
ED 038 034

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 007 932

Feurzeig, W0; And Others
Programming-Languages as a Conceptual Framework for
Teaching Mathematics. Final Peport on the First
Fifteen Months of the LOGO Project.
Bolt Beranek and Newman, Inc., Catridge, Mass.
National Science Foundation, Washington, D.C.
R-1889
30 Nov 69
329p.

EDRS Price MF-$1425 HC-16455
*Computer Assisted Instruction, Educational
Research, Instructional Technology, *Mathematics
Instruction, Program Evaluation, Programing,
*Programing Languages
LOGO

A new mathematics curriculum was used in this study
which depended fundamentally on the use of computers and programing
for presentation. The main part of the research was done with seventh
grade children utilizing a programing language, LOGO, specifically
designed for the teaching of mathematics. An investigation was also
conducted with a group of second and third graders. After a brief
exposition of the LOGO language, the two teaching activities are
described in some detail, including many examples of the classroom
and laboratory materials used. The report begins with a discussion of
the reasons that mathematics instruction is so difficult, and states
the underlying issues that have dictated the kind of approach taken
here. Following the descriptive material on the teaching experiments
is a discussion of the results, including some evaluation of the
year's work and of the project. A detailed description of the LOGO
programing language and system is appended. (Author/JY)

BOLT BERANEK AND NEWMAN
CONSULTING

I N C

DEVELOPMENT RESEARCH

Report No. 1889 30 November 1969

PROGRAMMING-LANGUAGES AS A CONCEPTUAL

FRAMEWORK FOR TEACHING MATHEMATICS

Submitted to:

CAMBRIDGE

W. Feurzeig
S. Papert
M. Bloom
R. Grant
C. Solomon

National Science Foundation
Office of Computing Activities
1800 G Street, NW
Washington, D. C. 20550

NEW YORK CHICAGO LOS ANGELES

i

[11 U.S. DEPARTMENT OF HEALTH, EDUCATION IL WELFARE

OFFICE OF EDUCATION

-4°

ON0
CO
r4'
CI
CI
La

I I

THIS DOCUMENT HAS BUN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT, POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

Programming-Languages as a Conceptual

Framework for Teaching Mathematics

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

W. Feurzeig
S. Papert
M. Bloom
R. Grant
C. Solomon

Final Report on the first fifteen
months of the LOGO Project

30 November 1969

Submitted to:

National Science Foundation
Office of Computing Activities
1800 G Street, NW
Washington, D. C. 20550

Contract NSF-C 558

Relort No. 1889 Bolt Beranek and Newman Inc.

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

3.4

4.

4.1

4.2

4.3

TABLE OF CONTENTS
Page

Foreword . .

The Research Problem

The Contribution of LOGO .

1

3

7

Introduction to the LOGO Language 16

The Project 28

Elementary Teaching Investigation . . . 30

Overview 31

The Children's Work 34

The Lesson Materials 67

The Games 111

Junior High School Teaching Experiment 124

Design and Operation of the Course . 124

LOGO Teaching Materials 126

Course Outline 126

Formal Elements 128

Heuristic Work . 143

Early Projects . 159

Algebra Materials 177

Sequences and Oscillators

112793

Guessing and Strategy .

Arithmetic Operations . 215

Algebra Teaching Sequence . . 225

Report No. 1889 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (continued)

Page

4.4 Evaluation 249

Achievement Test Results . . . 249

Student Performance-Level Changes 256

Comments of Evaluators . . 259

Conclusions of Project Staff 271

Appendix: A Description of the LOGO Language and System

1. The LOGO Language 274

2. The LOGO System 306

3. Summary of LOGO Operations, Commands, Special
Names, and Abbreviations . . . 322

ii

Report No. 1889

1. Foreword

Bolt Beranek and Newman Inc.

This is a report of research and teaching directed toward the

development of a new mathematics curriculum whose presentation

depends fundamentally on the use of computers and programming.

The work was centered mainly on a mathematics teaching experiment

with seventh grade children utilizing a programming language,

LOGO, specifically designed for the teaching of mathematics.

We also conducted an investigation of the use of LOGO in teach-

ing much younger children -- a group of second and third graders.

After a brief exposition of the LOGO language, the two teaching

activities are described in some detai.11 including many examples

of the classroom and laboratory materials used. The report

begins with a discussion of the reasons why the learning and

teaching of mathematics are so difficult, and states the under-

lying issues that have dictated the kind of approach undertaken

here. Following the descriptive material on the teaching experi-

ments is a discussion of the results including some evaluations

of the year's work and of the project. A detailed description

of the LOGO programming language and system is appended.

The seventh grade class was taught by Mrs. Marjorie Bloom from

September 1968 through December 1968, and jointly by Miss Cynthia

Solomon and Dr. Seymour Papert from January 1969 through June

1969. Dr. Papert, Professor of Applied Mathematics at Massachu-

setts Institute of Technology, was a consultant to Bolt Beranek

and Newman on this project. During the latter period, Mrs. Bloom

taught the group of second and third grade children.

We did not begin the teaching with a large body of previously

developed classroom materials. These had to be created

-1-

Report No. 1889 Bolt Beranek and Newman Inc.

concurrently with the teaching as the courses progressed. The

dynamic aspects of this day-to-day work helped assure that the

content and presentation were adapted to the current needs of

the children and were responsive to their difficulties, some of

which we had not anticipated. The dedication, resources, and

hard work shown by Mrs. Bloom, Miss Solomon, and Dr. Papert in

responding to these challenges were exceptional.

The original research leading to the design of LOGO was supported

by the U. S. Office of Naval Research. Dr. Papert, Dr. Daniel G.

Bobrow, and Wallace Feurzeig designed the original version of

the language. LOGO was first implemented by Dr. Bobrow and in

an extended version by Richard Grant and Frank Frazier. The

work of programming and maintaining the LOGO system for use in

this project was initiated by Mr. Charles R. Morgan, now

Chairman of the Department of Mathematics, Gordon College, Wenham,

Mass., and was continued by Mr. Grant who also contribW-nd to

the design of the system as it evolved througl year.

Mr. Feurzeig coordinated the research design an implementation.

The philosophical and pedagogical point of view adapted for the

project was largely due to Dr. Papert. Miss Solomon contributed

to the development and use of the language.

The work of installing and maintaining the computer terminals

in the schools was done by Mr. Paul Wexelblat. Mr. Wexelblat

and Mr. Grant were co-teachers of the computer club, an

auxiliary activity at the junior high school.

Report No. 1889 Bolt Beranek and Newman Inc.

The Muzzey Junior High School administration, particularly

Mr. Santo Marino, Principal, and Mr. David Terry, Assistant

Principal, were especially cooperative in providing a congenial

classroom site for the project. Similarly, the Emerson School,

particularly Mr. r)onald Welch, Principal, provided a cordial base

for the elementary teaching investigation.

This report was prepared by Mr. Feurzeig. Mr. Grant contributed

to the writing and editing. Mrs. Frieda Ployer provided valuable

critical review. Formatting, drawing, and final typing were done

by Miss Pearl Stockwell.

2. The Research Problem

There is an old saying among mathematicians that there is no

known theorem which cannot be made transparently clear to a high

school student of average intelligence in a reasonable period of

time (hours or months, not lifetimes). Yet few high school

students acquire an understanding of even the simplest theorems

and, for most students, the formal methods of mathematics remain

forever mysterious, artificial, poorly motivated, and very

obscurely related to intuitive thinking.

The relation of school children to mathematics remains deeply

puzzling after more than a decade of wide-scale experiment in

the classroom and in the cognitive laboratory. The extent of

the puzzle is often obscured by popular prejudices about mathe-

matics and about children. For if one asks: "why cannot every

child learn algebra in a week?" the answer is likely to be

influenced by glib thoughts like "math is difficult" and
"no one learns that fast." But the question is a serious one

-3-

hepGrt No. 1889 Bolt Beranek and Newman Inc.

and requires us to ask: wherein is mathematics difficult? What

rational analysis convinces us there is that much to learn? Some

things can be learned in ten minutes; why do children need so

very long to understand equations or the manipulation of negative

numbers?

Failure to obtain quick learning in classrooms is not in itself

an indication of the quantity or difficulty of what has to be

learned. It can be an indication that the teaching method is

inadequate. In fact, the guiding thought of the following pages

is the conjecture that current teaching does not even attempt to

identify and teach those skills, concepts, and facts most needed

by the child. This applies as much, sometimes more so, to most

of the trends called "Lew Math" as to really traditional mathe-

matics teaching.

To emphasize the sharpness of the position developed below, the

following analogy may be useful. Most schools teach singing in

a way that shows the Grant phenomenon: children are given the

instruction "sing!" - those who can, do, those who cannot, become

listeners. An observer watching the class over the whole year

would see a great deal of teaching: the children who know how

to sing learn new songs, new tunes, even new techniques of sing-

ing. But, all this teaching presupposes that the realty

important learning has taken place elsewhere.

Does this picture apply to our mathematics teaching? Do we give

children the instruction "think!" without even telling them how

to think. Does it all consist of teaching delightful mathemati-

cal songs to those who are lucky enough to have picked up the

skill of mathematical thinking?

Report No. 1889 Bolt Beranek and Newman Inc.

These questions open a theoretical dispute about which very sharp
views are held. Can one tell children how to think? Some people
believe very strongly that one certainly cannot, indeed that one

cannot even tell them how to do arithmetic. For example,
R. Davis,* one of the most serious innovators of active and
creative kinds of mathematical activity for children, says:

There is another reason for using "discovery": in point
of fact you usually cannot "tell" the student what to do.

You and he do not share a sufficiently precise meta-
language.

Insofar as he is describing the status quo, Davis is certainly
right. Occupants of present-day mathematics classrooms do indeed
lack a "sufficiently precise meta-language". Students are
accustomed to using language and logic in the context of a

sympathetic listener who makes reasonable interpretations of

their statements, and is tolerant of the gaps in their arguments.

The formal mode of thinking imposed in the mathematics class

seems arbitrary and unreasonable to them.

The low degree of mathematical articulation - amongst teachers
as much as children - is at least partly the result of the

following factors:

(a) The complete absence of a standard teachable terminology

to discuss the heuristic aspects of mathematical activity con-

cerned with the art of solving problems. In fact, these aspects

(as opposed to formal ones) are scarcely recognized by official

mathematics as worthy of study and teaching.t

*Davis, Robert B., The Madison Project's Approach to a Theory of
Instruction, Journal of Research in Science Teaching, Vol. II,
pp. 146-162, 1964.
'For further elaboration of this concept see the well-known works
of Polya. See also Minsky, M. L., Semantic Information Process-
ing, M.I.T. Press, 1969.

-5-

Report No. 1889 Bolt Beranek and Newman Inc.

(b) In particular the relation of formal detail to global plan-

ning in working a problem is not clearly made in any standard

treatment of elementary mathematics. Formal rigor is seldom

properly understood by teachers as a working tool (rather than a

fund of intellectual ritual).

(c) The traditional curriculum content is poor in that it seldom

provides many examples of the same phenomenon. As a result,

children are not familiar from experience with such basic process-

es as generalizing a method, extending the domain of an operation,

and so on.

(d) As a consequence of the previous point, the possibilities of

"discovery" are greatly impoverished - the child who did not make,

but did understand, any particular discovery has little chance of

using his understanding to try his hand at a related problem.

Indeed, we might summarize all these points by saying that school

children have been deprived of the opportunity of actually doing

mathematics in any sense even thinly related to the working

activity of mathematicians. Thus, it is not surprising that

children resist, that they seldom carry over their training in

formal manipulation into less formal situations, and that they

so often slip back into loose and uncontrolled thinking when

faced with problems such as "word problems" in algebra that do

not have obvious mechanical solutions.

To remedy, or even to study, this situation, one would like to

find areas of mathematical work in which students would impose

the need for precise articulation on themselves. We believe that

such areas can be created by appropriate instruction in the use

Report No. 1889 Bolt Beranek and Newman Inc.

of computers and programming languages. The purpose of this
research has been to investigate the teaching of mathematics in
terms of a "sufficiently precise meta-language," the programming
language LOGO, and to explore means of using it as the foundation
and framework for a mathematics curriculum.

2.1 The Contribution of LOGO

Appropriate teaching with a suitable programming language can
contribute to mathematics education in several ways.

(1) Programming facilitates the acquisition of rigorous thinking
and expression. Children impose the need for precise statement
on themselves through attempting to make the computer understand
and perform their algorithms.

(2) Programming can be used to give students very specific in-
sights into a number of key concepts. Ideas such as variable
and function remain, to say the least, obscure for many high
school students. Indeed, college students often have trouble
with the many roles of the "x" in algebra: sometimes it appears
to be a number, sometimes a subtly different kind of object
called a variable, and on other occasions it is to be treated as
a function. We contend that the difficulty stems less from the
intrinsic intellectual subtlety or complexity of these distinc-
tions than from their ethereal relation to anything in the real
and familiar world. Moreover, it is possible to fumble one's
way through an algebra course without ever facing these issues
squarely. In programming, the distinctions arise concretely;
they must be faced; and the physical nature of the machine pro-
vides a more earthy reference than can any abstract work. These

Report No. 1889 Bolt Beranek and Newman Inc.

ideas should be easier in this context and our experience is

that they are.

(3) Programming provides highly motivated models for all the

principal heuristic concepts, for example:

It lends itself perfectly to discussion of the relation of

formal procedures to intuitive understanding of problems.

It provides a wealth of examples for heuristic precepts such

as "formulate a plan", "separate the difficulties", "find a

related problem", etc. Thus, it provides a natural context

to concretize the approach to teaching associated with the

name of George Polya.

It provides a sense of completely formal methods and what

their purpose is. It gives the child a chance to learn to

distinguish situations where complete formal rigor is

necessary from those where looser thinking is appropriate.

In particular, it provides models for the contrast between

the global planning of an attack on a problem and the formal

detail of an elaborated solution. In the context of program-

ming, the concept of sub-problem or sub-goal emerges crisply.

It is at least highly plausible that pupils who have acquired

very early the habit of organizing their approach to a mathe-

matical problem will be better able to develop systematic

habits of thought in the more murky areas of problem-solving

they will have to meet later, in school and elsewhere.

The concrete form of the program and the interactive aspect

of the machine allow "debugging" of errors to be identified

as a definite, constructive, and plannable activity. The

-8-

Report No. 1889 Bolt Beranek and Newman Inc.

programming concept of a "bug" as a definite, concrete,

existent entity to be hunted, caught, and tamed or killed

is a valuable heuristic idea.

(4) By enlarging the scope of applications, it allows every

problem to be embedded in a large population of related problems

of all degrees of difficulty, for example:

Through programming, mathematical induction can be presented

and generalized by its relation to recursion. An example of

this kind of presentation is shown in Section 2.2. The

examples given in Section 4.3 show how we have learned to

present recursion itself as related to the general heuristics

of planning.

The extension of an operation to a larger domain becomes an

everyday activity. The newer mathematics texts do emphasize

the extension of addition, for example, to successively more

general kinds of numbers (integers + rationals reals).

But the phenomenon is obscured for children by its isolation

and by the fact that children already know how to add real

numbers.

Generalizing this, generalization becomes an activity under-

taken routinely by the children.

Functions become familiar things one invents oneself to

serve real purposes. We have seen children invent as many

new functions in a week as they would otherwise learn (by

rote!) in their whole career. More importantly, they use

these functions as building blocks for constructing more

complex functions which often are elements of still larger

-9

Report No. 1889 Bolt Beranek and. I:ewman Inc.

constructs -- very much in the way mathematicians use propo-

sitions to prove theorems and use these theorems to prove

more complex theorems.

(5) The use of computers and programming languages is also

relevant to what is perhaps the most difficult aspect of mathe-

matics for a teacher: helping the student strive for self-

consciousness and literacy about the process of solving problems.

High school students can seldom say anything about how they

worked towards the solution of a problem. They lack the habit

of discussing such things and they lack the language necessary
to do so. A programming language provides a vocabulary and a

set of experiences for discussing mathematical concepts and

problems. Programs are more discussable than traditional mathe-

matical activities: one can talk about their structure, one can

talk about their development, their relation to one another, and
to the original problem.

(6) A related point is that the computer can be used as a

mathematical laboratory to foster an experimental approach toward

solving problems. Programming could, in principle, be taught as

an abstract mathematical topic without using. or, indeed, even

mentioning computers. Presented in that spirit, the material

would retain some of the pedagogical virtues that motivate our

interest in it. But an essential aspect would be lost. The use

of a computer has the major merit of turning a programming lan-

guage into an active instrument to control an outside reality.

The most immediate effect of using a computer is that explicit

and precise statement is no longer imposed by the arbitrary edict

of a teacher but by the obvious necessities of makim° the computer
do one's bidding. Since students learn to write programs by

-10--

Report No. 1889 Bolt Beranek and Newman Inc.

experience and experiment, it is appropriate to use the term

mathematical laboratory for the practical phases of the instruc-

tion.

The reason that a laboratory is not traditionally used in mathe-

matical study is not that it would be less valuable there than

in biology, chemistry, or physics; rather, the idea of a mathe-

matical experiment was, until recently, unrealizable, and barely

conceivable, except in very special or superficial senses. How

could a person set in motion a sequence of mathematical events

or a mathematical process, and then see its effects unfold?

Using a computer with an appropriate programming language adds

this extra dimension to mathematical experience; the important

contribution of the computer is a new and powerful operational

universe for mathematical experiments.

(7) Finally, the richness of non-numerical examples open to

programming can be exploited to enlarge the cultural base of the

mathematics course by bringing it into contact with physical and

biological science, language study, geography, economics, and

other subjects.

Thus, our interest is not to teach programming as an auxiliary

topic, but to explore means of using it as a foundation for an

integrated course in mathematics. This concept of programming

is distinct from the already familiar and valuable ones of teach-

ing computer programming as a practical skill in its own right

or for use in special courses in numerical applications, applied

mathematics, computational methods, and the like.

Report No. 1889 Bolt Beranek and Newman Inc.

In almost all educational uses of programming languages to date,

the particular languages employed were not originally designed

for teaching. Most of the languages used, including FORTRAN,
APL, and JOSS (which has many dialects such as TELCOMP, CAL, and

PILL), were originally designed for computational applications

in mathematics, science, and engineering. Some of these were

subsequently modified, usually in minor ways, to adapt them for
use in teaching. A few languages, notably BASIC, were designed
for teaching programming as a skill, and for providing students

with experience in its use as a "problem-solving" tool. Educa-

tionally beneficial applications of many kinds have been made

through such use of these languages.

We now present the considerations that led us to create the

programming language LOGO. The introduction of yet another

language clearly deserves critical examination, particularly

since several existing languages appear to be suitable for teach-
ing mathematics. The JOSS languages, for example, have been

described as exceptionally well-suited for use in mathematical
work: it has been pointed out that "all that one needs to know

to start writing JOSS programs, almost instantly with very little

preparation, is algebra." That observation is well-taken but it

points up the problem: most students leave school without having

learned algebra -- it is precisely for the purpose o'7 teaching

mathematics, rather than assuming that children already know it,

that we want to use a programming language. (We do not want to

tell them "Sing!" before we teach them how.)

It might reasonably be argued that this difficulty is only

apparent and that existing languages could be used to teach

arithmetic and algebra. Indeed, starting with this objective

-12-

Report No. 1889 Bolt Beranek and Newman Inc.

and the requisite point of view, one could consider using JOSS

or BASIC as a foundation and framework for mathematics. But it

would not be easy -- these languages were not designed to teach

the most elementary (and often the most difficult) concepts and

skills, and constructive methods of extending them.

For these purposes, existing languages usually have too much

mathematical machinery built in: to use JOSS and most of the

others normally requires a knowledge of decimal notation and

scientific representation (floating point numbers, exponential

numbers) and some familiarity with the use of arithmetic expres-

sions. At the same time, most of these languages are not well-

suited for expressing formal or non-numerical procedures.

These, however, are negative considerations. More to the point

are the positive reasons which motivated us. Earlier experiences

with the use of programming in elementary and secondary mathe-

matics teaching convinced us of the need for a language, i.e.,

LOGO, with the following characteristics.

(1) It should be accessible to young children and others

who have not acquired the elements of mathematical thinking.

The only prerequisites for using it should be an acquaint-

ance with the counting numbers and the ability to read at

about second-grade level.

(2) It should be transparently direct, natural-seeming, and

easy to use for expressing procedures for simple tasks like

many non-numerical problems already familiar to children.

To meet these two requirements, the language should be without

difficult technical features like those found in traditional

programming languages (e.g., loops, counters, array declarations,

multiple mode arithmetic, etc.).

-13-

Report No. 1889 Bolt Beranek and Newman Inc.

(3) It should be organized to facilitate the extension and

generalization of simple mathematical algorithms to more

advanced and powerful ones. For example, the most primitive

numerical operations in LOGO are centered on integer arithme-

tic and can only be used for counting or for adding and sub-

tracting integers. But students can write LOGO procedures

for expanding these arithmetic operations into mathematically

rich and advanced algorithms in arithmetic, algebra, and

higher mathematics with appropriate ease.

(4) The structure of the language should embody mathematically

important concepts and foster the development of a constructive

point of view about mathematical work.

Solving a mathematical problem is a process of construction. The

activity of programming a computer is uniquely well suited to

transmitting this idea. The image we would like to convey could,

roughly speaking, be described thus: A solution to a problem is

to be built according to a preconceived, but modifiable, plan,

out of parts which might also be used in building other solutions

to the same or other problems. A partial, or incorrect, solution

is a useful object; it can be extended or fixed, and then incor-

porated into a large structure. This image is mirrored in the

activity of writing LOGO programs. Using procedures as building

blocks for other procedures is standard and natural in LOGO pro-

gramming. The use of functionally separable and nameable proce-

dures composed of functionally separable and nameable parts,

coupled with the use of recursion, makes the development of

constructive mathematical methods meaningful and teachable.

Students construct LOGO procedures from the very beginning, as

they are introduced to the language. They start with non-numerical

-14-

report No. 1889 Bolt Beranek and Newman Inc.

procedures with which they are all familiar. Good examples are

translating English into Pig Latin, making and breaking secret

codes (e.g., substitution ciphers), a variety of word games

(finding words contained in words, writing words backwards, etc.),

question-answering and guessing games (Twenty Questions,

Buzz, etc.). There are many problems of this sort which chil-

dren already know and like. The student thinks at first that he

understands such problems perfectly because, with a little prod-

ding, he can give a loose verbal description of his procedure.

But he finds it difficult to make this description precise and

general partly for lack of formal habits and partly for lack of

a suitably expressive language. The initial value of using LOGO

becomes apparent when the student attempts to make the computer

perform his procedure. At this point the process of transforming

loose verbal descriptions into precise formal ones becomes possible

and, in this context, seems natural and enjoyable to children.

An understanding, or even a clear appreciation, of these points

is impossible without a brief introduction to the LOGO language.

The presentation that follows is not a complete description of

LOGO. Its purpose is merely to give a sense of the spirit and

structure of LOGO programming. Some pedagogically important

operations and commands are not even included here, for example,

the REQUEST operation which makes possible the writing of inter-

active procedures. These are introduced in the body of the

report along with the features of the LOGO system having to do

with editing, correcting program errors, and filing programs for

subsequent retrieval. A comprehensive description of the LOGO

language and system is included as an appendix to the report.

Report No. 1889 Bolt Beranek and Newman Inc.

2.2 Introduction to the LOGO Language

LOGO is a language for expressing formal procedures. LOGO pro-

cedures are written along lines similar to recipes in cooking.

A procedure, like a recipe to bake a cake, has a name; it usually

has ingredients, maybe several, but maybe none (these are called

its inputs); and it has a sequence of instructions telling how

to operate upon its inputs (and upon the things made from them

along the way) to produce the desired effect or to make a new

thing (this is called its output).

To illustrate, we define a procedure for doubling a number. We

begin by choosing a word for the name of the procedure - let's

choose the word DOUBLE in this case. Next we choose names for

the inputs - in this case there is a single input, which we'll

call NUMBER. So, the title of the procedure is

TO DOUBLE /NUMBER/

(like to boil an egg). Note the slash marks around NUMBER --

slashes are used to demarcate names of things; names for proce-

dures like DOUBLE and for already-built-in LOGO instructions are

written without any marks around them.

When we give LOGO the command DOUBLE 5 we want the teletype to

respond 10; when we say DOUBLE 9999 we want the response 19998.

So now we proscribe the instructions for performing this. One

instruction suffices:

PRINT SUM OF /NUMBER/ AND /NUMBER/.

This instruction is composed of two elementary (i.e., originally

built-in) instructions -- PRINT and SUM.

PRINT is a command which needs one input (this can be any LOGO

thing - a number or some other alphanumeric word or a sentence

16-

Report No. 1889 Bolt Beranek and Newman Inc.

comprising several words). Its effect is to cause the teletype

to print its input. Thus, PRINT 752 causes the teletype to print

752; PRINT "GOOD MORNING" causes the teletype to print GOOD

MORNING. (Quotation marks are used to indicate LOGO things that

stand for themselves. Since integers always stand for themselves

in LOGO, they do not need to be quoted.)

SUM is an operation which needs two inputs (these must be

integers). Its output is their sum. Thus, SUM OF 3 AND 2 has

the output 5. The LOGO instruction:

PRINT SUM OF 3 AND 2

causes the teletype to print the LOGO thing which is the output

of SUM OF 3 AND 2, i.e., 5.

The entire procedure definition is:

TO DOUBLE /NUMBER/

1 PRINT SUM OF /NUMBER/ AND /NUMBER/

END

where the integer 1 is used to label the instruction line (in

this case there is only one line, but procedures often have

several lines of instructions), and END marks the end of the

definition. When this completed definition is typed in, LOGO

acknowledges by responding: DOUBLE DEFINED. From that point on,

the procedure DOUBLE can be used as if it had always been part of

LOGO, just like PRINT and SUM. The new procedure is used by

typing:

DOUBLE 2

The machine responds with the answer

4

DOUBLE 4

8

-17-

(We underscore the
student's or teacher's
typing in these and the
following examples to
distinguish them from
LOGO's responses.)

C

Report No. 1889 Bolt Beranek and Newman Inc.

Of course, rather than write a procedure for something as simple

as DOUBLE, we can accomplish the same thing merely by writing:

PRINT SUM OF 2 AND 2 or

PRINT SUM OF 4 AND 4, etc.

Using the procedure requires less writing however, and we might

want to use it a great deal.

But, if we want to use it in a compound instruction chain like:

DOUBLE DOUBLE 4

where we expect the result to be 16, DOUBLE will not work

properly: it will print 8 and then it will print an error

message. The difficulty is that DOUBLE, as written, does not

provide its result as an output to another procedure; it merely

prints its result out on the teletype. Procedures (and built-in

instructions) that have an output are called operations to

distinguish them from commands which have no output. We can

change DOUBLE to a procedure that defines an operation, as

follows.

TO DOUBLE /NUMBER

1 OUTPUT SUM OF /NUMBER/ AND /NUMBER/

END

Here, the elementary command OUTPUT is used in place of PRINT.

To use this new DOUBLE operation we write, with an external

PRINT command,

PRINT DOUBLE OF 2

4

PRINT DOUBLE OF 4

8

PRINT DOUBLE OF (DOUBLE OF 4)

16

etc .

-18-

!ll

Report No. 1889 Bolt Beranek and Newman Inc.

The use of parentheses is optional. In the last example DOUBLE
OF 4 produces the output 8 for use as the input to the first-

written DOUBLE, whose output is therefore 16.

There are a relatively small number of elementary operations and
commands in LOGO. An operation which is analogous to the opera-

tion SUM for integers is the operation WORD for alphanumeric words.
Thus, PRINT WORD OF "SUN" AND "ABC" will cause the LOGO word
SUNABC to be printed. PRINT WORD OF WORD OF "AB" AND "123" AND
"GO" will cause the word AB123G0 to be printed. A procedure
defining an operation on words, analogous to DOUBLE on numbers,
can be written as follows:

TO DUBBLE /WD/

1 OUTPUT WORD OF /WD/ AND /WD/
END

DUBBLE DEFINED (LOGO acknowledges)

PRINT DUBBLE OF "GO"

GOGO

PRINT DUBBLE OF DUBBLE OF "LA"

LALALALA

etc.

Two operations closely related to SUM and WORD are DIFFERENCE
(or its abbreviation DIFF) and SENTENCE. Their use is illustrated
by:

PRINT DIFF OF 3 AND 1

2

PRINT DIFF OF 1 AND 3

-2

PRINT SENTENCE OF "SUN" AND "STARS"

SUN STARS

-19-

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT SENTENCE OF "THIS IS" AND "GOOD"

THIS IS GOOD

The operations SUM and WORD are used to put things together.

There also are LOGO operations of the opposite kind, for extract-

ing components of things. Four such operations FIRST, LAST,

BUTFIRST, and BUTLAST work as follows:

PRINT FIRST OF "BOX"

B

PRINT LAST OF "BOX"

X

PRINT BUTFIRST OF "BOX"

OX

PRINT BUTLAST OF "BOX"

BO

PRINT BUTFIRST OF "I LIKE YOU"

LIKE YOU

PRINT BUTLAST OF "I LIKE YOU"

I LIKE

PRINT BUTFIRST OF BUTLAST OF "ABCD"

BC

Note that BUTFIRST means all but the first letter of the word

(or word of a sentence) and BUTLAST means all but the last letter

(or word), and that these are operations, thus they can be

chained together.

Some elementary LOGO operations have no inputs. Examples are

CLOCK and RANDOM. The use of these is illustrated by:

PRINT CLOCK

123

PRINT CLOCK

125

-20-

Report No. 1889 Bolt Beranek and Newman Inc.

Here we see that 123 seconds had elapsed between the time the

student started working and the time that the first of the two
PRINT commands was performed, and that 2 seconds more elapsed
before the second PRINT was performed.

PRINT RANDOM

7

PRINT RANDOM

4

RANDOM has as its output a single digit number chosen

randomly from a uniform distribution. To make a two digit
random number we write:

PRINT WORD OF RANDOM AND RANDOM

36

Two basic acts in procedures are making new LOGO things and

testing them to see whether they satisfy some condition, such as

a stop rule. To tell LOGO that we want to make a new LOGO thing,
we type the command MAKE. LOGO responds by asking us first for
the name we want to give the new thing and then for the thing we
want to make, i.e., for a LOGO expression for the new thing.

Thus, if we want to make a sentence named "GOODIES" out of some

words for foods we like, we can write:

MAKE

NAME: "GOODIES"

THING: "APPLES BUNS CAKES PIES"

If we then type

PRINT THING OF "GOODIES",LOGO responds

APPLES BUNS CAKES PIES

(If we had typed instead PRINT "GOODIES", LOGO would have

responded GOODIES.)

-21-

Report No. 1889 Bolt Beranek and Newman Inc.

A shorthand way of writing THING OF (to indicate that we mean

the thing being named rather than the name) is by using slashes

instead of quotation marks. Thus,

PRINT /GOODIES/

means the same as PRINT THING OF "GOODIES" and so produces the

same response,

APPLES BUNS CAKES PIES. Similarly,

PRINT FIRST OF BUTFIRST OF /GOODIES/

causes LOGO to print

BUNS.

To test whether or not a LOGO thing satisfies a specified condition,

we introduce the concept of predicate, i.e., an operation whose

possible outputs are "TRUE" and "FALSE". The identity operation

IS is one of the elementary LOGO predicates. IS takes two inputs

and has the output "TRUE", if these inputs are the same, and the

output "FALSE", if they are different. Thus,

PRINT IS 2 SUM OF 1 AND 1

TRUE

PRINT IS 2 1

FALSE

Other elementary predicates include GREATERP, NUMBERP, and WORDP.

PRINT GREATERP OF 2 AND 1

TRUE (because 2 is greater than 1)

PRINT GREATERP OF 1 AND 2

FALSE (because 1 is not greater than 2)

PRINT NUMBERP OF "ONE"

FALSE (because "ONE" is not a number)

PRINT NUMBERP OF 1

TRUE (because 1 is a number)

-22-

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT WORDP OF "ONE"

TRUE (because "ONE" is a word)

PRINT WORDP OF "THIS WORD"

FALSE (because "THIS WORD" is a sentence, not a word)

The command TEST, along with its associated commands IF TRUE and
IF FALSE, is used with a predicate as in the following examples.

TEST IS 2 2

IF TRUE PRINT "GOOD"

causes the machine to print GOOD. On the other hand, when the
instructions

TEST IS 2 2

IF FALSE PRINT "BAD"

are performed, nothing will be printed.

The use of the commands MAKE and TEST is illustrated in the

following procedures for printing random numbers.

TO NUMBER

1 PRINT RANDOM

END

This procedure is used by typing:

NUMBER

The machine responds with a number

8

NUMBER

5

etc.

The repetitive act of typing NUMBER is easily mechanized by

writing a new procedure to do just this, i.e.,

-23-

Report No. 1889 Bolt Beranek and Newman Inc.

TO SPEW

1 NUMBER

2 SPEW

END

We have incorporated into SPEW the instruction to perform another

procedure, NUMBER, and then the instruction to SPEW, i.e., to do

the same again. So when we type SPEW, we obtain an endless

sequence of numbers:

SPEW

7

3

0

9

As well as using another procedure, NUMBER, SPEW also uses itself

-- it is a simple example of a recursively defined procedure.

To modify SPEW so as to produce a definite number of random

digits, we introduce a new actor on the problem scene: the

number of times we still have to SPEW. We name this actor

"TIMES" and write:

TO SPEW /TIMES/

1 TEST IS /TIMES/ 0

2 IF TRUE STOP

3 PRINT RANDOM

4 MAKE

NAME: "NEWTIMES"

THING: DIFFERENCE OF /TIMES/ AND 1

5 SPEW /NEWTIMES/

END

-24-

Report No. 1889 Bolt Beranek and Newman Inc.

The use of this new SPEW procedure is illustrated by:

SPEW 4

0

3

7

9

SPEW 4

2

8

1

7

A similar non-numerical recursive procedure, TRIANGLE, was

invented by a child. It is defined as follows:

TO TRIANGLE /WORD/

1 TEST IS /WORD/ /EMPTY/ (/EMPTY/ denotes the empty thing
in LOGO,' i.e., the word with no2 IF TRUE STOP
letters)

3 PRINT /WORD/

4 MAKE

NAME: "NEWWORD"

THING: BUTFIRST OF /WORD/

5 TRIANGLE /NEWWORD/

END

To use TRIANGLE we IAL,ite -

TRIANGLE "CIRCLE"

CIRCLE
IRCLE
ROLE
CLE
LE
E

Report No. 1889 Bolt Beranek and Newman Inc.

The factorial function is an illustration of a deeper recursive

procedure closely related to the principle of "mathematical

induction". The definition of the factorial functicn is

FACTORIAL(1) = 1

FACTORIAL(N) = N x FACTORIAL(N-1), N > 1

In LOGO we write -

TO FACTORIAL /N/

1 TEST IS /N/ 1

2 IF TRUE OUTPUT 1

3 MAKE "N-1" DIFF OF /N/ AND 1

4 OUTPUT PRODUCT OF /N/ AND FACTORIAL OF /N-1/

END

To use FACTORIAL we write -

PRINT FACTORIAL OF 7

5040

Note in the above procedure the use of a PRODUCT operation for

integer multiplication and the use of the two-input form of the

MAKE command.

A similar non-numerical procedure for reversing the order of the

letters in a word (i.e., writing it backwards) is:

TO REVERSE /WORD/

1 TEST IS COUNT OF /WORD/ 1

2 IF TRUE OUTPUT /WORD/

3 MAKE "NEWWORD" BUTLAST OF /WORD/

4 OUTPUT WORD OF LAST OF /WORD/ AND REVERSE OF /NEWWORD/

END

-26-

Report No. 1889

To use REVERSE we write -

PRINT REVERSE OF "ELEPHANT"

TNAHPELE

PRINT REVERSE OF FACTORIAL OF 7

0405

Bolt Beranek and Newman Inc.

Note in the above procedure the use of the COUNT operation -

COUNT of a word (sentence) is the number of letters (words) in
the word (sentence). Note also that the name /WORD/ is as
distinct from the operation WORD as it is from the literal word

"WORD".

In LOGO the principle of mathematical induction is embedded in a

more general class of recursive principles. These can be system-
atically investigated in a range of cases of increasing difficulty

starting from the trivial recursion in the earlier SPEW procedure,

proceeding to simple recursions like that in TRIANGLE through
deeper examples as in FACTORIAL and REVERSE, and then beyond.

The study of recursive procedures can provide a valuable approach

to understanding the formal ideas underlying mathematical reason-
ing.

Experience in writing LOGO procedures is equally valuable in

teaching the heuristic aspects of mathematical work. Such

experience is fostered by projects that involve writing several

procedures to function together as a single program. This kind

of activity was an important part of the seventh grade classroom
work during the year. Several examples of such projects are

shown and discussed in Part 4.3.

Report No. 1889 Bolt Beranek and NelNman Inc.

Some changes were made in the nomenclature of LOGO at the end of

the school year for pedagogic and mathematical reasons. Thus,

in the programs encountered in the body of the report, the reader

should note that RETURN is a synonym for OUTPUT, and CALL is a

synonym for MAKE (here the order of the inputs for "NAME" and

"THING" is reversed). Further, T:ST was not used. Predicates
(e.g., IS) stood alone and IF YES, IF NO were used in place of

IF TRUE, IF FALSE.

2.3 The Project

This project concerns the use of LOGO as a framework for teaching

mathematics. Specifically, our study explored that idea in the

following ways.

(1) Students. We deliberately chose to work with a small

class of "average" seventh-grade students. (Ten of the

students were in the middle mathematics track of the school's

five-track system. The other two had a slightly higher

placement.) We chose a small class to facilitate more in-

tensive study of individual children and to permit sufficient

amount of individual student use of computer time (there were

six computer terminals in one classroom). The school, Muzzey

Junior High School in Lexington, Mass., was chosen mainly

because of the relatively long class period - a full hour

session, four days a week - which cave us some extra freedom

in scheduling the students' time between classroom discussion

and laborato:v work at the terminals.

Report No. 1889 Bolt Beranek and Newman Inc.

(2) Subject. Our goal was to give the students an introduc-

tion to high school algebra, which they normally would not

have studied before ninth grade. (We managed to get a good

start on this despite having to take more time than we

anticipated in teaching LOGO itself.)

(3) Presentation. The mathematical material in the course

was introduced and developed wholly and entirely in terms of

LOGO programs. (This included the classroom teaching of all

the arithmetic and algebra, not just material assigned for

working out at the computer terminals.)

The major object of this work, the exploratory development of a

new curriculum, was to test the feasibility of the underlying

ideas about content and presentation by putting them in tangible

form and trying them out in the classroom. The main activity was

the junior high school teaching experiment. During the last half

of the school year we expanded the effort by starting up a

parallel activity -- teaching LOGO to a small group of second-

and third-grade students. Because the work with elementary

school children introduces LOGO with particular ease, we present

it first.

Report No. 1889 Bolt Beranek and Newman Inc.

3. Elementary Teaching Investigation

The purpose of this part of the work was to gain an understanding

of the problems of teaching formal skills to very young children.

An appropriate foundation for learning formal ways of thinking

at an early age could have a profound impact on subsequent

intellectual development. We thought it plausible that LOGO

could be taught to second- or third-grade children as a starting

point.

Taken at face value, Piaget, and most other serious students of

developmental psychology, must be read as casting important doubts

on the feasibility (or even the advisability) of teaching LOGO to

children of age eight or nine. Our confidence that such an exper-

iment was worth pursuing was based on a careful consideration of

the real content of Piaget's thesis and on the nature of its

experimental validation. The two major points are the following:

and

(1) No serious controlled attempts have been made to teach

what Piaget would call "formal thinking" at much earlier ages

than it naturally develops. Indeed, we would argue that

programming provides a uniquely powerful tool for this and so,

by its very nature, invalidates any negative conclusions

drawn from previous experiments.

(2) The apparent difficulties suggested by the psychologists

(and, indeed, by common knowledge of children) apply unequally

to different aspects of learning to program. Thus there is

nothing in Piaget's writing to suggest that a seven-year-old

child should have the slightest difficulty dealing with

programs such as

-30-

Report No. 1889

TO MUMBLE /JUMBLE/
1 PRINT /JUMBLE/
2 MUMBLE /JUMBLE/
END

Bolt Beranek and Newman Inc.

They do suggest that children of this age should find it very

hard to debug the kind of program with a branching structure

which makes it necessary to hold in mind a number of possible

outcomes or to carry out "hypothetico-deductive" experimenids

to formulate a theory of what is wrong.

These two points together urge the quest for an area of program-

ming in which one can find suitable problems to provide a moti-

vated learning foundation for small children without going beyond

the more "elementary" program forms. Once such a foundation is

established, it will become possible to probe the true difficul-

ties that face teaching formal skills to small children.

As a first step in this preliminary study, our goal was to

determine whether or not some very young children could learn

the elements of LOGO programming.

3.1 Overview

This work was conducted at the Emerson Elementary School in

Newton, Massachusetts. We installed a single computer terminal

there at the end of January 1969. The school chose the children

who were to participate in the study. These comprised, for the

most part, mathematically "average" children whose ages ranged

from seven through nine, though there were some "underachievers"

and one of the children was mathematically "brighter than

average".

Report No. 1889 Bolt Beranek and Newman Inc.

The children were taught by Mrs. Marjorie Bloom who had previous-

ly taught the elements of LOGO to the class of junior high school

students. Mrs. Bloom is a professional teacher. She had virtu-

ally no previous experience with computers and programming prior

to joining the project in July 1968.

The teaching of LOGO was done largely through a ceries of program-

med lessons of a relatively open-ended sort. These were written

by Mrs. Bloom in the LOGO language itself. They were used by

each of the children in an interactive, conversational mode.

The kind of presentation used with the junior high school

students, classroom teaching with associated individual work at

the terminals, was not feasible here because of constraints on

the childrens' time and schedule and the limitations posed from

having only one computer terminal available. We were, however,

interested in seeing that a presentation along these lines,

properly monitored by a teacher, and augmented by some work in

writing programs at the terminal, was feasible.

A narrative discussion of the work as documented in the teacher's

daily log, and samples showing the childrens' use of all the

teaching materials, follow in the next parts of the report. These

give a good idea of what happened, i.e., of the childrens' progress

and problems. Our main conclusions were as follows.

(1) Children of second and third grade level learn the

elements of LOGO programming with ease.

(2) Most children at this level cannot, during such a short

interval, learn to write or debug programs as complex as

REVERSE (as in Part 2.2 above). Only one child was able,

-32-

Report No. 1889 Bolt Beranek and Newman Inc.

within the four-month period, to deal freely with programs
more complex than MUMBLE.

(3) Children of this age do acquire a meaningful understand-

ing of concepts like variable, function, and formal procedure

(though not those words) through their experience with LOGO.

(4) The children showed educational benefits of.an extra-

mathematical kind as side effects of the teaching. The most

evident one was a striking improvement in reading rate for

most children during this period. They acquired a technical

vocabulary and learned to follow relatively sophisticated

verbal instructions.

The remainder of this section includes the narrative description

from the class log, transcripts of student runs of each of the

series of programmed lessons, the LOGO teaching programs for a

pair of typical lessons, and transcripts illustrating the games

played by the children at the terminal from time to time

throughout the course.

Report No. 1889 Bolt Beranek and Newman Inc.

3.2 The Children's Work

- excerpts from the daily log

Work with children at the Emerson School began January 29,

1969. Mrs. Bloom started with twelve children -- second,

third, and fourth graders -- divided into four small classes.

Because of snowstorms and a school holiday week, resulting

in only five days of school in the first month, the group

was reduced to two second graders and six third graders.

Five of these children had individual instruction at the

terminal for about 20 minutes a session, and three children

worked together as a group, also for 20 minutes. The chil-

dren had four sessions a week for eleven weeks from the

first week of March to the end of May. In addition to the

regular group of eight, an emotionally disturbed third

grader participated for twelve 20-minute periods. From

May 29 through June 13, instruction continued with only four

children to see what additional progress might be made if

they were given a little more time at the terminal. The

maximum amount of instruction time for any child was about

fifteen hours over the entire period.

We began each group with the HI procedure, a programmed greeting.

It did not seem to bcther anyone that the procedure typed out

identical responses each child. Some children typed in funny

answers deliberately, such as RUTHANNEDUM for name and 500 for age.

HI, .THERE!
WHAT'S YOUR NAME?
:CRUTHANNEDUM (child's typed-in response)
HOW DO YOU DO, RUTHANNEDUM!
HOW OLD ARE YOU?

014 (child's typed-in response)
MY, YOU LOOK VERY GROWN UP FOR ONLY 500 YEARS OLD!
I HOPE YOU WILL HAVE A VERY GOOD TIME WITH ME, AND THAT
YOU WILL TRY A LOT OF FUN THINGS!
GOODBYE FOR NOW, RUTHANNEDUM!

-34-

Report No. 1889 Bolt Beranek and Newman Inc.

The entire group was delighted and hysterical at the machine's

answers. In two of the classes we went on to modify the HI

procedure. The second graders added I LIKE YOU to the responses.

The third graders wrote in YOU ARE VERY GOOD-LOOKING.

The next day, the two second graders started off playing the game

FOUR-IN-A-ROW at the computer terminal. Mary Jaye lost her game,

but Steven played to a draw. He seems to feel that this is tanta-

mount to winning. Then, using an outline (on cardboard) and

stickers, each child made his own copy of the teletype keyboard.

I showed the two classes comprising the oldest children (and

Karen Coffey from the previous class, who didn't want to leave)

the operation of two procedures, LAUGH and KEEPLAUGHING.

+LAUGH
HAHA

4KEEPLAUGHING
HAHA
HAHA
HAHA
HAHA
HAHA
HAHA

They were fascinated with KEEPLAUGHING although initially they

showed some concern about how to make it stop. I teased them

briefly before showing them the break key. Once they knew they

could stop it whenever they wished, they were delighted to let it

run on and on and were busy measuring the lengths of the paper

which were printed out from each run. Since they enjoyed these

two procedures so much, I encouraged them to write a CRY and a

KEEPCRYING. Following the models of LAUGH and KEEPLAUGHING -

-35-

Report No. 1889

TO LAUGH
10 PRINT "HAHA"
END

TO KEEPLAUGHING
10 PRINT "HAHA"
20 KEEPLAUGHING
END

Bolt Beranek and Newman Inc.

they wrote the following two procedures,

TO CRY
10 PRINT "BOOHOO"
END

TO KEEPCRYING
10 PRINT "BOOHOO"
20 KEEPCRYING
END

and tried them out.

+CRY
BOOHOO

+KEEPCRYING
BOOHOO
BOOHOO
BOOHOO

The next day, after the success with CRY with the two older

groups, I decided to try it with the second graders and the first

class of third graders. They seemed to enjoy it just as much and

they were equally successful with it. On Thursday I suggested a

problem: write a procedure which will type something over and

over again down the page. Each of the girls wrote a procedure

which typed her first name down the page, and then Shawn wrote

one which typed SHAWN MICHAEL DALEY down the page. The only

difficulty Shawn had was spelling Michael.

-36-

Report No. 1889 Bolt Beranek and Newman Inc.

Rosemarie brought in two procedures -- a KEEPROSEMARIEING and a

KEEPMASTERMINDING. (She and Joan have decided to name the

computer MASTER MIND.)

\< t4)..sec.\enOkckQk

(x;Q\crir-4N

:
o \\eq\ (Aq% tkft

Ph'irrt /1/Igs-er
1<eep(11c!

,,,,. 4

Pos'etii ciP/czi

-37-

Report No. 1889 Bolt Beranek and Newman Inc.

We typed them in and tried them.

4-TO KEEPROSEMARIEING
>1 PRINT "ROSEMARIE"
>2 KEEPROSEMARIEING
>END
KEEPROSEMARIEING DEFINED
{- KEEPROSEMARIEING
ROSEMARIE
ROSEMARIE
ROSEMARIE
ROSEMARIE

4-TO KEEPMASTERMINDING
>4 PRINT "MASTERMIND"
>6 KEEPMASTERMINDING
>END
KEEPMASTERMINDING DEFINED
{-KEEPMASTERMINDING
MASTERMIND
MASTERMIND
MASTERMIND
MASTERMIND

I introduced the operation of naming to the last class by example,

without prior discussion. I simply typed in

CALL
THING: "DOG"
NAME: "SNOOPY"

and then we tried PRINT "SNOOPY", PRINT THING OF "SNOOPY", and

PRINT /SNOOPY/.

On Wednesday, February 5, a second-grader, Steven, played two

games of FOUR-IN-A-ROW as did Mary Jaye and Neil. While they

were playing, Steven wrote a PRINTSTEVEN which printed the

-38-

Report No. 1889 Bolt Beranek and Newman Inc.

letters S,T,E,V,E, and N one under another. He wrote the proce-

dure by himself. The only difficulty he had was in forgetting to

demarcate the letters with quotation marks. Then he wanted to

get his program to keep typing these letters down the page.

In the other classes I demonstrated and explained the operation

COUNT for words and the children figured out what COUNT does for

sentences. We went on to SUM and DIFFERENCE and they experi-

mented with lots of numbers, checking the computer's accuracy.

Rosemarie taught the computer a simple poem. The procedure name

was the title of the poem, and the instructions were to print

the whole poem.

Because of snow emergencies and February vacation, class did not

meet again until March 6. We continued with eight children - five

working individually and three as a group.

(From this point, the children's daily work included short inter-

active computer-administered lessons. Typescripts from the first

three lessons - TEACHPRINT, TEACHWORD, and TEACHSEN - are

reproduced next to illustrate the early material and its use.

The children's typing is underscored in these typescripts.

The entire set of lessons is reproduced later on.)

Report No. 1889

6-LESSONI

Bolt Beranek and Newman Inc.

IN THIS LESSON THERE AkE SOVE LINES TO READ. THE COMPUTER TYPES VE'Y
FAST. If wILL STOP EVERY SO OFTEN SO THAT YOU ii: ILL HAVE TIME TO READ.
*4EN YOU VANT IT TO GO ON, PRESS THE kETUkN KEY.

vA;Y,< M".12ANS THAT THE COMPUTER HAS MORE TO TELL YOU. PRESS THE
ICTUPN :'HEN YOU AkE READY TO RE AU IT 9

THE COMPUTEr, UNDERSTANDS ME SPECIAL COMMANDS. THE FIRST ONE WE 'fill
Tr\LK 01,11. IS -- PRINT.

LET'S TELL THE COMP1JTEk T' 0i,INT A i'OFD. I 1ALL TYPE THE COMMAND. YOIJ
P ;JESS THE RETUPN KEY '.HEN I AM FINISHED.

"CAF4RA(.E"
CABBAGE

NO1A LET'S TELL THE CON,s-)1ITE, TO PWIN1 A SENTENCE. YOU PRESS THE RETTRN
KEY THIS TIME TOO.

PRINT "DO YOU LIKE THE 4EATLES?"
DO YOU LIKE THE HEAFLES?

NOTICE THAT THERE AERE .I.JuTATION (" ") MARKS AROIJND THE EXACT WORDS THE
COMPUTEP VA': ASKED TO PiINT @

NOV TRY TU THE Cut ?LITER PRINT SOME OF \OW, WAN THIN(-S.

DON'T WOR'vY A-40 OF 4AKIN(4 AISTAKES! 1,,,E ALL DO IT! THE COMPUTER WILL TRY
Tu HELP YOU RY EXPLAININl, HlAT t.ENT t.:kON(:'.

HAVE FUN!

6-LESSON`,

EMEWiER -- THE MARK 0 MEANS THAT I AM WAITING YOU TO PRESS THE
RETU:N KEY. @

AFTE YOU LEARN TO USE LOGO, YOU WILL BE ABLE TO TEACH THE COMPOTER TO
11) NE!, : THINGS.

YOU IhILL TEACH THE COMPUTER TO DO SOMETHING NEW HY t%RITING A PROCEDUE.

-40-

Report No. 1889 Bolt Beranek and Newman Inc.

A PROCEDURE IS LIKE A RECIPE. IT HAS ALL THE INGfrEuIENT(. ANo
IN IT TO MAKE SOMETHING. ra

A FE1, PROCEDURES AkE ALREADY RUILT INTO L060. WILL TALK A;soUT
9EFOE WE TALK ABOUT PkOCEDURES THAT YOU W.ILL

THE PROCEDU,.,'E WE WILL LEARN ABOUT IN THIS LESSON IS CALLED --
LET'S SEE WHAT IT DOES. @

TYPE THESE WORDS PRINT WORD OF "UP" AND "DOWN"
*;.,INT WORD OF "UP" AND "DOWN"
UPDOwN

F1.1".RE IS ANOTHER EXAMPLE OF WHAT -- WORD -- DOES.

TYPE' THIS: PRINT WORD OF "TREE" AND "TOP"
*PRINT WORD OF "TREE" AND "TOP"
TREETOP

NO LET'S SEE HOW GOOD A COMPUTER YOU WOULD HE. Q

WHEN fOO SEE THE ARk0V, TYPE -- PmACTICE.

PliETENO YOU ARE THF. COX.PUTER. I 'ALL TYPE hN INSTJCTION. YOU TYPE IN
T HE ANSWER THE COMPUTEk ttOULU (4IVE

Pc<INT WORD OF "LA" AND "LA"
*LALAi.
GEAT! LET'S GO ON TO THE NEXT ONE. @

Pl'INT WORD OF "1 23" AND "4"
*1.234
W-,Aw0! ON TO THE NEXT ONE! g

P.1NT OF "HE" AN,) "Aeety

COO) Ko YO' 1. HER THE FOUrjh ONE. P

P)-ANT OV "(7000-" AND "HYE"
*(G00

-I(A-J ,4c,E. ONE iE TO GO. q

,:0,v1) OF
''E''

.-\NO :!0%t0 OF "N" AND "0"

*EN,,
IPHr YOU APtE, AN) Ti-IAT THE ENO OF THIS LESSON.

!:.0 LUNG FO,, NoW.
4-

Report No. 1889 Bolt Beranek and Newman Inc.

4LE SSON3

ANOTHEF, BUILTIN LOGO PROCEDURE IS: SENTENCE. @

TYPE THESE ORDS PRINT SENTENCE OF "GIRLS" AND "LAUGH"
*PRINT SENTENCE OF " GIRLS" AND "LAUGH"
GIRLS LAUGH

AS YOU SEES SENTENCE PUTS TWO LOGO THINGS TOGETHER WITH A SPACE
DFTVFRN. P

tfliAT DO YOU THINK THE COMPUTER WOULD DO WITH THE NEXT INSTRUCTION? TYPE
IN JUST THE ANSWER THE COMPUTER WOULD GIVE. @

PRINT SENTENCE OF "BOYS" AND "PLAY"
*BOYS PLAY
GOOD FOR YOU.
HERE IS ANOTHER ONE. WHAT WOULD YOU REPLY?
PRINT SENTENCE OF "I LIKE" AND "ICE CREAM"
*I LIKE ICE CREAM
RIGHT YOU ARE.
THE PROCEDURE -- SENTENCE -- WILL PUT TOGETHER ONLY TWO LOGO THINGS AT
A TIME. (9

LOOK AT WHAT YOU MUST DO TO HAVE THE COMPUTER PUT TOGETHER THREE
THINGS. @

TYPE THIS: PRINT c.ENT'ENCE OF "I" AND SENTENCE OF "LIKE" AND "CANOY"
* PRINT SENTENCE OF "I" AND SENTENCE OF "LIKE" AND "CANDY"
I LIKE CANDY

NO TY TO MAKE SENTENCES OF YOUR OWN, WHEN YOU SEE THE ARRO.

