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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to c: ace effec-

tive ways of presenting physics to college r....udents who are not pre-

paring to becomes professional physicists. Such an audience sight include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging frem four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi-level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in font- content areas: Forces and :fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

frcci co invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experiaicntal nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has lone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organizition. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read, manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Arai Widditsch

supervirgd the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson; of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the

New Instructional Materials
Commission on College Physics
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PREFACE

This fragmentary and preliminary mate-

rial fits into an outline of "multi-

level monographs" covering those as-

pects of electromagnetism which in our

view an undergraduate physics major

should come to know best. The approach

is phenomenological and macroscopic,

designed to take advantage of prior

experience; we begin magnetostatics
with magnets, for example. The mate-

rial is planned on two levels to lead

through the four fundamental empirical

laws of eler.tricity and magnetism to
electromagnetic radiation as a climax.

The propagation of electromagnetic
disturbances with velocity c, reached

in the "first course" material without

use of the calculus and equivalent to
the homogeneous wave equation, was
written in an elementary way by Oliver

Heaviside (Electromagnetic Theory,

London, Benny 1912, Vol. III, p. 3),

but only recently has appeared in the

regular pedagogical literature. In our

treatment we have tried to stress the

physical foundations of Maxwell's

great synthesis, stating in words the

argument corresponding to each mathe-

matical step. This results in a con-

siderably larger proportion of exposi-

tory writing relative to mathematics

than is customarily found in deriva-

tions of the wave equation from Max-

well's equations in their usual form.

On the other hand, expression of the

laws in differential form seems essen-

tial for tracing radiation to its

sources in a physically meaningful way;

the present Chapter 3 of Magnetostatics

could be followed almost immediately by

Chapter 5 of Monograph III, which would

trace radiation fields to retardation

effects. We regret having not suffi-

cient time to write such a chapter, as

well as the omission of what should

have been Chapter 3 of Magnetostatics,

an elementary treatment of magnetic

materials.

OUTLINE OF MONOGRAPHS ON ELECTRICITY AND MAGNETISM

I. ELECTROSTATICS II. MAGNETOSTATICS

III. CIRCULATION LAWS
AND THEIR

CONSEQUENCES

1. Electric Forces 1. Magnets and 1. Faraday's Law of

and Fields Magnetism Induction

FIRST
2. Electric Energy 2. Interaction of 2. Ampere's Law

COURSE and Potential
I Steady Currents Modified

MATERIAL 3. Electrical Proper-
ties of Matter

*Magnetic Proper-
ties of Matter

3. Propagation of

Electromagnetic
Disturbanceb

UPPER

DIVISIONDIVISION

*4. Electrostatics 3. Magnetostatics
Reformulated

*Maxwell's Equa-
tionsand Plane
Waves

COURSE . *Radiation Fields

MATERIAL

*No textual material was prepared in the summer of 1965 for these chaptars.



We have assumed no knowledge of
special relativity, but have emphasized
the necessity for choosing a frame of
reference in which to define electric
and magnetic field quantities, thus
laying a foundation for the historical
development of relativity theory. Un-
like mechanics, vacuum electrodynamics
needs no modification because of spe-
cial relativity except in interpreta-
tion, so that an excursion into rela-
tivity theory could be made before or
after study of the present material.

The experiments leading to the
four fundamental laws are described at
some length, but in use this written
material should be accompanied by dem-
onstrations and laboratory work. The
basic experiments should come to be a
part of genuine experience for stu-
dents, but a laboratory monograph
should be written as an extension of
the present outline. Ohm's law and cir-
cuitry, for example, do not play an
appreciable role in any other pro-
jected booklets. We cannot overempha-

size the importance of laboratory work,
although we were not able to undertake
detailed consideration of its content.

We assume that students will have
studied mechanics, that they know New-
ton's laws, the definition of work,
the meaning of the 2; symbol, and have
a working knowledge of elementary vec-
tor algebra before our material is in-
troduced. (We do define the vector
cross product as if for the first
time.) In the material designed for
upper-class work we assume basic cal-
culus. All vector calculus is developed
as needed, but we attempt throughout
to stress the physics, not the mathe-
matics, and attempt no mathematical
rigor.

The first chapters of Monographs
I, II, and III should be studied in
that order. The few discussion exer-
cises we include can only indicate a
type of problem we consider desirable.
Numerical problems, which we have made
no effort to provide, are also neces-
sary.

M. Phillips

R. T. Mara
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1 'ELECTRIC FORCES AND FIELDS

In very early times it was observed
that certain substances, most strik-
ingly amber after being rubbed with
wool, attract chaff and other light
objects. What we would call electro-
static effects were particularly trou-
blesome in the spinning of thread;
spindles were sometimes made of amber,
and attracted chaff and dust. Accord-
ing to Pliny, Syrian women called am-
ber itself harpaga, "the clutcher," .

and used the same word for spindle
This was probably the first consistent
and repeatable observation of an elec-
trical effect.

But Greek science did not include
any study of such odd and usually
chance effects, and the science of
electricity began with William Gilbert,
physician to Queen Elizabeth of Eng-
land. In his book, De Magnete, pub-
lished in 1600, Gilbert carefully dis-
tinguished between the behavior of am-
ber and that of a magnet, and showed
that the behavior of amber was shared
by a great number of substances. It
was Gilbert who gave the name electric
(from the Greek word for amber, elec-
tron) to the property itself, in order
to describe the attraction for light
objects shown by glass if rubbed with
silk, of wax or resin if rubbed with
wool or fur, and so forth for a long
list of materials. The title of his
book is nevertheless justified: The
advances Gilbert was able to make in
the knowledge of electricity seem
trivial compared with his achievements
in disentangling the essential facts
of magnetism.

During the great scientific revo-
lution of the seventeenth century,
surprisingly little more was learned
about electricity. The period was char-
acterized by much writing of a theo-
retical nature without sufficient rec-
ognition of the facts of electrical
phenomena, even on the part of such
intellectual giants as Descartes and

1

Robert Boyle. The theorizing continued
into the eighteenth century, but along
with it came the further development
of devices for enhancing electrical
effects including various "electrical
machines" such as the sphere of Fig.
1.1 which can be turned by a handle.
The immediate result was that electri-
cal phenomena became an exciting par-
lor entertainment, but the same devices
that shocked (literally:) and delighted
ladies and gentlemen in social gather-
ings also facilitated scientific obser-
vations. During the eighteenth century,
the essential facts of static electric-
ity became clear.

What nre the elementary facts?
Electrif objects, such as the amber
and glass of Gilbert's observations,
are said to possess an electric charge,
which is oftwo kinds: Unlike charges
attract each other, whereas like
charges repel. In naming the two vari-
eties of charge positive (+) and nega-
tive (--), Benjamin Franklin Was build-
ing into the language an important
principle: Unlike charges may cancel
each other, but the total amount of
charge, with due regard for sign, is
never changed. If we begin with a piece
of matter such as amber or glass wh..ch
is electrically neutral (exhibits no

Fig. 1.1
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electrical effects such as attracting
fluff or dry chaff), we may electrify
it by rubbing with cloth, but the cloth
then acquires an equal amount of charge
of the opposite sign. (In a problem
you are asked to devise a test of this
statement.) Charge is neither created
nor destroyed, although positive and

negative charge can neutralize each
other, and the two kinds of charge in
a neutral body can often be separated
from each other. This is the principle
of charge conservation, to which no
,xceptions have ever been found.

