 20
(b) (2x) + (3x) = -20 (g) 20 = (2x) - (3x)
(¢) 3x =20+ (2x) (h) Jex+ x| <7
(d) 3x =20 - (2x) (1) Jex + 3] + |x-1] <10
(e) 3x =(2x) - 20

6.9 Dilations and Multiplication of Integers

In Chapter 4 we found that the positive and negative in-
tegers could be interpreted as translations of the number line
to the right or left. Addition of integers was found to cor-
respond closely to composition of translations., Multiplicaticn
of integers has a different interpretation on the number line.

Let us begin with a line in which one fixed point is la-
beled "C." Consider the following mapping of the line onto it-
self: The mapping assigns point C to itself but to any other
point P on the line it assigns the point P' such that P is the
midpoint of segment CP'. This mapping is illustrated by the

arrow diagram

h‘ N P .
f c '
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For this mapping, the distance CP' is twice the distance CP.
Thus the mapping corresponds to

n=———2n
which takes whole numbers into their doubles. If we denote this

mapping, which doubles distances from C, by "2'" (read: 2 prime),

we have
2': P ——> P
2': ¢ —C
2': Q— 0

(In the notation of Chapter 3, this would be written P—J%L—»P',
ete.)

In a similar manner we define 3' to be the mapping that
takes any point P into a point that is three times as far from
C, and on the same side of C as P. 1In general, if d ls any
positive integer, "d' " will denote the following mapping:

ag: C—C,
and if P is a point on the line distinet from C, then
| d4: p—»p,
where CP = d - CP, and P is between C and P'.

This mapping is called a dilation with center C.

Let us now define another mapping that also leaves C fizxed.
This mapping takes any point R to a point on the other side of

C, the same distance from C.

Since this mapping reflects R in C, it 1s called the reflection

in C and is denoted "-1'" (read: negative one prime). Such &
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mapping is also called a symmetry in point C because points R

and R' are located symmetrically on either side of C. However,
in this chapter we shall continue to call such a mapping a re-

flection in a point.

-1': R—R
-1': R = R
-1't C —>C

Let us now see what happens when we compose -1' with 2'.
Both mappings leave C fixed, so let point P be different from
point C. Locate points Q, R, and § so that RS = SC = CP = PQ,

and the points are in the indicated order.

R s ¢ n——a
- \__/
-
Then 2'; P———Q and -1': Q-——R. The composition of -1'

with 2' takes P into R via Q. Similarly, the composition of 2
with -1' takes P into R via S.
We shall see that composition of such mappings is analogous
to multiplication of integers. Anticipating this analogy, let
us agree to express this composition by use of the multiplication
sign "x." We may now write
(2 x (-1')): p—=R.
((-1+) x 2 ): P—» R.
We shall use "-2'" as an abbreviation for "2' x -1'." Sim-
ilarly, -3' =3 x -1' and -% =& x -1'., We shall also say

that -2' contains a reflection. =3', -4, -5, ... also are

said to contain a reflection.

Let us look at a few more examples. (We take the point
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labeled "O" on the number line as the center.)

Example 1.

Example 2,

Example 3.

Example 4.

3: P—=>Torl—3
-3t P—>Korl—-3
3¥: S———>» K or -1—-3
-3*: S—— T or -1=—3
((-2*) x2): §S——>Lor -1—> 4
because 2': S — R and -2't R—> L.
Note that -4#': §——1L or -1— 4 so that
the mappings -2' x 2' and -4 have the same
effect on S,
Let us now use only the integer names for the
points.
(20 x3): 1 —6, -4—"H» 24
6 1 1——6, 4b—m 24
((-2') x 3): L—=——s =6, -4b——24
6 1 1=—— -6, -4—24

((-2*) x (-3')): 1——6, -4—-24

What do these examples suggest?

It will be convenient to define the magnitude of such a

dilation mapping. The magnitude of the mapping &', where "d"

names any integer, is the same as the absolute value of d, that

is |d|. We shall use the same vertical bar notation to denote

magnitude. Thus, |d&' | = |d|. 1In particular
130 ] =3} =3
|-3] =|-3] =3
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Let r and s be any integers, r' and s' their corresponding
mappings. Then the composite mapping r' x s' has the following
property:

vt xs'| =[] . |s|

because s' enlarges by a factor of |s'| and r' enlarges the en-

largement by a factor of |r'|. The net result is to enlarge by

a factor of |r'| . |s'|.
If neither r' nor s' contains a reflection, the composition

mapping r' x s' contains no reflection. If both r'and s' con-

tain reflections, then r' x s' contains no reflection. If

either r' or §' (but not both) contains a reflection, then

r' x s' contains a reflection. Let us say that r' and s' have

the same direction if either both contain reflections or

neither contains a reflection. Then r' and s' are the same

mapping if they have the same direction and magnitude.

Let us call every mapping d' , where d is an integer, a

dilation. The point"C" that d' maps into itself is called the
center of the dilation. The set of dilations with center C, to-

gether with the operation "x" expressing compositions determine

a mathematical system which we shall denote "(D',x)."

To compute the composition of two mappings will mean to
express the composite mapping as a mapping without an indicated
composition. Thus, the computed mapping for (-3') x (-2') is &
and we shall write (-3') x (-2') = 6' because (-3') x (-2') and
6' have the same direction and magnitude.

The resemblance between (Z,:) and (D' ,x) should be quite

apparent by now. In the first place, there is a one-to-one cor-
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respondence between tite integers Z and the dilations D' . More-
over, composition of dilations strongly suggests how we should

multiply integers.

