AUTHOR TITIE	Case, James B.
	Treating Chemical Equilibrium Mathematically in
	Secondary Schools: A Dreliminary Investigation.
INSTJTUTION	Nevada Southern Oniv., Las vegas.
PUB DATE	6 Mar 70
NOmp.	Op.; Paper presented at the Annual Meeting of the
	National Association for Research in Science
	Teaching (43rd, Minneapolis, Minn., March 5-8, 1970)
EDRS PRICE	EDRS Price MF-\$0.25 HC- $\$ 0.55$
DESCRIPTORS	*Academic Achievement, *Chemical Equilibrium,
	*Chemistry, *Instruction, Science Units, Scientific
	Concepts, Secondary School Mathematics, *Secondary
	School Science

ABSTRACT

This report presents the procedures, results, and conclusions of a study to determine the characteristics of secondary school chemistry students who were successful in grasping a mathematical approach to learning chemical equilibrium. Subjects were eighty-nine students enrolled ia chemistry at a rural-suburban high school; each student had completed at least one-year of algebra and plane geometry. An experimental mathematically based unit on chemical equilibrium developed by the investigator was taught to the students. Six daily lesson tests and a final test were administered to the students during the study. Results indicated that about one student in five was successful in understanding the quantitative presentation of chemical equilibrium while the remaining students attained varying degrees of understanding of the experimental unit. The successful students were described as highly intelligent, with more than five semesters of mathematics and science respectjvely. Som e implications for teaching chemical equilibrium from a mathematically based approach are considered. (I.C)

THIS DOCUMENT HAS BEEM REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORAGHARME IT. POMTS OF VIEW OR OPIMIOKS Stated do not mecessarily represewt official office of boucation POSITEON OR POLICY.

Greatins Cnemical Bouijiorium Matneacticaliy In Secondary Schoois: A Eraiminary Investication

By

James B. Case, Proj.
University of Nevada, Las Vagas
A Paper
Eresented \& the 1970 Ennal Keeting Of
The Nationai Association For Research In Ecience Teachinf Nirneapolis, Winnesota

March 6, 1970

INTZODUOTION:

Nuch has been written about the many problems associated with the teaching of chemical equilibrium at both the college level and the secondary school level. Generally these writings have been descriptions of new ana/or differect methods or approsches to teaching the concept of chemical equilibrium. The topic of this report is the result of an investigation that represented the first recorded attempt at obtaining information about the teaching and learning of chemical equilibrium in the secondary school chemistry class. Specifically this investi\&ation was the first recorded attempt at using a specially written and designed mathematically based approach to chemical equilibrium, for the secondary school student. The topic of this investigation evolved due to concern of the writer over trie lack of mathematically based science concepts being presented in the seccndany school science classes, and the lacir of integrated and/or correlated mathematics-science programs at the secondary level. With the modern science teaching
ezhasis on the "process of scierce", i.e., doing what the soientist does, it would seem plausible that a quantitative relationship such as chemical equilibriun should be taught as the scientist observes it and uses it—quantitatively witi mathematics.

PURPOSE

The investigation to be described in this paper was planned to be preliminary in nature, and its purpose was to determine the characteristics of secondary school chemistry students who were successful (or unsuccessful) in grasping a mathercatical approach to teaching chemical equilibrium. THE POPULATION

The population studied consisted of all the students enrolled in chemistry at a rural-suburban three-year senior hish school, which could best be described as comprenensive in nature, and as having provided "traditional" science and mathematics curriculums. $O I$ the one-hundred and fourteen students enrolled in chemistry, eighty-nine were directly involved in the study, and were considered the population. All students enrolled in chemistry were required to have completed first-year algebra and plane geometry. Pore than half the population was enrolled concurrently in second-year alôbra. More thar half the population had completed biology as sopinomores, and the entire population had completed a gereral science course as freshmen.

