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FOREWORD

This book introduces the application of secondary school
mathematics to the exploration of space. It provides a unifica-
tion of science and mathematics. This is not a textbook, al-
though there are exercises to provide the reader with oppor-
tunities to test and extend his understanding. An inquiring
mind, rather than a specified grade lavel in school, is a pre-
requisite for an enjoyable exploration of the ideas in this book.

V7hile various treatments of this material may be found else-
where and some elementary concepts are included, these are
presented here in an easily accessible format, for supylemen-
tary classroom uses. There has been a deliberate effort to in-
clude enough familiar topics to make a meunningful transition
from previous experiences to new concepts.

As the reader progresses through this book he encounters a
spiral development of ideas. Kiementary geometric concepts
are introduced in Chap’cr 1 for readers who have not formally
studied geometry, These geometric concepts are used with gen-
eral concepts of space and rough approximations of space meas-
urements, Then, in later chapters geometric concepts, space
concepts and measurements are gradually refined as the ma-
turity of the reader fincreases. In Chapter 2 the use of coordi-
nates In the study of spuce is explored. In Chapter 8 the uses
of measurements in our explorations of space are described.
These first three chapters may be used effectively

to supplement the usual materials at any one of several
secondary-school g ade levels,
to challenge students witki space applications, and as source
materials for teachers (and writers) as they strive to
capture the imagination of their students.
Chapterr. 4 and 5 provide basic concepts of science and mathe-
matics that are needed to understand space travel. Thesa con-
cepts are appropriate as supplements for either scieice or
mathematics courses. Chapter 6 fllustrates the effective man-
ner in which electronic compters may be used to treat mean-
ingful problems.

The authors of this material are experienced classroom teach-
ers who visited the NASA/Goddard Space Flight Center, con.
sulted personally with many of its scientists and eugineers, and
studied important aspects of the U.S. space program. This book
i their effort to share these experiences by providing other
teachers with enrichment materials for use in motivating their
students,

BRUCE E. MESERVE
University of Vermont
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About This Book

It is logical to presume that major achievements in the explo-
ration of space rest with the ycuth of today and with the
education they receive. It i{s therefore our sincere concern that
the space program be conducted in close cooperation with our
Nation’s educational institutions. Understandably, young peo-
ple throughout the land are fascinated by the era of space
travel. Teachers and students have long demonstrated their
eagerness to relate the subjects they study to the space program.
However, frequently there appears to be a lack of available
reference material suitable for classroom use.

In view of the continuing demand for such material, espe-
cially for elementary and secondary levels, the NASA/Goddard
Space Flight Center, in cooperation with the U.S. Office of Edu-
cation, has initiated a program of summer workshops to de-
velop space-oriented mathematics supplements. The program
is directed by a Committee on Space-Oriented Mathematics
conaisting of Dr. Patricia Spross, Specialist in Mathematics,
U.S. Office of Education, and Mr. Alfred Rosenthal, of the
NASA/Goddard Space Flight Center. Mr. Elva Bailey, Goddard
Educational Programs Officer, serves. as materials coordinator.

This publication, the third in the series, focuses on the uxe
of geometric concepts. It was prepared during 8 summer work-
shop held at the University of Vermont, Burlington, Vermont,
under the direction of Dr. Bruce E. Meserve, Department of
Mathematics, College of Technology.

Uverall guidanze and direction for this project has been pro-
vided by the Office of Educational Programs, National Aero-
nautics and Space Administration.

MICHAEL J. VACCARO
Chairman, Committee on
Space-Oniented Mathematics
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Chapter 1

DESCRIBING THE SHAPES OF THINGS

by
Evely» Brayton
East Lansing High School
East Lansing, Michigan



DESCRIBING THE SHAPES OF THINGS

1-1 Shapes on Earth

Think of the part of our Earth over
which you may have walked. Except for
hills and valleys, mountains and water-
ways, it can be consfdered flat. Walking is
a very simple way of getting from one
place to another. And as you look toward
the horizon, it appears that there is an edge
of Earth and perhaps the sky comes down
to meet it. It is not surprising, therefore,
that before the time of Columbus most
people believed that their Earth was flat,
and that sooner oy later, if they traveled
far enough, they would come to the edge
and drop off! Their World was the one
they could see by walking around upon it.

As time passed, men invented improved
ways of travel by using wheels on iand and
sailboats on water. Travel with wheels,
however, required the construction of
roads. The roads on water were already
there: It was naturul that men turned to
poats for traveling greater distances. So
long as they kept land in sight they could
start and stop when they pleased, could tell
where they were, and felt sure that they
would not “drop off.”

Man's curiosity and courage impelied
him to develop instruments that would en-
able him to travel on the water to find what

Figure 1-1

was beyond the sight of land. The atars
had long been guides for travel at night.
The invention of the compass made it pos-
sible to chart a course both day and night.
The art of navigation reached such a re-
finement that men oould travel farther
from land than they had ever dared to
venture before. Finally when Columbus set
out many people were certain that boti:
men and ships would be lost over the edge
of the World forever,
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Although Columbus did not prove the
World to be round, nor find a new route to
India, he did find a “New World” and the
maps began to be changed.

However, man has nevel arjeared to be
satisfied in his search for xnowledge and
explorations have continued to te!l us more
about our Earth end the space in which it
revolves.

You are just beginning to study about
those whose contributions in science and
mathematics make travel in space possible,
One of the early pioneers in space travel
was Robert H. Goddard whose scientific
curiosity led him to work on the develop-
ment of an efficient means for space trans-
portation: the rocket engine. It is inter-
esting 0 note that the efforts of plonzers
are nct always appreciated. Robert God-
dard was forced to move from New Eng-
land to the desert of New Mexico in order
to carry on his work because the noise of
the rockets bothered his neighbors. He
lives now in our memory as one of the
greatest of the early space explorers. The
Goddard Space Flight Center in Green'elt.
Maryland {s named for him.

Tha ability to get into space has given us
a better look at our Earth. Maps are be-
coming more accurate, and we have been
able to describe more precisely the true
rhape of the planet on which we live. Like
Columbus we have thought it was a round
globe.

Vanguard I, which has been in orbit
since 1958, has revealed that Earth is pear-
shaped with & bulge at and slightly below
the equator. Earlier experiments had al-
ready proven that it was slightly f. ittened
at the poles.

In order to describe objects we can use
mathematical models. The first mathemat.
jcal model for our Earth was a “flat sur-
face.” What exactly do we mean by a “flat
surface’”? First we need to think of a line
&8 being composed of an infinite set of
points and having only one dimension-—
tength. When we speak of a line in this
boc & we will refer to a straight line unless
otherwise stated. I two points of & line
are on a flat surface, then every point of
the line is on that surface; we aay that the
line is on the surface. Any two points de-

termine a line, If every point of each line
that is determined by points of a surface
al!s30 lies on the surface, then the surface is
flat and is called a plane. A table top is an
example of a plane surface. We consider
a line to be of infinite length and a plane
to extend infinitely far in all directions. A
plane like a line is a collection of points.
It does not have thickness.

1-1 Ezercises
Shapes on Earth

1. Name several examples of plane sur-
faces.

2. On a plane surface how many straight
lines could he drawn through two
points?

1-2 Earth's Atmosphere

On Earth you are surroundad with
something you cannot see—air. Many
questions about air have been studied. How
far into space does it extend? Does it ex-
tend to the moon? Does it hold us “down”
here? To make a mathematical model de-
scribing the ecarth’s atmiosphere we need
first to think about circles.

Let's try an experiment. Take a sheet
of paper and with your pencil mark a point
P on it. Select as many points of the paper
as you can that are one inch from P. Label
some of these points A, R, C,... Draw a
curve through the points. Cen you name
this curve? Does it appear to be a circle?
On a plane, the figure formed by all points
at a given distance from a given fixed point
is called a cirele. The fixed point is caliad
the center of the cirete. The distance from
the center to any point of the cirele is
called the radius of the circle.

\What do you notice about the surface of
the water when you throw a pebble into a
lake? Consider thts experiment.

Draw a circle with a 14” radius. Locate
a point 1” from the center of the circle.
Find the path or paths that all points 17
from the center of the given circle would
form. Find the path that all points located
2" from the center of the given ¢ircle would
form. Try finding all the points 14” from
the center of the given circle and the path
they would form.
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Figurs 13

Do you find that some points form a path
ingide the given circle? Some outside?
You should find that all points which were
1” and 2” respectively from the center of
the given circle are outside the circle. The
points 14" from the center of the given
circle are inside the circle. Where do the
points 84” from the center of the given
circle lie? In each case the points were
points of circles having the center of the
given circle as center. Any two civcles with
the same center on a plane are concentric
circles. The waves from a pebble dropped
into a lake often appear as concentric cir-
cles, (Exercises 1 and 2 are concerned
with circles).

On portions of the surface of our Earth
we are concerned with directions such as
north, east, south, and west (as on a
plane), but we cen also look up into space.
We live in a three-dimensional world. A
plane is only two-dimensional. In our
three-dimensional world the set of all
points at a given distance (radius) from a
fixed point (center) is a sphere. Think of
several objects that are shaped like
spheres. Are your examples exactly
spherical in shape? Can you make a defi-
nition to describe concentric spheres?
Compare your definition with the definition
of concentric circles.

For many years we have thought of the
surface of Earth as approximately spheri-

cal, We think of the different layers of
Earth’s atinosphere as also bounded by
surfaces that are approximately spheres.
It is important to know about these layers
for in each we can study their effects on
Earth and life, These layers ‘‘wrap"”
themselves around the Earth like an
orange with many layers of skin,each layer
blends into the adjoining areas.

Figure 1-4

If we take a trip into space we find that
the first layer of Earth’s atmosphere (tkhe
troposphere) is five to eight nr more miles
thick with considerable variations. Our
weather conditions occur primarily in the
troposphere. There is also decreasing tem-
perature as one leaves the surface of the
earth and there are many ‘“up drafts”
movements of air.

After we travel through the troposphere
we enter the stratosp/.ere which extends
to about 50 miles sbove the surface of the
Earth.

The third layer (sometimes considered
as several layers) is referred to as the ion-
osphere, extends to about 400 miles above
Earth, and contains electric particles
called ions.

Beyond the ionosphere is the exosphere
and outer space.

1-2 Ezxercises

Earth's Atmosphere

1. Trace around a coin that has been put
in several different places on a piece :f



paper. Do you think the circles you
have drawn are about the same size?
We call these congruent circles. Why
do you think their radii are called
congruent?

2. Describe several examples of concentric

circles.

Describe several spherical objects.

4, Make a definition for the radius of a
sphere and compare your definition
with the one given in the answer
section,

bl

1-3 Angles and Arcs

The measures of angles are often used
to locate points on the surface of Earth.

& 6} A

Figure 1-5

Consider these models of a circle with
center O and points A and B, There is a
line OA that intersects the circle in points
A and A’. The point O and the points of
the line that you would traverse in travel-
ing from O through A and continuing in-
definitely forms the ray OA. There is also
a ray OB. The two rays OA and OB form
an angle (/AOB). The rays OA and OB
are sides of /ZAOB. The point O that is
common to both rays is the vertex of
ZAOB, Since the vertex of ZAOR is also
the center of the circle, ZAOB is © central
angle.

Figure 1-6

The points A and B in Figure 1-6 divide
the circle into two parts, called arcs, as in-
dicated. If one arc is shorter than the
other, the shorter arc is the minor are; the
longer arc is the major are. In order to tell
which arc is the longer, we need to have
some way of measuring arcs. Measure-
ments are explained in detail in Chapter 3.

Figure 1-7

Try an experiment. On a piece of card-
board draw a circle with center O and a
ray OA as in Figure 1-7. Next cut out a
pointer as shown by OB in Figure 1-8 and
use a pin to attach one end of the pointer
so that it can rotate freely about from the
point O.

Several possible positions of the pointer
are shown in Figure 1-9. Think of the

-



Figure 1-8

pointer as starting in position OA, rotating
counterclockwise through positions OB,
0OC, OD, OE, OF and OG where OG is on
QA that is, making one complete rotation,

There are angles and arcs associated
with each part of Figure 1-9. One con-
venient unit of measure is one revolution
which is the measure of one complete ro-
tation. The most common unit of measure
is the degree—

360 degrees = 1 complete revolution.
Estimate the measures of the angles in
Figure 1-9 in revolutions and in degrees.
Your answers should be approximately the
following :

ZAOA = O revclutions = 0°
LAOB = ¥, r¢volution = 80°
LAOC = 1} revolution — 90°

Figure 1-9




{AQD 84 revolution = 135°

LAOE ; Y4 revolution — 180°
LAOF = 34 revolntion — 225°
LAOG = 1 revolution = 3860°

Notice in the above list that the symbol
for an angle, such as ZAOB is also used to
describe the measure of the angle, (/AOB
= 30°). This ambiguity is sometimes
avoided by using the symbol “m ZAOB”
for the measure of the angle but we shall
not do so.

Notice also that the rays 0& and OC
form an angle of 90° and are said to be
perpendicular; we write OA L (read
“OA is perpendicular to QQ”);_\ PR

The_measures of arcs AC, AD, AE, AF
and AG in Figure 1-9 may be expressed in
terms of the measures of their respective
central angles; for example: ZAOC repre-
sents one quarter of a revolution, AC is one
quarter of the circle; ZAOE represents one
half of a revolution, AE is one half of the
circle (that is, a semi-gircle). As in the
case of angles we use Aﬁtto represent both
the arc and its measure. We write AC =
90° and AE = 180° and understand that
angles are measured in angle degrees and
arcs are measured in arc degrees.

With the above information you should
now be able to locate a particular point
(position) on a given circle.

Figure 1-10

Given a point G on a circle locate a point
E so that == 60°, Measure the central
angle /GOE with a protractor so that it
equals 60°, In Figure 1-10 the side OE
intersects the circle at a point E located in
the counterclockwise direction from G;(we
call this position the (4) direction from
G). If you measure the same distances
clockwise (that is, in the negative (—)
direction) from G you will obtain a point
W as in Figure 1-10. We write /GOE =
+60°, /GOW = —60°,

On a given circle you can now locate a
point E that is --60° from G and a point W
that is —60° from G. You should be able
to locate points that are +445°, —90°,
+4135° from G. If you have two given
points G and N (any other point), you
should be able to identify the position of
N from G,

Figure 1-11

Let’s experiment with this model of two
concentric circles (Figure 1-11). The cen-
tral angle is +45°. Note the position of A,
with respect to G,. Note also the position
of A, with respect to G,., How do the
length of the ares A,G, and A.G, seeni
to compare? Remember that on their re-
spective circles A;G. = 45° and A,G; —
45°, in each case these arcs are 14 of the
circle. Notice that the length of each arc
depends upon the circumference of the
circle. You have probably used 2»r as the
circumference of a circle of radius r where
x =~ 224 (the symbol “=" means “is ap-
proximately equal to”),



Does A.G; in Figure 1-11 appear to
equal the radius of its circle? A,G;? The
answer is no to both of thes2 questions for
actuslly each arc is slightly shorter than
the radius,

. 8=1 RADIAN

Figure 1-12

In Figure 1-12 notice that GB has length
equal to r. We may use the arc GB as a
unit of measure for the circumference. Do
you see that the circumference then has
measure 2r relative to GB as a unit? The
central angle of GB (marked @) is often
used as a unit of measure of angles; it is
called a radian. Any central angle of 1
radiaon has an arc with the same length as
the radius of the circle;

1 radian = 180/r degrees ~ 57.27°"
2 radians = 1 revolution = 360 degrees

In a circle of radius r a central angle of
1 radian has an arc of length r; a central
angle of 2 radians has an arc of length 2r;
and so forth, We summarize such state-
ments in the formula d = ré

1-8 Exercises

Angles and Arcs

1. The radius of Earth is about 4,000
miles. What is the approximate cir-
cumference of the equator in miles?

2. How long is one radian of arc of the
equator in miles?

3. How long is one degree of arc of the
equator in miles?

1-4 Positions on Earth

We will assume that Earth is approxi-
mately spherical in shape. Remember that
a sphere is the set of all points in space at
a fixed distance from a given point, The
radius of Earth is about 4,000 miles, The
maps that you probably call World globes
illustrate the spherical shape of Earth, In
order to locate your town, or other towns,
on such a globe, you must visualize posi-
tions on the globe in relation to positions
on Earth.

Describe the shortest path from one
position to another on the surface of the
sphere? How are these paths measured?
How could we distinguish one town’s loca-
tion as being different from that of any
other town?

Let's try an experiment to help us
visualize “paths” on the surface of a
sphere. Take a spherical ball, or a slate
globe; pick any two points A and B that
are not on a line through the center of the
sphere; draw several paths between these
two points. Can vou decide which path is
the shortest? There are no straight-line
paths on the surface of a sphere. Each

Houston, 8
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Figure 1-13
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vath that is on a sphere is an arc of a circle
just as any slice of orange has a circular
shape.

The two points A and B and the center
O of the sphere were assumed to be not
on a line. Therefore, they determine a
plane. This plane AOB intersects the
sphere in a circle. Slice through an orange
or apple any way you like and see if you
do not get a circular slice. However, this
circic has the center of the sphere as its
center and the radius of the sphere as its
radius. Since there are no larger circles
on the sphere, it is called a great circle.
Every plane through the center of a sphere
intersects the sphere in a great circle. The
shortest path between two points on a
sphere is along an arc of a great circle.

Figure 1-14

Think of Earth with its north and south
poles as end points of a diameter NS. The
line segment NS and any other point A de-
termine a plane through O and therefore
a great circle on the sphere. The diameter
NS divides this great circle into two semi-
circles, called meridians. One of the ways
of identifying a position on Earth is to
identify the meridian on which it is lo-
cated. The meridian through Greenwich,
England (near London) is called the prime
meridian. Then positions on the equator
are located as in Section 1-8 with the in-
tersection of the equator and the prime

10

meridian as the reference point, 0°. Each
meridian is identified in terms of a number
of degrees (measured along the equator)
east or west of the prime meridian; this
number is the longitude of all points on the
meridian. In Figure 1-14 the points with
30° east longitude are on the meridian
through B; the points with 65° west
longitude are on the meridian through C.

Given any position P on Earth except
the poles, we can see how a longitude can
be associated with that position P. This
longitude identifies the meridian on which
P is located but it does not tell us how far
P is from the equator and whether it is in
the northern hemisphere (north of the
equator) or in the southern hemisphere.
(south of the equator) To answer such
questions we use a scale on the prime
meridian 0° to 90° north from the equator
and 0° to 90° south from the equator
(Figure 1-15).
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Figure 1-15

If we used scales on all meridians, we
would find that all points 20° north of the
equator are on a circle (not a great circle)
that intersects the prime meridian at 20°;
all points 60° north of the equator are on
a circle that intersects the prime meridian
at 60°, etc. The numbers that indicate
degrees north or south of the equator are
latitudes. Each circle of points with a
given latitude is on a plane that is parallel

A



to (does not intersect) the plane of the
equator,

You should now be able to visualize that
the north pole is at 90° north latitude; the
south pole is at 90° south latitude; each
point of the equator has 0° latitude and
its position can be described by its longi-
tude. Each point on Earth has a position
that can be described by its longitude and
its latitude,

1-4 Exercises

Positions on E’a'réhl

1. Ovur Earth makes a complete turn of
360° in 24 hours. Through how many
degrees does Earth turn in 1 hour? In
6 hours? In 12 hours?

2, The longitude of the prime meridian is
0°. What is the longitude in degrees
of the meridian haifway around the
world from the prime meridian?

3. The north-south distance around Earth
is about 24,860 miles. (a) What is the
approximate distance from the north
pole to the south pole? (b) From each
pole to the equator?

4. If two people should travel] east or west
around Earth each one remaining on a
line of a different latitude, would their
routes always be the same distance
apart?

5. If two people should travel north or
south from the equator on lines of two
different longitudes, would their routes
always be the sane distance apart?

6. This array shows the approximate
length in miles of 1° of longitude at
different latitudes:

Miles in 1°

Latitude of Longitude
0° 65
10° 68
20° 6b
30° 60
40° 653
50 45
60° 3b
T0° 24
80° 12
90° 0

How far woulki a man travel if he went
around the world at a latitude (a) of 30°
(b) of 60°?

11

TIROS, FIRST
WEATHER SATELLITE

el

EARTH

Figure 1-16

1-5 Observations of Earth

If you were asked to locate points 14"
outside a given circle, how would you lo-
cate them? You should measure from a
point of the circle along a line that con-
tains the center of the circle.

\\___’/

Figure 1~17

In Figure 1-17 the point O is the cen-
ter of Earth; A is a point on the surface
of Earth, and B is a satellite, or a star,
planet, or object in the sky. The length AB
is the height or altitude of the satellite
above Earth's surface. How do you think
we could find how much of Earth’s surface
can be seen from a satellite at a given
altitude?

Fay



Figure 1-18

Let’s try an experiment. Take a sheet of
paper and from some point above shine a
flash light straight down on the paper.
Measure the radius r of the circle of light
which is forined and the height h of the

‘flashlight (Figure 1-18). Now move the -

flashlight so that its height is 2h and meas-
ure the radius of the new circle formed;
this radius should be 2r (Figure 1-19).
If we moved the flashlight so that its
height were 3h, the radius would be 3r.
We may describe this relationship by say-
ing that the radius r varies directly as the
height h; in symbols, r « h (read «
‘“varies directly”),

The area A of any circle of radius r is
given by the formula A = =r? where
# =~ 2%, If » = 8 inches, A = 9r =~ 198
~ 28 square inches. If r = 6 inches, A
= 86» =~ 113 square inches. Except for
slight errors from our approximation to
the nearest square inch, the area is multi-
plied by 4 when the radius is muitiplied by
2; similarly, the area is multiplied by 9
when the radius is multiplied by 8. In
general, the area varies dircctly as the
square of the radius, A « r? Wecould have
anticipated this from the equation A = =12,

When we observe Earth from a satellite
we are essentially observing a p :t of the
surface of a sphere. The formi ! for the
surface S of a sphere of radius r is S =
4 =1? as you have probably already studied.
Since the radius of Earth is about 4,000

12

Figure 1-19

miles, the surface of Earth is about
201,000,000 square miles. An understand-
ing of the vastness of Earth’s surface
should help us understand some of the
problems of weathermen. Too often the
weatherman has been blamed for his poor
weather predictions but regular weather
cbservations cover only about one-fifth of
Earth’s surface and the forecaster rmay be
unaware of changing conditions on other
parts of Earth’s surface which might alter
his predictions.

Figure 1-20
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TIROS (a NASA weather satellite) can
+ circle the Earth in little over an hour and
transmit images of cloud formations.
Forecasters analyze and interpret this in-
formation and can give more accurate
weather predictions. Other valuable serv-
ices have been performed by this world-
wide observation. Once a hoard of locusts
approaching a scction of Africa were
sighted in time to warn the farmers who
gathered their crops and had them safely
stored awa; before the locusts arrived.

Figure 1-21

The Earth is observed fro.n a satellite
such as Tiros. However it can “see” only
a part of Earth in any one observation.
The shaded part in Figure 1-21 represents
the part of Earth’s surface that can be
seen when Tiros is at a position T. We
think of T as directly above a point A on
Earth; that is, on a ray OA where O is
the center of Earth. From T the points D,
E, and F appear to be on the cdge (hori-
zon) of the Earth. Actually TD is per-
pendicular to OD. Then since TD has only
the point D on the sphere representing
Exith, the line TD is said to be tangent to
tho sphere; TE and TF are also tangent
to the sphere. The points D, E, and F are
on a circle (not a great circle) with center

PICTURE OF ECHO
Figure 1-22

B. As in the case of circles of constant
latitude (Section 1-4), the size of this
circle depends upon the distance OB. Since
OB - AB = QA = 4,000 miles, the radius
of Earth, the size of the circle also de-
pends on AB. The distance AB is called
the height h of the zone (part of the sur-
face of the sphere) bounded by the circle.
Think of cutting off a part of an orange;
the deeper the cut, the more of the sur-
face you cut off. The formula for the area
of zone will be used in Chapter 3 and is
A = 2 wrh. Thus when a satellite is high
enough to observe a zone of height one
mile, over 25,000 square miles of Earth’s
surface can be observed (2 X 22; X 4,000
X 1 > 25,000).

The points of a zone on Earth’s surface
caun be observed from a satellite as in Fig-
ures 1-16 and 1-21. Notice also that the
satellite can be observed from points of
this same zone. In 1960 NASA demon-
strated that radio signals could be reflected
off the man-made satellite, Echo I, and
received several thousand miles away.
Echo I was used to ‘“bounce” two-way
voice conversations and other communica-
tion data of good quality across the United
States, and between this country and
Europe. Echo is referred to as a passive
satellite for it simply reflects or ‘bounces”
a message from one point on Earth to an-
other.

Satellites such as Relay, Syncom and
Telstar are called active or “repeater”

KL,
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satellites because they receive, amplify,
and rehroadcast messages transmitted to
them.

1-5 Ezercises

Observations of Earth

1. Find the area of the northern hemis-
phere if the radius of Earth is approxi-
mately 4000 miles.

2. If a satellite’s cameras can “see” about
one fifth of the surface of Earth dur-
ing each day, how many square miles
can be photographed each day?

3. Use 4,000 miles as the radius of Earth
and A = 2 »rh a3 the formula for the
area of a zone to find the area of Earth
that can be photographed with a
camera that can “see” a zone with
height 20 miles.

1-6 Maps and Distances

Man has made maps throughout re-
corded history. Early map makers made
maps of a very small part of Earth’s sur-
face; each map maker’s location was gen-
erally the center of the map. Many carly
rnaps were surprisingly accurate consider-
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ing the instruments that were available to
measure distances. Ship captains, cara-
vans, and armies adopted such maps for
their own particular needs.

After Magellan showed that Earth was
probably spherical, man recognized some
of the reasons for his difficulties in making
maps. Crude globe maps were tried but
were clumsy for everyday use.

In order to better understand how map
makers projected the spherical distances
onto a flat surface such as a rectangular
sheet of paper, try this experiment. You
will need two meter sticks, two pieces of
string, and two small weights. Tie the
weighted ropes 50 centimeters apart on
one of the meter sticks. Place the other
meter stick on the edge of a table. Then
hold the first meter stick paralle! to the
floor so that the distance between the
weighted strings can be measured on the
meter stick on the table. Notice that this
distance is also 50 centimeters. (Figure
1-24)

Tilt the first meter stick so that it makes
an angle of about 30° with the floor and
note the distance on the second stick. Tilt
the first meter stick at a 45° angle and
note the distance. Try several other angles



Figure 1-24

of inclination. Notice that the distance
decreases as the angle increases from 0°
to 90°,
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Figure 1-25

Now think of yourse!f as a map maker
(a cartographer). You can project a line
segment AB or an arc AB onto a line seg-
ment CD. You use parallel lines AC and
BD perpendicular to (that is, at right
angles to) the line or plane on which CD is
to be drawn to find the points C and D just
as the weighted strings were used in the
experiment, Since these construction lines
are perpendicular to the line or surface on
which the drawing is made, we speak of
the mapping of AB onto CD as an orthogo-
nal projection. Notice that projections can
distort the lengths of the line segments,

Consider orthogonal projections of a
circle. If the plane of the circle is parallel
to the plane onto which you are projecting,
the projection is also a circle; if the planes
are perpendicular, the projection is a line
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segment congruent to a diameter of the
circle; if the planes are inclined at an
angle which we will call “theta” ¢ and (0°
<8 <90°), then the projection is a curve
but not a circle,

There are other tynes of projections.
For example, the image on a film is pro-
jected onto a screen on which you watch
a movie. This is essentially a projection
from a point (the source of light). A pro-
jection from a point is called a central
projection. One way to obtain a map of
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part of the surface of the Earth on a flat
sheet of paper is to think of a projection
from the center of Earth outo the paper
rolled in a cylinder around Earth (Figure
1-26) ; then cut the cylinder and place the
paper flat. When an image on the fiim for
a movie is projected on a screen, the image
on the screen is much larger than the one
on the film; size has been changed (dis-
torted) so you can see the image better.
When a map of Earth is obtained by cen-
tral projection both size and shape are
distorted.

Every map of Earth projected onto a
flat sheet of paper has some distortion.
There are many different types of maps.
Some of these are considered in Section
2-8. The different types have been de-
veloped to preserve properties that are of
interest to different people; directions for
navigators, and so forth,

I-6 Exercises

Maps and Distances

1. Can the length of an orthogonal pro-
jection CD of a line_segment AB be
equal to the length of AB? If so, under
what conditions will this occur?

2. As in Exercise 1 can CD = 0? If so,
under what conditions.

3. As in Exercise 1 can CD > AB?

4. Describe the way an orthogonal projec-
tion of a sphere would appear.

1-7 Measurements

Have you ever measured the distance to
your neighbor’s house? This could be done
using a yardstick, using a tape measure,
by pacing it off, and in other ways. Have
you tried measuring the height of a tree?
The height of your house or the height of
a satellite? Perhaps you could climb a
tree and with the help of a friend find the
height of a tree with a tape measure. Per-
haps the height of your house could be
measured this way also; but what about
the distance to a star, a planet, or a satel-
lite? These distances must be measured in-
directly.

Thales, a Greek philosopher and geo-
metrician of about 600 B.C,, is sometimes
credited with the first indirect measure-
ment. According to the story he watched

Figure 1-27

the shadow of a vertical pole until the
length of the shadow was equal 'to the
height of the pole. He assumed that at
this same time the height of a nearby
pyramid would be equal to the length of
its shadow ; that is, to the length of half
its base plus the length of the shadow that
extended beyond the base (Figure 1-28).
He could measure both of these distances
and thus he could find the height of the

pyramid,
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Figure 1-28

In your mathematics classes you have
compared nunmibers in many ways. A com-
parison of two numbers by division is
called a ratio. Thales compared the height
of a pole to the length of its shadow and
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the height of a nearly square pyramid to
the length of its shadow. He assumed that
these measures were equal and thus in a
1 to 1 ratio. Notice that Thales could have
measured the pole and its shadow in inches
and measured the height of the pyramid
and its shadow in feet and the ratio would
still remain constant.

Thales assumed that the sun’s rays
would make the same angle with Earth's
surface (horizontal) when forming each
shadow. In other words, he assumed that
the angle of elevation of the sun (indicated
by @ in Figure 1-29) was the same in both
cases. We assume that the pole was in a
vertical position and the top of the
pyramid was directly over the center of
its base. Then the triangles indicated by
the dashed lines fn Figure 1-29 are right
t-iangles (the angle marked .0 of each
triangle is a right angle). Also since the
angles are congruent (have the same meas-
ure), the triangles are or the same shape.
If you have not already done 80, you may
later study such triangles as similar {ri-
angles; their corresponding angles are
congruent. (We use the symbol ex to write
congruent):

1A = ZA’, (B o« (B, (C ex (C;
the lengths of their corresponding sides
are in a constant ratio:

AC

AT _ EC _

— .
i I ——— ]

AB' PBC AT

and each triangle may be visualized as a
picture of the other possibly drawn to a
different =cale.
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Figure 1-30 represents two scale draw-
ings of the same irregularly shaped plot of
land. The lengths of the sides are given in
inches. The given scales enable us to
measure one of the drawings to determine
the actual dimensions of the plot of land
in feet. Although these drawings are dif-
ferent in size they have the same shape
and are said to be similar (V). They are
similar to eacn other and also to the
boundaries of the plot of land wnder con-
sideration. If you measure the angles,
vou should find that the corresponding
angles are congruent. Notice that the
lengths of the corresponding sides are in
the same ratio: '

2 _ 1% 184 1 %

4 2% 8y 2 a1y
Scale models play an important part in
our s&pace program. Accurate scale

models are more economical to make than
full size replicas. Many things can be
studied and interpreted from models.
Often changes in design are based upon
a study of models.

The three triangles in Figure 1-31 are
similar triangles. Each triangle has an
angle of 30° and an angle of 60°. Meas-
ure the third angle in each triangle. You
ehould find that it is 90° in each cave.
Since AABC and ADEF are similar, the
lengths of the sides are proportional:

A _Ac _ I,
bE ~ DF  EF

—
—



SCALE A 1" = 15
SCALE B 1" = 7 1/2°

10/8"
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31/4"
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1 578"
1378 24/8"
Figure 1-30
2
wl
1.232
Figure 1-31
since AABC and AGHI are similar we This proportion may also be stated as
have ET e
AB . y.Xe} BC e
é¢H — ¢&r ~— uHr Such ratios of the lengggof two of the

In the first case each ratio is equal to 14;
in the second case each is equal to 14.

Now consider the proportion {an eyual-
ity of two ratios)

AT BC
BF ~ IF
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sides of a triangle are equal for any two
similar triangles and are used 8o extensive-
ly for right triangles that they are given
special names,

Think of Figure 1-32 as any right tri-
angle with the right angle at C. The side
Igopposite the right angle is called the
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hypetenuse of the triangle. The other two
sides may be identified either with refer-
ence to ZA or to ZB. Relative to ZA we
call BC the side opposite and AC the side
adjacent. We give these ratios special
names as shown below. Now if 4 i3 the
measure of A, we define the following
ratios as:

side opposite

sine g =
hypotenuse

a &

side adjacent

cosine @ — =L —
hypotenuse

— AB
BC side opposite
AC  side adjacent
These ratios provide the basis for the s}udy
of trigonometry and are used extensively
in many applications of mathematics. We
usually abbreviate

sine ¢ as sin 0

cosine & as cos @

tangent 0 as tan ¢

Now let us look again at Figure 1-31.

Notice that in each triangle:

sin 30° = -%

tangent § =

cos 80° = L 32 =~ 0.866

1
n 80° = — ~ 0677
ta 1.132...
Since for any single angle 8 the ratios al-
ways have the same values, these values

are usually {n a table. (See page 184).

1-7 Ezercises

Measurements

1. If a vertical 10-foot pole casts a 6-foot
shadow, how tall is a tree with an 18-
foot shadow?

2. As in Fxercise 1 how long a shadow
should a person 5-feet tall have?

3. What assumption has been made in Ex-
ercises 1 and 2 regarding the positions
of the objects and their shadows?

1-8 Paths in Space

Do vou believe that “what goes up must
come down”? Have you ever shot an arrow
up and watched it come down? When you

throw a baseball, does its path trace a

curve? Does a spinning top trace a curve?

What path does the moon take arouitd the

earth? What sort of paths do rockets trav-

el? How are the paths of satellites named?

Most of these curves are clozely related to

curves that are studied in geometry. Let’s

see if we can name some of these curves.

First we must define a conical surface.

Figrre 1-38



Consider the circle BCD with center O
and a line t that is perpendicular st O to
the plane of the circle. Let P be any point
that is on the line t and different from O.
Then think of a line AP that starts in po-
sition AB and traces out the circle. In a
sense the line is fixed at P and revolves
about the circle. The surface generated is
called a conical surface; the fixed point P
is the vertex of each of the two nappes of

CIRCLE

PARASOLA

Figure 1-3}
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the surface. Probably you have called each
nappe a cone. In Figure 1-33 the vertex P
is on a line perpendicular (at right angles)
to the plane of the curve (circle) that was
traced and the nappes form a right ¢ircular
cone,

As in Figure 1-34 we may obtain curves
by intersections of planes with a cone, The
particular type of curve (circle, ellipse,
parabola, hyperbola) obtained depends

I ——



upon the angle at which the plane inter-
gects the cone.

The path of sounding rocket is shown in
Figure 1-35. If you compare the path of
the rocket with the curves in Figure 1-34,
you should be able to recognize that it ap-
pears to be & parabola as a first approxi-
mation. .

Can you tell the name of the paths of the
planets as they orbit the sun? In Figure
1-36 you should recognize that these paths
appear to be ellipses with some of the
ellipses almoat circles.

In Figure 1-37 you can observe that
Earth satellites also have elliptical paths.

Mariner 1V was launched November 28,
1964, and put into an orbit about the Sun.
In Figure 1-88 Mariner 1V was at point A

7

Figure 1-35

—

/

e ———

—
/

Figure 1-3¢

—r—————

Figure 1-37

on July 15, 1965, and the cameras were
taking pictures at that time. Can you give
the name of the curve for the path of
Mariner IV? It appears almost straight

21

and we often use a straight line to approz-
imate a part of a curve. We could also use
a hyperbola to approximate the path of a
space probe such as Mariner IV. However,
actually the path appears to be elliptical
around the sun rather than around Earth.

In Figure 1-38 notice that if we think of
this part of the path as along a straight
line, then there appears to be similar tri-
angles, ABD and ACE, which we could use
in computation to give us additional in.
formation. Ellipses, circles, and straight
line approximations will be used extensive-
ly in later chapters.
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In this chapter you have just begun to
read about space. Every day satellites are
recording data which is processed by com-
puters and interpreted by scientists in
many fields. The scientists of tomorrow
will need to learn to visualize and exp~ess
thoughts in algebraic, geometric, and
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graphic forms. In the past few pages we
have introduced some of the mathematical
concepts that are used in explorations of
space. In the chapters to come we will use
these concepts and find that still more
mathematics is needed to really understand
the space around us,
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THE UNIVERSE WE LIVE IN

When we travel on the surface of Earth
we can describe our position at any time
with only two dimensions. To locate posi-
tions in space we need three, four, or per-
haps n dimensions. For instance, it is nec-
essary to employ time in describing the
position of a satellite as it travels around
the Earth. We might think of the cartog-
raphers of the future as standing on the
shore of the uncharted sea of space, the
mapping of which will require new mathe-
matics.

In order to Letter understand the map-
ping of space, let's start with something
very simple which we already know—a
rocm. Then we will see how far we can
proceed by using mathematics to describe
the characteristics and conditions of ob-
jects in space.

This chapter introduces you to the con-
cept of position as related to some of the
coordinate systems used in mathematics.
You will need prior knowledge or under-
standing of coordinate systemas. This chap-
ter is intended for readers in the upper
elementary grades as well as the high
school.

The coordinate systems used are limited
to those of ordered pairs:

SYSTEM ORDERED PAIR
Rectangular (horizontal, vertical)
Globular Earth  (longitude, latitude)
Polar (radlus vector, vee-
torial angle)
(azimuth, altitude)
(right ascension,
declination)

2-1 Where do you live?

The question “where?” is often asked
but seldom answered in an exact manner.
Consider a small group in a roon. any-
where on the surface of the earth. Two
members are playing chess. Four ait about
a card table, and others are gathered
around a plano in one corner of the room.
A professor Is at one side observing what
is taking place.

One of the people at the card table has
raised & question concerning the meaning

Navigation
Equatorial
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of the word “position.”” Immediately all
others, except the professor, expound their
theories, each one giving his own interpre-
tation of the word “position.” A “status-
seeker’” might describe position as a place
in society, an execulive as a place in a
company or industrial firm. The *geogra-
pher” thinks of position as a location on
the earth. One of the chess players—an
astronomer, would perhaps describe *“posi-
tion” as a location (point) in space.

Which interpretation do you consider
correct? Possibly all are correct. A
"mathematics teacher,” standing near the
piano, while reluctant to enter into the
discussion, decided to approach the prob-
lem from a mathematical standpoint. All
members were asked to find a point in the
middle of the wooden door (Figure 2-1)
next to the piano. However, the professor
questioned the meaning of the “middle” of
the door. The question shocked everyone.
Surely the professor was joking; for any-
one can point to the middle of a door.

However, if you think about this ques-
tion for awhile, you should realize the
significance of the prof:ssor's question.
It is impossible to look at the middle of a
wooden door due to the fact that the door
is solid. Therefore the point representing
the middle of the door is the intersection
of the diagonals of a rectangular solid
(Figure 2-2). Since the door is made of
wood, a human being cannot see the point
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. which is the middle without cutting the
door.

The question about the door provided
the group with additional {nsight concern-
ing the complexities of finding a definition
of the word “position.”” The mathematics
teacher, somewhat indignant but more de
termined than ever, used & lead pencil to
mark a point P on a piece of paper (Figure
2-3). She considered this lead pencil mark
to be a position on the plece of paper. She
then folded another piece of pajer and
used it as a straight edge to draw a line
through point P; that is, through the posi-
tion indicated by P (Figure 2-4). This
line contained infinitely many points. The
astronomer remarked how difficult it was
to locate the original point P of the line
without another line through that point
(Figure 2-8). The astronomer thought of
a point on the paper as the intersection of
two lines.

Figure 29

Under the mathematics teacher's inter-
pretationeof a point as a position on a sheet
of paper, and indicated by the point of
intersection of two lines, the group could
describe the corners of the chessboard
gince they represented the intersections of
lines along the side of the chessboard. Con-
sider the dashed lines in Figure 2-6.

Everyone in the room seemed satisfied
with the new concept of position except the
piano player, who from the background of
his own world of music decided to ask the
professor another question.

“You seem to be way out in space most
of the time. Can you tell me sohere is the
edge of space?” Again all eyes were fixed
on the professor eagerly awaiting his re.
ply. He did not answer them, but instead,
asked, “What do you mean by the edge of
space?”’

At lunch the mathematics teacher looked
at the edge of the table shown in Figure
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2-7 and thought, “The edge of the table
fe the intersection of two planes!” She
was thinking of the set of points in the
line formed by the fold in the tablecloth
as it hung over the edge of the table. In
her mind she realized why the professor
asked what i3 meant by the edge of space.
The edge of space might posaibly be lo-
cated using a system of coordinates simnilar
to those on a chessboerd. PPerhaps this sys-
tern can be uscd to answer the question
“Where do you hive?”
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Figure 2-$

Coordinate (co-or'di-nate) systems have
many applications here on the earth as
well as in “outer space.” Before applying
coordinates to your own situation, you
should first learn the meaning of a coordi-
nat: Most dictionaries interpret the word

Figure 2-7



“coordinate” in more than one way. In
mathematics a coordinate is one of a set
of numbers that determines the “position”
of a point in a line, a plane, or space.

Coordinates may be used to identify the
positions of the chess pieces at the begin-
ning of a game of chess (Figure 2-8). In
fact, coordinates can be used throughout
the entire game.

\ 2 3 4 5 6 7 8

HORIZONTAL ——b
Figure 2-8

The chess pieces in the first row of Fig-
ure £-8 may be identified from left to
right as a castle, knight, bishop, queen,
king, bishop, knight, castle. We can Iden-
tify their respective positions ac the first,
second, third, .. ., eighth square of the
first row of the chessboard. The pieces on
the second row are pawns.

You should also understand that any
line perpendicular (1) to a horizontal line
is called a vertical line. Figure 2-9 shows
a set of vertical lines and several horizon.
tal lines.

Now the position of each square can be
described using a pair of numbers in which
the first number identifies the column and
the second number the row in which the
square is located. For example, the X mark
in Figure 2-9 is in column 4 and row 3.
The position of X can be described using
the ordered pair (4, 8). Then (2, 1) de-

' 4
o 3 X
¢
v
& 2
L
1
""" T 2 3 4
HORIZONTAL—
Figure 2-9
N
1
1
'
Row 8
Row 7
l Row &
§, Row 5
Row 4
&
Z Row I X b4
Row 2 X
Row 1
....... G --_’H
0='— N M % VvV N ©
[ e [ c
1833838383838
HORIZONTAL ——e s
Figure 2-10

scribes the position of the knight in Figure
2-10 since the knight is in the second col-
umn and first row. Each “X" marks a posi-
tion to which the knight can be moved.
Each chess plece can move in a manner
specified by the rules of the game.

The location of points or positions fre-
quently involves the use of coordinate sys-
tems similar to that used for the chess.
board. Coordinate aystems may be used
in the description of geometric figuces by
identifying the positions of points such as
A, B, and C, which determine the right
triangle in Figure 2-11, Can you describe
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the other geometric figures by listing the
coordinates of the points given on the
chart?

Latitude and longitude for locating posi-
tions on Earth provide another example of
a coordinate system. Other coordinate sys-
tems are used for locating points in space,

¢-1 Exercises—The Universe We Live In

1. Locate and identify 10 lines in your
room as intersections of planes.

Are there any points {n your room equi-
distant from two fixed points located
in your room? Can you describe their
locations?

How could a blind man in Canada play
chess with someone in the United
States? (Perhaps you have a pen pal
who enjoys cheas?).

2-2.Relative Positions on Earth

Many people today are aware of the de-
scription of Earth as “pear-shaped.” For
our purposes Earth may be considered to
be spherical. The geographer often dis-
cusses positions on Earth in terms of
longitude and latitude (Section 1-4). This
sometimes causes confusion since there are

2,

3.
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only two coordinates and two coordinates
suggest a plane surface to many pecple
fnstead of the surface of a solid.

If an orange is sliced in half and a card-
board is placed between the two halves, the
cardboard may then be compared to the
equatorial plane of Earth (Figure 2-12).

Figure 2-1¢
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If we place the two halves together again
and connect them with a length of heavy
wire perpendicular to the plane of the
cardboard and through the center of the
orange, we obtain a crude model of our
Earth.

The wire represents the axis and in-
cludes the poles, north and south. Degrees
of latitude and longitude may be marked
on the model as illustrated in Figure 2-13.
The arcs of great circles drawn through
the poles represent meridians.

NORTH
GEOGRAPHIC
POLE

DEGREES o

SOUTH
GEOGRAPHIC
POLE

Figure 2-18

Any position on Earth can be located Ly
its latitude north or south of the equator,
and its longitude east or west of Green-
wich, England (Greenwich is near Lon-
don). However, positions on Earth are
generally represented on maps that are
printed on plane (flat) surfaces.

The projection of Earth’s surface, or a
portion of it, on a flat surface is a form of
a chart or map. Any manner in which this
projection is made results in a distortion
of one sort or another.

One¢ of the desirable features for a map
is a constant scale for measurement of dis-
tance between any two points on the map.
Another desirable feature is the repre-
sentation of a great circle as a straight
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line. There are other desirable features
but we will consider only these.