6.10 Exercises
Use the integer names for points of our number line and
let our dilations be with center O,

1. Into what points does 7' map each of the following?

(a) 6 (b) -6 (¢) 1 (a) o

2, Into what point does -7' map each of the following?
(a) 6 (b) -6 (e) 1 (a) o

3. Into what point does 2' x -3' map each of the following?
(a) 1 (b) -1 (e¢) 0 (a) 10 (e) =10

4, Compute:

(a) (-7) x (-6') (g) (-35) x (-35')

(b) 7 x (-6) (h) 45 x 45

(¢) 6 x(-7) (1) (2* x (-3")) x &
(@) (&) xT (3) 2 x ((-3) x &)
(e) (-15) x (-15') (k) ((-17') x25) x &
(£) 25 x 25 (1) (-17) x (25 x &)

*5. Let r', s', t' be any dilations., Prove that composition
of dilations
(a) 1is commutative: r' xs' =s' x r
(b) is associative: (r' xs') xt =1r x (s x t')
(¢c) has 1' as an identity.

6. What can you say about the dilation O'? Is it a mapping?

Is (D' ,x) an operational system?
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Can a dilation have more than one fixed point? Explain

your answer?

In this chapter we developed and studied multiplication of

integers from various points of view. The definition of

the multiplication operation was motivated by the desire

to extend the close connection between (W,+) and (Z,+),

to maintain patterns previously known to hold for multi-

plication in W, and to preserve certaln nice properties

of (w,+,o). Multiplication received further interpre-~

tation as a composition of dilation mappings.

For any integers r and s, the product r + s is

(1) 0 if r or s is zero;

(2) positive if both r and s are positive or both r and
S are negative;

{3) negative if one is positive and the other negative,

Furthermore, the absolute value of r » s is |r| + |s].
If multiplication of integers is assumed to be commutative,
associative, and distributive, then the definition of the
product r « s in the preceding paragraph is the only

possible one.

C
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6.12 Review Exercises

1, Compute:

(a) 9+ (-7) (g) 1(-23) - 9|
(p) 9 - (-7) (n) [-23] - |9]
(e) (-9) - (-7) (1) (-47) - (17 - 25)
(@) (-9) - (-7) (3) (39 x (-27)) - (39 x (-17))
(e) 9 (-7) (k) (29 x (-7)) x (29 x (-13))
(r) (-12)3 (1) (472) - (482)
2. Find the solution set from the set of integers.
(a) = =9 (£) =x(x+2) =0
() y*-1=0 _ (g) n(n+ 1) =55
(¢) (-2)s =8 (h) (x+ 1) =4
(@) r* <5 (1) |r®*| < 100
(e) x*= -1 (J) s2= -s
3. Picture on a number line the solution set for each exercise
in 2.

4, Answer TRUE (T) or FALSE (F).

(a) Multiplication of integers is both commutat’ve and
and assoclative.

(b) Multiplication of integers distributes over both
addition and subtraction.

(c) Multiplication of an integer by -2 always gives a
smaller integer.

(d) Subtraction of integers is associative.

(e) If a product of integers 1s 0, one of its factors

must be 0,
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(f)

(g)

(1)

Make

(a)
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If a product of integers is negative, then at least
one of the factors must be negative.

If r, s, t are integers and (rs)t < O then r or s or
t must be positive.

If one of the factors of a product of integers is O
then the product is O.

In (Z,.) if a product is O then one of the factors
must be O,

two strips with scales as shown:

(:,!!.‘,,L
| 11

Try to find a way of using your strips to compute

products. Draw a picture showing the position of

your strips for the products

(1) 2 x2
(2) 2 x4
(3) 2x8
(4) 4 x2
(5) 4 x4

Notice that the scales do not show all the whole

numbers. Should the exact midpoint between the mark-
ings for 2 and 4 be 3? If not, should it be more or
less? Why do you think so? The strips you have con-

structed make a crude slide rule for multiplication.

The figure shown i1s a nomogram for multiplication. The

figure shows how to compute 2 x 4, Dpraw lines to show the

computation for
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1 1
(a) 2 x2 (e) 4 x4 (1) g5
(b) 2 x4 (£) 4=x8 (3) 8=xg
(¢) 2x8 (g) 8=x8 (k) #x7
(@) 2 x5 (n) %x8 (1) §x§
obsc
o ¢ b
8 64 3
32
~-\TJ 18 4
2\@
: ‘2\-
7. (a) If a hot rod moves at a fixed speed of 4 feet per

second to the right, what interpretation would you give
to a speed of -4 feet per second?

(b) If the hot rod starts at O on the number line (meas-
ured in units of 1 foot) and has a speed of 4 feet
per second (fps), where will the hot rod be in 3
seconds? If we think of the place on the number line

the hot rod is at the moment, how might we interpret

the instant -3 seconds?

% Hot Rod

I
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Let us agree to interpret 4 x 3 as a product that
locates the hot rod on the number line if it starts
at 0, where 4 i5 the speed in fps, and 3 is the num-
ber of seconds from the time it was at 0. Interpret
the following products and see whether your interpre-

tations are consistent with our rules for multiplying

integers:
(1) 4 x -2
(2) -4 x2
(3) -4 x-2

[of!
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CHAPTER 7

LATTICE POINTS IN THE PLANE

7.1 Lattice Points and Ordered Pairs

The word "lattice" in the title of this chapter suggests an
open network like a trellis, and indeed that is its origin. You
probably heard about the geodesic dome, designed by R. Buck-
minster Fuller, that is large enough to house a baseball park.

If this dome were flattened, part of it would look like Figure

‘i f‘f&l

; FAVAVAVAVAVAYA

Figure 7.1

7.1,

The set of intersection points above illustrates a lattice.
We use lattices in this chapter to help us understand mappings

better.

