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ABSTRACT
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Oldehoeft, Arthur Earl. Ph.D., Purdue University, JUne, 1970.

A Computer System to Teach Computational Mathematics. Major Professor:

S. D. Conte.

The program is designed to operate under PICLS on a CDC 6500 com-

puter and assists the student in learning elementary algorithms of an

undergraduate numerical methods course. The program begins with a tu-

torial presentation of the matkamatical development surrounding an al-

gorithm and a description of the mechanics of the algorithm. The student

participates throughout this phase and is required to work numerous

exercises. The program then requires the student to formulate the so-

lutgan to several problems in order to display a working knowledge of

the algorithm. Finally, the student progresses to en exploratory stage

where he may formulate the solution to his own problems. All computa-

tion is assumed by the computer and the student is free from conventional

programming and debugging.

The design and construction of this program is presented along with

special programming features such as partial precision arithmetic,

computer-generated problems, and approximate matching of mathematical

expressions.

The first experiment is described in detail. Student attitudes

and performances, cost factors, and efficiency are analyzed.
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CHAPTER I

INTRODUCTION

Current State of the Art

The possibilities of using a computer to aid in the instructional

process have attract4 researchers from a variety of backgrounds. The

magnitude of interest in computer-assisted instruction (CAI) is demon-

atrated by the large volume of literature available for public distribu-

tion. For recent detailed reviews of the work in CAI, the reader is

directed to two recent articles by Feldhusen and Szabo (13,14] and pub-

lications by the Entelek Corporation (10,20].

The basic problems which are encountered in CAI ere generally attri-

buted to the inability to totally define and control the human learning

process and the limited ability to communicate with a computer in a

natural language so as to make the computer behave as a human tutor.

Kindred (22] classifies the research areas as pedogogical-psychological

and technical-practical according to the types of problems encountered.

In the first category, the concern is with the theory of learning

and attempts are being made to define and control those variables which

would play cm active role in a teaching model. The ultimate objective

would be to construct a teaching model to adapt to individual differ-

ences and lead a given student to a =drum level of perforiaance in the

least possible amount of time. Stolurow and David (35] dmacribe a some-

what more practical model. Given the student variables along with a
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minima acceptable level of performance and a maximum allowable in-

struction time, the machine would select from a it of teaching strate-

gies that strategy which is most likely to satisfy the constraints of

the problem. It is assumed that the outline has a large number of

teaching programs at its disposal. Teaching strategies would dynamically

change on the basis of the student's performance and personal traits.

The success in constructing such a model depends heavily on the ability

to define and evaluate the effects of factors such as student variables

and their relevance to learning, branching strategies, methods of feed-

back, and modes of instruction.

Several points are often cited in faior of CAI: . self-pacing, cheat

proof, immediate feedback and reinforcement, simultaneous teaching, test-

ing, and remedials functions, access to a history of student perform-

ances, and the freeing of the instructor's time for counseling. Many of

these advantages have not been convincingly demonstrated.

If self-pacing means that a student progresses through a fixed in-

structional sequence at a rate which is determined by his own abilities

and understanding, then the student cannot be delayed by faulty hardware

or software, inefficient keyboards and slow typing mechanisms. Experi-

ments at Penn State [29] point out that CAI is not self-paced in this

respect. If self -paced also implies that the student is not exposed to

materials already learned, then, the student cannot be confined to a fixed

instructional program.

To date, very little is known about how one would effectively com-

bine the teaching, testing, and remedial functions. Ear4 attempts are

reported by Suppe& [36] on the construction of multitrack programs for



elementary arithmetic. The nature of the subject matter is drill and

practice. The level of difficulty and the amount of drill is, determined

by a percentage of right and answers,

Although computers can provide a complete history of a student's

performance along with prescribed summaries and statistics, it'is not

clear how researchers, instructors, and administrators can make good use

of the information. Also, it remains to be determined how traditionally

trained teachers will effectively use their time for other functions

such as counseling students. These difficulties are noted by Fein [11].

The cited advantages of CAI are embodied in the concept of indi-

vidueliz4tion. Oettinger and Marks [30] point out that a definition of

individualization is not generally agreed upon. Related to the learner

and taken literally, a computer system would have to tailor itself to

all characteristics of an individual which affect the learning process.

However, reaearchers with experience in this field generally agree that

CAI has the potential for a high degree of realization of the-Cited ad-

vantages.

In the tedvaical-practical area, emphasitvis placed on the develop-

ment and evaluation of hardware, CAI programming systems, and actual CAI

Course material, and on attempts to specify a systematic set of rules

for designing instructional material. The theory which supports the

existence of this area is that some. advantages of CAI over traditional

instruction can be demonstrated through a sensible approach.

In the area of CAI software, a number of languages have evolved.

Languages which are used for instructional applications have been re-

viewed by Frye.[ 16) and # [2O]. Some of the lawmen which have



been designed primarily for creating course material are PLANIT [12],

MENTOR [15], PILOT [38], ELIZA [37], Coursewriter [21] (various versions),

PICLS [24], TUTOR [1], and ISL-1 [33].

CAI languages are designed with the intention of providing the

course author with a nontechnical method for creating and implementing

instructional materials. Embedded in these languages are techniques for

processing student responses. Keyword matching and character editing are

standard routines and the HART language also has a phonetic analyzer.

Although these features are useful and represent an approach to the prob-

lem of free communication, their use is left to the ingenuity of the

course author. We are still a long way from automatically processing

complex natural language responses.

The design and implementation of course material remains a monumen-

tal task. A survey by Balough [2] cites a, wide range of estimates,

varying from eleven to two hundred instructor hours, needed to prepare

one hour of student instruction. Charpe and Wye [7] report that more

than two hundred total man hours are needed to provide for one hour of

student instruction.

Investigators such as Bunderson [14], Childs [8], and Mager [26]

have studied the problem of systematically designing course material.

They generally agree that certain basic steps are necessary to produce

effective results.

1. Specify the terminal objectives of each lesson in terms of

a. the kind of behavior which will be accepted as evidence

that the student has learned,

b. the conditions under which the desired behavior is ex-

pected to occur, and



c. how well the student must perform in order to have his be-

havior considered acceptable.

Perform a task analysis by

a. selecting the sequence of learning experiences that are

likely to attain the chosen objectives,

specifying all possible outcomes, and

c. selecting the learning experiences to remedy erroneous

outcomes.

Program the course materials.

4. Test and revise the materials on the basis of actual per-

formance.

Of the above steps, the task analysis is considered to be the most ill-

defined. A selection of learning experiences is based largely on the

judgment of the course author. If constructed responses are required,

it is difficult and perhaps impossible to specify all possible outcomes

even on a single item and rrovide the appropriate remedial instruction.

If two students arrive at the same erroneous answer, they may have done

so for reasons unrelated to each other. Without a study of the histories

of many students, it is difficult to specify even the probable errors.

In the area of actual development and implementation of college

level course materials, very few complete CAI courses actually exist.

Several of the major contributors have been the University of Illinois

(25:, Florida State University (19], the University of Texas (5], sad

Pennsylvaea State University (29]. Based on reports from these insti-

tutions, some agreements and discords can be noted.

1. A systematic approach to the development of instructional

material is necessary.



2. Achievement and retention comparisono between CAI and tradi-

tional instruction have net yielded conclusive results and,

on a course by course analysis, there is same disagreement.

Comparisons in instruction time have yielded contradictory

results. Times are dependent on the nature of the course and

the terminal hardware.

4. The majority of CAI students express a favorable attitude

toward this method of presentation.

There is also s general agreement that CAI cannot be justified on the

basis of cost at this point in time [2,23]. Some inconsistencies or

lack of conclusions might be attributed to environmental variations,

variations in the types of CAI experiments* and poor measuring devices.

Experiments have been performed with various types of haramre, author

languages, and teaching strategies. Variations are reported in the

method of selecting samples, the size of the samples, and the duration

of the experiment. Although experiments have involved a variety of

materials, it is generally agreed that the areas which are most natural

for CA/ are drill and practice, simulation, and problem-solving. In

these areas, the computational or repetitive power of the computer is

more easily applied.

In view of the general difficulties which exist* many researchers

do not consider CAI as the panacea, but rather a component which might

play an effective role within a system of educational technology. A

broader view appears to call for a total reorganization of the structure

of educational institutions, a structure in which the computer is one

resource to be used where it is most efficient in the instructional



process. The social, political, and economic difficulties inv lved with

moving toward an educational technology are cited by Oettimger and Marks

[3O]. They conclude that the goals and techniques of education are not

yet well enough defined for the realization of a technology, Wilson [39]

is concerned with similar problems, but does foresee possible use of a

computer in instruction, especially in the areas of mathematics and

languages.

2212Wan of the ReslareandD39aeveent

This investigation is concerned with the Zeasibility of using a

computer to aid in the teaching of an undergraduate numerical methods

course. In an introductory numerical methods course, or what will be

referred to hereafter as computational mathematics, the typical student

is a college junior who has just completed the basic sequence in mecum

lust differential equations, and an introductory course in matrix alge-

bra. He is expected to know a programming language well enough to pro-

gram computational procedures for a computer. Since the algorithms to

be taught are designed and analyzed for computer use, it seems feasible

at the outset that the computer itself! might aid in the instructional

process.

By traditional instruction, the undergraduate student in computa-

tional mathematics is faced with several problems.

1. The cumbersome arithmetic associated with a numerical method

can discourage the student from working anything more than the

simplest type of examples. An intuitive feeling for how an,

algorithm behaves in practice and a knowledge of its deficien-

cies often requires working a variety of problems. This
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requires both time and effort on the pwit of the student to

either write and debug his own programs or obtain amilable

routines from an established library. Due to limited computer

resources and commitments to other courses, it is unlikely that

the student can explore more than a handful of methods on the

computer.

With the traditional mode of classroom instruction, it is dif-

ficult to expose the student to the variety of examples and

applications needed to demonstrate the deficiencies or power of

a method. This is due, in part, to the amount of material which

must be presented and also to the cumbersome arithmetic. The

instructor usually limits his discussion to the basic theory

which establishes the existence of a method, an explanation of

the mechanics of the algorithm, and an example or two which can

be demonstrated on the blackboard, The examples may not be

carried to completion. Textbooks: which present tabulated com-

puter results for particular examples help to remedy the situa-

tion, but the student does not normally work through these

examples. From this framework of exmples, or faith in the

instructor, the beginning student is expected to gain an intui-

tive feeling for a numerical method.

Beginning courses usually require a mathematical exposure to

elementary calculus. Unless the underlying theorems are ale-.

mentary in nature, they are at most stated in passing. As a

result, a great deal of emphasis is placed on a description of

the mechanics of an algorithm. With the traditional mode of

instruction, the student does not participate in the development
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of the mechanics and may not have the time or computer resources

to practice the application of all algorithms.

The problems stated above can be more or less attributed to the nature

of a computational mathematics course. In addition, the student faces

problems which are common to all courses.

Individual attention is given in the classroom to only those

students who i terject ,w,ments or ask questions. Verbal com-

munication is normally attempted by only a small percentage of

the claw.

5. The lecture is prepared for the level of the average student.

The better students are unmotivated and the weaker students are

slow in grasping the material.

6. Due to administrative den ands or research interests, the in-

structor cannot devote sufficient time to counseling students..

The work reported in this paper does not prescribe cure for these

difficulties since it is not known how to program an ideal teacher. How-

ever, the possibility of reducing the severity of some of the problems

can be explored by constructing, implementing, and testing a computer-

based instructional system for computational mathematics. The primary

objectives of this investigation are concerned with feasibility and are

stated as follows:

1. design and implement a CAI program to teach computational

mathematics and investigate the technical difficulties

associated with constructing and using such a system;

2. implement techniques which might be useful in an aloft on

problems 1-3 stated above; and
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3. experiment with the system in an attempt to determine student

acceptance and compare this method with the conventional method

of instruction.

To accomplish these objectives, twenty-five lessons were designed for

computer presentations The first teaches the use of the system while

the remaining twenty-four cover a variety of numerical methods which the

student would study in conjunction with outside reading assigneents from

Conte [9], the textbook currently used at Purdue. In a direct attack on

problems 1-3 stated above, each lesson consists of a tutorial mode, a

problem mode, and an investigation mode, In an attempt to free the

student for concentration on the development and moplication of algorithms,

the burden of cumbersome arithmetic is assumed by the computer and de-

tailed programming is not required. Problems 4-6 are approached in a

manner similar to that in other CAI courses described in the literatura.

An overall description of the design, IT,21ementation, and associated

difficulties is presented in Chapter III. Chapter 11 is devoted to a

description of special features needed to handle mathematical expressions

entered by the student from the CAI terminal. The results of an initial

experiment conducted during the Fall Semester of 1969 are reported in

Chapter IV in the form of some numerical measurements and personal ob-

servations.

The end product of this development has several uses. First of all,

it can serve s a research vehicle for future tests of the effectiveness

of CAI. As experience is gained, the system should grow in size and

sophistication to incorporate multilevel sequences of instructional ma-

terial for the purpose of accelerating or decelerating students. Sec-

ondly, the system may serve as a self-instructional course for students
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wishing to study cmputational mathematics. Finally, in conjunction with

traditional lectures, a student may use the tutorial modes itv review o

remedial work or elect to work graded problems or problems of his own

Choice.

An Overview of the Hardware and Software

The computational mathematics course was written in the language of

PICLS (24], the instructional system available for the CDC 6500. PICLS

is designed to operate in an interactive mode under the MACE Operating

System [32] for the CDC 6500 at Purdue Univeroity.

The MACE Operating System with interactive facilities was developed

by Purdue Computing Center personnel. A typical request for service

from a CAI terminal is assigned a high priority by MACE causing lower

priority jobs to be rolled out of core long enough for PICLS to service

the request. PICL$ is then automatically rolled out in order to free

core for other jobs. Thus, the response time at a CAI terminal is highly

dependent on the status of MACE and the current job mix.

In support of the CAI project in computational mathematics, a set

of arithmetic routines was installed in PICLS during the summer of 1966.

These routines enable a course author to accept student initiated ex

pressions which could be caapiled and evaluated or saved for later evalu-

ation. Special routines were also added to test the equivalencie of two

mathematical expressions. Due to these special arithmetic requirements,

the current version of PICLS is the only version under which the course

in computational mathematics is guaranteed to be operational. Subsequent

versions of PICLS may not contain, those special features mentioned above

or described elsewhere in this report.
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The twenty-five lessons in computational mathematics consists of

mppreximately 27,000 PICLS instructions. Throughout the development, a

linear mathematical notation was employed for suitable use on a )SR-53

Teletype terminal. At instruction time, the course material and PICLS

resides on approximately 200 tacks of Control Data 8o8 disk storage in

the form of permanent files. Thus, a student at a CAI tonal may in-

itiate any section of any lesson t any time. The actual hsvdware require-

vents for the lesson material are the same as the requirements of PICLS.

For the most part, PICLS is written in Fortran but some of the file

handling routines 1141 written in machine language. In addition, portions

of the 'Aillstructional material depend on the sixty bit binary word of the

CDC 6500 and are not directly transferable to other madhines without

revision.



CHAPTER II

AN ANALYSIS OF CONSTRUCTED MATHEMATICAL RESPONSES

p.Istivapn of the Problem

An area of major concern in instructional systems is the design of .

techniques for processing student responses. While it is desirable to

provide the student with complete freedoe in responding to questions,

techniques are not available for grading free form answers. Phonetic

encoders and keyword matching routines are attempts to provide more

flexibility in processing constructed answers. In one sense, mathemati-

cal responses present a very serious problem since an expression can

usually be correctly represented in an infinite number of ways. On the

other hand, it is the very concept of equivalence over the real or com-

plex numbers which provides for the development of powerful techniques.

The problem of decidirg when two expressions are equivalent has been

encountered in other applications. Both algebraic and numeric approaches

to this problem have been reported.

In a direct algebraic approach using normal and canonical forms,

Caviness [6] considers the expressions generated by the rationale and

the complex number i, the variables xi, ..,xn, the operators +, *,

unrested composition, and functions exp, sin, cos, tan. An expression

in this class can be reduced to normal form P/Q where P and Q are canon-

ical. This yields a technique for deciding equivalence. Calertaess also

cites same negative results by D. Richardson. Richardson considers the



class of expressions generated by the rationale, 11, In 2, the variable

x, the operators +, *, nested composition, and the functions expo sine

abs. For this class, the predicate °V10" is recursively undecidable.

Thus, we have an indication of lower and upper bounds on what can be

expected fray exact techniques.

In a combined algebraic and numeric approach, Martin [28] uses a

hash code assignment scheme to map the set of infinite expressions into

a finite number field. For addition and multiplication, range problems

associated with floating point arithmetic can be avoided by performing

the arithmetic in a finite field. Rowever, exponentiation does not pre-

serve equivalence.

The FLAMM system [12] uses a straight numeric approach by assign-

ing prime integers, starting with 3, to each distinct variable and com-

paring the resulting values of the expressions. By this technique,

f6c)25x and F(x)=6-x would be considered equivalent. This is a simple

example of the danger encountered in using numbers.

The method installed in a special version of P/CLS for the compute-

tional.mathematics course consists of a combination of random evaluation

and operator analysis. Although random evaluation was considered un-

stable by Martin for his application, there is some promise in CAI since

the correct expressions are known when the material, is developed. Also

students are likely to construct answers within the context of the dis-

cussion. The purpose of this chapter is to describe this method and

analyze its deficiencies. Much of the information stated here has been

previously reported by this author elsewhere (31).
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PrelimiasiryDesiipl Considerations

In designing a method which seemed suitable for conversational use

in CAI, several factors ware considered. Firutp a itching algorithm

should have low central processing time requirements in order to avoid

any significant increase in the already present system overhead time.

Secondly, the probability of failure should be remote. If it should

happen that the method fails, then it should normally be possible for

the student to enter the same answer with a low probability that the

method will fail again. This implies that the variables involved in

both the correct answer and the student's answer be treated in some in-

dependent sense from one application of the matching process to the next.

Finally, the method should be sophisticated enough to be "student proof"

if at all possible. Fran an external point of view, it should be diffi-

cult for a student to determine the method of testing equivalence in

order to avoid, deliberate attempts to fool the algorithm.

The rules adopted for constructing mathematical erpressions are

similar to those used in Fortran. The student, however, is restricted

to the use of variables which have meaning within the context of the dis-

cussion and have been defined by the author. Brackets [ and ] are used

to delimit subscript expressions and the operators and functions must be

chosen from the two classes 0 or Tl given in Table 1. The choice of

notation was based on the student's assumed knowledge of Fortran, the

linear notation imposed by the teletype terminal, and the content of the

actual course material in computational mathematics.



Table 1. Available Operators and ?unctions

T
1
: +, *, /, composition, (.a..**) to an integer power,

sin, cos, tan, csc, sec* cots exp., iA where r'> 0, sinh,

cosh, tanh, csch, sech, coth

arcsin, arcco3, &ratan, in, log(base 10), scirt, ct(er *410

variable base to a variable or fractional power, aba

In order to allow the student maximum flexibility in constructing

responses, it is assumed that a course author will define and maintain

the status of variables internally as they are introduced to the student

on the teletype page at instruction time. For example, if the variable

x is introduced during the course of discussion, then the course author

also defines the variable x internally and treats it as an indeterminate

over the real field by assigning a random value to it. If x assumes a

particular value, the course author must assign the same value to x in-

ternally and compute all variables depending on x. In this way, the

student may construct responses using any variable which is meaningfUl

within the context of the current instructional material. Examples of

how the course author provide f this flexibility appear in Chapter III.

Description of the Method and Its Limitations

Any expression which is constructed from defined variables, con-

stants, and the T
1
-operators listed in Table 1 will be called a Ti

expression. If an expression contains a 0-operator, it is not a Ti-

expression. For example, sin(x+cos(y)) is a T1-expression from R2 to

1
R . Arczin(abs(x)/(1+x**2)) is not a T

1
-expression.

Throughout this discussion, the correct expression specified by the
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course author will to denoted by f while F will denote the stuAentes

response. Small letters x, y, x1, x2, etc. will denote real variables

while capital letters X, Yo Xi, X211 etc. will denote randomly selected

values which have been assigned to the variables. Rn will denote n-

dimensional real space. Considering f and F as functions from Rki to R19

points X
i

in Rn, are randomly chosen and the values f(X ) are

compared with F(Xi). If, for all i, the values are equal, the conclusion

is raPi. Otherwise OF. If both f and F are T
1
-expressions, the selec-

tion of only one XeRn is justified in a succeeding section. There is a

0- probability of selecting X where f and F are not defined. If Or,

there is a 0-probability of selecting X where f(X)ssF(X). If 0-operators

are present in either expression, the 0-probability condition may not

hold. The effect of 0-operators will be discussed later.

Since evaluation is performed on a computer, we can only hope to

approximate the 0-probability condition. The method will suffer from

the common defects of (1) round-off error, (2) loss of significance, and

(3) a possible positive probability simply due to a finite set of com-

puter numbers. As a result, it is possible that two nonequtealent.ex-

pressions will :be judged equivalent or equivalent expressions will be

judged nonequivalent. The numerical approach is to approximate equiva-

lence by concluding that f(X)F(X) if any one of three conditions is

satisfied for an error tolerance 8510
-11

.

(1) If(x) I < andlr(x) I < a

(2) If(X)-F(X) <8

(3) I (f(x)-F(x))/f(x) I < 8

In an attempt to avoid range problems such as overflow and loss of
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significance, the programmer should restrict the selection of random

points to a finite interval I based on the structure of the correct

answer f. For example, f(x)cos(x)+sinh(x) is computationally equal to

sinh(x) for largelx since the cos is completely dominated by Binh© In

this case the programmer would Choose I to be a relatively small interval

about 0 to retain the effects of the term cos(x). The Choice of I re-

mains somewhat ill-defined since, once I is known, one can deliberately

construct expressions F which will emphasize the computational defects.

Rather than a 0-probability, we have an e-probabillty where e de-

pends on f, F, 8, I, and the precision of the computation. An a priori

estimate of e is not available since the student's answer F is not known.

On this basis, several strategies are possible. One strategy would be

to conclude fEF if the two fUnctions agree at all m points and conclude

OF if they fail to agree at any one point. Another strategy would be

to conclude faF if they agree at any one of the m points and conclude OF

if they disagree at all m points. Tale 2 dhows the probabilities of

success and failure for these two strategies. If fElP, the first strategy

is a poor choice for large m since the probability or success (1-0111

tends to zero. It is, however, a good strategy when OF since the prob-

ability of failure em tends to zero. On the other hand, the second

strategy is a good choice when fEF and a poor choice when f0F. One could

Choose mixed strategies as alternatives.

In actual practice in instructional settings, the case when ;Or

seemed less susceptible to failure than the case where f. On this

basis, it would appear that the second strategy is the better one for

this application. In, order to further investigate the instability, the



Table 2. Computational Probability of Wiwi*
for a Random Points

Possible Computational

Events

when MI
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when 0'

Pr(XieI:F(Xi)if(Xi) }cs e PrirXier:F(Xi)a.

f(Xi nue e

e
m

F(Xdsilf(Xi) for all

PIXdpif(Xi) for any i

F(Xi) #f (xi) for ell

P(Xi) -f(h) for any

1 -Ea

(1-e)m

1-em 1-(1-e)a

first strategywas adopted lu the program. In order to minimize the

probability when fOF, the value owl is used. In other words, the deci-

sion for equivalence of two Ti-expressions is based on evaluation at

exactly one randomly selected point. Examples 1 and 2 presented below

illustrate the possible computational difficulties when fgr.

Mas1212=Leps of Sigairicance. Suppose the correct solution of

x2+bx*c.0 is specified by flb Ont.5(..b+sqrt(b2-14e)) and the student's

answer is F(b,c)ag-2c/(b+sqrt(b2-11.0). In theory f4P9 but using single

precision on a CDC 6500 with a computational error tolerance, we have

1-Plf t a 5.10"11 in a region where c f is small compared to f b The

magnitude of c which outlines this region was approximated for selected

values of b. These values appear in Table 3 and yield the relationship

0.4.10-5b2. More important than the accuracy of the approximations is

the fact that, aslb I increases,' cf increases at a faster than linear

rate. If (b,c) is selected in the region between the curves ciii+10".5b2,

then the incorrect decision OF is made. Sampling from a square with

center 0 and side length 2S, excluding the region where b24c, the prob-

ability P of an incorrect decision can be found by integration.
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Case 1: If, 000, P14(105)8/(12+0

Case 2: If 40.(105, P(106.5)S14/(38(5-2)

Case 3: If S>105, Pm(30-2(10255))/(50.5-2)

Based on the above formulas, Table 4 shows how P increases with S. For

the same values of 8, an experimental probability P* was computed based

on 10,000 random points.

P*

Table 3. Points Outlining Failure Region

105 10 103 102 10 1 10r1 10r2 10-3

105 103 10 10.-0 10 0'71 1 -3 1 -5 1 10-9 len

Table 4. Predicted and Experimental Probabilities of Failures

10 102 104 10
6

.61.10'5 .42.104 .36.10'3 .33.10'1 .79

0 0 .7.10'3 .45.10'1 .41

Example 2Miscellaneous Expressions. The method of comparison at

randomly selected points was tried on ten trigonometric identities* used

by Martin [28]

(1) sin(x)tan(x)4-cos(z)sec(x)

(2) (sin(x)cot(x)+cos(x))/cot(x)2sin(x)

(3) cse(x)+cot2(x)i-1ni2/rsin2(x)

(I1) cos(x)cot(x)+sin(x)cse(x)

(5) (1-tiiri(x))(sec(x)+tan(x))cos(x)

(6) sin(x)/(1-cos(x))..tan(x)/(sec(x)-1)

(7) else11.(x)-cat (x)anctic
2
(x)+cot

2
(z)

* In identity (10), nabs" was added.
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(8) sin(x)/(sec(x)+1)+sin(x)/(sec(x)-1)=2cat(x)

(9) com6(x)+sin6(x)-1-3sin2(x)cos2(x)

(10) sqrt((sec(x)-1)/(see(x)+1))cgabs((1-cos(x))/sin(x))

For several arbitrary intervals, the results of evaluation at 10,000

random points ara reported in Table 5. L denotes the total length of a

symmetric interval about 0 from which the points were selected. The

-11
error tolerance 8=5.10 was used for equivalence.

Table 5. Experimental Probability of Failure for Ten Identities

Len h of Interval L

Case 2 6 18 50 JIL ...90

1 0 0 ,0001 .0010 .0020 .0010

2 0 o .0001 .0007 .000 .0004

3 0 0 .0002 .0009 .0003 .0004

4 0 0 .0002 .0004 .0004 .0008

5 0 .0020 .0055 .0098 .0112 .0143

6 .0098 .0028 .0040 .0036 .004 .0037
7 .0314 .0115 .0289 .0556 .0752 .0775
8 .0079 .0030 .0053 .0049 .0048 .0048

9 0 0 0 0 0 0

10 0 0 .0017 .0021 .0023 .0016

Assuming no computational difficulties, one still cannot arbitrarily

apply this method to any expressions. As previously mentioned, the 0-

probability condition may not hold in theory if one uses the 0-operators

from Table 1. The inverse operators introduce branch lines in the com-

plex plane and when restricted to the reals, disjoint regions may be in-

troduced, any or all of which may-be of interest. The abs operator also

serves to partition the real line into disjoint regions. The presence of

0-operators in an expression can be detected when evaluation takes place.

Example 3 illustrates how 0- operators may introduce multiple regions.

Fran an analysis of f, one can usually determine the regions of interest
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in R
n'

and the mcvmal approach would be to sample in each region. The

difficulty arises in trying to mechanically determine the regions intro-

duced by 40-operators in F. Example 4 shows that a total dierepsard of F

may or may not yield the correct decision.

Example 3. Let f(x)suln(x2)+abs(2-x). The term ln(x2). introduces

two regions L
1
=(x:x>0) and L

2
26(x:x<0). The term abs(2-x) introduces

regions L34x:x<2) and 1,44x:x>2). L2 is of interest it we wish to dis-

tinguish between identities such as ln(x2) and 2 ln(x) which hold only

on the principal branch. The resultant regions are Des(x:x(0),

D
2
gli(x:0<e2) and D

3
mil(x:x>2).

Ample 4. Let f(x)- abs(x) and F(x)mix. An analysis of r yields the

two regions Del(x:x>0) and D2fs(x:x<0). Selecting an X in the latter

region detects OF. Reversing the roles of f and F, let r(x)six and

P(x)nabs(x). Now, an analysis of f yields one region D111(-mos) since f

is a T
1
-function. If we randomly select X from any interval symmetric

about 0, there is a i-probability of detecting the fact that OF.

We cannot restrict our attention only to the effects of abs since

the cAandard inverse operators may be used to simulate these operators

on RTI, 3.g. exp(3ln(x2 ))mabs(x). The approach taken Pere is to check for

the resolvability of two expressions. In particular f and F are said to

be resolvable if.the occurrence of a 0-operator (with argument h) n the

expression f implies the occurrence of the same - operator (with same

argument h) in the expression F and vice versa. The arguments h are

checked for equality by the usual method of random evaluation while the

0-operators are matched symbolically. During the process of evaluation,

the operators and the numerical values of the arguments are recorded in
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a 0-table. Examples 5.8 idustrate this method.

aggple 5-7Resolvable Case where fgF. Let f(x)sin(abs(x.1)+

ln(y2)) and F(x)xisin(abs(x-1))cos( ln(efy))+cos(abs(x-1))sinan((y-1)

(y+1)+1)). An analysis of f yields the following regions in R2:

D1ss((x,y):xetl,y<0); Den((x,y):x<1,y> 0); D3- ((x,y):x>1,y<0); and

D412((x,y):x>19y>0). Upon evaluation at a random point L- Ion D4,

the 0-tables given in Table 6 are constructed. On each we we find

that each entry (operator, numerical values of arguments) in the

0-table for F matches an entry in the 0-table for f and vice versa.

Also f(X,Y)=F(X,Y). Thus, we conclude fgF on each region.

le6--ResolvEbleCasewhere. Let f(x)abs(x) and

F(x)m(x+abs(x))/2. An analysis of f yields two regions D1al(x:x4:0) and

D
2
m(x:x>0). Upon evaluation, the entries in the 0-tables match but

f(X1))4101) for Xi in Dl. The conclusion is OF.

EAmple 7--Uhresolvable Caiiewhere fgF. Let f(x)Rexp((x-1)/2) and

F(x)=(exp(x-1))4. Since f is a T1- function, only one region

Dige(x:-at<x<cio) is considered. Upon evaluation at Xi in D1, f(yesF(X1).

Since the 0-tables do not match, no firm decision is made

8-- Uni'esolvable Case Let f(x)abs(x) and

F(x)abs(x)abs(x+10**10)/(x+10410). The regions for investigation de-

termined by f are De(x:x4:0) and De(xtt>0). Sir'e the entries in the

0-tables do not match, f and F are not resolvable. No firm decision is

made unless we are fortunate enough to choose X1 < -1010 in Dl.
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6

7

8

Table 6. 0-Tables for Examples 5-8

for F table for f

fibs ,X-1
Ina`

abs,X

4."10(X-1),i

abs ,X+1010

abs,X

abs,X-1
ln,
ln,(Y-1)(Y+1)+1

abs,X

empty

abs,X

The Subr......23.litin H

As a straight forward Implementation of the itiethod described in

the previous section, a supporting set of arithmetic routines was in-

stalled. in PICLS. The subroutine MATCH may be called from the P/CLS

language in order to numerically test f and F at a randomly selected

point. MATCH is called by three operation codes: CN-correct numeric,

idN-wrong numeric, and AN-anticipated numeric. The programer would

normally use these instructions to process a student's mathematical

response. Executions of Clf,'WN or AN cause a transfer of control to

MATCH and the string of symbols following the operation code is passed

as an argument to MATCH., The format of these operations is

:CN:k,f,nr,"tri,LibRi,...,VnelleRri:S(RIGHT)F(WRONG)

where the string of symbols following the second colon and preceding

the last is the argument. The items in the string separated by a came

have the following meaning:



f is the correct expression specified by the programmer.

n is an arithmetic expression, the value of which denotes the

number of ordered triples Vial, Ri in the string.
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V
i is the name of a (simple, singly- doubly subscripted) variable.

Li and are arithmetic expressions whose values denote the real

interval [111,Ri] from which a random number is selcIted and

assigned to VI.

k is an instruction flag which may assume the values +1,+204.3,+4.

If repeated evaluations are needed, one can take advantage of

the fact that f and/or F have been compiled and are in a form

for rapid evaluation.

Ifl k d 211, use the new F and the previous f, ignoring any specified

f in the argument string. Ifl k I =2, use the previous F and the new f.

If! kl =3, use the new F and the mew f. Ifi k I =4, use the previous F

and the previous t. If k>0 and f and F are not resolvable due to 4-

operators, yet f(X)=F(X) for each random X, print "LOOK OK. YOUR

ANSWER SHOULD REDUCE TO f" where f is the expression extracted from the

argument string. If k<O, suppress the printing of the above message.

Upon a call to MATCH, the following activities take place.

(1) Evaluate k.

(2) Ifl Id 02 or 3, compile f as specified in the argument string

and place the code in the correct answer array for later

evaluation. Ifiklml or 4, ignore the f in the argument

string and assume the previously compiled f, currently re-

siding in the correct answer array.

(3) Ifl k I =1 or 3, fetch F from the student buffer and compile
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the expression-. If compilation is successful, place the re-

sult in the student answer array. If a syntax error is found,

print the appropriate error message and exit from MATCH.

This exit is not the normal failure exit in that the answer is

not registered as incorrect, but rather as one which has no

meaning. The exit is to the point where the student can type

a new F. If I k I 2 or 1, assure the F which already resides in

compiled fora in the student answer array.

(10 Evaluate n.

(5) If in.03, ignore this step. If h>0, then for ilia, ...en, gener-

ate a random number in the interval [Li,Ri] and store it in

the location for V1.0

(6) Evaluatfr f and F using the randain values for the Vi. If a 410-

operator is encountered with argument h, enter the information

in the appropriate 0-table. If the expression for h contains

no variable, no entry is made since 41(h) is constant. If

',gabs, then I h I is entered as the argument. If denotes ex-

ponentiation to a fractional or variable power with variable

base, then h consists of the double entry (base, I power I )

where negative powers are changed to positive to allow re-

solvability of g(x)r and g(x)pr.

(7) For 8=.5(10-14), test for any one of three conditions:

f I <8 and I F I <8; f -F I <8; or $ (f -F' )/f I <8. If any are

satisfied, go ,to Step 8. Otherwise, take the FAILliki. exit.

If both to-tables are empty, conclude fa- and take the SUCCESS

exit tram MATCH., If only one of the ..tables is egpty, go to
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Step 10. If neither 0-table is empty, go to Step 9.

(9) For each entry (ordered pair or triple) in the 04able for f,

search for an identical entry in the 0- table for F. The

arguments must agree within an error tolerance of 6 in the

manner specified in Step 7. If, upon completion of the

search, every entry in each table has been successfully

mat.ied with an entry in the other table, conclude that f and

F are resolvable and take the SUCCESS exit from MATCH. If

any entry, in either table,. is not accounted for go to

Step 10.

(10) If k>0, print the conditional success message "140ESCC

YOUR ANSWER SHOULD REDUCE TO f". If IWO, suppress printing,

but set a flag for future checks. In either case, take the

SUCCESS exit frogs WM.

Examples 9-13 are presented below to illuitrate how the programmer

may typically use MATCH to check a student's answer. The programmer

specifies f and determines the regions Di from which points should be

randomly selected. For the purpose of discussion, an F is also wpeci-

tied for the examples. Table 7 presents the corresponding 0-tables

which are constructed by MATCH:

Exeriople 9--Two T -Functions. Suppose the programmer specifies

f(x)=x-sin(x)/(2cos(x)) as the correct answer. The region for con-

sideration is Des (.4*91m) and 4 typical call ''',;(2 MATCH is

:CN : 3 x- s x )/ (211 cos ( x ) ) x -949fE(RICEIMMIUM.O.

For any expression F specified by the student, a random X in the inter-

val (-9,9] is selected and the resulting values of f and F are cowed.
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Suppose the student specifies (2*x*cos(x)-sin(x))/(2*cos(x)). Since

the 0-tables are empty and f(X) -F(X), the conclusion is re and the next

PICLS instruction labelled RIGHT is executed.

1)).,ftample,10--Resolveible and f4F. Let f(x0y)alsin(log(x )4-abs(yR-

An analysis of f yields six regions: Debt>0ye.4-1), D(x>0,-1<y<l);

D34x>0.y>1); De(x<0,y<A); D521(x<0,-licy<l); and D6(x<0,y>1).

A typical call to MATCH IS

LUCN:-3,siglog(x41412)+abs(y**2-1)), 2,340,10,y,-99-1:13(L2)F(WRONG)

L2:Cf1:-4,0,1,y,-1,1:3(L3)F(WRONG)

15:CN:-.490,1,y,1,9:8(L4)F(WRONG)

1,4:CN:-4,0,1,x,-10,0:S(L5)F(WRONG)

115:CN:-490,1,y,-1,1:gr6)F(WRONG)

L6:CN:4,0,1,y,-10,-1:S(RICITOF(WRONG)

The execution of this sequence calls for a comparison of f and F in the

regions D1, D2, D3, De D5, and D4. Suppose the student specifies

sin(log(3013))41cogabs((y-1)*(r4.1)))4°

cos(log(x**3/10)*sin(abs((y-1)01412+2117-2)).

Since f(X,Y)=F(X,Y) in each thethe failure exit to WRONG should not

occur. Instead, the success exits to L2, RIGHT will be

taken. In statement Ll, lk I =3 which tells MATCH to use the f specified

in the argument string and the F from the student buffer. In L246,

k I =4, which tells MATCH to Use the f. and F which already exist in

compiled form. In L171.5, k<0 which tells MATCH to suppress the un-

resolvability print. In L6, k>0 which tells MATCH to print the un-

resolvability message if the condition occurred in any of the Ors, Ll-

L6. In this example, f and F are resolvable.
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Mamie 11. Consider the f(x,y) in EXample 10 and suppose the

student specifies

sin(log(x*x))*eos(abs((y-1)*(y+1)))

+cos(log(x1H12))*sin(y4H12-1).

Here f--41 on D1, D3, Die and D6, but not on D2 and D5. The second CN in

Example 9 would detect the condition f(X,Y)MX,Y) on D2 and the fail-

ure exit to WRONG would be taken. Resolvability is not checked on D2

since F is unconditionally wrong.

Extrple 12--fEF but Unresolvable. Let F(x)."(x**4)**.25 and f(x)

abs(x). An analysis of f yields the regions (X>0) and (w40). On

both mr. A typical call to MATCH would be.

:CN:-3,abs(x),1,x,-10,0tS(L1)F(WRONG)

Ll:CN:4,0,1,x,0,10:S(RI(aT)F(WRONG).

In the last CN, prior to an exit to RIGHT, the program prints the con-

ditional success message "LOOKS OX. YOUR ANSWER SHOULD REDUCE TO

ABS(X).".

ledUnresolvable. Let F(x) =exp(ln(x)) and f(x)mg

ln(exp(x)). An analysis of f yields (-wow) as the single region. A

typical call to MATCH is

:CN:3,1n(exp(x)),1,x,-5,5:3(RI(HHT)F(WRONG).

If X is randomly chosen nonpositive, evaluation of F will break down

and MATCH will exit to WRONG: If DO, MATCH will print the conditional

success message and exit to RIGHT;

The argument string which is passed to MATCH is processed from

left to right which allows for random assignment of values to be

functionally dependent on previously assigned values. For example,
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suppose we define f(xoy)la1n(abs(aba(x)4)). The four regions are Des

(x<0, -034(x); D2 -( 0, -imey<x); D30i(x<0,,e3Kreol); and Diell(x>0,x<4y4).

A typical call to MATCH to test in each region would b.:

:CN:-3,1n(abs(sbs(x)-r)),2,x,-9,0,y,-9,-x:S(A)F(W)

Aktem-4,0,2,x,0,9,y,-9,x:S(B)F(W)

,y,-x,9:S(C)F(W)

C:CN:4,0,2,x,0,9,y,x,9:S(RIGHT)F(W)

Example

Table. 7. 0-Tables for Examples 9-13

0-table for F "table for f

9

10

11

12

empty empty

log,X*X log,X*112
abs, (y-1 )*(Y+1 ) abs,Y*42-1
log,X**3/X
abs , (Y-1 )**2+2IIY-2

log,X4IX log,X**2
abs, (Y-1) (Y-4.1) abs,Y**2-1
log,X**2

4111,X4(414,.25

13 ln,X

abs,X

ln,exp(X)

Mathematical Justification of the Method

The small lettero z and x will denote variables over and Itn

respectively. The capital letters Z and X will denote randomly oelected

values of z and x respectively. f and F are considered equivalent over

a set S if, for each point p is 8, either f(p)F(p) or both are unde-

fined.

Theorem 1 [183. Let .g be holomorphic in the domain D and suppose

gfk). Then the set Vm(zeD:g(z)nO) has 2n-dimensional Lebesigm measure

zero.

r'gfstva:A4','
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Definition 1 [18]. Let D be a domain in Cn. A subset V is

said to be thin if for every point z in D, there are en open polydisc

8(z;r)c) and a function g holomorphic and not identically zero in

8(z,r) such that g vanishes identically on Vngz;r).

Remark 1 [18]. The set where a nonzero holcmorphic function van-

ishes is closed, has no interior, and is thin.

Theorem 2 18]. Let V be a thin subset of the connected, open

subset DcCn. Then D-V is connected.

....ETheagmjD1. Let g(z) be analytic in a domain DcR2k and, for

some point (4,...,z:)eD where z3mocCeiy°43, let g(z) vanish in the k-

dimensional rectangle ix -x° I <2. y my
o

for j- 1,... ,k. Then g(z)

vanishes in D.

We can now specify properties of g which will place a theoretical

reliability on the method of investigating numerical values of g at ran-

domly selected points. It is possible to generalize the class of Ti-

functions to a larger class T*© g:Cnw0C1 is in T* if g is analytic on

a region (nonempty, open, connected set) D and analytic in the real

sense on DnRn with properties (1) D is dense in C's (2) if L is a non-

empty, open, connected set, so is I$D, and (3) if min denotes the n-

dimensional Lebesgue measure, then m (Cn-D)=m
n
((Cn-D)e)=0. .Pro-

perties (1) and (3) serve to insure that a randomly selected value will

fall outside the region of analyticity with probability zero. Pro-

perty (2) serves to eliminate those functions with f-operstors. In

particular, it rules out branch lines. The class T* has some closure

properties. If gl and g2 are in T*, then g1tg2, gig2, and gi/g2

(g200) are in T*. By verifying properties (1), (2), and (3) for
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DraD1nP20 where Di and D2 are the domains of gi and g2, it follows that

as and products are in T*. For the quotient, let Vin(zsg2(z)-0).

By Remark 1, V is thin and closed relative to D2, so D -V is ,open, dense

in Cia.and by Theorem 2, also connecated. Also, lin(D
2
4) is open, non-

empty, and by Theorem 2, connected. By Theorem 1 and property (3)0

m2n(Cn-02-0)=0. By Theorem 3 and property (3), %((Cn-(D2-V)016+00.

So 1/g2eT* and by the product established above, gi/g2eT*..

Starting with polynomials and the' exponential function, it is

possible to build the class the T1- functions described in an earlier

Section. Given f and F in T
1
where f0F, then the two can agree only

on a nowhere dense pet of 2n- dimensional Lebesgue measure zero. By

Theorem 3, they cannot agree on an open subset of Rn. Using the ratio

of Lebesgue measures as the probability, there is a 0- probability of

selecting XeR
n

or ZeC
n

where f and F have the same value.

Concluding Remarks

The discussion in this chapter was intended to display both the

power and the dangers in numerically comparing the student's answer

with the correct answer. The use of this matching technique in the

initial experiment in teaching computational mathematics has been

totally successful except for rare instances when the method failed to

yield a decision because of unresolvability. However, it was also

evident that the student tends to construct responses which are

closely related to the instructional material. For example, if the

correct answer is x, then the student is not likely to arbitrarily

add and subtract the hyperbolic cosine of x. This tendency of the

student along with the author's ability to analyze the correct answer
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lends to the method a stability which might not be realized in other

applications. If processing time is no factor and an exact algebraic

algorithm can be applied, it should clearly be used since the finite

precision of a computer can cause failure of a numerical method.

Although available methods of testing the equivalence of expressions

appear to be sophisticated enough for instructional application in

elementary methematics, extensions are needed for those areas in which

O-type operators are frequently used.

In addition to the theoretical problems caused by*operators,

other problems are introduced by variables which assuMe only integer

values, In theHmore. general case, it is desirable to compare two ex-

pressions f(x ,...,xe ) with F(x ,;..,x, ) where x is a vector and
gl 5111 P1

gi and pi are integer-valued subscript expressions depending on

integer-valued variables. For the purposes of testing equivalence of

f and F, we treat the members of the array x as independent real

variables. Difficulty arises in uniquely identifying a member of the

array by considering the associated subscript expression. Since we

have a mapping of integers into integers, random sampling can easily

yield the wrong conclusion. For example, let f(xk )mxk'F(ximx(0/2-k/

2+1)'
Then f(xk)AuF(xk) for km1 or 2 and f(xk)F(xk) elsewhere. Also,

integer-valued variables may occur in the expressions as nonsubscripts,

e.g. f(x) 1=k!xk -1 . As a programming technique in the development of

the computational mathematics course, a random value is generated for

each subscript variable. The values of the subscript expressions are

rounded to the nearest integer and then reduced modulo the dimension

of the array in order to identify a position in the arrai. The ex-

pressions are then numerically compared as before. This process is



then repeated with values of the subscript variables increased by one.

