
DOCUMENT RESUME

ED 044 034 EM 008 489

AUTHOR Dwyer, Thomas A.; And Others
TITLE A Primer for the NEWBASIC/CATALYST System.
3NSTITUTION Pittsburgh Univ., Pa.
PUB DATE Oct 70
MOTE 54p.

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

EDRS Price MF-$0.25 HC-$2.80
Computer Assisted Instruction, *Manuals, *Programing
Languages, Programs, Time Sharing
BASIC, Beginners All Purpose Symbolic Instruction
Code, CATALYST, Computer Augmented Teaching and
Learning System, NBS Basic, *NEWBASIC/CATALYST System

Assuming no previous experience with computers, this
primer is designed to help students, teachers, scientists, and other
scholars to learn how to use the NEWBASIC/CATALYST system (NBS). The
primer contains nine sections: (1) instructions for establishing
contact with the computer (logging on;; (2) examples and problems to
lead the student through the use of the rudiments of NBS; (3) an
introduction to advanced NBS and the use of files; (4) an
introduction to Com-Share Executive commands, with application to CAI
lesson management; (5) explanations and examples of the CATALYST
features; (6) information about the use of functions in NBS; (7)

suffixes, multiple statements, extended data types, matrix
operations, debugging commands, and scientific applications; (8)

format control, QED (text editor), business and administrative
applications; and (9) a combined index and summary of
NEWBASIC/CATALYST. (MF)

fors

NEW6A81G /CATALYST
U.S. DEPARTMENT OF HEALTH, EDUCATION d WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FiOM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

DOSITION OR POLICY.

DISC STORAGE

yst son

COMPUTER

CONTROL CIRCUITRY

Weicome
to New
Jersey

I

r.,ultjpie

On War

October, 1'370

Prepared at the University. of. Pittsburgh by T. Dwyer, C. L n
E. Zielinski, V. Salko, M. Critchfield and M. Seaton.

1-1

INTRODUCTION

This primer, which assumes no previous experience with com-

puters, is designed to help you learn how to use the NEWBASIC/

CATALYST* system (abbreviated NBS) for communicating with a high

speed computer. As the picture on the cover suggests, many dif-

ferent persons will be using the same computer "simultaneously".
41" This is possible through time-sharing, a scheme that gives each

CD user a turn, but in such a rapid fashion that he seems to have ex-

-1" elusive use of the machine.
-4"

Users control the computer by typing in commands at the key-

C=1 board of a special device called a terminal. These commands are
LAJ sent to the computer over telephone lines, with responses coming

back to the user over the same wires.

The commands have to be in a "language" that the computer will

understand. There are several such languages, but not all of them

are suited to the manner in which human beings (who have very ex-

tensive vocabularies) prefer to state their problems. The struc-

ture of the language used in NBS is one of the best ever developed

from this point of view. It is particularly useful for handling

the complex needs of students, teachers, scientists, and other

scholars who employ computers as an aid to learning as well as for

problem solving of all kinds.

The primer contains nine sections:

1. Instructions for establishing contact with the com-

puter (called logging on), with a simple example of

using NBS in "direct-mode" as a powerful desk calcu-

lator language. pg. 1-2

2. A series of examples and problems to lead you through

the use of the rudiments of NBS in "indirect" or "stored-

program" mode. pg. 2-1

*BASIC (Beginners All purpose Symbolic Instruction Code) was
developed at Dartmouth College. NEWBASIC is an advanced version
of BASIC developed by Com-Share, Inc. CATALYST (Computer Augmented
Teaching And Learning sYSTem) was developed at the University of
Pittsburgh.

1-2

3. An introduction to advanced NBS & the use of files. Pg3-1

4. An introduction to Com-Share Executive commands, with
application to CAI lesson management. pg.4-1

5. Explanations and examples of the CATALYST features. pg.5-1

6. Information about the use of functions in NBS pg.6-1

7. Suffixes, multiple statements, extended data types, pg.7-1
matrix operations, debugging commands; scientific appl.

8. Format control; QED; Business & Administrative appl. pg.8-1

9. A combined index and summary of NBS/CATALYST. pg.9-1

ESTABLISHING CONTACT WITH THE COMPUTER (LOGGING ON)

You will be using a teletype, a typewriter-like device, to

communicate with the computer. Follow the steps below each time

you wish to use the computer:

1. Turn the knob on the lower right corner of the tele-

type to LINE.

2. Dial the number given you by your instructor on the

telephone next to the teletype console.

3. When you hear a high-pitched tone on the line, insert

the phone receiver into the coupler (the small rectangu-

lar box which has rubber receptacles for holding the

telephone receiver), with the cord at the end marked

"cord".

4. The following will be typed on the paper roll. (The

computer types the parts we have underlined. You should

respond with the non-underlined portions. After you

respond, press the return button. This, sends your re-

sponse to the computer.):

COM-SHARE CENTER K 40
PLEASE LOG IN:K156W-Ec;MS

READY, SYSTEM W04
7(- 717Tmuu-----
LAT LOGIN JUL 9 15:17

- NBS
rtR. SEP 8 17:04

>PRINT 3.5+2.0*4.0 (carriage return)

11.5

>PRINT (3.*5.)/(9.*5.)

0.333333333

>PRINT SQRT(256.)/7.

2.285714236

>PRINT 1;I*1;1+.25 FOR 1=2 TO 5
2 4 1.189207115
3 9 1.316074013
4 16 1.414213562
5 25 1.495348781

>EXIT

:LOGOUT
USAGE
CCU: 003
CLT: 0.08 HOURS

(Hang up the telephone.)

1-3

At this point the user typed an
account number followed by the
password BcEc, a semi-colon,
the user code MS, and a
a carriage return. BcEc are
made by holding down the CTRL
key while striking B and E.
They will not actually print.

-NBS means you wish to use
the NBS system.

This tells the computer to
PRINT 3.5 + (2.0 X 4.0).
Computers use * for multipli-
cation, / for division. Parentheses
are used to group terms.(see note)

SQRT means "square root of".
7. means 7.000000000

This line.tells the computer
to print I, I squared, and the
fourth root of I, for I = 2, 3,
4, and 5.

This says you want to leave
NBS.

This says you want to be dis-
connected from the computer.
If the usage message does not
print out, ask for help.

The above is an example of a session at a terminal using the
computer as a calculator in what is called direct mode. It is
called "direct" because the computer does what you tell it immedi-
ately after you press the return button. You should go to a termi-
nal and try the above before reading any further.

INDIRECT MODE. The rest of this Primer will concentrate on
using what is called "indirect" or "stored program" mode, which
is a much more powerful way of using NBS. You will notice that
in indirect mode you place a number at the beginning of each line.
This tells the computer to "store" your instructions, and only
carry them out (in the order of your line numbers) when you say
RUN.

NOTE: The order in which calculations are done is to first evaluate
functions (like SQRT), then do exponentiation (+ or **), then multi-
plication and division, then addition and subtraction, UNLESS parenthe-
ses indicate otherwise. Thus 3+4-5*6/7 is interpreted as (3+4)-(5*6)/7,
when you also apply the fact that the computer scans from left to right.
When in doubt, use parentheses to clarify your intentions.

AN EXAMPLE OF INDIRECT MODE NBS

COM-SHARE CENTER K"40
PLEASE

LAST LOGIN JUL 9 15:17

-NBS
VER. JUL 9 9:37

>10 LET A=5
720 LET B=34567
730 PRINT "THE SUM. IS ", A+B
3740 END

>RUN

THE SUM-IS -34b/2

>EXIT

2-1

An account number, followed by
the password Bce; followed by
the user code MS, followed by
a carriage return.*

. A system command to- ask for
the New BASIC ystem.

This is an NBS program. The
other sections of this series
concentrate on learning to
write such programs. These
statements will become clearer
as you proceed.

-LOGOUT

USAGE
CCU: 001
CLT: 0.03 HOURS

This statement causes the com-
puter to execute the preceding
NBS program.. It may be re-
peated as many times as desired
without retyping the entire
program.

Program output for the above
program.

Takes you out of NHS- to either
leave the computer or begin a new
program (this can be don by
typing NBS again at this point).

.

Informs the computer that you
are leaving. Do not leave the
teletype without doing this or
you will be overcharged.

Reports the amount of computer
time you used.

*
The user must press the carriage return key at the end of any
line he enters, We will not show this in the rest of the Primer,
but you must always press the RETURN key at the end of a line.

2-2

Before you leave the teletype, hang up the telephone and

turn the lower right knob to off, unless another user is ready

to begin.

The lines typed after the symbol > are NBS commands. The lines

typed after the symbol - are called executiwe system commands.

Before examining more of these commands, we should first learn to

correct typing errors.

CORRECTING ERRORS

1. If you type Ac (called "control A" .:hich means you hold

down the "CTRL" ley while pressing "A") , an up-arrow (4.)

is printed. This means that the character to the left of

the arrow has been erased in the computer.

Example:

>10 PRRI.INT A(4445

is interpreted by the computer as:

10 PRINT A5

2. If you type Wca back slash (\) is printed. This means all

characters ,213 to but not including the preceding comma or

blank, or to the start of the line are erased.

Example:

>10 INTA\PRINT A(\B-Kil

i taken as:

10 PRINT B+A

3. If you type Qc a back arrow (4-) is printed. This means that

the entire current typed line is erased and a carriage return

and line feed are given.

Example:

>10 LET C =4-

15 LET C=10 [Note: No > is given]

means that only line 15 is accepted by the computer:

15 LET C=10

4. Suppose you don't want line 15 in your program any more.

Just type >15 followed by a carriage return.

