
DOCUMENT RESUME

ED 045 347 SF 009 200

r.UTHOP Holden, Plan
mITLF wave-Mechanical Properties of Stationary States.
TNsTTTMmION Commission on Coll. Physics, College Park, Md.
SPONS AIENCY Nat_ional Science soundation, Washington, D.C.
PUB DATF FF
NOT! 49p.; monoaraph written for the Conference on the

New Instructional Materials in Physics (University
of Vashington, Seattle, 196F)

sPBS ?PIC?
DFSfIRIPTORS

APSTRACT

EPP ?rice My -$0.25 HC-2.ss
*Chemistry, *College Science, *Instructional
Materials, *latter, Physics, *Quantum Mechanics,
Textbooks

This monograoh is a review of the quantum mechanical
concepts presented in two other monoaraPhs, mThe Nature of Atoms" and
"Bonds BetuPen Atoms," by the same author. It is assumed the reader
is familiar with those ideas. The monograph sketches only those
aspects of quantum mechanics that are of most direct use in Picturing
and calculating the behavior of atoms when they are stably bonded
together in mclecules and solids. Its emphasis is on stationary
states; it does not deal with processes. The chapters are as follows:
Wave -Like and Particle -tike Behavior; Probability and Stationary
states; Uncertainty and the Particle in a Pox; Schroedingeris
Equation: Wave Functions, Operators, and The Harmonic oscillator:
Orthogonality and Kinetic energy; The Variational Method of
Approximation; The spinning electron: Symmetry and the exclusion
Principle. Problems are included at the end of each chapter. (PR)



1

U S DIPAIIMINI Of MUM, EDUCATION 1 Winn

Off!(( Of IDIK11101

MIS DOCUMENT HIS IIIN PIPRODUCID likCliT IS IRMO FROM THE

PINSON ON ONANNIION 0/161N1100 II ',MIS Of VIEW ON OPINIONS

MID DO NOT NIUSSADAY REPRESENT Off CAI Off Kt Of IDUCitiON

POSITION OP POKY



"REMISSION TO REPRODUCE THIS
COPYRIGHTED MATERIAL His HEN GRIMED

gy A. I,. Baseman
Bell Telephone Lab.
10 CAC AND ORGANIZATIONS OPERATING
UNDER ASHEMENTS WITH THE U S. OFFICE Of

EDUCATION. FURTHER REPRODUCTION OUISIDE

THE ERIC SYSTEM IHOUITtES PERMISSION Of

THE COPYRIGHT OWNER."



GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multA-level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses,

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely .2oordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has tone into publishing them in a rehdable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walt( C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Hregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margory Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and stealfast support of all these persona and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



WAVE-MECHANICAL PROPERTIES
OF STATIONARY STATES

FOREWORD

This monograph is not intended to provide an introduction to quantum

mechanics. It is a summary of the quantum mechanical ideas and methods

used in two monographs, THE NATURE OF ATOMS and BONDS BETWEEN ATOMS, by

the same author. Presumably you have met these ideas before. By setting

them out in a logical order, the monograph may provide a useful review

of them, and a helpful resort if you read the ether two monographs.

The wave-mechanical formulation of quantum mechanicss used here

is that usually employed in discussing most of the properties of mat-

ter. It is somewhat easier to make mental pictures with this formula-

tion than with others. Nevertheless much may seem strange at first, and

much rather arbitrary, in quantum mechanics. Familiarity, and a sense

of the beauty and consistency of the theory, will hardly come from pur-

suing it as briefly as this monograph can do. But the application of

its principles elsewhere will improve your feeling for the subject.

`The monograph sketches only those aspects of quantum mechanics

that are of most direct use in picturing and calculating the behavior

of atoms when they are stably bonded together in molecules and solids.

Its emphasis is on stationary states; it does not deal with processes.

The examples with which it illustratrates its points ate simplified by

such great artificiality that they may seem irrelevant to the natural

world. But in fact their simplicity does not remove their relevance; in-

deed it exemplifies the artificial simplicity usually necessary for

arriving at a physical understanding of the world.

Alan Holden
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1 WAVE-LIKE AND PARTICLE-LIKE BEHAVIOR

Accepting the idea to which Sir Ernest
Rutherford's experiments led him in
1911 - the idea that an atom consists
of a positively charged nucleus and
some negatively charged electrons, all
of them much smaller than the atom that
they build - the imagination constructs
a picture. In that picture the rela-
tively light electrons revolve about
the relatively heavy nucleus in orbits,
like the relatively light planets re-
volving about the relatively heavy sun.

Indeed the planetary model of an
atom is very appealing. The attractive
force obeys the same law of distance
in both cases: it varies with the in-
verse square of the distance between
the attracting centers. In the plane-
tary case the attractive force is
gravitational (proportional vo the
product of the two masses); in the
atomic case the force is electrostatic
(proportional to minus the product of
the two charges), for a calculation
using the known ratio of charge to
mass of the electron quickly shows
that the gravitational contribution in
an atom can be neglected.

But observations of atomic be-
havior bring to light two obstinate
difficulties with this model. Call
them Difficulty (a; and Difficulty (b).

Difficulty (a). A charged body,
revolving about an oppositely charged
body, should continuously radiate an
electromagnetic wave, as a radio an-
tenna does. An electromagnetic WAVE,
carries energy, the energy of the
whole system is conserved, and thus
the model continuously loses energy to
the electromagnetic wave, until the
electron falls into the nucleus. But
retl atoms are remarkably stable;
matter is not constantly radiating
electromagnetic energy.

Difficulty (b). The model pro-
vides a continuous spectrum of possible

V

1

orbits for the electrons, permitting
the total energy of the atom to have
any value whatever. When the model is
disturbed, by an incoming electromag-
netic wave for example, it accepts
any amount of energy that it gets a
chance to accept, by making appropri-
ate changes in the electronic orbits.
But a real atom accepts energy only in
certain definite quanta, whose size is
closely connected with the frequency
of the electromagnetic wave from which
it absorbs the energy. And when ex-
cited to a condition in which it has
more than its normal amount of energy,
it will emit that energy in similar
quanta. Indeed the frequencies associ-
ated with the wavelengths of the re-
sulting spectral lines provide most of
our detailed information about the
structure of atoms.

These difficulties are partly re-
solved by quantum mechanics. Only
partly, for the nes..er mechanics still
says little about what happens while
an atom is changing from one of its
energy states to another. But quantum
mechanics provides a consistent de-
scription of the phenomena actually
observed - the spectral lines - and
Cole property immediately inferrable -
the existence of stable states of
fixed energy - and perhaps that is all
that should be asked of any physical
theory. Indeed, in its wave-mechanical
formulation, quantum mechanics goes a
little further and offers the begin-
nings of a picture of these matters.
The picture is ambiguous but it is the
best available at present to assist a
visualization.

The ambiguity in the picture is
often called wave-particle duality.
Electrons, ordinarily thought of as
particles, have some of the properties
of waves; and light, ordinarily thought
of as waves, has some of the proper-
ties of a stream of particles. Per-
haps the wave-like character of elec-



2 WAVE MECHANICAL PROPERTIES OF STATIONARY STATES

trons will seem more readily acceptable
after examining the particle-like
character of light.

The familiar wave theory of light
starts out as successfully as the par-
ticle theory of the electron, taking
such phenomena as refraction and dif-
fraction in its stride. Then it too
encounters two obstinate difficulties
- Difficulty (c) and Difficulty (d).

Difficulty (c). Monochromatic
light falling on a metal ejects elec-
trons, and the kinetic energies of the
ejected electrons range up to a maxi-
mum value which depends on the fre-
quency of the light and on the species
of the metal, but not on the intensity
of the light. The total number of
electrons ejected depends, of course,
on the intensity of the light, and on
how long 11 shines. But the maximum
energy of an ejected electron, and the
fraction of electrons having a partic-
ular energy, depend not at all on the
duration and intensity of the light.

The wave theory of light can

LIGHT
SOURCE

Fig. 1.1 Michelson and Worley divided light
from Q into two beams by the half-silvered
mirror P, reflected the beams from M, and
112, and reunited them at P. the interference
fringes observed in the telescope should be
displaced when the apparatus is turned so
that first NIP and then M,P are long the
direction of the "aether wind."

make no convincing picture of that
behavior. The light is supplying en-
ergy in proportion to its intensity
and duration. But the ejected elec-
trons do not show an energy greater
than E m by w, where v is the fre-
quency of the light, w is character-
istic of the metal, and h is Planck's
constant, the fundamental quantity
ubiquitous in quantum theory, with the
value 6.62 x 10-27 erg-second. More-
over, experiments in which small bits
of metal are illuminated have shown
that such bits may eject electrons
with energy E before the bits have had
time to absorb that much energy ac-
cording to the wave theory.

Difficulty (d). It is conven-
ient to think that waves take place in
a medium. The imagined medium supports
the waves; its undulations "are" the
waves. The medium propagates the waves
with a velocity characteristic of the
medium, and if you move through the
medium you must be able to observe
different apparent propagation veloc-
ities according to whether you move
along the direction of propagation or
across that dirc.Ition (Fig. 1.1). But
in the case of light, as Albert
Michelson and Edward Morley found in
1887, the apparent velocity is always
the same: c 3 x 10." cm per second.

Difficulty (c) can be handled by
supposing that light is a stream of
particles, each of which has a kinetic
energy hv, and which behave like a
wave motion when they are observed in
large numbers, but which individually
perform little acts upon the atoms as
:f they were colliding with the atoms.
The particles are often called "pho-
tons."

Difficulty (d) is not removed by
this supposition: The experiment dia-
gramed in Fig. 1.1 formed a foundation
for the theory of relativity. That
theory starts with two premises:
(1) Only the motion of one thing rela-
tive to another, and not the absolute
motion of something taken alone, has
any meaning. (2) The velocity of light
1.0 finite, and all observers of it
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Discussion 1.1

THE MOMENTA OF PHOTONS

This is not the place to develop
the arguments of he theory of rela-
tivity. It is appropriate only to ex-
hibit a fey results of that theory and
to show that they can lead to the re-

,lation between the momentum and the
,.:,wavelength of a photon. In that theory.

it is found 'possible to retain the
familier expression for the momentum,
p, of a particle,

p mv, (D1.1)

by using for its mass, m, an Amment
mass, '

'
Uhio' 0(43 + mole moc)

m008[77+47 1] - 03(m - mo).

(D1.4)

(D1.2)

, ,

where mo'is the rest masmof the:par-
tiele and v is its ve,locitY iplatiye
to the observer. The Idluilimuu of

ri:1 the partible is shown to be" 7;-,,r

U CA77171T7a.
4 ,

, , .

Accepting this solution offered
by the theory of relativity to Diffi-
culty (d),'and also the solution to
Difficulty (c) that light behaves like
a Stream of photons, each with kinetic
energy by, you can use the above re-
lations to inquire into other proper
ties of photons. Clearly these rela-
tions would give them infinite appar-
ent masses, momenta, and kinetic .

energies unless their rest masses are
set equal to zero. Using the value
mo 0, Eq. (D1.4) yields for the
kinetic energy of a photAn

;10 mc' (D1.5)

Hence m by /c', and Eq. (D1.1) yields
for the momentum of a photon

When the rest energy, mocavis sub-,
tracted from this exPression, the re-
mainder'is the kinetic energy:

p - mc hy/c - h/A. (D1.6)

where A is the wavelength of the
light.

will obtain the same value, regard-
less of their relative motion. The
consequences of these statements, de-
rived by preserving the laws of con-
servation of energy and momentum and
abandoning the conservation of mass,
provide a dynamical theory of parti-
cles called the special theory of
relativity. The difference between the
new theory and that of Newton is
characterized by the speed of light,
c, in the new theory. The predictions
of the two theories depart further
from each other the more nearly the
speed of a particle approaches the
speed of light.

It is therefore especially in-
teresting to examine what the theory
of relativity says about the only
particles known to travel at the

speed of light, namely, the particles
of light itself, the photons. As Dis-
cussion 1.1 points out, the theory
would give to such particles infinite
apparent masses, momenta, and kinetic
energies unl ;s their rest mass were
zero. But since a photon is observed
only when it is traveling at the speed
of light and never when it is at rest,
there is no contradiction with exper-
iment in supposing that its hypotheti-
cal rest mass vanishes. Then the as-
sumption that a photon has an energy
hp leads to the conclusion that its
momentum is given by p = h /A, where X
is the wavelength of the light.

