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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi-level" --- that is, etch monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been Ixtensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. :finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructioncl Materials
Commission on College Physics



HEAT AND MOTION

PREFACE

The title of this monograph, "Heat and
Motion", immediately brings to mind the
twin concepts: heat, connected with the
random motion of particles that consti-
tute matter; temperature, as a measure
of the intensity of that motion. These
ideas are certainly far from novel, but
the approach to them in this monograph
is somewhat unconventional, so a pro-
spective reader might find it useful to
contrast the usual treatments with that
adopted here.

The most natural approach to these
ideas might seem to be through atomic
theory, but this turns out to be diffi-
cult at the elementary level. A cumber-
some and sophisticated statistical ap-
paratus is needed before even the sim-
plest results can be proved rigorously.
For this reason, and also because it is
possible to derive a great many useful
results while completely ignoring the
atomic constitution of matter, it was
the cust3m fo. a long time to present
a topic called "Heat" at the elementary
level. The relation of heat and tem-
perature to molecular motion might be
mentioned, but that relation was not at
the focus of attention. That position
was reserved for careful discussions of
temperature scales, calorimetry, and
such matters. The "Laws of Thermodynam-
ics" were stated and dtrived in purely
macroscopic terms. Since the atomic
constitution of matter was largely ig-
nored, the subject was pretty much di-
vorced from the mainstream of Physics.
As the undergraduate curriculum became
crowded with other subjects that were
regarded as more important, less room
was left for what appeared to be peri-
pheral and specialist concentration,
and this kind of course became less
popular.

Recently, much effort has bean di-
rected towards introducting quant!A

mechanics at an early stage of the col-
lege physics curriculum, but successful
methods for doing this have so far been
rather elusive. These attempts have
compounded the problem of discussing
thermal effects starting from the mole-
cular level. since they add another
hurdle to tie statistical one mentioned
above. In the absence of rigorous
methods suitable for elementary discus-
sions, the connection of heat and tem-
perature with molecular motion has been
presented as a sort of intuitive pre-
mise. But while intuition may serve as
a reliable guide for macroscopic motion
(although it may fail here, as anyone
knows who has tried to discuss a gyro-
scope intuitively) it can fail complete-
ly when applied at the quantum level.
At that level, in fact, it is necessar-
ily misleading, since atoms and mole-
cules are not Lilliputian versions of
billiard balls. The source of much of
the difficulty of presenting quantum
mechanics at an elementary level is
precisely the unjustified expectation
that an electron, for instance, should
behave like a Newtonian particle. And
one of the grounds of this expectation,
in the mind of a beginning student, is
just the uncritical application of clas-
sical kinetic ideas to the motion of
atomic systems, to which he may have
been exposed in an attempt to relate
the behavior of such systems to the
thermal properties of macroscopic ob-
jects.

This monograph adopts an approach
which attempts to bypass these diffi-
culties by postponing the connection
between atomic behavior and thermal
properties, but by no means ignoring
it. It relies at the start on intuition
about heat at the macroscopic level.
Familiarity with the particle model of
mechanics, which is assumed from an



earlier course, is used to develop an
understanding of temperature and hest
in macroscopic terms. It then relates
these ideas to behavior of the internal
degrees of freedom in macroscopic ob-
jects, and shows that these degrees of
freedom behave differently from what
would be expected if they simply mim-
icked large-scale motion. In this way,
contact is made with discussion of
quantum mechanics elsewhere.

One of the major threads in the
discussion here is the contrast between
the behavior of thermal systems, which
move spontaneously towards the uniform-
ity of equilibrium, and the ideal re-
versible behavior of classical particles.
Besides providing a natural introduc-
tion to the investigation of the intern-
al degrees of freedom, this theme serves
as a link between classical and quantum
behavior.

The argument is carried as far as
possible, without becoming involved in
detailed quantitative calculations. It
assumes familiarity with simple differ-
entiation and integration, in addition
to a first course in elementary physics.
Some of the mathematical details, and
some topics which require treatment in
greater detail that those in the text
proper, are presented in Appendices.

The development sketched above can
obviously be carried far beyond the
point reached in this monograph. As it
stands, it can be used as an introduc-
tion to a course which surveys thermo-

dynamics and statistical mechanics. But
it might also find a place in a less
conventional course, one which sought
to trace the development of quantum
mechanics from classical ideas. It pro-
vides an example of the motivation of
that development which is not as com-
monly stressed as others which are less
directly related to "classical" macro-
scopic experiments.

A recent discussion of the differ-
ent ways in which various theories in
physics have developed included the
following comment:

"Two poles...are found: one
attracts the minds that
thirst for an explanation of
the world; the other aggregate
(attracts) those who look
for order in the world, no
matter what that order may
mean. Thermodynamics was
built by the second tribe,
atomic theory by the first."

Granting this to be an accurate de-
scription of the historical origins
of these two disciplines, it is never-
theless possible to believe that they
no longer need be regarded as polar op-
posites, and this monograph is written
with that conviction.

The apparatus in Fig. 6.1 was con-
structed by Professor H. Daw, who
kindly proviled the photograph, and
also Figs. 6.2 and 6.3.
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1 MODEL-BUILDING IN PHYSICS

In studying heat and temperature we
are dealing with ideas which are so
deeply imbedded in common experience
that we should expect them to pervade
all of physics. But strangely, the
student of mechanics hears hardly any
mention of heat or temperature, yet
mechanics is supposed to be the basic
subject in physics. He likewise finds
heat and temperature missing in his
study of electricity, of magnetism, of
optics. Let us try to see how this pe-
culiar situation comes about. This ef-
fort will illuminate the interconnec-
tions among all of these subjects. It
will also confirm the original expec-
tation that heat and temperature are
deeply involved in all natural phenom-
ena, and help us to understand how
this involvement is best expressed in
precise physical terms.

Our puzzle is related to a ques-
tion once posed to Albert Einstein. He
was reminded that the Chinese had de-
veloped the compass, gunpowder, and
printing by the fifteenth century and
so were at that time far more advanced
in science than Europe. Yet the Chinese
proceeded very little further, while
western civilization since the fif-
teenth century has been characterized
by an enormous increase in the ability
to understand and control nature. Why,
Einstein was asked, did the Chinese
fail to advance while the West, once
so far behind, outstripped then?

Many answers to this question
have been suggested, based on supposed
differences in the basic outlook un
life in the East as compared to the
West. But Einstein's answer was sim-
pler: it was that the failure of the
Chinese was not surprising - the won-
der was that progress was made any-
where, considering the complexity of
natural phenomena.

In Europe, it happened that tech-
niques of investigation were developed
which facilitated this progress. This
development, as we look back on it,

1

was not due to a conscious analysis of
what we now call the "scientific meth-
od." Some direct efforts of this kind
were made, but they seem now to have
been mostly sterile. Rather, progress
was the result of trial and error; the
"breakthrough," as newspapers would
call it nowadays, was largely a :Patter
of chance.

The techniques for investigating
nature which turn out to be successful
are based on a curious fact: It is
profitable to approach the understand-
ing of natural phenomena in what ap-
pears to be an indirect manner. Instead
of trying to describe all aspects of a
complicated phenomenon together, a
simplified version is invented by iso-
lating those factors which are of spe-
cial importance to the particular prob-
lem under consideration. In this proc-
ess of selection it is often convenient
to consider the behavior of an invented
abstract model rather than that of the
real physical object involved in the
phenomenon. The model can then be given
such properties, and can be required
to obey such physical laws, as result
in behavior which reproduces the im-
portant aspects of the actual phenom-
enon. The criterion of "importance,"
of course, is decided in terms of each
particular problem that is being in-
vestigated. The model and its proper-
ties, together with the physical laws,
make up a theory of the phenn'ienon
which can be tested by comparing its
predictions with the actual observed
behavior.'

iSometises the whole collection of concepts -
abstract model (of the physical object), its
properties and the physical laws are referred to
collectively as a "model of the phenomenon."
this can be confusing, and the confusion can be
compounded by the use of the word "model" In
still a different sense. Tor instance, a number
of small balls connected by rods to a vertical
shaft, so that when a crank is turned they rotate
with appropriate speeds abc-t a larger ball, is
called a model of th, solar system. this is
clearly not the sense is which the word node)

was introduced above.



2 HEAT AND MOTION

The whole roundabout procedure is
somewhat similar to the behavior of a
man who searches under a street lamp
for the keys he lost, not because he
dropped them there, but because there
is no light elsewhere. The remarkable
circumstance in the analogous enter-
prise of model-building is that it
works: very often, the keys are found.

Unfortunately, however, there is no
magic formula for model-building. Its
success depends on repeated attempts
to isolate the significant factors or,
to put it another way, to fiad the
model appropriate to a particular
problem. Every success is preceded by
innumerable false starts which are
found to lead up blind alleys.



2 THE PARTICLE MODEL FOR MOTION

2.1 AN EXAMPLE OF MODEL-BUILDING.

The development of understanding
of motion of inanimate objects is a
good example of the fitful way in
which progress is made. The Greeks de-
voted much philosophical speculation
to this problem but it was not until
more than a millenium later, before
the kind of attack described above be-
gan to be employed. The so-called Dark
Ages were actually a period of intense
activity on the problem of motion, and
during this time concepts such as iner-
tia and impulse were developed. These
turned out to be fundamentally impor-
tant in the model that was ultimately
successful, so that Newton was not
simply being modest when, centuries
later, he attributed his seeing fur-
ther than others to his standing on
the shoulders of giants.

These efforts to understand mo-
tion culminated, in the hands of Gali-
leo and Newton, in what is often called
the "Newtonian model" of mechanics,
which incorporates the classical laws
of kinematics and dynamics. This model
has withstood the test of time in the
restricted range of application from
which it was developed (macroscopic ob-
jects moving with speeds up to the or-
der of those observed in the solar sys-
tem).

Yet as we know, it contains no
mention of heat or temperature. This
omission is an example of one of the
inherent limitations of model-building.
Now it should come as no surprise to
find that model-building is not a per-
fect instrument. The defect we have
just discovered is one of several which
must he understood if this technique is
to be used properly. We will first ex-
amine some of the other defects of
model-building. Then we will return to
a discussion of the Newtonian model,
which describes motion adequately (we
will refer to its area of competence

3

as "mechanical behavior"), and will
see how it can be enlarged to incor-
porate the pervasive influence of heat
and temperature on what we will call
"thermal benavior."

The first of the other limitations
of model-building that we consider is
rather subtle, and was overlooked for
a long time. It arises from the fact
that a given model is usually based on
a limited range of observation. Out-
side this range the model may fail to
describe what is observed. For in-
stance, Newtonian mechanics breaks
down for very high particle speeds,
that is, speeds approaching that of
light. A new model (in this case, Ein-
stein's special theory of relativity),
must be devised to describe motions
and interactions in the extreme range
of speeds. But now, the existence of a
satisfactory prior model imposes a con-
dition on the new one. The new model
must be compatible with the old in the
original range of observation. That is,
the predictions of the special theory
of relativity must depend on speed, v,
in such a way that as v approaches
zero these predictions become indis-
tinguisbq.ble from those of the Newton-

ian mode .

Even within their appropriate
range, models often have a limitation
of another sort. We may say that we
understand a phenomenon "in principle"
when we know the laws obeyed by the
model we have set up, and have satis-
fied ourselves that the model "works."
We become convinced that it works as
we find that calculations based on the
model agree with observation, and also
find that we never are faced with any
discrepancies. But usually, even if
the laws obeyed by the model seem to
have a simple mathematical form, we
find that we can perform the calcula-
tions only in a few veY simple situa-
tions. Even cases which are only
slightly more complex than the sim-
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plest may lead to formidable mathemat- lite engineer, are not relevant when

ical difficulties. Indeed, we may dis- we ask, "Do we understand motions in

cover that, in general, actual solu- the solar system?" The answer to this

tions are very hard to obtain, or even question is an almost unqualified

impossible. In other words, the keys "yes." The most important qualifica-

we find beneath the lamppost may not tion is that the Newtonian theory is

be the ones we are looking for, not adequate for motions under very

The Newtonian model again pre- strong gravitational forces. As a re-

sents a good example of this situation. sult, the motion of Mercury, the planet

When it is applied to the motion of ob- nearest the sun, cannot be calculated
jects which exert mutual attractive correctly using the Newtonian model.

forces, it turns out that an explicit This is another example of the "range
solution can be found only for the of observation" limitation discussed
simplest case, namely two particles. above. The extension required here is
For three or more particles, solutions the General Theory of Relativity,
can only be found for Special configu- first proposed by Einstein, and still
rations. In general, methods involving a subject for active research.
highly complex mathematics must be used We can now return to our original
even to find approximate solutions for question, which was to explain the ab-
more than two particles. sence of the concepts of heat and tem-

Fortunately, the solar system is perature from the overwhelmingly FIX-
a case in which solutions, accurate to cessful Newtonian model for mccha .Js.
any desired degree of accuracy, may be Our answer at this stage might be
found by successive approximations, summed up by the realization that this
Such calculations lead to the highly omission is no accident, but is rather
successful picture we now possess of an example of an inherent limitation of
the planets and their moons moving in the model-building technique, as ap-
orbits determined by laws that are the plied to the description of motion.
same as those which determine terres-
trial motion. But even here a practi-
cal difficulty enters. Over a century
ago, Adams and Leverrier, working inde-
pendently, each spent several years
calculating the orbit of Uranus. From
the departure of their calculations
from the observed orbit, when only the
influences of the known planets were
used, they were led to predict the ex-
istence of a new planet beyond Uranus,
and the existence of this new planet,
later named Neptune, was soon con-
firmed. Such calculations must be car-
ried out nowadays for the orbits of
artificial satellites, but if we are
interested in a rendezvous between two
satellites the results are needed in
minutes, not years. Therefore, even
though the laws of mechanics have been
known for three hundred years, such a
rendezvous between two satellites be-
comes a feasible project only when
high-speed computers become available.

Such technical questions, Impor-
tant though they may be to the satel-

2.2 MECHANICAL STATES IN Tim PARTICLE
MODEL.

Let us now proceed to examine a
related question: Is it possible to
modify the mechanical model in such a
way as to incorporate heat and tem-
perature? As a first step in attacking
this question it will be useful to re-
call some of the details of the sim-
plest mechanical model, the "mass-
point." In order to describe the motion
of an object (without rotation), it can
be represented by a "particle" or
"mass-point" which is simply a geomet-
rical point which has the mass of the
object. If the motion of the object is
all we are concerned with, its mass is
its only significant attribute - its
size, shape, color, etc., are all ir-
relevant. In the presence of special
forces, e.g., electric fields, other
parameters must be specified, in this
case the electric charge, but this too

1



THE PARTICLE MODEL FOR MOTION 5

is associated with the point particle.
The motion of the object is described
by giving the position of the particle
as a function of time, which can be
done most compactly by specifying the
vector r(t) from an arbitrary origin
to the position of the particle. (Note
that we shall denote vector quantities
by arrows.)

To say that the origin is arbi-
trary simply means that its choice is
purely a matter of convenience in de-
scribing the motion of a given parti-
cle. Of course, different choices will
result in different functions 17(0, but
the relation between any two such
choices does not change with time, so
long as the origins are fixed. For in-
stance, Fig. 2.1 shows a particle
which at time t = t' is at position P.
This position is described by two vec-
tors, ri(t) and r2(t), drawn from the
two origins 01 and 02, respectively.
The vector R2I, from 02 to 01 connects
the two position vectors according to
the relation

1-2(t =71(ti) (2.1)

It should be clear that this relation
holds for all times t, not merely
t = t', so long as the two origins are
fixed, for then the vector R21 is a
constant, independent of time. The
vector r(t) can also be written

= )7(0 + 7(0 + ;(t), (2.2)

where the vectors x(t), y(t), 2'(t) are
projections of FM along arbitrary
Cartesian axes. Another way of writing
this relation is

7(0 = x(t) 1 + y(t) T + z(t)

(2.3)

where now x(t), y(t), z(t) are the
scalar components of r(t) and r, T,
are unit vectors along the Cartesian
axes.

A basic condition that must be
met if an object is to be represented
by a particle is that it can be dis-

tinguished from its surroundings, and,
in principle, isolated from them. The
separation of "object" from "surround-
ings" may sometimes be a highly ideal-
ized operation. For instance, it is
sometimes useful to think of a small
volume in a large mass of liquid as
the object, the rest of the liquid
then constituting the surroundings.
Although this is an extreme example, a
little reflection will show that the
separation usually involves some de-
gree of idealization. A billiard ball
resting on a flat, smooth surface, for
instance, might appear to be a case
with no need for idealization, until
one begins to inquire as to the exact
nature of the boundary between ball
and surface. Especially if they were
made of the same material, it might be
difficult to decide which atoms at the
boundary belonged to "object" and
which to "surroundings."

In applying the particle model,
we imagine that such decisions have
somehow been made. Appropriate deci-
sions of this sort can be recognized,
since conclusions drawn from them will
not conflict with observation. The
real significance of the separation,
as far as the model is concerned, is
that the motion of the object is de-
termined by its interactions with the
surroundings. As one extreme possibil-
ity, there are no such interactions at
all; the particle is "isolated." Ac-
cording to Newton's First Law (which
we shall refer to by the shorthand
N-I), such a particle is in "equilib-
rium" and its motion is not arbitrary.
The position vector r(t) must satisfy
the condition that its time derivative
is constant;

d;(t)/dt = const. = 7(0) = F(0),

(2.4)

where the last two symbols, 7(0) and
lt.(0), are simply two alternative ways
of writing dr(t)/dt, the velocity.
Note that a dot over a vector will al-
ways mean the time derivative of that
vector, and two dots will denote the
second time derivative.
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The notation 7(0) or F(0) is cho-
sen to emphasize that the velocity of
a particle in equilibrium does not
change with time. It always maintains
the value it has at t = 0, the (arbi-
trary) origin of the time scale.

A particle may be in equilibrium
even if it is not isolated. The net
effect of all its interactions with
its surroundings may vanish, and once
again Eq. (2.4) will hold. Whenever a
particle is in equilibrium, that is,
whenever its velocity is constant, its
position vector satisfies a simple re-
lation, which is obtained by integrat-
ing Eq. (2.4). This relation is

7(0 - 7(0) + T(0) t, (2.5)

where 7:(0) is the position vector of
the particle at t 0 and 1.(0) is its

velocity vector at the same time.
Hence specifying r(0) and t(0) com-
pletely determines r(t) at any, other
time.

This pair of vectors, position
and velocity at a given instant, are
said to define the "mechanical state"
of a particle at that instant. The

(e)

R21

02

Fig. 2.1 The relation between position
vector ri (origin 02) and position vector
r2 (origin 02) for a particle at P, and the
vector R2 from 02 to 02.

(r')

statement at the end of the last para-
graph can now be restated as follows:
if we know the mechanical state of a
particle in equilibrium at any instant,
say t a t', then we can determine its
mechanical state at any other iustant,
say t = t". For Eq. (2.5) can be re-
written

Rt") = ;(ti) + F(ti)(t" t'), (2.6)

and also,

7(t") = F(t'). (2.7)

The left-hand sides of these equations
give the mechanical state at t = t",
and these vectors are determined by the
right-hand sides if we know F(t') and
F(U), the mechanical state at t = t'.

We can make the same assertion of
a connection between the mechanical
states of a particle at two different
times, even if the interaction of a
particle with its surroundings does
not vanish (that is, even if it is not
in equilibrium), provided that we know
the nature of the interaction. This in-
teraction is represented by the result-
ant force F (the vector sum of all the
forces), acting on the particle. When
the resultant force is not zero, the
particle velocity is not constant. Its
time rate of change is given by New-
ton's Second Law (which we will refer
to as N-II), as

dli(t)/dt = a(t) = g(t)/m (2.8)

where a is the acceleration vector and
m is the mass of the particle. Inte-
gration gives

;(t.) = ;(v) +
t-

Je
a(t) dt "t7(tt)

+ f
t"

F(t)/m dt (2.9)

Since now ;(t) is not constant,
Eq. (2.4) now reads

67(t)/dx =

which, when integrated, gives the gen-
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eralization of Eq. (2.5) to the non-
equilibrium case:

;(t") a F(t,) + j!" v(t) dt. (2.10)

Hence, in the nonequilibrium case also,
if we know the mechanical state at a
certain time, say t = t' (that is, if
we know r(t1) and r(")), we can find

the mechanical state at any other time,
say t t" (that is, we can itnd r(t")
and t(t")). In this case wo must use
Eqs. (2.9) and (2.10), which require
that we know the interaction befteen
the particle and its surroundings, that
is, we must know the net force F(t)
acting on the particle. When F(t) 0,

the particle is in equilibrium and
Eqs. (2.6) and (2.7) apply.



3 THE DIRECTION OF THE FLOW OF TIME

3.1 TIME REVERSAL IN THE PARTICLE
MODEL.

For our present purpose, namely,
discussing the connection between me-
chanical and thermal behavior, the
most significant feature of these re-
lations is that the acceleration, which
is determined by the force, is the sec-
ond time derivative of the position
vector. As a consequence, for a given
force the acceleration is unGhanged if
we reverse the direction of time, that
is, if we differentiate twice with re-
spect to -t instead of t. One result
of this property of N-1I is that the
mechanical state at t = 0 not only de-
termines mechanical states at later
times (t positive), but also at earlier
times (t negative). But a more inter-
esting consequence is that there is
really no distinction between "later"
and "earlier." We have already re-
marked that there is no special sig-
nificance to the instant at which we
set t = 0, that is, to the time at
which we start our clock. Now we see
that in addition, it makes no differ-
ence in which direction the clock
hands move after they start.

This irrelevance of the direction
of time in the Newtonian model cer-
tainly contradicts our fundamental ex-
perience of what we call "the passage
of time." We shall see later that the
ideas of heat and temperature are im-
mediately related to our experience
that time does indeed flow in just one
direction. But first let us see in
some detail how the Newtonian model
accommodates itself to this peculiar
insensitivity to the direction of the
flow of time.

Let us consider a very simple
case, that of an object falling freely
and accelerating because of the gravi-
tational force acting on it. No one
who has sat through home movies taken
at a swimming pool Las been spared the
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joke of the operator who reverses the
motor, so that the diver stops in mid-
air and then gracefully rises to his
original position on the board. This
is recognized as a ludicrous scene,
but it is by no means clear, while
watching it, which of the segments is
"forward" and which is "reverse." The
"diver" might actually have been an
acrobat jumping from an unseen trampo-
line, so the rise to the diving board
might have been the "ordinary" motion,
forward in time, while the "dive" was
the same motion, projected in reverse.
After all, the segments can be shown
in either order by splicing the film.
So there is as yet no clear-cut may to
determine which is the "proper" direc-
tion of time, the direction of experi-
ence. Let us see if any further insight
is gained by examining the problem ana-
lytically, using the relations we have
stated above.

If we wish to follow the motion
of a particle subject to certain
forces, we have seen that the motion
can be described as the passage through
a succession of mechanical states, each
described by the pair of vectors, r(t)
and v(t). If at a certain instant, say
t = to, we (somehow) reverse the direc-
tion of time, then the mechanical state
suddenly changes, since cli./dt =
-dr/d(-t). That is, the velocity re-
verses its direction if time is re-
versed. Now according to N -Il, ch,nges
in velocity are associated with iJrces.
Hence we can tell that time is reversed
at t = to by observing that the veloc-
ity reverses without the appiication of
a force. But the question remains,
which of the two directions of time is
"correct"?

