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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmnakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists particirated, was the

writing of monographs.

Although there was no consensus on a single approach, many writer.,

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the trepl,ment was

to be "multi- level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were writte. in four content areas; Fcrces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of the?:

authors' close, informal interaction.

Because of stringent time limitations, fell, of the mr,-..tograrhs have

been completed, and none has been extensively rewr3tcen. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental natur:: of the undertaking, it is

essential that these manuscripts In made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



MOTION

FOREWORD FOR INSTRUCTORS

This monograph on motion is intended for the student's

first encounter with physics at the college level. It con-

sists of an extensive qualitative discussion of motion

followed by a detailed development of the quantitative

methods needed to analyse the motions of point particles.

Our object is to capitalize on the student's visual acuity

and his familiarity with motion in nature to build a firm

foundatizn for later work in dynamics.

The customary treatment of kinematics in introductory

physics courses divides the subject into units according

to their mathematical complexity. In addition, dynamics

and kinematics are taught alternately so that both subjects

are mingled. Typically the kinematics of constant accelera-

tion in a straight line is first. Then, in order, come the

kinematics of constant acceleration in a plane, the dynam-

ics of these motions, the kinematics of circular motion

and rotation, the dynamics of circular motion and finally

the kinematics of oscillatory motion and its dynamics. The

advantage claimed for this arrangement is that it begins

with the least complex mathematics and that it allows the

student to proceed in physics while he studies mathematics

concurrently.

It is our opinion that this customary treatment is too

abstract, that it ignores the most familiar aspects of mo-

tion in the real world so long that many students experi-

ence great difficulty in associating their study with their

common experiences. In attempting to overcome the difficul-

ties of this too-abstracted approach, we have arranged our

discussion of kinematics so that general methods are con-

sidered first and then applications to particular types of



motion. We have not hesitated to discuss curvilinear motion

first. We have not restricted the development of kinematics

initially to constant acceleration. Our hope is that this

will aid the student in maintaining a close connection be-

tween his own work and the typically complex motions he

sees constantly around him. Because some elements of an-

alytic geometry and differential calculus are essential to

this approach, we have developed the rudiments of these

subjects along with the physical concepts of kinematics.

The time required to complete the material in this

monograph is somewhat greater than ordinarily devoted to

kinematics before introducing dynamics. The additional

time we believe will be justified by the student's greater

familiarity with kinematics which should make his subse-

quent study of dynamics more meaningful and more fruitful.

Some of the added time should be regained later since only

a brief review o± some aspects of kinematics will then be

required. The greatest gains from this approach, however,

should come from the unity it gives to the subject. The

student should be able to see plainly the problems of de-

scribing motion on the one hand and of accounting for its

causes on the other. A common tendency of students is to

conceive of the kinematics and dynamics of rectilinear mo-

tion as one subjeert and the kinematics and dynamics of

oscillations as a completely unrelated one. Treatment of

a wide range of kinematic problems together followed by a

similarly broad treatment of dynamics offers an antidote to

such a fragmented view of physics.

EXPECTED STUDENT BACKGROUND

This monograph is aimed at college freshman and pos-

sibly some sophomores. We have assumed that many of the

students who use it may not have had a high-school course

in physics, and that many will not have embarked on the

study of differential calculus. It is written particularly

for students who do not have the deep commitment to physics



or the strong bent for mathematical analysis that charac-

terize those who pass quickly on to the typical research-

oriented graduate program.

It is necessary to make a minimal assumption about

the student's mathematical preparation. We have assumed

that all students will have an adequate background in ele-

mentary algebra, though they may lack extensive practice in

algebraic manipulation. We also assume they will have stud-

ied plane geometry and at least the fundamentals of trigo-

nometry. In the case of trigonometry it would be our inten-

tion to include in a more finished version of the monograph

an appendix sufficient for learning the rudiments of trig-

onometry.

Because we expect the students who use this material

to continue beyond the elementary level in physics, we

think it important to include the use of analytic geometry

and differential calculus even at the outset of their work.

In our experienca beginning students are rarely troubled

by an inability to t,,,4A..y out routine manipulation of

mathematics. Their real difficulty is seeing where the

mathematical tools should be applied and the reasons for

their application. Consequently we have developed these

mathematical techniques in the context of kinematics. Our

intent is hardly to provide a substitute for more formal

treatments in regular mathematics courses The heuristic

introduction we give should enable the student to proceed

in physics making modest use of differential calculus, and

it may aid him in his formal study of the subject by pro-

viding concrete examples.

INCOMPLETE AND MISSING SECTIONS

The program of the Seattle Writing Conference origi-

nally envisioned "three-level" monographs; that is, treat-

ments of narrowly defined topics first at a qualitative

level, then at an intermediate level, and finally at an



advanced level. This monograph encompasses the first level,

part of the second, but none of the third. Chapters 1 and 2

give a broad qualitative discussion of motions of all types.

Chapters 3 through 6 develop the quantitative description

of motion through the introduction of acceleration.

One important part of the intermediate level material

is still missing - a discussion of motion in terms of s t,

v t, and a t graphs, and particularly a discussion of

the various physical restrictions connected with these

graphs such as singlevaluedness, smoothness, and continu-

ity. In this regard the customary introduction with one-

dimensional motion at the beginning is advantageous since

it makes discussion of these points easy at the earliest

stages. When two- and three-dimensional motions are dis-

cussed first, these time graphs and their physical content

do not enter so naturally. For this reason we postponed

their treatment to follow the chapter on acceleration

(Chapter 6). Because of the limited time we had available,

this remaining chapter of the intermediate material is not

yet written.

The idea of including a third and advanced level in

these monographs was based on the thought that ultimately

it would be possible for instructors to return to the mono-

graphs in later courses to continue developing their sub-

jects. This is entirely appropriate in kinematics, but

again the limited time available for this work did not

allow us to complete any material for this third level.

Many different topics have been suggested. Among the more

obvious are: moving coordinate systems; the kinematics of

continuous systems; rigid body motion; fluid dynamics; and

the kinematic aspects of statistical mechanics.

Within the chapters presented here are severe:} omis-

sions which would not occur in a more complete version. One

has been noted already: the absence of the appendix on

trigonometry which is referred to at several points in the

text. It is our hope that some students will want to read



further about topics we have discussed and for that reason

we would add bibliographies at appropriate points. Finally,

additional exercises and examples are needed.
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PREFAC THE QUEST OF

There are many motives for learnino.
You may learn to drive because there
is no other way for you to go from
place to place. At the same time you
discipline yourself to submit to cer-

tain rules of conduct, the traffic
laws. There are many motives, too, for
studying physics. There are well-paid
scientific jobs and you may want one.

Perhaps you want to teach; well-
prepared physics teachers are in de-
mand. Or, what may be the best motive
of all, you want to study physics be-
cause of its significance in Western

culture, both intellectually and mate-
rially. You hope for a beter under-
standing of your own environment and
of your role in it. Whatever your per-
sonal goals, learning will be a sig-
nificant experience only if it carries
with it enthusiasm and fascination to
balance hard work and occasional frus-
tration. One way to be fascinated by
any human activity is to see how en-

thusiastic men or women work at it, to
discover for yourself what it is that
fascinates them. Should you (discover

that the object of the entLilsiasm

holds no interest for you, you can
expect little but drudgery when you

PHYSICS

study their subject. But if you do
catch fire, be prepared to develop
the discipline needed to learn and to
apply the rules of the game, just as
you would to learn the traffic laws.

Learning is like discussion. A
good discussion is more than an ex-
change of information. It requires not
only a commitment to transmit as well
as to receive information, but to do

it with a minimum of distortion. in
any discussion, the initial problem is

that of clarity, of the meanings of
the words used. We will start our dis-
cussion of motion from our subjective
experience of it. In the process of
analysis, we will see the need for
greater precision than everyday lan-
guage can offer. Narrowing the meaning

of concepts used to describe physical
reality is necessary to disclose the
underlying order and structure. It is
the aim of physics to find this struc-
ture and to embody it in laws. Our aim
here is to help the student learn how
motion is described scientifically
and how this, in turn, leads to t;le
laws of motion. We hope that this will
make learning physics a meaningful in-

tellectual experience.
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1 THREE VIEWS OF MOTION

Ignorato motu ignoratur natura
(Who knows not motion knows not nature)

1.1 INTRODUCTION

Suppose you were living 500 years

ago or more, so long ago that, while

men wondered how the world is fitted

together, they still knew little of it.
What would you choose to study if you
sought a key to nature? Where would
you start? What first would catch your
interest? Would it be light flashing
from the sun, and flickering from the

fire? Or fire itself, and heat? Or,
perhaps the cold of ice? Would it be

the unexpected changes of chemicals
mixed in a boiling pot? The sound of

music? The unfolding of a flower? The
humming flight of arrows? The quiet
moving of the moon?

All these were ancient starting
places in the quest to know the world,
but, in the end, it was the arrow's
flight and the moon's revolution that
set science on its modern course. How

things move, and why, have proved the

keys to open the lock of nature. Hav-
ing learned how motion goes, we have

learned also the answers to old rid-
dles like why the sky is blue, or why

rain gently falls while stones ;Oust-

met.
Our subject here is how things

move: how, but not why. It is a subtle

subject, and an old one. That movement

is a joining of place with time men

have always known. But how they are

joined, how we can draw moving things,

how we can speak or write of motion,

or frame equations for motion have

never ceased to be questions for us,

whether we be artists or poets, phil-

osophers or physicists.

1.2 MOTION IN ART

Thousands of years ago, an artist

in a Spanish cave, struggling to bring

the flash of movement to his figures,

drew the many-legged boar you see in

1

--Scholastic Adage

Fig. 1.1. He could not follow with his

eyes the boar's fleet feet, yet he

knew they were forward now and now

back, and also all places in between.
And that he drew on his cave wall to
show a running rather than a standing
boar. To show motion in a still pic-
ture has been an artist's problem
throughout the ages. The cave man's
means are seen again in Marcel Du-

champ's painting, "Nude Descending a
Staircase" (Fig. 1.2), but for this
modern artist, motion itself has dis-
placed the figure as the main concern.

Fig. 1.1 Running boar. Taken from a pre-

historic cave painting in Altamira, Spain.

Fig. 1.2 "Nude Descending a Staircase," a

modern painting by Marcel Duchamp (1912).

Philadelphia Museum of Art: The Louise and

Walter Arensberg Collection.



2 MOTION

Fig. 1.3 Comic-strip version of speeding

rocket.

Fig. 1.4 A speeding car photographed with
a low shutter speed.

These examples, the primitive
artist's work and the modern painter's,
show the first problem we meet when
we deal with movement. Our eyes, by
which we are more aware of moving
things than by any other of our senses,
do not disclose its details. We never
see a boo- run the way the cave painter
drew him. We never see that string of
stock-still legs frozen against the
background. We are more conscious of
a blur near the moving thing. Artists
use this impression, too, to give the
sense of motion to their work.

lok

Fig. 1.5 Path of asteroid Eros across
background of fixed stars. (Yerkes Observa-

tory.)

The streaking rocket you see in
Fig. 1.3 is in the void beyond the
earth. You know its flight is speedy
from the lines the artist drew near it.
3ut in fact there are no lines visible
in the empty space around the rocket.
In much the same way, you sense the
motion of the car in Fig. 1.4 from its
blurred image against the sharp back-
drop. Sometimes this sort of picture
is a practical way to discover a mov-
ing thing. An astronomer's photograph
of the sky, for example, may reveal

1

zi

4

Fig. 1.6 Early high-speed photographs of a running horse, taken by Eadweard Muybridge about

1880. George Eastman House Collection.



THREE VIEWS OF MOTION 3

a new planet wandering through the
field of fixed stars (Fig. 1.5), for
it leaves a streak while stars make
only points of light.

But still, the cave man's many-
legged boar is more akin to the physi-
cist's idea of motion. For centuries
philosophers and natural philosophers
(as physicists once called themselves),
have pictured a moving thing as shift-
ing its position, instant by instant,
occupying successive places at suc-
cessive times. A graphic use of this
idea, and, perhaps the first practical
one, began with a twenty-five thousand
dollar bet made by Leland Stanford in
1872. Stanford bet his friend, Fred-
erick MacCrellish, that a racing horse
sometimes has all four feet off the
ground at once. (Which way would you
bet?) To decide this wager, Stanford
hired Eadweard Muybridge, a photog-
rapher. After a few years' work,
Muybridge was able to make a series
of pictures of a running horse taken
with such short exposures that, in ef-
fect, the horse's motion was stopped
and laid bare for all to see (Fig.
1.6). Stanford won his bet, but Muy-
bridge had invented the motion picture.

Stanford's bet has an interesting
sidelight in its in:r.luence on art. Un-

til Muybridge's pictures, all drawings
of running horses (and other animals,
too), were scarcely true to the real
movements of horses. The only course
open to the artist was to give the im-

pression of motion (Fig. 1.7). Later
artists are sometimes more precise.
For instance, Frederic Remington's
"In with the Horse Herd," (Fig. 1.8),
shows a horse poised in air in ex-

actly the way Muybridge's photographs
revealed. Yet this precise figure has
lost the essense of motion. No one who
looks at this picture has ever seen
a horse like that with his own eyes.
It was only the camera's eye that
glimpsed that horse in mid-air.

Here is something worth pondering.
The running horse, stilled for an in-
stant in each photograph, no longer
seems to move. The graceful creature
our eyes are accustomed to watch has

been changed to an awkward, angular
ani.mal. We are-looking at the skeleton
of our perception, an inner part of
the whole sensation of movement. This
is not the aim of tae artist, who with
his art would evoke for the viewer
some aspect of motion. But it is the

method of the scientist, who has com-
prehended motion only by first halting
it. For once stopped, stopped at many
places am' many times, any complicated
movement caa be unraveled into simpler
parts, the parts separated and studied
individually, and understood. Once the
parts have found an explanation, they

0111-00104-40..
Fig. 1.7 Drawing showing one way of repre-

senting a galloping horse.

Fig. 1.8 "Ir with the Hor,e Herd," a draw-
ing by Frr.-Aeric Remington which first ap-
pearei! in Century Magazine, March, 1888.
Tits,. strict realism of the horse's posture

an be confirmed by comparing it to the

photographs in Fig. 1.6.



4 MOTION

can be combined again, and, in f'Jis
way, the whole finally understood. Un-
til Muybridge showed the way, only the
slowest of motions could be seen in
such detail. To describe more rapid
movements, words were needed, or num-
bers, or algebraic formulas. But the
goal was always the same - to take
motion, to slow it down, at least in
the imagination, Ai!d then to dissect
it. Today we can view an object's mo-
tion more directly by means of high-
speed photography, and see it accur-
ately displayed even over intervals
as short as a millionth of a second.
Examples of this modern method are
shown in Fig. 1.9: an ordinary wrench
flying through the air, a white ball
bouncing, a bullet piercing a light
bulb, a golf ball being hit by a club.

1.3 MOTION IN WORDS

Man began describing movement
with words long before there were
physicists to reduce motion to laws.
Our age-old fascination with moving
things is attested to by the astonish-
ing number of words we have for motion.
We have all kinds of words for all
kinds of movement: special words for
going up, others for coming down; words
for fast motion, words for slow motion.
A thing going up may rise, ascend,
climb, or spring. Going down again, it
may fall or descend; sink, si;bside, or
settle; dive or drop; plunge or plop;
topple, totter, or merely droop. It
may twirl, whirl, turn and circle;
rotate, gyrate; twist or spin; roll,
revolve and wheel. It may oscillate,

(a)

(b)

Fig. 1.9 Multiple-flash photograph of
a wrench thrown through the air (from PSSC
Physics, D. C. Heath & Co., 1960); (b) Mul-
tiple-flash photograph of a bouncing ball
(from PSSC Physics, D. C. Heath & Co.,

1960); (c) High-speed photograph showing

44,

(c)

1

(d)

a bullet .1ust entering a light bulb (cour-
tesy of H. E. Edgerton; from PSSC Physics,
D. C. Heath & Co., 1960); (d) High-speed
photograph showing a golf ball in contact
with the club (courtesy of H. E. Edgerton;
from PSSC Physics, D. C. Heath & Co. 1960).



THREE VIEWS OF MOTION 5

vibrate, tremble and shake; tumble or
toss, pitch or sway; flutter, jiggle,
quiver, quake; or lurch, or wobble,
or eve' palpitate. All these words
tell some motion, yet every one has
its own character. Some of them you
use over and over in a single day.
Others you may merely recognize. And
still they are but a few of our words
for motion. There are spezial words
for the motions of particular things.
Horses, for example, trot and gallop
and canter while men run, or stride,

or saunter. Babies crawl and creep.

Tides ebt and flow, balls bounce, arm-
ies march. Other words tell the qual-
ity of motion, words like swift or
fleet, like calm and slow.

Writers draw vivid mental pictures
for the reader with words alone. Here

is a poet's description of air flowing
across a field on a hot day:

There came a wind like a bugle:
It quivered through the grass,
and a green chill upon the heat
so ominous did pass.

Emily Dickinson

Or again, the motion of the sea caused

by the gravitational attraction of the

moon:

The western tide crept up along

the sand,
and o'er and o'er the sand,
and round and round the sand,
as far as the eye could see.

Charles Kingsley,

The Sands of Dee

Or, swans starting into flight:

I saw . . . all suddenly mount

and scatter wheeling in great

broken rings
upon their clamorous wings.

W. B. Yeats,
The Wild Swans at Coole

Sometimes just a single sentence will
convey the whole idea of motion:

Lightly stepped a yellow star
to its lofty place

Emily Dickinson

Or, this description of a ship sailing:

She walks the water like a thing
of life

Byron, The Corsair

How is it that these poets de-
scribe motion? They recall to us what

we have seen; they compare different

things through simile and metaphor;
they rely on the reader to share their
own emotions, and they invite him to

recreate an image of motion in his own
mind. The poet has his own precision
which is not the scientist's precision.
Emily Dickinson well knew it was the
grass, not the wind, that quivered,
and that stars don't step. Byron never
saw a walking boat. But this is irrel-

evant. All of us can appreciate and
enjoy their rich images and see that
they are true to the nature of man's
perception, if not to the nature of
motion itself.

From time to time a physicist
reading poetry will find a poem which
describes something that he has
learned to be of significance to his,
the physicist's description. Here is
an example:

A ball will bounce, but less and
less. It's not a light-hearted
thing, resents its own resilience.
Falling is what it loves, . . .

Richard Wilbur, Juggler

Relativity is implicit in this next

example:

The earth revolves with me, yet
makes no motion.

The stars pale silently in a coral

sky.

In a whistling void I stand before
my mirror unconcerned, and to
my tie.

Conrad Aiken,

Morning Song of Senlin
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_.....

Fig. 1.10 Multiple-flash photograph show-
ing the precession of a top.

The poet's description of motion
is a rich, whole vision, filled with
both his perceptions and his responses.
Yet complete as it is, the poetic de-
scriptjon i.s fay from the scientific
one. Indeed, when we compare them, it
is easy to forget they deal with the
same things. Just how does the scien-
tific view of motion differ? And to
what purpose? Let's try to answer
these questions by shifting, slowly
from the poet's description to the
scientist's. As a first step, read
this excerpt from a biography of a
physicist of the last century, Lord
Kelvin. The biographer is trying to
convey the electric qualtty of Kelvin's
lectures to his University classes. He
describes a lecture on tops (referred
to as gyrostats here):

The vivacity and enthusiasm of the
Professor at that time was very
great. The animation of his coun-
tenance as he looked at a gyrostat
spinning, standing on a knife edge
on a glass plate in front of him,
and leaning over so that its center
of gravity was on one side of the
point of support; the delight with
which he showed that hurrying of

the precessional motion caused the
gyrostat to rise, and retarding the
precessional motion caused the gy-
rostat to fall, so that the freedom
to precess was the secret of its
not falling; the immediate applica-
tion of the study of the gyrostat
to the explanation of the preces-
sion of the equinoxes, and illustra-
tion by a model . . . - all these
delighted his hearers, and made the
lecture memorable.

Andrew Gray, Lord Kelvin, An
Account of his Scientific

Life and Work

This paragraph by Gray deals with
motion, but still it is more concerned
with human responses - Kelvin's obvi-
ous pleasure in watching the top, and
his student's evident delight in watch-
ing both Kelvin and Kelvin's top. At
the same time it says much about the
top's movement, hints at the reasons
behind it, and mentions how under-
standing the top has led to under-
standing the precession of the earth's
axis in space.

Gray used some of the everyday
words for motion: rise, fall, spin,
hurry, retard. But he used other words
and other phrases, too - more techni-
cal, less familiar: precess, center
of gravity, equinoxes. Technical words
are important for a scientific descrip-
tion of motion. When the scientist has
dissected a motion and laid out its
components, the need for new terms
enters, the need for words with more
precise meanings, words not clothed
with connotations of emotional re-
sponse. Still, the scientist never can
(and never really wants to), lose the
connotations of common words entirely.
For example, here is Lord Kelvin's at-
tempt to define precession (see Fig.
1.10), in the sense that Gray used it:

This we call positive precessional
rotation. It is t7le case of a com-

mon spinning-top (peery), spinning
on a very fine point which remains
at rest in a hollow or hole bored
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by itself; pot sleeping up:ight,
nor nodding, but sweeping its axis
round in a circular cone whose
axis is vertical.

William Thomson (Lord Kelvin)
and P. G. Tait, Treatise

on Natural Philosophy

This definition is interesting in
several ways. For one thing, it seems
strange today that Kelvin, a Scot,
should feel the need to explain "spin-
ning-top" by adding "peery," an ob-
scure word to most of us, but one that
Kelvin evidently thought more collo-
quial. Think for a moment of how
Kelvin went about his definition. He
used the words of boys spinning tops
for fun, who then, and still today,
say a top sleeps when its axis is
nearly straight up, and that it nods
as it slows and finally falls. He re-
minded his readers of something they
all had seen and of the everyday words
for it. (He obviously assumed that
most of his readers once played with
tops.) In fact, this is the best way
to define new words - to remind the
reader of something he knows already
and with words he might use himself.
Having once given this definition
Kelvin never returns to the picture he
employed. It is clear, though, that
when he wrote, "positive precessional
rotation," he brought this image to
his own mind, and that he expected his
readers to do the same.

Of course, it is not necessary to

PISTON

CLUTCH

use as many words as Kelvin did to de-
fine precession. Another, more austere,
and to some, more scientific defini-
tion is this:

When the axis of the top travels
round the vertical making a con-
stant angle i with it, the motion
is called steady or precessional.

E. J. Routh, Treatise on the
Dynamics of a System of

Rigid Bodies

All that refers to direct, human ex-
perience is missing here. The top is
now just something with an axis, no
longer a bright-painted toy spinning
on the ground. And it is not the top
that moves, but its axis, an imagined
line in space, and this line moves
about another imagined line, the ver-
tical. There is no poetry here, only
geometry. This is an exact, precise,
and economical definition, but it is
abstract, and incomplete. It does not
describe what anyone watching a real
top sees. In fact, it is only a few
abstractions from the real top's mo-
tion on which the physicist-definer
has concentrated his attention.

EXERCISES

1.1 Imagine a fishing boat on the high
seas, buffeted by gale-force winds.
Describe as clearly as you can the

DIFFERENTIAL

DRIVE SHAFT

UNIVERSAL

TRANSMISSION

CRANKSHAFT

Fig. 1.11 Schematic drawing of the pistons,
connecting rod, crankshaft, and flywheel of

a four-cylinder automobile engine.
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boat's motion as you would see it
from the shore. Try to break the
motion down into parts which you
can describe more easily than the
complicated motion of the boat as
a whole.

1.2 Consider the moving parts of an au-
tomobile engine (see page 7, Fig.
11): pistons, piston rods, crank
shaft, drive shaft, gears, etc. Se-
lect one or more of these parts,
and for each part write down a
list of words describing its mo-
tion(s). Give very brief defi-
nitions for the words in your
list(s).

1.3 Describe as concisely as possible
the meaning of the words used in
the first paragraph of Section 1.3
to describe different kinds of
movement.

1.4 Look for brief passages in litera-
ture which you think describe mo-

----------- _

PRECESSION

-------- - ----------
SPIN ABOUT

AXIS

NUTATION

Fig. 1.12 The motion of a top. The wavy
line is the path followed by the point at
the end of the top's axis. The three com-
ponents of the motion are (1) spin about
the top axis, (2) xxecession of the axis
around the vertical line, as indicated by
the dashed circle, and (3) nutation, the
oscillatory variation in the angle 0 which
results in the wavering of the path shown.

tion of physical objects (or
persons) very well. Comment very
briefly on the accuracy of the de-
scriptions. (Do not include exam-
ples where the motion is used as
a metaphor to describe something
else.)

1.4 MOTION IN PHYSICS

Let us now see a little more what
it means to say that the physicist dis-
sects movement into its parts, and then
studies them one by one. The real top,
bright and spinning, sleeps, and nods,
and sweeps around in a whirling, wob-
bling, wavering way. The physicist
thinks of it, however, rotating about
its axis, processing, and nutating.
These words have precise meanings. Re-
spectivaly, they refer to the spin-
ning of the top about its axis, to the
rotation of this axis about the verti-
cal line through the point touching
the ground, and to the varying of the
angle between the top's axis and the
vertical (Fig. 1.12). These are the
three fundamental parts, or components,
of the top's motion. Each is treated
by itself when the top's whole motion
is analyzed. Once each is understood,
all three are put back together, and
the whole is understood. This method
is at the heart of the scientific
description of motion. It rests on
the faith based on the success of past
experience that complex things can be
understood in terms of simpler ones.
Its application may lead to a long,
long chain of abstractions. But you
must keep in mind, especially when the
subject seems most remote from life,
that the starting point '.s the world
which the scientist, the poet, and all
the rest of us share. That is the be-
ginning, and it is the end as well.
For the scientist's dissection and
analysis will satisfy no one if the
full circle is not completed.

Here, then, is our program. To
comprehend motion, in a scientific way,
we must dissect it first, we must
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break it down into a few simple mo-

tions out of which the more complex
movements we see in the real world can
be compounded. Each simple or elemen-
tary motion must then be slowed, or
stopped, that we may follow it instant
by instant. For this task we will need

accurate tools. They must be tools, in

fact, that let us go beyond word de-
scriptions, and help us both measure

and calculate motion. When this much

is done we will be ready to seek out

the underlying regularities to be

found in natural motions, the common
features of all motions which we call
the physical laws. Then, at last, we

can recombine all these elements into

a new picture of nature, one of deep

significance and vast power.
All this is not a simple under-

taking. To work out our scientific

picture of nature required centuries,

to master even part of it takes years,

and ev,-a to learn enough to use it ef-

fectively will occupy many weeks. The

first task, however, is clear enough.

To analyze motion at all, we must be-

gin by observation. Then we must bring

some order into the multitudes of mo-

tions we see about us. We must search

out the key features to be abstracted

and made into the elemental motions

we will use for the building blocks of

our picture.

EXERCISES

1.5 Imagine a cyclist traveling along

a straight road.

a) Can you make a rough sketch of

the path that his foot takes as
he pedals along? (It may help to

imagine he has a little flashlight

strapped to his foot and try to

visualize the curve the light

would trace out at night.)

b) What effect does the bicycle's

speed have on the shape of the

path?

c) What effect does the gear ratio

of the front and rear sprockets

have on the shape of the curve?

Illustrate your answer with rough

sketches.

d) How does the path look when the
bicycle is free-wheeling?

1.6 In the light of the discussion of

motion in Chapter 1, try to ex-
plain in your own words what we
mean when we say a cyclist has

moved from one place to another.
Consider questions such as: What

do we mean by "location" of an ob-

ject of this -Jize? What aspects of

its motion do we refer to only

implicitly? These ideas will be
discussed in detail in later chap-

ters, but if you try to analyze

them now, however incompletely,
you will find your later under-

standing deepened.
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PERSPECTIVE 1

Notion, its varieties, and its
underlying causes have always been
central, fundamental subjects in phy-
sics. Today's concepts of motion are
products of over two thousand years
of thought, a long evolution from an
open-ended allegory encompassing all
forms of change toward more and more
narrowly and precisely defined ab-
stractions. This trend in science of-
ten is deplored by nonscientists be-
cause it results in a loss of contact

with immediate, intuitive experience.
By giving you a bird's eye view of
this process of peeling off wrappings,
of cutting out subjective and quali-
tative features, we hope you see bet-
ter how necessary this is for discov-
ering the essence, the apparently
irreducible nature of the phenomenon.

The search for the essence, the laws
of nature, is the objective of physics.
The constant concern of generations
with this search has lead many, phy-
sicists and aonphysicists alike, to
believe that we already are near the
long-sought goal. To some, what has
been and what still is being found no
longer seems relevant to human experi-
ence. But the study of physics is not

only an end in itself (an attitude

too often taken by practicing physi-
cists); the long chain of reduction
and analysis must be closed back to
the complexity of experience by a

critical, responsible synthesis.
A living forest is more than a

catalog of every tree, shrub, and ani-
mal in it. We come closer to its
reality by understanding its organiza-
tion, the relationship among its spe-
cies. In biology this leads to a new
discipline, ecology, the study of

interdependence of the plants and
animals within their whole living so-
ciety. In physics a discipline which
would study the significance of the
laws of physics for human existence
has not yet developed. Not only has
this challenging task been neglected
by the profession, but many physicists
even deny that such a goal lies within
the province of reputable activity.
Operating at the frontiers of abstrac-
tion, they find it much more rewarding
to stay within their isolated world.
It is a hazardous, unglamorous task to
search in a crisis-ridden world for
the relevance of their long intellect-
ual search. It has always been uncom-
fortable, sometimes outright dangerous,
to try to overcome society's inertia
in accommodating new insights.

The study of physics offers a
great store of new insights. It is
contrary to the physicist's funda-
mental belief in the orderliness and
intelligibility of the universe to as-
sume that none of this understanding
has relevance to human affairs. In the
next chapter you will see how physi-
cists learned from astronomy that by
changing their point of view a compli-
cated phenomenon may suddenly bect..Ae

simplified and consequently understood.
Similarly, by placing yourself in the
position of another, you may under-
stand his behavior which from your own
point of view, was unintelligible. In-
valuable insight may be gained from
such a transfer, but it is a method
full of traps. It must be used with
as much critical thought as was needed

in the evolution from subjective ex-
perience of nature to the formulation
of modern laws of nature.
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2.1 REST VERSUS MOVEMENT

You know what you mean when you

say "The train is moving," or "The

earth moves round the sun," or "They

moved away last year." After all,
you've used the word move almost since

you learned to talk, and hardly ever

have you misused it. But could you
tell a friend what it is to move? What

motion is? You might end up saying,
"Well, moving is not stopping." Does

that mean anything? When you look
around you, at the things you see,

you distinguish at once between what

is still and what is moving.
Probably, as you read this book

you are sitting down, not moving

around. If you glance out the window

and see a car pass by, you know it'z

moving because it is getting closer

to you, or going farther from you.
From the same window you may see a

tree, a tree blowing in the breeze,

its branches swaying to and fro, its

leaves fluttering and flashing in the

sunlight. It is moving too, but it's

not going anywhere. When the air sud-

denly calms, the tree ceases its wav-
ering. It is still, and quiet. But is

it motionless? Come back a year hence

and you will find the tree taller, its

roots deeper, its branches longer.

Even when it seemed so quiet, it was

moving. It was growing, but so slowly

you could perceive its motion only by

watching it over a long, long time.

There is more to saying whether some-
thing is moving or not than just a yes

or no. You have to consider whether
its movement is fast and obvious, or

slow and unnoticed. You must disting-

uish whether it is moving past you, or

only swaying back and forth before

you.
As you sit reading, is there any-

thing around you that is really still?

What of the room you sit in? Is it at

rest, not moving? Isn't it firmly

11

fixed on the ground? Can you think of

anything stiller than the ground? Yet

sometimes the ground moves. If there

is an earthquake while you sit still

in your still room on the still ground,

you will know the earth moves, and that

when it does, it moves with a frighten-

ing, sickening violence. Earthquakes
are rare, and, no doubt we should ig-

nore them. Most of the time, almost

all the time, the earth seems quite

still.
But wait. That's not right either.

Long ago you learned the earth is not

still at all. Every day it turns once
around its axis, and every year it

travels millions of miles around the

sun. In fact, you and your chair and

your room are hurtling through space

at a speed of many thousands of miles

per hour.
Why are you so sure the whole

earth moves this way? You've been
told it's true so often, and for so
long that you can't recall when you
first heard it. Astonomers say it's
true, and you believe them. How can
they be so sure? They do not feel the
earth spin beneath them anymore than

you. Long ago no one doubted that the

sun and moon, the planets and the

stars - all turn about an immovable
earth. But now we've changed our
minds. Probably you've heard of Coper-

nicus and his successors who led us to
this modern notion that the earth goes
round the sun, instead of the sun
round the earth. Perhaps you've heard,
too, that this newer point of view
is easier because it let astronomers
set aside the complicated machinery
which they had invented to describe
the planets' complicated motions
around an unmoving earth.