Any globe representing Earth is divided
into two hemispheres by the equatorial
plane. We will think of the equator as a
circle with a scale which lies in this plane,
The zero point of this circle is its intersec-
tion with the prime meridian (Greenwich
meridian). The scale is marked off in de-
grees from 0° to 180° east and from 0° to
180° west. The western hemisphere is
shown in Figure 2-18,

No single type of map possesses all the
desirable features, though different types
of maps can be made to approximate fea-
tures that are important for some particu-
lar purpose. For example, many naviga-
tors use maps on which great circles are
represented by straight lines. These lines
are called rhumb lines.

Most highway maps are based upon a
Lambert Conformal Projection. (You
should obtain an ordinary highway map of
the United States in order to best follow
the discussion and exercises of the next
few paragraphs.)

TABLE 2-1 Cities of the U.S.
Albuquerque, New Mexico
Oklahoma City, Oklahoma
Santa Ana, California
Omaha, Nebraska
Tulsa, Oklahoma
Madison, Wisconsin
Springfield, Illinois
Detroit, Michigan
New York, New York
Tampa, Florida
New Orleans, Louisiana
Jackson, Mississippi
Memphis, Tennessee

Atlanta, Georgia

Yorktown, Virginia

Chicago, Illinois

Mpyrtle Beach, South Carolina
Burlington, Vermont
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Use a marking pen to circle on the map
the position of each of the cities listed in
Table 2-1 as shown in Figure 2-14.

Now use a straight edge (such as a yard
stick) to draw the following lines, (Every
effort should be made to choose the
straight line which best fits the points rep-
resenting cities that have been circled.)

1. A line through Omaha and Tulsa.
2. A line through Madison and Jackson.
3. A line through Santa Ana and Okla-
homa City.
4. A dotted line through Omaha and
Santa Ana.
A line through Chicago and Tampa.

A line through New York and Tempa.
7. A line through Chicago and New
York. )

8. A dotted line through Tampa and

New Orleans.
9. A dotted line through New Orleans
and New York.
A dotted line through Detroit and
New York.

o o

10.
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Your map should now resemble Figure
2-16.

The straight linas resemble air line
routes from city to city. There appears to
be a straight line from Madison, Wiscon-
sin, through Springfield, Illinois, through
Memphis, Tennessee, to Jackson, Missis-
sippi. The line that passes near Santa
Ana, California, Albuguerque, New Mex-
ico, and Oklahoma City, Oklahoma, ap-
pears to be perpendicular to the line
through Omaha, Nebraska, and Tulsa,
Oklahoma. There appears to be an isosceles
triangle with vertices at Chicago, Illinois;
Wew York, New York; and Tampa, Flor-
ida. Use a protractor and straight edge
to verify these conjectures. One may also
conjecture a parallelogram with vertices
at the cities of New Orleans, Tampa, New
York, and Detroit. What do you know that
can help you to determine whether this
conjecture is true or false?

Compare the data in Table 2-2 to your
own observations of longitude and latitude
using an ordinary highway map.
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TABLE 2-2

Approximate Longitude and Latitude
Selected Cities of the U.S.

CITY LONGITUDE LATITUDE
Madison, Wisconsin 89° 2%’ W 43° TN
Springfield, Illinois 89°44’'W 39°51’N
Detroit, Michigan 83° 0'W 42°18' N
New York, New York T1°50'' W 40°45' N
Tampa, Florida 82°30'W 28° (' N
New Orleans, Louisiana 90° 5 W 29°57' N
Jackson, Mississippi 90° 12°' W 32°1¥ N
Memphis, Tennessee 90° O'W 35° 9N
Atlanta, Georgia | 84°23'W 33°45' N
Yorktown, Virginia 76° 30’ W 37°14'N
Chicago, Illinois _ 87° 38 W 42° 12’ N
Myrtle Beach, South Carolina 79°50' W 33°45’N
Burlington, Vermont 73°15'W 44° 30’ N
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You have probably observed that you
cannot rely on a highway map as a true
representation of the positions of points
on the surface of the Earth. There are fre-
quently noticeable errors to be found.
Measure the distance from Chicago, Illi-
nois to New York, New York, using the
scale on a map of the United States. Com-
pare this scale measurement to the actual
distance as listed in a table of distances
usually provided on one corner of the map.

2-2 Fzercises Relative Position on Earth

1. On a highway map, what city best rep-
resents the intersection of the line
through Omaha, Nebraska and Tulsa,
Oklahoma with the line through Santa
Ana, California and Oklahoma City,
Oklahoma?

2. What is the approximate longitude and
latitude of the city at the intersection
mentioned in Exercise 1?

3. Use a highway map and approximate
the number of miles which may be
saved by fiying directly to Omaha, Ne-
braska from Santa Ana, California
instead of going east to Henryetta,
Oklahoma and then north to Omaha,
Nebraska.

4, Is the figure formed on a highway map
by connecting the vertices at the cities
of New Orleans, Tampa, New York, and
Detroit a parallelogram ?

2.3 Fallacies of maps

The points on a map of a part of Earth
represent positions on the surface. How
are maps of the surface of a solid obtained
on a plane surface? You can transfer a
design from a cylindrical roller onto a flat
surface as is done by many painters and
some printing presses. But how can you
map the surface of a sphere onto a plane
surface? We have already observed that
there will be some distortions. We now
consider the problem further in terms of
locating your zenith.

First you need to find a point directly
above you. How would you do this? An
empirical method of determining a zenith
point is in the form of a game in which
any number of players may participate.
The object of the game is to point to the
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point on the ceiling that represents the
zenith of a point on the floor.

The materials needed for the game are:

1 roll of tape
1 straight pin
10 feet of string

1 sharpened pencil

1 piece wrapping paper or cardboard
(about 4 feet square)

1 straight edge (meter stick)

1 pointer (such as a straightened coat
hanger)

1 stepladder

1 weight (such as a lead fishing sinker)

1 protractor

The procedure is to draw a circle on the
cardboard or wrapping paper. The circle
should have a diameter of about 60 centi-
meters. Draw and label a diameter IG
with a midpoint X, the center of the circle,
A string with a pin at one end and a pencil
at the other may be used to draw the
circle.

e

N

Figure 2-16

Tape one end of a piece of string to one
end of the pointer. Now tie the lead sinker
to the other end of the string making the
length such that the lead sinker is about
14" above the floor when the tip of the
pointer touches the ceiling (Figure 2-17).

Tape the cardboard or wrapping paper
on:to the floor with the circle and its center
X clearly visible to all participants. An-
other piece of wrapping paper may be
taped to the ceiling over the circle on the
floor.

The object of the game is to use the
pointer to touch the point on the ceiling
directly above the center of the circle on
the floor. The lead sinker is to be held off

»

¢\



CEILING

CIRCLE, CEMTER AT X

Figure »-17

to o.1e side by another person until the per-
son doing the pointing has decided on a
particular point of the ceiling as the zenith
of the center X of the circle below. Then
the lead sinker is slowly lowered to allow
it to come to rest over a point of the circle.
The sinker should be allowed to swing only
over a small arc so that it will come to rest
shortly.

TABLE 2-3

Locations of Points A through F
TRIAL RADIUS ANGLE
A 25 ¢cm + 15°
B 24 cm + 30°

C 25 ecm + 7b6°

D 12 em +168°

E 20 cm — 90°

F 46 cm —135°

Table 2-3 shows the listing of the re-
sults obtained in six trials, Notice that for
each trial the position is recorded for the
point directly under the one pointed to on
the ceiling. These records are in terms of
the distance from the center X and a direc-
tion. To provide a basis for this system
of coordinates, the circle may be marked
off in 15° intervals, then the line segments
joining these points to the center should
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be marked off in centimeters as in Figure
2-18 where one unit represents five centi-
meters.

-75°

Figure 2-18

Point A represents the result of the first
trial. The lead sinker came to rest over the
point marked A which is 25 centimeters
from X and 415° from the reference ray
XG. '

The game can be played using only the
distance from the center as the criteria for
judging accuracy. A more interesting ap-
proach is to use both the distance from the
center and also the measure of the angle
in degrees away from XG.

The remaining trials in Table 2-8 should
be completed giving values of radii to the
nearest tenth of a centimeter and the
angles to the nearest degree.

The results of one game are listed in
Table 2-4 as obtained by a family of fous
The column containing trials identify each
member’s attempt.

F-1 represents a first attempt by the
father.

M-2 represents the second attempt by
the mother.

K-8 represents the third attempt by a
child named Kim.

C—4 represents the fourth attempt by
another child named Chris.

By examining the data, can you deter-
mine vho most nearly succeeded in point-
ing to the zenith of a point on the floor?

-



TABLE 24
Sample of Trials by a Family
TRIAL RADIUS ANGLE

F-1 6.8 cm, 1093°
M-2 13.0 cm. 0°
K-3 28.0 cm. —178°
C4 7.0 cm, 109°
K-b 28.6 cm. 87°
C-6 3.5cm. 0°
M-7 17.9 cm. 91°
K-8 22.2 em. — 99°
C-9 6.4 cm. 108°
M-10 2.2 cm. 128°
K-11 18.7 cm. 94°
C-12 4.9 cm. 149°
M-13 3.8cm. 111°
K-14 11.2 cm. — 840
C-156 7.4 cm, 108°
M-16 4.7 cm, — T4°

Which member of the family picked a
point directly over the ray XG?

Who was furthest from the center in
centimeters? Who was furthest from the
radius XG in degrees?

Figures 2-18 and 2~-19 may now be com-
pared to the screen of a radar scope used
in tracking objects in space. The points B,

mo
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Figure £-19
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C, D, ete., could resemble the positions of
ships at sea or even points in space, The
distances could represent the distance of
the points from a fixed point on Earth and
the angles represent the direction.

A globe is the most accurate scale model
of Earth. It is the one place where you can
find global relationships shown almost as
they actually exist.

Figure 2-20

The globe has disadvantages in that it is
difficult to construct, bulky, unwieldy, and
one can see at most half of the surface at
one time (Figure 2-20). These disadvan-
tages have caused man to devise schemes
to project (map) points from the globe to
points on a plane. Some of the common
forms of projection are the

mercator projection

orthographic projection (Figure 2-21)

azimuthal equidistant projection

(Figure 2-22)

gnomonic projection

cylindrical equal area projection

conic projection
There are also many other forms which
may be investigated (Figure 2-23). Each
of the different types of projections has
advantages and disadvantages, Distortions
arise in each projection. The problem is

to choose the best projection for a given
situation. We have now learned that we



Figure 2-22

must use different maps for different pur-
poses due to the fallacies present in all flat
maps of Earth.

2-8 Ezxzercise—Fallacies of Maps

Copy Figure 2-19, extend XG to obtain
a diameter of the circle and construct the
diameter that is perpendicular to XG.
Start at G and label the quadrants (quar-
ters of the circular region) counter clock-
wise I, II, II, IV. Then identify the quad-
rant of the point for each trial in Table
2-4 except M-2 and C-6. (These two are
on the common boundaries of the first and
fourth quadrants.)

LINES OF PROJECTION FROM INFINITY
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F:’gure £-23

2-4 The Solar System

Our planet Earth is one of nine planets
that revolve about the sun. These satel-
lites of the sun form the solar system
(Figure 2-24). The planets named in order
of their distances from the sun and listed
with the symbols that are frequently used
for them are:

¥ Mercury
2 Venus
& Earth
d Mars
4 Jupiter



k Saturn
é Uranus
Y Neptune
P Pluto
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Figure 2-24

The representation in Figure 2-24 is dis-
torted since the orbits are not actually
circles and also the orbits are not all in the
same plane, We may however think of the
planets as revolving counterclockwise (rel-
ative to the view shown in Figure 2-24)
about the sun is elliptical orbits which are
nearly in the same plane.
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Figure £-25

The illusion of objects moving in the
same plane is very common and frequently
depends upon the position of the observer.
For example, in Figure 2-25 Mariner 4
appears to pass close to Mars in the plane
of the orbits of Mars’ satellites (moons)
Phobos and Deimos; in Figure 2-26 we see
that Mariner 4 actually d‘pped under the
plane of the orbits of these satellites.
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If we take a different view of the solar
system (Figure 2-27) we can see that the
orbital planes of the planets are distinct.
Think of the sun at the top of a pole with
several spheres attached by strings and
revolving about the top of the pole.

Figure 2-27

In Figure 2-27 the plane of Earth’s orbit
{the plane of ecliptic) is designated IG
and is used as a reference plane. The plane
of the orbit of each planet forms an angle
with the plane Jf ecliptic. These angles are
the inclinations of the orbits of the planets.
(Table 2-5)

TABLE 2-6
PLANET INCLINATION
Mercury (A (g
Venus 3°2¢’
. Earth 0° 0
Mars 1° 51’
Jupiter 1° 18’
Saturn 2029’
Uranus 0° 46’
Neptune 1° 46’
Pluto 17° 09




Our original Figure 2-24 also included
a distortion of the relative distances of the
planets from the sun. When Mercury is
represented far enough from the sun to be
seen, then Pluto should (according to an
ordinary scale) be represented so far away
that it would be off the page. These dis-
tances are discussed in Sections 2-9 and
2-10.

Johannes Kepler (1671-1630) developed
a theory in which the orbits of the planets
were elliptical (or as he called them, “ec-
centric circular orbits”). We shall use
Earth’s orbit to illustrate what is meant
by an ellipse. This orbit is grossly exag-
gerated in Figure 2-28 where the orbit has
center C, foci F and S, major axis AP,
minor axis MN, focal distance FC,
aphelion A, and perihelion B.

M

SEMI-MINOR AXIS

cEmle SUN
o s ans B8y

C
(center) (focus)

f
(focus)

Figure 2-28

An ellipse is a simple closed plane curve
such that the sum of the distances of each
point from two given points (focii) is a
constant (the length of the major axis).
Notice that if the foci F and S coincided
with the center C, the ellipse would be a
circle of radius AC. Thus the lengths of
FC and AC may be used to indicate the
extent to which the ellipse differs from a
FC
AC
the ellipse. The eccentricity is always less
than 1. When the eccentricity is zero, we
have a circle; when the eccentricity is
approximately zero, we have approxi-
mately a circle.

The eccentricity of Earth’s orbit is so
small that, unless one is doing astronomi-
cal research, Earth’s orbit is considered

circle. The ratio is the eccentricity of
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to be circular for all practical purposes.
The eccentricities of the planets in the
solar systems are listed in Table 2-6,

TABLE 2-6
Orbital Eccentricities of Planets
PLANET ECORNTRICITY
Mercury 0.2056
Venus 0.0068
Earth 0.0176
Mars 0.0934
Jupiter 0.0484
Saturn 0.0557
Uranus 0.0472
Neptune 0.0086
Pluto 0.2502

Kepler solved an almost impossible prob-
lem using empirical data (that is, data ob-
tained by experimentation and observa-
tion). The instruments used to obtain the
data would be considered extremely crude
and obsolete today.

The magnificence of Kepler's work is
further magnified by the data in Table 2-€¢
showing how closely each planet’s orbit re-
sembles a circle. To detect and determine
the elliptical nature of the solar system
was a remarkable accomplishment and a
step forward toward today’s achievements
in space.

2-4 Euzxercises—The Solar System
Ezxercise 1

Prove the following formula for the
eccentricity, e, of an elliptical orbit.

e = hl—hP
T ha+h




Given:
¢ = distance from center C to focus F.
a = length of semi-rnajor axis CA
e = eccentricity of the ellipse
h, = height at apogee or aphelion
h, = height al perigee or perihelion

h,—h
P : I
Yove: e = h.+h
1. BC=AC=a

C is the midpoint of PA
2, PC = PF + FC
The whole is equal to the sum of its

parts
8. h,=PFandc = FC
Given
4, hy+c=a
Substitution Axiom
bB. hy=a—c¢
Subtraction Axiom
6. h,=a+e¢
Given

7. h, —h,=(a+¢) — (a—c)
Subtraction Axiom

8. hy+hy=(a+¢c) + (a—c)
Addition Axiom

9. =S

a
By definition in Section 24
hi—h, (a+c)—(a—c) _
h,+h, ~“(a+c)+(a—c)
2e Division Axiom

22 a
_c ¢c_ h.—h
Sincee-;and—-— m.

Transitive Axiom

10‘

11.

h.,"‘_'

h,
he + hy

thene =

Ezxercise 2

Compare the eccentricities of the follow-
ing satellites.

Satellite Apogee Perigee E_‘l:‘ft“;
Sputnik 1 588 miles 141 miles ?
Sputnik 2 1038 miles 140 miles ?
Explorer 1 1584 niles 224 miles 7
Vanguard 1 2462 miles 405 miles ?
Telstar 2 6712 miles 606 miles ?
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Solution for Exercise 2

Sputnik 1
588 — 141 447
=588+ 141 729 0618
Sputnik 2
_ 1038 —140 _ 898
T 1038 + 140 1178 = 0.762
Explorer 1
_ 1584 —224 1360 _
T 1584 + 224 1808 0.762
Vanguard 1
_ 2462 — 405 _ 2057 _
T 2462 + 405 2867 0.117
Telstar 2
6712 — 606 _ 6106 _
T 6712 + 606 7318 0.834

2-5 Earth—A Satellite With Satellites

How can you tell that Earth is round
and moves in an orbit about the sun?
Children often accept these theories as
truths told to them.

In Johannes Kepler's day, the leading
teachers were professing statements con-
trary to today’s modern theories concern-
ing Earth and the solar system. In 1609,
Johannes Kepler published “Commentaries
on the Motion of Mars.” In it he listed two
unexplained facts which he deduced from
the observations of Tycho Brahe. Nine
years later in his book entitled, “The Har-
mony of the World,” a third such fact was
presented. All three facts have been ac-
cepted (postulated). These postulates be-
came known as Kepler's Laws and mathe-
matically described the orbits of the
planets.

Kepler’s Laws:

1. The orbit of each planet is an ellipse
with the sun at one focus.

2. A line segment joining the sun and
a planet, the radius vector, sweeps
out equal areas in equal intervals of
time.

3. The squares of the periods of revolu-
tions of different planets around the
sun are in the same proportion as
the cubes of their mean distances
from the sun.



Kepler's Laws are applicable not only to
the orbits of planets but also to the orbit
of the moon about Earth and to the orbits
of manmade satellites.

Figure 2-29

Both Earth’s orbit about the sun and the
moon’s orbit about Earth are elliptical.
Since Earth is at a focal point of the ellip-
tical orbit of the moon, the distance of the
moon from Earth varies. The point on the
elliptical orbit of the moon that is nearest
to Earth is called perigee and the point
most distant from Earth is called apogee
of the orbit.

The eccentricity of the moon’s orbit
about Earth is not constant. For this rea-
son most textbooks do not list the eccen-
tricity of the moon. Instead, an average
value is sometimes listed and the explana-
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Figure 2-80

tion for the variations is discussed. The
close association of the moon with Earth,
combined with the tremendous gravita-
tional influence of the sun, produces many
changes (perturbations) in the orbit of the
moon. These changes in turn are described
by changes in the eccentricity of the orbit.
This same sort of perturbations
(changes) exists in the orbits of man-
made satellites of today. A further discus-
sion of feactors infiuencing the orbit of a
satellite can be found in Section 5-8.

We shall limit our discussion of satellite
orbits in this section to a theoretical model
which undergoes no change in its circular
orbit. Our theoretical model will be com-
pared to Explorer XIV which had a period
of 386.4 hours and came within 150 miles of
the Earth. The orbit of Explorer XIV
was inclined 383.1° to the equatorial plane
of Earth.

Figure 2-31
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Cunsider a satellite having a period of
36 hours and a counterclockwise orbit in
the equatorial plane of the Earth; that is,
the inclination of the orbit is zero degrees
(Figure 2-31). We shall consider ways of
predicting the position of the satellite in
its orbit. The prediction of the position
of an Earth satellite is an important aspect
of today's space age mathematics.

The following is an application of modu-
lar arithmetic and a student made “space-
time” chart to predict the location of the
satellite that we have described.

138 35 4,

16 7 19
Figure 2-32

On a heavy sheet of paper or cardboard
draw another circle of about 17 centi-
meters in diameter. Then as in Figure
2-32 mark off the circle in 10° intervals
and label the marks from 1 to 36 counter-
clockwise. Call this circle and its scale the
first circle. Since the satellite makes one
revolution each 36 hours, we can identify
its position on this scale (additional work
will be needed to identify its position by
the longitude of points on Earth). Suppose
that the satellite starts at position 36 on
our scale; then its position

10 hours later will be 10,

25 hours later will be 25,

36 hours later will be 36,

S7 hours later will be 1,

45 hours later will be 9,

75 hours later wiil be 3,
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and so forth. Notice that

87 =1+ 86,
46 = 9 4- 36,
76 =8 + 2 (36);

in other words,

87 and 1 differ by a multiple of 36

45 and 9 differ by a multiple of 36

75 and 8 differ by a multiple of 36
Whenever two numbers differ by an inte-
gral multiple of 86, the two uumbers are
congruent modulo 86. In the language of
modular arithmetic we may write

37 =1 (mod 36)

45 =9 (mod 36)

76 =3 (mod 36).

Next draw concentrie circles with diam-
eters about 11 and 12 centimeters respec-
tively; cut out the larger circle to obtain
a 12 c¢m circular region; mark off the
smaller circle in 15° intervals, and label
from 1 to 24 counterclockwise for the
hours of a day (Figure 2-33). Call this
circle and its scale the second circle (or
hour circle).

N 13
Figure 2-33

Finally, draw concentric circles with
diameters about 6 and 7 centimeters; cut
out the larger circle; mark off and label
the smaller circle to represent the Green-
wich meridian G, the international date
line I, and degrees of east and west longi-
tude (Figure 34). Call this circle and its
scale the third circle.

I
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Figure 2-34

Use a straight pin to mount the third
circle on and concentric with the second.
Notice that if an observer at 0° longitude
(Greenwich Meridian) starts at 2 on the
second circle, then

15 hours later he will be at 17,

22 hours later he will be at 24,

24 hours later he will be at 2,

8J hours later he will be at 8,

60 hours later he will be at 14,
and so forth. Notice that

2 +15 =17,

2 +22 =24,

2 4+ 24 =2 (mod 24),

2 -+ 30 =8 (mod 24),

2 4+ 60=14 (mod 24);
2430=8 (mod 24), and 2 + 60 =14
(mod 24) where two numbers are corn-.
gruent modulo 24 if their difference is
divisible by 24.

Now attach the second and third circles
concentric with the first cirelc as in figure
2-35. Align the scales for an initial time
with the satellite crossing the prime me-
ridian; that is, align 38 on the first circle,
24 on the second circle, and 0° on the third
circle (not shown in the figure). Eighteen
hours later (keep the hour circle fixed and
rotate the third circle counterclockwise)
0° corresponds to 18 on the hour circle
(as shown in the figure). Also eighteen
hours later the satellite would have made
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Figure 2-35

half an orbit and be at 18 on the first
circle. By comparing the scales of the first
and third circles we see that the satellite
would be at 90° west longitude (not shown
in the figure).

Let us assume the same initial corre-
spondence of the scales and consider the
situation 66 hours later. Since

0 + 6A =18 (mod 24),
Greenwich (0° on third circle) will again
correspond to 18 on the hour circle. Since

0 + 66 = 30 (mod 36),

the position of the satellite will correspond
to 30 on the first circle. Then, as in Figure
2-35, the satellite will be at 30° east longi-
tude.

We should also consider the problem of
determining the portion of a satellite con-
tained in a polar orbit (inclination of 80°
to the equatorial plane) about Earth as in
Figure 2-35. Notice that a polar orbit is
fn the plane of a meridian.

Our discussion will be limited to the
mode]l of a circular orbit and a perfect
sphere to represent Earth. The procedure
for determin’ng the position (latitude) of
a saleliite in a polar orbit is very rimilar
to that used to determine the position
(longitude) for rn equatorial orbit. \We
replace the third circle by a fourth circle
marked to show degrees of latitude (Fig-
ure 2-37) and assemble the first, second,
and fourth circles as in Figure 2-38. W«
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assume an initial alignment of the observ-
er's latitude, 24 on the second circle, and
position 86 for the satellite.

Suppose that an observer at 40° north
latitude sces the satellite pass overhead,
where will the satellite be 68 hours later?
Since

0 + 66 =18 (mod 24),
the observer’s position (40° north latitude)
on the fourth circle should be aligned with
18 on the hour circle. Since

0 + 66 == 80 (mod 86),
the position of the satellite corresponds to
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Figure 2-38

30 on the first circle. Then, as in Figure
2-38, the satellite ia at 70° north latitude.

The procedures that we have considered
may be used for circular, polar or equa-
torical, orbits. The results are approximate
since we have used a sphere as an approxi-
mation for the shape of the Earth. Modifi-
cations of these procedures may be devel-
oped for determining the latitude and
longitude of positions of satellites in other
circular orbits about Earth.

25 Ezercises—Earth—a Sateuate with
Satellites

1. Consider a satellite with a period of 36
hours that has a circular equatorial
orbit and was over the Greenwich me-
ridian at the time of burnout (the time
at which the fuel {s exhausted). What
was the approximate longitude of the
satellite 30 hours after burnout?

2. Consider a satellite with a period of 86
hours that has a circular equatorial
orbit and was in position over 80° west
longitude at the time of burnout. What
was the approximate longitude of the
satellite 100 hours after burnout?

2-8 Positlons of Stars

Have you ever tried to find a particular
star? Have you tried to identify or de-
scribe the position of a star? Poets con-
sider stars to be "windows of hcaven”;
physicists consider atars to be sources of




energy; astronomers consider stars to be
sources of knowledge; and navigators con-
gider stars to be compasses of gpace,

Many navigators today use their eye-
sight to locate stars while navigating
abont Earth. You may ask how this is
accomplished during daylight when most
stars are not visible. However, remember
that the sun is Earth’s nearest star and
can be used for navigating purposes.

We will discuss a method for locating
objects in the sky and a procedure for
plotting their position on a chart. The last
topic will involve the determination of an
equation which best represcnts these posi-
tions on a chart.

Suppose that you were a fire lookout
and saw a thin column of smoke on the
horizon. How could you describe the posi-
tion of this fire to other people so that
from two or three observations the posi-
tion could be located affentively? One com-
mon way is to describe the direction of the
fire with north as a reference direction.
For example, observer A in Figure 2-39
might identify the location of the fire as
“north 40° east,” observer B as “north 20°
west,” and observer C as ‘“north 85° west.”
Notice that the observation of C serves as
a check on the observations of A and B.
The navigator would describe each obser-
vation in degrees measured clockwise from
north; that is, as 40°, 340°, and 276°. Each
of these nieasures is called the azimuth of
the direction.

N
N
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A
’

Figure 2-39
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When we locate a star we need to know
not only the azimuth indicating the hori-
zontal direction in which to look, but also
how high in the sky to look. Remember
that wherever you are, you have a zenith
(Sectior 2-3) and that your position is on
the ray from the center of the Earth and
through your zenith. You may think of
your zenith as “directly overhead” and
your horizon plane as a plane through
your position and perpendicular to the ray
to your zenith. You may tell a person who
is standing beside you how high to look
in the sky either using the angle 90° — ¢
between the ray to the star and the ray
to your zenith or asing the angle ¢ be-
tween the ray to the star and your horizon
(Figure 2-40). This last angle ¢ is called
the altitude of the star.

2enith

Figure 2~40

We may use the azimuth and the altitude
of any star from our position to point to
the star. Notice that due to the movement
of Earth and the stars, these coordinates
are applicable only at a specific time. This
“model" description has also been simpli.
fied {n other minor ways that are studied
in more advanced treatmentas.



As a special case of the location of a star
consider the north star, Polaris, the one
star whose position remains approximately
fixed relative to an observer on Earth. Any
observer in the northern hemisphere
should be able to find Polaris by looking
north (azimuth 0°) and at altitude equal
to the latitude of the observer.

Anyone wishing to practice using azi-
muths and altitudes should try measuring
(at a given time) the azimuths and alti-
tudes of stars or other objects such as the
moon. It is an interesting experiment to
record the azimuth and altitude of the
moon over the period of a month at the
same time (such as 9 p.m. each night).
The data can be plotted on a chart using
azimuth for a horizontal axis and altitude
for the vertical axis. The resulting chart
will show variations in azimuth and alti-
tude over a period of a month. Can you
explain why?

2-7 Our Galaxy, the Mility Way

We now turn our attention to the
method of determining positions of stars
that is used in the study of our galaxy,
the Milky Way. Think of the sky above
you as part of a huge celestial sphere with
the center of Earth as its center. The
celestial equator fs the intersection of
Earth’s equatorial plane with the celestial
sphere. The celestial north and south poles
are determined by the iIntersection of
Earth's polar axis with the celestial
sphere. As in Figure 2-41 the celestial
north pole i often designated as C.N.P,

Earth's equator may be divided into 24
parts and numbered indicating hours as
the Earth rotates on its axis. The hour
marks on the equator appear to be num-
bered counter-clockwise when viewed from
the northern hemisphere, but they afpear
to be numbered clockwise when viewed
from the southern hemisphere.

We now project the hour marks visual-
ized on Earth’s equator from Earth’s cen-
ter to the celestial equator. As on Earth's
equator the hour marks on the celestial
equator determine 24 equal arcs, each arc
has arc measure 16° and the numbering
of the hour marks appears counterclock-
wise when viewed from the celestial north

pole.
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Notthern view

Earth appears to rotate counterclock-
wise when viewed from above its north
pole. This means that an observer at
Earth's north po'e would have to turn
clockwise at an angular speed of 156° per
hour in order to maintain his orientation
relative to the celestial sphere. If the ob-
server stands still on Earth then the rota-
tion of Earth rotates him counterclockwise
and the celestial sphere appears to be ro-
tating clockwise.

In order to use the celestial sphere as a
reference aystem we need to fix the poui-
tions of the hour marks on the celestial
equator. This is done by selecting one of
the intersections of the plane of the appar-
ent path of the sun and Earth’s (also the
celestial) equatorial plane. These inter-
gections occur about March 21 (vernal
equinox) and about September 20 (au-



tumnal equinox). By convention the posi-
tion of the verna!l equinox is the 0 (that is,
24) hour mark on the celestial equator,
On the celestial sphere the great circles
that pass through the celestial poles and
also pass through the hour marks on the
celestial equator are called hour circles.

Figure 2-43
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The view of these hour circles from the
celestial north pole is shown in Figure
2-43. Note the counter clockwise number-
ing. If these same circles are viewed from
Earth’s north pole, the view is nearly the
same as from the celestial south pole and
the numbering of the hour circles appears
clockwise as in Figure 2-44.

The hour circles of the celestial sphere
are fixed in space and numbered from 1 to
24 counter clockwise from the position of
the vernal equinox. Thus each hour is
represented by 15° of arc:

1 hour— 15° of are
4 minutes— 1° of arc
1 minute— 16’ of arc
1 second— 16” of are

Any star that appears to be on the third
hour circle of the celestial sphere is said
to be 3 hours from the position of the
vernal equinox. Usually this is abbreviated
by saying that the star has a right ascen-
ston of 8 hours 0 minutes and 0 seconds.
The term right ascensfon is derived from
early observations of the rising (ascend-
ing) of stars nearly at right angles to
the horfzon (actually it is ¢nly a right
angle when the observer is at t.'e equator).
However, the right ascension does not in-
dicate how high in the sky one should look
for a star. This “height” of a stur {8 speci:
fied with ref.rence to the celestial equator.

For any coserver the celestial equator is
on a plane through the position of the ob-
server and perpendicular to his line of
sight to the celestial north pole. The line
of sight to celestial north pole is approxt-
mately (within 1° of) the line of sight to
the north star (Polaris). The celestial
north pole is at the zenith of an observer
at Earth’s north pole. For any other ob-
server In the northern hemisphere the
celestial north pole has azimuth 0° and
altitude equal to the observer’s latitude.
Observers in the southern hemisphere may
find the celes.al south pole.

We may now identify the position of any
star by the intersection with the celi.tial
sphere of our line of sight to the star. This
intersection wili be designated by its right
ascension and its declination (4- if the al-
titude {s measured above the celestial equa-
tor,— if below). By convention the right
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TABLE 2-7
Equatorial Codrdinates of Stars in Figure 245
(To (To
nearest nearest
nminute minuta
of time) of are)
Star and Ascenslon Declina-
Canstellation Name Right tion
y Taurus — 4*18= +15°38’
3 Taurus —_ 421w +17°28’
¢ Taurus — 427 +19°06’
a Taurus Aldebaran 4'34» +16°26’
g Taurus — 524~ +28°35’
¢ Taurus —
g Orion Rigel 518~ — 8°14’
| _y_Orlon Belatrix
3 Orion -
¢ Orion —
¢ Orion —
x Orion —
a Orion Betelgeuse 553 + 7°24’
n__Gemini —
y Gemini —_—
e QGemini Castor 732~ +31°68’
B Gemini Pollux
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ascension is indicated by the Greek letter
alpha a and the declination is indicated by
the Greek letter delta §. The system that
uses these coordinates is referred to as the
equatorial system.

Many sets of stars form patterns (in
the sky and also when ploited in the equa-
torial system) and are called constelia-
tions.

The equatorial coordinates of the star
named Dubbe in the constellation Ursa
Major (the Big Dipper) are:

a = 11*01~35* (right ascension)

8 = +4-61°56°25” (declination)

The right ascension is read as 11 hours
1 minute and 35 seconds away from the
position of the vernal equinox. The decli-
natlon Is read as positive 61 degrees 56
minutes and 25 seconds.

A satar chart contalning some of the
stars of the constellations Taurus, Oriou,
and Gemini is sketched in Figure 2-45.
The equatorial coordinates of some of the
stars contained in these constellations are
listed in Table 2-7. Only the prominent
stars have been named in the table. Some
of the equatorial coordinates have been
omitted from the table; these can be esti-
mated from the star chart in Figure 2-45.

Man seems to be faking his first feeble
steps awsay from Ecrth and out into space.
This new venture and exploration of a new
frontier involves many problems which
must be solved correctly if man is to suc-
ceed. We will consider only the problem
of locating one's position in space.

Magnetic compasses cannot be relied
upon. The compass to be considered here
{s & clock and several known stars con-
ta!neg at fixed positions relative to the
Earth.

Consider the problem of an astronaut at-
tempting to fix his position without radio
communication with Earth. Our hypothet-
jcal problem will be limited to an equa-
torial orbit of eccentricity zero. This means
that the orbital pathiacircular aboui Earth
and is contained in the equatorial plane.

The manned space craft Gemini—Titan
4, GT—4, was In circular orbit but the
inclination of orbit was approximately 29,
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How would you solve the problem of
determining your position if you were in
a spacecraft in an equatorial orbit and lost
radio communication with Earth? Here is
one possible approach to solving such a
problem. For this approach you should
have the ability to recognize many of the
brighter stars on the celestial sphere
(Table 2-8).

1 Yook
Figure 2-46

The 25 stars listed in Table 2-8 were
selected because of their position on the
celestial sphere in termas of right ascension
and apparent brightness. An attempt was
made to select stars near the celestial equa-
tor but this was not always possible. The
equatorial orbit makes it desirable to use
stars having a declination d such that
—-256° < d < 25° The main criteria used
to select these 25 atars was their bright-
ness and nearness to an hour circle on the
celestial sphere beginning with the first
hour cirele,

Figure 2-47 shows the positions of the
stars listed in Table 2-8 with reference to
hour circles (northern hemisphere view).



TABLE 2-8

Right

Ascension Declination
Nearest Lelter nealroeal neat:esl
Hour Position Star minute minule
Circle Constellation Name of time of arc
1 g Andromeda Mirach 1*08w +35°26"
2 « Aries (Arietis) Hamal
3 B Perseus (Persei) Algol
4 a Taurus (Tauri) Aldebaran
] a Auriga (Aurigoe) Capella .
6 a Orion (Orionis) Betelgeuse
1 a Canis Major Sirius

(Canis Majoris)
8 8 Gemini Pollux
9 « Cancer — & +12°00'
10 a Leo (Leonis) . Cor Leonis
11 B8 Ursa Major Merak 11*00™ +56°34’
12 a Corvus J—
13 a Virgo Spica
14 a Bottes —_—
16 8 Bodtes Nekkar 16401~ +40°32’
16 B Scorpius Acrab
a Scorpius Antares

17 a Hercules —_
18 vy Saggitarius —
19 ¢ Saggitarius —
20 a Aquila Altair
21 a Cygnus Deneb
22 a Aquarius — -
23 e Pegasus Markab 23*03~ +16°01’
24 e Andromeda Alpheratz
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Figure #-47
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Figure 2-48

Figure 2-48 shows a 24 hour clock num-
bered counterclockwise.

Figure 2-49
Figure 2-49 shows Earths' equator

marked in 10° intervals. Figures 2-47,
2-48, and 2-49 may be constructed and
mounted with the same centers as in Fig-
ure 2-50 page 62. The inner circle should
be mounted so that it can be rotated.
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The meridian over which the satellite is
located at the time of "“burnout” is used to
position the inner circle in Figure 2-50.
The longitude of this meridian is aligned
with the 24 hour marks on the other two
circles as shown in Figure 2-51. At the
time of burnout a watch should be set at
zero (that is, 24) hours.

Consider the problem of findiag the lon-
gitude of the raeridian over which a space-
craft is located 66 .ours after burnout if
burnout occurred over 80° west longitude
and the period of the oribit is not known.
Suppose also that 66 hours after burnout
the satellite, Earth, and « Andromeda ave
approximately on a line. Since
we align 80° west longitude on the inner
circle of Figure 2-50 with the 18 hour
marks on the other two circles as in Figure
2-52.

We next draw a ray from the center of
Figure 2-52 page 64 to « Andromeda. This
crosses the inner circle at the longitude
over which the satellite is positioned; in
this case about 12° east longitude.

This position may be checked if the
period of orbit of the satellite is known,
Suppose that the period in our example
was 1.6 hours. Then the satellite would
make 44 complete revolutions in 66 hours
and should be positioned over the meridian
at 10° east longitude as indicated by the
ray to the 24 hour marks in Figure 2-53.
In this figure an additional circular scale
has been added to show the fractional
parts of completed orbits. When this scale
is used the ray is considered as drawn
through 1.6 (the 0 of that scale) since

0+ 66 = 0 (mod 1.5)

Notize the error of 2° in longitude
(shaded) missing from slight inaccuracies
in the observations (such as the alignment
of the spacecraft, « Andromeda and
Earth) or the calcula* ~ns (such as the
period).
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2-7 Exercise—Our Galaxy the Milky Way

1. Use the atar chart in Figure 2-45 to
complete Table 2-7 for the right ascen-
sions and declinations to the nearest
minute of time and are.

2, Usze Figure 2-50 and complete Table
2-8 for the right ascensions of the
dtars.

3. B Andromeda is approximately 8 min-
utes beyond the one hour circle on a
star chart. How many degrees, min-
utes, and seconds of arc Is g from the
position of the vernal equinox?

2-8 The Universe
The discussion of coordinate systems in

- this chapter provides only an introduction

to the systems used in mathematics and
the many branches of science. For ex-
ample, we have used right ascensinn and
declination to id~itify the direction to a
star. In Chapter 8 the disiances to stars
are considered. There is & cocrdinnte gys-
tem for positions in our galaxy (the Milky
Way); another system is used for the uni-
verse which contains many galaxies.

The aim of this chapter has been to open
one window to an understanding of the
universe we live in. Several other windows
are needed for a solind understanding. One
of these, measurement, is considered in
Chapter 3.
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Chapter 3

MEASUREMENT
A WINDOW T0 THE UNIVERSE

by
John Soroka
Planetarium Director
Alkron Public Schools
Akron, Ohio
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MEASUREMENT, A WINDOW TO THE UNIVERSE

We can see so many stars in the night
sky we are unable to count them. It is not
surprising that early man thought of him-
self as standing in the center of a huge
sphere with the stars fixed on it like thcu-
sands of shining points.

He was not content however with the
visible appearance of these celestial bodies
and set out to investigate them. As he tried
to express their measures and to place
each in its proper position, he concluded
that the sun.is much larger than Earth;
that Earth travels around (orbits) the
sun. As Earth orbits the sun, the moon
orbits Earth at a distance alm. st insignifi-
cant in relation to Earth’s distance from
the sun.

We are part of a very small planetary
system in an enormous tniverse, the meas-
ure of which can be dealt with in much
the same maaner as a surveyor measures
the width of a river he cannot cross. We
employ these methods to determine the
positions, distances, sizes, and motions of
the nearer celestial bodies. Knowledge of
celestial bodies not only has enabled us to

;

stretch out into space but very shortly will
enable a man to step out on the surface
of the moon,

3-1 Direct Linear Measuremeut

Measurement enables us to relate sci-
ence and mathematics. The accuracy of a
measuremaent can determine the accuracy
of a scientific invesligation.

We do not always ‘“‘see” what we are
looking at. Consider some of the relation-
ships among the objects shown in Figure
3-1.

The grapefruit is larger than the

orange.

The length of the driveway is larger
than its width.

The doorway is higher than it is wide.

You probably feel certain that these
statements are correct.

Look at the picture in Figure 5-2. Is
the chair nearer the door or the window?
In order to answer such a question, we
might measure the actual distances in

Figure 3-1
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the room. The unit that we choose is pure-
ly arbitrary. We might pace off the dis-
tance, measure it in lengths of string, or
use a standard unit of length. The English
untts of length include the inch, foot, yard,
anc mile. The melric units of length in-
clude the centimeter, meter, and kilometer.

Let us consider the distance from the
chair to the center of the door. We could
measure the approxiriate distance to the
dvor in inches. Suppose that the center of
the door is 241 inches from the chair. This
mey be true, yet a distance of 241 inches
is difficult to visualize. We cannot “see”
it in our minds. if we remeasure this dis-
tance in feet, we'll find that the door is
about 20 feet from the chair. This distance
is more meaningful to most people since
they can visualize 20 feet more easily than
241 inches, If we remeastre the distance
in yards, we find that {the door is about 7
yards from the chair. The results of sev-
eral measurements are summarijzed in the
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Figure 3-2

table below.

» Table 3-1.
Unit of length | Chair to door|Chaii to window
1 inch 241 in. 236 in.
1 foot 20 ft. 20 ft.
14 foot 20 ft. 1984 ft.
__1 yard Tyd |, T yd.

We are able to conclude from the meas-
urements to the nearest inch or the near-
est quarter of a foot that the -chair is
nearer the window than thez door. The
measureinents to the nearest foot or yard
are not sufficiently precise to enable us to
distinguish between the two distances.

The measurements could be expressed
in terms of other units such as centi-
meters (cm.) and meters (m.) as shown
in Table 38-2. However, the conclusions
reached do not depend upon the system

of units used. The unit is a convenience.

o,



TABLE 3-2
Chair to
Unlit of length Chair to door window
1 centimeter 612 ¢m. 599 cm,
1 meter 6 m, 6m,

There is & great temptation to convert
results from English units to metric or
from metric urits to English. In this
chapter we will not convert back and
forth; but will think and work in appro-
priaté units. Because the measure of
spaces requires units which we cannot
experience or “see,” let us begin with
some familiar ones. We can ‘see” that the
distance represented by 1 inch is larger
than the distance represented by 1 centi-
meter and that 1 meter represents a
greater distance than 1 yard.

The lengtia of the line segment in Fig-
ure 3-3 may be measnred to the nearest
half inch and to the nearest centimeter as:

3% inches, or 9 centimeters.

that we can never describe the measure of
the line segment exactly.

If you and a friend both estimate the
length of the line segment in Figure 1-3,
you probably will agree on the number of
inches and the number of tenths of an
inch. You may not agree on the number
of hindredths of an inch. If not, try
again. Who is right? The aaswer to the
guestion will depend upon your abilities to
est'mate distances.

3-1 Ezercises — Direct Linear Measure-

ment

1. Use a yardstick and a meter stick to
compare the length and width of a
room. Compare the ratios of the
lengths to the widths in each of the two
systema of units. Are they the same?

2. Make (or have ten friends make) ten
nieasurements of the line gsegment in
Figure 3-3. Add the numbers obtained
and divide by ten. How does this aver-
age value compare with the others?

Does this average value appear more
“reliable” than the individual values?

Figure $-3

We find not a whole number, but a cer-
tain number plus a fraction, We will try
to estimate the fraction of a centimeter
or inch. Inches and centimeters sometimes
are divided into ten equal -parts, Each
space represents one-tenth of the unit,
We are able to estimate the length of the
line sugment in Figure 3-3 to the nearest
tenth in each case as :

3.4 inches.

8.7 centimeters.
We may observe that the line segment is
not exactly 3.4 inches, The length of the
line segment is between 3.4 and 3.5 inches,.
If we were not concerned with greater ac-
curacy, we could see that the length of the
line segment is closer to 3.4 than 3.6 inches
and simply say 3.4 inches is the length.
We may imagine the tenths divided into
ten equal parts and then estimate the
length of the line segment to the nearest
hundredth of an inch and to the nearest
hundredth of a centimeter. You can see
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3-2 Direct Angular Measurement

Angular measurement mey also be used
in determining distances. Consider an
angle as the union of two rays with a com-
mon end point as in Figure 3-4.

-
Roy BA

oL

A
Figure 34

In messuring an angle, we need a unit
of angular measure. Remember the selec-
tion of a unit of measurement is arbitrary.
The angular unit ¢f measurement for fig-
ures on a clock is the hour (Figure 3-5);
for the circle it is usually the degree
(Figure 3-6).
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Figure 3-5
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3/8 of a circle
135°

Figure 8-6

The circles representing the clocks are
divided into 12 equal parts called hours.
When we read the time from the clock,
we are reading the angle represented by
the hands which form a ray. Each hour
is divided into units called minutes and
each minute is divided into units called
seconds. We read our time not only in
hours, but usually also in minutes and
seconds.

Instead of dividing the clock into units
of hours, we may divide it into units of
degrees. We could divide the clock in any
number of units, but we will use the con-
ventional 360 degrees in one complete
revolution (circle).

~ We could measure the angle formed by
the hands of a clock either in hours or in
degrees.