MARCH 6 - The lesson was TEACHPRINT. The first thing I learned

was that even with delays written into the procedure the typeout

is too fast for these youngsters. I need to rewrite these proce-

dures using a stop of some kind so that the youngsters can read

at their own pace and then use the return key when they are ready

for more reading material.* Greg finished TEACHPRINT and went on

to TEACHWORD.

*All the lesson materials shown here and in the next section
have incorporated this change.

Report No. 1889 Bolt Beranek and Newman Inc.

Jay worked out the print instruction after a few false starts.

He had trouble remembering matching quotation marks.

Ruth Anne, Shawn, and Julie played three games of THIRTY-ONE.

None of them seemed to realize he could win.

MARCH 7 - All youngsters worked on TEACHWORD. Most of them had

no difficulty with the change in directions which allowed them

to control the rate at which information was presented. Karen

kept asking "What shall I do now?" but this seemed to be more

for support than from a real need for help. When I told her my

lips were sealed, she went right over to strike the carriage

return key for more information.

Although the operation WORD presented the children with no

problem, my instructions definitely did. The children had

trouble reading the word 'procedure' and they certainly did not

understand what I was trying to say. An oral explanation seemed

to clarify the issue.

The second and third graders have difficulty executing the

instruction: "TYPE THE FOLLOWING:".

MARCH 10 - Steven worked his way through TEACHPRINT and TEACHWORD.

I left him alone for a few minutes. He tried to type in some

commands in unanticipated places. I am not sure how he inter-

preted the directions -- evidently he saw the stop points as

invitations to type.

When Mary Jaye arrived I gave her a problem in which she had to

use WORD. She wrote out the instruction at the blackboard, and

-43-

Report No. 1889 Bolt Beranek and Newman Inc.

then proceeded to write two or three more Finally, I asked her

to think about how to get three letters or parts of words together
as one word. She and Steven both pondered this problem for a few
minutes.

Then we worked it out in two parts. First we talked about WORD
OF "C" AND "A". There was no doubt in their minds that this

would produce CA. Then they also knew that WORD OF "CA" AND "T"

would produce CAT. Finally we substituted. WORD OF "C" AND "A"

is another name for CA. If we put this in place of "CA", we get

PRINT WORD OF WORD OF "C" AND "A" AND "T". It worked.

+PRINT WORD OF "C" AND "A"
CA

+PRINT WORD OF "CA" AND "T"
CAT

+PRINT WORD OF WORD OF "C" AND "A" AND "T"
CAT

The other youngsters worked on TEACHSEN, a lesson for teaching

the LOGO operation SENTENCE.

MARCH 12 - Jay began TEACHFIRLAS. I had asked him to type PRINT

FIRST OF "SHE SELLS SEA SHELLS." He typed it in perfectly (we

thought) but got an error comment. I typed it in and got an

error comment too. I listed the procedure but could find nothing

wrong with it. We went back and reexamined our work and sure

enough, both of us had forgotten the period.

TYPE THESE WORDS AND LOOK VERY CAREFULLY AT THE COMPUTER'S
ANSWER: PRINT FIRST OF "SHE SELLS SEA SHELLS."
"PRINT FIRST OF "SHE SELLS SEA SHELLS"
TRY AGAIN PLEASE. THAT DOESN'T SEEM TO BE RIGHT.

-1414-

Report No. 1889 Bolt Beranek and Newman Inc.

There is a problem with writing clear directions. The youngsters

have difficulty deciding when they are to type in an instruction

and when they are simply to type in the result obtained from

performing the instruction.

The LOGO lessons are very much alike, and perhaps a little

monotonous, certainly not very creative or original. Yet, they

do accomplish their intended purpose. The children are learning

to understand the elementary LOGO operations, they seem to be

happy with this kind of instruction, and I have learned a great

deal about clarity of presentation and about learning difficulties.

MARCH 14 - All the children understand and freely use the opera-

tions FIRST, LAST, BUTFIRST, and BUTLAST. However, WORD and

SENTENCE seem less easy for them perhaps because of the need for

two inputs. Also, the children confuse a word in LOGO with the

LOGO combining operation WORD.

MARCH 24 - The children worked on decoding the message in the

LESSON MESSAGE with success and apparent pleasure. Everyone

except Karen guessed the final message at least three lines before

the end. When I suggested that perhaps we should stop and go on

to something else, they were insistent that they be allowed to

finish.

MARCH 26 - Everyone worked on TEACHCALL.

There are some difficulties with naming: e.g., (1) It seems

more natural for children to put the name first, then the thing.

(2) Children expect to be able to request the name of a thing

as well as the thing of a name.

-45-

Report No. 1889 Bolt Beranek and Newman Inc.

MARCH 27 - Mary Jaye worked for almost an hour today. We worked
on CALL, which is difficult. She still likes to look at long
strings of digits. I suggested that she try to keep her inputs
short. She agreed with me and then typed out 20 and 30 character
strings!

4-PRINT BUTLAST OF "ABCDEFGHIJKLMNOP"
ABCDEFGHIJKLMNO
4-CALL

THING: "97865432149777777777777777777777777777777"
NAME: "KEY"

4-PRINT /KEY/

97865432149777777777777777777777777777777

Then she played ThIRTY-ONE. Mary Jaye apparently cannot have too
much of this, even though she didn't win. All her efforts were
trial and error. It became apparent to her that 24 was a key
number. She would comment ... "He's going to win, I think - he
has 24." Then, however, she would suggest that maybe if she tried
a different input when he had 24 she could still win. She also
tried a couple of illegal inputs when she could not win with legal
ones, just to see what would happen.

Greg tackled CALL with considerable authority and confidence.
The CALLPRACTICE exercises generally worked better than the

TEACHCALL lesson material proper. The children seemed to learn
the effect of CALL by comparing different inputs and outputs.

When they make up their own names, the children have trouble

remembering to use quotation marks (as I did when I was learning).

The children know that P stands for PRINT. I find, however, that
they still type the whole word rather than the abbreviation.

-46-

Report No. 1889 Bolt Beranek and Newman Inc.

MARCH 31 - Mary Jaye typed out the procedure INTRODUCE for me
(I told her what to write) and watched what happened when we ran
INTRODUCE using "MARY JAYE SIMMS" for /NAME/. We then worked on

another procedure which she named TALK. She wrote a few

instructions.

TO TALK
>20 PRINT "121212121"
> 30 PRINT "23234534544444444444"
>40 PRINT "TALK"
> 50 PRINT "SANTA CLAUS"
>END
TALK DEFINED

Then I suggested testing it.

+TALK
121212121
23234534544444444444
TALK
SANTA CLAUS

She was delighted with it and edited it to add many more instructions.

+EDIT TAK \\LK
>60 PRINT "TOP AND HOP"
>70 PRINT"LOGO"
> 80 PRINT "ADAM 12"
>90 PRINT "GOST"
> 100 PRINT "123434343434345555555566666670809010020030"
>200 PRINT "12121212121212212121212121"
>300 PRINT "34567890000000000000001000000000000002000000000030000"
>400 PRINT "GOOD-BY"
>END
TALK DEFINED

(Finally she tested it with great
+TALK
121212121

pride and joy.)

23234534544444444444
TALK
SANTA CLAUS
TOP AND HOP
LOGO
ADAM 12
GOST
123434343434345555555566666670809010020030
12121212121212212121212121
34567 89000000000000000 1000000000000002000000000030000
GOOD-BY

-147-

Report No. 1889 Bolt Beranek and Newman Inc.

Then we tried some naming again. Her work with long strings gave

her some difficulty. For the first time I think she saw some

value in working with brief words or symbols.

Jay also worked with INTRODUCE. I gave him models and he produced

some of his own things using my model. In fact, we seemed to

make so much progress that I threw in a second variable /AGE/.

He obviously enjoyed using his friends' and family's names in

these procedures. Before he ran each procedure, he would tell

me just what the procedure was going to print out.

+LIST INTRODUE\CE

TO INTRODUCE /NAME/
10 PRINT /NAME/
20 PRINT /DATE/
30 PRINT /TIME/
END

+INTRODUCE "JAY"
JAY
3/31/1969
1:27 PM

(/DATE/ and /TIME/ are special LOGO
names for the current date and time,
respectively.)

+EDIT INTRODUCE
>40 PRINT SENTENCE OF /NAME/ AND "IS VERY NICE"
>50 PRINT SENTENCE OF /NAME/ AND "GOES TO EMERSON SCHOOL"
>END
INTRODUCE DEFINED

+LIST INTRODUCE

TO INTRODUCE /NAME/
10 PRINT /NAME/
20 PRINT /DATE/
30 PRINT /TIME/
40 PRINT SENTENCE OF /NAME/ AND "IS VERY NICE"
50 PRINT SENTENCE OF /NAME/ AND "GOES TO EMERSON SCHOOL"
END

Report No. 1889 Bolt Beranek and Newman Inc.

+INTRODUCE "LISA"
LISA
3/31/1969
1:43 PM
LISA IS VERY NICE
LISA GOES TO EMERSON SCHOOL

+TO DESCRIBE /NAME/ AND /AGE/
>10 PRINT /NAME/
>20 PRINT SENTENCE OF /AGE/ AND "YEARS OLD"
>30 PRINT SENTENCE OF /NAME/ AND "LIVES AT 10 CIRCET AVE"
>END
DESCRIBE DEFINED

+DESCRIBE "LISA" AND "6"
LISA
6 YEARS OLD
LISA LIVES AT 10 CIRCET AVE

Julie was back today after a considerable absence. Shawn acted

as teacher and taught Julie about CALL. She caught on quickly.

APRIL 2 - Today, using TEACH-THE-COMPUTER, was the first time

that the children made their own procedures. Mary Jaye, Jay, and

the group of Ruth, Julie, and Shawn did very well. Greg kept

asking about each step as if he had never seen any directions.

Perhaps I should have had him read the directions aloud. This

seems to help. When he did finally write a procedure of his own,

it was the only one that was not almost a carbon copy of SPELLCAT,

the one I had written for demonstration.

Steven did almost two lessons, to make up for his absences. It

is amazing that he remembered the exact names he had used and

all the work he had done previously.

APRIL 3 - Greg remembered our initial work with procedures which

kept typing down the page. He really wrote the procedure

-49-

Report No. 1889 Bolt Beranek and Newman Inc.

KEEPSADSACKING by himself - though he looked to me for confirma-

tion at every step.

+TO SADSACK
> 10 PRINT "HI"
> 20 PRINT "ZOOM"
>END
SADSACK DEFINED

PRINT "HI ZOOM" (I am not sure what he was thinking here)
H I ZOOM

{-PRINT "SADSACK"
SADSACK

+SADSACK
H I

ZOOM

(He finally worked this out)

TO KEEPSADSACKING
> 10 SADSACK
>20 KEEPSADSACKING
>END
KEEPSADSACKING DEFINED

÷KEEPSADSACKING
H I

ZOOM
H I

ZOOM
HI
ZOOM
H I

ZOOM
H I

ZOOM (This printout went on for 4 pages)

I suggested to Jay that we work out a different kind of procedure.

I showed him GROW (the printout only, not the program), thinking

he might try to write a procedure which would do this.

A

Ir Report No. 1889 Bolt Beranek and Newman Inc.

7

-GROW

ZZ
ZZZ
ZZZZ
ZZZZZ
ZZZZZZ
ZZZZZZZ
ZZZZZZZZ

He ended up with a similar idea, but a significant variation.

He wrote the procedure GROWSMALL,

4-TO GROWSMALL
>10 PRINT "EASTER"
>20 PRINT "ASTER"
>30 PRINT "STER"
>40 PRINT "TER"
>50 PRINT "ER"
>60 PRINT "R"
>END
GROWSMALL DEFINED

and then tried it out.

+ GROWSMALL
EASTER
ASTER
STER
TER
ER
R

APRIL 7 - Today was game day. The children could select one game

of their own choosing. The popular choice was THIRTY-ONE. I

also taught most of them NIM. By and large they play at random.

No cne has really looked to see how the computer wins each time.

Greg was annoyed that he could not win at NIM. He was perhaps

the only one to try to study what the computer did. He finally

did win a game by emulating the computer but he had several

false starts before he got there.

-51-

Report No. 1889 Bolt Beranek and Newman Inc.

APRIL 10 - Today all of the group worked at least for a while on

some debugging of programs. Greg was eager to go back to the

SADSACK program he had written. He is delighted with the spewing

out of line after line of print.

Jay worked on debugging COUNT-BY-TWO.

+LIST COUNT-BY-TWO

TO COUNT-BY-TWO
10 PRINT "2"
20 PRINT "6"
30 PRINT "10"
END

+EDIT COUNT-BY-TWO
>15 PRINT "4"
>25 PRINT "8"
>END
COUNT-BY-TWO DEFINED

+COUNT-BY-TWO
2

4

6

8

10

APRIL 14 - I have been working with a disturbed third grader who

was expelled from another school last year in the second grade.

He knows and uses every four-letter word in the book. The first

time the computer did not respond as he wished (during a game of

tic-tac-toe), he typed in ---- (not reproduced here). The

computer responded ---- IS NOT DEFINED. However, since that

time he has become protective of the terminal. Another youngster,

traveling through at some time when the room was vacant, left his

imprint on the paper, a rather mild expletive. My student was

indignant and proceeded to dispose of the paper quickly.

-52-

Report No. 1889 Bolt Beranek and Newman Inc.

Steven and Mary Jaye both worked on LESSON TEN. Steven needed

no explanations from me at all until the very end when he needed

to talk about FIRST OF FIRST OF a sentence. It is a pleasure to

watch him at work.

Mary Jaye ran into a few more problems than Steven did but she

worked her way through them on her own, with great success. Both

of them guessed the message but both wanted to finish the entire

set because "it was fun." Mary Jaye completed debugging SPELLDOWN

first. Together we analyzed Line 30 and then she wrote Line 20

in a flash with no help at all. I was astounded. I wonder now

whether it was a wild guess or whether she really had a flash of

insight.

APRIL 16 - Steven had earned his game day on Monday. He enjoyed

HANGMAN but was annoyed when he was not successful. He started

a NIM game while I was doing an errand. When I returned I found

that he was working with an inordinately large number of X's. I

suggested that he stop and restart with a more reasonable number

since time was running out. He restarted with 7 X's and won

which delighted him.

APRIL 28 - Conversation with Steven after he looked at the last

part of LESSON TWELVE:

Steven: Doesn't it know how to DOUBLEFIRST?
Mrs. B.: No, it doesn't!
Steven (with great assurance!): That means I'll have to teach

it how!

After he started to write DOUBLEFIRST, he decided that the title

needed repairs. I had to show him how to edit this. Then I

asked him: What are the parts you are going to put together?

How do you put them together? He wrote the entire procedure by

himself after these two rhetorical questions.

-53-

Report No 1889 Bolt Beranek and Newman Inc.

Karen is a puzzle! She seems to understand the syntax of some

simple programs - but it was apparent that the concept of a

procedure is still not clear. We went over the printout line by

line to see where it came from. Then she added lines and told

me with confidence where they should affect the printout.

Shawn wrote DOUBLEDOG, Julie wrote DOUBLEHA, and Ruth Anne wrote

DOUBLERUTH-ANNE. They had no problems. They changed line

numbers so their procedures would not be carbon copies of each
other.

APRIL 30 - Greg wants and needs to be right and is annoyed if he

makes a mistake. Despite this concern, however, he works very

fast and often hits the return key before he has checked his

line to be sure it is correct.

MAY 1 - Steven wrote several forms of TRIPLE today. He got a

few complaints from the computer - the error comments were help-

ful to him. He wrote a procedure FIRSTLAST without help. He

discovered on his own that he had failed to give the procedure

an argument and corrected it hiffself.

{-TRIPLE "BOY"
TRIPLE ISN'T DEFINED.
+TO TRIPLE "BOY"
YOU NEED / MARKS AROUND EACH ARGUMENT.
TO TRIPLE /ANYWORD/

>16 PRINT WORD OF WORD OF /ANYWORD/ AND /ANYWORD/ AND /ANYWORD/
>END
TRIPLE DEFINED

+TRIPLE "DIET"
DIETDIETDIET
{-TRIPLE "FOX"
FOXFOXFOX

-54-

Report No. 1889 Bolt Beranek and Newman Inc.

+TO FIRSTLAST
>10 PRINT WORD OF FIRST OF /ANYWORD/ AND LAST OF /ANYWORD/
>EDIT TITLE
TITLE TO FIRSTLAST /ANYWORD/ (Changes TITLE line)
>END
FIRSTLAST DEFINED

+FIRSTLAST "SAM"
SM

MAY 5 - Jay was working through LESSON THIRTEEN on procedures

which have one, two, and no inputs. I think he really was

confused until he gave the computer the instruction, ADDON "TREE".

When this turned out its own peculiap sentences, he suddenly

seemed to catch on.

Today I gave Karen LESSON ELEVEN containing procedures to be

debugged. She did pretty well. She started off hesitantly but

was reasonably successful as she went through the lesson. This

again was a lesson purely between Karen and the computer, and

all of us were the better for it.

Greg struggled today - first to remember how to use DOUBLE and

then to get a DOUBLEFIRST written. He needed a great deal of

guidance and really could not have written this alone.

Shawn, Ruth Anne, and Julie looked at DOUBLE and tried it once.

They then struggled with DOUBLEFIRST. They were so busy giving

each other directions that I let them struggle. They ended up

writing DOUBLE again, but only recognized this when they saw the

output.

MAY 14 - We began some review work in preparation for our

demonstration at the Spring Joint Computer Conference this Friday.

-55-

Report No. 1889 Bolt Beranek and Newman Inc.

Karen was great today. She wrote DOUBLEDOG like a pro. I know
that she worked from the model, DOUBLECAT, and copied this
exactly, but this is progress for her.

Steven did some interesting work with SURPRISE-4 (LESSON FIFTEEN).
He tried to list the procedure E but it had been made invisible
to students. Then with considerable persistence he kept trying
each new output as the next input. His theory was that perhaps
the scrambling was so ordered that eventually the procedure E

would return the letters of his name in the proper order. As he

got to his last try, he said, "This is it, one way or another."

He got the storybook ending - the letters of his last name

appeared in proper order. Of the youngsters who tried this

since, he was the only one to look for a pattern in the

scrambling.

+LIST E

TO E /YOUR LAST NAME/
(The procedure E could not be listed.

+E "EPSTEIN" It had been rendered invisible.)
NIETEPS
+E "NIETEPS"
SPETNIE
+E "SPETNIE"
EINTSPE
+E "EINTSPE"
EPSTEIN

MAY 16 - Friday, the children demonstrated their work at live

terminals for two hours at a special education meeting held as

part of the A.F.I.P.S. Spring Joint Computer Conference in Boston.

It was a long, exhausting day -- the kids were great and they

loved every minute! I was concerned that they were going to be

frightened and pressured by the crowds and the questions. They

ate it up -- they turned out to be big showoffs!

-56-

Report No. 1889 Bole Beranek and Newman Inc.

MAY 19 - LESSON FIFTEEN seems to help the children to focus on

the number of inputs a procedure needs. On the other hand, all

the youngsters, except perhaps Steven, haa difficulty remembering

what to do if a procedure required no input.

MAY 21 - Steven was the first student today and had no problems

writing TRIPLE on his own.

TO TPL /ANYNUMBER/
10 PRINT SUM OF SUM OF /ANYNUMBER/ AND /ANYNUMBER/ AND /ANYNUMBER/
END

4-TPL "1000"
3000
+TPL "150"
450

Shawn, Ruth Anne, and Julie worked very well together today help-

ing each other over the hurdles. They got carried away by work-

ing on the proper number of procedure inputs and forgot to

specify the procedure they were using. They were able to help

each other with this.

Mary Jaye still continues to use the long strings as input. I

am not sure what appeals to her about these long numbers, but it

is obvious that she does enjoy them.

+MYSTERY-6 "AUGUST" "13" "10"
MY BIRTHDAY IS AUGUST 13
I AM 10 YEARS OLD.
+MYSTERY-6 "HALLOWEEN" "1234343" "123456789103333300000000"
MY BIRTHDAY IS HALLOWEEN 1234343
I AM 123456789103333300000000 YEARS OLD.

Report No. 1889 Bolt Beranek and Newman Inc.

Karen again appeared to be stumped by the request to write

DOUBLE. However, when she was left alone, the next thing we

heard was an "I did it! It worked!" She can do the job when

there is no one around.

TO DOUBLEKAREN
>10 PRINT WORD OF "KAREN" AND "KAREN"
>END
DOUBLEKAREN DEFINED
+DOUBLEKAREN
KARENKAREN

MAY 23 - Jay is trying now to work out his problems with the

procedure TPL. TPL actually was supposed to triple a number by

adding. Jay however wrote a word tripler, which was fine. He

found out by himself that one of his bugs yesterday was his

failure to specify an input. Today he put that in immediately.

+TPL "TREE"
TREETREETREE
+TPL "4"
444
+TPL "TEE"
TEETEETEE

May 28 - Steven began by reviewing conditionals. He worked out

the first one himself. Then I suggested that he try - IS /GREEN/

/BLUE/. As he was typing it in, he said to me, "I know why you

want me to try this one. You think I'll say no because they are

different letters, but I know they are the same." (In this

exercise they both name the empty word.)

Report No. 1889 Bolt Beranek and Newman Inc.

Perhaps any of the children could make great progress in LOGO if

time permitted. The periods seem too short. For the next two

weeks, I would like to work for half-hour periods with four of

the children to see what can be done and how quickly they can

move. Even a half-hour is not much time, but it should help.

* * * * * * * *

No daily log was kept for the period May 29 - June 13. The group

was reduced to four children - Ruth Anne, Mary Jaye, Jay, and

Steven - during these last two weeks. They finished working

through the remaining lessons and spent the rest of the time

writing LOGO procedures. For the most part, these followed very

closely on the pattern of prescribed models. Thus, given the

procedure

TO SAYHI
10 PRINT "HI"
20 SAYHI
END

whose effect was the endless stream

HI
HI

HI

all of the students were already able to make a (virtually

duplicate) procedure for printing some other message. Here is

one of Ruth Annes.

TO SAYRUTH-ANNE
10 PRINT "RUTH-ANNE"
20 SAYRUTH-ANNE
END

Its effect is to print

RUTH-ANNE
RUTH-ANNE
RUTH-ANNE

a

-59-

Report No. 1889 Bolt Beranek and Newman Inc.

By the end of the course, they all were able to write a single

procedure for printing any specified message. For example, the

following prc lure of Jay's:

TO SAY /ANYWORD/
10 PRINT / ANYWORD/
20 SAY /ANYWORD/
END

On the last day, Jay used his procedure as follows,

SAY "GOODBYE MISS BLOOM"

which generated

GOODBYE MISS BLOOM
GOODBYE MISS BLOOM
GOODBYE MISS BLOOM

Mary Jaye's last procedure, virtually the same as Jay's, produced

this farewell message.

I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU

During these last days, simple recursive procedures such as SAY

and WORKLESS were favorites with all the children. They would

write them anew,

4-TO WORKLESS /ANYWORD/
>10 PRINT /ANYWORD/
>29 CALL

THING: BUTFIRST OF /ANYWORD/
NAME: "NEWWORD

>30 WORKLESS /NEWWORD/
>END
WORKLESS DEFINED

and then run them repeatedly. These are relatively small

printouts:

-60-

Report No. 1889 Bolt Beranek and Newman Inc.

g-WORKLESS "I AM A BOY"
I AM A BOY
AM A ROY
A BOY
BUY

-WORKLESS "!#$W()*=4?+@EGS"
!#$%&°()*=<>?4,0[GS
S2 &'()*=<>?+0[GS
V7O &' C)*=<>?-1.0(GS

9 &20*=>?+0(GS
()*=>?+OLGS

10*,=<3.?+@[GS
()*=<>?+@EGS
)*=<>?+@[GS
*=<>?+0EGS
=<>?+@EGS
<>?+@EGS
> ?+0[GS
?+@CGS
+ 0[GS

@EGS
(GS
GS
S

they all liked to make big ones.

"okCDP:.F6HIJI.O.MWW)P,STIMpAYZAHCDEF('HIJKL.4NOPSTUW0YY7.123456TA99
APGDEFGHIJ:<LMNOPCNSTUVWXYZABCDEFGHIJKLMNOPORSTUVWY7.1234567;399
FIGOEFGHIJt(LMOPOSTUVWXYZABCDEFGHIJKLMONUNSTUnXYZ1234567899
CDEFGHIJKLMWPORS1UVWXYZABCDEVGdIJKLMNOPURSTUVWXYZI234567S99
D ZFGHIJXLMNOPORSTUW::XYZARCDEFGHIJKLMNOPORSTUVWXYZ123A567699

ZABCDEFGHIJKLMNOPONSTUVWXYZ123456789q
ABCDEFGHIJKLMNOPORSTOVWXYZ12345671399
BCDEFGHIJXLMNOP(PRSTUVWXYZ1234567899
CDUGHIJKLMNOPOSTUVWXYZ1234567899

Z1234567599
1234567899
234567899
34567899
4567599
567R99
67699
7899
899
99
9

Report No. 1889 Bolt Beranek and Newman Inc.

Within the remaining time span, only one child - Steven - was

able to use LOGO to go beyond the transliteration of prescribed

models for simple procedures. On June 4, he started working on

his own procedure, COUNTDOWN, which was to record the integers

as they descend to zero (prior to blast-off). He began by writing

+TO COUNTDOWN /ANYNUMBER/
>10 PRINT /ANYNUMBER/
>20 CALL

THING: DIFF OF /ANYNUMBER/ AND /ANYNUMBER!
NAME: "NEWNUMBER"

>30 COUNTDOWN /NEWNUMBER/
>8 IS /ANYNUMBER/ /EMPTY/ (He suddenly realized he needed
>9 IF YES RETURN /EMPTY/ a test for stopping the countdown
>END and it had to precede Line 10)
COUNTDOWN DEFINED

Then he tried out his procedure.

+COUNTDOWN 5
5

0

0

0

Something was wrong. He saw the first bug, a wrong subtraction

input in Line 20, and he fixed it.

+EDIT COUNTDOWN
>20 CALL

THING: DIFF OF /ANYNUMBER/ AND "1"
NAME: "NEWNUMBER"

>END
COUNTDOWN DEFINED

Then he tried again.

Report No. 1889 Bolt Beranek and Newman Inc.

+COUNTDOWN "7"
7

6

5

4

3

2

1

0
-1
-2
-3

Still something wrong. It continued printing past zero into the

negative numbers. So he fixed the second bug, by changing the

stop rule in Line 8,

+EDIT COUNTDOWN
>8 IS /ANYNUMBER/ "-l"
>END
COUNTDOWN DEFINED

and then tried once more.

+COUNTDOWN "4"
4

3

2

1

0

And it worked!

His next assignment was to make a procedure for counting down by

two's. Steven said, "Oh, I know how to do that." Then he wrote

COUNTDOWN-2 using COUNTDOWN as his model. He changed the

difference operation correctly (Line 20) but he did not change

the stop rule.

-63-

Report No. 1889 Bolt Beranek and Newman Inc.

TO COUNTDOWN-2 /ANYNUMBER/
8 IS /ANYNUMBER/ "-1"
9 IF YES RETURN /EMPTY/
10 PRINT /ANYNUMBER/
20 CALL

THING: DIFFERENCE OF /ANYNUMBER/ AND "2"
NAME: "NEWNUMBER"

30 COUNTDOWN-2 /NEWNUMBER/
END
COUNTDOWN-2 DEFINED

So, when he ran his COUNTDOWN-2,

+COUNTDOWN-2 "8"
8

6

4
2

0
- 2

- 4

it did not stop at 0.

He spotted his bug immediately. He started to fix it and then

said, "but, I need to keep the 'one'. I might want to start with

an odd number."

+EDIT COUNTDOWN-2
>6 IS /ANYNUMBER/ "2" (Note that he has added a new stop
>7 IF YES RETURN /EMPTY/ rule in Lines 6 and 7, but he has
>END kept Lines 8 and 9.)
COUNTDOWN-2 DEFINED

+COUNTDOWN-2 "8"
8

6

4
2

0
+COUNTDOWN-2 "7"
7

5

3

1

(So his program will stop for odd
as well as even numbers.)

-64-

Report :4o. 1889 Bolt Beranek and Newman Inc.

His next assignment was to count 112 from any given number and

stop at 20. No faltering this time.

+TO COUNTUP /ANYNUMBER/
>8 IS /ANYNUMBER/ "21"
> 9 IF YES RETURN /EMPTY/
> 10 PRINT /ANYNUMBER/
> 20 CALL

THING: SUM OF /ANYNUMBER/ AND "1"
NAME: "NEWNUMBER"

> 30 COUNTUP /NEWNUMBER/
>END
COUNTUP DEFINED

His first program worked.

{- COUNTUP "15"
15
16
17
18

19
20

Steven saved his countup and countdown programs in a LOGO file.

Each day when he came to class, he got a copy of his programs

from the file and ran each of them with new inputs. Then he

worked on some new variations. For example, he wrote a procedure

for counting down by threes, and a procedure for counting up to

numbers larger than 20.

His last assignment, on June 13, was to write a procedure for

counting down from any given number to any given lower number.

He went right to it.

+TO COUNTDOWN /ANYNUMBER/ AND /LOWNUMBER/
>8 IS /ANYNUMBER/ /LOWNUMBER/
>9 IF YES RETURN /EMPTY/
>10 PRINT /ANYNUMBER/
>20 CALL

THING: DIFFERENCE OF /ANYNUMBER/ AND 1
NAME: "NEWNUMBER"

>30 COUNTDOWN /NEWNUMBER/ AND /LOWNUMBER/
END

-65-

Report No. 1889

It looked right.

+COUNTDOWN "12"
12
11

10
9

8

11 7 f

But, it stopped a little too soon!

Bolt Beranek and Newman Inc.

The stop rule had to be changed, but that was easy.

4-EDIT COUNTDOWN
>8 IS /ANYNUMBER/ DIFF OF /LOWNUMBER/ AND 1
>END
COUNTDOWN DEFINED

Now it would work,

+COUNTDOWN "12"
12
11

10

9

8

7

I f 7 If

even with negative numbers!

+COUNTDOWN
6

5

4

3

2

1

1

2

3

"6" n_311

At this point, his work ended. That's all there was time for

him to do.

Ifr.,!.!er,...!"-7

Report No. 1889 Bolt Beranek and Newman Inc.

3.3 The Lesson Materials

The children's time in the course was mainly spent on working

through a series of about twenty lessons programmed in LOGO.

This section contains printouts of children's interactions with

each of these lesson programs. These typescripts have been

included in the report not merely for historical recording and

documentation of the work but because they give very specific

insights into the problems of teaching, and the experience of

learning, a formal language through a somewhat open-ended

mechanical presentation. The proscriptive parts of the material

incorporate a great number of problems "to make" as well as

questions "to answer". Also, the later lessons require the

children to write procedures on their own. Thus these lesson

interactions reveal something about the children, as well as

the teacher.

The content treated in the lessons is summarized as follows.

LESSON ONE. The command PRINT used with a literal

LESSON TWO. The operation WORD used with the PRINT command.

LESSON THREE. The operation SENTENCE used with the PRINT command.

LESSON FOUR. The two operations FIRST and LAST as applied to

words and sentences.

LESSON FIVE. The two operations BUTFIRST and BCJTLAST as applied

to words and sentences.

LESSON MESSAGE. A secret message is decoded by exercising

the operations introduced in the previous lessons.

LESSON SIX. The CALL command: LOGO things and names. Practice

in naming and the use of names.

67

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON SEVEN (TEACH-THE-COMPUTER). The command TO. Writing and

performing some simple procedures.

LESSON EIGHT (EXPLAIN). Debugging six simple procedures.

LESSON NINE. The operations COUNT, SUM, and DIFFERENCE reviewed.

(These operations were first taught orally during some

earlier periods at the terminal.)

LESSON TEN. A review of FIRST, LAST, BUTFIRST, BUTLAST, and

WORD. The answers are used to spell out another secret

message.

LESSON ELEVEN. Debugging practice with some pattern drawing

procedures.

LESSON TWELVE. Going from a procedure for doubling a specific

word to a general doubling procedure which can take any

word as its input.

REVIEW-1. Practice in simulating the operation of a procedure.

LESSON THIRTEEN (USEINPUT). Extending the number of inputs of

procedures.

LESSON FOURTEEN. Writing a procedure as a command, and as an

operation.

LESSON FIFTEEN. Eleven procedures illustrating strange and

funny inputs.

LESSON SIXTEEN. Practice in writing procedures. The effects of

several procedures are described in succession and sample

printed results are shown for each. The student attempts

to write each of the procedures.

LESSON SEVENTEEN. Practice with the identity operation IS.

LESSON EIGHTEEN. Writing a general recursive procedure.

-68-

Report No. 1889 Bolt Beranek and Newman Inc.

The interactions are easy to read through. We have underscored
all of the children's typing to distinguish it from the
computer's, and have incorporated occasional expository comments
(in parentheses) particularly in the later lessons.

These lessons were written in LOGO. The LOGO programs for Lesson

ONE and Lesson EIGHTEEN, the first and last in the series, are

reproduced and discussed at the end of this section.

*.LESSONI

IN THIS LESSON THERE ARE SOME LINES TO READ. THE COMPUTER TYPES VERY
FAST. IT .ILL STOP EVERY SO OFTEN SO THAT YOU t.ILL HAVE TIME TO READ.
EN YOU WANT IT To GO ON, PRESS THE RETUM K;;:y.

TH;I4 MARK P MEANS THAT THE COMPUTER HAS MOkE TO TELL. YOU. PRESS THE
RETURN KEY vHEN YOU ARE READY TO READ IT. P

THE COMPUTER UNDERSTANDS SOME SPECIAL COMMANDS. THE FIRST ONE WE WILL
TALK ABOUT IS -- PhINT

LEI'S TELL THE CoMPUTER TO PRINT A WORD. I t. ILL TYPE THE COMMAND. YOU
PPESS THE RETURN KEY WHEN I AM FINISHED.

"CARBAGE"
CeAviBACE

NOW LET'S TELL THE COMPUTE), Ti) PRINT A SENTENCE. YOU PRESS THE RETURN
Y THIS TIME T00.

PqINT "DO YOU LIKE THE BEATLES?"
DO YOU LIKE THE ',3EATLES?

NOTICE THAT THERE WERE OUOTATI0N (" ") MARKS AROUND THE EXACT WORDS THE
COMPUTER WAS ASKED TO PRINT. fl

NOW TRY TO MAKE THE COMPUTE h: PRINT SOME OF YOUR OWN THINGS. a

DON'T WORRY ABOUT MAKING MISTAKES! WE ALL DO IT! THE COMPhIER IALL TRY
TO HELP YOU PY EXPLAININ(1 WHAT WENT VRONG.

HAVE FUN!
I-

-.69-

Report No. 1889

I_ESSON2

Bolt Beranek and Newman Inc.

REMEMBER -- THE MARK @ MEANS THAT I AM WA IT ING FOR YOU TO PRESS THE
RETURN KEY. @

AFTER YOU LEARN TO USE LOGO, YOU WILL BE ABLE TO TEACH THE COMPUTER TO
ID) NEW THINGS @

YOU WILL TEACH THE COMPUTER TO DO SOMETHING NEW BY WRITING A PROCEDURE.

A PROCEDURE IS LIKE A RECIPE. IT HAS ALL THE INGREDIENTS AND DIRECTIONS
IN IT TO MAKE SOMETHING. @

A FEW PROCEDURES ARE ALREADY BUILT INTO LOGO. WE WILL TALK ABOUT THESE
BEFORE WE TALK ABOUT PROCEDURES THAT YOU WILL WRITE.

THE PPOCEDURE WE WILL LEARN ABOUT IN THIS LESSON IS CALLED -- WORD
L ET 'S SEE WHAT IT DOES . @

TYPE THESE WORDS -- PRINT WORD OF "UP" ANL) "DOWN"
*PR WoRp ioqw(T!
UP-DOWN

HERE IS ANOTHER EXAMPLE OF WHAT -- WORD -- DC/ES.

TYPE THIS: PRINT WORD OF "TREE" AND "TOP"
*PRINT WORD OF ,7yEEILAND "TOP'
TREETOP

NOW LET'S SEE HOW GOOD A COMPUTER YOU WOULD BE @

WHEN YOU SEE THE ARROW, TYPE -- PRACT ICE
I.

o.PRACT ICE

PRETEND YOU ARE THE COMPUTER. I WILL TYPE AN INSTRUCT MN. YOU T Yr E IN
THE ANSWER THE COMPUTER WOULD GIVE. @

PRINT WORD OF "LA" AND "LA"
*LALA
GREAT ! LET ' S GO ON TO THE NEXT ONE @

PRINT WORD OF "123" AND "4"
*1R-PA
BRAVO ! ON TO THE NEXT ONE! @

-70-

Report No. 1889 Bolt Beranek and Newman Inc.

! INT 1//ORD OF "8E" AND "ARD"
*HEARD
GOOD FOR YOU. HEPE'S THE FOUkTH ONE. 0

PRINT WORD OF "GOOD-" AND'"BYE"
*G00.78YE
RIGHT YOU ARE. ONE MORE TO GO. @

PININT WORD OF "E" AND WORD OF "N" AND "D"
*END
SIGHT YOU ARE, AND THAT IS THE END OF THIS LESSON. @

SO LONG FOR NOW.

*-LESSON3
al .44 III 60.01044.10111

ANOTHER BUILT-IN LOGO PROCEDURE IS: SENTENCE.

TYPE THESE WORDS -- PRINT SENTENCE OF "GIRLS" AND "LAUGH"
PRINT SENTENCE OF AND "LAUGH"
GIRLS LAUGH

AS YOU SEE, SENTENCE PUTS TWO LOGO THINGS TOGETHER WITH A SPACE
ETWEEN.

WHAT DO YOU THINK THE COMPUTER WOULD DO WITH THE NEXT INSTRUCTION? TYPE
IN JUST THE ANSWER THE COMPUTER VOULD GIVE. @

PRINT SENTENCE OF "BOYS" AND "PLAY"
*BOYS PLAY
GOOD FOR YOU.
HERE IS ANOTHER ONE. WHAT WOULD YOU REPLY?
PRINT SENTENCE OF "I LIKE" AND "ICE CREAM"
*I LIKE ICE CREAM
RMITNUFANT7---
THE PROCEDURE -- SENTENCE -- WILL PUT TOGETHER ONLY TWO LOGO THINGS AT
A TIME. @

LOOK AT WHAT YOU MUST DO TO HAVE THE COMPUTER PUT TOGETHER THREE
THINGS. 0

TYPE THIS: PRINT SENTENCE OF "I" AND SENTENCE OF "LIKE" AND "CANDY"
* PRINT SENTENCE OF "I" AND SENTEN5pF...!ILIKE"A9 "CANDY"
I LIKE CANDY

NOV TRY TO MAKE SOME SENTENCES OF YOUR OWN, WHEN YOU SEE THE ARROW.

Report No. 1889 Bolt Beranek and Newman Inc.

-LE SSON4

TYPE THIS: PRINT FIRST OF "PURPLE"
*PRINT FIRST OF "PURPLE"
P

NOW TYPE THIS: PRINT FIRST OF "TREE"
*PRINT FIRST OF "TREE"
T

TYPE THESE WORDS AND LOOK VERY CAREFULLY AT THE COMPUTER'S ANSWER:
PPINT FIRST OF "SHE SELLS SEA SHELLS"
*Pf.INT FIRST OF "SHE SELLS SEA SHELLS"
SHE

I'LL iRET YOU EXPECTED TO SEE 'S' INSTEAD OF 'SHE'. @

THE PROCEDURE -- FIRST -- TELLS THE COMPUTER TO OUTPUT THE FIRST LETTER
L:7 THE INPUT IS A WORD. IT TELLS THE COMPUTER TO OUTPUT THE FIRST WORD
fF THE INPUT IS A SENTENCE. @

NOW LET'S LOOK AT ANOTHER PROCEDURE CALLED -- LAST. 0

TYPE THIS: PRINT LAST OF "FOO"
*PRINT LAST OF "FOO"

HERE IS ANOTHER ONE TO TYPE:
*PRINT LAST OF "KETCHUP"

PRINT LAST OF "KETCHUP"

HERE IS THE LAST ONE: PRINT LAST OF "UPs UP, AND AWAY"
*PRINT LAST OF "UP, UP, AND AWAY"
KWAY

NOW TELL THE COMPUTER TO DO SOME THINGS OF YOUR OWN WITH FIRST AND
LAST.

Report No. 1889 Bolt Beranek and Newman Inc.

.-LESSONS

TYPE THESE WORDS -- PRINT RUTFIRST OF "TICKLE"
*PkINT BUT OF "TIME"
ICKLE

NO'S: TRY THIS: PRINT BUTFIRST OF "SEESAW"
*PRINT BUTFIRST OF "SEESAW"
EESAW

BUTFIRST IS A PROCEDURE WHICH TELLS THE COMPUTER TO OUTPUT EVERY LETTER
MT THE FIRST LETTER OF A WORD. @

NOV LET'S SEE WHAT HAPPENS IF WE ASK FOR BUTFIRST OF A SENTENCE. @

TYPE THIS: PRINT BUTFIRST OF "SNOOPY AND CHARLIE BROWN"
*PRINT BUTFIRST OF "SNOOPY AND CHARLIE BROWN"
AND CHARLIE BROWN

BUTFIRST TELLS THE COMPUTER TO OUTPUT EVERY WORD EXCEPT THE FIRST WORD
(F A SENTENCE. @

HERE IS STILL ANOTHER BUILTIN LOGO PROCEDURE -- BUTLAST

TYPE THIS: PRINT BUTLAST OF "JEERERS"
*PRINT BUTLAST OF "JEERERS"
JEEPER

NOW TRY ANOTHER -- PRINT HUTLAST OF "LUCY"
*PRINT BUTLAST OF "LUCY"
LUC

NOW TRY BUTLAST WITH A SENTENCE:
*PRINT BUTLAST OF "FEE FI FO FUM"
FIE 0.1 FO

PRINT BUTLAST OF "FEE FI FO FUM"

NOW YOU ARE ON YOUR OWN FOR A WHILE. TRY LOTS OF YOUR OWN INSTRUCTIONS
WITH WORD, SENTENCE, FIRST, LAST, BUTFIRSTs AND BUTLAST.

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON MESSAGE

I HAVE A MYSTERY MESSAGE FOR YOU. I WILL GIVE YOU THE MESSAGE WITH
DASHES WHICH STAND FOR THE LETTERS IN EACH WORD. PRESS THE RETURN KEY
W HEN YOU ARE READY FOR IT.

gm Wil=11 - - - - - MOP MOM - - - - - - - - mime mom mob mimeo= mmmmes

YOU CAN DECODE THE MESSAGE BY PRETENDING YOU ARE THE COMPUTER.
WHEN YOU SEE THE TYPE "IN THE ANSWER YOU THINK A COMPUTER WOULD GIVE.

IF YOU ARE READY FOR THE CHALLENGE. PRESS THE RETURN KEY.
PRINT LAST OF "DONKEY"
*Y

Y MOVM mommom minim commme mm mmlom mmmm mm mimeo.

PRINT WORD OF "E" AND "A"
*EA

Y MMMMM OP SUMMON IMMO, - E A

PRINT BUTFIRST OF "RING"
*ING

Y -- --ING ID ,O1 MP OD ---

PRINT FIRST OF "JAMBOREE"
*J

-EA--ING 41.011.01M SIM 111D

YOU ARE -DING - GOO-. JO- -EAR-ING -OGO. -E -0-E THIS IS FUN.

PRINT FIRST OF "WIGGLE"
*W

YOU ARE -DING - GOO- JO- -EAR-ING -OGO. WE -O -E THIS IS FUN.

PRINT LAST OF "BAWL"
*L

YOU ARE -OING - GOO- JO- LEAR-ING LOGO. WE -0-E THIS IS FUN.

PRINT BUTLAST OF "AS"
*A

YOU ARE -DING A GOO- JO- LEAR-ING LOGO. WE -0-E THIS IS FUN.

-74-

Report No. 1889 Bolt Beranek and Newman Inc.

TEACHCALL (LESSON SIX)

UNTIL NOW YOU HAVE USED QUOTATION MARKS (" ") AROUND EACH INPUT TO TELL
T HE COMPUTER THE WORD OR SENTENCE TO USE. @
HERE IS AN EXAMPLE -- YOU TYPE: PRINT SENTENCE Or "DATE" AND "TIME"
* PRINT SENIENCEOF"DATE7 AND "TIME"
DATE TIME

SOMETIMES WE DON'T USE QUOTATION MARKS. WE USE SLASHES INSTEAD. THE
SLASH MARKS HAVE A DIFFERENT MEANING. @

YOU TYPE THIS: PRINT SENTENCE OF /DATE/ AND /TIME/
*PRINT SENTENCE OF /DATE/ AND /TIME/
3/26/1969 12:43 PM

AS YOU CAN SEE, THERE IS A DIFFERENCE BETWEEN "DATE" AND /DATE/ AND
BETWEEN "TIME" AND /TIME/. @

THE SLASH MARKS TELL THE COMPUTER THAT DATE IS A NAME FOR SOMETHING
ELSE, AND THAT TIME IS A NAME FOR SOMETHING ELSE. THE COMPUTER MUST
LOOK TO SEE IF IT HAS BEEN TAUGHT WHAT DATE STANDS FOR AND WHAT TIME
STANDS FOR. @

THE COMPUTER SHOWED THAT IT HAD ALREADY BEEN TAUGHT THAT DATE IS THE
NAME OF 3/26/1969 AND THAT TIME IS A NAME FOR 12:43 PM. BUT YOU CAN
TEACH IT NEW NAMES FOR OTHER THINGS. @

LET US TEACH THE COMPUTER THAT THE WORD "GRRR" IS TO BE A NAME FOR THE
W ORD "GROWL". @

FIRST WE TYPE IN THE WORD -- CALL. THEN WE PRESS THE RETURN KEY. @

NOW THE COMPUTER WILL TYPE -- THING: THEN WE TYPE THE WORD TO BE
NAMED. IN THIS CASE WE ARE NAMIOG "GROWL". THEN WE PRESS THE RETURN
KEY AGAIN. @

THE COMPUTER WILL THEN TYPE -- NAME: THEN WE TYPE IN THE NAME WE ARE
GOING TO USE. IN THIS CASE IT IS "GRRR". WHEN WE HAVE FINISHED THE
NAMING, WE HIT RETURN AGAIN. e

LET ME DO THIS FOR YOU SO YOU CAN SEE HOW IT WORKS.0

CALL
THING: "GROWL"
NAME: "GRRR"

-75-

Report No. 1889

NOW YOU TYPE THIS:
*PRINT /GRRR/
GROWL

PRINT /GRRR/

Bolt Beranek and Newman Inc.

DID YOU NOTICE THAT WE PUT QUOTATION MARKS AROUND THE THING WE NAMED
AND AROUND THE NAME WE USED? 0

HERE IS ANOTHER ONE. BUT BEFORE WE DO THIS, YOU TRY A TEST. YOU TYPE:
PRINT /SNOOPY/

*PRINT /SNOOPY/

DID YOU SEE THAT THE COMPUTER RETURNED EMPTY. IT DOESN'T KNOW WHAT
SNOOPY IS A NAME FOR BECAUSE WE HAVEN'T TAUGHT IT YET.

NOW LET'S MAKE SNOOPY THE NAME OF SOMETHING.

CALL
.

THING: "DOG"
NAME: "SNOOPY"

NOW YOU TYPE:
*PRINT /SNOOPY/
DOG

PRINT /SNOOPY/

NOW TRY TO NAME A WORD OR SENTENCE OF YOUR OWN.
REMEMBER, WHEN YOU SEE *, TYPE CALL AND PRESS THE RETURN KEY.

* CALL
THING: "LADY"
NAME: "MRS.BLOOM"

NOW TEST BY ASKING THE COMPUTER TO PRINT THE NAME YOU HAVE GIVEN IT,
WITH SLASH MARKS AROUND IT.
*PRINT /MRS.BLOOM/
LADY

NOW TRY SOME OF THESE ON YOUR OWN.
6-CALL

NAME: "ONE HUNDRED"
TRINT "ONE HUNDRED"
ONE HUNDRED
PRINT /ONE HUNDRED/
ONE

-76-

Report No. 1889 Bolt Beranek and Newman Inc.

+PRACTCALL

I HAVE JUST TAUGHT THE COMPUTER SOME NEW NAMES. HERE THEY ARE:

CALL CALL
THING: "GREEN" THING: "LEG"
NAME: "STRING BEANS" NAME: "HOT DOG"

CALL CALL
THIN: "BUMP" THING: "TWO"
NAME: "BASEBALL" NAME: "THREE"

CALL
THING: "SHEEP"
NAME: "SUGAR"

I AM GOING TO WRITE OUT SOME SENTENCES WITH SOME MISSING WORDS. @
YOU TYPE IN THE WORD WHICH SHOULD BE PUT IN THE BLANK SPACE SOTHAT THE
S ENTENCE WILL MAKE SENSE. @
YOU MUST CHOOSE YOUR WORD FROM THE LIST ABOVE. @

I. HATE VEGETABLES BUT MY MOTHER MAKES ME EAT " " ANYWAY.
*STRING BEANS
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
I HATE VEGETABLES BUT MY MOTHER MAKES ME EAT STRING BEANS ANYWAY.

2. HE FELL AND GOT A BIG /- -- - --/ ON HIS HEAD.
*BUMP
HERE IS THE SENTENCE YOU JUST MADE:
HE FELL AND GOT A BIG ON HIS HEAD.
DOESN'T THIS SOUND FUNNY? PLEASE TRY AGAIN.
* BS\ASEBALL
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
HE FELL AND GOT A BIG BUMP ON HIS HEAD.

3. THE COLOR OF THE GRASS IS /
*STRING BEANS
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
THE COLOR OF THE GRASS IS GREEN

Report No. 1889 Bolt Beranek and Newman Inc.

4. I ATE A " " WITH MUSTARD ON IT.
*HOT DOG
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
I ATE A HOT DOG WITH MUSTARD ON IT.

5. ONE AND ONE ARE /
*THREE
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
ONE AND ONE ARE TWO

6. HE SLIPPED ON THE ICE AND BROKE HIS /
*HOT.DOG

.

YOU ARE RIGHT. HERE IS YOUR SENTENCE:
HE SLIPPED ON THE ICE AND BROKE HIS LEG

7. THAT CHAIR HAS A WOBBLY "-- ------
*LEG
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
THAT CHAIR HAS A WOBBLY LEG

8. SOME PEOPLE LIKE " ------ --" AND CREAM IN THEIR COFFEE.
*.S GAR
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:

.
SOME PEOPLE LIKE SUGAR AND CREAM IN THEIR COFFEE.

9. LITTLE BO PEEP HAS LOST HER /
* SUGAR
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
LITTLE BO PEEP HAS LOST HER SHEEP

10. THE RED SOX START PLAYING et " IN A FEW WEEKS.
*BASEBALL
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
THE RED SOX START PLAYING BASEBALL IN A FEW WEEKS.

THAT THE END OF MY LIST OF SENTENCES. SEE YOU LATER.

Report No. 1889

'TEACH -TRE-COMPUTER (LESSON SEVEN)

Bolt Beranek and Newman Inc.

THE COMPUTER ALREADY KNOWS ABOUT SOME PROCEDURES LIKE WORD, SENTENCE,
FIRST, BUTLAST AND SOME OTHERS WE HAVE LEARNED. 0

NOW LET'S TEACH IT SOMETHING NEW, THAT IT DOESN'T KNOW ALREADY. @

FIRST WE HAVE TO TELL IT THAT WE ARE GOING TO TEACH IT SOMETHING NEW. I

WILL SHOW YOU HOW TO DO THIS.

FIRST I WILL TYPE THE WORD - TO.

TO

THEN I WILL GIVE THE NEW PROCEDURE A NAME. THE NAME OF MY NEW PROCEDURE
IS SPELLCAT. P

TO SPELLCAT

NOW I AM GOING TO TELL IT WHAT SPELLCAT IS SUPPOSED TO DO. I WANT
SPELLCAT TO DO THREE THINGS IN ORDER.@

I WILL NUMBER EACH STEP SO THE COMPUTER WILL KNOW THE RIGHT ORDER TO DO
THESE THINGS.

TO SPELLCAT
10 PRINT "C"
20 PRINT "A"
30 PRINT "T"

NOW I HAVE TOLD THE COMPUTER THE THREE THINGS WHICH SPELLCAT SHOULD DO.
P

NOW I WILL TYPE END, TO LET THE COMPUTER KNOW I HAVE FINISHED TELLING
IT HOW TO SPELLCAT. 0

TO SPELLCAT
10 PRINT "C"
20 PRINT "A"
30 PRINT "T"
END

Report No. 1889 Bolt Beranek and Newman Inc.

THE COMPUTER WILL NOW TYPE BACK SPELLCAT DEFINED. IT IS TELLING ME
THAT IT NOW UNDERSTANDS SPELLCAT. e

HERE IS THE WAY IT WILL LOOK.

TO SPELLCAT
10 PRINT "C"
20 PRINT "A"
30 PRINT "T"
END
SPELLCAT DEFINED

NOW LET'S TRY THIS PROCEDURE TO SEE WHAT IT WILL DO. YOU TYPE -
SPELLCAT.,

*SPELLCAT
C

A
T

NOW TRY WkITING YOUR 0',.!v THING. HERE IS f SUGGESTION IF YOU NEED ONE

YOU MIGHT WRITE A PROCEDURE WHIN COUNTS LIKE THIS:

ONE
TWO
THREE
FM:
FIVE

GOOD LUCX0 HOPE YOU TEACH NE LOTS OF Nt7W FUN THINGSe
"TO NU!1BER
> 10 PRINT "o"

>20 PRINT "N"
30 PRIMT\\NT

> END
NUnER DEFINED
"NUB\MBER
0
N

filEtc

-8o-

Report No. 1889 Bolt Beranek and Newman Inc.

*-EXPLAIN (LESSON EIGHT)

HERE ARE SOME PROCEDURES THAT DON'T DO ALL THE THINGS THEY WERE
SUPPOSED TO DO.

