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State ent of The Problem

We consider that a school is characterized by:

(a) a set of classes C = {c ; i = 1, ..., (1)

Wasetofteaaers G 1, be., p)

(c) a set of subjects B = {b1; 1 = 1, sl

(d) a set of periods N = {nk; k = 1, ..., n}

(e) a set of meetings A which have to occur during the week.

Each meeting lasts on,..! hour (or oae period) and involves

one or more classes, one or more teachers and one or more subjects.

A set of meetings involving the same elements (i.e. the

same class(es), teacher(s) and subject(s)) is called a combination.

A timetable consists then of an allocation of every meeting

in 9, to a period of the week; in other wo.:ds it is a partition of

66 into n subsets H
'

H
n
where H

k
is the subset of all meetings

occurring at period nk (or more simply at period k). This allocation

has to satisfy certain conditions specified later.

Problem

Let us first consider a particular case of the timetable

problem. Suppose that every meeting ofirt involves exactly one

teacher raj and one class c
i'

and neglect the subjects.
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We can associate witi; the seta an array A (pxq) with non-

negativeintegerentriesauwhere a
ij

is the number of meetings

referring to class ci and teacher m. Every combination is now

characterized by c., and a. .; we shall denote a combination by
)

(ci, mj, a
ij

) or simply c -m
j

. A i6 usually called the requirement

matrix.

If the only restriction to be considered during the construction

is that no teacher or cl-Jas is required at two places at once, we can

solve the problem easily. Let ai be the total number of meetings involving

sj if no teacher

and no class is involved in more than n maetings, in other words if:

a n

J
< n

i a 1, q

j S 1, p

(1)

then the problem has at 1.C6St one solution and we can construct a

timetable. We consider a bipartite multigraph G with vertices

cl, cq; ml, mp. Every combination ci-mj is represented by

a
ij

parallel edges joining c
i
and m a (or P ) is the degree of

vertex c
i

(or m ), i.e. the number of edges incident with this

vertex.

A subset of meetings which can occur simultaneously is

represented by a matching H in G (it is by definition a set d of

edges such that no two edges of H are adjacent). A timetable consists

then of a partition of the edges of C into n matchings H1, Hn.
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The determination of these matcliings is a flow problem; more

precisely it is a sequence of n-1 problems of flow with minimal

cost

Problem II

In a real school we find many other requirements and we have

to take them into account during the preparation of a timetable.

We first introduce unavailability constraints in the previous

basic model of problem I. Let us suppose that teachers and classes

are not necessarily free during n periods, but some of them are

unavailable for certain periods (they may be either absent or involved

in preassigned meetings). These constraints are described by arrays

E and D.

E (eik) i e 1, ..., q; k 1, n

D (d
jk

) j 1, p; k a 1, . , n

where elk (or d
jk

) is 1 if c1 (or m
j
) is unavailable at period k and

is 0 otherwise.

For all i we define the subset M
i
of 14 as Cr.e subset

containing all teachers who have to meet class ci and for all j, Cj

is defined as the subset of all classes having to meet teacher m .
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is said to be consistent if, for all i and k, d
jk

= 1 for

alljsuchthatmeM.=> e
ik

= 1; similarly D is consistent if

for all j and k eik = 1 for all i such that ci e Cj => djk = 1.

This means that a class c
i
has to be considered as unavailable at

period k if all teachers who are to meet c
i
are unavailable at

period k (and similarly for m ). In the remainder of the paper we

shall deal only with consistent arrays E and D.

As previously, a bipartite multigraph G can be associated

with the timetable problem, but we have now an additional condition

onlIk:likmustnotincludeanyedgeadjacenttovertexc.(or m
j

) if

e
ik

(or d
jk

) is equal to 1.

Solubility Propositions

Since teachers and classes play equivalent roles in the

problem, we shall simply call them elements. Necessary and sufficient

conditions of solubility for problem II are not obtained as easily

ns for problem I.

Obviously no element must be involved In a number of meetings

greater than the number of its free p!tiods:

n - F e >
ik i

kil

n
n -Ed > 0jk j

i 1, ..., q

j I, p

(2)



Furthermore, it is necessary that for all combinations

c
i
-m

j
the elements c

i
and m

1

are simultaneously free for a number

of periods not less than
ail:ij

n
a,, < E (1 - elk) - dik) for all c - nj

knl

7.

(3)

Simple examples show that conditions (2) and conditions (3)

are not sufficient for solubility of problem II.

A third type of condition was used by Gotlieb
(4)

; these are

based on conditions of Hall for the existence of a system of distinct

representatives
(6)

. For all classes c
i
and all subsets M of Mi,

number of meetings of ci with the teachers of M must not be greater

than the number of periods at which c
i
and one at least or tose

teachers are simultaneously free:

n
E a < E (1-e

ik
)(1 d,,)

j:m " knl j:m

for all 1:1=14 and for all i.