Figure 3-7 enables us to compare the
sizes of the angles represcated in hours
or in degrees. The angle represented by
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three hours equals the angle represented
by 90 degrees and so on.

Figure 3-8 enables us to read other
anzles in hours or degrees. The angle
represented in part (a) would be 9 hours;
that is, 270 degrees. The angle repre-
sented in part (b) would be 8 hours; that
is, 90 degrees. The angle represented in
part (¢) would be 1 hour and 30 minutes;
that is, 46 degrees. Again we have the
temptation to convert from one unit to
the other but should continue to think in
any convenient unit. In the remainder of
this chapter, we will speak of angles in
degrees. The symbo) used to indicate the
word degree is °, If we need greater ac-
curacy, we can divide the degree into
smaller parts callad minutes; one degree
equals 60 minutes. The minute is divided
into units called seconds; one minute
equals 60 seconds. These are not units of
time but parts of a degree. The terms

-
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should not be confused:
1 revolution = 360° (degrees) ritent
1 degree = 60’ (minutes)
1 minute = 60” (seconds) low,
Astronomers need to measure angles ac-

curately to the nearest hundredth of a

second. The Orbiting "Astronomical Ob-

servatory, OAQ, will be able to maintain A

its position with an accuracy of 0.1 sec- @

onds. Accuracy and precision in measuring

angles are extremely important in deter-
mining distances on the earth or in the

63

9 3
5
6
C
270 0
1
18 50
12 1\45
2
27049 3490
é
180

(c)

3-2 Ezxercises—Direct Angular Measure-

1. Measure each angle in the figures be-

o

2. Construct angles with measure:
(a) 112.6°
sky. (d) 3€0,000”

(b) 47° (c) 210’




3. Sketch a clock with one hand on 12
and show:
(a) 1% hours (b) 7V5 hours (c¢) b
hours (Note that a real clock would
not have one hand exactly on 12 in each
case but for our purpcses we will con-
sider it there). Label each fijrure in
hours and degrees both,

4, Make an array or table which will show
each measure expressed as a ntinber of
degrees, as a number of minutes, and
as a number of seconds:

(a) 16° (b) 40’ (c¢) b’ (d) 30"

3-3 Indirect Measurement

The pieceding sections have shown some
o1 the methods of measuring distances snd
angles directly with rule or protractor.
However we are not alwaye able to make
measurements directly, We cannot place
markers in space, stop the moon in its
orbit, or stretch a tape measure around
the earth,

Many methods have been developed to
make measurements indirectly, We will
be concerned with a number of these and
introduce two at this time, triangulation
and parallax.

We can use triangulation to measure the
width of a river that we are unable to
cross as is Figure 3-b.

We first pick out on the far bank an ob-
ject C close to the edge of the stream. We
place a marker B opposite C on our side

®

C {object)

(observer) A e B (marker)

Figire 3-9
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of the river. From R we lay out a base-
line AB which is porpendicular to BC and
measure off a given distance; suppose we
make AB 300 feet long. We use a transit
to measure angle BAC, suppose /BAC =
75°. Since ZABC == 90°, AABC is a right
triangle., The distance BC across the
stream can be computed as follows: (You
will need to use the table of trigonometric
functions on page 184),

= tan /BAC

&l &8

= AB x tan /BAC

= 200 x tan 7b°

= 300 x 2.732 (Refer to the table
of trigonometric functions)

BC =~ 1,119.6 feet

Then BC is about 1,120 feet. Remcinber
that the value for the tan 76° was taken
from the table of values for tangents of
angles on page 184. Refer to this table
whenever you need to,

This method of triangulation is used to
determine distances that ave relatively
small and is best when the angles are
large enough to be measured with a pro-
tractor.

‘The method of parallax may be used to
determine long distances involving very
small angles. The smaller the angle, the
greater the accuracy obtained by this
method, The parallax of an object is the
angular difference between the directions
of the object when it is viewed from two
different points. To illustrate this concept,
hold your finger at arms length in front
of your nose and look toward a distant
peint or object such as the corner of the
hlackboard.

1. Close your right eye. What is your
Anger in front of now?

2. Close your left eye, and open your right
eye. What is your finger in front of
now?

[V

Alternately open and close your eyes.
Your finger should appear to “jump”
back and forth as you alternately open
and close your eyes.



PARALLAX

Figure 8-10

By using this very simple phenomenon,
we are able to fllustrate methods for meas.
uring distances with accuracy. Consider
Figure 3-10 where NFP is the line of
sight using both eyes, LFT, is the line of
sight using the left eye only, and RFT, is
the line of sight using the right eye only.

T, (TREE 1)

T~®r, (mee2)

If we knew the distance LN, and the
distance NF, we could calculate the paral-
laz: that is, .LFR. Notice that the vertical
angles T,FT, and LFR are congruent.

As in Fxgure 3-11 suppose that

LN =: 1.5 inches and
NF = 21 inches.

LN
Then: tan ZLFEN = —.-
NF
1.6
21
0.07
(LFN = 4°
This angle (¢LFN) is called the hori-
zontal parallax; that is, one half of the
parallax, ZLFR in Figure 3-10. Notice in

P~
P~

A Figure 3-10 that
LLFEN = /RFN = (T\FP = (T\,FP
30° and that if we were to neasure the hori-
zontai paraliax, then we would know the
& & e Dy measures of all four of these angles and
could determine the distance NF.
A .
' --------- P
’51' —,
18° 10 Figure 8-11
)
tan /LFN =
A~ ﬁ?
NF = m = 1.6 ~ ._1_'_5_.
10° 50" ' ct?ln (LFN tand° 0.07
b = 21 inches,
. 3 0,3
A

" 0,
A
& 4 \\-
] o ™
Figure 3-1¢
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Here's anothar experiment, again place
your finger in front of your nose. While al-
ternately opening and closing your eyes,
move your finger away from and then
toward your nose. The closer your finger,
the larger the *‘jump” and hence the larger
the parailax. The further away your fin-
ger is, the smaller the “jump” hence the
smaller the parallax. Figure 3-12 and
Table 3-3 show the relation between paral-

iax and distance for the given baseline AB.

TABLE 3-3

Horizontal | Distance

Polnt Parallax Parallax (inches)
D, 60° 30° 1

D, 32°20’ 16°10’ 2___
D, 21°40’ 10°60’ 3
D, 16°20° 8°10’ 4
D, 1320’ 6°40’ b

Notice that relatively close objects show

a large parallax and distant objects ex-
hibit & small parallax. Later we shall
make use of this method to determine dis-
tances to objects in space,

3-8 Ezxercise—Indirect Measurement,

A helicopter is hovering 390 feet over a
space craft in the water. A revovery ship
anproaching the space craft sights the
helicopterr 8¢ above the horizon. About
hos\‘r. l;mny miles is the ship from the space
craft

3-4 Measurement of Earth

Most people teday take the shape and
the dimensfons of Earih for granted. We
now have direct evidence from the artifi-
cial satellites that Earth is roughly spheri-
cal. However, it is interesting to see how
scientists of the past were eble to caleu-
late very good approximations with the
limited knowledge available to them.

One of the first known measurements of
Earth was made a little more than 2,000
tears agd by a Greek mathematician
named Eratosthenes. He measured the
circumference of Earth indirectly from
the position of the sun as observed from

two cities Alexandria and Syene, the
modern city of Aswan.

~.

(angle of sun's ray's
7.2%)

POLE AT

7.2* ALEXANDRIA 1y N ——e
—s o IasaN =
WELL AT
SYENE
Figure 2-12

As the story is related today, Erastos-
thenes neted that at noon on the first day
of Summer the sun appeared to be dircetly
overhead at the city of Syene in Egypt.
To confirm this observation, he observed
the sun from the bottom of a well. At the
same time in the city of Alexandria, it was
noted that a pole cast a shadow such that
the angle of the sun’'s rays to the pole
measured about 7.2°.

:

TO SUN

e
At Sytne
Figure 2-14

N\



By reasoning that the sun's distance
from Earth was a huge distance, Eratos-
thenes asrumed that the rays of the sun
siriking the two cities were parallel (Fig-
ure 3-18). Using methods of his dayv, he
carefuliy measured the distance between
the well in Syene and the pole in Alexan-
dria. 'The distance was obtained in the
units of his day as 5,000 stadia. The zc-
tual distance a stadia represented is not
known, but best estimates today place 10
stadia equal to about 1 mile. Eratosthenes
then set up the following proportion to
obtain the circumfererce of the earth:

5,000 stadia __ circumference of Earth
17.2° 860°

The figure obtained for the circumfer-
ence of a great circle of Earth was about
260,000 stadia or 25,000 miles. This figure
is very close to today's accepted value. The
diameter of Earth can be found as:

d = clrcumference . g9,000 stadia or
8,000 miles

The radius is found by dividirg the di-
ameter by 2, The radius of Earth would be
found as about 40,000 stadia or 4,000
miles. He obtained these figures 2,000
years hefore man finally had acceptable
proof that Earth wns essentially round and
not flat. Thece measurements are based
upon an assumption that Earth {s a per-
fect aphere. More mmodern methods of
measuring Earth have turned to the stars
for greater accuracy. Texrestrial triangu-
letion {s one of the modern methods of de-
termining distances on Earth.

We now consider Figure 8-15 and use
a triangulation method as in Section 3-3
except that very precise measurements are
made. The baseline AB can be measured
to the nearest miltionth of an inch; angles
BAC and ABC can each be measured to
the nearest 2 scconds of a degree. Then
the distance AC can be computed ty meth-
ods that are usually studied in high school
trigonometzy. Then AC can be used to
measure CD which is indicated by the
dotted line. Continuing by using the
dotted line in this manpner AF, Al, and
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JTF can each be measured to a high degree
of accuracy.
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Figure 3-1¢

Observation of the North Star provides
a very accurate method for determining
Earth's measurements,

The North Star, Polaris, is considered to
be directly above the North Pole. The al-
titude of Polaris above the horizon indi-
cates the Observer's position on Earth.
}Fromn points J and F, Figures 3-16 and 8-
16, the altitude of Polaris, 7§ ard /f, is
determined. Zj and /f are equal to the
ncrth latitude of J and F. By subtracting
the Jifferences in iatitudes of the points,
the longth of JF cai be determined in de-
grees. From this and the distance from J
to F in miles, the circumference of Earth
¢an be determined with greater accuracy
than by the method of Eratosthenes.

This method of measuring Karth first
indicated that it is not a perfect sphere
but Aattened at the poles, like an oblate



SPHERE OBLATE SPHERE
Figure $-17

sphere (Figure 8-17). Actually the polar
diamater of Earth is about 26.7 miles less
than the equatorial diameter.

The distance represented in 1° of lati-
tude at the north or at the south poles has
been found to be greater than the distance
represented by 1° iatitude at the equator
of Earth. Figure 3--18 and Table 3-4 in-
dicate the changes in the distance along a
meridian represented by 1° of latitude.

Figure 3-18
TABLE 34
Distance of 1°
_ Latitude in miles
Equator, 0* 8.7
24° 68.8
40" 69.0
co* 69.2
N or S Pole (90°) 69.4

Artificial satellites have enabled man to
make rather precite determinations of the
size and shape of Earth. Previously, the
radius of Earth could be determined only
within 700 yards, that is between 3,963.188
and 3.963.260 miles. Today particularly

with the use of Vanguard 1, the analysis
of the orbit of the satellite places the aver-
uge radius of Earth at the most probable
value of 3,963.210 miles. Prior to the arti-
ficial satellites, the limitations of terres-
trial triangulation and cellestial observa-
tion limited the accuracy of the distance
betweon the continents of America and
Europe to within a mile. With the world-
wide tracking stations and electronic 2om-
puters, the orbits of satelliter can be de-
terminad with great accuracy. By using
the position of the satellite in its orbit,
scientists are now able to compute the posi-
tions of islands in the middle of the Pacific
ocean to within 25 yards.

Vanguard I has also enabled man to re-
fine his ideas pertaining to the shape of
Earth. In 1968, scientists studying the
orbit of Vanguard 1 determined t'o¢ Earth
was not symmetricaly coblate, but the
southern hemisphere actually bulged more
than the northern hemisphere. This indi-
cated that Earth was not spherical, not
ablate, but was somewhat pear-shaped!

These differences seem really small, and
are not apparent to us, but these and other
minute differences are of extreme impor-
tance to interplanatory probes, such as the
Mariner 1V flight to Mars and to our tdeas
of the structure and evclution of Earth.

3-4 Erercises—Measuremert of Earth

The angular separation between the
East and Weat! coast of the United States
is about 44°. About what is the distance
in mites ¢f this angular separation? (Use
8,970 miles for the radius of Earth.)

3-5 Altltude of 8 Model Rocket

The determination of the altitude of a
model rocket is a relatively aimple exer-
cise in triangulation. We will not attempt
to plot the flight path of the rocket but
simply to determine its altitude a at its
highest point above the surface of the
Earth.

Consider the data in Figure 3-19. The
problem could be solved by ithis method
only if the rocket rose vertically from the
launch site and *‘peaked” directly above
the launch site.

-



A 22* 90°
OBSERVER 1000 FT. LAUNCH SITE

Figure 8.-11

Here s a soiution to the problem as il-
lustrated in Figure 3-19. Prior to launch,
the distance fyom A to B is measured and
found to be 1000 feet, After iaunch, the
flight of the rocket is observed from posi-
tion A with a transit and the highest ele-
vation of the rocket is noted as 22°, The
alt'tude BC of the rocket sy be deter-
mined by using the formula for the tan-
gent of ZBAC. (The tangent formula is
explained in Section 1-7.)

%‘e = tan ZBAC

BC = BA X tan 22°

BC = 1000 x 0.404
a = BC =~ 404 fect

The preceding problem ja a theoretical
example. In practice the rocket does not
rise directly over the launch site, but fol.
lows a curved path to its greatest altitude,
Primary factors which effect the flight of
a model rocket arc:

(1) Avrodynamics of the rocket.

(2) Wind velocity at various altitudes.

(83) Change in the center of gravity of

the rocket due to the burning of
fuel,

(4) Angle of launch.

A practical approach in solving this
problem has been worked out by the Na.
tional Association of Rocketry. The fol-
lowing method is used by the Association
10 determir e the altitudes of model rockets
in contests. The method requires two ob-
servers each equipped with a transit which

will measure direction horitontally and
elevation vertically.

CUNTER LINE OF SIGHTING
TUBL SHOWD BE DRECTLY

P0* ANGLE BETWEEN
CENTER LINE OF SIGHTING

TUBE AND CENTER LINE ABOVL POINTER
OF SUPPORY
o= F=--4-
~,
FINE WIRE ACRO3S OMINING COMIASLS
PERMITY, SCALE 1O BE READ
ACCURATELY

$OLT wilH
Wit T
IIrOD WITH

ADMSTABLE LGS

BURME LEVAL IS ALUTH ‘
S0 THAT MOVAME SIGHTING

MOCK MOVES FREELY FERRALE WITH SPIXE

Figure $-20 %

Scale H in Figure 3-20 gives the angle
in degrees horizontally from the baseline
to the position of the rocket. Scale V gives
the angle vertically in degrees from hori-

zontal,
10C Kk

B il 11
_A;géy’t‘ b
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Figure 2-21



Observers A and B are positioned prior
to the launch. The distance between A and
B is carefully rueasured to be 1,000 feet.
At launch the horizontal scale reads 0° di-
rection along the baseline and the vertical
scale reads 0°; both observers observe the
flight with a transit much as you would
watch an airplane teking off. At its high-
est peint, D, the rocket gives off a puff of
smoke and the observers tighten the wing
nuts on the transits (Figure 3-20) to fix
the angle on scale V.,

Observers A and B can read the two
nng_lgs from their transits.

Scale H Seale V
Observer Direction trom | Elevation from
seline horizontal
A 60° 24°
B 60° 26°

To obtain the altitude of the rocket DC,
we first must solve vhe triangle ABC for
the distances AC and BC. From Figure
3-21, we obtain the following data:

AB 1000 feet
{CAB 50°
(ABC 60°
LACB T0°

At this point the reader could cunstruct
a scale drawing similar to Figure 3-21 and
determine the altitude of the rocket di-
rectly from the drawing. {(Suggested
scale: 1" equals 00 feet.) From the draw-
tng, we would determina the altitude of the
rocket to b2 about 410 feet.

Students familiar with trigonometry
may make more accurate determinations
by the use of the law of sinex:

Sin £ACB _ Sin £/CBA
Al AG
Sin 70° _ Sin 60°
1000 ~ AC
0.949 ~ 0.866
1000 AC
~ 1000 X 0.86%
AT = 0.94
AT =~ 921 fcet
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Sin ZACB _ Sin LCAB
AB BC
1000 BC

BC =~ 815 feet

This determines each observer’s distance
from point C, directly below the highest
point in the rocket's flight, Each observer
can now use the tangent formula to cal-
culate the altitude of the rocket.

24* c
21 FT.
OBSERVER A

28*
B15 FT,
OBSERVER B

Firure $-2¢

bC

Observer A tan 24° =

0.445
be
tan 26°

1

Observer B

~ DC

0488 ~ 81t
DC ~ 398 feet
As calculated by observer A, the altitude
of the rocket is 410 feet and by I3 the al-
t:tude of the rocket is 398 feet. The aver-
age altitude of the rocket is 404 feet. As
outlined in the rules of the National As.
sociation of Rocketrv 404 feet is the ac-



cepted value. To have a successful and
competitive flight under the rules of the
NAR, the altitudes calculated by Observers
A and B must agree within 1092 of the

average value. In our example 10% of
404 feet is about 40 feet and both cal-
culated values are within 10% of the aver-
age value.

Ezercises
See if you can complete the following table, indicating the altitudes obtained by each
observer, the average altitude, and if the results were acceptable.

_Observer A vz B .
Accept-
able
Altitude Altitude| Average | (Yes)
d (ft) | Scale H| Scale V a Scale H | Scale V DC | Altitude | (No) |
1000 | 30° 30° 60° i5°
1000 40° 40° 66° 60°
000 37° B° 68° 60°
1000 b2° 31° 70° 32°
1000 12° 66° __J__104° 81°
1000 34° 13° 43° 68°

Note: This problem is applicable to computer frogramming. See Secticn 6-5 Exercise 2.

NOTE TO STUDXNTS \
Several sections of Chapter I involve \d
detalled computations. However, if you ‘3 SATELLITE
simply read the material, you will discover \3
some of the interesting methods astron- )
oiners use to sindy the stars, It is not nanon A o7
necessary ‘hat you perform all the compu.- ¥
tations. You shuuld try them and complete  anione 8

as many' 48 you can.

Remember that you need to “see” a &
three dimensional model in your mind as }8’
you look at th2 drawings. You may wish to \/
construct some models using the diagrams et Of
as guides. When you have done this, go fre
back and 'ry some of the computations Figure 3-¢3

that are suggested.

3-8 Barth as Viewed from a Satellite

The altitudes of & satellite may be de-
termined in much the same manner as that
of a rocket. However it is necessary to
use a very fire aystem of tracking stationa
and electronic computers to determine the
precise orbit and altitude as vsed in the
field of communication and weather satel-
lites. The altitude of the satellite also de-
termines the area of Earth that may be
pholographed or *“spanned” by a 1adio
signal.
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Figure 3-23 is drawn to scale. On our
scrle, the Earth’s radius is equal to 4,000
miles. We are able to determine the al-
titude of the satellite as 14 of Earth’s
radius or 1,000 miles. If we know the al-
titude of the satellite, we are able to de-
termine the area of Earth that it could
“span.” As the satellite’s altitude in-
creases, the area of Earth viewed from the
aatellite increases (Figure 8-24).

Figure 3-24 illustrates the appearance
of the portion of Earth viewed by satellites
at different altitudes. Notice that the out-



(c)

(v)
Figure 3-24

{e)

I’ne of the portion of the Earth’a surface
viewed by the satellite approximates a
circle and the size of the circle depends
upon the altitide of the satellite.

We can compute the area reépresented
in Figure 3-24 by the shaded part of the
Earth’s surface. From Figure 26 (a), we
assume that the radius of the Earth BE
is 4,000 miles and the altitude of the satel-
lite AE is 1,000 miles. The distance AB
from the center of Earth to the satellite is

SATELLITE

5,000 miles. The limit of the satellite's
view is represeited by a line such as AC
that is tangent to the surface of the Earth
at C and forms a right angle with the
radius of Earth BC. We wish to determine
the height DE of the shaded zone of Earth.
Triangle ABC is a right triangle. We
know two sides of triangle ABC; side AB,
5,000 miles, and side BC, :,000 miles.

——nr e
-_ - = p~—

We are now able to determine DB.
Triangle DBC is a right triangte;

DB = (cose) X BC = 0.800 X 4000
= 2,200 miles

We know that the radius BE of Earth is
4,000 miles. Then, since BD 4 DE = BE
and BD = 3,200 miles, we have DE =
4,000 — 3,200 = 800 miles. The height DE
of the zone of Earth is about 800 miles.
The furmula for the area of the zone of a
sphere is A = 2«rh, where r is the radius
of the sphere and h §s the height of the
zone (as in Section 1-6). The area of the
zone that we have been consldering is
about 20,096,000 square miles since
A = 22r1h

=~ 2 X 8.14 %X 4000 X 800 = 20,096,000

If we wanted to know the part of the
tarth's surface viewed by the satellite, we
could determine this using the ratio of the

)

Figure 3-8
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area of the zone to the area of the surface
of Earth:
20,096,000 1 _ ..
200,960,000 10 10%
The eatellite viewa about 10% of the
Earth’'s surface.

38-6 Exercises—Karth as Viewed from a
Satellite
1. Complete as many of the blanks in the
following table as you can.
Altitude Part of
of the sa- Earth's
tellite Visible surface surface
(miles) (square miles) visible

(a) 200 ... ———
(b) 1000 20,096,000 10%
(¢) 4000 ... ... ——--
(d) 6000 ... —-—-

Note: This problem is applicable to com-
puter programming. See Chapter 6-3, Ex-
ercises 8 and 4.

2. How many satellites at an altitude of
5,000 miles would be necessary to com:
pletely photograph the equator of
Earth at a given time?

3. In Figure 3-28a what is the approxi-

maie distance along the surface of the
Earth between G and C in miles?

3-7 Distance to the Moon

Although the distance to the moon is not
the bagic unit of measurement for astrono-
mers, it is extremely important to us when
related to determining the sice and shape
of Earth. Since the distance from Earth

A

to the moon varies, we will use mean
values to give us an approximation of the
moon's distance.

\We are able to make this calculation by
the parallax method using the diamzter of
Earth as a baseline. This is referred to as
the geocentric parallax, Earth-centered
method.

From Figure 3-26, we are able to iden-
tify the points as follows: The center of
Earth is at O and AB is a diameter. A
surface feature of thv moon, such as a
mountain or crater, is indic. .ed by point
.. Stars marked S, and S, are at a dis-
tance so great that they exhibit no ob-
servable parallax with u baseline as small
as AB. Lines ot «ight AL and BL are tan-
gent to the surface of the moon at a crater
or mountain.

A

57.04'

Figure 8-27

The moon’s horizontal parallax has been
measured many times and fs £ un 1 (o have
a mean value of 67.04 mh. , W0 =
657.04. We will use 8,963 n ‘es as the
Earth's radius; A0 ~ 8465 miles. We
treat AO as approximately equal to an arc
of a circle with radius OL and central

angle ALO. Then using radian measure
as {n Section 1-3,

\ ’/51

EARTH

13

= “\

MOON $y

Fgure 3-2¢



d = ré
A0 = OL x <ALO
when ZALQO is measured in radians. Re-
member that
2» radians = 360°,

360 A
= 324~ 5%

i radian = b57.3 X 60 = 3438’,

The measure of ZALO in radians may be
found by dividing its measure in minutes
by 3438. Then:

— 57.04

A0 = OL X m

3963 X 3438
67.04

This is the moon’s mean distance from the

center of Earth. The moon’s mean dis-

tance is the starting point for the calcula-
tion of other lunar statistics.

1 radian

OL = = 238,900 miles.

Figure 2-48

By reversing the parallax method and
using the moon's mean distance from
Earth we are able to calculate the diameter
AB of the moon (Figure 3-28). Angle
AOB has been measured many times and
a value of 31.09 determined. Using the

radian method, the moon's diameter AB
may be calculated as follows :

_ 2£8,900 X 81.09
AB = 8138

Knowing AB, we are able to determine the
radius of the moon as about 1,080 miles
and the circumference as about 6,780
miles.

In 1946 the U. S. Army Signal Corps
beamed a series of radar pulses toward
the moon and received echoes 2.56 seconds
later. Radio signals travel at the speed of
light 186,000 miles per second. The dis-

2 2,160 miles
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tance to the moon in its orbit at that time
was determined to be about 238,600 miles,

8-7 Ezercises—Distance to the Moon

1. If the mean distance to the moon is
238,900 miles, what is the approximate
circuinference of the mson'r orbit of
Earth?

2, If the moon orbits Earth once in 2714
days, what is jts average speed in miles
per hour?

8. The moon’s orbit is not perfectly cir-
cular. Therefore, the moon’s distance
from Earth varies. The maximum
horizontal parallax is given as 61.3
minutes and the minimum as b53.8
minutes. What is the nioon’s max¥‘muin
and minimum distances frora Earth?

3-8 The Yardstick of Space

The distance of Earth from the sun is
one of the most important distances in all
of ast.onomy. It is the basic unit of dis-
tance tor the calculation of many distances
in the universe. It is necessary that this
distance be known as precisely as possible.

Historically man has attempted to doter-
mine the distance to the sun in many ways
and has arrived at many different answers,
The early Greek philosophers wrote of the
sun as a flery ball a few miles in diamet«»
and a few thousand miles distant. Ti
first atlempt to determine accurately
Earth's distance from the sun is credited
to the Greek astronomer Aristarchus.

By noting the passage of the moon's
phases, from new moon to st quarter to
full moon and to 83rd qu~rter, Aristarchus
attempted to determirs ¥ .rth's distance
from the sun by the mouu » position.

His method tuok advantay 2 of the fact
that when the mnoon is at ist quarter, it
is at right angles to the sun and Earth.
That is, the angle ¢f the sun—moon--
Earth is 80°. Although his metaod is not
clear, he determined that the angle from
the Earth—sun—moon (/ESM in Figure
3-30) was about 8°. From this, he de-
duced that the sun's distance was about
20 times the moon's distance or about
700,000 miles. Other attempts were made
to compute thi« distance and each one suc-
ceeded in pushing the sun farther into

—~ 1
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apace. In 1769 astronomers, observing the sun distance to be the Earth’s mean dis-
passage of the planet Venus across the tance from the sun.

disc of the sun, calculated the earth-sun Making use of modern instrumets, the
distance to be about 93,000,000 miles. This first accurate measurement of the Earth-
figure is close to the one we hold today.  sun distance involved the astericd Eros.
Due to the importance of this distance, Eros is one of thousands of “minor
astronomers continue to refine their meas- planets” that orbit the sun betwe:n Mars
urements. Astronomers recognited that and Jupiter. The distance d from the
the Earth-sun distance varied depending Earth to Eros (Figure 3-31) was deter-
upon Earth's position in its orbit. Re. mined by parallax. The period of Eros
member that Earth's orbit is not circular (that is, the time of one orbit of the sun)
but is elliptical. \We wil' assume the Earth. was calculated. By using a relationship of
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period and distance (Kepler's third law)
the Earth-sun distance was calculated to
be about 92,900,000 miles.

In 1960 with the launching of Pioneer
V, man had a new method of determining
the Earth-sun distance. The radio signals
from the satellite were carefully studied.
By determining the effects of the various
membera of the solar system on the satel-
lite in its orbit, the Earth-sun distance was
determined at 92,924,900 mitss. The error
involved in th’s measurement was placed
at about 8,000 miles. As the data from the
satellite Is recalculated and more accurate
methods of observation develep, the error
will certainly be reduced.

The most accurate measurement of the
EKarth-sun distance made use of the planet
Venus. When Venus was at its closest ap-

tAPTH

\

proach to Earth, radar signals wer}
bounced off the planet. By observing the
reflected radio signals, the precise speed
of the planet could be determined. By a
system of complicated calculations involv-
ing electronic computers, the Earth-sun
distance is determined as 92,956,300 miles.
The measurement is said to be to the
nearest 300 miles. So the storv will go,
the more accurate the observation, the
more precise the prediction.

We have omitted from our discussion
the determination of the Earth-sun dis-
tance by parallax. Although the Eartt.-
sun distance may be determined by paral-
lax, it is subject to large errors. D‘fficul-
ties arise for the following reasons:

1. The parallax of the sun is very small
due to the sun'a great distance and is
also difficult to meaasure.

2. Due to the sun’s brilliant disc, measure-
ments can be made only during a soler
eclipse.

3. Only the brightest background stars
are visible during a solar ectipae, and
very few could be viewed near the sun.

For the above reasons, we must turn to
the more complicated mathematical deter-
minations as previous!y listed.

For our purposes we will assume the
Earth-sun distance, mean distance, to be
£2,900,000 miles.

We next measure the diameter of the
sun. We shall use the parallax method as
illustrated previously with the moon. At
a mean distance of 92,900,000 miles, EC,
from Earth, the sun has an apparent
angular diameter of 82’ (ZAEB). The

Figure 2-32
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sun’s diameter may be calculated by the
radian mecthod as follows:

92,900,000 x 32
3438

We could calculate the radius and the cir-
cumference of the sun by msking use of
this measure of the diameter.

Knowing the Earth’s mean distance to
the sun, we could calculate an approxi-
mate circular orbit for Earth. From this
we could determine the mean velocity of
Earth as it orbits the sun in a year.

The mean distance of the sun from
Earth, 92,900,000 miles, is called by
astronomers I astronomical wunit. The
astronomical unit, A.U., is the unit used to
measure distances to the stars. Thus we no
longer need to concern ourselves with the
large number, 92,900,000, to vepresent the
Earth -sun distance, but may say simply 1
astronomical unit (1A.U.).

AB =~

=~ 864,600 miles

3-9 The Inner Planets
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3-8 Ezxercises—The Yardstick of Space

1. Compute the distance travelled by
Earth in one orbit. What is its average
velocity in miles per hour?

The Earth’s orbit is not circular. As
a mean distance from the sun,
92,900,000 miles, the sun has an angu-
lar diameter of 32’ (Figure 3-32). At
Earth’s maximum distance of 94,-
500,00 miles, what is the sun’'s angular
diameter?

2. The Earth’s minimum distance to the
sun is 91,600,000 miles. What is tre
sun’s angular diameter at this dis-
tance?

If the diameter of the sun is 864,000
miles, how many times larger is the
sun’s diameter than the Earth’s?

5. How many times larger in volume than
the Earth is the sun?

4.
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To Help You Remember the Names of the Planets

The discovery of the motion and physi-
cal characteristics of the planets is a book
by itself. We will concern ourselves with

EAST WEST

EARTH
Figure 3-38

i

the problems associated with the construc-
tion of a scale drawing of the solar system.
In this manner we might appreciate the
dimensions of the system and what a tiny
fraction of this system we occupy.

In the ccnstruction of our scale drawing:
of the solar system, we will separate the
planets into two groups. The inner planets
include Mercury, Venus, and Earth
{Mary’s Violet Byes). The outer planets
include Mars, Jupiter, Saturn, Uranus,
Neptune, and Pluto (Make John Stay Up
Nights Period). In our discussion of the
planets, we will approximate orbits as
circles, as in Section 2-4.

To place Venus in its crbit in our scale
drawing, we refer to Figure 3-33. When
Venus is directly between the sun and
Earth, position A, it is not visible from
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Earth due to the sun’s bright light. How-
ever, Venus is cleser to the sun and moves
faster in its orbit than Earth moves in its
orbit. As Venus moves from position A to
B, it becomes visible from Earth. As it
moved toward the west, (as viewed from
Earth) it is visible each morning bafore
sunrise. Each morning it is a little higher
in the sky at sunrise. As seen from Earth,
Venus finally reaches its greatest separa-
tion from the sun at position C, Figure 3--
34.

sVENUS C (48° from sun)

VEMUS D (Behind the Sun)
N\

=AU -l

HORIZON
EAST (sunrise)

Figure $-34

At its greatest separation from the sun,
the angle between the sun and Venus is
about 48°, After Venus passes position C
in its orbit. vach morning Venus appears
from the Earth to be c¢!~ser to the sun.
Finally it becomes invisible to us as it
passes behind the sun, position D. As
Venus continnes in.its orbit it slowly be-
comes visible to us just after sunset, Fig-
ure 3-35.

VENUS E (48° from the sun)

4 . VENUS A
e

a—

HORIZON
WEST (sunset)

Figure 3-35

Each evening Venus appears to be just
a little bit higher in the sky at sunset.
Finally when Verus reaches position E in
its orbit, it is again at its greatest separa-
tion from the sun. Each evening Venus
appears from Earth to be closer to the sun
as it continues in its orbit and returns to
position A. We now are able to place the
orbit of Venus in our sca.e drawing of the
solar system.
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VENUS

48° 48'

Figure $-36

As in Figure 8-36 we place a point to
represent the sun. From this point we
draw a line 2 inches long to represent the
Earth'’s distance from the sun, 1 A.U. On
each side of this line we measure an angle
of 48°., With the sun as center, we con-
struct a circle that just touches both rays
of the angle. Notice that only one circle
may be drawn that is tangent to both
rays. This circle represents the orbit of
Veunus. The distance from the sun to the
circle can be measured from our scale
drawing as 114 inches. Therefore if 2
inches eguais 1 A,U., we are able to give
the distance of Venus from the sun as
three-fouiths of Earth’s distance; that
is, 0.76 A.U.

EARTH

Figure 8-7



We are able to represent the orbit of
Mercury in the same manner. The great-
est average separation of Mercury {rom
the sun is 237,

From Figure 3-837 we determine the
distance of Mercury from the sun as three-
fourths of an inch, thus Mercury’s dis-
tance from the sun is three-eighths of
Earth's distance; that is, 0.3756 A.U.

3-9 Ezercises—The Inner Planets.
1. How close does Venus come to Earth?

2. What is the greatest distance Venus
can be from Earth*

3. What is Mercury’s closest distance to
Earth? Farthest? '

4. If Venus makes one orbit of the sun in
224 days, how many orbits does it
make in one year?

3-10 The Outer Planets

To continue our model of the solar sys-
tem, we must change our scale from 2
inches equal to 1 astronomical unit to 1
inch equals 2 astronomical units. This is
necessary due to the very large distances
involved. The outer planets are much
easier to observe and can be placed in
position in their orbits with greater ac-
curacy than the inner planets. Data from
the following table will enable us to ap-
proximate the position of the outer planets
in their orbits,

TABLE 3-3
ORBITS OF PLANETS
Revolu- Separa-
Period tions of tion
Earth from sun
Mars 687 Earth 13222..  101°
days
Jupiter 11.9 Earth 11,9 138°
years
Saturn 29.4 Earth 294 82°
years

To place Mars and its orbit, we refer to
Figure 3-38. The point S represents the
position of the sun. A circle with a radius
of 14 inch represents the orbit of Earth. A
line is drawn from the sun through the
circle and out into space. Point E indi-
cates the position of Earth in its orbit.
From observations in the sky, we are able
to place the plaiiet Mars in the direction
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Figure $-38

of the line. We do not know where, but
only that it is opposite the sun as seen
from Earth, We know from Table 3-3,
that Mars takes 687 days to complele one
orbit of the sun, that is to return to the
same position in the sky. This is referred
to as the “period” of the planet. As Mars
orbits the sun, Earth alco is orbiting the
sun. After 687 days, Earth has completed
one revolution and 32244, of the second
revolution. Earth is now in position E..
At this lime the angle from the sun, Earth
and Mars is observed to be 101°, Table
3-8, We draw a line to represent this
angle, The point of intersection of this line
with the original line of sight to the planet
locates the planet Mars at M. Measuring
the distance from the sun to M, we esti-
mate the distance to be 3; of an inch. A
circle with a radius of %, inch would ap-
proximate the orbit of Mars. Mars’ dis-
tance from the sun is 1.5 times the Earth’s
distance; that is, 1.5 A.U,

We continue as in Figure 3-29 to plot
the positions of the planets, Jupiter and
Saturn. From Table 8-3 we obtain the
period of Jupiter as 11.9 years. As Jupiter
makes one revolution around the sun, the
Earth makes eleven full revolutions and
0.9 of the twelfth. After 11.9 years, Earth
is at position E; and Jupiter has returned
to its original position in the sky. From
Table 3-8, the observed angle from the
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sun, Earth, and Jupiter is 138°. Repeating
the method ul locating Mars, the planet
Jupiter is placed at point J. The distance
from the sun to Jupiter is estimated to be
215 inches. A circle with a radius of 2!

SUN MERCURY YYENUS EARTH MARS
T 77 7

inches would approximate the orbit of the
pla et Jupiter. Jupiter’s dictance from the
sun would be estimated "as five times
Earth’s distance; that is, 56 A.U.

From Table 3-3 we obtain Saturn’s pe-
riod as 29.4 Earth years. During this
period of time, Earth would complete 29.4
revotutions. After 29.4 revolutions, Earth
would be at E, as illustrated in Figue
3-39. From Table 3-3, the angle of e
sun, Farth, and Saturn is 32°. This places
Saturn at point S. The distance from the
sun to Saturn is estimated at 43 inches. A
circle with a radius of 4%; inches would
approxim: -, the orbit of Saturn. Saturn’s
distance fiom the sun would be est.inated
as 9.6 times Earth’s distance; that is, 9.5
AU.

The outermost 3 planets, Uranus, Nep-
tune. and Pluto, are not visible %o the
naked eye, but must be observed through a
telescope. Their positions may be plotted
and added to Figure 8-39. Figure 3-40
combines the inner and outer planets it a
sirgle drawing. Figure 3—40 only approx-
imates the distances of the planets from
tha sun and does not attemut to place them
in their orbits.

One system that relzces the distances of
the planets from the sun is called Bode's
Law. The system originated in 1772. Mod-

JUPITER  SATURN

URANUS

NEPTUNE PLUTO

Figure 3-40

-,
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ern attempts to explain the relationship
according to gravitational theory have
failed. It is thought that the relationship
is a coincidence. Perhaps as we learn more
about the distribution of matter in space,
we will be able to explain the relationship.
A note of interest is that Bode’'s Law
(Table 8-4) originated in 1772, predicted
the presence of a planet orbiting between
Mars and Jupiter. In 1801, the first of the
asteroids were discovered and the gar was
tiled.

Table 3-4 lists the planeis and asteroids
in order from the sun. The wumber 4 is
placed urnde: the name of exch member of
the solur system. Starting with Mercury,
we adc 0 to the 4. For Venus we add 3,
and double the number for the succeeding
member:: 2 X 8 == 6 and 6 is added for
Earth, 2 x 6 == 12 and 12 is added for
Mars, 2 x 12 -.: 24 and 24 is added for the
as*eroids, and we continue to Pluto. The
resulting numbers are the relative dis-
tances of the planets froimn the sun. If we
divide all numbers by 10, we estimate the
Earth’s distance 25 1. I¢ we assign the
Earth’s distance as 1 A.U,, the distances of
all the planets are given in astromical
units. The figures in parentheses are ac-
cepted values in A.U, for the distarnces to
the planets. Notice that the law fails badly
in the case of Neptune and Pluto.

Entire books have been devoted to indi-
vidual planets. We have attempted to ob-
tein an impression of the distances in our
sciar system. From this point, we leave
the planets, and look to tha stars.

3-11 Distances to the Stars

An old Chinese proverb stated that the

greatest journey starts with a single step.
We have taken that first step. From the
estimate of the distance to the door in
Section 3-7 to the complicated computa-
tion of the astronomical unit in Section
3-8, we now reach out to measure the vast
dimensions of our univesse.

The early philosophers recognized that
Earth’s motion around the sun should pro-
duce a change in the apparent positions of
the stars. Because they could not detect a
change in the stars’ positions, the ancients
had to conclude Earth was not moving but
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TABLE 34

Bode’s Law
Mercury  Venus Earth Mars  Asteroids
4 4 4 4 4
0 3 6 12 24
4 7 10 16 28
0.4 07 1 1.6 2.8
(0.39) (0.72) (1.00) (1.62) 2.65)

Jupiter Sztvrn Uranus Neptune  Pluto
4 4 1 4 4
48 96 192 384 768

52 100 196 888 . 772
52 100 196 385 772
(5.20) (954) (192) 801) (395)

fixed. This idea continued until the early
19th Century. Using the most precige in-
siruments and r:ethods available, astrono-
mers finally succeeded in detecting the
navallax of sone stars. The problem was
due to the vast distances involved. Star
charts consiructed in various countries
were similar indicating that the diameter
of Earlth was much too sinall to use as a
baseline for the measurement of stellar
parallax. The mean diameter of Earth’s
orbit proved to be a satisfactory baseline,

The distance to the nearest stars may be
determined by measuring their apparent
shift against the more distant background
stars., When the Earth is at E,, Figure 3-
41, a photograph is taken of nearby star S
against the background stars. Six months
later another photograph is taken of star
S. The photographs are then studied under
a microscope and the apparent shift of the
star, stellar parallax, is determined. One-
half of this angle, the augle that would be
produced using the radius of the Earth's
orbit as 1 A.U. is then referved to as the
star’s heliocentric parallax, p. This would
be true if Earth’s orbit were circular.
However, in actual calculations, astron-
omers allow for ibs elliptical shape of
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Earth’s orbit. For our purposes, we shall
use a diameter of the circular orbit of
Earth with radius 1 A.U. as a baseline.
The parallax of a star is extremely small,
the largest known stellar parallax is about
0.75 seconds. If a star had a parallax of 1
second of arc, it would be at a distance of
206,265 A.U. Remember that the smaller
the parallax the more distant the star. The
closest star that can be observed by the
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unaided eye i{s Alpha Centauri, It has a
parallax of 0.75 seconds; its distance is

2%6:12566; that is about 27K.000 A.U.

Again we have a problem of units. As in
measuring the distance to the door in
inches or the distance to the sun in miles,
the large numbers are confusing and some-
what meaningless,

Astronomers have inv»nted two units to
rieasure steliar distances, the parsec and
the light year. The parsec is the more con-
venient but undeorstanding it requires
some thought; 1 parsec is the distance to a
star that shows a parallax of 1. A dis-
tance D in parsecs is given by the formula

D= 1

P
where p is the parallax in seconds. A star
that would show a parallax of 1 second
would be at a distance of 1 jarser or
206,265 A.U. The sun is the only star that
is closer than 1 parsec; that is, the only
star that has a parallax greater than 17,
Alpha Centauri’s distance in parsecs ¢ould

be calculated as follows:

D= O—}ZE = 1.38 parsecs

One light year is the distance that ).ght
travelling at 186,000 miles per sece. will
travel in one year. This is not a unit of
time. By simple multiplication, we could
determine that 1 parsec is eynal to about
8.26 light years. Thus a star's distance in
light years may be found by dividing 3.26
by the parallax in seconds of the star.
Alpha Centauri’s distance in light years is
3.26 , . .

075 that is, about 4.3 light years.

We are able to relate the A.U., parsec,
and light year as follows:

1 light year ~ 65,000 A.U,
1 parsec =~ 3.26 light vears

Because of the problems in accurately
me>suring star images on 3 photograph,
we are able to measure the parallax only
for stars up to a distance of about 100
parsecs; that is, about 300 light years.
Stars at this distance would have a paral-
lax of about 0.01 seconds. For stars at a



greater distance, the method of parallax is
subject to an error of greater than 50%.
We have bezn able to acceptably measure
the parallax of about 6,000 stars. Some of
the better known stars, their parallax, and
distance ip parsecs and light years are
indicated in Table 3-5.

e TABLE 3-5
| D}« Dis-
Paral- | tance | fance
Conjtella-| lax {par- | (light
t (nee.) secs | years)
Ilpﬁ‘a Centaur| 0.70 | 1.32 4.3
Centauri
Sirius Canis 037 | 2.66 8.6
Major
Procyon Canis 028 1 847 113
Minon
Altajr Aquila | 0.19 { 5.0b] 164
Vega Lyra 0.12 | 814 285
Poiiux_‘ veminl | 0.003|10.8 | 32.2°
Arcturus [ Bootes | 0.090] 11.1 36.1
_Capella Auriga | 0.07 | 13.7 44.6
Aldebaran| Taurus | 0.04 [20.8 | 67.8
Regulus | Teo_ [0.037266 | 834

To de:ermine the distance to stars and
galaxies more distant than 100 parsecs,
we mist turn to indirect methods, and
therefore to the classisica’ion of stars.
8-11 Euxciciges—Distance to the Stars
Complete the array as far as you can.

Parallax Par- Light

(seconds) secs years A.U.
nLoo04 —_—
2y ——e b5 —_—
3, —— - 3.74 _—
4, —— - —_— 4,221,000
5 — 16 —_— _—

3-12 Magnitude and Rrightness

When we look upon the starry sky, we
see but a few of the brightest stars. Thou-
sands of stars 're lost to view in the re-
flected glare of the light from our major
cities and in smoke and dust.

The ancients looked upon a myriad of
stars in clear and moonless skies. They
snw stare of varying brightness and color
and decided to group them according to
apparent brightness. The twenty brightest
stars of the sky were called stars of first
magnitude. The word magnitude does not
refer to the size of the star but to its ap-
parent brightness. Gther stars were called
2nd, 3rd, 4th, 6th and €th magnitude ac-
cording to their apparent brightness. The
6th magnitude stars are the faintest stars
visible to the naked eye under the most
favorable conditions. Astrontmers were
not satisfied with this qualitat.ve scheme
but decided to measure the brightness of
stars very precisely. They took the aver-
age brightness of about the twenty bright-
est stars and called this brightness ist
magnitude. This left stars that were
brighter than 18t magnitude. These stars
were assigned magnitudes such as 0, —1,
and —2. The brightest star of the night
time sky, Sirius, was assigned a magni-
tude of —1.6. Also with the invention of
the telescope, stars were discovered that
were not visible to the naked eye. These
stars, fainter than 6th magnitude, were
assigned magnitudes of 7, 8, 9, 10 and so
on. On the magnitude scale, the brightest
objects have the lowest magnitudes and
the faintest objects have the highest mag-
nitudes.

