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Preface

Mathematics used to be considered as a study of separate

branches called arithmetic, algebra, geometry, calculus and so

on. Each of these subjects was studied separately for a year or

more. Today mathematics is looked upon in a different manner- -

as a set of systems or structures which are common to all the

classical branches. In these systems the ideas of set, oper-

ation, mapping, and relation are fundamental. In this manner

of looking at mathematics, the subject gains a sense of unity,

and the learning of it is wade more efficient.

This is the first course of a series in which a start is

made in building the fundamental structures. In this book we

examine the arithmetic studied in the elementary school along

with new clock arithmetics to see the nature of arithmetic and

operational systems. To aid all subsequent learning we intro-

duce the language of sets and mappings of sets. We develop the

structure called a group, and an extended set of numbers called

the integers which has an extended structure. We make mappings

of points and relate points and numbers--on a line and in a lat-

tice framework. Gradually arithmetic, algebra, and geometry merge

into a unified study. As an additional study we consider proba-

bility and number theory.
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CHAPTER 1

FINITE NUMBER SYSTEMS

1.1 Jane Anderson's Arithmetic

Mr. Anderson was helping his daughter, who was in first

grade, with her arithmetic homework. He asked, "Jane, what is

seven plus three?"

Jane looked over her father's shoulder and soon answered,

"Seven plus three is ten."

"That is correct," said her father. "Now, what is eleven

plus two?"

Jane again glanced over her father's shoulder and said,

"eleven plus two is one."

"My hearing must be bad," said her father, "I thought

you said 'Eleven plus two is one.'"

"I did," said Jane.

Her father, of course, wanted to know why she made such a

statement. Jane walked over to the clock on the shelf behind

her father's shoulder. She explained how she found the sum of

7 and 3. She first pointed to "7" on the face of the clock

and then moved her finger clockwise over three numerals. Since

she was then pointing at "10" she said "Seven plus three is

ten." Jane proceeded in the same way to find the sum of 11 and

2. She first pointed to "11" on the clock and then moved her

finger clockwise over two numerals. Since she was then point-

ing at "1," she said, "Eleven plus two is one."

8
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1.2 Clock Arithmetic

In answering questions relating to time qe probably all

have performed an operation quite similar to Jane's procedure.

If you are asked what time it is three hours after seven

o'clock, you naturally answer ten o'clock. We could express

this result using the notation "7 + 3 = 10." But what if you

were asked what time it is two hours after eleven o'clock?

Now the answer is one o'clock, and using the same notation as

above we have

11 +2 = 1.

In the whole numbers it makes sense to assign 13 as the sum of

11 and 2, but on a clock it makes sense to assign 1 as this

sum. To express the fact that nine hours after seven o'clock

is four o'clock, we shall write

7 + 9 = 4.

Question: On a clock, what is expressed by

"11 + 6 = 5"?

What would you reply if you were asked what time it is

seven hours after eight o'clock? Is this the same as finding

the sum of 8 and 7 using the arithmetic on a clock?

Question: What is the sum of 8 and 7 using the numbers

on a clock? Explain how you obtained your

answer.

One way to answer the above question would be to place a

pointer on a clock face with the pointer directed at "12." In

order to compute 8 + 7, move the pointer clockwise through 8

intervals and then follow this by moving the pointer clockwise

.1121116, amseralwiess.
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through 7 intervals. The pointer will then be directed at

"3." Thus 3 is the number assigned as the sum of 8 and 7.

(see Figure 1.1)

12 12
1 1 11

10 2

3 9 3

4 8

Figure 1.1: Using a dial to determine 8 + 7

The numbers represented on the face of a clock are the

elements of the familiar set of clock numbers. We will

represent the set (1,2,3,4,5,6,7,8,9,10,11,12) by the symbol

"Z12." The "Z" is suggested by the German word for number,

Zahl. The subscript "12" indicates the number of elements

in this set.

1.3 Exercises

1. Compute the following sums by the procedure used on the

clock:

(a) 9 + 4 (e) 10 + 11 (i) 11 + 11

(b) 7 + 9 (f) 11 + 10 (j) 12 +9

(c) 7 + 8 (g) 1 + 12 (k) 9 + 12

(d) 5 + 6 (h) 12 + 1 (1) 12 + 12

10



2. Determine the clock numbers which, when placed in the

boxes, yield true statements.

(a) 10 + n = 6 (c) 0 + 6 = 12

(b) 8 + 0 = 3 (d) 11 + 12 =

(e) n + n (The same clock number is to be

inserted in all three boxes.)

(f) n + n = 8 (The same clock number is to be

inserted in both boxes. There are two answers.)

3. To avoid thinking of a moving pointer for each clock

computation, we can construct a Z12 addition table similar

to those you have seen for whole numbers. We indicate

that the sum of 11 and 2 is 1 by placing "1" in the cell

determined by row 11 and column 2. (see Figure 1.2) Examine

the table and note how the sum of 7 and 3 is entered.

+ 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

3

9

10

11

12

2 3 4 5 6 7O 8 9 10 11 12 1

1

10

1
Figure 1.2 Addition Table for Z12
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(a) Does the encircled "7" in the body of the table

represent 1 + 6 or 6 + 1? Explain your answer.

(b) Discuss why the cells in row 1 were assigned the

sums shown in Figure 1.2.

(c) Copy the table in Figure 1.2 and compute the

entries for the second row, third row, etc. Do

you notice any pattern emerging? Can you make

any conjectures that can be tested?

(d) What interesting pattern relates the entries in

the first column? The last column? The last

row? How are these columns and rows related to

other columns and rows?

(e) Complete the table.

(f) What differences can you see between the addition

table constructed above and an addition table for

the whole. numbers?

1.4 (z12,+) and(W,+)

If we compare the set of clock numbers, Zia, with the

set of whole numbers

W = (0,102030405,...)

we notice one immediate difference. The set of whole numbers

is endless or infinite. If a set is not infinite, we say

that it is finite.

It is important that you do not confuse a large finite

set with an infinite set. Some common examples of finite sets

are:

12
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(a) the set of vowels in the Eng3ish alphabet,

(b) the set of words in a dictionary,

(c) the set of all sentences which have ever been

written.

Question 1: Give some examples of large finite sets.

Question 2: What is the largest finite set you can

describe?

Question 3: What, besides W, would be an example of an

infinite set?

The set of numbers that Jane Anderson was using when

she said that 11 + 2 = 1 is a finite number system. Such

finite systems have many interesting properties and appli-

cations. You have probably already observed similarities

and contrasts between clock addition (z12,+) and whole number

addition (W,+). As we study the clock and other finite number

systems, feel free to make guesses or conjectures about proper-

ties that appear familiar or unusual. You will find both if

you are alert.

Using the familiar whole number addition, you will surely

agree that the following computations are correct:

10 + 7 = 17 7 + 10 = 17

3 + 6 = 9 6 + 3 = 9

11 + 4 = 15 4 + 11 = 15

The pattern demonstrated by these six computations can

be stated in general. For any whole numbers x and 2,

x +y=y+ x

This is the commutative property of addition in W.



Now use the table you constructed for Z12 addition to

determine each of the following sums:

(a) 10 +7 (d) 7 +10

(b) 3 + 6 (e) 6 + 3

(c) 11 + 4 (f) 4 +11

Does it appear that addition is commutative in Z12?

What patterns can you find in the (Z12,+) table to support

your answer?

The easiest whole number addition problems are those

involving zero.

9 + 0 = 9 0 + 9 9

756 + 0 = 756 0 + 756 = 756

27 + 0 = 27 0 + 27 = 27

Because of the special way that zero behaves in whole number

addition, it is called the additive identity element for W.

For any whole number x,

x 0= 0 x= x

Zero is not a clock number, but the Z does have an

additive identity element. Look closely at the rows and

columns of your (Z2,4.) table to find the clock number which

acts the same in clock addition as zero in (Wif).

1.5 Calendar Arithmetic

The traffic manager of the nation-wide Bee-Line Trucking

Company of New York City was faced with the following situation.

Trucks would return to New York City after extended road trips

around the country and the manager had to arrange for garage

14
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space, the hiring of loaders and extra drivers, service on the

truck engines, cargo assignment, etc. The manager found that

he needed a fast way of determining the day of the week a

truck would return if he knew (1) the day of the week that the

truck left New York City and (2) the number of days that the

truck would be on the road.

A typical problem was the following: A truck was to leave

New York City for Indianapolis, Indiana (2 days); go on to

Dallas, Texas (3 days); then to Washington, D.C. (4 days); and

finally return to New York City (1 day). If this truck leaves

New York City on Friday, on what day of the week does it return?

The manager soon struck on the idea of using a dial with

days of the week assigned to numbers as in Fig. 1.3.

SAT

FRI

THUR

SUN

WED

Figure 1.3: Calendar Numbers

To solve the above problem he proceeded as follows. Since the

truck left on Friday, he set the pointer at "5." Since the

total trip took 10 days (check this;) he then moved the pointer

clockwise through ten intervals. The pointer then was directed

at "1," so he concluded the truck would return on Monday.



The set of numbers used by the manager, (0,1,2,30405,61

we will call the calendar num6ers. We will refer to this set

as Z7.

Consider the following easy problem. If a truck left

New York City on Thursday and returned six days later, then

on what day of the week would it return? This problem can be

interpreted as asking "What number in Z7 should be assigned

as the sum of 4 (the number associated with Thursday) and 6

(the time of the trip)?" We see that the sum obtained from

use of the dial agrees with the obvious answer to the original

problem, namely Wednesday. Thus in Z7 we have that 4 + 6 = 3.

1.6 Exercises

1. The manager of the Bee-Line Moving Company obtained the

following data for one of his routes:

Depart Arrive

Time of
Travel
(days)

New York City

Cleveland

Jacksonville

Atlanta

El Paso

Des Moines

Chicago

Cleveland, Ohio

Jacksonville, Fla.

Atlanta, Ga

El Paso, Texas

Des Moines, Iowa

Chicago, Ill.

New York City

2

3

1

5

4

3

Assume that a truck leaves New York City on a Wednesday.

(a.) On what day of the week will it arrive in

Jacksonville? In El Paso?

16
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(b) On what day of the week will the truck return to

New York City?

(c) If there is a two-day lay over in El Paso, on

what day will it return to New York City?

(d) If a truck leaves on a Saturday, makes the complete

route, lays over in New York City for two days, and

then makes a second complete route, on what day oT

the week will it return to New York City?

2. Compute the following in Z7

(a) 6 + 1 (f) 5 + 4 (k) 0 + 6

(b) 2 + 6 (g) 5 + 5 (1) 1 + 6

(c) 3 5 (h) 5 + 6 (m) 2 5

(d) 4 + 2 (i) 6 + 6 (n) 5 + 2

(e) 4 + 5 (J) 0 + 1 (0) 0 + 0

3. Determine the calendar numbers which, when placed in

the boxes, yield true statements.

(a) 5 + =

(b) 2 + 0 =

3

6

(c) El + 6 = 2

(d) Cl + 3 =1

4. Copy the following addition table for Z7 and complete it

by filling in the remaining cells. Note how 4 + 6 = 3 is

recorded already.



(a) Explain why we can dispense with the dial once the

table is completed.

(b) Is there an identity element for (z70+)? Explain

your answer.

(c) Is addition commutative in (Z7,+)?

(d) What interesting pattern relates the entries in row

1 and row 2? Row 2 and row 3?

(e) How are the entries in column 1 related to the

entries in column 2?

(f) Explain why the upper right to lower left diagonal of

the table turns out the way it does. Why is the

upper left to lower right diagonal different?

5. Compare your tables for (712,+) and (Z,, +)

(a) Do they have similar patterns relating row and

column entries? If so, in what ways are they similar?

(b) Do they have corresponding diagonal properties?

Compare (L7,+) and (W,+). How are they alike? How are

they different?

7. It might be easier to compare (z7,+) and (Z12,+) if we

replaced the additive identity, 12, in Z12 by 0. Then

Zia = (0,1,2,304,5,6,7,8,9s10,11). Construct a new

(Z12,+) table as follows:

18
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7 ti 9 10 11
0

9

10

11

7 9 10 11

(a) Do the sums in the two (z121+) tables agree -- with

the exception that 0 takes the place of 12?

(b) Is (z7,+) more similar to this new (Z12,+) table

than to the one in Section 1.3?

19
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1.7 Open Sentences

How could you contrast the following mathematical

sentences?

2 + 3 = 5 (1)

5 + 6 = 17 (2)

11 +2 = (3)

It is obvious that sentence (1) is true in(W,+) and that

sentence (2) is false in (W,+). However, we don't know

whether (3) is true or false until the "0" is replaced by a

symbol for a number. Both (1) and (2) are called mathematical

statements since they are mathematical sentences that are

either true or false (but not both).

Sentence (3) above, and others like it which contain a

variable, appear frequently in mathematics. When we say that

"Cr is a variable in (3), we mean that the "r" can be replaced

by a symbol for a number from a particular set of numbers. This

set of numbers we call the domain of the variable.

If the domain of our variable is Z12, then we could replace

"0" in (3) by "1" and obtain a true sentence

11 +2 = 1.

However, if the domain of our variable is W, then replacement

of in" by "1" would yield a false sentence. To obtain a true

statement in W we should replace "0" by "13" since

11 + 2 = 13.

In dealing with sentences such as (3), always be aware of

the domain of the variable(s) which you are considering.



A sentence such as "11 + 2 = CI," which is neither true nor

false, is called an open sentence. Note that such a sentence

will become either true or false after replacement of the box.

It is easy to write down open sentences, that is, sentences

which contain at least one variable and which are neither true

nor false. Examples of open sentences are

+ 2 = 6,

3 + 4 A,

7 + = 11,

+ = 4,

and ri = 0.

An open sentence, like those above, with the equality

sign is called an equation. Another kind of sentence used

frequently in mathematics deals with the inequality relations

"is less than" and "is greater than." For example, in the set

of whole numbers we can write such sentences as "3 is less

than 4" and "8 is greater than 6." We use the symbols

"<" and ">" to denote, respectively, "is less than" and "is

greater than." Thus we can rewrite the above sentences as

"3 < 4" and "8 > 6." Examples of open sentences using these

relations are

5 > 0 + 1,

4 < A + 6,

and 0 > 0.

An open sentence with an inequality symbol, like those above,

is called an inequation or an inequality.
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Frequently you will be asked to solve an open sentence.

This means that you are to determine those numbers in the

domains of the variables which, when substituted for the

variables, yield true statements. The set of numbers which

yield true statements is called the solution set of the

open sentence.

Question 1: Why is (0) the solution set of the open

sentence 0 + 4 4, where the domain of

"0" I s W?

Question 2: What is the solution set of the open

sentence t + 3 = i, if the domain of

"A" is Z10?

Question 3: What is the solution set for the open

sentence 2 = + 5, where the domain of

"0" is W?

You have probably already determined that the solution

set for the open sentence in Question 3 has no members. It is

an example of the empty or null set. Some other ways of describ-

ing the empty set are: the set of all men who are thirty feet

tall, and the set of all whole numbers between
1

and 4 . We

usually indicate the empty set by the symbols "0" or "( 3."

Question h. Discuss why the solution set for Question 1,

(0), is not the same as the solution set for

Question 3, 0.

We have been using "n" and "A" to denote variables. It is

more usual in mathematics to denote a variable by such a symbol

as x, y, z, or n. If we use these symbols to rewrite the

mil1111 212111.



examples of open sentences given earlier, they would be

x + 2 = 6,

3 + 4 y,

x + y = 4,

and 5 > n + 1.

Let us review some of the above ideas by considering the

following.

Example 1. Let the domain of the variable be W. If we

are asked to solve r + 5 = 12 and 0 is

replaced by 7, we, obtain 7 + 5 = 12, which is

true. Hence 7 is the solution of the open

sentence, or (7) is the solution set, since no

other replacement from W would give a true

statement.

Example 2. Let the domain of the variable be Z7. In the

open sentence n + 4 3, if 0 is replaced by 6,

we obtain 6 + 4 = 3 which is true. Hence 6 is

the solution or [6) is the solution set, since

no other replacement of 0 makes the sentence

true.

Example 3. Let the domain of the variable be W. For the

open sentence 0 + 4 = 3, we find that there is

no replacement from W which yields a true

sentence. Hence there is no solution in W or

the solution set is the empty set.

23
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Example 4. Let the domain of the variable be Z22 with

"12" replaced by "0." That is

Z12.(0,1,2,3,4,5,6,7,8,9,10,11). In the

equation x + x = 10, if x is replaced by 5 we

obtain 5 + 5 = 10, which is true. Hence 5

is a solution of the open sentence. If x is

replaced by 11, we obtain 11 + 11 = 10, which

is also true. Hence 11 is another solution of

the open sentence. If we replace x by any

other clock number, we will obtain false state-

ments. We conclude that the solution set of

the given equation is (5,11].

Example 5. If the domain of the variable is W, then the

solution set of the inequation

n + 3 < 8 is (0,1,2,3,4).

Example 6. If the domain of the variable is W, then the

solution set of y + 3 > 8 is the set of whole

numbers greater than 5, that is, (6,7,8,9,...)

1.8 Exercises

1. Label each of the following sentences as true, false, or

open in (W,+):

(a) 12 + 3 = 14 + 1 (e) + 0

(b) 395 + 682 > 1051 + 86 (f) n = 1 + 0

(c) + 87 91 (g) 1262 + 2384 = 2126 + 3248

(d) 765 = 700 + 65 (h) A+ 0 =0+ A

24
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2. Explain why or why not the following are true sentences:

(a) 11 + 7 = 5 in (z1p,+)

(b) 5 + 5 = 3 in (z7,+)

(c) 2 + 3 = 4 + 1 in (z."+)

(d) 10 + 8 = 2 + 4 in (Z12,+)

3. Solve the following open sentences given that the domain of

the variable is W: (If the same symbol for a variable

appears more than once in a sentence, then it represents

the same number each time that it occurs.)

(a) 0 + 7 = 15

(b) + r = 6

(c) 13 = 0 + 1

(d) 7 + x = 15

(e) 35 + y = 25

(f) z + 1 > 3

(g) 0+ 1> 1

(h) n < 4

(i) x + 1 < 11

(j.) x + x = 10

4. Solve the following open sentences given that the domain of

the variable is Z,:

(a) 2 + 5 = (d) 6 + x = 1

(b) + 3 = 3 (e) 6 + 6 . y

( c ) 0 + 4 . 1 (f) n + o . 5

5. Solve the following open sentences given that the domain of

the variable is Z12:

(a) 5 + 8 = (d) 9 + z = 2

(b) 4 + 3 = x (e) 7 + x . 7

( c ) y + 3 = 9 (f) x = x + 1

6. Using the symbol "x," write an open sentence whose solution

set is (6) where the domain of the variable is

(a) W (b) Z7 (c) Z12

25
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7. Using the symbol "x," with the domain W, write an open

sentence whose solution set is

(a) W (b) the empty set (c) the set (0).

8. If two open sentences have the same solution set then we

say they are equivalent. Find the solution set of each

pair of sentences below. Then determine if the sentences

are equivalent. Let the domain of the variables be W.

(a) 12 + 171 = 31 (c) 2 < 5
+ 7 = 36 0 > 2 + 5

(b) x + 3 = 3 (d) x = 3 + 0
4+ x= 2 0 + 3= x

(e) y = 2 + 0
y + 2 = 0

1.9 New Clocks

In Section 1.2 we constructed a "clock arithmetic" for the

familiar clock which uses twelve numerals on its face. If we

wanted a clock with exactly seven numerals on its face, one

possibility would be to use the system constructed in Section

1.5. There, for the calendar numbers, we made use of a pointer

and the set (0,1,2,3,4,5,6). We have already explored how the

arithmetic for such a 7-clock would proceed. (See Section 1.6

Exercises 1,2,3, and 4.)

Our previous work with a 12-clock and a 7-clock indicates

that we could easily construct other clocks. For example, a

4-clock is suggested by a lamp switch which has four positions:

"Off," "Low," "Medium," and "Bright." If we assign, in order,
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the numerals "0," "1," "2," and "3" to these four positions and

again introduce a pointer we can draw a picture of such a

4-clock. (We will refer to the set (0,1,2,3) as Z4.)

Figure 1.4: A 4-clock

1.10 Exercises

1. (a) Construct an addition table for the 4-clock.

(b) Use your addition table to do these computations.

(1) 1 + 2 (3) 2 + 1 (5) 2 + 2 (7) 1 + 3

(2) 3 + 1 (4) 3 + 3 (6) 0 + 3 (8) 3 + 2

(c) Use your table to determine the position a lamp

switch would be in if, starting from the "Off"

position we turned it clockwise through 3 intervals

and followed this with another clockwise turn

through 2 intervals.

(d) How can an examination of the table help you decide

whether or not addition in Z4 is commutative?

2. (a; Compare (4,+) with (z7,+).

(b) Compare (Z4,+) with (W,+) .
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3. (a) Make up an addition table for a 5-clock using the

set Z5 = (0,1,223,4).

(b) Using your addition table for Z5 compute the following:

(1) 2 +4 (3) 3 + 2 (5) 3 + 3

(2) 1 + 4 (4) + (6) 4 + 3

(c) Compare (Z5,+) with (z4,+).

(d) A burner on an electric stove is controlled by a

circular switch. The five possible positions are

arranged and labeled in the following order: "Off,"

"Simmer," "Low," "Medium," and "High." Make up three

problems which the table constructed in 3 (a) can

help you solve (see Exercise (b) above).

4. (a) What kind of a clock is suggested by the channel

selector knob on a T.V. set?

(b) Can you find any everyday applications of any clocks

that have been, or could be, constructed?

5. Examine the tables for addition of clock numbers that you

have constructed.

(a) What properties of addition tables can you find which

make them easy to construct?

(b) Make up an addition table for Z5 = (0,1,2,3,4,5).

NOTE: Keep this table for (Z51+), and all other tables

that you construct, for future use.
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1.11 Rotations

In Figure 1.5 a six sided geometric figure called a

regular hexagon is drawn in a circle with center point labeled.

C. We say that C is also the center of the regular hexagon.

The points of the hexagon which are on the circle are called the

vertices of the regular hexagon and are labeled 0,1,2,3,4 and 5.

Figure 1.5: A regular hexagon inscribed in a circle

If we keep the center C of the hexagon fixed and rotate the

hexagon in a clockwise direction until the vertex at "0" is moved

to "1," and the vertex at "1" is moved to "2," etc. then we say

that we have a rotation of the regular hexagon through 60° about

C. Let us denote this rotation by ri("r" to suggest rotation

and "1" to suggest 1 interval of 60°). The point C is called

the center of rotation. If our rotation about C passes through

120° (or 2 intervals) we shall denote this by r2. Another way

to view r2is as the result of performing an rirotation and then

following it with another rirotation. What would r3 denote?

What would r4denote? rsis of particular interest since then we

would be in what position?

29
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Let us examine what r6 denotes. We could say that in re

we have an instruction to rotate the regular hexagon about C

through five intervals or 300°. If we followed the re in-

struction by the rl instruction, then we would have completed a

rotation of 360° which is, of course, one complete rotation. If

we examine the subscripts of re and r1 we find that re is

suggested as the result of following re by rl. But re, con-

sidered alone, means that we are once again at our original

position. In other words, the instructions re and ro have the

same effect. We choose to call such an instruction "r
o
." We

say that ro is the result of following re by r1 or that ro is

assigned to re and rl.

1.12 Exercises

1. What result would you assign to the following?

(a) rl followed by 1.2

(b) r1 followed by r3

(c) re followed by re

(d) r4 followed by re

(e) r3 followed by ro

2. (a) Why was ro said to be the same instruction as re?

(b) What is the result if any instruction is followed by

r
o
?

(c) What special name might be given to ro? Justify

your answer.
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3. Examine the partially completed table below.

You will note that "r2," nro," "r2," and "rs" have been

made entries in the table.

(a) Explain the following:

(1) Why was r2 assigned to r2 and ri?

(2) Why was ro assigned to r2 and r4?

(3) Why was r1 assigned to rs and r2?

(4) Why was rs assigned to 2'0 and I's?

(b) Complete the table.

(c) In what way, if any, does the above table suggest a

clock arithmetic?

4. Let the rotations of a square through 90°, 18000 270°

and 360° about a fixed center be designated by

r1," "r2," firs, and "r ."

3

2 r0

0 3 1

31
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(a) If we label the vertices of the square with the

numerals "0," "1," "21" and "3" as in r0, then

describe what is indicated by rl, r2, and r3 (Figure 1.7).

(b)

In the above table why has 2'0 been assigned to rl

and r3? Copy this table and complete it (as was done

in Exercise 3 (b) above).

(c) In what ways does this system of rotations correspond

to a system studied earlier?

*5. A regular heptagon has 7 sides. Explain how we could use a

similar system studied earlier to help complete a table for

the rotations of this figure.

*6. Place two rulers next to each other and determine how a

slide-rule can be developed that will let you add certain

whole numbers.

(0 1 2 3 4 5

1

6 7
1

(0
1

1

I
2 3

1

4 5

How can the above be used to find the sum of 2 and 5?

For finite arithmetics the most appropriate slide-

rules are circular. Why? Using two concentric cardboard

disks (that is, circles and their interiors) see if you can

devise a "slide rule" that will enable you to add in Z12
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(or any other clock arithmetic).

1.13 Subtraction in Clock Arithmetic

From your experience in arithmetic you know that given

any two whole numbers, x and z it is always possible to find

their sum, x + y. For instance,

75 + 36 = 111

235 + 831 1066

1,637,428 + 78,423 = 1,715,851

Furthermore, the sum is always unique. There is only one

number which is assigned as the sum cf x amdz. Subtraction,

on the other hand, is a restricted operation. For example,

"2 - 4" does not name an element in the set W since there is no

whole number which we can add to 4 to yield 2.

In each of the clock systems studied so far, addition has

always been a possible operation. Is subtraction also always

possible in the clock systems, or must it be restricted as it

was in W?

In particular, let us determine if "2 - 4" names a number

in the set Zs. Our experience with subtraction in the whole

numbers suggests that we agree to the following:

If there is one and only one number in Z5 which when added to 4

yields 2 we shall say that "2 - 4" names this number. In order

to see that such a number does exist, we can make use of the

addition table for (Z5,+). First locate "4" at the left in the

table for (Z5,+). (See the partially completed table below.)
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Move across the row headed by this "4" until you find the

entry "2" in the body of the table. The number heading the

column in which we find this "2" is 3.

0 1 2 3 4

It

We conclude that 2 - 4 = 3 in Zs because 3 is the number in Z5

which when added to 4 yields 2.

In order to find the number named by "1 - 2" in Zs we seek

the number in Zg which when added to 2 yields 1. From the table

for (Z5,+) we see that 2 + 4 = 1.

2 2 3 4 0 1

Thus we conclude that I - 2 = 4 in Z5. Note that 4 is the only

number in (z5, +) which when added to 2 yields 1. Thus the

difference 4 is unique. There is one and only one number, 4,

which when added to 2 yields 1.

In order to find the number named by "4 - 1" in Zg we seek

the one and only one number which when added to 1 yields 4.

Since 1 + 3 = 4 in (Z51+) we conclude that 4 - 1 = 3 in Z5. Do

you see that the difference 3 is unique?

In order to compute 0 - 3 in Z5 we seek the one and only

one number which when added to 3 yields 0 in (41+). Since

3 + 2 = 0 in (Z51+) we conclude that 0 - 3 = 2 in Zs.

34
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NOTE! In many exercises in this chapter we shall use the word

"compute" to mean "find the simplest name." For example,

we expressed the result of computing 0 - 3 in Z5 by

using the simplest name "2;" that is, 0 - 3 = 2 in Z5.

1.14 Exercises

1. Using your addition table for (251+) find the simplest

name for

(a) l - 4

(b) 4 - 3

(c) 3 - 4

(d) 4 - 2

(e) 4 - 4

(0

(g)

(h)

(1)

(j)

3 - 0

0 - 4

2 - 3

1 - 3

0 + 2

2. Below is a partially completed subtraction table.

0 1 2 3 4

1

2

3

3

Note that the encircled 4 in the table indicates

that 1 - 2 = 4 in Zs.

(a) Copy the above table and compute the remaining

entries in this subtraction table.

(b) Is subtraction always possible in the set Zs?

Explain your answer.

(c) How does subtraction in Zs compare with subtraction in W?
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3. You recall that we introduced addition for our finite sets

by making use of a clock. Then we constructed addition

tables. However, subtraction in Zs was first introduced by

using the idea of a table. The following exercises relate

this subtraction to a 5-clock.

(a) If the pointer of a 5-clock is placed on the numeral 2

and then moved counter-clockwise through 3 intervals,

then at what numeral is the pointer directed? What

subtraction problem in 4 does this solve?

(b) Can you state how we could find the simplest name for

"1 - 2" on a 5-clock?

(c) Find the simplest name for each of the following and

then describe how to check your results using a 5-clock.

4.

(1) 1 - 4 (3) 4 - 1

(2) 0 - 3 (4) 2 - 4

Use your table for (Zs,+) to find the simplest name for

(a) 5 - 2 (e) 3 - 4

(b) 2 - 5 (f) 0 - 4

(c) 4 - 1 (g) 2 - 3

(d) 1 - 4 (h) 1 - 5

5. Use your table for (Z7,4-) to find the simplest name for

(a) 1 - 6

(b) 5 - 6

(c) 4 - 6

(d) 2 - 6

(e) 6 - 2

(f) 6 - 0

(g) 0 - 6

(h) 6 - 6

(0 3 - 5

( j ) 3 6

(k) o - 0

(1) 1 - 4
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6. Is there an identity element for subtraction in

(a) Z5?

(b) Z5?

(c) Z7?

Justify your answer.

7. Is subtraction commutative in

(a) Z5?

(b) Z5?

(c) Z7?

Justify your answers.

8. Solve the following open sentences given that

the domain of the variable is Z5:

(a) 2 - 4 = x

(b) y - 4 = 1

(c) 3 - z = 1

(d) 3 - x = 2

(e) 1 - 4 = y

(f) 2 - 3 = z

(g) 3 - x = 3

(h) 3 - y = 4

(i) 3 - z = 0

(j) 0 x = 0

(k) 1 - 3 . y

(1) z - 4 = 4

9. Solve the following open sentences where the

domain of the variable is Ze:

(a) 3 - 5 = x

(b) 2 - 5 = y

(c) 1 - 2 = z

(d) 0 - x = 2

(e) 5 - 2 = y

(f) y - 4 4

(g) z - 4 5

(h) 1 - x = 3

(i) 0 - y = 2

(0) 0 - z = 0
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1.15 Multiplication in Clock Arithmetic

We shall now consider how multiplication will be defined

in clock arithmetic. From your previous study of the whole

numbers, you know that given the pair of whole numbers 3 and 4

you would assign the whole number 12 to this pair as their

product. In short, 3 4 = 12 in (W, ).

But how should we define the product 3 4, for example,

in Zs? Even though we could assign any number in Zs as this

product, let us agree that the product 3 4 = 2 in Zs. Why

we select 2 as the product can be seen if we note the following

relationship between (W, ) and the 5-clock. In (W, ) we have

that 3 4 = 12. If we place the pointer of a 5-clock on "0"

and then move it clockwise through 12 intervals the pointer

will be directed at "2." Using this result we define 3 4 = 2

in Zs.

We shall use the above relationship between (W, ) and the

5-clock to define 2 4 in Z. Since 2 4 . 8 in (W, ) we

move the pointer of a 5-clock clockwise through 8 intervals

from "O." The pointer is then directed at "3." Using this

result we define 2 4 = 3 in Z.

How should we define 4 4 in Z$? Since 4 4 = 16 in

(W, ) we move the pointer of a 5-clock clockwise through 16

intervals from "0." The pointer is then directed at "1." Thus

we define 4 4 = 1 in Z.

There is another approach to multiplication in Zs that does

not use the idea of a clock. The key idea in this second
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approach is that of remainder. Do you remember how this term

was used in your earlier study of mathematics? For example, if

the whole number 8 is divided by the whole number 5 we obtain

a quotient of 1 and a remainder of 3. Recall that in defining

2 4 in Z5 we moved a pointer on a 5-clock through 8 intervals

and the pointer was directed at "3." We see that in this

example the resulting product given by use of the clock is

precisely the remainder obtained when 8 is divided by 5. Will

the remainder approach continue to give results equivalent to

the clock approach?

We can test to see if the products defined earlier on

pairs of numbers in Z5 are related to "remainders." For example,

earlier we defined 4 4 to be 1 in Z5. By the remainder

approach we first note 4 4 = 16 in (W, ). Then we divide

16 by 5 and obtain a quotient of 3 and a remainder of 1. If we

disregard the quotient and examine the remainder we see that

this remainder, 1, is the same number which we defined earlier

as the product of 4 and 4 in Z.

If we apply this remainder approach in order to define

3 4 in Zs, we proceed as follows: Compute 3 4 in (W, )

and obtain 12; divide 12 by 5 obtaining a quotient of 2 and a

remainder of 2: we record the remainder 2 as the product: thus

3 4 = 2 in Zg. Again this agrees with an earlier result.

Let us now indicate a scheme whereby we can assign a

"product" to any pair of numbers in Z. If a and b are any two

numbers in Z5 = (0,1,2,3,4), we first form their product in

(W, ). This product is then divided by 5, and we note the

3
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remainder. From above, we know that this remainder is also a

number in Zs. We record this remainder and call it "the product

of a and b," which we write as "a b."

Example 1. If we wish to compute the product of 3 and 3

in Z5 we note first that 3 3 = 9 in (wy ').

When 9 is divided by 5 we obtain a quotient of

1 and a remainder of 4. We disregard the

quotient and record the remainder 4 as the

product we are seeking.

Thus,

3 3 = 4 in (zs, .)

Example 2. The product of 2 and 2 in (z5, ) is found by

noting that 2 2 = 4 in (W, ) and 4 divided

by 5 yields a quotient of 0 and a remainder of

4. We disregard the quotient and record the

remainder 4 as the product.

Thus,

2 2 = 4 in (Zs, .).

Example 3. The pr..duct of 3 and 0 is 0 in Z5 because

3 0 = 0 in (W, ) and 0 divided by 5 yields

a remainder of 0.

1.16 Exercises

1. Below is a partially completed multiplication table for

pairs of numbers in Zs. Some of the products obtained

above have been recorded.
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0

1

2 4 3

3 0 4 2

4

(a) Copy the above table and compute the remaining entries.

(b) Do you notice any interesting patterns relating the

entries of a single row or column? Relating pairs of

rows or columns?

2. Solve the following open sentences in (Z5, ):

(a) 3 x = 1 (e) 3 x = 2 (i) 3 x = 3

(b) 4 x = 4 (f) 3 x = 0 (J) 4 z = 1

(c) y 2 = 0 (g) 4 x = 2 (k) 1 y = 3

(d) 0 x = 0 (h) 1 y = 3 (1) 0 x = 2

3. If we wish to construct a multiplication table for (74, )

we record remainders resulting from division by 4. Thus,

to determine the product of 2 and 3 in (z4, ) we note that

6, the product of 2 and 3 in (W, ), when divided by 4,

gives quotient 1 and remainder 2.

Thus,

2 . 3 = 2 in (z4, e)
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(a) Copy and complete the following (multiplication) table

for (Z40.)

0

1

2 2

3

(b) Do you notice any interesting patterns relating the

entries of a single row or column? Relating pairs of

rows and columns?

4. Construct multiplication tables for (4, ) and for

(Z1, ).

(a) Examine the tables for (4, ) and (4, -). In what

ways are these tables similar? In what ways are they

different?

(b) Examine the tables for (4, .) and (z7, ) . What

properties do they have in common? Can you find some

essential differences between the tables?

5. Solve the following open sentences

(a) In (4, ):

(1) 3 x= 2 (2) 2 Y = 2

(3) 2 z = 0 (4) 3 x = 1

(5) 0 x = 0 (6) 0 z = 3

(7) 1 Y = 3 (8) 2 x = 3
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(b) In (Z7, .):

(1) 6 x =3

(3) 5 Y = 1

(5) 4 y = 2

(7) 6 z =5

(c) In (Zs, ):

(1) 5 x = 3

(3) 4 z 3

(5) 4 h = 2

(7) 3 x = 3

(9) 3 = 5

(11) 2 x = 0

(2) 3 Y = 5

(4) y 2 = 0

(6) x o = 5

(8) 6 x = 0

(2) 4 y = 5

(4) 4 x = 0

(6) 4 z = 1

(8) 3 y = 0

(10) 2 z = 2

(12) 2 y = 4

1.17 Comparison of (W, and Clock Multiplication

In Section 1.4 we found that addition of whole numbers was

similar in many respects to addition of clock numbers. Each

operation was commutative and each had an identity element.

From your earlier work in arithmetic, you probably recall

similar properties of whole number multiplication:

For any whole numbers x and fir, x y = y x.

This is the commutative property of multiplication in W.

For every whole number z, 1 z = z 1 = z.

We therefore call 1 the multiplicative identity in W.

Examine the second row and second column of your (Z5, )

table. What is true when a number in Zs is multiplied by 1?

What is true when 1 is multiplied by any number in Z5?
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How does examination of the table provide evidence of a

commutative property for (Z6, .)? Try to formulate a reason

why you think commutativity is or is not a property of (Z5, ).

Then repeat your investigation in the (Z4 ) table. Does it

have an identity and commutativity? What about (Z5, ),

(z7, .)?

If your multiplication tables were carefully constructed,

you will be led to observe that multiplication is commutative in

(Z5, ), and indeed in all the clock "arithmetics," and that in

each, 1 is the multiplicative identity.

Multiplication of whole numbers has another interesting

property which has an analogy in clock arithmetic. Examine the

entries in the first row and column of the (Z5, .), (Z4, .),

(Z6, ) and (Z,, ) tables. What is true when any clock number

is multiplied by 0? What is true when 0 is multiplied by any

clock number? Again, if your multiplication tables were

constructed carefully, you will have observed that for any

clock number x,

0 x = x 0 = 0.

This property is the multiplication property of zero, and

it is also true in (W, ) if x is any whole number.

We have seen three multiplication properties which hold in

each clock arithmetic and the arithmetic of whole numbers:

(1) Multiplication has the commutative property.

(2) There is a multiplicative identity, denoted by "1" in

each arithmetic.

(3) The multiplication property of zero holds.

44
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The tables for (Z4, ) and (Zs, ) differ in at least one

essential way from the tables for (Z5, ) and (Z7, ). If we

disregard the rcw and column headed by "0" in (Z5, ) or in

(Z7, ) we see that there is no repetition of the entries in

the remaining rows and columns. But there is a repetition of

some entries in the rows and columns of the tables for (Z4,

and (Z5, -1. An interesting problem is to predict what other

clock multiplication systems will be of the "(Z5, ) type" and

which of the "(Z7, ) type." What other tables besides those

for (Z4, ) and (Z5,.) have the "repetition of entries"

property? Experiment by examining the tables for (Z5, ) and

(Zs, ').

As you examine these tables, consider the following

questions:

(a) Does the (Z5, ) table behave as the "(Z5, ) type"

table or as the "(Z,, -) type" table with regard to

entries?

(b) Does the (Z5, ) table behave as the "(Z5, ) type"

table or as the "(Z7, ) type" table?

(c) Can you detect any pattern developing? Can you make a

conjecture concerning which tables behave as did the

(Z5, ) table and which behave ss did the (Z7, .)

table?

(d) After you have a conjecture, test it out by consi-

dering the multiplication table for (Z5, ). Does

your conjecture still hold true?

(e) You might want to experiment further in order to find
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a pattern that predicts how clock multiplication

tables will behave as regards "repetition of the

entries." Can you predict which elements in a given

clock number system will repeat as entries in the

multiplication table?

If you have become very familiar with the methods of clock

arithmetic, try the following research problem involving secret

codes:

Suppose you wanted to make up a code in order to send a

secret message to a friend. One type of code is called a

substitution code. In such a code one letter of the alphabet is

substituted for another letter by means of a key or by writing

some formula, which indicates how the substitutions are made.

For example, if each letter is replaced by the one that follows

it in the alphabet, then we can describe this substitution by the

formula

x' = x + 1 in (Zaes, +).

This means that any letter x is replaced by the letter x' (read

"x prime") which follows it. Thus "b," "k," and "q" would be

replaced, respectively, by "c,:' "1," and "r."