If both numerical comparisons succeed, the expressions are assumed to be

equivalent. In an instructional environment, this method has been

totally successful in spite of its obvious defects.

A major effort is needed in the areas of structure and content

analysis. A student's answer may be correct from the standpoint of

equivalence but not in a form for economical evaluation. Nesting of

polynomials and forming the sum of numbers starting with the smallest

and ending with the largest are two simple examples where it might be

useful if the structure of the student's answer could be analyzed. If

the student's answer is incorrect, a content analysis is needed to deter-

mine how it differs from the correct answer. Manacher [27] proposes

using sequences of numbers to check for such properties as symmetry,

correct boundary conditions; and linearity of variables. General

advances in content analysis wiluld be a step toward detecting the source

of the student's error.



CHAPTER III
DESIGN AND DEVELOPMENT OF THE CAI COURSE
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Gm.......U.1.,.osglz.....iatieralnidlesi.en Considerations

A variety of factors must be considered in the design and con-

struction of CAI course materials. While a clear specification of the

course objectives is necessary, one must also consider the capabilities

of the available hardware and software and the current practices in

instructional design. If the course is to be of significant duration,

the element of time may impose additional constraints on the sophis-

tication of the end product. In particular, a large expenditure of man

hours is required to develop extensive remedial sequences and multitrack

programs. If the effectiveness of the program is to be tested in a pro-

duction environment,-the materials must be organized for ease in

administration. This section is a discussion of how these factors

affected the design and construction of the CAI course in computational

mathematics.

As defined by this Ldthor, the purpose of a course in computational

mathematics is to teach the student how to analyze mathematical problems

and apply numerical methods for an approximate solution. There is a

definite emphasis on problem solving. In terms of ideal student per-

formances the following general course objectives are stated.

1. The student should understand the theoretical developments

which justify the existence of an algorithm. For a given

problem, the student should determine if the theoretical



36

conditions are satisfied prior to applying an algorithm.

2. The student should display proficiency in the mechanics of

applying an algorithm by working several standard problems.

3. Whenever applicable, the student should determine a priori

bounds on the error of approximation by analyzing the error

equation.

4. Whenever applicable, the student should estimate the accuracy

of the solution by interpreting computational results.

A CAI course in this subject matter should attempt to remove any cumber-

some arithmetic or programming requirements which might prevent

achievement of these objectives.

At, the outset, the course materials were paralleled with CS 414,

the undergraduate numerical analysis course at Purdue University. The

listed prerequisites for CS 414 were a working knowledge of a computer

language and successful completion of the elementary calculus courses.

The CAI course assumes the elementary calculus but programming is needed

only to the extent that a student must be able to formulate mathematical

expressions in a Fo.. qui notation. The prerequisites for CS 414 have

been recently upgraded to include an elementary course in linear alge-

bra. This change is not reflected in the CAI course.

. Twenty-four CAI lessons were developed for six general areas of

study:

1. errors in representation of numbers and computation (1 lesson)

2. root-finding methods (10 lessons)

3. solution of linear systems (5 lessons)

4. numerical differentiation (2 lessons)
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5. numerical integration (3 lessons)

6. solution of differential equations (3 lessons)

In order to concentrate on the computational and programming difficulties

and, at the same time, maintain the standards of the course objectives,

a typical lesson consists of three modes of instruction. They are

referred to as the tutorial mode, the problem mode, and the investi-

gation mode. These modes are designed to provide the student with in-

creasing flexibility in the problem solving aspects of the course.

Three sUbsequent sections of this chapter are devoted to a description

of these modes.

The Student Manual presented in Appendix A was created to handle

the problems of administering a CAI course in a production environment.

This manual prescribes a systematic approach to the study of each lesson.

By following a simple outline, the student may complete the various

study activities required in a lesson and gain immediate access to any

section of CAI materials. The Student Manual is intended to be self-

exPlanatory and a further description will, not be presented here.

In the area of software support, PICLS was extended to incorporate

special routines needed for a more flexible course development. One

such routine is the fUnction matching program described in Chapter II.

This involved a compilation subroutine which accepts arithmetic ex-

pressions from a terminal, performs a syntactic analysis, and outputs

polish expressions, and an interpreter subroutine which evaluates the

polish expressions. This body of spacial arithmetic routines served as

a basis for other needed features. In those portions of the instruction

where the student is expected to formulate a number of mathematical
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expressions, sUbroutines were written to store the expressions and re-

trieve them for evaluation at a later point in time. Once the syntax of

an expression has been checked, the author-programmer may save the ex-

pression by a function call tF.74SAVFCT(N) where N is an integer-valued

variable. Any of the previously stored expressions can be evaluated

with the numerical result stored in X by the ?unction call :FJ:FCTVAL(N,

X). The specification of the location X and the function number N are

under the internal control of the programmer.

The linear notation and restricted character set of the teletype

terminal had a definite effect on the design and development of the

course material. Special notation had to be defined and the instruction

had to include a careful explanation of this notation. Examples of

special notation can be found in the lessons on the Newton-Bairstow

method, numerical integration, and differential equations. Combined

with the restrictions placed cm the student response language, the de-

0 velapment of same sections became even more difficult. For example, the

notation F'X was used for the partial derivative of F with respect to X.

If the student is asked to form the total derivative of Y'41(X,Y)grX*112+Y

with respect to X, then the compiler is equipped to process 2*X +X **2+'f

but syntax errors would be found in the answer F'Xi-FvY*F. In this case,

the instructional material must clearly request an answer in terms of X

and Y. Multiple choice items were used whenever it seemed, unnatural to

res.:rict the symbols in a mathematical response. Another ill effect of

the linear notation was apparent in the programming of lengthy formulas.

For example, expressions such as

Y[K+1]=Y[10+11111F+H*(FIX+F'Y*F)/2

+(1141.112)*(FMC+2111"XY*F+F'XiFF'Y+:"'YY*F44442+F*(F'Y)**2)/6)
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were time-consuming to format in the program and seemed unnatural to

read as teletype output. Still another restriction of the teletype

terminal is its lack of graphic capabilities. The graphs and diagrams

normally used in a conventional classroom were usually omitted in the

CAI course. In the judgement of the author, the slow typing rate and

the character orientation of the teletype terminal precluded an effective

use of dharts and graphs. Although it would have been possible to pro-

vide work sheet graphs to assist in the instructional process, the

philosophy of the investigation was to deliberately remain computer-

oriented as opposed to multimedia-oriented.-

The irstructional strategies used in the tutorial mode were de-

signed on the basis of what could be done in a reasonably well-defined

manner in spite of a seemingly lacking technology. The author firmly

agrees with educators that a carefully planned instructional design

is critical to the success of CAI and some of the recomended practices

were followed. The presentation consists primarily of a linear sequence

but can be readily expanded to a multilevel sequence for the express

purpose of accelerating the better student and decelerating the weaker

student. For each question posed to the student, the strategy is of a

somewhat more sophisticated design and will be explained later in this

chapter. The following reasons are offered for not designing and im-

plementing a highly sophisticated instructional strategy for the initial

system.

1. Man hour requirements could be expected to increase at least

linearly with the number of tracks.

Experience was needed to establish that the software-hardware



complex was. workable system.

3. Experience was needed to determine the general reaction of

students to CAI for this level and type of mathematical

material in order to establish a basis for easier and more

difficult tracks.

The next three sections of this chapter describe the purposes and

structure of the tutorial mode, the problem mode, and the investigation

mode as they exist in the current system. Excerpts of course material

are presented to demonstrate particular concepts. No attempt is made

in this chapter to describe the subject content of the entire body of

course material in computational mathematics. A general description of

the CAI course material in each of the twenty-five lessons is presented

in Appendix B. For an appreciation of the depth of the studentin-

volvement in each of the three modes, the reader is referred to the

sample teletype output in Appendix D.

Structure of the TUtorial Mode

The tutorial mode is designed for each lesson with the traditional

classroom in mind. its purpose" is to provide the student with those in-

structional experiences which would be feasible in the classroom if

sufficient time and resources were available. In keeping with the

course objectives, the following activities are typical in this mode of

instruction.

1. The student is led through the theoretical concepts surrounding

a particular method. The student actively participates through

constructed responses to questions or multiple choice items.



The student participates in a variety of examples and exercises

which deaonstrate particular concepts and which are inter-

spersed at appropriate places throughout the theoretical

developments.

The student is led through the analysis of a typical problem

and supplies the mathematical formulas needed to apply the

algorithm.

The student concentrates on the development and formulation

and ie free from cumbersome arithmetic. This is basically

accomplished. by allowing the student to construct responses

which are equivalent to the correct answer and left in

unreduced form.

Prior to beginning the tutorial mode, the student is expected to com-

plete an outside reading assignment. Since the instruction is designed

for the average student, the faster student may find this mode to be a

review cf the outside reading assignment while the slower student is

expected to experience greater difficulty and benefit more from the

material. All students are exposed to the same core material since the

presentation'is basically a linear sequence. A skeleton strategy for

individualization is incorporated at the item level. At this level, the

slower student is momentarily detained and, hopefully, his difficulty

will be remedied. The individualization strategy for multiple choice .

items and constructed mathematical response items are shown in 'Figures 1

and 2. Multiple choice items are handled in a somewhat simplified

manner since the student must select one of!, predetermined. set of

possible answers. Due to a lack of knowledr of how students respond,
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the strategy, for handling constructed mathematical responses is more

complicated and the anticipation of incorrect answers is a difficult

task. In order to offset the lack of anticipated answers, the smudent

may at any time type HELP and additional information or hints will be

provided. If a student types two successive unanticipated answers,

the normal procedure is to give him the correct answer along with a

detailed explanation.

The following example of PICLS code involving a constructed

mathematical response is taken from the tutorial mode of Lesson 2.

This code demonstrates the instructional strategy depicted in Figure 2.

L12:TY:ON 1im[0,2], WRITE AN EXPRESSION FOR MAX(ABS(G'(X))) BY
:TY:CHOOSING A PARTICULAR VALUE FOR X FROM 140,2].

Q,12.:QU:MAX(ABS(G' (X )))=

:AA:HF1AP:S(Q12)

:TY: G' ( X )=-EXP 0.-X)/ 2 )/ 2 . G" (X )=IMCP ( (1-X )/2 )/ 4 SINCE THE EXP

:TY: FUNCTION 18 NEVER 0, G"(X) IS NEVER ZERO, THAT IS, G'(X) HAS

:TY: NO RELATIVE EXTREME POINTS. HENCE, THE MAXIMUM ON 1140,21

:TY: MUST OCCUR AT ONE OF THE ENDPOINTS. TRY AGAIN.

011:3,E)CP(1/2)/2,0:S(L13)
:TY:OK

On{:-39EXP(-1/2)/2,0:S(Q12)
:TY: NO. YOU USED THE WRONG ENDPOINT OF I40,21. TRY AGAIN.

:WN:-3,-EXP(-1/2)/2,0:S(Q,12)
:TY: NO. YOU USED THE WRONG ENDPOINT OF 140,21. ALSO, THE

:TY: ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITIVE: TRY AGAIN.

:WN:- 3,- EXP(1/2)/2,O:S(Q12)
:TY: NO. THE ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITIVE.

:TY: TRY AGAIN OR TYPE HELP.

:UN: NO. TRY AGAIN OR TYPE HELP.

ITY:MAX(ABS(G'(X)))=
:NO:

:TY: NO. MAX(ABS(G9(X))) ON [0,2] OCCURS AT X=0.

:TY: MAXCABS(G'(X)))=EXP(1/2)/2.
:RD1PRESS (RETURN) TO CONTINUE.

L13:TY:SO ABS(G'(X))< 1 ON I[0,2]. SINCE ALL CONDITIONS

THE ANSWER IS

OF THE LINEAR
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Prior to the execution of this block of instruction, the Student has

derived the iteration function G(X)=EXP((1-X)/2). In this block of in-

struction, the student is to ascertain that G'(X)i< 1 on the interval

[0,2] by actually computing maxi G'(X)1 . The correct answer is speci-

fied s EXP(1/2)/2 while EXP(-1/2)/2, -EXP(-1/2)/2, and -EXP(1/2)/2 are

anticipated incorrect responses. If the student answers correctly, he

advances to the new material beginning at label L13. If the student

gives two successive unanticipated answers, he is given the information

following the operation :NO:. He then begins the new material by press-

ing the Return Key. If the student enters a syntactically incorrect

expression, the subroutine MATCH-(See Chapter II) prints an appropriate

error message. Depending on the student, the twenty-five PICLS instruc-

tions listed above can create several variations of.teletype output.

The following dialogue between the student and the program illustrates

one possibility. At those points where a student must respond, PICLS

types a # sign at the left margin.

ON I=[0,2], WRITE AN EXPRESSION FOR MAX(ABS(W(X))) BY
CHOOSING A PARTICULAR VALUE FOR X FROM 140,2].

. MAX(ABS(G'(X)))=
#1/2

NO. TRY AGAIN OR TYPE HELP.
MAX(ABS(G'(X)))=

#.5*EXP(-.5)
NO. YOU USED THE WRONG ENDPOINT OF I240,21. TRY AGAIN.

MAX(ABS(G'(X)))=
#.5*EXP(1)**.5
OK
SO ABS(G'(X))<1 ON Ims[0,2]. SINCE ALL CONDITIONS OF THE LINEAR



Another possibility is illustrated by the following dialogue.

MAX(ABS(G' (X ) ) )1=

# PG'
(X) ga-EXP ( (1-X )/2 )/2 . GI° (X ) *]!XP ( (1-X )/ 2 )/ 4. SINCE TnE EXP

FUNCTION IS NEVER 0 , Gn(X) IS NEVER ZERO, THAT IS G (X) HAS
NO RELATIVE EXTREME POINTS. HENCE, THE MAXIMUM ON I [0,2]
MUST OCCUR AT ONE OF THE ENDPOINTS. TRY AGAIN.

MAX(ABS(GI(X)))=
#0

NO. TRY AGAIN OR TYPE HELP.
MAX(ABS(G'(X)))=

# -EXP(1)/2
NO. MAX(ABS(G°(X))) ON [0,2] OCCURS AT X=0. THE ANSWER IS
MAX(ABS(G'(X)))=EXP(1/2)/2.

PRESS (RETURN) TO CONTINUE.

A third possibility which also illustrates a syntax error is the fol-

lowing dialogue.

MAX(ABS(G'(X)))=
# EXP(05(0/2

ILLEGAL CHARACTER OR COMBINATION
TYPE A CORRECT EXPRESSION
EXP(5)/2
OK

The reader is referred to Appendix D for the teletype output of a com-

plete tutorial mode. Unlike the problem and investigation modes, the

process of instruction in the tutorial mode is under the direction of

the computer program.

Structure of the Problem Mode

The problem mode is designed to provide the student with the in-

structional experience derived from solving several typical problems.

In keeping with the objectives of the course, the student is required to

1. analyze the problems and construct the necessary formulas for
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application of an algorithm,

2. input his foiiulas and define values for any parameters

associated with the algorithm, and

3. direct the computer to a numerical solution.

A major characteristic of this mode is the complete freedom from

bookkeeping chores normally associated with programming. Once the

student has correctly formulated the necessary equations, the computer

assumes the bookkeeping and computational work. If the computation is

open-ended (e.g. iterative methods or extrapolation to the limit), the

student is provided with one logical step of the computational results

each time he pushes the Return Key. The student terminates this type

of problem by typing STOP. If the ,aputation is dependent on param-

eters supplied by the student (e.g. initial estimates for' iterative

methods or the step-size for numerical differentiation, integration,

and the solution of differential equations), the student always has the

option of redefining the parameters and repeating the calculation with-

out retyping the equations. Thus, a problem may be easily reworked in

several ways.

Unlike the tutorial mode, the problem mode does not assign an

active teaching function to the computer. Instead, it calls for

specific formulas needed to apply an algorithm to a problem and the

student must display his ability to work computational problems by
VA

supplying the correct formulas. Except for isolated places, the student

cannot call for HELP. In the event of an incorrect answer, remedial

material is practically nonexistent. Where it does exist, it appears

as a statement of fact and is not intended to remedy a misunderstanding



of concepts. Thus, the student must either supply the correct equations

or terminate the problem. If the student must terminate a problem, he is

expected to review his output from the tutorial mode in order to remedy

his difficulty. This overall philosophy i3 employed in an aUemyt to

establish independence of outside help. Except for YES/NO options made

available to the student for reformulating a problem, the problem mode

consists entirely of constructed responses. The typical strategy for,

processing a single response is shown in Figure 3.

Type. 'TRY

AGAIII

Ask for
Information

Response

(: Compile S tax
Expression Error

Student Expression
-Author Expression?

Yes

[print 'OK°

Error Message
is Printed by

HATCH

Exit to
Next Item

Figure 3. Problem Mode Strategy for Constructed Responses
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The interested reader may consult Appendix D for the teletype out-

put of a complete problem mode. The following example of PICLS code

deals with the trapezoidal rule and is taken from the problem mode of

Lesson 18.

PROB1:TY:LET F(X)=SQRT(X)+1/SQRT(X). WE WISH TO APPROXIMATE
:TY:INTEGRAL(F(X),[1,2])
:71:SPKIIFY THE ERROR IN TERMS OF H AND Z.
:ST:A=1
:ST:B=2
PlIQU:N(H)=
:AA:STOP
R1:TY:SELECT ANOTHER PROBLEM.:(Q1)
:CN:3,(-Ht2)*(3-Z)/(SQRT(Zt5)4(.48),2,H,-3,3,Z,0,1.5:S(P2)
:TY:OK. E(H)=(.11+2)*(3-Z)/(48*Zt2.5)
:UN: TRY AGAIN. FqX)=.5*(Xt(-1/2)-Xt(-3/2)).
:TYA(H)=
:UN: TRY AGAIN. r(x)=.25*(3-1)/(V2.5).
:TY:E(H)=
:UN: TRY AGAIN.:(Pl)
MO:
P2:TY:ANALYTICALLY DETERMINE AN H SO MAX(ABS(E(H))<.5*10t(-2) ON [1,2].
:TY:DO THIS BY USING MAX(340, MIN(48*Zt2.5) ON [1,2].
r3:QUM=
:AA:STOP:S(R1)

P4:ST:H=ANSWER
:IF:H 'LT' o:s(P3)
:TY: H MUST BE POSITIVE.
:IF:H 'GT* .2*SQRT(3)+.02:S(P3)
:TY: YOUR CHOICE OF H IS TOO LARGE.
:IF:H 'LT' .2*SQRT(3)-.02:S(P3)
:TY: YOUR CHOICE OF H IS TOO SMALL.
:NO:

:ST:H=.2*SaRT(3)
:FJ:OUT-PUT(1,H,(29H OK. ACTUALLY, Ha.2*SQRT(3)=,E23.15) )
:TY:THIS H YIELDS THE NUMBER OF SUBDIVISIONS
P6:4111:N=

:AA:STOP:S(Rl)
:CN:3,(B-A)/H2O:S(P7)
:CNi-3,INT((B-A)/H),0:S(P7)
:CNt-3,INT((B-A)/H)+1,0:S(W8)
:ST:N=3
:UN: NO. THE SPACING OF POINTS FOR THE TRAPEZOIDAL RULE
:TY: IS ALWAYS H=(B-A)/N. N, OF COURSE, IS CHOSEN TO BE AN
:TY: INTEGER.:(P6)
:NO:

-



P7:ST:N=INT((B-A)/H)+1
:FJ:OUTPUT(1,N, (38H WE CHOOSE THE FIRST LARGER INTEGER N-,F2.0))
W8:CN:3,Z,1,Z,-9,9:(P8)
P8:NO:
:TY:WRITE THE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISIONS.
P17:CM:H=,
:AA:STOP:S(R1)
:Cif:3 , (11-A , 0: S(P18

:UN: NO TRY AGAIN.:(P17)
P18:NO:
:ST:H=O-AVN
:ST:F[0]=2
:ST:F[1]=3.5/MT(3)
:ST:F[2]=8/SQRT(15)
:ST:K3]=3/SQ,RT(2)
:ST:TT=(F[0] +2*(F[1]+F[2])+F[3])/6

:AA:STOP:SOU.)
:CN:3,TT,0:qP20)
:UN: TRAPEZOIDAL RULE WITH FOUR POINTS SINCE 114-1=4.:(P19)
P20:MOUTPUT(1,TT,(8H OK. IT=,E23.15))
:ST:TT211(5*DaRT(2)-10/3
:MOUTPUT(1,TT,(40H THE TRUE VALUE IS TNTEGRAL(F(X);[1,2])m,E23.15))

The following teletype output represents one possible successfUl

path through the above code.

LET F(X)=SOT( X)+1/SaT(X). WE WISH TO APPROXIMATE
INTEGRAL(F(X); [1,21 )
SPECIFY THE ERROR IN TERMS OF HAND Z.
E(H)=
#4H+2)*(3-0/(SQ,TIT(Z+5)*48)
OK. E(H)=(-H4.2)*(3-0/(48*Z+2.5)
ANALYTICALLY DETERMINE AN H SO MAX(ABS(E(H))).<.5*104*(-2) ON [1,2].

DO THIS BY USING MAX(3.4), MIN(48*Z4.2.5) ON [1,2].

H=
#(3/25)414.5
OK. ACTUALLY, H=.2*SQNT(3)= .346410161513774E+00
THIS H YIELDS THE NUMBER OF SUBDIVISIONS
N=
#3
WRITE THE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISIONS.
H=
#1/3

#(H/2)41010]+2*(F[1]+F[2])+F[3])
OK. 15: .204899241064024E+01
THE TRUE VALUE IS INTEGRAL(F(X);(1,2])= .204737854124363E+01

50
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Prior to entering the problem mode, the student is expected to corn-

pletP the tutorial, mode and then consult the Student Manual for a state-

ment of the problems. In this way, the student can leave the terminal

in order to analyze and formulate the equations and return at a later

time to input his formulas and obtain a numerical solution.

Structure of the Impligation Mode

The philosophy of this mode differs from the other two in that the

computer does not assume an active teaching role and the student is not

required to demonstrate previously acquired knowledge. It is designed

to release the student from the constraints of the other modes and pro-

vide facilities for the rapid solution of problem originated by the

student. Structurally, the investigation mode is similar to the problem

mode. The student must formulate equations in order to apply an al-

gorithm and, in turn, the computer assumes the usual bookkeeping chores

associated with normal programming and provides numerical results. As

formulas are input, they are checked only for syntax errors and saved for

later evaluation. The following dialogue is a possible excerpt from the

investigation mode of Lesson 7. It shows how a student may approximate

the numerical solution to a system of equations.

DEFINE THE ITERATION EQUATIONS
X[K+1]==

#.1*SIIT(X[K])+.211COS(Y(10)

YCK+13=
#.1*COS(X[K])-.2*SIN(Y[K])
DEFINE THE STARTING VALUES
X[0]=
#1/5
Y[0]=
#0
EACH TIME THE (RETURN') KEY IS PUSHED, TWO ITERATIONS WILL BE
PRINTED. TYPE 'STOP' TO TERMINATE THE ITERATION.



K X[K] Y[K] K X[K]

1 .21986693E+00 .98006658E-01 2 .22085021E+00

3 .22129748E+o0 .81982447E-0l 4 .22127783E+oo

5 .22128894E+oo .81342965E-o1 6 .22123743z+00

7 .22128780s+00 .81317307E-ol 8 .22128773E+00

#STOP
DO YOU WISH TO TR7 A, DIFFERENT CK[0];Y[0])?
#NO
DO YOU WISH TO REDEFINE THE ITERATION EQUATIONS?
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Y[K]

.78022681E-01

.81183220n-01

.81.:)10377E-01

Since the problems originate with the student, he oust determine if his

formulation is correct and he must interpret the numerical results.

The investigation mode is optional and may be used by the student

at any time. Prior to beginning an investigation mode, the student is

expected to consult the Student Manual for a format description of the

required formulas. Hopefullyp the tutorial and problem modes provide a

source of problems for investigation. In any event, srggetwed problems

are stated in the Student Manual. The reader is referred to Appendix D

for the teletype output of a complete investigation mode.

Special, Features

In selected problem and investigation modes, the student is given

the option of using partial precision arithmetic in the computation as

an aid in the study of loss of significance or the propogation of round-

off error. In other places, the computer is used to generate a virtually

inexhaustible supply of problems and the student has the option of re-

questing such a problem from the computer. For both features, the
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computer appears to be an ideal medium and several applications are

discussed in this section.

Partial precision is optionally available to the etudent in the

problem-investigation mode of Lesson B, in the investigation mode of

Lesson 11, and in the problem-investigation mode of Lesson 13. In each

of the three modes, the student may specify a precision of p=4, 6, or 6

decimal digits. Full single precision is assumed in Lesson B if the

student specifier, p=15. The internal effect is to round each normalized

floating number in the (p+l) -st digit and retain the first p digits. If

x i an input or the result of an arithmetic. operation +,-,*,/, and x is

not zero, it is reduced to a p-significant decimal digit normalized

floating point number by the following algorithm:

n"-logio I x I

m+1 if m > 0

NO- m+1 if m < 0 and m is an integer

otherwise

p- Int(m)

Int(x.ldt+ .5 ..1.1 viok

Since the mantissa of a floating point number consists of 48 binary bits,

p is restricted to the range 1SAU5. Since the internal arithmetic is

binary, the algorithm provides an approximate p-digit decimal calculator.

In the study of ill-conditioned linear systems, the following al-

gorithm was used to generate the'n x n coefficient matrix A in the

problem-investigation mode of Lesson 13.

1. Select an integer i at random so that 1<i<h.

2. For each jpii and k=1,...,n, randomly select ajk
e(-9,9)
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3.. For k=1,...,1-1, randomly select rke(-9,9). If re for all

k, repeat this step.

2 k4
4. Compute the multipliers ap=rp,

/
rk
2

fcr p=1,...1.1.

k=1

5. Compute the ith row as a "nearly" linear combination of the

first 1-1 rows by aik- [1- (.1)k +l]Sk for k=1,... where

se pa a
p

.
k

pal

6. If any row has less than two nonzero elements, restart at

Step 2.

For this class of matrices, one can bound the normalized determinant by

I norm I A H < .0102. Denote the ik cofactor of A by (-1)i+k I Aik and

define 0 =( 0. Then
j jk

k=1

1----77-771-
'111"n /31 Tr. °34j

a2 )

ji

Expanding on the ith row,

I norm I Aik I I

/31

(-1) i+k aik Aik I m (4)i+k Sk[14,113°111 I I

I Aik

k=3.

(.1)1A+1( ii)k+1
k I I

k -i

and



'norm All < (.1)1"" .1) I Sk I

I Sk I I I Alk I I 1

l'ee n
k=1

kal I norm I Aik I I

Using

and

we have

(3.)kia5
I

km1

)k+1]20 .1)2]

k=3. kcal

(.1)k+11 S
k

I norad A 1 1 5.

k=1

)*

k=s1

(.01)k+10 499p:42./9111i.

55

.99

This class of matrices is conditioned to significantly perturb the true

solution if the student elects to use 4-digit accuracy. Even for plom6 or

8, the concept of an ill-conditioned system is usually demonstrated.

The student may observe the difference in the results by using several

values for p. As an example of the above discussion, the following

dialogue may take place in the problem-investigation mode of Lesson 13.
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PROBLEM 6.
STATE THE DESIRED DIMENSION OF THE A-MATRIX (2,3,4,NONE). N=

#3
DO IOU WISH TO DEFINE YOUR OWN A-MATRIX AND B-VECTOR?

#NO
film(4,6,8)=NO. SIGNIFICANT FIGURES FOR INTERNAL COMPUTATIONS. M.

#6
THE A-MATRIX AN]) B-VECTOR ARE NOW BEING SETUP --- WAIT.
NOW READY FOR GAUSSIAN ELIMINATION
THE CURRENT AUGMENTED MATRIX

.185938E+ol .434347E+01

.315264E+01 -.334289E+01

.273138E+01 -.100216E+ol

IS
. 563152E+01 .386653E+02
. 568190e+ol -.344478E+ol
.566600E+oi .945906E+01

DO YOU WISH TO INTERCHANGE ROWS?
#YES
SPECIFY I AND J FOR INTERCHANGE OF ITH AND JTH ROWS.
I=

#1
J=

#2
THE CURRENT AUGMENTED MATRIX IS

.315264E+01 -0334289E+o1 .568190E+01 -.344478E+0l

.185938E+01 .434347E+01 .563152E+01 .386653E+02

.273138E+01 -.100216E+01 .566600E+01 .945906E+01
DO YOU WISH TO INTERCHANGE ROWS?

#F.)

WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED.
THE CURRENT AUGMENTED MATRIX IS

.315264E+01 -.334289E+01 .568190E+01 -.344478E+01
o. .6315o6E+ol .228042E+0l .406970E+02
0. .18940E+ol .743320E+00 .124436E+02

DO YOU WISi TO INTERCHANGE ROWS?
#N0
WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED.
THE CURRENT AUGMENTED MATRIX IS

.315264E+01 -.334289E+01 .56819os+01
o. .6315o6E +ol .228042E+01
o. o. .593630E-01

DO YOU WANT NORM(DET(A))?
#YES
NORM(DET(A))= -.345434331147931E-02
DO YOU WANT THE SOLUTION FOR X BY BACK-SUBSTITUTION?

-.344478E+01
.406970m+02
.237500E+00

#YES
X3=
X2=
Xla
DO YOU
#YES

E3m
E2=
El=

.400081E+01

.499971E+01
-.300177E+01
WANT THE RESIDUALS?

(Student directs computer to a solution of the error system)
-.746691E-03
.269649E-05
.163118E-02
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THE IMPROVED SOLUTION IS
X3- .400006E+01
X2- .499998E+01
Xlm -.300014E+01
DO YOU WANT THE RESIDUALS?

Another example of computer supplied problems can be found in

Lesson 10 dealing with the Newton-Bairstow method. In the problem mode,

third or fourth degree polynomials with random complex roots are gener-

ated for the student by the following method:

1. Randomly select Cr, 0, A, B, and C from the interval (-9,9) for

the complex root oopi and the factor Bx+C or Ax2+Bx+C.

2. Randomly select the degree nu3 or 4.

3. If n=3, compute the coefficients ai for the polynomial

p(x)ga x3+ x2+a
1
x+a

0
vs(x2-20x4+02

3
a
2

)(Bx+C). If nu4, compute the

coefficients a for the polynomial.

p(x)=a4x114-a3x3+a2x2+a1x+ae(x2-2oomt2+02)(Ax2+Bx+C).

The student is provided with the coefficients ai and is told that p(x)

has a complex root in the rectangle with vertices (Int(12)+1,Int(0)+1).

The student must estimate a quadratic factor of p(x), define the recur-

sion formulas for the Newton-Bairstow method, and direct the computer

through successive iterations to find the quadratic factor x2-2ax+2+02.

Concluding Rex

The previous sections of this chapter are intended to describe the

structure of the CAI course as it was designed and implemented. Through-

out the programming and experimentation stages, it became increasingly

evident that the design constraints were too stringent. Ad expanded or

modified version of the system is needed to provide a programer, as well

as the students, with more flexibility. This section proposes some
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extensions or changes which can be made within the framework of existing

technology.

One area which should be expanded deals with broadening the base of

mathematical communication between the student and the computer system.

This is particularly important since the construction of instructional

materials and the manner in which questions aie posed to the student

often reflect the limitations placed on the student in his construction

of answers. Subsequent versions should have an expanded form of re-

sponse language whicn is partially controlled by the programmer. Some

suggested features are 3isted here.

1. The programmer should have: the capability of defining new

fUnctlons and making them available to the student. FUnction

names should not be restricted to alphabetic and numeric

characters. For example, at selected places it woad be con-

venient to define a function F"(ARG) and allow the student to

use F"(x) in his answer. Another function which might be use-

ful to the student is SUM(G[I]a281,N). Given F(X)=SIN(X),

X(01=1, and X[I+11-X(I)=11=.2 the student would probably dis-

play as much knowledge by constructing the answer (H/2)*(SIN(1)

4.81N(2)+2*SUM(FIN(XETLI=1,4))) as he would in constructing

(H/2)*(SIN(1)+2*(SIN(1 2)+SIN(1.4)+SIN(16)+SM(1.8))+SIN(2)).

A greater freedom in constructing responses may inspire the

student to concentrate more on the concepts iuvolved.

2. The student hould have the capability of defining his own

functions. Given the greater freedom suggested above in con-

structing responses, the student would no doubt begin to use
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unavticipated function names. As an example, suppose

F(x)=(1-1/x) and the author failed to internally define the

function F' (x)=002. If the student constructs the answer

XVIO-F(X(10)/FqX[K]), the system should interact with the

sttdent by asking for a new answer or a definition of F'(ARG).

3. In order to offset some of the difficulties in determining

equivalence of expressions, the programmer should have the

capability of enabling or disabling standard functions. For

example, if the programmer wants to disallow the use of the

ARCSIN function, he would turn on a disable flag. At a later

point, lie may wish to enable ARCSIN.

4. The student should be able to escape the constraints of any

mode by entering a computation mode where he could construct

and execute programs.

The incorporation of these and similar features requirett.carefUl study

and planning since a more soOtsticated process of matching expressions

maybe required.

The strategy for processing an individual constructed response (see

Figure 2) can be made more effective through a careful study of the

student records from the initial experiment. Where little knowledge was

initially available on how students respond, it is now possible to begin

to enlarge the list of anticipated incorrect responses. Items which are

particularly difficult may be changed to allow more than one call. for

HELP. Unnecessary items may be deletcd from the instructional sequence.

With some feel for the difficulty of the instruction in the tuto-

rial modes, it is now possible to begin the construction of multilevel
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tive method for choosing or altering the level of instruction for any

given student. Examinations can be designed which will allow a student

to bypass a section of the instruction or test a etudent upon completion

of a lesson.

Somewhat more definite changes are prescribed for some of the prob-

lem modes in order to require a deeper involvement on the part of the

student. The current strategy in a problem mode is to ask the student

for the equations and parameters in the order they are needed to define

the computational procedure. This ordered call for equations tends to

serve as an overall prompt or hint, contrary to the philosophy of this

mode. A new approach would require the student to work from a basic set

of symbols and define the computational procedure in his own way. Prob-

lem 3 of the problem mode in Lesson 21 is chosen here to illustrate

these concepts. The student must apply Taylor algorithms of orders 1,

2, and 3 to approximate y(2) given y'=-xy+1/y2,y(1)=1. One possible

student formulation iz presented in the following dialogue.

PROBLEM 3. (CF. CONTE, EX. 6.3-1)
LET YL=F(X,Y)=-X*Y+1/(Y1.2), (AA)41,2], AND Y(1)11r1.
SPECIFY THE PARTIAL DERIVATIVES IN TERMS OF X AND Y.
Fx=r tx=
#-Y
FY=FrYin
#-X-0**3
FXX =F "XX=

#0
FYY=F"YY=

#6/Y**4
FXY=F"XY=
#-1
SPECIFY THE DESIRED ORDER OF THE TAYLOR ALOORITEEM (1,2,3iNONE).

ORDER IC=

#3
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THE TAYLOR ALGORITHM IS III+13=Y[I]+H*T(X(I],Y(I)).
YOU HAVE CHOSEN ORDER 3.
DEFINE T(X,Y) IN TERMS OF Ha, AND Y. IF YOU WISH, YOU MAY
USE THE SYMBOLS F, FX, FY, FXX, FLY, AND FrY.
T(X,Y)=

# rig* ( ) /2+H* ( -24Er+FYYKVI*2-Y*FY+F*FY**2 )/6 )
SPECIFY N, THE NUMBER OF INTEGRATION STEPS FROM A TO B. H WILL BE
COMPUTED AS Hm(B-A)/N. CHOOIE N<101.
Nm

A typical dialogue using the proposed strategy would be

PROBLEM 3. MIF(X,Y)0P-X*Y+V(Y+2), (A,B1-(1,21, AND Y(1)=1.
SPECIFY THE DESIRED ORDER OF THE TAYLOR ALGORITHM.

ORDER Km

#3
FORMATE THE COMPUTATIONAL PROCEDURE Y(I+1178Y(Il+TPT(X(I),Y(13)
BY DEFINING AN APPROPRIATE SEQUENCE OF FUNCTIONS (FX,PY,
FXX,FXY,F1Y,T).
WHICH FUNCTION DO YOU WISH TO DEFINE?
#FY

DEFINE FY(X,Y)=
#-X-2/V*3

WHICH FUNCTION DO YOU WISH TO DEFINE?
#FYY
DEFINE FYY(X9Y)=

#6/Y***4
WHICH FUNCTION DO YOU WISH TO DUNE?

#T
DEFINE' T(X,Y ),-=

# Mt* -Y+74/*F )/ 2+H* ( -211F+FTPF**2-Y*FY+PlY414.2)6 )
FORMULATION IS CORRECT.
SPECIFY N, THE - --
(etc.)

Using the proposed strategy, the student can determine his own path to a

correct formulation of a problem. In the above example, one student may

Choose to define T(X,Y) completely in terms of X and Y and avoid defin-

ing the partial derivatives. Another student may wish to define all

partial derivatives prior to defining T. If, at any stage, the student

types an expression which uses a function not previously formulated, the

expression would not be accepted. Each formula entered by the student
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can be checked in exactly the same way es it is done in the existing

system..

No strategy changes are proposed for the investigation modes. In

programming these modes, the major difficulty arises in trying to antici-

pate the needs of the student. From the author's point of view, the

investigation modes satisfy the purposes for which they are constructed.

Their actual usefulness, in an instructional environment, is yet to be

determined. This will be pointed out again in Chapter IV.

Finally, the examples of computer supplied problems demonLtrate

that this concept can be used in many places in a CAI course in computa-

tional mathematics. Technically feasible, their overall usefulness

remains to be explored.



CHAPTER IV

EXPERIMENTAL RESULTS AND GENERAL CONCLUSIONS

The Purpose and General History of the Exp9mi......ment

In keeping with the general objectives of this investigation, this

experiment using CAI for computational mathematics was concerned with

three basic questions:

1. How do students react to the use of CAI for computational

mathematics?

What expenditure in time and dollars is required by the

teaching metirJds described in Chapter III?

3. How effective are these methods in teaching computational

mathematics?

Although complete answers to these questions would be desirable, the

purpose of this experiment was to examine initial trends and indications.

A forty-five item questionnaire was designed to provide some answers

to the first question. This questionnaire is presented in Appendix C.

In particular, the items on the questionnaire were grouped into three

general categories:

1. an evaluation of the structure of the instructional program and

the overall and relative merits of the tutorial mode, problem

mode and itavestigation mode,

an evaluation of the teletype terminal, and

3. reactions or opinions to miscellaneous items of interest to



the author.

In order to obtain an estimate of the expenditure of resources,

records were maintained on the developmental time requirements of the

author - programmer, the terminal time requirements of the students, and

the computer central processor and peripheral processor time requirements.

For this application, the central processor time consists primarily of

the execution time required by the PICLS interpreter when It resides as

a program in the central memory of the CDC 6500 computer. The peripheral

processor time consists primarily of the time required by auxiliary

processors to service the tlrminal and to transfer PICLS course materials

from disk storage to central memory for processing by the PICLS inter-

preter.

Estimates on the effectiveness of CAI are provided by a descriptive

comparison of the scores on examinations administered to both the CAI

and conventional students. The examinations in Appendix C were designed

to test the stmant nn

1. his knowledge of selected theoretical concepts,

2. his ability to use theory in an analysis of problems,

3. his ability to apply algorithms, and

4. his ability to interpret numerical results.

Initial trends and indications, provided by the experiment, will be

presented in detail in later sections of this chapter.

Six students were randomly selected from a CS 414 class for the

Fall, 1969, CAI experiment. From an operational point of view, the ex-

periment was not without difficulties. Hardward problems on the CDC 6500

Combined with software problems of interfacing PICLS with the inter-

active features of the MACE operating system required an initial
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curtailment of the available terminal hours. Extra work on weekends and

at odd hours was necessary to compensate for system breakdowns and to

keep pace with the conventional class. Three of the CAI students vol-

unteered to continue in a program of this type and the other three were

returned to the conventional group. As the stability of the hardware-

software complex gradually improved, a graduate student volunteer was

added to the CAI group. For convenience of discussion and purposes of

analysis, the original three CAI students veil be referred to by the

numbers 34, 35, and 36 and collectively as CAI-1434935,36h The grad -

uate volunteer will be referred to as student 37 and the entire collec-

tion of CAI students will be referred to as CAI-2434,35,36,57).

For CAI-1, the duration of the experiment was approximately eleven

weeks for the completion of twenty-five lessons. This coincided with

twenty-nine fifty minute conventional lectures, three examinations, and

two holiday periods. For student 37, the duration of the experiment

was the amount of time required to cover computer lessons 7-23 after the

first examination.

Students 36 and 37 were regularly scheduled for three two-hour

sessions each week while students 34 and 35 were scheduled for two three-

hour sessions each wleke Makeup hours were available upon request during

evenings and on weekends.

The CAI students did not attend the conventional lectures but they

were required to take, the examinations with the conventional class.

Upon completion of the experiment, the students filled out a question-

naire and returned to the conventional classroom for the durations of the

semester.
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Characteristics of the CAI anciamatimajamm

Many variables may be involved in accurately predicting student

performance and it is not clear which play a dominant role or which are

applicable in predicting the performance of CAI students. The author

felt that two available measures might be used to predict achievement in

a computational mathematics course:

1. the previous number of semester hours in mathematics which

might i,leasure the student's maturity in mathematics, and

the cumulative gradepoint in previous mathematics courses

which might measure a host of variables such as IQ, aptitude,

motivation, etc.

The information on previous mathematics hours and gradepoint was gathered

from a questionnaire for each of the thirty-seven students who completed

the CS 414 course. The average grade point (gp) and mathematics hours

(mh) are listed in Table 8 for the following classes of students:

TOTAL=(1,2...,37)=total population

C*41,2,...,33)=original conventional group

C=C*-(13,14,29)=conventional students who took all examinations

CAI-1434,35,36)=original CAI students

CAI-N(34935936 937) = total CAI students

The gp and mh were rounded to the nearest one-tenth of a point. Compar-

isons of CAI-1 End CAI-2 were made with C and subsets of C rather than

C* since three students in C* failed to take an examination. Rather

than countiig the score of zero on the missed examination for students

13, 14, and 29, these students were eliminated from consideration.

Table 8 shows that CAI-1 had a comparatively low gp and mh. This
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was the result of two effects. First, the lower gp and mh students were

the ones to volunteer for retention in the experiment. Secondly, the

usual drop out of conventional students was concentrated in the low gp

and rah range, thereby increasing the average gp and mh of the remaining

conventional group C.

Table 8. Mathematics Background for Various Groups

TOTAL C* C CAI-1 CAI-2

No. Students 37 33 30 3 4

Average 810, 4.8 4.9 4.9 4.1 4.4

Average mh 18.5 18.3 19.0 13.7 20.3

The relative rank of each student is given for mh in Table 9 and

gp in Table 10. An examination of the mh and gp figures in Tables 8-10

for the individual members and group averages indicates several things:

1. CAI-1 cannot be expected to compare favorably with C.

2. CAI-2 should compare more favorably with C than CAI-1 compares

with C.

3. In terms of both gp and mh, student 37 appears comparable with

student 10, but not with any other members of the class.

4. The deletion of (13,14,29) from C* to form C increased the mh

of the conventional group.

5. Neither CAI-1 nor CAI-2 are totally representative of C.

This last point is further substantiated by investigating the correla-

tion between mh and gp:

r
mh x gp

(e
AI-2)=.81

r
Mh x gp

(C)=.12
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In CAI-2, gp and mh are highly correlated. This is not true in C. In

view of the loss of randomness in the sample and a lack of middle to

upper gp and mh students in the sample, a close descriptive analysis of

the results was conducted rather than a statistical analysis.

An Analysis of Student Performances

Three examinations totalling twenty-five items were administered to

both the CAI students and conventional students. These examinations

covered the materials in lessons i-6, 7-15, and 16-23. The score and

relative rank of each student on each examination is available for in-

spection in Tables 21-23 of Appendix C. In addition, the cumulative

average over three examinations is given in Table 24 of Appendix C. The

individual performances of the members of CAI-2 and the group average.:

are shown in Table 11. The average for CAI-1 was lower than the average

for C as might be expected since CAI-1 had a much lower average mh and

gp. The consistently high performance of student 37 explains the increase

in CAI-2 over CAI-1. The average score for CAI-2 was still below that of

C, but the substantially higher gp for C may account for this difference

in score. One very noticeable point was the uniform decline from their

course average for the members of CAI-1 on the third examination. Later

remarks may help to explain this decline.

The examination of the final average performances would be of

interest in determining the actual importance of wh ana sp. Working

with the data from Tables 9 and 10 and using the individual course

averages from Tab'J.4 24 as the performance (P), the following correlation

coefficients were computed: rmh x P(C )=.14; riah x P(CAI-2)°99;

gp x P
rgp p(C0)=.6 4 and Al-2)=.81.