The 200 inch telescope at Mt. Palomar
will reveal to the eye stars of magnitude
21 and will photograph stars as faint as
magnitude 23. The zero anl negative
magnitudes are necessary to describe the
brightness of objects such as the sun, full
moon, some planets and certain stars
which are all brighter than 1st magnitude.

Astronomers found that stars of dif-
ferent apparent magnitudes varied in the
amour.t of light emitted. They determined
that the ratio of brightness between two

APFARENT VISUAL. MAGNITUDE

-26.7 -12.6 -4, JUPITER  MARS

<~— FULL  VENUS Ylklus/ VEGA spiICA &) CYGNI a SIRIUS 8 o

_S.UN MOON L 1 1 l J ( i | 1 [ 1 1 | | | i 1
APPARENT -5 -4 -3 -2 -t 0 1+ 2 3 4 5 6 7 8 ¢ 10 11 12 13
MAGNITUDE

Figurc 3-42
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stars of successive integral magnitudes
was about 2.,6. This means two stars dif-
fering by 1 magnitude, differ in brightness
2.6 times. A relationship of the brightness
and magnitudes of stars was worked out
and an approximation is given in Table
3-6.

TABLE 3-6
Difference In Ratlo of
Magnitude Brightness
0.00 1.0
0.6 1.6
1.0 2.6
1.6 4.0
2.0 6.3
2.6 10.0
3.0 16.0
3.6 26.0
4.0 40.0
4.6 63.0
5.0 100.0

We can see from Table 3-6 that if two
stars vary 1 magnitude, their apparent
brightness varies 2.6 times, Stars with b
magnitudes difference, vary in brightness
by a factor of 100.

Example: Find the difference in the
brightness of two stars of magnitude 12
and magnitude 8.

The difference in magnitude is 12 — 8;
that is, 4. From Table 3-6, a magnitude
difference of 4 gives a ratio of brightness
of 10. An 8th magnitude star is 40 times
brighter than a 12th magniture star.

FExample: A star of magnitude 3.5 is
10,600 times brighter than another star.
What is the magnitude of the second star?

The brightness ratio of 10,000 may be
written as 100 x 100. A brightness differ-
ence of 100 is equal to a magnitude differ-
ence of 5, Table 3—6. Therefore a Lright-
ness difference of 100 x 100 is equal to a
magnitude difference of 6 + 5; that is, 10
magnitudes. The brighter star had a
magnitude of 3.5, so the second star has a
magnitude of 3.6 4 10 or 13.6. A star of
magnitude of 3.5 is 10,000 times brighter
than a star of magnitude 13.5.

It should be noted that magnitudes are
added; brightnesses are multiplied. Mag-
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nitude is not proportional to brightness.
Although the above approximations are
sufficient for our purposes, astronomers
are able to determine magnitudes to the
nearest thousandth by precise photoelec-
tric methods.

8-12 Ezercises—Magnitude and

Brightness

1, Star A is of magnitude 4.5 and is 100
times brighter than Star B, What is
the magnitude of Star B?

2, A star has a magnitude —1.6 and is
40 times brighter than a second star.
What is the magnitude of the second
star?

3. The sun has a magnitude --26.7 and
the full moon has a magnitude of
—12.6. How much brighter is the sun
than the full moon?

4, The full moon appears 17,000 times
brighter than the planet Jupiler. What
is the magnitude of Jupiter?

5. How much brighter is the star Sirius,
—1.6 magnitude, thun the faintest star
visible to the human eye, 6th magni-
tude?

3-13 Aprarent and Absolute Magnitude

In Sect.on 3-12, we referred to the
brightness and magnitude of stars and
planets as they appear to us in the sky.
This is the apparent brightness and ap-
parent magnitude of the object. This tells
us little of the actual or intrinsic bright-
ness. Certainly, it is correct to say that
the sun appears brighter than the star
Sirius. Is it corrent to say that the 3un is
actually brighter than Sirius? The sun is
at a distance of 1 A.U. from the Earth,
whereas Sirius is at a distance of 8.5 light
years; that is, 635,600 A.U. How bright
would the sun appear if it were moved
500,000 times farther away? Not very
bright! The brightness of a light source
depends in part upon its distance.

Consider Figure 3-43. In the row of
automobile headlights, the closest lights,
automobile A, appear to be the brightest,
and the most distant automobile, E, ap-
pears to have the dimmest lights. We con-
sider all lamps to have the same intrinsic
or actual brightness. Mecasuring the dis-
tance to automobile A, we call this dis-
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tance 1 unit. The amount of light from the
headlights of automotile A at a distance of
1 unit may be taken as 1 unit of bright-
ness. We measure the distance to automo-
bile B and find its distance to be 2 units.
The light from B is not 14 as bright as A
but 14 the brightness of A. An automobile
headlight at a distance of 2 units would
have a brightness of 14. Automobile C is
at a distance of 3 units and its brightness
is 14 that of automobile A. We could con-
struct a table of distance and brightness
as follows:

Automobile | Distanes i Erightness
A 1 unit | 1 unit
B 2 A
C 3 Y%
L 4 Ye
E 5 Yes

In general, the apparent hrightness, m,
of a light source decreases inversely with
the square of the distance. This is irue sfor
the light of stars.

If we return to our problem of the sun,
we could determine its brightness at a dis-
tance of 500,000 A.U, If the sun’s gistance
were increased 600,000 times and piaced
next to Sirius, the sun would not appear to
be Yg0.000 88 bright, but it would appear
1450.000,000.000 88 bright as it did at a dis-
tance of 1 A.U.
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Example: If the sun’s apparent magni-
tude at 1 A.U. is —26.7, what is its ap-
parent magnitude at 500,000 A.U, ?

The sun appears %50,000.000.000 88
bright ; 250,000,000,000 may be factored as
100 x 100 x 100 x 100 x 100 x 25. This
is equal to & change in magnitude of
6464 6+ 5+ 565 + 3.6; that is, 28.5.
The sun’s apparent magnitude at 1 A.U. is
—26.7, its apparent magnitude at 500,000
AU, is —26.7 + 28.6; that is, 1.8.

Example: If at the distance of 500,000
A.U,, the sun had an apparent magnitude
of 1.8 and Sirius has an apparent magni-
tude of —1.6, how many times brighter
would Sirius be than the sun?

Sun 1.8, Sirius —1.6; the difference in
magnitude would be 3.4. A difference in
3.4 magnitudes ‘mplies a difference in
brightness of nearly 25. Sirius would ap-
pear nearly 25 times brighter than the
sunl

Realizing this basic problem, astrono-
mers proposed a system to compare the
actual or intrinsic brightness of stars. The
absolute magnitude of a star is the appar-
ent brightness that a star would have at a
standard distance of 10 parsec; that is,
32.6 light years. When we refer to abso-
lute magnitude, we are ‘“moving back”
nearby stars and “moving up” distant
stars to 10 parsecs. If all stars were in a
row at equal distances from the Earth,
we could compare their actual bright-
nesses.

Example: What is the absolute magni-
tude of a star with &n apparent magnitude
of 1.5 at a distance of 2 parsec:?

1.5m M

EL

\ 2 PARSECS 7

vV
10 PARSECS

Figure 3-44

The distance to the star would increase
from 2 parsecs t¢ 10 parsees; that is, 5
times. Increasing the distance 6 times, de-
creases the brightness 256 times. The mag-
nitude cnanges by a factor of 3.5. If the
star had an apparent magnitude of 1.6 at
2 parsecs, its absolute magnitude at 10
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parsecs would be 1.5 + 3.5; that is, 6.

Ezample: A star with apparent magni-
tude of —1.2 exhibits a parallax of 0.4”
What is its absolute magnitude?

=1.2m M
£ + s
\ 25 PARSECS ,
VvV
10 PARSECS
Figure $-45
] ) 1 1
Distance in parsecs = — = —— = 2.5.
p 04

The star’s distance is increased from 2.6
to 10 parsecs; that is, by a factor of 4,
This decreases the brightness by 16. A
decrease in brightness of 16, increases the
magnitude by 3; —1.2 4 3 = 1.8. A star
of —1.2 apparent magnitude with a par-
atlaxsof 0.4” has an absolute magnitude
of 1.8.

Those students who are familiar with
logarithms may calculate the absolute
magnitude of a star, M, as follows:

M=m+ 5—56 log d
where m is the apparent magnitude and d
is the distance ty the star in parsecs.
Example: What is the absolute magni-
tude of a star at a distance of 8.3 parsecs
with an apparent magnitude of 2.6?

M=m+5—-5logd
=26+ 5-—b5log8.3
=~ 7.6 — (5 0.9191)
~ 76 — 4.6
M = 3.0
Example: Calculate the absolute magni-
tude of the sun. Apparent magnitude
—26.7 at a distance of 1 A.U.
1 light year =~ 63,000 A.U.
1 parsec = 3.26 light years
Sun’s distance

1
in parsec§ = ——Fm———
3.26 < 63,000
=~ 0.0000048

M=m+45—5logd

= —26.7 4+ 5 — 5log 0.0000048

~ —21.7 — (5 X —b5.32)

~ —21.7 4 26.6
M =49

The sun would have an absolute magni-
tude of about 4.9. If the sun were 10

parsecs away, it would appear as a very
faint star barely visible to the human eye.

Using the preceding techniques, we may
attempt to calculate the distance to cer-
tain stars that do not exhibit parallax or
lend themselves to direct measurement. If
we observe a star through a telescope and
the star has an apparent magnitude of
12.6, we may estimate its distance. By
studying the light produced by this star,
we are able to classify this star. By know-
ing the tyre of star, we may approximate
the apparent brightness of the star at 10
parsecs; that is, the absolute magnitude.

M m
8.6 12,6
E o —p- -
\ 10 PARSECS /
—
Y PARSECS
Figure $-46

Suppose that a star has an absolute
magnitude of 8.6. An increase of 4 magni-
tudes, decreases the brightness by a factor
of 40. A decrease in brightness by 40, in-
creases the distance by the \/40; (that is,
about 6.3 times). If a star had an abso-
lute magnitude of 8.6, at 10 parsecs it
would have an apparent magnitude of
12.6 at a distance of about 63 parsecs.
Using the log formula, the distance may
be computed as follows:

M=m45—5logd
86:126+5—510gd
5logd = 9.0
logd = 1.8
d = 63.0 parsecs

This indirect method provides an ap-
proximation for the distance. The method
depends upon the astronomer’s ability to
identify the type of star and to estimate
its intrinsic brightness. This enables the
star to be assigned an absolute magnitude,
We arrive at the question of how stars are
classified and the absolute magnitude esti-
mated. For insight into this problem, we
turn to Section 3-14 on the classification
of stars.



3-18 Exercises Apparent und Absolute
Magnitude

1. (a) Complete the following table as
far as you can:

Distance Apparent Absolute
Star (parsecs) Magnitude Magnitude
A 10 2
B 106 4
C 40 0

(b) List the above stars in order of
decreasing apparent magnitude
(brightest first).

(¢) List the above stars in order of
decreasing absolute magnitude.

2. Tabulate the answers to the following
problems giving M, m, distance in
parsecs, light years, and parailaz. Give
the stars brightness compared to the
sun. The sun's absolute magnitude is
about 4.9.

(a). Star A with apparent magnitude
{m) — 1.8, D = 3.57

(b). Star B with m = —0.3, parallax
0.03”.

(¢). Star C with m = 79, D = 10
parsecs

(d). Star D with M = 4.37, parallax
0.45"

3-14 Classification of Stars

When we observe the stars, we can only
study the light of the star. Scientists are
not directly able to measure, weigh, or to
take the temperature of a star. By com-
bining the study of observed light and
laboratory analysis, astronomers are able
to make predictions as to the chemical and
physical properties of the stars,

RED
ORANGE
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wnt ‘ GREEN
oY BLUE
INDIGO
VIOLET

Figure $-47

When white light is passed through a
prism, it is separated into its component
wavelengths which we identify as colors.

The short wavelengths produce the sen-
sation in our minds of the colors we ecall
violet and blue. The longer wavelengths
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produce the red colors of the visible spec-
trum. Invisible to the human eye are the
very short ulcra violet wavelengths, and
the very long infrared wavelengths. To
detect these wavelengths, scientists must
turn to specialized instruments.

There are three types of spectra. A
spectrum is the band of light produced
when light is separated into its component
parts. To separate the light into its spec-
trum, astronomers use a diffraction grat-
ing instead of a prism. The diffraction
grating is a special metal or glass plate
with extremely fine grooves, about 30,000
per inch.

The first type of spectrum is produced
from glowing solids or gases at high pres-
sure. An example of this is an incandes-
cent light bulb. In this continuous spectra
colors blend without interruption.

A gas heated under low pressure pro-
duces a bhright line (or emtssion) spec-
trum. This second type spectrum consists
of specific bright lines depending upon the
chemical composition of the gas.

If the light from a glowing gas under
high pressure, continuous spectrum, is per-
mitted to pass through a cooler gas at low
pressure, the spectrum will be continuous
missing only certain dark lines. Each dark
line will be in the exact position of the
bright-lines spectrum produced by the
cooler gas if it were heated to glowing.
The dark line spectrum is also called an
absorption spectrum. This is the third
type of spectrum produced by most stars.

uinmmmwmm
e mm mﬂ'r m K

Figure 3--48

“Photo from the Mt. Wilson and
Palomar Observatories”



Figure 8-48 shows part of the absorp-
tion spectrum of the sun. This mass of
dark lines is representative of many va-
porized elements found in the outer layers
of the sun. Comparing these dark lines in
the spectrum of the sun to known labora-
tory spectra, the dark lines can be identi-
fied as being produced by certain chemical
clements found in outer layers of the sun.
Using this method, more than 60 of the 92
naturally occurring elements of Earth have
been identified in the sun. It is thought
that nearly all the natural elements of
Earth are found in the sun and are wait-
ing to be identified.

By comparing the spectra of various
stars to known laboratory spectra, ele-
ments may be identified in the stars. This
leads to the classification of stars. Stars
are classified primarily according to tem-
perature, Stars that have the strongest
portion of their continuous spectrum in
the blue region are found to be of very
high temperature, Stars with the strongest
portion in the yellow are average tempera-
ture and the coolest stars have the strong-
est portion of the spectrum in the red and
orange,

Star Color Star Temperature
Blue white 20,000—40,000°F
Yellow 5,000—S8,000

Red and orange 4,000—5,000

These are general classifications, and in-
dividual investigations of stars can ap-
proximate their individual temperatures.
Being able tv classify or group stars en-
ables us to investigate the difference in
the absolute magnitude of various types
of stars. A star's absolute magnitude
(that is, intrinsic brightness) depends pri-
marily on its temperature and size. Two
stars of the same temperature, but of dif-
ferent diameters, would differ in absolute
magnitude, If the temperature and diam-
eter of a star is known, its absolute mag-
nitude may be approximated.

The determination of the relationship of
size, temperature, and absolute magnitude
for stars has resulted from complex for-
mulae and exhaustive laboratory studies.
For our purposes we will assume that each
unit area of a star at a given temperature
radiates equal amounts of energy. Then
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two stars of the same size and tempera-
ture will radiate equal amounts of energy.

The brightness of a star varies as the
fourth power of the temperature, in abso-
lute units (Kelvin scale).

Example: Siar A and star B are the
same size. The temperature of star A is
twice the temperature of star B. Star B
has an absolute magnitude of 5.2, What
is the absolute magnitude of star A?

The ratio of the temperatures is 2; the
ratio of the brightnesses is 2+; thai is,
2x2x2x2 Star A is 16 times brighter
than B. A brightness ratio of 16 implies
a difference in magnitude of 8. 5.2 — 3 =
2.2. The absolute magnitude of star A
is 2.2,

Stars of the same temperature, but of
different sizes may vary in brightness.
The brightness between two stars varies
as the surfaces of the stars and thus as
the squares of their radii.

Ezxample: Star C and star D are ol the
same temperature but vary in size. Star C
has a diameter of 800,000 miles and star D
has a diameter of 1,600,600 miles. How
much brighter is star D) than star C? The
ratio of the radii is 2 to 1; the ratio of
their brightnesses is 4 to 1. Star D is 4
times as bright as star C. Notice that
there would be a difference of about 2.6
magnitudes.

The two comparisons that we have con-
sidered may both be used for the same
stars.

Ezample: Star A’s diameter is twice
that of the sun and its temperature is 38
times as great. What is star A’s absolute
magnitude?

The ratio of the diameters is 2 and this
provides a factor of 4; the ratio of the
temperatures is 3 and this provides a fac-
tor of 8 ; that is, 81. Thus star A is 4 x
81; (that is, 324) times as bright as the
sun. A brightness of 324 implies a differ-
ence in magnitude of about 6.5. The sun’s
absolute magnitude is 4.9; 49 — 6.6 =
—1.6. Star A's absolute magnitude is
about —1.6.

Stars vary greatly in temperature and
diameter and therefore differ in abseclute
magnitude. The stars from Table 3-5 are
listed in Table 3-7 according to their ab-



solute magnitude. Compare the stars with
respect to their absolute :nagnitudes, tem-
peratures, and sizes. Then compare the
stars in absolute and apparent raagnitudes
and distances. Note that the radii are ex-
pressed on a scale such that the sun has
radius of 1 unit.

TABLE 341

Abso Appar.

lute ent
. Mn,v:l- Tempe.r- Mlaugdnl-
Kﬁ?}%aran —05 1" ‘,I&TOK' ng 0.78
Regulus —0.7 [18,000 { 3.6 1.33
Arcturus | —0.2 | 4,000 | 29.0 | —0.08
gapei‘.a 40.2 g,ggg 11.0 0.90
ega +04 |1 2.5 0.00
rius X 1.4—_15','0'0'0_' 1. | —1.43
Altajr 422 {8000 ] 1.7 0.76
Proeyon 42.6 | 6,500 [ 2.0 U.36

Alpha

Centauri | 446 | 6800 1.0 0.30
Sun 449 1 55600 1.0 | —267

By classifying stars, we are able to esti.
mate their temperatures and sizes. From
the temperature and size of a star we ap-
proximate its absc’'ute magnitude. By the
comparison of the apparent and absolute
magnitudes, we arrive at an estimation of
the star's distance.

The preceding discussions of determin.
ing distance, magnitude, brightness and
star classification is a simplification of one
method. Through the years, astronomers
have developed many instruments. These
new instruments have enabled man to de-
termine distances in numesous new and
exciting ways.

3-14 Kzercises—Classification of Stars

1. A star which increases and decreases
in diameter at regular intervals of time
is called a pulsating atar. A *'pulaat.
ing” star varies in diameter from a
minimum value of 26 times the sun's
diamater to & maximum of 36 times the
sun's diameter. How many times
brighter is the atar at maximum size
that. at minimum eize? How many
megnitudes differenie does this repre.
sent?

2. A star's temperature i3 2.5 times the
sun’s and its diameter is 37 times the
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sun’s diameter. How many times
L.righter is this star than the sun?

3. A star's absolute magnitude Is —1.2. Its
temperature is 2 times the sun'. tem-
perature. What is its diameter in
terms of the sun’s ?

4. A star has an apparent magnitude of
7.6, It is 2 times the ~an's dilameter
but only 14 of the sun’s temperature.
What is its distance in light years?
Note: Problems of this type are ap-
plicable to computer programming.
See Section 6-5, Exercise 3.

3-15 Frontiers of the Unfverse

Specialized methods of determining dis-
tance have been discussed in the last few
gections. These methods have enabled man
to make more varied and precise calcula-
tions.

Originally the term ‘“fixed” star was
used to separate the planets from the stars.
The planets were considered “wanderers.”
After careful study with modern tele-
scopes, the individual star motions were
detected. From the motion of a star
thrcugh space, we are able to calculate
the star’s space velocity, its motion rela-
tive to the sun. This enables us to under-
stand better our star, the sun, and our
galaxy, the Milky Way. From the study
of the light from a special class of
stars, variable or "pulsating’, man is able
to predict their absolute magnitude.

In 1962 observations with the 200 inch
telescope at Mount Palomar literally
doubled the size of the visible universe.
Prior to this time, astronomers had p.sac.d
the nearby galary, Andromeda, at a dis-
tance of 800,000 light years. By studying
a class of pulsating stars, Classical
Cepheids, in the Andromeda galaxy, as-
tronomers found that the galaxy was much
further away than originally thought.
Current estimates place the galaxy at
about 2,000,000 light years. The outcome
of th’s observation was to place this galaxy
and all similar galaxies at twice their
original distances. This one discovery for
all practical purposes doubled the size of
man’s known uhiverse.

Manr has been able to estimate the dis-
tances to far off galaxies and celestial ob-



jects. The encrgy from Jistant galaxies
has its maximum value in the yellow re-
r“on of the spectrum. Galaxies appeer to
be receding from the sun and Earth. As
the distanre to the galaxies increases, the
maximun: value of energy is shifted to-
ward the red area of the spectrum. This
is referred to as the ‘'red shift.” The dis-
tance and speed of recession of the gelaxy
is related to the amount of the shift.
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Figure 3-49

“Phofoi)m k from the Mt Wilton and
alomar Observalories”

Radio astronomy is a new and interest-
ing branch of astronomy. Many remark-
able discoveries have taken place through
the observations of the giant radio
telescopes. Cuirent investigations of the
“red shifts” produced by certain radio
sources, place these sources over 100,000,-
005 parsecs from the sun. 1t is theorized
by some that if these sources were only
20 times farther away they wouid be at
tlic edge of our universe.

“One-hundred million parsecs'’—again
we have a problem of 1nits! As the par-
secs replaced the astronomical unit, the
1nega-parsec replaces 1,000,000 parsecs.
The distances to these strange radio
sources would be approximated as :00
megaparsrcs, If we stretched our method
of determining distance to its present
limit, we might place the edge of our
universe &% 2,000 megaparsecs. The mega-
parsec is probably the largest unit that
will be necessary to describe our universe.
However, it should be remembered that to
the Greeks the stadia was the largest unit
necessary to describe their universe. \We
taay be confident that in the future if the
need arises, astronomers will invent a new
and larger unit,

We have travelled a sveat distance since
estimating the distance to the door. Any-
one care to calculate the number of inches
in a megaparsec? You may now convert
to r.ore familiar units!
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MOTION IN SPACE

You may think that you are *‘sitting still”
as you read this book. Actually you are
traveling through spece at about 18.6 miles
per second as Earth orbits the Sun. In order
to be conscious of movement, we need to
have a point of reference. We ‘‘see”” an ob-
jecc as moving when we can compare it to
something in a different state of motion.

It was many centuries before man was able
to prove that Earth was moving in space.
Now we know that our solar system as well
as the other bodies in space move in rela-
tionship to one another. As we begin a more
detailed investigation of space and the math-
etnatical models we may employ to deseribe
it, we will be concerned with three or more
dimensions.

The charts and drawings in this chapter
are on two-dimensional planes . . . the pages
of this book. It will help you to construct
three-dimensional models as you go along.
Use the charts and suggestions as guides for
your constructions. When you have finished
see if you cannot better explain three dimen-
sional space to someone ¢lse. Then try four
dimensions. You may be surprised at how
well you will be able to do it.

This chapter {s a brief resumé of some of
the fundamental knowledge of motion that
has been gathered over the ages and codified
into two topies: (1) kinematics, the deserip-
tive language of motion; and (2) dynamics,
the controlling factors of motion.

4~1 What Is Motion?

'The questions a space scientist raises con-
cerning satellites are not unlike the questions
you would cotsider when planning an ex-
tensive trip. What is the distance? How long
will it take to get there? When is the best
time to start so that you arrive at the right
time?

Travel in space requires that we find
answers to such questions with a high degree
of accuracy. Therefore, we must know many
things about motion. Studies indicate that
there are commonr patterns to 2ll cbjecis in
motion.

On the surface of Earth, an odometer (the
mileage meter part of the speedometer) tabu-
lates the distance travelled (Figure 4-1). A
navigator .ises the coordinates of his points
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Figure }-1

of origin and destination to compute distance.
The use of coordinates in measuring Jdistances
in space requires the extension of a two-
dimensional coordinate system for a plane
to a three-dimensional coordinate system,
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In Figure 4-2 can you tell the distance
from 0 to A? From A to B? In the type of
three-dimensional coordinate system shown
in Figure 4-2 there is an origin 0, a y-axis
0Y usually directed toward the right-hand
edge of the page, an x-axis 0X directed away
from the page (toward you), and a r-axis
0Z ditected toward the top of the page. Each
axis is perpendicular to the other twe. Any
two of these axes will determine a plate. Can
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you fi..1 three planes determined by the axes?
What angles do these planes (the coordinate
planes) make with each other?
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Figure §-3

In Figure 4-3 lines have been sdded to o'’
in the visualization and solution of the pro.
lem. The plane in wlich the lines AD and
AB lie is not a coordinate plane and could be
described Ly stating that it {s perpendicular
to the xy-plane, forms an angle of about 9.56°
with yz-plane, and contajins the point A.
Tke coordinates of the point A are usually
stated as an ordered triple (20, 0, 80); the
point B is at (80, 60, 60). In each case the
x, ¥, and 2 coordinates are given in alpha.
betical order as in the two-dimensior 4] sys-
tem. To find the distance from A to B look
for right triangles and use the pythagorean
theorem.

How long would {t take to fly from a point
A to a point B in space? Notice that a pre-
diction is asked for. Many scientific space
vehicles gather data continuously and trans-
mit information at intervals when they are
within range of a receiving station on Earth.
The receiving station must be prevared to
accept the information at a predetermined
time and from a predetetmined position
(point) in space. The determination of the
time and place of the space vehicle requires
that the time of flight between two poinis
be predicted accurately. Consider the prob-
lem of receiving the TV picture data about
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Mars transmitted by Mariner 1V, Such cal-
culations can be made because the character-
istics of the motions of space vehicles are
known.

By observing the time it takes an objectl
to travel a known distance a rate may be
determined. The rafe at which an object
travels is equal to the distance it travels in
a unit time, The selection of time measuring
units is arbitrary but seconds or hours are
customary. In every day experience the hour
is usual. For example, the legal speed limit
may be 60 miles per hour.

On the Expressway connecting Baltimore,
Maryland and Washington, D. C., there is
& measured distance of 5 miles. Suppose you
timed your trip ever this distance at 5 min-
utes. Your rate of travel (spced) would be 6
miles in 5 minutes; that is, 1 mile per minute.
This rate {s often expressed in other ways
(Table 4-1). Because of the common usage
of miles per hour and feet per second, it is
helpful to remember that 88 ft/eec = 60
mi/hr.

Table 4-1
Determination of speed
Distante /time Rate Unit time
Gmiles gmile__ |y minute
5 minutes minute
6 miles miles
1/12 hour hour 1 hour
. feet
6 miles X 5280 mile fect ! second
800 seconds second

The rate r for traveling any distance d in
a time t may be found by dividing d (a
number of units of lengths) by t (a number
of units of time);

r = % (8]
Notice that for any given period of time the
rate is proportional to the distance; r =
(1/t)d. The rate r is a number of units which
we may identify as

unit of length
unit of time



Table 4-2

Dislance
End Total during Aversge Change
of distance Interval spe of
Aight travelled fi/sec " 'rla'!:c .
from gec. to
0 sec. 01t 0 0
1 25 0] 1 26 fL 25
2 100 1] 2 15 6
3 225 218|125 125
4 400 31417 178
b 626 41 5 | 225 225
6 900 61 6 | 275 275
7 1225 6] 7 |32 326
8 1600 7188 316
9 2026 8] 9 | 425 425
10 2500 9110 | 475 475
Measuring the speed of u satellite in a 500 -
circular orbit is somewhat like driving on a 3 450}
turnpike or throughway. If the measurements ¥ wol
were made at several diflerent places the re- § 3ok
sults would be the same, The speed would be 0l
uniform. Other types of driving such as on K
city streets or roads with traffic lights and £ 2501
the motiun of the satellite during launching ™ 0o
would give various speeds at diiTerent times. s sor
Some theoretical measurements of dis- § §  oor
tances during the Jaunching of a model & L) S
rocket are given in Table 4-2. We shall use < L ; I
three related figures (Figures 4-4, 4-5, and 6
4-6) to help us understand the various speeds TIME IN SECONDS
of the rocket.
2500 Figure }-5
4
/ r
200 / (7] 3
50 FO-O+€00+000-00 9090000
. / o
4 za 1500} / I
| 0] 8
9 g r4 l/ 0F
1000 + / T URE U N U W U WO T
/ 1 2-3 4567 8 910
13
ok / THME IN SECONDS
FPigure | -6
»
,_.'T A A2 4.2 & 3
01t 234567 8¢10 ; The points in Figure 44 :l?:dw the total
N SECOND istance (y-coordinate) trav in x sec-
TIME IN SECONDS onds. Notice that the x-coordinates indicate
Figure 4~} the ends of the time interval,
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The points in Figure 4-5 show the distance
(y-coordinate) travelled during each second;
each point is plotted over the midpoint of
the interval for that second. In Figure 4-4
we are concerned with the total distance
traveled up to a specified time; in Figure
4-5 we are concerned with the distance (as
determined from Table 4-2) travelled during
each second. In Figure 4-5 the y-coordinate
of each point is a rate (speed) since it is a
measure of distance for a unit cf time.

Scientists and mathematicians are cureful
that their words describe a situation very
closely. Examine the data in Table 4-2 and
Figure 4-4. During any interval does the
rocket have a speed? (Notice the singular,
speed) Even during a small interval the speed
is changing. The column for speed is headed
average speed to indicate that the rate is not
constant during an interval. Our formula (1)
for speed can be modified to give the arerage
speed F over an interval of time:

Ad
= 1t (2)
where At is the length of the interval of time
and Ad is the change in the distance during
that interval of time. The bar above the ''r”
indicates that it represents an average value.
The average speed, T, per second is the change
in distance each second as illustrated in
Figure 4-5.

Each y-coordinate of a point in Figure 4-5
may be obtained from the coordinates of
points in Figure 4-4. Consider any two suc-
cessive points (x;, y1) and (x;, yi) in Figure
4-4. ‘We use A to indicate a change in value
and have

T

Ad = ¥y, — y; = Ay
At = Xy, ~ X; = AX

The value of % is called the slope of the

line through the points (x,, y,) and
(x:, yl)°

Figure 4-7 can be considered an enlarge-
ment of a small portion of Figure 4-4 to
show 2 successive plotted points (x;, y,) and
(xs, ¥1). Do you zee that the point (xs, ¥i)
has ccordinates x; + Ax and ¥y — Ay? The
lines joining (xs, ¥1) to the other two points
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are perpendicular. The triangle having the
three points (x;, y1), (X» y1), and (x5, y») as
vertices is a right triangle; the tangent of
the angle at (x;, yi) is equal to the slope
Ay/Ax of the line through (x,, yi) and (xs, ¥s).
You probably realize that unit designations
will have to be tagged on to the slope in order
to apply the numbers to this problem. Slopes
are mathematical concepts which are ap-
plicable to many types of problems. Compare
the slopes of the lines joining successive
plotted points in Figure 4-4 with the y-co-
ordinates of points in Figure 4-5. Compare
the slopes of the lines joining successive
plotted points in Figure 4-6 with the y-
coordinates of points in Figure 4-6.

The y-coordinates of the points in Figure
4-6 show the change in distance for each
second and thus the average speed during
each second. The y-coordinates of the points
in Figure 4-6 show the change in average
speed from one second to the next and thus
the arerage acceleration duriig each second,

Av

= at @)
The completion of the right hand column

of Table 4-2 is left to the reader. At he top

of the column the units are given as ft/sect.
Now how would you express a change in

speed per unit of time?

change of xpeed
unit of time

Figure §-7

a




Speed is expressed as ft/sec so if the measure-
ment of two speeds are subtracted the units
for the change of speed will also be ft/sec.
Then change of speed per second can be

symbolically written ft/5¢¢
sec

Unit names are not numbers but it is
customary in science to write and handle
them in a mathematical manner for ease
and simplicity of communication. Then

%e;cm_ is stated as ft/sec? and can be read

either as feet per second squared or feet per
second per second.

4-1 KEzxercices What Is Molson?

1. Mariner IV was about 135,000,000 miles
from Earth when it was directed by a
radio signal from Earth to take pictures
of Mars. What interval of time was re-
quired for the signal from Earth to
reach Mariner 1V? The speed of light is
about 186,000 mi/sec.

2. Your local newspaper may give you the
times when Echo I passes over your
locality. This s:tellite has an approxi-
mately circular orbit 1000 miles above
Earth and has been timed at 118.8 min-
utes for one revolution. What is its
speed? (Remember that Earth's radius
is about 4000 miles.)

3. The Alouette Program is an example of
the cooperative effort between govern-
ments to expand man’s knowledge of
space. Canadian scientists designed and
built the 320-pound satellite called Alo-
uette; NASA launched it from the Pacific
Missile Range. Alouette’s orbit is nearly
circular at 630 miles altitude. The time
of revolution is 105.4 minutes. How does
the speed of Alouette compare with that
of Echo I? You might want to speculate
as to why there is or is not a difference
(see ‘“hapter B).

4-2 Road Maps Withoul Roads

Have you ever given direction to a traveller
as to how to get to a distant town? With
route numbers and well marked intersections
available, the task is not difficult. Now imag-
ine having to tell a pilot how to get to a
distant place. Obviously it can be done even
on flights over the ocean whete one wave is
not distinguishable from another. The pilot
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would like to know two things: (1) How far
is the destination and (2) in what direction
is the destination. Information Jike this which
contains a measurement and direction has a
special name in mathematics and science.
It is called a rector quantity and can be repre-
sented by a direcled line segment. (There are
some minor differences in the way mathe-
maticians and scientists define and symbolize
veeters but the fundamental concepts and
operations are the same.)

* >
® o

oA A

| ] 1]
What is the distance from A to B?
Figure }-5

In Figure 4-8, how would the vector in-
formation be stated? The distance would be
easy after selecting the unit length. This
value is called the magnitude of the vector.
In Section 1 of the Figure most people would
say ".nat the direction is East. (Would this do
it A and B were locations on a star map?)
In 11 and III you might also give compass
directions since most people refer to compass
directions because of their experience in
reading maps.

The word "refer” nas particuler signifi-
cance. In addition to seeing the bare details
in the picture, you have superimposed-—in
your imagination—lJines which indicate di-
rection. If the units of lengths are included
on these superimposed reference lines then
the lines are called a frame of reference.
i’igure 4-8 would then appear as in Figure

In 1 of Figure 4-9, B is 400 miles to the
East of A. The directed line segment AB is
a oy and represeyts the disptacement from
A to B; that is, has a magnitude of 400
miles and a direction of East. Note the way
some mathematicians indicate that a di-
rected line segment from A to B is a vector
by a half arrow with the poing of the hal
arrow over B. A single letter (3) could also
indicate a vector. A vector has magnitude
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and direction (including sense suich as East
or West along the line). In case 111 AB has MAGNITUDE DIRECTION VECTOK
a magnitude of 400 miles and direction of SCALE:

30° East of North. How would you descrine
AB in case II?

The three vectors in Figure 4-9 have the
same magnitude but not the same direction.
Therefore they are three different vctors,
For convenience let us refer to them as &,
&, and ¥. Suppose a vehicle started from a
place of origin and moved as directed by &
and upon completing the displacement &
moved from that plsce according to 8, and
then continued on as directed by §;. How
far would the vehizle be displaced from the
first starting point? Although you are solving
this on a flat piece of paper this probtem is
similar to the problem of a space scientist
in knowing where his space vehicle is at all
timea.

Distance, a measurement of length, is a
scalar quantity. Distance with a specific
direction nssociated with it can be repre-
sented by a vector. Speed (a rate) is a scalar
quantity but speed with a specific direction
associated with it is a vector quantity, and
is called celocily. Since a vector is a directed
line segment, the previous statement moeans
that in a frame of reference a velocity can
be represented by a directed line segment as
in Figure 4-10.

It is important that scalars (measurcs
without direction) and vectors be readily
idcntified because there is a difference in the
\x;‘ay that mathematical operations apply to
them.
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1/8 in = 25 mi/he,

f

45 mi/he N

120 mi/he €

A

i40 mi/he 30° N of E

165 mi/he W

Figure }-10

In this section you have found that a dis-
placement can be represented by a vector;
also the result obtained by two given dis-
placements one after the other is a displace-
ment and is represented by the vector that
is the reclor snm of the vectors for the given
displacements,

4-2 Erzercizes Road Maps Withou! Roads
Make vector representations of the fol-
lowing situations. For cach flight determine
the distance of the terminal point from the
starting point.
1. Pilot A flys 75 miles due East and then
75 miies due East.

()



2. Pilot B flys 75 miles due East and then
75 miles NE,

3. Pilot C flys 15 miles due East and then
75 miles North.

4. Pilot D flys 75 miles due East and then
75 miles NW.

5. Pilot E flya 756 miles due East and then
75 miles West.

€. In Exercises 1 through 6 nctica how the
values of the magnitides of the sum of
two vectors changes as the angle between
the vectors changes. How large and how
small can the magnitude of a + b be-
come for given vectors of equal magni-
tudes?

4-3 VYelocity Vectors

A displacement has magaitude (distance)
and direction. Therefore we represent dis-
placements by vectors, such as Xﬁse The re-
sult of two successive displacements is a
vector quantity; any changein ¢ -enceof)
displacements is a vector quan...y.

The rate (of speed) at which an object
travels has been defined as the change in
distance per unit time. Thus rate is repre-
sented by a scalar; it has magnitude but not
direction. We may associate a direction with
a rate by considering displacement instes
of distance. The rate with ita direction is “he
relocity of the object; we write

-

as
Vel

where V and 38 are vectors and At is a scalar
since t is & sealar.

Consider a rocket with a velocity of 1000
ft/sec and going straight away from the
Earth (0° to the zenith). Then the velocity is
changed =0 that the direction of fiight is at
10° to the zenith. The velocity has changed
because one of the characteristica (dirention)
of the velocity has changed. This is pictured
by vector representation in Figure 4-1), A
change in velocity is a vector quantity and is
found by subtracting the first vector from
the second. How does vector subtraction dif-
fer from vector addition?

The successful insertion of a satellite into
orbit depends on the ability of the launching
vehicle to produce the exact terminal velocity
{that is, both the proper speed and direction

of the satellite} that is, necessary at the
instant the satellite is separated from the
last stage rocket or its engines are shut off.

4-3 Ezercises Velocily Veclors

1. At a certain instant in its upward Hight
a sounding rocket has a velocity of 2000
ft/cec at 0° to the azimuth. At this in-
stant upper air currents from West to
East give the rocke: a velocity of 200
ft/sec in the direction of the current.
What is the true velocity of the rocket?

2. At a point in its path a rocket which is
falling to Earth has a speed of 8000
{t/sec and the flight path makes an angle
of 60° with a horizontal line. What are
the horizontal and vertical (x and y}
components of the velocity?

4-4 Acceleration Yeclors

In future sections it will be noted tnat the
rate of change of velocity is an important
quantity in analyzing the ways motion may
be altered. If you apply previous techniques
for obtajning rates you may see how the
rate of chapge of velocity is obtained. We
may find &v bv using vectors. Then all that
needs to be done is to time the interval over
which the change took place and we will have
Av/at. Dividing a vector dv by a number

Av

-3 N s
Av=v,; - vy
-\ -
vi v2
10°
Figure }-11



At is permissible and results in a vector.
Then write

38

at

and use the half arrow to show whether we
are thinking of acceleration as a vector or as
a scalar (the magnitude of @). There are
many applications of vectors in science and
engineering. How does a top spin? How was
Pluto discovered? How did Astronaut White
maneuver in space? How is a rocket guided?
Vectors are used in the solution of each of
these problems.

In mathematics an algebra of vectors has
been developed. You have started to build
an understanding of vector algebra. You have
added and subtracted vectors. You have di-
vided a vector by a scalar. Several other
properties are considered in the exercises,

-4 Ezercises Acceleration Vectors

1. What are three ways a driver ray ac-
celerate the car he is driving?

2. A rocket accelerates uniformly at 100
ft/sect for 10 seconds starting from rest.
What is its velocity at the end of 6
seconds and at the end of 10 seconds?
How far did the rocket travel in 5 sec-
onds and 10 seconds? Compare the ve-
locities and distances at the end of 6
seconds and at the end of 10 seconds.
Do the comparisons appear reasonable?

4-5 Acceleration of Falling Objects

It was Sir Isaae Newton who first proposed
the requirements for putting a satellite in
orbit about the Earth. He came to his con-
clusions by analyzing motion and arriving
at a descriptive language for motion such as
the one we have used. His conclusions about
orbital motion were an extension of an analy-
sis of the motion of projectiles.

You should remember that a predecessor
of Newton's, Galileo, studied the motion of
falling bodies and shocked the population of
his day by stating that all bodies fall with
similar motions. Today we know that this
motion is best represented by an acceleration
veetor,

Figure 4-12 shows a vector representation
of the velocity of a falling object at one
second intervals. Notice that for t > 0 the
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differences (¥4 ~ ¥,) between any two suc-
cessive vectors are the same. The time inter-
val between successive veclors is one second.
Then the acceleration is

Since At_= 1 and for a particular location on
Earth &V is the same for each value of t, ﬂ_\f
vector & does not change and is dezignated §.



Before continuing with projectile motion
we shall re-examine the frame of reference
idea to sece if there is a way of showing that
g is always “down.”

+Y
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Figure 4-18

At the location of the object at 0 seconds
(before it begins to fall) the lines indicating
the frame of reference may be drawn as
shown in Figure 4-13. The x-axis indicates
the horizon; the y-axis indicates the vertical.
The points Po. P(, Pf, Pt, P:, P; indicate
the positions of the object at 1 second inter-
vals of fall. Notice that I, is the position
after t seconds. The object starts falling {rom
P, and reaches the Earth b seconds later.

The positions of the points may be indi-
cated by their y-coordinates; they may also
he considered in terms of displacements from
the origin of the frame of referente. Then
we use the sign to indicate direction and
have in feet:

0Py = +400 v = 4266
= 4384 o= +144
y = +336 s = 40
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We may now find the change in displace-
ment As,, the average velocity Vi, and the
acceleration 8, for each one second interval.
For example dunmg the third seccnd

AS; =
(+456) — (4+3886) = —-80ft.

AS; --80 -
V. At = ——l— = —80 ft/sec.

Durmg the fourth second
AS| = 0P| - OPa
= _(_-i-l44) — (+266) = —112ft.

2 - A_.Z. :12 — 112 ft/sec.
'il‘l = ;tv‘
_(=112) - (=80) _ _32 ft/sec.

The value -82 ft/sec' is the common ap-
proximation for § at locations near sea level,
In Chapter b you will read about the factors
which affeet § at any location in space.

4-8 Analysis of Projectile Motion

Now let us return to a look at projectile
motion. We shall use both velocity vectors
and acceleration vectors. Suppose an object
is on a high eliff and by some means is put
in motion horizontally so that it leaves the
cliff with a horizontal velocity of 100 ft/sec.
As soon as the object leaves the support of
the cliff and is in space, gravity will cause it
to accelerate downward at 82 ft/sec”.

The origin of the frame of reference is
placed at the top of the cliff where the sbject
starts its motion (Fi vlgure 4-14). For t > 0
the velocity vector in the 4x direction
and the acceleration vector R {s in the -y
direction. Newton’s contribution to the solu-
tion of this type of problem was to suggest
that the motions in the two directions could
be handled separately. Each may be used
to establish one element of the ordered pair
necessary to locate the object within the
frame of reference at any time t.

Since the time of motion is limited by the
length of time it takes the object to reach
the ground, we shall examine motion in the
-y direction first. How far is the object
displaced in the ~y direction at the end of
each second. We can use the result estab-
lished in previous sections and compute the
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displacement from a knowledge of accelera-
tion and time. Reinember that for one second

intervals

— 'y -

Asy = Bey1 — 8

At =

-— .
%o B & B
: At at

- -\-"M‘l - _\?t _ ZT?t
A= “ERT S &g

When we consider the —y direction, Vo = 0
since the only initial velocity is in the +x
direction; we say that the y component of
the initial velocity is 0. We also have 8, = 0,
to = 0anda = —82 ft/sect for all values of
t. The velocity in the y direction at the end
of the first second is —32 {t/sec; the average

velocity during the first second is 0+ é— 82),

that is, —16 ft/sec. Since At = 1 we have
fort > 1

-2 =V -V, (t>1
eg.u = 6‘ - 32
and the values of ¥, are
T=0 ¥, = —80 ft/sec
Vi = —16ftjsec ¥, = —112 ft/sec
¥, = —48 ft/sec  and so forth.

- Similarly sincefor At =1
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= - Y
Ve = i&{»l - B¢
-
Brr = 5 + W
and the displacements along the y-axis are

Bo=0 = —144 ft
B o= —-16ft 8 = —256 ft
B; = —64ft  and so forth.

The formula § = 3at® ce'. be developed
as in the exercices and be used to produce
these same results.

Now consider the horizontal motion. In
this direction the motion of the object is
described by the vgctor equation

8=V
where V = 4100 ft/sec and does not change.
Then

8% =0 % = 43800 ft
§1 = -|-100 ﬂa -8.4 = +400 ft
8 = +200ft  and so forth.

The position of the object at the end of
each second may be indicated by its x and y
coordinates as given by the displacements
along the axes. At the end of the first second
{t = 1) we have (+100, —16); at t 2,
(4200, —64); at t = 3, (4-300, —144); and
so forth until the object strikes the ground.
(See Figure 4-15).

4-6 Exercise Analysis of Projectile Motion
Refer to Figure 4-15 and consider the trajec-
tory (the path) of the object.

Interpolation is a process whereby the
scientist guesses what is going on in his
problem between the points he has plotted.
Before you use interpolation to guess the
trajectory of the object, extend the data by
finding the coordinates for the half second
intervals. Then connect the points to pic-
ture the path of the object.

