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ABSTRACT

Oldehoeft, Arthur Earl. Ph.D., Purdue University, June, 1970.
A Computer System to Teach Computational Mathematics. Ma jox Profeasor:

S. D. Conte.

The program is designed to operate under PICLS on a CDC 6500 com-
puter and assists the student in learning elementary algorithms of an
undergraduste numerical methods course. The program beging with a tu-
torial presentation of the mathcmatical deVGIOpmmnt gurrounding an al-
gorithm and a description of the mechanlcs of the algorithm. The student
participates throughout this phaée and is required to work numerous
exercises. The program then requires the student to formulate the so-
lution to several problems in order to displey a working knowledge of
the algorithm. Finally, the student progresses to an explcratory stage
vhere he may formulgte the solution to his own problems. All compute- |
tion is assumed by the computer and the student is free from conventional
programing and debugging.

The design and construction of this program is presented glgﬁg with
special programming features such as partial precision arithmetic,
computer-génexated problems, and approximate matching of mathematical
expressions.

The Pfirst experimezt is described in detail. Student attitudes

and performances, cost factors, and efficiency are analyzed.




CHAPTER 1
INTRODUCTION

Currert State of the Art |

The possibilities of using a computer to aid in the inetructionel
process have attracted researchers from a variety of backgrounds. The
magnitude of interest in cemputer-assisted instruction (CAI) is dsmon-
strated by the large vdlune of literature available for public distribu-
tion. For recent detailed reviews of the work in CAI, the reader is
directed to two recent articles by Feldhusen and Sgabo [13,14] and pub-
lications by the Entelek Corporation [10,20].

The basic problems which are encountered in CAI ﬁre generally sttri-
buted to the inability to totally define a.nd‘ control the human learning
~ process and the limited ability to communicate with = computer in a
| natural language s0 as to make the compu'her ‘behave as a humen tutor.
Kindred [22] classifies the research areas as pedogoaica_l»psycholosical
and technicali-practical accordil,ng to the types of problems encmahtered.

In the first category, the concern is with the theory of learning
and attempts are be:lng mede to define and control those variables wh:lch
would play «n active role in a terching model. The ultimate objective
would be to construct s teaching model to adapt to individual differ-
ences and leed a given student to a maxirwm level of pertor‘uneg in the
least ponsible amount of time. Stolurow and Davis [35] dascribe a some-

what more practical model. Given the student variables along w;th a




minizran acceptable level of performance and s maximum allowable in-

struction time, the machine would select from a set of teaching strate-
gles that strategy which is most likely to saticfy the comstraints of
the probleia. It is escumed that the machine has a large number of

- teaching programs at its disposal. Teach:lng strategies would dynamically

change ca the basis of the student's performance and personal traite.

'The success in constructing such a model depends heavily orn the ability

to define and evaluate the effects of factors such as student variables
and their relevance tc learning, branching strategies, methods or' feod-~
back, and modes of instruction.

Several points are often cited in favor of CAI: . self-pacing, chest
proof, immediate feedback and re;nforcment. simultaneous teaching, test-
ing, and remedials functions, aecese‘to 2 history of student perform-
ances, and the freeing 'or the ingtructor’s time for counseling. Many of
tﬁeu adventages have not been convincingly demonstrated.

If self-pacing means that a student progresses through a fixed in-
struct:lon&l sequencs at a rate which is determined by his own abilities
end understanding, then the student cannot be delayed by feulty hardware
or software, inefficient keyboaids,, ‘and slow typing mechanisms. Experi-
ments at Penn State [29) point out that CAI is not self-paced in this

- respect. If self-paced also implies that thg student is not exposed to

materials already learned, then the student cannot bg confined to & fixed
1natruct:lon§1 program.

To date, very little is known aboul, how one would effectively com~
bine the teaching, testing, and remedial mnctiogs. Eaxrly attempts are

reported by Suppes [36) on the construction of multitrack programs for




glohontary aritimetic. The nature of the subject matter is drill a.nd
practice. The level of difficulty and the amount of drill is deterained
‘by a percontage of right and wrong ansvers.

Although computers can provide a complete history of a student's
performance along with prescribed suamaries and statistics, it is not
clear how researchers, instructors, and administrators cen make good use
of the information. Alsc, it remains %o be detesmined how traditionelly
{rained teachers will effectively use thair time for other functions
such as counseling students. These d:lfﬂculties‘ are noted by Fein [11].

The cited advantages of CAI are embodied ia the concept of indi-
vidualization. Oettinger and Marks [30] point out that a definition of
individuslization is not gsnerally agreed upon. Related to thé learner
and taken literally, a computer system would have to tallor itself to
all characteristice of an individual which affect the learning process.
However, re.sea.rche,ré with | experiehcg in this field generally agree that
CAI has the potential for a high degree of realizatiocn of the cited ul-v
vantages. | | | ‘ |

In the techaical-practical area, emphasis is placed on the develop-
menf and evaluation of hardware, CAI programming systems, and actual CAI
course material, and on attempts to specify a systematic set of rules
for designing instructional material. The theory which supports the
existence of this area is that some advantages of CAl over trudltionil
1nltmétion ‘cé.n be demonafro_,ted through a sensible eapproach.

In the ares of CAI software, a number of langusges have evolved.
Languages which are used for instructional applications have been io-
viewed by Frye [16] and Bwtelek [20). Scme of the languages which ‘have




been designed primarily for creating course materlisl are PLANIT (121,

MENTOR [15], PILOT [38], ELIZA [37], Coursewriter [21] {various versione),
PICLS [24], TUTOR [1], and ISL-1 [33].

CAI languages are designed with the intention of providing the
course author with a nontechnical method for creating and implementing
instructional materials. FEmbedded 1n‘these langueages are techniques for
processing student responses. Xeyword matching and character editing are
standard routines and the PLANIT language also has a phonetic analyzer.
Although these features are useful and represent en approach to the prob-
lem of free communication, their use is left to the ingenuity of the
course author. We are still a long way from automatically processing
éanplex natural language responses.

The design and implementation of course material remains a monumen-
tal task. A survey by Balough [2] cites a wide raﬁge of estimates,
varying from eleven to two hundred instructor hours, needed to prepare
one hour of student instruction. Charpe and Wye [T] report that more
than two hundred total man hours are needed to pfévide for one‘hour of
student instruction.

Investigators such as Bunderson [k], Childs [8], and Mager [26)
have studied the problem of systematically designing course mnte:iale
They generally agree that certain basic steps are necessary to produgo
effective results.

1. Specify the teminal objectives of each lesson in terms of

a. the kind of behavior which will be accepted as evidence
| that the student has learned,
b. the conditions under which the desired behavior is ex-

pected to occur, and




c. how well the student must perform in order to have his be-
~ havior considered acceptable.
2. Perform a task analysis by
a. selecting ths sequence of learning axparienécl that are
likely to attain the chosen objectives,
"b. specifying all possible outcomes, and
c. 8electing th§ learning axpciiences'to remedy erronooua
outcomes. |
3. Program the course materials.
k. Test and revise the materials on the basis of actual per-

formance.

Of the above steps, the task anglysia is considered to be the most 1ll-

defined. A selection of learning experiences iz hased largely on the

Judgeent of the course author. If constructed rssponses are required,
it is difficult and perhaps impossible to specify all possible outcomes

even on a single item and pirovide the sppropriate remedial instruction.

If twd students arrive at the same erronecus answer, ﬁhey mey have done
so for reasons unrelated to each other. Without a atﬁdy of the histories
of many students, it is difficult to specify even the probable errors.

In the arca of actual develepment and implementation of college
level course ﬁnterials, very few complete CAI courses actually exist.
vSeveralvbr the major contributors have been the University of Illinois
[e57, Florida State Uhiﬁersity [19], the University of Texes {51, and
Pennsylvar’a Stéte University [29]. Based on reporte from these insti-
tutions, some agreements and diaéorda can be noted.

1. A systematic approach to the development of inetructional

- material is necdllary.




/
2. Achievement and retention coupariscig between CAI and tradi-

tional instruction have not yislded conclusive results and,
on a course by course ansclysls, there 1s zome dlisagrecment.

3. Comparisons in inatruction time have ylelded contradictory
results. Times ere dependent on the nature of the course and
the terminal hardware. |

k. ‘The majority of CAI students express a favorable attitude

| toward this method of pregentation. |

There is also & gemeral agreement that CAI cannot be Justified on the
basis of cost at this poini in time [2,23]. Some inconsistencies or
lack of conclusions might be attributed to environmenta.l varistions,
varistions in the types of CAT experiments, and poor messuring devices.
Experiments have been performed with various typés of har&g&e, author
_ languages, and teaching strategles. Variations are reported in the
method of selecting semples, the size of the ssmples, and ﬁhe duration
of thé experiment. Although experiments have involved a varisty of
materials, it is generally sgreed that the areas which are most natural
for CAI are drill and practice, simulation, snd problem-solving. In
these areas, the ccmpu‘tat:lona.l or repetitive power of the computer is
more easily applied. |

In view of the general difficulties which exist, many researchers

A0 not consider CAI as the panacea, but rather a component which inight
play an effective role withiﬁ a system of educatibn&l technology. A
broader view appears to call for s total ieorganizution of the structure
of educational institutions, a structure ih wvhich the cclputor is one

resource to be used where it is most efficient in the instructional
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process. The gocial, political, and economie difficultiss involved with
moving toward an educational techmology are cited by Oattinger and Marks
[(30]. They conc};ude that the goals and techniques of education are not
yet well encugh defined for the realization of a technolegy. Wilasen [39)
is conserned with similar prcblems, but does foresee possible use of a

computer in instruction, especially in the areas of inthmticn and

languages.

Description of the Research and Development
This investigation is concerned with the {Teasibllity of using a

computer to aid in the teuching of an urdergraduate numerical methods
course. In an 1ntrociuctory numerical methods coﬁrae, or what will be
referred to hereafter as computational mathematics, the typical student
| is a college Junior who has Just completed the basic 'aequenée in calcw
lus, differential equations, and ’an. introductory course in matrix alge-
brq.‘ He is expected to know a programming language well encugh to pro-
gram computational procedures for a couputér. Since the algorithms to
be taught are designed and analyzed for computer use, it seems feasible
st ihe outset thet the computer itself might aid in the instructional
process.
By traditional instruction, the uniergraduate student in computa-

tional mathematics is faced with several problems.: |
| 1. The cumbersome erithmetic associated with a numerical msthod

can discourage the student from working anything more .thaAn ths

simplest type of exanpien. An intuitive fealing for how an

o,lgo;:'ﬁhm behaves in pra.ct:lce_ and a knowledge of its deficien-

cies often requires working a variety of problems. This




2.

requires both time ané effort on the part of the studens %o

either write and debug his own programs or obtain avilable

| routines from an established library. Due to limited ecxputer

~ resources and commitwments to other courses, it is unlikely that

the student can explore more than a handful of methods on the
computer. | |

With the traditional mode of classroom inastruction, it is 4if-
ﬂcﬁlt to expose the student to the variety of exampies and
applications needed to demonstrate the deéichnclea or powsr cf

a method. This is due, in part, to the amount of materisl which

. must be presented and also tc the cumbersome arithmetic. The

3.

instructor usually limits his discussion to the basic theory
which. embliahes the existence of a method, an uplnna.tion of

‘the mechanice of the algorithm, and an example or two which can

be _demnat?a%a on the blackboard. The azamples may not be

carried to completion. Textbcoks, which present tabulated com-
- puter results for pu*bicular examples help to remedy the situa-
‘tion, but the student does not normally work through these

| exupleb. From this framewcrk of examples, or falth in the

instructor, the beginning student is expected to gain an intui-

tive feeling for a numerical method.

ljcginning courses usually require a mathematical exposure to

 elementary calculus. Unless the underlying theorems are ele-

| inentary in nature, they are at most stated in passing. As a

- pesult, a great deal of emphasis is placed on a description of
‘the mechanics of an algorithm. With the traditional mode of
instruction, the student does not participate in the developmant




of the mechanics and may not have the time or computer resources
to practice the application of all algoritums.
The problems stated above can be more or leas atiributed to the nature
of a computaticnal mathematics course. In additiorn, the student faces
problems which are cosmon to all courses.

. Individual sttention is giver in the classroum to only those
students who interjecc comments or 2sk questions. Verbal com-
munication is normally attempted by only a small percentage of
the class.

5. The lecture is prepared for the level of the average student.
The better stuldents are urmotivated and the weaker students are
slow in grasping the material.

6. Due to sdministrative demands or resegrch interests, the in-
structor cannot devote sufficient time to counseling students.

The work reported in this paper does not prescribe » cure for these

difficulties since it is not known how to program an ideal teacher. How-
ever, the possibility of reducing the severity of some of the problems
can be explored Ly constructing, implementing, and testing a computer-
based instructional system‘fbr computational mathematics. The primary
| objectives of this investigation are concerned with feasibility and are
stated as follows:

l. design and implement a CAI program to teach computational
mathematics and investigate the technical difficulties
associated with constructing and using such a system;

2. implement techniques which might be useful in an sddmek on

problems 1-3 stated dbove; and
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3. oxperiment with the system in an attempt to detormine student
acceptance and compare this method with the conventional method
of instruction.

‘To accomplish these objectives, twenty-five lessons werc designed for
camputer presentation, Tie first teaches the use of the system while

the minihg -twenty«-fouz? covez? a variety of numerical methods which the
student would study in conjunction with outside reading aasigaments from
Conte [9], the textbook currently used at Purdue. In & direct attack on
problems 1-3 stated sbove, each lesson consists of a tutorial mode, a
problem mode, and an investigation mode. In an attempt to free uhe
student for concentration on the develqgﬁnent and cpplication of algorithms,
the burden of cumbersocme arithmetic is assumed by th;e' computer and de-
tailed progremming is not required. Problems L-6 are approached in a
manner similar to that in other CAI courses described in the literatura.
An overalli description of the design, i.’ﬁiémentation, and aas::;ted
aifficulties is presented in Chapter III. Chapter il is devoted to &
description of speé:lal fextures needed to handle mathematical expressions
entered by the student from the CAI terminal. The results of sn initial
experiment conducted during the Fall Semester of 1969 are reported in
Chapter IV in the form of some numerical measurements and personal ob-
servations. |

The end product of this development hss éwera.i uses. First of all,

it can serve as a research vehicle for future tests of the effectiveness
of CAI. As experience is gained, the‘ system should grow in size and
sophistication to incorporate mulvilevel sequences of instructional me-
terial for the purpose of accelerating or decelerating students. Soe-
ondly, the system m& serve as & self-instructional course for stuients




wishing to study . mputations) mathematics. Finally, in conjunction with
tralitional lectures, a student may use the tutoriel mocdes for review op
remedial wgrkforboloct to work graded problems or prcblems of his own
choice. N

An Overview of the Hardware and Software

The computational mathematics course was writteﬁ in the language of
PICLS [24], the instructional system available for the CDC 6500. PICLS
18 designed to operate in an interactive mode under the MACE Operating
Syﬁtqn [32] for the CDC 6500 at Purdue University.

The MACE Operating System with 1n%eractiv@ facilities was developed
by Purdue Computing Center personnel. A typical reguest for service
 from a CAT terminal is assigned a high pricyity by MACE causing lower
priority Jobs to be rolled out of core long encugh for PICLS to sarvice
the reguest. PICLS is then automatically rolled ocut in order to free
core for ?ther Jobs. Thus, the response time at a CAI terminal is highly
dependené on the status of MACE and the current Job mix.
| ‘In support of the CAI project in computatiocnal mathanatics, a set
bf arithmetic routines was installed in PICLS during the summer of 1966.
These routines enable a course wuthor to accept student inltiated ex-
pressians which could be compiled and evaluated or savad for later evalu-
ation. Special routines were also added to test the equivalence of two
mathematical expressions. Due to these speclal arithmetic roqniruments,
the current version of PICLS is the only versicn under which the course
in computational mathematics is guaranteed to Le operationmal. Subsequent
versions of PICLS may not contain those special features mentioned above

or described elsewhere in this report.
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~ The twenty-five leusbns in computational mathematics consists of
appréxinately 27,000 PICLS instructions. ThrMout the develspment, a
 1linear mathematical notation was employed fox gsuiteble use on a KSR-33
Teletype terminal. At inst'ruct:lon time, the course material and PICLS
resides on approximately 200 tiacks of Control. Data 808 disk astorage in
the form of permanent files. Thus, a student at a CAI tozminal may in-
itiate any section of eny lesson at any time. The actual havdware require-
ments for the lesson naterial are the same a.é the requirements of PICLS.
For the most part, PICLS is written in Fortran but scme of the file
handling routines ar2 written in wachine language. In addition, portions
of the imatructional uaterial depend on the sixty bit binary word of the
CDC 6500 and ere not directly transfarabie io other machines without

revision.

ERIC

Full Tt Provided by ERIC.
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CHAPTER II
AN ANALYSIS OF COMSTRUCTED MATHEMATICAL RESPONSES

Description of the Problem

An area of major concern in instructional systems is the design of .
techniques fbf processing student responses. While it is desirable to
provide the student with complete freedom in responding to questions,
techniques are not available for grading free form answers. Phonetic
gncoders and keyword matching routines are attempts fe provide more
flexibility in processing constructed answers. In one aénse, mathemati~
cal responses present a very scrious problem since an expression can
unual;y be correctly represented in an infinite number of ways. On the
other hand, it is the very concept of equivalence over the real or com-
plex numbers which provides for the'develqpment of powerful techniques.
 The pfoblem of decidirz when two expressions are equivalent has been
encountered in other applications. Both algebraic @nd numeric approaches
to this préblem have been reported.

»In a direct dlgebrai@ spproach using normel and canonical forms,
Caviness [6] considers the expressions generated by the rationals and
the complex number i, the variables xl""’xn’ the operators +, -, *,
unnested cemposition, and functions exp, sin, qos; tan. An exprassion
in this claas can be feduce¢ to normal form P/Q whefé P and Q are canoﬁ»
ical. This ylelds a technique for deciding eﬁuivnlcnco. Cavineaa also

cites some negativo resultez by D. Richardson. Richardson considers the
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ciass of expressions conoutod by the rationals, I, 1n 2, the variable
x, the operators +, *, nested composition, and the functions exp, sim,
abs. For this class, the predicate "g=0" is recursively undecidable.
l'hul, we hn.vg an indication of lower and upper bounds on what can be
e;npdctnd from exact techniques.

In a combined algebralc and aumaric approach, artin [28] uses a
hazh ccde assignment scheme to mep the set of infinite expressions ﬁto
a finite number field. For addition and multiplication, range problems
~ agsociated with floating point arithmetic can be avoided by performing
ﬁhe vo.rithmjb:lc in a finite ficld. However, exponmtntion does not pre-
| serve "iquivalenée.

The PLANIT system [12] uses a straight numeric spproach by assign-
| ing prime integers, starting with 3, to each distinet variable and com-
paring the resulting values of the expressions. By this technique,
f(xA)-x end F(x)=6-x would be considered equivalent. This is a simple
exsmple of the danger encountered in using numbers. |

The jnethod ingtalled ir a gpecial vei'si.on of PICLS for the comut@-
tional methematics course consists of a combination of random vovulution
and apéra.tor analysis. Although random evaluation was considered un-
stable by Martin for his applicotion, there is some promise in CAI singce
the correct expressions are knom waen the ma.tqriai is develcped. Also,
.atﬁd«nts’ are 11ke1y to eonstmét snsvers within'"the éontm of the ais-
cussion. The purpose of this chapter is to descridbe this method and |
analyze its deficiencies. Much of the information atated "hore has been

previously reported by this author elsewhere [31].
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Considerations

In designing & method vhich seemed suitable for converssticnal use
in CAI, several factors were considered. Mivrsht, o mabtohing algorithm
should have low central processing time requirements in order to avoid
any aign:lficaht inerease in the already present system overhead tims.
Secondly, the probability of failure should be vemote. If it should
happen that the method fails, then it shculd normally be possible for
the student to enter the same answer with a low probability that the
néthod will fail again. This implies that the variables involved in |
both the correct answer and the student's answer be treaf.ed in some in-
dependent sense from one application of the matching process to the next.
Finally, the method should be sophisticated enough to be "student proof”
if at all possible. From an external point of view, it should be aiffi-
euit for a student to determine the method of testing equivalence in
order to avoid deliberate attempts to fool the algoritim.

The rules adopted for constructing mathematical expressions are

similar to thosde used in Fortran. The student, however, ic restricted

o0 the use of variables which have meaning within the context of the dis-

cussion and have been defined by the author. Brackeis [ and ] are used
to delimit subscript expressions and the coperators and functions must be
chosen from the two classes & oi- TJ. given in Table 1. The choice of
notation was based on the student's assumed knowledge of Fortran, the
linear notation imposed by the teletype terminal, and the content of the

actual course material in computational mathematics.

2
e
i
}
3
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Table 1. Available Operators and FTunctions

+, =, #*, /, composition, +(oe.7*) to an integer power,
sin, cos, tan, cse¢, see, cot, exp, r* where r> 0, ainh,

‘cosh, tanh, cach, sech, coth

#: arcsin, arccos, arctan, In, log(bsse 10}, sart, (or #*)
variable base to a variable or fractional power, abs | %
In order to allow the student meximum flexibility in conatrueting
fespdnaes. it is assumed that a course author will define and maintain
the status of variables iﬁternally as they are introduced to the student
on the teletype page at instruction time. For example, if the variable
x is introduced during the course of discussion, thexn the course suthor
also defines the varigble x internally and'treats it'aa an indeterminate
over the real field by assigning a rendom value to it. If x assumes a
particular value, the course author must assign the same value to x in-
ternally and compute all variables depending on x. In this way, the
student may construct responses using any‘varidble which is meaningful
within the context cf the current instructional matexrial. Examples of

how the course suthor provides this flexibility appear in Chapter III.

Description of the Method and Its Limitations
Any expression which is constructed from defined variables,'con- ;
stants, and the Tlmqperators listed in Table 1 will be calied a Tla E '%

expression. If an expression contains a ¢-operator, it is not a Tl-

expression. For example, sin(x+cos(y)) is a Tl-expreesion from B> to

1l
Throughout this discussion, the correct expression specified by the

rr. Areain(abs(x)/(1+x**2)) is not a T,-expression.

. - T LR I ]
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course author will t2 denoted by £ while F will denote the stulent’s

 response., Small letters x, ¥, X, X, etec. will dencte real variables

vhile capital 1etters X, Y, xl Xa. ete. will denote randomly selectad

values which have begn azsigned to the varia.blos. R? will denote n-

dimensional real space. Considering £ and P as functionas from R to Rig

points X, in R, i<l,...,n, are randomly chosen and the values r(xi) are

eompiu’ea vith F(xi)a If, for all i, the values are equal, the conclusion

1l
¢tion of only one Xekn is justified in a succeeding section. There is a

i{s f5¥. Otherwise f#F. If beth fand FareT -expressions, the selec~

O-prokebility of gselecting X where £ and F are not dafined. If f#,
there is a O-probability of selecting X where £(X =P (X). ir ¢-operators
are present in either expression, the O-probability conditlon may not.
hold. The effect of ¢~operators will be discussed later.

| Since evaluation is performed on a computer, we can only hope to
approximate ‘the O-probebility condition. . The method will suffer from
the coumon defects of (1) round-off error, (2) lose of significance, and
(3) o possible positive probebility simply due to a finite set of com-
puter numbers. As & result, it is possible that two noneguivalent &x-
pressions will be Judged equivalent or equivalent expressicns will be
Judged nonequivalent. The nunerical a.pprdach is to mpproximate equiva-
lence by concluding that £(X)=F(X) if any one of threes conditions is

-1l | |

(1) | £(x) | < 8 and | F(X) |<8
(2) | £(x)-F(x) | < 8

(3) | (2(x)-Fx))/2(x) | < 8

In an attempt to avoid ranga problm such as overflow and loss of




significance, the programmer should restrict the selection of random
points to a finite interval I based on the structure of the correct
snsver f.  For exsmple, £(x)=cos(x)+sinh(x) is computationally aqual to
sinh(x) for lar@e | x| since the cos is completely dominated by simh. In
this case the programmer would choose I to be & relatively mmall interval
about O to retain the effects of the term cos(x). The choice of I re-
mains somewhat 11l-defined since, once I is known, one can deliberately
construct expressions F which will emphasize the camputational defects.
Rather than a O-probability, we have &n ¢-probability where € de-
pends on £, F, 8, I, and the precision of the computation. An a priori
- estimate of ¢ is not available since the student®s answer F is not known.
On 'bh_:l.s basis, several strategies are possible. One ltra‘aegy would be
to conclude £=F if the two functions agree at all m points and conclude
1# if they fail to agree at any one poini. Another strategy would b2
to conclude P=F if they agree at any one of the m points and conclude rEr
if they disagree at all m points. abie 2 shows the probabilities of
success and | failure for these two strategles. If £=F, the first strategy
is a poor choice for large m since the probability of success (1-¢)®
tends to zero. It is, however, a good strategy when fﬂ' since the prob-
ability of fa:l.luré c® tends to zero. On the othei hand, the second
strategy is a géod choice when f=F and a poor choice when f)fF. One could
" choose mixed strategies as alternatives.

