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AN APPROACH TO THE PSYCHOLOGY OF INSTRUCTION
1

R. C. Atkinson and J. A. Paulson

Stanford University
Stanford, California 94305

The task of relating the methods and findings of research in the

behavioral sciences to the problems of education is a continuing concern

of both psychologists and educators. A few years ago, when our faith in

the ability of money and science to cure social ills was at its peak, an

educational researcher could content himself with trying to answer the

same questions that were being studied by his psychologist colleagues.

The essential difference was that his studies referred explicitly to

educational settings, whereas those undertaken by psychologists strived

for greater theoretical generality. There was implicit confidence that

as the body of behavioral research grew, applications to education would

occur in the natural course of events. When these applications failed

to materialize, confidence was shaken. Clearly, something essential was

missing from educational research.

A number of factors contributed to the feeling that something was

wrong with business-as-usual. Substantial curriculum changes initiated

on a national scale after the Soviet's launching of Sputnik had to be

carried out with only minimal guidance from behavioral scientists.

Developers of programmed learning and computer-assisted instruction faced

similar problems. Although the literature in learning theory was perhaps

more relevant to their concerns, the questions it treated were still not

the critical ones from the viewpoint of instruction. This situation
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would not have been surprising had the study of learning been in its

infancy. But far from that, the psychology of learning had a long and

impressive history. An extensive body of experimental literature existed,

and many simple learning processes were being described with surprising

precision using mathematical models. Whatever was wrong, it did not

seem to be a lack of scientific sophistication.

These issues were on the minds of those who contributed to the 1964

Yearbook of the National Society for the Study of Education, edited by

Hilgard (1964). In that book Bruner summarized the feelings of many of

the contributors when he called for a theory of instruction, which he

sharply distinguished from a theory of learning. He emphasized that

where the latter is essentially descriptive, the former should be pre-

scriptive, setting forth rules specifying the most effective ways of

achieving knowledge or mastering skills. This distinction served to

highl!ght the difference in the goals of experiments designed to advance

the two kinds of theory. In many instances variations in instructional

procedures affect several psychological variables simultaneously. Ex-

periments that are appropriate for comparing methods of instruction may

be virtually impossible to interpret in terms of learning theory because

of this confounding of variables. The importance of developing a theory

of instruction justifies experimental programs designed to explore

alternative instructional procedures, even if the resulting experiments

are difficult to place in a learning-theoretic framework.

The task of going from a description of the learning process to a

prescription for optimizing learning must be clearly distinguished from

the task of finding the appropriate theoretical description in the first
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place. However, there is a danger that preoccupation with finding pre-

scriptions for instruction may cause us to overlook the critical interplay

between the two enterprises. Recent developments in control theory

(Penman, 1961) and statistical decision theory (Raiffa & Schlaiffer,

1968) provide potentially powerful methods for discovering optimal

decision-making strategteF, in a wide variety of contexts. In order to

use these tools it is necessary to have a reasonable model of the process

to be optimized. As noted earlier, some learning processes can already

be described with the required degree of accuracy. This paper will

examine an approach to the psychology of instruction which is appropriate

when the learning is governed by such a process.

STEPS IN THE DEVELOPMENT OF OPTIMAL INSTRUCTIONAL STRATEGIES

The development of optimal strategies can be broken down into a

number of tasks which involve both descriptive and normative analyses.

One task requires that the instructional problem be stated in a form

amenable to a decision-theoretic analysis. While the detailed formula-

tions of decision problems vary widely from field to field, the same

formal elements can be found in most of them. It will be a useful

starting point to identify these elements in the context of an instruc-

tional situation.

The formal elements of a decision problem which must be specified

are the following:

1) The possible states of nature.

2) The actions that the decision-maker can take to transform the

state of nature.



3) The transformation of the state of nature that results from

each action.

4) The cost of each action.

5) The return resulting from each state of nature.

Statistical aspects occur in a decision problem when uncertainty is

associated with one or more of these elements. For example, the state

of nature may be imperfectly observable or the transformation of the

state of nature which a given action will cause may not be completely

predictable.

In the context of the psychology of instruction, most of these

elements divide naturally into two groups, those having to do with the

description of the underlying learning process and those specifying the

cost-benefit dimensions of the problem. The one element that doesn't

fit is the specification of the set of actions from which the decision-

maker must make his choice. The nature of this element can be indicated

by an example.

Suppose one wants to design a supplemental program of exercises for

an initial reading program. Mo=t reasonable programs of initial reading

instruction include both training in sight word identification and

training in phonics. Let us assume that on the basis of experimentation

two useful exercise formats have been developed, one for training on

sight words, the other for phonics. Given these formats, there are many

ways to design an overall program. A variety of optimization problems

can be generated by fixing some features of the design and leaving the

others to be determined in a thecretically optimal manner. For example,

it may be desirable to determine how the time available for instruction
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should be divided between phonics and sight word recognition, with all

other features of the design fixed. A more complicated question would

be to determine Lhe optimal ordering of the two types of exercises in

addition to the optimal allocation of time. It would be easy to continue

generating different optimization problems in this manner. The point is

that varying the set of actions from which the decision-maker is free to

choose changes the decision problem, even though the other elements

remain the same.