THERE ARE SIX PROCEDURES. HERE ARE THEIR TITLES:

JOKE
HOPSKIP
COUNT-TO-FIVE
SPELLDOWN
REVCAT
REVDOG

YOU ARE TO DO FIVE THINGS WITH EACH PROCEDURE: @

1. TRY OUT THE PROCEDURE BY TYPING ITS NAME. THIS WILL TELL YOU WHAT
THE PROCEDURE DOES NOW. @

2. TYPE THE PROCEDURE NAME AGAIN, BUT THIS TIME PUT A 1 AT THE END OF
THE NAME. EXAMPLE: JOKE1 - THIS WILL SHOW YOU WHAT THE PROCEDURE WAS
SUPPOSED TO DO. @

3. LIST THE PROCEDURE BY TYPING LIST EXAMPLE: LIST REVDOG. THIS
W ILL LET YOU LOOK AT THE STEPS IN THE PROCEDURE SO YOU CAN SEE WHAT IS
M ISSING. 0

4. EDIT THE PROCEDURE. YOU ARE TO CORRECT THE PROCEDURE TO MAKE IT
RIGHT. 0

S. TEST THE PROCEDURE YOU JUST WROTE TO SEE IF IT DOES WHAT IT WAS
SUPPOSED TO DO. 0

JOKE
QUESTION: WHAT DID THE BIG CHIMNEY SAY TO THE LITTLE CHIMNEY?
&JOKE!
OnYTON: WHAT DID THE BIG CHIMNEY SAY TO THE LITTLE CHIMNEY?
ANSWER: YOU'RE TOO YOUNG TO SMOKE.
-LIST JOKE

ISO...111.

TO JOKE
10 PRINT "QUESTION: WHAT DID THE BIG CHI.JEY SAY TO THE LITTLE CHIMNEY?
END

-EDIT JOKE
>TY PRINT"ANSER:YOU'RE TO YOUNG TO SMOKE.
>END .

JOKE DEFINED
JOKE
QUESTION: WHAT DID THE BIG CHIMNEY SAY TO THE LITTLE CHIMNEY?
ANSER:YOU'RE TO YOUNG TO SMOKE.

-81-

Report No. 1889

HOPSKIP
HOP

HOP
HOP
.HOPSKIP1
HOP

HOP

HOP

LIST HOPSKIP

TO HOPSKIP
10 PRINT "HOP"
20 PRINT ""
30 PRINT "HOP"
50 PRINT "HOP"
END

-EDIT HOPSKIP
>40 PRINT ""
>END
HOPSKIP DEFINED
0.HOPSKIP
HdP

HOP

HOP
COUNT-TO-FIVE
ONE
THREE
FIVE
*.COUNT-TO -FIVE1
ONE
TWO
THREE
FOUR
FIVE

-82-

Bolt Beranek and Newman Inc.

e.LIST COUNT-TO-FIVE

TO COUNT-TO-FIVE
10 PRINT "ONE"
30 PRINT "THREE"
50 PRINT "FIVE"
END

'-EDIT COUNT-TO-FIVE
>20 PRINT "TWO"
>40 PRINT "FOUR"
>END
COUNT -TO -FIVE DEFINED
e.COUNT -TO -FIVE
ONE
TWO
THREE
FOUR
FIVE

REVCAT
T
A
.REVCAT1
T
A
C

LIST REVCAT

TO REVCAT
10 PRINT LAST OF "CAT"
20 PRINT LAST OF RUTLAST OF "CAT"
END

-EDIT REVCAT
> 30 PRINT FIRSY\T OF "CAT"
> END
REVCAT DEFINED
REVCAT

A

Report No. 1889

USENUMBERS (LESSON NINE)

Bolt Beranek and Newman Inc.

THIS LESSON IS TO HELP YOU REVIEW SOME PROCEDURES CALLED COUNT, SUM,
AND DIFFERENCE. @

TO MAKE THE TYPING EASIER, WE WILL USE THE ABBREVIATION FOR DIFFERENCE:
DIFF. @

PRETEND YOU ARE THE COMPUTER. GIVE THE ANSWER YOU THINK THE COMPUTER
WOULD GIVE, IN EACH CASE. @

PRINT COUNT OF "SOP"

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF "ELEPHANT"
* 7

Not WHAT THE COMPUTER WOULD HAVE DONE. GIVE IT ANOTHER WHIRL.
*8
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF "INDIANAPOLIS"
* 12

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF "THIS MONTH IS APRIL."
* 16

LOOK AGAIN, AND TRY AGAIN PLEASE
*4
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF "APRIL"
* 5

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT SUM OF "8" AND "7"
*il
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT SUM OF "20" AND "100"
*300'
I DON'T THINK THE COMPUTER AGREES WITH YOU. PLEASE TRY AGAIN.
*120
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT DIFF OF "12" AND "8"
* 4

GOOD FOR YOU. HERE IS THE NEXT ONE.

-83-

Report No. 1889 Bolt Beranek and Newman Inc.

DECODE (LESSON TEN)

HERE IS ANOTHER MESSAGE FOR YOU TO DECODE. .0

........ 11111010 MMODIMO WM GM GM 0111611 =SIAM. 411MM! IMM.1011110 ,

PRETEND YOU ARE THE COMPUTER AND GIVE THE ANSWER YOU THINK THE COMPUTER

W OULD GIVE.@

PRINT BUTFIRST OF BUTLAST OF "HORN"
*OR

-10R --- -a-.

OW.
PRINT BUTFIRST OF BUTLAST OF "FOUL"
*OU

OR UtJ --- -0R -ou, p

6OU OW.
PRINT LAST OF "FLY"
*Y
---OR-OW --Y "OR YOU. YOU --- '''Y
gft OU OW.
PRINT WORD OF FIRST OF "I T" AND LAST OF "BOSS"
*IS
---OR-OW IS ---- --Y -OR YOU. YOU --- ---Y
- OU OW.
PRINT FIRST OF BUTFIRST (W "AGREE"
*G
---OR-OW IS G--- --Y -OR YOU. YOU --- ---Y ---G---*
-0U-------OW.
PRINT BUTPIRST OF BUTFIRt;T OF "PLAN"
*AN
- - -OR' I -G-- --Y - -OR YOU. YOU -AN --Y -ANG-AN, -----Y- ---p --- O

-
OR

OU OW.

PRINT BUTFIRST OF BUTLAST OF BUTLAST OF "SPLASH"
*PLA
TOMORROW IS GAME DAY FOR YOU. YOU CAN PLAY HANGMAN, THIRTY -ONE, NI M, OR

FOURIN-ROW.
PRINT FIRST OF LAST OF "THIS IS ALL."
*A
TOMORROW IS GAME DAY FOR YOU. YOU CAN PLAY HANGMAN, THIRTYONE* NIM* OR

F OURINAROW.
CONGRATULATIONS. YOU HAVE SOLVED THE MYSTERY. HAVE YOU DECIDED WHAT YOU
W ANT TO PLAY TOMORROW?

-84-

Report No. 1889 Bolt Beranek and Newman Inc.

PRACTICE (LESSON ELEVEN)
IAM GOING TO SHOW YOU SOME PROCEDURES WHICH NEED TO BE FIXED. I HOPE
YOU CAN HELP ME. @

FIRST I WILL SHOW YOU WHAT THE PROCEDURE DOES.@

THEN I WILL LIST THE PROCEDURE. @

THEN I WILL ASK FOR HELP. YOU CAN HELP ME BY GIVING ME THE LINE NUMBER
WHICH WILL ANSWER THE QUESTION. @

HERE WE GO! IF YOU ARE PUZZLED, TRY A FEW AND YOU WILL SEE HOW THIS
WORKS.

THE FIRST PROCEDURE IS CALLED SHRINK. I WILL SHOW YOU WHAT IT DOES.

SHRINK
XXXXXXX
XXXXXX
XXXX
XXXX
XXX
XX
X

HERE IS A LISTING OF THE PROCEDURE.

LIS!' SHRINK

TO SHRINK
10 PRINT "XXXXXXX"
20 PRINT "XXXXXX"
30 PRINT "XXXX"
40 PRINT "XXXX"
50 PRINT "XXX"
60 PRINT "XX"
70 PRINT "X"
END

QUESTION: WHICH LINE SHOULD BE CHANGED SO THAT PATTERN WILL LOOK RIGHT?
*30

AMMON

THANK YOU. WILL YOU HELP ME ON THE NEXT ONE?

-85-

Report No. 1889 Bolt Beranek and Newman Inc.

HERE I S ANOTHER PROCEDURE CALLED SAW.

SAW
X

XX
XXX
XXXX
XXX
XX
X

HERE I S A LISTING OF SAW.
LIST SAW

TO SAW
10 PRINT "X"
20 PRINT "XX"
30 PRINT "XXX"
40 PRINT "XXXX"
50 PRINT "XXX"
60 PRINT "XX"
70 PRINT "X"
80 PRINT
90 PRINT "X"
100 PRINT "XX"
110 PRINT "XXX"
120 PRINT "XXXX"
130 PRINT "XXX"
140 PRINT "XX"
150 PRINT "X"
160 PRINT
170 PRINT "X"
180 PRINT "XX"
190 PRINT "XXX"

-86-

Report No. 1889

200 PRINT "XXXX"
210 PRINT "XXX"
220 PRINT "XX"
230 PRINT "X"
END

Bolt Beranek and Newman Inc.

QUESTION: WHICH LINES WOULD YOU ERASE SO THAT THE DESIGN WILL BE JOINED
TOGETHER LIKE A REAL SAW?
*pc) 160
THANKS AGAIN. YOU ARE A GREAT HELP.

HERE IS THE THIRD PROCEDURE. IT IS CALLED ALPHABETICAL.

ALPHABETICAL
ALAN
BILL
DAVID
GEORGE
FRED

LIST ALPHABETICAL

TO ALPHABETICAL
10 PRINT "ALAN"
20 PRINT "BILL"
30 PRINT "DAVID"
40 PRINT "GEORGE"
50 PRINT "FRED"
END

I HAVE THREE QUESTIONS ABOUT THIS PROCEDURE. THE FIRST IS -- WHICH LINE
IS OUT OF ORDER?
*50
THAT'S GOOD, THANKS.

QUESTION 2: WHAT NUMBER WOULD YOU GIVE THAT LINE TO PUT IT IN THE RIGHT
PLACE?
*39
YOU'RE SO RIGHT. HERE'S QUESTION 3: WHAT NUMBER WOULD YOU GIVE TO THE

INSTRUCTION - PRINT "CHARLES"
*21

THANK YOU FOR YOUR HELP. YOU COULD HELP ME EVEN MORE IF YOU HAVE TIME,

BY MAKING THE CORRECTIONS FOR ME IN EACH OF THE PROCEDURES.

Report No. 1889

*.REVIEW

Bolt Beranek and Newman Inc.

HERE IS A PROCEDURE WITH SEVERAL INSTRUCTIONS. THE PROCEDURE IS CALLED
REVIEW1. @

I WILL LIST THE PROCEDURE REVIEW-1 FOR YOU, WHEN YOU ARE READY. @

TO REVIEW1
10 PRINT "COMPUTER"
20 PRINT "LOGO IS A COMPUTER LANGUAGE"
30 PRINT FIRST OF "COMPUTER"
40 PRINT LAST OF "COMPUTER"
50 PRINT BUTFIRST OF "COMPUTER"
60 PRINT BUTLAST OF "COMPUTER"
70 PRINT FIRST OF "COMPUTER LANGUAGE"
80 PRINT LAST OF "COMPUTER LANGUAGE"
END

PRETEND YOU ARE THE COMPUTER. I WILL ASK YOU A QUESTION ABOUT EACH
LINE. TELL ME WHAT YOU WOULD ANSWER. @

READY? HERE WE GO.
WHAT SHOULD THE COMPUTER ANSWER WHEN IT READS LINE 10?
*COMPUTER

GOOD. NOW WHAT WOULD IT DO WITH LINE 20?
*LOGO IS A COMPUTER LANGUAGE

GREAT! NOW, HOW ABOUT LINE 30?
*C

WHAT WOULD YOU DO WITH LINE 40?
*R

GOOD FOR YOU! NOW TRY LINE 50.
*OMPUTER

Report No. 1889 Bolt Beranek and Newman Inc.

VERY GOOD. LOOK NOW AT LINE 60.
*p
SOMETHING IS NOT RIGHT. TRY AGAIN.
* COMPUTE

NOW FOR LINE 70
* COMPUTER

HOW ABOUT THE LAST ONE, LINE 80?
*LANGUAGE

NOW THAT YOU KNOW WHAT EACH LINE OF THE PROCEDURE SHOULD DO, TRY OUT
THE PROCEDURE AND SEE WHAT HAPPENS. IN ORDER TO TRY OUT THIS PROCEDURE,
JUST TYPE ITS NAME.
*LOGO
THAT DOESN'T SEEM TO BE QUITE RIGHT. TRY AGAIN.
*REVIEW-1
COMPUTER
LOGO IS A COMPUTER LANGUAGE
C
R
OMPUTER
COMPUTE
COMPUTER
LANGUAGE

IF YOU HAVE MORE TIME, TRY ADDING A FEW LINES TO THIS PROCEDURE.

EDIT REVIEW-1
>90 PRIM\NT FIRST OF LOGOWW\\\\\\"LOGO"
>100 PRINT BUTFIRST OF LOGO\\\\"LOGO"__
>END
REVIEW-1 DEFINED
-REVIEW -1
COMPUTER
LOGO IS A COMPUTER LANGUAGE
C
R
OMPUTER
COMPUTE
COMPUTER
LANGUAGE
L
OGO

-89-

Report No. 1889 Bolt Beranek and Newman Inc.

0-LEARNDOUBLE (LESSON TWELVE)

HERE IS A PROCEDURE WHICH WILL PRINT DOUBLE THE WORD - "CAT" @

WHEN YOU ARE READY, I WILL TRY THE PROCEDURE FOR YOU. THEN I WILL SHOW
IT TO YOU. @

DOUBLECAT
CATCAT

LIST DOUBLECAT

TO DOUBLECAT
10 PRINT WORD OF "CAT" AND "CAT"
END

NOW IT'S YOUR TURN. YOU CAN RUN DOUBLECAT YOURSELF IF YOU LIKE. THEN
TRY TO WRITE YOUR OWN PROCEDURE - DOUBLEDOG. @

WHEN YOU ARE SURE DOUBLEDOG WORKS, TYPE - MORE - AND YOU WILL GET MORE
INSTRUCTIONS.
*.TO DOUBLEDOG
>20 PRINY\T WORD OF "DOG" AND "DOG"
>END
DOUBLEDOG DEFINED
DOUBLEDO

DOGDOG
-MORE
THIS TIME WRITE A PROCEDURE WHICH WILL DOUBLE "HA". YOU CAN CALL IT
DOUBLEHA IF YOU WISH. WHEN YOU KNOW IT WORKS, TYPE - MORE - AGAIN.
TO DOUBLEHA

> 70 PRINT WORD OF "HA" AND "HA"
> END

DOUBLEHA DEFINED
o-DOUBLEHA
HAHA
-MORE
NOW WRITE A PROCEDURE WHICH WILL DOUBLE YOUR NAME. FOR EXAMPLE, IF MY
NAME WERE JOE, I WOULD CALL MY PROCEDURE DOUBLEJOE. WHEN YOU ARE SURE
YOUR PROCEDURE WORKS, TYPE - NEWIDEA.
TO DOUBLERUTH-ANNE

>900 PRINT WORD OF' "RUTH-ANNE" AND "RUTH-ANNE"
> END

DOUBLERUTH-ANNE DEFINED
'-DOUBLERUTH -ANNE
RUTH-ANNERUTH-ANNE

-90-

Report No. 1889 Bolt Beranek and Newman Inc.

4-NEWIDEA

DOESN'T IT SEEM LIKE A LOT OF WORK TO HAVE TO WRITE A NEW PROCEDURE

EVERY TIME WE WANT TO DOUBLE A WORD? Es

TT CERTAINLY WOULD BE EASIER IF WE HAD ONE PROCEDURE WHICH WOULD DOUBLE

ANY WORD WE GAVE IT. WE CAN WRITE ONE. SO LET'S! @

THE SECRET IS TO USE A NAME WHICH WILL STAND FOR ANY WORD WE WANT. @

HERE IS THE PROCEDURE:

LIST DOUBLE

TO DOUBLE /ANYWORD/
10 PRINT WORD OF /ANYWORD/ AND /ANYWORD/
END

NOW YOU TYPE DOUBLE "CAT"
*DOUBLE "CAT"
CATCAT

WHEREVER /ANYWORD/ APPEARS IN THE PROCEDURE, "ANYWORD" BECOMES THE NAME

OF "CAT"

NOW TRY DOUBLE WITH LOTS OF OTHER WORDS AND SEE WHAT HAPPENS. WHEN YOU

ARE READY TO TRY SOMETHING NEW, TYPE SUGGESTION.
-DOUBLE "HE IS A NICE BOY"
YOU CAN'T MAKE A WORD OUT OF A SENTENCE. (LOGO complains to the student)

I WAS AT LINE 10 IN DOUBLE. (But, of course, he accepts the
-DOUBLE "HE I\\ISANICEBOY" challenge. He gives LOGO an accept
HEISANICEBOYHEISANICEBOY able word by squeezing together the

-SUGGESTION words in his sentence.)

TRY WRITING A NEW PROCEDURE CALLED DOUBLEFIRST. 0

DOUBLEFIRST WILL DOUBLE THE FIRST LETTER OF THE WORD YOU GIVE IT AS

INPUT. 0

FOR EXAMPLE, IF YOU TELL IT DOUBLEFIHST "JOE" IT WILL REPLY JJOE. 0

*-TO DOUBLEFIRST

>10 PRINT WORD OF FIRST OF /ANYWORD/ AND /ANYWORD/
>END
DOUBLEFIRST DEFINED
-DOUBLEFIRST OF "JIM"
JJIM

-91-

Report No. 1889 Bolt Beranek and Newman Inc.

USEI NPUT (LESSON THIRTEEN)

HERE IS A PROCEDURE YOU MAY HAVE SEEN BEFORE. I WILL LIST IT FOR YOU. @

TO JOHN
10 PRINT "JOHN IS MY FRIEND."
20 PRINT "JOHN GOES TO EMERSON SCHOOL."
30 PRINT "JOHN IS IN GRADE THREE."
40 PRINT "JOHN IS VERY SMART.
END

IN ORDER TO MAKE THE PROCEDURE JOHN WO:?K, ALL YOU MUST DO IS TYPE
-JOHN. TRY IT.

*JOHN
JOHN IS MY FRIEND.
JOHN GOES TO EMERSON SCHOOL.
JOHN IS IN GRADE THREE.
JOHN IS VERY SMART.

HERE IS ANOTHER PROCEDURE CALLED ADDON. I WILL LIST IT FOR YOU WHEN
YOU ARE READY. @

TO ADDON /WHO/
10 PRINT SENTENCE OF /WHO/ AND "IS MY FRIEND.
20 PRINT SENTENCE OF /WHO/ AND "GOES TO EMERSON SCHOOL."
30 PRINT SENTENCE OF /WHO/ AND "IS IN GRADE THREE"
40 PRINT SENTENCE OF /WHO/ AND "IS VERY SMART"
END

IN ORDER TO MAKE THIS PROCEDURE WORK, YOU MUST TYPE IN THE NAME OF THE
PROCEDURE AND SOMETHING ELSE. @

YOU MUST TELL THE COMPUTER WHAT /WHO/ IS. YOU MUST TELL IT WHAT THING
THE NAME "WHO" STANDS FOR. 0

FOR EXAMPLE, IF YOU WANT THE NAME "WHO" TO STAND FOR "JOHN" THEN YOU
MUST TYPE ADDOM "JOHN"

YOU TYPE -- ADDON "JOHN" -- AND SEE WHAT HAPPENS.

*ADDON "JOHN"
JOHN IS MY FRIEND.
JOHN GOES TO EMERSON SCHOOL.
JOHN IS IN GRADE THREE
JOHN IS VERY SMART

NOW TRY ANOTHER INSTRUCTION OF YOUR OWN USING ADDON AND ANY INPUT YOU
WANT .

-92-

Report No. 1889 Bolt Beranek and Newman Inc.

*ADDON "TOMMY"
TOMMY IS MY FRIEND.
TOMMY GOES TO EMERSON SCHOOL.
TOMMY IS IN GRADE THREE
TOMMY IS VERY SMART

TRY ONE MORE.

*ADDON "RUTH"
RUTH IS MY FRIEND.
RUTH GOES TO EMERSON SCHOOL.
RUTH IS IN GRADE THREE
RUTH IS VERY SMART

NOW WE HAVE LOOKED AT TWO PROCEDURES.
THE FIRST ONE JOHN - HAS NO INPUTS. WE JUST TYPE THE NAME OF THE

PROCEDURE TO MAKE.IT WORK.
THE SECOND ,ONE ADDON . TAKES ONE INPUT. WE MUST TELL THE COMPUTER
WHAT THE NAME STANDS FOR.
NOW LET US LOOK AT A THIRD PROCEDURE. 0

TO ADDMORE /WHO/ AND /WHERE/
10 PRINT SENTENCE OF /WHO/ AND "IS MY FRIEND."
20 PRINT SENTENCE OF /WHO/ AND SENTENCE OF "GOES TO" AND /WHERE/
30 PRINT SENTENCE OF /WHO/ AND "IS IN GRADE THREE."
40 PRINT SENTENCE OF /WHO/ AND "IS VERY SMART."
END

YOU CAN SEE THAT THIS PROCEDURE NEEDS TWO INPUTS. YOU MUST TELL IT WHAT
"WHO" STANDS FOR AND WHAT "WHERE" STANDS FOR. 0

IN ORDER TO MAKE THIS PROCEDURE WORK, YOU MUST GIVE IT AN INSTRUCTION
LIKE THIS ADDMORE "JOHN" "ANGIER SCHOOL"
YOU TRY THIS AND SEE WHAT HAPPENS.

* ADDMORE "JOHN" "ANGIER SCOO\\HOOL"
JOHN IS MY FRIEND.
JOHN GOES TO ANGIER SCHOOL
JOHN IS IN GRADE THREE.
JOHN IS VERY SMART.

WHEN YOU SEE THE ARROW, TRY SOME OTHER INPUTS WITH THIS PROCEDURE. @

Report No. 1889 Bolt Beranek and Newman Inc.

-PRRT (LESSON FOURTEEN)

THERE ARE TWO WAYS TO WRITE THE PROCEDURE - DOUBLE. WE HAVE ALREADY
WORKED WITH ONE OF THESE WAYS. HERE IT IS. @

TO DOUBLE-1 /ANYWORD/
10 PRINT WORD OF /ANYWORD/ AND /ANYWORD/
END

TEST DOUBLE-I TO SEE IF IT WORKS.
*DOUBLE-I "SET"
SETSET

NOW LOOK AT ANOTHER PROCEDURE WHICH WILL DO WHAT DOUBLE DOES, WHEN YOU
GIVE IT THE RIGHT INSTRUCTION. @

TO DOUBLE-2 /ANYWORD/
10 RETURN WORD OF /ANYWORD/ AND /ANYWORD/
END

LOOK VERY CAREFULLY AT THIS PROCEDURE TO FIND OUT HOW IT IS DIFFERENT
FROM DOUBLE-1. @

DID YOU NOTICE THAT DOUBLE-I SAYS 'PRINT' WHILE DOUBLE-2 SAYS 'RETURN'?
'RETURN' TELLS THE COMPUTER - BRING SOMETHING BACK TO ME -- BUT IT DOES
NOT TELL THE COMPUTER TO WRITE ANYTHING. @

HERE ARE SOME EXAMPLES OF HOW THE WORD 'RETURN' MAKES A DIFFERENCE @

YOU TYPE -- DOUBLE-2 "BOOK"
*DOUBLE-2 "BOOK"

YOU SAW THAT THE COMPUTER DID NOT PRINT A REPLY. IT DID RETURN AN
ANSWER WHICH YOU CANNOT SEE. @

WE CAN GET IT TO PRINT THIS ANSWER BY TYPING - PRINT DOUBLE-2 "BOOK"
TRY THIS AND SEE.
*PRINT DOUBLE-2 "BOOK"
BOOKBOOK.

Report No. 1889 Bolt Beranek and Newman Inc.

NOW YOU CAN SEE THAT DOUBLE-1 AND DOUBLE-2 WILL DO THE SAME THING.
HOWEVER YOU MUST ASK THE COMPUTER TO PRINT DOUBLE-2 TO GET IT TO WRITE
OUT AN ANSWER. DOUBLE-1 HAS THE PRINT COMMAND IN ITS PROCEDURE, SO YOU
DO NOT HAVE TO ASK IT PRINT. @

YOU MUST BE WONDERING WHY WE SHOULD BOTHER TO USE 'RETURN' AT ALL. IT
DOES SEEM EASIER TO WRITE PROCEDURES LIKE DOUBLE-1. WHEN YOU DO THE
NEXT LESSON, YOU WILL SEE WHAT THE DIFFERENCE IS, AND WHY WE NEED TO
USE 'RETURN' MOST OF THE TIME, RATHER THAN 'PRINT' IN OUR PROCEDURES.

-DOUBLE-1 DOUBLE-1 "DOG" (This didn't work as expected - the
DOGDOG procedure DOUBLE-1 does not return

it1 answer - it merely prints it.)
DOU4E72 DOUBLE-2 "DOG" (But this one works! The procedure

DOGDOGDOGDO1 DOUBLE-2 when performed on "DOG"
rc;',11,ns answer "DOGDOG" as input
G the 7)aT,E-2, which returns

" (1DOGDOG", to PRINT
which '1.4x it

-95-

- . .

Report No. 1889 Bolt Beranek and Newman Inc.

USE (LESSON FIFTEEN)
I AM GOING TO SHOW YOU SOME PROCEDURES AND ASK YOU TO PRETEND TO BE THE
COMPUTER. @

HERE IS THE FIRST PROCEDURE.

LIST MYSTERY-1

TO MYSTERY-1 /ANYWORD/
10 PRINT WORD OF BUTFIRST OF /ANYWORD/ AND FIRST OF /ANYWORD/
END

IF YOU WERE THE COMPUTER, WHAT WOULD YOU ANSWER IF YOU WERE GIVEN THIS
INSTRUCTION:
MYSTERY-1 "SOAK"
* SOAK
PLEASE TRY AGAIN.
*OAKS

GREAT! HERE IS THE NEXT QUESTION. WHAT WOULD YOU ANSWER TO THIS
INSTRUCTION:
MYSTERY-1 312"
*123

RIGHT!*HERE IS THE LAST QUESTION ABOUT THIS PROCEDURE. WHAT WOULD YOU
ANSWER?
MYSTERY-1 "EAR"
*ARE

GOOD FOR YOU. NOW LET'S LOOK AT ANOTHER PROCEDURE.

LIST MYSTERY-2

TO MYSTERY-2 /FIRST WORD/ AND /SECOND WORD/
10 PRINT WORD OF /SECOND WORD/ AND /FIRST WORD/
END

THE FIRST QUESTION:
MYSTERY-2 "AT" AND "BE"
*BEAT

RIGHT! NEXT QUESTION:
MYSTERY-2 "12" AND "24"
*2412

-96-

Report No. 1889 Bolt Beranek and Newman Inc.

YES! NOW TRY THIS ONE:
MYSTERY-2 "EN" AND "D"
*DEN

GOOD! NOW HERE IS THE THIRD PROCEDURE:

LIST MYSTERY-3

TO MYSTERY-3 /FIRST NUMBER/ AND /SECOND NUMBER/ AND /SIGN/
10 PRINT WORD OF /FIRST NUMBER/ AND WORD OF /SIGN/ AND /SECOND NUMBER/
END

FIRST QUESTION:
MYSTERY-3 "5" AND "9" AND "+"
*5+9

GREAT! SECOND QUESTION:
MYSTERY-3 "6" AND "12" AND ""
*6-t2

RIGHT! HERE IS THE LAST QUESTION:
MYSTERY-3 "1" AND "2" AND "/"
*1/2

NOW THAT YOU HAVE DONE SO WELL ON THIS GROUP, TYPE -- NEXT -- TO GET
ANOTHER SET OF MYSTERY PROCEDURES.
*-NEXT

1111111111Ileu

I HAVE THREE MYSTERY PROCEDURES -- MYSTERY-4, MYSTERY-5, AND MYSTERY-6.

FIRST YOU ARE TO LIST MYSTERY-4. 0.

THEN YOU ARE TO TRY MYSTERY-4 WITH YOUR OWN INPUTS. 0

WHEN YOU ARE SURE THAT YOU CAN GET MYSTERY-4 TO WORK WITHOUT ANY
COMPLAINTS FROM THE COMPUTER, DO THE SAME THING WITH MYSTERY-5. 0

FINALLY, WHEN MYSTERY-5 WORKS, DO THE SAME THING WITH MYSTERY-6. 0

GOOD LUCK! WHEN YOU HAVE FINISHED, TYPE -- SURPRISE -- FOR SOME FUN.

41-SURPRISE
I HAVE FIVE MORE SHORT MYSTERY PROCEDURES FOR YOU. THEY ARE CALLED
SURPRISE-1, SURPRISE-2, SURPRISE-3, SURPRISE-4, AND SURPRISE-5. 0

I HAVE HIDDEN THEM SO YOU CANNOT SEE THE INSTRUCTIONS OF EACH
PROCEDURE. BUT I WILL LET YOU LOOK AT THE TITLES. @

-97-

Report No. 1889 Bolt Beranek and Newman Inc.

TO SEE WHAT EACH SURPRISE PROCEDURE WILL DO, YOU MUST FIRST LIST THE
PROCEDURE. JUST TYPE, FOR EXAMPLE, -- LIST SURPRISE-1.@

THEN TRY OUT PROCEDURE - SURPRISE-1 - WITH THE RIGHT INSTRUCTIONS, AND
YOU WILL SEE WHAT IT DOES. @

AFTER SURPRISE-1 WORKS FOR YOU, TRY SURPRISE-2, SURPRISE-3, SURPRISE-4,
AND SURPRISE-5. HAVE FUN!
g-LIST SURPRISE-1

TO SURPRISE-1 /BOY'S NAME/ AND /GIRL'S NAME/ (only the title line,
which lists the input
names, is visible)

*-SURPRISE-1 "LISA" "TONY"
LISA LIKES TONY
A.IST SURPRISE-2

TO SURPRISE-2 /YOUR FIRST NAME/ AND /ONE KIND OF FOOD/

*-SURPRISE-2 "JAY" "PIZZA"
JAY'S FAVORITE FOOD IS PIZZA
q-SURPRISE-2 "JAY" "CHINESE FOOD"
JAY'S FAVORITE FOOD IS CHINESE FOOD
'-LI ST SURPRISE-3

TO SURPRISE-3

o-SURPRISE-3
THE TIME IS NOI.A: 1:46 PM
4-LIST SUr;PRISF-4

TO SUkPRISE-4 /YOUR LAST NAME/

4-SURPRISE-4 "RORGES"
SEGMA
4-LIST SURPPISE-5

(It's not at all likely, from this
sinFle trial of. SURPRISE-4 that the
student could "see what it does")

TO SURPRISE-5 /FIRST NUMBER/ AND /SECOND NUMBER/ AND /THIRD NUMBER/

+.SURPRISE-5 "1" "7"
100 70 5 = 175

(A little more likely here.)

-98-

Report No. 1889 Bolt Beranek and Newman Inc.

-LIST MYSTERY-4

TO MYSTERY-4 /FIRST NAME/ AND /MIDDLE NAME/ AND /LAST NAME/
10 PRINT WORD OF FIRST OF /FIRST NAME/ AND WORD OF FIRST OF /MIDDLE

NAME/ AND FIRST OF /LAST NAME/
END

-MYSTERY-4 M\"MARY" AND "JAYE" AND "SIMMS"
MJS
MYSTERY-4 "STEVEN" "HOWARD" "EPSTEIN"__

SPIT

-LIST MYSTERY-5

TO MYSTERY-5 /NUMBER/
10 PRINT DIFFERENCE OF /NUMBER/ AND /NUMBER/
END

MYSTERY-5 "13"
0
MYSTERY -5 "12345600"

0

-LIST MYSTERY-6

TO MYSTERY-6 /BIRTH MONTH/ AND /DAY/ AND /AGE/
10 PRINT SENTENCE OF "MY BIRTHDAY IS" AND SENTENCE OF /BIRTH MONTH/ AND

/DAY/
20 PRINT SENTENCE OF "I AM" AND SENTENCE OF /AGE/ AND "YEARS OLD."
END

.MYSTERY -6 "JUNE" "5" "Er:
MY BIRTHDAY IS JUNE 5
I AM B YEARS OLD.
*.MYSTERY-6 "MAY" "1" "190"
MY BIRTHDAY IS MAY 1

I AM 190 YEARS OLD.

vim loco

MYSTERY-6 "EAT2" "123" cin m0

MY BIRTHDAY IS EA "2 10-
I AM 1000000000 YEARS OLD.

(How does one say that
number? The teacher helps.)

Report No. 1889

4-SP (LESSON SIXTEEN)

Bolt Beranek and Newman Inc.

HERE ARE SOME SUGGESTIONS FOR PROCEDURES WHICH YOU MIGHT WRITE. 0

THE FIRST PROCEDURE IS ANOTHER KIND OF DOUBLE PROCEDURE. THIS
PROCEDURES IS CALLED 'DBL. AND WILL DOUBLE ANY NUMBER. 0

HERP- IS AN EXi; APLP OF HOW DBL WORKS. YOU TYPE -- DBL "4"
*DBL "4"
8

NOW TRY DBL AGAIN BY TYPING -- DBL AND ANY NUMBER YOU CHOOSE.
*DBL "25"
50

NOW I HAVE ERASED MY PROCEDURE - DBL. WHEN YOU SEE THE ARROW, IT IS
YOUR TURN TO WRITE A PROCEDURE - DBL - WHICH WILL DO WHAT MY DBL DOES.
@

WHEN YOU ARE SURE YOUR DBL WORKS, TYPE -- NEXT - TO SEE MY NEXT
PROCEDURE.

'-LIST DBL (It was erased!)
DBL ISNGT DEFINED.
TO DBL ANY NUMBER

YOU NEED / MARKS AROUND EACH ARGUMENT.

4TO DBL /ANY NUMBER/
>10 PRINT SUM OF /ANY NUMBER/ AND /ANY NUMBER/
>END

4-DBL 14
28
'-DEL "5"
10
*.DBL "345"
690
*-DBL "1234567890"
2469:35780
4-DBL "0987654321"
1975306642
EXT

Report No. 1889 Bolt Beranek and Newman Inc.

THE NEXT PROCEDURE IS CALLED SECOND. IT PRINTS THE SECOND LETTER OF ANY
W ORD YOU GIVE IT. @

TRY OUT MY PROCEDURE SECOND. YOU TYPE -- SECOND "JUMP"
* SECOND "JUMP"
U

HERE IS ANOTHER CHANCE TO TRY OUT MY PROCEDURE SECOND. TYPE -- SECOND
"HELLO"
* SECOND "HELLO"

SECOND HAS NOW BEEN ERASED. IT'S YOUR TURN TO WRITE A PROCEDURE CALLED
SECOND WHICH WILL PRINT THE SECOND LETTER OF ANY WORD. HAVE FUN!

WHEN YOU ARE SURE SECOND WORKS, TYPE STILLMORE- FON THE LAST
PROCEDURE.
4-TO SECOND /ANYWORD/
> 10 PRINT SECOND LETTER OF /ANYWORD/ intention was clear -)
> END
SECOND DEFINED
SECOND "ME"

LtTTE-RISNyT DEFINED. .(but not to LOGO!)

I WAS AT LINE 10 IN SECOND.
4-EDIT SECOND (So he edits the procedure
* 10 by giving a valid instruction.
> 10 PRINT FIRST OF BUTFIRST OF /ANYWOht)t
> EN[)

SECOND DEFINED
4-SECOND "ME"

SECOND "SUPERCALAFRAGEALISTICEXPIALADOCHES"

1 SECOND "T"

0-5TILLMORE

(Wow!)

(The answer is Hs the mpty Word.)

HERE IS THE LAST PROCEDURE FOR YOU TO TRY. IT IS CALLED 'ADD.' ADD
TAKES THREE DIFFERENT NUKE. :RS AND ADDS THEM TOGETHER. 0

HERE IS AN EXAMPLE OF HOW ADD WORKS. YOU TYPE - ADD "3" "6"
> ADD "3" "6" "6"
17

118111

Report No. 1889 Bolt Beranek and Newman Inc.

HERE IS ANOTHER CHANCE TO TRY MY PROCEDURE -- ADD. TYPE -- ADD AND ANY
THREE NUMBERS YOU CHOOSE.
*ADD "43" "0" "43"
86

NOW IT'S YOUR TURN AGAIN. ADD IS GONE. PLEASE WRITE ONE OF YOUR OWN. @

WHEN YOU ARE SURE YOUR ADD WORKS, YOU ARE WELL ON YOUR WAY TO BECOMING
A CRACKERJACK PROGRAMMER.!
'-TO ADD /ANYNUMBER/ AND /ANYNUMBER/ AND /ANYNUMBER/ (A beauty of a bug!)
>10 PRINT SUM OF SUM OF /ANYNUMBER/ AND /ANYNUMBER/ AND /ANYNUMBER/
> END

ADD DEFINED
-ADD "7" "7" "1"
21 (What's wrong?)
-ADD "1" "1" "1"
3 (It worked this time!)
'-ADD "12" "12" "1"
36 (But again it failed.)
fEXAMPLE (The teacher intervened here to help

/FIRSTWORD/ AND /SECONDWORD/ explain the difficulty with this
> 10 PRINT WORD OF /FIRSTWORD/ AND /SECONDWORD/ example.)
> END

(Let's write a procedure called TEST)TEST DEFINED

(Here is another way of writing TEST)
TO TEST-1 /FIRSTWORD/ AND /FIRSTWORD/

> 10 PRINT WORD OF /FIRSTWORD / AND /S\FIRSTT\WORD/
> END (Now let's try the two procedures)
TPST-1 nrrrNrn
.-TEST "DOG" "CAT"
DOGCAT (Right!)
4-TEST-1 "DOG ". "CAT"
DOGDOG (Wrong !) (The error is clear - now
'-TO ADD /FIRSTWORD/ AND /SECONDWORD/ AND /THIRDWORD/ we can fix ADD.)
ADD IS ALREADY DEFINED.
4-ERASE ADD (But first we must clear the slate.)
'-TO ADD /FIRSTWORD/ AND /SECONDWORD/ AND /THIRDWORD/
> 10 PRINT SUM OF SUM OF /FIRSTWORD/ AND /SECONDWORD/ AND /THIRDWORD/
> END

ADD
-
DEFINED

'-ADD "3" "2" U
6 (Good!)
M

-102-

Bolt Beranek and Newman Inc.

-TEACHIF (LESSON SEVENTEEN)

IN LOGO WE CAN ASK THE COMPUTER TO DO DIFFERENT KINDS OF WORK. @

WE CAN ASK IT TO TYPE SOMETHING, BY SAYING PRINT. WE CAN ASK IT TO NAME

SOMETHING BY SAYING CALL. @

NOW WE ARE GOING TO LEARN HOW TO ASK IT TO CHECK SOMETHING. 0

SUPPOSE WE WANTED TO FIND OUT IF 5+3=8. WE CAN ASK THE COMPUTER IN

LOGO. 0.

WE DO THIS BY WRITING TWO INITRUCTIONS ON TWO SEPARATE LINES.

THE FIRST INSTRUCTION WOULD BE -- IS SUM OF "5" AND "3" "8"

THE SECOND INSTRUCTION MIGHT BE -- IF YES PRINT "YES"

YOU TYPE IN THE FIRST INSTRUCTION.
* IS CUM OF "5" AND "41\1" "g"
NOW TYPE THE SECOND INSTRUCTION.
* IF YES PRINT "YES"
YES

HERE ARE TWO MORE INSTRUCTIONS FOR YOU TO TYPE:
THE FIRST ONE I S: -- IS FlkST OF "THEE" "1"
THE SECOND ONE IS: -- IF YES PRINT "YES"

* IS FIRST OF TREE "T"
PLEASE TRY AGAIN.
* I S FIRST OF "TREE" "T"
* IF YES PRINT "YES"
YES

HERE IS THE THIRD SET OF INSTRUCTIONS FOR YOU TO TRY:
IS COUNT OF "DOG" "4"
IF YES PRINT "YES"

* IS COUNT OF "DOG" "4"
* IF YES PRINT 2Y\\YES.

WHAT HAPPENED? DID THE COMPUTER RETURN EMPTY? DO YOU KNOW WHY?

IT RETURNED EMPTY BECAUSE IT WAS TOLD TO PRINT YES ONLY IF THE ANSWER
WAS YES. SINCE THE ANSWER WAS NOT YES) IT RETURNED EMPTY. 0

Report No. 1889 Bolt Beranek and Newman Inc.

HERE IS THE LAST SET OF INSTRUCTIONS FOR YOU TO TRY: --
IS LAST OF "TREE" "T"
IF NO PRINT "NO"

*IS LAST OF T\"TREE" "T"
*IF NO PRINT "NO"
NO

IN THIS LAST SET OF INSTRUCTIONS, WE USED - IF NO -- INSTEAD OF - IF

YES. IF NO AND IF YES WORK IN THE SAME WAY.@

LOOK BACK AT THE DIFFERENT INSTRUCTIONS WE HAVE GIVEN THE COMPUTER
USING - IS. IS TESTS TWO THINGS TO FIND OUT IF THEY ARE THE SAME. @

I AM GOING TO ASK YOU TO TRY SOME 'IS' INSTRUCTIONS OF YOUR OWN, BUT I
WILL ALSO GIVE YOU A LIST OF IDEAS THAT YOU CAN WORK WITH. @

HERE IS THE LIST:

IS "LOGO" "%.000"
IS DIFF OF "4" AND "1" "1"
IS WORD OF "CAT" AND "DOG" "CAT DOG"
IS "THIS SCHOOL" "EMERSON"
IS "BLACK" "WHITE"
IS BUTFI RST OF BUTFI RST OF "GAME" "ME"
IS /BLUE/ /BLUE/
IS /GREEN/ /BLUE/
IS /EMPTY/ ""
IS BUTFIRST OF BUTLAST OF "BYE" "E"
-IS /SNOOPY/ A /DOG/
A ISN'T DEFINED.
'-IS "LOGO" "LOGO"

IF YES PRINT "OF CORSE DUW\MMY EVERYBODY KNOWS THAT"
OF CORSE DUMMY EVERYBODY KNOWS THAT
CIS DIFF OF "4" AND2\ "1" "1"
*-IF NO PRINT "THAT I'S SO HARD I DO NOT KNOW"
THAT IS SO HARD I DO NOT KNOW

WORD OF "CAT" AND "DOG" "CAT DOG"
-IF NO PRINT "HOW SHOUD I^ KNOW"
HOW SHOUD I KNOW

/GREEN//BLUE/
'-IF YES PRINT "OT MARY JAYE WOULD NOT KNOW THAT"
ONLY MARY JAPE NOT KNOW THAT
*.IS "THIS SCHOOL!\" "EMERSON"
-IF YES PRINT
-IF NO PRINT "I THIN\\\\DON\ NOT THINK SO"
I DO NOT THINK SO

-104-

Report No. 1889

4-START (LESSON EIGHTEEN)

Bolt Beranek and Newman Inc.

HERE IS A PROCEDURE WE USED WHEN WE FIRST STARTED WORKING WITH THE
COMPUTER, 0

FIRST ASK THE COMPUTER TO LIST SAYHI.

THEN TRY OUT SAYHI TO SEE WHAT IT DOES. 0

WHEN YOU ARE READY TO GO ONE TYPE s-s- MORE.
SAYHI

TO SAYHI
10 PRINT "HI"
20 SAYHI
END
SAYHI

HI
HI
HI
HI
HI

(The program was stopped by hitting the BREAK key.)

NOW IT'S YOUR TURN TO WRITE A PROCEDURE. 0

TRY TO WRITE A PROCEDURE WHICH WILL PRINT OUT YOUR NAME JUST THE WAY
SAYHI PRINTED HI 0

WHEN IT WORKS, TYPE NEXT s..s FOR ANOTHER SUGGESTION.
PTO SAYRUTHs.ANNE
>10 PRINT "RUTH - ANNE"
>20 SAY \RUTHANNE
>57T5-
SAYRUTHANNE DEFINED
..SAYRUTHs.ANNE
RUTH ANNE
RUTH...ANNE
RUTH -ANNE
RUTH-ANNE
RUTHs.ANNE

1

Report No. 1889 Bolt Beranek and Newman Inc.

NEXT

NOW ARE YOU -READY FOR THE CHALLENGE? ANSWER YES OR NO.
*YES
THIS TIME TRY TO RITE A PROCEDURE THAT WILL WORK ON ANY WORD YOU GIVE
IT. E?

PLEASE CALL YOUR PROCEDURE -- WORK. IF I USED YOUR PROCEDURE AND SAID
WORK "MARGE" IT WOULD TYPE -- MARGE -- RIGHT DOWN THE PAGE. @

HOW ABOUT IT? ARE YOU GAME? GOOD LUCK!

+-TO SAY /ANYWORD/
>10 PRINT /ANYWORD/
>20 SAY /ANYWORD/
>END
SAY DEFINED
+-SAY "I WILL MISS YOU"
I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU

(It apparently seemed more natural to call
her procedure SAY.)

(A last day farewell from the child to
the teacher.)

-306-

Report No. 1889

Examples of LOGO Lesson Programs

Bolt Beranek and Newman Inc.

The next two typescripts are the LOGO programs for Lessons One and

Eighteen. These two programs are t-jpical of the series of twenty.

They are included to illustrate the ease with which LOGO can be

used to express teaching interactions like those shown in the pre-

ceding pages. The programs were written by the teacher, Mrs.

Bloom, who had not done any programming prior to learning LOGO in

the summer of 1968.

The program for Lesson One is composed of three procedures -

SKIP, REQ, and LESSON1. Their operation is as follows. SKIP /N/

causes the teletype to skip /N/ lines by printing the EMPTY word

/N/ times. REQ first executes a request instruction, i.e., waits

for a user to type in a message, and then skips a line. The

lesson begins when the student calls the main procedure LESSON1,

which types a series of messages back to him. The messages are

punctuated by SKIPs. The student calls forth each succeeding

message when he is ready by hitting the carriage return key, thus

completing a REQ.

The instructions in lines 100, 160, and 200 refer to the names

/01/, /02/, and /INSTRUCTION/ (listed at the end of the program),

and illustrate the printout of messages containing embedded

quotes.

Report No. 1889 Bolt Beranek and Newman Inc.

TO SKIP /NUMBER/
10 TEST IS /NUMBER/ "0"
20 IF TRUE STOP
30 PRINT /EMPTY/
40 SKIP DIFFERENCE /NUMBER/
END

TO REQ
10 REQUEST
20 SKIP "1"
END

LESSON ONE

"1"

TO LESSON!
10 SKIP "1"
20 TYPE "IN THIS LESSON THERE ARE SOME LINES TO READ. THE COMPUTER

TYPES VERY FAST. IT WILL STOP EVERY SO OFTEN SO THAT YOU WILL HAVE
TIME TO READ. WHEN YOU WANT IT TO GO ON. PRESS THE RETURN KEY. 0"

30 REQ
49 TYPE "THIS MARK 0 MEANS THAT THE COMPUTER HAS MORE TO TELL YOU.

PRESS THE RETURN KEY WHEN YOU ARE READY TO READ IT. "
50 REQ
60 TYPE "THE COMPUTER UNDERSTANDS SOME SPECIAL COMMANDS. THE FIRST ONE

WE WILL TALK ABOUT IS PRINT. "
70 REQ
$0 PRINT "LET'S TELL THE COMPUTER TO PRINT A WORD. I WILL TYPE THE

COMMAND. YOU PRESS THE RETURN KEY WHEN I AM FINISHED. 0"
90 SKIP "I"
100 TYPE /C1/
110 REQUEST
120 DO /C1/
139 SKIP "1"
140 PRINT "NOW LET'S TELL THE COMPUTER TO PRINT A SENTENCE. YOU PRESS

THE RETURN KEY THIS TIME TOO."
150 SKIP "1"
160 TYPE /C2/
170 REQUEST
180 DO /C2/
190 SKIP "1"
200 TYPE /INSTRUCTION/
219 REQ
229 TYPE "NOW TRY TO MAKE THE COMPUTER PRINT SOME OF YOUR OWN THINGS.

0"
230 REQ
240 TYPE "DON'T WORRY ABOUT MAKING MISTAKES! WE ALL DO IT1 THE COMPUTER

WILL TRY TO HELP YOU BY EXPLAINING WHAT WENT WRONG. "
250 REQ
260 PRINT "NAVE FUN!"
END

/C1/ IS "PRINT "CABBAGE""
/C2/ IS "PRINT "DO YOU LIKE THE BEATLES?""
/INSTRUCTION/ IS "NOTICE THAT THERE WERE QUOTATION (" ") MARKS AROUND

THE EXACT WORDS THE COMPUTER WAS ASKED TO PRINT. I"

-108-

Report No. 1889 Bolt Beranek and Newman Inc.

The program for Lesson Eighteen also uses the SKIP and REQ pro-

cedures (these are not reproduced again). The program comprises

four main procedures - START, SAYHI, MORE, and NEXT - which are

executed successively, as follows. START tells the student to

list the procedure SAYHI, then to execute it to see what it does,

and after that to type MORE. The procedure SAYHI prints out HI

repetitively. When the student types MORE, he starts up the

MORE procedure which asks the student to write a program for

printing out his name, just as SAYHI printed HI, and then to

type NEXT. When the student types NEXT, he starts up the NEXT

procedure which asks him if he is ready for a challenge. If he

answers YES (if his first answer is NO, he is asked to reconsider;

if he is insistently negative, the lesson ends), he is given the

problem of writing a SAY procedure that extends the preceding

ones by printing but any given message repetitively.

Note the alternation of control between the teaching program and

the student across successive phases of the interaction. In

START, MORE, and NEXT the "teacher" is directing the student.

But when using SAYHI, and when writing and using the two programs

that are assigned to him, the student is using LOGO on his own.

Embedding this kind of open-ended work enlivens the instruction

and helps avoid the rigid, heavy-handed, stereotypy characteristic

of much current computerized teaching.

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON EIGHTEEN

TO START
10 SKIP "1"
20 TYPE "HERE IS A PROCEDURE WE USED WHEN WE FIRST STARTED WORKING WITH

THE COMPUTER. 0"
30 REA
40 TYPF "FIRST ASK THE COMPUTER TO LIST SAYHI. 0"
50 REA
60 TYPE "THEN TRY OUT SAYHI TO SEE WHAT IT DOES. "
70 REA
Se PRINT "WHEN YOU ARE READY TO GO ON, TYPE MORE...

DID

TO MORE
10 SKIP "1"
20 TYPE "NOW IT'S YOUR TURN TO WRITE A PROCEDURE. 0"
30 REA
40 TYPE "TRY TO WRITE A PROCEDURE WHICH WILL PRINT OUT YOUR NAME JUST

THE WAY SAYHI PRINTED HI. 9"
50 REA
60 PRINT "WHEN IT WORKS, TYPE NEXT FOR ANOTHER SUGGESTION."
END

TO NEXT
10 SKIP "1"
20 PRINT "NOW ARE YOU READY FOR THE CHALLENGE? ANSWER YES OR NO."
30 REQUEST "ANS"
40 IS /ANS/ "YES"
45 IF NO PRINT "AW, GEE. WON'T YOU PLEASE GIVE IT A TRY? ANSWER YES OR

NO."
50 IF-NO REQUEST "ANS"
60 IF NO IS /ANS/ "YES"
70 IF NO PRINT "OKAY, THEN. MAYBE YOU'LL FEEL MORE DARING LATER."
75 IF NO RETURN-
80 TYPE "THIS TIME TRY TO WRITE A PROCEDURE THAT WILL WORK ON ANY WORD

YOU GIVE IT. 0"
90 REA
100 TYPE SENTENCE SENTENCE "PLEASE CALL YOUR PROCEDURE WORK. IF I

USED YOUR PROCEDURE AND SAID" /WM/ "IT WOULD TYPE MARGE RIGHT
DOWN THE PAGE. "

110 REA
120 PRINT "HOW ABOUT IT? ARE YOU GAME? GOOD LUCK!"
END

TO SAYHI
10 PRINT "HI"
20 HI
END

/WM/ IS "WORK "MARGE""

-110-

Report No. 1889

3.4 The Games

Bolt Beranek and Newman Inc.

The children's "work" on their lessons was punctuated from time

to time by playing various games at the computer terminal. The

games included:

Tic-Tac-Toe
Four-in-a-Row
Nim
Thirty-one
Wordhunt
Hangman
Guessword

Printout from children's play with Four-in-a-Row, Nim, Thirty-one,

Wordhunt, and Hangman is reproduced in this section.

These games are described on the printouts. The other two games

are similar to those included here. Thus, Tic-Tac-Toe (X's and

0's) is the familiar 3 X 3 board game which might aptly be called

Three-in-a-Row, and Guessword, like Hangman, is a word guessing

game. Two other entertainments were provided by (1) a program

SNOW which produces large signs on teletype paper, given the

message text - either black on white or white on black, and

(2) a LOGO program SNOOPY which makes a teletype drawing of the

famous dog carrying a flag emblazoned with whatever name the

child requests.

A slightly truncated SNOOPY picture is reproduced at the end of

this section - the requested input was "LOGO".

Report No. 1889 Bolt Beranek and Newman Inc.

-FOUR-IN-A-ROW
DO YOU KNOW HOW TO PLAY? ANSWER YES OR NO.
*NO

THIS GAME IS SIMILAR TO TIC-TAC-TOE IN MANY WAYS.
YOU WILL PLAY ON A BOARD THAT LOOKS LIKE THIS:

O 1 2 3 4 5

5 * * * * * * 5

4 * * * * * * 4

3 * * * * * * 3

2 * * * * * * 2

1 * * * * * * 1

0 * * * * * * 0

O 1 2 3 4 5

EACH * CAN BE NAMED BY TWO DIGITS. THE FIRST DIGIT COMES FROM THE
HORIZONTAL ROW OF NUMBERS. THE SECOND DIGIT COMES FROM THE VERTICAL
COLUMN OF NUMBERS.

FOR EXAMPLE,
A N X.

0 1 2

SUPPOSE WE WANT TO REPLACE THE IN THE BOARD BELOW WITH

3 4 5

5 * * * * * * 5

4 *. *. * * * * 4

3 * * ? * * * 3

2 * * * * * * 2

1 * * * * * * 1

0 * * * * * * 0

O 1 2 3 4 5

THE QUESTION MARK IS AT. 23, BECAUSE IT IS AT 2 ON THE HORIZONTAL ROW
AND AT 3 ON THE VERTICAL COLUMN.

-112-

Report No. 1889 Bolt Beranek and Newman Inc.

ONE PLAYER WILL PLAY X'S. THE OTHER PLAYER WILL PLAY COS.
EACH PLAYER TAKES TURNS PUTTING IN HIS MARKS.

. -

IF YOU CHOOSE A POINT THAT HAS ALREADY BEEN TAKEN, YOU MUST LOSE YOUR
T URN. SO SELECT YOUR POINTS CAREFULLY!

THE PURPOSE OF THE GAME, OF COURSE, IS TO GET FOUR X'S OR 4 O'S IN A
R OW. THE ROW MAY BE VERTICAL, HORIZONTAL, OR DIAGONAL.
THE COMPUTER WILL CHECK EACH TIME TO SEE IF THERE IS.A.WINNER.

WHO IS PLAYING WITH X'S? (TYPE IN YOUR NAME.)
* ROSEMARIE PHILLIPS
WHO IS PLAYING WITH O'S? (TYPE IN YOUR NAME.)
*MRS. BLOOM . .