What two factors determined the hori-
zontal distance traveled?

Suppose the height (altitude) were in-
creased to several thousand feet, what
changes would have to be made in our un-
stated assumption about ground level?
(Magellan’s trip settled this, didn’t it?) Go
way up to satellite altitude (hundreds to
thousands of miles) and guess what might
happen.
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4-7 Circular Motion

We have just used velocity and accelera-
tion vectors to describe the motion of an
object on a curved path (Section 4-6). Let
us now examine the motion of an object
around a circular path and seek a way of
describing this motion in terms of wvector
quantities.
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Any point P, on a circle may be identified
by its coordinates (x,, y,) or by the radius,
r, and ZXOP, where the angle is measured
counter-clockwise as in Section 1-3. In
Figure 4-18 £XOP, = 45° For any angle 6
and any point P: (x, y) on the circle

X = rsin 6,
y =rcosé.
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A circular motion of an object is repetitive;
that is, after one revolution the same motion
is repeated. This fact can be used to deter-
mine the speed of the object. (Is speed a
vector or a ccalar quantity?) Supposer =3
ft; then the circumference, ¢, of the circle
is 2=r where = =~ 3.14; ¢ ~ 18.8 ft. Sup-
pose also that the obJect takes 5 seconds
for 10 revolutions. Then

d = 183 ft. (for 10 revolutions)

d 188 {t
Ve~ %
where v is used for the (scalar) magmtude of
v to avoid confusion of rate and radius.

If the object were moving at 37.6 ft/sec
in a straight line and the direction was known
we could represent its velocity by a vector.
To do this with circular motion would seem
to violate the concept of vectors for the
object’s direction of motion is always chang-
ing. Is it ever going ina +y, or —x, or some
other direction? The answer may seem to
be no. We know, fiom laboratory evidence,
that there is a tie or force toward the center
of the circle which holds the object on its
circular path. If this tie were severed the
object would immediately assume a straight
line path which has a direction tangent to
the circle at the point where the object was
located when the tie was broken (Figure
4-17). For this reason and others, which are
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String breoks
at this point

Figure 4-17

Javeloped in advanced mathematics, the
velocity of the object in Figure 4-16 at any
point P on the circle is represented by a
vector having a magnitude nf 37.6 ft/sec
and a direction tangent to the circle at the
point P.

Figure 4-18 is a vector representation of
the velocities of an object in circular motion.
The velocity wvectors are equally spuced
about the circle. A vector equwalent to each
of these velocity vectors is drawn with 1ts
origin at the center of the circle; Vi = W,
Vi = Vo R v, = Vy’, and so forth, We use the
veetors Vi, V¢, . . . to obtain vectors Av,,
Avs, and so forth.

_Notice the geometric figure formed by the
Av vectors. Suppose that the equal spacings
betweer the vectors on the circumference
were decreased until there were many, many
velocity vectors on the circumference and
each had an equivalent drawn {rom the
center of the circle. Then the Av vectors
would (1) increase in number and (2) de-
crease in magnitirde. Now what would the
geometric picture of the Av vectors begin




Figure 4-18

to look like? The figure would approach a
circle in appearance. This is a key idea. If
it doesn’t make sense to you, then you should
make a vector drawing following the direc-
tions given until you see the circle. Remem-
ber that the speed, v, is the same at all
points of the circle. N

The sum of the Av's will approximate a
circle with a radius of v. Therefore the change
in velocity in one revolution of the object
has a magnitude of 2xv, the circumference of
the circle made by the &v's.

Consider our example in which 10 revolu-
tions took 5 seconds. One revolution oceurs
in 0.5 seconds and the acceleration of our
cbject will he

2rv _ 2737.6

t 0.5

I'he time for one revolution of an object
in a cirecular motion is referred to as the
period T of the motion, Thus for circular
motion we have

= 574 ft/sec?

_ o
vV = T and
g o 20V _ 26@m/T) _ 4w
T T T
4-7 FEzxercise Circular Motion
< 4xr _ 2ar
From a = T and v = T prove that
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4-8 Angular Velocity

There is another way to look at the speed
of an object in circulay motion. The object
considered in Section 4-7 was timed at 0.5
seconds for one revolution. This statement
could be restated as 360° per 0.5 seconds or
changed to unit time 720°/sec. In physical
and mechanical problems it is common to
state angles in terms of radians (Section 1-3)
and to call the speed in terms of angles per
unit time angular velocity. 1t is customary
to vse the symbol w (Greek letter omega)
for -he angular velocity in

radians
unit time
Then since 1 revolution is 2» radians we have
o = 27 _ 4 rad
0.b sec

Notice that this corresponds to 720 deg/sec
since 2x radians equal 360°.

The conversion from angular velocity v to
linear velocity v is possible since

s =rd
and therefore
8s _ A9
At At
whence
V =ruw

The angular velocity « = 4 rad/sec then
corresponds to a linear velocity

v = 4¥r = 12 X 3.14 = 37.6 ft/sec
as we obtained in Section 4-7.

4-8 Ezxercise Angular Velocity

What is the angular velocity of your loca-
tion on Earth? How does this compare with
the angular velocity of the location of a
person living on the equator? For this prob-
lem assume that Earth rotates once every 24
hours and has a radius of 4000 miles. You
may have to lock on a map to find your
latitude. How does your speed compare with
the sp.eed of a person on the equator? You
may use trigometric functions or proportions
to get the radius and circumference of the
circle of latitude for your location.
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Do you see how this type of consideration
effected the placing of the Atlaniic Missile
Range in Florida rather than Maine?

4-9 Forces

We have considered ways of describing
motion throughout the first eight sections of
this chapter. In other words we have con-
sidered kinematics, the mathematical and
graphical description of motion. The kine-
matics used by scientists in describing the
motions of satellites and space vehicles is
more complex than these descriptions, It re-
quires the competent use of plane and solid
geometry, analytical geometry, trigonom-
etry, vector algebra and calculus. Many
mathematicians are employec at NASA lo-
cations, such as the Goddard Space Fligit
Center, to determine the kinematics of space
craft.

How is the motion of a space vehicle pro-
duced and controlled? What effects riotion?
Even though the story bas been told many
times, it is worthwhile (particularly in this
space age) to ponder over the hehavior of
moving objects as described by Newton,
(Often referred to as Newtcn's laws of
motion.)

Everyday experiences seem to indicate that
all moving objects eventually will stop mov-
ing. Questions arise since the time to stop
may vary. What causes objects to stop? Why
does a ball roll longer on a bare floor than
on a rug? Why does a tennis ball slovs down
faster than a baseball? You could make up
many similar questions. It seems that some-
thing called a force ‘iriction, drag) is present
in every “slowing down’’ process.

The motion of an object at any instant
can be described by a velocity vector. Due
to the inertia of the object, it will continue
with this sam= velocity vector unless some
force is applied to it.

If a force is app'::.l to an object thean its
motion wili change. If the force is in the
same direction as the object is moving, the
object will gain speed; if the motion and
force ave in opposite directions the object
will slow down. This change can also be
represented by vectors. The longer the force
is applied the greater the change in velocity.
Incdeed the product of the force and the time
of application is proportional to the change
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in velocity produced; we write Fat « av.

After units have been specified, we shall

have
Fat = kav

for some constant k. Notice the force F
must be a vector quantity since Av is a
vector, both k and At are scalars, and the
procuct of a scalar and a vector is a vector.

"'his mathematical reasoning can be veri-
fird by laboratory experimentation. If you
carry the thought a little further, you will
realize that the directional part of F must
be preserved in the Av because the scalar
quaptity, At, can only change the magnitude
of F, Therefore the direction of the change
in velocity must be in the direction of the
applied force.

Notice that a knowledge of the mathe-
maties of vectors is a very valuable tool in
arriving at a hypothesis about the behavior
of physical objects. Then the hypothesis can
be checked (hopefully confirmed) in the
laboratory. Thus a tremendous amount of
trial and error experimentation can be
eliminated.

4-10 Mass

Suppose you mistook a bowling ball for a
soccer ball and gave it a swift kick. Neglect
the pain you would experience and examine
the motion produced on the ball. Would the
bowling ball behave in the manner you ex-
pected from the soccer ball? Why not?

We observed in Section 4-9 that since
objects have inertia, an outside force must
be applied to an object to change its velocity.
If equivalent forces are applied for the same
time interval to several totally different ob-
jects the resulting changes in velocity may
not be the same. The quantity of inertia
each object posvesses is called the inertial
mass (often just called mass) of the object.
To a physicist or space scientist, the mass
of an object is a measure of the object’s
resistance to a change of velocity by a force.

An experiment will demonstrate this idea
of mass. For this experiment you will need:

a sturdy table or work bench,

a vise,

hack saw blades,

“C” clamps of several different. sizes,

a stop watch or clock with a second hand.
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Clamp one end of a hack saw blade in the
vise. On the other end fasten the smallest
“C" clamp. Cause the “C" clamp to swing
Lack and forth by initially deflecting it a
few inches and letting go. Tinte the interval
for 10 complete swings of the “C"” clamp.
(Any number of swings will do as long as
you can adequately time that number.) Re-
peat this for a “C”’ clamp of each size. Note
your results in a Table with headings as in

the clamps can be made by comparing the
frequencies. Use the smallest clamp as the
basis for comparison and find the ratio of
the masses of the clamps to it. The swinging
hack saw blade and clamp is an example of
an inertial pendulum,’

Numero.is experlments of many types have
led to the conjecture that the rate of change
of velooity (that is, acceleration) is related
to the mass, If the mass is doubled, then
the acceleration is halved; if the mass is
multiplied by three, then the acceleration is
one third as much as before, We say that
acceleration varies inversely as mass; that is,

a o

M
Since from Section 4-9
- —
FAt = kAv

Fod g
= ki = Ka.

The statement aa I/M implies that the
prod.ct of themassanc _.e magmtude of the
accelcration is a constant; that is, Ma = k.
This constant may be combined with the
constant k in the equatxon F=kito give us

Table 4-8, F = kM3
Table 4-3
Ratlo
Frequency of
Total Time for Number n Ratio
“C” clamp number total of swings - —of each of
size _swings swings per unit at masses
time to first
clamp
smallest
largest

The frequency, number of swings per unit
time, is an indication of the response of the
inertial mass of each “C" clamp to the force
supplied by the spring of the hack saw as it
stops and starts the clamp at the end of each
half swing. A comparison of the masses of
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for some constant %’

choice of units of measure

= Ma

For an appropriate

which is the customary form for Newton’s
second law of motion.



4~10 Euxercise Mass

Equivalent impulses (-P*xAt) are applied to
2 space vehicles. One has twice the change
of velocity of the other. What does this dif-
ference in behavior convey about their
masses?

4-11 Units of Measure

In order to avoid chacs in the meaning
of units of measure, international organiza-
tions have formulated and accepted defini-
tions of units. In this country the National
Bureau of Standards cooperates with agencies
of other countries and establishes the units
that we use. Some confusion exists because
there are two systems i use throughout the
world, The Englisi System is used in daily
living in the United States. Most of the rest
of the world and scientists everywhere use
the metric systen.. Table 4-4 shows the basic
units in both systems. The purpose here is
not to define precisely or to compare these
units, but to establich how each one is used.
Notice that the unit for mass in the English
system and the unit for force in the metric
system are printed in capital letters to em-
phasize that each of these must be under-
stood in {erms of the other three units in
its particular system.

Table 4-4

Basic Units of Measure
Length
foot

Mass Time Force

SLUG
meter | kilogram

English second

Maetric

pound
NEWTON

second

In the English system you are acquainted
with the foot, second, and pound as units.
If we use these units in the formula F = Ma,
consider only the magnitudes of the quan-
tities (Section 4-10), and solve for M we
have
F

M= a
where the magnitude F of F is measured in
pounds and the magnitude a of a is measured
in ft/sect. Thus the unit designation of mass
in the English system could be called

b
ft/sec?
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In order to reduce the wordiness of “‘pounds
per foot per second squared,” it is called a
slug. Thus mass in the English system is
stated in slugs.

Your weight is the amount of force the
mass of your body exerts in a direction
towards the center of the carth due to the
pull of gravity, What is your mass? What
is the mass of a person whose weight is 128
1b? Near sea level the person is subject to a
force of gravity which would accelerate the
person at 32 ft/sec?. Since weight w is a
force we have:

a g 32ft/sec?

Notice that w = Mg. Therefore the
weight of a given mass changes when there
is a change in the value of g. If the force
of gravity could be zero, the weight would
be zero.

Astronaut White was in a condition of
“apparent” weightlessness during his
“walk in space.” This phenomenon is ex-
plained on pages 132-33. He maneuvered
himself by gently tugging on the tether
cord connecting him to.the space craft. Sup-
pc:2 that the combined weight of White
and hie equipment, if he was on Earth
would be 192 pounds. Then the mass that
he needs to move by tugging on the tether
cord is 192/32; that is,6 slugs. If he had no
initial velocity toward the spacecraft, what
impulse (F X A t) would be needed to pro-
pel White back to the Gemini IV at 1/2
ft/sec? Let’s consider our formulas:

FXAt =mAv =6 X § =38

The magnitude of the impulse (that is, the
product of the applied force and the time
interval during which it is applied) must be
3. A 8 pound force applied for one secord
is equivalent to a 6 pound force applied for
one-half second.

It is interesting that Astronaut MeDivitt
mentioned that he found it necessary to make
compensating corrections in the space craft’s
position because of White’s tugs. Does it
make sense that when a tug is made on one
end of a cord which is fastened at the other
end that the fastened end exerts the same
magnitude of force on the object to which
it is tied? The Gemini space craft weighs (on
Earth) 7000 pounds. Can you find the veloc-
ity of the space craft caused by the tug?




Figure 4-20

This problem has been presented as if the
Gemini space ciaft had zero velocity. Ac-
tually it is moving at very high speeds. We
have used the space craft as the center of
our frame of reference and the frame of
reference moved with the craft. Hence when
White and the space craft had the same
velocity, the relative velocity of the two was
zern. This technique is common in the solu-
tion of many problem~.

Let us now refer to Table 4-4 again and
look at the metric units. If you are not fa-
miliar with the meer, and kilogram, you
should ask any science teacher to let you see
a meter stick and a kilogram mass; that is, a
unit of mass. To get the units for force we
again examine the formula F = Ma. When M
is expressed as kilograms and a as meters/sec-
kilogram meters

1
To reduce the wordiness of “kilogram meters
per second squared,” it is called a newton,
(abbreviated nt.).

In the metric system weight should be ex-
pressed in newtons since weight is a force.
The metric value of g is 9.8 m/seet. A kilo-
gram of material at the surface of Earth
weighs 9.8 newtons.

ond squared then F must be
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On several occasions we have stated that
all objects at one location fall with the same
acceleration. This should seem reasonable
after it is noted that the weight w of an
object is dependent on the mass of the ob-
ject. We have W = Mg from th+ formula
F = Ma. Therefore, W/M is a constant at
any one location; that is, weight is directly
proportional to mass. Any change in mass
wiil beaccompanied by a proportional change
in weight.,

4-11 FEzercises Unils of Measure

1. Inthelaboratory we determine the mass
of an object by weighing it on a balance.
This means we balance the weight of an
unknown mass with the weight of a
known mass. Why does this tell us ¢he
mass of the unknown?

A force of 10 newtons is applied for 5
seconds to a 10 kilogram mass. What is
the resulting change in velocity? What
is the acceleration during the 5 second
interval?

4-12 Dynamics of Circular Motion

Circular motion is a special case of an
object traveling in a curvaliniar path. In




Section 4-7 velocity vectors were used to
describe the motion of an object at a given
point in its circular path. The velocity vec-
tors at different points had different direc-
tions but the same magnitude. For equally
spaced points of the circle the successive
changes of velocities in equal time intervals
provided acceleration vectors that were equal
in magnitude,

The magnitude of the acceleration was de-
termined in Section 4-7 as a = 2%V

where

T is the period. Now we know that the
direction of @ is always changing so that it
always points towards the center of the
circle which describes the path of the object.
From Section 4-8 we know that an applied
force is required to produce an acceleration
and that the acceleration must be in the
direction of the force.

The characteristics which we used to de-
scribe the acceleration vector must alsv ap-
ply to the force vector. The force must have
constant magnitude and always be directed
toward a fixed point, the center of the cir-
cular path. Any force that has these two
characteristics is called a central force.

Any circular motion may be described as
motion that can be represented by a velocity
having uniform nagnitude and a central
force. The magnitude of the central force can
be computed from the mathematical state-
ment of Newton’s Second Law of Motion
and magnitude of the acceleration in circular
motion: s

F = Ma, - M

~ The paths of satellites, both natural and
man-made, usually are not perfectly circular.
For a circular orbit the velocity at a point
must be directed perpendicular to the force
at the point. Also the magnitude of the
velocity and the force must satisly a precise
relationship. The force is provided by the
Earth gravitational field in the case of Earth-
orbiting satellites and thus depends in part
upon altitude. So space scientists must be
able to construct, launch, and control a
satellite and its launching vehicle so that
it will have a precise altitude, speed, and
direction at the instant the space craft is to
assume a circular orbit. If any one of these
requirements (parameters) is not attained,
the orbit will not be truly circular.

v
a = -

’
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4-13 Rockel Engines

The forces inside a rocket engine are pro-
duced by extremely small particles called
molecules that move at very high gpeeds.
The purpose of the combustion within the
engine is to provide the high temperature
which causes the molecules to move in a
very, very rapid fashion.

In your imagination you can picture the
result of a fantastic number of sub-micro-
scopic particles moving at tremendous
speeds. Collisions occur between molecules
and between molecules and the walls of
the engine. Consider the molecules of a
hot gas inside a closed tank. When & gas
molecule comes to rest upon colliding with
the container wall the change in velocity
is equal in magnitude to the original veloc-
ity. The force of the collision can be
determined from the formula

T ME
at

where M is the mass of the molecule, At is the
time of the collision and Av is the change of
velocity. (The product of Mav is called
momentum.)

Figure }-21

Figure 4-21 is 2 representation of the
forces acting on the inside of a container
where for simplicity the third dimension has
been omitted. All forces are of the same
magnitude. Then the sum of the force vectors
must bezero. (You should be able to visualize



this.) The container has no motion because
the forces are in equilibrium, (Figure
4-22)

.|

=2

f3

Figure 4-£2

Let us remove a section from one end of
the container and make an opening in the
end as pictured in Figure 4-23. The vector
picture is now changed because the molecules
moving in the direction of the open end do
not collide with the container. Instead these
molecules of gases escape from the open
end. There can be no force exerted on the
container in the direction of the open end
by the internal gases. The gases rushing out
the open end represent only those molecules
having a velocity in that particular direction,
The other force vectors are not affected. Now
the sum of the forces as pictured in Figure
4-23 are not in equilibrium, There is a net
force Iy upon the end of the container oppo-
site the opening and thus the container will
move in that direction.

The magnitude of the force F: which moves
the container can be found by determining
the momentum of the molecules of gas which
escape out of the open end. It is these mole-
cules which are not balancing the propulsion

force. In order to find the force ¥y we need
I
— l
nmi'
Fa
N

Figure 4-23

-
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to know (1) the velocity of the escaping gas
molecules, (2) the mass of each molecule, (3)
the number of molecules, and (4) the time
interve \.

The velocity of the escaping gas molecules
can be measured by appropriate instruments.
The total mass of the escaping molecules is
simply the total mass of the burning mixture
supplied to the container. The time interval
is the time in which the total mass is burned.
From these data the force can be computed
using the sameé formula as before:

F=3
In rocketry this is the force which is called
thrust. The names and thrusts for a few of
the launch vehicles used by NASA are listed
in Table 4-5.

Table 4-5

Launch vehicle Thrust

Name Stage pounds
Thor-Agena 1 170,000
2 16,000
Atlas-Agena 1 368,000
2 16,000
Titan 11 1 430,000
2 100,000
*Saturn V 1 7,600,000
2 1,000,000
3 200,000

* Scheduled for first launch in 1967.

4-13 Exercise Rocket Engines

A 50,000 pound thrust acting on a rocket
for 5 seconds produces a 4,000 ft./sec change
of velocity. What will be the change of
velocity produced by a 10,600 pound thrust
acting on the rocket for 5 seconds? Would
it be possible for a 10,000 pound thrust te
produce a 4,000 ft./sec change of velocity
on the same rocket?

4-14 Sounding Rockets

Among the many space exploration pro-
grams that NAS/. administers are those
which investigate that realm of space below
which Earth orbiting satellites travel and
above which balloon ascension is not possible.

e
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This involves a type of vehicle known as a
sounding rocket,

The Nike Apache is a sounding rocket,
The name indicates that the payload of
scientific instrument is launched by a two
rocket motor system (Figure 4-25). The
Nike booster burns for 3.6 seconds with a
thrust of 42,600 pounds. The Apache motor
provides a 5,130 thrust for 6.4 seconds.

During a launch optical and radar instru-
ments track the movement of the rocket.
The tracking data is handled by computer
that not only records the numerical value of
such factors as time intervals, velocity, alti-
tude, range, and angles of the flight paths but
also prepares the graphic displays of these
data as shown on Figure 4-26 through 30 at
the end of this section (pages 114-118).

Mauny forces effect the flight of the rocket.
The two obvious ones are gravity and the
thrust, of the rocket motors. In addition the
atmosphere effects the flight by the move-
ment of winds and air resistance; that is,
drag. Figure 4-81 shows several configurations
of sounding rockets which have differing de-
grees of drag. Notice that the Figures 4-26
through 30 are labeled “Drag Case I.”

NIKE APACHE
54” NOSE
CONE
4.6.75" — PAYLOAD
VARIABLE -~ SMPARTMENT
-
d.65 y . APACHE
107 MOTOR
a0
%J A
d.17.5¢
e NIKE
d4.18.5" ——— BOOSTER
(LENGTHS TO '
NEAREST UNION)
B
B ot S
Figure }-25

The rocket under consideration was
lJaunched at Wallops Island, Virginia, at an
angle of 80° to the horizental in order that
the point of impact would be in the waters
of the Atlantic ocean and not over inhabited
land.

STANDARD DRAG CASE

11" NOSE CONE
2 DOVAP
ANTENNAE 0"
11* NOSE CONE NOSE CONE PITOT-STATIC
NO ANTENNA NGO ANTENNA EXPERIMENT

11" NOSE CONE
445" TURNSTILE
ANTENNAE

R
——
-
80" MAXIMUM
ALLOWABLE LENGTH

db db db

! i m v

Figure 4-31
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Table 4-6

Phase Time of
number Name of phase flight
Nike Burning 0 to 3.5 sec

1

2 |Coasting 3.6 to 20.0 sec

3 |Apache Burning [20.0 to 26.4 sec

4 |Burn-out to Apogee|26.4 to 198.5 sec
6 Apogee to Impact |198.5 to 385.8 sec

The flight of the rocket is divided into 5
parts as shown in Table 4-6. The term burn-
ing means that the rocket motor is providing
a thrust in the manner described in Section
4-13,

To know the composite picture of the
rockets’ behavior the interrelation of the
graphs (Figure 4-26 through 30) must be
understood. Figures 4-26, 4-27, 4-28, and
4-29 have the same time base (x coordinate)
for Altitude, Horizontal Range, Fiight Path
Angle, and Velocity. Figure 4-80 shows a
combination of the altitude and horizontal
range data but the scales for the x-axis and
y-axis are not the same. Accordingly, the
graphs must not be read as a picture. Re-
plotting Figure 4-30 with equal x and y
scales would give a more realistic idez. of the
geometry of the trajectory of the rocket.

The following questions and exercises are
to assist you. in gaining scientific information
from the graphs.

4-14 Exercises Sounding Rockets
1. What is the maximum altitude (apogee)
of the rocket? What is the average

vertical velocity up to apogee?

2‘

7.

9!

10.

11.
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How far did the rocket travel hori-
zontally (range) by the time it reached
apogee? What was the rockets' aver-
age horizontal velocity during this in-
terval?

From your answers for Exercise 1 and
2 find the true average velocity (speed
and direction) for the interval.

How far from the launch site was the
point of impact? (total range)

What is the average horizontal velocity
of the rocket?

From Figures 4-26 and 4-27 determine
the rockets' true velocity at 90 sec-
onds. Verify your answer (magnitude
and direction) from the data on Figure
4-28 and 4-29. (Suggestion: Use a 20
second interval to determine AS).

[dentify each of the five phases with
patterns of velocity in Figure 4-29.

During the second phase (coasting)
Figure 4-29 shows a decrease in veloc-
ity. Determine the value of the negative
acceleration for this interval. How does
your answer compare with the value
of g?

What average acceleration was pro-
duced by each of the two rocket engines?

In Figure 4-28, the curve of the flizht
path angle goes through 0 and changes
from a positive to a negative sign. How
do you interpret the change in sign?

In order to know the speed and direc-
tion of the rocket at any point in flight,
which two graphs must be used?
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Chapter 5

SPACE MECHANICS

by
Robert F. Chambers
Newark Senior High Sehool
Nevark, Delaxare
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The remaining chapters of this publication are especially designed to furrish supplementary
activities in spacz-science oriented mathematics for students who have had an opportunity to
participate in the advanced courses now beirg offered in many of our high schools. However,
all students will find these materials informative and interesting in that they provide an insight
into the new course content of high school curricula.
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SPACE MECHANICS

SPACE MECHANICS has been written
for students who are especially interested in
mathematics and science. Its purpose is to
answer some of the many questions about
space flight and demonstrate the application
of mathematics to space problems. Two
mathematical concepts that may be new to
you have been introduced to serve as ex-
amples of new and exciting mathematical
concepts which lie ahead. SPACE ME-
CHANICS has been prepared to help bridge
the gap between mathematics as it is taught
foemally in the classroom and as it is used by
physicists and engineers. When you work the
exercises, be sure to keep your units of
measure straight or you may find yourself in
orbit around Hogan's barn.

5-1 Velocity and Acceleration

Figure 5-1 illustrates the setup a student
used to record the displacement of a car as
it was pulled along a horizontal wire by a

steady force. Mass m (about 610 grams) and
the car (about 1000 grams) are coupled with
an appropriate length of paper tape. Cash
register tape about 114 inches wide is suit-
able for this purpose. The tape should pass
freely through the timer and over the double
pulley. The portion of the tape that is passing
through the timer is covered with a strip of
carbon paper. This is held in place with
wicket shaped wires as illustrated in Figure
5-2. The carboned surface should face down.
Soon after the timer is started the car should
be released. The falling mass will pull the
car along the wire. The vibrating clapper will
strike the moving tape and the impact marks
will show how the position of the car changed
with time. The rubber stopper is a shock
absorber and makes it possible to stop the
car without placing undue strain on the wire,
The stopper should have room to slide after
impact. The turnbuckle is used to draw the
wire taut.

TIMER CRRCUIT
KNIFE
10 & « SWITCH
2031 RHEOSTAT \;
DRY CELLS 5 OHMS - 4 AMP,  TO TERMINALS
OF BELL
PIANO wirt BUMPER RUBBER
STOPPER rirnBUCKLE
3
TAPE '
GUAMP
CAx ::3;?%?:’ : ");5:’?'.» PGP .

M RET A |

Q "A~¥'§'
3 - DOUSLE
> PULLEY

;"f
X L) 4
AR e 4 TAPE
> CLAMP
m fe MASS

Figute §-1
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Figure §-2

The timer (Figure 65-2) i3 a modified door-
bell. To be of any value as a timer the motion
of its clapper must be essentially periodic;
that is, the time intervals for all successive
strikes of the clapper must be essentially the
same. The setting of the contacts and the
operating voltage are critical for periodic
operation of a doorbell clapper. These factors
are also peculiar to the doorbell. Hence the
conditions needed tc achieve periodic opera-
tio~ of the clapper are found experimentally.
The time between successive strikes of the
clapper can be measured with an instrument
called a s roboscope.

Much can be learned about the laws of
inolion with the equipment described. It can
be built at a modest cost. You may need help
with the timer but the rest will be easy.

The tape as marked Ly the student’s ex-
pefiment is shown in Figure 56-3. The separa-
tion ¢f the impact marks increases with time,
an indication that the speed of the car in-
creases with lime. Realizing that he could
not be sure about the time for the displace-
ment from rest to the first impact mark, the
student measured time with reference to the
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TIME MEASURED
INPACT FROM THIS  REST
MARK MARK POSITION

X AN
7

DISPLACEMENT
MEASURED FROM
HIS MARK
Figure $-2 THIS
first impact mark. Displacement of the car,
however, was measured with reference to the
rest position.

TABLE 5-1

Time, t Displacement, s

in seconds in centimeters
0 0.48
0.05 2.40
0.10 5.85
0.16 10.80
0.20 17.30
0.25 25.20

Table 5-1 contains the data collected by
the student.
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TABLE 5-2
Time, t Displacement, s
in seconds in centimeters
0 0
0.10 4.00
0.20 16.00
0.30 36.00
0.40 64.00
0.60 1256.00
0.60 144.00

Table 65-2 is ideal data for a motion similar
to that studied by the student. The period
of the timer for the ideal data is 0.1 seconds
whereas it was 0.05 seconds for the student.
The ideal data has been introduced for con-
venience only. Figure 5-4 is a graph of the
ideal data for the first 0.3 seconds. This will
be referred to as the student’s graph since the
experimental graph has the same general
form.

As a part of the laboratory exercise, the
student was required to determine the aver-
age velocity of the car during several inter-
vals of time. This he did using the average

velocity formula V = As/At. He read from
his graph (Figure 6-4) values of s for given
values of t. This data was used to find As and
At so the average velocity could be computed
with the formula. The data that the student
used to compute the assigned average veloci-
ties from Figure 6-4 is found in Table 5-3.

The student recognized that the average

" velocity of the car decreased markedly as the

interval of time was decreased by reducing
the final value of t. This trend aroused his
curiosity s0 he wanted to pursue it further.
He could see that there would be some diffi-
culty in reading the graph accurately for real
small values of At, so he consulted with his
teacher about this problem. The student and
teacher working together discovered that
Figure 5-4 is a graph of the equation s =
400 t*. This information enabled the student
to calculate the value of s for any given value
of t. Armed with the equation for his curve,
the student obtained the data in Table 5-4.

After analyzing the data of Table 6-4, the
student came to three important conclusions.

These were:
1. As the new value of t decreases and

TABLE §-3
Average
Initial Final at Initial Final as Yelocity
Yalue of t | Value of t Value of s (Value of s Aa/at
0.10 0.20 0.10 4.00 16.00 12.00 120
0.10 0.17 0.07 4.00 11.56 1.66 108
0.10 0.16 0.05 4.00 9.00 5.00 100
TABLE b4
Average
Initial New Valge Initial New Value As Yeloeity
VYalueof { of t At Value of » of s as/at
0.10 0.13 0.93 400 6,76 2,76 920
0.10 0.12 0.02 4.00 5.76 1.76 880
0.10 0.11 0.01 4.00 4.84 0.84 84.0
0.10 0.105 0.005 4.00 441° 0.41 82.0
0.10 0.103 0.003 4.00 4,2436 0.243% 81.2
010 0.102 0.002 4.00 4.1616 0.1616 __80.8
0.10 0.101 0.001 4.00 4.0804 0.0804 R0.4
0.10 0.1005 0.0005 4.00 4.0401 0.0401 80.2
0.10 0.1001 0.0001 4.00 4.008004 0.008004 80.04
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approaches .10, the values of At, As,
and the average velocity decreases.

2. As tapproaches 0.10 the increment At is
hecoming smaller und approaching zero
as a limit, The value of At can bamadeas
near zero a: you want but it cannot be
zero for t ¥ 0.10,

3. As At apptoaches zero as a limit, the
magnitude of the average velocity
(As/At) beromes smaller and appears to
approach 80 as a limit. The average
velocity can be made as near 80 as you
want but it cannot be 80.
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CHANGE IN TIME, At

Figure §-3

Figure 5-3 shows graphically the student’s
third conclusion, The change in average
velocity as At approaches zero is linear. The
left end of the graph comes closer and closer
to 80 as At diminishes but it never reaches
80. As you may have already guessed, the
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number 80 is the velocity of the car at exactly
0.1 seconds from rest!

The instantaneous veloctty of abody is its
velocity at some instant of time. This velocity
cannot be computed exactly with the average
velocity formula, As/At, because there is no
change in displacement As and there is no
change in time At at an instant of time. In-
stantaneous velocity is the limit of the aver-
age velocity as At approaches zero and may
be visualized as in Table 6-4. The for-
mal procedure used to find this limit is
treated in detail in textbooks on advanced
mathematics.

Instantaneous velocity may be interpreted
as the slope of a line. The slope of the secant
line through points Py and P, of Figure 5-4 is
120; that is, the average velocity of the car
during the interval of time from 0.1 to 0.2
seconds. The average velocity of the car dur-
ing the interval of time from 0.1 to 0.17
seconds was found to be 108 em/sec (Table
5-3). This is the slope of the secant line
through points P; and P.. We shall refer to
the secant lines through P, as ‘“‘average
velocity secants.” For each value of At there
is a point P on the graph and an average
velocity secant line P,P. For any sequence of
values of At approaching zero, tkere is a se-
quence of points P approaching P, and a
sequence of average velocity secant lines. We
may think of a secant line pivoting about the
point P, as At decreases. There i3 a position
the average velocity secant can approach but
cannot assume because a secant must pass
through two distinet points. This position is
the tangent line at point Py. The slope of the
tangent line at point P, is the instantancous
velolcity of the car at exactly 0.1 seconds from
rest

In Chapter 4 you learned that the defining
concepts for velocity and acceleration take
the same form. An average or steady velocity
is the time-rate of change in displacement;
that is, 32/At. An average or steady accelera-
tion is the time-rate of change in velocity;
that is. 3v/4at. The meaning of instantaneous
acceleration will be easy for you to grasp if
you associate it with the r.aeaning of instan.
taneous velocity. This will be left for you to
do as an exercize. You may find it profitable
to study the graph in Figure 5-4. In your
mind, replace the axis of displaceme=ts with
an axis of velocities,




6-1 FExercises Velocily and Acceleralion

1. Graph the data the student collected ex-
perimentally (Table 5-1). Use this graph
to determine how long it took the car,
starting from rest, to travel a distance
equal to the distance between the
rest point and the first impact mark
thereafter.

Find an equation that essentially fits the
sraph of Exercise 1.

Use the graph obtained in Exercise 1 to
find the instantanecus velocity of the
car at exactly 0.14 seconds frow rest.

Compute the average velocity of the car
during the time intervals 0-0,05 sec,
0.05-0.10 see,, 0.10-0.15 sec., 0.15-0.20
sec., and 0.20-0.25 seconds (see Table
5-1). Assuine that the velocity of the car
at the middle of the time interval is
equal to the average velocity for the
wh " interval. This means that the in-
staataneous velocity of the car at 0.025
seconds is equal to the average velocity
of the car during the time interval
0.05-0.10 sec., 0.10-0.15 sec., 0.16-0.20
velocity of the car will be equal to the
average velocity during the time interval
0.05-0.10 seconds. Make a velocity-time
graph and read the acceleration of the
car from the graph. Save your graph for
a later problem.

5-2 More about Kinematics

In Section 4-8 you learned that the for-
mula A3 = YAt can be used to compute the
displacement of a body when (a) its average
velocity is known or (b) it has a constant

Ve

Velocity v

Time ¢t
Figure 5-6

velocity. This formula will not suffice in a
situation where the motion of a body is
irregular and it average velocity is unknown.

-How, then, is the change in displacement
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computed under such circumstar}ces? A clue
to the answer can be found ir ¥Figure 5-6.

This figure is the graph of a body moving
with a steady velocity v.. The area that is
hounded by the graph, the time axis, and the
lines t = t; and t = t; is the change in dis-
placeraent of the body during the interval
of time t, — t,.

Velocity v

Time t

Figure §-7

Figure 5-7 illustrates a more complex
motion. In this case the velocity varies con-
tinually and the area has an irregular shape,
making computation of the area much more
difficult. Techniques used to compute such an
area are treated in detail in textbooks of ad-
vanced mathematics. Some of these tech-
niques will be discussed in Section 6-5.

If the straight line distance between two
towns A and B is 150 miles and 3.25 hours is
required to make the trip, the average
velocity for the journey is A3/t with mag-
nitude 160/3.25 = 46.2 miles/hour. A motion
problem of the same type but with a less
obvious solution will now be considered. Sup-
pose that the velocity of a body varies accord-
ing to the equation v = k 4 nt? where v is
the velocity: cf the body in m/sec (that is,
meters per second) after it has traveled t
seconds; k and n are constants whose values
are 10 m/sec and 5 m/sec? respectively. At
the end of 3 seconds the velocity of the body



will be 10 + 5{3%); that is, 55 m/sec. What
will be the average velocity of the body dur-
ing the first five seconds? A graph of the
equation will help you visualize the solution
and costimate the answer to the problem,
With advanced mathematics the area under
the graph, which is equal t¢ the displace-
raent of the body during the first five seconds,
can be found. This turns out to be 258 1/3
meters. The average velocity can now be
computed with the formula As/At. The result
is 1/5 of 258 1/3; that ie, b1 2/8 1in/sec. A
knowledge of how to compute the average
velocity of a uniformly accelerated body will
be needed to derive other equations you will
use. Hence a formula for this type of problem
will be derived.

Velocity v

Time t

Figure 5-8

Figure 5-8 is a velocity-time graph of a
bedy wnoving with a steady acceleration,
When the time is zero the velocity of the bedy
is vo. The velocity of the body increases uni-
formly until at time t, its velocity is v. The
area that is under the graph, which is
bounded by the time axis and ordinates

= 0 and t = ty, is a trapezoidal region.
This area can be computed using the formula

=( 1/9 (b + B)h where b is the length v,,
B is the iength v, and h is the altitude At.
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Area = As = (1/2) (v, + vo)at

The magnitude of an average velocity can
be computed using the formula¥V = As/at;

v = 88 _ (/2)(ve + viar _ vo 1 Vi
At At 2
We define
_ V4V
v 5

Consider the problem of a car moviny from
rest with a uniform acceleration of 4 mi/hr/
sec for a period of 20 seconds, What speed
will the car attain and how far will il travel
during the period of accele.ation? In Section
4-4 you iearned thal average or uniform
acceleratlon is computed using the formula

= &v/At. The change in velocity Av dur-
mg the period of time At raay be expressed as
V¢ -- Vv, where v, is the velocity of the body
at the beginning of the period of time and v,
is the velceity of the body at the end of the
period of *ime. Hence

Vi — Vo

a —
At

and Vi = Vo + adt

The last equation tells how tu compute the
speed of the car at the end of the period of
acceleration. Since v, is zero,

ve = aAt =4 X 20 = 80 mi/hr.
The average velocity ¥ du: ag the period of
acceleration equals

vo +ve _ 0+ 80
2 2
and the distance the car traveled durmg the
period of acceleration equals Fat = 40 X
20 = 800 feet.

Computing the distance the car traveled
was really a three step problem, These steps
ate usually combined into one expression for
convenience. This will be done with the aid of
Figure 5-8. The change ir displacement of
the body is expressed as

(1/2)(ve + viat.

A velocity-time graph of a uniformly accel-
erated body is a straight line, The slope of
this line is the acceleration. Hence the accel-
cration of the body in this problem should be

= 40 mi/hr.

area = As =



expressed as

AV _ ¥ = Ve
At At
Solving the acceleration expression for v, and
substituting its value in the displacement
equation gives

As = (1/2)(v, + v. + aAt)At

As = voAt 4 (1/2)a (At)?
The last equation is commonly found in
physics books in the forin

8 = vot 4 (1/2)(at?)

where s is the change in displacement and t
is the length of time the body is accelerated.
In vector form the equation reads

3 = Vit + (1/2)3t

When a body accelerates from rest the initial
velocity v, is zero. In such cases, the dis-
placement equation fer uniform acceleration
reduces to

a =

g = (1/2)at"

5-2 Exercises Move about Kirematics

1. Estimate the area under the graph of
Exercise 4, Section 5-1, that is bounded
by the graph, the time axis, and ordinates
t = 0andt = 0.25. How does this area
compare with the change in displace-
ment of the car during that period of
time? (See Table 5-1.)

2. A steady force slows a vehicle at the rate
of 10 ft/sec each second. If the force is
applied at the instant the vehicle has a
velocity of 88 ft/sec (60 mi/hr), find (a)
the time required to reduce the velocity
of the vehicle to 22 ft/sec (15 mi/hr) and
(b) the distance the vehicle travels while
undergoing the velocity change. (Hint:
A decrease in veloeity is 2 deceleration,
or negative acceleration.)

3. Near the surface of Earth, all objects
falling frecly accelerate downward
approximately 32 ft/sect, or 1 g (if the
friction drag due to the air is neglected).
When an object is projectod upward it is
decelerated 82 ft/seet, or 1 g. Calculate
(a) the distances a body will fall, start-
ing from rest, in 1 second, 8 seconds, and
b seconds and (b) the velocity the body
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will have at each instant of time.
(Neglect friction due to the air.)

4. An object is projected vertically upward
with a velocity of 96 ft/sec. (a) How long
will it take the object to reach its peak?
(b) How high will it rise? (¢) When will
the object be 80 feet. above the ground?

§. Derive theformula v;? = v,! 4+ 2as from
the formulasvy = v, +atand s = v.t +
{1/2)at?,

/ﬁ;‘? ==
C
e

& 3
GLASS
TUBING

Figure 5-9

5-3 Centripetal Force

A feel for a central, or centripetal, force can
be gotton by whirling a sponge ball in the
manner illustrated by Figure 5-9. If the speed
of the ball is correct the ball will move
through a ciccle of radius r and the 1 kilogram
mass will not move. Two forces act on the
%all. They are the downward '!l;orce of gravity

¢ and the pull of the string T. These forces
{(vector qu%ntities) add to give the ceptrip-
etal force F.. The pull of the string T is a
consequence of the gravitational force P‘, on
the 1 kilogram mass.

If the speed of the ball is allowed to
diminish, the 1 kilogram mass will fall. This
isan indication that the resultant furce on the
ball is greater than the centripetal force
needed to keep the ball in its cirenlar path. If
thespeed of the ball isincreased, the centrip-
etal force on the ball will not be enough to
constrain the ball and the 1 kilogram mass
will be raised. The centripetal force required
to hold a mass in a specigc circular path is
critical. Centripetal force F', is an unbalanced
force and, according to Newton’s second law

N\



of motion, should accelerate the sponge ball
in the direction of 1‘3,. An acceleration caurad
by a centripetal force isreferred to as centrip-
elul acceleralion. Centripetal acceleration
will be explained with the aid of Figures 5-10,
5-11, and 5-12,

Figure 5-10

Mass m of Figure 5-10 is moving through
a circle of radius r with a steady speed Its
instantaneous velocity at p01nt P, is V. The
dir ction of this velocity is the direction the
mass would move, at that instant, if the cir-
cular motion ceased. During a small interval
of time At, the mass goes through an angular
dlsplacement 8 and arrives at point P, with
an instantaneous velocity V,. The average
veloc1ty _gf the mass durmg this mterval of
time is As/At. Velocitics V; and V5 have the
same magnitude because the speed of the
mass does not change. A change in the diree-
tion of a velocity like a change in the magni-
tude of a velocity signifiez an acceleration
(Chapter 4). Hence, the ever changing direc-
tion of the mass m as it moves through the
circle signifies a continuous acceleration of
the mass m.

The change in velocity of mass m as it goes
fror point P, to pomt P, is found by sub-
tracting vl, its instantaneous velocity at
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Figure §-11

point P;, from ¥, vy, its instantaneous velocity
at point P,. This is accomphshed by addmg
the negative of ¥, to ¥,. Flgure 6-11 shows the
subtraction. The change in velocity av
divided by At gives the average acceleration
of mass m as it moves from point P, to noint
P,.

Notice that the direction of the average
acceleration is not toward the center 0 of the
circle. Angie OP;M is a right angle; £ NP.M
is a base angle of isoscoles iriangle NP:M
with vertex angle M equal to 6. Therefore
ZNPM = (1/2)(180° —0) =90° - (1/2)8

and £0P;N = (1/2)6. Thus as the angular
displacement 6 P—§ pproaches zero, the average
acceleration /At approaches a position
along P,0.

Triangle P,OP; of Figure 5-10 is similar to
triangle P;MN of Figure 5-11 since both tri-
angles are isosceles triangles with a vertex
angle 8. Therefore,

PN PM,
BP0’
A!=v
As r

where v is the magnitude of the iiistantaneous
velocity. Solving the expression for Av results



in

Av = (‘—’)As.
r

Dividing both sides of the equatich by At
gives

AV _ V8
at r 7oAt

The ratio As/At in the Jast equation is the
average velocity of the mass as it moves from
point Py to point I’;,. The ratio Av/At is the
average acccleration of the mass as it moves
from point P, to point P,. The ratio v/r is a
constant in the equation. The first two state-
ments concerning the last equation give a
picture of average motion, To obtain a pic-
ture of instantaneous motior, it is necessary
to evaluate the average velocity (As/At) and
the average acceleration (Av/At) as At dimin-
ishes and approaches zero as a limit, As At
approaches zero as a limit the zverage
velocity will approach a limi? that we call the
instantanenus velocity. As At approaches zero
a3 a limit the average acceleration will
approach a limit that we call the instan-
tanecus acceleratirm, Substituting the instan-
taneous values in the last equation for Av/At
and As/At results in the following formula for
the magnitude of the centripetal acceleration

—

Figure §-12
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Figure 65-12 will help you visualize the
direction of centripetal acceleration. As in
Figure 5-11,

£OP:N; = (1/2) £P,0P. = (1/2)8
ZOPN, = (1/2) £P,0P,
ZOPN, = (1/2) £P,0P,

The average acceleration vectors P;N;, TN,
and PN, indicate the direction and relative
magnitude of the average acceleratior: asso-
ciated with the movement of mass m from
point P, to P;, P,, and P.. The closer the
point is to P;, the sinaller the angilar dis-
placement and the closer the average
acceleration vector comes to being directed
toward the center O. At the limit the
acceleration is instantaneous and radial (that
is, directed toward the center of the circle).

