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APSTRACT
This hook, written by classroom teachers, introduces
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FOREWORD

This book introduces the application of secondary school
mathematics to the exploration of space. It provides a unifica-
tion of science and mathematics. This is not a textbook, al-
though there are exercises to provide the reader with oppor-
tunities to test and extend his understanding. An inquiring
mind, rather than a specified grade lave' in school, is a pre-
requisite for an enjoyable exploration of the ideas in this book.

While various treatments of this mateilal may be found else-
where and some elementary concepts ate included, these are
presented here in an easily accessible format, for supplemen-
tary classroom uses. There has been a del berate effort to in-
clude enough familiar topics to make a meaningful transition
from previous experiences to new concepts.

As the reader progresses through this book he encounters a
spiral development of ideas. Elementary geometric concepts
are introduced in Chapi:.er 1 for readers who have not formally
studied geometry. These geometric concepts are esed with gen-
eral concepts of space and rough approximations of space meas-
urements. Then, in later chapters geometric concepts, space
concepts and measurements are gradually refined as the ma-
turity of the reader increases. In Chapter 2 the use of coordi-
nates In the study of space is explored. In Chapter 3 the uses
of mt.surements in our explorations of apace are described.
These first three chapters may be used effectively

to supplement the usual materials at any one of several
secondary-school grade levels,

to challenge students with space applications, and as source
materials for teachers (and writers) as they strive to
capture the imagination of their students.

Chapters 4 and 6 provide basic concepts of science and mathe-
matics that are needed to understand space travel. These con-
cepts are appropriate as supplements for either science or
mathematics courses. Chapter 6 illustrates the effective man-
ner in which electronic comp tters may he used to treat mean-
ingful problems.

The authors of this material are experienced classroom teach-
ers who visited the NASA/Goddard Space Flight Center, con-
sulted personally with many of its scientists and engineers, and
studied important aspects of the U.S. space program. This book
Is their effort to share these experiences by providing other
teachers with enrichment materials for use in motivating their
students.

BRUCE E. MESERVE
University of Vermont
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About This Book

It is logical to presume that major achievements in the explo-
ration of apace rest with the youth of today and with the
education they receive. It is therefore our sincere concern that
the space program be conducted in close cooperation with our
Nation's educational institutions. Understandably, young peo-
ple throughout the land are fascinated by the era of space
travel. Teachers and students have long demonstrated their
eagerness to relate the subjects they study to the apace program.
However, frequently there appears to be a lack of available
reference material suitable for classroom use.

In view of the continuing demand for such material, espe-
cially for elementary and secondary levels, the NASA/Goddard
Space Flight Center, in cooperation with the U.S. Office of Edu-
cation, has initiated a program of summer workshops to de-
velop space-oriented mathematics supplements. The program
Is directed by a Committee on Space-Oriented Mathematics
consisting of Dr. Patricia Spross, Specialist in Mathematics,
U.S. Office of Education, and Mr. Alfred Rosenthal, of the
NASA /Goddard Space Flight Center. Mr. Elva Bailey, Goddard
Educational Programs Officer, serves: as materials coordinator.

This publication, the third in the series, focuses on the use
of geometric concepts. It was prepared during a summer work-
shop held at the University of Vermont, t3urlington, Vermont,
under the direction of Dr. Bruce E. Meserve, Department of
Mathematics, College of Technology.

Overall guidan a and direction for this project has been pro-
vided by the Office of Educational Programs, National Aero-
nautics and Space Administration.

MICHAEL J. VACCARO
Chairman ,Committee on

Space-Oriented Mathematics



Chapter 1

DESCRIBING THE SHAPES OF THINGS
evcip Brayton

East Lanai's/7 High School
East Lansing, Michigan



DESCRIBING THE SHAPES OF THINGS

1-1 Shapes on Earth
Think of the part of our Earth over

which you may have walked. Except for
hills and valleys, mountains and water-
ways, it can be considered flat. Walking is
a very simple way of getting from one
place to another. And as you look toward
the horizon, it appears that there is an edge
of Earth and perhaps the sky comes down
to meet it. It is not surprising, therefore,
that before the time of Columbus most
people believed that their Earth was flat,
and that sooner or later, if they traveled
far enough, they would come to the edge
and drop off! Their World was the one
they could see by walking around upon it.

As time passed, inen invented Improved
ways of travel by using wheels on and and
sailboats on water. Travel with wheels,
however, required the construction of
roads. The roads on water were already
there: It was natural that men turned to
coats for traveling greater distances. So
long as they kept land in sight they could
start and stop when they pleased, could tell
where they were, and felt sure that they
would not "drop off."

Man's curiosity and courage impelled
him to develop instruments that would en-
able him to travel on the water to find what

Figure 1 -1

was beyond the sight of land. The stars
had long been guides for travel at night.
The invention of the compass made it pos-
sible to chart a course both day and night.
The art of navigation reached such a re-
finement that men could travel farther
from land than they had ever dared to
venture before. Finally when Columbus set
out many people were certain that both
men and ships would be lost over the edge
of the World forever.
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Although Columbus did not prove the
World to be round, nor find a new route to
India, he did find a "New World" and the
maps began to be changed.

However, man has newel ae;,eared to be
satisfied in his search for Knowledge and
explorations have continued to tell us more
about our Earth end the space in which it
revolves.

You are just beginning to study about
those whose contributions in science and
mathematics make travel in space possible.
One of the early pioneers in space travel
was Robert H. Goddard whose scientific
curiosity led him to work on the develop-
ment of an efficient means for apace trans-
portation: the rocket engine. It is inter-
esting 'co note that the efforts of pioneers
are net always appreciated. Robert God-
dard was forced to move from New Eng-
land to the desert of New Mexico in order
to carry on his work because the noise of
the rockets bothered his neighbors. He
lives now in our memory as one of the
greatest of the early space explorers. The;
Goddard Space Flight Center in Greenvielt.
Maryland is named for him.

The ability to get into space has given us
a better look at our Earth. Maps are be-
coming more accurate, and we have been
able to describe more precisely the true
thape of the planet on which we live. Like
Columbus we have thought it was a round
globe.

Vanguard 1, which has been in orbit
since 1968, has revealed that Earth is pear-
shaped with a bulge at and slightly below
the equator. Earlier experiments had al-
ready proven that it was slightly I! tttened
at the poles.

In order to describe objects we can use
mathematical models. The first mathemat-
ical model for our Earth was a "fiat sur-
face." What exactly do we mean by a "flat
surface"? First we need to think of a Sine
as being composed of an infinite set of
points and having only one dimension--
length. When we speak of a line in this
bal we mill refer to a straight line unless
otherwise stated. If two points of a line
are on a flat surface, then every point of
the line is on that surface; we say that the
line is on the surface. Any two points de-
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termine a line. If every point of each line
that is determined by points of a surface
also lies on the surface, then the surface is
flat and is called a plane. A table top is an
example of a plane surface. We consider
a line to be.of infinite length and a plane
to extend infinitely far in all directions. A
plane lika a line is a collection of points.
It does not have thickness.

1-1 Exercises
Shapes on Earth
1. Name seeeral examples of plane sur-

faces.
2. On a plane surface how many straight

lines could be drawn through two
points?

1-2 Earth's Atmosphere
On Earth you are surrounded with

something you cannot seeair. Many
questions about air have been studied. How
far Into space does it extend? Does it ex-
tend to the moon? Does it hold us "down"
here? To make a mathematical model de-
scribing the earth's atmosphere we need
first to think about circles.

Let's try an experiment. Take a sheet
of paper and with your pencil mark a point
P on it. Select as many points of the paper
as you can that are one inch from P. Label
some of these points A, 13, C, . Draw a
curve through the points. Cen you name
this curve? Does it appear to be a circle?
On a plane, the figure formed by all points
at a given distance from a given fixed point
is called a circle. The fixed point is called
the center of the circle. The distance from
the center to any point of the circle is
called the radius of the circle.

What do you notice about the surface of
the water when you throw a pebble into a
lake? Consider this experiment.

Draw a circle with a 1/2" radius. Locate
a point 1" from the center of the circle.
Find the path or paths that all points 1"
from the center of the given circle would
form. Find the path that all points located
2" from the center of the given circle would
form. Try finding all the points 14" from
the center of the given circle and the path
they would form.



rigurs 1-4
Do you find that some points form a path

inside the given circle? Some outside?
You should find that all points which were
1" and 2" respectively from the center of
the given circle are outside the circle. The
points 1/4" from the center of the given
circle are inside the circle. Where do the
points 84" from the center of the given
circle lie? In each case the points were
points of circles having the center of the
given circle as center. Any two circles with
the same center on a plane are concentric
circles. The waves from a pebble dropped
into a lake often appear as concentric cir-
cles. (Exercises 1 and 2 are concerned
with circles).

On portions of the surface of our Earth
we are concerned with directions such as
north, east, south, and west (as on a
plane), but we can also look up into space.
We live in a three-dimensional world. A
plane is only two-dimensional. In our
three-dimensional world the set of all
points at a given distance (radius) from a
fixed point (center) is a sphere. Think of
several objects that are shaped like
spheres. Are your examples exactly
spherical in shape? Can you make a defi-
nition to describe concentric spheres?
Compare your definition with the definition
of concentric circles.

For many years we have thought of the
surface of Earth as approximately spheri-
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cal. We think of the different layers of
Earth's atmosphere as also bounded by
surfaces that are approximately spheres.
It is important to know about these layers
for in each we can study their effects on
Earth and life. These layers "wrap"
themselves around the Earth like an
orange with many layers of skin,each layer
blends into the adjoinini. areas.

Figure 1-4

If we take a trip into space we find that
the first layer of Earth's atmosphere (the
troposphere) is five to eight fa- more miles
thick with considerable variations. Our
weather conditions occur primarily in the
troposphere. There is also decreasing tem-
perature as one leaves the surface of the
earth and there are many "up drafts"
movements of air.

After we travel through the troposphere
we enter the stratosphere which extends
to about 60 miles above the surface of the
Earth.

The third layer (sometimes considered
as several layers) is referred to as the ion-
osphere, extends to about 400 miles above
Earth, and contains electric particles
called ions.

Beyond the ionosphere is the exosphere
and outer space.

1-2 Exercises
Earth's Atmosphere
1. Trace around a coin that has been put

in several different places on a piece d



paper. Do you think the circles you
have drawn are about the same size ?
We call these congruent circles. Why
do you think their radii are called
congruent?

2. Describe several examples of concentric
circles.

3. Describe several spherical objects.
4. Make a definition for the radius of a

sphere and compare your definition
with the one given in the answer
section,

1-3 Angles and Arcs
The measures of angles are often used

to locate points on the surface of Earth.

Figure 1-5

Consider these models of a circle with
center 0 and points A and B. There is a
line OA that intersects the circle in points
A and A'. The point 0 and the points of
the line that you would traverse in travel-
ing from 0 through A and continuing in-
definitely forms the ray OA. There is also
a ray OB. The two rays OA and OB form
an angle (LAOB). The rays OA and OB
are sides of LAOB. The point 0 that is
common to both rays is the vertex of
LAOS. Since the vertex of LA0I1 is also
the center of the circle, LAOB is central
angle.

6

Figure 1-6

The points A and B in Figure 1-6 divide
the circle into two parts, called arcs, as in-
dicated. If one arc is shorter than the
other, the shorter arc is the minor arc; the
longer arc is the major arc. In order to tell
which arc is the longer, we need to have
some way of measuring arcs. Measure-
ments are explained in detail in Chapter 3.

Figure 1-7

Try an experiment. On a piece of card-
board draw a circle with center 0 and a
ray OA as in Figure 1-7. Next cut out a
pointer as shown by OB in Figure 1-8 and
use a pin to attach one end of the pointer
so that it can rotate freely about from the
point 0.

Several possible positions of the pointer
are shown in Figure 1-9. Think of the



Figure 1-8

pointer as starting in position OA, rotating
counterclockwise through positions OB,
OC, OD, OE, OF and OG where OG is on
OA; that is, making one complete rotation.

There are angles and arcs associated
with each part of Figure 1-9. One con-
venient unit of measure is one revolution
which is the measure of one complete ro-
tation. The most common unit of measure
is the degree-

360 degrees = 1 complete revolution.
Estimate the measures of the angles in
Figure 1-9 in revolutions and in degrees.
Your answers should be approximately the
following:

LAOA = 0 revolutions = 0°
LAOB = 1A2 re volution = 30°
LAOC = 1/4 revolution = 90°

7

Figure 1-9



LAOD = % revolution = 136°
LADE = i,4 revolution = 180°
LAOF = revolution = 225°
LAOG = 1 revolution = 360°

Notice in the above list thac the symbol
for an angle, such as LAOB is also used to
describe the measure of the angle, (LAOB

30 °). This ambiguity is sometimes
avoided by using the symbol "m LAOB"
for the measure of the angle but we shall
not do so.

Notice also that the rays 01 and
form an angle of 90° and are sai to be
perpendicular; we write DI 1 0C (read
"OA is perpendicular to OC").

Thjmeasures of arcs AC, AD, AE, AF
and AG in Figure 1-9 may be expressed in
toms of the measures of their respective
central angles; for example: LAO repre-
sents one quarter of a revolution, AC is one
quarter of the circle; OE represents one
half of a revolution, AE is one half of the
,circle (that is, a semi.. Me). As in the
case of angles we use AE to represent both
the arc antits measure. We write
90° and AE = 180° and understand that
angles are measured in angle degrees and
arcs are measured in arc degrees.

With the above information you should
now be able to locate a particular point
(position) on a given circle.

Figure 1-10
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Given a oint G on a circle locate a point
E so that == 60°. Measure the central
angle LGOE with a protractor so that it
equals 60°. In Figure 1-10 the side OE
intersects the circle at a point E located in
the counterclockwise direction from G; (we
call this position the (+) direction from
G). If you measure the same distances
clockwise (that is, in the negative ()
direction) from G you will obtain a point
W as in Figure 1-10. We write LGOE
+60°, LGOW = 60°.

On a given circle you can now locate a
point E that is +60° from G and a point W
that is 60° from G. You should be able
to locate points that are +45°, 90°,
+135° from G. If you have two given
points G and N (any other point), you
should be able to identify the position of
N from G.

Figure 1-11

Let's experiment with this model of two
concentric circles (Figure 1-11). The cen-
tral angle is +45°. Note the position of A,
with respect to G,. Note also the position
of A2 with respect to G2. How do the
length of the arcs A,G, and A202 seem
to compare? Remember that on their re-
spective circles A,G, = 45° and A2G2
45°, in each case these arcs are % of the
circle. Notice that the length of each arc
depends upon the circumference of the
circle. You have probably used 27rr as the
circumference of a circle of radius r where
7r 2% (the symbol "z." means "is ap-
proximately equal to").



Does Ara; in Figure 1-11 appear to
equal the radius of its circle? A2G^2? The
answer is no to both of tht;s'. questions for
actually each arc is slightly shorter than
the radius.

6 = 1 RADIAN

Figure 1-12

In Figure 1-12 notice that GB has length
equal to r. We may use the arc GB as a
unit of measure for the circumference. Do
you see that the circumference then has
measure 27r relative to GB as a unit? The
central angle of GB (marked 0) is often
used as a unit of measure of angles; it is
called a radian. Any central angle of 1
radian has an arc with the same length as
the radius of the circle;
1 radian = 180br degrees 5'7.27°
277 radians = 1 revolution = 360 degrees

In a circle of radius r a central angle of
1 radian has an arc of length r; a central
angle of 2 radians has an arc of length 2r ;
and so forth. We summarize such state-
ments in the formula d = r0
1-8 Exercises
Angles and Arcs
1. The radius of Earth is about 4,000

miles. What is the approximate cir-
cumference of the equator in miles?

2. How long is one radian of arc of the
equator in miles?

3. How long is one degree of arc of the
equator in miles?

1-4 Positions on Earth
We will assume that Earth is approxi-

mately spherical in shape. Remember that
a sphere is the set of all points in space at
a fixed distance from a given point. The
radius of Earth is about 4,000 miles. The
maps that you probably call World globes
illustrate the spherical shape of Earth. In
order to locate your town, or other, towns,
on such a globe, you must visualize posi-
tions on the globe in relation to positions
on Earth.

Describe the shortest path from one
position to another on the surface of the
sphere? How are these paths measured?
How could we distinguish one town's loca-
tion as being different from that of any
other town?

Let's try an experiment to help us
visualize "paths" on the surface of a
sphere. Take a spherical ball, or a slate
globe; pick any two points A and B that
are not on a line through the center of the
sphere; draw several paths between these
two points. Can you decide which path is
the shortest? There are no straight-line
paths on the surface of a sphere. Each

Figure 1-13



path that is on a sphere is an arc of a circle
just as any slice of orange has a circular
shape.

The two points A and B and the center
0 of the sphere were assumed to be not
on a line. Therefore, they determine a
plane. This plane AOB intersects the
sphere in a circle. Slice through an orange
or apple any way you like and see if you
do not get a circular slice. However, this
circle has the center of the sphere as its
center and the radius of the sphere as its
radius. Since there are no larger circles
on the sphere, it is called a great circle.
Every plane through the center of a sphere
intersects the sphere in a great circle. The
shortest path between two points on a
sphere is along an arc of a great circle.

Figure 1-14

Think of Earth with its north and south
poles as end points of a diameter NS. The
line segment NS and any other point A de-
termine a plane through 0 and therefore
a gre it circle on the sphere. The diameter
NS divides this great circle into two semi-
circles, called meridians. One of the ways
of identifying a position on Earth is to
identify the meridian on which it is lo-
cated. The meridian through Greenwich,
England (near London) is called the prime
meridian. Then positions on the equator
are located as in Section 1-3 with the in-
tersection of the equator and the prime
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meridian as the reference point, 0°. Each
meridian is identified in terms of a number
of degrees (measured along the equator)
east or west of the prime meridian; this
number is the longitude of all points on the
meridian. In Figure 1-14 the points with
30° east longitude are on the meridian
through B; the points with 65° west
longitude are on the meridian through C.

Given any position P on Earth except
the poles, we can see how a longitude can
be associated with that position P. This
longitude identifies the meridian on which
P is located but it does not tell us how far
P is from the equator and whether it is in
the northern hemisphere (north of the
equator) or in the southern hemisphere.
(south of the equator) To answer such
questions we use a scale on the prime
meridian 0° to 90° north from the equator
and 0° to 90° south from the equator
(Figure 1-15).

IMES MOM\

300

20°

10°

0°

10°

20°

NAM

Figure 1-15

If we used scales on all meridians, we
would find that all points 20° north of the
equator are on a circle (not a great circle)
that intersects the prime meridian at 20° ;
all points 60° north of the equator are on
a circle that intersects the prime meridian
at 60°, etc. The numbers that indicate
degrees north or south of the equator are
latitudes. Each circle of points with a
given latitude is on a plane that is parallel



to (does not intersect) the plane of the
equator.

You should now be able to visualize that
the north pole is at 90° north latitude ; the
south pole is at 90° south latitude; each
point of the equator has 0° latitude and
its position can be described by its longi-
tude. Each point on Earth has a position
that can be described by its longitude and
its latitude.

1-4 Exercises
Positions on Earth
1. Our Earth makes a complete turn of

360° in 24 hours. Through how many
degrees dues Earth turn in 1 hour? In
6 hours? In 12 hours?

2. The longitude of the prime meridian is
0°. What is the longitude in degrees
of the meridian halfway around the
world from the prime meridian?

3. The north-south distance around Earth
Is about 24,860 miles. (a) What is the
approximate distance from the north
pole to the south pole? (b) From each
pole to the equator?

4. If two people should travel east or west
around Earth each one remaining on a
line of a different latitude, would their
routes always be the same distance
apart ?

5. If two people should travel north or
south from the equator on lines of two
different longitudes, would their routes
always be the same distance apart?

6. This array shows the approximate
length in miles of 1° of longitude at
different latitudes:

Latitude
0°

10°
20°
30°
40°
50'
60°70.
80°
90°

How far wouk a man
around the world at a
(b) of 50°?

Miles in 1°
of Longitude

69
68
65
60
53
45
35
24
12

0

travel if he went
latitude (a) of 30°

11

TIROS, FIRST

WEATHER SATELLITE

EARTH

Figure 1-16

1-5 Observations of Earth
If you were asked to locate points 1/4"

outside a given circle, how would you lo-
cate them? You should measure from a
point of the circle along a line that con-
tains the center of the circle.

Figure 1-17

In Figure 1-17 the point 0 is the cen-
ter of Earth; A is a point on the surface
of Earth, and B is a satellite, or a star,
planet, or object in the sky. The length AB
is the height or altitude of the satellite
above Earth's surface. How do you think
we could find how much of Earth's surface
can be seen from a satellite at a given
altitude?



Figure 1-18

Let's try an experiment. Take a sheet of
paper and from some point above shine a
flash light straight down on the paper.
Measure the radius r of the circle of light
which is formed and the height h of the
'flashlight (Figure 1-18). Now move the
flashlight so that its height is 2h and meas-
ure the radius of the new circle formed;
this radius should be 2r (Figure 1-19).
If we moved the flashlight so that its
height were 3h, the radius would be 3r.
We may describe this relationship by say-
ing that the radius r varies directly as the
height h; in symbols, r cc h ( read cc
"varies directly").

The area A of any circle of radius r is
given by the formula A = irr2, where
./T '7.-- 22/7. If = 3 inches, A = 19%

28 square inches. If r = 6 inches, A
= 36-Fr 113 square inches. Except for
slight errors from our approximation to
the nearest square inch, the area is multi-
plied by 4 when the radius is multiplied by
2; similarly, the area is multiplied by 9
when the radius is multiplied by 3. In
general, the area varies directly as the
square of the radius, A cc r2. We could have
anticipated this from the equation A = 7r1.2

When we observe Earth from a satellite
we are essentially observing a p :t of the
surface of a sphere. The form! 11 for the
surface S of a sphere of radius r is S =
4 Tr2 as you have probably already studied.
Since the radius of Earth is about 4,000

12

Figure 1-19

miles, the surface of Earth is about
201,000,000 square miles. An understand-
ing of the vastness of Earth's surface
should help us understand some of the
problems of weathermen. Too often the
weatherman has been blamed for his poor
weather predictions but regular weather
observations cover only about one-fifth of
Earth's surface and the forecaster may be
unaware of changing conditions on other
parts of Earth's surface which might alter
his predictions.

TIROS

Figure 1-20



TIROS (a NASA weather satellite) can
circle the Earth in little over an hour and
transmit images of cloud formations.
Forecasters analyze and interpret this in-
formation and can give more accurate
weather predictions. Other valuable serv-
ices have been performed by this world-
wide observation. Once a hoard of locusts
approaching a section of Africa were
sighted in time to warn the farmers who
gathered their crops and had them safely
stored awa; before the locusts arrived.

Figure 1-21

The Earth is observed fro.n a satellite
such as Tiros. However it can "see" only
a part of Earth in any one observation.
The shaded part in Figure 1-21 represents
the part of Earth's surface that can be
seen when Tiros is at a position T. We
think of T as directly above a point A on
Earth; that is, on a ray OA where 0 is
the center of Earth. From T the points D,
E, and F appear to be on the cue (hori-
zon) of the Earth. Actually TD is per-
pendicular to OD. Then since TD has only
the point D on the sphere representing
Era ih, the line TD is said to be tangent to
tho sphere; TE and PP are also tangent
to the sphere. The points D, E, and F are
on a circle (not a great circle) with center
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PICTURE OF ECHO

Figure 1-22

B. As in the case of circles of constant
latitude (Section 1-4), the size of this
circle depends upon the distance OB. Since
OB -I- AB = OA 4,000 miles, the radius
of Earth, the size of the circle also de-
pends on AB. The distance AB is called
the height h of the zone (part of the sur-
face of the sphere) bounded by the circle.
Think of cutting off a part of an orange;
the deeper the cut, the more of the sur-
face you cut off. The formula for the area
of zone will be used in Chapter 3 and is
A = 2 /rrh. Thus when a satellite is high
enough to observe a zone of height one
mile, over 26,000 square miles of Earth's
surface can be observed (2 X 2% X 4,000
X 1 > 25,000).

The points of a zone on Earth's surface
cast be observed from a satellite as in Fig-
ures 1-16 and 1-21. Notice also that the
satellite can be observed from points of
this same zone. In 1960 NASA demon-
strated that radio signals could be reflected
off the man-made satellite, Echo I, and
received several thousand miles away.
Echo I was used to "bounce" two-way
voice conversations and other communica-
tion data of good quality across the United
States, and between this country and
Europe. Echo is referred to as a passive
satellite for it simply reflects or "bounces"
a message from one point on Earth to an-
other.

Satellites such as Relay, Syncom and
Telstar are called active or "repeater"
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satellites because they receive, amplify,
and rebroadcast messages transmitted to
them.

1-5 Exercises

Observations of Earth
1. Find the area of the northern hemis-

phere if the radius of Earth is approxi-
mately 4000 miles.

2. If a satellite's cameras can "see" about
one fifth of the surface of Earth dur-
ing each day, how many square miles
can be photographed each day?

3. Use 4,000 miles as the radius of Earth
and A = 2 irrh as the formula for the
area of a zone to find the area of Earth
that can be photographed with a
camera that can "see" a zone with
height 20 miles.

1-6 Maps and Distances
Man has made maps throughout re-

corded history. Early map makers made
maps of a very small part of Earth's sur-
face; each map maker's location was gen-
erally the center of the map. Many early
maps were surprisingly accurate consider-
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ing the instruments that were available to
measure distances. Ship captains, cara-
vans, and armies adopted such maps for
their own particular needs.

After Magellan showed that Earth was
probably spherical, man recognized some
of the reasons for his difficulties in making
maps. Crude globe maps were tried but
were clumsy for everyday use.

In order to better understand how map
makers projected the spherical distances
onto a flat surface such as a rectangular
sheet of paper, try this experiment. You
will need two meter sticks, two pieces of
string, and two small weights. Tie the
weighted ropes 50 centimeters apart on
one of the meter sticks. Place the other
meter stick on the edge of a table. Then
hold the first meter stick parallel to the
floor so that the distance between the
weighted strings can be measured on the
meter stick on the table. Notice that this
distance is also 50 centimeters. (Figure
1-24)

Tilt the first meter stick so that it makes
an angle of about 30° with the floor and
note the distance on the second stick. Tilt
the first meter stick at a 45° angle and
note the distance. Try several other angles
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of inclination. Notice that the distance
decreases as the angle increases from 0°
to 90°.

D

Figure 1-25

6

C D

Now think of yourself as a map maker
(a cartographer). You can project a line
segment AB or an arc AB onto a line seg-
ment CD. You use parallel lines AC and
BD perpendicular to (that is, at Iight
angles to) the line or plane on which CD is
to be drawn to find the points C and D just
as the weighted strings were used in the
experiment. Since these construction lines
are perpendicular to the line or surface on
which the drawing is made, we speak of
the mapping of AT onto Up as an orthogo-
nal projection. Notice that projections can
distort the lengths of the line segments.

Consider orthogonal projections of a
circle. If the plane of the circle is parallel
to the plane onto which you are projecting,
the projection is also a circle; if the planes
are perpendicular, the projection is a line
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segment congruent to a diameter of the
circle ; if the planes are inclined at an
angle which we will call "theta" 8 and (0°
<8 <90°), then the projection is a curve
but not a circle.

There are other types of projections.
For example, the image on a film is pro-
jected onto a screen on which you watch
a movie. This is essentially a projection
from a point (the source of light). A pro-
jection from a point is called a central
projection. One way to obtain a map of

Figure 1-26



part of the surface of the Earth on a flat
sheet of paper is to think of a projection
from the center of Earth onto the paper
rolled in a cylinder around Earth (Figure
1-26) ; then cut the cylinder and place the
paper flat. When an image on the film for
a movie is projected on a screen, the image
on the screen is much larger than the one
on the film; size has been changed (dis-
torted) so you can see the image better.
When a map of Earth is obtained by cen-
tral projection both size and shape are
distorted.

Every map of Earth projected onto a
flat sheet of paper has some distortion.
There are many different types of maps.
Some of these are considered in Section
2-3. The different types have been de-
veloped to preserve properties that are of
interest to different people; directions for
navigators, and so forth.
1-6 Exercises
Maps and Distances
1. Can the length of an orthogonal pro-

jection CD of a line segment AB be
equal to the length of AB? If so, under
what conditions will this occur?

2. As in Exercise 1 can CD = 0? If so,
under what conditions.

3. As in Exercise 1 can CD > AB?
4. Describe the way an orthogonal projec-

tion of a sphere would appear.

1-7 Measurements
Have you ever measured the distance to

your neighbor's house? This could be done
using a yardstick, using a tape measure,
by pacing it off, and in other ways. Have
you tried measuring the height of a tree?
The height of your house or the height of
a satellite? Perhaps you could climb a
tree and with the help of a friend find the
height of a tree with a tape measure. Per-
haps the height of your house could be
measured this way also; but what about
the distance to a star, a planet, or a satel-
lite? These distances must be measured in-
directly.

Thales, a Greek philosopher and geo-
metrician of about 600 B.C., is sometimes
credited with the first indirect measure-
ment. According to the story he watched

16

Figure 1-27

the shadow of a vertical pole until the
length of the shadow was equal 'to the
height of the pole. He assumed that at
this same time the height of a nearby
pyramid would be equal to the length of
its shadow; that is, to the length of half
its base plus the length of the shadow that
extended beyond the base (Figure 1-28).
He could measure both of these distances
and thus he could find the height of the
pyramid.

ST KK 1"

PYRAMID

Figure 1-28

In your mathematics classes you have
compared numbers in many ways. A com-
parison of two numbers by division is
called a ratio. Thales compared the height
of a pole to the length of its shadow and
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the height of a nearly square pyramid to
the length of its shadow. He assumed that
these measures were equal and thus in a
1 to 1 ratio. Notice that Thales could have
measured the pole and its shadow in inches
and measured the height of the pyramid
and its shadow in feet and the ratio would
still remain constant.

Mlles assumed that the sun's rays
would make the same angle with Earth's
surface (horizontal) when forming each
shadow. In other words, he assumed that
the angle of elevation of the sun (indicated
by 0 in Figure 1-29) was the same in both
cases. We assume that the pole was in a
vertical position and the top of the
pyramid was directly over the center of
its base. Then the triangles indicated by
the dashed lines in Figure 1-29 are right
t-iangles (the angle marked ..d of each
triangle is a right angle). Also since the
angles are congruent (have the same meas-
ure), the triangles are of the same shape.
If you have not already done so, you may
later study such triangles as similar hi-
angles; their corresponding angles are
congruent. (We use the symbol Qi to write
congruent):

IA IA', LB LB', LC N LC':
the lengths of their corresponding sides
are in a constant ratio:

Aff =
A'B' 'B'C A'C'

and each triangle may be visualized as a
picture of the other possibly drawn to a
different male.
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Figure 1-30 represents two scale draw-
ings of the same irregularly shaped plot of
land. The lengths of the sides are given in
inches. The given scales enable us to
measure one of the drawings to determine
the actual dimensions of the plot of land
in feet. Although these drawings are dif-
ferent in size they have the same shape
and are said to be similar (4.,). They are
similar to eacii other and also to the
boundaries of the plot of land under con-
sideration. If you measure the angles,
you should find that the corresponding
angles are congruent. Notice that the
lengths of the corresponding sides are in
the same ratio:

2 1% 1% 1 %

4 2% 8% 2 1%

Scale models play an important part in
our apace program. Accurate scale
models are mote economical to make than
full size replic.ts. Many things can be
studied and interpreted from models.
Often changes hi design are based upon
a study of models.

The three triangles in Figure 1-31 are
similar triangles. Each triangle has an
angle of 80° and an angle of 60'. Meas
ure the third angle in each triangle. You
should find that it is 90° in each me.
Since AAI3C and ADEF are similar, the
lengths of the sides are proportional:

All AC
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since AABC and AGHI are similar we
have

AN AC ITO

LIT Gcr- Tfr
In the first case each ratio is equal to 1,4;
in the second case each is equal to Vs.

Now consider the proportion (an equal-
ity of two ratios)

AC BC
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This proportion may also be stated as
EF =

Such ratios s of two of the
sides of a triangle are equal for any two
similar triangles and are used so extensive-
ly for right triangles that they are given
special names.

Think of Figure 142 as any right tri-
angle with the right angle at C. The side
AS opposite the right angle is called the



Figure 1-51

hypotenuse of the triangle. The other two
sides may be identified either with refer-
ence to LA or to LB. Relative to LA we
call n the side opposite and AC the side
adjacent. We give these ratios special
names as shown below. Now if B is the
measure of LA, we define the following
ratios as:

BCsine 0 =_-
AB

cosine
AB

tangent 0 = Fe.

side opposite
hypotenuse

side adjacent
hypotenuse

side opposite
side adjacent

These ratios provide the basis for the study
of trigonometry and are used extensively
in many applications of mathematics. We
usually abbreviate

sine 0 as sin 0
cosine 0 as cos 0
tangent 0 as tan 0

Now let us look again at Figure 1-31.
Notice that in each triangle:

sin 30° =

cos 30° 1.732
2

tan 30° .-= - 1
1.132 ...

Since for any single angle 0 the ratios al-
ways have the same values, these values
are usually in a table. (See page 184).

7-- 0.866

0.677
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1-7 Exercises
Measurements
1. If a vertical 10-foot pole casts a 6-foot

shadow, how tall is a tree with an 18-
foot shadow?

2. As in Exercise 1 how long a shadow
should a person 5-feet tall have?

3. What assumption has been made in Ex-
ercises 1 and 2 regarding the positions
of the objects and their shadows?

1-8 Paths in Space
Do you believe that "what goes up must

come down"? Have you ever shot an arrow
up and watched it come down? When you
throw a baseball, does its path trace a
curve? Does a spinning top trace a curve?
What path does the moon take around the
earth? What sort of paths do rockets trav-
el? How are the paths of satellites named?
Most of these curves are closely related to
curves that are studied in geometry. Let's
see if we can name some of these curves.
First we must define a conical surface.

Figure 1-St



Consider the circle BCD with center 0
and a line t that is perpendicular at 0 to
the plane of the circle. It P be any point
that is on the line t and different from 0.
Then think of a line AP that starts in po-
sition AB and traces out the circle. In a
sense the line is fixed at P and revolves
about the circle. The surface generated is
called a conical surface; the fixed point P
is the vertex of each of the two nappes of

CIRCLE

PAJLAIOLA

the surface. Probably you have called each
nappe a cone. In Figure 1-33 the vertex P
is on a line perpendicular (at right angles)
to the plane of the curve (circle) that was
traced and the nappes form a right circular
cone.

As in Figure 1-34 we may obtain curves
by intersections of planes with a cone. The
particular type of curve (circle, ellipse,
parabola, hyperbola) obtained depends

Figure 1-14
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upon the angle at which the plane inter-
sects the cone.

The path of sounding rocket is shown in
Figure 1-35. If you compare the path of
the rocket with the curves in Figure 1-34,
you should be able to recognize that it ap-
pears to be a parabola as a first approxi-
mation.

Can you tell the name of the paths of the
planets as they orbit the sun? In Figure
1-36 you should recognize that these paths
appear to be ellipses with some of the
ellipses almost circles.

In Figure 1-37 you can observe that
Earth satellites also have elliptical paths.

Mariner IV was launched November 28,
1964, and put into an orbit about the Sun.
In Figure 1-38 Mariner 1V was at point A

Fipure 1-35

PLUTO

URANUS

NEPTUNE

Figure

Figure 1-37

on July 16, 1966, and the cameras were
taking pictures at that time. Can you give
the name of the curve for the path of
Mariner IV? It appears almost straight
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and we often use a straight line to approx-
imate a part of a curve. We could also use
a hyperbola to approximate the path of a
apace probe such as Mariner IV. However,
actually the path appears to be elliptical
around the sun rather than around Earth.

In Figure 1-38 notice that if we think of
this part of the path as along a straight
line, then there appears to be similar tri-
angles, ABD and ACE, which we could use
in computation to give us additional in-
formation. Ellipses, circles, and straight
line approximations will be used extensive-
ly in later chapters.
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In this chapter you have just begun to
read about space. Every day satellites are
recording data which is processed by com-
puters and interpreted by scientists in
many fields. The scientists of tomorrow
will need to learn to visualize and exress
thoughts in algebraic, geometric, and

22

graphic forms. In the past few pages we
have introduced some of the mathematical
concepts that are used in explorations of
space. In the chapters to come we will use
these concepts and find that still more
mathematics is needed to really understand
the space around us.
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THE UNIVERSE WE LIVE IN

When we travel on the surface of Earth
we can describe our position at any time
with only two dimensions. To locate posi-
tions in space we need three, four, or per-
haps n dimensions. For instance, it is nec-
essary to employ time in describing the
position of a satellite as it travels around
the Earth. We might think of the cartog-
raphers of the future as standing on the
shore of the uncharted sea of space, the
mapping of which will require new mathe-
matics.

In order to better understand the map-
ping of space, let's start with something
very simple which we already knowa
room. Then we will see how far we can
proceed by using mathematics to describe
the characteristics abd conditions of ob-
jects in space.

This chapter introduces you to the con-
cept of position as related to some of the
coordinate systems used in mathematics.
You will need prior knowledge or under-
standing of coordinate systems. This chap-
ter is intended for readers in the upper
elementary grades as well as the high
school.

The coordinate systems used are limited
to those of ordered pairs:

SYSTEM

Rectangular
Globular Earth
Polar

Navigation
Equatorial

ORDERED PAIR
(horizontal, vertical)
(longitude, latitude)
(radius vector, vec-

torial angle)
(azimuth, altitude)
(right ascension,

declination)

2-1 Where do you live?
The question "where?" is often asked

but seldom answered in an exact mariner.
Consider a small group in a mon, any-
where on the surface of the earth. Two
members are playing chess. Four sit about
a card table, and others are gathered
around a piano in one corner of the room.
A professor is at one aide observing what
is taking place.

One of the people at the card table has
raised a question concerning the meaning
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of the word "position." Immediately all
others, except the professor, expound their
theories, each one giving his own interpre-
tation of the word "position." A "status-
seeker" might describe position as a place
in society, an executive as a place in
company or industrial firm. The "geogra-
pher" thinks of position as a location on
the earth. One of the chess playersan
astronomer, would perhaps describe "posi-
tion" as a location (point) in space.

Which interpretation do you consider
correct? Possibly all are correct. A
"mathematics teacher," standing near the
piano, while reluctant to enter into the
discussion, decided to approach the prob-
lem from a mathematical standpoint. All
members were asked to find a point in the
middle of the wooden door (Figure 2-1)
next to the piano. However, the professor
questioned the meaning of the "middle" of
the door. The question shocked everyone.
Surely the professor was joking; for any-
one can point to the middle of a door.

I

Aspire t-1

However, if you think about this ques-
tion for awhile, you should realize the
significance of the professor's question.
It is impossible to look at the middle of a
wooden door due to the fact that the door
is solid. Therefore the point representing
the middle of the door is the interscction
of the diagonals of a rectangular solid
(Figure 2-2). Since the door is made of
wood, a human being cannot see the point
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which is the middle without cutting the
door.

The question about the door provided
the group with additional insight concern-
ing the complexities of finding a definition
of the word "position." The mathematics
teacher, somewhat indignant but more de-
termined than ever, used a lead pencil to
mark a point P on a piece of paper (Figure
2-3). She considered this lead pencil mark
to be a position on the piece of paper. She
then folded another piece of payer and
used it as a straight edge to draw a line
through point P; that is, through the posi-
tion indicated by P (Figure 2-4). This
line contained infinitely many points. The
astronomer remarked how difficult it was
to locate the original point P of the line
without another line through that point
(Figure 2-5). The astronomer thought of
a point on the paper as the intersection of
two lines.
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Under the mathematics teacher's inter-
pretatioo3t a point as a position on a sheet
of paper, and indicated by the point of
intersection of two lines, the group could
describe the corners of the chessboard
since they represented the intersections of
lines along the aide of the chessboard. Con-
sider the dashed lines in Figure 2-6.

Everyone in the room seemed satisfied
with the new concept of position except the
piano player, who from the background of
his own world of music decided to ask the
professor another question.

"You seem to be way out in space most
of the time. Can you tell me where is the
edge of space?" Again all eyes were fixed
on the professor eagerly awaiiing his re-
ply. He did not answer them, but instead,
asked, "What do you moan by the edge of
space ?"

At lunCli the mathematics teacher looked
at the edge of the table shown in Figure
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rigure 2-6

2-7 and thought, "The edge of the table
is the intersection of two planes!" She
was thinking of the set of points in the
line formed by the fold in the tablecloth
as it hung over the edge of the table. In
her mind she realized why the professor
asked tchnt is meant by the edge of space.
The edge of space might possibly be lo-
cated using a system of coordinates similar
to those on a chessbosrd. Perhaps this sys-
tem can be used to answer the question
"Whcrc do you MT?"
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Coordinate (co-oridi-nate) systems have
many applications here on the earth as
well as in "outer space." Before applying
coordinates to your own situation, );..11

should first learn the meaning of a coordi-
natt. Most dictionaries interpret the word

Figure 13



"coordinate" in more than one way. In
mathematics a coordinate is one of a set
of numbers that determines the "position"
of a point in a line, a plane, or space.

Coordinates may be used to identify the
positions of the chess pieces at the begin-
ning of a game of chess (Figure 2-8). In
fact, coordinates can be used throughout
the entire game.

i vt.
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Figure 2-8
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The chess pieces in the first row of Fig-
ure 2-8 may be Identified from left to
right as a castle, knight, bishop, queen,
king, bishop, knight, castle. We can iden-
tify their respective positions ac the first,
second, third, . . . , eighth square of the
first row of the chessboard. The pieces on
the second row are pawns.

You should also understand that any
line perpendicular (1) to a horizontal line
is called a vertical line. Figure 2-9 shows
a set of vertical lines and several horizon-
tal lines.

Now the position of each square can be
described using a pair of numbers in which
the first number Identifies the column and
the second number the row in which the
square is located. For example, the X mark
in Figure 2-9 is in column 4 and row 3.
The position of X can be described using
the ordeeed pair (4, 8). Then (2, 1) de-
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scribes the position of the knight In Figure
2-10 since the knight is in the second col-
umn and first row. Each "X" marks a posi-
tion to which the knight can be moved.
Each chess piece can move in a manner
specified by the rules of the game.

The location of points or positions fre-
quently involves the use of coordinate sys-
tems similar to that used for the chess-
board. Coordinate systems may be used
in the description of geometric figures by
identifying the positions of points such as
A, 13, and C, which determine the right
triangle in Figure 2-11. Can you describe
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the other geometric figures by listing the
coordinates of the points given on the
chart?

Latitude and longitude for locating posi-
tions on Earth provide another example of
a coordinate system. Other coordinate sys-
tems are used for locating points in space.

e-1 ExercisesThe Universe We tire In
1. Locate and identify 10 lines in your

room as intersections of planes.
Are there any points in your room equi-
distant from two fixed points located
in your room? Can you describe their
locations?

3. How could a blind man in Canada play
chess with someone in the United
States? (Perhaps you have a pen pal
who enjoys chess?).

2-2. Relative Positions on Earth
Many people today are aware of the de-

scription of Earth as "pear-shaped." For
our purposes Earth may be considered to
be spherical. The geographer often dis-
cusses positions on Earth in terms of
longitude and latitude (Section 1-4). This
sometimes causes confusion since there are
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only two coordinates and two coordinates
suggest a plane surface to many people
instead of the surface of a solid.

If an orange is sliced in half and a card-
board is placed between the two halves, the
cardboard may then be compared to the
equatorial plane of Earth (Figure 2-12).,

noire t-lit



If we place the two halves together again
and connect them with a length of heavy
wire perpendicular to the plane of the
cardboard and through the center of the
orange, we obtain a crude model of our
Earth.

The wire represents the axis and in-
cludes the poles, north and south. Degrees
of latitude and longitude may be marked
on the model as illustrated in Figure 2-13.
The arcs of great circles drawn through
the poles represent meridians.

NORTH
GEOGRAPHIC

POLE

SOUTH
GEOGRAPHIC

POLE

Figure 2-13

Any position on Earth can be located by
its latitude north or south of the equator,
and its longitude east or west of Green-
wich, England (Greenwich is near Lon-
don). However, positions on Earth are
generally represented on maps that are
printed on plane (flat) surfaces.

The projection of Earth's surface, or a
portion of it, on a flat surface is a form of
a chart or map. Any manner in which this
projection is made results in a distortion
of one sort or another.

One of the desirable features for a map
is a constant scale for measurement of dis-
tance between any two points on the map.
Another desirable feature is the repre-
sentation of a great circle as a straight
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line, There are other desirable features
but we will consider only these.

Any globe representing Earth is divided
into two hemispheres by the equatorial
plane. We will think of the equator as a
circle with a scale which lies in this plane.
The zero point of this circle is its intersec-
tion with the prime meridian (Greenwich
meridian). The scale is marked off in de-
grees from 0° to 180° east and from 00 to
180° west. The western hemisphere is
shown in Figure 2-13.

No single type of map possesses all the
desirable features, though different types
of maps can be made to approximate fea-
tures that are important for some particu-
lar purpose. For example, many naviga-
tors use maps on which great circles are
represented by straight lines. These lines
are called rhumb lines.

Most highway maps are based upon a
Lambert Conformal Projection. (You
should obtain an ordinary highway map of
the United States in order to best follow
the discussion and exercises of the next
few paragraphs.)

TABLE 2-1 Cities of the U.S.
Albuquerque, New Mexico
Oklahoma City, Oklahoma
Santa Ana, California
Omaha, Nebraska
Tulsa, Oklahoma
Madison, Wisconsin
Springfield, Illinois
Detroit, Michigan
New York, New York
Tampa, Florida
New Orleans, Louisiana
Jackson, Mississippi
Memphis, Tennessee
Atlanta, Georgia
Yorktown, Virginia
Chicago, Illinois
Myrtle Beach, South Carolina
Burlington, Vermont
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Figun C-14

Use a marking pen to circle on the map
the position of each of the cities listed in
Table 2-1 as shown in Figure 2-14.