For the decision problems that arise in instruction it is usually

natural to identify the states of nature with learning states of the

student. Specifying the transformation of the states of nature caused

by the actions of the decision-maker is tantamount to constructing a

model of learning for the situation under consideration.

The role of costs and returns is more formal than substantive for

the class of decision problems considered in this paper. The specifica-

tion of costs and returns in instructional situations tends to be

straightforward when examined on a short-time basis, but virtually in-

tractable over the long term. In the short-term one can assign costs

and returns for the mastery of, say, certain basic reading skills, but

sophisticated determinations for the long-term value of these skills to

the individual and society are difficult to make. There is an important

role for detailed e7onomic analysis of the long-term impact of education,

but such studies deal with issues at a more global level than we require.

In this paper analysis is limited to those costs and returns directly

related to the specific instructional task being considered.
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After a problem has been formulated in a way amenable to decision-

theoretic analysis, the next step is to derive the optimal strategy for

the learning model which best describes the situation, If more than one

learning model seems reasonable a priori, then competing candidates for

the optimal strategy can be deduced. When these steps have been accom-

plished, an experiment can be designed to determine which strategy is

best.

There are several possible directions in which to proceed after the

initial comparison of btrategies, depending on the results of the ex-

periment. if none of the supposedly optimal strategies produces

satisfactory results, then further experimental analysis of the assump-

tions of the underlying learning models is indicated. New issues may

arise even if one of the procedures is successful. in one case that we

shall discuss, the successful strategy produced an unusually high error

rate during learning, which is contrary to a widely accepted principle

of programmed instruction. When anomalies such as this occur, they

suggest new lines of experimental inquiry, and often require a reform,

ulation of the axioms of the learning model. The learning model may

have provided an excellent account of data for a range of experimental

conditions, but can prove totally inadequate in an optimization condition

where special features of the procedure magnify inaccuracies of the

model that had previously gone undetected,

AN OPTIMIZATION PROBLEM WHICH ARISES IN COMPUTER-ASSISTED INSTRUCTION

One application of computer-assisted instruction (CAI) which has

proved to be very effective in the primary grades involves a regular

program of practice and review specifically designed to complement the
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efforts of the classroom teacher (Atkinson, 1969). The curriculum

materials in such programs frequently take the form of lists of instruc-

tional units or items. The objective of the CAI programs is to teach

students the correct response to each item in a given list. Typically,

a sublist of items is presented each day in one or more fixed exercise

formats, The optimization problem that arises concerns the selection

of items for presentation on a given day.

The Stanford Reading Project is an example of such a program in

initial reading instruction (Atkinson, Fletcher, Chetin, & Stauffer,

1970). The vocabularies of several of the commonly used basal readers

were compiled into one dictionary and a variety of exercises using

these words was designed to develop reading skills. Separate exercise

formats were designed to strengthen the student's decoding skills with

special emphasis on letter identification, sight-word recognition,

phonics, spelling patterns, and word comprehension. The details of the

teaching procedure vary from one format to another, but most include a

sequence in which an item is presented, eliciting a response from the

student, followed by a short period for studying the correct response.

For example, one exercise in sight-word recognition has the following

format:

Teletype Display Audio Message

NUT MEN RED Type red

Three words are printed on the teletype, followed by an audio presenta-

tion of one of the words. If the student types the correct word, 1-e

receives a reinforcing message and proceeds to the next presentation.
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If he responds incorrectly or exceeds the time, the teletype prints the

correct word simultaneously with its audio presentation and then moves

to the next presentation. Tinder one version of the program, items are

presented in predetermined sublists, with an exercise continuing on a

sublist until a specified criterion has been met.

Strategies can be found that will improve on the fixed order of

presentation. Two recent dissertdUon studies to be described below are

concerned with the development ofsuch strategies. Lorton (1969) studied

alternative presentation strategies for teaching spelling words in an

experiment with elementary school children, and Laubsch (1969) studied

similar strategies for teaching Swahili vocabulary items to Stanford

undergraduates.

The optimization problems in both the Lorton and Laubsch studies

were essentially the same. A list of N items is to be learned, and a

fixed number of days, D, are allocated for its study. On each day a

sublist of items is presented for test and study. The sublist always

involves M items and each item is presented only once for test followed

immediately by a brief study period. The total set of N items is ex-

tremely large with regard to the sublist of M items. Once the experimenter

has specified a sublist for a given day its order of presentation is

random, After the D days of study are completed, a posttest is given

over all items. The parameters N, D and M are fixed, and so is the

instructional format on each day. Within these constraints the problem

is to maximize performance on the posttest by an appropriate selection

of sublists from day to day. The strategy for selecting sublists is
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dynamic (or response sensitive, using the terminology of Groen and

Atkinson, 1966) to the extent that it depends upon the student's history

of performance.