An expression for the centripetal force re-
quired to hold a mass in a circular path may
be obtained by substituting the value of cen-
tripetal acceleration (v?/r) for a in Newton's
second law formula, F = ma. Then

F = +
where F is the centripetal force in newton'’s
(Section 6-4), m is the mass in kilograms,
v is the velocity of the mass in meters/second,
and r is the radius of the circle in meters.

5-8 Fxercises Centripetal Force

1. A metal ball whose mass is 2 kilograms
and whose weight is 19.6 newtons (about
4.4 1bs.) is fastened to one end of a string
1 raoter long. Tha other end of the string
is fastened to a fixed point P on an over-
head support. The bail describes a hori-
zontal circle whose vcenter is directly
under P and the string makes an angle of
80° with the vertical. (a) Draw a diagram
of the problem. (k) Show the forces that
act on the ball. (¢) Compute the centrip-
etal force, and (d) calculate tha velocity
of the Lall.

2. A solid object whose inass is 1 kilogram
and whose weight is 9.8 newtons is placed
in a bucket and the bucket is whirled
through a circle in a vertical plane. If the
radius of the circle is 0.8 meters, what is
the least velocity the object can have at
the top of the path and not fall out of the
bucket?




§-4 Circulsr Orbits

Measurements are usually made by physi-
cists in a system of units called the absolute
system. In this system, all mechanical notione
are defined in terms of three fundamental
concepts. These are length, mass, and time,
When length is measured in meters, mass is
measured in kilograms, and time is measured
in seconds.

Force is 4 concept whose unit of measure,
in the absolute system, it derived from New-
ton’s second law of motion, F = ma; 1 unit of
force (newton) is that force which will cause
1 unit of mass (kilogram, abbreviated kg) tv
be accelerated 1 unit (m/sec?).

The mechanics of several topics to follow
will require the use of a special force called
weight, 8o it is essential that you know how
the physicist expresses weight. The phyeicist
expresses weigh! as mg, or the product of
mass and its acceleration due to gravity. Let
us see why this is done, Thefornula F = ma
reads as follows when used with absolute
units.

The accelerating force in absolute units

is equal to the product of the massin the

absolute system and the acceleratior.
When this formula is applied to a falling
body; the weight force WV is the accelerating
force F, the mass of the body is m, and the
acceleration of the body is g. Upon substitut-
ing these facts in the displayed statement
you obtain

The weight force in absolute units is

equal to the product of the inass in the

absolute system and g;

wnev tone = M ltgmluc’-

The value of g at the surface of Earth is
approximately 9.8 meters/sec?. Thus a 10
kilogram mass weighs approximately 98 new-
tons at the surface of Earth.

In 1686 Sir Isaac Newton announced what
is now known as Newton's law of universal
gravitation. This law is stated as follows: Each
particle of matter attracts every other par-
ticle with a force that is directly proportional
to the product of their masses and inversely
proportional to the square of the distance be-
tween them. In mathematical form the law
reads
mM

R

F
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where F is the force of attraction between
two particles whose masses ave m and M,
and R is the distance between them.

A spherical body responds to a gravita-
tional force as though its mass is concen-
trated at a point called the ccater of mass.
This point is the center of a sphere if the
mass is uniformly distributed. The distance
R between two spheres is the distance be-
tween their centers of mass,

Newton's law of gravitation asstated is un-
satisfactory for making quantitative predic-
tions because it is a proportionality and not
an equation. The proportionality does show
that the ratio

1‘\
mM
RT
must be a constant G and thus
mM
F=GX —ﬁ,T

This constant G, which is now known as the
gravilalional constant, kas been found experi-
mentally by measuring the gravitational
force beiween known masses that are a
known distance apart. This was first done by
Sir Henry Cavendish in 1789, The value of
the gravitational constant G as found
by direct measurement iz 6.670 X 10"

ﬂ":i,(-'ﬂ. When stated with G the
g-

formula for Newton’s law of gravitation is
in a form suitable for use with the abso-
lute units introduced.

Next consider twn particles whose masses
are m and M. When the particles are at a
distance R,

mM
F, =G Ry
When the particles are at a distance R,,
mM
Fy = G_R—,’

Thus Newton's law cf gravitation enables us
to express the relationship between gravita-
tional force and the distance between two
particles as a proportion;

F, R

Fy R

4



where F, is the force when the djstance be-
tween the particles is R, and F: is the force
when the distance is R..

Tahle 5-5
Relstive Dislance Relative Force
Between Masses of /.ttraction
1 1
2 2y
1
10 m _
. 1
1G0 maa
1
1.000_ 17}“0(‘266(-1

Table 5-5 shows how the gravitational
force decreases as two particles separate.

r-o%

Force F

9 Distonce R
Figure 6-13

Figure 5-13 shows graphically how the
gravitational force £ changes as the distance
R between two particles changes. The graph
is asyinptotic to each of the axes; that is, it
approaches but never meets either axis.
Hence, a position of zero gravitational force
is impossible.

The small letter g is the symbol for acceler-
ation duc to gravity and it should not be
confused with capital G, the symbol for the
gravitational constant, Acceleration due to
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gravity is not a constant but its value is in-
fiuenced by a number of factors. Of these
factors, the distance from the center of Earth
and the surface speed of Earth are respon-
sible for the greatest variations, We will con-
sider the effect of distance. When a mass
is at a distance R from the center of Earth
it experien:es a force F equal to

mM

R2

"This force is the weight force, mg. Henec
mM
R:

_GM

= R
This equaion shows that g is inversely pro-
portional to the square of the distance be-
tween the center of Earth and the point
where ¢ is measured. For two different dis-
tances Ryand R; we have

mg =G

_GM
g = R,
_ oM
B = R,
g _ R
g: R

where g, is the value of g at a distance R,
from the center of Earth and g, is the value
at a distance R..

When an artificial satellite is in a eircular
orbit around Earth, the contripetal force re-
quired to keep the satellite in the orbit is the
gravitational force between the satellite and
Earth. The velocity it must have to be
launched into its orbit can iLe found by
equating the centripetal force with the gravi-
tational force;

my? mM
® - CRr
. = {/GM

- R

where v is the circular orbital velocity of a
satellite in m/sec., M is the mass of the earth
in kilograms, R is the radius of the orbit in
meters, and G is the gravitational constant in
newton (m)

kgr -

Weightlessness is a word that has become a
part of our vocabulary in recent years and is
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certainly one that is often misunderstood.
The common belief that an astronaunt be-
comes weightless because gravity ceases to
act on him is absurd. A little experimenting
with Newton's law of gravitation will verify
that statement. The nature of weightlessness
wag spelled out in a subtle way when the for-
mula for the velocity of a satellite in circular
orbit was derived. If you will review the
derivation you wiil note that m, the mass of
the satellite, occurred in both members of
the first equation and did not occur in the
expression for v,

This means that the velocity nceded vo
place a mass in a given circular orbit is in-
dependent of the mass! The many free masses
that are a part of a spacecraft are themselves
in circular orbits. They are held there by the
force of gravity. Astronaut John Gienn aptly
described this state of affairs when he pointed
out that he soon learned to let go of his pen
where it was rather than lay it down.
Gravity, or centripetal force, will not move a
mass nearer to the center of Earth when the
mass is traveling in a circular orhit. Under
such a condition, one free mass in a
spacecraft would not exer, a ‘“down”
force on another, This condition is known as
weightlessness.

During the third orbit of NASA’s Gemini-4
spacecraft astronaut Edward H. White II
became the first American astronaut to leave
his spacecraft while in orbit. He demon-
strated in a most spectacular manner the con-
dition of weightlessness and the fact that he
himself was in orbit. White was secured to his
gpacecraft by a 25-foot umbilical line and a
23-foot tether line, botli wrapped together
with gold tape to form one cord. Because of
his weightlessness astronaut White used a
hand-held self-maneuvering unit to move
about. He remained outside the spacecraft
for a total of 2. minutes.

b-4 FEzxercises Circular Orbils

1. The diameter of Earth is approximately
8,000 miles. At what distance from the
surface of Earth is your weight only 3¢
of what it is at the surface?

2. What is the value of g at an altitude of
one Earth’s radius? Assume the value of
¢ at the surface to be 82 ft./scc.?
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3. Compute the mass of Earth in kilograms,
G = 6670 X 101 E?EE;’B_('H)_ the
g
radius of Earth i 6.37 X 10° metcrs, and
g = 9.8 mssec? at the surface of Carth,
Hint: The gravitational force F and the
weight force my are the same foree.

4. ‘The mass of the muon is aboat 1/80 of
the mass of Earth. The distance between
their centers varies from about 252,972
miles to 221,614 miles. At what point
hetween Earth and the moon is the gravi-
tational force of Earth balanced by the
gravitational force of the moon when
they are 240,000 miles apart?

5. Show that the velocity required to place
a sateliite in cireular orbit may be ex-
pressed as VgR where R is the radius
of the orbit and g is the acceleration due
to gravity at the clevation of the orbit,

6. (a) Compute the velocity required to
place a spacecraft in a circular
cquatcrial crbit around Earth at an
altitude of 4 83 X 10* meters (about
300 1niles). Consider the mass of
Earth to be 6 X 10* kilograms
(about 1,23 X 1025 pounds) and the
equatorial radius of Earth to be
6.37 X 10* meters,

What velocity would be required
for a similar orbit around the moon?
The mass of the moon is 1/80 the
mass of Earth and the radius of
the moon is 1.740 X 10" meters
{about 1081 miles).

7. An experimenter measured the value of ¢
by measuring the acceleration of a car
as it coasted down each of several wires
inclined with respect to the horizontal.
The following data was collected:

(b)

Acceleration Angle of
in ft/sec Inclination
3.16 16°
6.08 30°
931 50°
11.43 70°

(a) Makea graph of the acceleration and
the gine of the angle.

(b) Use your graph to determine the
value of ¢.

(c} Was the experimenter on Earth,’
Mars, or the moon? The value of ¢

w"‘\'
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at the surface of Earth is 82 ft/sec?,
on the surface of Mars it is 0.38 of
what it is on Earth, and on the sur-
face of the moon it is 1/6 of what it
is on Earth.

5-5 The Earth-Synchronous Satellite

The period of 2 satellite is the time required
for a satellite to niove once through its orbit.
If the orbit is circular with radius R, then
the period T is simply t¢he distanec 2xR
around tne orbit divided by the velocity v;

Do 20
v

When YGMY/R, the velocity of a satellite in
cireular orbit, is substiiuted for V, we have

4x2R?
} = S
T = aM
. RY
T = 31’ W‘

where T is the period of the satellite in
seconds, R is the radius of the orbit in meters,
M is the mass of the carth in kilograms, and
G is the gravitational constant in'newton
(m)/kg*

An Earth-synchrenous satellite is a satel-
lite whose orbital motion is synchronized
with the rotation of Earth. The satellite has
a cireular orbit and a 24 hour period. If the
orbit of the satellite is in the equatorial plane,
then the position of the satellite relative to a
fixed point on Earth is fixed; that is, an
Earth-based observer would always see the
satellite over the same spot on earth. If the
orbit is inclined to the equator, the position
of the satellite will not appear to an observer
on Earth to be fixed. Rath:r the satellite will
appear to oscillate north and south in a
figure-eight pattern but stay close to the same
longitude.

The radius of the orbit required to achieve

- synchronization can be found by solving the

equation
4xrIR3
GM

Tt =

for R:
} IT'GM

R = 4x?

For an orbit in the equatorial plane 1' =
24 X 60 X 60 = 86,400 and
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R = "/(86.400)' (6.67 X 10-1) (6 X 10%)
4(3.1416)*

: V16,62 X 10

This value for R, the distance from the
center of Earth to the satellite, is about
4.229 X 10" meters; that is, about 26,270
miles. Since the equatorial radius of Earth
i3 8,963 miles, an Earth-synchronous sateilite
in the equatorial plane must orbit at an slti-
tude of about 22,307 v iles. The velocity re-
quired to place the satellite in the synchro-
nous orbit is computed as follows:

_JCGM BT
Ve \/T = \, 4.229 X 107
= 3076 m/sec.

A velacity of 3076 m/sez is equivalent to
10,089 ft /sec and to 6879 mi hr.

Communication channels in the Un'ted
States have been inereased considerably in
recent years by the use of microwava radio’
transmission. Vast distarnces are linked by
microwave relay stations. These stations re-
ceive signals and, after suitable amplifica-
tion, pass them a'ong a line of sight distance,
or from horizon to horizon. Line of sight
transmission is one factor that limits the dis-
tance between stations, so microwave relay
stations are located on high towers or
mountains.

There is an increasing need for world-wide
communication channels so microwave radio
transmission is being experimented with for
this purpose. The principle is simple. Intelli-
gence from a comrunications system is fed
into a powerful transmitter, It sends a line of
sight microwave signal to a satellite in orbit.
After suitable amplificavion, the satellite
passes along a line of sight transmission to a
receiving station several thousand miles
away. The output of the receiving sta-
tion is fed into the receiving communications
network,

On July 26, 1963, NASA launched Syn-
com II, an Earth-synchronized communica-
tions satellite. It was placed in an elliptical
trajectory and carried to an altitude of
about 22,300 miles by a three-stage Delta
rocket. Syncom II was then propelled into a
circular orbit by a propulsion unit of its own
called an “‘apogee kick"” rocket motor. The
satellite was properly positioned in its orbit

.J’\



for radio relay duty by ground command
using the thrust of hydrogen peroxide jets.
The orbit of Syncom II was inclined 30° to
the equator so its position to an abserver on
Earth was not fixed. Ii stayed close to the
same longitude but moved north and south
in a figure-eight pattern.

On August 19, 1964, NASA placed Syn-
com IIl in a true equuloe‘ial Earth-syn-
chronous orhit. This satellite’s position rela-
tive to Earth remains fixed. Three such
satellites spaced 120 degrees apart can cover
all areas of the world by line of sight radio
transmission except a small portion of each
polar region.

5-5 FExercises The Farth-Synchronous
Satellite

Use these values in the exercises.

G = 6,670 X 10" newton (m)/kg?
Radius of Karth = 6.37 X 10% meters
Mass of Earth = 6 X 10* kilograms

Mass of mooun = 1/80 mass of Earth
Radius of the moon = 1.740 X 10° meters
Period of the moon = 29 days, 12 hours, 44
—= minutes, and 3 sec-
onds

Calculate (a) the size of a moon-syn-
chronous orbit and (b) the velocity re-
qugred for a spacecraft to be in such an
orbit.

Echo [ was placed in an elliptical orbit
with a perigee of 812.1 miles and an
apogee of 906.5 miles, Its period was
118.3 minutes. What period would
Echo T have had if the desired circular
orbit at 900 miles (1.449 X 10* meters)
altitude had been realized?

3. Kepler's first Jaw for planetary motion
states that the orbit of e: c¢h planet is an
ellipse with the sun at one of its foei.
Kepler's third law states that the squares
of the periods of the planets are propor-
tional to the cubes of their mean dis-
tances from the sun. Use Newton's law
of gravitation

F = .mM

RV
to show that ! - ser's third law propor-
tion also holds _ue for circular orhits.
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5-6 The Escape Velocity

Getting a spacecraft away from the Earth
involves work and the imparting of energy to
the spacecraft. This section will develop the
concepts of work and energy as they pertain
to the probtem of determining the altitude to
which a sa. lite will rise after launch.

The scalar product of two vectors is defined
as the product of their magnitudes and the
cosine of the angle formed by them. The
scalar produet of vectors A and B is expressed
as — el
A-B = ABcoagd

and isread “A dot B equals AB cocine theta”
where A and B are the magnituu.s of vectors
and B respectively and ¢ is the angle
formed by them. When you find the scalar
pvroduct of vectors A and B you are finding
the product of the magnitude of one vector
(either one) and the projection of the other
vector along the first vector (Figure 5-14).

|
A I
|
I
|
|
6 n .
R T R 2
8
Acos 8

AT = A (®Bcoud)
Figure §-1}

AB =B (Acos 8)

Work is done on a mass when a force
causes the mass to be displaced. Computing
work is an example of finding a scalar
product. Work, a scaiar quantity, is defined
as the product of force and displacement, two
vector quantities,

W =18 = FScos ¢

where W is the work doite in joules, T is the
steady or average force in newtons, and S is
the displacement in meters. Observe that
FS cos 4 reducea to FS when the angle
formed by the vectors is 0°. Also note that
FS cos 6 = 0 when the angle formed by
the vectors is 90°.

The work problems with which we will be
concerned are those where a force I acts
along the line of displacement 3 and angle
d1is zero. The force may or may not be steady.

.



If the force is known to be steady or is the
average of a variable fores, the work can be
computed using the formuvla W = FS. If the
force is variable and its average is unknown,
the work must be computed by ouner means.

.

7

Areo ® Work

Force F

"
Displeccement 3

1
Figure 5-18

Think of a rectangle wliose width is ex.
pressed in units of displacement, ¥hose
'~ngth is expressed in units of force, and
whose area is expressed in units of work.
Figure 5-15 is a force-displacement graph. It
shows how the force used to propel a mass
varied during the displacement. The work
done during the change in displacement
$; -- £ is measured by the area which is
bounded by the graph of the force, the dis-
placement axia, and the lines s = &, and
8 = 8.

Energy is the capacity for doing work. A
stretelred spring. for example, is said to
possess energy because it can raise a mass
when the lower end of the spring is released.
Afaliing pile hammer is said to possess energy
because it does work on the pile as it is
stopped. The quantity of energy possessed
by a body is equal to the amount of work that
can be derived from it. It is almost necdless
to say that work and energy are measured in
the sant2 units. Just as energy gives rise to
work; work gives rise (0 energy. The amount
of energy imparted to a mass is equal to the
amount of work done on it.
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Raising a mass to a higher elevation re-
quires work so the energy of the mass will be
increased by the amount «f work done.
Energy derived in this fashion is called
gravitational potential energy. If a body of
mass m is moved a short distance with a
steady speed from the surface of Earth to an
elevation h, the force required will be its
weight force mg and the work done will be
mgh. The gravitational potential energy of
mass n with reference to the surface of Earth
should, theretore, he expressed as

Ep = mgh

where Ep is the gravitational potential energy
in joules, m is the mass in kilograms, h is the
vertical displacement in ineters and g is
9.8 m/sect,

One assumption was made in arriving at
the statement E; = mgh. It was assumed
that g would be constant for the problem.
" \is assumption is acceptable only when the

‘ieal displacement b issmali. If his a large
u.-placement into gpace, the value of g will
change significantly 80 Ep = mgh will not be
& true slatement of the gravitational poten-
tial energy of mass m. How is the work and
hence the gravitational potential energy of
a mass computed when it is raised to a height
of several hundred miles above Farth? This
will be explained with the aid of Figure 5 16.

Figure §-1¢
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Consider a small mass m at a distance x
from the center of Farth (mass M). Let R be
the distance from the center of Earth to som
position in space. The gravitational force
and therefore the force required to move the
mass m from the surface of Earth (x =r) to
the position in space (x = R) decreases
steadily as x increases, In other words, at
x = r this required force is g where g =
9.8 m/sec.? As x increases from r to R, g de-
creases and the force g decreases as shown
in the graph in Figure 5--16. The work required
to movethe massm from the surface of Earth
toa distance R from the center of the Earth is
measured by the area that is bounded by this
graph, the x-axis, and the lines x = r and
x = R. We can estimate this area. When the
area is computed exactly using the equation

mM
F=G

for the greph, the area and thus the work \V
may be expressed by the formula

1 1
Ve GmM(; - R)'

Thus the gravitational potential encrgy of a
mass m at a distance R from the center of
Earth is

Er = GmM(% - %z)

where Ep is the potential energy in joules
when G, m, M, r, and R are expressed in the
absolute units introduced in this chapter.
How much gravitational potential energy
does mass m have if R is allowed tu increase
without bound? Does the energy increase
without bound? Consider the expression

Gmld (: - %{) as R increases without
bound. As R becomes larger and larger, %{
becomes smaller and smaller, and the expres-

gion GmM ('rl' - }l.{) is getting nearer and

nearer to GmM (} - o). Therefore the po-

tential energy of mass m approaches E’l:ﬂ!

According to the work-energy principle,
if work is done on a mass to iucrease its

velocity, the energy of the mass will increase
by the amount of work done. Energy ac-
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quired in this fashion is called kinetic energy.
Imagine a steady force F that acts on a body
of massm for a period of time t. This impulse
(Chapter 4) causes the momentum of the
mass to change by an amount mv, — mv,
where v, is the initiai velocity of the mass and
v is its final velocity. According to the work-
energy principle

AEy = Work on mass m
AE, = Fs = mas

8 = vt 4 }at?
AE, = ma(v.t + } at?)
AEyx = mav.t 4+ } mat?

- Vit = 2vivo 4 Vo!

at T

? ]
+ ) m(v; 2v{|iv_.,_+ Vo )t’
AE. = mvev, ~ mv.? + {4 myt = myy,
+ § my,?
ABy = § mvy! - § mv?

The last equation shows that mass m had an
initial kinetic encrgy of § mv,? and a final
kinetic cnergy of § mv!. The general equa-
tion for the kinetic energy of a body is
Ey = jmv!?

where E, is the kinetic cnergy in joules, m
is the mass of the body in kilograms, and v
18 the velocity of the body in m/sce.

In the absence of outside forces other
than gravity the sum of the kinetic and gravi-
tational potential energics of a body is con-
served; that is, remains constant. \WWhen a
body falls freely in 4 vacuum its loss of gravi-
taticnal potential energy reappears as an in.
crease in kinelic energy, but its total me-
chanical energy remains constant. When a
body coasts vertically upward (in a vacuum)
the body’s kinetic eneryy 18 gradually trans-
formed to gravitational potential energy, but
its total meehanical energy remains constant.
Conscrvation of mechanical energy will be
used to predict the velocity a zatellite must
have to escape from Earth.

A launch vehicle which is composed of
three stages carries a satellite of mass m to a



ra-

distance R, from the center of Earth. Suppose
that the velocity acquired by the satellite
during this journey is v. The total energy of
the satellite after launch is the sum of its
kinetic and gravitational putential energies.
This iz expressed by the equation

B = Gmm(} - %ﬁ) + jmv?

How high will the satellite go if allowed to
coast upward? Like a basehall thrown into
the air, the satellite will be decelerated
(slowed down) by gravity as it soars upward
to its peak at a distance R, from the center
of Earth. In going from distance R, to dis-
lance Ry the satellite’s change in potential
energy is equal to its change in kinetic eaergy.
The energy of the satellite is conserved. Using
this as our starting point, distance R, is com-
puted as follows:

AEr = AL,
. 1 1 1 1)

= fmv?! - 0
GmM _ GmM _ GmM _ GmM _ ,
o R, e i
GmM _GmM _, .,
R, R Jmv

20}1“, - 2(}:\1“1 = R1R:‘,"
2GMR, -~ R;Rywv? = 2GMR,

R, = - 2GMR,

P 26M - Ry

R,
Ry | - Ryt

26M
Observe that the mass of the satellite does
not affect the answer. All satellites with a
velocity v away from Earth and at a distance
R, from the center of Earth will coast up-
wanrd until they are a distance R, from the
center of Earth,

A satellite increases its gravitational poten-
tial ehergy as it increates its distance from
the enter of Earth. However, we have seen
that \he gravitational potential enery, of a
tnass m cannot exceed GmM,r. A satellite
will escape from Earths’ gravitational field if
the satellite’s kinetic energy at burnout is
enough to increase the potential energy of

the satellite to at least Gm M/r. If burnout
for a satellite occurs at a distance R from
the center of Earth, then the mininvim veloe-
ity v. necded for the satellite to escape
Earth's gravitational field mas be found as
follows:

AEp = AE,

GE}M - [GmM (g - %{)] = jmv? -0

M _ (;91553 + G";'l%i S

9}%1!_ = irav,?

[2GM
Ve = YR
Observe that the escape velocity at a given
distance R from the center of Earth is the
same for all satellites, Also note that the
escape velocity diminishes as distance R
increases.

6-6 Ezercises The Krcape Velocity

Use these values in the exercises:
G = 6.670 % 16— new:»n {m)/kg?
Radius of Earth = 6.37 % 10* meters
Mass of Earth = 6 X 10 kilograms

1. A spacecraft of mass 8800 kilograms
(9.68 tons) is in a circular orbit at an
altitude of 6.46 X 10° meters (400
miles), To prepare for docking, the
spacecraft must decrease its alt’tude
16,1560 meters (10 miles) and remain
in a circular orbit. How much work in
jcules must retrorockets do on the
spacecruft *o make this maneuver?

2. (a) What limit must Rv! approach in
the equation GM

Ry
1 - Rl\"
2GM

it Ry is to tecome infinitely large?

R| 1%

1)) Set%%'r equal to this limit and com.

pute the value of v required for R,
to become infinitely large.

3. Compute the escape velocity for a space-
vehicle at (a) an altitude of 4.845 % 10!
meters ‘300 miles) and (b) at an altitude
of 1.292 X 10t meters (800 miles).



4. A satellite is in & circular orbit with a
period of 110 minutes. How much addi-
tional velocity must the satellite be given
to escape from Earth?

5-7 Satellite Paths

In Sections 54 and 5-6 we considered
primarily the mechanies of circular orbits.
We will now consider more general orbits of
satellites; that is, orbits that are not circular.
It will be assumed (1) that the sacellite moves
under the action of a central force, (2) that
this force acts from a fixed point, and (3) that
the raotion of the satellite fs in one plane.
The paths that a satetlite may assume at
burnout are illustrated in Figure 5-17. The
path that is assumed depends upon the satel-
lite’s velocity . burnout. As & first step
toward understanding the motion of a satel-
lite along these paths, we will review the
geometry of the paths that is pertinent to our
problem,

The path of a point which moves so that
its distance from a fixed point is in a constant

Vo2 lﬂkg_ﬁl Hyperbolo
o

Ve ‘)/3.‘"&1 Porobolo
R,

V.<,’?lﬁﬁ‘_ ﬂ”“..7/

- [ 4

ve W%‘M" C!rch’&
Vo< %_*f. tllipo//

EARTH

Figure $-17
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ratio to its distance from a fixed line is called
a conic seclion (Section 1-8), or simply a
conte. The fixed point F (Figure 5-18) is
called the focus of the conic, the fixed line the
direciriz, and the constant ratio FS/D3 is
the eccentricity of the conic.

Figure §-18

The conic sections fall into four classes
according to their eccentricities. These classes
are for the parabola, hyperbola, ellipse, and
circle. Broken lines have been used to draw
the ellipse and hyperbola in Figure §-18. The
focus I and the directrix DD’ is common to
all three conics. The eccentricity e for each
class may be identified as follows:

parabola, e = 1
hypetbola, e > 1
ellipse, e < 1
circle, e = 0

The definitions of the ellipse given here and
in Section 2-4 are equivalent alternative
definitions.

The motion of a satellite in a ¢ircular path
is deacribed by a velocity whose magnitude is
constant but whose direction is continually
changing. The satellite experiences a st2ady
acceleration in the direction of a «entral foree.
1{ a satellite is moving along the path of a
conic that is not a circle, both the magnitude
and direction of its velocity changes con:

N/



tinually, The satellite is acccleraied by a
central force whose immagnitude and direction
changes continually. It is almost needless to
say that the motion of a satellite long the
path of a conic is very compl x, and it is
only by the use of higher matlkamatics that
an equation of the motion can he derived.

For years you have used the formula for
the area of a circle without urderstanding
completely its derivation. We shall use Kin-
stein's K = me? without having the faintest
notion as o how it was derivel. Should we
close this chapter and forget alout elliptical
orbits because we cannr.  understand the
initial equations used to derivs algebraie ex-
pressions we can all understand? You are
askad to accept Lwo important equations that
describe the motion of a satellite moving
under the action of a central force. These
cquations are:

%ia-g%+0coso

e = CRY!
GM

The symbols will be explaired as we consider
the cquations, ’

Figure §-10

Figure 5-10 fllustrates a astellite of mass
m moving under the action of a central force
F. This force Is directed toward the point 9

and s the gravitational force Gm. The

Rr
position of the satellite is described by
polar coordinates (Section 2-3) ¢ and R.
the magnitude of the radius vector OS. The
angular velocity (Section 4-8) of the satel-
lite at that instant is
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The two equations just given to you
describe the motion of the satcllite. The letter
C in these equations is a constant obtained
from the solution of the initial cquations
setup to describe the satellite’s motion. The
value of C must be found before cither equa-
tion can be fully int.vreted. This is done by
setting @ = 0° and faunching the satellite
parallel to Earth as illustrated by Figure
5-20, The distance from the center of Earth
to the satellite when 8 = 0° is Rq; the linear
velocity of the satellite is vo: and the angular
velocity of the satellite is wo. Sincecos 0° = 1,
the first equation hecomes

1 GM.
Ko~ Rt
1 _ GM

R Roluy!

C =

CR8IT

POWERED FLIGH!

fARTH

Frgure 5-20

In Section 4 -8 the relationship of linear
and anguls  locity was shuwntobe v = wur.
Thus

Vy * “.lz.

wy! =

Ra\’.’”“ Gh_l.
C R.’\'.’

The second of the two assumed equations
reads as follows for the initial (¢ = 0°) condi-



tions of flight:
(IRI)‘OJQ
GM

Aftor substituting for C and «,? we get for the
eccentricity

e = —

( Rove? — GM ) RAV_@“_
o - R,tv,! * R
GM
. - Rwve - GM
GM

Th~ class of the orbit can be determined by
substituting values for ve, the velocity of che
satellite at burnout. 1f the escape veloeity

‘[2GM is substituted for v,

R,
2GM
G
M
2GM ~ GM
e=—@om !

The eccentricity obtained is the eccentricity
for a parabolal The paths listed below can
also be predicted by substituting the velocity
with which it is identified.

If vo > .%M, e > 1 path is hyperbolic.
Ifvy < R M , e < 1 path is elliptical,

.
vy = VGR!\—{' e = 0 path is circular,

Figure 5-17 shows graphically the result
for each case. When the burnout velocity v,

is less than \’20 M but greater than {TEM

the satellite will go into an elliptical orbit at
perigee (Figure 5-17). 1f the burnout velocity

is less than M the satellite will still go

into an elliptical (.>rbit but the point of burn-
out will be at apogee (Figure 6-17). This be-
comes apparent when vaiues aipaller than

[GM

\-R—- are substituted for v, in the eccen-
[ ]

teicity equation. The result is a negative
value 10t ¢, an indication that the center of
force has shifted to the other focus of the
ellipse. If the burnout velocity falls too far
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below J‘;{“ the elliptical path will intorsect
warth and the satellite will not go into orbiit,

DIRECTREX

Figure §-21

It is conventent to express the motion and
energy equations for 8 body moving in an
elliptical path in terms of a, the semimajor
axis rather than in terms of e, the eccentricity.
Figure 6-21 will be used to determine the re-
lationship of e and a. Line segment ViV, is
the major axis of the ellipse and has length
2a. Line segment B,B, is the minor aris and
has length 2b. These two axes intersect at 0,
the center of the ellipse. The distance from
focus F to the center of the ellipze {s ¢. By
definition

¢ B
B =eD3

for each point S of the ellipse. In particular
at V,, and V,
OV, - OF = ¢OM ~ OV)
V0 + OF = ¢(V,0 + ON))

a= V;O = ﬁV.

¢ = OF

d = OM

Rewtiting the equations with a, ¢, and d
results in

where

a+c¢=eld4 a)
a-¢=ed~a)



After removing parentheses and subtracting
the second equation from the first we obtain

¢cC=4ac¢

ORBIT

POWERED FLIGHT
Figure §-2¢

Figure 5-22 illustrates a spacecraft $ going
into an elliptical orbit. The distance from the
cente. of the orbit to the center of Earth is

OF =c=ae
The distance from the center o Earth to the
spacecraft ia
Ri=a-ne
- a - Ro
a

After substituting this value for e in the
eccentricity equation we have

a - RQ - R.\N' '-g_bj
a GM
aGM -~ R,GM = aR,v,! ~ aGM
_2GM _ G
R, a
weon (g -)

the equation for the motion of the spacecraft
in its elliptical orbit. Remember that vy and
R, are timply the instantaneous magnitudes
of v and R when the aatellite is at perigee.
The equation

vt = GM (%-

expresses the velocity v of the spacecraft at
any distance R in meters from the center of

e

VQ’

1

——
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Earth, where v is the veiocity of the satellite
in m/se, M is the mass of Earth in kilo-
grams, G is the gravitational constant in

ﬂg‘."%_(."l! and a is the semimajor axis of
the orbit in meters.

The time-rate of change in the area swept
out by the radius vector au the satellite moves
through its orbit is called the areal relocity.
The ratio of the area oi the ellipse to the areal
velocity defines the period of a satellite in an
elliptical orbit, The period of an Earth satel-
lite in an elliptical orbit is computed using
the formula

 drtal

GM
where T is the period in seconds, M is the
mass of Earth in kilograms, a is the semi-
major axis of the orbit in meters, and G is the
ne'vlon (m)
T
The total energy of a satellite in an ellipti-

cal orbit 1s the sum of its kinetic and gravita.
tional potential energies. The kinetic energy
may be fourd as tollows:

)

a

vt = GM (% -
(1/2)m v: = (1/2)m GM (%

gravitational constant in

)

(1/2)m vt = GmM (%-{- - %

Ey = GmM (%i - ,}5)
The gravitational potential energy is

\ 1 1)
L, = GmM (F “R
The total encrgy is therefore

1 I 1 1
E =GmM(R— - E)-!»GmM (? - -ﬁ)

p - GmM _GmM GmM _ GmM
R 2a r R
: 1 _1.)
E = GmM (r %4 1)

where E is the total energy in joutes, G is the
newton (m)’ m iz

gravitational constant in
kg?




the mass of the satellite in kilograms, M is
the mass of Earth in kilograms, r is the radius
of Earth in meters, and a is the semimajor
axis of the orbit in meters, The energy equa-
tion (1) shows that the total energy of a satel-
lite in an elliptical orbit is a function of only
the semimajor axis a and is independent of
the shape of the orbit: This is illustrated
graphically in Figure 6-23. The three orbits
have the same semimajor axis a. Hence
zatellites in these three orbits will have the

Same enei'gy.

k]

2

\
20

1
2-—
3

Figure 5-18

The velocity equation

2 1
! o -
vi = GM (ﬁ a)

shows that a satellite in an clliptical orbit has
the xreatest veloclty whon R isleast; that is,
when the satellite is at perigee. At apogee the
distance R is maximum so the satellite's
velocity is minimum. The mathematical re-
lationship of these two velocities is interest-
ing. Figure 5-2¢ shows that distance R for
perigee isa ~ae, For apogee, the distanca R is

ae 4 ae 4 (a — ae)

or simply ae 4 a. \When these distances are
substituted in the velocity equation you
obtain

Vel = GM (a = ae l)

(2 = (a - ae)]
= GM ("= ae)a
v "GM('\e-I»E “%)
- (ae + (;)‘1
= GM[ (ae 4+ a)a
2a -~ (&8 - @& ae)
GM[ @ - aca |
- (ae 4+ a)
GM[ (ae + a)a
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V! (a ~ aeja 2a —ae - a
Vy? _a+aexa+ae

V! a—ae " a — ae

vo! (8t ae)?

via!  (a.— ae)t

Yo _a+tae rall+te)

V. & - ae a(l =0 e)
Viglte

Va 1-c¢

where v, is the velocily at perigee, v, is the
velocity at apogee, and ¢ is the cccentricity
of the orbit.

5-7 Kzercises Salellite Paths
Use these values in the exercises:

G 6670 x 10-n hewton (m)
. =

Radius of Earth = 6.87 X 10¢ meters
Mass of Earth = 6 X 10" kilograms

1. Show that the eccentricity of an elliptical
orbit may be expressed as

0 = Vo, Vs
v, + v,

where v, is the velocity of the satellite at
perigee and v, is the velocity at apogee.

2. Find the sum of the kinetic and gravita.
tional potential energies of a satellite in
a circular orbit of radius a. How does this
energy compare with the energy the
satellite would have if it was in an ellipti-
cal orbit of semimajor axis a?

3. In Chapter 4 linear momentum was de-
fined as the product of mass and linear
velocity. This was expressed as Fi¥. The
momentum of a body moving in a cueved
path is called moment of momentum, or
angular momentum. Its magnitude is the
product of the magnitude of the linenr
momentum and the perpendicular dis-
tance between the line of motion of the
body and the center about which the
gody moves. This is illustrated by Figure

-2,

A satellite S of mass m has a tangen-
tial (linear) velocity ¥ when it is at a dis-
tance R from 0, the center of force. The
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Figure 5-24

magnitude of its linear momentum at
that instant is mv and the magnitude of
its angular momentum is mvr.

When an Earth satellite is, at 8 pogee
and perigee, the distance r in the expres-
sion mvr is the distance from the satellite
to the center of Earth. This distance
may be expressed in terms of a and .
Write expressions for the angular
momenta at apogee and perigee. Equate
these expressions and reduce to lowest
terms. What do you observe? What con-
clusion might you draw?

4. On January 25, 1964 NASA launched
Echo 11, an orbit.inflatable plastic bal-
ioon to test ils ability to reflect radio sig-
nals. At perigee this ~atellite is 1.037 X
10 meters (642 miles) from the surface
of Earth while at apogee its altitude is
1.318 X 10 meters (816 miles). Compute
(a) the velocity of this satellite at apogee
and petigee, (b) the eccentricity of its
orbit, and (¢) the period of this satellite.

5-8 Orbit determination

Computing satellite orbits by theoretical
methods is only th2 beginning of otbit de-
termination. The analysis of data obtained
from satellite tracking stations has revealed
that there are a number of environmental
factors which cause perturbations (changes)
in orbite. Some of these factors are:

(1) atmospheric drag
(2) atmosphetic buige
(8) variable atmosphere
(4) Earth's pear-shape

144

(6) radiation pressurep.
(6) the gravitational force due to
the moon and sun.

The drag effect of the almosphere occurs
primarily in the ncighborhood of perigee.
This causes the satellite to lose energy which,
in turn, results in a decrease in the orbital
period and the apogee height. The formula
for the period of a satellite in an elliptical
orbit shows that the semi-major axis of the
orbit will decrease if the period of the satel-
lite decreases. Figure 5-25 illustrates the drag
effect. Using orbital data, it was found that
the atmosphere actually bulges on the side of
Earth that faces toward the sun. In addi-
tion, it was observed that the atmospheric
density was not uniform for a given altitude.
There was a difference in the density of the
air on the dark and light sides of Earth. There
was eveh some variation with longitude and
latitude. 1t was alsc observed that solar
activity caused significant changes in at.
mospheric density.

Figure 5-£8

The pear-shape of Earth causes small de-
viations in the orbit of a satellite. The “out-
of-roundness” results in increased accelera-
tions and decelerations as the satellite
approaches and recedes from the bulge
respectively.

The pressure of radiation on a satellite is
small and may seem negligible but acting
over a long petiod, however, it does produce a
detectable perturbation, even on satellites of
ordinary mass. The effect on alow-mass satel-
lite such as an Echo satellite is quite signifi-
cant. To understand the pressure of radiation
one must look to the nature of radiation. In
many expetimenls, radiation behaves as
though it is propagated as & wave, 0 we
describe radiation in terms of wave velocity,
frequency, and wavelength. These three
properties have the relationship

C =1

where C is the velocily of the radiation in

free space, f is the frequency of the wave, and
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X is the wavelength. In other experiments,
radiation behaves as though it is propagated
through space as discrete bundles of encrgy
called photons. A photon of energy is repre-
sented by

E = h

where E is the energy of a photon in ergs; h
is Planck's constant; that is, 6.623 X 10-*
crgs (sec); and f is the frequency of the radia-
tion. This dual nature of radiation is one of
the mysteries of science. A photon has no
mass at rest but it does have a mass when
moving and momentum. The momentum of

a photon is h where h is Planck’s constant

and X is the wavelength of the radiation.

1t would seem that the moon and sun are
too distant to cause perturbations of a small
satellite close to Earih. Such is not the case,
however.

Because of the perturbationsin a satellite's
orbit, radar tracking systems are employed
to gather orbital data, This data is fed into
high agecd computers and the trajectory of
the orbit is computed. Orbit determination
ix 8o critical for manned spaceflights that
cach orbit trajectory must be determined
within seconds of the time when the space-
craft is actually in orbit, NASA's radar track-
ing system for Project Mercury was capable
of obtaining ten complete seta of measures of
range, hzimuth, and elevation each second.
The data for the computed orbits laged be-
hind the data for the actual orbits by less
than a minute.

Computations by digital computers are
considered in Chapter 6. Such computations
are essential for m:.y of the problems of
gpace scientists and engincers.
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DETAILED SOLUTIONS FOR QUESTIONS ON SPACE MECHANICS

Question 5-1~1

The time it took the car to tiavel from the
rest point to the first impact mark thereafter
is extrapolated by projecting the displace-
ment-tiine graph to zero. This time is
approximately 0.04 seconds.

35

25—

15 b=

Displacement s in Centimetenrs

l

-0.04 0 04

Time t in seconds

146

0.2

0.3



Queslion 5-1-2

The relationship of s and t must be deter- 8 a tt, Hence -f'; = k, or 8 = ktt. The con-

mined by trial and error. Since the graph of .
qumttonya..l -1 appears to be a pgarmll))ola' stant k Is determined by diV‘dlng 8 by t.

the first choice would be to graph S as a fune- The constant k turns out to be about 208,
tion of t*. Time t should now include the 80 equation 8 == 299t essentially fits the
time extrapolated from the graph of question graph.

§5-1-1, The graph obtained shows that

¥
— 8 t b
in em, in gec, in 10~1 sec?
25 }— 0.48 0.04 16
2.40 0.09 81
5.85 0.14 196
10.80 0.19 851
17.80 0.24 576
20} 25.20 0.29 841

em/sec!

.z
g
§

296

21888

AVG. =299




Question 5~1-3

Question 5-1-4

3

5

A=1/2(0.25) (175 - 23} = i9.0 cm,

The approximate instantaneous velocity of Time at
the car at 0.14 seconds from rest may be Time Middle
found using the formula s = 299t2 The in- Interval At 48 V = 38 of Time
stantaneous velocity of the car is essentially — at Interval
equal to its average velocity for a very short 0-0.05 0.05 1.92 38.4 0.025
period of time where 0.14 seconds is the ini- 0.05-0.10 0.05 3.45 69.0 0.075
tial time for the period. 0.10-0.16 0.05 4.95 99.0 0.126
s 0.15-0.20 0.05 6.50 130.0 0.176
Initial Value  New Value 0.20-0.25 005 790 1680  0.225
0.140 0.141 0.001 The acceleration of the e r is the slope of the
Initial Value New Value velocity-time graph.
of 5 of 8 as 175 — 23 152
5.860 5.944 0.084 Slope = —F5z— = pog = 608 cm/sec?
V= %E = %%—g—i— = 84 cm/sec Question 5-2~1
' The estimated area under the graph (see
graph) is 24.75 centimeters as compared to
24.72 centimeters, the displacement of the
car as indicated by the data of Table 5-1.
Question 5-1-4
Question 5-2-1
160
v=158 |
I
140|~~ l
, I
¢ 120 |
N
M |
€ |
£ 100 |
z I
% 80— I Total Area
L A=1/2 bh l 24,75 cm,
i |
g |
c
24
2 I
l
I

n
(=1

A =bh

]

A= (0.25) (23) = 5.75 cm. |

0.10

0.20 0.225 0.25 0.30

Time t in seconds
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Question 5-2-2
@ V=V, +at
22 = 88 — 10t
10t = 66
= 6.6 seconds
8 = VOt -+ .!at‘.‘
s = 88(6.6) — %(10)(6 6) (6.6)
s = £80.8 —
8 = 363 feet
Question 5-2-3
@) 8=Vt + Jat?
V, = 0if body falls freely from rest
8 = dat?
8 = $(32)(12) = 16 feet
8 = }(32)(3%) = 144 feet
s = 3(32)(5?) = 400 feet
V., -+ at

(b)

32 ft /sec.
96 ft/sec.
1

0

at
32(1
3

3 60 ft/sec.

)
2(3)
2(5)

=
oo

o

Question 5-2-5
V( == V., + at

square both sides of equation
VIz = "n2 + 2VOat + a’t’

Question 5-2-4

@ Vi=V,+4at
0 at the peak

o
nnunn
©
1=
|
O
w
&

(h) 3

= 96(3) - &(32) (32)
s = 283 -- 144
8 = 144 feet

8 = V.t 4 dat?
80 = 96t — 3(32)t?
80 = 96t — 16t2
16t — 96t 4 8u

t? — 6t + 5

(t - 5)(': -1
-1
t

{c)

0
0
0
0

1 second after pro-
jection

projection

8 = V.t + lat?
multiply by 2a
2as = 2V at + at:

Subtract the second equation from the first
Vi = V.2 + 2V,at + a2

2as =

2V.at -} at?

V,’ — 2a8 = Vnz
Vi = V.2 + 2as

Question 5-3-]
(a) and (b)
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{c) Inthecase of a 30°, 60° right triangle; the side opposite the 60° angle equals one-half the
hypotenuse C times V3.