70

Table 11. Examination Scores for Various Groups

Group Exam 1 Exam 2 Exam 3 Average

(34) 38 64 42 48

(35) 68 70 34 57

60 56 54 47 52

(37) 92 93 87 91

CAI-1 54 63 41 53

CAI-2 64 70 53 62

C 67 67 67 67

The indicaC.on here is that gp was an important predictor of performance

in both C and CAI-2 while mh did not appear important in C. The mh

effect on the performance of CAI-2 registered astoundingly high. However,

the relative importance of gp and mh.in CAI-2 is concealed by

rgp
x mh

(CAI-2)=.81 as reported in the previous section.

In order to look more closely at the effects of mh and gp on the

final performance,. the linear regression equation

P=.1765mh+14.42gp-7.181

was computed from the mh, gp, and performance data P for the conventional

students C. The standard deviation from regression is 11.8 and the

correlation between P and P is .64. The mh and gp for the various CAI

groups in Table 11 were extracted from Tables 8, 9, and 10 in order to

predict the expected performance P of the CAI students if they had

attended the conventional class. These results appear in Table 12.

Student 34 performed well below his predicted value, but within one
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standard deviation. Student 35 performed about as predicted. Student

36 performed better than his predicted value, but within one standard

deviation. Student 37 performed more than one standard deviation above

his predicted value. Taken collectively, CAI-1 and CAI-2 performed

approximately as predicted by the regression equation for C.

Considering each of the twenty-five items on the examinations in

Appendix C, CAI-1 scored better than C on seven items and CAI2 scored

better than C on twelve items with one tie. The relative difference

between each of the item scores for CAI-2 and C was computed by dividing

the absolute difference by the total possible points. This relative

difference exceeded .2 for eight items with six in favor of C and two in

favor of CAI-2. These items and corresponding scores for CAI -1, CAI-2,

and C are given in Table 13. The table indicates that the CAI-1 group

had difficulty with some of the theory and a high score by student 37

was not enough to keep the relative difference less than .2. This is

not unexpected, considering the lower gp and mh of CAI-1.

Table 12. Predicted and Actual Performance of the CAI Students
A A

_...:cmGz Ave mh Ave a j P P-P

(34) 13 4.4 58.56 48.0o -10.56

(35) 14 4.4 58.73 57 33 - 1.40

(36) 14 3.6 47.2o 52.33 + 5.13

(37) 40 5.2 74.86. 90.67 +15.81

CAI-1 13.7 4.1 54.36 52.56 - 1.80

CAI-2 20.5 4.4 59.89 62.08 + 2.19
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Table 13. Exam Items with Large Group Differences

CAI-1 CAI-2 C Total Major Purpose
Exam Item Ave Ave Ave Possible of Problem

1 .2b 3.3 4.8 7.9 10 Apply Theory

1 3 0 5 11.1 20 Apply Theory

1 4a 8.3 8.8 5.2 10 Interpret Results

2 la 9 10.5 13.9 15 Understand Theory

2 4b 10 10 7.9 10 Apply Algorithm

3 la 0 1.3 3.7 5 Understand Theory

3 lb 0 3.8 9.7 15 Understand Theory

3 2b 1.7 3.3 6.5 10 Analyze Problem

Since neither CAI-1 nor CAI-2 appeared to be a good representation

of C, it seemed likely that comparisons with subsets of C would yield

more information. For each CAI student, subsets of C were formed to

collect those students who had similar mh and/or gp characteristics. An

average of each subset was then computed to form the average individual

C-representatives for each CAI student. Depending on the mh or gp tol-

erance allowed, each student could have numerous C-representatives.

Selected C-represei2q;atives for a given mh and gp tolerance were then

averaged over tae CAI students to form the average group C-representative

to be compared with the CAI-1 group and the CAI-2 group.

Denote gpk(N) as the subset of all students in C which differ from

N in. CAI-2 by at most .1k gradepoints. For example, from Table 10, it

follows that gpi(35)43,17,20,30,33) is the set of all students in C who

differ from (35) by at most .1 gradepoints. In a similaI manner, denote

mhk(N) as the set of all students in C who differ from N in CAI-2 by at
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most k mathematics hours. Thus, from Table 9, mh
3
(35)=(394,6,7,8,9,15,

16,18,19,22,26,28,30) is the set of all students in C who differ from

(35) by at most three mathematics hours. Intersections of subsets were

formed to control both mathematics hours and gradepoint, e.g.

g1101(35)nmh3(35)43,30).

For each N in CAI-2=(34,35,36,37), the following twelve subsets of

C were formed: gpk(N) for k=0,1,2,3, mhk(N) for k=0,1,2,3, gpk(N)nmh3(N)

for k=1,2,3 and gp3(N)flmh2(N). Since C is finite, twenty-five of the

forty-eight total subsets consist of only one student from C while both

gpi(37)nmh3(37) and gp2(37)nmh3(37) are empty. For the forty-six non-

empty sets, the average gp and mh were computed to form the character-

istics of the C-representatives for each CAI student. The examination'

scores wer also averaged to form the performance data of the C-rep-

resentatives. In this manner, each CAI-1 student has twelve individual

C-representatives characterized by gp0, gpi, gp2, gp3, mho, mhl, mh2,

mh3, gpinmh3, gp2flmh3, gp3nmh3, and gp3flmh2. For example, gpi(35) is a

C-representative of student 35 with average gp=4.4, average mh19,

average exam 1 score=59, average exam 2 score=55, average exam 3 score=

57, and course average=(59+55+57)/3=57 Student 37 has only ten in-

dividual C-representatives because of two empty intersections. To form

the group C-representatives of CAI-1 and CAI-2, the individual C-

representative information was averaged over N=34, 35, 36 and N=34, 35,

36, 37, respectively. The results appear in Tr s 14 and 15. For ex-

ample, the mh average of gp3(CAI-1) in Table 14 was computed as 17.4

by summing the mh averages of gp3(34), 03(35), and gp3(36) and

dividing the total by three. Similar computations were performed

for the gp and examination scores.
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Table 14 shows twelve group C-representations to be compared with CAI-1.

For each representative in Table 14, the number of students is actually

the number of contributing students from the corresponding C-

representatives for the members of CAI-1. Duplicate students were not

counted, For example, there were five students contributing to mh2(CAI -1)

since mh2(3043,9,16) and mh2(35)=mh2(36)48,22,3,9,16). Six conven-

tional students 1, 2, 5, 10, 24, and 32, did not affect the figures in

Table 14. Similarly, Table 15 shows the data for the ten group C-

representations formed by averaging the respective individual C-

representative data for students 34, 35, 36, and 37. Three conventional

students 2, 24, and 32, did not affect the figures in Table 15. As

previously mentioned, students 13, 14, and 29 were exciwied from both

tables.

An inspection of Table 14 reveals several trends. First, the pre-

viously mentioned uniform decline of CAI-1 on examination three was par-

alleled only by a decline from the course average in the mho, mhi, and

mh
2

representatives. The other representatives showed no large decline.

The indication is that students with a weak background in mathematics

scored below their course average on the theoretical materials covering

numerical differentiation and integration and differential equations.

Controlling only the gp, there is a maximum difference in P of seven

points between CAI-1 and the corresponding C-representatives, the edge

going to the conventional students. The C-representatives also record

a stronger mh background, the difference ranging from 2.3 to 3.7. The

maximum difference occurs at the gp3 level where the C-representative

has 3.7 more math hours and a slightly higher gradepoint. The major

effect appears to be the gradepoint which is in keeping with the value



75

Table 14. Comparison of CAI-1 with Approximate Representatives in C.

No. of mh gp
Group Student

CAI-1

IMO
gp1
45.1"2

gp3
ah0
mhi

mhmho

gip A-
gp mh

g49mh;
gp3(1013

Table

Gro

3
2
6
8

12
2
3
5

14
3
3
2
3

13.7
16.o
16.7
17.0
17.4
13.7
13.3
13.8
15.4
13.8
13.8
13.3
13.8

Exam 1 Exam 2 Exam 3 Course Predicted
Ave Ave Ave

4.1 54
4.1 56
4.2 55
4.1 55
4.2 59
4.7 57
4.6 62
4.6 63
4.9 64
4.2 49
4.2 49
4.2 45
4.2 49

63

53
61
61
67
65
66
72
68
68
68.
70
68

41 53
6o 56
54 57
52 56
55 6o
50 57
49 59
55 63
63 65
54 57
54 57
52 56
54 57

54
55
56

55
56
6
62
62
66
56
56
56
56

15. Comparison of CAI-2 with Approximate Representatives in C.

No. of mh gp
Students Ave Ave

Exam 1 Exam 2 Exam 3 Course Predicted
Ave Ave Ave Ave P

CAI-2

gP0
SP1
gP2
SP
3

ah0
mh

1
mh
2

mhz
gp Nth
gpind13

grnah-13 2
gp311mh3

4

3
11
15
23

3
4
6

15
WO - MOO

ea IOW

20.2
16.3
17.0
17.0
17.6
20.3
20.0
20.4
21.6
40101111111110.

4.4
4.4
4.4
4.4
4.5

h

5,o

64
58
58

59
62
65
69
70
71

MCI.= IMOD

1110.11111M011 11.10M

70 53
56 66
64 61
64 57
69 6o
69 62
69 61
74 66
71 71

62 6o
6o 6o
61 6o
6o 6o
64 61
65 67
66 66
70 67
71. 69

Mdlim NINO MOD MOW.

We IMO MD NO

3 20.0 4.5 56
4 20.4 4.5 59

3o I9.0 4.9 67

72
71
67

64
65
67

64
65
67

61
61
67

from the regression equation and previously reported correlations.

Controlling only the mh, the gp of the C-representation rises to 4.9 as

compared to 4.1 for CAI-1. The result is a sizable difference in scores

as expected. Controlling both the gp and mh, the difference does not

exceed four points.
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Table 15 reveals some of these same trends. By controlling only

the gp, the difference in scores never exceeds two points. By control-

ling only the mh, larger differences are detected, but this attributed

to a significant increase in the gp for the C-representatives. By con-

trolling both the mh and gp, the difference does not exceed three points

with the edge going to the conventional students.

Inspection of Tables 9 and 10 shows that students 10 and 37 were

the only two who ranked exceptionally high in both mathematics hours and

gradepoint. Table 16 shows the comparison-of CAI student 37 with student

10 and also with the class of all conventional graluate students G148,10).

No striking differences appear in the performances, and the indication is

that graduate students performed very well by either method of instruc-

tion.

mh

Table 16. Performance at the Graduate Level

gp Exam 1 Exam 2
Student Ave Ave Ave Ave

Exam 3 Course .Predicted
Ave Ave P

8 16

10 4o

(8,1o) 28

37 40

5.3 89 92 86

5.5 89 80. 98

5.4 89 86 92

5.2 92 93 87

89 72

89 79

89 76

91 75

Although the danger in dealing with small groups of students is

realized, the results of the initial experiment indicate that CAI

students awl conventional students with equal mh and gp performed equally

well on examinations.
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Observations of the Proctor

During the course of the experiment, the author conducted casual

discussions with each CAI student. Some items of interest are noted in

this section and may be pertinent in explaining the performance of the

CAI students. Judgements concerning the overall motivation Gf a

student were based on observed fluctuations in enthusiasm (especially

during periods of excessive hardware failur, ) and in persistence in

learning the concepts (especially during lessons involving difficult

subject matter).

Student 3I had noticeable difficulty with the level of the course

material. This was further complicated by continual machine failures

and the svudent tended to hurry through the lessons. The student

realized his difficulties and, at times, repeated sections of the

tutorial mode in order to gain a better grasp of the concepts. This

student worked about half of the problems in the problem modes and then

hurried to the next lesson. The investigation nodes were seldom used.

The student had extra-curricular activities which interfered with all of

his studies. In particular, he stated that he did not have time to

study at all for the first examination. His motivation seemed to be

average and remained constant throughout the experiment.

Student 35 found the course material to be challenging, but ex-

perienced some serious difficulties in the last eight lessons. He

methodically went through the tutorial modes, but he easily gave up

when the questions seemed difficult. He learned to put in successive

garbage answers when the material was very difficult in order to ex

tract the correct answer from the system. He worked all problems in
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the problem modes but almost never tried the investigation modes. His

overall motivation seemed to be about average but tended to fluctuate

with the difficulty of the lessons.

Student 36 found the course to be extremely difficult, but was per-

sistent in his attempts to learn the material. He worked all problems

in the problem nodes and most suggested problems in the investigation

modes. His rate of progress was slow and he of ,an came in during

evening hours to do additional work. He realized his weak mathematical

background, but attempted to offset this with a high motivation to im-

prove. His motivation, however, fluctuated with the number of hardware

failures.

Student 37 had, no observable problems. He seemed to work through

the tutorial and problem modes with a scientific curiosity. He tried

some of his own, problems in selected investigation modes. Highly

motivated, he found some sections challenging and others easy, but

never found the material too difficult.

From general observations and a study of the student records, the

following conclusions are tentatively offered:

1. The student operates at a higher, efficiency over three two-hour

blocks of CAI than over two three-hour blocks.

2. Machine failures are highly disruptive and deter learning.

The intrinsic motivation of a CAI student may be the major

factor in determining the difference between expected and

actual performance.

4. Considering the uniform decline of the CAI-1 students on the

last examination, several effects may be present. As
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previously mentioned, the C-representatives of CAI-1 based on

mh
01

mh
l'

and mh
2

also showed a decline. It is possible that

a stronger mathematics background is needed to master the

course material in lessons 18-23. Since this was the latter

portion of the course, it is also possible that an early

Hawthorne effect was beginning to disappear. Not to be dis-

counted is the possibility that lessons 18-23 are poorly

designed and/or the material is of sufficient theoretical

depth to warrant other approaches to teaching the material.

The author did experience difficulty in designing instructional

sequences for long and involved theoretical developments.

Student participation was difficult to envision and, at times,

even seemed unnatural.

Additional study is needed to substantiate or repudiate all of these

claims.

Results of the questionnaire

The forty-five item questionnaire displayed in Appendix C was de-

signed to determine the student's reaction to various features of the

system. The items on the questionnaire were categorized as follows:

1. Determine the student's reaction to the program structure of

the tutorial, problem, and investigation modes--items 2-7, 13,

15, 17-18, 20, 22-24, 27-33, 35-37, and 39.

2. Determine the hardware restrictions of the teletype terminal--

items 8, 10-12, 16, 19, and 40.

3. Determine miscellaneous reactions--items 1, 9, 14, 21, 25-26,

34, 38, and 41-45.



The results of the questionnaire were more or less interpreted in terms

of ideal conditions. A distribution of responses is given in Table 17.

The weights -, 0, and + are to be interpreted in the following manner:

+ means that all students responded favorably to CAI.

0 means that all students took a neutral stand.

(0 or +) means that at least one student responded favorably, at

least one took a neutral stand, and no students took a negative

stand.

A similar interpretation is placed on - and (- or 0) where negative

means an unfavorable response to CAI. Questionable items are those

which could not be interpreted because either some students responded

favorably while others responded negatively or the item has no + or -

interpretation. The individual responses of each student to each item

is presented in Table 20 of Appendix C. The discussion here is con-

cerned with responses which have questionable interpretation or are

negatively oriented.

The author interpreted the responses to items 30 and k5 as

negatively oriented. Three students responded with a 15-30 minute

estimate of preparation time for the tutorial mode. Although this may

be typical of most students, more time is needed to complete most of

the outside reading assignments. Student 34 reported an average of

306145 minutes for preparation. In general, the students relied heavily

on the tutorial mode for an extensive exposure to the ourse material

and did not digest the outside reading prior to the t torial mode.

The students generally agreed that the investigation ode did not pro-

vide an outlet for solving their own problems. Howeve only two

students made any serious attempt to use the investigat on modes and
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only one student made extensive use of them. It would appear that a

deeper rooted problem exists. Possibly the students did not have extra

time or they were not motivated to define their own problems.

Table 17. Distribution of Responses on the Questionnaire

Item
0 or +

Program 30 None None 3,13,23 31,35 2,4,17,24,27, 5,6,7,15,18,
29,32,33,36, 20,22,28,37

39

None 8,11 10,12,16,19

21,34,42 9,14,25,41 1,26,38,40,
43,44

1 1 0 8 16 19

Hdwre. None None None

Misc. None 45 None

Totals

The responses to nineteen items had a questionable interpretation.

Some of the items were designed to extract information. On others, the

students were not in general agreement. In attempting to determine the

most useful of the three instructional modes in items 5-7, the opinions

were divided. Three students voted to retain the tutorial mode but drop

the investigation mode if necessary. However, two of these three

students seldom used the investigation mode. Student 36 believed the

problem and investigation modes to be the most useful. Of the four

students, however, student 36 was the only one to extensively use the

investigation mode. There were differing opinions on the difficulty of

the linear notation imposed by the teletype terminal and distractions of

a noisy typing mechanism. One student felt that he had to concentrate

on avoiding syntax errors when typing responses. Two students said that

the linear notation made the material more difficult to read and one felt

that this difficulty was intensified in the last eight lessons on
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differentiation, integration, and differential equations. One student

SOOM4i bothered by the noise of the typing mechanism.

Specific items regarding course effectiveness resulted in some vari-

ation in opinion. Two students felt that half the time they could have

gained more from the conventional classroom. It is interesting to note

that the ;,er-trormance of both of these students were well above the level

predicted by the regression equation in Table 12. Three students agreed

that deviations from the textbook made the material more difficult while

Student 37 hay, no difficulty. The tutorial modes seldom clarified the

outside reading assignments for Student 36. Student 37 found himself

trying to get through the material rather than learning it. This same

student said he did not need graphic displays to help him understand the

material. Since this student scored high on all examinations, the

implication is that he understood the material prior to working through

the tutorial mode and that he had very little to gain from CAI. On

occasions, he guessed at the answer. The other three students seldom

guessed and felt that a graphic display would have helped. Students

were divided on a self-evaluation of their own knowledge and their rela-

tive performano4 on examinations.

The Economics of CAI

In terms of author-programmer preparation time, close to one hundred

man hours were required to design and implement a lesson and complete the

associated tasks. These figures were derived by keeping approximate

records of the man hour expenditures for Lessons I and 13-23. Averaging

the time over twelve lessons, the following breakdown is reported:
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initial design (17 hours)

- -specification of lesson objectives

- -specification of subtopics and order of presentation

- -design of examples sad exercises

- -specification of format and design of problems for the prob-

lem mode and investigation mode

2. coding (24 hours)

program checkout (27 houns

--data preparation

--debugging by batch processing

- -debugging by final teletype runs

- -initial revision of the material

admimistraticE of trial experiment with the lesson (3 hours

--proctor the experiment

- -correct errors

documentation (3 hours)

- -creation of appropriate pages for the Student Manual

--creation of the lesson on magnetic tape

6. 20% estimate overhead (19 hours)

- -consultation

- -preparation of questionnaire and examinations

- -correction of errors after the Fall, 1969, experiment

--unaccounted for activities

ThroughoUt the experiment, PULS maintained a record of the student

terminal time, the central proofasor time, the peripheral processor time,

and the tot:0 number of student responses. These figures were
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accumulated and averaged over the number of participating students and

are presented in Table 18. Some records were lost due to machine failure

and. the average reflects usage for only those students for whom records

were available. Thus, the average figures are based only on available

information. In those cases where records were lost for all students,

the corresponding items are so labelled. If a student failed to use an

investigation mode, a zero time was recorded for him. Since the invest-

igation modes were not used by some students, a low average figure

appears in most entries of the investigation mode columns. In order to

determine the average requirements for a lesson, figures for the three

modes were accumulated column-wise and divided by the number of numerical

entries in each column. The final averages show that the typical student

spent seventy-eight minutes in a tutorial mode, requiring 22.87 seconds

of central processor time and 80.94 seconds of peripheral processor time.

During this time, the student responded seventy-five times or about once

every minute. It should be noted that a response is recorded for each

depression of the Return key. Depending on the area of activity, this

may or may not imply an actual constructed answer. It does, however,

imply that the computer had to service the request from the terminal and

that PICLS had to retrieve and process program statements from a disk

file.

Eased on the current Purdue charges of $275 for each hour of cen-

tral processing time and $55 for each hour of peripheral processor time,

the average computing cost for the typical tutorial mode was (275(22.87)+

55(80.90)/36w or $2.98. Additional calculations appear in Table 19.

The prices quoted above are for internal projects. At commercial rates,

the costs would be approximately doubled.
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Table 19. Computing Costs for CAI

Adjusted to Adjusted to
6o Minutes 50 Minutes

2.29 1.91

10.69 8.91

10.20 8.50

5.38 4.48

Table 19 shows that the problem-solving features of the problem

and investigation modes come at a high premium. In these modes,

arithmetic instructions are abundant and entire blocks of instructions

may be executed for a single response in order to provide the student

with computational results. In terms of central processing time, an

interpretive system heavily penalizes the application of computational

mathematics. A direct comparison of the problem and investigation

modes with the conventional student's use of the computer for homework

assignments was not possible since the conventional students were not

required to program all of the numerical methods. Assuming equal

effectiveness of the problem-solving facilities of the CAI system and

the conventtzal method of programming, one must eventually determine

if the elimination of student programming and debugging in CAI systems

is worth the difference in cost.

The basic figure for comparison is $2.98 since the tutorial mode

is the portion of the CAI program vhich as designed es a parallel to

the conventional classroom. It should be emphasized that this dollar

figure will very among installations depending on the computer charges

needed to run a nonprofit shop. It does, however, appear that an

interactive CAI system on a computer which is saturated with background

Cost for
p.21...airame

Tutorial Mode 2.98

Problem Mode 6.77

Investigation Mode 1.36

All Modes 11.11

86
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jobs yields a cost which is not totally unreasonable. The $2.98 for

seventy -eight minutes of student terminal time is adjusted in Table 19

to fifty and sixty minutes to provide a better feel for its magnitude.

These figures, however, do not include the charges for the terminal and

telephone lines. Using $66.00/month rental for the terminal, $2.00/

month for the line charges, and estimating two hundred usable terminal

hours each month, the hourly cost is $.34 and the total hardware cost

becomes $2.63/hour. This figure does not include course developmental

costs and proctoring costs.

Using the student time and hourly cost, certain ratios were com-

puted. In the following computations, only twenty-four CAI lessons were

assumed. Lesson A was eliminated from consideration since it teaches

the use of the CAI system and the material is not included in the

conventional classroom. Its overall effect diminishes as the number

of CAI lessons increase. Denote

student terminal time required for twenty-four tutorialTeal=

modes=(78)(24)=1872 minutes=31.2 hours

T
c

= student classroom time used to cover the equ4valent material

(twenty-nine fifty-minute lectures)=(50)(29)=1450 minutes

=24.17 hours.

The ratio of student time is R
1
=T

cai
/T

c
=1.29 which means that CAI re-

quired about 30% more student time. Based on student time and equal

performance P=P
c
=P

cai,
the time effectiveness ratio is given by

El =(Pcai/Tcai
)/(Pc/Tc)=1/R1=.77

which means that CAI was about three-fourths as efficient as the con-

ventional method. Denote



0
cai

= other costs/hour attributed to developing the CAI course and

proctoring students

C
cai

= total hourly costs for CAI

= 2.63+
°cal

C = cost of teaching one conventional student for one hour

The Purdue figure for Cc was not available but Korpstein and Seidel [231

estimate the 1970-71 national average to be $1.40 for higher education.

This estimate is based on cost data prior to 1965 and on a steady annual

increment of about 10%. The figure for Ccai cannot be computed since

0
eai

is not known, but the hardware cost alone will exceed the allow-

able break even point. The ratio of total instruction cost was

Re1(2.63+0cad/1.40=2.42+(.92)0
cal.

Based on equal performance, the

cost effectiveness ratio is F.,e =(1/R
2
)<.42. The cost of CAI was more

than 2.4 times the cost of the conventional method and less than 42%

as efficient.

In terms of economics, the conventional' method of instruction had

a clear cut advantage. However, the total hardware costs can be

significantly reduced by designing an instructional system with con-

centration on efficiency of operation. Central processor time can be

significantly reduced by avoiding an interpretive mode of execution.

Peripheral processor time can be reduced by avoiding excessive accesses

of peripheral storage. In the future, a major effort will be needed to

find ways to reduce 0
cai,

particularly the developmental costs.



89

CHAPTER V

GENERAL FINDINGS AND RECOMMENDATIONS

Specific details have already been presented in the concluding re-

marks of Chapters II and III and in the various sections of Chapter IV.

In this section, an overall summary of the findings is presented along

with some recommendations for extending the research. The following

points summarize the major findings of this investigation:

1. The feasibility of using CAI for a major portion of the course

material has been tentatively established by constructing the

program and observing that the average student's terminal be-

havior on examinations is about the same as representative con-

ventional students. Although the author's manner of pre-

sentation might be questioned, the level of difficulty parallels

that of the conventional classroom.

2. General difficulty was experienced by the author in designing

instruction for the involved theoretical portions of the course

dealing with the derivation of numerical methods. In these

areas, it was difficult to provide for detailed and meaningful

student participation and, at the same time, restrict the in-

struction to a time period which is reasonably comparable to

that of conventional presentation. Successful approaches de-

pend on the ingenuity, experience, and dedication of the in-

structor. The mathematical maturity of the student seems to
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have a significant bearing on the success of the instruction.

The student's participation is further hampered by the re-

stricted base of communication which was implemented in the

system.

3. The problem-solving aspects, such as exercises, examples, and

problems appear natural in this method of instruction.

4. The approximation method described in Chapter II for determining

equivalence of expressions was totally successful for this

application. It provides the student with a great deal of

flexibility in constructing responses within the syntax of the

language. The author considers such flexibility to be an im-

portant'element in the success of CAI in mathematics. It re-

laxes the restrictions on communication and allows the student

to concentrate on concepts. Since it appears externally as an

underlying intelligence, the student has confidence in its

power to distinguish between correct and incorrect responses.

The syntax of the language was limited in this development and

recommendations for extensions are detailed in Chapters II and

III. A restricted syntax also limits the author's flexibility

in designing instructional materials.'

5. Although teletype terminals were used in this development, they

imposed restrictions on both the author and the student. In

some cases, a graphic display is needed to describe the

geometry a numerical method. Even though the students were

of a divided opinion on the effects of a linear notation, the

author is of the opinion that it is awkward and difficult to
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read. Using a natural notation on a CRT display probably

would not solve the problems of entering expressions through

a keyboard. In particular, the governing rules for forming

nested superscripts and subscripts might be complicated.

6. Stability the hardware-software complex is essential in any

production effort. System failures are disappointing to the

rtudents. They disrupt the student's concentration and waste

his time; In the experiment reported in this paper, it is not

known how systems failures may have affected the performance

on examinations. Repeated failures in a large scale production

effort could have a negative social reaction. Backup systems

may be necessary.

7. The design and development of instructional material have some

inherent problems. A massive effort in terms of author-

programmer time is needed to produce a single-Cmck linear

program. This is particularly true in computational mathematics

where the definition of variablesind assignment of numerical

values to variables require a sizable number of supporting

arithmetic statements which produce no teletype output. A

large number of statements is needed to provide processing

support for a single constructed mathematical response. This

is true even though an expression may be checked by a single

call to the program described in Chapter II. Figure 2 and

_associated program examples in Chapter III demonstrate this

large requirement. Because of these requirements, the overall

development failed to accomplish the secondary objectives of
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implementing examinations for student evaluation and imple-

mentingi remedial tracks. Future large-scale developments

should be conducted by teams of individuals, representing

specialists in instructional deign and specialists in subject

matter content. Prior to implementation, the project should be

reviewed by several institutions in order to gain wide scale

acceptance and avoid immediate obsolescence.

8. The problem and investigation modes provide the student with

facilities for rapidly solving computational problems. In this

respect, the author's approach is considered successful. As

pointed out in Chapter III, a revision of the strategy in some

of the problem modes may be necessary to provide more challenge

to the student. Partial precision and computer-generated

problems appear to be useful features in computational mathe-

matics but a careful study has not been conducted. These

features place heavier demands on the central processor and the

cost of instruction rises.

9. The operational costs for CAI are higher than conventional

costs but they are not comp"..etely out of range. A carefully

designed system could conceivably reduce the computing power

costs of the tutorial mode to the cost of the conventional

classroom. A major effort is needed to find ways to reduce

the developmental costs.

10. A detailed inspection of student scores indicates that CAI

students and conventional students with similar mathematics

background and mathlmatics gradepoint will, on the average,
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perform equally well.

11. The general student reaction to CAI is positive.

It should be emphasized that conclusions 9-11'are based on a small

sample of student histories, examination scores, and the results of a

questionnaire. Because the sample was small and because the experiment

was plagued with oporational problems, the results have to 10, con-

sidered tentative.

The results of the initial experiment opens the way for follow-up

experiments ol a varying nature. First, several experiments Lhich in-

volve a wide range of students should be conducted to verify the initial

results and stabilize the cost estimates. Some experiments should be

conducted without the problem and investigation modes. The CAI students

would have problem assignments identical to those of the conventional

class. In this way, the value of the stand-alone tutorial mode and the

effects of the problem mode can be determined. Finally, the tutorial

modes should be reconstructed to contain extensive remedial work, exam-

inations, and multiple tracks of instruction. Wherever appropriate, the

problem modes should be revised in the manner described at the end of

Chapter III. The communication features should be expanded in the

manner described in Chapters II and III. All useful experiments con-

ducted up to that point should then be repeated on the extended system.

Of a somewhat different nature, several areas of investigation be-

gin to stem from the current system. The existing course may be sup-

plemented by a graphic display controlled partially by the student and

partially by the program. As the student progresses through the

material, the program can maintain carefully labelled diagrams or
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graphs which are pertinent to the discussion. The student may request

graphs of his own functions. Hopefully, this would offset some dis-

advantages of a teletype terminal and lead to deeper understanding of

the concepts. Another possibility might be to integrate the current

system with the convcultional classroom under the control of a in-

structional management system. Various possibilities can be investigated.

From a broader point of view, the results of research in other

areas are needed to create a sophisticated instructional system. A CAI

system should have information retrieval capabilities where a student

can ask questions and obtain meaningful information. Ideally, the

student should be able to communicate in some reasonable subset of a

natural language. Character recognition is needed for handwritten

communication and speech synthesis for verbal communication. In

mathematical systems, the various algorithms of formula manipulation

such as symbolic differentliation and integration can be usefully employed.

Some standard procedures are desperately needed for distinguishing be-

tween conceptual errors and algebraic errors. If these features are

combined with advances in learning theory and teaching techniques, we

will have some basic tools for building an instructional system.
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Introduction

This manual is a study guide for twenty-firim computer-assisted

lessons in computational mathematics The recommended procedure is to

sequentially study Lessons A, B, 1,...,23.

Each lesson requires the completion of outside reading assign-

ment and a computer assignment which deals with the same material. The

student may systematically complete each lesson by diligently following

the study guides in this manual. General recommended practices are

presented in the following paragraphs.

Readkrusk3g.onLt

The assigned reading should be completed prior to the computer

assignment and will always be from the textbook ElemtawjEgatrica

Analysis by S. D. Conte, Both the reading assignment and the computer

assignment require a prerequisite knowledge of. differential and

integral calculus and a minimal knowledge of the Fortran computer

language. The reading assignment will always cite those materials

which should be read prior to beginning the computer lesson.

gaTuterAWANMElt

A computer lesson is generally divided into three separate modes

of instruction which are described below. A, student may begin a

particular mode by typing a designated "section name". The section

names for each mode will always be listed in the computer assignment.

By the time the student has completed Lessons A and By he will be
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aware of the significance of each mode of instruction. A computer

lesson may be terminated at any point by typing $LOGOFF. If the

tutorial mode is terminated in this manner, the student may restart

the lesson at a later time at approximately the same point by selecting

an appropriate section name from the available list given in the Index

at the back of this manual. Due to the manner in which the problem

and investigation modes are constructed, the student may restart at

the beginning of these modes with very little repetition.

Tutorial Mode

This mode is a programmed instruction presentation of the lesson

material and covers all concepts needed for the problem and investi-

gation nodes. A variety of examples and exercises are presented to

give the student a practical Ixposure to solving problemq. The student

is expected to complete the tutorial mode prior to beginning the pro-

blem and investigation modes.

Problem Mode

This mode of instruction requires the student to work several

standard problems using the computational method studied in the

tutorial mode. Problems may be solved with a minimum of computational

effort on the part of the student and no programming effort. Tie

problems for each lesson will always be stated in thy, study guide in

order to give the student an opportunity to preanalyze the problem

and set up the necessary equations prior to beginning the problem mode.

The problem mode may be started any time after completion of the

tutorial mode.
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Investigation Mode

This mode is optional and the student may use it to solve pro-

blems of his own choice. Throughout the tutorial and problem modes, the

student will hopefully think of variations of exercises and protlems

or new and unusual problems. Rapid solution is possible since pro-

gramming .is not required. The student may begin the investigation mode

at any time after completion of the tutorial mode.

Student Performance

In each lesson, a simple statement of what is expected of the
3

student on a closed book examination should dictate how much time the

student spends in the problem and investigation modes.
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Liessorii.....CeboardOrientation

Reading Assignment

Read the first three pages of this manual and the current study

guide for Lesson A.

The purpose of this lesson is to familiarize the student with the

teletype keyboard and with the sign-on procedure for accessing computer-

assisted materials. Upon seating yourself at the teletype, the com-

puter will request the following information:

1. student identification number

2. student password

3. command, section name

A unique student identification number and password is assigned to each

student by the instructor. The computer will request this information

as the official sign-on procedure. If you have not been assigned an

identification number and password, contact your instructor. In order

to begin a computer lesson, the student must supply a command and sec-

tion name. The command will always be $LESSON and the section name

must be a legitimate entry specified in the Index of this manual.

As an example, suppose the student with identification number 547

and password AM wishes to take Lesson A. The following operations are

performed:

1. The student seats himself at the teletype and waits for the

message TYPE USER NUMBER:

2. The student types 547.

3. The computer types TYPE PASS WORD.
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4. The student types AMZ.

5. The computer types TYPE COMMAND.

6. The student types $LESSON,L0L01..

7. The computer initiates Lesson A.

Computer Assignment

To begin the tutorial mode, use the section name LOL01. There is no

problem or investigation mode for this lesson.

upon

Student Performance

completion of this lesson, the student should be able to

1. sign on and of without difficulty for all subsequent lessons;

2. type mathematical expressions;

3. correct typing errors; and

4. apply standard techniques to obtain first estimates of zeros

of functions.
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........._._.m._.L.LeammmB:Coute]lpggmmjmiayataH.JAgpxljamar

Reading Assignment

1. Read Conte, pp. 4-11.

2. Review the format for Fortran floating point numbers.

Computer Assignment

The following section names are needed:

1. 'WM for the tutorial mode

2. WPM for the combined problem-investigation mode

Statement of Problems in the Problem Mode. For each of the follow-

ing prallems9 the CDC 6500 will simulate a 4, 6, 8, or 15 digit com-

puter. To work each problem, the student must specify

1. the desired precision P=4, 6, 8, or 15

2. numerical values for A, B, and C.

The object of the problems is to observe round-off error and loss of

significance.

Problem 1. (see Conte, Ex. 1.3-1) The computer will use p-digit

precision to evel 's A+B+C, A/C, A-B, A-B-C, (0B)/C, B/C, and (B /C) *A.

Problem 2. (see Conte, Ex. 1.4-1, Ex. 1.4-2) Two formulas for

finding a root of A*x2+B *x +C are (-B+sqrt(B2-4*OC))/(2*A) and

(-2*C)/(B+sirt(B2-4*OC)). If 4 *A *C is "small" cowered to B2, the

effect of C can be lost by using the first formula. For various values

of A, B, and C and precisions P024t 6, 8, and 15, investigate the loss

of significauce in /3200C and the results of both formulas.



Suggested Problems for Investigation Mode lOptimal. For this

lesson, the problem and investigation modes are one and the same.

Suggested values for Problem 1:

A=.4152 B=.3572*10 Cm.6321*10
A=1000 B=.4 C=.4
A=.4 B=.4 C=1000
A=.9367 B =,9161 Cm.9161

Suggested values for Problem 2:

Aw.01 B=1000 C=.004
Awl B=4 CO =

Aw.0001 B=1000 C=1

6
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Student Performance

In order to understand numerical results in future lessons,.

the student should be fully aware of the concept of round-off error,

. loss of significance, and how an error may propogate through subsequent

calculations. The student should be able to construct his own examples.
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Lesson 1: Linear Iteration Methodologx

Reading Assignment

1. Read Conte, pp. 19-21 up to and including the statement, but not

the proof, of Theorem 2.1.

2. Read Conte, p. 23.

3. Review the concept of a continuous function.

Computer Assignment

Use the following section names to begin the three available modes:

1. L1L01 for the tutorial mode

2. LIP01 for the problem mode

3. LlI01 for the investigation mode

Problem Mode. Automatic computation is supplied for all problems

in the problem modes throughout this course. The student is required

to supply the mathematical formulation. Time can be saved by analyzing

the problems prior to beginning the problem mode.

Problem 1. The function F(x)=x-cos(x) has a positive zero P.

Find an interval (A,B) and an iteration function G(x) so that

1. A<P411B

2. G(P)=P

3. G(x) and G (x) are continuous on (A,B)

Ii. abs(G'(x))< 1 on (A,B)

You must supply A, B, G(x), and G'(x) for the iteration X101=G(xt).

Problem 2. (see Conte, Ex. 2.1-3) Finding the square root of a

number A is equivalent) b solving the equation x2-A00 or finding a

zero of F(x)nx
2
-A. due possible iteration function can be constructed
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by setting x
2
=A and dividing both sides by x to obtain G(x)=A/x.

Investigate the convergence for various values of A. Which conditions

of Theorem 2.1 are violated?

W....ivestiationldetillona. You may use linear iteration on

any problem of your own choice. You must supply the iteration equation

x10.1=C(xk) and a starting value xo.

Suggested Problem 1. Find the zero between 1 and 2 of the func-

tion F(x)0.1*x2-x*ln(x).

Suggested Problem 2. Division by a number cg0 can be regarded as

finding the solution of F(x)=1/x-c. Define G(x) x*(2-ax) and investi-

gate the convergence for various values of c.

Student Performance

Upon completion of this lesson, the student should be able to use

various teChniques to transform the equation F(x)=0 to the form

x=G(x) so that all properties of Theorem 2.1 (Conte) are satisfied.
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Lesson 2: Linear Iteration - Theory

Reading Assignment

1. Read Conte, pp. 21-22 and 24-26.

2. Work Ex. 2.1-4.

3. Review the mean-value theorem (see Conte, p. 15).

Computer Assignment

Use the following section names to begin the three available

modes:

1. L21101 for the tutorial mode

2. L2P01 for the problem mode

3. L2101 for the investigation mode

Problem Mode. Work both problems. You must supply G(x), G'(x),

and x©.
P

Problem 1. (see Conte, Ex. 2.1-1) The cubic polynomial

x3+1.9*x2-1.3*x=2.2 has a zero P near x=1. Determine an iteration

function G(x) and an interval (A,B) so that for xo in (A,B), the

iteration xileG(xk) will converge to P.

Problem 2. (see Conte, Ex. 2.1.5) The function F(40.7.x+03 *sin(x)

has a positive zero P. Determine an interval (A,B) and iteration func-

tion G(x) so that for xo in (A,B), xk =G(xk) will converge to P.

Investigation Mode (Optional). You may use linear iteration on

any problem of your own choice. You must supply the iteration equation

xicia*G(xk) and a starting value xo.

Suggested Problem'l. The linear iteration theorem states suffi-

cient, but not necessary, conditions for convergence. Let
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F(x)mx
3
-x

2
-x-1 and G(x)=x-F(x)/x

2
. Investigate convergence for a wide

range of xo. What conditions of the theorem are violated if we choose

Chollqw(-1010,1010)?

Student Performance

See the student performance for Lesson 1. Given an iteration

fUnction G(x), the student should be able to prove that the sufficlency

conditions of Theorem 2.1 (Conte) are or are not satisfied. The student

should know the formal meaning of "linear convergence" in terms of

limits.
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An Techniquehn

Reading Assignment

1. Read Conte, pp. 27-30.

2. Work EX. 2.2-3.

Computer Assignment

Use the following section names to begin the three available modes:

1. L3L01 for the tutorial mode

2. L3P01 for the problem mode

3. L3101 for the investigation mode

Problem Mode. For each of the problems, you will have to specify

the following information:

1. Aitken's delta-squared formula

2. a convergent iteration function G(x)

3. an interval (A,B) on which abs(G'(x))< 1

4. a starting value xo

Problem 1. (see Conte, Ex. 2.2-1) Find the smallest positive

zero of F(x)=2*x-tan(x) using linear iteration and Aitken's delta-

squared method.

Problem 2. Find the smallest positive zero of F(x)=.7-30.3*sin(x)

using linear iteration and Aitken's delta-squared method.

ImpliatlmjaadelOptionall. You may apply linear iteration

and Aitken's delta-squared method to any problem of your own choice.

You must specify an iteration equation x10.11(xk), an acceleration for-

mula, and a starting value xo.
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Suggested Problem 1. Let F(x)=x2-c where d>0. For the iteration

function G(x) =c/'ac, apply Aitken's process to the iteration xkleG(xk).

Compare with the results of Problem 2, Lesson 1.

Suggev,ed Problem 2. Let F(x)=x
2
-c where c>0. Define the itera-

tion function G(x)=x-F(x)/F'(x). First define the acceleration formula

to be x'k=xk and find the root. This is equivalent to not accelerating

at all. Next, use the standard Aitken's acceleration. Compare the

number of iterations for the two methods, say for six digit accuracy.

Student Performance

The student should know Aitken's acceleration formula and given

any convergent iteration xkieG(xk) the student should be able to

apply the acceleration formula.
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Lesson 4: Newton's Method and Quadratic Convermase

Reading Assignment

1. Read Conte, pp. 31-35.

2. Review the linear iteration theorem (Conte, Thm. 2.1).

3. Review Taylor's theorem (Conte, Thm. 1.5 p. 15).

4. Upon completion of the computer lesson, work exercises 2.3-5

and 2.3-6.

Computer Assignment

Use the following section names to begin the three available modes:

1. L4L01 for the tutorial mode

2. 001 for the problem mode

3. L4I01 for the investigation mode

Problem Mode. In each problem, you must supply the requested

iteration function G(x), the interval (A,B), and a starting value x
o

.

Problem 1. (see Conte, Ex. 2.3-1) For any two of the following,

find the "smallest positive" zero by Newton's method.

a. f(x)=2*x.tan(x)

b. f(x)=4*cos(x)-exp(x)

c. f(x)=2*cos(x)-cosh(x)

You must supply an interval (A,B) which contains the desired zero but

no other zero of f(x), Newton's iteration, and a starting value x0.

Problem 2. (see Conte, Ex. 2.3-6) f(x)=(14-1/x)2 has a double zero at

P=-1. Apply Newton's method and observe that the convergence is linear

but not quadratic. Determine (A,B) so that abs(G,(x))< 1. Computation

is supplied to display the sequences xk, Ek/ixet Ek /Ek, and Ek41/E:.
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Observe that Ek /Ek approaches G'(P)=Iir while E
k+1 k/E2 appx)aches 00.

Problem 3. (see Conte, Ex. 2.3-6) Apply the modified Newton's

method G(x)=x-2*f(x)/fqx) to the function in Problem 2 and observe

that the convergence is quadratic. Determine (A,B) so that abs(G'(x))4.

Computation is supplied as in Pr_tlem 2. Observe that Ek /Ek ap-

proaJies zero and approaches g"(P)/2=1.

Inveltiatiasjtatiel2akmal. You may rse Newton's method or

any other iteration xkleG(xk) on any problem of your own choice. You

must supply G(xk) and a starting value xo.

Suggested Problem 1. f(x) =(l +l /x)3 his a triple zero at P=-1.

Define a modified Newton's iteration by xk+1=x-m*f(xk)/fqx ). Verify

computationally that convergence is linear for m=1, 2; 4, 5, and 6, and

quadratic for m=3. Verify divergence for m greater than 6.

Student Performance

The st:dent is expected to know Newton's method and be able to

apply it to practical problems. The student should know the meaning of

quadratic convergence in terms of limits.
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Lesson 5: The Secant Method

Reading Assignment

1. Read Conte, pp. 39-43.

Review Newton's method, the meaning of linear convergence

(Ek +l/Ek approaches G'(P)), and the meaning of quadratic con-

vergence (E
k+1 k

/E
2
approaches IP(P)/2).

3. Work Ex. 2.4-2 in Conte after completion of the computer lesson.

Computer Assignment

Use the following section names to begin the three available modes:

1. L5L01 for the tutorial mode

2. L5P01 for the problem mode

3. L5101 for the investigation mode

Problem Mode. For each problem, the stulent met supply the re-

quired iteration functions, an interval (A,B) which contains the

required zero, and an initial approximation xo (also xl for the secant

method).

Problem 1. (see Conte, Ex. 2.4- 1) Draw a graph to estimate the

zero of f(x)=x-tan(x) between P1/2 and 3 *PI /2. Obtain the zero correct

to seven digits by (a) Newton's method anA (b: the secant method. A

very close estimate of the root P is require.. for convergence.