ROSEMARIE PHILLIPS ,PLEASE TELL ME YOUR MOVE.
*51a

5 *

1

*

2

*

3

*

4

*

5

* 5

4 * * * * * 4

3 * * * * * * 3

2 * * * * * * 2

* * * * X 1

0 * * * 0

MRS.

0 1 2 3 4 5

BLOOM ,WHAT IS YOUR MOVE, PLEASE?
*42

0 1 2 3 4 5

5 * * * * * * 5

4 * * * * * * 4

3 * * * * * * 3

2 * * * * O. * 2

* * * * * X 1

0 * * * * * * 0

0 1 2 3 4 5

-113-

Report No. 1889 Bolt Beranek and Newman Inc.

JWSEMARIE PHILLIPS ,PLEASE TELL ME YOUR MOVE.
*00

Immo.

0 1

5 * *

4 * *

3 * *

2 * *

*

0X*0

2 3

* *

* *

* *

X 0

* 0

4 5

* * 5

* * 4

* * 3

0 0 2

* X 1

X XX 0
0 1 2 3 4 5

MRS. BLOOM ,WHAT IS YOUR MOVE, PLEASE?
*53

0 1 2 3 4 5

5 * *

4 * * * * * * 4

3 * * 0 3

2 * * X 0 0 0 2

1 * * * 0 * X 1

OX* OXXXO
0 1 2 3 4 5

CONGRATULATIONS,, MRS. BLOOM YOU'VE WON!

-114-

Report No. 1889 Bolt Beranek and Newman Inc.

NIM

DO YOU KNOW HOW TO PLAY NIM? PLEASE ANSWER YES OR NO.
*ta.

TO PLAY THE GAME WE WILL NEED A STRING OF X'S THAT LOOKS LIKE THIS:
XXXXXXXXXX. I WILL LET YOU DECIDE HOW MANY X'S WE SHOULD USE.

AFTER YOU TELL ME HOW MANY X'S YOU WANT TO PLAY WITH, I WILL TYPE OUT
SE CORRECT AMOUNT. THEN YOU AND I WILL TAKE TURNS REMOVING Is 2, OR, 3
X'S AT A TIME. THE OBJECT OF THE GAME IS TO LEAVE 1 X. THE LOSER IS THE
ONE WHO MUST TAKE THE LAST X.

I 'M ALL READY. ARE YOU?

YOU'RE LUCKY. YOU GET TO CHOOSE HOW MANY X'S WE ARE GOING TO PLAY WITH.
ELL ME. HOW MANY X'S YOU WANT TO USE. THEN : WILL PRINT THEM SO THAT WE
CAN BOTH LOOK AT THEM. PLEASE TELL ME TO PRINT AT LEAST 6 X'S.
*19

XXXXXXXXXXXXXXXXXXX (19)

DO YOU WANT TO GO FIRST?
*YES
HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE It 2, OR 3 X'S.
*3

WWI

XXXXXXXXXXXXXXXX (16)

I WILL REMOVE 3 X'S. .

XXXXXXXXXXXXX (13)

HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE I,
*3

XXXXXXXXXX (10)

-115-

OR 3 X'S.

if

Report No. 1889 Bolt Beranek and Newman Inc.

I WILL REMOVE 1 X 'S

XXXXXXXXX (9)

HOW MANY X 'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 2 2, OR 3 MS.
*4

YOUR REQUEST MUST BE 1, 2, OR 3.
HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 MS.
*2

XXXXXXX (7)

I WILL REMOVE 2 X °S

XXXXX (5)

HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1 go OR 3 X'S.

*2

XXX (3)

I WILL REMOVE 2 X'S.
X 1)

AMA! LOOKS LIKE YOU'VE LOST, BUT I'LL GIVE YOU ANOTHER CHANCE TO BEAT

ME, IF YOU'D LIKE.
DO YOU WANT TO PLAY AGAIN?
*yEq.
TELL ME HOW MANY X'S YOU WANT TO USE. THEN I WILL PRINT THEM SO THAT WE

CAN BOTH LOOK AT THEM. PLEASE TELL ME TO PRINT AT LEAST 6 X'S,

*15

XXXXXXXXXXXXXXX (15)

DO YOU WANT TO GO FI RST?
*YES
.HOW MANY X 'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2* OR 3 X *S.

*2

XXXXXXXXXXXXX (13)

-116-

Report No. 1889 Bolt Beranek and Newman Inc.

I WILL REMOVE 3 X'S.

XXXXXXXXXX (10)

HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.
*1

XXXXXXXXX (9)

I WILL REMOVE 1 X'S.

XXXXXXXX (8)

HOW MANY X'S 'DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.
*3

XXXXX (5)

I WILL REMOVE 1 X'S.

XXXX (4)

HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.
*3

X (1)

CONGRATULATIONS! YOU WON! YOU MUST BE VERY SMART! BUT 1°M NOT SO DUMB
EITHER. PLEASE GIVE ME ANOTHER CHANCE!

DO YOU WANT TO PLAY AGAIN?
*NO
GOODBYE FOR NOW. LET'S PLAY AGAIN SOMETIME,.
I.

-117-

Report No. 1889 Bolt Beranek and Newman Inc.

obTHIRTY ONE

DO YOU KNOW HOW TO PLAY? ANSWER YE il OR NO.
*NO

HERE ARE THE DIRECTIONS.

THE COMPUTER WILL ASK YOU FOR YOUR NUMBER. YOUR NUMBER MUST BE 1s 2. 31,
4. 5. OR A.

THEN THE COMPUTER WILL CHOOSE A NUMBER FROM I TO 6 AND ADD IT TO YOURS.

YOUR NEXT NUMBER WILL BE ADDED TO THE TOTAL. AND YOU AND THE COMPUTER
WILL TAKE TURNS SELECTING NUMBERS UNTIL ONE OF YOU IS ABLE TO REACH 31.
THE WINNER IS THE ONE WHO NITS THIRTY -ONE EXACTLY.

DO YOU WANT TO GO FIRST. ANSWER YES OR 00.
*YES
GIVE ME YOUR NUMBER. PLEASE.
*S

THE TOTAL IS NOW S

I'WILL ADO S

THE TOTAL IS N:: 10

GIVE Mt YOUR NUMBER. PLEASE.
*4_

THE TOTAL IS NOW 14

I WILL ADD 3

THE TOTAL IS NOW 17
GIVE Mt YOUR NUMBER. PLEASE.
1
THE TOTAL IS NOW 111

1 MILL ADD 6

THE TOTAL IS NOW 24
'GIVE Mt YOUR NUMBER. PLEASE.4
THE TOTAL IS NOW 20

118

Report No. 1889 Bolt Beranek and Newman Inc.

I WILL ADD 3

THE TOTAL IS NOW 31

AH HAI AREN'T I CLEVER?
DO YOU WANT TO PLAY AGAIN?
*YES

GIVE ME YOUR NUMBER, PLEASE.
*3

THE TOTAL IS NOW 3

I WILL ADD 4

THE TOTAL IS NOW 7

"GIVE ME YOUR NUMBER. PLEASE.
*3

THE TOTAL IS NOW 10

I WILL ADD 2

THE TOTAL IS NOW 12

GIVE ME YOUR NUMBER, PLEASE.
*5

THE TOTAL IS NOW 17

I WILL ADD 1

THE TOTAL IS NOW 16

GIVE ME YOUR NUMBER. PLEASE.
*6

THE TOTAL IS NOW 24

I WILL ADD 6

THE TOTAL IS NOW 30

GIVE ME YOUR NUMBER, PLEASE.
*11

THE TOTAL IS HOW 31

CONGRATULATIONS. GENIUS! YOU GOT ME!

-119-

Report No. 1889

..wORDHUNT

DO YOU KNOW HOW TO PLAY?
*NO

Bolt Beranek and Newman Inc.

THINK ABOUT HOW MANY WORDS YOU CAN MAKE OUT OF THIS WORD -- TOWN. YOU
MAY USE SOME OR ALL OF THE LETTERS. @

I HAVE AN ANSWER LIST. I WILL GIVE YOU A CHANCE TO FIND OUT LATER (IF
VDU WANT TO KNOW) HOW MANY WORDS ARE ON MY LIST. @

EACH TIME YOU SEE THE *, TYPE IN ONE WORD WHICH YOU HAVE MADE FROM THE
LETTERS IN TOWN @

IF I THINK YOUR WORD IS A GOOD WORD, I WILL TELL YOU THE TOTAL NUMBER
OF WORDS YOU HAVE. @

IF I AM NOT SURE ABOUT YOUR WORD, I WILL LET YOU KNOW. @

NO PROPER NAMES, ABBREVIATIONS, CONTRACTIONS, OR FOREIGN WORDS ALLOWED.

IF AT ANY TIME YOU WANT TO STOP PLAYING, JUST TYPE -- STOP. @

READY?
TELL ME THE FIRST WORD YOU CAN MAKE FROM: TOWN
*TO
YOU NOW HAVE I WORD.
*NO
YOU NOW HAVE 2 WORDS.
*ON
YOU NOW HAVE 3 WORDS.
*OWN
YOU NOW HAVE 4 WORDS.
*WON
YOU NOW HAVE 5 WORDS.
*NOW
YOU NOW HAVE 6 WORDS.
*NOT
YOU NOW HAVE 7 WORDS.
I THOUGHT YOU WOULD LIKE TO KNOW THERE ARE ONLY THREE MORE WORDS ON MY
LIST
*TON
YOU NOW HAVE 8 WORDS.
*TOW
YOU NOW HAVE 9 WORDS.

Report No. 1889 Bolt Beranek and Newman Inc.

4:ONT
THAT tc0RD IS NOT ON MY LIST, HUT I CtJULL) HE lAkON(-. CHECK WITH YOUk
TEACHER WHEN YOU ARE THROUGH PLAYING. I tILL NUT COUNT 1T FM,, NO(1.
*TWO
YOU NOl! HAVE 10 WORDS.
CONGRATULAT IONS. YOU ARE A GOOD WORDHOUND!
IF YOU NT TO PLAY AGAIN, TYPE l'ORDHUNT 1 WHEN YOU SEE THE ARROtv.
.-1:0;-?0HUNT 1

DO YOU KNOV. HOW TO PLAY?
41.La
TELL ME THE FIPST WORD YOU CAN MAKE FROM: SAME
*ME

YOU NOI; HAVE 1 !';U 1)

*MA
YOU NOW HAVE .? VOkOS
*AM
YOU NOI) HAVE 3 WOkDS.
I THOUGHT YOU WOULD LIKE TO KNOtv THERE ARE ONLY THREE MORE WORDS ON MY
UST.
*AM
YOU HAVE ALREADY GIVEN ME THAT IORO.
*SEAM
YOU NOlp HAVE 4 1:ORDS.
*AS

YOU NOW HAVE 5 IOROS.
*SEA
YOU NO. HAVE o WROS.
CONCATOLATIONS. YO'! ARE A GOOD t,O;DHOUND!
IF YOU WANT TO PLAY AMIN, TYPE -- VORDHUNT ? IHEN: YOU SEE THE Af<ROV.
44ORDHUNT p
DO YOU KNOW HOW TO PLAY?
*YES
TELL ME THE FIRST 6,ORD YOU CAN MA?..(E FROM: DREAM
*DEP4

Report No. 1889 Bolt Beranek and Newman Inc.

"0ANGIviN
I AM GOING TO PICK A MYSTERY WORD FROM MY WORD BANK. YJU CAN TRY Tai

GUESS MY WORD.
I WILL GIVE YOU A CLUE. I WILL PRINT A DASH FOR EACH LETTER IN *ME

WORD. IF YOU SEE . THE MYSTERY WORD HAS THREE LETTERS.
I WILL ASK YOU TO GUESS A LETTER. IF YOUR LETTER IS IN MY wURD I yin-L.

PUT IT WHERE IT BELONGS.
YOU HAVE SEVEN CHANCES TO GUESS MY WORD. THE FIRST TIME YOUR LETTER IS

NOT IN MY WORD I WILL START SPELLING HANGMAN. EACH TIME YOUR GUESS DOES

NOT WORK. I WILL ADD A LETTER. IF HANGMAN IS ALL SPELLED OUT. I WILL.

TELL YOU MY WORD AND GIVE YOU A CHANCE TO TRY ANOTHER WORD.

READY? HERE WE GO!

WHAT IS YOUR GUESS?
*A

WHAT IS YOUR GUESS?
*0
O H
WHAT IS YOUR GUESS?
*D
0 HA
WHAT IS YOUR GUESS?
*P
O HAN
WHAT IS YOUR GUESS?
*T
O HANG
WHAT IS YOUR GUESS?
*F
- 0- HANGN
WHAT IS YOUR GUESS?
*W
- OW HANGM
WHAT IS YOUR GUESS?
*g
OW HANGMA
WHAT IS YOUR GUESS?
*N
* OW HANGMAN
SORRY. YOUR MAN HAS BEEN HANGED.
YOUR WORD WAS HOW
DO YOU WANT 1"0 PLAY AGAIN?
*YES

WHAT IS YOUR GUESS?
*UU
WHAT IS YOUR GUESS?
*0
-OU
WHAT IS YOUR GUESS?
*Y
YOU
CONGRATULATIONS! YOU GOT IT!

-122-

I

1 xx xxxxxxx xxxxxxx xxxxxxx
I xx XXXXXXX XXXXXXX XXXXXXX
1

I

1

1

1

1

1

1

XX XX XX XX XX XX XX
XX XX XX XX XX XX
xx XX XX XX XX XX
XX XX XX XX XXXX XX XX
XX XX XX XX XXXX XX XX
XX XX XX XX XX XX XX
XXXXXX XXXXXXX XXXXXXX XXXXXXX
XXXXXX XXXXXXX XXXXXXX XXXXXXX

1111
1111
1111 JUOJ3
1111 3003UJUOUJ
1111 000000300J000
1111 "00000000000000j
1111 00"00J00J0U0UOU00UUJ
1111 000U000000011030000000000000000

-"""" ----00000000000000000001010000J0J0UJ0J0JUJJ
AMU 000000000000000000000000000000JJ000U0000
ONANNA-00000000000000000000000000000/00-00000000
111622M"0000000000000000000000000000"MOMMMUSSMAIMM
Male000000000000000000000000000"MAMMASONAMM0U1i
11"0000000000000000000000000J"NUMMMUA1i11AMAMMAN
11"000000003000000000000OUJ"00211111d1iadiMANdAAM
111"00000000000000000000000"00dOOMMAMIAMMW4
liw00000000000n000Joopoussaimmaammamaimos
!III "0000000000000000000"WAA00044MMAW1QMANAM
1111 ""' "'00000000300"OUNM4444M4A1121140
1111 "0000JOU0"WAAM1 AAMAAAAAMMAN
1111 "000000"SANAM4N001144AM4M111
1111 "00000J"W044001WOMMINAMA
1111 "0000" "AWIAAMAAANWIA

"0000" NMOdislAAAAM
000000" "00000" MINA20111

/0000000""" '00000"
100000000000"000000000"

"""0000000000000"
1111 "0000000000000"
1111 "0000000"00000J""
1111 "00000000"000"00"00

"00000000"000"00"9 ah
"000000000"000"03"SPOW

"0000000300"00J"000"SUMNS
"00000000000"000"0J0OMPOWN
"00000000000"000"0000001101HaS
"000000000"000000"000000000"
"0000000"00000000"00J00000"
"000000"000000JJ"00000000"
"000000"-------"0000000"

"0000000000000000000"
"0000000000000000"
"00000000"00000000
"0000 0000 J

0000 000" 0000000
0000000000000 0U000000
00000000000 UOJUJUjO
00000000 0000000

000000 0000u010% -129- 11111

ch

th_ c exper1Etnt Ou 0 N
Mao e it oet t5 nOtnber 1968.Aela

oevan h ade otudento, the edian range of mathenatl@
performance, wao oeleeted at rand oubject to the eonstraiit
six boys and six girlo) from a population of about two hundred
students at the school at the same mathematics level. Mrs
Marjorie Bloom taught the first part of the course introducing
the children to LOGO. Miss Cynthia Solomon and Dr. Seymour
Papert taught the class from January 1969, continuing with a
LOGO treatment of arithmetic and algebra.

4.1 Design and Operation of the Course

Course Design

We chose to develop a course in introductory algebra because
most high school students have enormous difficulties with formal
concepts and problem-solving in this subject. Moreover, much
of the content of introductory algebra can be naturally treated
in a thinly disguised form through teaching LOGO. The algebraic
concepts of variable, literal, formula, equation, etc. have
conceptually very clear analogs in LOGO. Thus, the concept of
building LOGO things and referring to them by name is used to
introduce the concept of variable. The LOGO concepts of condi-
tional operation and predicate are used to introduce the mathe-
matical idea of equation, and the LOGO concept of procedure is
used to introduce the mathematical idea of function.

Report No. 1889 Bolt Beranek and Newman Inc.

4. Junior High School Teaching Experiment

We started the LOGO experiment at Muzzey Junior High School in

Lexington, Massachusetts, in September 1968. A class of twelve

seventh-grade students, in the median range of mathematical

performance, was selected at random (subject to the constraint -

six boys and six girls) from a population of about two hundred

students at the school at the same mathematics level. Mrs.

Marjorie Bloom taught the first part of the course introducing

the children to LOGO. Miss Cynthia Solomon and Dr. Seymour

Papert taught the class from January 1969, continuing with a

LOGO treatment of arithmetic and algebra.

4.1 Design and Operation of the Course

Course Design

We chose to develop a course in introductory algebra because

most high school students have enormous difficulties with formal

concepts and problem-solving in this subject. Moreover, much

of the content of introductory algebra can be naturally treated

in a thinly disguised form through teaching LOGO. The algebraic

concepts of variable, literal, formula, equation, etc. have

conceptually very clear analogs in LOGO. Thus, the concept of

building LOGO things and referring to them by name is used to

introduce the concept of variable. The LOGO concepts of condi-

tional operation and predicate are used to introduce the mathe-

matical idea of equation, and the LOGO concept of procedure is

used to introduce the mathematical idea of function.

Report No. 1889 Bolt Beranek and Newman Inc.

We gradually made the transition from the teaching of LOGO to

traditional material by programming problems with a more numeri-

cal flavor and with a structure biased towards algebraic ideas

(for example, by the construction of "search" programs to find

objects - numerical or not - to satisfy given sets of conditions).

After experience with these programs, students were introduced to

algebraic procedures for solving equations. These gave rise to

a new set of programming projects, to solve algebraic equations

by symbolic methods.

Six computer terminals were installed in the classroom. The

students' time was spent partly in classroom discussion, partly

in designing programs, and partly in working with these programs

at the computer terminal. They did most of their computer work

individually but sometimes worked in pairs. The scheduling of

time for students among these three classroom activities varied

from day to day. Typically a student spent about half of the

period in classroom discussion and half in writing and debugging

programs, but there were occasional days, not liked by the

students, in which they did not use the computer terminal at all.

The individual student work at the computer terminal was closely

integrated with the teaching presentation. Some of the work at

the terminals was relatively unstructured; some work assignments

were very tightly specified. The practice varied among the

teachers and, for a given teacher, across the various units

taught.

-125-

Report No. 1889

4.2 LOGO Teaching Materials

Bolt Beranek and Newman Inc.

The teaching objective of the initial weeks of the course was to

impart fluency in the use of LOGO. A detailed outline of this

part of the course is given next. The work was organized into

three overall phases covering (1) the formal elements of LOGO

programming, (2) debugging techniques and practice in their use,

and (3) various projects to consolidate and apply the concepts

treated.

Samples of the classroom presentations, laboratory assignments,

and students' work are shown in subsequent pages.

Course Outline

Week Topics

1 Computer Languages; Formal Instructions; Interactive

Operation of a Computer; The LOGO Language; LOGO Things,

Words, Sentences, Literals, Names; The PRINT Command;

Operations on Things; Naming; The Operations FIRST, LAST,

BUTFIRST, BUTLAST, COUNT.

2 The EMPTY Word; SUM and DIFF; Inputs and Outputs; Chaining

of Operations; Order of Operations; Correcting Typing

Errors, Backslash, Rubout; Bugs.

3 Standard Bugs, Giving Names to Bugs; Describing the

action of a given instruction; Writing an instruction

which has a given effect; Sequences of instructions,

Procedures; LOGO Programs; Writing and Running of Programs.

126

Report No. 1889

Week Topics

Bolt Beranek and Newman Inc.

4 Listing of Programs; Program Editing; Writing programs

which have prescribed effects; Checking programs with test

inputs; Simulating the operation of a program.

5 The Conditional Operation and Tests; Simple Recursive

Procedures; Recursive Programs with Tests.

6 Simulating the Operation of Recursive Programs; Recursively

Defined Commands and Operations. The TRACE Command.

7 Chaining of Procedures; Embedding of Procedures; Debugging

Problems.

8-9 Debugging Aids - Little Men Pictures, Round-Analysis;

Storing and Retrieving of Programs - LOGO Filing

Facilities.

10-11 Building Program Complexes; Projects; Interactive

Programming - Game-playing and Quiz programs; Message

Coding and Decoding programs.

12 Predicates; Special Names; Extension and Generalization

of Programs; Standard form of Instructions in Recursive

Procedures.

Report No. 1889

Formal Elements

Bolt Beranek and Newman Inc.

LOGO was taught to 'r.e seventh-grade students in a graduated

presentation segue ce proceeding from the simplest elements,

through instructions and expressions compounded from the elemen-

tary (built-in) LOGO operations, to complex and sometimes highly

recursive procedures built as sequences of instructions. The

first five weeks of the course were primarily devoted to teach-

ing the formal structure of LOGO. Examples of the teaching

materials, in the form of classroom assignments and laboratory

work at the computer terminal, follow.

The first sample, Tips on Using the Teletype, was one of many

handouts describing LOGO and its use. Six assignments follow

this. The first three - CHALLENGE, NAMING THINGS, and A CODED

MESSAGE FROM NANCY - are representative examples of numerous

exercises given to the class in writing instructions and making

and using names. The last of these assignments was: make up a

message with LOGO instructions. Shown here is the response

written by one of the students, Nancy. The students liked to

exchange such "secret" LOGO messages.

Much of the elementary formal material used in the Muzzey class-

room was similar to that used in the elementary school work at

Emerson (described in the previous section of this report),

though the form of the presentation was different. (The elemen-

tary school presentations was largely in the form of programmed

lessons.) During the first part of their course, however, the

seventh-grade students had more work with procedures, including

somewhat more difficult procedures, than did the elementary

school children. The last three assignments included here con-

cern work with writing procedures.

128

Re':port No. 1889 Bolt Beranek and Newman Inc.

The first of these, SOME INCOMPLETE PROCEDURES, is an exercise

in completing the definition of some functions. Included is a

"silly" function whose output is independent of its input. The

assignment on SOME TESTING PROCEDURES is somewhat more open-

ended. The student is to write procedures to perform various

specified tests. He is then to write several programs which

use such testing procedures.

The last assignment, TWO PROCEDURES TO COMPLETE, requires the

student to incorporate numerical test operations, such as

GREATER, in interactive procedures.

Some original student work along these lines is reproduced

following these assignments.

Report No. 1889

Tips on Using the Teletype

Bolt Beranek and Newman Inc.

In many ways the teletype works like an ordinary electric type-

writer. However, there are some differences which you will need

to know.

1. The teletype types only in capital letters. You will

need to use thee SHIFT key to obtain such symbols as

(,), #, ", etc.

2. If you make a typing error, do not worry! There are

several ways to correct errors.

a. To erase a single letter at a time -- press the

backslash key M.

b. To erase a word at a time -- press the CONTROL

key and the letter W.

c. To erase a line -- press RUBOUT key.

3. If you are typing in something that is too long for one

line, press LINEFEED and continue typing after the

carriage has returned.

4. When you press the RETURN key you signal to the computer

that you have completed the line of typing.

5. There is no back space on a teletype. If you have put

in a space where you do not want a space, you must

erase the space in the same way you would erase a mis-

typed letter -- by pressing the BACKSLASH key (\).

Report No. 1889 Bolt Beranek and Newman Inc.

CHALLENGE!!!!

Can you make up LOGO instructions which will obtain the responses

shown using i,he words given?

Word

EXAMPLE: "LIGHT"

Computer

,

Response

H

One instruction might be: PRINT LAST' OF BUTLAST OF "LIGHT"

Word You Are to Use

1. "FRIEND"

F/ s r
2. "DEAR"

3.

4.

5.

Desired Computer
Response

R

Ai ".

EA

_yR r-1R sr cam- 19,/ L4 4zr cry "A` ARL/'

BurfiRsr 0P. l'Oiiiiehtv",,6 L4 ST a F
evr. DEAR'

PRIN 2 t, r R.5 r F.- 'tci "

"BAR" BARB

"MY" YM

r
0 9/11 t/

Report No. 1889 Bolt Beranek and Newman Inc.

NAMING THINGS

Type the following CALL instructions to the computer. How do

you think the computer should answer if you type in the following

PRINT instructions. Make all your responses first -- then check

with the computer.

CALL
THING: "LUCY"
NAME: "DOCTOR"

CALL
THING:
NAME:

"PATTY"
"ROPE JUMPER"

CALL
THING: "SILLY"
NAME: "LUCY"

Read carefully before making your responses!
Computer

Instruction Your Response Response

PRINT "DOCTOR" DOC TOR

PRINT THING OF "DOCTOR" L- u c y
PRINT THING OF THING OF "DOCTOR" 5 j L L,. y

PRINT "ROPE JUMPER" P

PRINT THING OF "ROPE JUMPER"

PRINT THING OF THING OF "ROPE JUPIPER"ilitzEMPTY iwoRD)

PRINT THING OF "LUCY" 1 LL y

PRINT THING OF THING OF "LUCY"

Report No. 1889 Bolt Beranek and Newman Inc.

A CODED MESSAGE FROM NANCY

Some names to give the computer:

CALL CALL CALL
THING: "HE" THING: "TYPE" THING: "EVERYTHING"
NAME: "SHE" NAME: "PRESS" NAME: "NOTHING"

CALL. CALL CALL
THING: "TELL" THING: "YOU" THING: "IT"
NAME: "APPLE" NAME: "ME" NAME: "HER"

CALL
THING: "ASK"
NAME: "TWO"

r, TELEITYPC-,"
1,2 3,4,5 27

El V Y T Ai 6
9

INSTRUCTIONS:

1. PRINT "T"

2. PRINT /SHE/

3. PRINT BUTLAST OF

4. PRINT "E"

5. PRINT /PRESS/

6. PRINT /APPLE/

7. PRINT "S"

8. PRINT /ME/

9. PRINT /NOTHING/

10. PRINT /ME/

11. PRINT /TWO/

12. PRINT /HER/

7"

/APPLE/ T E L

7"Y P

L

'Ye C

1: y 7 11

e t

I 7-

-133-

Report No. 1889 Bolt Beranek and Newman Inc.

SOME INCOMPLETE PROCEDURES

Here are some procedures for you to look at. Below each procedure

are some examples of what the procedure does. However, some of

the instructions are missing. Your job is to study what the

procedure does and see if you can fill in the missing instructions.

(1) (2)

TO ARG /X/ TO TOP /X/

10 PRINT FIRST OF /X/ 10

15 END

END

ARG DEFINED

A

E

TOP DEFINED

ARG "APPLE" PRINT TOP "TELL ME A STORY"

` ME, TOO

ARG "HL,LO"
t PRINT TOP "I LIKE CANDY"

H ME, TOO

0

ARG "T" PRINT TOP "THROW HIM OUT"

T ME, TOO

T

Report No. 1889 Bolt Beranek and Newman Inc.

(3) (4)

TO JOB /X/ TO HOE /X/

10 PRINT FIRST OF /X/ 10 PRINT FIRST /X/

15 PRINT LAST OF /X/ 20

20

END

JOB DEFINED

PRINT JOB 26

2

6

8

PRINT JOB 489

4

9

13

PRINT JOB 3

3

3

6

30 RETURN HOE /X/

END

HOE DEFINED

PRINT HOE "GREEN"

G

REEN

G

REEN

G

REEN

G

I WAS AT LINE 20 IN HOE

PRINT HOE 100000

1

00000

1

00000

1

I WAS AT LINE 20 IN HOE

-135-

Report No. 1889 Bolt Beranek and Newman Inc.

SOME TESTING PROCEDURES

Write programs for the following:

1. Procedure to compare two words to see if they are the same.

2. Procedure to compare two words to see if they have same count.

3. Procedure to find out if two words have same first letter.

4. Procedure to find out if word begins with double letter.

5. Procedure to find out if word has same first and last letters.

6. Procedure to find out if a word begins with a "b" or a "c".

7. Procedure to find out if word begins with "b1".

8. Procedure to find out if a number is even or odd.

Using a testing procedure to find out if another procedure should
be used.

1. If word ends in "ed", remove "ed".

2. If word begins with bl, change bl to sl.

3. If number is even, double it; if number is odd, subtract 1
from it.

4. If letter is vowel, print "TRUE"; otherwise, print "FALSE".

5. If word begins with a vowel, print it; otherwise print
"BAD WORD".

Report No. 1889

1.1!11110_,..- ,.

Bolt Beranek and Newman Inc.

TWO PROCEDURES TO COMPLETE

1. OBJECT OF PROCEDURE:

A. This procedure requests that the player type in a number.

B . It then requests that the player type in a different

number.

C. It compares the two numbers typed in to see which is

larger.

D . If the first number is larger than the second number,

it returns "THE FIRST NUMBER IS LARGER THAN THE SECOND

NUMBER".

E . Otherwise, it returns "THE SECOND NUMBER IS LARGER THAN

THE FIRST NUMBER".

Here is the beginning of the procedure. You complete and test

it.

TO COMPARE

10 PRINT "TYPE IN A NUMBER WHEN YOU SEE * "

20 REQUEST "FIRSTNUMBER"

30 PRINT "TYPE IN A DIFFERENT NUMBER NOW."

40 REQUEST "SECONDNUMBER"

You complete the rest of the procedure.

-137-

Report No. 1889

2. OBJECT OF PROCEDURE:

Bolt Beranek and Newman Inc.

A. This procedure requests that the player, type in a

number.

B . It then tests to find out if the number is between 100

and 1000.

C. If the number is less than or equal to 100, it returns

"YOUR NUMBER IS LESS THAN OR EQUAL TO 100."

D . If the number is greater than or equal to 1000, it will

return "YOUR NUMBER IS GREATER THAN OR EQUAL TO 1000."

E . If the number is between 100 and 1000, it will return

"YOUR NUMBER IS BETWEEN 100 AND 1000."

HINT: You will need to write more than one test question in

this procedure.

TO NUMTEST

10 PRINT "TYPE IN ANY NUMBER WHEN YOU SEE * "

20 REQUEST "NUMBER"

You complete the procedure.

Report No. 1889

Illustrations of Student Work

Bolt Beranek and Newman Inc.

The following typescripts show a student's work writing three

procedures. The first one, GAME, is a test procedure which

returns "YES" if its input is a 3-letter word (or a 3-word

sentence), and "NO" otherwise.

The second one, SPLITTHREE, types the first, second, and last

letters of its input (if the input is a word, or the first,

second, and last words if its input is a sentence) vertically

down the page. This procedure uses another procedure, SECOND,

as part of its definition.

The last of the three procedures, THREE, uses the other two. It

performs GAME to test whether or not to perform SPLITTHREE.

4-TO GAME /Y/
> 10 IS /Y/ 3 LETTER WORD (A typical early bug. The inten-

tion is clear but it was not
expressed as a legal LOGO
instruction.)
(It was immediately fixed)> 10 IS COUNT /Y/ 3

>20 IF YES RETURN "YES"
> 30 IF NO RETURN "NO"
>END
GAME DEFINED

+PRINT GAME OF "CAT"
YES

+PRINT GAME OF "LONGWORD"
NO

4-P GAME OF "ELEPP"
NO

Report No. 1889 Bolt Beranek and Newman Inc.

+P GAME OF "THREE WORD SENTENCE"
YES
+P GAME OF FIRST OF "THE
YES
+P GAME OF "MOI"
YES
+P GAME OF "123"
YES

TO SPLITTHREE /A/
12 PRINT FIRST OF /A/
13 PRINT SECOND OF /A/
14 PRINT LAST OF /A/
END

+SPLITTHREE OF "TWO"
T

(GAME is tested with sen-
tences as well as words)

GRASS IS GFRREEN" (And with outputs
of operations on
sentences)

(It still works with words)

(He incorrectly assumed that there
was a built-in LOGO procedure,
SECOND)

(SPLITTHREE started out all right;
it printed the FIRST OF "TWO";

SECOND NEEDS A MEANING. hen it ran into a problem, and
I WAS AT LINE 13 IN SPLITTHREE stopped.)

TO SECOND /A/ (The student then wrote
12 RETURN FIRST OF BUTFIRST OF /A/ a SECOND procedure)
END

+SPLITTHREE "TWO"
T

0

+SPLITTHREE "THREE"
T

H

E

+SPLITTHREE "ABRA CADABRA"
ABRA
CADABRA
CADABRA

+TO THREE /WORD/
>10 IS GAME OF /WORD/ "YES"
>20 IF NO PRINT "NO"
>30 IF YES SPLITTHREE /WORD/
>END
THREE DEFINED

-140-

(Now SPLITTHREE works)

Report No. 1889 Bolt Beranek and Newman Inc.

+THREE "123"
1

2

3

+THREE "ONE TWO THREE"
ONE
TWO
THREE
+THREE "ONE"
0
N
E

+THREE "THREE"
NO

In responding to the second part of the assignment TWO PROCEDURES

TO COMPLETE, the teacher expected that students' procedures would

use the GREATER operation. (The output of GREATER OF /M/ AND /N/

is /M/ if /M/ > N; else it is /N/.) The students did not like

this notation for GREATER because they were used to the idiom

/M/ is GREATER THAN /N/. (At the same time, in a classroom vote,

they overwhelmingly rejected the option of replacing GREATER OF

/M/ AND /N/ with MAXIMUM OF /M/ AND /N/, though the latter did

not conflict with familiar usage. Possibly this was because

they didn't like any. changes in the language. They were used to

the existing instructions and preferred these to new and uncertain

ones, even if the new ones appeared to be better.)

Two students found a way of getting around this problem. Note

how they avoided the use of GREATER in the following procedure.

TO NUMTEST
10 PRINT "TYPE IN A NUMBER WHEN YOU SEE g"

20 REQUEST /NUM/
30 IS COUNT OF /NUM/ 1

40 IF YES RETURN "YOUR NUMBER IS LESS THAN 10"

50 IS COUNT OF /NUM/ 2
60 IF YES RETURN "YOUR NUMBER IS LESS THAN 100"

70 IS COUNT OF /NUM/ 3
80 IF YES RETURN "YOUR NUMBER IS LESS THAN 1000"

90 RETURN "YOUR NUMBER IS 1000 OR LARGER"
END

-141-

Report No. 1889 Bolt Beranek and Newman Inc.

Independence and originality were always encouraged. After the

students were praised for their clever idea, they were asked to

write an alternate procedure, this time using GREATER. Their

first effort, called NUM, was as follows.

TO NUM
10 PRINT "TYPE IN A NUMBER WHEN YOU SEER"
20 REQUEST "N"
30 IS /N/ GREATER "1000"
40 IF YES RETURN "YOUR NUMBER IS 1000 OR LARGER"
50 IF NO RETURN "YOUR NUMBER IS LESS THAN 1000"
END

It has the standard GREATER bug in line 30. After a major de-

bugging episode, line 30 was changed to:

30 IS /N/ GREATER OF /N/ AND "1000"

Now the NUM procedure we -ked. The students retained NUMTEST

which they obviously preferred in their files.

There was a great deal of similar work of this kind during the

first weeks of the course. The early work was designed primarily

to help students become proficient in the elements of LOGO

programming. As the students attained a modicum of fluency in

LOGO, they were introduced to constructive problems of somewhat

richer structure requiring more problem-solving "know-how".

Report No. 1889 Bolt Beranek and Newman Inc.

Heuristic Work

Making the formal elements of LOGO programming accessible does

not guarantee that students will be able to write their own

programs to solve problems, or even to understand relatively

simple and transparent programs representing solutions. Along

with teaching programming as a formal language, we need to teach

students how to simulate the operation of a program to under-

stand what it does, to decide if a program "works", and to find

errors or "bugs" in programs that do not work.

A large part of the course was spent on working with programs

that did not quite do what they were supposed to, and trying to

fix (or "debug") them. This work has very direct relevance to

the teaching of mathematics, not merely programming. The process

of "debugging" programs gives students a rich base of personal

experiences with the activity of solving mathematical problems.

It enables them to confront and better understand their own

thought processes. Thus, it is a valuable means of contributing

to teaching the informal, intuitive, heuristic aspects of mathe-

matical thinking and work.

A first step in teaching students debugging is teaching them to

model and simulate the operation of a program. Traditionally,

flow diagrams are used to present an overall model of a program.

Since these do not give a good picture of the operation of

recursive programs, we developed a new kind of diagram - "little

men" pictures - to help students get a clear picture of how LOGO

programs work. These are discussed next, in conjunction with

the children's classroom and laboratory assignments. To illus-

trate the use of these diagrams, consider the procedure REVERSE.

-143-

Report No. 1889 Bolt Beranek and Newman Inc.

REVERSE is a recursive operation whose output is the reverse of

its input (i.e., its input written backwards). Thus, REVERSE OF

"CAT" is "TAC".

TO REVERSE /WORD/
10 TEST IS /WORD/ /EMPTY/
20 IF TRUE OUTPUT /WORD/
30 OUTPUT WORD OF LAST /WORD/ AND REVERSE OF BUTLAST /WORD/
END

The procedure as written is too elegant - by being too compact

its structure is hidden. We can make it more transparent by

paraphrasing it into a form whose parts are more visible,

functionally separable, and so nameable. For example,

TO REVERSE /WORD/
10 TEST IS /WORD/ /EMPTY/
20 IF TRUE OUTPUT /EMPTY/
30 MAKE

NAME: "NEWWORD"
THING: BUTLAST OF /WORD/

40 MAKE
NAME: "LETTER"
THING: LAST OF /WORD/

50 OUTPUT WORD OF /LETTER/ AND REVERSE OF /NEWWORD/ Action
END

Check
I (Stop Rule)

) Preparation

We now illustrate the use of "Little Men" diagrams in modeling

the operation of this procedure.

Little Men Pictures

Suppose I give the instruction PRINT REVERSE OF "CAT". In the

first frame of the picture you see me calling a PRINT man and

telling him what to print:

Report No. 1889

ME

Bolt Beranek and Newman Inc.

(PRINT REVERSE)
"CAT" PRINT

The PRINT man (he is labeled number 1) grabs the phone as soon

as he sees the word REVERSE, and asks the REVERSE man (his number

is 2) for help.

The REVERSE man carries out his procedure to the point where he

needs to ask for help from another REVERSE man.

REVERSE TO REVERSE

/WORD/ IS "CAT"
10 TEST IS "CAT" /EMPTY/

No ("CAT" is not the empty word)
30 MAKE

NAME: "NEWWORD"
THING" BUTLAST OF "CAT"

which is "CA"
40 MAKE

NAME: "LETTER"
THING: LAST OF "CAT"

which is "T"
50 OUTPUT WORD OF "T" AND REVERSE

OF "CA"

I'll call a reverse
man to find out what
REVERSE of "CA" is,
so I can finish my job.

....1111

-145-

(REVERSE
"CA"

Report No. 1889 Bolt Beranek and Newman Inc.

REVERSE TO REVERSE

/WORD/ IS "CA"
10 "CA" is NOT /EMPTY/
30 /NEWWORD/ is "C"
40 /LETTER/ is "A"
50 OUTPUT WORD OF "A"

AND REVERSE OF "C"

This REVERSE man (number 3) reads his procedure and carries on

O.K. until he sees his line 50.

He needs a new REVERSE man to find REVERSE OF "C".

(REVERSE
"C" REVERSE

14

TO REVERSE

/WORD/ is "C"
10

50 OUTPUT WORD OF "C"
AND REVERSE OF /EMPTY/

This new REVERSE man sees in his line 50 that he needs a REVERSE

man to help him finish his job by finding REVERSE OF /EMPTY/.

(REVERSE
/EMPTY/ REVERSE

TO REVERSE

/WORD/ is /EMPTY/
10 /WORD/ is /EMPTY/!
20 OUTPUT /EMPTY/

This REVERSE man (number 5) finishes his job and outputs his

answer, which is /EMPTY /, to the man that called him.

-146-

Report No. 1889

REVERSE

(:

The word you
asked for is
/EMPTY/

-7

Bolt Beranek and Newman Inc.

REVERSE

Now, REVERSE man 4 can finish his line 50 and give his answer to

the man who called him, REVERSE man 3.

REVERSE

Similarly:

Now I know my
answer - it's
the word "C"

REVERSE

REVERSE
(Thank you. That
means my answer is

ME

The PRINT man prints the answer TAC for me. Voila! I hang up.

-1147-

Report No. 1889 Bolt Beranek and Newman Inc.

Exercises on Little Men Pictures

In these exercises we shall practice using the little-men-and-

telephone idea to explain how a procedure works. As an example

we use a procedure called TO XJOIN.

Purpose of TO XJOIN

This is a building procedure that extends a word by putting on

extra X's in front of it.

Example: "CAT" is extended to "XXXXXCAT"

Inputs of TO XJOIN

We have to tell the procedure one thing: the original word (so

it knows where to start). So the title will be

TO XJOIN /WORD/

Examples:

PRINT XJOIN "ANXIBAR"
XANXIBAR

PRINT XJOIN "NOMOROOM"
NOMOROOM

PRINT XJOIN "I"
XXXXXXXI

The Procedure

TO XJOIN /WORD/
10 IS COUNT OF /WORD/ 8

(If it is then /WORD/ is the right length and
can be returned)

20 IF YES RETURN /WORD/
(If no, then we will extend /WORD/ by adding "X"
in front of it)

30 CALL
THING: WORD OF "X" AND /WORD/
NAME: "NEWWORD"

(Now we try the same thing again with /NEWWORD/)
40 RETURN XJOIN OF /NEWWORD/
END

-1)48-

Report No. 1889 Bolt Beranek and Newman Inc.

Further Exercises

Consider another procedure called to EXPAND. This is a building

procedure like XJOIN, but it has three inputs:

(1) The original word, so it knows where to start.

(2) The letter to be put on the front of /WORD/. (In XJOIN

this was always "X".)

(3) The final length desired, so it knows when to stop. (In

XJOIN this was always 8.)

So the title will be

TO EXPAND /WORD/ /LETTER/ /LENGTH/

Examples:

PRINT EXPAND "BOX" AND "A" AND 4
ABOX

PRINT EXPAND "S" AND "X" AND 10
XXXXXXXXXS

Write the procedure TO EXPAND. Then make a little men picture

to show how the procedure works, given the instruction

PRINT EXPAND OF "DOG" "X" 5.

Round-Analysis

The analysis by "little men" becomes tedious and distracting

once the principle is understood. Round-analysis, illustrated

here for the same REVERSE procedure, is essentially a compact

version of the "little men" diagram expressed in a form that is

faster to write out.

Report No. 1889

Round 1

Round 2

REVERSE OF "CAT"
/WORD/ = "CAT"
/NEWWORD/ = "CA"
/LETTER/ = "T"
OUTPUTS WORD OF "T" AINDt

Bolt Beranek and Newman Inc.

REVERSE OF "CA"
/WORD/ = "CA"
/NEWWORD/ = "C"
/LETTER/ = "A"
OUTPUTS WORD OF "A" AND

Round 3 *REVERSE OF "C"
/WORD/ = "C"
/NEWWORD/ = /EMPTY/
/LETTER/ = "C"
OUTPUTS WORD OF "C" AND

Round 4 AREVERSE OF /EMPTY/
/WORD/ = /EMPTY/
OUTPUTS /EMPTY/

The TRACE Command

PRINTS "TAC"

= "TAC"

= "AC"

= "C"

The TRACE command in LOGO allows the student to see the sequence

of inputs and outputs as these develop in the course of running

a program. Thus, TRACE automatically performs one of the main

functions of round-analysis. The use of TRACE on the procedure

REVERSE with the input "CAT" is shown in the following printout.

Report No. 1889 Bolt Beranek and Newman Inc.

TO REVERSE /WORD/
10 TEST IS /WORD/ /EMPTY/
20 IF TRUE OUTPUT /EMPTY/
30 MAKE

NAME: "NEWWORD"
THING: BUTLAST OF /WORD/

40 MAKE
NAME: "LETTER"
THING: LAST OF /WORD/

50 OUTPUT WORD OF /LETTER/ AND REVERSE OF /NEWWORD/
END

4-TRACE REVERSE
4-PRINT REVERSE OF "CAT"

REVERSE OF "CAT"
REVERSE OF "CA"

REVERSE OF "C"
REVERSE OF ""
REVERSE OUTPUTS

REVERSE OUTPUTS "C"
REVERSE OUTPUTS "AC"

REVERSE OUTPUTS "TAC"
TAC

The procedure TO REVERSE is listed first. The instruction TRACE

REVERSE is then executed. This informs LOGO that REVERSE is to

be traced when it is used subsequently (until the TRACE is erased).

When the instruction PRINT REVERSE OF "CAT" is executed, the

successive calls of REVERSE are listed as they are made.

First the program calls for REVERSE OF "CAT", then for REVERSE OF

"CA", "C", and "" (the empty word). As the output corresponding

to each call is made and passed back, it is listed by TRACE.

Each output is listed on a line having the same indentation as

the corresponding call. Finally, the first "REVERSE man",

REVERSE OF "CAT", can make its output "TAC" and pass it back to

PRINT, which prints it.

The assignments that follow illustrate some of the debugging

problems given to the class.

-151-

Report No. 1889 Bolt Beranek and Newman Inc.

HELP!!!

My procedure CT doesn't work quite as well as it should.

THIS IS WHAT I WANTED IT TO DO:

+PRINT CT "HARD"
THIS WORD HAS AT LEAST 3 LETTERS.
+PRINT CT "GO"
THIS WORD HAS 1 OR 2 LETTERS.
+PRINT CT "DOG"
THIS WORD HAS AT LEAST 3 LETTERS.
+PRINT CT "I"
THIS WORD HAS 1 OR 2 LETTERS.

THIS IS THE PROCEDURE I WROTE:

+TO CT /WORD/
>10 IS COUNT /WORD/ "1"
>20 IS COUNT /WORD/ "2"
>30 IF NO RETURN "THIS WORD HAS AT LEAST 3 LETTERS."

>40 IF YES RETURN "THIS WORD HAS 1 OR 2 LETTERS."

>END
CT DEFINED
+

THIS IS WHAT ACTUALLY HAPPENED WHEN I USED MY PROCEDURE:

+PRINT CT "HARD"
THIS WORD HAS AT LEAST 3 LETTERS.
+PRINT CT "GO"
THIS WORD HAS 1 OR 2 LETTERS.
PRINT CT "DOG"
THIS WORD HAS AT LEAST 3 LETTERS.
+PRINT CT "I"
THIS WORD HAS AT LEAST 3 LETTERS.

THE LAST ANSWER IS WRONG.

PLEASE HELP ME FIND THE BUGS!

-152-

Report No. 1889 Bolt Beranek and Newman Inc.

MORE HELP!!!

This procedure leaves some funny spaces at the end.

THIS IS WHAT I WANTED IT TO DO:

+DRAW "XXXXXXX"
XXXXXXX
XXXXXXX
XXXXXXX
XXXXX
XXXXX
XXXXX
XXX
XXX
XXX
X

X

X
-4-

THIS IS THE PROCEDURE I WROTE:

+TO DRAW /X/
> 10 PRINI /X/
>20 PRINT /X/
> 30 PRINT /X/
>40 IS COUNT OF /X/ 0
> 50 IF YES RETURN "
> 60 RETURN DRAW OF BUTFIRST OF BUTLAST /X/
>END
DRAW DEFINED

THIS IS WHAT HAPPENED WHEN I USED IT:

+DRAW "XXXXXXX"
XXXXXXX
XXXXXXX
XXXXXXX
XXXXX
XXXXX
XXXXX
XXX
XXX
XXX
X

X
X

(Can you get rid of all these spaces for me?)

-153-

Report No. 1889 Bolt Beranek and Newman Inc.

STILL MORE HELP!!!

This procedure COUNTLESS is giving me trouble.

THIS IS WHAT I WANTED IT TO DO:

+PRINT COUNTLESS "ABCDEF"
ABCDEF
6

BCDEF
5

CDEF
4

DEF
3

EF
2

F

1

THIS IS THE PROCEDURE I WROTE:

+TO COUNTLESS /WORD/
>10 IS /WORD/ ""
>20 IF YES RETURN
>30 PRINT /WORD/
>40 PRINT COUNT OF /WORD/
>50 COUNTLESS /WORD/
>END
COUNTLESS DEFINED

THIS IS WHAT ACTUALLY HAPPENED WHEN I USED MY PROCEDURE:

+,1RINT COUNTLESS "ABCDEF"
ABCDEF
6

ABCDEF
6

ABCDEF
6

ABCDEF
6

I WAS AT LINE 40 IN COUNTLESS.

PLEASE HELP!

-154-

Report No. 1889 Bolt Beranek and Newman Inc.

An example of a standard situation where in the process of fixing

one bug another is created, is shown in the following student's

work in writing his own COUNTLESS. (He chose to start with his

own program instead of editing the teacher's program shown on

the previous page.)

TO COUNTLESS /WORD/
10 PRINT /WORD/
20 PRINT COUNT OF /WORD/
30 COUNTLESS BUTFIRST OF /WORD/
END

(The last line fixed the bug in the assigned program.)

+COUNTLESS "ABC"
ABC
3

BC
2

C

1

0

0

(But it didn't stop)

(Alternate printouts of the empty word
and its count, 0.)

0
(After several lines of repetition,
the break key was hit.)

I WAS AT LINE 20 IN COUNTLESS
(The student had forgotten to include a stopping rule.
He realized this and repaired his program.)

+EDIT COUNTLESS
>25 IS COUNT OF /WORD/ "1"
>27 IF YES RETURN /EMPTY/
>END
COUNTLESS DEFINED
+COUNTLESS "ABC"
ABC
3

BC
2

C
1

The next assignment, shown on the following two pages, is an

exercise in Little Men diagramming. (The XJOIN procedure was

discussed above.)

-155-

Report No. 1889 Bolt Beranek and Newman Inc.

A Worked Out Example of Little Men

TO LASTWO /X/
10 IS COUNT OF /X/ 2

20 IF YES RETURN /X/
30 CALL

THING: BUTFIRST
NAME: "X"

40 RETURN LASTWO /X/
END

/X/

.... _ - --- ,...,, ..,.
Well,.. /A/ 4 "EE" 50 rhe
anstmer To I is. yes, No..4)
L have red," all. 40 sdys
to Rerufsw /41 to the Ob111
who callad The - se .07.'11

P. 0 tupn "'k." E" to han .

Now 1 can
di: pry job

p-int

ieC

Nutv
urn fel/ ihte

man
Me Kati he
wnted r kn

PINE/ Nebo
can ,ive the
min f.uhr. calla
rn 61, an answer,

LASTWO
:111E6W

(LA5 I' W 0 0 1:::..

4 ' 1EE'''...is22::./

Ah hal 1,r/
id; "REV'. rhe

an5wer- /0 is
No Sce 1 dens?' dc

(ie, 30 $.1/.. tc,
C.3 // "ea' "A". 40
sa.p. g6-11,,RN

LASTWO VE% b d"
4",;.t 2 myot flnd
our what rhat

Lets iee what pm
dc.. .1.s '`TREE';

The ginbwer No at)
,)on't do Ste, 3/0 teas the rhgt

Ai/ 46 neas E'i?EE4. M1 *al s
REtvRII A45rive "Ree bvrcan)/ do that unto? Cand
e u.ihat ;r

156

Report No. 1889 Bolt Beranek and Newman Inc.

Complete This Little Men Picture

TO XJOIN /WORD/
10 IS COUNT OF /WORD/ 8
20 IF YES RETURN /WORD/
30 CALL

THING: WORD OF "X" AND /WORD/
NAME: "NEWWORD"

40 RETURN XJOIN /NEWWORD/
END

5 TA RT
HERE

PRINT XI0114
oF "M4.1401E"

/woRD/is

Ah .1.14 er tti

11?
hi/4 W R.D/

-157-

Report No. 1889 Bolt Beranek and Newman Inc.

The procedure XJOIN fails for words with more than 8 letters.

Noting this, a student wrote a modified procedure, XXJOIN, which

is like XJOIN for inputs of 8 letters or less, but which returns

the word itself as its output for any input word with more than

8 letters.

TO XXJOIN /L/
5 CALL

THING: COUNT OF IL/
NAME: "LENGTH"

6 CALL
THING: GQ OF /LENGTH/ AND "8"
NAME: "ANSWER"

7 IS /ANSWER/ "TRUE"
8 IF YES RETURN IL/
10 IS COUNT OF /L/ "8"
20 IF YES RETURN /L/
30 CALL

THING: WORD OF "X" AND IL/
NAME: "NW"

40 RETURN XXJOIN OF /NW/
END

fP XXJOIN OF "SUPERMAN"
SUPERMAN
fP XXJOIN OF "DILLINGER"
DILLINGER
fP XXJOIN OF "1234567890"
1234567890

XXJOIN OF "AXE"
XXXXXAXE

(GQ, or GREATERQ, is a
two-input predicate which
outputs "TRUE" if the
first input is greater
than the second and
"FALSE" otherwise.)

Report No. 1889 Bolt Beranek and Newman Inc.

Early Projects

The last weeks of the first part of the course were spent working

on a few projects of somewhat larger scope. The problems were

chosen for their interest to the children as well as for their

value in fostering individual work and helping develop stronger

resources for writing, debugging, and using programs.

One series of projects was in the area of writing interactive

programs - programs in which the user communicates with the

computer in the course of its operation. Examples are
11 conversations", question-answering programs, quizzes, etc.

Another series of projects was in the area of message coding

and decoding - in the childrens' parlance, "secret codes".

Examples from teaching materials and student work in connection

with these projects follow.

Interactive Programs

The REQUEST operation is necessary for interactive programming

in LOGO. The students were introduced to REQUEST indirectly,

as follows. They were told to try a procedure called LIKES

before looking at the instructions comprising its definition.

Typical typescripts from this use are shown next. (The

student's line of typing is always preceded by an asterisk; all

other lines were typed by the computer.)

Report No. 1889 Bolt Beranek and Newman Inc.