Three Models of the Learning Process

Two extremely sin-pie learning models will be considered first. Then

a third model which combines features of the first two will be described.

In the first model, the state of the learner with respect to each

item is completely determined by the number of times the item has been

presented. In terms of the classification scheme introduced by Groen

and Atkinson (1966), the process is response-insensitive. The state of

the learner is related to his responses as follows: at the start of the

experiment, all items have some initial probability of error, say q1;

each time an item is presented, its error probability is reduced by a

factor a, which is less than one. Stated as an equation, this becomes

(1) q
1-14.1

a qn

or alternatively

(2) = a ql
n+1

The error probability for a given item depends on the number of times

it has been reduced by the factor a; i.e., the number of times it has

been presented. Learning is the gradual reduction in the probability

of error by repeated presentations of items. This model is sometimes

called the linear model because the equation describing change in re-

sponse probability is linear (Bush & Mosteller, 1955).
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In the: second model, mastery of an item is not at all gradual. At

any point in time a student is in one of two states with respect to each

item: the learned state or the unlearned state. If an item in the learned

state is presented, the correct response is always given; if an item is

in the unlearned state, an incorrect response is given unless the student

makes a correct response by guessing. When an unlearned item is pre-

sented, it may move into the learned state with probability c. Stated

as an equation,

( 3 ) q
n+1.

q , with probability 1-o

O , with probability c

Once an item is learned, it remains in the learned state throughout the

course of instruction. Some items are learned the first time they are

presented, others may be presented several times before they are finally

learned. Therefore, the list as a whole is learned grauually. But for

any particular item, the transition from the unlearned to the learned

state occurs on a single trial. The model is sometimes called the all-

or-none model because of this characterization of the possible states

of learning (Atkinson & Crothers, 1964).

The third model to be considered is called the random-trial incre-

ments (RTI) model and represents a compromise between the linear and

all-or-none model (Norman, 1964). For this model

q
n

, with probability 1-c

qn +1

aq
n

, with probability c
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If c = 1, then q
n+1

= aq
n
and the model reduces to the linear model.

If a = 0, then the model reduces to the all-or-none model. However, if

c < 1 and a > 0, the RTI model generates predictions that are quite

distinct from both the linear and the all-or-none models. It should be

noted that both the all-or-none model and the RTI model are response

sensitive in the sense that the learner's particular history of correct

and incorrect responses makes a difference in predicting performance on

the next presentation of an item.

The Cost /Benefit Structure

At the present level of analysis, it will expedite matters if some

assumptions are made to simplify the appraisal of costs and benefits

associated with various strategies. It is tacitly assumed that the

subject matter being taught is sufficiently important to justify allocat-

ing a fixed amount of time to it for instruction. Since the exercise

formats and the time allocated to instruction are the same for all

strategies, it is reasonable to assume that the costs of instruction

are the same for all strategies as well. If the costs of instruction

are equal for all strategies, then for purposes of comparison they may

be ignored and attention focused on the comparative benefits of the

various strategies. This is an important simplification because it

affects the degree of precision necessary in the assessment of costs and

benefits. If both costs and benefits are significantly variable in a

problem, then it is essential that both quantities be estimated accu-

rately. This is often difficult to do. When one of these quantities

can be ignored, it suffices if the other can be assessed accurately

enough to order the possible outcomes. This is usually fairly easy to
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accomplish. In the present problem, for example, it is reasonable to

consider all the vocabulary items equally important. This implies ',,hat

benefits depend only on the overall probability of a correct response,

not on the particular items known. It turns out that this specification

of cost and benefit is sufficient fcr the models to determine optimal

strategies.

The above cost/benefit assumptions permit us to concentrate on the

main concern of this paper, the derivation of the educational implica-

tions of learning models, Also, they are approximately valid in many

instructional contexts. Nevertheless, it must be recognized that in

the majority of cases these assumptions will not be satisfied. For

instance, the assumption that the alternative strategies cost the same

to implement usually does not hold. It only holds as a first approxi-

mation in the case being considered here. In the present formulation

of the problem, a fixed amount of time is allocated for study and the

problem is to maximize learning, subject to this time constraint. An

alternative formulation which is more appropriate in some situations

fixes a minimum criterion level for learning. In this formulation, the

problem is to find a strategy for achieving this criterion level of

performance in the shortest time. As a rule, both costs and benefits

must be weighed in the analysis, and frequently subtopics within a

curriculum vary significantly in their importance. Sometimes there is

a choice among several exercise formats. In certain cases, whether or

not a certain topic should be taught at all is the critical question.

Smallwood (1970) has treated a problem similar to the one considered in
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this paper in a way that includes some of these factors in the structure

of costs and benefits.

Deducing Strategies from the Learning Models

Optimal strategies can be deduced for the linear and all-or-none

models under the assumption that all items have the same learning

parameters. The situation is more complicated in the case of the RTI

model. An approximation to the optimal strategy for the RTI case will

be discussed; the strategy will explicitly allow for differences in

parameter values.