Problem 2. (see Conte, Ex. 2.4-3) Find the real positive root of

f(x)=exp(-x2)-log(x) correct to seven significant digits using the

secant method.

Investigation tima. The student may solve any problem

of his own choice by supplying an iteration equation xic+1=0(xk_rxi)

and starting values xo and xl.
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Suggedted Problem 1. Investigate the convergence of the secant

method for f(x)=(1+1/x)2 where P=-1 is a double root. Compare the

results with thoRe of Problems 2 and 3 of Lea& 4.

Student Performance

The student is expected to know the formula for the recant method

and be able to apply it to practical problems. The student should un-

derstand the rate of convergence in terms of limits (see Conte, Ex.

2.4-2).



Lesson 6: Simultaneous Equations

Reading Assignment

1. Read Conte, pp. 43& 44 (last paragrap0-49.

2. Review the concept of a partial derivative from the calculus.

3. Review Taylor's formula with remainder for functions of two'

variables (see Conte, p. 16).

Computer Assignment

Use the following section names to begin the three available modes:

1. L6101 for the tutorial mode

2. 161501 for the problem Me

3. L6101 or the investigation mod'

Problem Mode. For each of the following problems, the student

must supply the partial derivatives fe fy, gx, and gy and the iteratioa

formulae for Newton's method along with a starting estimate (xo,y0).

Problem 1. (see Conte, Ex. 2,5-2) The system 1(..n,y)raxP le
2
-1,

g(x,y)=x*y has four solutions. Use various starting values (x
o o

) to

find them.

Problem 2. (see Conte, Ex. 2.5-3) Use Newton's method to find

solutions to the system f(x,y)=x2-1-x*r3.9, g(xty)=3*x2*y-y)-4 using

starting values (1.2,2.5), (-202.5), (-1.2,-2.5), and (2,-2.5). Observe

which root the method converges to and the number of iterations required

for six significant digit accuracy.

Problem 3. (see Conte, EX. 2.5-4) Find one solution to the

system f(x,y)=x-sin(x)*eosh(y),g(x,Omy-cos(x)*sinh(y) using Newton's

method.
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3'..p=tii.onNioder The student may work any problem

of his own choice by supplying the iteration equations xml=101(xklyk),

Yk+122G2(xkand a starting value (x0,y0).ak )

Suggested

g(x,y)=x4+y4-1

plain.

Suggested. Problem P. You will have to use tl,e inveAtigation mode

for Lesson l) (section name L14101) to solve this problem. Newton's

method for three equations in three unknowns f(x,y,z)=0, g(x,y,z)=0,

and h(x,y,z)=0 arises from the solutioD of

Problem 1. Find a solution of the system f(x,y)mxt"*y 0

by Newton's method. Is the convergence quadratic? Ex-

fy

P'Sr

h
x

by

where C, go h, and :111 partials are c. valuated, at (x y oz ).
k 'k k

nCSuppose f(x,y,z)=x2-1.y2W-1, h(x,y,1)=x -y +7, 0 and g(x,y,z)ax*y*z

a. Show that Newton's equat:i.ons are

xk+1=ick-xk*( k2+71,2"
4',47Z 2.*Yk* Vi;.

Yk0477Yk(4.:*4.*Yit)/(2*Yk*(44))
Z =V, -z *(y

2*z2-x2
-y

2
(24ty *(x

2
-7

2
It)k+lkk kkkid/''k kjki

b. Use (x
o
,y

o
oz
oM.21.8,.R) to find the solutiov.

Student Performance

The student is expected to learn the iteration formulas for

Newton's method applied to two simultaneous equations in two variables

and be able to apply the method to practical problems.
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Lesson 7:lamntlEquations Eeal Roots

Reading Assignment

1. Read Conte, pp. 50-54.

2. Work Ex. 2.6-6 after the computer lesson.

Computer A signment

Use the following sertion names to begin the three available modes:

1. L7LO1 for the tutorial mode

2. L7P01 for the problem mode

3. L7101 for the investigat_on mode

Problem Mode° :nor each, of the following problems, the student

must specify the nested multiplication formulas to compute bn,
0n-1'

...,bep(xk), =p*(xid, Newton's iteration in terms of

xk, bo, and, ci, and R starting value xo.

Problem 1. (see Conte, Ex. 2 6-1) Use Newton's method, for poly-

nomials to find the real root between 0 and " of p(x) =x3+x4.1.

Problem 2. (see Conte, Ex. 2.6 -3) Use Newton's method for poly-

nomials to find a real positive root of

%
a. 'p (x l=x 4-o*x 1

b. p(x)=3*x5-2*x--2

c. p(x)=J2-11*xii-W*x7

on Mode The student may work any problem of

his own choice by specifying for a polynomial, the degree N, the

coefficients an,an_1,...,a0, and a starting value xo.

Suggested Problem 1. Use Newton's method and the sequence of re-

duced polynomials to determine the multiplicity of the root at xml
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and x=-1 of the polynomial p(x)=x
6
4..x

5
-44fx -2*x'45*x'+x-2.

Student Performance

`fie student is ea ected to learn the recur3ion formulas for

Newton's method for, polynomials and Lo be able to apply them to find

roots of polynomials.
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Lesson 8. Difficulties in Finding222IL21121xnomials

Reading Assignment

1. Read Conte, pp. 55-59.

2. Review Newton's method for polynomials.

Computer Assignment

Use the following section names to begin the three availa-ale modes:

1. L(LU1 for the, tutorial mode

2. L8P01 for the problem mode

3. L8I01 for the investigation mode

Problem Mode. For each problems you must supply. the initial re-

cursion formulas for Newton's method for polynomials and a starting

value x . After a root is found correct to eight significant digits,

use the yeduced polynomial to find the next root correct to eight

significant digits. When, the reduced polynomial is a quadratic, use

the quadratic rormula to find the remaining two roots. Obrerve the

loss in accuracy caused by error propagating to the reduced polynomirkis.

Problem 1. (see Conte, Ex. 2.6-4) Four real zero6 between -3 and

2 exist for (x)m.:x
3

*Z--6.3*x-4.2. Find these roots, ter-

minating the iteration when (x1,
+ry

xk)<5*10
-8

.

Problem P. p(x)=x
4
-5*x2+4 has exact roots at -2, and. P.

Use Newton's method and approximate starting values to find, these roots

using the sequence of reduced polynomials. Terminate an iterat'Lon when

-
abs(x

k+1 k
)< 54(10 .

.........alnveatiatial,121tIkiLimall The specifications are the same as

the investigation mode for Lesson 7.
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Suggested. Problem 1. Conte,

rltudent Performance

The student nhould be aware of possibe :!ifficulties when attempt-

ing to find the roots of polynomials, e.g. instablAity, loss of

accuracy .using the sequence of reduced polynomials, loss of quadratic

covergence in case of multiple roots.
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Lesson 9: Recursion Formulaz for pividing_a Polynomial
byEa2adr1...atic

Factor and Iievievi9.2sil.,ealLithmetic

Reading Assignments

1. Read Conte, pp. 59-60

r:omguter Assignment

Use the following section naves to begin the two available modes:

1. L9L01 fo.r the tutorial more

2. L9P01 for the problem mode

Problem Mode. p(x)=.1x -4*x*+3*x24-2*x-6 has two complex roots.
3

a. Form the quadratic divisor 1+0)*(x-(1-0)

b. Use the reeurzion formulas to ind b b awl

thus determine Q( *xf+b *x+b . ( )=b1*(x-2)4.bo.

c. Observe that b
1
--r.b =0 which means P(x)=0. Fence,

(x-(1+0)*(x-(1-1)) is an exact aivtsor of p(x), that is,

1+i and 1 -i. are both complex zero of p(x).

Student Performance

The studer't should learn the recursion formulas to compute the b1

when dividing a i)oliynorGial by R quadrati.c fl7i.vtrlor. The sturlfrett should

observe that if the coefficients of p(x) are real, then complex roots

of p(x) must occur in pairs a+b*i and a-b*i and x
2
-2*a*x+a

2
+b

2
is an

exact quadratic factor of p(x).
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Lesson 10: The Newton-Bairstow Method fELE2lynomisa:_amkaltms

Readtnp Assignment

1. Read Conte, pp. 60-64.

2. Review Lesson 9 (recursion formulas for dividing by a quad-

ratic factor).,

3. Review Lesson 6, Newton's method for solving simultaneous

equations.

Computer Assignment

Use the following section names to begin the three available modes:

1. L101,01 for t,-10 tutoriftl

2. L1OP111 for the problem mode

3. LlOTO1 for the investigation mode

Problem Mode. Por each of the problems, the student must specify:

a. the .: eeurnio formulas to compute each b
i
to obtain 6

1
and b

o'

b. the recursion formulas to compute each cito obtain c3, c2 and

el, and

c. starting values and To to define the approximate quadratic

factor x2 *x-T

Problem 1. (see Conte, Ex. 2.7 -3) Us-, the Newton-Bairstow method

to find a quadratic factor of p(r)=x +34fx
2
+1. An approximate root is

z=1.6*i.

Problem 2. (see Conte, J. 2.7 -3) p(x)rx
)4.

4.24cx-+.6*7 -13*x+48 has

a complex zero near A:=14-sqrt( Use the Newton-Bairstow method to

find a quadratic factor of p(x).

Problem 3. p(x)=2*x -2.0545802*x2-.9491684 has a complex zero near

z=.154-.8*i. Use the Newton-Bairstow method to find a quadratic factor of

p(x).
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!nvesisation Mode(22Alinglt This mode provides automatic com

putation for either Lin's method or the Newton-Bairstow method. The

student must specify the method, the degree of, the polynomial, the co-

efficients of the polynomial, and initial estimates S
o
and T

o
for the

quadratic divisor x
o
ft-`o.

Suggested Problem 1. p(x) x w4 *x. x2MJ.24 x+9 has a double com-

plex zero near z=.9+1.4*i. Does the Newton-Bairstow method converge

quadratically?

Suggested Problem 2. Conte, Exercises 2.7-2 and 2.7-5.

Student Performanne

The student should learn the recursion formulas for the Newton-

Bairstow method and be able to apply the method to practical problems.
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Lesson 11: The Solution of Linear S stems by Elimination

Reading Assignment

1. Read Conte, pp. 156-16.

Computer Assignment

title the following section names to begin the three available modes:

1. L11L01 for the tutorial mode

2. L11P01 for the problem mode

3. L11101 for the investigation plo,IF,

Problem Mode. In both problems, the computer will maintain six

significant digit accuracy throughout the computation. The object of

the problems is to observe the advantage in using the method with pivot-

ing. Both problems deal with the linear s!rstem Ax=B given by the aug-

mented matrix

I- .000003 .213472 .3 1

.215512 .375623
3247

.476625

.2 35262

.12765'5

L. .173257 .663257 .625675 .2%15321

Problem 1. Solve the above system by elimination without pivoting

by using the sequence of row operations

(Row 47)+W(Row I) replaces (Row j).

You must specify M, I, and J for each row operation.

Problem. P. Solve the above system by elimination with pivoting by

using the row operations

Interchange (Row 1) and (Pow 4

(Row J)+Mlt(Row I) replaces (Row J)

You must specify the operation to be performed and the corresponding

values of I, J, and M.
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Investigation 1542120oion)2.11 The student may solve any linear

system of his choice using 4, 6, or 8 significant figure accuracy

throughout the computation. The student specifies:

1. the precision 4, 6, or 8

2. the dimension cf the system Ax=B

3. the elements of A an6. B

Computation is supplied by the amputer as the student directs any of

the following sequence of operations:

1. Interchae (Row I) and (Row J)

2. Replace (Row J) by (Row J) +M *(Row I)

3. Begin the back-substitution

4. Print the current augmented matrix

5. Restart the problem with the original A and

6. Input a new A and B

7. Terminate the investigation mode

Suggested Problem 1. Use elimination to find the solution of the

system

6 15 9 13 .1

2 17 11 1

4 10 14 8

L 5

12.5 7.5 .3

x2
3

L

31
19

= 0 11

L ,

Note what happens after forming zeros in positions A21,A3, and A41.

Expl in

suggested Problem 2. This example will be encountered again in

Lessons 12 and 13. Note the variation in the solution by using different

precision arithmetic,

1.24763r 2.53423 8.93734 4.37526 i x
1

r

I..

1.02435 3.61254 3.22463 x 2.55174
2

=

.853217 3.00906 7.29341 x3 6.15257
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Lesson 12: Evaluation of Dete minants and Matrix Inversion

Reading Assigm4ent

1. Read Conte, pp. 1(E9-174.

2. Review the method of elimination.

3. Work Ex. 5.5-3 after, the completion of the computer lesson.

Computer Assignment

Use the fol...ming section names to begin the two available modes:

1. Ti2L01 for the tutorial mode.

2. L12P01 for the problem-investigation mode.

Problem-Investigtion Mode. vou may specify any problem of your

own choice or you may request the computer to generate a matrix A with

random integers as elements. For each problem, you must

1. specify the dimension N=20 3, or 4 for the matrix A;

2. specify the elements of A (or ask for random elements);

3. use elimination to reduce the N by 2*N augmented

matrix Al I to triangular form; and

4. use back-substitution to compute B=A-1

Suggested Problem 1. Conte, Exercises 5.5-1, 5.5-2, and 5.5-4.

Suggested Problem 2. Find the inverse of tLe coefficient matrix

in the Suggested Problem 2 of the investigation mode for Lesson 11.

Student Performance

Upon completion of this lesson, the student should be able to apply

the method of elimination to find the mveTse of a given matrix A,

check the accuracy of A
-1

by comparing AA with the identity matrix I,

9
and given a system Ali.x=B, compute the solution x=A1B.



128

tessc,a 1 : Errors and C nditioning

Reading Assignment

1. Read Conte, pp. 163-169.

2. Review the method of elimination.

Computer Assignment

Use the following section names to begin the two available modes:

1. 1,131,01 for th, tutorial mode

2. L13P01 for the problem-investigation mode

.122121.patiattleaLtiode. You may specify any problem of your

own choice or you may request the computer to generate a problem for you.

In the latter case, the computer will generate a matrix which is ill-

conditioned. For each problem, you must

1. specify the dimension, N=2, , or 4, of the matrix A;

2. specify the arithmetic precision, NT= 4, 6, or 8 significant

digits, for all internal computations; and

3. specify the elements of the matrix A and vector B for the

system ex =B or request the computer to generate them for you.

To solve a problem, you must direct the computer through some sequence

of the activities listed below.

1. Interchange rows.

??,. Perform the current stage of elimination.

3. Compute the normalized determinant (assuming the matrix has

been reduced to teiangular form).

4. Compute the solution x after reaching a triangular form.

5. Compute the residual vector after finding x.

6. Find the solution to the error system telEmiR and compute the
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improved solution anew *x+ after completion of step 5.

Upon completion of a problem, the student may elect to change the pre-

cision M and rework the same problem.

Suggested Problem 1. Conte, Exercises 5.4.1, 5.4-20 3 and

5.4-4.

Suggested Problem 2. Rework Suggested Problem 2 of the investi-

gation mode for Lesson 11.

Student Performance

Upon (%qmpletion of this lesson, the student should be able to use

elimination to find norm lid and determine if the system is ill-

conditioned, set up and solve the error system A*511R; and thus attempt

to improve the solution.
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Lesson 14: Iterative Methods for Solution of Linear Systems

Reading Assignment

1. Read Conte, pp. 191-195.

Computer Assignment

Use the following section names to begin the three available modes:

1. L14L01 for the tutorial mode

2. L14P01 for the problem mode

3. L14101 for the investigation mode

Problem Mode. For any two of the following problems, in'restigate

the convergence of both the method of simultaneous displacements and the

method of successive displacements. You must specify the iteration

equations and your choice of starting values.

Problem 1.

Problem 2.

1 0

0 -1

r -1.25 1

2
2.75

r 1 5 .5 rx 7 r 4.5
.5 1 .5 x2 4.0 I

.5 .5 1 x
3

3.5 j

Problem 3.

r- 4 0 0

-1 4 -1 0

O -1 4 -1

O 0 -1 4

0

0

0

1
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InvestiationMol. You may usP any Iterative method to

solve a system of equations of your own choice (linear or nonlinear).

You must specify

1. the number of fluations O4Nt

2. the N i.teratinn en tions in terms of xl,...,xN, and

3. the starting values for each, variable.

Suggested Problem 1. Investigate the convergence of both iterative

methods for the lower triangular system

0 0

4 3 0

3

IWO 2

1:3

Hew mAny iterations are required? Can you generalize to an n x n

triangular system?

Student Performance

Upon comietion of this lesson, the student should know both the

Aethod of simultaneot:s displacements and successive displacements and

be able to apply them to a linear system of equations.



132

Lesson 15: Conrampat91721eEV.ve Methods for Linear Systems

Reading Assignment

1. Read Conte, pp. 199-203.

2. Review the methods of simultaneous displacements and successive

displacements.

Computer Asr>ignrent

Use the following section n mes to begin the three available modes:

1. L15L01 for, the tl/torial mode

2. L15P01 for the problem mode

3. L15101 for the investigatNon mode

Problem Mode. :TT either the row or column sum criteria is satis-

fied, we are assured of convergence of both the method of simultaneous

displacements and the method of successive (7.isplacements. Tf neither ix

satisfied, a method. may or may not converge. For each of the problems,

investigate convergence of both methods. You must supply the iteration

equations and starting values.

Problem 1.

Problem 2.

1 1

.5 2

.25 .5

2 -1 .751 x
1

2.075

3 4 x
2

.225

L-3 .75 - 4 4.1



Problem 3.

[Im

-1
2

as

P3

P1/2

P1/4
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InxtEgKation Mode tiotall The specifications are the same ns

for the investigation mode fo Lesson 14.

Suggested Problem 1. Observe the rapid convergence of both methods

for the system

5O .1 7

:OP 10 1.4

13 -13 31

How many iterations are required for six ctigit accuracy and for eight

digit accuracy? Can you form other systems for which convergence is

rapid?

Student Per for"

The student is expected to know both the method of simultaneous

displacements and the method of successive displacements. The student

should be able to apply both, the row sum and column sum criteria to pre-

dict convergence or divergence.
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Lesson 16: Numerical Differentiation

Reading Assignment

1. Pead. Conte. 108-11.

2, Review Taylor's forznla with remainder (nee Conte, p. 1 )
3. Work Ex. 4.1-6 after completion of the computer assignment.

Computer Assignment

Use the following sfttion names to begin the three available modes:

1. L16L01 for the tutorial

2. L16P01 for the problem mode

3. L16101 for the investigatirm mode

PrOblem Mode. For each of the problems listed below, find a value

of h which will Yield the specified accuracy when using the approxima-

tions

D(h)=(f(x1.4.1) ( i.1))/2h = (f(xl+h)-f(xi-h)) /2 h

D2(031(f( .d+f(xi.3..))/h2 V (f(xt+h)-2f(xi)+f(xi-h))/h2

For example, see Table 4.1, Conte, p. 112.

In this mode, the student enters a value of h and the values of

D(h) or D2(h) will be ;printed. The student must experimentally find a

value of h for which the eaMbination of truncation error and round-off

error are small enough to yield the specified accuracy.

ProbleN 1. (see Conte, Ex. 4.1-4) f(x)=cosh(x), xim1.4.

Desired accurkl,ey: I f' (x )-D(h) I < .5*10-9 and f"(xi)-D2(h) <.1*10-6

Problem 2. f(x)=sin(x), xi=.4

Desired accuracy: I f'(xi)-D(h) < .1*10-9 and: I f"(xi)-D2(h) 1 <.3*10-7

Problem 3. f(x)=e)cp(x)/sin(x), x1=1.1



Desired accuracy:

Problem 4.

Desired tecuraey:
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ii-lkh;!.5*10"9 ane f"(x )412(h)l< .1*10-5

sgrt(*sin (x)+cos (x)),xi=5.3
%

-D(h) < 5*10-9 and s f"(x1)-D2.(h) q < .5*10-7

Investilation Mode ( tion 1 ) . You may apply any numerical differ-

entiation formula D(h) to any function f(x). You must supply

1. f(x),

2. D(h) to approximate V'' (x, f"(xi)*

3. the first tabular point x00 and

4. the sp ning h of the tabular points and the total nuMber. (N<10)

of tabular points.

Upon completion of 3tonl 4, the co computer will print the tAble of tabu-

lated, flanctlon values (i=0,...,N): 1, xt , an'. f(xi) Each time the stu-

dent (1 fines a value for i, the computer will print D(h). By typing

STOP, the student may restart the problem at any one of the for strls.

Suggested Problem 1. The instability of rrmerical differentiation

can be displayed by sinple exemples where the s ope and/or concavity of

k .

a function change rapidly. Consider f(x)=-Px 44x-24.1b. Note that

in :symmetric about 0 with f(0) =l6 +1)m231 and f(+42)10. In general,

it is more difficuit to approximate f'(1) than f.(0) since f(x) changes

rapidly at x=1. For various values of h, approximate f'(0) and f'(1)

by the three formulas:

D(h)=-(f(xi4.1)-axi.1))/2h 0(h- )-approxinAtton

D( h ) ( f ( x14.1 )47( ) )/h 0(h)-approximation

Dh=(-3fx.+4.f x
i+1'

-f x
1+2

2h 0(h2)-approximation

For various values of h, approximate f"(0) and f"(1) by the 0(h2)-

%%,
approximation D(h) (f(xi,1)-2f(xi)+f(xi4.1))/h

2
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fltudent PerFormance

The studert is expected to know the D(h) and. D2(h) operators used

in Problems 1-4 and their r rmective orders. The student should be aware

of the effects of round-off when his very small and be able to apply

the formulas to practical problems.



Lesson 17: Extrapolation to the Limit

Reading Assignment

1. Read Conte, pp. 114-119.

2. Review Taylor's formula with remainder (see Cont ev p. 1)) .

3. After completion of the computer assignment, work Exercises

4.2-1, 4.2-4, and 4.2-5.
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Computer Assignment

Use the following section names for the three available modes:

1. L17L01 for the tutorial mode

2. Ll7P01 for the problem mode

3. p.7101 ror the investigation mode

Problem Mode. In each prob:em, you will he supplie0 with a net of

tabulated values for a function f(x). Ylu must supply the numeric values

ar expressio to effect extrapolation to the limit in the table.

Problem 1. Use extrapolation to the limit to approximate f'(.4)

where f(x)=sinh(x).

xi

0 ..'-'4I sirh( )(N
1 .399 sinb(.:99)

2 .400 sinh(.400)

3 .401 sinh(.401)
4 .402 sinh(.40P)

Problem 2. (see Conte, 4.2-5) Use extrapolation to the limit

to approximate f'(.5) where f(x)=sin(x)/x.



X. f
1

0 .3 sin(.3)/0

1 .4 sin(.4)/.4

2 .45 sin(.45)/.45

3 .5 sin(.5)/.5
14 .55 sin(.55)/.55

5 .6 sin(.6)/.6

6 .7 sin(.7)/.7

Problem 3. Use extrapolation to the limit to approximate f'(0)

where f(x)=exp(-x)*sin(x).

x

0 -.16 exp(.16)*sin(-.16)

1 -.08 exp(.08)*sin(-.08)

2 -.0i exp(.04)*sin(-.04)

3 -.02 exp(.02)*sin(-.02)

4 -.01 exp(.01)*sin(-.01)

5 0 0

6 .01 exp(-.01)*sin(.01)

7 .02 exp(-.02)*sir(.02)

8 ..04 exp(-.04)*sin(.04)

9 .08 exp(-.06)*sin(.08)

10 .16 exp(-.16)*sin(.16)

IrymtimasyiliipiltOxal.. You may ap,ly extrapolation to the

limit to approximate f'(Z) for your own choice of f(x). You must supply

1. the value of Z,

2. the value of h for the initial approximption

3. the number of entries (xo,f0),...,(xN,f0 in the table (N<10),

and

4. either the function values f
o

fN or the function f(x) from

which the computer will compute



Extrapolated values will be computed line by line in a table of the

form

D(h)

D(11/2) Dl(h/2)

D(h/4) Dl(h/4) D2(h/)+)
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D(h/2m) Dl(h/2m) D2(h/2m) . . Dm(h/2m)

Suggested Problem. Use extrapolation to the limit to approximate

f'(0) and C'(1) for f(x) given in Suggested Problem 1 of the investiga-

tion mode in Lesson 16.

Student Performance

Given a function or table of function values, the student should

be able to apply extrapolation to the limit and state the order of any

approximation in the table.
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Lesson 18: Numerical Inteeil11.......irme,tmoldal Rule

Reading Assignment

1. Read Conte, pp. 119-124.

2. Review Rolle's theorem (see Thrn. 1.3, Conte, p. 15).

3. Review the second theorem of tlAe mean for integrals

(see Conte, p. 15).

Computer Assignment

Use the following section names to begin the three available

modes:

1. Ll8L01 for the tutorial mode

2. Ll8P01 for the problem mode

3. Li 01 for the investigation mode

Problem Mode.. For each problem in this mode, use the trapezoidal

rule to approximate the integral of f(x) from. A to B. To solve the

problem, you must specify

1. the error E(h)=1-h*f"(W12 n terms of h and z where A<z<B,

2. a value of h analytically determined so that max I E(h) <e on

LA,B] for a prescribed ,

3. the number of subdivisions N based on your value of h, and

4. the formulas for the trapezoidal rule based on Int(N/4)+1,

Int(N/2)+1, and N subdivisions of [A,B] in terms of fi and h.

Problem 1. f(x)=scirt(x)+1/sqrt(x), [A,133=r1,2], and e=.5*10-2

0
Problem 2, f(x) =e ( "-x` rii,13140,11, f = .5*10-4'

Investigation Mode (Optional). You may apply the trapezoidal rule

to approximate an integral of your own choice. You must specify f(x),
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A, B, and the number of sliAivisions N< 41.

2 is a p riodic functionSuggested Problem 1. f(x)=---24411177F77
with period equal to .1. One danger in using equally space_ points for

integration is discovered by the numgrical integration of periodic

functions. Investigate this effect by using the trapezoidal rule with.

N=30, 35, and 40 subdivisions (31, 36, and 41 points) to approximate

1
f f(x)dx. The exact value is 2/sqrt(3).

Suggested Problem 2. f(x)=abs(x) has a discontinuity in the first

derivative at x=0. So the error formula doe8 nut apply if the interval

for integration contains 0 as an interior point. Yet the method is

exact if we subdivide the interval so that 0 is an end point of a sub-

division. Investigate this effect by using the trapezoidal rule to

approximate f abs(x)dx. Use an even and odd number of points. Explain
..3/4

the results.

Student Performance

The student should know the trapezoidal formula and be able to

apply it to approximate definite integrals. The student should know the

error formula and be able to analytically determine a value of h, for

simple functions, so that the absolute error is less than some pre-

scribed tolerance.
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Lesson 12121211ttnETAIWYSLIOn

Reading Assignment

1. Read onte, pp. 126-171.

2. Review the trapezoidal rule.

3. Review Taylor's formula with remander (see Conte, p. 15).

Computer Assignment

Use the following section names to begin the three available modes:

1. 1,19L01 for the tutorial mode

2. L19P01 for the problem mode

3. L1'TT01 for tip investigation mode

Problem Mode. For the following, problems, you al: to state the

trapezoidal rule for. the specified values of N and the formulas for

extrapolation to the limit. Numerical values will be supplied as the

formulas are constructed.

Problem 1. se Romberg integration to approximate the integral

of f(x)=sin(x)/x from 0 to 1 using N=1, 2, and 4 subdivisions. Note

f(0)=1 by investigating the limit.

Problem P. Use Romberg integration to anproximate the integral of

f(x)=1n(x) from 1 to using N = 1, 2, 4, and subdivisions.

aymtleLTLEtd1122tionalL The student may use Romberg

integration to approximate his own choice of the integral of f(x) from

A to B. The student supplies f(x), A, B, and the initial number of

subdivisions N<20. h=(B-A)/N will be computed and the extrapolation

results will be printed line by line for h/2, h/14, etc. using 2*N, 11 *N,

etc. subdivisions until the number of subdivisions exceeds I.O.



Sugges tee, Problem 2. See uggested Problem

mode for Lesson 1 . Use romberg integration.

Suggested Problem P. See Suggesed Problem

mode for Lesson 18. Use Romberg :7Ategration.
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1 in the investigation

2 in the investigation

Student Performance

The student should by able to apply Romberg integration to approxi-

mate the value of sin ilitegral. This requires a filling the formulas

needed to construct the Romberg integration table. The student should

know the order of the approximation for any entry in the table.



Lesson 20: Numericason' a Rule

Reading Assignment

1. Read Conte, p. 151 (first half page).

2. Read Gong 134 - 137, begtnning with formlo )4.57.

3. Review the trapezoidal rule, Romberg ina.egratiuri, and the

second theorem of the mean for integrals (see Conte, v. 15).

Computer Assignment

Use the following section names to begin the three available modes:

1. L20L01 for the tutorial Mode

2. L20P01 for the problem mode

3. L20101 for the investigation mode

Problem Mode. For the problems, approximate the integral of f(x)

from A to B using N=3 and N=5 points (2 and ) stIdivisions) to obtain

the 0(h2 )'trapezoidal estimates T0[0] and TO[1] . Then use simple extra-

polation to obtain the improved estimate T1[1]. Finally, use Simpson's

rule with 5 points to approximate the integral. The results of Ti[l]

and Simpson's rule should be the same.

Problem 1. (see Conte, Mr. )4.5.1) f(x)=sin(x) /x, f(0)=1,A=0, B=1.

Problem 2. (see Conte, Ex. 4.5-4) f(x)=exp(-x2)*sin(x), [A,B)=

[0,1].

Problem '5. (see Conte, 4.5-2) f(x)=exp(-x )p [A,B] = [0,1].

Investietion Mode OptionqL You may use Simpson's rule to

approximate the integral of your own cho i e of f(x) from A to B. You

must supply f(x), A, B, and N< 11 (number of 2h-length intervals).



Suggested Problem 1.

145

r;7 gested Problem 1 in the investigation

mode f r Lesson le. Use Simpson's rule.

Suggented Prcblem 2 See suggested Problem 2 in the investigation

mode for Lesson 18. Use Simpson's rule.

Student Performance

The student should he able to state and apply Simpson's rule for

2*N subdivisions to approximate an integral, He should be able to state

the error form:A E(h) and, for simple ft. Lops, choose h so that

m0 1 E(h) I < c for a specified r.

Ir
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Lesson 21: Numerical Inte ration otItLUIA5EatEtEntit.1
g,......LEuaticostTarieriesAro)22Limations

Peeing Assignment

1. Read Conte, pp. 212-217.

2. Review Taylor's formula (see Conte, p. 15).

Review the definition of the order of an approximation

(see Conte, p. 115).

Computer Assignment

Use the toll owing section names to begin the three available modes:

1. L21LO1 for the tutorial mode

2. L21P01 for thP problem mo0e

3. .21101 for the investigation mode

Problem Mode In the following problems, you are to numerically

approximate the true solution y(x) on [A,Bl by Taylor's algorithm of

orders 1, 2, and 3 for the given y f(x,y) and y(A) . Experiment with

several values of b. As h is chosen smaller, the approximations become

more accurate. For each problem, you must determine

1. fx, fy, Pre fyy, and fxy,

2. yi+1=yideh*T(xityi) as the Taylor algorithm and specify T(x,y)

for orders 1, 2, and 3, and

3. a value N=step size for computation of xi, yi for i=0,1,

Problem 1. (see Conte, Ex. 6.'!)-2) Let y'=f(x,y)=2y, [A,B]m[0,1],

and y(0)=1. The exact solution is y(x)=exp(2x).

Problem 2. (see Conte, Ex. 6.3-1) Let ys=f(x,y)=1-xyil-liy,

[A,B141,2], and y(1)=1,
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2 avestig i oz , =Mph Ontione2: You may use Taylor's algorithm of

orders 1, 2, and, to solve any problem y'f(x,y) over the interval

[A;B]. You must tr. eeify

1. y"=f(x,y),

2. the desired order and corresponding expressions for f
y

fxx, and fxy,

3. initial conditions (h,y(A)) and the final value of x03, and

4. h so that N=( -A)/h is an Integer less than 101.

Suggestea Problvm 1. Consider initial value problem y'=.112'

.1
with y(1/2)=2. The exact solution is y(x)

Note that exact,

solution y and all of its derivatives y'=f,, y" etc. have a singu-

larity at x=1. Thus integration over the interval r 1.43 to approxi-

mate y(1.4)=-2.5 violates the assumntions of continuity on y, f, f' etc.

Use various values of h and Taylor's algorithm of orders 1, 2, and 3 to

see how integration over singularities behaves. Then repeat the inte-

gration starting at y(1.2)=-5 to nvoM, the sl.ngularity at x=1.

Student Performance

Given an initial value problem y'r'f(x,y), y(A) specified, the stu-

dent should be able to apply the computational method for Taylor's

algorithm of orders 1, 2, or 3 to approximate y(x) over an interval

[A,133.
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Lesson 22: Sec nd Or PunerKutta Methods

Reading Assignment

1. Read (;onte, pp. 220-225.

2. Work 1 c. 6.5-3 in Conte.

Review Taylor expansions of functions of one and two variables

(see Conte, pp. 15-16).

Computer Assignment

Use the following section names to begin the three available modes:

1. L22L01 for the tutorial mode

2. L22P01 for the problem mode

3. 1122):01 for the inves igation mode

Problem Mode. For each problem, find the solution to the initial

value problem over the specified interval. Use Bl, C=D=1/2 for

the modified 0v.er method and. A-4B=1/2, C =D=1 for the .nproved Euler/s

method. The generA2 s'-con order Runge-Kutta method is

y1 +1=yit**K1A-B*K2

Kl=h*f(xi,yi)

KP=h*f(xi+C*11,y +D*K1)

The student must specify Kl(xispyi), X2(xi,y1), the formula for yi+1,

and any value of h .01 so that the number of integration steps N is

an integer.

Problem 1.. (see Conte, Ex. 6.5-2) Let y' =f(x,y) =x +y, x0=0, y0=1,

and final x=1.

Problem 2. Let y=f(x,y)=exp(-y/x)+y/x, x0=exp(1), y0=0 and

fiLal x=l+exp(1).
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invePtW121112221240121211L You may use. any ,lenond order

Runge-Kutta methd to solve an initial value problem y'=f(x,y). You

must specify

1. y'r..f(x,y)

2. initial condit5ons x
0
, y

0
and final

3. parameters A, B, C, and. D to satIsfy A+B=1, B*C=B*D=1/2

4. the number of integration steps 7c.< 101

Student Performanne

Given y'r2r( ,y) w :,th initial cmditions xo, y(x0), the student,

should be able to formulate any Runi70-Kutta method by speeifyinp, the

formulas for Ki, K2, and y
14-1

=ty 4-A*K14-B*K2. The student should know

what values of A,R,C, and to use for the modified Euler's method and

the improved Euler's method.
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Lsssoia2:L2knpmecal Irate tion, Error Estimation and Extra olation

Reading Assignment

1. Read Croite, pp. 217-220.

2. Review Taylor's algorithm of order 2.

3. Review second. order Runge-Kutta methods.

4. Review the mean value theorem for derivatives (see Conte, p.15).

5. Review the definition of the order of an approximation

(see Conte, p. 115, formula 4.18).

Computer Assignment

Use the following section names to begin the two available modes:

1. L23140Y for the tutor al mode

2. 1#231)01 for the proble-inventigation mode

Problem-Investigytion Mode!atkaallt You may apply the Taylor

algorithm of order 2 or any second order Runge-Kutta method to approxi-

mate the solution to y'mf(x,y) of your own Choice. You must supply

1. y'=f(x,y),

2. r, and f
y

case of Taylor's algorithm,

3. A, B, C, and ID in case of a Runge -Kr;Aa method,

4. initial conditions x
o

y and final value for x, and

5. 4he number of integration steps N< 101.

The computer will provide the numei integration results, ZN for N

steps, Z2N for 2'N steps, and the extrapolated result Zgl(4*Z2N4N)/3.
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Student Performance

The student should know the general formulas for second order

Runge-Kutta methods or Taylor's algorithm. On the basis of N and 2*N

integration steps, the student should be able to compare the values of

ZN and Z2N to determine a lower bound on the number of correct digits

in the answer. Similarly, the student should compare Z2N and the

extrapolated yam Z.

11
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APPINDIXB

LESSON PLANS

In order to provide the readtr with a descry _.0,01,10a

presented in the course, the depth f each, indivilAal t sic, Kni

degree of student participation, an outline of each lesson, is presented

in a condensed form. Throughout the outl,tne, the general actid lea

of the student are either exlia/d, qjj strte0 tptko! the form 0

exercise. All otner activities amount to a computer presentation

course material with no student interaction. No description of the

problem and investigation modes is presented hers since these 'modes are

described in Ole associated atuey guides the Student Manual (see

Appendix A). The reader may Mot it useful to further consult the

Sttdent Manual for reading assignments and the expected student per-

formance.

bleTIALJEW1141°21*ntatice

Purrome

Introduce those keys on the KSR-33 Teletype terminal which will be

frequently used by the student in constructing responses. Define the

arithmetic operators, function names, and other symbols which can be

used in constructing mathematical responses.
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40.10, itt

The student needs an elementary knowledge of aritheet) expressiona

in Fortran.

Leswm outlIpA

1. Communication Between the ft)-'art An qm4er.: '"movrstrota

the use of the (VT N) key VI signating coAplotlo, ravorino no'!

the use of the # character to signal the expectation of et 'rasprrnse.

Exercises: The student practioss using the OrTurC kftx.

2. Correction ofMneNtrors-7the (MOUT) 15 mv214 Deastrate

the use of the (MBOUT) key as ogii!.n eraser.

Exercises: The student practices the correction of typing errors

with the (MOUT) key.

1,,C9rreettaflofY Errors--theLlfzt Demonstrate the use of

the # key by the student as a logical back snst:e.

Exercises: The student practices using the # key and (MOUT) key.

4, Ar_UtRettlsSperators.. Describe the keyboard location of the

+9 *, and / keys.

Exercises. The student practices typing several arithmetic ex-

pressions*

yftriAbles,, Der7;ertbe the use of ( and ] as

delimiters of subscript expressions.

Exercises: The student types subscripted expr'saions.

6. Th132143tinvashaLliank.....ePI. Define PI as the name for the tran-

scendental number x.

Exercise: What are three distinct values of x (in radians) so

that sin(x)-0?



40 Matftama fr:oncti000. ?tiOt(t; it4.1111
S1C 010/441.,14iiIPt,2, ,,pa**..,metzreowiletidiasoNfMWAiwiklokirotoilligfflielfaNAM01

which are available to the student, .g. trigonommtric, exponential,

logarithm, etc.

8 jIlmtEatimates of Zeros of ctiou tAf!',4

method ao the location of an interval WO on which f(x) is con-

tinuous and f(A)f(11),(0.

Exercise: Na lvt an interval (A4B] on which r(x) f!cotimous and

f(A)f(B)<O for f(x)mix
x

-e for f(x)7 e-e 0 for /(x )s.thilitx-tes(x).

The student may repeat the last euercise for any of the f(x) as

often as he wishes.

Describe t second, metW Pm the trunearlewUon a :) 0 into

the form h(x)mg(x) where, in the latter form, one seeks a point where

h and g have the same value. Demonstrate the concept for f(x)wx-e-x by

letting h(x)wx and g(x)we-x.

Exerniee: Let f(x)sex-nos(x). Name twc functions g(x) and h(x)

T.ehich have a common point at a zero of f(x).

Exercise : Same as previous ex me with f( 04.x2-2x-2.

The student may repeat the last two exercimes as often an he wishes.

Describe the third method as one which applies for real roots of

polynomials. For .+a0, the solution to q(x)wa
n
xam may

1

give a "good" estimate of a root which is relatively large in magnitude.

The solution to q(x)waim+ao may yield a "good" estimate of a relatively

small root.

Exercise: Estimate the largest and smallest root (in magnitude)

of :p(x)wx3-11.1x2+11.1-1.

Exercise: Estimate the largest root of :p(x)wx4+100-11.2x2-2x+2.2.
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Purpose

Introduce a format wr noatiog poi 1!,t "A* 6

65

terms of an exponent and mantistra. Demonstrate the 1j,,k01.4,4mr

confuter 1)-:j counting the available floating point numbers. Demonstrett

the effects of ttuncation, symmetric rounding, prypogation of error,

and loss of significance. Illustrate possible instability in recursion

formulas.

Prerequisites

The student must be familiar with the terminal keyboard (see

Lesson A).

Lesson Ootl_rw

1.TlomtiPoisLjLtjigzejt!Ebsv.g2UEforraat Define the floating

point represen.uation and the f* tion of the mantissa and exponent.

Exercise 1A The stuAent mast Bele representations from

a list of possiblm floating point repretr tiOTAC0

24 41110 Normalized )71olatay21BLEnriation. Define a

k-digit Tiorsolized floating point form as a normalized floating point

number with a k-digit mantissa. If the exponent is zero, then the ex-

ponent carries a positive sign.

Exercise 2A:, Write N1,4-.01087 iv 5-digit normalized form.

24.1rrors inater Repreeentatic as of Sumbers..

Exercise: How many. "positive" 5-4igit normalized numbers ca4 be

represented by .XXXXXEPTY where Pm+ or -? Now many "negative" 5-digit

normalized numbers can be represented by the fora -.XXXXXIMYY?
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Define symmetri roundipo,) A n

Exercise 3A: What is the 4-digit rounded computer r p sertstion

of X- -1U/7?

Define truncation f excessive digits witnout rrd.t4

Exercise 3B: What La the 4 -digit truncated computer representation

of N-10/7? of Nm4/1?

4. Errors Xnfx ua,ed b 2.94emAlr eratio a. DcAloofttrat the 4..,,

digit normalized result (x+y) .101A+02 wiser xim.6717E+01 and , .3k1 U+01

Exercise 4A: Write the 4-digit normalized floating point represen-

tation of (Jo-17)' when xm.367 and yu.8734.

Define loew r.d* si, ifietwee,

Exercise 4B: Let xm.36214743 and ym.436173111. In a 5-digit

machine, xem.43621E+00 and y'm.43617E+00. and y' agree with x and, y

through how many digits? What is the 5-digit computer result ('-y9'?

The exact; result is x-ym.41632.104. (10-y91 agrees with x-y through

how many digits? Let zm.3217458215 with the computer representation

z' -.3217 x+01. Assuming the dodble precision dividend z' and the single

precision divisor (v -y9'w.40000-04 what is the 5-digit rounded nor-

malized representatIon (z'Ax'-y9') ?

1.....trama.421.91; Error. Describe two methods for computing ni

times the remainder after n texas of the MAcClaurIn series for ex.

Method 1: F(n, x)-n: (xn+1/(n4.1):+...) where the process is ter-

minated when n!(xl)tp!) becomes insignificant.

Method 2: F(0,x)mr0(x)-1 where EXP(x) is camputed as accurately

as possible by the Macelanrin series and F(n+1,x) -(n +1

for nm0,1....

) (IP ( n ) -xn+1
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interval (-1,1] and observe the growth of the dirforence the values:

computed by the two methoas.

Lesson 1: Linear IterationMethodology

Purpott

Define various techniques for transforming the 00von

form xmg(x) where f(P)agO implies Pling00).., Illvitrate the imporionrt cf

g(x) through both convergent and divergent iterativna xg(xk). State

sufficient (londiticas for nonvergenee. De-rIbe several decision

techniques for stopping a convergent iterat:44m.

Pr4;,,equisites

Uecammenfted preroquisite materia3 imlvdes techniques for obtaining

first estimates of zeros of functions (Lesson A) and propagation of

round-off error (Lesson B).

Lesson Outline

1. Fixed Point of a Function. Deftne a fixed point of g(x) as a

value P tics that g(P)-P.

Exercise 1A: Find a fixed point of g(x)-2x-711 g(x)mx2+x-1, and

g(x)mix3-B3.fx.

..........12,032ELEL9Andm of a tied Point. construct a graph showing

the relationship between a zero of the function g(x)-x and the inter-

section of pox and yug(x).

Exercise 2A: Pm-1 is a fixed point of g(x)imx
2
+x-1. So P is a zero

of what function?
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ftercise rn , Let g(.0 at a(x) &Ad k '13,0 r b ,tlx..401tt .hat

g(1) 81P. Then P is the intersection between two curves, ftwely ywox and

yiu?

Exevo,f8e 2C: tror

Transformation

J c* .t duet,*

0 to DemoustWA two methoda

for such a tranaformatiou. Pi:: method 1, set f(x)A0 and add x to both

sides to obtain ximg(x mx+f (x).

Exercise: Compute g(x), g(-1), and g 4.) for f(x)

For method 2, set f(x)0, divide both sides by x, and subtract both

sides from x.

Exercise Comptte ) g(-1)* and g(2) for f(x).001-x-2.

Exercise 3B: Suppose 000 P>0. For which case is g(P)00?

Case 1: ex)ftx+f(x)/ c: w)er c/0

Case 2: g(x)meSQRT(x-f(x)')

Cane g(x x+f(A)

to Find a Zero of f Describe the4. MAthod

iterative process xita e

Fat rci oft 4A: For Or

Ito

2
wx one posoko is g(7/'/,,, f(x)/x.

Compute g(x) in terms of x. If x0=5/4, what is xi and x
2
T Computation

for succeeding iterations is provided until the student is convinced of

converge e.

