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PRELIMINARY DRAFT

DISCOURSE GRAMMARS AND THE STRUCTURE OF MATHEMATICAL REASONING

le

John Corcoran

In this paper I ,will examine-/Some of the interrelations

among three areas: first, linguistic whrk inspired by the

ideas of Zellig Harris; second, logical investigations con-

cerning the nature of mathematical reasoning; and third,

Lmathematical education. My main concern is to bring some

basic linguistic concepts and hypotheses to the study of

deductive reasoning and, then, to suggest applications to

mathematical education. I, take mathematical education ,to be

the area of study which attempts to better underitand teaching

and learning of mathematics and also to improve mathepatical

teaching in practice.

The substance of this paper is divided in three. Part

I contains somq.introdUctory remarks delimiting in broad

strokes my unde)s.tanding of what mathematical reasoning is,

In addition 1 relate the structure of mathematical discourse

to the structure of Engy.sh discOurse. In Part II, I try

to outline nature of a theory of proof and also to

suggest the utility of such a theory for mathematical education.

In Part III I develop several basic ideas involved in de-

veloping a usable theory of proof.-
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For readers with a practical interest in mathematical

education, the central core of the paper is the last; section

of Part II where I discuss. the utility of a theory of proof

for mathematical education. From this point of view, the

discussion preceding the ',central core provides the background

needed to understand what a theory of proof is, while the
Ao,

diset6sion following the central core develops several basic

ideas essential to the construction of such a theory. ti

+
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PART I

MATHEMATICAL REASONING AND THE STRUCTURE OF LANGUAGE

7-LoylstlC2pse uence and Inference

Mathematical reasoning, or deductive reasoning, is a

process whereby a person comes to understand, to know, that

if certain statements were true then a certain other state-

ment would necessarili also be true. When a man thinks

through the axioms and a certain theorem in geometry and

comes to know that if the axioms are true then the theorem
011101100.0

must also be true, then that man is engaging inMathematical

reasoning. In giving a: proof a man expresses his reasoning

in writing or in speech. Thus reasoning is a mental process

whereas a proof is a linguistic entity, written or spoken.

Apparently we have no access to another person's mathematical

reasoning except through the proofs he offers. ,Thus proofs

provide "the data" in the.study of mathematical reasoning.

In the above paragraph I have implicitly presupposed

familiarity with three special concepts: Logical consequence,

deductive reasoning and proofs. A brief review of these

ideas .may prove helpful because each of them plays a prominent

role n subsequent developments.

onsider a given set of statements (axioms) and a

given single statement. It may happen that the given state

ment follows losalliz from.the axioms. That is, it may

happen that if the axioms were all true then the given

statement would necessarily. also be true. In this case the
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given statement is a logical consequence of the axioms; the

I/7

axioms imply the given statement. Naturally, even if the

given statement does follow there is no guarantee that

anyone knQws that it follows (otherwise there would be no

open questions in mathematics).

In order to know that a given statement follows fro

given axioms, it is necessary to reason deductively from.

the axioms to the given statement, to trace out the )'ogical

steps whereby one comes to know that if the given axioms

are true, the given statement must also be true. Thus,

deductive reasoning is flIman activity; it is a mental process

subsumed under the broader heading of learning. In a par-

ticular case' of deductive reasoning, person learns some-

thing, comes ~to know something, viz., that a certain state-

meAt.is a logical consequence of certain other statements.

A proof is rticulation or expression of deduc-

tive reasoning. In giving a proof of a given statement

from given axioms.one expresses his reasoning why the given

statement follows. Thds a proof is something which can be

written or spoken--a proof is a linguistic element similar

in many ways to narrative paragraphs.

' There is a metaphor which neatly separates the three

ideas . 41 logical consequence connection is. a path in logical
7

space; when we reas8n we trace the pa,14:1;, rd a prppf is a

scat of directions we give to others for/retracing the path.

The metaphor breaks down when indirect reasoning (reductio

ad absurdum) is considered because "tracing a path" from
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axioms and a denial of a statement to a contradictiont does

not seem to be "tracing a path" from the axioms to the

statement. There are doubtless other more serious deficiencies

in the metaphor.

It is important to distinguish deductive reasoning

from the perhaps more creative process (If discovering a

logical connection. Imagine., for example, that you are

given a set of axioms. You read them carefully and under-

stand them and then you "see" that something else follows.

This "seeing" is actually a kind of guessing because you

do not know that the additional statement follows until

'you verify it by/step-by-step reasoning. The word "infer"

is frequently used to cover both -the initial guessing and

the subsequent deductive re)asoning. According to .the way

that I am using the words "deductive reasoning" one' usually

does not reason until he has already guessed' a possible

consequence. In addition, I should*mphasize that deductive

reasoning is also involved in "fol owl a proof, i.e., in

seeing for oneself that it shows why "the conclusion follows.

Naturally, the reasoning involved in following a proof is

not nearly as creative as the reasoning involved in dis-

covering the exact logical connection--but it is, neverthe-

less, deductive reasoning.

The reader deserves to 'be warned that the word "proof"

is ambiguous in 'normal mathematical parlance. It is cer-

tainly used in the above sense to indicate an articulation

of deduaive reasoning, but it is also used in the sense of a

1111111111.1111111111111



Particular logical connection or path in logical space or

something of the sort. For e> ample, we speak of trying to

6

discover a new proof of a known theorem (from given axioms).

Here we are not looking for a new way of describing the known

path of reasoning, but we actually want a new path of

reasoning--a new way of getting to the theorem from the

axioms. The reason that we would want a new path would be

that we find the known one to be devious, round-about,

overly intricate, unnatural--in a word, inelegant.

It is interesting to notice that the distinction

between the relation of logical consequence and the act

of inferring is already implicit in non-technical English.

It is grammatically acceptable to say that one statement

imnlirNs another statement, but/it is not acceptable to say

that one statement infers another statement. On the other

hand, one can say that a person infers one statement from

another statement.

At this point we have distinguished logical conse-

auncp, an objective logical -relation, from deductive reason-

ing, a human activity. Deductive reasoning Is one of the

primary activities of mathematicians because mathematicians

are concerned to establish logical connections between

axioms and o' -her statements. Since reasoning is a human

activity it should be expected that some people are more

skilled in it than others. It is almost by definition that

a good mathematician, is more skilled in deductive reasoning

than a pOor one. I say "almost" because I have heard of



',1athe*aticians who are unskilled theorem-provers, but who

.1a gained reputations for being able to guess new theorems

with uncanny accuracy. In any case, after a statement has

been guessed to follow, one may go through the process of

reasoning step-by-step why (or how) it follows. The verbal

or written articulation of the reasoning is a proof. Given

a written proof, one can retrace the steps of reasoning

expressed in it and rediscover (or see for himself) that the

conclusion follows./ r

Next I will change the subject from logic to lin-

guistics in order to divuss levels of language. Afterward

I will bring the two together.

--bevels 9114112;uage

Stratification: The notion that language is stratified

into increasingly complex levels of organization is clearly

reflepted in our writing system. A written text is orgaizea

in Earamphs, / The paragraphs are naturally segmented'into

sentences, Sentences are perceived as composed of phrases
"°;lich in turn are composed of words

y and the words are strings

of letters. The lowest level of the written language is. the

alp!laHt. Next, we have the level of words, then the level

ot phrases, then sentences and, perhaps finally, the level

of discoursrl which contains paragraphs and "texts.." For

illustrative purposes, let us assume that English is strati-

fled according to the above scheme. It seems to me obvious

it English' is stratified in some way or other, but it is at
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least doubtful whether it is stratified` even roughly in

accord with the above scheme.

By "language" the linguist means the spoken language.,

Thus, we are assuming that the above stratification applies

to the spoken language.

Let us introduce terminology appropriate for a de-

tailed discussion of the assumed stratification of English.

The 'alb. habet of (spoken) English is the set of basic, "in-
.

divisible" spoken symbols. The objects in the spoken alpha-

bet are generally called phonemes and, in a written alphabet

representing phonemes, the representations of, e.g., "early"

and "yearly" would not suggest that they rhymed, whereas

the representations of "sax" and "sacks" would be the same.

The lexicon of English is the set of words,of English. For

the following we do not introduce any special terminology:

the set of phrases, the set of \sentences, the set of dis-

courses. The corresponding levls are called respectively:

alphabetic, lexicographic, phraseological, sentential and

discourse.

Reality of Language Structure: y important

theoretical question in linguistic "reality"

of the stratification into levels. ould it

not be the case that the strati tion a structure

which we find convenient to impose o English but which cor-

,responds to nothing real in English? Many linguists do not

regard this as a substantive question because, some reason,

"Either there is a 'real' structure' to English or there is
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not. If there is a 'real' structure, then, presumably, if

we_ work hard enough and are flexible and imaginative, then

the structure that we find most convenient will correspond

exactly to the real structure. Thus, convenience is the

important criterion. On the other hand, if there is no

'real' structure, then what else IS there besides convenience?"

There is additional debate concerning which levels are

"real" and what kinds of reasons are relevant to determining

the "reality" of a level. Some linguistic work suggests that

some relevant evidence can be gleaned from studies of the

patterns of.stress and intonation and of the co-occurrence

restrictions in actual speech. Other linguists (Chomsky,

Section 8.1) have made interesting suggestions concerning

ways of justifying an intermediate level, B, given the

existence of two levels A and C.