TELL ME SOMETHING YOU LIKE
gBOYS
SO YOU LIKE BOYS
TELL ME SOMETHING YOU DON'T LIKE
gMR SARNO
I'M SORRY YOU DON'T LIKE MR SARNO
TELL ME SOMETHING YOU LIKE
gVACATION
SO YOU LIKE VACATION
TELL ME SOMETHING YOU DON'T LIKE
gSCHOOL
I'M SORRY YOU DON'T LIKE SCHOOL
TELL ME SOMETHING YOU LIKE
gYOU
SO YOU LIKE.YOU
TELL ME SOMETHING YOU DON'T LIKE
ME
I'M SORRY YOU DON'T LIKE ME
TELL ME SOMETHING YOU LIKE
gSCIENCE
SO YOU LIKE SCIENCE
TELL ME SOMETHING YOU DON'T LIKE
gSCIENCE
I'M SORRY YOU DON'T LIKE SCIENCE
TELL ME SOMETHING YOU LIKE
gMISSING SCHOOL WHEN I'M NOT SICK
SO YOU LIKE MISSING SCHOOL WHEN I'M NOT SICK
TELL ME SOMETHING YOU DON'T LIKE
gPEOPLE STARING AT ME
I'M SORRY YOU DON'T LIKE PEOPLE STARING AT ME
TELL ME SOMETHING YOU LIKE

TELL ME SOMETHING YOU LIKE
gFLOWERPOWER AND LOVE
SO YOU LIKE FLOWERPOWER AND LOVE
TELL ME SOMETHING YOU DON'T LIKE
HATE AND DEAD FLOWERS
I'M SORRY YOU DON'T LIKE HATE AND DEAD FLOWERS
TELL ME SOMETHING YOU LIKE
gNO CAVATIES
SO YOU LIKE NO CAVATIES
TELL ME SOMETHING YOU DON'T LIKE
gCANDY
I'M SORRY YOU DON'T LIKE CANDY

-160-

Report No. 1889 Bolt Beranek and Newman Inc.

TELL ME SOMETHING YOU LIKE
gSCIENCE AND MATH (I THINK THEIR INTRESTING
SO YOU LIKE SCIENCE AND MATH (I THINK THEIR INTRESTING
TELL ME SOMETHING YOU DON'T LIKE

TELL ME SOMETHING YOU LIKE
g I LIKE ICE CREAM
SO YOU LIKE I LIKE ICE CREAM
TELL ME SOMETHING YOU DON'T LIKE
g I DON'T LIKE SCHOOL
I'M SORRY YOU DON'T LIKE I DON'T LIKE SCHOOL
TELL ME SOMETHING YOU LIKE
TELL ME SOMETHING YOU LIKE
SO YOU LIKE TELL ME SOMETHING YOU LIKE
TELL ME SOMETHING YOU DON'T LIKE

I LIKE TO SKATE
I'M SORRY YOU DON'T LIKE I LIKE TO SKATE
TELL ME SOMETHING YOU LIKE
+

And so on. The twelve students worked at the teletypes in pairs.

It took fifteen minutes before the first pair could pull them-

selves away from using LIKES and finally look at the procedure

definition itself. (At the end of the class hour, two children

were still generating their long lists of likes and dislikes.

They had to be evicted from the classroom.)

Each of the children then listed the procedure LIKES to see how

it worked.

+LIST LIKES

TO LIKES
10 PRINT "TELL ME SOMETHING YOU LIKE"
20 REQUEST "LIKE"
30 PRINT SENTENCE OF "SO YOU LIKE" AND /LIKE/
40 PRINT "TELL ME SOMETHING YOU DON'T LIKE"
50 REQUEST "NOLIKE"
60 PRINT SENTENCE OF "I'M SORRY YOU DON'T LIKE" AND /NOLIKE/
70 LIKES
END
+

-161-

Report No. 1889 Bolt Beranek and Newman Inc.

All the children were able to work out the operation of REQUEST

though none had seen this instruction previously. To demonstrate

that a student did understand how LIKES worked when he said that

he did, he was given the assignment of writing a procedure

COPYCAT whose effect was to be as follows (the user's typing is

preceded by an asterisk to distinguish it from the computer's).

-COPY CAT
TELL ME SOMETHING
%'1I GO LOGO
I GO LOGO
TELL ME SOMETHING

LOVE YOU
I LOVE YOU
TELL ME SOMETHING

A typical COPYCAT program:

TO COPYCAT
10 PRINT "TELL ME SOMETHING"
20 REQUEST "SOMETHING"
30 PRINT /SOMETHING/
40 COPYCAT
END

After showing that they could write COPYCAT, most of the children

continued on their own to write other interactive procedures

patterned after these models. Examples of some of these are

shown next (in each case the procedure is listed and then run by

a student).

TO FOOD
10 PRINT "TELL ME THE FOOD THAT YOU LIKE BEST"
20 REQUEST "FOOD"
30 PRINT SENTENCE OF "SO YOU LIKE" AND SENTENCE OF /FOOD/

AND "BEST"
40 PRINT "TELL ME SOMETHING YOU DO NOT LIKE"

50 REQUEST "NOLIKE"
60 PRINT SENTENCE OF "I DO NOT LIKE THAT EITHER" (A bug here)

END

-162-

Report No. 1889 Bolt Beranek and Newman Inc.

+FOOD
TELL ME THE FOOD THAT YOU LIKE BEST
NSTEAK
SO YOU LIKE STEAK BEST
TELL ME SOMETHING YOU DO NOT LIKE
NHAMBURG
THERE IS SOMETHING MISSING ON THIS LINE. (The program stopped

I WAS AT LINE 60 IN FOOD. because SENTENCE needs
two inputs)

TO ME
10 PRINT "YOUR NAME"
20 REQUEST "ME"
30 PRINT SENTENCE OF /ME/ AND "IS SILLY"

40 ME
END

4-ME

YOUR NAME
NHENRY
HENRY IS SILLY
YOUR NAME
gHENRIETTA
HENRIETTA IS SILLY
YOUR NAME
BILLY
BILLY IS SILLY

TO AGE
10 PRINT "TELL ME YOUR AGE"
20 REQUEST "AGE"
30 PRINT SENTENCE OF "SO YOU AGE" AND /AGE/ (The English

40 PRINT "TELL ME MY AGE" sentence structure

50 REQUEST "AGE" is something less

60 PRINT SENTENCE OF "SO I AGE" AND /AGE/ than perfect; but

70 AGE the formal structure

END of the program is correct, and, for this student,
this program was a significant intellectual
achievement.)

-163-

11

Report No. 1889

4AaF
TELL ME YOUR AGE
:c56

SO YOU AGE 56
TELL ME MY AGE
,c78

SO I AGE 78
TELL ME YOUR AGE
,c2

SO YOU AGE 2
TELL ME MY AGE
:1234
SO I AGE 1234
TELL ME YOUR AGE
765432876543545676
SO YOU AGE 765432876543545676
TELL ME MY AGE

Bolt Beranek and Newman Inc.

4TO SING
>10 PRINT "WHAT SONG DO YOU WANT TO HEAR?"
>20 REQUEST "E"
>30 PRINT "I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST"
>40 PRINT "I CAN'T HEAR YOU HUM LOUDER"
>50 PRINT "0 K I'LL TRY IT NOW"
>60 PRINT S S S S S S /BELL/ /BELL/ /BELL/ /BELL/ /BELL/

/BELL/ /BELL/
>70 PRINT "THAT'S THE BEST I CAN DO"
>END
SING DEFINED

(The effect of the instruction in Line 60, which prints an

invisible but audible seven-word sentence, is to ring the tele-

type bell seven times.)

-SING
WHAT SONG DO YOU WANT TO HEAR?

5AMERICA
I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST
I CAN'T HEAR YOU HUM LOUDER
0 K I'LL TRY IT NOW

(At this point it rings the bells)

THAT'S THE BEST I CAN DO
4

-1611-

Report No. 1889 Bolt Beranek and Newman Inc.

+SING
WHAT SONG DO YOU WANT TO HEAR?
ZANY SONG
I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST
I CAN'T HEAR YOU HUM LOUDER
0 K I'LL TRY IT NOW

(Seven bells again)
THAT'S THE BEST I CAN DO

In some instances, these procedures were the first ones wholly

conceived by the children. All the children were very serious

about this work, even when writing procedures that might appear

silly or funny. For some of the children getting a procedure of

this kind to work required (what was for them) a formidable

intellectual effort.

In the next phase of interactive programming, work was done in

connection with various quiz programs. Four partially developed

quiz programs - PREACH, LOGOPART, SPORTQUIZ, and COMICS TRIPQUIZ -

were tried by the students. Sample runs with these programs

follow next. (The student's typing is underscored to distinguish

it from the computer's.)

(A FUNNY PROGRAM)
+PREACH
THINK OF A NUMBER. TYPE IT WHEN YOU SEE g.
g12345
YOUR NUMBER IS ODD.
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
gYES
IT'S BIGGER THAN A THOUSAND.
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
:IVES

YOUR NUMBER IS LESS THAN 12350
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
YES
TWICE YOUR NUMBER IS EVEN.
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
IVES

(continued)

-165-

Report No. 1889 Bolt Beranek and. Newman Inc.

SORRY, THAT'S ALL I KNOW. I'M A PRETTY DUMB COMPUTER. IF

YOU WANT TO KNOW MORE YOU'D BETTER START ME AGAIN OR GIVE
ME SOME NEW THINGS TO DO.

I GUESS I WON'T WAIT FOR YOU TO START ME.
THINK OF A NUMBER. TYPE IT WHEN YOU SEE g.
g34
YOUR NUMBER IS EVEN
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
YES
THAT'S A SMALL NUMBER.
DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
gNO

4LOGOPART

TYPE ANY WORD WHEN YOU SEE
gKP
I'LL CALL KP "ANYWORD"

TYPE FIRST OF /ANYWORD/
gK
GOOD FOR YOU!

TYPE LAST OF /ANYWORD/
g0
SORRY, LAST OF /ANYWORD/ IS P

TYPE IN /ANYWORD/
gOK
TYPE IN BF OF /ANYWORD/
"K
YOU ARE BRILLIANT

I'LL BET YOU CAN ADD MANY MORE INSTRUCTIONS TO THIS PROGRAM.

Report No. 1889 Bolt Beranek and Newman Inc.

÷SPORTQUIZ

ARE YOU A SPORTS FAN? DO YOU LIKE BASEBALL? FOOTBALL?
HOCKEY? BASKETBALL? HERE ARE SOME QUESTIONS TO GIVE YOU
A CHANCE TO SHOW OFF WHAT YOU KNOW.

WHAT TEAM WON THE AMERICAN LEAGUE PENNANT THIS YEAR? (GIVE
THE NAME OF THE CITY FIRST AND THEN THE TEAM NAME. EXAMPLE:
CHICAGO CUBS)
NCARNALS
STRIKE ONE. THE DETROIT TIGERS WON THE 1968 AMERICAN
LEAGUE FNINANT.

DID THE ST. LOUIS CARDINALS WIN THE WORLD SERIES THIS YEAR?
ANSWER YES OR NO.
NO
BASE HIT

DO THE BOSTON PATRIOTS PLAY FOOTBALL IN THE NFL OR THE AFL?
NO
FIVE YARD PENALTY. THE BOSTON PATRIOTS PLAY IN THE
AMERICAN FOOTBALL LEAGUE -- THE AFL.

I THINK YOU PROBABLY KNOW A LOT MORE ABOUT SPORTS THAN I DO.
WHY DON'T YOU ADD SOME QUESTIONS (AND ANSWERS, OF COURSE)
TO THIS QUIZ? THEN YOU CAN TRY YOUR VERSION.

÷COMICSTRIPOUIZ

ARE YOU A FAITHFUL READER OF THE COMICS? DO YOU CHUCKLE
WHEN YOUR FAVORITE CHARACTER GETS INTO A FUNNY SITUATION?
DO YOU LIKE THE ADVENTURE COMICS? THE DETECTIVE COMICS?
THE TEENAGER COMICS? HERE ARE SOME QUESTIONS TO SEE HOW
LOYAL A COMIC STRIP READER YOU ARE?

THE RED BARON WAS A GERMAN WORLD WAR I HERO. WHO FIGHTS
THE RED BARON IN THE COMIC STRIPS?
NH
IT'S SNOOPY WHO SAYS 'CURSE YOU, RED BARON'

ROBIN IS THE BOY ASSOCIATE OF WHAT COMIC STRIP CHARACTER?
"BATMAN
HOLY COMPUTER! YOU'RE RIGHT.

WHO WAS THE FAMOUS CARTOONIST AND PRODUCER WHO CREATED SUCH
CHARACTERS AS MICKEY MOUSE, DONALD DUCK, AND PLUTO?
nw

THE GREAT WALT DISNEY IS THE NAME YOU WANT.

-167-

Report No. 1889 Bolt Beranek and Newman Inc.

NOW IT'S YOUR TURN TO WRITE SOME QUESTIONS ABCUT YOUR
FAVORITE COMIC STRIP CHARACTERS. ADD THEM TO THIS QUIZ
SO WE CAN TRY THE QUIZ OUT ON EACH OTHER.
-4-

The students then listed each of the quiz programs to see how it

was constructed. Here, for example, is a listing of the procedure

COMICSTRIPQUIZ along with the three rrocedures that it uses -

Q1, Q2, and Q3.

TO COMICSTRIPQUIZ
10 PRINT "
20 PRINT ""
30 PRINT ""
40 PRINT "ARE YOU A FAITHFUL READER OF THE COMICS? DO YOU

CHUCKLE WHEN YOUR FAVORITE CHARACTER GETS INTO A FUNNY
SITUATION? DO YOU LIKE THE ADVENTURE COMICS? THE
DETECTIVE COMICS? THE TEENAGER COMICS? HERE ARE SOME
QUESTIONS TO SEE HOW LOYAL A COMIC STRIP READER YOU ARE?"

42 PRINT nu
45 PRINT ""
50 PRINT QI
55 PRINT "
58 PRINT ""
60 PRINT Q2
62 PRINT un
65 PRINT ""
70 PRINT Q3
75 PRINT "
80 PRINT nu
85 PRINT "NOW IT'S YOUR TURN TO WRITE SOME QUESTIONS ABOUT

YOUR FAVORITE COMIC STRIP CHARACTERS. ADD THEM TO THIS
QUIZ SO WE CAN TRY THE QUIZ OUT ON EACH OTHER."

END

TO Q1
10 PRINT "THE RED BARON WAS A GERMAN WORLD WAR I HERO. WHO

FIGHTS THE RED BARON IN THE COMIC STRIPS?"
15 REQUEST "X"
20 IS /X/ "SNOOPY"
25 IF YES RETURN "RIGHT YOU ARE."
30 IF NO RETURN "IT'S SNOOPY WHO SAYS 'CURSE YOU, RED BARON'"
END

Report No. 1889 Bolt Beranek and Newman Inc.

TO Q2
10 PRINT "ROBIN IS THE BOY ASSOCIATE OF WHAT COMIC STRIP

CHARACTER?"
20 REQUEST "Y"
30 IS /Y/ "BATMAN"
40 IF YES RETURN "HOLY COMPUTER! YOU'RE RIGHT."
50 IF NO PRINT "HOLY SMOKES! IT'S BATMAN"
END

TO Q3
10 PRINT "WHO WAS THE FAMOUS CARTOONIST AND PRODUCER WHO

CREATED SUCH CHARACTERS AS MICKEY MOUSE, DONALD DUCK,
AND PLUTO?"

20 REQUEST "WHO"
30 IS /WHO/ "WALT DISNE"
40 IF YES RETURN "YOU'RE AN AUTHORITY ON CARTOONISTS, I SEE."
50 IF NO RETURN "THE GREAT WALT DISNEY IS THE NAME YOU WANT."
END

The students then made up their own questions and answers in the
form of procedures. Here is a procedure made for use with
COMICSTRIPQUIZ.

TO Q4
10 PRINT "WHO IS HAWK'S PARTNER?"
20 REQUEST "WHO"
30 IS /WHO/ "DOVE"
40 IF YES RETURN "GEE WILLIKERS, THATS RIGHT"
50 IF NO RETURN "DOVE IS THE NAME, JOKES ARE MY GAME"
END

COMICSTRIPQUIZ was then edited to incorporate this new question
procedure, Q4.

-EDIT COMICSTRIPQUIZ
>90 PRINT ""
>95 PRINT tin
>100 PRINT Q4
>END
COMICSTRIPQUIZ DEFINED

When COMICSTRIPQUIZ was run, the following exchange occurred after

those shown in the previous run.

-169-

III

Report No. 1889 Bolt Beranek and Newman Inc.

WHO IS HAWK'S PARTNER?
:cROBIN
DOVE IS THE NAME, JOKES ARE MY GAME

All the quiz programs shown use preprogrammed questions and

answers. In later phases, students wrote procedures for gener-

ating the questions and answers as these were needed in the

course of the quiz. This work was done in conjunction with a

major project on equations, as part of the algebra course

material. It is discussed later (in the section titled Algebra

Teaching Sequence).

Message Coding and Decoding Programs

The work on message coding programs started with a procedure

called SCRAMBLE, which rotates the letters of a word one position

to the left (circularly - the leftmost letter becomes the right-

most one). SCRAMBLE and its associated decoding procedure,

UNSCRAMBLE, were introduced with bugs. A copy of the students'

assignment to debug them follows.

The students discovered that the roles of SCRAMBLE and

UNSCRAMBLE could be reversed, i.e., that UNSCRAMBLE could be

used for coding a word and that SCRAMBLE would then function

properly as the associated decoder.

Report No. 1889 Bolt Beranek and Newman Inc.

BUGS, BUGS, BUGS!!

Here are two procedures that don't quite work. Find the bugs.

The first procedure is called SCRAMBLE.

TO SCRAMBLE /WORD/
10 CALL

THING: FIRST OF /WORD/
NAME: "FRONT"

20 CALL
THING: BUTFIRST OF /WORD/
NAME: "BACK"

30 RETURN WORD OF /FRONT/ AND
END

/BACK/

This procedure was supposed to scramble the word by putting the

first letter at the end of the word. Here is what happened.

+PRINT SCRAMBLE OF "DOOR" I wanted this procedure to return
DOOR
+PRINT SCRAMBLE OF "PRESS"
PRESS

OORD

RESSP

Once the procedure SCRAMBLE worked, UNSCRAMBLE was supposed to

put the word back together again.

TO UNSCRAMBLE /MESS/
10 CALL

THING: LAST OF /MESS/
NAME: "FRONT"

20 CALL
THING: BUTLAST OF /MESS/
NAME: "BACK"

30 CALL
THING: WORD OF /FRONT/ AND /BACK/
NAME: "NEWWORD"

40 RETURN /MESS/
END UNSCRAMBLE

Here is what happened.

(PRINT UNSCRAMBLE OF "OORD"
OORD
(PRINT UNSCRAMBLE OF "RESSP"
RESSP

Can you fix these two procedures?

-171-

I wanted this procedure to return

DOOR

PRESS

Report No. 1889 Bolt Beranek and Newman Inc.

The main project of the series on "secret codes", the Gibberish

project, was suggested by the students. They were all fluent

speakers of Gibberish (pronounced Jibberish). They provided the

rules for translating English words to simple Gibberish: if the

first letter is a consonant, insert the letters ITHAG after the

first letter; if the first letter is a vowel, prefix the entire

word with the letters ITHAG. (These are very similar to Pig

Latin rules.) Thus, DOG becomes DITHAGOG, and CAT becomes

CITHAGAT, but AT becomes ITHAGAT and I becomes ITHAGI. The goal

was to write procedures for translating English sentences to

Gibberish sentences and vice-versa.

The first task was to write a procedure, called GIB, for perform-

ing the first of the two translation rules. GIB has a single

input, the word /OLDWORD/. Its output is a word constructed

from three parts - the first letter of the input, the literal

"ITHAG", and the BUTFIRST of the input.

4TO GIB /OLDWORD/
>10 CALL

THING: FIRST OF / OLDWORD/
NAME: "ONE"

>20 CALL
THING: "ITHAG"
NAME: "TWO"

>30 CALL
THING: BUTFIRST OF /OLDWORD/
NAME: "THREE"

>40 RETURN WORD OF /ONE/ AND WORD OF /Two/ AND /THREE/
>END
GIB DEFINED

+PRINT GIB OF "CAT"
CITHAGAT
4-PRINT GIB OF "AT"
AITHAGT
4-PRINT GIB OF "A"
AITHAG

-172--

Report No. 1889 Bolt Beranek and Newman Inc.

Note that GIB has the same effect on words beginning with vowels
as it has on words beginning with consonants.

The second task was to write a procedure, called IB, for perform-
ing the second of the two translation rules.

4-TO IB /OLDWORD/
> 10 CALL

THING: "ITHAG"
NAME: "ONE"

> 20 CALL
THING: /OLDWORD/
NAME: "TWO"

> 30 RETURN WORD OF /ONE/ AND /TWO/
>END
IB DEFINED

÷PRINT IB OF "A"
ITHAGA
PRINT IB OF "AT"

I THAGAT
÷PRINT IB OF "CAT"
ITHAGCAT

Like GIB, IB works indifferently on all words.

The third task was to write a test procedure to decide which of
the two procedures (IB or GIB) is to be performed on a given
input: the test is whether or not the first letter of the input
is a vowel. The students wrote test procedures like the following.

4TO VOWEL /LETTER/
> 10 IS /LETTER/ "A"
>20 IF YES RETURN "YES"
> 30 IS /LETTER/ "E"
> 40 IF YES RETURN "YES"
> 50 IS /LETTER/ "I"
>60 IF YES RETURN "YES"
>70 IS /LETTER/ "0"
>80 IF YES RETURN "YES"
>90 IS /LETTER/ "U"
> 100 IF YES RETURN "YES"
> 110 RETURN "NO"
>END
VOWEL DEFINED

-173-

Report No. 1889 Bolt Beranek and Newman Inc.

Next, students wrote a procedure, called SUPERGIB, for translat-

ing any English word. They usually started with a faulty proce-

dure like this.

TO SUPERGIB /ANYWORD/
10 IS FIRST OF /ANYWORD/ VOWEL
20 IF YES RETURN IB OF /ANYWORD/
30 IF NO RETURN GIB OF /ANYWORD/
END

Line 10 is better English than LOGO. VOWEL needs to have an

input. Also, its output must be one of the two words "YES" or

"NO", not a letter. Line 10 is correctly rewritten as follows:

10 IS VOWEL OF FIRST OF /ANYWORD/ "YES"

Now SUPERGIB works.

+PRINT SUPERGIB OF "JIM"
JITHAGIM
+PRINT SUPERGIB OF "AMY"
ITHAGAMY

The students could translate two-word sentences in the following

way.

+PRINT SENTENCE OF SUPERGIB OF "JIM" AND SUPERGIB OF "AMY"
JITHAGIM ITHAGAMY

They were shown a general procedure for translating sentences of

arbitrary length into Gibberish.

+TO GIBBERISH /SENT/
>10 IS /SENT/ /EMPTY/
>20 IF YES RETURN /EMPTY/
>30 CALL

THING: SUPERGIB OF FIRST OF /SENT/
NAME: "GIBWORD"

>40 RETURN SENTENCE OF /GIBWORD/ AND GIBBERISH OF BUTFIRST
OF /SENT/

>END
GIBBERISH DEFINED

-174-

Report No. 1889 Bolt Beranek and Newman Inc.

+PRINT GIBBERISH OF "THIS DOES IT"
TITHAGHIS DITHAGOES ITHAGIT

This procedure would have been too difficult for the students to

write at this stage of their development. Some of them, however,

after seeing the procedure GIBBERISH could have written an

UNGIBBERISH for turning a Gibberish sentence into an English

sentence.

The students' last assignment for this project was a slightly

easier one - to write a procedure UNGIB for undoing SUPERGIB,

i.e., for turning a Gibberish word into an English word. Here

is the UNGIB procedure of one of the students.

TO UNGIB /M/
8 IS FIRST OF /M/ "I"
9 IF YES RETURN BUTFIRST BUTFIRST BUTFIRST BUTFIRST BUTFIRST

OF /M/
10 CALL

THING: FIRST OF /M/
NAME: "FRONT"

20 CALL
THING: BUTFIRST BUTFIRST BUTFIRST BUTFIRST BUTFIRST

BUTFIRST OF /M/
NAME: "BACK"

30 CALL
THING: WORD OF /FRONT/ AND /BACK/
NAME: "NEWWORD"

40 RETURN /NEWWORD/
END

+P UNGIB "GITHAGOOD"
GOOD
+p UNGIB "GITHAGIRL"
GIRL
+P UNGIB "YITHAGOU"
YOU
+P UNGIB "DITHAGID"
DID
+P UNGIB "ITHAGIT"
IT

"t"

-175-

Report No. 1889 Bolt Beranek and Newman Inc.

In this procedure line 8 tests whether the input begins with "I".

If it does (this corresponds to English words beginning with a

vowel), the input is necessarily prefixed by "ITHAG" and the

output is obtained (on line 9) by striking off those five

letters from the input. In the other case, the output is the

word made by joining the first letter of the input with what

remains of the input after the first six letters are removed

(letters 2 through 6 must be I,T,H,A,G). Note that the sequence

of test runs at the end spell out the words GOOD GIRL YOU DID IT

(a hidden message). She obviously felt that she had done a hard

job well.

The project following Gibberish was Pig Latin. The procedures

for translating English into Pig Latin are very similar to those

for Gibberish. With Pig Latin, however, the students were intro-

duced to a different VOWEL procedure which uses the following

more general procedure for finding whether or not a letter is

contained in a word. (It outputs "YES" or "NO" accordingly.)

TO CONTAINS /LETTER/ AND /WORD/
10 IS /WORD/ /EMPTY/
20 IF YES RETURN "NO"
30 IS /LETTER/ FIRST OF /WORD/
40 IF YES RETURN "YES"
50 IF NO RETURN CONTAINS OF /LETTER/ AND BUTFIRST OF /WORD/
END

The procedure works as follows. It tests (in line 30) to see if

the letter it is checking for is the same as the first letter of

the word in question. If it is, the procedure outputs "YES"

(line 40). If it is not, the procedure is repeated, this time

(line 50) testing the letter against the butfirst of the word

(i.e., the word obtained by removing the first letter of the

current word). If the word becomes empty (i.e., no more letters),

-176-

Report No. 1889 Bolt Beranek and Newman Inc.

the procedure outputs "NO". VOWEL can now be written as a
special case of CONTAINS in which the word being searched is the
word of all vowel letters, "AEIOU".

TO VOWEL /LETTER/
10 RETURN CONTAINS OF /LETTER/ AND "AEIOU"
END

The value of having this more general procedure, CONTAINS, was
shown by the ease with which some other test procedures could be
written with it. Thus, the procedure EVEN, which tests whether
or not a number is even.

TO EVEN /NUMBER/
10 RETURN CONTAINS OF LAST OF /NUMBER/ AND "02468"
END

Extensions of the use of CONTAINS for selecting specified

(sometimes randomly specified) letters from words or words from
sentences were made in subsequent projects on generating sentences

and algebraic equations.

4.3 Algebra Materials

In the second part of the course, which covered a period of about
six months, the objective was to use LOGO in the teaching of

mathematics, including specific content in arithmetic and algebra.
The effort was focused on exploratory development of an elaborated,
coherent curriculum.

Samples of the teaching materials used in four sequences, includ
ing associated student work, are presented next.

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences and Oscillators

The second part of the course started with a unit on the genera-

tion of number sequences. The material was chosen and organized

to show the basic structure of simple iterative processes. An

iteration is built up out of four separable functional parts -

a CHECK to determine whether or not the iteration is complete,

an ACTION to be carried out each time the iteration is performed

(i.e., at each round), the PREPARATION of inputs for the next

round of the iteration, and the RECURSION, which calls for the

execution of the next round.

The unit comprised four assignments. The first one studies a

procedure called GODOWN to generate integers in descending

sequence from any starting number to 1. The second one treats

a related procedure called GOUP to generate integers in ascending

sequence between two prescribed numbers. The student is given

the skeleton of the GOUP procedure and he is supposed to complete

it. The third assignment concerns a modified GODOWN procedure;

this one completely analogous to GOUP. The student is given a

modified GODOWN which has bugs. He is to debug it. The last

assignment is for the student to write a procedure UPANDDOWN

which is the grand summing-up of the preceding ones.

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences - Assignment 1

TO GODOWN /NUMBER/

10 IS /NUMBER/ GREATER OF /NUMBER/ AND 1

20 IF NO RETURN

30 PRINT /NUMBER/

40 CALL

THING: DIFFERENCE OF /NUMBER/ AND 1

NAME: "NEWNUMBER"

50 RETURN GODOWN OF /NEWNUMBER/

(CHECK)

(ACTION)

(PREPARATION)

(STARTS NEW
ROUND)

Line /9 checks whether GODOWN is done.

It checks whether /zti Lip/ i3rW is greater than or equal to

GODOWN is done when 1/4/I AML:FR/ is less than / .

If line 30 became line 40 and line 40 became line 30:

30 CALL (PREPARATION)

THING: DIFFERENCE OF /NUMBER/ AND 1

NAME: "NEWNUMBER"

40 PRINT /NUMBER/ (ACTION)

Would GODOWN act differently?

Report No. 1889 Bolt Beranek and Newman Inc.

To answer the next question you have to play computer with GODOWN.

What happens if the action line (now Line 40) is

40 PRINT /NEWNUMBER/ (ACTION)

GODOWN now looks like

TO GODOWN /NUMBER/

10 IS /NUMBER/ GREATER OF /NUMBER/ AND 1

20 IF NO RETURN

30 CALL

THING: DIFFERENCE OF /NUMBER/ AND 1

NAME: "NEWNUMBER"

40 PRINT /NEWNUMBER/

50 RETURN GODOWN OF /NEWNUMBER/

PLAY COMPUTER

GODOWN OF 3

(CHECK)

(PREPARATION)

(ACTION)

(STARTS NEW
ROUND)

bh. di di tcy is.

3 :1 11.,

//vewtootil d)Ct Is /lawA14. liLK/ IS

PINT a., PRINT'

/A/LdipiktV is*"

Plit: it' 410 cA /' -., 0
PRINT 0

Try GODOWN with the following inputs

3

5

7

-180-

Nt'fil I3e;(3/ /5'

1-..

Rt'r11011 /tinPTY/

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences - Assignment 2

GOUP is to print its first input until it is greater than its

second input. Before each round a new first input must be

prepared by adding 1 to the present first input.

Fill in the blanks.

TO GOUP /ACTIONNUMBER/ AND /TOPNUMBER/

10 IS /TOPNUMBER/ GREATER OF /ACTIONNUMBER/ AND/n)PAW/NPU*(CHECK)

20 IF NO RETURN

30 CALL (PREPARATION)

THING: svni OF /ACTIONNUMBER/ AND 1

NAME: "NEWNUMBER"

40 PRINT /ACTIONNUMBER/ (ACTION)

50 RETURN GOUP OF /NEWNUMBER/ AND/T4P/Van/i3c-R/ (STARTS NEW
ROUND)

Line /# is the check line.

It checks whetherfr47,A4)4//34g--AV is greater than or equal to

/de-r/ N lv0 RiZR/
When frOPIVt/n 73 ER7/ iis less than /ACTMA/NPA7/3/±7-/V

GOUP returns /EMPTY/.

Line 30 is the 46-rii.)N line. It /91)4)5 1 to

/ACTIONNUMBER/.

To check your answers to the questions above, PLAY COMPUTER

with GOUP.

+GOUP OF 2 AND 4

2

3
4

-181-

1

Report No. 1889 Bolt Beranek and Newman Inc.

ACTioNNOMOER/ IS ,;2-

/1-2)PAWIY/3Eg Is
T1

Rieumwfleff ie/ is 3

PRINT

//907/mivonbEeis 3
17-4p/vpini3ERI /5 0

/Aix-We/240W s

T

frcr/eN4v/w3eR/
ir.01WoMBEIV 15

/NEWArtifilefAl 15 S
Pl?iNT

/ncTioNivii,05k--47/ /5 5
1/ is

S-

i7Erofriy A7MPT

Now - at the terminal - get the incomplete procedure GOUP.

Edit it by retyping the lines which you filled in above.

Then try it.

Report No. 1889

Sequences - Assignment 3

Bolt Beranek and Newman Inc.

GOUP is a procedure which requires two inputs

and a stopping number.

Change GODOWN so that it requires two inputs

and a stopping number.

÷GODOWN 5 AND 2
5

3
2

÷LIST GODOWN

TO GODOWN /NUMBER/

10 IS /NUMBER/ GREATER OF /NUMBER/ AND 1

20 IF NO RETURN

30 CALL

THING: DIFFERENCE OF /NUMBER/ AND 1

NAME: "NEWNUMBER"

40 PRINT /NUMBER/

50 RETURN GODOWN OF /NEWNUMBER/

How many inputs will the new GODOWN require?

- a starting number

- a starting number

(CHECK)

(PREPARATION)

(ACTION)

(STARTS NEW
ROUND)

Which lines in GODOWN need to be changed? // i,;;1, I/

The (1./-/ K line and line which starts the next

round need to be changed.

Fill in:

TITLE TO GODOWN /NUMBER/ AND / 7 7.4 /1/ N't /i)
50 RETURN GODOWN OF /NEWNUMBER/ AND /)))1: /Vt, b.e:n

Now that these changes have been made will GODOWN do the right

thing? A/c:'

To answer this question play computer.

-183-

Report No. 1889 Bolt Beranek and Newman Inc.

4GODOWN OF 4 AND 2

A
41100 i3z--41/ e '/

/,6 &TroA?NUhklt!yIs

Y S 2
PlfiNr 41-

/NimbeR/

li3orrafilloweRbs
3 .2
PR/ Air 3

01°

/4/ 13L-7R/ is

/Berm/lift/413a/ 13),

g72

PR/NT

/Nal/at-R/45 1

p3i)770/1/Na/f/36/f//.5

z
PR/ r

There is a bug. What is wrong?

Is GODOWN performing the right action? yes
Is the check line correct? Ne)

When should GODOWN be done? tvy4w/vbi/th3e4 /,5 4(53 WA/ Me-TURA/6/M*

GODOWN is done when /NUMBER/ is no longer greater than or equal

to /ArTrcitlivoill_Bei/
GODOWN must be edited again.

Line /fi6 must be changed.

The second input to GODOWN must be used in the check line

instead of

Now EDIT GODOWN at the terminal.

Try it with the following pairs of inputs.

5 AND 2

3 AND 1

101 AND 97

Report No. 1889

Sequences - Assignment 4

Bolt Beranek and Newman Inc.

Write a procedure UPANDDOWN which will swing down and up between

its two inputs,

NAME OF PROCEDURE: TO UPANDDOWN /BOTTOM/ /TOP/

EXAMPLE OF USE:

UPANDDOWN 2 AND 5

5
14

3
2

3
14

5
14

3
2

3
14

5
14

UPANDDOWN will continue until we depress the BREAK key. How can

we modify the procedure so UPANDDOWN stops after a specified number

of complete swings?

The concepts introduced in the unit on sequences were consolidated

and extended in the following unit. The material is part of a

larger sequence on oscillators planned for subsequent teaching.

It begins with procedures for generating simple oscillatory

patterns. The procedure SAW is a natural continuation of number

sequencing procedures like UPANDDOWN.

Report No. 1889 Bolt Beranek and Newman Inc.

Our next unit is about procedures which draw designs. The
first pattern-making procedure we shall study is called SAW.

NAME OF PROCEDURE: TO SAW /COUNTER/ AND /LIMIT/

INPUTS: /COUNTER/ - any numeral

/LIMIT/ - maximum word size

EXAMPLE:

4-SAW OF 1 AND 3
X
X

XXX
X
X
XXX
X
X
XXX
X
X
XXX
X

4-SAW OF 4 AND 6
X
X

XXXXXX
X
X
X
X
X

XXXXXX

X
X
X
X

XXXXXX
X

Report No. 1889 Bolt Beranek and Newman Inc.

The pattern is like a saw's teeth. Two kinds of words make up

the pattern. One kind is a "solid" word like:

XXXXXXXX

the other is a single letter preceded by blanks (a margin)

X

SAW needs separate procedures to make each kind of word,

EXAMPLES: NAME OF PROCEDURE:

PRINT REPEAT OF "X" AND 6 TO REPEAT /WORD/ AND /LENGTH/
XXXXXX

PRINT REPEAT OF "A" AND 10
AAAAAAAAAA

PRINT PLOT OF "X" AND 6 TO PLOT /WORD/ AND /LENGTH/
X

PRINT PLOT OF "A" AND 10
A

SAW relies on its own CHOOSE procedure to decide when to use

PLOT and when to use REPEAT.

NAME OF PROCEDURE: TO CHOOSE /NUMBER/ AND /LIMIT/

We find out how CHOOSE makes its decision by looking at SAW's

output. This time we number the lines.

SAW OF 1 AND 4
1 X
2 X
3 X
4 xxXX
5 X
6 x
7 X
8 xXxX
9 X

Lines 4 and 8 use REPEAT. The other lines use PLOT. If we think
of /COUNTER/ as the line number, we can see that when /COUNTER/ is
4 or 8 it is divisible by /LIMIT/ which is 4. Whenever /COUNTER/

-187-

Report No. 1889 Bolt Beranek and Newman Inc.

divided by /LIMIT/ has a remainder of 0, CHOOSE uses REPEAT.
Otherwise, CHOOSE gives PLOT the remainder as its word length.

The other procedure needed to make up this design is

NAME OF FROCEDURE: TO REM /NUMBER/ AND /DIVISOR/

This procedure finds the remainder of /NUMBER/ divided by /DIVISOR/.

List of procedures

TO SAW /COUNTER/ AND /LIMIT/

TO CHOOSE /COUNTER/ AND /LIMIT/

TO REM /NUMBER/ AND /DIVISOR/

TO PLOT /WORD/ AND /LENGTH/

TO REPEAT /WORD/ AND /LENGTH/

FLOW CHART FOR SAW

YES1.0romar

PRINT REPEAT OF
"X" AND /LIMIT/

FIND THE REMAINDER
OF /COUNTER/
DIVIDED BY /LIMIT/

(----IS /REMAINDER/ 0

ADD 1 TO /COUNTER/
TO BUILD
NE COUNTER

NO

PRINT PLOT OF "X"
AND /REMAINDER/

-188-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REPEAT

NAME OF PROCEDURE: TO REPEAT /WORD/ AND /LIMIT/

INPUTS: /WORD/ - any word or letter - must not be empty

/LIMIT/ - length of the new word - must be a number.

New word must be longer than /WORD/.

EXAMPLES:

+PRINT REPEAT OF "X" AND

XX

+PRINT REPEAT OF "APE" AND 6

AAAAPE

PRINT REPEAT OF "X" AND 15

XXXXXXXXXXXXXXX

+LIST REPEAT

TO REPEAT /WORD/ AND /LIMIT/

10 CALL

THING: COUNT OF /WORD/

NAME : r f T-

20 IS /TEST/ 0)/ /

30 IF 7 RETURN /

40 CALL

THING: FIRST OF /WORD/

NAME: "LETTER"

50 CALL

THING : 1L 7\' U OF /LETTER/ AND /WORD/

NAME: "NEWWORD"

6,0 //t/z.:it./t A)1' 4-1 41 /

END

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT PLOT

NAME OF PROCEDURE: TO PLOT /WORD/ AND /LIMIT/

INPUTS: /WORD/ - any word or letter

/LIMIT/ - length of the new word, including blanks.

EXAMPLES:

i -PRINT PLOT OF "X" AND 9
X

{-PRINT PLOT OF "WHO" AND 4

WHO
+PRINT PLOT OF "M" AND 1

M
+PRINT PLOT OF "M" AND 3

M

REMINDER:

/BLANK/ is the blank letter.

+CALL
THING: WORD OF /BLANK/ AND
NAME: "SAMPLE"

+PRINT /SAMPLE/
Y

+LIST PLOT
TO PLOT /WORD/ AND /LIMIT/
10 IS /LIMIT/ COUNT OF /

20 IF 5 RETURN /4t/
30 CALL

THING: WORD OF /BLANK/ AND
NAME: "NEWWORD"

40 kir/4N Par a v 1410t/a R.D/ A N1) /in u/
END

Hy If

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REM

NAME OF PROCEDURE: TO REM /NUMBER/ AND /DIVISOR/

INPUTS: /NUMBER/ - any positive integer

/DIVISOR/ - any positive integer except 0.

OUTPUT: Remainder of /NUMBER/ divided by /DIVISOR/

EXAMPLES:

-PRINT REM OF 6 AND 3
0
-PRINT REM OF 3 AND 6
3
-PRINT REM OF 15 AND 2
1

(LIST REM

TO REM /NUMBER/ AND /DIVISOR/

10 IS /21///://.'Zi\V GREATER OF /NUMBER/ AND /DIVISOR/

20 IF NO RETURN /

30 CALL
THING: DIFFERENCE OF /NUMBER/ AND / 'y .5 e:"

NAME: "NEWNUMBER"

40 RETURN REM OF //1/1:IC/1/4/4 /1113 - / 1)/Y / / L 71

END

-191-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT CHOOSE AND SAW

NAME OF PROCEDURE: TO CHOOSE /COUNTER/ AND /LIMIT/

INPUTS: /COUNTER/ - any integer

/LIMIT/ - maximum word size - integer

EXAMPLES:

-PRINT CHOOSE OF 8 AND 4
XXXX
-PRINT CHOOSE OF 8 AND 5
X

-LIST CHOOSE
TO CHOOSE /COUNTER/
10 CALL

THING: REM OF
NAME: " 117:

20 IS /REMAINDER/ ".0Kli

30 IF YES RETURN RE'pi..--TAT-
40 IF NO RETURN pi_07-
END

AND /LIMIT/

/COUNTER/ AND /LIMIT/

-LIST SAW
TO SAW /COUNTER/ AND /LIMIT/
10 PRINT CHOOSE OF /COUNTER/ AND /LIMIT/
20 CALL

THING:
NAME:

30 RETURN
END

OF "X" AND //44/1//77/
OF "X" AND /REMAINDER/

SUM OF 1 C'VN TER AND "1"
"NEWCOUNTER"

1= TL R

-192-

Report No. 1889 Bolt Beranek and Newman Inc.

Guessing and Strategy

The next units introduced the students to search procedures and

planning in the context of some simple mathematical games. The

first of these games is, simply, to guess a number. After work-

ing with a procedure for blind guessing, the students were

assigned work on a sequence of programs for guessing by binary

partitioning (the binary search algorithm).

The games often make use of a special LOGO operation, /RANDOM /,

which produces a digit at random whenever it is called. Thus,

(PRINT /RANDOM/

7

(PRINT /RANDOM/

4

(PRINT /RANDOM/

8

(PRINT WORD OF /RANDOM/ AND /RANDOM/

27

The assignment on blind guessing follows.

Report No. 1889

ASSIGNMENT RANDOMGUESS

Bolt Beranek and Newman Inc.

Complete RANDOMGUESS and its associated procedure GUESS. Then

use it to play several games. .Record the number of guesses

required before the computer guesses your number in each game.

TO RANDOMGUESS

10 PRINT "THINK OF A NUMBER BETWEEN 0 AND 99.

GUESS IT."

20 GUESS
END

I'LL TRY TO

TO GUESS

10 CALL

THING: WORD OF /RANDOM/ AND /RANDOM/

NAME: "GUESS"

20 PRINT SENTENCE OF "MY GUESS IS" AND /GVE-S

30 PRINT "AM I RIGHT? TYPE YES OR NO."

40 REQUEST "ANSWER"

50 IS /4w R/ "YES"
60 IF NO PRINT "I'LL TRY AGAIN."

7 0 IF NO 6- ci

80 IF YES PRINT "LET'S PLAY ANOTHER GAME"

90 IF YES Teri /V barn r.S

END

Report No. 1889

ASSIGNMENT NUMBERGUESS

Bolt Beranek and Newman Inc.

0

RANDOMGUESS usually requires many trials before it guesses your

number. We are going to develop a procedure NUMGUESS that will

guess numbers a lot faster (i.e., with fewer guesses) than

RANDOMGUESS (most of the time, not always - RANDOMGUESS is some-

times lucky).

The procedure NUMGUESS states the rules of the game to a beginning

player and then calls the procedure NUMGAME. (Note that a player

must say whether his number is HI or LO or OK - not just right or

wrong as in RANDOMGUESS.) NUMGAME asks the player for some range

of numbers that contains the number it is supposed to guess.

(This interval need not be 0 to 99 as in RANDOMGUESS.) It then

calls the procedure TRY (which does the real work). When TRY

completes its job, by guessing the number, NUMGAME gives the

player a chance to play another game.

TO NUMGUESS

10 PRINT "HI, DO YOU KNOW HOW TO PLAY THIS NUMBER GUESSING GAME?"

20 REQUEST "ANS"

30 IS /ANS/ "YES"

40 IF NO PRINT "YOU THINK OF A NUMBER, WHICH I WILL TRY TO GUESS.

YOU HAVE TO GIVE ME SOME CLUES. I NEED TO KNOW THE HIGHEST AS

WELL AS THE LOWEST POSSIBLE NUMBERS WHICH YOU MIGHT CHOOSE."

50 IF NO PRINT /SKIP/ (/SKIP/ denotes a carriage return)

60 IF NO PRINT "AFTER I MAKE A GUESS, YOU MUST TELL ME IF THE

GUESS IS HI, LO, OR OK (CORRECT)."

70 IF NO PRINT /SKIP/

80 RETURN NUMGAME

END

Report No. 1889

TO NUMGAME

10 TYPE "THE HIGHEST NUMBER IS "

20 REQUEST "TOP"

30 TYPE "THE LOWEST NUMBER IS "

40 REQUEST "BOTTOM"

50 TRY SENTENCE OF /TOP/ AND /BOTTOM/

60 PRINT /SKIP/

70 PRINT "DO YOU WANT TO PLAY AGAIN?"

80 REQUEST "ANS"

90 IS /ANS/ "YES"

100 IF YES RETURN NUMGAME

110 PRINT "GOODBYE"

END

Bolt Beranek and Newman Inc.

Note that the procedure TRY has a single input - the sentence

formed from the two numbers /TOP/ and /BOTTOM/ that specify the

interval over which TRY is to guess. This interval is denoted

/GAP/.

TO TRY /GAP/

10 CALL

THING: MIDDLE OF /GAP/

NAME: "GUESS"

20 PRINT SENTENCE OF "MY GUESS IS" AND /GUESS/

30 PRINT "AM I HI, LO, OR OK?"

40 REQUEST "ANSWER"

50 IS /ANSWER/ "HI"

60 IF YES RETURN TRY OF DOWN OF /GAP/ AND /GUESS/

70 IS /ANSWER/ "LO"

80 IF YES RETURN TRY OF UP OF /GAP/ AND /GUESS/

90 IS /ANSWER/ "OK"

100 IF YES PRINT "I GUI; 55 E1 j 1"
110 IF YES RETURN

120 RETURN TRY OF /GAP/ (TRY is repeated if the answer is
none of "HI", "LO", or "OK")

END

-196-

Report No. 1889 Bolt Beranek and Newman Inc.

So TRY doesn't do all the real work either. It partitions its

job among three other procedures - MIDDLE, DOWN, and UP. MIDDLE

is used to compute a better guess, /GUESS/. If this guess is

high, DOWN uses it to compute a tighter /GAP/ for TRY by

decreasing the upper bound of the guessing interval; if this

guess is low, UP uses it to compute a tighter /GAP/ for TRY by

increasing the lower bound of the guessing interval.

MIDDLE is the key procedure in the program - it expresses the

main idea of the binary search algorithm.

-197-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT MIDDLE

NAME OF PROCEDURE: TO MIDDLE /GAP/

INPUT: /GAP/ - a sentence of two integers. (The first integer

is the upper bound of the search interval; the

second integer is the lower bound.)

OUTPUT: The improved guess, the integer nearest to the mid-

point of the search interval.

(MIDDLE uses a procedure which divides a number by 2.

The answer is a two-word sentence: first the quotient,

then the remainder. This procedure is discussed in the

section on Arithmetic Procedures.)

EXAMPLES:

+PRINT MIDDLE OF "99 1"

50

+PRINT MIDDLE OF "100 75"

87

+PRINT MIDDLE OF "25 1"

13

+PRINT MIDDLE OF "11 10"

10

TO MIDDLE /GAP/

10 CALL

THING: SUM OF FI RS T d f= /6-'A P/ AND 1-457- 01:: //41:7/
NAME: "FIELD"

20 RETURN Fj R5 r OF DIV2 OF /F. / E

END

Bolt Beranek and Newman Inc.

ASSIGNMENT UP and DOWN

NAME OF PROCEDURE: TO UP /GAP/ AND /GUESS/

INPUTS: /GAP/ - a two-word sentence

/GUESS/ - a word

OUTPUT: A two -word sentence (the reduced /GAP/) with /GUESS/ +1

as the improved lower bound.

EXAMPLES:

PRINT UP OF
100 51
PRINT UP OF
76 11

"100

"76 3"

AND "50"

AND "10"

TO UP /GAP/ AND /GUESS/

10 RETURN .5'1j/r-jNCE
AND I

END

OF F r OF /GAP/ AND SUM OF /GUESS/

NAME OF PROCEDURE: TO DOWN /GAP/ AND /GUESS/

INPUTS: /GAP/ and /GUESS/ as in UP

OUTPUT: A two-word sentence (the reduced /GAP/) with /GUESS/ -1

as the improved upper bound.

EXAMPLES:

+PRINT DOWN OF "100 2" AND "50"
49 2
4-PRINT DOWN OF "76 3" AND "10"
9 3

TO DOWN /GAP/ AND /GUESS/

10 RETURN :JAhgLEBs OF DIFFERENCE OF /GUESS/ AND 1

AND L. ,+ OF /GAP/

END

/

/ /

e/or

.f

./i09

NIM

'/:

B .t Beranek and Iviewm4n Inc.

he goal ,of this unit is to write a program for playing the game

of NIM. ,Theitwo players are the computer itself and a person

(named "YOU"). NIM is a somewhat more complex mathematical game

than number guessing but it has simple rules of play. The two

players start with a common pile of chips. Taking turns, each

player removes 1, 2, or 3 chips from the pile. The player who

removes the last chip loses.

I. Plan of NIMPLAY

NIMPLAY requires two inputs - the number of chips currently in

the game and the name of the next player.

NIMPLAY checks whether the game is completed. If it is not, it

calls upon the next player to make his move.

TO NIMPLAY /CHIPS/ AND /PLAYER/

INPUTS: /CHIPS/

Number of
Chips

CHECK: IS GAME OVER?

/PLAYER/

Player: "COMP"
or "YOU"

ACTION: If it is, announce winner and done.

If it is not, /PLAYER/ moves.

PREPARATION
FOR NEXT
ROUND:

/NEWCHIPS/

New number
of chips

-200-

/NEXTPLAYER/

Next player:
"YOU" or "COMP"

Report No. 1889 Bolt Beranek and Newman Inc.

II. DETgELED''SUBPLANS

A. OEM(

'How do we check?

If /CHIPS/ is 1, the game is over. /PLAYER/ is the loser because

he must take the last chip. In LOGO, we'll say

IS /CHIPS/

IF YES PRINT SENTENCE OF /PLAYER/ AND "LOST!!"

If /CHIPS/ is 0, we also know the game is over. This time the

previous player loses and /PLAYER/ wins. In LOGO, we write

IS /CHIPS/

IF YES pg Air sAITL'- cE of 404.11Y.11 /1/,1) N !

B. PREPARATION

1. SUBPLAN FOR SETTING UP /NEWPLAYER/

This is easy. If /PLAYER/ is "YOU", /NEXTPLAYER/ is "COMP".

If /PLAYER/ is "COMP", /NEXTPLAYER/ is "YOU". In LOGO, we say

IS /PLAYER/ "YOU"

IF YES CALL

THING: "comp/I
NAME : "N G X r Y R

IF NO CALL

THING: " a "
NAME : "Ati. 7"-EI 4

-201-

Report No. 1889

2. SUBPLAN FOR SETTING UP /NEWCHIPS/

"

Bolt Beranek and Llt.-4man Inc.

Since this problem is a little harder, we divide it ;1.1.,) two

SUBSUBPLANS. We will write two different procedures c'

TO YOURPLAY /CHIPS/ and TO COMPLAY /CHIPS/.

Each procedure will change the number of chips. youlftiLY earl

be pretty dumb. It has only to REQUEST a move. COMPLAY vaust

be pretty smart. It has to figure out the best move.

ASSIGNMENT YOURPLAY

This procedure has the job of asking the human player (called

"YOU") to choose 1, 2, or 3 and to return the number of chips

left in the game.

We call the number of chips "CHIPS" and the number chooen icy

the player "MOVE".

Now look at the skeleton procedure on the next page. The peal

work is done by lines 20 and 90!

First make sure you understand these two lines. All vu ;t

is to make sure YOU does not give a funny answer.

-202-

Report No. 1889 Bolt Beranek and Newman Inc.

1. Fill in the following skeleton procedure.

TO YOURPLAY /CHIPS/

10 PRINT "YOU MAY TAKE 1, 2, OH 3."

20 REQUEST "MOVE"

30 IS MOVE-/ 1
40 IF NO IS

50 IF NO IS motthi 3 ,

60 IF NO RETURN YOURPLAY OF /CM/P.5/

70 IS /CHIPS/ GREATER OF /CH/PS/AND //),PG' &1

80 IF NO RETURN YOURPLAY OF /CHIPS/

90 RETURN DIFFERENCE OF it AND MOPE/
END

2. Fill in the blanks in the following dialogs. Write what you

think your procedure should do.

+PRINT YOURPLAY OF 7

YOU MAY TAKE 1, 2, OR 3.

*3

+PRINT YOURPLAY OF 4

YOU MAY TAKE 1, 2, OR 3.

*4

yet) MAY TAKE 1, 2, OR 3.

-203-

Report No. 1889 Bolt Beranek and Newman Inc.

+-PRINT YOURPLAY OF 8

YOU MAY TAKE 1, 2, OR 3.
*1

7

-PRINT YOURPLAY OF 2

YOU MAY TAKE 1, 2, OR 3.
*3

YOU MAY TAKE 1, 2, OR 3.
*/

3. Try your procedure at the terminal in the next class. Bring

your copy of this sheet. Test whether your procedure does what

you expected.

How should the computer decide its moves? Before we can write

COMPLAY, we should devise a way to figure out best moves. Let's

first consider easy cases with small numbers of chips.

If there is only one chip left, the computer loses. If there are

2 chips, the computer can take one thereby leaving one so it wins.

Similarly, it wins for 3 or 4 chips by taking 2 or 3 and again

leaving one. So 1 means lost, 2 means take 1, 3 means take 2,

4 means take 3. Now what about 5? If the computer takes 1, 2,

or 3, the other player is left with 4, 3, or 2 and so can win if

he plays correctly. So if the computer has 5 chips, it doesn't

matter what it plays, it has to rely on a mistake by the other

player in order to win. Five, like 1, is a bad number of chips

to get.

-204-

Report No. 1889 Bolt Beranek and Newman Inc.

Now, while 5 is bad for the computer, it is even worse for the

opponent because the computer isn't going to make any mistakes
in playing. So, if it gets 6, 7, or 8 chips, it will take 1, 2,

or 3 leaving 5 and the opponent will lose. Thus, 6, 7, or 8

chips win for the computer.

If there are 9 chips left, no matter what the computer does, its

opponent will be left in a favorable position (with either 6, 7,
or 8 chips, all good numbers). So, 9 is bad. In the table we
see -

1 lost 5 lost 9 lost
2 take 1 6 take 1 10 take 1

3 take 2 7 take 2

4 take 3 8 take 3

Of course, 5 and 9 are losing positions only if the opponent
doesn't make a mistake. Hence, the computer won't give up even
in those cases.