Let us reduce the diver, or acro-
bat, in the movie, to a particle which
is thrown upwards at t = 0 with a cer-
tain speed vo, so that

V(o) = vo
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where I is the unit vector in the ver-
tical (z) direction. Then the force
and acceleration are

where g is the gravitational accelera-
tion. The particle will decelerate
while rising until it momentarily comes
to rest at the height h, say at time
t th, sc its mechanical state is then

z(th) h; v(th) 0,

(is this an equilibrium state?), and
thereafter it descends. In the course
of its descent it does not pass through
the same mechanical states as (airing
its ascent, since it passes through
each position with a velocity that is
just the negative of the velocity it

= 0)

SLOPE = ACCELERATION
a _ 9

I
t

/ I/
/DESCENTI

A,/ (REVERSE)I

/ SLOPE = I

/ (ACCELERATION)!
-a =9

z =h

had at the same position, when it was
rising. The acceleration, hcwever, is
the same throughout the entire motion,
descent as well as ascent. If now time
had been reversed at the top of the
path, that is, at t = th, the subse-
quent motion, now from th backward to
t = 0, would have been exactly the
same as the "actual" fall during the
interval t th to t = 2th, since, as
we have seen, velocities change sign
when t is reversed. So our analysis
still provides no way of knowing
whether we are seeing the particle

or instead, watching its rise
"in reverse,"

Figure 3.1 is a plot of v(t) for
both motions, with the forward motion
represented by a solid line, and the
reverse motion by a dashed line. These
two motions are seen as distinct be-

Fig. 3.1 v(t) for ball thrown upwards at
t - 0 with initial speed v - vo. Arrows
indicate direction of time flow: forward on

2t,
t

(z = 0)

solid line; reversed at t - th for heavy
dashed line. Idealized case-gravitational
force only.
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cause they are both plotted along the
same time axis, that corresponding to
forward motion. If the positive direc-
tion along the axis were changed at
t = th to correspond to the reversal
of time at that instant, this would re-
sult in a reflection of the dashed line
in the vertical line through t = th,
and the two "descent" lines would su-
perimpose exactly. We have asked the
question, "Which direction of time is
'correct'?" The particle model answers,
unequivocally, "Both:"

This seemingly trivial example is
worth discussing in such detail because
the conclusion that can be drawn from
it is in fact completely general.
Stated another way, this conclusion is
as follows: As far as the Newtonian
particle model is concerned, any motion
whatever is reversible, in the sense
that if it is a possible motion when
viewed with time flowing in one direc-
tion, it is also a possible motion
when viewed with time flowing in the
reverse direction. Now nothing could
be further from experience. The "cor-
rect" direction for the flow of time -
and as far as all our experience is
concerned, the only possible direction
- is the direction determined for us
by the fact that all observed motions
are clearly impossible if viewed with
time flowing backwards. We can use the
example under discussion as an illus-
tration.

3.2 THE IRREVERSIBILITY OF NATURAL
MOTIONS.

So far, the deccription of the
motion of the particle thrown upwards
has been an idealization which ne-
glected all frictional effects. We can
imagine how the particle would behave
in this ideal case because we know
that air friction diminishes as air
pressure decreases. Hence we have been
describing motion along a path in a
perfect vacuum. But if the path is
through the air or any other fluid (gas
or liquid), an object which falls long
enough will stop accelerating. Its

speed approaches a limit, which we call
the "terminal speed" and denote by VT.
The function v(t) for this natural mo-
tion, as distinguished .rom the ideal
vacuum case described above, is shown
in Fig. 3.2. Here the particle starts
falling from z = 0 at t = 0 (instead of
from z = h at t = th, as in Fig. 3.1)
so that v is always negative and ap-
proaches vT as t increases without
limit. If time is reversed at t tR

(dashed vertical line in the figure)
the speed becomes positive and de-
creases to zero at t = 0. Both paths
are superimposed in the figure by a
simple trick - the ordinate axis rep-
resenting speed is reversed at t = tR.
Hence the left-hand ordinate axis, with
speed increasing upward, is to be used
for the forward motion, t = 0 to t = tR,
and the right-hand ordinate axis
(dashed line), is to be used for the
reverse motion, t = tR hack to t = 0.
The functional form of v(t), which is
given in the caption of the figure, is
derived in Appendix 1.

Now the assertion was made above
that all natural motions are impossible
when reversed. In our present motion
this would mean that the ascent from
z = z(tR), which is negative, to z = 0
is an impossible motion. In order to
see this impossibility clearly, it is
helpful to extend the particle model
somewhat. Before making this extension,
let us discuss a related motion. Imag-
ine that the object bounces from a hor-
izontal surface, reversing its velocity
at each bounce. The height to which it
rises diminishes after each boulice, and
ultimately it comes to rest on the sur-
face; this is the "natural" motion.
The reverse motion, in which an object
at rest on the surface suddenly begins
to bounce without any change in the
forces acting on it, and rises higher
and higher with each bounce, is clearly
impossible.

The reverse motion in Fig. 3.2
can likewise be seen to be impossible
if we extend the particle model by in-
troducing the quantity "mechanical en-
ergy." As we know, this quantity,
which we will denote E, contains a con-
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VT

(FORWARD t)

FORWARD MOTION; v ON LEFT

(SOLID ORDINATE)

to

+v

Fig. 3.2 Here, v(t) for free fall, start-
ing at t a 0, with retarding force propor-
tional to speed, is compared with v = gt
(no retarding force). Time is reversed at
t e t1. Speed for forward motion is given

tribution from the motion of the parti-
cle, namely the kinetic energy, denoted
K, defined by

K = imv2 = im(vz2 + vy2 + vz2). (3.1)

If a conservative force, such as grav-
itation, acts on the particle, E also
has a contribution called the potential
energy, denoted V, which in general de-
pends on position. Hence E is a func-
tion of the mechanical state of the
particle.

We pointed out in connection with
Fig. 2.1 that the choice of position
vector for a particle was arbitrary,
since the origin may be moved from one
point to another by the addition of a
constant vector. The value of poten-

1

1

1

1

v (t REVERSED)

on left (solid) ordinate; for reversed mo-
tion, on right (dashed) ordinate. The speed
in the forward motion is given by

v(t) vilexp (1) 1].

tial energy V, will then differ by a
constant for the two choices of origin.
Correspondingly, an arbitrary constant
value can be assigned to V for any
choice of origin. For the freely fall-
ing particle, it is convenient to
choose the point from which it is
dropped, z = 0, as origin, and to as-
sign the value V(0) = 0. Then as a
function of z,

V(z) mgz. (3.2)

We can also express K as a function of
z, since in free fall

v = gt;

so that

z = 3gt2, (3.3)



12 HEAT AND NOTION

K = img2t2 = mg(igt2) = -mgz = - -V.

(3.4)

(Note that z is negative for the fall-
ing particle, so K is positive and V
is negative.) Hence,in free fall E =
K + V = 0 always. As we have seen, the
numerical value of the mechanical en-
ergy is arbitrary; but tills example
shows that if only conservative forces
act on a particle the mechanical energy
is constant. For the mechanical energy
to increase, a nonconservative force
must act on the particle in the direc-
tion of its motion.

Now in Fig. 3.2, it is clear that
v in the retarding medium is always
smaller in magnitude than v for free
fall. Hence at any position, K (re-
tarded), will be less than K (free
fall), and the difference between the
two increases as the particle falls,
Since V depends only on position, E
(retarded), is also less than E (free
fall), by an ever increasing amount.
In other words, E decreases in the
forward motion (natural motion), of
the particle falling in a retarding
medium. In the reverse motion, there-
fore, E would be increasing as the mo-
tion proceeds, although the only non-
conservative force acting on the par-
ticle, the frictional force, acts in a
direction opposite to its motion. Such
an increase in E under these conditions
is never observed in natural motions,
so we can finally distinguish the "cor-
rect" direction for the flow of time.
The decrease of mechanical energy due
to the action of frictional forces (or
"dissipation"), is described analytic-
ally in Appendix 2.

From our discussion so far, we
must conclude that the possibility of
distinguishing the natural direction
for the flow of time in the Newtonian
model rests on the universal occurrence

of frictional forces in the motion of
terrestial objects.2 Now (alileo ab-
stracted the law of equilibrium (N-I),
from common experience, by the device
of imagining the ideal limit in which
frictional forces vanish. Hence it is
not surprising that when dissipation
is eliminated, the distinction of a
unique direction for the flow of time
also disappears.

One further question can be an-
swered in a simple quantitative way:
When is a particular motion adequately
represented by the dissipationless,
ideal approximation? Suppose the mo-
tion is observed during the interval
t" t' = At. This might be the period
of rotation of the moon, or the time
between two bounces of a ball. During
this time the mechanical energy changes
by

E(t") - E(t') = AE,

and if the rate of dissipation of me-
chanical energy is dE/dt, then

OE = (dE/dt) bt,

which is negative (E decreasing), since
dEldt is negative. Now for the dissipa-
tionless approximation to be valid, it
must be true that

IAEI << E or IdE/dt1 << E/At.

(3.5)

2Frictional forces also occur in astronomical
motions (for instance, the tides), but in these
cases, the rate at which mechanical energy is

dissipated, compared to the total mechanical en-
ergy involved, is very much less than for ordi-
nary terrestrial motions. For instance, billions
of years were required for the dissipation, by
tidal forces, of the mechanical energy that the
moon once possessed when it rotated about its
own axis. A bouncing ball, on the other hand,
comes to rest in seconds.
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4.1 THERMAL EQUILIBRIUM AND THE
DEFINITION OF TEMPERATURE.

We are now in a position to give
at least a partial answer to the ques-
tion we posed at the outset of our dis-
cussion, namely, why the concepts of
heat and temperature are absent from
the theory of motion, or mechanics.
Heat, we know, is produced in a great
variety of ways: chemical transforma-
tions (as in burning fuel), radiation,
etc. The manner of producing heat most
directly associated with motion, how-
ever, is just the dissipation process
we have been discussing. Hence the
particle model of mechanics, which
proceeds from the law of equilibrium,
loses contact with thermal phenomena
when it makes dissipation a secondary
phenomenon. We have already seen how
this same step also loses the distinc-
tion of a unique direction of time, and
how this unique direction can be recog-
nized by observing the effect of dis-
sipation; It is the direction of time
for which dEdt due to frictional
forces is negative. Later we will jus-
tify the remark made above, that a
unique direction of time is directly
associated with thermal phenomena.

We raised another question as
well, namely how mechanical and ther-
mal phenomena were to be connected by
becoming related parts of an enlarged
model. This problem is considerably
more complex than the first, since each
area developed almost independently of
the other. Their major point of contact
had the character we described earlier
as "technical," rather than being a
part of the logical structure of either
mechanical or thermal phenomena.

The contact between the two kinds
of phenomena is the term r, the force,
in N-II. The laws of motion, general-
ized to include rotation of extended
objects, can be used for the analysis
of complex machines as well as of plan-
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ets. In this analysis, the value of Y,
applied to the machine through a shaft,
for instance, must be known, but the
manner in which the force is produced
by the prime mover which turns the
shaft is immaterial. On the other hand,
the first important prime movers of the
Industrial Revolution were steam en-
gines, which produced forces through
the operation of thermal processes.
The analysis of these engines was one
If the most important motivations for
understanding thermal phenomena, and
all sorts of thermal engines are still
of tremendous technical importance. As
a result, the study of thermal phenom-
ena often proceeds, even today, from a
consideration of how heat can be turned
into work. But clearly, this point of
view is not likely to illuminate the
connection between mechanical and ther-
mal phenomena, which is of primary in-
terest to us.

We therefore proceed in a differ-
ent fashion. Our first step will be to
refine the intuitive notion of temper-
ature, which is a basic element in
thermal phenomena, using a formulation
related as closely as possible to me-
chanical phenomena. The beginning of
the discussion is already contained in
our earlier description of dissipation,
because we know that an object falling
in a retarding medium becomes "warmer"
as it falls. There is, however, no sim-
ple way of incorporating this fact in
the particle model, since the particle
possesses only mass, and the mass does
not change.

What we seek, therefore, is a way
of describing the notion of temperature
in terms of the particle model, and of
making it quantitative. To do this we
must investigate something more compli-
cated than a mass-point; indeed, as we
shall see later, the concept "tempera-
ture" has no meaning at all when ap-
plied to a single particle. In this
investigation, we shall have to explore
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rather carefully some aspects of the
behavior of matter which are so much a
part of common experience that they are
often taken for granted. When we fill a
pot with water from the kitchen faucet,
we usually find it colder than the air
in the room. If it stands on the table
for a while, it warns up to room tem-
perature. In order to bring it to a
still higher temperature, we must place
it in contact with the heating element
on the stove. But just because these
phenomena are so "ordinary," the con-
clusions we shall be able to draw from
them have a very wide range of applica-
bility. Hence we can use simple exam-
ples in the discussions and still
achieve results of wide generality.

Let us construct a simple pendu-
lum with a bob supported by a thin
metal wire, hung from the top of a
transparent bell jar which can be evac-
uated, or, if we wish, filled with gas
at greater than atmospheric pressure.
If we start the pendulum swinging, we
know that it will ultimately come to
rest; and we expect that the rate at
which the amplitude, A, decreases
(namely, dA/dt = A), will depend on
the pressure of the gas in the bell
jar. As the jar is evacuated, A de-
creases in magnitude, but it remains
finite even at very small pressures,
since even when gas friction has be-
come negligible, the internal friction
in the wire continues to dissipate me-
chanical energy as the bob swings. Un-
der these circumstances, that is, the
bob coming to rest in the evacuated
bell jar, we can observe a definite
mechanical effect associated with the
dissipation of mechanical energy: The
wire is longer after the mechanical
energy is dissipated and the bob is at
rest than it was when the motion was
first started. It is also warmer, and
so is the bob, so we suggest that the
length of the wire be associated with
the degree of warmth, or "temperature"
of the bob.

Unfortunately, it is not a trivial
matter to turn this simple observation
into a quantitative association of wire
length with temperature, and to estab-

lish an actual temperature scale as
those in everyday use. Fo' in depart-
ing from the particle model, we have
opened a Pandora's box of new questions
about our system. The mechanical state
of a particlecould_be described by
two vectors, r and v, together with m,
the mass of the particle.3 But in de-
scribing our system, if we wish to use
the length of the wire to specify the
"state" of the system in some new sense
which transcends that of the simple
mechanical state, we must include much
more information. Suppose we repeat
our observation many times, each time
with the original I.ngth of wire and
the initial height of the bob. The same
amount of mechanical energy will be
dissipated each time, but we will find
that the final length of the wire will
depend on the particular metal used,
and also on the material of the bob.
Our new sort of state, which we will
refer to as "thermal state" for the
moment, would be clumsy indeed if this
additional information always had to
be included in its specification.

Fortunately, this turns out not
to be the case. We shall see that it
is possible to specify precisely what
is meant by "thermal state" by intro-
ducing just one additional parameter,
which, as suggested above, is the tem-
perature. And, most important, the
temperature can be given a quantitative
meaning which is independent of the
properties of specific materials. The
price of this generality is that the
definition is somewhat abstract, so we
have to describe it with care. In doing
so, we will quote the result of much
careful observation, made especially
during the eighteenth and nineteenth
centuries, that preceded the final for-
mulation of the definition.

To rake the discussion more con-
crete, we will continue to use our sam-
ple system, the pendulum in a bell jar,

'In fact, the mass can be absorbed into the
specification of the mechanical state, so just
two vectors suffice. Since momentum p is given by

mv, the two vectors r, F. completely describe
the mechanical state of a particle of mass m.
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as shown in Fig. 4.1. One new feature
has been added: a plate mounted atop
the jar. The suspension wire is con-
nected to the lower part of the plate,
which passes through the top of the
jar. With this arrangement, we can con-
ceive of making a variety of observa-
tions on the bob or on the wire, either
from outside the bell jar, or, if nec-
essary, by putting additional apparatus
inside. For instance, we can measure
the elongation of the wire with a tele-
scope outside the jar; in the same way
we can measure the size of the bob and
thus determine its density. We can
measure various optical properties such
as reflectivity or index of reflection
(if the bob is of transparent mate-
rial), also from the outside. By in-
serting suitable instruments in the
jar we could measure the bob's electri-
cal resistivity or its magnetic moment.
We could even determine its resistance
to mechanical deformation (compressi-
bility), and other mechanical proper-
ties. We shall forbear from extending
this list of measurable properties of
the system at this point, but clearly
not because we have exhausted all pos-
sibilities. These properties are among
the contents of the Pandora's box that
we mentioned earlier. Let us indicate
all such properties by the symbol Pi,
where the index i distinguishes among
the properties. In the short list we
have given i runs from 1 to 8; we shall
allow it to run to n, where the actual
value of n is limited only by our imag-
ination and ingenuity. We can also
imagine making a set of measurements
of all the properties at about the
same time; we indicate such a set of
simultaneous measurements by the sym-
bol (Pi). Thus the symbol Pi denotes a
particular property, as, fur instance,
the density; but we shall also speak of
the value Pi, by which we shall mean
the result of a measurement of the
property Pi.

Now there are two particular char-
acteristics of the values Pt that are
of interest to us here. The first is
the way in which they change with time,
that is, the values dP1 /dt fit. The

Fig. 4.1 Bell jar with pendulum bob and
supporting wire inside, and external plate
attached to upper end of wire. Jar can be
evacuated or filled with gas through hole
in plate and connecting tube.

second is the way in which the Pi de-
pend on what goes on outside the bell
jai. This latter characteristic can be
modified at will, between extreme lim-
its. If we make the plate of wood, or
better, of asbestos, or better yet, if
we remove it entirely; and if we ex-
haust as much air as possible from
within the jar, we then find that about
the only way we can influence the val-
ues Pi from outside the jar is to shine
light through it. The changes in the
values Pi induced in this manner are
not arbitrary. They are in the same di-
rection as observed when the bob comes
to rest after having been given an ini-
tial push. They also depend on the in-
tensity and duration of the light in
the same way as they depend on the mag-
nitude of the push. If, in addition, we
coat the outside of the jar with some
highly reflecting materiel, we find
that (P1) is essentially independent of
whatever happens outside the jar. In
this case, we can speak of any system
inside the-jar as being isolated.
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On the other hand, with a trans-
parent jar and air or some other gas
within it, and a metal plate on top,
we find that the values (Pi) will
change measurably if the surroundings
change. Furthermore, they can now
change in different directions; if we
denote by APi a change in a value Pi,
the changes API observed when we put
some ice on the metal plate will in
general have signs opposite from the
API that occur when we put a container
of boiling water on the plate. Under
these circumstances, the system inside
the jar is clearly no longer isolated
from its surroundings. But we have in
no case done mechanical work on the
system; we have not, for instance,
started it swinging in order to bring
about changes in the vall:es (Pi). To
emphasize this point, we shall speak
of "thermal contact" of the system with
its surroundings when the changes in
the values (PI) do not depend on
changes in the mechanical state of the
system or of any part of its sirround-
ings.

Now that we have carefully de-
scribed the possible thermal relations
between a system and its surroundings -
from perfect thermal isolation (values
(Pi) completely independent of sur-
roundings), to varying degrees of ther-
mal contact (values (Pi) depending on
surroundings to a lesser or greater ex-
tent) - we can consider the other char-
acteristics of the values that we men-
tioned, namely, their time rates of
change, Os). The formal statement of
the behavior of (PI) is quite simple,
but some discussion is required to ap-
preciate its significance. So first we
give the formal statement:

Under certain special circumstances,
each of the values Pi (in the set
(Pi) of all the values of properties
of a system measured at a certain
time), is constant; that is, Pi 8. 0

for all values.

First of all, we should recognise that
this statement is not true in general,
that is, for a system chosen arbitrar-

ily, under unspecified conditions. In
general, we may find that the set of
values (Pi) measured at one time will
bear no special relation to the set
measured at another time. Hence the
formal statement above is not trivial;
the circumstances under which it holds
must indeed be "special."

We now have to inquire: What are
the special circumstances? What is the
significance of this statement for the
thermal behavior of the system? The
answer to the first question depends
on whether the system we are consider-
ing is thermally isolated or in ther-
mal contact with its surroundings. It
we take any system (one which s v ini-
tially be in some sort of therm, -.on-

tact with its surroundings), and iso-
late it thermally, we find that if we
wait long enough, the statement above
will apply. That is, the values of the
properties will change at rates (Pi)
which diminish to zero, and finally
reach a set of values (Pi) which there-
after remain constant. Hence one of the
special circumstances referred to in
the statement is simply thermal isola-
tion. Alternatively, if we have a sys-
tem in thermr1 contact with its sur-
roundings and arrange as carefully as
we can that the surroundings do not
change, then again the statement will
apply. From this point on, let us give
a name to the condition specified by
the statement, that all values Pi are
constant in time, or all tit - 0; we
will call this condition "thermal
equilibrium" and when it is satisfied,
we will say that the system is in a
"thermal equilibrium state." We can
differentiate among different thermal
equilibrium states by the set (Pi) of
constant values of the properties meas-
ured for each such state.

This definition of a thermal equi-
librium state is quite precise, but
vastly more complicated than the defi-
nition of a mechanical equilibrium
state. There, just the two vectors r
and p sufficed; here, we need the set
of %alues (P1), i 1, 2, . . n,

where there is no obvious limit to the
sire of n. The definition of thermal
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equilibrium could clearly have no use-
ful role in a theory of thermal proc-
esses if it had to remain in this form.
But remarkably enough, it is possible
to abstract from this definition just
one new parameter, which implicitly
contains the same information regard-
ing thermal equilibrium as does the
entire set of values (Ps). Let us see
how this can be done, and why this new
parameter is associated with the intu-
itive notion of temperature.

Our discussion rests on an empiri-
cal relation among various thermal
equilibrium states, which can be de-
scribed in the following way. Suppose
we have ascertained that two different
systems, initially quite independent of
each other, are each in thermal equi-
librium. The systems might each be a
pendulum in a bell jar as in our ear-
lier discussion, or they might be of
entirely different types, not neces-
sarily the same for each. Now let us
put the two systems in thermal contact
with each other. If the systems each
were of the type sketched in Fig. 4.1,
for instance, this could be done by
placing the bottom plate of one (sys-
tem A), on the top plate of the other
(system B). Before being placed in
thermal contact, they each had their
respective sets of values (PIA), (Pis).
Common experience tells us that after
being placed in thermal contact, they
will come to mutual thermal equilib-
rium and will then have respective sets
of values, (13;A), (Pis), which are in
general different from the original
sets of values, before they were placed
in thermal contact. Now that they are
in mutual thermal equilibrium, their
sets of values have a special property.
If we now isolate them we know that
their respective thermal equilibrium
states will not change; while in isola-
tion, the properties retain their re-
spective values (PiA), (Pis). Therefore,
if we return them to mutual thermal
equilibrium, we observe a special kind
of behavior, different from what we
find in general: These separated sys-
tems, when brought into thermal contact,
retain the sets of values (11;1), (10).

which they had before thermal contact.
In other words, the values (Pia),

(FIE,), are invariant with respect to
mutual thermal contact of systems A
and S. Now these "other words" are not
only more elegant than the original de-
scription, they are also more useful.
For whenever we find an aspect of a
physical system which is invariant in
some context, we can define a new phys-
ical quantity in terms of that invari-
ance. Mechanics abounds with examples:
indeed mass, energy, momentum, etc.,
are all useful in describing mechanical
phenomena precisely because each is re-
lated to some sort of invariant behav-
ior of a mechanical system.

So we have finally arrived (al-
most), at the end of our tortuous path
leading to the definition of tempera-
ture: Whenever two separated systems
are each in a thermal equilibrium state
that has the property of remaining un-
changed after being brought into ther-
mal contact, we say that these two
states have the same temperature. It is
easy to see that this definition can be
expanded beyond two states, to include
any number whatever. This can also be
done without bringing all the states
into mutual thermal equilibrium, for
it is also a fact of experience that
if system A and system B are in mutual
thermal equilibrium (hava the same
temperature), and A is also separately
in thermal equilibrium with system C,
then B will be found to be in thermal
equilibrium with C if they are placed
in mutual thermal contact. Thus A, 13,
C all have the same temperature, so
this can be established for any number
of systems by observing their behavior
in mutual thermal equilibrium, pair by
pair.

We will describe in the next sec-
tion how this property of systems in
mutual thermal equilibrium, their com-
mon temperature, can be given a quan-
titative form. That is, we will show
how to assign a number, which we will
denote T, to represent the temperature
of a thermal equilibrium state. Assum-
ing for the moment that we have al-
ready done this, we now have another
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value to add to the set (Pi) associated
with each thermal equilibrium state.
But this number T is not on ah equal
U)oting with all the rest in the set
(Pi), for it completely specifies the
thermal equilibrium state, in a way
which is not shared by any of the other
values.

