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ARSTRACT ' b
- Fxamined are some of the intérgélations among three
areas--first, linguistic work inspired by the ideas of Zellig’

Harris--second, logical inveéfigations concerning the ‘nature of

mathematical reasoning--and third, mathematical eduration. The author

states that his main concern is to bring some basic linquistic

‘ concepts and hypotheses to *+he study of deductive reasoning ani,
+hen, to suggest applications to mathematical =ducation. The -

. substance of this paper is divided in thres.parts. Part I contains
some introductory remarks delimiting the author's understandina of
wha+ mathemat+ical reasoning is. In addition, thi's section relates the
author's structure of mathematical discourse to the structure of
Fnglish discourse. In Part II, the author outlines the nature of a
theory of proof and suggests the utility of such a theory for
mathematical education. In Part TII, the author develops several
basic ideas ;nvolved’in devloping a usable theory of proof. (RP)
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by

‘Jehn Corcoran

| In this paper I will examine <some of the interrelations
‘among three areas: ‘first, linguistic work inspired by the
| ideas of Zellilg Harris second, logical investigations con-
( cerning the nature of mathenatical reasoning, and’ third
Ci?k , \\gg_ngpatical education. My main concern is to bring some
basie linguistic concepts and‘hypctheses to the study of
~ deductive reésoning and, then, to éuggest applications to 4
mathematical education.» I take mathematical education-to be
the area of study which attempﬁs to better uﬁderstand teaching
and learning of mathématics and also‘to iﬁpréve"mathematical'
E teaching in practice. |

——\  The substance of this paper is divided in three. Part

I contalns somg introductory remarks delimiting in broad -
strokes ny unde};tanding of what mathematical rea%oning is.

In addition I relate the structure of mathematical dliscourse

to the structure of Engbish discourse. In Part II I try

to outline ti.. nature of a theory of proof and also to

suggest the utility of such a theory for mathematical education.
In Part III I develop several bpsic idgas involved in de-

veloping a usable theory of proof. .
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For readers with a practicax interest in mathematical
education, the central core of fhe paper 1s the last section
of Part II where I diocusq,the utility of a theory of prpof _

for mathematlical educaﬁion. From this point of view, the

!

discussion preceding the central core provides the background

needed to understand what a theory of proof 1s, while the
W

dngﬂSSion following the central core develops several basic

~ideas essential to the construction of such a theory. “
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PART T
MATHEMATICAL REASONING AND THE STRUCTURE OF LANGUAGE

--Loglcal Consequence and Inference -

Mathematical reasoning, or deductlve reasoning, is a
prdcess whereby a'person comes to understand, to know, that

if certalin statements were true then a certain other state-

ment would necessarily also be true. When a man thinks

| through the axloms and'a certain theorem in geometry and

comés to know that 1f the axloms are true then the theorem
must also be true then that man 1is engaging in/ﬁ;thematieal

reagoning. In giving a.proof a man expresses his reasoning

. in writing or in speech. Thus reasoning 1s a mental process

whereas a proof‘is 2 lingulstic entity, written or spoken.
Apparently wé'have no'aécess to another person's mathematical
redsoning except through the proofs he offers. TThus proofs
provide "the data" in the study of mathemaﬁical reasoning.

In the above paragraph I have implicitly presupposed
familiarity with three special concepﬁsf_ Loglcal consequence,
deductive reasoning and proofs. A brief Qévieonf these
ideaS'may prove helpful because each of thémaplays a prominent

~m
role {:qubsequent develnpments.

\

onsider a given set of statements (axioms) and a

: given single statement. It may happen that the glven state

ment follows. logically from the axiomsu That is, it may

happen that 1f the axioms were all true then the givu

statement would necessarily also be true. In this case the
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,/axiomu imply the given stateme?%// Naturally, even if the

i st iuiinhey panasibiiniite et s et o e A N

—_

givén statement is g logical conseouence of the axioms; the @

N
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glven statement does follow there 15 no guarantee that

anyone knows that 1t follows (otherwise there would be n0 ,/>
onen questions in mathematics),
In order to know that a given statement iollqws froT

glven axloms, 1t is necessary to reason deductively from

(3

¢the axioms to the given statement, to trace out the Yogical

steps whereby one comes to know that if the given axloms

arve true, the given statement must also be true. Thus,

deductive reasoning is Auman activity; 1t is a mental process
subsumed under qﬁe broader heading of learning. In a par-
ticular caée“of deductive reasening, 'a person learns some-
thing, comes-to know sométhing, viz., that a certain state-~
ment.1s a logical consequence of certaln other statements,
N\ | -
A EE%QE {i.anwgrticulation or expression of deduc~

tive reasoning. In gilving a proof of a given statement
from éiven axioms:one expresses his reasoning why the given
statemeht follows. Thuds a proof is something which can be
writteﬁ or Spoken~-a pfoof is a*limguistic element simllar
in many ways to narrative para;zr'aph<~ | -

..\\ There is a metaphor which neahly separates the three
igeas \&A logical consequence connectlon 1s a Egg__in 1ogical

/ .
space; when we Yeasdn we trace the pa\i, %pd a prpof is a

set of directions we give to others fOf/fetracing the path.

The metaphor breaks down when indirect reasoning (reductio

ad absurdum) 1s considered because "tracing a path" from




axloms and a denlal of a statement to a contradictionfdoes
not seem to ég "tracing a path" from the axioms to the
statement. Thefe are doubtless other more serious deflcilenciles
iri the metaphor. |
It 1s important to distinguish Heductive feasoning ,
from the perhaps more creative'proces; ﬂf discovering a j
lopical connectlon. Imagine, for exampie, that you are
. given a set of axioms. You read them carefully and'under~
stand them aﬁd then you "see" that something else follows.
This "seeing" is actually a kind of gUessing'because you
do not know that the additional statement follows until
“you verify it bx/%%epibyustep reésoning. .Thé word "infer"
is frequently used to cover both ‘the initial gue;éing'and
the subsequent deductive ré@soning. According to.the way
that I am using the words '"deductive feasoning"'one'usually E ;
does ﬁbt reason until he has already guessed.a posslble |
consequence. In addition, Ivshouldjgmphasize that deductive
reasoning 1s also involved in ”foﬂfgwi " g pfoof, l.e., in
seeing for oneseif that it‘Shows why fne conclusion follows.

- Naturally, the reaﬁoning involved in following a proof is

not nearly as creative as the reasoning.involved in dig~

-covering the exact logical connection--but it is, neverthe-
less, deductive reason;ng. |

The reader deserves to be warned that the word "praof"
is amblguous in normal mathematica};parlahce.V‘It 1s cer- ﬁ“

tainly used in the above sense to indicate an articulatlion

of dedutive reasoning, but 1t is also used in the sense of a

Q ' ' ,
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particular logical connection or path in logical space or
something of the sort. For erample, wé speak of trying to
discover a new prodf 6f a known theorem (from given axioms).
Here we are not looking for a new way of descrlibing the known
ﬁaﬁh of reasoning, bu£¥we actually want a new path of
reasoning--a new way of‘getting to the theorem from the

VA
axioms. The reason that we would want a new path would be

,that7we find the known one to be devious, round-about,

bverly intricate, unnatural--in a word, inelegant.
It 1s interesting to notice that the distinction

between the relation of logical consequence and the act

of inferring is already implicit in non-technical English.

It is grammatically acceptable to say that one statement

immlirs another statement, buu it is not acceptable to say

———r oo 186

that one statement infers another statement.‘ On the other

hand, one can say that a person infers one statement from

another statement.

f

At this point we have distinguished logical conse-

/
/

quence, an objective logical relation, from deductive rcason-

" ing, a human activity. Deductive reasoning is one of the

primary activities of mathematiclans because ﬁaéhemaﬁicians
are concerned to establish 1ogical cqnnections between
axiomq and o“her statements. Since reasonling 1is a hﬁman
activity it should be expected\?Rat some people are more
skilled in it than others. It 1is almost by definition thaﬁ

a godd mathematician is more skilled in deductilve ﬂéasoning

than a poor one. I say "glmost" because I have heard of
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matherfaticians who are unskilled théorem-provers, but who

aa e gained'reﬁutations for being able to guess new theorems
with uncanny accuracy. In any case, after a statement has
been gues§ed to follow, one may go through the process of
reasoning step-by-step why (or how) it follows. The verbal
or written articulation of the reasoning is a proof. Given

a written proof, one can retrace the steps of reasoning

expressed in 1t and rediscover (or see for himself) that the
. ’ "~ ” .

conclusion follows., d
Next I will change the subject from logic to 1lin-

guistics 1in order to discuss levels of language. -Afterward

- I will bring the two together.

--Levels of Language

Stratification: The notion that language is stratified
into increasingly complex levels of organization is clear;y

" /
reflgpted in our writing system. A written text is orggﬁized

In paragraphs. ' The paragraphs are naturally segmenteq/into

sentences, Sentences are perceived as composed of Qhrases
' ) “' \ '
“ilch ig turn are composed of words, and the words are strings

of letters. The lowest level of the written language 1s. the
alphal 2t., MNext, we have the level of words, then the level

oft. phrases, then sentences and, perhaps finally, the level

of discoursr~ which contains paragraphs and "texts." For

1llustrative purposes, let us assume thgt English 1is strati-
fied according to the above scheme. It seems to me obvious

.2t English is stratified in some way or other, but it is at




least doubtful whether it 1is stratified'even roughly in
accord with the above scheme,
By "language" the lingulst means the spoken language.
Thus, we are a;suming that the above stratification applies
to the spoken language.
| Let us 1ntroduce terminoloéy approprliate for a de-

tailed discussion of the assumed stratification of English.