As you can see, Figure 7,1 seems to be built up with tri-
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angles. However if we remove one set of parallel lines, we see
parallelograms instead of triangles. But we have the same lat-

tice. This 1s shown in Figure 7.2 below:

Note the following features of a lattice.

1. The points of a lattice are determined by two families
or sets of parallel lines, each line in one family in-
tersecting every line in the other. This implies that
all lines are in one plane,

2. The lines in each family are evenly spaced. But the
spacing for one family need not be the same as the
spacing for the other.

3. Each lattice point is on two iLlnes, one from each of
the two families of lines.

These features suggest a method of using integers to de-

scribe precisely the location of lattice points. We start by
choosing two lines, one from each family, calling one the x-axis

and the other the y-axis. Then we assign integers to the lattice

O
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points on these axes, in the same manner as we would to a
number line, reserving zero for the point of ir’ersection of

the axes. Figure 7.3 shows the start of this.

Figure 7.3

With this foundation we can assign an ordered pair of in-
tegers to any lattice point. We illustrate how this is done for
the point named P in Figure 7.3. Point P lies on two lines.

One cuts the x-axis at the point whose assigned integer is 3.
The other cuts the y-axis at t ' point whose assigned integer
is 2. Teken in that order, the pair of integers assigned to F
is 3,2, which we write (3,2). The parentheses, as you know,
indicate an ordered pair; the first integer is called the
%-coordinate of P; the second is called the y-coordinate of P;

and together they are called the coordinates of P.

Note that the arrow heads in Figure 7.3 indicate that the
lattice extends over the entire plane. TFor this reason we

have need for all the integers.
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A system that assigns ordered pairs of numbers to points

in a plene is called & plane coordinate system. The system we

have described assigns ordered pairs of integers to a set of

lattice points in a plane. We can call our system a plane

lattice coordinate §y5tem.

The set of ordered pairs of integers in the plane lattice
cocrdinate system is often referred to as Z X Z, read "Z cross
Z." The Z is the same symbol as we used for the set of integers.
The X in Z X Z suggests ordered pairs.

In the diagrams below we show a variety of lattice coordinate

systems. Study them and see how they differ.
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Figure 7.5
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We have seen that, given a lattice coordinate system and a
point in the lattice, we can assign an ordered pair of integers
to the point. Can we reverse the assignment? That is, given a
lattice coordinate system and an ordered pair of integers, can
we assign a point of the lattice to the ordered pair? Let us
see. Suppose the pair of integers is (-2, -1). We start by
finding the point on the x-axis whose assigned integer 1s -2.
There is exactly one line parallel to the x-axis through this
point. Then we find the point on the y-axis whose assigned in-
teger 1s -1. There is exactly one line parallel to the x-axis
through this point. These lines, belonging to different families
of parallel lines, intersect at exactly one point, and this is
the point whose coordinates are (-2, -1).

Using the lattice coordinate system in Figure 7.3, locate
the point whose coordinates are (-2, -1). Locate the point in
the lattice coordinate system in Figure 7.4 whose coordinates

are (-2, -1). Repeat for Figures 7.5 and 7.6.

7.2 Exercises

1. Find the coordinates of the points named A, B, C, D, E in
(a) Figure 7.3 {c¢) Figure 7.5
(b) Figure 7.4 (d) Figure 7.6

2. In a lattice coordinate system, 1s there a lattice point
with coordinates
(a) (300, 282)2  (b) (-5062, -4)2 (c) (23, 0)2

For the exercises that follow you will need some lattice
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paper (perhaps your teacher will have a supply dittoed), some
colored pencils, and a ruler. The latt¢cice paper should have at
least eleven rows of dots and eleven columns of dots. Draw a
line through a row of dots to serve as the x-axis and a line
through a column of dots to serve as the y-axis. See Figure 7.3.
Ordinary graph paper can also be used.

3. Locate on a lattice coordinate system the points that have

the following coordinates:

(a) (3,4) (e) (1,0) (n) (0,-2)
(b) (-3,4) (£) (0,1) (1) (-5,6)
(e) (3,-4) (g) (-2,0) (3) (6,-5).

(d) (-3,-4)

k4, Select the seven consecutive points on the x-axis whose
middle point has coordinates (2,0). What are the coor-
dinates of the other six points?

5. Select five consecutive points on the y-axis whose middle
point has coordinates (0,-2). What are the coord?nates
of the other four points?

6. Draw a line or lines with colored pencil through the
points whose coordinates satisfy the following conditions.
Use a different color for each condition in a group and a
different sheet of lattice paper for each group.

Group 1:
(a) The first coordinate is equal to the second coordinate.
(b) The first coordinate is the additive inverse of the

second.
04

010



Group 2:
(c) The
(d) The
(e) The
(f) The
Group 3:
(g) The
(h) The
Group 4:
(1) The
(J) The
(k) The
(1) The
Group 5:
(m) The
For each
color to
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sum of the coordinates of the point is 5,
sum of the coordinates is 3.
sum of the coordinates is -3.

sum of the coordinates is -5,

first coordinate minus the second is 2.

first coordinate minus the second is -1.

first coordinate equals 2.
first coordinate equals -2.
second coordinate equals 4,

second 2oordinate equals -4.

absolute values of the coordinates are equal.
condition listed in this exercise use a different

draw a closed curve enclosing Just those points,

represented on your graph or lattice paper, that satisfy

the condition. For example:
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Note: Enclose only the points on your lattice paper, even
if there are points not on your lattice paper which satisfy
the condition.

(a) The first coordinate is less than the second.

(b) The first coordinate is greater than the second.

(c) The sum of the coordinates is greater tﬁan 5.

(d) The sum of the coordinates is less than -5.

(e) The first coordinate is less than -2.

(f) The first coordinate is greater than 3.