Charge is a property of matter
which can be described by giving its
magnitude and sign, and so is a scalar
quantity, like mass, (except that we
observe only one kind of mass). His-
torically, positive charge was defined

as that variety which remains on a

glass rod if it is rubbed with silk,
while negative charge is acquired by
amber or sealing wax if rubbed with
wool or fur. Franklin found the choice
of sign difficult to make, but a choice

was necessary to convey the principle

of charge conservation. The particular
sign convention for charge is actually
not important; it is important that

some sign convention be established and

consistently maintained.,
Charged bodies exert forces on

each other without actual contact, and

Fig, 1 .2

early in the eighteenth century it was
recognized qualitatively that the
force between two charged objects de-
creases as the distance between them

is increased. But before quantitative
aspects of charge could be investi-
gated, it was necessary to distinguish
between conductors and insulators. In-
sulators (once called "electrics," now
often called "dielectrics") are mate-
rials such as amber or.glass which can
be held in the hand and electrified by
rubbing. Conductors mre typically met-
als, in which charge is free to move
and can be conveyed from one part of
the material to another. An amber rod
is electrified only where it is rubbed,
but if a metal sphere on an insulating
rod is electrified by stroking it with

an electrified amber rod, the charge

is distributed over the sphere.
An observation of Franklin's led

Joseph Priestley (famous as the discov-
erer of oxygen) to the first statement

of the quantitative relation of elec-
tric force to distance. Franklin ob-
served that no electrical effects were
to be found inside a charged conductor

- no forces on a charged pith ball in-

side a metal can, as indicated in Fig.
1.2, for example - except very near
the rim. Priestley repeated the experi-
ment with a metal sphere that has a
small opening for inserting a test
charge sczh as a charged pith ball sus-
pended on a thread. From the absence

of any effect on the charge inside, he

concluded that the force between
charges varies inversely as the square

of the distance between them. In reach-

ing this con.l.lusion Priestley reasoned

by analogy: It was well known that a

uniform spherical shell of matter ex-
.

erts no net gravitational force on a
body inside the shell. This result is

a geometrical consequence of the in-

verse square law in three-dimensional

space, and the details are left to a

problem. The analogy between electric
and gravitational forces should be ex-

act, since on symmetry grounds the

charge should be distributed uniformly

over the surface of a conducting

sphere. Priestley's conclusion, pub-
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lished in 1767, is entirely valid, but

it received very little attention at

the time.
In 1785, Coulomb measured directly .

the force between two small charged

spheres by means of the torsion bal-

ance he had invented (Fig. 1.3), and

stated the result in terms of quantity

of charge as well as distance. For
reasons of symmetry two conducting

spheres of the same size should share

charge equally if they are touched to

each other, and an uncharged sphere

should take exactly half the charge of

an identical sphere when the two are

brought into contact. The forces be-
tween charges of known relative magni-

tude may then 'oe compared at fixed dis-

tance of separation, and Coulomb found

that both repulsion and attraction are
directly proportional to the product

of the twl charges involved. The ef-

fect of distance is then investigated

with two charges of constant magnitude,

and the force is found to be inversely

proportional to the square of the dis-

tance between them, both for repulsion

and for attraction
If ql and q2 represent the magni-

tude and sign of two fixed and well-

localized charges, the magnitude af the

force between them is expressed mathe-

matically as

F e kq1q2/r2.

Here r is the distance from one charge

to the other, both tak-,n as points, and

the constant k depends on the choice of

units for charge, distance, and force.

But force is a vector quantity, and the

force exerted by q2 on q1 is toward or

away from q2 depending on whether the

two charges ate opposite in sign or

alike. If iv is a unit vector directed

from q2 to ol as in Fig. 1.4, the force

on q1 at distance r from q2 is

F kq1q2r21/r2.

We shall measure q in coulombs, dis-

tance in meters, and force in newtons.

We shall return to the definition of

the coulomb, but may iota now that with

MblilW

3

Fig. 1.3

these units k is found to be 9 x 109,

'to a very good approximation. It is

seen from the equation that the dimen-

sions of k are newton-meter2/coulomb21
but it will not often be necessary to

write out these dimensions if we are
consistent in the use of units. The

coulomb is clearly a large charge,

since two coulombs at a distance of

one meter would exert on each ether a

force of nearly 10 billion newtons.

The stationary charges with which elec-
trostatic experiments are made are
small fractions of a coulomb.

If there are more than two charges

present, the total force on one of them

is found to be the vector sum of the

forces exerted by all the others taken

Fig. 1.4
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Aq3

Fig. 1.5

separately, as in Fig. 1.5. This is
equivalent to the statement that the
force between two charges is not al-

tered by the presence of a third, and

is called the principle of superposi-

tion. The principle of superposition
enables us to find tie force on a
charge produced by an known fixed
distribution of charge, whether well

localized or not. The force exerted on

ql is the vector sum of the effects of

all elements Aq of the distribution,
each Aq having its own distance r from

4
R x

\ /
\ t /

(012_01.

ale;/111)*Ib.

Fig. 1.8
ream bk11111.1tY 11111111101 COMM L. M. Pures11, hr perolsolon &km.
naval Servisos, Meg

the position of ql, and its own unit
vector pointed toward that position:

F 2:
kAgr
r2 (1.2)

all aq
This force is proportional to ql, and

depends on the position of ql; for
each different position the unit vec-
tors and the distances r from the fixed

charges Aq would be different. Yet the

size of ql may be considered separately

from its position; if iql were substi-
tuted for ql at any particular place,
the force on it would be redeced by one

half, but the direction of the force
would be the same -s before.

The region around a charge or a
configuration of charges where elec-
trical effects could be detected has
been called a field, in much the same
way that we might speak of the field

of influence of a person, or the field

(territory) of a traveling salesman.
But the electric field may be made
quantitative: Coulomb's law enables us
to describe the field intensity, as
experienced by any small charged body
qi. The field intensity at any point

in space is the force pei unit positive

charge placed at that point. It is a

vector quantity, designated by E,

which depends only on the fixed distri-

bution of charges producing the field
and the position of the point. The

field intensity surrounding an iso-
lated point charge q2 is

1 = kq2i/r2, (1.3)

where r is a unit vector radially out-

ward fkom the position of q2 to the

point at which E is considered (Fig.

1.6). If q2 is a negative charge, the
field intensity is directed toward q2,

in the direction of
The field intensity at a particu-

lar point P produced by the charges
dill of a fixed distribution is

E
Eac_tolkr (1.4)

ri

whore every unit vector C points from



ZLECTRIC FODCFS AND FIELDS 5

the corresponding element of charge of
charge Aqi toward P, and ri is the dis-
tance from Aqi to P. Positive elements
of charge Aq produce contributions to
the total field intensity which are di-
rected away from Aq, whereas contribu-
tions from negative source charges are
directed toward the sources.

Electric fields are often repre-
sented by drawing field lines. A field
line is a line drawn so that its tan-
gent is in the direction of the field
intensity at each point. The field
lines of an isolated point charge are
simply straight line radii originating
at the position of the point charge
(Fig. 1.7). The pattern of field lines
corresponding to two or more point
charges is more :,nteresting (Fig. 1.8).
The number of lines drawn does not
matter for our purpose, but the lines
begin at positive charges and end at
negative charges, and are therefore
closer together near the charges where
the field intensity is stronger. In
two dimensions we can show only 'a cross
section of the field, which actually
extends through three-dimensional
space.

There is no particular advantage
in introducing the idea of field inten-
sity for applying Coulomb's law to the
interaction of two or even several well-
localized charges. All we have done is
to divide the problem into two prob-
lems, the production of a field by a

set of charges considered as sources
of a field intensity at each point,

and the force F qE experienced by a

charge q at some particular point. We
shall see almost immediately that there
is indeed an advantage in the quantita-
tive definition of E for determining
the force exerted on a point charge by
surface and volume distributions of
charge, that hard problems often be-
come much easier if they are broken up

in this way. But the concept of field
intensity becomes almost mandatory when
we come to consider changing fields,
produced by charges which are not sta-
tionary, as we shall see in Monograph
III of this series.

Let us again consider the electro-

static field intensity whose source is
a point charge. The sign and magnitude
of the charge is represented by q, and

Fig. 1.7

Fig. 1.8

Fres IMICLIT MIMICS COUNSIt. I. 14. P..11. b7 Ponligalim Uwe.
Umbel &wises, kw.
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Fig. 1.9

it follows from Coulomb's law that the
force per unit positive charge at dis-
tance r and in the direction P from q
is

kqiir

the position of q. Let the area of the
sphere be S, so that a portion of the
surface area is AS, taken small enough
that it is approximately plane. To
every such area there corresponds a
particular direction, normal to the
surface, and thus AS may be represented
as a vector AS, whose direction we take
positive outward from the sphere. The
small areas need not be equal in magni-
tude, but we can specify each area by
an index i; the field intensity at the
position of ASI is RI. We shall call
the scalar voduct El-al the flux of
2. through thib particular increment of
area; and we can find the total flux of
I through the surface of the sphere by
summing 11 Agi over the entire sur-
face. If the total flux is called 4?g,
then

41)g NE If, Agi. (1.5)

But for our sphere the field intensity
Land al are parallel at all points
on the surface (Fig. 1.9), so that

(1.3) E ti A& E x [total area

closid
A remarkable relation between grand .

its source q can be stated in terms of
what is called the flux of E. The mean-

ing of flux can be demonstrated by con-
sidering a sphere whose center is at

Ar

Fig. 1.10
art« own owns, INTRODUCTION TO IBLECTROOMORTTIC THEORY.
Ann sses. INS.

qk
-- 4ffr2
r2

since the magnitude of Rat every point
on the sphere of radius r is kq/r2.
The total flux through the surface of
a sphere is thus independent of the
size of the sphere.

