
ED 037 833

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

REPORT NO
BUREAU NO
PUB DATE
CONTRACT
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

24 EA 002 863

Lewis, George Hallam
The STGPROC System of Data Manipulation by Computer:
Manipulation of Character Data in the Social
Sciences.
Oregon Univ., Eugene. Center for Advanced Study of
Educational Administration.
Office of Education (DHEW), Washington, D.C. Bureau
of Research.
TR-4
BR-5-0217
Feb 70
OEC-4-10-163
158p.
CASEA Editor, Center for the Advanced Study of
Educational Administration, Univ. of Oregon, Eugene,
Oregon 97403 ($2.00)

EDRS Price MF-$0.75 HC-$8.00
Bibliographies, *Computational Linguistics, Data
Analysis, Data Collection, *Data Processing,
Information Processing, Information Storage, Input
Output, Permuted Indexes, Programing, *Programing
Languages, *Social. Sciences, Sociometric Techniques,
*Statistical Analysis, Taxonomy

ABSTRACT
STGPROC is a computer program designed to meet a

need in the social sciences for a computing system that (1) can
handle character strings of open-ended data, (2) does not require
predefinition of the data, and (3) can handle variable numbers of
responses per respondent. The purpose of this monograph is to allow
the researcher to judge the utility of STGPROC and its value for his
specific research needs. In the general presentation, no knowledge of
computing procedures is assumed. The monograph provides the
researcher with a general idea of how STGPROC operates and how it
differs from existing programs in the social sciences. The STGPROC
system of transcribing data is detailed and ways to utilize the
program are explained. The researcher with no programing experience
should be able to explain to a programmer any additional operations
that he needs. For those with some programing experience, the main
STGPROC program and its existing subroutines are reproduced, along
with comment cards, in an appendix. (DE)

Technical
Report
No. 4

ani ulation
of aracter ata

in t e ocial ciences

A Presentation

of the STGPROC Program

George Lewis

February, 1970

Center for the Advanced Study of Educational Administration

THE STGPROC SYSTEM OF DATA MANIPULATION

BY COMPUTER

U.S, DEPARTMOT
OF HEALTH, EDUCATION& WELFARE

OFFICE OF
THIS DOCUMENT

HAS SEEN
EDUCATION

REPRODUCEDEXACTLY AS RECEIVED FROM
THE PERSON ORORGANIZATION

ORIGINATING
IT. POINTS OFVIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT
OFFICIAL OFFICE OF WU-CATION POSITION

OR POLICY.

George Hallam Lewis

Bureau No. 5-0217, Project No. 2003

Contract No. 4-10-163

Funding Authority: Cooperative Research Act

February, 1970

The research reported herein was conducted as part of the re-
search and development program of the Center for the Advanced
Study of Educational Administration, a national research and
development center which is supported in part by funds from
the United States Office of Education, Department of Health,
Education, and Welfare. The opinions expressed in this pub-
lication do not necessarily reflect the position or policy of

the Office of Education and no official endorsement by the
Office of Education should be inferred.

Center for the Advanced Study of Educational Administration
University of Oregon Eugene, Oregon

TABLE OF CONTENTS

Page

LIST OF FIGURES

Chapter

I. OVERVIEW

The Program STGPROC 7
Perspective 9

II. CODING AND TRANSCRIPTION 10

Transcription as it Applies to STGPROC 14
Transcription of Interrogative Responses 21
Response and Respondent Identification 24
Keypunching 27
The System and Coding: Three Considerations 29
Coders and the Transcription System 35

III. THE MAIN PROGRAM OOOOOOOOO 42

Procedures 43
The String Functions 44
Instruction Cards: The Main Program 48
STGPROC Operations 50
PRINT RUN . . 54
ERROR RUN . . 54OOOOOOOOOOO
SUBSECTION 58
SELECT-IN and SELECT-OUT 59
The Instruction Cards 59
Summary 61

IV. THE MANIPULATIVE SUBROUTINES 61+

The Storage of Data in quEs ARRAY 65
Manipulative Subroutine: Type One 67
Manipulative Subroutine: Type Two 72
Manipulative Subroutine: Type Three 81
Summary 86

V. THE STATISTICAL SUBROUTINES OOOOOOO 87

The Statistical Package for the Social Sciences 88

vi

TABLE OF CONTENTS (Continued)

Chapter Page

The Statistical Subroutine SPSS 90
The Statistical Subroutine FACT AN . 95
Summary . 99

VI. STGPROC IN ACTION .

Conceptual Evolution
STGPROC: Phase One .

STGPROC: Phase Two
STGPROC: Phase Three
STGPROC: The Future

BIBLIOGRAPHY . .

APPENDIX ONE
THE STGPROC PROGRAM

APPENDIX TWO
RESPONSE TYPE AND SUBRESPONSE:

APPENDIX THREE
THE INSTRUCTION CARDS .

APPENDIX FOUR
JOB CONTROL CARDS .

APPENDIX FIVE
BASIC STGPROC PROGRAM OUTPUT

J

101

. oo 101
105
109
114
116

118

. 122

SUGGESTED TABULATION SHEET 145

146.

...... 149. . 151

LIST OF FIGURES

Figure Page

I. Coding and Translation 11

II. Example of Delimiter Symbols 16

III. Conceptualization of Interrogative Response (A) 18

IV. Conceptualization of Interrogative Response (B) 19

V. Arrangement of STGPROC Procedures (A) 45

VI. Arrangement of STGPROC Procedures (B:) .. 46

VII. Example of Data Stored in QUES ARRAY 66

VIII. Example of "THES" Array 75

CHAPTER ONE

OVERVIEW

"It can be said without fear of contradiction that the greatest value

of computers to social science will be through innovations that have not

yet been made." (Coleman, 1964: 1047) James Coleman penned the above

statement in 1964. Indeed it has long been evident that many of the tech-

niques of data manipulation at present employed in computer analysis are

inadequate for the social scientist. The blame for this fact may be laid

as heavily upon social scientists as upon the computer programmers--per-

haps the fact that these are "two breeds" of man in many cases helps to

account for the lack of communication between them.

Social scientists as well as educational researchers rely heavily

upon reported data--interviews, open-ended questionnaires, written records.

And yet the translation of these raw data into the numeric categories and

codes necessary for computer analysis prohibits a vast amount of data mani-

pulation. This technological imperative has resulted in the fact that

many fruitful studies are not undertaken and many completed projects have

been forced into a restricted mode of data manipulation which has led in

turn to narrow and pre-defined types of analysis.

This problem, however, does not affect all types of data collection.

Many studies, for example, those dealing with the demographic variables,

are perfectly suited for conventional numeric data manipulation. The pro-

blem does become evident in the following types of studies: (1) panel

2

studies; (2) nominational studies; (3) exploratory studies dealing with

classification schemes; (4) survey analyses; (5) other types of studies

dealing with responses of an open-ended nature.

Computers are machines that compare and rearrange information--not

just machines that perform arithmetical operations. It sometimes comes

as a surprise to those not familiar with computers that they can also

"read" and manipulate words. Although the provision for handling alphabe-

tic data has been standard since the earliest days of computer technology,

it is only recently that methods for programming this type of data easily

in a system primarily designed for numerical manipulation have been created.

In the past few years, new computer languages have been created.

These languages allow fox' the extended manipulation of data in the form

of character strings--potentially a real methodological breakthrough for

the social scientist who is thinking of conducting large scale exploratory

research. However, to date there has been little done to adapt this uni-

que tool to the needs of the social scientist. In general, social scien-

tists and educational researchers are either unaware that the tool exists

or have not the training in computer science to utilize it.

The few adaptations of this tool that have been created fall generally

into two main categories. One is the utilization of strings of character

data to create simple frequency counts (cf. Nie and Bent, 1968). This type

of computer program operates in a directly analagous fashion to the "stand-

ard" type which employs numeric data to perform "matches." In other words,

instead of looking for a pre-defined "2" for a match, the program can in-

stead look for a pre-defined "A" and match in the same manner. However,

programs of this type cannot handle the Manipulation of open-ended data,

3

nor can they handle responses that are not pre-defined. A further problem

is their inability to process varying numbers of subresponses to a ques-

tion (these numbers varying per respondent).

A second type of program has been created to handle open-ended data.

This type of program, however, is designed mainly for use in content analy-

sis research--and that research not in sociology (cf. Stone, Dunphy, Smith,

Ogilvie, 1966; Harway and Iker, 1964; Starkweather and Decker, 1964). Gen-

erally programs of this type are bulky, expensive to utilize, and not

adapted to the needs of the social scientist.
1

However not all the blame

can be attributed to the programmers. They have not heard from the social

scientists on this matter. In speaking of the sociology of language (and

indirectly to the problem of the manipulation and analysis of character

string data through the social sciences) Bernstein has said: "What is a

little odd is the negligible contribution of sociology to the study of

language. The textbooks celebrate the fact of man's symbolic possibili-

ties in chapters on culture and socialization and then the consequences

are systematically ignored. One might go as far as saying that the only

time one is made aware that humans speak in the writings of contemporary

sociologists is incidentally through the statistical relations induced

from social survey inquiries. And here all that is required is that the

subjects can read; speech confounds the later arithmetic." (Stone, Dunphy,

Smith, Ogilvie, 1966)

1
A great deal of the work in this area has been in terms of informa-

tion retrieval processes applied to bibliographical material--yielding data
manipulation no more sophisticated than listings (cf. Janda, 1964; Janda,
1965; Vinsonhaler, 1967; Wilcox, Bobrow, Bwy, 1967). The exception is The
General Inquirer (Stone, Dunphy, Smith, Ogilvie, 1966) system. Unfortu-
nately this system also embodies the problems pointed out in the text above.

4

A major need in social science then is a type of computing system

that: (1) can handle character strings of open-ended data; (2) does not

require pre-definition of the data; (3) can handle variable numbers of re-

sponses per respondent.
1

With a system of this sort, no data need be coded

prior to machine processing.

There are further problems with the conventional system of data mani-

pulation, stemming from the necessity of coding the data in alphanumerics

before computer analysis. First, the data have to be broken down into

tl,eir respective categories prior to analysis (resymbolized to a more ab-

stract form). Second, when a coding error of the type in which the coder

either misreads the datum or misplaces it in the category scheme occurs,

there is no chance of ever finding the error. Third, the data have to be

retranslated after computer analysis (resymbolized to a more empirical

level). Fourth, differences among coders both within and between projects

yield a lack of reliability and comparability of coded data.

The ability to manipulate data as character strings solves many of

these problems. In the first place, data may now be entered into the com-

puter just as they appear on the research instrument. This obviates the

necessity of coding the data for entry purposes as well as obviating trans-

lation necessities after analysis. The import of this process is that the

coding of the data can be done by the machine, eliminating all but standard

machine error (physically faulty data cards, and so on) and coder spelling

1
During March 1969 the author checked with the major academic compu-

tation centers in the United States and found no evidence of activity
towards this goal.

5

errors.
1

The feasibility of machine coding is in itself a great breakthrough

in social science, for although processing error in research generally

earns little more than a word of warning in methods literature (cf. Kish,

1965; Riley, 1963), recent findings suggest that processing error: (1)

stems primarily from the human coding process; (2) may not be random; (3)

even if it is random, can distort research findings; (4) is sufficiently

high to warrant efforts at its elimination (Sussman and Haug, 1967). Ma-

chine coding of raw data obviously eliminates human bias in the coding

process (although the problem of bias in category selection remains, it is

the job of the researcher to insure reliability and validity in this area,

no matter what type of coding is utilized).

By machine coding data, one solves a further problem that has plagued

social science and educational researchers. The results of differing

studies employing category systems may be compared. If the same computer

coding system is used in two sets of data, the results are free of both

random coding bias and the judgmental differences of coders and/or re-

searchers.

By making use of the ability of the computer to handle character

strings, a researcher opens the door to a great nimber of approaches to

the data of the empirical world that were once deemed closed. Not only

can he collect data without a stringent eye upon its simplified coding into

pre-defined categories (methods of data collection do help determine re-

sults (cf. Runkel, 1965J) but he can also re-examine his data with as

me.

1
Spelling errors may be picked up upon data printout, as will be con-

sidered in the appropriate sections of this monograph.

6

many classification schemes as he wishes without resorting to the tedious

and inefficient method of human recoding of the data (inflexible classifi-.

cation yields bias and a lack of comparability across studies).1 In addi-

tion, he no longer has to worry about bias and error introduced by human

coders. In a nutshell, the researcher may utilize the computer to mani-

pulate his data with no loss of information or bias due to coding neces-

sities.
2

A word of warning: it is often tempting, given the capabilities of

present day computers, to fall into the trap of measurement for measure-

ment's sake. With the feasibility of character manipulation of string

data by computer, this danger is increased. Theory building and hypothe-

sis testing must not be sacrificed to the ease of data measurement and

description. It cannot be stressed enough that the computer is a reli-

able aid to the researcher, handling the mechanics of formal analysis.

However, the computer is not a substitute for thought. It is an aid to

it. The program described in this monograph was designed with the above

in mind. It is not intended as a "statistical panacea," but as a process

of interaction and feedback between the machine processing and the re-

searcher.

1
STGPROC is one solution to this problem which has been plaguing sur-

vey researchers for years and to which no solution in terms of computer
programming had been found (mainly because of the restrictions of most
computer languages), although some solutions have been attempted (cf. Wil-
cox, Bobrow, Bwy, 1967).

2
The traditional problem of respondents creating unanticipated data,

such as the inclusion of extraneous comments and the modification of indi-
vidual questions, is an exception to this statement. In these cases indi-
vidual decisions as to how to deal with the data are still necessary.

7

The Program STGPROC

STGPROC is a series of interrelated procedures developed under the

auspices of The Center for the Advanced Study of Educational Administra-

tion at the University of Oregon during the period from June, 1968 through

June, 1969. The purpose of this monograph is to allow the researcher to

judge the utility of STGPROC and its value for nis specific research needs.

In terms of the general presentation, no knowledge of computing procedures

is assumed. Hopefully a researcher, after study of this monograph, will

have a general idea of how STGPROC operates and how it differs from exis-

ting programs in the social sciences. He will also be aware of the form

in which to shape his data in order to utilize the program and of the

program's general capabilities.

Although many subprograms may be written or adapted for use with

STGPROC only five are presented in this monograph. These five have been

developed during the processes of data manipulation connected with actual

research. Together they form an efficient, flexible, and highly general

package of data manipulations.

The researcher with no programming experience, after studying this

monograph, should be able to identify to a programmer any additional oper-

ations which he has need for and which are feasible in conjunction with

the main STGPROC program. Those with some programming experience should

be able to write or adapt subroutines to STGPROC with little difficulty.

For those with programming experience, the main program STGPROC and its

existing subroutines are reproduced, along with comment cards, in Appen-

dix One of this monograph.

I!

8

STGPROC is a set of computer procedures to: (1) identify systema-

tically instances of words that belong to categories supplied by (a) the

researcher, (b) the response content, (c) the content of another response;

(2) count occurrences of these categories; (3) output listings, frequen-

cies, and related percentages of these categories; (4) arrange the data

in forms amenable for use by existing statistical and factor analysis

programs; (4) sort and regroup categories according to supplied specifi-

cations.
1

The program is written in IBM's Programming Language One (PL /l).2

It may be used in any computer installation containing a PL/1 level F pro-

gram compiler. 3 PL/1 was chosen in preference to three other computer

languages with which the author is familiar: SNOBOL4, FORTRAN IV, and As-

sembler Language. Because SNOBOL4 was developed by Bell Telephone Labora-

tories, it is less likely that computation centers would have SNOBOL4 com-

pilers than compilers for languages developed by more well-patronized com-

puter firms. SNOBOL4 also is no more efficient for this particular com-

puting problem than is PL/1 and is less agile, more bulky, and lacks cer-

tain necessary functions. Both Assembler Language and FORTRAN IV were re-

jected because of the fantastic mass of programming it would take to allow

them to handle string processing in the clean manner PL/1 has been set up

1See Appendix Five for a general
program output.

2
Relevant IBM manuals concerning

in the bibliography.

3
STGPROC was created by means of the PL/1 level F, version 4 compiler

at the University of Oregon computing center.

description of the basic STGPROC

PL/1 programming language are cited

9

to do. PL/1 is also IBM's most recent language, replacing FORTRAN IV in

many academic industrial computation centers.

Perspective

Chapter Two of this monograph concerns itself generally with the dif-

ferences between coding and transcription and discusses the problems as-

sociated with coders and how the new processes of the STGPROC system alter

these problems. This chapter also explains in detail the STGPROC system

of transcribing data. Chapter Three explains the main STGPROC program and

how to utilize it. Chapter Four discusses three general types of manipu-

lative subprograms that may be used in conjunction with the main program

and gives general examples of each type. Chapter Five describes two addi-

tional subroutines which allow the researcher to tie STGPROC in with exist-

ing statistical and factor analysis programs. Finally, Chapter Six con-

tains the reportage of an actual research project carried out under the

auspices of the Center for the Advanced Study of Educational Administra-

tion at the University of Oregon utilizing STGPROC at its phases of data

manipulation and analysis.

CHAPTER TWO

CODING AND TRANSCRIPTION

In order to understand more fully the purpose for which the program

STGPROC was created, it is necessary to distinguish between the concepts

of coding and transcription. Let me here offer definitions. Coding is

the process of resymbolizing information. This resymbolizing can be in

two modes, depending upon the use to which the process is to be put: (1)

resymbolizing from a known symbol system to an unknown one; (2) resymboli-

zing from a known symbol system to one characterized by fewer symbols (see

Figure I).

The first mode of resymbolizing has as a motive the transmission of

information comprehensible to those in possession of a key with which to

translate the unknown to a known symbol system.
1

The second mode of re-

symbolizing has as a motive the more efficient storing or transmission of

information.

These two modes of resymbolizing are of course not mutually exclusive.

For example, in social science research, the second motive for resymboli-

zing is prevalent. However the new symbol system is often incomprehen-

sible without some sort of key.

A basic problem in any type of explordtion is what to seek and to ob-

serve. In terms of social science exploration, this problem takes the

1
Translation will be defined later in this section.

11

1 2Figure I: Coding and Translation '

Relative number of
meaning-symbols Symbol systems

.

Known

.

Unknown

Fewer symbols A B

More symbols C

.

D

Coding: Pure Mode I

A to B
C to D

Ideal Translation

B to A
D to C

Coding: Mixed Mode

C to B

Infeasible Translation

B to C
A to C
B to D

Coding: Pure Mode II

C to A
D to B

Imperfect Translation

D to A

1
The assumption underlying the use of the above concepts is that of

a loss of information when passing from one symbol system to another char-
acterized by relatively fewer symbols.

2
The author recognizes the simplicity of the case as stated above.

The grammatical context of meaning-symbols and adjoining meaning-symbols
have also to be taken into consideration when one is attempting transla-
tion. The lexical and syntactical considerations are not covered here,
as the primary purpose is not in describing translation but in pointing
out the differences between coding-translation and, the process of trans-
scription.

12

form of what aspects of the empirical world one shall consider as bearing

upon one's problem. Data collection then becomes a process of selectively

excluding aspects of the empirical world while retaining those one feels

are most relevant to one's problem.

In research there exists a step between data collection and data

analysis--a step I shall call data manipulation. Data manipulation in-

volves shaping the data to forms amenable to analysis. One such manipu-

lation has to do with resymbolizing the data in the second of the two

modes mentioned above. For example, in social stratification research,

specific jobs (raw data) may be resymbolized into a system of occupational

categories and a key, called a code book, may be drawn up.

In modern computer-oriented research, a further coding step has to be

taken. This is resymbolizing of the first mode mentioned above. The sys-

tem of occupational categories is resymbolized as decimal number combina-

tions which are then further resymbolized by the computer to binary inte-

ger combinations. The computer may then perform operations upon the data,

translate the results to decimal number combinations which are then re--

turned to the researcher for further translation.

Here an important point is raised. In the first mode of resymboli-

zing mentioned above, such as the computer performs, translation may be

performed. Translation may be defined as resymbolizing from an unknown

symbol system, by use of a key, to a comprehensible one. Accurate trans-

lation may ,be performed ..only if there exists a unique meaning-symbol in

one symbol system for each meaning-symbol in the other. Translation be-

comes less accurate the further one gets from this ideal (see Figure I).

In the second mode of resymbolizing mentioned above, translation, by

13

definition, is at the very most highly inaccurate and in most cases vir-

tually impossible. Said in other words, the loss of information in this

type of coding nearly always precludes any chance of translation.

Thus in the above social stratification example, analysis results

will be couched in terms of occupational categories. No further trans-

lation can be performed. (And in this case, none further would be de-

sired.)

One important aspect of computers is their ability to perform a com-

bination of many simple tasks rapidly and in an efficient and reliable man-

ner. A major breakthrough for much exploratory research in the social sci-

ences would be the performance of all the necessary coding of data by the

computer. This would not only increase the reliability of the final re-

sults, but would cut down tremendously upon the paid hours of coding time.

The STGPROC program is one designed to allow computerized coding of data.

In the above social stratification example, the raw data consisting of job

names would be processed by the computer directly. Results would be in

terms of any occupational category scheme or schemes one had entered in

STGPROC prior to data analysis. Said in other words, one of the major

reasons for the creation of STGPROC is to transfer the majority of the

step of data manipulation from human hands to the computer. In order to

accomplish this, the raw data have to be transcribed.

Transctiption then, is the transference of a set of symbols from one

medium to another. In this case, from the collected research schedule to

the computer input device.

In some instances human coding may be utilized with STGPROC. These

instances will be examined in later portions of this chapter. However,

the major data manipulation prior to computer analysis consists of the

transcription of data. This will be taken up in detail in the following

section.

Transcription as it Applies to STGPROC

The Concept of Delimiter Symbols

Every symbol system, whether written or verbal, is a vehicle with

which, to transmit information. In order to accomplish this objective,

the information has to be ordered in such a way that it is comprehensible.

Thus there exist two types of symbol in every symbol system: (1) those

which represent the information to be imparted (content-informational

symbols) and (2) those which order this information in a comprehensible

way. This second type of symbol I shall refer to as a delimiter symbol

and define thusly: A delimiter symbol divides or marks symbolic informa-

tion at points significant to the ordering of this information such that

it may be comprehended by one familiar with the utilized symbol system.

An example of delimiter symbols (or delimiters) in the semantic world

are punctuation marks, without which symbolic information is difficult to

understand. An excellent example of this is the problem of comprehending

James Joyce's Finnigan's Wake and other examples of "stream of conscious-

ness" writing which is characterized by, among other things, a dearth of

punctuation. Delimiters are just as important in the transcription pro-

cess associated with the program STGPROC as they are in any situation in-

volving symbol transference.

Delimiters always have an order of priority in the division of sym-

15

bolic information. Probably the easiest way to explain this is to use

the example of punctuation in the English language.

In the English language, the delimiter with the highest priority is

the period. This delimiter divides sentences (symbol strings which are

understandable by themselves, containing both subject and predicate, and

necessary qualifiers). Delimiter priorities in descending order in Eng-

lish include: the colon, the semi-colon, the comma, and the blank. Some

delimiters stand on the same priority level and are utilized to distin-

guish between modes of signification of the symbol string. Examples are

the period, question mark, and the exclamation mark. (I will have oppor-

tunity to employ delimiters in this fashion; however, this will be taken

up later in the chapter. Here it is necessary to grasp only the concept

of delimiter prioritz.)

Delimiters are used in a priority fashion in the program STGPROC.

The program allows the individual researcher to determine not only what

symbols he will use as delimiters, but also how many and upon what pri-

ority level they will appear. The only limitation is that am symbol

that appears or is likely to appear in the researcher's content-informa-

tional symbol strings cannot be used as a delimiter. For example, in the

English language, the period is a delimiter, denoting the termination of

a sentence. It is not used by itself in any content-informational sense.

However, in the decimal arithmetic symbol system, the same symbol, the

period, is used to impart information. Here it is known as the decimal

point. Obviously it would be confusing to use periods as delimiters in

decimal arithmetic symbol strings. The analpgy holds in the transcription

system developed for STGPROC. In this case, any symbol correspondence be-

16

tween content-informational and delimiter symbols spells disaster, as the

computer is programmed to identify specified symbols solely as delimiters

and to process the symbol strings in certain specific manners upon iden-

tification of these delimiters.

The delimiter symbols are identified by the researcher for the speci-

fic program run in two instruction cards which he must insert as data in

the STGPROC program.' The general form of these instructions are:

1) NUMBER OF DELIMITERS = n .

28) IDENTITY OF DELIMITERS = s
1 '

s
2

where

note

sn

n = the number of delimiter symbols utilized

s = a delimiter symbol

delimiter symbols are listed in order of descending priority

As an example taken from the actual use of the program STGPROC (see

Chapter Six), the following delimiter symbols were utilized, priority

order from high to low as read from left to right:

Figure II: Example of Delimiter Symbols

In this case, the two delimiter instruction cards of STGPROC would

1
A discussion of instruction cards and their placement will be found

in Chapter Three. This aspect of STGPROC is not yet necessary to the on-
going explanation.

17

read in the following manner:
1

1) NUMBER OF DELIMITERS = 6.

28) IDENTITY OF DELIMITERS = $$#$%,:,;,1.

All symbolic data in this example coded by STGPROC must employ the

above six symbols as delimiters in their listed priority order. How these

symbols will be employed is determined by further considerations to be

spelled out in ensuing sections of this chapter.

11222E2E1221§142E2E2MELEILEIEElattaa

The informational response to any interrogative can be conceptualized

in two ways:

1. By the types of information given. For example, the response,

"Saul Franks, technician at XYZ Corporation" includes three types

of information: (a) name, (b) job title, (c) place of employment.

2. By the number of information bits of the same type (hereafter re-

ferred to as the number of subresponses). For example, the re-

sponse, "Saul Franks, Mannie Roberts, Fred Benson" includes three

subresponses.