In my opinion, all of the above questions are very

important and very difficult. But they are really out of

place in this paper except that they may have started to

bother the perceptive and critical reader. My brief remarks

are intended as an acknowledgement of the difficulties.

Internal Structure or Levels: Now, we wish to consider

the internal structure of each of the five levels. What we

mean by the internal structure of a level is merely how the

elements of that level are interrelated. We disregard any

possible internal structure on the alphabetic level becatke,

we are considering the phonemes,(Or letters) to be indivisible

units.
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Generalizing on Harris' ideas (1951, pp. vi, vii),

we postulate a "kernel/compound" structure at each of the

higher levels. This means that each element in a given

level is either a simple element or a combination of simple

elements. The set of simple elements of a level is called

the kernel of that level, the non kernel elements are called.

Romaiulicis. The kernel on the lexicographic level might

contain 'black' bird' and 'like', while "birds-like",

unbird-like", and 'blackbird' might be among the compounds.

The kernel on the sentential leVel might include 'Birds

fly.4 and 'Fish,sWIMY, while 'Birds swim and fish fly' and

'Birds do not fly' would be compounds. On the discourse

level the kernel would contain only which can

stand alone. For example, 'Birds fly' would be in the kg,-:

whereas 'They fly', would not. Among the compound discourses

would be things like the following: 'Birds don't swim.

They fly.'

Notice two things. First, in each case., kernel

elements were constructed directly only using elements on

the lower levels. Second, compounds were composed of kernel

elements, using only lower level elements as "conne'ctions".

To say that this is true, in general, is most likely wrong.

HoWever, for the sake of our illustration, we are making

this Assumption.,

The total set of assumptions that we have made about

English amounts to something approaching the simplest /1--

trivial hypothesis about-the-"structure of Englisl--and as
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such it is almost certainly wrong. Indeed, many.linguists

will be offended by the thought that these assumptions could

be seriously entertained as possible. Thus, I want to

emphasize that the assumptions are made in a pedagogical

spirit only.

Let us briefly review the assumptions. First, we

assumed that English is strati-fled into five levels roughly

corresponding to letters, words, phrases, sentences and

discourses. Second, we assumed that each level above the

alphabetic has a kernel/compound structure. Third, we

assumed that each of the higher levels is somehow. obtained

by; combining only elements on the same or lower levels. Our

third assumption is meant to imply that, given a'description

of the spoken alphabet of phonemes the following hold:

first, that the words can be described without reference to

phrases, sentences, or discourses; second, that the phrases

can be described withput reference to sentences or discourses;

and third, that the sentences can be described without

reference to discourses. It is the last assumption that

will be found most obnoxious and, I must admit, I do not

think that it is very plausible myself.

It is interesting to compare the levels of language

with meanings as "perceived" in written language. On the

lowest level, we have units which are perceived as written

language (as opposed to mere marks), but which are not

necessarily meaningful as such. For example, the letter 'p'

is not meaningful, but the letter 'a' can be meaningful.



4
12

Next, we have words which are definitely meaningful. The

kernel words can be thought of as words which do not h4ve

other words asparts. Actually one kernel word could have

other words as parts, literally, but it would still be re-

garded as a kernel word if its meaning was not related in

any way, to the meaning of its part. For example, 'dog' has

'do' for a part, but the meaning of 'dog' is in no way re;
ti

lated to the meaning of 'do'. Naturally some words are com-

posed of only one phoneme e.g., 'a' and 'I'. Thus, the

leicographic level (or word level) is the primary level as

far meaning is concerned. As far as meaning is concerned,

the alphabetic level is dispensible--we utter words and it

is accidental that they are made up of phonemes (letters) .

Theoretically we could have a language in which each word was

a single phoneme so that the "lexicographic and alphabetic

levels would be the same. The trouble with this,is that af4-

a certain number of words were introduced into the language

we would have to have extraordinarily sharp ears (and "sharp"

tongues) to communicate.

One interesting thing about the phraseological.level

is that the meanings of complex phrases are very dependent

on the meanings of the words which are their parts, e.g., the

meaning of 'the king of Iowa' is certainly dependent on the

meanings of the words in it. At this level, however, the

meanings are still in a sense word meanings- -they are not yet

sentential in nature. They are not true or false, for ex-

ample. We correctly speak of noun phrases, verb phrases,



A

1adjective phrases,, and adverbial phrases--indica ing that the

meanings of phrases are "functionally" the same as the, meanings

13
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of words.

On.:the sentential level a new kind of meaning emerges.

Irjdeed, it might be said that communication begins on the

sentential level because although the utterance of a word or

phrase may permit us to know what the speaker-is talking

about, it will not tell us what he is saying about it. It

is important to notice' that, the meaning we get from a sen-

tence depends not only on the meanings we attach to the

particular words in the sentence, but also on the way that

we hear (see) the sentence composed of phrases. Consider

the following:

You know how sincere freshmen are.

(Do you see 'sincere' grouped with 'how' or with 'freshmen'?)

On the level of discourse still another kind of meanin,7,

emerges. The point here is that the kind of thing communi-

cated by a discourse is generally richer and more complex

than the kind of thing communicated by a single sent9nce.

In particular, a declarative sentence could be said to com-

municate a "fact", whereas a paragraph composed of daclarative

sentences could communicate facts together with an organiza-

tion of them. It is even more instructive to consider

proofs as examples of discourses (Harris, 1954) . What is

communicated in a proof is the reasoning from its assumptions

4-,o its conclusion and generally none of the sentences in a

proof are asserted as declarative sentences. We can reason



from admittedly false assumptions to an admittedly false

conclusion and communicate the reasoning in a correct proof--

necessarily not asserting (as facts) any of the sentences in

the proof.

Some linguists have suggested that the meaning of a

discourse is merTly the meaning of the logical conjunction of

all the sentences in the discourse. This is obviously not the

case because if it were so, then the order of occurrence of

sentences in a discourse would be irrelevant. It is clear

that the order of occurrence of sentences in a discourse is of

crucial importance with regard to the meaning of a discourse.

As an experiment one might permute the sentences of a given

paragraph and then see if the result means the same as the

original. (For example, try interchanging the first and

third sentences of this paragraph.)

Most of the linguistics before the 50!s was focused

primarily below the sentential level and much of the work at

the sentential level was pip,cemeal and (therefore?) unexciting

to persons with a mathematical outlook. The interesting de-

velopments started in the 50's with,Harris' investigations

above the sentential level. As a result of Harris' work, the

sentential level was investigated in a more systematic and

mathematically interesting fashion. Harris had become

interested 4.n the obvious fact that certain stretches of

speech composed of several sentences have a definite kind of

structure not reducible to sentential structure. These

s',:,,uctured stretches of speech (or writing) were called

discourses.
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So far we have distinguished five levels of language:

the alphabetic, the lexicographic (words), the phraseo-

logical, the sentential and the discourse levels. Each of .

the highei; levels encompasses an increasingly complex structure

which depends on the levals below it. When we apply the con-

ceptual import of these distinctions to formalized mathematical
. /

communication, there are no new difficulties. The basic

alphabet of primitive symbols provides thp alphabetic level.

For example, in a language designed for arithmetic we m1 :01t

have an alphabet containing: a symbol x and a "prime" '

for constructing variables (x, x', x", x'", etc.), the

arithmetic symbols, 0, 1, 4-, O, and the logical symbols

v, =, etc. The lexicographic level would include

0,,1 and the compound symbols pbtained by 'priming" the

symbol x (i.e., the variat16's). On t phraseological lev-1

we would have all of the elements jidst mentioned together

with the other terms which enter equations, viz., (0+1),

((0 +1) .1), (x' 10") ((0+x") ix'"), The sen-

tential level would contain: the equations, ((0+1) = x),

etc., the inew,i°alit_ (((0+1)+1), etc. and all of the

compound formulas ma%le up from equations and inequalities by

use of quantifiers and connectives. Finally; the discourse

level would include the proofs.

Thus we have an analogy between the levels of English

and the levels of a language of arithmetic according to

which the discourses of English correspond to the proofs in

the arithmetic language. One striking diff,-.A.ce is that in
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English there are many different kinds of discourses (nar-

rative, descriptive, explanatory, demonstrative, etc,),
.3

whereas in the arithmetic language apparently there is only

one kind of discourse--t.4 proof. Of course, the same sort

of thing is true on the sentential level (all formulas in

arithmetic are declarative) as well as on the phraseological

level (all phrases in arithmetic are noun phrases such as

(0 + 1)).

---,Grammars y.

One of the main projects of modern linguists is to

give a complete and systematic description of the entire

English language. Linguists an6 philosophers have suggested

that English be regarded as two separate but interrelated

systems, a syntactical system (or system of symbols regarded

abstractly) and a semantical system (or system of meanings).

A description of the syntactical system of a language is

called a grammar of that language.