Tell the student that the choice of both the iteration function

and the starting value may be crucial for convergence.

Exercise 4B: .o f(x) , -x.2, choose the iteratior function

g(x)sEx+f(x)tvx 2. The student selects x
o
>2 and observes successive

iterations. The student exits from they iteration cycle when convinced
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of divergeuce. This exercise may be repeated as often a* the studept

wishes.

5. Sufficient Condll,lons for Cunvergene Of *14 rtOrktiOt

I converge if xo is mppropriately chosen in an interval

(A,B) so that

a. A44P<B

b. g(P)wl,

c. g(x) and W(x) are continuous on (AB)

d. I g'(x)I < 1 on (kb)

-xExercise 5A4 Cheek le4r r.onditions for convergence if f( )

AnO, Bait amil g(x)mx-f(x),P,

Exercise 5B: Let f(x)iimA- AutO, Bolo and g(x)-(x-f(x))/3.

Which condition is not satisfied?

6 Tests Convorgenee Pxplain thn nee of the aberOote error

test xk
1-1

-x
k 1

mnd the rwiative erv)r tgln, I

student is given three nequenles of erats and asked to determine the

value of k which satisfies the two error tests.

Lesson 2: Linear Iteration--Theor

Porpose

Establish and verify sufficient QondAtiwn for convergence or an

iteration x
k4

agg(x ) (see Conte, Theorem 2.1). Define linear conver-

gence as lim ek /ek-4 constant where e
k k
wx -P. Establish linear con-

vergence when Theorem 2.1 is satisfied.



Outline?!

of the Keethoch

Exercise lAt Let f(x)mx-cos(z)/3') wt-4!q :k..1 140 intAirval

(0,PI/2). Check the following conditions for g(z)sex-ft.xl

a. g(P)-P

b contAnuity of 44(x ) end (x) on (0,PI/2)

c. eh( < 1 04 (01:PV2)

on Theor 3tette the theor (see Conte,

Thorms 2.1).

The student participates in the or this thew eu throue.1,

muliwiplo choice type response6,, The mean-value theorem is stated if the

student has difficulty in pplying it during the proof.

Exercise 2A Let f mx-e -f(x)., The student must

check each of the conditions for r:,.!.)rtvergonce if xco is chosen 131, 3 75)

144sapirit. Aneer ofsion. Form the error tlaattiln eitexk-P.

The student participatem in the derivation of lim 6k4.1 g4 (P)
k-300 ek

through multiple Choice type iton.

Exerci6e $A: Let ex )re(X2'4( X ) with f(x)sxx-e and Pig. The

student checks all conditions to assure convergence of xkiaing(xtt) for

x0e(0,2). The student chooses an 7c0 in (0,2) different from 1 and re-

quests successive iterations to observe the values xitookookil

The student exits from the iteration cycle when he is convinced that

xk-t' 1, k40' and
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Lesson, 3: An AccelenktOn TIttlellat

'Purpose

Define Aitken' Is 54---formu1a. tJanerab Vp that

Aitken 'a formula provides tne exact limit Of a geometac aequenco!,,,

late geomtLric awl:themes 't7..% the error seee ek xe for a linearly

convergent iteration (Ick). Demonstrate the asymptotic behavior of (ftli

as a geometric sequence, thereby making Altken's formula an acceleration

technique.

Prorequisites

It in esseo Aft . that the student )6.4 Nmiliar with the matorial in

Lessons 1 and 2, in particular, the sufficiency conditions for convergence

and the meaning of "linear convergence".

Lesson Outline

1. Geometrp;Alnimices., Define a geometric sequence e
k
+left

k.

ftercine 1A: What is the vn for M in the geometric sequence

(20/20/8027/3e0...)? Compute ov (Nompute lim e.
k-0,041,

Exorcise IB: Compute M for the gtometrie sequence

(3,-6/5,12/25,-24/125,...). Comput3 him ek
k-4

Exercise 1C: Suppose xkookfek and ekeMek., with Cos Puto

him xk.
k-4 se

Aitken' a 5 -Process Define Aitken' s 524rocess as

ximxk.2-(xk.0.-xk.2)
2
Axk-Pxlv.1 2).

Exercise 2A: Consider the sequence (x0,x1,...) given by

(3,5/2,17/8,...). Compute xi and xi.
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Pont out that the sequence in Exer ise Atoll aom

(14.2J+5/2 149/8,...) where (2,3/, 9/8,...) is a geometric sequence with

Nm3/4.

Exercise: Compute 1 for the sequence in Exercise 2A.

xercise A. Considittr the dequen,le evo) by

(, x.01,5.001,5.0001,3.000019...). Die Aitken's formula to compute xk' for

any k>1.

Exercise: The sequence in Exercise 2 ran be written as

(3-Pe
o

e
1

where (e ) is a geometric sequence. Compute )1,

lim ek, and lim X.

Formally prove that Aitken's 6 -abo o e a will give the exact limit

of the sequc e x0, x, 4J H ®! ihere ^iw
. 3. (el) ts a geometric

sequence with -144<1. The student partlo. ,pates in this proof through

both constructed, responses and, multiple choice type items.

2
5.Aitken's b :Procesa Applied to Linear iteration. Point out to

the student that the squent!p 9t ereora (ek) is asymptotically geometric

for a lirmeraly convergent iteration (xkl.

Exerci5e A. Let f(x)mx
2
-x-2, g(x)mx-f(x)/xlm1+2/x, and x0e1.5. The

student progresaes through the comp Cation on linear iteration by ob-

serving the values xo, xl , xp, xzexi, x4, x5, x5ex6, etc. The student

exits from the iteration cycle when he feels he has observed the effect

of acceleration.

Exercise )13: The student progresses through the linear iteration

in Exercise 3A without acceleration and observes the values xk, ek, and

ek/eki. The student is asked to observe convergence of xk to 2, ek to

0, and ek /ek_l to 10(2)8114, noting that ti the latter iterations
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ek %;(4)611-1°
i.* . appr lzately wallet I

Leeson liewtonifetkod and mantic Cosisspire

Purpose

Define Newton's iteration by xivielloti rtftto th)edl

tinuity conditions of f, rirp end f" which will insure a convergenl,

iteration for the proper choice of x0. Prove that these condition* ma*-

sufficient for convergence by using the ridttions in the Linear Iter*-

2 ,tion theorem (sem Lesson 2). Define quadratic convergeoce by e 1/eir"
constant. Prove that Newton's iteration converges quadratically with

sk+112k-+g"(P)/2.

Prequisites

The student is expected to know the Linear Iteration theorem and

the meaning of linear convergence from Islam* 2.

Lesson Outline

1. Newton's Method. Define the iteration function as

800-3c-11 Vri(x).

ExerfAefb 1A: Write wton's iteration function for f(x)ikor-`5sin(x).

Exercise 2A: Write Newton's iteration function for f(x)misin(x)cos(x).

%
Exercise 3A: Let f(xplux

2
-3. Write NIwton's iteration function

g(x), computt g(SPOT(3)), and write the iteration equation xk low(?).

The student then chooses a starting value 1<X4(2 such that x (5)
and is asked to observe that .Ums number of correct decimal places approx-

imately doubles with each iteration. The student exits tram the

iteration cycle when he is satisfied.



In pro-paratton ,:or a cony vgence prirt the student has the op..

tion of reviewing a ntatement of the Linea: Iteration theorem.

Convereshee Proof Newton's Me Lha o

sumptIon that P is 4 sI ple vmro of f( ); ft f', and f" are cwatt lous

on (A,B) witere A<P<B; aad g(x)=x-f(x)/f'(x) is the iteration function.

Through multiple choice items, the student participates in the proof

that g(x) satisfies the Linear Iteration theorem for some symmetric in-

terval about P.

Exercise A: f(x)ivx
2
-.01x has a zero at Pw0. Name an interval

(A1,B1) on which f, tit and e" are continuour: 4 a.d Al., E' , v Name mo in-

terval (h21B2) contained, in ( -,t.131) on which g and g' are continuous

and A214P<B2. Name an interval (A,B) contained in (A2,82) so that

A<P1AB and on which I g' (x) I < 1.

3. Quadratic Convergence of Newton's Method. The general assuwp-...

tions given in qfv,tion 2 eVifl restated. The student is asked to recall

the error equation ek+1mg1(zk)ek.

Exercise: To establish linear c nverg.nce, the student in asked

to ccaplte lim(elollek). Through multiple choice items, the student

participates in the proof that lim(ek+1 kho
2
)mg"(P)/20 establishing quad-

retie convergence.

Exercise '5A: For f( xex, urite Newts a' g(x), g'(x), AMP) where

P=0, and an interval (A,B) so that A<P<B and on which g'( )1 1. The

student may select any xo from (A,B) and observc the values for ask, ek,

2
ek/ek_i, and ekielv.1 for During the iteration, the student is

asked to observe ek
ie

k-1
-,0 and, ek k/e

2
-1
-0g"(P)/2. The student may exit

from the iteration cycle when satisfied.
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Ituess.Ut jecsnt Method

Purpose

Define the secant method. Devinuetrat , A.wAimp.1vri mirmt 4V400

eilek..1-4 0, ek/(et.leic.2).4 constant and eilec.f.**0 when f V, and t"'

are continuous, thereby ests,b1S.shing the convergence rate as better

than linear but not as good as quo.dratic.

Prerequisites

Knowledge of Newton's method, linear convergence, and quadratic con-

versales is assumed.

Les on Celine

1. The Iteratton X uston. Define the secant method by replacing

fs(xk) in Newton's iteration ).71r an apprcmAmation to obtain

xkf eak-f(x) Is% xk-xx.1)/ f(

Exercise 4; Let f(x)mx x-2. %trite the geoant method.

Define the simplified form 3901 (xit,IfIxkfr

Exercise 13: Write the sent raethod whin f(x)licos(x).

2. Converience of Secant Method.

nolroise 2A: f(x)m1-1-1/x has a simple er t Pie-lo Write the

secant xmthod. If xess-.5 and xial.5, compute x,". Computation for

succeeding iterations provides the values of xic.
ekkek-lu 4/114-10

and ekgek.lek..2). The student observes that ek-40. ek/ek.1-0011 ade:4:4,

and ek/(ek.lek.2)-9 It-constant. The student exits from the iteration
cycle when he is satisfied.



Exercise. For Exercis compute )/(2fv(P)) and compare thin

value with Ratilta(4ekRek.3,
It.2))°

The student is told, that R is the ratf= of convergence of the sevmot

method when f, f', and f" are coAtinnous.

Exercise f(x) x 3 has a simple zero at riam(3). Compute

lim(ei(ek je)) 'xmd write the iteration equation for the secant

method. The studetA selects v 1%tes for x 0 and x
1
> 0, xii. Gompu-

tation for succeeding iterations provides values for xk, ek,

eivek.i, and ek/(ek.aek.2) to demonstrate convergence is better than

linear, but not quadratic. The student may exit from the iteration

cycle when xk..1-.:Ncl.5N10

Lesson 6: Simultaneous Eggiggateadees Method

Purpose

Derive Newton's method for two simultaAeous e uaVions in twit vari-

ables. State sufficient conditions for quadratic convergence and

illustrate both the method and convergence properties through examples.

Prerequisites

The student must farm tar with Taylor expansions for functions

of two variables, Newton's method for functions of a single variable,

and quadratic convergence.

Leeson Plan

1. Review of Partial Derivatives--Notation. State the definition

of partial derivatives through the second order using a notation accep-

table for the KSR-33 Teletype.
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The student works two miftellaneous exercises for practice in com-

puting partial derivatives.

Introduee a notati,-)o for P, partial de)A7atlo. "iik,ted Kt a pvint.

Exercise 1A: Let f(x,y)=.1x4Aiii.. LTA ef $p,A,,Lx;-.1ri 1

Write exptIssions in terms of x, y, xo, aad yo for f:(x0,y0)(x-x0) +

q,(x,y)(y-y) and g;(x0/)(x-x)412(x0,40)(y-v0).

2. Derivation of Newton's Method for Functions of Two Variables.

State that the motivation is to find a simultaneous solution of

f(x,y)=0 and g(x,y)-0.

Exercise 2A: Find a simultaneous zero of f(x,y)i(x-1)2-y and

g(x,001(x-1)472.

Derive Newton's equations

fl(xoty0)(x-x0)-1-f;( augy-y0)* f(x00y0) and

g;(xoad(x-x0)+15( bplo)(Y-Ydw-g(x0a0)

using truncated Taylor series. The student participates through multi-

ple choice type items.

L__Neyton" Iteration liormulas Derive the iteration formulas

xioexk-(f4-gf;. )/J and

Yi+1".k-(gc48;)/J
where Jairxisy tig'f'y . The student participates through multiple choice

items.

2 kExercise 3A: f(x,y)mix and g(x,y)Isry are atmultaneously zero

at (0,-1). Write 4, in terms of x and y. Write J in terms

of xk, yk, and J. The student chooses starting values -.25<ko.25 and

-1.25.4v Succeeding iterations are computed and the student is.o

asked to observe the quadratic convergence. The stu&ent exits from the
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iteration eye . whorl mxtiall

4. uadratic Convenenceofewontich State suffielmt cion-

ditions for quadratic convergencel fog ter. 4 mit hrtx,gh

second order are continuous in a region E which contai .Jpt .4(nr

in R, and (xoloyo) is chosen sufficiently close to the simultaneous zero

of f and g.

Exercise 4A: Check all conditions for quadratic convergence for f

and g given in Exercise 3A.

amoita:pamo..iniaLEALAetions-a!Real Roots

Purpost

Define the nested multiplication algorithm to evaluate a polynomial

stress its economy, and illustrate how the algorithm can be restated in

terms of recursion formulas. Formally dtevot this method of Ivaluation

and show that the last recursion formula b mb A-
o
p(m) is the same as

the b
o

in the division algorithm for polynomials q(x) . De-
x-z

rive the result p'(z)- q(z) -c1 where the recursion formulas may oe used

for q(x) . Define Newton's method for polynomials as Nllick-boici.

Prerequisites

The student should be familiar with the division algorithm for

polynomials from elementary algebra and Newton's method for functions of

a single variable (see Lesson 4).

Lesson Outline

1. Eva1uationlafftartralWEEttedftltilicat.,.......2....WaL Using a

fourth degree polynomial p(x), demonstrate the nested form and the



recursion tormulas to

al)x+ao, bkwa40b5sibeilly...,b6=biz+ao.

Exercise 1A: Lct p(x)-45a +4.5x -2.8x 1.1F-' Td*ntiry

and the recursions formulas for b40...,b0 needed to oveci. Ate Adw'),

Point out the number of multiplications and additions needed to

evaluate a polynomeal by this method.

Exercise: Vor '4)42, write the numeric values for bk,...,b0 in

xercise 1A. Confirm b
o
ap(2).

Describe the general algorithm for an nth degree polynomial.

Exercise IB: Let p(a)ftetki 1,a_x
,5

4'ar1 +ax24,alx+a . Note that a3

Write the neotesmalrrwnwsicm tcomnlas b and p(z).
4
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X+

2. Review--Division orithm for Pol.00mials. If p(x) is a poly-

namial of degree n>l, then p(x)/(x-z)mq(x)+boi(x-z) where q(x) is a

polynomial of degree n-1 and b0 is the remainder.

Exercise 2A: Let p(x)-x2-3x4 and zw-1. Write q(x) and compute be

Exercise 2B: Let p(x)mx3-x2-x+1 and v02. Write q(x) and b0. Com-

pute p(z).

Derivation the Nested Multi iclammAleallAt For-

mally prove that b
o
np(z) by substituting q(x) b

n
xnwl+. efb

1
into

p(x)isq(x)(x-z)+bo where p(x)manxr1+...+041. The student participates by

equating coefficients and solving for the

4. EvaluatlonatImelmjjacuelajotajtaxaggat Formally

prove that p'(z)aq(z) and demonstrate the use of recursion formulas to

find this value. The student participates by writing the appropriate

expressions for cebn, en.face+bn.19...pciece+bimP'(0.
5. Newton's Method for Polynomials. Define Newton's method using



recursion rormoi*,. to ri

Exercise 5A: Let p(x)w :

and: ).

x 4,11x4'and x ma a. Compute b b,

bl bo, cr c2. or and xi. Successive iterations rol evtomatirmlly

provided. The student exits from the iteration cycle whftft slictif4414.

Lesson Difficulties in rindlle Rr ots ofjtgelidat

Purpose

Review Newton/a method for polynomials. Demonstrate the behavior

of Newton's method 4,11 the case of double roots in terms of lose of

significant digits, Demonstrate the concept of instability in polynomials

of high degree.

e uisites

The student is expected to know Newtox method, linear and quaff,-

retie convergence (see Lessons 2 and 4), and Newton's method for poly-

nomials.

Lesson Outline

1. Review of Newton's Met,'Pod for Par axial*, Deflue th method.

N
Exercise 1A: Let p(x)ax, -,3x f4. Specify the coefficients ai, the

recursion formulas for the bis and the recursion formulae for the ci.

P. Behavior of Newton's Method in the case of Double Boots Point

out that p(x) in Exercise lA has a double root at x02. In other words

(x-2)2 is a divisor of p(x).

Exercise: For p(x) in Exercise lA write an expressio for:WOO

and evaluate p'(2). Write en expression for p(x)/p1(x).

Point out that p(xk)/pqxk)-0 in theory but significance is lost
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in actual ollivntatioo e),11: the ratio nitro p'(ck)....+0. Thus the conver-

gence is linear And accuracy in poor.

Elm:tame: Stmrting with In 4xeruis,t, tr
student 6bserves suoeessive iterations, noting the linear (JInverg4t o

and the lofus (4 nignifteanoe beyond, the sixth decimal place. The stu

dent must observe at least seven iterations and then may exit from the

iteration cycle who, satisfied.

,Ihe_QcZi Define instability as the condi

tion where nzall changes *Jite coefficients of p(x) produce large

changes in the roots of p(x)

Exerame iA: Let p(x)mx7-28x6+322x5-196 +6769x -13132x 4*

1306bx-5040, 1(x) as exact roots at 1,2,30...a. The student selects

a starting value -.75.44X0<7.25 and observes the convergence to a root

until xk*I-xkl < .5°10-8
.

Exercise 3B: Rework Exercise 3A with n274.5133 and the same xo.

The student Observes the dlffence in thee roots of the two polynomials.

The student is given the option or repeating Exercises 3A and 3B

as a group as often as desired.

Lesson .acursion Formulas for Di a P
upliratic Factor and. Review of Ca* ex Ar that i

Purpose

Review the algorithm for dividing a polynomial by a quadratic

polynomial p( 2 Sx-T)oti(x)+r(x)/(x2-Sx-T) where deep(x))oti>2 im

plies g(c))n and deg(r(x))<1. Derive an algorithm in terms of

recursion formulas for computing the coefficients of q(x) and Km).

Review complex nuibers. Prove that a quadratic polynomial (x-ii ) (xi)
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has real coefficients. All cow opts in this lesson are preparatory for

Lesson 10.

quisite4

The student should be familiar with the recursion formulas for

dividing a polynomial by a linear factor (see Lesson 7).

Lesson outline

210ktkCUeLAE5tftL Define the factorization of p(x) as

p(x)014(x)(x2-Sx-T)+r(x) where deg(p(x)).0>1 deg(q(x))*(a-2 and

deg(r(x))<2.

Exercise 1A. Let p(x) -2,4rY and the qua ratio divisor be

x2-2x+1. Compute S, Ty q(x), r(00 deg(q( ))o and deg(r(x)).

Exercise 18 Let p( and the divisor be x
2
+x+1.

Compute Ss To q( )1 (x)0 deg(q( )), and deg(r(x) ).

Describe the general forms p(x )manxn+...+aoo q(x)isbnxn.12+... +b2o and

r(x)mbi(x-S)+bo.

Exercise 1C: Compute b41...ob0 from the q(x) and r(x) in Exercise

1A.

Exercise ID: Compute b50...ob0 from q(x) and r(x) in Exercise 1B,

2. Ae, Al oritbm fo C a ,tin the Coefficipnts ofitx) and_riaL

Derive the recursion ormulas Co' rousting the,' bi as hilmulano

Sbno biai+Sblia+Tbi+2 for The student participates by

equating coefficients and supplying the right hand sides of the recur-

sion formulas.

Exercise 2A: Let p(x)02x4x1.3x+2x +x+3 and the divisor be

x
2
-Sx-T. Compute b5o...ob0 for the coefficients of q(x) and r(x) using

the recursion formulas.
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Xxer' Th Exercise 2A, let the olvisor be x2+2x+2 ute

S, To q(x), tr0 r(x).

_c1.5mtlex Numbers, f!complwc., Coixibitt g'e! 4't-?15elp _Roots. Define

a complex number ,/^.1kt,vi, with 13',q" &Lod Taw

Let zw6.3+4.t. Compute Re(z) and Imag(z).

Define the complex conjugate of z by

exercise B: For z=6.314L5i, compute PeCO and

Xxereise For z*x+y1 write Re(z)* Imag(), Re(;), and Ima4().

Faxercise: For x -Sx-T (x-z)(x-;), compute S and T. If xeu+iv, cam-

pute S and T in terms of u and v.

From Opt last exercise perprve that*? V quad rtic polynomial 2-6x-T

has complex roots and iz* then S and T are real.

Xxercise 3D: p(x)mx -x
2+2 has a complex root z-14* lame another

complex root of p(x).

Point out that complex roots came in pairs for any polynomial with

real coefficients.
Lesson 10: The Newtol7Bairstow Method for

flallMigg1SEAtros of 114 P°17n°111,1

lourpose

Describe the Newton-Bairstow method and its relationship to solving

two simultaneous nonlinear eveticns in two veriales. nate Newton's

equations which when solved will yield, an approximate solution. Derive

the recursion formulas for evaluating the partial derivatives in New-

ton's equations. Demonstrate the iterative process.



182

,re requi t'

The s .ect is expected to know all concepts in Lesson 9, Newton s

method for systems of equations (see Lesson 6), quadratic eonvergence,

and partial. derivatives.

t aeon Outlint-

Bei. iew 0 eDiviaionzszforDivaditirs,...9.

Polynomial. Define the recursion formulae.

Exercise 1A: Let p(x)*x4 2x34-x24.2x-2 with en approximate root zeal+

.9., Write an k motivate quadratic factor x
2
-S x -T Dtviding p(x)o

by this quadratic factor, compute bh,...,b0 for q(x) an r(x).

Point out that r(x) o mince the divisor was not exact and that the

motivation will be to successively improve the divisor in order to

annihilate r(x).

2. The NewtonftBai stow Quadyratic

Describe the problem by stating that r(x)mob(x-8)-1.b05.0 is equivalent to

finding S and T so that b1(8,T ) mub (30T) O. Using Newton's method in

Lesson 6, an approximate solution for S and T can be found by solving

Newton's equations

(bi*S )+(bi);(T-Tdal-b

(bo) (s-r,0)4 (b0)' (T.To)w.bo

if we have a method fur evaluating the partials at (S00%).

Exercise 14A: Let p(x)ma4x +...4.ao. To compute q(x) am r(x), we

use the recursion formulas bela4, b3"a3+Sbh, 14inaelibta+Tb14.2 for

12,1,0. Ccsspute c504);. lu term' of the bi and any previously

capputed ci, write ce(b3)8,...,ces(b04. Similarly compute
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Demonstrate how the camputati on of the ci and di fora similar sets

of recursion formulas and thrtt nitual craputation of the do, is not

necessary. So Newton's system bmcomes

c (S-S 1T-To)w-
12

c,.(84-41 fT-T )w-b
0

.

I

'Evora 213:1 (hr 9x 4-`40x,-/ has a oaplex zero near

9aoi4 Compute an approximate quadratic factor of p( ) 0 x4"-S x
o o

Computv b tray the coefficients of q(x) and r(x) . Compute the

values c40...01 for the partial derivatives. Solve Newton's system for

improved, vie id T

Describe the computational procedure for the Newton-Bairstow method

in terms of the general iterates Sir and Tk.

txercive. Automatic computation is provided for successive intera-

tions fo.'Exerk, e a. The student exits from the iteration ciao when

he is satisfied.

Lesson 11: The Solution of Linear System by filimination

Purpose

Introduce Gaussian elinitnation as a systematic procedure for

solving a linear system of equations. Describe the method of pivoting

and demonstrate its usefulness as a control over the propagation of

round-off error.

Prerequisites

This lesson is not dependent on any previous lesson.
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:Leif

Demonstrate the formation of the augmAnted matrix A for the linear

system Axagb.

Exorcise 1A: The student force the augmented matrix for a 3 x

linear systost

2. Gaussi Wm/nation, Describe the raw operations:

. a. (Row 1) is replaced by (Row 1.)+M times (Raw j)

b. Interchange (Row i) and (Pow j)

Xxereisfl 2A: For a X 3 example the studeAt defines th 'values

of i, J, and M for the first row operation to systematically ownerate

zeros in positions an, a31, and, a32. For each step, the student must

specify new ro values for the augmented matrix. The student solves

the system by back-sUhstituti

L.Formstion of Gnus, tan Multipliers Present the student with a

general )3r 3 system of e9uati (*ns4

Exercise 3A: Write the 'orz ulas for the multipliers M to form

zeros in the au, a31, and, a32 positions. Formally solve for x3, x2, and

x
1

in tho triangular system.

4. GaussianEliminatioaztply114Ingl Justify the method of in-

terchanging rows in order to avoid zero divisors.

Ixercise 4A: The student performs the necessary interchanges in a

4 x 4 system.

Exercise 4B: The student uses Gaussian elimination with pivoting

to solve a 3 x 3 system by specifying the necessary row operation listed

in Section 2 along with the associated values of i, j, and M.



The studerpt in asked to rah sietrve ape Gaustaun) t'"ip.aerN

never exceed the value 1 when pivoting is used, thereby lending

stability to arithmetit, process.

Lesson 12: raluation of Determinants and Matrix inversion

Purpose

Dembastrate the use a Gaussian elimination in evallal4ng deter-

minats and inverting matrices.

Prerequisites

Knowledge of all concepts in Lesson 11 is assumed.

`F:Afte41 0 tlino.

1. evaluation of Dteannte Lisimkliaimnaipn.tijea
Rxercise: The student camputeb ..he determinant of a general 4 x 4

triangular matrix.

State that Gaussian elimination may, be used, to first retsce a

matrix to triangular form and then the determinant is the product of its

diagonal elements (with powsiblot mdlustment of the sign).

Pre: cise 1A: The studeat wr!p,trAftes the row itr,no needed t

reduce a 5 X 3 system to triangular form. During the procers the stu-

dent requests cne Interchange o rows. The student comotee the deter-

minant of the intermediate metrirls after each row operation and ob-

serves that the magnitude of the determinant is preserved but an inter-

change of rows changes the algebraic sign.

The general rules on sw,gn changes are 04 "W.

Exercise IB: Suppose an n x n matrix A is reduced to the triangular

matrix B such that det(B)14. What is det(A) if three interchanges were



required, if six interchanges were required, and if k interchanges were

required?

2. Review o u licatiun. The student is given the

option of omitting this section.

If the student elects to study this section, the method, of

plication is demonstr.ed for 3 x 3 matrices The general formulas are

stated..

Exercise A.: The student forms the product of two 3 x 3 matrices.

Demonstrate multiplication of a 4 x 1 vector by a if X 4 matrix and

state the general formulas

Exercise 2B: The student forms the product of a 4 x 4 matrix times

a 4 ac 1 vector.

3. Ma riac Inversion b lei +qua an Elimination. Define the in-

verse of a general n x n matrix as that n x n matrix A
71

so that AA
71

-I

where I
k ik

jo lt.m0 for j d I wl for

The student may optionally ,skip Exercise 3A.

Exercise 3A: The student multiplies two matrices, one of which is

the inverse of the other.

Illustrate the general form of the coefficient matrix pl4mented by

the identity matrix and describe the elimination process for simultaneous

reduction of the n systems.

Exercise 3B: The student reduces a 3 x3 matrix (augmented by the

3 ,x3 identity matrix) to triangular form by specifying the necessary

row operations. The student solves for the unknowns in each system by

back-substitution to form the elements of the inverse matrix.

.111.1111_21111s_amajtaltrix to Solve Linear stams. Describe

the method of solving the system Ax-b by forming A71 and solving xmAmlb.



raerelse 4A: The orAvierit lute the f m4trix A
.1

from ftereise

3B to solve ttw, f3yatem Ash for several b-vectors.

Point out the usefulness of this method for solving a set of linear

systems Azobi* Aximb2*...*Axlitone

21IatEgon of Mmditioned Matrices.

Exercise 5A: The student solves a 3 x 3 ill-conditioned cysteK

equations Axach and checks his approximutc inverse B by Observing that

the elements of BA are in error in the seventh decimal place even though

all computations were performtd, with fifteen digit precision.

lasica,ULAL.,..,vre and Ccors...14.0

Purpose

Demonstrate the possible effects of propagation of round-off error

and loss of sig3ificance in Gaussian elimination. Introduce several

techniques for detecting an ill-conditioned linear system and describe

possible remedial action.

Prerequisites

The student in expecte4 to know all methods introduced in Lessons

11 end, 12 involving Gaussian elimination with and without pivoting, com-

putation of determinants, and inversion of matrices.

Lesson Outline

1. Ill - Condit 4m2LaragEtt Define an ill-conditioned system

Axial, as one in which smell changes in the coefficients lead to large

changes in the solution.

Exercise 1A: The student solves two systems Axial) where in the



first,

and in the second,

A la

A

1

188

1 .99

Fur both cases briloolumn vector (1,99.1 y99) . The student observes that a

change of 10
-2

in a coefficient will give rise to a completely different

solution.

Describes t the method in Exercise lA as one way to test for an

conditioned rya.

2. Nornalizod Determinant as a Measure the Coefficient Matriz.

Describe the philosophy of a "normalized" de tars and state he can-

putational formulas for a x 2 system.

Exercise 2A: Ccspute the normeltatl drota'4minent of

A =
.991

Exercise 2B: Compute the normalized determinant of

C 16.

A
6,2 -1.8]

utation of norm A for the General n n Matrix. Describe

the method and state the computational formulas for norm IAINI I AI Aar..

an) where
aid



1.1:9

exercise 3A: The student computes wirol A for

A. Me

1

2.

0

0

0

1

1

kwp

and notes that when the rows of A are mutually' orthogonal, the system is

"well-conditioned".

Exercise 3B: The student specifies the row operations needed to

reduce

.36 .12

A =I 16 .20 .26

L. .12 .16

to triangular form, no,4 I.-imputes IA/ la ox. and ilorm I A I

The student is asked, to observe a third indication of Jodi

tinning in Exercise 3B, that is, the loss of one or more orders of mag-

nitude in the pivotal elements r7rt ng redwAion to trlargular. form.

4.Xteratve Process tc Ivrove the Nualtricipll Solution o1 an 111-

Conditioned. System. Define the residual vector as r .zb -Ax' where x' is

the numerical solution to Ax=b.

Exercise 4A: The student computer the residual vector for the case

where

A at fi

1 .99
b 211

3. 99

1 1.99

, and

Derive the error system Aeur where e=x -x' and show how a now

approximation xr=x'+e can result in an improved solution.

i !



ExeroAse 4B: For th n gi o stok.lta solve;,

the error syntom to fin' the approximate error e'. The student com

putes an improved solution eux'fe'.

Exercise 4C: The student is given the X system

A =

5.79585h6 5.59A805

-1.148 8.7379886

-5.671o841 5.6330547

6.77!,445e,

2.975T895

6.6816351

1)0

The student specifte3 the row operations fteoled to reasacP the autimentee

matrix to triangular form, computes 0130:1,,O, and normilid conutes
I 9 t

the approximate solution x), x bv i'ack-substitntion, computes the

residual ImIct..)r b4x', solves the err -)1 myatem Aemr' 1: e', and

computes the unproved solvtiorf , rq- 1=1, 2, and 3,
i

Lesson 14: Iterative Methods for SoiultionlolliattEAutles

Purpose

Oescribe the met!v)ds or P4multaneous di,rIplAcements an6 successive

displacements. Illustrate how t reordering of the equations may be

needed to insure nonzero diagonal elments.

Prerequisites

The student should be familiar with iterative methods for functions

of a single variable (see Lesson 1).

Lesson Outline

1. Method of Simultaneops Ditplacemetts.

Exercise 1A: The student le given a 3 x 3 linear system Ax-b. He

solves for x in the ith equation for 1-1,2,3.
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a seeer17.04 k eti fl to the

vari72.bles appearilig to the right of the "e" sign and a eubserixt k+1 to

the variable n Ntypeariug on the left. The s Indent 1,1 ilsked to note that

three iteratl 1-, equations have been forred.

(0)
Exercis A: The t selects initial approximatioes xl

I '

x(0) and x(0) . Computation iterations x(k)utation for successive ittii ,

(
and

k)

3

x (k) are provided. The student, exits from the iteration cycle when he
3

is ecnvineed of convergence to the true 'caution 0.4r Axeh,

Emeeise 1C The student forms the iteration equations for the

method of simultaneous displacements for a general 3 2c 3 system.

Describe the method of simultaneous displacements fox the general

n x n system

Mat'ix Formulation of the Method of Simuittes....usmentos

Describe the structure of the iteration matrix C where x
(k+1)

baCx
(k)

+d is

the method 6f simultaneous dtsplacementn.

Exercise 2A: The student constructs the matrix C maim a given

4x 4 system of equations and observes that the diagona3 elemoats are

zer9 ond the off-diagonal elements are of the form cis sii/lii . The

student P,)nrytr 4ctH the vector d and writes the iteration equations using

the C-matrix and d-vector.

Exercise )B: For a 3 x 5 systeem of' equations with zero diagonal

elements; in the coefficient matrix, the student reorders the system so

that the method of simultaneous displacements can be applied.

. Method of Succletimaselsemes. The method of successive

displacements is described for a 3x 3 system.
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Rxerc. e h ,1%, y The student constru :ts the oration equations for a

given 3 x system.

Exercise 5B: The student repeat: Exercise 51t Air a different

3 x 3 system.

4. Caw, for T rminal494pal !Jeration. Describe the absolute

error test and relative error test.

......LessorjatLCorayinempera! ye Methods for Lintmaillse

Purpcie

Formulate the error equati.-ns Irr the method of simults4eoum

displacements and derive the column sum critowie for convergence based

on the iterat matrix. Demonstrum how the r w sum criteria for the

iteration zmat rbt may' be om.ri to est,,,lish c(Joveltglinr,e. Describe the

relation of the row and column sum i.iteria of the iteration matrix to

the diagonal dominance of the origira coefficient matrix.

Prerea4is3tes

The student must know both mr;lods described in Lesson lk.

Lessou Ct tine,

1. Review of the Method of imultane2mIlilasseants.

Exercise 1A: Given a x aystem of equati ons Mob, the student

constructs the iteration equations, the iteration matrix C, and the vec-

tor d for x(kfl)

2. Formation of the ExEmlettlasz.

Exercise 2A: The student constructs the iteration matrix C and

vector d for a general 5 x 3 systeil

For a general 3 x 3 system, formally derive the error equations for

1)the error system eot+ ACe . The student participates through multi-

ple choice items and constructed responses.



1

Coluln Sam eria h6 uttlei._ oaditiont o. Convemswe.

Formally prove that .1 c
ij

l< 1 for jell, ..,n, theki the metho0 of

I
simultaneous displacements will converge. The student participates

z

through multiple choice type items.

e Atz Fox' a given system, the student constructs the

C-matrix, computes the column sums, and decides whether or not the

iteration will converge.

4. Row Sum Criteria Conditions f'oa Corpreylience.

The row sum criteria F1 c iil< I for is described.

j
Exercise )4A: For a given 4 x 4 system, the student constructs the

C-matrix a d :amputee the row WIMP,

The 8tudunt is told if either the row sum or column sum conditions

are satisfied, then the method of simultaneous displacements will

converge.

24 DominayAce Ten for Convey e and Revaiew of,Lepon. DescribeN/r

the row sum and column sum tests in terms of the diagonal dominance of A

for the system Axrb.

Exercise 5A: The student tests diagonal dominance of a given 4 x 4

system.

Lesson 16: Numerical Differentiation

Purpose

Introduce ).,the concept of t%0; order of an approximation and the

notation 0(h
k
). Derive 00) err 0(1

2
)-approximations to fqxt). :R%trive

an 0(h)-approrimation to f"(x ). Demonstrate the computational diffi-

culties of these approximations in the presence of round-off error.



1)h

Prerequisites

The lesson depends only on knowledge of Lessons A and B.

Lesson Outline

1 Order of esAITIalEttion. Defin*,,, an approximetion 11,(h) to

some number A to be of order h ir limUJA-Mb))/h) in a const
o

2Exercise 1A: Given the Taylor formula f(x
o
4.h)mf(x )-hf*(x.

o
)i.11t4(74)/2

o

where x
o
<4<x

o
4-11, determine the order of D(h)sit(f(x

o
4.11)-f(x

o
))/h tf

kofqx0).

Introduce the notation D(h)210(hk) as meaning the approximation

D(h) is of order h
k

.

Exercise Th Cox the tn Taylor formula

f(x0417;*of(x0)+hfi(x0)+1112e(-0)/lith5fni(-41)/6nnd

f (x0- h)Ns f( xo )-hfi (xo )44x2f" (xo )P-h3 f" '(74?)/6

where x
o
< z< x

o
-fh and x -h<A

2
e.x

o
. Subtract the second formula from the

first and let D(h)gm(f(x0-4-h)-f(x0-h))/2h. Find an expression for fqx0)-

D(h).

Exercise 1C: in Exercise 1B,

and, PAauming continuity of f", Urn (W(x0)-D(h))/h2)111-f"(x
o

)/6.
h-*o

What is the order of D(h)?

2. Functions Tabulated onax....LEALLailtalsedeet of Points. Define

equally spaced points with spacing h.

Exercise 2A: Given function values on an equally spaced set of

points x0,...,x5, the student computes the values of D(b)-ag(f(xi+h)-

f(xi))/h and D(h)mg(f(x1+h)-f(x1-h))/2h for values of i.

Discuss the need for more knowledge about the function f prior to

establishing error bounds on D(h)-fqxi).



flustrica...242iwmtimattcal of r ptc.,,fInot (0(Wi-approxAma-

Lion to f' ) as D(h)m(f(xj+3.)-f( ))/b. Show that e(h) I va C f. (

-D(h) 1<lblOmitti f"(x)1 xkixolxn]. The studfint participates

through Feu lti,rle choice items.

Exercise 5A: A table of values for f(x)mix3 is presentee' ?car

xim-.1,0"12.21.3. On (x0,x43, what is maxl e(h) I ? At xo, what is

D(h)?

Define the 0(b )-approxittation to ) as D(h)mt(f( iil) 1.1.))/

(2h). Find an expression for e(h) f4(xi)-D(h) from Exercise lB. The

student participates through multiple ehoice items.

Exercise, 31i Using the table ip Exer cise %A, find a v lue of x

for which the 0(hP )-spproximation to TOO cannot be applied. Using

f(x)mx -2x, compute max I e(h) Q . Compute the actual errors at x1-0 and

x
3
.2 and observe that they are less than (h)

Construct a table of fr(xi), D(h)m(f(x f(xi))/h, and D(h)*

(t(xi+1)-f(xi.1))/( h) for x1-0, x25.1, and z3..2 and have the student

observe the accuracy.

Derive the 0(h )-approximations to f4(x ) and f' x ) , as b(h)

(-5f(x0)+4f(x2.)-f(x;)))/(2h) where r(x0)-D(h)iih:)f"'(z())/3 and D(h)is

Of(An)-4f(xfl_i ) ff(xn J)/(2h) where fqxn)-D(h)mh2f"(zn)/3. The

student participates through multiple choice type items.

Exercise le: Ming a set of tabulated values for the function

f(x)ax +2x, the student computes D(h) for f'(x0), max fqx0)-D(h)1 , and

D(b) for xn.

Define the 0(h )-approximations o f f "(xi) for l< i< n as D2(h)

(f(xi4.1)-2f(xi)+f(xi_1))/h
2
where f"(xi)-D2(h).-(e)f""(si)/12.



The student participates through multipi . tho a typA items.

Exercise 3D: Using a set of tabulated values for f(x)mix
5
+2xv com

pute D2(h) for x3. Find maxl e(x3)-D(h)1 . For what values of xi rill

D2(h) not apply?

2...__STEutstloi2gAsetc of Numericeg. DiffereptiatioRt Introduce

once again the two operators D(h)*(f(xi4,1)-f(xi_1) )/( Ph ) hnl

D2(h)*(f(x
i+1

)-Pf(x )+f(x
i-1

))/h with their respective error rormulas

ErAreise 5A: Assuming continuity of f" (x), what is 1im0"(xi)

D(h))? Assuming continuity of f""(x), what is lim(f"(xi)-D2(h))?

Discuss the possible effects of round-off error on the limits in

Exercise 5A.

Exercise 5B: For f(x)ex, the student calculates f'(0) and t" (Q)

The student then specifies various values of hl lotting h tend to 0, and

the values of D(h)*(eh-e-h)/(2h),D2(h)*(eh : +e-b)/ are printed. The

student observes that round-off error eventually laminates the error, and,

notes a local optimum accuracy for D(h) exoand roil°-5 and a local optimum

accuracy for D2(h) around la.5610 .

hemonlhNxtravaals_to the Licit

Purpose

Introduce the concept of extrapolation to the limit for differen-

tiation by elimination of lower order terms in the expression for the

error. By numerical examples, demonstrate the power of this technique

up to the point where round-off dominates the error.

Prerequisites

Total familiarity with the concepts in Lesson 16 is assumed.
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LIM) Outline

1. AAVIAIW of the Order of tiOArippi.imation. Restate the definition
of 0(hk) .

Exercise 1A: The student ditlerstinec, the orde-- of b -r .+» iffer-
/

entiation operator to be used in '1`;hits lqson, D0a)ms(f(xj.+1)-f(xi_1))/(.12).

Derive the following properti'as of '3rder 'hi( operators, A(h) and

13(h): A(h)+B(h)le0(11k) and. WA(h)210(hk) there M is a constant. The stu-

dent prrticipates through constructed rovonses.

Exercise 1S: Suppose lint(zi)felim(iii)aoro as 11.0 and f(x) and all

derivatives in question are continuous. Furthermore, suppose A(b)

h2f".(zi)/2 and B(h)vah2e'(wi)/6. CoirOtte tha order of the following

approximations: A(h)+B(h), hB(h), gtiliP(h), PL(11/2)1. end A(h4)/B(h)

where r 1(x0) .

ExtiontizE DI.......Mraonti,:y.on. From the Taylor for-
f.mulas of f(xo+h) and f(xo-h) expanded tout xo, exprenn

D(h)vs(f(xo+h)-f(xo-h))/(2h)siaof(x0)+..,+ar"(x0)+a5(r"'(z0)+r"'(zi)).

Exercise 2k: Compute the values 5f the coefficients ,a9 in
terms of h. The resulting formula can be written as D(h) -f'

h2f" '(x0)+0(what?). What is the order of D(h)? Replacing h by h/2,

D(h/2)aaf'(x0)+a2h2/11.4.0(what?).

Using the formulae D(h)avf' (x0)+a2h2+0(hS and D(h/2)sif'(x0)+a2h2/114.

0(h4), form Dl(h/2)1E0D(h/2)-D(h))/3.

Exercl.le 2B: What is the order of Dl(h/2)?

Review the significance of obtaining the higher order approximation

Dl(h/2).



Exercise 2C: The student is given. a mitt of toj$ulated p.4 n for

f(x) -x5 from x101.3 to x100.7 with spacing .1. At the point x2 .50 lime

h..2 to compute the values D(h), D(h/2), and M(h P). Compare these

numbers with fy(.5).3125.

3. R. eated Extra o olation for Differentiation. Assuming f(x) has

continuous derivatives through the seventh orde14 write the expansions

f(x04-h)sef(x0)4.hf'(x0)+...4417f(7)(z0)/3011.0

f(x0-11)14(x0)-hr(x0),/....-h7f(7)(y/5040

and express

D(h).(f(x0h)-f(x0-h))/(2h)aa0f(x0)+...4.a6f(6)(x0)4.a7(f(7)(z)+f(7)(y).

Exercise 3A: Compute a5, 8,6, and LT in terms of h. Letting

b mirol(x
o
)/6 and b

2
mf(5)(x

o
)/1200

D(h)mfqx0)4.bih24-boh44.0(what?),

D(h/2)mfqx0)4.bih2/4+b2h4/164.0(what?), and

D(h/4)=1"(x0).4.b1h2/1642h4/256.1-0(what?).

Compute cl, e2, and c3 for each of the simple extrapolations

Dl(h/2)=(4D(h/2)-D(h))/34sfqx0)4. h 4-c2h44.0(c3) nd
Dl(h/4):14(11D(h*D(h/2))/3=fqx0)4-clh24.02h44.0(4.3).

Exercise 3B: Compute the value of M so that

D2(hAOAWD1(h/4)-D1(h/2))/(M-1) is an 0(h6) apprinimation to fqx0).

Elercise 3C: The student is given tabulated values of f(x)nx 7 for

xe.1, xir..1(1+2),i-1,...,5, and x6 .9. For and x30.5, compute the

approximations D(h), D(h/2), D(h /1i.), D1(h/2), Dl(h/4), and D2(hM) and

compare these values with the true solution f'(.5).109375.



