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Statemcnt of The Problem

We consider that a schocl is chavacterized by:

(a) a set of classes C = {ci; i=1, ..., q}

{(b) a set of teachers M = ‘ij; i~ 1, '..., Pl

(c) a set of subjects B

(d) a set of periods N

{bl; 1=1, ..., 8}

{nk; k=1, ..., n}

(e) a set of meetings <FL which have to occur during the week.

Each meeting lasts on2 hour (or one period) and involves

one or more classes, one or more teachers and one or more subjects.

A set of meetings involving the same elements (i.e. the

same class(es), teacher(s) and subject(s)) is called a combination.

A timetable consists then of an allocation of every meeting
1ni52 to a period of the week; in other wo:ds it i{s a partition of

J% into n subsets Hl’ ceey Hn where H, is the subset of all meetings

k

occurring at period n {or rore sinply at period k). This allocation

has to satisfy certain conditions specified later.

-

Prodlem 1

Let us first consider a particular case oi the timetable
problem. Suppose that every meeting of& invoives exactly one

teacher m, and one class ¢,, and neglect the subjects.
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We can associate with the setd an array A (pxq) with non-

negative integeyr entries a,, where a,, is the nunber of meetings

i} 1}
referring to class ey and teachar mj. Every conbination is now
characterized by s m1 and aij; we shall denote a combination by

(Ci’ g aij) or simply ci—mj. A is usually called the requirement

matrix.

If the only restriction to be considered during the construction

is that no teacher or cliuss is required at two niaces at once, we can

IS

solve the problem easily. Let o4 be the total number of meetings involving

class ¢y and B, the nutber o¢f neetings involved teacher m,, So If no teacher
J

3

and no class 1is Involved in more than n mzetings, in other words it:

fA
s

i.l' vo01 9§
(1)

<n =1, «v.y P

then the problen has at icast one sclution and we can coustruct a
timetable. We consider a bipartite multigraph G with vertices

ey mp. Every combination ¢,-m, 1s represented by

S URREDICR LY 1y
aij parallel edges joining ¢y and m, . a, {or 51) is the degree of
vertex ¢, {or mj). 1.e. the number of edges iucident with this
vertex.

A subset of mcetings which can occur simultaneously is
represented by a matching B Iin G (it 1s by definfition a set i of
edges such that no two edges of X ure adjacent). A timetable consists

then of a partition of the edges of G into n matchings “1’ ey Hn.



The determination of these matchings is a flow problem; more

precisely it is a sequence of n-1l problems of flow with minimal

(5)

cost .

Problem II

v e e

In a real school we find wany other requirements and we have

to take them into account during the preparation of a timetable.

We first introduce unavailability constraints in the previous

basic model of problem I, Let us suppose that teachers and classes
are not necessarily free during n periods, but some of them are
unavailable for certain periods (they may be either absent or invelved
in preassigned meetings). These constraints are described by arrays

E and D.
E = (eik) i=1, vv., q; k=1, ..., n
D= (djk) J=1, ..., p; k=2l, ..., n

where LT {or djk) is 1 if < (ox mj) 18 unavailable at period k and

is 0 otherwise.

For all i1 we deiine the subset Mi of M as ire subset

containing all teachers who have to teet class ¢y and for all j, C

3

.

is defined as the subset of all classes having to meet teacher m
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i 1s said to be consisteat if, for ail i and k, djk =} for

all j such that mj € b =a> eik = 1; siwilarly D 1is consistent if

for all j and k e = 1 for all {1 such that ¢y € Cj => djk = 1,

This means that a class ci has to be considered as unavallable at

period k 1f all teachers wno are to meet ci are univailable at

period k (and similarly for m,). In the remaiuder of the paper we

3

shall deal only with consistent arrays E and D.

As previously, a bipartite multigraph G can be associated
withi the ti{metable problem, but we have now an additional condition
on Hk: Hk must not include any edge adjacent to vertex s (or mj) if
ek (or djk) is equal to 1.