Yet it must be more than to con-

venience a few astronomers that today

we believe the earth spins and orbits

round the sun. It must take more to

convince us that something our senses



12 MOTION

Fig. 2.1 Multiple-flash photograph of the

swinging weight of a Foucault pendulum.

seem to tell us is completely wrong.

Ask a physicist for a convincing proof

of the earth's motion and he may an-

swer that Foucault's pendulum is an

unequivocal demonstration. Foucault's
pendulum is just a long, long cable
with a heavy weight suspended from it

(see Fig. 2.1). When the weight is set
swinging, it will seem at first to

Fig. 2.2 Time exposure of the night sky by

a fixed camera. The streaks are circular

arcs traced out by stars. (Courtesy of

Yerkes Observatory.)

swing back and forth in a vertical
plane. But, if you wait long enough,

you will notice that this plane in

which the weight swings is itself mov-

ing; it rotates slowly about the ver-

tical. Were it at the north pole, or
the south pole, the plane would turn

a full circle once each day. At the

equator, it would not turn at all, and

at intermediate latitudes it turns

less than full circle each day.' These
observations, though they may convince

a physicist, could not convince you

until you have studied much more phy-

sics.

EXERCISES

2.1 Compare as clearly as you can the

motion of water running down a
mountain stream to the motion of

ice and rock in a glacier. Be

economical with words. Concentrate

on similarities and differences.

2.2 Suppose someone told you that wind
is caused by the rotation of the
earth through its enveloping at-
mosphere. In your opinion, is this
statement true, or false, or both,
to some extent? What are your rea-

sons for your opinion?

2.3 Comment on the motto to Chapter 1
"Ignorato motu ignoratur natura."
Try to think of any things which
do not move (as far as you can
tell).

2.4 Present some arguments for why we
are unaware of the earth's motion.

Check them against your own ex-
periences with motion on earth.
Does an astronaut "walking" out in
space feel that he is moving at

extreme speed? Why?

2.5 Fig. 2.2 shows a time exposure of
the night sky taken with an or-
dinary camera. The streaks are

arcs of circles. All the circles,

'A Foucault pendulum can be seen in any science

museums.



BROAD FEATURES OF MOTION 13

if you imagine them completed to

full circles, apparently have a

common center.

a) Try to explain the streaks in
the picture. You should list
clearly any assumptions you make

or any knowledge about astronomy

that you use for the interpreta-

tion.

b) What do you think is the sig-
nificance of the common center of

the circles?

c) Can you explain the fact that
full circles cannot be obtained on

such a photograph even if the shut-

ter is left open longer? Estimate

the exposure time for Fig. 2.2

from the lengths of arc.

2.6 Try to give a plausible explana-

tion of the fact that the plane of

motion of a swinging pendulum
suspended over the North Pole

makes a complete turn, (360°), in

24 hours (Foucault pendulum).

2.2 THE RELATIVITY OF MOTION

It is not always easy to decide

whether something is moving, or even

whether you yourself are moving. To

decide whether the earth moves is one

of the hardest of problems. Let's look

at some simpler ones. When you ride in

a car you can tell the difference be-

tween going along the street and stand-

ing at the curb. How can you tell?

For one thing, you feel yourself

thrown back in the seat when the car

starts up and you feel yourself
thrown forward when the car stops. As

you drive along you feel the car

bounce and jolt a little. You can look

out and see the roadside scenery pass-

ing by. Sometimes it's not so easy.

Did you ever sit in a passenger train

about to leave the station, and for a

fleeting moment have the sensation
that the platform had begun to slide

away from you while you, and the train,

sat still? Have you ever stood at the

rail of a large ship as it left the

dock, and had the eerie feeling that

it was the dock that moved? Look up,

some night, at the moon when clouds

are blowing by. You may think you see

the moon sailing through the clouds.
These illustrations point up some

of the key features of motion. With

the train, or the ship, or the moon it

is clear enough that motion exists.

In each case, two things moved apart

or together: the train and the plat-

form; the ship and the dock; the moon
and the cloud. But also, in each case,

you have to reflect a moment about

which of them moves. You decide the

train moves because you know plat-
forms are not supposed to move. You

know the ship moves because you re-
member that docks don't. As for the

moon and the clouds, you recall that

both move, but you also remember that

the moon moves too slowly for you to

see it in a few moments.

Here is our definition of motion.

Motion is the change in separation in

space between two things with time.

Motion always involves at least two

things whose separation is changing.

Each one can be said to be in motion

relative to the other. Sometimes we
deal with motion of two things rela-

tive to each other, like the moon and

the clouds. Very often we will deal

with the motion of a single thing

relative to ourselves. For example,
the car you watch through the window

moves relative to you, but the room

in which you sit is at rest relative

to you. When you sit in the train

leaving a station, the station plat-

form does move relative to you. Of

course, someone else on that platform

will say you are moving relative to

the platform (and relative to him).

Both points of view are perfectly cor-

rect.
Let's suppose you could stand on

the sun, and look back to the earth

and see that train and its station.

You would see the train and the station

separate. Because you would see many

things standing still relative to the

station, you doubtless would prefer
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to think of the train moving relative
to the station instead of the opposite.
In addition, from your vantage on the

sun, you would also see that both

train and station move relative to
you. You would notice the motion of

the whole earth that we are so unaware

of here.
Now we must be careful, for this

line of thought is carrying us down
an endless path. Let's not be satis-
fied with the sun as a place to stand.
Let's imagine looking back from a dis-
tant star. Then, perhaps, you would
see more than the train moving rela-
tive to the platform, and both rela-
tive to the sun. Maybe you also will
see that the sun, and its whole family

of planets, is moving relative to your
star and the other stars nearby. As-
tronomers, in fact, assure us this is
true, that the sun and earth are mov-
ing at high speed.

Is there no place to go where you
could be sure you are standing still?
Where you could confidently claim that
whatever you see moving, moves relative
to you as you stay at rest? That place,
if you can find it, has a name: the
Absolute Frame of Reference. For cen-
turies men thought the earth itself
was the absolute frame, but finally

experiments like Foucault's convinced
doubters that it is not. Then, for
a while, physicists and astronomers
looked elsewhere for the absolute
frame. At one time it was thought the
whole assembly of stars taken together
could provide it. But how could we
tell? Oyer half a century ago, physi-
cists started to lose interest in this
ancient search for the absolute. We
still don't really know if there is an
absolute frame of reference, but we
are now convinced that there is no
need for one to explain what we have
seen in nature so far. The only thing

that seems to be important is relative

motion.
Let's come back to earth now, and

consider a more practical kind of mo-
tion. Should you fly along in a smooth-
riding jet airliner at constant or
uniform speed, you could not be sure

you were moving without looking out-

side to check that the earth was mov-
ing past below you. Even then, in
principle, you have the choice of
whether your plane is moving relative
to the earth, or whether the earth is

moving relative to you. One assumption,
to be sure, seems more natural, but
either is justified as long as you
keep flying along in just this way.
There are times in your flight, how-

ever, when you can be absolutely cer-

tain that the plane is moving. For in-
stance, at take-off, while the plane
is rapidly gaining speed, you don't

even have to look outside to realize

you are moving. Even with your eyes
shut ti:ht and your ears stopped with
cotton, the sensation of motion is un-
mistakable. What you feel is that you

are being pressed back against your

seat, almost as if you were struggling

to resist the starting motion of the

plane. The key to this sensation is
the changing speed of the plane, its

acceleration. As you continue to study
motion you will see more and more that
relative position and relative speed

are only of interest in rather super-

ficial ways. Relative acceleration on
the other hand, plays the central
role in the science of motion.

EXERCISES

2.7 You probably have taken an eleva-
tor ride in a tall building, going
up or down at least five floors
without intermediate stops. Try to
explain, within the framework of
your experience, why your aware-
ness of moving is most vivid at
the start and stop of the elevator
car and much less in between.

2.8 Imagine you are in a jet airplane.
The engines are roarir2g full blast
for test. It is a dark night, and
you fall asleep while the plane is
still on the ground, waiting for
clearance from the control tower.
Later you awake. It is as dark as
it was before. The engines are
still roaring.
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a) Can you tell if you are moving
or are still standing on the
ground?

b) If you glanced out the window
and saw a star, would that help
you decide?

c) Try to find a simple and prac-
ticable criterion (no cheating,
like asking a crew member, etc.!)
that will allow you to decide.

2.3 THE ANATOMY OF MOTION

Some birds, sea gulls and crows,
for example, move together in huge
flocks. Have you ever watched a
startled flock mount into the air?
At first just a few start up, then
those nearby, and finally the whole
flock is flying. In these first few
moments it is as if a sheet were being
lifted up by a corner. The corner goes
first, and then the rest follows.
Quickly the air is filled with noisy
birds, who seem to be flying in all
directions. But, as you watch, order
appears again, and you see the flock
rising, circling, turning like a great
wheel in the af..r. Should you watch a
single bird instead of the flock, you
see him run a few steps, flapping his
wings vigorously, and then he is off
the ground and flying up to join the
whirl of the flock. You may be im-
pressed by the steady, regular beat
of his wings, or the graceful curve of
his flight. If you look more closely
still, you will see that, as he flies,
the bird's whole body executes a com-
plicated sequence of motions. As the
flock rises and moves away, you see
many different kinds of movement: the

whirling of the flock, the circling
flight of each bird, the flapping
wings. You witness the compounding of
the birds' own motions to make up the
whole motion of the flock.

These birds and their flight il-
lustrate our most precious tool for
understanding motion: the decomposi-
tion of a complicated movement into

_

the simpler ones of which it is made

up. How best to break up motions into

their components )s the subject of the
next chapter. But there are some broad
aspects of movement to be considered

first.
A runner races down a straight,

quarter-mile track. He goes straight
from start to finish in the shortest
time he can. A butterfly flutters
along a straight row of flowers. He
performs a complex, erratic motion.
He wanders from flower to flower, wob-
bling uncertainly in the air, now go-

ing ahead, now back again, zigzagging
along the row of flowers. In the end
he reaches the last flower. The runner
and the butterfly seem very different.
But is there not a common feature in
their motions?

A wooden horse goes round and
round on a merry-go-round. The pendu-
lum of a grandfather clock swings to
and fro inside its polished cabinet.
A bus creeps along its route through
city traffic, starting and stopping.
And when it has finished its route, it
sets out again. What is it that these
motions share? Some merry-go-round
horses go up and down as well as round
and round. How is up and down like
round and round? A flag stretches and
flaps in the wind. What feature does
it have in common with the surf pound-
ing at the shore? Watch a cloud drift
by. Watch its wispy edge whirl and
twist. What motion does the cloud share
with its rim?

All these illustrations point up
a pw- ;qui tool to be applied in the
study of motion: the identification
of common features or elements in what
appear to be quite unrelated movements.

2.3.1 Simple Versus Complex Motions

Again and again we've mentioned
compounding complicated movements from
simple ones. But what is a simple mo-
tion? There is no easy rule to be put
down for deciding this question. In
some cases the simple parts of a mo-
tion are almost obvious. The merry-go-
round horse, for example, combines two
rather simple motions: a steady motion
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around a circle and a regul22
up and down. It is not always so easy.

You might not have thought at first to

separate the top's motion into spin,
precession, and nutation (see Fig.
1.11). The flag, flapping in the wind,
is still more difficult. Later on you
will learn a mathematical way to de-
scribe motion, a method capable of
handling any motion. With complex mo-
tions it may become tedious to apply.
However, there are many ways to separ-
ate a motion into simple parts and
some choices make the mathematics much
simpler than others. This is a skill

which improves with practice. There
are some examples in the next para-
graphs. To get practice in this art,
you should try the same thing with

other situations.
Take an ordinary sheet of note-

book paper and throw it up in the air.

It won't go very high, and as it falls

it swishes back and forth, bending
and fluttering. No one would think to

call this a simple motion. Now fold it

into a toy glider. Throw it up again

and it will go much higher (provided

you folded it and threw it the right

way). As it descends it will skim
along the ground for quite a way be-
fore it finally stops. This is still

a complicated motion, but it is less

complicated than before. At least the
flutter and swooping of the unfolded
paper are gone. Next roll it tightly

like a stick (use a rubber band to
h(li it together). Throw it out, and
watch. It will move up and then down
along a graceful arch, turning and
tumbling as it goes. Now you can see
clearly two motions compounded: the
tumbling motion, and the progression
along the arch. To get a still simpler
movement, unroll the paper and crumple
it into a tight ball. Throw it, and
this time you no longer will notice
the tumbling motion of the stick. All
that remains seems to be the same
kind of curve along which the stick
moved. Have we got at last to the
simplest kind of motion there is for
something tossed up in the air? Not

quite. There is a last step. Try to

throw the ball straight up, or; better

yet, simply let it fall from your hand.

The path is now a straight line,

straight down.
Think again of the runner racing

down his straight course and the but-

terfly wandering along his straight

row of flowers. The runner's motion is

simple, the butterfly's complex. Re-
member the comparison of the merry-go-
round to the bus shuttling along its

route. These two motions repeat over
and over again. The wooden horse re-

turns to his starting point again and

again. The bus retraces its route
time and time again. But the horse's
smooth movement around his circle is

the simpler one of the two.
What is there to be said by way

of summary? First, a simple motion us-
ually involves a simple path - often
a straight line or a circle. Second,

a simple motion often involves a regu-

lar repetition - as the bus route.
Third, a-simple motion usually is one
tnat involves a single, clearly de-

fined element - the up and down, or
the round and round of the merry-go-
round horse, but not the combination
of both. These are not sure rules, but

they often are a help in recognizing
the simple components of a complicated

movement.

2.3.2 Repetitive Motion

Many of the motions we have con-
sidered fall into two classes: those
that repeat again and again, and those

that never repeat. Others compounded
elements of both kinds. The runner and
the butterfly pursuing their courses
each went from a definite beginning
to a definite end. The car on the
street generally doesn't pass by again

in a few minutes. The glider cast into

the air completes its flight, and, try

as you will, you cannot make it fly

the same course again. In contrast,
the wooden horse on the merry-go-
round, the clock's pendulum and the

transit bus cover the same ground over
and over. The tides repeat their cy-
cle. The earth, by faithfully retracing
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its path, provides our measure of time.

The car moves steadily along the
street, but its wheels turn round and
round in an endless repetition of
their revolution.

All repetitive motions, have at
least one simple element. The bus, for
example, always stays on its route.
Each trip may be different, more stops
and starts in one than in the next,
heavy traffic now and light later. It

may miss its schedule, or have an ir-

regular one. Nonetheless, this compli-
cated motion has one element of sim-
plicity. Always the bus is somewhere
along its assigned route, and, if you

are patient, it will stop where you

are waiting for it.
Push a pendulum bob (the weight

hanging on the string) aside and re-
lease it. It swings to and fro in a
repetitive motion. At least, at first

sight it is repetitive, but as you
watch you see that each swing is a
little shorter than the last. The bob

never completely retraces its course,

and finally it is at rest again. There

is a repetitive element in this motion,

:lowover. Though each swing is shorter,

the time required for each swing is ex-

actly the same. The pendulum in the

grandfather clock is different. Each
time it swings it receives a tiny push

from the clockwork mechanism which

keeps it moving, and which thus en-

sures that each swing is exactly like

the last one - the same path and the

same time.
Motions like that of the clock's

pendulum are particularly simple and

play an important role in physics. The

identical repetition in each cycle of

both the path covered and the time re-

quired are the characteristics of what

is called periodic motion. The free

pendulum that slows and finally stops
has a very similar motion and one
which is almost as simple. It is an
example of what is called a damped
periodic motion. Countless examples
of these types of motion are found in

nature. They are something to look for

whenever you are inspecting a new mo-

tion. If you can find periodic ele-
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ments in it, the labor of analyzing it

will be much less. Fig 2.3, which

shows the tide levels at several ports,

illustrates motions with prominent

periodic elements.

2.3.3 Organized Versus Independent

Motion

The discinction we drew between

complex and simple motions mainly con-

cerned the kind of path the moving

thing takes. Another way to disting-

uish simplicity from complexity is by

the make-up of the thing that moves.
Does it have many parts which all move

differently? Does it move all together

as a unit? Is it large? Is it small?

A flock of startled birds is

very complicated. There are many mem-
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bers, perhaps hundreds. No two are
identical. They have different ages,
different sizes, different colors.
They may have different ranks in a
pecking order. Each bird is free to
stand or move with the flock, or to go

off by itself. But, together, they
make up one thing, the flock. When you

see them from a distance, frightened

and starting up all at once, you look
more at the flock than at its members.

You see the whole flock turn like one
great wheel in the air. What you see
is a complex whole executing a rela-
tively simple motion.

A real wheel, a wooden wheel
spinning steadily on an axle is a
complicated object too. It contains
enormous numbers of invisible atoms,

and many kinds of atoms. These are
grouped together in intricate ways to
form molecules, and the molecules, in
turn, are grouped into cells. Yet the
wheel's rotation is a simple motion.
It is not true that merely because a
thing has many parts its motion must
be complicated. Of course, the wheel
can have a complex motion. If it were
part of a gyroscope its movement might
be very complex indeed. This complica-
tion, however, is not related to the
structure of the wheel itself, but to

the way it's mounted.
A wrist watch is a complicated

thing, small, but full of gears and
shafts and springs. And it has a com-
plicated motion, too. Its two or three
hands turn round at different speeds.
Inside, its gears rotate, its balance
wheel swings back and forth, its main-
spring slowly uncoils. It is a machine,
and shares with most machines an in-
convenient lack of simplicity. The
inventors of machines, and usually
their builders, and occasionally their
users, understand their intricate mo-
tions in just the way we outlined be-
fore. They think first of the motions
of each part, and then of how they

mesh to make the whole.
Whether or not a machine's motion

is complex may depend on how you look
at it. An automobile is a complicated
machine indeed. It has shafts and

gears and wheels that rotate, pistons

that oscillate back and forth, connect-
ing rods that execute eccentric mo-
tions of their own. But when you watch

a car moving along a straight avenue,

you don't see all this complication.

What you do see looks as simple as
the motion of a stone sliding across
the ice. The intricacy of the moving
car is invisible to you because most

of the parts that move are covered up.
But would it be any different if you
could see the gears, rods, wheels, and

pistons?
Whatever has many parts is com-

plex. If all the parts move freely,
if there are no connections among
them, the motion will be complex. But
if the parts are ,coupled together, the
motion generally will be simpler. The
strong forces between atoms are such

a coupling. The psychology of the

flock of birds is quite another. Some-

times the connections of the parts,
though strong, still result in a com-
plex motion. Wrist watches and type-
writers are examples. But even in
these cases the motions are simpler
than if all the parts could move at
random. When the coupling is strong
enough, a complex object - an automo-
bile or a stone - may move in a very
simple way. When this is true we often

will forget the complicated nature of

the real thing, and describe the mo-
tion in terms an abstraction, the

particle.

2.3.4 Motions Within

Most of the motions we have con-
sidered thus far have been examples in
which some definite object moved from
one place to another. The movements of

men running, or pendulums swinging, or

wheels turning are like that. In such
motions the primary interest is the
movement of a whole object along its
path. It makes little difference whe-
ther we try to describe how each part
moves or whether we com:.entrate our
attention on a single point within it.
For example, all the horses on a merry-
go-round move in nearly the same way;
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it is of little consequence which one

we choose to watch. In a bus every

passenger goes along the same route

whether he sits next to the driver or

on the rear seat.
There are other familiar motions,

however, in which indifference to the

various parts of the moving object is

not possible. The motion of the flag

waving in the breeze is of this second

kind. So are the waves at the seashore,

the flexing of a spring, and the tur-

bulent flow of a mountain stream. Some

part of the movement in all these

cases involves changes in shape of the

moving object. You could not describe

the water flowing in a river as if it

were a long rope slipping along the

river bed. The real river is narrow

in some places, wide in others. Its

speed is greatest at the narrowest

points, while in the widest places it

is slow and languorous. Where there

are rocks or bridge piers, there may

be whirlpools. On the surface there

may be waves.
There are two quite separate as-

pects to the motion of water. On one

hand there is the flowing motion of

the water from one place to another.

Flow often consists of a smooth,

streamlined motion, but it may include

the rotary motion of the whirlpool.

In many respects flow is similar to

the motions of single objects. The dif-

ference lies mainly in the fact that

various parts of the moving fluid take

different paths and have different

speeds. Waves are a kind of motion

quite unlike other kinds. As you watch

a wave crest moving over the surface

of the water you may have the impres-

sion that the water itself moves along

with the wave. But it does not. You

can prove this for yourself in a very

simple way. Put a cork, or any other

small object that floats, in a still

pool of water (a bathtub, for example).

You know that if you threw the cork

into a stream it would be carried

along with the stream. Yet, if you

make a wave in the still pool, the

wave will travel right past the cork.

The cork bobs up and down, but it is

not carried along by the wave. You may

ask, then, just what is it that moves

in a wave. See if you can find an

answer.
The flow of liquids and gases,

and the deformation of a substance to

make waves are much more complex mo-

tions than the movements of rigid or

almost rigid bodies. They are harder

to describe, harder to analyze. Yet

they are as common in nature and as

much a part of practical problems.

Like the motions of well-defined bod-

ies, they too can be broken down into

simpler components which may be either

single, unrepeated movements, or

repetitive ones.

2.3.5 Orderly Versus Chaotic Motions

One thing about most of the ex-

amples of motion we have discussed

thus far stands out. It is simply that

they all involve a discernible pattern

or order, sometimes not evident with-

out a second glance, but more often so

obvious that it is hardly worth men-

tioning. No one has any difficulty

with the idea of the car going down

the street. It is there to be seen, a

very definite object moving along a

very definite route. The fact that the

earth moves annually about the sun in

a giant circuit is not so easily dis-

cerned. You can't look and clearly see

it move along its orbit, and you don't

feel its motion the way you feel the

motion of a car in which you ride. You

may justifiably doubt it until proof

is offered, but you can understand the

idea of the earth's motion even before

you believe it.
Why do we describe these motions

as ordered? The best answer is this:

When you look at an ordered motion,

like that of the car moving along the

street, you know that 6hould you close

your eyes for a moment, the car will

probably be moving along in much the

same way when you open them again. It

may not be traveling at quite the

same speed or in quite the same direc-

tion. It will not be at quite the same

place. But it will be just a little
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further down the street going at nearly
the same speed and in nearly the same
direction. In other words, after watch-
ing the car move for a bit you can
confidently predict about where it will

be a short time later, and about what
its speed will be. You can do the op-
posite, too. A brief glance at the
moving car is all you need to guess
with reasonable accuracy where tho
car was a moment before you saw it,
and about how fast it was going. If a
momentary observation of a motion is
all you need to guess what tha motion
will be a moment hence, or what it was
a moment ago, then that motion is or-

dered. In some cases the motip: is
so well ordered that you can extend

your predictions over long times. With

the earth, for example, you are prob-
ably so confident of its rotation that

Fig. 2.4 Brownian motion of a small parti-
cle suspended in water. To make the drawing
the particle was observed through a micro-
scope and its position recorded at 20-

second intervals. The straight lines con-
nect the observed positions and do not
represent the actual path followed by
particle in the time between observations.
(From ,PSSC Physics, D. C. Heath & Co.,1960.)

you do not doubt the sun will continue

to rise and set longer than you will
live.

These illustrations of ordered
motion are so clear as to be trivial.
It is not always so easy. The circling
motion of the flock of birds is clearly
visible provided you watch it from far
enough away. If you are in the midst
of the flock, or watch only one bird,
the motion will seem much more chaotic.
If you ask yourself where one bird was
a moment ago, or where it will be a

moment hence, you will not be so con-
fident of your answer. True, most of
the birds move with the flock most of
the time, but some are straggling, or
flying across the general stream. Birds
continually pass each other, or dart
aside. Their circular motion is not
at all as orderly as that of the
wooden horses on the merry-go-round
who never trade places, who always
stay neatly in line.

The disorder of the flock's mo-
tion results because there are so
many birds who can move independently.
It is. not necessary, though, to have
many objects to have disorderly motion.
Single things can move erratically.
The butterfly flitting here and there
along the row of flowers has a very
disorderly motion in detail even
though he eventually completes his
trip to the end of the row. If you
closed your eyes while you watched him,
you would have to search him out again
when you opened them. You can never be
sure just which way he will turn next.

There are motions in which you
are always unsure of where the moving
object has just been or exactly where
it will be next. For example, suppose
you took a clear plastic box and put

a number of BB shots (or small steel

balls) into it, closing the top firmly.
If you are very careful you can shake
the box gently, straight up and down,
so that all the shot will bounce up
and down together in a fairly orderly
motion. But shake the box violently
and the motion of the shot is quite
different. They fly in all directions,
colliding with the walls and w:;_th each
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other. Now you cannot guess where a
single shot will be next, or where it
just was. The motion of each shot is
completely erratic, unpredictable, and
disorganized. This kind of motion is
called random motion. Its most impor-
tant characteristic is its unpredict-
ability.

Random motion is very common in
nature, but generally it is hard to
see directly. The atoms in gases, li-
quids, and even solids are in constant
random motion, a motion so fast, of
objects so sm2:11, that we cannot see
it. We do sense it, however, as heat.
There are circumstances, though, in
which you can see the effects of this
constant random motion of atoms. When
you sit in a darkened room and see a
ray of light streaking in through a
crack in the curtains, what you ac-
tually perceive is light reflected
from countless dust particles floating
in the air. If you look closely you
can see some of the larger ones. They
are not falling to the ground the way
a heavy weight does. They jostle about
in the air in such an erratic way that
you may have considerable difficulty
in following one for very long. If you
glance away, or even blink, you prob-
ably will lose sight of it. These tiny
particles are in random motion. They
constantly collide with the molecules
of the air and with each other. Vis-
ible random motion was first studied
by the Scotch botanist Robert Brown,
in 1827, when he was puzzled by the
erratic movements of plant spores
floating in water that he saw with his
microscope. In his honor these visible
motions which result from the random
jostlings of objects by atoms or mole-
cules are called Brownian motion. The
drawing in Fig. 2.4 shows the path of
a small particle undergoing Brownian
motion. The sudden turns in the path
follow no predictable pattern.

How to deal with random motions
is important in physics. In fact, an
entire branch of physics, statistical
physics, is devoted to just this. No
questions are asked about the motion
of any particular particle. Instead,

the physicist satisfies himself with
such questions as, what is the aver-
age speed of all the particles, or,
what is the average number that may be
in a particular region of space at a
particular time?

EXERCISES

2.9 The motion of a ball thrown with
a spin can be broken up into sim-
pler motions. Can you describe
three of them?

2.10 What characteristic does the mo-
tion of the pendulum in a grand-
father clock have in common with
the motion of a transit bus
traveling between two ends of the
line? With an elevator in a de-
partment store?

2.11 What common feature do you see in
the movement of water waves roll-
ing toward the beach and the move-
ment of a flag in the wind?

2.12 Can you think of some simple ma-
chine or appliance whose motion
has a characteristic in common
with the motion of the air and
the debris in a tornado or with
water in a whirlpool? In what im-
portant ways do they differ?

2.13 List some games which contain
elements of periodic motion and
point them out. List also some
games in which there appears to
be no periodicity.

2.14 Look at the movements of a tree
in the wind - its branches and
its leaves. Do you perceive any
examples of periodic motion?

2.15 Drop a stone in a still pool. You
will see waves spreading out over
the surface. A piece of wood
floating on the water bobs up and
down when the waves pass. What do
you think is moving when you see
the wave spread out toward the
edge of the pool?
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Fig. 2.5 Random walk pattern (Exercise

2.16).

2.16 A "random walk" pattern can be

generated by throwing a die. Take

a piece of graph paper. Draw a

horizontal and a vertical line
through its midpoint. Use the
following rules: a 1 means one
step to the right; a 2 means one
step up; a 3 means one step to
the left; and a 4 means one step
down. Ignore 5's and 6's. Plot
100 successive steps. The result
illustrates a random path. (Ex-
ample: The series of throws
4-1-2-1-2-3-4-1-4 is represented
in Fig. 2.5. There is one case
where the same step is retraced).

2.4 THE POINT OF VIEW

At the beginning of this chapter
the importance of the vantage point

from which a motion is viewed was dis-

cussed briefly. In particular, it was

stressed that only relative motion be-

tween two things seems to be of any

importance in nature. Now we return to

this subject to show that the point of

view may influence both how the motion

looks, and how the analysis of the mo-

tion proceeds.
First of all, let's recall the

importance of the distance between

you and what you watch. When you ride

steadily along in a car or on a train,

the trees and fences just next to the

roadway swish past in a blur. You can-

not make out many of their details.

Things farther off, a distant house,

or hillside, seem to move past very

slowly. If it is a moonlit night, the

moon itself appears to travel along

with you. Another sensation you may
have had (a very dangerous one) is

that you were almost standing still

even though you were speeding along a

freeway at 60 miles an hour in heavy

traffic. This sensation comes from

seeing very little but the rear bumper

of the car ahead of you that stays

almost the same distance away as both
of you move along. Only by looking

sideways from your car and seeing the

fuzzy image of cars passing in the op-
posite lane do you get a full impres-

sion of your own great speed.
Your own subjective judgment of

speed depends on more than what you
choose to compare your motion to. The

path you move in also has a profound

influence. Antoine de saint-Ekupery,

a French author and aviator, gave this

description of what he saw from his

plane:

Horizon? There was no longer a hor-

izon. I was in the wings of a thea-
ter cluttered up with bits of

scenery. Vertical, oblique, hori-

zontal, all of place geometry was
awhirl. A hundred transverse valleys

were muddled in a jumble of per-

spectives . . . For a single sec-

ond, in a waltzing landscape like
this, the flyer has been unable to
distinguish between vertical moun-

tain sides and horizontal plains ...

Antoine de Saint- }xupery

This is a dramatic picture of a man's

perceptions while he himself was in a
violent movement. But examples of

similar though less extreme impres-
sions are not hard to find. As you
stand near the merry-go-round you see
the horses bob up and down and circle

around. If you are riding along with

the merry-go-round in one of the

benches provided for the more timid,

then the horses only move up and down.
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In physics, changing the viewpoint
often works a great simplification in
the description of a complex motion;
sometimes this is esse:ttial. We will
give a simple example here. Imagine
watching the air valve cn an automo-
bile tire as the wheel rolls slowly
past you. The path it follows is not
very simple (Fig. 2.6). Someone else,
moving along in another car with the
same low speed, sees a very different
path for the valve: a simple, steady
revolution in a circle around the
axle.

One of history's more dramatic
chapters is about the motion of the
heavens and of the earth as seen from
different vantage points. Greek phil-
osophers in the fourth century B.C.,
starting from their immediate experi-
ences, assumed the earth to be immov-
able, and at the center of the heavens
which turned about the quiet earth in
daily and yearly cycles. This assump-
tion, in terms of everyday human ex-
perience, was simple and apparently
obvious. Even more, it was a pleasing
assertion - philosophically, estheti-
cally, and religiously. With the earth
at the hub of the universe, it was an
easy step to put man himself at the
center of creation. It always has been
a satisfying, reassuring thought that
God created a perfect and beautiful
universe, a celestial halo, crowning
and sheltering his greatest work, Man.
The answer to the meaning of man's
existence was then given in terms of
an idea of reality which was there to
be experienced by all who would open
their eyes to see nature's heavenly
order about them. The sphere was re-

V
Fig. 2.6 Tine exposure photograph of two
lights attached to a rolling wheel. One
light was at the center of the wheel, the

garded by the Greek as the geometrical
expression of simplicity and perfec-
tion, so it was natural to see the sun,
the moon, the planets, and the stars
all wheeling about the earth in heav-
enly spheres.

Faith in the truth of this Pla-
tonic-Aristotelian universe was re-
lated to astronomical observatttn in
only a tenuous way. Greater reliance
was placed on the beliefs that God
would create nothing but a perfect
world, and that the ingredients of
perfection are steady, uniform move-
ment of spheres aAld circles. This
view, eventually elevated to dogma,
survived for nearly 2000 years. As-
tronomers and mathematicians meanwhile
were charged with the task of fitting
their observations to the dogma, a
task which became progressively more
difficult as data accumulated. The
need for accurate predictions of the
positions of planets and stars was
compelling, for the Greek and Roman
sailors were learning to sail at night
and out of sight of land. They needed
to know the configurations of the
stars and planets to aid their naviga-
tion. Already in the second century
A.D., the great Hellenistic astrono-
mer, Claudius Ptolemy, trying to im-
prove the prediction of planetary
positions, was forced to devise an
intricate system of forty compounded
circular motions. This complexity, so
foreign to the Platonic credo of
spherical simplicity, was necessary
to account for the anything-but-
uniform movement of the planets
,.gainst the background of the stars.