This argument suggests a physical
picture of light; it is a train of
waves, and at the same time a stream of
particles of zero rest mass, traveling
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PHOTON

0-'n
eo

b:114

SCATTERED
PHOTON

$`
Fig.Fig. 1.2 In the Compton scattering of pho-
tons by electrons, the laws of conservation
of energy and momentum, and the quantum-
mechanical connection between the energy and
the frequency of a photon, make it possible
to predict the observed change in wavelength

of the photon: AA - (h/moc)(1 - cos 19).

at the speed of light. And the picture
in turn suggests an experiment. When a
photon collides with a material body at
rest, it should impart some of its mo-
mentum and some of its kinetic energy
to the body, losing some of its own.
But since its momentum is connected
with its wavelength, by p hiA., its

wavelength should be increased and its
frequency thus reduced by the colli-
%ion.

In 1922 Arthur Compton reported
experiments verifying this prediction.
In Compton scattering (Fig. 1.2) X
rays scattered by nearly free elec-
trons show the predicted change in
wavelength, as a function of the. angle
of scattering. Substituting the values
of h, mo, and c into tha relation
shown in Fig. 1.2, and recalling that
X rays have wavelengths of the order
of one angstrom, you find that the
change of wavelength can be as great
as two per cent.

Discussion 1,2

Wave mechanics constructs a sim-
ilar picture for all particles, not
only for photons. It gives an unex-
pected wave-like character to material
particles, just as it gives an unex-
pected particle-like
light. You can think
title as a traveling
a wavelength related
of the particle by a
by Louis de Broglie

character to
of a moving par-
wave-packet, with
to the momentum
relation proposed
in 1924:

p h/A. (1.1)

Notice that the de Broglie rela-
tion (1.1) is the same as the relation
(D1.6) derived for photons in Discus-
sion 1.1. But of course, material
particles and their associated waves
differ importantly from photons. The
material particles do not have vanish-
ing rest masses, and their waves are
not electromagnetic. What the waves
are, and how the picture of them re-
solves Difficulties (a) and (b), are
the subjects of the next few chapters.

Again, however, the picture
makes an immediate prediction: there
should be some observable phenomenon
in which material particles are dif-
fracted like waves. The observation of
such a phenomenon would require dif-
fraction gratings with which particles
can interact, and ways of imparting a
uniform momentum to the particles so
that they will have a monochromatic
de Broglie wavelength in the right
range for the grating to diffract them.
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WAVE-LIKE AND PARTICLE-LIKE BEHAVIOR 5

Crystals make good diffraction
gratings for X rays, and metal crys-
tals should be especially good gratings
to diffract electrons. Since metal
crystals are electrical conductors,
electrons can enter and leave them.
Electrons emitted by a hot filament,
and accelerated by a positively
charged cylindrical casing around it,
will escape through a slit in the
casing, forming a beam of electrons
with quite uniform velocities. The
velocities appropriate for diffraction
by a crystal are readily attainable,
as Discussion 1.2 shows.

In 1927 Clinton Davisson and
Lester Germer in the United States,
and George Thomson in England, found
that such an electron beam will in
fact afford diffraction patterns from
thin layers of metal very similar to
those given by X rays from thicker
layers. The principal differences
come largely from the higher scatter-
ing probabilities for electrons. Ac-
celerated by voltages in the hundreds,
the electron beam is mostly diffracted

by a few layers of atoms near the sur-
face of the crystal. When voltages in
the thousands are applied, the elec-
trons penetrate the crystal much fur-
ther.

Thus a curious symmetry seems to
inhere in Nature, by which both wave-
like and particle-like behavior can
be discerned in all of Nature's fun-
damental processes. Often we can dis-
regard this wave-particle duality, and
describe a process by methods devel-
oped to describe exclusively the
properties of waves or of.particles
as we have long understood them. But
this is usually possible only in
large - scale phenomena where multitudes
of wave-particles are cooperating. In
small-scale happenings we must remem-
ber that a particle behaves also like
a wave-packet; and we must connect its
particle-like behavior, described by
its momentum p, with its wave-like
behavior, described by its wavelength
A, through the de Broglie relation
p = h/A.

PROBLEMS

1.1 By expanding the expression (D1.4)
in Discussion 1.1 in powers of
1/c, show that at velocities low
compared with the velocity of
light the kinetic energy of a par-
ticle approaches the classical
value, mv2.

1.2 It is tempting (but unwise) to as-
sign to the wave associated with
a material particle a "frequency"
given by the velocity of the par-
ticle divided by its de Broglie
wavelength. Express the kinetic
energy of a freely moving particle
in terms of the frequency so de-
fined, and compare the expression
with that for a photon.

1.3 Suggest how two possible causes of

the "red shift" of light from dis-
tant stars might be distinguished
by observations of the light:

(a) the Doppler effect on the
light emitted by stars in an ex-
panding universe;

(b) the cumulative effect of Comp-
ton scattering of the light by
free electrons in outer spate.

1.4 Using the classical expressions
for the momentum and kinetic en-
ergy of the electron, and the ex-
pressions p = h/A and E = by for
the momentum and kinetic energy of
the photon, derive the expression
in Fig. 1.2 for the change of
wavelength of a photon in Compton
scattering.



2 PROBABILITY AND
STATIONARY STATES

If the waves associated with a mate-
rial particle are not the familiar
electromagnetic waves, what are they?
In an accepted interpretation of them,
proposed by Max Born in 1926, they are
probability amplitude waves. This in-
terpretation preserves one property of
light waves, at any rate, and thus
gives some coherence to the wave prop-
erties of photons and the wave proper-
ties of material particles.

Recall that the amount of light
passing per unit time through unit
area of a plane is called the inten-
sity of the light, and the intensity
is proportional to the square of the
amplitude of the light wave. In a
particle picture of light, tLe amount
of light must be proportional to the
number of photons. In order to carry
this interpretation over to a stream
of material particles that exhibit
wave-like phenomena, it is appropriate
that the intensity of the wave, again
proportional to the square of its am-
plitude, should measure the number of
particles.

The interpretation of the wave
as a probability amplitude wave fol-
lows at once. The probability of find-
ing a particle in a chosen neighbor-
hood is proportional to the density of
particles in that neighborhood, and
thus to the intensity of the wave in
that neighborhood. Like all others,
this wave can be described mathemat-
ically as a function of space coordi-
nates and the time. The first step
toward exhibiting that function for
any particular case is to construct
Schroedinger's equation for the case,
in the way that Chapter 4 will de-
scribe. The solutions of Schroedinger's
equation are the wave functions for the
case. The wave function for a single
particle is a function of the time and
the space coordinates for the parti-
cle, x, y, z, and t. And the square of
the wave function associated with the

6

particle measures, for each value of
x and t, the probability that the
particle is in the region of space
between x and x + dx during the inter-
val of time t to t + dt.

When more than one particle mist
be considered, analogous procedures
are available. Schroedinger's equation
provides means for finding a wave
function for N particles, which is a
function of the time and of 3N space
coordinates - enough for all the par-
ticles taken separately. The square of
that wave function then measures the
probability that particle No. 1 is in
such-and-such a region, particle No. 2
is in some other specified region, and
so on, all in the same little interval
of time.

Return for the present to the
simplest case, that of a single parti-
cle and its wave function. The central
assumption of wave mechanics is that
the wave function (along with a few
procedures for using it) describes all
that one can find out about the parti-
cle. Thus all that can be known about
the position of the particle is the
probability that it can be found in a
certain region. The form of the wave
function may imply that this probabil-
ity is so great for such-and-such a
region that it is nearly a certainty.
On the other hand, the wave function
may spread out in space as time goes
on, or it may be diffracted into sev-
eral beams, depending on the particu-
lar physical situation in question.

If it spreads out with time, the
interpretation must be that there is a
progressively larger region of :pace
in which there is some probability of
finding the particle. If it is dif-
fracted into several beams, the parti-
cle may have taken several different
courses, and one can determine only
the relative probability that it took
one course as compared with another.
In words which speak statistically,
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the square of the wave function is a
distribution function for the particle
in space and time. In words which
speak optically, the wave function is
a probability amplitude function and
its square is a probability intensity
function.

Among the most important wave
functions are those analogous to two
familiar sorts of mechanical and elec-
trical waves: the running waves which
do not change their form with time,
and the standing waves produced by the
superposition of two or more running
waves. The vibration of a uniform
string held at both ends in uniform
tension is the most familiar mechani-
cal example of a standing wave. Such
mechanical or electrical waves can
always be described by some function
of the space coordinates alone, multi-
plied by ei", and the analogous func-
tions of wave mechanics are analogous
in this respect also. Wave functions
of this sort characterize any particle
whose total energy (kinetic plus po-
tential) is not changing with time.

As an example of such a case,
examine the particle shown in Fig.
2.1, constrained to move in a circle.
It seems a rather artificial example,I
but it exhibits some of the proper-
ties of wave functions in a simple
way. Think of the particle as tied to
a central axle by a weightless rod,
or as confined iroide a tube of very
narrow bore, bent into a circle.

Do not confuse this case with
that of the hydrogen atom, with one
electron revolving in an orbit around
the nucleus. In the atom the electron
is not constrained to move around the
nucleus in a circle, nor indeed in an
ellipse. Classical mechanics says that
the electron will move in a circle or
an ellipse (if the fact that it will
radiate its energy is ignored), but
not that it is constrained from out-
side to do so. Wave mechanics does not

IR is not quite as artificial as it seems, for
At is the genesis of a way of treating the be-
havior of electrons in metals by wave mechanics.

even say that the electron in an atom
will do so. In the present problem,
by contrast, the particle is rigidly
restricted to move in a circle.

The solutions to Schroedinger's
equation for this problem are the
wave functions

= A exp 2ni(kx vt) (2.1)

where x is the distance around the
circle from some fixed point on the
circle, and v, k, and A are constants.
In order to see what such a function
looks like, hold t fast, choose some
trial value of A and of k, substitute
x = 1'0 (Fig. 2.1(a)), and plot either
the real or the imaginary part of
ill as a function of O. For some value
of k, that procedure will yield Fig.
2.1(b). In the latter figure the wave
function (not the path of particle
motion) is plotted as a wavy line
about the circle used as a base line
for `I' 0.

This looks like a wave except
that it does not join onto itself
after one period of 27r in O. It can be

a

=0

FAILURE
TO JOIN

Fig. 2.1 The wave function for a particle
constrained to move in a circle must be
single-valued, and thus can have only cer-
tain wavelengths.
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made to join onto itself only by
choosing the wave number

k =
n

2ur
(2.2)

where n is an integer. In other words,
these are the values of k which make
IP single-valued in ' at constant t.
Only that kind of wave function is
suitable: will then be continuous,
and 112 will be single-valued and thus
interpretable as an unambiguous prob-
ability.

In this way the problem yields a
set of possible wave functions, which
can be numNIrci with the positive or
negative intege" n:

t*n m At, exp 2rvt) (2.3)

The wave functions can be connected
with the behavior of the particle by
using the de Broglie relation between
the wavelength of a wave function and
the momentum of the particle,

p = h/A. (2.4)

Fig. 2.1(b) shows that the wavelength
of the function is A = 2rr/*n, and
hence the momentum and the energy of
the particle when it is described by
the wave function are

tnh
2irr

Fin = =
n2h2

2m 8r2r2m

(2.5)

(2.6)

Thus to each of the possible wave
functions there corresponds a value of
the energy, and the possible values of
energy form a discrete 'et, numbered
by the integer n. For kach possible
value of the energy there are two wave
functions in this case (except when
n = 0), corresponding to the two di-
rections of motion of the particle
around the circle. When there are
several possible stateE of a system
with the same energy, each group of
states with the same energy is called

degenerate. The present case is one of
twofold degeneracy.

Notice that the existence of dis-
crete energy levels, and of a dis-
crete set of possible states described
by the wave functions, has come from
the requirement that each wave func-
tion be singl-valued and continuous.
That requirement came in turn from
the requirement that the square of the
wave function should be interpretable
without ambiguity as a probability. It
is this last requirement that lies at
the heart of the matter. The require-
ment can also be used to determine the
constants AI in the expression (2.3)
for the wave functions, in the follow-
ing way.