Now use a straight edge (such as a yard
stick) to draw the following lines. (Every
effort should be made to choose the
straight line which best fits the points rep-
resenting cities that have been circled.)
1. A line through Omaha and Tulsa.
2. A line through Madison and Jackson.
3. A line through Santa Ana and Okla-

homa City.
4. A dotted line through Omaha and

Santa Ana.
5. A line through Chicago and Tampa.
6. A line through New York and Tampa.
7. A line through Chicago and New

York.
8. A dotted line through Tampa and

New Orleans.
9. A dotted line through New Orleans

and New York.
10. A dotted line through Detroit and

New York.
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Your map should now resemble Figure
2-15.

The straight !inn resemble air line
routes from city to city. There appears to
be a straight line from Madison, Wiscon-
sin, through Springfield, Illinois, through
Memphis, Tennessee, to Jackson, Missis-
sippi. The line that passes near Santa
Ana, California, Albuquerque, New Mex-
ico, and Oklahoma City, Oklahoma, ap-
pears to be perpendicular to the line
through Omaha, Nebraska. and Tulsa,
Oklahoma. There appears to be an isosceles
triangle with vertices at Chicago, Illinois ;
New York, New York; and Tampa, Flor-
ida. Use a protractor and straight edge
to verify these conjectures. One may also
conjecture a parallelogram with vertices
at the cities of New Orleans, Tampa, New
York, and Detroit. What do you know that
can heap you to determine whether this
conjecture is true or false?

Compare the data in Table 2-2 to your
own observations of longitude and latitude
using an ordinary highway map.
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TABLE 2-2
Approximate Longitude and Latitude

Selected Cities of the U.S.

CITY LONGITUDE LATITUDE
Madison, Wisconsin 89° 23' W 43° 7' N
Springfield, Illinois 89° 44' W 39° 51' N
Detroit, Michigan 83° 0' W 42° 18' N
New York, New York 71° 50' W 40° 45' N
Tampa, Florida 82° 30' W 28° 0' N
New Orleans, Louisiana 90° 5' W 29° 57' N
Jackson, Mississippi 90° 12' W 32° 19' N
Memphis, Tennessee 90° 0' W 35° 9' N
Atlanta, Georgia 84° 23' W 33° 45' N
Yorktown, Virginia 76° 30' W 37° 14' N
Chicago, Illinois 87° 38' W 42° 12' N
Myrtle Beach, South Carolina 79° 50' W 33° 45' N
Burlington, Vermont 73° 15' W 44° 30' N
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You have probably observed that you
cannot rely on a highway map as a true
representation of the positions of points
on the surface of the Earth. There are fre-
quently noticeable errors to be found.
Measure the distance from Chicago, Illi-
nois to New York, New York, using the
scale on a map V. the United States. Com-
pare this scale measurement to the actual
distance as listed in a table of distances
usually provided on one corner of the map.

2-2 Exercises Relative Position on Earth
1. On a highway map, what city best rep-

resents the intersection of the line
through Omaha, Nebraska and Tulsa,
Oklahoma with the line through Santa
Ana, California and Oklahoma City,
Oklahoma?

2. What is the approximate longitude and
latitude of the city at the intersection
mentioned in Exercise 1 ?

3. Use a highway map and approximate
the number of miles which may be
Bayed by flying directly to Omaha, Ne-
braska from Santa Ana, California
instead of going east to Henryetta,
Oklahoma and then north to Omaha,
Nebraska.

4. Is the figure formed on a highway map
by connecting the vertices at the cities
of New Orleans, Tampa, New York, and
Detroit a parallelogram ?

2-3 Fallacies of maps
The points on a map of a part of Earth

represent positions on the surface. How
are maps of the surface of a solid obtained
on a plane surface? You can transfer a
design from a cylindrical roller onto a flat
surface as is done by many painters and
some printing presses. But how can you
map the surface of a sphere onto a plane
surface? We have already observed that
there will be some distortions. We now
consider the problem further in terms of
locating your zenith.

First you need to find a point directly
above you. How would you do this ? An
empirical method of determining a zenith
point is in the form of a game in which
any number of players may participate.
The object of the game is to point to the

point on the ceiling that represents the
zenith of a point on the floor.

The materials needed for the game are:
1 roll of tape
1 straight pin

10 feet of string
1 sharpened pencil
1 piece wrapping paper or cardboard

(about 4 feet square)
1 straight edge (meter stick)
1 pointer (such as a straightened coat

hanger)
1 stepladder
1 weight (such as a lead fishing sinker)
1 protractor

The procedure is to draw a circle on the
cardboard or wrapping paper. The circle
should have a diameter of about 60 centi-
meters. Draw and label a diameter ICI
with a midpoint X, the center of the circle.
A string with a pin at one end and a pencil
at the other may be used to draw the
circle.
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Figure 2-16

Tape one end of a piece of string to one
end of the pointer. Now tie the lead sinker
to the other end of the string making the
length such that the lead sinker is about
1/2" above the floor when the tip of the
pointer touches the ceiling (Figure 2-17).

Tape the cardboard or wrapping paper
oi.to the floor with the circle and its center
X clearly visible to all participants. An-
other piece of wrapping paper may be
taped to the ceiling over the circle on the
floor.

The object a the game is to use the
pointer to touch the point on the ceiling
directly above the center of the circle on
the floor. The lead sinker is to be held off
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Figure 2-17

to one side by another person until the per-
son doing the pointing has decided on a
particular point of the ceiling as the zenith
of the center X of the circle below. Then
the lead sinker is slowly lowered to allow
it to come to rest over a point of the circle.
The sinker should be allowed to swing only
over a small arc so that it will come to rest
shortly.

Locations
TRIAL

A

B

C

D

E

TABLE 2-3
of Points A through F
RADIUS ANGLE

25 cm
24 cm

25 cm

12 cm

20 cm

+ 15°
+ 30°
+ 76°
+168°

90°

F 46 cm 136°

Table 2-3 shows the listing of the re-
sults obtained in six trials. Notice that for
each trial the position is recorded for the
point directly under the one pointed to on
the ceiling. These records are in terms of
the distance from the center X and a direc-
tion. To provide a basis for this system
of coordinates, the circle may be marked
off in 15° intervals, then the line segments
joining these points to the center should

34

be marked off in centimeters as in Figure
2-18 where one unit represents five centi-
meters.

+105° +900 75°

+165°

+15°1315141°fr +15°

45+313e

+120° '+600

I 180° .0° G

-165° -15°

-30°

-45°

-120° -60°
-105° - 0 75°

Figure 2-18

Point A represents the result of the first
trial. The lead sinker came to rest over the
point marked A which is 25 centimeters
from X and +15° from the reference ray
XG.

The game can be played using only the
distance from the center as the criteria for
judging accuracy. A more interesting ap-
proach is to use both the distance from the
center and also the measure of the angle
in degrees away from XG.

The remaining trials in Table 2-3 should
be completed giving values of radii to the
nearest tenth of a centimeter and the
angles to the nearest degree.

The results of one game are listed in
Table 2-4 as obtained by a family of fon,
The column containing trials identify each
member's attempt.

F-1 represents a first attempt by the
father.

M-2 represents the second attempt by
the mother.

K-3 represents the third attempt by a
child named Kim.

C-4 represents the fourth attempt by
another child named Chris.

By examining the data, can you deter-
mine who most nearly succeeded in point-
ing to the zenith of a point on the floor?



Sample

TRIAL
F-1
M-2
K-3
C-4
K-5
C-6

M-7
K-8
C-9
M-10
K-11
C-12

M-13
K-14
C-15
M-16

TABLE 2-4
of. Trials by a

RADIUS
6.8 cm.

13.0 cm.

28.0 cm.

7.0 cm.
28.5 cm.

3.5 cm.
17.9 cm.
22.2 cm.

6.4 cm.

2.2 cm.
18.7 cm.

4.9 cm.
3.8 cm.

11.2 cm.

7.4 cm.
4.7 cm.

Family
ANGLE
109°

0°

178°

109°
87°

0°
910

990

108°

123°
94°

149°

111°

84°
108°

74°

Which member of the family picked a
point directly over the ray XG?

Who was furthest from the center in
centimeters? Who was furthest from the
radius XG in degrees?

Figures 2-18 and 2-19 may now be com-
pared to the screen of a radar scope used
in tracking objects in space. The points B,

105° 90° 75°
120° 60°

135° C

30°

s).;

150°

165°

180°

165°

150°

45°

15°

5 10 15 20 25 30 G

15°

30°
E

135° 45°

120° 60°

F 105° 900 75°

Figure 2-19
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C, D, etc., could resemble the positions of
ships at sea or even points in space. The
distances could represent the distance of
the points from a fixed point on Earth and
the angles represent the direction.

A globe is the most accurate scale model
of Earth. It is the one place where you can
find global relationships shown almost as
they actually exist.

Figure 2-20

The globe has disadvantages in that it is
difficult to construct, bulky, unwieldy, and
one can see at most half of the surface at
one time (Figure 2-20). These disadvan-
tages have caused man to devise schemes
to project (map) points from the globe to
points on a plane. Some of the common
forms of projection are the

mercator projection
orthographic projection (Figure 2-21)
azimuthal equidistant projection

(Figure 2-22)
gnomonic projection
cylindrical equal area projection
conic projection

There are also many other forms which
may be investigated (Figure 2-23). Each
of the different types of projections has
advantages and disadvantages. Distortions
arise in each projection. The problem is
to choose the best projection for a given
situation. We have now learned that we
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Figure 2-21

Figure 2-22

must use different maps for different pur-
poses due to the fallacies present in all flat
maps of Earth.
2-4 ExerciseFallacies of Maps

Copy Figure 2-19, extend XG to obtain
a diameter of the circle and construct the
diameter that is perpendicular to XG.
Start at G and label the quadrants (quar-
ters of the circular region) counter clock-
wise I, II, II, IV. Then identify the quad-
rant of the point for each trial in Table
2-4 except M-2 and C-6. (These two are
on the common boundaries of the first and
fourth quadrants.)
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2-4 The Solar System

Our planet Earth is one of nine planets
that revolve about the sun. These satel-
lites of the stn form the solar system
(Figure 2-24). The planets named in order
of their distances from the sun and listed
with the symbols that are frequently used
for them are:

0 Mercury
9 Venus
e Earth
cr Mars
4 Jupiter



k Saturn
4 Uranus

W Neptune
e Pluto

MARS
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EARTH PLUTO k e

SUN
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)0. NEPTUNE

MERCURY

SATURN

Figure 2-24

The representation in Figure 2-24 is dis-
torted since the orbits are not actually
circles and also the orbits are not all in the
same plane. We may however think of the
planets as revolving counterclockwise (rel-
ative to the view shown in Figure 2-24)
about the sun is elliptical orbits which are
nearly in the same plane,

VIEW FROM AIOVE
NORTH PCX.E Of MARS

NARROW ANGLE
SENSOR

StES MARS
10 VII T.V.

04,

VEHICLE DIS
IEHIND MARS

RADIO CONTACT
CM Off

CLOSEST
APPROACH

Figure 2-25

The illusion of objects moving in the
same plane is very common and frequently
depends upon the position of the observer.
For example, in Figure 2-25 Mariner 4
appears to pass close to Mars in the plane
of the orbits of Mars' satellites (moons)
Phobos and Deimos ; in Figure 2-26 we see
that Mariner 4 actually d'pped under the
plane of the orbits of these satellites.

37

TOWARD
EARTH AND SUN

N
EQUATORIAL PLANE OF MARS PLANE OF SATELLITE ORBITS

DEIMOS PHOBOS PHOSOS DEIMOS414RiNfit

ORy

START END
TV CLOSEST

TV''' APPROACH
MILES

0 5000 10000 15000

Figure 2-26

RADIO RADIO
CUT-OFF RESUMED

If we take a different view of the solar
system (Figure 2-27) we can see that the
orbital planes of the planets are distinct.
Think of the sun at the top of a pole with
several spheres attached by strings and
revolving about the top of the pole.

Figure 2-27

In Figure 2-27 the plane of Earth's orbit
(the plane of ecliptic) is designated IC
and is used as a reference plane. The plane
of the orbit of each planet forms an angle
with the plane ,of ecliptic. These angles are
the inclinations of the orbits of the planets.
(Table 2-6)

TABLE 2-5
PLANET INCLINATION

Mercury 70 0'
Venus 3° 24'
Earth 0° 0'
Mars 1.3 51'
Jupiter 1° 18'
Saturn 2° 29'
Uranus 0° 46'
Neptune 1° 46'
Pluto 17° 09'



Our original Figure 2-24 also included
a distortion of the relative distances of the
planets from the sun. When Mercury is
represented far enough from the sun to be
seen, then Pluto should (according to an
ordinary scale) be represented so far away
that it would be off the page. These dis-
tances are discussed in Sections 2-9 and
2-10.

Johannes Kepler (1571-1630) developed
a theory in which the orbits of the planets
were elliptical (or as he called them, "ec-
centric circular orbits"). We shall use
Earth's orbit to illustrate what is meant
by an ellipse. This orbit is grossly exag
gerated in Figure 2-28 where the orbit has
center C, foci F and S, major axis AP,
minor axis MN, focal distance FC,
aphelion A, and perihelion B.

APHELION
A

M

z

SEMI-MAJOR AXIS I'

(f ocvs) (center)

SUN

OS
(focvs)

EARTH

N

Figure 2-28

PERIHELION

An ellipse is a simple closed plane curve
such that the sum of the distances of each
point from two given points (focii) is a
constant (the length of the major axis).
Notice that if the foci F and S coincided
with the center C, the ellipse would be a
circle of radius AC. Thus the lengths of
FC and AC may be used to indicate the
extent to which the ellipse differs from a

circle. The ratio --FC is the eccentricity of
AC

the ellipse. The eccentricity is always less
than 1. When the eccentricity is zero, we
have a circle; when the eccentricity is
approximately zero, we have approxi-
mately a circle.

The eccentricity of Earth's orbit is so
small that, unless one is doing astronomi-
cal research, Earth's orbit is considered
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to be circular for all practical purposes.
The eccentricities of the planets in the
solar systems are listed in Table 2-6.

TABLE 2-6
Orbital Eccentricities of Planets

PLANET

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

ORBITAL
ECCENTRICITY

0.2056

0.0068

0.0176

0.0934

0.0484
0.0557

0.0472

0.0086
0.2502

Kepler solved an almost impossible prob-
lem using empirical data (that is, data ob-
tained by experimentation and observa-
tion). The instruments used to obtain the
data would be considered extremely crude
and obsolete today.

The magnificence of Kepler's work is
further magnified by the data in Table 2--e
showing how closely each planet's orbit re-
sembles a circle. To detect and determine
the elliptical nature of the solar system
was a remarkable accomplishment and a
step forward toward today's achievements
in space.

2-4 ExercisesThe Solar System
Exercise 1

Prove the following formula for the
eccentricity, e, of an elliptical orbit.

119
e h. +



Given:
c = distance from center C to focus F.
a = length of semi-major axis a
e = eccentricity of the ellipse
h, = height at apogee or aphelion
hD = height at perigee or perihelion

Prove: e = h, - hp
ha + hi,

1. Fe = AC = a
C is the midpoint of PA

2. R = P F + FC
The whole is equal to the sum of its
parts

3. hp = PF and c = FC
Given

4. hp + c = a
Substitution Axiom

5. hr, = a - c
Subtraction Axiom

6. ha = a + c
Given

7. h, -hp= (a + c) (a - c)
Subtraction Axiom

8. h, + hp = (a + c) + (a c)
Addition Axiom

9. e =
a

By definition in Section 2-4
h, hi, (a + c) - (a - c)

+ his (a + c) + (a - c)
2c c= - Division Axiom
2a a

10.

c

a
C

11. Since e = - and - =
a h, + hp '

then e =
h, - hp

Transitive Axiomh. + h.

Exercise 2
Compare the eccentricities of the follow-

ing satellites.

Satellite Apogee
Sputnik 1 588 miles
Sputnik 2 1038 miles
Explorer 1 1584 miles
Vanguard 1 2462 miles
Telstar 2 6712 miles

Perigee
141 miles
140 miles
224 miles
405 miles
606 miles

Eccen-
tricity
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Solution for E
Sputnik 1

588 -
e

688 +
Sputnik 2

1038
e

1038
Explorer 1

1584e =
1584

Vanguard 1
2462e =
2462

Telstar 2
6712e =
6712

xercise 2

141 447
= 0.613

141 729

- 140 898= = 0.762
+ 140 1178

- 224 1360
= = 0.752

+ 224 1808

- 405 2057= = 0.717
+ 405 2867

-606_ 6106_0.834
= 0.834

+ 606 7318

2-5 EarthA Satellite With Satellites
How can you tell that Earth is round

and moves in an orbit about the sun?
Children often accept these theories as
truths told to them.

In Johannes Kepler's day, the leading
teachers were professing statements con-
trary to today's modern theories concern-
ing Earth and the solar system. In 1609,
Johannes Kepler published "Commentaries
on the Motion of Mars." In it he listed two
unexplained facts which he deduced from
the observations of Tycho Brahe. Nine
years later in his book entitled, "The Har-
mony of the World," a third such fact was
presented. All three facts have been ac-
cepted (postulated). These postulates be-
came known as Kepler's Laws and mathe-
matically described the orbits of the
planets.

Kepler's Laws:
1. The orbit of each planet is an ellipse

with the sun at one focus.
2. A line segment joining the sun and

a planet, the radius vector, sweeps
out equal areas in equal intervals of
time.

3. The squares of the periods of revolu-
tions of different planets around the
sun are in the same proportion as
the cubes of their mean distances
from the sun.



Kepler's Laws are applicable not only to
the orbits of planets but also to the orbit
of the moon about Earth and to the orbits
of manmade satellites.

Figure 2-29

Both Earth's orbit about the sun and the
moon's orbit about Earth are elliptical.
Since Earth is at a focal point of the ellip-
tical orbit of the moon, the distance of the
moon from Earth varies. The point on the
elliptical orbit of the moon that is nearest
to Earth is called perigee and the point
most distant from Earth is called apogee
of the orbit.

The eccentricity of the moon's orbit
about Earth is not constant. For this rea-
son most textbooks do not list the eccen-
tricity of the moon. Instead, an average
value is sometimes listed and the explana-
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Figure 2-30

tion for the variations is discussed. The
close association of the moon with Earth,
combined with the tremendous gravita-
tional influence of the sun, produces many
changes (perturbations) in the orbit of the
moon. These changes in turn are described
by changes in the eccentricity of the orbit.

This same sort of perturbations
(changes) exists in the orbits of man-
made satellites of today. A further discus-
sion of fictors influencing the orbit of a
satellite can be found in Section 5-8.

We shall limit our discussion of satellite
orbits in this section to a theoretical model
which undergoes no change in its circular
orbit. Our theoretical model will be com-
pared to Explorer XIV which had a period
of 36.4 hours and came within 150 miles of
the Earth. The orbit of Explorer XIV
was inclined 33.1° to the equatorial plane
of Earth.

Figure 2-31



Consider a satellite having a period of
36 hours and a counterclockwise orbit in
the equatorial plane of the Earth; that is,
the inclination of the orbit is zero degrees
(Figure 2-31). We shall consider ways of
predicting the position of the satellite in
its orbit. The prediction of the position
of an Earth satellite is an important aspect
of today's space age mathematics.

The following is an application of modu-
lar arithmetic and a student made "pace-
time" chart to predict the location of the
satellite that we have described.

36 35 34
3 33

4 32

8

9

10

11

12

13

5

6

31

30

29

28

14 22

15 21
2016 it17

18 19

23

27

26

25

24

Figure 2-32

On a heavy sheet of paper or cardboard
draw another circle of about 17 centi-
meters in diameter. Then as in Figure
2-32 mark off the circle in 10° intervals
and label the marks from 1 to 36 counter-
clockwise. Call this circle and its scale the
first circle. Since the satellite makes one
revolution each 36 hours, we can identify
its position on this scale (additional work
will be needed to identify its position by
the longitude of points on Earth). Suppose
that the satellite starts at position 36 on
our scale; then its position

10 hours later will be 10,
25 hours later will be 25,
36 hours later will be 36,
:.17 hours later will be 1,
45 hours later will be 9,
75 hours later will be 3,

41

and so forth. Notice that
37 = 1 + 36,
45 = 9 + 36,
75 = 3 + 2 (36);

in other words,
37 and 1 differ by a multiple of 36
45 and 9 differ by a multiple of 36
75 and 3 differ by a multiple of 36

Whenever two numbers differ by an inte-
gral multiple of 36, the two numbers are
congruent modulo 36. In the language of
modular arithmetic we may write

37 = 1 (mod 36)
45 = 9 (mod 36)
76 = 3 (mod 36).
Next draw concentric circles with dim-

eters about 11 and 12 centimeters respec-
tively; cut out the larger circle to obtain
a 12 cm circular region; mark off the
smaller circle in 15° intervals, and label
from 1 to 24 counterclockwise for the
hours of a day (Figure 2-33) . Call this
circle and its scale the second circle (or
hour circle).

24
23

22

21

20

19

18

17

16

15

10

1 12 13
Figure 2-33
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Finally, draw concentric circles with
diameters about 6 and 7 centimeters; cut
out the larger circle; mark off and label
the smaller circle to represent the Green-
wich meridian G, the international date
line I, and degrees of east and west longi-
tude (Figure 34). Call this circle and its
scale the third circle.
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Use a straight pin to mount the third
circle on and concentric with the second.
Notice that if an observer at 0° longitude
(Greenwich Meridian) starts at 2 on the
second circle, then

15 hours later he will be at 17,
22 hours later he will be at 24,
24 hours later he will be at 2,
30 hours later he will be at 8,
60 hours later he will be at 14,

and so forth. Notice that
2 + 15 = 17,
2 + 22 = 24,
2 + 24 2 (mod 24),
2 + 30 im 8 (mod 24),
2 + 60 14 (mod 24);

2 + 30 8 (mod 24), and 2 + 60 14
(mod 24) where two numbers are con-
gruent modulo 24 if their difference is
divisible by 24.

Now attach the second and third circles
concentric with the first circic as in figure
2-35. Align the scales for an initial time
with the satellite crossing the prime me-
ridian; that is, align 36 on the first circle,
24 on the second circle, and 0° on the third
circle (not shown in the figure). Eighteen
hours later (keep the how edrcle find and
rotate the third circle counterclockwise)
0' corresponds to 18 on the hour circle
(as shown in the figure). Also eighteEn
hours later the satellite would have made
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half an orbit and be at 18 on the first
circle. By comparing the scales of the first
and third circles we see that the satellite
would be at 90° west longitude (not shown
in the figure).

Let us assume the same initial corre-
spondence of the scales and consider the
situation 66 hours later. Since

0 + 18 (mod 24),
Greenwich (0° on third circle) will again
correspond to 18 on the hour circle. Since

0 + 661= 30 (mod 36),
the position of the satellite will correspond
to 30 on the first circle. Then, as in Figure
2-35, the satellite will be at 30° east longi-
tude.

We should also consider the problem of
determining the portion of a satellite con-
tained in a polar orbit (inclination of 90°
to the equatorial plane) about Earth as in
Figure 2-3 '). Nonce that a polar orbit is
in the plane of a meridian.

Our discussion will be limited to the
model of a circular orbit and a perfect
sphere to represent Earth. The procedure
for determining the position (latitude) of
a satellite In a polar orbit is very rimilar
to that used to determine the position
(longitude) for ri equatorial orbit. We
replace the third circle by a fourth circle
marked to show degrees of latitude (Fig-
ure 2-37) and assemble the first, second,
and fourth circles as in Figure 2-38. Wye

IS
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assume an initial alignment of the observ-
er's latitude, 24 on the second circle, and
position 86 for the satellite.

Suppose that an observer at 40° north
latitude sees the satellite pass overhead,
where will the satellite be 66 hours later?
Since

0 + 66 Ea 18 (mod 24) ,
the observer's position (40° north latitude)
on the fourth circle should be aligned with
18 on the hour circle. Since

0 + 66 En 80 (mod 86),
the position of the satellite corresponds to
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Figure 1-38

30 on the first circle. Then, as in Figure
2-88, the satellite is at 70° north latitude.

The procedures that we have considered
may be used for circular, polar or equa-
torical, orbits. The results are approximate
since we have used a sphere as an approxi-
mation for the shape of the Earth. Modifi-
cations of these procedures may be devel-
oped for determining the latitude and
longitude of positions of satellites in other
circular orbits about Earth.

2-5 Exercises Earth --a Satellite with
Satellites

1. Consider a satellite with a period of 36
hours that has a circular equatorial
orbit and was over the Greenwich me-
ridian at the time of burnout (the time
at which the fuel is exhausted). What
was the approximate longitude of the
satellite 80 hours after burnout ?

2. Consider a satellite with a period of 86
hours that has a circular equatorial
orbit and was in position over 80° west
longitude at the time of burnout. What
was the approximate longitude of the
satellite 100 hours after burnout?

2-4 Positions of Stars
Have you ever tried to find a particular

start Have you tried to identify or de-
scribe the position of a star? Poets con-
sider stars to be "windows of heaven";
physicists consider stars to be sources of



energy; astronomers consider stars to be
sources of knowledge; and navigators con-
sider stars to be compasses of space.

Many navigators today use their eye-
sight to locate stars while navigating
about Earth. You may ask how this is
accomplished during daylight when most
stars are not visible. However, remember
that the sun is Earth's nearest star and
can be used for navigating purposes.

We will discuss a method for locating
objects in the sky and a procedure for
plotting their position on a chart. The last
topic will involve the determination of an
equation which best represents these posi-
tions on a chart.

Suppose that you were a fire lookout
and saw a thin column of smoke on the
horizon. How could you describe the posi-
tion of this fire to other people so that
from two or three observations the posi-
tion could be located afferAively? One com-
mon way is to describe the direction of the
fire with north as a reference direction.
For example, observer A in Figure 2-39
might identify the location of the fire as
"north 40° east," observer B as "north 20°
west," and observer C as "north 85° west."
Notice that the observation of C serves as
a check on the observations of A and B.
The navigator would describe each obser-
vation in degrees measured clockwise from
north; that is, as 40°, 340°, and 276°. Each
of these measures is called the azimuth of
the direction.

When we locate a star we need to know
not only the azimuth indicating the hori-
zontal direction in which to look, but also
how high in the sky to look. Remember
that wherever you are, you have a zenith
(Section 2-3) and that your position is on
the ray from the center of the Earth and
through your zenith. You may think of
your zenith as "directly overhead" and
your horizon plane as a plane through
your position and perpendicular to the ray
to your zenith. You may tell a person who
is standing beside you how high to look
in the sky either using the angle 90°
between the ray to the star and the ray
to your zenith or using the angle 9 be-
tween the ray to the star and your horizon
(Figure 2-40). This last angle 0 is called
the altitude of the star.

zenith

rip re 0-311
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Figure s-10

We may use the azimuth and the altitude
of any star from our position to point to
the star. Notice that due to the movement
of Earth and the stars, these coordinates
are applicable only at a specific time. This
"model" description has also been simpli-
fied in other minor ways that are studied
in more advanced treatments.



As a special case of the location of a star
consider the north star, Polaris, the one
star whose position remains approximately
fixed relative to an observer on Earth. Any
observer in the northern hemisphere
should be able to find Polaris by looking
north (azimuth 0°) and at altitude equal
to the latitude of the observer.

Anyone wishing to practice using azi-
muths and altitudes should try measuring
(at a given time) the azimuths and alti-
tudes of stars or other objects such as the
moon. It is an interesting experiment to
record the azimuth and altitude of the
moon over the period of a month at the
same time (such as 9 p.m. each night).
The data can be plotted on a chart using
azimuth for a horizontal axis and altitude
for the vertical axis. The resulting chart
will show variations in azimuth and alti-
tude over a period of a month. Can you
explain why?

2-7 Our Galaxy, the Milky Way
We now turn our attention to the

method of determining positions of stars
that is used in the study of our Waxy,
the Milky Way. Think of the sky above
you as part of a huge celestial sphere with
the center of Earth as its center. The
celestial equator is the intersection of
Earth's equatorial plane with the celestial
sphere. The celestial north and south poles
are determined by the intersection of
Earth's polar axis with the celestial
sphere. As in Figure 2-41 the celestial
north pole is often designated as C.N.P.

Earth's equator may be divided into 24
parts and numbered indicating hours as
the Earth rotates on its axis. The hour
marks on the equator appear to be num-
bered counter- clockwise when viewed from
the northern hemisphere, but they appear
to be numbered clockwise when viewed
from the southern hemisphere.

We now project the hour marks visual-
!zed on Earth's equator from Earth's cen-
ter to the celestial equator. As on Earth's
equator the hour marks on the celestial
equator determine 24 equal arcs, each arc
has arc measure 16°, and the numbering
of the hour marks appears counterclock-
wise when viewed from the celestial north
pole.
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Figuri. 1-41
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Northern view Southern view

Figure 1-4t

Earth appears to rotate counterclock-
wise when viewed from above its north
pole. This means that an observer at
Earth's north pole would have to turn
clockwise at an angular speed of 16° per
hour in order to maintain his orientation
relative to the celestial sphere. If the ob-
server stands still on Earth then the rota-
tion of Earth rotates him counterclockwise
and the celestial sphere appears to be ro-
tating clockwise.

In order to use the celestial sphere as a
reference system we need to fix the pod-
tions of the hour marks on the celestial
equator. This Is done by selecting one of
the intersections of the plane of the appar-
ent path of the sun and Earth's (also the
celestial) equatorial plane. These inter-
sections occur about March 21 (vernal
equinox) and about September 20 (au-



tumnal equinox). By convention the posi-
tion of the vernal equinox is the 0 (that is,
24) hour mark on the celestial equator.

On the celestial sphere the great circles
that pass through the celestial poles and
also pass through the hour marks on the
celestial equator are called hour circles.

Figure t-43

East
24

13
12

Figure 1-41
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The view of these hour circles from the
celestial north pole is shown in Figure
2-43. Note the counter clockwise number-
ing. If these same circles are viewed from
Earth's north pole, the view is nearly the
same as from the celestial south pole and
the numbering of the hour circles appears
clockwise as in Figure 2-44.

The hour circles of the celestial sphere
are fixed in space and numbered from 1 to
24 counter clockwise from the position of
the vernal equinox. Thus each hour is
repres.nted by 16° of arc:

1 hour 15° of arc
4 minutes 1° of arc
1 minute-- 16' of arc
1 second 15" of arc
Any star that appears to be on the third

hour circle of the celestial sphere is said
to be 3 hours from the position of the
vernal equinox. Usually this is abbreviated
by saying that the star has a right ascen-
sion of 3 hours 0 minutes and 0 seconds.
The term right ascension is derived from
early observations of the rising (ascend-
ing) of stars nearly at right angles to
the horizon (actually it is only a right
angle when the observer is at L,e equator).
However, the right ascension does not in-
dicate how high in the sky one should look
for a star. This "height" of a star is sped-
fled with rellrence to the celestial equator.

For any coserver the celestial equator is
on a plane through the position of the ob-
server and perpendicular to his line of
sight to the celestial north pole. The line
of sight to celestial north pole is approxi-
mately (within 1° of) the line of sight to
the north star (Polaris). The celestial
north pole is at the zenith of an observer
at Earth's north pole. For any other ob-
server in the northern hemisphere the
celestial north pole has azimuth 0° and
altitude equal to the observer's latitude.
Observers in the southern hemisphere may
find the celestial south pole.

We may now identify the position of Any
star by the intersection with the cei,Jtial
sphere of our line of sight to the star. This
intersection will be designated by its right
ascension and its declination ( + if the al-
titude is measured above the celestial equa-
tor, if below). By convention the right
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TABLE 2-7

IV III

Equatorial Coordinates of Stars in Figure 2-45

Star and
Constellation Name

(To
nearest
minute
of time)

Ascension
Right

(To
nearest
minuta
of are)
Deana-

lion

y Taurus 018° +16°33'
8 Taurus 4b21 +17°2W

t Taurus 41.27m +19°06'
a Taurus Aldebaran 4h34' +16°26'
# Taurus 1 6'14 +28°36'
C Taurus
# Orion Rigel 15'18 - 8°14'
y Orion Belatrix
8 Orion
t Orion

Orion ..-.

K Orion
a Orion Betelgeuse 6^63m + 7°24'
g Gemini

M. 11.1.1111
16

y Gemini

Gemini Castor 7'32- +31°6W

Gemini Pollux
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ascension is indicated by the Greek letter
alpha a and the declination is indicated by
the Greek letter delta 6. The system that
uses these coordinates is referred to as the
equatorial system.

Many sets of stars form patterns (in
the sky and also when plotted in the equa-
torial system) and are called constella-
tions.

The equatorial coordinates of the star
named Dubbe in the constellation Ursa
Major (the Big Dipper) are:

a = 1lb01°351 (right ascension)
a = +61° 56' 25" (declination)

The right ascension is read as 11 hours
1 minute and 35 seconds away from the
position of the vernal equinox. The decli-
nation is read as positive 61 degrees 66
minutes and 25 seconds.

A star chart containing some of the
stars of the constellations Taurus, Orion,
and Gemini is sketched in Figure 2-45.
The equatorial coordinates of some of the
stars contained in these constellations are
listed in Table 2-7. Only the prominent
stars have been named in the table. Some
of the equatorial coordinates have been
omitted from the table; these can be esti-
mated from the star chart in Figure 2-46.

Man seems to be taking his first feeble
steps away from Errth and out into space.
This new venture and exploration of a new
frontier involves many problems which
must be solved correctly if man is to suc-
ceed. We will consider only the problem
of locating one's position in space.

Magnetic compasses cannot be relied
upon. The compass to be considered here
is a clock and several known stars con-
tained at fixed positions relative to the
Earth.

Consider the problem of an astronaut at-
tempting to fix his position without radio
communication with Earth. Our hypothet-
ical problem will be limited to an equa-
torial orbit of eccentricity zero. This means
that the orbital path Is circular about Earth
and is contained in the equatorial plane.

The manned space craft GeminiTitan
4, GT--4, was in circular orbit but the
inclination of orbit was approximately 29''.
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How would you solve the problem of
determining your position if you were in
a spacecraft in an equatorial orbit and lost
radio communication with Earth? Here is
one possible approach to solving such a
problem. For this approach you should
have the ability to recognize many of the
brighter stars on the celestial sphere
(Table 2-8).

noire t-411

The 26 stars listed in Table 2-8 were
selected because of their position on the
celestial sphere in terms of right ascension
and apparent brightness. An attempt was
made to select stars near the celestial equa-
tor but this was not always possible. The
equatorial orbit makes it desirable to use
stars having a declination d such that
-26° < d < 26°. The main criteria used
to select these 28 stars was their bright-
ness and nearness to an hour circle on the
celestial sphere beginning with the first
hour circle.

Figure 2-4'? shows the positions of the
stars listed in Table 2-8 with reference to
hour circles (northern hemisphere view).



TABLE 2-8

Nearest
Hour
Circle

Letter
Position

Constellation
Siar

Name

Right
Ascension

to
nearest
minute
of lime

Declination
to

nearest
minute
of are

1 /3 Andromeda Mirach 1°08m +35°26'
2 u Aries (Arietis) liamal
3 /3 Perseus (Persei) Algol

4 a Taurus (Tauri) Aldebaran
5 a Auriga (Aurigoe) Capella

6 a Orion (Orionis) Betelgeuse

7 a Canis Major Sirius
(Canis Majoris)

8 /3 Gemini Pollux
9 a Cancer 8b571 +12°00

10 a Leo (Leonis) . Cor Leonis

11 p Ursa Major Merak 11x00'° +56°34'
12 a Corvus
13 a Virgo Spica
14 a Bootes
lb /3 Bootes Nekkar 15101" +40°32'

16 /3 Scorpius
a Scorpius

Acrab
Antares

17 a Hercules --
18 y Saggitarius --
19 Saggitarius --
20 a Aquila Altair
21 a Cygnus Deneb

22 a Aquarius
23 a Pegasus Markab 23'03" +15°01'

24 a Andromeda Alpheratz
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Figure t-48

Figure 2-48 shows a 24 hour clock num-
bered counterclockwise.

EARTH

Figure 0-11

Figure 2-19 shows Earths' equator
marked in 10° intervals. Figures 2-47,
2-48, and 2-49 may be constructed and
mounted with the same centers as in Fig-
ure 2-50 page 52. The inner circle should
be mounted so that it can be rotated.

51

The meridian over which the satellite is
located at the time of "burnout" is used to
position the inner circle in Figure 2-50.
The longitude of this meridian is aligned
with the 24 hour marks on the other two
circles as shown in Figure 2-51. At the
time of burnout a watch should be set at
zero (that is, 24) hours.

Consider the problem of finding the lon-
gitude of the met idian over which a space-
craft is located 66 hours after burnout if
burnout occurred over 80° west longitude
and the period of the oribit is not known.
Suppose also that 66 hours after burnout
the satellite, Earth, and a Andromeda are
approximately on a line. Since

0 +66 18 (mod 24),
we align 80' west longitude on the inner
circle of Figure 2-50 with the 18 hour
marks on the other two circles as in Figure
2-52.

We next draw a ray from the center of
Figure 2-52 page 64 to a Andromeda. This
crosses the inner circle at the longitude
over which the satellite is positioned; in
this case about 12° east longitude.

This position may be checked if the
period of orbit of the satellite is known.
Suppose that the period in our example
was 1.6 hours. Then the satellite would
make 44 complete revolutions in 66 hours
and should be positioned over the meridian
at 10° east longitude as indicated by the
ray to the 24 hour marks in Figure 2-63.
In this figure an additional circular scale
has been added to show the fractional
parts of completed orbits. When this scale
is used the ray is considered as drawn
through 1.5 (the 0 of that scale) since

0 + 66 = 0 (mod 1.5)
Noti:e the error of 2° in longitude

(shaded) missing from slight inaccuracies
in the observations (such as the alignment
of the spacecraft, a Andromeda and
Earth) or the calcular ns (such as the
period).
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2-7 ExerciseOur Galaxy the Milky Way

1. Use the star chart In Figure 2-46 to
complete Table 2-7 for the right ascen-
sions and declinations to the nearest
minute of time and arc.

2. Use Figure 2-50 and complete Table
2-8 for the right ascensions of the
esters.

3. p Andromeda is approximately 8 min-
utes beyond the one hour circle on a
star chart. How many degrees, min-
utes, and seconds of arc is p from the
position of the vernal equinox?

2-8 The Universe
The discussion of coordinate systems in

this chapter provides only an introduction
to the systems used in mathematics and
the many branches of science. For ex-
ample, we have used right ascension and
declination to identify the direction to a
star. In Chapter 3 the distances to stars
are considered. There is a coordinnta sys-
tem for positions in our galaxy (the Milky
Way); another system is used for the uni-
verse which contains many galaxies.

The aim of this chapter has been to open
one window to an understanding of the
universe we live in. Several other windows
are needed for a sound understanding. One
of these, measurement, is considered in
Chapter 3.
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Chapter 3

MEASUREMENT
A WINDOW TO THE UNIVERSE

by
John Soroka

Planetarium Director
Akron Public Schools

Akron, Ohio
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MEASUREMENT, A WINDOW TO THE UNIVERSE

We can see so many stars in the night
sky we are unable to count them. It is not
surprising that early man thought of him-
self as standing in the center of a huge
sphere with the stars fixed on it like thou-
sands of shining points.

He was not content however with the
visible appearance of these celestial bodies
and set out to investigate them. As he tried
to express their measures and to place
each in its proper position, he concluded
that the sun. is much larger than Earth;
that Earth travels around (orbits) the
sun. As Earth orbits the sun, the moon
orbits Earth at a distance alm.-st insignifi-
cant in relation to Earth's distance from
the sun.

We are part of a very small planetary
system in an enormous universe, the meas-
ure of which can be dealt with in much
the same manner as a surveyor measures
the width of a river he cannot cross. We
employ these methods to determine the
positions, distances, sizes, and motions of
the nearer celestial bodies, Knowledge of
celestial bodies not only has enabled us to

stretch out into space but very shortly will
enable a man to step out on the surface
of the moon.

3-1 Direct Linear Measurement
Measurement enables us to relate sci-

ence and mathematics. The accuracy of a
measurement can determine the accuracy
of a scientific investigation.

We do not always "see" what we are
looking at. Consider some of the relation-
ships among the objects shown in Figure
3-1.

The grapefruit is larger than the
orange.
The length of the driveway is larger
than its width.
The doorway is higher than it is wide.
You probably feel certain that these

statements are correct.
Look at the picture in Figure 3-2. Is

the chair nearer the door or the window?
In order to answer such a question, we
might measure the actual distances in

Figure 3-1



Figure 3t

the room. The unit that we choose is pure-
ly arbitrary. We might pace off the dis-
tance, measure it in lengths of string, or
use a standard unit of length. The English
units of length include the inch, foot, yard,
am:: mile. The metric units of length in-
clude the centimeter, meter, and kilometer.

Let us consider the distance from the
chair to the center of the door. We could
measure the approximate distance to the
door in inches. Suppose that the center of
the door is 241 inches from the chair. This
nity be true, yet a distance of 241 inches
is difficult to visualize. We cannot "see"
it in our minds. if we remeasure this dis-
tance in feet, we'll find that the door is
about 20 feet from the chair. This distance
is more meaningful to most people since
they can visualize 20 feet more easily than
241 inches. If we remeasure the distance
in yards, we find that the door is about 7
yards from the chair. The results of sev-
elsl measurements are summarized in the
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table below.

Table 3-1.
Unit of length Chair to door Chalk' to window

1 inch 241 in. 236 in.
1 foot 20 ft. 20 ft.

% foot 20 ft. 19% ft.
1 yard 7 yd. i s 7 yd.

We are able to conclude from the meas-
urements to the nearest inch or the near-
est quarter of a foot that the chair is
nearer the window than the door. The
measurements to the nearest foot or yard
are not sufficiently precise to enable us to
distinguish between the two distances.

The measurements could be expressed
in terms of other units such as centi-
meters (cm.) and meters (m.) as shown
in Table 3-2. However, the conclusions
reached do not depend upon the system
of units used. The unit is a convenience.



TABLE 3-2

Unit of length Chair to door

1 centimeter 612 cm.

meter 6 m.

Chair to
window

699 cm.

6 m.

There is a great temptation to convert
results from English units to metric or
from metric units to English. In this
chapter we will not convert back and
forth; but will think and work in appro-
priate units. Because the measure of
spaces requires units which we cannot
experience or "see," let us begin with
some familiar ones. We can 'see" that the
distance represented by 1 inch is larger
than the distance represented by 1 centi-
meter and that 1 meter represents a
greater distance than 1 yard.

The lengta of the line segment in Fig-
ure 3-3 may be measured to the nearest
half inch and to the nearest centimeter as:

3Y2 inches, or 9 centimeters.

that we can never describe the measure of
the line segment exactly.

If you and a friend both estimate the
length of the line segment in Figure 1-3,
you probably will agree on the number of
inches and the number of tenths of an
inch. You may not agree on the number
of indredths of an inch. If not, try
again. Who is right? The answer to the
question will depend upon your abilities to
estimate distances.

3-4 Exercises Direct Linear Measure-
ment
1. Use a yardstick and a meter stick to

compare the length and width of a
room. Compare the ratios of the
lengths to the widths in each of the two
system; of units. Are they the same?

2. Make (or have ten friends make) ten
measurements of the line segment in
Figure 3-3. Add the numbers obtained
and divide by ten. How does this aver-
age value compare with the others?
Does this average value appear more
"reliable" than the individual values?

Figure 3-3

We find not a whole number, but a cer-
tain number plus a fraction. We will try
to estimate the fraction of a centimeter
or inch. Inches and centimeters sometimes
are divided into ten equal parts. Each
space represents one-tenth of the unit.
We are able to estimate the length of the
line segment in Figure 3-3 to the nearest
tenth in each case as :

3.4 inches.
8.7 centimeters.

We may observe that the line segment is
not exactly 3.4 inches. The length of the
line segment is between 3.4 and 3.5 inches.
If we were not concerned with greater ac-
curacy, we could see that the length of the
line segment is closer to 3.4 than 3.5 inches
and simply say 3.4 inches is the length.
We may imagine the tenths divided into
ten equal parts and then estimate the
length of the line segment to the nearest
hundredth of an inch and to the nearest
hundredth of a centimeter. You can see
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3-2 Direct Angular Measurement
Angular measurement may also be used

in determining distances. Consider an
angle as the union of two rays with a com-
mon end point as in Figure 3-4.

ec

Roy BA

A
Figure 3-4

In measuring an angle, we need a unit
of angular measure. Remember the selec-
tion of a unit of measurement is arbitrary.
The angular unit of measurement for fig-
ures on a clock is the hour (Figure 3-5);
for the circle it is usually the degree
(Figure 3-6).
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Figure 3-6

The circles representing the clocks are
divided into 12 equal parts called hours.
When we read the time from the clock,
we are reading the angle represented by
the hands which form a ray. Each hour
is divided into units called minutes and
each minute is divided into units called
seconds. We read our time not only in
hours, but usually also in minutes and
seconds.

Instead of dividing the clock into units
of hours, we may divide it into units of
degrees. We could divide the clock in any
number of units, but we will use the con-
ventional 360 degrees in one complete
revolution (circle).

We could measure the angle formed by
the hands of a clock either in hours or in
degrees.

Figure 3-7 enables us to compare the
sizes of the angles represented in hours
or in degrees. The angle represented by

62

270

3 9

11/12 of a circle
11 hours of time

180

3/8 of a circle
135°

three hours equals the angle represented
by 90 degrees and so on.

Figure 3-8 enables us to read other
an gles in hours or degrees. The angle
represented in part (a) would be 9 hours;
that is, 270 degrees. The angle repre-
sented in part (b) would be 3 hours; that
is, 90 degrees. The angle represented in
part (c) would be 1 hour and 30 minutes;
that is, 46 degrees. Again we have the
temptation to convert from one unit to
the other but should continue to think in
any convenient unit. In the remainder of
this chapter, we will speak of angles in
degrees. The symbol used to indicate the
word degree is °. If we need greater ac-
curacy, we can divide the degree into
smaller parts called minutes; one degree
equals 60 minutes. The minute is divided
into units called seconds; one minute
equals 60 seconds. These are not units of
time but parts of a degree. The terms
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Figure 3-7

should not be confused:
1 revolution = 360° (degrees)
1 degree = 60' (minutes)
1 minute = 60" (seconds)
Astronomers need to measure angles ac-

curately to the nearest hundredth of a
second. The Orbiting 'Astronomical Ob-
servatory, OM), will be able to maintain
its position with an accuracy of 0.1 sec-
onds. Accuracy and precision in measuring
angles are extremely important in deter-
mining distances on the earth or in the
sky.
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270
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(c)

90

3-2 ExereisesDirect Angular Measure-
ment
1. Measure each angle in the figures be-

low.