2-3

5. If you type a line over, the last line typed replaces any

previous line with the same number.

Example:

10 LET X=5*7/8

20 PRINT X

10 LET X=6*7/9

really means (to the computer)

10 LET X=6* 7/9

20 PRINT X

USE OF SECTION 2 OF THE PRIMER

Section 2 consists of exaMole NBS pro grams and probleMs.

It is suggested that you first read each example, and then try it

on a terminal.

The problems require that you spend some time away from the

terminal writing out the program that you think solves the problem.

You should then try your program on a terminal. If you have trouble,

your teacher can supply solutions to the problems. Don't move

ahead until you understand each problem. Feel free to also try

whatever variations on the problems your ingenuity might suggest.

All of the examples in this section will be variations on the

problem of calculating population figures for future years, using

the simplified assumption that each year's growth can be expres-

sed as a percentage of the population at the beginning of the

year.

Example 1(a): Population Growth

The 1970 Census for Pittsburgh shows a population of approxi-

mately 600,000. Assuming a growth of 5% each year, the following

program calculates and prints the population for each year from

1971 to 1980.

2-4

10 LET P=600000 Assigns the initial population
P*(commas are omitted!).

20 LET Y=1970

25 LET Y=Y+1

30 IF Y>1980 GOTO 70

40 LET P=P+.05*P

50 PRINT. Y;P

60 GOTO 25

70 PRINT "FINISHED"

80 END

Assigns the initial year to Y.

Calculates the next year.

This is an IF statement. If the
year Y has become greater than
1980, it tells the computer to
continue at instruction 70;
otherwise the computer executes
the next instruction. (line 40)

Increases the population by 5%
of its latest value ani.: assigns
this new value to P.

Year and population are printed.
The semi-colon puts two to four
spaces between them on the output
sheet, and leaves room for a
sign--see below.

Go back to instruction 25 to
increment Y and continue from
there.

The word FINISHED will be printed
on the output.

The last statement of any NBS
program should be an uEND".

The output (the results printed by the computer) of this

program is:

>RUN
1971 630000
1972 661500
1973 694575
1974 729303.75
1975 765768.9375
1976 804057.3844
1977 844260.2536
1978 886473.2662
1979 930796.9296
1980 977336.776

FINISHED

*P is a variable name. In NBS a variable name must be a single
alphabetic letter or single alphabetic letter followed by a
single number. (Examples A, B, Z, Z9, Al, I, N3).

2-5

Example 1(b): Another Technique

Another student discovered a second way to write the same

problem. Instead of using an IF statement along with several

LET statements to increment Y and check for the final year, he

used a FOR-NEXT loop. This is his program below:

10 LET P=600000
20 LET Y=1970

30 FOR Y=Y+1 TO 1980 STEP 1

40 LET P=P+.05*P
50 PRINT Y;P

60 NEXT Y

70 PRINT "FINISHED"
80 END

This is a FOR statement. In
this case, Y is first given the
value of Y+1. Then the com-
puter automatically checks to
see if Y is greater than 1980.
If it is, it skips to the instruc-
tion after the NEXT Y instruction,
in thrE-case, instruction 70.
Otherwise it continues with 40.

Each FOR statement in a program
must have its own matching NEXT
statement. When the computer
sees this, it automatically goes
back to the FOR statement and
increments Y by the value of the
number following the word STEP
(in this case it "increments" or
"increases" Y by 1).

Note: Line Numbers

1. Each instruction of the program is numbered.

These numbers may be any integer five digits

or less, indicating the order in which you

wish the program to run. The first instruction

above has a line number 0a0 00010, which may

be written as 0010, 010, or 10. Thus line

numbers go from 00000 to 99999.

2. The instructions and their proper line numbers

may be typed into the computer in any order.

The computer will then reorder them for you in

ascending order.

4

2-6

Problem 1: Variation on Population Growth

Now adapt this program to print out the populations of

Pittsburgh from 1981 to 1990, assuming that in this period

the rate of population growth will be eight per cent or .08,

and that the population in 1980 is 977337.

First write the program below:

10

20

30

1.1111

Now run Problem 1 on the computer to see what your output

looks like. When you are finished or if you are having serious

problems, ask your instructor to see how someone else did it.

This same procedure should be used for each program you are

asked to write.

Note: Modifying "Your Program

1. If you wish to modify a few lines of the program you

just wrote, or add lines, just type in the new lines

and then type >RUN.

2. If you wish to enter a new program you must first

destroy your previous program. To do this type

EXIT . This takes you out of NBS. Then type. NBS.

This brings you back into NBS and at the same time

destroys your previous program. Now you are ready

to type in your new program.

* Note that the symbol > must be typed by the computer before
the command EXIT works. If you can't get a " > ", press the
escape (ESC) key first. If the computer asks CONTINUE?, answer
NO.

2-7

Example 2(a): New Information

It would be useful to have figures for the population in-

crease for every five years between 1975 and 2000. The pro-

gram below is adapted to meet this need. Although calculations

are done for each year, printing is only done every five years.

K is used as a counter to determine when it is time to print.

Headings for output, note that
the comma places each element

100 PRINT "YEAR","POPULATION" fifteen spaces from the begin-
ning of the previous element

105 LET P=600000 (see output).
110 LET Y=1970

The year is increased by five,
115 LET Y=Y+5 since we will be printing every

five years.

If Y is greater than the last
120 IF Y>2000 GOTO 150 year we desire printed, we are

finished.

A FOR-NEXT loop uses K to count
to five in steps of 1 to do cal-
culations for each one of the five
years. All the steps between the125 FOR K=1 TO 5 STEP 1 FOR statement and tha NEXT state-130 LET P=P+.05*P ment are executed for each value135 NEXT K of K (in this case, K = 1, 2, 3,
4, 5,). When K is greater than
five, the computer skips to in-
struction 140.

140 PRINT Y,P Prints under headings.

Goes back to calculate another
145 GOTO 115 group of five years.
150 PRINT "FINISHED"
155 END

The output from this program is:

> RUN

YEAR POPULATION
1975 765768.9375
1980 977336.776
1985 1247356.908
1990 1591978,623
1995 2031812.964
2000 2593165.425

FINISHED

Example 2(b):

Another student wrote the following program which

produces the same output, but uses a FOR-NEXT loop tb incre-

ment J and check for the final year.

100 PRINT "YEAR","POPULATION"
105 LET P=600000
110 LET Y=1970

115 FOR J=Y+5 TO 2000 STEP 5

120 LET K=1

130 IF K>5 GOTO 150

135 LET P=P+.05*P

2-8

Each J indicates the next year
for which P is to be printed.
In this case, J = 1975, 1980,
1985, 1990, 1995, and 2000.

K counts each individual year
in a five year group; it begins
with one.

When the fifth year's calcula-
tions are complete, it skips to
print; otherwise it continues
calculating P.

2-9

140 LET K=K+1 K is increased for the next year.

145 GOTO 130 Goes back to check K.

150 PRINT J,P After calculations for five years
are completed, the current year
and population are printed.

155 NEXT J Time to get a new J. The computer
goes back to the FOR statement
(instruction 115) to increment
and test J.

160 PRINT "FINISHED"
165 END

*
Problem 2: Use of "Nested" FOR Loops

Can you find a third approach using two FOR-NEXT loops in

your program? Write your program out on one of the coding sheets

(supplied by your teacher) before trying it out on a terminal.

*The word "Nested" indicates that one FOR-NEXT loop is placed
within a second FOR-NEXT loop, etc., etc.

Example:

>10 FOR I=1 TO 3
>20 FOR J=1 TO 2
>30 PRINT I, J
>40 NEXT J
>50 NEXT I
>60 END
> RUN

Output:
1 1
1 2
2 1
2 2
3 1
3 2

INNER LOOP

The J-loop is nested within the I-loop.

OUTER LOOP

2-10

Example 3(a): Reading in Data

It has now been determined that the rate of population in-

crease changes for each five year period, rather than remaining

at a constant .05. Taking this new fact into consideration, the

following program was written to determine five -year population

growth.

(LF) means line feed; this is
used instead of carriage return
(CR) to continue a line. Notice
that the space before YEAR po-

100 PRINT " YEAR", (LF)
"POPULATION", "RATE" (CR)

105
110

LET Y=1970
LET P=600000

sitions the heading more accurate-
ly (see output).

S is assigned the numer of
years in each period; in this

115 LET S=5 case we always have five year
periods.

S is used to determine the STEP
value. Once the FOR statement

120 FOR J=Y+S TO 2000 STEP S begins the STEP value cannot
be changed within the loop.

Each time this statement is
executed, a new value is read

125 READ I from the data list in steps
160 and 161 and put into I. I
becomes the new rate of increase.

130 FOR K=1 TO S Since the STEP value is 1, it
can be omitted.

135 LET P=P+I*P I is now used in the calculation.

140 NEXT K The rate for each period is also
145 PRINT J,P,I printed.
150 NEXT J

J55 PRINT "FINISHED"

Each time a READ statement is ex-
160 DATA .05,.03,.08 ecuted, the next number is read
161 DATA .06,.04,.05 from this list. There can be more

than one READ statement in a program.
165 END

2-11

The output from this program is:

>RUN
YEAR POPULATION RATE
1975 765768.9375 0.05
1980 887736.0761 0.03
1985 1304375.541 (7.08

1990 1745548.712 0.06
1995 '2123726.907 0.04
2000 2710473.495 0.05

FINISHED

Further Explanation of Data Statements:

When the computer first finds a READ statement (Example:

125 READ I), it looks for a data statement (Example: 160 DATA

.05, .03, .08) , and assigns the first item (.05) in the data

list to variable given in the READ statement (in this example, I).