(g) The second coordinate is less than -4,

(h) The second coordinate is greater than 3.

7.3 Conditions on Z X Z and their Graphs

The set of ordered palrs that satisfies one of the condi-
tions in Exercise 6 or 7 in Section 7.2 is called the solution
set of that condition., For example, the solution set of the

condition "The sum of the coordinates is five," would include

(0,5), (1,4), (2,3), (3,2), (4,1, (5,0), (6,-1),

(7,9), ..., (-1,6), (-2,7), (-3,8), ...

The set of lattice points associated with these ordered
pairs i1s called the graph of the solution set, or sometimes the
graph of the condition. The graph of the above solution set 1s

represented in Figure 7.7 by the circled points in the lattice.
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Figure 7.7

Notice that in Figure 7.7 the graph of the condition "The
first coordinate is 3 more than the second coordinate" is dis-
played by enclosing the points in squares, (Very often it is
effective to display the graphs of different conditions by using
different colors to enclose the points.)

Questions: Which point is enclosed by both a circle

and a square? Is 4 + 1 equal to 5? Is 4
three more than 1? Does (4,1) satisfy
buth conditions?

Part of our study of mathematics is learning to express
mathematical ideas in the symbolism of mathematies. You have
previously used "x" to express the first coordinate and "y" to
express the second.

Therefore, instead of writing "The sum of the coordinates
is 5," we can write "x + y = 5." Instead of writing "The first

' we can write

coordinate is 3 more than the second coordinate,’
"x =y 4+ 3." If we are interested in the pair of numbers that

satisfies both of those conditions, we can write, "x +y=5

316
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and x = ¥ + 3." This new condition is made up of two conditions
connected by "and." 1Its solution set is {(4#,1)) and the graph
is a set containing only one point. This point is called the
intersection of the two graphs (the graph of the condition

"X + y = 5" and the graph of the condition "x =y + 3"), and
((4,1)) 1is called tha intersection of the two solution sets.

The sentences that we write to represent conditions are "open

sentences.” (See 1.7).

7.4 Exercises

1. Translate the following conditions to the forms used above,

" ,H L] etc.

making use of the symbols "X

non_n
L =2

y

{(a) The first coordinate is equal to the second coordinate.
(Ans. x = y)

(b) The first coordinate is the additive inverse df the
second coordinate. (Ans. x = -y)

(¢) The sum of the coordinates is three.

(d) The sum of the coordinates is -3.

5.

(f) The difference of the first and second coordinates

(e) The sum of the coordinates is

(in that order) is 2.

(g) The difference of the first and second coordinates is

(h) The first coordinate equals 2.
(1) The first coordinate equals -2.

(i) The second coordinate equals 4.

317
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(k) The absolute values of the coordinates are equal.
Draw the graphs for the open sentences you wrote in

Exercise 1.

Translate the following conditions into words {in terms of

coordinates):

(a) x+6=y (e) 7=1|x- 3|
(b) y-x=3 (£) x=17

(e) y=Ixl (g) y=1

() y=x-2

Using ">" for "greater than" and "<" for "less than,"

translate the sentences of Section 7.2, Exercise 7 into

mathematical symbols.

Translate the following into mathematical symbols:

{(a) The second coordinate is the product of 2 and the
first coordinate.

(b) The first coordinate is the product of 2 and the
second coordinate.

(c) The second coordinate is the product of 3 and the
first coordinate.

(d) The first coordinate is the product of 3 and the
second coordinate.

Describe the following conditions in words:

(a) y=5x (e) y=x2 (e) y<oO (6) x+-y=6

(b) x=5y (d) y=o0 {(£) x>0 (h) 2x = 3y

For each of the conditions in Exercise 6, list four members

of Z X Z that satisfy the condition. For example, (1,5),
(2,10), (-1,-5) and (0,0) are four members of Z X Z that

218
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satisfy 6(a).
Use the same sheet of lattice paper to graph each of the
following conditions. Use a different color for each con-

dition to circle the points that satisfy the condition.

]

(a) y=x () x =27 (e) y=0

(b) y =2x (a) «x

n

0

What is the intersection (common point) of the graphs in

Exercise 8? Which graph was included in the x-axis? the

y-axis? Which of the graphs were contained in a line other

than an axis?

Translate the following into mathematical symbols:

(a) The second coordinate is 1 more than twice the first
coordinate,

(b) The first coordinate is 5 less than 3 times the second
coordinate,

Describe the following conditions in words.

(a) y=x+1 (e¢) y=x+2

x -1 (d) y=x-2

For each condition in Exercise 11, draw a line through the
points that satisfy the condition. Use the same sheet of
lattice paper for all lines.

In what way were the four lines in Exercise 12 alike? List
the coordinates of the points in which the lines inter-
sected the y-axlis, Note the similarity between these coor-

dinates and the conditions as expressed in Exercise 1l.
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7.5 1Intersection and Unions of Solution Sets

All lattice points satisfying the condition x > O are lo-
cated on the same side of the y-axis. We will designate the set
of lattice points on this side of the y-axis by "A." The set of
lattice points satisfying the condition y > 0 is located on the
same side of the x-axis. Call this set "B."

When two conditions are Joined by a connective such as

"and" they form a new condition called a compound condition.

The set of points which satisfy the compound condition "x > 0
and y > 0" is the set which satisfies both the conditions

"x > 0" and "y > 0." This set is called the intersection of

sets A and B since it consists of all those elements that are in
both A and B. Figure 7.8 illustrates the relationship of sets

A,B and the intersection of A and B (written A 0 B).

Figure 7.8

Points in A are in circles. (x > 0)

Points in B are in squares. (y > 0)

Points in A N B are in circles and squares.
(x> 0and y > 0)

Let C be the set of points satisfying the condition "x < 0."
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Let D be the set of points satisfying the condition "y < 0."