But we can carry the idea further
to prove that the total flux of I orig-

inating from q is the same for any
closed surface surrounding q. Since the
flux through a portion of spherical
surface centered at q is independent
of the radius, clearly we could make
a complicated surface consisting of

spherical segments connected by seg-
ments of cones without changing the
result. Let us now consider a more
general surface as shown in Fig. 1.10.
The flux through any AS is still I a
MS cos 8, just the magnitude of 1

times the component of oar parallel to

I, or the projection of A on a sphere
whose center is q. Thud the shape of
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the surface does not matter. What does
matter is whether the surface surrvmds
the charge q. If it does, the outward
flux of E is 4wkq. If the surface sur-
rounds a volume of space outside the
charge, the outward flux is equal to
the flux into the volume, so that the
net flux is zero.

That the total flux from a closed
surface is just 4wkq does not depend on
the localization of the charge to a
particular point or small region. In
fact, the superposition principle tells
us at once that there may be many point
charges, or a charge distribution
"smeared out" in space, and that the
total flux of 1 through a closed sur-
face is 4wkQ, where Q is the total
(net) charge enclosed by the surface.

Thus

E ri agi 4vkQ, (1.6)

s closed

where Q LAq within the volume en-
closed. This remarkable result is
known as Gauss's law; we note that the
physical content of Gauss's law is the
same as Coulomb's law. The original
form of the law is essentially a state-
ment of the field intensity in terms of
the sources; Gauss's law enables us to
locate sources if the field is known.
Any closed surface through which there
is not net flux contains no net charge,
whatever the surface size. But we shall
see that Gauss's law also enables us
to find very easily the field produced
by charge configurations for which the
direct sum of the vector field incre-
ments is difficult to evaluate.

Before applying Gauss's law to the
solution of problems we should note the
existence of the geometrical factor 4t.
This factor arises from the inverse
square law in three-dimensional space:
It is simply the area of a sphere di-
vided by r2. The appearance of 4w is
then the consequence of living in a
three-dimensional world for any quan-
tity which decreases inversely as the
square of the distance from a point
source. In this sense the inverse
square law is geometrical: The surface

density of any quantity which flows
from a well-localized (point) source
falls off in all directions inversely
as the square of the distance from the
source, if'it is transmitted through
space without loss. In the problems
you will see that this is true for a
stream of particles, and for light.

The geometrical factor 4v in
Gauss's theorem will be carried into
other equations relating sources and
field intensity unless the constant k
is defined to suppress its appearance.
To save writing 4w again and again in
these relations the point charge form
of Coulomb's law in mks units is writ-
ten k 1/4wco, so that

F
4lico

1 011 cla

r 2 (1.7)

where co - 1/4y X 9 X 109 8.85 X 10-19

coulomb2/newton-meter2. We note that
the factor 4w is written explicitly in
one relation to avert its appearance
in others. Its appearance somewhere is
unavoidable. So far as we are concerned
at this stage the coulomb as a unit of
charge is a standard arbitrary unit, as
is the length of a meter stick. Once
all the units have been decided upon,
the constant k must be evaluated by
experiment, and we have said that in
mks units it is very nearly 9 x 109.
In principle the size of the coulomb
could be defined by fixing a value for
k in advance, but in practice the unit
of charge can be much more accurately
defined through the interaction of
electric currents, as we shall see in
Monograph II.

In mks units Gauss's law is sim-
ply

2: r AST - Q/co, (1.8)

S closed

with Q the total charge enclosed by the
surface, as before. Let us apply this
theoreWto a spherical distribution of
charge, for example a charged spherical
conductor. Since there is nothing to
distinguish one direction of space
from another, we can conclude from



8 ELSCTROBTATIC8

symmetry considerations that the field

intensity at the surface of the mathe-

matical sphere (concentric with he

sphere of charge) is directed radially

outward, but we do not initially know

its magnitude. The total flux of 2

through the surface of a sphere of ra-

dius r is therefore simply 4vr2E, and

by Gauss's law this flux is Q/E0, where

Q is the total charge on the sphere.

But if

4sr2E - Q/co,

Fig. 1.12

and I is directed radially, then

E
47rE0 r2'

1 Qi.° (1.9)

where k is a unit vector directed ra-

dially out from the center of the

sphere. This is exactly the same as if

Q were a point charge located at the

center of the sphere. The same result

would be obtained if Q were distributed

uniformly, or in any spherically sym-

metric way, throughout the volume of

the sphere. Thus the wield of a spher-

ically symmetric distribution of charge

is indistinguishable, outside the re-

gion of charge, from the field of a

point charge (Fig. 1.11). This result

is by no means obvious from Eq. (1.4)

with the sum of bq extending over all

regions of the sphere.
The application of Gauss's law to

a long cylinder of charge to find the

field intensity is again much easier

than computation of the sum of field

increments from the elements of charge

in the cylinder. Consider a cylindri-

cal conductor, for example, so long

that its end effects are negligible,

and let the Gaussian surface also be a

cylinder, its axis coincident with that

of the conductor (Fig. 1.12). Again we

invoke arguments of symmetry: The field

intensity E is radially symmetric in a

plr._lie perpendicular to the axis, and,

since the ends of the cylindrical

charge are relegated to infinity,

there is no axial component of E. There

is then no flux through top and bottom

or our Gaussian surface, and the magni-

tude of E .s the same at all points on

the lateral surface. For a Gaussian

cylinder of radius r and length L, the

total flux is then E times the lateral

area, which is 2rL:

44 - 2srLE Q/co,

from which

E
1 (Q/L)F

2Irco
(1.10)

where F is a unit vector from the cen-
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ter of the cylinder at right angles to

the axis, and Q/L is the charge .,-)r
unit length. Again, as with a sphere,

we see that the details of the charge

distribution do not matter, so long

as the distribution is cylindrically
symmetric. Any cylinder of charge pro-

duces the same field outside the cylin-

der as would be produced by an axial

line of charge with the same charge

per unit length, The formula for

the field intensity accompanying a
line of charge is one we have not pre-

viously encountered; at the expense of

more trouble the same formula can be

derived by summing Eq. (1.4).

It may be noted that the fields

of both point and line charges become

infinite at the source in the limit of

geometrical points and lines. Fortu-

nately this need not worry us: Macro-

scopic charges are alwar- spread out

over finite volumes of space, and even

elementary charged particles such as
the electron are thought to have finite

extension in space. And the charge den-

sity, defined ns the charge per unit

volume, must be finite (not infinite)

if the total charge of any object is

finite. Inside a region of finite
charge density the field intensity is

also finite, and the determination of

the field inside a uniform spherical

distribution of charge is left to a

problem. The question of the field in-

side a uniform charge distribution

with cylindrical symmetry is equally

easy to answer, given Gauss's law.

Let us consider one further appli-

cation of Gauss's law, a most important

one, to find the field just outside the

surface of a charged plane conductor. To

do so we must examine further the na-

ture of a conductor in electrostatics.

A conductor was defined as a substance

in which charge is free to move, but in

saying statics we demand that the

charge not move. Almost by definition,

then, a conductor having a ..tatic

charge can have no field at all inside

the conductor, and even at the surface

there is no field lying in the surface:

Any such fields would produce motions

of the charge free to move and we would

no longer have a static charge. This

tells us two things; The nct free

charge of a conductor is on its sur-

face, with the interior electrIcally

neutral, and the field intensity just

outside the conductor is normal to the

conducting surface.
The application of Gauss's law to

find the relation of the external field

to the surface charge follows immedi-

ately. Our Gauss :an surface is a short

fat cylinder partly inside and partly

outside the conductor, its flat exter-

nal surface parallel to the surface of

the conductor (Fig. 1.13). Let the

cross section area of this cylinder be

S. Since the field intensity is normal

to S, and all the flux out of the vol-

ume passes through this one surface,

the total flux is just ES. Therefore,

(Qvs)Eico, (1.11)

where n is a unit vector normal to the

surface of the conductor, and Q/S is

the charge per unit area of surface.