The evolution of our ideas since

V w

other at its edge. (From PSSC Physics,
D. C. Heath & Co., 1960.)
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Fig. 2.? Retrograde motion of Mars. The
fixed stars are in the constellations
Capricornus and Sagittarius. The points
along the curved path of the planet are
positions of Mars observed at one-month in-

Ptolemy's day is a unique example of
the organic relationship between sci-
ence and society. The prablem that led
the ancient astronomers to their con-
cept of spheres rolling on spheres is
illustrated in Fig. 2.7. This diagram
is a record of what an observer may
see if he watches the planet Mars move
across the sky for a period of eight
months. Ea_h point alo,g the curve in-
dicates the place where Mars was
sighted at the beginnings of succes-
sive months, that is, the position of
Mars relative to the background of
fixed stars.2 The planet's path among
the stars is not what would be seen
if it simply swept around the earth in
a great circle. Instead of an orderly
progress across the sky, Mars halts
and goes back, halts again and starts
forward. This change of direction is
called retrograde motion. Seen from
the earth, all planets are in retro-
grade motion part of the time. In ad-
dition, the brightness of the ,planets
changes as they move, indicating that
they are nearer the earth at some
times than at others. These were the
most striking and the most trouble-

2The enormous distance of the stars makes the
appear to be fixed. The nearest star is about
2.5 x 1013 miles away. Note that 101 - 10;
102 = 100; 103 = 1,000...1013 = 10,000,000,000,
000.

-

tervals (except for the three points at
the bottom of the loop which were observed
in a six -day period).By permission Addison-
Wesley Publishing Company.

some features of planetary motion for
early astronomers.

From the second century B.C.,
astronomers realized that these curi-
ous paths across the sky had to be
interpreted as projections of the
planets' true paths onto the distant
backdrop of stars. It is like a shadow
of the actual path cast on the sky,
something like the two-dimensional
shadow of your body cast on film which
you see in an X-ray picture. Just as
the X-ray picture does not reveal the
depth of your body, neither does the
curve in Fig. 2.7 show the planet's
true path in space. Imagine the prob-
lem some nonhuman anthropologist would
have in the far-distant future if all
he had to reconstruct the human shape
was a collection of X-ray pictures,
all taken face on. Ptolemy, and as-
tronomers before and after him, faced
a very similar task when they tried
to reconstruct the planet's true paths
from their observations. Because the
accepted dogma of Ptolemy's day admit-
ted only circular and uniform motions,
he had to resort to his complicated
combinations of simultaneous uniform
circular motions to produce agreement
between his calculations and direct
observation.

To understand Ptolemy's system
we need not look at all the different
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motions he compounded. It is enough
to look at the simpler case of a planet
turning steadily in a small circle
whose center we can imagine to be mov-
ing steadily along a much larger cir-
cle whose center is the earth's center
(see Fig. 2.8). The planet does loop
back sometimes, and if you were watch-
ing it from the earth you would cer-
tainly see its retrograde motion when-
ever it was moving along one of these

small loops. This kind of path is
called epicyclic. To get a satisfac-
tory agreement with observation,
Ptolemy attributed forty such circular

motions to the planets. More were
added in later centuries as the accu-

racy of observations improved.
The Ptolemaic system for the plan-

ets is illustrated in Fig. 2.9 (see

page 26), which shows the orbits

around the earth of the sun and the
four planets, Mercury, Venus, Mars,
and Jupiter. (The figures are based on
modern data.) What would an astronomer
see if he could stand on a high tower

(five hundred million miles high or
more!) whose foot is fixed firmly to
the North Pole? From his sightings he
mould plot out these curves for the
planets' true paths, instead of pro-
jected curves like that in Fig. 2.7.
If he had been firmly educated in the
Platonic ideals of perfect beauty,
this astronomer might well repeat the
lament of Alphonso X of Castile (1221-
1284), called Alphonso the Astronomer.
When he had learned the Plotemaic sys-
tem, Alphonso sighea, "If the Lord
Almighty had consulted me before em-
barking upon the Creation, I should
have recommended something simpler."

The great revolution in our ideas
about the universe was begun in the
sixteenth century. The Polish astron-

omer, Nicolaus Copernicus (14=3-1543),

revived an idea suggested sever+°=
centuries before by the Greek astrouc-

mer, Aristarchus of Samos. The concept.

of a sun-centered universe had been

buried under the philosophical eritage

from Plato and ;tristotle. This vies
exchanged the earth for the sun as the

center of heavenly rotation. The earth,

no longer the center of the stage,

moved with the other planets about the

heavenly light giver, the sun. To
Copernicus, this change in point of

view seemed to bring the planets' or-

bits into more perfect union with the

Platonic ideal, the circle. The stars

were now arrayed in a great fixed

sphere about the center of light while

the planets, the earth taking its

place among them, all moved in the

same direction along circles around

the sun.
What our astronomer atop another

tall tower on the sun would see is

shown (see page 27) in Fig. 2.10 (we

won't worry how long he can watch be-
fore his tower is consumed in flame).

This picture is obviously much simpler,
at least as far as the shapes of the

orbits are concerned. This great sim-
plificat ion is just the result of mov-
ing the astronomer from the earth to
the sun, his location is he essential

P

Fig. 2.8 An epicyclic motion. The points

labeled Pi, 1/2, P3, etc., are successive
positions of a point fixed on the rim of
the small circle. The small circle turns
about its center while the center simulta-
neously moves along the larger circle. In
this case the small circle makes about
three complete revolutions each time its
center moves once around the large circle.
The epicycle path is traced out by the
point on the small circle. By permission
Addison-Wesley Publishing Company.
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difference between Ptolemy's and Coper-
nicus' descriptions of the heavens.
Though the orbits according to Coperni-
cus were circular, they did not fully
match the Platonic ideal. The motions
of the planets along them were not

//
/

I

I

\\......_...-/

uniform. So, in the end, Copernicus
had to compound many circular motions
to find agreement with observation,
a few more, in fact, than Ptolemy sug-
gested. Corpernicus still had not
broken with the nearly 2000-year-old

_0-- .6"--

EARTH
-AOSUN
-41 MERCURY
--0-- VENUS

-41 MARS
--4,--- JUPITER

Fig. 2.9 The paths of the planets Mercury,
Venus, Mars, Jupiter, and the Sua in the
Ptolemaic system. This drawing is a modern
version plotted from the known distances
of each body from the earth and the known

directions of each from the earth relative
to the distant stars. An arbitrary initial
position of the planets is indicated by a
heavy dot ; successive positions, 22 days
apart are indicated as points.
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Platonic dogma. Nearly another century
had to pass before astronomers could
accept the idea that the planets ac-
tually travel round the sun on ellip-
ses, not circles, and that their speeds
change as they move.

You might think that an astrono-
mer, standing far off on either tower,
will discover the truth, that he will
be able to choose immediately between
Copernicus's or Ptolemy's views. But,
in fact, both of the figures are cor-

rect (Figs. 2.9 and 2.10). The astrono-
mer will obtain one drawing from his

observations on one tower, and the
other drawing from his observations on
the other tower. The difference be-
tween the two is not one of right and
wrong, but results just from the rela-

tive motions in the two cases. From
the earth-bound tower the astronomer,
moving along with the earth, still
sees the epicycles and loops. From
the tower on the sun, where he does

'Os
111..

Fig. 2.10 The paths of the planets Mer-
cury, Venus, Earth, Mars, and Jupiter in

the Copernican system. These curves were
made using accurate modern data, just as
those in Fig. 2.9. Copernicus' drawings had

NN

SUN
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--*-- VENUS

EARTH
0 MARS

JUPITER

the same general character, but he did not
know the right relative sizes of the paths.
The initial positions indicated by heavy
dots and the successive positions 22 days
apart correspond to those in Fig. 2.9.
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not share the earth's movement, he
sees the Copernican circles about the
sun. Which picture is right and which
wrong? The answer is that both are
right, provided you take into account
the motion of the observer.

At first the Copernican descrip-
tion of the universe met with a hos-
tile, violent reception, with a fero-
city that today seems scarcely
credible. But we must remember that in
Copernicus' sun-centered universe the
earth lost its central role, it was
reduced to an insignificant place in
God's creation, a place at par with
the other planets at best. Not only
this, but in consequence the whole
edifice of Aristotelian world order
crumbled away with Copernicus' view,
the grand order in which all things
were supposed to seek their natural
place between the heights of heaven
and the depths of the underworld. So-
ciety reacted just as an individual
does when he faces an experience con-
tradicting his most cherished convic-
tions: It tried every available means
to repress the offending experience.
Copernicus' view was greatly enlarged
in scope and extended in influence by
Johannes Kepler (1571-1630), and Gali-
leo Galilei (1564-1642). These seven-
teenth-century thinkers considered
their new viewpoint to be absolutely
right, the old viewpoint to be abso-
lutely wrong. In the seventeenth
century it was probably less upsetting
to give up Man's central place in the
universe than to give up the idea of
absolute truth in either the Coperni-
can or the Ptolemaic points of view.
It was abhorrent to think that the
choice could be Man's choice instead
of God's choice.

There is an ironic end to this
story. Present-day astronomers have
extremely precise data on the motions

of the planets, data taken, of course,
from the vantage point of the moving
earth. With the aid of electronic com-
puters they can calculate the future
motions of the planets with an accu-
racy undreamt of three hundred years
ago. But in these most detailed cal-
culations modern astronomers do not
translate their earth-bound observa-
tions to the sun-centered system. They
calculate the planetary orbits, in-
stead, in terms of hundreds of "har-
monics," periodic motions superimposed
one after another until the calcula-
tions give satisfactory agreement with
the observations. These compounded
motions, iv fact, are near cousins of
Ptolemy's compounded circular motions.
Today we use hundreds of them, not a
mere forty.

The shift during the seventeenth
century to the sun instead of the
earth as a reference point at absolute
rest was only one step in the evolu-
tion of our ideas of motion. At the
beginning of this century the develop-
ments in another branch of physics,
electromagnetism, led to the complete
abandonment of belief in the Absolute
Frame of Reference (see section 2.2).
This advance is one of the starting
points for the theory of relativity.
With this new insight the question of
which astronomical system is absolutely
right is put aside. Today we can say
that both have merit, that both con-
tribute to our understanding of the
universe.

Physicists have learned the value
of looking at the same thing from
several vantage points. In other areas
of human endeavor - personal, politi-
cal, economic - changing our point of
view to that of other persons, or other
times, or other places, is a powerful
aid in analyzing problems.
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PERSPECTIVE 2

In Chapter 2 many aspects of mo-
tion were discussed: its meaning as
change of position; its various forms;
its complexity; the relation of the
motion to the nature of the moving ob-
ject; the importance of the point of
view. In addition two imp'rtant tools
were introduced: the idea of dissect-

ing complicated movements into simpler
parts, and the idea of seeking out
common features in disparate motions.

Thus far, the discussion has been
entirely qualitative. For instance, we
described in words what you can see

of the merry-go-round's motion, but
we did not discuss its speed, how far

it travels in a given time. The peri-

odic nature of the pendulum's movement
was outlined as you could determine by

a few minutes' observation, but we

did not inquire into the specific re-
lation between the length and the time
required for it to complete a full
swing. This qualitative initial ap-
proach to the problem of motion is
more than an easy introduction for be-

ginning students. Physicists always
start their work in just this way,

with a preliminary qualitative view,
a rough analysis that guides them in

later quantitative analysis.
In the next chapter we will be-

gin the quantitative study of motion.

But first it will be well to investi-
gate the:limitations of the qualita-
tive approach, and to see where the
need for quantitative work enters.
With this in mind, we will consider

a concrete example, raise various

questions about it, and point out
which of them cannot be answered on
the basis of only qualitative argu-
ments.

A familiar situation is a two-
lane highway on which car B is trying

to pass car A. Obvious factors in-
volved in this situation are the

speeds of the two cars and the dis-

tance between them. It is clear,

without any calculation, that B must

move faster than A to overtake it.

Also, we can see that the faster B

moves relative to A, the less time

will be required for B to move around
A and back into the right lane. But

will the distance covered by B while

it is in the wrong lane also be shorter

when B moves faster? This seems likely

because of the reduced time required

at the higher speed. On the other

hand, the higher speed increases the

distance traveled by B in a given time.

So this question involves two opposing

factors. The answer depends on which

predominates Qualitative reasoning

cannot tell us which. Only a quantita-

tive analysis of the problem, one

which produces the mathematical rela-

tionship between the distance B trav-

els in passing A, and the speeds of

the two cars, can lead us to the an-

swer. With the quantitative relation-

ship at hand we can proceed to answer

the question, " Will increasing B's

speed increase or decrease the dis-

tance needed to pass A?"
Qualitative discussion is an es-

sential tool in the study of physics.

It is needed at the outset of any prob-

lem as a guide. It is needed again once

the quantitative analysis of the prob-

lem is complete in order to make the

mathematical results meaningful. It
is needed very often in the course of

the quantitative analysis to test

whether or not the more abstract treat-

ment is leading to the desired result.

But qualitative discussion is inade-

quate by itself. The applicability of

quantitative analysis to tneproblems
of physics is what made possible the

amazingly rapid progress of this sci-

ence.
The remaining chapters are de-

voted to the quantitative analysis of

motion. Sometimes the need for the

material introduced will seem obscure.

It will be difficult at some points to

maintain the qualitative perspective

that makes the subject realistic. The

immediate objective is an accurate and

efficient quantitative description of

motion, a sort of language into which

the problems of physics can be trans-

lated as an aid to their solution. With

this accomplished we will be ready to

proceed to the problem of the causes of

motion. Later we will see how these con-
cepts of motion have come to pervade all

our knowledge of the physical world.
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3.1 KINEMATICS, THE SCIENCE OF MOTION.

In the preceding chapters you
read a great deal about motion: the

different ways motion is seen and
described by artists, writers and
scientists; the methods of classifying
motions; the ways of breaking them
down into simpler parts. Something of

the deep conceptual problems about

motion which have beset philosophers
and physicists was brought out. But,

in all this, movement was described in

words alone, the discussion was only
gualitative. The next step is to build

up an accurate method for describing

motion in quantitative terms, that is,

in terms of numbers, of algebraic sym-

bols that represent numbers, and with
mathematical equations that can be

used to explore motion.
The formal name for the scientific

description of motion itself, of how
the motion takes place without regard
to why it takes place, is kinematics.

Sometimes it is said that kinematics
is a branch of mathematics and not a
part of physics at all. This is far

from true. It is correct that in kine-

matics we use the language of mathe-

matics to describe motion. But still
it is the same subject you have been

reading about all along. We are con-
cerned with things moving in the real

world of nature: falling stones and
orbiting planets, rushing streams,

waves breaking, flags flying. Mathe-

matics is a tool used to concentrate
our ideas, and to make our description

more precise.
From this point on, we will use

a good deal of geometry and algebra.

Also, we will begin to introduce some
mathematics that may be new to you.
At first this may be hard for you, but

keeping firmly in mind the real things

which the mathematics describes will
help you. To a great extent it is
easier to learn these mathematical
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tools here, where the need for them is

apparent, than to learn them sepafately

and without a direct motivation for

their use. It is worth remembering,

too, that the new mathematics you en-

counter IL:re was invented almost three

centuries ago just for the purposes

we will use it: to describe motion.
In this chapter we will be con-

cerned only with the motion of a point

particle. What this means requires

some explanation. Often it is some

very small object, like a small pebble

- something we can watch move without

being particularly aware of its rota-

tion or its changes in shape. The

phrase, point particle, is simply an

- abstraction for this idea carried to

its extreme. Of course, it doesn't

always matter how small or how big

the moving object is. Even huge things

can be thought of ao moving like a

point particle. For example, a car
usually can be treated as a point par-
ticle when you consider it moving

from place to place along a highway.

Or, if you are talking about the

earth's annual trip around the sun,

you can safely ignore its size and

even its daily rotation on its axis,

and treat it like a point particle.

At the opposite extreme of size, mole-

cules and atoms frequently are cited

as examples of point particles, but

even with these microscopic objects

it is sometimes important to take into

account their sizes, shapes, and in-

ternal parts.

Example 3.1

Imagine that you are watching a
speck of dust sparkling in the sun-
light streaming into a still room. Can

you treat it as a point particle:

(a) If you are tracing its path

through the air?
Answer: Yes. In the following its
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erratic, zigzag path you need be con-
cerned only with its motion as a unit
and not with possible internal motions
too slight for you to see.

(b) If you are determining how many
molecules it contains?

Pnswer: No. When you ask how many
molecules there are in the dust parti-
cle, you already are treating it as
being made up of many smaller parti-
cles. You may consider how these are
arranged inside the speck of dust,
and, perhaps, how they oscillate rela-

tive to one another.

Whether or not an object can be
treated abstractly as a point particle
depends on what question about it you
want to answer.

EXERCISE4

3.1 Will treating the earth as a point

particle be satisfactory:

(a) In determining the earth's
minimum and maximum distances from
the sun?

(b) In explaining why Christmas
falls in summer in Australia?

(c) In calculating at what time
on your clock it will be noon in

London?

3.2 If you consider a car as a point
particle, can you tell whether it
is slipping along an icy road or
rolling along it?

3.2 WHERE DOES THE PARTICLE GO?

The first questions to be an-
swered about a particle's motion are:
where is it, where was it, and where
will it be? The answers describe the
path along which the motion takes
place. When something moves it always

moves along some sort of path: down

a road or a highway; on a walk or

around a curve; sometimes in an orbit,

or along a route. These different

words have much the same meaning. They
all refer to where the moving thing is,
or was, or will be. In some cases the

word brings to mind a very special

kind of physical thing, like a paved
street. In others it simply refers to
an imagined line or curve in space
along which the moving thing passes.

If you tell a friend where your
home is, what do you say? As a start
you may tell him it's about five miles

north of here. But if he wants to go
there, you may add that the five miles
is as the crow flies, but for him it
is more like seven miles along the
road. To make the route clear you may
tell him the names of streets to fol-
low, about how far to gc along each,
and, perhaps, some of the things he
will pass along the way. You might say
something like, "go down Tenth Avenue
to the third light, then turn left
onto Pine and go about a mile past

the brewery. . . ." In describing the

route you refer to fixed markers like
the traffic lights and the brewery,
and you give distances along the way.
Should your friend be a stranger to
the town you probably will do more.
If you can, you will get a street map
and mark the route on it.

There is much more to be learned
from a map than just the route to
your own house. If it is a highway

map, it may have marked on it the

point-to-point mileages along differ-
ent sections of highway. A good map
also has a scale with which you can
find the distance between places as
the crow flies, or what is called the
straightline distance between places.
What you want to know, whether it is
the straight-line distance between
two points, or the distance of travel
along some particular route between
them, depends on what you are doing.
If you are planning an automobile trip,
the highway distances are the useful
thing. But if you are drawing a map,

you are more likely to need the

straight-line distances between places.

Both ways of measuring distance
have their place in physics. In the

detailed description of motion, how-

ever, we need mostly the straight-

line distance between points. To get

some idea of how to describe a motion,

let's look at an example. The example
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Fig. 3.1 Successive positions of a boat on
a lake.

we have selected is not, perhaps, one
you would be concerned with very often.
But it does illustrate several aspects
of motion without bringing in too many
extraneous features. Suppose that, as
you read this book, you were sitting
atop a high cliff overlooking a lake.
On the lake there is a small boat
whose progress you note from time to
time. When you first sight it, the
boat is about a mile from you and due
north. A little later you look up
again and see that it has moved a half
mile east in the meanwhile. To keep
track of the boat's path you mark the
places you sighted it on a map, some-
thing like Fig. 3.1. (As an'outdoor
enthusiast, you always carry a map
when walking in the country.) The point
marked X represents your own location.
Point 0 shows where the boat was when
you first sighted it. Point 1 is
where you saw it next. The other num-
bered points are successive placc.s

MILE

sl 0.5

S2 0.5

53 0.5

54 0.5

55 0.5

Table 3.1

Fig. 3.2 Positions of same boat. Dashed
line represents one path through the points.

where you sighted it. For the sake of
simplicity, suppose each of these po-
sitions is half a mile from the last.

Of course you don't know the
boat's actual course; you weren't
watching all the time. You do know,
however, the various positions you
marked on the map and you know the
distances between them.3 As a guess at
the boat's path you could draw straight
lines between the points like those
in Fig. 3.2. (It is the lengths of
these lines that you mean when you say
you know the distances between the
points.) But these are, at best, an
approximation. There is no way you
could be sure that the boat didn't
follow the dashed line in Fig. 3.2.
To be more certain of the true path
you should have marked down the boat's
position more often, obtaining more
points, perhaps like those in Fig. 3.3.
If you draw straight lines between
these points you will have a more
realistic picture of the true course.
Even so you cannot be sure where the
boat was between your measured points.

It is clear that the more points
you mark on your map the more accu-
rate your picture of the boat's path
will be. But let's return to the six
positions shown in Fig. 3.1. Suppose
you were to describe your observations

3How to determine these positions accurately is
not an easy problem. For the time being we will
assume you managed it.
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Fig. 3.3 More positions of the same boat.

over the telephone to a friend so that
he could mark the points on his own
map. One thing to do would be to give
him the distance between the points
so he could make a table like Table
3.1. The left-hand column has short-
hand labels to identify the various
distances. The letter s represents
a distance (a custom in physics), and
the subscripts tell which distance is
meant. For example, si is the distance
of point 1 from 0, s2 the distance of
point 2 from point 1, and so on. Sup-
pose that having given only the in-
formation in the table to your friend,
you ask him to mark the points on his
copy of the map. Later when he shows
you his map, it might look like Fig.
3.4. What went wrong? The trouble, of
course, is that the information in the
table is only the distances between
the points. To mark his map, your
friend must know also where to put the
first point and the direction to go
from each point to the next. Since
you hadn't told him these things, he
had to guess; he chose to assume the
boat moved due east along a straight
line starting from just north of you.

3.3 THE DISPLACEMENT VECTOR

To make your own map (Fig. 3.1),
you had more information, both dis-
tances and directions. For each point
at which you sighted the boat you knew

0 1 2 3 4 5

______.

Fig. 3.4 Incorrect plot of the boat's

positions.

two things: (1) the distance from the
last point; and (2) the direction
along a straight line from the last
point to the present one. There are
many forms in which this information
can be given, but to make the map
this, in one form or another, is what
you need. These two bits of informa-
tion, distance and direction taken to-
gether, make up a single concept called
displacement. Displacement is not a
simple numerical quantity. It has a
numerical part, the actual distance
between the points in some unit of
measure. But there is more to it than
that. It also specifies the direction
to go from one to the other.

Displacement is an example of a
kind of mathematical_ quantity called a
vector. In your study of physics you
will encounter many other vectors. For
example, velocity and acceleration
are two other vectors used in kinema-
tics. When the causes of motion are
considered, still other vectors are
needed. The most important are force
and momentum. Precise mathematical
definitions can be given for vectors,
but for the time being it will be
better to think of vectors in terms
of physical examples like the displace-
ment vector.

Displacement is a quantity with
length (the straight-line distance be-
tween two points), and direction. The
example of the boat's displacement
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Ftg. 3.5 Displacement vectors connecting
the successive positions of the boat.

from one point to the next is an es-
pecially simple one because the boat

moved in a single plane, the plane
surface of the water. But this is not

the nFual case. Displacements, in gen-
eral, connect two points in three-
dimensional space. It is easy enough

to give the length of a displacement

vector. It is a certain number of units
of distance: miles, or inches, or me-
ters, or any other unit you choose to

use. Ta give the direction in three-

dimensional space in a precise way is

more problematical. We must learn how,

but we will postpone this problem and
turn first to the way cf representing
vectors symbolically and graphically.

Since we treat displacement as a
single quantity, a vector, we need a
symbolic, shorthand way to represent
displacement. In dealing with distance,

we assigned a particular letter to rep-

resent it, the letter s. We will use
the same letter to represent a dis-
placement. But to distinguish the vec-

tor quantity, displacement, from the

scalar quantity, distance - wnich is
only the length of the veczor - a
bold-face s is used in print, or an

arrow is placed over the s in handwrit-

ing and typewriting. This same custom
is followed for all vector quantities.
Ally letter, like r, or a or v, printed

in bold-face or hand-written or type-
written with an arrow above, like r,

or a, or v, represents a vector quan-

tity. The same letter in ordinary
type or written without an arrow, like

Fig. 3.6 Displacement vectors connecting
successive positions of a bird.

r, a, or v, represents thl magnitude

or length of the corresponding vector

quantity expressed in appropriate
units of measure.

It is very useful and also very

easy to indicate vectors in drawings.

The method used is illustrated in
Fig. 3.5, where the successive dis-
placements of the boat in our earlier
example are shown. Each displacement
is represented by an arrow connecting
one position of the boat to the next.

The direction of the arrow is toward
the next point for each displacement.
For example, si is a vector 0.5 miles
long directed due east. This stl-ing of
vectors is just the approximation to
the boat's path made in Fig. 3.2. The
vectors, however, show one thing more
than the approximate path of the boat.
They also show the 1,ver-all direction
the boat went along the path. Another
illustration of displacement vectors
is shown in Fig. 3.6, this time an
example of vectors in three dimensions.
These displacements connect the suc-
cessive positions of a bi--. In con-
trast to the boat's course across the
flat lake surface, the bird's path
is not confined to any plane. It can-
not be described ty a succession of

displacements in plane.

3.4 ADDITION OF VECTORS

Let's return to the fundamental
question: what is the motion of a
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point? From Figs. 3.5 and 3.6 we can
see that.movements are represented by
the sequences of displacement vectors
laid out end to end along the paths.
The vectors are not the paths, but they
do approximate them. FUithermare, we
know that a better approximation to the
paths could have been obtained in these
examples by considering more numerous
and shorter displacements (as in Fig.
3.3). In fact, if we imagine contin-
uing indefinitely the process of draw-
ing ever more and ever shorter dis-
placements, it is easy to see that the
vector diagram ultimately merges with
the actual path. A more formal way to
say the same thing is that in the limit
of infinitesimal displacements the
chain of vectors becomes -he path it-
self. This phrase, "in the limit of
infinitesimal displacements," is merely
a quick way of describing this process
of continual improvement in the ap-
proximation to the true path by taking
smaller and smaller displacements.

In the example of the boat's mo-
tion we have replaced the movement by
a succession of displacement vectors.
We imagine the motion as having re-
sulted first in displacement si, then
g2, then 73, and so on. This is very
similar to adding numbers, except that
here we add displacement vectors one
after the other to get the whole dis-
placement. In fact, we call this pro-
cedure vector addition. What this
means is just to constri' t a figure
like Fig. 3.5. As a way remembering

this process we will write equations
like:

= g2 g3+ F5 ,

where s is a symbol for the vector sum
of vectors on the right-hand side of
the equation. But what is -gin the
diagram? We must ask ourselves a little
more aoout the meaning of r. Is it not
the total displacement from point 0 to
point 5? If we were to draw a single
vector for this total displacement it
would be an arrow starting at point 0
and ending at point 5. This is the
vector sum shown in Fig. 3.7.

Si

S3

54 4 S5 5

Fig. 3.7 Vector sum of the boat's displace-

ments.

In summary, the rule for adding
two vectors is this: Place the tail of
the second vector at the bead of the
first; then draw a new vector, the sum,
which has its tail at the tail of the
first and its head at the head of the
second. To add more than two vectors
the same process is continued, the
tail of each successive vector added
being placed at the head of the last.
The sum vector starts at the tail of
the first and ends at the head of the
last vector added.

Example 3.2,

A man walks two miles due east
along a straight line. Then he turns
and walks two miles straight north.
What is his total displacement from
his starting point?

Answer: The man's two successive
displacements are represented in Fig.
3.8 by the two arrows labeled si and
s,. Their sum s, which is his total

N

S

Fig. 3.8 Vector sum of two displacements.
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3

3

Fig. 3.9 Three ways of adding the boat's

displacements.

9

1 2

8
7

3

5

4

Fig. 3.10 Positions of the fishing boat

(Exercise 3.4).

sy

a

32.

C

S 2

b

e
Fig. 3.11 Vectors to be added (Exercise

3.5).

displacement, is drawn according to
the rule given just above. To find the
length of s we could measure it on the
drawing, a method often used in more
complicated examples. However, this
example is simple enough that we can
find s from the triangle in Fig. 3.8
which we know to be a right triangle.
From the Pythagorean theorem for right
triangles

or,

S2 = 512 S2 2

= (2)2 + (2)2

= 4 + 4 = 8.

s = = 2.83 miles.

The triangle has equal legs adjacent
to the right angle, so we know that
its two acute angles are both 45 de-

grees. Consequently, the direction of

s is halfway from north to east, or

northeast.

You should note particularly that the
length s is not the distance the man
actually walked, which was 4 miles,
and that the direction of the total
displacement s is not the direction in
which he walked at any point along his

path.

When numbers are added, you know
that it doesn't matter in what order
you add them. For example:

4 + 5 + 6== 6 + 4 + 5= 5 + 4 + 6 = 15.

Dues this hold true when ycu add vec-
tors? Is the order in which the vec-
tors are taken insignificant? In part
the answer is rimes, it does not matter
in what order you add vectors, the
result is always the same. The five
vector displacements of the boat are
added in different orders in Fig. 3.9.
That the sum is the same in each case
is shown by the fact that the starting
points and ending points are the same
in all cases. But it is not quite trLe
that the order of the vectors doesn't
matter. Their sum, to be sure, is the
same for any order If the sum is all

you want, you can forget the order.
Yet the different paths in Fig. 3.9
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are quite distinct. Each one repre-
sents a different route from the start

to the finish.

EXERCISES

3.3 Copy Fig. 3.6.

a) Indicate the total displace-
ment vector of the bird.

b) Indicate an alternative flight
path of the bird which would re-
sult in the same total displace-

ment.

c) In making a drawing like Fig.
3.6, do you think it makes any
difference which part of the bird's
body is taken to determine its
momentary position?

3.4 A fishing boat's position is plot-
ted on the map given in Fig. 3.10.

Successive positions are labeled

by successive numbers.

a) On a tracing of the figure,
draw the individual displacement

vectors.

b) Draw the total displacement.
Do you need to know the individual

displacements to find thei2 total?

c) Assuming the positi_uns to be

half an hour apart in time, can

you conclude anything about vari-

ations in speed of the boat?

3.5 Fig. 3.11 gives five sets of vec-
tors. Copy the figure and draw on
your copy the sum of each set of

vectors. (All the vectors lie in

one plane.)

3.6 In adding two ordinary numbers

there is only one possible result.

Nothing is considered more self-

evident than that 2 + 2 = 4 - there

is no other possibility. But when
two vectors of the same length are
added, is the result alwans the

same?

a) To answer this question add two

B

B = 60°

Fig. 3.12 Vector addition (Exercise 3.6).

displacements of two feet each,
the second making an angle 8 with

the first of (1) 0°, (2) 180°,

(3) 120°. To show how this is
done we will work out the case of

0 = 60° (see Aig. 3.12). The two
vectors are represented by si and

4, their sum by s. Applying the
sine law to bABC

AC AB
sin (180° 8) sin C'

from which we obtain AC = 2 sin

(180° 60°)/sin 30°. Hence

AC = 243 = 3.46 feet. Thus, for
this case of 8 = 60°, the length

of the sum is 3.46 feet! If you

constructed your figures correctly
your answers will be (1) 4 feet,

(2) zero, (3) 2 feet. This example
shows that there are many possible

lengths for the sum of the two
vectors. In fact there is an in-
finite number of possible answers
depending on the value of 8. More

concisely,

0 s I I+ s2 4 feet.

( (4 + 41 means the length of

the sum gl . 4 ).

b) li the two vectors to be added

have leng%:-.11s 2 feet and 3 feet,

what is the range of possible
lengths for the sum?

c) Generalize the results in (a)

and (b) by writing down the range
of magnitudes of the sum si + s2

when si and s2 can have any values.
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1 inch

210°

0.5 inch

Fig. 3.13 Vectors to be added (Exercise
3.7).

S5

S6

9C°

90°

190°

90°

74

54

inches

SI 0.2

S2 0.4

S3 0.6

S4 as

S5 tO

S6 1.4 I

Fig. 3.14 Vectors to be added (Exercise
3.8).

3.7 You are given the four vectors
shown in Fig. 3.13. Add them
graphically in four different
orders. Verify that the sum is
always the same.

3.8 Copy the displacement vectors
shown in Fig. 3.14 on graph paper
and add them in four different
orders. Prove to your own satis-
faction that the total displace-
ment will always come out to be
the same.

3.5 INVARIANCE OF VECTORS

One great advantage gained by
describing motion in terms of displace-
ment vectors is that these vectors are
the same for anyone who looks at them.
They are the same from all points of
view. They have the same lengths and
they point in the same directions when
seen from above as when seen from be-
low, or from any side. It is for this
reason that we have devoted so much

time to describing vectors in a graph-
ical way before discussing the methods
of expressing their lengths and direc-
tions as numbers. But in the measure-
ment itself we will lose this inde-
pendence of the point of view. In
analyzing problems of motion it is a
great aid to be able to shift the
point of view. Consequently it is im-
portant to try to think in terms of
vectors, to visualize them dixectly
as arrows in space, arrows of certain
lengths and pointed in certain direc-
tions. The time for numerical measure-
ment follows, after the best point of
view for the problem at hand is set-

tled.
In this sense vectors are like

any ordinary physical object. If you
look at a building, for instance, first
from one side and then from another,
your view changes, but not the 1.5ailding

itself. Everyday experience has so ac-
customed you to this realization that
it is scarcely necessary to point it
out. You cannot imagine a world in
which an object would actually change
its shape because you looked at it
from a different direction. Vectors,
the displacement vector for example,
share this invariance with changing
point of view, this independence of
how you look at them. But Wien we
come to measuring vectors, specifi-
cally when we try giving their direc-
tions in numerical terms, we find quite
a different situation. We find that
different people with different vantage
points will obtain different numbers
for their measurements despite the
fact they all are measuring the same
vector.