Illustrate C,D and C N D in a diagram such as Figure 7.8.

Repeat the preceding instructions for A and D, then for B

and C.

List the coordinates for two points in (1) AN B (2) ¢ N D

(3) AnD (4 BANC.

All the lattice points satisfying the condition "x = 0" are
on the y-axis. Call this set "E." The solution set of the com-
pound condition "x > 0 or x = 0" contains those "points" which
satisfy either "x > 0" or "x = 0" or both. This set is the
union of A and E, written A U E. Figure 7.9 illustrates this

set relationship:

Figure 7.9

Points in A are enclosed by circles. (x > 0)

Points in E are enclosed by squares. (x = 0)

Points in A U E are enclosed. (x > O or x = 0)

A simpler notation for "x > O or x = 0" is "x > O" and is

read "x is greater than or equal to zero."

-
/

%5
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7.6 Exercises

1. In this exercise try to locate the points in the graph of
the compound conditions without first graphing each simple
condition separately. Do all parts of this exercise on
one sheet of lattice paper.

(a) x>0 and x =y,

(b) x< O and x = -y.

(¢) (x>0and x=y) or (x< O and x = -y).

In Exercises 2, 3, 4 and 5, follow the instructions of
Exercise 1.

2. (a) x>-land y=x+ 1.

-(x + 1).

(e) (x>-landy=x+1) or(x<-1andy-=-(x4¢1).

(b) x<-1andy

3. (a) x>0andy>0and x+y=>5.
(b)) x<Oandy>0andy-~x=>5.
(¢) (x>02and y>0andx+ty=25)or
(x<Oand y >0 and and y - x = 5).

4, (a) x<Oand y <0 and x + y = -5.
(b) x>0and y<Oandx-y=5,

(¢) (x<Oandy<Oandxty=-5)or
(x >0and y< 0 and x - y =5).
5. (a) y>xandy<x+ 3.
(b) y<xandy>x - 3.
(¢) (y>xandy<x+3) or(y<xandy>x-3).

¢
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7.7 Absolute Value Conditions

In Chapters 4 and 6 you thought of the absolute value of an in-
teger a as max (a,-a). From this definition you can see that:
(a) The absolute value of zero is zero.
(b) The absolute value of a positive integer is that
positive integer.
(c) The absolute value of a negative integer is the ad-
ditive inverse of that negative integer.
This covers all possibilities since x =0, x > 0O or x< O,
if x is an integer.

A more compact way of writing this definition is:

_ X, if x>0
x| = 2% "8 %< o

5, |x] =5 since 5 > O.

0, |x| = 0 since 0 = 0.

Example 1: If x

If x

If x = -3, {x| = 3 since -3 < 0 and -(-3) = 3.

Example 2: Suppose |x| = 3.
From the definition |x| = x or lx| = -x, there-
fore, substituting 3 for |x| in the line above,
3 =xo0or 3 = -x which implies x = 3 or x = -3,
You see that we started with |x| = 3, and found
as a result the compound condition "x = 3 or
x = -3." The solution set of this condition is
the union of the solution sets of the two sim-
ple conditions.
On a line this solution set 1s simply a pair of

Q points. In the set of lattice points in the
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plane, however, a more interesting situation
develops. In Figure 7.10 the points for which

X =3 or x = -3 are circled.

A A

e o 0o o o ® o o o o @ o o o o o

- [CHFNEEHNEAEERHEEEEE [EEE--

.....@.. ..@.....

—O- ©

.....@.. ..@.....

- [EEENECEEENEEEEEEREEE >~

.....@.. ..@.....

} {

Figure 7.10

Furthermore, suppose |y|] =2, then y = 2 or

Yy =-2. In Figure 7.10 the polnts for which
the second coordinates are 2 or -2 are enclosed
in squares. 1In what way is the graph of

|x] = 3 and |y| = 2 indicated?

Exercises

What integers do the following name?

(a) |-71  (v) 151 (e) Jo]  (a4) |-1| (e) |999].
Graph the following on the same lattice.

(a) |x| =4 (e) Ix| =4 and |y| = 1.

(b) |yl =1 () |x| =%or |yl =1.

(e) Describe how the graphs in (c¢) and (d) are determined

by the graphs in (a) and (b).
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Draw the graph of ¥y = |x|. Remember that if x > O then
y=x; and if x < 0 then ¥y = -Xx. x > 0 simply states that
the points are to the right of the y-axis or on the y-axis.
x < 0 states that the points are to the left of the y-axis.
Draw the graph of ¥y = |x + 1].

Hint:
x+ 1, 1if x> -1

Ix + 1] =
-{(x + 1), if x < -1

Also see Exercise 3 Section 7.6.

Graph the following:

(a) y =2|x|. (To the right of the y-axis this
becomes = 2X; to the left,
y = "2)(.{

(b) vy =3]x|

(¢) y =-2|x]
Graph the following:

]

x| ¢+ 1 (Why can you think of this as the
graph of y = |x| translated one
space away from the x-axis?)

(a) y

(b) y=]x|] -2

Graph |x| + |y| = 5.

Lattice Point Games

The Game of Caricatures
It is interesting to see what happens to a graph or picture
when you change the angle at which the x-axls and y-axis

intersect. For example see what happens to "square-head"

when you change the angle of the axes:

s Yyl
~)
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3

Figure 7.11

What do you think would happen to a circle if you draw it
on one grid and then transfer it to another by connecting
points with the same coordinates?