The surface density of charge is such

an important quantity in electrostatics

that it is often given a special sym-

bol, a - Q/S. The magnitude of the

field intensity just outside the sur-

face of a conductor is then simply

a/co, in terms of the density of sur-

face charge.
If one is close enough to the sur-

face of any conductor, the surface may

I

I I

I I

I

I /

Fig. 1.13
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be considered plane, or, to put it in
a different way, if one takes a suf-
ficiently small portion of any surface,
the portion may be considered plane.
The field just outside the surface is
given by Eq. (1.11), even for a con-
ducting sphere or cylinder, but then
the lines of E begin to diverge. For a
very large plane, or for a set of two
plane conductors with equal and oppo-
site charges, we can obtain a field
which is uniform in magnitude and in
direction over a considerable volume
of space.

PROBLEMS

(The first nine problems were contrib-
uted by A. B. Arons.)

1.1 Draw on your own experience to list
at least five or six physical situ-
ations that you would describe as
being associated with "electrifica-
tion" of various objects. Be sure
to identify what was rubbed against
what, and indicate what effects
provided evidence of the electrifi-
cation. How can you tell whether or
not a particular object is "elec-
trified"? (In addition to cases in
which you might have rubbed one
material with another, recall cir-
cumstances in which you yourself
were involved - scuffling over a
carpeted floor, handling dacron or
nylon clothes, etc.)

Similarly, list five or six ef-
fects that you have heard described
as "magnetic"; i.e., describe the
behavior of magnets (include some
of the things you can and cannot
do with them). How can you tell
whether or not a particular iron
bar is a magnet?

What evidence leads us to con-
clude that we are dealing with dif-
ferent physical effectsjustifying
the introduction of the two names
"electric" and "magnetic"? (Cite
some of the differences between

the two types of phenomena; recall,
for example, the unalterable "two
endedness" of magnets; the fact
that one can hold a magnet in his
hand without having it lose its
magnetic property, etc.)

1.2 You have undoubtedly heard the
word "charge" used many times in
connection with electricity. At
this point, what meaning do you
associate with this term? Can you
see "charge" on an object? How can
you tell whether or not an object
is "charged"? What experiences with
electrified bodies lead us to the
notion that we might conceive a
body as carrying different quanti-
ties or "amounts of charge"?

1.3 How do we arrive at the conclusion
that "like charges repel"? (What do
we mean by "like" charges? How
might we set up a situation in
which we can assert with confidence
that two objects carry like
charges? Describe some possible
experiments.)
A piece of amber rubbed with

wool and a rubber rod rubbed with
fur are observed to repel each
other. What is the justification
for saying that the amber and rub-
ber carry like charges?

What do we mean by "unlike"
charges? How do we know when two
bodies carry unlike charges?

1.4 Describe a hypothetical experimen-
tal observation that wou.id force
you to say, "Here is a body which
carries a third kind of electric
charge." (Visualize the interac-
tions between this body and sus-
pended rods of rubber and glass
carrying respectively the two kinds
of charge we have already recog-
nized.) Under these circumstances
what would happen to statements and
descriptions based on use of the
two adjectives "like" and "unlike"?
Outline the nature of the accumu-
lated experience that leads us to
believe that only two kinds of
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electrical charge occur in the
physical world. Has this assertion
been prong

1.3 During the eighteenth century two
other names, "vitreous" and "resin-
ous," competed with Franklin's
"positive" and "negative" for ac-
ceptance in the description of
electrical phenomena. Why do you
think Franklin's terminology fi-
nally won the competition? Is there
anything wrong with the other ter-
minology?

1.6 Between 1729 and 1736 two English
friends, Stephen Gray and Jean
Desaguliers, reported the results
of a series of experiments "show-
ing that the Electric Vertue of a
glass tube may be conveyed to any
other bodies so as to give them
the same property of attracting and
repelling light bodies as the tube .

does when excited by rubbing."
They showed, for example, that a
cork or other object as much as
800 or 900 feet away could be elec-
trified by connecting it to the
glass tube with materials such as
metal wires or (moist) hempen
string. They found that other ma-
terials, such as silk, would not
convey the effect. As a matter of
fact, they discovered in early
painstaking experiments that the
distant object would not become
electrified if the "transmission
line" made contact with the earth
and they learned to separate it
from the earth by suspending it on
silken threads.
Experiences of this kind led in-

vestigators to discern that elec-
tricity seems to move freely on
some materials ;nd not on others.
Describe in detail several addi-
tional experiments you might per-
form (or can visualize) with vari-
ous different objects - experiments
that support the findings of Gray
and Desaguliers. Why do we intro-
duce the names "conductor" or "non..
conductor"? To what experiences do

these names refer? Are our own bod-
ies conductors or nonconductors?
Cite evidence for your conclusion.

1.7 Suppose we are investigating the
force between two small conducting
charged spheres A and B of identi-
cal size (Fig. 1.14). The force is
measured by the twist in the sus-
pension fiber when the center of
the spheres are 3.00 cm apart.
After measuring the force in a
given situation when the spheres
repel each other and obtaining a
value denoted by F1, we take an
identical, but uncharged, sphere C
on an insulating handle and bring
it in contact with sphere B. Then
we remove C.

(a) What are we inclined to say has
happened to the quantity of charge
carried by sphere B? On what
grounds and with what justifica-
tion?

(b) In the light of the statements
made in the preceding paragraph
about Coulomb's investigations,
what do we expect will happen to
the magnitude of the force between
A and B at the previous center to
center separation of 3.00 cm. How
will the new value of force com-
pare with F1 numerically?

8 (:)

Fig. 1.14
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(c) Leaving sphere B as it is after

this experfient, we discharge C and

bring into contact with A. Then re-
move C as we did before. We measure

the force between A and B at 3.00

cm again. How does it now compare

with F1? Describe the results to be

expected after additional steps of

this kind.

1.8 Suppose we start with a given

charged, conducting sphere, A. Now,

as we did in Problem 1.7, we bring

this sphere in contact with an-
other, uncharged sphere C, held by

an insulating handle. Suppose that
C is smaller than A. How do we ex-
pect the charge to divide between

the two spheres? Suppose C is
larger than A? Very much larger
than A? (Your responses to these

questions are not expected to be
numerical. Use words such as "more,"

"less," "very much less," and ex-
plain how you arrive at your in-
ferences.) In the light of this
discussion, how would you describe

what happens when you touch a
charged conducting sphere or estab-

lish a condticting path between the

sphere and the earth? How would you

attempt to describe when transfer

of charge from one object to an-

other ceases? What happens when two

differently charged conducting
spheres are brought in contact?

(Note: These questions do not have

simple, pat answers; they will

eventually have to be reexamined

in a broader context. They are be-

ing raised at this point to en-
hance your awareness of Some of

the problems that lie below the

surface of the present discussion.)

1.9 In philosophical discussions of

scientific knowledge, it is fre-

quently pointed out that we arrive

at the conviction that a particu-

lar set of concepts, insights, and

descriptions is "correct" not by

following one single sequence to a

"proof" or an isolated right are-

swer but by finding that the en-

tire network of concepts and ex-
perimental observations is inter-

nally consistent - that we can
criss-cross the network in a vari-

ety of different sequences and di-

rections and not develop contra-
dictions. Let's illustrate this

notion in connection with our de-

veloping conception of electrical

phenomena:
Suppose that in a Coulomb tor-

sion balance experiment we charge

sphere A on the torsion balance
positively. Suppose that B and C

are now observed to exert forces
of equal magnitude on A at a fixed

distance between centers (the

forces being, of course, opposite
in direction). What would we be

led to say about the quantii:ites

of unlike charge carried by
spheres B and C? If we touch B and

C together what would we expect as

a final result? It is actually

found under such (or analogous)

circumstances that the two objects

are electrically neutral after

contact. In what ways does this

reinforce our conceptions of
"charge," "quantity of charge,"
"conservation of charge," neutral-

ity, or unelectrified objects,
etc.? The electroscope shown in

the diagram (Fig. 1.15) consists

of two leaves of flexible gold

foil suspended on a conducting rod

which passes through the insulat-

ing stopper of the protective
glass flask to a metal cup at the

top. It is observed that if an

electrified object, such as amber

that has been rubbed with wool, is

put into the cup without touching,

the two gold leaves diverge as in-

dicated, instead of hanging down.