In actual practice in instructional settings, the cese when o

L e AT B e e ey e L AT LSl ey ee e pe

scemed less suaéeptible to failure than the case where f=F. On this
basis, it would appear that the second strategy is the better one for
this application. In order to further investigate the instability, the
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Table 2. Compwtational Probabiiity of Failure
for m Random Points ‘

Possible Computationel vhen f=F * when fF
Events Pr(xieI:r(xi),‘f(xi)}u € PerieI:r(xi)-
' r(xi)]- €
r(xi )-;r(xi) for all i=1...m (1-¢)® &
F(X, Jp£(X,) for eny 1 1-(1-¢)* A
- P(x, JhE(X,) for all iel...m G (1-¢)®
F(X, )=2(X,) for any i 1-e® 1-(1-¢)™

first strategy was adopted in the pmm. In order to minimize the
probability when f£=F, tha value m=l is used. In other words, the deci-

1
exactly one randomly selected point. Fxamples 1 and 2 presentsd below

sion for equivalence of two T, -expressions is based on evaluation at

111ustrate the possible computationsl difficulties when f=F.

Exsmple l--Loga of Siﬂiﬁcmcﬁe. Suppose the correct solution of
x2+bxtom0 is specified by £(b,c)m.5(-b+eart(b>-he)) and the student's
answer is F(b,c)--ée/ (b-i-sqrb(ba-hc)). In theory fr=F, but using single
precision on a CDC 6500 with a computational error tolerance, we have

| 1-F/2 | > 5-207

in a region where | ¢| 1s small compared to|b| . The
magnitude of c which outlines this region was approximated for selected
| values of b. These values eppear in Table 3 and yield the relationship
c-j-_lo'sbao More importeant than the accuracy of the apprcuimtionsv is

the fact that, as | b| increases, | c| increases at & faster than linear

rate. If (b,c) is selected in the region between the curves c-_-!-_lo'sba,
then the incorrect decision f#F is made. Sampling from a square with
- center O and side length 25, excluding the region where b2<hc, the prob-

ability P of an incorrect decision can be founé by integration.

et op A oE & 31 P A R ORITERD FATIERIL 00 5L O P AL R A
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 Case 1: If O<B<k, P=8(1077)8/(12+5)

Case 2: If U<S<10°, P=(1072)s *%/(38°7-2)

Cese 3: If $10°, Pu(38°2-2(10%°%))/(36°"-2)
Based on the above formulas, Table 4 shows how P increases with S. For
the same vealues of S, an experimental probability P* was computed based

on 10,000' random points.

Table 3. Points Outiining Feilure Region

2 ~1

lv] 1200 1* 100 12 10 1 10t 1% 107

-1l

le] 1200 28 10 107 107 10° 107 107 10

Table 4. Predicted and Experimental Probabilities of Failures

s 1 10 10° 10t 106
P .61-10"° .uz-lo"‘ .36-:.0'3 ’ . 33-10'1 .79
P | 0 0 .7*10“3 .hs-lo"l ]

Example 2- -Miscellanéoua Expressions. The method of comparison at
randomly selected points was tried on ten trigonometric idemtities* used
by Martin [28]. |

(1) sin(x)tan(x)+cos(x )-aec;(x)

(2) (sin(x)cot(x)+cos(x))/cot(x)=2sin(x)
(3) csca(x)-t-cota(x Y+1=2/ s:lna(x)

(4) cos(x)cot(x)+sin(x)=cse(x)

(5) (1-8in(x))(sec(x)+tan(x))=cos(x)

(6) sin(x)/(1-cos(x))=tan(x)/(sec(x)-1)
(7 cacu(x)-corth(x)-caca(x )+cot2(i)

* In identity (10), "abs" was added.
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(8) sin(x)/(sec(x)+l }esin(x )/ (sec(x )-l)uacot(x)
(9) cbiiG(x)+sin6(x)-1-jain2(x)cosa(x)
| (10) sart((sec(x)-1)/(sec(x)+1))=aba({l-coa(x))/sin(x))
For several arbitrary intervals, the results of evalustion at 10,000
random points are reported in Table 5. L denotes the total lan@h of a
symmetric :i.nteival about O frdm which the points were selected. The

11

error tolerance 8x=5-10  was used for equivalence.

Teble 5. Experimental Probability of Failure for Ten Identitiea
Length of Intervel L

Cagse 2 6 18 50 10 90
1 o 0 » 0001 .0010 ., 0020 .0010
2 0 0 . 0001 . 0007 0007 . 000k
3 0 0 .0002 .0009 . 0003 . 000k
4 0 0 .0002 0004 0004 .0008
5 0 .0020 .0055 .0098 .0112 0143
| 6 .0008 .0028 .0040 .0036 .003k .0037
a0 T 0314 .0115 .0289 .0556 0752 0775
8 .0079 .0030 .0053 0049 .0048 .0048
> 0 0 0 0 0 0
10 [0} 0 .0017 .0021 0023 .0016

 Assuming no computestionsl difficulties, one still camnot arbitrarily
applyvthis method to any expressions. As previously mentioned, the O-
probability c_ond:ltion may not hold in theory if one uses the §-cperators
from Table 1. The inverse opemtora introduce branch lines in the com- |
plex plane and ﬁhen resgtricted to the re@la, disjoint regions may be in-
troduced‘. any or all of which my"be of interest. Ths abs Opeiatpr also
Qerves to partition the real line into disjoint regions. The presence of
¢-operators in an expression can be detected when evaluation takes place. |
E:;a.mple 3 illustrates how o-op:srators may introduce multiple regions.
From an analysis of f, one can usually determine the regions of interest
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in Rn‘ and the nowmal spproach would be to semple in each region. The

difficulty arises in trying to mechanically determine the regicns iatro-
duced by ®-opersators in F. Erample 4 shows that a total disregeard of F
may or may not yleld the correct declsion.

mz. Let f(x)mlﬁ(x2)+ubs(2-x). The term ln(xg). introduces
two regions Ll=[x:x>ol and Lam(x:x(O]. The term abs(2-x) introduces
regions Ljafx:xQ} and Iy=(x:x>2). L, is of interest if we wish to dis-
tinguish between identities such as ln(xa) and 2 1n(x) which hold only
on the principal branch. The resultant regions are D, =(x:x<0),
D2-(xzo<&<2], and D3=-[x=x>2].

Exsmple 4. Let £(x)=abs(x) end F(x)=x. An analysis of f yields the
two regions Dla(x:x>o} and D2=(x:x<o}. Selecting an X in the latter
region detects f£F. Reversing he roles of f and F, let f£(x)=x and
F(x)=abs(x). Now, an analysis of f ylelds one region Dln{--,o] since f
is a."rl-ﬁmction. If we randomly select X from any interval symmetric
alout O, there is a 4-probability of detecting the fact that f¥#F.

h We cennot restrict our attention only té the effects of abs since
the stondard inverse operators may be used to simulate these operators
on R?, e.g. exp(%ln(xa))-abs(x). The epproach tsken here is to check for
the resclvability of two expressions. In particular f and F are said to
be resolvable if the occurrence of a ¢-operator (with argument h) in the
‘expression f implies the occurrence of the éme ¢-cperator (with same
argument h) in the expression F and vice veisa. The ;rments h are
checked for equality by the usual method of random eva.iuo.tlon while the
o-qper&.tora are matched symbolically. During the process of ovaimtion,

the operators and the numerical values of the arguments are recorded in
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& ¢-table, Examples 5-8 iilustrate this method.

Exeuple 5--Resolvable Case vhere f=F. Let f(x}=sin(abs(x-1)+

ln(yz)) and F(x')asin(abs(x-l))cos(ln(y"*y)‘)wos(a.ba(xm:!.))sin(ln((y—l)
(y+1)#1)). An analysis of £ ylelds the following regions in R°:
D]_-((x,y):%l,y<o]; D2-[(xgy):x<]_.,y‘> 0); D3=[(x,y):x>],,y< 0); snd
Dh-((x.y):x>l.y> 0). Upon evaluation at a random point i~ =3eh Di ’

the ¢-tables given in Table 6 are const:?ucted. On each D,, we find
that each entry (operater, numerical velues of &rgmmanw) in the

~ ¢-table for F matches an entry in the g-table for f arzd vice versa.
Also f£(X,Y)=F(X,Y). Thus, we conclude f=F on each region.

Example 6--R@aolirable Case where f£F. Let f(x)sebs(x) snd
P(x)=(x+abs(x))/2. An analysis of f ylelds Lwo regions Dl-[x:x <0} and
Daa[x:sz>0]. Upon evaluation, the entries in the ¢-tables match but»
r(xl),‘r(xl) for X. in D,. The conclusion is T#F.

1 l
Exomple 7--Uaresolvable Cage where £=F. Let £(x)mexp((x-1)/2) and

F(x)=(exp(x-1))+4. Since f iz a T. -function, only one region

1
Di-(x:-« x<«) is considered. Uron evaluation at X, in Dys r(xl)-r(xl).

Since the @-tables do not match, no firm decision is made

Exemple 8--Unresolvable Case where f¥F. Let £(x)=aba(x) and
F(x)zabs(x)abs(x-e-lb**lo)/ (x+10410). The regions for investigation de-
termined by £ é.ré Df[x:,x< 0} and Daﬂ[xaool. Sinr:e.the entries in thé
#-tables do not match, £ and F are not resolvable. No firm decision is

made unless we are roﬁmlate enough to chdbse xl < _1010 in Dl’
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Tebie 6. @-Tables for Examples 5-8

Example §-teble for F

g-table for f

5 ‘b.. "'1
in,
“ 6 ' abs,X
7 $,0XD(X-1),%
8 _  abs,x+10'°
abs, X

&bB 9Xm1

In, &Y
1n,(¥-1)(Y+1)+1
abs, X

empty

abs,X

The Subroutine HATCH

As & -stra:l.ght» forward implementation of the method described in
the previous section, & supporting set of arithmetic routines was in-
stalled in PICLS: The subroutine MATCH may be called from the PICLS
:I.c.nmhge in order to numerically teat f and F at a readomly selected
point. MATCH is called by thrase operation codes:
WR-wrong numeric, end AN-anticipated numeric.
normally use these instructions to process a student’s nathematical

The programmser would

2k

N-correct numeric,

response. Executions of CN, N, or AN cause a trensfer of control to

MATCH and the string of symbols following the operation code is passed

as an argument to MATCH. The format of these operations is

1CN:k, £,0, 73 )Ly oRy p ooV oLy oR, s B(RIGHT YF(WRONG)

where the string of symbols following the second colon and preceding

the last is the drg\ment. The items in the string separated by a comma

have the following meaning:




T 1s the correct expression specified by the prograsmmer.

n is an arithmetic expression, the velue of which denotes the
number of ordered triples vi ’L:l.’ R:L in the string.

g is the name of a (simple, singly-doubly subscripted) varisble.

I.1 and Ri are arithmetic expressions whose values denote the real

intervel [I,,R,] from which & random number is selocted and
assigned to vi.
k is an instruction flag which may assume the values 1,424,435, +4.
 If repeated evaluations are needed, one can take advantage of
the fact that f and/or F have been compiled and are in a form
for rapid evaluatiom. |
If | k| =1, use the new F and the previous f, ignoring any .specified
f in the argument string. If|k|=2, use the previous F and the new f.
If | k| =3, use the new F and the new £. If|ik| =k, use the previous T
and the previous' f. If i©0 and f and F are not resolvaﬁle due to ¢-
operators, yet £(X)=F(X) for each random X, primt "LOOK OK. YOUR
ANSWER SHOULD REDUCE TO £ where f is the expression extracted from the
argument string. If k<0, suppress the printing of the above message.
Upon a call to MATCH, the following activities take place.
(1) Evaluate k. |
(2) It k| =2 or 3, compile £ as specified in the argument string
and place the code in the correct answer array for later
evaluation. If | k| =) or &, ignore the f in the argument
string and assume the previously compiled f, currently re-

| siding in the correct answer array.

(3) 1r|k | 21 or 3, fetch F from the student buffer and compile
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the expressicn. If compilation is successful, place the re-
sult in the atudent answer array. If a syntax error is found,
print the appropriate error message and exit from MATCH.
This exit is not the normsl failure exit in that the Qnawmv is
| not registered as incorrect, but rather as one which has no
meaning. The exit is to the point where the student can type
-anewF. If|k|=2ork, assume the F which already resides in
compiled form in the student ansvwer array.
(.h) Evaluate n.
(5) 1r n<0, ignore this step. If n>0, then for i=l,...,n, gener- ..
ate a random nuber in the interval [L,,R,] and store it in | §
the location for V,. ‘

i

(6) Evaluat< £ and F ui:,lng the randoin values for the V If a O

10
operator is encountersd with argutent h, enter the information

in the appropriate ¢-table. If the expression for h contains
no variable, no entry is made since #(h) is constant. if
¢=abs, then | h| is entered ss the argument. If @ denotes ex~
ponentiation to a fractional or variable power with variable
base, then h consiste of the double entry (base, | pover | )
where negative powers are chenged to positive to allow re-
‘solvability of 'g(x)r and g(x)"~. |

(7) For 8=.5(107%9),

test for any one of three cendlitim’o:
| £]| <8 and | ¥ | <8; | f-f‘l <B; or | (£-F)/f| <8. If any are |
satisfied, go to Step 8. Otherwise, take the FAILUA: exit.
(8) If both @-tables are empty, conclude f=F and take the SUCCESS

exit :rom )IATCH. If only one of the #tables is empty, go to
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Step 10. If neither ¢-table is empty, go %o Stap 9.

(9) For each entry (ordered pair or triple) in the #-tedble for f,
sesxch for an identical entry in the ¢-table for F. The
arguments must agree within an error tolerance of & in the
manner specified in Step 7. If, upon completion of the
search, ever,;r entry in each table has been successfully
matried with an entry in the other table, conciude that £ and
F are resolvable and take the SUCCESS exit from MATCH. If
any entry, in either table, is not accounted for, go to
Step 10.

(10) 1If x>0, print the eondit:lonal success message "LOOKS OK.
YOUR ANSWER SHOULD REDUCE T0O f". If kX0, suppress printing,
but set a flag for future checks. In either case, take the
SUCCESS exit from MATCH.

Examples 9-13 are presented below to illuitrate hdﬁ the progrommer
may typically use MATCH to check a student's answer. The programmer
specifiesd f and determines the regions Di from which pointa should be
randoaly éelected. For the purpose of discussion, an F i_s also aspeci-
fied for the examples. Table 7 presents the corresponding ¢-tables
vhich are constiucted by MATCH. | |

Exauple 9--Tug ’.EL-Fune%ions. Suppose the programuer specifiss

£(x)=x-sin(x)/{2cos(x)) as the correct answer. The region for con-

siderstion is D= (2,0} and « typical call .o MATCH is
:CN:3,x-sin(x)/(2*cos(x)),1,x%,9:9¢E (RIGHT )F(WRONG).

For any expression F specified by the student, a randca X in the inter-

val [-9,9] is selected and the resulting values of £ and F are campared.
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Suppose the mw.elenﬁ specifies (2¥x*cos(x)-ein(x))/(2*%cos(x)). Sinc§
the 0-1565103 sre empty and £(X)=F(X), the conclusion is £=F and the nuﬁ
PICLS instruction labelled RIGHT i3 executed.
Example 10--Resolvable snd £=F. Let £(x,y)msin(log(x")+abs(y®-1)).
An analysis of f yields six regiona: Dl-[DO,y<—1}; D2-(x>o,-l§v<1];
D3a[x>o.y>l);A D, ={x<0,y<-1}; 35=(x<o.-1<v<1};’ and Dg=(x<0,y>1]).
A typical call to MATCH IS |
LMCW:-3,sin(log(x**2)+abs(y**2-1)), 2,x,0,10,¥,-9,-1:8(L2)F(WRONG)
L2:CN:-4,0,1,,-1,1:5(L3)F(WRONG)
Lj:cn:-u,o.l.y,l,s_ns(Lu)F(WRom)
- LisCN:-4,0,1,x,-10,0:S(L5 )F(WRONG )
L51CN1-k,0,1,¥,-1,1:5(L6)F(WRONG)
1.6:cmu,o,i,y.-lo,,-lzs(nzm)F(wnonc)
~ The execution of this seqﬁcnce calls for a comparison of £ and F in the
regiona.-Dle D2. Dy Dgo g, and D,. Sugpose theh student spscifies
h o sin(log(:é*x))*co's(abs( (y-l)‘*(y*l)))+
. cos(log(x**3/x) *sin(abs((y-1 Js#2+2¥y-2)).
Since £(X,Y)=F(X,Y) in each D,, the failure exit to WRONG should nct
‘occﬁr. Inét'_ead, the success exits to L2, L3,....,L6, RIGHT will be
tgkenQ ~ In statement L1, | k| =3 which tells MATCH to use the f?pec:l.ﬂod
in the argument string and the F from the student buffer. In 12-L6, |
| | 1:| =i, which tells MATCH to use the f and F which already exist in
compiled form. In L1-L5, k<0 which tells MATCH to suppress the un-
resolvability print. In L6, 150 which tells MATCH to print the un-

| resolvability message if the condition oceurred in any of the CN's, Ll-

L6. In "thia example, f and F are resolvable.




Exeample 11. Consider the f(x,y) in Example 10 and suppose the
student specifies

sin(log(x*x))#cos(abs((y-1)*{y+1)))
+cos(log{x*2) Ykgin(y**2-1),

Here f=F on Dl' DB’ Dh’ and D6’ but not on D2 and DS' The second CN in

Exemple 9 would detect the condition £{X,¥)#(X,Y) on D,

ure exit to WRONG would be tuken. Resolvability is not checked on D

and the fail-

2
since F is unconditionally wrong.

Exemple 12-~f=F but Unresolvable. Let F(x)=(x*#h)#*.25 and £(x)m=

abs{x). An analysis of f ylelds the regions {x>0} and (x<0}. On
| both f=F. A typical éall to MATCH would be.
:CN:-3,aba(x),1,x,~10,0:S(L1 )F(WRONG)
L1:CN:k4,0,1,x,0,10:S(RIGHT )F(WRONG ).
In the last CN, prior to an exit to RIGHT, the program prints the con-

ditional success message "I00KS OK. YOUR ANSWER SHOULD REDUCE TO
ABS(X).".

Example 13--f#F and Unresolvable. Let F(x)=exp(in(x)) and £(x)=
In(exp(x)). An analysis of f yields {-w,»} as the single region. A

typical call to MATCH is
sCN:3,1n(exp(x)),1,x,-5,5:S(RIGHT )F{WRORG ).
If X is randomly chosen nonpositive, evaluation of F will break down
and MATCH will exit to WRONG: If X>0, MATCH will print the conditional
success message and exit to RIGHT.
The argument string which is passed to MATCH is processed from
left to right which allows for random assignment of values to be:

functionally dependent on previously assigned values. For example,




suppose we define £(x,y)=1in(abs(sbs(x)¥)}. The four resiona ars Dy=
(20, -w<y<-x}; Dy=(250, -sy<x}; Dya(x<0p-2<y<); and Dyw(x>0,x<y<o].
A typ:lcal call to MATCH to test in each region would be:

:CN:-3, ln(aba(aba(x)-y)).2.::,-9,0.y,-9.-x.8(A)F(W)
AsCN:-4,0,2,%,0,9,y,~9,x:S(B)F(W)
b‘:cu:-h.o,a.x.-g.o.y.-x,gzs(c)r(w)
C:CN:k4,0,2,x,0,9,¥,x,9:S(RIGHT )F(W) |

Table 7. ¢-Tables for Examples 9-13

Example ~ ¢-table for F  mdable for £
9 R | empty ‘ - empty
10 o log,X*X log, X2

ubc.(‘!‘-l)*(Yﬂ) | abs, 2.1
log,X**3/X o
abg, (Y-1)##2+2¥Y-2 |
11 | | Llog,X#*X |  log,Xww2
| ebs, (Y-1)#(Y+1) o abs,YiHk2.]
o log,X¥*2 | | .
12 : BELR WY | ~ sba,X
13 o 1n,X " 1n,exp(X)

Mathematical Justification of the Method

. The small letters z and x will demote variables over C" and R"
re_spectivély. ' The capitel letters Z and X will denote randomly celected
" values of z and x respectively. f and F are considered eqﬁiulonff over
a sef S if, fdr each ploinﬂ p is S, either f(p )=F(p) or both are unde-
| fined. | | |
Theorem 1 [18]. Let g be holomorphic 1n the domain D and suppose

g#0. Then the set V-[zeD.g(z)mO] has 2n-dhcnl.nn¢1 I.obnm measure

zZero.




Definition 1 [18]. Let D be a domain in C". A subset VoD is

said to be thin if for every point z in D, there are an open polydisc
8(z;r)D and a function g holomorphic and not identicslly zero in
3(z;r) éuch that g vanishes identically on WN3(z;r).

Ramark 1 [18]. The set where a nonzero holomorphic function van-
ishes is closed, has no interior, and is thin.

Theorem 2 [18]. Let V be a thin subset of the connected, open
subset DcC”. Then D-V is connected.

Theorem 3 [3]. Let g(z) be analytic in a &omin DeReE and, for
some point (zl,....zk)eb where zJ J+iyg. let g(z) vanish in the k-

dimensional rectangle I xJ-xJ | Qa.yjsyg for jul,...,k. Then g(z)

vanishes in D.
We can now specify properties of g which will place a theoretical
reliability on the method of investigating numerical values of g at ran-

domly selected points. It is possible to generé.lize the elass of '1‘1-

1

functions to a larger class T%, g:c“-oc is in T* if g i3 anelytic on

& region (nonempty, open, connected .set)”!) and analytic in the real
sense on DNR" with properties (1) D is denae.m;l“r(xwén, (2) 3£ L is & non-
empty, open, connected set, so is IAD, and (3) if m denotes the n-
dimensional Lebesgue measure, thenm, (" cD,--zm ((cP-D)i®}=0. .Pro-
perties (1) and (3) serve to insure that a randomly selected value will
fali outside the region of analyticity with probability zero. Pro-
perty (2) serves to eliminate those functions with &-operators. In
‘particular, it rules out branch lines. The clags T¥ has some closure
properties. If g, and g, are in T*, then g,+g,, €&, and 31/82.
(,#0) are in T*. By verifying properties (1), (2), and (3) for

|
i
|
|
|
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1)--1)].!1!29 where Dl and Da are the domains of 8y and 8o it foellowz that
sums and products are in T#., For the quotient, let V-[zzge(z)-ol.
By Remark 1, V is thin amd closed relative to DE, 80 D2=-'v is open, donse
in C°.and, by Theorem 2, alsc connezted. Also, Lﬂ(Da-V) is open, none
empty, and by Theorem 2, comnected. By Theorem 1 and. property (3),
mzn(c"-(na-v)iao. By Theorem 3 and property (3), m( (cn-(ng~v)mi\'¥}.o.
So 1/g,€T* and by the product established above, gl/ Bo€TH.:

Starting with polynomials and the exponentiel function, it is
possible to build the class the T.-functions described in an earlier

1
gsection. Given f and F in T, where £#F, then the two can agree only
on a nowhere dense set of 2n-dimensional Lebesgue measure zero. By
Theprgm 3, they cannot agree on an open subset of R°. Using the ratio
of Lebeague mea#u.rea as the probtbiii.ty, there is a O-probability of

selecting XeR" or ZeC” vhere £ and F have the same valus.