1
It should be apparent from the preceding discussion of delimiters

that in the two delimiter instruction cards, the symbols equals (=), com-
ma (1), and period (.) are employed as delimiters themselves. The same
is true of all the instruction cards. This would normally prohibit the
use of these three symbols as delimiters in the STGPROC program as their
declarations in statement 28 would be impossible. Yet, provision has been
made such that any of these three symbols may be utilized. If any of
these symbols are to be declared as delimiters, they must be entered in
instruction card 28 enclosed in single quotes. For example:

28) IDENTITY OF DELIMITERS = $, '=', , .

lei

One may think of the two means of conceptualizing the response to an

interrogative as related in the following way:

Figure III: Conceptualization of Interrogative Response (A)

Response Types

Subresponses

As an example, suppose a respondent was asked to name those three

with whom he interacts most frequently on the job and the official posi-

tions that each hold. Now suppose the response to this interrogative is

as follows:

Saul Franks technician

Mannie Roberts technician

Fred Benson foreman

The response can now be fitted into the "conceptual grid," or array,

in the following manner:

19

Figure IV: Conceptualization of Interrogative Response

1

Subresponses 2

3

Types of Response

1 2

Saul Franks technician

Mannie Roberts technician

Fred Benson foreman

In this manner, every interrogative can be characterized by a two-

dimensional array, the size of the maximum anticipated response am each

of the two dimensions. For example, the above interrogative response fits

exactly into a three by two array. This is the way the program STGPROC

would store this response, had it been transcribed as data.

There is one further thing that needs to be known about the response

before it can be stored by use of STGPROC. That is the maximum number of

symbols used in any single cell of the array. Here it is fourteen ("Man-

nie Roberts").
2

1
Figure IV is a three by two array, the "three" referring to the num-

ber of subresponses, the "two" referring to the number of response types.
Each cell of the array can be identified by its subscripts. For example,
the subscripts of the array cell containing "Saul Franks" are 1,1, and the
subscripts of the array cell containing "foreman" are 3,2.

2
Note that the blank between "Mannie" and "Rcberts" counts as a sym-

bol.

Hence in utilizing STGPROC, the researcher must first determine the

following things.1

(1) The number of interrogatives per schedule

(2) For each interrogative:

(a) the number of response types

(b) the maximum number of subresponses (for open-ended inter-

rogatives this is an educated guess)

(3) In terms of the total schedule, the maximum symbol string length

There are four instruction cards in which the researcher supplies the

above information. The general forms of these statements are:

2) NUMBER OF QUESTIONS = n.

3) RESPONSE LENGTH = 1

29) SUBRESPONSES PER QUESTION = sl , s2 s
n

30) RESPONSE TYPES PER QUESTION = r1 , r
2

, r
n

where

n = the number of responses per schedule

1 = the maximum symbol string length

s = the maximum number of subresponses, by question

r = the maximum number of response types, by question

For example, a schedule with two interrogatives; the first with three

response types, two subresponses, and a maximum response length of twenty

characters; and the second with two response types, four subresponses, and

a maximum response length of thirty characters would result in the follow-

it is suggested that the researcher employ a tabulation sheet for
this purpose. An example of such is supplied in Appendix Two.

23.

ing instruction cards:

2) NUMBER OF QUESTIONS = 2.

3) RESPONSE LENGTH = 30.

29) SUBRESPONSES PER QUESTION = 2 , 4 .

30) RESPONSE TYPES PER QUESTION = 3 , 2 .

Transcription of Interrogative Responses

With the above discussion of response types and subresponses in mind,

it should be clear why delimiter symbols are needed in transcribing data

for use with STGPROC. Generally speaking, delimiters are needed for three

purposes: (1) to separate responses; (2) to separate response types; (3)

to separate subresponses. The separation of responses is of the highest

priority, hence in our continuing example, responses will be separated by

the delimiter symbol "$" (see Figure II for the delimiters utilized). The

rule is RESPONSES SHALL BE FOLLOWED BY THE FIRST PRIORITY LEVEL DELIMITER.

The use of delimiter symbols to separate response types and subresponses

is a bit more complicated to explain. To begin, I shall use the response

as diagrammed in Figure IV as the basis of explanation.

With the information thus far given, the transcription for Figure IV

is as follows:

response$

Since the symbol "5" is used only to separate responses, the deli-

miter symbol "#" (Figure II) is of the highest priority within any re-

sponse, just as in English the colon is the highest priority delimiter

symbol within a sentence. I shall signify this relation from now on by

referring to the delimiter symbol within a response as:

22

n level
w

with n signifying the priority level of the delimiter symbol within the

response.

The second general rule of response transcription is ALL INFORMATION

OF ONE RESPONSE TYPE IS TO BE COMPLETELY TRANSCRIBED BEFORE BEGINNING

TRANSCRIPTION OF INFORMATION OF ANOTHER TYPE. In the case shown in Figure

IV, the above rule means that type one should all be transcribed, then

type two. Now it is obvious that the first levelw delimiter should be

used to separate response types. The rule is RESPONSELTYPES ARE ALWAYS

SEPARATED BY THE FIRST LEVELW DELIMITER. In this case, the two response

types will be separated by the symbol " #" or the first levelw delimiter

symbol (see Figure II) thusly:

type 1 (name)#type 2 (position)$

It is now necessary to separate the subresponses within each response

type. The appropriate delimiter symbol is found by use of the following

rule. SUBRESPONSES WITHIN RESPONSE TYPES ARE SEPARATED BY THE (NUMBER OF

RESPONSE TYPE) LEVELW DELIMITER. In this case there were two response

types, so it would be the (2) levelw delimiter. Since the first level is

"#", the second level
w

delimiter is "%" (see Figure II). The response

seen in Figure IV, then, should be transcribed thusly:

SAUL FRANKS%MANNIE ROBERTS %FRED BENSON#TECHNICIAN%TECHNICIANOOREMANS

Note that after "FRED BENSON," only a "#" is used. To be complete,

both a " %" and a "#" should be used as it is both the end of a subresponse

and the end of a response type. However, that would be redundant. In

this respect, the general transcription rule is WHEN TWO OR MORE DELIMI.

TERS SHOULD BE EMPLOYED, EMPLOY ONLY THAT OF THE HIGHEST PRIORITY LEVEL.

23

This same rule applies after "FOREMAN" where the symbols "%," "#," Ahd "S"

have been collapsed to a "S" to signify the end of that response.

To further illustrate the transcription system, two more responses

will be shown and transcribed as examples.

Example I:

Response: "Franks, Roberts, Benson, Smith"

Transcription: FRANKS#ROBERTS#BENSON#SMITH$

Note that with one response type, only the delimiter of the first levelw

is employed.

Example II:

Response:

"Franks carpenter yes

Roberts no

Benson foreman yes"

Transcription: FRANKS:ROBERTS:BENSON#CARPENTER:XiMaREMANOEWNWIES$

Note that ROBERTS does not list a position. Here this non-response is

transcribed as an "X," but it could have been transcribed as

#CARPENTER::FOREMAN#

in which case the appropriate array cell would contain nothing, or what

is known as the null string.
1

In summary, the five general rules governing transcription with de-

1
Because of the way in which STGPROC operates, it is a good idea not

to employ the null string in this manner, but instead to use some constant
symbol, such as an "X" for non-responses embedded in a list of subre-
sponses, as is the case here. If the non-response comes at the end of a
list of subresponses (if in this case "Benson" had no position associated
with him, the null string would be an appropriate alternative.

24

limiter symbols are:

1. Responses shall be followed by the first priority level delimiter.

2. All information of one type is to be completely transcribed before

beginning transcription of information of another type.

3. Data types are always separated by the fikst levelw delimiter.

4. Subresponses within response types are separated by the (number

of response type) levelw delimiter.

5. When two or more delimiters should be employed, emplpy only that

of the highest priority level.

The following section will concern itself with how the delimiter sym-

bols are employed in respondent and response identifications.

Response and Respondent Identification

Transcription obviously takes up more space than the familiar type

of coding. Instead of reserving one or two columns of a data card for a

response, one may perhaps utilize forty spaces for a single response,

Hence there is a need to identify each card of a respondent record as to

where it belongs within that record. In STGPROC the first two columns of

each data card are reserved for the card number. This allows one to iden-

tify up to 100 cards per record, a number which should be sufficient.
1

In most coding systems, each record is identified by a number, called

the respondent identification number. This system may be used with STG-

PROC if desired, however it does not necessarily have to be. Since iden-

1
If it is not, instructions as to how to increase this number have

been included in the comment cards of the STGPROC program (see Appendix
One).

25

tification numbers are merely coded symbols, it may be easier in many

cases to forget the coding and use the respondent's name as his identifi-

cation "number." If this is done it obviates the processes of coding

each respondent identification and of translating that coded identifica-

tion. It further eases the task of identification of respondents while

manually manipulating respondent records. The only drawback to this is

that there is no sequential order in which respondent identifications can

be aligned. If this is desired, a combination of the two methods of iden-

tification may easily be used.

In STGPROC the respondent identification string may be as long as

the researcher wishes, and it may vary in length from respondent to re-

spondent. The only stipulation is that it be separated from the record

data by the first level delimiter symbol. THE RESPONDENT IDENTIFICATION

STRING BEGINS IN COLUMN THREE OF EACH DATA CARD, CAN BE OF VARYING LENGTH

PER RESPONDENT, AND IS FOLLOWED BY THE FIRST LEVEL DELIMITER SYMBOL. Ex-

amples of respondent identification strings (with card numbers preceeding

them) follow:

1) 01023$

2) 01SMITHIFRED$

3) -LISMITH1$

4) 01023SMITH$

Note that examples two and three reveal alternate ways of identifying

"Smith." Each "Smith" may be numbered (coded) or the entire name may be

used to insure the uniqueness of the string.

There is one instruction card associated with the identification

string. It specifies the maximum size of an identification string for

26

that run. Its general form is:

27) MAXIMUM LENGTH OF ID STRONG = n.

where

n = the maximum length of an identification string for that run

In terms of the program STGPROC, it is easiest to number question re-

sponses from one up by increments of one. Within each respondent record

the responses do not have to be in any special order, and they may vary

from record to record, however each succeeding decimal digit should be

employed as a response number.

RESPONSE NUMBERS ARE SEPARATED FROM THE RESPONSE BY THE FIRST LEVELw

DELIMITER SYMBOL. Thus (again utilizing the delimiter symbols of Figure

II) two examples of the first and second total responses plus the respon-

dent identification symbol would be transcribed in the following manner:

Example I:1

01FRANKSSI#SMITHPONESS2#TEACRER%TEACHER#GRADE TWO%GRADE FOURS

Example II:
2

OlTHOMAS2$1#FRANKS:ROBERTS:BENSON#CARPENTER:X:FOREMAN#YES:NO:

YESS2#MANUAL LABORS

1The questions asked of "Franks" in example one might have been:

(1) Name those persons you interact with the most during school hours,

and (2) for each person you have listed in question one, list their posi-

tion in the school and what grade level they are associated with.

2The questions asked of "Thomas" in example two might have been:

(1) List those you interact with most frequently on the job, their posi-

tions with the company, and whether you interact with them off the job as

well (yes or no), and (2) list the word that best characterizes what type

of work you do.

27

Keypunching

There are two situations in which keypunching is utilized with STG-

PROC: (1) when the instruction cards are created; and (2) when the data

are being transcribed. A word concerning keypunching in each of these in-

stances is necessary.

Instruction Cards

Some of the instruction cards have been previously mentioned. In

keypunching these cards, only a few points must be kept in mind. First,

every instruction begins with a number. After the number, there is a

right parenthesis ")."1 Second, each instruction ends with a period ".".

Third, each instruction may occupy up to four succeeding cards (may be

four IBM cards in length). Fourth, blanks may appear anywhere in the in-

struction (there is no fixed format for punching the instruction).

This fourth point bears commenting upon. Most computer programs re-

quire instruction cards. Many times however, the instructions on these

cards are in a coded form and must be located in specific fields of the

cards. This means that the user must concern himself not only with trans-

lating the code the instructions appear in, but he must also be absolutely

correct in his placement of these coded instructions upon the instruction

cards. Neither of the above problems need worry STGPROC users. The in-

structions are written in English and, because of the fact that blanks

are automatically compensated for, the instruction may be written anywhere

main

3
The only exception to this rule is the case of the thesaurus cards,

covered in Chapter Four.

28

on the card or cards--it may be stretched to its limit of four cards or

compressed upon a single card. It is advisable, however, in the instruc-

tions containing lists Couciiias number 28 ("the listing of delimiters.T

to leave some blank space between the items on the list. This enables one

to change the contents of the list for later computer runs by changing

only those items necessary and saves the chore of repunching the entire

instruction.

The Data Cards

In preceding portions of this chapter, the transcription of data was

explained. It has been found through experience with the STGPROC program

that it is best in reference to the original keypunching, to leave blank

spaces between questions, as well as between subresponses and response

types.
1

If blank spaces are left, then any character omissions may be cor-

rected without having to repunch all the respondent's data from the point

of the error to the termination of his responses. If the correction takes

the form of character deletions, then the ensuing blank spaces are auto-

matically compensated for. Further, if each question is begun upon a

separate card, then later insertion of a response (as for example, in a

longitudinal supply) may take place without repunching the remaining data.

The character of the data can and should be used as one guide in key-

punching. As with the instruction cards, this "blank space compensation"

1
The program is now set up to handle question responses up to a maxi-

mum of 10 IBM cards per question response. The presently defined size
limit is purely arbitrary, but should be extensive enough to meet most
programming needs.

29

feature of the STGPROC program allows the user a flexibility in planning

and executing his data transcription that no other computer program that

the author is familiar with can approximate.

The System and Coding: Three Considerations

As previously mentioned, there exist instances of coding data prior

to the use of STGPROC. These instances occur when the composition of the

questionnaire has not been planned with the use of the STGPROC system in

mind. In other words, all instances of human coding may be avoided by

carefully planning the questionnaire in advance.

Obviously, the above is an ideal situation- -in many cases questions

receive unanticipated types of answers. Further, a previously developed

interrogative may be utilized for comparison with a previous study in

which it was asked. There are many such instances which lead to some

prior coding of the data being necessary in order to get it in shape for

use by STGPROC or in order to save time and space by taking advantage of

some of STGPROC's unique features.

In this section, three instances suggesting the utility of prior

coding that have arisen in connection with actual studies employing STG.

PROC are presented, along with viable solutions to the problems raised.

By studying these examples, the researcher should be able to anticipate

analogous problems in his own research and solve them in the questionnaire

construction stage. Further, he should be able to derive solutions to

similar problems that might arise as a result of his own unique research.

30

One: Irregular Interrogatives

The first instance of coding occurs when one is faced with an irre-

gular interrogative. An irregular interrogative is here defined as any

interrogative with differing numbers of response types per response choice.

For example, the interrogative; "For each day of the week, state whether

you drive to work, take commercial transportation, or are driven in a car

pool. If driven in a car pool, list those with whom you ride."

In order to fit this interrogative into the STGPROC system effici-

ently, some coding has to be performed. Here there are actually two in-

terrogative levels. The first and most general is "how do you get to work

each day," The second, based upon the answer to the first, is "list those

in the car pool per day you utilize this form of transportation." Clearly

the response to the second level interrogative depends ma the answer to

the first level and there is a possibility of differing numbers of re4

sponse type in this interrogative per response choice upon the first level.

The most efficient means of storing this response is to code it as

two interrogatives. The first level interrogative (assuming a five-day

work week) is a 5 x 1 array, with possible responses consisting of "driv-

IW!'"commerical transportation," or "car pool" for each of the five ar-

ray cells.
1

The second level interrogative response array may be set up in a num-

1See Figure IV and accompanying footnote:for, anrexplanation Of. arrays

and subscripts. The reader is also referred to any introductory text on
computer programming or any standard reference on matrix algebra for a

more comprehensive treatment of the concepts of array and subscript.

31

ber of manners, depending upon the needs of the researcher. Efficiency

in terms of storage space may be gained),y the choice of an array, say

25 x 2, in which the first response type is a car pool member's name and

the second is the ally subscript of the first level interrogative Er;

Ialamto the cell involved. For example, if only on Thursday (the

fourth day) the respondent rides to work in a car pool with Smith, then

the coded response for the second level interrogative (including the re-

sponse number) would be:

Z#SMITH#4$

(Thursday being the fourth entry in the 5 x 1 array of the first level in-

terrogative.)

In this manner, the first level interrogative could be handled separ-

ately if one wishes information pertaining to modes of transportation. If

one wWishes later to know about those in the car pool, the second level

interrogative may be pulled out and response type two matched with the

subscripts of the first level interrogative to determine days of the week

the respondent rode with these persons:.

It is a good rule of thumb when using STGPROC to TRY TO AVOID THE

UTILIZATION OF IRREGULAR INTERROGATIVES. They only cause complications

by the generation of human coding.

Two: Identification of Modes of Signification

Delimiters may be used to determine modes of signification of data.

This too, is a method of coding the data. Suppose one were asked to list

those tasks one performs at one's job, then in another interrogative,

which of those listed tasks interfere with the performance of others. It

would be a waste of space to transcribe these two interrogatives sepaia

rately. Instead, a symbol may be used in the larger list to determine

the mode of signification of the response (in this case, whether the listed

task does or does not interfere with other tasks). For example, if a task

is noted as interfering with others, its transcription in the larger list

could include a "*" to denote that fact.

If only the interfering tasks were to be examined, a subprogram could

be addended to STGPROC (much in the manner of subprogram SOCIO (see Chap-

ter Four?) that would search all responses for a "*" and deal only with

them.

Another manner of handling this type of problem would be to create

an additional response type, and to place a If*" in each subresponse of

this type that corresponds to each subresponse denoting an interfering

task. This coding takes essentially the same form as that suggested above

under "Irregular Interrogatives."

Conversely, in the car pool example above (Irregular Interrogatives)

the second level interrogative could consist of a 25 x 1 array, each cell

of which includes a name plus the array subscript of the first level in-

terrogative pertaining to the cell involved. The example used above would

now be:

2#SM1TH4$

In this case, the addended subprogram would search for the symbols "1"

through "5" to identify the subresponse as to which day of the week it

pertained to.

Delimiters utilized to identify modes of signification then have as

their function the avoidance of repetition of transcripted information.

33

Their use increases the efficiency of the STGPROC system.

Three: Key-word Searches

One of the most important aspects of STGPROC is its capacity to han-

dle raw data by means of computer assignment of informational bits into

any pre-determined category system. Thus many differing categorization

schemes may be applied to the same data without having to resort to the

tedious and inefficient task of recoding the data. The essential opera-

tion of the program here is to search the data for pre-determined

words or word-phrases. When one of these is identified in a match with

a datum, a counter is activated, incrementing the appropriate category

count by one. This process will be presented in more detail in Chapter

Four. It is mentioned here only because of special problems encountered

with certain types of raw data.

If one is analyzing responses to an occupational category interroga-

tive for example, the key word search is a fairly straightforward process.

The list of key word-phrases, called a thesaurus, consists of an array of

word-phrases of only one type; i.e., nouns (and their adjectives) describ-

ing the occupation ("bank manager," "principal," "first-grade teacher").

However, if the interrogative were phrased in the following manner, the

responses would be word-phrases of three types (subject, verb, object):

"What do you do for a living?" Answers might range from "bank manager"

to "I manage a bank."
1

'One method of solving this problem of differing methods of present-
ing the same information is to limit the mode of response on the question-
naire itself. In this case, the respondents could be forced to answer

34

Here some coding can be employed to ease the key word search. One

may alter the responses such that they all are word-phrases of one type.

In this case, "I manage a bank" would be coded as "bank manager."

Or one could alter the responses such that they all are word-phrases

of three types (subject, verb, direct object). Examples would include "I

teach school," and "I manage a bank," In this case, thesauri for key

word searches could number three, one for each type of key word-phrase.

Later (Chapter Four) it will be shown how these types of thesauri may be

combined in analysis. Of course in some instances one might not wish to

include all word-phrase types in the analysis. For example, in the above

case, all responses will have "I" as their subject. Hence, one would most

probably delete this word-phrase type, as it makes no sense to categorize

over a constant response.

Generally speaking, one should minimize the amount of coding performed

on the data. It is better to have data of three types of word-phrases and

never categorize on one type than it is to code it into two types and la-

ter decide upon a three type analysis.

It seems safe to pay that in most situations, no more than four types

of word-phrase will suggest themselves (subject, verb, direct object, in-

direct object).
1

One may however use as many word-phrase types as one

deems necessary. This is the researcher's option, based upon his analysis

with a complete sentence, employing subject, object, and verb. This solu-
tion to the problem is, unfortunately, not always feasible, due to either
the nature of some questions or the nature of some respondents.

1An exception to this is the case of facet analysis, which does not
utilize grammar as its basis for word-phrase formation (see Chapter Four).

35

of the situation.

A word of caution is necessary here. There is a point at which the

danger in information loss due to coding is offset by expense and the un-

availability of coders sufficiently competent in grammar to handle multi-

type word-phrase codes. This problem has plagued programmers in many at-

tempts at creating content analysis programs (cf. Stone, Dunphy, Smith

and Ogilvie, 1966; pp. 67-206). STGPROC is not intended as a content

analysis program. In its use in categorical analysis it does sacrifice

some information for ease of comprehension and efficiency. The amount of

information loss is determined by the type of interrogative under exami-

nation as well as by the coding decisions of the researcher.
1

Coders and the Transcription System

It appeared that the new system of preparing data would likely have

effects upon those hired to perform this task. Therefore close attention

was paid to the persons working under this new system during the first six

months of data transcription for the CASEA Attributes Projects. This

transcription was the first instance of actually utilizing the STGPROC

system.
2

Observations of the workers were noted and later cross-checked

by means of informal interviews and a formal questionnaire. Because of

the small number of workers (ranging from three to eight during the course

of the job) and the lack of control groups, findings are not intended as

1
A coding system actually utilized with STGPROC will be described indetail later in this manuscript.

2
See Chapter Six for a description of the on-going data analysisbeing performed upon this transcribed data.

36

scientifically valid conclusions. Interesting results did emerge, how-

ever, and will be presented in the following discussion.

Although work was begun with a total of three women p.eparing data

during the day and double checking their results each morning before go-

ing on to the preparation of new data, it was soon learned that this sys-

tem was not viable. The women made many errors at first and used the

double checking process to help establish their own informal "pecking or-

der." Since other workers were soohc'to be introduced to the situation,

it was felt that work would progress more smoothly by appointing two of

these women as "double checkers" and physically removing them from the

room, while at the same time introducing two new women to the business

of data preparation. The double checkers were given their own room and

told that any error in the data as finally recorded (less key punch er-

rors) were their responsibility.

In this manner a status system was deliberately set up. The origi-

nal worker not given the job of double checker was automatically in charge

of the data preparation and all training of novices that this entailed.

Although she still felt some resentment that others were chosen as double

checkers, she had her own universe to control, and the novices kept her

budy reaffirming her own position.

The double checkers group seemed to have no internal status problems,

possibly due to their individual personality characteristics. They, how,.

ever, felt acutely the added responsibility their position placed upon

them.

Since this is not a focused small group study of interaction patterns,

I shall refrain from commenting further upon specific problems and adjust-

37

meats the workers encountered during their employment. I do feel it

necessary however to point out that interactional patterns probably had

something to do with the workers' reported job satisfaction. It is also

important to note that these workers were aware that the data preparation

system was a unique one, although they were not aware they were to be

studied in relation to the system, they were well aware of their experi-

ence. Therefore, there may well be some "Hawthorne effect" built into

worker responses. The author is aware of this and has attempted to tem-

per the workers' responses with his own and others' observations of

worker behavior during the six month employment period.

It was recognized that in the research process, those persons em-

ployed on the lower or less skilled levels, or persons who have nothing

to gain or lose by the total research effort, or who do not operate with-

in the professional ethos, may not be as intellectually conscientious in

the performance of their jobs as might be hoped for.
1

Although human

error will always be a factor in any human endeavor, it seemed probable

that performance might be strengthened by a "tying in" of those lower

level nonprofessionals to the research process. This was attempted with

the project workers in two manners: (1) creating an awareness of the re-

search process by explaining why.things were to be done as they were; and

(2) creating anxiety by delegating judgmental authority and responsibility.

Actually, it is more legitimate to say that the transcription system

necessarily led to more judgmental decisions on the part of the workers

1From a conversation with Howard S. Becker in October, 1968; this
assumption seems to have been generally accepted, mainly in the area of
survey research. (See also Hanson, Robert and Eli Marks, 1958.)

and that these decisions, being machine checked, were always subject to

outside verification. Further, the fact that this was a new system led

to questions and a continuing interest in the research project. As the

above factors were noted, along with the increased efficiency of worker

performance, actual planning was effected to help perpetuate this psy-

chological state.

Although the majority of the workers felt that the transcription sys-

tem was no more difficult than standard coding systems they had been pre-

viou-Sly subjected to, they felt a good deal more anxiety in handling the

new system. This was explained as having to do with the need to often

use their own judgment, rather than look up answers in a codebook. Gen-

erally, they were all quite aware that their errors, both judgmental and

clerical, would be detected. The workeva seemed to enjoy taking on re-

sponsibility and prOfessed satisfaction with their jobs, both in terms of

individual achievement and in terms of on-the-job relations.

With the exception of one, the workers all felt that they learned LI

more about the research process while on this project than while on any

other project upon which they had worked. They understood the re-aeon be-

hind string processing, claiming in one case that not only is it good

"not to put words in people's mouths" (referring to open-ended questions

on the instrument) but also that in coding it is more legitimate to just

transcribe the answer as it appears than to have to place it in a pre-

defined codebook category. Two were specific on this point. They admit-

ted great amounts of error in this "fitting-into-categories" type of

35

coding. Comments of this sort suggest a relatively sophisticated level

of understanding of the research process and a concomitant interest in it.

Although it is impossible to calculate an exact error rate for the

project, due to the type of data being transcribed, two things may be

noted: (1) the error rate decreased sharply after the:first two weeks of

transcribing, then decreased more slowly as it reached quite low levels;

(2) in the last set of data punched, out of 42 respondents there were 12

detected errors, one of which was definitely a key punch error. This,

with an average of five and one-half data cards per respondent, is a

figure to marvel at.

In conclusion, let me state that those who worked with the transcrip-

tion system seemed tied into the research process more. They were inter-

ested in what they were doing and anxious not to make mistakes. With the

double checking method, few errors were actually made, anxiety was kept

at a high but tolerable level (especially for the double checkers), and

job satisfaction and morale seemed high. A last and certainly important

point: the workers generally did not feel as though the transcription

system was any more difficult to handle than normal coding systems.