(a) Account for this behavior.

(b) lhat will happen if the amber

rod is removed, without having

touched the metal cup?

(c) Could you use this apparatus

to test whether the charge ac-

quired by silk used in electrify-

ing a glass rod is equal and oppo-
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1

site to that acquired by the glass

rod? How?

1.11 Show that a uniform spherical
shell on matter exerts no net
gravitational force on a point

mass m inside by considering a
double cone of very small aper-
ture, its apex at the point mass,
which cuts through the sphere on
either side (Fig. 1.16). What is
the total gravitational force on
the point mass due to the portions
of the spherical shell inside the

double cone? Complete the argu- .

ment to include all the mass in

the shell.

1..12 (a) Show by applying Gauss's law
to the interior of a hollow, con-
ducting, charged sphere that the
field inside the sphere is zero.

(b) Assume that you have a uni-

form volume distribution through-
out a sphere. (This is not a con-
ductor!) Show that the field in-
tensity inside the sphere is given

by

E . rp11/3E0,

where F is a radial uuit vector
and p is the charge density, or
charge per unit volume. (Simply
apply Gauss's law to a spherical
surface of smaller radius than
the radius of the charge distri-

bution.)

1.13 (a) Use Gauss's law to show that

the field intensity inside a uni-

form cylindrical shell of charge

is zero.

(b) Assume you have a uniform
volume distribution of charge
throughout a long circular cylin-
der, and show that I inside the

cylinder (not near the ends) is

E ra/2co,

where I: is a unit vector radially .
directed out from the axis of the

cylinder, and p is again the

charge density.

1.14 If light is emitted constantly
and uniformly in all directions
by a spherical source,, and there

Fig. 1.15

Fig. 1.16
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is no intervening material to ab-
sorb or reflect it, show that the
intensity (amount of light per
unit area received by a surface

at right angles to its direction)
falls off inverrely as the square
of the distance from the center
of the source.

t,)
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The science of electrostatics began
with the study of small and often
chance effects such as the attraction
of amber for thread and chaff, but in
the early days of our planet electrical
energy may have played an essential
role in the beginning of life itself.
According to one theory, incessant
flashes of lightning through an atmos-
phere of nitrogen, carbon dioxide, and
water vapor produced the first organic
molecules, from which organized life
developed. The frequency and intensity
of lightning have diminished, but a
lightning flash today obviously re-
leases an enormous amount of heat and
light. The connection between this im-
pressive natural phenomenon and the
behavior of amber was established in
the eighteenth century by Benjamin
Franklin. The weather is a complicated
matter indeed, which scientists are
only beginning to undorstand, but the
recognition that lightning is electri-
cal certainly extends electrical phe-
nomena beyond the small theater of
parlor entertainment.

In this chapter we are concerned
with one aspect of electric energy:
work done by, or against, electrostatic
forces. That these forces are really
very strong is usually masked by the
charge neutrality of most objects.
Equal amounts of positive and negative
charge, however great the amounts sep-
arately, can neutralize the effects of
each other if they are nearly coinci-
dent; this is equivalent t) the state-
ment that lines of electric field in-
tensity end, as well as begin, and that
ordinarily there is just about as much
negative charge as positive charge in
any particular region. But if there is
t-e possibility of strong forces there
is also the possibility of utilizing
these forces to do work. In addition
to any possible utility, we shall see
that in many instances it is simpler
to describe electrical phenomena in

15

terms of work and energy thin in terms
of forces. For ono thing, energy is a
scalar quantity while force is a vec-
tor, requiring three numbers to speci-

fy it instead of only one.
Let us consider the energy.asso-

ciated with the interaction of two
point charges. Work is performed
against the 'force of repulsion in
bringing two like charges closer to
each other, that is, in decreasing
their separation r. How much work? We
cannot get the answer by simple multi-
plication of the force given by Cou-
lomb's law and the relative displace-
ment, since the force itself depends
on the distance between them and is
not the same at the beginning of the
displacembnt as at the end. Rigorous
derivation of the formula for computing
the energy expended to displace the
charge ql from r' to ro as indicated
in Fig. 2.1 requires use of the calcu-
lus. Here we shall assume the correct
answer and see that it is a reasonable
consequence of Coulomb's law. First let
us note that we do this work very
slowly; no kinetic energy is given to
the charged body, and the force we ex-
ert is equal to (not greater than) the
electrostatic repulsion of the two

charges.
The correct answer for the work

we -lust do in moving qi from r' to r0,
keeping q2 fixed, is

w kq
1
q 2

r
(11012) _r0).

r r r'0

(2.1)

Here, to save writing in dealing with
point charges, we are letting k stand
for the constant in Coulomb's law, as

91
rro '

Fig. 2.1



16 ELECTROSTATICS

F

q2 ro r1

Fig. 2.2

r

From PM PHYSICS. by permission D.C. Heath rind Company. MO

at the beginning of Chapter 1. Equation
(2.1) is clearly correct if the dis-
placement (r' r0) is very small, so
that l/ror' is very nearly 1/r02 or
1/1"2. It can be justified for larger
displacements by plotting the Coulomb
law force against variable r, and find-
ing the area under the curve between
any two particular values of r (Fig.
2.2), just as one finds the work done
by (or against) a mechanical force
which is not constant over the dis-
placement. Actually it is valid for
any displacement, large or small, of
ql along the line on which ql and q2
lie.

If we begin with q1 so far away
from q2 that the force on it is negli-
gible, the outside work required to

qt ro

Fig. 2.3

bring it up to distance r0 from q2 is
simply

W kqlq2/ro (2.2)

Once the wort' has been done we may say
that the pair of charges themselves
possess this energy. We have held q2
fixed while bringing up q1, so that we
could say, alternatively, that ql now
possesses energy kq1q2/ro owing to its
position with respect to q2, energy
which it did not have when it was far
away.

We know from mechanics that en-
ergy a body possesses by virtue of its
position is called potential energy.
If we say that kq1q2/ro is the poten-
tial energy of ql at distance r0 from
q2, we are calling the potential en-
ergy of ql zero for r = infinity. This
is an arbitrary but convenient floor
from which to measure electric poten-
tial energy of point charges.

The work represented by Eq. (2.1)
depends only on the radial displace-
ment. That is because the force be-
tween ql and q2 is along the line join-
ing them; the charge ql could be moved
anywhere on a sphere of radius r0 about
q2 as a center without costing any work
whatever against electric forces (Fig.
2.3). Moreover, in moving the charge
ql from P' to P0 in Fig. 2.4, the same
amount of work is done for all the
paths shown, only the radial portions
of the path require any "pushing"
against the repulsion of the charges,
and in doubling back to larger dis-
tances from q2 one gains energy from
the repulsion. The work put into carry-
ing charge ql from P' to P0 is
kq1q2(1/ro 1/r'), regardless of the
path. Forces for which the work done
in going from one point to another is
independent of the Rath are called
conservative forces, and electrostatic
forces are conservative.

Let us rewrite the external work
required to move ql from r' to r0 in
terms of the electric.field intensity
associated with the charge q2 as given
by Eq. (1.3) of Chapter 1. From the
definition of work as the scalar prod-
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uct of force and displacement, we
write the work done against the force
q1E, for a displacement bs, so small
that is essentially constant over
the distance interval, as q1 a. It
is exactly the sum of such increments
of work that we have considered in ob-
taining Eq. (2.1).

W -gill = ql (kq2/ro kq2/r ' )

qt (00 01)0 (2.3) .

where the sum is over all As on any
path from P' to Po. The last expres-
sion for this work makes explicit its
dependence on ql and the difference of
two quantities which depend on the end
points of the path in relation to the
source of field intensity, q2. The

quantity (P0 -0') is called the dif-
ference of potential between points P0
and P'. It is the work per unit posi-
tive charge required for the transfer
of position from P' to Po.