Concluding Rewarks
The dlscussion in this chapter was intended to d_ispla.y both the

.power end the dangers in numerically comparing the student's enswer
. with the correct answer. The use of this matching techni.qué in the
initial experiment in teaching computational mathematics has been
tbtally successful except for rare instances when the method fgiled. to
yield a decisiorl because of unresolvability. However, it was ’a]v.so'
evident that thé student tends to ccnstruct responses which are
closely related to the instructional materisl. For example, if the
correct answer is x, then the student is not likely to arbitrarily

add and subtract the hypertolic cosine of x. This tendency of the

studgnf ‘along with the author's ability to analyze the correct answer
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lends t@'the method a stability which might not be realized in other
qpplicat&ohs. If processing time is no factor and an exact algebraic
algorithm can be applied, it should clearly be used since the finite
precision of a computer can cause failure of a numerieal method.
Although available methods of teating the equivalence of expressions
appear to be scphisticated enough for instructional qpplicat;on in
elementary methematics, extensions are needed for those argd; in which
¢-type operators are frequently ﬁsed. ”

In addition to the theoretical problems coused by,émqparators.
other problems are introduced by variables vhich aaauﬁ@ only integer
values, In the more general case, 1t is desirabie té compare two ex- .
beoosXy ) with F(xb sesesX ) Where x is a vector‘ahd

gi and Py are integer-valued subscript expressions depending on

pressions f(x

integer-valued variables. For the purposes of testing equivalence of
f and F, we treat the members of the array x as independent réﬁl
variables. Dirfficulty arises in uniquely identifying a.mQMber of the
array by considering the associated subscript expression. Since we
have a mapping of integers intc integers, random sampling can easily
yield the wrong conclusion. For example, let f(xk)axk.F(xkfx(ka/a_k/
241)* Then f(xk)-F(xk) for k=1 or 2 and f(xk)#F(xk) elsevhere. Also,
integer-valued variables may occur in the expressions as nonsubscriptis,
e.g. f(xk)=k;xt'1. As a programming technique in tﬁa development of
the camputational mathematics course, a random value 1ls generated for
each subscript variable. The values of the subscript expressions are

rounded to the nearest integer and then reduced modulo the dimension

of the array in order to identify a positidn in the array. The ex-

pressions are then numerically compared as before. This process is
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then repeated with values of the subscript variables inereased by one.
If both numerical comparisons succeed, the expressions are assumed to be
equivalent. In an instructional environment, this method has been
totally successful in spite of its cbvious defects.

A major effort is needcd in the areas of structure and content
analysis. A student's answer may be eorrict from the standpoint of
eqnivulenée but not in a form for economical evaluation. Nesting of
polynomials and forming the sum of numbers sterting with the smallest
and ending with the largest are two simple examples vhere it might be
useful 1f the structure of the stulemt's snswer could be analyzed. If
the student's answer is incorrect, a content analysis is necded to deter-
minz how it differs frah the correct answer. Menacher [2T] proposes
using sequences of numbers to check fpr such properties es synnntry.
eorrect bovndary condit:l.omp and linearity of variables. General
advances in content aﬁalysia w~uld be a step toward detecting the source

of the student's error.
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CHAPTER III
DESIGN AND DEVELOPMENT OF THE CAI CCURSE

General Philosophy and Design Considerations

A vériety’of factors must be considered in the design and con-
struction of CAI course materials. While a clear &pecificatidn of the
ccurse objectives is necessary, one must also consider the capabilities
of the aﬁailable hardware and software and the current practices in
instructional design. If the course is to be of significant duration,
the element of time mayrimpose additional constraints on the sqph;a-
tication of the end product. In particular, a large expenditﬁxe of man
hours is requirzd to develop extensive remedial sequences and multitrack
programs. If the effectiveness of the program is to be tested in a pro-
duction environment, the materials must be organized for ease in
administration. This section is a discussion of how these factors
affected the design and coustruction of the CAI course in computational
mathematics. |

As defined by this .athor, the purpose of a course in cﬁmpuiational
mathematics is to teach the student how to enalyze mathematical problems
and apply numerical methods for an qpprdximate solution. Tyere is a
defihite emphasis on problem solving. In terms of-ideal,séﬁdent per-
formance, the.fbllowing general course opjectives are stated.

1. The student should understand the theoretical developments

" which justify the existence of en algorithm. For a given

problem, the student should determine if the theoretical
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conditions are satisfied prior to applying an algorithm.
2. The student should display proficiency in the méchanics of
| applying an algorithm by working several standard problems.
3. Whenever spplicable. the student should determine a priori
 bounds on the error of approximation by analyzing the error
equation.
k. Whenever applicable, the student should estimate the accuracy
of the solution by interpreting computational results.
A CAI course in this subject matter should attempt to remove any cumber-
some arithmetic or programming requirements which might prevent
achievement of these objectives.

At the outset, the course materials were paralleled with CS L4lk,

“the undergraduate numerical analysis course at Purdue University. The

listed prerequisites for CS 414k were a working knowledge of a computer
language and successful completion of the elementary calculus courses.
The CAI course assumes the elementary calculus but programming is needed
only to the extent that a student must be able to formulate m&thematical
expressions in & Fo. -an notation. The prerequisites for CS 414 have
been recently upgraded to include an elementary course in linear alge-
bra. This change is not reflected in the CAI course.

. Twenty-four CAIVlessons were developed for six general areas of
study: |

1. errors in representaticn of numbers and computation (1 lesson)

2. root-finding methods (10 lessons)

3. solution of linear systems (5 lessons)

k. nulcrical_difrerentiation (2 1essons)
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5. numerical integration (3 lessons)

6. solution of differential equations (3 lessons)
In order to concentrate on the computational and programming difficulties
and, at the same time, maintain the standards of the course objectives,
a typical lesson consists of three modes of instruction. They are
referred to as the tutorial mode, the problem mode, and the investi-
gation mode. These modes are designed to provide the atudent with in-

creésing flexibility in the problem sclving aspects of the course. |

Three subsequent sections of this chapter are devoted to a description
of these modes.

The Student Manual presented in Appendix A was created to handle
vthe'probléms of administering a CAI course 1p a production enyironment.
This'manual prescribes a sysfematié approach to the study of each lesson.
 By following a simple outline, the‘student may complete the various
study activities required in a lesson and gain immediate access to any
seétion of CAI materials. The Student Manual is intended to be self-
explanatory and a further description will not be presented here, o

In the area of software support, PICLS was extended to incorporate
“special routines needed for a more flexible course development. One
 such routine is the function matching program described in Chdpter IT.
‘This involved a compilation subroutine which accepts arithmetic ex-
pressions from a terminél, performs a syntaétic analysis, and outputs.
polish expressions, and an intezpreter subroutine which evaluates the
polish éxpressions.‘ This body of speecilal arithmetic routines served as

a basis for other needed features. In those pértions of the instruction

where the student is expected to formulate a number of mathematical

s Rt A
rd
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expressidns, subroutines were written to store the expressions and re-
trieve them for evaluation at a later point in time. Once the syntax of
an expression has been checked, the author-pfogrammer may save the ex-
pression by a function call sFJ:SAVFCT(N) where N is an integer-valued
variable. Any'of the previously stored expressions can be evaluated
with the numerical result stored in X by the functiorn call :FJ:FCTVAL(N,
X).' The specification of the location X and the tunction number N are
under the internal control of the programmer.

The linear notation and restricted character set of the teletype
terminal had a definite effect on the design and development of the
_course material. Special notation had to be defined and the instruction
had to include a careful explanation of this notation. Examples of
special notation can be found in the lessons on the Newton-Bairstow
method, numerical integration, and differential equations. Combined
with the restrictions placed on the student response language, the de-
velopment of some sections became even more difficuit. For example, the
notation F'X was used for thé partial derivative of F with respect to X.
" If the student is asked to form the total derivative of Y 'aF(X,Y JuX¥n2+Y
with respect to X, then the compiler is equipped to process RN+ X2+
but syntax errors would be found in the answer F'X+F'Y*F., In this case,
the instructional material must clearly request an answer 1n terms of X |
and Y. Multiple choice items were used whenever ié seemed unnatural to |
res.rict the symbols in a mathematicai response. Another 111 effect of
the linear notation was apparent in the programming of lengthy formulas.
For example, expressions such as |

| Y[K+1]=.‘I[K]+H*(F+H*(i';'lx+F'Y*F)/2
+(H#*2 )*(F")D{+2*F"XY*F+F'X*F'Y+I‘"YY*F**2+F*(F'Y)**2) /6)




were time-qansuming to format ia the program and seemed unnatural to

';ead as teletype output. Still another restriction of the téletype
terminal is its lack of graphic cqubilities. The graphs and diagrmmé
normaily used in a conventional classroom were usuaily omitted in the
CAI course. In the judgement of the suthor, the slow typing rate and
thé chargcter orientation of the teletype terminal precluded an effective N
use of charts énd graphs. 'Althodgh it would have been possible to pro-
vide work sheet graphs to assist in the instructional process, the
philosophy of the investigation was to deliberately remain computer-
oriented as opposed to multimedia-orienﬁed.n

. The instructional strategies used in the tutorial mode ﬁére de-
signed on the basis of what could be done in & reasonably well-defined»_‘
manner in spiﬁe of a seemingly lacking technology. »The author firmly
agrees with educators that a carefully plannéd ingtructional design |
is critical to the success of CAI and some of the recommended practices
were followed. The presentatién consists primarily of a linear sequence
but can be readily ekpanded to a multilevel sequence for the express
puﬁpdse of accelerating the better student and décelerating the weaker
. student. For each question pésed to the studént, the strategy is of a
somewhat more sophisticated design and will be explained later in this
chapter. The following reasdns are offered for not designing and im-
plemeﬁting a highly éqphisticated instructional strategy fbr the initiel
systém. | | |

1. Man hour requiréments could be expected to increase at leasf
linearly with the number of tracks.

2. Experience was needed to astablish that the software-hardware
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complex was & workable system.

3. Experience was needed to determine the generdl reaction of
students to CAI for this level and type of mathematical
material in order to establish a basis for easier and more
difficult tracks.

The next three sections of this chapter describe the purposes and
structure of the tutorial mode, the problem mode, and the investigation
mode as they exist in the current system. Excerpts of course materiel
are presented to demonstrate particular concepts. No attempt is made
in this chapter to describe the subject content of the entire body of
course material in computational mathematics. A general description of
the CAI course material in each of thé twenty-five lessons is presented
in Appendix B. For an appreciation of the depth of the student.in-
volvement in each of the three modes, the reader is referred to the

sample teletype output in Appendix D.

Structure of the Tutorial Mode

The tutorial mode is designed for each lesson with the traditional
clussroom in mind. Its purpose is to provide the student with those in-
structional experiences which wopld be faasible in the classroom if
sufficient time and resources were available. In keeping with the
course deectives; the following activities are typical in this mode of
instructicn. -

1. The student is led through the theoretical concepts surrounding

e particular method. The student actively farticipates through

constructed responses to questions or multiple choice items.
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2. The student participates in a varietj of examples and exercises
| which demonstrate particular concepts and which are 1nter-
spersed at apprcpriate places throughout the theeretical
developments. |
3. The student is led through the analysis of & typical problem
| --and sqpplies the mathematicel fbrmulas needed to apply the

\algorithm.

4. The student concentrates on the development and formulation

and ig free from cumbersome arithmetic. This is basically
accamplished by allowing the student’te'con”%ruct responses
which ere equivalent to the correct ansver and left in
unreduced form. |
Prior to beginning the futorial mpde, the student is expected to com-
plete an eutside reading assignment. Since the instruction is designed
for the average student, the faster student may find thls mode to be &
reiiew of the outside reading assignment while the slower student is
expeeted to experience greater difficulty and.benefit more from the
material. All students are exposed to the eame core material since the
presentationiis basically a linear sequence. A skeleton strategy for
individuslization is incorporated at the item level. AL this 1eve1,}the
slowef student is momentarily detained and, hopefully, his eifficulty
‘, will be remedied. The individualization strategy for multiple choice
1temé and coﬁétructed mathematical reSponse items are shown in Figures 1
and 2. Multiple choice items ere handled in a somewhat simplified

manner since the student mnst select one of a predetermined set of

possible answers. Due to a lack of knowledge of how students reapond,




the strategy for handling constructed mathematical responses 1s more

complicated and the anticipation of incorrect answers is a difficult
task. In order tc offset the lack of anticipated answers, the svudent
may at any time type HELP and additional informetion or himts will be
provided. If a student types two successive unanticipated answers,

" the normal procedure is to give him the correct answer along with a
detailed explanation.

The following example of PICLS code involving a constructed -
mathematical response is taken from the tutorial mode of Lesson 2.
 This éode demonstrates the instructional strategy depicted in Figure 2.
L12:TY:ON I=[0,2], WRITE AN EXPRESSICN FOR MAX(ABS(G'(X))) BY

$TY :CHOOSING A PARTICULAR VALUE FOR X FROM I1=[0,2).
Q12:QU:MAX(ABS(G' (X)) )=

‘sAASHELP:S(Q12)
T 6! (X)=-EXp( (L-X)/2)/2. G"(X)=EXP((1-X)/2)/4. SINCE THE EXP

sTY: FUNCTION IS NEVER O, G"(X) IS NEVER ZERO, THAT IS, G'(X) HAS
STY: NO RELATIVE EXTREME POINTS. HENCE, THE MAXIMIM ON I=(0,2]
STY: MUST OCCUR AT ONE OF THE ENDPOINTS. TRY AGAIN.
| §CH :3,EXP(1/2)/2,0:5(113)
$TY:0K
tWN:-3,EXP(-1/2)/2,0:5(Q12) |
STY: NO. YOU USED THE WRONG ENDPOINT OF I=[0,2]. TRY AGAIN.
sWN:-3,-EXP(-1/2)/2,0:3(Q12) ,
TY: NO. YOU USED THE WRONG ENDPOINT OF I=[0,2]. ALSO, THE
STY: ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITIVE: TRY AGAIN.
tWN:-3,-EXP(1/2)/2,0:5(Q12) !
sTY: NO. THE ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITIVE.
:TY: TRY AGAIN OR TYPE HELP.
sUN: NO. TRY AGAIN OR TYPE HELP.
STY :MAX(ABS(G' (X)))=
tNO: .
sTY: No. Max(aBS(G*(X))) ON [0,2] OCCURS AT X=0. THE ANSWER IS
$TY MAX (ABS(G' (X)) )=EXP(1/2)/2.
:RD :PRESS gnmmn) TO CONTINUE.
L13:TY:50 ABS(G'(X))< 1 ON I=(0,2]. SINCE ALL CONDITIONS OF THE LINEAR
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Prior to the execution of this block of instruction, the student has
derived the iteration function G(X)=EXP((1-X)/2). In this block of in-
struction, the student is to ascertain that | G'(X) | < 1 on the interval
[0,2] by actually computing mex | G'(X) | . The correct answer is speci-
fied as EXP(1/2)/2 while EXP(-1/2)/2, -EXP(-1/2)/2, and -EXP(1/2)/2 are
anticipated incorrect responses. If the student answers correctly, he
advances to the new material beginning at leobel Ll3. If the student
gives two successive unanticipated answers, he is given the informaticn
following the cperation :NO:. He then begins the new meteriel by press-
ing the Return Key. If the student enters a syntactically incorrect
expression, the subroutine MATCH (see Chapter II) prints an sppropriate
error message. Depending on the student, the twenty-five PICLS instruc-
tions listed above can create several veriations of teletype output.
The following dialogue between the student and the program illustrates
one possibility. At those points where a student must respond, PICLS
types a # sign at the left margin. | '
ON I=[0,2], WRITE AN EXPRESSION FOR MAX(ABS(G'(X))) BY
CHOOSING A PARTICULAR VALUE FOR X FROM I=[0,2].
. MAX(aBS(G'(X)))=
#1/2
NO. TRY AGAIN OR TYPE HELP.
MAX(ABS(G'(X)))=
# QB*M('QS) R ‘
NO. YOU USED THE WRONG ENDPOINT OF I={0,2]. TRY AGAIN.
MAX (ABS(G'(X)))= ,
# o S¥EXP (1 )%% .5

OK
- S0 ABS(G'(X))<1 ON I=[0,2]. SINCE ALL CONDITIONS OF THE LINEAR

M ST 0 o YW A
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Another possibility is illustrated by the following dialogue.

MAX(ABS(G* (X)) )=

6 (X)=-EXP((1-X)/2)/2. G"(X)wBXP((1-X)/2)/4. SINCE EHE EXP
FUNCTION IS NEVER O, G"(X) IS NEVER ZERO, THAT IS, G’(X) HAS
NO RELATIVE EXTREME POINTS. HENCE, THE MAXIMUM ON 1=[0,2]
MUST OCCUR AT ONE OF THE ENDPOINTS. TRY AGAIN.
MAX (ABS(G' (X)))=
#0

NO. TRY AGAIN OR TYPE HELP.
MAX(ABS(G' (X)) )=
# -EXP(1)/2
NO. MAX(ABS(G*(X))) on [0,2] OCCURS AT X=0. THE ANSWER IS
MAX(ABS(G' (X)) )=EXP(1/2)/2. » |
PRESS (RETURN) TO CONTINUE .
#

A third possibility which also illustrates a syntex error is the fol-
lowing dialogue.
HAX{ABS(G' (X)))=
# BXP(.5(/2
ILLEGAL CHARACTER OR COMBINATION  5(
. TYPE A CORRECT EXPRESBION
 # EXP(.5)/2
OK
The reader is referred to Appendix D for the teletypé, output of a com-
plete tutorial mode. - Unlike the problem and investigation modes, the

process of instructiocn in the tutor;’ﬁl mode is under the direction of

‘the computer program.

Structure of the Problem Mode
The problem mode is designed to provide ‘the student with the in-
structional experience derived from solving several t@ical problens.
‘In keeping with the objectives of the course, the student is reqﬁ:lred to

1. analyze the problems anc¢ construct the necessary formulas for

.\.

v
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application of an algorithm,

2. input his formulas and define values for any parameters

assocliated with the algorithm, and

5. direct the computer to a numerical solution.

A major characteristic of this modé is the complete freedom from
bookkeeping chores normelly associated:with programming. Once the
student has correctly formulated the necessary equationsg, the computer
assumes the béokkeeping'and computational. work.' If the éamﬁutgtion is
open-ended (e.g. iterative methods or extrapolation to the limit), the
student is provided with one logical step of the computational resulits
esch time he pushes the Return Key. The student terminates this type
of problem by typing STOP. If the ?*mﬁutation is dependent on param-
eters supplied by the student (e.g. initial estimates for iterative
methods or the step-size for numerical differentiation, integfation,
and the solution of differential equations), the student always has the
option of redefining the parameters and repeating the calculation with-
out :etyping the equations. Thus, & problem may be easily reworked in
several ways. |

Unlike the tutorial mode, the problem mode does not assign an
active teaching function to the computer. Instead, it calls for
gpecific fbrmnlqs needed to apply an algorithm to a problem and the
student must display his ability to work computationsl problems by
supplying the c;rrect formulas. Except for isolated places, the student
cannot call for HELP. In the event of an incorrect answer, remedial
material is practically nonexistent. Where it does exist, it appears

ae a statement of fact and is not intended to remedy a misunderstanding
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of concepts. Thus, the student must either supply the correct equations
or terminate the protlem. If the student nust terminate & problem, he is
expected to review his output from the tutorial mode in order %o remedy
his difficulty. This overall philosophy 13 employed in an atvempt to
establish independence of outside helyp. Exéept for YES/NO opticns made
available to the student for reformulating a problem, the problem mode
consists entirely of constructed reaponses. The “ypicel strategy for

processing 8 single response is shown in Figure 3.

Ask for
Information

o

__No ( Wait fer
Response k Response

Responge
' | \l Error Messsge
Type "TRY | Compile _Syntax _! {s Printed by
AGAIN' Expression) Error VATCH

K
T No fStudent Expressi@

@thor Expreasion?

fYes

Exit to
Print 'OK° ™ Next Item

Figure 3. Problem Mode Strategy for Constructed Responses

Aruitoxt provided by Eic:

ERIC




49

The interested reader may consult Appendix D for the teletype out-
put of & complete problem mode. The following example of PICLS code
deals with the trapezoidal rule and is taken from the problem mode of

Lesson 18.

PROBL:TY:LET F(X)=SQRT(X)+1/SQRT(X). WE WISH TC AFPROXIMATE
STY : INTEGRAL(F(X ) ;[1,2])
¢ :SPENIFY THE ERROR IN TERMS OF H AND Z.
:ST:A=1
¢ST:B=2
P1:QU:E(H)=
sAA :STOP
R1:TY :SELECT ANOTHFER PROBLEM.:(Ql)
:CN:3,(-H+2)%(3-2)/(SQRT (245 )*48),2,H,-3,3,%,0,1.5:5(P2)
:TY:0K. E(H)=(-H12)*(3-2)/(48%212.5)
sUN: TRY AGAIN. F'(X)=.5*%(Xx*(-1/2)-x*(-3/2)).
oy L E(H )=
sUN: TRY AGAIN. F"(X)=.25%(3-X)/(X*2.5).
$TY :E(H)=
:UN: TRY AGAIN.:(Pl)
sNO:
P2:TY:ANALYTICALLY DETERMINE AN H SO MAX(ABS(E(H))<.5*10%(-2) ON [1,2].
DO THIS BY USING MAX(3-X), MIN(L48*z+2.5) OoN [1,2].
Ustl=
STOP:S(R1)
B,H,l,H,-9,9= (Ph')
T sH=ANSWER
H ‘LT 0:5(P3)
H MUST BE POSITIVE.
H 'GT' .2%SQRT(3)+.02:5(P3)
YOUR CHOICE OF H IS TOO LARGE.
H 'LT' .2%SQRT(3)-.02:S(P3)
YOUR CHOICE OF H IS TOO SMALL.

2
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=.2%SQRT(3) '
OUTPUT(1,H, 29H OK. ACTUALLY, H=.2%SQRT(3)=,E23.15))
THIS H YIELDS THE NUMBER OF SUBDIVISIONC
UtN=
STOP:S(R1)
3,(B-A)/H,0:8(PT)
N:-3,INT((B-A)/H),0:5(PT)
=3, INT((B-A)/H)+1,0:S(W8)
tN=3

-
e o8 o8 oo ..? e o0 oo

%éé%anunnn

&
O

NO. THE SPACING OF POINTS FOR THE TRAPEZOIDAL RULE
IS ALWAYS H=(B-A)/N. N, OF COURSE, IS CHOSEN TO BE AN
INTEGER. : (P6)

EEEEEEEL
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PT:ST:N=INT{ (B=-A)/H)+1

:FJ:0UTPUT(1,N, (38 WE CHOOSE THE FIRST LARGER INTEGER N=,F2.0))
W8:CN:3,2,1,Z,-9,9:({P8) ‘

P8:NO:

:TY:WRITE THE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISIONS.
P17:QU:H= :
sAA:STOP:S(R1)

«Cil:3,(B-A)/N,0:5(P18)

sUN: NO., TRY AGAIN.:{(P17)

P18:NO: |

ST :H=(B-A)/N

:ST:F[0])=2

:ST:F[1]=3.5/SQRT(3)

:ST:F[2]=8/SGRT(2.5)

:87:F[3])=3/3QRT(2)

sST:TI=(F[0)+2*(F[1 +F[2] )+F[3])/6

P19:QU:I0=

sAA:STOP:S(R1)

sCN:3,TT,0:8(F20) | |

sUN: TRAPEZOIDAL RULE WITH POUR POINTS SINCE N+l=k.:(P19)
P20:FJ:0UTPUT(1,TT,(8H OK. IT=,E23.15))

sST:PTw*( 5*SQRT(2)-4)/3

:FJ:OUTPUT(1, TP, (40 THE TRUE VALUE IS INTEGRAL(F(X);[1,2])=,E23.15))

The following teletype output represents one possible successful
path through the above code.

LET P(X)=SQRT(X)+1/SQRT(X). WE WISH TO APPROXIMATE
INTEGRAL(F(X);[1,2])

SPE()!IFY THE ERROR IN TERMS OF H AND Z.

E(H)=

#-(Ht2)*%(3-2)/(SQRT(2+5 )*48)

OK. E(H)=(-Ht2)*(3-2)/(48%z2+2.5)

ANALYTICALLY DETERMINE AN H SO MAX(ABS(E(H)))<.5*10t(-2) ON [1,2].
DO THIS BY USING MAX(3-X), MIN(4B*2t2.5) ON [i,2].