(a) (b) (c)

2. Constrtxt angles with measure:
(a) 112.5° (b) 47° (c) 210'
(d) 360,000"



3. Sketch a clock with one hand on 12
and show:
(a) 11/2 hours (b) 71/3 hours (c) 5
hours (Note that a real clock would
not have one hand exactly on 12 in each
case but for our purposes we will con-
sider it there). Label each figure in
hours and degrees both.

4. Make an array or table which will show
each measure expressed as a number of
degrees, as a number of minutes, and
as a number of seconds:
(a) 15' (b) 40' (c) 5' (d) 30"

3-3 Indirect Measurement
The preceding sections have shown some

of the methods of measuring distances and
angles directly with rule or protractor.
However we are not always able to make
measurements directly. We cannot place
markers in space, stop the moon in its
orbit, or stretch a tape measure around
the earth.

Many methods have been developed to
make measurements indirectly. We will
be concerned with a number of these and
introduce two at this time, triangulation
and parallax.

We can use triangulation to measure the
width of a river that we are unable to
cross as is Figure 3b.

We first pick out on the far bank an ob-
ject C close to the edge of the stream. We
place a marker B opposite C on our side

C (object)

RIVER

(observer) A B (marker)
300 ft.

Figure 3-9
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of the river. From B we lay out a base-
line Al j which is perpendicular to BC and
measure off a given distance; suppose we
make AB 300 feet long. We use a transit
to measure angle BAC, suppose LBAC
75°. Since [ABC == 90°, L ABC is a right
triangle. The distance BC across the
stream can be computed as follows: ( You
will need to use the table of trigonometric
functions on page 184) .

BC tan LBAC
.AB

BC = AB x tan LBAC
= 300 x tan 75°
= 300 x 3.'732 (Refer to the table

of trigonometric functions)
BC -;z: 1,119.6 feet

Then EC is about 1,120 feet, Remember
that the value for the tan 75° was taken
from the table of values for tangents of
angles on page 184. Refer to this table
whenever you need to.

This method of triangulation is used to
determine distances that are relatively
small and is best when the angles are
large enough to be measured with a pro-
tractor.

The method of parallax may be used to
determine long distances involving very
small angles. The smaller the angle, the
greater the accuracy obtained by this
method. The parallax of an object is the
angular difference between the directions
of the object when it is viewed from two
different points. To illustrate this concept,
hold your finger at arms length in front
of your nose and look toward a distant
point or object such as the corner of the
blackboard.

1. Close your right eye. What is your
linger in front of now?

2. Close your left eye, and open your right
eye. What is your finger in front of
now?

3. Alternately open and close your eyes.
Your finger should appear to "jump"
back and forth as you alternately open
and close your eyes.



Figure 3-10

By using this very simple phenomenon,
we are able to illustrate methods for meas-
uring distances with accuracy. Consider
Figure 3-10 where NFP is the line of
sight using both eyes, LFT, is the line of
sight using the left eye only, and RFT, is
the line of sight using the right eye only.

1*

!

If we knew the distance LN, and the
distance NF, we could calculate the paral-
lax: that is, LLFR. Notice that the vertical
angles T,FT, and LFR are congruent.

As in Figure 3-11 suppose that
1.5 inches and

NT = 21 inches.

Then: tan LLFN =

1.5
21

0.07
LLFIN 4°

This angle (LLFN) is called the hori-
zontal parallax; that is, one half of the
parallax, LLFR in Figure 6-10. Notice in
Figure 3-10 that

LLFN = LRFN = LT,FP = LT,FP
and that if we were to measure the hori-
zontal parallax, then we would know the
measures of all four of these angles and
could determine the distance ifP.

N ii
160 Figure 3-11

2" tan LLFN 1:9

L14 1.6 1.6
tan LLFN tan 4" 0.07

10. 50' 21 inches.

MINIM!

3 10

3"

I "

03
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Here's another experiment, again place
your finger in front of your nose. While al-
ternately opening and closing your eyes,
move your finger away from and then
toward your nose. The closer your finger,
the larger the `lump" and hence the larger
the parallax. The further away your fin-
ger is, the smaller the "jump" hence the
smaller the parallax. Figure 3-12 and
Table 3-3 show the relation between paral-
lax and distance for the given baseline AT.

TABLE 3-3

Point Parallax
Horizontal
Parallax

Distance
(inches)

D 60° 30° 1

Da 32°20' 16°10'

D, 21°40' 10°501 3

D, 16°20' 8°10' 4

D, 13'20' 6°40'

Notice that relatively close objects show
a large parallax and distant objects ex-
hibit a small parallax. Later we shall
make use of this method to determine dis-
tances to objects in space,

3-8 ExerciseIndirect Measurement:
A helicopter is hovering 390 feet over a

space craft in the water. A re'overy ship
approaching the space craft sights the
helicopter 80 above the horizon. About
how many miles is the ship from the apace
craft?

3-4 Measurement of Earth
Most people today take the shspe and

the dime,nsions of Earth for granted. We
now have direct evidence from the milli-
dal satellites that Earth 11 roughly spheri
cal. However, it is interesting to see how
scientists of the past were eble to calcu
late very good approximations with the
limited knowledge available to them.

One of the first known measurements of
Earth Will made a little more than 2,000
:,ears ago by a Greek mathematician
named Eratosthenes. He measured the
circumference of Earth indirectly from
the position of the sun as observed from
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two cities Alexandria and Syene, the
modern city of Aswan.

7.2'

WELL AT
SYENE

(ongl of tun's ray's
7.26 )

POLE AT
ALEXANDRIA TO SUN

Figure 3-13

As the story is relatEd today, Erastos-
thenes noted that at noon on the first day
of Summer the sun appeared to be directly
overhead at the city of Syene in Egypt.
To confirm this observation, he observed
the sun from the bottom of a well. At the
same time in the city of Alexandria, it was
noted that a pole cast a shadow such that
the angle of the sun's rays to the pole
measured about 7.2°.



By reasoning that the sun's distance
from Earth was a huge distance, Eratos-
thenes asF,umed that the rays of the sun
..itriking the two cities were parallel (Fig-
ure 3-13). Using methods of his day, he
carefully measured the distance between
the well in Syene and the pole in Alexan-
dria. The distance was obtained in the
units of his day as 5,000 stadia. The ac-
tual distance a stadia represented is not
known, but best estimates today place 10
stadia equal to about 1 mile. Eratosthenes
then set up the following proportion to
obtain the circumference of the earth:

5,000 stadia circumference of Earth
7.2° 860°

The figure obtained for the circumfer-
ence of a great circle of Earth was about
260,000 stadia or 25,000 miles. This figure
is very close to today's accepted value. The
diameter of Earth can be found as:

d = circumferenal _ 80,000 stadia or
8,000 miles

The radius is found by dividing the di-
ameter by 2. The radius of Earth would be
found as about 40,000 stadia or 4,000
miles. He obtained these figures 2,000
years before man finally had acceptable
proof that Earth was essentially round and
not flat. The measurements are based
upon an Resumption that Earth is a per-
fect sphere. More modern methods of
measuring Earth have turned to the stars
for greater accuracy. Terrestrial triangu-
lation is one of the modern methods of de-
termining distances on Earth.

We now consider Figure 3-16 and use
a triangulation method as in Section 34
except that very precise measurements are
made. '1 he baseline AB can be measured
to the nearest millionth of an inch; angles
BAC and ABC can each be measured to
the nearest 2 seconds of a degree. Then
the distance re can be computed by meth-
ods that are usually studied in high school
trigonomet:y. Then AT can be used to
measure which is indicated by the
dotted line. Continuing by using the
dotted line in this manner AF, Al, and
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JF can each be measured to a high degree
of accuracy.

Fives 3 -16

Observation of the North Star provides
a very accurate method for determining
Earth's measurements.

The North Star, Polaris, is considered to
be directly above the North Pole. The al-
titude of Polaris above the horizon indi-
cates the Observer's position on Earth.
from points J and F, Figures 3-16 and 8-
16, the altitude of Polaris, U and if, is
determined. Li and if are equal to the
ncrth latitude of J and F. By subtracting
the differences in iatitudes of the points,
the length of JF can be determined in de-
grees. From this and the distance from J
to F in miles, the circumference of Earth
can be determined with greater accuracy
than by the method of Eratosthenes.

This method of measuring Earth first
indicated that it is not a perfect sphere
but flattened at the poles, like an oblate
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Figure 3-17

sphere (Figure 3-17). Actually the polar
diameter of Earth is about 26.7 miles less
than the egliatorial diameter.

The distance represented in 1° of lati-
tude at the north or at the south poles has
been found to be greater than the distance
represented by 1° latitude at the equator
of Earth. Figure 3.18 and Table 3-4 in-
dicate the changes in the distance along a
meridian represented by 1° of latitude.

904 w

Figure 3-10

TABLE 3-4

Latitude
Distance of 1'

In stilts

Equator, 0' 68.7

24' 68.8

40' 69.0 ,
CO' 69.2

N or 3 Pole (90') 69.4

Artificial satellites have enabled man to
make rather precise determinations of the
site and shape of Earth. Previously, the
radius of Earth could be determined only
within 700 yards, that is between 3,963.188
and 3.963.250 miles. Today particularly

with the use of Vanguard I, the analysis
of the orbit of the satellite places the aver-
age radius of Earth at the most probable
value of 3,963.210 miles. Prior to the arti-
ficial satellites, the limitations of terres-
trial triangulation and cellestial observa-
tion limited the accuracy of the distance
between the continents of America and
Europe to within a mile. With the world-
wide tracking stations and electronic com-
puters, the orbits of satellites can be de-
termined with great accuracy. By using
the position of the satellite in its orbit,
scientists are now able to compute the posi-
tions of islands in the middle of the Pacific
ocean to within 25 yards.

Vanguard I has also enabled man to re-
fine his ideas pertaining to the shape of
Earth. In 1968, scientists studying the
orbit of Vanguard I determined Clot Earth
was not symmetricaly oblate, but the
southern hemisphere actually bulged more
than the northern hemisphere. This indi-
cated that Earth was not spherical, not
oblate, but was somewhat pear-shaped!

These differences seem really small, and
are not apparent to us, but these and other
minute differences are of extreme impor-
tance to interplanatory probes, su,lh as the
Mariner IV flight to Mars and to our ideas
of the structure and evolution of Earth.

3-4 ExercisesMeasuremert of Earth
The angular separation between the

East and We coast of the United States
is about 44°. About what is the distance
in miles et this angillar separation? (Use
3,070 miles for the radius of Earth.)

3-5 Altitude of a Model Rocket
The determination of the altitude of a

model rocket Is a relat(vely simple exer-
cise in triangulation. We will not attempt
to plot the flight path of the rocket but
simply to determine its altitude n at its
highest point above the surface of the
Earth.

Consider the data in Figure 3-19. The
problem could be solved by this method
only if the rocket rose vertically from the
launch site and "peaked" directly above
the launch site.
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Figure

Here is a soiution to tEe problem as il-
lustrated in Figure 3-19. Prior to launch,
the distance from A to B is measured and
found to be 1000 feet. After hunch, the
flight of the rocket is observed from posi-
tion A with a transit and the highest ele-
vation of the rocket is noted as 22°. The
altitude BC of the rocket may be deter-
mined by using the formula for the tan-
gent of LBAC. (The tangent formula is
explained in Section 1-7.)

FO' ANGLE RUMEN
CENTER LINE Of SIGHING
WU AND CENTER LINE
OF SUPPORT

CENTER EINE Of SIGHTING
TIM SHOULD RE DIRECTLY
MOVE POINTER 7_

FIN( win /CROSS OPENING
PERFAil". KALE 10 It READ
ACCURATELY

COPAPASS

SCALE V

POINTER

She KALE

SCALE H

SOL 1 WITH
WINS PUT

1E00 MTH
AEWSTAILE LEGS

RUSKE LEVEL IS ELVA
SO THAT EA0vAlkt SIGKi ING

FIFILAI WITH SPIKE
KOCK MOVES FREELY

Figure S tO

Scale II in Figure 3-20 gives the angle
in degrees horizontally from the baseline

r-Q = tan LBACn to the position of the rocket. Scale VP gives
the angle vertically in degrees from hori-

BC = n X tan 22° zontal.

BC 2: 1000 x 0.404
lam 1

io ,--q.--=. 1 ...-
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The preceding problem is a theoretical
example. In practice the rocket does not
rise directly over the launch site, but fol-
lows a curved path to Rs greatest altitude.
Primary factors which effect the flight of
a model rocket are:

(1) Aerodynamics of the rocket.
(2) Wind velocity at various altitudes.
(3) Change in the center of gravity of

the rocket due to the burning of
fuel.

(4) Angle of launch.
A practical approach in solving this

problot has been worked out by the Na-
tional Association of Rocketry. The fol-
lowing method is used by the Association
to determire the altitudes of model rockets
in contests. The method requires two ob-
servers each equipped with A transit which
will measure direction horizontally and
elevation vertically.
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Observers A and 13 are positioned prior
to the launch. The distance between A and
B is carefully measured to be 1,000 feet.
At launch the horizontal scale reeds 0° di-
rection along the baseline and the vertical
scale reads 00; both observers observe the
flight wAli a transit much as you would
watch an airplone tt:Icing off. At its high-
est point, D, the rocket gives off a puff of
smoke and the observers tighten the wing
nuts on the transits (Figure 8 -20) to flx
the angle on scale V.

Observers A and B can read the two
angles from their transits.

Observer

A

B

Stale If
Direction from

baseline

Seale V
Elevation from

horizontal

50° 24°

60° 26°

To obtain the altitude of the rocket DC,
we first must solve ',he triangle ABC for
the distances AC and BC. From Figure
3-21, we obtain the following data:

1000 feet
LCAB 50°
LAI3C 60°
LAC13 70°

At this point the reader could construct
a scale drawing similar to Figure 3-21 and
determine the altitude of the rxket di-
rectly from the drawing. (Suggested
scale: 1" equals ;00 feet.) From the draw-
ing, we would determine the altitude of the
rocket to about 410 feet.

Students familiar with trigonometry
may make more accurate determinations
by the use of tlie law of sinel;

Sin LACB Sin LCBA
Ali AL

Sin 70' Sin 60'
1000 Ac

0.940 0.866

1000 AC

1000 x 0.86i-At Ar.
0.94

AG 921 feet

70

Sin LACB Sin LCAB

AB

0.940 0 j6
1000

815 feet
This determines each observer's distance

from point C, directly below the highest
point in the rocket's flight. Each observer
can now use the tangent formula to cal-
culate the altitude of the rocket.

24°
921 FT.

06SERVElt A

Observer A

26'
815 FT.

06SERVER 6

C

C

rejure 341

tan 24° tt.- Eg.

0.445
921

bC 410 feet

Observer 13 tan 26'

0.488
815

DC 398 feet
As calculated by observer A, the altitude

of the rocket is 410 feet and by li the al-
t:tude of the rocket is 898 feet. The aver-
age altitude of the rocket is 404 feet. As
outlined in the rules of the National As-
sociation or Rocketry 404 feet is the ac-



cepted value. To have a successful and
competitive flight under the rules of the
NAR, the altitudes calculated by Observers
A and B must agree within 10% of the

average value. In our example 10% of
404 feet is about 40 feet and both cal-
culated values are within 10% of the aver-
age value.

Exercises
See if you can complete the following table, indicating the altitudes obtained by each

observer, the average altitude, and if the results were acceptable.
Obse w-A

Scale V

Obserma

Altitude
DCd (ft) Seale H

Altitude
a Scale H Scale V

Average
Altitude

AFell) -
able

(Yes)
(No)

1000 30° 80° 60° 45°
1000 40° 40° 65° 5Q.'

60°1000 37° 48° 68°
1000 62° 31° 70° 32°
1000 12° 66° 104° 81°
1000 X34° 73° s 43° 68°

Note: This problem is applicable to computer I rogramming. See Section 6-5 Exercise 2.

NOTE TO STUDENTS
Several sections of Chapter III involve

detailed computations. However, if you
simply read the material, you will discover
some of the interesting methods astron-
omers use to study the stars. It is not
necessary that you perform all the compu-
tations. Yell. should try them and complete
as many ns you can.

Remember that you need to "see" a
three dimensional model in your mind as
you took at th? drawings. You may wish to
construct some models using the diagrams
as guides. When you have done this, go
back and lry some of the computations
that are suggested.

3arth as Viewed from a Satellite
The alt:tuis of t. satellite may be de-

termined in much the same manner as that
of a rocket. However it is necessary to
use a very fire system of tracking station
and electronic computers to determine the
precise orbit and altitude as t.sed in the
field of communication and weather satel-
lites. The altitude of the satellite also de-
termines the area of Earth that may be
photographed or "spanned" by a latlio
signal
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Figure 3-23 is drawn to scale. On our

sale, the Earth's radius is equal to 4,000
miles. We are able to determine the al-
titude of the satellite as 14 of Ea,..h's
radius or 1,000 miles. If we know the al-
titude of the satellite, we Are able to de-
termine the area of Earth that it could
"span." As the satellite's altitude in-
creases, the area of Earth viewed from the
satellite increases (Figure 8-24).

Figure 3-24 illustrates the appearance
of the portion of Earth viewed by satellites
at different altitudes. Notice that the out-



(a) (b) (c )

Figure S-ti

line of the portion of the Earth's surface
viewed by the satellite approximates a
circle and the size of the circle depends
upon the altitude of the satellite.

We can compute the area represented
in Figure 3-24 by the shaded part of the
Earth's surface. From Figure 26 (a), we
assume that the radius of the Earth n
is 4,000 miles and the altitude of the sate!
iite AT is 1,000 miles. The distance AB
from the center of Earth to the satellite is

A

6,000 miles. The limit of the satellite's
view is represented by a line such as AC
that is tangent to the surface of the Earth
at C and forms a right angle with the
radius of Earth BC. We wish to determine
the height DE of the sh Ided zone of Earth.
Triangle ABC is a right triangle. Ve

know two sides of triangle ABC; aide
5,000 miles, and side Fe, :,000 miles.

BC 4,000cos e = = 0.800
AB 5,000

We are now able to determine DB.
Triangle DBC is a right triangle;

DB = (cos e) X BC = 0.800 X 4000
= 3,200 miles
We know that the radius BE of Earth is

4,000 miles. Then, since BD + = BE
and n 3,200 miles, we have DE =
4,000 3,200 = 800 miles. The height t5
of the zone of Earth is about 800 miles.
The formula for the area of the zone of a
sphere is A = 2wrh, where r is the radius
of the sphere and h is the height of the
zone (as in Section 1-5). The area of the
zone that we have been considering is
about 20,096,000 square miles since
A = rh

2 X 3.14 x 4000 X 800 = 20,096,000
If we wanted to know the part of the

earth's surface viewed by the satellite, we
could determine this using the ratio of the

Nun 5--tS
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area of the zone to the area of the surface
of Earth:

20,096,000 1
10%,

200,960,000 10
The satellite views about 10% of the

Earth's surface.

3-6 ExercisesEarth as Viewed from a
Satellite
1. Complete as many of the blanks in the

following table as you can.
Altitude Part of
of the sa- Earth's

tellite Visible surface surface
(miles) (square miles) visible

(a) 200
(b) 1000 20,096,000 10%
(c) 4000 - _- - - - - --
(d) 6000

Note: This problem is applicable to com-
puter programming. See Chapter 6-3, Ex-
ercises 8 and 4.
2. How many satellites at an altitude of

6,000 miles would be necessary to com-
pletely photograph the equator of
Earth at a given time?

3. In Figure 3-25a what is the approxi-
mate distance along the surface of the
Earth between G and C in miles?

3-7 Distance to the Moon
Although the distance to the moon is not

the basic unit of measurement for astrono-
mers, it is extremely important to us when
related to determining the size and shape
of Earth. Since the distance from Earth

to the moon varies, we will use mean
values to give us an approximation of the
moon's distance.

We are able to make this calculation by
the parallax method using the diameter of
Earth as a baseline. This is referred to as
the geocentric parallax, Earth-centered
method.

From Figure 3-26, we are able to iden-
tify the points as follows: The center of
Earth is at 0 and Al is a diameter. A
surface feature of the moon, such as a
mountain or crater, is indic...ed by point
L. Stars marked Si and S. are at a dis-
tance so great that they exhibit no ob-
servable parallax with u baseline as small
as AB. Lines of sight AL and BL are tan-
gent to the surface of the moon at a crater
or mountain.

A

0
Piokre 3-2>

The moon's horizontal parallax has been
measured many times and is i 10 have
a mean value of 67.04 mil. , t1,0
67.04'. We will use 8,948 n !es as the
Earth's radius; AO 3j & mites. We
treat AD as approximately equal to an arc
of a circle with radius t and central
angle ALO. Then using radian measure
as in Section 1-3,

EMtIH riswre S-tt
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d =- re
AO= OLXcALO

when LALO is measured in radians. Re-
member that

2w radians = 360°,

1 radian . 860 57.3°,
6.24

i radian 67.3 x 60 = 3438'.
The measure of LALO in radians may be
found by dividing its measure in minutes
by 3438. Then:

AT) 67.04
8438

3963 x 3488OL = 238,900 miles.
57.04

This is the moon's mean distance from the
center of Earth. The moon's mean dis-
tance is the starting point for the calcula-
tion of other lunar statistics.

Figur* $411

By reversing the parallax method and
using the moon's mean distance from
Earth we are able to calculate the diameter
Al of the moon (Figure 3-28) . Angle
AOB has been measured many times and
a value of 31.09' determined. Using the
radian method, the moon's diameter AE
may be calculated as follows :

2E8,900 < 81.09
Xil

3438
P.: 2,160 miles

Knowing Xt, we are able to determine the
radius of the moon as about 1,080 miles
and the circumference as about 6,780
miles.

In 1946 the V. S. Army Signal Corps
beamed a series of radar pulses toward
the moon and received echoes 2,56 seconds
later. Radio signals travel at the speed of
light 186,000 miles per second. The dis-
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tance to the moon in its orbit at that time
was determined to be about 238,600 miles.

3-7 Exercises Distance to the Moon
1. If the mean distance to the moon is

238,900 miles, what is the approximate
circumference of the moons orbit of
Earth?

2. If the moon orbits Earth once in 271/2
days, what is its average speed in miles
per hour?

3. The moon's orbit is not perfectly cir-
cular. Therefore, the moon's distance
from Earth varies. The maximum
horizontal parallax is given as 61.3
minutes and the minimum as 63.8
minutes. What is the moon's maximum
and minimum distances from Earth?

3-8 The Yardstick of Space
The distance of Earth from the sun is

one of the most important distances in all
of ast.anomy. It is the basic unit of dis-
tance for the calculation of many distances
in the universe. It is necessary that this
distance be known as precisely as possible.

Historically man has attempted to deter-
mine the distance to the sun in many ways
and has arrived at many different answers.
The early Greek philosophers wrote of the
sun as a fiery ball a few miles in diamet( r
and a few thousand miles distant.
first attempt to determine accurately
Earth's distance from the sun is credited
to the Greek astronomer Aristarchus.

By noting the passage of the moon's
phases, from new moon to 1st quarter to
full moon and to 3rd quarter, Aristarchus
attempted to determir' I: ,rth's distance
from the sun by the moot, position.

His method took advantao of the fact
that when the moon is at 1st quarter, it
is at right angles to the sun and Earth.
That is, the angle cf the sun moon --
Earth is 90°. Although his metood is not
clear, he determined that the angle from
the Earth --gun --moon (LESAI in Figure
340) was about 3°. From this, he de-
duced that the sun's distance was about
20 times the moon's distance or about
700,000 miles. Other attempts were made
to compute this distance and each one suc-
ceeded in pushing the sun farther into
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spare. In 1769 astronomers, observing the
passage of the planet Venus across the
disc of the sun, calculated the earth-sun
distance to be about 93,000,000 mils. This
figure is close to the one we hold today.
Due to the Importance of this distance,
astronomers continue to refine their meas-
urements. Astronomers recogiiited that
the Earth-sun distance varied depending
upon Earth's position in its orbit. Re-
member that Earth's orbit is not circular
but is elliptical. Ve will. assume the Earth-
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sun distance to be the Earth's mean dis-
tance from the sun.

Making use of modern instrumrits, the
first accurate measurement of the Earth-
sun distance involved the astericd Eros.
Eros is one of thousands of "minor
planets" that orbit the sun betweiri Mars
and Jupiter. The distance d from the
Earth to Eros (Figure 3-31) was deter-
mined by parallax, The period of Eros
(that is, the time of one orbit of the sun)
was calculated. By using a relationship of



Figure $-31

period and distance (Kepler's third law)
the Earth-sun distance was calculated to
be about 92,900,000 miles.

In 1960 with the launching of Pioneer
V, man had a new method of determining
the Earth-sun distance. The radio signals
from the satellite were carefully studied.
By determining the effects of the various
members of the solar system on the satel-
lite in its orbit, the Earth-sun distance was
determined at 92,924,900 mil The error
involved in th's measurement was placed
at about 4,000 miles. As the data from the
satellite is recalculated and more accurate
methods of observation develop, the error
will certainly be reduced.

The most accurate measurement of the
Earth-sun distance made use of the planet
Venus. When Venus was at its closest ap-

proach to Earth, radar signals wer*
bounced off the planet. By observing the
reflected radio signals, the precise speed
of the planet could be determined. By a
system of complicated calculations involv-
ing electronic computers, the Earth -sun
distance is determined as 92,956,300 miles.
The measurement is said to be to the
nearest 300 miles. So the story will go,
the more accurate the observation, the
more precise the prediction.

We have omitted from our discussion
the determination of the Earth-sun dis-
tance by parallax. Although the Eart1.-
sun distance may be determined by paral
lax, it is subject to large errors. D:fficul-
ties arise for the following reasons:
1. The parallax of the sun is very small

due to the sun's great distance and is
also difficult to measure.

2. Due to the sun's brilliant disc, measure-
ments can be made only during a solar
eclipse.

3. Only the brightest background stars
are visible during a solar eclipse, and
very few could be viewed near the sun.

For the above reasons, we must turn to
the more complicated mathematical deter-
minations as previously listed.

For our purposes we will assume the
Earth-sun distance, mean distance, to be
P2,900,000 miles.

We next measure the diameter of the
sun. We shall use the parallax method as
illustrated previously with the moon. At
a mean distance of 92,900,000 miles, KC,
from Earth, the sun has an apparent
angular diameter of 32' (CAEB). The
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sun's diameter may be calculated by the
radian method as follows:

AB 92'900'000 X 32 864,600 miles
3438

We could calculate the radius and the cir-
cumference of the sun by making use of
this measure of the diameter.

Knowing the Earth's mean distance to
the sun, we could calculate an approxi-
mate circular orbit for Earth. From this
we could determine the mean velocity of
Earth as it orbits the sun in a year.

The mean distance of the sun from
Earth, 92,900,000 mites, is called by
astronomers 1 astronomical unit. The
astronomical unit, A.U., is the unit used to
measure distances to the stars. Thus we no
longer need to concern ourselves with the
large number, 92,900,000, to represent the
Earth -sun distance, but may say simply 1
astronomical unit (1A.U.).

3-9 The Inner Planets

3-8 ExercisesThe Yardstick of Space
1. Compute the distance travelled by

Earth in one orbit. What is its average
velocity in miles per hour?

2. The Earth's orbit is not circular. As
a mean distance from the sun,
92,900,000 miles, the sun has an angu-
lar diameter of 32' (Figure 3-32). At
Earth's maximum distance of 94,-
600,00 miles, what is the sun's angular
diameter?

3. The Earth's minimum distance to the
sun is 91,600,000 miles. What is the
sun's angular diameter at this dis-
tance?

4. If the diameter of the sun is 864,000
miles, how many times larger is the
sun's diameter than the Earth's?

5. How many times larger in volume than
the Earth is the sun?

Mary's Violet Eyes Make John Stay Up Nights Period
E E A A U A E L
R N R R P T A P U
C U T S I U N T T
U S H U U 0
R E N S N
Y R E

To Help You Remember the Names of the Planets
The discovery of the motion and physi-

cal characteristics of the planets is a book
by itself. We will concern ourselves with

EAST

D

SUN

I
VENUS

EAR1 ii

Figure 8-43

WEST
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the problems associated with the construc-
tion of a scale drawing of the solar system.
In this manner we might appreciate the
dimensions of the system and what a tiny
fraction of this system we occupy.

In the ccnstruction of our scale drawing
of the solar system, we will separate the
planets into two groups. The inner planets
include Mercury, Venus, and Earth
(Mary's Violet Eyes). The outer planets
include Mars, Jupiter, Saturn, Uranus,
Neptune, and Pluto (Make John Stay Up
Nights Period). In our discussion of the
planets, we will approximate orbits as
circles, as in Section 2-4.

To place Venus in its orbit in our scale
drawing, we refer to Figure 3-33. When
Venus is directly between the sun and
Earth, position A, it is not visible from



Earth due to the sun's bright light. How-
ever, Venus is closer to the sun and moves
faster in its orbit than Earth moves in its
orbit. As Venus moves from position A to
B, it becomes visible from Earth. As it
movt toward the west, (as viewed from
Earth) it is visible each morning Wore
sunrise. Each morning it is a little higher
in the sky at sunrise. As seen from Earth,
Venus finally reaches its greatest separa-
tion from the sun at position C, Figure 3.-
34.

'VENUS C (48° From sun)

VENUS D (Behind the Sun)

SUi4

HORIZON

EAST (sunrise)

Figure 3-34
At its greatest separation from the sun,

the angle between the sun and Venus is
about 48°. After Venus passes position C
in its orbit. each morning Venus appears
from the Earth to be cl^.ser to the sun.
Finally it becomes invisible to us as it
passes behind the sun, position D. As
Venus continues in its orbit it slowly be-
comes visible to us just after sunset, Fig-
ure 3-35.

VENUS E (48' from the sun)

VENUS A

HORIZON
WEST (sunset)

Figure 3-35

Each evening Venus appears to be just
a little bit higher in the sky at sunset.
Finally when Venus reaches position E in
its orbit, it is again at its greatest separa-
tion from the sun. Each evening Venus
appears from Earth to be closer to the sun
as it continues in its orbit and returns to
position A. We now are able to place the
orbit of Venus in our sca:9 drawing of the
solar system.
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EARTH

Figure 3-36

As in Figure 3-36 we place a point to
represent the sun. From this point we
draw a line 2 inches long to represent the
Earth's distance from the sun, 1 A.U. On
each side of this line we measure an angle
of 48°. With the sun as center, we con-
struct a circle that jug touches both rays
of the angle. Notice that only one circle
may be drawn that is tangent to both
'rays. This circle represents the orbit of
Venus. The distance from the sun to the
circle can be measured from our scale
drawing as 11/2 inches. Therefore if 2
inches equals 1 A.U., we are able to give
the distance of Venus from the sun as
three-fourths of Earth's distance; that
is, 0.75 A.U.

EARTH

Figure 3-37



We are able to represent the orbit of
Mercury in the same manner. The great-
est average separation of Mercury from
the sun is 23'.

From Figure 3-37 we determine the
distance of Mercury from the sun as three-
fourths of an inch, thus Mercury's dis-
tance from the sun is three-eighths of
Earth's distance; that is, 0.375 A.U.

8 -9 ExercisesThe Inner Planets.
1. How close does Venus come to Earth?
2. What is the greatest distance Venus

can be from Earth?
3. What is Mercury's closest distance to

Earth? Farthest?
4. If Venus makes one orbit of the sun in

224 days, how many orbits does it
make in one year?

3-10 The Outer Planets
To continue our model of the solar sys-

tem, we must change our scale from 2
inches equal to 1 astronomical unit to 1
inch equals 2 astronomical units. This is
necessary due to the very large distances
involved. The outer planets are much
easier to observe and can be placed in
position in their orbits with greater ac-
curacy than the inner planets. Data from
the following table will enable us to ap-
proximate the position of the outer planets
in their orbits.

TABLE 3-3

ORBITS OF PLANETS

Period
Revo lu-
tions of
Earth

Separa-
tion

from sun
Mars 687 Earth

days
132%65 101°

Jupiter 11.9 Earth
years

11.9 138°

Saturn 29.4 Earth
years

29.4 32°

To place Mars and its orbit, we refer to
Figure 3-38. The point S represents the
position of the sun. A circle with a radius
of inch represents the orbit of Earth. A
line is drawn from the sun through the
circle and out into space. Point E indi-
cates the position of Earth in its orbit.
From observations in the sky, we are able
to place the planet Mars in the direction
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Figure 8-38
of the line. We do not know where, but
only that it is opposite the sun as seen
from Earth. We know from Table 3-3,
that Mars takes 687 days to complete one
orbit of the sun, that is to return to the
same position in the sky. This is referred
to as the "period" of the planet. As Mars
orbits the sun, Earth alto is orbiting the
sun. After 687 days, Earth has completed
one revolution and 329365 of the second
revolution. Earth is now in position E2.
At this time the angle from the sun, Earth
and Mars is observed to be 101°, Table
3-3. We draw a line to represent this
angle. The point of intersection of this line
with the original line of sight to the planet
locates the planet Mars at M. Measuring
the distance from the sun to M, we esti-
mate the distance to be 94 of an inch. A
circle with a radius of % inch would ap-
proximate the orbit of Mars. Mars' dis-
tance from the sun is 1.5 times the Earth's
distance; that is, 1.5 A.T.T.

We continue as in Figure 3-39 to plot
the positions of the planets, Jupiter and
Saturn. From Table 3-3 we obtain the
period of Jupiter as 11.9 years. As Jupiter
makes one revolution around the sun, the
Earth makes eleven full revolutions and
0.9 of the twelfth. After 11.9 years, Earth
is at position E2 and Jupiter has returned
to its original position in the sky. From
Table 3-3, the observed angle from the



Figure 3-39

sun, Earth, and Jupiter is 138°. Repeating
the method ol locating Mars, the planet
Jupiter is placed at point J. The distance
from the sun to Jupiter is estimated to be
212 inches. A circle with a radius of 21/2
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inches would approximate the orbit of the
pla -,et Jupiter. Jupiter's distance from the
sun would be estimated as five times
Earth's. distance ; that is, 5 A.U.

From Table 3-3 we obtain Saturn's pe-
riod as 29.4 Earth years. During this
period of time, Earth would complete 29.4
revolutions. After 29.4 revolutions, Earth
would be at E, as illustrated in Figure
3-39. From Table 3-3, the angle of the
sun, Earth, and Saturn is 32°. This places
Saturn at point S. The distance from the
sun to Saturn is estimated at 4% inches. A
circle with a radius of 4% inches would
approxinr , the orbit of Saturn. Saturn's
distance from the sun would be est:mated
as 9.5 times Earth's distance; that is, 9.5
A.U.

The outermost 3 planets, Uranus, Nep-
tune, and Pluto, are not visible to the
naked eye, but must be observed through a
telescope. Their positions may be plotted
and added to Figure 3-39. Figure 3-40
combines the inner and outer planets ir. a
single drawing. Figure 3-40 only approx-
imates the distances of the planets from
the. sun and does not attempt to place them
in their orbits.

One system that relates the distances of
the planets from the sun is called Bode's
Law. The system originated in 1772. Mod-

Figure 3-40
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em attempts to explain the relationship
according to gravitational theory have
failed. It is thought that the relationship
is a coincidence. Perhaps as we learn more
about the distribution of matter in space,
we will be able to explain the relationship.
A note of interest is that Bode's Law
(Table 3-4) originated in 1772, predicted
the presence of a planet orbiting between
Mars and Jupiter. In 1801, the first of the
asteroids were discovered and the gap was
tailed.

Table 3-4 lists the planets and asteroids
in order horn the sun. The number 4 is
placed ur.de: i.h.e name of each member of
the sohr system. Starting with Mercury,
we ads' 0 to the 4. For Venus we add 3,
and dooble the number for the succeeding
member). : 2 x 3 6 and 6 is added for
Earth, 2 x 6 .7: 12 and 12 is added for
Mars, 2 x 12 24 and 24 is added for the
asteroids, and we continue to Pluto. The
resulting numbers are the relative dis-
tances of the planets from the sun. If we
divide all numbersi by 10, we estimate the
Earth's distance es 1. we assign the
Earth's distance as 1 A.U., the distances of
all the planets are given in astromical
units. The figures in parentheses are ac-
cepted values in A.U. for the distances to
the planets. Notice that the law fails badly
in the case of Neptune and Pluto.

Entire books have been devoted to indi-
vidual planets. We have attempted to ob-
tain an impression of the distances in our
solar system. From this point, we leave
the planets, and look to the stars.

3-11 Distances to the Stars
An old Chinese proverb stated that the

greatest journey starts with a single step.
We have taken that first step. From the
estimate of the distance to the door in
Section 3-1 to the complicated computa-
tion of the astronomical unit in Section
3-8, we now reach out to measure the vast
dimensions of our universe.

The early philosophers recognized that
Earth's motion around the sun should pro-
duce a change in the apparent positions of
the stars. Because they could not detect a
change in the stars' positions, the ancients
had to conclude Earth was not moving but
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TABLE 3-4

Bode's Law

Mercury Venus Earth Mars Asteroids

4 4 4 4 4
0 3 6 12 24

- -
4 7 10 16 28

0.4 0,7 1 1.6 2.8
(0.39) (0.72) (1.00) (1.52) (2.65)

Jupiter &turn Uranus Neptune Pluto

4 4 i 4 4
48 96 192 384 768

- --
77252 100 1V6 388

5.2 10.0 19.6 38.8 77.2
(5.20) (9.54) (19.2) (30.1) (39.5)

fixed. This idea continued until the early
19th Century. Using the **lost precise in-
struments and methods available, astrono-
mers finally succeeded in detecting the
parallax of some stars. The problem was
due to the vast distances involved. Star
charts constructed in various countries
were similar indicating that the diameter
of Earth was much too small to use as a
baseline for the measurement of stellar
parallax. The mean diameter of Earth's
orbit proved to be a satisfactory baseline.

The distance to the nearest stars may be
determined by measuring their apparent
shift against the more distant background
stars. When the Earth is at E,, Figure 3-
41, a photograph is taken of nearby star S
against the background stars. Six months
later another photograph is taken of star
S. The photographs are then studied under
a microscope and the apparent shift of the
star, stellar parallax, is determined. One-
half of this angle, the angle that would be
produced using the radius of the Earth's
orbit as 1 A.U. is then referred to as the
star's heliocentric parallax, p. This would
be true if Earth's orbit were circular.
However, in actual calculations, astron-
omers allow for the elliptical shape of



Figure 3-41

Earth's orbit. For our purposes, we shall
use a diameter of the circular orbit of
Earth with radius 1 A.U. as a baseline.
The parallax of a star is extremely small,
the largest known stellar parallax is about
0.75 seconds. If a star had a parallax of 1
second of arc, it would be at a distance of
206,265 A.U. Remember that the smaller
the parallax the more distant the star. The
closest star that can be observed by the
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unaided eye is Alpha Centauri. It has a
parallax of 0.75 seconds; its distance is
206,265 that is about 276,000 A.U.

0.75
Again we have a problem of units. As in
measuring the distance to the door in
inches or the distance to the sun in miles,
the large numbers are confusing and some-
what meaningless.

Astronomers have invmted two units to
measure stellar distances, the parsec and
the light year. The parsec is the more con-
venient but understanding it requires
some thought; 1 parsec is the distance to a
star that shows a parallax of 1' . A dis-
tance D in parsecs is given by the formula

D =
p

where p is the parallax in seconds. A star
that would show a parallax of 1 second
would be at a distance of 1 larsee or
206,265 A.U. The sun is the only star that
is closer than 1 parsec; that is, the only
star that has a parallax greater than 1".
Alpha Centauri's distance in parsecs could
be calculated as follows :

D 1 = 1.33 parsecs
0.75

One light year is the distance that ?:ght
travelling at 186,000 miles per sec. will
travel in one year. This is not a unit of
time. By simple multiplication, we could
determine that 1 parsec is et al to about
3.26 light years. Thus a star's distance in
light years may be found by dividing 3.26
by the parallax in seconds of the star.
Alpha Centauri's distance in light years is
3..75 6 ; that is, about 4.3 light years.

We are able to relate the A.U., parsec,
and light year as follows:

1 light year 63,000 A.U.
1 parsec 3.26 light years

Because of the problems in accurately
measuring star images on a photograph,
we are able to measure the parallax only
for stars up to a distance of about 100
parsecs ; that is, about 300 light years.
Stars at this distance would have a paral-
lax of about 0.01 seconds. For stars at a



greater distance, the method of parallax is
subject to an error of greater than 50%.
We have been able to acceptably measure
the parallax of about 6,000 stars. Some of
the better known stars, their parallax, and
distance in parsecs and light years are
indicated in Table 3-5.

TABLE 3-5

star
IlihF-Tetntaur

Centauri

Constella
19n

Pan
Mx

(see.)

Di 4.
tance
(par-
secs

Dis-
tance
(light
years

0.75 1.32 -4-3-

--ErSirius Canis
Major

0.37 2.66

Procyon Canis
Minor

0.28 3.47 11.3

Altair Aquila 0.19 5.05 16.4
Ve a Lyra 0.12 8.14 26.5

312.2
36.F

o ux Temini 0.093 10.8
Arcturus Bootes 0.090 11.1
Capga
ildbaran

Auriga 0.07 13.7 44.6
Taurus 0.04 20.8 67.8

Tegu us Leo ------WNI 83.4

To de `.ermine the distance to stars and
galaxies more distant than 100 parsecs,
we must turn to indirect methods, and
therefore to the classiticeion of stars.
8-11 Exo.dsP5-Distanee to the Stars
Complete the array as far as you can.

Parallax Par- Light
(seconds) secs years A.U.

1. 0.44. - 55
15

3.74
4,221,000

3-12 Magnituie and Brightneal
When we look upon the dam/ sky, we

see but a few of the brightest stars. Thou-
sands of stars .re lost to view in the re-
flected glare of the light from our major
cities and in smoke and dust.

-76.7 -12'6 -4.4
FULL VENUS

SUN MOON

The ancients looked upon a myriad of
stars in clear and moonless skies. They
saw stars of varying brightness and color
and decided to group them according to
apparent brightness. The twenty brightest
stars of the sky were called stars of first
magnitude. The word magnitude does not
refer to the size of The star but to its ap-
parent brightness. Other stars were called
2nd, 3rd, 4th, 5th and Eth magnitude ac-
cording to their apparent brightness. The
6th magnitude stars are the faintest stars
visible to the naked eye under the most
favorable conditions. Astront mers were
not satisfied with this qualitat.ve scheme
but decided to measure the brightness of
stars very precisely. They took the aver-
age brightness of about the twenty bright-
est stars and called this brightness 1st
magnitude. This left stars that were
brighter than 1st magnitude. These stars
were assigned magnitudes such as 0, -1,
and -2. The brightest star of the night
time sky, Sirius, was assigned a magni-
tude of -1.6. Also with the invention of
the telescope, stars were discovered that
were not visible to the naked eye. These
stars, fainter than 6th magnitude, were
assigned magnitudes of 7, 8, 9, 10 and so
on. On the magnitude scale, the brightest
objects have the lowest magnitudes and
the faintest objects have the highest mag-
nitudes.

The 200 inch telescope at Mt. Palomar
will reveal to the eye stars of magnitude
21 and will photograph stars as faint as
magnitude 23. The zero lull negative
magnitudes are necessary to describe the
brightness of objects such as the sun, full
moon, some planets and certain stars
which are all brighter than 1st magnitude.

Astronomers found that stars of dif-
ferent apparent magnitudes varied in the
amount of light emitted. They determined
that the ratio of brightness between two

APPARENT VISUAL. MAGNITUDE

JUPITER MARS
\SIRIUS/ VEGA spicA 61 CYGNI a SIRIUS ft

)/ ir t i
APPARENT -5 -4 -3 -2 -1 0 1 2 3

MAGNITUDE
4 5 6 7 8 9 10 11 12 13

Figurc 3-U
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stars of successive integral magnitudes
was about 2.6. This means two stars dif-
fering by 1 magnitude, differ in brightness
2.6 times. A relationship of the brightness
and magnitudes of stars was worked out
and an approximation is given in Table
3-0. TABLE 3-6

Difference in
Magnitude

Ratio of
Brightness

0.00 1.0

0.6 1.6

1.0 2.6

1.6 4.0

2.0 6.3

2.5 10.0

3.0 16.0

3.5 26.0

4.0 40.0

4.5 63.0

5.0 100.0

We can see from Table 3-6 that if two
stars vary 1 magnitude, their apparent
brightness varies 2.6 times. Stars with 6
magnitudes difference, vary in brightness
by a factor of 100.

Example: Find the difference in the
brightness of two stars of magnitude 12
and magnitude 8.

The difference in magnitude is 12 - 8;
that is, 4. From Table 3-6, a magnitude
difference of 4 gives a ratio of brightness
of 40. An 8th magnitude star is 40 times
brighter than a 12th magniture star.

Example: A star of magnitude 3.6 is
10,000 times brighter than another star.
What is the magnitude of the second star?

The brightness ratio of 10,000 may be
written as 100 x 100. A brightness differ-
ence of 100 is equal to a magnitude differ-
ence of .5, Table 3-6. Therefore a bright=
ness difference of 100 x 100 is equal to a
magnitude difference of 6 5; that is, 10
magnitudes. The brighter star had a
magnitude of 3.6, so the second star has a
magnitude of 3.5 + 10 or 13.5. A star of
magnitude of 3.5 is 10,000 times brighter
than a star of magnitude 13.6.

It should be noted that magnitudes are
added; brightnesses are multiplied. Mag-
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nitude is not proportional to brightness.
Although the above approximations are
sufficient for our purposes, astronomers
are able to determine magnitudes to the
nearest thousandth by precise photoelec-
tric methods.