EXERCISE

3.9 Make a tracing of the planetary
orbits according to the earth-
centered and sun-centered points
of view from Figs. 2.7 and 2.8. In
the sun-centered system, find the
positions of the earth, Mars, and
Mercury one Venus year after the
starting time (count off eleven
dots from the indicated starting
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position on each orbit. This time
corresponds approximately to one
"Venus year").

a) Measure the angle with the hori-
zontal and the distances (the dis-
placems.nt vectors) between the
earth and Venus, between the earth
and Mars, and between the earth and
Mercury. Determine also the dis-
placement between Venus and Mars
and between Venus and Mercury at
the end of the venus year. Put
your results in a table, listing
angle with horizontal and length
of vector.

b) Make the same measurements in
the diagram of the earth-centered
system. Do you find reasonable
agreement with any of your results
for part (a)?

c) Which properties of vectors have
you checked here graphically?

d) From the distance of the time
dots on the orbits in the sun-
centered scheme observe that the
speeds are uniform. (This is only
approximately true.) What about
orbital speeds in the earth-
centered view? Discuss specific
orbits in this context.

3.6 MEASUREMENT OF VECTORS

How do we measure vectors? If you
want to tell someone else what a par-
ticylar vector is in a precise and
unanCiiguous way, what do you have to

do? le answer this question it is best
to start with a simplified case. Vec-
tors are represented as arrows in
space. The problem is to measure some-
how the lengths and eirections of the
arrows. This is more easily done if
we start out with the knowledge that
the arrow already lies in a particular
plane and content ourselves with de-
scribing the vector in that plane. This
is the first problem we will undertake.
For the present we will confine our-
selves to vectors like the displace-
ment vectors for the boat, all of which
lay in a horizontal plane. Later we

will return to the harder problem of
describing several vectors that do not

lie in a single plane, vectors like the
bird's displacement shown in Fig. 3.6.

Let's concentrate first on a
single displacement vector, the one,
for example, shown in Fig. 3.15.
Imagine that you see this vector,
which lies in the plane of the paper,
from the point marked O. Measuring
the length of is simple enough, but
you also need a way to say which di-
rection it points. In addition you
may need to know where the vector is
located in the plane relative to you.
We will work on the second problem
first: Where is the vector? To do this
we must locate one point along the
vector. Which point doer not matter
in principle, but we still follow a
universal custom and specify the loca-
tion of the vector by locating its
tail, the point P in Fig. 3.15.

When we say locate point P we
mean, of course, to locate it relative
to your point of observation, or point
of reference O. The familiar way to do
this is to say how far point P is from
0, and in what direction it is. How
to give the distance from P to 0,(a
distance we will call r for the mo-
ment), in numerical terms is no prob-
lem. To give the direction in numerical
terms, however, requires more careful
thought. In order to see clearly what
is involved, let's try to imagine the
sort of measurements you would have to
make. First, by knowing r, you can say
that point P is located somewhere on a
circle of radius r whose center is at
the origin O. Next we must say exactly

O
Fig. 3.15 A displalement vector.
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where on this circle P is located.
One way would be to pick some conven-
ient but arbitrary point 0' on the
circle, as shown in Fig. 3.16, and then
measure the distance clockwise from
0' to P along the circle. This second
distance we will call 1. In other
words, by choosing two points of refer-
ence 0 and 0' we can measure the two
distances I and r and thereby specify
numerically where P is. This method is
convenient as long as we want to locate
any number of points all of which lie
on this same circle, that is, all at
the same distance from O. But usually
we will need to locate points at many
different distances from O. Then, in-
stead of choosing a second reference
point 0', it is better to choose the
whole straight line that starts at 0
and passes out through 0' in Fig. 3.16.
Such a line is called a reference axis.
It specifies a fixed direction from
the origin 0, or a reference direction.
Once the reference axis has been
chosen, any point P can be located ex-
actly by giving its distance r from
the origin and the distance I you must
go along a circle of radius r in a
clockwise direction from the axis to
reach the point.

What choice is made for the refer-
ence axis is entirely arbitrary. In
any given problem it should be selected
for convenience in solving that prob-
lem. In the map of the boat's positions
in Fig. 3.1, the reference axis used
was along the compass direction from
X straight north, the conventional
choice for maps. The position x from
which the boat was seen plays the part
of the first reference point O. The
North Pole, if you wish, takes the
part of the second point 0'. OE such
a large scale, the reference line is
a circle on a sphere instead of a
straight line, but on the smaller
scale of the lake this axis is straight
enough for practical use. Another
choice of axis that might be more use-
ful in studying some aspects of the
boat's motion would be the straight
line through positions 3, 4, and 5.

The last step in developing a

useful method of locating point P is
a simple one, though not necessarily
an obvious one. Instead of locating P
by giving r and I as we have done
here, it is customary to give r and
the ratio 1 /r. Why use this ratio? The
reason is evident from Fig. 3.17,
which shows three different points
(1, 2, and 3), all of which lie on
the same straight line through O. The
three points are different distances
ri, r2, and r3 from O. They also are
different distances 12, and 13

from the reference axis. But, because
of the geometric similarity of the
sectors bound by 11, 12, 13, the ra-
tios (11/r1), (12/r2), and (13/r3) are
all the same. In fact all points on
this same line have the same value of
(1 /r), and the location of any one
can be specified with this value plus
its radial distance from O. The ratio
(I /r) is called the angle of the line
with respect to the reference axis.
To make this definition of angle seem
more familiar, Fig. 3.16 can be re-
drawn as in Fig. 3.18. Here, instead
of showing the distance I, the angle
is indicated in the familiar way and
is labeled with the Greek letter 0.

The common method of expressing
angles in degrees is actually based on
the definition of angles we have given
here. One degree is 1/360 of a full
circle. To measure an angle of one
degree, if you did not have a pro-
tractor, you would have to draw out a
circle and divide its circumference
into 360 equal parts. Your divided
circle then could serve as a protrac-
tor. To measure an angle you would
place the center of the divided circle
at the apex of the angle and then ex-
tend the sides of the angle out to
intersect the circle. The angle in
degrees is the number of divisions of
this circle that lie along the arc.
The length of arc between the extended
sides divided by the radius of the
circle is the measure of the angle as
we have defined it. Either measure can
be used. Later we will see that the
ratio has advantages in many physics
problems.
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In summary we can say that we
have located point P, the tail of the
vector s, by giving the angle 8 that
the line joining P and 0 makes with
the reference axis, :lad the distance
r along that line from 0 to P. These

two quantities, r and 8, which are all

we need to locate P relative to 0, are

called the plane polar coordinates of
the point P. Often they are written
as a pair between parentheses: (r,0).

Though we have spent a good deal
of time describing where P is, we
have still the task of specifying the
vector g. But our work is nearly done,

for we can use the same scheme for
the length and direction of g. Figure

3.19 shows how. In this figure a line
parallel to the axis has been drawn
through P. With this parallel drawn,
it is a simple matter to determine the
angle Os between it and the vector,
width also is the angle between the
vector and the axis. But with the
length s of the vector s, the angle Os

and the coordinates (r,8) of P we have

all that is needed to completely spe-
cify the location, length, and direc-
tion of the vector.

We pointed out earlier that when

we get down to specifying a vector in

numerical terms our results will de-
pend on our point of view. This is now
evident, for the actual numerical val-
ues r, 8, and Os will depend entirely

on where we choose the origin 0 to be,

and what direction we choose for the
reference axis. There is one thing in

our measurement of g, however, that
still does not depend on these things:
it is the length s of the vector. This

one thing is the same for any choice

of references. In other words, the

length of the vector is invariant with

changes of vantage point.

EXERCISES

3.10 Locate the following points in a
polar coordinate system: (Use a

table to find the angles.)

Fig. 3.16 The lengths r and f used to lo-

cate point P.

r 3

AXIS

Fig. 3.17 Three points on a straight line.

P

r/

AXIS

Fig. 3.18 Polar coordinates of point P.

AXIS

a) tan 0 = 1, r = 1 inch Fig. 3.19 Length and direction of ;.
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0

Fig. 3.20 Quadrants of a plane. The num-
bers designate the first, second, third,
and fourth quadrants.

b) tan 9 = 0.576, r = 1.5 inches

c) tan 9 = -1.73, r = 1.25 inches
(a negative value of tan 9 means
that the angle is in the second
or fourth quadrant, see Fig. 3.20).

d) tan 0 = 0.576, r = 1 inch

3.11 a) Draw a vector si of length
sl = 1.0 cm, the end point of
which has polar coordinates
tan 6 = 1, r = 1.5 cm, and with
direction tan Os]. - 0.576.

h) Add to this a vector .42 with

tan- 0s2 = 0, s2 = 0.5 cm.

c) Measure on your graph the re-
sultant displacement -g = 7.ii + .42

and check this with a calculation
using Pythagoras' theorem on rigbt
triangles.

3.7 VECTOR COMPONENTS

The method we have developed for
specifying a vector in a plane by
giving its length and its direction
relative to a single reference axis is
only one possible way. Another scheme,
based on the idea of vector addition,
is even more useful. In this method
we draw a second straight line through

the origin 0, a second reference axis
which makes some arbitrarily chosen

angle 00 with the first axis. Having
fixed on this second axis, we can then
draw lines parallel to each of the
axes, one through one end of the vec-
tor, one through the other (it doesn't
matter which). Figure 3.21 illustrates
this construction for a displacement
vector s. These lines, along with the
vector itself, form a triangle. The
two sides opposite the original vector
can be thought of as two secondary
vectors, or component vectors si and

s2. The sum si +12 is equivalent to
s as can be seen from the figure. They
are drawn specificallr in Fig. 3.22,
which is an enlargement of Fig. 3.21
in which more quantities related to
this triangle are indicated. The vec-
tor s and the component vectors sl and
s2 parallel to axis 1 and axis 2, re-
spectively, are related by the equa-
tion:

..... Am.. Am..

s = si + s2- (3.1)

If we can specify si and s2, then by
using this relationship we can find s.
This may seem like taking the original
problem and magnifying it by two; we
now have twice as many vectors to
specify. But this is not really true;
gi and g2 are easy to specify because
of the rule we followed in making
them. These component vectors are
parallel to the two axes. We know
their directions already: has the

direction Os = 0° and s2 the direc-
tion Os = 00. All we really need in
addition to specify '4; and s2 beyond
this is their lengths, si and ThisThis

method may still seem laborious if we
think of applying it to only one vec-
tor. Its greatest .advantage is when
several are involved. Figure 3.23a
shows several vectors of different
lengths and directions. Figure 3.23b
shows the components of the same
vectors by themselves. A sort of sim-
plicity is evident which comes about
because all the vectors in the second
figure have but two directions, not
many. Yet they are equivalent to the
vectors in Fig. 3.23a.
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To confirm that giving the com-
ponents (s1, s2) of a vector along
two axes really is equivalent to giv-
ing its length and direction (s, Os),
we should show that given either pair
of values the other can be obtained.
If this is possible, then the two
methods are completely equivalent.
Let's see first if we can find the
values of (s,015) if we already know
the values of (si, s2) and, of course,
the value of 00. The sides of the tri-
angle in Fig. 3.22 are the three
lengths s, si, and s2. The interior
angle between gi and s2 is 180° 00;

that is, it is the complement of the
exterior angle which is equal to 00
since g; and s2 are parallel to the

axes. By applying the trigonometric

cosine law4 to the sides and this ang-

gle we get,

s -2 - si 2 + S2 2 2s1 2s cos (180° 00),

AXIS I

Fig. 3.21 Construction to obtain the com-

ponents of s.

or, since cos (180° 00) = cos 00,

s2 = s12 s22 + 2s1s2 cos 00,

or, finally,

S = 9512 S2 2 2s
1
s
2 cos 90.

(?,

This is part of the desired result, s
in terms of si

,
s2, and By By apply-

ing the sine law to the sides s and
s2 and the angles opposite them, we
get

s sin (180° 00)

S 2
sin Os

4A brief summary of trigonometry is given in
Appendix 1.

Fig. 3.22 Enlarged view of Fig. 3.21.

AXIS 1 r7

a

Fig. 3.23 (a) Four vectors; (b) components of the same vectors.

AXIS 1
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or, noting that

sin (1800 00) = sin 00,

sin On

s2 sin Os

Solving this for sin Os gives

s2 sin 90
sin 08 =

(3.3)

or, substituting for s from Eq. (3.2),

s2 sin 00
sin Os .

/S +2 s 2
2 + 2s 1

s 2 cos 00

(3.4)

With this equation sin Os can be cal-
culated from si, s2, and 00. Finally,
from a table of trigonometric func-
tions, Os itself can be found.

So far we have found how to get
(s,08) starting from (si, s2) . To do
the reverse requires only another short
step. From Eq. (3.3) we can obtain

sin Os
s2

=
ssin 00.

(3.5)

Applying the sine law again, this time
to sides s and si, leads in a few steps
to

si = s
sin 00

sin (00 Os)

(3.6)

These last two equations are all that's
needed to get (si, s2) from (s, Os).
So we can get either description from

(s1, s2) FROM (s, Os) (s, es) FROM sl, s2)

sin (Bo - Os)
s

s =1/412+ s22+2sis2 cos 0osl .-71 do

sin Os
s2 s -sir7 -o;

s2 sin 00
sin Os

1412 + £22 + 2s1s2 cos 00

the other, and, as a consequence, we
must agree that they are equivalent.

Our second way of specifying a
vector involves giving the lengths of
its component vectors parallel to any
two convenient axes. In our first
method one of the two numbers given to
determine the vector, its length s,
had the invariant character of the
vector itself. But in the new method
neither si nor s2 remains unchanged
when the reference axes are changed.

It is interesting to note that
with either of our methods for meas-
ing vectors in a plane we find that
two numbers must be given: (s, Os) in
one case, (si, s2) in the other. When
we try to specify vectors in three
dimensions instead of two, we will
discover that three numbers are always
required. These facts suggest another
way to distinguish between ordinary
numerical quantities like length or
temperature (which only require one
number) and vectors. A vector in two
dimensions is fully specified by two
ordinary numbers, in three dimensions
by three ordinary numbers.

The method of components can also
be applied to the problem of locating
the vector. Figure 3.?4 shows the same
displacement vector we started with
in Fig. 3.15, along with the two refer-
ence axes. Lines parallel to the axes
are drawn through point P, the tail of
the vector s. The distances _el and i2

from the origin to where these lines
cross the axes are all that is needed
to locate P. In fact, the equations
of Table 3.2 can be used to find (ill
i2) from the polar coordinates (r, 0)

(11, 22) FROM (r, 0) (r, 0) FROM (11, 12)

sin (00- 0)il = 142 +1z22 + 2142 cos eo
r sin no

sin 0
/2 r

12 sin Oo
sin 0 +-

sin eo 012 4. 122 +20112 coseo

Table 3.2 Vector component transformation Table 3.3 Point coordinate transformation

equations. equations.
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of P, and vice versa. When points in

a plane are located this way, the twv

axes are called coordinate axes, and

the two numbers (11, /2) are called
the coordinates of the point. The re-

lationships between the two sets of

coordinates of P are given in Table

3.3.

EXERCISES

3.12 Choose two axes (as in Fig. 3.21),

which make an angle of 60° with

each other. In a diagram draw at

least three arbitrary vectors
pointing in different directions.
For each vector draw the two com-

ponents.

3.13 Draw three axeF,, one horizontal

(axis 1), one making an angle of

60° (axis 2;, and the other mak-

ing an angle of 120° (axis 3),

with the horizontal. Draw at least

three arbitrary vectors in your
diagram. For each of these vectors

construct the components, using

first axes 1 and 2 and then axes
1 and 3 as coordinate axes.

3.14 Take a coordinate system with

axes at an angle 0 = 60°. Take

axis 1 to be horizontal. Con-

sider a vector with components
(si = 1 inch), (s2 = 2 inch), and

its tail at the coordinates

(1 = 0.25 inch, 12 = 0.5 inch).

a) Construct the vector

g. i2
b) Calculate s and Os from (s1,

s2) and 00.

c) Measure s and Os and calculate

from them si and s2.

3.8 CARTESIAN COORDINATES AND

COMPONENTS

As we have discussed it thus far,

the component method is more compli-

cated than necessary for most problems.

0 / AXIS 1

Fig. 3.24 Coordinates of point P.

0

P(x,y)

/
/

/
/

//I\ 9/
X

sx

s,

X AXIS

Fig. 3.25 Cartesian components of ; and

Cartesian coordinates of P.

We have left the angle 00 between the

axes free to be chosen at will. Some-

times this is useful, but more com-
monly one particular choice is made,
00 = 90°. That is, the coordinate
axes usually are taken to be perpen-

dicular to each other as shown in Fig.

3.25. When perpendicular axes are used
they are called rectangular coordinate
axes, or Cartesian axes (after Rene

Descartes, a French scholar who in the

seventeenth century introduced their
use). It is also customary in this
case to label the axes x and y in-

stead of 1 and 2 and to refer to them

as the x and y axes. The coordinates
relative to these axes are also called

(x,y), not (11, 12), and are spoken of

as the Cartesian or rectangular coor-

dinates of a point. Similarly, the
components of a vector parallel to
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these axes are labeled ss and sy. A
point P is often written with its co-
ordinates after it as P(x,y).

By substituting 00 = 90° the
equations for changing from polar to
Cartesian coordinates become much sim-
pler; so do the corresponding equations
for relating the polar and Cartesian
components of a vector. Making this
substitution in the equations of
Tables 3.2 and 3.3, and also replacing
the subscripts i and 2 by x and y,
and (11, /2) by (x,y), gives the re-
sults shown in Table 3.4. The table
contains one further change in that in-
stead of formulas for sin Os or sin 0,
formulas for tan Os and tan 0 are
given. These can be deduced from Fig.
3.25, or equally well by dividing the
equations for x and ss in the first
column of Table 3.4 by the equations
for y and sy.

By now we have developed two dif-
ferent but equivalent ways to locate
a point in a plane: (1) by its polar
coordieates (r,0); and (2) by its Car-
tesian coordinates (x,y). Also, we
have two equivalent ways of specifying
a vector lying in this plane: (1) with
its length and direction (s, Os); or,
alternatively, with its Cartesian com-
ponents (sx, sy) . We will use both
methods henceforth, but, more often,
the Cartesian coordinates and compo-
nents. One thing that should be under-
stood clearly is that these methods of
representing vectors can be used for
auy vectors, Lot just the displacement
vectors we used in our examples. An-
other thing that will beccme evident
as we use these two schemes is that
though they are equivalent in the

POSIT

COORDINATES
I

x=ross

y=rsinG

1(7?r= 214

tole=y/K

IVECTOR

ICOMPONENTS

sa = s am 4

s = s sines

s 4V-7717

tam es = sue,/s.

Table 3.4 Transformations between Carte-
sian and polar quantities.

sense that we always can change from
one the other, in many problems,
using one scheme will produce much
simpler equations to handle than the
other.

EXERCISES

3.15 Draw the vectors si, s2, and s2
with their tails at the origin of
a Cartesian coordinate system.
Their components are:

six = 0.5 inch, sly = 1 inzh

sax = 1 inch, s2Y = 0.5 inch

s2x - 0.5 inch, say = 1 inch

a) Construct the vectors g2,

and s2 and measure their lengths
and angles with the horizontal
A axis.

b) Calculate the values of si,
s2, and s2 and the angles Os using
the equations given in Table 3.4
and compare with your results for

(a).

3.16 A fly crawls over a cubical card-
board box (Fig. 3.26), from A to
B. Each edge of the box is 10
inches long.

a) Calculate the length of the
displacement.

Hint: Look for an appropriate cut
of the cubice. box such that you
can use Pythagoras' theorem for
right triangles to calcul.te the
displacement.

,///

Fig. 3.26 Cubical box (Exercise 3.16).
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b) Make a reasoned guess about
the shortest path between A and
B over the faces of the cube.

c) To find the exact so1W-ion to
(b) imagine cutting the box in
order to make it lie flat. Make
the smallest possible number ,.)f

cuts along its edges (no double
layers). Draw a picture of the
flattened box. Locate A and B
and then find the shortest dis-
tance between thes1 points. Does
this distance change when you put
the box together again? Explain
your answer. (If you have diffi-
culty imagining what a flattened
box looks like, build one with
cardboard and tape and paint the
corners A and B on it.)

3.9 VECTORS IN THREE DIMENSIONS

Our last step in learning to
represent vectors numerically is to
go on to the case of a vector in three
dimensions, in space rather than in a
plane. The geometry involved is more
complicated, so at this stage we will
consider only a few things about the
Cartesian components of vectors in
three dimensions. First, now can a
point be located in three dimensions?
In analogy to two dimensions, we start
by choosing an origin for reference
and then draw three straight lines
through it to serve as axes. The axes
are taken to be mutually perpendicular
and customarily are drawn as shown in
Fig. 3.27. To locate a point P we con-
struct a rectangular box with P at one
corn- 0 at the oppGsite corner, and
with bnree edges lying along the co-
ordinate axes. All we need to construct
this box (whose angles we already know
are right angles), are the lengths of
the edges. The edges x, y, and z lying
along the coordinate axes are enough.
These three numbers, x, y, and z, are
the Cartesian coordinates of the point
P. Symbolically they are indicated by
(x, y, z).

The Cartesian components of a
vector in three dimensions can be

U)

X

N

Fig. 3.27 Cartesian coordinates of P.

z

Es"

Fig. 3.28 Cartesian components of

z

I-

, 1 /
B,". 1

1 -1.

P(x,y,z)

by

sz

7

Fig. 3.29 Addition of sz, s7, sz.
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found in a very similar way. To find
the components of the vector s shown
in Fig. 3.28, we can start by drawing
three lines parallel to the three co-
ordinate axes through the tail of tie
vector. Now, just as we did to locate
a point, we can construct a rectangu-
lar box, with the tail of the vector
at one corner and the head at the op-
posite corner. The three component
vectors are the three edges of the box.
They add, as shown in Fig. 3.29 (see
preceding page), to give s:

g = sz + g +

The lengths of these vectors (sz, sy,
sz) are the Cartesian components of s.

Although the geometry of three
dimensions is more complex than that
of a plane, there is one simple rela-
tionship between the length of s' and
its components. By applying the theo-
rem of Pythagoras to find the distance
PA, the diagonal of the bottom face of
the box in Fig. 3.28, we get

PAZ = sx2 sy2.

But the triangle PAB is also a right
triangle. So its hypotenuse is given
by

PB2 = PA' + AB2.

We have already found PA2 in terms of
the components. AB is just sz, and PB
is s. Thus, substituting all these in
the last equation gives

2 = 2 + 2 + 2S - Sx Sy Sz .

The length s is obtained by taking the
square root of both sides of this last
equation.

s = Itsz2 + 572 sz2, (3.7)

This result should be compared care-
fully with the corresponding expression
for the length of a vector in two di-
mensions given in Table 3.4. The latter
is but a special case of Eq. (3.7),
the case for sz = 0.

In nature, motion generally is
not confined to a plane but follows a
path in space. Because this is true
you might expect more often than not
to use the full three-dirensional de-
scription of vectors discussed in this
section. The bird's flight represented
in Fig. 3.6 is a typical example. The
merry-go-round horse moving up and
down as it goes around is another. You
would not expect to succeed in de-
scrthing the motion of an airliner
taking off or landing in terms of
plane motion. Nonetheless, many motions
found in nature's three dimensions do
prove to be confined to planes. On a
small scale, cars or boats or trains
can be treated as if they moved only
in a horizontal plane. Compact objects
thrown into the air, like the ball in
Fig. 1.9, move in vertical planes. To
a good approximation the planets move
around the sun in planes which pass
through the sun's center. Whenever
such plane motions are encountered,
their description will be much simpli-
fied if, as a first step, reference
axes are selected so that the motion
occurs in the plane formed by any two
of the three axes. In other words,
wherever possible, axes should be se-
lected so that one of the three Car-
tesian coordinates of position, aid
one of the three Cartesian components
of displacement vectors are always
zero.
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PERSPECTIVE 3

Chapter 3 was devoted to the
quantitative language needed to de-
scribe the location of a moving object
and the path along which it travels.
For this purpose we had to choose a
system of reference - a coordlnate
system - relative to which the loca-
tion is described. In addition we in-
troduced displacement vectors to con-
nect different points along the path,
to approximate the path, and to inai-
cate the direction of motion along the
path. These two mathematical tools -
coordinates and vectors - will provide
us with an efficient and quantitative__
description of motion. We will continue
to use drawings and maps to give us
graphic impressions of motion and to
guide our analysis. At the same time,
we will be able to translate our vis=
ual impressions into compact alge-
braic equations.

A whole area of mathematics -
analytic geometij - is based on the
ideas of vectors and coordinates. Be-
cause these allow us to express
lengths, directions, and positions by
numbers (or by symbols representing
numbers), we can analyze problems of
geometry in terms of numbers and al-
gebraic symbols. That analytic geome-
try can be applied fruitfully to the
study of motion is almost obvious.
AlreAdy we have seen that the algebraic
concept of vector addition is useful
when we describe the path of a motion
with displacement vectors. In the next

chapter we will see how vectors can
be subtracted. Still later in your
study of physics you will learn how
to multiply vectors. In fact, as you
go on you will learn that analytic
geometry - coordinates and vectors,
reference axes and components - is not
only the language of kinematics but
the language of most branches of
physics as well.

In section 2.1 we defined motion
as "The change in separation in space
between two things with time." With
coordinates and vectors this defini-
tion. becomes more precise. Instead of
separation in space between two things
we can think of the position in space
of one thing relative to a particular
set of coordinate axes. We can also
describe with displacement vectors
the separation of two positions oc-
cupied by the same moving object at
two different times. But so far we
have hardly mentioned time, the aspect
of motion that distinguishes it from
geometry. With analytic geometry we
can specify position with great ac-
curacy. We can describe the geometric
shape of a path in space. But we lack
the means to describe continual change
in position; we have not yet connected
the geometric aspect of motion with
time. This is the subject of Chapter
4: how the varying position of a par-
ticle can be described as it moves
along its path.



4 THE RELATIONSHIP
OF POSITION AND TIME

4.1 TIME AND POSITION

In the last chapter we discussed
the path along which the motion of a
point takes place, the geometric curve
made up of the successive positions
occupied by the moving point. We saw
how to express the displacement vector
which connects two points along the
path in drawings, in symbols, and by
components. We saw that motion along
the path can be thought of in terms
of a succession of displacement vec-
tors added one to another, and that
even though the order in which the
addition is carried out doesn't affect
the fj.nal 2esult, it must be preserved
to give an approximation to the path
itself, in the example of the boat
moving on the lake, we kept track of
the various displacement vectors by
labeling them with subscripts whose
numerical order was the same as the
order in time of the displacements.
But at best this is an awkward way to
include time in the description of
motion. We now must find a better way.

As soon as we try to mark out the
position of something according to
time we come up against a difficulty
with displacement vectors as a tool.
The trouble is easy enough to see.
After all, when you watch motion you
see only where the moving object is
now. You don't see a chain of displace-

TIME t x (MILES) y (MILES)

12:00 NOON 0.00 1.00

12:30 P.M. 0.50 1.00

1:00 0.85 0.65

1:30 0.85 0.15

2:00 1.35 0.15

2:30 1.85 0.15

Table 4.1 Position of boat at specified
times.

50

ment vectors laid out before you. In-
deed, you don't even see the path
unless the motion is along some visible
path like a road or walkway which
actually limits the motion, or unless
the moving object leaves a trail like
the vapor trail of a jet plane or the
track of a subatomic particle in a
cloud chamber. More often you have to
construct the path after you make ob-
servations of the motion. If we try
to label any displacement vector with
a particular time, we find it is im-
possible. We can't say, for example,
that si in Fig. 3.5 is the displace-
ment at noon, -4i2 the displacement at

12:30 p.m., and so on. No one dis-
placement is associated with one time
any more than with one place. Instead,
it connects two places where the mov-
ing object was at two different times.
This is very inconvenient. Ordinarily
when we describe something we rrefer
to describe it at one time and in one
place. This can be accomplished with
displacement vectors only in the limit
of infinitesimally short displacements.
That is, the ambiguity in time that
results from the time interval during
which the displacement occurs becomes
less and less as shorter and shorter
displaceme:_s are considered.

4.2 COORDINATES LABELED WITH TIME

Rather than describe motion with
displacement vectors, it is more ap-
propriate to give the position at a
single time in terms of its coordi-
nates. For example, we could say that
at noon the boat's position was
x = 0.0 miles, y = 1.0 miles. In more
detail, the boat's successive posi-
tions could be described in a table
like Table 4.1. (Fig. 4.1 is a graph
of these positions.)

Sucb a table can include all the
actual observations that have been
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made of one particular motion. But y (MILES)

what we really need is a more effi-
cient, more general symbolic way to de-
scribe any motion. We already have a
general way of giving position by spe-
cifying coordinates, and we have a sym-

bolic way to write coordinates (x,y).
What (x,y) represents, of course, is a
table like Tlble 4.1. But instead of
writing the table out we write (x,y)
to remind ourselves that if we really
need the actual values they can be ob-
tained. The table hcwever, includes
still another quantity that goes with
each pair of values of x znd y: the
time t. To indicate this symbolically

1.0- -

0

Fig.

of the

0.5 1.0 1.5 X(MILES)

4.1 Plot of the successive positions
boat as given in Table 4.1.

we can write (x,y; t). We also can
label the symbolic coordinates di-
rectly. Since x, for example, has var-
ious values at different times t we
can write x(t) as a way of reminding
ourselves that the value of x depend:;

on t, or, stating it more formally,

that x is a functions of t. Similarly,
we will write y(t), read "y as a func-

tion of t," and z(t). For example, the
second row in Table 4.1 could be writ-
ten: x(t) = x(12:30 p.m.) = 0.5 miles;
y(t) = y(12:30 p.m.) = 1.0 miles.

4.3 THE POSITION VECTOR

The coordinates of a moving point
as functions of time provide a com-
plete description of the motion. But,
like any coordinates relative to spe-
cific axes, their actual values will
depend on the particular axes used.
It is possible, and in fact desirable,
to have a method for specifying posi-
tions with vectors. How to do it is
easy to see. Fig. 4.2 shows again the
positions of the boat we have used as
an example. The six points have the
coordinates given in Table 4.1. They
are connected by the same displacement
vectors as in Fig. 3.5. But three new
vectors have been drawn connecting the
origin to three of the positions :.)f

5You must guard against interpreting this as x
multiplied by t. In practice the meaning is us-

ually clear.

y

r2

4 5

0
X

Fig. 4.2 Radius vectors for the boat's

position.

the boat, the vectors ro, r1 and r2.
Each one locates a single position of
the boat corresponding to a single
time. They are called pc.sitiva rectors
or, frequently, radius vectors.6 Since

each radius vector is associated with
a single position and a ,single time

we can write r(t). This is just a sym-
bolic way of indicating that at the
particular time t the boat has the
particular radius vector 7(t). In still

other words is a function of t. The
radius vector is useful because, un-
like the displacement vector, it spe-
cifies position at a single time. It
has the disadvantage that both its

6The use of the word radius here is traditions:..
It must be kept in mind, however, that it does
not refer to the radius of any circle.
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Y AXIS

r

P(x,y;t)

X AXIS

Fig. 4.3 Components of 17:.

magnitude and direction always depend
on the particular coordinate system
used.

The boat's path is illustrated
again in Fig. 4.3, this time the more
complete path of Fig. 3.3. One of
the boat's positions is marked. The
point marked P(x, y; t), and the ra-
dius vector r to this one point are
shown. From this diagram we can see
immediately what the components of the
radius vector are: Thcy are simply the
coordinates (x,y) of P. The length and
direction of T. are also easily seen:
They are the polar coordinates (r, 0)
of the boat's position.

From this point on we will always
describe the motion of a point by giv-
ing its radius vectorT(t) relative to
a given origin or point of reference.?
Unlike the displacement vectors,
does depend on the point chosen for the
origin; it describes the motion rela-
tive to that particular origin. Rela-
tive to some other point the descrip-
tion will be different, perhaps more
complicated, perhaps simpler. As we
pointed out 'efore, this much is in-
escapable: Motion must be described
relative to some point. Which point is

?The figures and most of the discussion in this
chapter are confined to motions in a plane. It
should be kept in mind, however, that there are
three dimensions. In general, any point is spe-
cified by P(x, y, z; t) and any radius vector
has three components, x(t), y(t), and z(t).

used may simplify the description, but
no one point is absolutely better than.
another. Figure 2.7 was made by draw-
ing radius vectors to the planets at
successive times, using the center of
the earth as a point of reference. For
Fig. 2.8, on the other hand, the cen-
ter of the sun was the reference point.
The geometric simplicity of one figure
compared to the other is striking.