The'alphabet of (spoken) English 1s the %et of basic, "in-

divisible" spoken symbols. The objects in the spoken alpha-

bet are generally called phonemes and, in a written alphabet

reprasenting phonemes, ﬁhe representations of, e.g., "early"
.

and "yearly" would not suggest that.they rhymed, whereas

the representations of "sax" and "sacks" would be the same.
The lexicon of English is the set of wofds,of English. For
the following we do not introducé’any'specia}'terminology:
the set of phrases, the set of \sentences, the set of dls-
courses. The corresponding le;%ls are calied respectively:
alphabetié,’lexicogfaphic, phraseological, sentential and
discourée,

Reality of Language Structure: Ore vexy lmportant

theoretical question in linguistic "reality"

of the stratification into lévéls. gould it
not be the case that the stratiyiﬁk a stfucture
which we find convenieﬁt to impose on English but which cor-
;:responds to nothing feal in Engligﬁ? Many lingulsts do not
regard this as a substantive quesfidn because; some reason,

"Either there i1s a 'real' structure to English or there is




not. If there 1s a '"real' structure, then, presumably, if

we_work hard enough and are flexible and imaginat;Ve, then

%he structure that we find most convenient will cbrrespond
exactly to the real structure. Thus, cofivenience is the
Important criterion. On the other hand, 1if there 1s no

'real' structure, tﬁen what else iE there besldes convenieﬁbéf"

There 1is additional debate poncerning which 1evels are
"real" and whaf kinds of reasons are relevant to determining
the "reality" of a level. Some lihguistic work suggests that
some relevant evidehce can be gleaned from studles of the
patterns of stress and inbonation%and of the co-occhrrence
restrictions in actual speech. Other linguists (Chomsky,
Section 8.1) have madelinteresting suggestions concerning
ways of Justifying an intermediate level, B, glven the
exlstence of two levels A and C.

In my opinion, all of the aboveuquestions“gre very .
important and very difficult. But they are reaily out of \
place in thls paper except that they may have started to
hother the perdeptive and critical reader. My brief remarks
are intended as an acknowledgement of the difficulties.

. ~ Internal Structure of Levels: Now: we wish to consider
the Internal structure of each of the five levels. What we
mean by the 1ntérnal structure of a level is merely how the
elements of that level are interrelated. We dlsregard any
possible internal structure on the alphabetic level becadse y

)

we are considering the phonemes.(or letters) to beini}visible

units, V .
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Generalizing on Harris' ideas (1951, pp. vi, vii),
- wWe postulate a "kernel/compound" structure at eadh of the
~higher leveis. This means that each element in a given
level is either a éimple element or a combination of simple
élemeﬁts. The éet of simple eléments of a level is called
_the kernel of that level, the non-kernel elements are called

compourids. The kernel on the lexicographic level might

contain 'black' 'bird' and 'like', while "blrds-like",
"unbifdulike", and 'blackbird' might be‘among the compounds.
The kernel on the sehtential;level might.include 'Birds
 fly* and 'Fishmsﬁim’,:while 'Birds:swim and fish fly' and
'Birds do not fly' wouAd'be compounds. On the discourse
level the kernel would contain only sentences which can
stand alone. For example, 'Birds fly' would be in the ke~--
whereas 'They fly'- would not. 'Among'the compou;d discourses
would beAthings like the following: 'Birds don't swim. |
They fly.' |
Not{ce two thidgéu First, in each case, kernel
elements were constructed direcfly only using élements on
the lower levels. Second, compounds were composed of kernel
elements, using only lower level elemehts as "connectlons".
To say that’this’is‘true, in generalé 18 most likely wrong.
However, for the saké of our iilustfa%ion, we are making
this assumption. |
The total set of assumptlions that we have made about
" English amounts to something apprbaching the simplest n~-

trivial hypothesis abcut~the“étrucxure of Englisii--znd as

\ | | | .

4,
.-
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such it is almost certainly wrong. Indeed, many lingulsts
will be offended by the thought that these.aSSumptions could
be seriously entertained”as possible. Thus, I want to
emphasizgvphatvthe assumptions are made 1in a pedagogical
spirit onily.

/ J Let us briefly review the assumptions.ﬁ First, we

assumed that Engllish 1s stratrf{ed into five levels roughly
corfesponding.to'1etters, words, phrases, sentences and e
discoﬁrsesj Second, we assumed that each level above the
‘alphabetic has a kernel/compound structure. Third, we
assumed that each of the higher levels 1s somehow obtalned
by combining only elements on the same or lower levels. Our
third assumption 1s meant tQ iﬁply that, glven a deseription
of the spoken alphabet of phonemes the foliowing hold:
firSt, that the words can be described without reference to
phrases, sentences, or discourses; sécond, that_the phrases

+

can be described withput feférence to‘sentences or discourses;
and third, that thé sentences can be described without
reference to discourses. It 1s the last assumption that
will be found‘most obnoxious and, I must admit, I do not
think that 1t 1s very plausibie myself.

It 1is interesting to compare the levels of language
with meanings as "perceived" 1n written language. On the
lowest level, we have units which are perceived as written
language (as opposed to mere marks), but which'are not

necessarily méanihgful as such. For example, the letter 'p‘

1s not meaningful, but the letter 'a' can be meaningful.

o ‘

o b g+ ik 23
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Next, we have words which are definitely meaningful. The
kernel words can be thought of as. words which do not h%ve
other 'words as'parts. Actually one kernel word could héve
other words as parts, literally, but 1t would still be re-
_garded as a kernel word 1f its meaning was not related in
’any way. to the meénihg of ité part. For example, 'dog' has
'do' for a part, buﬁ.gﬁe meaning of 'dog' 1is in no way re-~
lated to the meaninggY 'do'. Naturally some words are com-
posed of only one phonem 5 e.g., 'a' and 'I'. Thus, the
leﬁjcographic level (or wd%d lgvel) 1s the primary level as
far as meaﬁingis'concerned; As'far as meaning 1s concerned,
the alphabetic lével 1s dispensible--we utter words and it

is accidental that they are made up of phonemes (letters).

Theoretically we could have a language in which each word was

a single phoneme so that the'lexicographié and alphabetic
,levéls would be the same. The trouble witp fhisnis that af* .

a cértain nﬁmber of words were introduced into the language

we would have to have extraordinarily sharp ears (and "sharp"

tongues) to communicate. ‘ P

'One interesting\thing about ﬁhe phraseologlcal level

is that the meanings of complex phrases are very dependent

on the meanihgs of the words which are their parts, e.g., the u
- meaning of 'the king of Towa' 1is certainly dependent on the

meanings of the words in 1t. At this level, however, the

meanings are still in a sense wbrd7meanings--they are not yet

sentential in nature. They are ﬂot true or'false, for ex-

ample. We correctly speak of noun phrases, verb phrases,
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adjective phrases, and adverbial phrases-—indicaling that the
meanings of phrases are "functionaily" the same as the meanings

i
of words.

On..the sententlial Level a new kind of meaning emerges.
Igdeed,vit might be sald that communication begins on the
sentential léﬁel bedause*although the utterance of a word or
phrase may permit us to know Eggg'the speaker -is talking
about, it will not tell us what he is saying about it. It
1s important to notiée'that the meaning we get from a sen-
tence depends not only on the meanings we attach to the
particular words in the sentence, but -also on the way that
we hear (see) the sentence composed of'phrases. Consider
the following: y

You know how sincere freshmen are.

(Do you see 'sincere' grouped with 'how' or with 'freshmen'?)

On the level of discourse still another kind of meanin@
ererges. The point here 1s that the kind 6f thing communi-
cated by a discourse 1s generally richer and more complex
than the kind of thing communicated by a single sentence.

In particular, a declarative sentence could be sald to com-
municate a "fact", whereas a paragraph composed of declarative
sentences could communicate facts together wlth an organlza-

tion of them. It is even more instructive to consider

proofs as examples of discourses (Harris, 195“)} What is

communiCated in a proof 1s the reasoning from ifs assumptions

\

o 1ts conclusion and generally none of the sentences in a

proof are asserted as declarative sentences. We can reason
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from admittedly false assumptidns to an admittedly false -

conclusion and communicate the reasoning in a correct proof--

&

necessarily not asserting (@s facts) any of the sentences in

4

the proof.

Some linguists have suggested that the meaning of a
discourse is merfly the meaning of the logical conjJunction of
all the sentences in the discourse. This 1s obvliously not the
case because 1f 1t were so, then the order of occurrence of

. sentences in a discourse ﬁodlp be irrelevant. It is clear
that the order of occurrencé!of sentences in a discourse is of
cruclal importance with regard to the meaning of a discourse.
As an experiment one might permute the sentences of a glven
paragraph and then see if the result means the same as the .?
original. (¥or example; try 1nterchaﬁging the first and
third sentences of this paragraph,)

Most of the linguilstics Qefore the 50's was focused
primarily below the sentential ‘level and much ofhthe work at
the sentential 1eve1wwas p}ecémeal and (therefore?) unexciting
to persons with a mathematical outlook. The interesting de-~
velopments started in the 50's withiHarris' investigations

above the sententlal level. As a result of Harris' work, the

sentential level was investlgated in a more systematfc-and
mathematlically interesting fashion. Harrls had become
interested ‘n the obvious fact that certain stretches of
speech composed of several sentences have a definite kind 6f

structure not reducible to sentential structure. These

bbructured stretches of speech (or writing) were calleﬂ

discourses.
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| So far we have distinguished fivellevels of language:
the alphabetic, the lexicographic (words), the phraseo-
loglcal, the sententlal and the discourse levels. Each of
the higher levels encompasses an increasingly complex structure
;;which-depends on the levels below it. When we apply the con-
i ceptual imqort oi’these distinctions to formallized mathematical
communication, there are no new difficulties. The basic
alphabet of primitive symbols provides tq; alphabetic level.
For example, in a language designed for arithmetlc we mil sht
have an alphabet containing: , a symbol x and a "prime;v'
for constructing variables (x, X',‘x", x''', etc.), the
arithmetic symbols, 0, 1, +, °,< and‘the 1ogica1 symbols
&,‘v,ﬁ:,:>, =, etc. The 1exicogr£§hic level would include
0,.1 and the compound:symools‘gétained by "priming" the
symbol x {(i.e., the variab&eéd. On th€ phraseoclogical lev-l
we would have all of the elements Jﬁst mentionedntogether\
with the other terms which enter equations, viz., (0+1),
((0+1) ‘1), (xi + xs"), ((0+x'') -x'"'), c.c. The sen-
Atential 1evel would contain: the equations, ((0+1) = x),
etc.; the inecualit &3 (((0+1)+1)<), ete. and all of the
compound formulas maie up from equations and inequalities by
use of quantifiers and connectives.  Finally, the discourse
1eve1_would Include the proofs; |
Thus we have'én anaiogy between the}ievels of English
and the 1evels of a language of arithmetlic according to
which the discourses of English correspond tn the proofs in
the arithmetic language. One strikinﬂ diff.r ace 1s that in