In order to see the meaning of
this statement, that the temperature
has a special significance which dis-
tinguishes it from the other properties
of a system, let us return to the oper-
ation we consIdered in defining the
temperature. We brought two systems,
initially separated and each in ther-
mal equilibrium, into thermal contact,
and used the outcome of this operation
to define temperature. Now let us con-
sider instead the converse question;
We know the initial values of the prop-
erties in thermal equilibrium, (P )--1AJ
(Pie), and we would like to predict the
outcome. But our Pandora's box con-
tained a large number of properties
that can be defined for any particular
system, and an enormous number of dif-
ferent conceivable systems. As a re-
sult, making even this simple predic-
tion becomes a major task.

In special cases, the answer is
simple. For instance, if the two sys-
tems are the same, and if just one of
the properties, say the density, has
different initial values, then they
will not be in mutual thermal equilib-
rium when brought into thermal contact;
their values of all their properties
will change and ultimately they will
each arrive at new thermal equilibrium
states. But if the two systems are dif-
ferent, or if two systems of the same
kind have different initial values for
several of their properties, we cannot
make a prediction so easily. Either re-
sult possible, depending on the par-
ticular set of initial values (PIA),
(Pip). We could make the prediction if
we had made the identical observation
before, or if we had made a whole se-
ries of observations, so that we could
relate tll the different values of each
Pi which are found in different thermal
equilibrium states.

But all this complex ty is reduced
to trivial simplicity if v.e remember
the lefinition of temperature. No two
distinct thermal equilibrium states
have the same temperature, even though
they may share common values of other
properties. For instance, we may fine
the same density in states correspond..
ing to different temperatures. Con-
versely, we may find different densi-
ties in states corresponding to the
same temperature. So our prediction
can be made solely on the basis of
whether or not TA TA before the sys-
tems are brought into thermal contact.
We need not inquire at all into the
values of any of the other properties.
It is in this sense that temperature,
T, defines a thermal equilibrium state
completely, and implicitly conveys in-
formation also contained in the entire
set of values (Pi).

4.2 TEMPERATURE SCALES.

In the last section, we defined
"temperature" abstractly, as the com-
mon property of all systems in mutual
thermal equilibrium. But this defini-
tion does not suffice to establish tem-
perature scale. In order to define a
temperature scale, we need a definite
procedure for assigning, to each set
of thermal equilibrium states in mutual
thermal equilibrium, a number to rep-
resent T. Such a quantitative scale is
needed in all applications of the no-
tion of temperature, for instance, in
the mundane task of reporting the
weather. (What is the "system" in this
case?) However, our interest in dis-
cussing how to establish a temperature
scale goes beyond a concern with prac-
tical applications. We recall that we
set ourselves the task of bridging the
gap between mechanical and thermal phe-
nomena by incorporating both in a con-
sistent and coherent model of nature.
We were led to our abstract definition
of temperature while working at this
task. The problem we face now is a
typical one, which arises whenever an
abstract definition must be given a



TEMPERATURE AND THERMAL EQUILIBRIUM 19

concrete form. In the case of tempera-
ture, tit. problem is especially com-
plex, since our definition was couched
in a particularly abstract and mathe-
matical form.

We might ask, however, was this
approach, from the abstract to the con-
crete, really wise? Might it not have
been better to go in the opposite di-
rection, from concrete examples of tem-
perature scales to an abstract defini-
tion of temperature based on these
concrete examples? Actually, in pro-
ceeding as we did, we were relying on
an intuitive feeling for the idea of
temperature. The abstract definition
could scarcely have any meaning at all
for a reader with no experience with
thermometers, or with the sensations
of "hot" and "cold." What we would like
to avoid in our discussion is exclusive
reliance on sensation in deciding what
we mean by "hotter" and "colder." It
is well known how unreliable such
judgments can be. For instance, if a
person places one hand in very hot
water and the other in ice water, the
sensations in the two hands will be
very different when both are put into
a pan of lukewarm water. But even if
we can avoid such confusion, we would
like to be able to describe our model
of nature in a way that is independent
of human physiology.

However, we cannot simply side-
step the notions "hotter" and "colder,"
since they are central to the problem
of establishing a temperature scale.
In fact, the abstract definition of
temperature given in the last section
is really incomplete, precisely be-
cause it has no reference at all to
these notions. What we must do is to
give meaning to these ideas on the
basis of physical phenomena, without
invoking human sensations. In doing so,
we will not only see how to establish
temperature scales, but also to make
our abstract definition of temperature
more complete.

For guidance in how to proceed,
let us examine how another scale, say
that of mass, may be set up. The mass
of a certain object is arbitrarily

taken as the unit, and of course dif-
ferent choices of the unit lead to dif-
ferent scales. For any specific choice
of a unit, the mass of any other object
can be compared with that of the unit
by placing them on opposite pans of an
equal-arm balance. The descending arm
of the balance then contains the "heav-
ier," or more massive, object. The
choice of associating "descending arm"
(rather than "ascending arm"), with
larger mass is not really arbitrary,
nor does it depend on physiology, al-
though it would agree with the choice
made by hefting the two objects. It de-
pends on the statement that two identi-
cal objects, taken together, have twice
the mass of one of them alone.

The exactly analogous procedure
is not possible with temperature, un-
fortunately, since there is no proced-
ure for adding two temperatures that
corresponds to the simple addition of
two masses, and consequently, the
choice of a particular object as a
"unit" is impossible. Instead, we can
choose a particular thermal equilibrium
state of some ctnvenient system as a
"standard state"; we will call this
system a "thermometer." We can then
use the value of a specified property
of the thermometer in the standard
state (we will call this the "thermo-
metric property"), to fix the one
point of the temperature scale. The
values of the thermometric property
when the system is in other thermal
equilibrium states, compared with its
value for the standard state, then
give numbers that represent the tem-
perature in these other states. Now we
can put the thermometer in thermal con-
tact with any other system, say our
pendulum bob. When the two systems
have come into mutual thermal equilib-
rium, we can assign to the equilibrium
state of the bob the temperature asso-
ciated with the corresponding equilib-
rium state of the t!.,Aometer.

Now we can ask whether the new
thermal equilibrium state is hotter or
colder than the standard state. We can
give an unequivocal anewer bl observing
what happens when mechanical energy is
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dissipated in a system: if its tempera-
ture changes at all, it always gets
hotter, never colder. This statement
holds for all systems, regardless of
the way in which mechanical energy is
dissipated: rubbing friction in solids,
stirring (viscous friction), in fluids,
dissipation of electrical energy when
currents flow; it is one of the widest
generalizations that can be made from
experience. It can also be put into
analytical form, whereupon it becomes
the basis for a powerful tool in dis-
cussing thermal phenomena, namely the
second law of thermodynamics. Here,
however, we use it only to connect the
notions "hotter" and "colder" to tem-
perature scales. To make this connec-
tion explicit, let us denote the tem-
perature of the standard state by the
number T8, and that of some other state
by f'. Then of the two transitions be-
tween these two states, T8 to T' or T'
to T8, it is possible to achieve only
one by dissipating mechanical energy
in the system. The one that is possi-
ble defines the beginning temperature
as "colder," the final temperature as
Oa "hotter" of the two. Suppose we
ffad in this way that, say, To is
colder than a particular temperature
T1, and hotter than another tempera-
ture T8. Then we will always find that
it is impossible to go from T1 to To
by dissipating mechanical energy; that
is, we will always find that T1 is hot-
ter than TE.

Notice that we have said nothing
yet about a relation between the mag-
nitudes, or algebraic values, of the
numbers we have assigned to represent
the temperatures of various thermal
equilibrium states. Although we have
decided unequivocally that the state
labeled T1 is hotter than the state la-
beled TI, this does not automatically
imply that the number T1 is larger than
the number Tt. In fact, one of the
earliest tem,erature scales assigned
the number 0 to the equilibrium state
of boiling water, and the number 100
to that of ice. The opposite conven-
tion is now universal; all temperature
scales we use assign numbers in such a

way that they increase alge)raically as
we go from colder thermal equilibrium
states to hotter. Hence all states with
numbers smaller than that assigned to
the standard state are colder than any
state with a number larger than that
-of the standard state. If the standard
state is assigned to the number zero,
this means that all states with nega-
tive temperatures are colder than any
state with a positive temperature. But
this statement also is merely a matter
of convention, since the choice of
standard state is arbitrary. One of
the temperature scales we discuss be-
low, the "gas-thermometer" scale, re-
moves this arbitrariness to some ex-
tent, since it assigns the temperature
"zero" in a way that appears to be
natural and inevitable.4

Now that we have given the mean-
ing of "hotter" and "colder" a physi-
cal basis, we can return to our de-
scription of how a temperature scale
is set Jp. We recall that we start with
a particular system to serve as a ther-
mometer, this choice corresponding to
the selection of a particular object
as the unit of mass, in the prepara-
tion of a scale for mass. Just as the
choice of a particular object for the
unit of mass is essentially arbitrary,
being limited only by questions of
technical convenience, so also is the
choice of a particular thermometer.
Different applicatioas impose different
technical considerations, so there is
a great variety of thermometers in ac-
tual use. One of the most common is
the liquid-in-glass type. A small mass
of liquid, commonly mercury or colored
alcohol, is contained in a bulb at-
tached to a capillary tube. This sys-
tem is the thermometer, and the density
of the liquid (or its volume, inversely

4This aspect of the bas - thermometer scale, which
leads to interesting and useful significance for

the label 0, and even for negative tempera-
tures, is discussed in Appendix 3. However,
reading this appendix should be deferred until
the present sect!** is completed, since the ap-
peadia osmoses fasillority with the description
of the gas-thersoseter scale which is gives
below.
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related to the density), is the ther-
mometric property. Fahrenheit, in the
eighteenth century, was one of the
first to use a thermometer of this
sort, and he chose a freezing mixture
of salt and water as the standard
state. The relative volumes of bulb
and capillary tube are chosen so that
when such a thermometer is in equilib-
rium with the standard state, most of
the liquid will be in the bulb, but
some will be in the capillary tube.
The origin of the temperature scale is
fixed by assigning the number zero as
the temperature of all systems in ther-
mal equilibrium with this particular
state. In other thermal equilibrium
states, since the density of the liq-
uid will be larger or smaller, smaller
or larger amounts of the liquid will
be in the capillary tube. When the
thermometer is in equilibrium with the
body of an "average" adult, the density
of the liquid is lower, its volume
larger, and so the length of capillary
occupied will be larger. Fahrenheit as-
signed the number 100 to the tempera-
ture of this new equilibrium state,
and any other state can then be as-
signed a number corresponding to the
length of capillary occupied by liquid
when the thermometer is in equilibrium
with the chosen state. When the ther-
mometer is in equilibrium with a mix-
ture of water and ice which itself is
in thermal equilibrium, 32% of the
length between the zero and 100 marks
is filled, so the temperature is 32
"degrees Fahrenheit" (0F). In a simi-
lar manner, the temperature of water
in equilibrium with steam at atmos-
pheric pressure is found to be 212°F.
Clearly, this thermometer cannot be
used at temperatures so llw that the
liquid freezes, or so high that it va-
porizes.

The temperature scale determined
by such a thermometer will depend on
the particular liquid used, and alto
on the material of the bulb and capil-
lary, since densities of different ma-
terials vary in different ways over
the range of temperature in which the
thermometer is used. A system in which

the thermometric property did Sot de-
pend on the particular substance making
up the system would clearly provide the
possibility of constructing a superior
thermometer. But whether or not such a
system exists is not a matter of defi-
nition or logic. It is purely an empir-
ical question, to be decided by experi-
ment. However, the results of experi-
ment, namely that a thermometer does
exist which is largely independent of
the particular substance used, has in-
teresting consequences for our model
of thermal phenomena. We shall explore
some of these consequences in later
sections, but first we will describe
one such thermometer, the constant-
volume gas thermometer.

If a mass of gas, which we denote
m, is enclosed in a fixed volume V,,
its pressure, P, is found to be dif-
ferent in different thermal equilibrium
states. The pressure can then be used
as a thermometric prcrierty, and the
numerical value of temperature, which
we will denote To, can be assigned ac-
cording to a rule analogous to that
used with the liquid-in-glass thermom-
eter. There the numerical value of tem-
perature was associated with the length
of liquid in the capillary, as compared
with the length when the thermometer
was in the standard state. Here we use
a somewhat different standard state,

namely that in which water, water va-
por, and ice are in mutual thermal
equilibrium. The pressure of the gas
is found to have a reproducible value,
which we denote Po, when its container
is in thermal equilibrium with the
standard state, and the temperature of
the standard state is defined as Tc
0. The temperature, Te, in any other
thermal equilibrium state is then de-
fined in terms of the ratio P(T)/Flo by
the equation

F(Te)/P0 1 + aTe 6. 1 4 TO /To, (4.1)

where in tha last equality we have sim-
ply written Vro for the constant, a.
This constant determines 'ht size of
the unit temperature difference, or
"degree." In the common Celsius scale
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(formerly called the centigrade scale),
it is fixed by setting the temperature
of the "steam point" (water in equilib-
rium with its vapor at standard atmos-
pheric pressure), as equal to 100 de-
grees Celsiva (°C). Therefore, if the
measured pressure at the steam point
is P(100),

P(100)/130 - 1 + 100 a,

a - [P(100)/P0 - 1] /100 - 1/To

(4.2)

Therefore, Eq. (4.1) can be written

To/To P(To)/P0 - 1. (4.3)

This equation is not quite symmetrical,
because of the -1 on the right-hand
side. A simple algebraic trick can con-
vert the equation into a more symmet-
rical form, in terms of a new tempera-
ture scale which differs from that in
Eq. (4.3) only by changing the origin,
that is, the state which is denoted
"zero degrees," but leaving the size of
the degree unchanged. If the term -1
is transposed,

P(T ) . a (To + To) IL.

Po To To To.

Tr Tc Tr. (4.4)

We will call the temperature
scale denoted by TR, and defined by
the last equality in Eq. (4.4), the
"gas thermometer scale." This is not a
universal scale, since it does depend
to some extent on the particular kind
of gas in the volume V. Suppose we
place several such thermometers, each
containing a different kind of gas, in
mutual thermal equilibrium, after hav-
ing prepared each with the same pres-
sure Po in the standard state. We will
find, in general, that each thermome-
ter will have a slightly different
pressure when they are all in a thermal
equilibrium state which is different
from the standard state. That is, if
we write Eq. (4.4) as

Tg [P(Tg) /Po]To, (4.5)

we find that P(Tg) is slightly dif-
ferent for each gas. Since according
to our definition of temperature, Tg
is the same for all thermometers, this
means that To must have a slightly dif-
ferent value for each gas. Now we can
imagine repeating the same procedure,
each time starting with a lower value
of Po in the standard state (either by
using less gas in the same volume
or larger V. with the same m, or both),
and then returning to the state idmi-
tified by Tg. As Po is decreased,
value of P(Tg) is naturally found to
decrease as well. But we will also find
the important result that the differ-
ences in P(Tg) for the different gases
become smaller and smaller. That is,
as Po decreases, the ratio P(Tg)/P0
approaches a constant value which is
independent of the gas in the thermom-
eter. If the same procedure is carried
out for other thermal equilibrium
states, that is, with different values
of T1. the same effect is observed.
The ratio P(Tg)/P0 again approaches a
limiting value (as Po approaches zero),
which is again independent of the gas
used. This limiting value depends on
temperature Tg, but in a very simple
fashion: It is proportional to Tg.
Hence under these conditions (limit of
low pressure), To is a constant which
is the same for all gases, and at all
temperatures. We have been quoting the
results of extensive experimental in-
vestigation carried out at the end of
the seventeenth century by Boyle, Mari-
otte, Charles, Gay-Lussac and others,
and considerably refined since then.
The best current value of To, deter-
mined by the procedure described above,
is

To 1- 273.16 degrees.

Thus in the limit of low pressure,
Eq. (CS) becomes the definition of a
temperature scale which is independent
of the substance used, although it
still refers to a particular system,
an enclosure filled with gas. We will



TEMPERATURE AND THERMAL EQUILIBRIUM 23

refer to this scale as the "ideal gas"
scale.

We will not digress to discuss in
general the question of hog tempera-
tures are measured in practice when
high precision and accuracy are re-
quired. One aspect of this problem,
the intercomparison of temperatures
scales associated with different kinds
of thermometers, is discussed briefly
in Appendix 4. In later sections, we
will return to a discussion of the

ideal gas temperature scale which
will give us further insight into the
connection between mechanical an
thermal phenomena. At this point, we
can already see one such relation.
The ideal gas scale distinguishes
among different thermal states, using
only the purely mechanical procedure
of measuring pressures, and without
requiring any information about any
properties of specific substances.
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From the point of view of our main
line of discussion, our description of
temperature scales in the last section
was a long digression, but it was in-
tended to serve a definite purpose. In
the previous section, we stated the
definition of thermal equilibrium in a
purposely abstract form in order to
make it clear that this definition is
generally valid, without reference to
specific properties of particular sub-
stances. But a price must be paid for
such an abstract treatment: It makes
the concept described remote from ex-
perience, and it becomes difficult to
connect the abstract idea with concrete
reality. The discussion in the last
section was intended to close this gap
by showing that thermal equilibrium,
and the concept of temperature which
it defines, have a perfectly definite
meaning. Furthermore, we saw that this
meaning could be described in toms of
simple operations carried out on real
objects. Having completed that discus-
sion, we can return now to a further
examination of thermal equilibrium with
a clearer idea of the physical proc-
esses involved.

Notice that thermal equilibrium
differs from mechanical equilibrium in
a rather important respect. A system
in a thermal equilibrium state remains
in that state as long as it is iso-
lated, or, if it is in contact with
its surroundings, as long as its sur-
roundings do not change. In the me-
chanical model, there is nothing
strictly comparable to this property.
Mechanical equilibrium requires only
that the velocity v const, so that a
particle in equilibrium passes through
an infinite number of positions in suc-
cession, and hence through an infinity
of different mechanical states. One
special mechanical equilibrium state,
that for which v 0, and therefore
r const, (particle at rest), might
seem analogous to the thermal equilib-
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rium state, since a particle at rest
does not pass through other mechanical
equilibrium states in the course of
time. However, the particular mechani-
cal equilibrium state corresponding to
a particle at rest does not really
have any special significance. As a
matter of fact, this lack of signifi-
cance for the "rest" state is no acci-
dent, but a fundamental feature of me-
chanics. It arises from the fact that
all frames of reference, which differ
only by virtue of a constant relative
velocity between their origins, are
precisely equivalent in the mechanical
model, Therefore, if a particle is at
rest in one reference frame, there ex-
ists an infinity of completely equiva-
lent reference frames, each moving
with respect to the first with a con-
stant velocity, with respect to which
the particle is still in equilibrium,
but no longer at rest.

We can make thin relation between
equivalent reference frames more ex-
plicit by referring again to Fig. 2.1.
The two reference frames in the figure
are distinguished from each other by
the two origins, 01 and Os. In our
earlier discussion, the vector joining
the two origins was a constant,
In our present discussion, this vector
is a function of time, since the two
reference frames are moving with re-
spect to each other. Since their rela-
tive velocity is a constant vector,
which we can denote V, we can write

Rai (t) 1121(0) + Vt, (5.1)

where gs(0) is also a constant vec-
tor. Now suppose 0, is the origin of
the reference frame in which the par-
ticle is at rest. Then v, 0, and,
taking the time derivative of both
sides of Eq. (2.1), with Eq. (5.1) for
Rai, we have

V.
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Hence, while the particle is not at
rest in the reference frame whose, ori-
gin is 02, since v2 is not zero, it is
still in equilibrium in that frame,
since V is a constant vector.

It is worth recognizing that these
two different kinds of specification
for equilibrium (a stable state with
fixed parameters in the thermal case,
a succession of different states, re-
lated by Eqs. (2.6) and (2.7) in the
mechanical case), both come from the
same kind of abstraction from natural
phenomena. The principle of abstrac-
tion which is common to both is the
recognition, in each case, of the fun-
damental characteristic of a disturb-
ance. For a particle, a disturbance
does not involve merely a change in
position, but rather a change in ve-
locity; this is the basic statement of
N-II. For a thermal system, on the
otb hand, any change of its parame-
terb whatever is caused by a disturb-
ance, so thermal equilibrium is repre-
sented by a stable state.

This stability of thermal equilib-
rium states, in the absence of disturb-
ance, leads immediately to the specifi-
cation of a unique direction of time
without any reference to mechanical
effects. We recall our description of
mutual thermal equilibrium: two iso-
lated thermal systems, each in thermal
equilibrium, but at different tempera-
tures, are placed in thermal contact
with each other, while still isolated
from any other surroundings. In time
(at a rate which depends on their de-
gree of thermal contact), they each
reach a new equilibrium state, and
these two final states have the same
temperature, which is between the two
initial temperatures. Now if we watched
this process in reverse, we would see
an isolated system, with two parts in
mutual thermal equilibrium, as the
initial state. This is a different
initial condition than we considered
previously, and we recall that when we
discussed time reversal in mechanical
systems, we saw that changing the di-
rection of time also changed the ini-
tial mechanical state, since the veloc-

ity was reversed. But in th) case of
the motion of particles, the behavior
after time reversal was still a possi-
ble motion, even though it was not ex-
actly the same as that which preceded
time reversal. In the present case,
however, when we consider the behavior
of our thermal systems, we see that
this is no longer the case. The proc-
ess as observed with time reversed
would show us the two systems, origi-
nally in mutual thermal equilibrium,
changing their temperatures in oppo-
site directions, one getting cooler
and one warmer, while thermal contact
was still maintained, although they
had no contact, mechanical or thermal,
with any surroundings but each other.
This process, which would be observed
after time reversal, is never observed
in nature. Two systems, once in mutual
thermal equilibrium, are always ob-
served to maintain that condition as
long as they are isolated from any
other surroundings. Hence the direction
of time, in which the "disequilibrium"
process would be described, is the
wrong direction, and is so recognized
with no reference to any mechanical
effects such as dissipation of mechan-
ical energy, which we used earlier to
specify the "correct" direction of
time flow.

5.1 FLUCTUATIONS IN THERMAL
PROPERTIES.

If this were an entirely accurate
description of what can and cannot be
observed when we examine the approach
to thermal equilibrium, nature would
be very different in certain fundamen-
tal respects. Just what these differ-
ences might be, we will discuss later.
Pt the moment, we can remark that the
cescription given above of the approach
to thermal equilibrium is fairly accu-
rate, sad can serve as a first approxi-
mation to the true situation. However,
the details which it ignores are just
as important to a complete understand-
ing of the process as those which were
included. Let us go beyond this glib
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description and examine some of these
missing details.

When we look at the approach to
thermal equilibrium in further detail,
we will be led to the conclusion that,
strictly speaking, thermal equilibrium
can never be observed. In section 4.1,
thermal equilibrium was defined by the
condition (f'' 0) for all measured val-
ues of all properties of a system. As
we shall see, this condition can never
be satisfied precisely, but for two
different kinds of reasons. We will
now examine these two reasons in turn.

In general, if we examine some
thermal system at a particular instant,
at which we arbitrarily set t 0, it
will not be in a thermal equilibrium
state. If at that instant we thermally
isolate the system from its surround-
ings, or, alternatively, if we fix the
conditions of the surroundings so they
remain the same as they were at the
initial instant, t 0, the system will
approach some final thermal equilibrium
state. We expect this approach to be
smooth, or continuous, in the mathe-
matical sense. We.also expect that the
rates of change (Pi) will decrease in
magnitude as the (Pi) approach their
final values, which we will denote
(Pi(°4). Both of these conditions can
be satisfied in the following way. We
define a quantity 0i(t) as the differ-
ence between the final value of Pi and
the value of Pi at time t:

0i(t) Pi(o) - Pi(t). (5.2)

If this quantity is positive, then at
time t, Pi is smaller than its final
value, so at time t, Pi must be in-
creasing; hence Pi(t) is also positive.
Conversely, if APi(t) is negative, then
Pi is also rngatil,e. The simplest way
of ensuring that Pi(t) decreases in
magnitude as Pi(t) approaches its equi-
librium value is to set this time de-
rivative proportional to the difference
remaining at time t, that is, to
01(t). If we choose a proportionality
constant which has the dimensions of
time, and denote it r, we can write

0i(t)/r. (5.3)

We should point out that we have not
"proved" that the (Pi) and their time
derivatives must satisfy this equation;
we have simply shown that if they do,
they will satisfy the two expectations
stated at the beginning of this para-
graph. Therefore, Eq. (5.3) should
provide at least an approximate de-
scription of the actual approach to
thermal equilibrium.