Transfer the "man in the moon," pictured in Figure 7.12, tc

another grid with the axes at a ~onsiderably different

angle, e.g.:X—. Use the coordinates of points on the pic-

ture to make the transfer.

y axis

L] L L
X axis

o Figure 7.12
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Remember that when you find the second coordinate you have
to count the points along a "slanted" line. Coordinates
for the "man in the moon" are different from that in
Pigure T7.12.

Head: (-2,4) (2,2) (4,-2) (3,-4) (1,-4) (-2,-2) (-4,2)

Eyes: (-2,2) (0,2)

Nose: (0,0)

Mouth: (-1,-1) (1,-2) (2,-1)

Left Ear: (-4,2) (-5,2) (-4,1)

Right Ear: (2,2) (3,2) (3,1)

To play the game of caricatures:

(a) One student draws a picture on a grid of his own
choosing and without showing the picture supplies
only the coordinates of key points in the picture.

(b) The other students on self-mace grids, using any de-
sired angle for the axes, plot the coordinates on
their own grids and sketh in the picture.

Operational Checkers

This game is played by two players on a finite set of lat-

tice points. For example:

(0,2) (1.2) (2.2)
(0,1) (1,1) (2,1)
(0,0) (1,0) (2,0)

You will need to use aritimetic of (Zs,+) so we will 1list

[}

the necessary facts: 0 + O 0 0O+ 1 =1; 0+ 2 = 2

1l +1 =2 1+2=0 2+2

327
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erty will provide the other basic facts.

(a) One player has red checkers and the other has black
checkers. A coin 1is tossed to determine who starts.

(b) The first player places a checker on any point that
he wishes,

(c) The second player may then place a checker on any un-
covered point and another point with coordinates ob-
tained by adding the corresponding coordinates of the
last two points covered. The addition to be used is
that for (Za,+).

(d) On each subsequent play, if the player's opponent had
just placed a checker on (c,d), then the player may
not only cover any uncovered point (a,b) but also
(a 4+ cy, b+ d). If this polnt is already covered by
his opponen.'s checkers, the player replaces it with
one of his own. For example, if one player has Jjust
covered (2,1), the other player may cover (2,2) and
also (2 + 2, 1 + 2) which is (1,0).

(e) The game ends when all points are covered. The winner
is the player with the most points covered. As you
play the game you will see that it involves several

interesting strategiles,

7.10 Sets of Lattice Points and Mappings of Z into Z

You are familiar with many types of mappings from Chapter

3. An important use of lattice points is the representation of

328
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mappings of Z into Z.

The diagram below displays some of the assignments made

by x—— 2x where x is a member of Z.

Domain DO -3 -2 -l O l 2 3
Range ... -6 -4 -2 0 2 4 6
The palrs associated by the mapping can also be displayed

as a subset of Z X Z.
[ LECRC | ("3:'6)5 ('2:"4): ("1:"2)5 (O:O): (1:2)5 (2:4):

(2,6), ...}

This subset can be graphed:

(3.6)

~ N W A

-3 -2 - o 3 2
-

-2
-3

(-274)

-5
=6

Figure 7.13

] In this particular mapping we see that points of interest
are those (x,y) where y = 2x. The arrow from 3 on the x-axls to
the point (3,6) and the arrow from the point (3,6) to the point
6 on the y-axis illustrate a geometric method of using the graph
to find the integer on the y-axis assigned to é particular in-

QO  teger selected from the x-axls.
a5
329




~323-

Select some other integers from the domain of the
mapping illustrated in figure 7.12 and for each trace the
path from the point on the x-axis to the point in the graph,
and then over to the corresponding member of the range on
the y-axis.

Which axis contains the graph of the domain of a
mapping?

Which axis contains the graph of the range of a
mapping?

The condition y = l% gives rise to the mapping x—a—l%,
if we restrict the domain of the mapping to the set T of
integers that divide 12, Thus

T = {-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12}

To graph the mapping, we proceed as follows: Take an
element of 7', say -6. Compute l%, in this case %% = -2,
Under the mapping x—»nlg, ¥ 1s assigned l%. Hence -6 is
essigned -2, and the ordered pair (-6, -2) is in the graph
of the mapping. (We may think of this as follows: y = l%.
Taeke x = -6, Then y = %% = -2, and the pair (x,y) = (-6,-2)
is determined.) If we take the element 4 from the domain of
the mapping, then y = l% = 3, and (4,3) is a point in the
graph.

In this manner we can find other pairs and record them

in a table,
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Domain Range

-6 -2

N W D

12

Copy and complete the table above. Draw axes on a sheet

of graph paper and circle the points obtained from the table.

7.11 Exercises

1.

Make a table like that above for each of the following

open sentences:

(a) y = x3 (d) y=2x-1
(b) y=2x+1 (e) If x is even, y = 93
(¢) y=x+1 and if x is odd, y = 1.

Use the tables that you constructed in Exercise 1 to cir-
cle the points in the graph of each condition. Use graph

paper and make a separate pair of axes for each graph.
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#7,.12 Lattice Points in Space

If Z represents the set of integers, and Z X Z represents
the set of all ordered pairs of 1ntegers, what do you think
Z X Z X Z represents?

You have seen that Z may be assoclated with a set of
points on a line and that Z X Z may be associated with a set of
points in a plane. The set of all ordered triples of integers
may be associated with a set of points in (3-dimensional) space.

Suppose that you wish to meet a friend in an office build-
ing on the corner of some avenue and street. You not only need
to know the number of the street and the number of the avenue,
but also the number of the floor in the office building.

The longitude and latitude of an airplane at any instant
is not sufficient to determine its position. You also nee.l to
know its altitude.

In each of these examples, it 1s necessary to have a triple
of numbers to locate an object in space. In a corresponding way,
we assoclate each point in a three-dimensional set of lattice
points with an ordered triple of integers. In this case we have
three axes instead of two and each point has three coordinates.