Solubility Propositious

-——— —-——

Since teachers and classes play equivalent roles in the
problem, we shall simply call them eclements. Necessary and sufficient
conditions of solubility for problem 1I are not obtained as easily

as for problem I.

Obviously no element must be involved {n a number of meetings

greater than the nusber of {ts free p2riods:

n
n- kfl % 2 a0, i=1, ..., g
(2)
n
ne=- t djklaj j"l. -u-,P

k=]l



Furthermore, it 1s necessary that for ail combinations

c,-m, the elements ey and m, are sinultaneously firee for a number

i) 3
of periods not less than a11:
n
8y % kil (1-e20Q - dg ) for all ¢y - m, (3)

Simple examples show that counditions (2) and conditions (3)

are not sufficient for solubility of problem II.

(4)

A third type of condition was used by Gotliebd s these are

based on conditions of Hall for the existunce of a system of distinct

representatives(6). For all classes <y and all subsets M of Mi’ the

number of meetings of <y with the teachers of M pust not be preater

than the number of periods at which ¢, and one at least of tivse

i
teachers are simultaneously free:
n
r _a, <t (e (V- = _d,) (¢.1)
j:mJ:M 13 k=l 1k j:mjcM Ik

for all M& Hi and for all 1.

Similarly we have for all C«< C, and for all j:

i
n
L _a,,< L (-4, )(1 - = __e. ) (4.2)
1xcicc i) k=] Ik i;ctcc ik

These conditions imply conditions (2} and (3), but generally
they are only necessary conditions. They are sufficient for a

problem with only one teacher or one claes.
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We shall see in a following paragraph the meaning of

conditions (4.1) and (4.2).

Let us call degree of freedom (DF) of g the quantity Mc

i

defined as Mci = - : e T %y and the DF of mj will be denoted

Mmj and defined as

Mm, =n -1 d g

3 W Jk TS
For combination ci-mj, we can also define a DF Nij by
Nij = i (1—e1k)(1-djk) - 3y,

With these definitions, conditions (2) and (3) express that all 0F

are nonnegative.

We give now some results concerning the solubility of problem II.

Proposition 1 A problem with Ni = 0 for all combinations ci-mj

3

may not have more than one solution.

Proof: If 1t had two distinct solutions there would be at least

one combination, the a,

different ways to a1j periods of the week. Tnis means that the number

j meetings of which could be allocated in two

of periods whera i and mj are both free 1e greater than a This

13’

combination has a positive DF; this is in contradiction with Nij = 0,

Proposition 2 1If Nij v 0 for all combinations ci-mj. then all DF

of classes and teachers are nonpositive.
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Proof: Iet us associate with problem II a bipartite graph Gl. Its

vertices are (fig, 1):
Cik i=1, veey q:k=l, seey N
“jk J=1, vse, P; k=1, ssey n

We call.f3i the set {?ik; K=1, vee,) ﬁ} for it =1, .04, q amJOHG
R

the Set f’.jk; k = l, ee 0y nj fO!‘ J = l, e ey p' Cik aﬁd )’i‘jk al‘e

Joined by an edge if there is a combination ey =my and if both ¢y and

my are free at period k.

(a) Since E and D are consistent, for any period k at which ¢; is
free, at least one teacher in ¥ is free, This implies tha% there
is at least one edge adjacent to C;) if ¢y is free, at period k.
Similarly one edge a% least is adjacent to Mjy if my is free at

period Kk,

(b) Since Nyj =0 for all c;-my, there are exactly a 34 odges in
Gl Joining vercices of ‘Ci end vertices of J(oj (there are exactly af §
periods to which meetinge of cy=ny csn b3 allocated), So there are

exactly oy (or BJ) edges adjacent to vertices of %1 (or){J) in Gl.

(c) Suppose now that Mc; > O for some class ¢;: this means that
the number (say o ) of poriods where c; is free is strictly greater
than the number o of meetings in which ¢; is involved, Then (a)
implies that there should be at least & > & edges adjacent to

vertices of ©; and (b) asserts that there are exactly &, tuch edges;
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Aruitoxt provided by Eic:
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this {s a contradictioa and thus aill Mc, are nonpositive. Clearly

1

all ij are also nonpositive and this ends the proof.

