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The procedure presented in this paper has been developed to determine

in a post hoc manner, if it is likely that the data from a repeated measures

experiment, have met the assumption of additivity for a univariate analysis

of variance model. Of particular concern was the type of non-additivity which

could arise, if a component of the measures taken was some unknown function

of one or more unknown individual difference variables and one or more of the

independent variables taken into consideration in the experimental design on

which the analysis was based. An individual difference variable being some

variable with a finite number of levels to which subjects or individuals can

be assigned. The procedure will be developed and applied to a set of data.

The importance of determining if it is likely that there is an individual

difference variable of which the treatments are a function is demonstrated in

an example referred to by Jensen (1967) of a study by Hovland (1939) who per-

formed an experiment in which no statistically significant differences were

found between massed practice and distributed practice on paired associate

learning tasks. Upon subsequent examination of the data, however, it was deter-

mined that 44% of the subjects improved their performance more rapidly on distri-

buted practice and 38% learned faster with massed practice. Thus it is likely

that had an additional factor which reflected the individual differences suggested

by the previous percentages been included in the design of the experiment, a

significant individual difference factor by massed vs. distributed practice in-

teraction would have been found.

Figure 1 is an example of a repeated measures design. Table 1 is its con-

comitant summary table for a univariate analysis of variance, specifing the

appropriate sources of variationftegrees of freedom, expected mean squares and
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F ratios under the assumptions of normality, independence, homoscedasticity

for treatment groups, additivity of treatment effects as well as equal

variances and equal covariances in the residual variance - covariance matrix

for repeated measures.

The repeated measures design is of particular importance to those who

are interested in doing experiments concerned with learning. For learning

studies repeated trials on a single type of task, repeated trials on different

tasks, or both together crossed with and following different treatments are

not at all uncommon. The design provides for not only efficient use of hard to

obtain subjects but as well for a means of investigating important theoretical

questions involving the interaction of treatments with tasks over time.

Table 2 is an example of univariate analysis of variance summary data

obtained from a learning experiment which fits the design in Figure 1, where

A and B are treatment factors with two levels each and R represents three kinds

of tasks. The statistics calculated indicate significant B, R, RA, and RB effects

at the 0.0.05 level. The critical values of F were based on degrees of freedom

adjusted by an estimate of c, where e is a function of t the variance-covariance

matrix for repeated measures, c-F(t). The estimate of E was obtained by sub-

stituting the sample variance-covariance matrix in the argument in place of t,

cmF(+). (See Theorem 6.1, Box (1949, 1950) ). Because there is a possibility

that the data do not fit the additive model assumed in doing the analysis of

variance and because of the consequences of such a violation it is suggested

the assumption be tested. One approach to testing the hypothesis of additivity

would be to employ the Tukey 1 degree of freedom test for non-additivity (Scheff6,

1959) which poses as an alternative to the additive model, a multiplicative model.

It is suggested, however, that a non-multiplicative alternative may be present.
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Further no extension of the Tukey test to a repeated measures situation could

be found. Multiplicative ton-additivity can be represented by an ordinal

interaction as in Figure 2. This type of non-additivity can be eliminated

by means of a non-linear monotonictransformation upon the data which gave

rise to it. The type of non-additivity which is indicated by a dieordinal

interaction e.g. Figure 3, however, cannot be eliminated in this manner. The

possible interaction in the Hovland data suggests disordinality.

It is often difficult for an investigator to include all relevant inde-

pendent variables in the design of his experiment. That is they may be of

unique importance to the type of experiment being undertaken and unknown prior

to conducting the experiment. Thus it is possible in a given experiment for

some unknown variable, which has not been included in the design on which the

analysis is based, to exist such that it interacts with one or more of the

independent variables with which it is crossed. If such an unknown variable,

say U, were to exist it would be one that would classify subjects in some

manner and since subjects are crossed with repeated measures, a U x R inter-

action would be expressed in a repeated measures by subjects nested within A

and B (RxS:AB) interaction, the existence of which implies a violation of the

assumption of additivity.