EXERCISES

4.1 The Cartesian coordinates of a
moving point are given by:

x(t) = 2t + 5,

y(t) = 6,

z(t) = 4t,

where x, y, and z are in miles and
t is in hours.

a) What are the coordinates when
t = 1 hour? 2 hours? 5 hours?

b) What are the distances of the
point from the origin at these
times?

c) Find a general expression for
the length of the radius vector
valid for any time t.

d) Can you suggest other coordi-
nate axes :-Luative to which the
description of this motion would
be simplGr?

4.2 Tabulated below are the coordi-
LP.ces of the hub of a wheel roll-
ing down an incline for various

t

seconds
x

meters
y

meters

1 0.4 7.2

2 1.6 6.3

3 3.6 4.8

4 6.4 2.7
5 10.0 0.0

a) Plot the path of the hub during
the first 5 seconds. Guess its co-
ordinates at t = 6 seconds.
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b) Find the length and direction
of the radius vector when t = 3
seconds and when t = 5 seconds.
Draw these two vectors on your
plot.

c) Draw the displacement vector
for the time interval between
t = 3 seconds and t = 5 seconds
on your plot. What are its Car-
tesian components?

4.3 a) Plot the points given in the
table for Exercise 4.2. What would
you estimate the position of the
hub to be when t = 0?

b) Find a general formula (valid
for any value of t), for the dis-
placement of the hub from its
position at t = 0.

c) Suggest another coordinate sys-
tem in which the description of the
hub's motion would be simpler.

4.4 DIFFERENCES BETWEEN VECTORS

The relationship between displace-
ment and radius vectors is evident
from Fig. 4.2. Any displacement vector
forms the third side of a triangle
with the two radius vectors that locate
its beginning and end. If we draw
radius vectors for the position of a
moving point at two different times
ti and t2, then the displacement s
that occurs in the time interval
t2 t1 is just the vector drawn from
the head of r(t1) to the head of
r(t2) as is illustrated in Fig. 4.4.
By inspecting this figure we can see
that these three vectors are related

by the vector equation.

7(t2) = 7(t1) + g. (4.1)

In words, this equation tells us that
g is a vector which, added to a radius
vector, gives a new radius vector cor-
responding to a later time. The equa-

tion can be rewritten

"g = 7(t2) 7(t1). (4.2)

This introduces new ideas about hand-
ling vectors that we have not en-
countered up to now. Equation (4.2)
looks as though we have subtracted one
vector from another. We have seen how
to add vectors, but can we subtract
them, too? What does it mean to sub-
tract one vector from another? We
know well enough the meaning of Eq.
(4.1): to getT(t2) we first draw
7(t1) and then draw g with its tail
at the head of F(tl). The resulting
vector, F(t2), is then the arrow
drawn with its tail at the tail of
;(tl) and its head at the head of g.
Equation (4.1) is a reminder of this
geometric construction. We can give a
similar recipe for interpreting Eq.
(4.2). It is that s is the vector
whose head is at the head of 7(t2) and
whose tail is at the tail of -P(tl), a
straightforward rule for finding g.

That we call this procedure vector
subtraction does no harm. The equation
looks just like an equation for sub-
tracting algebraic quantities, and all
the usual rules of algebra apply to it.
We need only keep in mind its geometric

meaning.
Still another way to write Eq.

(4.2) is

'g = Tad + [- Tad]

This is an equation for the addition
of two vectors, r(t2) and --r(t1). But

Y AXIS

Fig. 4.4 The relationship of a displace-

ment s to two radius vectors.
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what is -- 'r(ti)? The answer is visible

in Fig. 4.5 where a vector labeled
r(ti) is shown added to r(t2) so as
to give the result s. r(ti) is a
vector whose length is the same as
that of 'r(ti) but which has exactly
the opposite direction.In other words,
putting a minus sign in front of a
vector has only the effect of revers-
ing its direction!

Equation (4.2) te:as us how to
find a displacement by drawing a vec-
tor diagram. Once ; is found by this
geometric method we can proceed to
find its components too. But what if
we start out knowing the components
of 7(ti) and 'r(t2)? Is there a more
direct was of finding the components
of thanthan drawing a triangle on paper
and measuring it? If we look carefully

y

Fig. 4.5 The vector --kt1).

300°

Fig. 4.6 Sum of three vectors.

at Fig. 4.4, we see that

x(t2) = x(ti) + sx,

y(t2) = y(ti) + sy.
.(4.3)

These are ordinary algebraic equations,
not vector equations. Solving them
for sx and sy gives

sx = x(t2) x(ti),

sy = y(t2) y(ti).

These are the desired results. They
tell us that the components of s are
just the differences of the correspond-
ing components of T(t2) and 'r(ti), just
as -; itself is the difference of these
two radius vectors.

Equation (4.4) can be generalized
to give a very useful rule: The x conk-
pent of a sum of vectors is the

algebraic sum of their x components,
and similarly for the y and z com-
ponents. If some vectors in the sum
are the negatives of other vectors,
as in

(4.4)

:4 = Si -g-2 -

then, in adding the components the
minus signs must also be included:

Sx SX1 SX2 SX3a

Sy = Syi Sy2 Sy3

Sr SZ1 5Z2 5Z3*

This rule is a powerful aid for adding
vectors. It frees us from the need to
add vectors by drawing them out on
paper, and from all the attendant in-
accuracies of drawings.. To use the
rule requires that we first find all
the components of all the vectors to
be added. Then, adding them algebrai-
cally, we find the components of the
sum. If we also want the length and
direction of the vector sum we know
how to calculate them from the compo-
nents (Table 3.4).

Example 4.1

Find the sum s of si
P
s2, and s3P
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three vectors whose polar components

are:

(sit 01) = (0.5 m, 45°),

(s2, 02) = (1.0 m, 30°),

(53, 03) = (0.5 m, 300°).

Answer: The graphic solution for
this sum is shown in Fig. 4.6. To add
the three vectors algebraically it is
necessary first to find their Carte-
sian components using the equations
of Table 3.4:

ss = s cos Os, sy - s sin Os.

As an example, the components of s2
are calculated here. Substituting the
given values of s3 and 03,

sax = s3 cos 03 = (0.5) cos (3000).

But

cos (300°) = cos (300° - 360°)

= cos (-60°)

since the values of the sine and
cosine of an angle are unchanged if
any multiple of 360° is added or sub-

tracted. Furthermore,

cos (-60°) = cos (600),

SO

s3s = (0.5) cos (60°)

= (0.5)(0.5) = 0.25 m.

Also,

say = s3 sin 03 = (0.5) sin (300°).

As before

sin (300°) = sin (-60°).

sin (-60°) = sin (600) ,

say = (0.5)(-0.866) = -0.43 m.

But

so

The fact that our result for say j.s

negative indicates that the component
say vector is directed down rather
than up.

Similar calculations are carried
out to find the components of -gi, and

g '2. The results are:

(six, sly) = (0.35 m, 0.35 m),

(s2s, s2 y) = (0.87 m, 0.50 m),

(s2s, s2 y) = (0.25 m, -0.13 m).

According to the rule developed in this
section the components of the sum are

ss = Six + Ssx -I- Ssx

- 1,(.35 + 0.87 + 0.25)

= 1.47 m,

and
Sy = Sly + S2y + S2y

= (0.35 A 0.50 0.43)

= 0.42 m.

We now have the Cartesian components
of the sum -g. shown in Fig. 4.6. The
polar components (length and direc-
tion of -g), can now be computed, again
using the equations of Table 3.4. The
length s is given by

S = Sx 2 I- Sy2 = 1/(1.47)2 I- (0.42)2

= ?2.16 + 0.18 = 42.34

= 1.53 m.

The direction is calculated as follows,

tan 0- = II = (-3

1.47
-i2- = 0.35,

° ss

or, from a trigonometric table,

Os - 19.3 degrees.

4.5 EXPLANATORY EXAMPLES

By now we have built up all the
tools needed to describe exactly the
position of any moving point. Our ap-
proacii has been to find the radius
vectors and their components as func-
tions of time for a given motion. But
it is worthwhile to get some practice
in using the opposite approach. That
is, given equations which specify the
coordinates, can we find the motion?
Several examples are discussed in de-
tail in this section, and in the course
of the discussion a number of points
that arise in kinematic problems will
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t (HOURS) x (MILES)

0.5 1.0

1.0 4.0

1.5 9.0

2.0 16.0

2.5 25.0

Table 4.2 Coordinates in cxanple 4.2.

Y!

1 1 4
x

5 10 15 20 25

(MILES)

Fig. 4.7 Plot of points listed in Table

4.2 (Example 4.2)

r (HOURS) x (MILES) y (MILES)

0.0 04 m
os 1.0 0.75

1.0 4.0 3.00

13 9.0 6.75

2.0 16.0 11.0

2.5 25.0 18.7

Table 4.3 Coordinates in example 4.3.

?o-

15

1.0

1.5

2.0

2.5

x

5 10 15 20 25

be clarified. All of these examples
are taken from common motions observed
in nature. You will have to be careful
as you study them to distinguish re-
sults generally applicable to motion
from tiJose that ha "e to do only with

the special problem being discussed.

Example 4.2

The coordinates of a moving point
as functions of time are given by

xc.t) = 4t2,

y(t) = 0,

where x and y are understood to be
meanired in miles, znd t in honrs.

This motion is so simple that we
can see at once from the equations for

x and y that the movement takes place
entirely along one straight line, the
x axis (y is always zero). The radius
vector, then, always points in one
direction, the direction of the x axis.
To get a cl-Darer vic.ture of the motion
we can plo-s a few positions, as we did

for the boat in our earlier example.
Table 4.2 lists values of x- calculated
for P few arbitrarily chosen values of
t. The corresponding points are shown
in Fig. 4.7.

In this simple example the.dis-
tance traveled between successive
points is also the displacement be-
tween these points, because the path
is a straight line and the motion is

always in the same direction. Note
that the distances covered in succes-
sive half-hour periods grow steadily

longer.

Example 4.3

The coordinates of a moving point
are given by:

x(t) = 4t2,

y(t) = 3t2.

(x and y in miles, t in hours)

MILES Here the path is not immediately

in Table evident from inspection of the equa-
tions for the coordinates. To get an

Fig. 4.8 Plot of points listed

4.3. (Example 4.3)
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idea of what the path is we can start
by calculating a table of values for
different times (Table 4.3). The cal-
culated points are plotted in Fig.
4.8. The numbers next to the plotted
points are the corresponding times in
hours.

Again in this case the motion
turns out to have a straight-line path,
but this time the path makes an angle
with the coordinate axis. (This is an
example where another choice of coor-
dinate axes would give a simpler de-
scription of the motion.)

Next let's see how we can find
the length r of the radius vector for
this motion. Since the components of
7 are the coordinates (x,y), we have,
using Table 3.4

r = 1x2 4. y2.

Substituting the values of x and y in

terms of t

r = /(4t2)2 + (3t2)2

16t4 + 9t4

= 4577
or

r = 5t2.

This is an equation we can use to cal-
culate the distance of the moving
point from the origin at any time. In
this particular example, because the
path is a straight line through the
origin, and because the motion always
continues in the same direction, r is
also the total distance traveled along
the path between the time 0 hours and
time t. For the same reasons, the
angle of 7 with the x axis is also the
angle the path makes with the x axis.
This angle we can get using Table 3.4:

or

tan 0 = y/k

3t2

4t2

= 3/4 = 0.75,

8 = 37°.

The fact that the final expression
for tan 8 is a constant number (does
not depend on t), is pro)f that the
path is indeed a straight line. If
we were to rotate the coordinate axes
through 37 degrees so that the x axis
fell along the path, the distance r
would be the x coordinate and the
equations for the path would become,

x = 5t2,

y = O.

This illustrates the simplification
of the description of motion that can
result from a change of reference sys-
tem. In this case the convenient change
was a rotation of the coordinate axes
about the origin.

In the course of calculating 8
the intermediate steps gave an equa-
tion between x and y that does not

involve t:

Or
Y/x = 3/4

y = (3/4)x.

This kind of equation has a special
importance in motion. It could be used,
for example, to calculate various val-
ues of y corresponding to selected
values of x and these could then be
plotted to show the path. The result
would !)e the same line as plotted in
Fig. 4.8. In this method the need for
calculating both x and y for given
tines is by-passed. But in the result,
as in the equation, all se have is the
geometric path itself. We have lost
all information about where on the
path the moving point is at different
times. Such an equation, one that re-
lates the coordinates of the moving
object directly without the inter-
mediary of time, is called the equa-
tion of the path, or often, the orbit.
equation. In the language of algebra,
the orbit equatium is obtained by
eliminating t from the coordinate equa-
tions. For many problems the orbit
equation is the goal. Often the elimi-
nation of t is a much more difficult
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problem than in the example, given

here.
The plots of the path, both for

this example and the last, point up
another feature of the motions. In
computing the positions marked out we
used the equations giving the coordi-
nates in terms of time, and our plotted
points correspond to known tim3s, times
which we can mark next to the points
as in Fig. 4.8. As a result, the
graphs show something more than the
path alone. They also specify the po-
sition of the moving point as a func-
tion of time. Specifically, the times
chosen, those given in Table 4.2 and
4.3 were evenly spaced. That is, the
intervals between them were all the
same: a half hour. But it is quite
evident in Figs. 4.7 and 4.8 that the
distance between points increased
rapidly, indicating that the moving
point was constantly going faster and
faster.

This technique of marking points
along the path that correspond to
equally spaced times, and labeling
them with the time values gives us a
visual way of representing time. The
time labels, of course, tell us the
direction of motion along the path.
The relative distances between the
points tell us something about the
speed of the moving point. This is
almost like adding another dimension
to the drawing. Any quantity with
which each point along the path can
be identified is called a parameter
of the motion. In this example, the
time t is a parameter. There could be
others, say the temperature of the
moving object. When the equations for
the coordinates are given in terms of
the parameter t, as ours were, they
are called parametric equations.

This motion, and the last one
too, are examples of a very familiar
motion in nature. In the mathematical
way they were presented here, this is
not at all apparent. We started with
mathematical formulas, proceeded to
tables of values and graphs, and then
to a discussion of the motion they
represent. But all this was in abstract

terms - coordinates, radius vectors,
point particles, and so on. The real
motions to which these abstractions
correspond are the motions of falling
objects, or of balls or wheels rolling
down a straight slope. Historically,
the solution of this problem 01 .falling
bodies or rolling stones, which was
accomplished by Galileo (1564-1642),
marked the beginning of the modern era
in physics.

Example 4.4

are

The coordinates of a moving point

x(t) = 32t,

y(t) = 40t 16t2.

(x and y in feet, t in seconds)

To find out what this motion is like,
we again start by calculating a table
of values of (x,y) for specified
times. This time, however, we will in-
clude some values of t that may at
first sight strike you as peculiar.
We will return to this point later.
First study Table 4.4 and the plot of
the calculated points shown in Fig.
4.9.

As soon as we look at the figure
it is obvious that this is not
straight-line motion. Furthermore, a
careful inspection at the points,
which again were calculated for
equally spaced times, shows that this
is not a steady motion. In fact, the
speed first decreases (the points
along the path get progressively
closer together), and then increases
(the points later get farther and
farther apart).

If we wish, we can calculate the
distance of the point from the origin
at any time, just as we did in the
last example. It is

r = JJ477
= 8t44t2 20t + 41.

(A fair amount of algebra has been
omitted here. See if you can get this
answer yourself.) The final formula
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t (SECONDS) x(nEO y (FEET)

-0.5 -16 -24

0.0 0 0

0.5 16 16

1.0 32 24

1.5 48 24

2.0 64 16

2.5 80 0

3.0 96 -24

TaLle 4.4 Coordinates in example 4.4.

this time is not so simple, but if you
must, you can use it to calculate val-
ues for r. Remember, r is the length
of the radius vector at any time, the
vector shown in Fig. 4.9 (for the par-
ticular time t = 2.0 sec.). It takes
only a glance at the drawing to see
that this distance is not, as in the
earlier example, the distance the
point traveled along the path. Yet we
can calculate it with relative ease.
The problem of calculating the dis-
tance actually traveled along the
curved path is very much harder - too
hard, in fact, for us to do it here.
This is our first encounter with one
of the practical difficulties that
arise when we deal with the path
length in a problem of motion. In all
but a few simple cases the actual dis-
tance traveled ir; hard to find by ary
means other than direct measurement.
The radius vector, and its components,
on the other hand, rarely present such
great difficulties.

In this example the orbit equa-
tion is not hard to find. From the
equation for x we have

t = x/32.

Substitution of this expression for i

in that for y gives

y = 40(x/32) 16(x/32)2
or

y = (5/4)x (1/64)x2.

(See if you can use this equation to

Y (FEET)

54

1.0 1.5

Fig. 4.9 Plot of points listed in Table
4.4. (Example 4.4)

calculate points along the orbit or
path of the particle. Plot your re-
sults and compare your plot with Fig.
4.9.)

Let's return now to the peculiar
times mentioned earlier. Some of the
values of x, y, and t listed in Table
4.4 are negative. Vijs is easy enough
to interpret in the case of the y
coordinate. Negative values of y sim-
ply correspond to points that lie be-
low the x axis instead of above it.
Similarly, negative values of x repre-
sent points to the left of the y axis.
But what meaning is there for a nega-
tive time? Or, for that matter, what
does a time of zero mean? Think a mo-
ment of how you would determine times
when you observe a motion. You must
use some sort of clock, perhaps a
stop watch if you are making careful
measurements.

The first thing you would do in
using a stop watch would be to reset
the hands to read zero. Then at some
instant you start the watch and let
it run, reading it every time you
mark down an observed position. In
this way you get; a table of coordin-
ate values c!!rresponding to the times
you read off the watch. The time t = 0
represents, of course, the moment at
which you happen to start the watch
The subsequent clock readings are
numbers of ever increasing size which
you quite naturally write down as
positive numbers. Each one represents
some time after you started the clock.
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But time didn't stand still waiting
for yru to start the watch; that is
noL at all what you meant in writing
down t = O. You could have watched
the motion before t = 0, and had
you done so, you would have needed a
way of writing dowL earlier times,
times before t = O. The way to do this
so that times before and times after
zero are not confused is to call the
times before zero negative times. For
example, while t = +5 seconds means
5 seconds after t = 0, t = 5 seconds
means 5 seconds before t = O. When
you choose to call t = 0 you always
can decide for your own convenience.
Historical time we measure, for con-
venience, from the traditional date
of the birth of Christ. Later times
are given by numbers like 1776 A.D.,
earlier times by numbers like 432 B.C.
We could as well write +1776 years
and 432 years. In making observations
of motion, this starting time would be
rather awkward (unless you were ob-
serving the motions of planets). Usu-
ally some convenient time (for in-
stance, when you start your stop
watch), is picked to be t = 0 in each
case, and then time is measured after
that, or before it, in convenient
units like seconds, or microseconds,
or years.

This example, like the previous
ones, is taken from the real world of
motion. It is not merely a mathemati-
cal invention put in for the sake of
illustrating the equations. The curves
developed in Fig. 4.9, which is a
mathematical type of curve called a
parabola, is actually the path taken
by a ball thrown into the air at an
angle to the vertical. The y axis
represents the vertical direction, the
x axis the horizontal direction. The
specific numerical values are for a
ball thrown from the origin at time
t = 0 with a speed of 35 miles an
hour (not unusually fast) and at an
angle of 51.3 degrees with the ground.
It rises about 25 feet before starting
down again, and finally hits the
ground 80 feet from where it was
thrown.

Example 4.5

are

The coordinates of a moving point

x(t) = 2t,

v(t) = cos (6.28t).

(A and y in millimeters,
t in milliseconds)

Again we will begin our study by cal-
culating a table of values of x and y
for selected times. A new problem
arises in this calculation, though.
What does the expression cos (6.28t)

mean? When we write cos 0 we generally
think of this as short for "The cosine
of the angle 0." What angle, then, is
6.28t? If we choose as an example a
time t = 2 millisecond, we find that
6.28t has the value 12.56. But 12.56
what? At this point we have to go back
to our basic definition of an angle
(see section 3.6). An angle, we said,
is the ratio of two distances, an arc
of a circle divided by its radius.
Thus, a two-foot length along the
circumference of a circle whose radius

is four feet subtends an angle 0 at

the center which is

2 feet 2
0_ = =0.5.

4 feet 4

There are no units of measure here.
According to this definition an angle
is a numerical ratio. For the purpose
of reminding the reader that the num-

ber he sees represents an angle, the

word radian is written after the nu-
merical ratio. The angle we just cal-
culated is said to be 0.5 radians.

The angle represented by 6.28t
is an angle expressed as a ratio, a
pure number, or, if you wish, an
angle expressed in radians. But lost
tables of trigonometric functions do
not use angles in radians, they use
angles in degrees. So we must find

a ray of converting radians to degrees

and vice versa. Degrees are defined
arbitrarily by saying that the angle

of a full circle is 360 degrees. What
is the angle of a circle in radians?
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It is the circumference of the circle
divided by its radius. But we know the
circumference is 2v times the radius,
so the ratio is 2irr /r or just the num-
ber 2v. In other words, the angle o2
a full circle is 2v radians. So we
have

2v radians = 360 degrees,
or

1 radian =
360

degrees = 57.3 degrees.
2v

Now, let's go back to the problem
of what the angle at t = 2 millisecond
is in our example. It is 12.56 or
12.56 radians, which is just 4v radi-
ans (ir = 3.14). Consequently, this
angle is also 720 degrees. So we find,
at t = 2 millisecond,

y = cos (12.56 radians)

= cos (720°) = cos 0°.

Since cos 0° = 1 we have

y = 1 millimeter.

One last point must be made. We called
the quantity 6.28t an angle because
we are in the habit of thinking of
angles when we deal with trigonometric
functions. But in our example of motion
there is no real angle corresponding
to 6.28t, no angle to draw in the plot
of the motion. In this case 6.28t is
simply a number. By interpreting it
as an angle in radians we can then
find the value of cos (6.28t) from
tables and, in turn, the value of y.
The trigonometric cosine function is
used here as a mathematical function,
divorced from its historical origin
in the study of trianees. It simply
gives us a way of writing down a form-
ula for the coordinate y in terms of
the time t. As you go on ir physics
you will see countless applications of
trigonometric functions to situations
of this kind. Always the argument of
the function (6.28t in our example) is
interpreted as an angle expressed in
radians.

Table 4.5 contains calculated

A tl LLISECONDS)L(

t x

(MILLIMETERS)

r

(MILLIMETER)

0.000 0.00 1.00

0.084 0.17 0.87

0.167 OM 0.50

0.250 0.10 0.00

0.333 0.67 - 0.50

0.417 1.83 -027
0.500 1.00 -1.00

0.583 1.17 -027
0.667 1.33 - 0.50

Table 4.5 Coordinates in example 4.5.

Y (MILLIMETERS)

1.0

0.5 1.0

-0.5

-1.0

X (MILLIMETERS)
1.5

Fig. 4.10 Plot of points listed in Table
4.5. (Example 4.5)

values of x and y which are plotted
in Fig. 4.10.

Even from only that piece of the
path seen in Fig. 4.10 it is clear
that this motion is still more complex
than our previous examples. The path
is curved and the speed varying. But
here there are seen already two places
where the motion slows and then speeds
up again, the top and bottom of the
section of path visible. Actually,
Fig. 4.10 does not show enough of the
path to bring out what this motion is.
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An extended plot, on a smaller scale,
is shown in Fig. 4.11. You should con-
firm that it is correct by extending
Table 4.5 to larger values of t. (In
Fig. 4.11 the points correspond to
times separated by 0.5 millisecond.)

This motion contains several of
the elements of motion that we dis-
cussed qualitatively in Chapter 2.
It is, for one thing, an ordered mo-
tion. Furthermore, it is not hard to
visualize it as a compounding of two
simpler motions; one a steady prog-

MILLIMETERS

Fig. 4.11 Extension of Fig. 4.10.

Y10U0

1, -

0.5 1 1.5 x1(MM)

Fig. 4.12 x-component motion. (Example 4.5)

1.0

y2 (MILLIMETERS)

0.5 4-

x2 (MILLIMETERS)

Fig. 4.13 y-component motion. (Exmtple 4.5)

ress along the x axis to the right,
the other an oscillating movement up
and down along the y axis. In fact,
the equations we started from accom-
lish this separation for us. The
horizontal motion we can write as

xl = 2t,

y1 = 0.

(x and y in mm, t in msec)

(The subscripts 1 have been added to
distinguish this motion from the whole
motion we started with.) The path cor-
responding tc these equations is
plotted in Fig. 4.12. The points cor-
respond to times separated by (1/12)
millisecond. The vertical motion we
can write as,

x2 = 0,

y2 = cos 27rt.

(x and y in mm, t in msec)

This motion is plotted in Fig. 4.13.
Again the points correspond to times
separated by (1/12) miliisecond. When
you first look at this figure you may
think that only seven points have been
plotted. But that is wrong. This mo-
tion is truly periodic, a motion that
repeats itself both in its path and
in time. The particle goes back and
forth between the highest and lowest
points, passing through the highest
point once every millisecond.

Each of these motions is simpler
than the complete motion shown in
Fig. 4.11. For one thing, each is a
straight-line motion, one a steady
progress along the x axis, the other
a regular oscillation along the y axis.
We have equations for the separate mo-
tions. To get the complete motions back
again we need only add these

x = xl + x2 = 2t + 0 = 2t

y = yi + y2 = 0 + cos 27rt = cos 27rt.

These last equations show up a basic
feature of our method. Each equation
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for one of the components of the ra-

dius vector, the equations for x and y

in terms of t, amounts to a decomposi-

tion of the whole motion into simpler

parts. This is, indeed, one way to do

the job of dissecting a motion into

parts that we discussed in Chapter 2.

In this example, the orbit equa-

tion can be obtained easily. From

x= 2t we have

t = x/2.

Substituting this in the expression

fog y gives

y = cos (27a)

= cos 2r(x/2)

= cos (rx).

This example of motion, like the

others that preceded it, is one that

can be seen in the real world. The x

component is the simple, steady motion

of something along a straight line, a

cart on tracks for example. The y com-

ponent is the sort of motion executed

by a weight hung on a coiled spring

and set to bouncing up and down. The

combined motion is what you would see

if a weight vibrating on a spring

were to pass on you on a rolling cart.

Example 4.6

The coordinates of a moving point

are

x(t) = 2 cos 2rt, (x, y in meters,

y(t) = 2 sin 2rt. t in minutes)

In this motion the equation for the x

component is very similar to that for

the y component in the last equation.

It does, in fact, represent a simple,

regular oscillation along the x axis.

The y component, on the other hand,

looks different at first sight because

it contains a sine instead of a cosine.

But it also is a regular oscillation,

as you will see shortly. Table 4.6

lists some computed values of x and y

for selected times.

t

(MINUTES)

t

(SECONDS)

x

(METERS)

y

(METERS)

0 0 2.00 0.00

1/12 5 1.73 1.00

2/12 10 1.00 1.73

3/12 15 0.00 2.00

4/12 20 - 1.00 1.73

5/12 25 - 1.73 1.00

6/12 30 - 2.00 0.00

7/12 35 - 1.73 - 1.00

8/12 40 - 1.00 - 1.73

9/12 45 - 0.00 - 2.00

10/12 50 1.00 - 1.73

11/12 55 1.73 - 1.00

12/12 60 2.00 0.00

Table 4.6 Coordinates in example 4.6.

Y(M)

30 25 20 0 15 10 5 0

60
X (M)

Fig. 4.14 x- and y-component motions listed

in Table 4.6. (Example 4.6)

The two component motions arc
plotted together in Fig. 4.14. Each

set of points is labeled with time in

seconds. The two arrangements of

points are identical except that they

lie along different axes. Both motions

are oscillations. They have the same

period of oscillation, that is they
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Fig. 4.15 Plot of points listed in Table
4.6. (Example 4.6)

take the same time to complete their
full cycle and start again. The re-
quired time is 60 seconds, or one
minute. Aside from direction, the
difierence between the component mo-
tions is apparent only by inspecting
the times in the figure. While the x
motion starts at its greatest distance
from the origin at time t = 0, the y
motion at that same time is at the or-
igin, the midway point of its travel.

The complete motion, that is,
the sum of the two components, is
plotted in Fig. 4.15. The path is
revealed there to be a circle cen-
tered at the origin! Furthermore, it
also is apparent that the motion along
the circle is uniform since the separa-
tion of successive points is always
the same. Here we have a case in which
the Cartesian component motions we
started with are more complex than the
whole they combine to make. The two
oscillations at right angles, which
are the Cartesian components, produce
a simple revolution in a circle.
The trouble is that we started with
an awkward decomposition of the whole
into parts, a decomposition into parts
more complex than the whole itself. To
get a simpler picture of this motion,
that is, to get equations that are

more easily interpreted, we must
change our point of view. From Fig.
4.15, it is clear that the path is a
circle, that the distance r from the
origin is always the same. Therefore,
using plane polar coordinates can be
expected to give a simpler descrip-
tion. We can convert to polar coordi-
nates using Table 3.4. First,

r2 = x2 4. y2 = (2 cos 2711)2

+ (2 sin 27102

= 22 (cost 27'1 + sin2 27rt) .

But, the sum of squares of the sine
and cosine of any angle is just one.
So, this becomes

or

r2 = x2 + y2 = 22

r(t) = 2 meters.

The last result is the simplest form
of the orbit equation. It tells us
that the distance r of the moving
point from the origin is always ex-
actly 2 meters. But this is what we
mean by a circle of radius 2 meters
centered on the origin It proves,

in fact, what we already guessed from
Fig. 4.15. The equation one step back,
x2 y2 = 22 is another form of the
orbit equation, but it is somewhat
less easy to interpret.

To find the complete motion in
polar coordinates we still have to get
the expression for the angle 0. Again
using the equations in Table 3.4,

tan 0 = y/x
2 cos 27rt

2 sin 27rt

sin 27rt
- tan 27rt,

cos 2yt

or, simply

tan 0 - tan 27Tt.

From this it follows that

0 = 27rt.

This result tells us that 0 simply in-
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creases in direct proportion to the
time t, a uniform motion.

We now have a new description of

4.6 The orbit equation for a moving
point is

the motion in new coordinates:

r(t) = 2,

0(t) = 2rt.

(r in meters; 0 in radians;

x = 2y + 3.

(x, y in inches)

a) Plot the path for values of x
between 5 inches and +5 inches.

t in minutes)

EXERCISES

4.4 The parametric equations for the
coordinates of a moving point are:

x = 3 + 4t,

y = 4t.

(x, y in feet, t in seconds)

a) Plot the path for times be-
tween t = 0 and t = 20 seconds.

b) Find the length and direction
of the displacement during the in-
terval between t = 0 and t = 10
seconds.

c) Find the length and direction
of the radius vector when t = 10
seconds.

d) Eliminate t from the parametric
equations to find the orbit equa-
tion. Use the resulting equation
to calculate points along the path
and plot them on your drawing for
part (a).

4.5 a) For the motion given in Exer-
cise 4.4, find the length and
direction of the displacement
vector between t = 0 and an arbi-
trary later time t.

b) Can you suggest another set of
reference axes relative to which
the description of this motion
vould be simpler?

b) Can you say anything about the
speed of the point from your plot?

c) Suppose the parametric equation
for x is

x = 3 + 2t2.

(x in inches, t in seconds)

What is the parametric equation
for y?

U) Answer part (b) again using the
results of part (c).

4.7 a) Use the orbit equation deduced
in Example 4.4 to calculate values
of y corresponding to x = 10, 5,
5, 10, 20, 40, 60, 70, 75, and 90
feet.

b) Use your results for part (a)
and also the data of Table 4.4 to
plot the path. Your calculated
points and those from the table
should fall on the same path.

4.8 a) In Example 4.5, what number
would have to replace the 2 in
x = 2t in order to get a path with
twice the distance between the
points where y = 0 in Fig. 4.11?
Could the same effect be obtained
by a change of the number 6.28 in
y = cos(6.28t)? What would the
effect on the graph be if you
changed the argument to 3.14t?

b) Generalize your results by dis-
cussing the effect of changes in
k and p when

x = kt

y = cos (pt)
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4.9 In Example 4.6, the motion is
periodic, going through the same
cycle repeating itself after a
certain time interval. The time
required to complete one cycle is
called the period of the motion.
The number of cycles completed in
unit time is called the frequency
of the motion.

a) What is the value of the period
of the circular motion of Example
4.6?

b) What is its frequency?

c) Rewrite the parametric equa-
tions for the coordinates given in
Example 4.6 for the case of a fre-
quency of 5 cycles/minute.

d) Rewrite the equations for the
case of f cycles/minute.

4.10 Referring to Example 4.6, what
happens to the path if the given
equations are repllced by

x = 4 cos 2rt

y = 2 sin 2rt?

a) First make a qualitative guess
at the resulting difference.

b) Check your guess by plotting
the path.

c) Generalize your results by
discussing the significance of a
and b in

x = a cos 2rt

y = b cos 2rt

4.11 A point particle's motion is
given by

x = 10 sin lOrt

y = 20 sin lOrt,

where x, y are in centimeters and
t is in seconds.

a) Give a qualitative description
of the component motions along the
coordinate axes. What are the fre-

quencies and periods of these mo-
tions?

b) Graph the path of the resultant
motion.

c) What is the frequency of the
resultant motion? (How many com-
plete cycles per second for the
total motion?)

d) Can you suggest a simpler co-
ordinate system for describing
this motion?

e) What are the parametric equa-
tions in the simpler coordinate
system?