Since the wave functions (2.3)
are complex - of the form X + iY,
where X and Y are real functions of x
and t - their squares will also-be
complex, and a complex number is not
interpretable as a probability. The
constant A cannot be chosen in such a
way as to make the square of the wave
function real for all values of x and
t. In order to make probabilities real
when wave functions are complex, wave
mechanics interprets the product of a
wave function by its complex conjugate
as the probability distribution func-
tion:

NW =4- (X + iY)(X - iY) = X2 + Y2.(2.7)

This interpretation accords sat-
isfactorily with the vast of the
theory. Clearly the expression (2.7)
reduces to V when 'I' is real. More-
over Schroedinger's equation is a
linear differential equation; and if
such an equation has a complex solu-
tion, then the complex conjugate of
that solution is a solution of the
complex conjugate equation. The com-
plex conjugate of a function is con-
structed by changing i into -i wher-
ever i appears in the function, and of
Schroedinger's equation by the same
change. The probability distribution
function obtained in this way from
any of the wave functions (2.3) will
be simply AA*.
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Now the probability that a parti-
cle will be somewhere in the space
accessible to it is unity. In the
case pictured in Fig. 2.1(a) the space
accessible to the particle is re-
stricted to a circular line. Thus
each wave function must satisfy the
requirement

21, 2r

4404rd0 = AA*rd0

0
(2.8)

= 2nrAA* = 1,

whence AA* = 1/217r. The constant, A,
can be taken as the real constant
1/1./2rri. The choice of a complex value

of A will merely change the phase of
the wave. Choosing A by Eq. (2.8), so
as to give unit probability for find-
ing the particle in its accessible
space, is called normalizing the wave
function..

When the space accessible to a
particle is not restricted as it is
in this case, so that the particle
can be Emywhere, the integration ana-
logous to that in Eq. (2.8) must be
carried out over the whole of space.
The integration limits are then in-
finite, and clearly most functions in-

tegrated between infinite limits can-
not give finite answers. Again, there-
fore, the requirement that it shall
be unambiguously interpretable as a
probability distribution function
picks out the wave functions that are
acceptable as physically meaningful
wave functions. In other words, those
functions 41 are acceptable which are
solutions to Schroedinger's equation
for the case, and which also give
finite results when We is integrated
between infinite limits. Again those
quadratically integrable functions
will usually form a discrete set, to
each of which corresponds a definite
value of the energy.

PROBLEMS

2.1 What is the phase velocity of the
wave described by the wave func-
tion (2.3)?

2.2 Discuss the limitations, if any,
to the quadratic integrability
over the range x = 0 to co of
functions of the type
e-"(ao + aix + + anxn), where
n is a finite integer.



3 UNCERTAINTY AND
THE PARTICLE INA

A principle that lies deep in the
philosophical groundwork of quantum
mechanics is the uncertainty pxinciple,
proposed by Werner Heisenberg in 1927.
It examines the combined accuracy with
which measurements of two different
dynamical properties of a system can
be made. For example, it says that the
position of a particle and the mores-
tum of the particle cannot both be
determined exactly. And it assigns a
relation between the uncertainties
which must inhere in any attempt to
measure both of these quantities. The
principle has far-reaching conse-
quences in the observed behavior of
matter; it is of greater practical
importance than may appear at first.

Classical mechanics offers no
objection to such joint measurements;
both position and momentum can in
principle be determined to any desired
degree of accuracy. Quantum mechanics
asserts, in this instance, that the
uncertainty bx in a measurement of the
position x of the particle and the un-
certainty Apx in a measurement of its
component of momentum px along the
x-direction must obey the relation

Ax 6p h. (3.1)

The product of the two uncertainties
can never be less than Planck's con-
stant.

Often the relation (3.1) is made
reasonable by analyzing imaginary
idealized experiments. A feature of
many of these thought-experiments is
that the attempt to measure one of the
quantities changes the value of the
other: the measured system cannot be
contemplated independently of the
measuring system.

Instead of analyzing such experi-
ments, be content here to examine the
meaning of the uncertainty principle
in the case of a particular dynamical
system, that of the particle in a box.

10

BOX

It is simplest to choose a one-dimen-
sional box: the particle is constrained
to move along a line of length 1. In
other words, the thin tube used to
picture circular motion in the last
chapter is cut at one point, bent
straight, and capped at both ends.
The particle can only shuttle back and
forth with constant kinetic energy
along the line, reversing the direc-
tion of its momentum every time it
comes to an end of the line.

The wave functions for this case
are the standing-wave counterparts of
the running waves that describe the
particle on a circle:

q
nrx

rn = An sin exp-2rivt

for x in the range 0 to i,

(3.2)
so = 0

for x outside the range 0 to P.

For the first few values of n the wave
functions are drawn in Fig. 3.1. The
reasoning used in Chapter 2 shows that
the wavelengths are A = 2f/n, that the
momenta are therefore nh/2f, and thus
that the energy levels are n2112/8m12.
If the potential energy of a particle
inside the box is taken to be zero,
the energies given by this expression
are all kinetic.

Notice particularly the fact,
characteristic of wave mechanics, that
the energy corresponding to the wave
function does not depend on the value
of An. In this respect the waves are
quite different from those of ordinary
mechanics and of alternating-current
circuitry. Here the energy does not
depend on the amplitude. The appropri-
ate value of An is that which normal-
izes the wave function, making *4*
interpretable as a probability, as
Chapter 2 described.

Some other features of wave



UNCERTAINTY AND THE PARTICLE IN A BOX 11

mechanics, which are very generally
applicable, appear clearly in this
example. Notice that the value n = 0
is useless because the corresponding
wave function (3.2) would vanish
everywhere; and the probability inter-
pretation would be that the particle
is nowhere - that there is no particle.
Then the first admissible wave func-
tion - that with the lowest energy -
is that in which n = 1, with a corre-
sponding energy h2 /8m22. Thus the par-
ticle cannot have zero energy and
cannot be at rest.

Clearly this feature of the ex-
ample comes from the fact that the
particle is confined to the length f.
The formula for energy levels shows
that as f gets bigger this lowest ad-
missible energy (and indeed the energy
in any energy level) gets smaller.
Conversely, the smaller the bo): the
higher the kinetic energy of the par-
ticle.

A very similar phenomenon ap-
pears in the real world. Almost every
real particle has a potential energy
that depends on its position. The
particle will seek those positions in
which its potential energy is lowest,
and the probability that it will be
found near those positions will tend
to be high. In other words, the parti-
cle tends to be localized to regions of
of low potential energy. Again, be-
cause of this partial confinement,
wave mechanics will usually assign a
lowest possible kinetic energy to the
particle (or to a system of particles),
which is finite, and which corresponds
to a wave function called the ground
state of the system. One consequence
is that, even were the temperature to
approach absolute zero, there would
remain zero-point energy and zero-
point motion of the particles of
matter. And the kinetic energy will be
larger the higher the degree of the
partial confinement - the more the
potential energy of the particle tries
to restrict its position.

For the particle in a box the
same qualitative result follows from
the uncertainty principle. If the

particle is certainly in thu box,
then the uncertainty in its position
is bx f, a finite quantity. The
principle asserts that the product of
that uncertainty and the uncertainty
in the momentum of the particle is
finite, and thus the uncertainty in
momentum must also be finite. If the
momentum were certainly zero, there
would be no uncertainty in it. The
particle must therefore have some
mean absolute momentum, and with it a
mean kinetic energy.

Notice that, for the ground state
of the particle in a box, the equality
in the Heisenberg uncertainty princi-
ple is exactly verified. The uncer-
tainty in position is bx = only the
fact that the particle is in the box
is known with certainty. Since the
particle may at any time-have either
a momentum +p or p, depending on
which way it is moving, the uncer-
tainty in p, is 2p. By the de Broglie
relation p = h/A, and in the ground
state A = 21. Thus opx = h//, and
MAN, = h.

It is interesting to examine an
example which suggests a relation be-
tween three physical situations at
first sight quite dissimilar: X-ray.
diffraction, electron diffraction, and
the particle in a box. Examine a par-
ticle - be it photon or electron - in-

n = 3

n=1

01

Fig. 3.1 The first few wave functions for
the particle in a one-dimensional box.



12 WAVE MECHANICAL PROPERTIES OF STATIONARY STATES

Fig. 3.2 Photons or electrons, reflected
back and forth between the regularly spaced
planes of atoms in a crystal, can be thought
of as confined to a box of width d.

cident at the glancing angle 0 on a
set of planes of spacing d in a
crystal, as shown in Fig. 3.2. Con-
sider the particle, reflected again
and again between the planes and
finally escaping, as confined in a
box, so far as its motion along the
x direction is concerned.

Although this behavior really

Discussion 3.1

exemplifes that of the particle in a
box, the language of the uncertainty
principle can serve to analyze it.
The uncertainty in the x position of
the particle is as before Ax = d, and
the uncertainty in the component of
its momentum along that direction is
as before twice the absolute value of
that component. Thu momentum of the
incident particle is p, its x compo-
nent is p sin 8, its uncertainty
apx is 2p sin 0, and the de Broglie
relation provides p = h/X. Hence

AxApx (d)(2h/X sin 8) = h,

which is the same as the Bragg rela-
tion,

X = 2d sin 0,

used in the determination of crystal

UNCERTAINTIES IN

Consider the problem of-Finding
{out. when-gparticle 'with :associated
uncertainties Ax and ape ^.wil,l arrive

at ficertain Place:. Figura 3'.3*ows 3t

that. at. Some'time:t .! 0 the Uncer

tginty,of_position sill alloy the ;,-
Partible to:be located anywhere be- -

0011n -*l and x2 (whpie A* xp X)';
In condequence-ofthe ASsediaten-
certainty'isi:itsWOgentUM,- the,veleo-
:10'41 the particle may have any, value
between vi acid'' 6PW/14 uvv
.1/2").: The.40Cerigipti in;.its time of

"

ENERIN AND TIME

arrival at x0 will be the difference
between -the longest possible time,

x;) /v and,'.the shortest possi.
x2/v2,;.t'f

Hence,

v,
V

and if v2 t: v1 is small-compared with
their mean value v 3(v1 +y2), then

x2
=1"34,..

Alf

But .the .,,tiglOitaintl, in momentum is-
0110:in-OnCertainty in kinetic, en-

ergY
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structures by X-ray diffraction. From
this derivation, it is clear that
electrons as well as photons can be
expected to show this behavior, as
Chapter 1 has already suggested.

The uncertainty principle not
only connects uncertainties in posi-
tion and momentum but also connects
uncertainties in energy and time. By
deriving the latter relation Ant y h,
from the former relation ApAx h, in
a particular example, Discussion 3.1
may help to make the two relations
equally credible.

But the relation AEAt h is
more general than this derivation im-
plies. The energy in question is not
restricted to kinetic energy. The re-
lation connects any uncertainty in
the value of the total energy of some
system or part of a system, and any
uncertainty in the time at which that
energy is transferred across some
selected surface.

For example, certain observed
spectral lines arise from atomic or
molecular transitions from states of
very short life. If the life of such

a state is short enough, thn uncer-
tainty At in the time at wh'Jch it
makes its transition to another state,
absorbing or emitting a photon, is
necessarily small. Thus the spectral
line is broadened by operation of the
principle AEAt h, and the relation
AE hAv for the emitted photons. The
broadening is noticeable experimentally
when the initial states have life-
times shorter than 10-10 second.

PROBLEMS

3.1 Normalize the wave functions for
the particle in a one-dimensional
box.

3.2 Show how the wave functions for the
particle in a one-dimensional box
can be constructed by considering
them to be standing waves formed by
superposing two of the running wave
functions obtained in Chapter 2 for
the particle on a circle.



4 SCHROEDINGER'S

Schroedinger's equation furnishes the
means for constructing the wave func-
tions for mechanical systems. There
are many ways of making it seem rea-
sonable - some of them statistical,
others developing an analogy between
the mathematical formulations of
classical mechanics and optics. All
provide a helpful insight into its
meaning.

Alternatively, Schroedinger's
equation can he taken as a postulate
from which to develop a form of me-
chanics whose reasonableness consists
in its implying consequences that
agree with experiment. This chapter
will adopt the latter viewpoint, since
the former would require a preliminary
excursion through classical mechanics,
statistical mechanics, and optics.

It may help you to accept Schroe-
dinger's equation in a friendly spirit
by seeing how it fits together with
some properties of the wave functions
for the particle on a circle, dis-
cussed in Chapter 2,

= A exp 2ri(kx vt) . (4.1)

Recall (Chapter 2, Eqs. 2.2 and 2.5)
that the momentum is related to the
wave number k by

px = hk, (4.2)

and notice that in consequence the
momentum can be found by differentiat-
ing the wave function with respect to
x,

= 2ri Ak exp 2ri(kx vt) . (4.3)
8x

That permits you to write

h 8
px4i,

2ri 8x

and to read that statement in the

01IMINMY.

(4.4)

14

EQUATION

words, "The performance of the opera-
tion (h/2ri)(8/8x) on the wave func-
tion `I' is equivalent to multiplying
the wave function by px."

Look now at the constant v. The
analogy between photons and material
particles, used in developing quantum-
mechanical ideas in Chapter 1, sug-
gests setting the energy

E = hv. (4.5)

Then the energy of the particle can
be obtained from the wave function by
differentiating it with respect to t,
much as the momentum was obtained by
differentiation with respect to x:

2ri 8t
(4.6)

It is important to notice (Problem
2.2) that this "frequency" v is not
equal to the velocity of the particle
divided by its de Broglie wavelength,
except when the particle is a photon.