Equation (5.3) has a form which
is found to apply to a great variety
of physical problems, since the condi-
tions suggested at the beginning of
the last paragraph, which led us to
postulate this equation (not "derive"
it), are reasonable expectations in
many different physical situations.
Radioactive decay is one of these sit-
uations; it also governs the approach
to terminal speed of a particle falling
in a resietive medium, in certain cir-
cumstances. In this last context, it
was discussed in Appendix 1, where it
was shown how a solution can be de-
rived. Here we will simply state the
solution, and show that the statement
is correct by calculating the time de-
rivative, and comparing the result
with Eq. (5.3). We assert

01(0 01(0) a -t/r. (5.4)

where e is the base of natural loga-
rithms. Taking the time derivative of
both sides,

4)i(t)
- 1 Ap (0) - 01(07 e

(5.5)

where we have used Eqs. (5.3) and (5.2)
in making substitutions. Hence, we see
that the time derivative of Eq. (5.4)
does agree with F1. (5.3), so we have
indeed found a solution to the latter
equation. We will call this solution
the equation of "exponential relaxa-
tion" becarse of the exponential fac-
tor, and refer to r as the 'relaxation
time."
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[1 - e- /7 )

Tiln 2

Fig. 5,1 The quantities e
-t/r

and 1 e
-t/T

as functions of t.

The measured quantities in
Eq. (5.4) are not the values AP1(t),
since these involve Pi(w), which are
.unknown quantities before equilibrium
is reached. The quantities measured di-
rectly are values of Pi(t) at succes-
sive times, including of course Pi(0).
A convenient way of calculating the
initially unknown quantities T and
P(.0) can be demonstrated by rearrang-
ing Eq, (5.4) in the following way:

Pi(t) = Pi (0) e
-t/r

+ Pi(0)(1 e
t/r

).

(5.6)

Both the exponential, a -t /T, and the
quantity in the bracket in Eq. (5.6),
are plotted in Fig. 5.1. It is easy
to show that the two curves cross at
the common value and that this
value is shared at the time t = T/ln 2,
where ln is the natural logarithm.
Thus for t << T/ln 2, the first term
in Eq. (5.6) is much larger than the
second, and T can be found directly
from Pi(t), by plotting ln Pi(t) as a
function of t. If the second term in
Eq. (5,6) can be neglected, such a
plot is a straight line with a nega-
tive slope, the magnitude of which is
the reciprocal of T. When T has been

determined in this way, the quantity
1 e-t/r can be calculated as a func-
tion of time. For t >> r/ln 2, the
first term in Eq. (5.6) is neglig:thle
compared to the second, and Pi(w) can
be determined. Equations (5.4) and
(5.6) are plotted in Fig. 5.2, for the
last two cases, P(0) > P(.0) and P(0)
< P(.0),

We can now state the first, and
less significant reason, why Pi(t) = 0
is never observed. It is simply tnat,
according to the first equality in
Eq. (5.5), its magnitude is always dif-
ferent from zero, for all finite times.
NeverthelesE, the limiting values
Pi(w) ca' 10 determined, as we just

'titles API(t) can be
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P, (0)

Pi

0

Pi (t)

t

1 aP, (t)

AP, (0)

0

41,i (7) = AP, (0)/e

Fig. 5.2 Pi(t) according to Eq. (5.5)(upper
curves), and APi(t) according to Eq. (5.4)
(lower curves), for two cases: Pi(0) < Pi(m)

of APt(t) (or of Pi(t) ), different
from zero.

It therefore appears that speci-
fication of thermal equilibrium in-
volves the characteristics of the ap-
paratus that has been used in measur-
ing the PIM, A state described as a
thermal equilibrium state on the basis
of measurements with one apparatus
might be found to be still changing,
when measurements are made with instru-
ments of greater precision. But as in-
struments of higher and higher preci-
sion are used, a new feature appears,
which can be described in the follow-
ing way. According to Eq. (5.4),
APi(t) always has the same sign during
the approach to equilibrium, for any
single property (that is, for any
specified i). However, for t >> 7/1n 2,
the magnitude of API(t) becomes so
small that the limit of precision of

PI (0)

0

API (0)

t.

(right-hand curves), and Pi(0) >Pi(m))(left-

hand curves).

the apparatus is reached, and the val-
ues of APi(t) begin to have both signs,
positive and negative; their average
value, which we will write <AP1(t) >,
becomes zero. When this sort of be-
havior is observed, the corresponding
average value of Pi(t) is an estimate
of Pi(.0), according to Eq. (5.2). In
order to compare the precision of dif-
ferent kinds of apparatus, we should
compare the magnitude of these limit-
ing values of APi(t): A convenient way
of doing this is to square each A,101(t),
and then sum the squares, Both negative
and positive values give contributions
to the sum, so the average of the
squares is a measure of the magnitudes
of APi(t). This average is written
<(6,Pi(t))2> and is usually called the
"mean-square deviation." Clearly, the
mean-square deviation has dimensions
which are the square of the dimensions
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of the corresponding Pi. If we take
the square root of the mean square de-
viation, we obtain a quantity which is
called the "root-mean-square devia-
tion," which we will denote (aPi)rins or

u(APi). The root-mean-square (or
"rms"), deviation is a measure of the
magnitudes APi(t) which, as we see,
has the same dimensions as Pi itself.
For later reference, we write the for-
mal definition:

cr(APi) (APOrms -1/<(A.P1)2>

= E (6,131)di (5.7)
j=t

where, in the last equation, we have
written out the average explicitly: N
different measurements of Pi(t) have
been included, each giving a value of
(AP1)2; these values have been labeled
with the index j, which runs from 1 to
N. From our discussion above, we see
that o(A.P1) may serve as a measure of
the precision of the instrument used
in the measuring Pi(t); the greater
the precision, the smaller we would
expect cr(APi) to be.

Although the result of this long
discussion, leading to the definition
of the rms deviation er(AP1), allows us
to compare the precision of different
kinds of measuring apparatus, this is
not the primary reason for defining
cr(APi). Our main motivation was that
certain very important characteristics
of a series of measurements of Pi(t),
made for t >> T/ln 2, can be stated
succinctly in terms of that definition.
These characteristics are:

(a) If measurements of greater and
greater precision are made, it is
found that cr(APi) does not decrease
indefinitely; a lower limit to
cr(aPi) is reached, and the rms de-
viation does not decrease below
this lower limit, regardless of the
precision of the measuring appa-
ratus.

(b) This lower limit to a(6,Pi),
while it is independent of the

measuring apparatus, does depend on
the system whose values of Pi(t)
are being measured, and in two ways:

(i) The (noninstrumental) lower
limit to v(APi) in general in-
creases as the size of the sys-
tem decreases;

(ii) It also increases with
higher terhperature.

We shall refer to deviations APi(t)
which are observed when this lower
limit to (TWO has ben reached, so
that properties of the measuring appa-
ratus are irrelevant, as fluctuations
of the system. What we have stated
above, then, are properties of fluctu-
ations observed, at least in princi-
ple, in all thermal systems.

The qualification, "in princi-
ple," must be made because of the
statement labeled (b),(i) above. For
sufficiently large systems, the fluc-
tuations become so small that the non-
instrumental limit to cr(APi) is never
reached. Hence the deviations APi(t)
that are observed, are related to the
measuring apparatus, and are not a
prc:derty of the system, and therefore
are not fluctuations as defined above.
This circumstance makes it possible to
avoid fluctuations in practice, simply
by increasing the size of the system,
or of the surroundings with which the
system is in thermal contact. For in-
stance, if we wished to avoid tempera-
ture fluctuations of a pendulum bob in
an arrangement such as that illustrated
in Fig. 4.1, we would place a very mas-
sive object, which itself was in ther-
mal equilibrium, on the upper plate.
In actual practice, the bob would be
placed directly in a large mass of liq-
uid, since the best thermal contact
would be achieved this way. Boiling an
egg is a familiar example of this pro-
cedure. Because of the wide range of
temperatures over which different liq-
uids condense, "temperature baths" are
not limited to the ordinary tempera-
tures we commonly experience. The low-
est temperature that can be reached in
this way is about 0.3°K above the ab-
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solute zero, the liquid for this bath
being the rare isotope of helium, He3,
boiling under reduced pressure.

We can now answer the question
posed earlier, "Do thermal equilibrium
states exist?" According to the defini-
tion in section 4.1, the answer must
be "No," because of the presence of
fluctuations. But it is much more rea-
sonable to base definitions on physi-
cal grounds, so a preferable answer is
"Yes," with the understanding that the
conditions Pi 0, or APi = 0, are not
satisfied exactly, because of the ex-
istence of fluctuations. The possibil-
ity of observing fluctuations is thus
incorporated into an expanded defini-
tion of thermal equilibrium. The con-
clusions that we can draw from this ex-
tended definition, about the internal
constitution of matter, are explored in
the next section.

Before proceeding to this discus-
sion, we should consider two points
which have so far been neglected, whose
clarification will help us later on.
In the first place, even with our def-
inition of thermal equilibrium ex-
tended so as to include fluctuations,
there is still a sense in which thermal
equilibrium states do not exist. Sup-
pose we consider a system in thermal
isolation, which has come to thermal
equilibrium in the extended sense, so
that the Pi are exhibiting fluctuations
about their average values, Pi(m). Now
perfect thermal isolation is an ideal-
ization from experience, and can never
be achieved in practice. Therefore, if
the temperature T(m) of the isolated
system is different from that of the
surroundings, say T', there will be a
slow variation of T(m) toward T'. This
variation may be approximated by
Eqs. (5.4) or (5.6), but with a relaxa-
tion time which is long compared to
the relaxation time T, which gave the
rate at which the isolated system ap-
proached T(m). Hence in order to ob-
serve the equilibrium of the isolated
system, we must wait until t >>7/1;), 2,
but we must not wait so long that
t r'/ln 2.

The same sort of "superposition"

of thermal equilibrium stags, with re-
laxation times of very different size,
is found in most physical systems. For
instance, objects that are made of
metal that has been deformed by forg-
ing, stamping, etc., during manufac-
ture, will exhibit very slow changes in
size and shape in the course of time.
On a different scale of size, galaxies
evolve at rat,ls which are very slow on
a human time scale. A small portion of
a galaxy may therefore appear to be in
equilibrium at any instant, despite
its slow change to a new state.

In general, therefore, thermal
equilibrium states as observed in phys-
ical systems are not likely to be truly
stable; such stability would imply that
fluctuations about values Pi(m) persist
indefinitely, in the absence of exter-
nally imposed distirbances. Rather,
they are most likely to be "metasta-
ble," and the apparent equilibrium can
only be observed in an interval of time
which satisfies the condition

r/ln 2 << t << r'iln 2, (5.8)

where T is the relaxation time for the
metastable state that is being ob-
served, and T' is the relaxation time
for the transition to some tether state,
presumably also metastable. In speak-
ing about thermal equilibrium, there-
fore, we will limit ourselves to times
of observation which satisfy the con-
dition expressed by Eq. (5.8). Thus,
even though we cannot expect to observe
a system in a "true" thermal equilib-
rium state, we can expect that the
metastable states we do observe will
be a good approximation to the ideali-
zation of "true" equilibrium.5

The other comment about fluctua-
tions that we will find useful in the

There has been much speculation, largely meta-
physical, concerning the possibility that the
universe as a whole is approaching some sort of
final equilibrium state. But the relaxation rate
for this process, if it is in fact taking place,
must be so enormous on our ordinary time scale
that it is hardly reasonable to expect to get
much information about it from measurements
which are accessible to us.
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next section is that fluctuations are
more easily observed in the values of
some of the properties than in others.
We spoke above about fluctuations
APi(t), without discriminating at all
among the various values of i, that is,
among the various properties that can
be measured. But the possibility of
observing fluctuations demands that we
possess measuring apparatus of suffici-
ently high precision. If we denote the
root-mean-square deviation of instrument
readings, which is related entirely to
the precision of the instrument, by
ci(APi), then in order to observe fluc-
tuations in the values of the property
Pi, it must be true that

oi(APi) << cr(AP1), (5.9)

where o(aPi) is the root-mean-square
deviation associated with the fluctu-
ations. This condition puts a rather
severe limitation on any effort to
translate our remarks about fluctua-
tions in general, in any property of a
system, into observations on values of
a particular property. It turns out
that only those properties involving
mechanical or electrical measurements
are likely to display fluctuations
which can be observed with instruments
satisfying Eq. (5.4). One example of
such a measurement is the determination
of position, which, as we saw in sec-
tion 3, is associated with mechanical
equilibrium.

If we reexamine our earlier dis-
cussion of the laws of mechanics, we
see that there is a closer connection
between mechanical and thermal equi-
librium than we have pointed out so
far. In fact, it is not hard to see
that a thermal equilibrium state im-
plies mechanical equilibrium as well.
This is obvious for systems in thermal
isolation, and can also be seen to be
true for systems in thermal contact
with their surroundings. For if a sys-
tem in thermal contact with its sur-
roundings is not in mechanical equi-
librium, a finite net force must be
acting on it. But it is a fact of ex
perience that the action of such a

force is accompanied by the dissipa-
tion of mechanical energy, and we have
seen that, in genel'al, such dissipation
raises the temperature of the system.
Indeed, we can go further and observe
that if the system is in mechanical
equilibrium, but moving with constant
velocity with respect to its surround-
ings, then again dissipation will oc-
cur, since the relative motion will
give rise to frictional forces. Hence,
in general, a system in thermal equi-
librium is not only in mechanical equi-
librium, but also at rest relative to
the surroundings with which it is in
thermal contact. Thus with respect to
the coordinate system in which the sur-
roundings are at rest, the kinetic en-
ergy of the system is K = 0. We recall
from the beginning of this section,
however, that this particular mechani-
cal equilibrium state, in which the
system is at rest, has no special me-
chanical significance. The laws of me-
chanics are exactly the same in the
reference frame associated with this
"rest" state, as in any other reference
frame moving with respect to it, at
constant velocity.

We therefore conclude that if we
examine the motion of an object which
is in thermal equilibrium, using the
mechanical model to represent the ob-
ject by a mass-point, then the mass-
point is in mechanical equilibrium,
and in particular, at rest with re-
spect to the thermal surroundings of
the object. Hence the extended defini-
tion of thermal equilibrium, which in-
cludes fluctuations, implies that
fluctuations should be associated with
the mechanical equilibrium state as
well. This is a requirement that is
not associated with the mechanical
model itself, but is imposed on it by
the relation we have been discussing,
between themal and mechanical equi-
librium.

Although we have come to this
conclusion, that fluctuations are to
be expected in mechanical equilibrium
states from their connection with
thermal equilibrium states, the actual
historical development of these ideas
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took place in almost exactly the oppo-
site direction. As remarked, such fluc-
tuations should be relatively easy to
observe since they require measurement
of position, for which instruments
whose precision satisfies Eq. (5.9) are
available. As a result, such mechanical
position fluctuations were observed
long before their connection with ther-
mal equilibrium was realized, and the
reason for their occurrence remained a
puzzle for a long time. We will de-
scribe some of these observations in
the next section, which, for the rea-
sons just discussed, will give most
attention to mechanical fluctuations.

5.2 MECHANICAL FLUCTUATIONS

Since now we wish to devote our
attention to fluctuations of mechani-
cal properties, we must examine the
opposite extreme in size from that dis-
cussed at the end of the last section,
namely the extreme of very small sys-
tems. But we do not go to the ultimate
extreme of molecules, atoms, electrons,
and nuclei. Even though we will be
dealing with small systems, they will
always be macroscopic. That is, they
are at least large enough to be visible
with an ordinary microscope, using vis-
ible light, and they can be manipt'lated,
by direct or indirect means. The sig-
nificance of this distinction, between
macroscopic size (though small), and
atomic and subatomic sizes, is by no
means merely verbal. On the macrosco-
pic level, the ordinary laws of dynam-
ics, as expressed in Newton's laws,
describe the mechanical behavior of
matter. All the systems we will dis-
cuss display mechanical behavior which
is adequately described by N-I and
N-II. At the atomic level, on the
other hand, this is no longer true;
the behavior of systems at this size
level must be described by the laws of
quantum mechanics. However, the behav-
ior of fluctuations which we shall de-
scribe is a consequence of purely
"classical" or nonquantum-mechanical
dynamics.

These remarks should not be taken
to imply that purely quantum-mechani-
cal fluctuations do not exist. In
fact, the laws of quantum mechanics
have the consequence that fluctuations
occur in all atomic systems. However,
the effects of these quantum-mechani-
cal fluctuations on the behavior of
macroscopic systems are generally so
small that they cannot be observed.
That is, they produce values of cr(APi)
which are smaller than the lower limit
described in statements (a) and (b) in
section 5.1. There are special circum-
stances, which we shall not consider
at all, in which the effects of quan-
tum-mechanical fluctuations can be ob-
served in measurements on macroscopic
systems. Ordinarily, however, purely
quantum-mechanical fluctuations are
even smaller than those due to the
limited precision of measuring appa-
ratus.

We inquire, then, about the ori-
gin of "classical," or macroscopic
fluctuations. Are they associated with
the basic laws of classical mechanics,
that is, N-I and N-II, in a manner
analogous to the connection between
quantum-mechanical fluctuations and
the bas!1:, laws of quantum mechanics?
These are deep questions, and clearly
a complete answer would require study-
ing the laws of quantum mechanics them-
selves, so we will not be able to an-
sver them exhaustively. Instead of
pursuing them further here, we turn to
an examination of the kinds of mechan-
ical fluctuations that have been ob-
served.

What was probably the first exam-
ple of a mechanical fluctuation, in
the sense we have been using this term,
was reported by Brown in 1827. Brown
was a botanist, not a physicist, and
the system he was observing was a liq-
uid suspension of pollen grains. Each
particle in such a suspension is fall-
ing in a retarding medium, so the anal-
ysis we gave in section 5 and Appen-
dix 1 should apply. As we saw, the
downward velocity of the grains should
approach a constant magnitude, the ter-
minal speed VT. We would thus expect
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to see the grains settle to the bottom
of the liquid, and it is common expe-
rience that coarse grains settle faster
than fine grains. This observation is
contained in our analysis, for the ap-
proach to terminal speed should be
roughly exponential. It can therefore
be characterized by a relaxation time
T, as we discussed in the last section.
In Appendix 1, it is shown that

T = vT/g, (5.10)

(compare this with the exponent in the
expression for v(t) which is given in
the caption to Fig. 3.2.). Hence high
terminal speed, which corresponds to
fast settling, is associated with
large T, and small r corresponds to
low VT. At the end of Appendix 1, it
is shown that the relaxation time
decreases as the square of the radius
for spherical particles. Therefore VT,
and also the rate of settling, de-
creases rapidly as the size of parti-
cles in a suspension decreases.6

Before describing Brown's obser-
vations in detail, it will help to es-
tablish a more quantitative criterion
for what we mean by "fast settling"
and "slow settling." If the settling
time is of the order of seconds, we
can reasonably call it "fast," while
if it is of the order of hours (say,
104 sec er longer), we can call it
slow. If the suspension is in a con-
tainer of height H, the settling time
t8 is of the order H/vT. Now the radius
of the particles, R, will necessarily
be much smaller than H, so for slow
settling, (assuming R/H Re, 10-4)

t8 R-!, H/vT ,R1 104 sec; R/vT Re, 1 sec.

(5.11)

That is, for slew settling, a particle
will move about its own radius, or
less, in a second. Such settling will

'Since vT is proportional to g, according tO
Eq. (5.10), while according to Appendix 1, T is
independent of g, the rate of settling can be in-
creased by artificially increasing g, as in a
centrifuge.

thus be almost imperceptible to the
naked eye, unless one watches for
hours. In order to observe the set-
tling of his pollen grains, which had
R 1 micron (10-4 cm), Brown used a
microscope.

In view of our discussion,
Brown's observations were startling.
As observed with the microscope, the
grains were in incessant random motion.
There was no apparent preference for
downward motion, either in the motion
of all the particles in the field of
view at a particular instant, or in
the motion of any one particle followed
in the course of time. The motion of
the grains was so rapid that it was
not possible to determine their speeds
directly. Later observations, however,
used an indirect procedure to arrive
at an estimate of the average speed.
If the motion is followed for a period
of, say, 10 seconds, it will appear
roughly as sketched in Fig. 5.3. The
averae velocity thus has a magnitude,
Ivovol, which is the ratio of the mag-
nitude of the displacement IABI (which

we will denote d), to the time inter-
val. This turns out to be of the order
of the last expression in Eq. (5.11);
that is, in 10 seconds, d is about 10R,
so Ivovol R cm/sec. But clearly the
path is much larger than the displace-
ment, so the average speed, (v), is
much larger than R cm/sec.

This result is clearly paradoxi-
cal; the average speed is of the order
of that describing fast settling, as
discussed in connection with Eq.
(5.11), but the actual settling is
very slow. The reason, of course, is

A

Fig. 5.3 Displacement (line AB) and path
(much longer than displacement)in Brownian
motion.
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that the motion of the grains is ran-
domly directed, rather than being lim-
ited to the downward direction. It was
natural for Brown, at first, to con-
nect this random motion with the fact
that the pollen grains were living
matter. But it soon became apparent
that there was no such connection; the
crucial requirement for observing this
sort of mechanical behavior, which is
called "Brownian motion," is simply
size. Sufficiently small particles, be
they dust, smoke, or whatever, exhibit
Brownian motion when suspended in a
fluid (liquid or gas).

As we saw at the beginning of
this section, fluctuations in the me-
chanical properties are to be expected
for a system in thermal equilibrium,
and presumably Brownian motion is an
example of this sort of behavior. In
the last section, we discussed fluctu-
ations in a system in terms ot all its
properties, which we labeled Pi. If
now we wish to bc, more explicit, we
could choose, as specific examples of
mechanical properties, the instantane-
ous velocity components vx(t), v,(t),
vz(t). Of course, the average value of
each of P!IC:::". components is zero,

since otherwise the entire group of
particles would have a mass motion in
some direction. The mean squares of
these components, (vx2(t)), (vy2(0),
(vz2(0), do not vanish. Unfortunately,
we have just seen that these compo-
nents cannot be measured directly, so
there is no direct way of determining
their mean squares. However, there is
a simple relation between these mean
squares, and the mean squares of the
components of the average velocity,
Vx,,,c, which was defined in connection
with Fig. 5.3. In order to calculate
these mean squares, namely ((vave)x2(t)),

((Vave)Y.1(t)), ((vave)z2(t)) we must
record displacements d1, d2, d3, . .

di, . . . We then take components of
these displacements, (di)x, (di)y,
(di)z. To get the corresponding aver-
age-velocity components (vave)x,

(vave)Y (vave)i (as distinguished
from the unnwasurable instantaneous
velocity components, vx, vy, vz), we

must divide each of the displacement
components by the time interval during
which the particle made the displace-
ment. Let us choose the same time in-
terval, say At, for every displace-
ment.? Then clearly

((vave)x2) = (dx2)/(A02, (5.12)

and similarly for the y and z compo-
n,:nts. Now, when the same time inter-
val is used for each displacement, it
can be shown that

(vx2(t)) = N((vave)x2) (5.13)

(and similarly for the other two com-
ponents), where N is a constart that
depends only on the choice of the time
interval At. In fact, N is just the
ratio of the time interval At to the
average time required, call it (tc)
for the particle to cover one of the
small straight-line segments which to-
gether make up the actual path, shown
as the jagged line in Fig. 5.3. Of
course, since we cannot follow the ac-
tual path in detail, we cannot really
measure the value of (tc), so we can-
not determine the value of the con-
stant N. However, we would expect that
in thermal equilibrium, (tc) will
have a constant value which is inde-
pendent of time, so we can conclude
that N is also a constant (since At
was chosen to be constant), even though
we cannot determine its actual value.