H=

#(3/25 )¢5 <

OX. ACTUALLY, H=.2¥SQRT(3)=  .346410161513TTLE+OO

THIS H YIELDS THE NUMBER OF SUBDIVISIONS

N=

#3 -

WRITE THE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISIONS.
Hea |
#1/3

IT=

#(H/2)y¢(Flol+2x*(F[L1+F[2] +F[3])

oX. IT= .204809241064024E+01

THE TRUE VALUE IS INTEGRAL(F(X);[1,2])= .204737854124363E+01
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Prior to entering the problem mode, the student is expected to com-
Plete the tutorial mode and then consult the Student Manual for a state-
ment of the problems. In this way, the student can leaﬁe the terminal
in order to analyze and formulate the equations and return at a later

time to input his formulas and obtain a numerical sclution.

Structure of the Investigation Mode

The philosophy of this mode differs from the other two in that the
caiputer does not assume an active teaching role and the student is not
required to demonstrate previously acquired knowledge. It is designed
to releuse the student from the constraints of the other modes and pro-
vide facilities for the rapid solution of prdblemé originated by the
student. Structuraliy, the investigation mode is similar to the problem
mode. The student must formulate equations in order to apply en al-
gorithm and, in turn, the computer assumes the usual bookkeeping chores
associated with normal programming and provides numerical results. As
formulas are input, they are4checked only for syntax errors and saved for
later evaluation. The following dialogue is a possible excerpt from the
investigation mode of Lesson 7. It shows how a student may approximate
the numerical sclution to a system of equations.

DEFINE THE ITERATION EQUATIONS
X[K+1)=
#1#SIN(X[K] )+.2%c0s(Y[K])
Y(K+1]=
#.1%C0S(X[K] )-.2¢SIN(Y[K])
DEFINE THE STARTING VALUES
X[O].-.: '
#1/5
Y[0)=
#0
EACH TIME THE (RETURN) KEY IS PUSHED, TWO ITERATIONS WILL BE

PRINTED. TYPE 'STOP' TO TERMINATE THE ITERATION.
#




K X[x] Y[K] K X(K] Y(K]
1  .21986693E+00 .9B006658E-01 2  .22085021E+00  .T8022681E-O1
3 .22129TWBE+00  .81982U4TE-01 4  .22127783E+00  .81182220%:-01
5  .2212889LE+00  .81342065E-01 6  .22125T43E+00  .815103TTE-OL
7 .22128T80E+00 .8131730TE-01 8 .221287T3E+00 .813.6C1TE-O1

#8TOP

DO YOU WISH TO TRY A DIPFERENT (X[0]1,Y[0])?

#NO

DO YOU WISH TO REDEFINE THE ITERATION EQUATIONS?

#

Since the problems originate with the ctudent, he nust determine if his
formulation is correct ard he must interpret the numerical results.

The investigation mode is optional and may be used by the student

at any time. Prior to beginning an investigation mode, the student is

expected to consult the Student Manuel for a foimat descriptien of the

required formulas. Hopefully, the tutorial and problem modes provide a

source of problems for investigation. In any event, s ggesced problems
are stated in the Student Manual. The reader is referred to Apperdix D

for the teletype ocutput of a complete investigation mode.

Special Program Features

In selected problem ard investigation modes, the student is given

the option of using partial precision arithmetic in the computation as
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an aid in the study of loss of significance or the propogation of round-

off error. In other places, the computer is used to generate a viriually

" inexhaustible supply of problems and the student has the option of re-

questing such a problem from the computer. For both features, the

et it
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computer arpears to be an ideal medium and several applications are
discussed in this section.

Partial precision 1s optionally available 4o the student in the
problem-investigation mode of Lesson B, in the investigation mode of
Lesson 11, and in the problem-investigation mode of Lesson 13. In each
of the three mudes, the student msy specify a precision of p=l, 6, or &
decimal digits. Full single precision is assumed in Lesson B if the
student specitries p=15. The invernal effect is to round each normalized
floating number in the (p+l)-st digit and retein the first p digits. If
x is aa input or the resul’ of an arithmetic¢ operation +,-, ,/, and x is
not zero, it is reduced to a p-significant decimal digit normalized
flouting point number by the following algorithm:

nwioglol x |
(m1iem>o0

m«-< mtl if m < O and m is an integer

m otherwise

\
ke p-Int(m)

xe Int(x:10%+.5 - -‘-%-l-)/lok

Since the mantissa of a floating point number consists of 48 binary bits,
P is restricted to the range 1<p<l5. Since the'internal arithmetic is
binary, the slgorithm provides an approximate p-digit decimal calculator.
In the study of ill-conditioned linear systems, the following al-
gorithm was used to generate the n x n coefficient matrix A in the
problem-investigation mode of Lesson 13.
1. Select an integer i at random so that 1<i<n.

2. For each j#i and k=l,...,n, randomly select aJke(-9.9).

MERIC
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3,  For k=1l,...,i-1, randomly select rke(-9,9). If r, =0 for all

k
i=
4. Compute the multipliers =r2/ T} I“e fcr pal Lel
y 4p p L k . p peoos .b o
k=l

k, repeat this step.

5. Compute the ith row as a "nearly" linear combinetion of the

first i-1 rows by a1k=[1-(.l)k+1]8k for k=1,...,n where
fif

Sk= @Papk .
p=l.

6. If eny row has less than two nonzero elements, restart at

Step 2.

For this class of matrices, one can bound the normalized determinant by

|norm|A|| < .0202. Denote the ik cofactor of A by (-1)***|A,, | and

define B 2 .‘}k)*. Then
kel

Hoag, il o Iall | nom ||l
- n 2 2 *
ﬁl---ﬂn ﬁi 'rr (ﬂd - "Jk)} ﬂi
J=1
I

Expanding on the ith row,

l A' = 2 ('1)1+k aik ' Aik l - i ("1)1‘.* Sk[l-(.l)k+1] ' Aik'

k=1 k=1
1+k+l k+l
k=)

and

e T LA = % e
-t
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4 I8 | 1A, 1l .
'noml A”S i(.l)k“l kB ..-.Bik 5 Bl (.l)k."'ll sk' .
k=1 1l n i

k+l
—;—-i s |
k=1

Using
Bi’(i [1-(.1)“*1]‘2s12{)* > [2-(.1)%] (isﬁ)’-‘»t
k=l k=1
and
| im)“”l 5 | < (iml)“*l 2 s2)%,
k=l k=l k=l
we have

|nomm|<<}: (o - 4 i,

.99
This cless of matrices is conditicned to significantly perturb the true

solution if the student elects to use 4-digit accuracy. Fven for p=6 or
8, the concept of an ill-conditioned system is usually demonstrated.

The student may observe the difference in the results by using several
values for p. As an example of the above discussion, the following

dialogue may take place in the problem-investigation mode of Lesson 13.
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PROBLEM 6.

STATE THE DESIRED DIMENSION OF THE A-MATRIX (2,3,4,NONE). N=
#3

DO ¥OU WISH TO DEFINE YOUR OWN A-MATRIX AND B-VECTOR?
#NO

164-(1t,6,8)=N0. SIGNIFICANT FIGURES FOR INTERNAL COMPUTATIONS. M=
#

THE A-MATRIX AND B-VECTOR ARE NOW BEING SETUP --- WAIT.
NOW READY FOR GAUSSIAN ELIMINATION
THE CURRENT AUGMENTED MATRIX IS
.185938E+01  A4343LTE+OL  .563152E+01  .386653E+02
«315264E+01 -.33L4289E+01 .568190E+01 -.34hLTBE+01
.2T3138E+01 =-.100216E+01 .566600E+01  .945906E+01
#DO YOU WISH TO INTERCHANGE ROWS?
YES
SPECIFY I AND J FOR INTERCHANGE OF ITH AND JTH ROWS.
I=
#1
J=
#2
THE CURRENT AUGMENTED MATRIX IS
.315264E+01 -.334280E+01  .568190E+01 -.34LL4T8E+0L
.185938E+01  U343UTE+CGL  .565152E+01  .386653E+02
,2T3138E+01 -.100216E+C1  .566600E+01  .945906E+0L
DO YOU WISH TO INTERCHANGE ROWS?
#¥0
WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED.
THE CURRENT AUGMENTED MATRIX IS
.315264E+01 -.334280E+01 .568190E+01 -.344LT8E+01l

0. .631506E+0].  .228042E+01  .4OA9TOE+02
0. .18940SE+0L  .T43320E+00  .124L436E+02
DO YOU WISH TO INTERCHANGE ROWS?
#NO

WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED.
THE CURRENT AUGMENTED MATRIX IS
.315264E+01 -.334280E+01  .568190E+01 -.34LL4T8E+01

0. .63150€E+01  .228C42E+01  .LO6QTOR+02
0. 0. .593630E-01  .23T7500E+00
DO YOU WANT NORM(DET(A))?

#YES

NORM(DET(A) )= ~-.34543433114T931E-02

DO YOU WANT THE SOLUTION FOR X BY BACK-SUBSTITUTION?
#YES

X 3= . 400081E+01

X2= 4999 T1E+0L

X1l= -.30017TE+OL

DO YOU WANT THE RESIDUALS?
#YES | |

(Student directs computer to a solution of the error system)

E3z  -.T46691E-03

E2= .269649E-03

El= .163118E-02

|




5T

THE IMPROVED SOLUTION IS
X3 « 4OOO0BE+0L

X2= . 4199993E+01

Xl= = « 30001L4E+01

DO YOU WANT THE RESIDUALS?

Another example of computer supplied probiems can be found in
Lguson 10 dealing with the Newton-Bairstow method. In the problem meode,
third or fourth degree polynomials with random complex roots are gener-
ated for the student by the following method:

1. Randomly select ¢, P, A, B, and ¢ from the interval (-9,9) for

the complex root a+fi and the factor Bx+C or Ax2+Bx+c.

2. Randomly select the degree n=3 or kL.

3. If n=3, compute the coefficients 8y for the polynomial

p(x)=a.3x3+a2x2+a.lx+ao=-(xa-aoac+a2+52)(Bx+c). If n=k, compute the

coefficients a, for the polynomial

p(x )=aaxu+a3x3+a2x2+alx+a0= (x2-20m+a2+[32 )( AxP+BxeC ).
The student is provided with the coefficients a, and is told that p(x)
has a coﬁp],ex root in the rectanglé with vertices (Int(c)+l,Int(B)+l).
The student amust estimate a guadratic factor of p(x), define thc recur-
sion formulas for the Newton-Bairstow method, and direct the computer

through successive iterations to find the quadratic factor xa-aat+a2+se.

Concluding Remarks

The previous sections of this chapter are intended to describe the
structnre of the »(':AI course as it was designed and implemented. Through-
ocut the programming and experimentation stages, it became increasingly
evident that the design constraints were too stringent. Aa expanded or
" modified version of the system is needed to provide a programmer, as well

as the students, with more flexibility. This section proposes some
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extensions or chunges which can be made within the fraﬁework of exiating
technology.

One ares which should be expanded deals with broadening the base of
mathematical communicatior. between the student and the computer system.
This is particularly important sincg the construction of 1nstructionul4
materials and the manner in which questions ase posed to the student
oftten refiect the limitetions placed on the student in his construction
of answers. Subsequent versions should have an expended form of re-
sponse language wkicn is partially controlled by the proérammer. Some
suggested features are listed here. |

| 1. The programmer should have the cepability of defining new
functions and making them available to the student. Function
names shomld not be restricted to alphebetic and numeric
characters. For example, at selected places it would be con- |
venient to define o funetion F“(ARG) and allow the student to
use F"(x) in his answer. Another function which might bu uge-
ful to the student is SUM{G[I];I=1,N). Given F(X)=SIN(X),
x[0)=1, and X[I+1)-X[I]j=H=.2, the student would probably dis-
plsy as much knowledge by constructing the answer (H/2)*(smv(1)
+8TN(2)+2#SUM(SIN(X[T];7=1,4))) as he would in constructing
(H/2)*(SIN(1)+2*(SIN(1.2)+SIN(1.h)+Sm'(l@6)+SIN(1.8))+sm(2)).
A greeter freedom in constructing responses may inqpire the
student %o concentrate more on the concepts involved.

2. The student should have.the capability of defining his own

 functions. Given the greater freeddm suggested above 1in con-

structing responses, the student would no doubt begin to use
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unarticipated function names. As an example, suppose
F(x)=(1-1/x) and the author failed to internally define the
function F'(x)=1/x+2. If the student constructs the answer
X[k]-F(X(K])/F'(X{K]), the system should interact with the

stvdent by asking for & new answer or a definition of F'(ARG).

3« In order to offgset some of the difficulties in determining
equivalence of expressions, the programmer should have the
capability of enabling or disabling standard functions. For
example, if the programmer wants tn disallow the use of the
ARCSIN function, he would turn on a disable flag. At a later
point, lie may wish to enable ARCSIN.

L. The student should be able to escape the constraints of any
mode by entering a computation mode where he could construct
and execute prograns.

The incorporation of these and similar features requires careful study
and planning since a more sopaisticated process of matching expressions
may be required.

The strategy for processing an individual constructed response (see ]

Figure 2) can be made more effective through a careful study of the

student records from the initial experimentQ Where little knowledge was
initially available on how students respond, it is now possible to begin
to enlarge the list of anticipated incorrect responses. Items which are
 particu1arly difficult may be changed to allow rore than one call for
HELP. Unnecessary items may be deletcd fiom the instructional sequence.
With some feel for the difficulty of the in;fruction in the tute-

rial modes; it 1s now possible to begin the construction of multilevel

Full Tt Provided by ERIC.
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seqnences. Existing technology, however, does not guarantee an effec-
tive method for choosing or altering the level of instruction for any
given student. Exsminations can be designed which will allow a student
to bypass a section of the instruction or test a student upon completion
of a lesson.

Somewhat mere definite changes are prescribed for some of the prob-
lem nmodes in order to require a deeper involvement on the part of the
student. The current strategy in a problem mode is to ask the student
for the equations and parameters in the order they are needed to define
the computational procedure. This ordered call for equations tends to
serve as an overall prompt or hint, contrary to the philosophy of this
mode. A new approach would'require the student to work from a basic set
of symbols and define the computational procedure in his own way. Prob-
lem 3 of the problem mode in Lesson 21 is chosen here to illustrate
these concepts. The student must apply Taylor algerithms of orders 1,
2, and 3 to approximate y(2) given y'=-xy+l/y2.y(l)-1. One possible
gtudent formulation 12 presented in tbe following dialogue.

PROBLEM 3. (CF. CONTE, EX. 6.3-1)
LET Y'=F(X,Y)=-X*Y+1/(Y+2), [A,B]=[1,2], AND ¥(1)=1.
SPECIFY THE PARTIAL DERIVATIVES IN TERMS OF X AND Y.
- FX=F'X=
#-Y
FY=F'Y=
#f X2y YHH#3
FXX=F"XX=
#0Q
FYY=F"YY=
#6/Yaw)
FXY=F"XY=
#=1 ' | :
SPECIFY THE DESIRED ORDER CF THE TAYLOR ALGORITHM (1,2,3,NONE).

ORDER K=
#3
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THE TAYLOR ALGORITHM IS Y(I+1]=Y[I]+H*T(X[I],Y[I])
YOU HAVE CHOSEN ORDER 3.
DEFINE T(X,Y) IN TERMS OF H;X, AND Y. IF YOU WISH, YOU MAY
| U.?E Ti-)IE SYMBOLS F, FX, FY, FXX, FYY, AND FXY.
?(X,Y
# P ( (=Y-+FYRF ) /2+H% (-2 P+ FYYHF*#2-Y¥FY+FRFY*#2) /6 )
SPECIFY N, THE NUMBER OF INTEGRATION STEPS FROM A TO B. H WILL BE
COMPUTED AS H=(B-A)/N. CHOORE N<10l.
N=
#

A typical dialogue using the proposed strategy would be

| PROBLEM 3. Y°=F(x,y)-x*Y+1/(*z+2), [A,Bl=[1,2], AND ¥(1)=1.

SPECIFY THE DESIRED ORDER OF THE TAYLOR ALGORITHM.
ORDER K=
#3
- FORMULATE 'IﬁE COMPUTATIONAL PROCEDURE Y[ I+1)=¥[IJ+H#1{X[I] ,Y[I])
BY DEFINING AN APPROPRIATE SEQUENCE OF FUNCTIONS (FX, ¥,
FXX ,FXY,F{Y,T).
#WHICH FUNCTION DO YOU WISH TO DEFINE?
FY
DEFINE FY(X,Y)=
#-X-2/YH%3
#WHICH FUNCTION DO YOU WISH TO DEFINE?
FYY

. DEFINE FYY{X Y)=

#6/ Yo, |
#wnxcn FUNCTION DO YOU WISH TO DEFINE?

T

DEFINE T(X,Y)=
AT { (~Y4TIRT )/ 241 - D P+ FYYR I YR FY+FRFY#%2) /6)
FORMULATION IS CORRECT.
' SPECIFY N, THE ---

(ete.)

Using the proposed strategy, t“he student can determine his own path to &

. correct formulation of & problem. In the above example, one student may

choose to define T(X,Y) completely in terms of X and Y and avoid defin-
ing the partial derivatives. Another student may wish to define all

partial 'derivatives prior to defining T. If, at any stage .. the student
types an expression which uses a function not previously formulated, the

expression would not be accepted. Each formula entered by the student

\ . ’ - ,‘._.‘-4:?—;-*_—,—%.._.,.1' E
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can be checked in exactly the same way as it is done in the oxisting
system. |

No strategy changes are proposed for the investigation modes. In
programaing these modes, the major difficulty arises in %trying to antici-
pate the needs of the student. From the author's point of view, the

| investigation modes satisfy the purposes for which they are constructed.
Their actual usefulness, in an instructional environment, is yet to be
determired. This will be pointed out agein in Chapter IV;

Finally, the ¢xamples of computer supplied problems demonitrate
that this concept can be used in many places in a CAI course in computa-
tional mathematics. Techniéally fea.s:lb]_.e, their overall usefulness
renains to be ‘m:plored. ‘
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CHAPTER IV
EXPERIMENTAL RESULTS AND GENERAL CONCLUSIONS

The Purpose and General History of the Experiment

In keeping with the general objJectives of this investigation, this
experiment using CAI for cqmputational mathematics was concerned with
three basic questions:

1. How do students react to the use of CAI for computational

mathematics? |

2. What expenditure in time and dollars is required by the

teaching metb>ds described in Chapter III?
3, How effective are these methods in teaching computational
mathematics? |
Although cbmplete answérs to these questions would be desirable, the
purpose of this experiment wes to examine initial trends and indications.
A forty-five item questionnaire was designed to provide some answers

to the first question. This questionnaire is presentgd in Appendix C.

~ In particular, the items on the qnestionniire vere grouped into three

general categories:

1. an evaluation of the structure of the instructionel progrem snd

the overall and relative merits of the tutorial mode, problem
mode and livestigation mode,
2. an evaluation of the teletype terminal, and

3. reactions or opinions to miscellaneous items of interest to




the author.

In order to obtain an estimate of the expenditure of resources,
records were maintained on the developmental time requirements of the
author-programmer, the terminal, time requirements of the students, and
the compuier central processor and reripheral processor time requirements.
For this application, the central processor time consists primarily of
the execution time required by the PICLS interpreter when it resides as
& program in the central memory of the CDC 6500 computer. The peripheral

processor time consists primarily of the time required by auxiliary

processors to service the t2rminal and to transfer PICLS course materials

from disk storage to central memory for processing by the PICLS inter-

preter.

Estimates on the effectiveness of CAI are provided by a deseriptive

comparison of the scores on examinations administered to both the CAI

and conventional students. The examinations in Appendix C were designed
to test the student on |
l. his knowledge of selected theoretical concepts,
2. his ability to use theory in an analysis §f problems,
3. his ability to qpply algorithms, and
4. his ability to interpret numerical results.
; Initlal trends and indications, provided by the experiment, will be
presented in detail in later sections of this chepter. | |
| Six students were randomly selectad from a CS 41h class for the
Fall, 1969, CAI experiment. From sn operational point of view, the ex-
periment was hot without difficulties. Hardward problems on the CDC 6500
combined with software problems of interfacing PICLS with the inter-
active features of the MACE operating system required an initial




curtallment of the available terminal hours. Extrz work on weekends and
at odd hours was necessary to compensate for system brenkdowna_and to
keqp pace ﬁith the conventional class. Three of the CAI students vol-
unteered to continue in a program of this type and thie other three were
returned to the conventional group. As the stability of the hardware-
softwvare complex gradually improved, a graduate student volunteer was
added to the CAI group. For convenience of discussion and purposes of
analysis, the original three CAI studentz w’ .l be referred to by the
numbers 34, 35, and 36 and collectively as CAI-1={34,35,36). The grad-
uate volunteer will be referred to as student 37 and the entire collec-
tion of CAI students wil). be referred to as CAI-2={34,35,36,37).

For CAI-1, the duration of the experiment was approximately sleven
weeké for the completion of twenty-five lessons. This coincided wiih
twenty-nine fifty minute conventional lectures, three examinations, and
two holiday periods. For student 57, the duration: of the experiment
was the amount of time required to cover computer lessons 7-23 after the
first examination.

Studeats 36 and 37 were regularly scheduled for three two-hour
sessions each week while students 34 and 35 were scheduled for two three-
hour sessions each w:ek. Makeup hours were available qpoﬂ request during
evenings and on weekends.

The CAL students did not attend the conventional lectures but they
were required to take the examinations with the conventional class.

Upon completion of the experiment, the students filled out a question-
naire and returned to the conventional classroom fbr'the duration of the

semestey.




Characteristics of the CAI and Conventional Groups

Many veariables may be involved in accurately predicting student
performance and it is not clear which play a dominant role or which are
applicable in predicting the performance of CAI students. The author
felt that two available measures might be used to predict achievement in
a computational methematics course:

1. the previous number of semester hours in mathematics which

might .:easure the student's maturity in mathematics, and

2. the cumulative gradepoint in previous mathematics courses

which might measure a host of variables such as IQ, &ptitude,
motivation, etc.
The information on previous mathematics hours and gradepoint vas gathered |
from a questionnaire for each of the thirty-seven students who completed
the CS 41h course. The average grade point (gp) and mathematics hours
(mh) are listed in Table 8 for the following classes of students:

TOTAL={1,2,...,37)}=total population

C*={1,2,...,33}=0original conventional group

C=C*-{13,14,29)=conventional students who tock all examinations

CAI-1=(34,35,36)=original CAI students

CAI-2=(34,35,36,3T)= total CAI students
The gp and mh were rounded to the nearest one-tenth of a point. Compar-
isons of CAI-1 end CAI-2 were made with C and subsets of C rather than
C* since three students in C* failed to toke an examination. Rather
than countiag the score oi zero on the migsed examination for students
13, 14, and 29, these students were eliminated from consideration.

Table 8 shows that CAI-1 had a comparatively low gp and mh. This




[

67

 was the result of two effects. First, the lower & and mh students were
“he ones to volunteer for retention in the experiment. Secondly, the
usual drop out of conventional students was concentrated in the low gp

and mh range, thereby increasing the average gp and mh of the remaining

~ conventional group C.

Table 8. Mathematics Background for Various Groups

TOTAL Cc#* ¢ CAI-1 CAI-2
No. Students 37 33 30 3 '’
Average gp 4.8 4.9 4.9 4.1 '
Average mh 18.5 18.3 19.0 13.7 20.3

The relative rank of each student is given for mh in Tablé 9 and . ?
& in Table 10. An examination of the mh and gp figures in Tebles 8-10
for the individual members and group averages indicates several things:
l. CAI-l cannot be expected to compare favorably with C.
2. CAI-2 should compare more favorably with C than CAI-1 compares
with C.

3. In terms of both gp and mh, student 37 appears comparable with

student 10, but not with any other members of the class.

4. The deletion of (13,1%4,29) from C* to form C increased the mh
of the conventional group.
5. Neither CAI-1 nor CAI-2 are totally representative of C.
This last point is further substantiated by investigating the correla-
tion between mh and gp:
T'h x Gp(CAI-2)=.81

rmh x EP(C )3012
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In CAI-E; gp and mh are highly correlated. This is not true in C. In
vievw of the loss of randomness in the sample and a lack of middle to
'qpper gp and mh students in the sample, a close descriptive analysis of

the results was conducted rather than a statistical analysis.