It is reasonable to require that any adequate grammar

of English must consist in adequate descriptions of each

level in terms of the preceding level (or levels) together

with whatever other concepts are needed. In other words,

a description of the syntactical system of English should

be stratified in accordance with the way that English itself

is stratified. Moreover, a description of a given higher

level must account for how e'ich element of that level con-

sists of elements of the lower level (s). Thus, a grammar
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of English will consist in (1) a description of the

alphabetic level, (2) a system of rules describing how the

words are built up of phonemes and words, (3) a system of

rules describing how the phrases are built up from phonemes,

words and phrases, (4) a sentential grammar or system of

rules describing how sentences arc built up, (5) a dis-

course grammar describing how discourses are built up.

In short, a grammar of English would consist in a descrip-

tion of the basic alphabet together with four systems of

rules each subsequent one of which depends on the lower

level systemS.

Without any losS" of general ty we can thin- of each

of the four rule systems as inc14 g two types of rules:

first, initial-string or "kernel" rul s which describe the

kernel; second, production ru = s w ich'Apecify the compounds

by indicating how the'compounds may be constructed from the

kernel elements. Rule systems of this sort are sometimes

said to be in "kernel/transformation" form. Let A repre-

sent the alphabet, Al the set of words, A2 the set of

phrases, A3 the set of sentences and A4 the set of discourses.

Let P1, P21 P3 and P4 be the rule sets which describe (pro-

duce), Al, A2, A3'and A4 respectively. If we Indicate the

levels that can be referred to in a rule set by writing the

names of those levels after the names of the 'rules, then,

according to our third assumption, a grammar of EngliSh can

be repre nted as follows:
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P
1
(A)

2(A+Al) A2.

P3(A+Al+A2) A
3

P4(A+A +A2+A3) A4

alphabet

lexicon

phrases

sentences

discourses

The arrow means "produces" or "describes". The

third line can be read: a set of rules depending on the

alphabet and the lexicon describes the set of phrases.

Below we give an example of a grammar of this

sort to describe part of the arithmetic language mentioned

above.

Partial Crammar of Arithmetic Lariguage

A : xi ' 1 0, 1 +, . e .4.

, , ' 2 ' 2 v,

--,

P
1°

(a) Initial Strings: 0 and 1)re constant words

, ),(,r,L, (alphabet)

(b) Initial Strings: x is a variable word
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Production: if S is a variable word then S' is
A

a variable word

Al : 0, 1, x, x', x'', (words)

P2 : Initial Strings: all words are phrases

Productions: if Si and S2 are phrases then (S.+SOis

a phrase.

if S1 and S2 are phrases then (Si.S2) is

a phrase.

A2 : 0, 1, x, x', ..., (0+0), (0+1), (0+x), ..., ((0+1)+0),

((0+1)+1),... (phrases'

P3 : Initial Strings: all strings (S1=S2) and (S1< /2) are

sentences where Si and S2 are phrascrs.

Productions: if S is a sentence then '1,S is a sentence

if Si and S2 are sentences then (Si&S2)

is a sentence

if Si and S2 are sentences then (Siv82)

is a sentence

if Si and S2 are sentences then (S?S2)

is a sentence

A3: (0=0), (0=1),..., (0<0), (0<l),..., q,(0=0), nd(0=1),...0

4.(0<0), ((0=0)<(0=1))...s ((g=0)v(0=i)),...

((0 <0)v(0= 1)),...

4 ???

4

11011.111011111111111/01.11110161MMIII1111111.101111.1111.1.11.111i1111011.111111,

(sentencev)

(proofs)
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The above is a partial grammar of the part of the arithmetic

language not involving the quantifiers. It is obvious that

all such sentences are described or produced by P3, i.e.,

are in A
3 °,

P4, which is presently left out, would generate

or describe the correct proofs in this part of the arithmetic

language. Before we give our opinion of what this would be

like, -we want to discuss the nature and value of a correct

theory of proof. In the final part of the paper we will

contrast twopossibilities for

-Note: The above is not the only language suitable for develop-

ment of arithmetic. Indeed, there are several others among

which are found some which do not satisfy our three assump-

tions. In particular, some of them contain phrases which

are constructed from sentences. For example, consider the

noun phrase

"the least number greater than 2

This would be expressed in some languages by '(ix)((14-1)<x)1

which contains the sentential expression ((14-1)<x). Such

languages exhibit an interdependence between the sentential

level and the phraseological level, thus violating the third

assumption which implies that phrases can be composed only of

phrases, words and letters (i.e., of same or lower level elemenots).

There is good reason to believe that the same sort of
.

thing is true of English and, moreover, it appears that

some of the sentences in English are derived from dis-

courses further compounding the degree to which the third

assumption fails. If the latter is true, then no adequate
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sentential grammar of English can b, constructed until at

least a part of the discourse gy&ffmar is constructed.

2:1



PART II

The Nature of A Correct Theory of Proof and Its Value

--Proofs and Rules of Inference

As we have been using the word above, a proof is

an articulation of deductive reasoning from premises to con-

clusion: Thus when a mathematician writes a proof he is

primarily interested in communicating his reasoning to

others. He is explaining to others his reasoning that if

the premises are true, the conclusion must also be true.,

Secondarily, he is recording a mental process/event -- viz.

the particular process of reasoning from those particul

premises to that particular conclusion during A particular

time interval.

Regularity in Proofs: If we consider proofs that

we have written or if we survey the proofs found in the

literature of mathematics we find jnany repetitions of simple
\

patterns. LIThis is a clue to the fac that the writing of

proofs rule-governed activity. However, if we recall

our experiences we will notice that i 'writing proofs we

do not think of ourselves -as following rules, It is

only after the fact that we see the patterns and postulate

thepexistence of the rules to account for the regularity.

This situation is analogous to the situation involving

22.
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writing of sentences. After seeing many examples of sen-

tences, we notice repeating patterns and postulate the exis-

tence of rules to account for the regularity. Sentence.s

are constructed according to rules but we are riot conscious

of following rules in writing sentences. The same with

proofs.

When you write a proof you are generally doing (or

redoing) the reasoning that you are expressing in the proof.

Moreover, when you are reasoning in a particular branch of

mathematics,(e.g., geometry or arithmetic) you are generally

thinking about the subject matter of that branch -- although,

as Hilbert and others point out, if your reasoning is

correct, the subject matter is irrelevant and the reasoning

would apply equally well to any other subject matter. The

point that I am making is that when you are writing a proof

you are too busy to think of any rules even'if you knew

which ones to think of. This is exactly analogous to speech:

when you utter a sentence you are generally thinking about

what the sentence is about and thus are too busy to bother

with rules. In'deep, for example, as you begin to learn a

foreign language in a classroom situation, as long as you

have to think of the rules you generally make rather dull

conversation because you are too busy to give much thought

to what you are talking about. Thus, carrying this over to

reasoning, if you knew the rules explicitly arfl3. actually

thought of them while you reasoned you would likely not get



very far in Your mathematics.

Rules of Inference; Let us use the term "rule of

inference" to refer to the r-...es according to which proofs

are constructed. The rules of inferenceXare Tales for con-

structing proofs in the same way that the rules in a sen-

tential graMmar are rules for constructing sentences. Be-

cause of our hypothesis that the discourse level, which in-
/

clUdes the proofs', must have kernel/compound structure there

swill be two types of rules: initial string rules asserting

that certain strings are proofs ab initio and production

rules which build up compound proofs from simpler ones. As

a result of my own experience in formulation rules of in-

ference it seems that each production rule can be written in

the following form: if Such- and -such is a proof then the

result of adding so-and-so to the end of it is also r proof.

This implies that each production -t e rule of in'f'erence has

the effect .21 ltriEL.slaa an alrea existent proof.

Since proofs frequently begin with assumptions

layed down without prooflwe may suppose that one initial

string rule simply says that any sentence may be written

down to start-a proof provided that it is clearly maNced as

an assumption. Thus we might state the initial - strig rule

of assumption: !Assume p' may-be written to start a proof

where p is any sentence. In addition, since assumptions are

also written at non-initial places in proofs we also have a

production rule of assumptions: any proof may be lengthened

by the addition of 'assume p'. Other production rules are
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easy to think of. The rule of modus amas can be stated:

Any proof containing a sentence p and also containing a

sentence 'if p then q' maybe lengthened by adding q onto

the end. Many other rules will come to mind.

Knowledge of Rules of Inference: It is important to

distinguish a stronger and a weaker sense in which one may

know a rule of inference. Let us say that a person has

weak knowledge of a rule of inference if he reasons in

accord with that rule. ThUs weak knowledge of a rule of

inference is a non-self-conscious kind of knowledge. All

mathematicians and most people, I imagine, have wetk know-

ledge of quite a few rules of inference although fe people

are self-conscious about the rules according to' w. h they

reason. On the ,other hand, let us say that a person has

strong knowledge of a rule of inference if he can explain

the detaAas of the rule, point-out places where it is used,

etc. Strong knowledge of a rule of inference is a very self

conscious kind of knowledge. Mathematicians generally have

weak knowledge of many rules of inference and strong knowledge

of very few. A logician who is poor at reasoning may have

strong knowledge of many rules of inference and weak know-

ledge of very, few, although most logicians, it seems, have

weak knowledge and strong knowledge of many rules of, inference.

The same distinction carries over to knowledge of:rules

of sentence construction. All speakers of English have

weak knowledge of many sentential rules whereas only linguists

Ican be expected to have strong knowledge of more than a few
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such rules. Linguists make it their business to have strong

knowledge of rules of sentence construction whereas othe/r

speakers are content to be able to use the rules, i.e., to

have weak_knowledge of the rules.