Note that if U had as many levels as the experiment had subjects a sub-

sequent experiment could not be designed which took U into account so as to

eliminate the RxS interaction, for the U would be perfectly confounded with sub-

jects. It will be assumed that this is not the case.

It should be apparant by now that if an appropriate denominator for an F

ratio with mean square RxS:AB in the numerator can be found, we shall have a

test for the types of non-additivity with which we are concerned. Inspection of
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the expected value of mean square RxS:AB indicates that the desired denomi-

nator should be a mean square which provides an unbiased estimate of within

cell variation. The problem of finding that denominator took two different

approaches which fortunately converged upon the same solution.

In the first approach it was noted that because the design which repre-

sents subjects crossed with repeated measures (Figure 4) has only one obser-

vation per cell, it has no degrees of freedom for an estimate of within cell

variation. However, it was also noted that the within cell variance corre-

sponds to what is referred to in classical measurement theory as the variance

error of measurement. Then if the classical measurement theoretic approach

is taken which assumes that an observation X is composed of a "true" score T

and an independent "error" score e, X001T+e from which it follows that ai

the observed score variance is equal to the sum of the true score variance

aT and the error variance ae2

a2 m a2 a2
X

then, if we analogously consider an observed value, X_
KSAB

, as the sum of "true"

and "error" parts we have,

X
RSAB

T
RSAB

+ e
RSAB

1
Therefore, the variance for the source RxS:AB (a %:ab ) which is estimated by the

mean square RxS:AB (MS
RS:AB

) can be partitioned into a "true" interaction part,

denoted a
./3:ab(T)

, and an uncorrelated "error" part, denoted o2, we would have

the following equality,

a 2 a 2 + 02
rs:ab rs:ab

(T) e

1
The x will be left out of the subscripts for interaction terms. Thus for
the source RxS:AB, MSRs .AB is the corresponding mean square.
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Again from classical measurement theory

and

a2

rS:ab(T)
XX

OZ
rs:ab

2 2
a
e

w
ars:ab (1 p )xx''

then the estimate of a
2

and the estimate of a
2

e
is

rs:ab(T)+ a
2

e is MSRS:AB

MSRS:AB(1 rxx). If the two estimates are distributed as independent xs2 ,

then

MS
RS:AB 1

MS RS:AB(1 rxx) r
XX

given that a
s.. a

b (T) m 0, will be distributed as central F and there is a
r

test for the source of variance RxS:AB.

The second approach involved considering the values assigned to each sub-

ject as a composite of constituate parts of items either crossed with or nested

within the repeated measures. The items were considered as a random sample

from some population of items and thus as a random independent variable. Adding

items as nested to the design we arrived at what is represented in Figure 5.

Table 3 is it's concomitant summary table. By inspection of expected mean squares

the source for the items by subjects nested within A and B and R interaction

(txS:ABR) provides the denominator for the F ratio to test the RxS:AB interaction.

It can be shown most clearly how the two approaches converge if the Hoyt

analysis of variance method of estimating rxx is employed. In this case

r
xx

MSeubjects MSsub x items

MSsubjects
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or in our case to remove treatment effects

-
rXX ''' MSRS:0 MSIRS:AB

MS
RS:AB

with items considered as crossed,

or MS
RS:AB MSIS:ABR

.1001.1111111111.01100110.

MS
RS:AB

with items considered as nested as in Table 3.

Then consider only the nested case

F
1

rXX MSRS:AB MSIS:ABR
1 -

1

MS
RS:AB

MSIS :ABR

MSRS:AB

=
MS

RS:AB

MS
IS:ABR

which is identical to the F test statistic obtained from the design in Figure 2.

Similarly for the crossed case MSRS:AB
F

MS
ISR:AB

Thus if there is no RxS:AB effect the two ratios would be distributed as

central F's
2
with respectively e(r-1) (s-1) g, c(i-1) (r-1) (s-1) g and c(r-1)

(s-1)g, 6(1-1) (s -1)rg degrees of freedom for the crossed and nested cases. Where

E is a function of the variance-covariance matrix as previously noted.