(a) How would you encode, that is, put into code, the word

"DANGER?"

(b) How would you decode the word "IPMQ?"

(c) By what letter would you replace "z?"

(d) Why was Z26 used in the above formula?

(e) What would the formula be if "a" is replaced by "d,"

"b" by "e," etc.?

46



-40-

(f) A similar type of code in which we use only number

symbols, and which we have special symbols for

"space," "comma," and "period" is the following:

Assign 0 to a, 1 to b, 2 to c,..., 23 to x, 24 to y,

25 to z, 26 to "space," 27 to "comma," and 28 to

"period." Using the formula x' = x + 1 in (Z29, +)

we would then encode "JAMES BOND" as

10 1 13 5 19 27 2 15 14 4.

(Note that 27 represents the word "space.")

Examine the following coded messages. The system

(Z29, +) is used. Can you find the formula that

tells how substitutions are made and then decode the

message? Hint: Try x: = x + n, n = 0, 1, 2, etc.

(1) 6 14 14 6 14 11 26 8 18 26

19 7 4 26 18 15 24 28

(2) 11 16 o 7 16 9 14 11 21 10 0

22 7 26 22 1 0 22 10 7 o

14 7 22 22 7 20 0 7 o

17 5 5 23 20 21 0

15 17 21 22 0

17 8 22 7 16 2

(g) Explain why using a formula such as x' = 2 x in

(Z26, ) will not work. What goes wrong? Would the

same problem arise if we had used the same formula

xl = 2 x but instead worked in (Z29, ')?



1.18 Division in Clock Arithmetic

Suppose we wish to divide 3 by 4 in Zs. Let us recall our

experience with division in the whole numbers and use the

symbols "3 + 4" or " " to denote such a quotient. We read

these symbols as "3 divided by 4" or "3 over 4" and assume they

mean the same thing. What follows is suggested by how the

division process was carried out in W. Let us agree that to

3evaluate 4. in Zg we seek the one and only one number in Z5

which when multiplied by 4 yields 3. The partially completed

multiplication table given below indicates how we can search

for such a number. First locate "4" at the top of the table.

Move down the column headed by this "4" until you find the

entry "3." The number heading the row in which we find this "3"

is 2. Thus we conclude that " " and "2" are two names for the

same number in (z5, ) .

2 3

3We can express this by the equation -4 = 2. Note that there is

3one and only one number in Zs, namely 2, which is equal to 4;

since "3" appears once and only once in the column headed by "4."

Example 1. How do we evaluate /4 in Z5? In order to

4evaluate 7 in Z5 we proceed as follows. We ask,

"Does there exist one and only one number in Z5

which when multiplied by 3 in (Z5, ) yields 4?"
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3 3 = 4 in (Z5, .), and no other number in Zs

4
has this property. Thus we conclude that 7 = 3

in Zg.

Example 2. How do we evaluate 3,in Z5? We seek the one

and only one number in Z$ which when multiplied

by 3 in (z5, .) yields 0. Since 0 3 = 0 in

(4, 0, and no other number in Z5 has this

property, we conclude that = 0 in Zs.

1.19 Exercises

1. Find the simplest names in Z5 for

(a) (f) (k)

(b) 4+ 2 (g) 2 4 (1) 2 + 1

(c) .1-1- (h) (m)

(d) 1 + 3 (i) (n)

(e) 14 (.1) (0) g

2. Try to find the simplest names in Z5 for

3. Is division an unrestricted operation in Z3? That is, is

it always possible to find the quotient of two given Zs

numbers? How is division like or unlike subtraction in

this respect?
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4. Solve the following open sentences in Z5:

(a) 221 x = 4

(b) =2 x

(c) 4 y = 1

(d) =

5. What do you notice when you try to construct a division

table for pairs of numbers in Z5? How does this table

compare with the multiplication table for (Zs, -)?

4
6. In Zs we have 7 = 5 because 5 2 = 4 in (Zs, .). Make an

investigation of the process of division in other pairs of

numbers in Zs. Write a brief report on your findings.

1.20 Inverses in Clock Arithmetic

If we examine the tables given below for (Zs, +) and

(Zs, ) certain properties are easily found.

+ 0 1 2 3 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 2 3 0 1 0 1 2 3

2 2 3 0 1 2 0 2 0 2

3 3 0 1 2 3 0 3 2 1

For example, there is an additive identity element, namely

in (Zs, +). There is also a multiplicative identity element,

namely 1, in (Zs, ). We find that addition is commutative in

(Zs, +) and that multiplication is commutative in (Zs, ). We

have observed these properties previously.

Let us now examine a property which may be new to you.

First, check that the following equations are true statements in
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0 + 0 = 0 (1)

2 + 2 = 0 (2)

1 + 3 = 0 (3)

3 + 1 = 0 (4)

In each of the above mathematical statements we have a pair of

numbers whose sum is 0 in (Z4, +). Or, we could say that we

have found pairs of numbers in Z4 whose sum is the identity

element 0 in (Z4, +). The numbers in such a pair, whose sum in

(4, +) is the identity element, are called inverses of

each other under addition in Z4. The numbers 1 and 3 are

inverses of each other since 1 + 3 = 0 in (Z4, +). We also say

that 1 is the inverse of 3 and 3 is the inverse of 1. Note that

(1) shows that 0 is its own inverse and (2) shows that 2 is its

own inverse. Each of (3) and (4) show that 1 and 3 are inverses

of each other.

We can search for inverses in any arithmetic which has an

identity element. Thus in (4, ) we will say that a pair of

numbers are inverses if their product is the identity element 1.

The inverse of 3 is easily obtained by examining the table for

(Z4, ). We simply go along the row headed by "3" (the last row

in the table) until we find the identity element "1." Then the

number heading the column which contains this "1" is the inverse

of 3. We find a "3." Thus 3 is its own inverse. If we seek

the inverse of 2, we go along the row headed by "2" until we

find the identity element "1." But no "1" appears in this row.

Thus 2 has no inverse under multiplication in Z4.

51 M11111.1111111.=111111
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Let us use the symbol "-3" to name the inverse of 3

under addition in Z4. The symbol is read "the additive inverse

of 3." Earlier we said that the inverse of 3 is 1 under

addition in Z4. Thus "-3" and "1" are different names for the

same number in (4,+). Because of this, another way of writing

"3 + 1 = or would be "3 + (-3) = 0" The following examples

show some uses of this new symbol.

Example 1. In (z4,+) we have 2 + (-2) = O. To justify

this statement examine the definition of "-2."

Example 2. In (41+) we have -1+ (-2) = 1. To justify

this statement we first note that -1 = 3 and

-2 = 2 in (4,+). Why? Convince yourself

that "3 + 2 = 1" is a true statement in (4,+).

If we replace "3" by "-1" and if we replace "2"

by "-2," then we conclude that -1+ (-2) = 1

in (4,+).

Example 3. - (1 + 2) = -1 + (-2) in (4,+). The symbol

"- (1 + 2)" means the additive inverse of 1 + 2

or, what is the same thing, the additive inverse

of 3. We have then - (1 + 2 ) = -3 = 1.

We saw in Example 2 that -1+ (-2) = 1. Since

both - (1 + 2) and -1+ (-2) are equal to 1 we

conclude that - (1 + 2) = -1+ (-2).

Example 4. "3 - 1" and "3 + (-1)" name the same number in

Z4. We know that 3 - 1 = 2. Also

3 + (-1) . 3 + 3 = 2. Since both 3 - 1 and

3 + (-1) are equal to 2, we have 3 - 1 = 3 + (-1).

1.11Mia121111
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Now that we have a special symbol to represent add_tive

inverses in (Z4, +), let us select a symbol to represent inverses

1
in (Z4, .). Since we know that in (Z4, *) 3 7 = 1, let us

select the symbol " " to designate the inverse of 3 under

multiplication in 4. We read this symbol as "1 over 3." Since

3 is its own inverse in (Z4, ) it is clear that 4. = 3 in

(Z4,.). Similarly = 1 in (Z4, -). The following examples

illustrate some uses of this new symbol.

Example 1. In (Z4, ) we have 33-- 2 = 2. Note that 3, the

the multiplicative inverse of 3 under multipli-

cation in Z4, is 3 in (Z4, .). In short, = 3

in (Z4, ). Furthermore, 3 2 = 2 is a true

statement in (Z4, ). If we replace "3" in this

statement with '
fl

then we conclude that

7 2 = 2 in (Z4, .).

Example 2. The solution set for x = 1 is (3) in (Z4, ).

Example 3. The symbol " 7251 " does not name any number in Z4.

This is true because 0 does not have an inverse

under multiplication in Z4.

1.21 Exercises

Note: Unless otherwise stated, all of the exercises in this

section should be considered using Z5 arithmetic.

1. Using your addition table for (Z5, +) determine the additive

inverse of:
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(a) 2 (d) 3

(b) 1 (e) 4

(c) 0 (f) -2

2. Using your table for (Z5, determine the multiplicative

inverse of:

(a) 2 (d) 3

(b) 4 (e) 0

(c) 1 (f)

3. Find the simplest names for the following:

(a) in (Z5, +)

(1) -1

(2) -4

(3) 0

(4) -2

(5) -3

(b) in (Z5, .)

(1)

(2)

(3) 4

(4)

(5)

4. Compute the following in (ZEs, +):

(a) 3 + (-2) (d) -3 + 3

(b) -4 +1 (e) -2 + (-4)

(c) -1 + (-3) (f) 0 + o

5. Compute the following in (Z5, ):

(a) 2 4

(b) 3
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6. Solve the following open sentences:

(a) in (Zs, +) (b)

(1) 3 + (-3) = x

(2) -4 + y

(3) -2 + z = 4

in (Zs, .)

(1) 3 = x

(2) y = 3

(3) z 4...

7. Note in (Zs, +) that the symbol - (-2) means the additive

inverse of the additive inverse of 2.

(a) If we replace the name "-2" in the above symbol with

the name "3," then what number in 4 do we have?

(b) What numbers in Zs do the following represent?

(1) - (-4)

(2) - (-1)

(3) - (-3)

(4) - (-o)

(c) What is the additive inverse of the additive inverse

of 3?

(d) Form a generalization from examining (a), (b) and (c)

above.

8.
1 tl

(a) Explain why the symbol " 7 does not name a number in

Z4.

(b) Does " name a number in W?

(c) Which whole numbers have inverses in (W, +)?

(d) Which whole numbers have inverses in (W, )?

9. The additive inverse! of + 1) in (Zs, +) can be named

"- (3 + 1)" or "-4."

(a) In (Zs, +) give the simplest name for each of the

following:

(1) - (1 + (4) -2 + (-4)

(2) - 1 + (-3) (5) - (o + 2)

(3) - (2 + 4) (6) - o + (-2)
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(b) What is the additive inverse of the sum of 2 and 3

in (Zsp+)?

(c) What is the sum of the additive inverse of 2 and the

additive inverse of 3 in (Zsp+)?

(d) Form a generalization from examining 9 (a), (b), and

(c) above.

*10. After you have solved 9 (d) experiment with multiplicative

inverses in (4,). Can you find evidence for a corres-

ponding generalization about multiplicative inverses?

*11. Two examples of true statements about (Zs,+) are the

following:

(i) Ifxand .y are elements of Zs,x+y.y.'-xin (Zs,+).

(ii) If "-x" means the additive inverse of x then

x + (-x) = 0 in (Zsp+), where is any element in Z5.

Explain why the following sentences are true or not

true for every x and .y in Z5.

(a) In (Zsp+), the difference x - y is the same as

the sum of x + (-y). (To subtract y from x, we

may add to x the additive inverse of y. That is

x - y = x + (-y).)

(b) In Zs arithmetic x - y = - (y - x). (The additive

inverse of y - x is x - y.)

(c) In (Zs,*) x -31 = 1, for all x in Z5 excejt x = 0.

12. An important property of (W,.) is the following:

Let x end y be any elements in W. If x y = 0 then x = 0

or y = 0. Explain why there is, or is not, a corresponding

property in the following:

(a) (Zs,*) (b) (Z.)
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1.22 The Associative and Distributive Properties

The following is a famous grammatical puzzle. "Can you

punctuate the string of words in the box so that a correct

English sentence is formed?"

Pohn where James had had had had had had had

It turns out we can solve the above puzzle by using the

grammatical symbols,. " " Try it

In mathematics we also make use of symbols which, like

grammatical symbols, allow us to write expressions which are

clear and correct. The most common "grammatical" symbols used

in mathematics are parentheses. Consider the two expressions

given below where addition is to be performed in (Z4,+).

(2 + 3) + 1 (1)

2 + (3 + 1) (2)

In (1) we see that "2 + 3" has been enclosed in parentheses.

The parentheses are used to "signal" that we should consider

"2 + 3" as naming a single number. Since we are to perform

addition in (Z4,+) this number is 1. Thus, we have

(2 + 3) + 1 = 1 + 1 = 2 in (4,+).

In (2) the parentheses are used to signal that we should consider

"3 + 1" as naming a single number. Thus, we have

2+ (3 + 1) = 2 + 0 =tin (z4,+).

We note that the result of adding the numbers in (1) was the

same as the result of adding the numbers in (2). A question

that we might ask is the following: If a, b, and c are any

triple of numbers in Z4, Will it always be true that

a+ (b + c) = (a + b) +c in (Z4,+)?

ri
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If the answer to the question is ''Yes," for all triples of

numbers in Z4, then we say thdt addition is associative in

(z4,4-).

Next let us examine the same triple of numbers in Z4 but

ask if subtraction is associative in (Z40+).

- 3) - 1 3)

2 - (3 - 1) (4)

We are asking if the result of computing (3) in (;z.,+) is

the same as the result of computing (4) in (Z4,+). Because of

the parentheses in (3) we first compute 2 - 3 in (Z4,+).

Carrying out the subtractions in (3) we have

(2 - 3) - 1 = 3 - 1 = 2 in (Z4,+)

However from (4) we have

2 - (3 - 1) = 2 - 2 = 0

2 - (3 - 1) / (2 - 3) - 1 in (Z4,+)

and we say that subtraction is not associative in (Z4,+): not

associative, because it failed for at least one triple of numbers.

Up to now when we sought out such properties as

"commutativity" or "associativity" we confined ourselves to a

single operation on a set of numbers. The next property that

we shall investigate has a different role to play. It deals

with two operations on a set of numbers. Let us consider the

following two expressions where addition is to be performed in

(Z4,+) and multiplication is to be performed in (Z4,). We shall

indicate that we are working with one set and two operations by

writing "(Z4,+,*)."
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2 (3 + 1) (5)

(2 3) + (2 1) (6)

Again, the parentheses "signal" how our computations

should proceed. In (5), since 3 + 1 is considered as a single

number, we compute as follows:

2 (3 + 1) = 2 0 = 0 in (z4,4-,).

We compute (6) as follows:

(2 3) + (2 1) = 2 + 2 =0 in (4,+,).

Since the computation in (5) and (6) both resulted in 0, we

conclude that

2 (3 + 1) = (2 3) + (2 1).

If for every triple of numbers a, b, and c in Z4 it is

true that

a (b + c) (a b) + (a c) in (4,+,.),

then we say that multiplication is distributive over addition in

(z4,+,.).

Let us examine the same triple of numbers in Z4 but ask

instead, "Is addition distributive over multiplication in

(Z40+,)?" Here we must compute the following in (Z4, +,.):

2 + (3 1) (7)

(2 + 3) (2 + 1) (8)

In (7) we have 2 + (3 1) = 2 + 3 = 1 in (z4,+,*).

In (8) we have (2 + 3) (2 + 1) = 1 3 = 3 in (4,+,).

We conclude that 2 + (3 1) / (2 + 3) (2 + 1) and that

addition is not distributive over multiplication in (Z4,+,).
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Compute the following in

2 (3 - 1)

(2 3) - (2 1)

From (9) we have 2 (3 - 1) =

From (10) we have (2 3) - (2

Note: Although 2 (3 - 1) =

(Z4,+,):

(9)

(lo)

2 2 = 0

1) = 2 - 2

(2 3) - (2

= 0

1) in (z4,+,) we

cannot yet conclude that multiplication is distributive over

subtraction in Z4. Recall that the property must hold for all

triples of numbers in Z4. Experiment further with other triples

of numbers and make a conjecture concerning the existence of a

distributive property of multiplication over subtraction in Z4.

1.23

1.

Exercises

(3 + 0)

3+ (0

+ (3

(4 + 3)

+ 4

+ 4)

+ 3)

+ 3

Compute the following in (Z5,+):

(a) (2 + 4) + 3 (e)

(b) 2+ (4 + 3) (f)

(c) 1+ (2 + 3) (g)

(d) (1 + 2) + 3 (h)

2. Compute the following in. (4,.):

(a) (2 4) 3 (e) (3 0) 4

(b) 2 (4 3) (f) 3 (0 4)

(c) 1 (2 3) (g) 4 (3 3)

(d) (1 2) 3 (h) (4 3) 3

3 Compute the following in (Z6,+,):

(a) 2 (4 + 3)

(b) (2 4) + (2 3)

(e) 3 (o + 4)

(f) (3 0) + (3 4)
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(c) 1 (2 + 3) (g) 4 (3 + 3)

(d) (1 2) + (1 3) (h) (4 3) + (4 3)

4. Compute the following in (Z5,+,):

(a) -4 (3 + (-3) ) (c) -2 (4 - (-3) )

(b) (-4 3) + (-4 -3) (d) (-2 4) - (-2 -3)

5. (a) Is multiplication distributive over subtraction

in 4 ?

(b) Is division distributive over subtraction in Zs?

*6. The property a (b c) = (a b) + (a c) is more

properly referred to as a "left hand" distributive pro-

perty of multiplication over addition. Is there a corres-

ponding "right hand" distributive property namely,

(a + b) c = (a c) + (b c), in (Zs,+,)?

*7. Assume that for all a, b, and c in Zs that

a (b c) = (a b) + (a c) in (Zs, +,*).

(a) Using known properties of (Z5,+) and (Z5,.) can you

prove that a (b + c) = (c a) + (b a)?

(b) Would a (b + c) = (c a) + (b a) "hold" in

(Zm,+,.) where a, b, and c are any elements of Zm
and

m is a whole number greater than 1?

1.24 Summary

1. In this chapter we studied a collection of finite sets

called "clock numbers." We found that there were appli-

cations of these sets dealing with dials, rotations,

codes, etc.
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2. We defined addition, subtraction, multiplication, and

division on these finite sets.

(a) We found there were similarities between clock number

arithmetic and whole number arithmetic: In (W,+) and

in the clock arithmetics we studied such as (Z4,+) and

(Z5,+), we saw that addition is an unrestricted

operation. There are corresponding properties for

both whole number arithmetic and the clock arithmetics

dealing with an identity element for multiplication,

an identity element for addition, commutative proper-

ties for addition and multiplication, associative

properties for both addition and multiplication, a

distributive property of multiplication over addition.

Division by the additive identity is not defined in

either whole number or clock arithmetic.

(b) We found there were differences between clock number

arithmetic and whole number arithmetic: The sets

Z4, Z5, Z12, etc. are finite, whereas the set W is

infinite. Subtraction is a restricted operation on

the set W but not on Z4 or Z7.

Every element in Zm has an additive inverse

whereas only 0 in W had an additive inverse. The

solution sets for corresponding open sentences in

whole number arithmetic and clock arithmetic can

differ greatly. For example: The open sentence

3 x = 3 has the solution set (1) in (W,) whereas

the corresponding open sentence in (Z5,) has the
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solution set (1,3,5).

3. New terms were introduced and used. Among these were

"statement," "variable," "open sentence," "is less than,"

"is greater than," "equation," "inequation," 'solution

set," "empty set," "additive inverse," "multiplicative

inverse," "commutativity," "associativity," "distribu-

tivity." Check over the above terns to see if you under-

stand what they mean. Where there is doubt recheck the

meanings given in the text.

4. As you continue to study mathematics many of the ideas

and terms found in this chapter will be given precise

definitions and meanings. In particular, Chapter 2 will

explore the idea of "unrestricted operation" by consider-

ing many new and interesting operations on sets.

1.25 Review Questions

Make up tables for (ze,+) and (za,).

1. Compute the following in (Z8,+):

(a) 6 + 7 (d) 7

(b) 5 + 3 (e) 3

(c) (7 + 7) + 6 (f) -3

2. Compute the following in (Z8,):

(a) 6 7 (d) (3

(b) 2 ° 4 (e)

(c) 3 (4 5) (f) 51
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3. Compute the following in (Ze,+,):

(a) 3 (7 + 5)

(b) (3 7) + (3 5)

(c) 6 (7 5)

(d) 6 (7 + (-5))

4. Let a and b be any elements of Zs. Explain why

the following is true or false in (Zs,).

If a b =0, then a =0 or b =0.

5. List all the elements of Z8 and their corresponding inverses

in (Zs,+).

6. List all the elements of Z8 and their corresponding inverses

in (Ze,*).

7. Solve the following open sentences in (Zs,+,).

(a) 3 + x 5

(b) y + 2 = 6

(c) 3 x = 5

(d) 2 . y = 0

(e) 3 - 7 = x

(f) 4 z = 0

(g) 3 x =7

(h) -5 x = 7

(i) 2 y = 3

(j) 4= (3 + 5) =x

8. If today is Sunday, what day of the week is 1000 days from

today? Explain your answer.

9. A circular bus route has 20 stops each 5 minutes apart.

Which stop should the relief bus driver go to after the bus

has been out seven and one quarter hours? Call the place

where the route begins "stop 0," and call the first stop

after this "stop 1," etc.
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CHAPTER 2

SETS AND OPERATIONS

2.1 Ordered Pairs of Numbers and Assignments

Suppose you were given a pair of numbers, say 6 and 2,

and were asked to assign a third number to this pair. Such an

instruction might seem unclear, and indeed there are an endless

number of answers that could be given. For example, one person

might assign the number 8, since 6 + 2 = 8. We could show this

assignment simply by writing

(6,2) 8

to indicate that the pair of numbers (6,2) yields the number 8

if one is thinking of addition.

Another person, given the pair of numbers (6,2), might write

(6,2) 3

and say that the pair (6,2) yields the number 3. We would pro-

bably guess that such n person is thinking of division, and we

could write "6 2 = 3."

If we were given the pair (2,6) and thought of division,

we would write

(2,6)

1
since 2 4. 6 = 3, Thus, the pair (2,6) does not produce the

same number as the pair (6,2). The order of the numbers in the

pair is important. For this reason, we speak of an ordered pals

of numbers. In the ordered pair (6,2), 6 is the first component

of the pair and 2 the second.
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Question: Arc the ordered pairs (6,2) and (2,6) assigned

the same number if one is thinking of addition?

Below are several ordered pairs of cumbers. Each pair has

been assigned a third number. In each case, tell how you

think the third number was assigned.

(3,2) r)

(3,2) 1

1)?2 6(21.
2'-

q7-1.4) .18%

(.5o,.25) .125

(3,2) 9

(2,3) 8

The last two assignments in the above list result from

raising a number to a power. Given the ordered pair (3,2),

raising 3 to the power 2 means that we are to use 3 as a factor

twice-- that is, 3 x 3, obtaining 9. This is often written as

32 = 9 (9 is a power of 3; specifically,
9 is the second power cf 3.)

Similarly, given the ordered pair (2,3), we may think of 2

raised to the power 3. This means that we are to use 2 as a

factor 3 times. Thus,

2s = 2 x 2 x 2 . 8 (8 is the third
power of 2.)

This explains the assignments (3,2)-0-9 and (2,3)---8. Cl?arly,

if one is thinking; of raising a number to a power, the ordered

pairs (3,2) and (2,3) are not assigned the same number.
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Questions: What number is assigned to the ordered pair

(2,2) by the process of raising to a power?

To (3,3)? (Notice that the same number may be

used for both the first and second component

of an ordered pair.)

It is often convenient to use a table (as we did in Chapter

1) to show numbers assigned to pairs of numbers. For example,

at the left below is a table showing some of the assignments

made if one thinks of addition. At the right is a table showing

some assignments if one is thinking of raising to a power.

+ 0 1 2 3 4

o o 1 2 3 4

1 1 2 3 4 5

2 2 3 4 5 6

3 3 4 5 6 7

4 4 5 6 7 8

to the
power 1 2

1 1 1 1 1 1

2 2 4 0 16 32

3 3 ® 27 81 243

4 L. 16 64 256 1024

5 5 25 125 625 3125

Do you see how the entries in the tables were obtained? No-

tice that in the second table the entries "9" and "8" have been

circled, emphasizing that (3,2) and (2,3) yield different results.

Question: Suppose a is some whole number. What number is

assigned to the ordered pair (a,1) by the process

of raising to a power? How is this shown in the

table of powers above? What number is assigned

to the ordered pair (1,a) by raising to a power?

How is this shown in the table of powers?
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Below is still another table showing assignments of

numbers to pairs of numbers. These assignments should be

familiar from your work in Chapter 1. Do you see how they were

obtained?

0

0 2 3

1 2 3 0

2 0 1

3 2

2.2 Exercises

6868

Tell what number is assigned to the following ordered pairs

by usual addition.

(a) (5,0) (b) (0,5) (c) (6,6) (d) (218,365)

(e) (365,218) (f) (750,250) (g) (44)

(h) (4,4) (1) (.83,.27)

(j) (2000000,8000000)

2. (a) Working with whole numbers only, list all ordered

pairs of whole numbers to which the number 5 is

assigned by addition. (Remember that (a,b) and (b,a)

are different ordered pairs.)

(b) Again using whole numbers only, list all ordered

pairs to which the number 1 is assigned by addition.

(c) List all ordered pairs of whole numbers to which the

number 0 is assigned by addition.

3. (a) List all ordered pairs of whole numbers to which

24 is assigned by multiplication.
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(b) List all ordered pairs of whole numbers to which the

number 13 is assigned by multiplication.

(c) List all ordered pairs of whole numbers to which 0 is

assigned by multiplication.

4. Tell what number is assigned to the following ordered

pairs by multiplication.

(a) (5,0) (b) (0,5) (c) (8,6) (d) (51,106)

(e) (106,51) (f) (g) (h) (IP)

(i) (.6,6) (j) (.83,.27)

5. In the text, we explained raising a whole number to a

power. 4' means 4 x 4 Of 4 used as a factor 2 times.

Often in mathematics, we use a raised dot "." instead of

an "x" to indicate multiplication. Thus, we may write

4' = 4 4 = 16. An expression such as "ab" is read "a to

the t power," and the number b is called an exponent. We

are assuming that both a and b are whole numbers. With

this in mind, tell what numbers the following name.
3 2 1

(,

1 2

(a) 2 (b) 2 (c) 2 (d) 10 (e) 10

(f) 10
3

(g) 10
4

(11) 10
8

(i) 5
2

(j) 2

4 3 646

(k) 43 (1) 3 (m) 3 (n) 1

6. If we think of "raising to a power" as assigning numbers to

ordered pairs of numbers, what number Is assigned to the

following pairs by "raising to a power?" Remember that we

take the second number as the exponent.

(a) (3,4) (b) (4,3) (c) (4,2) (d) (2,4)

(e) (3,5) (f) (5,3)

7. (a) List all ordered pairs of whole numbers which are

assigned the number 16 under "raising to a power."
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(b) List all ordered pairs of whole numbers which are

assigned the number 10 by "raising to a power."

8. We know that assignments of numbers to pairs can be shown

by a table. Fill in all the cells in the following table

for addition. (Notice in this case that the numbers are

not listed in any particular order.)

+ 5 682 17 8 0 1 1720

5

682

17

8

0

1

1720

9. Copy the table in Exercise 8. Then fill in the cells by

using multiplication instead of addition.

10. (a) In what cases do the ordered pairs of whole numbers

(a,b) and (b,a) produce the same number under addition?

(b) In what cases do the ordered pairs of whole numbers

(a,b) and (b,a) produce the same number under "raising

to a power?"

11. In the list of expressions below, n represents a number.

3 (n2 )

[3 (n2)] + 2

2[3 (n)] - 2
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1

2 (riy

12 I 8
2 (n )

[2 (n3)] + 5

(a) Find what number each expression represents if n = 0.

(b) Find what number each expression represents if n = 2.

(c) Find what number each expression represents if n = 5.

(d) Find what number each expression represents if n = 10.

(e) Find what number each expression represents if n = 100.

(f) Find what number each expression represents if n =
1

*12. In this problem, we look at another way of assigning a

number to an ordered pair of numbers, specifically an

ordered pair of natural numbers (the whole numbers except

zero). Consider the ordered pair (24,16) of whole numbers.

The set of whole numbers which divide 24 is

1, 2, 3, 4, 6, 8, 12, 24)

The set of whole numbers which divide 16 is

(1, 2, 4, 8, 16)

Notice there are some numbers (1, 2, 4, and 8) which divide

both 24 and 16. Of these, 8 is the greatest. Therefore, we

call 8 the greatest common divisor of 24 and 16. If we

agree to assign the greatest common divisor to the ordered

pair (24,16), we will write

( 24 ) 8.

Under this same scheme, we would make the assignment

(12,18) 6. (Do you see why?)

71



-65-

Use the "greatest common divisor" idea to make assignments

to the following ordered pairs:

(a) (6,8) (b) (6,12) (c) (10,15) (d) (100,200)

(e) (21,45) (f) (7,9) (g) (1,10) (h) (4,4)

(i) (21,42) (j) (42,21)

2.3 What Is An Operation?

You know from arithmetic that given an ordered pair of

whole numbers, we can assign a number called their sum. For

example,

(3,5) 8.

Addition assigns to every ordered pair in W one and only one

whole number which is their sum. We call addition an operation

on W and refer to the ordered pair (W,+) as an operational

system.

There are many interesting operations on the set of whole

numbers. As an example, consider the "maximizing" operation.

To illustrate the way the maximizing operation assigns whole

numbers to ordered pairs of whole numbers, consider the ordered

pair (6,2). Of the two numbers making up the pair, 6 is the

larger. Therefore, we assign 6 to the pair.

(6,2) 6.

As another illustration, under this operation we assign 10 to

the ordered pair (3,10). To every ordered pair (a,b), we assign

the larger of the two numbers, a and b. It is possible that a

and b may be the same number, as in the pair (3,3). In such a

case, we shall simply assign the number itself to the pair.

(3,3) 3.
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Do you see that here again there is no doubt about the number to

be assigned? Every ordered pair of whole numbers is assigned

one and only one whole number. Therefore, like addition, maxi-

mizing is an operation on the set of whole numbers, and (W,max)

is an operational system.

Now suppose we consider "taking the average" of two whole

numbers. (The average we are speaking of here is more properly

called the arithmetic mean.) The average of 5 and 13 is 9, the

average of 6 and 10 is 8. If we write these as assignments, we

have the following:

(6,10) 8;

(5,13) 9.

Now take a pair such as (5,8). There is no whole number which

is the average of 5 and 8. You may know that 4' is the average

here, but 6
1
is not a whole number. If we are working only with

whole numbers, there is no number to be assigned to the pair

(5,8). Therefore averaging is not an operation on the whole

numbers, because we have a pair of whole numbers to which no

assignment can be made. However, averaging is an operation on

the set of numbers of arithmetic, since the average of any two

such numbers can be computed. (See Exercise 17.)

Let us look at each of these examples again:

Addition: Here we have (3,5) Since we have the

well known symbol "+" for addition, we could

just as well write

(3,5) 3 + 5.

In this case it is easier to write "8," but suppose we want to

talk about any pair of whole numbers. We might designate this
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pair as "(a,b)" and then write

(a,b) a + b, for every whole number
a and every whole
Humber b

under the operation of addition.

Maximizing: In working with this operation on the whole

numbers, we can write (8,3) 8. If we

use "max(a,b)" to mean the greater of the two

numbers a and b, we can write

max(a,b), for every whole
number a and every
whole number b

under the operation of maximizing. In the case of addition, the

symbol "+" is written between the symbols "a" and "b." We can

also do this in the case of "max" and write

(a,b) a max b, for every whole number
a and every whole num-
ber b.

Averaging: We do not have a symbol for the average of two

numbers. But again we can invent one. Let us

agree that "ai, " shall mean, "the average of the

whole numbers a and b." Thus "6v8 = 7" is just

another way of indicating the assignment

(6,8) 7

if one is thinking of averaging. As we saw

earlier, however, 5V8 is not a whole number, and

V is not an operation on the whole numbers.

Question: Name five other ordered pairs (a,b) of whole

numbers for which aVb is not a whole number.

74



-68-

Below are three tables showing the assignments for

certain pairs of whole numbers under the "+" and "max" operations

and for averaging. An important point to notice is that there

are open cells in the table for V (averaging). The fact that

these cells are open emphasizes once again why averaging is not

an operation on the whole numbers; there just are not any whole

numbers which properly go in these cells.

+

0

1

3

4

0 1 2 3 4 max 0 1 2 3 4

0 1 2 3 4 0 0 1 2 3 4

1 2 3 4 5 1 1 1 2 3 4

3 4 5 6 2 2 2 2 3 4

3 4 5 6 7 3 3 3 3 3 4

4 5 6 7 8 4 4 4 4 4 4

We have seen three symbols "+," "max," and "V" used to

denote schemes for assigning whole numbers to ordered pairs of

whole numbers. V is not an operation since aVb is not a whole

number for every ordered pair (a,b) of whole numbers. On the

other hand, + and max are operations since a + b and a max b are,

for every pair (a,b), unique whole numbers. These examples lead

us to a general definition of an operation on the set of whole

numbers.

Definition: Let * be a scheme for assigning numbers to

ordered pairs of whole numbers. If * assigns

to each ordered pair (a,b) of whole numbers one

and only one mole number then * is a binary

operation on the set of whole numbers.
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The word " binary" in this definition is worth some attention.

The prefix "bi-" is associated with the idea of a pair, or two

things (think of "bicycle" and "biped," for instance). Thus, a

binary operation is one which assigns a number to a pair of

numbers. Suppose c is the whole number assigned to the ordered

pair (a,b) by operation *. Then we write

a* b = c.

(If you think again about addition of whole numbers, you will

see that this is what we have always done there. For instance,

+ assigns the number 10 to the ordered pair (6,4), and we write

"6 + 4 = 10.")

The notion of operation is a very general one and may be

applied to any set, not just the set W of whole numbers. As one

example, consider again the operation of maximizing. This time

we shall work with the set S = (1,2,3,4,5), which is a finite

subset of the whole numbers. The table below shows a max b for

the ordered pairs (a,b) of numbers in S.

max 1 2 3 4 5

1 1 2 3 4 5

2 2 2 3 4

3 3 3 3 4 5

4 4 4 4 4 5

5 5 5 5 5 5

Notice from this table that for every ordered pair (a,b) of num-

bers in S, a max b is a number in S. Therefore, "max" is an

operation on the set S as well as on the set W of whole numbers.
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The last example suggests a more general definition of

operation.

Definition: A binary operation * on a set S is an

assignment which assigns to each ordered pair

(a,b) of elements in S, one and only one

element c in S.

The definition says essentially the same thing as the earlier

one, except that this time we did not restrict ourselves to

the set W of whole numbers. In fact, the elements of S need not

be "numbers" at all! (See Exercise 16.) We denote the operation-

al system consisting of the set S and the operation 0 by "(S,*)."

2.4 Exercises

1. What number does each of the following ordered pairs of

whole numbers produce under the operation of maximizing

discussed in the text? (When "a" is used, it is meant to

be a whole number.)

(a) (0,0) (b) (0,1) (c) (1,0) (d) (5,15) (e) (15,5)

(f) (30,100) (g) (2010,2008) (h) (999,1000)

(i) (a,a + 1) (j) (a,1 a) (k) (a,0).

2. Evaluate each of the following in W:

(a) 6 max 2 (b) 6+ 2 (c) 6 . 2 (d) 6- 2 (e) 6: 2

(f) 588 + 92 (g) 1001 - 865 (h) 88 x 97 (i) 483 4. 3

(j) 82 x 10,000

3. Is subtraction an operation on the set of whole numbers?

(Hint: Does subtraction assign a whole number to the

ordered pair (2,5)?)
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4. Is division an operation on the set of whole numbers?

5. Suppose we decide to assign to every ordered pair of whole

numbers (a,b) a whole number which divides both a and b.

Explain why such a procedure does not define an operation.

(Hint: Consider the pair (8,12). Is there more than one

possible assignment?)

6. In this problem, let "a*b" mean "the greatest common di-

visor of a and b." (See Exercise 12 of Section 2.2.)

(a) Is * an operation on the set

W = (0, 1, 2, 3, 4, ?

(b) Is * an operation on the set

N = (1, 2, 3, 4, 5, ...) ?

7. In this problem, we shall consider a new way of assigning a

number to an ordered pair of natural numbers (the whole

numbers except zero). To explain it, we shall use the

ordered pair (6,8). Now 1 x 6 = 6, 2 x 6 = 12, 3x 6 = 18,

etc. Therefore 6, 12, 18, etc., are called multiples of 6.

The list of multiples of 6 may be indicated as follows:

6, 12, 18, 24, 30, 36, 42, 48, 54, ...

In the same way, the multiples of 8 may be shown in the

following way:

8, 16, 24, 32, 4o, 48, 56, 64, ...

Of course, 6 and 8 have some multiples in common, such as

24, 48, 96, etc. Of these, 24 is the smallest, and we shall

call it the least common multiple of 6 and 8. In this

problem, let us use

lcm(a,b)
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multiple of a and 2." For example

lcm(8,6) = 24, lcm(10,15) =

the following:

(a) icm(2,3)

30. Do you see why? Evaluate

lcm(1,5)

(b) lcm(5,10) (g) lcm(5,1)

(c) lcm(10,5) (h) lcm(100,1000)

(d) lcm(7,11) (i) lcm(90,70)

(e) lcm(11,7) (j) lcm(14,42)

8. Suppose we continue with the notion of least common multiple

used in Problem 7. But this time let us work with the set W

of whole numbers, which means that 0 is now included in our

set. Thus, the set of multiples of 6 is

(o, 6, 12, 18, 24, 30, 36, ...)

Zero is included since 0 x 6 = 0. Similarly, the set of

multiples of 8 is

(0, 8, 16, 24, 32, 40, 48, ...)

Now, with the understanding that "lcm(a,b)," means "least

common multiple of a and b," where a and b are whole numbers,

evaluate the following:

(a) lcm(2,3)

(b) lcm(5,10)

(c) lcm(1,5)

(d) lcm(5,1)

Do you see why lcm should be used for natural numbers and

not for all whole numbers?

9. Answer the following questions on the basis of your work in

Problems 7 and 8:

(a) Is lcm an operation on the set N of natural numbers?

(b) Is lcm an operation on the set W of whole numbers?
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Be prepared to defend your answers.

10. Consider the set S = (0, 1) which is a finite set containing

exactly two numbers.

(a) Is ordinary addition an operation on set S? Construct

a table showing all possible sums.

(b) Is ordinary multiplication an operation on set S? Con-

struct a table showing all possible products.

11. The set of even whole numbers is indicated below:

(0, 2, 4, 6, 8, 10, ...)

(a) Is addition an operation on the set of even whole

numbers?

(b) Is multiplication an operation on the set of even

whole numbers?

(c) Is raising to a power an operation on the set of even

whole numbers?

12. The set of odd whole numbers is indicated below:

(1, 3, 5, 7, 9, 11, ...I

(a.) Is addition an operation on the set of odd whole

numbers?

(b) Is multiplication an operation on the set of odd whole

numbers?

(c) Is raising to a power an operation on the set of odd

whole numbers?

13. In Chapter 1 we worked with some finite systems. In this

problem, we shall use the system (Z2,+). (A physical model

for this system is furnished by a clock face with numerals

"0" and "1.")
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(a) Construct a table for (Z2,+).

(b) According to the definition of operation in Section

2.3, is + an operation on the set Z2? Why or why not?

14. Let S be a set that has two elements, a and b. That is,

S = (a, b). We don't know what "things" a and b are, but

suppose we are told that a is assigned to the ordered pair

(a,a) and to the ordered pair (b,b) and b is assigned to

the ordered pair (b3a) and to the ordered pair (a,b).

These assignments are displayed in the table below:

a b

a a b

b a

Does this table define an operation on the set (a,b)?

Compare the table to that in part (a) of Problem 13. Do

you see any similarities?