Now that we have shown how the
mean square of each instantaneous ve-
l'ocity component can be determined,
even though the instantaneous velocity
cannot be measured directly, we can
state several remarkable properties of
these quantities. These properties
have been determined from many careful
experiments, some of the most important
of which were performed by the French

'Of course, the average of each component of the
displacement is zero, that is ((Ix) (d,.) - (di)

- 0. Therefore, the average of each component of
the average velocity also vanishes, since
((yaw. (dx)/iit, and similarly for the other
components.
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physicist Perrin at the end of the
nineteenth century, carried out on a
variety of suspensions of small solid
particles. In the first place, in a
suspension in which all particles have
the same mass, these mean squares are
all equal for each component of every
particle. That is,

(vx2(t)) (vy2(t)) (vz2(t)),

(5.14)

or any particle, for any arbitrary
choice of Cartesian axes. We will
therefore denote each of the terms in
Eq. (5.14) by the expression (vu2(t)),
where the subscript u refers to a com-
ponent in any arbitrarily chosen direc-
tion. We can now state the next result,
which is

(vu2(t)) m Tg. (5.15)

That is, the mean square of any Brown-
ian motion velocity component is pro-
portional to temperature as measured
on the gas-thermometer (or ideal gas),
scale. Finally, from experiments some-
what different from those just de-
scribed, it is possible to conclude
that, at constant temperature, the
mean-square velocity component is in-
versely proportional to the mass of the
particle; that is,

(vu2(t)) m l/m. (5.16)

If we now combine Eqs. (5.15) and
(5.16), we can write

(Ku) m Tg, (5.17)

where (Ku) is the average kinetic en-
ergy associated with motion in the
(arbitrary) direction denoted by u.

Thus the essentially random Brown-
ian motion has, on the average, certain
definite regularities, among which is
another connection between mechanical
properties ane temperature. A little
later, we will discuss the deep - lying
significance of this appearance of or-
der out of chaos. But first, we will
rephrase the result expressed by

Eq. (5.17) in a form that reflects,
more directly, the kinematics of the
motion we have been describing.

For a single particle in a suspen-
sion, the total average kinetic asso-
ciated with its Brownian motion is just
three times (Ku), since although u de-
notes an arbitrary direction, there
are only three such directions that
can be chosen independently at one
time, in three-dimensional space. We
can therefore say that the motion of
the particle in a suspension has three
"degrees of freedom." Stated formally
the number of degrees of freedom,
which we will dencte Ndf, is just the
number of independent terms required
in the sum that gives the kinetic en-
ergy K (see Eq. 3.1). For instance, if
the motion of the grains were con-
strained to lie in a surface (perhaps
by suspending them in a very thin liq-
uid film), then Ndf = 2. For a particle
representing a bead sliding on a wire,
Ndf = 1. So in general, we can write
for the average of the total kinetic
energy,

(Ks) = Ndf(Ku) (5.18)

This equation is actually more
general than we have indicated so far.
Until now, we have been speaking of
particles, so we have been limited to
discussing only translational motion.
But rigid bodies can perform not only
translational motion, described in
terms of a particle located at the
center of mass, but also rotational
motion about an axis through the cen-
ter of mass. Again, in three-dimen-
sional space, there are three independ-
ent axes about which rotation can take
place, so for a freely rotating rigid
body there are three additional terms
in the kinetic energy, each having the
form

(Ku)rot = iiu(dOidt)2, (5.19)

where Iu is the moment of inertia
about the axis denoted by the subscript
u, and dO/dt is the angular speed
(measured in radians/sec), about that
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axis. In our discussion henceforth, we
shall not distinguish between rota-
tional and translational kinetic energy
unless we are describing a specific
physical arrangement of a particle or
rigid body. No such distinction is
necessary in a general discussion be-
cause

((Ku)rot ) ((Ku)trane (5.20)

where ((Ku)trans) is the average ki-
netic energy in translational Brcwnian
motion, which earlier we denoted sim-
ply by (Ku). Hence Eq. (5.18) remains
valid in general, so long as Ndf is
taken to mean the total number of de-
grees of freedom, translational as well
as rotational.

So far, we have been considering
free motion, with no potential energy
contribution, V, to the total mechani-
cal energy.8 But in oscillating motion
since (see section 5.3 following) there
is a contribution to V from the restor-
ing force (or restoring torque), and
(Vu) = (Ku). Hence for a degree of
freedom in which oscillating motion is
taking place, the average of the total
mech:.aical energy is

(ELI) = (Ku) (Vu) = 2(Ku). (5.21)

We shall describe an example of such
motion in section 5.3. Then, in sec-
tion 6.1, we embark on a discussion of
the significance of the relation ex-
pressed by Eq. (5.18).

5.3 BOLTZMANN'S CONSTANT

We describe in this section a
measurement of mechanical fluctuations
which allows the constant, in the pro-
portion expressed by Eq. (5.17), to be
determined directly. We saw above, in

oThe particles in a suspension have gravitational
potential energy, Vg; but since the downward ve-
locity vT 0, Vg is constant, and independent of
time to a good approximation for any particle.
This is in contrast to Ku, which does vary with
time because vu2 is varying with time. Only the
averages (v2(0) and (Ku(t)) are constant in
time.

connection with Eq. (5.13), that the
constant of proportionality could not
be found from measurements on Brownian
motion of suspended particles because
the quantities measured in such obser-
vations are not the instantaneous ve-
locity components, vu, but the compo-
nents, (v,)u of the average velocity.
If we wrote Eq. (5.17) as an equation,
we would introduce a constant for the
ratio Ku/Tg, and this constant, call
it Ci, should be the same for all de-
grees of freedom. Then the ratio
(v,12) /Tg is another constant, say C2,
and C2 = 2C1 /m, where m is the mass of
the particle. But we cannot measure
(vu2), since the path cannot be fol-
lowed in detail, so we must replace it
by the measured quantity ((vave)u2).
'ihe ratio ((vave)u2)/Tg is still an-
other constant,

C3 C2/N c2(to)/at = (2(tc)/mAt),C1

(5.22)

Hence although C3 can be measured for
any particular suspension, we cannot
thereby determine the value of the
constant C1, which is really of in-
terest because it is the same for all
degrees of freedom. The reason is, as
we see from Eq. (5.22), that the ratio
C2/C1 contains the undetermined quan-
tity (tc).

Fortunately, Eq. (5.21) provides
a means for avoiding this difficulty.
In an oscillating system, the energy
can be expressed in terms either of
the kinetic or potential energy. Thus
Eq. (5.21) could equally well be writ-
ten

(Eu) = 2(Vu). (5.23)

Now Vu is a function of the displace-
ment, so (Vu) can be found by measur-
ing the mean-square displacement of
fluctuations.

The oscillating system used in
the experiment we will describe was a

9This experiment was reported by E. Kappler, in
the journal "Annalen der Physik," Volume 11,
page 233, published in 1931.
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torsional pendulum consisting of a
small mirror (m 5 milligram), sus-
pended on a very fine quartz fiber
(diameter about 0.1 micron). The sys-
tem has just one degree of freedom,
corresponding to rotation of the mir-
ror about the axis of the fiber. If
the fiber is twisted by an initial
angle 00, it exerts a restoring torque,
M, which is proportional to the angle
of twist, and so can be written

M = -K0 (5.24)

the only remaining motion is fluctua-
tions about 0 - 0. From Eq. (5.23) we
can write

where K is the restoring torque con-
stant. Hence the mirror executes sinus-
oidal torsional oscillations of angular Film

frequency. Motion

w = (x/01 (5.25)

where I is the moment of inertia of
the mirror. Thus K can be determined
from Eq. (5.25) by measuring wand I.
The potential energy V, is just

Vo = im02 (5.26)

and the kinetic energy is (see
Eq. (5.19))

Ko = (5.27)

Since

0(t) = 00 cos wt, c(t) = -00 cos wt

(5.28)

we have

Vo(t) ix002cos2 wt,

K,(t) = 0000 sin2 wt (5.29)

Now the average, over one period, of
both sin2 wt and cost wt is equal to
so we see from Eqs. (5.29) and (5.25)
that Vo(t) and K4(t), averaged over a
period, are equal, as stated in connec-
tion with Eq. (5.21).

As the oscillations proceed, the
initial energy E0 = ix002 is dissi-
pated, and ultimately the system
reaches an equilibrium state, in which

Time

4

30 sec

Mirror Deflection

Fig. 5.4 Fluctuations in angular position
of the mirror attached to the quartz fiber
in Kappler's experiment, as recorded by re-
flecting a beam of light from the mirror to
a photographic film moving slowly in the
vertical direction. The distance between
the two short lines represents an interval
of 30 secondS.
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(Eu) = 2(iK) (02) = ksTs, (5.30)

where ks is the proportionality con-
stant we have been seeking, between the
average energy in mechanical fluctua-
tions, and Tg (note that this constant
is just twice the constant CI, which
was introduced in the discussion of
Eq. (5.22)). The constant ks is called
Boltzmann's constant, after the physi-
cist who postulated the relation in
Eq. (5.17). Its value can be deter-
mined from Eq. (5.30), once K has been
found from Eq. (5.25), by measuring
(02), the fluctuations in the position
of the mirror as it makes random oscil-
lations about the fiber axis, in equi-
librium. Kappler recorded the position
of the mirror by reflecting a point
light source from it onto a photo-
graphic film, which was moved slowly
in the vertical direction. An example
of one of these records, showing fluc-
tuations over a period of about half
an hour, :Is shown in Fig. 5.4.

Since (En) has the dimensions of
energy, the dimensions of ks are en-
ergy/degree, so its value depends on
the size of the degree for the temper-
ature scale used. With the degree ap-
propriate to the Tg scale, which we
denoted oslo, the best current value
is"

10This degree is the same as that on the common
metric Celsius scale (CC), since the two scales
differ only by the displacement of their origin,

k s . 1.38054 x 10-16 ,:rg/°K or

ks = 1.38054 X 10-23 J/ °K,

where J is the Joule, the unit of en-
ergy on the MKS scale, (1 J = 107 erg).

The small value of ks in cgs or
MKS units explains why mechanical fluc-
tuations are not commonly observed, but
require special circumstances, such as
suspensions of small particles, in or-
der to be seen. From Eq. (5.30) we can
see that

(vu2(t)) (ks/m)Ts, (5.31)

so that for a mass as small as a micro-
gram (say a cube of ice about 0.1 mm.

on a side), and a temperature in the
neighborhood of room temperature (about
3 X 102 °K), (v,2(t)) Al 4 x 10-3 cm2/
sect. The observed speeds will be of
the order of a(v,), or the square root
of (vu2(0), or m 2 x 10-4 cm/sec =
2 micron/sec, and thus would be imper-
ceptible without magnification. For a
mass of a gram, a(vu) will be 103 times
smaller yet.

that is, Tir(°N) Tc(°C) + To (see Eq. (4.4))
where T, - 273.16 °K.
"Boltzmann's constant can be determined in a
variety of different ways besides fluctuation
measurements; in fact, fluctuations do not gibe
the most precise value.
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6.1 REGULARITY IN RANDOM EVENTS.

DEGREES t REEDOM

The proportionality of Eq. (5.18),
which, in view of Eqs. (5.21) and
(5.30) can be written

(Ku) - 3k8Tg, (6.1)

expresses a remarkable regularity. For
it asserts that this average is a con-
stant, in equilibrium, which has the
same value for every degree of free-
dom, rotational as well as transla-
tional. By virtue.of Eq. (5.21) the
average of every potential energy con-
tribution in an oscillating system
also has the same value. But of course,
Ku(t) fluctuates randomly as the ve-
locity fluctuates, so Eq. (6.1) means
that we have found order in the midst
of chaos. It was pointed out at the
end of the last section that (Ku) is a
very small energy on a macroscopic
scale of energies, but regardless of
its size, its very existence poses a
problem which we now investigate.

Actually, this sort of regularity
in averages associated with random
events is commonly observed, provided
that the number of random events is
large enough. For instance, if a fair
coin is tossed N times, the order in
which heads and tails appear is ran-
dom. However, as N increases, the ratio
of toils to heads, t/h, approaches
unity. But in the sane limit, that is,
ever-increasing N, the average of the
magnitude of the difference between the
number of headm and the number of tails,

tl) (WI), does not decrease.
In fact, this average increases without
limit as N increases. Hence the se-
quence of tails and heads remains ran-
dom, no matter how long the game is
played.

At first might, it might appear
that the statement, "Average of IAN) in-

creases, as N increases" is inconsistent
with the statement, "The ratio of tails
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to hea4' 1 approaches unity as N in-
creasc we can see that the two
statements ale compatible, in the fol-
lowing way.

The average value of the ratio of
tails to heads is

(t/h) ((h T IAN) /h) - 1 ; (IANI/h)

(6.2)

(Since IAN! is always positive, the
positive sign must be used in Eq. (6.2)
if AN itself is negative.) As N in-
creases, h, the number of heads, ap-
proaches N/2, so Eq. (6.2) can be writ-
ten:

(t/h)ft 1 T 2 (IAN!)/N (6.3)

Now as stated above, the average of
WI increases with N, but it does not
increase as fast as N. For large N,
(IAN) is proportional to the square-
root of N, that is, to Ni, so that as N
increases, (t/h) approaches

(t/h) :*. 1 2/N3, (6.4)

and therefore the ratio (t/h) has the
limit unity, as N increases without
limit.

This discussion suggests that the
constant averages (vul(t)) and (Ku(t))
must arise as limits like that in
Eq. (6.4). That is, they represent av-
erages of some sort of repeated random
process, the number of whose repeti-
tions is very large. Me must now ask,
what is the nature of the random proc-
ess involied? That is, what is the
physical origin of the observed result,
that successive values of v1(t) differ
from each other?

If we are to retain the validity
of Newton's Second Law, we must answer
that Ave vu(t2) vu(ti) can only
arise from the action of a component
of force, Fu, acting during the time
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interval At = t2 ti. We have, from
N-II,

Av u = f
t

Fu (t)(t) dt = 1 Ju (6.5)
1

where Ju is the impulse. Now the sys-
tems we have been describing, namely
particles in a fluid suspension, are
mechanically isolated from everything
but the fluid itself. The suspending
fluid is therefore the only possible
source of the required impulse Ju. And
the origin of this impulse must be
sought in degrees of freedom associated
with the internal structure of the
fluid. We have so far neglected to
mention these internal degrees of free-
dom, for reasons which are discussed
in Appendix 5.

Much of twentieth-century physics
has been devoted to an investigation of
the internal structure of matter. The
modern atomic theory, based on quantum
mechanics, which has resulted from this
effort, gives us a largely satisfactory
picture of this internal structure. In
quantum mechanics, the distinction be-
tween the macroscopic and atomic lev-
els is a fundamental one. It is basic
to quantum mechanics that the degrees
of freedom associated with the internal
structure of matter, which we shall
henceforth refer to as "internal de-
grees of freedom," do not, in general,
behave like small copies of those we
are familiar with on the macroscopic
level. For instance, we can never ex-
pect to see an electron, no matter how
refined our techniques become, in the
same way that we can see pollen grains
which are invisible to the naked eye,
by using a powerful microscope.

Nevertheless, there are some re-
spects in which the internal degrees
of freedom do behave much like those
of "classical" Newtonian particles, As
a result of this similarity, many re-
lations between thermal and mechanical
properties can be understood without
invoking quantum mechanics. The rest
of this monograph will be devoted to
examining some of these relations on
the basis of the behavior of the inter-
nal degree& of freedom.

In the first place, from the dis-
cussion of Eq. (6.5), we see that if
the averages (Ku(t)) and (vu2(0) for
a particle in a suspension are con-
stant because the impulses Ju arise
from random interactions with the in-
ternal degrees of freedom, then the
number of those degrees of freedom,
(Ndj)/, must be large. From the defi-
nition of Ndf in the last section, we
would expect (ial)/ to be of the order
of the number of atomic particles mak-
ing up the internal structure of the
suspension. If there are Na of these
atomic particles (atoms or molecules),
in the suspension and they are all
moving freely in three dimensions, then

(Nu1)1 3Na. (6.6)

Secondly, we now have a very sim-
ple way of understanding the dissipa-
tion of mechanical energy. Suppose we
drop a pollen grain of mass m, which
has the temperature Tg' into a liquid
at the same temperature. We give the
grain an initial downward speed vo. It
will decelerate and quickly reach ter-
minal velocity V?, which, as we have
seen, is very small. The initial me-
chanical energy (m/2)vo2 has all been
dissipated. Now at the outset, this
mechanical energy was associated with
just one degree of freedom, namely
that of the center of mass of the pol-
len grain, in the downward direction.
The dissipation proceis consists sim-
ply of the sharing of this energy
among all the internal degrees of free-
dom, numbering (N0)1, of both the pol-
len grain and the suspension. Before
the pollen grain was fired into the
suspension, each of the internal de-
grees of freedom had (Ku) ikTs' (see

Eq. (0,1)). Since the atomic particles
in the pollen grain are not moving
freely, but also possess potential en-
ergy due to the elastic forces that
bind them to each other, the total en-
ergy of each of their degrees of free-
dom is given by Eq. (5.2l). Therefore,
at the outset, the total mechanical
energy of the system is
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E t = imvo 2 + {2[ (NdOi izi.ain

+ (NO )1 suspension } (ikTg (6 .7 )

and from Eq. (6.6), we have

Et = 4mvo2 + {(3lags)16(Na)Kiain

+ 3 (Na) suspension
(6.8)

If the total mechanical energy is con-
served, then after the pollen grain
has come essentially to rest (since
vT sr 0) ,

Et (ikTg")[6(NOgrain

+ 3(N ) Terisitm )4 (6.9)

The final equilibrium temperature Tg"
> Tg', since we know that dissipation
increases the temperature. The quan-
tity in brackets in Das. (6.7) and
(6,8) is called the internal energy,
since it is associated with the inter-
nal degrees of freedom, in contrast to
the term 3mv02, which is a property of
the center of mass of the pollen grain.
We will denote the internal energy by
U, and we see from Eqs. (6. ?) and (6.8)

that it is a function of temperature.
We can combine these two equations in
the form:

U(Tg") U(Tgl) AU 3mv02, (6.10)

or, in words, dissipation of mechani-
cal energy increases the internal en-
ergy.

We will discuss the internal en-
ergy U further in the next section.
Before doing so, we consider one fur-
ther question connected with our dis-
cussion of dissipation. According to
our description of dissipation, energy
which is initially concentrated in one
degree of freedom, namely the amount
imvol initially possessed by the z com-
pon-nt of the motion of the pollen
grain, is shared, during the approach
to equilibrium, by all the degrees of
freedom. Equilibrium is reached when
this sharing is complete. We now in-
quire as to the mechanism by which

this sharing takes place. In other
words, how is macroscopic mechanical

converted toenergy, (Kz) tenter of mass,
internal energy U?

The answer to this question does
not require the introduction of any
new assumptions, at least for the
Brownian motion of particles in a sus-
pension, or for the molecules or atoms
in a gasEach particle in the internal
structure possesses, on the average,
an amount of energy equal to (K,) for
each degree of freedom. Hence each of
these particles is incessantly moving,
and therefore colliding with its neigh-
bors. These collisions produce the im-
pulses Ju. Since the collisions are
random, their result is the uniform
sharing of energy, on the average, by
each degree of freedom. In fact, we
can write an equation analogous to
Eq. (6.3), replacing t/h by the ratio
of K for any two degrees of freedom,
say Ki and K. Then, as in Eq. (6.4)

we have

(KI/Kj) a 1 (2/N3) (6.I1)

where now N is the (enormous, number
of successive collisions.

The same argument can be extended
to the internal structure of a solid.
In this case, since the atoms or mole-
cules are bound by elastic forces, the
average energy is (E,) 2(Ku) per de-
gree of freedom. Again, the continual
motion results in interactions which
provide the impulses J,,. Once more,
the result of the random impulses is
that each degree of freedom has an
equal share of the total internal en-
ergy.

Since we have been treating all
degrees of freedom, those associated
with the macroscopic model as well as
those of the internal structure, on an
equal footing, it should be possible
to construct a macroscopic models' of
this equalizing process, which we will

iiNotice that here, the word model is taken in
the literal sense, like that of the ball and rod
model cf the solar system referred to in foot-
note I.
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refer to as "equipartition of energy."
The game of billiards is an example of
a model for the internal structure of
a gas. Initially only the cue ball
possesses K, but after it hits the
other balls, which were initially at
rest, they all share in the motion.
The process is somewhat obscured by
friction between the balls and the
table. A better model can be con-
structed by placing smooth disks on a
smooth table with many small holes
through which air is forced, so that
the disks are supported on a cushion
of air. A photograph of such a model
is shown in Fig. 6.1. Friction is very
much smaller on such an air table than
on a pool table, so that the approach

Fig. 8.1 General arrangement for observing
two-dimensional collisions with negligible
friction. The camera at the top of the tri-
pod is focused on the air table on the
floor. A wire strung along the edge of the
air table serves as a rough approximation
to a (nonuniform) temperature bath when the
motor in the foreground rocks the table
about a vertical axis. The pump which forces
air through the hcle In the table can be
seen in the right background.

to equilibrium can be followed for a
much longer time. It is fount that the
ratio in Eq. (6.11), which here can be
measured directly by using strobo-
scopic illumination to measure vu(t),
as shown in Fig. 6.2, rapidly ap-
proaches unity. Further, by using
disks of different mass, as shown in
Fig. 6.3, the proportionality stated
in Eq. (5.16) is also confirmed.

To the degree that the behavior
of the macroscopic degrees of freedom
associated with the motion of the cen-
ter of mass of the disks (for each

10-

0

Fig. 6.2 A multiple exposure with strobo-
scopic illumination, using identical disks
in the arrangement of Fig. 6.1. A collision
took place hear the bottom of the figure.
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disk, Ndf = 2 if rotation is neglected,
Ndf = 3 if rotation is considered), is
similar to that of the internal de-
grees of freedom, this model provides
a convenient way of examining the ap-
proach to equilibrium in detail.

6.2 INTERNAL ENERGY

Our definition of internal energy
of a system as the total mechanical
energy associated with all the degrees
of freedom of its internal stt.Jo.ture

(which we have called "internal de-
grees of freedom") was deceptively
simple." We approached the definition
through the examination of fluctua-
tions in free macroscopic particles,
although we have also referred to os-
cillating systems in passing. For a
free macroscopic particle, we have as-
serted that (Ku) is related to Tg by
Eq. (6.1) and for a macroscopic oscil-
lator, Eq. (5.21) relates (E,) to Tg.
We will refer to these as "classical"
relations, since they are obeyed by
macroscopic degrees of freedom, and we
will call any degree of freedom, mac-
roscopic or internal, for which these
hold, a "classical" degree of freedom.
Now both of these results are examples
of the "lamppost" tectnique described
In section 1. We have stressed in var-
ious places, and especially in Appen-
dix 5, that in general, internal and
macroscopic degrees of freedom cannot
be expected to behave alike. That is,
it is most unlikely that internal de-
grees of freedom will behave "clas-
sically." Hence we may wonder how
Eqs. (6.1) and (5.21) can be used in
discussing internal energy, or even if
they can be used for that purpose at

-..111
3$11otice that ve exclude from the internal en-
ergy any mechanical energy that an Internal de-
gree of freedom, in a rigid body, possesses by
virtue of the motion of the center of mass of
the body. That Is, the motion corresponding to
internal energy is motion relative to the center
of mass. It is therefore described In a coordi-
nate system in vhich the center of mass of the
rigid body Is at rest.

A01.14,nria
. ill

.0*

Fig. 8.3 The same as Fig. 8.2 with large
and small disks.

all. There is just one physical system
that is a reasonable approximation to
a collection of free particles on the
atomic level - a gas at low pressure.
The suspension of fine particles we
have been discussing is also a reason-
able approximation, but on a macro-
scopic level. And our analysis showed
(see Eq. (5.13)), that in this system
the relation between measurable speeds
and Ts contains the constant N, whose
value cannot be determined. In sec-
tion 5.3, we discussed a macroscopic
system whose fluctuations do give a
value for ka. But as stressed in Appen-
dix 5, the assumption that all internal
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degrees of freedom behave like macro-
scopic ones, is in general unwarranted.