The difference of potential be-
tween any two points in an electrosta-
tic field may be defined as the exter-
nal work per unit positive charge re-
quired to move the charge from one
point to the other, regardless of
whether the field is that of a point
charge. In going from point P1 to
point P2,

P2 -P1 = I a, (2.4)

where the sum is to be taken over all

line elements of any path beginning at
P1 and ending at P2. The negative sign
is due to the fact that in doing work
on the positive charge you are acting
against the field if the charge has
more potential energy at the end of

the path than at the beginning. If
(02 -.01) is positive, we say that P2,
the final point, is at a higher poten-
tial than P1, the initial point.

In order to use the word poten-
tial, instead of potential difference,
we must establish some conventional
floor, just as for potential energy.
What floor is established, what.posi-
tion is said to be at zero potential,
is a matter of convenience. For a
point charge, or a configuration of

q2
Fig. 2.4

p'

charges localized in a small region of
space, it is customary to say that the

potential is zero at very large dis-
tances from the charge, i.e., at r =
Thus the potential at point P which is

a distance r from point charge Q is

0 = kQ/r. (2.5)

Since, as we have seen, the field in-

tensity outside any distribution of
charge having spherical symmetry is
indistinguishable from that of a point
charge at the center of the sphere,
Eq. (2.5) is also the potential at a
point r distant from the center o'2 a
sphere of charge, so long as the point

is outside the sphere.
The law of superposition holds

for potential as well as for field in-
tensity, and the superposition is much
easier to accomplish for a scalar quan-
tity than for a vector field. The po-
tential at point P in Fig. 2.5 is sim-
ply due to the presence of three fixed

q = 12

15 4m jp..

q = 30

Fig. 2.5
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charges, k(qi/ri + q2/r2 + q3/r3). It

is left to the problems to show that,

with the signs and magnitudes of

charges indicated, the potential at P

is positive, while the potential at P'

is zero. This means that work would

have to be done some outside force

to bring a positive charge from great

distance to P, whereas no network is

needed to bring one to P'. Other points

in the field are at negative potential.

What does that mean?
The applicability of the law of

superposition means that a general for-

mula can be written for the potential

whose source is a fixed distribution

of charge:

sti) = E k Zig/ r (2.6)

is the ordinary numerical sum over all

elements bq of the distribution, each

with its own r. This equation can be

compared with Eq. (1.2) of the previ-

ous chapter; it is much easier to eval-

uate the potential in many problems,

simply because the potential is a

scalar.
But of what use is it to know the

potential? Presumably we can measure

forces on charges with torsion bal-

ances or otherwise, and the mapping of

electric field lines, as in Chapter 1,

tells us a great deal about such
forces, but measuring the total work in

map ma. 1111.

bringing a test charge from infinity
to each point is merely a "thought ex-

periment." Thought experimt.-As are
often very useful in understanding
physics, but the potential has a more
practical value as well. Even in very
complicated applications, such as the
electrostatic electron microscope, it
is often the potential that is mapped,

rather than the field itself. The po-
tential is mapped by drawing equipo-
tential lines, or the traces of equi-
potential surfaces. The device is fa-
miliar from contour maps showing the

altitude (gravitational potential) of

a geographical region, but that is a

very simple example, since the gravi-
tational potential varies only with
the vertical coordinate of space,
while electric potentials vary with

three coordinates. The equipotential
surfaces corresponding to the two

.equal and opposite point charges as

cut by a plane containing the charges

are shown in Fig. 2.6. In this instance

the equipotentials are surfaces of

revolution about an axis on which the

charges lie. The field intensity lines

are also sketched; they must meet the

equipotentials at right angles, since
by definition no work is done against

electrical forces in moving from one

part of an equipotential surface to

another.
The requirement that field lines
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be orthogonal to equipotentials enables
us to map the field, knowing the equi-

potentials. For some charge configura-
tions the potential may be computed
(or determined in some other way),
equipotentials mapped, and the field
lines are ascertained. When conductors
are involved, the potential plays a
particularly simple and important role.
In Chapter 1 we defined a conductor as
an object in which charge is free to

move, and noted that almost by defini-

tion there is no electric field within
the substance of a conductor in elec-
trostatics. It follows equally that
there is no difference of potential
between different points in or on a
conductor if the charge is static. The
surface of a conductor is an equipoten-
tial surface in electrostatics - in
fact the entire volume of a conductor
is a single potential. If a thin sheet
of copper, for example, were substi-
tuted for the equipotential plane of
Fig. 2.6, as indicated in Fig. 2.7, the
field on both sides of the plane would
be completely unchanged. The field
lines do net penetrate the conductor,
to be sure; tree charges appear on the
conductor in just such a configuration
that the plane remains an equipoten-
tial. But the conductor is also an
electrostatic shield: One of the two
point charges could be removed, and
the field on the other side would re-

main just as before. The charge on the
conductor is said to be induced by the
presence of the point charge Q.

In general an uncharged conductor
placed in an electrostr.'.ic field dis-
torts the field so its surface becomes
an equipotential (Fig. 2.8). This proc-
ess involves separation of the surface
charge in such a way that the field in-
tensity normal to the surface has a mag-

nitude E-a/0, in accord with Eq. (1.11).
Such charges are said to be induced on
the surface of the conductor. The con-
ductor may have a net charge; if so,
the charge is redistributed by the
presence of another charge nearby, so
that the surface is at a single poten-
tial. The conductor may be "grounded,"
connected to the earth, which is a
large and reasonably good conductor
itself, a reservoir of charge which
may be considered infinite (Fig. 2.9).

The potential of earth, or any conduc-
tor in electrical contact with it, is
said to be zero; is this consistent
with the zero potential assumed for an
isolated point charge?

In configurations of conductors,
difference of potential is often more
important than any attempt to ascribe
potential itself. A particularly sim-
ple and instructive set of conductors
consists of a pair of parallel plates
o: equal area, separated by a distance
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Fig. 2.8

From BERKLEY PHYSICS count, E. M. Purcell, by permission Educa-
tional Services, Inc.

d small compared with the dimensions
of the plates (Fig. 2.10). Throughout

most of the region between the plates

the fact that there are edges can be

Fig. 2.9

ignored. If the upper plate is given

a charge +Q, the field is E = on/co,

where a = Q/A, and the equipotential

surfaces are planes, as indicated,

from the symmetry of the configuration.

The equipotential surface which is the

lower plate has an induced charge -Q.

The field between the plates is uni-

forr and the difference of potential

betwe the plates is 02 0 LE As.
In scalar magnitude,

02 ¢>1
= E d = Qd/E0A. (2.7)

2
1- 4- 4- 1- 4- 4- A- 4- 4--

ir al MENNE,

91

Fig. 2.10
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The mks unit of potential differ-
ence is the volt, defined as one ;)%duie

per coulomb: A potential difference of
1 volt means 1 joule of work against
electrical forces to move unit charge
from one point to the other. From Eq.
(2.7) it is easy to see why field in-
tensity is often expressed in volts/
meter instead of newtons/coulomb.

Instead of stroking the top plate
with a glass rod which has been rubbed
with silk and letting a charge be in-
duced on the lower plate, it is more
convenient to connect the two plates
to some source of difference of poten-
tial by means of conducting wires. The
most familiar source of potertial dif-
ference is the chemical cell, or bat-
tery. A battery may be defined for our
purpose as a device capable of main-

taining a constant potential difference
between two electrical "terminals," and
of supplying equal and opposite amounts
of charge when necessary to accomplish
this result. The chemical battery was
invented by Alessandro Volta of the
University of Padua, Italy, in 1800,
and greatly facilitated the growth of

electrical science.
A source of potential difference

is actually a source of energy, a de-
vice for transforming energy of some
other kind into electric energy. The
amount of energy per unit charge it is

capable of delivering is called its
emf - the letters stand for electromo-
tive force, but the name is an anach-
ronisn, &ince emf is not a force. The
potential difference between the ter-

minals of a battery, between the

plates of Fig. 2.11, is equal to the
emf of the battery, but an emf cannot
be produced electrostatically.