The second time a READ statement is found, the second item (.03)

on the data list is assigned to the variable given in the READ

statement, etc. In the example above, there are six items in

the data list, so the program'ner should be certain that the READ

statement is not executed more than six times.

There can be as many DATA statements as you wish, as long

as the number of data items matches the number of times the

program executes the READ statement.

In the above example we could use:

160 DATA .05, .03, .08, .06, .04, .05

or

160 DATA .05, .03, .08
161 DATA .06, .04, .05

or

160 DATA .05, .03
161 DATA .08, .06
162 DATA .04, .05

etc.

2-12

Items on a DATA list are thus "used up" each time a READ

takes place. A special command called RESTORE can be used to

reactive the data lists so that they can be used again.

Problem 3: Variable Time Periods

It is also desirable to see the population growth, when the

rate of increase changes for variable time periods. For example,

for the first five years, the rate is .05, for the next three

years the rate is .08, etc. Below is output obtained from such

a program. See if you can write a program to produce the same

report.

Hints:

1. The number of years in each period might be also

read from the DATA statement.

2. Once a FOR-NEXT loop is begun in NBS, the step

value cannot be changed. Since we do not have a

constant STEP value (the time periods change) it

might be better to use an IF statement to control

the testing of J. The incrementing for each time

period is then controlled by a LET statement.

Output:

> RUN
YEAR POPULATION RATE
1975 765768.9375 0.05
1978 964648.3198 0.08
1984 1368372.078 0.06
1985 1423106.961 0.04
1987 1568975.425 0.05
1990 1922062.361 0.07
1995 2020106.859 0.01
1998 2272345.481 0.04
2000 2601608.342 0.07

FINISHED

Write your program out on a coding sheet or blank paper

before running it.

2-13

Example 4(a): Area Per Person

Rather than write a separate program whenever it was desired

to change the initial year and last year of the study, it was

decided to permit the user to enter the years and the initial

population each time the program runs. In addition, the number

of square feet per person is also calculated each time a year is

printed. For this, you must estimate the area of the city of

Pittsburgh. This is the program which resulted.

100 INPUT Y

105 INPUT P

110 INPUT E

115 PRINT " YEAR"v
"POPULATION","SQ.FT./PERSON"

120 LET S=5
125 LET I=.U5

130 LET W=5

135 LET L=11

140 LET W=W*5280
145 LET L=L*5280

150 LET F=W*L

The computer presents a question
mark, after which the user types
in the value for Y (the year of
the study).

Produces a second question mark,
after which a value for P is
typed. P is the population fc:
the initial year.

Produces a third question mark
for inputting the last year
desired.

Notice the new heading.

Using a constant rate of .05
again.

The with of the city in miles.

The length of the city in miles.

Changes miles to feet.

Determines square feet in the city,
assuming it has an area equivalent
to a rectangle 5 miles wide and 11
Miles long.

2-14

155 FOR J=Y+S TO E STEP S Each value in this statement is
indicated by a variable expression.

160 FOR K=1 TO S
165 LET P=P+I*P
170 NEXT K

180 PRINT J,P,F/P
Square feet per person is also
calculated and printed.

185 NEXT J
190 PRINT "FINISHED"
195 END

The output from this program is:(the user typed in the three
words after the question marks)

>RUN
?1970
?600000
?2000
YEAR POPULATION SO.FT./PERSON
1975 765768.9375 2002.316789
1980 977336.776 1568.867598
1985 1247356.908 1229.248815
1990 1591978.623 963.1486113
1995 2031812.964 754.6521392
2000 2593165.425 591.2896976

FINISHED

Problem 4: Beyond Pittsburgh

It would be advantageous to be able to use the same program

to report the population growth for any city, state, or country

desired. However this makes it necessary to allow the user to

input at the beginning of the program the length and width of

the area, the rate of increase, and the time period for which

printing is desired as well as the initial yeix, initial pop-

ulation and final year. Write such a program on a coding sheet

or the rear of this page. In addition, calculate the number of

persons per square foot for each year printed.

2-15

Example 5(a): A User Control

With so many input statements it is difficult for a user

to remember the order in which the values are inputted. Comments

befc-re each INPUT statement, identifying the value to be inputted

are therefoxi useful.

It is also convenient to be ?able to branch back to the begin-

ning of the program to print a report for a new city without having

to type a new RUN statement. In fact, it is possible to ask the

user his preference. The following program incorporates these ideas.

100 PRINT "TYPE THE CITY'S INITIAL POPULATION"
105 INPUT P
110 PRINT "TYPE THE RATE OF INCREASE USING DECIMAL NOTATION"
115 INPUT I
120 PRINT "CONSIDER THE CITY AREA AS A RECTANGLE"
121 PRINT "TYPE ITS APPROXIMATE WIDTH 1N MILES"
125 INPUT W
130 PRINT "TYPE ITS APPROXIMATE LENGTH IN MILES"
135 INPUT L
140 PRINT "TYPE THE YEAR"
145 INPUT Y
150 PRINT "TYPE THE FINAL YEAR FOR WHICH YOU WANT THE"
151 PRINT "POPULATION CALCULATED"
155 INPUT E
160 PRINT "TYPE THE TIME PERIOD FOR WHICH YOU WANT THE"
161 PRINT "CALCULATED POPULATION PRINTED"
165 INPUT S
200 PRINT "YEAR","POPULATION","SQFT/PERSON","PERSON/SQFT"
210 LET W=W*5280
212 LET L=L*5280
215 LET F=W*L
220 FOR J=Y+S TO E STEP S
225 FOR K=1 TO S
230 LET P=P+I*P
235 NEXT K
240 PRINT J,P,F/P,P/F
245 NEXT J
250 PRINT "IF YOU WISH TO DO FURTHER CALCULATION TYPE YES."

255 INPUT A$

260 IF A$="YES" GOTO 100
265 PRINT "FINISHED"
270 END

Output:

2-16

Variables followed by a dollar
sign ($) contain character
strings (a character is any
number, letter or special sym-
bol). These variables cannot
be used in calculations, al-
though they may be compared to
each other or to a string of
characters enclooed in quotes.

In a string comparison, the two
strings must be exactly the
same, for th statement to be
true.

> RUN
TYPE THE CITY'S INITIAL POPULATION
?600000
TYPE THE RATE OF INCREASE USING DECIMAL NOTATION
?.05
CONSIDER THE CITY AREA AS A RECTANGLE
TYPE ITS APPROXIMATE WIDTH IN MILES
?5
TYPE ITS APPROXIMATE LENGTH IN MILES
711
TYPE THE YEAR
?1970
TYPE THE FINAL YEAR FOR WHICH YOU WANT THE
POPULATION CALCULATED
72000
TyPE THE TIME PERIOD FOR WHICH YOU WANT THE
CALCULATED POPULATION PRINTED
?5
YEAR POPULATION SOFT/PERSON P ERSON /SQFT
1975 765768.9375 2002.316789 4 994214729E-04
1980 977336.776 1568.867598 6.'74024178E-04
1985 1247356.908 1229.248815 8.135049537E-04
1990 1591978.623 963.1486113 1.038261373E-03
1995 2031812.964 754.6521392 1.325113848E-03
2000 2593165.425 591.2896976 1.691218372E-03

IF YOU WISH TO DO FURTHER CALCULATION TYPE YES
?YES

NOTE: 4.994214729E-04 is "Scientific Notation" for

4.99421472 * 10
-4 = 4.994214729 * .0001

= .0004994214729

2-17

TYPE THE CITY'S INITIAL POPULATION
?600000
TYPE THE RATE OF INCREASE USING DECIMAL NOTATION
?.05
CONSIDER THE CITY AREA AS A RECTANGLE
TYPE ITS APPROXIMATE WIDTH IN MILES
?5
TYPE ITS APPROXIMATE TENGTH IN MILES
?11
TYPE THE YEAR
?1970
TYPE THE FINAL YEAR FOR WHICH YOU WANT THE
POPULATION CALCULATED
?1975
TYPE THE TIME PERIOD FOR WHICH YOU WANT THE
CALCULATED POPULATION PRINTED
?1
YEAR POPULATION SQFT/PERSON PERSON/SQFT
1971 630000 2433.828571 4.108752817E-04
1972 661500 2317.931973 4.314190458E-04
1973 694575 2207.55426 4.529899981E-04
1974 729303.75 2102.432628 4.75639498E-04
1975 765768.9375 2002.316789 4.994214729E-04

IF YOU WISH TO DO FURTHER CALCULATION TYPE YES.
?NO
FINISHED

Problem 5: A User Controlled Package

The user may not always desire the information on available

land area for the population. Write a program which makes the

calculation and printing of this information optional, according

to the user's specification at the beginning of the program. Use

a separate coding sheet to write your program, if you wish.

3 -i

SECTION 3 - ADVANCED NBS FEATURES; USING FILES

MORE ON THE FOR-NEXT STATEMENT

In this section we illustrate some alternate forms of the

FOR-NEXT statements that are available in NBS

FOR...TO...STEP

10 FOR I=1 TO 5 STEP 1

20 PRINT I

30 NEXT I

40 END

RUN

I is initialized to 1. Each
time this statement is returned
to by the NEXT statement, I is
incremented by the STEP value
of 1. Therefore I takes on the
values 1, 2, 3, 4, and 5. When
I is greater than 5, execution
skips to the instruction follow-
ing the NEXT statement.

Prints the value of I.

Goes back to statement 10.