The final population was identified as having taicen tine Termax-Finemar in 1963, and was divided into two subgroups based upon whether the student had two years of mathematics backs round, or three years of mathematics background. Bach of these two groups was further broken down into male: subgroups based on quality of mathematics grades and quality of science grades in courses previously completed, and performance on twelve key test items selected from the daily lesson tests. As a matter of interest, the final population mean I.Q. was 121 with sid. $=12$.

MATERIALS AND PROCEDURES

 equilibrium was developed and written by the investigator. The unit was specially design .ed for use with secondary school students. The experimental unit was introduced to the students during the same time period of the school year that the students would normally have been taught the "regular" approach to chemical equilibrium, as given in Modern Chemistry (Dull, Metcalf, Brooks). Each student received individual copies of the experimental unit for his personal use. The amount of class time devoted to the experimental unit was equal to that which had been allocated for the "regular" presentation of cinemical equilibrium—in other words, the experimental presentation was exactly substituted for the "regular" presentation. Fine students had completed 7咅 months of the school year at the time
－こ もine stray，and therefore，those stucients enrolied ix second－ your alcebra had completed the bula of this mathenatios counse． The experimentaj unit consisted of sia indivicuaj caiy Iessons，six inàividual tests over each Iessom，anci a finai test over the entire unit．One lessch anù test was given each ciay by the investigator．the six lessons covered the folloning tou゙cs，in order：（I）The Gas Laus and a Feview or Eequired Mathematios；（2）The Finst Lav of Thermodynamios；（3）The Second Law of Thermodynamics；（4）The Tquilibrium Constant For Gas Eeactions；（5）The Thermodynaic Equilíbrium Constant for Aqueous Reactions and（5）Applications of the Thermodynamic Equilibrium Constiant．The structure of the experimental unit Fias developed by the investigator after consideration of the presentation of the topic of chemical equilibrium as given in the＂tradistional＂chemistry curriculum textbook Modern Naenisiry， the CHM Study textbook Chemistry：An Experimental Science，the CSH textbook chemical Systems，and the literature concerninf matnemađj．cs in the secondary school science curriculun，and the Iiterature concerning concept－formation in science．mifty－three test itens over the six daily lesson tests were written to test the student＇s understanding of chemical equilibriun at the comprehension level of knowledge．The validity of each test was evident in that all test iterns in a given test could be ansmered diractly from the material presented in the lesson corresponaing to that test．Reliabilitias were not calculatec Por each test because there were too few test items per test
to give a true measure of the lesson test's reliability. (Raiiability is directly related to the number of itemsI. Nedelshy, Science Teaching \& Testing, 1965, p. 9jう. ili raw scores on these daily lesson tests were converted to standard scores for analysis of results of the study, since each test contained a different number of test items.

A final test of thinty itens, which tested over the entire unit, was also used in the investigation. These thinty test items corresponded to thirty selected itens from the daily lesson tests that related to the most important concepts rithin the unit. The final test items requested the same information asked for in the daily lesson tests, but in a different manner. The correlation between the final test items and their counterparts in the daily lesson tests was 0.8 (Pearson Product-Moment). Validity for the final test items was apparent for the same reasons as given previously for the daily lesson test items. THE DATA

The data collected were numerous-thirteen to iifteen pieces per member of the population-depending on the student's mathematics and science background. The thirteen (or ififteen) data items collected were: the scores on each of the six daily lesson tests; the score on the final test; performance score on the twelve selected key test items; intelligence quotient; two (or three) mathematics grades; and two (or three) science grades. The latter two data items were converted from letter

```
sires to munenicai values tow cuter use.
```


specially desifened matnematicainy based unit on caracal anil-

each student's "progress" througin the unit, ana eecin individual
score was a measure of tie student's understanding of the par-
ticular lesson. The total of these six lesson test scones res a measure of the student's grasp of the compete uni we Final test score was a measure on retention, and the student's grasp of the unit as a mole. mine students scone on the treive selected key test items mas a measure of the student's grasp of the important concepts required for understanding chemical equilibrium as presented in the mathematically based unit.