Consider now the energy equation
that this particle would obey accord-
ing to classical mechanics:

1
E =

2
mv2

p x 2

2m
(4.1)

When both sides of it are multiplied
by 4,, the quantities E and px can be
replaced byoperations - wave-mechani-
cal operators. The equation then be-
comes

h h h

21/1 at 2m 2ri 8x/ 12ri 8x/

(4.8)
-h2 82*
8r2m 8x2

Equation (4.8) is Schroedinger's
equation for a particle moving freely
but in only one dimension along the
coordinate x. It is an energy equation,
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obtained by replacing the quantities
px and E in the classical energy equa-
tion by differential operators. Solu-
tions of this differential equation
that obey physically reasonable con-
ditions are the wave functions for
the particle. The physically reason-
able conditions are those which per-
mit the function 'I'V to be interpreted
as a probability, as Chapter 2 has
described.

The preceding paragraphs have
started with wave functions and ar-
rived at Schroedinger's equation. Now
examine the reverse procedure: arriv-
ing at the wave functions by starting
with Schroedinger's equation. This is
what must in fact be done in a physi-
cal problem; it was done to derive the
functions (4.1) in the first place.

Since Eq. (4.8) contains deriva-
tives of a function with respect to x
and t, its solutions 4/ must be func-
tions of both these variables. It is
a common device, in solving linear
partial differential equations, to
seek solutions that are sums or prod-
ucts of functions of each of the
variables taken separately - the
method of "separation of variables."
In this case assume that it will be
possible to find solutions of the
form

41x, t) - 0(x) f(t). (4.9)

Substituting (4.9) into (4.8), and
dividing both sides by 4', yields

-h df -112

2sif dt 800 TO (4.10)0

Since the left side is a function of
t only, and the right side is a func-
tion of x only, each side must be
equal to a constant X, independent of
both x and t.

That observation provides two
ordinary linear differential equations,
one for f and one for 0. The equation
for f,

-h df
2tif dt (4.11)

can be solved by simple quadrature:

df 2ri
f h

K dt, or

f = (constant) exp 2ifiKt/h.(4.12)

The equation for is a linear differ-
ential equation of the second order
with constant coefficients,

8n2nX A n
dx2 h2 (4.13)

The solutiors of such equations always
have the form 0 = Ae", where A and a
are constants. Substituting this form
into (4.13), and dividing by 0, shows
that it is a solution, for any value
of A, when

2 8s2mK
a +

h2
0, or a -

*2si

(4.14)

Here are two distinct solutions of
(4.13), one for each choice of the
sign of a in (4.14), and each Polution
can be multiplied by any constant A.
Clearly the sum of two solutions is
also a solution, and thus the most
general solution for (4.13) is

0 = A exp 2i1 %Wire x + B exp hai tax
(4.15)

Recalling the orginal separation of
variables in (4.9), you can now com-
bine (4.12) and (4.15) into the solu-
tions of (4.8) that you sought:

- A exp
2si

(Viii7x - Kt)

+ B exp x Kt). (4.10

Applying to this wave function 4' the
momentum operator (4.4), first with
B = 0 and then with A =,J1L provides
(1/4)(h/2,1)(10/1x)* = 42mK and

If K is identified with the en-
ergy E, the relation (4.7) shows that



16 WAVE MECHANICAL PROPERTIES OF STATIONARY S TATES

the operator has indeed yielded the
momentum; the two signs correspond with
the two possible directions of motion
of the particle.

Do not make the mistake of sup-
posing that anything substantial has
been proved by this chase from wave
function to Schroedinger's equation and
back to wave function. The chase has
merely shown how everything in the last
few chapters hangs together, and has
exemplified the mathematical technique
for solving Schroedinger's equation.
In the context of this monograph, that
equation must be taken as one of the
postulates of the system of mechanics
under construction. This preamole may
help you to accept the procedure for
writing Schroedinger's equation in
more general cases.

The first step in setting up
Schroedinger's equation for a system is
to write its total energy in terms of
the time and of the momenta and co-
ordinates of its parts. The second step
is to substitute, for the energy and
momenta in that energy equation, the
quantum mechanical operators. These
two steps correspond to steps (4.7) and
(4.8) in the case already discussed.
In that case the energy of the particle
was entirely kinetic, and there was no
need to add a term to represent the
potential energy.

When a potential energy term must
be added, what is the corresponding
operation on the wave function? It is
simply multiplication of the wave func-
tion by the potential energy as a func-
tion of the coordinates. "Operation on
the wave function by x" means "multi-
plication by x." A similar statement
applies to any function of the coordi-
nates: operation on the wave function
by any function of the coordinates 's
the same as multiplying the wave func-
tion by that function of the coordi-
nates.

In the more general case of a
system of particles that interact with
one another, and also perhaps with ex-
ternally applied forces, the total en-
ergy of the system at any instant is
the sum of its kinetic energy and its

potential energy. The kinetic energy
will be

1
Ukin Ma va

2
+

2
M

2
V22 +

Pie P22
2M1 2m2

4. , (4.17)

summed for all the particles. The po-
tential energy of the system, in all
the cases of interest in this series
of monographs, will not depend on the
momenta of its parts but only on the
coordinates of the particles (and the
values of any externally applied
forces):

Upot ° Upot (cial,z1; x2,y1,z2; ...) .
(4.18)

The classical energy equation is then

Ukin + Upot " E, (4.19)

where thin + iJp,t is written out in
terms of the momenta and coordinates of
the system, and when so written out is
called the Hamiltonian of the system,
and is denoted by H. With this nota-
tion Eq. (4.19) can be written in the
simple form

H E. (4.20)

Now multiply both sides of the
equation by + and substitute the
quantum mechanical operators. Since
pi

s + pyit + etc., the
term Ukint the kinetic energy, re-
quires the substitutions

h h 8

2tri
Pr,

211 9Y1

h 8
etc.

tai 8z, '

The operators thus obtained are

Pil / 8' a* at
2m, Seal lex It 83/12 8z,

(4.21)

, etc.

(4.22)
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The part of the operator (4.22) in
parentheses is called the "Laplacian"
operator and is often written for con -
ven ience

82 82 2v2
0(2 ay,: 8.8

_ 2 .(4.23)

After making the further substitution
of the operator for the energy

-h 8

2ai at
(4.24)

as in Eq. (4.6) for the earlier ex-
ample, the energy equation reads

_ht

8t : 1m
+-L + -.L 144+ Upot .

as

-h a 4f.
21i at

(4.25)

Equation (4.25) can be abbreviated to
read

14- EC (4.28)

where H and E denote the Hamiltonian
operator and the energy operator, re-
spectively. It is the wave-mechanical
analog of Eq. (4.20).

Written for N particles, the re-
sulting equation is a linear partial
differential equation in 3N + 1 vari-
ables: the three space coordinates of
each particle and the time. Solving it
exactly is usualky impossible, and
even in the soluble cases invokes
mathematical techniques that are not
elementary. In order to make progress
despite these difficulties, the solu-
ble cases are used to give insight
into the insoluble cases and to pro-
vide means for making approximate
calculations. But often the methods
of approximation also invoke nonele-
mentary mathematical tools.

The resulting mathematical char-
acter of wave mechanics may seem re-
pellent in a physical theory, but
there is no help for it. Indeed, that
mathematical character lies deeper
than mere technique. Wave-particle

duality (Chapter 1) prevents one from
using familiar ideas of how a particle
behaves, and leaves one with the
picture of a wave function whose
properties are mathematical proper-
ties. In order to gain notions of how
wave functions behave, you must ex-
amine the mathematical properties of
quite a few of them. Then you can
achieve some of the same intuitive
feeling for quantum mechanical behav-
ior that you already have for classi-
cal mechanical behavior.

One important simplification can
be made at once in Eq. (4.26). In the
systems discussed in this series of
monographs, the Hamiltonian is a func-
tion of the coordinates and momenta
but not of the time. Hence Eq. (4.26)
can be broken in two by the method of
separation of variables, used in Eq.
(4.9) of the earlier case,

0 (xi ...)f(t). (4.27)

Just as before, 14- (H0f, and
ES (-h/2ti)(di/dt)*. Substituting
those expressions into Eq. (4.28), and
dividing both sides by 4, provides

Hi -h df,

41 21i f dt
(4.28)

and since the left side is a function
of the coordinates only, and the right
side is a function of the time only,
each side equals a constant X. The
equation for f is then the familiar
Eq. (4.11), whose solution is

f (constant) exp - 2likt/h (4.29)

Again X can be identified with the
total energy of the particle, as the
next chapter will show. Thus the other
half of Eq. (4.28), reading 1141 X*,
becomes

H. Et. (4.30)

And in consequence of Eq. (4.27), the
solutions of Eq. (4.26) can be written

2ti
# = exp - Et (4.31)
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Equation (4.30) looks like Eq.
(4.26), but notice carefully two dif-
ferences. In the first place, the
function 0 is not time-dependent; it
is a function only of the coordinates.
In the second place, E is no longer a
differential operator; it is a con-
stant. Equation (4.30) is called the
"time-independent Schroedinger equa-
tion." Solutions of it that permit a
probability interpretation are the
time-independent wave functions for
the system, describing the states that
the system can adopt. Usually such
solutions are possible only for spe-
cial values of the constant S. Those
values are the possible energy levels
of the system, and this scheme of
solution will associate certain states

of the system with certain values of
the energy.

PROBLEMS

4.1 Of the many points of inflection
which wave functions for a one-
dimensional problem may have, sin-
gle out a set which has a simple
physical significance when the sys-
tem has a potential energy which
varies with position.

4.2 From your knowledge of the meaning
of the operator V in vector analy-
sis, answer the question, "What is
the symmetry of the part of the
Schroedinger equation which repre-
sents the kinetic energy?"



5 WAVE FUNCTIONS, OPERATORS
AND THE HARMONIC OSCILLATOR

The most important properties of wave
functions are associated with the in-
terpretation of their squares, 44A,
as measuring probabilities in the way
described in Chapter 2. That interpre-
tation makes it possible to calculate
what the observable properties of a
system are. But y)u must recognize
that, according .o the uncertainty
principle described in Chapter 3, the
observable properties may be somewhat
indefinite.

"Where is the particle?" You can
say two things that provide a partial
answer to that question. In the first
place, you can find the relative prob-
ability that it is in one place or
another if you know its state - its
wave function - as Chapter 2 has al-
ready described. Hence, in particular,
you can find its most probable loca-
tion.

In the second place, you can
find its average location by writing
down each possible location, weighting
that location by the probability that
the particle is in it, and adding all
the results. Thus, for example, the
average x coordinate of a single par-
ticle, restricted to move in a line
and known to be in a state described
by the wave function 4', is

f3 -
ritix

(5.1)

there the integration is carried over
all values of x accessible to the par-
ticle. If the wave function has been
normalized (Chapter 2), then jr*I4ux
- 1, and Eq. (5.1) can be written

7 - f x**4Ax (5.2)

If the particle is only one member of
a system of many particles, free to
move in all three dimensions, is a
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function of the coordinates of all the
particles, and

° J.X eidT (5.3)

where the integration is carried over
all the coordinates of all the parti-
cles. It is a multiple integration;
dr stands for dxidyidzidx2dyldz2... .

Now consider the question,
"What is the momentum of the particle?"
The probability interpretation applies
tf. its location, but says nothing di-
rectly about its momentum. It is
natural to guess that at least the
average momentum might be calculated
in some way analogous to the calcula-
tion of the average position. But
Chapter 4 has made available only an
operator, not a quantity, to represent
the instantaneous momentum. It is
tempting to write, by analogy with
Eq.(5.3), 'Pia J-N19411fdr, and to use

the quantum mechanical operator
(h/2ri)(0/8x1) for NI under the in-
tegral sign.

That guess is essentially right,
but a new precaution is needed. In the
expression used for obtaining 71, it
made no difference in what order xi,
9', and 4t appeared under the integral
sign because all these quantities are
commutative: x14 Sxi, for example.
But when the operator does not commute
with the object on which it operates,
the order of writing makes a differ-
ence. For example, if the state under
examination is the ground state of a
particle in * box (Chapter 3), then
NISI* (h/2ri)PAt/f) sin (rx/f)
cos(tx/f)), 404NIS has half that
value, and *A4pai is not an integrable
object.