For the linear model, if an item has been presented n times, the

probability of an error on the next presentation of the item is a
n-1

qi;

when the item is presented, the error probability is reduced to °fig]:

1n,
The size of the reduction is thus a kl-a)q

1.
Observe that the size

of the decrement in error probability gets smaller with each presentation

of the item. This observation can be used to deduce that the following

procedure is optimal.

On a given day, form the sublist of M items by selecting

those items that have received the fewest presentations

up to that point. If more than M items satisfy this

criterion, then select items at random from the set

satisfyinG the criterion.

Upon examination, this strategy is seen to be equivalent to the standard

cyclic presentation procedure commonly employed in experiments on verbal

learning. It amounts to presenting all items once, randomly reordering

them, presenting them again and repeating the procedure until the number

of days allocated to instruction have been exhausted.
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According to the all-or-none model, once an item has been learned

there is no further reason to present it. Since all unlearned itens are

equally likely to be learned if presented, it is intuitively reasonable

that the optimal presentation strategy selects the item least likely to

be in the learned state for presentation. In order to discover a good

index of the likelihood of being in the learned state, consider a

student's response protocol for a single item, If the last response was

incorrect, the item was certainly in the unlearned state at that time,

although it may then have been learned during the study period that

immediately followed. If the last response was correct, then it is more

likely that the item is now in the learned state. In general, the more

correct responses there are in the protocol since the last error on the

item, the more likely it is that the item is in the learned state.

The preceding observations provide a heuristic justification for

an algorithm which Karush and Dear (1966) have proved is in fact the

optimal strategy for the all-or-none model. The optimal strategy re-

quires that for each student a bank of counters be set up, one for each

word in the list. To start, M different items are presented each day

until each item has been presented once and a 0 has been entered in its

counter. On all subsequent days the strategy requires that we conform

to the following two rules;

1. Whenever an item is presented, increase its counter by 1 if

the subject's response is correct, but reset it to 0 if the

response is incorrect.
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2. Present the M items whose counters are lowest among all items.

If more than M items are eligible, then select raildomly as many

items as are needed to complete the sublist of size M from

those having the same highest counter reading, having selected

all items with lower counter values.

For example, suppose 6 items are presented each day and after a given

day a certain student has 4 items whose counters are 0, 4 whose counters

are 1, and higher values for the rest of the counters. His study list

would consist of the 4 items whose counters are 0, and 2 items selected

at random from the 4 whose counters are 1.

It has been possible to find relatively simple optimal strategies

for the linear and all-or-none models. It is noteworthy that neither

strategy depends on the values of the parameters of the respective

models (i.e., on a, c, or ql), Another exceptional feature of these

two models is that it is possible to condense a student's response pro-

tocol to one index per item without losing any information relevant to

presentation decisions. Such condensations of response protocols are

referred to as sufficient histories (Groen & Atkinson, 1966), Roughly

speaking, an index summarizing the information in a student's response

protocol is a sufficient history if any additional information from the

protocol would be redundant in the determination of the student's state

of learning. The concept is analogous to a sufficient statistic. If

one takes a sample of observations from a population with an underlying

normal distribution and wishes to estimate the population mean, the

sample mean is a sufficient statistic. Other statistics that can be

calculated (such as the median, the range, and the standard deviation)
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cannot be used to improve on the sample mean as an estimate of the

population mean, though they may be useful in assessing the precision

of the estimate. In statistics, whether or not data can be summarized

by a few simple sufficient statistics is determined by the nature of the

underlying distribution. For educational applications, whether or not

a given instructional process can be adequately monitored by a simple

sufficient history is determined by the model representing the under-

lying learning process.

The random-trial increments model appears to be an example of a

process for which the information in the subject's response protocol

cannot be condensed into a simple sufficient history. It is also a

model for which the optimal strategy depends on the values of the model

parameters. Consequently, it is not possible to state a simple algorithm

for the optimal presentation strategy for this model. Suffice it to say

that there is an easily computable formula for determining which item

has the best expected immediate gain, if presented. The strategy that

presents this item should be a reasonable approximation to the optimal

strategy. More will be said later regarding the problem of parameter

estimation and some of its ramifications.

If the three models under consideration are to be ranked on the

basis of their ability to account for data from laboratory experiments

employing the standard presentation procedure, the order of preference

is clear. The all-or-none model provides a better account of the data

than the linear model, and the random-trial increments model is better

than either of them (Atkinson & Crothers, 1964). This does not neces-

sarily imply, however, that the optimization strategies derived from

16
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these models will receive the same ranking. The standard cyclic presen-

tation procedure used in most learning experiments may mask certain

deficiencies in the all-or-none or RTI models which would manifest tnem-

selves when the optimal presentation strategy specified by one or the

other of these models was employed.
2

AN EVALUATION OF THE ALL-OR-NONE STRATEGY

Lorton (1969) compared the all-or-none strategy with the standard

procedure in an experiment in computer-assisted spelling instruction

with elementary school children. The former strategy is optimal if the

learning process is indeed all-or-none, whereas the latter is optimal

if the process is linear. The experiment was one phase of the Stanford

Reading Project using computer facilities at Stanford University linked

via telephone lines to student terminals in the schools.

