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Considering a course written in performance objectives, the paper

explores the information needed by a teacher for instructional management

purposes. Then, based upon these needs at a fixed point in time, an algorithm

is developed to select the test items to be used to estimate the desired

parameters. Inputs into the model are the average time required to answer

each item, the errors of measurement associated with each item, the relative

value of the information provided, the prior knowledge of this information, and

a value function on the accuracy of the resultant estimates. Finally, tech-

niques are given to allocate test items to students in such a way as to generate

simultaneous estimates of item and student group characteristics.



1.0 Introduction

Consider a teacher who wishes to impart some knowledge to a group of

students. This teacher has a brother-in-law who is an operations researcher

for a management information firm. At a family summer outing, the teacher

overheard his brother-Jai-law talking about information feedback, control

theory, decision analysis, and a whole raft of unfamiliar jargon. As the

teacher was on vacation for the summer, he decided to find out about all these

powerful techniques and apply them to his teaching in the fall. After all,

if his brother-in-law could increase efficiency by 100% or more in the business

and industrial world, why couldn't he do the same in the classroom? Think,

only 30 minutes a day for each, class instead of the usual 60! After a few

years of practice, he could write a book, form his own company, and retire

with the knowledge that he had done his share to save mankind.

In order to develop a model of testing students for instructional

management purposes, it is necessary to explore the types of information

that would be useful to a teacher in a classroom environment. First of all,

the structure of the material the instructor is attempting to teach must be

clearly defined. This material will be viewed in the content domain in a

structure as shown in figure 1 for the model presented herein. Most courses

currently defined in performance objectives do not recognize the concept of

measurable objectives (M0's). However, in a course containing 100 or more

performance objectives, it is not feasible to obtain statistically reliable

estimates of achievement levels in all or most of the objectives at the same

time. This phenomenon (the bandwidth-fidelity dilemma) is explained in more

detail in Cronbach. [3], Chapter 8. Therefore the course in figure 1 has been
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organized into groups of performance objectives large enough to yield reli-

able statistical estimates, but small enough to yield information valuable

for instructional management purposes. CAM is presently using the performance

objectives covered in a week's time as the set of measurable objectives. As

will become clear later on, this concept of measurable objectives does not

cause any loss of information concerning the individual performance objectives.

This is important to note because data relating to performance objectives,

although not statistically reliable, can still be quite meaningful to thc.

teacher and student.

For notational purposes, the units will be indexed by a (Ua,a = 1,.,A),

and measurable objectives by a (the unit they are in) and b MOab,a = 1,*",A,

b Note that there can be different numbers of MO's per unit.

Viewing the course in the structure as presented above is helpful for making

decisions concerning the construction of tests over time and in understanding

the inter-relationships of the parts of the curriculum from the results obtained

by testing. Furthermore, it is assumed that the teacher has a presentation

strategy; that is, a plan of the order in which the material will be presented

to the class.

One can also view the curriculum in a second dimension, that of concepts

or skills. An example of this dimension is the taxonomy developed by Bloom [l].

However, because of the difficulty in applying such classification schemes to

curriculum and the increase in mathematical complexity in the present formula-

tion, only, the single dimensional classification by content will be considered

here.

In order to discuss the possible goals of teaching a curriculum, some

parameters must be defined. Let Pa
bs

be the achievement level of student s

in M0ab. A convenient definition of Pabs
is the expected percentage of



4.

correct responses by students to the universe of items that measures achieve-

ment in MO
al).

The estimate of
abs

P can then be obtained by sampling items

1 S
from the universal pool.

Pab.
E P

abs
is the average achievement level7 s=1

of the whole class in MD
ab'

Now consider the goal of the teacher as maximizing

F({ P
abs'

a = 1,6",A,b = .

' a'
s 1,...,S}). The following are specific

examples of F(*) that teachers may choose:

A
B
a

F() E P
ab.1a=1 b=

This function values learning in all MO's and by all students equally.

A BaF(*)0KEQP
aseEl boa ab ab.

This function values learning by all students equally, but values

learning in MCab according to the weight aab

A
F() E max g

amid ab.
/ a

This function values learning one and only one MO, within each unit

very well.

A
F(.) E mm

,a=1 bm1,...00a

This function values learning at least something about every MO in

each unit.