1
2

3

4

5

10

20

30

40

RUN

FOR I=1 TO

PRINT I

NEXT I

END

10 STEP 3 Similar to previous example ex-
cept I now is incremented by 3.

1
4

7
10

10 FOR I=1 STEP 5 UNTIL I>20

20 PRINT I

30 NEXT I

40 END

I is initialized to 1 then incre-
mented by 5. The instructions
within the loop are executed until
I attains a value greater than 20.
At this time the loop is skipped
and the instruction after the NEXT
statement is executed.

RUN

1
6
11
16

FOR...S1EP...WHILE

10 FOR I=1 STEP 3 WHILE I<10

initial value Test
I of

value increment

20 PRINT I

30 NEXT I

40 END

RUN

1
4
7

3-2

The statemers between FOR and
NEXT are executed as long as the
expression (I>20) is false. When
it becomes true, the loop is skip-
ped.

I is given the initial value of
1 then incremented by 3. If I
is less than 10, the statements
between the FOR and NEXT statement
are executed. If I is greater than
or equal to 10, execution skips to
the statement following the NEXT
instruction.

EXAMPLES OF 'USING DELETE *(DELY 'IN NBS

-NBS
10 INPUT
20 INPUT
30 PRINT
40 PRINT
50 PRINT
60 END
RUN
?33
?66
A= 3
B= 6
A+B 9
50 PRINT
DEL 20
LISTNH
10 INPUT
30 PRINT
40 PRINT
50 PRINT
60 END
DEL 40-50
5 PRINT "
LISTNH
5 PRINT "
10 INPUT
30 PRINT
60 END
RUN
START
?7
A= 7

A
B
"A=" ;A
"B=";B
"A+B";A+B

3

6

9

"A+B";A+B;"A*B";A*B

A
"A=";A
"B=";B
"A+B";A+B;"A*B";A*B

START"

START"
A
"A=" ;A

This replaces the old line 50.
To delete line 20.

To delete lines 40 through 50.
Step 5 is new.

3-3

'FOR' WITHOUT 'NEXT'

FOR is usually used with NEXT as in the following example:
>10 FOR I = 1 TO 10 STEP 2
>20 PRINT I*I
>30 NEXT I

In NBS the above_program can be written with one line as follows:
>10 PRINT I*I FOR I = 1 TO 10 STEP 2

We call FOR a SUFFIX when used this way. Here is another example
that uses FOR as a suffix in lines 10, 20, and 30. It also
illustrates the use of "+" between strings (line 20) which is
called string concatenation.

> DIM A$ (51

>7 PR."WHAT ARE FIVE GOOD ADJECTIVE MODIFIERS FOR 'BABY'

>10 INPUT A$(1) rpm 1=1 TO 5

>20 LET A$(1)= A$(1)+" BABY" FOR I=1 TO 5

>25 PR."LET'S sEg. HOW THEY LOOK:"

>30 PRINT A$(1) FOR I=1 TO 5

>40 END

>RUN

WHAT ARE FIVE Gcon ADJECTIVE MODIFIERS FOR 'BABY'?

?LOVABLE

?CUTE

?PLAYFUL

?BOUNCING

?LAUGHING

LET'S SEE HOW THEY LOOK:

LOVABLE BABY

CUTE BABY

PLAYFUL BABY

BOUNCING BABY

LAUGHING BABY

?II

NOTE: Step 5 above is called a DIMENSIONing statement. It is a
way of saying that there will 'flee five variables called A$(1),
A$(2), A$(3), A$(4), and A$(5) available to this program.
A$ is a string array (see next page for further explanation).

3-4

USE OF SUBSCRIPTED VARIABLES; DIMENSIONING ARRAYS

Mathematicians use letters like X, Y, Z, A, B, C for variable
names. In NBS we do the same. We can also use variable names
like Xl, Yl, Z2, A3, Bl, C9, i.e., a single letter followed by a
single digit.

A third possibility allowed in NBS is to use names like
X(1) , X(2), X(3), A(23), A(24), A(25), A(26) , etc. These are
called subscriyted variables, and a group of such variables all
using the same letter is called an array. Thus, for example, we migh.F.
speak of the "X array" which contains the three variables, X(1),
X(2), and X(3). The 1, 2, and 3 are called subscripts of X. The
subscript can be any integer, or any expression which can be eval-
uated by the computer. Examples: X(1), X(500), X(K), X(K+j)

Before using an array, you must warn the computer as to how
many elements you will want in each array so that it will reserve
space for all of them. You do this with the DIMENSION (DIM)
statement.

EXAMPLE OF THE USE OF ARRAYS

Here is a program that calculates the net cost of four
appliances for 15%, 20%, and 25% discounts. The original cost of
each appliance is supplied by the user, and stored in the array A.
The three discounted costs are stored in arrays E, F, and G, and
then printed out from these arrays.

10 DIM A(4),E(4),F(4),G(4)

20 FOR K=1 TO 4

21 PRINT

25 PRINT "TYPE COST OF APPLIANCE":K; The subscript K changes as
determined by the FOR-NEXT
loop.

Statement 10 reserves space
for A(1),A(2),A(3),A(4),E(1),
E(2),E(3),E(4), etc.

30 INPUT A(K)

35 LET E(K)=A(K)*.85

40 LET F(K)=A(K) *.80

45 LET G(K)=A(K)*.75

50 NEXT K

54 PRINT

55 PR. " "," 15% DISCOUNT",

60 FOR K=1 TO 4

65 PRINT "APPLIANCE":K,E(K),F(K),G(K)

70 NEXT K

75 END

The PRINT statements in lines
21 and 54 cause a blank line
to be printed for purposes
of spacing. The ";" at the end
of line 25 causes the "?" gen-
erated by line 30 to print
after "K of line 25.

" 20% DISCOUNT"," 25% DISCOUNT"

> RUN

TYPE COST OF APPLIANCE

TYPE COST OF APPLIANCE

TYPE ,.OST OF APPLIANCE

TYPE COST OF APPLIANCE

1?56.89

2?123.99

3?8.95

4?456.00

15% DISCOUNT 20% DISCOUNT 25% DISCOUNT
APPLIANCE 1 48.3565 45.512 42.6675
APPLIANCE 2 105.3915 99.192 92.9925
APPLIANCE 3 7.6075 7.16 6.7125
APPLIANCE 4 387.6 364.8 342

USE OF GO SUB

The following is an example of the use of GOSUB-RETURN
statements:

100 LET X=3
110 GOSUB 400
120 PRINT U,V,W
200 LET X=5
210 GOSUB 400

a220 LET Z=U+2*V+3*14
i230 PRINT Z
7_240 END

4W1ET U =X *X
1 410 LET V=X*X*X

3-5

Normal return of GOSUB
is to next sequential
statement. In NES you
can change the normal
return by.using:
210 GOSUB 400 GOTO XXX
where XXX is any line
number in your program.

I 420 LET W=X*X*X*X+X*X*X+X*X+X\

430 RETURN

When statement 400 is entered by the GOSUB 400 in line 110,
the computations in lines 400, 410, and 420 are performed, after
which the computer goes back to statement 120. When the sub-
routine is entered from statement 210, the computer goes back to
statement 220.

GOSUB can be used in every situation where GOTO can be used,
including IF and ON statements. For example:

20 ON X GOSUB 100,110,90,20
GOES TO 100 110 90 20
When X= 1 2 3 4

Note the use of END in the above program. Although an END
statement is not needed to terminate a sequential type program,
it must be used in programs using the GOSUB-RETURN statements.
An END statement should separate the main program and the sub-
programs to make sure that the subprograms are not executed after
the main program hay; been processed.

3-6

USER'S
WORK AREA (CORE)

USER'S
FILES
(DISC)

Usiac Files in NES
There will be times when you wish to save programs on files,

loading them back into your user work area at another time. The

picture above suggests a good way of thinking of this process.

Although computers use electronic counterparts of the work area

and the file cabinet shown in the picture, the analogy is quite

accurate.

We will first show you how to carry out the saving and load-

ing process for NEWBASIC programs, and then illustrate how files

can also be used to save data for use by NBS programs, or data

generated by NBS programs.

3-7

SAVING AND LOADING NBS PROGRAMS ON DISC

The commands SAVE and LOAD together with an appropriate file

name do what the picture on the previous page suggests. There

are a number of other commands that also help in this process.

This section will explain these commands, and give examples of

their use.

Previously you used two of the commands in the command

language of NBS. These were:

>RUN

and

To execute your program.

>EXIT To leave NBS.

A few other commands available to programmers in NBS are:

>LISTNH To type in numeric order
the current numbered state-
ment of the user's program.
(NH means no heading)

>LISTNH 110

>SAVE /PROG/

>LOAD /PROG/

>APPEND /PROG2/

To type out the line(s)
associated with the line
number(s). 110 can be
any legal line number or
range of line numbers in
the program. e.g.(LISTNH
100-110)

To store a copy of all
numbered statements in the
user's core area on a disc
file under the name given
between the two slashes by
the user.

To copy the program stored
on the file /PROG/ into the
user's area. (PROG is any
legal file name of a pre-
viously stored file. File
names up to 9 characters
are allowed).

To add the contents of the
file specified between the
2 slashes to the current
user's core area.

Examples of using the NBS commands explained on the

previous page:

LISTNH

-NBS

>10 PRINT A,B,C.

>5 INPUT A,B,C

>15 END

>RUN

?10,5,25

10 5 25

>LISTNH

5 INPUT A,B,C

10 PRINT A,B,C

15 END

>LISTNH 10-1E

10 PRINT A,B,C

15 END

>SAVE /EXAMP/

>NEW FILE? YES

>EXIT

SAVE

LOAD

3-8

Notice that the lines are
in numeric order.