8-12 Exercises-Magnitude and
Brightness
1. Star A is of magnitude 4.5 and is 100

times brighter than Star B. What is
the magnitude of Star B?

2. A star has a magnitude -1.6 and is
40 times brighter than a second star.
What is the magnitude of the second
star?

3. The sun has a magnitude -26.7 and
the full moon has a magnitude of
-12.6. How much brighter is the sun
than the full moon?

4. The full moon appears 17,000 times
brighter than the planet Jupiter. What
is the magnitude of Jupiter?

5. How much brighter is the star Sirius,
-1.6 magnitude, than the faintest star
visible to the human eye, 6th magni-
tude?

3-13 Apparent and Absolute Magnitude
In Sect:on 3-12, we referred to the

brightness and magnitude of stars and
planets as they appear to us in the sky.
This is the apparent brightness and ap-
parent magnitude of the object. This tells
us little of the actual or intrinsic bright-
ness. Certainly, it is correct to say that
the sun appears brighter than the star
Sirius. Is it corred to say that the sun is
actually brighter than Sirius? The sun is
at a distance of 1 A.U. from the Earth,
whereas Sirius is at a distance of 8.5 light
years; that is, 635,500 A.U. How bright
would the sun appear if it were moved
500,000 times farther away? Not very
bright! The brightness of a light source
depends in part upon its distance.

Consider Figure 3-43. In the row of
automobile headlights, the closest lights,
automobile A, appear to be the brightest,
and the most distant automobile, E, ap-
pears to have the dimmest lights. We con-
sider all lamps to have the same intrinsic
or actual brightness. Measuring the dis-
tance to automobile A, we call this dis-
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tance 1 unit. The amount of light from the
headlights of automobile A at a distance of
1 unit may be taken as 1 unit of bright-
ness. We measure the distance to automo-
bile B and find its distance to be 2 units.
The light from B is not 1,6 as bright as A
but 1/4 the brightness of A. An automobile
headlight at a distance of 2 units would
have a brightness of 1/4. Automobile C is
at a distance of 3 units and its brightness
is ih that of automobile A. We could con-
struct a table of distance and brightness
as follows :

Automobile Distant,: Brightness
A 1 unit 1 unit
B 2 14
C 3 lh
.1--a./ 4 1/46

E 5 1/25

In genera , the apparent brightness, m,
of a light source decreases inversely with
the square of the distance. This is true for
the light of stars.

If we return to our problem of the sun,
we could determine its brightness at a dis-
tance of 500,000 A.U. If the sun's distance
were increased 600,000 times and placed
next to Sirius, the sun would not appear to
be 1/500.000 as bright, but it would appear
%5o,000moomoo as bright as it did at a dis-
tance of 1 A.U.
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Example: If the sun's apparent magni-
tude at 1 A.U. is 26.7, what is its ap-
parent magnitude at 500,000 A.U.'

The sun appears %so:m.0mm as
bright ; 250,000,000,000 may be factored as
100 x 100 x 100 x 100 x 100 x 25. This
is equal to a change in magnitude of
6 + 6 + 5 -I- 5 + 6 + 3.5; that is, 28.6.
The sun's apparent magnitude at 1 A.U. is
26.7, its apparent magnitude at 600,000
A.U. is 26.7 + 28.6; that is, 1.8.

Example: If at the distance of 500,000
A.U., the sun had an apparent magnitude
of 1.8 and Sirius has an apparent magni-
tude of 1.6, how many times brighter
would Sirius be than the sun?

Sun 1.8, Sirius 1.6; the difference in
magnitude would be 3.4. A difference in
3.4 magnitudes implies a difference in
brightness of nearly 26. Sirius would ap-
pear nearly 25 times brighter than the
sun l

Realizing this basic problem, astrono-
mers proposed a system to compare the
actual or intrinsic brightness of stars. The
absolute magnitude of a star is the appar-
ent brightness that a star would have at a
standard distance of 10 parsec; that is,
32.6 light years. When we refer to abso-
lute magnitude, we are "moving back"
nearby stars and "moving up" distant
stars to 10 parsecs. If all stars were in a
row at equal distances from the Earth,
we could compare their actual bright-
nesses.

Example: What is the absolute magni-
tude of a star with an apparent magnitude
of 1.5 at a distance of 2 parsec:-,?

1.5m
E

2 PARSECS

10 PARSECS

Figure 8-44

The distance to the star would increase
from 2 parsecs tc. 10 parsecs; that is, 5
times. Increasing the distance 5 times, de-
creases the brightness 25 times. The mag-
nitude changes by a factor of 3.5. If the
star had an apparent magnitude of 1.6 at
2 parsecs, its absolute magnitude at 10



parsecs would be 1.6 + 3.5; that is, 5.
Example: A star with apparent magni-

tude of -1.2 exhibits a parallax of 0.4"
What is its absolute magnitude?

-1.2m
E

2.5 PARSECS -V
10 PARSECS

Figure 3-45

1 1
Distance in parsecs = - = 2.5.

p 0.4
The star's distance is increased from 2.5
to 10 parsecs; that is, by a factor of 4.
This decreases the brightness by 16. A
decrease in brightness of 16, increases the
magnitude by 3; -1.2 + 3 = 1.8. A star
of -1.2 apparent magnitude with a par-
allax of 0.4" has an absolute magnitude
of 1.8.

Those students who are familiar with
logarithms may calculate the absolute
magnitude of a star, M, as follows:

M= m + 5 - 5 log d
where m is the apparent magnitude and d
is the distance to the star in parsecs.

Example: What is the absolute magni-
tude of a star at a distance of 8.3 parsecs
with an apparent magnitude of 2.6?

M m + 5 - 5 log d
= 2.6 + 5 - 5 log 8.3
:"-= 7.6 - (5 x 0.9191)

7.6 - 4.6
M = 3.0

Example: Calculate the absolute magni-
tude of the sun. Apparent magnitude
-26.7 at a distance of 1 A.U.

1 light year 63,000 A.U.
1 parsec 3.26 light years
Sun's distance

1
in parsecs =

3.26 x 63,000
0.0000048

M = m + 5 - 6 log d
= -26.7 + 5 - 5 log 0.0000048

-21.7 - (5 x -5.32)
-21.7 + 26.6

M 7.-.; 4.9

The sun would have an absolute magni-
tude of about 4.9. If the sun were 10
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parsecs away, it would appear as a very
faint star barely visible to the human eye.

Using the preceding techniques, we may
attempt to calculate the distance to cer-
tain stars that do not exhibit parallax or
lend themselves to direct measurement. If
we observe a star through a telescope and
the star has an apparent magnitude of
12.6, we may estimate its distance. By
studying the light produced by this star,
we are able to classify this star. By know-
ing the type of star, we may approximate
the apparent brightness of the star at 10
parsecs; that is, the absolute magnitude.

M m

8.6 12.6
E

10 PARSECS
V

Y PARSECS

Figure 3-46

Suppose that a star has an absolute
magnitude of 8.6. An increase of 4 magni-
tudes, decreases the brightness by a factor
of 40. A decrease in brightness by 40, in-
creases the distance by the V40; (that is,
about 6.3 times). If a star had an abso-
lute magnitude of 8.6, at 10 parsecs it
would have an apparent magnitude of
12.6 at a distance of about 63 parsecs.
Using the log formula, the distance may
be computed as follows:

M = m + 5 - 5 log d
8.6 = 12.6 + 5 5 log d

5 log d = 9.0
log d = 1.8

d = 63.0 parsecs
This indirect method provides an ap-

proximation for the distance. The method
depends upon the astronomer's ability to
identify the type of star and to estimate
its intrinsic brightness. This enables the
star to be assigned an absolute magnitude.
We arrive at the question of how stars are
classified and the absolute magnitude esti-
mated. For insight into this problem, we
turn to Section 3-14 on the classification
of stars.



3-13 Exercises Apparent and Absolute
Magnitude
1. (a) Complete the following table as

far as you can:
Distance Apparent Absolute

Star (parsecs) Magnitude Magnitude
A 10 2
B 100 4
C 40
(b) List the above stars in order of
decreasing apparent magnitude
(brightest first).
(c) List the above stars in order of
decreasing absolute magnitude.

2. Tabulate the answers to the following
problems giving M, m, distance in
parsecs, light years, and parallax. Give
the stars brightness compared to the
sun. The sun's absolute magnitude is
about 4.9.
(a). Star A with apparent magnitude
(m) 1.8, D = 3.67
(b). Star B with m = 0.3, parallax
0.03".
(c). Star C with m = 7.9, D = 10
parsecs
(d). Star D with M = 4.37, parallax
0.45"

3-14 Classification of Stars
When we observe the stars, we can only

study the light of the star. Scientists are
not directly able to measure, weigh, or to
take the temperature of a star. By com-
bining the study of observed light and
laboratory analysis, astronomers are able
to make predictions as to the chemical and
physical properties of the stars.

RED

ORANGE
YELLOW
GREEN
BLUE

INDIGO
VIOLET

Figure .1-47

When white light is passed through a
prism, it is separated into its component
wavelengths which we identify as colors.

The short wavelengths produce the sen-
sation in our minds of the colors we call
violet and blue. The longer wavelengths
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produce the red colors of the visible spec-
trum. Invisib'e to the human eye are the
very short ultra violet wavelengths, and
the very long infrared wavelengths. To
detect these wavelengths, scientists must
turn to specialized imtruments.

There are three types of spectra. A
spectrum is the band of light produced
when light is separated into its component
parts. To separate the light into its spec-
trum, astronomers use a diffraction grat-
ing instead of a prism. The diffraction
grating is a special metal or glass plate
with extremely fine grooves, about 30,000
per inch.

The first type of spectrum is produced
from glowing solids or gases at high pres-
sure. An example of this is an incandes-
cent light bulb. In this continuous spectra
colors blend without interruption.

A gas heated under low pressure pro-
duces a bright line (or emission) spec-
trum. This second type spectrum consists
of specific bright lines depending upon the
chemical composition of the gas.

If the light from a glowing gas under
high pressure, continuous spectrum, is per-
mitted to pass through a cooler gas at low
pressure, the spectrum will be continuous
missing only certain dark lines. Each dark
line will be in the exact position of the
bright-lines spectrum produced by the
cooler gas if it were heated to glowing.
The dark line spectrum is also called an
absorption spectrum. This is the third
type of spectrum produced by most stars.

ruersiso mark

ifirkwil**0411folikfi
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1 IP' 1. I 11

Po op

0 0 h 11

Figure 3-48

"Photo from the Mt. Wilson and
Palomar Observatories"



Figure 3-48 shows part of the absorp-
tion spectrum of the sun. This mass of
dark lines is representative of many va-
porized elements found in the outer layers
of the sun. Comparing these dark lines in
the spectrum of the sun to known labora-
tory spectra, the dark lines can be identi-
fied as being produced by certain chemical
elements found in outer layers of the sun.
Using this method, more than 60 of the 92
naturally occurring elements of Earth have
been identified in the sun. It is thought
that nearly all the natural elements of
Earth are found in the sun and are wait-
ing to be identified.

By comparing the spectra of various
stars to known laboratory spectra, ele-
ments may be identified in the stars. This
leads to the classification of stars. Stars
are classified primarily according to tem-
perature. Stars that have the strongest
portion of their continuous spectrum in
the blue region are found to be of very
high temperature. Stars with the strongest
portion in the yellow are average tempera-
ture and the coolest stars have the strong-
est portion of the spectrum in the red and
orange.

Star Color
Blue white
Yellow
Red and orange

Star Temperature
20,000-40,000°F
5,000-8,000
4,000-5,000

These are general classifications, and in-
dividual investigations of stars can ap-
proximate their individual temperatures.
Being able to classify or group stars en-
ables us to investigate the difference in
the absolute magnitude of various types
of stars. A star's absolute magnitude
(that is, intrinsic brightness) depends pri-
marily on its temperature and size. Two
stars of the same temperature, but of dif-
ferent diameters, would differ in absolute
magnitude. If the temperature and diam-
eter of a star is known, its absolute mag-
nitude may be approximated.

The determination of the relationship of
size, temperature, and absolute magnitude
for stars has resulted from complex for-
mulae and exhaustive laboratory studies.
For our purposes we will assume that each
unit area of a star at a given temperature
radiates equal amounts of energy. Then
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two stars of the same size and tempera-
ture will radiate equal amounts of energy.

The brightness of a star varies as the
fourth power of the temperature, in abso-
lute units (Kelvin scale).

Example: Star A and star B are the
same size. The temperature of star A is
twice the temperature of star B. Star B
has an absolute magnitude of 5.2. What
is the absolute magnitude of star A?

The ratio of the temperatures is 2; the
ratio of the brightnesses is 2 4; that. is,
2 x 2 x 2 x 2. Star A is 16 times brighter
than B. A brightness ratio of 16 implies
a difference in magnitude of 3. 5.2 3 =
2.2. The absolute magnitude of star A
is 2.2.

Stars of the same temperature, but of
different sizes may vary in brightness.
The brightness between two stars varies
as the surfaces of the stars and thus as
the squares of their radii.

Example: Star C and star D are o1 the
same temperature but vary in size. Star C
has a diameter of 800,000 miles and star D
has a diameter of 1,600,000 miles. How
much brighter is star D than star C? The
ratio of the radii is 2 to 1; the ratio of
their brightnesses is 4 to 1. Star D is 4
times as bright as star C. Notice that
there would be a difference of about 2.6
magnitudes.

The two comparisons that we have con-
sidered may both be used for the same
stars.

Example: Star A's diameter is twice
that of the sun and its temperature is 3
times as great. What is star A's absolute
magnitude?

The ratio of the diameters is 2 and this
provides a factor of 4; the ratio of the
temperatures is 3 and this provides a fac-
tor of 3 ; that is, 81. Thus star A is 4 x
81; (that is, 324) times as bright as the
sun. A brightness of 324 implies a differ-
ence in magnitude of about 6.5. The sun's
absolute magnitude is 4.9; 4,9 6.5 =
1.6. Star A's absolute magnitude is
about 1.6.

Stars vary greatly in temperature and
diameter and therefore differ in absolute
magnitude. The stars from Table 3-5 are
listed in Table 3-7 according to their ab-



solute magnitude. Compare the stars with
respect to their absolute Inagnitudes, tem-
peratures, and sizes. Then compare the
stars in absolute and apparent magnitudes
and distances. Note that the radii are ex-
pressed on a scale such that the sun has
radius of 1 tmit.

TABLE 3-7

ar

Abso-
lute

Max.nl-
t

.-
Temper-
a u

,
gnus

Appal.-
ent

Magni-
tuc
0
k
.78Aldeba ran

Regulus -0.7 13,000 3.5 1.33
-0-.0-6Arcturus -0.2 4,000 29.0

Cape .a +0.2 6,200 11.0 0.90
Vega +0.4 10P00 2.6 0.00

irius +1.4 10000 1.8 -1.44
Altair +2.2 8,000 1.7 0.76
proeyon +2.6 6,5001 2.0 0.38
Alpha
Centauri +4.6 6,800 1.0 0.30

Sun +4.9 6,600 1.0 -26.7

By classifying stars, we are able to esti-
mate their temperatures and sizes. From
the temperature and size of a star we ap-
proximate its abso`ute magnitude. By the
comparison of the apparent and absolute
magnitudes, we arrive at an estimation of
the star's distance.

The preceding discussions of determin-
ing .distance, magnitude, brightness and
star classification is a simplification of one
method. Through the years, astronomers
have developed many instruments. These
new instruments have enabled man to de-
termine distances in numerous new and
exciting ways.

3-14 g.rcreiscs-Cloasi fication of Stars
1. A star which increases and decreases

in diameter at regular intervals of time
is called a pulsating star. A "pulsat-
ing" star varies in diameter from a
minimum value of 26 times the sun's
diameter to a maximum of 36 times the
sun's diameter. How many times
brighter is the star at maximum size
that. at minimum size? How many
magnitudes differcnte does this repre-
sent?

2. A star's temperature is 2.6 times the
sun's and its diameter is 3"2 times the
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sun's diameter. How many times
1,righter is this star than the sun?

3. A star's absolute magnitude is -1.2. Its
temperature is 2 times the sun'.. tem-
perature. What is its diameter in
terms of the sun's ?

4. A star has an apparent magnitude of
7.6. It is 2 times the "an's diameter
but only 14 of the nun's temperature.
What is its distance in light years?
Note: Problems of this type are ap-
plicable to computer programming.
See Section 6-5, Exercise 3.

3-15 Frontiers of the Universe
Specialized methods of determining dis-

tance have been discussed in the last few
sections. These methods have enabled man
to make more varied and precise calcula-
tions.

Originally the term "fixed" star was
used to separate the planets from the stars.
The planets were considered "wanderers."
After careful study with modern tele-
scopes, the individual star motions were
detected. From the motion of a star
through space, we are able to calculate
the star's space velocity, its motion rela-
tive to the sun. This enables us to under-
stand better our star, the sun, and our
galaxy, the Milky Way. From the study
of the light from a t.pecial class of
stars, variable or "pulsating", man is able
to predict their absolute magnitude.

In 1962 observations with the 200 inch
telescope at Mount Palomar literally
doubted the size of the visible universe.
Prior to this time, astronomers had p:ar.d
the nearby galiv.y, Andromeda, at a dis-
tance of 800,000 light years. By studying
a class of pulsating stars, Classical
Cepheids, in the Andromeda galaxy, as-
tronomers found that the galaxy was much
(tit Cher away than originally thought.
Current estimates place the galaxy at
about 2,000,000 light years. The outcome
of th's observation was to place this galaxy
and all similar galaxies at twice their
original distances. This one discovery for
all practical purposes doubled the size of
man's known universe.

Mar has been able to estimate the dis-
tances to far off galaxies and celestial ob-



jects. The energy from Distant galaxies
has its maximum value in the yellow re-
r'on of the spectrum. Galaxies appetr to
be receding from the sun and Earth. As
the distance to the galaxies increases, the
maximum value of energy is shifted to-
waid the red area of the spectrum. This
is referred to as the "red shift." The dis-
tance atid speed of recession of the gelaxy
is related to the amount of the shift.
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reamer Observatories"

Radio astronomy is a new and interest-
ing branch of astronomy. Many remark-
able discoveries have taken place through
the observations of the giant radio
telescopes. Current investigations of the
"red shifts" produced by certain radio
sources, place these sources over 100,000, -
000 parsecs from the sun. It is theorized
by some that if these sources were only
20 times farther away they would be at
the edge of our universe.

"One-hundred million parsecs"again
we have a problem of inits! As the par-
secs replaced the astronomical unit, the
litega-parsec replaces 1,000,000 parsecs.
The distances to these strange radio
sources would be approximated as :00
megaparsecs. If we stretched our method
of determining distance to its present
limit, we might place the edge of our
universe at 2,000 megaparsecs. The mega-
parsec is probably the largest unit that
will be necessary to describe our universe.
However, it should be remembered that to
the Greeks the stadia was the largest unit
necessary to describe their universe. We
!nay be confident that in the future if the
need arises, astronomers will invent a new
and larger unit.

We have travelled a neat distance since
estimating the distance to the door. Any-
one care to calculate the number of inches
in a megaparsec? You may now convert
to more familiar units!

90



e-

Chapter 4

MOTION IN SPACE
by

Wilfred II. Millet, Jr.
Brandyriat High School

Alfred I. Dupont School District
Warn pion, Defalcate

91



MOTION IN SPACE

You may think that you are "sitting still"
as you read this book. Actually you are
traveling through sprce at about 18.6 miles
per second as Earth orbits the Sun. In order
to be conscious of movement, we need to
have a point of reference. We "see" an ob-
ject: as moving when we can compare it to
something in a different state of motion.

It was many centuries before man was able
to prove that Earth was moving in space.
Now we know that our solar system as well
as the other bodies in space move in rela-
tionship to one another. As we begin a more
detailed investigation of space and the math-
ematical models we may employ to describe
it, we will be concerned with three or more
dimensions.

The charts and drawings in this chapter
are on two-dimensional planes .. . the pages
of this book. It will help you to construct
three-dimensional models as you go along.
Use the charts and suggestions as guides for
your constructions. When you have finished
see if you cannot better explain three dimen-
sional space to someone else. Then try four
dimensions. You may be surprised at how
well you will be able to do it.

This chapter is a brief resume of some of
the fundamental knowledge of motion that
has been gathered over the ages and codified
into two topics: (1) kinematics, the descrip-
tive language of motion; and (2) dynamics,
the controlling factors of motion.

4 -1 What Is Motion?
The questions a space scientist raises con-

cerning satellites are not unlike the questions
you would consider when planning an ex-
tensive trip. What is the distance? How long
will it take to get there? When is the best
time to start so that you arrive at the right
time?

Travel in space requires that we find
answers to such questions with a high degree
of accuracy. Therefore, we must know many
things about motion. Studies indicate that
there are commor patterns to all objects in
motion.

On the surface of Earth, an odometer (the
mileage meter part of the speedometer) tabu
lates the distance travelled (Figure 4-1). A
navigator .o.ses the coordinates of his points
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SPEEDOMETER

Figure 4-1

of origin and destination to compute distance.
The use of coordinates in measuring distances
in space requires the extension of a two-
dimensional coordinate system for a plane
to a three-dimensional coordinate system.
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Figure 4-0

In Figure 4-2 can you tell the distance
from 0 to A? From A to B? In the type of
three-dimensional coordinate system shown
in Figure 4-2 there is an origin 0, a y-axis
OY usually directed toward the right-hand
edge of the page, an x-axis OX directed away
from the page (toward you), and a s-axis
OZ directed toward the top of the page. Each
axis is perpendicular to the other twe. Any
two of these axes will determine a plat ie. Can



you LI three planes determined by the axes?
What angles do these planes (the coordinate
planes) make with each other?

X

noire 4-$

In Figure 44 lines have been added to s'
in the visualization and solution of the pro.
lem. The plane in which the lines AD and
AB lie is not a coordinate plane and could be
described V stating that it is perpendicular
to the xy-plane, forms an angle of about 9.6°
with yz-plane, and contains the point A.
The coordinates of the point A are usually
stated as an ordered triple (20, 0, 80); the
point B is at (80, 60, 60). In each case the
x, y, and a coordinates are given in alpha-
betical order as in the two-dimensior sys-
tem. To find the distance from A to B look
for right triangles and use the pythagorean
theorem.

How long would it take to fly from a point
A to a point B in space? Notice that a pre-
diction is asked for. Many scientific space
vehicles gather data continuously and trans-
mit information at intervals when they are
within range of a receiving station on Earth.
The receiving station must be prepared to
accept the information at a predetermined
time and from a predetermined position
(point) in space. The determination of the
time and place of the space vehicle requires
that the time of flight between two points
be predicted accurately. Consider the prob-
lem of receiving the TV picture data about
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Mars transmitted by Mariner IV. Such cal-
culations can be made because the character-
istics of the motions of space vehicles are
known.

By observing the time it takes an object
to travel a known distance a rate may be
determined. The rate at which an object
travels is equal to the distance it travels in
a unit Onie. The selection of time measuring
units is arbitrary but seconds or hours are
customary. In every day experience the hour
is usual. For example, the legal speed limit
may be 60 miles per hour.

On the Expressway connecting Baltimore,
Maryland and Washington, D. C., there is
a measured distance of 6 miles. Suppose you
timed your trip over this distance at 5 min-
utes. Your rate of travel (speed) would be 5
miles in 6 minutes; that is, 1 mile per minute.
This rate is often expressed in other ways
(Table 4-1). Because of the common usage
of miles per hour and feet per second, it is
helpf'tl to remember that 88 ft/sec ri 60
mi/hr.

Table 4-1

Determination of speed
Distanteitinte Rate Unit time

6 miles
1

mi le 1 minute
6 minutes minute

5 miles miles
60 1 hour

1/12 hour hour

eet6 miles x 6280 f
Wire feet

88
second

1 second-
800 seconds

The rate r for traveling any distance d in
a time t may be found by dividing d (a
number of units of lengths) by t (a number
of units of time);

r (1)

Notice that for any given period of time the
rate is proportional to the distance; r
(1/t)d. The rate r is a number of units whit h
we may identify as

unit of length
unit of time



Table 4-2

End
of

Right

Total
distance
travelled

Distance
during
Interval

from see. to

Averse
speed

g

fl /sec

Chan e
of

g

rate
ft/see=

0 sec. Oft 0 0
1 25 0 1 26 ft 26
2 100 1 2 76 76
3 225 2 3 125 125
4 400 3 4 176 175
5 626 4 5 226 225
6 900 5 6 276 276
7 1226 6 7 326 326
8 1600 7 8 376 376
9 2026 8 9 426 426

IP 2600 9 10 476 475

Measuring the speed of a satellite in a
circular orbit is somewhat like driving on a
turnpike or throughway. If the measurements
were made at several different places the re-
sults would be the same. The speed would be
uniform. Other types of driving such as on
city streets or roads with traffic lights and
the motion of the satellite during launching
would give various speeds at different times.

Some theoretical measurements of dis-
tances during the launching of a model
rocket are given in Table 4-2. We shall use
three related figures (figures 4-4, 4-5, and
4-6) to help us understand the vat ious speeds
of the rocket.

0 2 3 4 5 6 7 8 9 10
TIME IN SECONDS

Float 4-4
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Figure 4-S

2.3 4 5 6

TIME IN SECONDS

8

note 11-6

9 10

The points in figure 4-4 show the total
distance (y-coordinate) travelled in x sec-
onds. Notice that the x-coordinates indicate
the ends of the time interval.



The points in Figure 4-5 show the distance
(y-coordinate) travelled during each second;
each point is plotted over the midpoint of
the interval for that second. In Figure 4-4
we are concerned with the total distance
traveled up to a specified time; in Figure
4-5 we are concerned with the distance (as
determined from Table 4-2) travelled during
each second. In Figure 4-5 the y-coordinate
of each point is a rate (speed) since it is a
measure of distance for a unit rf time.

Scientists and mathematicians are careful
that their words describe a situation very
closely. Examine the data in Table 4-2 and
Figure 4-4. During any interval does the
rocket have a speed? (Notice the singular,
speed) Even during a small interval the speed
is changing. The column for speed is headed
average speed to indicate that the rate is not
constant during an interval. Our formula (1)
for speed can be modified to give the average
speed? over an interval of time:

d
(2)

At

whereat is the length of the interval of time
and Ad is the change in the distance during
that interval of time. The bar above the "r"
indicates that it represents an average value.
The average speed,?, per second is the change
in distance each second as illustrated in
Figure 4-5.

Each y-coordinate of a point in Figure 4-5
may be obtained from the coordinates of
points in Figure 44. Consider any two suc-
cessive points (x1, yi) and (x,, y,) in Figure
44. We used to indicate a change in value
and have

ad ---- - y,
At - xt Ax

ad ay
at ax

The value of -4/ is called the slope of the
line through the points (x y,) and
(x2, YO

Figure 4-7 can be considered an enlarge-
ment of a small portion of Figure 4-4 to
show 2 successive plotted points (xl, yi) and
(x,, yr). Do you see that the point (x,, yi)
has coordinates x, ax and yi Ay? The
lines joining (x., yi) to the other two points

96

Figure 4-7

are perpendicular. The triangle having the
three points (xl, yi), (xt, yi), and (xi, y,) as
vertices is a right triangle; the tangent of
the angle at (xi, yi) is equal to the slope
Ay/Ax of the line through (xl, yi) and (x,, y,).
You probably realize that unit designations
will have to be tagged on to the slope in order
to apply the numbers to this problem. Slopes
are mathematical concepts which are ap-
plicable to many types of problems. Compare
the slopes of the lines joining successive
plotted points in Figure 4-4 with the y-co-
orclinates of points in Figure 4-6. Compare
the slopes of the lines joining successive
plotted points in Figure 4 -5 with the y-
coordinates of points in Figure 4-6.

The y-coordinates of the points in Figure
4-5 show the change in distance for each
second and thus the average speed during
each second. The y-coordinates of the points
in Figure 4-6 show the change in average
speed from one second to the next and thus
the average acceleration durii,g each second,

-a t (3)

The completion of the right hand column
of Table 4-2 is left to the reader. At the top
of the column the units are given as ft/sec'.
Now how would you express a change in
speed per unit of time?

change of speed
nuTrrit of time



Speed is expressed as ft/sec so if the measure-
ment of two speeds are subtracted the units
for the change of speed will also be ft/sec.
Then change of speed per second can be
symbolically written ft/see

sec
Unit names are not numbers but it is

customary in science to write and handle
them in a mathematical manner for ease
and simplicity of communication. Then
ft /sec it stated as ft /sec= and can be read

sec
either as feet per second squared or feet per
second per second.

4-1 Exercises What Is Motion?
1. Mariner IV was about 136,000,000 miles

from Earth when it was directed by a
radio signal from Earth to take pictures
of Mars. What interval of time was re-
quired for the signal from Earth to
reach Mariner IV? The speed of light is
about 186,000 mi/sec.

2. Your local newspaper may give you the
times when Echo I passes over your
locality. This st.tellite has an approxi-
mately circular orbit 1000 miles above
Earth and has been timed at 118.8 min-
utes for one revolution. What is its
speed? (Remember that Earth's radius
is about 4000 miles.)

3. The Alouette Program is an example of
the cooperative effort between govern-
ments to expand man's knowledge of
space. Canadian scientists designed and
built the 820 -pound satellite called Alo-
uette; NASA launched it from the Pacific
Missile Range. Alouette's orbit is nearly
circular at 630 miles altitude. The time
of revolution is 105.4 minutes. How does
the speed of Alouette compare with that
of Echo I? You might want to speculate
as to wiry there is or is not a difference
(see 'Thapter 5).

4-2 Road Maps Without Roads
Have you ever given direction to a traveller

as to how to get to a distant town? With
route numbers and well marked intersections
available, the task is not difficult. Now imag-
ine having to tell a pilot how to get to a
distant place. Obviously it can be done even
on flights over the ocean where one wave is
not distinguishable from another. The pilot
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would like to know two things: (1) How far
is the destination and (2) in what direction
is the destination. Information like this which
contains a measurement and direction has a
special name in mathematics and science.
It. is called a rector quantity and can be repre-
sented by a directed line segment. (There are
some minor differences in the way mathe-
maticians and scientists define and symbolize
vcctors but the fundamental concepts and
operAtions are the same.)

B

A

What is the distance from A to B?
Figure 4-8

In Figure 4-8, how would the vector in-
formation be stated? The distance would be
easy after selecting the unit length. This
value is called the magnitude of the vector.
In Section 1 of the Figure most people would
say 'mat the direction is East. (Would this do
if A and B were locations on a star map?)
In II and III you might also give compass
directions since most people refer to compass
directions because of their experience in
reading maps.

The word "refer" 'nas particular signifi-
cance. In addition to seeing the bare details
in the picture, you have superimposedin
wir imaginationlines which indicate di-
rection. If the units of lengths are included
on these superimposed reference lines then
the lines are called a frame of reference.
Figure 4-8 would then appear as in Figure
4-9.

In 1 of Figure 4-9, 13 is 400 miles to the
East of A. The directed line segment AB is
a etst v and repres_eAts the displacement from
A to B; that is, AB has a magnitude of 400
miles and a direction of East. Note the way
some mathematicians indicate that a di-
rected line segment from A to B is a vector
by a half arrow with the point of the halt.
arrow over B. A single letter (s) could also
indicate a vector. A vector has magnitude
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and direction (including sense such as East
or West along the line). In case III A13 has
a magnitude of 400 miles and direction of
80° East of North. How would you descrine
AB in case II?

The three vectors in Figure 4-9 have the
same magnitude but not the same direction.
Therefore they are three different vectors.
For convenience let us refer to them as
rel, and e;. Suppose a vehicle started from
place of origin and moved as directed by
and upon completing the displacement 8,
moved from that place according to e, , and
then continued on as directed by C. How
far would the vehicle be displaced from the
first starting point? Although you are solving
this on a flat piece of paper this problem is
similar to the problem of a space scientist
in knowing where his space vehicle is at all
times.

Distance, a measurement of length, is a
scalar quantity. Distance with a specific
direction associated with it can be repre-
sented by a vector. Speed (a rate) is a scalar
quantity but speed with a specific direction
associated with it is a vector quantity, and
is called rclocity. Since a vector is a directed
line segment, the previous statement means
that in a frame of reference a velocity can
be represented by a directed line segment MI
in Figure 4-10.

It is important that scalars (measures
without direction) and vectors be readily
identified because there is a difference in the
way that mathematical operations apply to
them.
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Figure 4 -10

In this section you have found that a dis-
placement can be represented by a vector;
also the result obtained by two given dis-
placements one after the other is a displace-
ment and is represented by the vector that
is the rector sum of the vectors for the given
displacements.

4-2 Krercites Road Maps Without Roads
Make vector representations of the fol-

lowing situations. For each flight determine
the distance of the terminal point from the
starting point.
1. Pilot A flys 15 miles due East and then

75 miles due East.



2. Pilot B flys 75 miles due East and then
76 miles NE.

3. Pilot C flys 75 miles due East and then
75 miles North.

4. Pilot D flys 75 miles due East and then
76 miles NW.

5. Pilot E flys 75 miles due East and then
76 miles West.

6. In Exercises 1 through 5 nctice how the
values of the magnitmles of the sum of
two vectors changes as the angle between
the vectors changes. How 'aro and how
small can the magnitude of a + be-
come for given vectors of equal magni-
tudes?

4-3 Velocity Vectors
A displacement has magnitude (distance)

and direction. Therefore we re ,.,ent dis-
placements by vectors, such as AB. The re-
sult of two successive displacements is a
vector quantity; any change in r' enee of)
displacements is a vectir

The rate (of speed) at which an object
travels has been defined as the change in
distance per unit time. Thus rate is repre-
sented by a scalar; it has magnitude but not
direction. We may associate a direction with
a rate by considering displacement instesi
of distance. The rate with its direction is lie
Motifs+ of the object; we write

es

where 4' and A are vectors and .1t is a scalar
since t is a scalar.

Consider a rocket with a velocity of 1000
ft/sec and going straight away from the
Earth (0° to the zenith). Then the velocity is
changed so that the direction of fl!ght is at
10' to the zenith. The velocity has changed
because one of the characteristics (direction)
of the velocity has changed. This is pictured
by vector representation in Figure 4-11. A
change in velocity is a vector quantity and is
found by subtracting the first vector from
the second. Nov does vector subtraction dif-
fer from vector addition?

The successful insertion of a satellite into
orbit depends on the ability of the launching
vehicle to produce the exact terminal velocity
(that is, both the proper speed and direction
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of the satellite) that is, necessary at the
instant the satellite is separated from the
last stage rocket or its engines are shut off.

4-3 Exercises Velocity Vectors
1. At a certain instant in its upward flight

a sounding rocket has a velocity of 2000
ft /sec at 0° to the azimuth. At this in-
stant upper air currents from West to
East give the rocket a velocity of 200
ft/sec in the direction of the current.
What is the true velocity of the rocket?

2. At a point in its path a rocket which is
falling to Earth has a speed of 3000
ft/sec and the flight path makes an angle
of 60° with a horizontal line. What are
the horizontal and vertical (x and y)
components of the velocity?

4-4 Acceleration Vectors
In future sections it will be noted that the

rate of change of velocity is an important
quantity in analyzing the ways motion may
be altered. If you apply previous techniques
for obtaining rates you may see how the
rate of chmige of velocity is obtained. We
may find by using vectors. Then all that
needs to be done is to time the interval over
!bleb the change took placepd we will have
Aviet. Dividing a vector av by a number

V I

Figgre 4- if

AV 22 V2 1' V I



At is permissible and results in a vector.
Then write

At

and use the half arrow to show whether we
are thinking of acceleration as a vector or as
a scalar (the magnitude of 'a). There are
many applications of vectors in science and
engineering. How does a top spin? How was
Pluto discovered? How did Astronaut White
maneuver in space? How is a rocket guided?
Vectors are used in the solution of each of
these problems.

In mathematics an algebra of vectors has
been developed. You have started to build
an underefanding of vector algebra. You have
added and subtracted vectors. You have di-
vided a vector by a scalar. Several other
properties are considered in the exercises.

4-4 Exercises Acceleration Vectors
1. What are three ways a driver ray ac-

celerate the car he is driving?
2. A rocket accelerates uniformly at 100

ft /sec' for 10 seconds starting from rest.
What is its velocity at the end of 6
seconds and at the end of 10 seconds?
How far did the rocket travel in 6 sec-
onds and 10 seconds? Compare the ve-
locities and distances at the end of 6
seconds and at the end of 10 seconds.
Do the comparisons appear reasonable?

44 Acceleration of Falling Objects
It was Sir Isaac Newton who first proposed

the requirements for putting a satellite in
orbit about the Earth. He came to his con-
clusions by analyzing motion and arriving
at a descriptive language for motion such as
the one we have used. His conclusions about
orbital motion were an extension of an analy-
sis of the motion of projectiles.

You should remember that a predecessor
of Newton's, Galileo, studied the motion of
falling bodies and shocked the population of
his day by stating that all bodies fall with
similar motions. Today we know that this
motion is best represented by an acceleration
vector.

Figure 4-12 shows a vector representation
of the velocity of a falling object at one
second intervals. Notice that for t > 0 the
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0

2.

3.

4

V

V2
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differences t) between any two suc-
cessive vectors are the same. The time inter-
val between successive vectors is one second.
Then the acceleration is

At At

Since At 1 and for a particular location on
Earth n L the same for each value of t, the
vector "t does not change and is designated



Before continuing with projectile motion
we shall re-examine the frame of reference
idea to see if there is a way of showing that

is always "down."
+y

go-, Pi,

P2

300 ""'

P3

200 -

P.

100

-x P3

EARTH

0
m

At the location of the object at 0 seconds
(before it begins to fall) the lines indicating
the frame of reference may be drawn as
shown in Figure 4-13. The x-axis indicates
the horizon; the y-axis indicates the vertical.
The points P#, Ph Ph Ps, Pc, Ps indicate
the positions of the object at 1 second inter-
vals of fall. Notice that Ps is the position
after t seconds. The object starts falling from
Ps and reaches the Earth 6 seconds later.

The positions of the points may be indi-
cated by their y-coordinates; they may also
be considered in terms of displacements from
the origin of the frame of referent*. Then
we use the sign to indicate direction and
have in feet:

+
= +256

384 s = +144
0 = +400

+336 s = +0
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We may now find the change in displace-
ment At, the average velocity vs, and the
acceleration as for each one second interval.
For exampLe duria the third second

211 = OP.
(+256) (+336) = 80 ft.

'
ati3 80 80 ft/sec.

" Er I:-
During the f our h second

2;;, = OP, OP,
= (+144) ( +256) = 112 ft.

4
Ass 112
4t 1

112 ft/sec.

VI "- VIItt
At

( --112} ( 80) = 32 ft /sec'.
1

The value 82 ft /sec' is the common ap-
proximation for g at locations near sea level.
In Chapter 6 you will read about the factors
which affect g at any location in space.

44 Analysis of Projectile Motion
Now let us return to a look at projectile

motion. We shall use both velocity vectors
and acceleration vectors. Suppose an object
is on a high cliff and by some means :s put
in motion hori'ontafly so that it leaves the
cliff with a horizontal velocity of 100 ft/sec.
As soon as the object leaves the support of
the cliff and is in space, gravity will cause it
to accelerate downward at 82 ft/see.

The origin of the frame of reference is
placed at the top of the cliff where the object
starts its motion (Figure 4-14). For t > 0
the velocity vector ri is in the +x direction
and the acceleration vector a is in the y
direction. Newton's contribution to the solu-
tion of this type of problem was to suggest
that the motions in the two directions could
be handled separately. Each may be used
to establish one element of the ordered pair
necessary to locate the object within the
frame of reference at any time L

Since the time of motion is limited by the
length of time it takes the object to reach
the ground, we shall examine motion in the

y direction first. flow far is the object
displaced in the y direction at the end of
each second. We can use the result estab-
lished in previous sections and compute the



vo = 100 it/sec

a =-32 ft /sect

CLIFF

Figure 4-14

displacement from a knowledge of accelera-
tion and time. Remember that for one second
intervals

"74AS, = SC+1 St
At = 1

_t+, St Distvt =
At At

it"t+i

. At At

When we consider the y direction, =
since the only initial velocity is in the +x
direction; we say that the y component of
the initial velocity is 0. We also have so = 0,
to = 0 and r 32 ft/sect for all values of
t. The veloCity in the y direction at the end
of the first second is 32 ft/sec; the average

velocity during the first second is ° ( 32)
'2

that is, 16 ft/sec. Since At = 1 we have
for t > 1

32 = Ift+i Nit (t > 1)
qt+t = 32

and the values of vt are
o = 0 = 80 ft/sec

et .1= 16 ft/sec v4 = 112 ft/sec
= 48 ft/sec and so forth.

at
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Similarly since for A t = 1
vt = irt+i st

-41-1 = St + tt
and the displacements along the y-axis are

= 144 ft
= 266 ft

= 0
st = 16 ft
7312 --- 64 ft and so forth.

The formula t = 47 t' ce be developed
as in the exercges and be used to produce
these same results.

Now consider the horizontal motion. In
this direction the motion of the object is
described by the vector equation

= vl
where r = +100 ft/sec and does not change.
Then

= 0
= +100 ft
= +200 ft

= +300 ft
84 = +400 ft
and so forth.

The position of the object at the end of
each second may be indicated by its x and y
coordinates as given by the displacements
along the axes. At the end of the first second
(t = 1) we have (+100, 16); at t = 2,
(+200, 84); at t = 3, (+300, 144); and
so forth until the object strikes the ground.
(See Figure 4-15).

4-6 Exercise Analysis of Projectile Motion
Refer to Figure 4-16 and consider the trajec-
tory (the path) of the object.

Interpolation is a process whereby the
scientist guesses what is going on in his
problem between the points he has plotted.
Before you use interpolation to guess the
trajectory of the object, extend the data by
finding the coordinates for the half second
intervals. Then connect the points to pic-
ture the path of the object.

What two factors determined the hori-
zontal distance traveled?

Suppose the height (altitude) were in-
creased to several thousand feet, what
changes would have to be made in our un-
stated assumption about ground level?
(Magellan's trip settled this, didn't it?) Go
way up to satellite altitude (hundreds to
thousands of miles) and guess what might
happen.
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Figure 4-15

4-7 Circular Motion
We have just used velocity and accelera-

tion vectors to describe the motion of an
object on a curved path (Section 4-6). Let
us now examine the motion of an object
around a circular path and seek a way of
describing this motion in terms of vector
quantities.
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(+600, -576)

Any point PI on a circle may be identified
by its coordinates (x1, yi) or by the radius,
r, and L X0131 where the angle is measured
counter-clockwise as in Section 1-3. In
Figure 4-16 L X0131 = 45°. For any angle 0
and any point P: (x, y) on the circle

x = r sin 0,
y = r cos 0.



-Y

Figure 4-16

A circular motion of an object is repetitive;
that is, after one revolution the same motion
is repeated. This fact can be used to deter-
mine the speed of the object. (Is speed a
vector or a rcalar quantity?) Suppose r = 3
ft; then the circumference, c, of the circle
is 27rr where T 3,14; c 18.8 ft. Sup-
pose also that the object takes 5 seconds
for 10 revolutions. Then

d = 188 ft. (for 10 revolutions)
d 188 37.6

t
At sec

where v is used for the (scalar) magnitude of
to avoid confusion of rate and radius.
If the object were moving at 37.6 ft/sec

in a straight line and the direction was known
we could represent its velocity by a vector.
To do this with circular motion would seem
to violate the concept of vectors for the
object's direction of motion is always chang-
ing. Is it ever going in a +y, or -x, or some
other direction? The answer may seem to
be no. We know, ham laboratory evidence,
that there is a tie or force toward the center
of the circle which holds the object on its
circular path. If this tie were severed the
object would immediately assume a straight
line path which has a direction tangent to
the circle at the point where the object was
located when the tic was broken (Figure
4-17). For this reason and others, which are
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Figure 4-17

Olveloped in advanced mathematics, the
velocity of the object in Figure 4-16 at any
point P on the circle is represented by a
vector having a magnitude of 37.6 ft/sec
and a direction tangent to the circle at the
point P.

Figure 4-18 is a vector representation of
the velocities of an object in circular motion.
The velocity vectors are equally spaced
about the circle. A vector equivalent to each
of these velocity vectors is drawn with its
origin at the center of the circle; vi = vi',
v2 = v, , ve = v3', and so forth. We use the
Ivtors vi', . . . to obtain vectors Avi,
Ave, and so forth.

Notice the geometric figure formed by the
Av vectors. Suppose that the equal spacings
between the vectors on the circumference
were decreased until there were many, many
velocity vectors on the cIrcumference and
each had an equivalent drawn from the
center of the circle. Then the /iv vectors
would (1) increase in number and (2) de-
crease in magnitude. Now what would the
geometric picture of the Av vectors begin



Figure 4-18

to look like? The figure would approach a
circle in appearance. This is a key idea. If
it doesn't make sense to you, then you should
make a vector drawing follow ;ng the direc-
tions given until you see the circle. Remem-
ber that the speed, v, is the same at all
points of the circle.

The sum of the er's will approximate a
circle with a radius of v. Therefore the change
in velocity in one revolution of the object
has a magnitude of 27v, the circumference of
the circle made by the V's.

Consider our example in which 10 revolu-
tions took 5 seconds. One revolution occurs
in 0.5 seconds and the acceleration of our
object will be

27v 2737.6a - = 574 ft/sec-
0.5

The time for one revolution of an object
in a circular motion is referred to as the
period T of the motion. Thus for circular
motion we have

a =

2rrv = r, and
27v 27(27r/T) 472r
T T Ts

4-7 Exercise Circular Motion

472r 27-r prove thatFrom a = and v =
T2

V2a - r
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4-8 Angular Velocity
There is another way to look at the speed

of an object in circular motion. The object
considered in Section 4 -7 was timed at 0.5
seconds for one revolution. This statement
could be restated as 360° per 0.5 seconds or
changed to unit time 720°/sec. In physical
and mechanical problems it is common to
state angles in terms of radians (Section 1-3)
and to call the speed in terms of angles per
unit time angular velocity. It is customary
to vse the symbol w (Greek letter omega)
for ate angular velocity in

radians
unit time

Then since 1 revolution is 21 radians we have

2w , /rradw %=0.5 sec

Notice that this corresponds to 720 deg/sec
since 2w radians equal 360°.