The above are but a few examples of possible F(*). Others could differentiate

between students, be non-linear functions of
abs'

P or compare Pa
b.

at the

end with P
ab.

at the beginning of the course.
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This digression into objective functions is presented to emphasize

that a teacher should have a specific idea of his goals in order to make

intelligent decisions regarding instructional strategies. In the next section,

an algorithm is presented for the selection of test-items to be given to

students at a fixed point in time. This algorithm requires the teacher to

input the value of certain information to him. Without a clearly defined set

of goals, the teacher may have a difficult time selecting the appropriate

values.

The reason that one needs an algorithm to select items for testing

purposes is that there exists only a finite amount of time for such testing.

In this paper, testing is considered as being done at fixed in-ervals (called

periods---say once a week) for a fixed amount of time each period (T---say 30

minutes). Varying the frequency and length of testing during the school year

is not discussed, but the present model does not exclude such possibilities.

Finally consider the types of information that a teacher might like to

have for each MO
ab.

The value of Pa
bs'

s me 1 ...,S before instruction on

MO
abl

would certainly be useful. So would the values immediately after

instruction and several months after instruction (the retention level). One

of the problems is that Pain is very difficult to estimate in a statistically

reliablefashionduetosamplingandmeasurementerrors.P,aois easier to
.

measure and is the quantity that will be estimated. Pa. as defined contains

information about all the students in the course. Section 4.0 explains how

estimates of E P
abs'g

= 1,".,G can be simultaneously generated where U
SeUg

g

is a subset of all students. Examples of U are various sections of the

course which were exposed to different stimulii, or different achievement level

groups.
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2.0 Item Selection Algorithm

As seen in the previous section, a teacher could use information about

Pab.'a = 1,*,A,b = 10,B
a

during each period. However, good estimates of

Fab.
require many test items, and there are only T units of testing time

for each student during a period. Therefore, it is necessary to efficiently

select the items to be used on the tests for each period. The algorithm to be

developed will generate nab, the number of items to be used from MOab. The

actual selection of items is then done on a stratified random basis, the

'stratification being done on the performance objectives within the MO. Thus,

if
nab

= 8 and MO
ab

contains 4 performance objectives, then 2 items

will be selected at random from each performance objective within MOab.

Assume that there are S students in the course. Enough items can be

selected to consume T units of time, and the same items given to all the

students, or enough items can be selected to consume ST units of time, and

a different'set of items given to each student. In general, one can select

enough items to consume L*T units of time, 1 L S. S, and give each set

of items to S/L students. The following thoughts should be considered in the

selection of L. When L = 1, then students can more easily be compared

(all respond to the same items) than when L = S; while when L = 1, estimates

of g
ab.

will contain more variance (due to sampling errors) than when L = S.

If L = S, then a huge number of items is needed to consume ST units of

time, and the cost of producing the actual test forms can be enormous. Moreover,

if each student takes a different set of items, then the item and student

characteristics will be confounded. Section 4.0 examines the problem of obtain-

ing simultaneous infotmation about student and item characteristics. In present

projects undertaken by the CAM staff with S = 100 to 150, L has ranged from
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8 to 10. This value of L enables one to do considerable sampling within

each MO, while still retaining much of'the power for comparing groups of

students.

What criteria can be used to select items from the various MO's?

The present algorithm uses the following five.

a) The average time required to answer an item pertaining to M0ab.

Denote this by tab.

b) The value of the information (K
ab

) on MO
ab

during the current

period. For instance, if MO
ab

is not being taught for several months, then

Kab will be low, while if MO
ab

was taught last week, then K
ab

will be

high. { K
ab'

a = 1, ,A,b = 1, ,B
a
} is an input into the model and presently

is viewed as being subjectively derived. Further theoretical developments may

enable K
ab

to be determined objectively.

c) The prior knowledge of Pabo. If a teacher is quite confideat that

P
ab.

is very low, then there may be no need to use any items from MO
ab.

This

information'is input into the model as a binomial prior (n',r'), where the

prior expected value of Pa
b.

is r' /n' and the variance is (e/11.1)(1-ein')

/(n', 4- 1). An excellent discussion of binomial priors is given in Introduction

to Statistical Decision Theory (ISDT) [7].

d) The errors of sampling and measurement of items relating ro M0a.b

See section 3.0.

e) A. value function indicating the value of how close the estimate

ab.
is to the true value Pab.. Denote this function by V

ab ab.'
P
ab.

).