This saves the program in
your user area on a disc
file named /EXAMP/.

-NBS The. user area is "CLEAN"

>LISTNH when you first enter NBS.

NO PROGRAM PRESENT

>LOAD /EXAMP/ NOTE: >RUN /EXAMP/ has the
same effect as these

>RUN two commands.

?1,2,3

1 2 3

SAVE

-NBS

>15 LET D=A+B+C

>20 PRINT D

>25 END

>SAVE '/EXAMP2/

>NEW FILE? YES

APPEND

- NBS

>LOAD /EXAMP/

> LISTNH

5 INPUT A,B,C

10 PRINT A,B,C

15 END

>APPEND /EXAMP2/

> LISTNH

5 INPUT A,B,C

10 PRINT A,B,C

15 LET D=A+B+C

20 PRINT D

25 END

> SAVE /EXAMP/

> OLD FILE? YES

> LISTNH 20

20 PRINT D

> EXIT

- NBS

> RUN

NO PROGRAM PRESENT

3-9

Loads the first program.

Adds second program to first
one.

Notice that line 15 is line
15 of the APPEND(ed) program.
It over writes the first
loaded line 15.

Answering "YES" destroys the
file and puts the contents of
the user area (Steps 5, 10, 15,
20, 25) on that file.

3-10

>LOAD /EXAMP/

> RUN

?3,4,5

3 4 5

12

>EXIT

-LOGOUT

PAPER TAPE FILES

Since the amount of disc storage is limited, you can also

use tape storage for your NBS programs as follows:

Preparing NBS Programs on Paper Tape "Off-Line"

1. Turn the knob on the lower right corner of the teletype to

LOCAL. DON'T use the telephone to call the computer.

2. On the paper tape punch push down the button marked "ON".

3. Push down the "HERE IS" key until about two inches of tape

are punched. This is a leader for your tape.

4. Type the first line number and NBS statement on the teletype

of your program.

5. After your line is typed, hit the "RETURN" key, the "LINE

FEED" key, and the "RUB OUT" key in that order.

6. If you wish to type another line, repeat steps 4 and S.

7. Push down the "HERE IS" key until about two additional

inches of tape are punched. This is a trailer for your

tape.

8. Push the "OFF" button on the paper tape punch. Turn the

'snob on the lower right corner of the teletype to "OFF ".

9. Tear off your punched paper tape.

3-11

Loading a Paper Tape "On-Line" in NBS

1. Push the switch on the paper tape reader to the position

marked "FREE".

2. Place the paper tape into the paper tape reader and lock it

into position. LOGON, and ask for -NBS.

3. On the teletype, after the > type LOAD TPT, then hit "RETURN".

4. Push the switch on the paper tape reader to the position marked

"START".

5. After the tape is read in (it will list while it is reading

and error messages will be given) type a control D.

6. Now you should have a > and are ready to proceed with your

program; for example you might type RUN, or add new state-

ments to the program you just read in.

* On-Line means that your terminal is connected to the computer
by phone lines.

Off-Line means that your terminal is not connected to the computer.

3-12

Savin New NBS Pro ram! on P er Ta e While "0 -Line"

1. Type your program into the computer as usual.

2. After your program is in the computer, to save it on tape:

a. After the > type SAVE TPT, then hit the "RETURN" key

b. Push the "ON" button on the paper tape punch

3. The program is listed as it is punched. When the punching

is done, push down the "OFF" button on the paper tape punch.

4. Type EXIT and LOGOFF if you are finished.

Saving Old 11u2lEazaal9212mer Tape "On-Line"

Suppose you have a program stored on the disc file /SILLY/,

and you wish to remove this file from disc and save it on paper

tape. Do the following:

-NBS

>LOAD /SILLY/

>SAVE TPT

>EXIT

-DEL /SILLY/

-LOGOUT

(CR) (Now turn on punch).

(This deletes /SILLY/ from
disc.

Listing Paper Tape's' "'Of'f -Line"

1. Turn the knob on the lower right corner of the teletype to

LOCAL. DON'T use the telephone to call the computer.

2. Push the switch on the paper tape reader to the position

marked FREE. Place the tape into the reader, and lock it

in position.

3. Push the paper tape switch up to START.

3-13

STORING DATA ON FILES

In addition to using files to store NBS programs, they can
also be used to store data which is generated by an NBS program
(writing on files), Jr data which is used by NBS programs (readim
from files).

In NBS to access a file for reading input or writing output,
the file must be opened. The same file cannot be read from and
written onto at the same time. When the file is no longer needed
the CLOSE command is issued. Before a file can be opened (OPEN)
and used again in the same program, it must be closed.

Example for Writing onto a Filej9enerating data)

>110 C ?EN /STORY/ FOR OUTPUT AS 3 OPEN is the statement that
allows you to access a file,
in this case the file named
/STORY/. OUTPUT states that
you want to write onto the
file.

The number 3*is associated
with the file /STORY/. When-
ever 3 is used in a print
statement it refers to file
/STORY/. (See line 130)

When a file is opened for
output, it will destroy
anything previously written
on the specified file making
it a clean file.

>120 INPUT. A$ Accepts alphanumeric data
from the terminal.

>130 PRINT ON 3:A$ Writes the contents of A$
onto the file reference by
3.

>140 IF A$= "##" GOTO 160 Ends program if A$= "##".

* The user chooses any integer from 2 to 9. (0 and I refer to
the teletype).

3-14

>150 GOTO 120 Goes back and gets more input
from terminal.

>160 CLOSE 3 Closes file 3. This statement
must accompany any OPEN state-
ment. A file opened for out-
put must be closed after the
last bit of information is
written on it.

>170 END Terminates program. The only
output of this program is on
the file /STORY/.

>RUN In this example, the "story"
inputted by the user is the

?ONCE UPON A
?TIME A LONG
?TIME AGO
?##

"data" written on the file.

Example of Reading from a File (Using Data)

>110 OPEN /STORY/ FOR INPUT AS 4

>120 INPUT FROM 4:B$

OPEN again allows you to
access the file /STORY/,
n this case fr7 input.
INPUT means that you want
to read information from
the file. In this example
we are associating the
number 4 with /STORY/.

Reads one line of information
from /STORY/ and stores it
in the alphanumeric variable
B$.

>130 IF B$= "##" GOTO 160 Ends program if B$= "##".

>140 PRINT B$

>150 GOTO 120

>160 CLOSE 4

>170 END

>RUN

ONCE UPON A
TIME A LONG
TIME AGO

3-15

Prints on terminal the con-
tents of B$.

Goes back and reads the next
line from the file.

Closes file 4 (File /STORY/).

Terminates program.

The following programs illustrate a business application of
data files. Briefly, the first program creates a master file
consisting of an employee number (E), hourly rate (R), and num-
ber of hours worked (H). The second program reads the master
file, then calculates and prints each employee's weekly salary
(A) including time and a half for overtime, and total weekly
payroll (S).

Program #1

110 OPEN /MASTER/ FOR OUTPUT AS 4 (opens the file)
111 INPUT E,R,H (allows the operator to

type in data from the
teletype)

112 PRINT ON 4:E,R,H (writes the data on the
master file)

113 IF E>0 THEN 111 (allows steps 111 and
112 to be repeated as
often as needed)

114 CLOSE 4 (closes the file)
115 END (ends the program)

PrograM #2

209 LET S=0
210 OPEN /MASTER/ FOR INPUT AS 4

211 INPUT FROM 4:E,R,H

(initializes S)
(opens the master file
created by the first
program)
(instructs the system
to read the data from the
master file)

3-16

212 IF E=0 THEN 220
213 IF H>40 THEN 218
214 LET P=H*R
215 PRINT E,P
216 LET S=S+P
217 GO TO 211 (allows the program to

go back, read the next
set of data, and repeat
the required computations)

218 LET P=40*R+(H-40)*R*1.5
219 GO TO 215
220 PRINT "TOTAL PAYROLL",S
221 CLOSE 4 (closes the file)
222 END (ends the program)

Once a file has been created it may be the input to many programs.
For example, t7,1 following program reads
calculates total company overtime.

Program #3

the same master file and

(initializes S)
(opens the master file)
(reads the data from the
master file)

309
310
311

LET S=0
OPEN /MASTER/ FOR INPUT AS 4
INPUT FROM 4:E,R,H

312 IF E=0 THEN 316
313 IF H<=40 THEN 311
314 LET S=S+(H-40)
315 GO TO 311 (allows the program to

go back, read the next
set of data, and repeat
the required computations)

316 PRINT "COMPANY OVERTIMEH,S
317 CLOSE 4 (closes the file)
318 END (ends the program)

4-1

SEC. 4 - THE EXECUTIVE SYSTEM

The Com-Share system is a general purpose time-sharing system that
utilizes an SDS 940, various peripheral equipment, and a network of
remote terminals (teletypewriters) linked to the computer by Bell
System DATA-PHONE sets. Users of the system may create and execute
programs from any location by simply dialing the computer on the
teletypewriter's telephone.' An advantage Com-Share's users enjoy is
the speed and convenience of a conversational system. This inter-
active characteristic of the Com-Share system allows each user com-
plete control over his activity.

Although a large number of users may be accessing the Com-Share sys-
tem at the same time, the sophisticated software that controls the
system assures the complete separation of each activity. Thus, each
user may conceptually imagine that he is the only user on the system.