To find the energy required to
charge the plates of Fig. 2.10 or Fig.
2.11, we note from Eq. (2.7) that the

amount of charge on either plate is

directly proportional to the potential
difference between the plates. This is

usually written

Q - C(02 -10 -CV, (2.8)

where C is a constant independent of

1

Fig. 2.11

Battery

the charge or potential, and V =

(02 0,.) to save writing. Let us be-

gin with uncharged plates, and transfer
positive charge bq from the lower plate
to the other, leaving -Aq behind. The

increment of work Aw required to trans-
port any later Aq is proportional to
the potential difference, which builds

up as the charge on the plates in-

creases, and is equal to q/C for any

net plate charge q. If the potential
difference is plotted against q as in
Fig. 2.12, and the product (q /C)Aq is

summea for all Aq from q = 0 to q Q,

we obtain the total work done in charg-
ing the plates; it is equal to the area
under the straight line, which may be

written in several ways,

W - QV = Q2 /C = N2d/AE0 QEd

iE0E2 Ad (2.9)

by virtue of Eqs. (2.7) and (2.8). This

energy is stored in the configuration

of charged conductors, but an interest-

ing alternative interpretation is sug-
gested by the last form given in Eq.
(2.9). The product of the area A and

q

Fig. 2.12
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the plate separation d is just the vol-

ume of space between the plates where

the field intensity is E. Outside this
space the field vanishes, if we neglect

edge effects. We can, if we like, at
tribute the energy to the field itself,

an energy equivalent to 02/co joules/
cubic meter. The question of whether
the energy really resides in the
charged conductors or in the space be-
tween them has a mechanical analogy:
In a loaded air rifle does the bullet

have potential energy, or is the po-
tential energy in the compressed air?

Since the plates of Fig. 2.11 are
oppositely charged, they attract each
other, and mechanical forces are re-
quired to hold them in place. From Eq.
(2.9) we may determine the amount of
force required. Let us consider the
work necessary to increase the separa-
tion by a small distance Ad, without
changing the charge on either plate.

W = FAd = NAV = NEW,

so that the external mechanical force

needed may be identified as the coef-

ficient of the small displacement Ad,

F = QE = iE0E2A = Q2 /AE0 (2.10)

which, like the amount of stored en-
ergy, may be expressed in a variety of

ways.
A configuration of two conductors

near each other but not in electrical

contact is called a capacitor or a con-
denser. The proximity of charges of the

opposite sign makes it possible to ac-
cumulate relatively large charges. The
first man-made capacitors were called
Leyden jars, and consisted of glas3
jars with a conducting substance inside
and a conductor outside. A jar of water
was held in the hand, according to the

first record of the device, and a con-
ducting wire connected the water to an
"electrical machine" capable of supply-
ing charge. The stored energy became
so great that when the other hand was

brought near the wire there was a dis-
charge through the air in the form of

a spark. To Franklin, who repeated such

experiments, the spark was reminiscent
of lightning. It was this idea that he
tested in his famous experiments with
kits in thunderstorms, and so estab-
lished the connection between lightning
and electricity.

Exactly how the clouds become
charged is a very difficult and com-
plicated problem, but they do, and they
are enormous conductors, near a still

larger one, the earth. The discharging

spark, which releases the gradually ac-
cumulated electric energy, constitutes
lightning. Differences of potential be-

tween cloud and ground may be as high

as one billion (109) volts, and a dis-

charge of 20 coulombs is not unusual,

so that the energy dissipated in a sin-

gle stroke of lightning may be 1010

joules, equivalent ti, nearly 3000 kilo-

watt hours. 'hie discharge itself is of

course not an electrostatic phenomenon,

but its existence is cvidence that

electric forces are iadeed strong.
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In our consideration of the effects of
electric charge we have begun as if
there were no intervening matter be-
tween charges. The electric field in-
tensity E (force per unit charge) is
defined and traced to its sources as
if the charges existed in vacuum. On
the atomic level, this view can be
maintained and justified, since we hold
that matter consists of "atoms and the
void." But in practice we experience
gross matter, many of whose properties
cannot be traced in any simple way to
the behavior of the atoms and subatomic
constituents. In fact, many properties
of matter have not to date been satis-
factorily traced to the behavior of its
constituent particles, even if all
known complications are taken into ac-
count. These problems are the subject
of intensive on-going research.

We shall not here restrict our-
selves entirely to the gross aspects of
phenomena, for a number of them can be
understood quite simply, if only quali-
tatively, in terms of atoms, and mole-
cules. Nevertheless we shall begin with
the consideration of matter in bulk.

Electrical effects were first ob-
served and studied with what were once
called "electrics" and now called in-
sulators. For quantitative observations
on static charges, however, it fs nec-
essary to use conductors, typically
metals, on the surface of which net
charge is distributed, and which will
maintain their charge if well insu-
lated. Experiments such as Coulomb's
can be performed in dry air or in an
evacuated vessel with no very appreci-
able change in the results, and except
as convenient supports for charged
metal objects, the role of insulators
in the science of electricity was
minor. (Insulators are, of course, also
important for support of current-car-
rying conductors, but again for their
lack of electrical properties, that is,'
as nonconductors of electric charge.)
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But insulators do have electrical
effects, even when they possess no net
charge. A systematic investigation of
these effects was made by Faraday. His
experiments were varied, and often com-
plicated, but the essential results may
be inferred from consideration of very
simple apparatus. Let us consider a
pair of fixed parallel metal plates,
large in comparison with the separation
between them, which can be charged by
connecting across a battery, as indi-
cated in Fig. 3.1. The battery imposes
a known difference of potential between
the plates, which can be measured with
a good voltmeter. Now disconnect the
battery by opening the switch, leaving
the plates charged and well insulated.
The space between the plates is vacant
(dry air is very nearly equivalent)
and the presence of the charge pro-
duces a field intensity E. = Q/AE0 =
a/E0 in that region. Here Q is the to-
tal charge per plizte of area A, and
a = Q/A is the surface density of
charge. We are assumine the plates so
large that edge effects can be neg-
lected. The difference of potential
between the plates is just Ed, the
work per unit charge in going from one
plate'to the other. This last result
follows from the definition of poten-
tial difference, as force per unit
charge times distance, both along the
same direction.

Fig. 3.1
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Fig. 3.2
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Now insert a slab of uncharged
insulating material, such as glass, so
as to very nearly fill the space be-
tween plates but, as a precaution,
without touching them (see Fig. 3.2).
Note that the plates are charged just
as before. If the difference of poten-
tial is now measured again, it is found
to have changed. In fact, for glass
nearly filling the space the voltage is
reduced from its earlier value by more
than a factor of two. For all isotropic
insulating materials, the effect is to
reduce the voltage, and Faraday found
that the reduction factor is a constant
for any particular material - it does
not depend on the particular geometry
of the system of conductors.

What must we conclude? The charge
has remained unchanged, but if we are
to retain the relation between field
intensity and potential difference,
which follows from the definitions of
force and work, we can only conclude
that the field intensity E in Ed has
changed within the material. Faraday
called such materials dielectrics,'
each with its own dielectric constant;

if the voltage is reduced by a factor
of 2, the dielectric constant is 2,
for example. We should note that most
materials, including glass, are found
to be entirely unchanged when removed
from the apparatus.

This effect of the dielectric can
be described in terms of its polariza-
bilitx. Figure 3.3 shows only lines of
.7,-----

E, and indicates that there are sources
(or "sinks") of E on the surface of the
slab, even though its net charge is
zero. This would account for a reduc-
tion in the strength of E inside the
dielectric, as a factor in V = Ed, the
potential difference. What has hap-
pened to the dielectric itself? Let us
consider the slab alone; the effect of
the charged plates remains, but the
plates themselves are not shown in
Fig. 3.4. The appearance of equal and
opposite charge on the two flat sur-
faces would arise if the normal dielec-
tric consisted of equal and opposite
charge densities occupying the same
volume and thus cancelling each other,
but now one kind of charge is slightly
displaced relative to the other. The
result is charge neutrality except at
the faces perpendicular to the rela-
tive displacement, so that each such
face has a surface charge. :low a famil-
iar configuration of two equal and op-
posite point charges is called an elec-
tric dipole; its strength, or dipole
moment, is the product of the magni-
tude of one charge and the distance be
between them. The dipole moment is ac-
tually a vector quantity, whose direc-
tion is taken from the negative toward
the positive charge as indicated in
Fig. 3.5. The slab of dielectric in the
previous figure is clearly a dipole,
extending throughout a volume instead
of being merely a line. If we let the
charge density on the surface of tne
plate be ap, so that the total charge
is Qp = apA, the dipole moment of the
slab is apAd, where d is the thickness.
It is directed from negative ap to pos-
itive up. But Ad is the volume of the
slab, and we may define a dipole moment
per unit volume P, whose magnitude at
the surface perpendicular to P is a1.
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We note that the polarization extends
throughout the volume, but since it is
uniform the only accumulation of charge
is at the surface. Even there the
charge is not accessible; it is firmly
attached to the body of the material,
and results only from the slight dis-
placement of positive from negative
charge in neutral matter.