We know furthermore that ic 1is always possible to associlate

with every timetahble problea Pl (aaviag Mc, > 0 and Mnm

J
0 for all i and j.

{ > 0 for

a:l 1 and 3) snother problen £, with Mci = Mm

2 37
" and P2 are equivelenr in the seasa that one has a solution if
and only if the other one is soluble\l)(s). P, is calied a reduced

2

problen and has the follewing properties: (1) the number of
teachers is cqual to the nusber of classes: (2) at any period k, the
number of free classes 18 equal to the number of free teachers,

So we only have to consider reduced probiems,

Proposition 3 A sufficient condition for solubllity of a reduced

problem II is N,, = O for all ci—mj.

i3
Proof: We consider the graph Gl: for all 1, as Me, = 0, ¢ is

free during oexactly a, periods and by the consistency of E there are

3

exactly a, vertices of %?i adjacent to at least one edge: since there

i
are exactly a, edges adjacent to vertices of tﬁt (Ni‘ = 0 for all
: J
ci—mj) 1no vertex in &3, is adjacent to more than one edge. Similarly
Y
any vertex in ch is adjacant to ai most one adpe, s0 that all edges

1 ) _ . )
of G~ represent a tinetabie: at every feriod & class (or teacher)

meets at mosc one teacheyw {(or one class).

This result is worthy of consideration, beccuse one normally

thinks that the '"'probability' that a problem has & solution Increases
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when the DF are sugmenzd. This proposition shows that it is not

always true: a reduced provlem always has a solution if Nij = 0, but
it may have none when Nij > 0.
Some special cases ,
Let us consider reduced problems; the unavailability

constraints can be regarded as preassignments because at each period
the number of unavailable classes is equal to the nurber of unavailable

“)(5)

teachers So each element is to be involved in n meetings:
some of these meetings are preassigned to fixed periods (correspouding

to the unavailable periods of this element).

Proposition 5 A reduced problem such that one class only (or one

teacher only) has some preacsigned meetings, is

soluble.

Proof: We consider the bipartite multigraph G associated with that
problem; all edges representing preassigned meetings are adjacent.
Thus any maéching H in G contains at most one of these preassigned
edges. So any decomposition of G into n wmatcnings will give a

timetable.

Note that if G 1s not connected, the problem fs still soluble
when at most one class (or one teacher) in each connected component

has some preassigned meetings.
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Now for a problem wirtich 1is not reduced, let us define two

families of unavailability constraints:

(a) all classes are free at any period, one teacher at most is not

available at any period.

(b) one class exactly, say ¢ i3 unavailable at some periods. The

i!
unavailabilities of teachers are: at any period at which S is

unavailable, one teacher at most is unavailable.

Similar constraints outaiped by permuting classes and teachers
are considered as equivalent to (a) or (b). Then wr have the following

result, provided that

«, + i ek < n for all 1 and Bj +‘§ djk < p for all j
Corollary 5.1 A problem II with unavailability constraints

of type (a) or (b) has always a solution.

Proof: In case (a) we introduce a spurious class c; ; 1f a teacher

is unavailable at period %, we say he has to meet ci at period k.

and m, are bouth unavaillsble at period k, we say

i 3

has to meet mj at perlod k. All these preassigned meetings

In case (b) 1if ¢
that ¢y
are represented by adjacent edges in G for (a) and for (b). G whose

vertices have degrees not greater than n can be decomposed into n

matchings; these matchings represent a timetable,
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0f course the problem has still a solution when we have

constraints (a) or (b) for any connected componant of G.