It is a postulate of wave mechan-
ics that the correct form to use, with
any operator 0 presenting such an am-
biguity, is

-6 a. f **CM r. (5.4)
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Using this form for the mean momentum
of the particle in a box, you find
that it is zero. This result makes
physical sense because the particle is
moving in one direction as often as in
the other. Using this form for the
mean of the square of the momentum,
you obtain a nonvanishing answer that
can be checked against the value of
the kinetic energy.

A mean value calculated by Eq.
(5.4) is called an expectation value.
It is the value of an observable prop-
erty that would be obtained by meas-
uring the property in a great many
systems that are identical, so far as
they can be made identical, and then
averaging those measurements.

Turn now to examine the expecta-
tion value of tha energy of a system.
The preceding discussion has exhibited
two operators for the total energy
(Eq. 4.26): the operator H and the
quantity E. In order to leave no dis-
crepancy between them, the expectation
value of H must be made equal to the
energy E. The identity of these two
quantities is established in Discus-
sion 5.1.

Examine as an example of these
methods, useful in its own right, the
case of the harmonic oscillator, with
which your earlier studies of classical
mechanics have already made you famil-
ilar. A particle oscillates back and
forth along the x direction about the
position x 0, under a restoring
force Fx -kx. Its potential and kin-
etic energies are

Upoti ikxl, Ukia im(g92 - (5.5)

In classical mechanics its equa-
tion of motion follows from Newton's
observation that the force on the par-
ticle equals its mass times its accel-
eration:

m--- -kx.
dtt

(5.6)

The solutions to this equation give
its position as a function of tine, Pause at this point to compare

x - A cos 2rv(t - to), (5. ?)

where A is the amplitude of the oscil-
lation and to is its phase. The quan-
tity v, its frequency, is

v
211 m'

(5.8)

and you can use this relation to write
Eq. (5.6) in terms of a single descrip-
tive parameter:

d2x
+4 17 v 2 X ° 0.

dt2
(5.9)

Using the solution (5.7) in (5.5), you
find

IA2k cos' 2rv(t - to), (5.10)
Ukim leis. sin* 2E1/(t - to) .

Thus the potential and kinetic ener-
gies oscillate out of phase but with
the same amplitude, so that their
average values are the same. Their
sum, the total energy, is ikAI.

In order to carry out the wave
mechanical calculation, starting from
(5.5), add Um and Upot, substitute
the momentum operator for p2, and
write the time-independent Schroedin-
ger equation,

Iii Se
-111

+ E.ikxElp - . (5.11)
dxI

This equation can be made to look
simpler by lumping the constants to-
gether into two parameters,

A a SEINE/hi, and at a 40mk/ht.(5.12)

Notice that, by using (5.8), a can be
written rationally in terms of the
classical frequency, a M 4tImv/h.
Equation (5.11) then reads

Alt
dx* (A- (1131)0 0. (5.13)
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Disci:Salon

,THE ENERGY OF A

When a mechanical system is in a
state *hose viva function has the

rm * #(x ) f(t) the timeo
dependent partef that function is

f.

(constant). exp

SAVE-MECHANICAL SYSTEM

Since H is independent of t, you can
cancel one exponential against the
other and trite "'"'"'

44

Since H. Wit and it is a constant, you

have i KI0',dr. Thus if 0 is normal
teed, Ti K. In other words, you can 7
iddetify K with the energy.S, and jus-
tify the way the time-dependetc Scbroe-
dinger equation was written in Eq.'

exp (2tiEt/h) H# exp (-2riKt/h)dr. (4.30).'

11"164tPev ltiP3N40

as chapter 4
Applying the
tats

the wave equation (5.13) with Eq.
(5.9), which provided the solutions to
the classical problem. Both are linear
differential equations of the second
order. in the classical equation a
space coordinate depends on the time;
in the quantum equation a wave func-
tion depends on a space coordinate.
The classical equation is easy to
solve; the quantum equation is not,
because it is a differential equation
with variable rather than constrat co-
efficients. You seek the most general
solution of the classical equation,
assured that any solution has physical
significance. You seek only special
solutions of the quantum equation:
those whose squares can be integrated
over the range of x from -06 to +° to
yield a finite result. You have rea-
son to believe that only certain val-
ues of the parameter A will permit
this; those values will determine the
permitted energy levels through the
relations (5.12).

The details of how to obtain the
desired solutions to Eq. (S.l3) need
not be repeated, but it is worth while
to examine the general mathematical
ideas of the procedure.' Notice that

RA closely analogous procedure Is used in s
cast of greater practical laportance, that of
the Ihydrogett-Ilke atom."

for very large values of x the coef-
ficient of in Eq. (5.13) is domi-
nated by a2x2, and that A exp - ax2/2
is an asymptotic solution to the equa-
tion for large x, since (d2/dx2) exp
- ax2/2 - (a'x' - a) exp- ax2/2. In-
deed for the special value A - a, it
is an exact solution. Moreover it is
an acceptable solution, since it is
quadratically integrable

+to

JAI exp (-10X2/2)dX

and the function therefore permits a
probability interpretation.

The remaining acceptable solu-
tions are found by examining functions
formed by multiplying this function by
a power series in x:

0 " A exp (-0x2/2)(ao + six + a,x' +
+ sax* + ...)

(5.14)

When this expression for 0 is used in
Eq. (5.13), you find in the first
place that the power series must tr.:-
minate - the bracketed part of the ex-
pression must be a polynomial in or-
der to secure quadratic integrability.
You then find that there is one solu-
tion, corresponding to a different
value of A, for each value of n chosen
to terminate the series. Those values
of A are in fact As a(2n -- 1), and
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hence by the relation (5.12) the en-
ergy levels are

En - (n + i)hp. (5.15)

The corresponding wave functions are
of the form

An exp (-ox2/2)(ao + aix +
+ anxn).

(5.16)

The bracketed polynomials, with values
of the a's chosen to satisfy Eq.
(5.13), are called the "Hermite poly-
nomials."

Since the functions are quadrati-
cally integrable, the coefficient An
can be chosen so as to normalize them.

Fig. 5.1 Wave functions (dotted), proba-
bility functions (solid), classical poten-
tial energy (parabola), and eorritY. levels
(horizontal) tot the borooslc oscillator.

The first four of these functions
(with their normalizing coe!ficients)
and the corresponding energies are

00 Q (01 exp-ox2/2, Eo - 1/2 hu,

01 . (1)1 xexp -ox2/2, El 3/2 hu

02 '(101 2ox2) exp -axe /2,

E2 ° 5/2 by,

03 d (2n1(x exp -ox2/2,

Es ° 7/2 hu. (5.17)

Figure 5.1 shows (dashed lines)
the first three of these functions
plotted against x, using lines at the
energy levels apprcpriate to them as
base lines. Their squares, the proba-
bility functions, are also plotted
(solid lines); and the parabolic po-
tential energy curve Upot., jkx2 is
shown as well, to assist comparison
with classical expectations.

Notice in the first place in Fig.
5.1 a general similarity of these
wave functions to those for the parti-
cle in a box (Fig. 3.1). In both cases
the functions oscillate about the
horizontal axis, crossing it an in-
creasing number of times as n, the
quantum number, increases. In both
cases there is a zero-point energy;
the lowest permitted value of the kin-
etic energy is not zero.

In fact you can think of the two
cases as similar if you think of them
both as cases of particles in poten-
tial wells. In the case of the har-
monic oscillator, the well is para-
bolic in shape. In the case of the
particle in a box, the well is a
square well; it has a flat bottom from
which the potential energy rises
abruptly to ir:inity at the ends of
the box.

You will notice an important dif-
ference between the two cases, however,
when you remember that the particle in
the parabolic well would do if it were
behaving classically. It the particle



WAVE FUNCTIONS, OPERATORS AND THE HARMONIC OSCILLATOR 23

had the total energy E0, for example,
it would oscillate back and forth
along the line Bo in Fig. 5.1, between
the limits Ao And A0 representing the
amplitude of the oscillation. At the
points Ao and A0 it would come in-
stantaneously to rest, and all its en-
ergy would be in the form of potential
energy, as the intersection of the
line for Ea with the curve foo Upot at
those points makes clear.

But the wave functions for the
quantum mechanical oscillator assign a
definite probability that the particle
will be beyond those points. In those
"classically forbidden" regions,
clearly the total energy of the parti-
cle would be less than its potential
energy, and thus its kinetic energy
would be negative there. This remark-
able result has come from the fact
that the potential energy for the os-
cillator is not infinite outside the
classically permitted region, as it is
in the case of the particle in a box.

The idea that a particle can be
found in a region where classical me-
chanics would not permit it to pene-
trate is an important practical result
of quantum mechanics. Somatimes the
potential for a particle will have two
or more wells, separated by a thin re-
gion of high potential energy, as in
Fig. 5.2. The particle then has a
finite chance of traversing the bar-
rier, even if its total energy is
small. The phenomenon is sometimes
called barrier penetration, or the
tunnel effect.

Compare now the wave-mechanic.:1
probability distribution for the har-
monic oscillator with the classical
distribution. The probability that the
particle is in a certain range of x is
proportional to the time spent in that
range. Hence the classical probability
is inversely proportional to the velo-
city of the particle in that range.
Clearly then it will be largest near
x *A and smallest near x 0.

Comparing that probability with
the square of a wave function of high
quantum number, as in Fig. 5.3, you
see that the quantum prediction is os-

ENERGY
OF PARTICLE

.00

POTENTIAL ENERGY FUNCTION FOR PARTICLE

--- SQUARE OF GROUND STATE WAVE FUNCTION

Fig. 5.2 A particle with too little energy
to traverse a barrier, according to clas-
sical mechanics, may leak through the bar-
rier, according to quantum mechanics.

OuANTumPRosaS..av
IN WAVE FUNCTION FOR n =10

--- CLASSICAL PROBABILITY

+A

Fig. 5.3 The probability function for a
harmonic oscillator in a state of high
quantum number oscillates about the classi-
cal probability.

cillating about the classical predic-
tion, and shows n "aeros" along the
z axis. For ranges greater than the
distance between these zeros, the
quantum probability would approach the
classical probability. That reflects a
general feature of quantum mechanics:
In the limit of high quantum numbers,
quantum mechanics approaches classical
mechanics. It is in this sense that
quantum mechanics contains classical
mechanics instead of conflicting with it.
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PROBLEMS

5.1 Derive the classical probability
function for the harmonic oscilla-
tor shown in Fig. 5.3.

5.2 In the limit of high quantum num-
bers, what is the approximate dis-
tance within which the quantum
probability function for the har-
monic oscillator (Fig. 5.3) per-
forms one oscillation, in terms of
the mass, the classical frequency,
and the classical amplitude?

5.3 Using the scheme of Eq. (5.4),
calculate the expectation value of
the kinetic energy for the ground
state of the harmonic oscillator.
What is the ratio of mean kinetic
to total energy? Is it the same
as in classical mechanics? The in-
tegrals you will need are of the

form

fexp (ax2)x2kdx

1.3...(2k
2k Y a 21c4,1

It can be shown that this ratio is
the same in all the states of the
harmonic oscillator.

5.4 Use the probability interpretation
of the wave function to discuss
two aspects of the behavior of a
particle in the immediate neigh-
borhood of a place where its wave
function has a node.

(a) What is the probability of
finding the particle there?

(b) Is the kinetic energy finite,
infinite, or zero there?



6 ORTHOGONALITY
AND KINETIC ENERGY

Wave functions for all sorts of mechan-
ical situations have several note-
worthy properties in common. Those
properties may seem plIrely mathemati-
cal at first; their Oysical signifi-
cances will become clearer as you use
them in practical cases.

One such property is the ortho-
gonality of the various wave functions
appropriate to any one physical prob-
lem. Two functions of x, On and 4111,
are said to be orthogonal on the inter-
val a to b if

b

ta;"adx 0.

a

The property of orthogonality may be
familiar to you already in connection
with Fourier series. You see it exem-
plified again, in exactly that form,
in the wave functions for the particle
in a box. There, as Chapter 3 pointed
out, the wave functions are gia
sin (ntx/i) exp 2tivt in the range of
x from o to and vanish elsewhere.
The quantum number n is an integer,
and thus the space-dependent parts of
any pair of these wave functions Oa
and *as where n # m, are orthogonal on
the interval o to t. Recalling that
the total energy associated with a
state is also determined by n, you see
that the wave functions associated
with states of different energies are
orthogonal.

A proof of that statement can be
written quite simply for cases in
which one particle is moving in one
dimension, in a potential having any
form Upot(x) that leads to a discrete
set of stationary energy states. The
particle on a circle (Chapter 2), the
particle in a box (Chapter 3), and
the harmonic oscillator (Chapter 5)
all provide examples of this general
form. Then the wave functions are com-
plex, the definition of orthogonality
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just given is extended so that it
reads

r *
Ondx 0.

a

(6.1)

Schroedinger's equation for such
cases is

2 d20
Sem dx'

,1

+ Upot(x)'0, %On. (6.2)

Since this equation is linear and
real, 0,1* is a solution for the same
value of E as 4,; in other words

112 dlOas
StIm dx!