Naturally, it is not to be expected that everyone

has even weak knowledge of all rules f inference. Cer-

tainly the high school freshman could not be expected to

know all of the rules of inference use by tho professional

mathematician. In a sense,, knowing a ule of inference

amounts to understanding a type of logi al connection. Of

course, as people acquainted with mathematical education, we

have all had the discouraging experience of seeing a student

mimic a teacher's pattern of reasoning without understanding

it. In such cases, I believe, we will always be able to )

ascertain that the student has not learned the rule, but

only the superficial aspects of a few applications of it.

Nevertheless, I must acknowledge the theoretical possibility

of a student who knows how to use an impressibly large class

of rules without understanding any of them. Such a student

could write down a correct proof of a. conclusion from some

assumptions without believing that the conclusion actually

followed from them--i.e., he would not be willing to risk

anything to defend the thesis that if the assumptions were

true then the.conclusion would necessarily also be true.

Even though a given person may not know all of the

rules of inference and, indeed, as the skills of mathematical

reasoning evolve, new rules may come into use; it is, most
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likely,the case that most normal high school freshmen know

several of the simpler rules. Moreover, it is my view that

some more complex rules Fxe learried by developing skill in

the use olfthe simpler 'rules and, then, seeing how steps
a.

may be/skipped.

This means that after d student had gone through a

certain fixed patte/n of detailed reasoning several times

he may develop a feel for the upshot of the pattern an be-
\

gin to omit the details in future proofs--thus in effect,

gaining weak knowledge of a more complex rule. We may imagine

that the professional mathematician, after years of ex-

perience in deductive reasoning, has developed weak know-

ledge of very complex rules well beyond the comprehension

of beginning students. From this point of view, it is

natural to expect that as mathematical reasoning becomes

increasingly 'sophisticated, more and more complex rules of

inference will evolve.

If we wish we may even speculate that the mathematics

student has two kinds of "vocabularies" of rules--an active

vocabulary that he can actually use in doing proofs and a

passive vocabulary of rules which ,heocan "follow" but not

use. This sort of hypothesis may partially account for

inability of students to recreate reasoning that they have

followed in class.

Correctness of Rules of Inference: We may wonder

about correctness and incorrectness of rules of inference7-

is it conceivable that a few persons or a whole society of
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persons write proofs accordi to incorrect rules? Indeed,

suppose that everyone wrote proofs according to a certain

rule, would not the universal acceptance of a rule make it

correct? On a certain level, these are very easy questions

once we recall that a proof is designed to show that a certain

conclusion follows from certain premises. If e: conclusion

follows from some premises then it is impossible that the

premises are true and the conclusion false. Thus if a

system of rules could be used to prove a false sentence -

from a set of true sentences then certainly at least one of

the rules is incorrect or, as we say in logic, unsound.

Thus, it is possible that a few persons or a whole society

of persons write proofs according to incorrect rules. (It

is possible but have never seen it happen--although I

have seen people make mistakes in proofs.) Moreover, con-

cerning this second question we can say that the universal

acceptance of a rule of inference would not make it sound.

Incidentally, it follows from what ;has been said

above that if a certain society writes prbols incorrectly

then possibly someone could discover tht7Lt fact--however,

if a society writes Proofs correctly then there seems. to be

no way of finding out for sure that it does.

Parenthetically, I might add here that if I were an

Intuitionist, I would have said that I had seen examples

of the use of unsound rules. The intuitionist would say

that most mathematicians use unsound rules and that much of

the literaturWe of mathematics contains incorrect proofs.
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In particular, Intuitionists regard one of the forms of in-

direct proof as unsound. Let us consider this in a little

more detail. The kind of indirect (or reductio ad absurdam).

reasoning _involved in the standard proof of the irrationality

of /IF from the atoms of arithmetic proceeds, after the

(tacit) assumption of. the axioms, by assuming that 12 = n/m

for some integers n and in and deducing a contradiction.

This sort of reasoning is regarded as sound by the Intui-

tionists because what the Intuitionist means by "not p"

is that the assumption of p leads to a contradiction.

However the Intuitionist does not regard as sound the other

reductio rule which allows onb to prove p from some assume- /

tions by assuming "not - p" and deriving a contradiction.

For him this would only prove "not-not-p" ,from original

assumptions. "Not-not-p" means that it is absurd to assume

that p is absurd and, for the Intuitionist, this 'does not in

turn mean that p itself is true. This view leads to the

rejection of one rule of double negation (any proof con-

tainieig "not-not-p" may be lengthened by adding p) and to

the rejection of the rule of excluded middle (any proof

may be lengthened by adding "p or not-p").

--Theories of Proof

By a theory of proof for English, say, I mean a dis-

course grammar (1) which is intended to describe some or all

of the proofs expressible in English and (2) whose rules

are intended to be rules of inference known by persons who

1
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express their reasoning in English. If we are given such 'a

theory, we may want to inquire concerning its correctness

and its' comprehensiveness. It would be natural to call it

correct if-each of its rules were used by some speakers of

English. (There are, of course, other possibilities but

this one will suffice in this context.) Furthermore, it

would be natural to-call it' comprehensive if every rule

used by any speaker of English were included among its

rules. Of course, the correctness and the comprehensiveness

o: a given theory of proof would be relative to a given time

in order to leave open both the possibility of "old" rules

being abandoned and also the possibility of "new" rules

being 'Elevised."

The hope of ever getting a correct and comprehensive

theory of proof is dim. But it is certainly .possible to

contribute toward such a theory. This would be done first

0

by considering one's own reasoning and trying to formulate

fif

the r(il that one actually uses himself. The next step

would be to survey the mathematical literature in an attempt

to/find proofs that are not constructible by means of one's

on rules and which, therefore, may be presumed to be con-

s ructed according to "new" rules. After some of these

ere formulated the continuation of the project would in-

v6kve getting other workers to formulate their ;.di rules

and to help 4n the survey of the literatu_.:. It is hard to

imagine how one could ever determine orhethe-: a particular

theory were comprehensive and, course, if a theory were



31

comprehensive relative to a fixed time it may very well not

be comprehensive relative to a later tline,

To many readers the above will sound at least utopian

if not far-fetched. It may very well be utopian but, given

the Chomsky-Harrl" idea of trying to develop a sentential

grammar of English, the above can easily be seen as an

application of the same core idea to a part of the totality

of English discourses. Thus, the idea of a comprehensive

discourse grammar for all of English is even more utopian.

Now, as for being far-fetched, I would simply reply that it

is no more f .tched than the ideal of a comprehensive

sentential gx ,Ir of English and a considerable body of

researchers are developing this today.

As soon as one seriously considers the project of

working toward a correct and comprehensive theory of proof

in English, he is quickly faced with acrucial consideration.

Since a discourse grammar takes as a starting point a sen-

tential grammar, and since a sentential grammar for English

does not exist in anything like a complete form, it becomes

clear that the project cannot be begun in a systematic

fashion. This objection is well-taken but fortunately a

reasonable substitute for a sentential grammar is available

at least for the part of English used in mathematical proofs.

As a result of centuries of logical analysis of mathematical

discourse we now have formally defined symbolic languages

which are sufficiently rich so that all of mathemati-cal

discourse can be symbolically states. Thus, we may.choose
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formal language into which to transl

grammar of this formal language as

needed for the theory of proof.

sultant theory of proof will ne

of an actual theory of proof

formal.language for arithmet

part of English used in di

so happened that a group

.
formal language in thei

proofs in the formal

body of proofs as s

regarding ourselve

Moreover,

end be seen as

ate proofs and use the

the sentential grammar

Taking this path our re-

cessarily be an idealization

in the same sense that, say, a

is is an idealization of the

scourse about arithmetic. If it

of mathematicians actually used a,

r investigations and they wrote their

language then we could investigate the

uch without translating and without

s as developing an idealization.
a

the use of the symbolic language may in the

a distinct advantage as it may enable the

theory to transcend English and provide a theory of proof

for other 1

look the p

language

level

the v

clu

g

anguages as well. However, one should not over-

ossibility that the idiosyncrasies of the various

s will also make themselves known on the discourse

and, in particular, in the proofs expressible in

arious languages. This is not to suggest that a con-

sion may be provable from certain premises.. in one 'Ian-

uage but not in another, though this may be true. Our

suggestion was that even if exactly the "same" conclusions

are provable from the "same" premises in two different

languages it may turn out that there are means of doing it

in one language not available to the other. Both of these

hypotheses are 'likely. -- and perhaps interesting to in-

vestigate.

7
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--The Value of a Theory of Proof

Before we can consider the possible value of a theory

of proof, we should try to determine specifications for a

theory which could actually be developed. Otherwise, our

speculations would be too hypothetical to be very. interesting.

In the first place we postulate the existence of

manageably small set of simple rules of inference which must

be known in order, for example, to be able to prove the main

theorems of plane geometry and arithmetic. It is immaterial

whether these rules, which we will call the basic rules,

are redundant. [A set of, say, three rules is redundant if

everything that can be proved using all three can also be

proved using only two.] We can easily imagine that the

basic rules can be discovered. It is my opinion that the

basic rules could be discovered and formulated within a

short time by several logicians working with several high

school mathematics teachers -- provided that the mathematics

teachers (1) had been in the habit of making up new proofs

and encouraging their students to make up new proofs and

(2) had been developing geometry in different ways,/from

year to year. 'In other words, the mathematics teachers

working on, the project must have some wide experience to

refer to in these matters. What I have in mind is the situ-

ation wherein several linguists work with several native

informants in developing a sentential grammar df an exotic

language.