The conversion from angular velocity w to
linear velocity v is possible since

s = rO

and therefore
As

= ratAt At

whence

v = rw

The angular velocity 0, = 4 rad/sec then
corresponds to a linear velocity

v = 47r = 12 X 3.14 = 37.6 ft/sec
as we obtained in Section 4-7.

4-8 Exercise Angular Velocity
What is the angular velocity of your loca-

tion on Earth? How does this compare with
the angular velocity of the location of a
person living on the equator? For this prob-
lem assume that Earth rotates once every 24
hours and has a radius of 4000 mites. You
may have to look on a map to find your
latitude. How does your speed compare with
the speed of a person on the equator? You
may the trigometric functions or proportions
to get the radius and circumference of the
circle of latitude for your location.



Do you see how this type of consideration
effected the placing of the Atlantic Missile
Range in Florida rather than Maine?

4-9 Forces
We have considered ways of describing

motion throughout the first eight sections of
this chapter. In other words we have con-
sidered kinematics, the mathematical and
graphical description of motion. The kine-
matics used by scientists in describing the
motions of satellites and space vehicles is
more complex than these descriptions. It re-
quires the competent use of plane and solid
geometry, analytical geometry, trigonom-
etry, vector algebra and calculus. Many
mathematicians are employee. at NASA
cations, such as the Goddard Space Flight
Center, to determine the kinematics of space
craft.

How is the motion of a space vehicle pro-
duced and controlled? What effects motion?
Even though the story has been told many
times, it is worthwhile (particularly in this
space age) to ponder over the behavior of
moving objects as described by Newton.
(Often referred to as Newton's laws of
motion.)

Everyday experiences seem to indicate that
all moving objects eventually will stop mov-
ing. Questions arise since the time to stop
may vary. What causes objects to stop? Why
does a ball roll longer on a bare floor than
on a rug? Why does a tennis ball slow down
faster than a baseball? You could make up
many similar questions. It seems that some-
thing called a force (friction, drag) is present
in every "slowing down" process.

The motion of an object at any instant
can be described by a velocity vector. Due
to the inertia of the object, it will continue
with this same velocity vector unless some
force is applied to it.

If a force is app " .:.1 to an object thol its
motion will change. If the force is in the
same direction as the object is moving, the
object v, ill gain speed; if the motion and
force al.e in opposite directions the object
will slow down. This change can also be
represented by vectors. The longer the force
is applied the greater the change in velocity.
Indeed the product of the force and the time
of application is proportional to the change
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in velocity produced; we write Alt a AV.
After units have been specified, we shall
have

rtAt = loav
for some constant k. Notice the force P
must be a vector quantity since Av is a
vector, both k and At are scalars, and the
product of a scalar and a vector is a vector.

This mathematical reasoning can be veri-
fied by laboratory experimentation. If you
carry the thought a little further, y2u will
realize that the directional part of F must
be preserved in the Av because the scalar
quantity, At, can only change the magnitude
of F. Therefore the direction of the change
in velocity must be in the direction of the
applied force.

Notice that a knowledge of the mathe-
matics of vectors is a very valuable tool in
arriving at a hypothesis about the behavior
of physical objects. Then the hypothesis can
be checked (hopefully confirmed) in the
laboratory. Thus a tremendous amount of
trial and error experimentation can be
eliminated.

4-10 Mass
Suppose you mistook a bowling ball for a

soccer ball and gave it a swift kick. Neglect
the pain you would experience and examine
the motion produced on the ball. Would the
bowling ball behave in the manner you ex-
pected from the soccer ball? Why not?

We observed in Section 4-9 that since
objects have inertia, an outside force must
be applied to an object to change its velocity.
If equivalent .forces are applied for the same
time interval to several totally different ob-
jects the resulting changes in velocity may
not be the same. The quantity of inertia
each object possesses is called the inertial
mass (often just called mass) of the object.
To a physicist. or space scientist, the mass
of an object is a measure of the object's
resistance to a change of velocity by a force.

An experiment will demonstrate this idea
of mass. For this experiment you will need:

a sturdy table or work bench,
a vise,
hack saw blades,
"C" clamps of several different sizes,
a stop watch or clock with a second hand.



WORK BENCH
OR

TABLE

"C" CLAMP

Figure 4-19

HACK SAW
BLADE

Clamp one end of a hack saw blade in the
vise. On the other end fasten the smallest
"C" clamp. Cause the "C" clamp to swing
back and forth by initially deflecting it a
few inches and letting go. Time the interval
for 10 complete swings of the "C" clamp.
(Any number of swings will do as long as
you can adequately time that number.) Re-
peat this for a "C" clamp of each size. Note
your results in a Table with headings as in
Table 4-3.

the clamps can be made by comparing the
frequencies. Use the smallest clamp as the
basis for comparison and find the ratio of
the masses of the clamps to it. The swinging
hack saw blade and clamp is an example of
an inertial pendulum.

Numero IS experiments of many types have
led to the conjecture that the rate of change
of velooity (that is, acceleration) is related
to the mass. If the mass is doubled, then
the acceleration is halved; if the mass is
multiplied by three, then the acceleration is
one third as much as before. We say that
acceleration varies inversely as mass; that is,

1a a
M

Since from Section 4-9

Fit = kW;
-h.F = k--tAy = ka.

Me statement a a 1/M implies that the
prod .ct of the mass and l_a magnitude of the
acceleration is a constant; that is, Ma = k.
This constant may be combined with the
constant k in the equation F = Id to give us

= k'Mab

Table 4-3

"C" clamp
size

Total
number
swiggs

'lime for
total

swings

Frequency
Nu mber
of swings
per unit

time

Ratio
of

n of each
At

to first
damp

Ratio
of

masses

smallest

largest

The frequency, number of swings per unit
time, is an indication of the response of the
inertial mass of each "C" clamp to the force
supplied by the spring of the hack saw as it
stops and starts the clamp at the end of each
half swing. A comparison of the masses of
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for some constant .k'. For an appropriate
choice of units of measure

=

which is the customary form for Newton's
second law of motion.



4-10 Exercise Mass
Equivalent impulses (VxAt) are applied to

2 space vehicles. One has twice the change
of velocity of the other. What does this dif-
ference in behavior convey about their
masses?

4-11 Units of Measure
In order to avoid chaos in the meaning

of units of measure, international organiza-
tions have formulated and accepted defini-
tions of units. In this country the National
Bureau of Standards cooperates with agencies
of other countries and establishes the units
that we use. Some confusion exists because
there are two systems in use throughout the
world, The English System is used in daily
living in the United States. Most of the rest
of the world and scientists everywhere use
the metric system. Table 4-4 shows the basic
units in both systems. The purpose here is
not to define precisely or to compare these
units, but to establish how each one is used.
Notice that the unit for mass in the English
system and the unit for force in the metric
system are printed in capital letters to em-
phasize that each of these must be under-
stood in terms of the other three units in
its particular system.

Table 4-4

Basic Units of Measure
Length Mass Time Force

English foot SLUG second pound

Metric meter kilogram second (NEWTON

In the English system you are acquainted
with the foot, second, and pound as units.
If we use these units in the formula F = Ma,
consider only the magnitudes of the quan-
tities (Section 4-10), and solve for M we
have

M = -a

where the magnitude F of F is measured in
pounds and the magnitude a of-i is measured
in ft /sect. Thus the unit designation of mass
in the English system could he called

lb
ft /sect
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In order to reduce the wordiness of "pounds
per foot per second squared," it is called a
slug. Thus mass in the English system is
stated in slugs.

Your weight is the amount of force the
mass of your body exerts in a direction
towards the center of the earth due to the
pull of gravity. What is your mass? What
is the mass of a person whose weight is 128
lb? Near sea level the person is subject to a
force of gravity which would accelerate the
person at 32 ft /sect. Since weight w is a
force we have:

_F _w_ 1281b
M 4 slugs

a g 32 ft /sec=
Notice that w = Mg. Therefore the

weight of a given mass changes when there
is a change in the value of g. If the force
of gravity could be zero, the weight would
be zero.

Astronaut White was in a condition of
"apparent" weightlessness during his
"walk in space." This phenomenon is ex-
plained on pages 132-33. He maneuvered
himself by gently tugging on the tether
cord connecting him to.the space craft. Sup-
pc =a that the combined weight of White
and his equipment, if he was on Earth
would be 192 pounds. Then the mass that
he needs to move by tugging on the tether
cord is 192/32; that is,6 slugs. If he had no
initial velocity toward the spacecraft, what
impulse (F A t) would be needed to pro-
pel White back to the Gemini IV at 1/2
ft/sec? Let's consider our formulas :

F X At = mAv = 6 X = 3
The magnitude of the impulse (that is, the
product of the applied force and the time
interval during which it is applied) must be
3. A 3 pound force applied for one second
is equivalent to a 6 pound force applied for
one-half second.

It is interesting that Astronaut McDivitt
mentioned that he found it necessary to make
compensating corrections in the space craft's
position because of White's tugs. Does it
make sense that when a tug is made on one
end of a cord which is fastened at the other
end that the fastened end exerts the same
magnitude of force on the object to which
it is tied? The Gemini space craft weighs (on
Earth) 7000 pounds. Can you find the veloc-
ity of the space craft caused by the tug?
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This problem has been presented as if the
Gemini space ci aft had zero velocity. Ac-
tually it is moving at very high speeds. We
have used the space craft as the center of
our frame of reference and the frame of
reference moved with the craft. Hence when
White and the space craft had the same
velocity, the relative velocity of the two was
zero. This technique is common in the solu-
tion of many problem,

Let us now refer to Table 4-4 again and
look at the metric units. If you are not fa-
miliar with the meter, and kilogram, you
should ask any science teacher to let you see
a meter_stick and a kilogram mass; that is, a
unit of mass. To get the units for force we
again examine the formula F = Ma. When M
is expressed as kilograms and a as meters/sec-

ond squared then F must be kilogram meters.
sec'

To reduce the wordiness of "kilogram meters
per second squared," it is called a newton,
(abbreviated nt.).

In the metric system weight should be ex-
pressed in newtons since weight is a force.
The metric value of g is 9.8 m/sec'. A kilo-
gram of material at the surface of Earth
weighs 9.8 newtons.
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On several occasions we have stated that
all objects at one location fall with the same
acceleration. This should seem reasonable
after it is noted that the weight w of an
object is dependent on the mass of the ob-
ject. We have W = Mg from th$ formula
F = Ma. Therefore, W/M is a constant at
any one location; that is, weight is directly
proportional to mass. Any change in mass
will be accompanied by a proportional change
in weight.

4-11 Exercises Units of Measure
1. In the laboratory we determine the mass

of an object by weighing it on a balance.
This means we balance the weight of an
unknown mass with the weight of a
known mass. Why does this tell us the
mass of the unknown?

2. A force of 10 newtons is applied for 5
seconds to a 10 kilogram mass. What is
the resulting change in velocity? What
is the acceleration during the 5 second
interval?

4-12 Dynamics of Circular Motion
Circular motion is a special case of an

object traveling in a curvaliniar path. In



Section 4-7 velocity vectors were used to
describe the motion of an object at a given
point in its circular path. The velocity vec-
tors at different points had different direc-
tions but the same magnitude. For equally
spaced points of the circle the successive
changes of velocities in equal time intervals
provided acceleration vectors that were equal
in magnitude.

The magnitude of the acceleration was de-
termined in Section 4-7 as a = 2tv where

T is the period. Now we know that the
direction of i is always changing so that it
always points towards the center of the
circle which describes the path of the object.
From Section 4-9 we know that an applied
force is required to produce an acceleration
and that the acceleration must be in the
direction of the force.

The characteristics which we used to de-
scribe the acceleration vector must also ap-
ply to the force vector. The force must have
constant magnitude and always be directed
toward a fixed point, the center of the cir-
cular path. Any force that has these two
characteristics is called a central force.

Any circular motion may be described as
motion that can be represented by a velocity
having uniform magnitude and a central
force. The magnitude of the central force can
be computed from the mathematical state-
ment of Newton's Second Law of Motion
and magnitude of the acceleration in circular
mot ion : vs

'
Mv2

F Ma, a= F
r

The paths of satellites, both natural and
man-made, usually are not perfectly circular.
For a circular orbit the velocity at a point
must be directed perpendicular to the force
at the point. Also the magnitude of the
velocity and the force must satisfy a precise
relationship. The force is provided by the
Earth gravitational field in the case of Earth-
orbiting satellites and thus depends in part
upon altitude. So space scientists must be
able to construct, launch, and control a
satellite and its launching vehicle so that
it will have a precise altitude, speed, and
direction at the instant the space craft is to
assume a circular orbit. If any one of these
requirements (parameters) is not attained,
the orbit will not be truly circular.
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4-13 Rocket Engines
The forces inside a rocket engine are pro-

duced by extremely small particles called
molecules that move at very high speeds.
The purpose of the combustion within the
engine is to provide the high temperature
which causes the molecules to move in a
very, very rapid fashion.

In your imagination you can picture the
result of a fantastic number of sub-micro-
scopic particles moving at tremendous
speeds. Collisions occur between molecules
and between molecules and the walls of
the engine. Consider the molecules of a
hot gas inside a closed tank. When a gas
molecule comes to rest upon colliding with
the container wall the change in velocity
is equal in magnitude to the original veloc-
ity. The force of the collision can be
determined from the formula

At

where M is the mass of the molecule, At is the
time of the collision and Av is the change of
velocity. (The product of May is called
momentum.)

Figurr 4-e1

Figure 4-21 is a representation of the
forces acting on the inside of a container
where for simplicity the third dimension has
been omitted. All forces are of the same
magnitude. Then the sum of the force vectors
must be zero. (You should be able to visualize



this.) The container has no motion because
the forces are in equilibrium. (Figure
4-22)

f4

"e2

13

Figure 4-22

Let us remove a section from one end of
the container and make an opening in the
end as pictured in Figure 4-23. The vector
picture is now changed because the molecules
moving in the direction of the open end do
not collide with the container. Instead these
molecules of gases escape from the open
end. There can be no force exerted on the
container in the direction of the open end
by the internal gases. The gases rushing out
the open end represent only those molecules
having a velocity in that particular direction.
The other force vectors are not affected. Now
the sum of the forces as pictured in Figure
4-23 are not in equilibrium. There is a net
force Ft upon the end of the container oppo-
site the opening and thus the container will
move in that direction.

The magnitude of the force 112 which moves
the container can be found by determining
the momentum of the molecules of gas which
escape out of the open end. It is these mole-
cules which are not balancing the_Eropulsion
force. In order to find the force Ft we need

Figure 4-29

to know (1) the velocity of the escaping gas
molecules, (2) the mass of each molecule, (3)
the number of molecules, and (4) the time
interv.

The velocity of the escaping gas molecules
can be measured by appropriate instruments.
The total mass of the escaping molecules is
simply the total mass of the burning mixture
supplied to the container. The time interval
is the time in which the total mass is burned.
From these data the force can be computed
using the same formula as before:

F = Mirh

In rocketry this is the force which is called
thrust. The names and thrusts for a few of
the launch vehicles used by NASA are listed
in Table 4-5.
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Table 4-5
Launrchri;teehIcle

Stage
Thrust
pounds

Thor-Agena 1 170,000
2 16,000

Atlas-Agena 1 368,000
2 16,000

Titan II 1 430,000
2 100,000

*Saturn V 1 7,500,000
2 1,000,000
3 200,000

* Scheduled for first launch in 1967.

4-13 Exercise Rocket Engines
A 50,000 pound thrust acting on a rocket

for 5 seconds produces a 4,000 ft./sec change
of velocity. What will be the change of
velocity produced by a 10,000 pound thrust
acting on the rocket for 5 seconds? Would
it be possible for a 10,000 pound thrust to
produce a 4,000 ft./sec change of velocity
on the same rocket?

4-14 Sounding Rockets

Among tht many space exploration pro-
grams that NASA'. administers are those
which investigate that realm of space below
which Earth orbiting satellites travel and
above which balloon ascension is not possible.
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This involves a type of vehicle known as a
sounding rocket.

The Nike Apache is a sounding rocket.
The name indicates that the payload of
scientific instrument is launched by a two
rocket motor system (Figure 4-25). The
Nike booster burns for 3.5 seconds with a
thrust of 42,600 pounds. The Apache motor
provides a 5,130 thrust for 6.4 seconds.

During a launch optical and radar instru-
ments track the movement of the rocket.
The tracking data is handled by computer
that not only records the numerical value of
such factors as time intervals, velocity, alti-
tude, range, and angles of the flight paths but
also prepares the graphic displays of these
data as shown on Figure 4-26 through 30 at
the end of this section (pages 114-118).

Many forces effect the flight of the rocket.
The two obvious ones are gravity and the
thrust of the rocket motors. In addition the
atmosphere effects the flight by the move-
ment of winds and air resistance; that is,
drag. Figure 4-31 shows several configurations
of sounding rockets which have differing de-
grees of drag. Notice that the Figures 4-26
through 30 are labeled "Drag Case I."
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d.6.75"
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MOTOR

154"
BOOSTER

Figure 4-25

The rocket under consideration was
launched at Wallops Island, Virginia, at an
angle of 80° to the horizcntal in order that
the point of impact would be in the waters
of the Atlantic ocean and not over inhabited
land.

STANDARD DRAG CASE

11" NOSE CONE II" NOSE CONE
2 DOVAP 4 45" TURNSTILE

ANTENNAE 20" ANTENNAE
II" NOSE CONE NOSE CONE PITOT-STATIC
NO ANTENNA NO ANTENNA EXPERIMENT-------------- 2
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Figure 4-31
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Table 4-6
Phase

number Name of phase
Time of

flight

1 Nike Burning 0 to 3.5 sec
2 Coasting 3.5 to 20.0 sec
3 Apache Burning 20.0 to 26.4 sec
4 Burn-out to Apogee 26.4 to 198.5 sec
6 Apogee to Impact 198.5 to 385.8 sec

The flight of the rocket is divided into 5
parts as shown in Table 4-6. The term burn-
ing means that the rocket motor is providing
a thrust in the manner described in Section
4-13,

To know the composite picture of the
rockets' behavior the interrelation of the
graphs (Figure 4- 26 through 30) must be
understood. Figures 4-26, 4-27, 4-28, and
4-29 have the same time base (x coordinate)
for Altitude, Horizontal Range, Flight Path
Angle, and Velocity. Figure 4-30 shows a
combination of the altitude and horizontal
range data but the scales for the x-axis and
y-axis are not the same. Accordingly, the
graphs must not be read as a picture. Re-
plotting Figure 4-30 with equal x and y
scales would give a more realistic idea of the
geometry of the trajectory of the rocket.

The following questions and exercises are
to assist you in gaining scientific information
from the graphs.

4-14 Exercises Sounding Rockets
1. What is the maximum altitude 1apogee)

of the rocket? What is the average
vertical velocity up to apogee?
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2. How far did the rocket travel hori-
zontally (range) by the time it reached
apogee? What was the rockets' aver-
age horizontal velocity during this in-
terval?

3. From your answers for Exercise 1 and
2 find the true average velocity (speed
and direction) for the interval.

4. How far from the launch site was the
point of impact? (total range)

5. What is the average horizontal velocity
of the rocket?

6. From Figures 4-26 and 4-27 determine
the rockets' true velocity at 90 sec-
onds. Verify your answer (magnitude
and direction) from the data on Figure
4-28 and 4-29. (Suggestion: Use a 20
second interval to determine AS).

7. Identify each of the five phases with
patterns of velocity in Figure 4-29.

8. During the second phase (coasting)
Figure 4-29 shows a decrease in veloc-
ity. Determine the value of the negative
acceleration for this interval. How does
your answer compare with the value
of g?

9. What average acceleration was pro-
duced by each of the two rocket engines?

10. In Figure 4-28, the curve of the flight
path angle goes through 0 and changes
from a positive to a negative sign. How
do you interpret the change in sign?

11. In order to know the speed and direc-
tion of the rocket at any point in flight,
which two graphs must be used?
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SPACE MECHANICS
by

Robert P. Chambers
Newark Senior High School

Newark, Delaware
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The remaining chapters of this publication are especially designed to furnish supplementary
activities in spae*-bcience oriented mathematics for students who have had an opportunity to
participate in the advanced courses now being offered in many of our high schools. However,
all students will find these materials informative and interesting in that they providean insight
into the new course content of high school curricula.
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SPACE MECHANICS
SPACE MECHANICS has been written

for students who are especially interested in
mathematics and science. Its purpose is to
answer some of the many questions about
space flight and demonstrate the application
of mathematics to space problems. Two
mathematical concepts that may be new to
you have been introduced to serve as ex-
amples of new and exciting mathematical
concepts which lie ahead. SPACE ME-
CHANICS has been prepared to help bridge
the gap between mathematics as it is taught
fornially in the classroom and as it is used by
physicists and engineers. When you work the
exercises, be sure to keep your units of
measure straight or you may find yourself in
orbit around Hogan's barn.

5-1 Velocity and Acceleration
Figure 5-1 illustrates the setup a student

used to record the displacement of a car as
it was pulled along a horizontal wire by a

steady force. Mass m (about 610 grams) and
the car (about 1000 grams) are coupled with
au appropriate length of paper tape. Cash
register tape about 11 s inches wide is suit-
able for this purpose. The tape should pass
freely through the timer and over the double
pulley. The portion of the tape that is passing
through the timer is covered with a strip of
carbon paper. This is held in. place with
wicket shaped wires as illustrated in Figure
5-2. The carboned surface should face down.
Soon after the timer is started the car should
be released. The falling mass will pull the
car along the wire. The vibrating clapper will
strike the moving tape and the impact marks
will show how the position of the car changed
with time. The rubber stopper is a shock
absorber and makes it possible to stop the
car without placing undue strain on the wire.
The stopper should have room to slide after
impact. The turnbuckle is used to draw the
wire taut.

RUBBER

STOPPER
TURNBUCKLE

DOUBLE
PULLEY

TAPE

CLAMP

MASS



WIRE FOR HOLDING
CARBON PAPER IN

PLACE

ALUMINUM PLATE

Figure VS

The timer (Figure 6-2) is a modified door-
bell. To be of any value 33 a timer the motion
of its dapper must be essentially periodic;
that is, the time intervals for all successive
strikes of the clapper must be essentially the
same. The setting of the contacts and the
operating voltage are critical for periodic
operation of a doorbell clapper. These factors
are also peculiar to the doorbell. Hence the
conditions needed tc achieve periodic opera-
tio- of the dapper are found experimentally.
The time between successive strikes of the
dapper can be measured with an instrument
called a a roboscope.

Much can be learned about the laws of
motion with the equipment described. It can
be built at a modest cost. You may need help
with the timer but the rest will be easy.

The tape as marked by the student's ex-
periment is shown in Figure 5 -8. The separa-
tion of the impact marks increases with time,
an indication that the speed of the car in-
creases with time. Realizing that he could
not be sure about the time for the displace-
ment from rest to the first impact mark, the
student measured time with reference to the
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IMPACT
MARK

TIME MEASURED
FROM THIS REST

MARK POSITION

DISPLACEMENT
MEASURED FROM

THISHIS MARK

first impact mark. Displacement of the car,
however, was measured with reference to the
rest position.

TABLE 5-1
Time, t

in seconds
Displaeement, s
in centimeters

0 0.48
0.05 2.40
0.10 5.85
0.16 10.80
0.20 17.30
0.25 25.20

Table 5-1 contains the data collected by
the student.
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TABLE 6-2
Time, t

in seconds
Displacement, a
in centimeters

0 0

0.10 9.00

0.20 16.00

0.30 36.00

0.40 64.00

0.50 126.00

0.60 144.00

Table 6-2 is ideal data for a motion similar
to that studied by the student. The period
of the timer for the ideal data is 0.1 seconds
whereas it was 0.05 seconds for the student.
The ideal data has been introduced for con-
venience only. Figure 6-4 is a graph of the
ideal data for the first 0.3 seconds. This will
be referred to as the student's graph since the
experimental graph has the same general
form.

As a part of the laboratory exercise, the
student was required to determine the aver-
age velocity of the car during several inter-
vals of time. This he did using the average

velocity formula Ire = ri/At. He read from
his graph (Figure 6-4) values of s for given
values of t. This data was used to find As and
At so the average velocity could be computed
with the formula. The data that the student
used to compute the assigned average veloci-
ties from Figure 6-4 is found in Table 6-3.

The student recognized that the average
velocity of the car decreased markedly as the
interval of time was decreased by reducing
the final value of t. This trend aroused his
curiosity so he wanted to pursue it further.
He could see that there would be some diffi-
culty in reading the graph accurately for real
small values of At, so he consulted with his
teacher about this problem. The student and
teacher working together discovered that
Figure 6-4 is a graph of the equation s =
400 t'. This information enabled the student
to calculate the value of s for any given value
of t. Armed with the equation for his curve,
the student obtained the data in Table 6-4.

After analyzing the data of Table 6-4, the
student came to three important conclusions.

These were:
1. As the new value of t decreases and

TABLE 6-3

Initial
Value of I

Final
Value of I

at Initial
Value of a

Final
Value of a

as
Average
Velocity

.ss/at

0.10 0.20 0.10 4.00 16.00 12.00 120

0.10 0.17 0.07 4.00 11.66 7.66 108

0.10 0.16 0.05 4.00 9.00 5.00 100

TABLE 6-4

Initial
Value of I

New Value
of t at

Initial
Value of s

New Value
of s

as
Average
Velocity
as/At

0.10 0.13 0.03 4.00 6.76

5.76

2.76 ,

1.76

92.0

88.00.10 0.12 0.02 4.00
0.10 0.11 0.01 4.00 4.84 0.84 84.0
0.10 0.105 0.005 4.00 4.41 0.41 82.0
0.10 0.103 0.003 4.00

+

4.2436 0.2435 81.2
0.10 0.102 0.002 4.00 4.1616 0.1616 80.8
0.10 0.101 0.001 4.00 . 4.0804 0.0804 80.4
0.10 0.1005 0.0006 4.00 4.0401 0.0401 80.2
0.10 0.1010 0.0001 4.00 4.008004 0.008004 80.04
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approaches 0.10, the values of At As,
and the ave .rage velocity decreases.

2. As t approaches 0.10 the increment At is
becoming smaller and approaching zero
as a limit. rn.re value of At can be made as
near zero al, you want but it cannot be
zero for t s 0.10.

3. As At approaches zero as a limit, the
magnitude of the average velocity
(As/At) becomes smaller and appears to
approach 30 as a limit. The average
velocity can be made as near 80 as you
want but it cannot be 80.
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Figure 6-5 shows graphically the student's
third conclusion. The change in average
velocity as At approaches zero is linear. The
left end of the graph comes closer and closer
to 80 as At dimipishes but it never reaches
80. As you may have already guessed, the
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number 80 is the velocity of the car at exactly
0.1 seconds from rest!

The instantaneous velocity of a body is its
velocity at some instant of time. This velocity
cannot be computedexactly with the average
velocity formula, As/At, because there is no
change in displacement as and there is no
change in time At at an instant of time. In-
stantaneous velocity is the limit of the aver-
age velocity as At approaches zero and may
be visualized as in Table 5-4. The for-
mal procedure used to find this limit is
treated in detail in textbooks on advanced
mathematics.

Instantaneous velocity may be interpreted
as the slope of a line. The slope of the secant
line through points P1 and Pi of Figure 5-4 is
120; that is, the average velocity of the car
during the interval of time from 0.1 to 0.2
seconds. The average velocity of the car dur-
ing the interval of time from 0.1 to 0.17
seconds was found to be 108 cm/sec (Table
6-3). This is the slope of the secant line
through points P1 and P4. We shall refer to
the secant lines through P1 as "a irerage
velocity secants." For each value of At there
is a point P on the graph and an average
velocity secant line PIP. For any sequence of
values of At approaching zero, there is a se-
quence of points P approaching P1 am3 a
sequence of average velocity secant lines. We
may think of a secant line pivoting about the
point PI as At decreases. There is a position
the average velocity secant can approach but
cannot, assume because a secant must pass
through two distinct points. This position is
the tangent line at point PI. The slope of the
tangent line at point PI is the instantaneous
velocity of the car at exactly 0.1 seconds from
rest!

In Chapter 4 you learned that the defining
concepts for velocity and acceleration take
the same form. An average or steady velocity
is the time-rate of change in displacement;
that is, As/At. An average or steady accelera-
tion is the time-rate of change in velocity;
that is, V/At. The meaning of instantaneous
acceleration will be easy for you to grasp if
you associate it with the meaning of instant
taneous velocity. This will be left for you to
do as an exercise. You may find it profitable
to study the graph in Figure 6 4. In your
mind, replace the axis of displaceme-ts with
an axis of velocities.



5 -1 Exercises Velocity and Acceleration
1. Graph the data the student collected ex-

perimentally (Table 5 -1). Use this graph
to determine how long it took the car,
starting from rest, to travel a distance
equal to the distance between the
rest point and the first impact mark
thereafter.

2. Find an equation that essentially fits the
graph of Exercise 1.

3. Use the graph obtained in Exercise 1 to
find the instantaneous velocity of the
car at exactly 0.14 seconds from rest.

4. Compute the average velocity of the car
during the time intervals 0-0.05 sec.,
0.05-0.10 sec., 0.10 -0.15 sec., 0.15-0.20
sec., and 0.20-0.25 seconds (see Table
5-1). Assume that the velocity of the car
at the middle of the time interval is
equal to the average velocity for the
wl, interval. This means that the in-
stf.,,taneous velocity of the car at 0.025
seconds is equal to the average velocity
of the car during the time interval
0.05-0.10 sec., 0.10-0.15 sec., 0.15-0.20
velocity of the car will be equal 'to the
average velocity during the time interval
0.05-0.10 seconds. Make a velocity-time
graph and read the acceleration of the
car from the graph. Save your graph for
a later problem.

5-2 More about Kinematics
In Section 4-3 you learned that the for-

mula 3.'s = that can be used to compute the
displacement of a body when (a) its average
velocity is known or (b) it has a constant

8

0
Time

Figure 5-6

2
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velocity. This formu!a will not suffice in a
situation where the motion of a body is
irregular and average velocity is unknown.
How, then, is the change in displacement
computed under such circumstances? A clue
to the answer can be found in Figure 5-6.

This figure is the graph of a body moving
with a steady velocity vc. The area that is
bounded by the graph, the time axis, and the
linen t = ti and t = t2 is the change in dis-
placement of the body during the interval
of time t2

8

Time

Figure 5-7

2

Figure 5-7 illustrates a more complex
motion. In this case the velocity varies con-
tinually and the area has an irregular shape,
making computation of the area much more
difficult. Techniques used to compute such an
area are treated in detail in textbooks of ad-
vanced mathematics. Some of these tech-
niques will be discussed in Section 6-5.

If the straight line distance between two
towns A and B is 150 miles and 3.25 hours is
required to make the trip, the average
velocity for the journey is 3's /4t with mag-
nitude 150/3.25 = 46.2 miles/hour. A motion
problem of the same type but with a less
obvious solution will now be considered. Sup-
pose that the velocity of a body varies accord-
ing to the equation v = k + nt2 where v is
the velocity of the body in misec (that is,
meters per second) after it has traveled t
seconds; k and n are constants whose values
are 10 m/sec and 5 m/sec2 respectively. At
the end of 3 seconds the velocity of the body



will be 10 + 6(31); that is, 66 m/sec. What
will be the average velocity of the body dur-
ing the first five seconds? A graph of the
equation will help you visualize the solution
and estimate the answer to the problem.
With advanced mathematics the area under
the graph, which is equal tc, the displace-
ment of the body during the first five seconds,
can be found. This turns out to be 258 1/3
meters. The average velocity can now be
computed with the formula It/At. The result
is 1/5 of 253 1/3; that is, 51 2/3 in/sec. A
knowledge of how to compute the average
velocity of a uniformly accelerated body will
be needed to derive other equations you will
use. Hence a formula for this type of problem
will be derived.

8

Figure 5-8

Figure 5-8 is a velocity-time graph of a
body moving with a steady acceleration.
When the time is zero the velocity of the body
is v0. The velocity of the body increases uni-
formly until at time tf its velocity is vi. The
area that is under the graph, which is
bounded by the time axis and ordinates
t = 0 and t = te is a trapezoidal region.
This area can be computed using the formula
A 1/21(b + B)h where b is the length vo
B is the 'length ve and h is the altitude At.
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Area = As -= (1/2) (v. + v,g) At

The magnitude of an average velocity can
be computed using the formula V = As/At;

_ As (1/2)(v. + vr)Lit v. vr= = =
At At 2

We define

2
Consider the problem of a car moving from

rest with a uniform acceleration of 4 mi/hr/
sec for a period of 20 seconds. What speed
will the car attain and how far will it travel
during the period of acceleration? In Section
4-4 you learned that average or uniform
acceleration is computed using the formula
a - P/At. The change in velocity Av dur-
ing the period of time At may be expressed as
vf -- vo where vo is the velocity of the body
at the beginning of the period of time and vf
is the velocity of the body at the end of the
period of dime. Hence

- v.
a

At

and v1 = v. + aAt
The last equation tells how to compute the

speed of the car at the end of the period of
acceleration. Since vo is zero,

vf = atit = 4 x 20 = 80 mi/hr.

The average velocity V dui 'tig the period of
acceleration equals

v., + vir 0 80 40 rni/hr.
2 2

and the distance the car traveled during the
period of acceleration equals VAt = 40 X
20 - 800 feet.

Computing the distance the car traveled
was really a three step problem. These steps
are usually combined into one expression for
convenience. This will be done with the aid of
Figure 6-8. The change in displacement of
the body is expressed as

area = As = (1/2) (v. + vr)At.
A velocity-time graph of a uniformly accel-
erated body is a straight line. The slope of
this line is the acceleration. Hence the accel
eration of the body in this problem should be
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expressed as

Av Nita =
At At

Solving the acceleration expression for vi and
substituting its value in the displacement
equation gives

As = (1/2)(v. + v. + aAt)At
As = voAt -I- (1/2)a (at)'

The last equation is commonly found in
physics books in the form

s = vot (1/2)(at3)

where s is the change in displacement and t
is the length of time the body is accelerated.
In vector form the equation reads

ss = lot + (1/2)it2
When a body accelerates from rest the initial
velocity vo is zero. In such cases, the dis-
placement equation for uniform acceleration
reduces to

= (1/2)-at'

5-2 Exercises Move about Kinematics
1. Estimate the area under the graph of

Exercise 4, Section 5 -1, that is bounded
by the graph, the time axis, and ordinates
t = 0 and t = 0.25. How does this area
compare with the change in displace-
ment of the car during that period of
time? (See Table 5-1.)

2. A steady force slows a vehicle at the rate
of 10 ft/sec each second. If the force is
applied at the instant the vehicle has a
velocity of 88 ft/sec (60 mi/hr), find (a)
the time required to reduce the velocity
of the vehicle to 22 ft/sec (15 mi /hr) and
(b) the distance the vehicle travels while
undergoing the velocity change. (Hint:
A decrease in velocity is a deceleration,
or negative acceleration.)

3. Near the surface of Earth, all objects
falling freely accelerate downward
approximately 32 ft /sec =, or 1 g (if the
friction drag due to the air is neglected).
When an object is projected upward it is
decelerated 32 ft /secs, or 1 g. Calculate
(a) the distances a body will fall, start-
ing from rest, in 1 second, 3 seconds, and
5 seconds and (b) the velocity the body
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will have at each instant of time.
(Neglect friction due to the air.)

4. An object is projected vertically upward
with a velocity of 96 ft/sec. (a) How long
will it take the object to reach its peak?
(b) How high will it rise? (c) When will
the object be 80 feet above the ground?

5. Derive the formula v(2 = vo' + 2 as from
the formulas vf = + at and s = vat
(1 /2)at'.

Figure 6 -9

5-3 Centripetal Force
A feel for a central, or centripetal, force can

be gottln by whirling a sponge ball in the
manner illustrated by Figure 5 -9. If the speed
of the ball is correct the ball will move
through a circle of radius r and the 1 kilogram
mass will not move. Two forces act on the
Tan. They are the downward torce of gravity
ig and the pull of the string T. These forces

(vector qukntities) add to give the ceptrip-
etal force F. The pull of the string T is a
consequence of the gravitational force F's on
the 1 kilogram mass.

If the speed of the ball is allowed to
diminish, the 1 kilogram macs will fall. This
is an indication that the resultant forceon the
ball is greater than the centripetal force
needed to keep the ball in its circular path. If
the speed of the ball is increased, the centrip-
etal force on the ball will not be enough to
constrain the ball and the 1 kilogram mass
will be raised. The centripetal force required
to hold a mass in a specilc circular path is
critical. Centripetal force Fo is an unbalanced
force and, according to Newton's second law



of motion, should Accelerate the sponge ball
in the direction of F. An acceleration murod
by a centripetal force is referred to as centrip-
etal acceleration. Centripetal acceleration
will be explained with the aid of Figures 5-10,
5-11, and 5-12.

Figure 5-10

Mass m of Figure 5-10 is moving through
a circle of radius r with a steady sped. Its
instantaneous velocity at point PI is vt. The
direction of this velocity is the direction the
mass would move, at that instant, if the cir-
cular motion ceased. During a small interval
of time At, the mass goes through an angular
displacement 0 and arrives at point P2 with
an instantaneous velocity A. The average
velocity of the mass during this interval of
time is As/ At. Velocities VI and "02 have the
same magnitude because the speed of the
mass does not change. A change in the direc-
tion of a velocity like a change in the magni-
tude of a velocity signifies an acceleration
(Chapter 4). Hence, the ever changing direc-
tion of the mass m as it moves through the
circle signifies a continuous acceleration of
the mass m.

The change in velocity of mass m as it goes
from poirlt PI to point 132 is found by sub-
tracting vi, its instantaneous velocity at
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Figure 5-11

point PJ, from V2, its instantaneous velocity
at point P,. This is accomplished by adding
the negative of VI to v,. Figure 5-11 shows the
subtraction. The change in velocity ANT

divided by At gives the average acceleration
of mass m as it moves from point P1 to point
P2.

Notice that the direction the average
acceleration is not toward the center 0 of the
circle. Angle OP,M is a right angle; L NP,M
is a base angle of isoscoles triangle NP2M
with vertex angle M equal to 0. Therefore
LNP,M = (1/2)(180° 0) = 90° - (1/2)0

and Z 013,N = (1/2)0. Thus as the angular
displacement lapproaches zero, the average
acceleration W/At approaches a position
along PI-70.

Triangle PIOP, of Figure 5-10 is similar to
triangle P2MN of Figure 5-11 since both tri-
angles are isosceles triangles with a vertex
angle 0. Therefore,

P F2M
PP

Av v
As r

where v is the magnitude of the instantaneous
velocity. Solving the expression for ANT results



in

Av = (16s.

Dividing both sides of the equation by At
gives

6v
=

v As

At r
X

At

The ratio As/At in the last equation is the
average velocity of the mass as it moves from
point Pt to point Pg. The ratio Av/At is the
average acceleration of the mass as it moves
from point Pt to point P2. The ratio v/r is a
constant in the equation. The first two state-
ments concerning the last equation give a
picture of average motion. To obtain a pic-
ture of instantaneous motion, it is necessary
to evaluate the average velocity (As/At) and
the average acceleration (Av/At) as At dimin-
ishes and approaches zero as a limit. As At
approaches zero as a limit the everage
velocity will approach a limit that we call the
instantaneous velocittj. As At approaches zero
a3 a limit the average acceleration will
approach a limit that we call the instan-
taneous acceleration. Substituting the instan-
taneous values in the last equation for Av/At
and As/At results in the following formula for
the magnitude of the centripetal acceleration

va = i

Figure 3-It
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Figure 5-12 will help you visualize the
direction of centripetal acceleration. As in
Figure 5-11,

OP2N2 = (1/2) LP,OP2 = (1/2)B
L01.'2/%13 = (1/2) ZPIOP2
.LOP4N4 = (1/2) Z PIOP4

The average acceleration vectors P2N2, 1-7.7g
and FA indicate the direction and relative
magnitude of the average acceleration asso-
ciated with the movement of mass m from
point P1 to P2, P,, and Pt. The closer the
point is to P1, the smaller the ang"lar dis-
placement and the closer the average
acceleration vector comes to being directed
toward the center 0. At the limit the
acceleration is instantaneous and radial (that
is, directed toward the center of the circle).

An expression for the centripetal force re-
quired to hold a mass in a circular path may
be obtained by substituting the value of cen-
tripetal acceleration (v:/r) for a in Newton's
second law formula, F = ma. Then

mv,F = r
where F is the centripetal force in newton's
(Section 5-4), m is the mass in kilograms,
v is the velocity of the mass in meters/sew' lid,
and r is the radius of the circle in meters.

5-3 F:xercises Centripetal Force
1. A metal ball whose mass is 2 kilograms

and whose weight is 19.6 newtons (about
4.4 lbs.) is fastened to one end of a string
1 rw.ter long. Tha other end of the string
is fastened to a fixed point P on an over-
head support. The bail describes a hori-
zontal circle whose center is directly
under P and the string makes an angle of
30° with the vertical. (a) Draw a diagram
of the problem. (b) Show the forces that
act on the ball. (c) Compute the centrip-
etal force, and (d) calculate thl velocity
of the ball.

2. A solid object whose mass is 1 kilogram
and whose weight is 9.8 newtons is placed
in a bucket and the bucket is whirled
through a circle in a vertical plane. If the
radius of the circle is 0.8 meters, what is
the least velocity the object can have at
the top of the path and not fall out of the
bucket?



5-4 Circular Orbits
Measurements are usually made by physi-

cists in a system of units called the absolute
system. In this system, all mechanical notions
are defined in terms of three fundamental
concepts. These are length, mass, and time.
When length is measured in meters, mass is
measured in kilograms, and time is measured
in seconds.

Force is a concept whose unit of measure,
in the absolute system, is derived from New-
ton's second law of motion, F = ma; 1 unit of
force (newton) is that force which will cause
1 unit of mass (kilogram, abbreviated kg) to
be accelerated 1 unit (m/sec2).

The mechanics of several topics to follow
will require the use of a special force called
weight, so it is essential that you know how
the physicist expresses weight. The physicist
expresses weight as mg, or the product of
mass and its acceleration due to gravity. Let
us see why this is done. The formula F = ma
reads as follows when used with absolute
units.

The accelerating force in absolute units
is equal to the product of the mass in the
absolute system and the acceleratior.

When this formula is applied to a falling
body; the weight force W is the accelerating
force F, the mass of the body is m, and the
acceleration of the body is p. Upon substitut-
ing these facts in the displayed statement
you obtain

The weight force in absolute units is
equal to the product of the mass in the
absolute system and g;

Wnewlons = Mktigm/see2.

The value of g st the surface of Earth is
approximately 9.8 meters /see'. Thus a 10
kilogram mass weighs approximately 98 new-
tons at the surface of Earth.

In 1686 Sir Isaac Newton announced what
is now known as Newton's law of universal
gravitation. This law is stated as follows: Each
particle of matter attracts every other par-
ticle with a force that is directly proportional
to the product of their masses and inversely
proportional to the square of the distance be-
tween them. In mathematical form the law
reads

mMF a
R'
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where F is the force of attraction between
two particles whose masses .n'e m and M,
and R is the distance between them.

A spherical body responds to a gravita-
tional force as though its mass is concen-
trated at a point called the center of mass.
TWs point is the center of a sphere if the
mass is uniformly distributed. The distance
R between two spheres is the distance be-
tween their centers of mass.

Newton's law of gravitation as stated is un-
satisfactory for making quantitative predic-
tions because it is a proportionality and not
an equation. The proportionality does show
that the ratio

F
inM
R'

must be a constant G and thus

F = G X M
R2

This constant G, which is now known as the
gravitational constant, has been found experi-
mentally by measuring the gravitational
force between known masses that are a
known distance apart. This was first done by
Sir Henry Cavendish in 1789. The value of
the gravitational constant G as found
by direct measurement i3 6.670 x 10-"
newton (m) When stated with G the

kg=
formula for Newton's law of gravitation is
in a form suitable for use with the abso-
lute units introduced.

Next consider two particles whose masses
are m and M. When the particles are at a
distance RI,

= GalM
RI'

When the particles are at a distance

F3 = GmM
Ri2

hus Newton's law of gravitation enables us
to express the relationship between gravita-
tional force and the distance between two
particles as a proportion;

F, R,'
F2 Ril



where F1 is the force when the distance be-
tween the particles is R, and F, is the force
when the distance is R,.

TO* 5-5

Relative Distance
Between Masses

..,

Relative Force
of it traction

1

_
1

2 Vt
1

10
100

1
100

10,000
1

1,000
1,000,000

Table 6-5 shows how the gravitational
force decreases as two particles separate.

esF0 ti

Distance R

Figure 541

Figure 5-13 shows graphically how the
gravitational force F changes as the distance
R between two particles changes. The graph
is asymptotic to each of the axes; that is, it
approaches but never meets either axis.
Hence, a position of zero gravitational force
is impossible.

The small letter g is the symbol for acceler-
ation due to gravity and it should not be
confused with capital G, the symbol for the
gravitational constant. Acceleration due to
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gravity is not a constant but its value is in-
fluenced by a number of factors. Of these
factors, the distance from the center of Earth
and the surface speed of Earth are respon-
sible for the greatest variations. We will con-
sider the effect of distance. When a mass 7)/

is at a distance R from the center of Earth
it experimes a force F equal to

GmM
R2

This force is the weight force, mg. Hence
mMmg = GR-

2

GMg = ---
R2

This equation shows that g is inversely pro-
portional to the square of the distance be-
tween the center of Earth and the point
where g is measured. For two different els-
tances R, and R, we have

GM
gt

GM
R22

R22

R!'
where g1 is the value of g at a distance RI
from the center of Earth and g3 is the value
at a distance R,.