1.999

14- 'r letion o the Limit for Afferentiation, Specify the

general formulas and the construction or a triangular table for extra-

polation to the limit based, on n tabula-1W values of

Exercise kt: The student is given .!(xi)e.46409 .75/xi toy and

x le.34-sgo(1-14,21 i"4Ih/16, Using h* .2 the student COM

putes the approximations D(b), D(h/2), D1(h,

D1( / /4), D1(h/8),D2(h/k), D2(h/8), and D3(h/8) and.compares these values

with the true solution f'( 3)e-260.670835...

lxplain the procedure for esti ,rating the number of or tit dtgits

in an approximation by comparing successive diagonal entries in the

extrapolation table. Point out the dangers of trying to extrapolate

beyond the bounds of round-off error.

Lesson 18: Numerical Interration--Thitlatemits1 Rule

Purpose

IntroduuL the notation for the integral sign. Develop the neces-

sary background theory in order to deve3op the error formula for the

trapezoidal rule. Define the trapewidal r xle and describe its geometric

significance. Formally derive an expression for the error formula

and demonstrate how maximum bounds mtght be placed on the error.

Prerequisites

This lesson is not dependent on the concepts in Lessons 1-L7. How-

ever, a study of Lessons 1-17 will add to the meturity of the student in

the area of numerical approximations and contribute to the overall per-

formance. If the student 1.6 to progress to Lesson 19, then the concepts

in Lessons 16-18 will, oe needed.



Lesson Outline

1. Notation for the Into -al. Define the teletype notation tor
B

Integral(f(x);(A033) to denote I f(x)dx. The student becomes familar
A

with the notation by finding the definite integral of several to fictions

2. Second Theorem of the Newt for Intspalst State the theorem:

If fix) and g(x) are continuous on the interval (A,B] and if g(x) does

not change sign on LAI,B], then there is a number Ii<z<lt so

B B
f(x)g(x)dxsf(z)f g(x)dx.

A A

Exercise 2A: Suppose ft0mILN(x),g(x)ml/x, and we wish to find
B
f (IX(x)/x)dt where LAX141,e). Does g(x) change sign on [A,B]?
A

Apply the above theorem to expre a the Integral tn terms of z. Find,

the exact value of the integral. Specify the value 1<k<is which yields

the equalAy of the second theorem of the mean.

Point out to the student that the exact value of z is usually rut

known and that the future development will assumt only its existence in

Formally prove the second theorem of the mean. The student partici-

pates through multiple choice items.

Exercise 214: Let f(x)sscos(x), g(x)- sin(x), As.40, and BPI/2. Does

the second theorem of the mean guarantee the existence of A<KB?

Exercise 2C: The student repeats Exercise 2 with the roles of

f(x) and g(x) reversed and (A,B)40;21].

Exercise 2D: Let h
1
(x)x30 h

2*
(z)me-x, As-1, and. Bel. Apply the

B
mean value theorem to express f hi(x)h2(x)dx in terms of z for some

A
A<N4B.
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Theorest. State Rolle's theorem:

Let f(x) be continuous on [AA] and differentiable on (AIM end

suppose f(A)mf(B)m0. Then there is a point A,z<B so that fqz

Exercise 3A: Let r(x)mx2-1 and CA,B]mi:-1,11. Does Rolle's

theorem apply? Name a point z in [ -1,1] ec that f4(z)m0.

Exercise 3B: Let f(x) *sin(x) and [A00140,PII. Apply Rolle's

theorem to find the value of z.

Point out to the student that the exact value of z is usually not

known, but we will depend on Rolle's theorem for its existence.

44 Error in Linear Approximation to a Fuoctipil. GeometHeal. de-

scribe the process of approximating a tanctior f(x) on an interve1

(x0,x11 by the straight line p(x)Imf(x0)+(f(x1)-f(x0))(x-x0)/h where

xi-Nomh. Describe the objective as deriving some expression for

e(x)of(x)-p(x). Introduce the auxiliary function in the variable s

with fiscd x by

g(e)mef(8)-1)(8)-(s-x )(e-xig ( x V((x-x0)(x-x)).

Exercise ILA: Compute ex) eyr &Tie g(x) g( ) has at leant

how many zeros in

contiruous, g'(s)

(xo, xi ? Assuf.411 that :r(s), f' (s), and f"(0

has at least how many zeros in (x0,x1P g" (s) has at

least how hany zeros in (xell?

Exercise 4B: Denote the zero of g"(8) by z g"( )1410

xp<ki. To form f(x)-170(x), emigrate g"(s) and evet";.uate at z. What is

p" (s) and the second derivative with respect to s of (s-x0)(o-xl)? Using

g"(z)-0, the student observes Ome(z)-2(f(x)p(x))/((x-x0)(x-x1)) and

e(x)0100-1)(x)ise(z)(x-x0)(x-x1)/2.
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Error. Define the
xi

tropexadal rule on the interval. (x0,x11 as 1 p(x )dx *flare p(x) is the

straight line epproximatioP to f(x) given in Section 4.

txerc!se 5A: Write an expression for f:p(x)dx using x1 -x0 -b to slim-
xo

irate x0 end xl from your answer.

The student is told to note that (h/2)(f( 0)4.f (x_ )) is the area of e!,

trp:41%01d and hence the name trapezoidal rule. The sVadent is told to re-

view the error formula p(x)-f(x) in Section 4 and the second theorem of

the aeon in Section 2 prior to discussing a poem:I:aft error formula for
xi

e(h)q-(00-1)

The error formula e(h)mil-hr(z)/12 where x0<z<z1 is derived. The student

participates through constructed responses and multiple choice items.

Exercise 5B: Let f(x)sge $ x0w-1, and x1=0. Compute

xtf(x)tx, %(x)dx,e(h) 71(f(x)-p(x)) dx in terms of z using the error

o
x
o o

I

,

formula, and compute max e(h) I on (x0,x3).

6. W,eraa. A u licetion of the T Rule. Disco the pr ;Is

of dividing an interval LA,B1 into n subdiviions of length xta h

and summing the trapezoidal rules over all intervals to approximate

B
f(x)dz. The student is required to write the form gar the trapezoidal

A
rule on the interval bt1oxi+11.

EXerese 6A: Suppose f(x)misin(x) and we wish do approximate

1.5
J f(x)dx by the trapezoidal rule. If h -. 5, compute the number of sub-

divisions n, x0, x1, x2, x3, and the trapezoidal approximation over CA,B].

Describe the'rocess of finding the error forth': trapezoidal rule,

summing over the n intervals, to arrive at e(h)m-h2(b-a)f"(z)/12.
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Extoreime 6B: Write the error in terms of h and z for the approxi-

mation to f(x) in Exercise 6A. Choose a spacing h so that maxi e(h) I <

.5'10
-

.

Point out to the studept that finding a value of h b by bounding

max e(h) I gives en upper bound on the liteda somber of subdivisions.

Lesson laLLto......jimber

Purpose

Develop the error formula c1 the' trapezoidal rule a
,the errw

expression alh 4-0,,h ) depending ol the continuity of the func-

Um: being integrated. Demonstrate the method of extrapolation to the

limit to increase the accuracy of the trapezoidal rule.

Prerequisites

The student should be familiar with the basic differentiation for-

mulas from Lesson 16, extrapolation to the limit from Lesson 17, and

the trapezoidal formula from Lesson 18.

Lesson Outline

1. Xntroduetion. Restate the trapezoidal rule and the associated

error formula. State that the first purpose of the lesson is to derive

the trapezoidal approximations T0(h) =f f(x)dx+ah(-40(h ) so that

To(h/2)sig I f(x)cbc+ah2/4+0(hil.). Extrapolation T1(11/2)=OPTI0(h/2)-To(h))/

A
(M -1) will then give an improved result. The student is asked to de-

termine the needed value of M.

2. Basic Differentiation Formulas. Derive the numerical dif-

ferentiation formulas
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a. f' (x0 ( ( 0))/h-b1"( 0)/2-112f"( 0)/6+0(0)

b. el x )441x0YOF,ht",004-0(e)

c. ri(x) siMx3)-5f(x2)+3tly-f(x0))/h34-o(h)

by Taylor series expansions for use in the later derZvation of the

trapezoidal error formula. The student participates through constructed

responses tr aetermine coefficients of the formulae and also through some

multiple choice items.

IL General Formulation of the Tra ezoidal Rule. State the Taylor

fOroula

f(x)svf(x0)+(x-xdf'(x)+(x-x0)2r(x0)/ (x-xo

24.

laircise A. Integration of both Aides
xi

j'f(x)dxeaf(xo)+bf'(xo)+cr +dr '

3rf(x0)/6+(x-x0)4f""(z)/

C

The student writes the expressions for a, b, c,

the above formula yields

(x0)4.ef""(w).

d, and e in terms of h.

The result of Exercise 5A is

wif f(x)mhf(x0).4.h2f*(x0)/P+Of"( ) 3 14f" x)/24+0(0).

Replace fqx0), r(x0), and fuqx0) in the last forsula by differen-

tiation formulas a, b, and c to obtain
,

AT(x)dx-h(f(x0)+r(xj.))/241(r(x2)-2f(x3.)41.(x0))112
xo

-1-11( f (x3 )-3f( x2 )4,3f (xi )-f(x0 ) )/214+0(h5 )

The student participates in the replacement process through multiple

choice items.
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State the general result on (xi,xi+11

izi+lf(x )dx=h( Oxi f ( xi+1 ) )/2-h( f(xi4.2 )-2f (xi+, )4, . ))/12

x
i

+h(f(x1 +3)-3f(xj+2)+3f(xti1 f( 1))+0(0).

Summing over n subdivision of [AA], state the result as

44
tif(x)dxso(h/2) (f(xd+f(xi+1))-(h/12) (f(x1.4.2) f 10.0+

A bac* ino

(VA) (1(X1 4.3)''3f(X1 +0+3f(X14.1)X1n+ 0(h5 ).

/woo n-1 iwo
Exercise IA: (h/2) % (f(xdff(xi.4.1)) is the trapezoidal mppr xi

:two n-1

motion. The ntudent detetmines expressions for (f(x1 +2)-2f6-14)
n-1 isso

f(xi)) using only four terms and 7 (f(x14.3)-3f(xi+2)+3f(xi+1)-f(xi))

n-1 ,

using or r six ttIrms. E 0(h2)11.0(what?)

two

Exercise 3A yields the expression
B
I f(x)dx*T

o
(h)-h(f(x

o
)4f(x

1
)441(x

114-1
f(x

n
))
?
12+h(f(x

n
(.4

2113cri+i)A
+f(x

n
)-f(x

2
)i-Pf(x.441(x

o
))/24+0\n

Use the differentiation formulas a and ,t fu Ceetion 2 to establish.

T C1)4 f(x)dx-h (fs(x
n
)-fqx ))/12+0(0).

A

The student participates through multiple choice tjpe items.

itjorsiLlt.....teimalLonxtriEgation, Review the Mal

result of Section 3, namely, To(h)nI4ch2+0(h4) and T (h/2)=I+eh2/44,0(h)

B
where c in a constant and 1= 1 f(x)dx. Ask the student to write an

A
0(111-approximation to I in terms of T

o
(h) and T(h/2).

2

Exercise ItA: Suppose we wish to approximate I (1/x)dx. Using
1

hp.5, write the expressions for To(h), T0(h/2), and the extrapolated

result T
1
(h/2).
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1.....Leptfzianti.andgxtlati.ou. State without

derivation that a more general result can be obtained with more time and

effort, namely,

4. / 6%
a. T (h)04I+c,h

2
h 4.00 ),

Exercise: replaee h by h/2 to obtain To(h/Ossi-Pdlh
2
442h

I
4.0(h

6
).

Determine the values for di and d2 in terms of h, cr and c2. Peplace b

by hik in formula a to obtain To(h/10)1I-Peih2442h44.0(h6). Determine the

values for el and e2.. We now have the additional expressions:

b. To(h/2)/444.c.10/4+c2h4/140(h6) antt

To(h/4)0I+elh2/14c 114/2540(0).

Use simple extrapolation on a and b to obtain Ti(h/2) as an 0(114)-approx

imatiou to I. Write the i'or*uia. Use simple extrapolation on b and c to

obtain T
1
(h/4) as another O(h

k
)-approximation to I. Write the formula.

k%
)We now have the 0(11'-approxiwetions:

d. Tl(h/2)=1-3c2h4/100(0) and

e. Ti(h/10$61-3c2h4/610.0(0).

Use simple extrapolation on d and e to obtain an 0(h
6
)-approximation to

I and write the formula.

6 RatImIgaintlaexxtri22141tion to thoLIAL/A EXplain the

gmeral procedure for extrapolation to the limit by displAwing a general

extrapolation table and the method of computing eryales in the table.

There is no student participation in this section.

Lesson 20: tawerical Irate Lion -B son's hole

Purpose

Derive Simpson's formula over an interval of length 2h by simple

extrapolation using the trapezoidal rule. Introduce the error formula
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for Simpson's rule for an interval of length 2h. Derive the general

form of Simwon's rule and the associated error formula ever n intervals

of length A where na(B-A)/(2h). Illustrate how the gene.eal erroe e

be bounded to determine en upper bound on n (or lower bound on h) for a

specified accuracy.

Prerequisites

The student must be familiar with the trapezoidal rnle (see Lesson

18) and simple extrapolation (see Lesson 19).

Lesson Outline

1. Review of the Tra ezoida Rul,e. State the general formula, and

associated error expression based on n subdivisions of the interval

(44.0.
3

Exercise 1A: Write the trapezoids a aiproximation to J cos(x)dx
1

using na3 subdivisiong. Write the error formula,.

2. ne......lviff-g.lett.114141.-.Pfinkkken""'Sl le grtre19111:1Q11* St*" 4h*
,

h j-approximationkprinciple of simple extrapolation to obtain ar

....aiman's Rule on an Interval of Length 11. Pone.der f( x) on

the interval (x0sx2] where ye the midpoint and hax2 xl-xo. The

student is asked to write the trapezoidal approximation of J "r Odx

using nal subdivision and the trapezoidal rule for n > subdivoirione. The

otudent is asked to ebsene shat the two applications of the trapezoidal

rule gives To(2h )ah(f(x0)+f(x2))04E+Lieth2+0(hIL) and To(h) (h/2)(f(x0)+

2f(x3)+f(x2))3=I+ah24,0(h4). The student is asked to write the simpie ex-

trapolation T1(h)=0T0(h)-T0(2h))/3 in terms of f(xi) and h. The student

is told that the reealting formula Soa(h/3)(f(x0)+4f(x1)+f(x2)) is known

as Simpson's rule on an interval of length 2h.
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h. General Fora of qamattRule. Simpson's rule on !:x0,x23 i3

stated as Se(h/3)(f(x0)+4f(x1)+f(x2)) and on [x2,x4) as Sim(h/3)(f(x2)+

4f(x3)41(x4)). The atudent forms the expression S0:1-81 and thus ob-

serves the form of Simpson's rule on rx0,x41 with four subdivisions.

The formula is generalized for the student for 2n subdivisions.

Exercise to How many evaluations of t(x) are required in Simp-

son's rule
Snla(h/3)(f(x0)+4f(x1)+2f(x2)+...+2f(xan_2)+Iff(x2n.i)+f(x2n))?

Row many sUbdivisions of length h are needed? The student observes the

even number of subdivisions and odd number of points .

I
exercise kB: Suppose we wish to approximate J sin(x)dx by Simp

sot's rule using four subdivisions. nes? hrn? The values of (xi,f(xi))

for are printed for the student. S ?

24..ftror Formula tallignalp Rule. The error formula

ei(h)m-h5f"( .)/90 for x..<:zzi is give,.; to ths student withoutel i2142
'621+2

derivation as the accepted error in approximating I f(x)dx by Simp-

2i

son's rule with two subdivisions. The errors are summed over the n

n
double length inte:Tvals to obtain e(h)14n- I f(x)dxse-h4(x2n-xo)f""(z)/180

where x 0 k<k2n. The student participates th?ough multiple choice type

items.

2
Exercise 5A: Suppose we wibh to estimate I ln(x)dx by Simpson's

1 4
rule and we wish to choose h so that max I e(h)l<10- /30. Compute

ffln(x) and max I fft"(x) on (1,2] . Choose h so that h4issx rem(x) (b-a)/

1804410
-4

/30. Thus choosing h.1 means 04. The student may choose va-

rious values of n and the computer will print (xi,f(xi)) t6r im0,...,2n
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and Solimpson's approximation.

Lemoson 21: Wiwi Ittirse tionQa3. of Ord.

Differentialauiti)stmit_zi

Purpose

Descrtbe the Taylor algorithms of orders 1, 2, and for numerically

Approximating the solution to y'llif(x,y) given an initial valu (x&oy)).

Demonstrate the deficiency of lower order methods and possible com-

plexity of higher order methods. In this lesson, the order of a

particular method is not rigorously established.

Prcrovisites

The concepts from previous lessons are not needed here a1thoug4

study of numericol differentiation and approximation of definite inte-

grals (Lessons 16-20) serve as a good background.

Lesson Outline

1. Statement of the In tiallyalue Pr,oblem. rescribe the problem

as r AI of Approximating the numerical values of y(x) on an interval

WO, given the differential equation y'alf(x,y) with initial known con-

ditions (A,y(A)).

Exercise 1A: Suppose y'lr-e-x4.1 with the known condition y(l)weell.

Then y(x) *f y'dx+c where c is the constant of integration. Compute

f y'dx and use the initial condition to determine the value of c.

Point out to the student that not all functions can be explicitly

integrated and thus we need approximation techniques.

2. !AxliT's Alsorithm of Order 1--Euler's Method. State the method

as forming the Taylor formula y(x+h)mgY(x)+1430(x).0wh2r4(s)/2 where
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x<sAboh and where all derivatives are asrumed continuous. Euler's

method comes by dropping the 0(h2)-term and stepping across the interval

[A0/0 by ytiamyl+hylmyehf(xi 9 Yi ).

Exercise A: Suppose y'wf(x,y)m-e-x+1 with y(1)ame 1. Write the

Taylor formula in tlrms of x, y, and z. Witt the approximation formula

in terms of xi and yi, Starting at xell with step-size hw.25, y

as the approximation to y(1.25) . y2911? y324 y114 The student compams

the approximate values with the true solution computed to fifteen

decimal figures.

Exercise PB: Let f(x,y)mxsin(y) with x0=3 and yom1.5. Write

Euler's method in terms of h, xi, and yi. Using haat how many appli-

cations of Euler's method is needed to approximate y(6)?

Reyiew of Notation for Partial and Total Derivatives Der_

the notation, to be used by the terminal for partial derivatives and give

the definition of the total derivative of f(x,y) with respect to x as

f'(x,y)lociefyf.

Exercise 3A: Let f(x,y)mix+y+x3y2. Compute fx, fy, fxx, fyy, rxy,

and fqx,j).

Exercise 3B: Suppose we have the differential equation

y'f(x,y)==sin(x2+y) where the solution y(x) is a function of x. Compute

e(x) in terms of x and y.

4. Tuismallgaltha of Order 2. Derive the computational pro-

cedure yi.laggyithf(xiai)+h (c(xiad+fy(xiadf(xiai))/2.

The student participates through multiple choice type items.

Exercise 4A: Suppose y'my(1-x)/x and y(1)-e-1. Compute rx, fy, and

fe (Y,y) in terms of x and y. Write yi4.1 in terms of xi and yi. The
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stuitsut then specifies various values of n as the total number of steps

from zool to x3. The computer re ponds with values (xiai,y(xi)) for

io0,...,n.

5.1.......42-,ko:LAgpstalljeLgriltl, Derive the expression

f"(x,y)of +2f f+f f +f f2+ff2 and the third order Taylor approxima-
xx xY x YY Y

tion.

yi+iagyi+hf(xi syi )4.0f (xi syi )/2+Of" (xi syi )/6.

The student participates through multiple choice type items.

Exercise 5A Suppose y'oxy and y(0)10. What in dx,A0 x0300

and fw(x,y)? To apply the third order algorithm on the interval, roa],

the student specifiet various values of n. The computer responds with

the numerical values of (x
11
y y(x )) for

_TWoritilkUmaibusk, The general algorithm dertvd

frau truncation of a Taylor series after the kth derivative is described

for the student. It is pointed out that for kol (ller's Method), an

extremely small step-size h is umuaAy needed for reasonable accuracy

thus vac-Mring a great deal of computational work. On the other hand,

for large values of k. the higher order derivatives may be algebraically

cumbersome. For this reason, Taylor's algorithm of order ko2 or 3 is

popular. There Is no student participation in this section.

Lesson 22: Second Order Runwitutta Methods

Purpose

Derive the class of second order Runge-KY methods as an alterna-

tive to the Taylor algorithm of order 2. Demonstrate that, at the cost

of two evaluations of the function, no evaluations of derivatives are
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needed. Demonstrate the numerical accuracy of this class for the Pe.-

proved Ruler's method and the Modified Ruler's method. Derive the

pri7Lcipal error function for the Improved Ruler's method as the ma -r

contributing factor and explain how its magnitude may be difficult to

estimate.

Prerequisites

The student is expected to know Taylor's algorithm of order 2 from

Lesson 21.

Lesson Outline

1. Introduction. State that the purpose of the lesson Is to dorive

a class of methods which are equivalent in order to the Taylor algovithm

of order ' hut lee d no evaluatim of derivatives. Write the general

formulas for second order Runge-Kutta methods. There is no student

participation in this section.

.2....i.L_hutaj:_Eeot___:________._....attalaSecondOrdeI4ethod." Define

the special case

yi4ely-.5(K1410

Kinthf(xityi)

K hf(xehae )

Exercise 2A: Suppose y' =xy. Compute IC and the computational

formula yta. Using x0c0, yell, and hod* compute yv xi, ye and x2,
2/5

The exact values of the true solution y(xd=ex11` are printed and the

student compares the values .

c and d. State the overall procedure

as comparing yijegesKi +bK2, where Kiishf(xiad and Kehf(xechal+dX1),
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with a Taylor expansion of y(zi la) to determine the best choice for alb,

c, and d. Give the student the general Taylor expansion

f(x+s ,7q+t )atf(x,y )+ a fx+t fy+s2fxx/ 2+ stfxy+t2fyy/

Then

2/kma.40141411J-a2y3ciii.%x75yyt...

with *web and timidly

Exercise Determin si...0a5in terms of hl c, d, and Ki.

Ask the student to observe that sUbstitution of K1 -hf in the re-

sults of Exercise 3A yields.

. 2Keihwr+h +dhffcfx x/2+h-edf d fy
Y

°/24.0(0xy

Exercise 3B: In the last expression for K2/h, collect terms

powers of h to obtain K /h1.464-Wpfh S2 +O(0). Write So, Si, and S2 in

terms of c, cl4 f, f fy, and fy, xx xy

From the results of Exercise 3B, the student im asked, to observe

that E mhf+h2(cf fdf
yf)+113(c2fxx

/2+cdf
xy16412fyyf2/2)+0(h4)x

2 ,i2i r,o,and y ,i.h(a+b)f+h b(of +df f)-4-h bke 'f p-4,edf f+ef f12)+0(h1+1 f y xx xY YY
The student is then askea compare the last formula with the standard

Taylor expansion for fune gone of one variable

y(x14.1)mylxi)+hf+h2(cellyfV2+0(cx+2ffxi+fr/4-cyff;,)/6+0(0).

Exorcise 3C: Comparing the last two expressions, the best accuracy

is obtained for bcubdp?

The student is asked to observe that the 0(h3) terms cannot gener-

ally be equated and thus the local error is 0(0). Remarks are made

about the total error over the interval (x
o n] being 0(h

2
), but a

rigorous discussion is not presented.
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h. octal. 0asars a a Look at the Local Zrror. The student is

asked to recall that the best values of a, b, c, and d satisfy a+bl

and 1)0181)&8i.

Define the Improved Ruler's method as that TM-method for which

aibole and 0186481. Derive the locs1 error formula

yi+i-sr(x44.3.)8811)(fxx4.2fxyfi.fyyr-2fxfy-'<?.fA.y)/12+0(h ).

The student participates through constructed responses. The princi-pal

error term is defined as g(xly) where ytil-y(xi4.1)88h g(xiori)+0i. )

Exercise 4A: Suppose y' sexy. Find the principal error g(x,y) for

the Improved Euler's method.

Define the Modified Buller's method as the special case where 80,

1)1, and cad+

Exercise 413: Let y'nly.sin(x), x088PI, and y(PI)me. Applying to.

Modified Ruler's method, calculate K1 and K.,1 in terms of h, xi and yi

Write the general computational formula yi+1817. The student may sv$,I'Lry

values of n and the computer will respond with the values (xiaity(xl

e
-cos(xi).

) for i=0,...,n.

The general inability to accurately estimate the local error is

discussed..

Lesson 2 Numerical Into ation, Error Estimation and Extr olation

Purpose

Formally demonstrate that the total error yey(xn) is 0(h2) for

the second order methods described in Lessons 22 and 23, thus warranting

the name "second order". State a more general error formula and
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show how extrapolation improves the numerical result.

Prerequisitsa

The student is expected to be familiar with second order Runge-

tufts, methods (Lesson 22) Taylor's algorithm of ardor 2 (Lesson 21),

and simple extrapolation (Lessons 17 and 19).

Lennon Outline

1. Review of Second Order Methods for 1,44

Display the computational formula for Taylor Algorithm of order

Xxercise 1A: Let eyex. compute fx, fy, and the computational

formula 1ri+154.

Display the computational formulae for second order Runge-Kutta

methods.

Exercise IB: Using 0,44 and c-d.1, write the expressions for

Ki, K, and the Improved Euler's method Y14.1"?'

Exercise le: Uping NIKO, bliglo and emdmi write the expressions for

Ki, K2, and the Modified Euler s method y10.4.

2. Estimation of the Cumulative Error yn-Ax State the

approximate solution as yi.amyehT(xityi) and define T(x,y) for both

Taylor's algorithm and Ruage-Kutta methods. Using the exact solution

y(xi+digiy(x1)÷hT(xi,y(xj.4,0(h3) and the error notatlo

establish that'
e(xn-xo me )1410 2

)kn assuming that T and Ty

are bounded and continuous with! Ty! <h. The student participates in a

somewhat lengthy analysis through some constructed responses and a

great number of multiple choice items.
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describe for the student the more general result en(h)milyn-y(xn)loch'-+

0(h5) where c is a constant. Using a step-size h/2, e
n
(h/2)mch2/44

The student is asked to mnstruct an LArapolation formula which will

improve the approximation to

Exercise 3At Let y'*x+y and y(0)wl. What is the computational

formula for Taylor's algorithm of order 2? We wish to estimate y(1).

The student chooses a value of 05<h<1 so that n im an Anteger. Th'

computer responds with the values of n and (x
i

y(1r )1m2e -x -1)

What is 0? The computer responds with the new velum, ,tyf

n,avd (r y y(x )) for im001,...0. What 13 the extrapolated walue/'1,

The student is asked to observe the agreement between yri(b/2) and the;

extrapolated value to obtain a lower bound on the number of correct
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APPENDIX C

QUESTIONNAIRE AND EXAMINATIONS

PnAt.ftneriment Ouertionnaire for AT Group

CIRCLE THE ANSWER THAT BEST DESCRIBES YOUR onsxou OR REACTION

1. I purposely typed an equivalent form of what I knew to be the
correct algebraic expression just to see what would happen.

almost seldom about half usually almeost.
never the time always

2. The examples and exercises in the Tutorial Mode clarified the
concepts and helped me gain additional insight into the theory.

0

almost seldom about half usually stIowst
never the time always

3. The Problem Mode should be eliminated in favor of programing
the problems in the conventional Fortran manner.

almost seldom about half usually almost
never the time always

4. The Investigation Mode should be eliminated because I could have
accomplished the same thing more quickly and more flexibly by
conventional Fortran programming.

4

almost seldom about half usually almost
never the time always

-,-,



5. In view of tht fact that I had
of Instruction is (are)

: Tutorial

Problem

Investigation

: Uncertain
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a textbook, the most useful, modes)

Tutorial and Problem (both eque)

TItorial and Investigatior (0.0

Problem awl tnvesttettlor fr(tut

Tutorial, Problem and Investigation
all throe aiciut

6. If only two modes of instruction were possible, the one I would
choose to drop is the

Lesson Problem Investigation Uncertain

7. If only one mode of instruction were possible, the one I would
choose to retain is the

Lesson Problem

FV

investigation Uncertain

8. I was more involved with pushing keys than concentrating on the
material.

almost
never

seldom about halt
the time

9. I felt tense or ill at ease at the teletype.

Almost
never

seldom about half
the time

usually almost
always

usually almost
always

10. When typing mathematical expressions, I found myself concentrating
on avoiding Fortran errors and forgot the question or material

leading to the question.

almost
never

seldom about half
the time

usually almost
always



11. When the computer was typing information, I became impatient.

almost seldom
never

12. The Fortran notation
harder to read.

almctt
never

oto!kinta

about half
the time

a

usually almost
always
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for mathematical expressions made the material

W

about hair usually
the time 0. '7 e ;

13. Automatic computation of arithmetic results by the computer
helped me to concentrate more on the analysis cf the theory,
fOrmulation of the problems, and the interpretation of the
results.

almost seldom
never

about half
the time

14. When I answered wrong, it was an attempt to
or just to see what would happen.

almost seldom
never

about half
the time

15. I feel that more can be gained from the
than from the Tutorial Mode.

a

almost seldom
never

N

about half
the time

16. Teletype noise distracted my attention.

almost
never

seldom about half
the time

usually

"fool" the

usually

conventional

usually

usually

almost
always

computer

almost
always

classroom

almost
always

almost
always



17. I learned more from reading the textbook than I did from the

Tutorial Node

almost
hover

seldom about half usually almost
he time always
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18. Compared with the previous course material, I found the material

on numerical differentiation, numerical :Integration, and numerical
solution of differential equations to be considerably more
difficult.

almost seldom
never

about half
the time

usually almost
alwaya

19. Compared with the previous course material, I had considerably more
difficulty reading the linear teletype notation in lessons on dif-

ferentiation, integration, and differentia: equations.

almost
never

seldom Alum* 11042-

the time
usually almost

always

20. The fact that some developments in the sections an numerical
ferentiation, numerical integration, and differential evations
deviated considerably from developments in the textbook mace the

material harder to understand and learn.

almost seldom
never

about half
the time

6

usually almmt
alway13

21. I felt that I lacked the proper prerequisite knowledge for study

ing the comese material.

almost
never

seldom

22. The method by which I was
answer became monotonous.

strongly disagree
disagree

ar-Iut half
the time

usually almost
always

told whether or not I had given a correct

uncertain agree strongly
agree
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23. Whesever I typed HELP in the Tutorial Mode, I was given information
which actually helped me to understand the concept and construct
the right answer.

: : N

almost seldom about half usually almost
never the time always

24. Whenever I was giver the correct answer, I was also given an ad-
equate expletation of why it was correct and I could determine
what was wrong with my answer.

Ss

almost field= about half usually almost
never the time always

25. Whenever I typed HELP or answered incorrectly, it was because I
was not inspired to think or I really didn't care.

:

almost Beldam about half usually almost
never the time always

26. Whenever I typed HLP, I really knew the right answer and was
only trying to gain additional information.

s

almost seldom about half usually almost
never the time always

27. The lesson material was on the average

too easy easy challenging difficult too diricult

28. The Tutorial Mode clarified the outside reading assignment and
helped me to gain a deeper understanding of the course material.

411

almost seldom about half usually almost
never the time always



29. liken solving problems in the Problem Mode, I usually needed

less help more help the help it now prtJdes
(i.e., told only when wrong)

30. The investigation Mode provided an outlet for solving ay own prob-
lems and answering my own questions.

almost
never

seldom about half
the time

31. an the Tutorial Node, I understood the
question and the lesson material.

almost
never

seldom about half
the time

a

usually Est
always

relevance unworn the

32. The lesson material was too repetitious.

almost seldom
never

33. The computer lesson

almost seldom
never

about half
the time

seemed organized.

about half
the time

34. I knew when I needed to type HELP.

almost
never

seldom about half
the time

usually

usually

usually

usually

S

almost
always

almost
always

0

almost
always

almost
always

35. The notes produced by the computer lesson were acceptable for home
study or review.

almost
never

seldom about half
the time

a

usually almost
always
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36. I did not understand the material but was forced to go on without
adequate explanation.

mamuOV
never

seldom about half usually
the time

37. I found myself trying to get through the material
learning it.

almoot
nover

seldom about half usually
the time

al moat

alway6

rather than

almost
A way e

38. I guessed at answers to questions when I didn't know the correct
answer rather than type HELP.

almost
never

seldom about half
the time

usually

39. The computer lesson was boring and tiresome.

almost
never

seldom about half
the time

usually

W. A. picture, graph, or diagram would have clarified the
helped me to learn more rapidly.

almoot
never

meld= about 'half usually
the time

almost
always

almost
always

concepts and

almost
always

41. At the start, may enthusiasts _for studying numerical analysis by
computer was

very low low normal

4

high very high

42. At the present, my enthusiasm for studying numerical analysis by
computer is

very low low normal high very high



It3. I feel that w overall knowledge of computer-presented course
material is

poor fair good, excellent

CAimutred. to ury actual knowledae and understanding of the course
material, I feel that my average performance on examinations has
been

vex low low about right hi & very high

The avemaa moult of time I spent in preparation prior to the
Tutorial Mode was

less than 15-30
15 minutes minutes

30-45 45-60 greater than
minutes minutes 6o minutes



Table PO. Individual Responses to Questionnaire Moan

Item Student
No. 34

1 seldom
2 usually
3 almost never

240.4e.

5 tutorial
6 investigation
7 tutorial
8 seldom

9 amt novel'
10 half the time
11 almost never
12 almost nevetr

15 half the time
14 seldom
15 seldom
16 half the time
17 almost never
18 usually

19 seldom
20 half the time
21 seldom
22 disagree
23 uswaly
24 usuylly
25 seld(x
26 half the time
27 ehallengixtg

28 usuelly
29 help it now

provideii

30 half the time
31 Twiny
32 almost never
33 almost always

34 usually
35 half the time

36 seldom
37 seldom

38 seldom

39 seldom

40 half the time
41 very high
42 very high

43 good
44 about right
45 30-45 mins.

Student

seldom
usually

half the time
I1d--

tut. and prok.
investigation
tutorial
seldoa

almost never
seldom
seldom
seldom

half the time
seldom
seldom

almost never
seldom

half 'khe time
seldom

half the time
half the time

agree
half the time

usually
seldom
e0dom

chalrsnging
half 4%Ize tt-e

help it now
provider;

seldom
half the time

*Wow
usualY
usually

half the time
seldom
seldom
seldom
seldom

half the time
high

normal
fair
low

15-30 mins.

Student

half the tin
uaut11;47

seldom
seldom

prob. awl Uer.
uneertatn

investigaton
seldm
seldcm
gelAg-ior;,

seldom

half he tme
seldom

half the ttme
seldom
seldoo
US7:14X4.

usually
almost always

seldom
disagree
usually
usually
seldom
000,

challenging
oduRlAAftm

help it POV
provi6en
seldom
usually
seldom

almost always
almost PILluivs

usually
seldom
seldom
seldom
seldom

half the time
very high
very high

fair
low

15-30 mins.

S tu.detit

It' Atilt'

eiNe-Tit

almost
halt th,

selLortc'

ulkear

seldom
**Wm

almost
disagre

aiitusually
nr

eoqiinv,

ctiall ming
umn*11

help 'WM
prov:40

usually
seldev
UST,Wly

halt -1311m

altwAt 0,014T4L,

almost
half the ttme
half the time

seldom
seldom
high
high
good
high

15-30 mins.
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Ixamiumti*n.

WORK ALL PROBLXMS. RACH PROBLEM IS WORTH 20 POINTS.

Praia 1: Describe the following concepts in mathematical termDefine

all symbols that you introAuce,,.

(a) any three conditions under which you might expect the
iteration xk+imexk) to diving!

(b) quadratic convergence

2
(c) Aitken's 6 -fOrmula

Problem 2: f(x)m(x.-.1)/x has 4 zero at:pal. Formally show that th
iteration

1
=ex ) will converge or diverge for all x

oktk
in some interval about p if

(a) g(x)sx. if41

(b) (y.).014,xf(7.)

Problem 3: Use any iterative method with x0*2.0 to find 45 correa'.

to three significaut figure*.

Problem 44 (a) The numerical data given below was produced by a cou-
vergent iteratIon xioeg(74ww,t g(x) sitt'Aele,

linear iteratlop theorem. The errnr at each mt#40 1
given by eit-txx-p# kW, the 't S rumorfl ro3 "rv--

sults, determine if the couvergence is linear, quad-
ratic, or neither. To be correct, you must justify

your answer. Estimate g'(p).

Ic k

11 .12150000E+00

12 .20246568E-01

13 .67232947E-03

14 .67788842E-06

.40500000E+00

.17486888E+00

.31644144E-01

10008268E-02

.135onotarm+ol

.143929oowl

.14893767E+01

.14996638E+01



k

2

3

5

(b) Answer question 4(a) for the tailoring data.

ekiekr..1

- .114695719E-02 .29289691E00

- .4.30k2800S-03 .292/39347e4-q0

- .32606945E-03 .29289324E+00

-.3692086z-01 .29289322m-14)0

2/e4 k-i
hr.

10 '4"k
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- 58376306F402

.19T;055,3P.+0, 68O

- .680 k6976xi.o15 -.232326b944)14.

2323203+04

Problem' 5: (a) Write Norton a iteration equettions t find. a
eous solution of f(xvOmOog(xoy)w*O.

(b) Using Newton method with (x00:i0)0.0 ) tiod Pal

improved estimate (xi ) to the simultaneous (0.;,L1rc.r.
1 2 2 a".of f(xyrix -23cyfy ,gtx ,y jim2x+2y-4.
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Examination 2

WORK 4ALL PROEMS. EACH PROBLEV TS WORTH 25 POINTS.

Problem 1: (a) Describe three teats for an in-conditioned tv-vow 1.

(b) Suppose the results of elimination on a sytter Ax*".
yields the reduced augmented matrix

2 1 1

0 5 3

0 0 10-4

o 0 0

li 1
8

2 1 4

0

I

where K interchanges of rows took place dur,Gg - "ar.e.n-

talon. What is IA I ? Cat we conclude that A is ili-

conditionett? (juittry.:fo'qr Answer.)

Pribles 2: (a) Suppose we wish to solve AAmb by the method of simul-
taneous displaeements (method of Jacobi) her

1
0 , .

0 $220 . . . 0 firl 1

0 0

A

0 0 00 s
nn

that is a 0 a 140 for 1=ti n and ail other a
it in " ij

Show that the iterati9miil converge in a finite num-

ber of steps, i.e., xtk)*x for a finite value of k.
What is the maximum pobaible value for K?

(b) For which of the following coefficient matrices
Axacb) can we be guaranteed that the method of

simultaneous displacements will converge? (Justify

your answer.)
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'.6 3 0 3 1 i
A- 2 12 4 6 A.

2 6 18 30

2 3 14 19

Problem 3: p(x)=x3+x2+3x 5 has a caaplex root in the rectangle ir4 the

complex plane ef1ned by the vertices 04.01,2+0i,24,2i,04.21.

Imaginary

0+2i 24.21

04.0i 2+01

(a) Name another rctEtg1e in ezomp3er

teams smother i*iex r

(b) Suppose we use en initial wprc.ximation to the f,.oluvJmt

root av z"=141. Then thrst corrtaponding
baste quaeratic ftsAor e--tv-On of p(x) !,n;

tilling this initial ap,proorte ?7GAdritutie fftetor
e-aox-ftn, we wis to use '-;Ife Newton-Bairstow pethol

to ',And 2n ipproved quadratic Actor x2-mix-pi where

we know al and 0 are mlutions of '!fibe sAtee

Iteai

-b )
1 0" C

-b (ct p )
0 0' 0

AIM

0

ob *ab
0(04 A

)b ab1010
1'0* * ar m- # T6- 0319Compute the values of bil

and 0 . Show all vork.''
1

Problem 4: Show all work.

(a)

Let A.
3. 1 1

0 1 1

L.1 0 1 .4

Use Gaussian Elimination to find A
71

0

Compute the normalized determinant of A.

If Axelb where b = I: ] , use A-1 to solve for x.
1



EU ALL PROBLEM. EACH PROBLEM IS WORTH 20 ronerso

Problem 1: (a) In terms of limits, (%flne what it means
be an 0(09-approximation to a numiber A.

(b) Consider the following Tklor expansions.
derivatives lontinuous.)

h
2

llht
0
f+ f e

2 06.
T f0 +..."f1

to

he
f +el+ `!!.....

What are A and k if

f1-f
0

D(h)

f.
D(h)

fiftv2Itf.1
D(h)

h
2
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or 0(h) to

(Assume all

Problem 2: Suppose we wish to approximate by Simpscn's 1

(a) Write S 'spoon s approximation for 2nall. sUbdivisions

(i.e., What is the formula using f()m-4). Specify the

value of h

(b) The error in S son's rule is given by

E (h)m-hil(b-a)r (n)/180 where a01.(b. Determine bounds

on n and h to imsurelE
s
(h)1.< 5010

-7

Problem 3: Using the differentiation D(h)o(f(x +10-f(xn-h))/2h and

extrapolation to the limit, approx te f' (2) from the values

in the following table.

-1

x .5J0 .750 .875 1.000 1.125 1.250 1.500

f 2.0000 1.3333 1.1428 1.000 .8888 .8000 .6666

0 1 2
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Problem 4: Let eirt (x,y)m-2xy with initial conditions y(0)=1. use

Taylor's algorith* of order 2 and step-pize h*.1 to appro4-

taste y(.1).

Problem 5: (a) Lit p(z)max ood, If ti:! approximate f:p(A)It
a

Stmpson's rile. we get the exact answer, Why? Justify

your answer.

(b) The following Romberg integration table is generatAwl

for approximations to I in(x)dx. All calr41 tions
1

are rounded to four significant digits.

Ii

2

1

.5

.25

1.099

1.242

1.282

1.292

1.290

1.295

1.295

1.297

1.295 1.29

Using the values fro* the taole, write the viau t. or

the trapezoidal approximation to the integral or N

subdivisions of [1,3]. Also, what Is the value of
Simpson's approximation with 2N-4 subdivisions of

.3

[101? The correct answer IL J

Why is the last diagonal entry in the table worse than

the third diagonal entry?



Student 1
Score 63
Rank 20

Student 14
Score 77
Rank 10

Student 27
Score 55

Rank 2

Student
Score
Rank

Table 21.

2 3 11,

95 43 83
8

15 16 17
69 48 70

28 29 30
37 v

1 2
88 83
4

Mean66

Table 22,

3 14.

67 80
21 6

Student
Score
Rank

Student
Score
Rank

Student
Score

14 15
0 36

27 28

72 41
17 0

16 7_7

75 53
11. 28

Rankings

5 6

59 54

18 19
46

4

58
26

by Exam 1 Scores

7 8 9
85 89 85
6 4

20 21 22
60 73 64

31 32
82 64

1

Rankings

5 6
90 53

18
51
30

19

18

10 U 12
89 54 63

5 72

3 24 25
'.;6 76 5
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13
62

146

63
24 11 ____.313.21.p P, 22

33 34 35 36 37
55 38 68 56 92

L 1L 28

Median s611.

by exam 2 Scores

7 8
92
2

9 10
62 8o
24 8

20
42

2

21
73
1

22 23
72 79
16

24
74
14

29 30
0 59

437 *5

Mean-63

Table 23.

1 2 3 4
62 86 54 100
22 1

Student 14
Score 69
Rank 16

Student 27
Score 90
Rank 6

31 32 33 34 35 37
70 79 52 64 70 54 93
12.20.22.22., 20 26 1

Rankings

95 37
2

15 16 17 18
63 49 73 38
1 2 15 1

28 29 30 31
83 74 63 18
1 14 21 6

Nean64

19
63
20

Median070

by Exam 3 Scores

7 8 9

77 86 43
13 10 2,2.

20
65

32
93

33
31

4

R1 22
61 62
24 2

34 35
42 34

30 33

Median63

25 46

77 66
11 22

10.1401VVON#IINIMIN

10 11 12 13
98 22 63 0

2'
59
2

24
89

36 37
47 87
28 8

26,

93 85
4 11

4MIOMNIMONIIIP



Student
Scare

k

Student
Score

Student
Score
Rsn)ç

Table 24. Rankings by Average Scores Over Three Bous

1 2 3 4
71 88 55 88

61 2

14 15 16
49 56 57
0 25 22

27 28 29
72 54 k8
11 28 33

Man-64

17
65

5 6 7
83. 48 81

1 8

8 9
89 63

2 20

18 19 20 21 22
45 64 56 69 66

1 1 16

30
63
21

31 32 33 34 35
57 79 46 48 57
2k 9 4 33

233

it) 11 1 13
89 35 67 35

k3 2k
65 78 115... 11
18 10 4 12

36 37
52 91

Medians/6k



APPENDIX I)

SAMPLE STUDENT OUTPUT

LESSON A. KEYBOARD ORIENTATION

COMMUNICATION BETWEEN THE STUDENT AND COMPUTER

THE RIGAT-MOST KEY IN THE SECOND ROW FROM THE TOP IS
LABELLED (RETURN). PUSH THE (RETURN) KEY.