4.12 Generalize the example of motion
in Problem 4.11:

a) By writing down the equations
for an given frequency f, and
amplitudes (maximum distances
from the midpoints), X0, Yo by
replacing the coefficient of the
sine functions and the number
lOr in the arguments by the proper
letter symbols.

b) Rewrite the equations in terms
of the period T if given instead
of the frequency.

c) Find the equation of the path
of the resulting motion.

d) What would be the simplest co-
ordinate system for representing
this motion? Write down the equa-
tion for the path in this coordi-
nate system.

4.13 In this exercise, we shall study
the variation of the path of a
particle whose two component mo-
tions are oscillatory, when the
frequencies of the two component
motions differ. (Assume x and y
are in inches, t in seconds).

a) Sketch the path when the para-
metric equations are

x = sin 2rt

y = sin 2rt.
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b) Repeat (a) when the equations
are

x = sin 2fft

y = sin art.

What are the frequencies of the
two component oscillations in
this case? (In sketching the
curves, use your head more than
your slide rule. This will result
in a remarkable economy of ef-
fort.)

c) Repeat (a) for the equations:

x = sin 2fft

y = sin 4rt.

d) Repeat (a) for

x = sin 2fft

y = sin 10fft.

e) The paths you have studied are
examples of Lissajous figures.
Summarize and generalize your ra-
sults by discussing the shape of
the path for the motion given by:

x = sin 2fft

y = sin(2ff nt).

In what ways could these compo-
nent motions be further general-

ized?

4.14 Investigate the path of a point
whose motion is given by equa-
tions

r(t) = ro(1 + sin pt)

0(t) = kt,

where ros p, k are constants.

a) Taki-T ro = 10 cm, p = 5
rad/sec, and k = 1/2 rad/sec
draw the path of the point. (Do
not waste time by plotting more
points than you reed for a clear
picture. You may also complete
the patIl freehand if shape
becomes obvious to you from the
first few points.) Describe qual-
itatively each component motion
given by the above equations.
Then describe the total rotion
in words.

b) Repeat (a), but take ro=10cm,
p = 1 rad/sec, and k = 1 rad/sec.

c) Repeat (a), but take ro=10cm,
p = rad/sec, and k = 1 rad/sec.

d) Compare the paths obtained in
(a), (b) and (c). Discuss their
similarities and differences.

e) Repeat (a), but take ro=10cm,
p = (41/8) rad/sec, k = (1/2)
rad/sel. Compare the paths for
(a) and (e).

f) Eliminate t from the equations
above and show that the path has
the equation

r = ro(1 +sin (p/k) 0).

g) Using the results you obtained
above, discuss the effect of vary-
ing the values of p and k on the
path of the moving point. How do
proportional changes in p and k
affect the path? Why? Can you
suggest values of p/k whicn re-
sult in an open path? What is the
criterion which determines whether
the path is closed or open?



68 MOTION

PERSPECTIVE 4

In Chapter 4 we combined the con-
cepts of position and displacement de-
veloped earlier with the concept of
tine. Time was first attached to the
path by labeling successive positions
with the times there were reached.
Time in this method is a :mrameter.
For calculation it is more convenient
to describe the motion by a set of
equations, the parametric equations,
representing the components of the
radius vector as functions of time
(like x(t) = 4t2, 7(t) = 2t,
z(t) = cos 2irt.) The orbit equation,
which relates the coord...nates to each
other directly (like y = (C/4)x

(1/64)x2) can be obtained by elim-

inating time from the parametric
equations. It specifies all possible
positions of the moving object in
space but it gives no information
about when the object passed through
any particular point or in which di-

rection it moves along the path. In
Vae =maples we emphasized the differ-
enca between the parametric and the

3rbit equation of any motion by point-
ing out that the same path in space
can be traveled with a variety of
motions: steady, variable, periodic,
or even chaotic. Mathematically this

means that any number of different
parametric equations can, when time
is eliminated from theT, yield the
same orbit equation. Technically we
say that an orbit equation does not
uniquely specify a particular set of
parametric equations. In fact, t=are

is an infinite number of sets of
parametric equations corresponding to
a single orbit equation. In the real

world this is illustrated if you think
of all the possible motions which cars
a.n have along the same highway: fast,

slow, with stops, with U turns.
The description of motion by

parametric equations often gives a

clue to how to break down a compli-
cated motion into simpler component
motions, provided a convenient refer-
ence system is used. Sometimes inspec-

tion of the graphical representation
of the orbit equation suggests a bet-
ter choice of coordinate system. But
not always is the preferred point of
view immediately evident. This was
illustrated by the planetary orbits
described from the earth or from the
sun as the origin (Fig. 2.9 and Fig.

2.10).
The use of time as a parameter

along the path tells us something
about how fast the object moves. To-
day speed is more than an intuitive
concept for us. We are used to speed-
ometers and the scale cn which they
indicate speed. In the next chapter
we will develop the tools which we
need to incorporate the concept speed
in the abstract description of motion.
We will then better understand how it
relates to position and time and how
information about speed can be ob-
tained from the parametric equations

of the motion.



5 SPEED AND

5.1 FAST AND SLOW

h., you see something moving,
what probably notice first is not
where it is or where it's going, but
how fast it travels. This response is
very natural. To discover the path of
motion takes time. You must watch
carefully and plot out the course. To
be sure, there are cases where you
can guess he path from a momentary
glance. lien you see a car head'-7
down a country road, you can be .irly

sure where it *ill go in the next few
minutes at least. But you can never
be wholly sure. It might turn onto a
side road, or turn around, or simply
stop. If you watch the spinning shaft
of an electric motor, you safely con-
clude it will continue rotating about
its axis, but whether it is speeding
up, or slowing down, or turning stead-
ily is harder to decide. You must
watch a while to make sure. When you
look up to the sky on a clear night,
you see the moon and the stars stand-
ing still in the heavens. To discover
their motion you must wait, perhaps
an hour, and then look again to see
that they have moved. To be certain
of how they swing across the sky you
must watch the whole night.

Speed, our immediate impression
of motion, is judged by watching some-
thing move along its path for a short
time. The illusion that the moon is
at rest comes about because if you
look at it, glance away, and then look
again a moment later, it still seems
to be in the same place. If you stand
at the roadside and watch a speeding
car go by, you have difficulty
turning your head t.ct enough to fol-
low it with your eyes. Your correct
interpretation of this experience is
that the car was moving swiftly.

Speed is a measure of how far a
moving object can travel in a given
time: the greater the distance it goes
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in this time, the greater the speed.
We must be cautious, though, about our
judgments of speed. The car that seems
so fast as it careens by us does not
seem so speedy when we see it a few
miles off heading down the highway to-
ward us. The moon seems still in the
sky, thcugh astronomers calculate its
speed around the earth to be more than
2000 miles an hour. Judgment of speed,
in fact, is an uncertain thing. Fast-
moving objects far away may seem to be
almost at rest, whi_a things close by
with moderate speeds may appear to be
very quick.

The purpose of this chapter is to
overcome these subjective aspects of
the familiar notion of speed, to re-
fine 4-his intuitive idea until it is
a reliable and accurate tool for analy-
sis of motion. We will learn to cal-
culate speed from knowledge of the
path as a function of time. We will
find the connection of speed and di-
rection of motion. And we will see
how to describe this aspect. of motion
with vectors.

5.2 SPEED, DISTANCE A)D TIME

If you read on the speedometer
that the speed of your car is 60 miles
an hour, you do not conclude that you
must travel a full 60 miles in the
next hour, nor that you came 60 miles
in the past hour. Speed is a more tem-
porary thing. By this speed, you mean
that if you continue to move exactly
as you are now, in an hour you will
have traveled 60 miles, or in 30 min-
utes. 30 miles. But you may continue
at this sperl only momentarily, and a
few minutes later you may be standing
still.

In estimating the speed of some-
thing going past, hardly ever would
you wait an hour and measure the dis-
tance traveled in that time. Instead,
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you observe the motion for the short-
est time you conveniently can, you de-
termine the distance traveled along
the path in that time, and the quotient
of these two, the distance divided by
the time, you call the speed. If you
make another estimate shortly after-
wards, you may get a different result.
But that doesn't trouble you. You
simply say that the moving object has
speeded up, or slowed down in the
meanwhile. In making this kind of
measurement you probably realize that
it is important to carry it out
quickly. For example, if you measure
a car's speed, you could measure how
far it has gone in an hour. If it was
30 miles you are justified in saying
its average speed during the hour was
30 miles an hour. But you also know
this may not be E. accurate de-
scription of its motion. In that hour,
there may have been times when the
speed was 60 miles an hour, and others
when it was zero (at a stop signal
for instance). So it is important in
measuring speed to observe for the
shortest time you can.

Next we must put the notion of
speed into a more mathematical form,
an algebraic form which we can use
effectively. Suppose, in a measure-
ment of speed, that you read the time
at which you start watching the mo-
tion, and that at which you stop, on
a continuously running clock. Let the
starting time be called to and the
stopping time t1. The length of time
that you watched is then the differ-
ence between these two clock readings,
a time interval equal to t1 to. Dur-
ing this interval the moving object
travels some distance along its path.
Imagine, too, that you have marked off
a scale along the path, and that ac-
cording to this scale the object was
a distance so along the path at time
to, and distance si at time t1. The
distance traveled along the path in
the interval of time t1 to is
si so. In terms of these symbols,
the speed during this time interval
is estimated to be (s1 so)/(ti to).
This quantity must be interpreted

carefully. Up to this point we have
talked about speed qualitatively and
wt. .vere lead to this expression as a
first step toward a quantitative con-
cept. We are faced with a situation
similar to one we saw earlier with
the displacement vector. There we were
conscious that a chain of displace-
ment vectors laid out along the path
is only an approximation to the path
itself, that we could not guarantee
that the actual motion was along the
straight lines of the vectors. With
speed it is clear that short time in-
tervals must be used. If a long time
is ,sed, the speed obtained is only
an average of the varyiug speeds dur-
ing that time. Strictly speaking, this
is true even for very short time in-
tervals. Therefore we will call
( so)/(t, to) the average speed
for the time interval t1 to, during
which the moving object traveled a
distance si so.

We will represent average speed
symbolically by <ir> so that8

t to. (5.1)

It is inconvenient to write out
t1 to, and si so. We can shorten
the writing and also get away from the
trouble of labeling points along the
path with the numbers 0 and 1, by in-
venting an abbreviation. In place of
ti to we will write At (read, "delta
tee") and in place of si so, As.
The Greek letter A is used to remind
us that the quantities Al and As are
differences of two times and of two
distances. Note that by As we do not
mean utultiplication of two algebraic
symbols A and s. Putting A in front
of a letter is like adding a prefix
to a word. The prefix indicates the
difference of two values of the quan-

$The special brackets enclosing v are called
Dirac brackets. When placed around any letter
symbol like v here they indicate the average
value of the quantity enclosed. Later we will
use v to represent the instantaneous value of
speed. Thus <v> represents the average value of
v or the average speed.
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tity represented by the letter symbol
instead of one value of that quantity.
In these terms, our definition of
average speed is

As
<v> = .

At
(5.2)

To illustrate how <v> can be cal-
culated, let's apply Eq. (5.2) to the
formulas given in Example 4.2. There
the coordinates as functions of time
were

x = 4t2,

y = O.

(x, y in miles, t in hours)

To start let's choose to = 1 hour
and ti = 2 hours, whence we find
At = ti - to = 1 hour. This is a long
time, so we may expect the average
speed we calculate from Eq. (5.1) to
be only a rough indication of the
speed at 1 hour or the speed at 2
hours after the object left the origin.
We already have confirmed that the
path is the x axis, and that x, con-
sequently, is the distance traveled
along the path from the origin as well
as the coordinate. Consequently, in
this example the distance As traveled
in any time interval At happens to
equal9 the distance Ax = xi - xo. By
substituting the two times t into the
expression for x, we find the two
corresponding distances to be xo = 4
miles and xi = 16 miles, so that
Ax = xl - xo = 12 miles. The average
speed for this time interval is then
<V)>= Ax/At = 12 miles/hour.

To get some idea of how <v>
changes when shorter intervals are
used, we can calculate it for shorter
intervals, but for the same starting
time te. Such a calculation is out-

lined in Table 5.1. In all cases
to = 1 hour, but t1 is first an hour
greater, then half an hour greater,

'In general As and Ax are not equal and calcula-
tion of <v> is more complex than in this illus-
tration though not fundamentally different.

then a quarter hour greater, and so on
(see the first column in table).

As shorter and shorter time in-
tervals are chosen, the calculated
average speed should get closer and
closer to the speed when the object is
just 4 miles out along the x axis, or,
in other words, just at the time t = 1
hour. By inspecting the last column in
the table we see that the calculated
average speed does seem to approach
the value 8.0 miles an hour for the
shortest time intervals, much less
than the first which was based
on an hour-long interval. The shortest
time interval chosen (the one just
above the line in the table), was 1/32
hour or about 1.6 minutes. To give
further evidence that the speed at
one hour is 8.0 miles an hour, the
last line in the table shows the
speed calculated for an interval of
oely 10 seconds. It is 8.01 miles an
hour, much closer still to the value
we surmised.

Had we selected any other value
for the fixed time to in this calcula-
tion, a different set of values for
<V) would have been obtained, and they
would have reached a different limit-
ing value as the time interval At be-
came smaller and smaller. The values
given in Table 5.2 (see next page),
for a fixed value of ti equal to 2
hours, and for a series of values of

(v) =

At = x =
1 Ax = Ax/At

t, t, - to 4t12 x, - xo (MILES/

(HOURS) (HOURS) (MILES) (MILES) HR.)

2.0 1.0 16.0 12.0 12.0

1.5 0.5 9.0 5.0 10.0

1.25 0.25 6.25 2.25 9.0

1.125 0.125 5.'47 1.187 8.5

1.0625 0.0625 4.5i5 0.575 8.25

1.0312 0.0312 4.285 0.285 8.12

1.00278 10 sec 4.022 0.022 8.01

Table 5.1 ,v> for time intervals beginning
at to = 1 hour.
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to

(HOURS)

At =

t, - to

(HOURS)

xo =

4t02

(MILES)

Ax =

x, - xo

(MILES)

(v) =

toc/At

(MILES/

HR.)

1.0 1.0 4.0 12.0 12.0

1.5 0.5 9.0 7.0 14.0

1.75 0.25 12.25 3.75 15.0

1.88 0.125 14.062 1.938 15.5

1.94 0.0625 15.009 0.991 15.75

1.97 0.03125 15.504 0.496 15.87

1.99722 10 sec 15.822 0.178 15.99

Table 5.2 <v> for time intervals ending at
ti = 2 hours.

to that approached 2 hours more and
more closely.

In this case the values of <v>
apparently approach 16 miles an hour
instead of 8 miles an hour as in Table
5.1. This is eviden-,:ly the speed at
just t = 2 hours."

EXERCISES

5.1 a) Use the data of Table 4.3 to
calculate values of <v> for four
time intervals, each of which be-
gins at t = 0.5 hours.

b) Make a graph of your values of
<v) plotted according to the cor-
responding values of At. Can you
guess the limiting value that <v>
approaches as At becomes smaller
and smaller?

c) Repeat parts (a) and (b) for
four time intervals, each of which
ends at t = 2.5 hours.

5.2 a) Example 4.4 discusses the mo-
tion of a ball thrown at time
t = 0 with a speed of 35 miles an
hour. Estimate the average speed

10Tbe average speed calculated in this example
for the tine interval between t = 1 hour and
t = 2 hours happens to be just halfway between
the two limiting speeds for these two times.
This is usually not the case.

of the ball in the interval from
t = -0.5 sec to t = +0.5 sec by
measuring, in Fig. 4.9, the path
length covered in this interval.
Compare your result to the given
speed at t = O.

b) Estimate the average speed for
the same time interval by assuming
the path was a straight line. (Use
the coordinates given in Table
4.4 and the Pythagorean theorem.)

5.3 INSTANTANEOUS SPEED

The method of calculating the
speed at a particular time by taking
a series of progressively smaller time
intervals with one end of the interval
fixed works nicely, but it is exces-
sively time consuming. For one thing,
calculations must be carried out to a
very large number of figures if short
time intervals are used because the
differences between positions become
very small. For another, the process
must be repeated for each fixed time
for which the speed is desired. If in-
stead of doing this numerically, we
do it algebraically, using arbitrary
times to and ti, we will obtain a
formula for <v>, valid for any value
of t, and saving many steps of calcu-
lation. To illustrate this method we
will continue to use the example dis-
cussed in section 5.2. We start by
finding (symbolically), the values of
x corresponding to the two unspecified
times to and ti. From the formula
x = 4t2 we find the two positions cor-
responding to t1 and t2.

x1 = 4t1 2

X0 = 4t02.

By subtracting the cecond equation
from the first we get an equation for
Ax = xl - xo:

Ax = 4t12 - 4t02

= 4(t12 - to2) .

To obtain a formula for 1x /At we must
be able to divide At out of the right-
hand side of the equation for Ax. In
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this example, we can express Ax in
terms of At by factoring the quantity
in parentheses:

Ax = 4(ti to) (ti + to) .

But At = t1 to, so, substituting for
ti to,

Ax - 4(At)(ti + to).

If we want to find the speed v at time
to we must eliminate t1. We can re-
place t1 by recalling that t1 = to
+ At. Substituting this we obtain

or,

Ax = 4(At)(to + At + to),

Ax = 4(At)(2to + At). (5.3)

This result could be used to compute
values of Ax from known values of to
and At. It has the advantage that no
difference of nearly equal numbers
need be calculated, so the necessary
number of figures to be carried in
numerical computations is not great.
Having calculated a set of values of
Ax, the next step in finding <v>
would be to divide each by the cor-
responding value of At (as done in
Table 5.1). But this too can be done
algebraically. Dividing Eq. (5.3) by

At gives:

<V> = ax /At = 4 (2t 0 + At ) .

This is an equation with which we can
calculate <v> directly, knowing only
to and At. It gives the average speed
for the time interval At which begins
at the time to. Because to can be any
arbitrary time, we can drop the sub-
script 0, getting

<v> = 4(2t + At), (5.4)

which is an equation giving the aver-
age speed <v> for this motion during
the interval At starting at any time t.

We obtained Eq. (5.4) by eliminat-
ing t1 in our calculation. Had we
eliminated to instead and then dropped
the subscript 1 from t1 the result,
as you should check, would have been

<v> = 4(2t At) .

This equation gives the average speed
<v> for the time interval At ending
at time t.

Now, to find the speed just at
time t we might use these formulas to
calculate a series of values of <v>
for progressively shorter intervals
At. The results would be a table like
Tables 5.1 or 5.2, but containing only
the first and last columns. From such
a table we would try to guess the
limiting value of <v> for very small
time intervals as we did in section
5.1. But, why not try to do all this
algebraically, too? In computing a
table of <v >, we take successively
smaller values of At until, at last,
At is so close to zero that the suc-
cessive values of <v> are close
enough together that we think we can
guess their limit, the value they ap-
proach, with satisfactory accuracy.
Is this not the same as substituting
At = 0 in Eq. (5.4) or (5.5)? If we
do so in either Eq. (5.4) or Eq. (5.5)
the result is

<v> = 4(2t) =

By substituting for t the two values
t = 1 hour and t = 2 hours in this
equation, we get at once for <v> the
values <v> = 8 miles an hour and
<v> --- 16 miles an hour, just the val-

ues we guessed from Tables 5.1 and
5.2. But we now can find the limiting
values for any other value of t as
well. Table 5.3 shows such values for
several intermediate times, calculated

t (HOURS)

V

(MILES PER HOUR)

1.0 8.0

1.2 9.6

1.4 11.2

1.6 12.8

1.8 14.4

2.0 I
16.0

(5.5) Table 5.3 Speed at several times.
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with this last equation. The *_able
shows in more detail how the speed
changes during this span of time.

The algebraic method we have used
in this example is so powerful, and so
widely employed, that a special scheme
of notation is used for it. We will go
back and rewrite our results in this
universal notation. First, we should
distinguish between the values of <v>
which we have called the average speed
over a given time interval, and the
limit of those values as shorter and
shorter intervals are chosen (but one
end of the interval held constant).
This limit, the value approached by
<v> as At approaches zero, is what we
already have called the speed, or,
the instantaneous speed at time t.
For the instantaneous speed we will
use the symbol v. In syrolic terms,"
we write,

v = lim <v> = lim (As/At)
(5.6)

At.0 At-0

These equations are read aloud as,
"v equals the limit of <V), as the
interval At approaches zero," or,
"v is the limit as At approaches zero
of As/At." This notation is simply an
abbreviation for the process we went
through to calculate v, a symbolic
reminder of the method. It is still
too cumbersome for most uses, though,
and a more abbreviated notation is
generally employed. It is

v = ds/dt. (5.7)

Here a small d has replaced the A
used as a prefix earlier. But it no
longer stands for difference. Instead,
it is a shorthand reminder that first
As is expressed in a form containing
At as a factor. The resulting expres-
sion then should be divided by At and
finally At = 0 substituted.12 The

11At this point we have left the special example
in which As = Ax and return to the more general
definition of average speed of Eq. (5.1).

12The substitution of AL - 0 occurs only in the
calculated result for As/At, not in this expres-
sion. This is not "division by zero." The divi-
sion is carried out first.

quantity ds/dt has a name of its own:
the derivative of s with respect to t.
As with the symbols, the name too is
just a reminder of how ds/dt is com-
puted.

EXERCISES

5.3 A point moves along the y axis.
Its distance from the origin at
time t is given by y - 2 + 3t
where y is in meters and t is in
seconds.

a) Find an expression for the aver-
age speed <v> for the time interval
beginning at time t and ending at
the later time (t + At).

b) Find the instantaneous speed at
time t.

5.4 Find the speed v of the particle
whose motion was discussed in Ex-
ample 4.3 for any time t in the
following way:

a) Firit find an expression for
the distance s traveled from the
origin as a function of t.

b) Next find the distance As
traveled in the time interval At
beginning at time t.

c) Find the speed v.

5.5 A particle moves so that its co-
ordinates are given by

x = 0,

y = 10t2,

where t is in seconds, y in meters.

a) Find the average speed of the
particle durizIg an interval
At = 10 sec, which starts at
t = 10 sec.

b) Find the average speed for any
interval At beginning at any time.

c) Find the instantaneous speed of
the particle at any time t.

d) Use the result of (c) to find
the instantaneous speed at
t = 10 sec. Compare it with the
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average speed found in (a), and
explain the difference between the
two.

5.6 While the average speed is a func-
tion of both t and At, i.e.,
As/At = f(t,At), the instantaneous
speed is a function of t alone,
i.e., ds/dt = f(t). Explain this
statement in detail by means of
an illustrative example.

5.4 VELOCITY, DISPLACEMENT AND TIME

The idea of speed, as we have seen
it so far, is an easy one to come by,
but it is not the most useful approach
in the long run. For one thing, it
does not include the direction associ-
ated with speed. For another, our de-
finition of speed involves the dis-
tance actually traveled along the path,
something which we have already men-
tioned may be hard to calculate.
example ised tc illuotrate the conpu-
tation of speed in the last section
was a motion along a straight line. it
presented no difficulty when we had to
find the distance traveled along the
path. Circular paths also are simple
to work with, but even the path length
along the parabola of Example 4.4, a
common path in nature, is too hard for
us to calculate.

These difficulties with defining
speed in terms of path length suggest
that a better approach may be to use
the displacement instead. Displace-
ment is a vector, hence it has a direc-
tion as well as a length. Disphl,s,nent
is also easier to deal with than ath

length. We begin again by considering
two successive positions of the moving
particle along the path, points which
it reaches at the two times to and ti.

But instead of concerning ourselves
with the distance along the path be-
tween these points, we will consider
the displacement vector between them.
Suppose the position of the particle
at any time t is specified by the ra-
dius vector r(t). Then, as shown in
Fig. 5.1, the radius vectors r(to) and

Gr

r(to)

x

Fig. 5.1 Displacement Ar from 7(t0) to

r(ti).

r(ti) give the locations of the mov-
ing point at these two times. The
displacement vector connecting the two
points, according to Eq. (4.2), is
r(ti) r(to), a vector which we will
call Ar.

= 17(t1) 17(to). (5.8)

The displacement a has a direction
that is approximately the direction of
motion during the time interval
At - ti to. Its length is an approx-
imation to the distance traveled in
the interval At. The smaller the time
At, the smaller the magnitude Si'. will

be, and the better the approximation
will be.

The next step is to divide the
displacement 1746 by the corresponding
time At. But what does division of a
vector by a scalar mean? Remember that
the vector Ar has both a magnitude, or
length, and a direction in space. The
time At, however, is a scalar quaLtity:
It has only a magnitude. What is meant
by Ar' /At is a new vector whose direc-

tion is that of Ar, but whose magni-
tude, or length, is equal to Ar/At.
For example, if Ar is a displacement
of 10 feet directed at 45 degrees to
the reference axis, a displacement
which occurs during a time interval
At equal to 2 seconds, then the vector
a/At has a magnitude of 5 feet/sec-
ond, and still the direction of 45
degrees to the axis.

The vector Ar /At has a meaning
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MO

Fig. 5.2 Displacements from 7(to) to sev-
eral subsequent positions for a motion
along a circular path. The radius vectors
for subsequent positions all have their
tails at 0. The corresponding displacements
have their tails at the head of r(t0).

similar to the average speed for this
same interval of time, but not quite
the same. Its magnitude Ar/At is ap-
proximately the same as <v> if At is
a small time, since then the path
length As and the magnitude of the
displacement Ar are nearly the same.
The direction of Ai/At, something <v>
does not have, is approximately along
the path. This vector is called the
average velocity13 for the time inter-
val At. We will represent it by the
symbol 47..

In discussing speed we found that
by calculating the average speed for
shorter and shorter time intervals
after a fixed time, we could obtain
the instantaneous speed. We can do
the same sort of thing with the aver-
age velocity. The main difference is
that with the average velocity we have
to deal with a series of vectors while
with average speed we dealt with a
series of scalars. Imagine that a cer-
tain time to is picked as the time for
which we want to determine the velo-
city. Corresponding to it there is a
radius vector r(t0). Next, imagine

13In everyday language, velocity and speed are
synonyms. In physics, it is customary to reserve
the word speed for the scalar quantity discussed
in section 5.2. We will see later that speed is
the magnitude of the velocity vector.

picking a series of different times
t1 arranged so that as you go down
the series the values of t1 get closer
and closer to to. Consequently the
members of the corresponding sequence
of time intervals of At = t1 to get

smaller and smaller, approaching zero.
For each time t1 in this series find
the radius vector 7.(t1), calculate the
displacement vector AF, and finally
the average velocity <i >. The result
of these computations will be a series
of average velocities corresponding
to progressively shorter time inter-
vals. Fig. 5.2 shows a series of such
displacements, in this case, for a
point moving along the perimeter of a
circle.

Example 5.1

As a specific illustration of
calculating instantaneous velocity,
we will use the circular motion of
Example 4.6, where we found the polar
coordinates of the moving point to be

r = 2

0 = 2at.

(r in meters, 0 in radians,
t in minutes.)

For the fixed time to we will choose
the value to = 0. At this time the
coordinates (r,8) are (2m, 0). That
is, the moving point is just crossing
the x axis. For various later times
t1 we must find the length eir and di-
rection 0 of the displacement vector
Ar, which are indicated in Fig. 5.3a.

The length Arcan be found by
using Fig. 5.3b, in which the triangle
of Fig. 5.3a is reproduced, but with
the bisector of angle 0 drawn in. Be-
cause this triangle has two equal
sides of length r, this bisector also
divides the original triangle into
two equal right triangles. From eit!-er
of the right triangles we find that

0 (Ar/2)
sin =

2
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Solving this for Ar gives

0
= 2r sin 2.

If we now substitute for r and 0
their values at time t1 we will ob-
tain a formula for calculating the
length of the displacement vector for
the time interval At = ti to = t1
(rememoer, to = 0 here). The result is

Ar = 4 sin (rAt).

(Or in meters, At in minutes.)

The angle 0 of the displacement vector
can be obtained from Fig. 5.3c in
which the original triangle is again
reproduced. Since the triangle is
isosceles, the two base angles are
equal. The sum of the interior angles
of the triangle must be 180 degrees,
or r radians, so

tX + a + 0 = r,

or, solving for a,

7r -0
a =

2

But, a is the supplement of 0, so

0 7 a.

Substituting the value of a gives,
after some simplification,

=
2

7T +

The value of 0 at time t1 i7 to = 2rt1 ,

or since t1 = At, 0 = 270.. If we now
substitute this value :A 0 we get a
formula for the dir,:action of Ai.

0 =
2

+ rAt.

(0 tn radiPm., At in minutes.)

Fo: a sequence of times t1, and in
this case also of time intervals At,
we choose (1/4) min., (1/8) min.,

(1/16) min., and so on. These time
intervals, in fact, correspond to the
sequence of displacements shown in
Fig. 5.2. At t1 = (1/4) min., the mov-
ing point has reached the top of the
circle. For illustration we will com-
pute the Al' and 0 for t1 = (1/4) min.
in detail. The time interval is
At = t1 to = (1/4 0) min. = 1/4
min. Substituting this in the expres-
sion for 0 gives:

0 =
2 4

+ r
3

(1/4) = 7T radians.

a

b

C

0

P

rig. 5.3 Constructions for Example 5.1.
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At

(MINUTES)

0

(DEGREES)

Or

(METERS)

Ar /At

(METERS

PER MIN.)

1/4 135 2.8282 11.32

1/8 112.5 1.532 12.26

1/16 101.2 0.780 12.48

1/32 96.4 0.392 12.54

1/64 92.8 0.186 12.56

1/1000 90.2 0.01256 12.56

Table 5.4 Magnitude and direction of <-17>

for example 5.1.

Converting this to degrees,

(3/4 r radians)

= 135 degrees.

(180 degrees\

r radians

To get Ar, we substitute At = 1/4 min.
in the formula for Ar:

Or = sin r(1/4) = 4 sin
4.

When converted to degrees r/4 radians

is 45 degrees, so

Ar = 4 sin 45°

= 4(0.707)

= 2.828 m.

Lt = 1/64min.
= 1/16 min. )

At= 1 /8min.

Lt = 1/4 min.

= 1/1000 min.

0 7.00)
x

Fig. 5.4 Average velocity vectors listed
in Table 5.4. (Example 5.1)

This result together with addi-
tional calculation, for shorter inter-

vals are listed in Table 5.4. Two
things should be noted in these re-
sults. First, as the time interval is
reduced to smaller and smaller values,
the direction angle 0 gets closer and
closer to 90 degrees. In other words,
the successive displacement vectors,
and consequently the successive aver-
age velocity vectors, have more and
more the same direction, the direction
perpendicular to the radius vector
Rto). Second, the magnitudes of the
successive average velocity vectors
also approach a limiting value of
12.56 m/min. Thus, as shorter and
shorter intervals are chosen, the
average velocity vectors approach
limits both in their directions and
their lengths. The sequence of A17/At

is shown in Fig. 5.4.
The limit approached by the aver-

age velocity vector as the time inter-
val At becomes zero is the instantan-
eous velocity, or, more concisely, the
velocity V. Symbolically,

= lim <;)>= lim (A;/At),
(5.9)At0 At-0

or, equivalently,

= d;/dt. (5.10)

The velocity v is a vector whose direc-
tion is along the path of motion, that
is, tangent to it. Its length v is the
instantaneous speed with which we are
already familiar. This may surprise
you at first. The way we went about
finding v involved displacements, not
path lengths. But, if you recall that
the length of the displacement vector
Ar approaches the path length As as
At becomes small, this result is easy
to understand (for an example, see
Fig. 3.11(e)).

Example 5.2

For the circular motion of Exam-
ple 5.1, it is easy to confirm that
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the speed and length of the velocity
vector are the same thing. Figure 5.5
shows the two positions corresponding
to to and t1. The path between them is
an arc of a circle whose length As is
given by

As = r01.

But, we can substitute r = 2m and
01 = 2gt1 so that we have

As = 4gt1.

As in Example 5.1, to = 0 and thus
t1 = At. Consequently,

or
As = 4gAt

As
= 47r.

At

From this we find for the speed,

v = lim (As/At) = lim (4g).
At-.0 At.0

Since 4g is a constant its limit is
also 4g. Hence

v = 47 m/min. = 12.56 m/min.

This is the speed at time t = 0, cal-
culated according to our original pre-
scription. But this result is also the
limit that was approached in Table
5.4 by the magnitude of the average
velocity vector.

EXERCISES

5.7 a) Use the data of Table 4.4 to
calculate average velocities
<7)>for time intervals starting
at t = 0 and ending at t = 0.5,
1.0, 1.5, 2.0 and 2.5 seconds.

b) Make a drawing of your results
similar to Fig. 5.4.

c) How closely do your results
approach the instantaneous velo-
city stated for t = 0 in Example
4.4?

y

Ito

Fig. 5.5 Construction for Example 5.2.