To further enhance the convenience of programming, the Com-Share
system maintains control of all information (files) created by its
users. Prior to creating a file the user gives it a name. Subse-
quently, he may at any time request the file by that name; the system
will retrieve it from peripheral storage without the user needing
to know where it is.

The system assumes that any file created by a user belongs exclusive-
ly to him and will deny any other user's request to access it. Should
a user wish to make his file available to either those individuals
sharing his account number or all the users on the system, he may
request the system to change the status of the file.

One of the significant advantages of the Com-Share system is the
large number of language processors (subsystems) available to its
users. They allow the system to be used fox nearly any purpose.
For example, it is possible to use the system as a desk calculator
merely by typing in the expression to be evaluated. On the other
hand, one can write highly complex scientific programs or even per-
form system simulation simply by selecting the appropriate subsys-
tem. The subsystems currently available are:

BASIC - A simple, easily learned and used compiler language.
NBS/CATALYST - An advanced BASIC plus special CAI features.
CAL - A powerful conversational compiler for numerical com-

putation (like PIL).
COMPACT - A numerical control language for machine tools.
DDT - An on-line debugging system.
XTRAN - Extended FORTRAN IV.
PDPS - A simulator for PDP-8, PDP-5, or PDP-8S computers.
COSS - A general simulation language.
QED - A sophisticated text editing system.
CODED-CAP - A network analysis language.
SNOBOL - A string manipulation language.
TAP - A machine language macro assembler.

4-2

Each of these subsystems is fully described in its own manual.

The Com-Share system also maintains a large number of permanent li-
brary routines. Users with particular problems to solve may often
discover that one of the library routines can be used, affording
great savings in time and effort. These routines cover such areas
as mathematics, management sciences, engineering and general sciences,
manufacturing, business, and utility. The reader is referred to the
Library Reference Manual for a complete list of these routines. Users
are also encouraged to submit their programs of general interest for
possible inclusion in the library.

In order to use the system, one needs to know the telephone number of
the system and be able to supply proof that he is a Com-Share customer.
This proof, or identification, consists of a single string of up to
15 characters. Some of these characters are assigned by Com-Share
when the user agrees to purchase time on the system, and the rest are
chosen by the user. A user may elect to have non-printing characters
in his identification to provide password protection.

After the user dials the appropriate telephone number and connection
to the computer :Is made, the system will request him to type in his
identification. This process is known as "logging in". If his iden-
tification is legitimate, the user will be given access to the system.

Once the user gains access to the system there is a set of commands
available that allows him to inform the system about the task he ex-
pects it to perform. All of these commands are first evaluated by
one of the system modules called the Executive. It subsequently dir-
ects the appropriate system module or subsystem to complete the re-
quested task. The user, therefore, need not be concerned with the
complex interface between the Executive and the rest of the system- -
he only needs to know the commands that comprise his interface with
the Executive.

Having the Executive in complete control of the system is of great
advantage to the user. Files created in one subsystem can be utilized
by other subsystems because the Executive is responsible for storing
and retrieving files.

EXECUTIVE COMMANDS THAT MAY BE ENTERED AFTER THE DASH (-)

The following is a brief example of some of the operations that can
be performed with the Executive on Com-Share's time-sharing system:

PLEASE 'LOG IN:129COM;LL
READY,SYSTEM TO4
COM-SHARE AA
APR 35----Y717
LAST 'LAIN: APR 23 12:46

4-3

UP TIL 7:30 P.M.
-FILES (The user requests a listing of the files

in his file directory)
5 FILES
/BMAC/" /PR/ /BIN/ /SORT/ /BOB/
-COPY /SORT/
TO TELETYPE

-ZU PRINT"HOW MANY NUMBERS TO BE SORTED?"
50 INPUT N
575-PRINT"TYPE THE NUMBERS "
60' FOR 1='1 TO N
7T-rwmmr-AITT--
110' NEXT I
100 FOR 1=1 TO N-1
110. FOR J=I+T TO IT
120. IF A(I)>AAJT THEN' 150
13 0- NEXT 3
'140. NEXT- I
14'5 GO TO 185
'150 LET T=A (I)
160, LET A(I)=A(J)
ITT"LVT-77771=F---
180' GO TO 1'30
185' PRINT"SORTED NUMBERS"

'190 FOR'1=1 TO N
72D17151="/17
210* 'NEXT I
220 END

- RENAME /SORT/ AS /BASICSORT/ (He changes the name
of the file.)

- DELETE /PR/ (He removes one of the files from his
directory and again requests a listing

OK? Y of his files.)
=ALES
4 FILES
/BMAC/ /BOB/ /BASICSORT/ /B'I'N/

-NBS (He requests the use of the NBS subsystem, loads
his program into it, and then instructs NBS to
run the program.)

>LOAD
FROM /BASICSORT/
>RUN
HOW MANY NUMBERS TO BE SORTED?
? 5 (The question marks indicate that the NBS sub-_

system is requesting input)
THE NUMBERSTYPE

? 4
71 7
7 2
7 8

7 9
SORTED NUMBERS

2

7

> EXIT (Exit from the NBS Subsystem)

4-4

On the next 3 pages we will show some additional executive com-
mands that are particularly useful for CAI work.

Session 1

METHOD BY WHICH TEACHERS MAY CREATE A PROGRAM

FOR THEIR STUDENTS' USE

COMSHARE CENTER K124
PLEASE LOG IN:K166;CL
READY,SYSTEM W04
SEP 16 14:45

LAST LOG IN SEP 16 10:59
-NBS
VER,AUG 25 17:18

>10 LET Y=2
>20 LET X=1
>25 IF PASS > 8 GOTO 90
>30 LET Y=Y+1
>40 LET X=X+1
>50 PRINT "WHAT IS ":X:" + ":Y
>60 INPUT A
>70 IF ABS (A- (X +Y)) <.001 CALL REIN,GOTO 25
>80 PRINT "NO THE ANSWER IS ":X+Y
>85 GOTO 25
>90 PRINT "GOOD-BY FOR NOW"
>100 END
>SAIIE /MATH/
NEW FILE?YES
>EXIT
-DEFINE /MATH/ AS PUB

-WHATS /MATH/

/MATH/

-LOGOUT

2 SYM SEP

Size Type Date

(2 blocks= (Symbolic
2000 char.) i.e., NBS

16 14:55

Created

lang.,

Teacher "CL" logs on.

Enters NBS.

Creates a drill or
tutorial program.

Saves program on a file.

Leaves NBS.
Uses the define command
to make his file public
(i.e., other users may
access it).

Checks the status of
his file.

PUB RDO

Status

(Public
Read Only)

Note: Approximately 15 lines of NBS fit in 1 block.

Session 2

4-5

A STUDENT INTERACTING WITH THE TEACHER'S PROGRAM

COMSHARE CENTER K124
PLEASE LOG IN:K166;FW
READY,SYSTEM WO4
SEP 17 15:04
LAST LOG IN SEP 16 14:56
-NBS
VER.AUG 25 17:18
>LOAD 166CL /MATH/

>RUN

WHAT IS 2 + 3
?5
GOOD
WHAT IS 3 + 4
?7
THAT'S RIGHT
WHAT IS 4 + 5
?8
NO THE ANSWER IS 9

WHAT IS 5 + 6

?10
NO THE ANSWER IS 11
WHAT IS 6 + 7
?13
CORRECT
WHAT IS 7 + 8
?9
NO THE ANSWER IS 15
WHAT IS 8 + 9
?7 .

NO THE ANSWER IS 17
WHAT IS 9 + 10
?91
NO THE ANSWER IS 19
GOOD-BY FOR NOW

>EXIT

-LOGOUT

Student "FW" logs on.

Goes into NBS.

To load the public program /MATH/
the student types the account
number and the user identification
code of the creator, followed by
a blank and the program name en-
closed in slashes.

Student runs the program and
interacts with it. In this ex-
ample, a simple arithmetic drill
is shown.

K is not typed -(This is the name
of the computer we are using.)

The PASS statement in line 25
causes the program to terminate
after 8 responses. See page 5-3
for further information.

Session 3

4-6

METHOD BY WHICH TEACHER MAKES CHANGES IN HIS "PUBLIC" LESSON

COMSHARE CENTER K124
PLEASE LOG IN:K166;CL
READY,SYSTEM W04
SEP 18 14:50

LAST LOG IN SEP 16 14:45
- DEFINE /MATH/ AS PRI

- NBS
VER. AUG 25 17:18
>LOAD /MATH/
>50 PRINT "WHAT IS ":X:"
>70 IF ABS(A-(X*Y))<.001
>80 PR. "NO THE ANSWER IS
>SAVE /MATH/
OLD FILE?YES
>EXIT

- DEFINE /MATH/ AS PUB

Teacher "CL" logs on.

The file must be re-
defined as "private" in
order to change it.

Enters NBS.

* Changes lines 50, 70,
CALL REIN,GOTO 30 and 80 so that the drill
":X*Y is now on multiplication.

Answering "yes" causes
old file (on disc) to
be erased, and the new
version (in core) to be
stored under the name
/MATH/.

Defines /MATH/ as
public again.

Session 4

INTERACTION OF A STUDENT WHO USES /MATH/ AFTER

SESSION 3 IS FINISHED

COMSHARE CENTER K124
PLEASE LOG IN:K166;FW
SEP 18 .5:30

LAST LOGIN SEP 17 15:04
-NB S
VER. AUG 24 17:18
>LOAD 166CL /MATH/
>RUN
WHAT IS 2 * 3
?6
CORRECT
WHAT IS 3 * 4

?12
RIGHT
WHAT IS 4 * 5

?22
NO THE ANSWER IS 20
WHAT IS 5 * 6

4-4-ESC: 70

Student "FW" logs on.