15. In the following "assignment" table, "a," "b," and "c"

denote three different objects.

a b

a a b

b b c

(a) Does this table define an operation on the set (a,b)?

(b) Does the table define an operation on the set (a,b,c)?

16. Although we have not yet talked about geometry in this

course, you probably have some idea of what a point is.
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Given two points, you can find the point midway between

them. This point is called the midpoint of the two given

points. For example, P and Q are two points in the drawing

below, and M is their midpoint.

(a) Given an ordered pair of points (P,Q), where P and Q

are different points, do P and Q have one and only one

midpoint?

(b) If P and Q are different points, is the midpoint

assigned to the ordered pair (p,Q) the same point as

is assigned to the ordered pair (Q,P)?

(c) What midpoint would you assign to the ordered pair (Q,Q)?

(d) Consider the set of all ordered pairs of points. If

mid(P,Q) means "the midpoint of P and Q," is mid an

operation on the set of all points?

(e) If P, Q and R are three points as below, locate

mid(mid(P,Q),R).

P Q

. R

Is mid(mid(P,Q),R) the same point as mid(P,mid(Q,R))?

17. While averaging is not an operation on the set W of whole

numbers, it is an operation on the set of numbers of arith-

metic. Compute the following, where "V" means the assign-

ment is to be the average of the two numbers making up
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the pair.

(a) 2 V k (b) 2i V 5; (c) 2.8 v 6.4

(d) 102 V 14 (e) .624 V .875 (f) 911 V 14

2.5 Computations with Operations

You know by now what is meant by a binary operation on a

set. You have seen that the symbol "*" is often used for an

operation. (We have used special symbols such as "+" and "max"

also.) In fact, any symbol at all may be used for a particular

operation, as long as it is clear to what operation the symbol

refers. In this and following sections, we are going to work

with several different operations, and it would be troublesome

to invent a new symbol for each one of them. On the other hand,

we cannot use "*" for all of them. Therefore, we shall make use

of subscripts, and denote the operations by symbols such as

411, *2, *3, etc.

Now let us define six different operations, some of them

familiar and others probably new to you.

* a* b = a b In other words, the *1 operation

is ordinary multiplication of

whole numbers. For example,

5*13 = 15.

*2: a*2b = a + b For example, 5*23 = 8.

*3: a*3b = a max b For example, 5*33 = 5.

*4: a*4b = a In other words, this operation
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aqigns to every ordered pair

the first number of the pair.

For example 5*43 = 5, but

3*45 = 3.

*s: a*sb = 17 Notice that this operation

assigns the same number to

every pair.

*8: a *eb = a2 + b2 For example 54163 = 52 + 32

25 + 9 34.

In order to see how to compute with these six operations, we

look at some examples.

Example 1: Find 34162.

The *8 operation assigns to every ordered pair

(a,b) the number a2
b
2

. In our example, a.

is 3 and b is 2. Therefore

3*82 = 32 +22 = 9 + 4 13.

Example 2: Find (34162)4124.

The fact that "34162" has been enclosed in paren-

theses means that we are to consider this as a

single number. And, from Example 1, we know

that this number is 13. Hence we may write

(3*82)*24 = 1341'24.

But the *2 operation is ordinary addition of

whole numbers; so 1341'24 = 17. Therefore, we

have (346'62)44'24 = 13*24 = 17.
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Example 3: Find 3*6(2*24).

Compare this with Example 2. Although the same

numbers and the same operations are involved,

the parentheses have been differently placed.

In this example, we are to consider "2*24" as

a single number. since *2 is ordinary addition,

this number is 6. Thus we have

3*(3(2*24) = 3*26

= 32 + (Rember how the

= 9 + 36 operation is defined.)

= 45

We see that the results in Examples 2 and 3 are not the

same. This points up the importance of parentheses in mathe-

matical expressions.

Example 4: Find ( (4*47)*82)*110.

This expression contains two different

"signals" in the form of parentheses. When we

have parentheses within parentheses, it is

always understood that the innermost pair is to

be dealt with first.

We begin with (4*47) which is to be taken as a

single number. From the way in which the *4

operation is defined, we know that 4*47 is 4,

since 4 is the first number of the pair (4,7).

So, we have for a first step:

((4*47)*62)*110 = (4*(12)*110

= 2044'110
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"4*e2" has been replaced by "20." Finally,

we know that 204'110 is 200. If all the steps

are written together, we have the following:

((4*47)*e2)*110 = (4*52)*110

= 20*110

= 200.

Sometimes, but not always, when an expression involves

more than one pair of parentheses, a pair of brackets may re-

place a pair of parentheses. For instance, the expression of

Example 4 might be written

((4*47)*(121110.

In the following example, the steps have been listed with-

out any additional explanation. Be sure that you can explain

each step.

Example 5: Find (4*27)*4((3*12)*35).

(4*27)*4((3*12)*35) = 11*4(6*35)

= 11*46

= 11.

2.6 Exercises

In problems 1 through 20, the operations are those defined

in Section 2.5 of the text.

1. (a)

(b)

(c)

(d)

544'12

541'22

5*32

5*42

=

=

(e)

(f)

5*52

5'142

=
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2. (a) (7%3 )*3 8 =

(b ) 7112 (3'128) =

3. (a) 109%111 =

(b) 111*3 109 =

4. (a) 58%32 =

(b) 32%58 =

5. (a) 42%1 =

(b ) 42*20 =

(c ) 42%0 =

6. (a) (3%5 )*24 =

(b) 3*2 (5*2 4) =

7. (a) (7%5)4128 =

(b) 7% (5% 8) =

8. (a) 5*2 (n*13 ) =

(b ) (5%2 )*13 =

9. (a) (4204'53 )%. 85 =

(b ) 420% (3*1 85) =

10. ( (14%3 )% 2) *110 =

11. 15*3 ( (3*25 )*2 889) =

12 . (8*310 )41515 ] %187 =

13. ( (211'63 )4%34 )41e5 =

15 . 3*1 (5*2 6) =

16. 3*2 (5% 6) =

17. [5*1 (2% 3) ] *2 [5*2 (2% 3] =

18. (8% 12 )*3 (8*5 12 ) =

19. ( ( ( (24112 )*22 )*32 )% 2 )*I52 =

20. ( ((( (24112 )*2 2 )*32)% 2 )*52 )*52 =

87

(c) 2% (3%5) =

(d) (2%3 )*6 5 =

(c ) 109%111 =

(d) 111%109

(c ) 58%32 =

(d) 32%58 =

(d) 615%1 =

(e ) 615%0 =

(f) 615%0 =

(c ) 3% (1*64) =

(d) (3*sl )% 4 =
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21. Parentheses are also important in expressions involving

the ordinary computations in arithmetic, as the following

problems illustrate.

(a) (3 + 4) =

(b) (i"
)

+ (1-- 4) =

(c) {(62 3) + 3] 10

(d) 2 +23) +2=

(e) 4 (4

(f) + (2 + ) =

(g) (2 +2) =

(h) (((225" i) + 4) - 221 =

22. Make up an operation over the whole numbers, and call it 44.7.

(Caution: Be sure that it is an operation!) Then compute

the following:

(a) 844.715 = (c) 5*7(2*73) =

(b) 15*78 = (d) (5*72)*73 =

23. Consider the following expressions:

2(n); (2n)3

They are not the same. The first one is often written as

"2n3," without parentheses.

(a) If these expressions are in (W,) are there any values

of n for which

2n3 = (2n)3?

(b) What is your answer if the expressions are in (Za,)?
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2.7 Open Sentences

Consider an open sentence in W such as

5*x = 8

The operation *2, according to our definition, is ordinary

addition of whole numbers. Therefore, the question posed (and

it is an easy one) is this:

Is there an ordered pair (5,x) to which 8 is assigned by

the operation of addition?

The answer is obvious; x must be 3 in order for this assignment

to be made. Therefore we say that 3 is a solution of the open

sentence "5*2x = 8." In this case, it is easy to see that 3 is

the only solution. But some open sentences have more than one

solution; so you must be careful when "solving" en open sen-

tence that you indicate all the solutions, not just some of them.

Example 1: Solve 3*3n = 3 in W.

The *3 operation assigns max(a,b) to every

ordered pair (a,b). Therefore, the open sen-

tence will be true if and only if max(3,n) = 3.

But this in turn will be true if n is 0, 1, or

2. It will also be true if n is 3, since

max(3,3) = 3. Do you see, however, that it will

no longer be true if n is a whole number greater

than 3? Therefore the solution set of the open

sentence is

0, 1, 2, 31.

In this case, we have exactly four solutions.
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Example 2: Solve 2*3a = a in W

Under the *3 operation, the assignment (2,a).-4.a.

means that a is the greater of the two numbers,

2 and a. Therefore, in order to make the state-

ment true, a must be 2 or any number greater

than 2. There are infinitely many solutions!

The solution set is

(2, 3, 4, 5, ...).

Example 3: Solve a*82 = 29 in W.

From the definition of the operation 41.6 we

know that if this sentence is to be true, then

a' + 2' must be 29. But 2' = 4; so a' + 4

must be 29. Now, if + 4 is 29, do you see

that a' must be 25?

However, 25 is not a solution; we are looking

for a, not a2. But of course if a' is 25,

then a is 5.

The complete list of steps might be written as

follows:

a' + 4 29

a3 = 25

a = 5

Is 5 the only whole number solution?
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2.8 Exercises

In 1-26 find the solutions of the open sentences using the

indicated operations as defined in Section 2.5. If there is

more than one solution, be sure to find all of them. Use only

whole numbers.

1. 8*2 a = 11 14. 85*sa = 17

2. 11*2a = 8 15. 85*sa = 18

3. 5*1a = 10 16. 2*sa = 13

4. 10 *l a = 5 17. a*82 = 13

5. n*281 = 103 18. 3*sa = 25

6. n*2103 = 81 19. 3*sa = 30

7. n*117 = 187 20. 5*4a = 10

8. n*1187 = 17 21. n*4 15 = 6o

9. 5*3a = 5 22. 31,01 =3

10. a*36 = 6 23. 52*sn = 1

11. 42*4a = 21 24. 32*1 n = 321

12. a*442 = 42 25. n*232 = 321

13. 42*4a = 42

26. (a) 832*1 a = 832 (d) 832*4a = 832

(b) 832412a = 832 (e) 832*sa = 832

(c) 832413a = 832 (f) 832*(ja = 832

27. Before solving the following open sentences in W, it

is important to understand the following: Suppose you

are asked to solve the open sentence "a + a = 6," where

"+" is ordinary addition. Since 3 + 3 = 6, 3 is a

solution. Notice that "a" is used more than once in

the sentence, and the same number must be used for each
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"a" in the sentevoe. Thus, although 4 + 2 = 6, this does

not give us a solution to the sentence.

(a) 3*la = a*13

(b) 3*211, = a*23

(c) 3*3n = n*33

28. (a) a*ea = 72

(b) a*la = 25

(c) n*In = 24

(d) n*2n = 242

(e) a*2a. = 243

29. (a) n*I(n*In) = 8

(b) a*s(a*Lsa) = 17

(c) n*3(n*3n) = 23

2.9 Properties of Operations

(d) 3*4n = n*43

(e) 3*6x = x*53

(e) 3 *ax = x*e3

(f) a*la = 2

(g) x*ex = 17

(h) x*3x = 5

(i) 014 a = 5

a*sa = 5

(d) a*3(a*ea) = 68

( e ) n*4 (n*4n ) = 108

(f) a *2(a *2a) = 9

Referring to the operations defined in Section 2.5, tell

what number each of the following expression names:

5*32 5*42

24135 2345

8*37 8*4 7

7*3 8 7*4 8

15*3100 15*4100

100*315 100*415

In the *3 operation, does the order of the numbers affect

the number produced? It is easy to see from the way *3 was

defined, that the ordered pair (a,b) will always produce the

same number as the ordered pair (b,a). We may state this
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formally as follows:

For every whole number a and every whole number b

a*3b = b*3a,

This is a statement of the commutative property of *3, and we

say that *3 is a commutative operation on W. (You will recall

the use of the word "commutative" from Chapter 1.)

From the list above, we see at once that the *4 operation

is not commutative. This conclusion follows from the fact that

5*42 2*45, even without looking at the rest of the examples.

We say that "5*42 / 2*45" is a counterexample; that is, it is

an example counter to (or against) the commutativity of *4. It

is often easy to show that some general statement is false

simply by finding one counterexample.

Again referring to the operations of Section 2.5, tell

what minter each of the following expression names:

(2*83)*45 (2*43)*45

2*4(3*155) 2*4(3*45)

441.3(1*43) 44,4 (14'43 )

(4*31)*36 (4*41)*43

(2 *62) *66 (2*42)*46

2413(2%6) 2*4 (2*46)

From these examples, we see, for instance, that (2*43)*45

2414(3%5); that is, the result is the same whether the last two

numbers or the first two numbers are associated by parentheses.

The same is true for the other examples using the *4 operation.

It is ra fact true no matter what three numbers are selected.

We may state this as follows:
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For every whole number a, every whole number b, and every

whole number c,

(a*4b)*4c = a*4(b*4c).

This is a statement of the associative property of *4, and we

say that *4 is an associative operation on W.

Question: From the list above, can you find a counterexample

showing that *8 is not an associative operation?

Next, tell what number each of the following

expressions names:

5*30 541'80

0 *35 041'35

142*30 142*80

O*3142 044'8142

55*30 55*60

0 *355 04'855

How may the "behavior" of the number 0 under the *3 oper-

ation be described? Do you see (from the way the *3 operation

was defined, not just from the illustrations above) that for any

whole number a, *3 assigns to the pair (8,0) the number a it-

self? It also assigns a to the pair (0,a). In other words, for

any whole number a, a*30 = a, and 04138. = a. We often put these

statements together in the following way:

For every whole number a, a*30 = O*3a = a..

This statement says that 0 is an identity element for *3. (When

0 is put in a pair with any number a, *3 produces "identically"

the same number a.)

Question: Can you give a counterexample to show that 0 is

not an identity for *0 Is there a number which
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is an identity element for *6?

Let us look again at the operational system (z6,+) studied

in Chapter 1. The appropriate table is shown below:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

The table shows clearly that + is an operation on the set Z3.

Why? Furthermore, we see that 0 is the identity element. Now,

note the following assignments:

0(0,0)

0(1,2)

(2,1) 0

What we have done is to list the ordered pairs of numbers which

are assigned the identity element 0. As you recall, the numbers

in such a. pair are called additive inverses. The numbers 2 and

1 are inverses, since 2 + 1 = 0. We also say that "2 is the

inverse of 1" and "1 is the inverse of 2." This is the same way

we shall use the word "inverse" when speaking of any operational

system.

Question: What is the inverse of 0 in (z6,+)?

In this section, we have looked at four important features

of operations: commutativity, associativity, identity element,

and inverse elements. Let us now try to summarize them by using

the "*" symbol to denote a binary operation on a set S.
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1. Commutativity

* is commutative if for every

a in S, and every b in S,

a*b = b* a.

2. Associativity

* is associative if for every

a in S, every b in S, and every

c in S,

(a*b)*c = a*(b*c).

3. Identity

Suppose e is an element of the

set S. e is an identity element

for (S,*) if for every a in S,

a*e = e*a = a.

4. Inverse

Suppose e is an identity element

of *. Then a and b are inverses of

each other if

a*b = b*a = e.

In the exercises, you will have a chance to apply these defini-

tions to many different operations. This should help you to

see clearly what they mean.

2.10 Exercises

1. Tell what whole number is named by each of the following.

Warning: Some of the expressions do not name any whole

number at all.
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(a) 82 + 517 (e) 82 x 517

(b) 517 + 82 (f) 517 x 82

(c) 517 - 82 (g) 816:-8

(d) 82 - 517 (h) 8 = 816

2. Which of the following are true for every whole number

a, and every whole number b?

(a) a+b=b+ a

(b) a-b=b- a

(c) ab=b a
(d) a+b=b+ a

3. Which of the following statements are true?

(a) Addition of whole numbers is commutative.

(b) Subtraction of whole numbers is commutative.

(c) Multiplication of whole numbers is commutative.

(d) Division of whole numbers is commutative.

4. (a) Are there any whole numbers a and b for which

a - b = b - a?

(b) Are there any whole numbers a and b for which

a b b a?

5. Look again at the six operations defined in Section 2.5.

Which of these are commutative operations? (Give a

counterexample for each operation which is not commutative.)

6. Tell what whole number is named by each of the following:

(a) (12 + 6) + 2 (e) (12 x 6) x 2

(b) 12 + (6 + 2) (f) 12 x (6 x 2)

(c) 12 - (6 - 2/ (g) (12 6) + 2

(d) (12 - 6) - 2 (h) 12 + (6 + 2)
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7. Which of the following are true for every whole number

a, every whole number b, and every whole number c?

(a) (a + b) + c = a + (b + c)

(b) (a - b) - c = a - (b c)

(c) (a b) c = a (b c)

(d) (a 4- b) c = a4.. (b c)

8. Which of the following statements are true?

(a) Addition of whole numbers is associative.

(b) Subtraction of whole numbers is associative.

(c) Multiplication of whole numbers is associative.

(d) Division of whole numbers is associative.

9. (a) Are there any whole numbers a, b and c for which

(a - b)-c = a - (b - c) ?

(b) Are there any whole numbers a, b and c for which

(a b) c = a (b c)?

10. Look again at the six operations defined in Section

2.5. Which of these do you think are associative

operations? Try to find a counterexample for each

operation which is not associative.

11. (a) Evaluate the following:

15 + 0; 0 + 15; 312 + 0; 0 + 312.

(b) Name an identity element for additicn of whole

numbers. Is there more than one identity element?

(c) Evaluate the following:

15 x 1; 1 x 15; 312 x 1; 1 x 312.

(d) Name an identity element for multiplication of

whole numbers. Is there more than one identity

element? 98
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12. Give a counterexample showing that the number 1 is not

an identity element for the operation *3 on the set

of whole numbers.

13. Notice that although 2 - 0 = 2, it is not true that

0 - 2 yields 2. Therefore, 0 is not an identity ele-

ment for subtraction of whole numbers. (Look again

at the definition of identity element if' you do not

see why this is the case.) Is there an identity

element for division of whole numbers?

14. Construct a table for (4,+).

(a) Is + a commutative operation here? (How does

the table show this?

(b) Is + an associative operation? (Is there a

counterexample?)

(c) Is there an identity element in (Z6,+)?

(d) List all pairs of numbers which are inverses

for +.

15. Construct a table for (zs,).

(a) Is commutative?

(b) Is associative?

(c) Is there an identity element in (Z8,)?

(d) List all pairs of numbers which are inverses

for .

16. Look again at exercises 16 of Section 2.4, where we

introduced an operation which assigned to every pair

(P,Q) of points a midpoint. Call this operation mid

in this problem.
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(a) Is it true that PmidQ = QmidP for every point P

and every point Q?

(b) Is it true that (PmidQ)midR = Pmid (QmidR) for every

point P, every point Q, and every point R?

17. In this problem, we introduce a new operation on the set

of pairs of points in a plane. (Think of a plane as simply

a flat surface like the top of a desk.) Let P and Q be two

points as below. Draw a line through these two points. We

shall define P*Q for this problem as follows:

P*Q is the point R which is on the line through P and Q, on

the "other side" of Q from P and at the same distance from

Q as P.

Q R

P*Q = R

We say in this case that "R is the reflection of P in Q."

(a) How could you define P*P?

(b) Show * is an operation on the set of points in the

plane.

(c) Is this operation commutative?

(d) Is this operation associative?

(e) Does the operation have an identity element?

18. The table below defines an operation A over the set

b, c).

A b 8 c

b a C

a a c b

c c b a
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(a) Is A an associative operation?

(b) Ise a commutative operation?

(c) Does A have an identity element?

(d) If there is an identity element, list all pairs of

inverse elements.

19. (a) Consider the system (W,+); that is, addition

of whole numbers.

Does the number 8 have an inverse in this system?

Does the number 0 have an inverse in this system?

(b) Consider the system (141,.); that is, multiplication

of whole numbers.

Does the number 8 have an inverse in this system?

Is there a number which does have an inverse in this

system?
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0 0 1 2 3 4

1 1 2 3 4 0

3 4 0 1

3 4 0 1 2

4 0 1 2 3
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(zs,+)

1 2

0 0 1 2

1 1 2 3

2 2 3 0

3 3 0 1

(z4,+)

3

0

1

2

1

2

3

4

1

2

3

0 0 0 0 0

0 1 2 3 4

U 2 4 1 3

0 3 1 4 2

o 4 3 2 1

(4,)

1 2 3

0 0 0 0

0 1 2 3

0 2 0 2

0 3 2 1

(4,)

Suppose that two people are asked to choose an element

from 4 without telling what number they have chosen. Each,

however, is to write some true sentence about his "unknown"

number. The first person calls his number a and writes the

following statement:

3 + a = 2.

The second person, without knowing what the first has written,

calls his number b and writes the following:

3 + b = 2.

What conclusion can be drawn? It is apparent, from a glance at

the (zs,+) table, that a is 4 and that b is also 4, because 4 is

the only number which, when added to 3, yields the number 2 in
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(Zs,+). In order words, a and b name the same number, and we

may write

a = b.

There is an important idea suggested here. Notice that

from the statements made by the two people, we knew the following:

3 + a = 3 + b,

since the expressions on the two sides of the "=" sign were

both given as equal to 2. We were then able to conclude:

a = b.

Would we have been able to draw the same conclusion if

3 + a and 3 + b had both been given as equal to 3, instead of

2? The answer is "yes," since in such a case both a and b

would have to be 0. In fact, as you can verify yourself, rs

long es 3 + a = 3 + b, we may conclude that a and b are the

same number. Thus, we write:

In (z5,+), if 3 + a = 3 + b, then a = b.

There is nothing special about the number 3 in this

argument. If, for instance, we know 2 + a = 2 + b or that

0 + a = 0 + b or that 1 + a = 1 + b or that 4 + a = 4 + b, we

can still conclude that a and b are the same number. To

summarize, let a, b, c be numbers in Z.

If c + a = c + b in (Z$,+), then a = b.

This is known as the cancellation law fo- addition in Zs.

Now let us look at (Z4,). Suppose we know that a and b

are two numbers in Z4, and we know further that

2 a = 2 b.

Can we conclude that a and b are the same number? Be careful!
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At first, it might seem that this conclusion is justified. But

look at the table for (Z4,.). Do you see that

2 1 = 2 and also 2 3 = 2?

This shows up clearly in the table since the number 2 appears

more than once in a row:

1 2 3

1

2 0 --,...

In this case, 2 1 = 2 3, but 1 / 3. Hence, there is no

cancellation law for multiplication in (Z4,). (Note also

2 0 = 2 2, but 0 / 2.)

Next, look at the table for (Z6,'). Is there any number

which appears more than once in any row of tt,- table? Surely

0 does, since every entry in the first row is "O." So, even

if we know

0 a = 0 b,

we cannot conclude that a = b. (For example, a might be 2, and

b might be 3; yet 0 2 = 0 3.) However, no number except 0

appears more than once in any row. Therefore,

In (Z5,-), if c I 0 and c a = c ' b,

then a = b.

Thus we have a cancellation law in (Z5,.) provided the numbers

we "cancel" are not zeros.

Question: Examine the table for (Z4,+). Is there a

cancellation law in this system? Is there an

easy way to tell from the table?

In the following examples, we,investigate some cancellation
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laws involving whole numbers. Specifically, we shall work

with the systems (140+) and (W,.).

Example 1: If 4 + a = 4 + b, is it true that a = b?

The answer, of course, is "yes." Recall that

in the addition table for whole numbers, no

number appears more than once in any row (al-

though the table goes on without end).

Example 2: If a + 4 = b + 4, does a = b?

The answer again is "yes." In fact, since + is

a commutative operation on W, this is essential-

ly the same as Example 1.

Example 3: If 4 a = 4 b, does a = b?

Once again, the answer is "yes." For instance,

if 4 a = 20, and 4 b = 20, then both a and

b are 5. Because of commutativity, we can also

say, "If a 4 = b 4, then a = b."

Example 4: If 0 a = 0 b, does a = b?

NO! Recall that in the multiplication table

for whole numbers, "0" is the entry in every

cell of the first row. Thus 0 2 = 0 58,

since both products are 0; but 2 / 58.

From examples such as these, it seems reasonable to formulate

the following cancellation laws for addition and multiplication

of whole numbers.

If a, b and c are whole numbers, and

if c + a = c + b, then a = b.
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If a, b and c are whole numbers with c 0, end

if c a = c b, then a = b.

Are you clear as to why we require c / 0 in the cancellation

law for multiplication of whole numbers? (If not, see Example

4 above.)

Since addition and multiplication of whole numbers are

each commutative operations, these cancellation laws could just

as well have been stated in the following way

If a + c = b + c, then a . b.

If e c = b c (and c / 0), then a = b.

We have now seen several systems in which cancellation

laws are possible, and et least one, (z4,), where there is no

cancellation law. The notion of a cancellation law in en

operational system may be defined in general es follows:

Definition: If (S,*) is en ouerational system, we sty

that there is a cancellation law in (S,*)

provided that the following holds. If e, b,

c are in S and

if a * c = b * c, then a . b.

2.12 Exercises

1. Suppose that a and b ere whole numbers such that

5 a = 95 and 5 b = 95

What number is a? Whet number is b?

2. Suppose that x and y are whole numbers such that

x + 79 - 117 end y + 79 - 117

What number is x? What number is y?
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3. Suppose a, b, and c are whole numbers. What conclusions

can you draw from the following?

(a) c + a = c + b.

(b) c a = c b, where c 0.

(c) 0 a = 0 b.

4. Consider again the "maximizing" operation on the whole

numbers.

(a) Suppose there are two whole numbers a and b such that

4 max a = 4 max b.

Can you conclude that a = b?

(b) Is there a cancellation law for (W,max)?

5. Let mid be the operation which assigns to every pair of

points (P,Q) their midpoint. (See problem 16 of Section 2.4.)

Is there a cancellation law for this operation; that is, if

P mid 0 = P mid S, where P,Q, and S are points, can you be

sure that Q and S name the same point?

6. For which of the following systems are there cancellation laws?

(a) (za,+) (b) (z9,+) (c) (ze,.) (d) (ze,.)

7. From which of the following statements can you conclude that

a = b? (Parts (a) through (g) refer to whole numbers.)

(a) 2 + a = 2 + b

(b) 0+a=0+ b

(c) 2' a = 2 b

(d) 0 a = 0 b

(e) 2 max a = 2 max b

(f) 2a = 2b (where a and b are not zero)

(g) 2 =
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(h) 2 + a = 2 + b in (Z3,+)

(i) 2 a = 2 b in (Z3,)

(j) 2 + a = 2 + b in (z4,+)

(k) 2 a = 2 b in (Z4,)

8. Let * be the operation which assigns to any ordered pair

of points (P,Q) in a plane the reflection of P in Q. (See

exercise 17 of Section 2.10.) Is there a cancellation law

for this operation?

9. The following table defines an operation on the set

(a, b, c).

Is there a cancellation law for this operation?

a b c

a a b c

b b c b

c a b

10. Make up two new operations over the set W of whole numbers,

so that one of the operations has a cancellation law and

the other one does not.

11. The sum of two even whole numbers is an even number. We

might abbreviate this statement as

even + even = even.

In the same way, we can state

odd + odd = even;

even + odd = odd;

odd + even = odd.

Now we consider the set S = (even, odd) having two elements.

We can construct the following operational table:

108



even

odd

-102 -

even odd

even odd

odd even

(a) In (S,+), is + associative?

(b) Is + commutative?

(c) Is there an identity element?

(d) Does each element have an inverse?

(e) Does the system (S,+) have a cancellation law?

12. Using the set S = (even, odd) from problem 11, construct

an operational table for the system (S,.) suggested by

multiplication of odd and even integers.

(a) In (S,), is associative?

(b) Is commutative?

(c) Is there an identity element?

(d) Does each element have an inverse?

(e) Does the system (S,) have a cancellation law?

2.13 Two operational Systems

Let S be the set

(6, 8, 2, 4) ,

a subset of the set of even whole numbers. We are going to

introduce an operation on this set which we shall denote by the

symbol ID" since it is closely related to multiplication of

whole numbers. To begin with an illustration, consider the

problem of making an assignment to the ordered pair (8,4). The

product of 8 and 4 is 32. We shall keep only the last digit,
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and write

804 = 2.

As another example, the ordered pair (2,8) shall be assigned

the number 6 by theooperation, since the ordinary product of

2 and 8 is 16, and the last digit of the numberal "16" is "6."

As you can see, theooperation makes its assignments on

the basis of certain digits; so we can call it digital multipli-

cation. Printed below is an operational table showing the

assignments for all ordered pairs of elements of S under digital

multiplication.

0
6

8

2

4

6 8 2

6 8 2 4

8 4 6

2 6 8

4 2 8 6

From the table, you can see that we were justified in calling()

an operation on S. In the exercises that follow, you will be

asked to investigate some of the properties of the operational

system (S,0).

For the second operational system, we use the set P of all

points in a plane. For example, R and S are two points in the

plane of this sheet of paper. If we are to have a binary oper-

ation on this set p of points, we must be able to assign to every

ordered pair of points such as (R,S) some particular point of

the plane. Let us agree to make the assignment in the following

way:
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Move your pencil from R to S

R S
(that is, from the first point of the

ordered pair to the second). Then

move your pencil (in a clockwise sense)

to a point T so that R, S, and the point
(RS)il-T

T are corners (or vertices) of an equi-

lateral triangle. This point T is the one we shall assign to

the pair (R,S).

What assignment could we make to an ordered pair such as

(R,R)? If in such a case we agree simply to assign the point

R itself, then we are able to make an assignment -- and only one

assignment -- to every ordered pair of points. We now have an

operation. Since a triangle helped us to define this operation,

let us call the operation "tri." Thus, for the points above,

we have

R tri S = T.

Is S tri R the same as R tri S? In the exercises that follow,

you will have a chance to answer questions such as this about

the system (P,tri).

2.14 Exercises

Questions 1-6 are about the operational system (MD)

explained in the text.

1. (a) Isocommutative? If not, give a counterexample.

(b) How does the pattern of the operational table show

that your answer in (a) is correct?

2. (a) Compute 80(604) and (806)04.
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(b) Is(Dassociative? Is there any way you can tell with-

out testing every possible case?

3. (a) Is there an identity element in (S,(1))?

(b) Is there more than one identity element in (S,0)

4. (a) What is the inverse element of 8 in (S,(:))?

(b) What number is its own inverse in (S,(2))?

Is there another?

5. (a) If 2(e)a = 20b, what can you conclude about a and b?

(b) Is there a cancellation law in (S,(:))? How can this

question be answered by inspecting the table?

6. Solve the following open sentences in (S,(2)):

(a) x02 = 6

(b) 20x = 2

(c) xOx = 6

(d) xOx = 8

(e) (xOx)Ox = 2

(1) x0(xOx) 2

Questions 7-11 refer to the operational system (P,tri)

discussed in the text.

7. Is tri commutative? If not, give a counterexample.

8. Is tri associative? (Try at least two different cases.)

9. Is there an identity element for (P,tri)? Is there more

than one identity element?

10. Does every point have an inverse in (P,tri)? Defend your

answer.

11. Is there a cancellation law in (P,tri)?

12. (a) Does the system (S,(:)) have any properties which

(P,tri) does not have?

(b) Does the system (P,tri) have any properties which

(S, 0) does not have?
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2.15 What is a Group?

In this chapter we have studied many different operational

systems and we have called attention to such properties as

associativity, identity elements, and inverse elements. Because

operational systems which possess these three properties play an

important role in mathematics we give the special name group to

any such system. That is, if (S,*) is an operational system

such that

(1) * is associative;

(2) there is an identity element; and

(3) each element has an inverse,

then (S,*) is said to be a group.

Questions: Is (z3,+) a group?

Is (W,+) a group?

Notice that the operation in a group does not have to be

commutative. However, it may be, and if it is, the group is

called a commutative group.

Questions: Is (z3,+) a commutative group?

Is (W,+) a commutative group?

2.16 Exercises

Decide which of the following al-e commutative groups.

Remember that there are four necessary properties, and each must

be verified.

1. (z4,+) 2. (4,*) 3. (W,max)

4. (S,), where S = (6, 8, 2, 4) and . is digital multipli-
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cation. (See Section 2.13.)

5. (P,tri) (See Section 2.13.)

2.17 Summary

1. An operation on a set S is an assignment of one and only

one element of S to every ordered pair of elements of S.

If an operation assigns c to the ordered pair (a,b), we

may show the assignment as

(a,b) c.

If a symbol such as "*" is used to identify the operation,

the assignment may be shown as

a * b = c.

When * is an operation on set S, we denote the operational

system by the pair (S,*).

2. If a and b are elements of S, and (S,*) is an operational

system, then a sentence such as

a x = b

is an open sentence in the system. Any element of S which,

when substituted for x, gives a true statement, is called

a solution of the open sentence.

3. There are certain properties of operations which are

important. For example, if (S,*) is an operational system

and we let a, b and c represent elements In S, then

* is commutative if a * b = b * a for every a and b;

* is associative if (a * b) * c = a * (b * c) for

every po b and a,
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e is an identity element of (S,*) if e * a =

a * e = a for every a;

a and b are inverse elements in (S,*) if

a *b=b*a=ewhereeis an identity element.

If 1r this system a * c = b * c always implies a = b, we

say that (S,*) has a cancellation law.

4. (W,+) and (W,) are two important systems involving the

whole numbers. These operational systems have the following

properties:

In (W,+), + is associative;

+ is commutative;

there is an identity element, 0;

there is a cancellation law.

In (W,'), is associative;

is commutative;

there is an identity element, 1;

ifc/ 0,ac=bcimpliesa= b.

2.18 Review Exercises

1. Tell what number is assigned to the ordered pair (7,2) in

each of the following systems:

(a) (W,+)

(d) (z12,+)

(b) (14,*)

(e) (z12,.)

(c) (W,max)

2. List all pairs which are assigned the number 4 in each

of the following systems:

(a) (W,+)

(d) (z1p,+)

(c) (W,max)
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3. Tell what whole number (if any) is named by each of the

following:

(a) 867 + 245 (h) 5 87

(b) 245 + 867 (i) 87 + 5

(c) 867 - 245 (j) 5 4, 87

(d) 245 - 867 (k) 33

(e) 867 max 245 (1) 34

(f) 245 max 867 (m) 43

(g) 87.5

4. Which of the following are operations on the st,st W of

whole numbers?

(a) addition

(b) multiplication

(c) subtraction

(d) division

(e) maximizing

(f) raising to a power

5. Which of the following statements are true for every whole

number a, every whole number b, and every whole number c?

(a) a+b=b+ a

(b) ab=b a
(c) a -b=b- a

(d) a. -b =b + a.

(e) a max b = b max a
ab ba
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6. Find the whole number named by each of the following, if

a is 12, b is 6, and c is 2.

(a) (a + b) + c (f) a (b c)

(b) a + (b + c) (g) (a 4. b) 4- c

(c) (a - b) - c (h) a 4. (b c)

(d) a - (b c) (i) (a max b) max c

(e) (a b) c (j) a max (b max c)

7. Find the number named by each of the following if a is 4,

b is 2, and c is 3.

(a) (a)c (b) a(bc)

8. Which of the following are associative?

(a) addition of whole numbers

(b) division of whole numbers

(c) subtraction of whole numbers

(d) multLplication of whole numbers

(e) maximizing with whole numbers

(f) raising to a power with natural numbers

9. "Averaging" is not an operation on the whole numbers, but

assignments can be made to certain pairs. Let "aVb" mean

"the average of a and b."

(a) What is 8 V (12 V 20)? (c) Is averaging associative?

(b) What is (8 V 12) V 20?

10. Find what number each of the following names in W.

(a) ((6 + 7) 3) + 16

(b) ((9 . 5) max 46) + 156

(c) 100 ((23) + 17)

(a) ((5 + 7) (3 + 17)) 10

(e) ((5 max 7) 8) + ((53) + 3)
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sentences. If there is no whole number solution, aay so.

(a) 156 + x = 217 (k) a3 = 8

(b) 89 + a = 89 (1) 3a = 8

1 = 1
(c) 89 + a = 88 (m)

a

(d) a 14 = 98 (n) 1
a = 2

(e) a 14 = 99 (o) a + a = 100

(f) 14 a = 14 (p) a a = 100

(g) 14 a = 0 (q) a
a

= 100

(h) 4 max n = 4 (r) n
n

= 27

(i) 4 max n = 5 (s) a max a = 100

(j) 4 max n = 3 (t) (2 max a)3 = 4

12. Find what whole number is named by each of the following if

a = 2 and b = 5. (See Section 2.6, Exercise 23.)

(a) a3 +2 (g) a + b2

(b) 2a3
(h) 2a3 + 5

(c) (28)3 (i) 2 {(e) + 51

(d) (a + b)2 (j) (a max b)2

(e) + b3 (k) a max (b2)

(f) a2 + ( 2 (a b)1 + b2

13. If each of the followin is taken to be a true statement

about the whole numbers a and b, from which can we conclude

that a = b?

(a) 5 + a = 5 + b (d) 0 a = 0 b

(b) 0 +a=0+ b (e) 3 max a = 3 max b

(c) 5 a = 5 b (f) a3 = b3
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14. Consider all ordered pairs of points in a plane. If

(P,Q) is an ordered pair of points, let P*Q be found in

the following way:

Take P and Q as corners of a square,
P, Q

and let R be the third corner of the
(Th

1 */square if you move in a "clockwise" I-- R. p*Q
way from P to Q to R. (See diagram

at right.) Then P*0 = R. Answer

the following questions:

(a) What point can be assigned to a pair such as (0,0)?

(b) Is * an operation on the set of points in a plans?

(c) Is * commutative?

(d) Is * associative?

(e) Is there an identity element?

(f) Is there a cancellation law?

15. Take the set S = (0, 1), and construct tables for all

possible binary operations on S.
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CHAPTER 3

MATHEMATICAL MAPPINGS

3.1 Assignments and Mappings

In Chapter 2, assignments to the ordered pairs of elements

of a set were studied. For example, the operation of addition

of whole numbers assigns to each ordered pair of whole numbers

a unique whole number, called the sum. Thus, (18,9) 27

by the operation of addition.

In this chapter we shall examine other kinds of assignments

and, in particular, the special kind of assignment that is

called a mapping. Now let us look at some examples of assign-

ments, some of which are mappings and some of which are not.

Example 1. There are 5 tables in a home economics room in

in a school labelled Cl, C2, C3, C4 and C5.

The chart below gives the assignment of girls

in a home economics class to the tables.

Table Name

Cl --

C2 Judy

C2. Mary

73 Helen

C4 Louise

C4 Sandra.

C5 Janice

C5 Carol
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A convenient way to represent this assignment

is to construct an arrow diagram for the

assignment. To show that Helen is assigned to

table C3 by this assignment, we draw an arrow

from "C3" to "Helen" as shown.

C3 )6---"-- Helen

We say that C3 is at the origin of the arrow

and that Helen is at the terminus of the arrow.

Then, listing the two sets given, we construct

the arrow diagram showing all the assignments.

The diagram shows, for instance, that both

Louise and Sandra are assigned to table C4.

Example 2. A basketball program lists the heights of the

boys in the first team as follows:
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Name Height in inches

John Hammond 73

Al Parks 77

Bert Moyer 70

Fred Clark 73

Steve Hanson 68

By this chart a whole number is assigned to

each boy.

Figure 3.2 shows an arrow diagram for this

assignment.

Figure 3.2

Example 3. Assign to each whole number in the set of whole

numbers (2, 3, 4, 5, 6, 7) each whole number in

the set (1, 2, 3, 4, 5, 6, 7) which it divides

exactly. The arrow diagram for this assignment

is shown. in Figure 3.3.

-, 0 9
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The diagram shows, for instance, that 3

divides 3 and 3 divides 6.

Example 4. Assign to each state of the United States its

capital city.

In this case the arrow diagram does not give

the complete assignment but the complete as-

signment could be given, perhaps with the aid

of an atlas.