In setting up a work situation, allow me the following recommenda-

tions: (1) a training session in the use of the system and why it is be-

ing used to be immediately administered; (2) the analogy of a code book

be supplied each worker, with examples of how each question is to be

transcribed; (3) a double checking system be set up, preferably with

1
This supports Sussman and Haug's finding of up to 18 per cent error

rate in this type of coding. They also report the results of another
study in which up to 20 per cent error was detected. (Sussman, Marvin
and Marie Haug, 1967)

double checkers physically isolated from transcribers; (4) a supervisor

be nearby as much of the time as possible to answer any questions that

might arise. These recommendations do not vary much from standard coding

instructions; however, if they are not followed, complications are bound

to arise. Although many errors in standard coding will not retard the

physical research process (even as they cause unknown bias in results),

with, the transcription system much of the same type of error will halt

the research process at the machine stage until it hc.a been corrected.

Thus it behooves the researcher to be as meticulous as possible in the

early stages of data transcription. Care will pay off in ease of data

manipulation later in the research process, as well as in assurances as

to the validity of final reported results.

Summary

This chapter began by making the basic distinction between coding

and transcription. Coding was defined as the process of resymbolizing in-

formation, while transcription was defined as the transference of a set

of symbols from one medium to another. It was pointed(ottAhatLxoding

could be made more efficient if performed by computer and that STGPROC

was a program which would allow this.

In turning to the process of transcription, the concept of delimiter

symbol was introduced and defined as any symbol that divides or marks

symbolic information at points significant to the ordering of this infor-

mation such that it may be comprehended by one familiar with the utilized

symbol system. It was noted that no symbol likely to appear in content-

informational symbol strings should be used as a delimiter symbol. Fi-

nally, the form in which delimiter symbols are to be introduced .co STG-

PROC was covered and an example was given.

The concepts of response type (types of information given) and sub-

response (information bits of the same type) were covered. The applica-

tion of these concepts to STGPROC was discussed and examples were given.

At this point the transcription system itself was introduced along

with five general rules governing the transcription process. Examples

were presented as well as the actual transcription of these examples, uti-

lizing the five rules of transcription.

After a discussion of the keypunching of instruction cards and traniA-

scribed data, three special considerations of the system were identified:

(1) irregular interrogatives; (2) identification of modes of significa-

tion; (3) key word searches. The chapter concluded with a discussion of

actual coder reactions to the transcription system and suggestions as to

means of setting up this system effectively.

At this point the researcher should be able to plan his data collec-

tion with an eye to transcription, as well as being able to set up both

the transcription process and the work situation. In the next chapter,

the main program STGPROC will be presented. At its conclusion the re-

searcher should be able to perform a data run through STGPROC, utilizing

the data he has learned to transcribe by study of the present chapter.

CHAPTER THREE

THE MAIN PROGRAM

The STGPROC main program is reproduced in Appendix One along with

comment cards and statement card numbers to aid comprehension. When re-

ference is made to the main program, statements will be identified by

statement card numbers.

The function of the main program is to: (1) assign values read from

the instruction cards to the variables and storage arrays necessary for

the program run; and (2) read the transcribed data and to arrange it in

an order such that data manipulation and automatic coding may be per-

formed. In order to accomplish this, all aspects of the data must be

first chebked in order to alleviate: (1) transcription errors; (2) the

mis-ordering of data (if it appears on cards); (3) programming error in

reserving array space for the data (see Chapter Two). Upon the research-

er's signal, any or all of these aspects can be checked.

Once the above checks have been made, one can be certain that the

only errors remaining in the data are spelling errors. These errors are

automatically checked for in the manipulative subprograms. Hence one may

deactivate the check procedures after a first "error run" through the

data (in order to save programming time) and activate the desired manipu-

lative procedures for analysis.

Before describing the main program in more detail, I shall explain:

(1) the concept of procedures, and (2) the working of the PL/1 string

functions. This is necessary in order for the researcher to understand

in general how the program works and specifically how to adapt new pro-

cedures to it.

Procedures

In general, a procedure is a set of programming statements designed

to accomplish a particular objective. The objective of a program as a w

whOle (the main objective) is successful program execution. However,

there are intermediate results also to be performed. These results can

be obtained directly by statements in the main program or they may be ob-

tained by the execution of other programs subordinate to the main program.

Such subprograms are known as procedures. (The main program is also a

procedure--in this case the procedure STGPROC. However, other procedures

exist in the total program, subprograms such as EPROR CHECK which obtain

specific intermediate objectives for the larger main program.) Thus a

PL/1 program consists of two kinds of procedure; a single main procedure

and any number of subprograms (or subroutines), each of which is also a

procedure.

During the course of program execution, the main procedure may "call"

subprograms, and the subprograms may "call" other subprograms. "Calling"

a subprogram is the process of transferring control to it while suspending

execution of the main program. When the subprogram has obtained its in-

termediate results, control is returned to the main program which then re-

sumes execution at the point following the calling statement. A subpro-

gram may be called as many times and from as many places in the main pro-

gram as required.

4.4

In terms of the program STGPROC (see Appendix One) there exist one

main prodedure and 12 subprograms (this does not include the five manipu-

lative and statistical subprograms to be discussed in Chapters Four and

Five). These procedures are arranged in the order shown in Figure V.

Figure VI shows how the procedures are called, rather than how they are

physically assembled in Appendix One.

In examining Figure VI, it is evident, for example, that PRGM calls

BREAK and that BREAK calls ERROR CHECK, DATA PRINT, AND PROCCGALL. .Fur-

ther, PRGM also calls PROC. CALL which in turn calls the manipulative and

statistical procedures. A procedure may call any other procedure that is

entirely included within it, or it may call any upon the same "level" as

itself. However BREAK could not, for example, call STGPROC.

ERROR CHECK, by activating the ERROR RUN option, may be called to

check data errors. DATA PRINT, by activating the PRINT RUN option, may

be called to output all data for observation. If an error run has already

been accomplished, then PROC CALL may be called to activate the manipula-

tive and statistical procedures. SUB, by activating the SUBSECTION op-

tion, may be called to output the totals of all data stored in the mani-

pulative and statistical subroutines up to that point and to initialize

all storage values to zero in anticipation of building a new set of totals

with the following data. Finally, the activation of procedures in STG-

PROC is controlled by the insertion of instruction cards in the program.

The instruction cards will be covered later in this chapter.

The String Functions

In general, to get a flavor of why string processing is an advance

415

Figure V: Arrangement of STGPROC Procedures CA)

STGPROC

rLESBLKS

LEND LESBLKS

PRGM

rREARR

LEND REARR

rGUT].

LEND GUT],

GUT2

LEND GUT2

rGET

LEND GET

PROC CALL

LEND PROC CALL

ISUB

LEND SUB

rRANK

LEND RANK

Manipulative and Statistical Subroutines

rBREAK

LEND BREAK

rERROR CHECK

LEND ERROR CHECK

DATA PRINT

LEND DATA PRINT

END PRGM

END STGPROC

Figure VI: Arrangement of STGPROC Procedures (B1'

" STGPROC

-PRGM
_....j LESBLKS

-END LESBLKS

_...
_-GUT1

.END GUTS.

-BREAK GUT2

ERROR CHECK lEND GUT2

1-END ERROR CHECK ISUB

TDATA PRINT lEND SUB

'LEND DATA PRINT

PROC CALL

END PROC CALL

-END BREAK

.END PRGM

END STGPROC

46

SPSS

ITEM CT LEND SPSS

END ITEM CT RANK

END RANK
jCLASSIFY

1- END CLASSIFY

-SOCIO

-END SOCIO

-FACT AN

-END FACT AN

REARR

END REARR

4.0

in computer technology, let me discuss briefly how the string functions

of the PL/1 programming language work. There are three essential func-

tions. One (LENGTH) determines how many characters a string contains.

INDEX can match any string pattern with any other and return a value. If

the value is zero, the match was unsuccessful. If the value is greater

than zero, it is the position in the string in which a match is being

sought in which the pattern begins. For example, if one wished to deter-

mine if 'ECONOMIC' were in the string 'SOCIAL AND ECONOMIC CONSEQUENCES',

one would use the INDEX function thusly:

X = INDEX ('SOCIAL AND ECONOMIC CONSEQUENCES', 'ECONOMIC');

The match would succeed, and X would equal 12.

The last function to be discussed is SUBSTR. This function will

break up a string in any way specified, creating a new string. For ex-

ample, if one wished a string containing 'ECONOMIC' and had a string con-

taining 'SOCIAL AND ECONOMIC CONSEQUENCES' one would utilize the SUBSTR

function:

T = SUBSTR ('SOCIAL AND ECONOMIC CONSEQUENCES', 12, 8);

Here, the "12" indicates the beginning position of the new string

and the "8" signifies the length of the new string in characters. In this

case, one wished the new string to begin at position "12" in the base

string and extend "8" characters in length.

All the functions can howibe put together in a small program segment

to illustrate their use:

Q = 'ECONOMIC'; Q contains the string ''ECONOMIC'

R = 'SOCIAL AND ECONOMIC R contains the string 'SOCIAL AND
CONSEQUENCES'; ECONOMIC CONSEQUENCES'

A = LENGTH (CI);

X = INDEX (R,Q);

T = SUBSTR (R,X,A);

'48

A contains '8' or the length of
the string 'ECONOMIC'

X contains '12'

T contains 'ECONOMIC'

This illustrates the power and generality of the string functions.

It should now be more clear why with PL/1 string processing, it is a rela-

tively easy task to match responses, creating sociometric matrixes for

statistical analyses, as well as creating category systems based on re-

searcher-compiled thesauri which can be manipulated to the researcher's

content.

Instruction Cards: The Main Program

In applying the main program, the researcher need only concern him-

self with 14 instruction cards.1 Seven of these instructions have been

covered in Chapter Two. They determine the number and size of the rer. .n

spouses to be found in the data as well as the types and levels of deli-

miters utilized. The seven remaining instruction cards determine whether

or not five specific options are active during the program run. To acti-

vate an option, the appropriate instructions are included in the instruc-

tion card set. If the option is to remain passive, the instruction cards

1
Every computation center has its own type of program - .independent

con_ trol cards which need accompany any job submitted to the computer.
In addition to the instruction cards, the researcher has to also deal with
job control. Appendix Four offers the example of STGPROC job control as
presently employed at the computation center of the University of Oregon.
This job control will vary, however, and the researcher is urged to seek
consultation upon this matter before attempting his first program run.

49

are not included. The general forms of the seven instruction cards are:

4) ACTIVATE PRINT RUN.

5) ACTIVATE ERROR RUN.

6) ACTIVATE SUBSECTION RUN.

7) ACTIVATE SELECT-IN RUN, NUMBER OF RESPONDENTS = n.

44) SELECT-IN RESPONDENT ID'S = s
1

, s
2 "

s
n

.

8) ACTIVATE SELECT-OUT RUN, NUMBER OF RESPONDENTS = n.

43) SELECT-OUT RESPONDENT ID'S = si , s2 , s
n

.

where

n = the number of respondents

s = identification string

After having included those of the 14 instruction cards deemed neces-

sary, and having transcribed and keypunched the data, the researcher is

ready for a program run. Only one more thing is needed. The final data

card must always look as follows:

01ENDfirst-level-delimiter

Or in the continuing example of delimiters utilized in this monograph:

01ENE4

The above characters begin in the first column of the data card. The

"01" signifies that it is the first card of a new record. The "END" sig-

nifies that all the data have been processed. When the identification

string is "END;" control is transferred to the end of STGPROC. If mani-

pulative subroutines are involved, totals are then acted upon and output.

I am, however, not concerned with the manipulative subroutines at this

stage in the explanation. These subroutines will be dealt with in the fol-

lowing chapters.

150

All operations necessary to activate the main program have now been

covered. The researcher may choose whether he wishes to activate PRINT

RUN and/or ERROR RUN in conjunction with his first main program run; how-

ever, at this stage, activation of both is the most logical course. This

creates the first data run, checking on all possible errors in the data

and printing the data itself in a recognizable form.

STGPROC Operations

Some persons are curious and others already know what goes on inside

the computer. In either event, an attempt at explaining every step in the

STGPROC program would only be tedious and time consuming. Those who know

programming languages may follow the process upon the program and comment

cards reproduced in Appendix One. For others, the general explanation be-

low of how the program deals with a data card should prove illuminating.

In any case, one does not need be a mechanic in order to drive an automo-

bile (especially if a mechanic may be easily summoned).

Let us assume the following data card is being processed by STG-

PROC:
1

'

2

O1JONES1 $ 1#FIELDS #THONPSON $2 # TEACHER $

1Prior to this step the program has read the instruction cards and

inserted the given values in the appropriate variable and array declara-

tions; hence it is now ready to process a data card. It should be noted

that the instruction cards are processed in essentially the same manner

as the data cards. A general comprehension of this process will encom-

pass both instances.

2This data card has the following information upon it: (1) This is

the first card of the record; (2) the respondent is "JONES1"; (3) the re-

sponses to question one are two subresponses of the same response type,

"FIELDS" and "THOMPSON"; (4) the response to question two is one subre-

sponse of one response type, "TEACHER."

51

SA)

The following are steps taken to break up the above string. The dis-

cussion is general and does not include the many nuances built into the

program to account for all logical variations upon structure, many of

which were discovered only through research experience. In this instance,

simplicity serves the desired purpose.

A. The above string of characters is "read" and assigned to the vari-

able CSTG. CSTG is the variable that holds in turn each respon-

dent's data until it is completely processed by the program--the

variable performs a memory function:

CSTG = 01JONES1 $ 1#FIELDS #THOMPSON $2 # TEACHER $

B. The card continuation number is assigned to the variable CONT NUM:

CONT NUM = 01 (the first two characters of CSTG)

C. The identification string is assigned to the variable TD and the

blanks are automatically removed:

TD = JONES1

D. If CONT NUM equals "01' then ID equals TD. This two-step is per-

formed because of the probability of more cards than one existing

in the same record. It aids in determining if all the identifi-

cation numbers in a record are the same or (if they differ) that

the cards are out of order.

ID = JONES1

E. CSTG is now assigned to TSTG, in order to ;Free CSTG for data from

the next data card. The continuation number and the identifica-

tion string are left behind on the transfer.

1These steps correspond roughly with statements 941-1014 of STGPROC

(see Appendix One).

52'.

TSTG = l$FIELDS #THOMPSON $2 # TEACHER $

F. QUES is formed. This is the question string and includes all char-

acters up to the next first level delimiter. This first level de-

limiter ($) in QUES is changed to a second level delimiter (#) for

purposes of later processing.

QUES = l#FIELDS #THOMPSON #

G. TSTG now contains what is left after the removal of QUES.

TSTG = 2 # TEACHER $

H. The question number is assigned to the variable QNUM1, blanks are

automatically removed, and QNUM1 is set equal to QNUM2 (necessary

because of conversion procedures).

QNUM1 = 1

QNUM2 = 1

I. QUES now contains what is left after the removal of QNUM1.

QUES = FIELDS #THOMPSON #

J. The program is now ready to call the subroutine BREAK to break up

the string QUES/'and lodge its componant parts in the apprppriate

cells of QUES ARRAY.
2

At the same time, if ERROR RUN is active,

it will check QUES for any possible delimiter errors.

QUES ARRAY (1,1) = FIELDS

QUES ARRAY (2,1) = THOMPSON

K. When all operations are performed, control returns to step E,

1
All leading or following blanks in the data are automatically re-

moved at this point in the program.

2
QUES ARRAY is the array created by the program to store the ques-

tions broken down by subresponse and response type,

where TSTG id how:

TSTG = 2 # . .TEACHER $

L. Step F then results in:

QUES = 2 # TEACHER #

M. Step G then results in:

TSTG = '' (or the null string)

N. Step H then results in:

QNUM1 = 2

QNUM2 = 2

O. Step I then results in:

QUES = TEACHER #

P. BREAK is again called and the string QUES is broken up into

QUES _ARRAY in the appropriate manner:

QUES ARRAY (1,1) = TEACHER

Q. At this point there is no data left in TSTG. The next card is

read into CSTG. If its continuation number (CONT NUM) is numeri-

cally larger than the preceding continuation number (and the iden-

tification strings are the same) then work continues upon the same

record. If the continuation number is numerically smaller than

the preceding continuation number (and the identification strings

are the same) then an error message results (as the cards are out

of order). If the continuation number is "01" (and the identifi-

cation strings differ) then the previous data are printed and/or

stored as directed, and the process begins again for the next

record.

54

PRINT RUN

If PRINT RUN is activated, it will automatically introduce its out-

put by means of a heading page with the following printed upon it:

FOLLOWING PAGES ARE PRINTOUT OF QUESTION RESPONSES

If PRINT RUN is in operation, the following type of output will re-

sult, one page skipped between each respondent. For the example presented

above, if that were all the data for JONES1, the output would be as fol-

lows:

QUESTION # 1:

QUES ARRAY (1,1) = 'FIELDS'

QUES ARRAY (2,1) 'THOMPSON'

QUESTION # 2:

QUES ARRAY (1,1) = 'TEACHER'

ID = 'JONESl'

This type of output gives one a check on just what the data look like

in a raw form, as well as being helpful in detecting spelling errors that

may have crept in. PRINT RUN is probably best utilized in conjunction

with the ERROR RUN option.

ERROR RUN

If ERROR RUN is activated, it will automatically introduce its out-

put 17 means of a heading page with the following printed upon it:

THE FOLLOWING PAGES ARE ERROR CHECK ON DATA

There are two major types of error that this subroutine checks upon.

The first is whether the researcher has, by means of the instruction cards,

set aside enough space in STGPROC's working arrays to hold the data being

processed. The second is whether the transcription of the data conforms

to the rules implicit in the researcher's setting up of delimiters in the

appropriate instruction cards.

Errors of Type Ore

There are two basic error messages subsumed under this type:

A. Dimensionality. The error routine will print out the number of

the question upon which this error arose and the present size of the "de.

linquent" dimension. It will then instruct the researcher to increase the

size of this dimension as it appears in instruction card 29.
1

Output Example:

ERROR: IN QUESTION # 2 THERE IS RESERVED SPACE FOR ONLY 5 SUBRE-

SPONSES. THIS NUMBER HAS HERE BEEN EXCEEDED. INCREASE THE APPRO-

PRIATE VALUE IN 'NUMBER OF SUBRESPONSES' INSTRUCTION CARD # 29.

B. Character String Size. The error routine will print out the num-

ber of the question upon which this error arose and give appropriate in-

structions as to how to correct it.

Output Example:

ERROR: QUESTION # 3 CONTAINS ONE OR MORE STRINGS LONGER THAN THE

1If ERROR RUN is not activated, no error will ensue and any further
subresponses than there are spaces allowed for will be dropped from con-

sideration. In this way, should the researcher wish to process only a
portion of a response (for example, the first three subresponses of the

fourth question), then he need only set up the instruction card "SUBRE=.1

SPONSES PER QUESTION" to handle three subresponses for the fourth ques-
tion, and only those three will be processed. This saves computer time

as well as creating more flexibility in the manipulative process.

LENGTH SPECIFIED. INCREASE SIZE OF °RESPONSE LENGTH° IN INSTRUCT:

TION CARD # 3.

Errors of Type Two

A. Wrong Delimiters Used. The error routine will identify the ques-

tion, the erroneous delimiters and their correct replacement.

Output Example:

ERROR: DELIMITER % WAS USED IN QUESTION # 3. REPLACE WITH DELIMI-

TER #.

B. Missing Delimiters. The error routine will identify the question

and the type of missing delimiter.
1

Output Example:

ERROR: IN QUESTION # 3 ONE OR MORE DELIMITERS OF TYPE # ARE MISSING.

C. Merged Questions. This is a special case of missing delimiters.

When the delimiter between questions is missing, it creates the grave pro-

blem of a machine attempt to fit two questions into QUES ARRAY while the

array specifications are set for only the first of the two merged ques-

tions. This error routine will identify the "left-hand" question in the

pair and give the proper delimiter and its placement.

1This routine also lists (previously to the error message) the num-

ber of delimiters used per response type, so that the user can immedi-
ately identify the delinquent response type. For example, if a delimiter
was missing from the third response type, the message might appear as

follows:

NUMBER OF DELIMITERS PER RESPONSE TYPE:

COT(l) = 12 COT(2) = 12 COT(3) = 11

Output Example:

ERROR: TWO QUESTIONS MERGED: QUESTION # 3 AND THE FOLLOWING QUES-

TION. DELIMITER $ SHOULD PROCEED THE SECOND QUESTION THUSLY:

CORRECTED STRING: $4#EXAMPL

D. Response Types. A special case of the above. If too many re-

sponse types (see Chapter Two) appear in a question string, it may in some

cases be interpreted as a merged question error. Hence, for each instance

of the above (C) error messageo the following also appears.

Output Example:

IF CHARACTERS IMMEDIATELY TO THE RIGHT OF $ IN THE CORRECTED STRING

DO NOT SIGNIFY A QUESTION NUMBER THEN ERROR IS THAT OF TOO MANY RE-

SPONSE TYPES IN QUESTION # 3 FOR THE NUMBER OF TYPES ALLOWED FOR IN

'RESPONSE TYPES PER QUESTION' INSTRUCTION CARD # 30.

E. Too Many Delimiters. If there are too many delimiters of the cor-

rect type, then dimensionality will be violated and the appropriate error

message (as covered above) will be generated.

The above are the types of errors covered by ERROR RUN. To the best

of the author's knowledge, outside of spelling errors, they are the only

error types not automatically machine corrected or flagged, that can oc.
112

cur.

In conjunction with PRINT RUN, these error messages will appear upon

/Machine flagged errors would include problems in compiling a new set
of faultily punched program cards or incorrect job control cards.

2
There is one other type of error, briefly mentioned beforehand. STG-

PROC automatically determines that the data cards are in correct order be-
fore commencing processing them. If they are not, appropriate error mes-
sages to that effect are generated.

58

the appropriate data printout page, along with the respondent's ID

string.
1

Hence it is an easy task to locate the data card upon which the

problem appears (if that is the case) and correct it. In any case, the

appropriate corrective action is either specified or implied.

SUBSECTION

If SUBSECTION is activated, it will automatically introduce each sec-

tion of respondent data defined as complete by the researcher with a head-

ing page with the following printed on it:

NEXT SUBSAMPLE

The researcher defines a section of data as complete (as a subsample

of respondents) by enclosing it within blank IBM cards. If SUBSECTION is

active, the subroutine will trigger the totalling and output functions of

the manipulative and statistical subroutines for the data STGPROC has pro-

cessed up to the reading of a blank IBM card. It then will initialize all

STGPROC storage variables and arrays to zero and commende building another

data set with the material following the blank card. SUBSECTION is best

utilized in conjunction with the manipulative subroutines, to create sub-

sample totals (such as respondent data totalled by each school studied).

Then, by deactivating SUBSECTION on a program run, one can arrive at the

grand totals (totals by all gchools studied).

lIf PRINT RUN is active, the error messages will appear along with
each respondent's printout of data in correct format. If PRINT RUN is
not active, then the printout will consist solely of the ID strings of
those respondents in whose data there were detected errors plus the ap-
propriate error messages.

59

SELECT-IN and SELECT-OUT

Each of these options is the obverse of the other--each concerned

with a specified subset of thp data. If SELECT-IN is activated, only

those respondents whose identification strings are listed in instruction

card number 44 be processed by STGPROC on that program run. If

SELECT-OUT is activated, those respondents whose identification strings

are listed in instruction card number 43 wiJI, be the only ones not pro-

cessed by STGPROC on that run.

These two options make it possible to process many differing subsets

of the data without having to physically manipulate the data cards (or

tape) at all. They add great flexibility to the program--taken in con-

junction with SUBSECTION they allow the processing of amspecific re-

spondent or combination of respondents whatsoever from a single entry up

to the total sample size.

An example of the instruction cards necessary to activate these runs

follows:
1

'

2

8) ACTIVATE SELECT-OUT RUN, NUMBER OF RESPONDENTS = 3.

43) SELECT-OUT RESPONDENT ID'S = JONES1, SMITH4, SMITH', 'ANDREW.

The Instruction Cards

A great deal has: been said already concerning the instruction cards,

1
The instructions for SELECT-IN are set up in exactly the same fash-

ion.

2
Note that if the symbols equals (=), comma (0, or period (.) are a

part of any identification string listed, they are to be enclosed in sin-
gle quotes in the ID lists. In this case, the third entry in the ID list
in instruction number 43 is actually "SMITH,ANDREW," but is entered as it
appears above.

6 .0

yet a further word of explanation is necessary at this point.

The options the researcher wishes to include in his STGPROC run, and

the values he wishes to give to the variables attending that run are bits

of information that have to be entered into the STGPROC program before it

begins processing the respondent data. The way this information would be

entered by a computer programmer would most probably be by manually modi-

fying statements in the program itself. However, this method is tricky.

Cards in the program might accidentally get shuffled. Or the entries (es-

pecially those of novice programmers) might not be in their correct coded

form or might not be complete. Hence it would be greatly desirable if

there were no need of altering the program at all.
1

The instruction cards are a means to the above end. They:Are entered

as data to the program and are processed prior to the processing of the

respondent data.. Their function is to specify the values necessary ,r

the STGPROC run, and to do so in a fashion that is clear and unambiguous

to the user.

It should be noted that each instruction begins with a number (except-

ing the thesaurus cards--which are only portions of a numbered instruction

fsee Chapter Four_7). As the instructions are logically presented in

this monograph, it is the case that these numbers are not in numeric or-

der. This is because of the way in which the cards are to be processed

by STGPROC. However, pripr to submitting the instruction cards, they

should be manually arranged Edda that they are in numeric order. This is

a most important step. STGPROC will not operate successfully if this is

'Except to enter new subroutines, which should be done by an experi-

enced programmer.

61

not done.

There are a total of 46 instructions (reproduced in Appendix Three).

Any or all of these may be included in a STGPROC program run (however, it

will seldom, if ever, be the case that all the options will be utilized

during a single run). The instruction cards are entered in a data file

labelled "IN." The respondent data are entered in a data file labelled

"INDATA." Instructions for entering the data in these files are given in

Appendix Three.

Summary

This chapter has attempted to explain the STGPROC main program with

its subroutine options PRINT RUN, ERROR RUN, SUBSECTION, SELECT-IN, and

SELECT-OUT in such a manner that the researcher will be able to utilize

the program. At this point, he should be ready to transcribe his data

(Chapter Two) and set up a STGPROC program run for an error check and

data printout (Chapter Three).

The researcher should also be aware, in a general sense, of how the

STGPROC main program manipulates data, breaking it up to fill the appro-

priate cells of QUES ARRAY. The first part of Chapter Four will illus-

trate how sample data would look stored in QUESARRAY, as this concept is

integral in understanding how the manipulative subroutines function.