Notice the pattern in the table. For example, 4, 8, 12, --- all
say take 3; 3, 7, 11, --- all say take 2; etc. Thus, to decide
how many chips to take, the computer only needs to find out which
of the four number sequences -inolu.d..e.s....tiqp_current
We can now write a procedure that employs a strategy based on
that observation.

Report No. 1889 Bolt Beranek and Newman Inc.

TO COMPLAY /CHIPS/

Here is a strategy for playing NIM.

First divide the number of chips by 4 and find the remainder.

For example,

REM OF 5 is 1

REM OF 27 is 3

REM OF 30 is g.

REM OF 83 is V

REM OF 3 is 3

The rule for choosing a move is:

Remainder

0

1

2

3

Move

et..66,pt 1.1-41,41teAs.

Apply this rule in the following cases:

/CHIPS/ REM OF /CHIPS/ /MOVE/ /NEWCHIPS/

10

13

11

17

12

2

IMMIONaM11.1i0

1

3

3

9

Assume that we have a procedure LOOKUP which does this table

look-up for us. Using it, we can make a procedure to choose the

number of chips the computer will take on any move.

-206-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT CHOOSE

NAME OF PROCEDURE: TO CHOOSE /CHIPS/

INPUT: /CHIPS/ The number of chips in the game.

EXAMPLES:

(PRINT CHOOSE OF 2

1

4-PRINT CHOOSE OF 3

2

{-PRINT CHOOSE OF 13

3

TO CHOOSE /CHIPS/

10 CALL

THING: REM OF AV-///17

NAME:

20 CALL

THING: LOOKUP OF

NAME: "MOVE"

30 RETURN

END

/n"/--71/

-.207-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REM

The NIM strategy needs to find the remainder of a number when

divided by 4. One way to find the remainder is to keep

subtracting 4.

Example 1: /NUMBER/ is 17

Subtract 4 from 17

/NUMBER/ is 17 - 4 = 13

Subtract 4 from 13

/NUMBER/ is 13 - 4 = 9

Continue until:

STOP RULE: /NUMBER/ isn't GREATER OF /NUMBER/ AND 4

RETURN /NUMBER/

17, 13, 9, 5, 1 REM 17 = 1

Example 2: /NUMBER/ is 18

18, 14, 10, 6, 2 REM 2 = 2

Example 3: /NUMBER/ is 19

/Z /;) //), 7 ti REM 19 =

Here is a program skeleton for this procedure in proper LOGO:

TO REM /NUMBER/

10 IS //1/1,)//i/3,EV GREATER OF /4W/3ER/ //ND
20 I F Ni' RE TI.R /Ai (1/11eZR
30 CALL

THING: DIFFERENCE OF /A/e/g1/34-R/

NAME: IlkEw B I R
40 RETURN REM biEkiLALtEL
END

-208-

Report No. 1889

What would the machine print if told

TRACE REM

REM 11

KEM "11'
E /11 " 7

14.1 3
;,

Ri IVL-T RN S

1-1Z1-1-114 RN .5 J

NE p) t. AI.S

Fill in the result of

PRINT REM 13

2

PRINT REM 1789423

te73 (34-eili

PRINT REM "FOO"

C.' A' E 1-/ rt".A' 1,' "

N /-* fv)

/ //v /)

Bolt Beranek and Newman Inc.

/AlPI 7 /1/1

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT LOOKUP

We have to give CHOOSE a table look-up procedure.

NAME OF PROCEDURE: TO LOOKUP /NUMBER/

INPUT: /NUMBER/ is the answer received from REM OF /CHIPS/

This answer will be either 0, 1, 2, or 3.

OUTPUT: The number of chips the computer will take.

EXAMPLES:

tPRINT LOOKUP OF 3

2

+PRINT LOOKUP OF 2

1

+PRINT LOOKUP OF 1

3

+PRINT LOOKUP OF 0

3

Write a procedure LOOKUP and test it.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT COMPLAY

We have written all the subprocedures needed for COMPLAY.

NAME OF PROCEDURE: TO COMPLAY /CHIPS/

INPUT: /CHIPS/ - The number of chips in the game.

EXAMPLES:

+PRINT COMPLAY OF 13

THE COMPUTER TAKES 3

10

+PRINT COMPLAY OF 15

THE COMPUTER TAKES 2

13

The machine's reply

TO COMPLAY /CHIPS/

l CALL

THING: CHOOSE OF /C/7/

NAME: "MOVE"

20 PRINT SENTENCE OF "THE COMPUTER TAKES" AND ifijei,z

30 CALL

THING: DIFFERENCE OF / .///P4/ AND //i/ i i'L./

NAME: "NEWCHIPS"

40 RETURN

END

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT NIMPLAY

We can now write the procedure which controls play.

NAME OF PROCEDURE: TO NIMPLAY /CHIPS/ AND /PLAYER/

INPUTS: /CHIPS/ - Number of chips in game

/PLAYER/ - Name of next player

EXAMPLE:

+NIMPLAY OF 17 AND "YOU"

YOU MAY TAKE 1, 2, OR 3

(IF YOU TYPE 2, IT SHOULD SAY)

15 CHIPS REMAIN

THE COMPUTER TAKES 2

13 CHIPS REMAIN

YOU MAY TAKE 1, 2, OR 3

AND SO ON.

+LIST NIMPLAY

TO NIMPLAY /CHIPS/ AND /PLAYER/

10 IS /CHIPS/ "0"

20 IF YES PRINT SE/V76fic&-: CP/PL,HYEAV tbr,/VI

30 .0= Re-7-11
4O IS /CHIPS/ "1"

50 IF YES PRINT 5' /ye 6-* 4/E:VA YIER 4/v /) "L z. /

60 1/= YL s if£ aiLlY
65 PRINT SENTENCE OF AND "CHIPS REMAIN"

4

(cortinued)

-212-

Report No. 1889 Bolt Beranek and Newman Inc.

70 IS /PLAYER/ "YOU"

80 IF YES CALL

THING: YOURPLAY OF

NAME: "NEWCHIPS"

90 IF YES CALL

THING: "COMPUTER"

NAME : %W:70 /Pi- /7 yam.

100 IF NO CALL

THING: 61 c /I/ I) I I/ I (-1:-=

NAME: "NEWCHIPS"

110 IF NO CALL

THING: u YCC
NAME: /(4/E-1/. PL Y R

120 RETURN NIMPLAY OF /NEWCHIPS/ AND /NEWPLAYER/

END

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT SUPERNIM

Last of all, we write a procedure to set up a game.

NAME OF PROCEDURE: TO SUPERNIM

INPUTS: NONE

EXAMPLE:

4-SUPERNIM
HOW MANY CHIPS DO YOU WANT IN THE GAME?

(The player must type a number)
DO YOU WANT TO GO FIRST?

(Player types YES or NO)

(SUPERNIM starts up NIMPLAY and tells it the number of chips in
the game and the name of the first player)

(When NIMPLAY is finished, SUPERNIM continues its questions)

DO YOU WANT TO PLAY AGAIN?
(The player types YES or NO)

(If the answer is YES - SUPERNIM starts a new round and asks
for the number of chips, etc.)

(If the answer is NO - SUPERNIM says BYE and stops)

Write a procedure SUPERNIM and then play some games with the

computer.

Report No. 1889 Bolt Beranek and Newman Inc.

Arithmetic Operations

LOGO does not have built-in multiplication or division operations

-- these have to be written as procedures in terms of addition

and subtraction. We gave students the assignment of writing

their own integer multiplication and division procedures (though

we provided fairly complete skeletons) to better understand how

these operations work and can be used. At the same time, we did

not think that the class would find arithmetic very appealing.

We did not present multiplication and division procedures for

their own interest but introduced them, rather, when they were

needed by the students to do something else that was important

to them (e.g., the pattern drawing and number guessing programs).

To our surprise, however, most students enjoyed doing long

multiplication and long division in the form of programs.

ASSIGNMENT MULTIPLY

LOGO has built-in procedures for adding (SUM) and subtracting

(DIFF). Often, however, we have problems where the operations

of multiplication and division are useful also. These aren't

built into LOGO so we'll have to write them ourselves. Since it

is always a good practice to do one thing at a time, and usually

best to do the simplest things first (since that way if the

harder is too hard, we shall at least have done something),

we'll start with multiplication.

Well, it is easy enough to start. We just decide on a name for

the procedure (say MULTIPLY) and its two inputs (say /X/ and

/Y/).

215

Report No. 1889 Bolt Beranek and Newman Inc.

But, how should we instruct LOGO to multiply two numbers? What

does the product of 6 and 3 mean? One way to write it is 6+6+6.

That seems a good way to write the procedure, just using addition.

We want to add up /X/ the number of times given by /Y/. A neat

way to do this is to use recursion. Here is our procedure:

+TO MULTIPLY /X/ AND /Y/
>10 IS /Y/ "0"
>20 IF YES RETURN "0"
>30 RETURN SUM OF /X/ AND MULTIPLY OF /X/ AND (DIFF OF /Y/ AND 1)
>END
MULTIPLY DEFINED

In ordinary (infix) notation, Line 30 says: XxY = X+Yx(Y-1).

Now that we've got this procedure, let's use it. First, test it

out with some numbers. Then, try these exercises which give you

a chance to use MULTIPLY in some other procedures.

(1) Write a procedure called SQUARE whose output is the square

of its input.

(2) Write a procedure called CUBE that cubes its input.

(3) Write a procedure (and think up a name for it) that takes

for an input a sentence like "34 X 12" and returns the

product, 408.

(4) Write a procedure that takes a number and multiplies it by

10. Can you do this without using MULTIPLY?

(5) Write a procedure called POWER that raises its first input

to the power given by its second input. For example:

POWER OF "2" AND "3" would be 2 cubed or 8, and

POWER OF "3" AND "4" would be 34 or 3x3x3x3 or 81.

(Hint: The principle behind this one is very much like the

principle behind the MULTIPLY procedure.)

-216-

Report No. 1889 Bolt Beranek and Newman Inc.

(6) Write a procedure CASH /QUARTERS/ AND /DIMES/ AND /NICKLES/

AND /PENNIES/ that takes the number of each kind of coin

and returns the number of cents it all comes to. For

example, CASH OF "2" AND "1" AND "4" AND "8" would be 88.

ASSIGNMENT MULT

By now you've probably noticed that MULTIPLY isn't as fast as

you might like, especially for large numbers. We can go a long

way toward correcting this problem by using the trick mentioned

in exercise (4) of the MULTIPLY assignment. This is the same

trick that you've been using for years, ever since you learned

to do long multiplication. Set up the multiplication problem

2314x5147 on a piece of paper and work it out. Your work probably

looks like this (unless one of us made a mistake).

234
547

1T77
936

1170
127998

Here, instead of multiplying by 547, all at once we multiplied

by 7, then by 4, and then by 5. Mathematically speaking, what

we've done is used the distributive law and said that

234x(500+40+7)=234x500 + 234x40 + 234x7 = 117000+9360+1638 =

127998. For us, multiplying by 500 is not appreciably slower

than multiplying by 5 but for MULTIPLY it certainly is. When

MULTIPLY multiplies by 5 it counts down 5,4,3,2,1,0, but when

it multiplies by 500 it counts down 500,499,498,497,496, ...,

2,1,0, nearly 100 times as much work. We saved ourselves all

that work by the trick of not multiplying by 500 all at once.

We first multiplied by 5 in the normal way and then multiplied

-217-

Report No. 1889 Bolt Beranek and Newman Inc.

by 100 in a clever way that took almost no time at all. (Can

you name the law that says multiplying by 500 gives the same

answer as first multiplying by 5 and then by 100? If you can't,

there is a big hint in exercise (1) following.)

How can we write a LOGO procedure that will use this trick and

so be able to multiply 234x547 quickly? Well, what we want the

procedure (let's call it MULT for fast multiplication) to do is

to multiply 234 by 7, add that to 2324x24x10, and add that to

2324x5x100.

4TO MULT /X/ AND /Y/
>10 IS /Y/ /EMPTY/
>20 IF YES RETURN "0"
>30 RETURN SUM OF MULTIPLY OF /X/ AND (LAST OF /Y/) AND MULT OF

(WORD OF /X/ AND "0") AND BUTLAST OF /Y/
>END

This is a pretty complex looking procedure. Some of the follow-

ing exercises will help you understand it.

(1) Why do these two computations give the same answer?

(a) Multiply a number by 500. (b) Multiply the number

by 5 and then multiply that answer by 100 Hint: In (a),

write)0500 as)0c(5100). In (b), write X times 5 times

100 as ()05):c100.

(2) Write line 30 of MULT in ordinary form using "327" for /X/

and "438" for /Y/. Remember that MULTIPLY and MULT both

mean multiply, so use an X for MULTIPLY and an :c for MULT.

-218-

Report No. 1889 Bolt Beranek and Newman Inc.

(3) Your answer to (2) should be 327x8 + 3270%43. MULT will

now be called again with /X/ as 3270 and /Y/ as 43. How

will line 30 come out this time?

(4) Substitute the answer to (3) into the answer from (2) to

get 327x8 + 3270x3 + 3270O 4. So, MULT gets called again.

This time round we get 327x8 + 3270)(3 + 32700)(4 +

327000= /EMPTY/. Now MULT finally gets to use line 20 and

can finish. Work out 327x438 on paper and try to point

out the similarities and differences between the way you do

it and the way MULT does it.

(5) Do a complete round analysis [as in exercises (2), (3), and

(4)] for MULT OF "73" AND "84".

(6) The commutative law says that AxB=BxA. Yet there is a

difference between MULTIPLY OF "32576" AND "3" and MULTIPLY

OF "3" AND "32576" even though the answers are the same.

What is this difference? Try it out on the computer to

make sure.

(7) The remark in exercise (6) is also true about MULT except

that the difference is very much less in this case. Can

you explain why?

After this work on multiplication, writing a procedure for

division should seem a great deal easier.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT DIVIDE

NAME OF PROCEDURE: TO DIVIDE /DIVIDEND/ AND /DIVISOR/

INPUTS: /DIVIDEND/ - Any numeral

/DIVISOR/ - Any numeral

ANSWER: A two-word sentence - the first word the quotient -

the second (last) word is the remainder.

4-PRINT DIVIDE OF 7 AND 8

07

+PRINT DIVIDE OF 12 AND 3

4 0

(PRINT DIVIDE OF 100 AND 50

.2.

PRINT DIVIDE OF 33 AND 10

3 3

To write DIVIDE we use a subprocedure called DIV.

TO DIVIDE /DIVIDEND/ AND /DIVISOR/

10 RETURN DIV OF /DIVIDEND/ AND /DIVISOR/ AND "0"

END

Report No. 1889 Bolt Beranek and Newman Inc.

DIV has 3 inputs:

TO DIV /DIVIDEND/ /DIVISOR/ /QUOTIENT/

On the first round /QUOTIENT/ will be 0. On each round /QUOTIENT/

will increase. When the procedure stops, /QUOTIENT/ will be the

proper answer. This is how it will work.

DIV 8 3 0

1st Round:

/DIVIDEND /, = 8 /DIVISOR /, = 3 /QUOTIENT/ = 0

Subtract /DIVISOR/ from /DIVIDEND/

Add 1 to /QUOTIENT/.

2nd Round:

/DIVIDEND/,= 5 /DIVISOR/,= 3 /QUOTIENT/ = 1

3rd Round:

/DIVIDEND/, = 2 /DIVISOR/, = 3 /QUOTIENT/ = 2

This time we do not subtract 3 from /DIVIDEND/. As soon as

/DIVIDEND/ is smaller than /DIVISOR/ we stop.

/QUOTIENT/ should be the quotient of 8 divided by 3. It is.

Write a LOGO procedure to do this. Don't forget the checks:

Stop when /DIVIDEND/ is smaller than /DIVISOR/.

-221-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT DIV

NAME OF PROCEDURE: TO DIV /DIVIDEND/ AND /DIVISOR/ AND /QUOTIENT/

INPUTS: /DIVIDEND/ - the dividend - any numeral

/DIVISOR/ - the divisor - any numeral

ANSWER: A two-word sentence - FIRST OF SENTENCE is the quotient-

LAST OF SENTENCE is the remainder.

EXAMPLES:

(PRINT DIV OF 12 AND 5 AND 0

2 2

(PRINT DIV OF 14 AND 7 AND 0

20

(PRINT DIV OF 23 AND 12 AND 0

{-PRINT DIV OF 42 AND 11 AND 0

Report No. 1889

ASSIGNMENT DIV

SKELETON

Bolt Beranek and Newman Inc.

TO DIV /DIVIDEND/ AND /DIVISOR/ AND /QUOTIENT/

1,0 IS /D1 D C N.b/ GREATER OF /h/ y/5 c i f / AND /Pi t' l D /11 .1)

20 IF NO RETURN 5'cN r E lV C g

30 CALL

THING: .b1FF4:1:WENCII--7. 67-;/D////)E/Y.1)./ 4N.1)/01 Vi_5(

NAME: "NEWNUM"

)40 CALL

THING: 5 LIM 0/;" z r 6-/VT/ 4/i..)

NAME: "NEWQUO"

50 RETURN DIV OF / .4 3 .1) V E

END

A fast division procedure ("long division") was then presented

in a way similar to the development of MULT from MULTIPLY. Some

special division procedures (like DIV2, division by 2) also were

written as the need for them arose in various projects (such as

the number guessing games).

CLOCK ARITHMETIC

During the course, the students were introduced to clock arith-

metic (remainder arithmetic, modular arithmetic) in a few contexts.

Report No. 1889 Bolt Beranek and Newman Inc.

Clock arithmetic base 4 had been used in NIM. Clock arithmetic

with various bases had been used in the work on oscillators.

Clock arithmetic based on 7 was used in designing a procedure

DATEGAME to calculate the day of the week on which a given past

(future) date fell (will fall).

4DATEGAME
TYPE THE DATE
g2 13 1944
THAT WAS A SUNDAY

(The students liked being able to assert to their peers authorita-

tively that 6+1 could be equal to zero.) A general clock arith-

metic procedure was written and used in an interactive addition

quiz. The person taking the quiz supplied his own problems (his

typing is underscored):

4CLOCKADD
LET'S ADD IN REMARITH. CHOOSE A DIVISOR.
WHAT DIVISOR DO YOU WANT?
"6
LET'S ADD IN 6 MINUTE CLOCK ARITHMETIC.

TYPE A NUMBER
g4
TYPE ANOTHER NUMBER
x5

WHAT IS THE SUM OF 4 AND 5?
2

WRONG. THE ANSWER IS 3.

TYPE A NUMBER
n7

TYPE ANOTHER NUMBER
"6
WHAT IS THE SUM OF 7 AND 6?
x1

RIGHT.

a

Further programs for arithmetic operations were necessary in

work arising in the algebra sequence. One example, the extension

of multiplication to signed integers, is discussed in the next

section.

-224-

Report No. 1889 Bolt Beranek and Newman Inc.

Algebra Teaching Sequence

The last weeks of the course were spent on a sequence of class-

room and laboratory assignments and projects that led our

seventh graders into work on algebraic equation generation and

the construction of algebra teaching programs. The sequence

began with a unit on random sentence generators. The first

problem was to construct a simple, but surprisingly useful,

procedure called MEMBER.

Consider the problem of constructing a formal algorithm for the

following process: given a number N and a list L find the Nth

member of L. This problem was presented to children in something

like the following form:

(a) Preliminary Explanation

MEMBER is an operation with two inputs. Examples of input and

output are:

MEMBER "ABC" 1 = "A"

MEMBER "ABC" 3 = "C"

The intention is:

MEMBER /SENTENCE/ /NUMBER/ = /NUMBER/th word of /SENTENCE/

Questions for discussion: What are proper inputs and what are

funny inputs? [We use "funny" as a technical word for the very

important concept illustrated here for /SENTENCE/ and /NUMBER/.]

Proper Funny

"AB" 1 "AB" 0
"ABCD" 4 "AB" 10
etc. "AB" "CAT"

!TA!!

etc.

Report No. 1889 Bolt Beranek and Newman Inc.

What should we do about funny inputs? List alternative solutions:

"ABC" 10 could be:

(1) Undefined, in which case the computer will complain, e.g.,

PRINT MEMBER "ABC" 10
THERE IS NO SUCH WORD IN THE SENTENCE

(2) Defined, in which case there is some output. What could the

output be? Suggestions included:

/EMPTY/

"C"

"A"

[always the last letter of /SENTENCE/]

[because 10=1 in 3-clock arithmetic, as the
children said it]

Further discussion would usually be deferred to a later stage.

But the class understood:

that MEMBER was specified for a certain domain of inputs,

that it can be extended to a larger domain,

that the extension could be done in different ways,

that some ways are neater than others, e.g., /EMPTY/ and

"A" are neater than "C" which is neater than "B" (at any

rate, as far as we can judge on the justification given),

that the purpose of MEMBER will often determine the choice

among possible extensions and, if so, will override the

consideration of mathematical taste expressed by "neater

than".

(b) Planning the Procedure

An example of a heuristic plan is

(1) Find easy cases

(2) Reduce the hard cases to easy ones.

The class learned that these heuristic plans do not always work -

-226-

Report No. 1889 Bolt Beranek and Newman Inc.

but the possession of a collection of plans enabled one to "do

something" when faced with a problem instead of being forced to

sit in a trance and hope for inspiration.

The easy case for MEMBER is

/NUMBER/ = 1.

So we began by writing this part of the procedure:

TO MEMBER /SENTENCE/ /NUMBER/
IS /NUMBER/ 1

IF YES RETURN FIRST OF /SENTENCE/

Now we return to the reduction of the harder cases to easier

cases. This idea was extensively discussed throughout the course

together with heuristics for carrying out the reduction such as:

set up a physical model. Although in this case a model would

probably not have been necessary, we constructed one to illustrate

the idea. In any case, if some children did not seem to be

engaging their minds in the problem, we often urged them to

invent a model as a constructive step.

Model for MEMBER "ABODE" 4

O 0 0
Strings of beads representing Bin of beads
"A B C D E" representing 4

Question: How can one tell a child to find MEMBER "ABCDE" 4?

Answer: Take the beads out of the bin one at a time and peel

beads off the string, one for one.

-227-

Report No. 1889 Bolt Beranek and Newman Inc.

Discussion of the model led to:

The problem MEMBER /SENTENCE/ /NUMBER/

is equivalent to the problem

MEMBER BUTFIRST OF /SENTENCE/ DIFFERENCE OF /NUMBER/ AND 1

So we make two new things:

BF /SENTENCE/ (where BF is the LOGO abbreviation for

DIFF /NUMBER/ 1
BUTFIRST, and DIFF for DIFFERENCE)

If we make new things, we should give them names; so let's use

"NEWSENT" and "NEWNUM" as the new names.

(c) Procedures for MEMBER

4-TO MEMBER /SENTENCE/ AND /NUMBER/
> 10 IS /NUMBER/ 1
>20 IF YES RETURN FIRST OF /SENTENCE/
> 30 CALL

THING: BUTFIRST OF /SENTENCE/
NAME: "NEWSENT"

>40 CALL
THING: DIFF OF /NUMBER/ AND 1
NAME: "NEWNUM"

>50 RETURN MEMBER OF /NEWSENT/ AND /NEWNUM/
>END
4-

A shorter statement:

+TO MEMBER /S/ /N/
> 10 IS /N/ 1

>20 IF YES RT F /S/
>30 RT MEMBER BF /S/ SUM /N/ -1
>END
4-

Report No. 1889 Bolt Beranek and Newman Inc.

(d) Adding Tests for Funny Inputs

>2 IS NUMBERP /N/ "TRUE"
> 4 IF NO COMPLAIN
>6 IS ORDERP 1 /N/ COUNT IS/ "TRUE"
>8 IF NO COMPLAIN

These lines can be inserted in MEMBER to take care of certain

kinds of funny inputs. They presuppose the procedures COMPLAIN

and ORDERP:

4TO COMPLAIN
> 10 PRINT SENTENCE OF SENTENCE OF "MEMBER IS NOT DEFINED FOR

THE INPUTS" IS/ AND /N/
>END

+TO ORDERP /LOW/ /MIDDLE/ /HI/
> 10 IS GREATERP /MIDDLE/ /HI/ "TRUE"
>20 IF YES RETURN "FALSE"
> 30 IS GREATERP /LOW/ /MIDDLE/ "TRUE"
>40 IF YES RETURN "FALSE"
>50 RETURN "TRUE"
>END

-4-

Where NUMBERP is a predicate which has the output "TRUE" only

if its input is a number; GREATER? is a predicate with two

numerical inputs and whose output is "TRUE" only if its first

input is greater than its second input.

Planning and debugging were learned through work with simple

procedures such as MEMBER. Their real pay-off came in much more

structured projects and teaching sequences. Thus, the final

sequence of work assignments took our seventh grade children

from MEMBER to making "random English" sentence generators of

increasing complexity, then to algebraic equation generation and

finally to writing algebra teaching programs.

-229-

Report No. 1889 Bolt Beranek and Newman Inc.

(a) Random Sentence Generation

The following program, called RANDOMSELECT, selects a word

randomly from a list.

TO RANDOMSELECT /SENTENCE/
> 10 CALL

THING: /RANDOM/
NAME: "NUMBER"

> 20 RETURN MEMBER /SENTENCE/ /NUMBER/
>END

Note that RANDOMSELECT is simply a version of MEMBER that uses

the operation /RANDOM/ for obtaining the second input.

A seventh grader's program, SIMPLESENTENCE, shown below, chooses

at random a noun and a verb from two prescribed lists, /NOUNLIST/

and /VERBLIST/ which are LOGO sentences. It designates these

"SUBJECT" and "ACTION", respectively. It then makes a sentence

out of these and prints it. If /NOUNLIST/ contains words like

"GIRLS" and "BOYS" and /VERBLIST/ contains words like "DANCE"

and "FLY", SIMPLESENTENCE generates sentences like "GIRLS FLY"

and "BOYS DANCE".

TO SIMPLESENTENCE /NOUNLIST/ AND /VERBLIST/
> 10 CALL

THING: RANDOMSELECT OF /NOUNLIST/
NAME: "SUBJECT"

>20 CALL
THING: RANDOMSELECT OF /VERBLIST/
NAME: "ACTION"

> 30 PRINT SENTENCE OF /SUBJECT/ AND /ACTION/
>40 SIMPLESENTENCE /NOUNLIST/ AND /VERBLIST/
>END

Report No. 1889 Bolt Beranek and Newman Inc.

The program is recursive - line 40 calls for the execution of

SIMPLESENTENCE again and, since there is no STOP command, the

program continues generating sentences endlessly.

SIMPLESENTENCE was the first of a series of programs constructed

for generating even more elaborate grammatic English (and French)

nonsense sentences. More complex programs were built upon the

simpler ones. Thus, in quick succession, verbs were given an

object, and adjectives and articles were incorporated. The

extended SIMPLESENTENCE procedure was then used in compound

sentence generators, like one that joined together simple sen-

tences with connectors like "BECAUSE" and "WHILE".

The following is a sample of student printout from one of the

later English sentence programs in the series.

THE MENTAL CAT DIGS THE WILD COMPUTER BECAUSE THE FUNNY BOY
LOVES THE CRAZY GIRL.

THE WILD DOG EATS THE GIRL ALTHOUGH THE BIG CAT CHASES THE
LOVELY COMPUTER WHILE THE GOOFY GIRL EATS THE WILD BOY.

A COMPUTER RUNS.

In a brief excursion, appropriate (and, to these children, non-

trivial) modifications were made in the English programs to make

possible the generation of French sentences. Some results are

illustrated by the following printouts. The programs were

designed by the students; note the differences shown across

these samples.

Report No. 1889 Bolt Beranek and Newman Inc.

LE CAHIER EST GRAND
LA FILLE EST HAUTE
LE CAHIER EST HAUT
LE HORLOGE EST GRAND
LE CRAYON EST VERT
LA CHAISE EST PETITE
LA SERVIETTE EST NOIRE
LE SAC EST PETIT
LA GOMME EST GRANDE
LA MONTRE EST PETITE
LE CAHIER EST BRUN
LE SAC EST BRUN
LA GOMME EST VERTE

MUR NOIR PRENDRE ET FILLE BLEU PARLER ET CRAYON BLEU PARLER

VERT ETROITE ENTRE ET ROBE PETTITE SORTIR ET CHIEN PETTITE FINIR

ROBE GRANDE PARLER ET CHAT ROSE ETRE ET VERT LARGE ALLER

SAC BLEU PRENDRE ET CHAT BLEU PRENDRE ET VERT ROSE FINIR

SAC GR1S PARLER ET VERT LARGE ETRE ET MUR PETTITE PRENDRE

FRENCH
WHEN YOU SEE THE FIRST * TYPE IN A NAME OF A FRENCH VERB (PLEASE DON'T
TYPE IN A ILLREGELAR VERB) WHEN YOU SEE THE SECOND * TYPE IN THE NOUN
YOU WANT ME TO WRITE
*PROMENER
*NOUS
NOUS PROMENONS
WHEN YOU SEE THE FIRST * TYPE D A NAME OF A FRENCH VERB (PLEASE DON'T
TYPE IN A ILLREGELAR VERB) WHEN YOU SEE THE SECOND * TYPE IN THE NOUN
YOU WANT ME TO WRITE
*FINIR
*ELLES
ELLES FINISSENT
WHEN YOU SEE THE FIRST * TYPE IN A NAME OF A FRENCH VERB (PLEASE DON'T
TYPE IN A ILLREGELAR VERB) WHEN YOU SEE THE SECOND * TYPE IN THE NOUN
YOU WANT ME TO WRITE
*VENDRE
*JE
JE VENDS

Report No. 1889 Bolt Beranek and Newman Inc.

Algebra Quiz Programs

When the topic of sentence generation was introduced, students

asked if that wasn't English rather than mathematics. The issue

was resolved by the work in the next units, which were clearly

about mathematics - arithmetic and algebra - yet, equally clearly

derived from the earlier work on sentence generation.

The first unit, on algebra quiz programs, started with the

observation that very slight modification of sentence generation

programs allows one to generate mathematical sentences like those

encountered in arithmetic. Thus, expressions like

"1 + 1 = 2"
"ONE PLUS ONE EQUALS TWO"
"2 + 2 = 3"
"A COMPUTER CAN TALK BUT IT CAN DO SUMS ALSO"

all are sentences in LOGO.

The first assignment was to make up an addition quiz program

following the example shown in the procedures GENSUM and QUIZZ1

(see next page). Interestingly enough, the childrens' own

programs incorporated considerably more English embellishment

and conversation than ours. Samples of printouts from two of

their programs are reproduced just after the assignment sheet.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT GENSUM

Here are two skeletal procedures which, together, make up a quiz

program. QUIZZ1, the top-level procedure, asks whether a

sentence like '5 + 3 = 8' is true or false. GENSUM generates

the true/false sentence.

TO GENSUM
10 CALL

THING: /RANDOM/
NAME: "Ni"

20 CALL
THING: /RANDOM/
NAME: "N2"

30 CALL
THING: SENTENCE OF SENTENCE OF /N1/ AND "+" AND /N2/
NAME: "LEFT"

40 IS GREATER OF /RANDOM/ AND "5" "5"
50 IF YES CALL

THING: SUM OF /N1/ AND /N2/
NAME: "N3"

60 IF NO CALL
THING: SUM OF /RANDOM/ AND /RANDOM/
NAME: "N3"

70 RETURN SENTENCE OF SENTENCE OF /LEFT/ AND "=" AND /N3/
END

TC QUIZZ1
ip PRINT SENTENCE OF SENTENCE OF "IS" AND GENSUM AND "TRUE OR

FALSE?"
20 REQUEST "ANSWER"
30 PRINT SENTENCE OF "I THINK YOU REALLY MEANT TO SAY" AND

/ANSWER/
40 PRINT "LET'S TRY ANOTHER"
50 RETURN QUIZZ1
END

Try out QUIZZ1 and then make up your own arithmetic quiz program.

Report No. 1889

*SCOOBA

Bolt Beranek and Newman Inc.

COME ON WAKE UP I AM YOUR FRIENDLY ADDITION MAN I HOPE YOU KNOW
ADDITION DO YOU ?
*YES
0 + 5
*5

YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHT LETS TRY AGAIN

YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHT LETS TRY AGAIN

8 + 6
*15

YOU IDIOT I THOUGHT YOU KNEW ADDITION LETS TRY AGAIN AND SEE IF YOU
KNOW IT THIS TIME
8 + 6
*14
YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHT LETS TRY AGAIN

a

*SCOOBA

COME ON WAKE UP I AM YOUR FRIENDLY ADDITION MAN I HOPE YOU KNOW
ADDITION DO YOU ?
*NO
YOU DUMMY DONT YOU KNOW ADDITION YOU WERE SUPPOSE TO LEARN IT IN THE
FIRST GRADE IF YOU DONT KNOW IT HERE IS A SIMPLE PROBLEM WHAT IS THE
SUM OF 1 + 1 TO FIGURE THIS OUT I WILL DRAW 2 XS X X NOW COUNT THEM UP
AND WHAT IS THE SUM ?
*2
IF YOUR SO SMART WHAT IS THE SUM OF 5 + 3
*2
YOU SAID YOU KNEW ADDITION LETS TRY AGAGAIN
5 + 3
*8
YOUR VERY SMART BUT NOT AN EXPERT YET
IF YOUR SO SMART WHAT IS THE SUM OF 8 + 1

Bolt Beranek and Newman Inc.

404ALKMATM

HERE I AM A MATH PROFFESSOR.NEVER THOUGHT I'D MAKE IT*DID YOU? I'M
GOING TO TEST YOU AND SEE 145W SMART YOU ARE
ARE YOU SMART OR STUPID?
*SMART
WELL A SMART STUDENT HOPE YOURE NOT JUST SAYING YOURE SMART ANYWAY ,TRY
THESE.

.

2 * 0 =
WHAT IS THE ANSWER?
*0
EXCELLENT.BRAVO! NICE WORK.NOW TRY SOME MORE
9 * 5 =
WHAT IS THE ANSWER?
*45
EXCELLENT.BRAVO1 NICE WORK.NOW TRY SOME MORE
8 * 8 =
WHAT IS THE ANSWER?
*45
TOO BAD BUT YOU GOT THEM WRONG (YOU DUMMY).THE ANSWER IS 64
1 * 4 =
WHAT IS THE ANSWER?

0TALKMATH

HERE I AM A MATH PROFFESSOR.NEVER THOUGHT I'D MAKE IT,DID YOU? I'M
GOING TO TEST YOU AND SEE HOW SMART YOU ARE.
ARE YOU SMART OR STUPID?
*STUPID
SO YOU'RE STUPID.I'LL TRY TO GIVE YOU EASY PROBLEMS.
9 + 3
WHAT IS THE ANSWER?
*12
VERY GOOD*AND I THINK YOU'RE OFF TO A GOOD START.MAYBE WE CAN TRY
ANOTHER ONE.
4 + 7 =
WHAT IS THE ANSWER?
*11
VERY GOOD*AND I THINK YOU'RE OFF TO A GOOD START.MAYBE WE CAN TRY
ANOTHER ONE.
1 + 6
WHAT IS THE ANSWER?
*13
BOY?WHEN YOU SAY YOURE STUPID YOURE NOT KIDINGI 7 THATS THE ANSWER.
1 + 9 =
WHAT IS THE ANSWER?

Report No. 1889 Bolt Beranek and Newman Inc.

In both of the examples shown, the students chose to take the

stance (and the tone, as they apparently see it) of a teacher,

and a rather strict one. Note that in the second of these

examples, the "smart" student is given multiplication problems

instead of addition problems. In both cases the mathematics is

carried out more correctly than the English. Both transcripts

show a directness in word choice that was not mirrored in these

students' language arts classes. (We neither encouraged nor

discouraged them in their choice of words for praise or insult,

since these never exceeded acceptable bounds. Our own programs

obviously did not always serve as their models.)

Another algebra quiz assignment, TALKALGEBRA, concerning addition

word problems with signed numbers, was very closely descended

from English sentence generating procedures like SIMPLESENTENCE.

TALKALGEBRA uses two procedures - CHOOSE and PICK - that are

essentially the same as MEMBER and RANDOMSELECT. TALKALGEBRA

uses a procedure ALGTALK to generate a random number of sentences

such as

I GET 3 PIES
I LOSE 6 LOBSTERS
I BUY 2 TRUFFLES

where the numbers preceding the objects are chosen randomly, and

then queries the user on how many things remain.

In writing their variants of TALKALGEBRA, the students chose

their own words for the objects ("GOODIES"), the positive words

like "GET", and the negative words like "LOSE". After the list-

ing of the assignment, we show copies of two students' programs.

Note that in the second sample, the student has incorporated

negative numbers in his sentences.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT TALKALGEBRA

TO CHOOSE /SENTENCE/ AND /NUMBER/
10 IS /NUMBER/ "0"
20 IF YES RETURN FIRST OF /SENTENCE/
30 RETURN CHOOSE OF BUTFIRST OF /SENTENCE/ AND DIFFERENCE OF

/NUMBER/ AND "1"
END

TO PICK /SENTENCE/
10 CALL

THING: /RANDOM/
NAME: "NUMBER"

20 IS /NUMBER/ GREATER OF /NUMBER/ AND COUNT OF /SENTENCE/
30 IF YES RETURN PICK OF /SENTENCE/
40 RETURN CHOOSE OF /SENTENCE/ AND /NUMBER/
END

TO TALKALGEBRA
10 CALL

THING: "PIES TRUFFLES LOBSTERS"
NAME: "GOODIES"

20 CALL
THING: "MAKE GET BUY FIND"
NAME: "POSITIVEWORDS"

30 CALL
THING: "LOSE SELL BREAK GIVE"
NAME: "NEGATIVEWORDS"

40 ALGTALK OF "0"
END

TO ALGTALK /TOTAL/
5 CALL

THING: PICK OF /GOODIES/
NAME: "OBJECT"

10 CALL
THING: /RANDOM/
NAME: "NUMBER"

20 IS PICK OF "+ -" "+"
30 IF YES CALL

THING: PICK OF /POSITIVEWORDS/
NAME: "ACTION"

40 IF YES CALL
THING: SUM OF /TOTAL/ AND /NUMBER/
NAME: "TOTAL"

(continued)

-238-

Report No. 1889 Bolt Beranek and Newman Inc.

50 IF NO CALL
THING: PICK OF /NEGATIVEWORDS/
NAME: "ACTION"

60 IF NO CALL
THING: DIFFERENCE OF /TOTAL/ AND /NUMBER/
NAME: "TOTAL"

70 PRINT SENTENCE OF SENTENCE OF SENTENCE OF "I" AND /ACTION/
AND /NUMBER/ AND /OBJECT/

80 IS PICK OF "STOP GO GO GO GO GO GO" "GO"
90 IF YES RETURN ALGTALK OF /TOTAL/
100 IF NO PRINT "HOW MANY THINGS DO I HAVE NOW?"
110 REQUEST "ANSWER"
120 IS /ANSWER/ /TOTAL/
130 IF YES PRINT "CALLOO CALLA1"
140 IF NO PRINT "THAT IS NOT SO"
150 RETURN ALGTALK OF "0"
END

Make up your own words for TALKALGEBRA. Modify the procedures

some other ways you can think of, too.

+TALKALGEBRA
I TAKE 3 EGGS
I MAKE 1 FISH
HOW MANY THINGS DO I HAVE NOW?
g4
CALLOO CALLAY
I GIVE 3 CAKES
I SELL 7 FISH
I GET 1 MARMALADE
I TAKE 3 CAKES
HOW MANY THINGS DO I HAVE NOW?
::3

THAT IS NOT SO

Report No. 1889 Bolt Beranek and Newman Inc.

4-TALKALGEBRA
I LOSE 8 LOBSTERS
I STEAL 6 SUBS
I BREAK 5 PIES
HOW MANY THINGS DO I HAVE NOW?
*-7
BOY THATS NEAT IT TOOK ME ALONG TIME TO WORK OUT HOW THIS DUM PROCEDURE
WORKS, BUT LOOK AT YOU WIZZIN BY IT LIKE IT WAS JUST ANOTHER PROBLEM
I GET -1 LOBSTERS
HOW MANY THINGS DO I HAVE NOW?
*4
TO BAD -1
I GET PIES
I STEAL 9 LOBSTERS
I GET 4 LOBSTERS
I BOMB -5 PIES
I BOMB 0 LOBSTERS
I BUY -3 LOBSTERS
I MAKE 8 LOBSTERS
I BREAK -8 LOBSTERS
I BREAK 5 SUBS
I GET 3 LOBSTERS
I STEAL -9 PIES
I BOMB 2 SUBS
I BREAK 3 PIES
HOW MANY THINGS DO I HAVE NOW?
*19
BOY THATS NEAT IT TOOK ME ALONG TIME TO WORK OUT HOW THIS DUM PROCEDURE
WORKS, BUT LOOK AT YOU WIZZIN BY IT LIKE IT WAS JUST ANOTHER PROBLEM

Algebra Teaching Programs

The children already knew how to solve the addition problems

generated in the two quiz programs just described. In the next

unit, the children generated quiz problems that they didn't know

how to solve, except by trial and error in the simplest instances.

These new quiz problems were linear equations like those

encountered in ninth-grade algebra:

7X + 8 = 71
2X + 3 = 9

-240-

Report No. 1889 Bolt Beranek and Newman Inc.

In the childrens' programs, the coefficients were randomly chosen

by RANDOMSELECT and the problems were stated as questions of the

form:

3 :c /BOX/ + 5 = 11
WHAT IS /BOX/?

The following assignment introduced this new unit.

TEACHING ALGEBRA

In this unit we shall make procedures for teaching 9th-grade

algebra. One reason for doing this is the following theory: if

you teach the computer to teach 9th graders how to do algebra,

then maybe you will teach yourselves how to do it at the same time.

We shall use sentence generating and guessing games to help make

the teaching program.

A sentence like

3 x + 4 = 10

is a simple EQUATION. Finding out what number to put in the

box to make the sentence true is called SOLVING the equation.

In typing the equation for LOGO, we shall write it as

3 24 /BOX/ + 4 = 10

Notice carefully:

(1) We use ;`c
instead of x so as to avoid confusing "times" and

the letter "X".

(2) We use /BOX/ because "BOX" is the name of the number we are

going to find.

-241-

Report No. 1889 Bolt Beranek and Newman Inc.

(3) The equation is a LOGO sentence, so it must be typed in with

proper spaces. So 3/BOX/ +4 =6 is wrong: 31:/BOX/ should be

three words. 3 /BOX/ + 4 = 6 is right; it has seven words.

To make sure you understand all this, try these exercises:

+CALL
THING: "3 /X/ + 4 = 10"
NAME: "E"

What is:

(1) F /E/

(2) L /E/

(3) F BF /E/

(4) L BL BL /E/

(5) F BF BF /E/

(6) W OF W OF F OF BF OF /E/ AND F OF BF OF BF OF BF OF /E/

AND F OF BF OF BF OF BF OF BF OF BF OF /E/ Al-=

The equation, /E/, is simple enough for you to solve. Write

down the THING of "X" that makes /E/ true.

/X/ =

The program for generating equations operates as follows. A

random number is chosen for the coefficient of /BOX/ (this is

called "TIMESNUM"); a second random number is chosen for the last

coefficient (it is called "SUMNUM"); then, instead of choosing a

random number for the right side of the equation, as one might

have expected, the last random number is chosen for /BOX/ itself.

-242-

Report No. 1889 Bolt Beranek and Newman Inc.

(That is the trick that made it possible for the children to know

the answer to the problem even though they themselves could not

solve it.)

As an example, if the program picked 4 for /TIMESNUM/, 2 for

/SUMNUM/, and 7 for /BOX/, it would compute 4 N 7 + 2 (using

integer MULTIPLY procedures primarily written by the children)

and then print:

4 21 /BOX/ + 2 = 30
WHAT IS /BOX/?

The program would then wait for an answer to be typed in. The

seventh graders were given the problem of deciding whether the

answer was right or wrong and what to do in either case.

The following sample output was typical of their first attack

on this problem.

Computer:

6 21 /BOX/ + 9 = 27
WHAT IS /BOX/?

User:

2

Computer:

HA HA. WRONG.
DONT YOU KNOW THE RIGHT ANSWER IS 3?

They soon incorporated frills of various kinds, like large

coefficients, negative coefficients, the use of the CLOCK opera-

tion to measure how long the user took to answer, and so on.

For example, the following assignment shows how MULTIPLY was

changed to take negative as well as unsigned (positive) inputs.

It uses the old MULT procedure which takes positive inputs.

,

-2143-

1-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT NEGATIVES

Purpose: to be able to use negative numbers in the alge.bra

procedures.

(1) Change MULTIPLY so that it multiplies negative numbers.

Use these procedures.

TO COUNTNEG /X/ AND /Y/

10 CALL "0" "COUNT"

20 IS F: 5 7- OF /X/ "-"

30 IF YES CALL 5 Al OF /COUNT/ AND

40 IS F l R S 7- OF /Y/ "-"

50 IF YES CALL

THING: sofiq OF /COUNT/ AND

NAME: (C) /\/

60 RETURN /COUNT/

END

TO ABSOLUTE /X/

10 IS f/ R 5 / OF /X/
//

20 IF YES RETURN OUT F IR 5

30 RETURN /X/

END

1

OF /X/

"COUNT"

TO MULTIPLY /X/ AND /Y/

10 CALL

THING: MULT OF,tasc 4.11 jE OF /X/ AND /in 5C) 2_ 7 6" OF /Y/

NAME: "PRODUCT"

20 IS COUNTNEG OF /X/ AND /Y/ 11/

30 IF YES RETURN woRD OF II AND /PRODUCT/

40 RETURN /PRODUCT/

END

(2) Now make the algebra program generate equations like

-3::/X/ + 4 = 1

-22424-

Report No. 1889 Bolt Beranek and Newman Inc.

In discussing the issue of how they might modify their programs

to help a user who was having difficulty solving a problem, the

seventh graders began to think about how to solve these problems

themselves. (Remember - because of the tricky way of generating

the problems, our students knew the right answers even though

they did not know an algorithm for solving these equations, nor

indeed that there was such a thing as an algorithm for solving

equations.)

One idea was to show when an answer was wrong that it plainly

did not satisfy the equation. Thus,

Computer:

3 2c /BOX/ + 5 = 17
WHAT IS /BOX/?

User:

2

Computer:

YOU ARE WRONG. IF /BOX/ WAS 2,

3 2c /BOX/ + 5 WOULD BE 11, NOT 17.

The following sample printout shows a student's variant of this

in a mixed quiz incorporating different kinds of problems.

ALGEBRA
TRY SOME OF THESE PROBLEMS :
3 + 7 = /E/
*10
YOU GOT IT
TRY SOME OF THESE PROBLEMS :
3 + 9 = /E/
*12
YOU GOT IT
TRY SOME OF THESE PROBLEMS s
2 * /BOX/ + 7 = 15

*4
YOU GOT IT BUT IT TOOK YOU 10 SECONDS

-214 5-

Report No. 1889 Bolt Beranek and Newman Inc.

7 * /BOX/ + 2 se 30
*24
YOU GOT IT WRONG TRY IT AGAIN !

7 * 24 = 168
168 + 2 = 170
*14
7 * 14 = 98
98 + 2 s 100
*4
6 * /BOX/ + 4 = 10
*1
YOU GOT IT BUT IT TOOK YOU 7 SECONDS
8 * /BOX/ + 0 = 0

*0
YOU GOT IT BUT.IT TOOK YOU 3 SECONDS
5 * /BOX/ + 0 s 25
*5
YOU GOT IT BUT IT TOOK YOU 3 SECONDS

Several children tried to do more. They realized that there

might be an explicit way of telling the user how to solve the

problem for any problem of this kind! By intense effort, often

involving extensive trial-and-error, some of the children were

successful in finding the algorithm! A sample printout from such

a successful program follows.

40ALGE
.38 * /BOX/ + +28 = -124

WHAT IS /BOX/ ?
*4
IT TOOK YOU 21 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT IS SLOW!
WRONG
THE REAL ANSWER IS +04
AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT +28 FROM -124 AND THEN TRY
TO DIVIDE -38 INTO -152

Report No. 1889 Bolt Beranek and Newman Inc.

- 78 * /BOX/ + +97 = -3023

WHAT IS /BOX/ ?
*435
IT TOOK YOU 33 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT IS SLOW!
WRONG
THE REAL ANSWER IS +40
AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT +97 FROM -3023 AND THEN
TRY TO DIVIDE -78 INTO -3120

-31 * /BOX/ + +50 = -2802

WHAT IS /BOX/ ?
*+92
IT TOOK YOU 19 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT IS SLOW!

GOOD
- 54 * /BOX/ + +09 se -477

WHAT IS /BOX/ ?
*2
YOU MUST BE A BRAIN TO ANSWER ME IN 5 SECONDS
WRONG
THE REAL ANSWER IS +09
AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT 89 FROM 477 AND THEN
TRY TO DIVIDE 4 INTO 64841.

I

In the example just shown, the student incorporated large nega-

tive numbers with a vengeance! Other students pursued different

goals. For example, the following printout shows the amalgamation

into a quiz of some personal, non-mathematical problems. The

student did not go so far with algebra problems as the last one,

but he started from a more remote and alien mathematical past

and his relative progress was equally as impressive to us.

Report No. 1889 Bolt Beranek and Newman Inc.

MULTEACH
4 * /BOX/ = 20
WHAT IS /BOX /?
*5
VERY GOOD. YOUR A SMART LITTLE DEVIL. BUT YOU TOOK 3 SECONDS
WOULD YOU LIKE TO NO MORE
*YES
ITS BEEN LIKE THIS, YOU SEE ALONG TIME AGO MY MOTHER SAID I WAS NOT
AGING LIKE ALL THE OTHERS, SO WE GOT A CUPUTER DOCTOR TO HELP ME, AND
HE DID. SO NOW YOU NO WHY I AM SO OLD
8 * /BOX/ = 32
WHAT IS /BOX/?
*4
VERY GOOD. YOUR A SMART LITTLE DEVIL. BUT YOU TOOK 2 SECONDS
WOULD YOU LIKE TO NO MORE
*NO
BOY ITS NOT OFTEN YOU HERE A STORY LIKE MINE, BUT SINCE YOU DO NOT I
NOW RETURN YOU TO YOUR SO CALLED HUMAN FUN HA HA HA
8 * /BOX/ = 48
WHAT IS /80X/?
*8
/BOX/ IS 6
IF YOU THINK YOUR SO SMART WHY DID YOU GET IT WRONG. OR WHERE YOU
THINKING OF TRICKING THEY OLDEST COMPUTER IN THE WORLD. PLEASE DO NOT I
AM 558 YEARS OLD AND DO NOT WISH TO DIE NOW.
WOULD YOU LIKE TO NO MORE
*NO

BOY ITS NOT OFTEN YOU HERE A STORY LIKE MINE

At the end of the course, students were extending their teaching

programs to include equations of variable form and we were
beginning to incorporate algebra word problems into new teaching
programs.

Report No. 1889 Bolt Beranek and Newman Inc.

4.4 Evaluation

This section comprises the results and conclusions of the research

described in the body of the report. The difficulty of evaluating

limited educational experiments by objective measures is well

known to us. Nevertheless, we have done some testing. We prefer

the test of critical judgment by appropriate persons - intelligent,

informed, and truly objective mathematicians and mathematics

educators - based on direct personal contact with the children.

We have carried out some evaluation of this kind also.

We first discuss the results of standard testing of our students

with the Iowa Tests of Basic Skills. We then discuss phase

(i.e., track) placement, a rank measure of achievement level

that is standardly used in the Lexington school system. Since

phase placement decisions about a student are made by one teacher

but reconsidered by others, change of phase placement is a com-

pound subjective measure of progress. We next include the judg-

ments made by four experienced and well-known members of the

mathematics-education community who each made several trips to

the classroom to monitor the teaching experiment at first hand.

Last of all, we give our own judgments.

Achievement Test Results

Each year, in October, all students at Muzzey Junior High School

take the Iowa Tests of Basic Skills (ITBS), a standardized

achievement test used in many schools to measure student perform-
,

ance as a guide to student placement. We planned to compare 1968

and 1969 ITBS results of our experimental class with those of

comparable children at the school. We discussed this use of

Report No. 1889 Bolt Beranek and Newman Inc.

these tests and other evaluative procedures with the staff at

Muzzey a number of times during the year Messrs. Santo Marino,

school Principal, David Terry, Assistant Principal, and Robert

Patterson, Guidance Counselor, generously and helpfully consulted

with us and made available the data we requested. The school

volunteered to identify and select a matched control group of

twelve students for comparison of ITBS scores and other measures

with the twelve students in our experimental class.

We understand the limitations of such small samples. We had

planned to use a larger control group, consisting of all seventh

grade children at the same level of mathematical achievement as

the experimental class. We would then have been comparing the

performance of the experimental class with a more reliable con-

trol. In scoring the ITBS, the raw scores are usually converted,

first to grade equivalents, and then to local or national norms.

Because the ITBS is administered in October, there was not enough

time to get the scores back from the testing service; in order

to get any results, we had to score them by hand. Consequently

we could not, within the time requirements of this report,

process even the raw scores for the students in the large control

group we had planned to use. We thus had to be satisfied with

the smaller control group chosen by the school and, as it is,

we have available for study, raw scores for 1968 and 1969 for

twenty-four children. The ITBS publisher, Houghton Mifflin

Company, confirmed our assumption that raw scores are as unbiased

a measure of comparison as converted scores.

The ITBS has eleven independent sections. These are called:

Vocabulary, Reading, Spelling, Capitalization, Punctuation, Usage,

Map Reading, Reading Graphs and Tables, Use of Reference Material,

Report No. 1889 Bolt Beranek and Newman Inc.

Arithmetic Concepts, and Arithmetic Problems. We computed

averages for each section for each group for each year. In

addition, we tallied the number of questions answered correctly

by each student for each year.

Number of Correct Answers in ITBS

Range for
Individual Students Grand Total

7th Grade (Computer) 166 - 298 2896

(1968)
(Control) 214 - 371 3174

8th Grade (Computer) 144 - 305

(1969)
(Control) 209 - 382

3010

3180

Although we have noted some trends, we cannot be sure how signif-

icant they are. We can only say that for the twelve children in

the computer class and the twelve children chosen as a matched

control group, some things are true of their raw scores:

(1) The control group has a much higher range of scores and a

much higher grand total, thus suggesting that this group, by

these standards, is not closely matched to the computer class.

(2) Both groups show a widening of the range from 7th to 8th

grade, i.e., the lowest score is lower and the highest score is

higher in the eighth grade.

(3) The changes in the control group are very small: down 5 on

the low side, up 11 on the high, up 6 on the overall total. The

computer class went down 22 on the low side, up 7 on the high,

but up 114 on the total.

251

Report No. 1889 Bolt Beranek and Newman Inc.

(4) In the change in individual totals, the control group was

mixed: 5 student totals went down, 7 went up. The computer group

totals show only two students going down, markedly (-22 and -25)

and predictably from our class experience of their general out-

look. All the other computer student totals went up.

(5) The average change in total score was +0.5 for the control

group and +9.5 for the computer class.

These observations are based on individual test data shown in

Tables I - III on the pages following.