In order to discuss the value (utility) of a theory

of proof then let us imagine that we have the basic rules
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neatly formulated. Now, when we are asking about the value

of this theory of proof what we are really concerned with is

the possible answers to the following question: how could

a matheratical educator use this theory to improve mathe-

matical.education?

A theory of proof which included the basic rules would

provide strong (self-conscious) knowledge o the rules of

inference commonly used in elementary mathema.,, It

seems to me that there are four areas within mathematical

education in which such knowledge would be of use, viz.

in teaching, in testing and guidance counseling, in cur-,

riculum design and in attempts to understand the psychology

Di.' mathematical learning.

Teaching: One important part of a mathematical

education is learning to reason deductively and developing

skill at it. There may be much %lore to learning to reason

than merely acquiring knowledge and skill in the use of the

rules--but certainly these are part of it. A teacher who

knew the rules in the strong sense, i.e., he not 6nly

knew haw to use them, but he also could refer to them ex-

plicitly, formulate them, etc.--such a teacher would be in

a v ry advantageous positsion vis-a-vis trying to teach

mathematical reasoning. Firstly, he would be.better able to

detect ignorance of specific rules. Now, when a teacher sees

a student raving difficulty with a proof he is left to his own

devices as to what the difficulty is. Secondly, he would be

able be much more clear in his own writing of proofs
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because he could be self-consciously critical of his own

proofs. Thirdly, he would have a guide in choosing exercises

and examples. When the class is having difficulty seeing a

proof which involved a complicated application of a rule the

teacher would be able to choose another theorem which in-

volves a simpler application of the same rule, and then, in

presenting it to class he could pof.nt out that the

reasoning in the complicated case is similar to the reasoning

in the simple case. All three of these points hinge on the

advantage,that an articulate teacher has over one who is

merely expert in the subject matter. Considers for .example,

the excellent tennis player who is not articulate about what

is involved in playing tennis. In trying to teach a beginner

to play tennis, the expert player is reduced to showing. If

he sees the student doing something wrong he cannot say

exactly what is wrong. Even in showing the student what

the motions are like, the teacher will not know what to

exaggepate and he will not be able to distinguish his own

idiocyncrasies from what is essential about tennis. Finally,

he will be poor at developing drills, etc.

Testing and Guidance Counseling: It seems to me that

a student's ability in deductive reasoning is an important

index of his mathematical aptitude, his ability to learn

mathematics\. This means that a student who is skilled in

understandijig and producing mathematical proofs will be

much more 1 kely to benefit from mathematics courses than

one who doe not have such skills. It is obvious that a man



36

who has a characterization of what he wants to test is in a

better position to design a test than a mart who -does not

haw: '-;uch a characterization. A theory of proof is a charac-

teriation of the a':dstract; structure underlying reasoning

a;-.d It shoulC provida a very useful fraTework for

desii/17 tests of reasoning ability. At the very least

a theory ef proof w3uld provide a better knowledge of what

is being measured in tests cf reasoning abilityan therefore,

also in mathematiccl aptitude tests.

In order to get an idea of how such tests may be

helpii,1 in guidance counseling we must speculate concerning

thP k2.nds of things that might be discoVered by use of the

tests. For example, one might be able to s w experimentally

that un7ess a s t l'ad acquired (weak) kno ledge op

the baaie rul by a,brtain age the cThances of his ever

being competent in mathematics are very slim. This would

enable covnseiors to advise students concerning careers in

mathematics and related area Moreover, it is not un-

reasonable to suppose that n rmal mathematical development

could be cflaracterized in 4rms of the number and kind of

rules lea; ned t variouses. This would permit objective

identification of unusually able andunusually backward

students again leading to more efficient and more scientific

counseling. , The professional mathematical educator can

certainly conceiv_ot other applications in this vein.

Curriculum Design: One of'the aims of curriculum

design is to trace a sequence of topics in mathematics
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which parallels the optimal development of the students

interests and abilities. The reason for this is the desire

to give the student the maximum benefit from his formal

educational experience. The idea is that the student is

best educated by presenting to him at each stage in his

education those concepts and proofs which. he is best able

to respond to. It is absurd either to present things which

are too trivial or to present things that are beyond the

student's ability. It seems to me then that a characteriza-

tion of the development og mathematical skill in terms of
4r*.

the` number and kind of rules acquired at various ages would

provide a valuable framework for use in the design of an

efficient curriculum. It would at least permit the knowledge

of what would be very difficult and what would be very easy

as far as reasoning is concerned and this, in turn, would

permit more rational choices among alternative theorems to

be presented or between alternative developments of a par-

ticular topic.

In addition one can easily imagine a battery of

specific remedial programs each designed to teach a specific

rule or sequence of rules. Such remedial programs used in

conjunction with the diagnostic tests mentioned above might
'014

very well form.a formidable weapon in trying to overcome

inaaeluate preparation.

In the discussion of tnowledge of rules of inference

we suggested that complex rules are learned through experience

with simpler ones. If this turns out tjo be true then the
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details of the interrelation of knowledge of complex and

simple rules will be very important in the choice of alter-

native developments of a subject as well as in the design of

drills and so on.

Finally, we return to the hypothesis, of active and

passive vocabularies of rules. The truth of this hypothesis

would lend' additional justification to the suggestions of

Professor J.J. LeTourneau (personal communication) to the

effect that there should be two separate but parallel mathe-

matics programs--one aimed at developing skill and concrete

experience in creating theorems and proofs, the other aimed

at acquainting; the student with `the :' of existent mathe-

matiOal knowledge. Naturally, a theory of the active vocabu-

lary would be /applied in the former, whereas-the latter

would use the passive theory.

Psychology:. It is already clear enough that a theory

of proof would provide a fruitful source of ideas for hypo-

theses and e4eriments in the .osych8logy of mathematical

learning. Moreover, drib might wish to consider a more com-

prehensive theory of proof as an idealized description of

the more-or- less behavioral aspects of the, psychological

processes of reasoning. We have dlready pointed out that

the written (or spoken) proof is our only access to another

person's reasoning processes. The written proof is a per-

manent record of the reasoning and, moreover, It is a "trace"

of the behavioral aspect of the reasoning. The rules of

inference in accordance W'ith which the proofs are writptn

are thus more-or-less behavioral "norms". Given all this,

it is easy to speculate that a theory of proof could lead to
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analogous to the way that Keplers Laws y...scrLIT, the orbits .

of planets lead to a kinetic theory explaining the orbits

terms of the effects of forces.

Finally, on the subject of applications of a theory of

proof, I would like to suggest that, the quality of writing

of mathematics texts could be p;re6,tly improved if the writers

Would take the trouble to learn the rules of inference used

by their prospective audiences. A mature mathematician

must learn how to reason in a fashion understandable to a

freshman if he wants freshmen to learn the-mathematics (and

not just memorize). Frequently, the mature mathematician-.

encounters (in teaching) theorems which he sees "immediately"

and he finds himself at a losr, as to what to say to prove them,

If he knew the rules of inference used by his class ten he

would know exactly what to say. If mathematids texts (and

mathematics teaching) are improved in this may then one can

expect that capable but non-genius students will be more

able both to appreciate'the beauty of mathematics and also

to keep from "getting turned-off by the chicken s6ratching."

Quite possibly all this could lead to the kind of improvement

in the field of mathematics thatwe have seen after the re-

discovery of the axiomatic method. In the axiomatic method

we find the ideal of the deductive/definitional organization

of branches of mathematics: a theory of proof provides a

partial answer to the question of ,what deduction is.

*1

Vt
0



Following all of these hopeful speculations I want

to emphasize two negative points. In the first place, none

of the above applications be easily or mechanically

(dr
ch,ieved despite the fact that much of the groundwork is

4o

done A tremendous amount of very detailed creative thousht,

dialogue and experimentation is needed. There is even cause

to wonder whether there is a natural place to begin. And,

there are terrifying pitfalls, one of which is the gap be-

tween the precision and simplicity of the symbolic languaRos,

on the one hand, and the vagueness, ambiguity and compfexity

of'natural language on the other. 'Anyone seriously desirinp.

to pursue any of the above applications must become extremly

sensitive to the nuances of normal English--and very few

mathematicians have the patience for this. A pilot experi-
41.

ment in deductive reasoning recently conducted in a Phila-

delphia school ended distressingly because the subjects were

diverted by too many linguistic red herrings in the test

questions. Something can be perfectly clear in the sym-

bolic language and p erfectl y confusing when translated

mechanically into English.