Individual lists of 48 words were compiled in an extensive pretest

program to guarantee that each student would be studying words of ap-

proximately equal difficulty which he did not already know how to spell.

A within-subjects design was used in an effort to make the comparison

of strategies as sensitive as possible. Each student's individualized

list of 48 words was used to form two comparable lists of 24 words, one

to be taught using the all-or-none strategy and the other using the

standard procedure.

Each day a student was given training on 16 words, 8 from the list

for standard presentation and 8 from the list for presentation according

to the all-or-none strategy. There were 24 training sessions followed

by three days for testing all the words; approximately two weeks later

three more days were spent on a delayed retention test. Using this
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procedure, all words in the standard presentation list received exactly

one presentation in successive 3-day blocks during training. Words in

the list presented according to the all-or-none algorithm received from

0 to 3 presentations in successive 3-day blocks during training, with

one presentation being the average. A flow chart of the daily routine

is given in Figure 1. Special features of the lesson implementation

program allowed students to correct typing errors or request repetition

of audio messages before a response was evaluated. These features re-

duced the likelihood of missing a word because of momentary inattention

or typing errors.

The results of the experiment are summarized in Figure 2. The

proportions of correct responses are plotted for successive 3-day blocks

during training, followed by the first overall test and then the two-

week delayed test. Note that during training the proportion correct is

always lower for the all-or-none procedure than for the standard pro-

c'edure, but on both the final test and the retention test the proportion

correct is greater for the all-or-none strategy. Analysis of variance

tests verified that these results are statistically significant. The

advantage of approximately ten percentage points on the posttests for

the all-or-none procedure is of practical significance as well.

The observed pattern of results is exactly what would be predicted

if the all-or-none model does indeed describe the learning process. As

was shown earlier, final test performance should be better when the

all-or-none optimization strategy is adopted as opposed to the standard

procedure, Also the greater proportion of error for this strategy during

training is to be expected. The all-or-none strategy presents the items
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Figure 1. Daily list presentation routine.
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Figure 2. Probability of correct response in Lorton's experiment.
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least likely to be in the learned state, so it is natural that more

errors would be made during training. Thus, according to the all-or-none

model the most rapid learning results from a routine which, in a sense,

maximizes the student's failures during training. This apparent anomaly

will be considered later.

A TEST OF A PARAMETER-DEPENDENT STRATEGY

As noted earlier, the strategy derived for the all-or-none model in

the case of homogeneous items does not depend on the actual values of the

model parameters. In many situations either the assumptions of the all-

or-none model or the assumption of homogeneous items or both are seriously

violated, so it is necessary to consider strategies based on other models.

Laubsch (1969) considered the optimization problem for cases where the

RTI model is appropriate. He made what is perhaps a more significant

departure from the assumptions of the all-or-none strategy by allowing

the parameters of the model to vary with students and items.

It is not difficult to derive an approximation to the optimal

strategy for the RTI model that can accommodate student and item dif-

ferences in parameter values, if these parameters are known. Since

parameter values must be specified in order to make the necessary cal-

culations to determine the optimal study list, it makes little difference

whether these numbers are fixed or vary with students and items. However,

making estimates of these parameter values in the heterogeneous case

presents some difficulties.

When the parameters of a model are homogeneous, it is possible to

pool data from different subjects and items to obtain precise estimates.

Estimates based on a sample of students and items can be used to predict
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the performance of other students or the same students on other items.

When the parameters are heterogeneous, these advantages no longer exist

unless variations in the parameter values take some known form. For this

reason it is necessary to formulate a model stating the composition of

each parameter in terms of a subject and item component. The model sug-

gested here is a simplification of the procedure Laubsch employed.

Let Tc..
ij

be a generic symbol for a parameter characterizing student

i and item j. An example of the kind of relationship desired is a fixed-

effects subjects-by-items analysis of variance model:

(5) E(g..ij ) m .* a. d.

where m is the mean, a. is the ability of student i, and d. is the

difficulty of item j. Because the learning model parameters we are

interested in are probabilities, the above assumption of additivity is

not met; that is, there is no guarantee that Eq0 5 would yield estimates

bounded between 0 and 1. But there is a transformation of the parameter

that circumvents this difficulty. In the present context, this trans-

formation has an interesting intuitive justification.

Insteadofthinkingdirectlyintermsoftheparameterlt..ij ,it is

helpful to think in terms the "odds ratio," Allow two

assumptions: (1) the odds ratio is proportional to student ability;

(2) the odds ratio is inversely proportional to item difficulty. This

can be expressed algebraically as

(6)
a.

ij 1
1-n d

ij
.
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where K is a proportionality constant. Taking logarithms on both sides

yields

(7)

nu
log

1
- logfc+loga.-log d. .

The logarithm of the odds ratio is usually referred to as the "logit."