+ Upot(x).0.* E0,12.(6.3)

The first step in the proof is to
eliminate Upotby multiplying Eq. (6.2)
by tm* and Eq. (6.3) by 0,, and sub-
tracting one from the other:

812mv as c1:2 450 ddx2
(6.4)

(E, Edt..te.

Since the bracketed part of the left
side of Eq. (8.4) equals

AJA *Rs _ A Mtn
d" dx " dx /

multiply both sides of the equation
by dx and integrate, to obtain

I ' * _ #
Sea v* dx dx la

b

(E, Es) f0,.0dx. (8.5)

Choosing for the range a to b the en-
tire region accessible to the parti-
cle, you know that the left side must
vanish at the limits because ta. and
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On vanish there. Hence

b

(En En)Pn*Ondx = 0.
a

(6.6)

This equation shows that when En is
not equal to En the integral must van-
ish, and hence the functions 0, and
are orthogonal.

Many important mechanical situa-
tions arise in which E, Es but
Oh # Op. These situations, where
several wave functions correspond to
the same energy, are called degenerate.
You have already seen a case of two-
fold degeneracy in the particle on a
circle: Two distinct wave functions
are solutions of Schroedinger's equa-
tion with the same value of E. Since
Schroedinger's equation is linear, any
linear combination of those solutions
is also a solution with the same value
of E. By taking such linear combina-
tions you can make, out of any set of
degenerate wave functions, another set
of an equal number of wave functions
which are orthogonal and which satisfy
Schroedinger's equation with the same
value of the energy. The technique for
doing this, in a case of twofold de-
generacy whose wave functions are real,

Dimmaosioo 41.1

,-'
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is shown in Discussion 6.1. The pro-
cedure is easily extended to handle
degeneracy of any degree.

Some feeling for the physical
meaning of the orthogonality of the
different wave functions appropriate
to any particular mechanical situation
can be obtained in the following way.
Think first of a classical mechanical
case in which you have already en-
countered orthogonal functions: the
description of the normal modes of vi-
bration of a stretched string by the
space functions fn(x) = An sin (nax/i).
There you could imagine exciting any
one normal mode independently of the
rest, and could find that the mode per-
sists and does not feed energy into
other modes. In other words, the modes
are not coupled. That sort of indepen-
dence - that lack of coupling - is the
feature reflected in the orthogonality
of the functions that describe the
modes.

The orthogonality of wave func-
tions has an analogous physical inter-
pretation. Associated with each wave
function is an exact value of the en-
ergy, and you find that the wave func-
tion describes a stationary energy
state, unchanging with time and un-
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coupled to other possible states of
the system. It is fruitful to pursue
this analogy into cases where coupling
between the normal modes is introduced,
and several words used in discussing
chemical bonds, such as the word "re-
sonance," are derived from the anal-
ogy. 3

Notice one feature of wave func-
tions which qualitatively connects
their orthogonality with their kinetic
energies. In the case of the particle
in a box (Fig. 3.1) you can see es-
pecially clearly how the orthogonality
of the first two wave functions arises.
The second function, multiplying the
first function, gives an integrand in
which there are parts which are the
exact negatives of other parts all
through the range of integration, so
that the whole integral vanishes.
Since the first function is positive
throughout the range, the second func-
tion can accomplish orthogonality only
by being positive in some places and
negative in others, or in short by
passing through zero at least once in
the range. Pursuing this observation
to higher energies, you see that the
higher the energy of the wave function
the larger the number of zeros it has.

Now clearly the larger the num-
ber of its zeros in a given range, the
more the function oscillates in that
range. And the more it oscillates, the
larger the value of its second deriva-
tive is likely to be - the more rap-
idly its slope must change. But the
larger the second derivative, the
higher the kinetic energy, as you can
see from the way Schroedinger's equa-
tion was constructed in Chapter 4.

The wave functions for the har-
monic oscillator show these features
clearly. States of high quantum num-
ber (Fig. 5.3) have their highest
density of zeros in the neighborhood
of x = o, where the particle moves
fastest. Even the ground-state wave

3This analogy is discussed further in Ch 'er 8

of Bonds Between Atoms, a monograph in this
series.

function (Fig. 5.1) shows its greatest
curvature at x = o.

It is worth while pursuing the
harmonic oscillator a step further, in
order to illustrate the quantitative
application of these ideas. Suppose
you set out to estimate the mean kine-
tic energy of a harmonic oscillator by
regarding each of its states as if it
were that of a particle in a one-di-
mensional box, and using a different
size of box for each state. Evidently
an appropriate choice for the size of
the box is twice the classical ampli-
tude corresponding to the state. Using
the foregoing argument about oscilla-
tions, you would choose for the wave
function in the box that which has the
same number of zeros as the true wave
function for the state. You could de-
scribe your procedure as. approximating
to the mean kinetic energy by making
a rational choice of de Broglie wave-
length. The mathematical details, car-
ried out in Discussion 6.2, lead to
the estimation

r2 (n + 1)2
Ukinr. 8 2n + 1 '

(6.7)

which for the ground state is (r2/8)hy,
and for large n approaches (r2/16)nhy.

At once you have no doubt that
the value for the ground state is
wrong. It provides a kinetic energy
more than twice as large as the total
energy (Eqs. 5.15), and that is im-
possible because the potential energy
is positive. The approximation for
large n is much closer to the truth,
but it is still too high. Clearly the
reason for these errors comes from
the fact that the true wave function
extends outsid ",0 box; the particle
is not confine
ince and its
wavelength i
that which yc.
approximatio-.

of magnitude,

ly the right
quantum numl
right depel,

'ts classical prov-
ve de Broglie
at longer than

vt picked. But the
of the right order

is worst, gives near-
quience of Ukin on the

and exhibits the
ihe frequency V.
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Discussion 6.2

ESTIMATING THE KINETIC ENERGY OF A HARMONIC OSCILLATOR

Pursuing the suggestion of the
text, you would find the box size for
each state by equating the classical
energy to the quantum mechanical en-
ergy (Eqs, 5.14 and 5,19):

(n + )hv ikAs,

After examining Fig. 5.1, you would
pick the de Rroglie wavelength of your
approximating wave functions as

A
n + 1

The approximate mean kinetic energy
that you seek will be given by

Uk In

Eliminating A and A between these
"three equations, and using the rola-
-tion (8.8) between v, k, and m for the
harmonic oscillator, you obtain

PROBLEMS

6.1 Accepting the fact that the wave
functions for the harmonic oscil-
lator will be of the form

exp ax2/2(ae +anxn),
show schematically how you can de-
termine the a's in these wave
functions without using the wave
equation, by starting with 00 and
requiring each successive wave
function to be orthogonal to those

(n + 1)2
trkla

you have already constructed.

6.2 Using the result of Problem 5.3,
and the method of approximation
employed in this chapter, show
that the true effective de Broglie
wavelength of the harmonic oscil-
lator is

= 2 A
/712

2n + 1



7 THE VARIATIONAL METHOD
OF APPROXIMATION

A useful application of the orthogon-
ality of the various wave functions
appropriate to a physical problem,
discussed in the preceding chapter, is
the variational method of approxima-
tion. It is a method for calculating
an approximate value of the lowest
energy of a physical system when the
problem of finding that energy cannot
be solved exactly. The method can be
adapted to obtain approximations to
the energies of other states, but the
state of lowest energy - the ground
state - is of most frequent interest,
since any system will adopt that state
unless it is excited.

For simplicity, consider a physi-
cal system whose time-independent
wave functions are real. If you had
been able to find the true wave func-
tions, you could exhibit a set of so-
lutions to the time-independent
Schroedinger equation, and an associ-
ated set of energy levels,

00, 01 Ono '4';

E0, EL, E,,
(7.1)

From the arguments of the preceding
chapter you know that the wave func-
tions would be orthogonal on an ap-
propriate interval:

a

f0,0n dr = 0, when m # n. (7.2)

And you know that you could choose a
coefficient for each wave function so
that it would be normalized:

f4n2d7 . 1. (7.3)

Now suppose that you are prepared
to guess the general form of the wave
function for the ground state. Call
that guess 0. Unless you happen to
have guessed exactly right, 0 will not
be a solution to the time-independent
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Schroedinger equation for the system.
In other words, if you found some way
of placing the system in the state
described by 0, the system would not
remain in that state, with a definite
value of the energy; its state would
change with time. But you could cal-
culate an expectation value of the
energy in that state as Discussion 5.1
described:

7.1 f0H0dT.

" .Thrt72cEr

(7.4)

where H is the true Hamiltonian orera-
tor for the problem. The question then
arises, what is the relationship of
H to any of the true E's for the sys-
tem?

The relationship can be found by
noticing that, if you knew the true
wave functions - the 4's of (7.1) -
you could expand 0 in a series of
those 0's. The method of expansion is
a generalization of the familiar meth-
od by which any periodic function
can be represented as a Fourier series.
Examine a proposed expansion,

0 = a000 + a101 + + an0, + ...(7.5)

where the a's are coefficients to be
determined. Multiply both sides of
(7.5) by OD and integrate over the in-
terval on which the O's are orthogonal.
Then

104dt = .1.0,'(a0)o a101 (7.6)

+ + a,0, +

But all terms on the right vanish ex-
cept the n'th term because the func-
tions 0 are orthogonal, and the n'th
term equals a, since the functions 0
have been normalized. Hence each of
the coefficients can be found by eval-
uating

an f0,0dr. (7.7)
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In the present case you do not
know the O's, but you can imagine a
substitution of (7.5) into (7,4),
yielding

f(a000+...) H (a000+...)di
H (7.8)

fl(a04P0+...)2dr

And now you notice that, since the O's
are true solutions to the Schroedinger
equation for the problem,

and therefore

H(a000 + ) = a0E040

+ alE10, +

Equation (7.8) becomes

(7,9)

(7.10)

f(a0I0 + ...)(a0E000 + ...)dr
H =

f(a000 + ...)2dr
(7.11)

and since the O's are orthogonal and
are normalized,

H
a 0 2E0 + a 1 2E 1 +

a02 + a12 + (7.12)

If the numerator in Eq. (7.12)
were ao2E0 + al2E0 + then W
would equal Eo. But the numerator is
greater than that because, if E0 is
the energy of the ground state, all
other E's are greater. Thus you fi-
nally infer that TI calculated by Eq.
(7.4) will always be greater than the
true ground-state energy.

This may seem like a modest
achievement, but you will respect it
more when you examine some of its im-
plications. In the first place, you
can always establish an upper limit
to the energy of the ground state,
and that can be quite a useful thing
to do. In the second place, you can
choose for 0 a function embodying
some variable parameters. The Tr calcu-
lated from Eq. (7.4) will be a func-
tion of those parameters. Then you can

minimize if with respect to 'ariations
in those parameters, with the assur-
ance that the minimum H will still be
greater than the true energy. Using a
shrewdly chosen variation function 0,
which contains several undetermined
parameters, you can sometimes get a
very close approximation to the true
energy.

As an example of how well this
procedure may serve, even without a
parameter to vary, consider the prob-
lem of the particle in a box of width
/ with infinitely high walls. For this
problem the discussion in Chapter 3
has provided a true value of the
ground-state energy, and you can com-
pare that value with an approximate
value in order to see how well the
method of approximation works. Your
approximating effort might proceed ab
follows.

From the discussions of particles
in potential wells, in preceding chap-
ters, you know that the wave function
for the ground state must reach a
maximum at the middle of the box, go
to zero at the sides of the box, and
vanish everywhere outside the box.
Taking the sided of the box at
x = ±(1 /2), you could try the function
(Fig, 7.1)

f2

4
0 = -- -X2 inside,

0 = 0 outside.
(7.13)

The true Hamiltonian operator for this
problem is simply

h2 d2
H = (7.14)8v2m dx2

since the particle is free inside the
box. Putting (7.13) and (7.14) into
Eq. (7.4), you obtain

I -
412,12 4a2m12

X2 dx
-1/2

+IA

f
r1/2 42m 4

- x2) dx
5h2

(7.15)
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But for this problem you know that the
true energy levels are n2 h2/8mf2, and
thus that the ground-state level
(n = 1) is h2/8m.(2. Notice that, if
n2 were equal to 10, your answer
(7.15) would be exact. Actually, since
0 is a little less than 10, your ap-
proximate value is a little greater
than the true value, as the preceding
discussion of the variation approxi-
mation would lead you to expect.