Example 5. Assign to each whole number a whole number that

is 5 more than the given whole number.
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0 1 2 3 4 5 6 7 8 9 10 11

} . 1

0 1 2 3 4 5 6

Figure 3.5

In this arrow diagram only part of the assign-

ment is given. It is impossible to give the

complete assignment by an arrow diagram because

the set of whole numbers could never be com-

pletely listed in this way.

Example 6. Consider the set of children (Mary, Steve, Joe,

Janet, Peter, and Harry), and assign to each

child his father. The complete assignment is

given by an arrow diagram in Figure 3.6.

Mary

Steve

Joe

Janet

Peter

Harry

Figure 3.6

Mr. Brown

Mr. Jones

Mr. Ross

Mr. White

We could list many examples of assignments, but some things

should be clear to you from the preceding examples. In each

example there is a first set and a second set. Sometimes each

element of the first set is assigned an element of the second
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set, and sometimes not. In Example 1, the table Cl is assigned

no student. Sometimes an element of the first set is assigned

more than one element of the second set. In Example 3, 2 is

assigned 2, 4, and 6. These assignments are not mappings.

Now let us focus our attention on Example 4. In this ex-

ample note that to each element in the first set is assigned at

least one element of the second set. Furthermore, to each ele-

ment of the first set is assigned only one element of the second

set. We say then that to each element of the first set there is

assigned exactly one element of the second set. Pssignments

having this property are of great importance, both in mathe-

matics and in its applications. Such en assignment is called a

mapping of the first to the secofid set. (Which of the assign-

ments given in Examples 2, 4, and 5 are also mappings?)

More formally, given two sets A and B, to have a mapping of

A to B, to each element of A there must be assigned exactly one

element of B. The method of assignment is often called a rule

of assignment, or simply a rule for the mapping.

The first set, A, in a mapping f_s called the domain of the

mapping. In Example 6, the doma!n A is the set of children

(Mary, Steve, Joe, Janet, Peter, Harry). Since, in this mapping,

Steve is assigned Mr. Jones, we say that Mr. Jones is the image,

mathematically speaking, of Steve.

Steve Mr Jones

We see that Steve, the member of the domain, appears at the

origin of the arrow and that Mr. Jones, the image, appears at

125



-119-

the terminus of the arrow.

The second set, B, in a mapping is often called the co-

domain. For Example 6, the codomain B = (Mr. Brown, Mr. Jones,

Mr. Ross, Mr. White). In some mappings each element of the

second set is an image, as is the case in Example 6, but this

is not the case for the assignment in Example 5, which is also

a mapping. Notice that the set of images in a mapping, which is

called the range of the mapping, may be either all of the second

set, or a part of it.

In this section we have shown you several examples of as-

signments, and have begun the study of those special assignments

which are called mappings. Later, we will study other mappings,

particularly those in which the sets A and B are sets of numbers.

3.2 Exercises

1. Answer the following questions for each of the assignments

in Examples 1-6 given in section 3.1.

(a) Is each element of the first set assigned at least one

element of the second set? If not, which elements are

not assigned?

(b) Is any element assigned more than one element of the

second set? If so, which ones, and what are the ele-

ments of the second set assigned? (You may answer this

question by using arrows.)

(c) Is the assignment a mapping of the first set to the

second set?
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(d) For each assignment that is a mapping

(1) list the domtiin and range;

(2) state whether or not the range is all of the

second set.

2. Set A = (1, 3, 5, 7, 9) and B = (2, 4, 6, 8, 10). Which of

the following arrow diagrams represent mappings of A to 3?

In each case explain why the arrow diagram does or does not

represent a mapping of A to B.

(c)
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3. The following charts give the assignments to tables Cl, C2,

C3, C4, and C5 in the home economics room of the girls in

three different classes. For each assignment

(a) draw an arrow diagram;

(b) state whether or not the assignment is a mapping;

(c) give a .reason for your answer to (b).

1.

2.

Table Cl C2 C2 C3 c4 C5

Name Jane Elaine Karen Martha. Peggy Alison

Table Cl C2 C3 C4 C5

Name Noreen Betty Therese Eileen
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Table Cl C2 C3 c4 C5

Name Dolores Cheryl Betsy Ann Veronica

4. Let A be the set of weights, in ounces, of 5 letters to be

mailed. Let B be a set of possible costs, in cents, of mail-

ing letters by first class mail. Recall that post offices

charge 6 cents per ounce or fractional part of an ounce.

Draw an arrow diagram for the mapping of A to B if

A = ( 3, 2, 6i, 2 41.

5. Let A = (1, 2, 3, 4, 5) and let B = A.

(a) Draw an arrow diagram of the mapping of A to B given by

the following table, where each member of A has assigned

as image the corresponding table entry for B.

A 1 2 3 4 5

B 4 2 1 2 4

(b) What is the image of 3 in this mapping?

(c) What is the range of this mapping?

(d) Is the range the same as set B? Why?

(e) Is any element of B the image of more than one element

of A?

3.3 Mappings of Sets of Whole Numbers

In Section 3.1 mappings of A to B were considered for

which the set A or the set B was not a set of numbers. For in-

stance, in Example 2, the domain A is a set of boys, and the co-

domain B is a. set of whole numbers. There are many other map-
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pings with both the sets A and B sets of numbers. We shall now

consider mappings of A to B in which the sets A and B are sets

of whole numbers.

Example 1. Let the domain A = (2, 3, 12, 7, 4), and let

the codomain B = (6, 9, 12, 21, 36). Let the

method of assigning images be: to find the

image of a number in A, multiply the number by

3. An arrow diagram for this mapping could then

be given as is shown below. (In this example

and hereafter we shall write 3n to mean 3 n;

1 1
similarly, -ffn means n, 7x means 7 x, etc.)

6 9 36 21 12

(3.2) (3.3) (3.12) (3.7) (3-4)

Figure 3.7

It is convenient tc designate the method of

assigning images in this mapping as

where n is any number in the domain A of the

mapping. We can read "n-----0-3n" in any one of

the following ways:

(1) The image of n is 3n.

(2) n is mapped onto 3n.
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(3) To n is assigned 3n.

We refer to un --0-3nu as the rule for the

mapping.

Example 2. Let A be the set of whole numbers, W, and let

B also be the set of whole numbers. Let the

rule of the mapping be: to each whole number

in A is assigned 3 times that whole number.

Since the domain of this mapping is infinite,

we can only give an incomplete arrow diagram as

shown in Figure 3.8, where we agree that the

assignments continue in the same way for the

remaining elements of the domain.

2

2

4 5. 6

3 4 5 6

7 8 10 11 13 14 16 17
18

Figure 3,8

Note that for this mapping the domain is W and

the range is (0, 3, 6, 9, 1; that is, the

set of multiples of 3. It is clear that even

though the mappings in Examples 1 and 2 have

the same rule, n 3n, they are not the same

mapping; one is finite, the other is infinite.

In what other way do they differ?
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Example 3. Let A = (6, 8, 10, ...) and let B = W. Let the

1
rule of assignment be n-----1.(n) - 3. First,

2

let us find the images of some of the numbers

in A.

The image of 6) - 3 = 3 - 3 = 0

The image of 8: 8) - 3 = 4 - 3 = 1

The image of 10: 10-----e--(1 10) - 3 5 - 3 = 2

Thus, an incomplete arrow diagram would be:

6 8 10 12 14 16

i

1

[
i

i

6 i

1

I I

0 1 2 M

Figure 3.9

You should be able to supply the missing images

in this diagram.

Now suppose we construct an assignment of W to

W using the rule n-----4(in) - 3. Then this

assignment is not a mapping, for there are

many whole numbers that are assigned no image

by this rule. Consider 7.

7--A(2 7) 3 = 3 =

1 is not a whole number. Is any odd number
2

assigned a whole number by this rule? Now,
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consider 4.

4 G.- 4) - 3 = 2 - 3.

Pt present, we can give no number for the

difference 2 - 3. Is any whole number less

than 6 assigned a whole number by this rule?

From these examples we see that giving a rule of assignment

is not enough to define a mapping completely. We must also be

given two sets A and B so that the given rule

(1) assigns to each element of A at least one

element of B; and

(2) assigns to each element of A only one

element of B.

Then we can say that the rule of assignment defines a mapping of

A to B.

We now consider another kind of arrow diagram.

Example 4.

Figure 3.10

Even though the last number shown on this num-

ber line is 12, you are expected to assume that

we are talking here about the set of all whole

numbers, and that the arrows continue in the

same pattern. Look at the arrow starting at

the point labelled 0. Where does it end? This

133



-127--

arrow shows that the image of 0 is 2; that is,

For the umbers shown in the diagram,

the rule n----n 1 2 is satisfactory. Let us

use this rule for all of W. Does each whole

number, shown or not in the diagram, have an

image? Exactly one image? If we interpret

each arrow as connecting two whole numbers we

have an example of an arrow diagram of a map-

ping of W to W on a line. Using the diagram,

find the image of 3, of 4, of 7. Is there a

number whose image is 3? 4? 7?

Since every whole number is at the origin of an

arrow, the domain of the mapping is W. 0 and 1

are not at the terminus of any arrow so the

range of this mapping is (2, 3, 4, 5, 6, ...),

that is, all whole numbers greater than 1.

Example 5. Let A = (0, 1, 2, 3, 4, 51, B = W, and let the

rule '.)f assignment be n-0-5 - n. We then ob-

tain the following arrow diagram on a line.

Figure 3.11

You should check to be sure that it is indeed a
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mapping of A to W. Every member of the set A

is at the origin of an arrow and also at the

terminus of an arrow. Hence, the domain and

the range are the same set, A.

Example 6. Let M = (0, 1, 2, 3, 4, 5, 6, 7) and consider

the mapping of M to the whole numbers W given

by the following arrow diagram on a line.

Figure 3.12

You can easily check that this diagram repre-

sents a mapping by noting that each number in

M is at the origin of exactly one arrow of the

diagram. In this case the-2e is no easily seen

rule of the form ? for this mapping. How-

ever, the diagram itself serves quite nicely

as a rule. Thus we find the image of 3 is 2,

since 20.00,43 on the diagram. What is the

image of 2? of 5? of 6? What is the range of

this mapping?

135



-129-

Example 7. Let S = (0, 1, 2, 3, 4), and consider the

mapping of S to W given by the following

arrow diagram.

0 1 2 3 4 5 6 7 8 9 10 11. 12 1.3 14

Figure 3.13

It is easy to see that there is a rule of the

form n-441 for this mapping, it is n-4.- 3n.

For instance, 0-4-3 . 0 = 0, 1---3 1 = 3,

and 2-4-3 2 = 6.

Looking at our examples we see that in an arrow diagram of

a mapping, each element of the domain appears at the origin of

an arrow. Because of this we agree from now on that whenever

we are given an arrow diagram for a mapping, the domain is

understood to be the set of elements which appear at the origins

of the arrows. The codomEin, unless otherwise given, will be

W, the set of whole numbers.

3.4 Exercises

-... Take W for the first set in a mapping and N = (1, 2, 3, ... )

for the second set. Let n + 3 be the rule for the

mapping.

(a) What is the image of 0? of 38? of 1359?
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(b) Make an incomplete arrow diagram on a line for this

mapping, showing the image of each whole number less

than 13.

2. Try to repeat exercise 1 using sets W and N and the rule

n---0-n - 2. Do 0 and 1 have images? Choose a set A of

whole numbers so that n---0-n - 2 is El rule of assignment fog"

a mapping of A to N. (More then one answer is possible.)

3. Make an incomplete arrow diagram on a line for the mapping

of W to W having the rule n----(2n) + 1. Show the image of

each whole number less than 13 on your diagram.

4. In this exercise you are asked to map A = (3, 4, 5) into the

set of whole numbers for each of the rules given below. Tell

whether the statement accompanying each rule is true or false.

(e) n 4-2n. The image of 4 is between the image of 3 and

the image of 5.

(b) n---1.(3n) + 1. The image of 4 is one-half the sum of

the images of 3 and 5; that is, their average.

(c) n--.4-(3n) - 1. The images of 3, 4, 5 are consecutive

numbers.

(d) n----o-n2. The image of 4 is the average of the images

of 3 and 5.

(e) - n. The images of 3, 4, 5 are in increasing

order.

5. For each of the following rules of assignment, choose a set

of whole numbers A as the domain of a mapping from A to W

having the given rule of assignment. Construct an arrow

diagram for each of your mappings. (Note: more than one
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answer is possible. Try tc choose as "large" a set as you

can for the domain A.)

(a) n ---0- 2n (d) n - 2

(b) n :5n (e) n (2n) 3

(c) n 2 (f) (3n) - 2

6. Study the arrow diagrams below and for each of them answer

the following questions as far as they apply.

(1) Does the diagram represent a mapping? If nct, why not?

(2) If it represents a mapping, what is its domain? Its range?

(3) If it is a mapping and it has a rule that is easily

expressed in the form state the rule.

(4) If it is a mapping, is every element of the range the

image of exactly one element of the domain?

(a)

(b)

(c)

(d)

0 1 2 3 4

(The arrow at 0 starts and ends at 0.)

(-("rf-Y-'(-Nr-1,"(-)obcde f 9 hi

L'410 12 13 14 IS 16 17 IS
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For (e) and (f) let the dotted partial arrow

indicate that the domain is the whole numbers,

W, end assume a. rule that holds for the numbers

shown holds for all of W.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(g)

7. Make an arrow diagram on a line for each of the following

mappings of the given set A to the set of whole numbers, W.

Show the image of each number in A, if possible. If this is

not possible, show the images of at least five elements of

the set A. (You may choose any convenient scale on your

number line.)

(a) n + 3; A = W.

(b). n-4- (2n) + 1; A = W.

(c) n-- (2n) - 1; A = (1, 2, 3, 4, 5).

(a) n2 =n n; A = W.
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(e) - n; A = (0, 1, 2, 3).

(f) ; A = (0, 2, 4, 6, 8, 10.

3.5 Mappings of Clock Numbers

In Chapter 1 we studied finite systems consisting of clock

numbers and operations on those numbers. In this section we

examine mappings for such systems.

Figure 3.14

Let the domain of a mapping be the set 4 of numbers on a

clock as shown above and let us map this set to itself by the

rule n-- n + 2 where "+" means addition in (Z5, +). What is

the image of 0? of 2? of 3? What is the domain of this mapping?

What is its range? For convenience let us name this mapping h.

Recall the mapping of W to W given by the rule n--4.-n + 2.

(Of course, "+" in this rule is ordinary addition.) Let us

name this mapping f.

Compare the answers to the following questions as each

is applied first to f and then to h.

(1) Is the domain of the mapping finite or infinite?

Is the range finite or infinite?
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(2) Is the range of the mapping the same as the domain?

(3) Is every element of the range of the mapping the image

of exactly one element of the domain?

Now make an arrow diagram on a. clock like the one in Figure 3.14

for the mapping of Zs to itself given by the rule n---o-n - 3.

Let us call this mapping k. You should get the same arrow dia-

gram as for the mapping h. Since the first set and the second

set are both Zs for the mappings h and k, and since they assign

the same images to the elements of Zs, we see that they are

really the same mapping. Thus, we see that the same mapping

can be given by rules that appear to be different. You should

try to find out why, in this case, the two different rules

ac+ally make the same assignments.

Figure 3.15

Study the mapping (call it s) of the set Zs of clock numbers

(0, 1, 2, 3, 4, 5) by the rule n 2n (Figure 3.15). Explain

why there are two arrows connecting 2 and 4. Notice that there

are no arrows with tips at 1, 3, 5. Why do you think this is so?

The mapping t, illustrated in Figure 3.16 maps W to W by the

rule n--- -2n. Explain why there are no arrow tips at 1, 3, 5,

7, and the other odd numbers. Answer the following questions as

they apply to s and t.
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Figure 3.16

(1) What is the domain of the mapping? What is its range?

(c) Is the range the same as the domain?

(3) Is there any whole number that is the image of more

than one whole number?

You can answer this last question easily by checking to see

whether or riot there is any whole number at the tip of more than

one arrow.

3.6 Exercises

1. Why do the mappings h and k of Z5 to Zs given by the rules

+ 2 and n---0-n - 3, respectively, turn out to be the

same mapping?

2. Study the arrow diagrams below and answer the following

questions as they apply to each diagram.

(1) Does the diagram represent a mapping? If not, why not?

(2) If it represents a mapping, what are the domain end range?

(3) If it is a mapping and it has an easily expressed rule

in the form n--4-? state the rule.

(4) If it is a mapping, is any clock number in the mapping

the image of more than one clock number? If so, which

ones?
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3.7 Sequences
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(e)

(f

(g)

(h)

The multiples of 3, that is, 3, 6, 9, 12, ... considered

in the order written are the images in a mapping of N to N given

by the rule n---03n, where N is the set of natural numbers
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(1, 2, 3, 4, 5, ...). This is but one example of a situation

we meet many times in mathematics. That is, we have a set of

numbers given in an order, or an ordered set. Another example

is 2, 5, 8, 11, . In this case, as well as in the first,

it is possible to think of these numbers as the range of a map-

ping of N to N. What is the rule for this mapping? Do you see

that it is n----4-(3n) - 1? As a third example, consider 4,

9 11
. Since these are not natural numbers, they are not

images in a mapping of N to N. However, they are images in a

mapping of N to a different set of numbers. The rule of this

mapping is n---o-n + -f.

These special mappings, that is, mappings whose domain is

N but whose range may be in some other set, are called sequences.

The examples given, where the domain is all of N, are called

infinite sequences. If the domain is a set of natural numbers

from 1 up to some fixed natural number k, the sequence is called

finite.

In LJch of the examples of a sequence given, the range was

contained in a set of numbers. This need not be the case. For

example, when a teacher records the names of the students in his

class in alphabetical order in his register, he constructs a

mapping whose domain is the set of natural numbers from 1 up to

the natural number which is the number cf students in his class.

However, even though the rangeofa sequence may not be a set of

numbers, the domain of a sequence must be a set of natural num-

bers. Since this is the case, we may often omit specific men-

tion of the domain of the sequence and instead merely give the

ordered range. We often call this ordered set the sequence.
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Below are some other sequences together with the rule of

the mapping that determines them.

Rule Sequence

(1) n (2n) + 1 3, 5, 7, 9, 11, 13, 15, 17, ...

(2) n--4-(3n) + 2 5, 8, 11, 14,

(3) n--1,-(n) + 2 4, 3, 32, 4, 4.

(4) n na 1, 4, 9, 16, 25, ...

(5) n- (n?) - n 0, 2, 6, 12, 20, 30.

(6) n- o- 0 if n is even
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...

n--4-1 if n is odd

In (6), a new kind of rule is used, with two parts. We see

that by this rule, for example 17 1 and 26-4-0.

Another interesting way to construct a sequence is to

choose its terms by tossing a coin. For instance, we toss a

coin and if the coin comes up "heads," we take 1 for the first

term; if the coin comes up "tails" we take 0 for the first term.

Then the coin is flipped again and the second term of the se-

quence is deteirnined in the same way. Thus for the nth term of

the sequence, we get 0 or 1 depending on whether the coin comes

up "heads" or "tails." This process repeated, say, a hundred

times yields a finite sequence.

Some of the examples of sequences given above are finite,

and some are infinite. In (5), the domain is (1, 2, 3, 4, 5, 6).

Thus, this sequence is finite. In (6), the domain is all the

natural numbers. Hence this sequence is infinite.
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3.8 Exercises

1. (a) What is the domain of each of the sequences in examples

(1) - (6)?

(b) Which of the sequences in examples (1) - (6) are

finite and which are infinite?

(c) How is your answer to (b) related to your answer to

(a)?

2. For each of the following sequences the domain is (1, 2, 3,

4, 5, 6, 7, 8, 9, 10). Find the range of this sequence

using the "coin-flip" rule. Compare your sequence with that

obtainod by someone else. Would you expect your sequences

to be the same? Why?

3. For each of the following sequences the domain is (1, 2, 3,

4, 5, 6) and the range is contained in the set of numbers

of arithmetic. Find the range of each sequence with the

given rule of assignment.

(a) n

(b) n 12 - n

(c) n--o- (173n) + 312

( d) n (i7n) + 37

(e) no- (n2) + 156

(f) [2 (n2)] 4 79

4. The rule of a sequence is given as no- 2n if n is odd and

2nif n is even.

(a) Write down the first 10 numbers in the range of this

sequence. 146
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(b) Find the 78th number in the range of this sequence.

(By this is meant the image of 78 in the sequence.)

Suppose we start with 1-4-7 and use the rule that to find

the image of 2 we multiply 7, the image of 1, by 3 and then

subtract 5 from the product. Thus 2 --0-(3 7) 5 = 16.

Then we repeat the process with 16, the image of 2, to get

the image of 3. That is, 3 --(3 16) - 5 = 48 - 5 = 43.

Repeating the procesE for each natural number in turn, a

sequence is obtained in yet a different way.

(a) Write down in order the first 4 numbers in the range

of this sequence.

(b) We can describe the way that the images are obtained

in this mapping as follows:

(1) 1 --10' 7 =
(2) Let ak represent the image of the natural number

k. that is k Then

k + 1-4-[(3ak) 5] = ak+1. Now find a7

and as given that as = 1096.

3.9 Composition of Mapping

Recall the mapping in Example 6 of Section 3.1. Here the

domain, set A was (Mary, Steve, Joe, Janet, Peter, Harry }, and

the codomain, set B was (Mr. Brown, Mr. Jones, Mr. Ross,

Mr. White). Now, each of these men has a wife, so that we also

may have a mapping of a to C, where C is the set of wives

(Mrs. Brown, Mrs. Jones, Mrs. Ross, Mrs. White). The mapping of
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A to B we will call f and the mapping of B to C, we will call g.

We can draw an arrow diagram for these mappings as in Figure

3.17, with the solid arrows showing the assignments for f and g.

A B

Figure 3.17

C

Now to each child in A we can assign a person, the mother. This

is done for Steve as follows:

Steve ft

00'
.110. 4".;1111/1 .1111.4

Mr. Jones Mrs. Jones

Do you see that this method of assignment assigns to each child

in A exactly one person in set C? Because this is true we have

constructed a new mapping of A to C from the given mappings f

and g. The "dashed" arrows in Figure 3.17 represent this mapping.
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To indicate that this new mapping is obtained from the mappings

f and g by following the mapping f with the mapping g, we call

it "g following f," and write g 0 f. This new mapping may also

be described as the composition of g with f. Now let us look at

some examples of finding the composition mapping from two given

mappings.

Example 1.

Figure 3.18

s c
9 10

On the three number lines a, b, and c in Figure

3.18, are shown arrow diagrams for three map-

pings. The arrow diagram online a represents

a mapping f of M = (0, 1, 2, 3, 4) to W. The

arrow diagram on line b represents a mapping

g of Q = (0, 1, 2, 3, 4, 5, 6, 7) to W. The

arrow diagram on line c represents the mapping

E followinj, go f, of M to W. It is easy to
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see how the arrow diagram for g 0 f is obtained

In fact, the process is the same whenever we

wish to construct an arrow diagram for the com-

position of two mappings. We simply take each

element in M and apply f, and follow it by g.

Thus for the element 0 in M, f maps 0 onto 2;

in turn g maps 2 onto 4,

0 c
n h

g 0 f

so we draw the arrow from 0 to in the arrow

diagram for g 0 f on line e. Likewise, for the

element 3 in M

g
3 ------* 4

of

Continuing in the same way, the arrow diagram

for g 0 f is constructed

In the example above we have used some new no-

tation. Since there are two mappings involved

in the problem simply writing 0 0-2 does not

indicate which of the mappings f and g is in-

volved. By writing 0-1.2 we indicate that

0 is mapped onto 2 la f, or f maps 0 onto 2, or

the image of 0 by f is 2.

Also, the order in which f and g appear in the

1.50
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symbol "g 0 f" is chosen for a very specific

reason, of which you will become aware later.

For the moment, always read g o f as "g fol-

lowing £" and remember that the mapping f is

applied first.

In this example, note that in order for the

composite mapping g o f to be meaningful the

range of f must be a subset of the domain of

g, and this is always the case. Observe that

the domain of g 0 f is the domain of f but the

range of g 0 f is contained in the range of g.

Example 2.

Figure 3.19

kph

In Figure 3.19 h and k are mappings of Zes to Ze

given by the corresponding arrow diagrams. The

procedure is the same as in Example 1. Consider

2 in Z8.
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h k
2 2

k h

We see that 21L24.2. Check the diagram for

k ° h to see whether or not it is correct.

Now take a sheet of paper and construct for

yourself the arrow diagram for h k. Is h k

the same mapping as k ° h? What does this tell

you about the importance of the order in com-

position of mappings?

If you examine carefully the mappings h and k

you may be able to find a rule of the form

aP-0 for each of them. The image of each

element of 4 by h may be found by "adding 2,"

and the image of each element in 4 by k may

be found by "multiplying by 2," where the oper-

ations are in (Ze,+,). Thus, we may write

+ 2 and n--4-2n as rules for h and k,

respectively. It is convenient to indicate the

mapping associated with the rule by writing

"n
h

n + 2" and un 2n ." These are read

"the image of n by h is n + 2," and "k maps n

to 2n."

In this case we can obtain a rule for k h of

the form n .D. To find this rule directly

for k h, let z be any element of Zs. Then,
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+ 2.42(z + 2 ).2z) + 4.

k 0 h

o.
Thus, n (2n) + 4 is a rule for k ° h.

In the same way, we can find a rule for h k.

2z (2z) + 2

ho k

0
Thus, n -

h k------0-(2n)+ 2 is a rule for h ° k.

Now you can answer the question as to whether

h °k=kohinadifferent way by using these

rules to find the image of 2 under h ° k and

k ° h. Do you get the same image? If not, then

h ° k and k ° h are not the same mapping.

Example 3. Two mappings f and g of W to W are given by the

rules n---11,-(2n) 1 and nE.-3n. We shell

meet many mappings given in this way and there

are several kinds of questions that are commonly

asked about such mappings.

(1) Find the image of 27 by f, by g.

+ 1. Therefore,

27--L- (2 27) + 1 = 54 + 1 = 55.

n .24..3n. Therefore

27 -5.0.3(27) . 81.

153



-147-

(2) List the set of whole numbers, each of

which has, by g, the image (a) 51 (b) 103.

(a) n--g-i-3n. We need a whole number x

such that 3x = 51. The solution set

of this equation is (17).

(b) The solution set of the equation

3x = 103 in (d,+,) is 0 or ().

(3) What is the image of 5 by (a) g 0 f and

(b) fog?

(a) ri--1-0-(2n) + 1 and n--1-0-3n. There-

fore 5-4-(2 5) + 1 = 10 1 = 11,

and 11--1-3 11 = 33. We have, then

5.--1-4-'11E4-33 so that 5-1, ° f 33.

(b) 5-A.-0.-3 5 = 15, and

15--E-0(2 15) + 1 = 30 + 1 = 31.

0
Hence, 15

f g
31.

If we wish to find many images by f g or by

g 0 f it is more efficient to first find rules

of the form for f 0 g and g 0 f. This

is done in the same way as in Example 2. We

begin by letting w represent a whole number.

Then

(2w) + 1--g-.3(2w + 1) = (3(2w)) + (3 1)

(6w) + 3

Thus, a rule for g 0 f is n__0110.(6n) + 3.

Also,

w-A-1.3w--3 £ .-1.(2(3w)) + 1 . (6w) + 1
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Thus, a rule for f 0 g is n_12.-E-1.(6n) + 1.

Using these rules,

5-021--(6
f 0 g

5 (6

5)

5)

+ 3

+ 1

=

=

30

30

3

+ 1

=

=

33,

31.

and

3.10 Exercises

1. Two mappings f and g are given by the following arrow

f:

diagrams. In each mapping the codomain is W.

2 3 6 7 8 10 11

ftael

g: 0 1 2 3 4 5 6 8 0 0 11

(a) Find the image of 3 by f.

(b) Find the image of 3 by g.

(c) Find the image of 3 by g ° f.

(d) Draw an arrow diagram on a line for go f.

(e) If possible, draw an arrow diagram on a line for

f g.If it is not possible, what goes wrong?

2. Two mappings f and g of Z4 to Z4 are given by the follow-

ing arrow diagrams:
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(a) Construct an arrow diagram for g 0 f.

(b) Construct an arrow diagram for f 0 g.

(c) Is f g the same mapping as g ° f? Why?

In questions 3 and 4 f, g, and h are mappings of W to W

given by the following rules:

n p + 2,

3. Find the image of 67

(a) by f

(b) by g

(c) by h

(d) by f ° g

(e) by f ° h

(f) by g ° h

n--11-0(2n) + 1.

(g) by g 0 f

(h) by h 0 f

(i) by h ° g.

4. Find a whole number, or explain why there is none

(a) whose image by g is 13.

(b) whose image by h is 101.

(c) whose image under f 0 h is 33.

(d) whose image under g ° f is 14.

(e) whose image under f ° h is 12.

5. Let r be the mapping of Zia to Zia given by the rule

(a) Find the image of 7 by r.

(b) Find the image of 10 by r.

(c) List the set of elements of Z12 each of which has by

r, the image
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(1) 4 (3) 8

(2) 6 (4) 3.

3.11 Inverse and Identity Mappings

You learned in arithmetic if you add 5 to a certain number

and then subtract 5 from the sum, you end at the same number with

which you began. In other words the effect of adding 5 is nulli-

fied by subtracting 5. Similarly the effect of multiplying by

a number is nullified by division by that same number. This sug-

gests the question: Is there for each mapping another, such

that when one is followed by the other the effect of the first is

nullified by the second? It is easy to see that this may be the

case by looking at an example.

Example 1.

W: 0 1 2 3

I
E: 0 2 It 6 2n

Figure 3.20

Here the first set, or domain, is W and the

codomain is the set E = (2, 4, 6, 8, ...). It

is easy to see, calling this mapping f, that

the range of f is all of the set E, since each

even number would be at the tip of an arrow.

Now, to nullify the effect of f we must carry

each image back to its source. In terms of an

arrow diagram this means that each arrow in the

157



-151-

diagram must be reversed, as shown in Figure

3.21.

W: 0 1 2 3 ,.. n

I I I I I

E: 0 2 4 6 ... 2n

Figure 3.21

Is this an arrow diagram for a mapping of E to

W? Since each number in E is assigned exactly

one whole number the answer is "yes." Call

this mapping g. Its rule is n--E4n. Thus

we have two mappings f of W to E, and g of E

to W such that g nullifies the effect of f.

When we say that g nullifies the effect of f,

we mean that gof maps W to W and that each ele-

ment n of W is mapped onto itself. That is,

n --.n is the rule for ef. It is easy to see

that this is the case for, if n--1-.2n, then

2/1-1-,42n) = n so that n-1.24.. n.

Whenever we have a set A given it is possible

to construct the mapping j of A to A with the

rule For example, the arrow diagram

for the mapping j of Zs to Ze is shown in

Figure 3.22. Each element of Ze is mapped

onto itself.

1 5-8
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Figure 3.22

An incomplete arrow diagram on a line for this

mapping j of W to W is shown in Figure 3.23.

Figure 3.23

It is clear that the mapping j of Zs to Ze is

not the same as the mapping J of W to W even

though they have the same rule, n---41. To

indicate that we are talking about the iden-

tity mapping on a given set A, we may write

"j A" for that particular identity mapping.

Thus, the identity mapping on W is written

ni
ow.

Now we can describe the situation in our first

example more economically. To say that g "nul-

lifies" f is to say that g ° f is the identity
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mapping on W. That is g of = jw.

Is f also the inverse mapping to g? That is,

does fo g = JE? Now, for any element n in E,

1
n------2 n, which is a whale number, since n

must be even to be a number in E. Then

1 f
2

/1 1
= n. Thus we have n

f 0 g
n as

a rule for the mappingfog of E to E. This

means that fog = jE and f is the inverse map-

ping to g.

Does every mapping have an inverse? Consider

the following example.

Example 2. h is a mapping of Zs to Zs given by the rule

n----0-2n. An arrow diagram for this mapping

is shown in Figure 3.24.

Figure 3.24

(This diagram should be an old friend by now.)

We could begin by reversing the direction of

each arrow in the diagram to "nullify" the

effect of h. The following arrow diagram
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results:

Figure 3.25

But we see that this assignment is not a mapping,

for 0 is assigned 0 and 3, 2 is assigned 1 and

4, 4 is assigned 2 and 5. Furthermore, 1, 3,

and 5 are each assigned no element in Z6. What

went wrong? If we look carefully at Figure 3.24

we see that each of 0, 2 and 4 is the image of

two elements of Ze. since each has two arrows

pointing to it. Also, each of 1, 3 and 5 is

the image of no element in Ze.

We conclude, then, that for a mapping f of A

to B to have an inverse both of the following

must hold:

(1) Each element of B must be the image of an

element of A. In an arrow diagram this

means that every element in B is at the

tip of an arrow. Thus, the range of f is

all of B. We say then that f maps A

onto B.
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(2) Each image in the mapping must be the

image of only one element of A. This

means that in an arrow diagram no ele-

ment of B is at the tip of more than one

arrow. We say then that f is a one-to-

one mapping of A to B.

Thus, in order for a mapping of A to B to have

an inverse, it must be a one-to-one mapping

of A onto B.

3.12 Exercises

1. Determine whether or not each of the following mappings

has an inverse mapping. In each case which of the condi-

tions (1) and (2) above holds or does not hold, and why.

(a) The mappings in Examples 2, 4, 5 and 6 of Section 3.1.

(b) The mapping f of Z$ to Z5 given by the rule

n 3n.

(c) The mapping g of Z8 to Zs given by the rule

+ 3.

(d) The mapping h of Zs to Zs given by the rule

h

(e) Let A be the set of living persons on earth and let

B be the set of countries. Consider the mapping

defined by assigning to each person the country in

which he lives.

2. For each mapping in Exercise 1 that has an inverse, de-
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scribe that inverse and if possible, give a rule of the

form

3. Let f be the mapping of W to W with the rule n----1.2n. Let

j be the identity mapping of W to W.

(a) Show that the compositions j following f and f follow-

ing j are the same as f.

(b) Suppose you do not know the rule for f. Do you think

that the compositions j o f and f 0 j are the same

as F? Why?

4. Make an arrow diagram of the identity mapping of the set

of numbers (0, 1, 2, 3) onto itself.

5. (a) Make an arrow diagram on a line of the mapping h of

W onto R = (2, 3, 4, ...) with the rule 4. 2.

(b) Make an arrow diagram for the inverse mapping k.

(c) Show by an arrow diagram that k ° h = jw.

(d) Show by an arrow diagram that h k = jR.

6. The rule of a mapping of W to W is n- *.(3n) + 2. To find

the image of a given number you perform two operations.

(1) multiply the given number by 3. (3n)

(2) add 2 to the product. ((3n) + 2)

What is R, the range of the mapping?

To find a number given its image, you reverse these oper-

ations and the "order.

(1) subtract 2 from the given image. (n - 2)

(2) divide the difference by 3. 2)

Since every mapping is onto its range R, and each number

in the range R of this mapping is the image of only one
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number in the domain W,
3
2 is a rule for the inverse

mapping R to W of the mapping W to R with rule n---0(3n) + 2.

(The domain R of the inverse mapping is (2, 5, 8, 11, ...).)

For each of the following rules find a domain D and a

range R consisting of whole numbers, so that the rule con-

stitutes a one-to-one mapping of D onto R. Then find the

rule of the inverse mapping of R onto D.

(a) n----0-(2n) + 1 (b) - 2

(c) - 2 (d) + 2

(e) + 25 (e) n---1.(8n) + 1800

7. Make an arrow diagram of the mapping of the set of clock

numbers Zs to itself for each of the following rules, and

determine whether it has an inverse. Explain in each case

why the mapping does or does not have an inverse. If the

mapping has an inverse give a rule for the inverse mapping.

(a) + 1

3.13 Special Mappings of W to W

(b) - 3

(d) n---1.(2n) + 1

Among the various kinds of mappings of W to W that we have

looked at so far there are two that deserve special attention.

One of these is the class of mappings which have rules such as

4, + 13, 4- 137, etc. We may describe

this class of mappings as those mappings of W to W which have a

rule of the type + a for a fixed whole number a.
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Figure 3.26

In the above (incomplete) arrow diagram on a line for the

mapping of W to W with the rule + 4, we see that each

numbered point on the line is assigned a point 4 units to the

right. We could represent this mapping by two "slide rules" as

shown in Figure 3.27, where the upper slide rule has been moved

over 4 units to the right.

4 5 6
88_

4 5 6 7 8 9 10 11

Figure 3.27

This interpretation of the mapping of W to W with the rule

+ 4 suggests that each assignment of an image may be

thought of as a "jump" or a "move" 4 units to the right. Another

way to look at this mapping is to drawtwo parallel number lines

using the same scale, as shown in Figure 3.28, then drawing the

arrows from one line to the other.

3 4 5

8

4 5 6 7

Figure 3.28

Now let us look at the composition of two such mappings
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and consider whether these compositions have any special pro-

perties as mappings of W to W. Let f and g be mappings of W to

W with the rules n-1-.-n + 1 and n---fLi.n + 3.

The rule for g f is found as follows, where w represents

any whole number:

w w + 1 (w + 1) + 3 = w + (1 + 3) = w + 4

gof

Thusn g" n+ 4 is a rule forg0fand the composition of

the mappings f and g is again a mapping of the same kind. In an

arrow diagram for this mapping, each point of the number line is

mapped onto a point 4 units to the right.

An interesting diagram for g 0 f results if we construct the

diagram on three parallel number lines a, b, c as in Figure 3.29.

Figure 3.29

a

In the diagram we have located the image of 1 and the

image of 3 by g o f. Since + 1 = 2 we draw en arrow from

1 on line a to 2 on line b. Then 2 g 5 so we draw an arrow

from 2 on line b to 5 on line c. To indicate that 1--E-2-L-5 we

draw an arrow from 1 to line a to 5 on line c. The same process
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is shown for the image of 3 by g o f. If we were to fill in all

the arrows, f would be represented by an arrow diagram from

line a to line b, g by an arrow diagram from line b to line c,

and g o f by an arrow diagram from line a to line c. Again, we

see that g o f maps each whole number onto a point 4 units to the

right on line c.

You should check to see whether or not f o g is a mapping

of the same kind asfand g. Also isfog=go f?

A second special class of mappings are those which have

rules such as n--.3n, n---4-1309n, etc. We may de-

scribe this class of mappings as those mappings of W to W which

have a rule of the form n---4.an, for a fixed non-zero whole

number a.

In Figure 3.30 we show an arrow diagram from one number

line a to a parallel number line b with the same scale for the

mapping of W to W having the rule n-2n. Note that each point

on a is mapped onto a point on b that is twice as far away from 0.

4 10 11 12 b

Figure 3.30

10 11 12 a

Let f and g be two mappings of this type given by rules

n----1.3n and n----.5n. We leave it to you as an exercise to

answer the following questions:

(1) Are f o g, g o f mappings of the same kind as f and g?

(2) Doesfog=go f? 1t
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Each of the special mappings we have considered has a par-

ticular interpretation that is important in many applications of

mappings. We have seen that a mapping of W to W having a rule

such as + 7 may be interpreted as a "move" 7 units to the

right on the number line. Since we can move 7 units to the right

on the line, we would expect to be able to nullify this move by

a move 7 units to the left on the line. But this would require a

rule - 7, which cannot be a rule for a mapping of W to W.

Why not? Thus, this mapping has no inverse.

Looking at the question another way, suppose we pick the

point 5 on the line. We see that the range of the mapping given

above is not all of W, since there is no whole number x such that

x + 7 = 5 .5.

In general, a mapping of W to W with a rule n----n + a has

no inverse if a is greater uhan 0. A parallel problem is solving

the equation x a = b, which arises in trying to find a number

whose image is b in a mapping with the rule n--0,-n + a. These

problems, and their solutions, will be considered in Chapter 4.

We observed that a mapping of W to W with a rule such as

n---1.-7n may be interpreted on a number line as mapping each point

to a point 7 times as far from the 0 point.

As above, we can see that a mapping of W to W having a rule

such as n----1.7n does not have an inverse since the range is not

all of W. For example, there is no whole number x whose image is

24. The parallel problem in terms of equations is that of solv-

ing the equation 7x = 24. These problems, and their solutions,

will be considered in Chapter 12.
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3.14 Exercises

1. For each of the following mappings of W to W:

(a) find the range of the mapping;

(b) state whether or not the mapping is one having a rule

of the type n_ n + a or n---b-an and if so, give the

value of a;

(c) draw an arrow diagram for the mapping on two parallel

lines. (Choose your scale carefully.)