An Analysis of Student Performances

Three examinations totalling twenty-five items were administered to
both the CAY students and conventional students. These examinations
covered the meterials in lessons 1-6, 7-15, and 16-23. The score and
relative rank of each student on each examination 1s available for in-
spection in Tables 21-23 of Appendix C. In addition, the cumulative
average over three examinations is given in Table 24 of Appendix C. The
individual performances of the members of CAI-2 and the group average:
are shown in Table 11. The average for CAI-1 was lower than the average

for C as might be expected since CAI-1 had a much lower average mh and

gp. The consistently high performance of student 37 explains the increase
in CAI-2 over CAI-l. The average score for CAI-2 was still below that of |

C, but the substantially higher gp for C may account for this difference.

in score. One very noticeable point was the uniform decline from their
course average for the members of CAI-1 on the third examination. Later
remarks may help to explain this decline.

The examinatian of the final average performances vwould be of
jnterest in determining the actusl importance of wh &nd gr. Working
with the data from Tebles 9 and 10 and using the individual course
averages from Tabi2 24 as the performance (P), the following correlation
coefficients were computed: r. _ p(Cl=.dlly r. p(CAI-2)=.99;

r@ ® P(C )306,4 and r@ x P(CAI-Q)'.S]..




T0
Teble 11. Examination Scores for Various Groups
Group Exam 1 Exam 2 Exam 3 Average |
(34) B 6 K2 8 |
- {35) 68 70 3k o7 |
{563 56 5k 47 52 3
(37) 9 5 87 9 o
CAI-1 5 63 51 53
CAI-2 6k T0 53 62 |
C - 67 67 67 67

The indicat.on here is that gp was an important predictor of perfoimance

in both C and CAI-2 while mh did not appear important in C. The mh

effect on the performance of CAI-2 registered astoundingly high. However,

the relative importance of gp and mh. in CAI-2 is concealed by
Tep x mh(CAI-2)=.81 as reported in the previous section.

In order to look more closely at the effects of mh and gp on the
final performence, the linear regression equation !

P=.1765mh+14. kogp-T.161 | | |

was computed from the mh, gp, and performance data P for the conventional
students C. The standard deviation from regression is 11.8 and the
correlation between P and £ is.6i. The mh and gp for the various CAI
groups in Table 11 were extracted from Tables 8, 9, and 10 in order to

~ predict the expected performance £ of the CAI students if they had

attended the conventional class. These results appear in Table 12.

Student 34 performed well below his predicted value, but within one




standard deviation. Student 35 performed about as predicted. Student
36 performed better than his predicted value, but within one standard
deviation. Student 37 performed more then one standard deviation above
his predicted value. Taken collectively, CAI-1 and CAI-2 performed
approximately as predicted by the regression equation for C.

Considering each of the twenty-five items on the examinations in
Appendix ¢, CAI-1 scored better than C on seven items and CAI-2 scored
better than C on twelve items with one tie. The relative difference
between each of the item scores for CAI-2 and C was computed by dividing
the absolute difference by the total possible points. This relative
difference exceeded .2 for eight items with six in favor of C and two in
favor of CAI-2. These items and corresponding scores for CAI-1l, CAI-2,
and C are given in Table 13. The table indicates that the CAI-1 group
had difficulty with some of the theory and a high score by student 37
was not enough to keep the relative difference less than .2. This is
not unexpected, considering the lower gp and mh of CAI-1.

Table 12. Predicted and Actusl Performence of the CAI Students

Greup Ave mh Ave gp i i __I:-L
(34) 13 b.h 58.56 48.00  -10.56
(35) 14 bk 58.73 5733 - 1.40
{36) 14 3.6 47.20 52.53  + 5.13
(37} ) 5.2 Th. 86 90.67  +15.81

CAI-1 13.7 h.1 54.36 52.56 - 1.80

CAI-2 20.5 b.b 59.89 62.08  + 2.19
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Table 15. Exam Items with Large Group Differences

CAI-1 CAI-2 c Total Major Purpose
Exam Item _Ave Ave Ave Possible of Problem

1 2b 3.3 4.8 7.9 10 Apply Theory
1l 3 o 5 11.1 20 Apply Theory
1 ha 8.3 8.8 5.2 10 Interpret Results
2 la 9 10.5 13.9 15 Understand Theory
2 kb 10 10 7.9 10 Apply Algorithm
3 le v 1.5 3.7 5 Understand Théory
3 1b 0 3.8 9.7 15 Understand Theory
3 2b 1.7 3.3 6.5 10 Analyze Problem

Since ngither CAI-1 nor CAI-2 appeared to be a good representation
of C, it seemed likely thut comparisons with subsets of C would yield
more information. For each CAI student, subsets of C were formed to
collect those students who hed similar mh and/or gp characteristics. An
average of each subset was then computed to form the average individual
C-representatives for each CAI student. Depending on the mh or gp tol-
erance allowed, each student could have numerous C-representatives.
Selected C~representatives for a given mh and gp tolerance wers then
averaged over tae CAi students to form the average group C-representative
to be compared with the CTAI-1 group and the CAI-2 group.

Denote gpk(N) as the subset of all students in C which differ from
N in CAI-2 by at most .lk gradepoints. For example, from Table 10, it
follows that gp,(35)=(3,17,20,30,33) is the set of all students in C who
differ from {35} by at most .1 gradepoints.

In a simila: manner, denote

mh, (N) as the set of all students in C who differ from N in CAI-2 by at
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most k mathematics hours. Thus, from Table 9, mh3(55)=[5,h,6,7,8,9,15,
16,18,19,22,26,28,30} is the set of all students in C who differ from
{35) by at most three mathemutics hours. Intersections of subsets were
formed to control both mathematics hours and gradepoint, e.g.
&p; (35)Nmh, (35)=(5,30} .

For each N in CAI-2=(34,35,36,3T}, the following twelve subsets of
C were formed: gpk(N) for k=0,1,2,3, nhk(N) for k=0,1,2,3, gpk(N)ﬂnhj(N)
for k=1,2,3, and gps(N)nnha(N). Since C is finite, twenty-five of the
forty-eight total subsets consist of only one student from C while both
gpl(37)ﬂlh5(57) and-gp2(37)ﬂuh3(37) are empty. For the forty-six non-
empty sets, the average gp and mh were computed to form the character-
istics of the C-representatives for each CAI student. The examination
scores were also averaged to form the performance data of the C-rep-
resentatives. In this manner, each CAI-1l student has twelve individual
C-representatives characterized by &Pos EP1» 8Pos gp3, mho, mhl, mha,
MhB. gplﬂth. gpaﬂmhﬁ, gp3ﬂmh5. and ngHmhz. For example, gpl(SS) is a
Cfrepresentative of student 35 with average gp=h.4, average mh=l9,
average exam 1l score=59, average exam 2 score=55, average exam 3 score=
57, and course average=(5%+55+57)/3=57. Student 37 has only ten in-
dividual C-representatives becsuse of two empty intersections. To form
the group C-representatives of CAI-1l and CAI-2, the individuel C-
representative information was averaged over N=3k4, 35, 36 and N=3k, 35,
36',37' respectively. The results appear in T s 1k and 15. For ex-
ample, the mh average of ng(CAI-l) in Table 1k was computed as 17.h
by summing the mh averages of gp3(3h). gp3(35). and gp3(36) and
dividing the total by three. Similar cﬁmpﬁtations were performed

for the gp and examination scores.
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Table 1k shows twelve group C-representations to be compared with CAI-l.
For each representative in Table 14, the number of students is actually
the number of contributing students from the corresponding C-~

representatives for the members of CAI-l. Duplicate students were not

counited, For example, there were five students contributing to mha(CAI-l)

since mh2(3h)=(3,9,16] and mh2(55)=mh2(36)=[8,22,3,9,16]. Six conven-
tional students 1, 2, 5, 10, 24, and 32, did not affect the figures in
Table 14. Similerly, Table 15 shows the date for the ten group C-
representations formed by averaging the respective individual C-
representative data for students 34, 35, 26, and 37. Three conventional
students 2, 24, and 32, did not affect the figures in Table 15. As
previously mentioned, students 13, 14, and 29 were excluded from both
tables. |
An inspection of Table 14 reveals several trends. First, the pre-

viously mentioned nnifbrm decline of CAI-1l on examination three was par-
alleled only by a decline from the course average in the mh,, mhl, and
mh2 representatives. The other representatives showed no large decline.
The indication is that students with a weak background in mathematics
scored below their course average on the theoretical materials covering
numerical differentiaticn and integration and differential equations.
Controlling only the gp, there is a maximum difference in P of seven
points between CAI-1 and the corresponding C-representativez, the edge
going to the conventlonal students. The C-representatives also record
a stronger mh background, the difference ranging from 2.5 to 3.7. The
maximum difference occurs at the gp3 level where the C-representative
| has 3.7 more math hours and & slightly higher gradepoint. The major

effect appears to be the gradepoint which is in keeping with the value
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Table 14. Comparison of CAI-1 with Approximate Representatives in C.
No. of mh g Exam 1 Exam 2 Exam 3 Course Predicted
Group Students Ave Ave Ave Ave Ave Ave (P) |
CAI-1 3 13.7 k.1 5S4 63 b1 53 54 |
&, 2 16.0 k4.1 56 53 60 56 55 |
&0y 6 16.7 4.2 55 61 54 57 56 |
&) 8 17.0 k4.1 55 61 52 56 55 |
&p; 12 17.4 4.2 59 67T 55 60 56 §
mhe 2 13.7 4.7 57 65 50 57 63 |
mh, 3 13.3 4.6 62 66 ko 59 62 |
mh,, 5 13.8 4.6 63 T2 55 63 62 |
mh 1k 15.4 L.9 64 68 63 65 66 |
& an3 3 13.8 4.2 i 68 54 57 56 |
gplﬂmh3 3 13.8 k.2 49 68 51, 57 56 |
@§0m2 2 13.3 k.o 45 70 52 56 56 ‘
&p3toh; 3 13.8 k.2 i9 68 54 57 56

Table 15. Comparison of CAI-2 with Approximate Representatives in C.

No. of mh gp Exam ) Exam 2 Exam 3 Course Predicted
Group Students Ave Ave  Ave Ave Ave Ave (P)

CAI-2 b 20.2 4.4 64 70 53 62 60
&, 3 16.3 Lk.4 58 56 66 60 60
&0y 11 17.0 L4.4 58 6L 61 61 60
er; 15 17.0 4.4 59 64 57 60 60
&z 23 17.6 4.5 62 69 60 64 61 |
mhy 3 20.3 4.0 65 69 62 65 67 3
mh, b 20.0 L A 69 69 61 66 66 -
~mhy 6 20.4 k.Y T0 yn 66 70 67 |
mﬁﬁn 15 21.6 50 T T T T 69 | h
gp - ar ar a» —arar - - e - - - - -
3
@gmh) 3 20.0 k5 56 72 6k 64 61 |
gp,ﬂth N 20.4 4.5 59 TL 65 €5 61 |
C 30 19.0 4.9 67 67 67 67 67

f from the regression equation and previously reported correlations.

Controlling only the mh, the gp of the C-representation rises to 4.9 as

compared to 4.1 for CAI-1. The result is & sizable difference in scores
as expected. Controlling both the gp and mh, the difference does not Bt

exceed four points.




Table 15 reveals some of these same trends. By controlling only

the gp, the difference in scores never exceeds two points. By control-
ling only the mh, larger differences are detected, but this attributed
to a significant increase in the gp for the C-representatives. By con=-
trolling both the mh and gp, the difference does not exceed three points
with the edge going to the conventional students.

Inspection of Tables 9 and 10 shows that students 10 and 37 were
the only two who ranked exceptionally high in both mathematics hours and
gradepoint. Table 16 shows the comparison of CAI student 37 with student
10 and elso with the class of all conventional graiuate students G={8,10}.
No striking differences appear in the performances, and the indicetion is

that graduate students performed very well by either method of instruc-

tion.
Table 16. Performence at the Graduate Level
mh &p Exam 1 Exam 2 Exam 3 Course  Predjcted

Student Ave Ave Ave Ave Ave Ave (P) P

8 6 5.3 89 92 86 89 T2

10 b 5.5 89 80. 98 89 T9
(8,10} 28 5.4 89 86 92 89 76

37 ko 5.2 92 93 87 91 75

Although the danger in dealing with small groups of students is
realized, the results of the initial experiment indicate that CAI
students ani conventional students with equal mh and gp performed equally

well on examinations.




Observations of the Proctor } ;

During the course of the experiment, the author conducted casual
discussions with each CAI student. Some items of interest are noted in
this section and may be pertinent in explaining the performance of the
CAI students. Judgements concerning the overall motivation of o
student were based on observed fluctuations in enthusiasm {especially
during periods of excessive hardware failur- ) and in persistence in
lgarning the concepts (especially during lessons involving difficult
subject matter).

Student 34 had noticeable difficulty with “he level of the course

- material. This was further camplicated by czontinual machine failures

and the scudent tended to hurry thrbugh the lessons. The student

realized his difficulties and, at times; repeated sections of the
tutorial mode in order to gain a better grasp of the concepts. This
student worked about half of the problems in the problem modes and then
hurried to the nexé lesson. The investigation modes were seldom used.
The student had extra-curricular activities which interfered with all of

his studies. In particular, he stated that he did not have time to

study at all for the first examination. His motivation seemed to be
average and remained constant throughout the experiment.

Student 35 found the course material to be challenging, but ex-
perienced some serious difficulties in the last eight lessons. He

methodically went through the tutorial mddes, but he easily gave up

when the questions seemed difficult. He learned to put in successive

garbage answers when tie material was very difficult in order to ex-

tract the correct answer from the system. He worked all problems in
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the problem modes but almost never tried the investigation modes. His
overall motivation seemed to be about average but tended to fluctuate
with the difficulty of the lessona.

Student 36 found the course to be extremely difficult, but was per-
éistent in his attempts to learn the material. He worked all problems
in the prbblem modes anq mos? suggested problems in the investigetion
modes. His rate of progress was slow and he of.2n came in during
evening hours to do additicnel work. He realized his weak mathematical
“background, but attempted to offset this with a high motivatior to im-
prove. His motivation, howevef, fluctuated with the number of hardware
failures.

Student 37 had no cbservable problems. He seemed to work through
the tutorial and problem modes with a scientific curiosity. He tried
some of his own problems in selected investigation modes. Highly
motivated, he found some sectfons challenging and others easy, but
never found the meterisl too difficult.

From general observations and a study of the stndent records, the
following conclusions are tentatively offered:

1. The student operates at a higher efficiency over three two-hour

blocks §f CAI than over two three-hour blocks.

2. Machine failures are highly disruptive and deter learning.

‘5. The intrinsic motivation of a CAI student may be the major
factor in determining the difference between expected and
actual performance.

4. Considering the uniform decline of the CAI-1 students on the

last examination, several effects may be present. As
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previously mentioned, the C-representatives of CAI-1 based on
mho,.mhl, and mh2 also showed a decline. It is possible that
a stronger mathematics background is needed to master the
course material in lessons 18-23. Since this was the latter
portion of the course, it is also possible that an early
Hawthorne effect was beginning to disappear. Not to be dis-
counted is the possibility that lessons 18-23 are poorly
designed and/or the material is of sufficient theoretical
depth to warrant other approaches to teaching the material.
The author did experience difficulty in designing instructional
sequences for long and involved theoreticel developments.
Student participation was difficult to envision and, at timéa,

even seemed unnatural.

Additional study is needed to substantiate or repudiate all of these
clainms.

Results of the Questionnaire

The forty-five item questionnaire displayed in Appendix C was de-
signed to determine the student's reaction to various fcatures of the
system. The items on the questionnaire were categorized as follows:

l. Determine the student's reaction to the program structure of

the tutorial, problem, and investigation modes--items 2-7, 13,
15, 17-18, 20, 22-24, 27-33, 35-37, and 39. |

2. Determine the hardware restrictions of the teletype terminal--

items 8, 10-12, 16, 19, and LO.

3., Determine miscellaneous reactions--items 1, 9, 14, 21, 25-26,

34, 38, and 41-bS. |
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The results of the questionnairé were more or less interpreted in terms
of ideal con&itions. A distribution of responses is given in Table 17.
The weights -, O, and + are to be interpreted in the following manner:
+ means that all students responded favorably to CAI.
0 means thet all students took a neutral stand.
(O or +) means that at least one student responded favorably, at
least one took a neutral stand, and no students took a negative
stand.

A similar interpretation is placed on - and (- or O) where negative

means an unfavorable response to CAI. Questionable items are those
vhich could nct be interpreted because either some students respondaed
favorably while others responded negatively or the item has no + or -
interpretation. The individual responses of each student to each item
is presented in Table 20 of Appendix C. The discussion here is con-
cerned with responses which have questionable interpretation or are
negatively oriented.

The author interpreted the respcases to items 30 and 45 as
negatively oriented. Three students responded with a 15-30 minute 1
estimete of preparation time for the tutorial mode. Although this may i
be typical of most students, more time is needed to complete most of
the outside reading assignments. Student 34 reported an average of
30-45 minutes for preparation. In general, the studenﬁé relied heavily

f

on the tutorial mode for an extensive exposure to the course material

and did not digest the outside reading prior to the tutorial mode.

The students generally egreed that the investigation mode did not pro-

I

‘vide an outlet for solving their own problems. However, only two

students made any serious attempt to use the investigation modes and
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only one student made extensive use of them. It would appear that a {
deeper rooted problem exists. Possibly the students did not have extra !

time or they were not motivated to define their own problems.

' Table 17. Distribution of Responses on the Questionnaire

Item
Type - =-or0 O 0 or + + 2

Program 30 None None 3,13,23,31,35 2,4,17,24,27, 5,6,7,15,18,
29,32,33,36,  20,22,28,37

39
Hdwre. None None None None 8,11 10,12,16,19
Misc. None 45 None 21,34,42 9,14,25,41 1,26,38,40,
Totals 1 1 0 8 16 19

The responses to nineteen items ved a questionable interpretation.
Some oflthe items were designed to extiact information. On others, the
students were not in general agreement. In attempting to determine the
most useful of the three instructional modes in items 5-7, the opinions
were divided. Three students voted to retain the tutorial mode but drop
the investigation mode if necessar&. However, two of these three
students seldom used the investigation mode. Student 36 believed the é
problem and investigation modes to be the most useful. Of the four
students, however. student 36 was the only one to extensively use the

investigation mode. There were differing opinions on the difficulty of

the linear notation imposed by the teletype terminal and distractions of
a noisy typing mechanism. One student felt that he had to concentrate

on avoiding syntax errors when typing responses. Two students said that

the linear notaticn made the materisl more difficult to read and cne felt

that this difficulty was intensified in the last eight lessons on
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differentiation, integration, and differential eguations. One student
seezel bothered by the noise of the typing mechanism.

Specific items regarding course effectiveness resulted in some vari-
ation in opinion. Two students felt that half the time they could have
gained more from the conventional classroom. It is interesting to note
that the (.e: Tormance of both of these students were well chove the level
predicted by the regression equation in Table 12. Three students agreed
that deviations from the textbcok made the material more difficult while
Studant 37 had¢ no difficulty. The tutorial modes seldom clerified the
outside reading sssignments for Student 36. Student 37 found himsel.f ]
trying to get through the material rather then learning it. This same ]
student said ne did not need graphic displays to help hkim understand the
material. Since this student scored high on all examinations, the
implication is that he understood the material prior to working through
the tutorial mode and that he had very little to gain from CAI. On
occasions, he guessed at the answer. The other three studeants seldom
guessed and felt that a graphic display would have helped. Students
were divided on a self-evaluation of their cwn knowledge and their rela-

tive performence on examinations.

The Beonomics of CAI
In terms of author-progrsmmer preparation time, close to one hundred
men hours were required to design and implement & lesson and complete thé
associated tasks. These figures were derived by keeping approximate |
records of the man hour expenditures for Lessons B and 13-23. Averaging

the time over twelve lessons, the following breakdown is reported:




83

‘1. initial design (17 hours)
fé‘spéciﬁca.tion of lesson objectives
| -;speciﬁcation ot mbt’oj:ics and order of presentation
-=design of exauplea &1d exercises
--lpeciﬁcaticﬁ of format and design of prob].cu for the prodb-
1.& mode and investigation mode
2. coding (24 hours)

3. program checkout (27 hovzs)
-=-data preparation .
-.-de'bugglng by batch processing
—-debugging by £inal teletype runs | | |
--initial revision of the material , o Ek

k. ‘adn:lnistratim, of trial experiment with the lesson (3 hours)
-~proctor the expeﬂ!nent |
~-=correct errors |

5. documentation (3 hours )
--creation of a.ppropriate pages for the Student Manual
-=-creaticn of the lesson on magnetic tape

6. 20% estimate overhead (19 hours) o 3
-=consultation . |
.--prepa.ra.tion of quostionm:lre and examimtions

--correction of errors after the Fall, 1969, experiment
. --unsccounted for agtivities

Throughout the experiment, PICLS m:lﬁtnihed & record of the atudent
teruinal time, the central preea;qnt.'tiue. the paripheral processor time,
and ‘the totx) number of atudent responses. These ﬂmrei vere

EKC
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accumulated and averaged over the number of participating students and

are presented in Table 18. Some records were lost due to machine failure
and- the average reflects usage for only those students for whom records
were availeble. Thus, the average figures are based only on available
information. 'In those cases where records were lost for all students,
the corresponding items are so labelled. If a student falled to use an
investigatign’mode, a zero time was recorded for him. Since the invest-
igation modes were not used by some students, a low average figure
appears'in most entries of the investigation mode columns. In order to
determine the average requirements for & lesson, figures for the three
modes weré accumulated column-wise and divided by the number df numerical
entries in each column. The final averages show that “he typical student
spent seventy-eight minutes in a tutorial mode, requiring 22.87 seconds
of central processor time and 80.94 seconds of peripheral processor time.
During this time, the student responded seventy-five times or about once
every minute. It should be noted that a response is recorded for each
depression of the Return key. Depending on the area of activiiy, this
may or may not imply an actual constructed answer. It does, however,
imply that the computer had toc service the request from the terminal gnd
that PICLS had to retrieve and prccess program statements from a disk
file. .

" Based on the current Purdue charges of $275 for each hour of cené
tral processing time and $55 for each hour of peiiﬁhergl processor time.'
the average computing cost for the typical tutorial mode was (275(22.87)+
55(80,9h))/3600 or $2.98. Additionsl calculations appear in Table 19.

The prices quoted above are for internal projects. At commercial rates,

the costs would be apprcximately doubled.

T T e e
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Table 19. JComputing Costs for CAI

Cost for AdJjusted to Adjusted to
Average Use 60 Minutes 50 Minutes
Tutorial Mode | 2.98 2.29 1.91
Problem Mode 6.77 10.69 8.91
Investigation Mode 1.36 ~10.20 8.50
All Modes 11.11 5.38 4. 48

Table 19 shows that the problem-solving features of the problem
and 1nvestigation modes come at a high premiumL In these modes,
arithmetic instructions are abundant and entire blocks of instructions
may be executed for a single response in order to provide the studént
with computational results. In terms of central processing time, an
interpretive system heavily'penalizes the application of computational

mathematics. A direct comparison of the problem and investigation

modes with the conventional student's use of the computer for homework

assignments was not possible since the conventicnal students were not
required to program all of the numerical methods. Assuming equal
etfectiveness‘of the problem-solving facilities of the CAI system and
the conventional me@ppd of programming, one must eventﬁally determiﬁe
if the eltminafion of student programming and debugging in CAI systems
is worth the difference in cost.