5.8 Make a copy of Fig. 4.10 and draw
in at each point arrows represent-
ing the directions of the instan-
taneous velocity.

5.9 For the example worked out in this
section:

a) Find the average speed for the
first quarter circle (i.e., for
At = min.); for the first half
circle (At = min.); for the
first three quarter circle; for
the first full circle. Compare
these speeds.

b) Repeat (a), but find the aver-
age velocity for the same four
times. Compare these four average
velocities.

c) Compare the results of (a) and
(b). Draw some conclusions with
regard to comparing average speed
and average velocity (and state
them!).

5.5 COMPONENTS OF THE VELOCITY
VECTOR

We have seen that the velocity of
a moving point is the derivative of
its radius vector with respect to
time Eq. (5.10),

v = d;/dt.
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In general this is a vector in three
dimensions. Like all others, it can
be broken down or decomposed into
components. But what are they, and
how can they be computed from the
components of r? To find out we must
repeat the calculation after first ex-
pressing r in terms of its Cartesian
component vectors rz, ry, and rz.

At a time t, the radius vector
;(t) is the sum of its component vec-
tors at that same time:

r(t) = ;.(t) + 77(t) +

To calculate v we also need the value
of r at a later time. Let that time be
t + At, that is, t plus the interval
At between the two times. At this

later time,

+ At) = d;z(t + At) + 1:y(t + At)

+ + At).

The displacement A; of the moving
point between these two times is the
difference of the two radius vectors

= ;(t + At) ;(t),

or, substituting the two expressions
for r in terms of component vectors,

Ar = [;x(t + At) ;x(t)]

+ Ry(t + At) ;:y(t)]

+ [;z(t + At) - ;z(t)].

Each of the three terms in brackets
is a difference of two values of the
same vector at different times, so we

can abbreviate this by

A; = A13g + Any +

The next step in finding ; is to di-

vide A; by At:

= Aix a1
At At At At

This quantity is the average velocity

during the time interval At. Its

limit as At approaches zero is the
velocity

v = lim (fir /At)

At-0

= lim (az a, az).
At-0 k At At At

But, the limit of a sum of quantities
is the same as the sum of the limits
of those same quantities," so we can
change the last equation to

lim ,A;zx lim /A;yx

v At-0 ka/ At -0 k At )

lim tae
At-0 kAt

By inspecting each of the terms in
this result, we see that each has the
same form as our definition of a de-

rivative with respect to time (Eq.
(5.9)). So we also can write,

dt (5.11)
dt dt dt

dEE
dt

This result has a general signifi-

cance. It shows that the derivative

of a sum of terms is equal to the

sum of the derivatives of those terms.

This is a rule for which we will find

many uses as we go on.
The three vectors whose sum

equals the velocity are directed
parallel to the x, y, and z axes. In

other words, we have accomplished the

decomposition of the vector v into

three other vectors parallel to the axes.

Consequently these are the Cartesian

component vectors" of v.

drz idr drz.
vx =

dt 2 vY dt z dt
(5.12)

14This is a theorem that may be unfamiliar to

you. If you are interested, most textbooks on

calculus contain a proof.

"Do not confuse the component vectors -W-,

and -17z with the vector's components vx, v1, and

vz.
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5.6 UNIT VECTORS AND COMPONENTS OF
VELOCITY

We have in Eq. (5.12) expressions
for the component vectors of v as de-
rivatives of the component vectors of
r. We need formulas for the actual com-
ponents of v, that is the lengths vx,
vy, and v2 of vx, v7, and vz, in
terms of the actual components x, y,
and z of the radius vector r. For
this purpose it is convenient to make
use of three constant vectors, one
directed parallel to each of the three
Cartesian axes, and each with unit
length. These three unit vectors are
shown in Fig. 5.6, where they are
shown originating at the same point
simply to clarify the figure. The
customary symbols for these unit vec-
tors are i, j, and k.

The unit vector parallel to the
x axis is i. As its name implies, its

magnitude is exactly equal to the num-
ber 1. It is not a physical quantity.
It has no units of measure like feet,

or hours, or meters/sec. In the mathe-
matics of vectors, unit vectors have
the same role as the unit in arithme-
tic, that is, the number 1. Though it
rarely is useful, you can think of all
numbers as being multiples of the unit
number 1. In the same way any vector
parallel to the x axis can be thought
of as a multiple of the unit vector in
that direction, the unit vector i. For
example, the x component vector rx of
the radius vector r can be written

rx =xi. (5.13a)

The quantity xi is a vector whose
length is x units of length times the
length of 1, or just x since i has
unit magnitude. Its direction is par-
allel to the x axis, the direction of
i. So xi has both the length and di-
rection of rx, which is the justifica-
tion" for Eq. (5.13a). In an exactly
similar way,

"The length x is expressed in the same units
of length as is the magnitude of the radius
vector r itself, e.g., if r has a magnitude of
100 feet, x is to be expressed in feet.

r7 = j
7 j, (5.13b)

-17z = z r. (5.13c)

Equations (5.13) express a general
rule: The Cartesian component vectors
of any vector are equal to their
magnitudes multiplied by the ap ro-
priate unit vector. Another example is

the velocity vector v:

-
V = Vx1 + V7 .) +Vz r. (5.14)

Letts return to the problem of
finding the magnitudes of vx, vy, and

vx. Since rx = xi we have from Eq.

(5.12),

d(xi)Vs_
dt

To interpret this we must follow
through the process of differentiation
that these symbols remind us of. First,
using Eq. (5.13), we write out two
values of rx for the two different
times t and t + At:

17x(t + At) = x(t + At) Tv

7x(t) = x(t) 1.

(It was unnecessary to write r(t + At)

ior (t) since i always has the same
length and direction.) In the time
interval At the component of displace-
ment parallel to the x axis is:

Fig. 5.6 Cartesian unit vectors.
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A67-; = i:x(t + At) -17x(t).

If we substitute the two expressions
for the two values of rx, we get

= x(t + At) T x(t) T

= [x(t + At) x(t)] i.

This, divided through by At is

Kix x(t + At) x(t)
1.

At At

The limit of A7x/At as Al vanishes is
the derivative of rx with respect to
t, which, as we found in Eq. (5.12),
is just vx. Thus

By adding Eq. (515) we find that the
velocity vector v is

v
(It T (Ai\

+
tc\

k.
kdt kdt I dt /

This equation is the decomposition of
the velocity v into its Cartesian com-
ponents expressed in terms of deriva-
tives of the components of r.

The instantaneous speed v of the
particle, the magnitude of its velo-
city, can also be expressed in terms
of its coordinates. We know from Eq.
(3.7) that v is

v = 41,x2 + vy 2 Vz2
. (5.18)

But v icy v7,v- and vz are the time deriv-
drx lim [x (t + M) x(t)

vx = 1 . atives of the coordinates. So, sub-
dt it At

stituting from Eq. (5.16) we find

At this point we must use another
property of limits: The limit of a
constant quantity multiplied by a
variable guantit is e ual to that
constant quantity multiplied by the
limit of the variable quantity. Apply-
ing this gives

pat t
V = 1X At-..0 At JJ

But the quantity multiplying i is ex-
actly what we mean by the derivative
of x with respect to t, so

lAE1 dx
z

=
kat/ katl

1. (5.15a)

In other words, the x component of v,
that is the magnitude of vx, is just
dx/dt. In a similar manner we have:

v7
(1-1Xdt

(5.15b)

(5.15c)

The Cartesian components of v are

dx AYvx
dz

= . =
dt'

v
' dt'

.

vz dt.
(5.16)

v=
1/(pdxx2 /A92

4- 1'4E12 (5.19)
kdt) kdt kdt/

EXERCISES

5.10 Write out in terms of unit vec-
tors and functions of time t ex-
pressions for the radius vectors
in Examples 4.2 through 4.6.

5.11 a) Calculate vx and v7 at time
t = 0 for the motion discussed
in Example 4.4.

b) Find the magnitude and direc-
tion of v at time t = O.

5.7 AN EXAMPLE OF COMPOSITE MOTION

One of the advantages of using
vectors in the description of motion
is that we can analyze co'tplex mo-
tions in terms of simpler ones by add-
ing vectorially the radius vectors of
the simpler, component motions. To
illustrate how this is done we will
work out a more complicated example
than any we have analyzed in detail
thus far. Our procedure is to start
with two motions we have already con-
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sidered, and to add them. For this
purpose we must express the two mo-
tions in terms of Cartesian components
so that we can carry out the addition
algebraically instead of graphically.
Of course, by adding the radius vec-
tors we will have a full description
of the path of the composite motion.
But it is also desirable to find the
velocity of the composite motion. So,
as a second part of the example, we
will also calculate the velocities of
the component motions. In the course
of this illustration we will also find
out several new things about the de-
scription of motion.

Let us call the two component mo-
tions A and B for short, and label the
vectors and coordinates which corre-
spGnd to each accordingly. As the
first component motion, described by
the radius vector r&(t) we will choose
a steady movement along a straight
line. For the second component motion,
r (t) we will take a uniform rota-
tion on a circle about the origin.

It is always wise to choose the
coordinate system for a motion so as
to simplify the description as much as
possible. In this case, since compo-
nent A is a straight-line motion, it
will make our work easier if we choose
that straight line to be one of the
coordinate axes. To be specific, we
will choose the axes so that the
straight-line motion is along the x
axes. The origin of coordinates we
will choose to be at the center of the
circular motion.17 The paths for the
two component motions and the coordi-
nate axes are shown in Fig. 5.7.

Our first task is to obtain
parametric equations for the straight-
line motion which is component A. The
equation for yA, since the motien is
entirely along the x axis, is yA = O.
For the x component, are can show

17This choice specifies the composite motion in
more detail than we have said before. In general,
there is no reason why the center of the circu-
lar motion should be on the sane line as the
straight-line motion, but we deliberately chose
the simpler case.

Fig. 5.7 Component motions A and B. (Sec-
tion 5.7)

easily that xA = Vt, is appropriate.
Here V is a constant but still unspe-
cified quantity which we will show is
the speed. The parametric equations
for motion A are then

XA = Vt,

YA = 0,

or, using Eq. (5.13),

= (Vt) i.

Before going on, let's confirm that
Eqs. (5.20) do represent a motion at
constant velocity. To do so we will
compute from these formulas the com-
ponents vAx and vAy of the velocity
vA. According to Eq. (5.16), they are

(5.20)

dx A dyA
vex = dt '

vA =
dt

To find vAx we must differentiate 'EA
with res',ect to t. The first step is
to find the displacement AxA in the
x direction during the time interval
At between time t and the later time
t + At. At these two times x& has the
values,1 8

xA(t + At) = V (t + At),

xA(t) = Vt.

"Here V is a constant and does therefore not
depend on time. The notation V-(t + At) is
chosen to indicate a multiplication, in con-
trast to the notation 'EA(t + At) which indi-
cates that x* is to be evaluated at time t + At.
In the second equation the multiplication point
is ',witted since no ambiguity can arise there.
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IF THEN

x = C = CONSTANT dx/dt = 0

x = 0 dx/dt = C

,_ 02 dx/dt = 20

Table 5.5 Simple derivatives.

Substituting these values in the defi-
nition of AxA gives

AxA = xA(t + At) xA(t)

(definition)

= V.(t + At) Vt

= V(t +At t)

= VAt.

Dividing this by At to get AxA/At, we
obtain

AxA
V.

At

The x component of the velocity vA is
the limit of AxA/At as t O. But the
last equation shows that AxA/At has
the constant value V, which conse-
quently must be its limit too. In
other words vix = V. Since yA is al-
was zero, the y component of the
velocity must be zero. In summary,
then

or

vex = V,

VA, = 0,

vA = V 1. (5.21)

As a final step, we find the speed vA.
From Table 3.4

vA = V;;;2 + vAyl

= ANITTP

= V. (5.22)

This completes our proof that Eq.
(5.20) actually represent a motion
with constant velocity. Equation
(5.22) shows that the length of the
velocity vector has the constant value

V and Eq. (5.21) shows that its direc-
tion is always parallel to the x axis.

Before we continue with the dis-
cussion of motion B we will review
our calculations of derivatives. In
several examples we have calculated a
derivative from its definition. At
this point we will collect the results
of these calculations for the purpose
of tabulating them so that we need
not go through the same labor again.
Just now we differentiated xA with
respect to t when xA was proportional
to t, that is

xA = Vt.

The result was

dxA
at

This formula is valuable in itself. If
you review the argument you will see
that whenever two quantities are re-
lated in this way, the same result
will follow. For example, if we had
q = Cp where p is a variable and C is
a constant quantity (independent of p)
then dq/dp = C. Another case we worked
out in the examples in section 5.3 in-
volved differentiating x when x was
proportional to t2, that is finding
dx/dt when x = Ct2 with C a constant.
The result was dx/dt = 2Ct. Still an-
other example is the case where x it-
self is constant, say x = C. Here x
is always the same and as a result
Ax = O. Because Ax = 0, Ax/At is al-
ways zero, too, so dx/dt = O.

These three results are listed in
Table 5.5. They hold no matter what

symbols are used in place of C, t, and
x. Henceforth, when we encountcl these
expressions or any like V.Iem we will
refer to this table for the derivative
rather than working it out each time.19

Our second component of motion,
given by 14, is a motion of constant
speed along a circle whose center is

"Later we will obtain the general formula for
dx/dt whenever x Ct°, where n is any number.
It is that dx/dt = nCt°-1. All the results in
Table 5.5 are special cases of this formula.
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at the origin. In Example 4.6 we stud-
ied such a motion, and found that the
simplest equations for it were the
equations for the polar coordinates of
r. We will use such equations, but we
will make them more general than in
our earlier example but not specify-
ing any numerical values. The desired
equations are

rs = R,

OB = Wt.
(5.23)

The equation for rs simply states that
r has the constant value R, or in
other words, R is the rad_us of the
circular path. The equation for OB
tells us that Os increases in direct
proportion to time, with a constant of
proportionality w. This constant is
called the angular velocity of the
moving point. The reason is not hard
to find: w is the rate at which the
angle OB increases with time. By ap-
plyirg the formulas of Table 5.5 to
the z:qu.itjon for Os we obtain

dOs
= CO.

dt
(5.24)

Since we wish to add the two mo-
tions rB and rs, it will be necessary
to find the Cartesian components of
rs. The transformation equations of
Table 3.4 applied to Eq. (5.23) give

xB = ris cos OB = R cos wt,

ys = rs sin 0, = R sin wt, (5.25)

or

= (R cos wt) I' + (R sin wt)

Let's turn next to the problem
of finding vs. Were we to follow our
previous examples we would find vsx
and vBy by differentiating the two
equations we just obtained for xs and
ys. But that would require us to dif-
ferentiate sin wt and cos wt, some-
thing we do not yet know how to do.
An easier approach in this case will
be to find the speed vs directly as
the limit of the distance traveled
along the path per unit time. As we

pointed out earlier, this method is
generally a hard one. We can use it in
this case only because the path we are
dealing with is a circle, and with cir-
cles we know the relationship of the
distance along the circumference to
the angle it subtends at the center.

At time t = 0, the moving point,
according to Eq. (5.25) is crossing
the x axis at xs = R. At a later time
t, it has traveled along the circle a
distance sB(t) as shown in Fig. 5.8.
From Eq. (5.23) the angle subtended
by the arc ss(t) at the center of Cae
circle is OB(t) = cot. But, from our
cefinition of angle (see section 3.6),

Os(t) =
ss(t)

rs(t)'

or, upon substituting the values of
OB and rip from Eq. (5.23),

or

ut = sm(t)
R 9

sB(t) = Rut. (5.26)

This equation gives the distance ac-
tually traveled in the time t. Accord-
ing to our definition in section 5.3,
speed v is the limit of As/At as
At 0, or, more concisely,

dss
VB

dt

Fig. 5.8 Construction for finding vs. (Sec-
tion 5.7)
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Equation (5.26) for salt) reveals that

salt) is proportional to t with the

proportionality constant Rw (R and w

are both constant). Consequently, from

Table 5.5, we have

vs (t) = Rw. (5.27)

In other words, the speed v8, which is

also the magnitude of the velocity vs
has just the constant value Rw.

We have the magnitude of vs
which proves to be constant, but we
don't have its direction yet. The di-

rection of vs, the angle the vector

makes with the x axis, we will call

Ov (it is shown in Fig. 5.8). We know

that the velocity vector is always
tangent to the path. In the present
example, the path is circular, and

from plane geometry, we know that the

tangent to a circle is perpendicular
to the radius. Applying this to Fig.

5.8 we can see that

0v(t) = 0a(t) + 90°,

or, in radians,

(4(0 = 0a(t) + ir/2.

Substituting the value of Os(t) we get

0v(t) = wt + ir/2. (5.28)

This equation, along with Eq. (5.27),

col,pletes the specification of vs in

polar components. For circular motion

vs(t) is a vector with constant mag-
nitude but steadily changing direc-

tion.
By using the transformation equa-

tions of Table 3.4, we now can find

the Cartesian components of ;78. First,

Vgx = Vg cos 0,.

Substituting the values of vs and Ov

in terms of t gives

vBx = Rw cos (v/2 + wt).

But v/2 + wt is the complement of the

an angle is equal to the sine of its

complement,

vBx = Rw sin (wt).

Since sin (wt) = sin cot, this can

be written

VBx = Rw sin wt.

In a similar way, applying the trans-

formation equations to find vsy gives

VBy = Rw cos wt.

In summary, our results for vs in Car-

tesian components are

;15(0 = (Rw sin wt) T

+ (Rw cos wt) T.

(5.29)

When we set out to find vs we
used the polar components of re to

avoid the problem of finding the de-

rivatives of sin wt and cos wt. Now

that we have the results, it is worth-

while to go back and get these de-

rivatives from them. We know from Eq.

(5.16) that

dxs
Viz = dt'

and from Eq. (5.25) that

xs = R cos wt.

Combining these two equations we have

d(R cos wt)

vax dt

We saw earlier that the derivative of

a constant multiplied by a variable

quantity is that constant multiplied

by the derivative of the variable

IF THEN

x =situ,* dx/dt = w cos wt

x = cos cot dx/dt = cosDina

angle wt, and because the cosine of Table 5.6 Derivatives of sine and cosine.
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(section 5.6). Consequently, since R
is a constant,

vex = R
d(cos wt)

dt

But we have from Eq. (5.29)

vex = --Rce sin wt,

Equating these two expressions for
vex gives

R
d(cos wt)

sin ,

dt

or, canceling R,

d(cos wt)
-w sin wt.

dt
(5.30)

Applying this same line of argument
to the y component of ve instead of
the x component, we get the result

d(sin wt)
= w cos wt. (5.31)

dt

As a by-product of changing from polar
to Cartesian components we have ob-
tained formulas (5.30) and (5.31) for
the derivatives of the sine and cosine
functions. They are summarized for
convenient reference in Table 5.6.

Now that we have derived expres-
sions for rA and re, and also for vA
and ve, we are ready to find the com-
posite motion

Taking rA and re from Eqs. (5.20) and
(5.25),we have

y

".

A

ao.

;(t) = (Vt) T + (R cos wt) T

+ (R sin wt)
or

17(0 = (Vt + R cos wt) T

+ (R sin wt) T. (5.32)

This is equivalent to the parametric
equations,

x(t) = Vt 4- 14 cos wt,

y(t) = R sin wt.
(5.33)

Given any specific values R, w, and
V we can use thes-) formulas to plot
out the path of the composite motion.
Three such plots are shown in Fig.
5.9 where in all cases the value given
to V, the speed of the straight-line
component, is negative. The reason for
this choice is, as you can see by
comparing Figs. 5.7 and 2.6, that neg-
ative values of V (straight-line mo-
tion toward the left instead of the
right), combined with a counterclock-
wise rotation gives motion like that
of a point on the rim of a wheel roll-
ing toward the left. In fact, curve
A in Fig. 5.9 corresponds exactly to
this situation. Curve A was calculated
by adjusting V to be exactly equal to
-Rw. As we can see from Eqs. (5.22)
and (5.27), this is the same as say-
ing that speed V along the x axis is
just equal to the speed Rw of the
point along thf circle. In the com-
bined motion this means that when the
particle is at the lowest point of
its circular motion, and its velocity
is parallel to the x wcis and pointed
to the right, the total speed at this
point is momentarily zero. In other

Fig. 5.9 Various paths for the composite motion discussed in section 5.7.
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words, at this instant the velocity

vs along the circle is just equal in

magnitude but opposite in direction
to the straight-line velocity vA.
This is just what happens when *a wheel

rolls along a flat surface provided
there is no slipping. A point on the

rim touches the ground just at the in-

stant it comes to rest, and then
starts up again, touching the ground
next after one full revolution of the

wheel.
Curve C in Fig. 5.9 was drawn

for the case in which V = jRw. If
we think again of the combined motion

as that of a wheel moving along the
ground, this curve is one for which
the steady horizontal speed V is too

small to keep up with the rotation.
A point on the rim is moving to the

right when it touches the ground at
the bottom of the curve; the wheel is

slipping along the ground, not rolling

smoothly. This is what happens, for
example, when a car is started up on

an icy road with the engine pushing
the wheels around so fast that the

tires don't hold.
The last curve, curve B, was

made by letting V = 2Rw. This is just

opposite to the situation for curve C.
Here the circular motion is too slow
to keep pace with the straight-line
component of motion. It is what hap-
pens, for example, when you try to

stop a car on an icy road too rapidly.
By applying the brakes you can slow
down or even stop the spinning of the
wheels, but the car moves on. Curve B
is the path that a point on the rim
would take if the circular speed were
reduced to half the straight-line

speed.
Now that we have found the path

for the combined motion, let's go on
to find the velocity. From our defi-
nition of velocity we know that

;.(t) =
dt

At this point we could take the ex-
pression for r(t) that we found in

Eq. (5.32) and calculate its deriva-

tive directly. But this is not nec-
essary, for we already have done most
of the work. We can add vectorially
the velocities of the component mo-
tions. To confirm this recall that

r = rA + rs, so,

4; (0 ;B(t)]

dt

In section 5.5 we found that the de-
rivative of a sum is the sum of the
derivatives, so we can write this as

_ d[r (t)] dFskt)]
dt dt

These two terms we recognize as v*
and vs, the velocities of the two com-
ponent motions. Thus

V = VA + (5.34)

In other words, we can find the vel-
ocity of the compound motion by add-
ing vectorially the velocities of the
two component motions. These we have
worked out already. Substituting their
values as given by Eqs. (5.21) and
(5.29), we obtain

340 = VT + (-Rw sin ctrt)T.

+ (Rw cos wt).-L

or, finally,

;(I) = (V Rw sin wt)T

+ (Rw cos wt).1.
(5.35)

From this last result we can see
why the relationship between V and
Rw was so important in drawing the
paths shown in Fig. 5.9. The x com-
ponent of v is

vx = V Rw sin wt.

No matter what values w or t have,
sin wt always has some value between
+1 and 1. This means that the second
term in vx always has some value be-
tween +Rw and Rw. As a result, if Rw
is less than V, the second term in vx
can never overbalance the first; vx
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will always have the same sign as V.
In this case, if V is positive (mo-
tion to the right), the resultant
motion will always be toward the right.
If V is negative, the resultant motion
will be toward the left at all times.
This case is illustrated by curve B
in Fig. 5.9. Should the contrary be
true, that is, should Rw be greater
than V, then sometimes the second
term of vx more than cancels the first.
This will lead to times of retrograde
motion, times during which the com-
bined motion is to the right while vat
is to the left, or vice versa. Curve
C is a case of this type. (Compare
this with the retrograde motion shown
in Fig. 2.8.) Finally, there is only
one value Rw can have so that the x
component of the total motion halts
altogether but doesn't reverse. This
happens when Rw and V have exactly the
same magnitude (though perhaps op-
posite signs). This is illustrated by
curve A.

EXERCISES

5.12 In the motion of the wheel shown
in Fig. 5.9, what factors deter-

mine the distances between the
maxima? (Alternately, you may
consider the minima or cusps.)
Find an expression for this dis-
tance. What is the ratio of this
distance to the circumference of
the wheel? (Give a quantitative
expression.) Calling this ratio
p, discuss the motion of the
wheel when (a) p << 1, (b) p = 1,

(c) p >> 1. How do the curves of
Fig. 5.9 appear in cases (a) and
(c)?

5.13 A wheel rolls (without slipping),
making 5 revolutions/second.
Write down parametric equations
for the motion of a point on the
circumference in Cartesian coor-
dinates. Assume values of your
own choice for any required but
missing data. Find the speed of
the center of this wheel.

5.14 (a) Sketch the path of a point
on the circumference of the wheel
of the preceding exercise.

(b) Describe qualitatively, write
down the parametric equations,
and sketch the path of a point
halfway along any radius of the
wheel. Make your sketch on the
same axes as used in (a) to facil-
itate a comparison of the paths.

(c) What is the limiting path as
the point whose path is being
considered approaches the center
of the disc?

5.15 A wheel rolls without slipping
and with a constant speed along
a straight line on a horizontal
plane. In a certain rectangular
coordinate system the motion of
a point P on the wheel's rim is
given by

x = Vt ro sin (V/ro)t

y = ro(1 cos (V/ro)t).

a) Does P ever pass through the
origin of coordinates? If so, at
what time?

b) Does y have a largest and a
smallest value? What are they?

c) Answer part (b) but for x in-
stead of y.

d) How long does it take the
wheel to make one complete turn?
(Using the result of (b) may help
here.)

e) What do ro and V represent
in describing the motion?

f) Describe the orientation of
the coordinat..i system being used
here with reference to the ini-
tial (t = 0) position of the
wheel and point P.

5.16 This exercise may help you get
a better grasp of the reasons for
the differences between the
three curves of Fig. 5.9. To do
this, examine the variation of
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of x with time, as follows:

a)Use the parametric equation for
x(t), i.e., x = Ct + R cos wt, in
the following way: On the same
pair of x-t axes, plot the equa-
tions

xi = Ct and x2 = R cos c4jt

b) Then plot x = Ct + R cos wt by
adding xi and x2 (using points on
the graphs) for various values of
t.

c) Now study the way the form of
this curve varies as the ratio
of C to R is changed. This may
be done conveniently by drawing
several lines of the family
x
1
= Ct (by giving C different

values). To each one of these
xl's add the same x2. Do this
for a small value of C and for
a large one. Compare the result-
ing curves with regard to the
question of constantly increas-
ing x versus alternately increas-
ing and decreasing x. Which of
the curves of Fig. 5.9 corre-
sponds to the low value of C;
which to the high value?

FUNCTION DERIVATIVE

x = A = constant
dx
-ar=0 (1)

x = Ay
dt

=Ad
dt (2)

x=y+z+... dx _s_ly dz
dt dt dt '

x = yz
si12_c dz \ sly\

dt Y/ cT) 4. zkdt) (4)

x = ylz(t))
dx &WAN
dt ldzAdt/ (5) *

x = t" dx
dt

= ntn-1 (6)

x = sin At
dx
dt

=A cos At (7)

x = cos At
dx
ci- = A sin At (8)

*The notation ylz(t)) indicates that y is a function of z
which in turn is a function of t.

Table 5.7 Derivatives.

d) Find a value of C which will
give an x-t graph corresponding
to the path A in Fig. 5.9. Com-
pare this graph to the ones
plotted in (c).

5.8 DERIVATIVES

In the earlier sections of this
chapter, derivatives were calculated
a number of times. At two points our
calculations were summarized in Tables
5.5 and 5.6, calculations which we
did not need to repeat since we had
already done them. As you go on in
physics it will be necessary to calcu-
late many derivatives. Of course, if
you had to start from the definition
of the derivative each time, your work
would become very time consuming. But,
just as we need not go back to derive
again every theorem of plane geometry
when we use it, we need not go back
to derive a formula for a derivative
every time we need it. A better pro-
cedure is to make a table of deriva-
tives, one like Tables 5.5 or 5.6, but
more extensive. Then when the need
arises we can look up the required in-
formation in the table.

For most work in elementary
physics only a few formulas are needed
to provide the necessary store of
derivatives. The important ones are
listed in Table 5.7. We have already
derived most of them; the rest are
proved in the Appendix to this chap-
ter. You will make constant use of
these results as you go on in your
study. At first you probably will
need to refer to Table 5.7 frequently,
but with more practice you will dis-
cover that you have memorized the re-
sults. In the table x, y, and z stand
for functions of the variable quantity
t; A and n stand for constants, that
is, quantities which do not change
when t changes. These symbols we have
used frequently in our study of mo-
tion. However, you should keep in mind
that it is the formulas of Table 3.7
that count, not the symt.ols. The same
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formulas hold true whatever the sym-
bols used may be.

To illustrate how the several
formulas in Table 5.7 are used,
several examples are worked out in the
remainder of this chapter. To get more
practice you should do a number of the
exercises given at the end of this
section. The formula numbers used in
the worked-out examples refer to
Table 5.7.

Example 5.3

Find the derivative with respect
to t of

x = A + Bt + Ct2.

This expression is the sum of three
terms, so we can use formula (3) to
write

dx d(A) d(Bt) d(Ct2)
dt dt dt dt

Our problem is now one of finding
three derivatives of somewhat simpler
functions. First, from formula (1),

SO

121c = 0
dt '

dx d(Bt) d(Ct21
dt dt dt

Next, applying formula (2) to each of
the remaining terms,

dk
= B

d(t),
+ C

d(t2)
dt dt dt

Finally, apply formula (6) to each

term. The result is

or

dx
=

dt
B(lt°) + C(2t1)

dx
= B + 2Ct.

dt

This expression for x(t) is one that

occurs often in physics. Whea applied
to motion, it plays an important role
in the motion of falling bodies.

Example 5.4

Find the derivative with respect
to t of

x = Ar2F-TT3Tr.

This expression for x is a function
of a function of t. That is, if we
let z(t) = A + Bt2, then

x = 1cTi5.

This is the same as writing

x = zi.

If we apply formula (5) we get

_ t.ikstaysk\

dt kdzdti

d(zi) dz

dz dt.

The first of these derivatives we can
evaluate with formula (6):

dx d(z)
- 1) = iz-i

dz dz

1 1
= (i) -r =z2 2Vi

To put this in terms of t we need only
substitute z = (A + Bt2) :

dx

dz

1

2,/A + Bt2

The derivative dz/dt can be worked out
as in Example 5.3. In fact, z(t) is
just the same function of t except
that here we have B in place of C, and
here the constant multiplying t is
zero. Making these changes in the re-
sult for Example 5.3 gives

dz
dt

= 2Bt.
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Now we have both dx/dz and dz/dt.
Their product is the desired result

dx 1
(2Bt)

Bt

dt (2.1174775Tr) A-
Example 5.5

Find dx/dt in terms of dy/dt and
dz/dt wher

x(t) =
y(t)
z(t)

This expression can also be written

x = y(z -1),

that is, x is the product of two func-
tions of t, y(t), and u(t) where

x(t) = '''
u(t) = [z(t)]-1. (This is the defini- z(t)

tion of u(t)). This

Example 5.6

Find dx/dt when

x = tan (At).

This we can write as

sin At
X =

cos At

which puts x in the form of the quo-
tient of two functions of t. In other
words, if we let

then

y(t) = sin At,

z(t) = cos At,

x = yu.

Now we can apply formula (4)

dx du ay

dt Ydt udt"

The next step is to find du/dt. Since
u(t) = u[z(t)] we can use formula (5).

du tativan
dt kdzikdti"

But u = z-1, so from formula (6)

and

du__
dz

(-1)z(-1-1) = -z-2 = 1/Z2,

du 1 dz

dt z2 dt"

This is just the expression whose

dx z dt Y dt
dt z2

From formulas (7; and (8)

dt
= A cos At,

derivative we worked out in Example
5.5. Using the result we obtained.

dz

dz
=

dt
-A sin At.

If we substitute these along with the
definitions of y and z into the form-
ula for dx/dt we get:

dx (cos At)(A cos At)

dt cos2 At

(sin At) (-A sin At)

Substituting this back into the ex- cos2 At

pression for dx/dt gives

Or,

dx dz I sit

dt z2 dt z dt

A(cos2 At + sin2 At)
cost At

But cos2 At + sin2 At = 1, so

dz

dx dx z dt Y dt. dx A

dt z 2 dt cos2 At.
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Another form of this answer can be ob-
tained by using the definition
sec At = (cos At)-1. Substituting
this gives:

dx
=

dt
A sec2 At.

In other words,

d(tan At)
dt

= A sec2 At.

Example 5.7

Find dx/dt when

x = (A + Bt) CO Dt2).

This expression can be differentiated
by considering x to be the product of
two functions of t, that is, x = yz
where

y = A + Bt,

z = Ct3 Dt2.

Then, from formula (4)

dx dz
y + z

dt dt dt

But, by the methods used in Example
5.3

= B
dt

dz
= C(3t3-1) D(2t2-1)

dt

= 3Ct2 2Dt.

So, for dx/dt we obtain

dx
= (A + Bt)(3Ct2 2Dt)

dt

+ (Ct3 Dt2)(B).