The dipole moment per unit volume
of a dielectric can be equally well
attributed to the atoms or molecules
of which it is composed. Suppose that
every atom is permanently neutral, but
that the positive charge is displaced
slightly from the negative charge. Thus
every atom is a small dipole, whose di-
pole moment is p. If there are N such
dipoles per unit volume, all in the
same direction Pr- Np is an equivalent
description per unit volume. We do not
explain anything by putting the volume
polarization in this form, but we do
note that a uniform continuous distri-
bution of charge is not necessary for
its definition.

In the case we are considering,
with a dielectric such as glass, the
polarization exists only in the pres-
ence of an electric field 2, and is in
fact proportional to E. over a wide
range, but some materials have intrin-
sic polarizations and the proportion-
ality of P and Er is not a fundamental

fact of electricity. Our description
applies both to intrinsic polarization
acid that produced by the presence of
an electric field. Let us note the
general relation between the volume
polarization of matter and the polari-
zation charge which appears on its sur-
face. The wedge of dielectric in Fig.
3.6 has a cross section which is a
right triangle, and is polarized in
the direction of one leg. This polari-
zation can be thought of as produced
by displacing vertically the whole vol-
ume of positive charge from the same
volume of negative charge. Charge thus
appears on only two surfaces, the hash

and the slant face, equal and opposite
in total amounts. At the base, to which
P. is normal, we can find that up is
equal to the magnitude of rc by the

-q

Fig, 3.5

same arguments developed in connectica
with the parallel slab. But the area
of the slant face is greater than that
of the base: Aslant cos 0 L Abase,
where 0 is the angle between the base
and hypotenuse of the cross section.
It follows that the surface density of
polarization charge on the slant face
is smaller than that on the base, i.e.,
is equal to P cos 0, since the total
charge on the two faces is the same in
magnitude. The quantity P cos 0 is sim-
ply the normal component of P; in gen-
era]

at P1 (3.1)

at the plane face of any polarized di-
electric.

Since the surfac. charge on a di-
electric is truly inaccessible to di-
rect measurement, as would also be
variations in r within the dielectric,
it is advantageous to write the de-
scription of electrical phenomena di-
rectly in terms of and accessible

Fig. 3.6
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(separable) charge. Let us write

U (or + P, (3.2)

where P and R have now been defined.

The new field quantity, ir, has as

sources in terms of Gauss's law only

accessible charge:

D1AS - Q accessible '
(3.3)

closed

the net free charge contained within

the volume. Lines of ri thus begin and

end only on separated charges; unlike

those oi R, they are continuous through

the surface of a polarized dielectric.

For historical reasons which go back

to the idea of an ether pervading all

space and having mechanical properties

of its own, Bc is called the displace-

ment field. It is defined here in terms

of two quantities which have more im-

mediate physical significance, the

electric field intensity, Z, and the

electric dipole ziiiient per unit volume,

P, of dielectric material, In empty

space 5 = foR, and within a dielectric

we could make a complete description

of electrical effects in terms of r

and P alone. But we shall see at once

that the combination of E and -I; given

by Eq. (3.2) is very convenient for
expressing electric energy.

The electric energy stored in a

pair of charged parallel conducting

plates at distance d from each other.,

given by Eq. (2.9) when there is empty

space between the plates, may also be

computed for plates separated by a di-

electric. The basic equation, W = QV,

where Q is the magnitude of the charge

on each plate and V is the difference

of potential between the plates, is

still valid, but R is no longer so

simply related to the charge on the

plates. Application of Gauss's law to

the surface of a conductor yields

IS - aaccessible
n - (Q/A)n, (3.4)

7.,..

where n is a unit vector normal to
.
the

surface, and a N. Q/A for our uniformly

charged plates. Equation (3.4) holds

whether there is empty space or some
dielectric substance outside the sur-

face of the conductors, but E * 0/(0

within a dielectric. Since V - Ed, how-

ever,

W - iQV - iDEAd, (3.5)

for the energy stored in the parallel

plate configuration of charges. We note

that this expression is equally valid

whether the space between the plates is

empty or filled with a homogeneous di-

electric substance.
The problem 3f force: between

charged bodies embedded in a dielectric

must be approached with considerable

care. If we knew the volume polariza-

tion everywhere, as well as the posi-

tions and magnitudes of all free

charges, we could in principle apply

Coulomb's law directly to find the

forces due to all charges, including

those which appear on or in the dielec-

tric medium as a result of its polari-

zation. Polarization is usually in-

duced, depending for its very existence

on the presence of fields produced by

accessible charges. For isotropic ho-

mogeneous materials we have already

noted that the dipole moment per unit

volume, P, is directly proportional to

the field intensity E. For such mate-

rials iS as given by Eq. (3.2) is then

also directly proportional to E, and

the factor x in the relation

D = KE0E (3.6)

is called the dielectric constant of

the material. The dielectric constant

is a pure number, found empirically to

be greater than 1 for all substances.

If this relation is applicable, a sim-

ple expression for the forces between

charged conductors may be derived.

Since the mechanical forces which

account for the rigidity of sol'ds may

be very complicated, let us consider

the forces between two charged parallel

plates, as in Fig. 3.1, when immersed

in a fluid dielectric. A detailed cal-

culation of the forces would include

changes in fluid pressure produced by
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polarization of the fluid, but we may
find the total force of attraction be-
tween the plates from the expression
for el.xtric energy, just as we arrived
at Eq. (2.10) in Chapter 2. To increase
the separation of the plates by a small
distance Ad without changing the
charges on the plates we must do an
amount of work

W FAd (e/xAco) Ad,

where the last expression f..11ows from
Eta: (3.4) and (3.6). Therefore

F Q2/KAE0, (3.7)

for the force of attraction between two
charged plates of area A immersed in a
fluid dielectric whose dielectric con-
stant is K. The result differs from the
force between the plates in empty space
1r, the factor K in the denominator.

Since K > 1, the force between the
plates is reduced from its vacuum
value.

Net forces between charged bodies
immersed in a fluid dielectric are al-
ways found to be reduced by a factor K
in comparison with the force in empty
space. This result is consistent with
the fact that E, the electric field in-
tensity within the dielectric, is also
reduced in a homogeneous dielectric
from the value it would have in empty
space, but the change in the force
comes as a result of induced polariza-
tion charges in or at the bounAries
of the dielectric. Coulomb's 31.. itself
is not changed by the presence of the
dielectric. The direct electrical in-
teraction between two charges remains

/NM

the same, but other sources of electric
field have been created by the polari-
zation of the dielectric.

Electrostatic forces play an ex-
tremely important role in nature. They
account for the binding of electrons in
atoms, and the binding of atoms into
molecules, although the details of such
"accounting" are very complicated in-
deed. Other important aspects of elec-
tricity that appear when charges are
in motion are the subject of Monographs
II and III of this series.

PROBLEM

3.1 The lightweight objects attracted
by electrified amber or glass are
bits of dielectric polarized by
the presence of the electric field.

(a) Describe qualitatively the dis-
tribution of charge in such a small
object while it is being held by a
negatively charged piece of amber.

(b) Is there a net force on a po-
larized dielectric in a uniform
electric field?

(c) Some dielectric substances have
an intrinsic electric dipole moment
per unit volume; a body possessing
this property is called an elec-
tret. Would a small electret be
at'racted to a piece of electrified
amber or glass? How could you dis-
tinguish between electrets and bits
of dielectric which have no perma-
nent polarization?
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Coulomb's law is all there is to elec-
trostatics, but many aspects and con-
sequences of the law appear clearly
only when the subject is formulated
somewhat more mathematically. For stu-
dents wishing to pursue the subject
further we recommend Volume II, Chap-
ters 1, 2, 3, and 9 of the Berkeley
Physics Course, written by E. M. Pur-
cell. Professor Purcell's approach is
"microscopic," based on a qualitative
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description of the electrical proper-
ties of atoms and molecules whose space
average yields the field quant'Aies E

and D. The theorems which emerge so
elegantly from use of the calculus ap-
ply equally to continuous distributions
of charge or to space averages of
atomic charges: They depend essentially
on the inverse square law and the su-
perposition principle.
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