When an artificial satellite is in a circular
orbit around Earth, the contripetal force re-
quired to keep the satellite in the orbit is the
gravitational force between the satellite and
Earth. The velocity it must have to he
launched into its orbit can Le found by
equating the centripetal force with the gravi-
tational force;

my
GmM

R R'
v

where v is the circular orbital velocity of a
satellite in m/sec., A7 is the mass of the earth
in kilograms, R is the radius of the orbit in
meters, and G is the gravitational constant in
newton (m)

kg'

Weightlessness is a word that has become a
part of our vocabulary in recent years and is



certainly one that is often misunderstood.
The common belief that an astronaunt be-
comes weightless because gravity ceases to
act on him is absurd. A little experimenting
with Newton's law of gravitation will verify
that statement. The nature of weightlessness
was spelled out in a subtle way when the for-
mula for the velocity of a satellite in circular
orbit was derived. If you will review the
derivation you will note that in, the mass of
the satellite, occurred in both members of
the first equation and did not occur in the
expression for v.

This means that the velocity nceded lo
place a mass in a given circular orbit is in-
dependent of the mass! The many free masses
that are a part of a spacecraft are themselves
in circular orbits. They are held there by the
force of gravity. Astronaut John Glenn aptly
described this state of affairs when he pointed
out that he soon learned to let go of his pen
where it was rather than lay it down.
Gravity, or centripetal force, will not move a
mass nearer to the center of Earth when the
mass is traveling in a circular orbit. Under
such a condition, one free mass in a
spacecraft would not exert, a "down"
force on another. This condition is known as
weightlessness.

During the third orbit of NASA's Gemini-4
spacecraft astronaut Edward H. White II
became the first American astronaut to leave
his spacecraft while in orbit. He demon-
strated !n a most spectacular manner the con-
dition of weightlessness and the fact that he
himself was in orbit. White was secured to his
spacecraft by a 25-foot umbilical line and a
23-foot tether line, both wrapped together
with gold tape to form one cord. Because of
his weightlessness astronaut White used a
hand-held self-maneuvering unit to move
about. He remained outside the spacecraft
for a total of 21 minutes.

5-4 Exercises Circular Orbits

1. The diameter of Earth is approximately
8,000 miles. At what distance from the
surface of Earth is your weight only 3/1
of what it is at the surface?

2. What is the value of g at an altitude of
one Earth's radius? Assume the value of
g at the surface to be 32 ft. /sec.'
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3. Compute the mass of Earth in kilograms.
to n (m)G = 6.670 x 10-" new the
kg3 '

radius of Earth is 6.37 X 10' meters, and
g = 9.8 m /sec2 at the surface of 'earth.
Hint: The gravitational force F and the
weight force mg are the same force.

4. The mass of the muon is about 1/80 of
the mass of Earth. The distance between
their centers varies from about 252,972
miles to 221,614 miles. At what point
between Earth and the moon ;s the gravi-
tational force of Earth balaoced by the
gravitational force of the moon when
they are 240,000 miles apart?

5. Show that the velocity required to place
a satellite in circular orbit may be ex-
pressed as Vitt where R is the radius
of the orbit and g is the acceleration due
to gravity at the elevation of the orbit.

6. (a) Compute the velocity required to
place a spacecraft in a circular
equaterial orbit around Earth at an
altitude of 4 83 X 105 meters (about
300 miles). Consider the mass of
Earth to be 6 X 10" kilograms
(about 1.23 X 1025 pounds) and the
equatorial radius of Earth to be
6.37 X 106 meters.

(b) What velocity would be required
for a similar orbit around the moon?
The mass of the moon is 1/80 the
mass of Earth and the radius of
the moon is 1.740 X 10' meters
(about 1081 miles).

7. An experimenter measured the value of g
by measuring the acceleration of a car
as it coasted down each of several wires
inclined with respect to the horizontal.
The following data was collected:

Acceleration
in ft/aeci

Angle of
Inclination

3.16 15°
6.08 30°
9.31 50°

11.43 70°

(a) Make a graph of the acceleration and
the sine of the angle.

(b) Use your graph to determine the
value of g.

(c) Was the experimenter on Earth,.
Mars, or the moon? The value of g



at the surface of Earth is 32 ft/see2,
on the surface of Mars it is 0.38 of
what it is on Earth, and on the sur-
face of the moon it is 1/6 of what it
is on Earth.

5-5 The Earth-Synchronous Satellite
The period of a satellite is the time required

for a satellite to move once through its orbit.
If the orbit is circular with radius R, then
the period I` is simply the distance MI
around the orbit divided by the velocity v;

T 21-17,

When ftiM/R, the velocity of a satellite in
circular orbit, is substituted for V, we have

0WT2 = 4

GM

ArR2T = 1C 4
GM

where T is the period of the satellite in
seconds, U is the radius of the orbit in meters,
M is the mass of the earth in kilograms, and
G is the gravitational constant in newton
(m) /kg'.

An Earth-synchronous satellite is a satel-
lite whose orbital motion is synchronized
with the rotation of Earth. The satellite has
a circular orbit and a 24 hour period. If the
orbit of the satellite is in the equatorial plane,
then the position of the satellite relative to a
fixed point on Earth is fixed; that is, an
Earth-based observer would always see the
satellite over the same spot on earth. If the
orbit is inclined to the equator, the position
of the satellite will not appear to an observer
on Earth to be fixed. Rather the satellite will
appear to oscillate north and south in a
figure-eight pattern but stay close to the same
longitude.

The radius of the orbit required to achieve
synchronization can be found by solving the
equation

1.2R2T2 = 4

for R;
GM

sedRI
R

4a1

For an orbit in the equatorial plane Is
24 X 60 X 60 86,400 and
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R '11(86,400)4 (6,67 X 10-19 (6 X 1024)
4(3.1416)2

- as/75.62 X 102'

This value for R, the distance from the
center of Earth to the satellite, is about
4.229 x 102 meters; that is, about 26,270

Slice the equatorial radius of Earth
is 3,963 miles, an Earth-synchronous satellite
in the equatorial plane must orbit at an alti-
tude of about 22,307 iles. The velocity re-
quired to place the satellite in the synchro-
nous orbit is computed as follows:

A/GM 11-(8.67 X 10-11) (6 X 1019v
4.229 X 10'

8076 rn/sec.

A veloeity of 3076 miser: is equivalent to
10,089 ft/see and to 6879 niiihr.

Communication channels in the United
States have been increased considerably in
recent years by the use of microwave radio
transmission. Vast distances are linked by
microwave relay stations. These stations re-
ceive signals and, after suitable amplifica-
tion, pass them along a line of sight distance,
or from horizon to horizon. Line of sight
transmission is one factor that limits the dis-
tance between stations, so microwave relay
stations are located on high towers or
mountains.

There is an increasing need for world-wide
communication channels so microwave radio
transmission is being experimented with for
this purpose. The principle is simple. Intelli-
gence from a communications system is fed
into a powerful transmitter. It sends a line of
sight microwave signal to a satellite in orbit.
After suitable amplification, the satellite
passes along a line of sight transmission to a
receiving station several thousand miles
away. The output of the receiving sta-
tion is fed into the receiving communications
network.

On July 26, 1963, NASA launched Syn-
com II, an Earth-synchronized communica-
tions satellite. It was placed in an elliptical
trajectory and carried to an altitude of
about 22,300 miles by a three-stage Delta
rocket. Syncom II was then propelled into a
circular orbit by a propulsion unit of its own
called an "apogee kick" rocket motor. The
satellite was properly positioned in its orbit



for radio relay duty by ground command
using the thrust of hydrogen peroxide jets.
The orbit of Syncom H was inclined 30° to
the equator so its position to an observer on
Earth was not fixed. It stayed close to the
same longitude but moved north and south
in a figure-eight pattern.

On August 19, 1964, NASA placed Syn-
com III in a true equato.ial Earth-syn-
chronous orbit. This satellite's position rela-
tive to Earth remains fixed. Three such
satellites spaced 120 degrees apart can cover
all areas of the world by line of sight radio
transmission except a small portion of each
polar region.

5-5 Exercises The Earth-Synchronous
Satellite

Use these values in the exercises:
G = 6.670 X 10-" newton (m)/kg2

Radius of Earth = 6.37 x 10° meters
Mass of Earth = 6 X 1024 kilograms
Mass of moon = 1/80 mass of Earth
Radius of the moon - 1.740 x 106 meters
Period of the moon = 29 days, 12 hours, 44

minutes, and 3 sec-
onds

1. Calculate (a) the size of a moon-syn-
chronous orbit and (h) the velocity re-
quired for a spacecraft to be in such an
orbit.

2. Echo I was placed in an elliptical orbit
with a perigee of 812.1 miles and an
apogee of 906.6 miles, Its period was
118.3 minutes. What period would
Echo I have had if the desired circular
orbit at 900 miles (1.449 X 10' meters)
altitude had been realized?

3. Kepler's first law for planetary motion
states that the orbit of e- eh planet is an
ellipse with the sun at one of its foci.
Kepler's third law states that the squares
of the periods of the planets are propor-
tional to the cubes of their mean dis-
tances from the sun. Use Newton's laW
of gravitation

= GmMR'
to show that 'lees third law propor-
tion also holds tie for circular orbits.
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5-6 The Escape Velocity
Getting a spacecraft away from the Earth

involves work and the imparting of energy to
the spacecraft. This section will develop the
concepts of work and energy as they pertain
to the problem of determining the altitude to
which a sa llite will rise after launch.

The scalar product of two vectors is defined
as the product of their magnitudes and the
cosine of the angle formed bx them. The
scalar product of vectors A and B is expressed
as

AB = AB cos 0

and is read "A dot B equals AB cosine theta"
where A and B are the magnitun,s of vectors
X and I; respectively and 0 is the angle
formed by them. Vilien you find the scalar
product of vectors A and you are finding
the product of the magnitude of one vector
(either one) and the projection of the other
vector along the first vector (Figure 5-14).

Acos0

B (A cos 0) AFB = A 01 cos 0)

Figure 5-14

Work is done on a mass when a force
causes the mass to be displaced. Computing
work is an example of finding a scalar
product. Work, a scaiar quantity, is defined
as the product of force and displacement, two
vector quantities.

W = Pg = FS cos 0
where W is the work done in joules, is he
steady or average force in newtons, and S is
the displacement in meters. Observe that
FS cos 0 reduces to FS when the angle
formed by the vectors is 0°. Also note that
FS cos 0 = 0 when the angle formed by
the vectors is 90°.

The work problems with which we &ill be
concerned are those where a force F acts
along the line of displacements and angle
0 is zero. The force may or may not be steady.



If the force is known to be steady or is the
average of a variable force, the work can be
computed using the formula W FS. If the
force is variable and its average is unknown,
the work must. be computed by o.ner means.

s

Dispiccemont s

Figure 6-15

2

Think of a rectangle whose width is ex-
pressed in units of displacement, whose
!-ngth is expressed in units of force, and
.hose area is expressed in units of work.
Figure 5-15 is a force-displacement graph. It
shows how the force used to propel a mass
varied during the displacement. The work
done during the change in displacement
se -- el is measured by the area which is
bounded by the graph of the force, the dis-
placement axis, and the lines s s, and
s =s.

Knergy is the capacity for doing work. A
stretched spring. for example, is said to
possess energy because it can raise a mass
when the lower end of the spring is released.
A falling pile hammer is said to possess energy
because it does work on the pile as it is
stopped. The quantity of energy possessed
by a body is equal to the amount of work that
can be derived from R. It is almost needless
to say that work and energy are measured in
the same units.- Just as energy gives rise to
work; work gives rise to energy. The amount
of energy imparted to a mass is equal to the
amount of work done on it.
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Raising a mass to a higher elevation re-
quires work so the energy of the mass will be
increased by the amount f work done.
Energy derived in this fashion is called
gravitational potential energy, If a body of
mass m is moved a short distance with a
steady speed from the surface of Earth to an
elevation h, the force required will be its
weight force mg and the work done will be
mgh. The gravitational potential energy of
mints m with reference to the surface of Earth
should, therefore, be expressed as

Er Q mgh

where Er is the gravitational potential energy
in joules, m is the mass in kilograms, h is the
vertical displacement in meters and g is
9.8 m /secs.

One assumption was made in arriving at
the statement Ep mgh. It was assumed
that g would be constant for the problem.
-rl+is assumption is acceptable only when the

'ical displacement h is small. If h is a large
,,,.;placement into space, the value of g will
change significantly so Ep = mgh will not be
a true statement of the gravitational poten-
tial energy of mass m. How is the work and
hence the gravitational potential energy of
a mass computed when it is raised to a height
of several hundred miles above Earth? This
will be explained with the aid of Figure 5 16.

I

0 *
cam, I

Fiore 5-1$



Consider a small mass m at a distance x
from the center of Earth (mass M). Let It be
the distance from the center of Earth to soms
position in space. The gravitational force F
and therefore the force required to move the
mass m from the surface of Earth (x Q r) to
the position in space (x Q It) decreases
steadily as x increases. In other words, at
x a r this required force is mg where g
9.8 misec.2 As x increases from r to R, g de-
creases and the force mg decreases as shown
in the graph in Figure 6-16. The work required
to move the mass m from the surface of Earth
to a distance R from the center of the Earth is
measured by the area that is bounded by this
graph, the x-axis, and the lines x = r and
x Q R. We can estimate this area. When the
area is computed exactly using the equation

Arq, MF
x2

for the greph, the area and thus the work NV
may be expressed by the formula

1 1W a Graf();

Thus the gravitational potential energy of a
mass m at a distance It from the center of
Earth is

Er GmMq 11)

where Er is the potential energy in joules
when G, m, Df, r, and It are expressed in the
absolute units introduced in this chapter.

How much gravitational potential energy
does mass m have if R is allowed to increase
without bound? Does the energy increase
without bound? Consider the expression

GmI.t (1 1 ) as It increases without
r

bound. As R becomes larger and larger,
ft

becomes smaller and smaller, and the expres-

sion GniM (1 ) is getting nearer and
ft

nearer to CmM (r1 .- 0). Therefore the po-

tential Energy of mass m *approaches GM

According to the work-energy principle,
if work is done on a mass to increase its
velocity, the energy of the mass will increase
by the amount of work done. Energy ac-
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quired in this fashion is called kinetic energy.
Imagine a steady force 1 that acts on a body
of mass m for a period of time t. This impulse
(Chapter 4) causes the momentum of the
mass to change by an amount my( mv,
where v, is the initial velocity of the mass and
yr is its final velocity. According to the work-
energy principle
talk = Work on mass m

tiEk Q Fa g= mas
vot at'

ziEk ma (v,t + 4 ate)
tiEk n mav,t + # malt'

vf v.t
v,1 2v,v. + v,'

to

m(vi v.)vet

m(vio 2v fv. v.1)0

mv, ev. mv.,2 + t trim mvfv
+ mvol

iSEk mv,,I

The last equation shows that mass m had an
initial kinetic energy of i mv,,2 and a final
kinetic energy of my,'. The general equil-
lion for the kinetic energy of a body is

Ek 'my*
where Ek is the kinetic energy in joules., m
is the mass of the body in kilograms, and v
is the velocity of the body in misa_c.

In the absence of outside forces other
than gravity the sum of the kinetic and gravi-
tational potential energies of a body is con-
served; that is, remains constant. When a
body falls freely in k vacuum its loss of gravi-
tational potential energy reappears as an in-
crease in kinetic energy, but its total me-
chanical energy remains constant. When a
body coasts vertically upward (in a vacuum)
the body's kinetic energy is gradually trans-
formed to gravitational potential energy, but
its total mechanical energy remains constant.
Conservation of mechanical enero will be
used to predict the velocity a satellite must
have to escape from Earth.

A launch vehicle which is composed of
three stages carries a satellite of mass m to a

a

a'

%
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distance RI from the center of Earth. Suppose
that the velocity acquired by the satellite
during this journey is v. The total energy of
the satellite after launch is the sum of its
kinetic and gravitational potential energies.
This is expressed by the equation

1 - imvi1

r RI

How high will the satellite go if allowed to
coast upward? Like a baseball thrown into
the air, the satellite will he decelerated
(slowed down) by gravity as it soars upward
to its peak at a distance RI from the center
of Earth. In going from distance R1 to dis-
tance H, the satellite's change in potential
energy is equal to its change in kinetic energy.
The energy of the satellite is conserved. Using
this as our starting point, distance H, is com-
puted as follows:

.Er

GrnM(F1 - 111-) GmMO - -11 )

inw' - 0
GinM GinNI GmM GmM

r imvi
GmM Gin61

Irnv*

2GNIRI 2GMR,

2G/tIllt 2GNIRI

201111It, - -_
2GM

Ri
RIO

I 2oli1

Observe that the mass of the satellite does
not affect the answer. All satellites with a
velocity v away from Earth and at a distance
Iti horn the center of Earth will coast up-
ward until they are a distance R, from the
center of Earth.

A satellite increases its gravitational poten-
tial energy as it increases its distance from
the !enter of Earth. However, we have seen
that the gravitational potential enert., of a
rnass m cannot exceed GmM/r. A satellite
will escape from Earths' gravitational field if
the satellite's kinetic energy at burnout is
enough to increase the potential energy of

138

the satellite to at least Gm 61/r. If burnout
for a satellite occurs at a distance It from
the center of Earth, then the minimum veloc-
ity v. needed for the satellite to escape
Earth's gravitational field ma) be found as
follows:

AEr AB k

G [GmM - 11)] = Puy.: - 0

mitf m mMG - G---- = Iravci
r r It

Gm61 ,tray,-

riGIt Mv. =

Observe that the escape velocity at a given
distance It from the center of Earth is the
same for all satellites. Also note that the
escape velocity diminishes as distance R
increases.

6-6 Exercises The Escape Velocity
Use these values in the exercises:

G = 6.670 x 10-11 new )n (m) /kg!
Radius of Earth = 6.37 X 10' meters
Mass of Earth = 6 X 10" kilograms

1. A spacecraft of mass 8800 kilograms
(9.68 tons) is in a circular orbit at an
altitude of 6.46 x 10' meters (400
miles). To prepare for docking, the
spacecraft must decrease its alotude
16,160 meters (10 milts) and remain
in a circular orbit. How much v:ork In
joules must retrorockets do on the
spacecraft 4o make this maneuver?

vi2. (a) What limit must approach in
the equation

R Ri

RIO
2GM

ii lit is to hecome infinitely large?

(b) Set ll'vl equal to this limit and com-

pute the value of v required for lit
to become infinitely large.

3. Compute the escape velocity for a space-
vehicle at (a) an altitude of 4.845 X 10'
meters ;800 miles) and (b) at an altitude
of 1.292 X 104 meters (800 miles).



4. A satellite is in a circular orbit with a
period of 110 minutes. How much addi-
tional velocity must the satellite be given
to escape from Earth?

5-7 Satellite Paths
In Sections 5-4 and 6-6 we considered

primarily the mechanics of circular orbits.
We will now consider more general orbits of
satellites; that is, orbits that are not circular.
It will be assumed (1) that the satellite moves
under the action of a central force, (2) that
this force acts from a fixed point, and (8) that
the motion of the satellite fs in one plane.
The paths that a satellite may assume at
burnout are illustrated in Figure 6-17. The
path that is assumed depends upon the satel-
lite's velocity t.. burnout. As a first step
toward undQrstanding the motion of a satel-
lite along these paths, we will review the
geometry of the paths that is pertinent to our
problem.

The path of a point which moves so that
its distance from a fixed point is in a constant

Note t
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ratio to its distance from a fixed line is called
a conic section (Section 1-8), or simply a
conk. The fixed point F (Figure 6-18) is
called the focus of the conic, the fixed line the
direclrix, and the constant ratio nius is
the eccentricity of the conk.

Figure I-18

The conic sections fall into four classes
Recording to their eccentricities. These classes
are for the parabola, hyperbola, ellipse, and
circle. Broken lines have been used to draw
the ellipse and hyperbola in Figure 4-18. The
focus and the d;rectrix DD' is coma on to
all three conics. The eccentricity e for each
class may be identified as follows:

parabola, e 1

hyperbola, e > 1
ellipse, e < 1
circle, e 0

The definitions of the ellipse given here and
in Section 2-4 are equivalent alternative
definitions.

The motion of a satellite in a circular path
is described by a velocity whose magnitude is
constant but whose direction is continually
,..hanging. The satellite experiences a stAady
acceleration in the direction of a tentral force.
If a satellite is moving along the path of a
conk that is not a circle, both the magnitude
and direction of its velocity changes con;



tinually. The satellite is accelerated by a
central force whose magnitude and direction
changes continually. It is almost needless to
say that the motion of a satellite along the
path of a conic is very compVx, and it is
only by the use of higher mathematics that
an equation of the motion can be derived.

For years you have used the formula for
the area of a circle without understanding
completely its derivation. We shall use Ein-
stein's E me' without having the faintest
notion as to how it was derived. Should we
close this chapter and forget about elliptical
orbits because we cannr. understand the
initial equations used to deri algebraic ex-
pressions we can all understand? You are
asked to accept two important equations that
describe the motion of a satellite moving
under the action of a central force. These
equations are:

1 GM + c cos 0

at Ve Tar
The symbols will be explained as we consider
the equations.

S-110

Figure 649 illustrates a satellite of mass
m moving under the action of a central force
P. This forte is directed toward the point 0

and is the gravitational force Gad. The
position of the satellite is described by
polar coordinates (Section 2-3) and R.
the magnitude of the radius vec'or OS. The
angular velocity (Section 44) of the satel-
lite at that instant is

The two equations just given to you
describe the motion of the satellite. The letter
C in these equations is a constant obtained
from the solution of the initial equations
setup to describe the satellite's motion. The
value of C must be found before either equa.
tion can be fully intoweted. This is done by
setting 0 0° and launching the satellite
parallel to Earth as illustrated by Figure
5-20. The distance from the center of Earth
to the satellite when 9 a 0° is Ito; the linear
velocity of the satellite is vo: and the angular
velocity of the satellite is too. Since cos 0° 1,
the first equation becomes

1 GM
R. R.1,00"

GM
C

Ito It 0,0.1

fAITH

Pivot S-tO

POWDtD FLIGHT

In Section 4 -8 the relationship of linear
and angula Aocity was shown to be v
Thus

v., et

We 12

C

wont

vat
R.'

1 °MI
D V;

11,1

C
GM

R otv.i

The second of the two tmumed equations
reads as follows for the initial (0 s. 0°) condi-
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Lions of flight:

CR Owe'
e

After substituting fcr C and wet we get for the
eccentricity

Rory GM

)
R04 Vo'--

Revel ROI

GM

eRave - GM-
GM

Th-_, class of the orbit can be determined by
substituting values for v,, the velocity of the
satellite at burnout. If the escape velocity

ILLGM. is substituted for v,,

2GM - GM
GM

2GM - GM
GM

1

The eccentricity obtained is the eccentricity
for a parabola! The paths listed below can
also be predicted by substituting the velocity
with which it is identified.

If ve > 12GNI e > 1 path is hyperbolic.

If ve < t2GR , e < 1 path is elliptical .

If ve
'

e 0 path is circular.
'ft7

Figure 6-17 shows graphically the result
for each case. When the burnout velocity ve

fitIMis less than but greater than

the satellite will go into an elliptical orbit at
perigee (Figure 6-17). If the burnout velocity

is less than e" the satellite will still gothan -

into an elliptical orbit but the point of burn-
out will be at apogee (Figure 6-17). This be-
comes apparent when values smaller than

IT-- are substituted for v, in the eccen-

tricity equation. The result is a negative
value for e, an indication that the center of
force has shifted to the other focus of the
ellipse. If the burnout velocity falls too far
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below AIGM, the elliptical path will intersect
Re

Earth and the satellite will not go into orl,it.

DIgECTRIX

6-11

It is convenient to express the motion and
energy equations for a body moving in an
elliptical path in terms of a, the semitnajor
axis rather than in terms of e, the eccentricity.
Figure 6-21 will be used to determine the re-
lationship of e and a. Line segment VIVI is
the major axis of the ellipse and has length
2a. Line segment 0, is the minor via and
has length 2b. These two axes intersect at 0,
the center of the ellipse- The distance from
focus F to the center of the ellipse is c. By
definition

VA
e IPS

Ft web
for each point S of the ellipse. In particular
at V and V,

- - MI)
+ e(rep + (1/11)

where A, me WO IA%

c aaF
d

Rewriting the equations with a. c, and d
results in

a + c e(d + a)
a - c e(d - a)



After removing parentheses and subtracting
the second equation from the first we obtain

C Iga RC

ORBIT

POWERED FLIGHT

Awe 5-tt

Figure 6-22 illustrates a spacecraft S going
into an elliptical orbit. The distance from the
cents. :If the orbit to the center of Earth is

OF a e

The distance from the center o! Earth to the
spacecraft 13

RI .= a a e

e
a Ho

a
After substituting this value for e in the
eccentricity equation we have

a 11, Rohl GM
a GM

aGM R,GM aRovot aGNI

2GM G)tV's

Vol

R a

Ghi (4;
the equation for the motion of the spacecraft
in its elliptical orbit. Remember that v, and
12, are simply the instantaneous magnitudes
of v and R when the satellite is at perigee.
The equation

vt GM (2-

express the velocity v of the spricecraft at
any distance R in meters from the center of
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Earth, where v is the velocity of the satellite
in m/see..., M is the mass of Earth in kilo-
grams, (3 is the gravitational constant in
newton (m)

. and a is the sernimajor axis of

the orbit in meters.
The time-rate of change in the area swept

out by the radius vector at, the satellite moves
through its orbit is called the areal relocity,
The ratio of the area of the ellipse to the areal
velocity defines the period of a satellite in an
elliptical orbit. The period of an Earth satel-
lite in an elliptical orbit is computed using
the formula

,, Was
GM

where T is the period in seconds, M is the
mass .f Earth in kilograms, a is the semi-
major axis of the orbit in meters, and G is the

gravitational constant in neyto n (m).
kg'

The total energy of a satellite in an
cal orbit is the sum of its kinetic and gravita-
tional potential energies. The kinetic energy
may be four.d as follows:

(2 1)vt GM

(1 /2)m v'

(1/2)nt vt r GmM

(1/2)m GM (k2
a

GmNt (1 1

The gravitational potential energy is

E, GmM

The total energy is therefore

E GmM ( + GmM (-11- 1)
GmM GmM GmM GmM

11 2a r R

E = GmM (1)

where E is the total energy in joules, G is the

gravitational constant in newton (m) m
kg'



the mass of the satellite in kilograms, M is
the mass of Earth in kilograms, r is the radius
of Earth in meters, and a is the semimajor
axis of the orbit in meters. The energy equa-
tion (1) shows that the total energy of a satel-
lite in an elliptical orbit is a function of only
the semimajor axis a and is independent of
the shape of the orbit: This is illustrated
graphically in Figure 5-23. The three orbits
have the same semimajor axis a. Hence
satellites in these three orbits will have the
same energy.

3

Figure 5 -U

The velocity equation

vi
GM

shows that a satellite in an elliptical orbit has
the pettiest velocity when R is least; that is,
when the satellite is at perigee. At apogee the
distance R is maximum so the satellite's
velocity is minimum. The mathematical re-
lationship of these two velocities is interest-
ing. Figure 6-2Z shows that distance K for
perigee is a ae. For apogee, the distance R is

ae + no + (a ae)

or simply se + a. When these distances are
substituted in the velocity equation you
obtain

yrs GM ( r'12 )
*. GM

(a ae)1

G ( 2 1M
a

GNI [2a
_ (se + a)]
(se + a)a

v

r2a ae)1
- *Oa

vat

GM
[2a (ae

(ae + a)a
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2a a + ae
A

(ao + a)a
(a ae)a 2a ae a

+ ae a + ae
ac

X Ile

1111
(a + ae):
(a . [Ler
a + ae a (1 + c)

ss_
a ae a (1 e)

v, 1 +e
v, 1 e

where yr is the velocity at perigee, v, is the
velocity at apogee, and e is the eccentricity
of the orbit.

5-7 Exercises Satellite Paths
Use these values in the exercises:

G 6.670 x 10- newton (m)
kg'

Radius of Earth 6.87 X 101 meters

Mass of Earth 6 X 10" kilograms

1. Show that the eccentricity of an elliptical
orbit may be expressed as

v, 72.
vr + v,

where v,, is the velocity of the satellite at
perigee and v, is the velocity at apogee.

2. Find the sum of the kinetic and gravita-
tional potential energies of a satellite in
a circular orbit of radius a. How does this
energy compare with the energy the
satellite would have if it was in an ellipti-
cal orbit of semimajor axis at

3. In Chapter 4 linear momentum was de-
fined as the product of mass and linear
velocity. This was expressed as The
momentum of a body moving in a curved
path is called moment of momentum, or
angular momentum. Its magnitude is the
product of the magnitude of the linear
momentum and the perpendicular dis-
tance between the line of motion of the
body and the center about which the
body moves. This is illustrated by Figure
5 -24.

A satellite S of mass m has a tangen-
tial (linear) velocity V when it is at a dig-
Lance R from 0, the center of force. The



figure 5-14

magnitude of its linear momentum at
that instant is my and the magnitude of
its angular momentum is mvr.

When an Earth satellite h, at throgee
and perigee, the distance r in the expres-
sion mvr is the distance from the satellite
to the center of Earth. This distance
may be expressed in terms of a and r.
Write expressions for the angular
momenta at apogee and perigee. Equate
these expressions and reduce to lowest
terms. What do you observe? What con-
clusion might you draw?

4. On January 25, 1964 NASA launched
Echo 11, an orbit - inflatable plastic bal-
loon to test its ability to reflect radio sig-
nals. At perigee this -atellite is 1.037 X
104 meters (642 miles) from the surface
of Earth while at apogee its altitude is
1.318 x 104 meters (816 miles). Compute
(a) the velocity of this satellite at apogee
and perigee, (b) the eccentricity of its
orbit, and (c) the period of this satellite.

5-8 Orbit deltrintaatIon
Computing satellite orbits by theoretical

methods is only thl beginning of orbit de-
termination. The analysis of data obtained
from satellite tracking stations has revealed
that there are a number of environmental
factors which cause perturbations (changes)
in orbits. Some of these factors are:

(1) atmospheric drag
(2) atmospheric bulge
(3) variable atmosphere
(4) Earth's pear-shape
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(5) radiation pressure
(6) the gravitational force due to

the moon and sun.
The drag effect of the atmosphere occurs

primarily in the neighborhood of perigee.
This causes the satellite to lose energy which,
in turn, results in a decrease in the orbital
period and the apogee height. The formula
for the period of a satellite in an elliptical
orbit shows that the semi-major axis of the
orbit will decrease if the period of the satel-
lite decreases. Figure b -26 illustrates the drag
effect. Using orbital data, it was found that
the atmosphere actually bulges on the side of
Earth that faces toward the sun. In addi-
tion, it was observed that the atmospheric
density was not uniform for a given altitude.
There was a difference in the density of the
air on the dark and light sides of Earth. There
was even some variation with longitude and
latitude. It was alsc observed that solar
activity caused significant changes in at-
mospherie density.

Figwre S-05

The pear-shape of Earth causes small de.
viations in the orbit of a satellite. The "out-
of-roundness" results in increased accelera-
tions and decelerations as the satellite
approaches and recedes from the bulge
respectively.

The pressure of radiation on a satellite is
small and may seem negligible but acting
over a long period, however, it does produce a
detectable perturbation, even on satellites of
ordinary mass. The effect on a low-mass satel-
lite such as an Echo satellite is quite signifi
cant. To understand the pressure of radiation
one must look to the nature of radiation. In
many experiments, radiation behaves as
though it is propagated as a wave, so we
describe radiation in terms of wave velocity,
frequency, and wavelength. These three
properties have the relationship

C = fx
where C is the velocity of the radiation in
free space, f is the frequency of the wave, and



X is the wavelength. In other experiments,
radiation behaves as thuugh it is propagated
through space as discrete bundles of energy
called photons. A photon of energy is repre-
sented by

E hf
where E is the energy of a photon in ergs; h
is Planck's constant; that is, 6.623 x 10.3'
ergs (sec); and f is the frequency of the radia-
tion. This dual nature of radiation is one of
the mysteries of science. A photon has no
mass at rest but it does have a mass when
moving and momentum. The momentum of

a photon is 12 where h is Planck's constant

and X is the wavelength of the radiation.
It would seem that the moon and sun are

too distant to cause perturbations of a small
satellite dose to Earth. Such is not the case,
however.

Because of the perturbations in a satellite's
orbit, radar tracking systems are employed
to gather orbital data. This data is fed into
high speed computers and the trajectory of
the orbit is computed. Orbit determination
is so critical for manned spaceflights that
eacI orbit trajectory must be determined
within seconds of the time when the space-
craft is actually in orbit. NASA's radar track-
ing system for Project Mercury was capable
of obtaining ten complete sets of measures of
range, azimuth, and elevation each second.
The data for the computed orbits lagged be-
hind the data for the actual orbits by less
than a minute.

Computations by digital computers are
considered in Chapter 6. Such computations
are essential for m, 1 of the problems of
space scientists and engineers.
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DETAILED SOLUTIONS FOR QUESTIONS ON SPACE MECHANICS

Question 5-1-1
The time it took the car to travel from the
rest point to the first impact mark thereafter
is extrapolated by projecting the displace-
ment -time graph to zero. This time is
approximately 0.04 seconds.

-0.04 0.1

i t in seconds
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Question 5-1-2

The relationship of a and t must be deter-
mined by trial and error. Since the graph of
question 5-1-1 appears to be a parabola,
the first choke would be to graph S as a func-
tion of V. Time t should now include the
time extrapolated from the graph of question
5-1-1. The graph obtained shows that

.1

s a V. Hence -- = k, or a = kV. The con-
V

stant k is determined by dividing a by V.
The constant k turns out to be about 299,
so equation a = 299V essentially fits the
graph.

30

25

20

15

10

S

in cm.
t

in sec.
to

in 10-i sec'
0.48 0.04 16

2.40 0.09 81

6.86 0.14 196

10.80 0.19 861

17.80 0.24 576

26.20 0.29 841

a k
cm /sect

0.48
800

2.40
81

296

5.86
Fif 298

10.80
1r
17.30
576

25.20
841

299

300

1 1 1 1 1

100 300 400 SOO TOO

It In 10- I tee/
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800

1

BOO

AVG. -299
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Question 5-1-3 Question 5-1-4
The approximate instantaneous velocity of
the car at 0.14 seconds from rest may be
found using the formula s = 299t2. The in-
stantaneous velocity of the car is essentially
equal to its average velocity for a very short
period of time where 0.14 seconds is the ini-
tial time for the period.

Initial Value New Value
of t of t At

0.140 0.141 0.001

Initial Value New Value
of s of s As
5.860 6.944 0.084

As 0.084V = - 84 cm/sec
At 0.001

Question 5-1-4
Question 5-2-1

160-

140

120

E
V
c. -

.Z`

1 60

nL

AA

20

Time at

Time
Interval 4t As

Middle
As of Time-

v At Interval
0-0.05 0.05 1.92 38.4 0.025

0.05-0.10 0.05 3.45 69.0 0.075
0.10-0.16 0.05 4.95 99.0 0.126
0.16-0.20 0.05 6.60 130.0 0.176
0.20 -0.25 0.05 7.90 168.0 0.225

The acceleration of the c,..r is the slope of the
velocity-time graph.

175 - 23 162
Slope = - 608 cm /sect

0.25 0.25

Question 5-2-1
The estimated area under the graph (see
graph) is 24.75 centimeters as compared to
24.72 centimeters, the displacement of the
car as indicated by the data of Table 5-1.

V=158

A = 1/2 bh

A 1/2 (0.25) (175 - 23) = 19.0 cm.

A = bh
A = (0.25) (23) = 5.75 cm.

1

Total Area
24.75 cm.

0 10

rime t in seconds
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Question 5-2-2
(a) V, = Vo + at

22 = 88 lot
10t = 66

t = 6.6 seconds
(b) s Vot + 1at'

s 88(6.6) 1(10) (6.6) (6.6)
a 580.8 217.8
a 363 feet

Question 5-2-3
(a) 8 ° Vat 1at,

V0 0 itbody falls freely from rest
1at'

a 1(32) (12) = 16 feet
a 1(32) (3') 144 feet
s = 1(32) (5') 400 feet

(b) Vr = Vo + at
Vo = 0
Vf = at
V1 = 32(1) = 32 ft/sec.
VI = 32(3) = 96 ft/sec.
Vf = 32(5) = 160 ft/sec.

Question 5-2-4
(a) V/ = + at

Vf = 0 at the peak
0 = 96 32t

32t = 96
t = 3 seconds

(h) a = V0t + iat'
96(3) 1(32)

a = 28a 144
s 144 feet

(c) a = Vat + lat'
80 = 96t i(32)t2
80 = 96t 16t2
16t2 96t + 80 =

tl 6t + 5 =
(t 5)(t 1) =

t 1 =
t=
5 =
t

(32)

0
0
0
0
1 second after pro-
jection
0
5 seconds after
projection

Question 5-2-5
V, Vo + at s Vot + lat'

square both sides of equation multiply by 2a
V(' = Vo2 2V0at + a2t2 2as = 2V0at + a2t2

Subtract the second equation from the first
V12 = Vo2 2Voat + a2t2
2as = 2Voat -F a2t2

V12 2as V02
V02 + 2as

Question 5-3]
(a) and (b)
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(c) In the case of a :30°, 60° right triangle; the side opposite the 60° angle equals one-half the
hypotenuse C times 43.

iC 4a = 19.6
C 45 - 39.2

39.2 =39.2 Nia
3

C = 22.63 newtons
The sie:y opposite the 30° angle equals one-half the hypotenuse

F. iC
= (22.63)

F, = 11.32 newtons
An alternate method

tan 30° F.
19,6

F. = 19.6 tan 30°
F, = 19.6(0.67736)
F. = 11.32 newtons

(d) The tr:angle formed by L, h, and r is a 30°, 60° right triangle. The circle has a ralius r
equal to one-haif the hypotenuse L.

L = 1 meter
r = 1jL = meter

F. = r

Ar = F r

111.32(0.6)V =
2= 42.83

V 1.68 .n/sec.

.luestion 5-3-2
'he centripetal force needed to keep the 1 kilogram mass in the circle while overhead
ordinarily

the weight force ± the down force of the bucket
of the mass against the mass

kt the least overhead velocity
the weight force = centripetal force

of the mass
mV2

mg = =

V = Vgr = V9.8(0.8)
V = 0.84
V = 2.8 m/sec.
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Question 5-4-1
F',

F. R,'
W R,'

INV (4000) 2
4 R,'
3 (4000)i

R22 = 4(4000)' 64 X 100
3

8 X 103 8 x 102 0;:z
4.618 x 10' miles

V
R2 -

3

R2 4618 miles
At an altitude of 618 miles your weight is -I of what it is at the surface of the earth.
Question 5-4-2

Question 5-4-3

g, 11.22

T1?
32 (8000)'
g; (4000)'

32(4000) (4000)
g2

(8000) (8000)

g, = 32 = 8 ft /sec'
4

F = G mM

The gravitational force F on a small mass m at the surface of the earth equals mg.
mMmg = G

Question 5-4-4

M=
G

M = (9.8) (6.37 X 106)2 3.98 x 101'
6.670 X 10-11 6.670 X 10-"

M 5.97 x 102' kilograms (6.57 X 10" tons)

M =80m
R = 240,000 r

F = G m'M F = G Inim
RI r2

ri MiM r, 1111111
ur

R2 r2
Gm'Mr2 = Gm'mR'

Mr' = mR'
M = 80m
R2 = (240,000 -

80mr2 = m(240,000 -
79r' + 480,000r - (240,000)' = 0
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-b 4acX =
2a

r ( -4.8 x 105) ± 11(4.8 X 1093 + (4)(79)(2.4 X 105)3
2(79)

r (-4.8 x 10') ± 111843 X 1010
168

r (-4.8 X 103 ± (42.9 X 10')
168

r 24,100 miles
216,900 miles

Question 5-4-5
The centripetal force required equals the gravitational force, or the weight force mg.

VI mM = mgF °=
m

= =F
R*

mg
mV

V' = gR
V= AfgR

Question 5-4-6

(a) V =
Gli M

R

V - 11(6.670 X 10-1) (6 x 10")
6.853 x 108

1140.02 X 10"
V 'Az V58.4 X 106

6.853 X 10°
V ;....-: 7,640 m/sec. (25,059 ft/sec or 17,083 mi/hr)

(b) V - Gj M

N R
VAl (6.670 X 10-") (6 X 10")

,^.-.;

80(2.223 X 10°)
li 40.013

V ::::.
2 X 10

r..--- V2.25 X 10°
177.8 X 10°

V 1,500 m/sec. (4,920 ft/sec or 3,354 mi/hr)

Question 5-4-7
(a) a

in ft /sec' Angle Sine of angle
3.15 15° 0.2688
6.08 30° 0.5000
9.31 500 0.7660

11.43 700 0.9397
(b) The graph shows that a a sine of the angle. Hence g is the acceleration when the sine of

the angle is 1.0000 (angle equals 90'). g turns out to be approximately 12.20 ft /sec'.
(c) Mars g at surface of Mars = 0.38(32) = 12.16 ft /sec'
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20

12.2

10

11111

0.2 0.4 0.6
Sine of the angle

Question 5-5-1

(a)
VT 2G M

R
V(2.6514 X 106)2(6.670 X 10-") (6 X 102')

4(3.14)2(80)
131260.384 X 1025

3155
R Ny0.8253 X 1074

log 0.8253 = 9.91661 - 10
log 0.8253 = 29.91661 - 30
log 10.8253 = 9.97220 - 10

'40.8253 = 0.9380

t110 :' = 106
R 9.380 X 107 meters (58,260 miles)

(b) V =

V
11(6.670 X 10-,t)(6 X 1074)

(9.380 X 107)80

V
40 X 1017

760.4 X 107
V V5.33 X 10'
V r-v.. 231 m/sec. (616.5 mi/hr)
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Question 5-5-2

Question 5-5-3

T = 21r GM

T = 2(3.14) (7.819 X 106)3
(6.670 X 10-11)(6 x 1024)

T 6.9,8
J4.78 X 1020
N 40 X 1013

T 6.28V1,195 X 10°
T 6.28(1.09 X 10')
T 6845 seconds (114.08 minutes)

= G

-

G
miM - miV12

R12 RI

GM = VORA

Vl = 27R1

V12 - 4r2R12
T12

32Rw1GM = 4
so GM 4r2R23

T12 T:2
472R13 4713R23

Ti2 T22

Ti2R23 Tt3R13

T1 R13

T22 R23

Question 5-6-1
RI = the initial distance the spacecraft is from the center of the earth.

V1 = R= the velocity of the spacecraft at distance R1.

R2 = the final distance the spacecraft is from the center of the earth.

V. = GM = the velocity of the spacecraft. at distance R2.
R2

W = E,1., (initial) E10141 (final)

W = [GmM (1- 1
I r
) + imV12] - [GmM (1 - 9 + 4mV22]r R RI

1 1 ) , . GMW = [GmM (i.- rci -1- imi-t--]- [GmM (ii: -
R2) + ')m{.1]

W
[GmM GmM iGmM] [GmM GmM

+
GmM]

r RI -T- ' R1 r R: 1-1 Rt
W = +

GmM GmM + -1GmM
GmM GmM

i
GmM

r RI RI r R: R:
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4

GmM GmM
W RI RI

W
an-111( 1 1 )

II;
(6.670 x 10-")(8.8 X 103)(6 X 102') [ 1 1

2 6.99985 X 10' 7.016 X 10°-1
W
W
W

176.1 X 1016 [ (0.1429 X 10-0) (0.1425 X 10-0) ]
(176.1 X 1011 (4 X 10-10)
7.044 X 108 joules (5.283 X 108 ft (lbs)),

Question 5-6-2

RIV2(a) R2 becomes infinitely large as approaches 1.
2GM

(b) - 1
2GM
RiV2 = 2GM

1126111
V = RI--

Question 5-6-3

(a) V = 2OTC1

R

(the escape velocity)

V - 12(6.670 X 10-11) (6 X 1024)

6.8545 X 10°
j 80.04X 101°

6.8545 X 100
V1.168 X 10°

z' 10,800 m/sec. (35,424 ft/sec. or 24,149 mi/hr.)
(b) ,I80.04 X 101°

N7.662 X 106
V1.045 X 108
1.02 X 10'
10,200 m/sec. (33,456 ft/sec. or 22,807 mi/hr)

Question 5-6-4

R= 42
R - V(6.6 X 103)2(6.670 X 10-")(6 X 102')

4(3.14)2

R
2i/17.424 X 10"

39.44
R ~ V0.4418 X 1021

log 0.4418 = 9.64523 10
log 0.4418 = 29.64523 30

log -$40.4418 = 9.88174 - 10
i10.4418 - 0.7616

= 102
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R = 7.616 X 106 meters

R

V - 1(6.670 X 10-")(6 X 10:4)
7.616 X 106

140.02 X 10,6
7,616 X 10°

V V52.55 X 106
V 7,250 m/sec.

Circular orbital velocity = lrGM
R

2Escape velocity = .{GM

Escape velocity = Ji times the circular orbital velocity.
V, V2 (7,250)
V,. 10,252 m/sec.

Additional velocity needed is 10,252-7,250-3,002 m/sec, (9,847 ft/sec., or 6,712 miihr.)
Question 5-7-1

Question 5-7-2

Both have the same energy.

Question 6-7-3

V, _1 + e
V. 1 - e

VA Ve = V, V,e
V,e + Vie = V, V.
e(V, + Va) = V,

VP -V.
e V, + V.

E = Ek E,

E = imV2 + [GmM - 1)]r a

V = IGM
a

=
GM

a
iGmM GmM GmM
2 a r a

E = GmM }GmM
a

E = GmM

(2 )
VAT i/

= a - ae
R. ae + ae + (a - ae) = a + ae
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V,

V.