Figure 7.14 illustrates the assignment of coordinates to
certaln points in space. Study the diagram and see if you can

discover how each triple (x,y,z) was assigned.
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(0.84)D

)’f (2.0.0) /

Figure 7.14

The geometric figure with vertices A,B,G,F is a parallel-
ogram because line AB is parallel to line FG, and line FA is
parallel to line GB. The geometric figure with vertices OABCDEFG
has six faces each of which is a parallelogram. It is called a

parallelepiped.

7.13 Exercises

1. (a) Name the six faces of the parallelepiped using the
letters that name the vertices.
(b) How many of the parallelograms have O as a vertex?
(c) Try to draw the parallelepiped that has 0 as a vertex
for three of its faces and has the point (2,3,4) as
the other end of the diagonal from O. List the coor-
dinates of all 8 vertices.
2. (a) Using three pieces of cardboard, try to construct a

model of three planes so that any pair of planes has

cdd
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a line in common, but all three have only one point

in common.

7.14 Translations and Z X Z

In Chapter 4 you learned about translations as a special
kind of mapping. You also learned that the set of translations
in a 1line, as represented by directed numbers, with the operation
"following" has the properties of a commutative group.

In this chapter we will be chiefly interested in transla-
tions of a set of lattice points into itself in terms of coordi-
nates.

We will designate the image of point P in a mapping by "P'"
(read: P-prime). If the coordinates of P are (x,¥y), then the
coordinates of P' are (x',y').

Translations "move" every point in the lattice the same

distance in the same direction.

Figure 7.15

The diagram in Figure T7.15 shows the effect of a certain

translation on four points:
("4:"1) =('3:1)
("1:'3) =(O:'1)
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(5,-1) »(6,1)
(3,1) ~(4,3)
Questions: 1In each case, by how much did the first

coordinate increase?
By how much did the second coordinate
increase?
What 1s the image of the following points
in the same translation?
(a) (2,3) (p) (6,-2) (ec) (-1,2) (d) (0,0)
The above translation may be defined by:
(x,y)——(x + 1, y+ 2) or by Ty ,»
T,saindicates that the translation adds 1 to the first coordi-
nate of each point and 2 to the second coordinate.
Any translation of Z X Z may be designated
(x,y)——>(x + a2, y + b) or Ta,b
where a and b are integers.
What would be the effect of the translation TO,O? Since
To,0 ©F (x,y)———(x + O, y + O) maps every point onto itself,
it is called the identity translation.
You are familiar with the composition of mappings, 1In
connection with translations of a set of lattice points the com-
position of Ta,b with Tc,d can be expressed as:

T oT

a,b ¢,d = Tota,dsb

The symbol "o" in the definition above can be read "with"
or "following" since the translation on the right of the "o"
translates first. The effect of the zbove composition of trans-

lations on a point (x,y) is:
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(%,y)——>(x + c+ a, y + d + b)

If you placed a disk on the lattice point in the coordi-
nate system in Figure 7.16 the composition T;,s o T-4,-; would
tell you to first move the disk 4 points to the left and one
down, and follow this by 2 to the right and 3 up. Since
Ta 33 0T-4,-1 = T-5,5 this should be the same as moving 2 Lo the

left and 2 up. PFigure 7.16 illustrates this by showing the
effect on (0,0).

Figure 7.16

7.15 Exercises

1, Find the compositions of the following palrs of transla-
tions:
(a) T-gsa © Tg,-3a (B) Ta,-20 T-s,q
(c) Ta,b ° T-~a,-b

If the composition of two translations i1s the identity
translation, each is called the inverse of the other.
2. Use the commutative property for addition of integers fto

show that Ta,b o) Tc,d = Tc,d o) Ta,b'
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What property does Exercise 2 demonstrate for compositilion
of translations?

Use a property of integers to show the following:

Ta,b © (Tc,d ° Te,f) = (Ta,b ° Tc,d) o Tg,pe

What property of composition of translations is demon-
strated in Exercise 47

Draw the parallelogram with the following vertices on
graph paper:

(-3,-1), (0,3), (7,3), (4,-1)

Verify with a ruler that the midpoint of each pair of op-
posite vertices in Exercise 6 is (2,1).

Find the images of the points in Exercise 6 under the
translation T.5,-,: that is map each (x,y) onto

(x -2, y -1).

Verify that the image points you found in Exercise 8 form
the vertices of another parallelogram.

Verify with & ruler that the midpoint of each palr of op-
posite vertices 1in Exercise 9 is the image of the point
(2,1) under the translation T.az,-

‘t

Dilation and Z X Z

Figure 7.17 shows graphlically what happens to a set of

points under dilation.

A dilation of Z X Z is a mapping designated by

(XJY)——>(axan) or Da:

for any non-zero integer a.
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In the dilafion in Flgure 7.17 a = 2, Tre mapping is
(x,y)——>(2x,2y), or Ds. An equivalent way to say this is
that distances between pairs of points in the image are twice as
great as the distances between the ccrresponding pairs of points
in the first picture. If the dilation had been D-;, the image
would h=ve been the same size but would have been upside down
below the x-axls and to the left of the y-axis, with his nose
still agailnst the y-axis but 6 units below the origin.

Exercise: Dilate the origiral picture by a factor of -2,

Then the mapping is (x,y)——(-2x, -2y).
You will see him inerease in size and stand on
his head!

In any dilation both coordinates of each point are muiti-

plied by the same number. We will refer to this number as "a

in the following auc¢stions:

(a) Wwhat happens to points in a dilation if a = 1°?

(b) What happens to points in a dilation if a = -1?

(c) If we should allow a to be zero, onto which point
would each point map?

(d) What happens to each point in a set of points if
a=3? Ifa-=-3?