¢

L
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English there are many different kinds of discourses (nar--
rative, descriptive, éxplanatory,;demonstrative, ete,),
whereaswin the arithmetic language apparently theye is only.
one kind of discourse--the proof. - Of course, the same sort

of thing is true on the sentential level (all formulas in

arithmetic are declarative) as well as on the phraseological

level (all phrases in arithmetic are noun phrases such as

(0 + 1)),

P

~-~Grammars

Ll

OCne of the main projects of modern lingulsts is to
glve a complete and éystematic description of the entire
English language. Lingulsts and philosophers have suggested
that English be regarded as two separate but interrelated
systems, a syntactlcal svstem (or system of symbéls regarded
abstractly) and a semantical system (or syétem of meanings)._m
A description of the syntactical system of a language is‘ |
called a grammar of thét language.,

It is reasonable to ;equire that any adequate grammar |
of English must consist in adequate descriptions of each
level in terms bf the preceding,level (or levels) togethef
with whatever other concepts ére‘needed. In other wbrds,

a descr;ption of the syntactital system of Eng}ish should
be stratified in accordance with‘the way that English itéelf

is stratified. Moreover,'a description of a given highgr

level must account for how esch element of that level cbn—

sists of elements of the lower level (s). Thus, a grammar




of English will consist in (1) a des Lription of the
| alphabetic level, (2) a system of~rules describing how the
words are bullt up of phonemes and words, (35 a system of
\

rules desc¢ribing héw the phrases are bullt up from phonemes,’
words and phrases, (4) a senténtial gfammar or system of \\\

rules describing’how sentences are built up, (5) a dis-~ ?
cdﬁrsé grammaf describing Lhow discourses are bullt up.:
In short, a’gramﬁar of Engiish would consist in a descrip-
tion of the basic alphabet together with four systems of
rules each subsequent one of which“depends;on the lower
level systemu. |

Without any losg of generallty we can thin}"of each
of the fdur rule systems as inclpddng two types of rules:
first, initial-string or "kernel" rules which describe the
kernel; second, production ru s wnﬁch"ﬁpeclfy the compounds
by indicating howlthe'compounds may be constructed from the
kernel elements. Rule systems of this sort are sometimes

1

said to be in "kernel/transformation" form. Let A repre-
nsiorm ,

sent the alphabet, A, the set of words, Ay the set of

1
phrases, A3 the set of sentences and Ay the set of discourses.
~ Let Py, Pp, P3 and Py be the rule sets which dmscribe (pro-

duce). Ay, Ap, A3 ‘and Ay respevtively, If we indicate the

levels that can be referred to in a rule set by writing the
names of those levels after the names of the rules, then, ‘
éqggfding to our third assumption, a grammar of English.can

T~
be represented as follows:
‘ i ¢ .

TR e,




"\ A " alphabet

(S

P, (A) .M | . lexicon
PZ(A+A1) > As phrases

’ = |
P3(A+Ay+hp) =+ | Aj sentences
PM(A+A1+A2+A§) > Al discourses

The arrow means "produces" or '"describes". The
third line can be read: a set of rules depending on the
alphabet and the lexlcon describes the set of phrases,

Below we glve an example of a grammar of thils
sort to describe part of the arithnctic_ianguage mentioned

~ ebove,

-

Partial Crammar of Arilthmetic Lanzuage

A txy 'y 0, 1, 4, °, <, 4, v, v, , &, ),(,rL, (alphabet)

e

~
Pi: (a) Initial Strings: 0 and l\ére constant words

3

(b) Initial Strings: x is a variable word

e Y S Nt e
.
e
pr
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Production: 1if S 15 a varlable word then S' 1s |
a variable word |
Ay 2 0, 1, x, %', X", L. (words)
Prp : Inltlal Strings: all words are phrases
Productions: 1f S; and S, are phrases then (Sl+82)is
a phrase. ' |
1f 8, and S, are phrases then (S;°3,) 1s
a phrase. |
A : 0, 1, x, x', ..., (0O+0), (0+1), (O+x), ..., ((0+1)+0),
((0+1)+1),... - (phrases
P3 : Initial Strings: 'all strings (siésg) and (Sl<§%) are
sentences where S, and Sa’are phrase 3.
Productions: 1if S is a sentence then ~S 1s a;sentence
V 1f 8; and S, are sentences thén (S1&82)
' is a sentence- /
if Sq and Sp are sentences then (SyvS2)
| 1s a sentence
if S; and Sp are sentences then (S323,)
is a sentenge |
As: (0=0), (0=1),..., (0<0), (0<1l),..., ~(0=0), m(0=1),..i;
v (0<0), ~(0<1),... ((0=0)<(0=1))..., ((0=0)v(0=1)),...

((0<0)v(0=1)),... ~ (sentences) :

/

229 o
5 (proofs)
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The above 1s a partial grémmar of the.gggg'of the arithmetic
language not involving the quantifiers. It is obvious that
all such sentences are described or produced by P3, il.e.,
are 1n A3: Py, which 1s presently left out, would generate '
or descfibe the correct proofs in thils part of the arichmetic
languagé; Before wé give our opinion of what thils would,be
like, -we want to discuss the nature and value of a correct
theory of proof. In the final pdft of the paper we will
/' contrast twopossibilities fof Py .
-Note: The above is not the only language suitable for develop-
/; ” ment of arithmetic. Indeed, there are several others among
| which are found some which do not satiéfy our three assump-
tions. In particular, some of them contain phrases which
are constructed from sentences. For example, conslder the

noun phrase
L\

“the least number greater than 2"

J

This would be expressed in some languages by '(iii((1+1)<x)'~
which contalns the sententlal expression ((1l+1l)<x). Such
languages exhibit an interdependence between the sententlial
level and the phraseologilcal level,'thus violating the third
assumption which 1lmplies that phrases can be composeq only of

phrases, words and letters (l.e., of same br lower level elements).

There 1is good reason to belleve that the same sort'ofg

thing 1s true of English and, moreover, it appears that ™
some of the sentences in English are derived from dis-
courses further compounding the degree to which the third

assumptlion falls. If the latter 1s true, then no adequate




sententlal grammar of Engi;sh can ggxconstructed untll at

least a part of the discourse %y&ﬁﬁgi is constructed.
¢ -
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PART II

The Nature of Correct Theory of Proof and Its Value

--Proofs and Rules of Inference_ ﬂﬁ‘
As we have been using the word above, a proof is
an articulation of deductive reasoning from premlses to con-

clusion. Thus when a mathematician writes a proof he is

primarily interested in communicating his reasoning'to
others. He is explaining toﬁcthers his reasoning that if
the premilses are trug/the conclusion must also be true.
Secondarily, he 1s "ecording a mental prccess/event -- viz,

the particular process of reasoning from those part{igiea

premises to that particular concluslon during 4 particular

Regularity in Prcofs: If we conslder proofs that

we have written or if we survey the proofs found in the \ ' ;
1itera?ure of mathematics we find many repetitions of siﬁpleﬁ

patterns. ! _ﬂhis is a clue to the fact that the wrliting of

proofs L‘/a rule- governed actjvitv. However, if we recall

our experiences we will notice that ir wriging proofs we

do not think of ourselves -as following rules. It 1s

-

only after the fgct that we see the patterns and postulate .
the-existence of the rules to acccunt for the-regularipy.
This situaticn is analcgous to the situation involving

© 22 .
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writing of sehtences. After seeing many examples of sen-
ténces,we notice repeating patterns and postulate the exls-
tence of rules to account for the regularity. Sentences
are constructed according to rules but we are not conscious’
of folloﬁing rules In wrltlng sentences. The same wlth
prodfs.

When you write a proof you are generally doing (or

redoing) the reasoning that you are expressing in the proof.

- Moreover, when you are reasoning in a particular branch of

mathematics»(e.g;,'geometry or arithmetic) you are generally
thinklng abcut the subject matter of that branch -- although,
as Hllbert and others point out,'if your reasoning 1s
correct, the subject matter 1s irrelevant and the reasoning
would apply equally well to any other subject matter. The
poiﬁt that I am making 1s that when you are writing a proof
you are too busy to think of any rules even if you knew
which ones to think of. This 1s exaétly analogous to speech:
whén you utter a sentence you are generalily thinking'about
what‘the éenteﬁée is about and thus are too busy to bother
with rules. Inaéép, for example, as you begin to learn a
foreign language in a classroom situation, as long aé you
have‘to think of the rules you generally make rather dull
conversation bécause you are too bUsy to give much thcocught

to what you are talking about. Thus, carrying this over to
reasoniﬁé; 1f you knew the rules explicitly and actually

thought of them while you reasoned you would likely not get
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very far in your mathematics.

Rules of Inv¥erence: Let us use the term "rule of
inference" to refer to the r..es according to which proofs
are constructed. The rulﬂs of inference fare Tules for con-'
structing proofs in the same way that the rules in a sen-
tential granmar are rules for constructing sentences. Be-
cause of our hypothesis that the discourse level, which in-

cludes the proofs, must have kernel/compound structure there

'3w111 be two types of rules: initial string rules asserting

that certailn strings are proofs ab lnitio and production

rules which bulld up compound proofs from simpler ones. As
a result of my own experience in formulation rules of in-
ference it seems that each production rule can be written in
the following form: if such- and—such is a proef then the
result of adding so-and-so to the end of 1% 1s also & proof.

This 1mplies that each production-type rule of inerence has

the effect pf lengtheninglan already existent proof.

Since proofs frequently begin with assumptions
layed down wlthout proof,we may suppose that one initial
string rule simply says that any sentence may be written

down to start.a proof’provided that 1t is clearly matked as

an assumption. Thus we might state the initilal-stripg ruile

of assumption: !Assume p' may-be written to start a proof

whiere p 1s any sentence. In addltion, since assumptlions are

also written at non-initilal plaqeg/gn proofs we also have a

production rule of assumptions: any prcof may be lengthened

by the addition of 'assume p'. Other production rules are
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easy to think of. The rule of modus ponens can be stated:

Any proof containing a sentence p and alsc containing a
sentence 'if p then q' may be lengthened by adding q onto
the end. Many other rules will come to mind.