Similarly we have for all Zcr. Ci and for all j:

n

E a44

"
< E (1-d41,)(1 elk)

itch knl J' :ctfC

(4.1)

(4.2)

These conditions imply conditions (2) and (3), but generally

they are only necessary conditions. They are sufficient for a

problem with only one teacher or one class.
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We shall see in a following paragraph the meaning of

conditions (4.1) and (4.2).

Let us call degree of freedom (DF) of c. the quantity Mc
i

defined as Mc
i
...n-Ee

ik
-a'

i'
mjand the DF of will be denoted

k

Mm and defined as

Mm in-Ed -a
k Jk

For combination c -m
j'

we can also define a DF N
ij

by

Nij n E (1-eik)(1-djk) - aij

With these definitions, conditions (2) and (3) expreas that all DF

are nonnegative.

We give now some results concerning the solubility of problem II.

Proposition 1 A problem with N
ij

m 0 for all combinations c -m
i j

may not have more than one solution.

Proof: If it had two distinct solutions there would be at least

one combination, the aij meetings of which could be allocated in two

different ways to aii periods of the week. This means that the number

of periods where ci and mj are both free is greater than aij. This

combination has a positive DF; this is in contradiction with N
ij

= 0.

Proposition 2 If Nij ti 0 for all combinations ci-mj, then all DF

of classes and teachers are nonpositive.
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Proof: Let us associate with problem II a bipartite graph G
1

. Its

vertices are (fig. 1):

Cik i = 1, ..., q; k = 1, n

Mjk j = 1, soft, p; k = 1, 0110, n

W6 call ti the set {Pik; k = 1, ..., 4 for i = 1, ..., q anctenj

the set fijk; k = 1, nj for j = 1, p. Cik and Mjk are

joined by an edge if there is a combination ci-mj and if both ci and

mj are free at period k.

(a) Since E and D are consistent, for any period k at which ci is

free, at least one teacher in Mi is free. This implies that there

is at least one edge adjacent to Cik if ci is free, at period k.

Similarly one edge at least is adjacent to Mjk if mj is free at

period k.

(b) Since Nij = 0 for all ci-mj, there are exactly a edges in

G1 joining vertices of ti and vertices of of (there are exactly aij

periods to which meetings of ci-mj can be allocated). So there are

exactly di (or pi) edges adjacent to vortices of ti (orAj) in G1.

(c) Suppose now that Mei > 0 for some class ci: this means that

the number (say cc) of poriods where ci is free is strictly greater

than the number cti of meetings in which ci is involved. Then (a)

implies that there should be at least cc 7 a i edges adjacent to

vertices of ti And (b) asserts that there are exactly oti such edges;
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this is a contradiction and thus all Mc
i

are nonpositive. Clearly

all Mmj are also nonpositive and thi ends the proof.

We know furthermore that it is always possible to associate

with every timetable problem P
1

(having Mci > 0 and mm
j =.1

0 for

ail i erld j) another proble 2
2
with Mc

i
= M mj = 0 for all i and j.

Pi and P2 are equivalent in the sense that one has :t solution if

and only if the other one is soluble(1)(5). P
2

is called a reduced

problem and has the following properties: (1) the number of

teachers is equal to the number of classes: (2) at any period k, the

number of free classes in equal to the number of free teachers.

So we only have to consider reduced problems.

Proposition 3 A sufficient condition for solubility of a reduced

problem II is N
ij

= 0 for all c.-m..
j

Proof: W

free during exactly ai periods and by the consistency of E there are

exactly ai vertices of adjacent to at least one edge: since there

are exactly a
i
edges adjacent to vertices of t3 (N. = 0 for all

ij

ci-mj) no vertex in 81 is adjacent to more than one edge. Similarly

any vertex in jC is adjacent to a;: most one edge, so that all edges

of G
1
represent a tinetall1e: at every feriod class (or teacher)

meets at most one teacher (or one class).

This result is worthy of consideration, because one normally

thinks that the "probability" that a problem has a solution increases
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when the DP are zlugma,,ad. This proposition shows that it is not

always true: a reduced problem always has a solution if N
ij

= 0, but

it may have none when N 0.
ij

Some special cases

Let us consider reduced problems; the unavailability

constraints can he regarded as preassignments because at each period

the number of unavailable classes is equal to the number of unavailable

teachers
(4)(5)

. So each element is to be involved in n meetings:

some of these meetings are preassigned to fixed periods (corresponding

to the unavailable periods of this element).

Proposition 5
A reduced problem such that one class only (or one

teacher only) has dome preaesigned meetings, is

soluble.

Proof: We consider the bipartite multigraph G associated with that

problem; all edges representing preassigned meetings are adjacent.