In the next section, we shall see
how departures from classical behavior
by the internal degrees of freedom can
be observed in purely macroscopic meas-
urements. The rest of this section is
devoted to two other matters. First,
we make more explicit how to distin-
guish between mechanical energy, which
is our name for energy associated with
degrees of freedom associated with the
motion of the center of mass or of ro-
tation about the center of mass (we
shall refer to these as "center of mass
degrees of freedom"), and internal en-
ergy, belonging to the degrees of free-
dom of the internal structure. Then we
discuss how the internal energy can be
related to the macroscopic equilibrium
properties, the (Pi), which we intro-
duced in section 4.1.

6.2.1 Mechanical Energy and Internal
Energy

The first problem, of distinguish-
ing between mechanical energy and in-
ternal energy, is important because we
based our introduction of internal de-
grees of freedom in the last section
on complete equivalence, so far as
sharing energy is concerned, between
the degrees of freedom of the center
of mass and those of the internal
structure. If there were no qualifica-
tions to this equivalence, then the
particle model could not possibly de-
scribe motion adequately, even for
macroscopic objects. For the particle
model ignores the internal degrees of
freedom completely. In fact, a useful
definition of a "mechanical system"
(in contrast to a "thermal system"),
is one in which only changes in me-
chanical energy due to external forces
need be considered. In such an ideal-
ised system, the internal energy is
constant, unaffected by the motion of
the object or by the forces acting on
it. Hence, mechanical energy is con-
served, and there is no sharing of en-
ergy with the internal degrees of free-
dom (no dissipation). We must therefore

inquire how it can be that conversion
of mechanical energy into internal en-
ergy occurs in all real systems, while
the ideal mechanical system is actually
a useful abstraction, despite the fact
that it ignores all internal structure.

Of course, every macroscopic ob-
ject has internal structure, and in-
ternal degrees of freedom associated
with it. This structure is very com-
plex; it comprives molecules, whose
constituent atoms themselves are made
of electrons and nuclei, which in turn
coasist of neutrons and protons. It
turns out, as we shall see in the next
section, that equipartition of energy
does not apply to all the internal de-
grees of freedom. However, at least
some of them behave "classically," as
defined earlier in this section, and
the following remarks apply only to
these.

Let us examine the consequences,
for these classical internal degrees
of freedom to which equipartition of
energy does apply, of giving a veloc-
ity, V, to the center of mass of an
object which was initially at rest.
The mechanical energy, of course, is
increased by 3mV2. When the object was
at rest, the components of the inter-
nal structure were subject to interac-
tion forces which we denote (Fu)0 (see
Eq. (6.5)). These forces are responsi-
ble, as we have seen, for the attain-
ment of equipartition of energy among
the classical degrees of freedom. When
the center of mass is moving with ve-
locity V, we denote the interaction
forces (Fu)y. We now ask, what is the
relation between (Fu)o and (F00

We recalled above that the parti-
cle model is an ideal abstraction in
which dissipation does not occur, and
that dissipation is simply the conver-
sion of mechanical energy into internal
energy. Now when our object is at rest,
we know that the interaction forces
(Pp)0 do not change the mechanical en-
ergy. An external force is required to
set the object In motion. In referring
to an ideal situation in which dissi-
pation does not occur, the particle
model embodies the assumption that the
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interaction forces (Fu)y, which act
when the object is moving with veloc-
ity V, do not change the mechanical
energy, 3mV2, either. Now if this were
not a good assumption, the particle
model would not be a useful abstrac-
tion at all. In fact, no reasonable
model could be made, which, like the
particle mcdel, ignores the internal
structure.

This assumption about the inter-
action forces (Fu)v could, of course,
be justified by the success of the par-
ticle model. But the remarkable fea-
ture about this property of the inter-
action forces is that it does not re-
quire a special assumption at all. For,
as we discussed at the beginning of
section 4, forces are the same in all
reference frames moving with respect
to each other with constant velocity."
(Such frames are all "inertial frames"
with respect to each other.) Therefore,
when we give a macroscopic object a
constant velocity V, we do not change
the internal interaction forces at all.
Hence, the forces (Fu)y, like the
forces (Fu)0, do not affect the mechan-
ical energy, because (Pu), (Fu)0. As
a consequence, the energy associated
with the macroscopic motion is not
shared with the internal degrees of
freedom, unless there is some kind of
new force exerted on the body as a re-
suit of the motion. Such forces are
provided by friction, when the object
moves in a resistive medium, or by the
impulses occurring when it strikes an
obstacle. These forces will then pro-
duce dissipation, and ultimately result
in the sharing of the macroscopic en-
ergy among all the internal degrees of

Mlles an object is rotating about its center of
sass, the reference frame is which it is at rest
is not an inertial frame with respect to the
reference frame in which the object is rotating.
Hence the internal forces are affected by rota-
tion, and the argument given hue does not hold.
Thus, is order for the particle node) to be
valid for rotation, the special assusiption Is
required, that the changes in interaction forces
due to rotation do sot, by themselves, lead to
appreciable dissipation.

freedom, thus increasing the internal
energy.

6.2.2 Macroscopic Properties and
Internal Energy

We now turn to the relation be-
tween internal energy and the macro-
scopic properties, (P1), of an object
in thermal equilibrium. The expression
given in Eq. (6.10) for the increase
in internal energy resulting from the
dissipation of mechanical energy, is a
little misleading. In that equation, U
was written as a function of tempera-
ture only. This is certainly true for
the classical degrees of freedom of a
free particle. But in general, if we
wish to express the internal energy of
a.system whose internal degrees of
freedom are more complicated, we muqt
expect that U will depend on other
properties of a thermal equilibrium
state besides Tg. Thus we may write

U U(Tg,Pj).

If we do this, we might appear to
be back at the point at which we were
led to introduce the concept of tem-
perature. The internal energy has a
unique value in each thermal equilib-
rium state (we will describe this prop-
erty of the internal energy by calling
it a "function of state"), but unfor-
tunately, other properties besides the
temperature, and conceivably many
other properties, might be required in
order to specify the state and hence
the internal energy. But again, the
fact that the number of internal ae-
green of freedom is enormous comes to
our rescue, as it did in establishing
Eq. (6.1).

All of the properties Pi of a mac-
roscopic thermal system in equilibrium
are related to averages of correspond-
ing properties of components of the in-
ternal structure. For instance, the
volume Vs, is the product of the num-
ber Na of atoms or molecules, and the
average volume (Vs) associated with
each of the atoms or molecules. Be-
cause of the fluctuations in the posi-
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tions of the individual atoms of mole-
cules, Va will vary from one to the
next, but because of the enormous num-
ber of atoms or molecules, (V,) will
not, in general, have detectable fluc-
tuations, so there will be no observ-
able fluctuations in V8 either. The
same sort of argument holds for other
properties Pl.

Now we have seen that for con-
densed matter the elements of internal
structure are not free. The interac-
tion forces among them will in general
depend on distance, since they are
basically of electrical origin. Hence
the potential energy of the internal
degrees of freedom will depend on Va,
and therefore the average potential
energy (Vu) will be a function of
(Vs). Therefore, we may expect in gen-
eral that the internal energy, U, in a
thermal equilibrium state is a func-
tion of Vs, the volume of the system,
as well as a function of Tg: U
U(Tg,V.). All the other Pi will also
depend on either Ts (through (Ku)), or
on Vs, so we would expect that just
the two macroscopic variables, Tg and
Vs, would completely determine all the
P1 in a thermal equilibrium state.

This expectation is borne out,
provided that (Yu) depends only on the
average separation of the atoms or
molecules, as expressed by (VA). If
the atoms have a net magnetic moment,
however, then (Va) will also depend on
the external magnetic field H or the
magnetic induction B, and U U(Ti,Vs,H).

Or if dipole moments are also present,
U will depend on the electric field, E,
so U U(Tii,Vs,H,E) in this case. Fi-
nally, the eJpendence of (Vu) on (VA)
may be different in different chemical
species, so if a system is chemically
heterogeneous, that is, if it contains
chemical species Mt, Ms then

U will depend on the relative amounts
Of each, mi(111), NA(MA) . . , U
U(TI,VA,m1,111 . . .), if no magnetic
moments or electric dipoles are pres-
ent.

We can conclude from this discus-
sion that since the internal energy
is a function of the thermal equilib-

rium state in the sense defined, the
thermal equilibrium states must be
uniquely defined by just the limited
number of macroscopic variables that
appear in the ..arious parentheses as
arguments of the function U. Hence re-
lations among different thermal equi-
librium states can be expressed purely
in terms of macroscopic variables,
with no need at all to mention the var-
iables on the atomic level to which
these macroscopic variables are re-
lated. The remark "no need at all" re-
quires some qualification, however.
There is a need to inquire about the
internal structure, if we are inter-
ested in the source of the order that
is observed on the macroscopic level.
Nevertheless, it remains true that for
crtain purposes such inquiry about
the atomic level is a luxury. The
study of relations among thermal equi-
librium states, which is the subject
of "classical thermodyramics," is a
very powerful tool for investigating a
large class of natural phenomena. Much
of the study of chemical reactions,
for instance, can be treated entirely
by classical thermAynamics.

6.3 HEAT AND HEAT CAPACITY

We see from the above discussion
that 4.1', as a result of some operation
performed on a system In a thermal
equilibrium state, which we will de-
note Si, the internal energy U of he

system is changed, then the system
must have undergone a transition to a
new state, say S,. Now the application
of a force to an object which is free
to move is not such an operation; the
center of mass will acquire kinetic
energy equal to

(6.12)

where rile its initial position vec-
tor, rs is the position vector at
which the force is removed, and p(;)
is the net external force applied so
that the integral in Eq. (6.12) is the
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work done on the object. As we have
seen, the internal energy of a system
has a value which is independent of
the mechanical energy of its center of
mass, although as a result of naturally
occurring process this mechanical en-
ergy is sooner or later dissipated into
internal energy.

It is possible, however, for a
force to do work which changes the in-
ternal energy of a system. For in-
stance, if the force is applied to a
rigid body which is constrained so
that it can't move, the work done by
the force is stored as elastic inter-
nal energy in the rigid body .15 The
elastic energy is internal energy be-
cause, in this case, the force deforms
the body. So Vs is changed, and there-
fore so is (Va); and we have seen that
c/u), and therefore U, depends on (1/1).
(Does this argument hold for shear de-
formation, in which only the shape,
but not the size, of the object is
changed?) In both of these cases, that
is, a rigid body (a) whose center of
mass has been given kinetic energy (be-
fore this has been dissipated into in-
ternal energy and the body has some to
rest), or (b) which has been given
elastic potential energy, the work
which has been done can all be recov-
ered as mechanical energy. For in-
stance, the object with kinetic energy,
K, can be brought to rest by having it
lift a weight, so that K is converted
into gravitational potential energy,

In general, however, work which
has been converted into internal energy

"This description is, to some extent, a contra-
diction In terms. The 'l'al rigid body, Intro-
duced as an abctraction In classical mechanics,
has a fixed voluee Vi, ehIch Is independent of
external forces, la order to discuss elastic
forces, as we have just done, a different model,
the "elastic holy" is introduced. However, the
theory of elasticity, which has been extensively
developed, starting early in the nineteenth cen-
tury, treats the elastic body as a mathematical
continuum, without any discrete internal stn.:-
ture. It regards such a body as made up of geo-
metrical points, much in the sane way as we re-
gard space, and does not introduce the notions
of atoms or molecules.

cannot be completely recovered. A com-
plete discussion of the conversion of
internal energy into work is well be-
yond the scope of this monograph, so
we will conclude with a further discus-
sion of the reverse process, the per-
formance of work on a system so as to
change its internal energy. We will be
interested in two of its aspects in
particular: first, to describe in more
detail how it is related to measure-
ments of internal energy; and second,
to show briefly how some very important
properties of the internal degrees of
freedom can be deduced from measure-
ments of internal energy.

We have already given brief atten-
tion to the first question, measure-
ment of internal energy, when we wrote
Eq. (6.10). We will rewrite the rela-
tion stated there as

U(Sf) - U(Si) - AU - AWA. (6.13)

In this lelation, Si and Si refer to
the initial and final states respec-
tively, as identified by their respec-
tive values of Ts, Vs, and whattver
otte=r macroscopic variables are needed
to specify them completely (for in-
stance, electric field, E; magnetic
field, H, etc.)." The subscript A is
attached to the expression for the
work done, to emphasize that this re-
lation holds only under special circum-
stances, namely, when work is performed
on the system, with the system ther-
mally isolated from its surroundings.
Such a process is called an "adiabatic
process," and the subscript A was cho-
sen to refer to the tern adiabatic.

The reason for attaching this con-
dition of thermal isolation, that is,
requiring that the process be adia-
batic, is that the internal energy can
also be changed without any work being
done on the system. We have stressed
the fact that the temperature of a sys-
tem will change if it is placed in
thermal contact with another system at

"Note that it the system does mechanical work
at the expense of its internal energy, AV will
be negative, and so will Ala.
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a different temperature. Since U is a
function of Tg(as well as other varia-
bles), a temperature change corresponds
to a change in U (as indicated in
Eq. (6.10)), provided that the other
variables which define the state 8,
remain constant. In what follows, we
shall, for simplicity, consider only
systems for which U = U(Tg,Vs) and no
other variables. For such a system,
then, if its volume, Vs, remains es-
sentially constant, a change in TR im-
plies a change in U. Hence we have as-
serted that changes in U occur in sys-
tems with constant Vs, when they are
placed in thermal contact with a sys-
tem at a different temperature.

This process, exchange of inter-
nal energy between systems originally
in thermal equilibrium at different
temperatures after they are placed in
thermal contact, is usually referred
to as "heat transfer." The term "heat"
means simply internal energy which is
exchanged between systems in thermal con-
tact, in the course of their approach
to mutual thermal equilibrium. If this
exchange is not accompanied by the per-
formance of any work, that is, if it is
a purely thermal process, Then there is
no other change in U.

Suppose we have a system labeled
"1," initially in thermal equilibrium
state at at temperature T,1 (henceforth

the subscript g on T will not be wr t-
ten, although it is still implied that
we are using the gas-thermometer scale)
placed in thermal contact with a
system labeled "2," initially in
thermal equilibrium in state SRI at
temperature Tit. When placed in ther-
mal contact, they reach states Sif and
82t, which have the same temperature,
Tf. If the two systems are in thermal
isolation from all surroundings but
each other, and if no work has been
done on either system, then

U(s11) + mit) u(sit) +

(8,14)

since there has been to change in the
total internal energy of the two sys-

tems taken together. If we transpose
terms, we have

u(s,f) U(S11 [ U(S21) u(s21 )]

(6.15)

or AU, = AU2. (6.16)

Each of the terms in Eq. (6.16) repre-
sents an internal energy change due to
heat transfer. Such internal energy
changes are usually denoted in a spe-
cial way, by the letter Q:

AU1 a 6%; AU2 AQ, (6.17)

and we see from Eq. (6.16) that

AQ2 4A1 (6.18)

In common parlance, AQ is often re-
ferred to as "an amount of heat," but
we see from our discussion that such
an expression can be misleading. The
word "amGalt" is usually associated
with a substance that can be obtained
in isolation; we speak of "an amount
of money," for example. But "heat" is
not a substance in this sense at all.
It merely represents a change in in-
ternal energy, U, occurring in a cer-
tain specified way, namely, as the re-
sult of thermal contact alone.

If we consider a general process,
in which U changes both by thermal con-
tact and by the performance of mechan-
ical work as well, we can combine
Lots. (6.17) and (6.13), and write

AU AW 4 /IQ. (8.19)

(Note that we have omitted the sub-
script A on AW, since now the process
is no longer adiabatic.) This relation
is called the First Law of Thermodynam-
ics. We see that it expresses the con-
servation of internal energy, and thus
is a generalization of the conservation
of mechanical energy of macroscopic de-
grees of freedom. The actual historical
development which led to its assertion
was very different from the way in
which we arrived at its statement.
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That development took place before any
but the vaguest notions had been estab-
lished, concerning internal degrees of
freedom. As a result, Eq. (6.19) was
first stated as a generalization from
purely macroscopic measurements, espec-
ially those of Joule. He performed me-
chanical work on various fluid systems,
such as baths of water and mercury.
The center of mass of the liquid always
remained at rest, so none of the work
AMA became macroscopic kinetic energy;
it was all dissipated into internal
energy. The fluids were in thermal iso-
lation from their surroundings. Joule
detected the change in internal energy,
AU, by measuring the resulting change
in temperature, AT. He found that for
a given fluid system, exactly the same
AT was observed for a given expendi-
ture of work AMA regardless of the man-
ner in which the work was dissipated;
he used frictional processes of differ-
ent sorts, and electrical dissipation
as well. (The heating of a wire through
which an electrical current passes is
now called "Joule heating.") He argued,
as we have done, that since Ti and Tf
were the same in each case, that the
different processes he used always
took the system from the same initial
thermal equilibrium state to the same
final equilibrium state (changes in
volume V4 were negligible). Hence he
was able to conclude that AU was the
same in each case. Since the value of
AU did not depend on the particular
process he employed, that is, on the
manner in which AMA was dissipated,
or on the particular fluid system in
which AMA was dissipated, he concluded,
as we did earlier, that U, the inter-
nal energy, is a "state-function" in
the sense that we defined. Thus Joule
was able to assert the validity of
Eq. (1.19) without making any assump-
tions whatever concerning the Internal
structure of matter, or the internal
degrees of freedom associated with that
structure. Not only was Joule's argu-
ment a success, so were further deduc-
tions concerning the connection be-
tween macroscopic thermal and mechani-
cal behavior that could be shown to

follow from it. Those successes actu-
ally inhibited acceptance of a*omic
theory to a certain extent toward the
end of the nineteenth century, as dis-
cussed in Appendix 5.

Equation (6.19) describes only
changes in internal energy, and not
any actual values of the internal en-
ergy in a particular state, which we
have been denoting U(S2), U(S2), etc.
So macroscopic measurements can only
allow us to determine such differences
AU. Still, these differences, measured
macroscopically, can give information
about the internal degrees of freedom,
whose behavior they represent.

First, let us describe how AU may
be determined in practice. For the sim-
ple systems we are describing, in
which the state S is determined by T
and Vs alone, if Vs is held constant,
AW = 0, so from Eq. (6.19)

AU - AQ. (6.20)

Now AQ can be measured by dissipating
mechanical energy completely; a con-
venient way of doing this is by pass-
ing an electrical current though a
wire. If the electrical energy is dis-
sipated at a constant rate, E, for a
time At,

AQ At - AU. (6.21)

If the system remains homogeneous,
that is, if it does not transform from
solid to liquid, or liquid to vapor,
this dissipation is accompanied by a
temperature change AT. The ratio

A'4. AT C (6.22)

Is called the "heat capacity." Under
the conditions we have been describing,
that is, tonstant volume so that AW 0,

the ratio in Eq. (6.22) is the heat ca-
pacity at constant volume, denoted C,,
and we see from Eq. (6.20) that

Cs - AU/AT. (6.23)

Therefore, measurements of heat
capacity at constant volume give di-
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rectly the way in which U changes with
temperature, and indirectly, corre-
sponding information about (Es), the
average mechanical energy per atom.

We shall discuss just one example
of this sort of investigation. Although
it deals with a very simple system, it
still displays the inadequacy of clas-
sical mechanics as applied to internal
degrees of freedom.

The system we investigate is a
mass of gas. We have already remarked
that all gases behave alike in conform-
ing to Eq. (4.5) at sufficiently low
pressure. This behavior is simplest to
understand on the atomic model, in
which a gas is just a collection of
particles which are independent except
for collisions. The collisions change
Ku for the pair of colliding parti-
cles, but as we saw at the end of sec-
tion 5.2, they bring about thermal
equilibri'lm, in which (Ku) is a con-
stant, and the same for each degree of
freedom. Now in dense gases, at high
pressure, the particles are close
enough to exert mutual forces even
when they are not colliding, and these
will also make a contribution to (EA).
But when the pressure becomes very
small, these forces, which depend on
the average distance between particles,

5
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also become very small, so (Es) (Ks).

Therefore

U = (Ndf)/(ikT) (6.24)

according to Eqs. (5.18) and (6.1).
Hence from Eq. (6.23),

C, = (Ndt)1(1k). (6.25)

A system such as this, in which U
U(T) only, that is, with no dependence
on Vs or any other variable such as E
or H, is called an "ideal thermal sys-
tem." As we have seen from F4. (6.25),
such a system has a heat capacity
which is independent of T.

While no such ideal thermal sys-
tem, such as the ideal gas we have
been describing, exists in nature, a
gas at low pressure is a reasonably
good approximation. But strangely, in
hydrogen, for which measurements of Cr
are shown in Fig. 8.4, the expectation
of a constant value which is independ-
ent of T, is not confirmed. Between
about 300°K and 80 °K, Cy decreases by
the ratio 5 to 3. Now hydrogen gas is
known from chemical evidence to form
diatomic molecules, Hy, in the gas
phase. The observed decrease can only
be interpreted by assuming that (Heidi

....... t 40 80 120 160 200 240 280 'K

Fig. 6.4 The heat capacity at constant volume of one sole of hydrogen gas, as a function
of temperature.
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has decreased by the ratio 5/3 in this
temperature interval. The denominator
of the fraction, 3, is just the number
of degrees of freedom of a free parti-
cle; the numerator, 5, suggests that
when the temperature reaches about
300°K, the H2 molecules have somehow
achieved two additional degrees of
freedom. From other evidence, these
extra degrees of freedom represent ro-
tation about two axes perpendicular to
the axis of the molecule itself. At
still higher temperatures, Cv increases
further, in the ratio 7/5 to the value
at about 300°K. Thus, two further de-
grees of freedom contribute to (Ea) at
high temperatures; these are probably
associated with vibrations along the
axis between atoms in the molecule.
Thus the classical model adequately
explains the constant portions of the
curve Cv(T); but it has no way at all
of accounting for the observation that
(NdOt is also apparently a function
of T. This result turns out to be a
consequence of a fundamental feature
of quantum mechanics as applied to the
internal degrees of freedom. The ex-
pression for (Eu), as calculated by
quantum mechanics, is considerably
more complicated than the classical
one, Eq. (5.30), in which (Eu) is sim-
ply proportional to T.

We cannot describe this quantum-
mechanical result in detail, but a
qualitative discussion can show how it
leads to an apparent dependence of
(licit)! on T. As we just saw, below
about 80°K, the only degrees of free-
dom of the H2 molecule whose energy
varies with T are those of the three-
dimensional translational motion of
the center of mass of the molecule.
These degrees of freedom behave clas-
sically; there is equipartition of en-
ergy among them, each one's share being
iksT. All the other internal degrees of
freedom of the molecule can be de-
scribed as "frozen."I7 Their energy is

"At one time, the word "ankylosed" was proposed
to describe such degrees of freedom, but fortu-
nately, it never gained much currency.

not a function of T, so they do not
contribute to the heat capacity.

Now the possibility of a frozen
degree of freedom, one whose energy
does not depend on T, can arise in the
particle model of classical mechanics,
if the motion in that degree of free-
dom is somehow constrained, For in-
stance, as long as the disks described
at the end of section 5.3 must move on
a horizontal plane surface, they have
only two degrees of freedom; the third,
corresponding to vertical motion,
might be described as frozen. In the
case of the hydrogen molecule, the
clearest indication of nonclassical
behavior is the gradual "thawing" of
two degrees of freedom, that is appar-
ent in Fig. 6.4 between about 80°K and
about 300°K. As mentioned above, there
is evidence, which we cannot discuss
here, that these two degrees of freedom
correspond to rotation of the molecule
about two axes, perpendicular to the
line joining the two H atoms which
make up the H2 molecule. Above about
300°K, these two degrees of freedom
are unfrozen, and behave classicall).