Goes into NBS.

This time when he loads the public
/MATH/ program, he gets the new
version, a drill on multiplication.

He did not wish to continue so he
hit the escape key.

5-1

SECTION 5 - USE OF THE CATALYST FEATURES IN NBS

CATALYST was originally a separate language, developed at
the University of Pittsburgh for Computer Assisted Teaching and
Learning. The key features of CATALYST have been re-written to
be included in NBS. In other words, programmers can mix CATALYST
statements right in with NBS statements. In addition to the new
statement types allowed, there is a CATALYST feature called @NBS,
which allows users to write and run small NBS programs while
interacting with someone else's "CBS program. We will first des-
cribe the new CATALYST statements, then show some sample pro-
grams using these features together with interactions that show
how to use @NBS.

IS, ICO., REIN, and IBEF (as used in an IF statement)

R$ holds the student's response.
IS(R$,A$,W) A$ holds a string supplied by the programmer.

W is either 0 or 1.

IS(R$,A$,0) has the value TRUE when R$ and A$ are exactly
the same, value FALSE otherwise.

IS(R$,A$,1) has the value TRUE when R$ and A$ are exactly
the same after special characters* are.removed from in front of
and after--NT: It has value FALSE otherwise.

Several IS calls can be combined by using the Boolean connectives
NOT, AND, OR, XOR, and BUT.

EXAMPLE:

>10 PR. "WHAT ADJECTIVE REFERS TO SEA-GOING VESSELS?"
>20 INPUT R$
>30 IF IS(RWMARINE",1)OR IS(R$,"OCEANIC",0) GOTO 60
>40 PR."NO, TRY AGAIN.
>50 GOTO 20
>60 PR."CORRECT"
>70 END

>RUN

WHAT ADJECTIVE REFERS TO SEA-GOING VESSELS?
?SUBMARINE
NO, TRY AGAIN.

?...00EAN_C!
NO, TRY AGAIN.

?...MARINE!
CORRECT

Not accepted because
of the B in front of MAR.NI

1

I

Not accepted because
W = 0.

Accepted because
W = 1.

Anything not a number or letter. Thus, for example, if@NOI
will be tTgat:d as NO, but KNOW or NO8 will not be.

ICO(R$,A$,W)

5-2

is similar to IS, except that the student can
type in a long string (R$) which is scanned
to see if it contains A$.

ICO(R$,A$,O) has the value TRUE when the string A$ is found
anywhere in R$.

ICO(R$,A$,l) has the value TRUE when the string A$ is found
anywhere in R$, provided there is not a letter or number immedi-
ately before or after the occurrence of A$ in R$. In this case
we speak of looking for the 'word' A$ rather than the string A$.

CALL REIN, and
CALL RRIN

EXAMPLE:

supply "mild" or "enthusiastic" reinforcement
messages.

5 PR."ADJECTIVES: MARINE, WET"
10 PR."WHAT ADJECTIVE REFERS TO THE SEA?"
20 INPUT R$
30 IF ICO(RWMARINE",1) BUT NOT ICO(R$,HWET",1) CALL REIN, GOTO 50
40 PR."NO, TRY AGAIN" GOTO 10
50 END
RUN

ADJECTIVES: MARINE, WET
WHAT ADJECTIVE REFERS TO THE SEA?
?MARIN
NO, TRY AGAIN

?SUBMARINE
NO, TRY AGAIN
?WET OR MARINE
NO, TRY AGAIN

?THE ANSWER IS MARINE!
CORRECT

FIBEF(R$,A$,W,B$,W)

The first W is made
or do not wish A$ to
The second W us used

e.g. IBEF(RWX1",1,"X

?(X1) PRECEDES X(3)
?X12 PRECEDES X(3)
?SEX1 PRECEDES X(3)
?X1 PRECEDES SEX(3)

Not accepted since R$ does not
contain A$.

Not accepted since W = 1.

Not accepted since WET is
present in R$.

Accepted.

IBEF has the value TRUE if A$ is
contained in R$ and B$ is contained
in R$, but with AT coming before B$.

1 or 0 depending on whether you do
be judged to be a whole 'word'.
in the same way for B$.

(3)",0)

ACCEPTED
REJECTED
REJECTED
ACCEPTED

5-3

EXAMPLE:

10 PR."WRITE A DECLARATIVE SENTENCE USING ONLY THE WORDS:
DESKS,MEN,CARS,DEEPLY,THINK,THINGS,BUILD"

20 LET M$="MEN"
30 LET B$= "BUILD"
40 LET T$="THINK"
50 INPUT R$
60 IF IBEF(R$,M$,1,T$,1) OR IBEF(R$,M$,l,B$,1) CALL RRIN,

GOTO 80
70 PR."ARE YOU SURE THAT'S A SENTENCE?"
80 IF PASS >2 GOTO 100
90 PR."TRY ANOTHER" GOTO 50
100 END

> RUN

WRITE A DECLARATIVE SENTENCE USING ONLY THE WORDS:
DESKS,MEN,CARS,DEEPLY,THINK,THINGS,BUILD
?CARS THINK DEEPLY
ARE YOU SURE THAT'S A SENTENCE?
TRY ANOTHER
?MEN BUILD THINGS
VERY GOOD

100 IF PASS> N GOTO 800
110

You can read this statement to mean that the program will
PASS through to the next statement (in this case 110) N times.
The (N +1)st time the program will branch to line 800.

EXAMPLE:

20 LET Y=NUM(10)-1
30 LET X=SIN(Y)
40 PR."WHAT IS THE SIN OF":Y:"RADIANS";
50 INPUT R
60 IF ABS(R-X)<.001 CALL REIN, GOTO 100
70 PR."NO, THE ANSWER IS":X
80 IF PASS >3 GOTO 200
90 GOTO 20
100 IF PASS >5 GOTO 220
110 GOTO 20
200 PR."YOU HAD 4 WRONG. ASK YOUR TEACHER FOR HELP."
210 STOP
220 PR."YOU HAD 6 CORRECT. NOT BAD."
230 END

5-4

USE OF @NBS

@NBS is a command that can be given only during the exe-

cution of an NBS program in response to

a question mark (?) that is asking for input. @NBS suspends your

main program and takes you into auscratch pad" version of NBS. In

this version any NBS statement or command can be used. All var-

iables are considered new, i.e. There is no transfer of variable

values between the main NBS program and the @NBS program.

A Sample Program Execution Showing @NBS Feature

>RUN

TYPE THE LENGTH OF A RECTANGLE

?23

TYPE THE WIDTH OF A RECTANGLE

?4

TYPE THE AREA OF YOUR RECTANGLE

?(?NBS In resp-Ase to ?) asking
for input type @NBS.

VER. AUG. 24 18:13 Now you are in the subsystem
of NBS.

>PRINT 23*4

92

>EXIT

The computer gives you >.
You may do any short NBS
program.

Takes you back to your main
program--all variables are
at their prc-rious values- -
the values and variaales in
the scratch pad program are
lost.

?92

THAT'S RIGHT. WANT TO DO ANOTHER? NO

5-5

NBS now returLs with the
question mark for the
previous input demand.

LISTING OF THE ABOVE PROGRAM

110 PRINT "TYPE THE LENGTH OF A RECTANGLE"
120 INPUT L
130 PRINT "TYPE THE WIDTH OF A RECTANGLE"
140 INPUT W
150 PRINT "TYPE THE AREA OF YOUR RECTANGLE"
160 INPUT A
165 IF A=L*W GOTO 180
170 PRINT "THAT'S WRONG TRY AGAIN"
175 GOTO 160
180 PRINT "THAT'S RIGHT. WANT TO DO ANOTHER";
190 INPUT A$
200 IF A$="YES" GOTO 110
210 END

USE OF IEQIV

By removiny line 200 in the above program, and inserting:

195 LET Y$=",YES,SURE,OK,O.K,,CERTAINLY,OF COURSE,YUP"

200 IF IEQIV (A$, Y$, 0) GOTO 110

the previous program will branch to line 110 for a user who

responds to the line 190 input request with

?YES

or ?SURE

or ?OK

or ?O.K.

or ?CERTAINLY

or ?OF COURSE

or ?YUP

5-6

Exam le of usin @NBS to Reti_eve Information

Let's suppose a teacher creates a file called /RIPLEY/
with the following data on it:

4 ITEMS:
THE WASHINGTON MONUMENT
THE HONG KONG HILTON
THE TEMPLE OF 'KARNAK
THE HANGING GARDENS

(Se..) pages 3-13 & 3 -14 if you don't remember how to do this.)

If the teacher (TD) wants other people to use the file, he must

also define it as PUBLIC (see page 4-4).