{e) 1It a picture is to the left of the y-axis and above
the x-axis in Figure T7.17, where will the image be
under Dy ? Under D.g?

(f) Where will any point on the x-axls be mapped by a

dilation (x,y)——{(ax,ay)? Where will a point on

the y-axis be mapped?
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Figure T.17

T.17 Exercises

1. Use the dilation Dy to graph the following points and
their images:
(-3,-1}, (0,3). (7,3), (4,-1)
2. Answer the following questions about the figure in Exer-
cise 1 and its image:
(a) wnat xind of geometric figure do the four given
points outline?
(b) Do the image points outline a figure the same size
as the original? The same shape?
3 The composition of dilations may be represented as
Db o] Da = Dab where Da dilates first.
(a) Which dilation maps every point onto itself?
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(c) which two dilations are the only ones that have in-

verses in Z X Z?

#7.18 Some Additional Mappings and Z X Z

By now you should have some skill in finding images if
you are given the coordinates of a point and a rule for finding
the image. For each of the mappings below, find the images of
the following points which outline a parallelogram and the mid-
point of its opposite vertices. Then answer questions (a) - (g).

Points: (-3,-1), (0,3), (7,3), (4,-1)

Midpoint of opposite vertices: (2,1)

(a) First use graph paper to graph the figure and its

image.

(b) Does the image outline another parallelogram?

(c) 1Is the image of the midpoint the midpoint of the

images of the opposite vertices?

(d) Do the image points outline a figure the same size

as the original? the same shape?

(e) 1If the vertices of the parallelogram are named ABCD

clockwise in that order, are their respective images
A, B, C, D also in clockwise order?
(f) For each mapping compose the mapping with itself.
(g) Compose the following mappings: (1) following (2),
(3) following (5), (4) following (6), (5) following
(6), (6) following (5).
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Mappings:

(1) (x,y)——(x,-y)

(2) (x,y) —{-x,y)

(3) (x,y)——{y,x)

(4) (x,y)—(y,-x)

(5) (x,y)———(x + 3, -y)
(6) (x,y)—>=(x + 2y, y)
Summary

The assignment of ordered pairs of integers to lattice

points in a plane involves

(a)

(b)

assignment of integers to equally spaced points on
each of two Intersecting lines called axes;
assignment of pairs of integers; one from each axis,

to lattice points in the plane of axes.

The set of all ordered pairs of integers is named Z X Z,

and the two integers assigned to a point are called coor-

dinates of the point,

Conditions on coordinates of a point, such as "the sum of

the coordinates is 3," are expressed by open sentences,

such as "x + y = 3." The set of ordered pairs, each of

which satisfies the condition, is called the solution set

of the condition (or the open sentence). The set of lat-

tice points that have these pairs for coordinates is the

graph of the condition.

Compound conditions may be expressed by connecting two

open sentences with "and." The connective "or" can also

A
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be used. A pair of integers satisfies an "and" condition
if it satisfies both connected conditions. It satisfies
an "or" condition, if it satisfies either.
The absolute value of an integer is defined by

Ix} =x, if x > 0,

|x} = -x, if x < 0.
The 1dea of a coordinate system in a plane may be extended
to space by assigning number triples to points,
Translations of Z X Z are expressed by
(x,y)—(x + 2, y + b).
Dilations of Z X Z are expressed by

(x,y)——(ax,ay).

Review Exercises

List five ordered pairs of integers that satisfy the con-

dition:
() x+2y=5 (b) x =27 (e) y=|x| -2
(@) Ix| + Iyl =3 (e) xy =24

Translate the following conditions into open sentences:

(a) Two times the first coordinate minus three times the
second coordinate is equal to seven.

(b} The first coordinate is three less than two times the
absolute value of the second coordinate.

(c) The first coordinate is greater than zero and the
second coordinate is less than two.

Translate the following open sentences into words:

(a) y=x*-2 (b)) jx+yl =5 (e} y>20rx<3.
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Tabulate the solution set of the following:

(a) xt+y=5andx-y=3. (b) y=x*andx=-1.
Graph the following:

(2) y=2x-1 (b) y=-3x {e) x>0 and y = o.
Which "region" or "regions" contain the points whose coor-

dinates satisfy the following:

() x=2andy>o0. (b) (x,y) is not on either
axis.
(e) y < -5 and x < -6. (d) x = -10 and y = 23.

Draw a pair of axes on a sheet of graph paper and circle
the following points:

(6,11), (6,1), (11,6), (1,6), (9,10), (3,10), (3,2),
(9,2), (10,9), (10,3}, (2,3), (2,9)

Find the image of each point in Exercise 7 for the follow-
ing mappings, and circle the image points:

(a) (x,y)———>(x,-y) (=) (x,y)—(-2x,-2y)
(b) (x,y)——>(-x,y) (d) (x,5)———(y.x)

On a sheet of graph paper, mark the following points, and
draw the triangle they outline:

(0,0), (0,5), (2,0).

On the same sheet of graph paper mark the images of the
three points under the following mappings, and in each
case draw the triangle the three image points outline.

(a) (x,y)—(2x,2y) (b)) (x,y)—(-2x,2y)

(e) (x,y)——{-2x,-2y) (d) (x,y)—(2x,-2y)

On a sheet of graph paper, mark the fcllowing four points,

and draw the quadrilateral they outline:
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(0,0), (0,3), (4,3), (4,0

On the same sheet of graph paper mark the images of the
four points under the following mappings, and in each case
draw the quadrilateral the four image points outline:

(a) (x,y)——(x + 3, y + 4) (v) (x,y)—(x+ 2y, y)

(e) (x,9)——(x + 5, -y) (a) (x,y)—=(x,0)
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