2
An article by Hsu and Feldt (1970) and two dissertations (Hsu, 1968) and
(Lunney, 1968) indicate that an analysis of variance can be used on binary
data with 20 or more degrees of freedom for error if P the probability of
a "one" is between .2 and .8 or with more than 40 d.f. error where .1<P<.9.



Returning to the demonstration data the initial 2 x 2 x 3 design was

augmented by the inclusion of the random independent variable items to a

2 x 2 x 3 x 4 design. The summary data in Table 4 indicate that for the

2 x 2 x 3 x 4 design there is a significant RxS:AB effect. Now i', can be

told that another independent variable C(sex) had been included in the

original design but ignored for purposes of demonstrating our technique.

Table 5 is the summary data for the analysis on the 2 x 2 x 2 x 3 design

which includes C. Note the significant BxCxR interaction which would have

been predicted from the RxS:AB interaction if UMC. But such a convenient

conclusion would be unrealistic and Table 6 shows that if items as a random

source is again included there is still a significant RxS:ABC effect. Having

no further "put up" situations to draw candidates for a U from, the RxS in-

teractions were plotted and five main types of response curves were detected

by ocular inspection. The response curves are graphed in Figure 6.

In conclusion a strategy is suggested for those who plan to do experi-

ments of the type discussed and who are not confidant that they have all rele-

vant independent variables in mind. The suggestion is to run a pilot study and

look for non-additivity. If it is found, try to categorize the subjects and

then interview them and take other measures in an attempt to determine what

occured. Then design the next experiment taking into consideration what was

discovered in the pilot.
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Fig. 1 Experimental design for two independent variables and three repeated measures.
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Source

TABLE 1

Analysis of Variance Summary Statistics and Parameters
for a 2 x 2 x 3 Repeated Measures Design

rce...sw.,

Degrees of Freedom

AB

S:AB

R

RA

RB

RAB

RS:AB

NNW 1ms. ,Ma.111.2Mon4

Expected Mean Squares F Ratios

2
o
e
+ a 2

+
02

s:ab a

2 2rte + a
s:ab

+ 02

2 2 2a + a 4. n
s:ab aab

2 2+ a"ae as:ab

a
2
+ a 2 4. 02

rs:ab

2
a
e

+ a 2 + a2
rs:ab ra

n 2 4. 02
a 2-e rs:ab rb

2
a
e

+ a 2 + a 2
rs:ab rab

n2 4. 2

"e ars:ab

( Note: The coefficients of the variance components have been omitted. )

MSA

MSS:AB

MS
B

MS
S:AB

MS
AB

MSS:AB

MS
R

MS
RS:AB

MS
RA

MSRS:AB
MS

RB
MS

RS:AB

MSRAB
MS

RS:AB



TABLE 2

Analysis of Variance Summary Data for a 2 x 2 x 3 Repeated Measures Design

ii.mm,,m0MWOm.1m.4.001111ft.m..YM00.
Source

=10....=110-6.

Degrees of Freedom Mean Squares F Statistics Critical Values of F1

A 1 5.01 1.93 4.00B 1 57.42 22.17* 4.00AB 1 0.13 .05 4.00STAB 60 2.59
R 2 40.72 57.35* 3.09RA 2 5.51 7.76* 3.09RB 2 5.82 8.20* 3.09RAB 2 0.26 .37 3.09RS:AB 120 .71

1Value at co..05, degrees of freedom adjusted by the Box function of the variance-
covariance matrix.



Fig. 2 An example of an ordinal interaction.

Fig. 3 An example of a disordinal interaction.
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Fig. 4 A subjects by repeated measures design with one observation per cell.



Fig. 5 Experimental design for two independent variables and four items nested within
three repeated measures.