Let log K = 4, log a. = A., and -log d. = D.. Then Eq. 7 becomes
J J

(8) logit
ij

= µ + A. + D. .

j

Thus, the two assumptions made above lead to an additive model for the

values of the parameters transformed by the logit function. Equation 8,

bydefiningasubject-itemparameter3Ti.in terms of a subject parameter

A.applyingtoallitemsandanitemparameterThapplying to all subjects,

significantly reduces the number of parameters to be estimated. If there

are N items and S subjects, then the model requires only N+S parameters

to specify the learning parameters for NXS subject-items. More impor-

tantly, it makes it possible to predict a student's performance on items

he has not been exposed to from the performance of other students on

them. This formulation of learning parameters is essentially the same

as the treatment of an analogous problem in item analysis given by Rasch

(1966). Discussion of this and related models for problems in mental

test theory is given by Birnbaum (1968).

Given data from an experiment, Eq. 8 can be used to obtain reason-

able parameter estimates, even though the parameters vary with students

and items. The parameters rcii are first estimated for each student-item

protocol, yielding a set of initial estimates. Next the logistic trans-

formation is applied to these initial estimates, and then using these
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valuessubjectanditameffects(AandD.)are estimated by standard

analysis of variance procedures. The estimates of student and item

effects are used to adjust the estimate of each transformed student-item

parameter, which in turn is transformed back to obtain the final estimate

of the original student-item parameter.

The first students in an instructional program which employs a

parameter-dependent optimization scheme like the one outlined above do

not benefit maximally from the program's sensitivity to individual dif-

ferences in students and items; the reason is that the initial parameter

estimates must be based on the data from these students. As more and

morestudentscompletetheprogram,estimatesoftheD.'s become more

precise until finally they may be regarded as known constants of the

system. When this point has been reached, the only task remaining is

to estimate A. for each new student entering the program. Since the

ts are known, the estimates of A
ij

for a new student are of the rightDi

order, although they may be systematically high or low until the student

component can be accurately assessed.

Parameter-dependent optimization programs with the adaptive charac-

ter just described are potentially of great importance in long-term

instructional programs. Of interest here is the RTI model, but the

method, of decomposing parameters into student and item components would

apply to other models as well. We turn now to Laubsch's experimental

test of the adaptive optimization program based on the RTI model. In

this case both parameters a and c of the RTI model were separated into

item and subject components following the logic of Eq. 8. That is, the

parameters for subject i working on item j were defined as follows:
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(9)

logit a.. = (a) + A(a) + D(CO
1

logit c. .
(c)

+ A. + Dec) .

(Note that A.(CO c)and A. are measures of the ability of subject i and
1 1

hold for all items, whereas D (.a) and D
cc)

are measures of the difficulty

of item j and hold for all subject:.

The instructional prugran was designed to teach 420 Swahili vocab-

ulary items to undergraduate students at Stanford University. Three

presentation strategies were employed: (1) the standard cyclic procedure,

(2) the all-or-none procedure, and (3) the adaptive optimization pro-

cedure based on the RTI model. As in the Lorton study, a within-subjects

design was employed in order to provide a sensitive comparison of the

strategies. The procedural details were essentially the same as in

Lorton's experiment, except for the fact that 14 training sessions were

involved, each lasting for approximately one hour. A Swahili word would

be presented and a response set of five English words would appear on

the teletype. The student's task was to type the number of the correct

alternative. Reinforcement consisted of a "+" or "-" and a printout of

the correct Swahili-English pair.

The lesson optimization program for the RTI model was more complex

than those described earlier. Each night the response data for that day

was entered into the system and used to update estimates of the a's and

c's; in this case an exact record of the complete presentation sequence

and response histor5, had to be preserved. A computer-based search

algorithm was used to estimate parameters and thus the more accurate
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the previous day's estimates, the more rapid was the search for the up-

dated parameter values. Once updated estimates had been obtainec, they

were entered into the optimization program to select individual item

sublists for each student to be run the next day. Early in the experiment

(before estimates of the D(a) 's and D(c)'s had stabilized) the computa-

tion time was fairly lengthy, but it rapidly decreased as more data

accumulated and the system homed in on precise estimates of item difficulty.

The results of the experiment favored the paramete-dependent strat-

egy for both a final test administered immediately after the termination

of instruction and for a delayed retention test presented several weeks

later, Stated otherwise, the parameter-dependent strategy of the RTI

model was more sensitive than the all-or-none or linear strategies in

identifying and presenting those items that would benefit most from

additional training, Another feature of the experiment was that students

were ran in successive groups, each starting about one week after the

prior group, As the theory would predict, the overall gains produced

by the parameter-dependent strategy increased from one group to the next.