Paradoxically, the second negative point issues from

the exhilarating feeling of power and self-confidence that

a mathematically competent person derives from learning to

be articulate about what he is good at, from learning

\\ a clearly presented and apparently comprehensive theory of

oaf. Such a person naturally wants to teach the theory

to his students--but if the students are not yet Rood
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, : rt reasoninF tJey cannot appreciate the significance of
---

'hat they o.re learni.n. The': may learn'the rules and they

may 14'lfh,now to tho rules. The disaster is that they

come lo apthemt.al reasoning" is nothing but

foil ru os. we rJoined out in '.he beginning of this

part -1 tTie 'f pors3n iins his mind occupied with

the rul:?i, ther. the chanccri are sllm tLat he will have any

attention le.ft for the lubjet matter or for the deeper

parts of reasoninr., If a peson learns the rules as external

rules (as Prescriptions) and not as descriptions of what he

already does, the result is stultifying. If pressure is

put on a'student to accept a rule self-consciously before

he knows the rule non-se lf-conscious17, 1.e., if a rule is

imposed on a student, he will either rebel or lose his intel-

lectual integrity or adopt the view that it's all a silly

game. Another equally undesirable but less disaStrous

effect of teaching an uncomprehensive theory of proof even

to students who can appreciate it derives from the fact

ghat they may reason according to rules not in the theory.

In thiS case, the students will tend not to use the rules

absent from this theory. thus weakening their powers Of

reasoning. The upshot is that they ill be poorer at

reasoning 'after learning the theory than they were before

learning it.



PART III

Two Theories of Proof

This part of the paper has a dual purpose. In the

first place we will discuss two kinds of theories of proof.

The first kind will be called a theory of linear proof.

The second has been called a theory of suppositional proof.

The term "natural deduction" has often and correctly been

used to refer to the second kind of theory but I shall not

do so here because many of the theories so-called are not

of the second kind -- they must be thought of either as

disguised linear aeories or theories of a third kind (see

postscript below). The "second purpose of this part is to

develop some of the main ideas needed in constructing a

comprehensive theory of proof. The reason for choosing the

linear and suppositional theories for this purpose is be-

cause the linear theory includes only rules of a very

simple nature and the suppositional theory can be seen as

the result of making the linear theory more comprehensive.

--Theories of Linear Proof

Theories (or systems) of linear proof can be traced his-

torically to Frege, who worked in the last century, and

42



perhaps even to Aristotle. A linear proof from a set of

axioms is one in which each subsequent step either is an

axiom or is derived immediately from axioms and/or pre-

viously proved lines. In other words a linear proof of c

from P is written linearly in a column, say, beginning with

the premises P at the top and proceeding step-by-step

through intermediate conclusions all derived from P to c,

the sentence to be proved. This is the idea, in practice

things are a little more complicated, but the following

general statement always holds in a 'linear proof from

premises P to conclusion c each sentence in the proof is

a logical consequence of P. (The reader should note that the

concept of logical consequence as defined above is not

relative to any system of proof. )

There are three minor modifications to be made to

the above loose account of linear proofs. The first is that

for clarity the assumptions shall be marked as assumptions

to make it clear that they are not asserted to follow,from

any sentences which they may happen to follow. The second

is that assumption8 may be written at any place in the proof,

not just at the top. The point here is that one may try

to prove a theorem from only some of his axioms but then dis-

cover that he needs an additional one. The modification

permits this to be written at the point needed rather than

at the top. Finally, in addition to assumptioris and in-

ferences, properly so-called, all* linear systems of proof

permit the writing of so-called logical axioms at any point

404
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in a proof. One prominent logical-axioms rule permits any
ti

proof to be lengthened by the addition of any identity (t=t).

Leta, us use the corner bracket (r) to mark'assumption.

Thu: ,"`p could be read 'assurrep'. Next we will give an

example of a linear theory of proof all of whose rules are

commonly used, perhaps most Tominently in algebra. Following

the statements of the rules Will be a proof of (x)(x=x-1-1)

from the axioms of groups.

Rule Set A

Initial String Rules (Kernel Rules)

(1) Initial Assumptions: rp is

(2) Initial Logical Axioms: (t=

Production Rules

proof

is a proof

(3) Assumptions: any proof may b lengthened by the

addition of rp

(4) Logical Axioms: any proof riay be lengthened by

the addition of any identity (t=t).

(5) Substitution of Equals: arfy proof,)containing

(t=s) and also p' may be lengthened by adding p'

where p' is the result of replacing occurrences

of t in,p by s and/or vice versa.

(6) Instances: any proof containing (v) p(v) may 1767

iengtherld by adding p(t) - where v is a variable

and t is a term compOsed of constants.

(7) Generalizations: any proof containin(p(d), d

constant; may be lengthened by ad ition of (v)p(v)

provided that no assumptions con ern d (i.e.,

provided d is "arbitraii").
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(8) Repetition: any proof may be lengthened by re-
,

peating any previous line.

01!iously each of the aboye rules corresponds exactly

to a rule commonly used in proofs ip algebra. Notice

however that there are commonly used rules which do not

appeal, in the list. For example the only way of instantiating

is by rule 6 and this permit's the elimination of quantifiers

salyjmep2r_malim. This will be an annoying de-

ficiency. Similarly for generalizations. Another deficiency
t

is that substitutions.can be done using only one equation

at a time. in the proof belo* we have starred the lines
/

that would remain were the deficiencies eliminated.

17x)(y)(z)(x:(iy:z) = (xy) z)

r (x)(x.1 = x)
.)

r- (x)(1:x =x)

r- (x)((x x-1) = 1

r (x)((, ) = 1

(y)(z)'(a(y.z) = Y)z)

(z)(a(a-1z) = (aa71)z)

t'

( alFl.a-1-1) = (a,a.-1).a.-

( -10a-1-1) = 1

4:1 = (aa-'

4

A aa-l= 1

a1 = 1-a-1-1

ael = a

a xr 1:1a-

lea-1-1= a- 1-3

a = a
-1-1

(x)(x=x-1-1)



Having a more powerful instantiating rule would

permit going from the associative law directly to the first

unquantified'line -- skipping two lines. The other two

unstarred lines would be skipped by aping two substitutions

at a time.

Incidentally the above rule set (or discourse grammar)

describes proofs -- but it ddes not make explicit what "a

proof of c from P" is. Naturally, we define a proof to be

a proof of c from P if c is the last line \of the proof and

all assumptions in the proof are in P. The above example

is a. proof 'of (x)(x=x-1-') from the group axioms.

As the rule set is being used here, the (metalinguistic)

symbdls p, p(t) p(v), and p(d) refer to formulas in the

language of groups. Thus this set of rules presupposed a

sentential grammar for the language of groups. However, if

we interpreted the* symbols as referring to formulas in the

arithmetic language, then we'cbuld use Rile Set A for the

theory of proof'needed to' complete the Partial Grammar of the

Arithmetic Language given at the end of P7t I. This would

actually be a bit _silly for two reasons: first, the Partial

Grammar has no quantifiers so rules 6 and 7 would never

apply; second, the Partial Grammar does have the logical

connectives whereas none of the rules permit any inferences

involving connectives. The point, thereforei is not that

the Partial Grammar would be finis,4ed but rather that the

reader can now see what a finished grammar would be like.

The respective natures of an alphabet, ,a rule set for words,
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a rule set for phrases and a rule set for sentences are

already clear from the Partial Grammar. Now we have also

seen a dicourse grammar which describes or produces a cer-

tain set of proofs. This discourse frammar, Rule Set A, is

a theory (lf proof.

Rule Set A is'obviously a correct theory of proof --

each of its rules corresponds exactly to (or is) an actual

rule of nference that we have all used when doing proofs in

elementary group theory. Rule Set A is obviously not com-.

prehensi e in the sense that 1 have defined the term because,

e.g., i lacks the complex rules alluded to above which

permit unstarred lines to be omitted. However, it is

complet in a certain sense.

firA theory of proof for a particular language is

called jeauationally=plete when the following holds:

given any set of equational sentences (either equations

properly so-called or universal generalizations thereof)

and any single equational sentence c, if c is a logical

consequence of P, then there is a proof of c from P con-

structible by the rules of. the theory. Rule'Set A is

equationally complete. ThiS fact will be plausible to any

reader who understands it. To the other readers the following

remarks are addressed. Let P be the axioms for groups.

Let c be any equational sentence written in the language of

groups and which is true in all groups. c, then, is a logical

consequence of P; since (1) a group is by definition any

mathematical sys'em in which the axioms of groups are true



and (2) to say that c is a logical consequence of. P is to

say that 'c is true in any mathematical system which makes

all of the sentences in P true.- The above- mentioned com-

pleteness condition implies, then, that by using Rule Set A

J7
one can construct a proof starting with P as assumptions

(as in the example) and ending with c. In fact, such a proof

can be gotten by lengthening the one given as a sample.

Incidentally, the equational completeness of Rule

Set A was proved several/years ago (by Dana Scott and Jan

Kalicki).

In any theory \a proof w ich describes or produces

only linear proofs, it is possib e to give a very simple

description of all ro fs from a rticular set P of

premises to a particular conclusion, c. Given a definition

of the logical axioms and the rules one can then say: a.

proof of P from c is a finite sequence of lines endin with

7WMc, each subsequent line of which either is an assum tion in

P or is a lo ical axiom or is obtained from previous ilAes

by a rule..

The underlined expression (or rather an even simpler

version of it)`' has become/a slogan and, sometimes, a battlecry.