C = 22.63 newtons
The si¢ > opposite the 30° angle equals one-half the hypotenuse
C

F. = }(22.63)
F. = 11.32 newtons

An alteinate method

F
t ¢ o L
tan 80 19.6
F. = 19.6 tan 30°
F. = 19.6(0.57735)
F. = 11.32 newtons
(d) The tr.angle formed by L, h, and r is a 80°, 60° right triangle. The circle has a ralius r

equal to one-haif the hypotenuse L,

L = 1 meter
1 = 3L = } meter
VI
Fom
F.r
V: = "

AR CERUEHUIE v
A4

Jueslion 5-3-2
‘he centripctal force needed to keep the 1 kilogram mass in the cirele while overhead
ordinarily
the weight force + the down force of the bucket
of the mass against the mass

\t the least overhead velocity
the weight force

]

centripetal force

of the mass
mg = Fe == ‘l‘;_v.f
V= Jgr = v9.3(0.8)
V= {784
V = 2.8 m/sce.
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Question 5-4-1

F. R
W R
TW = (4000)F
4 Ry
3 = T000)°
g - 400 _ 4310
R, - 2X10 8 X100V3 4618 x 10° miles
V3 3

; , =~ 4618 miles
At an altitude of 618 miles your weight is § of what it is at the surface of the earth.
Question 5-4-2

‘* & _R?
; g2 - Rli
32 (8000)*
g:  (4000)*
| 5,  32(4000) (4000)
| * = T(8000) (8000)

| g = 3—2 = 8 ft/sec?
‘ 4
| Question 5-4-3

mM
F=G—77

The gravitational force F on a small mass m at the surface of the earth equals mg,

M = (9.8)(6.37 X 109 _ 3.98 X 10
6.670 x 10— 6.670 x 10—
M = 5.97 % 107 kilograms (6.67 X 107! tons)

Question 5~4~4
M = 80m
R = 240,000 — r

Gm'Mrt = Gm’'mR?
Mr? = mR?
M = 80m
Rt = (240,000 — r)?
80mr? = m(240,000 — r)? ~
79r* 4 480,000r — (240,000t = 0
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—-b + yb* — 4ac

x 1
2a
_ (—48 X 10%) £ V(4.8 X 105 + (4)(79)(2.4 X 109
2(79)
_ (—48 X 10%) + V1843 X107
168
o~ (—4.8 X 10* 3= (42.9 X 10%)
~ 168
r =~ 24,100 miles
R =~ 215,900 miles

Question 5-4-5

The centripetal force required equals the gravitational force, or the weight force mg.
mv: - mM _ .

[ R =G R? =F=m

Question 5-4-6

(6.670 X 10-1)(6 X 10%)
6.853 X 10¢

3002 X 100
= \/6 858 x 100 VoBd X 10°

=~ 7,640 m/sec. {25,059 ft/sec or 17,083 mi/hr)
b) V= ‘/ﬂi_

V ~ ‘/ (6.670 X 10-1) (6 X 10%*)

80(2.223 X 10°)

Vi DR XTIOT 1o
177.8 X 10°

V =~ 1,600 m/sec. (4,920 ft/sec or 3,354 mi/hr)

V=

Question 5-4-7
(a) a
in ft/sec? Angle Sine of angle
3.16 16° 0.2588
6.08 30° 0.5000
9.31 50° 0.7660
11.43 7¢° 0.9397
(b) The graph shows that a a sine of the angle. Hence g is the acceleration when the sine of
the angle is 1.0000 (angle equals 90°). g turns out to be approximately 12.20 ft/sec?. .
() Mars — g at surface of Mars = 0.38(32) = 12.16 ft/sec? \
162 /
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12.2—————————-—-———_——_—-———
g
<
< 10—
£
o

0 | I | |

0 0.2 0.4 0.6 0.8 1.0

Sine of the angle

Question 5-5-1

3 TG M
@ R = 4x?
R - A/@EBHE X 10976670 X 10-7)(6 X 10°)
= 4(3.14)2(80)
+ | 260.384 X 10%
R = o 260384 X 10%
| 3165

R ~ /0.8263 X 10%

log 0.8253 = 9.91661 — 10
log 0.8253 = 29.91661 — 30

log Y5.8263 = 9.97220 — 10
V0.8253 = 0.9380

Vign = 100
R = 9.380 X 10" meters (58,260 miles)
GM
® V=%
V= {6.670 X 10-11)(6 X 10%)

(9.380 x 107180
_ Ao X107
~ N 17504 X 107
V =~ yvb5.33 X 104
V ~ 231 m/sec. (516.5 mi/hr)
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Queslion 5~5-2

. ™
T = 2 GM
(7.819 x 10¢)?
T =2@14) J(e 670 X 10-1)(6 X 10%)
T oz 6,98 (/£18 X 10%
40 X 10
T ~ 6.28 1,195 X 10°
T =~ 6.28(1.09 X 10%)
T =~ 6846 seconds (114.08 minutes)
Question 5-5-3
< mlM
= Rt
_ m;Vl
F, = R,
mM _ mVy?
G Ri* R,
GM = V’R,
_ 2R,
Vi = T,
4T’R1!
? =
\'A Ty
_ 4Ry _ 4Ry’
GM = To S0 GM T
4x1R,? _ 4rR,?
T2 T,
T|’R2‘ = Tg’R]'
T _ RS
Ty¢ Ry
Question 5-6~1
R, = the initial distance the spacecraft is from the center of the earth.
V, = GM = the velocity of the spacecraft at distance R;.
1
R, = the final distance the spacecraft is from the center of the earth.
Va = GR——M = the velocity of the spacecraft at distance R,.
2

w =
W= GmM (— - -R—> + imV,: [GmM (~ - ——) + $mV,?

W= :GmM (;: - R*l) - imGM] [GmM (—- R) + im gM]

1 1
[GmM _ GmM
W= . T R|
GmM GmM
W= r R1

Eqm.] (initia]) —_ Elolnl (ﬁnal)

-

GmM | GmM GmM GmM
+* R1 p [ r +} R:
GmM GmM + GmM _ éGmM

R, R; R:
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W= =g -7

_GmM/[ 1 ~1)

V==37\& "R
w = (6:870 X 10-)(8.8 X 10%)(6 X 102*)[ 1 _ 1 _]
2 6.99985 X 10* = 7.016 X 10¢

W = 176.1 X 10% [(0.1429 X 10-) — (0.1426 X 10~)]
W = (176.1 X 10%) (4 X 10-%)
W = 7.044 X 10* joules (5.283 X 10° ft(lbs)),

Question 5-6-2

R,V?
2GM

(a) Rjbecomes infinitely large as approaches 1.

RV
2GM
R.\V? = 2GM

V = 26M (the escape velocity)

Ra
Question 5-6-3

V- J2(6.670 X 10-") (6 X 10%)
68545 X 10°

v~ 8004 X 107
6.8545 X 10°

V ~ y1.168 X 10*
V =~ 10,800 m/sec. (85,424 ft/sec. or 24,149 mi/hr.)
(b) V = j80.04 X 10%
7.662 X 10¢
V =~ v1.046 X 10*
V =~ 1.02 X 10¢
V = 10,200 m/sec. (33,456 ft/sec. or 22,807 mi/hr)

Question 5~6-4

(b)

3 TGM
R = J 452
R - V(G.G % 10%)%(6.670 X 10~-1)(6 X 10%)
= 4(3.14)?
R ~ 3‘!17.424 X 107
~ 39.44
R ~ 0.4418 X 10%
log 0.4418 = 9.64523 — 10
log 0.4418 = 29.64523 — 30

log V04418 = 9.88174 — 10
V04418 = 0.7616
Vio® = 107

i

il
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R = 7.616 X 10® meters

[GM
V= T
_ ‘/(6.670 X 10-1)(6 X 10™)
7.616 X 10°
_ 40,02 X 10
~ Y17.616 X 10°

V =~ v62.65 X 10%
V =~ 7,250 m/sec.

Circular orbital velocity = ‘ﬂ%l

2GM
R

Escape velocity

Escape velocity

V. = V2 (7,250)
V. =~ 10,252 m/sec.

Additional velocity needed is 10,2562—7,250= 3,002 m/sec. (9,847 ft/sec., or 6,712 mi/hr.)

Question 5-7-1

Ve

Va4 Vie=V, < Ve
V,,e + Vne = vp - vn
e(Vp + Va) = Vp - V..

lt+e
1 —e

e = Vp - V_.
Vo + V.
Question 5-7-2
E=E,. +E,
1 1
_ {GM
V=YY%
i GM
a
E = iGZM + Gn;M _ Gn;M
E = GmM _}GmM
r a
1 1
= omit (F - ;)
Both have the same energy.
Question §-7-3
_ 2 1
Ve = GM (ﬁ - a)

R, =a — ae
= ae + ae + (@ —ae) = a + ae
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j ~ 4 P
P e T

g i,

Vu‘,GM( 2 1
a-+ae a

Momentum at perigee = m JGM (——-2-—— - —1-) (a — ae)
a—ae a
Momentum at apogee = m JGM (-——%—-— - —1-) (a + ae)
a + ae o
m@M )(a. — ae) = m‘,GM (a-fae -%) (a + ae)
GM(a —?ae —5) @ —ae)? = GM(a—f_a—e —Eli) @ + ae)?
2(a —ae)! (a —ae)® _2( + ae)* (a + ae)?
(a — ae) a (a + ae) a
2a(a — ae) — (a — ae)? _ 2a(a 4 ae) — (a + ae)?
a a

2at — 2a%e — (a? — 2ae + a%e!) = 2a’ 4 2a'e — (a® + 2a’e + ale?)
2a! — 2a%e — a? + 2a’e — ate! = 2a?! + 2a’e — a? — Za% -- a'e’

al_a!el;a!_alel
1—-et=1-—e¢e!
1=1

A satellite has the same angular momentum at apogee and perigee. Therefore, it appears that
angular momentum is conserved.

Question 5~7-4
@ Vi=GM(%-3)

R a
- (1.037 X 10%) + (1.318 X 10%) + 2(6.37 X 10%)
2
= }_@9_52,)5_}25 = 7.5648 X 10* meters
_ 2 1
Vpt = (6.670 X 107)(6 X 10%) [7.407,x 10¢ ~ 7.548 X 10*]
V. =~ 40.02 X 10** [(0.27 X 10~) — {0.13256 X 10-%)]
V2 =~ 40.02 X 10's (0.13756 X 10-%)
VvV, = 5.50 X 10
V, = V0.66 X 10°
V, = 7,420 m/sec (24,338 ft/sec or 16,691 mi/hr)
V’=4002X10"[ 2 - 1 ]
. ) 7688 % 10¢  7.548 X 10¢

V.! =~ 40.02 X 10'* [(0.2601 X 10-°) — (0.1825 X 10)]
V.2 = 40.02 X 10 (0.1276 X 10-°)
V.' ~ 6.11 X 107
V. = V0511 X 10
V, =~ 7,160 m/sec (23,452 ft/sec or 15,987 mi/hr)
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(b)

(c)

V-V
V, + V.
o 11420 — 7,160
7,420 + 7,160
210
~ 14,670
e =~ 0,019
T: = 4yl

GM

¢ 2 4(3.14)*(7.548 X 10%)*
(6.670 X 10-11) (6 X 10*)

s 89-44(430 X 10%)
40,02 X 10®

_ 16959 X 10

™~ 40,02 x 10"

T ~ 42.38 X 10°

T ~ V4238 X 10°

T =~ 6,610 seconds (108.56 minutes)

158



Chapter 6
COMPUTERS ARE NEEDED

by
Anthony Trono
Burlington High School
Burlington, Vermont
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COMPUTERS ARE NEEDED

'This chapter is concerned with an impor-
tant new tool in space research: the com-
puter and computer programing. However
readers without experience in this area will
also gain much from this chapter. There will
be many calculations to perform and often
the arithmetical process is repetitive. This
is the type of mathematics that is monot-
onovus for students to do but the type that
can be casily done by electronic digital
corputers.

The programs are written in the computer
languages Gotran and Afit Fortran. Afit For-
tran is similar to the many other versions of
Fortran but it hasits own peculiarities. There-
fore, persons who are using other Fortran
languages are not expected to use the pro-
grams without making some modifications.
Anyone familiar with other machine lan-
guages such as Algol and Fortran I or 11 will
find that mest of the work in the chapter is
dene in general terms. The emphasis upon
flow charts should make the woik easier for
readers with varied backgrounds to conpre-
heind and apply.

6-1 Computers ate Fssential

Much of the progress that has been made
in space exploration duting the past few years
and much of the progress that will be made

/10/161

in years to come will be attributed to digital
computers. Certainly without the uce of
computers, it would have been difficult to
embark on the space program. Cnly because
of rapid caleulations, high degrees of
accuracy, reliability, and the large storage
capacities of present day digital computers,
have these orbital missions been possible.

NASA’s, Goddard Space Flight Center at
Greenbelt, Maryland, is the “hub” of the
space ageney's world wide tracking activities
and its computer complex is the very heart.
beat of these globe-circling efforts. Com-
puters help guide manned and scientific satel.
lites on their flights, whetker orbiting the
earth or a far-away planet. Computers also
reduce new-found data recorded on these
missions into facts and figures for study and
evaluation by the experimenters. On an aver-
age day the Goddard computers record about
60 miles of magnetic tape data!

Let's consider some of the functions of one
of the computers used. When an astronaut is
in orbit, a computer is used to chart his
exact course--in ‘‘real-time’’—virtually in.
stantaneously! Thus during the launching of
the capsule the computer is ecalculating
launch trajectory, intertion parameters, and
landing point. During the orbiting of the
capsule, the computer is calculating the cap-



sule position, orbital parameters, retvo-fire
time for re-entry, and actual impact point.
The rapidity with which this computer oper-
ates is indicated by the fact that each second
it can perform 250,000 additions or subtrac-
tions of numbers with numerals having ten
decimal digits. Multiplication anl division
are somewhat slower; it can only do 100,000
multiplications or 62,600 divisions per
second. It is easy to see that the calculations
necessary for world-wide tracking would be
impossible without computers,

To emphasize how vital computers are to
space exploration, consider the data being
sent back by the Explorer VI, a relatively
small and simple satellite. The information
received from this one satelitte would take a
staff of fire thousand people working forty-eight
houre a wccek one year to process! A large com-
puter can process the same data in 1.2 days.

Digital computers are so retiable that they
can almost be considered errorless. Since
digital computers can be programed to check
the arithmetical operatione that they per-
form, the errors that occur are nearly always
a result of the program and not the machine.

6-2 Flow Chatls

A flow chart is a schematic diagram that is
used as an aid in comnputer programing. The
diagram shows the procedures to be used and
the sequence of steps that must be followed
to arrive at the solution of a problem. Stu-
dents are given much freedom in making flow
charts since any diagram that is helpfu) in
preparing a program might be considered to
be a flow chart. For uniformity, the same
symbolism will be used throughout this chap-
ter to indicate a specific process in pro-
graming. This symblolism is illustrated in
Figure 6-1.

Because of the many diflerent ways that
programers have to represent branch state-
ments and do loops in flow charts, let us ex-
amine closely th.ese diagrams in Figure 6-1.

In the branch statement, suppose DISC =
B! ~ 4AC. When DISC > 0, a branch is
made to a specific location in the program.
Likewite, branches are made to other loca-
tions whenever DISC = 0 snd DISC < 0.

The do loop in Figure 6-1 indicates that
calculations must be performed, K is incre-
mented (increased) by one and the calcula-
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Start and end statements

Y=X+0.2 Command itotements
4.<)ISC ! Bronch or IF slatements
0
|
4.
N 7
* ¢
> /
K>$ Do loops
Yas Mo
The
colevlations
Figure §-1

tions are performed again. This process con-
tinues for K < 6 but as soon as K > §, an
exit is made from the do loop to a designated
location in the program.

A programer may write many programs
without ever making a flow chart, but as the
problems become more complex, it becomes
essential to vse flow charts. Only by using
such devices can the pregramer gain the
proper petspective for the whole problem.
Therefore, it is strongly suggested that stu-
dents make a flow chart for every program,
no matter how simple. Then when complex
problems do arise, the programs will be much
easier lo write.

We take the problem of finding coordinates
for points of an ellipse as our first example of
flow charting and machine computation. Re-
member that planets have elliptical paths
around the sun; the moon has an uliptical
rath around Earth: most satellites have
elliptical paths around Earth.

The usual equation for an ellipse with cen-
ter at the origin, major axis along the x-axis,

N/
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Figure 6-2

;najor axis 2a, and minor axis 2b (Figure 6-2)
s

x? yl
E—.“!'E;ﬂl

For work on a computer it is cu: omary to
use capital letters, We shall aleo use the fune-
tione sine and cosine of a variable T (Section
1-7). These funciions have the special
properly

sinté 4 costé = |

for any real number 8. Thus if

X = Acos(T)
Y = Bsin (T)
Xt Y

atp=!

and the variable T may be used to identify
points of the ellipse. For this reason T is
called a parameter and the two equations ex.
pressing X and Y in terms of T are parametric
eguations of the ellipse. If A > B, then 2A is
the length of the major axis and 2B is the
length of the minor axis of the ellipwe. If
A = B, then the graph of the equations is a
circle of radius A.

A ficw chart is given in Figure 6-3 for «
program that will print ordered pairs (X, Y)
of coordinates for the set of points of the
graph of the ecvtions as the parameter T
increases with w..cements of 0.3 from 0 to
6.3 radians. Remember that 2+ radians
equals 1 revolution and 2« = 6.3.

Once the coordinates (X, Y) for 6.3 radiafs
have been printed, then the program will
initialize and read a new set of data for
another ellipse.

then

1=0

I
Read A,B

I

[x-Aco. n
Y = 8 Sin (1)

Print X,¥Y

|

T=74+

]

ClFF=4.3-1

-%4
\(

Figure 6-$

Start

XeACa (T
Y =D Sin (1)

Peint X, ¥
|
tets 3

S —T-‘-.-—..__J

Figure €-}
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The flow chart in Figure 6-3 involves a

branch command. The same problem can be -

done and the same results can be obtained by
use of a do loop. Since twenty-two ordered
pairs will be printed, irstructions can be
given to obtain this data by going through
the do loop twenty-two times as shown in
Figure 6-4.

6-1 FErercises Compulers Are Essenlial

1. For the problem just illustrated concern-
ing coordinates of points on an ellipse
given in terms of its parametric equa-
tions, can A = 0 or B = 0? If this is
possible, sketch the graph of the para-
metric equations when

(a) A=0and B = 0
(b)A «+0and B = 0

2. Make a flow chart for finding the solu-
tions X, and X, of the quadratic equation
AX! 4+ BX 4 C = Ofor different values
of A, B, and C. If for a given set of data,
the equation has rovots which are not
real, instructions should be given to
print “imaginary roots.” What will your
%rogr%? doif A =0'H A = 0and

6-3 Coordinates of the Points on the Graph
of an Ellipse

As 800:: as a flow chart is completed for a

problem, then the programer is ready to

write a program. Referring to the flow chart

¢ CLTRAN PROGHES LS Ivk ted DRANCH COMRAND
¢ LOMOIANTE OF £ .ATPSE VAWML FREEECEIC ERATIDS
1 teg.d
L3N )
# tletpdrt
12X 11171
vregteete
velvey
Lo d B ANS IS
tatep,)
I TTYE
LLSKETTLSTEY 2% ]
(3 1]
*“"s
.
[} 1
L 1)
1Y )
seng.d
Figure ¢-$
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in Figure 6-3, a program can easily be written
using the flow chart as a guide. A Gotran
program, which makes use of a branch com-
mand, is illustrated in Figure 6-5.

Three sets of data are given for this pro-
gram, the first for A = 9 and B = 16; then
for A = 4200 and B = 4000; and finally for
A = 4400 and B = 4400. The first few lines
gf the computer output for the first set of

ata 2ie:

(9.0000000,
(8.6980284,
(74280205,
(5.6944837, 12.63323p )
(8.2612198, 14.912626 )

The complete set of ordered pairs is plotted in
Figure 6-6.

0.0 )
4.7283232)
9.0342795)

Y
Y
Y
Y
-4 10 .
Y
-T [
Y
— —H——
o 10 X
— .
Y
Y
i
Y
.
Y
e
-
Fyure 6-6

The flow chart in Figure 6-4 makes use of

a do loop to print ordered pairs of points on

the graph of the ellipse. A Fortran pro-

m based on this flow chart is shown in
igure 6-7.

For comparieon with the output of the

previous program, the first few lines of out-

™ /
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Figure 6-7

put of this program are:

(9.000,
(8.698,
(1428,
(6.694, 12.533)
(3.261, 14.912)

Notice that in the Fortran output, the
digits beyond three places to the right of the
decimal point were merely dropped off and
no method of rounding-off was er ‘vyed.
Gotran answers are all printed witn eight
decimal digits; Afit Fortran answers are
printed as specified in the program with a
maximum of eight digits. 1t is left to the pro-
gramer to determine the number of signifi-
cant digits in the answer, keeping in mind
that the answer can not be expected to con-
tain more significant digits than were present
in the least accurate element of the data that
was used.

.000)
4.728)
9.034)

6-3 LEzxerciges Coordinates of the Points on
the Graph of an Kilipse

Refer to Exercise 2 in Section 6-2 and

write a program that will print the real

roots of the quadratic equation.

Use the plot statement in Gotran and

write a program that will have the com-

puter graph the equation

Y = V2304 - 9X?

with increments of 1.0 for X. Notice that
these points are points of an ellipse with
the major axis along the Y-axis, B! =
238 and At = 2304.

In Section 3-6, it was shown how to de-
termine the percentage of carth that is

ll
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visible for a satellite at different eleva-
tions. Write a program that wil! find the
area of Earth that is visible from an
elevation of 200 miles; determine what
percent this area is of the total area of
Earth; and have the program print this
-Jata for increments of 200 1niles up to a
5000 mile elevation.

4. Asa slight variation of Exercise 3, write
u program that will punch out data on
cards for increments of 200 miles up to
an elevation of 5000 miles and at this
point change the increment to 1000 miles
and punch out data for elevations up to
25000 miles.

6-4 Area Under a Curve

As mentioned in Chapter 5, it is often
necessary to find the area under a curve.
Computers may be used to find thearea to a
high degree of accuracy without using for-
mulas derived from calculus.

Figure -8

Consider the problem of finding the area in
the first quadrant bounded by the X-axis,
the Y.axis, and the graph of the equation
Y = 1 ~ Xt (Figure 6-8). Notice that the
values of X for the desired region are 0 <
X £ 1. Wedivide this interval of the X-axis
into N equal parts, consider the correspond-
ing values for X

1 23 N -1
ov‘ﬁ‘v‘N“y_N‘v ---1“‘?‘?"1
and compute the corresponding values of Y.
For N = 4 we have

o, 1

L] 9

[
0|
-0

for X end

~[~
o
-)
)=




for Y. Then we consider inner rectangles as
in Figure 6-9 and outer rectangles as in
Figure 6-10.

Y

(1/4, 15/18)
! (172, 3/4)

{3/4, 7/18)
> X

0 ]
Figure 6-9
e
o 1 » X

Figure 6-10

Consider first the inner rectangles. The
suni of the areas may be expressed as

Ly 18) 4 (153) 4 (1 1)
QXQ+4X4*4xm
_1f16 3 ,1)311.
"5G§+4+16 33’

that is, we may find the sum of the areas by
multiplying the common width of the rec.
tangles by the sum of the values of the Y.
coordinates (ordinates) corresponding to the

values of X starting with X = Elf

Now consider the outer rectangles. The
sum of the areas may be expressed as

i 1,15 (! 3)
Qx')+ﬁ‘|9+ 1 %3t

Gxﬁ)i'*w*4+m 82’

that is, we may find the sum of the areas by
multiplying the common width of the rec-
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tangles by the sum of the values of the Y-
coordinates corresponding to the values of X
starting with X = 0,

The desired area A satisfies the relation

17 26
-3—§<A<:-3*2.

The average value,

1017 ., 25\ 142 21

éﬁ*ﬁ%ﬁxﬁ 32
may be used as an approximation for A that
is better than either of the sums of areas of
rectangles. The effectiveness of this method,
even witk N = 4, can be observed by com.
paring 21,/82 with the actual arca 2/8 as may
be found using caleulus, Still better approxi-
maﬁons may be found by using larger values
of N.

Y Y

{

- X — X

Figure §-11

The inner and outer rectangles for N = 8
are shown in Figure 6-11. Then the sum of
the areas of the inner rectangles is S, where

1/63, 60 , 55 48

s (G arata
39 , 28 15) _n
aitetel "o

The sum of the areas of the outer rectangles
is 8; where

1 63 . 60 L 55
Sf=§(l+6—i+'6—4‘+§+
48 39 28 15) 93.
atautatal =
The average of these two areas,

(71, 8y 8
2\128 " 128 128’
differs from the actual area by only 1 part
in 384,

\



[ AsOVE = 1CX ¢ Sum )

[ v=1-xT]

[Sv'l\-iqmoﬂ

l Sum = Sym - | }

1 1
[ UNDER = 1€X * Sum | [ X=X +1/KX ]
] 1 .

[ AvE = (AbOVE +UNDER) /2 |
l Print N, AVE ]

Figure 6-12

A flow chart for the procedure that we
have been using is given in Figure 6-12.
Notice that in the flow chart the sum of the
areas of the outer rectangles is found first,
then the value 1 of Y when X = 0 is sub-
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Figure 6-18
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tracted from the sum of the Y-values (or-
dinates) and the sum of the areas of theinner
rectangles is found. Finally, the average of
the two areas is found. A VFortran pro-
gram for cstimating the area is given in
Figure 6-13.

Remember that the actual area under the
curve is 24 and observe the high degree of
accuracy in the computer output for increas-
ing valuecs of N:

N Arca

4 656250
8 .664062
25 666400
50 666600
100 .666650

Now consider the problem of determining
the useful work that is done to get the pay-
load of the Scout rocket out to an elevation
of 1000 miles. As was explained in Section 5-4,
this is equivalent to finding the area under

the curve ¥ = Gﬁﬁ as R is displaced from

4000 miles to 5000 miles. If we assume the
weight of the payload to be 600 pounds, then
to find the work in fool pounds, the masses
of the earth and the payload must be changed
to slugs and R changed to feet. If the weight
of the earth is 1.32 X 10" poundsand G =
3.41 X 10-% fte/(lb seet), then a program
can be written to find the area under the
curve by taking N equal intervals between
R = 4000 and R = 5000 and bty finding arecas
of rectangles as was done in our previous
example. 1f N becomes large, then the sum
of the areas of the rectangles approaches the
area under the curve. A flow chart for this
problem is given in Figure 6-14.

Notice that in the flow chart N is initially
50 and then is incremented by &0 until it
becomes 160. The program will have the arca
(that is, the work that is done) printed out
along with the corresponding value of N.
After thisdata has been printed for N = 150,
then the accuracy of the results may bé
checked by calculating the work by the for-
mula W = GMm(l,r - 1/R), which is
derived from calculus. The following is a list-
ing of the computer output for this problem.

N Work

50 20555435.E 4+ 02

100 20555274.E + 02

160 20555243.E + 02
20555244 .E + 02



T
|
R = 4000 |
> Sum = 0
CR-N_J
‘.
Q
Q'\‘ ~*:,f
K>N
i Y«] INo !
( Above = 1000/CR * 3om | [ F=cmmn? |
1 1
| Sum = sum - (4000 *1000/CR) | [ Sum=Sumer |
1 1
| Undet = 1000/CR ¢ Sum | [ r=r+r000/Ck |
|
[ Ave = {obove # Under) /2 ] »>
l Print N, Ave |
1
I N=sNn+n |
-— 210N D=
_ \°|/ | W= GMm (174000 - 1/5000) |
]

l Print W |
1
{ Stop )
Figvre 6-14

The actual amount of work done as cal-
culated by the formula from calculus is
20555244.E2; that is, 2,055,524,400 foot
pounds. This answer for the area is accurate
to seven significant digite, which happens to 3.
be much more accurate than the data used -
in the problem.

6-3 KEzrercises Area Under o Curre i.
1. Write a program to find the area en-
closed by the graph of the ellipse whose
equation is X?* 4 4Y! = 16.
2. Writea program to find the area bounded
by the graphs of the curves whose equa-
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tionsare 4X = Y'and 4Y = X (Hint:
Find the area under one curve, then find
the area under the other curve, and
subtract.)

Write a program that makes use of
Figure 6-14 and caleulate the useful work
that is done to get the Scout payload out
to an elevation of 1000 miles.

Write a program that will find the useful
work that needs to be done to get the
Apollo spacecraft to the point in space
where the force of gravitation from the
moon and the gravitation of Earth are
equal. This occurs approximately 26,509



N

miles from the center of Earth. Assume
the weight of Apollo to be 90,000 pounds
on Earth. Make your program general
enough s0 that it can calculate the work
done for different weight spacecraft
going out to various elevations.

6-5 The Distance Between Earth and Mars

The orbit of Earth about the sun is very
nearly circular (eccentricity 0.017) with a
radius of 93 million miles. Mars has an ellip-
tical orbit (eccentricity 0.093) as shown in
Z‘"'.(gluge 6-15, with foci located at points F
and S.

Figure 6-15

When Mars is at aphelion (A in Figure
6-15) its furthest distance from the sun, the
distance from the orbit of Mars to the orbit
of Earth is about 62 million miles. When
Mars is at perihelion (P in Figure 6-15) the
distance from the orlit of Mars to the orbit
of Farth is about 35 million miles. In 1956
Mars was at perihelion and Earth was at
position C in Figure 6-15. This was the last
time that the two planets were in a position
such that the distance between the two wasa
minimum. The next time that this will occur
will be on August 10, 1971.

Our consideration of the distance between
two planets has been in terms of straight line
distances; we may think of these as “line of
sight” or as the path of impulses in micro-
wave radio ttansmission. These straight line
distances should not be confused with the dis-
tances that one must travel to go from one
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planet to another. For example, the distance
of 3256 miliion miles that Mariner 1V traveled
from Earth to Mars was not along a straight
line but rather along an are of an elliptical
orbit about the sun (Figure 6-16).

MARINER TRAJECTORY TO MARS

EARTH Al LAUNCH
MARINER NOVEMBER 28, 1944

MARS AT
AUNCH
0\
DAYS £~ "
0o {
LAAN
|23\ s
100 210 / 228 DAYS
ENCOUNTER
JULY 14, 1965
Figure 6-16

The period of time for Earth to make one
revolution about the sun is 365 days; the
period for Mars is 687 days. A graphical
method for estimating the distance between
Earth and Mars was considered in Section
3-10. To calculate this distance requires the
use of the Law of Sincs:

For any triangle ABC,

a __b _ ¢
sinA sinB &nC’

Suppose that the sun is at S, Mars is in
position M and Earth is in position E,
(Figure 6-15), then £ME;S can be meas-
ured. When Mars is again in position M, 687
days later, Earth will be in position E, and
ZMESS can be measured. The measure of
£ E3E, can algo be found gince during the
687 days that it took Mars to orbit the sun,
Earth completed one orbit and 322 days of
anotker orbit. Since Earth’s orbit is nearly
circular, triangle E;SE,; may be treated as an
isosceles triangle (ES & ES) and ZESE,
may be caleulated directly. There are about
43 days of the second orbit remaining

31635 X 360 = 42}
LESE, = 42}°.
Then in triangle ESE,, ZE, & ¢E;, and
LE, + LE, 4 42}° = 180°

The measure of angles E; and E; can be

N



found; the distance E,E; can be found using
the Law of Sincsand E;S = 93,000,000 miles.
Suppose that by measurement ZMES =
118° and ¢MES = 148° Then continuing
our use of trigonometry the angles of triangle
E,E;M and the distances E,M and E,M may
he found.

6-5 Lzercises The Distance Beliceen Earth

and Mars

1. Make a flow chart and write a program
to find the distances between [arth and
Mars using the data just given. Also find
the distances for other locations in the
orbits for the following data:

(R) £MES = 140°and £ZMES = 110°
by ¢MES = 106°and ZMES = 1565°

2. The exercise prescnted at the end of
Section 3 -5 involves the measurement of
the height of a model rocket by two ob-
servere. 1f the observers are 1000 feet
apart and Ay, Av, Bu, and By are the
angles that are given as discussed, then
write a program that will calculate the
heights }H, and H. that are determined
by the two ohservers. If either of the
observed heights differs from the aver-
age by more than 109, then the height
is not recorded since the observations
are too inaccurate. Use the data that was
given in the exercise for Section 3-5.
Have the computer indicate when the
observations are too inaccurate.

3. The following table gives distance in
parsecs, apparent magnitude, and tem-
perature in degrees absolute for ten stara.
The data compiled in the table was ob-
tained from various sources and are con-
sidered average values,

Star Parsees r::(’:i'ml'e T:l"n‘r’: "
Alpha
Centauri| 1.32 0.3 5800.0
Sirius 2.66 ~1.44 | 10000.0
Procyon 3.47 036 ;| 6500.0
Altair 5.05 0.76 | 8000.0
Vega 8.14 0.001 | 10700.0
Sun 0.0000048 | —26.7 55(0.0
Arcturus [ 1.1 -0.06 4000.0
Capella 13.7 0.9 5200.0
Aldeboran | 20.8 0.8 | 3600.0
Regulus 25.6 . 133 |13000.0
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Using formulas and data from Sections
3-12, 3-13, and 3-14, write a program
that will find the distance to the star in
light years, the distance in astronomical
units, the angle of parallax, the absolute
magnitude, the luminosity in relation to
the sun, and the radius of the star. Have
the program print ‘“‘error greater than
509" if the angle of parallax is less than
0.01 seconds. Use 432,000 miles for the
mean radius of the sun and 6500° for the
temperature in degrees absolute of the
sun. Use the formula B = 2.64"Y to
show the relationship between absolute
magniti Je and luminosity.

The computer has been programed to
find the natural logarithm of a number;
that is, base e. To convert from basec e
to base 10, use the formula

logieN = log N/log,10 =~ log,N,2.3025851.

6-6 Circumference of an Ellipse
An ellipse is a plane curve such that the
sum of the distances of any point on the curve
from two fixed points is a constant. The two
fixed points are called foci and are the points
E and Fin Figure 8-17. If the constant is 24,
then
EC + CF =2\,
ED + DF = 2A; EF + 2DF = 24A;
FP + PE = 2A;EF 4 2PF = 2A,
Therefore, PE = FD and PD = 2A,

C

Figure 6-17

If ¥, which represents the centet of Earth,
is 4 focus of an elliptical orbit for a satellite,
then R, 4 R, = 2A, where R, is the radius
EP at perigee and R, it the radius ED at
apogee; CF is called the mean radius and is
denoted R. Then:



2R = 2A = PD;
2R = R, + R,;

Ra B__V.%_B_'. (1)

If 0 is the midpoint of EF, and CO = d,
then EO = R - R,, and by the Theorem of
Pythagoras,

Rt =d* 4+ R - R,
d* = 2R,R - R

d! = 2R, (B_'._';__l_{!:) - Rz

d* = R,R,; thatis,d = VR,R,. (2
Therefore the equation of the ellipse becomes
S S 8

O T ©

For the Vanguard 111 satellite, R, = 4320
miles and R, = 6330 miles. Thus, R =
(4320 4 6330)/2 = 5325 miles, and the equa-
tion of the eiliptical orbit is

X! Y!
325 T (4820)(6330)

As was stated in Chapter b, there arc inany
factors which effect the orbital path of a satel-
lite such as lunar and solar perturbations,
Earth’'s oblateness, atmospheric density,
Earth's pear shape, and atmospheric dmg.
Although these factors do have some effect

. 1\ ¢
(,==2n[l— (2) X{ -

or C

1.

Y
)
Q pan ¥ = § (x)
1 ‘
]
$
A
o 2
Figute 6-12

1X3
2x4
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and must be accounted for when a satellite
is in orbit, the graph of equation (8) will give
a very close approximation of the actual path
of the satellite. In an effort to facilitate the
mathematics in this chapter, the path of a
satellite will be determined hy an equation
such as (8. With this assumntion the mathe-
matics will be simplified, but students should
be aware that in actual practice, the mathe-
matical theory and calculations are much
more complex.

It is often desirable to know the length or
circumference of the orbital are, If the equa-
tion of the ellipse is known, there are many
formulas that will give an approximate value
for the circumference. Some of these equa-
tions are:

C = x(a + b), wherea is the length D
of the gemimajor axis and b is the
length OC of the semiminor axis.

C=ri{3/2(a+b) - vab)
C=1rv2(a' + by )

The second of the three forinulas is best to
use when there is a large difference in the
lengths of the two axes. The result of the first
formula will be too small and that of the third
too large, but the average of these twu will
be very nearly correct.

The circumference of an ellipse can be de-
termined to any degree of accuracy from
formula (5) which is derived from calculus.

t o 1 X8 xXb\ e
)Xé“(é‘ﬂ“x—é) "5"-“]

- ] where eccentricity e = -:; Ya'- b (6)

The computer can use any formula for cir-
cumference. The computer can also be used
to find the approximate length of an arc of a
curve by using a process similar to that of
finding the area under a curve. For example,
if the length of arc AB is to be determined in
Figure 6-18, a perpendicular is drawn from
point B to the X-axis at P. The line segment
?'PNis th‘en divi(;\c:i intcé Nsequal increlment:

= 4, as in Figupe 6-18, then the lengths
of the four chords (LR, T, T, QB) which
subtend the arc can be found. For each tri-
angle (such as ARST) the base and altitude
are known, and by the Theorem of Pythag-

\‘

(



oras the hypotenuse can be determined.
For example, in ARST we have RS = C/4
and ST = £(C/2) — {(C/4) where C is the
X-c—goldinatc at P. Therefore,
RT? = (C/4)* + [f(C/2) - ((C/H))

To calculate the circumference of an
ellipse, the length of the arc in the first
quadrant can be found and four times this
length will give the circumference. For the
ellipse in Figure 6 -17, one of the X-intercepts
is located at (R,0). From equation (2) a Y-
intercept is located at (0, VR_R,). If the
line segment OD is divided into N equal in-
tervals, the ordinate at the endpoint of each

interval can be calculated by equation (6),
which is another form of equation (3).

IR - XRFX)
¢ o | X5

(6)

Note that the numerator of the radicand
contains the factors (R - X)and (R + X)
rather than R? — X*. This was done because
the computer can perform additions and sub-
tractions more rapidly than multiplications
and divisions. This should be kept in mind
when programing. A flow chart for finding
the circumference of the ellipse is given in
Figure 6-19.

> Reod RA,RP ]
1
l Print RA,RP )|
L
[ r=(raerp)/2 |
1
( N+ J
1
X*0 $Sum=20
CX =N
1
[tz =X *RXX )
Cv-rwewe
JO |
o\".\ 4.‘4'
+ *,
KON
[ Sem=da *sum 14—1"—1 —&o{xexm/tx_]
1 |
Primt N, Som s
L ¥ ] v /R (%)
{ N=N+2 ] 1
Myp = Ve 2 + (8-Y)!
1
| Sume=Sum s typ ]
b=V .
Figure 6-19
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A Fortran program for finding the circuni-
ference is given in Figure 6-20. Note that the
data given in the program are the radii at
apogee and perigee in statute miles for the
satellites Relay, Explorer VIII, Echo I, Ex-
plorer V111, 080, and Alouette in that order.

4 CIRCUMFERENCE OF ELLIPSE GIVEN RACEI AT APOGEE AND PERIGEE
1 READIRARP
PRINT 5,RAWRP
5 FORMATI/2F8.0)
QutRAGRAI /2,0
Ne20
2 x%0,0
CxeN
SUMICLO
BASEZRR/CXIR/CK
BeSORTIRASRR)
DO 3 xnlsN
ReXeR/CK
YuSORTIRASRPEIR-X1#{ReXIZIR"RY)
NYPRSORT(RASERe (B-YIOCB-Y I
Bey
3 SUMESUMeNYP
SUMe 8, 0 SUN
PRINT 4 iNeSLM
4 FORMATI/18:/F 10401
NENe2D
IP 4100-NI1ad»2
ENO
T000. 4900
4880¢ 43a2
S0e8 49a8
2423 4258
4370, 43as

40024 4423

Figure 6-20

The computer output is listed for N = 100
along with the output from using five terms
of equation (6). The answers are correct to
four significant digits.

Circumference Circumference
for N = 100 from equstion (5)
37088 37092
28330 28333
31399 31492
30360 30303
27313 21375
27853 27856

6-6 [Erercises Circumference of an Ellipse

1. Write a program to find the length of the
curve of the equation Y = X3’ — 9X1? 4-
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24X for that part of the curve between
X = Aand X = B, where A and B are
given as follows:

A B
0.0 50
1.0 40
0.6 &5
-1.0 50

Equation (4) was one of three formulas
for finding an approximate value for the
circumference of an ellipse. As the value
of B approaches th.e value of A, the value
of C approaches 2xA, which is the for-
mula for the circumference of a circle.
Let B = A and verify this fact. Write a
program to find the circumference of an
ellipse by use of each of the three for-
mulas, keeping A fixed at 30 and letting
Btakeon thevalues2,4,6,...,30. Also
find the circumference which is the aver-
age of the circumferences of the first and
third equations. Finally have the pro-
gram calculate the circumference by tak-
ing the sum of five terms of equation (5).
When the computer output is obtained,
observe the high degree of accuracy in
the results of these formulas.

In the previous exercise the circumfer-
ence of an ellipse was found five different
ways. Using the same five formulas and
the data given in Figure 6-20, write a
program to find the circumference of the
orbital paths of the satellites.

6-7 Velocity Along an Elliptical Arc

In effect Kepler's second law states that

the line joining the center of the earth to a

n 4
~—
<

Figure 6-21



satellite sweeps out equal areas in ejual in-
tervals of time. By use of thislaw, considera-
tion can be given to the velocity of a satellite
in orhit.

In Figure 6-21 let the velocity at the point
D (apogee) be denoted V, and be called the
velocity at apogee. The velocity at perigee is
denoted V,, and the velocity at point C is
denoted V. For a given time interval the
satellite moves from D) to B, or from C to I,
or G to P. For a very small time interval, arcs
DB, CI, and GP can be considered as line
segments and the sectors DEB, CEI, and
GEP of the ellipse can be considered as tri-
angular regions. In ADEB, if DE is the bace,
then DB will be an approximation for the al-
titude. The length of DB will be DB =
(V,) (t), where t denotes a small period of
time. Similarly, GP = (V,) (t).

By Kepler's second law, equal areas are
swept cut. Thus, the area of ADEB is equal
to thearea of AGEP ;

4(ED)(DB) = }(EP)(GP)
HRIVIE) = FR)V)(L)
Rn(vn) = Rp(vp) (7)

In ACEI, CI can be considered parallel to
PD for a very small period of_time, then
Z1CH = £CEQ, If thealtitude IH is drawn
to base £:C, then two of the angles of ACIH
equal two of the angles of AECO and ACIH
~ AECOQ. Since the corresponding sides will
be proportional,

coO TH —

-Iij__-(}. ar and IH L
Since CO was given to be equal to VR.R.
in equation (2),

i = (/RRp)(V)(t)

O
1f equal areas are swept out, then the area of
ADEB is equal to the area of ACID;

3(DE)(DB) = }(CE)(H)

_ (CO)(TT)
EC

- 'R“:"; T
HRIVI® = @) (VR DO)
V. = Ty ®)
Ve = VJR_: (9)
Multiplying equations (8) and (9) gives
v = VV-\VI!' (10)

Thus V turns out to be the geometrical mean
between V. and V, and will be called the
meaii velecity. Notice that the mean velocity
occurs at point C.

The following formulas were developed in
Chapter 5:

GMm
F=R
F =ma

(2

a ==

From these equations we have
GM
V = ‘/ R (11)

where the constant VGM = 1.115 X 105, R
is in miles, and V is in miles per hour. Equa-
tion (11) holds for circular orbits and equa-
tion (12) gives a very good approximation
for elliptical orbits.

-

V = i (12)
The period of time for a circular orbit is
T = 2xR/V

Again for an elliptical orbit, 2 very good
approximation is obtained by using equa-

tion (18) -
T = 2xR/V (13)
From equations {12) and (13)

-4 5
T =am ®”
T = 3.38 X 10-(R)*? minutes (14)

Note that this is a form of Kepler's third law
which states that the square of the vime of a
satellite varies directly as the cube of the
radius.

To illustrate the use of some of the for-
mulas, let us determine the mean velocity
for the Mercury satellite which has a mean
radius of 4100 miles. Using equation (12),
7 = YGM/4100 = 1,115,000/64.03

= 17400 mi/hr.

The Syncom satellite has an orbital alti-
tude of 22,300 miles. Therefore R = 26,300
miles. By a process similar to that just com-
pleted, V = 6900 miles per hour. The cir-
cumference of its orbit is 2xR = 52,600 »
miles. The period of :ime for Syncom to orbit
Earthis T = 52600 »/6900;

T = 24 hoyrs.



This gives an explanation of why Syncom
seems to be stationary at a certain point
above the earth.

6-7 Kzercises Velocily Along an Elliptical
Arc
For Nimbus I, perigee was 260 miles and
apogee 580 miles. If the mean velocity
for Nimbus was 16,800 miles per hour,
find the velocity at perigee and the
velocity at apogee.
For Explorer XX perigee was 540 miles
and apogee was 634 miles. Find the
period of time in minutes for one orbit.
For Explorer XIX the velocity at perigee
was 18,050 miles per hour and the veloc-
ity at apogee was 14,200 miles per hour.
Find the mean velocity, meanradius, and
the period of time in minutes for one
orbit,
Using the definition of eccentricity that
was given in Section 2-4, write a Gotran
program that will find the eccentricity of
the elliptical orbits for the satelliteslisted
in Figure 6-20.
If apogee and perigee are given in statute
miles for the following satellites, then
write a program that will print R,, R,
V., V,, and T for each satellite.
Satellite Apogee

Syncom 1 21,650
Tiros 111 510
Tiros VIII 468
Syncom I1 22,900
Explorer XX 634 540
080 358 346
By use of equations (1), (7), (10), and
(12), derive the formulas

R, = RP’VD’ .
* 7 2GM - V,R,

v = gS;M - Vp’Rp

* RV, .

If perigee and the velocity at perigee are
given in statute miles for each of the

following satellites, then write a program
that will print R,, R, V., V,,and T.

1.

Perigee

21,400
457
436

22,290

Velocity at
Satellite Perigee perigee
Synecom 111 22,160 6,870
Echo I1 642 16,640
Alouette 426 16,790
Gemini 160 17,290
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6-8 Curve Fitting

The problem of deterraining the equation
from a set of given drta is common in mathe-
matics and science. For example, one might
want to find the equation of the elliptical
orbit of 2 satellite if the coordinates of several
points along its path were known. This
process of fitting a curve to given points often
yields very useful results.