Thé bagic figure for ccaparison is $2.98 since the tutorial mode
is the porticu of the CAI program vhich was designed es a parallel to
the conventional classroom. It should be emphasized that this dollar
figure will very among installations depending on the computer charges

needed to run a nonprofit shop. It does, however, appear that an

interactive CAI system on a computer which is saturated with background




Jobsyields a cost which is not totally unreasonable. The $2.98 for

seventy-eight minutes of student terminal time is adjusted in Table 19
to fifty end sixty minutes to provide a better feel for its magnitude.
These figures, however, do not include the charges for the terminal and
telephone lines. Using $66.00/month rental for the terminal, $2.00/
month for the line charges, and estimating two hundred usable terminal
hours each month, the hourly cost is $.3k and the total hardware cost
becanes $2.63/hour. This figure does not include course developmental
costs and proctoring costs. |

Using the student time and hourly cost, certain ratios were com-
puted. In the following computations, only twen’y-four CAI lessons were
assumed. Lesson A was eliminated from consideration since it teaches
the use of the CAI system and the material is not included in the
conventional classroom. Its overall effect diminishes as the number
of CAI lessons increase. Denote

Tcai= student»tenminal time required for twenty-four tutorial

modes=(78)(24)=1872 minutes=31.2 hours
Tc = student classroom time used to cover the equ’valent material
(twenty-nine fifty-minute lectures)=(50)(29)=1450 minutes
=24.17 hours.

The ratio of student time is R1=Tcai/Tc=l'29 whichMyegns that CAI re-
quired about 30% more student time. Based on siudent éime and equal
performance P%Pc=Pcai’the time effectiveness ratio is given by

El =(Pcai/Tcai)/(Pc/Tc)=l/Rl=’77
which means that CAI was about three-fourths as efficient ac the con-

ventiqnal method. Denote




0,44~ Other costs/hour attributed to developing the CAI course and
| proctoring students
ccai=rtotal hourly costs for CAI

= 2765+ocai
Ce = cost of teachihg one conventional student for one hour
The Purdue figure for Cc was not available but Kopstein and Seidel [23]
estimate the 1970-T1 national average to be $1.40 for higher education.
This estimate is based on cost data prior to 1965 and on a steady annual
increment of about 10%. The figure for C.qq Connot be computed since
' ocai is not known, but the hardware cost alone will exceed the allow-
alble bhreak even point. The ratio of total instruction cost was
Ra=31(2‘63+°ca1)/1"‘0’2"‘2"('92)0 eni, Dased on equal performance, the
cost effectiveness ratio is E2=(1/R2)<.h2. The cost of CAI was more

than 2.4 times the cost of the conventional method and less than 42%

as efficient. o

e
In terms of economica, the conventional method of instruction had

a clear cut advantage. However, the total hardware costs can be
significantly reduced by designing an instructional system with con- _
centration on efficiency of operation. Central processor time can be
significantly reduced by avoiding an interpretive mode of execution.
Peripheral processor time can be reduced by avoiding éxcessive accesses
of peripheral storage. In the future, a major effort will be needed 4o

find ways to reduce Ocai particularly the developmental costs.
]




CHAPTER V
GENERAL FINDINGS AND RECOMMENDATIONS

Specific details have already been presented in the concluding re-
marks of Chapters II and III and in the various sections of Chapter IV.
In this section, an overall summary of the findings is presented along
with some recommendations for extending the research. The following
points summarize the major findings of this investigation:

1. The feasibility of using CAI for a major portion of the course
material has been tentatively established by constructing the
program and observing that the average student's terminal be-
havior on examinations is about the same as representative con-
ventional students. Although the author's manner of pre-
sentation might be questioned, the level of difficulty parallels
that of the conventional classroom.

2. General difficulty was experienced by the author in designing
instruction for the involved theoretical portions of the course
dealing with the derivation of numerical methods. In these
aréas, it was difficult tc provide for detailed and meaningful
student participation and, at the same time, restrict the in-
struction to & time period which is reasonably comparable to
that of conventional presentation. Successful approaches de-
vend on the ingenuity, experience, and dedication of the in-

structor. The mathematical maturity of the student seems to
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have a significant bearing on the success of the instruction.

The student's participation is further hampered by the re-

stricted base of communication which was implemented in the
system. | E
3. The problem-solving aspects, such as exercises, ekamples, and
problems appear natural in this method of instruction.
4. The approximation method described in Chapter II for determining
equivalence of expressions was totally successful for %his
application. It provides the student with & great deal of
flexibility in constructing responses within the syntax of’the

languege. The author considers such flexibility to be an im-

portant element in the success of CAI in mathematics. It re-

laxes the réstrictiqps on communication and allows the student
to concentrate on concepts. Since it appears externally as an

underlying intelligence, the student has confidence in its

e e

pover to distinguish between correct and incorrect responses.

The syntax of the language was limited in this develupment and
recommendations for extensions are detailed in Chapters II and
III. A restricted syntax also limits the author's flexibility

in designing instructional materiels.

5. Although teletype terminals were used in this development, they
imposed restrictions on both the author and the student. 1In
.some cases, & graphic display is needed to describe the
geometry . * a numerical method. Even though the students were

of a divided opinion on the effects of a linear notation, the

author is of the opinion that it is awkward and difficult to




read. Using a natural notation on a CRT display probably

would not solve the problems of entering expressions through
a keyboard. In particular, the governing rules for forming
nested superscripts and subscripts might be complicated.

6. Stability ..t the hardware-software complex is essential in any
producticn effort. System failures are disappcinting to the
students. They disrupt the student's concentration and waste
his time. In the experiment reported in this paper, it is not
known how systems failures may have affected the performance
on examinations. Repeated failures in a large scale production
effort could have a negative social reaction. Backup systems |

may be necessary.

T. The design and deveicpment of instructional material have some

inherent problems. A massive effort in terms of asuthor-
programmer time is needed to produce e single-t.ack linear
program. This is particularly true in computational mathematics

where the definition of varisbles ‘and assignment of numerical

values to variables require a sizable number of supporting
arithmetic statements which produce no teletype output. A
large number of statements is needed to provide processing
support for a single constructed mathematical :response. This
is true even though an erpression may be checked by a single
call to the program described in Chapter ITI. Figure 2 and
.assoclated program examples in Chepter III demonstrate this
large requirement. Because of these requirements, the overall

development failed to accomplish the secondary objectives of

Aruitoxt provided by Eic:

y ERIC




T e 2

o g I T
Sl S

10.

| 0

implementing examinations for student evaluation and imple-
mentinq remedial tracks. Future large-scale developments
should ﬁe conducted by teams of individuals, representing
qpeeialigts in instructional de.lgn and specialists in subject'
matter céntent. Prior to implementation, the project should be

revieved by several institutions in order to gain wide scale

acceptance and avoid immediate obsolescence.

The problem and investigation modes provide the student with. !ga,f¢

facilities for rapidly solving computational problems. In this

respect, the author's approach is considered successful. As

pointed out in Chapter III, a revision of the strategy in some

of the problem modes may be necessary to provide more challengégi

to the student. Partial precision and computer-generated
problems appear to be useful features in computational mathe-
matics but a careful study has not been conducted. These
features place heavier demands on the central processor and the
cost of instruction rises.

The operational costs for CAI are higher than conventional

costs but they are not cormp.etely out of range. A carefully

“designed system could conceivably reduce the computing power

costs of the tutorial mode to the cost of the conventional

classroom. A major effort is needed to find ways to reduce
the developmental costs.

A detailed inspection of student scores indicates that CAI

students and conventional students with similar mathematics

background and methomatics gradepoint will, on the average,
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perform equally well.

11. The general student reaction to CAI is positive,
It should be emphasized that conclusions 9-11 are based on a small,
sample of student histories, exemination scores, and the results of a
questionnaire. Because the sample was small and because the experiment
was‘plagued with operatioﬁal problems, the results have to %. con-
sidered tentative. |

The results of the initial experiment opens the way for follow-up
experiments o. a varying nature. First, several experiments vwaich in-
volve a wide range of students should be conducted to verify tiie initial
- results and stabilize the cost estimates. Some experiments should be
conducted without the problem and investigation modes. The CAI students
would have problem assignments ldentical to those of the conventional
class. In this way, the value of the stand-alone tutorial mode and the
effects oflthe problem mode can be determined. Finally, the tutorial
modes should be reconstructed to contain extensive remedisl work, exam-
inations, and multiple tracks of instruction. Wherever appropriate, the
problem modes should be revised in the menner described at the end of
Chapter III. The communication features should be expande! in the
- menner described in Chapters II and III. All useful expe:iments con- |
ducted up to that point should then bc repeated on the extended system.

Of a scmewhat different nature, several areas of investigation be-
gin to stem from the current system. The existing course may be sup-

plemented by a graphic display controlled partially by the student and

partially by the program. As the student progresses through the

material, the program can maintain carefully labelled diagrams or
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graphs which are pertinent to the discussion. ‘The student may request

graphs of his own functions. Hopefully, this would offset some dis-

advantages of a teletype terminal and lead to deeper understanding of

the concepts. Another possibility might be to integrate the current

system with the cpnve@%ional classroom under the control of a in-

structional management system. Various possibilities can be investigated.

From a broader point of view, the results of research in other
areas are needsd to c¢create a sophisticated instructional system. A CAI
system‘should have information retrieval capabilities where a student
can ask questions and obtain meaningful information. Ideally, the

student should be able to communicate in some reasonable subset of a
natural language. Character recogiition is needed for handwritten
communication and specch gynthesis for verbal éommunication. In
mathematical systems, the various algorithms of formula mﬁntpulation

such as symbolic different.ation and integration can be usefully employed.

Some standard procedures are desperately needed for distinguishing be-

tween conceptual errors and algebraic errors. If thege features are

combined with advances in learning theory and teaching techniques, we

will have some basic tools for building an instructional system.

- smmnrts s 5

e RS A SR B N AT T




LIST OF REFERENCES




Y v y - g
B eetenaatad '
R —————————t-t -

| . R ,,_._Gm,;.,_‘.._..1 ,

95

LIST OF REFERENCES

1. Avner, R. A. and Tenczor, P., The Tutor Manual, CERL Report X-k,
Computer-Based Education Research Laboratory, University of
Tllinois, January, 1969.

2. Balough, R. L., Computer~-Assisted Instruction, N68-13897, Clearing-
house for Scientific and Technical Information, U. S. Department
of Commerce, January, 1968.

3. Bochner, 5. and Martin, W. T., Several Complex Variables, Princeton
University Press, 1948.

i, Bunderson, C. V. and Gerry, R., Preparing Educational Material for
Computer-Assisted Instruction (mimeographed report), Computer- B
Assisted Instruction Laboratory, University of Texas, February, 1967.

L SIS B

5. Bunderson, C. V., Dunham, J. L. and Jennings, E., The Role of
Computer-Assisted Instruction in University Education, Laboratory
sz Computer-Assisted Instruction, University of Texas, October,
1967.

6. Caviress, B. F., On Canonical Forms and Simplification (doctoral , |
dissertation), Carnegie-Mellon University, May, 1968. ‘

T. Charp, S. and Wye, R. E., Computer-Assisted Instruction in a Large |
School System, Journal of Educational Data Processing, Vol. 6,
No. 1, 1968-69, pp. 28-39,

8. Childs, J. W., A Set of Procedures for the Planning of Instruction,
.~ Educational Technology, Vel. VIII, No. 16, 1968, pp. T-1k.

9. Conte, S. D., F2cmentary Numerical Analysis, McGraw-Hill, Inc., 1
New York, 1965.

10. Entelek Corporation, Computer-Assisted Instruction Guide, Entelek : |
Corporation, Newburyport, Massachusetts, 1968. }

i

|

11. PFein, L., Thoughts cn Computer-Based Instruction, Journal of
Educational Data Processing, Vol. 4, No. 4, 1967, pp. 2u8-253.

120 Fei °ld, So Lo &nd Frye, Co Ho, User's Guide tO PLANIT, m"
305;7000/01, System Development Corporation, October, 1966.




Aruitoxt provided by Eic:

ERIC

15.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

2h.

25.

26,

96

Feldhusen, J, F. and Szabo, M., A Review of Developments in Com-
puter-Assisted Instruction, Educational Technology, Vol. IX, No. 9,

1969, pp. 32-39.

Feldhusen, J. F. and Szabo, M., The Advent of the Educational
Heart Transplant, Computer-Assisted Instruction: A Brief Review
of Research, Contemporary Education, Vol. XL, No. 5, April, 1969,
Pr» 265-2Th. ,

Feurzeig, W. and Bobrow, D. CQ, MENTOR, A Ccamputer Language for
Programmed Discourse (mimeographed report), Bolt, Beranek, and
Newman, Inc., 1965.

Frre, C. H., CAI Languages: Capabilities and Applications, Data-
mation, September, 1968, pp. 34-37.

Gear, C. W., Computer Organization and Programming, McGraw-Hill, D
Inc., 1969. ,

Gunning, R. C. and Rossi, H., Analytic Functions of Several Com-
plex Variabies, Prentice-Hall, Inc., 1965.

Hansen; D. N. and Dick, W., Semiannusl Progress Report, Report
No. 5, Computer-Assisted Instruction Center, Institute of Human
Learning, Forida State University, July, 1967.

Hickey, A. E. (ed.), Computer-Assisted Instruction: A Survey of
thg Literature, Entelek Corporation, Newburyport, Massachusetts,
1968.

IBM Corporation, The IBM 1500 Instructional System and Course-
writer II, IBM Corporation, Gaithercourg, Maryland.

Kindred, J., Computer Augmented Learning, AD 645 121, Defense
Documentation Center, U. S. Depariment of Commerce, November, 1966.

Kopstein, F. F. and Seidel, R. J., Computer-Administered Instruction
v8. Traditionally Administered Instruction: Economics, Profeszsional
Paper 31-67, Human Resources Office, George Washington University,
June, 1967.

Korfhage, R., Hochgesang, G., Oldehoeft, A., and Mitzel, M., PICLS,
(Purdue Instructional and Computational Learning System), CSD TR 28,
Purdue University, October, 1968.

Lyman, E. R., A Descriptive List of PLATO Programs, Report R-29§,
Coordinated Science Laboratory, University of Illinois, Revised

July, 1967.

Mager, R. F., Preparing Instructional Objectives, Fearon Publish-

~ ers, Palo Alto, California, 1962,




27.

280

30.

31.

32.

33.

3k,

35.

37.

38.

39.

Manacher, G. K., A Content-Evaluating Mode of Computer-Aided In-
struction, Interactive Systems for Experimental Aprlied Mathematics,
Academic Press, 1968, pp. 286-293.

|

|

Martin, W. A., Symbolic Mathematical Laboratory (doctoral disser- }
tation), MAC-TR-36, Massachusetts Institute of Technology, |
January, 1967. |
|

}

Mitzel, H. E., et al., The Development and Presentation of Four
College Courses by Computer Teleprocessing, Pennsylvanis State
University, June 30, 1967.

Oettinger, A. and Marks, S., Educational Technology: New Myths
and 0ld Realities, Harvard Educational Review, Vol. 38, No- k4,
1968, pp. 697-TLT.

Oldehoeft, A. E., Anelysis of Constructed Mathematical Responses
by Numeric Tests for Equivalence, Proceedings of the ACM Con-
ference, August, 1969, pp. 117-124.

Purdue University, MACE Operating System (mimeographed dccument),
Computing Center, Purdue University, December, 1969.

RCA, Instructicnal T70: User's Guide to Instructional Language I,
Instructional Systems Division, Radio Corporation of America, Palo
Alto, California, December, 1967.

Snedecor, G. W., Statistical Mathods, The Iowa State University
Press, 19u6.

Stolurow, L. M. and Davis, D., Teaching Machines and Computer
Based Systems, In Glaser, R. (ed.), Teaching Machines and Pro-
grammed Learning, II, Data and Directions, Department of Audio-
Visual Instruction of the National Education Association,
Washington, D. C., 1965, pp. 162-212.

Suppes, P. S., Jerman, M. and Brian D., Computer-Assisted In-
stggction: Stanford's 1965-66 Arithmetic Program, Academic Press,
19 . )

Tavior, E. ¥. (ed.), ELIZA, A Skimmable Report on the ELIZA Con-
versational Tutoring System, The Educational Research Center,
Massachusetts Institute of Technology, March, 1968.

University of California, PILOT 1.5 (mimecgrsphed report), Com-
puter Center, University of Cslifornia, San Francisco, California.

Wilson, E. C., The Knowledge Machine, The Record, Teachers College,
Columbia University, Vol. 70, No. 2, 1968, pp. 109-119.







o, T TR

e T e et = e

APPENDIX A

STUDENT MANUAL

FOR A

COMPUTER~-ASSISTED COURSE

IN

COMPUTATIONAL MATHEMATICS

Arthur E. Oldehoeft
July, 1969

Second Revision, January, 1970

Computer Sciences Department

Purdue University

Aruitoxt provided by Eic:

ERIC

v —— L ————————————




oy TR . 1 . .
e i ———— P By o 2 ' [

Introduction

This manual is a study guide for twenty-five computer-assisted
lessons in computational mathematics. The recommended procedure is to
sequentially study Lessons A, B, l,...,éBe

| Each lesson requires the completion cf «n outside reading assign-
ment and a computer assignment which deals with the same material. The
sfudent may systematically complete ench lesson by diligently following
the study guides in this manual. General recommended praétices are

presented in the following paragrephs.

Reading Assignment

The assigned reading should be coméieted prior to the computer

assignment and will always be from the textbook Elementary Numerical

Analysis by S. D. Conte. Both the reading assignment end the computer
assignment require a prerequisite knowledge of differential and
integral calculus and a minimal knowledge of the Fortran computer
lenguage. The reading assignment will always cite those materials

which should be read prior to beginning the computer lesson.

Computer Assignment

A computer lesson is generally divided into three separate modes
 of instruction which are descrihed below. A student may begin a
particular mode by typing a designated "section neme". The section

~ names for each mode will always be listed in the computer assignment.

By the time the student has completed Lessons A and B, he will be

Aruitoxt provided by Eic:

, ERIC




avare of the significence of each mode of instruction. A computer
lesson may be terminated at any point by typing $LOGOFF. If the
tutorial mode is terminatéd in this manne), the student may restart

the lesson at a later time at approximately the same point by selecting
an appropriate section name from the aygi}dble list given in the Index
at the back of this manual. Due to the manner in which the proﬁlem
and investigation modes are constructed, the student may restart at

the beginning of these modes with very little repetition.

Tutorial Mode
This mode is a programmed instruction presentation of the lesson
material and covers all concepts needed for the problem and investi-
gation modes, A variety of examples snd exercises are presented to
gilve the student & practical =xposure to solving problems. The student
is expected to complete the tutorial mode prior to beginhing the pro-
blem and investigation modes.
Problem Mode
This mode of instruction requires the student to work several
standard problems using the computational method studied in the
tutorial mode. Problems may be solved with a minimum of computational
effort on the part of the ctudent and no programming effort. Tie
problems for each lesson will always be stated in thc study guide in
order to give the student an opportunity to preanalyze the problem
and set up the necessary eqhations prior to beginning_fhg probiem mode.

The problem mode may be gtarted any time after completion of the

tutorial mode.
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Investigation Mode
This mode is optional and the student may use it to solve pro-
blems of his own choice. Throughout the tutorial and problem modes, the
student will hopefully tirink of variations of exercises and protlems
or new and unususl problems. Rapid solution is possible since pro-
gramming is not required. The student may beginlthe investigation mode

at any time after completion of the tutorial mode.

Student Performance
In each lesson, a simple statement of what is expected of the

student on a closed book examination should dictate how much time the

student spends in the problem and investigation modes.




Lesson A: Keyboard Orientation

Reading Assignment

Read the first three pages of this manual and the current study
guide for Lesson A. |

The purpose of this lesson is to familierize the student with ihe
teletype keyboard and with the sign-on procedure for accessing computer-
assisted materials. Upon seating yourseif at the teletype, the‘cqm-
puter will rquest'the.fbllowing information:

1. student identification numher

2. student password

3. commend, section neme
A unique student identification number and password is assigned to each
student by the instructor. The coﬁputer will request this information
as the official sign-on procedure. If you have not heen assigned an
identification number and password, contact your instructor. In order
to begin a computer lesson, the student must'sugply a command and sec-
tion neme. The command will always be $LESSON and the secticn name
must be a legitimate entry specified in the Index of this menual.

As an example, suppose the éﬁudent with identificetion numbexr 54T
and password AMZ wishes to take Lesson A. The following qpe;at;&ns are
performed: |

1. The student seats himself at the teletype and waiis for the

message TYPE USER NUMBER:

2. The student types S54T.

5. The computer types TYPE PASS WORD.

Full Tt Provided by ERIC.
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4. The student types AMZ.

5. The computer types TYPE COMMAND.
6. The student types $LESSON,LOLOL..
7

o The computer initiates Lesson A.

Computer Assignment

To vegin the tutorial mode, use the section name 10ILOl. There is no

problem or investigation mode for this lesson.

Student Performence

Upon completion of' this lesson, the student should be able to

105

l. sign on and off without difficulty for all subsequent lessons;

2. type msthematical expressions;

3. correct typing errors; and

. apply standard techniques to obtain first estimates of zeros

of functions.
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Lesson B: Computer Numbers and Computational Error

Reading Assignment

1. Read Conte, pp. 4-11.
2. Review the format for Fortran floating point numbers. |
| Computer Assignment:

Thg following section names are needed:

1. LOL1l for the tutorial mode
2. LOPOLl for the combined problem-investigation mode

Statement of Problems in the Problem Mode. For each of the follow-

ing problemsg'the CDC 6500 will simulate a 4, 6, 8, or 15 digit com-
. puter. To work each problem, the student must specify
1. the desired precision P=k, 6, 8, or 15
2. numerical values for A, B, end c.
The cbject of the problems is to observe round-off error and loss of
significance.
Problem 1. (see Conte, Ex. 1.3-1) The computer will use p-digit
precision to evel e A+ﬁ+c, A/C, A-B, A-B-C, (A¥*B)/C, B/C, and (B/C)*A.
Problem 2. (see Conte, Ex. l.4-1, Ex. 1.4-2) Two formulas for |

2

£inding & root of A¥x“+B¥*x+C are (-B+sqrt(32-h*A*C))/(2*A) and

(-2*0)/(B+sqrt(32-h*A#c)). If W¥AC is "small" compared to 32, the
effect of C can be lost by using the first formula. For various values
‘of A, B, and C and precisions P=k, 6, 8, and 15, investigste the loss

of significaice in Baqm*A#C and the results of both formulas.

ERIC -
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Suggested Problems for Investigation Mode (Optional). For this

lesson, the problem and investigation modes are one and the same.

Suggested values for Problem 1:

- A= 4152 B=.3572*10'h 08.6321*10-6
A=1000 v B=n, ’4- C= ° !“ ,
A=.L B=.l C=1000
A=.G367 . B=,9161 C=.9161

Suggested values for Problem 2:

A=.01l B=1000 C=,00k
A=l B=ly ' C=0
A=.QO00L B=1000 ~C=l

Student Performance
In order to understand numerical results in future lessons, .
the student should be fully aware of the concept of round-off error,
. loss of significance, and how an error may propogate through subsequent

calculations. The student should be able to construct his own examples.

- ERS
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Lesson 1: Linear Tteration - Methodology

Reading'Assignment

l. Read Conﬁe; PP. 19-21 up to and including the statement, but not

the proof, of Theorem 2.1.
2. Read Conte, p. 23,

5. Review the coneept of é continuous function.

Computer Assignment

Use the following section names to begin the three availéble modes:

l. LlLOl for the tutorial mode
2. L1POl for the problem mode
5. L1IO1 for the investigation moéé
Problem Mode. Automatic éomputgtion is supplied for all problems
in the problem modes throughout this course. The student is required
to suppiy the mathematical formuleation. Time can be saved by analyzing
the pioblems prior to beginning the problem mode. |
| Problem 1. The function F(x)=x-cos(x) has a positive zero P.
Find an interval (A,B) and an iteration function G(x) so thét
1. AP | |
2. G(P)=P
3. G(x) and G'(x) are continuous on (A,B)
L, abs(G'(x))<1 on (A,B)
You must supply A, B, G(x), ahd G'(x) for the iteration ”Qf‘“‘xk)’
Problem 2. (see Conte, Ex. 2,1-3) Finding the squa}e root of a
number A is equivalent‘%% solving the equation xa-A;O or finding a

zero of F(x)axz-A. One possible iteration function can be constructed

1 ERC
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by setting x2=A and dividing both sides by x to obtain G(x)aA/x.
Investigate the convergence for various values of A. Which cohditions
" of Theorem 2.1 are violated?

Investigation Mode (Optional). You mey use linear iteration on

any problem of your own choice. You must supply the iteration equation
vxk*lmG(xk) and a starting value x .

Suggested Problem 1. Find the zero between 1 and 2 of the func-
tion F(x)e=.l*x"-x¥ln(x).