The reason is that early in the experiment estimates of item difficulty

were crude, but improve with each successive wave of students. Near the

end of the experiment estimates of item. difficulty were quite exact, and

the only task that remained when a new student came on the system was to

estimate his A(a) and A
(c)

values,

IMPLICATIONS FOR FURTHER RESEARCH

The studies of both Laubsch and Lorton illustrate one approach that

can contribute to the development of a theory of instruction. This is
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not to suggest that the strategies they tested represent a complete

solution to the problem of optimal item selection. The mode_s upon which

these strategies are based ignore several potentially important factors,

such as short-term memory effects, inter-item relationships, and motiva-

tion. Undoubtedly, strategies based on learning models that take some of

these variables into account would be superior to those analyzed so far.

The studies described here avoided many difficulties associated

with short-term retention effects by presenting items for test and study

at most once per day. But in many situations it is desirable to employ

procedures in which items can be presented more than once per day. If

such procedures are employed, experiments by Greeno (1964), Fishman,

Keller, and Atkinson (1968), and others indicate that the optimal

strategy will have to take short-term memory effects into account. The

results reported by these investigators can be accounted for by a more

general model similar in many respects to the all-or-none and RTI model

(Atkinson & Shiffrin, 1968). The difference is that the more general

model has two learned states: a long-term memory state and a short-term

state, An item in the long-term state remains there for a relatively

indefinite period of time, but an item in the short-term state will be

forgotten with a probability that depends on the interval between suc-

cessive presentations. When items receive repeated presentations in

short intervals of time, they may be responded to correctly several times

in a row because they are in the short-term state. A strategy (like

the one based on the all-or-none model) which did not take this possi-

bility into account would regard these items as well learned and tend
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not to present them again, when in fact they would have a high probability

of being forgotten.

In many situations some of the items to be presented are interrelated

in an obvious way; a realistic model of the learning process would have

to reflect these organizational factors. It is likely that the differ-

ence between the standard procedure and the best possible procedure is

very large in these instances so there is considerable reason to study

them, Unfortunately, as yet very little work has been done in formula-

tina mathematical models for such interrelationships, but there are

several obvious directions to pursue,

The results of an experiment reported. by Hartley (1968) illustrate

the complexity of empirical relationships in this area. The study in.-

volved the Stanford CAI Projet in initial reading and was designed to

investigate two types of list organization: minimal versus maximal con-

trast, combined with three sources of cue; the word itself, the word

plus a picture, and the word. plus a sentence context cue. Hartley was

interested in the relative merit of these conditions for the acquisition

of an initial sight-word vocabulary. Fries (1962) had advocated the use

of minimal contrast lists in reading instruction in order to exploit

linguistic regularities, On the other hand, Rothkopf (1958) found that

lists composed of dissimilar items were learned more rapidly than those

with small or minimal differences. Hartley's experiment indicated that

which list organization is best depends on the cue source. When the

word itself was the only cue, performance was best on minimal contrast

lists. When the word was augmented with a picture cue, there was little

difference in performance on the two kinds of list. But in the presence

of a context cue, performance was best on the maximal contrast lists.
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In the description of Lorton's experiment we mentioned that the

all-or-none strategy produced a higher error rate during learning than

the standard procedure. If some observations made by Suppes (1967) are

correct, this fact suggests that a better strategy could be devised.

Suppes argues that in long-term instructional programs it is crucial to

balance considerations of frustration due to material that is too dif-

ficult against boredom for material that is too easy. He conjectures

that there is an optimal error rate, which if deviated from adversely

affects learning. This conjecture poses two inte'esting problems: first,

to determine the range and degree to which it is correct; second, to

formulate a model of the learning process that takes account of error

rates. The resulting optimization scheme would need to estimate the

optimum error rate for each student and these estimates in turn would be

inputs to the decision-theoretic problem. The view that there is an

optimal error rate is held by many psychologists and educators, so in-

formation about this question would be of some significance.

The directions for research which have been discussed here point to

the need for considerable theoretical and experimental groundwork to

serve as a basis for devising instructional strategies. There are funda-

mental issues in learning theory that need to be explored and intuitively

reasonable strategies of instruction to be tried out. It seems likely

that new proposals for optimal procedures will involve parameter-dependent

strategies. If this is the case, then provision for variations in

parameter values due to differences among students and curriculum mate-

rials will be an important consideration. The approach described in the

discussion of Laubsch's study could well be applicable to these problems.
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CONCLUDING REMARKS

This paper has presented examples of the kind of study we believe

can contribute to the psychology of instruction, as distinguished from

the psychology of learning. Such studies have both descriptive and pre-

scriptive aspects. Each aspect in turn has an empirical and a theoretical

component. The examples described involved the derivation of optimal

presentation strategies for fairly simple learning models and the com-

parison of these strategies in CAI experiments, In both studies the

optimal strategy produced significantly better results on criterion

tests than a standard cyclic procedure. Evaluation of these experiments

suggests a number of ways in which the strategies might be improved,

and generalized to a broader range of problems.

The task and learning models considered in this paper are extremely

simple and of restricted generality; nevertheless, there are at least

two reasons for studying them. First, this type of task occurs in many

different fields of instruction and should be understood in its own

right. No matter what the pedagogical orientation, it is hard to con-

ceive of an initial reading program or foreign-language course that does

not involve some form of list learning activity. Although this type of

task has frequently been misused in the design of curricula, its use is

so widespread that optimal procedures need to be specified.