In brief, to operate STGPROC, the researcher must determine the form

of fifteen instruction cards.
1

These cards take the following general

1
The last instruction card simply signals the end of the instruc-

tion card set.

00.

1) NUMBER OF DELIMITERS = n.

2) NUMBER OF QUESTIONS = n.

3) RESPONSE LENGTH = n.

4) ACTIVATE PRINT RUN.

5) ACTIVATE ERROR RUN.

6) ACTIVATE SUBSECTION RUN.

7) ACTIVATE SELECT-IN RUN, NUMBER OF RESPONDENTS = n.

8) ACTIVATE SELECT-OUT RUN, NUMBER OF RESPONDENTS = n.

27) MAXIMUM LENGTH OF ID STRING = n.

28) IDENTITY OF DELIMITERS = d
1

, d
2

, do .

29) SUBRESPONSES PER QUESTION = s
1 '

s
2

30) RESPONSE TYPES PER QUESTION = t
1

, t
2

43) SELECT-OUT RESPONDENT ID'S = si , s2

44) SELECT-IN RESPONDENT ID'S = s
1 '

s
2

46) END OF INSTRUCTION CARDS.

el .

ti

n

s
n

s
n

62

The researcher must determine the correct job control (see Appen-

dixes Three and Four), and finally, he must be sure to place a data card

with the following characters upon it (beginning in column one) at the

end of his data:

OlENDfirst- level- delimiter

]Instructions one through three and 27 through 30 are explained in
Chapter Two. Statements four through eight and 43 and 44 are explained
in Chapter Three.

63

At this point the researcher is ready to run the error check upon his

data, getting it into shape for use with the manipulative subroutines.

Chapter Four presents three major types of manipulative subroutines, gives

working examples of each, and offers suggestions as to further possibili-

ties. Chapter Five presents the means of converting STGPROC results into

punched card data for use with statistical and factor analysis programs

as an integral part of its discussion of statistical subroutines and their

relation to STGPROC.

CHAPTER FOUR

THE MANIPULATIVE SUBROUTINES

As has been previously stated, many numbers of manipulative subrou-

tines may be written for STGPROC. By a manipulative subroutine, the

author i3 referring to a subroutine that deals with raw data, arranging

it in some logical order. This means that data output from manipulative

subroutines will be in the form of listings--be they categories, fre-

quency counts, or rank orderings. Mahipulative subroutines do not con-

cern themselves with statistical analysis. Their function is to prepare

the raw data - -to manipulative it and shape it to forms amenable to analy-

sis. Chapter Five will discuss modes of statistical analysis of STGPROC

data. The present chapter is concerned with manipulative subroutines

only.

There are-,three general forms of manipulative subroutine to be dis-

cussed: (1) those in which the response itself determines the data mani-

pulation; (2) those in which the researcher supplies the information which

determines data manipulation; (3) those in which the response to another

specified question determines the data manipulation.

Each of these general types of data manipulation will be discussed,

and an example of an operative STGPROC subroutine will be presented as il-

lustration for each type. The subroutine examples, along with comment

cards, are reproduced in Appendix One of this monograph. These subrou-

tines' may be utilized as they appear, or may be easily modified by one

6;5

with a modicum of programming experience. Alternatively, new subroutines

may be created to perform further data manipulation deemed significant by

the researcher but not covered in this monograph.

The Storage of Data in QUES ARRAY

As should be evident from the explanation of how the main program

STGPROC operates (Chapter Three), data from each question is stored in the

appropriate cells of QUES ARRAY.' This is the key to the operation of the

manipulative subroutineskil-each datum is identified by row and column sub-

scripts of QUES ARRAY.

The size of QUES ARRAY varies for each question and is defined by the

researcher by means of instruction cards 29 and 30. QUES ARRAY contains

both the maximum number of rows and columns of the response to be pros

cessed (Chapter Two). Figure IV in Chapter Two could well be a represen-

tation of QUES ARRAY for some question in a program run. This figure is

here reproduced in a slightly different form.

Figure VIII shows a QUES ARRAY with two columns and six rows. Note

that there is room for up to six subresponses, but that in this case the

respondent listed only three subresponses. With the data in thisvform,

it is a simple task to write manipulative subroutines to process it.

Whether the response cell is of response type one or two is determined

by the column subscript of QUES ARRAY. In the same manner, the number

of the subresponses can be determined by the row subscript of QUES ARRAY.

1
QUES ARRAY is an array, set up within the computer memory by, theL

STGPROC program, to store question responses, one at a time, in a manner
that allows them to be processed by the activated STGPROC program sub-
routines.

66

Figure Trr: Example of Data Stored in QUES ARRAY

1

2

3

5

6

1 2

SAUL FRANKS TECHNICIAN

MANNIE ROBERTS TECHNICIAN

FRED BENSON FOREMAN

Any manipulative subroutine can thusly keep perfect track of each

datum, having automatically indexed it for reference. Incidentally, when

the subroutine searches QUES ARRAY for data, it saves time by discontin-

uing its search when encountering null strings (empty cells). Thus in the

above example, a data search for subresponses would halt when row four was

encountered :1

In conclusion, the general procedure in terms of QUES ARRAY is:

A. The array is created by the program of a size to handle the spedified

1This is the reason that it is not a good idea to employ null entries

in the middle of a subresponse list. The manipulative rOutikesswill take

it as a sign of the completion of the subresponse list for that data type

and will not process further subresponses. Null entties are advisable ifv

placed at the end of subresponse lists, however, to same computer time

(see Chapter Two).

response.

B. Each cell of WES ARRAY is set equal to the null string.

C. The data for one response is lodged in WES ARRAY.

D. If a manipulative subroutine is active in conjunction with this re-

sponse, SUES_ ARRAY is searched for the desired data, which is trans-

ferred to the special storage of the subroutine in question.

E. If PRINT-RUN is activated, the data are printed as output.

F. WES ARRAY is collapsed.

G. The array is created of a size to handle the next specified response.

Manipulative Subroutine: Type One

This first type of manipulative subroutine concerns itself with cate-

gorization supplied by the question response itself. Essentially, given

a question with a multiple number of subresponses per respondent, this

type of subroutine yields a simple frequency count of the occurence of

each unique subresponse. This type of routine is especially useful in ek-

ploratory research when one has asked respondents to list as many items

as the respondent wishes from a universe of items unknown to the researcher.

ITEM CT Option: Activation

ITEM CT (see Appendix One, STGPROC statements 153-244) is the STG-

PROC example of the above type of manipulative subroutine. It can be set

up to independently manipulate as many questions as the researcher wishes

on the same data run. It also will perform upon whatever response type

within each question that the researcher specifies. Thus it is conceiv-

able that ITEM CT could be activated to perform upon every response type

of every question in the data during one data run.

There are five instruction cards that control the use of ITEM CT.

Their general form is as follows:

9) NUMBER OF ITEM CT RUNS = n..

10) ITEM CT LENGTH OF RESPONSE = 1 .

11) ESTIMATE OF MAXIMUM NUMBER OF DISCRETE ITEMS IN AN ITEM CT RUN

= e .

32) ITEM CT QUESTION NUMBERS PER RUN is ql
,

q2 ,
qn

32) ITEM CT RESPONSE TYPES PER RUN = t1 , t2 , to .

where

n = number of instances of the application of the subroutine to the

data in a program

1 = the character length of the largest datum to be processed

e = the estimate of the size of the largest list of discrete items

created by the subroutine

q = the question number of the data the subroutine is to be applied

to

t = the response type of the data the subroutine is to be applied to

For example, suppose one wished to produce two listings of items in

a STGPROC run by means of ITEM CT:

A. The character length for the first listing is 20 and the second is 30.1

B. The first listing is of those data found in question two, response type

four. It is estimated there will be 50 discrete items found.
2

1
These figures can easily be obtained by use of the table (shown in

Appendix Two) that lists the size of the character strings per question.

2Estimates are best if they are generous.

69)

C. The second listing being of those data found in question six, response

type one. It is estimated there will be 80 discrete items found.

In order to activate ITEM CT for these two runs, the following speci-

fic forms of the instructions must be inserted in the instruction card

set:

9) NUMBER OF ITEM CT RUNS = 2.

10) ITEM CT LENGTH OF RESPONSE = 30.

11) ESTIMATE OF MAXIMUM NUMBER OF DISCRETE ITEMS IN AN ITEM CT RUN

= 80.

31) ITEM CT QUESTION NUMBERS PER RUN = 2 , 6.

32) ITEM :CT RESPONSE TYPES PER RUN = 4 , 1.

Output

If, in instruction card 11, the researcher's estimate of the number

of discrete items to be found (e) is not large enough, the output from

ITEM CT will consist of:

ERROR: FOR QUESTION # 6, 'DISCRETE ITEM ESTIMATE =! IS NOT LARGE

ENOUGH. MAXIMUM REACHED ON ID # 0734.

If, however, a large enough estimate has been entered, the output for

each independent activation of ITEM CT will take the form of the following

example:
1,2

1
The number of respondents processed in this example is 25.

2
This output is of only one question on an interview schedule, that

question being, "List all position you have ever held within this school
system." In this hypothetical example there were 25 respondents and a
tptal of 50 positions listed.

ITEM CT SUBROUTINE: RUN # 1

ORIGINS OF NEW ITEMS

ITEM ID STRING

TEACHER '014

PRINCIPAL 0715

DIRECTOR 0715

CONSULTANT 0720

COUNSELOR 0724

COUNSILOR 0743

RANKED ITEMS

TOTAL CHOICES = 50

TOTAL CHOOSERS = 25

ITEM DISTRIBUTION % OF CHOICES % OF CHOOSERS

TEACHER 17 34: 68

COUNSELOR 14 28 56

CONSULTANT 10 20 40

DIRECTOR 4 8 16

PRINCIPAL 4 8 16

COUNSILOR 1 2 4

Considerations

In studying the output example for ITEM CT, three things should be

brought to attention.

A. Ilme"Origins of New Items" list aids in detecting spelling errors.

Each time a unique entry is encountered, it is listed under this heading

along with the ID number of the respondent who listed the item. Here,

"COUNSILOR" is obviously a spelling error. On the ranked :dislteribii;-;J:.

tion below the listing, it appears only once. Yet, a glance will reveal

the ID number on the record upon which this error appeared. It is now a

simple task to shuffle manually through the data to the specified record

and correct the error. Similar output exists for each of the subroutines

presented in this chapter.

13 The items are listed in rank order -- ranked by the number of times

they are mentioned by all respondents in the data AtibItCdtikihd. This is ac-

complished by the automatic internal calling of the subroutine RANK, re-

produced in Appendix One.
1 This subroutine may be called for any two or

three dimensional array set; one array of which contains character data

(ITEM as an example), the other of which contains numeric data (ITEM CIS

as an example). This subroutine is easily adaptable to more than three

dimensions; however, the majority of research purposes should be served

by the existing three dimensional limit. RANK is also utilized in the

CLASSIFY subroutine appearing later in this chapter as an example of a

type two manipulative oubroutine.

C. The "% OF CHOOSERS" column indicates the percentage of the respon-

1
STGPROC statements 127-152.

72

dents who choose a certain item. In the case of the above example, this

list is different than the "96 of Choices" list, as there were 25 responc=

dents and 50 choices made (an average of two responses per respondent).

If each respondent could make only one choice, these lists would be iden-

tical--the only instance in which this would be the case. The only as-

sumption underlying these listings that is important here is that a re-

spondent lists any certain item only once. If more than one entry of an

item is contained in any respondent's subresponse list, then the "96 of

Choosers" column of figures will not be accurate (although the "96 of

Choices" column will still be correct).

The subroutine ITEM CT is general, and seems highly amenable to in-

stances of preliminary investigation of samplings from unknown universes.

If, onitheoothetrlhEin4.:,the:.researchein has some ideas concerning the universe

and wishes to group data under some classificatory scheme of his chooSing,

he would be best off utilizing a manipulative subroutine of type two.

Manipulative Subroutine: Type Two

This type of subroutine concerns itself with categorization as sup-

plied by the researcher. Essentially, given a question with an unlisted

number of subresponses, this type of subroutine will classify these sub-

responses in any manner the researcher specifies.
1

This is an especially

important type of subroutine, as it allows: (1) multiple classification

of the same data with no coding; (2) the same classification of two or

IAn example of data to be utilized with this subroutine would be a
list of occupational hazards, which could be automatically classified in
any of a number of manners.

75

more sets of data. Hence, two major types of manipulation may be per-

formed: (1) on succeeding rata runs, a classification scheme may be built

and modified to most closely represent and reflect the data; (2) many

schemes, differing upon their bases of classification, may be simultan-

eously applied to the same data. The illustrative subroutine of this

type is CLASSIFY, and is reproduced along with comment cards in Appendix

One.
1

CLASSIFY Option: Activation

There are ten instruction cards to be manipulated by the researcher

to effect activations of the subroutine CLASSIFY. The general forms of

these statements are:

12) NUMBER OF CLASSIFY RUNS = n.

13) CLASSIFY LENGTH OF RESPONSE = 1.

14) ESTIMATE OF NUMBER OF UNCLASSIFIED RESPONSES = e.

15) NUMBER OF THESAURI UTILIZED = nt.

16) LARGEST NUMBER OF CATEGORIES IN A THESAURUS = nc.

17) LARGEST NUMBER OF ITEMS IN A THESAURUS CATEGORY = ni.

33) CLASSIFY QUESTION NUMBERS PER RUN = q1 , ci2

34) CLASSIFY RESPONSE TYPES PER RUN = t
1

, t
2

, t
n

.

35) CLASSIFY THESAURUS USED PER RUN = th
1

, th
2

, th
n

45) THESAURI DECLARATIONS.

THESAURUS (1).

CATEGORY (1) = c c
2

, c

1STGPROC statements 245-367.

CATEGORY (2) = c
l'

c2, c .

CATEGORY (nc) = cl,
c2,

c .
ni

THESAURUS (2).

THESAURUS (nt).

where

n = number of instances of the application of the subroutine to the

data in a program run

1 = the character length of the largest datum to be processed

e = estimate of the largest number of responses not covered by a

thesaurus

nt = number of unique thesauri declared in statement 45

nc = largest number of categories in a thesaurus

ni = largest number of items in a category

q z= the question number of the data the subroutine is to be applied

to

t = the response type of the data the subroutine is to be applied to

th = the thesaurus to be utilized on this application of the subrou-

tine

= item in the thesaurus

The Thesauri

In order to classify responses, the subroutine CLASSIFY utilizes re-

searchbra.categories as proposed in thesauri. A thesaurus is simply a list

of key word-phrases that the subroutine utilizes in attempted matches with

the data.
1

This list of words is stored in a three dimensional array, de-

fined in STGPROC as "THES."

Figure VIII:: Example of "THES" Array
2

1

2

1 2

I II

IMPROVE BUILD UP

SAVE PRESERVE

DESTROY TEAR DOWN

IGNORE

Figure VIZI shows a four by two by one array, containing key word-

phrases for possible matches with the data in seven of its eight cells.

(If a cell consists of the null string, no match is attempted.) Note

that, as in "QUES ARRAY," "THES" is composed of subresponses and response

types. Reading each row, one learns that it is composed of synonyms.

Hence, row totals become,the Irequency.counts for categories, each row

comprising a category. "THES" is set up in this manner, as there may be

many key word-phrases to be subsumed under the same category. Alter-

1
This is essentially the same process

the Descriptive Analysis Program; however,
make it many times more flexible than BIRS

2This thesaurus might be employed to classify answers to the ques-
tion: "What should local governmental attitudes be toward the central
business district?"

employed by the BIRS system in
the added features of STGPROC
(see Vinsonhaler, 1967).

76

natively, there may be only one.
1

In this case, a "THES" array with n

by one by one dimensionality may be set up. The third dimension of "THES"

is simply the number of unique two dimensional thesauri that have been set

up. In the case of Figure V311:4, the third dimension of "THES" takes the

value of one.

The thesauri are entered in STGPROC by means of instruction card 45.

In the example shown in Figure MX, the instruction to enter the one the-

saurus would take the following form:
2

ExAMOde One

45) THESAURI DECLARATIONS.

THESAURUS (1).

CATEGORY (1) = IMPROVE, BUILD UP.

CATEGORY (2) = SAVE, PRESERVE.

CATEGORY (3) = DESTROY, TEAR DOWN.'

CATEGORY (4) = IGNORE.

If other thesauri are to be entered for the same program run, their

entries follow in numerical order by thesaurus (within thesaurus, by cate-

gory). An example of the entry of two thesauri follows:3

1
For example, in Figure VIII, the entries "IMPROVE" and "BUILD UP" are

the synonyms comprising category one, however category four has only one
entry, "IGNORE."

2Again, as in the case of de.aaring delimiters and the case of de-
claring identification strings, if any of the three symbols, equals (=),
comma (0, or period (.) are to be a part of a thesaurus item, the sym-
bol must be enclosed in single quotes.

3Note how simple it is to change the elements in the thesaurus. By
leaving blank spaces between item declarations, it is an easy matter to
change item entries within any single category without having to repunch
the entire instruction card. Furthermore, whole categories can be changed
by simply changing the number associated with the category, "CATEGORY (n),"

11

Example Two

45) THESAURI DECLARATIONS.

THESAURUS (1).

CATEGORY (1) = SUPERINTENDENT, PRINCIPAL.

CATEGORY (2) = TEACHER, TEACHING AIDE.

THESAURUS (2).

CATEGORY (1) = SECRETARY, LIBRARIAN.

CATEGORY (2) = CUSTODIAN.

As an example, suppose one wished to produce two listings of respon-

ses, each classified by one of the two thesauri presented directly above:

A. The character length for the first listing being 30, and for the second

20.

B. The estimate for the number of responses not covered by a thesaurus

being 10.

C. There will be two thesauri; the largest number of categories in either

being two, the largest number of items in any category being two.

D. The first listing is to concern those data found in question seven, re-

sponse type one. The second thesaurus is to be employed.

E. The second listing is to concern those data found in question eight,

response type six. The first thesaurus is to be employed.

In order to activate CLASSIFY for these two runs, the following speci-

fic forms of the instructions must be inserted in the instruction card

1

or the category may even be entered in another thesaurus in the above

manner.

1Instruction 45 (the declaration of the thesauri) is not included

12) NUMBER OF CLASSIFY RUNS = 2.

13) CLASSIFY LENGTH OF RESPONSE = 30.

14) ESTIMATE OF NUMBER OF UNCLASSIFIED RESPONSES = 10.

15) NUMBER OF THESAURI UTILIZED = 2.

i6) LARGEST. NUMBER OF CATEGORIES IN A THESAURUS = 2.

17) LARGEST NUMBER OF ITEMS IN A CATEGORY = 2.

33) CLASSIFY QUESTION NUMBERS PER RUN = 7, 8.

34) CLASSIFY RESPONSE TYPES PER RUN = 1, 6.

35) CLASSIFY THESAURUS USED PER RUN = 2, 1.

78'

The output for each independent activation of CLASSIFY will take the

formoftthefiblloWingfaxamp1e';142

here, as the appropriate form of this instruction for this example has

already been covered (the second example of instruction 45 appearing

above).

1The thesaurus utilized in the output example is thesaurus number one

of thesaurus example number two, reproduced on the preceeding page. The

responses to which it is applied come from the hypothetical question:

"List all positions you have held in this school system."

2The two columns of percentages may need some explanation. "PERCENT

MATCHED" has as its base the total number of entries that are covered IQ:

the thesaurus (here, 40). Because 7771this example the thesaurus may

not cover all the respondent entries, there is also a "PERCENT OF TOTAL"

column, which has as its base the total number of respondent entries

(here, 44). Clearly, if all entries are covered by the thesaurus 7a:
ideal case), then these two columns of percentages would be identical.

79

SUBROUTINE CLASSIFY RESULTS: RUN # 2

RESULTS ORDERED BY THESAURUS

ITEM

CATEGORY 1

DISTRIBUTION PERCENT MATCHED

SUPERINTENDENT 10
PRINCIPAL 15

CATEGORY 2

TEACHER 10 25
TEACHING AIDE 20 50

RANKED DISTRIBUTION OF RESULTS:

BY CATEGORY

PERCENT
OF TOTAL

8
12

20
40

PERCENT

qgS19.13Y. DISTRIBUTION PERCENT MATCHED OF TOTAL

CATEGORY 2 30 75 60
CATEGORY 1 10 25 20

TOTAL MATCHES = 40

TOTAL CHOICES = 44

BY ITEM

PERCENT
TTRI DISTRIBUTION PERCENT MATCHED OF TOTAL

TEACHING AIDE 20 50 40
TEACHER 10 25 20:'!

PRINCIPAL 6 15 12
SUPERINTENDENT 4 10 8

RESPONSES NOT COVERED BY THESAURUS: VICE PRINCIPAL, LIBRARIAN, INSTRUC".

TIONAL AIDE, INSTRUCTIONAL AIDE,

ID NUMBERS OF NOT COVERED RESPONSES:, SMITH1, FOCKETT, ADAMS3, LECREST,

Considerations

CLASSIFY is but one type of subroutine of this type. It employs

basic concepts in such a manner that further types of subroutines should

be relatively easy matters for one with a modicum of programming ability.

There are three modifications the author will point out. The researcher

is invited to use his own imagination in designing routines of this sort.

A. Thesauri of more than two dimensions (categories and items) can be

easily incorporated in CLASSIFY.

B. Multiple thesauri may be employed upon the same data. Recalling the

discussion in Chapter Two under "Key Word Searches," it is possible

to code responses (for example) as subject, verb, and direct object.

In this case, three thesauri might be created and run upon the data

thusly broken up--thesauri covering subjects, verbs, and direct ob-

jects respectively. Any one of the three thesauri coild be designated

as the "base" thesaurus, such that a match on this thesaurus would ac-

tivate a matching process utilizing another of the thesauri, and so

on. In this manner, results would be partialled according to each

set of categories. Sample results might take a form such as the fol-

lowing:

(Subject) THES1 (1) = 20

(Verb) THES2 (1) = 15 THES2 (2) = 5

(Object) THES3 (1) = 10 THES3 (2) = 5 THES3 (1) = 3 THES3 (2) = 2

(Subject) THES1 (2) = 10

(Verb) THES2 (1) = 3 THES2 (2) = 7

(Object) THES3 (1) = 3 THES3 (2) = 0 THES3 (1) = 4 THES3 (2) = 3

C. The above conceptualized subroutine could be adapted to perform a

A.cEiacetCipalysisfiupoiuthe data.
1

In any of the above schemes a factor

analysis of the data might well be of importance. This can be ac-

complished by use of the FACTOR ANALYSIS option explained in Chapter

Five.

MahiliUlatifd Subroutine: Type Three

The third type of manipulative subroutine is characterized by those

manipulative actions (including categorization) performed upon a multiple

number of subresponses, listed as answers to one question in the respon-

dent's record, being determined by some single response to another ques-

tion in the respondent's record. This type of subroutine is especially

useful in any type of nominational analysis of data, including the con-

struction of sociometric maps, matrixes, and graphs. It also can be uti-

lized as a further manipulative maneuver upon data processed under sub-

routines of type one, such as ITEM CT, as it yields not only a count, but

also specifies this count in relation to some conditional variable in the

respondent record. The subroutine illustrative of this type is SOCIO, re-

produced along with comment cards in Appendix One.
2

SOCIO Option: Activation

SOCIO, as the STGPROC example of the above type of subroutine, can

be set up to manipulate independently as many pairs of questions as the

1
For an explanation of facet analysis, see Runkel, 1967, 2-26.

2
STGPROC statements 368-489.

8a

researcher wishes on the same data run. It also will perform upon what-

ever response type within each question that the researcher specifies.

There are vane instruction cards controlling the utilization of SOCIO.

The general forms of these instructions are:
1

18) NUMBER OF SOCIO RUNS = n.

19) SOCIO LENGTH OF RESPONSE = 1.

20) SOCIOAARGEST TOTAL NUMBER OF NOMINEES IN A RUN = tn.

21) MAXIMUM NUMBER OF NOMINATIONS PER NOMINATOR IN A SOCIO RUN a nn.

36) NOMINATOR QUESTION NUMBERS PER SOCIO RUN = ql q2,

37) NOMINATOR RESPONSE TYPES PER SOCIO RUN = t1 t2, t
n

.

38) NOMINEE QUESTION NUMBER PER SOCIO RUN = qn1 qn2, qn
n

.

39) NOMINEE RESPONSE TYPES PER SOCIO RUN = tn
1

, tn
2

, tn
n

40) NUMBER OF NOMINEES PER SOCIO RUN = ns1 ns
1

,

2
, ns

n
.

where

n = number of instances of the application of the subroutine to the

data in a program run

1 = the character length of the largest datum to be processed

tn = estimate of the largest total number of nominees in any single

run

nn = the largest number of nominations possible in any single run,

per nominator

1Note that in instruction 40, the number of nominees to be acted upon
is specified. This allows one to process only a certain number of nomi,a
nees per nominator; such as the first twoJnIatinessAnttheJstbresponsellibt,

or the first four. This option is valuable, especially if the nominations
appear in a ranked order in the question response (questions can be worded

to insure this). If the number in instruction 40 is set at the maximum
number of subresponses for that question, then the subroutine will process
all nominees listed.

q = the question number of the nominator data the subroutine is to

be applied to

t = the response type of the nominator data the subroutine is to be

applied to

qn = the question number of the nominee data the subroutine is to be

applied to

to = the response type of the nominee data the subroutine is to be

applied to

ns = the number of nominees to be considered per nominator per run

As an example, suppose one wished to produce one listing employing

SOCIO:

A. The maximum character length for the data utilized by the listing being

40.

B. The total number of nominees being estimated at 50.

C. The maximum number of nominations per nominator being six.

D. The nominator data being question three, response type two.

E. The nominee data being question one, response type four.

The instruction cards necessary to generate this listing would look

as follows:

18) NUMBER OF SOCIO RUNS = 1.

19) SOCIO LENGTH OF RESPONSE = 40.

20) SOCIO LARGEST TOTAL NUMBER OF NOMINEES IN A RUN = 50.

21) MAXIMUM NUMBER OF NOMINATIONS PER NOMINATOR IN A SOCIO RUN = 6.

36) NOMINATOR QUESTION NUMBERS PER SOCIO RUN = 3.

37) NOMINATOR RESPONSE TYPES PER SOCIO RUN = 2.