Conclusions drawn from these data are subject to widely varying

interpretation. We can hesitantly say that the computer class

showed markedly positive changes, relative to the control group,

in the sections on Vocabulary, Reading, Use of Reference Material,

Reading Graphs and Tables, and Arithmetic Concepts. On the other

hand, the control group did better than the computer class in

Capitalization, Punctuation, Map Reading, and Arithmetic Problems.

(The difference between the changes on Arithmetic Problem scores

was not large and is possibly due to the fact that the computer

class did not get much work with standard seventh-grade arithmetic

problems during the year.)

We can confidently say that the achievement test results indicate

that the computer class childrens' progress in mathematics and

other subjects was not adversely affected by their experience.

S
t
u
d
e
n
t

N
u
m
b
e
r

T
A
B
L
E

I

C
O
M
P
U
T
E
R

C
L
A
S
S

R
A
W

S
C
O
R
E
S

I
O
W
A

T
E
S
T
S

O
F

B
A
S
I
C

S
K
I
L
L
S

7
t
h

G
r
a
d
e

O
c
t
o
b
e
r

1
9
6
8

8
t
h

G
r
a
d
e

O
c
t
o
b
e
r

1
9
6
9

M
u
z
z
e
y

J
u
n
i
o
r

H
i
g
h

S
c
h
o
o
l
,

L
e
x
i
n
g
t
o
n
,

M
a
s
s
a
c
h
u
s
e
t
t
s

>
*,

S
-

r-
 c

0
0'

)
C

D
C

 C
O

--
-

(C
S

(r
s

0
C

L

C
o

o
-C

.- 4-
)

(0 N
.,-= 0

9-=Q
)

(.
..1

C
D

0. M
S S
-

ti)

10
)

-0

C
D

.4
-3

0r
-E

,7
1.

71
.

..0

..f
i!:

T
i

4-
)

e-
...

.-
,

-0
 ."

-,
.-

- "
c
o

0
r-

 -
-

4-
)

C
A

.:1
7:

00
'. C

L

4-
1,

...
...

(1
3

C
r

0 0=
 C

r
C

V Q
)

(0

(
\I cn

C
L

-
(0

(\
1

n
"
:
7
1

r
-

I-
C

 M
I S

N
.1

M
I -

0

4-
C

D
C

 ..
-(

13
C

:1
11

-0

0
S

-
5-

 .-
--

C
D

 4
-

4-
,

C
D

 C
D

-C
 C

D
 .-

--

..-
 0

-I
-)

 0

C
D

 -
0

00

.:0
C

D

re
)

-C
 r

-
.-

--
--

4-
)

-C
I

(1
3

E
 C

r

C
L

m
=

o
M

S
C

D
 0

tn
 C

D
 M

I
S

-
0

5-
 5

-
V

)
(.

.)
0-

=
cc

 r
a

=
 C

L
c:

C
(
.
.
.
)

c:
C

 Q
.

7
t
h

G
r
a
d
e

1

-

8
t
h

G
r
a
d
e

2

_

7
t
h

G
r
a
d
e

8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

3
8
t
h

G
r
a
d
e

4
7
t
h

G
r
a
d
e

8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

5
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

6
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

7
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

8
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

9
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

1
0

8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

1
1

8
t
h

G
r
a
d
e

1
2

7
t
h

G
r
a
d
e

8
t
h

G
r
a
d
e

3
3
3
3

3
2
2
8

1
9

2
6

2
1

2
0

1
5
2
1

1
1

1
8

2
0

.

2
7

2
9

2
0

2
8

3
1

3
3
2
6

3
3
2
6

2
6 3
1

4
5

5
8

2
1

3
8

3
1

3
9

2
5

4
3

3
8

4
8 3
4

2
3

2
8 4
4

4
3
5
3

3
8
3
4

4
4
2
8

4
9
5
1

4
2

4
8

2
9

2
8

2
3

2
9

1
6

2
2

1
8
2
4

2
7

2
3

1
8
1
6

2
6

2
7

1
6

2
5 3
3

3
0 3
2
3
8

2
7
2
9 4
0

3
8

2
6
2
6

2
3 8

2
4

2
4 3
2

3
3 3
1

3
2

1
7 9

3
1

2
3

2
6

2
7

1
7

1
6

2
3

2
7

1
4
1
2

3
2
3
1

2
8

2
4

1
8

1
7 2
6
2
0

3
2

3
5

2
9
2
5

1
4 9

2
1
_

1
9

2
4

2
5

1
5
1
6

1
8

2
2

1
4
1
8 2
5

2
2

2
4
2
2

2
6

2
3

1
4
1
6

2
3

1
9

1
8
1
3

1
8 6

1
6

1
7 2
2
2
0

1
9

1
3

2
5

1
6

1
2

1
4

2
2

2
4

1
5

2
2 1
8

1
9

1
3

1
2 1
3

2
6

2
1

2
2

1
0

1
2

1
4

2
3

1
8
2
1

1
1

1
9

1
4
1
3 1
1

1
4

1
7

2
0

1
4

1
3

1
3

1
4 8

1
2

1
7

1
2

1
5
1
1 6 9

1
4
1
1

1
5

1
7 1
7

1
5

1
0

1
7 7

1
1

1
3 7

2
6 3
4

2
1

2
4

1
4 2
2

3
7
2
5

3
)
4

4
0

1
8

1
5

2
6

3
7

4
o

4
3

3
3

3
5

2
6
1
6

1
9 3
2

4
0

4
3

3
2

3
0

1
7
.

2
1

1
5

1
6

1
6

2
4

2
8
2
7

1
3

1
9 3
1

2
5

2
2

2
3

1
5

1
8

1
8

2
0

2
0
2
1

2
7

2
0

1
3

1
5

1
5 8 8

1
0

1
3

1
6

1
1

1
1
4 7 8

1
3
1
1

1
2

1
0

2
1

2
1

1
1 6 4 8

1
4

1
5

o
Q
m

.
.
.
,
,

3
0
5

2
2
7

2
2
9

1
8
8

2
1
9

2
4
7

2
7
7

2
6
7

2
7
6

1
6
6

1
4
4

2
4
0

2
6
4

2
6
7

2
8
4

2
4
7

2
4
8

2
5
4

2
2
9

2
1
0

2
3
6

2
9
8

2
9
9

7
t
h

A
V
E
R
A
G
E
S

8
t
h

2
5
.
0

2
5
.
6

i
n

t
h
e

3
6
.
5

4
2
.
3

t
e
s
t

2
5
.
4

2
7
.
4

s
e
c
t
i
o
n
s
.

2
4
.
7

2
2
.
3

2
2
.
0

2
1
.
0

1
9
.
9

1
6
.
9

1
4
.
6

1
8
.
6

1
2
.
4

1
2
.
4

2
7
.
8

3
0
.
5

2
1
.
2

2
2
.
0

1
1
.
8

1
1
.
8

2
4
1
.
3

2
5
0
.
8

*
T
h
e

n
u
m
b
e
r

o
f

i
t
e
m
s

S
t
u
d
e
n
t

N
u
m
b
e
r

C

1

C

2

C

7
t
h

G
r
a
d
e

-
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

-
8
t
h

G
r
a
d
e

,
7
t
h

G
r
a
d
e

3
8
t
h

G
r
a
d
e

f
\
D

4
_
7
t
h

G
r
a
d
e

C
k
.
.
n

8
t
h

G
r
a
d
e

.
t
=

7
t
h

G
r
a
d
e

C

5 -

-
8
t
h

G
r
a
d
e

6
_
7
t
h

G
r
a
d
e

C
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

C

7
-
8
t
h

G
r
a
d
e

C

8

7
t
h

G
r
a
d
e

-
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

c

9
-
8
t
h

G
r
a
d
e

C
1
0

7
t
h

G
r
a
d
e

-
8
t
h

G
r
a
d
e

7
t
h

G
r
a
d
e

C
1
1

-
8
t
h

G
r
a
d
e

C
1
2

7
t
h

G
r
a
d
e

-
8
t
h

G
r
a
d
e

7
t
h

A
V
E
R
A
G
E
S

8
t
h

..
,-

-:
',.

7;
17

'1
F

7'
.',

71
:7

.P
rI

r-
,

,
"

T
A
B
L
E

I
I

C
O
N
T
R
O
L

G
R
O
U
P

R
A
W

S
C
O
R
E
S

-

I
O
W
A

T
E
S
T
S

O
F

B
A
S
I
C

S
K
I
L
L
S

7
t
h

G
r
a
d
e

-

O
c
t
o
b
e
r

1
9
6
8

8
t
h

G
r
a
d
e

-

O
c
t
o
b
e
r

1
9
6
9

M
u
z
z
e
y

J
u
n
i
o
r

H
i
g
h

S
c
h
o
o
l
,

L
e
x
i
n
g
t
o
n
,

M
a
s
s
a
c
h
u
s
e
t
t
s

>
1 S.
 *

is
s-

--
r0 =

ct
4:

1-
--

11
3 U 0 7.

-
C

)0
a

C
O

- :0 R
S W =

cm
-

C
 C

O
.-

 .4
-

.- 7
D 0- C
f)

c 0 ,- 4-
1

11
3 N , - .-
 .4

-
03

 n
t

-I
-1

 -
r 0_ 11

3

C
.-

)

4
0

4
6

2
5

1
8

3
6

3
6

2
4

1
4

2
6

3
6

3
5

2
6

2
5

4
7

3
7

3
3

2
8

4
3

1
3

1
9

2
2

3
4

1
7

2
2

3
6

4
8

4
1

3
7

3
3

6
2

4
1

3
7

3
4

4
3

3
0

2
5

3
0

4
0

2
7

1
8

2
8

3
7

1
8

2
3

2
7

4
5

2
1

2
1

2
3

3
2

2
1

2
5

2
3

3
7

3
0

2
8

2
7

3
5

2
5

1
4

2
5

4
0

3
1

2
0

2
1

3
2

3
7

3
0

1
8

3
9

3
7

2
9

1
7

2
9

2
7

3
2

2
2

3
7

2
3

2
6

2
5

3
5

2
5

2
2

2
7

4
4

2
3

2
2

3
1

4
9

3
8

1
7

3
2

4
2

3
4

2
1

2
8
.
0

3
8
.
8

2
7
.
9

2
4
.
0

2
6
.
7

4
1
.
9

2
8
.
8

2
4
.
3

*
T
h
e

n
u
m
b
e
r

o
f

i
t
e
m
s

i
n

t
h
e

t
e
s
t

s
e
c
t
i
o
n
s
.

C 0 ,- +
2-

em
s

.4
-

=
ct

-1
-)

 -
U c = 0.

- C
M 01

C
)-

C
)

i
x
,

V
I =

C
r) C ,- -a
 -

R
S

C
M

C
u

.4
-

C
C

 s
-

0
_

R
S M

0 .. 0- R
S

S.
-

1/
)

C
D

 C
U .-
 -

C
L

C
O

C
 (

a
C

N
J

.-
 1

--
:0 is

s
-o

Q
.1

 C
=

 (
C

S

cu 0
. -

 -
C

 R
S

01
4-

 C
l)

 7
-

10
0

t t
...

--
..

a)
 4

-
4-

,
IA

 W
 R

S
=

 C
C

 M

U .0
 N

-
W

 +
.'

C
O

E
0-

ct
-0

 C
I)

.0
 (

.1
1

,-
 C f.
-

0
C

L
 C

.-
)

U , 4)
 V

I
-.

W
 E

 .4
-

E
 C

L
)

cn
-C

 1
.-

..
...

...
.

4-
, X

I
.-

 0
S.

f.
..

Q
0.

d
C
D 0 c
t 0 C
O

O
D

2
2

1
9

2
3

1
3

3
4

2
5

1
3

2
7
8

1
7

1
5

2
5

1
5

3
0

1
9

1
2

2
4
3

2
6

2
7

1
5

1
2

4
9

2
9

9
2
9
0

2
8

2
3

2
9

1
1

4
1

2
1

1
6

3
1
1

1
8

2
2

1
3

1
5

2
7

2
1

1
2

2
3
1

2
3

1
6

2
0

8
1
9

1
8

1
0

2
0
9

3
1

2
5

2
8

2
4

5
1

2
7

2
3

3
7
1

3
9

2
5

3
1

1
7

4
9

2
8

2
0

3
8
2

3
2

2
5

1
9

1
6

3
2

1
8

1
3

2
8
7

2
2

1
5

2
2

1
7

3
2

1
7

1
2

2
5
2

b
d

1
8
1
9

1
8
1
6

1
7
2
3

2
0

1
3

3
3 3
6

2
2 2
8

1
4
1
0

2
4
8

2
5
9

0 1-
1 ct

2
5

1
8

2
2

1
7

1
0
1
6

1
4
1
0

3
2

3
3

1
7

1
8

1
1

1
4

2
3
2

2
4
4

b
d m F
S

1
7

2
9

1
0

1
1

2
7

1
4

5
2
1
4

W
2
0

2
0

1
3

1
1

2
0

1
5

6
2
2
1

C
D

2
9

2
3

1
6

1
9

3
0

1
9

1
2

2
6
8

'

3
0

1
8

1
5

9
4
2

1
8

1
2

2
6
7

W :
=
5

2
0

1
6

1
7

1
2

2
5

2
2

9
2
2
6

r
a

2
1

1
6

2
3

1
2

4
2

1
8

1
5

2
5
5

Z
2
4

1
9

1
8

1
6

3
1

2
1

1
2

2
4
8

C
D

2
3

2
0

2
3

9
4
0

1
7

1
6

2
6
4

P
o

3
1

2
2

1
6

1
1

3
3

2
2

1
1

2
8
1

2
6

1
6

2
1

1
0

4
0

2
1

1
0

2
7
3

H
2
4

4

2
3
.
8

2
2
.
3

1
8
.
1

1
6 2
1

8 8
1
5
.
3

1
1
.
8

3
3
.
7

3
5
.
3

2
1
.
4

1
9
.
8

1
2
.
0

1
2
.
8

2
6
4
.
5

2
6
5
.
0

0

rJ (
1
)

t
C
1 0

T
A
B
L
E

I
I
I

1
1

,
-
t
-

S
E
C
T
I
O
N
S
*

I
O
W
A

T
E
S
T
S

O
F

B
A
S
I
C

S
K
I
L
L
S

S
U
M
M
A
R
Y

O
F

R
A
W

S
C
O
R
E
S

B
Y

T
E
S
T

-
M
u
z
z
e
y

J
u
n
i
o
r

H
i
g
h

S
c
h
o
o
l
,

L
e
x
i
n
g
t
o
n
,

M
a
s
s
a
c
h
u
s
e
t
t
s

o

7
t
h

G
r
a
d
e

-

O
c
t
o
b
e
r

1
9
6
8

8
t
h

G
r
a
d
e

-

O
c
t
o
b
e
r

1
9
6
9

N
u
m
b
e
r

o
f

C
o
m
p
u
t
e
r

C
o
n
t
r
o
l

C
o
m
p
u
t
e
r

C
o
n
t
r
o
l

I
t
e
m
s

C
l
a
s
s

G
r
o
u
s

C
l
a
s
s

G
r
o
u
'

C
h
a
n
g
e
s

C
o
m
p
u
t
e
r

C
o
n
t
r
o
l

C
l
a
s
s

G
r
o
u

V
o
c
a
b
u
l
a
r
y

4
8

2
5
.
0

2
8
.
o

2
5
.
6

2
6
.
7

0
.
6

-
1
.
3

R
e
a
d
i
n
g

8
o

3
6
.
5

3
8
.
8

4
2
.
3

4
1
.
9

5
.
8

3
.
1

S
p
e
l
l
i
n
g

4
8

2
5
.
4

2
7
.
9

2
7
.
4

2
8
.
8

2
.
0

0
.
9

C
a
p
i
t
a
l
i
z
a
t
i
o
n

4
4

2
4
.
7

2
4
.
0

2
2
.
3

2
4
.
3

-
2
.
4

0
.
3

P
u
n
c
t
u
a
t
i
o
n

4
4

2
2
.
0

2
4
.
4

2
1
.
0

2
3
.
8

-
1
.
0

-
0
.
6

U
s
a
g
e

3
2

1
9
.
9

2
2
.
3

1
6
.
9

1
8
.
1

-
3
.
o

-
4
.
2

)
M
a
p

R
e
a
d
i
n
g

4
2

1
4
.
6

1
6
.
8

1
8
.
6

2
1
.
8

4
.
0

5
.
0

R
e
a
d
i
n
g

G
r
a
p
h
s

a
n
d

T
a
b
l
e
s

2
8

1
2
.
4

1
5
.
3

1
2
.
4

1
1
.
8

0
-
3
.
5

U
s
e

o
f

R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l

5
9

2
7
.
8

3
3
.
7

'

3
0
.
5

3
5
.
3

2
.
7

1
.
6

A
r
i
t
h
m
e
t
i
c

C
o
n
c
e
p
t
s

4
8

2
1
.
2

2
1
.
4

2
2
.
0

1
9
.
1
8

0
.
8

-
1
.
6

A
r
i
t
h
m
e
t
i
c

P
r
o
b
l
e
m
s

3
4

1
1
.
8

1
2
.
0

1
1
.
8

1
2
.
8

0
0
.
8

*
T
h
e

r
a
w

s
c
o
r
e
s

f
o
r

e
a
c
h

s
e
c
t
i
o
n

w
e
r
e

a
v
e
r
a
g
e
d

s
e
p
a
r
a
t
e
l
y

f
o
r

t
h
e

7
t
h

a
n
d

8
t
h

g
r
a
d
e

t
e
s
t
s
.

T
h
e

c
h
a
n
g
e
s

a
b
o
v
e

a
r
e

t
h
e

d
i
f
f
e
r
e
n
c
e
s

b
e
t
w
e
e
n

t
h
e
s
e
.

I
-
1

c
t

b
i

(
D

1
1 P (
D N
'

c
i

C
D H

Report No. 1889

Student Performance-Level Changes

Bolt Beranek and Newman Inc.

At the beginning of the school year, the students in the Lexington

junior high schools are placed into one of five tracks, called

phases 1 - 5. This is done independently for each of the four

subject areas - English, Social Studies, Science, Mathematics.

Phase 5 is the most advanced or accelerated group; Phase 1 com-

prises the children with exceptional learning difficulties. The

children in our computer class, and those in the control group,

were largely in the middle mathematics track (Phase 3). (Two of

the twelve children in the computer class were at the low end of

Phase 4. We included them because we thought that the presence

of two mathematically more able children might enliven the class.

In point of fact, however, two of the Phase 3 children turned

out to be the best students, and the Phase 4 children were

virtually indistinguishable from the Phase 3 ones in their mathe-

matical work.)

At the end of the year, we recommended a change in placement in

mathematics from Phase 3 to Phase 4 for six of the computer class

children, and no change for the other six. This was an unusual

recommendation: a higher placement for about two out of twelve

students is typical. (In fact our judgment wasthat precisely

two out of the twelve children would have been shifted upwards

anyway, in a standard mathematics class.)

In the control group, three students advanced from Phase 3 to

Phase 4 in mathematics placement. (It should be noted that four

of the control group students started the year as Phase 4 math

students.) No one in the computer group was down-phased in any

subject area; one was in the control group. No one remains in

Phase 2 in any subject area in either group. The placements are

shown in Table IV.

-256-

tJ C
D 0 c
t

T
A
B
L
E

I
V

'
2
-
f
:

0

P
H
A
S
E

P
L
A
C
E
M
E
N
T

M
u
z
z
e
y

J
u
n
i
o
r

H
i
g
h

S
c
h
o
o
l
,

L
e
x
i
n
g
t
o
n
,

M
a
s
s
a
c
h
u
s
e
t
t
s

H
I o
p
o
p

C
o
m
p
u
t
e
r

C
l
a
s
s

C
o
n
t
r
o
l

G
r
o
u
p

S
t
u
d
e
n
t

N
o
.

7
t
h

G
r
a
d
e

8
t
h

G
r
a
d
e

C
h
a
n
g
e

S
t
u
d
e
n
t

N
o
.

7
t
h

G
r
a
d
e

8
t
h

G
r
a
d
e

C
h
a
n
g
e

1
3

3
3

4
3

4
4

4
u
p

2

C

1

4
4

4
4

4
4

4
4

0

2
3

3
3

3
4

4
4

3
u
p

3

C

2

3
3

4
3

4
3

4
3

u
p

1

3
3

3
3

3
3

3
3

3
0

C

3

3
3

3
3

3
3

3
4

u
p

1

4
4

4
3

2
4

4
3

3
u
p

1

C

4

4
4

4
4

4
4

4
4

0

5
3

3
3

3
3

3
4

3
u
p

1

C

5

4
4

3
3

4
4

4
4

u
p

2

6
3

2
3

3
3

3
3

3
u
p

1

C

6

3
4

4
4

3
3

4
4

d
o
w
n

1

7
4

4
4

4
4

4
4

4
0

C

7

3
3

3
3

4
4

4
4

u
p

4

8
3

3
3

3
3

3
4

3
u
p

1

C

8

3
3

3
4

3
3

3
4

0

9
3

3
3

3
4

4
4

3
u
p

3

C

9

3
3

3
3

3
3

3
3

0
0

1
0

3
3

3
3

3
3

3
3

0
C
1
0

3
2

3
3

3
3

4
3

u
p

2

c
t

1
1

4
4

3
3

4
4

4
3

u
p

1

C
1
1

3
3

3
4

3
3

3
4

0
C
D

1
2

4
4

4
4

4
4

4
4

0
C
1
2

4
4

3
4

4
4

3
4

0

C
D

T
h
e

s
e
r
i
e
s

o
f

f
o
u
r

d
i
g
i
t
s

r
e
p
r
e
s
e
n
t
s

p
l
a
c
e
m
e
n
t

i
n
E
n
g
l
i
s
h
,

S
o
c
i
a
l

S
t
u
d
i
e
s
,

M
a
t
h
e
m
a
t
i
c
s
,

a
n
d

S
c
i
e
n
c
e

i
n

t
h
a
t

o
r
d
e
r
.

T
h
e

c
h
a
n
g
e

(
f
r
o
m

7
t
h

t
o

8
t
h

g
r
a
d
e
)

i
s

t
h
e

n
e
t

s
u
m

o
v
e
r

t
h
e

f
o
u
r

s
u
b
j
e
c
t
s
.

C
D P
A

Report No. 1889 Bolt Beranek and Newman Inc.

At the beginning of the year, the control group had a somewhat

higher placement profile than the computer class, over, all

subject areas (six more Phase 4 placements, and five fewer

Phase 3 placements). At the end of the year, the two profiles

were more alike (the control group had three more Phase 4 place-

ments and three fewer Phase 3 placements).

It should again be noted that, since we ourselves made the

recommendations for mathematics placement, this is a biased

measure.

In early November 1969, we returned to Muzzey Junior High School

to talk with the current mathematics teachers of the twelve

children who had been in the computer class. We asked how our

placement recommendations, all of which had been accepted by the

school, were working out. Our students were now divided among

three mathematics teachers. Each of the three teachers affirmed

that the former computer class students in her class were appro-

priately placed at present. Two of the new Phase 4 students

were among those at the top of their class. They were described

as "among the brightest and most enthusiastic, asking lots of

questions and volunteering lots of information." The other new

Phase 4's were comfortably holding their own. Similarly, the

children whose phase placement was unchanged were deemed to be

working at the proper level of challenge.

Thus far, our judgment that six students would be capable of

doing more difficult mathematics than before (in part as a result

of their work with 'LOGO) appears to be holding up. That is, in

personal terms, the most important result of the experiment.

Report No. 1889 Bolt Beranek and Newman Inc.

Comments of Evaluators

The following mathematics and science educators independently

monitored and evaluated the research throughout the fifteen-month

period.

Max Beberman Professor of Mathematics,
University of Illinois
Director, University of Illinois Committee on
School Mathematics

Robert B. Davis Professor of Mathematics
Syracuse University, and Cornell University
Director, The Madison Project

Andrew Gleason

Robert Karplus

Professor of Mathematics
Harvard University
Director, Cambridge Conference on School
Mathematics

Professor of Physics
University of California (Berkeley)
Director, Science Curriculum Improvement Study

Each of these men made several visits (ranging from three to

seven) during the school year to observe the progress of the

classroom teaching. They attended two meetings with the project

staff just prior to and just after the school year (August 1968

and August 1969), the first one to plan the teaching and evalua-

tion, the last one to discuss the work done during the year.

None of these men were committed to the view of the project staff

that programming could make a fundamental contribution to mathe-

matics education. Each man had some familiarity with the ways

that computers and programming were already being used in mathe-

matics instruction, and was genuinely interested in our new

approach.

-259-

Report No. 1889 Bolt Peranek and Newman Inc.

Their individual methods of observation and evaluation were

different. One of them (Karplus) gave the students his own

problems, and on one occasion, his own test. Another (Davis)

felt that he had to become personally familiar with the details

of LOGO programming and the use of LOGO in teaching. He arranged

to get remote access to our computer from his offices at Syracuse

and Cornell. Beberman took advantage of his access to local

experts on computers and education at Urbana (members of the

PLATO instructional project) in planning for his visits to our

project. Gleason tested the progress of the class by teaching

it himself on occasion. To obtain a further understanding of

the problems of designing and using mathematical material in the

context of LOGO, he developed some of his own LOGO programs.

Karplus is a physicist; the other three evaluators are mathemati-

cians. We thought it appropriate to have a person whose main

concern about mathematics education was its relation to science,

and Karplus represented that interest.

At the end of the year, the evaluators prepared statements

describing their individual observations and judgments about the

project. These are reproduced on the,next pages. We begin with

Karplus' statement (actually excerpts from several reports that

he prepared following each of his four visits during the year).

The letter reports of the three mathematicians follow this one.

Report No. 1889 Bolt Beranek and Newman Inc.

Letter Reports from Professor Robert Karplus

1. September 18-22, 1968

"Marjorie Bloom promises to be an outstanding teacher for
the group. Her knowledge of mathematics and her creative
approach to teaching are a rare combination. It is clear that
she has many ideas, but that she will be able to use only a few.
To keep a record of her work, I recommend that she and one
observer write a diary-like report of the procedures and
children's reactions after each class. This report should in-
clude a brief description of untried alternatives. Even though
report writing is burdensome, we have found it to be an essential
part of a curriculum study. Human memory is too fallible and
too much subject to reinterpretation with the benefit of hindsight.

"Open-ended activities ip which a child writes series of
instructions for the computer seem to lend themselves quite easily
to analysis with regard to the child's level of sophistication.
I explained this in connection with the "coded message" activity.
I suggest that each child hand in at least one such paper every
other week and that you examine it for length, directness and
indirectness of the steps in the procedure, etc.

"Some of the operations in LOGO may present logical problems
to the children (e.g., class inclusion, transitivity, relation-
ships and their inverses, necessity and sufficiency). Such items
should receive special mention in the diary-reports and you should
consider modifications in LOGO to make them more clear. You may,
for instance, ask the children for the kind of operation they
would like to have in LOGO. Their suggestions will indicate their
need for redundancy (equivalent basic operations) and/or a differ-
ent feeling of confidence in basic operations compared to opera-
tions which they themselves construct therefrom."

2. December 4-6, 1968

"A great deal of progress was observable during my second
class visits on December 4-6, 1968. Six terminals were in opera-
tion and the children were skillful in handling them. They dialed
to the computer, adjusted the acoustic couplers, and generally
conducted themselves in a professional manner. They also used
the keyboards with fair accuracy and confidence. In other words,
the children's practice in using the terminals is certainly
evident in their behavior.

-261-

Bolt Beranek and Newman Inc.

"It was furthermore clear that most of the children can use
the LOGO commands to write simple programs, edit them, and use
them. Programs with recursion were still a novelty at the time
of my visit, but some of the children were catching on to the
properties of such a procedure, even though its power was not
evident. They enjoyed experimenting with the procedures, finding
bugs in programs largely through trial-and-error, and watching
the machine operate without their frequent intervention.

"It might be valuable at this point to help the children
find some activities that are not ad hoc exercises in LOGO, but
actually make use of the program for other purposes. Processing
data obtained in science class is one possibility, perhaps gener-
ating a forecast of the weekday on which each child's birthday
comes for the next twenty years, etc. In other words, the chil-
dren should begin to think of LOGO as a tool for other purposes,
rather than as a self-sufficient and self-contained activity.
This aspect can be developed alongside the work on developing
programs which are logically more complex."

"I estimate that the children have not moved ahead of their
level during my December visit either in skill of teletype opera-
tion or in the intellectual level of their program operation. In

other words, they are on a plateau as far as their performance is
concerned. This plateau is probably related to their general
intellectual development and will not be easily surpassed.

"The evidence to support my assertion comes from my observa-
tions in the class. The children's principal activities were to

de-bug programs which they had typed in accordance with general
suggestions or outlines from their teacher. The debugging was
still largely a trial-and-error procedure, with very little effort

to use a testing strategy for locating the source of trouble. In

other words, the binary narrowing-down procedure which was the
content of their number-guessing program was not seen as a tool
that could be applied in the debugging of programs.

"To help me describe the children's level of reasoning, I
asked each one to answer the "Islands Puzzle," a logic quiz.
Only one child reasoned that plane connections between A and B,
and between A and C, imply a connection between B and C. One of

the children based his answers on the islands diagram, seven
mostly repeated the information given, and three drew at least
partial inferences from the data. This is about par for junior
high school students.

-262-

Report No. 1889 Bolt Beranek and Newman Inc.

"I should like now to go into a couple of background matters.
It is useful to distinguish the children's attitude to the program
as one of (a) rejection, (b) compliance, (c) identification, or
(d) internalization of values. Rejection is self-explanatory;
compliance means participation out of compulsion or lack of
alternatives; identification means a desire to perform well
because of a general appeal of the program, its teacher, or some
other connected matter; internalization means an acceptance of
the program because of its usefulness to the individual as a
tool, for self-expression, etc.

"In my experience, complete internalization of values of any
sort is extremely rare in elementary school and probably also in
junior high school. Nevertheless, my colleagues and I have the
feeling that children should accept the program activities in the
same spirit in which we think of them. Perhaps what goes on in
your Muzzey computer club (though not in your computer class)
reflects internalization.

"Identification is the most positive attitude that can be
hoped for on any large scale. Whether it is necessary, however,
or whether compliant performance results in satisfactory achieve-
ment, I don't really know. At present, I would place the Muzzey
class between compliance and identification. I can't be more
precise, because of variation from child to child and activity to
activity. You should really ask yourself how much the attitude
factor means to you in comparison with achievement, and whether
you are satisfied with the present conditions.

"When students have internalized the teacher's values
(graduate school level?), they presumably are eager for advice,
leadership, and information from him. When students hover
between compliance and identification, this is not the case. A
great deal of input from the teacher is likely to result in more
compliance or outright rejection; inadequate input from the
teacher will lead to wasted time, aimless play, or doing nothing.
In other words, the teacher's mrves have to be planned and timed
carefully, if possible in an individualized fashion. I doubt
that this is really possible during the current exploratory
phase of your project, but you should make the effort. The
children should have enough autonomy so they can test the new
ideas in their own ways."

Report No. 1889

4. May 20-21, 1969

Bolt Beranek and Newman Inc.

"I was most impressed by the enthusiasm, interest, and
obvious competence of the Muzzey computer club members, who raced
to the terminals for their turns. Many had designed programs
previously (perhaps left from the conference during the prior
week) and could hardly wait to try out their ideas.

"The regular computer class was very much more interested
and active than it had been during my last visit. Half of the
children worked at the terminals (the others were elsewhere in
classroom discussion) on various projects. They -.had been intro-
duced to the concept of generating problems of variable form by
using the random number generator in different ways. All the
children were quite comfortable in using the random number
generator, but some followed the assignment outline quite closely
while others were more innovative and still others were occupied
with programs unrelated to "variable form". Most of them
appeared to be able to control the random numbers adequately.
That is, they gave it a particular name when the same random
number had to be re-used several times, and they knew that call-
ing for /RANDOM/ would generate a new number."

Summary Report of Professor Max Beberman

"The principal impression I have formed from last year's
LOGO experiment is that you are developing a genuinely new ap-
proach to mathematics. The ability to construct functions in
order to do a given job is a mathematical task of first importance
but which is given almost no attention in traditional or new
programs. It is important that we see how far into the secondary
school we can push this approach. Can we reorganize secondary
school mathematics through this approach? Will doing so result
in more efficient teaching and learning?

"I gained this impression not from your original proposal
[although you may have had this in mind all the time] but through
talking with you, watching the children at work, and writing some
LOGO programs myself.

"Another characteristic of the experiment which is unique is
that children have an immediate feedback on their efforts. They
do not need to wait for a teacher to give them the "right answer"
in order to check their work. Moreover, there is a real payoff

-264-

Report No. 1889 Bolt Beranek and Newman Inc.

in doing things correctly -- the programs work. In most mathe-
matics classes, students couldn't care Less about getting the
right answer except as it influences their grades.

"It is difficult to estimate, at this point, what will be
the results of the mathematical power acquired by these students.
Will it enable them to move through "standard" courses with less
difficulty? Will standard courses appear to be trivial?

"As I mentioned on several of my visits, you will have to
be creative in finding ways of helping the experimental children
attain the standard goals. Rack your brains to find LOGO ways
to do this. But it must be done as long as you use public school
children in your experiments.

"I am looking forward eagerly to the next steps."

Summary Report of Professor Robert Davis

"May I 'comment on the Lexington and Newton uses of LOGO by
beginning with a discussion of our own uses of LOGO at Cornell
University and at Syracuse University. As you know, after we
began watching LOGO in use at Lexington, Massachusetts, we were
unable to resist some very informal trials of our own. Our trials
were in no sense an "experiment," they were just informal explor-
atory trials intended to give us a feeling for the parameters
involved, for possible value, and possible problems.

"By discussing the reasons for our own interest I can provide
some background for discussing the work at Newton and Lexington.

"We had eight reasons; four of them relate to what happens
in schools and in classrooms:

1.) We were looking for ways to get the child's attention.
Expecially in some urban classrooms, this is surprisingly
hard to do. Both calculators and computers help, and this
is not unimportant. Our trials convince us of their value
in this regard; I have just conferred with Edith Biggs, one
of Her Majesty's Inspectors in England, and Edith reports
the same effect there.

If you look at the plight of urban classrooms, you will see
what I mean.

Report No. 1889 Bolt Beranek and Newman Inc.

2.) We wanted to explore the possibility of allowing

children to teach other children. Our trials convinced us

that LOGO lends itself readily to such useage. (This, too,

can improve the whole climate in a school.)

3.) We try to make some use of a "project" method for

letting children learn things. We've tried many things:

ideas we got from Edith Biggs, "cardboard carpentry" from

E.D.C., etc. Our trials with LOGO make it seem likely that

LOGO can provide some worthwhile "projects" for children to

develop themselves (what I call "mini-theses").

4.) We've been trying to promote individualization, to make

it possible for a teacher to work with one child at a time

(or with a small group of 2 or 3 children at a time). LOGO

helps, for two reasons: (a) because of its "attention

holding" ability, it keeps other children purposefully

occupied while the teacher is busy in a different part of

the room; and (b) because it has a "quasi - CAI" aspect, it

makes it easier for children to work more-or-less on their

own. (This rather interesting exploratory "quasi - CAI"

arithmetic is very different from straightforward -- and

dull -- "programmed-instruction" CAI.)

"One reason relates to our work as a "curriculum-innovation"

project:

5.) School procedures and school curricula are frozen so

hard that most reasonable efforts fail tD yield any change

at all. Even worse, there is what Dick Suchman calls the

"homeostatic propensity" of curriculum and of school practice

-- if you do, miraculously, make some sort of change, before

long your resources will usually be exhausted, and both

practice and curriculum will return to the status quo ante.

We are looking to LOGO to be a powerful enough force for

change that it can create change in the first, place, and

that, in the second place, the new directions will be

pursued rather than abandoned.

One could say much about this: it won't automatically happen

even from LOGO -- one has to plan for it carefully. Further-

more, if these "new directions" prove to be undesirable,

their irreversability suddenly becomes a liability rather

than an asset. Many uses of computers do indeed look as if

they could become liabilities. LOGO looks to be an asset,

and an important one.

Report No. 1889 Bolt Beranek and Newman Inc.

"Finally, three reasons relate to the nature of mathematics
(or school learning of mathematics):

6.) We want both school children and school teachers to
apprehend mathematics as an active thing that you do. It is
not merely a lifeless collection of facts and rote procedures.
Math is something you think about, you speculate about, you
work at. LOGO helps math to appear in this "active" light
as "something you do" -- really, as an unlimited collection
of things that you can do. Let me emphasize that this view
of mathematics is just as important for teachers as it is
for children.

7.) We wanted the computer to give us access to problems
that are more interesting, but which would be too difficult
without a computer. Paul Ward and Dan Aneshansley (at
Cornell) have developed some lovely work on population
growth. Their simplest model uses essentially only addition;
more sophisticated models use Fibonacci series, differential
equations, etc. Using a computer puts all of this within
reach of average ninth graders, and much of it within reach
of 5th and 6th graders (very possibly even younger children
could work on it profitably if we got our presentation,
introduction and motivation worked out smoothly enough).

Without a computer, these problems would be too tedious to be
viable within the school program.

8.) This reason is the most subtle; you would have to
observe 7th, 8th, and 9th grade classrooms to see what it
really means. I have watched a teacher devote 40 minutes
to problems, all of the same type, as follows:

"How shall we write the sum of twice A and B?"

(Ans: 2A + B)

This was a wildly dull lesson; an unnecessary one; and an
unproductive one. This teacher complained because she never
had enough time to teach all the math that people expected
her to teach.

A second example: Asked to "solve a + a = 10 for a,"
a child responded "For which a?"

Now these examples are a vague suggestion of what seems to
be an important problem. Obviously, the problem has complex
roots. Some of its roots lie in the theory that the teacher

-267-

Report No. 1889 Bolt Beranek and Newman Inc.

is supposed to tell the student what to do, and how to do
it. But much of the difficulty probably lies here: the
thing being discussed is the written language of mathematics
as it is usually handled in 9th grade algebra. In order to
discuss this, a certain ill-defined and wildly inelegant
language is being used. In fact, most of the content of
traditional algebra courses consists precisely in learning
this language. It is a poor language, and a waste of time
to learn. We no longer teach the historically earlier forms
of this language ("If the ten-fold multiple of a quantity
be diminished by one half of its cube, the result is to 24
as the square of 3 is to its third power"). We need to
stop teaching the 1969 version, which doesn't justify itself.

This requires something else to be put in its place. The
Carbondale group (Exner, et al.) are experimenting with
formal mathematical logic. You are experimenting with LOGO.
(We have been experimenting with the use of as little
language as possible, and that little made up mostly by the
children themselves.) Obviously, I hope we all win. But
we, too, see this use of LOGO as potentially valuable.

"So much for our informal explorations with LOGO. (We have
worked with teachers of grades K - 9, with prospective teachers,
and with children from age 3 years to age 21 years, or so.)

"I should add that I was present at the Joint Computer
Conference in Boston last year when Sharon Kaufman, M.D., a
psychiatrist from U.C.L.A., observed your Newton and Lexington
children at work and described the activity from her (very
valuable) point of view: in terms of children learning from
errors instead of being discouraged by them, instead of being
driven into uncontrollable frustration by them, etc. She spoke
in terms of frustration tolerance, perseverance, flexibility,
etc. -- and expressed the opinion that these traits, perhaps
more than any others, determine whether one leads a fruitful life
or becomes a social reject. I am impressed with her remarks,
they seem consistent with our experience, but I can describe
things better from my usual frame of reference in relation to
school mathematics.

"Let me now comment on the work at Lexington and Newton.

i) Obviously, I like it -- in fact, I was deeply impressed
by it -- or I and my colleagues at Cornell would not have
gone to great lengths to explore it ourselves.

-268-

Report No 1889 Bolt Beranek and Newman Inc.

ii) I am impressed by such facts as these: the children
showed normal gains on the Iowa Tests even though this is
not what they studied in grade seven: LOGO was their
(essentially entire) math program for seventh grade, yet
they showed normal growth on the (essentially obsolete)
Iowa tests. Also, you had 12 essentially randomly-selected
middle tra-k (or, as they say in Lexington, "phase")
students. For grade 8, none has dropped below his expected
track, but 6 studE.lts -- one-half of the class -- have moved
up to a "higher," Defter," or "more difficult" track. This
is very important, because a major concern in education
today is the fact that once you consign a child to a lower
track, you have put him there for the rest of his life.
Your results in this regard are both very unusual and
potentially very important.

"Let me remark upon Lexington as an "experiment" in relation
to the conventional wisdom of educational research. We both know
that it was not an "experiment" in the conventional sense. You
received excellent advice, and deliberately chose a different
route. I think that was wise.

"But what (if any) systematic or generalizable knowledge
could be gained from future similar explorations? Some of my
friends say: none -- learning ecology doesn't lend itself to
generalizable data any better than painting or music. They may
be right. Nonetheless, several things seemed clear:

i) I observed 3 different teachers working with the 7th
graders. Teachers style, personality, approach to mathe-
macs and approach to the children were so different that
they weren't even in the same ball-park. You didn't have
one experiment, you had three (not to mention interaction
effects among the three different treatments).

ii) While you had less variation in classroom format, time
scheduling, etc., the same potential for variation was there.

"It is almost as if there were no such thing as "teaching
LOGO to seventh graders," no more than there is such a thing as
"playing the piano." My six-year-old daughter practicing, one
hand at a time, is one thing; her five-year-old brother banging
with both hands is something else (and more musically rewarding
for the listener). Glen Gould's Bach is different from Wanda
Landowska's (she played piano, too, sometimes!) Bach is different
from Chopin, and so on. There is so much potential (and actual)
variability that we need a new approach. I think it not

-269-

Report No. 1889 Bolt Beranek and Newman Inc.

inconceivable that art criticism may offer us better paradigms
than seventeenth century science does, or than studies of the
effectiveness of different fertilizers.

"As in nearly everything human, how you do it is as important
as what you do. The message is in fact inseparable from the
medium.

"I can't imagine that anybody doubts that LOGO is a good
thing. Bach is a good thing. Beethoven is a good thing. The
Cauchy - Riemann equations are a good thing. LOGO is a good
thing.

"And, unfortunately, we can't cop out and say -- well, it's
all a matter of cost effectiveness. Building Edsels is a matter
of cost effectiveness; education isn't."

Summary Report of Professor Andrew M. Gleason

"My impressions of the LOGO project: I visited the classes
on three occasions last year.

"The first time I was not particularly impressed. It seemed
that progress was slow and the children didn't show much in the
way of disciplined interest.

"By the second visit interest had improved considerably.
On that occasion I led a discussion of possible algorithms for
multiplication. The children had done a little with this before-
hand and they were clearly involved in finding ways to do it
better. I understand that subsequently they did a good bit of
work improving their algorithms and doing division.

"The last time I came there were some really impressive
things going on. The children had learned to make a random
sentence generator and some were trying to improve theirs. Aside
from the higher level of programming sophistication involved,
there is a clear opening into an entirely different area of
learning. To program the machine to make up English sentences
requires that they look critically at what distinguishes an
English sentence from a string of words. This is what grammar
is all about. Approaching grammar through a computer context,
the children are much more likely to see it as relevant to the
important problem of communication, than they are in an English

-270-

Report No. 1889 Bolt Beranek and Newman Inc.

class where the emphasis is more likely to be on whether a
sentence is "good" English than whether it carries the message
it intends.

"The same day there was a girl who was programming a French
verb conjugator. Another example of transfer to other areas.
Who would have thought that your project would be reinforcing
some girl's knowledge of French verbs?

"It seems to me that these carryovers are the really impor-
tant contribution of the program. One can hardly expect that
each child should be interested in school work in all areas. We
shall be very successful indeed in our schools if we can get
each child to think seriously about one topic. The computer, as
expected, does seem to challenge students to make a real intel-
lectual effort. At the same time its versatility offers a much
larger range of attractive problems than is available under
conventional programs. These problems are self-adapting; a
child can choose his own problem and push it as far as he
pleases, there being almost no limit to the scope of computer
applicability.

"I think computers in the classroom will continue to open
new vistas in education and increase the probability that children
will learn the one fundamental lesson, that serious thought can
pay off in increased insight into almost any problem."

Conclusions of Project Staff

Mathematical Value

The main result of the research and teaching has been to uncover

an abundance of ideas for teaching, only a fraction of which had

been anticipated at the time we started the project. The experi-

ment showed also that LOGO can be used to express a wide

diversity in teaching styles and modes of presentation

Report No. 1889

Side Effects

Bolt Beranek and Newman Inc.

There are indications that the childrens' work with LOGO directly

contributed other educational and behavioral benefits. There

was evident enhancement in reading rates of some second and third

grade children. Administrators and teachers in the junior high

school stated that behavioral changes in certain of the children

(such as a higher degree of self-confidence, more positive social

attitudes, broadening of intellectual interests, etc.) were

attributable to their experience in the course.

Feasibility

We are not sure about these extra-mathematical benefits. But,

we are sure of the following two points:

It is feasible to teach LOGO to "average" seventh-grade,

and younger, children.

It is feasible, also, to develop and effectively teach

a mathematics curriculum using LOGO as the conceptual

and operational framework.

Problems

The day-to-day work during last year consisted in testing very

Specific ideas intended to achieve these goals. As part of this

work, we identified conceptual gaps in the children, some of

which were surprising in their obviousness once we had recognized

them. Typical examples of such missing concepts are:

Report No. 1889 Bolt Beranek and Newman Inc.

Once

develo

well-s

the absence of any idea like 'syntactic form," despite the

time spent on formal manipulation in the mathematics class-

room and on analyzing the structure of sentences in language

classrooms;

the rareness of the idea of "counter-example" and the

complete absence of any systematic habits of looking for

counter = examples to test ideas;

an inability to go into a "formal mode" of thinking, i.e,

foZZowing quite ZiteraZZy a set of instructions or

definitions;

the absence of an idea of a planning phase of work on a

problem.

these issues are identified, it is relatively easy to

p appropriate teaching materials, modes of presentation,

equericed units, and projects. This is where further work

o go.needs t

-273-

1,'

Report No. 1889 Bolt Beranek and Newman Inc.

APPENDIX: A Description of the LOGO Language and System

1. The LOGO Language

1.1 Things, Operations, Commands, and Names

There are two kinds of LOGO things -- WORDS and SENTENCES.

WORDS

Examples of LOGO WORDS:

"SUN"

"39"

"PFFS!T!220W*?"
r` it

SENTENCES

(an English word)

(a numerical word)

(a nonsense word)

(a special word called the EMPTY word)

A LOGO SENTENCE is a series of LOGO words, separated by

spaces. (LOGO words do not contain spaces.)

Examples:

"GOOD MORNING"

"X + Y = 24.5"

"FLOOCH HUM BUZZ CHORB"

OPERATIONS

LOGO has several elementary (i.e., built-in) OPERATIONS for

manipulating LOGO things. A LOGO operation takes a fixed

number of things (possibly none) as INPUTS and produces a

new thing as an OUTPUT. Examples of" some built-in operations_

FIRST, LAST, BUTFIRST, BUTLAST, WORD and SENTENCE-follow.

-274-

Report No. 1889 Bolt Beranek and Newman Inc.

FIRST

The operation FIRST takes one input, either a word or a

sentence. Its output is the first letter (if the input is

a word), or the first word (if the input is a sentence).

Thus,

FIRST OF "CAT" is "C"

and

FIRST OF "DO RE MI" is "DO".

LAST, BUTFIRST, and BUTLAST

These operations are similar to FIRST, as the following

examples show.

Name212peration Input Output

LAST "CAT"

BUTFIRST "CAT"

BUTLAST "CAT"

LAST "DO RE MI"

BUTFIRST "DO RE MI"

BUTLAST "DO RE MI"

WORD and SENTENCE

"T"

"AT"

"CA"

"MI"

"RE MI"

"DO RE"

These operations take two inputs. Their output is the

concatenation of their inputs. The inputs of WORD must be

LOGO words, not sentences. The output of WORD is a LOGO

word. Thus, WORD OF "DO" AND "RE" is "DORE". The inputs

of SENTENCE can be LOGO words or LOGO sentences. The

output is a LOGO sentence. Thus,

Report No. 1889

Name of Operation Inputs

WORD

SENTENCE

SENTENCE

WORD

Bolt Beranek and Newman Inc.

"TIC" "TAC"

"TIC" "TAC"

"PUT ME" "HERE"

"PUT ME" "HERE"

Output

"TICTAC"

"TIC TAC"

"PUT ME HERE"

(Error Message)

The entire set of elementary, i.e., built-in, operations is

described in Section 1.7.

CHAINING

Operations can be chained together to form composite

operations. Examples:

Chained Operation Output

FIRST OF BUTFIRST OF "CAT"

LAST OF FIRST OF "DO RE MI"

WORD OF BUTLAST OF "CAT" AND LAST OF "X9"

SENTENCE OF WORD OF "A" AND "B" AND "C"

WORD OF "Z" AND SUM OF "1" AND "2"

COMMANDS

"A"

"0"

"CA9"

"AB C"

"Z3"

LOGO has several built-in COMMANDS. Commands have inputs

but, unlike operations, do not make a new LOGO thing, i.e.,

they have no output. They are used for their external

effects or for their side effects.

PRINT is a built-in LOGO command which has one input.

Though it has no output, it has the tangible effect of

causing its input to be printed out by the teletype. Thus,

Report No. 1889

Command

Bolt Beranek and Newman Inc.

Input Printout

PRINT "CAT" CAT

PRINT LAST OF "BOX" X

Other built-in LOGO commands include MAKE which is used to

give names to LOGO things, and TO which is used to define

new LOGO operations and commands. These are described in

later paragraphs of this section.

LITERALS

In the examples above, some words and sentences are enclosed

in quotation marks. This means that we are citing them

literally, to refer to themselves rather than to other LOGO

things. But we also can use LOGO things as names for other

LOGO things.

NAMES

LOGO things can have NAMES. Any LOGO thing (except the

empty word) can be used as a name for any other LOGO thing.

Assume that we have assigned "JANE" as the name of the thing

"GIRL". We now can use "JANE" in two ways - either as a

thing (itself) or as a name (for the thing "GIRL").

To indicate to LOGO that we want to use something as a name

(in order to refer to the thing that it names), we have a

LOGO operation - THING, whose input is a LOGO thing and

whose output is the LOGO thing named by the input. Thus,

with the example above

Report No. 1889 Bolt Beranek and Newman Inc.

Command Printout

PRINT "JANE"

PRINT THING OF "JANE"

JANE

GIRL

A shorthand way of writing THING OF "ANYTHING" is /ANYTHING/.

Thus, the effect of the command PRINT /JANE/ is to cause

the teletype to print GIRL.

NAMING

The LOGO command MAKE is used to construct a LOGO THING and

give it a NAME. The following example shows how a student

could use it to assign "JANE" as the name of "GIRL".

MAKE
NAME: "JANE"
THING: GIRL"

The student's typing is underscored to distinguish it from

LOGO's responses.

More typically, one names a more complex construction, as

follows:

MAKE
NAME: "JIM"
THING: LAST OF BUTLAST OF /JANE/

In this instance, with /JANE/ assigned as above to "GIRL",

/JIM/ would name the THING "R" (since BUTLAST of /JANE/ is

"GIR" and LAST of "GIR" is "R").

Constructing a New Operation

Suppose we want to define an operation which has one input and

-278-

Report No. 1889 .Bolt Beranek and Newman Inc.

whose output is the second letter of its input (if the input is

a word) or the second word (if the input is a sentence). We will

call this new operation SECOND. (We can choose any word not

already being used by LOGO as a procedure name.) The procedure

for performing SECOND is described to LOGO as follows.

TO SECOND /ANYTHING/
1 OUTPUT FIRST OF BUTFIRST OF /ANYTHING/
END

TO is a command that signals the start of a procedure definition.

The name of the procedure we are defining is SECOND. Its input

is /ANYTHING/, which names the LOGO thing we will operate upon.

It has a single instruction line (in general there are several),

labeled 1. The instruction is: OUTPUT the thing expressed by

the chained operation FIRST OF BUTFIRST OF the word (or sentence)

named by /ANYTHING/. END demarcates the end of the procedure

definition.

SECOND is now the procedure name for a procedure which defines a

new operation. To perform this new, user-defined (as distinct

from elementary or built-in) operation, we can give LOGO the

command

PRINT SECOND OF "MAN".

This tells LOGO to perform the operation SECOND on the input

"MAN", i.e., that /ANYTHING/ is now "MAN". LOGO will perform

the instructions in the procedure. It will thus output "A" to

the PRINT command which will cause the teletype to print A.

Report No. 1889 Bolt Beranek and Newman Inc.

1.2 Instructions

The basic unit of a LOGO INSTRUCTION is a LOGO EXPRESSION. An

expression has two parts: (1) a procedure name or the name of an

elementary (built-in) command or operation, followed by (2) a

list of the associated inputs. Some examples of expressions are:

(a) WORD OF "CAT" AND "DOG"

WORD is a built-in LOGO operation that requires two inputs,

in this case "CAT" and "DOG". The output of this expression

is the word "CATDOG".

(b) SECOND OF "APPLE PIE SOUFFLE"

SECOND is a procedure defined by the user which requires one

input, in this case, "APPLE PIE SOUFFLE". Assuming that the

procedure is defined as in the previous section, the output

of the expression would be "PIE".

(c) TIME

TIME is a built-in operation that requires no inputs. The

output of this expression is the current time, for example,

"10:34 AM".

The inputs in expressions may be LOGO NAMES as well as LITERALS.

(d) FIRST OF /CHILDREN/

FIRST is a built-in operation that requires one input. The

input here is not "CHILDREN" but rather the thing that

"CHILDREN" names. Thus, if "CHILDREN" is the name for the

LOGO sentence "BOYS AND GIRLS", the output of the expression

is "BOYS".

280

Report No. 1889 Bolt Beranek and Newman Inc.

The inputs in expressions may themselves be expressions.

(e) FIRST OF BUTFIRST OF "ABCD"

Here the input of the operation FIRST is the output of the

expression BUTFIRST OF "ABCD", that is "BCD". So the output

of the whole expression is the same as the output of FIRST

OF "BCD", that is "B".

Commands are expressions. For example,

(f) PRINT OF "ABC"

This expression has no output but it causes ABC to be

printed by the teletype.

(g) PRINT OF FIRST OF "ABC"

Ir this expression, PRINT has, as its input, the output of

FIRST OF "ABC", that is "A". The effect is to cause A to

be printed by the teletype.

On the other hand, the form

(h) FIRST OF PRINT OF "ABC"

is not a legal expression because FIRST requires an input

but the expression PRINT OF "ABC" has no output.

In writing expressions, the words OF and AND are optional. The

expressions PRINT WORD "CAT" "DOG", PRINT OF WORD OF "CAT" AND

"DOG", and PRINT WORD OF "CAT" AND "DOG" all have the same

meaning.

Report No. 1889 Bolt Beranek and Newman Inc.

1.3 Procedures

Several LOGO instructions can be put together to form a PROCEDURE.

This is accomplished using the instruction TO. (The student's

typing is underscored to distinguish it from the computer's.)

+TO GREET /NAME/
>10 PRINT SENTENCE OF "HELLO " AND /NAME/
>20 PRINT "I HOPE YOU'RE WELL."
>END
GREET DEFINED

+GREET "DICK"
HELLO, DICK
I HOPE YOU'RE WELL.