For another example, take the
problem of the simple harmonic oscil-
lator. Here again the wave function
for the ground state must have a max-
imum in the middle, and it must de-

d0
41x=°(---dx1rfitht

Hence you obtain

-h2 a2 1 k

dx

h2a

-2a.
left

)

(7.19)

8772m 2a 8a2 8n2m
1

(7.20)

11 with respect

2a

h2 a2

8n2m + 4a 2

In order to minimize

cline in both directions from there,
approaching zero at an infinite dis-
tance. You might try the variation
function (Fig. ?.2b):

0 = ego( for x 0;

0 - e-21 for x 0.
(7.16)

The Hamiltonian operator for the prob-
lem is

_h2 d2
H -

8n2m dx2

Then from (7.4) you get

R =

h2 a2

Sr M
+ ikx2)e- 2" dX

0

(7.17)

h2 r d20
0---dx

8772m dx2

2f e...22Xdx

(7.18)

Here the last term in the numer-
ator needs explanation. The function
(7.16) has a "corner" tit x = 0; the
function turns infinitely rapidly
there over an infinitesimally short
distance. Since the second derivative
is infinite at that po'nt, the corner
makes a finite contribution to the
numerator. That contribution can be
evaluated by noticing that

d2o
dx = m.f -.0 f d415

dx2 dxx=0 =o

Fig. 7.1 Variation function for the ground
state of the particle in a one-dimensional
box.

b

0

X --> 0

Fig. 7.2 The ground state (a) of the har-
monic oscillator, and a variation function
(b) for that state.
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to variation of the parameter a, set

whence

aR h2a,
as 4r2m 2a3

a4 2r2mk=
h2

0,

(7.21)

Then the best approximation with this
variation function gives

47 m 2
(7.22)

which is higher than the true ground-
state energy (Eqs. 5.17) by the fac-
tor V7.

Thus this approximation is some-
what less successful than the approx-
mation to the ground-state energy of
the particle in a box, even though
you have taken advantage of a variable
parameter. You might have expected
this, for the variation function has
not been as well chosen: it looks less
like the true wave function. In gen-
eral the more nearly the chosen func-
tional form resembles the true wave
function, the better is the result of
a variational calculation of ',he en-
ergy.

Nlte well, however, that the con-
verse of that last remark is not nec-
esss..rily true. The variational theorem

does not say that the more nearly
correct the energy is, the more nearly
correct the wave function is. It is

easy to see why that need not be true.
The approximate energy is calculated
by performing integrations, and there
are infinitely many functions whose
integrals over a single range would
have the same value.

PROBLEMS

7.1 You have noticed that the wave
functions for a particle in a sym-
metrical one-dimensional well are
alternately symmetric and anti-

symmetric about the center of the
well, as the energy of the parti-
cle is increased in successive
steps. For such a particle you
might expect that H calculated by
using an antisymmetric variation
function would give an approxima-
tion to the energy of the first
excited state - the state bf low-
est energy that such a function is
capable of approximating. Check

this expectation, for the particle
in a box of width i (Fig. 7.3), by
using for the trial function

12 ,
(1) =

4
+

12
+ ) for -- < x 0,

2

= (x 14)2 for 0 x

= 0 elsewhere.

7.2 Find a better approximation to the
ground-state energy of the har-
monic oscillator than that given
by the variation function (7.16)
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by using a variation function
which has the form

= a bx2 for (3 5 x 5 ( 3 ,

elsewhere,

choosing the coefficients a,b,c
so that the function and first
derivative match at x = ff3, and
minimizing ft with respect to the
parameter f3 (Fig. 7.4).



8 THE SPINNING ELECTRON

The electron is a "fundamental parti-
cle" - that is to say, we cannot at
present ascribe to it a structure that
makes it appear to be built of other
particles, as an atom is built of a
nucleus surrounded by electrons, or
as a nucleus is built of protons and
neutrons. Much of the behavior of an
electron, when it is in a stationary
state, can therefore be described
quite well. by the wave-mechanical
methods that have been developed for
describing particles, discussed in
preceding chapters. When its velocity
falls in the range ordinarily encoun-
tered in matter, the mass of an elec-
tron can be taken to be m = 9.1 x 10-28
gram. When it is interacting with
other charged particles, its electro-
static charge can be taken to be
e = 4.8 x 10-20 esu.

In order to explain some aspects
of its behavior, however, a third prop-
erty must be ascribed to it besides
its mass and its charge. That property
is ordinarily called its spin. The
name is appropriate for two reasons.
In the first place, there are observ-
able phenomena in which you can think
of this spin as changing direction.
Then v,hat happens can be explained by
ascribing an angular momentum to the
spinning electron and using the laws
of conservation of angular momentum -
laws that have been found applicable
everywhere else in classical and
quantum mechanics.4 In the second
place, when the spin changes direction,
there is a change of magnetic moment,
as if the direction of current in a
little current loop had reversed.

If you want to think of the elec-
tron as a charged ball, think of the
ball as spinning around an axis
through its center. There will be oc-

41t should not surprise you that in quantum
mechanics those laws apply to the expectation
value of angular momentum.
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casions when you must think of the
ball as occupying the same place as
the nucleus of an atom, however; a
wave function may give it a finite
probability of being found precisely
at the nucleus. If the idea of two
balls in one and the same place does
violence to your picture, think of the
electron as a torus, or a little cur-
rent loop that runs round the nucleus
while the electron is at it.

But better yet, here as else-
where in quantum mechanics, practice
the art of switching pictures, and
even perhaps wiping them all out. In-
deed, if you persist in thinking of
the electron as a charged spinning
ball, in such a concrete fashion that
you calculate the magnetic moment of
the ball from its charge and its angu-
lar momentum, your answers will prob-
ably not agree with experiment.5

As with any spinning object, the
only way to describe the direction of
spin is to establish some axial sys-
tem to which the direction can be re-
ferred. For an isolated spinning ob-
ject, nature provides no axial system.
One axis can be provided by applying
a magnetic field, and that is an axis
to which the electron is responsive
because it has a magnetic moment. It
tends to align its magnetic moment,
and thus its spin, with the field.

And when it does so, experiments
show that its spin-is quantized so
rigorously that the components of an-
gular momentum and of magnetic moment
along the field can take only two dif-
ferent values, equal in magnitude and
opposite in direction. The possible

Sit is a fact - but probably a not very signifi-
cant fact - that the observed ratio of magnetic
moment to angular momentum, cline, is the ratio
appropriate to a spherical ball, whosa mass m is
uniformly distributed through its bulk, and
whose charge -e is uniformly distributed over
its surface, rotating about ,n axis through its
center.
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values of thr.t component of angular
momentum are ±(h/40 and of the cor-
responding component of magnetic mo-
ment are T(eh/47Tmc). The latter quan-
tity is often used as a unit of mag-
netic moment, the "Bohr magneton,"
with the value 0.918 x 10-20 erg/gauss.

Now of course angular momenta
and magnetic moments are vector quan-
tities, as Discussion 8.1 will remind
you. When their z components have been
determined, it J.s natural to inquire
into the other two components of the
angular momentum and magnetic moment
of the electron. In order to give
meaning to those components, the phy-
sical system must be endowed with
further objects or fields of force,
sufficient to specify a three-dimen-
sional axial system, perhaps by adding
nuclei and applying an electric field.
But after those things have been said
and done, you will encounter a severe
restriction imposed by the uncertainty
principle.

The discussion in Chapter 3 con-
nected uncertainties in a coordinate

Discussion 8.1

ANGULAR MOMENTA

AThe angular momentum of a system
of partiO104 about a point is a quan-

4).A tity:that le useN1 in describing the
OehaVii*Of a system by either class-
icil*.qoantiw mechanics. It is a :
vector quantity,_' tOthe'Vector
eum-Of the angular momenta of each
constituent particle. Andjq. each '

part1olOhe eilgolgreOpent0
mechanics as

vector product;

-if 4

;Where r is the.. position vector.from
the obosep.point to .the'perticlei- and
;tie the linear momentum-04:theperti
ole .v 1/en the Cartesian compnents-Of
t s i.veitor'are-written,

1

yps

and in the momentum along that coor-
dinate. Angular momenta could not come
into question in the one-dimensional
systems that the preceding chapters
have described. But in such phenomena
as the behavior of electrons in atoms,
the angular momentum of the system of
particles about its center of mass is
as important for the quantum mechani-
cal description as for the classical.

The uncertainties connecting the
expectation values of the components
of angular momentum of a system are
discussed in the appendix to this
chapter. In particular the root-mean-
square uncertainties in M, and My, the
x component and the y component of the
angular momentum of a mechanical sys-
tem, are connected by

(L14x) (My) .-',111r1i7lil I
(8.1)

where 11:41 is the absolute expectation
value of the z component of angular
momentum. And of course there are two
other relations obtained by inter-
changing x, y, and z.

IN QUANTUM MECHANICS

My ZIP, XPs,

Os 7 xPy YPap
=

the appropriate quantum mechanical
operators:for those ,components Can be
written by substituting ior.the p's
the operators for the Components of
linear momentuMdescribed in,Chipter 5:

211

2ri

a

a

By using three, Operators, expectation
Values and the like can be calculated
as described for 4erators in-general

"in Chapter 5.

/S,
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These results, obtained in the
first place for systems of particles
moving in three-dimensional space,
may seem irrelevant to the spinning
electron. But it is always appropriate
to test a result, obtained in one con-
text, for applicability in another.
Substituting into the relation (8.1)
the value IM, '.= h/4n already mentioned,
you find that

h N2
(AMx) (AMy) ViiT)

(8.2)

for the spin of the electron. There is
no reason to suppose that AM,, would
differ from AM

Y,
and you conclude that

h
AMx = AM Mz

4n
(8.3)

Accepting this result would force
the conclusion that there is a com-
plete uncertainty in the values of Mx
and My. Surely the values of those
components cannot be larger than the
value along the preferred axis z. And
the behavior of the spinning electron
turns out to be experimentally consis-
tent with this result. When you have
established one axis, and determined
which of the two possible values of
spin the electron has relative to that
axis, you have done and said all that
can be done and said about the spin of
the electron.

The conventional method of speci-
fying the spin quantum state of an
electron is suggested by a comparison
with more familiar mechanical behavior.
In many systems of particles - in a
hydrogen atom, for example - the com-
ponent of angular momentum along an
axis is also quantized, changing in
multiples of h /2ir, the Bohr unit of
angular momentum. For the spin of an
electron, the corresponding component
can take the values +01/40. It is
therefore convenient to specify the
spin quantum state of an electron by
a spin quantum number ms, which can
take the values m8 = f.

Now when a system contains more
than one electron in reasonably close
association, you can think of the

magnetic field due to the magnetic mo-
ment of any one of them as establish-
ing a z axis for the rest. In the
presence of that electron, the remain-
ing electrons have m8 values of
Hence, regardless of which electron
you pick to establish the z axis, the
spins of two or more electrons will be
lined up parallel or antiparallel. If
there is nothing outside the system
that establishes a z axis, the elec-
trons must correlate their spin axes
nevertheless; there will be a set of
electrons with m8 = +i and a set with
ms = In speaking of such systems
physicists and chemists often refer
to the electrons with spin "up" and
those with spin "down" - convenient
monosyllables to describe the two
antiparallel groups.

Thus the state of an electron is
not completely defined by such a wave
function as the preceding chapters
have described; you must also specify
its spin. The state of a system con-
taining many electrons is completely
defined by a wave function of the co-
ordinates of all the electrons and
the time, together with a specifica-
tion of all the spin quantum numbers.

The formal methods of quantum
mechanics have been extended to ac-
commodate the property of spin, but a
thorough discussion of that extension
would carry us too far afield. Suffice
it to say that you can think of spin
as introducing a new coordinate, or
set of coordinates, for the electron.
These coordinates become new observ-
able quantities, having appropriate
operators. The wave function for an
electron becomes a function not only
of the familiar space coordinates but
also of the new spin coordinates.
Rules for using the spin operators on
these enlarged wave functions, analo-
gous to those described for more
familiar properties in preceding chap-
ters, enable you to calculate expecta-
tion values and the like. For very
many cases the formalism permits a
separation of variables, analogous to
the separation of space and time vari-
ations in Chapter 4, so that the total
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wave function becomes a product of a
function of the spin variables by a
function of the space and time vari-
ables, and then you can think of the
two sorts of variables separately.

More important than formalism,
however, are three new features intro-
duced into the physical picture of
matter by the presence of spinning
particles, with associated angular
momenta and magnetic moments. Two of
the new features are easy to see. In
the first place, the angular momenta
of the spins contribute to the total
angular momentum of the system to
which they belong. This contribution
will affect your thinking about tran-
sitions of the system from one state
to another in which the expectation
value of the total angular momentum
must be conserved.