Thus any matching H in G contains at most one of these preassigned

edges. So any decomposition of G into n matcnings will give a

timetable.

Note that if G is not connected, the problem still soluble

when at most one class (or one teacher) in each connected component

has some preassigned meetings.
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Now for a problem which is not reduced, let us define two

families of unavailability constraints:

(a) all classes are free at any period, one teacher at most is not

available at any period.

(b) one class exactly, say ci, is unavailable at some periods. The

unavailabilities of teachers are at any period at which ci is

unavailable, one teacher at most is unavailable.

Similar constraints outained by permuting classes and teachers

are considered as equivalent to (a) or (b). Then w'; have the following

result, provided that

a +Ee
ik

for alli and S +Ed <pfor all j
k

Corollary 5.1 A problem II with unavailability constraints

of type (a) or (b) has always a solution.

Proof: In case (a) we introduce a spurious class ci ; if a teacher

is unavailable at period %, we say he has to meet ci at period k.

In case (b) if c
i
and mj are both unavailable at period k, we say

thatcillastomeet111,3 at period k. All these preassigned meetings

are represented by adjacent edges in G for (a) and for (b). G whose

vertices have degrees not greater than n can be decomposed into n

matchings; these matchings represent a timetable.
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Of course the problem has still a solution when we have

constraints (a) or (b) for any connected component of G.

Now let us examine the case where conditions of Hall hold

for all classes and all teachers. This means that for a reduced

problem the preassignments are such that it is possible to construct

separate timetables for all classes and all teachers. The problem

may have no solution; if this happens we can keep fixed all

preassigned meetings of one class c
i

(or of one teacher m ) and

allow the remaining preassigned meetings to be possibly allocated to

some different periods. This is equivalent to consider that we

have preassigned meetings only for one class ci or for one teacher

m5. From prnposition 5 such a problem always has a solution. Thus

we can formulate:

Corollary 5.2 Let P be a reduced problem with a set of preassigned

meetings. Suppose conditions of Hall hold foc all classes and

teachers. Then either P has a solution or it can be transformed into

a soluble problem P' by keeping fixed the preassigned meetings of

any class c
i

(or any teacher ) and possibly modifying the remaining

preassignments.

I
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Flow Method

The method used to conf,t-ict timetables proceeds ay

successive stern; the timetablc will be prepared one period at a

time; each step coAsists of the allocation of meeLings to a determined

period of the week. When we have completed the allocation for the k

first periods we call the allocation of the remaining meetings to

periods k+1, k+2, n the residual problem. We have ..hen to

allocate meetings at period k in such a way that the residual problem

still admits a solution. As any subset H
k

of meetings that can occur

simultaneously is represented by a matching in a bipartite multigraph

for problem I as well as for problem II, we have to solve a flow

problem at each step. To perform this it is convenient to consider

the graph G associated with pro'alem I; we orient any edge joining

c
i
and mj from c

i
to mj and give it an infinite capacity. We

introduce a source S and join it with every ci by an edge (S,ci) of

unit capacity; similarly we introduce a sink T and edges (m.., T) of

unit capacities for all m.. We (all this graph C. Any integer

valued flow in G' from S to T corresponds to a matching in G.

At each step we have to assign priorities to meetings, and

possibly to classes and teachers in order that the residual problem

has a solution. These priorities can be expressed by a cost function

KF associating a cost KF(x,y) with any edge (x,y) in G'. The allocation

of meetings to a certain period is now a minimal cost flow problem.
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For problem I the determination of a cost function KF is

easy because we have necessary and sufficient conditions of solubility.

At any step, we can for example assign colts equal to zero to all

edges (S c ) and ( ,T) associated with c
i
and which are still to1111 mj

be involved in a maximum number of meetings and positive costs to

the remaining edges in G'. After each step we have to delete in G'

the edges (ci,mi) correspondingLto meetings which have just been

allocated; the flow has to be set equal to zero in all remaining

edges before proceeding to the next step.

As we do not know necessary and sufficient conditions for

the solubility of problem II, we can examine different cost functions

corresponding to different priority criteria.

I. Cost function Fl

For any period, we calculate the DF of classes and

teachers:

00 if c
i
is unavailable at that period

KF(S,ci)
tic

i
otherwise

00 if m is unavailable at that period
KF(m ,T)

Mm otherwise

KF(c ) m any positive number.

Priorities are given to teachers and classes having the

smallest DF. F
1
is a generalization of the cost function used in
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problem I. This cost function seems to be adapted to problems with

only few nnavailabilities.

II. Cost function F
2

At any period, we only calculate the DF of combinations.