1101 2 1\
\a ae a/

GM
2

a + ae a

Momentum at perigee - m IGM ( 2 .1)(a ae)
\a a ae a/

Momentum at apogee - m IGM (--2 -1-") (a + ae)
\a + ae '4/

nyi6M (a 2 ae
a) (a - ae) = mi/GM (a ae a) + ae)

GM (a 2 ae a) (a ae)' = GM (a + ae la) (a + ae)'

2(a - ae)' (a - ae)' 2(a + ae)Y (a + ae)'
(a - ae) a (a + ae) a

2a(a - ae) - (a - ae)' 2a(a + ae) - (a + ae)'
a a

2a' - 2a'e (a' 2a'e + a'e') = 2a' + 2a'e - (a' + 2a'e + a'e')
2a2 2a'e as + 2a'e - a'e' = 2a' + 2a'e - a' 2a'e a'e'

a' - a'e' = a' - a'e'
1 - el =1 - es

1 = 1
A satellite has the same angular momentum at apogee and perigee. Therefore, it appears that
angular momentum is conserved.
Question 6-7-4

12
(a) = GM kR )

a= (1.037 x 100) + (1.318 x 10°) + 2(6.37 x 101)
2

15.095 X 108a = 7.648 X 10' meters
2

Vp1 22 [
2

(6.670 X 10-9(6 X 10") 7.407 X 10° 7.6481X 10d
V2 40.02 X 10" [(0.27 X 10-9 (0.1325 x 10-6))

V.' 40.02 x 10" (0.1375 X 10')
V.' 5.50 X 10?
V, V0.55 X 10'
V, 7,420 m/sec (24,338 ft/sec or 16,691 mi/hr)

VS
[7.6882 1

40.02 x 10"
X 101 7.548 X 108

Vs2 40.02 X 10" [(0.2601 X 10-1 (0.1325 X 10'9]
V.' 40.02 X 10" (0.1276 X 10-4)
V.' 5.11 X 107
V. y0.511 x log
V. 7,150 m/sec (23,452 ft/sec or 15,98'1 mi/hr)
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(b) e
VP V,,

V, + V,

e
7,420 7,160
7,420 + 7,150

270
e

14,670
e 0.019

4r2a'GM

T: 4 (3.14)2(7.548 X 10"):
(6.670 X 10-") (6 X 10")

T' - 39.44(430 X 1018)

40.02 X 10"

T2
16959 X 10"
40.02 X 10"

T: 4 2.38 X 10:
T V42.38 X 100
T 6,510 seconds (108.5 minutes)
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COMPUTERS ARE NEEDED

This chapter is concerned with an impor-
tant new tool in space research: the come
puter and computer programing. However
readers without experience in this area will
also gain much from this chapter. There will
be many calculations to perform and often
the arithmetical process is repetitive. This
is the type of mathematics that is monot-
onous for students to do but the type that
can be easily done by electronic digital
computers.

The programs are written in the computer
languages Gotran and Afit Fortran. Afit For-
tran is similar to the many other versions of
Fortran but it has its own peculiarities. There-
fore, persons who are using other Fortran
languages are not expected to use the pro-
grams without making some modifications.
Anyone familiar with other machine lan-
guages such as Algol and Fortran I or II will
find that most of the work in the chapter is
done in general terms. The emphasis upon
flow charts should make the %ea easier for
readers with varied backgrounds to co:npre-
head and apply.

6-I Computers ate Essential
Much of the progress that has been made

in space exploration during the past few years
and much of the progress that will be made

/1061

in years to come will be attributed to digital
computers. Certainly without the use of
computers, it would have been difficult to
embark on the space program. Only because
of rapid calculations, high degrees of
accuracy, reliability, and the large storage
capacities of present day digital computers,
have these orbital missions been possible.

NASA's, Goddard Space Flight Center at
Greenbelt, Maryland, is the "hub" of the
space agency's world wide tracking activities
and its computer complex is the very heart-
beat of these globe-circling efforts. Com-
puters help guide manned arvi scientific sate'
lites on their flights, whether orbiting the
earth or a far-away planet. Computers also
reduce new-found data recorded on these
missions into facts and figures for study and
evaluation by the experimenters. On an aver-
age day the Goddard computers record about
60 miles of magnetic tape data!

Let's consider some of the functions of one
of the computers used. When an astronaut is
in orbit, a computer is used to chart his
exact course -in "real- time " virtually in-
stantaneouslyl Thus during the launching of
the capsule the computer is calculating
launch trajectory, insertion parameters, and
landing point. Pering the orbiting of the
capsule, the computer is calculating the cap-



stile position, orbital parameters, retvo-fire
time for re-entry, and actual impact point.
The rapidity with which this computer oper-
ates is indicated by the fact that each second
it can perform 250,000 additions or subtrac-
tions of numbers with numerals having ten
decimal digits. Multiplication an division
are somewhat slower; it can only do 100,000
multiplications or 62,500 divisions per
second. It is easy to see that the calculations
necessary for wo-td-wide tracking would be
impossible without computers.

To emphasize how vital computers are to
space exploration, consider the data being
sent back by the Explorer VI, a relatively
small and simple satellite. The information
received from this one satellite would take a
staff of fire thousand people working forty-eight
hours a week one year to process! A large com-
puter can process the same data in 1.2 days.

Digital computers are so reliable that they
can almost be considered errorless. Since
digital computers can be programed to check
the arithmetical operation* that they per-
form, the errors that occur are nearly always
a result of the program and not the machine.

6-2 Flew Charts
A flow chart is a schematic diagram that is

used as an aid in computer programing. The
diagram shows the procedures to be used and
the sequence of steps that must be followed
to arrive at the solution of a problem. Stu-
dents are given much freedom in making flow
charts since any diagram that is helpful in
preparing a program might be considered to
be a flow chart. For uniformity, the same
symbolism will be used throughout this chap-
ter to indicate a specific process in pro-
graming. This symbolism is illustrated in
Figure 6-1.

Because of the many different ways that
programers have to represent branch state-
ments and do loops in flow charts, let us ex-
amine closely these diagrams in Figure 6-1.

In the branch statement, suppose DISC
89 - SAC. When DISC > 0, a branch is
made to a specific location in the program.
Likewise, branches are made to ether loca-
tions whenever DISC ** 0 and DISC < 0.

The do loop in Figure 6-1 indicates that
calculations must be performed, K is incre-
mented (increased) by one and the calcula-
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Brooch or IF itoseroents

Do 100c*

Pipet 8-1

tions are performed again. This process con-
tinues for K < 5 but as soon as K > 5, an
exit is made from the do loop to a designated
location in the program.

A programer may write many programs
without ever making a flow chart, but as the
problems become more complex, it becomes
essential to use flow charts. Only by using
such devices can the programer gain the
proper perspective for the whole problem.
Therefore, it is strongly suggested that stu-
dents make a flow chart for every program,
no matter how simple. Then when complex
problems do arise, the programs will be much
easier to write.

We take the problem of finding coordinates
for points of an eclipse as our first example of
flow charting and machine computation. Re-
member that planets have elliptical paths
around the sun; the moon has an elliptical
path around Earth; most satellites have
elliptical paths around Earth.

The usual equation for an ellipse with cen-
ter at the origin, major axis along the x-axis,



Figure 8-t

major axis 2a, and minor axis 2b (Figure 6-2)
is

!I I. Y1 .
a' b'

1

For work on a computer it is cm amary to
use capital letters. We shall also use the tune.
tions sine and cosine of a variable T (Section
1-7). These functions have the special
property

sin's +cos'6 d 1
for any real number 0. Thus if

X d A cos (T)
Y s 13 sin (r)
xt YE

then + 1

and the variable T may be used to identify
points of the ellipse. For this reason T is
called a parameter and the two equations et.
pressing X and Y in terms of T are pars metric
equations of the ellipse. If A > 13, then 2A is
the length of the major axis and 213 is the
length of the minor axis of the ellipse. If
A 13, then the graph of the equations is a
circle of radius A.

A flew chart is given in Figure 6-3 for k
program that will print ordered pairs (X, Y'
of coordinates for the set of points of the
graph of the ee u ttions as the parameter T
increases with I...tements of 0.3 from 0 to
6.3 radians. Remember that 2r radians
equals 1 revolution and 2: 6.3.

Once the coordinates (X, Y ) for 6.3 radians
have been printed, then the program will
initialize and read a new set of data for
another ellipse.
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The flow chart in Figure 6 -3 involves a
branch command. The same problem can be
done and the same results can be obtained by
use of a do loop. Since twenty-two ordered
pairs will be printed, irstructions can be
given to oFtain this data by going through
the do loop twenty-two times as shown in
Figure 6-4.

6-1 Exercises Computers Are Essential
I. For the problem just illustrated concern-

ing coordinates of points on an ellipse
given in terms of its parametric equa-
tions, can A Q 0 or B a 0? If this is
possible, sketch the graph of the para-
metric equations when

(a) A 0 and B pi 0
(b) A t10andB -0

2. Make a flow chart for finding the solu-
tions XI and X1 of the quadratic equation
AX' BX C 0 for different values
of A, B, and C. If for a given set of data,
the equation has roots which are not
real, instructions should be given to
print "imaginary roots." What will your
program do if A a 0? If A >s 0 and
B 0?

6-3 Coordinates of the Points on the Graph
of an Ellipse

As sow as a flow chart is completed for a
problem, then the programer is ready to
write a program. Referring to the flow chart

t i0 re ev Osttt Oltvt. r.4 1104,.c. ce..1146

tO,A01.41o1 fY t.tteit vif.t est-lee,c e0.41 IONS

I tot.t,

ette.O..

# titottti

ritIrtt C4
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in Figure 64, a program can easily be written
using the flow chart as a guide. A Gotran
program, which makes use of a branch com-
mand, is illustrated in Figure 6-5.

Three sets of data are given for this pro-
gram, the first for A 9 and B >a 16; then
for A e 4200 and B Q 4000; and finally for
A = 4400 and B = 4400. The first few lines
of the computer output for the first set of
data a; e;

(9.0000000, 0.0 )
(8.5980284, 4.7283232)
(7.4280205, 9.0342795)
(5.6944897, 12.533230 )
(8.2612198, 14.912625 )

The complete set of ordered pairs is plotted in
Figure 6-6.

I

Y20

10

mud.

VI:at 14

S 10 x

The flow chart in Figure 6-4 makes use of
a do loop to print ordered pairs of points on
the rraph of the ellipse. A Fortran pro-
gram biksed on this flow chart is shown in
Figure 6-7.

For comparison with the output of the
previous program, the first few lines of out-



POI Oat CA a 414 1.4 DO LOC*

C 100001.,%,6 DO eLLIOSt vt:%4 114mArgtelt tovancro

2 f2.41

F001.1101

DO I m.i.t,

u.CCtI fl

9.1011.001

1,411,0 2.24,

*C01.1,41/ 24,1e$1.

CO to 2

e.0

0.0.

4100.1. '0.3e.0

0100.0. 400.0

Pipere 6-7

put of this program are:

(9.000, .000)
(8.698, 4.728)
(7.428, 9.034)
(6.694, 12.633)
(3.261, 14.912)

Notice that in the Fortran output, the
digits beyond three places to the right of the
decimal point were merely dropped off and
no method of rounding-off was er toyed.
Gotran answers are all printed witn eight
decimal digits; Afit Fortran answers are
printed as specified in the program with a
maximum of eight digits. It is left to the pro-
gramer to determine the number of signifi-
cant digits in the answer, keeping in mind
that the answer can not be expected to con-
tain more significant digits than were present
in the least accurate element of the data that
was used.

6 -3 Exercises Coordinates of the Points on
the Graph of an Ellipse

1. Refer to Exercise 2 in Section 6-2 and
write a program that will print the real
roots of the quadratic equation.

2. Use the plot statement in Gotran and
write a program that will have the com-
puter graph the equation

Y 42304 9X'
with increments of 1.0 for X. Notice that
these points are points of an ellipse with
the major axis along the Y-axis, 13
238 and Al = 2304.

3. In Section 3-6, it was shown how to de-
termine the percentage of earth that is
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visible for a satellite at different eleva-
tions. Write a program that wil! find the
area of Earth that is visible from an
elevation of 200 miles; determine what
percent this area is of the total area of
Earth; and have the program print this
-lata for increments of 200 miles up to a
6000 mile elevation.

4. As a slight variation of Exercise 3, write
a program that will punch out data on
cards for increments of 200 miles up to
an elevation of 6000 miles and at this
point change the increment to 1000 miles
and punch out data for elevations up to
26000 miles.

6-1 Area Under a Curve
As mentioned in Chapter 6, it is often

necessary to find the area under a curve.
Computers may be used to find the area to a
high degree of accuracy without using for-
mulas derived from calculus.

Figure i-8

Consider the problem of finding the area in
the first quadrant bounded by the X-axis,
the Y-axis, and the graph of the equation
Y >Q 1 XI (Figure 6-8). Notice that the
values of X for the desired region are 0 <
X < 1. We divide this interval of the X-axis
into N equal parts, consider the correspond-
ing values for X

O, N, N 1 ,
v,

2
N1 1

and compute the corresponding values of Y.
For N = 4 we hare

1 1 3
0.

4'
I

for X and
15 3 71' it'

6'
0



for Y. Then we consider inner rectangles as
in Figure 6-9 and outer rectangles as in
Figure 6-10.

Y

(1/4, 15/16)
(1/2, 3/4)

(3/4, 7/16)

0

figure 6-9

x

;igiftes-ro

Consider first the inner rectangles. The
sum of the areas may be expressed as

x 2) Q x4) +(Ix
1 (I§

16 4 16/ 32'
that is, we may find the sum of the areas by
multiplying the common width of the rec-
tangles by the sum of the values of the V.
coordinates (ordinates) corresponding to the

values of X starting with X s.

Now consider the outer rectangles. The
sum of the areas may be expressed as

(-4 X t1 .) + (
.< id

I 16) (1 3+ 4 x -4) +

(1 7) 1(1 ts 34_
i6/ id fd/

that is, we may find the sum of the areas by
multiplying the common width of the rec-
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tangles by the sum of the values of the Y-
coordinates corresponding to the values of X
starting with X 0.

The desired area A satisfies the relation
17 26
32

< A <

The average value,

1

(17 2,51 1 42 21

fi i X fi fi
may be used as an approximation for A that
is better than either of the sums of areas of
rectangles. The effectiveness of this method,
even with N = 4, can be observed by com-
paring 21/32 with the actual area 2/8 as may
be found using calculus. Still better approxi-
mations may be found by using larger values
of N.

Figure 441

The inner and outer rectangles for N -,-- 8
are shown in Figure 6-11 Then the sum of
the areas of the inner rectangles is Si where

S ( :34 + 4 +64++ +
39 28 16\ ?7
64 64 + al

The sum of the areas of the outer rectangles
is St where

(1 + + + +

48 39 28 16\ 93.
44 + C4 64 iTe

The average of these two areas,

; (1; ) 25A1

differs from the actual arca by only 1 part
in 384.
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A flow chart for the procedure that we
have been using is given in Figure 6-12.
Notice that in the flow chart the sum of the
areas of the outer rectangles is found first,
then the value 1 of Y when X a 0 is sub-
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tracted from the sum of the Y-values (or-
dinates) and the sum of the areas of the inner
rectangles is found. Finally, the average of
the two areas is found. A Fortran pro-
gram for estimating the area is given in
Figure 6-13.

Remember that the actual area under the
curve is 3i and observe the high degree of
accuracy in the computer output for increas-
ing values of N:

N Area
4 .656250
8 .664062
25 .666400
50 .666600
100 .666650

Now consider the problem of determining
the useful work that is done to get the pay-
load of the Scout rocket out to an elevation
of 1000 miles. As was explained in Section 6-4,
this is equivalent to finding the area under

the curve
GIsfm

as R is displaced from

4000 miles to 5000 miles. If we assume the
weight of the payload to be 500 pounds, then
to find the work in foot pounds, the maws
of the earth and the payload must be changed
to slugs and 11 changed to feet. If the weight
of the earth is 1.32 X 10" pounds and G
3.41 x 10-s ft4/(lb sec'), then a program
can be written to find the area under the
curve by taking N equal intervals between
R 4000 and R - 5000 and by finding areas
of rectangles as was done in our previous
example. If N becomes large, then the sum
of the areas of the rectangles approaches the
area under the curve. A flow chart for this
problem is given in Figure 6-14.

Notice that in the flow chart N is initially
50 and then is incremented by 50 until it
becomes 160. The program will have the area
(that is, the work that is done) printed out
along with the corresponding value of N.
After this data has been printed for N = 160,
then the accuracy of the results may be
checked by calculating the work by the for-
mula W GlImair 1,'11), which is
derived from calculus. The following is a list-
ing of the computer output for this problem.

N Work
60 20555435.E + 02

1(10 20555274.E + 02
160 20555243.E + 02

20555244.E + 02



r

R 4000
Sum a 0
CR N

4

KEN

1000/CR

m a Sum (4000 1000/C10

Under = 100)/CR Sum

Ave (above Under) /2

I print N, Ave

101:0/CR

Print W

Stop

ripre $ -14

The actual amount of work done as cal.
culated by the formula from calculus is
20555244.E2; that is, 2,055,624,400 foot
pounds. This answer for the area is accurate
to seven significant digits, which happens to
be much more accurate than the data used
in the problem.

6-4 Ezerritrs Arra Undtr a Cyrre
1. Write a program to find the area en

elated by the graph of the ellipse whose
equation is XI + 4Y1 16.

2. Write a program to find the area bounded
by the graphs of the curves whose equa-
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tions are 4X = Yi and 41' (Hint:
Find the area under one curve, then find
the area under the other curve, and
subtract.)

3. Write a program that makes use of
Figure 6-14 and calculate the useful work
that is done to get the Scout payload out
to an elevation of 1000 miles.

4. Write a program that will find the useful
work that needs to be done to get the
Apollo spacecraft to the point in space
where the force of gravitation from the
moon and the gravitation of Earth are
equal. This occurs approximately 2 i6,:.;00



miles from the center of Earth. Assume
the weight of Apollo to be 90,000 pounds
on Earth. Make your program general
enough so that it can calculate the work
done for different weight spacecraft
going out to various elevations.

6-5 The Distance Between Earth and Mars
The orbit of Earth about the sun is very

nearly circular (eccentricity 0.017) with a
radius of 93 million miles. Mars has an ellip-
tical orbit (eccentricity 0.093) as shown in
Yore 6-15, with foci located at points F
and S.

Fibre 6-15

When Mars is at aphelion (A in Figure
6-15) its furthest distance from the sun, the
distance from the orbit of Mars to the orbit
of Earth is about 62 million miles. When
Mars is at perihelion (P in Figure 6-15) the
distance from the orbit of Mars to the orbit
of Earth is about 85 million miles. In 1956
Mars was at perihelion and Earth was at
position C in Figure 6-15. This was the last
time that the two planets were in a position
such that the distance between the two was a
minimum. The next time that this will occur
will be on Aagust 10, 1971.

Our consideration of the distance between
two planets has been in terms of straight line
distances; we may think of these as "line of
sight" or as the path of impulses in micro-
wave radio transmission. These straight line
distances should not be confused with the dis-
tances that one must travel to go from one
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planet to another. For example, the distance
of 325 million miles that Mariner IV traveled
from Earth to Mars was not along a straight
line but rather along an arc of an elliptical
orbit about the sun (Figure 6-16).

MARINER TRAJECTORY TO MARS

EARTH At LAUNCH

MARINER NOVEMBER 28, 1964

MARS AT
LAUNCH io

Ne. ..;4 '30 DAYS,
DAYS,-

24,0 228
90 ..150,41

,0,
080 DAYS

2:..(%::
'w 210 / 228 DAYS

ENCOUNTER
JULY 14, 1965

Fiver' 6-16

The period of time for Earth to make one
revolution about the sun is 365 days; the
period for Mars is 687 days. A graphical
method for estimating the distance between
Earth and Mars was considered in Section
3-10. To calculate this distance requires the
use of the Law of Sines:

For any triangle ABC,
a b

sin A sin B sin C.
Suppose that the sun is at S, Mars is in

position M and Earth is in position El
(Figure 6-15), then iME,S can be meas-
ured. When Mars is again in position M, 687
days later, Earth will be in position E, and

MErS can be measured. The measure of
F.18E, can also be found since during the

687 days that it took Mars to orbit the sun,
Earth completed one orbit and 322 days of
another orbit. Since Earth's orbit is nearly
circular, triangle E.a.2 maybe treated as an
isosceles triangle (EA EA) and / ErSE,
may be calculated directly. There are about
43 days of the second orbit remaining

43 X 360 = 421

E,SE, = 421°.
Then in triangle ESE,, E, L-%- I El., and

I El + + 421° = 180°
The measure of angles El and E, can be



found; the distance E1ll2 can be found using
the Law of Sines and EiS 93,000,000 miles.
Suppose that by measurement Z ME'S
118° and LME:S . 148°. Then continuing
our use of trigonometry the angles of triangle
E,E2M and the distances TS1 and P;TT may
he found.

6 -5 Exercises The Distance Between 1.,'arth
and Mars

1. Make a flow chart and write a program
to find the distances between Earth and
Mars using the data just given. Also find
the distances for other locations in the
orbits for the following data:
(a) LME,S = 140° and ZMETS a 110°
(b) MEIS = 106 °and z ME2S a 165°

2. The exercise presented at the end of
Section 3 -5 involves the measurement of
the height of a model rocket by two ob-
servers. If the observers are 1000 feet
apart and All, Ay, Bit, and By are the
angles that are given as discussed, then
write a program that will calculate the
heights II, and II,, that are determined
by the two observers. If either of the
observed heights differs from the aver-
age by more than 10%, then the height
is net recorded since the observations
are too inaccurate. Use the data that was
given in the exercise for Section 3-5.
Have the computer indicate when the
observations are too inaccurate.

3. The following table gives distance in
parsecs, apparent magnitude, and tem-
perature in degrees absolute for ten stars.
The data compiled in the table was ob-
tained from various sourcts and are con-
sidered average values.

Star Parses
Apparent

matnitade
Temper.
mare

Alpha
Centauri 1.32 0.3 6800.0

Sirius 2.66 -1.44 10000.0

ocyon 3.47 0.36 6500.0

Altair 5.05 0.76 8000.0

Vega 8.14 0.001 10700.0

Sun 0.0000048 -26.7 5560.0

Arctunis 11.1 -0.06 4000.0

Capella 13.7 0.9 5200.0

A Id eboran 20.8 0.78 3600.0

Regulus 25.6 1.33 13000.0

170

Using formulas and data from Sections
3-12, 3-13, and 3-14, write a program
that will find the distance to the star in
light years, the distance in astronomical
units, the angle of parallax, the absolute
magnitude, the luminosity in relation to
the sun, and the radius of the star. have
the program print "error greater than
50%" if the angle of parallax is less than
0.01 seconds. Use 432,000 miles for the
mean radius of the sun and 5500° for the
temperature in degrees absolute of the
sun. Use the formula B 2.5A" to
show the relationship between absolute
magnitt .le and luminosity.

The computer has been programed to
find the natural logarithm of a number;
that is, base e. To convert from base e
to base 10, use the formula

logioN logN/log,10 log,N/2.3025851.

6-6 Circumference of an Ellipse
An ellipse is a plane curve such that the

sum of the distances of any point on the curve
from two fixed points is a constant. The two
fixed points are called foci and are the points
E and F in Figure 6-17. If the constant is 2A,
then

+ EP 2A;
+ Dr 2A; RP + 2b-r 2A;
+ PE 2A; EP + 2PE 2A.

Therefore, PT = PI) and Pt) = 2A.

Fifivre 6-17

If E, which represents the center of Earth,
S a focus of an elliptical orbit for a satellite,
then It,. 12, 2A, where it,. is the radius
RP at rpeEee and R, is the radius .gb at
apogee; CE is called the mean radius and is
denoted R. Then:



2R, 2A - IND;
2R a R, + R;

R, + R,
(1)

2

If 0 is the midpoint of EP, and UO a d,
then rO a R - Rp, and by the Theorem of
Pythagoras,

Ri di + (11 - Rd'
d' tr 2R,R -
d' 32 2R, (13-1-,-+-19 -
d' - that is, d d VR,R.. (2)

Therefore the equation of the ellipse becomes

Xi ,
1.

(3)tri R,R,
For the Vanguard III satellite, R, a 4320

miles and R, = 6330 miles. Thus, 11
(4320 + 6330)/2 = 6326 miles, and the equa-
tion of the elliptical orbit is

Xi Yi
(6326)i (4820)(6330)

.2 1.

As was stated in Chapter 6, there art many
factors which effect the orbital path of a satel-
lite such as lunar and solar perturbations,
Earth's oblateness, atmospheric density,
'Earth's pear shape, and atmospheric drag.
Although these factors do have some effect

C = 2ta [1

or C 2ira [1 -

el
X

1

and must be accounted for when a satellite
is in orbit, the graph of equation (3) will give
a very close approximation of the actual path
of the satellite. In an effort to facilitate the
mathematics in this chapter, the path of a
satellite will be determined by an equation
such as (3). With this assumption the mathe-
matics will be simplified, but students should
be aware that in actual practice, the mathe-
matical theory and calculations are much
more complex.

It is often desirable to know the length or
circumference of the orbital arc. If the equa-
tion of the ellipse is known, there are many
formulas that will give an approximate value
for the circumference. Some of these equa-
tions are:
C m ir(a + b), where a is the length OT)

of the semimajor axis and b is the
length (TC of the semiminor axis.

C = r (3/2 (a + b) - dab)

C = r 42(a' + b') (4)

The second of the three formulas is best to
use when there is a large difference in the
lengths of the two axes. The result of the first
formula will be too small and that of the third
too large, but the average of these two will
be very nearly correct.

The circumference of an ellipse can be de-
termined to any degree of accuracy from
formula (6) which is derived from calculus.

ti x e4 ( 1 x 3 x ei
2x4) XS \2 x 4 x 6/ g "1

ei 30 beg 176es

4
- . . .] where eccentricity e bi (6)

Fi1irt 8-1R
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The computer can use any formula for cir-
cumference. The computer can also be used
to find the approximate length of an arc of a
curve by using a process similar to that of
finding the area under a curve. For example,
if the length of arc AR is to be determined in
Figure 6-18, a perpendicular is drawn from
point 13 to the X-axis at P. The line segment
OP is then divided into N equal increment.
If N = 4, as in Figgg.6-18 then al lengths
of the four chords (AR, wr, IA 0) which
subtend the are can be found. For each tri-
angle (such as aRSI) the base and altitude
are known, and by the Theorem of Pythag-



oras the hypotenuse can be determined.
For example, in ARST we have = C/4
and rig f(C /2) f(C/4) where C is the
X-coordinate at P. Therefore,

RT2 = (C/4)2 + [f(C/2) QC/4W
To calculate the circumference of an

ellipse, the length of the arc in the first
quadrant can he found and four times this
length will give the circumference. For the
ellipse in Figure 6-17, one of the X-intercepts
is located at (R,0). From equation (2) a Y-
intercept is located at (0, 41411,). If the
linesegment 6-5 is divided into N equal in-
tervals, the ordinate at the endpoint of each

interval can be calculated by equation (6),
which is another form of equation (3).

It X)(11 + X)
Y ,/

Note that the numerator of the radicand
contains the factors (n X) and (rt + X)
rather than El Xt. This was done because
the computer can perform additions and sub-
tractions more rapidly than multiplications
and divisions. This should be kept in mind
when programing. A flow chart for finding
the circumference of the ellipse is given in
Figure 6-19.

Rea RA,IP
I

1

Print RA,RP
1

= (RA RP) /2-1

N =20

X = 0 Sven = 0
CX N

tose2 PAX R/C(.1

C...2 -fir* 17

1-*

Fr;=

hint N, Sven

N = N 20

X = X It/C

1/RA'ItP (R-X) titX)

1

tlyp= Veen* 2 (1-1)1

Svrt4,.= Sven 4 !frp -1



A Fortran program for finding the circum-
ference is given in Figure 6-20. Note that the
data given in the program are the radii at
apogee and perigee in statute miles for the
satellites Relay, Explorer VIII, Echo I, Ex-
plorer VIII, OSO, and Alouette in that order.

CI gICV.FEOLNCt OF CLL. !OS( GI YEN R.L>t

I PE30,R41.RP

PRINT 5RIL

O441171,2,111.0

qa 101170 3 /3,0

N10

10,0.0

C
D I 311.3IC q/C

S s SORT I ARA,

DO 3 0.1.0

314/
V. SOrt V I433 gp lia-11.3 PX 1/10.011

w/P50q116115ta15-1,1CIS-V I I

31
3 Soo Su...4,P

3,0. .eSUM

INT 41.0.51,4

4 fORIAAT1,14.110.01

TATATTO

IF 1100-1411.t.A.

EAO

3000. 4900

160. 3.0
9048. 4948

5423* 0156

4)70. 4304

444 ?.

Figure 6-20

AT APOGA1 .NO F.0714E3

The computer output is listed for N = 100
along with the output from using five terms
of equation (5). The answers are correct to
four significant digits.

Circumference
for N = 100

37088
28330
31399

30300
27373
27853

Circumference
from equation (5)

37092
28333
31402

30303
27375
27856

6-6 Exercises Circumference of an Ellipse
1. Write a program to find the length of the

curve of the equation Y = XI 9X'

113

24X for that part of the curve between
X = A and X = B, where A and B are
given as follows:

A
0.0 5.0
1.0 4.0
0.5 8.6

-1.0 5.0
2. Equation (4) was one of three formulas

for finding an approximate value for the
circumference of an ellipse. As the value
of B approaches the value of A, the value
of C approaches 2rA, which is the for-
mula for the circumference of a circle.
Let B = A and verify this fact. Write a
program to find the circumference of an
ellipse by use of each of the three for-
mulas, keeping A fixed at 30 and letting
B take on the values 2, 4, 6, . . . , 30. Also
find the circumference which is the aver-
age of the circumferences of the first and
third equations. Finally have the pro-
gram calculate the circumference by tak-
ing the sum of five terms of equation (5).
When the computer output is obtained,
observe the high degree of accuracy in
the results of these formulas.

3. In the previous exercise the circumfer-
ence of an ellipse was found five different
ways. Using the same five formulas and
the data given in Figure 6-20, write a
program to find the circumference of the
orbital paths of the satellites.

6-7 Velocity Along an Elliptical Arc
In effect Kepler's second law states that

the line joining the center of the earth to a

Figure 6-21



satellite sweeps out equal areas in equal in-
tervals of time. By use of this law, considera-
tion can be given to the velocity of a satellite
in orbit.

In Figure 6-21 let the velocity at the point
D (apogee) be denoted V. and be called the
velocity at apogee. The velocity at perigee is
denoted V_, and the velocity at point C is
denoted V. For a given time interval the
satellite moves from D to B, or from C to I,
or G to P. For a very small time interval, arcs
DB, CI, and GP can be considered as line
segments and the sectors DEB, CEI, and
GEP of the ellipse can be considered as tri-
angular regions. In ADEB, if 1 is the bare,
then DB will be an approximation for the al-
titude. The length of DB will be DB =
(V.) (t), where t denotes a small period of
time. Similarly, GP = (V) (t).

By Kepler's second law, equal areas are
swept out. Thus, the area of ADEB is equal
to the area of AGEP ;

1(ED) (DB) = i(Epop)
i(; l.)(vo(t) = i(Rp)(Vp)(t)

Ra(V.) = R,(V,) (7)
In ACEI, CI can be considered parallel to

PD for a very small period of time, then
L ICH t.:=! L CEO. If the altitude IH is drawn
to base IX, then two of the angles of ACIH
equal two of the angles of AECO and ACIH

AECO. Since the corresponding sides will
be proportional,

CO IH (C0)(CI)
EC

and 1H =
Since CO was given to be equal to 411.R;
in equation (2),

1H
( VR.11,)(V)(t)

If equal areas are swept out, then the area of
ADEB is equal to the area of ACID;

4(DE)(DB) = i(CE)(IH)

i(11,)(V.)(t) = i(R)
R.R, (V)(t))

(8)

(9)

Multiplying equations (8) and (9) gives

V = (10)
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Thus V turns out to be the geometrical mean
between V and V. and will be called the
meal, velocity. Notice that the mean velocity
occurs at point C.

The following formulas were developed in
Chapter 5:

F - GMm
R2

F = ma
V2a=
R

From these equations we have

V = ii/GM
(11)

where the constant ,(GM = 1.115 X 106, R
is in miles, and V is in miles per hour. Equa-
tion (11) holds for circular orbits and equa-
tio' (12) gives a very good approximation
for elliptical orbits.

V = 0-\1" (12)

The period of time for a circular orbit is
T = 2TR/V

Again for an elliptical orbit, a very good
approximation is obtained by using equa-
tion (13)

T = 2r-11/V (13)
From equations (12) and (13)

4rT' = GM (R)'

T = 3.38 X 10-4(11)3/2 minutes (14)

Note that this is a form of Kepler's third law
which states that the square of the rime of a
satellite varies directly as the cube of the
radius.

To illustrate the use of some of the for-
mulas, let us determine the mean velocity
for the Mercury satellite which has a mean
radius of 4100 miles. Using equation (12),

A/Gm,/,tioo = 1,115,000/64.03
=-- 17400 mi/hr.

The Syncom satellite has an orbital alti-
tude of 22,300 miles. Therefore R = 26,300
miles. By a process similar to that just com-
pleted, V = 6900 miles per hour. The cir-
cumference of its orbit is 2irR = 52,600 r
miles. The period of 'zime for Syncom to orbit
Earth is T =-- 52600 7/6900;

T = 24 hours.



This gives an explanation of why Syncom
seems to be stationary at a certain point
above the earth.

6-7 Exercises Velocity Along an Elliptical
Arc

1. For Nimbus I, perigee was 260 miles and
apogee 580 miles. If the mean velocity
for Nimbus was 16,800 miles per hour,
find the velocity at perigee and the
velocity at apogee.

2. For Explorer XX perigee was 540 miles
and apogee was 634 miles. Find the
period of time in minutes for one orbit.

3. For Explorer XIX the velocity at perigee
was 18,050 miles per hour and the veloc-
ity at apogee was 14,200 miles per hour.
Find the mean velocity, mean radius, and
the period of time in minutes for one
orbit.

4. Using the definition of eccentricity that
was given in Section 2-4, write a Gotran
program that will find the eccentricity of
the elliptical orbits for the satellites listed
in Figure 6-20.

5. If apogee and perigee are given in statute
miles for the following satellites, then
write a program that will print R., R,,,
V V, and T for each satellite.

6.

Satellite Apogee

Syncom I 21,650
Tiros III 510
Tiros VIII 468
Syncom II 22,900
Explorer XX 634
OSO 358
By use of equations (1), (7),

Perigee

21,400
457
436

22,230
540
346

(10), and
(12), derive the formulas

RR. 2GM - \YR;

V.
2GM - V,,2R

R pVp
If perigee and the velocity at perigee are
given in statute miles for each of the
following satellites, then write a program
that will print R., R, V., V, and T.

Satellite Perigee
Velocity at

perigee

Syncom HI 22,160 6,870
Echo II 642 16,640
Alouette 425 16,790
Gemini 160 17,290
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6-8 Curve Fitting
The problem of determining the equation

from a set of given data is common in mathe-
matics and science. For example, one might
want to find the equation of the elliptical
orbit of a satellite if the coordinates of several
points along its path were known. This
process of fitting a curve to given points often
yields very useful results.

We first consider linear functions of the
form

y = rnx b
Quadratic functions will be considered later
in this section.

If the coordinates of two points of a line
are known, then the equation of the line can
be found. If the given points are (X1, Y1) and
(X2, Y2), then

Y1 = mX, + b,
Y: = mX: + b;

Y,,
m

X1 - X11

b = Y1 - mX1 = Y1
X1 -5(2\1`14
-

(16)
XI

For the points (0, 1) and (1, 3), m = 2, b = 1,
and the linear equation becomes

Y 2X + 1
Problems often arise in which there is

reason to believe that a linear function may
be used to describe or approximate a given
situation. If the coordinates of many points
am given, then various methods can be em-
ployed to find a linear equation that provides
a "good fit" to the data. One method is called
the method of average points. To illustrate this
method consider the data
(X1, Y1), (X:, Y:), (X 1, Y3), (X1, Y1),

(Xs, Yr), (Xs, Ye).
In general, the set eI data is divided into
two subsets of approximately the same num-
ber of elements. We shall consider the subset

(X1, Y1), Y2), (X$, Y:)
and the subset

(X1, Y1), (X5, Ye), (X1, Y6).
Then we find the average of the X-coordi-
nates, and the average of the IL' -coordinates
for each subset. Suppose these average values
are X. and Y. for one set; Xb and Yb for the

(15)



other set;
Xa = (X1 -(- X2 + X3)/3
Y. = (Y1 + Y2 + Y5)/3
Xb = (Xi + X5 + X6)/3
Yb = (Y1 + Y6 + Ya)/3

Finally the equation of the line joining
(X,, Y,,) and (Xb, Yb) may be found by use of
equations (15) and (16).

The equation obtained by the method of
average points will not yield a unique equa-
tion since the manner in which the given
data is grouped will effect the result obtained.
This is illustrated for the data ( -2, 11),
( -1, 8), (2, 5), (1, 2), (3, 1), and (4, -2).
If the first three sets of ordered pairs are
grouped and the last three are grouped, then

= -1/3, Y., = 8, Xb = 8/3, Yb = 1/3
'23X 193and the equation is Y =

9 27
+ -. If

( -2, 11), (2, 5), and (1, 2) are grouped and
the remaining elements are grouped, then

the equation becomes Y = 11X + 11.
5 15

There is another method of curve fitting
called the method of least squares. If this
method is applied to curve fitting for a linear
function, a unique equation will result.
Furthermore, the equation will fit the given
data about as well as possible. As might be
expected, the method of least squares in-
volves much more work.

To develop the method of least squares for
a linear function, consider the equation Y =
mX + b, which may be written

(mX + b) - Y = 0. (17)
If a point lies on this line and the coordinates
of the point are substituted into the left mem.:
ber of equation (17), then the sum of the
terms will equal zero. If the coordinates of a
point, which is slightly off the line, are sub-
stituted into the left member of equation
(17), the sum of the terms will not equal zero.
This can be represented by the equation

R = (mX + b) - Y (18)
The magnitude of R provides a measure for
the error that is made in assuming that the
point with a given X-coordinate is on the
line. Notice that for each point, R is a signed
number and thus there could be compen-
sating errors that would not appear when
the errors (values of R) were added. All
errors show up when we use values of R2.
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The method of least squares involves
squaring both members of equation (18) and
substituting the coordinates of the given
points into this equation. Thus for data

(X1, Y1), (X2, Y2), , (X., Y.),
the equations would be
It11 = [(mX, b) - ylp
1112 = rn2X12 + 2bmX1 + b2

- 2inXIY1 + 2bY. Y12

R22 = M2X22 2brnX2 + b2
2mX7Y1 2bY2 + Y22

Rn2 = M2X,2 2bmX + b2
2mXY 2bY. + Y.'

The curve that is considered best is obtained
when the sum of all the R2, denoted as ZR2,
has a minimum value. In algebra it is shown
that the quadratic function AX2 + BX + C
with A > 0 has a minimum value when

X = -B/2A;
that is,

2AX + B = O. (19)
This concept can be used in the methods of
least squares. When XIV is found, a
quadratic function in m results as shown in
equation (20)
2R2 = m2LX2 + 2bm EX + nb2

2mZXY 2h2Y + IY2 (20)

If equation (20) is a quadratic function in m,
then a minimum value occurs since the coeffi-
cient of m1 is positive. Therefore by ?quation
(19) the minimum value occurs when

2m2X1 + 2bNiX 2XXY = 0;
mIX1 + bXX = ZXY (21'

If equation (20) is considered to be a quad-
ratic function in b, equation (22) is obtained
by a similar process:

mZX + nb = ZY (22)

When equations (21) and (22) are solved
for m and b, the desired linear function is
obtained.

The process of curve fitting for exponential
equations of the form Y - AB' and for power
equations of the form Y = AXB cal always
be reduced to that of curve fitting for a
straight line by use of special graph paper.

Curve fitting for the parabola will be dis-
cussed in one of the exercises. The same
process can be used for the ellipse or other
types of curves.



6-8 Exercises Curve Fitting

X -5.2 2.9 -.4 -5.05 1.1 -1.11

Y 11.33 -10.55 4.1 11.33 -5.2 4.73

-.71

2.20

1. The ordered pairs that are uses for data
in this problem are the coordinates that
represent the Position of stars at a par-
ticular instant as taken from a north
polar star chart.
Use the method of average points and
write a program to determine the coeffi-
cients m and b of a linear equation Y =
mX b of a function to fit these points.
Make the program flexible enough so
that it will read up to thirty ordered pairs
of data.

If the data are arranged so that the
values of X are increasing or decreasing
and the subsets selected by grouping the
points in order according to their x-coor-
dilates, then more accurate results will
be obtained than if the data are left in
random order. Therefore, lave the pro-
gram arrange the ordered pairs in in-
creasing order as determined by X.

2. Using the method of least squares for the
data given in Exercise 1 write a program
to find the coefficients of the linear func-
tion. You may compare this equation
with that in the previous exercise by
plotting the data on waph paper along
with the graphs of the equations found in
Exercise 1 and this exercise.

2.38 -2.4 -.7 2.45 -2.4 .15 -4.88

-8.'75 7.37 10.35 -6.90 7.5 .30 9.30

3. Using a technique similar to that used
to derive equations (21) and (22), derive
equations that will determine the coeffi-
cients A, B, and C of the quadratic func-
tion Y = AX' BX + C. The three
formulas thpt are obtained can be used
for curve fitting for the parabola. It may
be helpful to follow this procedure:
(a) Square both members of the equa-

tion R = (AX2 BX C) - Y.
(b) Substitute the data (X1, Y1), (X2,

Y,), ..., (X, Yn) into the resulting
equation.

(c) Find ER'.
(d) The equation corresponding to (20)

will be a quadratic function in A.
Determine the conditions for which a
minimum value of the function
occurs. Follow a similar procedure
for B and C.

By observing the pattern in the equa-
tions just developed, derive a set of equa-
tions for a polynomial function of degree
three.

4. Use the results of Exercise 3 and write a
program to find the coefficients A, B, and
C for a quadratic function Y = AX=
BX C to fit the following data:

X -2.0 -1.4 -1.0 --0.4 -0.2

Y 1.9 0.3 0.0 -0.3 -0.1

0.4 1.1 1.6 2.1 2.4

-0.1 0.5 0.9 1.9 2.3
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Chapter 1 DESCRIBING THE SHAPE OF THINGS

1-1 Shapes on Earth
1. A few examples of plane surfaces are a

floor, wall, the cover of a book.
2. One and only one straight line can be

drawn through two points.

1-2 Earth's Atmosphere
1. The circles appear to be of the same

size; radii of congruent circles are
congruent.

2. Concentric circles may be seen on an
archery target, other "bullseye" tar-
gets, the decorations of many dishes,
and in other places.

3. Among the many objects that are ap-
proximately spherical are baseballs,
golf balls, oranges, and the moon.

4. The radius of a sphere is the distance
from the center to any point on the
surface of the sphere.

1-3 Angles and Arcs
1. 2 x 2% x 4,000; that is, about 25,000

miles.
2. About 4,000 miles.
3. About 69 miles.

1-4 Positions on Earth
1. In 1 hour, 15° ; in 6 ho'irs, 90° ; in 12

hours, 180°.
2. 180°.
3. (a) 12,430 miles, (b) 6,215 miles.
4. Yes.
5. No.
6. (a) 21,600 miles, (b) 16,200 miles.
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1-5 Observations of Earth
1. About 100,000,000 square miles ; that

is, in scientifila notation about 1.0 x 104
square miles.

2. About 4.0 x 10' square miles.
3. About 503,000 square miles.

1-6 Maps and Distances
1. Yes, when AB is parallel to CD.
2. Yea, when AB .L
3. No.
4. A circular region (that is, a circle, and

its interior points) with a radius equal
to the radius of the sphere.

1-7 Measurements
1. 30 feet.
2. 3 feet.
3. Each object is perpendicular to its

shadow. In the case of Exercise 2 this
means that the person is standing upon
level ground.



Chapter 2 THE UNIVERSE WE LIVE IN

2-1 Where Do You Live?
1. Think of corners of the room as inter-

sections of walls, the intersections of
the ceiling and walls, edges of a desk
top as the intersection of the top and
sides, and so forth.

2. Think of the points on a wall that are
equidistant from the points on the floor
at the ends of that wall, and so forth.

3. Think of a coordinate system for the
chess board.

2-2 Relative Positions on Earth
1. Henryetta, Oklahoma
2. 96° west longitude ; 35° 27.6' north lati-

tude.
The following steps may be used to ob-
tain the answers for this exercir e;
(1). Measure the distance betm een the
32° parallel of latitude and the 36°
parallel of latitude. Call this measure
A.
(2). Measure the distance from the 32°
parallel of latitude to city in question.
Call this measure B.

(3). On the map used by the author
parallels of latitude were 4° apart and
the measures were:

A = 8.50 cm ; B = 7.36 cm.
(4). Let x = degrees of latitude city
in question is above the 32° parallel of
latitude.

(5)* =
B 7.36

B x(6). =
A 4°

; 4° is span of parallels of

latitude on map.
7.36 x

(71'

Since 1° = 60', 0.46°
8.50 4°

(8). x = 3.46°
= 27.6'
(9). Latitude of city in question is 32°
+ 3° 27.6'
..10). Latitude is 35° 27.6' north lati-
tude
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(11). Longitude is about 96° west
longitude.

3. This exercise may be solved by using
the scale stated on the map. Measure
the distances on the map; use the scale
on the map to determine the numbers
of miles represented by the map dis-
stances and compare. About 340 miles
is saved.

4. No. Use a protractor to observe that
the measures of opposite angles are not
equal. The angle formed at New Or-
leans is about 84°; the angle formed at
New York is about 76°.

2-3 Fallacies of maps
Trial
F-1
K-3
C-4
K-5
M-7
K-8
C-9
M-10
K-11
C-12
M-13
K-14
C-15
M-16

Quadrant
II

HI
II

I
II

III

II

II

II

II

.11

IV
II

IV

2-4 The Solar System
Answers to 2-4 are included in the section
pages 38 and 39.

2-5 Eartha Satellite with Satellites
1. 0 + 30 6 (mod 24)

0 -1- 30 = 30 (mod 36)
Use the chart described in Figure 2-35,
align the 0° longitude mark on the
third circle with 6 on the hour circle.
The position of the satellite will cor-
respond to 30 on the first circle and is
about 151° west longitude.

2. 142° west longitude.



2-7 Our galaxy, the Milky Way

1.