He then writes the following program:

LISTING:

>10 PR. "THIS IS A TRIVIAL EXAMPLE OF A' TUTORIAL WHERE
YOU MAY USE @NBS TO RETRIEVE DATA FROM THE FILE /RIPLEY/.
DO YOU HAVE YOUR FILE INSTRUCTION SHEET WITH YOU?"
>20 LET YWIYES,YUP,SURE,OF COURSE,AFFIRMATIVE,"
> 30 INPUT R$
>40 IF IEQIV(R$,Y$,O) GOTO 70
>50 PR.PLEASE LOGOUT AND OBTAIN THE FILE INSTRUCTION
SHEET. PRACTICE USING IT ON A TERMINAL BEFORE TRYING
THIS LESSON."
>60 STOP
>70 PR."HERE IS YOUR FIRST QUESTION

NAME AN OBELISK FOUND IN AFRICA-
> 80 INPUT R$
>90 IF ICO(R$,"KARNAK",1) CALL RRIN,GOTO 120
>100 PR."SORRY - YOUR ANSWER ISN'T ONE WE ANTICIPATED.
WE HAD THE 'TEMPLE OF KARNAK' IN MIND"
> 120 PR."LET'S TRY ANOTHER QUESTION

ETC
>130 END

5-7

AN INTERACTION:

>RUN /TRIVIAL/ (OR: RUN 166TD /TRIVIAL/)
THIS IS A TRIVIAL EXAMPLE OF A TUTORIAL WHERE
YOU MAY USE @NBS TO RETRIEVE DATA FROM THE FILE /RIPLEY/.
DO YOU HAVE YOUR FILE INSTRUCTION SHEET WITH YOU?
?YUP
HERE IS YOUR FIRST QUESTION

NAME AN OBELISK FOUND IN AFRICA
?@NBS
VER. AUG 12 17:20
>OPEN /RIPLEY/ FOR INPUT 2 (OR: OPEN 166TD /RIPLEY/ FOR INPUT 2)
>INPUT FROM 2, A$ (I) FOR I=1 TO 5
>PRINT A$ (I) FOR I=1 TO 5
4 ITEMS:
THE WASHINGTON MONUMENT
THE HONG KONG HILTON
THE TEMPLE OF KARNAK
THE RANGING GARDENS
>CLOSE 2
>EXIT
RESPOND TO LAST INPUT REQUEST
?THE TEMPLE OF KARNAK IS THE ANSWER
VERY GOOD INDEED!
LET'S TRY ANOTHER QUESTION

ETC

Example 2

LISTING:

>100 PR."SLIDE RULE DRILL: ESTIMATING CUBE ROOTS"
>110 REM WE ASSUME USE OF A RANDOM GENERATOR AND A
>120 REM LINEAR TRF T9 SUPPLY A VALUE FOR X IN LINE 130
>130 LET X=37595.4
>140 REM WE ASSUME THAT A SUBROUTINE WOULD BE CALLED IN LINE
>150 REM 160 FOR CALCULATING ANSWERS TO MORE GENERAL PROBLEMS
>160 LET C=X+.333333
>170 PR."PLEASE ESTIMATE THE CUBE ROOT OF":X
>180 INPUT R
>190 IF R>C-C*.05 AND R<C+C*.05 CALL REIN, GOTO 300
>200 IF R>=C+C*.05 GOTO 240
>210 IF R<=C-C*.05 GOTO 260
>220 PR."DO NOT UNDERSTAND - PLEASE REPEAT"
>230 GOTO 170
>240 PR."NO -- HINT: YOUR ESTIMATE IS TOO LARGE"
>250 GOTO 170
>260 PR."NO -- HINT: YOUR ESTIMATE IS TOO SMALL"
>270 GOTO 170
>300 PR."LET'S TRY ANOTHER - IF YOU WISH TO"
>310 PR."STOP AT ANY TIME PRESS THE 'ESC' KEY"
>320 GOTO 130
>330 END

5-8

AN INTERACTION:

>RUN /SLIDES/
SLIDE RULE DRILL: ESTIMATING
PLEASE ESTIMATE THE CUBE ROOT
?10
NO -- HINT: YOUR ESTIMATE IS
PLEASE ESTIMATE THE CUBE ROOT
?60
NO -- HINT: YOUR ESTIMATE IS
PLEASE ESTIMATE THE CUBE ROOT
?@NBS
VER. AUG 12 17:20
>5 INPUT A,B
>10 FOR I=A TO B
>15 PRINT I;I*I*I
>20 NEXT I
>25 END
>RUN
?35 40
35 42875
36 46656
37 50653
38 54872
39 59319
40 64000

> RUN
?30 35
30 27000
31 29791
32 32768
33 35937
34 39304
35 42875

CUBE ROOTS
OF 37595.4

TOO SMALL
OF 37595.4

TOO LARGE
OF 37595.4

>PRINT 33.4*33.4*33.4
3!259.704

>PRINT 33.5*33.5*33.5
37595.375

>EXIT
PLEASE RESPOND TO LAST INPUT REQUEST
?33.5
CORRECT
LET'S TRY ANOTHER - IF YOU WISH TO
STOP AT ANY TIME PRErS TILE 'ESC'KEY
PLEASE ESTIMATE THE CUBE ROOT OF
?+.4ESC: 180

LIBRARY FUNCTIONS IN NBS (SEPT. 1970)

ABS(X)

INT (X)

MOD (X,Y)

MAX(X,...,Z)

MIN(X,.. ,Z)

SGN (X)

DIF (X,Y)

IMAG (C)

REAL (C)

CMPLX (X,Y)

CONJG (C)

EXP (X)

LOG (x)

LGT,LOG10 (X)

SIN (X)

COS (X)

TANH (X)

SQB,SQRT(X)

ATAN(X),ATAN(X,Y)

ARCSIN(X)

ARCCOS (X)

CINH (X)

COSH (X)

FIX (X)

FLOAT(I)

SNGL (D)

NUM(X)

LSH(I,J)

RSH(I,J)

WAIT (X)

POS (I)

TAN(X)

Absolute value of X

Integer part of X

X modulus

Maximum of arguments

Minimum'of arguments

Sign of X

Positive difference ABS(X-Y)

Imaginary part of C

Real part of C *r implemented

Complex number X,Y

Conjugate of C

e to the X power

Natural log of X

Log,base 10, of X

Sine of X

Cosine of X

Hyperbulic tangent of X

Square root of X

Arctangent of X, or of X/Y

Arcsine of X

Arccosine of X

Hyperbolic sine of X

Hyperbolic co;ine of X

Integer mode form of X

Floating point mode form of I

Single precision mode form of D

Random numbers from 1 to X

Binary left shift I for a positions

Binary right shift I for J positions

Halt execution for X seconds

Print head position of file I

Tangent of X

6-2

6-3

STRING FUNCTIONS

(S = String Argument, N = Numeric Argument)

INDEX(S1,S2) Position of S
2
within S

e.g., INDEX("ABC","C") = 3.

LEFT(S,N) Substring of S; N characters long starting

from. left.

LENGTH(S) Number of characters in S.

RIGHT(S,N) Substring of S; N characters long,

starting at right.

SPACE(N) String N spaces long.

STR(N) String of the characters comprising N.

STR(4) = "4".

SUBSTR(S1N2) Substring of S from Nith character to the

end of S.

SUBSTR(S,N1,N2) Substring of S: N2 characters long,

starting at N1th character.

VAL(S) Numeric value of S, whore S must be a

numeric string; e.g. VAL("+8") = 8.

Example of using the XTRAN function PACTRL (see the XTRAN library

manual for details on over 100 such functions which are also

available in NBS).

10 INTEGER N,I,K

5 LET N =S

20 LET K=N-3

21 LET X=FACTRL(N,F,B,I)/FACTRI(K,F,B,I)

22 PRINT N;K;X;FACTRL(N,F,B,I);FACTRL(K,F,B,I)

25 END

>RUN

8 5 336 40320 120

6-4

The Random Generators RRAND And NUM

The function RRAND(X) produces a random number between 0

and X, where X is any number containing a decimal point.

EXAMPLE:

PRINT RRAND(50.0) causes a different number to be printed
each time it is executed, of the form:

27.3469
0.8356
18.2634
5.7082

49.0236

INT(RRAND(50.0)) would produce the integer parts of these numbers:

27
0
18
5

49

NUM(50) would produce numbers
like 41, 1, 28, 50, 13, etc.,
i.e. 1<=NUM(50)<=50.

Example of Use of RRAND in a Drill Program created by user XX)

>10 PR. "ADDITION DRILL (IF)
>WHAT IS YOUR NAME PLEASE":
>20 INPUT N$
>40 LET XL-INT(RRAND(100.0))
>50 LET Y=INT(RRAND(100.0))
>60 IF PASS>5 THEN 110
>70 PR.''WHAT IS":X:"+":Y;
>80 INPUT R
>90 IF ABS(1-(X+Y)/L)<.03 CALL REIN, GOTO 40
> 100 PR. "NO, THE ANSWER IS":X+Y GOTO 40
> 110 PR. "THAT'S ALL FOR NOW ":N$
> 115 PR. "DON'T FORGET TO EXIT AND LOGOUT"
> 120 END >EXIT
> SAVE -DEF /DRILL/ AS PUB
> ON: /DRILL/ -LOGOUT

Alternate Coding

40 LET X=NUM(100)
50 LET Y=NUM(100)

> RUN /DRILL/ <1
SUBPROGRAMS REQUIRED
FILE: 166CL /RB/

[

A user other than XX would type:
>RUN 166XX /DRILL/

where XX is creator's ID.

ADDITION DRILL
WHAT IS YOUR NAME PLEASE? HORATIO
WHAT IS 65+ 94?23
NO, TAE ANSWER IS 159
WHAT IS 89+ 47?136

WHAT IS 35+ 33?68
THAT'S RIGHT
WHAT IS 42+ 31?34
NQ, THE ANSWER IS
73
WHAT IS 79+ 91?170
CORRECT
THAT'S ALL FOR NOW HORATIO
DON'T WRGET Tp EXIT AND LOGOUT

Answering 166CL /RB/ is
ntessary because of use
of RRAND in main program.
(This is a temporary sit-
uation because RRAND is a
newly developed "experi-
mental" function.)

NUM doesn't request any
SUBPROGRAMS.

NUM always returns an inte-
ger, so you don't have to
say INT(NUM(50)).