Kno%ledge of Rules of Inference: It is important to
distingulish a stronger and a weaker sénse in which one may
know,a rule of inference. Let us say that a person has
weak knowledge of a rule of inference if he reasons 1in
" accord with that rule. Thus weak knowladge of a rule of
inference is a non-self-consecious kind of knowledge. All
mathematliclians and moSt people, I 1magine, have wégk know-
ledge of quite a few rules of inference although few people
are self-conscious about the rules according to which they
reasoﬁ{ On tthother hand, let us say that a pérson has
strong knowledge of a rule of inference if he can explaln
the deta.ls of the rule, point-out places‘where 1t 1s used,
etec., Strong knowledgélef a rule of inference is'a very self-
conscious kind of knowledge. Mathematiclans generally have
weak knowledge of many ruies of‘inference and strong knowledge
of very few. A loglclan who is poor at reasoning may have -
strong knowledgg of many rules of inference and weak know-
ledge of very few, although most loglcians, it seems; have T
weak knowlé&ge and strong knowledge pf many rules of inference.

| The same dlstinction carriés over toiknéwiedge of’ruleé
of sentence construction. All speakers of English have

weak knowledge of many sentential rules whereas only linguists

can be expected to have strong knowledgef of more than a few

\
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such rules. Linguiéts make 1t thelr business té have strong
knowledge of rules of sentence construction whereas othq@
speakers are content to be able to use the rules, i.e., to
ﬁave weak knowledge of the rules.

| Naturally, 1t 1s not to be expected that everjone

has even weak knowledge of all rules pf inference. Cer-

tainly the high school freshman could\not be expected to
know.all df the rules of Inference use@ by thec profesgional
mathematician.‘ In a sense, knowing a nule of inference
amounts to understanding a type of logigal cqnnection. - Of
course, as people acquainted with mathematical education, we
have all had the discouraging éxperience of seelng a student
mimic a teacher's pattern of reasoning without understanding’
it. In such cases, I believe, we will always Dbe able to )

ascertaln that the student has not learned tbe‘rule, but

only the superficial aspects of a few applications of 1t.

Nevertheless, I must acknowledge the theoretiéal possibility

of a student who knows how to use an impressibly large class
of rﬁles without understanding any of them. Such a student
could write down a correct proof of a concluslon from some
assumptions'without believing that the conclusion actually .
followed from them--l.e., He.would not be willing to risk
anything to defend the thesis that if the assumptioné were
‘true then the.conclusion would necessarily also be true.

Even though a given person may not know all of the

rules of inference and, indeed, as the skills of mathematical

reasoning evolve, new rules may come into use; 1t 1s.most
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likely the case that most normal high school freshmen know
severol of the:simpler ru;es. Moreover, it is my view that
some more comolnx rules sre leapned b? developing skill in
the use of'the simpler rules and then, seeing how sfeps

»may be,s skipped.

’/‘

This means that after & student has pone through a

P

‘ : | certaln fixed pattern of detailed reasoning several times
| he may develop a feel for therupshot of the paftern andybe-
- gin to omit the details in future'pooofs--thus) in effect,
gaining weak knowledge of a more complex rule, We ma& imagine
that the professional'mathematician, after'yéars of ex- ’
perience 1n deductive reasoning, has developed weak know-

(\ | ledge of very complex rules well beyond the comprehension

L of beginning students. From this point of view, 1t is

naturél-to expect that as mathematlical reasoning becomes
i

”

; 1ncreasiqgly sophisticated, more and more complex rules of

} . inference &ill evolve.

;T If We wish we may even speculate that the maﬁhematics
student has two kinds of "vocabularies" of rules--an active
vocabuiary that he can actually use in doing proofs ano a .
passive vocabulary of rules which he, can ﬁfoklow“ buf not

use. This sort of hypothesis may partially account for“

inability of students to recreate reasonlng that they have
~ followed in class. |
Correctness of Rules of Inference: We may worider /
about correctness and incorrectness of rules of inference?-

i

is it conceivable that a few persons or a whole soclety of
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~.
persons write proofs accordl to incorrect rules? Indeed,
suppose that everyone wrote proofs according to a cerpain
rule, would not the universal acceptance of a rule make 1t
correct? On a certain level, these are very easy questions
once we recall that a proof is desipned to show that a certain
conclusion follows from certaln premises. If & conclusion
follows from some premises then 1t i1s impossible that the
premises are true and the conclusion false. Thus 1f a
system of rules could be used to prove a false sentence -
from a set of true sentences then certalnly at least one sf

the rules is incorrect or, as we say in loglc, unsound. A

Thus, it i1s possible that a few persons or a whole soclety

of persons write proofs according to incorrect rules. (It
is possible but I have never seen it happen——although I
have seen people make mlstakes in proofs.) Moreover, con-
cerning this second question we can say that?the~universal
acceptance of a rule of inference would not make it sound.
Incidentally, it follows from what;mas been sald

above that i1f a certain soclety writes pﬁbofs incorrectly

\ then possibly someone could dlscover thﬁs fact--however,

1f a soclety writes proofs correctly tﬁsn'there seems. to be

no way of finding out for sure that it does.
Parenthetically, I might add here that if I were an

Intuitionist,‘l would have said that I had seen examples

of the'use of unsound rules. The Intuitionisﬁkwould say

that most mathematicians use unsoﬁnd rules and that much of

the 1iterat§;e of mathematics contains incbrrect proofs. |

# v .
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In particular, Intultionists regard one of the forms of in-
direct proof as unsound. Let us consider this in a 1little

more detall. The kind of indirect (or reductio ad absurdam)

reasoniﬁg.involved 1n the standard proof of the irrationzlity
of JZ from thg\aiioms o5f arithmetic proceeds, after the
(tacit) assumptimof the axioms, by assuminé that v2 = n/m
for some integers n and m and deducing a contradiction.

This sort of reasoning is regarded as sound by the Intul-

tiqnisﬁs because what the Intuitionist means by "not p"

1s that the assumption of p leads to a contradiection.
However the Intuitionist does*not regard as sound the other
reductlio rule which allows oné to prove p from some assump-
tions by assuming "not - p" and deriving a contradictio?.wﬂff
For him this would only prove "not-not-p".from original ”
assumptions. '"Not~not-p" means that it 1is apsﬁrd to assume
that p 1s absurd and, fo; the Intuitionist, this does not in |
turn mean that p itself 1s true. This view leads to the
rejectlion of one rule of double negation (any préof con-
taining "not~not-p”'may be lengthened by adding p) and to
the rejquion of' the rule of excluded middle (any proof

may be lengthened by adding "p or not-p").

~--Theories of Proof

By a theory of proof for English, say, I mean a dis-

course grammar {1) which is intended to describe some or all
of the proofs expressible in English and (2) whose rules

are intended to be rules of inference known by persons who
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express theilr reasoning in English. If we are glven sﬁch’a
theory, we may want to inquire concernihg its correctness
and itg"comprehensiveness. It would be natural to call it
correct 1f each of 1ts rules were used by some speakers of
English. (There are, of course, other possibilities but
this one will suffice in this context.) Furthermore, it

would be natural to~call 1€ comprehensive 1if every rule

,// | used by any speaker of Engllsh were included among 1its
rules. Of course, the correctness and the comprehenslveness

o7 a glven theory of proof would be relative to a given time

. in order to leave opsp both the possibility of "old" rules

being abandoned and also the possibility of "new" rules

being Yevised."

The hope of ever getting a correct and comprehenslve
/ theory of proof is dim. But it is certainly.possible to

t ,ﬁ contrfbute toward such a theory. This would be done first
3 by copﬁidering one's own reasoning and trying to formulate
',  the ﬂLlaﬁ that one actually uses himself. The*next step

/ wou;ﬂ be to survey the mathematical literaturé in an attempti

i to/éind proofs that are not constructible by means of one's
/ Swn rules and which, therefore, may be presumed to be con-

syructed according to "new" rules. After some of these

ere formulated the continuation of the project would in-
volg§getting other workers to formulate their ;W rules
and to help in the survey of the literatu... It is hard to
1magihe how one could ever determine whether a partlcular

theory were comprehensive and, ol course, 1f a theory were
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comprehensive relative éo a flxed time 1t may very well not
be comprehenslve relatlive to a later time.

To many readers the above will séund‘at least utopian
1f not fapr-fetched. It may very well be utopian but, given
the Chomsky-Harr:s 1dea of trying to devéiop a sententilal
grammar of English, the above can casily be seen as an
application of the same core idea to a part of the totalilty
of English discourses. Thus, the idea of a comprehensive
discourse grammar for all of English is even more utopian.
Now, as for being far-fetched, I would simply reply that it
is no more ¢ *tched than the ideal of a comprehensive
sententlal gr . ir of English and a considerable body of
researchers are developing this today.

As soon as one seriously conslders the project of
worklng toward a correct and comprehensive @heory of proof
in English, he 1s qulckly faced with a.cruclal consideration.
Since a discourse grammar takes as a starﬁing point a sen-
tentlal grammar, and since a sentential grammar for English

does not exlst in anything like a complete form, it becomes

clear that the project cannot be begun in a systematic a

fashion. This objection is well-taken but fortunately a

reasonable substitute for a sentential grammar 1s avallable

_at least for the part of English used in mathematical proofs.,

As a result of centuries of logical analysis of mathematical
discourse we now have formally defined symbolic languages
which are sufficiently rich so that all of mathematical

discourse can be symbolically states. Thus, we may choose
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formal language into which to translate proofs and use the
grammar of thils formal language as the sentential grammar
needed for the theory of proof. Taklng this path our re-
sultant théory of proof-will necessarlily be an idealization
.of an actual theory of proof in the same sense that, say, a
rformal language for arithmetlc 1s an idealization of the
part of English used in dlscourse about arithmetic. If it
- 30 happened that a group of mathematlicians actually used a
formal language in theilr investigations and they wrote thelr
proofs in the formal language then we could investigate the
'body of proofs as such without translating and without
regarding ourselves as developing an idealiéation.