We first consider linear functions of the
form

y=mx+b
Quadratic functions will be considered later
in this section.

If the coordinates of two puints of a line
are known, then the equation of the line can
be found. If the given points are (X;, Y;) and
(X4, Y3), then

Y, = mX; + b,
Y. = mX; + b;
m =2 (15)
b=Y —mX =Y - (;-l{—){—:) X
~Rp= R0 e

For the points {0, 1) and (1,3), m = 2,b = 1,
and the linear equation becomes
Y =2X +1

Problems often arise in which there is
reason to believe that a linear function may
be used to describe or approximate a given
situation. If the coordinates of many points
are given, then various methods can be em-
ployed to find a linear equation that provides
a “good fit"” to the data. One method is called
the method of average points. To illustrate this
method consider the data
(X1, Y3), (Xs, Yi), (X, Y3), (X, Ya),

(X5, Yo), (X4, Yo).
In general, the set of data is divided into
two subsets of approximately the same num-
ber of elements. We shall consider the subset
(xh YI)! (X2| Y!); (Xl; Yl)
and the subset
(xh Yl)l (xh Yi)! (xh YG)-

Then we find the average of the X-coordi-
nates, and the average of the Y-coordinates
for each subset. Suppose these average values
are X, and Y, for one set; X, and Y, for the




other set;

Xa = (X1 4 Xa2 + X4)/3

Y. =Y.+ Ys + Y;)/8

Xo = (Xi + X + Xe)/3

Yo = (Yo + Yy + Ye)/3
Finally the equation of the line joining
(X, Yo) and (Xu, Yi) may be found by use of
equations (16) and (16).

The equation obtained by the method of
average points will not yield a unique equa-
tion since the manner in which the given
data is grouped will effect the result obtained.
This is illustrated for the data (-2, 11),
(—11 8)! (21 5)! (11 2)! (31 1)1 and (41 —2)-
If the first three sets of ordered pairs are
grouped and the last three are grouped, then
Xa=-1/3, Y, =8 X, =8/3, Y, =1/8

(2]
and the equation is Y = — iix + %7? 1t
(-2, 11), (2, 5), and (1, 2) are ¢rouped and
the remaining elements are grouped, then
Uy 100
, 5 15

There is another method of curve fitting
called the method of least squares. If this
method is applied to curve fitting for a linear
function, a unique equation will result.
Furthermore, the equation will fit the given
data about as well as possible. As might be
expected, the method of least squares in-
volves much more work.

To develop the method of least squares for
a linear function, consider the equation Y =
mX + b, which may be written

mX 4+b) -Y =0. 17
If a point lies on this line and the coordinates
of the point are substituted into the left mem-
ber of equation (17), then the sum of the
terms will equal zero. If the coordinates of a
point, which is slightly off the line, are sub-
stituted into the left member of equation
(17), the sum of the terms will not equal zero.
This can be represented by the equation

R=mX+b)-Y (18)
The magnitude of R provides a measure for
the error that is made in assuming that the
point with a given X-coordinate is on the
line. Notice that for each point, R is & signed
number and thus there could be compen-
sating errors that would not appear when
the errors (values of R) were added. All
errors show up when we use values of R2.

the equation becomes Y = -
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The method of least squares involves
squaring both members of equation (18) and
substituting the coordinates of the given
points into this equation. Thus for data

(Xh \'l)n (X‘-‘n Y’-‘)n t (Xnv Yn)v
the equations would be
R1’ = [(le + b) _ Y]]‘2

R12 = n12X1’ + 2me1 -+ b

_ 2lﬂX1Yl + 2b\" + Y]e
Rz"‘ = m2X.? 4+ 2bmX. + b?

et 2mX7‘x’g - 2bY2 “+ \’22
R,? = m*X,? + 2bmX, + b?

- 2mX.,Y, — 2bY, + Y.!
The curve that is considered best is obtained
when the sum of all the Rz, denoted as ZR?,
has a minimum value. In algebra it is shown
that the quadratic function AX® + BX 4 C
with A > 0 has a minimum value when
X = —B/2A;
that is,
2AX + B =0. (19)
This concept can be used in the methods of
least squares. When ZR® is found, a
quadratic function in m results as shown in
equation (20)
ZR? = m?TX? 4 2bm ZX + nb?
- 2mZXY - 2b2Y + ZY: (20)

If equation (20) is a quadratic function in m,
then a minimum value occurs since the coeffi-
cient of m? is positive. Therefore hy =quation
(19) the minimum value occurs when

2mZX? 4 2bITX — 2ZXY = 0;
mZX? 4+ bZX = ZXY @nr
If equation (20) is considered to be a quad-

ratic function in b, equation (22) is obtained
by a similar vrocess:

mZX +nb = 2Y (22)

When equations (21) and (22) are solved
for m and b, the desired linear function is
obtained.

The process of curve fitting for exponential
equations of theform Y = AB*and for power
equations of the form Y = AXB ca.. always
be reduced to that of curve fitting for a
straight line by use of special graph paper.

Curve fitting for the parabola will be dis-
cussed in one of the exercises. The saine
process can be used for the ellipse or other
types of curves.

~~



6-8 KExercises Curve Filling

.16 —4.88
.30 9.30

-71 238 -24 -7 245 -24
220 -8.76 7.37 1035 —6.90 7.6

—1.11
4.73

X -52 29 -4 -5.05 1.1
Y 1133 -10.65 4.1 11.33 -5.2

1. The ordered pairs that are use] for data 3. Using a technique similar to that used
in this problen1 are the coordinates that to derive equations (21) and (22), derive
represent the position of slars at a par- equations that will determine the coeffi-
ticular instant as taken from a north cients A, B, and C of the quadratic func-
polar star chart. tion Y = AX?* 4+ BX + C. The three
Use the method of average points and formulas that are obtained can be used
write a program to determine the coeffi- for curve fitting for the.parabola. It may
cients m and b of a linear equation Y = be helpful to follow this procedure:
mX + b of a function to fit these points. (a) Square both members of the equa-
Make the program flexible enough so tion R = (AX? 4+ BX + C) - Y.
that it will read up to thirty ordered pairs (b) Substitute the data (X;, Yi), (X,
of data. Ys), . .., (X, Y.) into the resulting

If the data are arranged so that the equation.
values of X are increasing or decreasing (¢) Find TR,
and the subsets selected by grouping the (d) The equation corresponding to (20)
points in order according to their x-coor- will be a quadratic function in A.
dinates, then more accurate results will Determine the conditions for which a
be obtained than if the data are left in minimum value of the function
random order. Therefore, i:ave the pro- occurs. Follow a similar procedure
gram arrange the ordered pairs in in- for B and C.
creasing order as determined by X. By observing the pattern in the equa-

2. Using the method of least squares for the tions just developed, derive a set of equa-
data given in Exercise 1 write a program tions for a polynomial function of degree
to find the coefficients of the linear func- three.
tion. You may compare this equation 4 yyge the results of Exercise 3 and write a
with .that in the previous exercise by program to find the coefficients A, B, and
plotting the data on graph paper along C for a quadratic function Y = AX? +
with the graphs of the equations found in BX + C to fit the following data:
Exercise 1 and this exercise. : )

X -20 ~-14 -10 --04 -02 04 11 16 21 24
Y 19 03 00 -03 -01 -01 05 09 1.9 23

17
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Chapter 1 —DESCRIBING THE SHAPE OF THINGS

1-1 Shapes on Earth

1. A few examples of plane surfaces are a
flcor, wall, the cover of a book.

2. One and only one straight line can be
drawn through two points.

1-2 Earth's Atmosphere

1. The circles appear to be of the same
size; radii of congruent circles are
congruent.

2. Concentric circles may be seen on an
archery target, other “bullseye” tar-
gets, the decorations of many dishes,
and in other places.

3. Among the many objects that are ap-
proximately spherical are baseballs,
golf balls, oranges, and the moon.

4. The radius of a sphere iz the distance
from the center to any point on the
surface of the sphere.

1-3 Angles and Arcs

1. 2 x 224 x 4,000; that is, about 25,000
miles,

2. About 4,000 miles.

3. About 69 miles,

1-4 Positions on Earth

1. In 1 hour, 16°; in 6 honrs, 90°; in 12
hours, 180°.

2. 180°.

3. (a) 12,430 miles, (b) 6,215 miles.

4, Yes.

5. No.

6. (a) 21,600 miles, (b) 16,200 miles.

/5’0/181

1-3 Observations of Earth

1, About 100,000,000 square miles; that
is, in scientific notation about 1.0 x 10*
square miles.

2. About 4.0 x 10’ square miles.

3. About 503,000 square miles,

1-6 Maps and Distances

1. Yes, when AB is parallel to CD.

2, Yes, when AB L CD.

3. No.

4. A circular region (that is, a circle, and
its interior points) with a radius equal
to the radius of the sphere.

1-7 Measurements

1. 30 feet.

2. 3 feet,

3. Each object is perpendicular to its
shadow. In the case of Exercise 2 this
means that the person is standing upon
level ground.



Chapter 2 —~THE UNIVERSE WE LIVE IN

2-1 Where Do You Live?

1. Think of corners of the room as inter-
sections of walls, the intersections of
the ceiling and walls, edges of a desk
top as the intersection of the top and
sides, and so forth.

2. Think of the points on a wall that are
equidistant from the points on the floor
at the ends of that wall, and so forth.

3. Think of a coordinate system for the
chess board.

2-2 Relative Positions on Farth

1. Henryetta, Oklahoma

2, 96° west longitude; 35° 27.6" north lati-
tude.
The following steps may be used to ob-
tain the answers for this exercis.e:
(1). Measure the distance betw cen the
32° parallel of latitude and the 36°
parallel of latitude. Call this measure
A,
(2). Measure the distance from the 32°
parallel of latitude to city in question.
Call this measure B.

(8). On the map used by the author
parallels of latitude were 4° apart and
the measures were:

A =8.,0cm; B = 7.36 cm.
(4). Let x = degrees of latitude city
in question is above the 32° parallel of
latitude.

B 17.36
®) & =550

B X .
(86). N = 4—3; ° i3 span of parallels of
latitude on map.

7.36 X
. 8.50  4°
(8). x = 3.46° Since 1° = 60", 0.46°
= 27.6'

(9). Latitude of city in question Is 82°
+ 8°27.6'

+10). Latitude is 85° 27.6’ north lati-
tude
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3.

(11). Longitude is about 96° west
longitude.

This exercise may be solved by using
the gcale stated on the map. Measure
the distances on the map; use the scale
on the map to determine the numbers
of miles represented by the map dis-
stances and compare. About 340 miles
is saved, '

No. Use a protractor to observe that
the measures of opposite angles are not
equal. The angle formed at New Or-
leans is about 84°; the angle formed at
New York is about 76°,

2-3 Fallacles of maps

Trial Quadrant
F-1 11
K-3 II1
c4 11
K-5 I
M-7 11
K-8 111
C-9 11
M-10 I1
K-11 I1
C-12 N
M-13 i

K-14 v
C-16 II
M-16 v

2-4 The Solar System

Answers to 2—4 are includ~d in the section
pages 38 and 39.

2-5 Earth—a Satellife with Satellites

1.

0 +30=6 (mod 24)

0 4 30 =30 (mod 36)

Use the chart described in Figure 2-35,
align the 0° longitude mark on the
third circle with 6 on the hour cirele.
The position of the satellite will cor-
respond to 30 on the first circle and is
about 1561° west longitude.

142° west longitude.

(



2--7 Our galaxy, the Milky Way

1. 2, Thr Jesired answers are included in the
Star following completed table.
and « 3

Consteliation (To (To

U Turws 586 2107 et e
3 m ’ N t fti f

B Orion 5"13 — 8°14 Ie{%:le: Constellation Star ongTl:) Itl,ecali"rfz-

y Orion Eb23m + 6°19 Circle Position Name Ascension tion
s Orion 5'30m — 0°19’ 1 B Andromeda Mirach 1"08~  +35°26’
¢ Orion 5'34m  — 1°13 2 a Aries Hamal 2%05™  +23°1%’
¢ Orion 5'39m  — 1°58’ 3 B Perseus Algol 3h05=  +40°46'
« Orion 546w — 99417 4 a« Taurus Aldebaran  4'34m™  416°26
« Orion 5h53m + 7024’ 5 a Auriga Capella 5h14m +45°68'
y Gemini  6"13  +22°31’ 6 a Orion Betelgeuse  5"53" 4 7°24’
y Gemini 636™  +16°26’ 7 a Canis Major Sirius 6"44m  —16°40’
o« Gemini 732 +31°58’ 8 B Gemini Pollux T543%  +28°07
B Gemini 70430 428007 9 « Cancer 8rHTw +12°00’
10 « Leo (Leonis) Cor Leonis 1007  +12°08’
11 B Ursa Major Merak 11*00™ +56°34/
12 a Corvus 1207  —24°32'
13 a Virgo Spica 13"23™  —10°6Y’
14 « Bobttes 14*14» 419022’
i5 B Bodtes Nekkar 16"01=  +40°32’
16 g Scorpius Acrab 1603  —19°43’
a Scorpius Antares 1627  —26°21’
17 « Hercules 17"13"»  +14°26'
18 y Saggitarius 1804  —30°26’
19 « Saggitarius 18'563™  —26°21’
20 a Aquila Altair 19+49=  + 8°46'
21 a Cygnus Deneb 20°40~  —45°09’
22 « Aquarius 22h04» - 0°29’
23 o« Pegasus (Pegasi) Marhab 23"03»  +15°01’
24 a« Andromeda Alpheratz 07> +28°54'

3. 1 hour and 8 minutes is 15° and 120’;
that is, 17°.
183
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ANGLE  SINE  COSINE  TANGENT  ANGLE  SINE  COSINE _ TANGENT

1° 0175 9998 0175 4° 7193 6347 1.0355
2° 0349 9994 0349 4re 1314 6820 1.0724
3° 053 9986 0524 18° 2431 6691 1.1106
40 0695 9976 0699 49° 1547 6561 1.1504
5° 0872 9962 0875 50° 7660 6428 1.1918
6° 0145 9945 1051 51° 171 6293 1.2349
7° 1219 9925 1228 52° 7880 6157 1.21%9
g° 1392 9903 1405 53° 1986 60i8 1.3270
9° 1564 9877 1584 54° 8090 5873 1.3764
10° 1736 9848 1763 55° 8192 1% 143
11° 1908 9816 1344 56° 8290 5592 1.4826
12° 2079 9781 2126 57° 8387 5446 1.53%9
13° 2250 9744 2309 58° 8480 5299 1.6003
14° 2418 9703 2493 59° 8572 5150 1.6643
15° 2588 9659 2678 60° .8660 5000 1.7321
16° 2156 9613 2867 6I° 8746 4848 1.8040
17° 2924 9563 3057 62° 8829 4695 1.8807
18° 3090 9511 3249 63° 8910 4540 1.9626
19° 3256 9455 3443 o4° 8988 4384 2.0503
20° 3420 9397 3640 65° 9063 4226 2.1445
21° 3504 9336 3839 66° 9135 4067 2.2460
22° 3746 9212 4040 67° 9205 3907 2.3559
23° 3907 9205 4245 68° 9212 3746 2.4751
24° 4067 9135 4452 69° 9336 3584 2.6051
25° 4226 9083 4663 10° 9397 3420 2.7415
26° 4384 8988 4877 ne 8455 3256 2.9042
27° 4540 8910 5095 12° 9511 3090 3.0
28° 4695 8829 8317 13° 9563 294 3.2109
29° 4848 8746 5543 "e 9613 21%  3.4814
30° 5000 8660 5114 5° 9659 2588 3.7321
31° 5150 8512 6009 6° 9703 2419 4.0108
32° 5299 8180 6249 7° 9744 2250 4315
3° 5446 8387 6494 18° 9781 2009 4.7046
U0 5592 8290 6745 19° 9816 1508 5.1446
45° 5736 8192 7002 80" 9848 736 56713
3° 5878 8090 7265 81° 8877 164 6.3138
3° 8018 7986 7536 82° 9903 1392 7.1154
38° 6157 7880 7813 8° 9925 219 81443
39° 6293 a1 8093 8° 9945 1045 9.5144
40° 6428 7660 8391 85° .99 0872 11.4301
a° .6561 7547 8693 86° 9976 0698 14°3007
42° 6691 7431 9004 87° 9986 0523 19.0811
43° 6820 7314 8325 8° 9994 0349 28.6363
e 6947 7193 9657 89° 9998 0175 57.2900
45° 2071 7071 1.0000 90°  1.0000 0000
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Chapter 3 —MEASUREMENT, A WINDOW TO THE UNIVERSE

Section 3-1—Direct linear measurement

1. The ratios should be the same, in the
two systems.

2. The following is a set of sample data
for measurements in inches;

3.48 3.43 3.4 3.44
3.44 3.44 3.41
3.60 3.41 3.42

The average value for the length of the
line is 3.44 inches.

Section 3--2—Dircet Angular Measurement
1. () 26°; (b) 184°; (e¢) 15°; (d) 340°

b b

Section 3-6—Earth as Viewed from a
Satellite

Visible Part of
1, Altitude of Surface Earth’s
the satellite (square surface
{miles) miles) visible
(a) 200 4,787,000 0.02%
(b) 1000 20,096,000 109
(c) 4000 50,265,000 26 %
(d) 5000 55,851,000 289
2, 4
3. Cos /e = 0.8000; e =~ 36.9; GC
=~ 38 X 27 X 4000 =~ 5,150 miles
360

3-7 Distance 1o the Moon
1. 1,500,300 miles.

" o hy e 20 2,270 miles per hour.
3. The moon is about 253,200 miles at
3. 12 12 12 maximum distance and about 222,300
miles at minimum distance.
9 3 9 3 9 3 3-8 The Yardstick of Space
1. About 583,412,000 miles; about 66,600
1 1/2 HOURS 7 1/3 HOURS 5 HOURS miles per hour.
45° 220° 150° 2. 81.p.
(0) (b) (c) 3. 32.5.
4, Degrees Minutes Seconds 4. The su.'’s diameter is about 108 times
(a) 15° 900’ 54,000” the diameter of the Earth.
(b) 40° 2400 144,000” 5. Over 1,000,000.
(c) 0.083° b’ 300”
(d) 0.0083° 05 30" 3-9 The Inner Planets
S 1. 0.25 A.U.
eclion 3-3—Indirect Measurement .
About 1.1 miles 2. 175 A.U.
: 3. 0.625 A.U.
Section 3-4—Measurement of Earth 1.376 A.U.
About 2,990 miles 4, 1.6
Section 3-5—Altitude of a Model Rockel
Observer A Observer B
Altitude Altitude | Average | Accept-
d (ft) | ScaleH | Geale V a Scale H| Scale V DC Altitude | able
1000 30° 30° 500 60 45 500 500 yes
1000 40° 40° 787 65 50 793 790 yes
1000 37° 48° 1066 68 60 1079 1072 yes
1000 52° 31° 570 70 32 486 528 no
1000 12° 56° 1601 104 81 1461 1631 yes
1000 64° 13° 2333 43 68 2326 2320 yes
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3-11 Distances to the Stars

Par- Light
Parallax secs year AU.
1, 0.4” 2.6 8.15 518,450
2. 0.018” 55 179.3 11,295,900
3. 0.87" 1.15 3.74 235,620
4. 0.049” 20.6 67 4,221,000
5. 0.022” 45 146.7 9,242,100

3-12 Magnitude and Brightness
1. 9.5
2. 26

3. The sun is about 420,000 times bright-
er than the moon,

4, 21
5. 1,120

186

3-13 Apparent and Absolute Magnitude
1. (a) Star Distance Apparent Absolute

(parsecs) magni- magni-
tude tude
A 10 2 2
B 100 4 —1
C 40 0 -3
(b) CAB
(¢) C,BA
2. M m  Par- Dis- Par-
secs tance allax
light
vears
{a) 04 -—18 3.7 11.6 028"
(b) —2.8 —03 33.3 108,56 0.03”
(¢) 179 79 10 326 0.1”
(d) 437 12 22 717 0.45”

3-14 Classification of Stars
1, About 2.1; 0.8 magnitudes
2. About 40,000

3. About 4.1 times greater
4. About 14 light years




Chapter 4 —~MOTION IN SPACE

4-1 What Is Motlon?

In Figures 4-2 and 4-3 the coordinate
planes are at right angles to cach other. To
find the length of AB, first find the length of
ED in the right triangle ECD where LC =
60, CD = 10, and ZECD = 90°;

ED = V607 107 = 10 V37

In the plane of ED and AB construer a line
AD’ through A paraliel to ED such that
ED = Klg’. and AD’ is perpendicular to
BD. In the right triangle AD’B,

AD' = 10437

BD’ = 80

AB - Y(10v37)' + 30 =~ 10 V6 = 67.8.

The change of rate column of Table 4-2
may be explained as follows:

The v’s from top to bottora are 0, 25. 50,
50, 50, 50, 50, 50, 50, 50, 59. These are dil-
ferences in average speeds. The time interval
is one second with the exception of the first
difference which is a half second (from 0 time
to the raidpoint of the first second interval).
The acceleration is constant, 50 ft/sect,

Io r"‘A_{

at =4
r

At = 135,000,000 mi
186.000 mi/sec
. 135 X 10* mi

" 1.86 X 10 mi/sec

At = 7.25 X 10t sec = 725 sec.
4000 mi 4+ 1000 mi = 5000 mi

Qa1

225000 mi

= 314 X104 mi
1.183 X 10! min

= 265 mi/min

2.

2 -
nowon

3. r = 4000 mi + 630 rai = 4630 mi
d = 2+4630 mi = 292 X 10'mi

292 X 10 mi 217 mi

Po= S22

1.054 X 10" min min

From the problem there are two known dif-
ferences in the orbits: (1) altitude, and i2)
time for one revolution. Guesses (hypotheses)
might be conjectured as to how these are
related. The weight of Echo I was not stated.
Does weight make a difference in speed? The
answers are rather subtle, This topic is con-
sidered in Chapter 5.

Section 4~2 Road Maps Without Roads

1. ° b

4
A 4

2.
s\ RS
b
3
‘I "
s o
o] b
4
r
8, 3
———— P
———en eo+*b=0
b

6. The magnitude of a + b is greater than
or equal to zero and less than o7 equal to
the sum of the magnitudes of the given
vectors,

Section 4-3  Velocity Vectors
t. ¥, = 2000 ft, sec

-\"‘ = 200 “;S?(‘

¥, = 2010 ft sec

200
L0 = 5.7°

187
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<L

7 {x1 4 *r1)

°r

The figure presents the problem in vector
representation; V terminates at (xi, —¥i).
The projection of ¥ on the x-axis is ¥, and,
likewise, ¥, is the projection of ¥ on the y-
axis. Notice that 30°-60° right triangles can
be formed so that
o oV B X 10 ft/see

2 2
= 1.6 X 10? ft/sec

vy = ¥3v, = (1.73)(1.16 X 10* {t/sec)
= 2.59 x 10* ft/sec

Secllon 4-4  Acceleration Vectora

1. (a) Depress the gas pedal to gain speed.
(b) Apply the brakes to reduce the

s .
(¢) Turn the steering wheel to change
direction.

vy = adt

vy = (100 ft/sec?)(5 sec)
= 500 ft/sec

vie = (100 ft/sec?)(10 sec)
= 1000 {t/sec

188

-\7; = 250 ft/sec

d = Tt L
= (260 ft/sec)(b sec) = 1250 (t

G = QORISR g

d = (500 ft/sec)(10 sec) = 5000 ft
Att = 5, v, = 500 ft/sec and d, = 1250 ft.
At t = 10, Vi = 1000 ft/s“c and d“ =
5000 ft.

When t was doubled, v was doubled but d
was 4 times as great. This is characteristic of
accelerated motion. The relationship is (for
accelerated motion):

vat
aat!?

- 0+ 600 fe/sec
2

Section 4-6 Analysts of Projectile Motion

For the half second intervals (14, 114, 214,
etc.), the coordinates are: (4560, —4);
(+1505 "36); (+2601 —125); (+3501
—196); (4450, —324).

The horizontal velocity and the time in
flight which is determined by the maximum
height of the object determine the horizontal
distance (range).

In as much as Earth is not flat, the point
of impact would have a —y value greater
than the initial height, hence the object
would fall longer and further. If the range
were great these considerations would
have to be considered, At great height
and great horizontal velocities it is con-
ceivable that the object will not hit the
Earth. It will orbit!

Seclion 4-7 Circular Motion

a= i%r i
v = 2%[ @)
7T - g‘;t from (2)
_ ey
T’ = —;IH (3)
dr'r . .

a= yityre substitute (3) in (1)

v!
a s —

/

-



Section 4-8 Angular Velocity Section 4-13 Rockel Engines
800 ft/sec. Yes; a 10,000 pound thrust for

A YO 20 5(5)“088“ willi pn;loduct:efthe5 same ﬁhangenx‘m
LAJITUDE a o0, pound thrust for b seconds on the
// ////////// same rocket.
Z ///////

NN

Section 4-14 Sounding Rockets
1. 619,000 ft; (See Figure 4-26)
o 519,000 ft. = 6.19 X 10" ft

198.5 sec  1.985 X 10° sec
= 2.68 %X 10° ft/sec

2. 270,000 {i; (See Figure 4-27)

Vy

7. o 21X 100 ft
* 7 1.985 X 10? sec
= 1.86 X 10° ft/sec
3.
The angular velocity of all locations on J
Earth are equivalent. The speeds will vary
with the maximum at the Equator (a great '
cirele), since all other locations circumscribe
a circle of smaller radius in equivalent time I
periods. l
Launchings at Cape Kennedy take ad-
vantage of the West to East velocity of an oA l
object on Earth and the greater speed near v, I
the equator. I
Section 4-10 Mass l
The space vehicle with the smaller cha’ ge |
in velocity has twice as much masa. ) {
Section 4-11 Units of Measure |
—-
1. wt « Mg, and g is the same for all ob- 3
jects at the same location. Therefore if 1
wh = wi V. = V(268 X 10°)! + (1.36 X 10"}
3{}8 = Mg Vo = 3 X 10 ft/sec
1= M, Direction
2. Fat =mv tan ¢ = 2.68/1.36 = 1.97
Av = FAt/m L8 = 63.2°
10 kg- )h )
=t g";g‘:;” sec) 4. 540,000 ft. (See Figure 4-27)
54 x 10
‘ 5 m m 5. . T = . .
Bm;sec 385 X 10° 1.4 X 10° ft/sec
= TBaec 6. Vertical velocity (V,) (See Figure 4-26)
= 1 m/sec? v, o (871.000 - 805.000) {t ~
In this case we have kept the units as a ’ 20 gec ) ~
phyeicist would do. = 3300 ft/sec (_/

18!




7.

8.

Horizontal velocity (¥ ) (See Figure
4-27)
7 (127,000 — 97,000) ft
* 20 sec
= 1600 ft/sec
True velocity V)

YV, = V(2300)! 4+ (1600)! = 3620 ft/sec

3300
tana"‘l-so(—)=2.2

£ = 65.6°

Phase 1: is the initia! steep slope which
indicates high positive acceleration.
Phase 2: The slope of the line goes down
as drag and gravity retard the velocity.
Phase 3: A steep positive slope for about
6.4 seconds is due to the thrust by the
2nd stage motor.

Phase 4: Starts with the burnout of the
2nd stage and ends with apogee. In
this interval the rocket is rising but
losing vertical velocity.

Phase 6: From apogee to impact. High
gain in velocity due to gravity.

The forces of gravity and drag produce
an acceleration in the direction oppusite

190

9.

10.

11,

to the velocity of the rocket.

= — 83.6 ft/sec?

This value of a greatly exceeds the
accepted value for g and indicates that
at the high vclocities of rockets drag is
a serious retarding force.

Nike

;- B160 - 0) ft/sec

a 3.5 sec Mo

Apache

5 = (6700 - 1770) ft/sec o0 /coes
6.4 sec

Flight path angle is measured from a
horizontal. The positive value indicates
that angle is measured above the hori-
zontal (rocket gaining altitude) and the
negative value indicates that the angle
is measured below the horizontal
(rocket losing altitude).

Figure 4-28 gives directional data and

Figure 4-29 gives magnitude data. By

using the method called for in Exercise

2, you could use Figures 4-26 and
-27.

N



Chapter § —SPACE MECHANICS

Section 5-1
1. 0.04 seconds.
2. 8 = 299t
3. Approximately 84 cm/sec.
4. Approximately 608 cm/sec?.
Section 5-2
1. Approximately 24.76 em.
Disptacement from Table 5-1 is 24.72
em.
2. (a) 6.6 seconds.
(b) 868 feet.
3. (a) 16 feet, 144 feet, and 400 feet.
(b) 32 ft/sec., 9b ft/sec., and 160 ft/sec.
4. (a) 3 seconds, (b) 144 feet, (c) 1 and b
seconds after projection.
Section 5-3
1. (a) A construction, (b) A construction,
(c) 11.32 newtons, (d) 1.68 m/eec,
2. 2.8 m/sec.
Section 5-4
i. 618 miles.
2. 8({t/sec?
3. 5.97 % 10 kilograms (6.57 X 10" tons).
4. 24,100 miles from the moon or 215,900
miles from the earth.
5. A derivation.
6. (a) 7,640 m/sec. (25,059 ft /scc. or 17,083
mi/hr).
(b) 1,600 m/sec (4.920 ft/sec. or 3,384
mi/hr).
1.

(a) A graph, %b) approximately 12.2 ft/
sect, (¢) Mare,

Section 5-5

(a) 9.380 X 107 meters (58,260 miles),
{b) 231 m/sec. (516.56 mishr).

2. 6845 seconds (114.08 minutes).

3. A derivation.

Section 5-6

1. 7.044 X 10 joules (6.283 X 10%{t (Ibs))

2. (a) Approaches 1 (b) .QRL_I

1
3. (a) 10,800 m/sec (36,424 ft/sec or 24,149
mi/hr).
(b) 1,200 m/sec (33,456 {t/sec or 22,807
mi/hr).

4. 8,002 m/sce (9,847 ft/sec or 6,712
mi/hr).

Section 5~7

1. A derivation.

2. E = GmM (3 - l). Both have the

r 2a
same energy.

3. A satellite has the game angular momen-
tum at apogee and perigee. Therefore, it
appears that angular momentum is
conserved.

4, (@) V, = 7,420 m/sec (24,338 ft/sec or

16,59} mi/hr)
V. = 1,150 m/sec (23,452 ft/sec or
15,087 mi/hn)
(b) e = 0.019
(¢) 6,610 seconds (108.6 minutes)

Detailed solutions may be found on pages 146 through 168.
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6-2 Flow chartis
1. Yes

Chapter 6 .-COMPUTERS ARE NEEDED

6-1 Computers are essential

(a) Line segment connecting points
(0, —B) and (0, B).
(b) The point (0, 0).

Print
Imoginary toots

2I H
Read A,3,C |
1
[ Pio an,C |
oL
I Disc = 87 -4AC l
Print
{dentity
..___] X} = -B+ /Aoisc
Print } l
Impossible L)
Equotion X2 = :3- YDisc
A
X =LA I
Print X1,X2
Fhm X, Lineor Equotion ] l
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6-3 Graph of an ellipse Output:
1. Program:
e —— e . TS YT T W 2 S e e
R —— - C e e - — =15, 000008 . 15,3032)3 —— [ JER - - -
< ROOIC P GUAORATIC ERMTION Ak ASASAA 28 333844 .
" i e et s D Al ——
RY) - f 1] SR
- iy - ————— ORI L ——————
LI L 3T —cllgeted N AsiRd z
TRIRY WX
ST AU N BN LR ST R TR TR U e e -
H % —— P KT R N T T . ' -
19 FORMATIIEN _  1oewtifya A . 0000004 _ 01.8%482% 4
“ -
t?-a—'mﬂn“‘lmlu revsTion —1.0td . ALIGIA .
- - Sy sinie:s,p0a0e - - —— L 000NN ALW21)L y W
12 1019C118e00413 =L S0AM00d _ AL Se6ASH 2
LL SR ol L
e %nu- lml/‘!v et oA G000 . W \ISIN .
—— 1 SHIEIEI - s o -
L —e2.00A00A8 L) A21S1) —
W YOETTIV,. 1Y
— LoL.0asa0NE _ L) 980158 s
it P Y T ¢ X T 4
s =Tells .
$ode 1400 & L AASAANS __ 0} SKIRS A
(11} ale il
': L] ] -~ 1. A0000N8 . AL AZISLY A
L] . il
00 0e9e 3 — A.0A0MA8 _ A.1MIMI —a-
— A DAMMA . M A2SASL a
— S 000A008 . A8 594858 . e e e s ..
Output b I e A
— - i e 10000808 A 183080 a
et B BEEE N RS W - Sk 8 7 B B Bl _8.0000080 _ M SARNM . . SRS |
—ﬁfm.w'm_'m._——'”_—-—-—_—_—-— — .0000000 __ 39 6061% [ T
e 10 6,00 AN T LI Rt — ——— - 10000000 ). M990 ’
—— - 8T AT Y - ), 000000 JAMS4854 .
0. o s 0T m ) — 10000008 JY.IN005N .. .- B
meann 3 Snah 3 Sumkt BBl 010 ) S —— T W TV T U111 &
et 11 Ranth 1. St A ant A sy 5 ) - AN 0000 22,00 0008 ]
— A5, 000008 15.782193 [} ——
- PRETW T W 2
LS00 . tmoEsedcAM
2. Program:
: $oT0En FR00RAA 10 MET Y Um o hL1en
H 11F A0 PO BAORINT Or R 4 #3d & B34 L promm:
(381X ] _— C e e
I AT 1] ] R o SPRCENY OF PANYR RRSAMME FROR SARTOUANCD i
22eb PoTY " 208
2342304 .8-92 _ b wea - —
EeRinn K400 pon
LI e SN I BR00 .01 Y .
O AL A} e D2 ATENIRSAROR00 . —— e —
regelld F LT, % DN B
LITXT 1Y 3% e MTRADRRC- I
1 rear2atet e ABRRIRRIT TP - mn .
' o PENCe 2 AOnds R
re ... ] . LTI L 1Y 3 S
e B BN ARy
LYY Y
. 30 Sm-B00f i1eley e
3 308 e e N
to
’
(.
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Aruitoxt provided by Eic:



Output: Output:
Decimal part Decimal part
Elevation Area of area Elevation Area of area
_1" LY, bit 18 [ AR ::: m:a’: ::m
- = - - T T e ——— B ) . . [ —
w NRITLM REL o mies ot
LS R - ) v N Tttt
A - . OO i I
L -y 1o Tenom. e
TR EIRBLE g ) S 144 -
—o wemm— 1
- h - - () L
BRI 't?‘ 20044 nunln.n )
S (1 o S —— T g
ML A Sw mmmn i)
: Bl Bes _anisew hae
hdnd B B [y 90084 70. 90 thene
TH IR NI - .“.'.':_ TS 34 —w———‘: ey
—Te—  TRwTR— L — i TN ) —
e A TRy —wwi— - - T £ A —
il Raid prien provtenite] i
e SIBITH * Jooeid S7020444. 00 . &:}
- oL e 3 1 S — e PVUVIILY; 00 oY
_ 10088, _3ieendee e
e BRI, _ o Preeis MI96e 11 . 00 I
, 1L RN A1 _w_’““"'_" i __;E:q; M“"":_
— - o o ————— i HETue . S
. Rnidotbided nn 18004, 093,411, 00 (eete .
e HENAH T D 20000 03779919, 00 Tt
AR yaTRTH e TS Maee- "
i . .
S Ll 2 F <RI oo S8 '-.:m""w.z - -
e 00 18 B N — .. v 1} L —
. l'l n " gt S——— — e e e e
[}
IR CSHSEALN - “am—— 6-4 Area under curve
e — 1. Program:
4 m: I S un.mi CLLERBE P2 o Nep o §g | T TS
o Program: ) T
pU——— Y L7 M | —— - o ————— e —— . e .
t PEICENY OF CARTw DISIORE S0000 BILE SvgvAI4ON - a;':
300 m--mue.suunu.e STy
£ :;:V(-llﬁltl.”
e . - - T N T T
— B08008, B4R e - [ 2Lt £V s T RTY Y ]
-nm PRI 7 ) e ——— e
s G0 GNT om0 10 ARAAAL RS 2 I:-an‘ Tty
AQ 24
Aratamits 8000,81 e . o
 Measo.tNeAkesr. . _ . _:’ _"—"“‘ - ] :
. ~ A
108 ——
——— AN - —_—
— SeMedrpesber - Outp t:

Py B Y T WRITW IR ] Y nwsr
pevoR—w -1 W Y —— 2 IR —— T — e ———— -
e —= 13 1559578 S
2 TIW $P-15, sty
— £F ta-AOARSILLLR — 100 5. 408098 - ———— e
A_Rrah ——— -
Lo == e,

'\‘

POOR ORIGINAL COPY . *% .1 (
AVAILABLE AT TIME Fitlees N
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FOCR ORIGINAL COPY - BEST
AVAILABLE AT TIME FILMED

2, Program: Output:
< ‘.- .tm‘;.r!nn EYTYDP ANO aAvVEYY e T L N ~4'!,12! ) _ L .
;;:Yc-o & S8 —
TR o 0 e 13 saum
T e T s s
MO 1M 5.9

——— e SURpeRRPYYY o - — —
[ KL EY TS Va4

——— POt Y
i it ledd

e A PP T O O i - A —————

ABvRr 184D JmE %4,.0/C0

AP AT POV RRTT 1724 D= NAQLVATVITIZTD

[ R YT ¢

——— P POt P14 1939
6 to 1

L2

.
——— —
13

——— A At et Mt e

0o

3. Flow chart: °

L =% |
I

o R= 4000 *5200 )
Swnl- 0
k=N
| C» a.:zsalsm.z-la.m-s-soom.z 1
N e, |
) K>N N
[ Abows = tom (100055700 Jo— ' LA ]
[ Al -uoooL-szeo) /CRC/ (400048280)° | L sum -[svmr ]
[Asons uoo&smmn-q(sooo‘sm? ] [ r=t oluooo-sm)/cn ]
[Memnfmumn] L .
L An-(Abo:uM)n ]
l Print N, :n ]
| N = N?SO )
; [w= € (0/4000-1/5000)/51%0 )
brint W
Stop
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Program:

4. Program:

< POOK OOME 10 CEY W OUT SOKHET 10 1000 MLt tf(yhlan g ROMT DO 1O LAV BAACECRIST 10 & GlvEn CLlvATION
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(< I 30
T T el e ..”;._gn”.;'_____--, e = T e i N ’ ‘—
Tt T T T e -
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e ———— e e = — -
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T Tnemesiree sce CTTTTr e T T Bieren e T -
1OV M, 20E B/CRO B ’ (SRR SLVETIVIN N NI S9N 1o P2 T Y |
T Aot ancag -t aican. B
T T T et st )
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Output: T e e T T T T e
: . T Y Yeiti a0y oot
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T HstIn Lt T T e ST .
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6-5 The distance between Earth and Mars
1. Flow chart

O

Read SEIM, SE2M
|

|_ Bote = (180-42.5) /2 |
I

E1E2 = 93000000%In (42.5)
tin (Bose )
1

ME2E) = SE2M - Bose
MEIE2 = SEIM-Bore
A = 180- ME2E1 - MEIE2

1

E2M = E1E2%in (MEIE2)
tinA

1
EIM = E1E2%In (ME2E))

sinA

1
L Aot SEVM, SE2M, E1M, E2M ]
L

Program:

[4 DISYANCE BE*otin CARm A O @ang

l ."l‘ S'l’-(fi-
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ERIC

Aruitoxt provided by Eic:

2. Program:
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SO YO ————

9 BRIN? pesEng
8 _fomsATiszam INACCUMATE CBSERYVATIONS FR.N)

3040 D0.8. 82,0, 08,0
®0.0: 18,04 £3,00 8040

e ——————— ——

3% B¢ 0.0 8080 82D

_S2e0e J1ebe %0.0e 3200

__TRedr Sagy 120480 A100

#0400 Y3080 83480 1200

Output:

W SM.M
I, )R]
106606 147910
PACEURATE ORSERYVATIONS 1364
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6-6 Circumference of an ellipse
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6-7 Velocity along an eliiptical are
1. VP = 17300 mph.
VA = 16100 mph.
2. T = 105 minutes.
3. V = 1610 mph.
R = 4790 miles.
T = 112 minutes.
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6-8 Curve fitting
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accelaration, 121
wvarage, 88
centripetal, 129
of falling objects, 100
instantaneous, 130
vector, 99

sltitude
of a rocket, 70
of a satellite, 11
of a star, 44

angle, 6
tentral, 6
measure of, 7
of elevation, 17
sidesof, 8
vertex of, 8

angles and arcs, €

angular veloeity, 105

aphelion, 38

apogee, 39,40

are, 6
central angle of an, 8
major, 6
minor, 6

area, 166

areal velocity, 142

astronomical unit, 77

average speed, 96

azimuth, 44

B
brightriess of stars, 83

C
celestial aphere, 46
circle 4, 20,139
concentric, b
great, 10
inside a, §
outsidea, b
circular orbits, 131
computers, 161
cone, 20
right circular, 20
conical surface, 20
conic section, 139
constellations, 48
coordinate planes, 94
coordinates, 28,164
equatorial, 25, 48 -
globular Eurth, 26
navigation, 25
polar, £5
rectangular, 26, 28
curve fitting, 175

D

declination, 46

degree, 7
directrix, 189

distance between
Earth and Mars, 169

drag, 112

INDEX

F.
Earth, 29, 89
measurement of, 66, 68
viewed from a satellite, 71
Earth's atimosphere, 4
eccentricity, 38, 139
ecliptie, 37
ellipse, 20, 78, 139, 164
circamference of, 170
eneigy, 136
gravitational potential, 136
kinetic, 137
equatorial coordinates, 25, 48
equilibrium, 111
eacape velocity, 136
exosphere, b

r
flow char's, 162
force, 106
central, 110,128
centripetal, 128

G -

gravitational consatant, 181

H

horizontal parallax, 66
hour circles, 48
hyperbola, 20, 179

I

jonosphere, §

J
K

Kepler’slaws, 39
kinematics, 128

L
latitude, 10, 30
light year, 82
line, 4

rhumb, 80
longitude, 10, 30

M
magnitudes
absolute, 84
apparent, 84
of stars, 83
of vectors, 987
meps, 14,37
fallacies of, 33
maps and distance, 14
mass, 106
center of, 131
measure, units of, 108
absolute system, 181
English system, 60, 108
metric system, 60, 108
measurements, 18, 57
engular, 61
direct, 59, 61
indirect, 64

202 / 203

linear, 69

of Earth, 66
mechanics, space, 121
meridian, 10

prime, 10, 80, 42
Milky Way, 46
momentum, 110
moon, 73
motiun, 93

circular, 103, 109

projectile, 101

N

National Association of Recketry, 69

Newton, 108,109, 181
0

observations of Earth, 11
orbits, 69, 189
circular, 181

> “determination, 110, 144

P .
parabola, 20, 159
parallax, 64
geocentric, 78
heliocentric, 81
horizontal, 66
parametric equations, 168
parsec, 82
paths, in space, 19
of catellites, 130
perigee, 39, 40
perihelion, 38
perturbations, 40
plane, 4
coordinate, 94
planets, 77, 79
eceentricities of orbits, 38
inclinations of orbits, 37
aymbols for, 36
positions of stars, 43
positions on Earth, 9,29
" prime meridian, 10, 30, 42
projectile motion, 101
projection, 15, 35
central, 16
orthogonal, 16
proportion, 18

Q
R

radian, v
rate, 94
ratio, 16
trigonometric, 19
rays, 6
perpendicular, 8
revolution, 7
rhumb lines, 80
right ascension, 46
rocket engines, 110,111



rockets, 89, 100
altitude of, 68
Nike Apache, 112-118
Scout, 167
sounding, 111

S
sutellite
active, 13
altitude of a, 11
Earth-synchronous, 134
passive, 13
paths, 139
satellites
Alouette, 97,176
Apollo, 168
Atlas-Agenas, 111
Echo, 13,97, 135,144, 173, 176
Explaorer, 39,173,176
Gemini, 48, 108,133, 175
Mariner, 21, 37, 68, 94, 97, 169
Mercury, 174
Nimbus, 176
Orbiting Astronomical OL.crvatory, 63
O8O0 (Orbiting Solar Observatory), 173, 175
Pioreer, 76
Relay, 13,14, 173
Saturn, 111
Sputnik, 39
Syncom, 13,14, 134, 135,174,176
Telstar, 13, 14, 39
Thor-Agena, 111
TIROS, 11,183,175
Tijtan, 111
Vanguard, 4, 68, 171

scalar, 98
scalar product, 133
shapes on Earth, 8
slope of a line, 93
slug, 108
solar system, 36
sounding rockets, 111
space
mechanics, 121
motion in, 93
pathsin, 19
yavdstick of, 74
spectrum, 87
speed, average, 96
sphere, b
celestial, 45
zoneof a,13
stars
altitudes of, 44
brightness of, 83
classification of, 87
distances to, 81
magnitudes of, 83
positions of, 43
stratosphere, b

T
tangent line, 13
thrust, 111
triangle
congruent, 17
hypotenusecf, 19
similar, 17
troposphere, 5

204

U
units of nieasure
absolute system, 131
English system, 108
metric system, 108
universal gravitation, 131
universe, 25, 57, 89

A%
varies directly as, 12
vector, 87,121
acceleration, 99
magnitude of a, 87
quantity, 97
sum, 98
velocity, 99
velocity, 87, 121
along an elliptical arc, 173
angular, 105
areal, 142
escape, 136
instantaneous, 126, 130
vector, 99

W

weight, 108, 131
weightlessness, 108, 132
work, 135

X
Y

Z
zenith, 33
zone, 13
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