Note that Vab(,.) depends upon the MOab. The value function to be used

here will be of the squared-error loss type. This is not the only meaningful

value function to use, but it appears to be the easiest from a computational

viewpoint. The specific form of the function is (see figure 2),



A
2V

ab
(1a ,P

ab.
)

ab ab.
- P

ab.
)

This value function is properly used when one is interested in an estimate

of P
ab.

and does not have to choose one of a finite set of actions based

upon the value Pab.

In ISDT it is shown for the case of pure binomial sampling (i.e.,

ignoring measurement errors) that the prior value of nab items from MO
ab

is

where

n
abvo

I(n
ab

) Ka
b Pab. + n'

0,1,2*"
ab a.17

nab

vt r'
ab

r'

P
ab.

ab
-7-
ab
)/(nlb + 1)

n
ab

is the variance of the prior estimate of Pab.. Here the prior information

is contained in the pair (n;b,ria'b). It can be shown that I(nab) is strictly

concave in n
ab

(see figure 3). The next step is to take into accounL the

errors of measurement inherent to items measuring MOab. It is shown in section

3.0 that the relationship of the number of items from one MO that gives

equivalent measurement errors with a fixed number of items from another MO is

linear. Fixing one MO as a standard, one can generate the ratio of items

(y
ab

) necessary to obtain equivalent information. This yields J
ab

(n
ab

)

I(Yab n
ab

) as therelative value of n
ab

items from MO
ab'

Finally, the

problem to be solved to yield the desired values n
ab

is



V
ab

63
ab.'

P
ab.

) = - K
ab
6

ab.
- Pab. )2

1,
ab.

V
ab

(I
ab.'

11
ab.

)

Figure 2

v. n
ab

i(nab)
is x p

ab ab. n
ab

+ n lb.

n
ab

Figure 3
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A B
a

max J
awl =b=1

E
ol a

such that

a

A Ba
E Et. n 1.3T

awl bola ap ab

n
ab

integral

Since J
ab

(n
ab

) is strictly concave in n
ab'

this problem may easily be

solved on the computer even for a very large numbpr of MO's.
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3.0 Errors of Measurement

In attempting to measure Pab. there will be two sources of errors

that can be of different magnitude in different MO's. These are the format

in which the items are written (free-response, multiple choice, or true-false)

and the generic reliability of the test items. The following discussion will

demonstrate the linear relationship between the number of items in each of two

distinct MO's necessary to generate estimates with equivalent errors of measure-

ment.

The question of the error variance introduced by the use of multiple

choice versus free-response items is not an easy one to answer. There is the

question as to whether a free-response format of a multiple choice item is the

'same question. *Furthermore, what is the true guessing factor in a multiple

choice item? If there are m alternatives to an item and the item is

"perfectly" written, then if the student does not know the answer, he will

respond correctly with probability 1/m. However, how many teacher-constructed

items are perfectly written in the sense described above? For the present

analysis, assume that Sam and Joe are identical students (in the sense that they

both know exactly the same material) and will respond to an n item test.

However, Joe will answer in free-response format while Sam will be able to

guess with probability l/m if he does not know the correct response. The

items given are drawn at random without replacement from the pool of all items

that measure achievement in a given MO. Let X and Y be the number of

correct responses given by Joe and Sam respectively, P the true percentage of

the total item pool that Sam and Joe know, P, the estimate of P from Joe's

score and P8 the estimate of P from Sam's score. Then



Now

MI

a2(i )
n

P(1.-P)

2. 1
n m

f; 0 Stwon..
1 -

m

as may be seen be writing E(i) P + (1-P)

and substituting y/n for E(y/n) and P for P and

02111

'

02 (xn
s

1

(1
m

a2 (X)

12.

Since Sam's probability of a correct response for an item drawn at random is

P' P + (1-1).11i

1 1 1 2^ 1 1 ;:(1-11)
02(X) as [P + (1-P )1-1 P - (1-P )7104 a (PS) -

n
P (1-P) + n 1

1 -
m

Thus, a
2
(P

s
) a

2

1

- 1 m

1

(1-P)

Now one can ask how many test items does Sam have to respond to (ns) in order

A

i)
njto reduce a2 (Ps) a

2
to (P when Joe responds to items.

1

1 Pfl--r
1

P (1 -P) +
nj ns

1
or

ns n [1 +
- i)P

2 ^
a (Ps)
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The above is the linear relationship necessary to correct for format differ-

ences. Note that this depends not only upon the number of alternative

responses (2), but also on the true achievement level (P) of the students.