(1)

(2)

(3)

n---0-n +

n---o(2n)

n

7

+ 1

(4)

(5)

(6)

n---0-(4n) +

+ 25

3

n---0-60n

2. Consider the mapping h of the clock numbers Zig to Zig

given by the rule + 7.

(a) Is every number of Zig an image in this mapping; that

is, is h a mapping of Z1 onto Zig?

(b) Is any number of Z12 an image for more than one clock

number; that is, is h a one-to-one mapping of Zig to

Zl 2 ?

(c) Dos the mapping h have an inverse mapping g so that

g o h = j, the identity mapping on Z12? How is your

answer related to your answer to parts (a) and (b) o:

this question?

(d) Can you describe this mapping in terms of "moves" on

the face of the clock? Illustrate your answer on a

drawing of a clock face.

(e) For each "move" in this mapping, is there a "move"
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that nullifies it? Is there a mapping of Z12 to Z12

that corresponds to the nullifying "moves"? If so,

what is a rule for this mapping?

3. Below is a slide rule arrangement for the mapping of W

into W with the rule n---2n. Notice that the lower ruler

is scaled by a unit that is twice as long as the unit of

the upper ruler.

o 1 2 3 4 5 6 7 8 9 10
I11111

0 1 2 3 4 5

(a) How would you place the lower ruler so as to make a

slide rule arrangement for n---0(2n) + 1?

(b) Make a slide rule arrangement for each of the map-

pings of W to W given by the rules

(1) + 5

(2) n--.4n

(3) + 5

(4) n---(4n) + 20

4. Using three parallel number lines a, b, and c, as in

Figure 3.29, find the arrow diagrams for g o f if f and g

are mappings of A = (0, 1, 2, 3, 4, 5) to W given by the

rules

(a) n---12-1.n + 6 and n--5-4-7n

(b) n--1:-.-11-n and n- .n + 2
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5. The figure above shows an incomplete arrow diagram, on

lines a and c, of the mapping h of W to W given by the

rule n---114-(3n) + 1. Copy this figure on your paper.

(a) Construct, on lines a and b, an incomplete arrow

diagram for the mapping f of W to W given by the rule

f

(b) Construct, on lines b and c, an incomplete arrow dia-

gram for the mapping g of W to W with the rule

+ 1.

(c) Does g o f = h?

(d) Given any mapping f of W to W with a rule like that

of h, that is, of the form n--I-0-(pn) + q for p and

q fixed whole numbers, p 0. Can you write f as the

composition of two mappings of W to W having rules of

the form n---an and n--041 + b for fixed whole numbers

a and b, a 0? If so, how would you do so for the

mapping f of W to W given by the rule n---(77n) + 1306?

(e) Try to give an argument to show that the composition

of any two mappings of W to W having rules of the form

+ b and n---n + b will have a rule of the

form n----(pn) + q.

3.15 Summary

1. A mapping involves two sets A and B and the assignment to

each member of the first set A exactly one image, taken

from the second set B. The first set A is the domain of
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the mapping, and the set of images is the range of the

mapping. The domain is all of Lice first set A but the

range may be only part of the second set B.

2. Many mappings are given by a rule involving arithmetic

operations. In this chapter we considered mappings of A

to B, for A and B sets of whole numbers. Many mappings

were given by rules of the form n----11-(an) + b, where a

and b are fixed numbers in each mapping and n takes on

whole number values. For a particular mapping f of A to

B the rule is often written as n----10-(an) + b.

3. For a mapping of A to Ti given by a rule we may also con-

struct other representations of the mapping. Among these

are arrow diagrams, arrow diagrams on a number line, arrow

diagrams on a "clock," arrow diagrams between parallel

number lines, charts, and tables. On the other hand, a

mapping may be given by one of these representations for

which there is no easily seen rule or method of assignment

other than that given by the diagram, table or chart.

4. Whenever the range of a mapping f is contained in the

domain of a mapping g we can construct the mapping g o f,

(g following f or the composition of g with f) by first

applying f to each element in the domain of f and then

applying g to the image. The domain of g o f is the do-

main of f. The range of g o f is contained in the range

of g.

5. In order that a mapping f of A to B have an inverse f

must map A onto B and f must be a one-to-one mapping of A

to B. Since every mapping may be considered as a mapping
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onto its range R, a one-to-one mapping f of A to R has an

inverse mapping g of R to A.

6. Mappings of W to W having rules of the type + b

may be interpreted as "moves" to the right on the number

line. Since they are not onto W (except for b = 0), they

do not have inverse mappings. However, the composition

of any two such mappings is a mapping of the same kind.

7. Mappings of W to W having rules of the type n an,

(a A 0) may be interpreted as "stretching" the number

line. These also are not onto W (except for a = 1) and do

not therefore have inverse mappings. However, the compo-

sition of any two such mappings is a mapping of the same

kind.

8. Any mapping of W to W with a rule n (an) + b can be

considered as the composition of a mapping with rule

followed by the mapping with rule n n + b.

3.16 Review Exercises

1. Let f and g be mappings of W to W with rules n----11--)-n + 3

and n---E--0-2n.

(a) Make an arrow diagram on a number line for f, g and

g o f.

(b) Find rules for g o f and f o g of the form n ?.

(c) Find the image of 637 by g o f and f o g. Are the two

images the same? Does f o g = g o f? Why?

(d) Find the set of values x such that the image of x by

go f is 24.
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(e) Find the set of values x such that the image of x by

f o g is 24.

2. Let a and b be parallel number lines scaled with the same

unit and in the same direction.

(a) Make an arrow diagram from a to b for the mapping f

of W to W with the rule + 4.

(b) Is f an onto mapping? Why?

(c) Is f a one-to-one mapping? Why?

3. Draw an arrow diagram from number line a to number line a'

for each of the following mappings of W to W with the

lines a and a' drawn as indicated.

(a) a is parallel to at ;the lines are scaled with the

same unit wilh the same direction; the rule is

n-0-2n -

(b) a is parallel to a'; the unit scale on a is twice as

long as the unit scale on a'; the lines are scaled in

the same direction with zero points opposite each

other; the rule is n 2n.

(c) a intersects a' at point A; the lines are scaled with

the same unit from A; the rule is n------02n.

(d) a is parallel to a'; the lines are scaled with the

same unit in opposite directions; the rule is

+ 2.

Make an arrow diagram for each of the following mappings

where Z
n

is the set of n clock numbers and the operations

are the clock operations, + and
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(a) From Z5 to Z5 with the rule + 1.

(b) From Z4 to Z4 with the rule

(c) Which of the mappings in (a) and ;ID) are one-to-one?

Is either an "onto" mapping? Do you now know that

one of these mappings has an inverse? Why? Find

the rule of the inverse mapping.
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CHAPTER 4

THE INTEGERS AND ADDITION

4.1 Introduction

In Chapter one, we studied the system (Z,, +), and also

worked with equations in that system. For example, the

solution set of

6+x= 1

in (Z7 ,+) is (2) since

6 + 2. = 1

is a true sentence in (Z7,+). Study the following examples of

equations and their solution sets in (Z7,+).

Equation Solution Set in (Z7,+)

3 + x =5 (2)

5 + x 3 (5)

x + 6 = 2 (3)

x + 2 = 6 (4)

Each of these equations has a solution in (Z7,+); the solution set

is not empty. In fact, if you choose any two elements a and b

from the set Z7, then the equation x + a = b has a solution

in (Z7,+). In other words, in (Z7,+) it is always possible to

solve an equation of the type "x + a = b."

Also in Chapter one, we worked with equations in the system

(W,+). Some examples of such equations are listed below.

Equation

5 +x = 14

x + 21 = 42

x + 98 = 103

Solution Set in (W, +)

(9)

(21)
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However, look at the equation "6 + x = 1." In (W,+),

this equation has no solution; the solution set is empty.

There is no whole number which may be added to 6 to produce 1.

From this example, we see an important difference between

the systems (Z7,+) and (W,+). If a and b are elements of Z7,

we know that the equation "x + a. = b" has a solution in (Z7,+).

But if a and b are elements of W, the equation "x + a = b" may

not have a solution. (As we have just seen, if a is 6 and b is

1, there is no whole number solution.) Study the following

examples which help to make this difference between the two

systems clear.

Equation Solution Set in (Z7,+) Solution Set in (W,+)

5 + x = 6 (1) (1)

6 + x = 5 (6) (

x + 2 = 5 (3) (3)

x + 5 =2 (4) (

4.2 Exercises

1. Find the solution set of each of the following equations

in (Z7,+):

(a) 3 + x 0 (d) 6 + x = 6 (g) x + 1 = 0

(b) x + 5 . 1 ( e ) a + 5= 2 (h) 3 + x= 1

(c) n + 3 . 6 (f) a + 2 = 5 (i) y + 4 1

2. Find the solution set of each of the following equations

in (Z3,+):

(a) x + 1 0 (c) x + 2 = 0

(b) 2 + x = 1 (d) x + 1 = 2
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3. Does every equation of the type "x + a = b" have a

solution in (Z3,+)?

4. Make up five different equations of the type "x + a = b"

in the system (z4,+), and find the solution set of each.

5. Does every equation of the type "x + a = b" have a

solution in (Z4, +)?

6. Find the solution set of each of the following equations

in (W,+):

(a) x + 8 = 19 (d) x + 101 213 (g) x + 53 1006

(b) 25 + x = 44 (e) x + 213 = 101 (h) 97 + x = 408

(c) 44 + x = 25 (f) x + 17 . 39 (i) 408 + x 97

7. Make up five equations of the type "x + a . b" which have

solutions in (W,+). Then make up five equations of the

type "x + a = b" which do not have solutions in (W,+). In

both cases, use equations which are different from those

in Exercise 6.

4.3 Some New Numbers

There are many games in which you may either win or lose

points. Suppose that you are playing such a game, and on the

first play you win 6 points. You agree that you will add your

score on the second play

to the 6 points you already have

in order to obtain your total score

at the end of two plays. That is,

if x represents your score on the

second play of the game, thenI88

score on first
play

add score on
second play

sum is total score
after two plays
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6 + x

is your total score at the end of two plays. Now suppose

that at the end of the second play your total score is 1;

that is,

6 + x = 1.

Did you win or lose on the second play? It is rather easy to

see that you must have lost 5 points. But having agreed to

add the second score to the first to get the total score, then

x must be a number which added to 6 produces 1. Since there is

no whole number that will do this, we shall create a new number

called

and written

negative five

5.

This is to be a number which, added to 6 gives the sum 1.

That is,

6 + -5 = 1.

This is read "Six plus negative five equals one."

Continuing with our example of the game, suppose another

person scores 10 points on the first play, x points on the

second play, and has a total score of 7 points at the end of

two plays. That is,

10 + x = 7.

Again, we are keeping our agreement to always add scores to get

the total score. In this case, we see that the person lost 3

points on the second play. However, x is not the number 3, since

10 + 3 = 13, not 7. So again we create a new number, -3 (read

"negative three"), which added to 10 produces a sum of 7. That is,

10 + -3 . 7.
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In our examples of winning and losing points, we have

introduced two numbers, 5 and -3. But we are not going to

stop with just these two numbers. Instead, we are going to

produce a whole new set by creating many new numbers to join to

the whole numbers. In this new set every equation of the type

"x + a = b" will have a solution. This will be progress, since

(as we noticed in the last section) we cannot solve every such

equation with just the whole numbers alone.

Before trying the exercises, study the following equations

and the new numbers which we create as solutions to them. Be

sure that you can interpret each of the equations in terms of the

game in which you gain or lose points.

Equation Solution

5 + x 1 -4

6 + x = 0 -6

21 + x 14 7

5 + x = 8 3

4.4 Exercises

1. Tell what number is a solution of each of the following

equations:

(a) 17 + x = 3 (d) 105 + x = 83

(b) 21 + x = 28 (e) 83 + x = 105

(c) 28 + x = 21 (f) 47 + x = 33

2. How would you describe the equation " x + 7 = 4" in terms

of a game in which you win or lose points? What must the

score have been on the first play?
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3. How would you describe the following equations in terms of

the game?

5 + x = 5

6 + x = 0.

4. Suppose you score 5 points on the first hand, then lose

7 points on the second hand. Then your total score is 5 + -7.

What number can be used to show your total score at the end

of two hands?

5. Add the following numbers:

(a) 8 + -4 (g) 13 + -18

(b) 8 + -8 (h) 5 + 20

(c) 8 + -12 (i) 5 + 25

(d) 7 + "6 (j) 12 + -37

(e) 7 + -7 (k) 11 + 18

(f) 7 + -8 (1) 126 + -315

6. The temperature at 8 in the morning of a cold winter day is

5 degrees below zero. We should not use the number^ 5 to show

this temperature, since most people would think this meant

five above; but it would be reasonable to use 5 (negative

five) to mean five degrees below zero. So, we'll say the

8 o'clock temperature is 5.

Now between 8 o'clock and noon, the temperature changes.

Suppose x is the number of degrees the temperature changes.

Then the temperature at noon is

5 + x.

With this as a start, try to answer the following questions.
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(a) If the temperature rises 5 degrees, what is x? Whet

is the noon temperature?

(b) If the temperature rises 7 degrees, what is x? What

is the noon temperature?

(c) If the temperature falls 5 degrees, what is x? Whet

is the noon temperature?

(d) Explain why x ie not the same in parts (a) and (c).

(e) If the temperature does not change at all between

8 o'clock and noon, what is x? What is the noon

temperature?

7. Add the following. Be sure that you can describe each one

in terms of old temperature, temperature change, and new

temperature.

(a) -2 + 3 (f) 5 + 5 (k) -2 + -2

(b) -2 + -3 (g) 10 + -12 (1) -1 + 10

(c) -2 + 0 (h) -10 + 12 (m) -15 + 19

(d) 5 + 5 (i) 0 + 2 (n) 15 + 30

(e) 5 + -5 (j) -2 + 2 (o) -15 + 45

8. A merchant buys a television set for 200 dollars, and he

sells it for 200 + x dollars. Answer the following

questions.

(a) If he sells the set for 25 dollars more than he paid

for it, what is x? What is 200 + x ?

(b) If he sells the set for the same price he paid for it,

what is x? What is 200 + x?

(c) If he sells the set for 25 dollars less than he paid

for it, whet is x? What is 200 + x?
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(d) Why is x not the same in parts (a) and (c)?

9. A football team has gained 9 yards on the first three downs.

If x is the number of yards the team gets on the fourth

down, then the total number of yards for the four downs is

9 + x.

Answer the following questions.

(a) If the team gains 5 yards on the fourth down, what

is x? What is 9 + x?

(b) If the team loses 5 yards on the fourth down, what

is x? What is 9 + x?

(c) Why is x not the same in parts (a) and (b)?

(d) If the team loses 9 yards on the fourth down, what

is x? What is 9 + x?

(e) If the team loses 15 yards on the fourth down, what

is x? What is 9 + x?

10. Add the following:

(a) 37 + 85 (g) -18 + 38 (m) 100 + -25

(b) 37 + -85 (h) -14 + -92 (n) 100 + 25

(c) 37 + 85 (1) 14 + 92 (o) 200 + -300

(d) 37 + 85 ( ,j) -72 + 12 (p) 200 + -300

(e) 102 + 84 (k) 72 + -12 (q) 1250 + 250

(f) 67 + 35 (1) 100 + -25 1250 + 250

11. Make up a problem about each of the following situations

which uses negative numbers as well as whole numbers:

(a) elevation above and below sea level

(b) gaining and losing weight

(c) increasing and decreasing speed

(d) gains and losses in the stock market

1.b3
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21.5 The Integers and Opposites

The exercises in Section 4.4 suggest that for every whole

number (except 0) it is useful to create a new negative number.

If we put these numbers together with the whole numbers, we have

a new set which may be shown as follows:

( 0, 1, 1, 2, -2, 3, 3, 4, -4,...)

This new set of numbers is called the set of integers, and is

referred to as the set Z. The new numbers we have created are

called negative integers; for instance, 1, 2, and 3 are

negative integers. The other numbers in the set are simply the

whole numbers. However, in this new set we shall call the whole

numbers (except 0) positive integers; for instance 1, 2, and 3

are positive integers. The number 0 is neither positive nor

negative. You may remember that in our illustrations, 0 repre-

sented neither a gain nor a loss. So the set Z of integers is

made up of the positive integers, the negative integers, and zero.

Suppose that a person scores 5 points on the first play of

a game, and x points on the second play. What must x be if his

total score at the end of two plays is 0? x must be a number

such that

5 + x = 0.

And since we know that 5 + -5 = 0, we see that x must be -5.

It is also true that -5 + 5 = 0. (What kind of scoring on the

two plays does 5 + 5 show?)

Since 5 and 5 add to 0, they are called opposites, or

opposite integers. Thus,
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the opposite of 5 is -5, and

the opposite of -5 is 5.

Two integers are opposites if their sum is zero.

What number must be added to 0 in order to produce a sum of 0?

Since 0 + 0 = 0, we shall say that the integer 0 is its own

opposite. That is,

The opposite of 0 is 0.

Instead of writing "the opposite of," we shall use the

symbol "-" to mean "opposite of." So, "-2 = 2"

may be read as

the opposite of two is negative two.

Then "-(2) = 2"

may be read as

the opposite of negative two is two.

If we use a to stand for an integer, what does "-a" mean?

"-a" stands for the opposite of the integer a. Here are some

examples:

if a = 3,

if a = -3,

if a = 5,

if a = 5,

if a = 0,

then -a = 3;

then -a = 3;

then -a = 5;

then -a = -5;

then -a = 0.

Notice that -a may be a positive integer, a negative integer,

or zero.

Questions: What kind of integer is a if -a is positive?

What is a if -a is zero?
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What is a if -a is zero?

We already know that the sum of an integer and its opposite

is 0. So, if a is an integer, we have

a + (-a) = 0

-a + a =0

What kind of meaning can we give to "-(-a)," where a is an

integer? Let us try to build this expression piece by piece,

as follows:

a a is an integer.

-a This is the opposite of
the integer a.

-(-a) This is the opposite of
the integer -a.

So "-(-a)" may be read as "the opposite of the opposite of a."

Example 1: 3 is an integer.

-3 = 3 This is the opposite of the integer 3.

-(-3) = -(-3) This is the opposite of the

integer 3;

. 3 that is, 3.

Notice that the opposite of the opposite of 3 is 3! In Example

2, we begin with a negative integer.

Example 2: 5 is an integer.

-(5) = 5 This is the opposite of -5.

-( -(-5)) = -5 And this is the opposite of

the opposite of 5. Note again that the opposite of the opposite

of -5 is 5. In general, if a is an integer, we have

I.- (-a) a
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4.6 Exercises

1. Find the solution of each of the following equations.

(a)

(b)

( c )

3 + x =

x + -2

a + 5 =

0

=

0

0

(d)

(e)

(f)

-72 + b = 0

-13 + 13 = x

0 = 15 + n

2. Copy and complete the following diagram in which an arrow

is to be drawn from each listed integer to its opposite.

3. If x is an integer, -(-x) =

4. -(-(-30)) =

5. If a is an integer, -(-(-a)) =

6. Copy and complete the following diagram, showing assignments

made by adding pairs of integers.

7. (a,b)

Name five different pairs of integers to which 4 is

assigned by addition of integers.

8. (a,b)--1-0

Name five different pairs of integers to which 0 is

assigned by addition of integers.
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9. (a) By using set notation and listing several elements in

the set, show the set Z of integers.

(b) Show a F.et A having five elements, all of them

negative integers.

(c) Show a. set B having five elements, all of them

positive integers.

(d) Show a set C which contains all integers that are

neither positive nor negative.

4.7 Properties of (Z,+)

We have seen how physical situations suggest a way in which

any two integers may be added. That is to each ordered pair

of integers may be assigned an integer which is their sum. So,

addition is a binary operation on the set Z of integers: and

(Z,+) is an operational system.

The system (Z,+) has some properties which we have met

before. For example, scoring 8 points on the first play of a

game and then losing 5 points on the second play gives the same

total score as losing 5 points on the first play and winning 8

on the second. That is, 8 + -5 = -5 + 8. And in general,

Addition of integers
is commutative.

a+b=b+al

If you score a points on the first hand, and then 0 points on

the second, the total score remains a. This suggests the

following property:

+ 0 . 0 a = a
0 is the identity
element of (Z,+).
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From Section 4.5, we already know that every integer a has

an opposite -a, such that

fa + (-a) = -a + a = 0
For every irteger a,
-a is its inverse.

You will remember from Chapter 2 that two elements are inverses

in a system if they combine to give the identity element.

If a football team gains 5 yards on the first down, loses

3 yards on the second down, and gains 4 yards on the third down,

then the total yardage for the three downs may be found in the

following way:

(5 + -3) + 4 = 2 +4

= 6.

We get the same result in the following way:

5 + (3 + 4) 5 + 1

= 6.

This example suggest the following property:

Addition of integers
is associative.

Because addition of integers is associative, we usually omit

the parentheses and write simply "a + b + c" to show the sum of

three integers.

4.8 Exercises

1. Find the following sums in the way indicated by the

parentheses.

(a) (8 + 7) + -3 (e) (14 + -18) + 5

(b) ("6 + -6) + 9 (f) 30 + (110 + -50)
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(c) -6 + (6 + 9) (g) 86 + (-36 + -85)

(d) 14 + (8 + 5) (h) 85 + (85 + 36

(i) (85 + 5)

2. Find the following sums.

+ -36

(a) 8 + 10 (g) 18 + 165 + :18

(b) -8 + 10 + -5 (h) -615 + 108 + 312

(c) 15 + -2 + 7 (i) -3 + 5 + -7 + 14

(d) -3 + -5 + -42 (j) 8 + -7 + -8 + -7

(e) -9 + 7 + 18 (k) -15 + -4 + 6 + -11

(f) 42 + -31 + 17 (1) 102 + -33 + -25 + 61

3. Copy and complete the following assignments, illustrating

that addition is a binary operation on Z.

4. We have seen that (Z,+) has the following properties:

(i) Associativity

(ii) There is an identity element

(iii) For each element, there is an inverse element

(iv) Commutativity

(a) Tell which of these properties the system (Z4,+) has.

(b) Tell which of these properties the system (W,+) has.

(c) Review the operational system using rotations of a

square (see Exercise 4 in Section 1.12) and tell which

of these our properties it has.
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(d) Review the definition of a commutative group in

Section 2.15. Which of the following operational

systems are commutative groups?

(Z,+), (Z4,+), rotations of a square

4..9 The Integers and Translations on t Line

We have already seen that positive and negative integers

may be usea to represent situations in which "opposites" are

involved (winning and losing, rising and falling, forward and

backward). Now we shall look at some mappings of the points on

a line which the integers may be used to describe.

Below is a number line with some of the whole number points

labeled.

0 1 2 3 4 5 6

In Chapter 3, we saw that the mapping

may be illustrated as follows:

0 1 2 3 4 5 6 Y 8

In this mapping, each whole number point is mapped onto a point

of the line located one "step" to the right. Also, as a result

of this mapping, each whole number n has an image n + 1. Notice

especially that the image of 0 is 1 under the mapping n n + 1.

Now what happens to the points of the line under the rule

n n + -1?
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It is reasonable to say that this rule sends the points of the

line one step in the direction opposite to that of the mapping

+ 1, since 1 and I are opposite integers. This may be

shown as below.

P

0 1 2 3 4 5 6

Notice the point marked P in the diagram. So far we have not

associated a number with this point, but now it seems reasonable

to assign the number 1, as below.

1 0 1 2 3 4 5 6

In this way, the image of 0 under the rule + -1 is 1.

Next, consider the rule

n n + -2.

The point marked Q is the image of the "zero point" under this

rule. So with the point Q we associate the number 2.

By using rules such as those above, we may associate every

integer -- positive, negative, and zero -- with a point of the

line. A part of this number line is shown below.

-5 -4 -3 2 1 0 1 2 3 4 5

Thus every rule of the kind

+ a,

where a is an integer, is a mapping of the integers into the
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integers. Furthermore, such a mapping may be used to describe

a translation of the line.

Example 1: Describe the translation of the line given by

n + -4.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

This translation maps every point of the line

onto the point 4 steps to the left. Do you see

that every point is the image of exactly one

point?

Using the integers associated with some of these

points, we may say:

the image of 0 is 4;

the image of 10 is 6;

the image of 204 is -208;

3 is the image of 7;

107 is the image of 103.

In fact, in a translation of the line, every

point of the line has exactly one image, and

every point of the line is the image of exactly

one point. Every point has an imaxe, and every

point is an image. This includes points other

than those associated with the integers, as

suggested in the picture below, for the mapping

n n +

-2 1 1 2 3 4
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Example 2: Suppose that f is the translation

n + 3,

and g is the translation

n n + -5

What is the image of 10 under the composition

g f (g following f)? First, the translation

n ----4-n + 3 "shifts" each point of the line

three places to the right.

f

0 1 2'3 4 5 6 7 11 12

g g

Then g shifts each point five places to the left.

So, under this composition of translations the

image of 10 is 8. Notice also that the image of

0 is -2.

From Example 2, we can see that the composition

o
ig f is the same as the single translation

n + 2. This shows us another way to

interpret addition of integers, since the sum

3 + -5 is -2.

Questions: If n + 3 and n--14.n + 7, what single

translation is the same as g ° f? What single

translation is the same ae- f o g?

Example 3: Suppose n-o-n + 2 and n + 2. The

composition g o f is illustrated below.



-188-

Each point of the line is its own image under

this composition. In other words g o f is the

identity translation. It is also easy to see

that f o g is the identity translation.

Therefore,

n ten + 2 and n---0-n + -2

are inverse translations. (Notice also that

2 + -2 = 0.)

4.10 Exercises

1. Draw a line, and show the points associated with the follow-

ing integers: 4, 3, 2, 1, 0, 1, 2, 3, 4. By means

of arrows, show the images of these points under the

translation n n + -3.

2. Using the translation f and the diagram from Exercise 1,

show the composition g o f, where + 7.

3. What single translation is the same as g o f in Exercise 2?

4. Draw a line, and use arrows to show the images of points

under the translation n n + 0. What is the name of

this translation?

5. If n n + 7 and non + 7, what is f o g? What

is g o f?

6. If n n + a, gi a description of a translation g so

that g o f is the identity translation of a line.

7. For each of the following pairs of translations, tell the

single translation which is the same as g o f, and the

single translation which is the same as f o g.
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f g

(a) + -7; n + -5

(b) n------.n + -28; n + 15

(c) n - -.n + 7; n + 38

(d) + -5; n + 71

(e) n + a; n + b

(f) n

(g) n

n + 63; + 0

n + 63; n + 63

8. In Exercise 7, is f o g the same as g o f? Is composition

of translations commutative?

9. For each of the following, describe a translation g so

that g o f is the translation + -27.

(a.) n + 13

(b) + 27

(c) + -27

(d) + 100

(e) n---.n + -17

(f) + a

10. Suppose the following translations of the line are given:

n n + -8

+ 17
,

h
-r

(a) What single translation is the same as h o (g o f)?

(b) What single translation is the same as (h 0 g) o f?

11. We have already seen that addition is a binary operation on

Z; that is, a sum may be assigned to every ordered pair of

integers. Line translations may be used to illustrate ad-

dition. As an example, take the sum 5 + 8.
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If we first apply the translation

+ 5, and then follow it with

the translation n---4n + (-8), the

diagram at the left shows that the

image of 0 is 3.

The col,position of these trans-

lations + (-3) . And this

tells us that the sum 5 + (8) = 3.

Draw diagrams like the one above to illustrate the following

sums.

(a) -2 + -8 (f) -18 +5

(t) 7 + 3 (g) 18 + -5

(c) + 5 (h) + 0

(d) 10 + -10 (1) (-2 + 5) + 3

(e) -6 + -7 (j) -2+ (5 4- 3)

*12. Let T be the set of all translations of a line which are of

the form

n + a,

where e is an integer.

(a) If two of these translations are applied, one after the

other, is the result another such translation?

(b) If "o" is used to mean composition of translations in

T, is (T,o) en operational system?

(c) Is composition of these translations associative? (See

Exercises lli and 11j.)

(d) Is composition of these translations commutative?

(e) Is there an identity translation in T?
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(f) Does each of the translations in T have an inverse?

(g) Is the system (T,o) a commutative group?

4.11 Subtraction in (Z,+)

We know that the opposite of 3 is 3. That is,

-3 = 3.

so "-3" and "3" are simply names for the same number; they

both refer to the same point on the number line:

-3
.1111e=4811aallipm

3

2 1

Since we do not need two different names for the same number, we

shall from now on use "-3" to mean not only "opposite of 3" but

also "negative 3." In the same way, "-:'.0" may be read as either

"opposite of 10" or "negative 10." Be very careful, however,

about a symbol such as "-a"; this symbol refers to the opposite

of the integer a, which is not necessarily a negative number.

(When is -a a positive number?)

So far we have worked only with addition of integers. Is

it possible to subtract integers? For example, what if you

were asked to subtract -3 from 5; do you know what the difference

should be? Let us look at this question carefully.

First, we write

This "-" appears
between two num-
bers, and means
to subtract the
sec310EaREer from
the first.

11101111016

This "-" is part of

the syl - , a
name Fmobr onega ive 3
(or the opposite of
3).
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Let us just admit that we do not know what this difference is,

and call it a. Then we can write

5- (-3) = a.

Now compare this subtraction problem with one which uses only

positive integers. For example, we know that

5 - 4 = 1.

since 1 + 4 = 5. In other words, subtracting 4 from 5 means

finding a number to which 4 may be adled to produce 5. You may

have checked subtraction problems in arithmetic by using this

idea:

5 Check 1
-4 +4

1 5

This gives us a clue as to how to find the number in our problem,

for we would like subtraction to behave the same way in our new

set Z of integers as it did with just the whole numbers. So,

if 5 - (-3) = a,

we want a (-3) = 5.

In other words, a must be a number to which -3 can be added to

product 5. The diagram below should help you tc see that this

number is 8. 8

-3

Therefore, 5 - (-3) = 8, since 8 + (-3) = 5.

Let us look at another problem in subtraction of integers.

4 - 7 = a

The number a must be such that a + 7 = 4. What number can be

added to 7 so that the sum is 4? The only such number is -3.
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Therefore, we have

4 - 7 = "3

since we already know

-3 + 7 = 4.

These examples show that you can always subtract integers

simply by using your knowledge of addition. Study the following

examples.

- (-14) = 17, since 17 + (-14) = 3Example 1: 3

Example 2: 28

Example 3: -17

Example 4: -33

- 13 = 15, since 15 + 13 = 28

- 5 = -22, since -22 + 5 = -17

- (-15) -le since -18 + (-15) = -33

4.12 Exercises

Find the differences.

1. 5 - 2 8. 5 - 13

2. 5 - (-2) 9. -3 - (-2)

3. -5 2 10. -3 - 2

4. -5 - (-2) 11. -15 - (-8)

5. 10 - 7 12. 100 - (-100)

6. 7 - 10 13. 100 - 100

7. 13 - 5 14. 100 - 200

15. 100 - (-200)
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4.13 Subtraction as Addition of Opposites

Our work with subtraction has suggested that we can always

subtrect by adding. And in fact there is an important mathe-

matical principle which shows this relationship. For example,

5 - (-3) = 8, as we saw earlier. But notice that instead of

subtracting -3 we can add the opposite of -3; that is 5 + (3) = 8.

In other words,

subtracting is the same adding
as its oppositean integer

To look at another case, we know that -7 - (2) = -9. However,

instead of subtracting 2, we may add its opposite;

-7 + (-2) = -9.

-7 2 = -7 + (-2) = -9

In this way, we may express every subtraction problem as

an addition problem. Instesd of subtracting a number, we may

add its.opposite. We state this in the following way:

- b = a + (-b).

Use this principle in exercises which follow.

4.14

1.

Exercises

11. -167 - 8280 - (-20)

2. -25 - 75 12. 55 (-55)

3. -25 - (-75) 13. 55 55

4. 14 - 7 14. 1,681,352 - (-2,684,917)

5. 14 - (-7) 15. -3,066,502 - (-8,300,070)

6. -14- (-7) 16. a- (-2) =
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8. -87 -95

9. -87 (-95)
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17. -2 - (-a) =

18. -a - (-b) =

19. x (-7) =

20. a - [-(b + c)]

21. Is subtraction an operation on the set Z of integers? Is

(Z,-) an operational system? Explain your answer. Is sub-

traction of integers commutative? Is it associative?

Consider the expression

-5 +2 - 4 + 7.

In this expression, the "-" between "2" and "4" means to subtract

4. And in an expression involving additions and subtractions,

we agree to perform the operations in order from left to right.

Hence we have

-5 +2 - 4 + 7 -3 -4 +7

= -7 +7

0.

Also we may rewrite the original expression as one involving

addition:

-5 + 2 + (-4) + 7,

since we have seen that adding the opposite of 4 is the same as

subtracting 4. Since addition is both commutative and associ-

ative, we may take the numbers in any order. For example,

-5 + 2 + (-4) + 7 = [(-5) + (-4)1 + [2 + 7]

= + 9

= 0.

In Exercises 22-35, rewrite each expression as one involving

only addition. Then simplify.
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22. 7 - 8 + 2

23. -14 + 5 - ( -3)

24. 42 - (-2) - 7

25. 216 - 38 - (-10)

26. -316 - 55

27. -316 + 55

28. 8 + 7 - 15 - 32

29. -28 - 32 17 - ( -3)

30. 15 - 7 +8 -3 +4

31. 23 + 31 - 45 + 51 - 87

32. 18 - 19 + 25 - 72 + 33 - 80

33. 3 + 5 -3 -5

34. -7 - 2 + 7 + 2

35. -8 +3 +8 - 3

What is 5 + 2 - 5 - 2? It is the same as

5 + 2 + (-5) + (-2).

And since addition of integers is both associative and

commutative, we may think of this as

(5 (2 + -2N,

which is 0 + 0, or 0. In other words, we have

(5 + 2) + (-5 + -2) = 0.

Therefore, we know that (-5 + -2) is the opposite of (5 + 2),

since the sum is zero. In symbols, we may write this as

-(5 + 2) = (-5) + (-2).

Now let a and b be any two integers. What is - (a + b)?

as above, we see that

a + b + (-a) + (-b) = 0.

crie)
4:00
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Therefore, the opposite of a. + b is (-a) + (-b). In

symbols, we have

I-7(a + b) (-a) + (-b):1

Use this principle in Exercises 36-45. All letters represent

integers.

36. -(x + y)

37. -(-x + y)

38. '-[-x + (-y)]

39. -(7 + a)

40. -(a - 4)

41. -(a b)

42. - (a + b + c)

43. -(a + b c)

44. -(a - b c)

45. - [ -(x + y)]

4.15 Equation13 in (z,+)

Below is a diagram illustrating the line translation

+ 3.

We studied such translations in Section 4.9, and we saw at that

time that each of them has an inverse translation. The inverse

of the translation
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f + 3

is n - 3. (This of course is

the same as

non + (-3).)

We know that the composition g o f is the identity translation;

this is illustrated below.

- -2 -1

Now look at the equation

x + 3 = -15.

Does this equation have a solution in the set Z of integers?

You see below that we may picture this equation in terms of

the line translation n---n + 3.

In other words, x must be a number whose image under f is -15.

Now if we follow n n + 3 by its inverse n----10.n - 3 we have

the following: 3

-3
From this diagram, we see that we may start at x and write

-15

x + 3 -15

or we may start at -15 and write

-15 - 3 = x.

In other words, any x which is a solution of one of these

equations is a solution of the other also. Therefore, to solve
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the original equation we may proceed as follows:

x + 3 = -15

x = -15 - 3

x = -18

since -15 - 3 is the same as -15 + (-3). This is easy to check,

becaqile we know

-18 + 3 = -15.

Below are two more examples of solving equations of the

type "x + a = b," wi'ere a and b are integers.

Example 1: x - 5 = -2

Example 2:

X

-2 + 5 = x

3 = x

(3) is the solution set.

x + 18 = 3

18

18

3 - 18 = x

- 15 = x

(-15) is the solution set.

.10

4.16 Exercises

Solve the following equations in (Z,+),

1. x + 3 =1 11, a+ (-5) =8

2. x + 3 = 3 12. a - 5 . 8
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3 .

4.

5.

6.

7.

8.

9.

10.

3 + x

3 4- x = 3

x + 2 = 7

x + 8 -2

x + (-2)

x - 2 = 8

a + 4 -4

4 + a = -4

8

13.

14.

15

16.

17.

18.

19.

20.

a - 27

8 - 27

x - 15

x - 15

x - 15

x 15

3 + a =

3 - s =

= 33

= -4

= -2

= 0

= -3

. -3

-100

-100

Look at the equation

x + 2 = b.

Can you solve it for x?

We see that if x + 2 = b, then b - 2 = x. Also if

b - 2 = x, then x + 2 = b. So to solve the equation

"x + 2 = b" we write

x + 2 = b

x = b - 2.

Now work Exel'clsos 21-30, solving for x.

21. x + 3 = b

22. x + 5 =b

23. x + 100 = b

24. x + (-6) = b

25. x - 6 = b

26. x + 15 = b

27. x + (-10) = b

28. x - 10 = b

29. x 14 = b

30. x a = b

31. Use Exercise 30 to answer the following question:

Does every equation of the type "x + a = b," where a. and b

are integers, have a solution x in the set of integers?
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32. Make up ten different equations of the type

x + a = b,

where a and b are integers, and solve the equations.

4.17 Cancellation Law

Suppose that a and b are integers, and that

5 + a = 5 + b

What conclusion can you draw? If your conclusion is that a and

b are actually the same integer (that is, a = b), then you are

using a cancellation lam. (You may want to review Section 2.11

if you do not remember what a cancellation law is.) Is it

correct to use a cancellation law in the case above? We start

by knowing that

5 + a = 5 + b.

The inverse of the integer 5 is -5, and we may write

-5 + (5 + a) = -5 (5 -I- b) .

Do you see that on both sides of "=," we have the same sum?

We know that 5 + a is the same as 5 + b, and certainly -5 is

the same as -5. Now we may write

(-5 +.5) + a = (-5 + 5) + b,

since addition of integers is associative. Then

0 + a. = 0 + b,

since the sum of an integer and its opposite is 0. Do you see

now why we chose the integer -5 at the beginning? Since 0 is

the identity element of (z,+), we may finally write

a = b.

So, if 5 + a = 5 + b, then a = b; and we see that our use
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of a cancellation law in this case was correct. Can we always

use a cancellation law in such t case? That is, is there a

cancellation law in (z,+)? Study the following steps, where

a, b, and c are integers.

IFc+a=c+ b

THEN

-c + (c + a) -c + (c + b) Why?

THEN

(-c + c) + a . (-e + c) + b Why?

THEN

0 +a=0+ b Why?

THEN

a = b Why?

You should be able to answer each ,-)f the questions "Why?"

since the argument here is the same as the earlier one, except

in this case c represents any integer. So we may write, where

a, b, and c are integers,

IF c +a=c+ b

THEN a = b

Cancellation Law

of (z,+)

Example: Use the cancellation law of (z,+) to solve the

equation

-3 + x -1.

First, we may rewrite the equation as

-3 + x -3 + 2,

since -3 + 2 = -1. We now have -3 on both sides

of "=," and we may use the cancellation law to get

x = 2.
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Therefore we have another way in which to solve equations in

(Z; +) besides the method we used in Section 4.15.

4.18 Exercises

1. May the cancellation law of (Z,+) be stated in the follow-

ing way: If a + c = b + c, then a = b?

2. (a) Give an example of an operational system besides (Z,+)

in which there is a cancellation law.

(b) Give an example of an operational system in which

there is no cancellation law.

3. Use the cancellation law of

equations.

(Z,+) to solve the following

(a) 2 + x = 2 + (-5) (e) n -5 = -10 -5

(b) 2 + x = 2 - 5 (f) Y + 43 = -14 4- 43

(c) x + (-7) -3 + (-7) (g) -2 +t = -2 + 19

(d) x - 7 = -3 - 7 (h) -2 + t = -2 - 19

4. Use the cancellation law of

equations.