Suggested Problem 2. Division by a number c#0 can be regarded as

finding the solution of F(x)=l/x-c. Define G(x)=x*(2-cx) and investi-

gate the convergence for various values of c.

Student Performance

Upon completion of this lesson, the student should be able to use

various techniques to transform the equation F(x)=0 to the form

x=G(x) so that all properties of Theorem 2.1 (Conte) are satisfied.
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Lesson 2: Linear Tterstion - Theory ‘

Reading Assignment

1. Read Conte, pp. 21-22 and 24-26.

2. Work Ex. 2.1-L.

3. Review the mean-value theorem'(See Conte, p. 15).
Computer Assignment

Use'the fbllowing section ﬁames to begin the three available

modes: |
1. L2LOl for the tutorial mode
2. L2PO1 for the problem mode
3. L2101 for the investigation mode

Prcblem Mode. Work both problems. You must supply G(x), G'(x),

and xo

Problem 1. (see Conte, Ex. 2.1-1) The cubic polynomial
x5+l.9*x2-1.3*x=2.2 has & zero P near x=1. Determine an iteration -
function G(x) and an interval (A,B) so that for x, in (A,B), the
iteraﬁion xk+l=G(xk) will éonvgrge to P.

Problem 2. (see Conte, Ex. 2.1-5) The function F(x)=.T-x+.3*sin(x)

has a positive zero P. Determine an interval (A,B) and iteration func-
tion G(x)‘so that for x_ in (A,B), xk+1=G(xk) will converge to P.

Investigation Mode (Optional). You may use linear iteration on

any problem of your own choice. You must supply the iterétion equation
xk+1=G(xk) and a starting value X
Suggested Problem'l. The linear iteration theorem states suffi-

cient, but not necessary, conditions fcr convergence. Let
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F(x)axj-xamx-l and G(x)ax-F(x)/xe. Investigate convergence for a wide
range of x_. What conditions of the theorem are violated if we choosé

0
(a,B)=(-10*°,10%%)?

Student Performance
See the student performance for Lesson l. Given an itération
function G(x), the student should be able to prove that the sufficiency
conditions of Theorem 2.1 (Conte) are or are not satisfied. The student

should know the formel meaning of "linear convergence" in terms of

limits.
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Lesson 3: An Acceleration Technique

Reading Assignment
l. Read Conte, pp. 27-30. ‘ ' ' ' -
2. Work Ex. 2.2-3.

Computer Assignment

| Use the following section names to begin the three available mod_es:
1. L3LOl for the tutorial mode |
2. L3POL for the problem mode - i\ |
3. L3I0L for the investigation mode

Problem Mode. For each of the problems, you will have to specify b

the following information:
1. Aitken's delta-squared formula

2. a convergent iteration function G(x)

3. an interval (A,B) on which abs(G'(x))< 1 |

k. a starting value x_ |

Problem 1. (see Conte, Ex. 2.2-1) Find the smallest positive
zero of F(x)=2¥x-tan(x) using linear iteration and Aitken's delta-
squared method.

Problem 2. Find the smallest positive zero of F(x)=.T=x+.3%sin(x)

using linear iteration and Aitken's delta-squared method.

Investigation Mode (Qgtionau. You may apply linear iteration

end Aitken's delta-squared method to any problem of your own choice.

You must specify an iteration equation xk_'_l-G(xk), an acceleration for-

mula, and a starting value X,.
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Suggested Problem 1. Let F(x)=x°-c where ¢>0. For the iteration

function G(x)=c/x, apply Aitken's process to the iteration xk+1=G(xk)'
Cdmpare‘with “he results of Problem 2, Lesson 1.

| Sugges.ed Problem 2. Let F(x)=x2-c vhere c>0. Define the itera-
tion functiorn G(x)=x-F(x)/F'(x). First define the acceleration formula
tb be x'kka and. find the root. This is equivalent to not accelerating
at all. Next, use the standard Altken's acceleration. Compare the

number of iterations for the tvo methods, say for six digit accuracy.

Student Performance

The student should know Altken's acceleration formule and given

'any convergent iteration xk+1=G(xk)’ the student should be able to

apply the acceleration formula.
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Lesson 4: Newton's Method and Quadratic Convergence

Reading Assigrment
1. Read Conte, pp. 31-35.
2. Review the linear iteration theorem (Conte, Thm. 2.1).
3. Review Taylor‘s “heorem (Conte, Thm. 1.5 p. 15).
4, Upon completion of the computer lesson, work exercises 2.3-5
and 2.3-6.
Computer Assignment
Use the following section names to begin the three available modes:
1. LL4LOL for the tutorial mode
2. LWPOl for the problem mode
3, L4IOL for the investigation mode

Problem Mode. In each problem, you must supply the requested

iteration function G(x), the interval (A,B), and a starting value X, .
Problem 1. (see Conte, Ex. 2.3-1) For any two of the following,
£ind the "smallest positive" zero by Newton's method.
a. f£(x)=2%x~tan(x)
b. f£{x)=k*cos(x)-exp(x)
c. f(x)=2*cos(x)-cosh(x) |
You must supply an interval (A,B) which contains the desired zero but
no other zero of f(x), Newton's iteration, and a starting value x,.
Problem 2. (see Conte, Ex. 2.3-6) f(x)=(1+1/x)2'has a double zero at
P=-1. Apply Newton's method and observe that the convergence is lineer

but not quadratic. Determine (A,B) so that abs(G'(x))< 1. Computation

is supplied to display the sequences X, , E =x, -P, Eyyq/By» a4 Ek+1/E§’
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. 2
Observe that Ek+l/Ek approaches G'(P)aé’while Ek+1/Ek 8pp1 'aches o,
Problem 3. (see Conte, Ex. 2.3-6) Apply the modified Newton's

method G(x)=x-2%f(x)/£'(x) to the function in Problem 2 and observe

that the convergence is quadratic. Determine (A,B) so that abs(G'(x))<l.
Computation is supplied as in Pr.blem 2. Observe that Ek+1/Ek ap-
proaches zero and Ek+1/E§ approaches g"(P)/2=1.

Investigation Mode (Optional). You may vse Newton's method or

any other iteration xk+1=G(xk) on any problem of your own choice. You

must supply G(xk) end a starting value x .

Suggested Problem 1. f(x)=(1+l/x)3 has a triple zero at P=-1,
Define a modified Newton's iteration by xk+l=x-m*f(xk)/f'(xk). Verify
computationally that convergence is linear for m=1, 2, 4, 5, and 6, and

quadratic for m=3., Verify divergence for m greater than 6. e

Student Performarice
The st 'dent is expected to know Newton's method and be able to
apply it to practical problems. The student should know the meaning of

quadratic convergence in terms of limits. . § _
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Lesson 5: The Secant Method

Reading Assignment
1. Read Conte, pp. 39-43, |
2. Review Newton's method, the meaning of linear convergence
(Ek+l/Ek approaches G'(P)), snd the meaning of quadratic con-

2 -
vergence (Ek+1/Ek spproaches 3"(P)/2).

3. Work Ex. 2.4~2 in Conte after completion of the computer lesson.

Computer Assignment
Use the following section names to begin the three available modes:
l. L5LOl for the tutorial mode
2. L5POL for the problem mode
3. LSIOL for the investigation mode

Problem Mode. For each problem, the stulent must supply the re-

quired iteration functions, an interval (A,B) which contains the
required zero, and an initial approximation X, (also Xy for the gecant
method). o

Problem 1. (see Conte, Ex. 2. h 1) Draw a graph to estimate the
zero of f(x)=x-tan(x) between PI/2 and 3*PI/2. Obtain the zero correct
to seven digits by (a) Newton's method and (b the secant method. A
very close éstimate of the root P is requirec for convergence.

Problem 2. (see Conte, Ex. 2.4~3) Find the real positive root of
f(x):exp(-x2)~log(x) correct to seven significant digits using the

secant method.

Investigaﬁion Mode (ggyional). The student may solve any problem

. . .
of his own choice by supplying an iteration equation xk+1=G\xk_1,xﬂ)

and starting values X, and X, .
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Suggested Problem 1. Investigate the convergence of the secant
method for f(x)=(l+1/x)2 where P=-1 is a double root. Compare the

results with those of Problems 2 and 3 of Les&dn k.

Student Performance
| The student 1s expected to know the formula for the recant method
and be aﬁle to apply it to practical problems. The student should un-
depstand the rate of convergence in terms of limits (see Conte, Ex.

201"-2)0

%
E
|
E
|
|
E
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Lesson 6: Simulteneous Equations

Reading Assignment
1. Read Conte, pp. 43, 4% (lLast peragrapn)-ho,
2. Review the concep? of a partial derivative from the calculus.
3. Rgview Taylor's formule with remainder for functions of two '
variables (sec Conte, p. 15).
Computer Assignment
Use the following sectiecn names +o begin the three svailable modes:
1. I6LOL for the tutorial mode
2. L6POL for the problen ' ode
3. LAIOL fov the investigation mode

Problem Mode. For each of the following problems, the student

must supply the partial derivatives fk’ fy, By and gy and ‘the iteration
formulas for Newton's method along with & starting estimate (xo,yo).

Problem 1. (see Conte, Ex. 2.5-2) The aystem f(x,y)mx2+y2-l,
g(x,y)=x*y has four solutions. Use various starting values (xo,yb) to
find them. |

Problem 2. (see Conte, Ex. 2.5-3) Use Newkon's method to find
solutions to the syshtem f(x,y)mxg+x*y5s9, g(x,y):ﬁ*xg*y~y3nh using
gtarting values (1.2,2.5), (-2,2.5), (-1.2,-2.5), and (2,-2.%). Observe
which root the method converges to and the number of iterations required
for six éignificant digit accuracy.

Problem 3. (see Conte, Ex. 2.5-4) Find one solution to the
system f(x,y)=x-sin(x)*cosh(y),g(x,y)=y-cos(x ¥*sinh{y) using Newton's

methoed.




Investigation Mode ‘Optional). The student may work any problem

of his own choice by supplying the itermtion equations xk+l’Gl<xk’yk)’
Yiee 150 (xk,vk/ and a starting vnlue (x Y, Yo

2B
Suggested Problem 1. Find a solution cf the system fx,y)=x"*y",

g(x,y)mxh+yu 'l by Newton's method. Is the convergence quadratic? Ex-
Plain.

suggested Problem 2. You will have to use the Investigation mode
for Lesson 1k (section name L14T01) %o s-lve this proniem. Newton's

method for three equations in three unknowns f(x,y,z)=0, g(x,y,z)=0,

and h(x,y,z)=0 arises from the solutior of

B Sl B P
£y £, fz'} ¥ xhﬁ £
i
i lll ! - g -
7 a ﬂ -
- Py hy ", JL 3ﬁ L p .

where ', g, h, and a2l) partials are cvalusted at (yk’vk"k)
Suppose £(x,y,7)=x +y2+zéal, nlx,y,)=x‘ -y +z~, and 2(x,y,2 )=kyks

a. Show that Newtcon's enuations are

p ’)
X1y (Y h"yk yk)/( eyr( -’k’)
o
4( - ¥
yk+l ak (x}, zk+vk. 4 xk*yk)/(‘a yk (x )))
f’ .
pre] ‘ * A - : "‘M* m-— A
2 =~ g 7k Xy yk)/(g*yk (xk 7k')

bo Use (xo’yo’zo)::( 02’ 08’ op;’) '!}O find the SOlutiOI‘o

Student Performauce
The student is expented to learn the iteration formules for
Newton's method applied to two simultanecus equations in two variables

and be able to apply the method to practical problems.
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Lesgon T: Polynomi:l Egquations - Real Roots

Reading Assignment
1. Read Conte, pp. 50-5L,

2. Work Ex. 2.6-6 after the computer lesson.

Computer Assignment
Use the following section names 4o begin the three available modes:
l. LTLOL for the tutorial mode
2. LTPOL for the problem mode
3. LTIOL for the investigation mode

Problem Mode. For each of the following problems, “he student

must specify the nested multiplication formulss o compute bn’ bn-l’
o..,bosp(xk), % Gn-l"“’clgp'(x;)’ Yewton's iteration in texrms of
xk, bo’ and Ql, and n starting value xg.

Problem L. (see Conte, Ex. 2.6-1) Use Newton's method for poly-
nomials to find the real root between O and -1 of y(x)sx5+x+l.

Problem 2. (see Conte, Fx. 2.6=3) Use Newton's method for poly-
nomials to find a real positive root of

a. p(x)axh+6*xg—l

b. p(x)=3*x5-g*x§~2

Ce. p(x)xxlgall*xll+8*x7~2.

Investigation Mode (Optional). 'The student may work any problem of

his own choice by specifying for a polynomial, the degree N, the
f . ‘; E LN [ e . L& : ®
coefficient: LT L and a starting yalue xo
Suggested Problem 1. 1se Newton's method and the sequence of re-

duced polynomials to determine the multiplicity of the root at xal




ly

J . ,
and x=-1 of the polynomial p(x)=x6+x5-u*x e L D

Student Performance
The student is expecthed to0 learn the recurzion formules for
Newton's method for polynomials and Lo be able to apply them %o tind

roots of polynomials.
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Lesson 8. Difficulties in Finding Roots of Polynomials

Reading Assignment
lo Re&d conte’ Ppa 55"‘590

2. Review Newton's method for polynomials.

Computer Assignment
Use the following szctlon names to begin the three availanle modes:
1. LOLUL for the tntorisl mode
2. LEPCL for the problem mode
%, L8IOL for the investlgation mode

Problem Mode. For sach problem, you must supply the initial re-

cursion formulas for Newton's method for polynomials and a starting
value X After a root is found correct to eight cignificant digits,
use the raduced polynomial to find the next root correct to elght
significant Aigits. When the reduced polynomial is A quadratic, use
the quadratic “ormula to find the remaining two roots. Obrerve the
loss in accuracy caused by error propageting to the reduced polynonisnls.
Problem 1. (see Conte, ¥x. 2.06-4) Four real zeroy between -5 and
2 exist for p(x)mxu+9.8*x5—.§8*xg~6.3*x-u.9. Find these roots, ter-
minating the iteration when abs(xk*l—xk)<5*lo"8.
Problem 2, p(x):xh-5*x2+h has exact roots at -2, -1, 1, and 2.
Use Newton's method and spproximate starting valuzs tn £find these roots
using the sequence of reduced polynomials. Terminate an iteratlion when
aba(xk*lka)< 5*l0"8.

Investigation Mode (Optionsl). The specifications are the same as

the investigation mode for Lesson 7.
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Suggested Problem 1. Conte, Fr. 2,A-5

ftudent, Performance
The student should he awaye of possikle Aifficuliien when atiempt-
ing to find the roots of polynomials, e.g. instability, loss of
accuracy using the sequence of redured polynomials, loss of quadratic

covergence in case of multiple roots.




Lesgon 9: Recursion Formula: for Dividing a Folynomial by & Quadratic

Factor and Review of Complex Arithmetic

Reading Assignments
1. Read Conte, pp. 59-60

Computer Assignment
Use the following section names to begin the two avallable modes:
L. LY9LOL for the tutorial mode
£i

2. LOPOL for the prohlem mode

| : h 3 2. : |
Problem Mode. p(x)=x -kkx '+3%x +2%x-6 has two complex roots.

8. Form the auadratic divisor [xz-(1+i))*(x-(1-1)).
b. Use the recursion formulas to £ind hk“ bﬁ,...,bg and
thus determine Q(x)zbh*x?+b5*x+b2 anﬁ,ﬁ(x)zbl*(x~8)+bo.
¢. Observe that bl:bozo which means B(x)=N., Henece,
(x=(1+1) )% (x-(1-1)) is ap exnnt Aivisor of p(x), that is,
1+i and i~1 are both complex zeros of p(x).
Student Performance
The studert should learn the recursion formulas to compute the bi
when dividing a polynomial by a quadratie divinor. The student should
observe that if the coefficients of p(x) are real, then complex roots
2

of p(x) must occur in pairs a+b*i and a-b*i and x2.2ra%x+a®+b? 1s an

exact quadratic factor of p(x).
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Lessor. 10: The Newton-Bairstow Method for Peciynomials - Complex “eros

Reading Assignwent
1. Read Conte. pp. 60-64.,
2. Review Lesson 9 (recursion formulas for dividing by a2 quad-
rakie fankor),
%, Review Lesscn 6, Newton's method for solving simultaneous

equations.

Compater Assignment.
Uge the following section names to begin the three available modes:
1. L1OLNL for +the tuhorinl mole
[}

2. LLOPNL for the problem mode

3, L1OTINL fo» the investigation mode

Problem Mode, For each of the problems, the student must specify:

8. +the recursion formulas to nompute each bi 10 obtain bmand bo“

t. the reoursion formulas %o compute 2ach cito obtain c5:cgq and

Cy» and,
c. starting values SO and To to define the approximate quadratic
fartor 38«5 ¥x~T
e )

Problem 1. [(see Conte, Ex., 2.7-%) Us: the Newton-Bairstow method
to find a quadratic factor Qf;p(x)axu+5*x2+l. An approximate root is
z=] 6%,

Problem 2. (see Conte, Fx. 2.7-3) p(x)axu+2*x5+6*x2~*3*x+h8 ha.s
a complex zero near s=Ll+sart(3)¥i. Ise the Newton-Bairstow method to
£ind a quadratic factor ot p(x).

2 ”
Problem 3. p(x)=2%x’-2,05k5802%x"-,049168k has a complex zero near

7=.15+.8%1i, Use the Newton-Bairstow method to find a quadratic factor of

p(x).
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Investigation Mode (Optional). This mode provides automatic com-

putation for either Iin's method or the Newton-Bairstow method. The
student, must specify the method, the degree of the polynomial, the co-
efficlents of the poiynemial, and initial estimates So and To for the
quadratic divisor xgaﬁo*x-TQ.

Suggested Prohlem 1. p(x):xuau*x5+lo*xgulﬁ*x+9 has o double com-
pPlex zerc near z=.9+l.4%i. Does the Newton-Bairstow method converge

quadratically?
Suggested Prcblem 2. Conte, Exercises 2.7-2 and 2.7-5.
Student, Performance

The student should learn the recursion formulas for the Newton-

Bairstow method and be able to apply the method to practical problems.



125 4

Lesson 11: The Solution of Linear Systems by Elimination l

Reading Assignment

1. PRead Conte, pp. 156-16%.

Computer Assipgnment
Use the following seection names to hegin the three avallable modes:
1. L11LOL for the tutorial more
2. L11P0Y for the problem mode
3. L1LTI0OL for the investipgation mode

Problem Mode. In both problems, the computer will maintaein six

significant Aigit accuracy throughout the computation. The oblect of
the problems is to observe the advantage in using the method with pivot-
ing. Both problems deal with the iinear system Ax=B given by the aug-

mented matrix

. 000003 213472 55ENT 235262
215512 375623 cUTHR25 . 12765%
L 173257 663257 LOR56T5 20532,

Problem L. Solve the above system by elimination without pivoting
by using the sequence of row operations

(Row J)yM*(Row I) replaces (Row J).
You must specify M, I, and J for each row c¢peration.

Problem 2., Solve the above system by elimination with pivoting by
using the row operations

Interchange (Row I) and (Row J)

(Row J)+M*(Row I) replaces (Row J)

You must specify the operation to be performed and the corresponding

values of I, J, and M.
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Investigation NMode (Optionnl). The student may solve any linear
system of his choice using 4, H, or & significant figure accuracy
throughout the computation. The student specifies:

1. the precision 4, 6, or &

2. ‘the dimension of the system Ax=B

%. the elements of A ané. B
Computation in supplied by the computer as the student directs any of
the following sequence of operations:

1. TIuberchenge (Row I) and (Row J)

2. Replace (Row J) by (Row J)+M*(Row I)

3, FEegin the bhack-substitution
4, Print the current avgmented metrix
5. Restart the problem with the original A and B
6. TInput a new A and B
T. Terminate the investigation mode
Suggested Problem 1. Use elimination to find the solution of the
system
6 15 o 15 7 [ x 37
2 17 11 1 xg 19
L 1C 14 8 X = 11
5 12 . 5 7 L4 5 5 xh_ 7
e el e iy e on

Note what happens after forming zeros in positions A”]’A31’ and Ahl'

“uggested Problem 2. This example will be encountered again in
Lessons 12 and 13. Note the variation in the solution by using different

precision arithmetic.

I 2.53423  8.93T3h 4, 37526 x) C 1.24763
1.02435 3.61254 3.22463 x5 = 2.5517Th
853217 3,00906 7.295h1.J X3 6.15257
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Lesson 12: Evaluation of Determinants and Matrix Inversion

Reading Assigruent
1. Read Conte, pp. 150-1Th,
2. Review the method of elimination.

3. Work Ex. 5.5-% after the completion of the computer lesson.

Computer Assignment
Use the folluwing section nemes to begin the two available modes:
1. ILI2L0OL for the tutorial mode.
2. L12POL for the problem-investigation mode.

Problem-TInvestigntion Mode. You may specify any problem of your

own choice or you may reauest the computer %o generate s matrix A with
randon integers as elements. For each protlem, you must

1. specify the dimension N=2, 3, or 4 for the matrix A;

2. specify the elements of A {or ack for random elements);

3., use elimination to reduce the N by 2¥N saugmented

metriz A I to triangular form; and

4. use back-substitution to compute B=A""

Suggested Problem 1. Conte, Exercises 5.5«L, 5.5-2, and S.S-h.

Suggested Problem 2. Find the inverse of the coefficient matrix

in the Suggested Problem 2 of the investigation mode for Lesson 11l.

Student Performance
Upon completion of this lesson, the student should be able to apply
the method of elimination to find the 1anverse of a given matrix A,

1

check the accuracy of A — by comparing AA'l with the ldentity matrix I,

and given a system A¥x=B, compute the solution x=A"1B.
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Lessca 13:  FErrors and Conditioning

Reading Assignment
1. Read Conte, pp. 163-169.

2. Review the method of elimination.

Computer Assignment
Use the following sectlion names to begin the iwo avallable modes:
J. L13LOL for the hutorial mode
2. T13P0L for the problem-investigation mocda

Problem~Investigation Mode. You may specify any problem of your

own choice or you may request the computer to generate a problem for you.
In the latter case, the computer will generate s matrix which is 1ll-
conditioned. IFor each problem, you must
1. specify the dimension, N=2, %, or 4, of the matrix A;
2. specify the arithmetic precision, M= 4, 6, or 8 significant
digits, for all internal computations; and
3. speclfy the elements of the matrix A and vector B for the
system A¥x=B or request the computer to generate them for you.
To sclve a problem, you must direct the computer through some sequence
of the activities listed below.
1. Interchange rows. |
2. Perform the current stage of elimination.
3. Compute the normalized determinent (assuming the matrix has }
been reduced to triargular form).
k., Compute the solution x after reaching a triangular form.

5. Compute the residual vector after finding x.

6. Find the solution to the error system A*E=R and compute the
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improved =olution xnew$x+m aftey completiorn of step 5.

Upon completion of a problem, the student may elect to change the pre-
cision M and rework the same problem.

Suggasted Problem 1. Conte, Exercises 5.4-1, 5.4-2, 5.4=3 and
5.=b, |

Suggested Problem 2. Rework Suggested Problem 2 of the investi-
gation mode for Lesson 1l.

Student Performence

Upon crompletion of this lesson, the student should be able to use
elimination to £ind norm|A| and determine if the system is 111-
conditioned, set up and solve the error system A*E«R; and thus attempt
to improve the solution.
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Lesson 14: TIterative Methods for Solution of Linear Systems

Reading Assignment

l. Read Conte, pp. 191-195.

Computer Assignment
Use the following section names to begin the three available modes:
1. L1ALOL for the tutorial mode |
2. L14P0O1 for the problem mode
3, LIWTOL for the iavestigation mode

Problem Mode. For any “wo of the following problems, investigate

the convergence of both the method of simultaneous displacements and the
method of successive displacesments. You must specify the iterstion

equations and your cholce of starting values.

Problem 1.
"‘ 1 0 17 "x:L 7  +1.25 ]
a1 o xy b= -5
g 1 -1 X 2.75 J
Problem 2.
. 1 5 X, = 4.0
K .5 1 IBER i 3,5 )
Problem 3.
4 -1 0 0 X, i 0
-1 L -1l 0 x? = 0
o -1 y =1 x3 0
O O "1 h xu l
_ L L
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Investigation Mode (Optional). You may use any lterative method to

solve 8 system of equations of your own choice (1inear or nonlinear).
You must specify

1. the number of eaquations ON<T,

2. the N iteration enustions in terms of xl,...,xN, and

3, +the starting values for each veriable.