38) NOMINEE QUESTION NUMBERS PER SOCIO RUN = 1.

Efk

39) NOMINEE RESPONSE TYPES PER SOCIO RUN = 4.

40) NUMBER OF NOMINEES PER SOCIO RUN 0 6.

Output

There is an instance, in setting up storage arrays for S00101 where

array size has to be estimated. If the estimate is not large enough, the

output for the relevant SOCIO run will identify this error in a statement

such as the following:

ERROR: IN SOCIO RUN # 4 THE INSTRUCTION CARD # 20 (SOCIO

NUMBER OF NOMINEES) IS NOT LARGE ENOUGH. INCREASE THE

NUMBER.

If all arrays are of a correct size, the output from SOCIO takes the

form of the following example:

A. The data are],ptitted(ottto,itidfinddethettiggss011iggeerrorp;oonenpsge

skipped between respondents.

SPELLING CHECK FOR SOCIO: RUN # 4

ID NUMBER = 1076

NAME = JOHNS1

NOMINATION #1 = PETERS

NOMINATION #1 = DOESS

NOMINATION #3 = SAMBKI

NOMINATION #4 = LUSK

B. The final output:

RESULTS OF SUBROUTINE SOCIO: RUN # 4

(815

RECIPROCAL CHOICES

JOHNS1 CHOOSES PETERS AND VICE VERSA

SAMBKI CHOOSES PETERS AND VICE VERSA

NUMBER OF CHOICES = 4

ONE WAY CHOICES WHEN RECIPROCALITY WAS POSSIBLE

DOESS CHOOSES JOHNS1

SAMBKI CHOOSES JOHNS1

LUSK CHOOSES DOESS

NUMBER OF CHOICES = 3

ONE WAY CHOICES WHEN RECIPROCALITY WAS NOT POSSIBLE

JOHNS1 CHOOSES YERXA

SAMBKI CHOOSES TAMBE

LUSK CHOOSES WREN

NUMBER OF CHOICES = 3

POSSIBLE NUMBER OF CHOICES PER PERSON = 15

NUMBER OF RESPONDENTS = 10

NUMBER OF ACTUAL CHOICES = 10

NUMBER OF POSSIBLE CHOICES = 150

Considerations

A. If one wishes a frequency count of the nominations as well, one need

only activate the ITEM CT option for that purpose.

B. SOCIO need not be used solely with nominational data. The conditional

86

variable may be of any type the researcher wishes it to be; however,

as the subroutine now stands, its most effective use is in a nomina-

tional sense, whether the nomination be in terms of names, positions,

tasks performed, and so on.

C. Subroutines such as SOCIO can be made to lend themselves readily to

factor analysis--the data generated by these subroutines may be intro-

duced into any relevant subroutine the researcher wishes with a mini-

mal amount of programming.

Summary

Chapter Four concerned itself with the manipulative subroutines of

STGPROC, identifying three major types of manipulation: (1) those in

which the response itself determines the data manipulation; (2) those in

which the researcher supplies the information which determines the data

manipulations; and (3) those in which the response to another specified

question determines the data manipulation. Each of these three general

types of manipulation was discussed and specific programmed subroutines

were presented (ITEM CT, CLASSIFY, and SOCIN. Chapter Five will now

proceed with a discussion of statistical subroutines and their use with

STGPROC produced data.

CHAPTER FIVE

THE STATISTICAL SUBROUTINES

In many cases it would be advantageous for the researcher to be able

to perform various statistical tests upon his data. Although STGPROC is

primarily a data manipulation system, the need for statistical procedures

has been recognized. Rather than designing these statistical procedures,

however, it seemed more efficient to adapt the STGPROC system so that ad-

vantage could be taken of statistical programs already in existence.

The chapter deals with two subroutines, each of which performs auto-

matic coding of data and repuilches it in fixed-field format such that

these new data dards may be utilized with existing statistical programs.

In one subroutine (SPSS) the coding is done in terms of the manipulated

data, in the other (FACT AN) the coding criteria are thesaurus entries.

Codesheets are automatically generated along with the punched data cards.

Although there have been many statistical procedures written, the

two subroutines presented in this chapter have been designed with The

Statistical Package for the Social Sciences (SPSS), created by Norman Nie

and Dale Bent at Stanford University (Nie and Bent; 1968), and the Bio

Medical Series factor analysis program in mind (Statistical Laboratory

and Computing Center of the University of Oregon Library Program UOBMDX72).

Both these systems are currently resident at the computation center of the

University of Oregon and can be utilized with a minimum of effort and pro-

gramming knowledge. It should be noted, however, that although the STG-

PROC statistical subroutines were designed for use with these specific

systems, they are general enough so that their output may be utilized as

data with many other statistical programs. The researcher is urged to

check the availability of such programs at his resident computation

center.

Before proceeding further with a presentation of the STGPROC statis-

tical subroutines, I shall describe briefly the configuration of the SPSS

system and the statistical applications covered by it. This exercise is

designed primarily to show the researcher who is inexperienced with com-

puter programs the flexibility and versatility of just one example of a

statistical package available for use with STGPROC.

Th:d Statibtical Package for the Social Sciences

The SPSS system contains a number of subroutines, any or all of which

can be called to process a given set of data. To activate the program the

researcher, as he does with STGPROC, need only write a small number of :*)

procedure and job control cards calling for the desired subroutines and

options within each.
1

The specific procedure cards are explained in the

cited manual dealing with the SPSS system (Nie and Bent, 1968). These

procedure cards specify the format of the data to be input and other in-

formation essential to the program.

1
The form of these job control cards varies in terms of what proce-

dures one wishes to activate as well as in terms of how the specific com-
putation center has set up operations. Since the control cards for the
SPSS system vary and are written in code best comprehended by those fami-
liar with computing languages, it is suggested that the researcher consult
his resident computation center for the forms necessary for the creation
of his desired statistics.

The following features of the SPSS system are important in relation

to the STOPROC system: (1) Up to 500 variables may be declared for a

single processing run, although this number is reduced depending upon the

subprogram being utilized; (2) there are a number of options available

for processing missing data; (3) data can be recoded temporarily or per-

manently; (4) many variable transformations may be accomplished to nor-

malize distributions, construct scales or indices, and so on; and (5) er-

ror codes and explanations are provided for debugging purposes.

The following subroutines are available in the SPSS system:
1

A. Subroutine CONDESCRIPTIVE: Outputs any or all of the following: mean,

standard error, standard deviation, variance, kurtosis, skewness,

range, minimum, maximum.

B. Subroutine CODEBOOK: Outputs tables containing any or all of the fol-

lowing: simple raw frequencies, relative frequencies with missing

values included, relative frequencies with missing values excluded,

cumulative adjusted frequencies for grouped data, histograms, mean,

standard error, median, mode, standard deviation, variance, kurtosis,

skewness, range, miminum, maximum.

C. Subroutine CROSSTABS: Outputs any or all of the following: bi-variate

joint frequency distributions with N-levels of control variables, tables

and subtables percentaged by column, row, total table (or any combina-

tion of these--or all percentages may be suppressed), Chi square,

Fisher's exact probability test, Phi, Cramer's V, Lambda, Uncertainty

coefficient, Contingency coefficient, Kendall's Tau B, Kendall's Tau

1
Subroutines I-K are not yet operational but are imminently expected

C, Gamma, Sommer's D.

D. Subroutine PEARSON CORR: Outputs zero order product moment correla4i,

Lion coefficients, significance tests, cross-product deviations, and

covariances.

E. Subroutine NONPAR CORR: Outputs Kendall and/or Spearman rank order

correlation coefficients and levels of significance.

F. Subroutine GUTTMAN SCALE

G. Subroutine REGRESSION: Outputs multiple regression results as well as

stepwise regression.

H. Subroutine MULTIVARIABLE PLOTTING

I. Subroutine SCATTER DIAGRAMMING

J. Subroutine PARTIAL R: Outputs partial correlations.

K. Subroutine FACTOR ANALYSIS

The Statistical Subroutine SPSS

This STGPROC subroutiLie handles as many variables as the researcher

specifies, coding each variable value in a fixed field of length three and

punching within succeeding fields of each record all values of that vari-

able associated with each respondent. In other words, SPSS punches all

respondent subresponses per record and yields as many records as there are

total respondents. Because of this, variable values are linked with in-

dividual respondents and operations such as Guttman Scaling and multi-

variable plotting may be performed utilizing the punched data output from

this subroutine.

Option SPSS: Activation

SPSS has been presented in conjunction with the manipulative subrou-

tine ITEM CT (see Appendix One).
1

In this case, each time a subresponse

of a considered question is classified by ITEM CT, the subroutine SPSS is

called. This subroutine automatically codes the subresponse4; and retains

its coded value for inclusion in the punched data output.

There are four instruction cards to be manipulated by the researcher

to effect activation of the subroutine SPSS. The general forms of these

instructions are:

22) SPSS RESPONDENT ESTIMATE = e.

23) SPSS NUMBER OF RUNS = n.

24) MAXIMUM NUMBER OF SUBRESPONSES IN A SPSS RUN = m.

42) ITEM Cti RUNS ACTED UPON BY SPSS = rl, r2, r
n

.

where

e = estimate of total number of respondents in the data

n = number of questions to be acted upon by the subroutine

m = maximum number of respondes in a question to be acted upon

r = the number of the ITEM CT run acted upon
2

As an example, suppose one wished to activ,te SPSS for the second

ITEM CT run covered in the ITEM CT example given in Chapter Four:3

1
STGPROC statements 550-638.

2
These numbers have to be in ascending numeric order.

3
Chapter Three does not show the hypothetical output from the second

ITEM CT run, only from the first. The hypothetical question covered by
the second run however, is: "List all those from your school with whom
you also interact socially."

A. There were 25 respondents in the example of output. The estimate

here, to be generous, will be 35.

B. There is one ITEM CT run to be acted upon.

C. The maximum number of subresponses to be acted upon being three.

D. The ITEM CT run to be acted upon being the second.

The specific forms of the instructions necessary to generate the

punched data called for above are:
1

22) SPSS RESPONDENT ESTIMATE = 35.

23) SPSS NUMBER OF RUNS = 1.

24) MAXIMUM NUMBER OF SUBRESPONSES IN AN SPSS,11UN =

42) ITEM CT RUNS ACTED UPON BY SPSS = 2.

Output,

3.

If the number of variables to be coded is erroneously listed in in-

struction 23 of STGPROC, the following type of error message will result.

ERROR: INCREASE SIZE OF INSTRUCTION CARD 23 (SPSS

NUMBER OF RUNS).

If all is in order, the subroutine will print a code sheet such as

the follbwing for each variable it is considering.

1
Note that statement 42 is a list of the ITEM CT run numbers, not the

number of ITEM CT runs.

c:93

CODING FOR SUBROUTINE SPSS, RUN # 1

ON QUESTION # 6

ITEM CODE

SMITH

JONESI 2

HEZOL 3

ADAMS 4

LASSITER 5

JONES2 6

HARRY

GOODWIN 8

JOHNSON 9

PARTMAN 10

ITEM CT RUN # 2r.IN QUESTION # 6 IS VARIABLE # 1 IN THE PUNCHED OUTPUT

WITH 3 SUBRESPONSES OF THREE COLUMNS APIECE MAKING A TOTAL FIELD LENGTH

OF 9.

The subroutine then reproduces the punched card data by means of

printed output for visual inspection.1

SPSS1PRINTOUT OF DATA CARDS:

1 1 1 2 3

21 4 5 6

3 1 2 1 7

1
Note there were actually only 12 respondents in this example.

1101....... WOO

(34

41 8 910

5 1 1 7 2

61 2 410

7 1 3000000

8 1 1 5 6

91 4 2 6

10 1 10 3000

111 5 8 9

12 1 7000000

The SPSS Data Cards

The punched output takes the following form:

A. The first card contains "SPSS:. PUNCHED DATA FOLLOWS."

B. Columns one through three of the card are the card record number, from

"1" up in increments of one.

C. Columns four and five are the card continuation number.

D. The remaining columns are the coded variable values. Each variable

value is in a fixed field of three columns. There exist as many fields

of three columns as there are declared subresponses (or variable

values) for a respondent per question run (in this case, three).

Again, the placement of the coded values is easily determined from the

information upon the accompanying code sheets.

E. There will be as many records as there are respondents.

F. In the case of varying numbers of subresponses per respondent, the

"blank" fields will be filled with "000" and the missing data option

of the SPSS system will, upon command, ignore or include these field

95

values, as the researcher wishes.

G. If there is not room for all the data on one card, it will be continued

on further cards with the appropriate card continuation numbers.

Considerations

4

Although SPSS is set up to work in conjunction with ITEM CT, it can

be easily adapted to operate with any manipulative subroutine the re-i

searcher wishes. SPSS can handle as many variables as the researcher

wishes; however, it creates only one data deck per subsample per STGPROC

run. From the accompanying codesheets, it is a simple matter to identify

the limits of the fixed fields of each variable for their inclusion in

the instructions to any statistical program one is running. Furthermore,

labeis for the statistical tables may be obtained from the code sheets.

A further advantage, in utilizing the SPSS system, is that codes may be

merged and categories created during the statistical analysis.

The Statistical Subroutine FACT AN

The STGPROC subroutine handles as many responses as the researcher

specifies, coding each response upon a. separate data card. The data take

the fom of a string of "Ws" and "l's" and is coded in such a way that

the produced data cards may be added to the STGPROC data for future pro-

cessing of other types, as well as being utilized as data for the Bio

Medical Series factor analysis program of the library of the computation

center of the University of Oregon (U0BMDX72).
1

1
This program is fairly standard and easily obtained. Hopefully,

when the SPSS system factor analysis subroutine is developed, it also may
be utilized in conjunction with this data.

96

Option FACTOR ANALYSIS: Activation

FACTOR ANALYSIS has been presented in conjunction with the manipula-

tive subroutine CLASSIFY (see Appendix One).1 In terms of any CLASSIFY

run, each item in the utilized thesaurus is assigned a column on the re-

spondent's data card. If the respondent listed that item, the column is

assigned a "1." If he did not list that item, the column is assigned an

"O." Therefore, the punched data takes the form of one string of "O's"

and "1's" per CLASSIFY run per respondent.
2

Each string begins upon a

new data card, labelled as to the respondent's identification string and

the card continuation number.

There are three instruction cards to be manipulated by the researcher

to effect activation of the subroutine FACT AN. The general forms of

these instructions are:

25) FACTOR ANALYSIS CONTINUATION NUMBER = c.

26) FACTOR ANALYSIS NUMBER OF RUNS = n.

41) CLASSIFY RUNS ACTED UPON BY FACTOR ANALYSIS = r
1

, r2, r
n

.

where

cs.;= the card continuation number the researcher wishes to factor

analysis punched cards to begin with (important only if these

1
STGPROC statements 490-549.

2
The consideration of thesaurus items proceeds from the first item

in category one of the thesaurus to the nth item in category n. For ex-
ample, in the output shown for the CLASSIFY run in Chapter Four, the first
column of the string of "O's" or "l's" would be defined by considering
"SUPERINTENDENT," the second, "PRINCIPAL," the third, "TEACHER," and the
last "TEACHER AIDE." This would generate, for each respondent, a string
of "O's" and "l's" of a length of four characters. If a respondent listed
"TEACHER" for example, his string would look as follows: 0010.

97

data are to be merged in the STGPROC data deck).

n = number of questions to be acted upon by the subroutine

r = the number of the CLASSIFY run acted uponl

As an example, suppose one wished to activate FACTOR ANALYSIS for the

first and fourth CLASSIFY activations in some certain STGPROC run:

A. The card continuation number being 40.

B. The number of CLASSIFY mans to be acted upon being two.

The specific forms of the instructions necessary to generate the

punched data called for above are:

25) FACTOR ANALYSIS CONTINUATION NUMBER = 40.

26) FACTOR ANALYSIS NUMBER OF RUNS = 2.

41) CLASSIFY RUNS ACTED UPON BY FACTOR ANALYSIS = 1, 4.

Output,

The subroutine reproduces the punched card data by means of printed

output for visual inspection.

PRINTOUT FOR FACTOR ANALYSIS DATA CARDS:

40SCHE LLING $15#0010$

41SCKELLING: $16#0101000$

40J0HNS $15#0101$

41JOHNS $160001013

40THOMAS $15#1100$

41THOMAS $16#0100110$

1
These numbers have to be in ascending numeric order.

98

4OSAMKIT $15#0001$

41SAMKIT $16#1101110$

The FACTOR ANALYSIS Data Cards

The punched output takes the following form:

A. The first card contains "FACTOR ANALYSIS PUNCHED DATA FOLLOWS."

B. Columns one through two are the card continuation number ("40" and

"41" above).

C. The columns up to the first level delimiter (here the "$") contain the

identification strings. The number of columns is equal to the maximum

size of the identification strings, as defined in instruction 27 (see

Chapter Two).

D. The next two columns are the question number ("15" and "16" above).

These question numbers begin at the upper limit of the existing STG-

PROC data, For example, in this case, the highest STGPROC data ques-

tion number was "14," hence the factor analysis data begins with ques-

tiominumber "15. 11

E. The second level delimiter (here "#") follows the question number.

F. The following string is as many columns long as there are item entries

in the thesaurus being employed. This is the data to be utilized in

the Bio Medical Series factor analysis program.

G. The data are terminated by the first level delimiter.

H. If there is not room for all the data on one card, it will be continued

on further cards with the appropriate card continuation numbers.

99

Considerations

Although FACTOR ANALYSIS is set up to work in conjunction with CLAS-

SIFY, it can be easily adapted to operate with any manipulative subrou-

tine (except those of type one--in which the responses themselves define

the categories) the researcher wishes. FACTOR ANALYSIS can handle as many''

responses as the researcher wishes; however, it creates only one data deck

per subsample per STGPROC run. The data are not only in the form amenable

to factor analysis programs, but they also can be merged with the origi-

nal STGPROC data for any further manipulations which the researcher may

decide upon. Also, in the punching of respondent factor analysis scores

by the Bib Medical Series program, it is an easy task to specif* the first

n columns of the data card as an identification number. If this is done,

the Bio Medical program can be instructed to punch the scores, preceeded

by all the necessary symbols to merge these scores with the original

STGPROC data for further manipulation, with no hand punching of identifi-

cation symbols necessary on the part of tIR researcher.

Summary

Chapter Five concerned itself with the statistical subroutines of

STGPROC, presenting a brief overview of the StatisticeI Package for the

Social Sciences (SPSS), then describing two general subroutines that

adapt STGPROC data for use with: (1) the SPSS system, (2) the Bio Medi-

cal Series factor analysis program. Each subroutine produces codesheets

and a deck of punched output as adapted data for the relevant statisti-

cal programs. The SPSS system and the Bio Medical Series program were

100

recommended because of their availability, versatility, and ease of use.

However the resulting punched output could as well be used as data in any

other similar statistical programs. Chapter Six will now proceed with a

description of the STGPROC system in action--the presentation of a "case

study" of data manipulation and analysis by means of this system.

CHAPTER SIX

STGPROC IN ACTION

Perhaps the best method of describing the STGPROC system in action

is not the presentation of one single example of research performed by

means of this system. As was stressed earlier in this monograph, the

STGPROC system is designed with interaction in mind--interaction between

the researcher and the computer. Viewed in this way, STGPROC should not

be thought of as a static system, but as one that is continually being

modified by the dictates of the research to which it is applied. The

concern then should be with the evolution of the system and its contin-

uing adaptation to research designs. This is the manner in which all ex-

tensive computer systems come into being (cf. Stone, Dunphy, Smith, Ogil-

vie, 1966; Nie and Bent, 1968). Therefore I feel the most informative

description of STGPROC in action is, in fact, a description of its evolu-

tion and adaptation to past and present research needs. Evolution will

be discussed in terms of three general phases of development of the STG-

PROC system. Because adaptation is an ongoing concern, at the close of

the chapter new directions for possible extensions of the system will be

touched upon.

Conceptual Evolution

During the academic year 1967-1968 the Center for the Advanced Study

of Educational Administration (CASE) collected extensive amounts of data

102

from elementary schools across the nation.
1

These data, exploratory in

nature and having to do with many organizational variables, focused upon

(among other things) the fate of educational innovations and educational

decision-making within and without the schools themselves. Research upon

these data was termed the CASEA Attributes Projects.
2

In the spring of 1968 the author was asked to participate in research

sessions aimed at arriving at decisions in terms of coding these data. It

was immediately apparent, upon inspection of the data, that dome drastic

coding decisions were going to be necessary if much information was not

to be lost in the coding process.

There were many questions in the research instrument which dealt with

open-ended listings of such items as the following: persons, their posi-

tions in the system, their duties, the nature of their relationships with

other persons and other positions, job descriptions, perceptions of the

decision-making structure of the organization, and so on. Because of the

exploratory nature of the study, these listings were of items drawn from

universes of items the bounds of which were unknown to the researcher.

Further, there were no limits placed upon the number of items that a re-

spondent could place in any list. Because of the above factors and the

vast amount of data to be processed, normal coding procedures seemed at

worst impossible and at best vastly inefficient in terms of time and loss

of information in the coding process.

1
These data were drawn from elementary schools in Wisconsin, Pennsyl-

vania, and New Jersey, as well as from whole school districts in the state
of Washington.

2
For a comprehensive discussion of the CASEA Attributes Projects in

all its aspects, see Pellegrin, 1968.

103

For example, one question asked the respondent to list the main

tasks performed by him in pursuance of his job. In order to code this

question numerically, one of Iwo paths had to be taken:

A. Some categorization scheme, made up on the spot or borrowed from

some other study, would have to be applied to the data by the coders,

with the hope that most of the items could be "fitted" into the existing

categories with a minimal amount of distortion. The problems arising

from this (unfortunately common) solution to the problem are many. If

the categories do not fit the data well, coded data are produced that are

highly distorted and/or suffer from many entries in the catch-all cate-

gory of "other." This, in turn, leads to information loss and possible

distortion of research results, or to a reclassification of the data, ih-

volving time and effort. This reclassification may or may not solve the

above problems. On top of this, studies have revealed 15 to 20 percent

error on the part of experienced coders in manually processing this type

of classificatory data (Sussman and Haug, 1967). Further, as this is an

exploratory study, one may wish to reclassify the data in terms of some

completely different criteria. When this is the case, the data are neces-

sarily handed back to the coders for recoding and all the problems men-

tioned above are concerns once again.

B. The second path that can be taken is to assign a code number to

each unique item. This requires that the coders compile a dictionary of

items as they go, assigning a unique code number to each item, and making

sure they do not duplicate items or omit any. Clearly this solution to

the problem becomes infeasible when dealing with an unknown, universe of

items and when any appreciable amount of data is to be processed. The

104

job is too demanding and time consuming and there is too much chance for

error in coding. Yet, if the mechanical difficulties associated with this

solution to the problem could be solved, there would be no information

loss due to coding (this coding being a one-to-one translation (see Chap-

ter TwoJ) and the data could be reclassified upon as many differing bases

of classifidation as the researcher wished without the necessity of re-

coding.

Clearly, if the mechanical problems could be solved, the second solu-

tion to the problem as described above would be far superior to the first.

The idea came to mind that these sorts of routinized mechanical problems

can many times be solved by use of the computer. Yet, in order to solve

this specific problem, the computer would have to "read" the actual string

of characters that made up the respondent answer lists and distinguish

among differing strings. This was a capability the computer possessed,

yet little (if anything) had been done in the field to apply this capa-

bility in social science research. The decision was made to explore pos-

sibilities along this line.

A further problem presented itself in dealing with these data. The

respondent lists were of unequal lengths. One respondent might list four

tasks, another might list 14. How was this difference in amount of in-

formation to be handled? Methods in existing programs do handle this pro-

blem, though not adequately in all cases. Since standard coding proce-

dure is to reserve columns on a IBM card for specific bits of information,

one would need to go through all responses, counting the number of items

in each listing, to determine the largest listing. Then one would set

aside enough columns to handle this largest listing and, on smaller list-

105

inqi, leave the excess columns blank or assign some symbol to them that

signified "no response." This process is understandably time-consuming

and subject to coding error. After the data were coded, one would have

to then instruct the processing program in the manner in which "no re-

sponses" were to be treated (to be included in frequency counts, to be

ignored, and so on). The SPSS program (Nie and Bent, 1968) has this miss-

insidata option and can handle questions of this sort in a limited manner;

however, many other systems are not as flexible -- processing of the data

in this form would depend on the capacities of the processing systems

available. Further, if one wished a combination of certain data items in

a single frequency count, the process would be difficult if not impossale

to set up for most existing processing programs. And, as always, the

chances of coding error remain high. It was evident that a method for

more adequately handling these uneven response lists would be a desirable

feature of any proposed processing system.

STGPROC: Phase One

The considerations discussed in the above section led to the initial

development of STGPROC. An initial system of delimiters was worked out

and the data were transcribed to IBM cards in terms of it. The main STG-

PROC program for processing these strings of character data was developed

and subroutines were built and attached to this main program as demand

dictated.

The first version of the STGPROC system was crude as compared to the

version presented in this monograph. Data storage problems were not ade-

quately solved--only small amounts of data could be processed at a time.

106

The program took up inordinately high amounts of computer time (from five

to ten minutes per program run, not counting an average four minutes of

compiling time). Instructions to the program were in the form of program

statements, and had to be inserted within the working program itself.

Subroutines were uncoordinated and were manually shuffled to be includea

or excluded on specific runs to save computer time. Yet with all its de-

fects, phase one of STGPROC proved that the larger concepts lying behind

its creation were sound. While internal problems were gradually being

brought to light and solved, the program successfully processed a great

deal of character data.

The data processed during phase one of STGPROC helped to determine

the shape of future development to the program. Generally speaking, the

data processing was of three forms: (1) frequency counts of items in data

lists, (2) sociometkic mappings, and (3) the development of classificatory

shhemes.

Frequency Counts

In studying the decision-making structure of schools, many questions

were asked the respondents in the form of listings: of persons or groups

of persons (if they existed) who helped the respondent evaluate pupils,

choose materials, choose subject matter content, choose teaching methods,

and schedule activities; to whom the respondent might go for support for

his or her ideas; who the respondent felt proposed reasonable and useful

solutions to school problems; who the respondent felt made decisions in

certain policy areas; who the respondent depended upon to perform his or

her job effectively; and so on. These lists of persons are nearly always

107

of an open-ended form and were drawn from an unknown universe of names.