Moreover, tge‘use of the symbolic langugge may in the
‘end be seen as a distinct advantage as itlmay enable the
theory to transcend English and proVide a theqry‘of proof
for other languages as well. Howevel, one_shoulé“not over-
look the possibility that the {diosyncrasies of the various
languages will also make themselves known on the discourse'
level and, in particular, in the proofs expressible in
the various languages. This is not to suggest that a con-
clusion may be provable from certain premises. in one lan-
guage but not in another, though this may be true. Our
| suggestion was that even if exactly the "same" concluslons
are provable from the "same" premises 1in two different
languages it may turn out that there are means of doing it
in one language not available to the other. Both of these

hypotheses are "likely -- and perhaps interesting to in-

vestlgate,

v
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--The Value of a Theory of Proof

. Before we can consider the possible value of a théory
of proof, we should try to determine specifications for a
theory which could actually be developed. Otherwise,our
speculations would be too hypothetical to be very. interesting.

.In the first place we postulate the exlstence of

,manageably small set of simple rules of inference which must

be known in order, for example, to be able to prove the main

" theorems of plane geometry and arithmetle. It is immaterial

whether these rules, which we will call the basic rules,

are redundant. [A set of, say, three rules 1s redundant if
everything that can be proved using all three can also'be
proved using only‘two.] We can easily imagine that the
baslc rules can be‘discovered It is my opinlon that the
basic rules could be discovered and formulated within a
short tlme by several logiclans working wlth several high
school mathematics teachers -- provided that the mathematics
teachers’(l) had been in the habit of making up new proofs
and encauragiﬁg their students to make up new proofs and
(2) had been déveloping geometry in different waya/ffom
year to year. :In other words, the mathematlcs teaéherg
working on the proj@ct must have some widé experience to
refer to in thege matters. What I have in mind is the situ- v
ation wherein several linguists work wlth several natlve
informants 1n‘déveloping a sentential grammar of an exotic
language . | h I | 2
In”order to discuss the value (utility) of a theory
of proof then let us imagine that we héve the basic rules !

i

|
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neatly formulated. Now, when we are asking about the value

of this theory of proof what we are really concerned with 1s
the pos sible answers to the following question how could
a matheratical educator use this theory to improve mathe-—r

matical education?

}.'A .

!

A theory of proof which lncluded the basic rules would
provide strong (self—conscious\ knowledge of the rules of
inference commonly used in elementary mathematicss\ It
seems to me that there are four areas within mathematlcal
education in which such knowledge would be of use, viz.
in teaching, in testling and guldance counseling, in cur-
riculum.design and in attempts to understand the psychology
of mathematical learning. | |
| Teaching{ One important part of a mathematicsa 1
education is learning to reason deductively and developing |
skill at it. There may be much uore to,leafning to reason
than merely acquiring knowledge and'skill in the use of the

rules-—but certainly these are part of it. A teacher who

~ knew the rules in the strong sense, l.e., he not énly

knew how to use them, but he also could refer to them ex- ,
plicitly, formulate ¢t em, etec.--such a teacher would be in

a vgry advantageous posi%ion vis-a-vis trying to teaoh

mathematical reasoning. Fi;stly, he would be better able to

detect ignorance of specific fules. Now, when a‘teacher sees : -}

a student naving difficulty with a proof‘he is lefit to his own

devices as to‘what the difficulty is. Secondly, he would be

able tc¢ be much hore clear in his own writing of proofs
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because he could be self-consciously criéical of his owh'
proofs. Thirdly, he would have a guide in choosing exercises
and examples. When the class 1s having difficulty seeing a
proof which involved a complicated application of a rule the
teacher wculd be able to éhoose another theorem which in-
volves a simpler appl;cation of the same rule, and tpgg, in
presenting 1% o the class he could point out that tﬁ;
reasoniﬁg in the complicated case is zimlilar to the reaSoning
in the simple case. All three of these points hinge oh the
édvantagerthat an articulate téacher has over qziwﬁpo is
merely expert in the subject matter. Considen for 'example,
the excellent tennis player who is not articulate about what
is 1pvolved in playingrtennis. In trying to teach a beglnner
to pléy tennig the expert player is reduced to showing. If
he sees the student doing something wrong he cannot say
exactly what is wrong. Even in showing the studgnt what
the motions are like; the teacher will not know what to
exaggerate and he will not be able to distinguiSh hié_own
idiocynerasies from what 1s essential.about.tennis. Finally,
we will be poor at deveIOping drills,vetc.

Testiﬁg and Guidanée Counseling: It'seems to me that
a student'$ abllity in deductive rezsoning is an important
index of h%s mathematical éptitude, his ability to learn
mathematics., This means that a student who is skilled in
understahdi%g and pfoducing mathematical proofs will be

much mdre‘l'kely to benefit from mathematics courses than

ohe whc does not have such skills. It 1s obvious thah a man
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- also in mathematlcel aptitude tests. : 4

‘that uniless a&ijﬂemQLrad acauired (weak) knowledge of
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who has a characterization of what he wants to test is in a
hetter nositicn to design a test than a man who does not
have cuch a charecterization. A theory of procof 1is a charac-
terlivation of the abstract stiructure underlying reasoning
abilivy ax& ;t chould provida a véry use ful fra?ework for
deslsrinur tests of reasoning abllity. At the véry least

a theory of oroof would provide a better knowledge of what

is being measured in tests cf reasoning ability“amd%ftherefore,

In order to get an idea of how such tests ma& be
helpil in guidance counseling we must speculate concerning
the kinds of things that might be discoﬁfred by use of the

tests. Por example, one might be able to shiz experimentally

the baszie ruled by a.;brtain age the chances of his ever
velng competent in mathematlcs are very slim. Thié would
enable covnselors to advise'students concerning careers in
mathematics and related areas. Moreover, it is not un-

reasonable to suppose that ngrmal mathematical development

could be cnaracterized in “4;ms o' the number and kind of
rules lez:ned &t various(éges. This would permit objective

jdentification ¢f unusually sble andmgpusually backward

- studencs apailn leading to more efficient and more scientific

counseling. - The professional mathematical educator can
certainly conceive of other applications in this vein.

Curriculum Design: One of ‘the aims of curriculum

deslgn is to traCe a sequence of toples in mathematlcs
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which parallels the optimal development of théxstudents
interests and abilities. The reason for this is the des ire
to give the student the maximum benefit from his formal
educgtionél experience. The 1dea is that the student 1s

best educated by presenting to him at each stage in hils

jf=education_those concepts and nroofs which he 1s best able

—,

to respond to. It 1s absurd‘cither to present things whicn«/
are too trivial or to present things that are beyond the |
student's ability. It seems to me then that a characteriza-
tion Qf the development of mamhematical sk1ll in terms of
the{nuﬁ;er and kind of rules acquired at various ages would
provide a valuable framework for use in the design of an
efficient curriculum. It would at least permit the knowledge

of what would be very difficult and what would be very easy

as far as reasoning 1s concerned and this, in fturn, would

permit more ratlonal choices among alternative Theorems to

be presented or between alternatilve developments of a par-
tiéular topic.

In addition one can easily imagine a battery of
specific remedial programs each designed to teach a specifio
rule’ogﬁgequence of rules. Such remedlal programs used in
conjunction with the'diagnostic tests menéﬁoned above might
very wella}oré a formidable weapon in trying to overcome
inadequate preparation. | | 7

In the discussion ofxsnowledge of rules of inference

we suggested that complex rules are learned through experiencL

wlth simpler ones. If thils turns out to be true then the
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detalls of the interrelation of knowledge of complex and
simple rules will be very important in theichoice of alter~‘

native developmenfs of a subject as well as in the design of

drills and so on.

Finally, we return o the hypothesis of active and
passive vocabularies of rules. The truth of this hypothesis
would lend\additional Justification to the suggestions of

Professor J.J. LeTourneau (personal communication) to the

b} ) '
- effect that there should be two separate but parallel mathe-

matics programs—~@ne aimed at develcping skill and concrete
exwmrience in chatlng theorems and pfoofs, fhe other aimed
at acquaintinp the student wjth thé bodv of existent mathe-
matical hnomledge. Naturally, a theory cf the active vocabu-
lary would be/épplied in the former, whereas the latter
would use the paésive theory.

Psychology : Tt 1is already clear enough that a theory

_of'proof would provide a fruitful source of ideas for hypo-

theses and experiments in the msychblogy of mathematical

learning. Moreover, dne might wish to consider a more com-

prehensive theory of piroof as an idealized description of \

‘the more-or- Less behavioral acpects of the psychological

processes of reasoning. We have élready pointed out thaf

the written (oxr spoken) proof is our only access to another
person’s reasoning processes. The written proof is a per-
manent record of the reasoning and, moreover, it is a "trace"
of the behavioral aspect of the reasoning. The ;ules of

inference inh accordance with which the proofs are\writPEn

are thus more-or-less behavioral "norms". Given all\this,

it is easy to speculate that a theory of proof could lead to




a paychological theory of deductive reasoning -- perhaps

analogous to the way that Keplers Laws describing the orbits .
: | "
of planets lead to a kinetlic theory explaining the orbits 1&‘”

terms of the effects of forces. / -
Finally, on the subject of applications of a theory of

proof, I would like to suggest that. the quality of writing

of mathematlics texts could be grectly improved if the writers

would take the trouble to learn the rules of inference used

. by thelr prospective audiences. A'mature'mathematician

must learn how to reason in a fashion understandable to a

freshman if he wants freshmen to learn th&-mathematics (and

not just memorize). Frequently,the mature mathematiciana"

encounters (in teaching) theorems whilch he sees "immediateiy”'

and he finds himself at a losc as to what to sayHQO prove them.

If e knew the rules of inference used by his qlass tﬁén he

would krow exactly what to say. If mathematics texts (and

mathematics teaching) aré improved in thls way éhen one can

‘ expect that capable but non-genius students will be more

able both to appreciaté'the beauty of mathematicé and also

to keep from "getting %urnedwoff by the chicken sératching.”