With all the factors multiplied out
and like terms collected, this be-
comes

dx
= 4BCt3 + 3(AC BD)t2 2ADt.

dt

An alternative way to find dx/dt is to
multiply out the expression for x
first.

x = (A + Bt)(Ct3 Dt2)

= BCt4 + (AC BD)t3 ADt2.

Now, applying the methods of Example
5.3 to this expression:

ga= dt4 dt3 dt2
BC + (AC BD) AD

dt dt dt dt

= BC(4t4-1) + (AC BD)(3t3-1)

AD(2t2-1)

= 4BCt3 + 3(AC BD)t2 2ADt.

EXERCISES

Find the derivatives with respect to
t of the following functions of t.

5.17 x = At + B cos t

5.18 x = A + Bt3

5.19 x = At sin (Bt)

5.20 x = A cos wt + B sin wt

5.21 x = A cost wt

5.22 x = (A sin Bt)/t2

5.23 x = 4A + Bt

5.24 X = (A + Bt2)-1

5.25 x = A/sin (Bt)

5.26 x = (A + Bt2)2

Appendix PROOFS OF DERIVATIVE
THEOREMS

Of the formulas in Table 5.7, we
have already derived 1, 2, 3, 7, and
8. In addition we have derived the
special cases of 6 that are listed in
Table 5.5. We will give derivations
of formulas 4, 5, and 6 here. These
derivations gloss over some points
that more careful treatment would
clarify, but they indicate the main
points of more rigorous proofs in
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enough detail for you to understand
their basis.2°

Formula 4 in Table 5.7 shows how
to differentiate the product of two
functions of t. To derive it we first
write out the expressions for x = yz
for two values of the variable: t and
t + At

x(t + At) = y(t + At)Z(t + At)

X(t) = y(t)-Z(t).

The change in x corresponding to the
interval At is

Ax = x(t + At) x(t),

which, on substituting the values of
x from above, becomes

Ax y(t+At)z(t_+At)y(t+At)z(t)
At At

y(t + At) z(t) y(t)-z(t).
At

This we can rearrange as follows:

Ax
At

y(t + At
)[z(t + At) z(t/

At

+ z(t)
[y(t + At) y(t)]

At

Now, we are ready to find the limit of
Ax/At as At 0, which is what we mean
by dx/dt. Doing this and also applying
formula 3 of Table 5.7 gives

dx
= lim [y(t + At)

z(t + At) z(t)]

dt At
At-.0

Ax = y(t + At).z(t + At) y(t)-z(t).

Now, we divide this by At to bet
Ax/At, preparatory to taking its limit

+ lim
et-.0

y(t + At) y(t)
(t)-

Atet

as AI 0.

Ax y(t + At) -z(t + At) y(t) z(t)

At At

This expression is still not in a con-
venient form for finding its limit.
The next step is to resort to a trick.
We will add and also subtract from the
numerator the quantity y(t + At)z(t),
which actually leaves it unchanged.2I

Then we have

20It is not likely that you will notice the
flaws in our derivation unless you have already
studied then elsewhere. Historically these
formulas were used for many decades before
proofs of them, acceptable according to modern
mathematical standards, were discovered. For
more complete proofs you should consult a book
on differential calculus.

21"Tricks," like this one, cannot be explained.
The reason for using them is that they have been
discovered, often long ago, to produce the de-
sired result. They should not be looked down
upon for they represent the ingenuity and hard
labor of some forgotten mathematician. For us
the proofs are easy because we need only read
them. We do not have to have the genius of the
an who originated the proof.

The next step is to apply a theorem
about limits: The limit of a product
of functions is the product of their
respective limits. Applied to the
first of the limits in Eq. (5.36) this
gives

z(t + At) z(t)
lim iy(t + At)

At
At--0L

[
lim y(t + et) Llim

z(t + et) z(t)

At-.0 t-0
At

But the first of these two limits is
just y(t) while the second is what we
mean by dz/dt. So the result is

lim y(t + At)
z(t + At)[

At

= y(t)-
dz(t)

dt

Exactly the same procedure applied to
the second term in Eq. (5.36) gives
for its value

z(t).
dy(t)
dt
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When we put these results back into
Eq. (5.36) we have the theorem we
set out to prove:

dx dz
y + z 111.

dt dt dt

As an example of the use of this
theorem, let's find the derivative of
the function x = (sin At)(cos Bt),
where A and B are constants. Here x
is the product of two different func-
tions of t: sin At and cos Bt. Let

y(t) = sin At,

z(t) = cos Bt.

Then x = yz. From formulas (7) and (8)
in Table 5.7 we have

dv
= A cos At,

dt

dz
dt

= -B sin Bt.

If we now substitute y, z, and their
derivatives into formula (4) (the one
we just proved), we get

dx
at

= (sin At) (-B sin Bt)

+ (cos Bt)(A cos At)

or,

dx
= A cos At cos Bt B sin At sin Bt.

dt

Before deriving formula (5) in
Table 5.7, it is worthwhile to explore
what is meant by x = y[z(t)]. To il-
lustrate this, suppose that z(t) = At2,
and that y(z) = cos z. Then, substi-
tuting for z in the expression for y
gives y = cos(At2), or simply
x = cos At2. Of course, we might have
written x this way to begin with, but
we will see that formula (5) is a
powerful tool in finding derivatives,
and this justifies this seemingly com-
plicated way of writing out x(t).

Now, let's turn to the theorem
to be proved. Corresponding to the
change in the variable from t to

t + At there is a change Az in the
value of z(t);

Az - z(t + At) z(t). (5.37)

Corresponding to this change in z
there is a change Ax in the value of
y(z). (Remember x = y(z).)

Ax = y(z + Az) y(z).

This last equation we can divide by
At to get

Ax + Az) -y(z)
At At

Again we will use a trick. This time
we both multiply this last equation by
Az and divide by Az, thereby leaving
it unchanged:

dx y (z + Az) - y(z) Az
At Az At

Now we replace Az in the numerator by
the detailed expression we found in
Eq. (5.37):

Ax y(z + Az) y(z)

At Az

z(t + At) z(t)

At

We are ready, at last, to take the
limit as At- O, which gives us dx/dt:

dx
dt

= Y(z)
az

At- OL

z(t + At) z(t)]

At

Again applying the rule for the limit
of products we have,

+ Az)
lim

y(z
dt Az

At-OL

iimrz(t + At)
At

But as At-0, Az also approaches zero
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(see Eq. (5.37)). Consequently we can Now, for a reason soon to be clear,
replace At by Az in the first limit:

dx ry(z + Az) y(z)]
lim

dt Az

lim
At-.0

z(t + At) z(t)

Az

These two limits we recognize as the
definitions of dy/dz and dz/dt, so we
have finally the desired result,

dx dz

dt dz dt.

We can illustrate the application of
this rule by applying it to our exam-
ple x = cos At2, which is the result
of combining x = y[z(t)], y = cos z,
and z = At2. From formula 7 in Table
5.7

LlY = sin z.
dz

From Table 5.5

dz
= 2At.

dt

Substituting these results in the
formula we just derived gives

dt= (-sin z)(2At)
dt

= 2At sin z.

Finally, substituting z = At2 gives

dx
= 2At sin At2.

dt

The final theorem to be derived
is formula (5) in Table 5.7. Here we
have the specific function x(t) = tn.
Again we start by finding x for two
values of the variabile, t and t + At.

x(t + At) = (t + At)n,

x(t) = tn.

The corresponding change in x is

Ax = x(t + At) x(t)

= (t + At)° tn. (5.38)

we note that

(t + At) = t(1 + At/t),

and, consequently, that

(t + At)n = tn(1 + At/t)n. (5.39)

The quantity (1 + At /t)° can be ex-
panded by using the binomial expansion
theorem. This theorem tells us how to
write out the sum of two numbers
raised to any power. Specifically, if
a and n are any numbers,

n
(1 a)° = 1 + a +

n(n
1 1-2

1)
a
2

+
n (n 1) (n 2)

a
3

1.2.3
(5.40)

If n is a positive whole number, like
5 or 23 or 752, this series of terms
comes to an end with that term which
contains an as a factor. In this case
the theorem is valid for any value
of a. If n is any other number, like
2 or it or 0.5, the series of terms
goes on forever. The theorem is still
valid though if the value of a lies
between 1 and +1. It was to ensure
this validity that we divided out the
factor t° from (t + The remain-
ing binomial (1 + At /t)° obeys the
restriction because, as At becomes
smaller and smaller while t remains
fixed, there must come a point at
which At/t becomes less than 1 and
remains less than 1. Consequently we
can safely apply the binomial theorem
to the expansion of (1 + At /t)°.

(1 + At/on = .
(At)

n(n 1)(At12

1.2 kt

13121/1127.2./fAIN3
123 kt

+

Substituting this back into Eq. (5.39),
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and the result into Eq. (5.38) gives
for Ax;

Ax = t° [1 + n(At/t) +
n(n 1.1

(At/t)2

1 D
.

= tn [1 + n(At/t) +
n(n

2

1)/
At/02

+ 1]

=
n(n

[n(At/t) +
1)

(At/t) 2 + .] .

Next, divide one factor At/t out of
the term in brackets:

Ax = .4-12 Ot [n 4.11.1& )

2 k t /

=1.1VAt ...]

= tn-1 At [n + 111:11109 + ...] .

2

Now, dividing this result by At, we
get

Ax = tn-I [n 2111

k2 t
IliAn + ...]

At

The limit of this expression as At-0
is the derivative dx/dt:

dx n fp_A\
= tn-1 n +

dt 2 k t
At-0

= tn-1 lim n + ni-1-1-7-1111\ + H .

At-0
i

[
2 k/

The second term in this last limit is
proportional to At, the next (not
shown) to (At)2, and so on. Each van-
ishes when At-0, so the limit of the
quantity in brackets is just the first
term: n. Consequently we get

dx
dt

= ntn-I.
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6.1 CHANGING VELOCITIES

There is an order in how we see

motion, a way to lay out the different

aspects of our perception in a chain

of ever increasing complexity. The

most common questions we ask about a
moving object, and the sequence in
which we ask them illustrate this or-
der. The first question about any
moving thing is, where is it? The next
questions are, how fast is it travel-

ing? Where is it headed? And then
there are still other questions. Is it
slowing down? Is it speeding up? Does
it move steadily along? Is it changing

direction?
In our everyday experiences we

answer these questions with everyday

words, or sometimes by waving our
hands, or by pointing. But to give
precise answers, answers that cannot
be misinterpreted, we invent elaborate

procedures, and powerful mathematical
tools. In the course of framing sci-
entific answers, we find ourselves led

to new, sometimes deep questions about

nature, and about our own perception
of nature. Even to answer the first
question of all, to tell where some-
thing is, brings forth a host of ideas.
The most taportant of them are the no-

tion of vectors, and the concepts of

coordinates and components. By consid-
ering the sequence of positions oc-
cupied by a moving object at different
times we come to the ideas of path
and displacement. Among the deep in-

sights gained from the study of posi-
tion and displacement are the concept

of invariance with point of view and,

at the -Jame time, the realization that

position is inextricably bound up with

a chosen frame of reference.

The next que'l-tion in order is

the question e: speed. At what rate
does position ehange with time? We
discovered that this next level of
questions cculd not be answered until

98

the answer to the first question was

mastered. To speak sensibly of speed

we must understand first the path of

motion. Then, to make the idea of

speed precise, we were driven to the

concepts of instantaneous speed, and

of instantaneous velocity. Just as we

need the mathematical tool of vectors

to describe position, we need a sec-

ond mathematical tool, the derivative,

to describe velocity.
In the preceding chapters we have

discussed how to answer questions
about poicion and velocity with great

precision. Our next step is to turn
to questions about how velocity
changes. That is our purpose in this

chapter. But our work will be easier

now. We already have at hand the es-

sential tools, vectors and derivatives.
They will suffice for the rest of our

work on motion.

6.2 ACCELERATION

We describe the position of a
moving object at any time t by its

radius vector r(t) relative to some
arbitrarily selected origin. r(t)

changes as time goes by. How much
something changes in a given time is
called its rate of change. The rate
of change of r(t) is the velocity v(t)

of the moving point. Now we have a
new question. What is the rate at

which v(t) changes? This rate is called

acceleration. We will designate it by

the symbol a(t).
We will see that a is a vector

like r and v find its relation to
them, and work out its components
quite easily. In fact, all this can be
done by analogy to the way we develop-
ed the idea of velocity from the de-
scription of position by r. In that
case our problem was to find the rate

of change of r with time, a rate which
we named velocity and to which we as-
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signed the symbol v. The result was
the concept of the derivative, the
limit of the ratio 467./At of the dis-

placement LI; to the time At during

which it took place. We summarized
these ideas in the symbolic equation,

v(t) =
dt

Now we face a very similar prob-
lem. We have a vector, the velocity
v(t), which in general we expect to
vary as time passes. We have already

adopted a name, acceleration, and a
symbol, a, for the rate of change of
v. Mathematically at least, this new
problem is exactly the same as the
old one except that we are dealing
with different symbols. In place of r
and v we now have v and as respectively.
But still we are concerned with a rate
of change, now the rate cf change of
v instead of the rate of change of r.

Mathematically the result must be the
same except for the symbols. In other
words

a(t) =
1 dt

(6.1)

Of course, there is more in the sub-

ject of acceleration than manipulation
of symbols in equations. We will have
to explore the meaning of Eq. (6.1)
and the others we will derive from it
by applying them to examples of real
motions. Yet, in this chapter, our
starting point will be this mathemati-
cal result. We will work our way back
from there to nature.

This mathematical approach to ac-
celeration will illustrate a differ-
ent method of treating scientific prob-
lems than we have used before. The
more familiar picture of bow thl na-

tural scientist works starts with
painstaking observation and measure-
ment. This is followed by an analysis
of the observations in which general
rules or laws are sought out. Very
often, in physics, the results of
such analysis are expressed in mathe-
matical equations which can be used
to predict the results of similar ex-

ACCELERATION

x-

periments. Sometimes the analysis of
observations also leads to the inven-
tion of new mathematical tools. We
have seen several examples of this:
coordinate axes, vectors and vector
components, derivatives. But in fact
this picture of the scientific method
is incomplete. At the same time a re-
verse process goes on. When new laws
have been fund or new mathematics in-
vented, they can be extended and gener-
alized quite independently. That is,
without immediate comparison with ex-
perimental observations. When this is
done the results may have no relevance
to what happens in nature. But many
natural phenomena have come to light
by just this sort of exploration. In
this approach the initial mathematical
ideas lead to predictions of what may
be found in nature if the original hy-

pothesis is true. Experimental obser-
vations guided by these predictions
are carried out. If the predictions
are confirmed, the hypothesis is ac-

cepted as a natural law.
Our discussion of acceleration

in this chapter is laid out according
to this second pattern. We start with
the mathematical tools developed in
Chapter 5, the method of derivatives.
Next we generalize this, using differ-
ent symbols INAL, the same mathematical
techniques. Finally we will return to
familiar motions in nature for inter-
pretation of our results.

Since a is a vector it has both
a length, or magnitude a, and a direc-

tion in space. We can express it in
terms of its Cartesian component vec-
tors:

_
a = az + ay + az, (6.2)

or its Cartesian components,

as = azi + ayj + azr. (6.3)

In analogy, once again, to the rela-
tionship of velocity and radius vec-

tor (Eq. (5.16),

; jelyz\-z tatayrt.

dt / 1 + k dt dt J
(6.4)
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As for the magnitude of al, it is

a = Afax2 + ay2 + az2

(6.5)Civ 2) (dv 2) (dv 2

dt dt dt

In the case of velocity, we had a
special name for the magnitude of the
vector: speed. For the magnitude of
acceleration there is no special name.

6.3 UNIFORM MOTION IN A CIRCLE

Several times we have discussed
the motion of a point traveling along

a circle with constant speed, a motion

so common and useful that it has the

special name, uniform circular motion.
In Example 4.5 we worked out the
parametric equations for the compo-

nents of the radius vector r. In sec-
tion 5.6 we found the velocity v as
a function of time. We will use this
same motion here as a first example

of the applications of the accelera-

tion equations presented in the last

section.
To start out, let's summarize

what we have already learned of uni-
form circular motion. If the point
moves along a circle whose radius is

R and whose center is at the origin

of coordinates the parametric equa-
tions for the polar coordinates of

the point are (see Eq. (5.22)),

r = R,

0 = wt.
(6.6)

The angular velocity w and the in-
stantaneous speed v are related by

(see Eq. (5.26)),

v = Rw. (6.7)

In terms of Cartesian components, the
radius vector of the point is (see Eq.

(5.24)),

= (R cos wt)r + (R sin ut)T. (6.8)

r is a vector of length R which makes

an angle 0 = wt with the x axis. The

velocity of the point, v = dr/dt, we
found to be (see Eq. (5.28)),

v = ( -Rw sin wt)T + (Rw cos wt)-1

(6.9)

is a vector whose length is Rw and
whose angle with the x axis we found
(see Eq. (5.27)), to be 0 + v/2. That
is, in this special case v is per-
pendicular to r (Fig. 5.8). Of course

is also tangent to the path of mo-

tion.
Now we want to find the accelera-

tion a of this same point. It is most
easily done by finding ax and ay first,

using Eq. (6.4),

_dvx dvy
x dt dt

From Eq. (6.9) we see that

vx = -Rosin wt.

Substituting this in the expression

for ax gives

ax
=

dt
(-Rw sin wt) .

Next, using formula 7 of Table 5.7,

ax = -Rw(w cos wt) = -10 cos wt.

In a similar way (you should check for
yourself) we find

a = -RAP sin wt.

Combining our results for ax and ay

we obtain

as = (-RaP cos wt)T + (-110 sin cot)T

= -w2[ (R cos wt)T + (R sin ut)31.

(6.10)

This equation expresses a as a func-
tion of time in full detail. But to
get a clearer interpretation of this
result, let's also find the length and
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direction of a. The length 4e get
from Eq. (6.5),

a = 1r(Rw2 cos wt) 2 + (--Rt.o2 sin wt) 2

= 4112W4 cost wt + sin2 wt

= 4R20 (cost wt + sin2 wt)

= R2 cd4

= af.02.

This result can be put in still an-
other form by eliminating w in favor
of v. Frcm Eq. (6.7) we have w = v/R.
Substituting this leads to

a = R(v/R) 2 = v2/R.

In summary, we have two alternative
expressions for a:

a = Rw2, and a = v2/R. (6.11)

This last equation is a famous and
much used relationship between a, v,
and r. It applies, of course, only to
our special though important example,
uniform circular motion. There is an
interesting point to be made about
Eq. (6.11). It relates the magnitude
of three vectors, r, v, and a. We know
that these lengths are independent of
the coordivate system used to describe
the vectors, that is, they are invari-
ant with respect to changes in our
point of view. Consequently we should
expect any relationship among them to
reflect this invariance. That Eq.
(6.11) does so is evident from the
absence of any subscripts referring
to axes, and of any unit vectors.

Next, let's find the direction of
a. In this special case there is an
easy way to do so. In Eq. (6.8) we
have a formula for r. When we look
carefully at Eq. (6.10) we see that it
contains this expression for r as a
factor. Making the substitution gives

(6.12)

This result tells us first that a is
proportional to r, and second, because

of the minus sign, that a is in ex-
actly the apposite direction to r.

The geometric relation of the
three vectors r, v, and a is shown in
Fig. 6.1. In this case we have found
that all these vectors have different
directions. This, in fact, is the
usual situation in motion. The velo-
city is tangent to the path of motion,
which can make any angle with the
radius vector. The acceleration, in
turn, may have and usually does have
still a different direction. The parti-
cular angles between these vectors
that we have found in this example,
however, are characteristic of uniform
circular motion alone. That is, if
you find for any motion that v is per-
pendicular to r, and that a is anti-
parallel to r, you can safely conclude
that the motion is an example of uni-
form circular motion.

One final point of interest is
this. In uniform circular motion we
deal with three vectors which have
constant magnitudes. But in no case
is the vector itself constant. Though
r, v, and a are all unchanging, r, v,
and a turn steadily in space as the
motion proceeds. This is just another
example of the basic nature of vec-
tors. They have two aspects, magni-

Fig. 6.1 The relative directions of ;', x7,

and a in uniform circular motion.
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tude and direction in space. Either
one of these may change in time, or
both may change together.

EXERCISES

6.1 The parametric equations for the
coordinates of a moving point are

x = 4 + 3t,

y= 6 2t.

(x, y in meters, t in seconds)

a) Find vx and vy for any time t.

b) Find ax and ay for any time t.

6.2 Find the magnitude and direction
of a for the motion discussed in
Example 4.2.

6.3 Find the magnitude and direction
of a for the motion discussed in
Example 4.3.

6.4 a) Find the magnitude and direc-
tion of the acceleration of the
ball discussed in Example 4.3.

b) Sketch the path of the ball
(Fig. 4.9). At several points
along the path draw vectors repre-
senting v and a.

c) Are there any times in this mo-
tion when the acceleration and the
velocity are parallel? Mutually
perpendicular?

6.5 A point oscillates along a

straight line. Its position as a
function of time is given by

r = (2 cos 2irt) j

where r is measured in feet and
t in minutes.

a) Find v as a function of time.

b) Find a as a function of time.

c) Can you find a simple relation
between a and r for this motion?

6.6 In uniform circular motion, the
period T of the motion depends on
the speed of the moving particle
and the size of the circle. Since
the centripetal acceleration also
depends on v and r, it too is a
function of the period T. How does
the acceleration depend on T? To
find this relationship:

a) Write down an equation express-
ing T as a function of v and r.

b) From this eouation and a = v2/r,
derive the equation

47r2r
a =

T2

c) Another way to derive this
equation is by using the relations

a = Or and T = 1/f

where f is the frequency of the
motion. Try this.

6.7 A particle moves with a constant
speed of v cm/sec in a circle.

a) Find the change in velocity
which takes place when the parti-
cle traverses a half circle.

b) How does the magnitude of 117
depend on the speed v? (For in-
stance, if we doubled the speed,
what would happen to AO)

c) How does this change in velo-
city depend on the size of the
circle the particle is traversing?
Why?

d) Do we have enough data to find
the average acceleration for the
half-circle motion? What else
must we know in order to do this?

e) If the circle has a radius of
r cm, how long does it take to
produce the change Av discussed in
(a)?

f) If the radius is doubled, how
is the time interval discussed in
(e) affected?

g) Using the results of (a) and
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(e), (and the definition of aver-
AE acceleration), show that the
equation expressing the magnitude
aAv of the average acceleration
over the half circle in terms of
the speed and radius is

2 v 2

a Av = 7 r

h) Discuss in detail the role
played by the speed and the ra-
dius of the circle in determining
the magnitude of the average ac-
celeration over a half circle.

6.8 Find an expression, similar to
that of Exercise 6.27, for the
average acceleration over a quar-
ter circle.

6.9 a) Show that for a particle moving
with a constant speed v in a cir-
cle of radius r, the average ac-
celeration over any arc 8 is
given by

sin 8/2 v2
a Av(0) --

8/2 r

b) Deduce the special cases of
Exercises 6.27 and 6.28 from the
general expression of (a).

c) Find the limit of aAv(0) when
8 0. Have you seen this expres-
sion before? What does it repre-
sent?

6.4 AVERAGE AND INSTANTANEOUS
ACCELERATION

When we first discussed velocity
we started with a graphical way to
represent the average velocity <-..v>

between two times. Then we considered
a sequence of shorter and shorter time
intervals and reached the concept of.
instantaneous velocity v. To clarify
our understanding of acceleration we
will do a similar thing.

The drawing in Fig. 6.2 illus-
trates the limiting process we used
to find the instantaneous velocity.
It shows the path of a moving point.

Fig. 6.2 Average velocities corresponding
to three displacements from ro.

Specifically, the radius vectors to
the point at four time to, ti, t2, and
to are shown. Starting at the head of
1.0 three average velocity vectors are
drawn corresponding to the time inter-
vals At1 = t1 to, Ato = t2 to, and
Ato = t3 to. The vectors are along
the directions of the displacements
which occurred in these time inter-
vals, but their lengths, of course,
are not the same as the lengths of the
displacement vectors. The significance
of Fig. 6.2 is that it shows the way
this sequence of average velocities
approaches a limiting vector which is
tangent to the path. In other words,
the direction of the velocity - the
direction of motion - is along the
path.

Next we can proceed to a drawing
such as that in Fig. 6.3 (see next
page). The same path is shown, and the
same four radius vectors. But now, at
the end of each is shown the instanta-
neous velocity corresponding to each
time. It is clear that the velocity
vectors differ both in length and di-
rection. Just as we consider a the. .
sequence of change in r from ros now
we can consider the sequence of

11., .m11.

changes in v from vo.

.m11.

Air; = vo vo,

b;
. .

2 = v2 vo,

A;.
. .

1. = vi vo.
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Fig. 6.3 Instantaneous velocities at four
points.

To find these changes in velocity
graphically we can draw all four vel-
ocity vectors starting from the sa...e

point, as in Fig. 6.4. As the time in-
terval for the change becomes less
the changes in v also become smaller.
But, more important, these vectors
also approach a limiting direction,
not the direction of either vo or ro.
This limiting directioL _Is the direc-
tion of a(t0).

If we divide each change in velo-
..ity Av by the corresponding time in-

terval At in which the change occurred,
the resulting vector is called the
average acceleration for that interval.

> =et= (6.13)

Written out in more detail this is

;(t + At) ;7(0

Al

where t is the time at the beginning
of the time interval At. If we imagine
calculating a series of average ac-
celerations for shorter and 3horter
time intervals At all starting at time
t, this sequence approaches the limit-
ing value we call the instantaneous

Fig. 6.4 Changes in velocity corresponding
to three displacements from r0.

acceleration at time t. That is

i(t) = lim Qt. (6.14)
At-.0

But this is what is meant by the de-
rivative of v with respect to t. So
we can write

i(t) = (Ain
dt

(6.15)

So, this line of argument has brought
us once again to tne definition of as
that we started with in Eq. (6.1).

EXERCISES

6.10 Car A speeds up from rest to
40 mph. Car B speeds up from 30
mph to 70 mph. Can you decide
which has the greater accelera-
tion? If so, how?

6.11 A powerful motorcycle starting
from rest moves at 20 mph at the
end of the fi:st second, at 40
mph at the end of the third sec-
ond, and at 60 mph at the end of
the sixth second. Is it acceler-
ating uniformly? If not, how is
its acceleration changing? (In
which interval was it greatest,

1
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in which was it least?) Besides
the change in speed, what other
quantity plays a role in deter-
mining whether a body speeds up
quickly or slowly?

6.12 A particle moves in a straight
line with velocity v. It slows
down and stops. What is the
change A; in its velocity? (Re-
member that_the definition of
A; is Av = vfinai vinitial *)
What is the change As in its
speed? Compare the change in
velocity with the change in speed.

6.13 A particle moves in a straight
line with velocity v. It slows
down, stops, and then proceeds in
the opposite direction with speed
v. Find the change in the velo-
city of the particle. Find the
change in its speed. Compare the
two and explain any difference
you find between them.

6.5 ACCELERATION AND CURVES

It is a common misconception that
a motion is unaccelerated unless the
speed is changing with time. This is
reflected, for example, in the terms
we use when driving automobiles. The
gas pedal is called the accelerator.
If you drive along at a steady speed
and then step on the gas say you

accelerate. But when you round a
curve with the speedometer reading a
steady amount, you probably don't
think of your motion as an accelerated
one. Yet in section 6.2 we found that
indeed there is an acceleration pre-
sent in circular motion at constant
speed, an accleration along the ra-
dius of the circle. That acceleration
was concocted with the fact that the
direction of the velocity changes with
time even though the magnitude of the
velocity is constant.

It is possible to draw a dis-
tinction between motions with straight-
line paths and those with curved paths
that is related to the concept of ac-

celeration. Whenever something moves
along a straight line its velocity
must have one of two possible direc-
tions, the two opposite directions
parallel to the line. In this case
any changes in velocity that occur
must also be vectors in one of these
two directions. Were this not true,
the velocity vector would change its
direction as in Figs. 6.3 and 6.4,
and the motion would depart from the
straight line. Consequently the ac-
celeration, if there is any, is par-
allel to the straight-line path. This
means that in straight-line motion,
acceleration can result only from a
changing magnitude of the velocity
vector, never from a change of its
direction. In other words, for
straight-line motion there is no ac-
celeration unless the speed is chang-
ing in time. The fallacy we mentioned
above comes from extending this fea-
ture of straight-line motion indis-
criminately to other kinds of motion.

In the case of motion along a
curved path quite a different situa-
tion arises. There, even though the
speed may be constant, the velocity
never is. As the moving object pro-
gresses along its path the velocity
vector must turn with the pnth re-

maining always tangent to it. The
velocity, in other words, must change
its direction with time even though
its length may remain the same. This
necessary change in the velocity as
the motion continues results in an
acceleration. Expressed differently,
nothin: can round a curve without ac-
celerating.

6.6 ACCELERATION AND POSITION

Acceleration is the rate of
change of velocity with time, while
velocity, in turn, is the rate of
change of position with time. Written
in symbolic form this statement is

a =
d

dt dt kdti.
(6.16)
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If we have an expression for r and
must find a the procedure to follow
is this. First calculate the deriva-
tive of r with respect to t, obtain-
ing the velocity. Next, take the de-
rivative again with respect to t, the
derivative of v. The result is the
acceleration. In the course of this
calculation we repeat the process of
taking a derivative twice; we find,
indeed, a second derivative.

If necessary, we can go ahead
and find a third derivative, and then
a fourth. But to write down what we
mean by even the third and fourth
derivatives in the notation of Eq.
(6.16) is awkward. For these deriva-
tives we would have to write

dit (g)]
and

rAL
kNiAl Idt (dt idt dt/Jr

This is a clumsy way to write down a
fairly simple idea, the idea of find-
ing successive derivatives of the same
quantity. To avoid such cumbersome ex-
pressions there is a special notation,
a symbolic abbreviation, used to write
second, third, and ,urth derivatives,
or any order of derivative you may
want. It is as felluws:

dr d`r 413; d4;
etc. (6.17)

dt' dt2; dt3; dt4;

The first symbol in this list repre-
sents the derivative of r, or what
sometimes is called the first deriva-
tive of r. The second symbol weans
find the first derivative of r and
then find the derivative of the result.
The words used for the successive
quantities in Eq. (6.17) are the first,
second, third, and fourth deriv:tives
with respect to t. This notation can
be continued as far as you want. For
example, you could imagine finding
d25r/dt25 though we never will have
any need for such a derivative.

In terms of this shortened nota-
tion it is easy to write down the di-

rect relationship between acceleration
and position.

d2;
a =

dt2
(6.18)

The Cartesian components of a also are
easy to express. They are:

d2x _ d2z
az dt2' aY dt2' az dt2.

(6.19)

Henceforth, we will use this notation
freely wherever it is needed.

6.7 BEYOND ACCELERATION

To describe the motion of a par-
ticle we first specified its position
by the radius vector r. Then we stud-
ied its velocity v = aidt. To this
list, we have now added its accelera-
tion as = d2;/dt2. It would be only
reasonable to guess that next we will
study the third derivative of and
then, perhaps, the fourth. But, in
fact we will stop with acceleration.
Position, velocity, and acceleration
are enough, the subject of kinematics
is complete with these alone.

Why this is so could not be sus-
pected by you at this point in your
study of physics. It is the result of
the laws of dynamics, the fundamental
principles of nature that govern mo-
tion and which are the next stage of
your work in physics. There is no
logical reason that motion should in-
volve no greater complication than
second derivatives of position. It is,
indeed, one of nature's surprises, a
fact discovered from experiment and
still justified today despite three
centuries of intense investigation.

It is not our purpose in this
book to explore the causes of motion,
or the reasons why this great simpli-
fication in our labors comes about.
Yet it ds related to our everyday
experiences of motion. Our perceptions
of motion are of three sorts. First,
we are conscious of the positions of
things, mostiy because we can see
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them, but also because we can hear
them, feel them, smell them, or even
taste them. This perception we de-
scribe quantitatively with the posi-
tion vector r. Second, we are aware
of the speeds and directions of mov-
ing things, again mostly throigh our
ability to see. This perception we
describe by the velocity vector v.

Our third perception of notion,
which was discussed briefly in Chapter
2, is of another sort. If we are mov-
ing ourselves, it is not always easy
to know it. For example, when riding
in a car along a smooth highway at
constant speed, we can tell our own
motion only if we look out the win-
dows and watch things along the road-
side pass by us. Were we to close our
eyes, there is no way to be sure we
are moving (other than by such pre-

ACCELERATION

re-

vious associations as knowing the
sounds of moving cars). But, even with
our eyes fast shut, we can feel our
velocity change. When we stop, we are
thrown forward in our seats. When we
start up, we sink back into them. As
we round corners we are thrown to the
side. All these experiences are as-
sociated with acceleration. In fact,
acceleration is one aspect of motion
of which we have a direct perception.

If we seek for ways to preceive
higher derivatives of r then accelera-
tion we find them few indeed. Acceler-
ations do change, but to witness this
we must make careful observations.
They are not part of our everyday ex-
perience. Ultimately, this is the rea-
son we can end our description of mo-
tion with acceleration.