(Z,+) to solve the following

(a) 5 + x = 17 (g) 3 + n = 47

(b) -4 + x = 12 (h) n - 10 . -5

(c) x + (-3) = -6 (i) y - 14 = 7

(d) x - 3 = -6 (j) -32 + x = 32

(e) -13 + x = 42 (k) x + 3 = 7

(f) 19 + x = -13 (1) x + a = b (Solve for x.)
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4.19 Ordering the Integers

It is important to recognize that numbers can be compared

in the sense of saying that one number is less than another.

For instance, 3 is less than 7 and we write

3 < 7.

We may also show the comparison of these numbers by saying that

"7 is greater than 3" and writing

7 > 3.

3 and 7 of course are positive integers, but it should be

possible to compare any two integers, positive, negative, or

zero. For example, which of the two integers, 3 and -7 is

greater? Is -10 less than -3 or greater than -3? After study-

ing this section: you should be able to answer questions such

as these.

We think of 7 as being greater than 3 because we must add

a positive integer to 3 to get 7. Specifically, 3 + 4 = 7; 4

is the number we add to 3 to get 7. Of course, saying 3 + 4 = 7

is the same as saying 7 - 3 = 4. Thus, 7 > 3, and the difference

7 - 3 is the positive integer 4. In the same way, 10 > 8, and

the difference 10 - 8 is the positive integer 2.

We should like to keep this same pattern in comparing any

two integers. Therefore, we shall say that if a and b are

integers

a - b is a positive integer
means

a > b, and
b < a.

With this agreement, let's return to the two questions we asked
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earlier. Which is greater, 3 or -7?

-7 + -3 = -10. -10 is a negative integer; so -7 is not
greater than -3.

3 - (-7) = 10. 10 is a positive integer; so 3 is greater
than -7.

We may write 3 > -7

-7 < 3.

The number line may also be used to show that the difference

3 - (-7) is 10.

10

-7 -6 -5 -4 -2 -1 0 1 2 3 4 5 6

3 - (-7) = 10 means that 10 + (-7) = 3, or by commutativity,

-7 + 10 = 3, as shown above. You must add 10 (or shift to the

right 10 steps) to get 3. This means that the point associated

with -7 is to the left of the point associated with 3.

Which is greater, -10 or -3? The number line below

illustrates that -10 + 7 = -3.

7

)11.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -2 0 1 2 3 4 5 6

In other words, -3 - (-10) = 7, a positive. integer. Therefore,

-3 > -10, and

-10 < -3.

By looking at the number line below, can you tell at a

glance which of the two numbers, -3 and 2, is greater?

-4 -3 -2 -1 0 1 2 3

1-



-206-

Having decided on a way to order the integers, we see that

we can also use this ordering to order the points of the number

line to which integers have been assigned. In this way, given

two different points, the one to the left is said to come before

the one to the right. And the integer assigned to the left point

is less than the integer assigned to the right point.

4.20 Exercises

Point P comes before point Q.
The integer a is less than the integer b.

1. For each of the following pairs of integers, tell which

is greater and why.

(a) -6, 2 (d) 0, -1

(b) 6, -2 (e) 0, 1

(c) -6, -2 (f) -6, -7

2. List the following integers in order from legit to right,

beginning with the least integer listed, and ending with

the greatest integer listed.

2, -2, 3, -5, 0, -1, 4, -4, -3, 5, 1.

3. If a b is a positive integer, which is the greater integer,

a or b?

If r - s is a negative integer, which is the greater

integer, r or s?

What conclusion can you draw if c - d = 0, where c and d

are integers?
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4. Copy the following pairs of integers, and insert the symbol

"=," "<," or ">," whichever makes a true sentence.

(a) 7 -3

(b) -5 -15

(c) -8 0

(d) 8 0

(e) -100 2

(f) 1 -2500

(g) 5 14

-5 -14

7 15

-7 -1F

-3 5

3 -5

5. Look at the number line diagram below. Which integer

a, or b, is greater?

-b -a a

Can you complete the following sentence: If a < b, then

-a

6. For each of the following pairs of integers, tell which is

greater:

(a) 7, -7 (d) 52, -52

(b) -5, 5 (e) 33, -33

(c) -13, 13 (f) -97, 97

7. (a) If x is a negative integer, and y is a positive integer,

which is greater, x or y?

(b) If x is a negative integer, and y = 0, which is greater,

x or y?

(c) If x is a positive integer, and y = 0, which is greater,

x or y?

8. Suppose that a, b, and c are three integers, and you know

the following:
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a < b, and b < c.

What other fact do you know? Illustrate on a number line.

4 21 Absolute Value

In Chapter 2 we studied an operation on the whole numbers

called the "max" operation. For example,

(2,6) or 2 max 6 = 6,

since 6 is the greater number of the pair. Instead of

'2 max 6 = r)," we may also write max(2,6) 6"; the meaning is

the same. "Max" is also an operation on the integers. Given

the pair (- 3, -7), for instance, the "max" operation assigns the

number -3, since > -7. In the diagram below, ill'istrating

the "max" operation, we use only a special kind of pair; each

pair consists of an integer and Sts opposite.

Each of these pairs (except (0,0)) is assigned a positive integer.

Why? Of the two numbers in each pair, one is positive and the

other negative; and the positive number is the greater.

`15
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Example 1: Suppose a is a positive integer.

Then max (a, -a.) = a, since a is the greater

integer of the pair.

Example 2: Suppose a is a negative number.

Then max (a,-a) = -a. In this case, since a is

a negative number, -a is a positive number.

And the positive number is greater than the

negative number.

It is often useful in mathematics to work with the number

max (a,-a) where a is an integer; and this number is called the

absolute value of a.

Example 3. What is the absolute value of -10? The opposite

of -10 is 10. And max (-10,10) = 10. Therefore,

the absolute value of -10 is 10.

Instead of writing the words "absolute value of," we shall

simply use the symbol "Ial" to mean "absolute value of a."

Example 4: 1-71 = max (-7,7) = 7.

Example 5: 1251 = max (25,-25) = 25

On the number line below, it is reasonable to say that

'6.-7731- 1 2

the distance between points P and Q is 4, since it takes 4

"steps" to get from one point to the other. We could find this

distance by subtraction 7 - 3 = 4, where 7 and 3 are the integers

associated with the points P and Q. Notice that if we subtract

in the other order, 3 - 7, we get -4. We do not use this for

the distance between two different points.
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Example 6. What is the distance between R and S?

S R

-3 -2 -1 0 1 2 3 4 5 6

Here too the distance can be found by subtract-

ing the numbers associated with the points,

3 - (-2) = 5. Again notice that if we sW...tract

in the other order, we get -2 - 3, or -5. But

the distance is the positive number 5.

Now suppose that we want to find the distance between two

points, point W which is associated with the integer a on the

number line, and point Y, which is associated with the integer

b. Is the distance a - b or b - a? We cannot be sure in this

case; one of these numbers is positive, and one is negative.

However, if we take the absolute value, we are sure to get a

positive number, regardless of which of the two numbers we

choose. So it is correct to say the distance is la - bl; it is

also correct to say the distance is lb - al.

Example 7: What is the distance between the points shown

below?

0 1 2 3 4 5 6 7 8 9 10

18 - 21 = 161, or 12 -81 = 1-61

6

We may subtract in either order as long as we

use the absolute value for the distance.
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4.22 Exercises

1. (a) max (7, -7)

(b) 1-71 =

(c) 12151 =

(d) 1-2151 =

(e) max (-215,215) =

(r) 131 =

(g) 1-831

(h) max (-83,83) .

(i) 11001 =

(j) 1-1001 =

(k) !max (-3,-6)1 =

(1) max (-3, 1-61) =

2. Since we have previously agreed that 0 is its own

opposite, what is 101?

(Remember that max (a,a) = a.)

3. Find the simplest name for each of the following:

(a) 13 71

(b) 17 31

(c) 1100 - 181

(d) 118 - 10011

(e) 15 (-2)1

(f) 1-2 - 51

(g) 1-7 - 141

(h) 1-14 - (-7)1

(i) 162 - 371

(j) 137 621

(k) 110 - (-38)1

(1) 1-38 - (-10)1

4. Using the number line below, find the distance

B A CD
-32 -9 11 21

between the following points:

(a) B and C

(b) C and D

(c) B and A

(d) B and D

(e) A and C 2 1.8
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5. Find the simplest name for each of the following:

(a) 17 - 01

(b) 10 - 71

(c) 1-7 - 01

(d) 10 - (-7)1

(e) 1-18 - 01

(f) 10 - (-18)1

(g) 118 - 01

(h) 10 - 181

(i) 1 100 - 01

(j) 10 - 1001

(k) 1-100 - 01

(1) 10 - (-100)1

6. Using the number line below, find the distance

S P T K Q R
I

-20 -12 -7 0 7 12 20

between the following points:

(a) T and K

(b) Q and K

(c) P and K

(d) R and K

(e) S and K

(f) W and K

(g) P and W

7. In the diagram below, if the distance between C and A is the

wec q A
0

same as the distance between B and A, what is x?

8. On a number line, point 0 is associated with the integer 0,

and point P is associated with the integer _p. What is the

distance between 0 and P?

9. Complete the following drawing, in which an arrow is drawn

from each of the given integers to its absolute value.
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-6 -5 .4 -3 -2 -1 0 1 2 3 4 5 6

10. Which of the following is not true for any integer a?

lal > 0; lal . 0; lal < 0.

11. Find solution sets for the following equations:

(a) lal = 5 (g) In + 21 = 3

(b) lal = 0 (h) Inl + 2 = 3

(c) lal = -5 (i) la -11 =5

( ) lal = 100 (j) lal - 1 = 5

(e) lx1 + 1 = 9 (k) In + 71 = -2

(f) lx + 11 =9 (1) In + 71 = 0

12. Describe the integers which are solutions of the following:

(It may help to use the number line.)

(a) 1a1 < 2

(b) lal >2

(c) 1a1 < 5

(d) lal > 5

(e) lal < 0

(f) 1a1 > 0

(g) lal < 100

(h) lal > 100

*13. Describe the integers which are solutions of the following:

(a) lx + 21 < 2

(b) Ix - 21 <2

(c) lx - 31 < 7

(d) lx + 31 < 7

n904/w
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14. Answer true or false, where a is an integer:

lal = 1-al

Illustrate your answer on the number line.

15. Answer true or false:

(a) lal = a, if a is a positive integer.

(b) lal = -a, if a is a negative integer.

(c) lal = a, if a is 0.

*16. (a) 6 + 2 = 8. This example illustrates that the sum of

tvo positive integers is positive. What is 161? What

i5 121? What is 161 + 121? What is 181? Notice

that the absolute value of the sum is the same as the

sum of the absolute values. Make up a rule for finding

a + b, where both a and b are positive integers.

(b) -6 + (-2) -8. This example illustrates that the sum

of two negative integers is negative. What is 1-61?

What is 1-21? What is 1-61 + 1-21? What is 1-81?

Notice that the sum of' the absolute values is the same

as the absolute value of the sum.

Make up a rule for finding a + b, where both a and b

are negative integers.

(c) 6 + (-2) = 4. Here we are adding a positive integer

and a negative integer. Notice that

161 + 1-21 = 6 + 2 = 8, and this is not the same as

141. In other words, the sum of the absolute values

in this case is not the same as the absolute value of

the sum.

zap
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Which has the greater absolute value, 6 or -2?

Notice that the sum, 4, is a positive integer, just

as 6 is (and, of the two numbers being added, 6 has

the greater absolute value). What is 161 - 1-21?

Make up a rule for finding a + b, where a is a

positive integer, b is a negative integer, and

la1 > 1b1

(d) -6 + 2 = -4. Here we are adding a positive integer

and a. negative integer, and the sum is negative.

Which has the greater absolute value, -6 or 2? Notice

that the sum, -4, is a negative integer just as -6 is

(and of the two numbers being added, -6 has the great-

er absolute value). What is 1-61 - 121? Make up a

rule for finding a + b, where a is a negative integer,

b is a positive integer, and 1a1 >1b1.

*17 When is it true that la + b1 = (al + 1bl? (Be sure to

consider cases in which either a or b, or both, are zero.)

4.23 Summary

1. The set Z of integers is made up of the positive integers,

zero, and the negative integers.

2. Every integer a has an opposite, -a, such that

a + (-a) = 0. If a is positive, -a is negative. If a is

negative, -a is positive. If a is zero, -a is zero.

3. -(-a) = a.

4. The absolute value of an integer a is written as "Ial."

lal = max (a,-a). Therefore, la, is never negative.

222



-216-

5. The distance on the number line between the points associ-

ated with the integers a and b is la - bl. This distance

is also lb - al, since la - bJ = lb - al.

6. Addition is an operation on the set Z of integers, That is,

to every ordered pair of integers is assigned an integer

called their sum. Therefore, (Z,+) is an operational

system.

7. The operational system (Z,+) has the following properties:

(i) Associativity

(ii) Commutativity

(iii) Identity element

(iv) Inverse element for each element.

Therefore, (Z,+) is a commutative group.

8. There is a cancellation law in (Z,+). If c + a = c + b,

then a = b.

9. The integers may be used in many kinds of problems in which

the idea of "opposites" occurs. Also the integers may be

used to describe certain translations on a line, such

translations being denoted by n----n + a, where a is an

integer. A line translation is a mapping, since every

point of the line is the image of exactly one point.

10. Subtraction is an operation on the integers. However, it

is not associative and it is not commutative.

11. a - b = a + (-b). Every subtraction may be expressed as an

addition.

12. The opposite of a sum is the sum of the opposites.

- (a + b) = (-a) + (-b).

4-1
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13. The integers are ordered. a < b if and only if b - a

is a positive number. All negative numbers are less than

zero; all positive numbers are greater than zero.

14. Every equation of the kind "x + a = b," where a and b are

integers, has a solution in the set of integers.

4.24 Exercises

In Exercises 1-10, find the sums.

1. -18 -I- (-15)

2. -34 + (-83)

3. 32 + (-19) + 58

4. 107 + 89 + (-16)

5. -217 + 88 + (-365) + 47

6. -18 + 52 + (-43) + 108 + (-92)

7. 195 + (-195) + 208 + (-208) + 66

8. 1257 + (-13335)

9. 251 + 375 + (-801) + 455

10. 5681 + 4355 + (-11652)

In Exercises 11-22, find the differences.

11. 32 - (-8)

12. -55 - 17

13. -82 - (-19)

14. 17 - 38

15. 17 - (-38)

16. -45 - 110

17. -187 - (-258)
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18. -258 - 312

19. -47 - 85

20. -47 - (-85)

21. 0 - 15

22. 0 - (-15)

23. 15 - 8 + 7 - 22 + 13 =

24.

25.

26.

27. -124 - 35 + 87 - 78 + 39

28. 168 - 3835 + 2106 =

29. 9857 - 3462 - 2118

30. 12385 - 14689 + 5206 =

31. Write the following integers in order from left to right,

beginning with the least integer listed and ending with

the greatest integer listed:

72, -3, -109, 3, 0, -42, 68, -10, -88, 215, -1000.

32. Between each of the following, insert "<," ">," or "="

whichever results in a true sentence.
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- 15 + 8 - 7 + 22 - 13 =

106 + 42 - 38 + 15 - 62 =

52 + 18 - 93 + 106 - 84

(a) 1-31 -3

(b) 171 7

(c) (-2 + 8) (-2 - 8)

(f) 1-101 + 1-31 1-10 + (-3)1

(g) (42 + (-18)) (42 - (-18))

(h) 17 (-2)1 (171 1-21)

- 71 17 31 (i) (a + (-a)) (b + (-b))

- 18) (0 - (-18)) (j) 0 la + (-a)

33. For each of the following, draw a number line. By using

arrows, show the translation of the line which it describes.

(a) + 5

(b) n n - 7 col
& K,c)

(c) n---- n + (-3)

(d) n n + 0.
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34. For each of the following, draw a number line. By using

arrcols, show the composition g o f of the given trans-

lations.

(e) + 6; n g .n - 4.

(b) + 10; - 10.

(c) - 9; n + 5.

(d) - 4; n g > n - 3.

(e) + 4; n g n + 3.

35. Tell what single line translation is the same as each of

the compositions in Exercise 34.

36. Find the solution set of each of the following equations.

(Solve for x.)

x 81 = 106

x - 106 = 81

x + 7 = b

x + a = 13

x + a = b

x + t = r

37. Find the solution set of each of the following. (Solve

for x.)

(a) lx1 = 5 (e) lx + 21 = 7

(b) 1x1 = -5 (f) ixi = x

(c) lx1 = 0 (g) lx1 = -x

(d) 1x1 + 2 = 7 (h) 1x1 = 1-xl

38. Tell what integers are solutions of the following sentences:

(a) x + 3 = 7 (g)

(b) x + 7 = 3 (h)

(c) x - 3 = 7 (i)

(d) x - 7 = 3 (j)

(e) x + 81 = 106 (k)

(f) x + 106 = 81 (1)

(a) lx1 < 15

(b) 1x1 > 15

226
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*(e) Ix - 21 < 5

*(f) Ix + 51 < 2

39. Simplify the following:

(a) - (a + b)

(b) - (a b)

(c) - (-a + b)

(d) - (-a - b)

(e) - (x - y+ z)

40. The figure below can be used as an addition table for the

integers if properly completed and extended.

1 6

4
0

0 2
0

-5 -3 -2 -1
1
0
-1

8

8

3 5
23
1 2 3 4 7
0 1 2 3

-1 0
0

13 -5

(a) Copy the table and fill in all the entries.

(b) What do you notice about all the cells having the same

number (for example, all cells in which "4" is entered)?

(c) In what way does the table show that addition of

integers is commutative?

(d) In what way does the table show that every integer has

227



-221-

exactly one inverse for addition?

(e) Try to find at least one other pattern which shows

up in the table.

228



CHAPTER 5

PROBABILITY AND STATISTICS

5.1 Introduction

The Fish and Game Commission often must estimate the number

of fish in a lake. But they certainly cannot catch all the fish

in the lake and count them. Instead, they catch a sample in a

net, tag them, and throw them back into the lake. After allowing

time for the first sample to mix thorcughly with the fish popu-

lation, they catch a secona sample and court the number of tagged

fish in this sample. The fraction of tagged fish in the second

sample is an estimate or a guess of the fraction of tagged fish

in the lake. For example, if the first sample numbers 100 and

the second sample 200, of which 50 are tagged, it is assumed

that about 200
50

or of the fish in the lake are tagged. Only

100 fish were tagged, so 100 is about 1 of the fish in the lake.

Question: On the basis of the above estimate, how many

fish are in this lake?

A similar estimation problem is often met in industry. For

instance, in the manufacture of light bulbs it is important to

control the equality of the bulbs coming off the assembly line.

Since it is not practical to test the burning time of each bulb,

a sample of several bulbs is selected and tested. The fraction

of defective bulbs in the sample is then used as an estimate of

the fraction of defective bulbs in the lot of bulbs being pro-

duced. This fraction is called the relative frequency of
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defective bulbs. If the sample consisted of 50 bulbs, of which

5 were defective then -5 or .1 is the relative frequency of
50

defective bulbs in the sample.

Today many users of mathematics need the ability to make

estimates with a high degree of confidence, in situations where

the actual results are uncertain. Important decisions are often

based on these estimates.

Question: What are some ways relative frequencies might be

used by

(a) the weather bureau;

(b) an auto insurance company;

(c) the National Safety Council;

(d) a life insurance company;

(e) the manager of a supermarket?

5.2 Discussion of an Experiment

The experiment that we discuss here is that of tossing a

die. You may think of the experiment as a set of trials and an

associated set of outcomes. In this case a trial consists of one

toss of the die. The possible outcomes are pictured below:

y
Figure 5.1
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We say that the outcome is 2 if the die comes to rest with

two dots on the "up" face. The outcome set is (1,2,3,4,5,6).

For each trial the outcome is the number of dots on the up face.

If a trial results in a certain outcome, we say that this out-

come occurs.

The set of outcomes (1,2,3,4,5,6) is also called the out-

come space. Any subset of the outcome space is called an event.

Thus, (2,4,6) can be described as the event that the out-

come is an even number. An event is said to occur if any one

of its outcomes occurs.

We can simplify the description of event (2,4,6) by letting

(2,4,6) = K. Then if an outcome is an even number, we say that

K occurred. For example, if the outcome of a trial was 2 we say

that K occurred.

Since any subset of an outcome set is an event, the outcome

set (1,2,3,4,5,6) is itself an event. It could be described as

the event that the outcome was a whole number between zero and

seven. A subset containing a single outcome is called a simple

event, or a point in the outcome space. For example, in this

experiment (2) is a simple event or a point.

Below is a table showing the results of an experiment that

was performed. The experiment consisted of rolling a die 24

times with the outcome set (1,2,3,4,5,6.) The first column of

the table shows the outcomes, the second shows the tally of the

occurrences of each outcome; the third shows the frequency of

number of occurrences of each outcome; the fourth shows the

relative frequency of each outcome.
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Table 1 24 Tosses of a Die

Outcomes Tally Relative Frequena_

///

4 //

5

5.3 Exercises

3
3 1

24 b

5 24

4 14. _

2
24 12

5 24

5
24

1. Tabulate the following events of the die tossing experiment.

That is, list all outcomes that satisfy the condition.

(a) The outcome is less than 3. Ans. (1,2)

(b) The outcome is greater than 5.

(c) The outcome is less than 3 or greater than 5. Where

"or" is used, tabulate all outcomes that satisfy at

least one of the two conditions.

(d) The outcome is greater than 1 and less than 4. Where

"and" is used, tabulate only outcomes that satisfy

both conditions.

(e) The outcome is greater than 2 and less than 3.
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(f) The outcome is a member of the outcome set.

(g) The outcome is a prime number.

2. Describe the following tabulated events.

(a) [2,4,6)

(b) (1,3,5)

(c) (1,6)

(d) (2,3,5)

3. Perform the experiment of tossing a die 24 times and record

the results in a table like Table 1. Compare your results

with those in Table 1.

(a) Which of your frequencies were the same as those in

Table 1?

(b) Which of your relative frequencies were the same?

(c) Do you think that you will always get the same relative

frequencies in repeating this experiment? If you have

doubts, try it

(d) Add the relative frequencies in the last column of

your table. Add the relative frequencies in Table 1.

Were the sums the same?

(e) Find out what the other students in your class found

as the sum of the relative frequencies in their tables.

(f) If you all found the same sum, try to explain why this

happened.

4. Suppose that you had a coin with a "head" on both sides and

performed the experiment of tossing this coin 100 times.

(a) What would be the frequency of the outcome "heads-up?"

(b) What would be the relative frequency of this outcome?

(c) Would you say that the outcome, heads, was certain?

(d) What is the relative frequency of any event that is

certain? 06141
KOU
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5. In the same experiment of tossing the "two-headed" coin:

(a) What is the frequency of the outcome "tails?"

(b) What is the relative frequency of this outcome?

(c) If "heads" was a certain event for this experiment,

how would you describe the event, "tails?"

6. What is the relative frequency of an event that is

impossible?

7. In the die tossing experiment, what is the relative frequency

of 2? of 4? of 6?

8. What is the sum of the relative frequencies in Exercise 7?

9. In the die tossing experiment, what is the relative frequency

of the event that the outcome is an even number?

10. What conjecture might you make on the basis of the answers

to Exercises 7, 8, and 9?

11. Class Discussion Exercise:

It is interesting to find out what happens to relative

frequencies as you increase the number of trials. Instead

of repeating an experiment many times, you may save time by

combining your results with those of the other students in

the class.

Use the results for the event (5) in your die-tossing

experiment (Exercise 3) for the following experiment.

First, draw this chart on the chalkboard:



Cumulative Number
of Trials
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Cumulative Relative
Frequency Frequency

24

48

72

96

etc.

(a) Have one student go to the board and enter his

frequency and relative frequency for the outcome 5 in

the columns to the right of 24.

(b) Have another student go to the board, add his frequency

for the same event to the frequency of the first student,

and enter the sum in the second row of the cumulative

frequency column. Then divide this sum by 48, and

enter the quotient (in fraction-form) in the relative

frequency column.

(c) Have a third student follow the same procedure in the

third row and so on.

(d) If the first three students had 4,3 and 5 respectively,

for the frequency of the outcome (5), entries would

look like this:

24 4
4nr or .6.

48 7
7

413

1
72 12

12
or E.

1-045
(AY
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Question: If you have 20 students in your class, how many

trials will you have by the time each student

has recorded his results on the chart?

(e) Experience indicates that as you increase the number

of trials in an experiment to very large numbers, the

relative frequencies of an event tend to vary less and

less from some specific number. Even though your

class project does not involve very large numbers,

compute the differences of consecutive pairs of rel-

ative frequencies to see if they tend to decrease.

(See the illustration below for a suggestion on how

to proceed.)

Number of trials
Relative Consecutive

Frequencies Differences

24

48

72

96

etc.

la - bl

lb - cl

lc - dl

etc.

(f) The property discussed in this exercise is called the

stability of relative frequencies.

(g) The following statements summarize the ideas of the

preceding exercises.

1. The relative frequency of an event is

(a) 0, 1 or a number between 0 and 1;

(b) 1 if the event is certain;

(c) 0 if the event is impossible;
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(d) the sum of the relative frequencies of its

simple outcomes.

2. The sum of the relative frequencies of the outcomes

in an experiment is 1.

3. Relative frequency has the property of stability.

This idea will be explored further in experiments

and illustrated graphically.

5.4 An Experiment to be Performed by Students

For this experiment students should work in groups of two

or three, but each one should perform the trials while his

teammates help him tally the results. In this way you can do

experiments where you need a large number of trials but want

to use the same experimental object such as the same die, coin

or thumbtack. The large number of trials can be achieved by

combining the results of the three members on a team.

(1) Experiment: 20 tosses of a thumbtack repeated 5 times.

Toss a thumbtack on a hard surface where it will bounce

before coming to rest. (We hope that this will take

all of the prejudice out of the way you toss.) The

simple outcomes will be "Up" and "Down."

Each student should make a chart like the one below

and tabulate his results. When each student on a

team has completed 5 groups of 20 tosses, the three

students working together should fill in Table 2 for

the cumulative results, using the outcome UP. (Is
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information lost by only considering the outcome UP?

Why or why not?) We illustrate how this might begin.

Tables

Twenty Tosses of A Thumbtack Repeated Five Times

.._
UP DOWN

Tall
Fre-
.uenc

Relative
Fre.uenc Tall

Fre-
uenc

Relative
Fre.uenc

25474/

7/74/ //

12
12

2 0
i

=
3
5 S g Z / / / 8 8 = 2

720

W/4,
///

9 i 7S,4,4 7-/A4

/

11
11_

20
20

Table 2
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Cumulative Results for 300 Tosses of a Thumbtack

( grouys of twenty)

Relative
Frequency
for UP

Consecutive
Differences

Cumulative
Number of
Trials

Cumulative
Frequency
for UP

20 12
12 3 _ 6
"0' = 5 3

40ko 21 21
376. = .5 _

6o 27 2 = .45

80 etc.

100

120

140

16o

180

200

220

240

260

28o

3oo

Table 3

(3) Graphs

The best way to illustrate the stability of relative

frequency is through the use of graphs, Each student

will make two graphs to show the results of the thumb-

tack experiment. The relative frequencies for UP,

tabulated in Tables 2 and 3 will be used.

c'PQ
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The first graph will show the relative frequencies

for UP for each group of twenty tosses, The second

graph will show the relative frequencies for UP for

increasing numbers of trials. The two graphs below

illustrate the procedure using results of an imaginary

experiment.

Relative
Frequencies
1.00

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1st 2nd 3rd 4 h 5 h
twenty
tosses

Group
Number

Graph 1

This graph shows that for the five groups of

tosses the relative frequency did not vary much. Point

A shows that in the first group of twenty tosses the

relative frequency of UP was .6. For the five groups

illustrated in the graph, the greatest relative fre-

quency was about 0.62 and the least about 0.48. The

difference between the greatest and least is 0.14.

Now construct a graph similar to that in Graph 1

using the results of your experiment tabulated in

Table 2.

"10
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Relative
Frequency
1.00
0.90

0.80
0.70
0.60
0.50
0.40
0.30

0.20

0.10

0.00 0..41 -
0 0 0 0 0 0 0 0 0 0 0 0 0 000 04 03 0 Cs1 CO 0

fv Csi Csi Cs1 C")

Graph 2

This graph shows that as the number of tosses

increased in this particular experiment, the relative

frequencies did indeed "stabilize" around a number

(about 0.62). With a different thumbtack, the number

might have been different. Now construct a graph

similar to Graph 2 using the results of your team tab-

ulation in Table 3. Do your relative frequencies tend

to stabilize around a number? Is this number near

.62? If not, can you explain the difference? Compare

your cumulative relative frequency with those of other

teams.

Question: What do you think the results might be with a

thumbtack that has a very small head and a long

pin?
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5.5 The Probability of an Event

The thumbtack experiment provided us with one example of

the tendency of relative frequencies to "stabilize" as the

number of trials increases. This tendency is sometimes called

the law of large numbers. This law can be verified by many

types of experiments.

Our findings about the stability of relative frequencies

suggest that we might be able to predict relative frequencies

in some cases where they can't be observed or where it would

be very impractical to observe them, For example, if you were

manufacturing firecrackers, you wouldn't want to test the quality

of your product by exploding each one. (Or maybe you would!)

The prediction of relative frequencies is an assignment of

numbers to events. The number is called the probability of the

event. If you like shorthand, you may use the symbol "P(E)" to

stand for the "probability of the event E."

All rights involve responsibilities, and the right to

assign probabilities to events obligates us to obey certain laws.

Suppose you feel, on the basis of experience, that one of your

coins will come up heads about -§ of the time. You decide to

assign 3. to P(H) (the probability of heads). What must you then

assign to P(T)? In other words, about how often would you expect

tails?

In short, since probabilities are predictions of relative

frequencies we must expect them to obey all of the properties

that we have developed for relative frequencies. Thus P(E),

the probability of event E, must satisfy the following:
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1. 0 P(E) S 1.

2. P(E) = 1, if E is certain to occur.

3. P(E) = 0, if E cannot occur.

4. The sum of the probabilities of the outcomes

in an outcome set is 1.

5. P(E) is equal to the sum of the probabilities of

the simple outcomes in E.

5.6 A Game of Chance

Play the following game with another student in your class

and decide if it is fair or unfair. Toss a pair of dice (or

wooden cubes with numerals from "1" to "6" on the faces if any-

one objects to dice), and observe the sum of the outcomes.

Player A gets one point if the sum is 2,3,4,10,11 or 12.

Player B gets one point if the sum is 5,6,7,8 or 9. Notice

that there are 6 sums that will give player A a point and only

5 sums that will give player B a point. The first person to

get 10 points wins the game.

(a) Pick a partner and play the game 4 times.

(b) How often did player A win? player B?

(c) Is the game fair? If not, who had the advantage?

(d) If one player has the advantage try to discover why.

5.7 Equally Probable Outcomes

You have seen that we can assign probabilities to the simple

outcomes of an experiment on the basis of experience with

relative frequencies. But even without such experience, it is
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often reasonable to assign the same probability to each of the

simple outcomes in an experiment. For example, in tossing a

coin, we often assign equal probabilities to heads and tails.

Question: In this case, what is the probability of heads?

tails?

In tossing a die we often assign the same probabilities to

1,2,3,4151and 6.

Question: In this case what is the probability of each

outcome?

Question: If 'lere are n equally probable outcomes in an

outcome set, what is the probability of each?

If we say that a coin or a die is fair, we mean that each element

in the outcome set has the same probability.

If we toss a fair die, what is the probability of the event

that the outcome is greater than 4? In this event (5,6) there

are 2 simple events, (5), (6). P((5)) = 1; and P((61) = S.

Since the probability of an event is the sum of the probabilities

1 1of its simple outcomes, P((5,6)) = 1 + F 3 .

When the selection of a member from a set is made so that

each possible choice is equally likely, we say that we are

selecting a member at random. Consider the experiment of select-

ing a letter of the alphabet at random. Each letter is equally

likely to be chosen. Let V be the event that a vowel is selected,

C the event that a consonant is selected, and A the event that

a letter in the alphabet is selected.

Questions: What is P(V)? What is P(C)?

What is P(A)?

What is P(V) + P(C)?
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5,8 Exercises

1. Toss a pair of dice of different color, for example one

white and the other blue. The outcomes occur in ordered

pairs (W,B). There are 6 outcomes for the white die and

for each of these there are 6 outcomes for the blue die.

Question: How many ordered pairs of outcomes are there for

the two dice? Use the order (white,blue). You

could record the outcome set in a square pattern

as follows:

(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

(a) Copy the above diagram of the outcome space.

(b) Use a ruler to draw a red line through all of the

pairs for which the sum is 7. Do the same for sums

of 5,6,8 and 9.

(c) Now draw a green line through all the pairs for which

the sum is 10. Do the same for sums of 2,3,4,11 and 12.

(d) Let each outcome in the diagram represent a point. How

many points are on green lines?

(e) How many points are on red lines?

(f) How many points are in the total outcome set?

(g) If you select a point at random what is the probability

that it will be a green line? a red line?
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(h) What is the probability that when you toss a pair of

dice, the sum of the outcomes for each die will be

5,6,7,8 or 9? 2,3,4,10,11 or 12?

(i) Now look back at the dice game of Section 5.6. Was it

a fair game?

2. (a) Using your diagram from Exercise 1 draw a closed curve

around the set of points for the event "The white die

outcome is less than the blue die outcome" and call

this event "AV

(b) Repeat the directions in (a) for event "The white die

outcome is greater than the blue die outcome," and

call this event "B."

(c) Let C be the event that "A occurs or B occurs."

(d) What is P(A)? P(B)? P(A) + P(B)? note that

P(A) + P(B) = P(C) and that A and B have no outcomes

(or points) in common.

3. Make another diagram of the outcome set but this time, to

simplify matters, use dots for the points as below:

6 .

5

4 .

Blue 3 .

A

Die Outcomes 2 .

1 . . .

.

.

.

.

.

.

1 2 3 4 5 6 White Die Outcomes

Point A in the diagram is associated with (2,3). To avoid

confusion between single outcomes and pairs of outcomes we
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will call 2 the first coordinate of point A and 3 the second

coordinate of point A.

(a) Draw a line through the points with equal first and

second coordinates. Call the set of points on this

line "event R."

(b) Draw a line through the points with coordinate sum 8.

Call the set of points on this line "event T."

(c) Do R and T have a point in common? If so, what are

the coordinates of this point? Call the set with only

this common point "event Q."

(d) What is P(R)? What is P(T)? What is P(Q)?

(e) Let K stand for the event "R occurs or T occurs."

What is P(K)? What is P(R) + P(T)? Is

P(K) = P(R) + P(T)?

(f) Does P(K) = P(R) + P(T) - P(Q)?

(g) Compare the results of this exercise with Exercise 2

and try to discover why in Exercise 2,

P(A) + P(B) = P(C) and in Exercise 3, P(K) =

P(R) + P(T) - P(Q).

4. It is a well-known fact that the probability of a newborn

child being a girl is about What probability does

this leave for boys?

(a) What do you think the probability might be of a family

having Boy-Girl-Boy (BGB) in that order?

(b) The outcome set for the event of having three

children is

(BBB,BBG,BGB,BGG, GBB,GBG, GGB, GGG }.

2.47
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(c) How many ordered triplets are in the above outcome set?

(d) Assuming all outcomes to be equally probable, what is

the probability of each?

(e) How many of the triples tabulated in (b) have G as

the second letter?

(f) What is the probability that the second child is a

girl?

(g) Suppose that we change our outcome set to include only

those outcomes where we know that the first child was

a boy.

(BBB, BBG, BGB, BGG)

How many outcomes are in this set?

(h) What is the probability, using the outcome set of (g)

that the second child is a girl?

(i) In questions (f) and (h), the answers should be the

same. In other words, the fact that the first child

was a boy did not influence the likelihood that the

second was a girl.

5.9 Another Kind of Mapping

In Chapter 3 you studied mappings from one set of numbers

onto another set of numbers and mappings from one set of points

onto another set of points. Below is a diagram that portrays a

mapping from a set of outcomes onto a set of numbers:
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Domo i n

Figure 5.2

Range

Notice that the outcomes seem to be those resulting

from the toss of a coin. The images in the range could be the

probabilities of the corresponding members of the domain. Is

the coin a fair coin? Are the images between 0 and 1? If so,

is the sum of the images equal to 1?

The mapping illustrated below shows the probabilities for

certain events in a three-child family:

Domain Range

(exactly three boys)
1

(exactly two boys) 3

(exactly one boy) 3

8

(no boys)
1

T!'

Sum 1

Question: Why is the probability of exactly two boys 3

times as great as the probability of exactly

three boys?
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Question: Make up an outcome set with 16 outcomes for the

children in a four-child family. One of the out-

comes, for example, will be BBGB. Illustrate

the mapping of the outcomes, "exactly four boys,"

"exactly three boys," etc. onto their prDbabili-

ties.

5.10 Counting with Trees

If an experiment involves several activities each having

several alternatives, it is often a complicated task to count

all of the possible outcomes and identify them. Below are some

tree diagrams for coin tossing experiments. If you follow every

path in the tree for an experiment you will discover all possible

outcomes.

Start

here

Start
here

1. Tossing one coin

H

2. Tossing 2 coins

H

T

H

2 paths

4 paths



Start
here

-244-

3. Tossing 3 coins

Figure 5.3

H

<1. 8 paths

H

T <H'

Exercise: Make a tree diagram for the possible outcomes

of tossing first a die, then a coin, and then a

thumbtack. You will have six branches to choose

from at the starting point. Then each of these

branches will have a certain number of branches,

etc.

Question: How many paths are there?

5.11 Preview

The following ideas, which were illustrated in some of the

preceding exercises, will be developed in more detail in your

later study of mathematics:

1. If two events, A and B, have no outcomes in common

then the probability that at least one of them occurs

is the sum of the probabilities of the two events:

P(A .fir. B) = P(A) + P(B)
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2. If two events C and D, have outcomes in common, then

the probability that at least one of them occurs is

the sum of the probabilities of the two events minus

the probability that both occur:

P(C OR D) = P (C) + P(D) - P(C and D)

5.12 Exercises

1. (a)

The tetrahedron has four faces. Imagine that on each

face is a numeral from 1 to 4 respectively. Will the

probability of the outcome 4 be greater for tossing the

die or the tetrahedron? What are the probabilities in

these two cases?

(b)

Which of the above dice would give the greater probability

to the outcome 1?
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cl)
Which tack pictured above would be more likely to come to

rest, pin-up? Why?

2. Use tree diagrams to make up an outcome set, using the

simplest outcomes, for each of the following experiments:

(a) Toss a die and a tetrahedron, as in Exercise 1(a).

((loth. . .)

(b) Toss a coin, spin the dial, select a vowel at random.

Think of each trial having an ordered triple as out-

come, such as (H, 3,u).
.

3. -3 -2 -1 0 1 2 3

(a) Copy the above diagram and place a disk on the point

labeled "O."

(b) Spin the dial. If the result is R, move the disk to

the next point on the right. If the result is L,

move the disk to the next integer on the left.
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(c) Repeat moves until you reach 3 or -3. The outcome is

whichever of 3 or -3 you reach first.

(d) Play the game several times and find the relative

frequency of 3.

4. A bag contains 3 yellow marbles and 5 green marbles.

(a) If you select a marble without looking in the bag,

what is the probability of selecting a yellow marble?

a green marble?

(b) If you select a yellow marble on the first draw, and

do not replace it, what is the probability of drawing

a green marble on the second draw?

5. White rhinoceroses are very rare; the probability that

one will be found among the rhinos of any African plain is

7 The Serengeti Plain in Africa has 10,000 rhinos.
5000

Estimate the number of Serengeti white rhinos.

6. If a letter is selected at random from the alphabet, what

is the probability that the chosen letter is a vowel? a

consonant?

7. On a page containing 2000 letters, about how many will be

vowels?

8. An experiment is performed with outcome set (a,b,c). If

1 1
4.P(a) = z. and P(b) = , than what is P(c)?

9. Try to explain the meaning of the probabilities in the

following situations:

(a) An engineer says: The probability that the lamps we

manufacture will burn more than 1000 hours is .05.