0
BY PUSHING THE (RETURN) KEY, YOU 5IonAL THE COMPUTER THAT YOU HAVE
COMPLETED YOUR t(E4ioNnx0
TYPE THE LETTER A nAD pma (RETORN)t

0A
OK. NOTICE THAT THE COMPUTER REMAINS INACTIVE UNTIL. YOU
PRESS (RETUR4). UPON PRESSING (RETURN), THE COMPUT ;R. CHECKS YOUR
RESPONSE AND TAKES APPROPRIATE ACTION.
TYPE ANY STRING OF LETTERS, ONE 01 WHICH IS THE LETTER 11

0A0EKBLE
OK. THE COMPUTER EXPECTS A RESPONSE FROM THE STUDENT IF IT
TYPES 0 AND STOPS. NOTICE THE # ON THE NEXT STOP.
THEN HY>: (RETURN).

OK. SUMMARIZING,
I. THE COMPOTER EKPECTS A gESPONSE FROM THE STUDENT IF IT

TYPES 0 AND STOI-S.
2. THE STUDENT SIGNALS COMPLETION OF A RESPONSE BY

PUSHING (RETURN).

PUSH (RETURN) TO CONTINUE.

2. CORRECTION OF TYPING ERRORS - THE (R(JBOWT) KEY.

THE (RUBOUT) KEY ACTS AS A LOGICAL ERASER IN THE SENSE HAT THE
STUDENT MAY ERASE A PARTIALLY COMPLETED ANSWER AND START ALL OVER.
THE (RUBOUT) KEY IS ON THE 3RD ROW FROM HE TOP RIGHT-HAND
SIDE. PUSH (RUBOUT)) THEN PUSH (RETURN).

OK. TO SEE HOW (RUBOUT WORKS, PERFORM THE FOLLOWING STEPS.
(1) TYPE THE WORD PLUZ
(2) PUSH (RUBOUT)
(3) TYPE THE WORD PLUS
(4) PUSH (RETURN)

OPLUZ
/PLUS
OK. THE COMPUTER IGNORES EVERYTHING TYPED PRIOR TO PUSHING
(RUBOUT). YOUR RESPONSE IS RECOGNIZED AS THE WORD "PLUS".
JUST AS IF YOU HAD NOT MADE A TYPING ERROR.
PRESS (RETURN) TO CONTINUE.
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YOU MAY USE THE (RUHOUT) KEY AS OFTEN AS YOU WISH IN ANY
RESPONSE. SUPPOSE ft STODENT PERFORMS THE FOLLOWING

(1) TYPES THE WORD SUU4
(2) PUSHES (T(U1iOUT)
(3) TYPES ThE WORD SQUARW
(4) PUSHES (RUBOUT)
(5) TYPES THE WORD SW/ARE
C 6) PUSHES (RETURN)

WHAT WOULD THE COMPUTER RECOGNIZE AS THE RESPONSE?
SQUARE
OK

3. CO11(ECTI1)N OP TYPING 'ERRORS 4HE N KEY

INSTEt,d OF USING THE C RUWIUT) KEY TO ERASE A RESPONSEA TUE TUDENT
MAY ELECT TO USE THE # KEY. THE' M KEY IS ON THE TOP HOW
3RD KEY YliOM THE LEFT. WHEN YOU HAVE FOUND IT, PUSH (RE1UR4).

0

SINCE THE # IS AN UPPER CASE CHARACTER, YOU MUST DEPRESS THE
(SHIFT) KEY WHEN TYPING N. TYPE 0 SnVERAL TIMES.
PRES (RETURN) WHEN SATISFIED.

00000000000
THE 0 ACTS AS A LOGICAL BACKSPACE IN THE SENSE THAT IT
DELETES ROTH ITSELF AND THE PREVIOUS CHARACTER FROM THE COMPUTER.
FOR EKAMME, SUPPOSE THE STUDENT PERFORMS THE FOLLOWING STEPS

(1) TYPES AHD
(2) TYPES
(3) TYPES C
(4) PUSHES (RETURN)

WHAT WORD WOULD THE COMPUTER RECOGNIZE AS THE RESPONSE?
/ABC
OK
THE 0 KEY MAY DE USED AS OFTEN AS NEEDED IN ANY RESPONSE.

WHAT WOULD THE COMPUTER RECOGNIZE IF THE STUDENT TYPED XfY0040W

AND PUSHED RETURN?
OXW
OK
SUPPOSE THE STUDEMT DOES THE FOLLOWING

Cl) TYPES YESOONNOY000
(2) PUSHES (RETURN)

WHAT ANSWER WOULD THE COMPUTER RECOGNIZE?
OYES

NO THE YESOOO DELETES TUE YE TRY AGAIN.

ONO
OK.
WHAT IS THE FINAL. ANSWER IF THE STUDENT

Cl) TYPES THE WORD YES00
(2) TYPES NO
C3) PUSHES (RUBOUT)
(4) TYPES NO
(5) PUSHES (RETURN)

ONO
OK
THE (RUDOUT) KEY AND 0 KEY'MAY BE USED AT YOUR
DISCRETION TO CORRECT TYPING ERRORS.
PRESS (RETURN) TO CONTINUE.

0
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4. MATHEMATICAL EXPRESSIONS

WITH MINOR EXCEPTIONS, ALL MATHEMAlICAL EXPhESSIONS MUST BE
CONSTRUCTE44 11S146 'FORTRA41 ROLES.
FIRST, LOCA1k THE ARITHMETIC OPEhATORS.
THE + KEY IS 04 THE SECOND ROW FROM THE 111)TTJMR16HT SIDE*
SINCE IT I s AV UPPER CASE %ETTER, Y)1) MUST L'} PR THE SH/FT KEY
WHEN YOU PRESS THE PLUS KEY.
TYPE THE CHARACTER .t SEVERAL TIMES. THEN PRESS (RETURN)*
0+++++++
TYPE THE EXPRESSION 4+Y!,4,

im>0+V+4
OK.
THE * (MULTIPLICATION) IS AN UPPER CASE CHARACTER LOCATED ON TEP.!:
TOP ROW---HI CHT SIDE.
TYPE THE EXPRESSION Xity+4

0410*Y+X
OK
THE (MINUS SI(I I) IS LOWER CASE LOCATED ON THE TOP R)W--
RIGHT SIDE.
TYPE THE EXPRES`Al4

0X-Y+Z*W
OK. 111E / (IVIAON) IS LOCATED 04 r;HE BOTTOM POW---RIGHT SIDE
TYPE THE EXPRESSION A/Y-4+WYK

0X/Y-4+WI'N*1#1(
OK. EXPONVATIA1I04 IS DENOTED By ** OR I.
TYPE THE -XPRESS/04 /**//4-W**K+A

OX*Y/4-11**K+A
OK. THE t (UP-ARROW) MAY ALSO HE USED TO DENOTE
EXPONENTIATION AND IS LOCATED OV '111K BOTTOM ROW---IN THE MIDDLE
TYPE THE EXPRESSION X*Y/Z-W1K+A

OX*Y/Z-WtK+A
OK.

5. SUBS(;ItIP ViAll A)

THE SYMBOLb C AND J ARE USED '10 DENOTE SUBSChIPM.
FOR EXAMPLE, XE3) DEVOTES THE THIhD ELEMENT o THE ARRAY X.
YOU WILL FIND THE BRACKET SYMBOLS C AN!) ) ON THE FIRST AND SECOND
BOWS FROM THE BOTTOM. LOCATE THESE SYMBOLS AN!)
TYPE 1(11 NAME FOR niE 15TH ELEMENT OF AN ARRAY CALLED W

OWC153
OK.
REMEMBER THAT BRACKETS (NOT PARENTHESIS) ARE USED TO DENOTE
SUBSCRIPTS. WHAT 15 THE I+1,J-1 ELEMENT OF THE ARRAY A?

OAEI+1.J-13
OK.

0

6. THE DISTINGUISHED NAME "PI"

THE NAME "PI" DENOTES THE CONSTANT 314159...ETC.
WHENEVER YOU WISH TO USE THIS CONSTANT, YOU MERELY TYPE THE

WORD PI. FOR EXAMPLE, COS(PI)=-1.
PRESS C RETURN) TO CONTINUE.

WHAT ARE 3 DISTINCT VALUES OF X (IN RADIANS) SO THAT SINCX)m0?

ONE VALUE IS X=3
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OK
AN011 'R VALUE IS Az,z

00
OK'

A THIRD VALUE IS X=
4194PI
ILLEGAL CHARACTER OR COMBINATION
TYPE A CORRECT EXPRESSION.

0194*)0PII0
OK.

0

liP

7. AVAILADLE MATHEMATICAL FUNCTIONS LATITUDE IN USAGE

THE FOLLOWING SUBSET OF FORTRAN FUNCTIONS MAY BE USED BY 111E
STUDENT AT ANY TIME.

CA) TRIGONOMETRIC SIN.CO:j*TAN.SEC.CSC.COTAN
- ARCS14 CASIN). MHCCOS CACOS). ARCTAN CATAN)

B) HYPEOL I C SI NH, COSH, TANH

CC) iU1A1O R6OT SQRT
CD) KXPON EN TI AL FU
C E) NATURAL L LW OIL ALO G
CF) BASE 16 4,0 G LOG ALO G I 0

C G) ABSOLUTE VALUE ABS
CH) INTEGER VALUE - INT

IN ANSWERIUG UUEST/OW, YCO !OW, USUALLY ltr, TO LE AVE YOUR ANt4WW.3
IN UNREDUCED FORM* 1.'0 L EXAtIPLE* 1/10G* *U1* AND 10+1+4.'3) ARE
EQUI VALENT AN fAiIEW; AN 1) ARE RECO ON f 4a) AS WIN* L 1 KEW sr.&

AL GEURAC C E4PUFS`A °NS NEED 40T bE REDUCED. FOIL EXAMPLE. 441143/K
AND X**2 ARE 5AMEe CW;;Oti**2* 1..SINC X )**2* 1/SECCX)**2*
2 *COSCX)**2..14.SINCX)**2 ARE RECOGNIZED AS EQUIVALENT. WHENEVER
THE :-71ITHMETIC OR ALGEBRA BECOMES BURDENSOME. LEAVE YOUR ANSWER IN
AN EQUIVALENT FORM.
PRESS CRETURN) TO CONTINUE

So FIRST E TIMATES OF 4E4OS CROOTS) OF FUNCTIONS

THE REMAINDER OF THIS LESSW, IS DEVOTED TO LEARNING SEVERAL
SIMPLE TECHNIQUES TO ESTIMATE THE LOCALITY OF ZEROS (ALSO CALLED
ROOTS) OF A 91VEN FUNCTION FCX).
PRESS CHEMIN) To nEniN,

A. METHOD 4 CHANGE OF SIGN OF FCX)

IF IPCAIO AND FCB)40 (011 VISA VERSA) AND FIX) IS CONTINUOUS ON TICE
INTERVAL CA* 133. THEN FCX) HAC A ZERO IN THE UNITE:MAL I 1,44)

THAT I Ss ThERE IS A NUMBER P SO THAT A< Pie B AND (P Os A SIMPLE
WAY TO DESCRIBE THE CHANGE O' SIGN IS TO SAY FIA)*FCB)40.
PRESS RETURN ) FOR EXAMPLES.

EXAMPLE Ali LET FIX .X). OW WHICH OF THE FOLLOWING
INTERVALS DOES FCX) CHANGE SIGN?

CA) EA*B3igNea -13
CB) CARMINE-la 03
CC) EA,B3INCOr 13
CD) CA13314C
CE) 03 NC Oa it)

CORRECT ANSWER I S C /Liar Ca Do E) ?
41)
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NO. F.( A)*F(1' -1).. 0 ITCH GIVES; NO INDICATION OF A ZERO IN THE
INTERVAL (A, H). TRY MANd OR TYPE HELP.

CORRECT ANSWER 15 (A*B*C.D.E)1
0HELP

FOR EACH O THE AHOVE TERVAL S* .1-1ECK A)*F( I)) 0.
CORRECT ANSWER 15 (A*Ii*C*DoE)?

0E
OK. F(0)no-+(tiltoin-1ap F( 0:22-E41-q -2).2-1/EXP( 2)*0. SO
F(0)*F(2),c0 twli MO CHANGES SINN ON ( O. 23 .5 A BETTER CHOICE.
HOWEVER. WOULD HAVE TIET.-7,4 TUE INTERVAL ( 0, 1 ) SINCE I T AFFORDS A
BETTER ESTIMATE OF THE ItOOT OF F(X).
PRESS (RETURN) TO CONTINUE

0
EXAMPLE A2. LET F( X ).0X+E..EXP( ). FIND AN INTERVAL C A. 133 SO THAT
F(A)*F( )4 O. WHEN READY. PUSH ( RETURN).

0
An

01
pal

00
DM

010

CHOOSE B).A. START ALL OVER.

NO. F(A)*F(B)).0. TRY AGAIN.
A21

00
0'.

01/2
NO. F(A)*F(B)3.0. TRY AGAIN.

A
00

01/4
NO. CA*1138,(...:!, 0) IS ACCEPTAIII, INCE F(..010,.241d.,Exp( 0)40,0
14(0)42EXP(0),.W.-11411b0o AND F(- ;)*F' PRESS (HtTURN)*

0

DO YOU WANT TO TRY A SMALLER INTERVAL FOl3 THIS EXAMPLE?
OYES
A

0-1

00
OK
DO YOU WANT TO TRY A SMALLER INTERVAL FOR THIS EXAMPLE?

OYES
Ars

9.
0..1/2

NO. F(A)*F(B)>0. TRY AGAIN.

0..1/2
Bit

OK
DO YOU WANT TO TRY A SMALLER INTERVAL. FOR THIS EXAMPLE?

ONO

238



EXAMPLE A3. LET F(X)a2*X..TAN(X), BY GRAPHING FCX). FIND AN

INTERVAL CA,B3 WHICH CONTAINS THE "SMALLEST POSITIVE ROOT" Or FCX).

WHEN READY. PRESS (RETURN)*

YOU HAVE CHOSEN 11),PI/2* NOTE THAT F(X) HAS A HOOT LESS THAN
P1 /2. THY AGAIN*

SINCE WE SEEK A POSITIVE R0070 YOU WOULD NtTURALLY CHOOSE A*0*

A.
011/4
B.
02*P//3

P(X) IS DISCONTINUOUS AT PI /2. FIND AN INTERVAL WHERE FCX)

ZS CONTIWUOUS*

1131/14
F( A`i*F( B )>0* TRY AGAIN*

An
/PI /4

B"
#141 / 2w )00q0 I

OK
DO YOU 41V;11 FXNir A SMALLEi'i, INTERVAL !'0 R THIS AM FL E?

ONO
REMAESTIAATIN0 THE TOOT O1 F(X) iY FINDING 4N INTERVAL (AsO3

SO THAT VC AP41 H )4 U WILL WORK IF '(X) Hitt; AMPLE ki001"0 CONsI DIM

THE EXAMPLE F(4)*X**2. FOR ALL 4 RIFFFNT FROM 0* FCX) '0 AND IT

IS IMPOSSIBLE ';0 APPLY Ti* 1'FL'70 1k SAML / 5 TRW!: FOR

COSOC)**2 DUES ( rE TURN ) NNW/HER MEMO a*

0

B. METHOD I NTEW;EG TION OF FUNCTIONS

ANO HER TECRATVIE IS TO SET F(A)P60 AND Tiu THE xiOSL.EN INTO

0( X ).4H( ) Mli4tE I' I EAS I E TO qhAW ( X) AID iltrrA.

EXAMPLE BI LET F(X)**X-E404)* SETT/Uri F(4),Ut WE RAVE THE

EQUATION X...EXP( )=40* AMINO EXP( ) TO ROTH ::;1 NE;:i f IVES

XstEXP(.X)* SO MX )$$X AND H(X),*EXPC ..X)* TO ESTIMATE A ROUT OF

FCX) IS EQUIVALENT TO ESTIMATING A POINT OF INTERSECTION OF THE
FUNCTIONS G( X ) AND H( X )* PRESS ( RETURN ) FOR A ROUGH GRAPH.
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BY PhOP;..:R * t

WE TliAlSFOLI4 Ti 1E H( X )=EAP( -X ) t

FitoNLW oF GliAlif I 1 G * t C( )

F( ) INTO 04E OF rii,L6PH INC
TWO SIMME 1. IACT101S, ) ,==;4 *1

AID H(K) ,-'El,(-:). WE ESTIMATE
THE INTERS};C TI 04 OF C( ) AID t *

AND HC ) AID E STI NATE ( A, H) SO t *

A< P <H. MORE MEC I .ELY. WE SEEK t

CA.133 SO THAT El THEE if

0 P

(1) HC AL*G( A) AND ii(1s)u(1) sth
(2) H(A)<G(A) AND H(D)roo(D)0

IF WE CHOOSE A=0 AND ft.-3 I WE FIND RC 0)= 0.0m G( (;) AID

H( I )u 1/EXP( I ) I =(C I ) SO THE FI RST CASE HOLDS A4D WE HAVE c:At.1ti3.

PRESS ( HETUhN) TO CONTINuE
0
EXAMPLE D2. LET F(X)=X-COS(X). NAME TWO FUNCTIONS GOO AND H(x)
WHICH INTERSECT AT A ROOT OF F(X)
G(X)/a

OX
HCX/111

OCOS(%)
OK
DO YOU WANT TO Tia DI FFEhENT FUNCTIONS Goo MD H( X )

ONO
ORAPH YOUR LAST G( X ) AND H( X ) TO ESTIMATE THE INTERSECTION P OF

(3(X) AND MX). THEN CHOOSE (A.13) SO A414413.
WHEN READY. PRESS ( RETURN ).

0
Am
00
Bs

01
OK
EXAMPLE B3. LET F(K)=X**34X**2...2*X.2. DEFINE 0(X) AND H(X)
WHICH INTERSECT AT A ROOT OF F(X) . PRESS (RETURN) WHEN READY.

0
OCX)m

0+X**3
HO0.
0X**2.2*x.2
OK

C. METHOD - TECHNI QUES FOR HEAL HOOTS OF POLYNOMIALS

CONSI DER THE GENERAL FORM o:;- A POLYNOMIAL

P( X )mAEN PPX**( N)+ArN.- 14.,* (N- 1) +AC I3*X+AC 03.

IF SOME ROOT P :5 LARGE IN ABSOLUTE VALUE WITH COMPARISON TO THE
OTHERS. THEN THE FIRST TWO TERMS AEN3*X.,,*(N)+AEN-11*X*k(N-1)
ARE DOMINANT AND THE SOLUTION TO AEN3*X**(N)+AtN-13*X**(N-I)
"MAY" YIELD A "GOOD" ESTIMATE. EQUIVALENTLY (FACTORING OUT
X**(N-I)). WE SEEK A HOOT OF Q(X)aA[N3*K+A(N.13 AS THE ESTIMATE
OF THE ROOT OF P(X). PRESS (RETURN) FOR EXAMPLES.



FKAMLE Cl. LET P(.4)=A**3-11.1*X**24.11.1*X-1. A FIRST ESTIMATE
OF TITh LARGEST /WO T ( IN MAGNI TUDE) OF P( X ) IS GIVEN RAY THE Z ERO OF
1.1(

0X-11. I
OK
THIS (RIVES I I . I AS AN E TlilLTE TO THE LARGEST ROOT IN
MAGNI TUDE 0)4.1)( ). THE LAWIEST ROOT I S ACTUALLY 1(1
PRES:) ( LEVIV.1) To GO:4111M.

0
EXAMPLE (nt. LET P(A)=X**44.10*x**3- I 2*4**2- *)(.+2.2 USING
THE TECHN14.0IE AHOVE, AN ELI IMATE OF THE LARGEST W)) I IN ABSOLUTE

VALUE 1 S WHAT NUMBER.?
ESTIMATE.4
010

TRY AWN OH TYPE HELP.
ESTIMATE

MEL P
TAKE THE FIRST TWO TERMS OF P( X ) AND FACTOR OUT THE X** j.

SET THE ItESUL T TO 0 ANT) SOLVE FOR X.

ESTIMATE r4
0..10

OK
SO -10 I S Al ES TINA' OF" THE LARGEST ROOT ( IN ABSOLUTE !VALUP ) OF

P( X) THE, LARGE: ; °I' 'ttm T IS AC TI 'ALL Y 110 PRESS ( RETURN 4

0
IN ORDER TO ESTIMATE THE SMALLEb.T ROOT IN AMOLwITE VALUE..
LAST TWO TERMS, NAMELY AL1) 4)(+AE03, ARE USE:). tf,,)LVINO

A[1]*44-A1.0k,10 "MAY" VM)VIDE A "GOOD" E: TI DRESS (RETURN)*

0
EXAMPLE CONSIDER AGAIN P(4)=X**3-11.1*X*4(24.11.1*X-1. FIND AN
ESTIMATE TO THE SMALLEST ROOT (IN ABSOLUTE VALUE) BY THE ABOVE
TECHNIQUE.
ESTIMATE.

01/11.1
OK
THE SMALLEST ROOT IF 11X) I ACTUALLY P.1. PRESS (RETURN).

0
THIS IS THE ,!,-;ND OF LESSON A.

YOU HAVE TWO CHOICEJ

Cl) TYPE "SLOGOFF" WHICH WILL SIGN YOU OFF THE 000j1E4,4
(2) TYPE "SLESSONsm--" WHERE ----- lb THE SECTION NAM,

OF THE MATERIAL YOU WI .5H TO STUDY.

CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF
AVAILABLE SECTION NAMES.

SLOGOFF
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LESSON 10. THE NEWT OA-.11AIUSTOW METHOD F0 FINDING COMPLEX ZEROS
OF A POLYNOMIAL. PRESS (RETURN) TO 1. CIN.

1. REVIEW )F THE DIVISION ALGORITHM FOR DIVIDING
P(X)wriEN3*X4*q+ACN..1)*X**(N-1)+0..+AE01 DV X**2-S*X-.T.

THE DIVIf00q ALG0h1111M (LW1A IS P(X);741(494,(X**2.n*A-11)+4C10
WHERE U(4)-H0,N1443*(a)t.1D13144+Wel AND h(X)1,4C1144(-S)+4(03
AND IHE Dill ARE. GOMPUIED ht 'WE RECURSION FORMULAS DEN:. AEN1.
BEW=11-A1q-IIDIN), DEIJ.-AII1+S'ePIJ+13+T*D1I+PI,
PRESS (REIMV, 10 GONIINUE.

EXAMPLE IA. LET P(X);IX**4-.2*X**34.4**R4-2*X-2. IT KNOWN VAT
P(X) HAS A COMPLEX kOO T NEAR '41.1..9*Ie SINCE P(X) HAS HEAL
COEFFICIENTS, ANOTHER COMPLEX ROOT IS NEAR XDAhat...9*1:, THAT IS,
AN APPROXIOATE QUADRATIC FACTOR IS (X-Z)*(X-ZBA4).
WRITE THE APPROXIMATE QUADRATIC FACTOR IN TERMS OF X AND HEAL
NUMDERS.
(X.Z )*(.k.-4)

0X**2..1,81*4
THY AGAIN OH TYPE HELP.

(X.Z)*(X-.4) -1A)Ls

/HELP
(X...4)*(X-.4MR)mX**2-.(Z+ZDAR)*X-.Z*ZBAR. Z+ZBAR AND Z*ZBAR
APE HML. CAhla OUT THE MULTIPLICATION TO ELIMINATE "I".

(X.-4)*(AHA14)
0)(1214X.A.01I

TRY AGAIN Oit TYPE HELP.
(X,.Z)*()(w.411Aii)tx

OX**2-.2*X..1011
(X...Z)*(4.-AA0aCX-.(1.1".9*I))* (1.'..91(1))04X**2...2*,(4.1H1

PRESS (4ETU16P '10 CONTINUE.
I
WE WILL CONSIDER THIS APPROXIMATE WADhATIC FACTOR X**2.2*X41.81
AS AN INITIAL ESTIMATE TO THE TRUE FACTOR AND DENOTE IT BY
X**2..S1:03*XTE03. WHAT ARE THE VALUES OF SCO) AND TE03?
S(010.

02
OK
TC03m
0.1H1
OK
WE DIVIDE P(X)=X**4 2*X**34.X**2+2*X2 BY X**2..SLOi*A..TE01
OR X**22*1+1181 TO FORM P(X)*(1(X)*(A**2-SCO1*X*.T(01)+K(X).
WRITE THE RECURSION FORMULAS, NU! EMCAL EXPRESSIONS, OH VALUES FOR
THE HCIJ TO DEFINE U(X)11.11(4)*X**2+BC33*X+RE23 AND
R(X)NDC03*(X-SC 03)+DE01.
BC43m

01

OK. BE4300AE431
BEM'
0.2+S*B(4)
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TRY AGAIN O1 TYPE 11 FL P.
BC 33z--4

#0
OF NE3:1AC114.SE0141A43=...ft+2*1=0.
BCR3

01+5C 01*1 C 31+ TT 014:11C 43
OK, HCft.V4ACP.3.4.SCOl*HC3)+TE0)*HC43=14.2*0...'1.81*1'4....81.
DC 111

02- .61*SC 0:1
OK, IAVIL-ALIP-!;C0111M3+T(Wiclit'11=24-k*(-,81)-1.f314.41
13( 0)

0- 2+4, 384:"A Ci:1 -.8 1 t. T1: 03
Olt, DC 03At. 03+SC 03*13C 11+TC 01*1;C 38-1.8 1#( -,,f3 1 )gx
SO Pt X )=-4 )*( x**44).- :CO3.4,,x- 'IT in )+1-i( )

QC X)7.
MEL P

u(x)713C /13*.x**:-1+ ic 33*x+FA 23:-.:441- 1. PRE. ( HP7,11111[4),

ROO=
# 3d*X+.4i1P.6 1

114 La 03) HI 01 3r5 *(:;: ) f:161 PRES: ( RETURN).

NOTE THAT Ra X) I S T ZERO I N lit I S EX/11414LE SINCE
X**2- 03*,X- 03 aOT AV EXACT Id VI SO1'. OF' PC X ) THE NEwTON-
BAIRSTOW 141YTIO PROVI1',E) A WAY '10 TMPROVE '1'11F DI VI SOH 1 Y FOI1C1
h( K) TO ERO ViLFSS ( liFTIJRN) '1'0 CO"."/INUE.

2. THE NEW40.s1-1iA/ES'W [V.:1110D FOIL IMPROVING AN APPROXIMATE
(MAN:AT I G FAC`1011

THE NEwrcl-HAI E14).:Tiloyf tiMotrr TO SP:, V' I N

11(X)4/41: .1*( X- !;)+11 Oj 0
AND SOLVING FOR I MI-LLO IJALt!ES OF 5 AND T I1Y NEWTON METHO 1)4.

SETTING R( X3n0 Ff.-in I VAT, ; 31 TO ;)?'TYING
HCLV-IACI34-::JHCAli+T41,4;312,0
1)EO1A1-014.:;*Hi1 l-VT*Hr:A=0

THIS La5-11,;vi ::,OLVED HY 1E1::1OV::, '4,F,THOD FOY nViTEMs (LESSOr4 7).
c roh Tnwiod ; Null ATI 0E4 :;

NEWTON'S 1%( tOAT I, ON S WERE V' .1) 1.1eloSON '1 ItS
1:;14,C Li-M: 03 )41iii 0`11 i.(.1-11; ) - HE 1 1

CTIO'S1*(S-L1C 0.1)+CRO'T)*(`I-TC 0,1 )rz-}1t,
IN ORDER TO SOLVE 'MI S SYSTEM FOR S AND ricr,T ).,jmhz41 NE nix
VALUES FOR THE PARTI AL DEM VATI VES OF 13C 1J AND DC 0) EVALUATED A i
SC 03 AND TI M. THESE PARTIALS ARE DENOTED /1Y CBI (131

CBOS). AND (BO T). PRESS ( RETURN) FOR EXAMPLE.
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EXAMPLE kA. LET P(X).cAL4)*X**44.AE33*X**34.Af23*X**2+AE13*X.I.AC030
TO DETERMINE 0(X) AND MX) FOR AN APPROXIMATE QUfiblATIG FACTOR
X**25*X-To WE COMPUTE BC43=AC43. DC33=A(334S*BC4,
13(214ACR3+S*BC33+T*BC43, BC13mACI34.S*BC23+T*BC33/ AND
BCOvAC034.S*BC13+T*BEk3. THIS GIVES THE VALUES OF D(13 AND BE03
NEEDED FOR THE RIGHT SIDE OF NWTON'S. EQUATIONS. WE NEXT
CALCULATE CD1153 AN) CBO'S3 BY RECURSION.
TAKE TILE PARTIAL DERIVATIVE OF Df43 WITH RESPECT TO S.

CC5341CROSir-
OHELP

BC43NAC43 WHICH IS CONSTANT. TAKE THE DERIVATIVE WITH
RESPECT TO S. WE CALL THE RESULT GCS].

CC53161034°S3a
00
OK
NEXT. TAKE IKE DERIVATIVE OF BC33=AC33+S*BC43 WITH RESPECT TO S.

CE4)=EDVS1m
OBC43
OK
USING THE SYMBOL C(43 FOR (B3,S3 AND RECALLING CB4.53*0s COMPUTE
C[33m(B21S3x
OCC3]+Bf33

TRY AGAIN OR TYPE HELP.
CC3384821S3*
02*CC33+BC43

BI&JmACW14.3*131334.T*BC4]. DENOTE CO3'53 BY CC43. NOTE M)O,
CB4ISINUt AND Am IS COW;TANT. SO

CWSPAO+S*EF3S341*BC33.4.T*CB415341T.S3*BC4340CI3OSIPBC434
PRESS (RETURN) TO CONTINUE.

0
USING THE SYMBOLS CC31 FOR (BB'S) AND CE4) FOR CB3'S3,. COMPUTE

CCO3aCOPS3-
0HELP

BC131(AC13+SIOBC03+T*RC33. DENOTE [WSJ BY CC33 AND CO3'S3 BY
C041. NOTE THAT T'S-0 AND ACI3 IS CONSTAKTe

CCI3*COOS3as
08*S*DC31+N*BC434.5*BE33.

TRY AGAIN OR TYPE HIMP.
CC238481113)*:
00+CC33+0C43

DC13mACI3+S*BC23T*BC31. DENOTE CBP'S3 1W C433 AND (WS] BY

CC43. NOTE T'3m0 AND AEI] IS CONSTANT. SO

CB1'S3=04.S*CBM.C34.141BC234T*EB3'S3+IT'SPOIRE33 Oh
CC21uRCP34.54 33+T*CC430 PRESS (RETURN) TO CONTINUE.

0
USING THE SYMBOLS CE23 FOR CBI'S] AND C(33 FOR CDR'S]. COMPUTE

CE130CHO'S3s
OS*CER3+8[13+T*CC33



OK

SO, TO FIND THE VALUES OF EDI S3 AND C BO 'S3 FOR 4 EWTO4
EQUATIONS, WE COMPUTE CC 43*0C 411 CC 33 -RC 33+S*CC 43s
CC 23*CB1 'S3=DCL3+S*CE 33+T*CC 43* CC 13=CRO'S3*BC13+S*CC 23+T*CC 33.
TO FIND THE VALUES CBI ' T3 AND C BOiT3, WE PROCEED IN A SIMILAR
MANNER. PRESS ( RETURN) TO CONTINUE.

0
To COMPUTE C DI ' T3 AND CBOT] FOR NEWTON'S METtIOD WE START BY
COMPUTING C34' T3 AND CALLING THE RESULT DC 63. COMPUTE
DE 63*CBOT3=

00
OK
TAKE THE DERIVATIVE WITH RESPECT IC T OF BC 33 AC 3) S*BC 4),
DC 5336C 83 'T301

OK
TAKE THE DERIVATI VE WITH RESPECT TO T OF BE 23*AC 23+S*BC 33+ T*BC 43
DC 4)*C BB ' T3

/BC 4)
OK
USING THE SYMBOL DC 43 FOR Mins COMPUTE THE PARTIAL WI TH
RESPECT TO I OF BC 13*AC 13+S*BC 23+ T*BC 33
DC 33*C B1 'T1*

OT*Dt 43+BC 3)+S*BC 43
TRY AGAIN OR TYPE HELP.

DC 33*C 01 bT)*
iHELP

AC13 IS CONSTANT. ES'TPCB31T3100 DENOTE 82. T3 BY DC N]

DE 3)*C B1 °T1*
334.S*DC 43

OK
USING THE SYMBOLS DC 33 FOR CBOT] AND DC 43 FOR C 82 'T3 COMPUTE
THE DERIVATIVE WITH RESPECT TO T OF 8C OPPAC 034,S*BC 13+T*OC 23*
DC 23=CDO °T3*

OS*DC 33411 21+ T*DC 43
OK
SO, 1(1 FIND THE VALUES OF CBI ' T3 AND C BO' T3 )'O NEW IS

EQUATIONS* WE COMPUTE DC 4) u 31 43, DC 31*MC 31+.5441M: 41 mC Mi )110 ARV

DC 23,4BC 23+ S*DE 334. T*DC 4301: DO ' T3 PkMR; ( RETUR4 ) TO (163 TiNUE

NOTE THAT DC 41*CE 4), DE 33 *IBC 33, AND DC 23 *CC 21 SO THAT COMPUTATION
OF THE DE 13 ARE NOT NECESSARY USING THE VALUES COI 'T3wCt 31
0110'71wC8I'S3mCC23* AND C8[1'S3mCCI].. NEWTON'S SYSTEM MOUS

CC2344:S-SC03)+CC33*(T.TC01)8C I]
CC 13*(S-.SE 03)+CC 2341(T..TC03)=-EIC 03

PRESS ( RETURN ) TO CONTINUE.
I
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BY MULTIPLYINC THE FICA OF THESE EQUATIONS BY C(2] AND THZ SECOND
BY CCI3 AND ELIMINATING T. THE IMPROVED VALUE S IS

Sx5r034.(CC3)201DCOP..C12)*B(1))/(CC23**2...C(11*CE33)
SIMILARLY. THE IMPROVED VALUE OF T I

TNICO1+(CEI3*BC13--C1:23*DC03)/(CLkJ**2..CE13*CC33?
AND THE IMPROVED ESTIMATE OF THE QUADRATIC FACTOR IS X**-.S*(T
PRESS (RETURN) Tel CONTINUE.

0
EXERCISE 3b. 1OONX*414..20*X**34.199*X**2+20*X200 HAS A COMM(

ROOT NEAR 4=(94-10*I). COMPUTE THE APPROXIMATE QUADRATIC FACTOR

(X**2*SC0PI,XTE03)111(X.Z)*(XZBAR). WRITE THE NUMERIC VALUES FOR

SC03 AND TCO3
SCOlm

0..18
TRY AGAIN OR TYPE HELP.

SCO3n
018
OK
TIO3m

0181
TRY AGAIN OR TYPE HELP.

7103,*
0..101
OK
RECALL NEWTON'S EQUATIONS

CC2310(S..'5C1PCC31*(r.TCONCI3
CCI1*(5...SE03)+CL21*(T...TC03)m.110)3

WHERE WE COMPUTE B(01.1)I1l BY THE RECURSION 1,4NJv44EN),.
Millwq3INIAM.13+SE03411BENJoBEI3*ACIJ+SCO)*BI14.13+Tt03*BII4.2) FOR

I041..2*****0. CEI3 AND cr23 ARE COMPUTED BY THE RECURSION

CEN3mBIN340CCW.1341BENs.13+SCO)*CIN30CCIPASE13+SC03*CC14.13+TIO)*C(I+2)
FOR ININ.s0i..0#1. PRESS (RETURN) WHEN READY TO COMPUTE 501A11[13,

C(1)9 AND CM.
0

BC43101

1
OK
BM*

0'.1104.18**

OK* 0C3316 R.

#199..36
TRY AGAIN OR TYPE HELP.

0199..36..181
OK* 01:2141..18.
BC 1]

020...164118..2*00 (-181
UNBALANCED PARENTHESIS OR BRACKETS
TYPE A CORRECT EXPRESSION'

#110m10411a*2*C-1/41)
OK. 8(13-58.
13(0)0

0200+16*58+(...181)*C...18)

2116



OK, DE0141(Wo
WE NOW HAVE III) VALUES FOh THE MCAT HAND SIDE OF NEWTOVS
EQUATIONS, NAMELY, -BC03-4102 AND ..13[132x^.5d0 WE MUST YET
COMPUTE THE VALUES OF THE PARTIALS oNAMELY, C(33, CC2]. AND CE13.
WRITE THE APPROPRIATE EXPRESSIONS OR VALUES FOR THE CCI3.
CC 43=

#0
TRY AWN OH TYPE HELP.

CCOL1
01
OK. CC4rA
CE33$1

OK. CL33164,
CC2lo

0..18+16*18'..18I
OK. C123m89
CCIJo
058+16)0391W4*16
OK. CC134#12360
WE NOW HAVE THE VALUES OF THE PARTIALS AND NEWTON'S k3.±0(TiONS ARE
CC23*(5SCO))+CC3)*(T.TC0))74.*DC13 OR 89*(S..18)+16*(T.01U1)o..58
CCI)*(S...SC03)+C[2]*(TTE0))o..EK03 OR ..123610(&..18)459*(T+181)04102
WRITE THE EQUATIONS OR VALUES FOR S AND T WHICH SATISFY THIS
SYSTEM.
5-

0

0

#(...58/644(T+141) )/H94.18
THE SOLUTION OF NEWTON'S EQUATIONS GIVES
SonSE034.(CC33*DC03...CE23*DEI3)/(CC23**2..CC1310C(3])
o184.(16*4102.89,058)/(89**21236)*16))o13+60470/27697 OR

$o .20183269E+02
PRESS (RETURN) TO CONTINTA.

To
OT(0141(3230A03...CC11*Dr13)/(C(13**2.CC23#033*Cte3)
THE roLuTtoN OF Nywnws EQUATIONS GIVES
ToTE0/4.(CE13*TA13(12344DE03)/(CE23**2CE1)*C(33)
o..1814.(.1236*S8..89414108)/27697m...181.436766/27697 OR

To ...19676943E+03
PRESS (RETURN) TO CONTINUE.

0
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THE IMPROVED VALUES e AND T ARE DENOTED HY (11 AND TC/3 AND THE
IMPROVED QUADRATIC FACTOR V;

X4(412( of:0143P0E+M)*44 .19676W0E+03
WE NOW REPEAT THE ITERATION YgITH THE NEW QUADRATIC FACTOR.
STEP 1. COMPUTE DIA:V-44047* HC31=(tC334.SCH7 *14,43*

DiI)ACI34.51At7 *HCI-4.1j+1EK1*DE14.23 FOk IN241,U.
STEP 2. COMPITE CE4imDC41, CCT.VAAA)+SCIO*CE43,

CCI1CI3+SCIti*CCI+13+TEKliq1CI4.2j 1-.OR 1=2,1.
STEP 3. SOLVE FOR !' A4D T IN NEWTON'S EQUATIONS

crtu*(:;-ait1)44;c3:1*(T-TrIco,,Hc1)
GC114,([;-alm-pcc23*(T-Tclinx-mcco

STEP 4. ET SE1 +13=So TE11+1FxT.
EACH TIME (RETURN) IS PRESSEN STEPS 1..4 WILL BE PE1ZYTHMED0'
TYPE 'STCP. WHEN YOU ARE SATISFIED WITH THE CONVERGENCE OF THE
QUADRATIC FACTOR X**2SCK7141XTEKis

I AFIj BEI] CCI]

4 .10000000E+01 .10000000E+01 .10000000E+01
3 ..*2000000(jE+02 *13395E+00 020366538E+02
2 1:W60000E+03 9W) 5309E+111 622022341E+ O3
1 .20000000E+02 .1U361563E+03 #540931d4E+03
0 ...20000000E+03 .72455131E+03

Km 2 SCIO .19968176E+02 TE1t100 ..019953118E+03
QUADRATIC FACTORIX**2.. .19968176E+02*X+ .19953118E+03

0

I AEI] nci3 curt

4 *10000000E+01 .100000om+01 .10000000E+01
3 ...200000U0E+00, ,19936352k+02
2 *19900000E+03 -'.1166649, 1E+01 .19139478F+04
3 .20000000E+02 30541433E+01 ,i33256013E+02
0 .rno20000000E+03 .9376694610011

Kim 3 Ulan .20000136E+02 TCH30 ..90000082E+03
QUADRATIC FACTORsX ** 2- .20000136E+02*Xv .000000860003

I ACI3 11rI] cc

4 *1900V0OPE+01 .1000(0.1001001 *10U0 001JE+Oi
3 ...20000Cd0E+02 013614701E..03 *2000140721' .,+UU

E .9i93W000E+03 ...99809303E+00 .19900926E+03
1 20000000E+02 .10773432E..01 ...1984771510012

0 ...20000000E+03 ...16510536000
Km 4 SC111 .20000000E+01 TC100 ..0200000001003
QUADRATIC FACTORmX**2 20000000E+02*X+ .20000020S+03

OSTOP
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ACCEPTING TUE LAST uflADVAT/C FACTOR AS AN EXACT DIVISOR OF P(X)s
THE ROOTS AltY,
R1=( .20000000X4,0SUET( 040000000E+03))/2 AND
R2=( .2000UOUVEak+SURT( 40000000E+03))/2.
PRESS (ItETORI) TO CO1TINuF.

THIS IS THE END OF LESSON 10.
DO Y U TO BEG/4 THE PROBLEM MODE?

0YES

PROBLEM MODE FOR L.ESSON 10

YOU MAY WORK A4Y PROMS SPECIFIED 14 THE STUDENT MANUAL 1;OR
LESSON 10 Oh YOU MAY 1E00EST THE COMPUTER TO GENERATE A PHOLEM
FOR YOU. IF YOu lAvE DIFFICULTY. SOME HEL )ILL Pr PROVIDEb.
FOR EACH PliOMEM, YOU MUST SPECIFY

(1) THE hECORAOM FORTMAS TO (MPUTE EACH BEI3 TO FINALLY
OBTAIN Hill BO))

(2) THE hEC7301 FRTiMAS TO COMPUTE EACH rot; I'1 TO :1W:
(DAMN CL 310 (:'CH3. AND Mil

C3) STAL'ANC '00.741 SEW AND T101 FOR THE IW/TIAL 0144'0.141Af4TE
UUAMATIG FACTOil tlit;ED OA A GIVEN APPROXIMATE GOMPLEX
BOOT 4.

THEREAFTER* MMIliTtiTUJI /! AUTOMATIC TO SOLVE NFWTON'S EQUATIONS
cr:044.!1-:;1'1u7 .tet 33*( T-TEK1).-HE 11
ccipc(-SCI(1)+CC23*(T-TCH3)10-BCO3

WITH SCK&'11u,';',* TEK+13-T.
YOUR ,KtODLLM SELECTION IS (1#3*EXTPA#N0NV?

#1

PROBLEM 1
P(X)wk**4+3*X**4.1 HA!; A WM/LEX 4,440 NEAO 4*O+11,6101, 41E THL
NEWTON-MAIRSTGW METH11) TO FIND A WIJADhAT/C FAtITrJR OF P4,X). THE

COEFFICIENTS OF P(X) ACIOnls AC3)1100 AC270130 ACI)00, A(03181
PRESS (RETURN) WHEN HEADY TO SPECIFY SC 03 AND TC03 ROM Tilt

INITIAL APPROXIMATE QUADRATIC FACTOR X**2..SCO3*XqC034)
0
SCO3N

#0
TC03*
02+56

TC0311"wZ*ZBAR EXPIIESSED AS A niAL NUMBER.
TCO)m
02456
DENOTE THE KTH APPROXIMATION TO THE QUADRATIC FACTOR BY
X44:44nSCK1t1XTCK3. DEFINE THE RECURSION FORMULAS FOR COMPUTING THE
BCU USING 5CK3 AND TCK3. PUSH (RETURN) WHEN READY.

0
BC41

01

BC33m
00

13CW.13 ACW.13.0SCIU*BEN3 IS THE SECOND RECURSION FORMULA,

OSCK]



BC21m
034,SCH10A3J+ITH1*Y041
BC 1'

OSCIWIDEP.14-ITIO*DC31
BC03.4
01+SE1(103C11+TC1(10A2CO3
DEFINE THE RECURSION FORMULAS FOR COMPUTING THE CM USING SEC
AND Mile WHEN READY, PUSH (RETURN).

CE4Jm
01

CEJin
0

013C41+SCH1*CL43
C(2)
OBC0+SE113*C1:314TCH3*CC41
C(11m
02C134.5(1(1*CCft1+TLIO*GE33
NEWTON"4 EQUATZOWS VOR /Milt1VED VALOE!-; SCK4.13.gS, TCH11:iml AMC

ec234(!;.,Vill)4.Q,33*(T-'TER) )w..1411)
CCIPFICC41H.M2PICTEK:1)***HEO]

EACH TIME URN) I!; PRESSED.. THE VALUES OF 2(11 AND crri AS
FUNCTIONS OF SEK1 AND T(1(3 (SPECIFIED ABOVE) WILL BE COMPUTED AND
IMPROVED VA'..UE!:, 5EK+13 AND 111(4.13 WILL BE COMPUTED AS THE
SOLUTION TO NEWTON'S EQUATIONS. WHEN YOU WISH TO TERMINATE THE
ITERATION, TYIJE 'STOP".