Clearly, the coding involved in adapting these data to standard proces-

sing form was too extensive to be economically feasible and too compli-

cated to guarantee anywhere near an error free result. Hence an early

STGPROC subroutine was developed to build frequency counts of this type

of data (the basis for the present subroutine ITEM CT).
1

Some of these

frequency counts were utilized in the paper "The Decision-Making Structure

of Schools? (Pellegrin, Dudley, Smith, 1969), which was an initial attempt

at describing the decision-making processes involved in elementary schools

characterized by differing organizational structureb. Further aspects of

these data are utilized in the CASEA monograph dealing with Multiunit

Schools now nearing completion. These data will also be utilized in an

extensive CASEA monograph examining decision-making ihothe elementary

school.

Sociometric Ma pings

In coming to grips with the relationships between and among actors

in school systems, it seemed approproate to generate sociometric mappings

of these syvtems. The methodological problems mentioned above under "fre-

quency counts" were applicable in the case of sociometric listings also.

An early sociometric subroutine (the basis for SOCIO
2
) was developed to

handle this type of data manipulation.

1
See Chapter Four for an

One, statements 153-244 for a

2
See Chapter Four for an

One, statements 368-489 for a

explanation of this
presentation of it.

explanation of this
presentation of it.

subroutine and

subroutine and

Appendix

Appendix

108

From the program output, sociometric mappings of schools and sub-

units within schools were created. Sociomettic matrixes were also drawn

up to compare sociometric patterns based upon differing variables (author-

ity, influence, esteem). The results of these exercises increased early

comprehension of role relationship patterns found in the data. In point

of fact, these diagrams revealed some patterns that were totally unantici-

pated. These unanticipated patterns have had a great deal to do with the

path of subsequent analysis of the data and have helped lead to the type

of analysis found in the forthcoming CASEA monographs dealing with Multi-

unit Schools and schools characterized by individually prescribed instruc-

tion.

Development of Classificatory Schemes

The third form of data processing deemed necessary was in terms of

the development of a classificatory scheme or schemes for the listing of

tasks associated with respondent jobs. The problems involved in the de-

velopment of such schemes have all,Ady been mentioned. A STGPROC sub-

routine the basis for CLASSIFY
1
) was developed to surmount these pro-

blems. Basically, the data were matched against a thesaurus, which could

be variably constructed. Therefore it was only a matter of manipulating

thesaurus entries to arrive at any type of classificatory scheme one

wished. Reliance upon previously compiled categorization systems was un-

necessary--the scheme could be constructed by means of ongoing interac-

tion between the computer, the thesaurus, and the researcher. Further,

1
See Chapter Four for an explanation of this subroutine and Appendix

One, statements 245-367 for a presentation of it.

109

the data manipulation and frequency counts were performed by the computer,

obviating the high perdentage of human error associated with this type of

operation.

One such categorization scheme became the basis for the report "Task

Differentiation in Elementary Schools: An Exploratory Analysis" (Stehr,

Pellegrin, 1969). This subroutine, and refinements of it, have

been utilized in other ways upon CASEA data. Examples of further utili-

zations will be presented later in this chapter.

STGPROC: Phase Two

As a result of the above data manipulations, it soon became evident

that system changes were necessary if STGPROC was to be applied to fur-

ther data. The major problems were those of limited data storage space

and the excessive amount 6f computer time necessary for processing runs.

A re-evaluation of the entire system was undertaken, with a resultant

major change in the data transcription process. This change in the struc-

ture of question transcription involved more standardized use of delimi-

ters across questions. The results were fewer transcription errors on the

part of the "coders," the feasibility of an extensive machine check on the

form of the data (ERROR CHECK), increased spped in data manipulation, and

a more efficient use of storage areas in the machine. This new form of

cl.ta transcription is currently the one employed with the STGPROC system.

Phase two of STGPROC was initiated because of a need for certain com-

puter techniques to be employed in a study related to CASEA research and

which utilized some of the same data. This study investigatedfthia rela-

tionship between the division of labor in the school organization (as mea-

110

sured by the structuring of tasks performed by actors) and (1) variable

allocations of power, (2) job satisfaction, and (3) the perceptions of

rewards (Dudley, 1969).

In order to accomodate this study, two major conceptual modifications

of STGPROC were made. First, the program was redesigned to handle the

transcribed data in its new form. This helped in solving the problem of

storage and excessive computer time, as experienced in phase one. Second,

the form of analysis led to the necessity of utilizing existing statisti-

cal programs in relation to STGPROC. This consideration of program link-

auled to the development of ubroutines that produced coded output on

punched cards for use with other-Trograms.

The Division of Labor Study

The basis upon which this study rested was a successful classifica-

tion of tasks listed by respondents. The tasks were to be subjected to

factor analysis (as existing classificatory schemes were deemed inade-

quate) and the resulting respondent factor scores were to be correlated

with: (1) the rankings respondents received upon authority, influence,

and esteem dimensions of the power variable, (2) respondent scores on job

satisfaction and reward perception.

There were therefore a number of manipulative steps to be performed:

A. A frequency count of the listed tasks was needed to determine

Which tasks, listed differently, were in fact similar (e.g. "give instruc-

tion" and "instruct pupils").

B. A thesaurus was needed, made up of all the tasks listed, with

similar tasks given as differing items in the same categories.

111

C. Punched output, based upon the thesaurus categories, was needed

to feed into the Bio Medical Series factor analysis program.

D. From this program, punched data were needed that included respon-

dent identification strings and each respondent's factor scores.

E. The rankings each respondent received on questions dealing with

authority, influence, and esteem needed to be punched on the respondent

cards.

F. The scores each respondent received in terms of job satisfaction

and reward perception needed to be punched on the respondent cards.

G;.The computation of Kendall's Tau scores among these final data was

necessary.

The STGPROC system was at the heart of this data analysis. The data

to be utilized were first run through the computer and checked for trans-

cription errors. When these had been corrected, a frequency count of ta

tasks was run. At the same time, the rankings of respondents in terms of

authority, influence, and esteem were computed. All these manipulations

were done by means of a subroutine similar to the one now known as ITEM..

CT.
1

A word concerning the task listings is in order here. The basic

structure of the transcription of the tasks was approximately the same as

that of an English sentence (verb, indirect object, direct object).
2

On

the basis of the frequency counts, 43 categories were tentatively estab-

'See Chapter Four and Appendix One for explanation and presentation
of ITEMo6T.'

2
Subjects were not utilized in this instance, as the referent of each

action was always constant--the respondent.

112

fished. Unfortunately, it was learned upon examination of the first fre-

quency distribution printout that respondents varied in the specificity

of their task listings. Some would list only a verb ("plan"), some would

indicate what they were planning, and still others would list those in-

volved in the planning or for whom they were planning. Because the level

of specificity of response varied, it was necessary to analyze responses

at the level of the lowest common denominator of the data, the verb.
1

Hence another frequency count was necessary--one made in terms of verbs

only. This frequency count, created by an alternate run of STGPROC with

ITEM CT activated only in relation to the response type "verb," yielded

14 very general variables identified as part of the task structures of the

individuals in question.

At this point, another STGPROC subroutine (specific to this btddy)

was utilized to automatically punch the thesaurus cards necessary for the

next step in the analysis. Nine hundred thirty-one separate tasks had

been classified, on the basis of the verbs employed within them, into 14

separate categories.

By employing an earlier version of the subroutine CLASSIFY,
2
rank

ordered frequency counts of the tasks grOuped by category were obtained

for each school and for experimental and control groupings. 3 Rank order

1
This problem can be avoided by careful lwcatictlig bfithecitcpte'atitemaire,

a problem taken up in Chapter Two of this monograph.

2
See Chapter Four and Appendix One for presentation and explanation

of CLASSIFY.

31t should be pointed out here that, with over 900 entries in the
thesaurus, there was not enough memory space in the computer to obtain
these results in one run. Hence, it was necessary to break the thesaurus

113

......,10.*

correlations of the task categories between schools were then easily ob-

tained.

At this point, it was necessary to generate the punched card data for

a factor analysis of the tasks. The subroutine FACT AN1 was developed for

this purpose. The result was a set of data cards, each with the respon-

dent identification number and a string of 14 "Ols" and "l's" to be fed

into the Bio Medical Series factor analysis program.

From this program, dataocatd&livereciobtitiodd,,'eatihw*ithLa.vepporideht

identification number and the respondent scores on the six factors found

in the data. The respondent scores upon the power variables, job satis-

faction, and reward perception were then added to these cards. This set

of data was utilized in conjunction with IBM's Scientific Subroutine Pack-

age to produce the desired Kendall's Tau scores for the data.

The above example points out some of the reasons that the STGPROC

system is of worth in the process of data analysis. In the type of ex-

ploratory work that has been described, it is imperative that the data

remain in such a form that they may be manipulated in a number of ways

without information loss or distortion. This is the case with STGPROC.

If the data had been codei in a "normal" fashion, the above research

would have been impossible without a complete manual coding of the data,

up into three separate thesauri of 4001 400, and 131 entries (the process
of partitioning), and run each thesaurus segment separately. This in no
way affected the results except in that the analysis took more computer
time than it would have otherwise. The program has since been modified
to accomodate much greater amounts of information at once, but if an over-
flow does occur, this "partitioning" of the thesaurus is an excellent so-
lution to the problem.

I
See Chapter Five for an explanation of this subroutine and AppeL-,ix

One, statements 487-546 for a presentation of it.

as a prior classificatory scheme for tasks would have already been imposed

(see Stehr, Lewis, Pellegrin, 1969). As it was, even within the above re-

search, the basis for classification was easily shifted from the whole

task to merely the verb employed, with no recoding necessary. There has

been talk of further research employing the general categories of Durkrc

heim's division of labor (Durkheim, 1933) upon the data. This too, may

be accomplished with no recoding of the data. Furthermore, any thesaurus

that is set up may be utilized with other data (as will be the case in the

near future Attributes Projects research) without the variable of manual

coding error creeping in, as the machine will be assigning items to cate-

gories.

Another presently available but as yet unused research alternative

with STGPROC is to run a factor analysis on nominational data. This type

of analysis would yield insights into the composition of whatever socio-

metric groupings might exist with the data.

The division of labor example also points out the ease with which

STGPROC can be utilized in conjunction with existing programs. (It can

now also be utilized with the SPSS program.)1 Rather than attempting to

duplicate functions, STGPROC has been designed with complementation in

mind. This, I feel, is a very strong point in the program's favor.

STGPROC: Phase Three

As was the case with phase one of STGPROC, phase two pointed out pro-

blems with the system as it stood and acted as a guide tp further develop-
/

1
See the explanation of the SPSS subroutine in Chapter Five and its

presentation in Appendix One, statements 547-635.

115

ment. The research process of the AttiiibUtes Projects was becoming more

sophisticated as the analysis progressed, and to be of value, STGPROC had

to become more flexible.

Attention was now being centered on small subsets of the data to

search for possible patterns obscured by the analysis of the data as a

whole. Hence, there was need of a process of selecting small data sub-

sets for analysis on data runs through the entire data set. Subroutines

were added to STGPPOC (SUBSECTION, SELECT-IN, SELECT-OUT)1 which yielded

processing options ranging from any one respondent up to the entire data

set.

As the number of options in STGPROC grew, the process of specifying

certain options for a data run became more complex. If researchers unfPnli-

liar with STGPROC or the programming language in which it was written were

to successfully utilize the system, some new method of specifying options

had to be devised. It was no longer feasible to alter values on specified

statements in the STGPROC program itself. Therefore, a major alteration

of the program was effected and the concept of instruction cards was in-

troduced. These cards, processed as data by the system, allow all STGPROC

options to be controlled with no manipulation of the program itself.

The addition of these new options understandably increased the size

of the program. This reintroduced an old problem--that of the amount of

time it took for the computer to process a data,run. With the program in

its present form, this time factor can be reduced considerably. The pro-

1
See Chapter Three for explanations of these subroutines and Appen-

dix One, statement's 112-126, 951-955, and 956-959 respectively for their
presentations.

116

gram can be translated to machine language by means of a simple program

extant in most computation centers. This machine language version of the

program can then be stored on tape at the computation center..-Thus, the

program will not need to be compiled (translated to machine language by

the computer) before the data are processed, saving nearly three minutes

of computer time, on the average, per STGPROC run.

When the data have been checked by means of a STGPROC error run, and

transcription errors have been corrected, the data also may be put on

tape and stored at the computation center. Thus the researcher need sub-

mit only the necessary job control cards and instruction cards to produce

any specific STGPROC run. Not only is this method more convenient, but

it is cheaper, as the computer can process tape much faster than it can

IBM cards. Furthermore, with the program and data in this form, it would

be an easy step to set the system up for operation with a remote console

--so that all the researcher need do is to punch the desired instruction

card changes on the remote console to create a STGPROC run.

STGPROC: The Future

STGPROC was purposefully designed as an ongoing, interactive computer

system. Three major phases in its development have been described. The

system has grown in flexibility, in its number of processing options, and

in its compatability with existing data processing systems. STGPROC will

have to continue in its development if it is to remain 7viable in the re-

search world. However, 1 feel that the point has been reached where fur-

ther growth will take the direction of subroutines tailored for specific

research needs, rather than the direction of increased, efficiency of the

117

system itself. In other words, I feel that the operational basis of the

STGPROC system is now viable. Further growth will take the form of ex-

tensions, rather than alterations, of the existing system.

BIBLIOGRAPHY

Allen, John and Morris Salkoff
1964 "Machine translation: the state of the art, 1964." American

Behavioral Scientist 7(June):9-11.

Bates, F. and M. Douglas
1967 Programming Language One. Englewood Cliffs, New Jersey: Pren-

tice-Hall, Inc.

Borko, Harold and Lauren Doyle
1964 "The changing horizon of information storage and retrieval."

American Behavioral Scientist 7(June):3-8.

Carlson, Arthur
1967 "Concept frequency in political text: an application of a total

indexing method of automated content analysis." Behavioral Sci-

entist 12 (January):68-72.

Coleman, James
1964 "Mathematical models and computer simulation." Handbook of Modern

Sociology, Robert Faris (ed.). Chicago: Rand McNally, 1027-1062.

Dudley, Charles
1969 Task Structure, Allocation of Power, and Satisfaction of Organiza-

tional Members in Six Schools. Eugene, Oregon: CASEA, University
of Oregon Press.

Durkheim, Emile
1933 The Division of. Labor in Society. New York: Macmillan Publish-

ing Co.

Forte, Allen
1967 SNOBOL3 Primer. Cambridge, Mass.: M.I.T. Press.

Gardner, R. C., C. Kuehne, and A. G. Reynolds
1967 "A word count program fox. language." Behavioral Scientist 12

(July):344.

Grimshaw, Allen
1969 "Sociolinguistics and the sociologist." The American Sociologist

4(Nov.):312-320.

Griswold, R. E., J. P. Poage, and I. P. Polonsky
1968 The SNOBOL4 Programming Language and Its Relation to SNOBOL3.

Gerald King (ed.). Statistical Laboratory and Computing Center,
University of Oregon, Eugene, Oregon, (mimeo).

119

Harway, N. and H. Iker
1964 "Computer analysis of content in psychotherapy." Psychological

Reports 14:720-722.

International Business Machines, Inc.
1967 A Guide to PL/1 for Fortran Users, Form C20-1637. New York: In-

ternational Business Machines Corp.

1967 IBM System 360, PL/1 F-Level Compiler Program Logic Manual, Form
C28-6589. New York: International Business Machines Corp.

1967 IBM System 360, Operation System, PL/1 (F) Programmenla Guide,
Form C28-6594. New York: International Business Machines Corp.

1967 IBM System 360, PL/1 Reference Manual, Form C28-8201. New York:
International Business Machines Corp.

1968 A PL/1 Primer, Form C28-6808. New York: International Business
Machines Corp.

1968 IBM System 360, PL/1 Subroutine Library, Computational Subrou-
tines, Form C28-6590. New York: International Business Machines
Corp.

1968 Fortran IV Language, Form C28-6515. New York: International
Business Machines Corp.

Janda, Kenneth
1964 "Keyword indexes for the behavioral sciences." American Beha-

vioral Scientist 7(June):55-58.

1965 Data Processing. Evanston, Ill.: Northwestern University Press.

Janden, B. Douglas
1966 "A system for content analysis by computer of international commu-

nications for selected categories of action." American Beha-
vioral Scientist 10(March):28-32.

Kish, Leslie
1965 Survdy Sampling. New York: Wiley and Sons.

Morris, Charles
1946 Signs, LanguAggEand Behavior. Englewood Cliffs, N.A..: Prentice-

Hall, Inc.

Nie, Norman and Dale Bent

1968 Statistical Package for the Social Sciences, Prolrisional Users
Manual. Palo Alto, Calif.: Stanford University (mimeo).

120

Ogden, C. K. and I. A. Richards
1923 The Meaning of Meaning. New York: Harcourt, Brace & World, Inc.

Pellegrin, Roland J.
1969 An Orientation to the Attributes Projects. Eugene, Oregon:

CASEA, University of Oregon (mimeo).

Pellegrin, Roland J., Charles Dudley, and Keith Smith
1969 "The decision-making structure of schools." Paper presented at

the Annual Meeting of the American Educational Research Associa-
tion, Los Angeles, February, 1969.

Pylyshyn, Zenon
1969 "FINDSIT: A computer program for language research." Behavioral

Scientist 14(May):248-251.

Riley,
1963

Rummel,
1967

Runkel,
1965

Matilda White
Sociological Research: A Case Approach. New York: Harcourt,

Brace & World, Inc.

R. J.
"Understanding factor analysis." Journal of Conflict Resolution
11:444-480.

Philip
Some Recent Ideas in Research Methodology. CASEA, University of
Oregon, Eugene, Oregon, (mimeo).

Schench, Erwin and Philip Stone
1964 "The general inquirer approach to an international retrieval sys-

tem for survey archives." American Behavioral Scientist 7(June):
23-28.

Shoemaker, David
1968 "A FORTRAN IV program for analysis of sociometric data." Beha-

vioral Scientist 13(July):346.

Spence, Donald
1969 "PL/1 programs for content analysis." Behavioral Scientist 14

(Sept.) :432 -434.

Starkweather, J. and J. Decker
1964 "Computer analysis of interview content." Psychological Reports

15:875-882.

Stehr, Nico, George Lewis, and Roland J. Pellegrin
1969 "Task differentiation in elementary schools: an exploratory analy-

sis." Paper presented at the Annual Meeting of the American Edu-
cational Research Association, Los Angeles, February, 1969.

121

Stoloff, Peter
1969 "PEER: A peer rating and sociometric data analyzer." Behavioral

Scientist 14(May):253.

Stone, P. J., D. C. Dunphy, M. S. Smith, and D. M. Ogilvie
1966 The General Inquirer: A Computer Approach to Content Analysis.

Cambridge, Mass.: M.I.T. Press.

Struble, George
1968 Assembler Language Programming: The IBM System 360. 2nd edition,

prepublication draft.

Sussman, Marvin and Marie Haug
1967 "Human and mechanical error--an unknown quality in research."

American Behavioral Scientist 11(Nov.-Dec.):55-56.

Vinsonhaler, John
1967 "BIBS: A system of general purpose computer programs for informa-

tion retrieval in the behavioral sciences." American Behavioral
Scientist 10(Feb.):12-24.

Wilcox, Allen, Davis Bobrow and Douglas Bwy
1967 "SESAR--automation in an intermediate stage of survey research."

American Behavioral Scientist 10(Jan.):8-11.

APPENDIX ONE

THE STGPROC PROGRAM

The following pages contain a computer printout of the STGPROC pro-

gram with general comment cards included.

123

/*PROGRAM 'STGPROC' DESIGNED FOR MANIPULATION OF OPEN-ENDED STRING DATA.
DEVELOPED 1968 - 1969 AT THE UNIVERSITY OF OREGON (Y GEORGE H. LEWIS
UNDER THE AUSPICES OF THE CENTER FOR THE ADVANCED STUDY OF EDUCATIONAL
ADMINISTRATION IN PARTIAL FULLFILLIENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY IN SOCIOLOGY. */

STGPROC: PROC OPTIONS (MAIN); 1

/* 'LESBLKS' IS A FUNCTION THE PURPOSE OF WHICH IS TO DELETE ALL LEADING
AND FOLLOWING BLOWS FROM A CHARACTER STRING USED AS THE ARGUMENT
(CHK). */

LESBLKS: PROC (CHK1 VAR CHAR (320); 2
DCL 3

CHK VAR CHAR (*); 4
81: TO = LENGTH (CHK); 5

T = INDEX (CHK, ' '1; 6
IF T = 1 TIEN DO; 7

CHK = SUBSTR (CHK,2); 8
GO To Bl; 9
ENO; 10

T = INDEX (SUBSTR (CHK, TO) ' 11; 11
IF I = 1 THEN DO; 12

CHK = SUBSTR (CHK.1, TO - 1); 13
GO TO Bl; 14
FND; 15

B2: RETURN (CHK); 16
END LESBLKS; 17

PRGM: PROC; 18

/* 'REARR' IS A SUBROUTINE USED TO RESTORE AN ARRAY OF CHARACTER
STRINGS TO ITS ORIGINAL SEQUENCE AFTER ITS HAVING BEEN RANKED
BY TIE SUBROUTINE 'RANK' IN TERMS OF A CORRESPONDING ARRAY
OF ARITHMETI: VALUES. */

RFARR: PROC; 19
DCL TEMP VAR CHAR (MUMARR (1311; 20
LS = THES_QUES_COL (IP2,3); 21
DO X = 1 TO HBOUND (THE S,11; 22

no K = 1 TO Henumn (THEs,2); 23
IF THES (X,K,LS) = " THEN GO TO RE2; 24

RE1: NU4 = SUBSTR (TIES (X,K,LS1,1,21; 25
I = NU4; 26
NU4 = SUBSTR (THES (X,K,LS1.3.2); 27
J = NU4; 28
IFI=XEJ=KTHEN GO TO RE2; 29
TEMP = THES (I,J,LS); 30
THES (1,..1,LS) = THES (X.K,LS); 31
THES (X,K,LS1 = TEMP; 32
GO TO RE1; 33

RF2: END; 34
END REARR; 35

124

/* 'GUT 1' IS A SUBROUTINE THAT OPERAlES UPON CERTAIN INSTRUCTION CARDS,
FILLING AN ARRAY CREATED FOR THIS PURPOSE WITH THE CHARACTER STRINGS
IT FINDS UPON THE INSTRUCTION CARD. THESE STRINGS ARE SEPERATED BY
COMMAS (,); THE LIST BEGINS WITH AN EQUAL SIGN (=) AND IS TERMINATED
BY A PERIOD (.). IF ANY OF THESE ABOVE THREE SIGNS IS DESIRED AS ONE
OF THE CHARACTER STRINGS, IT MAY BE SO DESIGNATED BY ENCLOSING IT IN
SINGLE QUOTES. */

GUT1: PROC (DELIM);
()CL

DELIM (*) VAR CHAR (*);
DO HM = 1 TO HBOUNn (DELIM,1);
TSTG = SUBSTR (TSTG IN2 4. 1);
T = 1,1;
CALL GET (IQ7);

36
37
38
39
40
41
42

IF 107 = 0 THEN DO; 43
T = 10; 44
CALL GET (107); 45

IF 107 = 0 THEN GO TO ENDGT; 46
EN); 47

DELIM tHM) = LESBLKS (SUBSTR (TSTG, 1, IQ? 1)); 48
T = 10; 49

Gl: LOT = LT II T II LT; 50
U = INDEX (DELIM (HM), un) ; 51

IF U > 0 THEN 00; 52
TO = LENGTH (DELIM(HM)); 53
IF TO = 3 THEN DO; 54

DEL IM (HM) = T; 55
GO TO Gl; 56
END; 57
DELIM (HM) = SUBSTR (DELIM (HM), 1, U 1) II T II 58
SU3STR (DELIM (HM), U + 3); 59
GO TO Gl; 60
END; 61

IF T = ',1 & = 0 THEN DO; 62
T = 1.1; 63
GO, TO Gl; 64
END; 65

IF T =' & U= 0 THEN DO; 66
T = °='; 67
GO TO Cl; 68
END; 69

IN2 = 107; 70
END; 71

ENDGT: END GUT1; 72

/* 'GUT?' IS A SUBROUTINE THAT OPERATES UPON CERTAIN INSTRUCTION CARDS,
FILLING AN ARRAY CREATED FOR THIS PURPOSE WITH THE ARITHMATIC STRINGS
IT FINDS UPON THE INSTRUCTION CARD. THESE STRINGS ARE SEPFRATFD BY
COMMAS (,); THE LIST BEGINS WITH AN EQUAL SIGN (=) AND IS TERMINATED
BY A PERIOD (.). */

GUT2: PROC (ARY,JOT); 73
DCL 74

ARY (*,*) FIXED DEC (3,0), 75
JOT FIXED AIN (15,0), 76
JQ1 VAR CHAR (3); 77

125

DO HM = 1 To HBOUND (ARY,1); 78
107 = INDEX (SUBSTR (TSTG, IN2 + 11, 1,11; 79

IF 107 = 0 THEN 107 = IN3 - 1N2; 90
JQ1 = LFSBLKS (SUBSTR (TSTG, IN2 + 1, 81

IO7 - 111; 32
NUM1 = JO1; 83
ARY (HM, JOT) = NUM1; 84
IN2 = IN2 + 107; 85

END GUT2; 36

/* 'GET' IS A SUBROUTINE THAT DETERMINES THE POSITION OF THE CHARACTER
STRING USED AS THE ARGUMENT (I) IN A STRING IN WHICH IT IS EMBEDDED.
IT IGNORES OCCURANCES OF THE STRING THAT ARE ENCLOSED IN
SINGLE QUOTES. */

GET: PROC (I); 87
DCL 88

I FIXED BIN (15,0); 89
X = 1; 90
LOT = LT 11 T 11 LT; 91

Gl: I = INDEX (SUBSTR (TSTG, X), T); 92
J = INDEX (SUBSTR (TSTG, X) , LOT); 93
IFJ>O&I=J+ 1 THEN DO; 94

IF X = 1 THEN X = 0; 95
X = X + J + 3; 96
GO To Si; 97
END; 98

IF I > 0 THEN I = I + X - 1; 99
END GET; 100

/* 'PROC.SALL, IS A SUBROUTINE THAT, IF CALLED, WILL IN TURN CALL THE
SUBROUTINES 'ITEM_CTO 'CLASSIFY,' AND/OR ISOCIOI TO ACT UPON THOSE
QUESTIONS SO DESIGNATED BY THE PROPER INSTRUCTION CARDS. */