(b) According to Laplace (1749-1827), a famous French

P54
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mathematician, the probability that a baby will be

22
a girl is 175.

(c) When you toss two dice the probability that you will

get the sum 7 is equal to .17.

(d) A mathematician who has been consulted concerning

inventory problems in a supermarket says: The

probability that more than 1000 units of this kind

will be sold during a day is .1.

(e) A meterologist says: When the weather conditions are

what they are today, the probability that it will

rain tomorrow is .15.

10. Use the probabilities given in Exercise 9 to answer the

corresponding questions below.

(a) A city use 200 of the light bulbs described in

5 (a) to light one of its parking lots. If the lot

opened on June 1 and the lights burned 24 hours a

day, how many bulbs would probably burn out before

July 12?

(b) If Babies Hospital registered 750 births in a two

month period, how many would you expect to be girls?

(c) A pair of dice are tossed 50 times. On approximately

what number of tosses will the sum be seven?

11.
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(a) For which of the above dials is the probability

of the spinner stopping on a red the greatest?

(b) Estimate the probability of the event "dial stops on

red" for each of the above dials.

12. Make a tree diagram for Exercise 2.(b).

13. In a family with 6 children, what is the probability that

all children are boys?

14. Toss a pair of dice of different colors (green and red).

(a) What is the probability that at least one die will

show 1 on the up-face?

(b) Draw a rectangular diagram of the 36 point outcome

set and draw a closed curve enclosing the points for

the event described in (a).

(c) What is the probability of the event, "green die 1

and red die 1?"

15. What is the probability that two people selected at random

will both have birthday anniversaries on a Wednesday in

1968?

16. A coin and die are thrown, both fair. The outcome set for

this experiment may be shown by the following:

AT. . . .

H

1 2 3 4 5 6

(a) What outcome is represented by point A? point B?

(b) Place an oval around the points for the event:

"the die shows fewer than 3 dots."

(c) What is the probability for the event in (b)?
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(d) What is the probability that the event in (b) does

not occur?

(e) If in this experiment an event has 8 outcomes,

what is its probability?

(f) If in an experiment there are exactly n possible

outcomes, all equally likely, what is the probability

of an event having r outcomes?

(g) What is the probability that a tail and an even

number of dots show?

17. A die and 2 coins are thrown.

(a) Using a dot array represent all the outcomes of

this experiment.

(b) What is the probability that 2 heads and an even

number shows?

(c) What is the probability that 1 head, 1 tail, and

an odd number shows?

5.13 Research Problems

In the diagram below the circles are called states and

the routes for legally getting from one state to another are

called paths. The numerals in circles A, B, C, D, and E

indicate the number of paths from the start to the respective

states.



-251-

Figure 5.4

(1) Procedure

(a) Place a small disk on the lower left state

labeled "start here."

(b) Toss a coin.

(c) If the coin lands heads-up, move to the next

state on the right. If the coin lands tails-up,

move to the next state above. (No moves to the

left or down are allowed.)

(2) Experiment

(a) Toss a coin five times and make the proper moves

on each toss. What state did you reach?

(b) Repeat the five-toss experiment 64 times and

each time record your destination.
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(c) What was the relative frequency for each

destination?

(d) What do you notice about the location of your

destinations?

(3) Experiment

(a) Record your destinations for a two-toss experiment

with 32 repetitions.

(b) What was the relative frequency of each desti-

nation?

(c) What do you notice about the location of these

destinations?

(4) Counting Paths

(a) Using the rules of our game, there is only one

path to each of A, B, C and E but there are two

paths to D. State G would have 3 paths, A-C-G,

A -D -G, and B-D-G. Make a copy of the diagram of

states and record the number of legal paths to

each state inside the corresponding circles in

the diagram.

(b) Except for the border states in the left column

and the bottom row, each state has exactly two

possible predecessors, the one below and the one

to the left. Find a method of computing the num-

ber of paths to a state by using the number of

paths to each predecessor.

(c) There are 2 one-toss paths, A and B. There are

4 two-toss paths, A--C, A-D, B-D and B-E.
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How many three-toss paths are there? Four-toss?

(d) There are 32 five toss paths and 10 of these go

to state Q. What is the probability of arriving

at Q in five tosses, if we assume each path to be

equally probable?

(e) Compute the probabilities for each state in the

diagram.

2. (a) The Birthday Anniversary Problem

How large a group of people would you need so that

the probability that at least two people in the

. 1group have the same birthday anniversary is 7 .

(Any person born on February 29 will not be con-

sidered in this problem. And twins don't count.)

(b) A penny and a dime are tossed. You are informed

that at least one turns up tails. What is the

probability that both turn up tails? Plan and

carry out an experiment of 100 tosses. How does

the relative frequency of 2 tails compare with

your theoretical answer?

(c) Consult Who's Who in America or a similar book

and pick ten samples of 20 people in alphabetical

order. Be sure to avoid overlap in your samples.

This is then random enough for our purpose. How

many of the ten samples contain a pair of people

with the same birthday anniversary? Record the

relative frequency of this occurrence.
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5.14 Statistical Data

"Seventy-five per cent of the automobile accidents in

this state happen within twenty miles of home."

Statements of this type, in which statistics are presumably

used, are often made and often misinterpreted. A fragment of

information, such as that mentioned above, leaves many important

questions unanswered.

What is the source of this information? Were the accidents

only those for which insurance claims were involved? Were they

the accidents recorded in police records? Was the information

acquired from some sample of accidents, or did it really include

every actual accident? Over what period of time did these

accidents occur? If the information was based on a sample, how

was the sample chosen? What conclusions should we draw? Is it

really more dangerous to drive near home, or is it possible that

seventy five percent of all driving is done within twenty miles

of home?

The above questions are related to the work done by

statisticians. The statistician makes a science of gathering

information, organizing it, analyzing it to see if there are any

patterns, presenting it in the manner that will be most inform-

ative, making predictions on the basis of it, and verifying these

predictions.

In this section we will illustrate some ways of presenting

information about events of various kinds, and ask you to gather

certain data and present it in tables and graphs.

We will deal only with one aspect of statistics: namely

4.01
01'1



-255-

descriptive statistics. And even in that area we will discuss

only the presentation of data by graphical and tabular methods.

How to analyze data by means such as averages, scattering, and

probability will be discussed in future courses.

Th:re are many ways of presenting and displaying numerical

data. Tables, pictograms, and graphs of various kinds are the

usual ways. Some of these are tables, line graphs, bar graphs,

pictograms and circle graphs (pie-charts).

In this chapter we will study dot frequency diagrams,

frequency histograms, and frequency polygons.

5.15 Presenting Data in Tables

During the summer playground programs, the children engaged

in many activities, including basketball foul-shooting. Near

the end of the program, the director organized a foul-shooting

contest. A group of twenty boys and a group of twenty girls

were selected as the first to participate. Each one had ten

tries and the results were tabulated as below:
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Table 4 Number of Baskets out of Ten Tries in a Foul-Shooting
Contest

GIRLS

Score Contestant ScoreContestant

1 4 11 7

2 10 12 1

3 6 13 5

4 8 14 3

5 2 15 2

6 8 16 7

7 9 17 8

8 1 13 8

9 8 19 8

10 4 20 9

BOYS

Contestant Score Contestant Score

1 1 11 7

2 3 12 8

3 3 13 1

4 5 14 3

5 9 15 1

6 7 16 7

7 9 17 10

8 7 18 6

9 6 19 6

10 9 20 10
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The scores in Table 4 occur in the same order as that

in which the players participated. As you look over the scores,

try to answer the following questions.

(1) Did the girls do better than the boys?

(2) What is a good guess for the girls' average? boys' average?

(3) What would you estimate as the middle score for the girls?

for the boys'?

(4) What score occured most frequently for the girls? the boys?

(5) How were the scores distributed? That is, were most of the

scores either very high or very low; or did most of them

cluster somewhere in between?

(6) In Table 5 below, the same scores are ranked by size. Now

try to answer the same questions for Table 5.
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Table 5 Number of Baskets in Ten Tries in a Foul-Shooting
Contest

GIRLS BOYS

1 1

1 1

2 1

2 3

3 3

4 3

4 5

5 6

6 6

7 6

7 7

8 7

8 7

8 7

8 8

8 9

8 9

9 9

9 10

10 10

Notice that Table 5 certainly gives more information about

1
the middle score and the scores that would occur at about the 4.

mark and 4. mark. You also get the feeling than neither group

was unquestionably superior to the other.
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The next table shows the frequency of scores grouped by

intervals. This type of table is particularly effective when

the data consists of large numbers of measures such as weights,

lengths, or time intervals.

Table 6 Number of Baskets in Ten Tries in a Foul-Shooting Contest

(Scores Grouped into Five Intervals)

Group Class Interval

Frequency

Girls Boys

I 1 - 2 24. 3

II 3 - 4 3 3

III 5 - 6 2 4

IV 7 - 8 8 5

V 9 - 10 3 5

Below are two dot frequency diagrams for the same infor-

mation represented in the Tables 4, 5, and 6.

"66
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DOT FREQUENCY DIAGRAM

GIRLS BOYS
Frequency Frequency

I II III IV V I II III IV V

Group Group

5.16 Exercises

1. Discuss the following:

(a) The advantage of ranking data as in Table 5 or 6, or

Graph 3.

(b) The advantages of grouping data into class intervals.

2. Find the number such that (use information in Table 5)

(a) 25% of the scores are less than or equal to the number;

(b) half of the scores are less than or equal to the

number;

(c) 75% of the scores are less than or equal to the number:
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3. Do the following for the set of test marks below:

(a) Rank the marks according to numerical order.

(b) Group the marks into intervals from 61 to 65; 66

to 70; etc.

(c) Make a frequency table showing the frequency for

each interval.

(d) Make a dot frequency diagram showing the frequency

for each interval.

Test Marks: 73, 67, 72, 88, 75, 89, 79, 81, 70,

93, 76, 79, 82, 98, 90, 72, 70, 83, 78, 85, 73,

84, 92, 80, 69, 81, 78, 90, 93, 76, 78, 62, 83,

78 and 88.

5.17 The Frequency Histogram and the Cumulative Frequency

Histogram

The frequency histogram is very similar to the dot fre-

quency diagram. In place of the vertical columns of dots there

are rectangles with width equal to the length of the group

interval. The height of the rectangle is the frequency in the

interval. Study the histograms below and compare them with 'the

dot frequency diagrams of Graph 3 which present the same data.
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FREQUENCY HISTOGRAMS

FREQUENCY OF SCORES IN FOUL-SHOOTING CONTEST

GIRLS BOYS
Frequency of Frequency of

Scores Scores

6

4

2

a1
"1 2 3 5 '''' ' io
Contest Scores

8

6-

4

2

Contest Scores

The cumulative frequency histogram is similar to the

frequency histogram except that the second rectangle has

height equal to the sum of the heights of the first two in the

frequency histogram, the third is the sum of the first three,

etc. A table is included below which tabulates the cumulative

frequencies to help interpret the cumulative frequency histograms.
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TABLE 7 CUMULATIVE FREQUENCY TABLE FOR

FOUL-SHOOTING CONTEST SCORES

Class Interval Frequency

Girls

1 - 2 4

3 - 4 3

5 - 6 2

7 - 8 8

9 - 10 3

GRAPH 5

Cumulative Frequency

Boys Girls Boys

3 4 3

3 7 6

4 9 10

5 17 15

5 20 20

CUMULATIVE FREQUENCY HISTOGRAMS FOR

FOUL-SHOOTING CONTEST SCORES

GIRLS BOYS
Cumulative Frequencies Cumulative Frequencies

20 -

10-

6-

2-

2 4 6 B 10

Contest Scores
2 4 6 8 10

Contest Scores

210
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In both of thg cumulative frequency histograms there is a

dotted segment connecting the upper right corners of the

rectangles. This set of segments is called a cumulative frequency

o32Ifol. It is helpful in determining the number below which

25% of the scores fall. This number is called the first quartile.

It is likewise helpful in finding the comparable number for 50%

of the scores or in fact any particular percent of the scores.

Notice the horizontal dotted segments, going from 5, 10,

and 15 on the vertical scale over to the polygon and then down

to the horizontal scale. These determine the numbers which 25%,

50%, and 75% of the scores are less than or equal to. Other

names for these numbers are first quartile, median, and third

Tiartile respectively. They are very useful in classifying

scores for comparison purposes.

5.18 Exercises

1. Use the set of test marks in Section 5.16, Exercise 3 (d).

(a) Make a frequency histogram for the set of test marks,

grouped as in Section 5.16, Exercise 3 (b).

(b) Make a cumulative frequency histogram for the set of

grouped test marks.

2. Gather the following sets of data:

(a) The heights to the nearest inch of each member of

your class.

(b) The ages to the nearest month of the members of your

class,

41p-4-1

be.; di..
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(c) The number of cars passing a certain point in some

street during 20 five-minute intervals.

3. Present the data of Exercise 1 in the following ways:

(a) a cumulative frequency table with a separate entry

for each measure;

(b) a cumulative frequency table with the data grouped

into intervals;

(c) a cumulative frequency polygon based on the table

of part a.

5.19 Summary

1. This chapter introduced several mathematical methods of

predicting the outcome of Pctivities in situations involving

uncertainty. In the fish count problem it i.s impractical to do

more than estimate on the basis of incomplete knowledge. In

die tossing, the outcome of a given trial can never be known in

advance.

2. To assist in making good estimates or predictions, we

performed a ted number of trials and observed the relative

frequency of the various possible outcomes. We found that for

a given experiment, the relative frequencies tended to

stabilize as the number of trials increased.

3. On the basis of this stability of relative frequency, we

made predictions of the likelihood or probability of events.

The probability of an event, like the relative frequency, is a

number assigned to the event. The number is

(A) 0, 1 or a number between 0 and 1,

2 '72
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(B) 0 for an impossible event;

(C) 1 for a certain event.

4. Furthermore, we found that probabilities and relative

frequencies had the following properties:

(A) The sum of the probabilities (relative frequencies)

of the outcomes in an outcome set is 1.

(B) If two events have no outcomes in common, the pro-

bability that one of the two will occur on a given

trial is equal to the sum of the probabilities of

the individual events.

(C) If an experiment has n equally probable outcomes and

an event has s outcomes, the probability of the event

is s/n.

5. The presentation of results is an important part in

analysis of data collected from experiments. We saw how to

graph the results of experiments by

(A) dot frequency diagrams,

(B) frequency histograms,

(C) cumulative frequency histograms,

(D) frequency polygons,

(E) cumulative frequency polygons.

5.20 Review Exercises

1. List the members of an outcome set for each of the follow-

ing experiments:

(a) Select two means of transportation from (bus, train,

plane).

2:73
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(b) A dodecahedron (twelve-faced polyhedron) with faces

numbered from 1 to 12 is rolled and the numeral on

the up-face is observed.

(c) A pair of vowels is selected from the alphabet.

(d) Two darts are thrown at a target with four scoring

possibilities:

(e) Three tags are selected from a box containing five

blue tags and two red tags.

(f) Each of three people vote for Jones or Smith (but

not both).

2. Two dials with sectors numbered from 1 to 5 are spun:

(a) Tabulate the outcome set.

(b) How many ordered pairs are in the outcome set?

(c) Assuming that each ordered pair in the outcome set

is equally likely, what is P (((2,5)))?

(d) What is the probability that both dials will yield

an even number?

2 74
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(e) What is the probability that at least one of the

dials will yield an even number?

(f) Make a rectangular arrangement of dots to represent

the outcome set, as in E.ect:I.on 5.8 Exercise 3.

(g) Draw a lin$: through the dots of the rectangular

arrangement for which the sums for the outcome are

each six. Repeat for the sums five and seven. What

is the probability of each of the above sums?

(h) Circle the dots for which at least one dial yields

an even number.

3. Select two pages of a magazine article and separate the

text into sets of ten lines.

(a) Find the relative frequency of the letter e, for each

set of ten lines.

(b) Find the relative frequency of the letter x, for

each of ten lines.

(c) Compare the relative frequencies of e and x.

(d) Among the samples tested, were the relative frequencies

for e fairly uniform? Answer the same question for x.

(e) What predictions could you make on the basis of the

above investigation?

4. A coin and die are tossed simultaneously.

(a) Tabulate an outcome set which pairs each of the out-

comes for the die with each for the coin.

(b) Assume that each simple outcome is equally likely.

(c) What is the probability that the die will show six?

(d) What is the probability that the die will not show six?
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(e) What is the sum of the probabilities in (c) and (d)?

(f) For any event, E, what is the following sum,

P (E) + P (not E)?

(g) What is the probability that the die will show six,

given that the coin lands heads?

(h) Does the probability of the outcome six for the die

depend on the event that the coin landed heads?

(i) What is the probability that the coin lands heads and

the die shows six?

(j) Is the probability of the event described in (i)

equal to the product of the probabilities for the

coin landing heads and the die showing 6?

5. Describe two events, A and B, from the experiment in

Exercise 4 that have no outcomes in common.

(a) What is P (A)? P (B)?

(b) What is P (A) + P ( B)?

(c) What is the probability of the event, A occurs or

B occurs?

(d) What generalization is suggested by the answers to

(a), (b) and (c)?

6. Make a table showing the number of children in the family

of each student in your class. Then make a table showing

the relative frequency of one-child families, two-child

families, etc. The illustrative table below shows that

for a class of twenty students there were 5 one-child

families so that the relative frequency for one-child

families (in this sample) was or 1r- .

2'16
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NUMBER OF CHILDREN per FAMILY IN

A SAMPLE OF TWENTY FAMILIES

Number of Children Fre uency Relative Fresaalmr

1 5
1

2 4
5

etc. etc. etc.

7. Make a similar chart for the distances from home to school

for each student in your class, using the number of blocks

as a measure. Group the data into class intervals. For

example, all students living from 0 to 4 blocks from school

might bo grouped together, then 5 to 9, etc. Make a

histogram and frequency polygon for this data.

8. In an appicultural experiment a

field is divided into four square

regions as pictured above. Two

of these are selected at random

and given a special treatment.

What is the probability that the

selected squares are

(a) in the same row?

(b) in the same column?

(c) in the same row or the same column?

(d) one in each row and one in each column?

277



9.

-271-

B

In tracing a path in the above network from A to B, a

selection of direction is made at each corner by tossing

a coin. In how many ways can you go from A to each of

the diffe.cent corners?

10. In how many ways can three cars, A, B and C be parked in

a row? If the cars are parked at random, what is the

probability that A and B are next to each other?
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CHAPTER 6

MULTIPLICATION OF INTEGERS

6.1 Operational Systems (W,.) and (Z,.)

In Chapter 4 we learned how to add and subtract integers.

It is natural to ask how integers should be multiplied.

The operational system (Z,+) is, for two reasons, the

natural extension of (W,+). First, since the set of integers

includes the set of whole numbers as a subset, addition of non-

negative integers is the same as addition of whole numbers.

Second, many of the important properties of (W,+) are also

properties of (Z,+). It seems reasonable to expect multipli-

cation in Z to be a similar extension of multiplication in W --

multiplication of non-negative integers will be the same as mul-

tiplication of whole numbers and (Z,.) should have properties

similar to the following properties of (W,).

1. For all whole numbers a and b, a b = b a.

(Commutative Property of Multiplication)

For example: 3 7 = 7 3.

2. For all whole numbers a, b, and c,

a (b c) = (a b) c.

(Associative Prcferty of Multiplication)

3. For every whole number a, 1 a = a 1 = a.

(1 is a Multiplicative Identity in W)

4. For every whole number a, a 0 = 0 a = O.

(Multiplication Property of Zero)

27 9
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For example: 3 0 = 0 3 = 0.

5. If a, b, and c are whole numbers with c 0, and

c a =c b, then a = b.

(Cancellation Property of Multiplication)

For example: If 7 a = 7 13, then a = 13.

There is one property of the operational system (14,+,)

which relates the operations of addition and multiplication.

This property is illustrated in the following example.

Suppose we compute the product 7 x 13 in the usual way:

13
x7

In this computation, we have actually computed two simpler pro-

ducts:

7 x 3 = 21 and 7 x 10 = 70

and then computed their sum

21 t 70 =91

The reason this works is easy to understand if we picture the

product 7 x 13 as a rectangular array that has been split into

two arrays:

10 3

OOOOO

7x10 7x3
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On the left we have a 7 x 10 array and on the right a 7 x 3

array. The number of elements in the array does not change by

the splitting, so we have

7 (10 3) = (7 10) + (7 3).

Similarly, we know that

7 (4 + 6)

13 (98 + 2)

. (7

(13

4) + (7

98) + (13

6),

2).

These examples are instances of the sixth important property of

(w,+,.).

6. For any whole numbers a,b, and c,

a . (b c) = (a b) + (a c).

(Distributive Property of Multiplication over Addition)

We should also like the distributive property to apply in

(Z,+,)

6.2 Exercises

state the property for multipli-

that justifies the equality.

1. For each of the following

cation of whole numbers

(a) 87 x 1 = 1 x 87

(b) 87 x 1 = 87

(c) (98 - 97) x 46 = 46

(d) 5 x (2 x 83) = (5 x 2) x 83

(e) (25 x 38) x 4 (38 x 25) x4

(f) (38 x 25) x4= 38 x (25 x 4)

2. Without computing justify:

(a) (43 x 28) x 76 = (76 x 43) x 28
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(b) 87 x (43 x 76) (87 x 76) x 43

(c) 8 x (69 x 25) = 69 x (25 x 8)

3. State the commutative property for addition of whole

numbers.

4. State the associative property for addition of whole

numbers.

5. What is the identity element for addition of whole numbers?

6. What is the identity element (if there is one) for each of

the following systems?

(a) (zs,+) (e)

(b) (f) (w,+)

(c) (Zsy+) (g) (W,)

(d) (7,6,) (h) (Z,-)

7. Compute each of the following:

(a) 8 x (9 x 7)

(b) 9 x (8 x 7)

(c) 7 x (9 x 8)

(d) (8 x 7) x 9

(e) (47 x 73) (47 x 27)

(f) (47 x 73) - (47 x 27)

*8. Using the properties of this section, prove each of the

following, given that r, s, t are whole numbers.

(a) (r s) t = (r t) s

(b) (r s) t = (t s) r

(c) r (s t) = (r t) s

to) r (s t) = s (t r)

For example, exercise (a) may be done as follows:

(r s) t = r (s t) Multiplication of whole num-

bers is associative.

= r (t s) Multiplication of whole num-

282
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(r t) s Multiplication of whole num-

bers is associative.

9. From your experience with multiplication of whole numbers

what seems to be true if the factors are ordered and

grouped differently? (The generalization referred to here

is sometimes called "the rearrangement property for multi-

plication of whole numbers.")

10. Compute:

(a)

(b)

7 x (20 + 7)

(7 x 20) + (7 x 7)

(c) (23 x 87) + (23 x 13)

(d) (76 x 38) (24 x 38)

(e) (47 x 39) - (47 x 29)

(f) (37 x 43) - (27 x 43)

(g) (62 x 8) + x 12)

(h) (62 x + x 62)

11. Is it true that 5 + (2 x 4) (5 + 2) x (5 + 4)?

12. Is addition distributive over multiplication in (W,+,)?

6.3 Multiplication for Z

In order to define multiplication as an operation in Z, we

must show how to assign to each ordered pair (a,b) of integers

a third integer c called "the product of a and b." We will use

the definition of multiplication for whole numbers and the six

properties we want preserved as guides to the rule of assignment

for "." in Z. We also want our definition to make sense in
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situations where the integers have applications to real life

problems. Under these circumstances, there are four cases which

must be considered in making our definition:

1. Both a and b are positive.

2. Both a and b are negative.

3. a is positive and b is negative.

4. a or b (or both) is zero.

Question: Why is it unnecessary to consider the case

a negative, b positive"?

We already know how to multiply positive integers and how

to multiply by zero. For example,

3 x 4 = 12

11 x 14 = 154

8x0= 0

0 x 3 = 0

These examples suggest that we should make the following

definitions: The product of two positive integers is the unique

positive ,lteger whose absolute value is the product of the

absolute values of the factors. If a is either a positive in-

teger or zero, a 0 = 0 a = 0.

6.4 Multi lication of a Positive Inte er and a Negative integer

Every integer is either positive, zero, or negative. In

other words, for every integer n, exactly one of these ,ondi-

tions must hold:

0 >n, 0 = n, or n < O.

clQ11
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Let us now write a few computations that may suggest what

the product of a positive integer and a negative integer should

be.

3 x 3 9

3 x 2 =6

3 x 1 = 3

3 x 0 0

3 x (-1)

3 x (-2) = 7

3 x (-3) =Ti

In this column of equalities, the second factor decreases by 1

as we move down. The corresponding products decrease by 3.

This list suggests that the products for the last three

lines should be -3, -6 and -9, if the products are to continue

to decrease by 3. It appears that the product of a positive

integer and a negative integer should be negative. Furthermore,

the absolute value of the product should again be the same as

the product of the absolute value of the factors. Since we want

multiplication in Z to be commutative, the product of a negative

integer and a positive integer should be computed in the same

way.

Later we shall give other reasons for adopting this defini-

tion. Let us now see some illustrative examples.

Example 1. Compute (-8) x 7.

I( -8) x 71 = 1-81 x 171

=8 x7

56
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Since -8 is negative and 7 is positive,

(-8) x 7 is a negative integer. Hence

(-8) x 7 = -56.

Example 2. Compute 9 x (-6).

19 x (-6)1 = 191 x 1-61

= 9 x 6

54

Therefore, 9 x (..6) -54.

Example 3. Compute (4 x (-3)) x 2.

(4x (-3) x 2 = (-12) x 2

= -24

6.5 The Product of Two Negative Integers

The only products remaining to be considered are those in-

volving two negative integers or a negative integer and zero.

Once again, let us try to obtain a clue by recognizing a

pattern.

(-3) x 3 = -9

(-3) x 2 = -6

(-3) x 1 = -3

(-3) x 0

(-3) x (-1) .

(-3) x (-2)

(-3) x (-3) =

In this column of equalities, the second factor is again being

reduced by 1 in moving down. The corresponding products are

increasing by 3. This list then suggests that the last four
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products should be 0, 3, 6 and 9, if the products are to con-

tinue to increase by 3.

These examples suggest the following definitions: The

product of a pair of nega'Ave integers is tne unique positive

integer which has absolute value equal to the product of the

absolute values of the factors. For every negative integer a,

a 0 = 0 a = 0. Later we shall give other reasons for adop:-

ting these definitions.

The definition of multiplication for Z which has been sug-

gested by the patterns in this and the preceding sections can be

summarized as follows:

For any integers r and s,

1. Ir sl = Irl Isl.

2. If r and s are both negative or both positive, r s

is positive.

3. If one of r, s is positive and the other negative,

r s is negative.

4. r 0 = 0 r = 0.

With the above definition as rules for the assignment, multi-

plication is an operation on Z. That is, for each ordered pair

(a,b) of integers there is a unique integer c = a b called

the product of a and b." Furthermore, it can be shown that the

six properties of (W,-1,,,) stated in Section 6.1 are also pro-

perties of (Z,+,.), when "." is defined in this way.

The general rules for multiplication of integers may be

clarified by the following illustrative examples.
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Example 1. Compute (-3) x (-4).

1(3) x (-4)1 = 1-31 x 1-41

= 3 x 4

= 12.

Since -3 and -4 are both negative, the product

is positive. Hence, (-3) x (-4) = 12.

Example 2. Compute ((-7) x (-2)) x (-3).

((-7) x (-2)) x (-2) = 14 x (-3)

= -42.

Example 3. Compute (-9) x (6 x (-4)) .

(-9) x (6 x (-4)) =

=

(-9) x (-24)

216.

6.6 Exercises

1. Compute:

(a) (-20) x 27 (d) (-8) x (-14)

(b) 33 x (-37) (e) (-14) (-8)

(c) 27 x (-20) (f) (-37) x 33

2. Compute:

(a) -5 x (2 x (-47))

(b) ((-43) x (-4)) x (-25)

(c) (10 x (-6)) x 5

(d) 10 x ((-6) x 5)

(e) ((-5) x 2) x (-47)

(0 (-43) x ((-4) x (-25))

3. Compute:

(a) ((-17) x (-7)) ((-17) x (-3))
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(b) (-17) x (-7 + (-3))

(c) ((-38) + 28) x (-37)

(d) ((-83) x 67) + ((-17) x 67)

(e) (-100) x 67

((-38) x (-37)) + (28 x (-37))

(g) ((-27) + 73) x (27 + 73)

4. Without computing, determine whether the following products

are positive, negative, or zero.

(a) (-6)(-3)(10)(-8)

(b) (5)(11)(7561)(-2)(-15)

(c) (-7)(-7)(-7)(-3)(-4)(-5)

(d) (-2)10

(e) (-2)17

6.7 Multiplication of Integers through Distributivity

In Section 6.1 we thought it reasonable to require that

(z,+,.) retain the distinctive properties of (W,4-r). In order

to extend the close relationship between (w, +) and the non-

negative integers, we assumed that the product of two positive

integers is a positive integer. Then by observing patterns of

multiplication, we were led to definitions of a b in the cases

where one or both factors are negative or zero. We found that

these definitions did preserve the desired properties.

Are there other possible ways to define multiplication in

Z and still retain those properties? Could such alternative

definitions lead to results differing from those we have already

obtained? For example, could r 0 = r for every integer r?

289
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Could the product of two negative integers turn out to be a

negative integer? (For instance, could (-7) (-13) = -91?)

In this section we shall show that if "" is assumed to be

a commutative, associative, and distributive (over +) operation,

the customary rules for computing products are actually forced

on us.

Let us begirt by stating a basic assumption which we have

been using over and over. To illustrate this assumption, which

we shall soon name, consider the easy computation

(2 + 3) 4 . 5 .1. 4

= 9.

The symbols "2 + 3" and "5" both name the same number so we

feel free to replace "2 + 3" by "5." In the last step we re-

placed "5 1. 4" by "9" because they both name the same number.

In mathematics we frequently replace one name for an object

by another name for the same object, assuming that this kind of

replacement is permitted. This assumption can be stated as fol-

lows: The mathematical meaning of an expression is not changed

if in this expression one name of an object is replaced by an-

other name for the same object. This assumption will be called

the Replacement Assumption or simply Replacement. We shall be

making frequent use of this assumption without mentioning it.

Why must r 0 = 0 for every integer? If r is positive or

zero, we define r 0 = 0 r = 0 so that multiplication of non-

negative integers is the same as multiplication of whole numbers.

But what about (-5) 0, (-32) 0, (-2162) 0, etc.?

(In
A
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Certainly

(-5) 0 = (-5) O.

Since 0 + 0 = 0, statement (1) implies that

-5(0 + 0) = (-5) 0,

(1)

(2)

replacing "0" by "0 0." Because of the distributive property

of multiplication over addition, -5(0 + 0) = (-5 0) + (-5 0).

Thus we can replace the left side of (2) to get

(-5 0) + (-5 o) = (-5) o. (3)

By the additive property of 0, (-5) 0 = (-5) 0 + 0 and (3)

is equivalent to

(-5 0) + (-5 0) = (-5 0) + 0. (4)

Since addition of integers has the cancellation property, (4)

implies that

(-5) 0 = O.

The above argument shows that if (z,+,.) is to satisfy the

properties of (w, +,.), in particular the distributive and can-

cellation properties, then (-5) 0 must be defined to be 0. An

obviously true statement, (1), leads to a chain of true state-

ments, each of which follows from its predecessor because of a

property we demand of (z,+,).

The argument that is given seems to apply only to the pro-

duct (-5) 0. Since we require multiplication of integers to

ba commutative, 0 (-5) must also be 0. But what about

(-32) 0, (-2162) 0, and, in general, r 0? If you study

the argument given for (-5) 0, you will see that the argument

can be repeated in the same form for the other products.
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Tl. For every integer r, r 0 = O.

r 0 = r 0 Multiplication is an oper-
ation in Z.

r (0 + 0) = r 0 0 + 0 = 0, since 0 is ad-
ditive identity.

r (0 + 0) = (r 0) + 0 (r 0) + 0 = r 0, since
0 is additive identity.

(r 0) + (r 0) = (r 0) + 0 Distributivity.

r 0 = 0 Cancellation for Addition.

This generalization or theorem says that the product of two

integers is zero whenever one of the integers (or both) is zero.

You recall that in Section 6.5 we defined r 0 = 0 r = O. Tl

shows that if we make the desired assumptions about "." there is

really no choice in the definition of r O. It must be zero!

These desired assumptions place further restrictions on the rules

for computing products. The product of a positive integer and a

negative integer must be a negative integer. For example,

5 (-10) -50, 32 (-15) = -480, and 2162 (-4) = -8648.

Because of Ti,

5 0 = 0

Since 10 + (-10) = 0, statement (1) implies that

5 (10 + (-10)) = 0,

replacing "0" by "(10 + (-10))." Because of the distributive

property of multiplication over addition, 5 (10 + (-10))

(5 10) + (5 (-10)). Thus we can replace the left side of

(2) to get

(5 10) + (5 (-10)) = O.

We know that 5 10 = 50. Substituting in (3) yields

50 + (5 (-10)) = O.

292
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Statement (4) implies that 5 (-10) must be the additive in-

verse of 50, or

5 (-10) = -50.

Again you can see that this argument -- though valid only

for 5 (-10) -- can be mimicked for any other prcduct of a posi-

tive and negative integer. In fact, a variation of this argument

can be used to show that the product of two negative integers

must be a positive integer.

(-5) (-10).

Consider,

(-5) 0 = 0

example, the product

Tl

-5 (10 4 (-10)) =0 0 . 10 + (-10)

((-5) (10)) + ((-5) (-10)) = 0 Distributivity

-50 + ((-5) (-10)) = 0 Proven above.

Therefore,

(-5) (-10) = 50 50 is the additive
inverse of -50.

T1 and the other arguments of this section show that if

(z,+,.) is to retain the desirable properties of (W,4.,), the

definition of multiplication stated in Section 6.5 is the only

definition possible.

6.8 Exercises

1. Compute:

(a) (-10) 7 (e) (-13) 12

(b) 10 (-7) (f) 13 12

(c) (-8) (-6) (g) 19 (-22)

(d) 8 6 (h) (-19) 22
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2. Compute:

(a) 10(18

(b) (10

(c) (14

- 27)

18) - (10

10) + (14

27)

5)

(d) 14 (32 - 17)

(e) (14 32) - (14 7)

(f) 10 (18 + (-27))

(g) (10 18) + (10 (-27))

(h) 14 (32 + (-17))

(i) (14 32) + (14 (-17))

3. Compute each of the following if r = -4, s = -7 and t = 9.

(a) r + s (j)

(b) r + (-s) (k)

(c) r - s (1) (r2)s

(d) r(s + t) (m) r - t

(e) r(s - t) (n) -(r - t)

(f) (rs) - (rt) (o) -r t

(g) (rs)t (p) -2r + (-3t)

(h) (rt)s (q) r2 + sa

(i) (st)r (r) r2- s2
4. Find the solution set from the set of integers for each of

the following conditions.

(a) x2 = 4 (f) (x + 2)2 = 9

( b) I xl = 2 (g) (y 3)2 9

( c) y2 = -4 (h) (x + 2)(x - 3) = 0

(d) x2

(e) (xi

<4 (1) (x + 2)2 <5

<2 (J) (Y- 2)2 <5

294 (k). (x2) + (3x) = 0
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5. Picture the solution set for each of the exercises in 4 by

using a number line and enlarging dots. Thus, if your

solution set is (-1,2) its picture or graph is:

wer:

-2 0 1 2 3

*6. Using the methods of Section 6.7 prove the following:

(a) 3 0 = 0

(b) 3 (-2) = -6

(c) (-3) (-2) = 6

*7. Prove that if the product of two integers is zero, then

one of the factors is zero. (Hint: What are the possible

signs of a product?)

*8. If r, s and t are integers with r < s, which of the follow-

ing statements are true and which are false?

(a) 2r < 2s

(b) -2r < -2s

(c) rt < st when 0 < t

(d) rt > st when t < 0

(e) r> 0 when r 0

(f) r+t<s+t
9. Write equations for each of the following sentences, and

then find all integer solutions.

(a) The double of an integer is -12.

(b) The double of an integer is three less than the in-

teger.

(c) The square of an integer is less than 20 and greater

than 4.

(d) The sum of an integer and its successor is -7.

(e) The product of an integer and its successor is 42.
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*10. Using the distributive property of multiplication over

addition, prove: (x is an integer)

(a) (2x) + (3x) = 5x

(b) (2x) + x = 3x

(c) (5x) - (2x) . 3x

(d) (2x) - (5x) = -3x

(e) (5x) - x = 4x

(f) x (5x) = -4x

11. Solve for x from among the integers.

(a) (2x) + (3x) = 20

(b) (2x) + (3x) = -20

(c) 3x = 20 (2x)

(d) 3x = 20 - (2x)

(e) 3x = (2x) - 20

(f) 2x = (3x) 20

(g) 20 = (2x) - (3x)

(h) 12x + < 7

(i) I2x + 31 + Ix - 11 < 10

6.9 Dilations and Multiplication of Inte ers

In Chapter 4 we found that the positive and negative in-

tegers could be interpreted as translations of the number line

to the right or left. Addition of integers was found to cor-

respond closely to composition of translations. Multiplication

of integers has a different interpretation on the number line.

Let us begin with a line in which one fixed point is la-

beled "C." Consider the following mapping of the line onto it-

self: The mapping assigns point C to itself but to any other

point P on the line it assigns the point P' such that P is the

midpoint of segment CP'. This mapping is illustrated by the

arrow diagram

.11
C'114,

a.
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For this mapping, the distance CP' is twice the distance CP.

Thus the mapping corresponds to

n 2n

which takes whole numbers into their doubles. If we denote this

mapping, which doubles distances from C, by "21" (read: 2 prime),

we have

2': P

21: C C

2': Q Q!

(In the notation of Chapter 3, this would be written P ,

etc.)

In a similar manner we define 3' to be the mapping that

takes any point P into a point that is three times as far from

C, and on the same side of C as P. In general, if d :Ls any

positive integer, "d" will denote the following mapping:

d': C C,

and if P is a point on the line distinct from C, then

d': P P1 ,

where CP = d CP, and P is between C and P' .

This mapping is called a dilation with center C.

Let us now define another mapping that also leaves C fixed.

This mapping takes any point R to a point on the other side of

C, the same distance from C.

R'

yo-

Since this mapping reflects R in C, it is called the reflection

in C and is denoted " -1'" (read: negative one prime). Such a

29'Y
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mapping is also called a symmetry in point C because points R

and M are located symmetrically on either side of C. However,

in this chapter we shall continue to call such a mapping a re-

flection in a point.

- 1' : R R'

- 11 : R' ---- R

- 11: C C

Let us now see what happens when we compose -1' with 2'.

Both mappings leave C fixed, so let point P be different from

point C. Locate points Q, R, and S so that RS = SC = CP = PQ,

and the points are in the indicated order.

2

Then 2' : P Q and -1' : Q R. The composition of -1'

with 2' takes P into R via Q. Similarly, the composition of 2'

with -1' takes P into R via S.

We shall see that composition of such mappings is analogous

to multiplication of integers. Anticipating this analogy, let

us agree to express this composition by use of the multiplication

sign "x." We may now write

(2' x (-1')): P R.

((-1') x 2'): P R.

We shall use "-21" as an abbreviation for "2' x -1' ." Sim-

ilarly, -3' = 3' x -1' and -41 = 41 x -11. We shall also say

that -2' contains a reflection. -3', -4', -5', ... also are

said to contain a reflection.

Let us look at a few more examples. (We take the point

298
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labeled "0" on the number line as the center.)

$ P Q

-3 -2 -1 0 1 2 3

Example 1. 31: P T or 1 3

- 3' P K or 1 -3

Example 2. 31: S-1"' K or

- 31: T or

Example 3. ( ( -2' ) x 21 ) : S L or -1 4

because 2' : S R and -21: R --a' L.

Note that -4': S L or 4 so that

the mappings -2' x 2' and -41 have the same

effect on S.

Example 4. Let us now use only the integer names for the

points.

(2' x 31): 1 6, -4 -24

61 : 1 6, -4 -24

(( -21 ) x 3! ) : -4------0-24-6,

-61 : -4-.241 -6,

(( -2t ) x ( -3! )): 6,1 -4 -24

What do these examples suggest?