As a result of the quantum-mechan-
ical phenomenon of "thawing" in the ro-
tational degrees of freedom, Cv in-
creases, between 80°K and 300°K, from
the constant value corresponding to
three classical degrees of freedom, to
the constant value corresponding to
five classical degrees of freedom.
Therefore, in a temperature region
where some of the degrees of freedom
are classical, while all the rest are
frozen, Eq. (6.25) correctly accounts
for the heat capacity, provided that
the factor (Ndf)! is interpreted as
the number of classical degrees of
freedom.

The temperature region, in which
a degree of freedom makes its transi-
tion from being frozen to behaving
classically, occurs at different tem-
peratures for different degrees of
freedom. We have seen that this tran-
sition temperature region is between
80° and 300°K for the two rotational
degrees of freedom. Above 300°K, the
heat capacity of H2 remains constant
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until about 600°K, when another degree
of freedom begins to thaw, that corre-
sponding to vibration of the two H at-
oms which make up the molecule, join-
ing them along the line. The heat ca-
pacity then begins to increase again,
but this degree of freedom does not
reach its full classical contribution
of Ice (why not iks?), until a tempera-
ture of several thousand degrees is
reached. By that temperature, the in-
ternal structure of the H atoms them-
selves begins to contribute to the
heat capacity, as the atoms begin to
be ionized. They lose their electrons,
and another aspect of the internal
structure of the H2 molecule becomes
apparent. Thus, we see how successive
thawing of different degrees of free-
dom leads to a dependence of (Ndf)I,
interpreted as the number of classical
degrees of freedom, on T.

The freezing of degrees of free-
dom at low temperature, and their thaw-
ing as the temperature is raised, is a
consequence of the general property
which follows from quantum mechanics,
that the energy associated with every
degre3 of freedom is "quantized." This
quantum-mechanical property is best ap-
preciated by contrasting it with the
corresponding situation in classical
mechanics, in which a degree of free-
dom can have any energy whatever. For
instance, according to Eq. (5.27), the
kinetic energy associated with rotation
is

Ko = = 31w2. (6.26)

Since the angular momentum, L, is

L = 1(44

we can write Eq. (6.26) as

Ko = L2/2I

(6.27)

(6.28)

In classical mechanics, there is no
restriction on the angular momentum;
L can have any value, and, correspond-
ingly, the rotating system can have
any value of Ko. According to quantum
mechanics, however, the angular momen-

tum of a rotating system can take on
only certain discrete values. For a H2
molecule at low temperature, with the
vibrational motion frozen so that the
distance between the two H atoms is
constant, this restriction takes the
form

L2 = 112 r(r + 1), (6.29)

where r is an even integer, r = 0,2,4,
. . . and 11 in Planck's constant,

= 1.05 x 10-27 gm cm2/sec.

(Note that since the unit of energy,
the erg, has dimensions gm cm2 /sect,
the dimensions of 11 caa also be stated
as erg sec.) Hence the only possible
values of Ko are those in the sequence

(Ko)r = Ch2/21) r(r + 1) erg. (6.30)

Thus, in the lowest possible energy
state for rotation, the "ground state,"
r = 0, and (K0)0 = 0, while in the first
excited state for rotation, r = 2, and
(1(0)2 = 602/21).

The quantum-mechanical character-
istic, of frozen degrees of freedom at
low temperature which thaw as the tem-
perature increases, arises because of
the finite difference in energy be-
tween the ground state and the first
excited state, which occurs in all
quantum-mechanical systems. As long as
T is so low that the energy ksT is
very small compared to the difference
in energy between the ground state and
the first excited state, which we de-
note (AE)s, the degree of freedom re-
mains frozen; when ksT begins to be of
the order of magnitude of (AE)e, the
degree of freedom begins to thaw; and
when keT has become about the same
size as (AE)e, thawing is complete,
and the degree of freedom behaves clas-
sically, and shares in equipartition
of energy. In the case of the H2 mole-
cule, the moment of inertia can be
calculated, since the mass of each H
atom is ms = 1.67 x 10-24 gm, and
their separation, R, is R = 0.74
X 10-8 cm, so I = 0.46 x 10-4° gm cm2.
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Hence, from Eq. (6.30), (AE)0 is about
8 x 10-14 erg. We have seen from
Fig. 6.4 that thawing of the rota-
tional degrees of freedom is essen-
tially complete when T = 300°K, which
corresponds to kBT about 4 X 10-14 erg,

or about one-half (AE)e.
The same sort of situation exists

with respect to the vibrational motion
of the H atoms with respect to 'mach
other, along the line joining them.
For such vibration, the allowed values
of the energy are, according to quan-
tum mechanics,

(Eu)n = hw (n + i) (6.31)

where n is an integer, n = 0,1,2, . . .

and w is the angular frequency of vi-
bration, determined by the mass of the
H atoms and the restoring force con-
stant (see Eq. (5.25) for an analogous
expression applying to torsional oscil-
lation). Hence in this case, (62), is
just (AE)e = 1144.). The angular frequency
for vibration of the H2 molecule is
about 8 X 1014 rad/sec, so (AE)e is
about 80 X 10-14 erg, or about ten
times larger than that for the rota-
tional degrees of freedom. Hence the
thawing of the vibrational motion does
not occur until the temperature is
about ten times as large as that re-
quired for thawing the rotational mo-
tion, as described above.

Apart from this quantitative dif-
ference, the rotational and vibra-
tional degrees of freedom also differ
in an interesting qualitative respect.

We have seen that for rotational mo-
tion, (K00 - 0, but in the vibrational
ground state, according to Eq. (6.31),

(Eu)c, = flo # 0. Hence, while it is
true, that as T approaches zero, all
internal degrees of freedom tend to
occupy their ground states, it is not
true, as is sometimes incorrectly
stated, that "at T = 0, all molecular
motion ceases." As we have just seen,
rotation does cease, but because
(Eu)0 * 0 for vibration, vibration con-
tinues, even at T = 0.

However, in all cases, the energy
in the ground state is not a function
of T, so an internal degree of freedom
in its ground state makes no contribu-
tion to the heat capacity. Hence, when
the ground states of the internal de-
grees of freedom become occupied as
the temperature approaches zero, Cy
approaches zero for all macroscopic
systems. This property of Cy is closely
related to the third law of thermody-
namics, which is discussed briefly in
Appendix 3.

That our discussion is concluded
at this point should by no means be
taken to imply that all of the details
of our subject have been exhausted. Al-
most exactly the opposite is true; we
have barely scratched the surface. But
our goal, as stated at the outset, was
rather limited, and we have given at
least the beginnings of an answer to
the question posed there: How can ther-
mal phenomena be incorporated, in a co-
herent way, in the mechanical model of
motion?



Appendix 1 TERMINAL

We choose a coordinate system as de-
scribed in the text, with the positive
z axis (and therefore the k unit vec-
tor), pointing up. Since we are con-
cerned only with motion along the z
axis, we need no subscripts; v will
denote the speed along this axis.

For a particle falling freely the
acceleration is negative (downward),
and has magnitude g, so (N-II) gives

m(dv/dt) = -mg, (A1.1)

where -mg is the gravitational force
on the particle. In a resistive medium,
there is an additional force which we
will denote f, that retards the motion
and is therefore directed opposite to
v. This force does not depend on v in
a simple way over a wide range of
speeds. We shall therefore apply the
"lamppost principle" discussed in the
text, and assume a simple form for the
speed-dependence of f, namely, f pro-
portional to v. Because it is a retard-
ing force we write

f = -kv, (A1.2)

where k is a constant of proportion-
ality. (What are its dimensions?) Al-
though this form for f is not gener-
ally valid, it has the virtue that the
resulting equation of motion is some-
what easier to solve than a more real-
istic version, f « v2.

Equations (A1.1) and (A1.2) then
give for a particle falling in a re-
sistive medium,

dv/dt = -g - (k/m)v. (A1.3)

This equation is inhomogeneous, since
it contains the constant term g, while
the other two terms involve the varia-
bles v and t. One particular solution
can be found immediately, correspond-
ing to equilibrium motion at constant
terminal speed, v = -vT. In this case
dv/dt - 0 so
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v = -mg/k; vT = mg/k. (A1.4)

From the intuitive discussion in the
text, this solution corresponds to the
situation after the particle has been
falling a long time, that is, for
t It is not correct when the par-
ticle is just beginning to fall. We
need, in addition, a solution which is
valid for finite t, and which reduces
to the ideal value v = -gt for t v 0.
Such a solution, combined with (A1.4),
will describe the motion at all times.

A solution valid for finite t can
be found from the homogeneous equation
obtained by deleting the constant term
-g from (A1.3):

dv/dt = -(k/m)v. (A1.5)

This equation states that the rate of
decrease of v is proportional to v, It

is thus identical with the equation
for radioactive decay, except that in
the latter, v is replaced by N, the
number of decaying particles. The solu-
tion is obtained by cross multiplying
and then integrating:

dv/v = -(k/m)dt (A1.6)

In v = -(k/m)t ln vo, (A1.7)

where ln denotes the natural logarithm
(base e) and ln v, is a constant of
integration. Raising both sides to pow-
ers of e, (A1.7) becomes

v (t) = Vo e (k/m)t (A1.8)

If Eq. (A1.8) is combined with
Eq. (A1.4), the solution for t we
have

v(t) = V e-(k/m)t0 (A1.9)

This equation contains the still un-
specified constant vo. However, we
have not yet satisfied the boundary
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condition at t 0, namely that

v(0) = 0.

case considered above corresponds to
vi 0. Then we have for the general

(A1.10) equations

This condition, in conjunction with
Eq. (A1.9) determines the constant
vo = VT. Thus we have

v(t) = vT e VT, (A1.11)

and this is the curve which was drawn
in Fig. 3.2 of the text.

We can check to see if Eq. (A1.11)
is indeed the correct solution of
Eq. (A1.3) by comparing the value it
gives for the acceleration a(t) with
that specified by Eq. (A1.3). Since
him = g/vT, we have

v(t) = vT[ exp -(19t 1], (A1.12)
v T

so that a(t) = dv/dt is

a(t) vT (-g/vT) exp (L.)t
vT

= -g exp -(g-)t (A1.13)
VT

But Eq. (A1.3) can be written

a(t) -g - (g/vT)v(t)

-g (g/vT)vT[exp 1]

(Al.14)

using Eq. (A1.12), or

a(t) = -g - g exp -(glt +g
T/

-g exp (A1.15)
vT

which agrees with Eq. (A1.13), as cal-
culated from Eq. (A1.12).

Equations (A1.11) and (A1.12) can
easily be made more general, so as to
encompass cases in which the particle
has an initial speed vi v(0) differ-
ent from zero It is easy to see that
this initial condition is satisfied by
choosing vo a vi + vT in (A1.9); the

v(t) = (vi + vT)e
-(k/m)t

- v T (A1.16)

v(t) = vi e -(g/vT)ti v4e-(g/vT)t- 1]

(A1.17)

from which it is clear that v(0) - Vi
+ VT - VT = VI (since the exponential
- 1 at t = 0), and v(o) -vT, since
the exponential approaches zero as t
increases without limit.

If we recalculate the.accelera-
tion, we find

vi + v
a(t) -( T)g exp -(g-)t (A1.18)

vT VT

so that

a(0) =
V+

VT\

) g
(A1.19)

T

Hence a(0) differs from the value
a(0) = -g it has when the particle is
dropped freely, by the factor
(vi + vT)/vT. If the particle is thrown
Re, vi > 0 so this factor > 1 and the
deceleration is more rapid than in free
fall. If it is thrown down, vi < 0,
and the downward acceleration is smal-
ler than in free fall. If vi = -VT, of
course, a - 0 and the speed v(t) = -vT
always. If the magnitude of the initial
speed is larger than VT, the accelera-
tion is upward; the particle slows
down from v(0) -vi to v(..0) -vT.

We can use these equations to
contrast the behavior shown in Fig.
3.2, which corresponds to time rever-
sal, with that corresponding to bounc-
ing, in which the velocity changes
sign because of the contact force be-
tween a ball, say, and a surface. We
pointed out that the time-reversed
motion in Fig. 3.2 is impossible, since
it corresponds to dE/dt > 0 in the
prepence of frictional forces. The
rise of the ball after bouncing is a
possible motion, and we can see from



56 HEAT AND MOTION

Fig. A1.1 Bouncing ball in retarding me-
dium, with bounce at t - tx. Falling ball:
curve OA. Rise after bounce: curve BC. Same
rise, viewed on reversed velocity scale

Fig. A1.1 that it is very different
from the impossible motion in Fig. 3.2.

In Fig. A1.1 the curve OA corre-
sponds to the fall preceding the
bounce, and is thus the same motion as
shown in Fig. 3.2. The bounce occurs
at t tR; we assume that it is per-
fect, so the velocity goes from -vT to
+VT. The succeeding rise is shown in
forward time by curve BC. Notice that
the initial (negative), slope of curve
BC is twice that of the line BD',
which corresponds to a ball rising
with initial speed vT, but in a vacuum
(no retarding force). This corresponds
to the factor (vi + v)/vT mentioned
above. Here, this factor equals two,
since vi VT. To represent this mo-

(dashed ordinate), with time reversed at
t ta: curve AD. In vacuum (no retarda-
tion), corresponding curves are: OA', B'C',
and A'0, which retraces OA'.

tion, viewed with time reversed at
t - tR, as in Fig. 3.2, where both ve-
locity and time axes are reversed at
t tR, the curve BC is first re-
flected in the horizontal axis, to
give curve AC (this corresponds to re-
versing the velocity axis), and then
AC is reflected in the vertical axis,
finally giving curve AD (this corre-
sponds to reversing the time axis).
Thus the rising motion, after the
bounce, viewed with time reversed at
t tR, certainly does not superimpose
upon the falling motion, curve OA.

In the absence of frictional dis-
sipation, however, the superposition
is perfect. The fall is represented by
line OA', with velocity -gtR becoming
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+gtR after the bounce. Line B'C' is
the rise after the bounce with time
flowing in the same direction as be-
fore the bounce. The reversal of veloc-
ity and time at t = tR now gives C'A'
and A'0, respectively, and AIO is an
exact superposition on OA'.

These equations for the exponen-
tial variation of v(t) and a(t) have
several interesting aspects. Notice
that according to Eq. (A1.13) the ac-
celeration, which at t = 0 is a = -g,
the free-fall value, decreases exponen-
tially to zero. Hence the terminal
speed, vT, is reached only after an in-
finite time. However, exponential de-
crease is quite rapid. For instance,
e-3P-, 0.05, so according to Eq. (A1.12),
when (g/vT) 3, v will already have
reached 95% of VT; and when (g/vT)t - 9,
v will be within about a quarter of one
percent of VT. These statements can be
used to give a quantitative meaning to
the statement in the text that the par-
ticle reaches the terminal speed if it
falls "long enough." We notice that
g/vT has the dimension sec-1; so vT/g
has the dimension of time, and can be
set equal to a "decay time," denoted T.

VT/g. (A1.20)

Now we can repeat the remarks above
about the rate at which v approaches
VT, by saying, for instance, that v/vT
0.95 when t = 3T.

From Eq. (A1.4), we see that

T = mg/kg - mik, (A1.21)

so that the decay rate depends on the
mass of the particle and on the coef-
ficient of proportionality, k, between
retarding force and speed, but not on
the free-fall acceleration. The larger
7 is, the slower v approaches vT. Equa-
tion (A1.17) thus shows that the ap-
proach to vT becomes slower (also, of
course, vT increases, as shown by
Eq. (A1.4)), as the retarding force
coefficient, k, decreases. This would
be expected intuitively, but it might
not have been so obvious that r also
increases for more massive particles.

This effect, and the associated rela-
tion, vT « m, would not have been at
all surprising in the Aristotelian
view of motion, according to which
heavy objects fall faster than light
ones. We can see from our discussion
precisely how Galileo's refutation of
the Aristotelian point of view depends
on idealization to the situation in
which resistance due to the medium is
absent.

We know that the resistance of-
fered by the medium depends on the
size and shape of the object, so we
expect that k has this dependence also.
Hence we are dealing with an example
in which the particle model cannot be
expected to be complete. Thus, k should
also depend on the medium. The retarda-
tion effect of a medium is usually ex-
pressed in terms of its viscosity. At
this point we need concern ourselves
only with its dimensions, namely dyne
sec/cm2. So if we denote viscosity by
n, we have the dimensional equation

n 4 dyne sec/cm2.

But from Eq. (A1.2)

k 4 force/speed 4 dyne sec/cm.

(A1.22)

(A1.23)

Hence, comparing Eqs. (A1.22) and
(A1.23), we can write

k a of (A1.24)

where f is a length associated with
the object. Inserting this in Equation
(A1.21), we see

7 mina. (A1.25)

Thus the retardation effect, expressed
now in terms of T, has been separated
into three factors: m and f, which re-
late to the object, and n, which de-
pends only on the medium. We note,
finally, that the remark that "f is a
length associated with the object" can-
not be made more explicit without spec-
ifying the detailed size and shape of
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the object. For a particular object, a
complicated calculation would be re-
quired to find exactly how it is re-
tarded by the medium. The result r.1 the
calculation would then give a number
with the dimension of length. This num-
ber would not necessarily be simply
related to the size of tho object. For
instance, we would expect intuitively
that a thin square plate of side a
would have a shorter r (and lower vr),
than a sphere of diameter a, if both
had the same mass. That is, the plate
has a lower terminal speed, and reaches
it sooner, than the sphere. Hence
(plate should turn out to be larger than

sphere ,
for the same a and m.

On the other hand, we can also
compare T for spheres of the same mate-
rial, but different radius r. We see
that since m = pV, where p is the den-
sity and V the volume, V - (4e3)r3,
we have

T LL pr3/0.,94(4, or T a pr2/11 (A1.26)

shore wo have assumed that Isphere is

proportional to r. Hence T increases
rapidly with the size of the sphere.

One final aspect of these equations
should now be mentioned. In going from
Eq. (A1.1) to Eq. (A1.3), a term was
neglected which should be included.
The term -mg in Eq. (A1.1) is the
weight of the particle in a vacuum; in
a medium its apparent weight will be
less, due to the buoyant force, so in
Eqs. (A1.3) and all those that follow,
m should be replaced by m', where

Mi = m My, Mm pmV, (A1.27)

where mm is the mass of the amount of
medium displaced by the particle; pm
is thus tne density of the medium.
Hence, in Eq. (A1.26), the density of
the particle should be replaced by

P' ° P Pm.
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MECHANICAL

We would like to calculate the rate,
dE/dt, at which mechanical energy
changes as a result of forces applied
to a particle, and to show that the
rate is always negative for frictional
forces. If we write Eq. (3.1) in terms
of Cartesian components of the speed,
we have

K = im(vz2 + Vy2 + Vz2). (A2.1)

This can be written more compactly,
with the summation notation, if we in-
troduce numerical indices: vi,

vy - v2, vz - v3. Then (A2.1) becomes

3

K = im vie

We can also write K in terms of the
momentum, p, defined by

(A2.2)

so that

P
2

p m v,

3

pi2
=

m2 vi2, (A2.3)

i=li=1

and therefore

K(pi) - (1/2m) 1] pie .

i-1

(A2.4)

If we also use numerical indices for
components of the position vector, or
x ri, y r2, z r3, then we can
write the dependence of the potential
energy V on the position vector r as

V(r) V(x,y,z) - V(r1,r2,r3) V(ri).
So we can write for the mechanical en-
ergy,

E(pi,ri) K(pi) + 11(ri). (A2.5)

Now E does not depend on t explic-
itly, so in order to calculate dE/dt
we must use the partial derivative
chain rule, which takes into account
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the implicit dependence of E on t
through the time dependence of pi and
r 3' We therefore have

3

dE iraE va2.0 RE )(dr91
dt (Aapt)kat kar dt

(A2.6)

According to (A2.5), E depends on pi
only through K, and on ri only through
V; so

aE/aPi aK/api; aEari aV/ari.

(A2.7)

From (A2.4), we have

aK/api (1/2m) 2pi = pi/m vi.

(A2.8)

Also, the potential V is related to a
F(c)-conservative force F by

Fi") -8V/ari. (A2.9)

Finally, the term dri/dt is simply vi.
We can therefore factor out vi from
each of the terms in A2.6, with the
result

3

dE 22(1121.
Flo)

(A2.10)Viat
i

dt
i=1

Tfie total force Y on the particle
may have a nonconeervative part Y, as
well as a conservative part; that is,

P(c) + Ye or Y") Yt

But according to N-II, Eq. (A2.8),

m dVdt di-Vdt, so

dpi/dt - Fi") Fig.

Therefore, from (A2.10),

(A2.11)
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3

dE/dt 2] vi Ey' = v F' (A2.12)
1 =1

where the last equality expresses the
result using the vector dot-product.
Hence the mechanical energy is constant
unless nonconservative forces act on
the particle. Frictional forces are
nonconservative, and also, are always
directed opposite to v. If we denote
frictional forces by 7, as in the text,
then

dE/dt = v . f < 0. (A2.13)

Note that this is a result for the
total mechanical energy. It is not
necessarily true that dK/dt < 0 when
frictional forces act; that is, fric-
tional forces need not slow down the
particles. In orbital motion, for in-
stance, as with artificial earth satel-
lites, when frictional forces act,
dK/dt > 0 and the particle speeds up.
But the orbit corresponding to a higher
speed has a smaller radius, so dV/dt
decreases. The magnitude of dV/dt is
larger than that of dK/dt, so stated
by (A2.13), dE/dt is negative.



Appendix 3 ZERO TEMPERATURE ON THE
GAS-THERMOMETER SCALE

Despite its modest title, this appen-
dix has a rather ambitious aim. We
start with the question: What is the
significance of a temperature denoted
by Tg 0? Using the analysis of this
question, we proceed to the statement
of a very general result, the unattain-
ability of "absolute zero," which can
be given a precise meaning in terms of
our abstract definition of temperature,
without necessarily referring to any
specific temperature scale. Up to this
point, we have bean considering macro-
scopic systems exclusively. Now, using
this result, we are able to examine
the thermal behavior of certain remark-
able atomic systems. We find that these
atomic systems possess thermal proper-
ties not shared by any macroscopic sys-
tem. Finally, we are able to show how
the concept of temperatur' can be gen-
eralized in a surprising way, so as to
describe the unusual thermal behavior
of these special atomic systems.

A.1 ABSOLUTE ZERO

The same standard state, namely
mutual therms? equilibrium among ice,
water, and water vapor, is used in de-
fining the Celsius scale, the gas ther-
.aometer scale. and the ideal gas scale.
On the Celsius scale, defined by
Eq. (4,1), the standard state is as-
signed the temperature zero, that is,
Ts = 0° C. Both the other scales are
defined by Eq. (4.5), and since P(Te)
= Po, this gives To = To °K. In the
gas-thermometer scale, the constant To
varies with the gas used," while in
the ideal gas scale, To has a universal

solo 'moral, to also varies with temperature,
so the term %outset" right spear to be a ells-
sorer. however, the vartatios is sot large, over
temperature :asses which are sot extremely wide.
Because of this slow variatios of to with tem-
perature, it may be regarded as at least approx-
imately tosslast, especially if high accuracy
is sot derarded of gas thermometer temperature
measuresests.
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value, independent of the gas used (in
tne limit of low pressures), and also
independent'of temperature. In both
the gas-thermometer and ideal gas
scales, the state for which Tg ... 0,

would correspond to gero measured pres-
sure, in a gas thermometer which origi-
nally was filled to pressure Pc, in the
standard state.

We will see later that the thermal
equilibrium state identified by Tg - 0
does have a special significance. How-
ever, we cannot deduce anything about
this state from the properties of a
gas-thermometer scale. Tho reason is
simply that all real gases liquefy
when the temperature is low enough, at
a finite pressure, P > 0. When this
happens, the system (homogeneous mass
of gas), changes its form, and sepa-
rates into two phases, a liquid and its
vapor. Once the liquid has formed,
Eq. (4.5) no longer relates pressure
to temperature, since it ;tribes
only the properties of a homogeneous
mass of gas, and not the f, 1)avior of a

vapor in equilibrium wit .: rs liquid
phase.