The number of additional items necessary to produce sampling errors equivalent

to free-response format when multiple choice format with m alternatives is

used is
1

m n . Note that as P approaches zero, this goes to infinity.

(1 - 1) P

So multiple choice and true-false items are especially inefficient for estima-

tion purposes when used as pre-instruction measuring devices.

The above analysis yields a quite different conclusion from that of

Lord [5]. In his work, he assumed that Sam and Joe both had the same expected

score on their tests, i.e., E(X) = E(Y), and came to the correct conclusion

that the standard errors of their scores were equal. However, under his

assumption, Sam and Joe would be different students with different knowledge

levels, and therefore not comparable in a fasion Lord indicated.

There is no reason to believe that the generic reliability (or the

generic error of measurement) will be the same from one MO to another. A

discussion of these errors of measurement and methods of estimating them are

presented in Lord and Novick [6], (Chapters 8 and 9), Cronbach [2], and

Rajaratnam [8]. Once the generic reliabilities have been estimated, the

Spearman-Brown prophecy formula can be used to derive the linear relationship

necessary in the item selection algorithm to correct for measurement error

between MO's. If MO
s

and MO
r

have generic reliabilities p
s

and p
r

respectively for the same number of items n, then the number of items (ns)

from MO
s

needed to make p
s

equal to p
r

is given by

P (1-P )Pr
s

n
s

= n
P (1-P )r
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4.0 Administration of Tests to Students

Once the n
ab'

a = 1,,A,b = 10,B
a

items have been selected from

MO
ab

as described in Section 2.0, the L "approximately" parallel forms

must be constructed. This can be done by arranging the items on a one dimen-

sional scale according to the chronological presentation to the class of the

performance objective to which the items are related, and assigning every Lt--11.

item to the same form. Rigorously speaking, this will result in a violation of

the time constraint for some of the forms. However, the variance among

students solution time for each item will be quite large, and unless mo,iitof

the time consuming items are assigned to one form, no gross violations should

result. Moreover, a few appropriate switches of items should correct any of

these gross violations. Once the L forms have been constructed, each student

in the course must be assigned a form to take. ,This assignment task should be

done rigorously as shown below in order to get the most possible information

out of the test data.

Consider two partitions of the students in the course. A partition is

a collection of subsets of all the students such that each student is in one

and only one subset. The two partitions that probably will be of interest are

ones based upon achievement levels and physical attributes (different sections,

teachers, etc.) of the class. For notational purposes, let Ui,i = 1,,1

and Vj ,j = 1, ...,j be the two partitions. Next, consider the cartesian

productathetwpartitionsesshournbelov those
3

students in both U
i

and V, while m
ij

> 0 is the number of students in

subset W. Finally, let aijt,i 1,.i.,L be the number of students in Wij

who will respond to form R. It is. the a
iji

that must be calculated. The

requirements that all L forms are distributed evenly among partition V

are



(4.1)
I

I

i=lali k iiki 15. i Vg,,J0 = 1,..,L; j sa

while that of partition U are

(4.2)

15.

lEa 1\fs6,50 = 1,...,1
ijt jai ijt

Once the a
ijR,

are found that satisfy the above constraints, then one

randomly selects aiji students from Wij and gives them form 1, randomly

selects another aij2 and gives them form 2, etc. Present research is

directed toward developing a computer algorithm to find a solution aijk,i = 1,

= 1,...,J,t = 1,...,L.

The above procedure of assigning forms to students is useful for two

main reasons. Firstly, if the forms are viewed as fixed and it is desired to

estimate characteristics of the forms within the population of the class, a

doubly stratified sample of students of approximate size S/L has been drawn

at random from the class for each form. Thus, for a fixed item on a form, an

unbiased estimate of its properties in the whole class is obtained, and this

estimate has lower variance than a simple random sampling estimate due to the

double stratification. The items are no longer confounded with any student

or groups of students as defined by the partitions U and V. On the other

hand, if one views the student groups as fixed and wishes to estimate the

groups' performance on a given MO, a stratified (by performance objective

---Section 2.0) sample of items has been drawn within the MO. Furthermore,

essentially the same items have been given to all groups within the same par-

tition which enables one to make stronger statistical statements about differ-

ences between the groups. If different groups receive different sets of items,

then an additional variance component is introduced into the comparison data,
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the variance being due to item differences. The actual statistical problems

are slightly more complex than represented here due o the fact that within

each subgroup (Ui or Vj) different students respond to different sets of

items.
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