KF(S,ci) 01

co if c
i
is unavailable at that period

any positive number otherwise

co if m is unavailable at that period
KF(TT) =

any positive number otherwise

KF(c m
j
) = N

ij

We try to allocate first meetings of combinations having the

smallest DF. If there are no or only a few unavailabilities, we can

find examples where F2 fails to construct a solution while F1 does.

Consider the example in Fig. 2; such a problem obviously has a

solution since no vertex is adjacent to more than 3 edges.

At the first step we have:

KF(I,a) - KF(I,b) = KF(I,c) = 2

KF(II,a) = KF(III,b) = KF(IV,c) = 1

With the flow method we get H1 = {(II,a), (II1,b), (IV,c)) .



The residual problem has no solution because class I has still to

be involved in 3 meetings and there are only 2 periods left.

III. Cost function F
3

follows:

The mixed cost function F
3

is defined Eor any period as

lu(s,ci)

KF(m ,T) =

4.311c.is unavailable at that period

Mc
i
otherwise

Go if mj is unavailable at that period

Mmj otherwise

KF(ci,mj)g N
ij

17.

With this cost function giving priority to elements and

meetings having the smallest DF, we try to prevent these DF from

decreasing too rapidly and if we can proceed up to the nth step

with nonnegative DF we get a solution for problem II. If some DF

becomes negative during the procedure, then the residual problem

has no solution. This situation may happen even though problem 11

is soluble because the procedure is not based on necessary and

sufficient conditions for solubility.

Some differences between problem I and problem II are to be

noted now. In problem I, we could determine at each step a maximal

flow (with minimal cost) corresponding to a maximal matching

(i.e. containing a maximum number of edges). In other words we



18.

could allocate as many meetings as possible at any period; the

residual problem remained soluble. But for problem II, it may happen

that the residual problem becomes insoluble if we detemine an

allocation represented by a maximal. flow (with minimal cost).

At a given period we have to allocate exactly one meeting

of every combination ci -mj with N
ij

0 (if c
i
and m are both free);

if we do not, the residual problem certainly has no solution. Hk has

to include a subset of edges corresponding to combinations whose DF

are zero and moreover a subset of edges adjacent to all vertices ci

and mj (free at that period k) with DF equal to zero. An admissible

H
k
will thus sometimes be a non maximal matching; the consequence is

that we cannot always get a timetable with a sequence of maximal

flows. The example in Fig. 3 illustrates this fact. if we use F3

and determine a maximal flow with minimal cost at first step, we

cannot get a solution.

Practically we shall at any period allocate first meetings

of all combinations ci -mj with N
ij

= 0 (if c
i
and mj are free) and

then determine a maximal flow with minimal cost corresponding to

the meetings involving the remaining classes and teachers.
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Application to a Real System

Many other requirements are present in real schoo.s, so that

we still have to modify our model and introduce the related

constraints:

(1) Let B* be a subset of B; the elements of B* are called special

subjects. Meetings involving a subject be in B* have to take place

in a determined room associated with this subject. As the schools

are supposed to include exactly one room for any special subject, two

meetings with the same special subject be may not occur simultaneously.

(2) As previously mentioned, a meeting may involve several teachers,

several classes and several subjects.

(3) It is furthermore necessary that certain subjects are

acceptably spaced throughout the week. So we want no more than one

meeting of any combination to occur in a school day. In some

particular cases, two meetings of the same combination must occur at

consecutive periods. These are called double meetings; for every

combination the number of double meetings is fixed.

We explicitly take these constraints into account as follows.

Before constructing the timetable by the flow method, we allocate

double meetings, meetings involving several teachers and classes, and

meetings including special subjects at different periods without

violating any constraints.
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We eliminate then from J. all meetings already assigned and

consider that elements involved in these preassigned meetings are

unavailable at the corresponding periods.

The remaining problem is now a problem II and we determine a

solution by the flow method (usually with cost function F3).

In practice, more than 5% of meetings are rarely preassigned,

so that this rather arbitrary preassignment does not influence

strongly the construction of a solution. The above outlined method

is still a reliable procedure.

A program has been written in FORTRAN IV (with a few sub-

routines in MAP) for the IBM 7040 of the Centre de Calcul de l'Ecole

Polytechnique Fdderale de Lausanne. We used Input and Output sub-

routines of a program written in Germany (H.G. Genrich (3)
).

A series of experiments was carried out with the program.

Because of the imposed constraints it was not always possible to

avoid failure in constructing the timetables. Generally when n

steps are performed, a small percentage of meetings are left

unassigned. These are advantageously allocated with a minimum of

manual adjustments. Some results are Aurmarized in Table 1.
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TABLE 1

Classes Teachers
Periods

of the Week
No. of

Meetings
Percentage not

Assigned
computation

Time

9 15 36 300 0.3 4 min.

34 64 35 1200 3 30 "

48 84 35 1700 5 50 "
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