Now the ideal gas does not
refer to any real gas, t verthe-
less, it is just as impubbluru to de-
duce any properties of the state Tg = 0
from this scale, as from the gas-ther-
mometer scale. The definition of the
ideal scale requires a sequence of gas
thermometers tilled with a real gas,
each using a smaller pressure Po in
the standard state. But when the tem-
perature is so low that all gases have
liquefied, we cannot carry out this
limiting process, and so cannot define
the ideal gas scale. Hence, there is
no meaningful way to assign the tem-
perature Tg = 0 to any thermal equilib-
rium state. Similarly, there is no way
to assign a negative value of T. to any
thermal equilibrium state, since we can-
not conceive of measuring a negative
pressure in a gas thermometer.

These arguments lead to the fol-
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lowing trap, which we must be careful
to avoid. We have established a temper-
ature scale on which negative tempera-
tures, Tg < 0, are meaningless. On
this scale, the state with Tg - 0 ie
therefore colder than any other, since
all other possib, states have higher
temperature. But we have also shown
that it is meaningless to assign the
temperature Tg ° 0 to any thermal equi-
librium state. We might therefore be
tempted to conclude that no such "cold-
est" thermal equilibrium state can ex-
ist. Such an argument would be incor-
rect, because our argument rests on
the properties of the ideal gas scale.
Conceivably, there could be other tem-
perature scales, with different prop-
erties, for which the argument above
breaks down.

Unfortunately, at this point we
cannot discuss this question in gen-
eral, that is, without an explicit con-
nection with a specific temperature
scale, such as the gas-thermometer or
the ideal gas scale. However, it is
possible to state the results of such
a discussion. In the first place, we
can define what we mean by a "coldest"
state, without reference to any par-
ticular temperature scale. A coldest
state would have the property, that
any other state could be reached from
it by the dissipation of mechanical
energy. It is possible to conclude,
from observations which we cannot de-
scribe here, that:

Starting with any thermal equilib-
rium state of any system, it is im-
possible to reach such a coldest
state, by any means whatever.

This statement is usually called the
Third Law of Thermodynamics.

From this statement we can con-
clude that there is no lower limit to
the temperature which can be assigned
to attainable states, whatever the tem-
perature scale eaplcyed. This Pict can
be incorporated into any temperature
scale, by adjusting its origin so that
all attainable states have positive
temperature, and the unattainable cold-

est state has zero temperature. We will
call temperature scales which have been
adjusted in this way, Third-Law temper-
ature scales. We see, for instance,
that Tg is such a scale, while Te is
not. If we wish to discuss temperature
on a Third-Law scale without specify-
ing whether it is Tg or some other
such scale, we will use the notation
Tut. Since the identification of the
coldest state, Tut - 0, does not refer
to any specific temperature scale, bul
rather to all scales on which attain-
able states have positive temperature,
the coldest state is often referred to
as "absolute zero." The Third Law of
Thermodynamics, correspondingly, may
be described as asserting that "abso-
lute zero is unattainable."

A.2 NEGATIVE TEMPERATURE

We see that if we had fallen into
the trap discussed above, we would have
reached the correct conclusion, but
for the wrong reasons. We should now
examine our earlier conclusion that
negative temperatures, T1 < 0, are
meaningless. if we examine the way in
which we defined Third-Law scales, Tin,
it is easy to so see that states for
which T111 ' 0 cannot be colder than
the absolute zero state, since "colder
than coldest" is self-contradictory.
But this does not necessarily mean
that no states exist, for which T111
< 0. It does mean, that like all other
states, s9ch states must be hotter
than the state at absolute zero,

Tit: 0.

Now it is easy to see that if
:uch "negative T1/1" states do exist,
they cannot be found in every thermal
system. In particular, they could not
be attained by any system which can be
put into thermal equilibrium with a
gas thermometer. For if this were pos-
sible, the temperature could be meas-
ured on the Ts scale, and negative tem-
peratures are certainly impossible on
that temperature scale. We are thus
led to consider whether thermal sys-
tems can exist, such that because of
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their physical nature they cannot be
put into thermal equilibrium with a
gas thermometer.

It might seem obvious that the
answer to this question is "no." This
would indeed be the correct answer if
we restricted uurselves to macroscopic
systems, that is, to systems which are
large enough to be manipulated, or, in
other words, systems which can be
picked up and moved about. In princi-
ple, such manipulation could include
arranging thermal contact with a gas
thermometer, or at least with some
other thermometer which could be com-
pared with a gas thermometer in a sec-
ond operation. But this sort of manip-
ulation is impossible, even in princi-
ple, for systems on the scale of atoms
and nuclei. Hence it is on that scale
of size that we must seek for thermal
systems whose temperature cannot be
measured on the Tg scale.

It is by no means obvious that
such states, for which Tg cannot be
defined, can be found even on the
atonic scale. After all, every macro-
scopic objact which we put into ther-
mal equilibrium with a gas thermometer
is itself an assemblage of atoms, and
in this sase, an "atomic system." It
WAS therefore a remarkabl*: event when,
about 1950, Purcell, Ramsey, and Pound
reported the existence of an atomic
system that had a measurable tempera-
ture which could not be directly re-
lated to the Te scale. Their report
was based on observations they had
made on the interaction of lithium flu-
oride (LiF) crystals with magnetic
fields. This interaction occurs be-
cause the nuclei in LiF crystals have
magnetic moments. The magnetic field
can supply energy directly to the sys-
tem of nuclear magnetic moments, in
much the stale way that mechanical en-
ergy can be supplied to the crystal as
a whole.

The first conclusion that could
be drawn from the experiments of Pur-
cell, Ramsey, and Pound, was that the
nuclear magnetic moments could be re-
garded as a thermal system that was in
rather poor thermal contact with the

crystal as a whole. The temperature of
the system of nuclear magnetic moments
(we will refer to this system by the
symbol N), could be measured magnetic-
ally, on a scale we will denote TR.
The temperature of the crystal itself
(we will refer to this system by the
letter L), could of course be measured
on Tit, since L is a macroscopic system.
Thermal contact between systems N and
L was investigated by experiments
which can be described very roughly as
follows: In the first stage, a.crystal
of LiF is in thermal isolation from
its surroundings, with no magnetic
field applied. According to our basic
definition of thermal equilibrium, sys-
tems N and L must arrive at a state of
mutual thermal equilibrium. This state
will be recognized by the fact that
Te(Ne) and Tg(Le), which are respec-
tively the temperature of the nuclear
magnetic moment systems, measured on
the magnetic scale, and the tempera-
ture of the crystal, measured on the
gas-thermometer scale, are both con-
stant. The subscripts e on the symbols
for the system emphasize the fact that
this is an equilibrium state. Now the
magnetic field is applied, and the
systems are momentarily in the second
stage of the experiment. The tempera-
ture of the system N immediately jumps
to a new value, Tu(N2), while the tel.-
perature of system L is uncharged,
since no mechanical energy was dissi-
pated in that system. The momentary
second stage is followed by the third
stage, which takes several minutes.
During this stage, the temperatures of
both systems change slowly, showing
that they are in thermal contact; but
since the changes take place slowly, we
recognize that the thermal contact is
poor. Finally, the fourth and last
stage of the experiment is reached, in
which both systems have reached new con-
stant temperature, To(Nei) and Te(Le'),
showing that they are once again in mu-
tual thermal equilibrium. However, as
we would expect, the new equilibrium
states, denoted N.' and 1,4's are dif-
ferent from those in the first stage,
N. and Ls.
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The series of stages in this ex-
periment is exactly analogous to ob-
servations that could be made with the
arrangement of Fig. 4.1, using macro-
scopic systems exclusively. If the
plate on top of the bell jar is made
of wood, a system on the plate would
be in poor thermal contact with the
pendulum bob inside the jar. Applying
the magnetic field to the crystal
would correspond to suddenly changing
the temperature of the system on the
wooden plate. Because of the poor ther-
mal contact there would be no corre-
sponding jump in the temperature of
the pendulum bob, which is the analog
of the crystal in the LiF experiment.
The third and fourth steps of the ex-
periment would proceed just as above,
with the temperatures of the system on
the plate, and of the pendulum bob,
both changing and ultimately reaching
a new thermal equilibrium.

Now in either case, the LiF ex-
periment or its completely macroscopic
analog, we can easily deduce which of
the initial systems was hotter in the
momentary stage two, by simply compar-
ing the initial and final . quilibrium
temperatures of just one of the sys-
tems, namely the crystal in the LiF
experiment, nr the pendulum bob in the
macroscopic analog. If Tg(Le') >
Tg(Le), for instance, then the crystal
was warmed by its contact with the sys-
tem of nuclear magnetic moments, so
system N must have been heated by the
application of the magnetic field, an.1
was therefore hotter than L during the
momentary stage two and thereafter,
until the final equilibrium was
reached. Now with the macroscopic ana-
log experiment, this sort of discussion
would be unnecessary, since temperatures
of both the system on the plate and of
the pendulum bob can be measured on
the scale T 41. Ts and thus compared di-

rf4tly. In the LIF experiment, on Cie
other hand, the temperature of system
N can be measured directly only on
scale Ts. Now in stages ont and four
of the experiment, systems N L are
in thermal equilibrium, so IWO is
equal to Tg(Lo) and Ts(N40) is equal

to Tg(Le')." However, in stage two of
the LiF experiment, system N is not in
thermal equilibrium with system L, so
the comparison between Tg(Le) and
Tg(Le.) is the only way of determining
whether Te(N2) is hotter or colder
than Tg(Le),

Now as long as we are dealing
with macroscopic systems, we would ex-
pect to find that however large the
initial increase of temperature of the
system on the plate in stage two of
the experiment, we can always prepare
another system that is even hotter.
For instance, if the system on the
plate has temperature, say, (T1)2 in
stage two, we can prepare another sys-
tem with temperature (rg)e t 1. This
other system, since it is hotter than
the system on the plate, will have its
temperature lowered if it is brought
into contact with the system on the
plate. That is, there is no "hottest"
temperature on the Tg scale.

In remarkable contrast to this
situation, it was found in experiments
on LiF crystals that, by suitable in-
teractions with magnetic fields, it
Who possible to prepare system N of
nuclear magnetic moments in states
which were hotter than any state of a
macroscopic system. That is, it could
be shown that special states, which we
will denote Nelt, could be prepared
which had the property that arg macro-
scopic system, whatever its thermal
equilibrium state, would be warmed on
being brought into thermal contact
with that state. Of course, this con-
clusion could only be reached indi-
rectly, since it is clearly impossible
to carry out experiments on an unlim-
ited number of macroscopic systems in

"the equality of these two pairs of teapera-
tures does mot secessarily seas that they have
the same nuserical value, only that they are as-
sisted to thermal equilibrius states le mutual
equilibrium. Is the same tease, the tesperature
32'F 10 'equal" to the temperature 0°C, sltetwzi,h
the n4merical values ea the to scales are dif-
fittest. The restos is that both tesperatures re-
fer to the same thermal equilibrium state,
namely the comma standard state oe the Celsius,
gas-thersonetet, aid ideal sits scales.
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a finite length of time. Nevertheless,
this was an inescapable conclusion
from the experiments which were per-
formed.

Another way of stating this con-
clusion is to say that such a special
state N2* is hotter than any thermal
equilibrium state of any macroscopic
system. The question arises, whether
it is possible to assign to such a
state a temperature Ti//(N2*) on a
Third-Law temperature scale. Since
T///- 0 defines the unattainable cold-
est state, and positive Tuicorresponds
to ordinary thermal equilibrium states
of macroscopic systems, we have avail-
able only negative temperatures, T111
< O. But now there is no bar to using
negative temperatures, as there was on
the Tig scale, since as we have seen, a
state like N2* is not in thermal equi-
librium with any thermal equilibrium
state that has a temperature on the T1
scale. So we have finally arrived at a
meaning for negative temperatures on a
Third-Law scale, at least for certain
special atomic systems like that of
the nuclear magnetic moments in a LiF
crystal. They correspond to "superhot"
states which are hotter than any states
with positive temperature on a T111
scale.

One question remains - how shall
we assign numerical values to the tem-
pe..tures of two different "superhot"
states? A consistent convention is to
associate "hotter" with larger alge-
braic value of the temperature, rather
than larger magnitude. Thus, for in-
stance, a state with T111 k. -100°K is

hotter than the state with Ttil
-1000°K. We can now arrange all states,
both "normal," corresponding to macro-
scopic systems, and "superhot," in one
consistent order. Starting with the
(unattainable) coldest state with Tin
0, increasingly hotter states have

larger and larger temperature values,
which approach the limit Till 4*.

States hotter than this limit are "su-
perhot"; their temperatures start from
the limit Tilt and increasingly
hotter "superhot" states have tempera-
tures which increase in algebraic

value, approaching T111 a 0, but from
below. This limit is the "absolutely
hottest" state; like the "absolutely
coldest" state, it is unattainable.
There are now two states corresponding
to "absolute zero," depending on
whether the approach is from positive
or negative temperatures; the Third
Law states that neither of these states
is attainable.

The convention we have described
for handling negative Third-Law tem-
peratures is the only one that leaves
ordinary temperatures Ts unchanged. It
is rather clumsy, however, since the
same state is represented by either
T/// t.m, or TIJI and also T111

0 represents two vastly different
states, depending on the direction in
which it is approached. A simple modi-
fication of the scale produces a dras-
tic change in conventional temperature
scales, but it eliminates these diffi-
culties. We introduce a scale denoted
R///, defined by the negative recipro-
cal of T111 ,

R111 -(1 /Till ).

The relation between R111 and Till is

shown in Fig. A3.1. The curves in the
figure are hyperbolas, according to
the definition of R111, and the arrows
on the hyperbolas indicate the direc-

obsolutely hottest"

Of IP
supedlot

R -(1/Tin)

notreol

.1 IP
absolutely coldest

Fig A3.1 Temperatures on the scale Am
plotted as a fuactioa of teaperatures on
the scale Tilt .
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tion corresponding to "hotter." On the
scale 11/11, the "absolutely coldest"
state has RI/1 - and the hottest
normal state is RH/ 0, approached
from below, so all normal temperatures,
appropriate to macroscopic systems,
are negative. All "superhot" tempera-
tures are positive, the coldest of
these being Rin 0, approached from
above. The "absolutely hottest" state
is R111 a. +0*.

It is not likely that the R/11
scale, which clarifies the relation
between normal and "superhot" tempera-

tures, will ever be commonly used.
How,wer, since the original experi-
ments on LiF were performed, many
other atomic systems have been found
which can also attain "superhot"
states. Furthermore, such systems are
no longer merely laboratory curiosi-
ties. Their "superhot," or, as they
are commonly called, "negative temper-

ature" (on a T111 scale), states make
possible the operation of masers for
amplification of minute microwave sig-
nals, and also lasers, which produce
intense beams of coherent light.



Appendix 4 INTERCOMPARISON OF
TEMPERATURE SCALES

As we have pointed out, every system
which is chosen to serve as a thermom-
eter, and indeed, every thermometric
property of such a system establishes
its own temperature scale. There are a
great many thermometric properties in
general use, besides the liquid-in-
glass thermometers we have described.
A common type is based on the proper-
ties of a coiled strip, made from
strips of two different metals welded
together. The two metals are chosen so
that they expand at different rates
when they are heated. Then a coil made
from such a bimetallic strip will ro-
tate about a fixed point to which one
end is attached so that it cannot
move. The angle of rotation of a
pointer attached to the other end of

the strip then serves as a thermomet-
ric property. Oven thermometers are
usually of this kind.

The electrical resistivity of
metals, alloys, and semiconductors
varies with temperature, and so can be
used as a thermometric property. If,
in a loop made of wires of two differ-
ent metals or alloys, the two Junc-
tions are at different temperatures,
an electrical voltage is developed in
the loop, and the magnitude of this
voltage can serve as a thermometric
property.

Now this profusion of temperature
scales leads to difficulties, whenever
two temperatures are to be compared,
which have been measured using differ-
ent thermometers, say A and B. If the
scale appropriate to each is used,
then it can happen that two thermal
equilibrium states can have the same

numerical value of the temperature,
TA TA, but still not be in mutual
thermal equilibrium. Or it can happen
that one thermal equilibrium state can
have two different numerical values of
temperature, Ti # when measured
with two different thermometers.

These situations can arise as
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follows: Suppose, to take a concrete
case, we consider a mercury-in-glass
thermometer (A), and a platinum resist-
ance thermometer (B). When both are in
equilibrium in the standard state of
the Celsius scale (0°C), the length of
mercury in the capillary is L(0°C) cm,
and the resistance of the platinum
wire is R(0°C) ohm. When both are in
equilibrium with water boiling at
standard atmospheric pressure (P
760 mm of Hg), the corresponding val-
ues are L(100°C) cm and R(100°C) ohm.
Now suppose that, in equilibrium with
a third state, we observe that the
length of mercury in the capillary has
expanded to 0.40 of the distance from
L(0°C) to L(100°C). That is

L(TA) L(0 °C) + 0.4011,(100°C) L(0°C)I

(A4.1)

We would be entitled to denote this
temperature as TA 40°(A), since it
has been determined from thermometer
(A), mercury-in-glass. Now in equilib-
rium with the same thermal equilibrium
state, we might find that

R(TA).. R(0 °C) + 0.4101(100°C) R(0°C)),

(A4.2)

so that we would assign to this state,
Ti la 416(B), corresponding to thermom-
eter (B), platinum resistance. The
reason for the discrepancy is that the
density of mercury between 0°C and
100°C does not vary in exactly the
same way as the resistance of platinum,
between the same two temperatures.

In order to avoid the confusion
about numerical values of temperature
expressed in Eqs. (A4.1) and (A4.2),
and its further compounding when other
thermometers are considered as well,
careful measurements with gas-thermom-
eters in standard laboratories all
over the world are used to establish a
scale which is adopted as standard by
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international agreement. In terms of
this international Celsius scale, meas-
urements with any chosen thermometer
can be compared with those of any
other. For instance, it might be found
that the state described above, for
which TA 40°(A) and Ts 41 °(B), has
the temperature Te 40.5°C on the in-
ternational Celsibs scale. The point
on the capillary, which is described
by Eq. (A4.1) would not be marked "40,"

but rather, "40.5," and we would say
that this thermometer has been cali-
brated against the international Cel-
sius scale. After this calibration pro-
cedure has been carried out for any
particular thermometer, that thermom-
eter can be used to measure tempera-
ture on the Celsius scale, even though
this standard scale, and that defined
by the particular thermometer chosen,
will in general be different.



Appendix 5 INTERNAL DEGREES OF FREEDOM
AND THE ATOMIC MODEL

The amount of detail that we have gone
through in this discussion leading to
the conclusion that matter possesses
internal degrees of freedom may appear
strange to the average reader, who has
undoubtedly been raised to accept the
existence of atoms and molecules as an
article of faith. He or she is there-
fore perfectly well aware that the
force Fu introduced in section 6.1
"obviously" comes from random colli-
alone of the particle with the atoms
or molecules of the fluid in which it
is in suspension. We certainly do not
wish to challenge this faith in the
existence of atoms and molecules, but
we do wish to examine it rather more
closely than is sometimes done. Our
argument was designed to show that the
necessity for postulating an internal
structure follows directly from obser-
vations on purely macroscopic behavior.
For such a conclusion to be convincing,
the discussion on which it was based
could not rely on any assumptions about
internal structure; otherwise the rea-
soning would be circular. Furthermore,
the characteristics of the internal
structure (tan also be deduced from
macroscopic observations. Some aspects
of this deduction are described in
sections 6.1 and 6.2.

After all, belief in the existence
of atoms is not exactly a novelty. It
dates back well over two millenia; it
had its adherents among the classic
Greeks and Romans, But during this
ancient period (which lasted, in fact,
well into the eighteenth century),
this belief had no real foundation in
the known behavior of nature. It was
in the realm of metaphysics rather
than physics. And it does not leave
that realm simply by becoming absorbed
into everyday thinking if there is lit-
tle conception of how it is related to
the understanding of natural phenomena.

As a matter of fact, the naive
version of atomic theory that was de-
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veloped during the eighteenth and
nineteenth centuries, in which the at-
oms and molecules are simply Newtonian
particles, is inadequate for under-
standing many kinds of phenomena which
it should be able to explain. The es-
sential distinction between the macro-
scopic and atomic levels of size was
made at the beginning of section 5.2.
It was pointed out there that the mac-
roscopic degrees of freedom are always
adequately described by Newtonian me-
chanics, while the degrees of freedom
associated with the internal structure
of matter must be described by quantum
mechanics. The nature of this distinc-
tion was clearly realized only about
1925 when quantum mechanics was devel-
oped in two independent but equivalent
formulations. Before then, attempts to
apply Newtonian mechanics to phenomena
on the level of atomic size required
various revisions of classical mechan-
ics for different problems such as
atomic spectra, atomic collisions, nu-
clear transmutations, electrical prop-
erties of solids, and these revisions
sometimes appeared to have little con-
nection with one another. Many physi-
cists who had been trained in the nine-
teenth century, before much attention
had been paid to these problems, there-
fore had little faith in the validity
of the naive atomic theory. Its long
history as essentially speculative
philosophy, largely divorced from a
relation to natural phenomena, tended
to reduce what little faith they had.
Their attitude towards attempts to give
it a firm connection with observation
was that a model was being devised
which was being diverted from the es-
sential behavior of matter by trivi-
alities. They could point, as an exam-
ple, to Aristotle's model for motion
which had been led astray by regarding
friction as the essential feature of
motion, rather than equilibrium, with
constant vet city. This attitude was
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well expressed by Mach, who wrote (in
1915), "I do not consider the Newton-
ian Principles as a completed and per-
fected thing, yet in my old age, I can
accept the theory of relativity just
as little as 1 can accept the existence
of atoms and other such dogma." In a
certain sense, Mach's attitude was
correct, since the naive atomi...t theory

of which he was writing was certainly
wrong. But in another sense, the judg-
ment of Mach and the others who shared
his point of view, many of whom had
made great contributions to physics,
was bad. What they regarded as one of
the blind alleys we mentioned in sec-
tion 1, turned out to be a broad ave-
nue whose exploration led to the most
coherent and encompassing picture of
nature ever devised. But in one ironi-
cal sense, the doubters were right,
after all. The difference between the
naive atomic theory, which Mach re-
jected, and quantum mechanics, is cer-
tainly not trivial. The quantum-mechan-
ical behavior of the internal degrees
of freedom of matter can be very un-
like that of Newtonian mass-points.
For instance, we may inquire as to the
location of an electron in an atom.
The model of which Mach was complain-
ing would answer in terms of a point
charge rotating about a nucleus. In
contrast, quantum mechanics will speak
of probabilities, rather than a well-
defined location. And the probabilities
are givea in terms of wave functions,
which have finite values everywhere,
not just at a geometrical point. So
quantum mechanics agrees with Mach, in
rejecting the mass-point as a suitable
model, in general, for the internal de-
grees of freedom.

As a result, it Is not really ac-
curate to speak of the ultimate tri-
umph of the atomic theory, more than

two thousand years after its first
pronouncement. The lorg dispute between
those who asserted that matter was made
up of a continuum, and those who as-
serted that it had an internal struc-
ture of indivisible parts separated by
vacuum, seems to have been resolved in
favor of the latter point of view. But
the atoms of the structure we now rec-
ognize bear little resemblance to those
described by Lucretius: "Bodies of ab-
solute and everlasting solidity . . .

absolutely solid and unalloyed." And
the void between atoms is far from
featureless: it is the seat of gravi-
tational, electric, and magnetic
fields. Therefore, while quantum me-
chanics is a descendant of primitive
atomic theory, it is better described
as a remarkably successful fusion of
the atomic and continuum points of
view.

It should not be imagined, how-
ever, that quantum mechanics is compe-
tent to answer all questions about the
internal degrees of freedom of matter.
The structure of nuclei is still an
unsolved problem, and even some phe-
nomena on the atomic level, which can
be described quite simply, have not
been accounted for in detail. One of
the outstanding examples is the exist-
ence of the different phases of matter.
A collection of atoms or molecules can
transform from a gas, which fills the
volume of its container, to a liquid,
which has a definite volume at a fixed
temperature, but whose shape is still
determined by its container, to a
solid, which has a definite sire and
shape, in which the atoms are arranged
in a regular three-dimensional pattern.
The processes by which these transfor-
mations occur are still imperfectly
understcod.