0

I AEI1 DCI] CCI)

4 410060000E+01 410000000E+01 .10000000E+01
3 O 00 04

2 .30000000E+01 .44000000E+06 ....21200040Z+O1

1 O. 6* O.

0 .10000000E+01 -.12640000E+00
Km 1 SCK3m 0. T(K)so **9619661616X+01
IMPROVED FACTORINX**2.( O. )*X+( 26196226E+01)

I ACI] 13CI3 CCI]

4 .10000o00E40 .l0000unolout .toommoloot
3 0.
2 30000000E+01
1 0.
0 10000000E+01 *35548594E...02

Kw 2 Mow O. 1110111 -..126180351E+01

IMPROVED FACTOR1UX**2 O. WO( .26180351E+01)

0* 0.

38037736E+00 ...261192453E+01
0. O.



Aill HCIl CCIJ

4 *100)00000E1-W .10000000L+01 .twoonoom.ol

3 O 0. 0.

2 *00000E+OI .111i44M400 22360701.4E+ OI

1 04 0. 0.
0 610000000E+01 052(4378E..05

Kw 3 51;a3u U.

IMPROVED FACTORmit**2

TEK3i, -.26180340E+01
( O. )*X+( .26100340E401)

0
I AEI:I

4 I 00140.000,6;+ 0 I I 00001/00E+ I .10000000E+01

3 0. tho O.

2 .300000WW401 *34196601E+00 .a.P2360600E+01

1 O. 0. O.

C) 0010000000E+01 .1250555BE.,11

Kw 4 SEM* 0.

IMPROVED FACTOliwK*442( O.

TEMP, ...26100340E+01
)*X4( .R6140340 401)

OSTOP
THIS IS THE END OF PROMEM I. SELECT A NSW PROLEM.

YOUR martam SEiECTfl I (1.2,3.EXTHAAIN03107

ONOMONE

YOU HAVE WI IIC::;

Cl) TYPE "1:LlOOFF" WHICH WILL SION YOU OFF THE CON?LrigRy,

CR) TYPE "%J '"--" WHERE IS THE UCTION NAME

OP IRE MATEU101, YO0 WISH TO STUUY*

CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST or

AVAILABLE SECTION NAMES.

OSLOOOFF
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PROD, tit) roE it L.E!,;`,M3

YOU MAY vriat A41 PROBLEM SPECIFIED IN TI-IE !AUDENT MANUAL. FOR
LESSON 3, :F You AVE SOME HELP WILL BE PROVIDED
THE lito$1.)1..; }iF RW;TATEIJ HERE ACCORDING TO THE NUMBER YOU
SELECT*
YOUR, t;ELEC 140.4 I r 1,* r4 04E)

#1
PROILEm 1, (cot) ix, xet, -1)
FIND THE fmAL141.;!,;T 140A LIVE 4.ER5) OF VC '1,-$ TAN(X) USING WNW*
ITERATION AM, AITIC;',Nw; DELTA- SCtiSAILEI) MIL A. 11 U WILL HAVE TO
SPECIFY

CA) AITKEN .!:.; DYJ. !,:r..MARED FORmuLA
or) 1:01VF,1L(;IA't I TERATI ON FUNCTION GlX)
Cr;) AN IN IF:la/AL ( A*11) 0'1 WHICH ABS( ) )4 I

WHEN Itfqiiit* 111.'1 OtiETURN )

0
STATE AITAP.N.:; A(; ,1:;ELERATION FOhMULA

iixEK-2)-1, (xLit-13-4M-tW12)/,,.CCIC:1-2,0411V-1)4XCH-23)
UNBALANCED ;11w4T1tEta!; VhACKETS
TYPE A CO4REv;T EXPREI

0)4(11-21-( (ACK- 1 1-XCH.-:-1) tp,)/i(EK3-244CK-1/4.KIK-23
WO. TRY ANAIN.

X,C11)m
OXEK-1-((4rR-11 4111- ) 1 ) 2)/(XEK3-k*ALK-1)0C(K-0))

OK
DEFINE Ta)-: ITE .1()N FOUCTI ).N1 IN TERMS Or X
GCK)*

0X+C TAN( )

DEFlux Tax INTERVAL (Asp)
Am

OASINC0H91
Bm

0AsINC,W)3,
DEFINE TW RIVA.I I

f;' C:)

01.4-(NEB NCX)t:t),
UNBALANCti PAIONTHEI;IS Oh iiitACKETS
TYPE A CORRECT EXPRF1074.

#1. 4-CSEc(4)tftLe'i
ABS( )1) Y0 1

YOU HAVE 4 CRO I CE!--i

( I ) CONTI N!IX PROBLEM ANYWAY
( 2) TRMINAT THE PROBLEM
l3) REDEFINE (ICA )
( 4) REDEFINE CA, 11)

YOUR CHOICE (12,3,4)?
#4
DEFINE THE INTERVAL (A, B)
A*

SASIN( .89125)
Bo
OASIN(.9492)
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DEFINE THE DERIVATIVE
GIOON
01.4(SEC(A),2)/5
CHOOSE A STARTING VALUE
XE Orta

OASINC.91t,14)
EACH TIME YOU PRESS (RETURN)* THE NEAT ITERATiON WILL BE PRINTED*
WHEN YOU WISH TO BEGIN THE ACCELEUAT/ONs TYPE 'AITKEN*/ AFTER
WHICH AITKEN'S FORMULA WILL. DE AUTOMATICALLY APPLIED AFTER EVERY

3RD ITERATION. TO TERMINATE THE ITERATON* TYPE 'STOP'.

K MK] V(1(3

0
0 .11500663E+01

1 .11631184E+01

0
2 .11652669E+01

3 .11655276E+01

0

4 *11655574E+01

OAITKEN
5 .11655611E+01 *11655612E+01

6 11655612E+01

7 *11655612E+01

8 *1,655612E+01 .11655512E+01

9 *11655612E+01

OSTOP
DO YOU WISH TO TRY A DIFFERENT X(037
'YEWS
XC0388
OASINC.59!3)
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O

0

Eiloti TIME YOU PRESS (RETURN)* THE NEXT ITERATION WILL UE PRINTED
WHEN YOU WISH TO BEGIN THE ACCELFRATION* TYPE 'AITKEN', AFTER
WHICH AITKEN'S FORMULA WILL 14E AUTOMATICALLY APPLIED AFTEn EVERY
3RD ITERATION TO TERMINATE THE ITERATION* TYPE 'STOP'.

'an

0 elt0Wit043E+01

1 0114713S4E+01

2 *116R50IHE+01

X'CK)

OAI TKEN
3 01655184E+01 *11655651E+01

4 *11655651E+01

0

5 *11655616E+01

0

6 *1165561 .).:+01

7 *1165!i612E+01

*11655612E+01

OSTOP
DO YOU WISH TO TRY A DIFFERENT XC03?

ONO
DO YOU WISH TO DEFINE, A DIFFERFNT G(X)7

ONO
CHOOSE ANOTHER PRODLEM*
YOUR SELECTION IS (1.**NONX)

02
PHC1131.101 ;'_! CeY Pit0 14. Etol tir, ri SON
FIND THE POSITIVE 4ERO P OF FOOA*P-4+03*SYN(X) USING LINEAR
ITERATION (J)) AITKEN'S DELTA-.'SWAHFD PROCESS* YOU WILL HAVE TO
SPECIFY

(A) AITKEN'S DELTA-.SUUARED FORMULA
(fl) A CONVERGENT ITERATION FUNCTION (UX)
(C) AN INTERVAL (A, R) IN WHICH ABS(G"(X))41

WHEN READY* l'USH (RETURN)*
0
STATE AITKEN'S ACCELERATION FORMULA
XICK3a
OXCK.23'..((XXOCK...13*XCK23)12)/(XCK32*XCK..1)+XEY.'2])
OK
DEFINE THE ITERATION FUNCTION IN TERMS OF X
O(X).1

0X+(.7-X+.3*SIN(X))/7
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DEFINE THE INTERVAL C A.13)
A=

# 5
B=

#1 6 !:4
DEFINE THE DER.' IJA.T1

1+(-1+.3*COSCX) )/7
C1100 !All A STARTING VALUE
XC 03:4

0
#1

EACH TIME YOr1 PREFtli RETURN `WI' .VEX T 1 TElatTI ON WILL BE PRINTED*

WHEN YOU WI SU `11) BEGIN THE ACCELERATION. TYPE 'AI THEW* AFTER
WHICH AI TKEN L; FORMULA WILL BE ATJTOMATI CALLY APPLIED AFTER EVERY

3R1) I TERATION. TO

XE

0 .1 0000 oE+o1

TERMINATE THE I TEHATI ON. TYPE 'STOP**

X 11K1

1 993'ai.) 9OF:4 0

0
2 .98722483E+00

0
3 98 1 95647E+00

fAl TKEN
4 9 7322829E+00 9 429 5468E+00

5 *94295468E+00

0

6 94:293104E+1)0

7 .94291010E +00 *94275375E+00

8 9412 75375E+00

9 911275375E..00

I
10 942 753 75E+00 9 42 7537,F)E+ 00

11 94275375E+00

/STOP



DO YOU WISH TO TRY A DIFFERENT )(CCU?
ONO
DO YOU WISH TO DEFINE A DIFFERENT G(X)?

OYES
DEFINE THE ITERATION FUNCTION IN TERMS OF X

(3 (X)=

0X+C.7.)C.0.3*SIN(X))/20
DEFINE THE INTERVAL (A,13)
Am
#.5
8=
01.5
DEFINE THE DERIVATIVE
G'(X)=

014.(-.14..3*COS(X))/20
CHOOSE A STARTING VALUE
X(Olu
#1
EACH TIME YOU PRESS CIE THE NEXT ITERATION WILL DE PRINTED.
WHEN YOU WISH TO BEGIN THE ACCELERATION. TYPE sAiTKEN'''AFTER
WHICH AITKEN'S FORMULA WILL DE AUTOMATICALLY APPLIED AFTER EVERY

3RD ITERATION. TO TERMINATE THE ITERATION. TYPE 'STOP'.

0

0

1

0
2

'AITKEN
3

4

.10000000E+01

.9976KtO6E+00

99534372E+00

.99106903E+00

.94314775E+00

X1C143

.9434775E+00

MOP
DO YOU WISH TO TRY A DIFFERENT XCO)?

ONO
DO YOU WISH TO DEFINE A DIFFERENT G(X)?

ONO
CHOOSE ANOTHER PR(ThLEM.
YOUR SELECTION IS (1.2*NONE)
ONONE

YOU HAVE TWO CHOICES

(1) TYPE "SLO(3OFF" WHICH WILL SIGN YOU OFF THE COMPUTER.
C2) TYPE "%LESSON. " WHERE IS THE SECTION NAME

OF THE MATERIAL YOU WISH TO STUDY.

CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF
AVAILABLE SECTION NAMES.

256
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PROBLEM mom.; AFID INVE(1TI GATION MODE FOR LESSLIN U !

YOU MAY DEFINE YOUR OWN MATRIX OR liF,QUEST 06IE FSI1M THE COMPUTER*
FOR EACH PIDDLE1 * YOU MUST

Cl) SPECIFY THE OF 1HE r4ATI/IX c 3. OH 4i.
(2) IZE ralTiSS I AN MIN/NATION WI TH PI VOTIMO TO REDUCE TH'I:

AIMMEN TED MATRIX TO 11/1 AN GUL Wit FORM*
C 3) COMPUTE !JET( A). AND
( 4) U711.; SUBSTI TUTION TO COMPUTE Bet INVERSE OF A.

YOU Milf TY1E "STOP" AT ANY TIME TO TERMINATE A PROBLEM
PHEW', C RETURN) WHEN READY'

0
PROBLEM 1.
SELECT THE SIZE OF MATRIX FOR THIS PROBLEM 2. 34 4*NONE).
Nog

04
DO YOd WISH TO DEFINE YOUR OWN MATRIX?

OYES
DEFIfIr, THE ELEMENTS OF YOUR MATRIX ROW-WIS.
AC 1*

02
AC 1, 23$*

0. I
AC I* 3348

00
AC I* 4)-

#0
AC2, 13-

0. 1
AC2a2lte

#2
AC Pa 4)4

AC2, 4i to

00
AC3, )]-

'0
AC 3* --jAi

0-1
AC 3, :nos

02
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AC 3P 04

01
AC 14/, 13

00
AC4323m

00
AC 33P,

01
AC4,43*1

02
THE C-MTHIX I

.2001000000E+01 -.1000000000E+01 0, 0.

-.1000000000E+01 02,000000000E+ 0i -10000000U0+01 00

0, -.10u0000000E+01 ifWOUU00000E+01 .100000000:0(a1
U. (,) 4/0000000U0E+01 02000G0000011+01

AUGMENTED BY THE IDENTITY MATUIZ,.
PERFORM GAUSSIAN OAM/NATION WITH IATERCHANGE BY Si'ECIFYIN0 THE
OPERATIONS (1) INTEWHANGE CROW /) WI Ti! CROW

(2) REPLACE (H0W J) BY M*(ROW I)+CROW J)

AND SUPPLYING THE APPROPRIATE VALUES OF Is J, AND N.

SPECIFY OPERATION 41,2).
OR
IN

01
,Jas

02
M-

0

0CC2o13/CCIAll
ROW OPERATION COMPLETE
THE CURRENT C-MATRIX I
ROW 1
.2000000000E+01 '.1000000000E+01 O. 0.

.1000000000E+01 06 P 0.

ROW e
0. .15000000U0E+01 ....1000000000E+01 Ue

.S000000000E+00 .1000000000E+01 O. 0.

ROW 3
0. .1000000000C+01 .2000000000E+01 ^0100000000(04401
O. O. .1000000000E+01 O.

ROW 4
0. 00 ...1000000000E+01 4400000000001
O. O. O. 1000000000E+01
SPECIFY OPERATION (1.2).

02
In

O

('3
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M=
0.CE3021/CE21A
ROW OPERATION COMPLETE
THE (MRRENT C-NATRIX
ROW 1
.2000000000E+01 -.1000000000E+01
.1000000000E+01 O.

ROW r!
0. .1500000000E+01
.5000000(00E+00 .1000000000E+01

0.

O.

....10000000001;+01
0.

0.
0.

O.

U.
ROW 3
O. 0. .1333333233E+01 -*1000000600E+01

3333333.:',33E+00 6(46666661E+00 00000000UE+ 1)
ROW 4
0. 0. -. 1000000000E +01 .2000000000E+01
0. 0. 0. 1000000000E +01
SPECIFY OPERATION C1,2).

Im
03
Jm
04
Mm
0-.CE4,03/C13,33
ROW OPERATION COMI'LET
THE GIIHRENT C-MWCRIA
ROW 1
.2000000000E+01 -.1 00000000E+01 U. 0.
.1000000000E+01 0. U. tye

ROW
0 01500000000E+01 -.0000000000E+01 O.
.5000000000E+00 .1000000000E+01 O. U.

ROW 3
0. O. .1333333333E+01 -,10000000U0 k+01
.3333333333E+00 .6666666667E+00 .1000000000E+01

ROW 4
0. 0. .1250000000E+01

`'5001, 00000E .5000(j0060UX+00 v7500000000E+00 .1000000000E+01
WRITE A NUMBER OA EXPRICiSION FOR DETCA).
DETCA)In

Oc(1.1)*C[242] *M3,3)*CC4,4]
DO YOU WANT TO SOLVE FOR THE INVERSE MATRIX B?

OYES



USE B1 .5UTZTI TUMMY TO 1;01.VE FOi't THE INIVEICSE B IRI THE SYSTEM
CC 1* 15 Cr 1.23 CC I. 3) CC 1.43 BC 1.13 110 1.21 BC I, 3) BC 1.413

O CM. 23 CC 2. 3) CC 2. 43 X BC 2, 1) 13C 2.23 BC 2. 33 BC 2.43
O U cr 3, 33 CC 3. 43 13C 3. 13 BE 3. 2) BC 3. 33 BE 3. 43
O Ct: 4. 43 TIC 4, 1) BC 4. 23 BC 4. 3) BC 4. 43

CE 1,« CC 1.01,1 73 CC 1.63
CC2a, 51 CEfta (32" 71 CE2.410
GC 3. 53 CC 3. 63 CC 3. 73 CC 3.83
CC 4. 53 CC 4. 63 CC 4. 73 CC 4.83

RETURN) WHEN READY TO GIVE EXPRESSIONS FOR THE BC 1.00

BC 4. 13*

MCC 4* 43/C r: lig 53
NO TIC( A GA I 11

BC 4.13N

#CE 4. 53/Cr
OK. 13( 4p 1:3 w. OW100000000E+00
BE 3. 1)a

OCCC3. 53
OK. BC 31# 1
BC 2.13s

3. 4)*BC4.01))/CE 3. 33
400000000000E+00

'CCM. 53.CC 2243*BC 421310-.CC 2a 334013C 3. 13)/CER. 23
OK. Mei 13 s . 600000000000E+00
BC 1. 131*

OCCCI. 53 CLL. 41 RIO*BC 4, 331013( 3. 13 -CC 1. 23*BC 2. 11 )/1
'CC 1.11
OK. 8r. 1. 13- 200000000000E+00
BC 4. 210

/ICC 4. 63'x14. 43
OK. !X 4
BC 3. 21-

400000000000E+00

/CC:( 3. 63.-CE 3s 43*BC 4. 23)/a 3. 31
OK. DC 3 fall* 800000000000E+ 00
BC 2. 23111

OCCZ 2. 5063CC 2. 43*BC 4r 23-CE 2. 11*BC 3. 23)/CC 2.2]
OK. BC 2. 23s 1 e000000000moi
BE 1r 23m

OCCE 1. 611...CC1,. 43 *BC 4. 1. 33*BC 3, 23a10..CC 1. 23*BC 2, 2] )/CC 1. 13
OK. 13C 1s 600000000000E+00
BC 4, 33

ACC 4* 73/CC 4. 4]
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OK. HE 4,11,--; 6(1 )0000 00
BC 3,13,,4

0(CE 32 71-CE 3, 4:14413E 4.31 )/( 3. 33
0K, !vit M0000000E+01
nr 33r4

IC GC:!* /11 4. I ...(;L #41`,4, 31-a V., f,1,1*HL G. 33)/1

MC CC fts 73-Cr f', 41403E 4, :1 -CE 33*HC 1. 31)/CE .,t 2]
NO. THY (*AL

BC Pa 11 4

/(CG P,, 11, ko 33*33E 3. 33 )/CC
OK. liE f-ta 60000000000E+
BL 1, 33.1

#(CC 1, 71-.CL 1, /)54-HCIII 33-CC 1, 31441C 3. 33.-CC 1. 23,013C 2, 31) /CC 1. 1
OK. HE Is 33r, 40000000000014:+ 00
BC 4, 43=

ICE 4,81/CE 4. 41
OK. HE 4. 414 M )000 0 00E+00
BC 3,, 414

0(Cr le 1'13-CE 3, 41*HE /1. 43 )/CE 3 3<fri
OK HE 3, 43:1 f )0000000000E+
13C?, 41=

ii1*H1 iii-CL!:?.P 31 *HC :!'), 41)/CE'il, 2)01
01( /WI 1i0000000014P*:+110
BC 1, 43z!

1PC t;C 1.113-4,:t 1, 4):404L ###14, 33
0CE 1.11
OK. IA 1, 43= f'.:00000000000E+ OU

3, 43-.CE 111141 L 2, 41 1/1

MULTI 1 LYDIG 13* its WE aU3UI,D C1ET THE I Dr4 T I '1t MAT1tI ACTUALLY. Pi,
1000000000E+01 0. U. U.

0. 1 000000000Ev o U.
0. 0. 00000n000E+ U.
0. o 0. 1 000000000E+ 01

PROHLM
SEL);;GT THE ZE OF MATRIX FOR 111 I S PROBLEM (2.3, 4sNONE )
Na

0NONE

YOU HAVE TWO CHOICES

( I ) TYPE "t LO (AO FF" Wit I GH WILL SI 64 YOU OFF THE COMPUTEh.
C ;) TYPE "SLESSON/ WHERE I S THE SEC TI 01 NAME

OF THE MATFid AL YOU WI SH TO STUDY.

CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF
AVAILABLE SECTION NAMES.

SLOGOFF
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LESSON 19 liF,10: INTEGRATION
0
I. INTIO Mc /

PRESS RETURN) TO BEGIN.

RECALL TM; A'RtiPF40 I HAL woo.: H)le, A:'PliOZ,IMATING 1HE DEFINI TE
INTEGPAL I (1.'(1. ); A, ).-21 C Ft-C ) ) AS

********************so44***********40.*****************************

FC G1+:144( FL 1 .+Fr1-13)+1.4N1
WITH THE ERROR GIVEN AS

E(H)=-CH-A)*(Ht 2)*E"(Z )/12 WHERE AniXE 014XEN)1413.

******************************************************************

PRESS RETURN ) WHEN 1;;A1)Y.

THE PURPOSE OF S LESSON WILL. HE i UOW THAT FOR W Sljb VISIONS
OF THE INTERVAL CAsHis WE MAY WRITE. Pik TaE APPROXIMATiON To TR?
EXPRESSION

(1) TOE 01 FC ))41;*(O1 +0(U, ) %MERE A IS A CONSUNT
ONCE WE ESTADL I ( 1)h WE CM USE *00 suri,zv1 i L REPLACE
H BY 11/2 TO ()MAIN YET ANOTHER APPROXIMATION.

(2) WC Ijk*I(F(X))+A*(Ht 2)/4+((Ht 4).
WE THEN EXTRAPOLATE TO OBTAIN THE O( Ht 4)-APPROXIMATION

( 3) TIE 1110(M*TOC13..TOCO3)/(M-.1)11(FCX))+OZHt 4).
WHAT VALUE OF M IS NF,r!)ED.
Mss

#4
OK
AL THOUGH 'IHE DEV).1..01.MEN T OF C 1, 1 S SOMEWHAT COMM' CATE!), THE
STUDENT WILL lt) WELL TO THOOUNILY TJDERSTAND THE DEVEL01+11211T IN
ORDER TO GA7N A DEEPER INS, (MT INTO VIE CONCEPT OF EXTRAPOLATION.
PRESS (RETURN) TO COI TINUE.

0

0
2. DASIC FFERFNTZ ATI ON FORMULAS

IN DEVELOPING EWIAIWN ( 1) 9F THE PPEUIMIS SEC TI fr,lo VE WILL USE
THE NUMERICAL DI FFF:RFA TI ATM:1 KIRWILAS Olt F (X1:0)) j Eli( XE 03). AND
En' ( X( ) GI TAN HY

(1) F'1113z1(FE 11-16:01 )/U-(11/V)*E"CO3..11t 2Porsel: W6+00113)
(2) E"COPI(F[;(13.-n*FE 1 1+FE 0))/(Ht 2)-H*F"C 03+0(Htii)
(3) FCOPs(F133--.3*FE 2)+3*FC 11-Ft 03 )/(Ht 3)*OCH)

JILL DERIVE TUF, FOPMULAS BY SIMPLE TAYLOR SERIES.
PRESS C itE:1U10) WHEN READY.

0
EXPANDING AqOUT XEO 1.*

F(X)niq 01+F 'E 03*(X,..Xr, 01)+F"E 01,01( tX..4C )t 2)12
+10"E 01*( 01)t 3)/(J+F""(4 )*4 (X4L(41 )t 4)/k4

WHERE )(C ()3<Z<XE 1 3 EVALUATING AT XeXC 13 VES
(A) Ft 1310FE03+F'CO3g1H+F"C0:144(Ht2)/2+F"'CO)*(Ht 3)/6+0(Ht.4)

WHICH DIFFERENTIATION FORMULA IS DERIVED DIRECTLY FROM (A)
( 1.29 3.NONE)?

01



OK
EVAL.UATINt4 TM.; TAYLOR EXPANSICiii AT X.IXE 23 YI MPS

(B) FCP1,41.'t 0:14.F.0 03*( 2*H)+F"C 03*( 44gHt 2)/2+F"C 0*(8*M 3)6414104H1 4)
41:0i+FC 0341( 241H)+F"C 03 *( 2*Ht 2)+F"( O3 *( 4*Ht 3)/3+0(1$1 4)

WHICH FORW,ILA 1 L; DEM VED HECTLY FROM 9)
(1.2.3*NORE)1

02
NO. TitY AnAtN DON T GUESS.

(1. 2* 3.11014E) ?
ONONE

OK. WE NEED MOUE INFORMATION..
SUPPOSE WE EVALUATE THE TAYLOR EXPANSION AT XN.XE 03. WE OBTAIN
THE 1 OE IT1 TY

(C) FC01aFE
WE CAN 013TAIN DI FFERENTIATION FORMULA 8 BY FORNING

(M1*EGIUATION (B) M2*EQUATION(A) M3*EGUATION(C))1(H2O)
DEFINE THE NUMERIC VALUES FOR MA* M2* AND M3.
MI"

01
OK
M2m

OK
M3
#1

OK
NEXT* WE EVALUATE THE TAVLOIt LURHULA AT XE33 IU TAIN

CD) FE31-Kgq+FsE03*(3*H)+FuE01,0( *Ion),0
FF"CO3*(27*H13)/64.0(WW0

WE CAN OBTAIN DIFFERENTIATION FORMULA 3 BY FORMING
011.11EO(A)+M2*EQ(B)+M3*EQ(C)+M4*EU(0))/H13.

DEFINE THE NUMERIC VALUES FOR MI.MR.M3* AND M4.
Mlt

03
OK
M201

OK
M30

01
OK
Main

01
OK
WE NOW HAVE -3*EQ(A)4.3*EG(B)EO(C)+2Q(D), DivIO/No BY 103
GIVES DIFFERFNTION FORMULA 3. THE MEE DIFFERENTIATION FORMULAS
WILL BE USED IN APPROXIMATING THE INTEGRAL. PRESS (RETURN).
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3. W,WRAL FORMULATION OF THE TRAPEZOIDAL RULE

RECALL THAT OUR OBJECTIVE IS TO ESTABLISH THE GENERAL TRAPEZOIDAL
RULE

****************** * ************ *******************************

TOCUAI(F(X))44i4ark+O(fiv4
WHERE A IS COASTANT ANB T0001 IS COMPUTED BY

CH/0*(yE0ji.*CFC13+FER1+000+FLN-1))+114]).

************.****44*********** 44** 44**********************************

WE BEGIN BY INTEGRATING THE TAYLOR FORMULA
F(X)FLOWZ-4103)*F'CO)4((AKCO3)t2)*F"E03/k

4.((4/E(J7)13)*F"(03/6+CCZ-4E03)14)*F""(Z)/24.
THIS GIVES

IlF(Z);CKC0].XCI73)=A*FC011+B*F'CO3+G*F"C01+D*F"CO)+E*F"CW)
DEFINE As Ds C, DO AND E IN TERMS OF .H
Am
OH
OK
By=

OH12/2
03 !:,0 B12(112)/2.
Cm
#(Ht3)/6
CK
Dm

#(14v4)/ 4
OK
FORMING THE INTEGRAL OF THE LAST TERM, WE NOTE THAT C(X.P.KCO3)14)
'O ES NOT CHANGE SIGN ON THE INTERVAL DCCO3sKE133d. SO WE MAY
WRITE I(CXXC01)*4*F"(Z)/24.10CCO),XE133)

=(F"(W)/2/0*ICCX-KCO3)14)1LX(0),XCI33).

O(HtW1P.0
OK
SOs ICFCX)J00:01sXr111)=

mH*F(014,(Ht:-.0*FCO3/24.(11e3)*F"E03/64,,CHv4)*F"EOL0L44.0CHtOs
WE NOW REPLACE Fir,03 -.1Y THE IST DIFFERENTIATION FORMULA

Fq03CFC11FE07)/H-M/2)*F"C0i-CHta*F"E03/64.0(813)
TO OBTAIN ICF(X);EXEUisACI3j)

mil*FC034,(CHt:1)/2)*(CFC13..FC03)/H-CH/2)*F"CO3..(Ht2)*F"q01/6)
4.(14t3)*F"E03/6+CHt4)*F"CO3/24+0(Ht5)

NI(K/2)*(FC03+FE11)-(Ht3)*F"(03/12CHt4)*F"C0)/24+0(Ht5)
PRESS (RETURN).



265

IN THE LAST FORMULA, REPLACE F "C 03 BY THE PAD Iii FFERENTI AVON
FORMULA F"C01:-:(FEn3-k*FC13.41q0J)/(1/,1) .11*F"ecol+OCH,2) TO OBTAIN
IC FIX); CAC CLIAC 133 )

(A) (H/f)*( FE 01+Fc 117,(H/fi4)*( FL itlit*FE 11441:
+(Hi 4)*F",i oj/1t1÷0(ilt i)

(ID (1 i/f4)4(Fcoi+Fr, )(H/1f941( PE k3-24,FC 13+1.0
+(f114)*F"quve2omi

(11/2)44( Ft co+Fc w-cano FC23-2*FC li*FC 03 )
+cHt 4)*F"'E 03/24+0(-1,5)

CUURECT A4W1.11 IS (A,B,C,NONYO?
#13

REPLACE F"' C 03 IN ( B) BY DI VFEREN TI ATI ON FORMULA (
F"*E 03=( FE 3:1- 3*FE 1cl J+3*FE 13-FE 03 )/(11, 3)+O(H) OBTAIN

ICF(X)3EXE 03,XE 133)-41
(A) (1i/8)*( FE U3+1.1 13 )-(t1/12)*(FC:4-1-2*FE 13+14101)

(11/12)*(FC33-344FE 21+3*FC 1,1-FE )44-Mit t))
(B) CH/ ft)*( 03+FE 13 )-(H/ 1P,)*( FE 81-P*FE 13+FE )

-(11/24)*( FC 3) 3*FC 23+34FE 13-FE 03 )+(I(Ht
CC) Of/ 2)*( FE 03+FE 114Zii/12)*C FE 23- 24cFC 13+FE 03)

+CH/24)*(FC 33- 3CPC 23+3*FC13'..FC 03)+0(Ht
CORRECT ANSWER IS (A,B,C,NONE)?
MC

OK
FOR THE GENERAL , WE HAVE
1(FIX);EXE,t3AXE1+1:1)

actl/14,)*CFC13+14.I+13)-(11/12)*CFE1+21-24iFE1+13+FE /3)
f(H/w1)*(FEI+33-3*FLI+23+3*FE/4.13-FE13)4.0(Ht5)

AND I(F(X);EA)113)t2I(F(X)JEXE 03,0XEN33 )31
(11/2)*SUMFC13+FEI+1))-(11/12)*SUNtFEI+21-2*FL/+13+FE13)
+(1/211)*SMFEI+33-asen14.350FEZI,IJFE13)+!.$1101(0:HT 5) )
WHERE SUM GIES OVER Ig40,(00i,N...1. PRESS (PETUH) WHEN READY.

WE limo nil /1,E SUM( FC I 3+ FC 1+13 ) AS THE THANF:2OI DAL APPROXIMATION
F(1)+2*(FE21+...+FEN-13)+Fm.

ALSO* THE LAST SUM*
SUM( 0(1.14 5) )=N1*( 0 Mt )w( (Ii-A)/11)*001, 0100( WHAT? )

CO 4
OK
IN T%U.t", E FOli TIE APPROPRIATE VAL ILJE:-,4 OF I Wit' TE AS A
FOUR TERM EK1410:,!i51 ON
SUM( FE 1+1-,9- _t4clet 1+13+1;1'1 ):3

OFEN+13-FLN3-FE 11 +FE 63
OK. SUM(FEI+23-2*FC I+11+FER3)3IFC 03-FL 13+P;N+13-FEN3.
USX NE1 SIX T14_,IiIv1S,
SUMCFC I+33-.3*FE I+2)+3*FC /4.13-FE /3)a

OFEN+23+0.-2*FEN+13+FEN3-1:123+2*FC 20213-FC 01
OK



WE NOW HAVE I(F(X)JCA,133).3
(FC074.2*(FC13+...+FCN...13)+FIN3).(H/12)*(FE03..FE13+FCN+1]...FCN])

4.(H/24)*(FCN+23...2*FEN+1)+FEN3*.FC23+2*F(1]..F(0))+0111 14).
USING DIFFERENT/ATM FORMULAS 1 AND 2 OF SECTION 2,

FC03°FC13-11*FIC03.qHf2)*F"E03/24.0(H13)
FEN+13°FENJL,A*F'EN34.(Hir2)*F"EN3/2+0(Ht3)
F(21...d.*FC13+FC03:2(Ht2)*F"L03+(Ht3)*F"E014.0(Ht4)
FCN+23.-2*FCN+134.FCN3=(Ht2)*F"EN)+(H13)*F"EN34.00114)

MAKING THESE SUBSTITUTIONS AND COLLECTING TERMS,
I(F(X)JCA,B1)2:
(A) CH/2)*SUM(FC134.FC14.1.114.0(e04)
(B) (H/2)*SUM(FC1)+FCI4.13)»(Kt2)*(F.CN)..Fq0))/12+0CHI4)
(C) (H/2)*SUM(FCI)+FC14.13)..(Ht2)*(F'EN]Fq0))/12

4.(Ht3)*(F"CN)..F"CO))/12 4(Ht4)
CORRECT ANSWER Io (A,B,C)?

0
#A

SINCE THE TRAPELO/jAL RULE IS AN 0(Ht2)-APPROXIMATION TO THE
INTEGRAL* WE KNOW (A) IS WRONG. SEE LESSON 18.

CORRE',T ANSWER IS (A,B,C)?
#13

OK
THIS ESTABLISHES THE BASIC FORMULA FOR THE TRAPEZOIDAL RULE.

0

*******************************4**********************************

TOCO3I(F174);CA,131)-(Htf4,) *(F.M3-0F°CO3)+OCH14)

****************************************************************44

WHERE THE COMPUTATION IS TUCO1RFC034.241CFC13+...+FEN4.13)+FEN3.
SINCE XE03=A AND XCN]i3 REGARDLESS OF THE NUMBER OF SUBDIVISIONS
N* WE HAVE F.CN3.F.0O3=C IS CONSTANT.
PRESS (RETURN y WHEN READY.

4. ROMBERG INTEGRATION SIMPLE EXTRAPOLATION

WE HAVE FOR N SUBDIVISIONS OF THE INTERVAL CA*B3*
(A) TOLO3NI+C*(Ht2)4.0(HT4)

AND FOR 2*N SUBDIVISIONS* (I.E. REPLACE H BY H/2),
(B) TOE1524I+C*(Ht2)/4+0(Ht4';

IN TERMS OF TUC O] AND TO(13, WRITE ANI 0(Kt4) APPROXIMATION TO I
TIU1=Y+O(Ht4)L1

04*TC03-.TOC,13
TRY' AGAIN OH TYPE HELP.

TlEljt0I+O(H14)-4,
#(4*TOC13-TC#OCO))/3
OK
EXAMPLE 4A. SUPPOSE WE WISH TO APPROXIMATE I(I/X3C1,23).
FOR Hm45, WE HAVE XE03.F(0))=(1,1)* (XE13*FC1])(1.5.2/3), AND
(XC2J,FC23).(2.03.5). WHITE THE 0(Ht2)...TRAPEZOIDAL APPROXIMATION
TO(C7,

0.25*(1+4/34..5)

266
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OK
T0(03= 706333333333329E+00
IN ORDER TO FORM TIC03, WE USE 4 SUBDIt'ASIONS WITH H REPLACED BY
(H/2).-r.25. THIS YIELDS THE NUMERIC VALi:SS
XE01=

#1
OK
XC33n
#2/3

TRY AGAIN.
XC33=
#1.5

X03] =1. i5
FC13=

#.8
OK
WRIT% THE 0(Hr2)-TRAPEZOIDAL RULE
TO(13=

0.125*(14.2*(1/1.54.1/1.54.V1.75)+.5)
OK
TOE13%4 .697023809523799E+00
USE OMPLE EXTRAPOLATION AND WRITE TiA O(Ht4).APPROXIMATION*
T1E13.7-,

#(4*.697023609523799 .708333333333329)/3
OK
T1 C13= .693253966 53956E+O0

5. ROMBERG INTEGRATION - REPEATED MTRAPOLATION

WITH A LITTLE TIME AND EFFORT, WE COULD HAVE CARRIED MORE TERM) IN

OUR TAYLOR EXPANSION TO CHTAIN
(A) T00O3=I+C1*(Ht2)+C2*(Ht4 +0(Ht6) WITH Cl AND CR CONSTANT.

REPLACIVE7 H BY U /2. WE OBTAIN TCCONX4-nl*(Ht2)+D2*(Ht4)41(Ht6/
IN TEEMS OF CI AND C2,
DI=

#C1/4
D2z,

#C2/16
OK

(B) TOC13,4I+C1*(1-112)/40.C241.(11t4)/16+0(H,6)
REPLACING H BY H/4 IN (A), TO(231,11+E1 *H124E2*H*44.0(Ht6).

IN TERMS OF Cl AND C2.
E1*z

#C1 /16
OK
E2-

MC2/54006400256
OX

(C) TOC230I+C1*(Ht2)/16+CB*CHt4)/256+0(HIS)
WE NOW USE SIMPLE EXTRAPOLATION ON CA) AND CD) TO OBTAIN THE

OCHIA)APPROXIMATION TICI]m(441T0(1)-T00O3)/3+,1*(M14)+0(Ht6)
Fl
l.C2/4
0...3*C2/4
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TRY AGAIN.
Fl=
#C2/4
OK
USE SIMPLE EXTRAPOLATION (B) AND (C) TO OBTAIN ANOTHER
0(Ht4)APPROXIMATION T1C23=(4*T0E23TOC13)/3=0.F2*(Ht4)+0(Ht6).
F2=
0C2/64
OK
WE NOW HAVE THE TWO 0(Ht4)APPROXIMATIONS

CD) T1C1:01(H,4)*C2/4+0(H16)
(E) T1C23-4(Ht4)*C2/64+0(H16)

BY SIMPLE EXTRAPOLATION ON (D) AND (E)* WE HAVE FOR THE PROPER N,
(F) T2C2311(M*T1C23T1C13)/(MOn1+0(Ht6)

Mu
016
OK
EXAMPLE SA. IN EXAMPLE 4A* WE WANTED TO APPROXIMATE
1(1/XJEL.23) AND WE CALCULATED FOR FOR HuoSs NO2

TOCO)a *706333333333329E+00
TOC13- .697023609523802E+00 `11C 13= *69325396625390E+00
FOR 4*N* H/4, CALCULATE
TOC23n

0062S*f1+2*(1/1125+1/1 25+1/1. 375+1/15+1/1.625+1/1 75+1

#1/1.675)+.5)
OK
TOE23w .69411650371640E+00
PERFORM THE EXTRAPOLATIONS
NOTE THAT T1C13 WAS COMPUTED IN EXAMPLE 4A.

T1E23-
,(4*TOC23TOC13)/3
OK
T1C23= .693154530654514E+00
T2EB3log

0(16*T1E23T1L1))/15
OK
T2E 33= .693147901481215E+00

6 ROMBERG INTEGRATION EXTRAPOLATION TO THE LIMIT

FORM THE FOLLOWING TABLE OF VALUES
TO[ 03
TOC13 T1C13
TOE 23 T1C23 T2C23

6

TOCK3 `TICK) T2CK) TKCK1
WHERE TOCI3 IS THE TRAPEZOIDAL APPROXIMATION WITH (I+1)*(4
SUBDIVISIONS AND SPACING H/(21/). TlEI3 ARE 1ST EXTRAPOLATIONS
WITH MULTIPLJER Ma4, T2C13 ARE 2ND EXTRAPOLATIONS WITH Mm4t2. AND
TJCI3 ARE JTH EXTRAPOLATIONS USING MulitJ. PRESS (RETURN).

0
THIS IS THE END OF LESSON 19.
DO YOU WISH TO BEGIN THE PROBLEM MODE?
OYES



PROBLEM MODE FOIL LESS1J4

FOR EACH PROBLEM, YOU MUST DEFINE THE TRAPEZOIDAL FORMULAS FOR THE
SPECIFIED VALUES OF N AND THE FORMULAS FOP EXTRAPOLATION TO THE
LIMIT. IOU MAY TERM I NATE A PROM EM ANYTIME BY TYPING STOP°

YOUR PROBLEM SELECTION I (1,2,104E)?
02
PROBLEM 2. WE WISH TO USE ROMBERG INTEGRATION TO APPROXIMATE
I(LN(X);(1,33; USING N=1.2.04, AND 8.

I XC 13 FC 13

0 1.O() 0)

1 1.25 223143551 i14203E.4.00
2 1. 50 4054651 (ii 104153E+00

3 1.75 559615747935410E+00
4 2.00 .693147140559929E+00
5 2.25 .d109302162 /6310E+00
6 2.50 .916290731474131E+00
7 2.75 10116009116/445E+01
8 3.00 $109461228866408E+01
WHITE THE EXPRESS! °VS FOR THE TRAPEZO I DAL RULES USING THE TABLE.

FOR Nia I a TOE 03=

Og
0FC83+FC

T0003A 01094 )1224466804E+0i
FOR N.2, TOI 13m

04,5'4( 2*FC 434.FC6))
OK. TUC 13= .124245332489397E+01
FOR N=4, TOCk]kx
025*( 2*( 2)+FC 43+FE (j )4'1.181 )

OK. TOC 23= 6128 210456243812E+01
FOR Maids TOE 33=

#8125*( 2*(FC 234+C 13+FC 33+FC 43+H 53+FE 63+F( 73 )1 FC83)0000.0+F(8])
OK. TOE 3) 129837490800514E+01
DEFINE THE r;')-APPROXIMAT/ONS
T1C 13u

( 4*TOC13.-TOC 0) )/3
OK. TI C 13= :29040033696926E+01
Ti C2)

0( 4*TOC 23...TOC 13 )/3

OK. TIC 21 1n9532166828617E+01
TIC 33n

O(4*TOC33...T0C 23)/3
OK. TIC 3)1c 1295794 :i4986081E+01
DEFINE THE 0 CH t 6)-APPROXIMATIONS.
T2C 23=

li(16*TIC2)...T1C13)/15
OK. IRE 21 129564975704062E+01
T2( 331.

0( 16*TIC 33TIC 2))/15

269
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OK. T2C33Lz .1WA3012863245E+01
DEFINE THE ICHtii)....AP041MATION.
T3C3J

#(64*1'2C37 =TNAID/63
OK, Tar 11 .1:1939916735HE+01
THE 1tOMH10; E4THAP1i1.ATIO4 TWICE IS

.t400000000000000E+01
. 109H616(AWE+01

His *100000000000000E+01
. 124245324q9397X+01 *Pr:9040033696926E001

Has .500000000000000X+00
. 124210443812E+01 .129532166828617E+01 .129564975704062E+01

Hu .250000U00000000E+00
. 129237490H00514E+01 .129579834986081E+01 .129%3012863245E+01
. 12'1583299167358E+01

SELECT MOTHEU PhOMFM.
YOUR MOHLEM SELECTION (1s2oNONE)?

#1
PROBLEM 1. WE WISH TO USE ROMBERG INTEGRATION TO APPROXIMATE
ICSIN(X)/XSC0,1]) USING N121,2. AND 4 SUBDIVISIONS. (NOTE AT Xes0,
SIN(X)/X=I SINCE THIS VALUE AGREES WITH THE LIMIT.)

I XECI KJ]

0 0.00 .100000000000000E+01
1 .913961Y337014093E+0(J
2 0)0 .9541077208401E+00
3 .V04651680031113E+00
4 1.01 '0414709W4807691E+00

WRITE THE EXPRE5SIONS FOH THE TRAPE40IDAL RULES USING THE TABLE.

FOR Nxl. TOE03=
0.5*(F1031-FC43)
OK. TOE 0i" .92 735492403946E; +(1[)

FOR N-2.0 TOE 13=
0.25*(FE03+2*M7C7 ;1.44))######4.FT43)
OK. TOCIi= .93(1793kH41106171E+00
FOR Naito TOL23=

10.129*CF103+2*(FC13+FC231.FC3))+F[ 4])
OK. TOC2im .944513521665385E+00
DEFINE THE O(H14) APPROXIMATIONS
TI[1]=

#(4*T0(1]TOCO3)/3
OK. T1 C1 3= .946115882273576E+00
T1C23"

#(4*TOC2)...TOC13)/3
OK. T1 U3= .946086933951790E+00
DEFINE T4E O(Ht6)APPUCAMATIONS.
T2C23=

#(16*T1E23.T117,1))/15
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OK. Utfk) = 0:)4606 300106367UE+00
THE Itf.MEkil E4ThAPOLATION1 TAME IS
H= .100000000001)000X+01

.920735/(9W40 3946E +00
H= .5000o0000000000X+00

.9397v31A/H06171E+00 .,J461i0A4Uf.13576E-POU

Hys 05;50000000000000X+00
.9445135k16653d$E+00 .946086933951790E4.00 .9460e3004063670E+OU

SELECT ANOTHEH PhOBLEM.
YOUit Ph(sMEM t.;ELECT1T4 IS (1,2,NOAE)?
#NONE

YOU HAVE TWO CHOICES

(1) TYPE "%LICOFF" WHICH WILL SIGN YOU OFF THE COMPUTEH.

(2) TYPE "Van:M,-----" WHEUE IS THE SECTION NAME
OF THE MATEhIAL YOU WISH TO STUDY.

CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF
AVAILABLE SECTION NAMES.

#SLOGOFF