The minimum score necessary to indicate understanding Of the mathematically based unit on chemical equilibrium vas seventy percent on the six-lesson-test-total, the final thirtyitem test, and the tifelve selected key test items.

The seventy percent minimum included only those concepts absolutely necessary to an understanding of chemical equilibrium as presented in the mathematically based unit. Correlation coefficients were calculated for all possible combinations of data For the subgroups; graphs of tine data also mere plotted for the subgroups. Since this investigation was intended to be descriptive in nature, the data and the results are not generalizable to another population.

Ma data indicated that about one stucent in rive could be deacribed as having grasped adequately tice meanine ci chemic:l equilibrium as presented in the mathematically based teacining unit. About eighty percent of the population attained varying degrees cf understandinc or the experinental unit on chemical equilibrium. No attempt was made to categorize these varying degrees of understanding.

Generally, within the population studied, the secondary school chemistry student wịo was successful in grasping the matinematical approach to chemical equilibrium as presented by the author, had these characteristics: En intelligence quotient (as measured by the Terman-McNemar) of one or more standard diviations (s.d. $=12$) above the population mean of 12I; more than five semesters of mathematics background, including first-year algebra, plane geometry, and second-year algebra; more than five semesters of science background, including a seneral science course, biology, and cinemistry; and his level of performance in the described mathematics and science courses was oi high enough quality to place him in the upper twenty percent of the chemistry student population in trese courses.

The unsuccessful student was found not to have all the preceding described characteristics.

Althrugh only about one student in five was experimentally described as successiful in understanding the quantitative
presentation of chenicai equiュibuiving namy of the non-

 aproach presented in the experimental teacinac unte. Jvidenco for this was ojtatinec in jog form, thaough an open-Ended cownert orienté questionaine compieted by the stucients, and tirough informal corversations during, and after, the exఇeriment. Nany students (incluãing tine "successini" ones) expressea anazement that chemistry was such an orderly rubject that "could be figured out with math". Several were quite impressed with the power and preaictability that natheratics save to scientific inquiry. A Few were completely baified, cnd could discover no relationship detween mathematics and scientific inquiry. Tris latter group was very small and was characterized by a very low performance level in ali their orevious mathernatics and scierce courses, and lower leveis of interest and occupational ambitions than their more successfur peers.

CCECLUSIONS AND RECOMENDATICNS

As a result of this investigation, the author has found that a mathematical aporoach to teaching chemical equilibrium is not beyond the ability of the sacondary school chemistry student in a particular population-but in order for the topic to be most meaningful, it should be reserved for essentialiy the top twenty percent of the student population, as dutermyned
oj quality of performance in previous mathematics and science counses.

The most difficulty in student learning wen presentint a mathematically besed approach to chemical equilibrium is likely to be encountered when considering the topic of entropy. The individual test scores indicated that this topic was most difficult for almost everone. With regard to the particular teaching unit developed for this study, this section will have to be revised before the study is repeated.

In acidition, since the mathematical aporoach to presentins chemical equilibrium requires a considerable amount of "discovery" on the part of the student, and student application of mathematics as a tool as the scientist uses it in his work, more time must be used in a presentation or this type than is currently used in presenting chemical equilibrium in the three major secondary school chemistry curriculums.

Finally, in order for this approach to teaching chemical equilibrium to secondary school chemistry students to be useful on a wide basis, the study will have to be repeated using standardized tests and student samples drawn from the national student population. Recent interest in mathematics in science (or science in mathematics) indicates that this type of activity may occur in the near future. (re: Dr. Boeck, "Coordinating and Integrating Science and Mathematics Programs at the Secondary Scinool Level", major speairer at CASMT Annual Meeting, November 28, 1969, Milwaukee).