One eminent logician related to me that when he first heard

this slogan presented he was struck by its simplicity and

truth ard was moved to say to himself,, "By God, that is

what proofs are;P:
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If one takes the slogan has *a rough description of all

Drdofs,then one is led (1) to distinguish three kinds of

rules of inference and (2) to believe that all rules of in-.

ference must be of one of the three kinds, The first kind

contains only the rule of assumption -- essentially to the

effect that an assumption may be written to start or to

lengthen any proof (provided that it marked as an assump-

tion) . The second kind contains all logical axiom rules --

to the effect that a logical axiom may be written,to lengthen

any proof. The third kind contains all immediata inference

rules; rules which state that any proof containing one or

two (or some fixed'finite number of) sentences of certain

specified forms may be lengthened by adding a sentence in

another form.

--Immediate Rules and Subsidiary Proof Rule

It so happens that by surveying the /proofs in the

mathematical literature (or by looking at our own proofs)

we find many rules that are noV of, any of the above three

kinds. Indeed, if all rules were of the three above kinds

then there would be to room in 'mathematical reasoning for

making subsidiary assumptions. Much of the most elegant

and enlightening reasoning in.mathematics turns on the

ability to imagine good subsidiary assumptions. Below are

some examples. (1) In proving that the square root of,.two

arithmetic, the subsidiary assumption that the square root

is not rational we assume, in addition to the axioms of.$
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of two is rational. (2) In proving the right cancellation

law [(x)(y)(z)((x.z = yoz):)x=iy' from the group axioms ne

assume, in addition to the group axioms, that adr4b.d where

alb and d are arbitraily chosen but fixed elements of the

group. (3) Whenever we give proofs by cases afte70 we have

proved that there are two cases, say, we assume that the

. first case holds and, then prove our theorem in that case,

then we assume the second case and prove our theorem in that

case -- finally we conclude that the theorem holds in

general. . . . In each of these three examples the proof

inVol es making subsidiary assumptions, assumptions other

;than hog from which the conclusion is shown to follow.
,

t. some point in each of these examples an inference

N\

is ma hot from certain previous lines in a proof but

rather frOm (or on the basis of) a certain part of the prool.

In other words,there are rules which can be stated as

follows: any proof containing a subsidiary proof of a certain

form may be extended by adding 1:). For example, in reductio

reasoning we are following the rule: any proof containing

a subs ary-prooi-lbegindrg with p and containing a con-

trV4ion may be extended-by adding tip (not-p).

Consider the following proof of ev(x)4,(x=x-1)

from the group axioms which employs the above:-stated\

reductio rule.



subsidiary

\1J

proof

The subsidiary proof is enclosed in, matching brackets.

The contradiction in clitestien, is "between" the starred lines.

Notic-: that the conclusion is inferred to follow from the

group axioms (not from all assumptions) on the basis of

the subsidiary proof. Once a subsidiary proof is marked

off by an ending bracket (U, it must be regarded as a

separate unit in the proof. In particular, one may no

longer apply any of the immediate inference rules to lines

inside of the subsidiary proof.. For example, we could not

write down as a next line rx,(1=1-1) by repetition because

this does riot follow from only the group axioms.

Let us use the phrase 'subsidiary proof rule' to

refer to rules which permit th lengthening of a proof on

the basis of a subsidiary proof. Of course, the most

notorious of subsidiary proof r 17.6s is the rule of con-

ditionalization which perMits inference of 'if ,p then q' on



the basis of a subsidiary proof beginning with p and ending

with q.' We will give a proof of the bight cancellation law

from the group axioms to illustrate this. (In the proofs

below we do not necessarily follow Rule Set A but .use other

commonly known rules es well.)

r(x)(y)(z)«x.(y.z)) = «xy)z»
(x)(xi=x)

r- (x)(lx=x)

r 00(xx-1=1)

r- (x)(x-I.x=1).

r- ad=bd
(ad).d-l= (b.d).d-1

a(dd-1)=b(dd-1

a = b

(aed=b.d):>(a- )

(x)(y)(z)(x.z=y6z:)x=y)
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Subsidiary
Proof

It will be valuable to notice that in proofs by cases

more than one subsidiary proof is needed -- one for each case.

Actually, all proofs - by- cases -rules are "combinations" of

the two-case rule stated as follows: any proof containing

'Cl or 02', together with two subsidiary proofs one beginning

with di the other beginning with c2 both eilding with d, can

'le extended by adding c. To it this we will give a
8-

proof, of.the two-sided cancellation law. The proof will

involve one application of the two-case rule inside of a sub-

sidiary proof on which conditionalization is used,.



r ( x ) ( y ) ( z ) ( ( x ( y z ) ) = ( ( ) z) )

(x) (1=x)

r- (x) .(1x=x)

r- ottl (xx-1=1)

(x) (x-1 x =1)

r (ad.d=bd) v (dsa=deb))

r- ad=bd

(ad)d-l= (bd)d-1

as(d.d-1)=b.(d.d-1).

a=b
L
r da=dth

L

d-1-(d.a)=d- .(d.b)

(d-1d)a=(d-ld)b

L. a=b .

a=b -cases rule*
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-c). c
2

first subdidiary
proof

secondary subsidiary
proof

((ad=bd)v(da=db)) a =b -conditionalization*

(x)(y)(z)(((xz=yz)v(z7=zy)) x=y)

The notations on the right are designed to help the

reader see exactly where and how the two subsidiary proof

rules are applied (* and **).

Before we proceed to a. disucssion of theories of sup-

positional proof (theories involving subsidiary proof rules),

the reader should note that the above three proofs are not

linear because the subsidiary assumptions are not among the

premises from which the proof proceeds. That 'Is, for example,

in the proof of the cancellation law from the group axioms



there are sentences which are not logical consequences of

the group axioms. Thus in these proofs we do not reason in

a Mnear fashion--we take "side trips".

i/

--Theories of Suppositl.onal Proof

The defining characteristic of a theory of suppositional

proof is that the rules permit the use of subsidiary assump-

tions which are later "discharged" and ar,,not among the

assumptions from which the final conclusion is shown to

follow. these rules are subsidiary proof rules which

countenance an inference not from previous lines but rather

on the basis of a subsidiary proof. Such rules are not

unusual but rather they comprise the essence of clear, elegant

mathematical reasoning. Indeed, I think the mathematically

experienced reader will agree that linear proofs have a

very computational flavor to them whereas suppositional

proofs seem 'to embody more creative and enlightening reasoning.

There are a few questions concerning the formulation

of suppositional rules which might have been annoying some

readers. I will digress slightly at this point to take up

some of .them.

In the first place, there must be a rule for closing-out

subsidiary proofs. This rule is stated as follows: If H

is a proof and II contains more occurrences of r than of 1. (more

beginning brackets than ending brackets) then an ending

bracket (L) can be written on the last line. The idea is

that each assumption I potentially starts a subsidiary
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proof and that each subsidiary proof must start with the(

last assumption Irn which is not already .part of another(

subsidiary proof. Thus' each time an ending bracket is out

in the' roof there is exactly one beginning bracket with

which to Irtatc1V it.

We define an occurrence of a sentence to be closed

in a proof if it occurs between matched brackets, i.e., if

it is bracketf:d. Otherwise it is called open.

A given proof is a proof of its last line (if, open)

from its set of _open assumptions. Now we can state two

important general principles for suppositional proofs.

.
Let p be a given line, of a suppositional proof.

(1) The sequence of lines up to and including p is itself a

proof. Let us call this the subproof ending with p. (2) In

any suppositional proof, each given- line p is a logical con-

sequence of the open assumptions of the subproof ending with

p. (If' p is prefixed by a n the rcounts as in the sub-

proof -- if by L the L.doer, not count as in 'the subproof)'.

Finally, we Must point out that within a suppositional tI,Ar

he immediate rules must, be stated so that they apply only

to open lines.

It is obvious that the framework of a suppositional

theory is much mare adequate for characterizing mathematical

proofs than is the framework of a linear theory -- even
r)

though anything that can be proved in a given suppositional

theory will also admit-of proof in some linear theory.
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In otter words, we are not contrasting the abstract power of

.such theories but rather their relative adequacies in

characterizing the proofs which we actually write. Given

Ithe advantage of suppositional theories we can ask: are

there other kinds-of rules of proof which could be added

and which would constitute an even more adequate framework?

Let us put this question another' way. We have seen four

kings of rules of inference: (1) assumptidn rules, (2)

logical axiom rules, (3) immediate inference rules and (4)

subsidiary proof rules. Are there other kinds of rules

which are actually employed in writing of proofs?

The most obvious' kind of rule to suggest adding is

a rule that permits the writing of "goals". Frequently

when we are writing a proof, after some assumptions have

been entered, we indicate our -goal by writing, for example,

"we want to show p". This is actually a very handy device

which helps convey the reasoning to be expressed in the proof.

Since the purpose of proofs is to express reasoning we

should certainly considerisuch a rule. We could state it:

Any proof may be lengthenbd by adding ?D. The question

mark in this context could be read 1Tto prove", Eiay. We

would then have to define all o urrences of ?p as closed

) because otherwise we would be applying immediate rules to

what we were rying to prove -- thus begging the question.

56

Now let us onsider another important kind of rule.