In the second place, the magnetic
moment associated with each spinning
electron will interact with magnetic

fields. Such magnetic field; may be
applied from outside the system, of
course. But even when no such fields
are applied, magnetic forces arise
from the motions of charged particles
within the system, and from the mag-
netic moments associated with their
spins. The analysis of these two new
features provides an elegant descrip-
tion of the multiplet structure of
atomic spectral lines, and the behav-
ior of those lines when magnetic
forces are deliberately applied.

The third new feature, though
unexpected, is probably the most im-
portant. The spin coordinates must be
included in the applications of a law
of nature which has no classical
counterpart. This law of antisymmetry
leads to the "Pauli exclusion princi-
ple" - a principle of the utmost, im-
portance in explaining atomic, mole-
cular, and solid behavior - in a way
which the next chapter will describe.

Appendix UNCERTAINTIES IN ANGULAR MOMENTA

Consider two of the many possible
meanings that could be ascribed to the
uncertainty in something. It might
mean, in the first place, the total
range over which something could vary
without permitting a determination of
its value more precisely. It was fea-
sible to use that meaning in speaking
of the particle in a box in Chapter 3
because the range of position of the
particle is precisely limited by the
walls of the box. But clearly that
meaning would give difficulty in the
case of the harmonic oscillator be-
cause the wave functions all ascribe
some probability that the particle is
anywhere.

You can give a more generally
applicable meaning to the uncertainty
by borrowing an idea from statistical
theory. There it is common to describe
the variation of a quantity by the
following procedure. First find the
average of all the measurements of
the quantity, then find all the indi-

vidual deviations from that average,
then square all those deviations, then
add those squares together, then di-
vide by the number of observations,
and finally take the square root of
the result, to obtain the "root-mean-
square deviation" of the quantity.
You can see some of the reason for
this procedure by imagining some al-
ternatives. Averaging the deviations
themselves would yield zero, for they
are as often negative as positive.
Averaging the absolute values of the
deviations yields a significant quan-
tity, but mathematical difficulties
afflict the interpretation of the re-
sults.

It is natural to derive a defini-
tion of uncertainty from the idea of
root-mean-square deviation. The ex-
pectation value of an observable quan-
tity is just the average of the values
which you would get by many measure-
ments of it, as you saw in Chapter 5.
For example, an individual deviation
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of the coordinate x of a particle from
its average would be x X, where 7 is
the expectation value of x. The square
of such a deviation would be (x - 7)2,
the mean square would be the expecta-
tion value of that square, (x - I1)2,
and the root-mean-square would be the
square root of that last quantity.
Thus finally you can define the uncer-
tainty La( in a problem by

Ax -V(x 1)2 .

Similarly you can define the uncer-
tainty in any other property, whose
wave mechanical operator is G, by

AG =1(07- .6)2 .

Then if the system is in a state whose
normalized wave function is 0, you
find by the procedure for finding

expectation values (Eq. 1.4), and then
find the square of the uncertainty by
applying the procedure again in ac-
cordance with the preceding equation.

The application of this defini-
tion of uncertainty to discover rela-
tions connecting the uncertainties in
different quantities is straightfor-
ward, but it requires a more extensive
development of the formal methods of
wave mechanics than is appropriate
here. When it is applied to the uncer-
tainties in the components of angular
momentum described in Discussion 8.1,
the method yields the relation

(AMx )(AM ) 4g z

where 1117,1 denotes the absolute expec-
tation value of the z component of
the angular momentum. Two more rela-
tions can be written from this one by
permuting x, y, and z.



9 SYMMETRY AND THE
EXCLUSION PRINCI

Two kinds of symmetry can appear in a
wave function, which are important to
recognize and to distinguish. On the
one hand there can appear a symmetry
in the space coordinates of a system,
and on the other a symmetry to the
interchange of particles of the same
sort in the system.

The first kind of symmetry - spa-
cial symmetry - is exemplified in the
harmonic oscillator, described in
Chapter 5. There the potential energy,
Upot Ikx2, is symmetrical about x = 0;
Upothas the same value for -x and for
+x. Recognition of such spacial sym-
metries is often useful in visualiz-
ing and classifying wave functions in
particular problems. You will meet
many simple applications in discussing
the behavior of particles in one-
dimensional wells, and the behavior of
the electrons that bond atoms together
into molecules.° And the theory of the
behavior of electrons in a crystal of
metal rests heavily on the fact that
the atoms of a crystal are arranged
in a repetitive orderly array, or in
other words that their arrangement is
symmetric to certain translations.

For the case of a single particle
moving in one dimension, such as the
harmonic oscillator, notice a conse-
quence of symmetry about x - O. Here
Upot (x) Upot (-x). Then since
e/dx° = dl/d(-x)°, the whole wave-
mechanical Hamiltonian operator (Chap-
ter 4) has that symmetry. Leaving out
numerical factors for simplicity (Dis-
cussion 9.1), you can write

dx
Alt + E4(x) = Upot(x)0(x)

(9.1)

ld(-0and Ik2 + E4(x) - Upot(-x)((x).

'See bonds Between Atoms, a monograph in this
series.
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Changing x into -.,

- an entirely per
operation - yield

d2,(x) + E0(x,
dx2

hoot Eq. 9.1
mathematical

(x)0(.7-x). (9.2)

Hence if 0(x) is ion of the

equation

dx2
+ E0 = upot0, (9.3)

then 0(-x) is also a solution with
the same value of the energy E. But
whenever 4, is nondegenerate, 4,( -x)

cannot be represeating any essentially
different function from 0 itself.
Hence you can conclude that
0(-x) - i0(x).

A function 0(x) for which
4( -x) = 0(x) is called "even" by mathe-
maticians and "symmetric to reflection"
by physicists. A function for which
( -x) = -4(x) is called "odd" by mathe-
maticians and "antisymmetric" by phy-
sicists. The result just proved is
that any wave function in a nondegen-
erate set, belonging to a problem
which is symmetric to reflection about
x - 0, is itself either symmetric or
antisymmetric to such a reflection.

You see this result exemplified
in the wave functions for the harmonic
oscillator shown in Fig. 5.1. There
the wave functions with even quantum
numbers are symmetric and those with
odd quantum numbers are antisymmetric.
Notice that the squares of the func-
tions of both sorts are symmetric, in
agreement with the fact that, since
the system is symmetric, the observ-
able properties of the system must be
symmetric. A generalization of this
result for more complicated systems
is that any wave function from a non-
degenerate set is either symmetric or
antisymmetric to each symmetry element
of the system. A wave function that is
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symmetric to al' symmetry elements of
the system is called "totally symmet-
ric."

Turn now to the second kind of
symmetry - symmetry to the interchange
of particles of the same sort - which
is even more important in quantum me-
chanics. It can be illustrated by con-
sidering a one-dimensional problem
involving two electrons. Electrons are
all alike; they are indistinguishable
particles. Setting up Schroedinger's
equation for a system containing two
electrons, you will use two coordinates,
x1 and x2, to describe the position of
electron no. 1 and electron no. 2. But
looking back in Chapter 4 at the form
taken by the equation, you see that it
will be unchanged if you interchange
the subscripts 1 and 2. The interchange
will not affect (A,2 /ma) + 0,22/m2)
in the equation because mi - m2 and it
cannot change Upot because both elec-
trons interact with their environments
and with each other in the same way
when they are under the same circum-
stances.

Hence if 4'(x1, x2, t) is a solu-
tion to the equation, so is +(x3, x1,
t), and therefore so is any linear com-
bination of the two. You can construct
two especially interesting linear com-
binations:

- -114(x x t) + *(x2,x2,01,i2

and

4(1, Ablf(xl,xt,t) *(x,,,c1,t)),

(9.4)

where 1/4 is the correct normaliring
factor if 4Y was normalized in the
first place. Clearly the first solu-
tion is "symmetric" to the interchange
of the subscripts, and the second is
"antisymmetric ":

4,8 (x, ,t ) ,x1 ,t),

4'6(x1 , t ) = (x, ,x1 , t )
(9.5)

It can be shown that both these
solutions will give symmetrical pre-

dictions for the two electrons, pre-
serving their indistinguishability,
and that no other solutions will do
so. It can be shown also that each of
these solutions will preserve its sym-
metry character as time passes, and
thus that a pair of particles in a
symmetric state, for example, must al-
ways remain in one. When there are
more than two indistinguishable parti-
cles, the situation is more compli-
cated, but again only the symmetric
and antisymmetric states can be used.

This raises a very fundamental
question about nature: are its indis-
tinguishable particles in states that
are symmetric or antisymmetric to
their interchange? As always in the
case of fundamental physical questions,
the answer must come from experiment.
That answer is embodied in the law
that the most familiar fundamental
material particles - electrons, pro-
tons, and neutrons - occur only in
states that are antisymmetric to in-
terchange, when their spins are in-
cluded in the specification of their
state. There are other fundamental
particles - for instance photons -
that occur only in symmetric states.

Return now to the wave functions
for the problem involving two elec-
trons. Add, to the specification of
the state of the system, the spin
quantum numbers mel and ms, (Chapter
8) for the two electrons. Then

4f, - 11 (x x+, ,wst plass f t)

+(XI 01151 0141 Pt)!

(9.6)

is the type of wave function that will
describe the state. Here you must un-
derstand by * a function not only of
the space and time variables but also
of the spin variables a function
that assigns to each spin variable one
of its two possible values, +I or I.
The rule can be generalized to any
number of identical particles.

The most useful application of
the law of antisymmetric states is
the Pauli exclusion principle: No two
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Discussion 9.1

ATONIC UNITS

When Schroedinger's equation is
written for electrons, it is custo-
wary to simplify the appearance of the
equation by using atomic units of
length and energy. The atonic unit of
length is

as

and of energy is

201144
%,1

where h is Plastic's constant and and
s are the charge and sass of an elec-
tron. Then, starting with Scbroedin-
gees equation is ordisary units for
a particle moving in one dimension,

-14- Alt 4- ig - v(x)1# . 0,
St la dz.

and smiting the substitution

9119, x

converts the equation to

dx

It is noteworthy that the atomic unit
of energy (often called the Rydberg)
is the **satire of the energy of an
electron in the ground state of a by
drops 00.813.63 electron vqlts,
and the atonic unit of length is equal
to the radius of the corresponding
"Bohr orbit," 0.63 * 10" ceatimeter.

electrons can have all their quantum
numbers, including spin, the same.
Alternatively the principle can be
restated: Only two electrons, one with
spin "up" and one with spin "down,"
can occupy "the same state," where the
specification of "the state" does not
include a specification of the spin.

The relationship of the exclusion
principle to the law of antisyssetry
becomes clear when you notice an as-
sumption implicit in the principle.
"The state" referred to in the prin-
ciple is a one-electron state, not a
state describing the whole assembly.
The principle is assuming that you
can describe the state of the assembly
with good approximation by a coabina-
tion of wave functions, each written
for one of the electrons in the as-
sembly.

The method by which this might be
done is developed in the problems at
the end of this chapter. For a system
involving two electrons, the method
night yield the approximate wave func-
tion

+a a
uk(xl,msk,t) ut(xl,mk,,t)

Iu k(x , t ) u t (x, oak, , t

(9.7)

where uk and of are oneelectron wave
functions. Clearly this is an anti -
symmetric function, for interchanging
the subscripts 1 and 2 interchanges
two rows of the determinant and so re-
verses its sign. Thus the function
obeys the law of antisymtric states.
And clearly also, if the tw.s electrons
occupy the same oneelectron state,
uk a ut and is vanishes, giving for
the twoelectron state a probability
of zero, in obedience with the Pauli
exclusion principle.

PROBLEMS

9.1 Show by the method of "separation
of variables" (Chapter 4) that if
in a system of two electrons the
electrons are uncoupled, so that

Upoi(xt , U(s, U(3t, , the



4 2 WAVE MECHANICAL PROPERTIES OF STATIONARY STATES

solutions to the Schroedinger
equation for the two-electron
problem can be expressed as prod-
ucts of solutions for one-electron
problems.

9.2 Show how such solutions as (9.7)
above are constructed from the
solutions of problem 9.1.

9.3 Discuss the values of energy, cor-
responding to the two-electron
wave functions of problems 9.1 and
9.2, in terms of the energies of
the component one-electron wave

functions. How many distinguish-
able wave functions co:respond to
a given value of the total energy
after you have taken into account
the law of ^ntisymmetry? In other
words, how does the degeneracy of
a two-electron state compare with
the degereractes of the component
one-electron states?

9.4 Show that the definitions of ap
and Ws in Discussion 9.1 give to
those quantities the dimensions
of length and of energy, respec-
tively.