Star
and aConstellation

2. The desired answers are included in the
following completed table.

Nearest
Hour Constellation Star
Circle Position Name

(To
nearest
minute
of time)

Right
Ascension

(To
nearest
minute
of arc)

Heeling.
tion

C Taurus
Orion
Orion

5°36'n

5h13'n

5423m

+21°07'
8°14'

+ 6°19'
Orion 5h30'n 0°19' 1 /3 Andromeda Mirach POP +35°26'

Orion 51134m 1°13' 2 a Aries Hamal 2405"t +23°18'

Orion 51,39m 1 °58' 3 13 Perseus Algol 3h05'n +40°46'

K Orion 5"4611 9°41' 4 a Taurus Aldebaran 4"34m +16°26'

a Orion 5h53m + 7°24' 5 a Auriga Capella 54141" +45°58'

Gemini 6h13ni +22°31' 6 a Orion Betelgeuse 5453"' + 7°24'

Gemini 6h36r" +16°26' a Canis Major Sirius 6144'n 16°40'
a Gemini 7432m +31°58' 8 13 Gemini Pollux 7443m +28°07'

/3 Gemini 7'43'n +28°07' 9 a Cancer 8h57x" +12°00'
10 a Leo (Leonis) Cor Leonis 10"07ru +12°08'
11 /3 Ursa Major Merak 11'00'n +56°34'
12 a Corvus 12"07m 24°32'
13 a Virgo Spica 13"23'n 10°59'
14 a 13ootes 14414'n +19°22'
15 /3 Bootes Nekkar 15"01'n +40°32'
16 /3 Scorpius Acrab 16403'" 19°43'

a Scorpius Antares 1642711 26°21'
17 a Hercules 171113m +14°26'
18 Saggitarius 18404m 30°26'
19 Saggitarius 18453m 26°21'
20 a Aquila Altair 1949' + 8°46'
21 a Cygnus Deneb 20"40m 45°09'
22 a Aquarius 22"041n 0°29'
23 a Pegasus (Pegasi) Marhab 23"03"' +15°01'
24 a Andromeda Alpheratz Oh07m +28°54'

3. 1 hour and 8 minutes is 15° and 120';
that is, 17°.
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ANGLE SINE COSINE TANGENT ANGLE SINE COSINE TANGENT

1° .0175 .9998 .0175 46° .7193 .6947 1.0355

2° .0349 .9994 .0349 41° .7314 .6820 1.0724

3° .0511 .9986 .0524 48° .7431 .6691 1.1106

4° .069d .9976 .0699 49° .7547 .6561 1.1504

5° .0872 .9962 .0875 50° .7660 .6428 1,1918

6° .0145 .9945 .1051 51° .7771 .6293 1.2349

7° .1219 .9925 .1228 52° .7880 .6157 1.2199

8° .1392 .9903 .1405
530

.7986 .6018 1.3270

9° .1564 .9877 .1584 54° .8090 .5873 1.3764

10° .1736 .9848 .1763 55° .8192 .5736 1.4281

11° .1908 .9816 .1944 56° .8290 .5592 1.4826

12° .2079 .9781 .2126 57° .8387 .5446 1.5399
130

.2250 .9744 .2309
580

.8480 .5299 1.6003

14° .2419 .9703 .2493 59° .8572 .5150 1.6643

15° .2588 .9659 .2679 60° .8660 .5000 1.7321

16° .2756 .9613 .2867 61° .8746 .4848 1.8040

17° .2924 .9563 .3057 62° .8829 .4695 1.8807

18° .3090 .9511 .3249 63° .8910 .4540 1.9626

19° .3256 .9455 .3443 64° .8988 .4384 2.0503

20° .3420 .9397 .3640 65° .9063 .4226 2.1445

21° .3584 .9336 .3839 66° .9135 .4067 2.2460

22° .3746 .9272 .4040 67° .9205 .3907 2.3559

23° .3907 .9205 .4245 68° .9272 .3746 2.4751

24° .4061 .9135 .4452 69° .9336 .3584 2.6051

25° .4226 .9063 .4663 70° .9397 .3420 2.7475

26° .4384 .8988 .4877 71° .9455 .3256 2.9042

27° .4540 .8910 .5095 72° .9511 .3090 3.0777

28° .4695 .8829 .5317 73° .9563 .2924 3.2709

29° .4848 .8746 .5543 74° .9613 .2756 3.4874

30° .5000 .8660 .5774 75° .9659 .2588 3.7321

31° .5150 .8572 .6009 76° .9703 .2419 4.0108

32° .5299 .8480 .6249 77° .9744 .2250 4.3315

33° .5446 .8387 .6494 78° .9781 .2019 4.7046

34° .5592 .8290 .6745 79° .9816 .1908 5.1446

45° .5736 .8192 .7002 80' .9848 .1736 5.6113

36° .5878 .8090 .7265 81° .9877 .1b64 6.3138

37° .6018 .7986 .7536 82' .9903 .1392 7.1154

38° .6157 .7880 .7813 83° .9925 .1219 8.1443

39° .6293 .7711 .8093 84° .9945 .1045 9.5144

40° .6428 .7660 .8391 85° .9962 .0872 11.4301

41° .6561 .7547 .8693 86° .9976 .0698 14°3007

42° .6691 .7431 .9004 87° .9986 .0523 19.0811

43° .6820 .7314 .9325
880

.9994 .0349 28.6363

44° .6947 .7193 .9657 89° .9998 .0175 57.2900

45° .7071 .7071 1.0000 90° 1.0000 .0000
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Chapter 3 -MEASUREMENT, A WINDOW TO THE UNIVERSE

Section 3-1-Direct linear measurement
1. The ratios should be the same, in the

two systems.
2. The following is a set of sample data

for measurements in inches;
3.48
3.44
3.50

3.43
3.44
3.41

3.45
3.41
3.42

3.43

The average value for the length of the
line is 3.44 inches.

Section 3-2-Direct Angular Measurement
1. (r.) 26 °; (b) 134 °; (c) 15 °; (d) 340°

bc
112.5° 47°

(a) (b)

12

2 0'
(c)

360,000° (100°)
(d)

12

1 1/2 HOURS 7 1/3 HOURS 5 HOURS

45° 220° 150°
(a) (b) (c)

4. Degrees Minutes Seconds
(a) 15° 900' 54,000"
(b) 40° 2,400' 144,000"
(c) 0.083° 300"
(d) 0.0083° 0.5' 30"

Section 3-3-Indirect Measurement
About 1.1 miles

Section 3-4-Measurement of Earth
About 2,990 mites

Section 3-5-Altitude of a Model Rocket

Section 3-6-Earth as Viewed from a
Satellite

1. Altitude of
the satellite

(miles)

Visible
Surface
(square
miles)

Part of
Earth's
surface
visible

(a) 200 9,787,000 0.02
(b) 1000 20,096,000 10%
(c) 4000 50,265,000 25rA
(d) 5000 55,851,000 28%

2. 4

3. Cos Le = 0.8000; Le 36.9; GC

360

73.8 X 27r X 4000 :7-- 5,150 miles

3-7 Distance to the Moon
1. 1,500,300 miles.
2. 2,270 miles per hour.
3. The moon is about 253,200 miles at

maximum distance and about 222,300
miles at minimum distance.

3-8 The Yardstick of Space
1. About 583,412,000 miles; about 66,600

miles per hour.
2. 31.5'.
3. 32.5'.
4. The suo's diameter is about 108 times

the diameter of the Earth.
5. Over 1,000,000.

3-9 The Inner Planets
1. 0.25 A.U.
2. 1.75 A.U.
3. 0.625 A.U.

1.375 A.U.
4. 1.6

Observer A Observer B
Altitude Altitude Average Accept-

d (ft) Scale H Scale V a Scale H Scale V DC Altitude able
1000 30° 30° 500 60 45 500 500 yes
1000 40° 40° 787 65 60 793 790 yes
1000 37° 48° 1066 68 60 1079 1072 yes
1000 52° 31° 570 70 32 486 528 no
1000 12° 56° 1601 104 81 1461 1531 yes
1000 64° 73° 2333 43 68 2326 2320 yes
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3-11 Distances to the Stars 3-13 Apparent and Absolute Magnitude
Par- Light 1. (a) Star Distance Apparent Absolute

Parallax secs year A.U. (parsecs) magni- magni-
1. 0.4" 2.5 8.15 513,450 tude tude
2. 0.018" 55 179.3 11,295,900 A 10 2 2
3. 0.87" 1.15 3.74 235,620 B 100 4 -1
4. 0.049" 20.6 67 4,221,000 C 40 0 -3
5. 0.022" 45 146.7 9,242,100 (b) C,A,B

3-12 Magnitude and Brightness
(c) C,B,A

2. M m Par- Dis- Par-
1. 9.5 secs tance allax
2. 2.5 light
3. The sun is about 420,000 times bright- years

er than the moon. (a) 0.4 -1.8 3.57 11.6 0.28"
(b) -2.8 -0.3 33.3 108.6 0.03"4. -2,1 (c) 7.9 7.9 10 32.6 0.1"

5. 1,120 (d) 4.37 1.2 2.2 7.17 0.46"
3-14 Classification of Stars
1. About 2.1; 0.8 magnitudes
2. About 40,000
3. About 4.1 times greater
4, About 14 light years
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Chapter 4 MOTION IN SPACE

4-1 What Is Motion?
In Figures 4-2 and 4-3 the coordinate

planes are at right angles to each other. To
find the length of Art, first find the lenh of
ED in the right triangle ECD where EC
60, LSD 10, and L ECD = 90 °;

ED= 4601 + 101 10 45i

In the plane of ED and n construct. a line
AD' through A parallel to ED such chat

AD', and AT, is perpendicular to
BD. In the right triangle AD'B,
AD' = 10x11

80

KB (1040)1 + 30 10 446 = 67.8.
The change of rate column of Table 4-2

may be explained as follows;
The v's from top to bottom are 0, 25. 50,

60, 60, 60, 60, 50, 60, 60, 60. These are dif-
ferences in average speeds. The time interval
is one second with the exception of the first
difference which is a half second (from 0 time
to the midpoint of the first second interval).
The acceleration is constant, 60 ft /sec'.

r

at =
1.-

135.000.000 mi
186.000 mi/sec
1.36 x 10' mi
1.86 X 101mi/set

at = 7.26 X 10' sec = 726 sec.

1.

t

1.

2. r = 4000 mi + 1000 mi = 6000 mi
d = 2tr

= 24000 mi
3.14 X 10' mi

r
e2 265 mi/min

3. r 40(10 mi + 630 mi = 4630 mi
d = 2,4630 mi = 2.92 x 10' mi

r 2,92 X 10' mi mi
277

1.054 x 10' min min
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From the problem there are two known dif-
ferences in the orbits: (1) altitude, and 1,2)
time for one revolution. Guesses (hypotheses)
might he conjectured as to how the.-re are
related. The weight of Echo I was not stated.
Does weight make a difference in speed? The
answers are rather subtle. This topic is con-
sidered in Chapter 5.

Section 4-2 Road Maps Without Roads

1.

2.

3.

4.

b

b = 150 ml, Eos1

i; = 0o

i;

6. The magnitude of iA + 1 is greater than
or equal to zero and less than of equal to
the sum of the magnitudes of the given
vectors.

Section 4-3
1. =

v,

tan 0

to

Velocity Vectors

2000 ft, sec
200 ft; sec
2010 ft, sec

200

2000
-=0.100

r! 6.7°



2.

-r

The figure presents the problem in vector
representation; v terminates at (xl, -ye).
The projection of v on the x-axis is V. and,
likewise, V, is the projection of on the y-
axis. Notice that 30*-60° right triangles can
be formed so that

v 3 x 101 ft/sec
2 2

= 1.6 x 10' ft/sec
= (1.731(1,16 X 10' ft/sec)
- 2.69 x 101ft/sec

v. a

V

Section 4-4 Acceleration Vectors

1. (a) Depress the gas pedal to gain speed.
(b) Apply the brakes to reduce the

speed.
(c) Turn the steering wheel to change

direction.

2. ve

v.
= sat
a (100 ft/secl)(6 sec)
a 600 ft /sec
a (100 ft/secl)(10 see)

1000 ft /sec
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0 + WO ft/sec a 250 ft/sec

d a 'It
- (250 ft/sec)(5 sec) - 1250 ft

0 + 1000 ft/sec
Vie a 2

a 500 ft /sec

d = (500 ft/sec)(10 sec) a 5000 ft
At t a 5, v I 22 500 ft/sec and d, a 1250 ft.
At t a 10, v1, a 1000 ft/sre and de. a
5000 ft.
When t was doubled, v was doubled but d
was 4 times as great. This is characteristic of
accelerated motion. The relationship is (for
accelerated motion):

v a t
a a t'

Section 4-6 Analysis of Projectile Motion
For the half second intervals (>A, 21A,

etc.), the coordinates are: (+60, -4);
(+169, -36); ( +250, -126); ( +350,
-196); (+450, -324).

The horizontal velocity and the time in
flight which is determined by the maximum
height of the object determine the horizontal
distance (range).

In as much as Earth is not flat, the point
of impact would have a -y value greater
than the initial height, hence the object
would fall longer and further. If the range
were great these considerations woad
have to be considered. At great height
and great horizontal velocities it Is con-
ceivable that the object will not hit the
Earth. It will orbit!

Section 4-7 Circular Motion

a = 4I'r
( 1 )

Tr

T
v

T1

4era = substitute (3) in (1)

(2)

from (2)

(9)

V
a



Section 4-8 Angular Velocity

YOUR
LA ITUDE

EQUATOR

The angular velocity of all locations on
Earth are equivalent. The speeds will vary
with the maximum at the Equator (a great
circle), since all other locations circumscribe
a circle of smaller radius in equivalent time
periods.

Launchings at Cape Kennedy take ad-
vantage of the West to East velocity of an
object on Earth and the greater speed near
the equator.

Section 4-10 Mass
The space vehicle with the smaller cha, ge

in velocity has twice as much mama.

Section 4-11 Units of Measure
1. wt = Mg, and g is the same for all ob-

jects at the same location. Therefore if
wt, = wt,
Mfg
MI MI

2. Fat
Ay

- my
Fatim
(10 kg-m/secl)(& sec)

10 kg
5 m/sec

a s m/sec
5 sec

= 1 rn/see'

In this ease we have kept the units as a
physicist would do.
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Section 4-13 Rocket Engines
800 ft/sec. Yes; a 10,000 pound thrust for

2r, seconds will produce the same change as
a 50,000 pound thrust for 5 seconds on the
same rocket.

Section 4-14 Sounding Rockets
1. 619,000 ft; (See Figure 4-26)

619 000 ft 5 19 x 101 ft
198.6 sec 1.985 X 10$ sec
2.68 X 10' ft /sec

2. 270,000 ft; (See Figure 4-27)

v, 2.7 X 10' ft
1.985 x 101sec

== 1.86 X 10' ft/sec
3.

.1
Vy

-4A

V, = 4(2.68 x 101)1 + (1.36 x 101)1
V, --- 3 X 101ft/sec

Direction
tan e = 2.68/1.36 --- 1.97

- 63.2°
4. 540,000 ft. (See Figure 4-27)

5.4 x 10' - 1.4 x 101 ft/sec
3.85 x 10'

6. Vertical velocity (V,) (See Figure 4 -26)
(371.000 - 805.000) ft

20 sec

.= 3300 ft/sec



Horizontal velocity ) (See Figure
4-2'7)

(127,000 97,000) ft
20 sec

1600 ft/sec
True. velocity (V

V, = 11V300)I (1600)1 = 3620 ft/sec
3300tan = it40- = 2.2

10 = 65.6°
7. Phase 1: is the initial steep slope which

indicates high positive acceleration.
Phase 2: The slope of the line goes down
as drag and gravity retard the velocity.
Phase 3: A steep positive slope for about
6.4 seconds is due to the thrust by the
2nd stage motor.
Phase 4: Starts with the burnout of the
2nd stage and ends with apogee. In
this interval the rocket is rising but
losing vertical velocity.
Phase 6: From apogee to impact. High
gain in velocity due to gravity.

8. The forces of gravity and drag produce
an acceleration in the direction opposite
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to the velocity of the rocket.

(1770 3150 ft/seca =
(20 3.5) sec

83.6 ft /sec'
This value of a greatly exceeds the

accepted value for g and indicates that
at the high velocities of rockets drag is
a serious retarding force.

9. Nike
(3150 0) ft/seca = - 90.0 ft/sec'

3.6 sec
Apache

1=1

(5700 - 1770) ft /sec
r. 614 ft/secs

6.4 sec
10. Flight path angle is measured from a

horizontal. The positive value indicates
that angle is measured above the hori-
zontal (rocket gaining altitude) and the
negative value indicates that the angle
is measured below the horizontal
(rocket losing altitude).

11. Figure 4-28 gives directional data and
Figure 4-29 gives magnitude data. By
using the method called for in Exercise
6, you could use Figures 4 26 and
4-27.



Chapter 5 -SPACE MECHANICS

Section 5-1
1. 0.04 seconds.
2. a = 29Pti
3. Approximately 84 cm/sec.
4. Approximately 608 cm/seci.
Section 5-2
1. Approximately 24.75 cm.

Displacement from Table 5-1 is 24.72
cm.

2. (a) 6.6 seconds.
(b) 868 feet.

3. (a) 16 feet, 144 feet, and 400 feet.
(b) 32 ft /sec., 9b ft/sec., and 160 ft/sec.

4. (a) 3 seconds, (b) 144 feet, (c) 1 and 5
seconds after projection.

Section 5-3
1. (a) A construction, (b) A construction,

(e) 11.32 newtons, (d) 1.68 m/sec.
2. 2.8 m/sec.
Section 5-4
1. 618 miles.
2. 8 ft /see'
3. 5.97 X 10n kilograms (6.57 X 10n tons).
4. 24,100 miles from the moon or 215,900

miles from the earth.
5. A derivation.
6. (a) 7,640 m/sec. (25,059 ft/sec. or 17,083

mi/hr).
(b) 1,600 tn/sec (4.920 ft/sec. or 3,364

mi/hr).
7. (a) A graph, (b) approximately 12.2 ft/

sect, (c) Mars.

Section 5-5
1. (a) 9.380 x 10' meters (58,260 miles).

(b) 231 m/sec. (516.5 mi/hr).
2. 6845 seconds (114.08 minutes).
3. A derivation.

Section 5-6
1. 7.044 x 10' joules (5.283 X 10' ft (lbs))ersi2. (a) Approaches 1 (b)

Ri
3. (a) 10,800 m/sec (35,424 ft/sec or 24,149

mi/hr).
(b) 10,200 m/sec (33,456 ft/sec or 22,807

mi/hr).
4. 3,002 m/see (9,847 ft /sec or 6,712

mi /hr).

Section 5-7
1. A derivation.

2. E GmM - ). Both have the
r 2a

same energy.
3. A satellite has the same angular momen-

tum at apogee and perigee. Therefore, it
appears that angular momentum is
conserved.

4. (a) V, 7,420 tn/see (24,338 ft/sec or
16,59) mi/hr)

V. art 7,160 m/see (23,452 ft/sec or
16,987 mi/hr)

(b) e 0.019
(c) 6,610 seconds (108.6 minutes)

Detailed solutions may be found on pages 146 through 168.
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Chapter 6 COMPUTERS ARE NEEDED
6-1 Computers are essential
6-2 Flow charts
1. Yes

(a) Line segment connecting points
(0, B) and (0, B).

(b) The point (0, 0).
2.

Read A,1,C

' til -{AC

r Print
Identify

impostliNie

141.amormi

Mm X, Linear Equation I
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X1 e, 4+ Di-Te
A

X2 :1- C/51$7,
2A

Ihint XI , X2



6-3 Graph of an ellipse Output:
1. Program:

c Nom 11010114..0 Cava,RN
I wrIMII.V.0

POINT 11.1.124

II So*..
IPNot.I.Mtlill

Ian V.11
1 OMSPIPSolloIlM LIM*.

-416 T1FT
t II Itigh.

1111117T-111
10 OMPOIM Itio*Irtiwe Ti I--
6 MINT II

TT 1eirdttr171-111111444111U1 NATIO'
OP PS
SISC*MfoolloSSIK
II IlliSti114.111.1S

IV Wiwi., II
I*

T
IS SI*1101oblittillISCII/ololl**0

TINTO OPS-SIOSIIIIIti olArli
MINS 11.11.11

IV Vimmilgrlal
IN TS I
ni

*aol *Oh
log *Toeo . I..
IS:, I oso

0 .S. I.11_Alt
o

l
IIIo

Sof

41401404 04-
41.000000 11.261111

34.111$44

- 4 I . OHM -- 11.!1111
"1140/40, 1141
.11 AMU 11.111ta

. _11.1111Nt_ 11.1(4S12

AAIUN! _ _ 14.U1VI
4,1141KMAktra
__/ MUNI _u. 61141

ii*Ati
___4.10010111-111.Mt it
-.1411110101-- 114211

t1.1100611111.11.1111

.01101Ut -114011U.

LAMM J11r.0
1.116100110 11.111111

-1.1000011 10.1

-A-

A

a 11***M1

-.S.IMMUMS

_1.11W1401--- WWI,/ -
LAMM** 113*11.4- tie 1.1.0$ tott-- LIPS 0.011106111 11.$14111

"-"--1-40-"41711.." CIPIP 1.N _LAM -*MUM- 140 tit* Mete. 1 0. HOU I / .11,00

MUNI DAUM-

Output

a''''.."1111....-1710--t3111-1111.11( *on

- TOM- P.M LIM MKTIOVIT1IPMPT

T;SS-1.1t-Soe. TM-A. TS

2. Program:
sewn. 0****a IS 0Le' ar h.1111
:it doe ire sweddloo *. .5 MO Iwo

i01111.1.1111.101111

I Ololtel

*a 0.***,
i Se. .0-11

60.**.
11.

0101.0t.5.

PLaTo*..
tor. I11111
11111.6-1/

i. .t401.1.1

stab

-4140000 1141010
-41.8400011--3/404US-
- 111.100044 - 1141/006 a

J44101000-- MALMO

VS Ot 10100.01

3. Program:

_t.---501 ti
**Mot

I N.
Il*04.***

193

s*dawddo9-11000 .11 u

s'oor.p_itso,
714*(4.04

01111111118*4

IOW to*, ow tali

Ralmil1ei,011.1..1
5q. Mlii

111144181.1.1

tip

41,11.

0



Output: Output:
Decimal part Decimal part

Elevation Area of area Elevation Area of area
141- -17117119.1t ;MI 100 11,11TIM. IVIN 111,111,. 10 .
11W- --Iliii7I.NI .054 --parr- -yrrnernsw- ...ow110110111 111 /717.4 St Iwo 111014 1IN 11061.0

111Uf -1t7311SLN- -MN DR astorm.g 11
somme..tiff- 111111)T.11 Me! newt- -Tim mer :yr 4

:1Nuset 'as os . 4Mir -U oiss now- -sorerra.s
M7

sto4 INN :VAION
itlem11fir -NIPSIT.ii- .11)4 --1"....eir -1.11.11Itti.:

TM' -11111111Mir- ;tag
wIlrid"

44414 att. MI TITO
NM--ppm- --raprneropr-

ettiFIPM111111
VI SITM- limpictil

me- In11314.11-
--vrignierapr'

--Mir- -8111.0111111COf
QM
Mot *1411924 SO

*WM PIN to

:rill

mar- -11:1711111TW

.:00.1111431/iMr' J54711 71.3r 44 1114044

WO MMOD41.00
-NI

--ISW 3 AMITY. IN of rs MIN 1101.1041% allmar- --nurmar--- Tim awn- 111110110111
:IPA!MT' -rownjr- MA W.- -113.1111rillir-

-aar- --t-ormrar-- --ww-1,,,, -1"."113,880,141.1.116

SOM
...iss)1411383

vsksemi 110

Mir -11flint.lf
'Mg Io:- -Trrarliril.--am ......143NotilOS :..r.112::

1"iiirr-1411011--Par- -Umlaut -am 1.-11.77:::«; 1,13i---111V- -T/c7,11rir-

-1"14*-,Nos -"1111161_sigua1119114110

:ISO
.---11/4"11-1,40. -192111.112/%4*-1.Inv --wanm- -.-ms

11.4

JIM "Meer- 11..
-Tn. 4.714

i law- --smonair- ine. &MIPS 11. OS.tne---
WnaINr- -smnrr.m- -.

m ar
i0 lGii

I IM -144411. e

ifl
311511.11 -114$; a NW 41477110P UM

l IP--nay
*--snr- -Ilia mm-ar .1117

..........

* ---mo- -ssirsms.m-- -.1111 6-4 Area under curve--mr-- -- I. Program:

4. Program: oce 1111th It I., II
1.- - - 11.a

t tGrat 01, Ilia T. 16111.1 14.4 41111441

1 4.1000.
000.
Atilt/PHIL 11000.1if

1041104.1044A11$

--arra14041
'111**-

2__ temil01.4J14.1.4111.il
--a11110161,

0180tleMA I .1.,a

194

tto.Lea tilta.s.,..e.ttont,te.t-tt.
411a1.fetts.,0
leste.41.1,:t Let, - _
B at l Itptvt tAtt ICI II

tilt! eh MCI1ee.+1,/141.*It.li
AO 14
14,

Outpt t:

a 11.fteSSIP

1S n.svms
.

too IttlittI

POOR ORIGINAL COPY .1

AVAILABLE At TIME FILM-,



POOR ORIGINAL COPY - BEST

AVAILABLE AT TIME FILMED

2. Program: Output:

'WA attStrW CT.,' ENO elm',
I tROO

1.910
hAt1.0
.P/.t.9

VI p K.1,
W ill.t.7l till

1u .414,11c.t.,P

I .......t.
U,D1.1,10N.Oftv
V1'1140.1**.ortewnwttesercr-
as.1.16.0.3,,J1.11.4.2ets
ift*.11001,*OT11,t4S.TVSZtMprpirfill
*41%, 204.1114

.------"P-0.00ftorfteff4Pfpalt
MR to I

--
RS

104

3. Flow chart:

.71111

_ LISSA, _

IS SJOIS/

SO _SAISIO

s.iro,

50

OXO 5280

Sum se 0
CR N

C 1,32E25/32.2'3.411- 1'500/32.2

K>14

Above a Sofa (10(XPSHO/t1t)
Y0 No

Ana (10005280) XltC/ (400042$0 Soo Svow f
Atto It (10003280) /CC/ (50:4210 11 It (1000210) CR

Not N, Aire

N N + SO

w c (1,4oco.vso30)/stao 1

t orth, w

I st_

198



Program:
0c.st to gel =°* 11-00.11, 10 loco th.t tering*

*OH
_

I 000t.011/$0.0

- - -C10111/)t.iA.m 11.500.0,31./
& 1

1.3141.O,

30. Yam .
.

113.3133 30
AtOvIle&t0f 11/00.4.0

ke.0011Wv& IA I t 61400 4,4111.0016.4.1.0,a1.01,

IrirsoisoNT61414,11441

001r. 1.%.s4
& 00. .011.01 -

4.%114

411110-%.0.1.1

se,,..,
----

001.A1 5,0

PDIVtatlelle.01
-

0.00

1.0

Output:
St I risms.tittr

tessstmtst

MS304.611

196

4. Program:
00.5 To gtv r 15 A ilvt4 V.AAtICA4

1

_ _ _

0(10.0.10.6041

.0100.0
10..00.5.200.0

o00
ar..
0.10.

00.
0 11,004...

C. 1 OttiA,23.131.1 I It. lied., 33.11

DO 3 diet.,

1031-01111

6.1. a*

I a.0.0t*,-(0
400010,0100.0.
%.0,0& 1004 -0I ,,,,,, stow II

ANIA.sei#4,4,.4(60/0.11

P61%1 0..g.11011

1 100Ato10410,0,
.....

I C11.0,11.-1,0~--
011%? ,.

Ce.a,./115.51
.0 I

t.0-
$550.0. 0000.0. t0e.I

001.0. 3A000

Output:
MP 1,453.111

1111)111791.t43111

111)11)).T4S
tie 1117,sy6.441Et Itift04,141

1113/111.t43



6-5 The distance between Earth and Mars 2. Program:
1. Flow chart

Start

Read SE1M,SE2M

boss (18:1-42.5)/2

E112 93000000'sln (42.5)
stn (Soso )

ME2EI SE2M-boss
MEIE2 SEIM-Bose

A = 180- ME2E1- MEIE2

E2M EIE21sln(ME112)
sInA

FEIM ElEPsin (ME2EI)
INA

I

LItInt St I M,SE2M, El M, E2M

Program:
Oista,C, OC'str, tallow AvO e4S

Oe..ssico.ess

ttID.D/A41.1e1I ,,,, 1t4.t

Stroottte".141t4ftriD:a.

Ditp/t1Itatta.tIttmeg ite.e triN,Dapt

tr..titSICIc.141*-061..* ItStce

Pleof,11,014,11sIm-faCS,,CIWII

MIN It.tti.148..tIo.tto

.4100, y poot, ossotst It. 11,0 OtClOvI$

O fcCcSION

I Da t 4.1.

esso,u1s,

S 100.0

1411 Clat711I 11.1 3,

. 10.! C.11.1111) 11.114 I Ill 1,11141C 1140111 /11.1

seciposoesi.om110,441.4.Stili4SIC,CI.CCSIst411,

--
O 110.04411111.041

10 Ot4C.0.102.15

1 COW .11.118

4 4040At11to10.11

CO tO 1

001%t 11.10C

OMAtIsSm

CO 10 I

CVS

l.t(vOitt DOCCOOltIO.40.S.01

Pa... 10.0...0.0. 40.0

0.0. 40.4.11.0. 14.0

3*.0. II.). te.0. 00.0

C/.0. 31.0. 70,0, 30.0,

04.0. 104.O. 11.1

41.0. ,,.e. 11.0. 'bp

Output:

401.11 3.0.100

n?. 34 731.04

1044.05 1171.14

IMCCURAil 04134941104$

1614.4( 14411.41

1113.111 1116.311

3. Program:
4 P tr. stars

toto..........tto
eghort.t..1.408
.1110,4
g 41-0.0140.11.11

I t MI* !MOP WWI* MOM a Ptil MN I
P 11-1160.11.4*Drgreltaanory/TM1911.111--

*1..eaul.f.1401
10 to I errespe.srrtortete

e.santraseeastsee.osistoem
toe imimr IMILINEIRMIP.4444.4

4 Ocroats040.1.413.1.413.3.*4.i..9.10.19.1.If... ..4.4 44 vr
twit,

Ilf.S --tlitt tat: 144401
1.114. .1014. 160044

Ite.S. "Nth 'WO; 10901111
0.00. 0.1.11 0000.0---trtiv-tripts

Output: ..teee10. -ipt.t. 0444.4
--trits ...47,40$ 44444

Mt. Oleo 000.0
--110.1t; WA

3 I Itt114.1.444 41449 __.1:114 443.11/.30.9
4. ..4 11. 314694.3.4.9 9 9.t.99

Mao 16731 114041411

PAL it ORiGINAL COPY 66.),AVAStAbil At TIME litmED



pt

Output:
DIN ()At) P ABM El

_111111,1P _
-

6.66.) _ .75 1.1 60011.

11,1 /66111.61 _ .11 1.6 11.1 6n1111.

_11.24.1401---.11 __ 2.1 _ 16)179.

11.4 141111.9.01 __ .11 1.1 11.6

21f5 1471/92,21 ____ .12 % s1.1 $72$61.

-04 HI111.11. LI 1.s _ 131111

_16.1 _ 1121211.H ____ .09 -.1 115.1 0211199.

66.1 11111116. f/ tf 21,1 . 61101f.
III 11111104.H 112.t_ 1t1/1111,.

___. 1152711.10 _ .11 . -.2 111J 1111121.

6-6 Circumference of an ellipse
1. Program:

11411. COI, let 1) Olt 411

I 1410111

oel,.1 1.1.11

Ca" . 8 f 0

SO* II

oir 11-1

1 $.0....11

(1.

.1.01 LH
11.21

101 11.01

2. Program:

0am.4.11 red (14015f1111.21[0. tt

.140
I/.6
Pa &!100
11.104*1esa4.41ta

teat
t /6/11/Inpa I I .-}oLditt,2upaii4..to1 1,1.5 it, Ott. At I',*
t1.1.143,1171141

1.11111411 IMO
tIalalaitOtt14strI.11f ar1,411J

11404.4

a omptaltr10.11

or
rot., lootom SIO

tbleite,14.vied. -P41

**It

11111 11.0.41.41.4,

0. a 4.1..
*rap? rr/tI

VerIvSIVII 0114416n 11

VA. 6,016

a...
It 1160-olt0sS

0.0

004 *A
$44. a.4

OA. OA
1.1. 9.0

Output:
A 8 C Cl C2 C3 4:4

.--4110-- 4114.0 1.144 44444114 --.-414144 44 O.* -

0.....-41644---+-4/410.-11-..-144141-611.411-.--44411I-
4/44 4.4 444.4 44.4 -.-04144-- 01.0 - +NA. -

4.4 4144 14.4 -406.1.46 41414 ---

44414 4/111.4 - - II %-041--.-.-64re -6

664.1 2..0 4611411-

-164/..0 --414.11-,..-4-61114--,-.1416.0)--..-441600-..-44,61016-.-4.104.-

----44.4 41.* -- au.* - 441.1 -- .66.4.E - -- 444.4-404.4--

'S4---M.4---410.' -444 4 - 444.4- 406.46
1. I .4. a :.
/CA 12404 -.-6166.11 ___414.4_- 11- - 111.6 -1 Mai --- 410.4

10.1 - 30.1 ,AL -1116. _ tag.*

198



14.

3. Program: 6-7 Velocity along au elliptical arc
1. VP = 17300 mph.

VA = 16100 mph.
2. T = 105 minutes.
3. V = 1610 mph,

R 4790 miles.
T = 112 minutes.

4. Program:

-4---411ele11411444140 4.1.1144 44314 1411114.11.441 00e" 11114 amp AP-

erAa.111.4,

JAUCI.05101.0.0

----Weli11101.1.511541

41.1. 1.1'111221444

e5.1.1.1.1.523-5.51: alt/AllisSONumbi_
11.1.1.1eatabevi.x.bw.ezus---

igIALtaliaeaafL.
a YOMMATi,W4 I,

60 TO

clue

Tema... Lana..

4414.14-4134246

A911111.,

11423e6o 3534.1

4310.d. A144.6

141.1. .424.0 .

Output:

RA RP C Cl C2 C3 C4

C COMM PO0OMAAF-ICCOOTOIC155 OF b.1.8$44 shirr AA AM, MO

-1-71V6744.ep

1141111101

41.45.40

Itnifs
501.0.155011.5

SO TO

be

fee.1
44564
45,41.0

4040.0

4441.0

344.0

4444.4

44415.0

.5 531Fra--10105.5 515 farA--1110117Y-- Output:
to -1ltior-r737t7--2737$7/ ,U,,.7 11,15.7--

-illogert-tientilir-7719Wra-Mirl,rT7107r

POOR ORIGINAL COPY- BEST
AVAILAB1E AT TIME FILMED
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7000.0/01 4900.411J .17647058

4680.4110 434/.01.10 1.7403976C-01

5040.4000 4348.0500 14344001E-01

5421.0400 4258.0000 .11033880

4330.000J 4544.0000 2.9837031-0.1

4442.0410 4435.6100 1.9172111E-03



5. Program: Output:
__----_
C IMOINO V[L0CI27 ANC, 21146 of 012017 61226 A70622 640 PCRIOtt RA RP VA VP V T_

I 1220.0.6116

0444000.046

224104.6P,F240

94331sooc.oe$O0T.61

V449.8081180/041

VP2600121124,14V1

2.0.00023021241.61

16160.0 6962.1- 6970.9 6927.4- 1425.4

4641.22 15544.4 16540,6 16155,5 110.4

-4425;5 166)6.9 16790.0 lb 99.9
-4(61.5 -12160.0 .7279.1 7290:0 17284.6 92.1

6-8 Curve fitting
1. Prograln:

C Cv.vf FfiCINO BC 911100 {XL9Ctta, Allya___
0410.2 1.0.4.29119,.91.17.7

0I.eNSIoN '.1300.01301
N.0

9009A71#61.9.11 3999140.0
SUM1140 0

01 20 3 SUM2240.0
SVM2240.0

[NO
1 4N,

12213.KIN1.7161
22610.0. 11400.0 Num..

IF IS0NS2 2411C9 930.1510.0. 170 1.2
P11

466000 436.0 00 3 641.61
DO

60900.04 62600.6 IF 121142.71J01..2
3 341,244:K.

4161.01 J1'- -XVIALVE
SA62.0161
7IF1.,IJI
714,.360E
CON71NUE

3 1.241
m.61j0/2
.41.6
00 6 1.41.m
6664,1.361N21.4161

6 SUM71164121.702/
C141.
410,4143V.FIFC,
Aw2.1.2UNVIFCI
'41.91.1

DO 7 K.M11,21VM
SUM42.3WMF2211

41.0. 040.0

3084. 348.0

Output:

RA RP VA VI! %!

-rgyiry--bniou-6944,11 79771---4972.9 1175 I

16755.7 14651;5----11/1-.4----4515.5 6457.0 11553.5

4436.0 188510 16770.5 16719.5 100.4

-169011.0 261ev.5-EIST.1-6933.7
-34'6.1 16255.1 15512.4

16875.4 13925.9

6141.9 "ITIELT--

14465.5 155;11

165111.r-inr-

4638.0

3355,9 4346.1

6. Program:

7 SU672.SUF72.21F1
C1.L
'vE,R.Oingfel
4vev:487J9v/eCI
c0cr4 .favir71-Avt72ielavex1-v3x21
6.49601-coerA69eAl
PAINT 0.CC2FX10

8 221.071,2F12.1
60 109
CND

-1.2.
2.9. -10.45

I CMf-TT71[7ECOCITTy0T6-i7V[watims[! oa--ve 06:77. AT !edit[ -0,4. 4.1
-1.03. 11.33-11-.-14120079411,-
tel ..S.2
-1.11. .73----01114904212212902
-9.71. 2.2
-0.7. 10.3A221124211199211121212,11142t71:727T2TSISS22.011312311- 2.38. 30.73
.2.4 7.1716411121FW., 41.
2.2. -6.9
.2.4. 7.S---22.2-1716302221:21101St.a1

VAPF831271111140.11

---1212224212-241a7111.2123221.14.12412

------2-91311/44122212. h S2

10 n.
"PIT

1122.22er-sontrio

- 114itrOw-tvorelv

-term -11171710-
rriggrar-.-

200

.44,f, i.s

Output:

COEFX B
-2.3763



2. Program: Output:
A A. L.

26pl
1.11,419 C,11.01 PIIIIN1 Ny wEIm03 OF [..ST SC,4/9fIr

Sumx.9.0
-SCATroritr
144./.01.0
IVN31.01,7-
C0.0

I ,1141
OtiDwX1,tt-rstr,

C.C1.0----,tAIV.StOnrrtnr-
SU4V.Sy.yortNI

---39Fet.30MFIFTIRI-TrTNT--
SUPXY.S.0NFF.X041ovo,1

-tf-tit.eae IPot-
t OtN.SW.X.ISuPx..1.v.x

-13.915tFIFttvF9.39.4+1Km.x.rtaltito.,
CFEFO.IEvVxvC-5,..SyFy1lOON

FORMATtF2FIC.41
O 113-11--
IND

a.f. .10,95Oh -
-9.01. 1101
.111. O./
-0.71 10135

-1.8.1 7.37

2.4.1 7.9

-4.6d. 9,3

Output:
A. SD=
.1t76 -2.s$68

2. AIX' + MX? + C2 X2 =
A/X3 + BIX2 + CIX =
AlX2 + BEX + CN = ZY

4. Program:

C euan IMO 14.4 TOW PAAAOOLAOniNtririn3STI9g701
4 04.0.0--vraaraf

111140.0
IR41.0
114Y0.0

1100Y0.0
OFTDorlN.
M.401
N IAO.01414).9I141
Axywormillr
$4.01.111111
1.1.3V.11.41
O XV434Y$11N1444N1
112.411.1(41141:113---
44341.43.1100.04,
344.33444(41.444
111V.IMAT.1114)1111N3,11N)

.5[/4W FITTO4 111171
8 01.11X4fltx,WATtott.Oft93.434411t1

9ii-4091 s43ye(Sxo11ni34111,311131OIT
41.104814111.1301.8141.34 $$$$$ 1.114144y1,4431

01.4124.4570000)fit7X1f,Ptxty6ettal
14.141/41112341V1.11X4 3434174001
C14411144142413i1011434344442y1se442414,41441
C1.411/11/4134/7 145 1434343R03.111444444111V1

C.11.111.4112/101.0i
CirC144 ttttt .011
PRINT 3.44

3 FORMAT(03110.4,
00 TO 4
110

1,17111r
..1. 4 0.3
.1.0. 0.0
00.

r-1.

11.0.

SO. log
1.. 14

201

POOR ORIGINAL COPY BE ,T
AVAILABLE AT TIME FILM2D



A
acceleration, 121

average, 9d
centripetal, 129
of falling objects, 100
instantaneous, 130
vector, 99

altitude
of a rocket, 70
of a satellite, 11
of a star, 44

angle, 6
central, 6
measure of, 7
of elevation, 17
sides of, 6
vertex of, 8

angles and arcs, C
angular velocity, 105
aphelion, 88
apogee, 39,40
arc, 6

central angle of an, 8
major, 6
minor, 6

area, 166
areal velocity, 14:.
astronomical unit, 77
average speed, 96
azimuth, 44

B
brightness of stars, 83

C
celestial sphere, 45
circle 4, 20,139

concentric, 5
great, 10
inside a, 5
outside a, 6

circular orbits, 131
computers, 161
cone, 20

right circular, 20
conical surface, 20
conic section, 139
constellations, 48
coordinate planes, 94
coordinates, 28,164

equatorial, 25, 48
globular Ei.rth, 26
navigation, 26
polar, 25
rectangular, 26, 28

curve fitting, 176

D
declination, 46
degree, 7

directrix, 139
distance between

Earth and Mars, 169
drag, 112

INDEX

E
Earth, 29, 89

measurement of, 66, 68
viewed from a satellite, 71

Earth's atmosphere, 4
eccentricity, 38, 139
ecliptic, 37
ellipse, 20, f'.8, 139, 164

circumference of, 170
energy, 138

gravitational potential, 136
kinetic, 137

equatorial coordinates, 25, 48
equilibrium, 111
escape velocity, 135

exosphere, 6

F
flow charts, 162
force, 106

eentral, 110, 128
centripetal, 128

G
gravitational constant, 131

H
horizontal parallax, 66
hour circles, 46
hyperbola, 20,1' 9

I
ionosphere, 5

J
K
Kepler's laws, 39
kinematics, 126

L
latitude, 10, 30
light year, 82
line, 4

rhumb, SO
longitude, 10, 30

M
magnitudes

absolute, 84
apparent, 84
of stars, 83
of vectors, 97

naps, 1407
fallacies of, 33

maps and distance, 14
mass, 106

center of, 181
measure, units of, 108

absolute system, 131
English system, 60, 108
metric system, 60, 108

measurements, 16, 57
angular, 61
direct, 59, 61
indirect, 64

20.2 r2os

linear, 59
of Earth, 66

mechanics, space, 121
meridian, 10

prime, 10, 30, 42
Milky Way, 45
momenflim, 110
moon, 73
motion, 93

circular, 103, 109
projectile, 101

N
National Association of Rocketry, 69
Newton, 108,109,131

0
observations of Earth, 11
orbits, 69,189

circular, 131
-determination, 110, 144

P
parabola, 20, 19
parallax, 64

geocentric, '78
heliocentric, 81
horizontal, 66

parametric equations, 163
parsec, 82
paths, in space, 19

of zatellites, 130
perigee, 39, 40
perihelion, 38
perturbations, 40
plane, 4

coordinate, 94
planets, 77, 79

eccentricities of orbits, 38
inclinations of orbits, 37
symbols for, 86

positions of stars, 43
positions on Earth, 9, 29

prime meridian, 10, 30, 42
projectile motion, 101

projection, 15, 35
central, 15
orthogonal, 15

proportion, 18

Q

R
radian, 9
rate, 94
ratio, 16

trigonometric, 19
rays, 6

perpendicular, 8
revolution, 7
rhumb lines, 30
right ascension, 46
rocket engines, 110, 111



rockets, 99, 100
altitude of, 68
Nike Apache, 112-118
Scout, 167
sounding, 111

S
satellite

active, 13
altitude of a, 11
Earth-synchronous, 134
passive, 13
paths, 139

satellites
Alouette, 97, 176
Apollo, 168
Atlas-Agena, 111
Echo, 13, 97, 135, 144, 173, 175
Explorer, 39, 173, 175
Gemini, 48, 108, 133, 175
Mariner, 21, 37, 68, 94, 97,169
Mercury, 174
Nimbus, 175
Orbiting Astronomical OL ,ervatory, 63
080 (Orbiting Solar Observatory), 173, 175
Pioneer, 76
Relay, 13, 14, 173
Saturn, 111
Sputnik, 39
Syncom, 13, 14, 134, 135, 174, 175
Telstar, 13. 14, 39
Thor-Agena, 111
TIROS, 11, 13, 176
Titan, 111
Vanguard, 4, 68, 171

scalar, 98
scalar product, 135
shapes on Earth, 3
slope of a line, 96
slug, 108
solar system, 36
sounding rockets, 111
space

mechanics, 121
motion in, 93
paths in, 19
yardstick of, 74

spect rum, 87
speed, average, 96
sphere, 6

celestial, 46
zone of a, 13

stars
altitudes of, 44
brightness of, 83
classification of, 87
distances to, 81
magnitudes of, 83
positions of, 43

stratosphere, 5

T
tangent line, 13
thrust, 111
triangle

congruent, 17
hypotenuse c f, 19
similar, 17

troposphere, 6

204

U
units of measure

absolute system, 131
English system, 108
metric system, 108

universal gravitation, 131
universe, 25, 57,89

V
varies directly as, 12
vector, 97, 121

acceleration, 99
magnitude of a, 97
quantity, 97
sum, 98
velocity, 99

velocity, 97, 121
along an elliptical arc, 173
angular, 105
areal, 142
escape, 135
instantaneous, 125, 130
vector, 99

weight, 108, 131
weightlessness, 108, 132
work, 136

X

Y

zenith, 33
zone, 13

* U.3. GOTT NNNNN T ortict 1147 0-111-211