Quite possibly all this cbuld léad to the kind of improvement

in the fleld of mathiematics that we have secn after the re-

discovery of the axiomatic method. In the axiomatic method

we find the ideal of{gpe deductive/definitional organization

/ _

of branches of mathematics: a theory of proof provides a

-

~4 .

partial answer to the question of .what deductlon is.

r
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Following all of these hopeful speculatlions I‘want
to emphasize two negative points. 1In the first place, nonc ]
of the above aéplications w111l be easlly or mechanically
Uggﬁiived despite the fact that much of thé groundwork 1
donen. A tfemendous«amount of verv detalled creative thought,
dialogue and experimentation is needed. There is even causc
to wonder whether there 1s a natural place to begin. And,
. there are terrifying pltfalls, one of which is the gap be~

tween the preclsion and simplicity of the symbollc languages,

on the one hand, and the vagueness, amblguity and compféxity

!
F 1
4

of natural language on the other. Anyone seriously desiring
to pursue any of the apbve applications must become extremAly
sénsitive_to the nuanceé of normal English--and very few |
mathematiclans have the patience for this. A pilot experl-

" ment in deductive reasoning recently conducted in a Phila-
delphia school ended distressingly because the subjecEF ware

- diverted by too many linguistic red herrings in the tést
questicns. lSomething can be perfectly clear in the sym-
bolic language and perfectly confusing when transldégd
mechanically into English. (

Paradoxically, the second negative point lssues from

the exhilarating feeling of power and self-confldence that

v e e

a mathematically competent person derives from learning to

cm——

| be articulate about what he is good at, l.e., from learning
\\la clearly presented and apparently comprehensive theory of

\BR@cf. “such a person naturally wants to teach the theory L

\«

to ﬁis students--but 1f the students are not yet good

N |
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~w—at recasoning the# cannot arpreciate the Sigﬁificance of

Mhat they are learnir:. Thev may learn the rules and they
may 1eaom, oW o ol_ow the rules. The disaster 1s that fhey
come o bel.eve hav pather:tizal reasoning is nothing but
follewing rules, A we reinced out in the beplnning of this
part -~: fhr paper, “f o persin aad nio mind cccupied with

the ruiss tbern the chances are slim that he will have any
attention 1oft for <he subiest matter or for the deeper /
parts of reasoning.. 7f a person iearns thé rules as external
rules (as brescriptionﬁ) and not as descriptions of what he
already does, the result is stultifvinp. If pressure 1s

put on a ‘student Lo azecept a rule self-consciously before

he knows the rule non-seli-consciously, il.e., if a rule is
imposed on a student, he will either rebel or lose his intel— 

lectual inteprity or adopt the view that it's all a silly

game. Another equally undeslrable but less disastrous

effect of teaching an uncomprehensive theory of proof even
. “to students wﬁo can appreciate it derives from the fact

chat they may Pe;son according tq rules not in the theory.

In this case; the students will tend not to use the rules

absent from this theory.thus weakening thelr powers cf

reasoning. The upshot is that they‘%ill be poorer at

reasoning after learning the theory than they were before

learning it.




PART TII

Two Theories of Proof

Tﬁis part of the paper has a dual purpose. In the
flrst vlace we will discuss two kinds of theoriles of proof.
The first kind will be called a theory of linear proof.

The second has been called é theory of supnmositional pfoof.
The term '"natural deduction' has often and correctly been
sed to refer to the second kind of theory but I shall not
do so here because many of the theories so-called are not
of the second kind -- they must be thought of either as
disguised linear theories or theories of a third kind (see
postscript below). The second purpose of this part is to
develop some of the main ideas needed in constructing a
comprehensive)theory of proof. The'reasdn for choosing the
linéar and suppositional theories for this»purpose is be-

cause the linear thecory includes only rules of a véry

simple nature and thé suppositional theory can be seen as

the result of making the linear theory more comprehensive.

~-Theories of Linear Proof

vd

s

Theories (or systems) of linear proof can be traced his-

torically to Frege, who worked in the last century, and

42
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perhaps even to Aristotle. A linear proof from a set of
axioms is one in which each subsenuent step eithef is an
axiom or is derived immediately from axioms and/or pre-
viously proved lines. 1In other words a linear proof of c

from P is written linearly in a column, say, beginning with

the premises P at the top and proceeding step-~by-~step

throush intermediate conclusions all derived from P to c,

/
the sentence to be proved. This 1s the idea, 1n practice -

- things are 2 little more complicated, but the following

general statement always holds -~ in a linear proof from

premises P to conclusion ¢ each sentence in the proof is

a logical -consequence of P. (The reader should note that the

concept of logical consequence as defined abové 1s not
relative to any system of proof.)

- There are three minor modifications to be made to
the above loose account of linear proofs. The first is that
for clarity the assumptions shall be marked‘as assumptions

to make it clear that they are not asserted to follow: from

any sentencés which they'may happen to follow. The second

1s that assumptiohs may be written dt.any plaée in the proof,
not just at the top. Thg point here is that one may_try

to prove a theorem from only some of his axioms but then dis-
cover that he needs an additional one. The modifidation
permits this to be written at the point needed rather than

at the top. Finally, in addition to assumptions and in-

ferences, properly so-called, all linear systems of proof

permit the writing of 504ca11ed logical axioms at any point

s
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in a proof. One promineﬁt légical-axioms rule permits any
proof to be lengthgned by the addition cf any identity (t=t).

Leu\gi_gismthe(corner bracket (r) to mark assumptions.
Thus, fp couid be read 'assumﬁp'. Néit we will give an
example of a linear theory of proof all of whose rules are
commenily used, perhaps most Q;bminent;y in algebra. Follow%ng
the statements of the rules will\be a proof of’(x)(x=x'1'1)
from the axioms of groups. .

« Rule Set A \\x |

Initial String Rules (Kernel Rules) | 3

(1) Initial Assumptions: f[p 1s proof 4

(2) Initial Logical Axioms: (t=t) is a proof

Production Rules |
“(3) Aséumptions: any proof'may be lengthened by the
addition offp . ' /
(4) Loglcal Axiomé:f any proof ﬁgy pe lengthened by |
the addition of any identity (t=t).
(5) Substiﬁution.of Equals: aﬁy_pﬁSOfkcontaining .
(t=s) and also p'may be leggthened by.adding p'

where p' 1s the result of replacinglbccurrepces

of t in p by s and/or vice versa.

(6) Instances: any proof containing (v) p(v) may te -]

lengthened by adding p(t) - where v is a'variabfe

and t 1s a term composed of constants.

(7) Generalizations: any proof containinékp(d), d a

| | constant, may be lengthened by aifitioﬁ of (v)p(v)
\ ‘ ‘provided that no assumptions concern d (1.e.,

provided @ is "arbitrary"). ///

Ty
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(8) Repetifion: any proof may be lengthened by re-
- ”

peating any previous line.

QL riously eaéh of the above rulés corresponds exactly

“td a rule cdmmonly used in proofs in algebra. HNotice
" however that thére are commonly used rules which do not

appear in the 1list. TFor example the only way of instantlating

is by rule 6 and this permifs the elimination of quantifiers

only one per application. This will be an annoying de-

. ficlency. Similarly for generalizations. Another deflciency

1s that substitutions,éan be done using only one eguation

at a time,.

In the proof below we have starred the lines

!
that would remaln we;e the deficiencies eliminated.

LS
T (y)(2)(x7tyez) = (x-y)éz) | *
r C(x)(xel = x) /,/ W, *
r (x)(17x =x) | *
r (x){(x x71) = 1 » ok
. (x)((x7"1ex) =1 ' - ®

(y)(2)(as(y+2) = (a-y)-z)

(z)(ae(a~tez) = (aea=1).z)

(a~{aFlea™2"1) = (g.a~1)eg~ 1) ¥
(A=Ya.g=1=1) = 1 : | %

asl = (asa=1).a=1-1

/0 asaTi= 1 - - x
asl = legmi—l %
a*l = a | *

a # leg=1m} '
Leg=t=t= g=!=! i . *
a = g~ !-! | *
(x)(x=x"171) *




Having a more powerful instantiating rule would’
permit going from the associative law directly to the first
unquantified 1line -—'ekipping two lines. The other two
unstarred lines would be skipped by ding two substitutions
at a time.

Incldentally the above rule set (of dlsccurse grammar) | k
describes proofs -- but it does not make explicit what "a |
proof of ¢ from P" is. MNaturally,we define a.proof to be

'a'proof of ¢ from P if ¢ 1s the last line Yof the proof and
all assumptions in the proof are in P. 7Thewabove example

is a.proof‘of'(x)(x=x"1") from the group axioms.

P T S e

As the rule set is being used here, the (metalinquistie)
symbols p, p(t) pl(v), and p(d) refer to formulas in the
language of groups. Thus this set of rules presupposed a
sentential grammar for the language of groups. waever,.if

we interpreted the symbols as referring to formulas in the

arithmetic language, then we could use Rule Set A for the

theory of proof‘needed to complete the Partial Grammar of the N -f
Arithmetric Language gliven at the end of qut I. This would |
actually be a bit s8illy for two reasons: first the Partial
Grammar has no quantifiers SO rules 6 and 7uwould never
apply; second the Partial Grammar does have the logical
conriectives whereas none of the rules permit any inferences
involving connectives. The point therefore, is not tbay ' , b
the Partial Grammar would be. finished but rather that ﬁhe

reader can now see what a finished wrammar would be like. . f

The respective natures of an alphabet,,a rule set_for wqrds,.




a rule seé for phrases and ? rule set for sentences are
already clear from the Partial Grammay; Now we have'also
seen a diécourse grammar whilch describes or oroduces a der-
tain set qf nroofs.‘ Tnis discourse grammar, Rule Set A, 15
a theory 4f proof.

| Rule Sét A is'bbviously 2 corroct theury of proof --
each of‘iﬁs rules corresponds exactly to (or is) an actual

|

rule of inference that we have all used when doing proofs ir

elementary group theory. Rule Set A is obviously not com-

prehensi‘e in the‘sense’that T have deflned the term because,
e.g.? i? lacks the complex rules alluded to abOVe'which
permit #he uhstarred lines to be omitted. However, it is
compleﬁ% in a certiain sense. | | |
%‘theory of proof for a particular language 1s

|
called ‘equationally complete when the following holds:

given any set of equational sentehces (elther equations
properly so~called or universal generalizations thereof)
and any single equational sentence ¢, if ¢ 15 a logical
consequence of'P,then there 1s é proof of ¢ from P con-
structible by the rules of. the theory. Rule Set A 1is

equationally complete. This fact will be plausible to any

" reader who understands it. To the other readers the following

remarks are addressed. Let P be the axioms for groups.