TABLE 3

Analysis of Variance Summary Statistics and Parameters
for a 2 x 2 x 3 x 4 Repeated Measures Design

.11........arrawa.....yrommrsimmy.Ime
1111W

Source Degrees of Freedom Expected Mean Squares F Ratios

A

B

AB

S:AB

I:R

AR

AI:R

BR

BI:R

ABR

AB' :R

RS:AB

02 + 02
+

02 + 02is:abr e:ab ai:r a

02 + 02 + 02 2
is:abr s:ab bi:r

+
°b

a2 + 02 + a2 + a2is:abr s:ab abi:r ab

02 2

ia:abr as:ab

02 + 02 + 02 2
is:abr ra:ab 1:r

+
°r

0 2 + 02
is:abr i:r

7a- + 0 2 + 2 + 02
is:abr ra:ab ai:r ar

02 4. 02
is:abr ai:r

02 4. 02 + 02
is :abr rs:ab bi:r + alr

a 2 4. 02
is:abr bi:r

a 2 + a 2 + a 7 + a2is:abr rs:ab abi:r abr

0 2 + 0 2

is:abr abi:r

2 + 0 2

is:abr rs:ab

a2
is:abr

MS
I:R

MS
IS:ABR

MS
AI:R

MS
I S : ABR

MS
BI:R

MS
IS:ABR

MS
ABI:R

MS
IS :ABR

MS
RS:AB

MS
IS:ABR

( Note: The coefficients of the variance components have been omitted. )



TABLE 4

Analysis of Variance Summary Data fora2x2x3x4 Repeated Measures Design

Source Degrees of Freedom Mean Squares F Statistics Critical Values of F1

A 1 1.25
B 1 14.35
AB 1 .03
S:AB 60 .64
R 2 10.18
I:R 9 1.16 6.56* 2.10
RA 2 1.38
AI:R 9 0.18 1.06 2.10
RB 2 1.46
BI:R 9 0.28 1.64 2.10
RAI3 2 0.06
ABI:R 9 0.16 .94 2.10
RS:AB 120 0.17 1.54* 1.28
IS:ABR 540 0.11

1
Value at a -.05, degrees of freedom adjusted by the Box function of the variance-
covariance matrix.



TABLE 5

Analysis of Variance Summary Data for a 2 x 2 x 2 x 3 Repeated Measures Design

Source Degrees of Freedom Mean Squares F Statistics Critical Values of F1

A 1 5.01 1.88 4.00B 1 57.42 21.51* 4.00C 1 .88 .33 4.00AB 1 .13 .05 4.00AC 1 1.17 .44 4.00BC 1 2.29 .86 4.00ABC 1 1.17 .44 4.00S:ABC 56 2.67
R 2 40.72 58.88* 3.10RA 2 5.51 8.10* 3.10RB 2 5.83 8.57* 3.10RC 2 1.04 1.53 3.10RAB 2 .26 .38 3.10RAC 2 .30 .44 3.10RRC 2 2.12 3.12* 3.10RHBC 2 .48 .73 3.10
RS:ABC 112 .68

1
Value at a...05, degrees of freedom adjusted by the Box function of the variance-covariance matrix.
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TABLE 6

Analysis of Variance Summary Data for a 2 x 2 x 2 x 3 x4 Repeated Measures Design

Source Degrees of Freedom Mean Squares F Statistics 1
Critical Values of F

A 1 1.25
B 1 14.36
C 1 .22
AB 1 .03
AC 1 .29
BC 1 .57
ABC 1 .29
S:ABC 56 .67
R 2 10.18
I:R 9 1.16 6.82* 2.11
AR 2 1.38
AI:R 9 .18 1.05 2.11
BR 2 1.46
BI:R 9 .28 1.64 2.11
CR 2 .26
CI:R 9 .10 .58 2.11
ABR 2 .06
ABI:R 9 .16 .94 2.11
ACR 2 .07
ACI:R 9 .21 1.23 2.11
BCR 2 .53
BCI:R 9 .11 .65 2.11
ABCR 2 .12
ABCI:R 9 .13 .76 2.11
RS:ABC 112 .17 1.42* 1.29
IS:ABCR 504 .12

1
Value at a-.05, degrees of freedom adjusted by the Box function of the variance-
covariance matrix:



Fig. 6 Some response curves from the demonstr2tion data.
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