Now let us examine the case where conditions of Hall hold
for all classes and all teachers. This means that for a reduced
problem the preassignments'are such that it is possible to construct
separate timetables for all classes and all teachers. The problem
may have no solution; if this happens we can keep fixed all
preassigned meetings of one class ey (or of one teacher mj) and
allow the remaining preassigned meetings tc be possibly allocated to
some different periods. This 1s equivalent to consider that we
have preassigned meetings only for one class ¢,y or for one teacher

m From proposition 5 such a problem always has a solution. Thus

5

we can formulate:

Corollary 5.2 Let P be a reduced problem with a set of preassigned

meetings. Supnose conditions of Hall hold for all classes and
teachers. Then either P has a solution or it can be transformed into
a soluble problem P' by keeping fixed the preassigned meetings of

any class ¢, (or any teacher m,) and possibly modifying the remaining

3

preassignments.
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Flow lMethod

The method used to conett* ot timetablas proceeds oy
successive steps; the timetable wils be prepared one period at a
time; each step coasists of the allocation of meerings to a determined
period of the week. When we have completed the allocation for the k
first periods we call the allocation of thne remsining meetings to

periods k+1, k+2, ..., n the residual problem. We have .hen to

allocate meetings at period k in such a way that the residual problem
still admits a solution. As any subset Hk of meetings that can occur
simultaneously is represented by a matching in a bipartite multigraph
for problem I as well as for prublem II, we have to solve a ilow
problem at each step. To perform this it is convenient to consider
the graph G associated with proolem 1; we orient any edge joining

N and m:l from ¢, to mj and give it an infinite capacity. We
introduce a source S and jein it with every cy by an edge (S’Ci) of
unit capaclty; similarly we introduce a sink T and edges (mj’ T) of

uuit capacities for all mj. We call this graph G'. Any integer

valued flow in G' from S to T corresponds to a matching in G.

At each step we have to assign priorities to meetings, and
possibly to classes and teachers in order thac the residual problem
has a solutisn. These priorities can be expressed by a cost function
KF associating a cost KF(x,y) witb any edge (x,y) in G'. The allocation

of meetings to a certain period 1is now a minimal cost flow prcblem.
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For problem I the determination of a cost function KF is
easy because we have necessary and sufficlent conditions of solubility.
At any step, we can for example assign costs equal to zero to all
,T) associated with ¢, and m, which are still to

3 1 h|

be involved in a maximum number of meetings and positive costs to

edges (S,ci) and (m

the remaining edges in G'. After each step we have to delete in G’
the edges (ci,mj) correspondingito meetings which have just been
allocated; the flow has to be set equal to zero in all remaining

edges before proceeding to the next step.

As we do not know necessary and sufficienc conditions for
the solubility of problem II, we can examire different cost functions

corresponding to different priority criteria,

I. Cost function F1

For any period, we calculate the DF of classes and

teachers:
o {f ey is unavailable at that peried
KF(S,ci) =
l"lci otherwise
« {1f m, is unavailable at that period
KF(m,,T) = ]
Hmj otherwise

KF(ci,m ) = any positive number.

3

Priorities are given to teachers and classes having the

smallest DF. Fl is a generalization of the cost function used in
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problem I. This cost function seems to be adapted to problems with

oaly few unavailabiiities.

II. Cost function F2

At any periced, we only calculate the DF of combinations.

o if ¢y is unavailable at that period

KF(S,ci) =
any positive number otherwise
© if m, 1s unavallable at that period
KF(m,,T) = J
3 any positive number otherwise
KF(ci,mj) = Nij

We try to allocate first meetings of combinations having the
smallest DF. If there are no or only a few unavailabilities, we can
find examples where F2 fails to construct a solution while Fl does.,
Consider the example in Fig. 2; such a problem obviously has a

solution since no vertex is adjacent to more than 3 edges.
At the first step we have:

KF(I,a) = KF(I,b) = KF({,c) = 2

KF(I1,a) = KF(11I,b) = KF(IV,c) =1

With the flow method we get H = {(11,8), (II1,b), (IV,c)} .
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The residual problem has no solution because class I has still to

be involved in 3 meetings and there are only 2 periods left.