The instruction in first line of the example, TO GREET /NAME/

does several things. The word TO tells the computer that we are

about to define a procedure. The next word GREET is the name of

the procedure. Following this is the list of input names for

the procedure, in this case only one. (If we had wanted a two-

input procedure, like WORD, the first line might have been TO

GREET /WHO/ AND /WHERE/. Any number of inputs is permitted

including none.) The names appearing in the input list are used

in subsequent instructions to refer to the associated inputs.

After the TO instruction (also called the title line of the

procedure), the computer types > at the beginning of each line

to indicate that it is ready for the type-in of the next line of

the procedure being 'defined. At this point any line typed in

preceded by a number (between 1 and 999999 inclusive), as lines

10 and 20 in GREET, will be made part of the procedure definition.

These instructions will subsequently be performed in the numeri-

cal sequence thus indicated. The instructions are not performed

282

Report No. 1889 Bolt Beranek and Newman Inc.

immediately as they are written - they are merely stored as part

of the definition. They can be performed later when the proce-

dure definition has been completed.

Finally, the command END (which has no inputs) completes the

definition of the procedure. The computer types GREET DEFINED.

Now the computer begins lines with an indicating that it is

ready to perform an instruction (possibly a procedure).

GREET may now be used as a LOGO command. The expression GREET

"DICK" (or GREET OF "DICK") causes the computer to pair the

input, "DICK" with the name in the title line of GREET, /NAME/,

and then to carryout the instructions in the body of the

procedure GREET in the numerical order of their line numbers.

There are two ways to change the numerical order of execution

of the instructions in a procedure. The first is by the command

GO TO LINE expression

where the value of expression must be a line number. (Although

the name of this command is a sentence, GO TO LINE, it is a

single entity of the same kind as commands whose names are

single words.) The effect of this command is shown in the

following example.

÷TO SHOWGOTOLINE /X/
>1 7-015 LINE /X/
>20 PRINT "1n
>30 PRINT "2"
>40 PRINT "3"
>50 PRINT "4"
>END
SHOWGOTOLINE DEFINED
>SHOWGOTOLINE "50"
4

>SHOWGOTOLINE
2

3

4

"30"

-283-

Report No. 1889 Bolt Beranek and Newman Inc.

+SHOWGOTOLINE "25"

THERE IS NO LINE 25 (LOGO types out these
I WAS AT LINE 10 IN SHOWGOTOLINE diagnostic comments.)

{- SHOWGOTOLINE "1
(interrupt key pressed here after some time has gone
by with no printout)

I WAS AT LINE 10 IN SHOWGOTOLINE

In the above example SHOWGOTOLINE "l0" caused the computer to do

line 10 over and over again until it was interrupted from the

teletype. A more standard example of the use of GO TO LINE is

as follows.

+TO TWOTIMES
>10 MAKE

NAME: "X"
THING: "1"

>20 PRINT /X/
>30 MAKE

NAME: "X"
THING: SUM OF /X/ AND /X/

>40 GO TO LINE 20
>END
TWOTIMES DEFINED

TWO TIMES
1

2

4

8

16
32
64

(interrupted from teletype)
I WAS AT LINE 20. IN TWOTIMES

The other way of altering the numerical order of execution of the

instructions in a procedure is with the trio of commands TEST,

IF TRUE, and IF FALSE. TEST takes one input, which must be an

operation whose output must be either "TRUE" or "FALSE". (TEST

-284-

Report No. 1889 Bolt Beranek and Newman Inc.

can also take as input the literal words "TRUE" and "FALSE".)

The effect of performing the command TEST expression is to mark

a "truth flag" either true or false, depending on whether the

output of expression is "TRUE" or "FALSE", respectively.

IF TRUE and IF FALSE are somewhat anomalous commands in that

their input can be any instruction, even a command. That

instruction is executed if the truth flag matches the second

word of the IF --- command.

4-TEST "TRUE"
> IF TRUE PRINT "OF COURSE"
OF COURSE
4IF FALSE PRINT "STRANGE"

(No printout occurs since the truth flag is
marked TRUE)

4TO SHOWTEST /X/
> 10 TEST /X/
> 20 IF TRUE PRINT "AXLE"
>30 IF FALSE PRINT "CAKE"
>40 IF TRUE PRINT "SUBWAY"
>END
SHOWTEST DEFINED
4SHOWTEST LAST OF "BLUE TRUE"
AXLE
SUBWAY
4SHOWTEST FIRST OF "FALSE LOVE"
CAKE

The IF commands can be used with GO TO LINE instructions to

provide conditional branching within a procedure. More rroadly,

they can be used to alter the sequence of execution of procedures

within a program comprising many procedures (as in 30 IF TRUE

TARUM 40 IF FALSE TARAY where the condition of the truth flag

determines whether the computer does the procedure TARUM or the

procedure TARAY).

-285-

Report No. 1889 Bolt Beranek and Newman Inc.

TEST is made more useful by a collection of built-in operations

which output either "TRUE" or "FALSE". Operations which can have

only these two values are called predicates. Section 1.7

includes a list of the built-in predicates.

1.4 Defined Operations

It is possible to define new LOGO operations (i.e., procedures

which have an output) by means of the command OUTPUT.

4TO DOUBLE /X/
>10 OUTPUT WORD OF /X/ AND /X/
>END
DOUBLE DEFINED
SPRINT DOUBLE OF "CAT"
CATCAT
SPRINT DOUBLE OF DOUBLE OF "GO"
GOGOGOGO

An apparently equivalent procedure that doesn't have an output is

+TO DUB /X/
>10 PRINT WORD OF /X/ AND /X/
>END
DUB DEFINED
+DUB "CAT"
CATCAT

Notice that it wasn't necessary to say PRINT DUB OF "CAT" since

DUB contains a PRINT command. (The appearance and disappearance

of the OF is purely for euphony. The computer ignores it.) What

if an external PRINT'is used?

+PRINT DUB OF "CAT"
CATCAT

DUB CAN'T BE USED AS AN INPUT. IT DOESN'T HAVE AN OUTPUT.

286

Report No. 1889 Bolt Beranek and Newman Inc.

LOGO complains. The problem is that the external PRINT didn't

get any input because DUB didn't output anything -- DUB is a

command, not an operation. The word "CATCAT" got printed anyway

because that happens before the computer gets to the end of DUB

and discovers that there is no output to transmit to the external

PRINT command.

The same thing happens, giving an obviously wrong answer, when

one writes

+DUB DUB "GO"
GOGO

DUB CAN'T BE USED AS AN INPUT. IT DOESN'T HAVE AN OUTPUT.

Once procedures like DOUBLE or DUB are defined, they are

virtually indistinguishable in their use from the built-in

operations and commands. Thus, in the same way as with the

built-in ones, these too can be used to define other procedures.

+TO TRIPLE /X/
>10 OUTPUT WORD OF /X/ AND DOUBLE OF /X/
>END
TRIPLE DEFINED
+PRINT TRIPLE OF "AB"
ABABAB
+PRINT TRIPLE OF DOUBLE OF "R"
RRP.RRR

1.5 Recursion

In fact, since a defined procedure can be used just like a

built-in procedure, it can even be used in its own definition.

Sometimes this gets nowhere -

-287-

Report No. 1889 Bolt Beranek and Newman Inc.

4TO TYPEALOT
>10 TYPEALOT
>END
TYPEALOT DEFINED
>TYPEALOT

(after a long wait the interrupt key is hit)

I WAS AT LINE 10 IN TYPEALOT

It was silly to expect the computer to have been able to perform

this procedure (to type a lot?) with the instructions we gave.

If it didn't know what TYPEALOT meant before we defined it, it

certainly wouldn't now. But it clearly was doing something when

we said TYPEALOT since the teletype didn't type an <- or an error

message.

When the computer receives the instruction TYPEALOT, it sees

that the instruction names a defined procedure. In order to

perform it, it has to look up the instructions contained in the

procedure definition. The title line shows that no inputs are

needed. Then the next line tells the computer to perform the

procedure TYPEALOT. To do this, the computer must look up the

procedure TYPEALOT and then perform the instructions contained

there. When it does this, it once more finds that it must look

up the procedure TYPEALOT, all over again. And again and again.

And so this goes on forever. (Actually, the LOGO system will

assume that there is an error after it has looked up this proce-

dure about 500 times, and will then cause the computer to stop.)

Of course, it would have been easy to design LOGO so that it

would remember what procedure it was doing and not allow this

situation to occur. It turns out, though, that we would have

deprived ourselves of a very valuable mathematical tool had we

done this.

-288-
4

Report No. 1889 Bolt Beranek and Newman Inc.

The simplest use of the above effect (called recursion because

of the recurrence of the same definition) is to note that if

there had been a line preceding line 10 in the procedure TYPEALOT,

this line would be done over and over again, every time the

procedure is looked up. Let us add a new line, say line 5.

TO TYPEALOT
> 5 PRINT "A LITTLE"
> 10 TYPEALOT
>END
TYPEALOT DEFINED

÷TYPEALOT
A LITTLE
A LITTLE
A LITTLE

(the interrupt key is hit to stop it)
I WAS AT LINE 5 IN TYPEALOT.

The following recursive procedure takes an input and has a

stopping rule.

TO TRIANGLE /ANYWORD/
> 10 TEST EMPTYP OF /ANYWORD/
>T0 IF TRUE STOP
>30 PRINT /ANYWORD/
>1+0 r TRIANGLE BUTFIRST OF /ANYWORD/
>END
TRIANGLE DEFINED

EMPTYP is a built-in predicate operation that outputs "TRUE" if

its input is the empty word and outputs "FALSE" otherwise. STOP

is a built in command to stop this procedure, i.e., to skip the

rest of the instructions in the procedure and go directly to the

end.

-289-

0. 11

Report No. 1889 Bolt Beranek and Newman Inc.

+TRIANGLE "" (trying TRIANGLE with the empty word as the input)
(nothing printed out but the program stopped)

-TRIANGLE "ABCDE"
ABCDE
BCDE
CDE
DE
E
4-

In the second example, the definition of TRIANGLE was looked up

six times. The first five times the input was not the empty word,

so the STOP command was skipped. The computer then typed the

input and looked up TRIANGLE again, but this time with a smaller

input (the butfirst of the previous one). Finally, the input

was the empty word. For that input TRIANGLE skips lines 30 and

40 (so nothing is typed and the procedure is not looked up again)

and it stops.

A well known example of this type of definition in arithmetic is

the one for factorial:

n! =1 if n=1, otherwise n!=n. (n-1)!

This can be transcribed directly to LOGO.

+TO FACTORIAL /N/
>10 TEST IS /N/ "1"
>20 IF TRUE OUTPUT "1"
>3 IF FALSE OUTPUT PRODUCT OF IN/ AND FACTORIAL OF

DIFFERENCE OF /N/ AND "1"
>END
FACTORIAL DEFINED

IS is a built-in predicate that outputs "TRUE" if its two inputs

are expressions for the same thing and "FALSE" otherwise. Line

30 is rather long but not too hard to read if one uses parentheses

PRODUCT OF (/N /) AND (FACTORIAL OF [DIFFERENCE OF /N/ AND "1"]).

-290-

Report No. 1889 Bolt Beranek and Newman Inc.

DIFFERENCE OF /N/ AND "1" is just n-1.

PRODUCT isn't a built-in operation so this FACTORIAL procedure

will not actually work until we also write a procedure PRODUCT.

Finally, it is not necessary to prefix the instruction in line

30 with the command IF FALSE, since the OUTPUT command incorpo-

rates the actions of the STOP command and, if line 20 is

executed, the OUTPUT command there will skip to the end of the

procedure.

Here is a PRODUCT procedure based on Peano's definition of

multiplication.

TO PRODUCT /X/ AND /Y/
>10 TEST IS /X/ "1"
>20 IF TRUE OUTPUT /Y/
>30 IF FALSE OUTPUT SUM OF C/Y/) AND (PRODUCT OF

.[DIFFERENCE OF /X/ AND "1 "] AND /Y/)
>END
PRODUCT DEFINED
+PRINT PRODUCT "3" AND "12"
36
+PRINT FACTORIAL "5"
120

1.6 Local and Global Names

In LOGO everything except the empty word is the name of something.

Until they are otherwise assigned, almost all LOGO things name

the empty word.

+PRINT /SOMETHING/
(The computer prints the empty word by skipping a line.)

+PRINT /ANY OTHER THING/

+PRINT /A/

Report No. 1889

+PRINT 1/

THE EMPTY WORD CANNOT BE A NAME.

÷

Bolt Beranek and Newman Inc.

The few exceptions, which don't initially name the empty word,

are built-in LOGO names for special things such as the teletype

bell, the blank character, etc. These are listed in Part 3.

Names may have their things changed in two ways. The most direct

way is by means of the instruction MAKE.

+MAKE
NAME: "ALPHA"
THING: "BETTY"

+PRINT /ALPHA/
BETTY

The text following the words NAME: and THING: may be anything

that has an output, that is a literal (like "ALPHA"), a name

(like /JKS/), or an operation with its inputs.

+MAKE
NAME: /ALPHA/
THING: "SAPLE"

+PRINT /BETTY/
SAPLE
+

The name here is /ALPHA/, that is the LOGO thing "BETTY".

+MAKE
NAME: SENTENCE OF "DOT" AND /ALPHA/
THING: BUTFIRST OF /BETTY/

+PRINT /DOT BETTY/
APLE

Here the name of SENTENCE OF "DOT" AND /ALPHA/ which is "DOT

BETTY" and the thing it names is BUTFIRST OF /BETTY/, "APLE".

Report No. 1889 Bolt Beranek and Newman Inc.

The instruction LIST ALL NAMES causes all names with non-empty

things to be listed.

+LIST ALL NAMES
/ALPHA/ IS "BETTY"
/BETTY/ IS "SAPLE"
/DOT BETTY/ IS "APLE"

-4-

Just as the OF and AND in most instructions are optional, the

carriage returns after the command MAKE and before the label

THING are optional. The instruction in the form

+MAKE (carriage return)
NAME: "BB" (carriage return)
THING: "CABF" (carriage return)

can also be written with the two inputs on one line. Thus:

+MAKE "BB" "CABF" (carriage return)

The computer doesn't type out NAME: and THING: in this form so

it is a little faster to type in.

The slow form is useful in emphasizing the relation between

NAME and THING during the early stages of teaching, however.

The other method of changing names is by specifying inputs in

procedures.

+TO SHOW /X/
>10 PRINT "NOW I AM GOING TO PRINT /X/"
>20 PRINT /X/
>END
>SHOW "CATS"
NOW I AM GOING TO PRINT /X/
CATS

While the procedure SHOW is running, /X/ stands for "CATS".

When it stops, however, the old THING OF "X" is restored. Thus,

-293-

Report No. 1889 Bolt Beranek and Newman Inc.

+PRINT /X/
(the empty word)

-4-MAKE

NAME: "X"
THING: "OLD THING"

-PRINT /X/
OLD THING
+SHOW "DOGS"
NOW I AM GOING TO PRINT /X/
DOGS
+PRINT /X/
OLD THING
4

A name which is in force only during the running time of some
procedure is called local to that procedure. A name that isn't
local to any procedure is called global. In the example above,
/X/ ("OLD THING") was global, while /X/ ("DOGS") was local to
SHOW. While a local /X/ is in force (i.e., while the procedure
for which it is local is running), all references to /X/ as a
name refer to the local name.

+TO WORRY /X/
>10 PRINT /X/
>30 PRINT THING OF "X"
>40 MAKE

NAME: "x".

THING: WORD OF "CAT" AND /X/
>50 PRINT /X/
>END
WORRY DEFINED
+PRINT /X/
OLD THING
+WORRY "PIPE"
PIPE
PIPE
CATPIPE
+PRINT /X/
OLD THING
+

One reason for this somewhat complicated situation is that it

permits the student to forget about the choice of names inside

-294-

Report No. 1889 Bolt Beranek and Newman Inc.

of procedures that he has written. For example, suppose the

student had written a procedure to output the product of two

numbers and it had a title line TO PRODUCT /X/ AND /Y/. Then,

sometime later he wrote another program, called TO QUADRATIC /X/,

for computing (X+1)X+3X, which uses the procedure PRODUCT in its

definition.

1-TO QUADRATIC /X/
>10 MAKE

NAME: "FIRST TERM"
THING: PRODUCT OF (SUM OF /X/ AND "1") AND /X/

>20 MAKE
NAME: "SECOND TERM"
THING: PRODUCT OF "3" AND /X/

>30 OUTPUT SUM OF /FIRST TERM/ AND /SECOND TERM/
>END
QUADRATIC DEFINED
-PRINT QUADRATIC OF "4"
32

Notice that /X/ becomes "4" on entering QUADRATIC. In line 10

however PRODUCT OF "5" AND "4" is evaluated and so PRODUCT is

run. But that causes /X/ to become "5" while PRODUCT is running.

When PRODUCT is finished, however, we come back to QUADRATIC,

now at line 20 and see another reference to /X/, meaning the /X/

of QUADRATIC ("4"). And, indeed, this is the way things work

because the /X/ in PRODUCT is local to that procedure and dis-

appears when PRODUCT is finished, leaving the /X/ of QUADRATIC

in force.

In this case the problem could have been gotten around simply by

using different input names for all procedures, a possible, if

awkward, maneuver. There is an important case where that won't

work, though, and that is in recursive procedures. There, since

the procedure being called is the same procedure as the one being

run, the input names are, of course, identical. Here is an

-295-

Report No. 1889 Bolt Beranek and Newman Inc.

example of a recursive procedure that doesn't work properly

because some global names are treated as though they were local.

+TO REVERSE /X/
> 10 TEST EMPTYP OF /X/
> 2 IF TRUE OUTPUT /EMPTY/
> 30 MAKE

NAME: "NEW BEGINNING"
THING: LAST OF /X/

>40 MAKE
NAME: "NEW END"
THING: REVERSE OF BUTLAST OF /X/

> 5 OUTPUT WORD OF /NEW BEGINNING/ AND /NEW END/
>END
REVERSE DEFINED
+PRINT REVERSE OF "CAT"
TTT

The problem here is at line 30 and at line 40. /NEW BEGINNING/

isn't an input to REVERSE, so it isn't local. Therefore, its

thing will change on subsequent calls of REVERSE. The computer

does not save the things of global names in each round - it only

does that for local names. (The same is true for /NEW END/

though in this procedure that doesn't affect the result --

nothing that might change /NEW END/, such as a call to REVERSE,

happens after line 40 where /NEW END/ is set.) At line 40

another REVERSE is called. In executing this REVERSE procedure,

/NEW BEGINNING/ will change. REVERSE procedures can, of course,

be written to avoid this problem. But this REVERSE procedure

can easily be repaired by making /NEW BEGINNING/ local to it.

There is a command, LOCAL, to do this. LOCAL takes one input,

the name that is to be made local to the procedure.

+TO REVERSE /X/
>5 LOCAL "NEW BEGINNING"
> 10 TEST EMPTYP OF /X/

(same as before)

>END
REVERSE DEFINED
+PRINT REVERSE OF "CAT"
TAC

ti

-296-

k

Report No. 1889 Bolt Beranek and Newman Inc.

1.7 List of Elementary Operations

1. FIRST (one input)

Its output is the first word of a sentence or the first

letter of a word.

FIRST OF "AB12X!" is "A"

FIRST OF "MOX SED PEAX" is "MOX"

2. LAST (one input)

Its output is the last word of a sentence or the last letter

of a word; analogous to FIRST.

3. BUTFIRST (one input)

Its output is all but the first word of a sentence or all

but the first letter of a word.

BUTFIRST OF "AB12X!" is "B12X!"

BUTFIRST OF "MOX SED PEAX" is "SED PEAX"

There is one tricky point here. BUTFIRST of a two-word sentence

is the last word of the sentence. It is a one-word sentence,

however, not a word. This can be observed in the expression

FIRST OF BUTFIRST OF "THE DOG" which has as its output the word

"DOG" since that is the first word of the one-word sentence "DOG"

that is the output of BUTFIRST OF "THE DOG". Continuing further,

the output of FIRST OF FIRST OF BUTFIRST OF "THE DOG" is the

word "D". In practice the output type (word or sentence) almost

always works out as the user expects.

4. BUTLAST (one input)

Analogous to BUTFIRST.

(It is worth noting that the output of BUTFIRST or BUTLAST is the

same type (word or sentence) as its input. On the other hand,

the output of FIRST or LAST is always a word.)

-297-

Report No. 1889 Bolt Beranek and Newman Inc.

5. WORD (two inputs)

Both inputs must be words. The output of the expression is

a new word made by concatenating the two inputs.

WORD OF "MO" AND "ZART" is "MOZART".

6. SENTENCE (two inputs)

Analogous to WORD. Here the inputs may be either words or

sentences and the value is a sentence.

SENTENCE OF "MO" AND "ZART" is "MO ZART"

SENTENCE OF "AB" AND "CD EF" is "AB CD EF"

SENTENCE OF "" AND "APPLE" is "APPLE"

In the last example the output is a one-word sentence again.

7. COUNT (one input)

The output of the expression is the number of letters in

the input if it is a word or the number of wordsif it is a

sentence.

COUNT OF "ABC" is "3"

COUNT OF "THE CAT IN THE HAT" is "5"

COUNT OF "" is "0"

8. SUM (two inputs)

Both inputs must be numbers (i.e., words consisting only of

digits preceded by an optional + or - sign). The output of the

expression is the signed sum of the two inputs, prefixed by a -

sign if the sum is negative.

SUM OF "-5" AND "3" is "-2"

SUM OF "5" AND "-2" is "3"

_Report No. 1889 Bolt Beranek and Newman Inc.

9. DIFFERENCE (two inputs)

Analogous to SUM. The output is the result of subtracting

the second input from the first.

DIFFERENCE OF "3" AND "-5" is "8"

10. MAXIMUM (two inputs)

Analogous to SUM. The output is the larger of the two inputs.

MAXIMUM OF 2 AND 4 is 4.

Integers do not need to be quoted in LOGO.

11. MINIMUM (two inputs)

Analogous to SUM. The output is the smaller of the two

inputs.

12. RANDOM (no inputs)

The output is a digit between 0 and 9 generated in a pseudo-

random manner. Larger pseudo-random numbers are generated by

concatenation. Thus,

WORD OF RANDOM AND RANDOM, yields a random number between

00 and 99.

13. DATE (no inputs)

The output is the current date, a word representing month,

day, year. For example,"10/31/1969".

14. TIME (no inputs)

The output is the current time, a sentence like "1:32 AM".

15. CLOCK (no inputs)

The output is a number giving the number of seconds elapsed

since an internal clock was reset.

299

Report No. 1889 Bolt Beranek and Newman Inc.

+RESET CLOCK

(some work taking about half an hour)

+PRINT CLOCK
1836
+PRINT CLOCK
1838

16. REQUEST (no inputs)

When the computer evaluates the expression REQUEST, it

pauses to allow the user to type in something (often a requested

answer to a question) at the teletype. When the typing is

completed (as indicated when the user types a carriage return),

the output of the expression is the typed-in text. The following

procedure shows the use of REQUEST.

a-TO _COPYCAT
>10 PRINT "TELL ME SOMETHING."
>20 PRINT REQUEST
>30 COPYCAT
>END
COPYCAT DEFINED
4-

COPYCAT
TELL ME SOMETHING.
*WHO ARE YOU
WHO ARE YOU?
TELL ME SOMETHING.
*WHY SHOULD I?,
WHY SHOULD I?
TELL ME SOMETHING.
*ARE YOU SOME KIND OF NUT
ARE YOU SOME KIND OF NUT
TELL ME SOMETHING.
*

The asterisk (*) is typed by the REQUEST command to indicate to

the user that the computer is waiting for his typing.

-300-

Report No. 1889 Bolt Beranek and Newman Inc.

17. ASK (one input)

This is similar to REQUEST except that there is an input -
the maximum number of seconds the computer should waitfor type-in
to be completed. If time runs out, the output of the expression
is the empty word.

18. THING (one input)

The output of this expression is the thing named by the input.
THING OF "X" is exactly the same as /X/. The utility of THING
lies in expressions like THING OF /X/ (the analogous //X// is

illegal) and THING OF WORD OF /X/ AND /Y/.

The following are all predicates; i.e., they output TRUE or FALSE.

19. IS (two inputs)

This is the most general of the built-in predicates. Most
others could be built out of it. The output of the expression is
"TRUE" if the things expressed by the two inputs are identical,
letter for letter; otherwise its output is "FALSE".

IS "CAT" "CAT" is "TRUE"

IS 03 3 is "FALSE"

IS LAST OF 03 FIRST OF 3 is "TRUE"

20. EMPTYP (one input)

Its output is "TRUE" if the input is the empty word. It is
"FALSE" otherwise.

EMPTYP OF /X/ has the same effect as

IS /X/ " or

IS /X/ /EMPTY/

Report No. 1889 Bolt Beranek and Newman Inc.

21. ZEROP (one input)

The input must express a number, otherwise there is an error.

If the input is equal to 0 (+0, -0, 00, etc.), the output of the

expression is "TRUE". If the input is a non-zero number, the

output of the expression is "FALSE".

22. WORDP (one input)

WORDP outputs "TRUE" if its input is a word (not a sentence).

It outputs "FALSE" otherwise.

23. SENTENCEP (one input)

Like WORDP, except it outputs "TRUE" if the input is a

sentence. SENTENCEP and WORDP both output "TRUE" for the empty

word. For any other input their outputs are opposite.

24. NUMBERP (one input)

NUMBERP outputs "TRUE" if its input is a number in standard

form (that is, 123, +17, -000 give "TRUE", while A37, 7+8, ++3,

7.5 give "FALSE"). NUMBERP outputs "TRUE" for precisely those

things which are legal inputs for SUM, DIFFERENCE, ZEROP,

GREATERP, MAXIMUM, and MINIMUM.

25. GREATERP (two inputs)

The inputs must be numbers. GREATERP outputs "TRUE" if the

first input is larger than the second. It outputs "FALSE" if

the first is less than or equal to the second.

Report No. 1889

1.8 List of Elementary Commands

Bolt Beranek and Newman Inc.

1. TO

This command indicates the beginning of a procedure defini-

tion. Immediately following the TO on the same instruction line

is the name of the procedure being defined (this must be a word,

not a sentence) and the names of its inputs, if it has any.

2. END (no inputs)

This indicates the completion of a procedure definition.

3. OUTPUT (one input)

This command causes a procedure to output the LOGO word or

sentence specified in its input. It can only be used within the

definition of a procedure. When the procedure is running and the

OUTPUT command is encountered, its input becomes the output of

the procedure. The procedure then stops and LOGO proceeds with

its program by running the instruction that called this

procedure.

4. STOP (no input)

Like the command OUTPUT, STOP causes a procedure to stop

(but without causing it to output). Again, as with OUTPUT, the

program then goes on with the instruction that invoked this

procedure.

5. GO TO LINE (one input)

Only used within the definition of a procedure. The input

must be the number of a line in that procedure (or an operation

whose output is such a number). When the procedure runs, execu-

tion of the GO TO LINE command causes the computer to execute

-303-

Report No. 1889 Bolt Beranek and Newman Inc.

its next instructions in numerical sequence beginning with the

line referred to in the command's input (instead of continuing
in its current numerical sequence).

6. LOCAL (one input)

Only used within a procedure definition. The command causes

its input to become a local name as in the case with procedure

inputs. (See Section 1.6 for detailed discussion.)

7. TEST (one input)

The input must either be one of the two words "TRUE" or

"FALSE" or an operation which outputs one of them. The result

of the command is to set the "truth flag" either to true or

false. The "truth flag" is automatically local to every proce-

dure and is initially set to true.

8. IF TRUE (one input)

Here the input may be a command or an operation. The status

of the truth flag is tested and the input is executed if the flag
is true.

9. IF FALSE (one input)

Like IF TRUE, except that its input is executed if the flag
is false.

10. GOODBYE (no inputs)

Disconnects the student from the computer and turns off his

teletype.

11. PRINT (one input)

Causes the input to be typed on the teletype followed by a

carriage return - line feed.

-304-

Report No. 1889 Bolt Beranek and Newman Inc.

12. TYPE (one input)

Like PRINT but without the final carriage return - line feed.

TYPE facilitates the typing of a series of printouts on a single

line.

13. MAKE (two inputs)

The first input becomes the name of the second input, as

discussed in detail in Section 1.6.

14. DO (one input)

The input must be a LOGO instruction. The DO command causes

this instruction to be executed.

15. RESET CLOCK (no inputs)

Causes a special LOGO one-second counter, CLOCK, to be reset

to zero. CLOCK is started off at zero when a user starts up LOGO.

It is incremented automatically.

16. WAIT (one input)

The input must be a number. The command causes the computer

to pause that number of seconds. Pauses of more than 24 hours

are illegal.

Report No. 1889 Bolt Beranek and Newman Inc.

2. The LOGO S stem

We distinguish the LOGO system from the LOGO language as follows.

The language consists of all those things (the operations,

commands, names, etc., and the rules governing their relations

and usage) necessary to express an executable LOGO program. The

system consists of those additional things - features and

facilities - that aid a user in his programming work at the

computer terminal. These have to do mainly with program manipu-

lation and debugging capabilities such as listing, editing,

storing, and retrieving.

2.1 Editing

After a procedure has been defined and run, it often becomes

necessary to make some changes in its definition. This can be

done using the command EDIT. To illustrate the use of EDIT,

consider the following definition of the procedure REVERSE.

+TO REVERSE /Y/
>10 TEST EMPTYP OF /X/
>20 OUTPUT WORD OF LAST OF /X/ AND REVERS OF BUTLAST OF /X/
>END
REVERSE DEFINED

There are three errors in this definition. First, a line is

needed between 10 and 20 telling what to do if /X/ is the empty

word. That can be fixed by the following instructions.

+EDIT REVERSE
>15 IF TRUE OUTPUT /EMPTY/

Report No. 1889 Bolt Beranek and Newman Inc.

The first instruction, using the EDIT command, tells LOGO that

the definition of REVERSE will be modified. The second instruc-

tion defines a new line in the procedure. This line is inserted

as number 15 between lines 10 and 20. (Here you see our reason

for generally numbering lines 10, 20, 30, ... instead of 1, 2,

3, ... - to leave room for subsequent insertions.)

The second error is a bug in the title line. There the input is

referred to as /Y/ but elsewhere in the procedure as /X/. The

title line is changed as follows.

>TITLE TO REVERSE /X/
>

Last, in line 20 REVERSE is spelled without the final E. We

can correct this by simply retyping the line.

>20 OUTPUT WORD OF LAST OF /X/ AND REVERSE OF BUTLAST OF /X/

Now we have finished fixing the procedure, so we type END.

>END
REVERSE DEFINED

After LOGO acknowledges the redefinition of REVERSE, we can try

out the modified procedure.

+PRINT REVERSE OF "PITH"
HTIP
+

There is a useful feature which could have reduced our work in

correcting line 20. The command EDIT LINE (one input) tells LOGO

that the user wants to make changes in the line specified. In

order to avoid retyping of correct words in the old line being

corrected, the computer recognizes the key NC (indicating the

joint striking of the control key and the letter N key on the

-307-

!,

Report No. 1889 Bolt Beranek and Newman Inc.

teletype) as representing "the next word in the old line". Each

time N
c

is struck, it causes the next word of the old line to be

typed. Thus, in our example (the user's typing is underscored):

>EDIT LINE 20
>TTRcOUTPUT NCWORD NcOF NcLAST NcOF Nc/X/ NcAND NcREVERS\E

R OF BUTLAST OF /X/

(Since NC and Rc don't type out anything on the teletype, the

above line looks readable.) The R c (standing for the rest or

remainder of the old line) indicates to LOGO that it is to pro-

vide enough Nc's to finish the line. The backslash (\) before

the E is used to erase the space the computer typed after REVERS.

(In general, the backslash character \ erases the preceding

character, \\ erases the two preceding characters, and so on.)

We erases the preceding word (back to the first space) and types

a \ for every character it erases. Backslash and We work during

all typing, not just during editing.

2.2 Abbreviating

To reduce the user's typing, the computer recognizes short forms

for most commands. These are called abbreviations.

S OF "CAT" AND "DOG"
CAT DOG

P is the abbreviation for PRINT and S for SENTENCE. The long

forms are substituted internally for the abbreviations as soon

as the abbreviations are typed in. Thus, if you were to type in

a procedure definition using abbreviations and then list it, the

computer would type it back to you in expanded form.

-308-

Report No. 1889 Bolt Beranek and Newman Inc.

Also, text included between quotation marks or slashes is not

interpreted as an abbreviation. Thus,

+P "P P P S"
PPPS
+

The student can make his own abbreviations with the command

ABBREVIATE (two inputs). The first input can be any LOGO thing.

The second must be a word which will become the abbreviation.

+ABBREVIATE "PRINT SUM" "+"
+ "3" "5"

8

2.3 Listing and Erasing

The command LIST causes the computer to type out, in standard

format, the entity or entities specified by its input. The

command has several forms.

1. LIST (one input)

The input here must be a procedure name. The computer types the

definition of the procedure.

+LIST REVERSE

TO REVERSE /X/
10 TEST EMPTYP /X/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT WORD OF LAST OF /X/ AND REVERSE OF BUTLAST OF /X/
END

309

Report No. 1889 Bolt Beranek and Newman Inc.

2. LIST ALL PROCEDURES

The computer lists all the procedure definitions currently in

the student's workspace (see Section 2.5).

3. LIST CONTENTS

Lists the title line of every defined procedure currently in the

student's workspace.

+LIST CONTENTS

TO REVERSE /X/
TO PRODUCT /X/ AND /Y/
TO FACTORIAL IN/

4. LIST ALL NAMES

All names whose things are not the empty word are listed.

+LIST ALL NAMES

/X/ IS "OLD THING"
/CAT/ IS "HOTDOG"
/N/ IS "15"

5. LIST ALL ABBREVIATIONS

All student-defined abbreviations are listed.

+LIST ALL ABBREVIATIONS

R: REVERSE
PR: PRODUCT
!: FACTORIAL
+: PRINT SUM

Report No. 1889 Bolt Beranek and Newman Inc.

6. LIST ALL

All procedures, all names, and all abbreviations are listed.

The following two list instructions have meaning only while a

procedure is being defined or edited.

7. LIST TITLE

The title line of the procedure is listed.

8. LIST LINE (one input)

The input must be a number. That line is listed.

The command ERASE provides a means of removing material from the

computer's memory. The forms of the ERASE command are similar

to those for LIST.

1. ERASE (one input)

The input must be a procedure name, as with LIST. That

procedure definition is erased.

2. ERASE ALL PROCEDURES

All procedure definitions currently in the student's workspace

are erased.

Report No. 1889 Bolt Beranek and Newman Inc;

3. ERASE ALL NAMES

All names are given empty things.

4. ERASE ALL ABBREVIATIONS

All abbreviations are forgotten.

5. ERASE ABBREVIATION (one input)

Just that specific abbreviation is erased.

+ERASE ABBREVIATION "+"

+ would no longer be an abbreviation for PRINT SUM.

6. ERASE ALL

The computer is restored to its initial state, as it was when

the student first entered.

The following instruction is used only while defining or editing

a procedure.

7. ERASE LINE (one input)

The input must be a number. The indicated line is deleted from

the procedure definition.

Two special commands indirectly involve listing. The command

BURY makes a procedure unlistable. This command can only be

used by a teacher (the computer recognizes a teacher by his

-312-

Report No. 1889 Bolt Beranek and Newman Inc.

password). It has proved useful in presenting assignments. The

teacher writes a procedure, buries it, and then asks the students

to write a procedure that has the same effect as the buried one.

DIGUP (also for use of the teacher only) undoes the effect of

BURY.

2.4 Debugging

The LOGO system has built-in aids to help students find the bugs

in theiiq programs. A bug will have one of two effects. It may

cause the computer to try to execute an illegal instruction or

it may direct the execution of instructions that are legal but

which produce a wrong answer or no answer at all, e.g., it may

put the computer in a loop that never ends.

In the first case, the computer immediately stops doing instruc-

tions and types out a diagnostic message describing the error

and telling where it occurred. (Some typical diagnostic messages

are listed at the end of this section.) Here is an example of

the first kind of bug. Let us define a procedure GREET.

÷TO GREET /X/
>10 PRINT SENTENCE OF "HELLO," AND /X/
>20 PRONT "HOW ARE YOU?"
>30 PRINT "SEE YOU LATER"
>END
GREET DEFINED

Now let's run it.

{-GREET "JOHN"
HELLO, JOHN

PRONT NEEDS A MEANING.
I WAS AT LINE 20 IN GREET

Report No. 1889 Bolt Beranek and Newman Inc.

There was a bug. The diagnostic message tells us what is wrong
and where the error was found. So we fix the bug.

+EDIT GREET
>20 PRINT "HOW ARE YOU"
>END
GREET DEFINED

We try again.

+GREET "JOHN"
HELLO, JOHN
HOW ARE YOU?
SEE YOU LATER

This time GREET works.

When the procedure GREET was being defined, the computer didn't

object when line 20 was typed in, nor should it have. It is

possible that a procedure FRONT might have been written later,

after GREET was defined. And, if the student had defined FRONT,

before running GREET, for example -

+TO PRONT /X/
>10 PRINT /X/
>END
PRONT DEFINED

GREET would have worked perfectly well.

In the above example, the computer's diagnostic message pointed

to the source of the error and thus was directly helpful. Often,

however, we get situations where the illegal instruction isn't

the cause of the error at all. For example, in the course of

running a procedure the computer may say

DIFFERENCE OF "AB" AND "1"? INPUTS MUST BE NUMBERS.

I WAS AT LINE 30 OF PRODUCT.

-314-

Report No. 1889 Bolt Beranek and Newman Inc.

And when we look at PRODUCT we see something like

30 OUTPUT SUM OF /X/ AND PRODUCT OF /X/ AND DIFFERENCE OF
/Y/ AND "1"

The error is that somehow /Y/ must have become "AB" instead of a

number. But, the location of the error isn't line 30. /Y/ is

being set up incorrectly somewhere else. This type of error

then is really like the second kind mentioned above. The

computer gets past it without performing an illegal instruction

but it produces a result which shows up as faulty later when the

computer is performing another instruction, perhaps in a differ-
ent procedure. In this case the diagnostic is less helpful and

more work must be done to find the error.

The most powerful method for pinpointing errors of this sort is

to plant, at strategic spots in the procedures, lines of the form

PRINT SENTENCE OF "AT LINE --- IN PROCEDURE --- /Y/ IS" AND /Y/

with the blanks filled in appropriately. Now, when the procedures

run, they will leave a trace showing the things of "Y" and how

they change. Using this trace, it is easy to see where /Y/ goes
wrong. After the bug is fixed, the tracing lines can be erased.

To reduce the editing work required to put in and subsequently

remove tracing lines, the LOGO system has the built-in facility

of tracing title lines and output lines. The operation of the

TRACE command is illustrated in the following example, another

REVERSE procedure.

+TO REVERSE /X/ AND /Y/ (/Y/ should start as the empty word)
>10- TEST EMPTYP /X/
>17-IF TRUE OUTPUT /Y/
>37OUTPUT REVERSE OF BUTLAST OF /X/ AND WORD OF /Y/ AND

LAST OF /X/
>END
REVERSE DEFINED

This is a correct procedure.

-315-

4

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT REVERSE OF "CAT" AND ""
TAC

This is how we put a TRACE on it.

#TRACE REVERSE

This is what happens when we run a traced procedure.

PRINT REVERSE OF "CAT" AND ""
REVERSE OF "CAT" AND ""

REVERSE OF "CA" AND "T"
REVERSE OF "C" AND "TA"

REVERSE OF "" AND "TAC"
REVERSE OUTPUTS "TAC"

REVERSE OUTPUTS "TAC"
REVERSE OUTPUTS "TAC"

REVERSE OUTPUTS "TAC"
TAC

To remove the TRACE on REVERSE we simply write

{-ERASE TRACE REVERSE
÷

The LOGO commands TRACE ALL PROCEDURES and ERASE ALL TRACES are

useful with programs involving several procedures, and particu-

larly with recursively chained procedures.

Diagnostic Messages

There are about 100 diagnostic messages. The following are some

typical ones.

THAT ISN'T YOUR FILE.
MEANINGLESS CHARACTER.
IF WHAT? (IF TRUE OR IF FALSE ONLY).
YOU NEED / MARKS AROUND EACH INPUT.
THE TITLE MUST BEGIN WITH TO.
END WHAT? YOU'RE NOT DEFINING ANYTHING.
GO WHERE?
LIST WHAT?

-316-

Report No. 1889 Bolt Beranek and Newman Inc.

ERASE WHAT?
YOU CAN'T TRACE BUILT-IN OPERATIONS.
DON'T USE THE EMPTY WORD FOR A NAME.
THE INPUTS TO WORD MAY NOT BE SENTENCES.
ILLEGAL COMMAND.
THE INPUT TO TEST MUST BE A PREDICATE.
YOU FORGOT THE LINE NUMBER.

The following four comments mean that the number of inputs found

on the line and the number needed didn't match.

chosen depends on the particular parsing error.

SOMETHING EXTRA
SOMETHING MISSING
SOMETHING EXTRA IN A NAME
SOMETHING EXTRA IN A THING

The exact comment

(with the MAKE command)
It 11

In the following diagnostics, the underscored words are filled

in appropriately by LOGO when the error occurs. The words given

here are typical examples.

MATCHING "? (or or C or
PRONT NEEDS A MEANING.
TRUMP ISN'T COMPLETELY DEFINED.
THERE IS NO LINE 1A.
SUM OF "A" AND "5"? INPUTS MUST BE NUMBERS.

(Similar comments for DIFFERENCE, MAXIMUM,
ZEROP, ASK, and WAIT)

TEST IS USED BY LOGO. CHOOSE
(The student can't define

OF ISN'T A PROCEDURE.
THERE ISN'T ANY FILE GRANT
ANAGRAM ISN'T IN THAT FILE.
REVERSE ISN'T TRACED.
REVERSE IS ALREADY TRACED.
REVERSE IS ALREADY DEFINED.
YOU'RE ALREADY DEFINING REVERSE.
YOU'RE ALREADY EDITING REVERSE.
REVERSE STOPPED WITHOUT AN OUTPUT. IT CAN'T BE USED AS AN INPUT.

)

(END command not yet given.)

MINIMUM, GREATERP,

ANOTHER PROCEDURE NAME.
a procedure called TEST)

The comment I AM IN TROUBLE. TELL YOUR TEACHER

computer failure.

-317-

indicates a

Report No. 1889 Bolt Beranek and Newman Inc.

2.5 Filing

An important aspect of writing programs in LOGO is building com-

plex programs from simpler ones. For example, assume a MULTIPLY

procedure has been written. Sometime later the student may write

a FACTORIAL procedure using the MULTIPLY. Then, perhaps, a

PROBABILITY procedure using FACTORIAL and other procedures.

Finally, PROBABILITY might end up in some game-playing strategy

program.

LOGO contains a facility for filing away procedure definitions.

The basic unit of a LOGO file is an entry. This is like a single

file folder and may contain procedure definitions, names, and

abbreviations. In a well organized file, each entry contains a

related group of procedures, names, and abbreviations (for

example, those that are used for playing NIM, or those used in

solving linear equations).

An entry has a name which consists of two words. The first word

is the file name and is common to all the entries in a file (it

is often the name of the student who owns the file). The second

word usually describes the entry and distinguishes it from other

entries in the same file. Examples of names are JIM EQUATIONS,

NANCY RANDOMSENT, SCOTT NIM.

An entry is created by the command SAVE. The entry contains

everything that would be listed by LIST ALL, that is, all proce-

dures, all names, and all abbreviations made by the student

during this session. This material, comprising everything in

his active area of the computer's memory, is called the student's

workspace.

-.318-

Report No. 1889 Bolt Beranek and Newman Inc.

+SAVE GRANT ARITH (GENERAL ARITHMETIC FUNCTION)
-4-

In the example above the entry GRANT ARITH would be created (if
GRANT ARITH already existed, the old entry would be erased and
replaced by the new one). The entire workspace would be copied
into the entry. There would then be two copies of the workspace,
one in the entry and one still actively in the computer where
the student is using it. The active copy is erased when the
student gives the command GOODBYE.

The parenthesized text "GENERAL ARITHMETIC FUNCTION" is saved
with the entry as a comment.

+LIST FILE GRANT

ARITH (GENERAL ARITHMETIC FUNCTION 9:44 AM 10/1/1969)
REVERSE (WRITES ITS OWN PROCEDURES 3:37 PM 9/8/1969)
BINTEST (ADDTEST AND MULTEST IN BINARY 2:37 PM 8/2L/1969)
4-

Also in the comment is the time and date that the entry was saved.
Indeed, if no comment is given, as in the following case,

-SAVE GRANT SQUARE -ROOT
+

a comment containing only the time and date of saving is con-

structed and saved with the entry.

To retrieve an entry from a file, the command GET is used.

+GET GRANT ARITH
(GENERAL ARITHMETIC FUNCTION 9:44 AM 10/1/1969)
4-

The associated entry comment is typed out and the contents are
copied into, and become a part of, the student's active area
(workspace). It is important to note that the entry itself is
not removed from the file - what is placed in the student's work-
space is merely a copy. Thus, any number of students can get a
single entry at the same time.

-319-

Report No. 1889 Bolt Beranek and Newman Inc.

To remove an entry from a file, the command ERASE ENTRY is used:

+ERASE ENTRY GRANT ARITH

When all entries in a file are erased, the file itself is auto-

matically eliminated.

A file is created by creating its first entry. The file is owned

by the student who created it. Only he may SAVE or ERASE entries
in that file. Anyone can GET or LIST from it, however, unless

the owner makes some entries private.

The command LOCK is used to make an entry private. A student can
only LOCK entries in his own files. Thus,

+LOCK GRANT REVERSE

For anyone except the owner of the file GRANT, it will now be as

if the entry GRANT REVERSE didn't exist. The command UNLOCK

removes the lock on an entry.

+UNLOCK GRANT REVERSE

There are several forms of the LIST command that use files.

(Underscores indicate places for appropriate names.)

LIST ALL FILES Types each file name.

LIST FILE Types the name and comment for each entry in

the specified file (as in the example above).

LIST ENTRY Types the comment, all the procedures,

all the names, and all the abbreviations in the entry. The

format is like that of LIST ALL.

LIST COMMENT Types the comment for that entry.

Report No. 1889 Bolt Beranek and Newman Inc.

LIST PROCEDURES Types the definitions of all

procedures in the entry.

LIST NAMES

things)

LIST ABBREVIATIONS

entry.

Types all names in the entry (and their

Types all abbreviations in the

LIST CONTENTS Types only the title lines of all

procedures in the entry.

-321-

Report No. 1889 Bolt Beranek and Newman Inc.

3. Summary of LOGO Operations, Commands, Special Names, and
Abbreviations

OPERATIONS

FIRST (1 INPUT) FIRST LETTER OF WORD OR FIRST WORD OF SENTENCE
LAST (1 INPUT) LAST LETTER OF WORD OR LAST WORD OF SENTENCE
BUTFIRST (1 INPUT) ALL BUT THE FIRST
BUTLAST (1 INPUT) ALL BUT THE LAST
WORD (2 INPUTS) CONCATENATES THE TWO INPUTS INTO A WORD
SENTENCE (2 INPUTS) CONCATENATES THE TWO INPUTS WITH A SPACE

BETWEEN THEM
COUNT (1 INPUT) THE NUMBER OF LETTERS IN A WORD OR WORDS

IN A SENTENCE
SUM (2 INPUTS) THE ALGEBRAIC SUM OF TWO INTEGERS
DIFFERENCE (2 INPUTS) THE ALGEBRAIC DIFFERENCE OF TWO INTEGERS
MAXIMUM (2 INPUTS) THE LARGER OF TWO INTEGERS
MINIMUM (2 INPUTS) THE SMALLER OF TWO INTEGERS
EMPTYP (1 INPUT) TRUE OR FALSE AS INPUT IS /EMPTY/ OR NOT
ZEROP (1 INPUT) TRUE OR FALSE AS INPUT IS 0 OR NOT
WORDP (1 INPUT) TRUE OR FALSE AS INPUT IS WORD OR NOT
SENTENCEP (1 INPUT) TRUE OR FALSE AS INPUT IS SENTENCE OR NOT
NUMBERP (1 INPUT) TRUE OR FALSE AS INPUT IS NUMBER OR NOT
BEFOREP (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS BEFORE SECOND

OR NOT (BOTH INPUTS MUST BE TIME AND DATES OR
JUST TIMES OR JUST DATES)

GREATERP (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS LARGER
THAN SECOND OR NOT (BOTH INPUTS MUST BE INTEGERS)

IS (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS THE SAME AS
SECOND OR NOT

THING (1 INPUT) THAT THING THAT THE INPUT IS THE NAME OF
REQUEST (NO INPUT) LITERAL TYPEIN FROM THE TELETYPE
ASK (1 INPUT) LITERAL TYPEIN FROM THE TELETYPE IF COMPLETED

IN INPUT NUMBER OF SECONDS. OTHERWISE /EMPTY/
RANDOM (NO INPUTS) A RANDOM DIGIT
DATE (NO INPUTS) THE CURRENT DATE
TIME (NO INPUTS) THE CURRENT TIME
CLOCK (NO INPUTS) A ONE SECOND CLOCK
BOTH (2 INPUTS) LOGICAL AND OF TWO PREDICATES
EITHER (2 INPUTS) INCLUSIVE OR OF TWO PREDICATES
ENTRIES (1 INPUT) INPUT IS A FILE NAME. OUTPUT IS SENTENCE OF SECOND

NAMES OF THE ENTRIES IN THAT FILE
DATE-SAVED (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS TIME

AND DATE ENTRY WAS SAVED
DATE-GOTTEN (1 INPUTI LIKE DATE-SAVED
OWNER (1 INPUT) INPUT IS A FILE NAME. OUTPUT IS NAME OF OWNER
INITIALS (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS INITIALS

OF SAVER
SIZE (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS NUMBER

DIRECTLY RELATED TO SIZE OF ENTRY ON THE DRUM

-322-

Report No. 1889 Bolt Beranek and Newman Inc.

COMMANDS

TO DEFINE PROCEDURE
TITLE TO CHANGE TITLE LINE OF A PROCEDURE WHILE IN EDIT MODE
WAIT TAKES ONE INPUT AND WAITS THAT MANY SECONDS
IF FOLLOWED BY TRUE OR FALSE
EDIT TO CHANGE A PROCEDURE
END TO END A PROCEDURE DEFINITION
TRACE CAUSES PRINTOUT WHILE A PROCEDURE RUNS
ERASE ERASES MANY DIFFERENT THINGS

1. ERASE ENTRY (ENTRY NAME)
2. ERASE (PROCEDURE NAME)
3. ERASE TRACE (PROCEDURE NAME)
4. ERASE ALL TRACES
5. ERASE ALL NAMES
6. ERASE ABBREVIATION EXPRESSION
7. ERASE ALL ABBREVIATIONS
8. ERASE ALL PROCEDURES
9. ERASE ALL
10. ERASE LINE (NUMBER) (ONLY IN EDIT MODE)

LIST LIST MANY THINGS
1. LIST (PROCEDURE NAME)
2. LIST ALL PROCEDURES
3. LIST CONTENTS
4. LIST CONTENTS (ENTRY NAME)
5. LIST ALL NAMES
6. LIST NAMES (ENTRY NAME)
7. LIST ALL ABBREVIATIONS
8. LIST ABBREVIATIONS (ENTRY NAME)
9. LIST ALL
10. LIST ALL FILES
11. LIST FILE (FILE NAME)
12. LIST ENTRY (ENTRY NAME)
13. LIST TITLE (ONLY IN EDIT MODE)
14. LIST LINE (NUMBER) (ONLY IN EDIT MODE

GOODBYE HALTS LOGO
PRINT TYPES ITS INPUT AND THEN CARRIAGE RETURNS
TYPE LIKE PRINT BUT WITHOUT CARRIAGE RETURN
OUTPUT PROCEDURE ENDS AND HAS VALUE OF EXPRESSION FOLLOWING

THE COMMAND
MAKE SETS UP NAMES
STOP PROCEDURE ENDS AND HAS NO VALUE

Report No. 1889 Bolt Beranek and Newman Inc.

COMMANDS (continued)

DO EXECUTES ITS INPUT AS A LOGO COMMAND
LOCAL DECLARES FOLLOWING NAMES AS BELONGING TO PROCEDURE IN WHICH

THE COMMAND IS
SAVE SETS UP AN ENTRY
GET READS IN AN ENTRY
GO GO TO LINE
RESET RESET CLOCK SETS CLOCK TO ZERO
ABBREVIATE SETS UP ABBREVIATIONS
TEST SETS TRUTH FLAG
PASSWORD RESETS PASSWORD AND FILE DIRECTORY
LOCK
UNLOCK
HOARD
SHARE
BURY
DIGUP

MAKES AN ENTRY PRIVATE
UNDOES LOCK
MAKES AN ENTRY NON-RESAVEABLE (WHEEL ONLY)
UNDOES HOARD (WHEEL ONLY)
MAKES A PROCEDURE UNLISTABLE (WHEEL ONLY)
UNDOES BURY (WHEEL ONLY)

NAMES

/EMPTY/ THE EMPTY THING
/CONTENTS/ A SENTENCE OF DEFINED PROCEDURE NAMES
/LINE FEED/ A LINE FEED WITHOUT CARRIAGE RETURN
/CARRIAGE RETURN/ A CARRIAGE RETURN WITHOUT LINE FEED
/FILES/ A SENTENCE OF FILE NAMES
/FORM FEED/ ON SOME TELETYPES MOVES PAPER TO A NEW PAGE

WHEN TYPED
/BLANK/ A BLANK SPACE
/SELL/ A BELL
/QUOTE/ A QUOTE MARK
/SKIP/ A NEW LINE (CARRIAGE RETURN AND LINE FEED)

v

D

0

w

Report No. 1889

ABB: ABBREVIATION
ABBS: ABBREVIATIONS
ABT: ABBREVIATE
BF: BUTFIRST
BL: BUTLAST
BP: BEFOREP
C: COUNT
D IFF: DIFFERENCE
D -G: DATE-GOTTEN
D-S: DATE-SAVED
EDL: EDIT LINE
EDT: EDIT TITLE
EE: ERASE ENTRY
EP: EMPTYP
ER: ERASE
ERL: ERASE LINE
F: FIRST
GB: GOODBYE
GP: GREATERP
GTL: GO TO LINE
L : LAST
LC: LIST CONTENTS
LE: LIST ENTRY
LL: LIST LINE
MAX: MAXIMUM
MIN: MINIMUM
NP: NUMBERP
P : PRINT
PRS: PROCEDURES
RQ: REQUEST
OP: OUTPUT
S : SENTENCE
SP: SENTENCEP
T: TEST
W: WORD
WP: WORDP
ZP: ZEROP
IFT: IF TRUE
IFF: IF FALSE
RI: OUTPUT
GO: GREATERP
SQ: SENTENCEP
WQ: WORDP

NUMBERP
E I: EITHER
B : BOTH

41.

Bolt Beranek and Newman Inc.

ABBREVIATIONS

-325-