Suggested Problem 1. Investignte the convergence of both iterative

methods for the lower triangular system

B 0 0 ‘] "xl 7] el
. v | *5 -0

H~w many 4‘ierations are required? Can you generalize to an n x n
triangular system?
Student Perfoxmance
Upon comletion of this lesson, the student should know both the
method of simultanecrs displacements and successive displacements and

be able to apply them to a linear system of equations.

LV U
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Lesson 15: Convergenze of Therative Methods for Linear Systems

Reading Assignment
1. Read Conte, pp. 199-203%.
2. Review the methods of simultaneous displacements and successive

displacements.

Computer Assignment
Use the following section nemes to begin the three avallable modes:
1. L1SLOL for the tuiorial mode
2. L15P0L for the nroblem mode
3. L15I01 £or the investigstron mode

Problem Mode, Tf either the row or column sum criteria is satic-

fied, we are assured of ccovergence of bhoth the method of simulteneous
displacements and the rethod of successive displacements. 7Tf nelther is
satisfied, n method may or may not converge. For each of the problems,
investigate convergence of both methods. You must supply the iteration
equations and starting values.

Problem 1.

1 1 17 =y 7 1.75 ]
.5 2 2 X, = | 2.75
.25 .5 4 Xy .25

Problem 2.

2 -1 AT Xy 2,075
3 L .5 X, x 205
-5 L4 75 - ,-‘- x 2" ° ]

haow - bt B-J . e




Problem 3.
2 -1 17 = ] [2r 7]
-1 2 -1 x, | 7| vr/2
-1 -l 2 ”, PI/)k
- 4 Lo d U -

Investigation Mode (Optional). The specifications are the same as

for the investigation mode for Lesson 1lh.

Suggested Problem 1. Observe the rapid convergence of both methods

for the system

— Lol - . -u1
50 [ :L 7 xlag 3 17
0P 10 1.k X5 a 91
13 =-13 51 x?g %
b

How many iterations are required for six cigit accuracy and for eight
digit accuracy? Can you form other systems for which convergence is
rapid?
Student Performance
The student is expected to know both the method of simultanecus
displacements and the method of successive displacements. The student
should be ahle to apply both the row sum and column sum criteria to pre-

dict convergence or divergence.
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Lesson 16: Numerical Differentiation

Reading Assignment
1. PRead Contm, pp. 1L08-11%.
2, Review Taylor's formula with remainder (see Conte, p. 1%).

3. Work Ex. 4.1-6 sfter completion of the computer assignment.

Computer Assignment
Use the frllowing sachion names to begin the three svailable modes:
1. LIALOL for %he tutorial mnde
2. L16POL for the problem mcde
3, L16I0) for the investigabinn mode

Problem Mode., For each of the problems listed below, find a value

of h which will ¥ield the specified accuracy vhen using the approxima-

tions

D(h):(f(xi+l)mf(xial))/ah = (f(xi+h)~f(xi-h))/an

na(h,)m@e(xm)@?fgﬁ)+f(xi_l))/h? = (1‘{xi+h)-2f(xi)+f‘(xi-h))/h2
For example, see Table 4.1, Conte, p. Lic.

Tn this mode, the student enters a value of h and the values of
D(h) or D2(h) will be printed. The student mush experirentally find a
value of h for which tha combination of truncation error and round-off
error are small enough to yield the specified sccuracy.

Problem 1. (seé Conte, Bx. h.1-4) f(x)=cosh(x}, xizl.u.
Desired accuracy: ! f'(xi)aD(h)i < .5*}0'9 and | f"(xi)-DQ(h)l <.].'*‘*10"6

Problem 2. £{x)=sin(z), xi=.u
Desired accuracy: | f'(xi)-D(h)l < .1%107 and | f"(xi)-Da(h)i <.3*\‘10'7

Problem 3. f£(x)=exp(x)/sin(x), xs=1.1
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9 5

Desiyed accurscy: | f’gxi)wn(h)g <.5%10 ° mad | f"(xi)aﬂa(h)l < ,1¥10°

Problem l. f(x)ﬁsqrt(a*sing(x)+cos?(x)),xizﬁ.j

Desired siccuracy: | #0(x,)<p(n)! < .5%10"2 and | £ (x, )-D2(h) | < 5%107

1)
Investization Mode (Optionsl). You may apply any numerical differ-

entiation formula D(h) to any function f£(x). You must supply
1. f(x),
2. D(h) to approximate f'(xi) or f"(xi),
3. the first tabular point X5 and
4. the gpacing h of the tabular points and the total number (N<10)
of tabular points.
Upon completion of 3hep b, the compuber will print, the table of tabu-
lated function values {3=0,...,8): i, Xy, AN f(xi}. fmch +Hime the stu-
dent defines a value for i, the computer will print D(h). By typing
STOP, the student m@y restart the problem at any one of the four stens.
Suggested FProblem 1. The instability of ramerical differenistion
can be displayed by cinple examples where the slove and/or cencavity of
a function chenge rapidly. Consider f(x):~2xh4hx2+15. wote that £(x)
18 symmetric about 0 with £(0)=16, £(+1)=13, and £(42)w0. In penaral,
it is more difficuit %o approximate £'(1) than £'(0) since £(x) changes
repidly at x=l. For various values of h, approximate f£'(0) and £'(1)
by the three formulasg:
D(h)z(f(xi+l)“f(xiel))/Qb O(hg)—apprgximation
D(h)m(f(xi+l)~f(xi))/h o(h)-approximation
D(n)=(-30(x, Jhe(x, o )-£(x,, 5))/2h 0(h®)-approximation
For various values of h, spproximate f"(0) and f"(1) by the 0(h2)-

| - 2
approximation D(h)s(f(xi_l)—ef(xi)+f(xi+l))/h .

-
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ftudent, Performance
The student is expected to know the D(h) and D2(h) opevators used
in Problems 1.-h and their respective orders. The student should be aware
of the affects of round-off when h is very small ané be able to apply

the formulas to practical problems.




Lesson 17: Fxtrapolation to the Limit

Reading Assignment
1. Read Conte, pp. 114=119.
2. Review Taylor's formula with remainder (see Conte, p. 15).
3, After completion of the conputer assignment, vork Exercises

2"02"'1’ !'.-02","" and ,-"02.“"*50

Computer Assignment
Use “he following section names for the three available modes:
1. LLTLOL for the tutorial mode

2, LLITPOL for the problem mode

3, LITIOL for the investigation mode

Problem Mode. In each problem, you will be supplied with a sei of

tabulated values for a function f{x). You must supply the numeric values
or expressions to effect extropolation to the Limit in the table.
Problem 1. Use extrapolation to the limi%t to spproximate £O(o4)

where f£(x)=sinh(x).

(W3

£

3, ]
0 « 5090 sinh{ .50 )
1 399 sinb{.%99)
2 D0 sinh(.h00)
3 0L sinh( . 40L)
b 02 atnh( . 407)

Problem 2. (see Cunte, Ix. %.2-5) Use extrapolation to the limit

to approximate £'(.5) where f£(x)=sin(x)/x.
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i X £

i, i
0 3 sin(.3)/ .3
1 b sin{ b}/ .0
2 U5 sinf.45)/ .15
3 .5 sin(.5)/.5
4 .55 sin(.55)/ .55
5 6 sin(.6)/.6
6 T sin(.7)/-7

Problem 5. Use extrapolation to the 1imit to approximate £1(0)
where £(x)=exp(-x)*sin(x).

= fi
-.16 exp(.lé)%sin(-.léz
-.00 exp( .08 ¥ein(-.03)
- .0k exp( .0 )¥sin(-.0)
-.02 exp( .02 )Y*sin(~,02)
-.0L exp( .OL J*sin(-.01)
0 0
01 exp(~.0L Ysin(.0L)
.02 exp{~.02 *sin(.02)
. Ol exp (- .0k y¥sin(,Ok)
.08 exp(-.08 Y*zin(.08)
.16 exp(-.16)*sin(.16)

i

=
oOWwoEOJ0WMEWDDHO

Investigation Mode (Optional)., You mey ap.ly extrapolation to the

1imit to approximate f'(Z) for your own choice of f£(x). You must supply
1. the value of 7,
5. the value of h for the initial approximation D(~),
3. the number of entries (xo,fo),...,(xr,fh) in the table (N<LO),
and
4. either the function values f_,...,fy OF the function f(x) from

N
which the computer will compute fo""’ﬁN'




139

Extrapolated values will bDe computed line by line in a table of the
form

p(h)

D(h/2) D1(k/2)

D(nh/%) D1(h/k) D2(h/k4)

p(n/2")  pi(n/2™) Dp2(n/2") . . . Dm(n/2™)
Suggested Problem. Use extrapolation to the limit to approximate

£'(0) and £'(L) for f(x) given in Suggested Problem 1 of the investiga-

tion mode in Lesson 16.

Student Ferformance
Given a function or table of function values, the student should
be able to apply extrapnlation to the limit and state the order of any

approximetion in the table.




Lesson 18: Numerical Integration - The Trapezoidal Rule

Reading Assignment
l. Read Conte, pp. 119-12),
2. Review Rolle's theorem (zee Thm. 1.%, Conte, p. 15).
3. Review ﬁhe second theorem of tue mean for integrals

(see Conte, p. 15).

Computer Assignment
Use the following section names to begin the three available
modes:
1. L18LOL for the tutorial mode
2. L1APOL for the mroblem mode
3. LLOTOL, for the investigation mode

Problem Mcde. For each problem in this mode, use the trapezoidal

rule to approximate the integral of f(x) from A to B. To solve the
problem, you must specify
1. ‘the error E(h)=-h"#£"(7)/12 in texms of W and 7 vhere A<z<B,
2. & value of h analytically determined so that max | E(h) | <c on
[A,B] for o presecribed e,
3. the number of subdivisions N hased on your value of h, and
4. +the formulas for the trapezoidal rule based on Tnt(N/k)+1.,
Int(N/2)+1, and N subdivisions of [A,B] in terms of f, and h.
Problem 1. £(x)=sart(x)}+1/sqrt(x), [A,Bl=[1,2], and e=.5%10 2

rd i -
Problem 2. £(x)=exp(~-x"), [A,R]=[0,1], ¢ = .5%107°

Investigation Mode (Optional). You may apply the trapezoidal rule

to approximete an integral of your own choice. You must specify f(x),




A, B, and the number of svhdivisions MN< i,

2 is a periodic function
sin(LO¥P[*x)

with period equal *to .l. One danger in using equally svaced points for

Suggested Problem 1. £{x)=5r

integration is discoverad hy the numeriecsl integration of meriodin
functions. Investigate this effect by using the traperzoidel rule with
N=30, 35, and 4O subdivisions (31, 36, and 4l points) to approximate

1
f f(x)dx. The exact value is 2/sqrt(3).
o}

Suggested Problem 2. f(x)=abs{x) has a discontinvity in the first
derivative at x=0. 2o the error formuis does nob appLry if the interve)
for integration contains O as an interior point. Ye% the method is
exact if we subdivide the interval so thet ¢ is an end point of a sub-

division. Investigate this effect by using the trapezoidal rule to
by |

approximate / abs(x)dx. Use an even and odd number of points. Explain
-%

the results.
Student Performance
The student should know the trepezoidal formula and he able to
apply it 4o approximate definite integrals. The student should know the
error formula and be able to analytically determine a valuve of h, for
simple functions, so that the absolute error is less then some pre-

scribed tolerance.
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Lesson 19: Romberg Integraiion

Reading Assignment
1. Read Conte, pn. 126-171.
2. Review the trapezoidal zule.

5. Review Taylor's formula with remainder (see Conte, p. 15).

Computer Assignment
Use the following section nsmes %o begin the three available modes:
1. L19TLOL for the tutorial mode

2. L19P0L for the problem mode

Problem Mode. For the following problems, you ay. to state the

trapezoidal rule for the spreified values of N and the formilas for
extrqpplation to the limit. Numerical values will be supplied as the
formulas are constructed,

Problem 1. 'Use Rowberg integration to approvimate the integral
of £{x)=sin(x)/x from 0 to 1 using N=1, 2, and % subdivisions. Note
£(0)=1 by investigating the limit.

Problem 2, Use Romberg integration to spproximate the integral of
£(x)=1n(x) from L to % using N = 1, 2, 4, and & subdivisicns.

Investigation Mode (Optional). The student may use Romberg

integration to spproximate his own choice of the integral of £(x) from
A to B. The student supplies £(x), A, B, and the initial number of
subdivisions N<20. h=(B-A)/N will be computed and the extrapolation
results will be printed line by line for h/2, h/h, etec. using 2%N, U*N,

etc. subdivisions until the number of subdivisions exceeds 4O.
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Suggested Problem 1. See Suggeshed Prcollem 1 in the investigation
mode for Lesson 1. Use Nomherg integration.
Suggested Problem 2. See Suggesied Froblem 2 in the investigation

mode for Lesson 18. Use Romberg sntegration,

Student Performance
The student should be able to apply Fomberg integration to approxi-
mate the value of an iutegrsl). This requires defining the formulas
needed to construct the Romberg integration table. The student should

know the order of the approximation for any entry in the table.




1hl

Lesson 20: Numerical Tntegratlion - Jimpson's Rule

Reading Assignment,
1. Read Conte, p. 151 (first half page).

2. Read Conte, pp. 134 - 147, beginning with Toymulsa b, 57,
3. Review the %frapercidel rule, Romwbers integrallon, and the

second theorem of the mean for integrals (see Conte, p. 15).

Computer Assignment

Use the following section names o begin the three available modes:

1. L20LOl for the tutorisa) mode

2. L20P0L for the problem mode

5. L20I0) for the investigation mode

Problem Mode. For the problems, approximate the integrsl of £(x)
from A to B using_N=5 and. N=5 points (2 and h svddivisions) to obbain
the O(hg)atr&pezoidal estimates TO[0O] and TO[1]. Then use simple extra-
polation to obtain the improved estimate TL{1ll. Finally, use Simpson's
rule with 5 points to approximate the integral. The results of Ti[1)
and Simpson's rule should be the same.

Prohlem 1. (see Conte, Bt. }.5-1) £(x)=sin(x)/x, £(0)=1,A=0, B=l..

Problem 2. (see Conte, Fx. 4.5-L) f(x):exp(-xe)*sin(x), [A,B]=
[0,1].

Problem 3. (siee Conte, Wx. 4.5-2) £(x)=exp(-x"), [A,B] = [0,1].

Investigation Mode (Optionel). You may use Simpson's rule to

approximete the integral of your own choice of f(x) from A to B. You

must suppiy f(x), A, B, and N< 11 (number of 2h-length intervals).




Suggested Problem L. [ee Dugpested Problem 1 in the investigation

mode for Lesson 1. Use Simpson's rule.
Suggested Prchlem 2. See sugpested Problem 2 in the investigation

mode for Lesson 1fl. Use Simpson?’s rule.

ntudent Performance
The student should he able 4o state and apply Jimpson's rule for
2¥N subdivisions to approximate an integral. He should be eble to state
the error formu.a E(h) and, fTor simple fv  iune, choose h so that

maX | E(h) | < € for a specified «.
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Lesson 21: Numerical Integration of Ordinery Differential
| Equations ty Taylor Series Approximetions

Peading Assignment
lo Re&d Conte, ppo 212"2170

2. Review Taylor's formule (see Conte, p. 15).

,’E

3. Review the definition of the crder of an approximation

(see Conte, p. 115).

Compubter Assignment
Use the tollowing section nemes to begin the three available modes:
1. L21LOL1 for the tuférial mode
2, L21POL for the problem mode
3. NL2LIOL for the lnvestipation mode

Problem Mode. 1In the following problems, you are to numerically

approximate the true solution y(x) on [A,B] by Taylor's algorithm of
orders 1., 2, and 3 for the given y'=f{x,y) and y(A). Experiment with
several values of h. As h iz chosen smaller, the approximations become
more accurate. For each problem, you must determine

£ £ :
la fx’ f:f’ AH .gyy’ and fx

e ? v?

2. =yi+h*T(x ) ag the Taylor algorithm and specify T(x,y)

175
for orders 1, 2, and 3, and

Ys#1

5. 8 value N=step size for computation of Xe9 ¥y for i=0,1,...,,N.

Problem 1. (see Conte, Fx. 6.4-2) Let y'=f(x,y)=2y, [A,B]=[0,1],
and y(0)=1. The exact solution is v(x )=exp(2x ).

Problem 2. (see Conte, Ex. 6.3-1) Let y'=f(x,y)=-xy+l/y2,

[A’B]"[l’a] » and y(l )=l°




T T TR TR ey T T T

147

Investigation Mode (Optionsl;. You may use Taylor's algorithm of

orders 1, 2, and % to solve any problem y'uf(x,y) over the interval

[(A,B].
1.

2.

3.
L.

You musth nnecify

y‘sf(x,y) »

the Aesired order and corresponding expressions for f&, fy,

, £
ka, f&y, ang. xy?

initial. conditions (4,v{A)) and the final value of x=B, and

h so that N=(n-A)/h is an integer less than 101.

2
auggested Problem L. Consider the initial valne problem y'=y"

with y(1/2)=2. The exact solution is y(z) = 3=

1 . Mote that exact
RN

solution y and all of its derivativen y'=f, y"=f', ete, have a singu-

lerity at x=1l. Thus integration over the interval [%,1.u1 to approxi-

mate y(1.4)==2.5 violates the assumptions of continuity on y, £, f' ete.

Use various values of h and Taylor's algorithm of orders 1, 2, and 35 to

gsee how integration over singularities behnves, Then repeat the inte-

gration starting at y(1.2)=-5 to avoid the ningnlarity at x=l.

Atudent Performance

Given an initial value problem y'=f(x,v), y(A) specified, the stu-

dent should be able %o apply the computationnl method for Taylor's

algorithm of orders 1, 2, or 7 to approximate y(x) over an interval

[A,B].
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Legson 22: Second Order Punge-Kutta Methods

Reading Assignment
1. Read Conkte, pp. 220-220.
2., Work mx. 6.5-3% in Conte,
%, Review Taylor expansions of functions of one and two variables

(see Conte, pp. 15-16).

Computer Assignment
Use the following seebtion names to begin the three available modes:
1. L22L0L for the tutorial mode
2. L2°POL for the problem mode
3, L22I0L for the invessigation mode

Problem Mode., ¥or each problem, find the sclution to the initisal

value problem over the specified interval. Use A=0, B=1, C=D=l/2 for
the modified 7mler's method and A=B=1/2, C=D=1 for the improved Euler's
method. The genersl second order Runge-Kutta methcd is
Y4 7Yy rARKLABYRZ
Kl:h*f(xi,yi)
K?ah*f(xic*-c*h ¥4 +D¥EL )
The shudent must specify Kl(xi,yi), Kz(xi,yi), the formula for ¥, ..
and any value of h > .0l so that the number of integration steps N is
an integer.
problem 1. (see Conte, Ex. 6.5-2) Let y'=f(x,y)=xty, x =0, ¥ =1,
and final Xx=l.
Problem 2. Let y'=f(x,y)=exp(-y/xMy/x, xo=exp(1), ¥=0s @nd

£ir8l x=1l+exp(l).




Investigation Mode (Optiocnal). You may use any second order

Runge-Kutta methud to solve an initial value problem y'=f(x,y). You
must specify

1. y'=f(x,y)

2. initisl conditions Xos ¥y and finel ¥

3. paremeters A, B, C, and D to satlicfy A+B=l, B*C=B*D=l/?

k. the number of integration steps N< 101

Student Performance
Given y'=£(x,y) with initial ccmditions X y(xo). the stvdent
should be able to formulate any Rungs-Kubte method by specifying the
formulas for X1, kK2, and yi+lﬁyi+A*K1+B*KQs The student should know
whet vslues of A,B,C, and D to use for the modified Fuler's method and y

the improved Euler's method.
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Lesson 25: Numerical Integration, Frror Estimation, and Extrapolation

Reading Assignment
1. Read Conte, pp. 21L7-220.
2. Review Taylor's algorithm of order 2.
3. Review second order Runge-Kutta methods,
4. Roeview the mean value theorem for derivatives (see Conte, p.15).
5. PReview the definition of the oxder of an approximation

(see Conte, p. 115, formules 4.18)-

'anputer Assignment
Use the following seciion names 4o begin the two available modes:
1. L23LOY for the tuborlal mode
2. L23P0L for the probleu-invesitigation mode

Problem-Tnvestication Mode (Optional). You may @gply the Taylor

algorithm of order 2 or any second order Runge-Kntta method to spproxi-
mate the solution %o y'=f(x,y) of your own choice. You must supply

1. y'=f(x,y),

2. ;x and, %y in case of Taylor's algorithm,

3. A, B, C, and D in ceze of a Runge-¥uvite method,

4. initisl conditions Xy ¥, and final value for x, and

5. he number of integration steps N< 101,

The computer will provide the nume: nal integration results, ZN for N

stops, Z2N for 2%N steps, and the extrapolated result Z=(4*Z2N-ZN)/3.
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Student Performance
The student should know the genersal formulas for second order
Runge-Kutta methods or Taylor's algzorithm. On the basis of N and 2%N
integration steps, the student shouid be able to compare the valunes of
ZN and Z2N to determine a lower bound on the number of correct digits

in the answer. Similarly, the student should cowpare Z2N and the
extrapolated valuc Z.




Titleg of Lessons and Sections - Computer Sectiom Names

Lesson A:

1.

8.

Index

Xeybownr? Orientation

Transfer of Control Between the Student
and Computer

Correction of Typing Srrors - the RUBOUT Key
Correction of Typing Errors - the # Key
Mathematical Expressions

Subsgeripbed Varishles

The Diatlinguished Name PT

Available Mathematical Functions -~ Latitude in Usage

First Estimates of Zerns (Roots) of Functions

Lesson B: Compubter Numbers and Comoubational Error

1.
2.
3.
L.
5.
6.

Floating Point Represantation

k-Digit Normalized Floating Point Representation

Errors in Cowrmber Representation of Numbers
Frrors Introduced by Computer Operaticns
Propogation of Error

Problem-Investigation Mode

Lesson 1: Linear Tieration - Methodology

1.
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Transformation of the Function F(x)=0 to the
Bauation x=G{x)
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6. Tests for Convergence
| T. Problem Mode
8. Investigation Mode
Lesson 2: Linear Iteration - Theory
l. Review of the Methed
2. Linear Iteration Theorem
3. Meaning of Linear Iteration (Linear Convergence)
b, Problem Mode
5. Investigation Mode
Lesson 3: An Acceleration Technique
1. Geometric Sequences
2. Ailtken's Delta-Squared Process

3. Altken's Delta-Squared Process Applied to
Linear Iteration

k. Problem Mode
5. Investigation Mode
Lesson 4. Newton's Method @nd Quadratic Convergence
1. Rawton's Method
2. Convergence Proof for Newton's Method
3. Quadratic Convergence for Newton's Method
4. Problem Mode
5. Investigation Mode
Lesson 5: The Secant Method
1. The Iteration Equation
2. Convergence Behavior of the Secant Method
3. Problem Mode
4. Investigation Mode
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L1L06
L1POL
5L,1XI0L

L2101
L2L02
12L03
L2PO1
12T0L

L3LOL
L3L02

L3L03
L3P0l
L3I0

LALOL
LALO2
LAYLO3
Lu4POL
L4IOL

LSLOL
L5102
L5POL
L2101
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Lesson 6: Simulianecus Fguations - Newton's Method,

1. Review of Partisl De. ivatives - Notation LELO.
2. Derivation of Newton's Method for Functions of

Two Variables L6102
3. Newton's Itzration Formulas L6Y.0%
k., Quadratic Convergence of Newton's Method L6L,0L
5. Problem Mode L6POL
6. Investigation Mode L6IOL

Lesron T: Polynomial Eauvstions - Real Roots

1. E'valuation of Polynominls by Nested

Multiplication LTLOL
2. Review - Division Algorithm for Polynomials LTLO2
3. Formal. Derivation of the Neghed Multiplicakion

Algorithm for BEvaluvation of a Polynominal LTLO3
4. Evaluation of the Deri