We have actually give an .example of this kind of rule, but
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we did not classify it. 'Notice that all of the above kinds
of rules apply only to.. a part of a plloof to, which they
apply, i.e it is not always necessary to look at each
line in the whole proof in order to apply any of. the abcve
four kinds of rules -- assumption roes not repairs: looking
4 any lines, the same for logical axiom rules, immediate

inference .rules involve only fixed fihite numbers of lines,
4

subsidiary proof rules involve perhaps, a few subsidiary proofs

plus .perhaps few open lines. The rule of generalization,
however, reguires looking'at a particular line p(d) and
then checking through the whole proof to determine that/-.-
nothing ha6.9leen assumed about d i.e., that d is indeed
arbitrary. Such rules we call global immediate rules.
Thusthe6classification of linearrules above was inadequate.

In addition there are subsidiary rules which involve
referencell'to the entire proof to which they are ,applied.,
The most prominent example of a global subsidiary rule is
the rule that is generally used in reasoning from an exis'.:rmtially
quantified statement . For example, 3 uppose' that we have

assumed the right cancellatiop law 4.1 a proof and we aro
1 ) 0, We assume thet-cly prove (3x) (y ) (

antecedent(3x)(y)(yx=x) and then we say "let X0 be such

an obje/t." ("LW is a sure sign of an assumption.) We

are assuming that xo is an arbitrary pbject satisfying the
condition (y) (y x0=x0). We reason then of an arbitrary
that bxoaxp and that b-1 x0=x0: teen, using the cancellation

law, infer b=b-1. Since b is arbitrary, (x)(x=x- Now tire.
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say: "Since xn was arbitrary and (x)(x=x-1) does not
)`'

depend on x0 the conclusion follows from the original

assumption." This corresponds, in the below formalized

version, to taking (x)(x=x-1) out of the subsidiary proof
and making it open [starred line].

r(x)(y)(z)(xz=yz.zx=y)
ax)(y)(yx=x)(x)(x=x-1)
r(ix)(Y)(Yx=x)

Ry)(yx0=x0) "let xo be such an object"
bx =x0 0

b-lx0=x0

bax0=13-61x0

bx0=b-1 x
0

b=b-1 (cancellation law)

b=b-1

L(x)(x=x-1)

I (x)(x=x-1)

(3x)(y)(yx=x)Z(x)(x=x-1)
It might be worthwhile to do another example using

the above rule. We will prove (y)1(5x)(Dx&Hyx)(3z)(Az&Hyz))

from ( x) (Dx Ax ) .

r(x)(Dz:ZAk)
r(3X)(Dx&Hbx)

r (Da&Hba) "let a be such an object"
Da
DaZAa
Aa
Hba
Aa & Hba

Pz) (Az&Hbz)
L (Az)(Az&Hbz)
(ax)(Dxgibx)z (3z) (Az&Hbz)

(y*(3x)(Dx&Hyx)(3z)(Az&Hyz))

A\)
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Because of limitations of space we merely mention a

class of rules called definitional rules which actually form

a subclaqs of the global subsidiary rules and which, as you

can surmise from the name, countenance the use of definitions

within proofs.

As a final question we consider the nature of an

axiomatic development of a mathematical theory. An axiomatic

development of a theory begins with the axioms. Subsequently

the first theorem is proved, then the second, then the

third , etc. However, after the first proof the axioms are
7

not repeated. Moreover, in addition to the axioms, pre-

viously proved theorems are also used as new axioms -- but

these are generally not written down either. One way of

characterizing such a development is to say that it is one

long proof and that axioms and previously proved theorems

can be used because they already appear above. There is

something artificial about this characterization -- we

usually say that adevelopment of a theory contains many

proofs, here we say that it is just one long proof. It has

been suggested that further study might reveal a level above

the level of proofs --a level containing "developments"

composed of proofs, This suggestion implies that in a

development of a theory there is structure which is not

reducible to the structure of proofs.

--Summary of Suppositional Theories

We have seen that linear theories contain four kinds

of rules: Assumption, logical axiom, immediate inference,



60

and global immediate inference. Next, we noticed that sup-

positional theories contain two additional kinds of rules:

subsidiary proof rules and global subsidiary proof rules.

In addition, we pointed out that the definitional rules are

merely a species of, the global subsidiary proof rules.

We explained the concept of an open sentence in a

proof and we asserted that the general principle behind

suppositional proofs has two parts: (1) that given a proof

and a sentence p in the proof the part of the proof ending

with p is also a proof (called the subproof ending with p)

and (2) each such p is a logical consequence of the assump-

tions occurring open in the subproof ending with p. Given

this principle, the notation for subsidiary proofs, and the

classification of the rules, anyone having a background in

mathematics is prepared to formulate his own theory Jf proof.

--Summary of the Paper

In part I we discussed some fundamental concepts in-

volved in the analysis of mathematical reasoning. In

addition, we introduced the concept of levels of language and

pointed out that a grammar of an entire language should be

composed of several grammars, one at each level. We-also

made the point that a proof is a certain kind of discourse

which, in turn, suggested the possibility of a theory of

proof--a discourse grammar which describes the proofs of

a.language.



In part II we outlined what a theory of proof would

be like. We noted that the grammatical rules used in de-

scribing proofs are the rules of inference according to

which we write proofs. We discussed the nature of our
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knowledge of rules of inference distinguishing weak and

strong varieties of such knowledge. Finally, we speculated

concerning the utility of a modest theory of proof vis-a-vis

improvements in mathematical education.

In the course of Part III, we contrasted what has be-

come the traditional theory with a newer and more adequate

theory whose essential features were discovered in the 1920's

(Jaskowski). The older theory holds that mathematical

reasoning proceeds from axioms step-by-step to conclusions

in a strictly linear fashion; i.e., each step in a proof

must be a logical consequence of the axioms. This view was

first systematized by Frege in the nineteenth century. It

became the commonly accepted view until the 1920's when

Lukasiewiez pointed out in his seminar that the theory

did not agree with mathematical practice. Jaskowski, who

was a student in !the seminar, accepted the project of

developing the e act details of a theory of proof which

would take into account the salient features of mathematical

reasoning not ac ounted for by Freges theory. The newer

theory is largel the result of Jaskowski's effort. The

older theory we ailed linear, the newer suppositional.

We gave several examples af rules and proofs with the

intention of su plying enough detail so that the basic ideas
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can be gra4ed in a useful way.

--Postscript

The linguist and the logician will doubtless disagree.

with many of the above assertions. Several serious over-

simplifications have been made--mostly concerning linguistics.

My hope has been to show the overlap and possible cross-

fertilization between, on the linguistic side, the ideas of

Harris and Chomsky and, on the logical side, the ideas of

Jaskowski. I have tried to do this in a way that would be

of benefit to persons of diverse backgrounds. I was trying

to write to an audience of mathematics educators, linguists,

mathematicians, psychologists and logicians.

One final technical point: the so-called natural

deduction systems found in books by Suppes, Lemon, and Mates

are not theories of suppositional proof. By looking care-

fully at each of them, one notices that the lines of their

proofs are not sentences, but rather ordered pairs (P,c)

where P is a set of "premises" and c is a single sentence.

Moreover, a grammar to generate their proofs takes the form

of a linear theory without any assumptions. In particular,

in each of these systems each proof is a finite sequence of

lines (Pl,c1), (P2,e2),...(Pmen) where each subsequent line

is either (axiomatically) of the form ( {c},c) or else is the

result of applying an immediate rule to a fixed, finite

number of preceding lines. An example of such a rule would

be: if (Pi,d) and (Pj, d,c) are lines in a proof, then the

proof can be lengthened by writing (PiUPJ,c). The idea
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behind constructing a proof of c from P in these systems

is not to try to deduce c from P, but rather to construct

the ordered pair (P,c) starting initially from ordered pairs

({x},x) using rules which when applied to "valid arguments"

produce "valid arguments." In a word, these systems stack-up

valid arguments starting with the simple and building to

the complex. As far as either the characterization of normal

reasoning or utility in teaching is concerned, it seems to

me that none of these systems fares well in comparison to a

suppositional system as found in Johnstone and Anderson (1963),

in Kalish and Montague (1964) or in Leblanc (1966).

--Acknonnts
This work originated as a talk given at the Conference

on Mathematical and Structural Learning held at' the University

of Pennsylvania in April of 1968, wish to thank Dr. Joseph

Scandura for inviting me to what developed into a valuable

conference. If final version is a material improvement over

the- talk, then Professors James Greeno, Paul Rosenbloom and

Joseph Scandura deserve credit for their suggestions and

criticism (not all of which I had wisdom to agree with).

I also wish to acknowledge the.fact that had not been

fortunate enough to receive a Summer Research Fellowship

(NSF-1G-68-3) from the National Science Foundation through

the auspices of the University of. Pennsylvania., then

likely would not have written these pages. Igratefully

acknowledge the helpful and sympathetic criticism that I



64

have received from the students in my logic seminar. Es-

pecially significant in regard to this work were the ideas

of William Frank, Edward Keenan and George Weaver. Finally;

I acknowledge ideas received in private communication

separately from Mr. James Munn, Linguistics Project, Uni-

versity of Pennsylvania and Professor J.J. LeTourneau,

Mathematics Department, Fisk University. I wish to dedicate

this work to Albert L. Hammond and to the memory of Ludwig

Edelstein.

4