There is a second and equally important reason for the type of

analysis reported here. By making a study of one case that can be

pursued in detail, it is possible to develop prototypical procedures

for analyzing more complex optimization problems. At present, analyses

comparable to those reported here cannot be made for many problems of
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central interest to education, but by having examples of the above sort

it is possible to list with more clarity the steps involved devising

optimal procedures. Three aspects need to be emphasized: (1) t1 devel-

opment of an adequate description of the learning process, (2) the

assessment of costs and benefits associated with possible instructional

actions and states of learning, and (3) the derivation of optimal strat-

egies based on the goals set for the student. The examples considered

here deal with each of these factors and point out the issues that arise.

It has become fashionable in recent years to chide learning theory

for ignoring the prescriptive aspects of instruction, and some have even

argued that efforts devoted to the laboratory analysis of learning

should be redirected to the study of complex phenomena as they occur in

instructional situations. These criticisms are not entirely unjustified

for in practice psychologists have too narrowly defined the field of

learning, but to focus all effort on the study of complex instructional

tasks would be a mistake. Some initial successes might be achieved,

but in the long run understanding complex learning situations must depend

upon a detailed analysis of the elementary perceptual and cognitive pro-

cesses from which the information handling system of each human being is

constructed. The trend to press for relevance of learning theory is

healthy, but if the surge in this direction goes too far, we will end

up with a massive set of prescriptive rules but no theory to integrate

them. Information processing models of memory and thought and the work

on psycholinguistics are promising avenues of research on the learning

process, and the pr,spects are good that they will provide useful

theoretical ideas for interpreting the complex phenomena of instruction.
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It needs to be emphasized, however, that the interpretation of com-

plex phenomena is problematical, even in the best of circumstances.

Consider, for example, the case of hydrodynamics, one of the most highly

developed branches of theoretical physics. Differential equations ex-

pressing certain basic hydrodynamic relationships were formulated by

Euler in the eighteenth century. Special cases of these equations

sufficed to account for a wide variety of experimental data. These

successes prompted Lagrange to assert that the success would be univer-

sal were it not for t:ie diffi.Tilty in integrating Euler's equations in

particular cases. Lagrange s view is still widely held by mEny, in

spite of numerous experiments yielding anamolous results. Euler's

equations have been integrated in many cases, and the results were

found to disagree dramatically with observation, thus contradicting

Lagrange's assertion. The problems involve more than mere fine points,

and raise serious paradoxes when extrapolations are made from results

obtained in wind tunnels and. from models of harbors and rivers te actual

conditions. The folowing quotation from Birkhoff (1960) should strike

a sympathetic cord among those trying to relate psychology and education:

"These paradoxes have been the subject of many witticisms. Thus, it has

recently been said that in the nineteenth century, fluid dynamicists

were divided into hydraulic engineers who observed what could not be

explained, and mathematicians who explained things that could not be

observed. It is my impression that many survivors of both species are

still with us."

Research on learning appears to be in a similar state. Educational

researchers are concerned with experiments that cannot be readily
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interpreted in terms of learning theory, while psychologists continue to

develop theories that seem to be applicable only to the phenomena ob-

served in their laboratories. Hopefully, work of the sort described

here will bridge this gap and help lay the foundations for a viable

theory of instruction. If the necessary level of interchange between

workers in different disciplines can be developed, the prospects fcr

advancing both psychology and education are good.
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FOOTNOTES

An early version of this paper was presented by the first author as an

invited address at the Western Psychological Association Meetings, 1969.

The second part of the paper was presented at a seminar on "The Use

of Computers in Education" organized by the Japanese Ministry of Educa-

tion in collaboration with the Organization for Economic Cooperation

and Development in Tokyo, July 1970. Support for this research was

sponsored by the National Science Foundation, Grant No. NSF-GJ-443X.

This type of result was obtained by Dear, Silberman, Estavan, and

Atkinson (1967). They used the all-or-none model to generate optimal

presentation schedules where there were no constraints on the number

of times a given item could be presented for test and study within an

instructional period. Under these conditions the model generates an

optimal strategy that has a high probability of repeating the same

item over and over again until a correct response occurs. In their

experiment the all-or-none strategy proved quite unsatisfactory when

compared with the standard presentation schedule. The problem was

that the all-or-none model provides an accurate account of learning

when the items are well spaced, but fails badly under highly massed

conditions. Laboratory experiments prior to the Dear et al study had

not employed a massing procedure, and this particular deficiency of

the all-or-none model had not been made apparent. The important remark

here is that the analysis of instructional problems can provide im-

portant information in the development of learning models. In certain

cases the set of phenomena that the psychologist deals with may be

such that it fails to uncover that particular task which would cause

the model to fail. By analyzing optimal learning conditions we are

imposing a somewhat different test on a learning model, which may

provide a more sensitive measure of its adequacy.
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