I1I. Cost function F3

The mixed cost function F, is defined for any period as

3
follows:
o {if ¢ is unavailable at that period
KF(s,c,) =
Mci otherwise
« if mj is unavailable at that period
KF(m,,T) =
3 Mmj otherwise

KF(ci’mj)- Nij

With this cost function giving priority to elements and
meetings having the smallest DF, we try to preyent these DF from
decreasing too rapidly and if we can proceed up to the nth step
with nonnegative DF we get a solution for problem II, I1f some DF
becomes negative duxing the procedure, then the residual'problem
has no solution. This situation may happen even though problem Il
i1s soluble because the procedure is not baced on necessary and

sufficient conditions for solubility.

Some differences between problem I and problem II are to be
noted now. In problem I, we could determine at each step a maximal
flow (with minimal cost) corresponding to a maximal matching

(i.e. containing a maximum number of edges). In other words we
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could allocate as many meetings as possible at any period; the
residual problem vemained soluble. But for problem II, it may happen
that the residual problem becomes insoluble if we determine an

allocation represented by a maximal flow {(with minimal cost).

At a given period we have to allocate exacily one meeting

of every combination ¢,-m, with N, , = 0 {(if ¢, and nm, are both free);

1™y 14 1 §

if we do not, the residual problem certainly has no solution. Hk has

to include a subset of edges corresponding to combinaticns whose DF
are zero and moreover a subset of edges adjacent to all vertices ey

and “ﬁ (free at that period k) with DF equal to zero. An admissible

Hk will thus sometimes be a non maximal matching; the consequence is

that we cannot always get a timetable with a sequence of maximal
flows. The example in Fig. 3 fllustrates this fact. 1f we use F3
and determine a maximal flow with minimal cost at first step, we

cannot get a solution.

Practically we shall at any period allocate first meetings
of all combinations ci-mj with Nij =0 (if ¢y and mj are free) and

then determine a maximal flow with minimal cost corresponding to

the meetings involving the remaining classes and teachers.
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Application to a Real System

Many other requirements are present in real schoo.s, so that
we still have to modify our model and introduce the related

constraints:

(1) Let B* be a subset of B; the elements of B* are called special
subjects. Meetings involving a subject be in B* have to take place
in a determined room associated with this subject. As the schools
are supposed to include exactly one room for any special subject, two

meetings with the same special subject be may not occur simultaneously.

(2) As previously mentioned, a meeting may involve several teachers,

several classes and several subjects.

(3) 1t is furthermore necessary that certain subjects are
acceptably spaced throughout the week. So we want no more than one
meeting of any combination to occur in a school day. 1In some
particular cases, two meetings of the same c;mbination must occur at

consecutive periods. These are called double meetings; for every

combination the number of double meetings is fixed.

We explicitly take these constraints into account as follows.
Before constructing the timetable by the flow method, we allocate
double meetings, meetings involving several teachers and classes, and
meetings including special subjects at different periods without

violating any constraints.
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We eliminate then from Jball meetings already assigned and
consider that elements involved in these preassigned meetings are

unavailable at the corresponding periods,

The remaining problem is now a problem IT and we determine a

solution by the flow wmethod (usually with cost function F3).

In practice, more than 5% of meetings are rarely preassigned,
so that this rather arbitrary preassignment does not influence
strongly the construction of a solution. The above outlined method

is still a reliable procedure.

A program has been written in FORTRAN IV (with a few sub-
routines in MAP) for the IBM 7040 of the Centre de Calcul de 1'Ecole
Polytechnique Fédérale de Lausanne. We used Input and Output sub-

(3)

routines of a program written in Germany (H.G. Genrich

).

A serles of experiments was carried out with the program.
Because of the imposed constraints it was not always possible to
avoid failure in constructing the timetables. Generally when n
steps are performed, a small percentage of meetings are left
unassigned. These are advantageously allocated with a minimum of

manual adjustments., Some results ave surmarized in Table 1.
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TABLE 1
Periods No. of (Percentage not Lomputation
Classes |Teachers of the Week {Meetings Assigned Time
9 15 36 300 0.3 4 min,
34 64 35 1200 3 3 "
48 84 35 1700 5 50 "




(1)

(2)

(3)

(4)

(5)

(6)
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