PROC_CALL: PROC; 1O.
DO IP2 = 1 TO NUMARR (9); 102

IF ONUN2 = ITEM_QIJES_COL (IP2,11 THEN CALL ITEM_CT; 103
END; 104

Do IP2 = 1 TO NUMARR (121; 105
IF QNUM2 = THES_QUES_COL (IP2,11 THEN CALL CLASSIFY; 106
END; 107

no IP2 = 1. TO NUMARR (18) ; 108
IF ONU42 = NAME_QUES_COL (IP2,1) I (QNUM2 = 109
NOM_OUES_COL (IP2,1) & OP = 0) THEN CALL SOCIO; 110

END PROC_CALL; 111

/* 'SUB' IS A SUBROUTINE THAT: 1) INITIALIZES ALL COUNTER VALUES TO ZERO
AND ALL CHARACTER ARRAY LISTS TO NULL STRINGS; 2) OUTPUTS VARIOUS PAGE
HEADINGS. IT IS CALLED WHEN BEGINNING COMPUTER CONSIDERATION OF
EACH SECTION OF DATA DESIGNATED AS INDEPENDENT OF THE OTHERS. */

SUB: PROC (READ);
Dct. READ LABEL;
PUT EDIT (*NEXT SUBSAMPLE') (PAGE, LINE T101, x (501, A);

112
113
114

126

PUT PAGE; 115
IF FACT_ARR (1,1) -1= 0 THEN DO; 116

PUT EDIT ('PRINTOUT OF FACTOR ANALYSIS DATA CARDS:') (A); 117
PUT FILE (OUT) EDIT ('FACTOR ANALYSIS PUNCHED DATA FOLLOWS') 119
(4(80)); 119
END; 120

ID = es; 121
OP = 0; Q = 0; P = 0; N5 = 0; 122
SM = 0; RK = 0; 1241 = 0; NUBRES = 0; 123
F = 0; RES_NUM = D; TSTID = '' ; IQ = 124
GO TO READ; 125
END SUB; 126

/* 'RANK' IS A SUBROUTINE THAT RANKS A THREEDIMENSIONAL ARITHMETIC ARRAY
ARGUMENT (B) FROM HIGHEST TO LOWEST VALUES. AT THE SAME TIME, IT
PERFORMS CORRESPONDING ADJUSTMENTS ON THE THREEDIMENSIONAL
CHAR.4,CTER ARRAY ARGUMENT (A). */

RANK: PROC (A,P);
DCL

A (*,*,*) VAR CHAR (*),
B (*,*,*) FIXED BIN (15,0),
TEMP_A VAR. CHAR (60),
TEMP_B FIXED BIN (15,0);

DO X = 1 TO HBOUND (411);
DO U = 1 TO HBOUND (A,2);

RK1: DO I = 1 TO HROUND (4,1);
RK2: DO J = 1 TO HBOUND (AO.);

IFX=IEU>JTHEN GO To RK3;
IF X > I THEN GO TO RK4;
IF B (X,U,IP1) < B (I,J,IP1) THEN On;
TEMP_A. = A (X,U,IP2);
TEMP_B = B (X,U,IP1);
A (X,U,1P2) = A (I,J,IP2);
B (X,U,IP1) = B (I,J,IP1);
A (I,J,IP2) = TEMP_A;
B (I,J,IP1) = TEMP_B;

1;
J = 1;
GO TO RK1;
END;

RK3: END RK2;
RK4: END RK1;

END RANK;

/* 'ITEM_CT' IS A SUBROUTINE THAT, FOR EACH SEPERATF ACTIVATION, COUNTS
ALL UNIQUE ENTRIES UNDER A QUESTION RESPONSE TYPE, LISTS THEM, THEIR
RANKED FREQUENCY OF OCCURANCE, AND VARIOUS ASSOCIATED FREQUENCIES AND
PERCENTAGES. IT ALSO LISTS THE ORIGINS OF UNIQUE ITEMS AS A SPELLING
CHECK AND mnyiTnRs FOR ERRORS IN THE INSTRUCTION CARDS PERTAINING TO
THIS SUBROUTINE. IF ACTIVATED, THE SUBROUTINE eSPSS, IS CALLED FROM
WITHIN THIS SUBROUTINE. */

127
128
129
130
131
132
131
134
135
136
137
139
139
140
141
142
143
144
145
146
147
148
149
150
151
152

PROC; 153
IF P(IP2) = 0 THEN DO; 154

DO K = 1 TO HROUNO (ITEM,1); 155

127

ITEM (K,1,IP2) = "; 156
ITFM_DIS (K,1,IP2) = 0; 157
END; 158

EN!); 159
IF P(IP2) = -1 THEN GO To ENDIT; 160
IF OP = 1 THEN GO TO 112; 161
NUBRES(IP2) = NUBPES(IP2) + 1; 162
L = ITEM_QUES_COL (IP2,2); 163
J = 1; 164
Do I = 1 TD QUES_SIZE (QNUM2,1); 165

IP1 = 0; 166
IF QUES_ARRAY (I,L) = " THEN GO TO IT1; 167
DO K = 1 TO P (IP2); 168

IF ITEM (K,J,IP2) = " THEN GO TO IT1; 169
IPO = INDEX (QUES_ARRAY (I,L), ITEM (K,J,IP2)); 170
IF IPO = 1 F LENGTH (QUES_ARPAY(I,L)) = 171
LENGTH (ITEM (K,J,IP2)) THEN DO; 172

IF RUN_ACT (1,1) n= 0 THEN DO; 173
DD LS = 1 TO HBOUND (RUN_ACT11); 174

IF IP2 = RUN_ACT (LS,1) THEN DO; 175
RK = K; CALL SPSS; END; END; 176

END; 177
ITEM_DIS (K,J,IP2) = ITEM_DIS (K,J,IP2) + 1; 178
IP1 = 1; 179
END; 180

END; 1631

IT1: IF IP1 = 0 THEN DO; 182
IF P(IP2) > HBOUND (ITEM,1) THEN DO; 183

P(IP2) = P(IP2) - 1; 184.
PUT EDIT ('ERROR: FOR QUESTION H' II QNUM1 II 185
', "DISCRETE ITEM ESTIMATE" ON INSTRUCTION CARD IS 186

NOT LARGE ENOJGH. MAXIMUM REACHED ON ID H ' II ID) (PAGE, 197
LINE(10), A); 188
P(IP2) = -1; 189
GO TO ENDIT; 190
END; 191

P(IP2) = P(IP2) + 1; 192
ITEM (P(IP2), J, IP2) = QUES_ARPAY (I,L); 193
ITEM_DIS (P(IP2), J, IP2) = I; 194
LST (P(IP2), 1, IP2) = QUES_ARRAY 195
LST (P(IP2), 2, IP2) = ID; 196
IF RUN_ACT (1,1) n= 0 THEN DO; 197

DO LS = 1 TO HBOUND (RUN_ACT,1) ; 198
IF IP2 = RUN_ACT (LS,1) THEN DO; 199
RK = P(IP2); 200
CALL SPSS; 201
END; 202

END; 203
FND; 204

END; 205
END; 206

GO TO ENDIT; 207

/* TOTALLING AND OUTPUT ACTIONS AT THE END OF EACH DATA SET SPECIFIED AS
COMPLETE BEGIN HERE. */

IT2: Po = 0; 208
DO K = 1 TO HBOUND (ITEM_DIS, I); 209

PO = PO + ITEM_DIS (K,10112); 210
END; 211

TP1 = IP2;
CALL RANK (ITEM, ITEM_DIS);
PUT EDIT ("ITEM_CT SUBROUTINE: RUN #', IP2,
' ORIGINS OF NEW ITEMS', 'ITEM', 'ID STRING') (PAGE,A,F(3),
SKIP(10)TA,SKIP(4),A(44),A);
DO I = 1 TO P(IP2);

PUT EDIT (LST(I,1,IP2), LST(I,2,IP2)) (SKIP(21,A(44),A)1
END;

PUT FLIT ('RANKED ITEMS', 'TOTAL CHOICES = PD,
'TOTAL CHOOSERS = NUBRES(IP2), 'ITEM', 'DISTRIBUTION°,
'I OF CHOICES', "r OF CHOOSERS')
(PAGE, SKIP(2), A, 2 (SKIP(2), A, F(7)), SKIP(4), 4 (A(35)));
DO K = 1 TO P(IP2);

ON ZERODIVIDE PERCENT = 0;
PFRCFNT1 = HITEM_DIS(K,10P2) f NUBRES(IP2)) * 100);
ON ZERODIVIDE PERCEMT2 = 0;
PFRCENT2 = ((ITEM_DIS (K,1,IP2) / PC)) 100);
REVERT ZERODIVIDE;

PUT EDIT (ITEM (K,1,IP2), ITEM_DIS(K,1,1P2), PERCENT2,PERCENT1)
(SKIP(2), A(40), F(5), 2 (X(30), F(3)));
END;
IF RUN_ACT (1,1) -8= 0 THEN DO;

DO LS = 1 TO HBOUND (RUN_ACT,1);
IF IP2 = RUN_ACT (LS,1) THEN DO;

RK = -2;
CALL SPSS;
END;

END;
END;

ENDIT: END ITEM_ZT;

/* 'CLASSIFY' IS A SUBROUTINE THAT, FOR EACH SEPERATE ACTIVATION/
CLASSIFIES ALL ENTRIES UNDER A QUESTION RESPONSE TYPE IN TERMS OF A
CATEGORY SYSTEM SET UP AS THE THESAURUS UTILIZED FOR THE ACTIVATION.
THIS THESAURJS IS ENTERED BY MEANS OF INSTRUCTION CARDS. THE
SUBROUTINE LISTS THE RESULTS AND THEIR DISTRIBUTIONS BY CATEGORY
AND ITEM, RANKED BY CATEGORY, RANKED BY ITEM, AND LISTS ALSO VARIOUS
ASSOCIATED FREQUENCIES AND PERCENTAGES. IT ALSO LISTS ANY ITEMS
NOT COVERED BY THE THESAURUS AND THEIR LOCATION (AS SPELLING AND
INCLUSION CHECKS) AND MONITORS FOR ERRORS IN THE INSTRUCTION CARDS
PERTAINING TO THIS SUBROUTINE. IF ACTIVATED, THE SUBROUTINE 'FACT_AN'
IS CALLED FROM WITHIN THIS SUBROUTINE. */

CLASSIFY: PROC;
IF 0 (IP2) = 0 THEN DO;

DO I = 1 TO HBOUND (THES,1);
DO J = 1 TO HBOUND (THES,2);

THES_CT (I,J,IP2) = 0;
EN D;

END;
NOTFIN) (101'2) =
NOTFIND (2,IP2) = ";
0 (IP2) = 1;
END;

LS = THES_QUES_COL (IP2,3);
IF OP = 1 THEN GO TO CL5;
IF FACT_ARR(1,1) -1= 0 THEN DO;

LK = 0;

128

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

129

DO I = 1 TO HROUND (FACT_ARR11); 257
IF IP2 = FACT_ARR (191) THEN CALL FACT_AN; 258

END; 259
END; 260

DO A = 1 TO QJES_SIZE (QNUM2, 1); 261
IP1 = 0; 262
DO I = 1 TO HBOUND (THES,1); 263
TF THES (T.1.LS) = THEN GO TO CL2; 264

DO J = 1 TO HBOUND (THES,2); 265
IF QUES_ARRAY (A,THES_OUES_COL(IP2,7)) = " THEN GO TO 266
CL4; 267

IF THES (I1J,LS) = 11 THEN GO TO CL1: 268
IP3 = 0: 269
IF LENGTH (QUES_ARRAY(A,THES_QJES_COL(IP ?, ?))) = 270

LENGTH (THES(I,J,LS)) - 4 271
THEN IP3 = 1; 272
IPO = INDEX (QUES_ARRAY(AITHES..Q0ES_CDL(IP2.2)). 273

SU3STR (THES (I.J,IS),51); 274
IF IPO = 1 E IP3 = 1 THEN DO; 275

THES_CT (I,J,IP2) = THES_CT (I.J.IP2) + 1: 276
IP1 = IPI + 1; 277

END; 278
END; 279

CLI: END: 280
CL2: IF IP1 = 0 THEN DO; 281

NOTFIND (10P2) = NOTFIND (1,IP2) 11 282
QUES_ARRAY (A, THES_QUES_COL (1P2.2)) 11 I l

9 283
NOTFIND (2,1P2) = NOTFIND (2,IP2) 11 ID !I 9

t
9 284

SM (IP2) = SM(IP2) + 1; 285
END; 286
END; 287

CL4: GO TO FN).247,L; 288

/* TOTALLING AND OUTPUT ACTIONS AT THE END OF EACH DATA SET SPECIFIED AS
COMPLETE BEGIN HERE. */

CL5: SMCT = 0;
THES_CAT = 0;

TH_CAT = 11;
HM = 1;

CL6: Do K = 1 TO HBOUND (T4ES,1);
DO I. = 1 TO HBOUND (THES,2);

SMCT = SMCT + THES_CT (K,L.IP2);
END CL6;

PERCENTI = 0;
PERCENT2 = 0;
SM(IP2) = SM(IP2) + SMCT;
IP3 = IP2;
PUT EDIT ('SUBROUTINE CLASSIFY RESULTS: RUN $ 99 IP2,
'RESULTS ORDERED BY THESAURUS') (PAGE,A,F(2),SKIP(10),A);

CL7: PUT SKIP (4) EDIT ('ITEM, 'DISTRIBUTION', 'PERCENT MATCHED',
'PERCENT OF TOTAL') (4(A(30)));

CL8: DO I = 1 TO HBOUND (THES,1);
IF THES (I,1,LS) = THEN GO TO CL10;
IF HM -s= 0 THEN PUT EDIT (CATEGORY °I I)
(SKIP(4),A,F(3));
DO J = 1 TO HBOUND (THES.2);

IF THES (I,J,LS) = 11 THEN GO TO CL9;
ON ZERODIVIDE PERCH. T1 = 0;
PEACENTI = ((THES_CT(1,J.IP2) * 100) / SMCT);

289
290
291
29?
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

ON IFRODIVIDE PERCENT2 = 0;
PERCENT2. = ((THES_CT(I,J9IP2) * 100) / SM(IP2));

PUT EDIT (SUBSTR (THES (19J,LS)95), THES_CT(19J97P2),PERCL Ti,
PFRCENT2) (SKIP(2),A(36),F(5),2(X(28),F(4)));

CL9: ENO CLP;
CL10: IF HM = 0 THEN GO TO CL14;

PUT EDIT ('RANKED DISTRIBUTION OF RESULTS:','BY CATEGORY')
(PAGF,A,SKIP(4)9A);
DO I = 1 TO /MOUND (THES,1);

IF THFS (I,1,LS) = " THEN GO TO CL12;
HM = 0;
DO J = 1 TO HPOUND (THES,2);

IF THES (1,J,LS) = " THEN GO TO CL11;
HM = THFS_CT (I,J,IP2) + HM;
END;

CL11: THE SCAT (1,1,1) = HM;
VK = T;

TH_CAT (1,1,1) = SUBSTP (VK,4);
END;

CL12: 1P1 = 1;
IP2 = 1;
CALL RANK (TH_CAT, THES_CAT);

PUT SKIP (4) EDIT ('CATEGORY', 'DISTRIBUTION', 'PERCENT MATCHED',
'PERCENT OF TOTAL') (4(A(30)));
DO I = 1 TO HBOUND (THES,1);

IF TH_CAT (1,1,1) = '' THEN GO TO C113;
ON ZFRODIVIDF PERCENTI = 0;
PERCENT1 = ((THES_CAT(I,191) * 100) / SMCT);
ON ZERODIVIDE PERCENT2 = 0;
PERCENT2 = ((THES_CAT(I,1,1) * 100) / Sri (1P3));

PUT EDIT ('CATEGORY ', TH_CAT(1,1,1),THES_CAT(19191)9
PERCFNT1,PERCENT2) (SKIP(2),A,F(2)93(X(22)9F(4)9X(4)));

END;
CL13: PUT EDIT ('TOTAL MATCHES =9, SMCT, 'TOTAL CHOICES =', SM(IP3))

(2(SKIP(4),A,F(3)));
IF NOTFIND (1,IP3) = " THEN DO;

NOTFIN) (1,IP3) = 'ALL ARE COVERED';
NOTFIND (2,IP3) = 'NONE';
END;

IP2 = THES_QUES_COL (TP393);
IP1 = IP3;
CALL RANK (THES, THES_CT);
PUT EDIT ('BY ITEM') (PAGE,A);
HM = 0;

IP2 = 7P1;
GO To. CL7;

CL14: PUT EDIT ('RESPONSES NOT COVERED BY THESAURUSO, NOTFIND(1,IP2),
'ID NUMBERS OF NOT COVERED RESPONSES:', NOTFIND (20132))
(PAGE,LINE(1D),2(SKIP(4),A,X(6),A));

REVERT ZERODIVIDE;
IF NUMARR (6) = 0 THEN CALL REARR;

END_CL: END CLASSIFY;

/* Isocloil IS A SUBROUTINE THAT, FOR EACH SEPERATE ACTIVATION,
RELATES THE ENTRIES IN TWO SPECIFIED QUESTION RESPONSE TYPES TO EACH
OTHER. IN SOCIOMETRIC FASHION. ONE RESPONSE TYPE CAN BE THOUGHT OF AS
THE NOMINEE, THE OTHER AS A LIST OF NOMINATIONS. THE SUBROUTINE LISTS
RECIPROCAL NJMINATIONS AND ONE-WAY NOMINATIONS WHEN RECIPROCALITY IS

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

131

AND IS NOT POSSIBLE, AS WELL AS ASSOCIATED FREQUENCIES. IT ALSO LISTS
THE NOMINEES AND THEIR NOMINATIONS AS A SPELLING CHECK AND MONITORS
FOR ERRORS IN THE INSTRUCTION CARDS PERTAINING TO THIS SUBROUTINE. */

SOCIO: PROC; 365
DCL 366

CHECK2 VAR CHAR (NUMARR(27)), 367
CHOICETOT (21 FIXED BIN (15,0). 368
CHOICE! (3) FIXED BIN (15,0); 369

IF F (IP2) = -20 THEN GO TO END_SOCIO; 370
IF OP = 1 THEN GO TO SOCB; 371
IF QNUM2 = NAME_QUES_COL (IP2,1) THEN DO; 372

TSTID (IP2,1) = ID; 373
NAME (IP2) = QUES_ARRAY (NAME_QUES_COL (IP2,2)11); 374
IPO = INDEX (TSTID (IP2,1), TSTID (IP2,2)); 375
IF IPO = 1 THEN GO TO SOC2; 376
GO TO END_SOCIO; 377
END; 378

IF ONUM2 = NOM_QUES_COL (IP2,1) THEN DO; 379
TSTID (IP2,2) = ID; 380
DO I = 1 TO NOM_QUES_COL (IP2,3); 381

NOMIN (1.1P2) = "; 392
IF QUES_ARRAY (I,NOM_QUES_COL(IP2,2)) = " THEN GO TO SOC1; 383
NOMIN (!,IP2) = QUES_ARRAY (I,NOM_QUES_COL(IP2,2)); 314
END; 385

SOC1: IPO = INDEX (TSTID(IP2,1), TSTID (IP2,2)); 386
IF IPO = 0 THEN GO TO END_SOCIO; 387
END; 388

SOC2: RES_NUM (IP2) = RES_NUM (IP2) + 1; 389
PUT EDIT ('SPELLING CHECK FOR SUBROUTINE SOCIO: PUN #', 390
IP2, 'ID NUMBER= II ID, 'NAME = II NAME tIP2)) 391
(PAGE,A,E(3)12(SKIP(4),A)); 392
DO I = 1 TO HBOUND (NOMIN,1); 393

IF NOMIN (I, IP2) = " THEN GO TO SOC3; 394
PUT SKIP (4) EDIT ('NOMINATION HI, I. = II 399
NOMIN (I, IP2)) (A,F(3),A); 396

SOC3: END; 397
IF F (IP2) = 0 THEN DO; 398

DO I = 1 TO HBOUND (LIST,1); 399
LIST (IIIP2) = "; 400
END; 401

GO TO S005; 402
END; 403

SOC4: DO I = 1 TO NOM_QUES_COL (1122,3); 404
IF NOMIN (IIIP2) = THEN GO TO S005; 405
QUES = NOMIN (I,IP2) 11 '&1 II NAME (IP2); 406
DO J = 1 TO F (IP2) ; 407

IP1 = INDEX (LIST (J,IP2), QUES); 408
IF IP1 > 0 THEN DO; 409

LIST (J,IP2) = LIST (J,IP2) II '*'; 410
NOMIN (1,1122) = "**1; 411

END SOC4; 412
S005: DO I = 1 TO NOM_QUES_COL (IP2,3); 413

IF NOMIN (I ,IP2) = I**, THEN DO; 414
LIST ((F(IP2) + I), IP2) = NAME (IP2) II '0; 415
GO TO SOC6; 416
END; 417

IF NOMIN (I'M) = " THEN DO; 418
F (IP2) = F (IP2) - 1; 419
GO TO SOC7; 420

132

END; 421
LIST ((F(IP2) + IP2) = NAME (IP2) II 10 II NOMIN (I,IP2) 422
11 '$'; 423

SOC6: END; 424
IF F (IP2) > HBOUND (LIST11) THEN GO TO SOCERR; 425

SOC7: F (IP2) = F(IP2) + I; 426
GO TO END_SOCIO; 427

/* TOTALLING AND OUTPUT ACTIONS AT THE END OF EACH DATA SFT SPECIFIED AS
COMPLETE BEGIN HERE. */

SOCS: DO I = 1 TO F(IP2);
IPO = INDEX (LIST (I,IP2), 1E1);
QUES = SUBSTR (LIST (IIIP2), 1, IPO - 1);
DO J = 1 TO F (IP2);

IP) = INDEX (LIST (J,TP2), 'V);
CHECK' = SUBSTR (LIST (J, IP2 IPO + 1);
IPD = INDEX (CHECK2, QUES);
IP1 = INDEX (CHECK2, "*1);
IF IPO > 0 E TP1 = 0 THEN LIST (,IP2) =
LIST (J,IP21 II 1#0;

END SOC8;
PUT EDIT ('RESULTS OF SUBROUTINE SOCIO: RUN 01,
IP2, 'RECIPROCAL CHOICES') (PAGE,A,F(3),SKIP(1O),A);

428
429
430
431
432
433
434
435
436
437
438
439
440

/* THE SYMBOLS THAT MAKE UP 1QI1 HAVE BEEN PLACED AT THE END OF EACH STORED
STRING IN MST' RY ABOVE STATEMENTS IN THE SUBROUTINE. THEY SIGNIFY:
$* = RECIPROCAL CHOICE; $0 = ONE-WAY CHOICE WITH POSSIBLE
RECIPROCALITY; $ = ONE-WAY CHOICE WITH NO POSSIBLE RECIPROCALITY. */

X = 1; 441
QI = '$ *'; 442
CHOICE1 = 0; 443

SOC9: DO I = 1 TO F (IP2); 444
IPO = INDEX (LIST (I,IP2), QI); 445
IF IPO > 0 THEN DO; 446

LIST (TOP?) = SUBSTR (LIST (10P2)91,IPO - 1); 447
IF X = 1 THEN LIST (I,IP2_) = LIST (:I,IP2) 11 '*'; 448
TP1 = INDEX (LIST (I,IP2), 'V); 449
QUES = SUBSTR (LIST (I0P2), 1, IP1 - 1); 450
CHECK2 = SUBSTR (LIST (I0P2),IP1+1,(IPo-IP1)-1); 451
CHJ.ICE1 (X) = CHOICE1 (X) + 1; 452
IF X -2= 1 THEN PUT SKIP (4) EDIT (QJES 11 453
1 CHOOSES ' 11CHECK2) (A); 454
ELSE IF X = 1 THEN PUT SKIP (4) EDIT (QUES 11 455
1 CHOOSES ' 11 CHECK2 11 ' AND VICE-VERSA') (A); 456

END SOC9; 457
IF X = 1 THEN CHOICE1 (X) = CHOICE' (X) * 2; 458
PUT SKIP (6) EDIT ('NUMBER OF CHOICES =', CHOICE1 (X)) (A,F(4)); 459
X = X + 1; 460
IF X = 2 THEN DO; 461

PUT SKIP (10) LIST ('ONE -WAY CHOICES WHEN RECIPROCALITY WAS Pns 462
SIBLE1); 463

01 = '$#'; 464
GO TO SOC9; 465
END; 466

IF X = 3 THEN nn; 467
POT SKIP (10) LIST ('ONE -WAY CHOICES WHEN RECIPROCALITY WAS NOT 468

POSSIBLE1); 469

QI = '$'; 470

133

GO TO SOC9; 471

END; 472

CHDICETOT = 0; 473

CHOICETOT (1) = SUM (Nolen.); 474
CHOICETOT (2) = NOM_QUES_COL (IP2,31 * RES_NUM (IR); 475
PUT EDIT ("POSSIBLE NUMBER OF CHOICES PER PERSON =1, 476
NOM_QUFS_COL (IP2,3), 'NUMBER OF RESPONDENTS =1, 477
RES_NUM (TP21, 'NUMBER OF ACTUAL CHOICES = 478
CHOICETOT (1), 'NUMBER OF POSSIBLE CHOICES =19 479
CHOICETOT (2)) (PAGE, 4(SKIP(4),A,F(41)); 480

GO TO END_SOCIO; 481

SOCERR: PUT EDIT ('ERROR: IN SOCIO ,RUN 01, IP2, 482
THE INSTRUCTION CARD 020 (SOCIO NUMBER OF NOMINEES) IS NOT LARGE 483

ENOUGH. INCREASE THE NUMBER.) (SKIP(4),A,F(4),A1; 484

F (IP2) = -20; 485

END_SOCID: END SOCIO; 486

/* ' FACT_AN' IS A SUBROUTINE THAT, FOR EACH SEPERATE ACTIVATION, PUNCHES
A SET OF DATA CARDS AMENABLE TO USE WITH THE BID- MEDICAL SERIES
FACTOR ANALYSIS PROGRAM OR OTHER PROGRAMS REQUIRING DATA IN SIMILAR
FORM. THIS)ATA IS ALSO IN A FORM THAT CAN BE UTILIZED AS FURTHER DATA
FOR THE STGPROC PROGRAM WITH NO REVISIONS OR REPUNCHING. IT IS UTILIZED
IN CONJUNCTION WITH THE 'CLASSIFY' SUBROUTINE. */