It will be convenient to define the magnitude of such a

dilation mapping. The magnitude of the mapping d1, where "d"

names any integer, is the same as the absolute value of d, that

is Idi. We shall use the same vertical bar notation to denote

magnitude. Thus, Id1 1 = Idl. In particular

13'I = 131 =3

1-3' I = -31 = 3

299
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Let r and s be any integers, r' and s' their corresponding

mappings. Then the composite mapping r' x s' has the following

property:

I r' x s' I = I r' I i st I

because s' enlarges by a factor of I s' I and r' enlarges the en-
__

largement by a factor of Ir' I. The net result is to enlarge by

a factor of Ir°
I I s' I

If neither r' nor s' contains a reflection, the composition

mapping r' x s' contains no reflection. If both r' and s' con-

tain reflections, then r' x s' contains no reflection. If

either r' or s' (but not both) contains a reflection, then

r' x s' contains a reflection. Let us say that r' and s' have

the same direction if either both contain reflections or

neither contains a reflection. Then r' and s' are the same

mapping if they have the same direction and magnitude.

Let us call every mapping , where d is an integer, a

dilation. The point"C" that d' maps into itself is called the

center of the dilation. The set of dilations with center C, to-

gether with the operation "x" expressing compositions determine

a mathematical system which we shall denote "(D',x)."

To compute the composition of two mappings will mean to

express the composite mapping as a mapping without an indicated

composition. Thus, the computed mapping for (-3') x (-2' ) is 6'

and we shall write (-3') x (-2') = 6' because (-3') x (-2' ) and

6' have the same direction and magnitude.

The resemblance between (z,.) and (DI ,x) should be quite

apparent by now. In the first place, there is a one-to-one cor-

20
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respondence between the integers Z and the dilations D'. More-

over, composition of dilations strongly suggests how we should

multiply integers.

6.10 Exercises

Use the integer names for points of our number line and

let our dilations be with center 0.

1. Into what points does 7' map each of the following?

(a) 6 (b) -6 (c) 1 (d) 0

2. Into what point does -7' map each of the following?

(a) 6 (b) -6 (c) 1 (a) 0

3. Into what point does 2' x -3' map each of the following?

(a) 1 (b) -1 (c) 0 (d) 10 (e) -10

4. Compute:

(a) (-7' ) x (-6' ) (g) ( -35') x (-351)

(b) 7' x (-61) (h) 45' x 451

(c) 6' x (-71) (i) (2' x (-31)) x 4'

(d) ( -6') x7' (j) 2' x (( -3') x 41)

(e) (-15') x (-15') (k) ((-17') x 25') x 4'

(0 25' x 25' (1) (-171) x (25' x 41)

*5. Let rl, t' be any dilations. Prove that composition

of dilations

(a) is commutative: r' x s' = sl x rl

(b) is associative: (r' x sl) x = r' x (s' x tl)

(c) has 1' as an identity.

6. What can you say about the dilation 01? Is it a mapping?

7. Is (D' ,x) an operational system?

c01
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8. Can a dilation have more than one fixed point? Explain

your answer?

6.11 Summary

1. In this chapter we developed and studied multiplication of

integers from various points of view. The definition of

the multiplication operation was motivated by the desire

to extend the close connection between (W,+) and (Z,+),

to maintain patterns previously known to hold for multi-

plication in W, and to preserve certain nice properties

of (W,+,). Multiplication received further interpre-

tation as a composition of dilation mappings.

2. For any integers r and s, the product r s is

(1) 0 if r or s is zero;

(2) positive if both r and s are positive or both r and

s are negative;

(3) negative if one is positive and the other negatives.

Furthermore, the absolute value of r s is Irl Isl.

3. If multiplication of integers is assumed to be commutative,

associative, and distributive, then the definition of the

product r s in the preceding paragraph is the only

possible one.

809
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6.12 Review Exercises

1. Compute:

(a) 9 + (-7) (g) 1(-23) 91

(b) 9 - (-7) (h) 1-231 191

(c) (-9) (-7) (i) (-47) (17 - 25)

(d) (-9) (-7) (j) (39 x (-27)) - (39 x (-17))

(e) 9 (-7) (k) (29 x (-7)) x (29 x (-13))

(f) (-12)2 (1) (472) - (482)

2. Find the solution set from the set of integers.

(a) x2 =9

(b) y2- 1 = 0

(c) (-2)s = 8

(d) r2 <5

(e) x2= -1

x(x + 2) =0

(g) n(n + 1) = 55

(h) (x 1)2 . 4

(i) 11'31 < 100

(j) s2= -s

3. Picture on a number line the solution set for each exercise

in 2.

4. Answer TRUE (T) or FALSE (F).

(a) Multiplication of integers is both commutatve and

and associative.

(b) Multiplication of integers distributes over both

addition and subtraction.

(c) Multiplication of an integer by -2 always gives a

smaller integer.

(d) Subtraction of integers is associative.

(e) If a product of integers is 0, one of its factors

must be 0.

t.)fiC13
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(f) If a product of integers is negative, then at ]east

one of the factors must be negative.

(g) If r, s, t are integers and (rs)t < 0 then r or s or

t must be positive.

(h) If one of the factors of a product of integers is 0

then the product is 0.

(0 In (z,.) if a product is 0 then one of the factors

must be 0.

5. Make two strips with scales as shown:

(1

1 1 1 1

2 4 8 16

1 1 1 1

(a) Try to find a way of using your strips to compute

products. Draw a picture showing the position of

your strips for the products

(1) 2 x 2

(2) 2 x 4

(3) 2 x 8

(4) 4 x 2

(5) 4 x 4

(b) Notice that the scales do not show all the whole

numbers. Should the exact midpoint between the mark-

ings for 2 and 4 be 3? If not, should it be more or

less? Why do you think so? The strips you have con-

structed make a crude slide rule for multiplication.

*6. The figure shown is a nomogram for multiplication. The

figure shows how to compute 2 x 4. Draw lines to show the

computation for

304
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(a) 2 x 2 (e) 4 x 4 (i)

(b) 2 x 4 (f) 4 x 8 (j)

(c) 2 x 8 (g) 8 x 8 (k)

(d) 2 x (h) x 8

7. (a) If a hot rod moves at a fixed speed of 4 feet per

second to the right, what interpretation would you give

to a speed of -4 feet per second?

(b) If the hot rod starts at 0 on the number line (meas-

ured in units of 1 foot) and has a speed of 4 feet

per second (fps), where will the hot rod be in 3

seconds? If we think of the place on the number line

the hot rod is at the moment, how might we interpret

the instant -3 seconds?

H witad

-4 -2 0 2 4
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(c) Let us agree to interpret 4 x 3 as a product that

locates the hot rod on the number line if it starts

at 0, where 4 is the speed in fps, and 3 is the num-

ber of seconds from the time it was at 0. Interpret

the following products and see whether your interpre-

tations are consistent with our rules for multiplying

integers:

(1) 4 x -2

(2) -4 x 2

(3) -4 x -2



CHAPTER 7

LATTICE POINTS IN THE PLANE

7.1 Lattice Points and Ordered Pairs

The word "lattice" in the title of this chapter suggests an

open network like a trellis, and indeed that is its origin. You

probably heard about the geodesic dome, designed by R. Buck-

minster Fuller, that is large enough to house a baseball park.

If this dome were flattened, part of it would look like Figure

7.1.

V A
A

A A
AINITA

VA Ava

AA

Figure 7.1

The set of intersection points above illustrates a lattice.

We use lattices in this chapter to help us understand mappings

better.

As you can see, Figure 7.1 seems to be built up with tri-
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angles. However if we remove one set of parallel lines, we see

parallelograms instead of triangles. But we have the same lat-

tice. This is shown in Figure 7.2 below:

AA I I PrA

ArAVAVAIVAIPAPIWAr
,M1FAIVAVAII/Ar

Figure 7.2

Note the following features of a lattice.

1. The points of a lattice are determined by two families

or sets of parallel lines, each line in one family in-

tersecting every line in the other. This implies that

all lines are in one plane.

2. The lines in each family are evenly spaced. But the

spacing for one family need not be the same as the

spacing for the other.

3. Each lattice point is on two lines, one from each of

the two families of lines.

These features suggest a method of using integers to de-

scribe precisely the location of lattice points. We start by

choosing two lines, one from each family, calling one the x-axis

and the other the y-axis. Then we assign integers to the lattice

`,1:08
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points on these axes, in the same manner as we would to a

number line, reserving z.ero for the point of inl.;ersection of

the axes. Figure 7.3 shows the start of this.

With this foundation we can assign an ordered pair of in-

tegers to any lattice point. We illustrate how this is done for

the point named P in Figure 7.3. Point P lies on two lines.

One cuts the x-axis at the point whose assigned integer is 3.

The other cuts the y-axis at t point whose assigned integer

5s 2. Taken in that order, the pair of integers assigned to P

is 3,2, which we write (3,2). The parentheses, as you know,

indicate an ordered pair; the first integer is called the

x-coordinate of P; the second is called the y-coordinate of P;

and together they are called the coordinates of P.

Note that the arrow heads in Figure 7.3 indicate that the

lattice extends over the entire plane. For this reason we

have need for all the integers.

a)
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A system that assigns ordered pairs of numbers to points

in a plane is called a plane coordinate system. The system we

have described assigns ordered pairs of integers to a set of

lattice points in a plane. We can call our system a plane

lattice coordinate system.

The set of ordered pairs of integers in the plane lattice

f:oczdinate system is often referred to as Z X Z, read "Z cross

Z." The Z is the same symbol as we used for the set of integers.

The X in Z X Z suggests ordered pairs.

In the diagrams below we show a variety of lattice coordinate

systems. Study them and see how they differ.
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41.

C

A

3

E
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V

Figure 7.5

Figure 7.6
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We have seen that, given a lattice coordinate system and a

point in the lattice, we can assign an ordered pair of integers

to the point. Can we reverse the assignment? That is, given a

lattice coordinate system and an ordered pair of integers, can

we assign a point of the lattice to the ordered pair? Let us

see. Suppose the pair of integers is (-2, -1). We start by

finding the point on the x-axis whose assigned integer is -2.

There is exactly one line parallel to the x-axis through this

point. Then we find the point on the y-axis whose assigned in-

teger is -1. There is exactly one line parallel to the x-axis

through this point. These lines, belonging to different families

of parallel lines, intersect at exactly one point, and this is

the point whose coordinates are (-2, -1).

Using the lattice coordinate system in Figure 7.3, locate

the point whose coordinates are (-2, -1). Locate the point in

the lattice coordinate system in Figure 7.4 whose coordinates

are (-2, -1). Repeat for Figures 7.5 and 7.6.

7.2 Exercises

1. Find the coordinates of the points named A, B, C, D, E in

(a) Figure 7.3

(b) Figure 7.4

(c) Figure 7.5

(d) Figure 7.6

2. In a lattice coordinate system, is there a lattice point

with coordinates

(a) (300, 282)? (b) (-5062, -4)? (c) (22, 0)?

For the exercises that follow you will need some lattice

312
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paper (perhaps your teacher will have a supply dittoed), some

colored pencils, and a ruler. The lattice paper should have at

least eleven rows of dots and eleven columns of dots. Draw a

line through a row of dots to serve as the x-axis and a line

through a column of dots to serve as the y-axis. See Figure 7.3.

Ordinary graph paper can also be used.

3. Locate on a lattice coordinate system the points that have

the following coordinates:

(a) (3,4) (e) (1,0) (h) (0,-2)

(b) (-3,4) (f) (0,1) (i) (-5,6)

(c) (3,-4) (g) (-2.0) (j) (6,-5).

(d) (-3,-4)

4. Select the seven consecutive points on the x-axis whose

middle point has coordinates (2,0). What are the coor-

dinates of the other six points?

5. Select five consecutive points on the y-axis whose middle

point has coordinates (0,-2). What are the coord±nates

of the other four points?

6. Draw a line or lines with colored pencil through the

points whose coordinates satisfy the following conditions.

Use a different color for each condition in a group and a

different sheet of lattice paper for each group.

Group 1:

(a) The first coordinate is equal to the second coordinate.

(b) The first coordinate is the additive inverse of the

second.



-307-

Group 2:

(c) The sum of the coordinates of the point is 5.

(d) The sum of the coordinates is 3.

(e) The sum of the coordinates is -3.

(f) The sum of the coordinates is -5.

Group 3:

(g) The first coordinate minus the second is 2.

(h) The first coordinate minus the second is -1.

Group 4:

(i) The first coordinate equals 2.

(j) The first coordinate equals -2.

(k) The second coordinate equals 4.

(1) The secone coordinate equals -4.

Group 5:

(m) The absolute values of the coordinates are equal.

7. For each condition listed in this exercise use a different

color to draw a closed curve enclosing just those points,

represented on your graph or lattice paper, that satisfy

the condition. For example:
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Note: Enclose only the points on your lattice paper, even

if there are points not on your lattice paper which satisfy

the condition.

(a) The first coordinate is less than the second.

(b) The first coordinate is greater than the second.

(c) The sum of the coordinates is greater than 5.

(d) The sum of the coordinates is less than -5.

(e) The first coordinate is less than -2.

(f) The first coordinate is greater than 3.

(g) The second coordinate is less than -4.

(h) The second coordinate is greater than 3.

7.3 Conditions on Z X Z and their Graphs

The set of ordered pairs that satisfies one of the condi-

tions in Exercise 6 or 7 in Section 7.2 is called the solution

set of that condition. For example, the solution set of the

condition "The sum of the coordinates is five," would include

(0,5), (1,4), (2,3), (3,2), (4,1), (5,0), (6,-1),

..., (-1,6), (-2,7), (-3,8),

The set of lattice points associated with these ordered

pairs is called the graph of the solution set, or sometimes the

graph of the condition. The graph of the above solution set is

represented in Figure 7.7 by the circled points in the lattice.
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Figure 7.7

Notice that in Figure 7.7 the graph of the condition "The

first coordinate is 3 more than the second coordinate" is dis-

played by enclosing the points in squares. (Very often it is

effective to display the graphs of different conditions by using

different colors to enclose the points.)

Questions: Which point is enclosed by both a circle

and a square? Is 4 4. 1 equal to 5? Is 4

three more than 1? Does (4,1) satisfy

both conditions?

Part of our study of mathematics is learning to express

mathematical ideas in the symbolism of mathematics. You have

previously used "x" to express the first coordinate and "y" to

express the second.

Therefore, instead of writing "The sum of the coordinates

is 5," we can write "x + y = 5." Instead of writing "The first

coordinate is 3 more than the second coordinate," we can write

"x = y + 3." If we are interested in the pair of numbers that

satisfies both of those conditions, we can write, "x y = 5
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and x = y + 3." This new condition is made up of two conditions

connected by "and." Its solution set is ((0,1)) and the graph

is a set containing only one point. This point is called the

intersection of the two graphs (the graph of the condition

"x + y = 5" and the graph of the condition "x = y + 3"), and

((,1)) is called the intersection of the two solution sets.

The sentences that we write to represent conditions are "open

sentences." (See 1.7).

7.4 Exercises

1. Translate the following conditions to the forms used above,

making use of the symbols "x," fly," "=," etc.

(a) The first coordinate is equal to the second coordinate.

(Ans. x = y)

(b) The first coordinate is the additive inverse of the

second coordinate. (Ans. x = -y)

(c) The sum of the coordinates is three.

(d) The sum of the coordinates is -3.

(e) The sum of the coordinates is -5.

(f) The difference of the first and second coordinates

(in that order) is 2.

(g) The difference of the first and second coordinates is

-1.

(h) The first coordinate equals 2.

(i) The first coordinate equals -2.

(j) The second coordinate equals 4.
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(k) The absolute values of the coordinates are equal.

2. Draw the graphs for the open sentences you wrote in

Exercise 1.

3. Translate the following conditions into words (in terms of

coordinates):

(a) x + 6 = y ( e ) 7 = lx - 31

(b) y - x = 3 (f) x = 7

(c) y = Ix' (g) y = 1

(d) y = x - 2

4. Using ">" for "greater than" and "<" for "less than,"

translate the sentences of Section 7.2, Exercise 7 into

mathematical symbols.

= Translate the following into mathematical symbols:

(a) The second coordinate is the product of 2 and the

first coordinate.

(b) The first coordinate is the product of 2 and the

second coordinate.

(c) The second coordinate is the product of 3 and the

first coordinate.

(d) The first coordinate is the product of 3 and the

second coordinate.

6. Describe the following conditions in words:

(a) y = 5x (c) y = x2 (e) y < 0 (g) x y = 6

(b) x = 5y (d) y = 0 (f) x > 0 (h) 2x = 3y

7. For each of the conditions in Exercise 6, list four members

of Z X Z that satisfy the condition. For example, (1,5),

(2,10), (-1,-5) and (0,0) are four members of Z X Z that
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satisfy 6(a).

8. Use the same sheet of lattice paper to graph each of the

following conditions. Use a different color for each con-

dition to circle the points that satisfy the condition.

(a) y = x

(b) y = 2x

(c) x = 27 (e) y = 0

(d) x = 0

9. What is the intersection (common point) of the graphs in

Exercise 8? Which graph was included in the x-axis? the

y-axis? Which of the graphs were contained in a line other

than an axis?

10. Translate the following into mathematical symbols:

(a) The second coordinate is 1 more than twice the first

coordinate.

(b) The first coordinate is 5 less than 3 times the second

coordinate.

11. Describe the following conditions in words.

(a) y = x +

(b) y = x - 1

(c) y = x + 2

(d) y = x - 2

12. For each condition in Exercise 11, draw a line through the

points that satisfy the condition. Use the same sheet of

lattice paper for all lines.

13. In what way were the four lines in Exercise 12 alike? List

the coordinates of the points in which the lines inter-

sected the y-axis. Note the similarity between these coor-

dinates and the conditions as expressed in Exercise 11.
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7.5 Intersection and Unions of Solution Sets

All lattice points satisfying the condition x > 0 are lo-

cated on the same side of the y-axis. We will designate the set

of lattice points on this side of the y-axis by "A." The set of

lattice points satisfying the condition y > 0 is located on the

same side of the x-axis. Call this set "B."

When two conditions are joined by a connective such as

n and It they form a new condition called a compound condition.

The set of points which satisfy the compound condition "x > 0

and y > 0" is the set which satisfies both the conditions

"x > 0" and fly > 0." This set is called the intersection of

sets A and B since it consists of all those elements that are in

both A and B. Figure 7.8 illustrates the relationship of sets

A,B and the intersection of A and B (written A fl B).

yoxis

CI CI 0 CI I] CI

0 CI 0 c1 000
x axis

Figure 7.8

Points in A are in circles. (x > 0)

Points in B are in squares. (y > 0)

Points in A fl B are in circles and squares.

(x> 0 and y> 0)

Let C be the set of points satisfying the condition "x < O."
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Let D be the set of points satisfying the condition "y < 0."

Illustrate C,D and C fl D in a diagram such as Figure 7.8.

Repeat the preceding instructions for A and D, then for B

and C.

List the coordinates for two points in (1) A fl B (2) C fl D

(3) A I D (4) B nc.

All the lattice points satisfying the condition "x = 0" are

on the y-axis. Call this set "E." The solution set of the com-

pound condition "x > 0 or x = 0" contains those "points" which

satisfy either "x > 0" or "x = 0" or both. This set is the

union of A and E, written A U E. Figure 7.9 illustrates this

set relationship:

3

: C C
(

Figure 7.9

Points in A are enclosed by circles. (x > 0)

Points in E are enclosed by squares. (x = 0)

Points in A U E are enclosed. (x > 0 or x = 0)

A simpler notation for "x > 0 or x = 0" is "x > 0" and is

read "x is greater than or equal to zero."
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7.6 Exercises

1. In this exercise try to locate the points in the graph of

the compound conditions without first graphing each simple

condition separately. Do all parts of this exercise on

one sheet of lattice paper.

(a) x > 0 and x = y.

(b) x < 0 and x = -y.

( c ) (x > 0 and x = y) or (x < 0 and x = -y).

In Exercises 2, 3, 4 and 5, follow the instructions of

Exercise 1.

2. (a) x > -1 and y = x 1.

(b) x < -1 and y = -(x 4- 1).

(c) (x > -1 and y = x 1) or (x < -1 and y = -(x 1).

3. (a) x > 0 and y > 0 and x y = 5.

(b) x < 0 and y > 0 and y - x = 5.

( c ) (x > 0 and y > 0 and x 4- y = 5) or

(x < 0 and y > 0 and and y - x = 5).

4. (a) x < 0 and y < 0 and x 4- y = -5.

(b) x > 0 and y < 0 and x - y = 5.

(c) (x < 0 and y < 0 and x + y ='-5) or

(x > 0 and y < 0 and x - y = 5).

5 . (a) y > x and y < x 4- 3.

(b) y S x and y > x - 3.

(c) (y > x and y < x + 3) or (y < x and y > x - 3).

t14.0.94.
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7.7 Absolute Value Conditions

In Chapters 4 and 6 you thought of the absolute value of an in-

teger a as max (as-a). From this definition you can see that:

(a) The absolute value of zero is zero.

(b) The absolute value of a positive integer is that

positive integer.

(c) The absolute value of a negative integer is the ad-

ditive inverse of that negative integer.

This covers all possibilities since x = 0, x > 0 or x < 0,

if x is an integer.

A more compact way of writing this definition is:

Ix! x, if x > 0
-x, if x< 0

Example 1: If x = 5, ixi = 5 since 5 > O.

If x = 0, ixl = 0 since 0 = O.

If x = -3, ixl = 3 since -3 < 0 and -(-3) = 3.

Example 2: Suppose Ix' = 3.

From the definition (xi = x or !xi = -x, there-

fore, substituting 3 for lx1 in the line above,

3 = x or 3 = -x which implies x = 3 or x = -3.

You see that we started with ixl = 3, and found

as a result the compound condition "x = 3 or

x = -3." The solution set of this condition is

the union of the solution sets of the two sim-

ple conditions.

On a line this solution set is simply a pair of

points. In the set of lattice points in the

"23
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plane, however, a more interesting situation

develops. In Figure 7.10 the points for which

x = 3 or x = -3 are circled.

4 4
® ®

-0-1:11:11:11:11:1131:11:1 SEICISEICIEICI-s-

ID

-.1-1:11:11:11:11:101:11:1

®
t

Qi

OCICISEICIEICI-s-
®

Figure 7.10

Furthermore, suppose IY1 = 2, then y = 2 or

y = -2. In Figure 7.10 the points for which

the second coordinates are 2 or -2 are enclosed

in squares. In what way is the graph of

lx1 = 3 and IY1 = 2 indicated?

7.8 Exercises

1. What integers do the following name?

(a) 1-71 (b) 1151 (c) 101 (d) 1-11 (e) 19991.

2. Graph the following on the same lattice.

(a) (xi = 4

(b) IYI = 1

(c) (xi 4 and lyl = 1.

(d) Ix' L or lyl = 1.

(e) Describe how the graphs in (c) and (d) are determined

by the graphs in (a) and (b).
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3. Draw the graph of y = 1x1. Remember that if x > 0 then

y = x; and if x < 0 then y = -x. x > 0 simply states that

the points are to the right of the y-axis or on the y-axis.

x < 0 states that the points are to the left of the y-axis.

4. Draw the graph of y = Ix + 11.

Hint:

Ix + 11
x + 1, if x> -1

-(x + 1), if x < -1

Also see Exercise 3 Section 7.6.

5. Graph the following:

(a) y =21x1.

(b) y = 31x1

(c) y = -21x1

*6. Graph the following:

(a) y = Ix, + 1

(b) y = 1x1 -2

*7. Graph Ix' + ly1 = 5.

7.9 Lattice Point Games

(To the right of the y-axis this
becomes y = 2x; to the left,
y = -2x.)

(Why can you think of this as the
graph of y = Ix1 translated one
space away from the x-axis?)

1. The Game of Caricatures

It is interesting to see what happens to a graph or picture

when you change the angle at which the x-axis and y-axis

intersect. For example see what happens to "square-head"

when you change the angle of the axes:

q.) 4J
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Figure 7.11

What do you think would happen to a circle if you draw it

on one grid and then transfer it to another by connecting

points with the same coordinates?

Transfer the "man in the moon," pictured in Figure 7.12, to

another grid with the axes at a considerably different

angle, e.g.A-. Use the coordinates of points on the pic-

ture to make the transfer.

y axis

Figure 7.12
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Remember that when you find the second coordinate you have

to count the points along a "slanted" line. Coordinates

for the "man in the moon" are different from that in

Figure 7.12.

Head: (-2,4) (2,2) (4,-2) (3,-4) (1,-4) (-2,-2)

Eyes: (-2,2) (0,2)

Nose: (0,0)

Mouth: (-1,-1) (1,-2) (2,-1)

(-4,2)

Left Ear: (-4,2) (-5,2) (-4,1)

Right Ear: (2,2) (3,2) (3,1)

To play the game of caricatures:

(a) One student draws a picture on a grid of his own

choosing and without showing the picture supplies

only the coordinates of key points in the picture.

(b) The other students on self -made grids, using any de-

sired angle for the axes, plot the coordinates on

their own grids and sketh in the picture.

*2. Operational Checkers

This game is played by two players on a finite set of lat-

tice points. For example:

(0,2) (1,2) (2,2)

(0,1) (1,1) (2:1)

(0,0) (1,0) (2,0)

You will need to use arithmetic of (z3,+) so we will list

the necessary facts: 0 + 0 = 0; 0 + 1 = 1; 0 + 2 = 2;

1 + 1 = 2; 1 + 2 = 0; 2 + 2 = 1; and the commutative prop-

try'l
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erty will provide the other basic facts.

(a) One player has red checkers and the other has black

checkers. A coin is tossed to determine who starts.

(b) The first player places a checker on any point that

he wishes.

(c) The second player may then place a checker on ally un-

covered point and another point with coordinates ob-

tained by adding the corresponding coordinates of the

last two points covered. The addition to be used is

that for (Z3,+).

(d) On each subsequent play, if the player's opponent had

just placed a checker on (c,d), then the player may

not only cover any uncovered point (a,b) but also

(a + c, b + d). If this point is already covered by

his opponen,;'s checkers, the player replaces it with

one of his own. For example, if one player has just

covered (2,1), the other player may cover (2,2) and

also (2 + 2, 1 + 2) which is (1,0).

(e) The game ends when all points are covered. The winner

is the player with the most points covered. As you

play the game you will see that it involves several

interesting strategies.

7.10 Sets of Lattice Points and Mappings of Z into Z

You are familiar with many types of mappings from Chapter

3. An important use of lattice points is the representation of
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mappings of Z into Z.

The diagram below displays some of the assignments made

by x 2x where x is a member of Z.

Domain ... -3 -2 -I 0 1 2 3 ...

Range -16 _1 10 12 44 ...

The pairs associated by the mapping can also be displayed

as a subset of Z X Z.

( (-3,-6), (-2,-4), (-1,-2), (0,0), (1,2), (2,4),

(3,6), )

This subset can be graphed:

Figure 7.13

In this particular mapping we see that points of interest

are those (x,y) where y = 2x. The arrow from 3 on the x-axis to

the point (3,6) and the arrow from the point (3,6) to the point

6 on the y-axis illustrate a geometric method of using the graph

to find the integer on the y-axis assigned to a particular in-

teger selected from the x-axis.

etimn
040
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Select some other integers from the domain of the

mapping illustrated in figure 7.12 and for each trace the

path from the point on the x-axis to the point in the graph,

and then over to the corresponding member of the range on

the y-axis.

Which axis contains the graph of the domain of a

mapping?

Which axis contains the graph of the range of a

mapping?

The condition y = 12 gives rise to the mapping 12

if we restrict the domain of the mapping to the set T of

integers that divide 12. Thus

T = (-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12)

To graph the mapping, we proceed as follows: Take an

12
element of T, say -6. Compute 1X, in this case = -2.

12 12Under the mapping x-4--7, x is assigned Uence -6 is
x

assigned -2, and the ordered pair (-6, -2) is in the graph

of the mapping. (We may think of this as follows: y =

Take x = -6. Then y = 2, and the pair (x,y) = (-6,-2)

is determined.) If we take the element 4 from the domain of

12the mapping, then y = = 3, and (4,3) is a point in the

graph.

In this manner we can find other pairs and record them

in a table.
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Domain

-12

- 6

-4

- 3

- 2

-1

1

Range

-2

2

3

4 3

6

12

Copy and complete the table above. Draw axes on a sheet

of graph paper and circle the points obtained from the table.

7.11 Exercises

1. Make a table like that above for each of the following

open sentences:

(a) y = x2 (d) y = 2x - 1

(b) y = 2x + 1 (e) If x is even, y = 9;

(c) y = x2 + 1 and if x is odd, y = 1.

2. Use the tables that you constructed in Exercise 1 to cir-

cle the points in the graph of each condition. Use graph

paper and make a separate pair of axes for each graph.
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*7.12 Lattice Points in Space

If Z represents the set of integers, and Z X Z represents

the set of all ordered pairs of integers, what do you think

Z X Z X Z represents?

You have seen that Z may be associated with a set of

points on a line and that Z X Z may be associated with a set of

points in a plane. The set of all ordered triples of integers

may be associated with a set of points in (3-dimensional) space.

Suppose that you wish to meet a friend in an office build-

ing on the corner of some avenue and street. You not only need

to know the number of the street and the number of the avenue,

but also the number of the floor in the office building.

The longitude and latitude of an airplane at any instant

is not sufficient to determine its position. You also nee,?, to

know its altitude.

In each of these examples, it is necessary to have a triple

of numbers to locate an object in space. In a corresponding way,

we associate each point in a three-dimensional set of lattice

points with an ordered triple of integers. In this case we have

three axes instead of two and each point has three coordinates.

Figure 7.14 illustrates the assignment of coordinates to

certain points in space. Study the diagram and see if you can

discover how each triple (x,y,z) was assigned.
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zaxis

Figure 7.14

The geometric figure with vertices A,B,G,F is a parallel-

ogram because line AB is parallel to line FG, and line FA is

parallel to line GB. The geometric figure with vertices OABCDEFG

has six faces each of which is a parallelogram. It is called a

parallelepiped.

7.13 Exercises

1. (a) Name the six faces of the parallelepiped using the

letters that name the vertices.

(b) How many of the parallelograms have 0 as a vertex?

(c) Try to draw the parallelepiped that has 0 as a vertex

for three of its faces and has the point (2,3,4) as

the other end of the diagonal from O. List the coor-

dinates of all 8 vertices.

2. (a) Using three pieces of cardboard, try to construct a

model of three planes so that any pair of planes has
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a line in common, but all three have only one point

in common.

7.14 Translations and Z X Z

In Chapter 4 you learned about translations as a special

kind of mapping. You also learned that the set of translations

in a line, as represented by directed numbers, with the operation

"following" has the properties of a commutative group.

In this chapter we will be chiefly interested in transla-

tions of a set of lattice points into itself in terms of coordi-

nates.

We will designate the image of point P in a mapping by "P'

(read: P-prime). If the coordinates of P are (x,y), then the

coordinates of P' are (x',y').

Translations "move" every point in the lattice the same

distance in the same direction.

Figure 7.15

The diagram in Figure 7.15 shows the effect of a certain

translation on four points:

( 4, 1)

( 1, 3)

334

-3,1)

0-(0, -1)



-328-

Questions: In each case, by how much did the first

coordinate increase?

By how much did the second coordinate

increase?

What is the image of the following points

in the same translation?

(a) (2,3) (b) (6,-2) (c) (-1,2) (d) (0,0)

The above translation may be defined by:

(x,y) (x 1, y + 2) or by T1,2

To2indicates that the translation adds 1 to the first coordi-

nate of each point and 2 to the second coordinate.

Any translation of Z X Z may be designated

(x,y) (x + a, y + b) or Ta,b

where a and b are integers.

What would be the effect of the translation T0,0? Since

T0, or (x,y) (x + 0, y + 0) maps every point onto itself,

it is called the identity translation.

You are familiar with the composition of mappings. In

connection with translations of a set of lattice points the com-

position of Ta,b with Tc,d
can be expressed as:

Ta,b
o T

c,d
= Tc+a,d+b

The symbol "o" in the definition above can be read "with"

or "following" since the translation on the right of the "0"

translates first. The effect of the above composition of trans-

lations on a point (x,y) is:

`,135
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(x,y) (x4. C 4. a, y 4- d b )

If you placed a disk on the lattice point in the coordi-

nate system in Figure 7.16 the composition T2,3 o T-4,-1 would

tell you to first move the disk 4 points to the left and one

down, and follow this by 2 to the right and 3 up. Since

T2,3 = T-2,2 this should be the same as moving 2 to the

left and 2 up. Figure 7.16 illustrates this by showing the

effect on (0,0).

Figure 7.16

7.15 Exercises

1. Find the compositions of the following pairs of transla-

tions:

(a) T-5,3 o T5,-3 ( b) T4 ,-2 0 T-4 ,2

(c) T
a,b

o T
-a,-b

If the composition of two translations is the identity

translation, each is called the inverse of the other.

2. Use the commutative property for addition of integers to

show that Ta,b o T
c,d

= T
c,d

o T
a,b'
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3. What property does Exercise 2 demonstrate for composition

of translations?

4. Use a property of integers to show the following:

Taub o (Tc,d o T
e,f

) (Taub Tc,d) o Tee

5. What property of composition of translations is demon-

strated in Exercise 4?

6. Draw the parallelogram with the following vertices on

graph paper:

(...3.1.4), (0,3), (7,3), (4,-1)

7. Verify with a ruler that the midpoint of each pair of op-

posite vertices in Exercise 6 is (2,1).

8. Find the images of the points in Exercise 6 under the

translation T-0,-I: that is map each (x,y) onto

(x - 2, y - 1).

9. Verify that the image points you found in Exercise 8 form

the vertices of another parallelogram.

10. Verify with E ruler that the midpoint of each pair of op-

posite vertices in Exercise 9 is the image of the point

(2,1) under the translation T_0,_1.

7.16 Dilation and Z X Z

Figure 7.17 shows graphically what happens to a set of

points under dilation.

A dilation of Z X Z is a mapping designated by

(x,y)------(ax,ay) or Da ,

for any non-zero integer a.
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In the dilation in Figure 7.17 a = 2, The mapping is

(xa) (2x,2y), or D2. An equivalent way to say this is

that distances between pairs of points in the image are twice as

great as the distances between the corresponding pairs of points

in the first picture. If the dilation had been D-2, the image

would have been the same size but would have been upside down

below the x-axis and to the left of the y-axis, with his nose

still against the y-axis but 6 units below the origin.

Exercise: Dilate the original picture by a factor of -2.

Then the mapping is (x,y)--------0-(-2x, -2y).

You will see him increase in size and stand on

his head!

In any dilation both coordinates of each point are multi-

plied bv the same number. We will refer to this number as "a"

in the following ou,stions:

(a) What happens to points in a dilation if a = 1?

(b) What happens to points in a dilation if a = -1?

(c) If we should allow a to be zero, onto which point

would each point map?

(d) What happens to each point in a set of points if

a = 3? If a = -3?

(e) If a picture is to the left of the y-axis and above

the x-axis in Figure 7.17, where will the image be

under Da? Under D-2?

(f) Where will any point on the x-axis be mapped by a

dilation (x,y) (ax,ay)? Where will a point on

the y-axis be mapped?
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7.17 Exercises

C)
G

e

Figure 7.17

imago

1. Use the dilation D3 to graph the following points and

their images:

(-3,-1), (0,3), (7,3), (4,-1)

2. Answer the following questions about the figure in Exer-

cise 1 and its image:

(a) What kind of geometric figure do the four given

points outline?

(b) Do the image points outline a figure the same size

as the original? The same shape?

3. The composition of dilations may be represented as

Db o Da = Dab where Da dilates first.

(a) Which dilation maps every point onto itself?
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(c) Which two dilations are the only ones that have in-

verses in Z X Z?

*7.18 .",S9/mieAdditIonLitlnatin s and Z X Z

By now you should have some skill in finding images if

you are given the coordinates of a point and a rule for finding

the image. For each of the mappings below, find the images of

the following points which outline a parallelogram and the mid-

point of its opposite vertices. Then answer questions (a) - (g).

Points: (-3,-1), (0,3), (7,3), (4,-1)

Midpoint of opposite vertices: (2,1)

(a) First use graph paper to graph the figure and its

image.

(b) Does the image outline another parallelogram?

(c) Is the image of the midpoint the midpoint of the

images of the opposite vertices?

(d) Do the image points outline a figure the same size

as the original? the same shape?

(e) If the vertices of the parallelogram are named ABCD

clockwise in that order, are their respective images

A', B1, C', D' also in clockwise order?

(f) For each mapping compose the mapping with itself.

(g) Compose the following mappings: (1) following (2),

(3) following (5), (4) following (6), (5) following

(6), (6) following (5).
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7.19 Summary

1. The assignMent of ordered pairs of integers to lattice

points in a plane involves

(a) assignment of integers to equally spaced points on

each of two intersecting lines called axes;

(b) assignment of pairs of integers, one from each axis,

to lattice points in the plane of axes.

2. The set of all ordered pairs of integers is named Z X Z,

and the two integers assigned to a point are called coor-

dinates of the point.

3. Conditions on coordinates of a point, such as "the sum of

the coordinates is 3," are expressed by open sentences,

such as "x + y = 3." The set of ordered pairs, each of

which satisfies the condition, is called the solution set

of the condition (or the open sentence). The set of lat-

tice points that have these pairs for coordinates is the

graph of the condition.

4. Compound conditions may be expressed by connecting two

open sentences with "and." The connective "or" can also

641
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be used. A pair of integers satisfies an "and" condition

if it satisfies both connected conditions. It satisfies

an H or n condition, if it satisfies either.

5. The absolute value of an integer is defined by

lx1 = x, if x > 0,

Ix1 = -x, if x < 0.

6. The idea of a coordinate system in a plane may be extended

to space by assigning number triples to points.

7. Translations of Z X Z are expressed by

(x,y)------(x + a, y + b).

8. Dilations of Z X Z are expressed by

(x,y)

7.20 Review Exercises

1. List five ordered pairs of integers that satisfy the con-

dition:

(a) x+ 2y = 5 (b) x =27 (c) Y= lx1 - 2

(d) lx1 IYI = 3 (e) xy = 24

2. Translate the following conditions into open sentences:

(a) Two times the first coordinate minus three times the

second coordinate is equal to seven.

(b) The first coordinate is three less than two times the

absolute value of the second coordinate.

(c) The first coordinate is greater than zero and the

second coordinate is less than two.

3. Translate the following open sentences into words:

(a) y = x9 - 2 (b) lx + yl =5 (c) y > 2 or x < 3.
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4. Tabulate the solution set of the following:

(a) x y = 5 and x - y = 3. (b) y = x2 and x = -1.

5. Graph the following:

(a) y = 2x - 1 (b) y = -3x (c) x > 0 and y = 0.

6. Which "region" or "regions" contain the points whose coor-

dinates satisfy the following:

(a) x = 2 and y > O. (b) (x,y) is not on either
axis.

(c) y < -5 and x < -6. (d) x = -10 and y = 23.

7. Draw a pair of axes on a sheet of graph paper and circle

the following points:

(6,11), (6,1), (11,6), (1,6), (9,10), (3,10), (3,2),

(9,2), (10,9), (10,3), (2,3), (2,9)

8. Find the image of each point in Exercise 7 for the follow-

ing mappings, and circle the image points:

(a) (x,y)------o-(x,-y) (c)

(b) (d)

9. On a sheet of graph paper, mark the following points, and

draw the triangle they outline:

(0,0), (0,5), (2,0).

On the same sheet of graph paper mark the images of the

three points under the following mappings, and in each

case draw the triangle the three image points outline.

(a) (x,y)-------0(2x,2y) (b)

(c) (d)

10. On a sheet of graph paper, mark the following four points,

and draw the quadrilateral they outline:
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(0,0), (0,3), (4,3), (4,0)

On the same sheet of graph paper mark the !images of the

four points under the following mappings, and in each case

draw the quadrilateral the four image points outline,.

(a) (x,y)------0-(x + 3, y 4. 4) (b) + 2y, y)

(c) (x,y; + 5, -y) (d)
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