Let ¢ be any equatiqnal sentence written in the language of \
groups and which is true in all groups. C, theﬁ, is a logical \
conse%gence of P; since (1) a groﬁp‘is by definition any \

\ Lt . .
mathematical system in which the axioms of groups are true

4 7
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and (2) to say that ¢ itz a logical eonsequence of P ig to
say that ¢ is true in any mathematicéi system which makes
all of the sentences in P true. The aﬁové~mentioned com-
pletenesshconditian implies, then, that by using Rule Set A
one can construct a proof startig? with P as assumptilons
(as in the example) and eﬁdinm wifh c; In fact, such a proof
can be gotten by lengthening the one giveh as a sample.

Incidentally, the eguational completeheSs of Rule

Set A was proved several/years ago (by Dana Scott and Jan

Kalickl). -

In any theory\\ procof which describes or produces
only linear proofs, it“is possible to give a very simple
description of all pro fs from a particular set P of
pr@mises to a égrticular conclusion, c. Given a definition
of the logical axioms and the rules one can then say: a

proof of P from c 1s a finite sequence of lines ending}with

c, each subsequent line ¢f which either is an(assumption in
B
P or is a logical axiom or is obtained from previous 1)fes

by a rule.

The undeWIined expres sion (or rather an eveh simpler
version of it) has become/a slogan and, sometlmes, a battlecvy.
One eminent 1ogician relatpd to me that when he first heard
this slogan presented he was struck by its simplicity and

truth ard was moved to say to himself, "By God, that is

what proofs are!':
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If one takes the slog;;}aé;a rough description of all
brdofs,ﬁhen one is led (1) to distinguish three kinds of

¢, rules of inference and (2) to believe that zll rules of in-.
ference must bevof one of the three kindsg The filrst kind

contains only the rule of assumption -- essentially to the

effect that an assumption may be written to start or to
lengthen any proof (provided that it i¢ marked as an assump-

e ,tibn). The second kind contains all logical axlom rules --

to the effect that a logical axiom may be wrltten to lengthen

'any proof. The third kind contains all immediate inference

rules; rules which state that any proof containing one or
two (or some fixed finite number of) sentences of'certain
speclfied forms may be lengthened by adding a sentence in

dhother form.

- ~—Immedlate Rules and Subsidlary Proof Rulesi

It so happens that by surveying the/proofs in the
mathematical literature (or by looking at our own proofs)
we find many rules that are na?\oﬁ any of the above three
‘kinds. 1Indeed, if all rules were of the three above kinds

then there would be no room in mathematical reasoning for
making subsidiary assumptions. Much of the most elegant

- and enlightening reasoning in . mathematics turns on the

‘ability to imagine good subsidiary assumptions. Below are
some examples. (1) In proving that the square root of-two

is not raticnal we assume, in addition to the axloms of

variphmétic, the subsidiary sssumption  that the smjuare root

:
1
1 ,
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of two is rational. (2) In proving the right cancellation
law [(x)(y)(2)((xez = y*z)=>x=y?q from the group axioms vie
assume, in addition to the group axioms, that a-d=b+d where
a,b and d nre'afbitraily chosen but fixed elements of the
group. (3) Whenever we glve proofs by cdses aftev‘we have
proved that there arebtwo cases, say, we assume that the
first case holds and then prove our theorem in that casé,
theén we'assume the second case and prove our theorem in that

" case -— finally we conclude that the theorem holds in {
general. . . . In each of these three examples the proof
involves making subsidiary assumptions, assumptions other
than those from which the conclusion is shown to follow.
\%ﬁg“some point in each of these examples an inference
is ma n%t from certain previous lines in a proof but
rath@r from (or on the basis of) a certain part of the proo:l.
In other vords, thére are rules which can be stated as
follows: any proof containing a subsidiary proof of a Ceft’lr
form may be extended by addingxbu For example, in reductio
reasoning we are.followingvthe rule: any proof containing
a subs g é?y“proofnbeginﬁ ng with p and containing a con-
tragégzjin quﬂbé extended by adding "p (not-p).
' Consider the following proof of ~v(x)v(x=x"1)

from the group axioms which employs the above-statedq

reductio rule.




™ (x)(y)(2) ((x+(yez)) = ((x+y)-2))
I~ (x)(xe+l=x)
- (%) (Leox=x)
™ (x)(x-x '=1l)
il () (x7hex =1)
Wx)w(xmf’)
n(g=1"1) ¥ subsidiary
1e1 7 = 1 | proof
he1mi=17? |
L 1=1"! ¥

o N m(.x)m(x:x"'l)

The subsidlary proof 1is enclosed in matching brackets.
| ‘ ; The sontradiction in gilesticn 1s "petween" the starred lines.

Motics that the conclusion is inferred to follow from the

group axioms (not from all assumptions) on tbe basis of
the subsidiary proof. Once a subsidiary proof is marked
off by an ending bracket (L), it must be regarded as a
separote unit in the proof. In particular, one may no
lpnger apply any of the immedliate 1lnference rules to lines

inside of the subsidlary proof.. For example, we could not

wrlte down:as a next line n(1=1"1) by repétition because

this does not follow from only the group axloms.

Let ue use the phrase ‘'subsidiary proof rule' to

w

refer to rules which permit th lengtpening‘of a proof on

the basis of a subsidiary proofl. Of course, the most

no*orious of subsldiary proof r r/s is the rule of con-

ditionalization which permits inference of 'if p then q’ on
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fhe basis of a'subsidiary proof beginning with‘p and ending
with q. We will give a proof of the fight cancellation law
from the group axioms to 1llustrate this. (In the proofs
below we do not necessafily'follow Rule Set A but:use’othér

commonly known rules s well.)

T () (2)((xe(y22)) = ((x+y)-2))
(x)(x+1=x)

r (%) (1ex=x)
C (0 (xex1=1)
r (X)(X"‘°x=1)_

asd=b-d )
E r‘(a-d)-d“1= (bed)ed™? Sugiég%ary

as(ded=')=be(ded-?) |

| | a=b )
‘ (asd=p-d) D(a=b)

(x)(y)(z)(xe2=y.2D x=y) |

It will be valuable to notice that in proofs by cases

rore than one subsldiary proof is needed -- one for each case.

Actually, all proofs~bv-cases-rules are "combinations" of

the two-case rule stated as follows: any proof containing

'cy or co', %ogéther with two subsidiary proofs one beginning
b

with ‘@, the other beginning with co both eiding with ¢, can

| fﬁ%e extended by adding e¢. To illustrate this we will give a //
| proof,of‘the;two~sided cancellation law. The proof will

involve one application of the two-case rule inside of a sub-

: : sidiary proof on which conditionalization 1s used.
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F(x)(y)(2)((x+(y*2)) = ((x°y)*2z))
r (x) (x+1=x)
r (x) (lex=x)
r (% (xex"1=1)
o (x) (x"lex=1) il
L b
I (a+d=be+d) v (d+a=d+b)) ~Cqy O Cj g
. . <
T a+¢d=b-4d
" (aed)ed~'= (bed)d”! first subdidiary , i
| - proof ' g
a*(d*d"')=be(d-a"")" j
, [
L a=b |
" dea=deb —
d~'e(dea)=d-'+(d*b) secondary subsidiary
’ ' proof ~
(d“‘-d)"a=(d"?-d)-b .
L a=b
L_ | a=b -cases rule¥*

((a*d=be+d)v(dea=d-b)) a=b —pondiéionalization**.
(x)(y)(z)(((x*z=yez)v(z ¥=2°y)) x=y) | - | %

The notations on the right are designed to help the

reader see exactly where and how the two subsidiary proof

rules are applied (¥ and ¥¥),. - | | ]
Before we proceed to a disucssion of theories of sup-

positional proof (theorieslinvolving subsidiary proof rules), E

the reader should noté that the above three proofs ape not

linear because the subsidiary assumptions afe'not among the

premises from which the proof proceeds. That 1é, for example, ?

in the proof of the,cancellation“iaw from‘the'group axioms
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there are sentences which are not logical conséquences of
the grouo axioms. Thus in these proofs we do not reason in

a Bnear fashion--we take "side trips'”. > k

/

A4
1 ..

/
--Theories of Suppositional Proof

The defining characteristic of a theory of suppositional
rroof is Ehat the rules permit the use of subsldiary assump-
tions which are later "discharged" and are,not among'thev

* assumptlions from which the final conclusion 1is shown to
follow. These rules are subsidiary proof rules which
countenance an inference not from previous lines but rather
on the basls of a su@sidiary proof. Such rules are not
unusual but rather they comprise the essehce of clear, elegaﬁt
mathematical reasoning. Indeed, I think the mathematically

; experienced reader will agree that linear proofs have a

very computational flavor to them whereas suopositional

proofs seem ‘to embody more creative and enlightening reasoning

There are a few quesgtions concerning the formulation
pf suppositional rules which might have  been annoying some
readers. I will digress sl¢ghtly at thiq point to take up
éome of .them. rj

In the first place, there must be a rule for closing-out

subsidiary proofs. This ru]e is stated as follows: If I ‘}
19 a proof and I contains more occurrences of ¢ than of . {more
beginning brackets than ending brackets) then ah ending

bracket (L) can be written on the last line. The idea 1s

that each aSsﬁhption 15b potentlally starts a subsldlary
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proof and that each subsidiary proof must start with th%(
last assumption Fn which.is not already part of another/
subsidiary proof. Thus,each time an ending bracket is gut'
in thq”ﬁron there is exactlv one beminning bracket with T
which’to’MatcH'it Y

We definé an occurrence of a sentence td be closed
in & proof if it occurs between matched brackets, i.e., 1f | »i

it is bracketed. Otherwlse 1t 1s called open.

L given proof is a proof of its last line (if. open)

from its set of open assumptions. Now we can state two

important general principles for suppositional proofs.

Let p be a given line, of a suppositional proof: )
(l).The sequence of lines up to and including v 1s itself a
proof. Let us call this the subproof ending with p. (2) 1In
any supposltionaW proof, each yiven-line p is a logical con-
sequence of the _E,Q assumptions of the subpfoof ending with
D. (If p 1s Drefinbd by a 1 the T~ Counts as in the sub-
proof -~ 1f by W the % doec not count as in the subproof).

Finally, we must point out that within a suppositlonal theor

the immediate rules musft be stated so that they apply only

tp'Open lines.

It is obvious that the framewcrk of a suppositional
theory 1is much mdre‘adequate for characterizing mathematical
proofs than is tgs‘framework of a linear theory -- e?en 4 ’
though aﬁ§thing that can be proved in a given suppositional

theory will also admit.of proof in some linear theory.

R
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In ohher wordS,we are not contrasting ‘the abstract power of
-such theories but rather their relative adeauacies in
characterizing the-proofs whlch we actually write. Given
the advantage of suppositional theories we can ask: are
there other kinds of rules of proof which could be added
and which would constitute an é&@n'more adequate framework?
. Let us put this question another way. We have seen four
'kiga; of rules of inference: (1) asaumpti&h rules, (2)
| loglical axiom rules, (3) imﬁediaﬁé i@ference rules and (U)
subsidiary proof rules., Are there other kinds of rules
which are actually employed in writing of proofs”
The most obvious kind of rule to suggest adding is
a rule that permits the writing of "goals'". Frequently
when we are writing a.proof, after some aésumpﬁions‘have
been éntered,kwe‘indicate our: goal by writing, for example,

"we want to show p". This 1s actually a very handy device

which helps convey the reasoning to be expressed in the proof.
Since the purpose of proofs 1ls to express reasoning we

should certainly comsidep{Such a rule, We could state it:
Any proof may be lengthened by adding ?n. The questlon

mark in this context could be read *to‘prove”; say. We
would then have fo define all~§bcg£Fences of ?p’ as closed

because otherwise we would be applying immediate'rulés to

what we werE\szing to prove -~ thus begging'thé question.

Now let us™~consider ancther important kind of rule.

We have actually given an.examp%g of this kind of rule, but
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we did not classify it. 'Notice that all of the above kinds
oi/yules apply anly to.a part of a pdoof to which they

epply, i.e., it is not always necessary to look at each :

o’
line in the whole proof in order to apply'auy of the abcve

four kinds of rules -~ assumpition does no* requlre looking
a@ Eny lines, the same for logilc#al axiom rules, immediate
inference rules involve only fized fjheLe numbers of lines,

\
subsidiary proof rules 1nvolve perhaps. a few subsidiary proofs

e

-

"
plus perhaps affew open lines. The rule of generalization,
however, requlre3 looking at a particular line o(d) and

tnen checkin% {Lrough the whole proo{»to determine that
1 e

nothin has . HEen assumed about d -- i.e., that d 1is 1ndeed

arbitrary. uUCh rules we call global immediate rules.

1

Thus,the classification of linear.rulee above was inadequate

In addition there are subsidiary rules which fhvolve

\
reference,to the entire proof to winlch they are'appliedh

The most prominent example o1 a global subsidlary rulc is

the rule that is generally used in reasoning from an existventially
quantified statement. ror examnple, sunpose thav we have
assumed the right cancellation law in a p?ﬁof and we arce
’aimingwteyprove(ix)(y)(&*xwx): () ™) We zssume the
antezedentcax)(y)(y-x=x) and then we say "let X; be such -
\ an objeg%." ("Letg" is a sure sign of an assumption.) We
are assuming that xy is an arbitrary object setiefying'the
condition (y)(yexp=xpg). VWe reaseﬂ then of an erbitrary D
that DeXg=Xp and that b~ -xo x . HT'en,using the cancellation

law infer b=b~!. Since b is arbitrary, (x)(x=x"'). Now we. .-

L




say: "Since X, was arbitrary and (x)(x=x“1) does not
depend on X g%e conclusion follows from the original
assumption.” This corresponds, in the below formalized
version, po‘taking (x)(x=x"1) out of the subsidiary proof
and making it open [starred line].

F(x)(y)(2) (xez=y 2D x=y)

2(3%) (y) (y*x=x) D(x) (x=x"1)

U (3%) (y) (y *x=x)

rYy)(y°x0=x0) "let x, be such an object"”

bex =b"l-x D b=b" (cancellation law)

L) (x=x"1)
L (x)(x=x") *
(3x)(y) (yox=x)D (x) (x=x"1)
It might be worthwhlle to do another example using
the above rule. We will prove (yX{(@x)(Dx&Hyx)a(3z) (Az&Hyz))

from (x)(Dx2 Ax).

Cix)(pe>ax%) !
F(3X)(Dx&Hbx) :
~ § (Da&Hba) "let a be suchian object"
Da
Da@Aa
Aa
Hba
Aa & Hba
Az)(Az&Hbz) ~
L. (3z)(Az&Hbz) ¥
(3x) (Dx&Hbx)D (Jz) (Az&Hbz)
(yN(3x) (Dx&Hyx)D (3z) (Az&H¥z))

-

ey
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Because of limltations of space we merely mention a

class of rules called definitional rules which actuaily form

a subclans of the global subsidiary rules and which, as you
can surmise from the name, countenance the use of definitiecns
within proofs.
As a final question we conslder the nature of an

axiomatlc development of a mathematical theory. An axiomatic
. development of a theory begins with the axioms. Subsequently
the first theorem is proved, then the second, then the

third ,/etc. However, after the first proof the axioms are
not repéated. Moreover, in addition to the axioms, pre-
viously proved theorems are also used as new axioms -—- but
these are generally not written down either. One way of

characterizing such a development is”to say that it 1s one

long proof and that axioms and previously proved theorems

can be used because they already appear above. ‘There is
something artificial about this characterization -- we
usually say that adevelopment of a theory contains many
proofs, here we say that it 1s just one long proof. It has
been suggested that further study might reveal a level above
the level of proofs --a level containing "developmenté"
composed of proofs. This sugpestion implies that in a
development of a theory there is structure which is not
reducible to the structure of proofs. |

--Summary of Suppositional Theories

We have seen that linear theories contain four kinds

of rules: Assumption, logical axiom, immediate inference,




-
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and global immedlate Ilnference. Next, we noticed that sup-
. positional thecries contain two additional kinds of rules:
subsidiary proof rules and global subsidiary proof rules.

In addition, we bointed out that the definitional rules are -
merely a sﬁécies of the global subsidlary proof rules.

We exﬁlained the concept of an open scntence in a
proof and we asserted that the general principle behind
suppositional proofs has two parts: (1) that glven a proofl
.and a sentence p in the proof the part of the proof ending
with p is also a proof (called the subproof ending with p)
and (2) each such p is a loglcal conseguence of the assump-
tions occurring open in the subproof ending with p. Given
this principle, the notation for subsidiary proofs, and the
classificafion of the rules, anyone having a background in

mathematics is prepared to formulate his own theory s proof.

--Summary of the Paper

In part I we discussed some' fundamental concepts in- -
volved in the anaiysis of mathematical reasoning. 1In
addition, we Introduced the concept of levels of language and
pointed out that a grammar of an entire language should be
composed of several gramﬁars, one at each ievel. We "also
made the point that a proof i1s a certaln kind of discourse
which, in turn, suggested the possibility of a theory of

proof--a discourse grammar which describes‘thegproofs of

’

a language.




In part II we outlined what a theory of proof would
be like. We noted that the grammatical rules used in de-
scribing proofs are the rules of inference according to
which we write proofs. We dilscussed the nature of our
knowledge of rules of inference distinguishing weak and
strong varieties of such knowledge. Finally, we speculated
concerning the utility of a modest theory of proof vis-a-vis
improvements in mathematical education.

In the course of Part III, we contrasted what has be-
come the traditional theory with a newer and more adequate
theory whose essentizl features were discovered in the 1920's
(Jaskowskl). The older theory holds that mathematical
reasoning proceeds from axioms step-by-step to conclusions
in a strictly linear fashion; l.e., each step in a proof
must be a logical consequence of the axioms. Thls view was
first systematized by Frege in the nineteenth cenpury. It
became the commonly accepted view until the 1920's when
Lukasiewicz pointed out in his seminar that the theory
did not agree witﬁ mathematical practice. Jaskowski, who

1
was a student in [the seminar, accepted the project of

i

developing the exact details of a theory of proof which

would take into dccount the salient features of mathematical

A}
reasoning not ac¢ounted for by Frege's theory. The newer

theory 1s largel& the result of Jaskowskl's effort. The
older theory we galled linéar, the newer suppositlonal.
We gave sleveral examples of rules and proofs with the

intention of supplying enough detall so that the basic 1ldeas
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can be grased in a useful way.

~=Pogtscript
“ The linguist and the logician will doubtless dlsagree
with many.of the above assertions. Several serious over-
simplifications have been made--mostly concerning linguisties.
My hope has been to show the overlap and possible cross-
fertilization between, on the linguiéfic side, the ideas of
Harris and Chomsky and, on the logical side, the 1deas of
Jaskowskl. I have tried to do this in a way that would be
of benefit to persons of diverse backgrounds. I was trving
to write to an audience of mathematlcs educators, lingulsts,
mathematiclans, psychologists and loglclans.

One final technical point: the so~called natural
deduction systems found in books by Suppes, Lemmon, and Mates
are not theorles of suppositional proof. By looking care-
fully at each of them, one notices that the lines of their
prodfs are not sentences, but rather ordered palrs (P,c)
where P 1s a set of "premises" and ¢ 1s a single sentence.
Morenver, a grammar to generate their proofs takes the form
of a linear theory without any assumptions. In particular,
in each of these systems each proof is a finite sequénce of
lines (Py,c1), (Pp,c2)5...,(Pyen) where each subsequent line
is either (axiomatically) of the form ({c},c) or else 1is the
result of applying an immediate rule to a flxed, finlte
number of preceding lines. An example of such a rule would
be: 4if (P;,d) and (PJ, dac) are lines in a proof, then the
proof can be lengthened by writing (PiUPJ,c). The idea
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behind constructing a proof of ¢ from P in these systems
is not to try to deduce c from P, but rather to construct
the ordered pair (P,c) starting initially from ordered palrs
({x},x) using rules which when applied to "valid arguments"
produce "valld arguments.” In a word, these systems stack~-up
valld arguments starting with the simple and bullding to
the complex. As far as either the characterization of normal
reasoning or utility in teaching 15 concerned, it seems to
me that none of these systems fapes well in comparison to a
suppositional system as found in Johnstone and Anderson (1963),

in Kalish and Montague (1964) or in Leblanc (1966) .
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