FACT_AN: PROC; 487

J = I; 488

L = I + LK; 489

NUM3 = L + LK; 490

VK = NUM3; 491

NU3 = SUBSTR (VK,5); 492

QUES = NU3 11 ID; 493

NUM3 = LENGTH (QUES); 494
IF NUM3 < NUMARR (27) + 2 THEN DO; 495

DO X = 1 TO (NUMARR (27) + 21 - NUM3; 496

QUES = QUES 11 ' 1; 497
END; 498

END; 499

QUES = QUES 11 DELIM (1); 500

NUM3 = HBOUND (QUES_SIZE,1) + (I - 1); 501

VK = NUM3; 502

NU3 = SUBSTR (VK,5); 503

QUES = QUES II NU3 11 DELIM (2); 504

DO I = 1 TO HBOUND (THES,1) ; 505
IF THFS (I,1,LS) = " THEN GO TO FA4; 506

DO X = 1 TO HBOUND (THES,2); 517
IF THES (I,X,LS) = " THEN GO TO FA3; 508

DO J = 1 TO QUES_SIZE (THES_QUES_COL (IP2,1), 1); 509
IF QUES_ARRAY(J,THES_QUES_COL(IP2,2)) = " THEN 510

GO TO FA 1; 511

K = INDEX (SUBSTR (THES(I,X,LS),5), 512

QUES_ARRAY(J,THES_QUES_COL(IP2,2))); 513
IF K = 1 THEN DO; 514

QI = 111; 515
GO To FA2; 516
END; 517

END; 518

FA1: QI = '0'; 519

FA2: QUES = QUES 11 QI; 520

134

EN);
FA3: END;
FA4: QUFS = QUES II DELIM (1);
FA5: K = LENGTH (QUES);

IF K < 80 THEN OO;
DO I = 1 TO 80 - K;

MIES = QUES II ' I;
END;

K = 80;
END;

IF K = 80 THEN CSTG = QUES;
IF K > 80 THEN DO;

LK = L< + 1;
CSTG = SUBSTR (QUES,1,80);
PUT EDIT (CSTG) (SKIP (3),A);
PUT FILE (OUT) EDIT (CSTG) (A);

NUM3 = NUMARR (24) + (L - 1);
VK = NUM3;
NU3 = SUBSTR (VK,5);
QUES = NU3 II SUBSTR (QUES,3,NUMARR(27) 4 I) II

SUBSTR (QUES181);
GO TO FA5;
END;

PUT EDIT (CSTG) (SKIP(3),A);
PUT FILE (OUT) EDIT (CSTG) (A);
END FACT_AN;

/* 'SPSS' IS A SUBROUTINE THAT, FOR EACH SEPERATE ACTIVATION, CREATES A
CODE FOR THE fITEM_CTI ACTIVATION UPON WHICH IT IS WORKING, OUTPUTS A
CODE SHEET, AND A SET OF NUMERICALLY PUNCHED DATA CARDS FOR UTILIZATION
WITH THE MANY OPTIONS 1FFEREC IN THE STANFORD SPSS PROGRAM OR OTHER
PROGRAMS RFQUIRING DATA IN SIMILAR FORM. THIS SUBROUTINE IS UTILIZE)
IN CONJUNCTION WITH THE IITEM_CTI SUBROUTINE. */

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

SPSS: PROC; 547
IF N5 = -3 THEN GO TO END_SPSS; 548
IF RK = -2 THEN GO TO SP1; 549
IF IQ (1) = 0 THEN DO; 550

FACT_AR = If, 551
FTD = 11; 552
MAX_COL = 0; 553
MAX = 0; 554
END; 555

MAX (LS) = MAX (LS) 1; 556
iF FTD (LS) ID THEN DO; 557

IQ (LS) = IQ (LS) + 1; 558
MAX (LS) = 1; 559
FTD (LS) = ID; 560
END; 561

IF IQ (LS) > HROUND (FACT_AR, 1) THEN GO TO SPERR; 562
IF MAX (LS) > MAX_COL (LS) THEN MAX_COL (LS) = MAX (LS); 563
NUM3 = RK; 564
VK = NUM3; 565
NUS = SUBSTR (VK14); 566
FACT_AR (IQ(LS), LS) = FACT_AR (IQ(LS), LS) II NU5; 567
GO TO END_SPSS; 568

SPI: PUT EDIT (econING FOR SUBROUTINE SPSS, RUN #1, LS, 569
'ON QUESTION #', QNUM2, 'ITEM', 'CODE') 570

135

(PAGE, 2 (SKIP (4), A, F (31), SKIP (6), A (40), A); 571
DO LK = 1 TO P (IP21; 572

PUT EDIT (ITEM(LK,1,1P21, LK) (SKIP(21, A(40), F(3)); 573
END; 574

LK = MAX_C3L (LS) * 3; 575'

PUT EDIT (IITEM_CT RUN #1, RUN_ACT (LS,11, ' IN QUESTION QNUM2, 576
' IS VARIABLE V, LS, ' IN THE PUNCHED OUTPUT WITH', 577
MAX_COL (LS), SUBRESPONSES OF THREE COLUMNS APIECE MAKING A TOTAL 578

FIELD LENGTH OF', LK) (SKIP(101,5 (A, F(3), X(211) ; 579
IF LS HBOUND (RUN_ACT,11 THEN GO TO END_SPSS; 580

/* TOTALLING AND OUTPUT ACTIONS AT THE END OF EACH DATA SET SPECIFIED AS
COMPLETE BEGIN HERE. */

PUT FILE (OUT) EDIT ('SPSS PUNCHED DATA FOLLOWS') (A(801); 581

PUT EDIT ('SPSS PRINTOUT OF DATA CAPDS:11 (PAGE,A); 582
SP2: DO I = 1 TO IO (LS); F83

N5 = 1; 584
QUES = '6; 585
NUM3 = I; 586
VK = NUM3; 587
NU3 = SUBSTR (VK,51; 588
NUM3 = N5; 589
VK = NUM3; 590
NU4 = SUBSTR (VK,51; 591
QUES = QUES 11 NU3 11 NU4; 592

SP3: DO J = 1 TO LS; 593
LK = LENGTH (FACT_AR (1,J11; 594
IF LK -2= (MAX_COL (J) * 3) THEN no; 595

SP4: DO K = 1 TO (MAX_COL (J) - LK); 596
FACT_AR (I,J) = FACT_AR (I,J) 11 '000'; 597
END; 598

END; 599
SP5: LK = LENGTH (QUFS); 600

L = LENGTH (FACT_AR (I,J)1; 601
IF L = 0 THEN GO TO SP7; 602
IF L + LK > 80 THEN 00; 603,

QUES = QUES 11 SUBSTR (FACT_AR(I,J111,(80-LK11; 604
FACT_AR(I,J) = SUBSTR (FACT_AR(I,J),(80-LK) +1); 605
LK = 80; 606
GO TO SP6; 607
END; 608

QUES = QUFS 11 FACT_AR (I,J); 609
SP6: IF LK = 80 THEN DO; 610

CSTG = QUES; 611
PUT FILE (OUT) EDIT (CSTG) (A); 612

PUT EDIT (CSTG) (SKIP(31, A); 613
N5 = N5 + 1; 614
NUM3 = N5; 615
VK = NUM3; 616
NU4 = SUBSTR (VK,5); 617
QUES = NU3 11 NU4; 618
GO TO SP5; 619

SP7: END SP3; 620
LK = LENGTH (QUES); 621
IF LK < 80 THEN DO; 62?

DO J = 1 To (80 - LK); 623
QUES = QUES 11 '; 624
END; 625

END; 626

136

CSTG = QUES; 627
POT FILE (OUT) EDIT (CSTG) (A); 628
PUT EDIT (CSTG) (SKIP(3), A); 629
END SP2; 630

GO TO SPO; 631
SPERR: PUT EDIT ('ERROR: INCREASE SIZE OF INSTRUCTION CARD 23 (SPSS NU 632
MIER OF RUNS).') (SKIP(4194); 633
SPR: N5 = -3; 634
END_SPSS: END SPSS; 635

/* 'BREAK' IS A SUBROUTINE THAT BREAKS EACH QUESTION STRING UP AND
PLACES ITS PARTS IN THE RELEVEMT CELLS OF THE ARRAY ' QUES_ARRAY.'
IT ALSO DETECTS ERRORS AND OUTPUTS ERROR MESSAGES ASSOCIATED WITH THIS
PROCESS. THE SUBROUTINES 'ERROR CHECK,' AND IPROC_CALLI
ARE CALLED FROM THIS SUBROUTINE. */

BREAK: PROC; 636
DCL 637

(IP1,IP2,CT1) FIXED BIN (15,0) INIT (0); 638
I = 1; 639
J = I; 640
IF NUMARR (5) = 0 THEN DO; 641

CALL ERROR_CHECK (IP2); 642
IF IP? > 0 THEN GO TO ENDBK; 643
END; 644

ALLOCATE QUES_ARRAY (QUFS_SIZE (QNUM2,1), QUES_SIZE (ONUM2,2)); 645
QUES_ARRAY = 646

BR1: !P1 = INDEX (QUES, DELIM (2)); 647
IP2 = INDEX (QUES, DELIM (QUES_SIZE (QNUM2, 2) + 1)); 648
IF IP? > IP1 I (IP1 > 1 & IP2 = 0) THEN DO; 649

11)2 = IP1; 650
CT1 = CT1 + 1; 651
END; 652

IF I > QUES_SIZE (QNUM2, 1) THEN nO; 653
IF NUMARR (5) = 1 THEN GO TO BR2; 654
TPO = QUES_SIZE (QNUM2.1); 655
IP? = QNUM2 + (QNUM2 - 1); 656
PUT SKIP (4) EDIT ('ERROR: IN QUESTION 0' II QNUM1 657
II ' THERE IS RESERVED SPACE FOR ONLY ', IPO, 658
' SUBRFSPONSFS. THIS NUMBER HAS HERE BEEN EXCEEDED. INCREASE 659

THE APPROPRIATE VALUE IN ''NUMBER OF SUBRESPONSESII INSTRUCTION CARD H 660
29'1 (A,F(2),A); 661

GO TO ENDBK; 662
END; 663

QUES_ARRAY (I,J) = LFSBLKS (SUBSTR (QUES, 1, IP2 - 11); 664
IPO = LENGTH (QUES_ARRAY (I,J)); 665
IF IPO > NUMARR (3) E NUMARR (5) = 0 THEN DO; 666

PUT SKIP (4) EDIT ('ERROR: QUESTION 0' II ONUM1 667
' CONTAINS ONE OR MORE STRINGS LONGER THAN THE LENGTH SPECIE 668

TED. INCREASE SIZE OF ''RESPONSE LENGTH'' IN INSTRUCTION CARD 0 PI 669
(A); 670
Gil TO ENDBK; 671
END; 672

BR2: QUES = SUBSTR (QUES, IP? + 1); 673
IF QUES = '' THEN GO TO SR?; 674
1=1+!; 675
IF CTI = 1 THEN DO; 676

I = 1; 677

J = J + 1;
CT1 = 0;
END;

GO TO BRA;
RR3: IF NUMAR' (4) = 0 THEN CALL DATA.PRINT;

CALL PROLCALL;
ENORK: END BREAK;

/* 'ERROR_CHECK' IS A SUBROUTINE THAT CHECKS EACH QUESTION STRING To
DETERMINE THAT IT IS CORRECT AS FAR AS DELIMITER USE IS CONCERNED; AND
OUTPUTS THE APPROPRIATE ERROR AND CORRECTION MESSAGES. */

137

678
679
680
681
682
683
684

ERROR_CHECK: PROC (IP3); 685

DCL 686

(IF, IP3) FIXED BIN (15,0), 687

CK FIXED BIN (15,0) INIT (01, 688

COT (QUES_SIZE (QNUM2, 2)) FIXED DEC (3,1); 689

HM = 690

COT = 0; 69.1

IP3 = 0; 692

IF = 2; 693

ERR1: DO IL = (IF + 1) TO HBOUND (DRAM; 1); 694

CK = INDEX (QUES, DELIM (IL) 1; 695

IF CK > 0 E IL -,=1 QUES_SIZE (QNUM2, 2) + 1 THEN 00; 696

IP3 = 1; 697

IF = IL; 698

HM = IP3; 699

GO TO ERR4; 700

END ERR 1; 701

IL = 0; 702

IPO = 0; 703

IF QUES_SIZE (QNUM2,21 -I= 1 THEN DO; 704

DO IL = 1 TO QUES_SIZE (QNUM2,2); 705

IP1 = IPO; 706

!Po n INDEX (SUBSTR (QUEStIPO + 11, D LIM (2) 1+ IPO; 707

ERR3: IP4 = IP1; 708

IP1 = INDEX (SUBSTR (QUESOP1 + 1, (IP0-1) - IP1), DELIM 709
(QUES_SIZE (QNUM2,2) + 1) 1+ Ipi; 710

IF IP1 IP4 THEN DO; 711

COT (IL) = COT (IL) + 1; 712

GO TO ERR3; 713

END; 714

END; 715

IP4 = INDEX (SUBSTR (QUES, IPO + 111 DELIM (2)); 716

IF IP4 > 0 THEN IP3 = IP3 + 3; 717

IF (SUM (COT)) / QUES_SIZE (QNUM2, 2) -0: COT (1) THEN DO; 718

IP3 = IP3 + 5; 719

PUT EDIT ('NUMBER OF DELIMITERS PER DATA TYPE:11 720

(SKIP141 , A); 721

PUT SKIP (2); 722

PUT DATA (COT); 723

END; 724

END; 725

ERR4: IF IP3 = 1 I IP3 = 6 THEN DO; 726

PUT SKIP (4) EDIT ('ERROR: DELIMITER ' II DELIM (IF) II 727

' WAS USED IN QUESTION #1 II QNUM1 II 1. REPLACE WITH DELIMITE 728

R ' II DELIM (QUES_SIZE (QNUM2, 2) + 11) (A); 729

IP3 = 0; 730

138

GO TO ERR1; 731

END; 732

IF IP3 = 5 THEN PUT SKIP (4) EMIT ('ERROR: IN QUESTION N' II 733

QNLJM1 11 ONE OR MORE DELIMITERS OF TYPE ' II 734

DELIM (QUES_SIZE. (QNUM2, 2) 1) II ' ARE MISSING') (A); 735

IF IP3 = 9 I IP3 = P I 1P3 = 4 I IP3 = 3 THEN 736

PUT SKIP (4) EDIT ('ERROR: TWO QUESTIONS MERGED: QUESTION 0' II 737

QNUM1 11 ' AND THE FOLLOWING QUESTION. DELIMITER ' II 738

'CORRECTED STRING: ' II DELIM (1) 11 SUBSTR (QUESIIP0+1)9 739

'CORRECTED STRING: ' II DELIM (1) II OSTG1, 740

'IF CHARACTERS IMMEDIATELY TO RIGHT OF ' II DELIM (11 II 741

' IN THE CORRECTED STRING DO NOT SIGNIFY A QUESTION NUMBER THEN ER 742

ROR IS ONE OF TOO MANY RESPONSE TYPES IN QUESTION 0' II 743

QNUM1 11 ' FOR NUMBER OF TYPES ALLOWED FOR IN "RESPONSE TYPES PER 744

QUESTION " INSTRUCTION CARD N 10'1 (3 (Al SKIP (2)) 1; 745

IF IP3 = HM > 0 THEN IP3 = 1; 746

END ERROR_CHECK; 747

/* 'DATA_PRINT' IS A SUBROUTINE THAT OUTPUTS EACH RESPONDENT'S DATA,
CORRECTLY BROKEN DOWN AND LABELED. */

DATA_PRINT: PROC; 748

PUT SKIP (4) EDIT ('QUESTION N' 11 QNUM1 II 1:') (41; 749

on I = 1 T3 OUES_SIZE (QNUM2, 1); 750

PUT SKIP (2); 751

PUT DATA ((QUFS_ARRAY (19.1) DO J = 1 TO MES_SIZE (QNUM29211); 752

END DATA_PlINT; 753

/* THE FOLLOWING CARDS (7.54 - 797) DEFINE THE VALUES VARIOUS VARIABLES

WILL HAVE DURING THE PROGRAM RUN, AS WELL AS DEFINING AMOUNTS OF STORAGE
SPACE NECESSARY FOR THESE VARIABLES. */

OCL 754

Q!JES VAR CHAR (758) INIT ("), 755

(ID,TO) VAR CHAR (NUMARR (27)) INIT ("), 756

/* NOTE: TO CHANGE SIZE OF THE CONTINUATION NUMBER STRING (NOW SET AT 2),

CHANGE THE DECLARATION! 14 CARD 957 AND THE COMMAND IN CARD 942. IF THE

SUBROUTINE 'SUrSECTION' IS TO BE ACTIVE THEN THE VALUE OF
'CONT_NUM' MUST RE CHANGED IN THE FOLLOWING CARDS:
944, 945, 960, 961, 968. */

CONT_NUM CHAR (2) INIT ("1, 757

011.1M1 VAR CHAR (3) INIT (") , 758

(N5,IPO,QNUM21 FIXED BIN (15,0) INIT (0), 759

(1241, OP) FIXED BIN (1) INIT (0), 760

RK FIXED DEC (390)9 761

T CHAR (1), 762

LT CHAR (1) INIT ("1'99 763

LOT CHAR (3) , 764

(IN2, IN3) FIXED BIN (1590) INIT (0), 765

DELIM (NUMARR(11) VAR CHAR (3), 766

QUES_SIZE (NUMARRI219 2) FIXED DEC (390)9 767

QUES_ARRAY (1911 VAR CHAR INUMARR(311 CONTROLLED, 768

SEL_IN (NUMARR(7)1 VAR CHAR (NUMARR(271)9 769

139

SEL_OUT (NUMAPR(8) 1 VAR CHAR (NUMARR(271), 770
SM (NUMARR (1211 FIXED BIN (15,01, 771
Q (NUMARR (1211 FIXED BIN (15,0), 772
THES (NUMARR(16),NUMARP(171,NUMARR(1511 VAR CHAR (NUMARR(1311, 773
THES_CT (NUMAPR(16),NUMARR(17),NUMAPR(121) FIXED PIN (15,019 774
THES_FILL (NUMARR(1711 VAR CHAR (NUmARR(131), 775
TH_CAT (NUMARR(161,101 VAR CHAR (2), 776
THES_CAT (NUMARR(161,1,1) FIXED BIN (15,0), 777
NOTEIND (2,NUMARR(1211 VAR CHAR (HM), 778
THES_WES_C9L (NUMARR(121,31 FIXED DEC (3,01, 779
ITEm_OJES_COL (NUMARR(91, 2) FIXED DEC (3,01, 780
ITEM (NUmARR(111, 1, NUMARR(911 VAR CHAR (NUMARR(101), 781
ITEm_nis (NtJMARR(11), 1, NUMARR(911 FIXED BIN (15,01, 782
LST (NUMARR(111, 2, NUMARR(911 VAR CHAR (NUMARR(10119 783
(E,RES_NUM) (NUMAPR (1811 FIXED BIN (15,0), 784
LIST ('i(iMAQP(20), NOMARR(1811 VAR CHAR (LK), 785
NAME (!NUMARR (181) VAR CHAR (NUMARR(1911, 796
NOM IN (NUMARR(21), NUMAPR(1811 VAR CHAR (NUIARR(1911, 787
TSTID (NUMARP(18),21 VAR CHAR (NUMARR(271), 788
NAME_QUES_COL (NUMARR(181,21 FIXED DEC (3,01, 789
NOM_QUES_COL (NUMARR(181,31 FIXED DEC (390), 790
FACT_ARR (NUMARR(251,11 FIXED DEC (3,0), 791
(IQ,MAX,MAX_COL) (NUMARR 0231) FIXED BIN (15,01, 792
FTD (NJMARR (23) 1 VAR CHAR (NUMARR (271) , 793
RUN_ACT (NUMARR (231,11 FIXED DEC (3,01, 794
FACT AR (NUMARR (221, NUMARR (23)) VAR CHAR (LS), 795
(P,NUBRES) (NUMARR(911 FIXED BIN (15,01; 796

ITEM_QUFS_COL = 0; 797,
THES_QUES_:OL = 0; 798
NAME_QUES_COL = 0; 799

NOM_QUES_COL = 0; 800
FACT_ARR = 0; 801

RUN_ACT = 0; 802
GO TO PGM3; 803

PGM1: TSTG = 804
PGM2: READ FILE (IN) INTO (CSTG); 805
PGM3: TSTG = TSTG 11 CSTG; 806

T = '0; 807
CALL GET (IN31; 808
IF IN1 = 0 THEN GO TO PGM2; 809
PUT EDIT (TSTG) (SKIP(2),A); 810
IF NUM1 29 THEN DO; 811
NUM = LFSBLKS (SUBSTR (TSTG, 1, (INDEX (TSTG, ')') 11)) ; 812

/* CARDS 813 836. ARE CONCERNED WITH DEFINING THE ELEMENTS OF THE
THESAURI UTILIZED. */

IF NUM = ,THe THEN DO; 813
NUM = LFSBLKS (SUBSTR (TSTG, INDEX (TSTG, '(') + 1, 814
(INDEX (TSTG, '1') INDEX (TSTG, °(°11 111; 815
HMT = NUM; 816
GO TO PGM1; 817
END; 818

IF NUM = 'CA' THEN DO; 819
NUM = LESPLKS (SUBSTR (TSTG, INDEX (TSTG, '(') + 1, 820
(INDEX (TSTG, '1') INDEX (TSTG, '('11 11) ; 821

NUM1 = NUM; 822
NU3 = NUM; 823
T = 1=1; 824
CALL GET (IN21; 825

140

THES_FILL = 11; 826

CALL GUT1 (THFS_FILL); 827

DO I = 1 TO HBoumn (THES_FItL.1); 828

NUM3 = I; 829

VK = NUM3; 830

NU4 = SUB STR (VK,51; 831
THFS (NUM1,I,HMT1 = NU3 11 NU4 II THFS_FILL (I); 832

IF THES_FILL (I) = " THEN THES (NUM1,1,HMT) = 11; 833

ENn; 834

GO TO PGM1; 835

END; 836

NUM1 = NUM; 837

IF NUMI = 46 THEN GO TO PGM4; 838

END; 839

/* CARDS 840 - 917 ARE CONCERNED WITH DEFINING THE VALUES OF ELEMENTS OF
VARMUS ARRAYS NECESSARY FOR UTILIZATION OF THE PROGRAM. */

T = 1=1;
CALL GET (IN7);
JOT = 1;
IF NUM1 = 28 THEN DO;

CALL GUT1 (DELIM);
SEL_IN = DELIM (1);
SEL_OUT = DFLIM (IA;
NUM1 = 0;
GO TO PGM1;
END;

IF NUM1 = 29 THEN DO;
CALL GUT2 (QUES_SIZEIJOT);
GO To PGM1;
END;

IF NUMI = 31 THEN DO;
CALL GUT2 (ITEM_QUES_COL,J0T1;
GO TO PGM1;
END;

IF NUM1 = 33 THEN DO;
CALL GUT2 (THES_QUES_COL,JOT);
GO TO PGM1;
END;

IF NUM1 = 36 THEN DO;
CALL GJT2 (NAMF_lUES_COLIJOT1;
GO TO PGM1;
END;

IF NUM1 = 38 THEN DO;
CALL GUT2 (NOM_WES_COL,JOT);
GO TO PGM1;
END;

IF NUM1 = 41 THEM DO;
CALL GUT2 (FACT_ARR,JOT);
GD TO PGMIA
END;

IF NUM1 = 42 THEN DO;
CALL GJT2 tRUN_ACT, JOT);
GO TO PGM1;
END;

JOT = 2;
IF NUM1 = 30 THEN on;

CALL GUT2 (QUES_SIZE,JOT);
GO TO PGM1;

840
841
842
843
844
845
846
847
848
849
850
851
857
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

END;
IF NUM1 = 32 THEN DO;

CALL GUT2 (ITEM_QUES_COL,JOT);
GO TO PGM1;
END;

IF NUM1 = 34 THEN DO;
CALL GUT2 (THES_QUES_COL, JOT);
GO TO PGM1;
END;

IF NUM1 = 37 THEN DO;
CALL GUT2 (NAME_QUES_COL,JOT);
GO TO PGM1;
END;

IF NUM1 = 39 THEN DO;
CALL GUT2 (NOM_QUFS_COL,JOT);
GO TO PGM1;
END;

JOT = 3;
IF NUM1 = 35 THEN DO;

CALL GUT2 (THES_QUES_COL, JOT);
GO TO PGM1;
END;

IF NUM = 40 THEN DO;
CALL GUT? (NOM_QUES_COL,JOT);
GO TO PGM1;
END;

IF NUM1 = 43 THEM no;
CALL GUT1 (SFL_OuT);
GO TO PGM1;
END;

IF NUM1 = 44 THEN DO;
CALL GUT1 (SEL_IN);
GO TO PGM1;
END;

IF NUM1 = 45 THEN GO TO PGM1;

NM=

/* CARDS 917 - 940 OUTPUT INFORMATION AS TO WHICH SUBROUTINE OPTIONS ARE
ACTIVE ON THE PROGRAM RUN. */

PGM4: PUT PAGE;
PUT LIST (loPtIoNs UTILIZED THIS RUNO);
PUT SKIP (2);
IF NUMARR (6) = 0 THEN PUT SKIP (4) LIST
('SUBSECTION OPTION IS ACTIVE.);
IF SEL_IN (1) DELIM (1) THEN PUT SKIP (4) LIST
(.SELECT-I4 3PTION IS ACTIVE.);
IF SEL_OUT (1) .."-= DELIM (1) THEN PUT SKIP (4) LIST
('SELECT -OUT OPTION IS ACTIVE.);
IF ITEM_QUES_COL (1,1) 0 THEN PUT SKIP (4) LIST
('ITEM_CT OPTION IS ACTIVE');
IF THES_QUES_COL (111) -1= 0 THEN PUT SKIP (4) LIST
('CLASSIFY OPTION IS ACTIVE.);
IF NAME_QUES_COL (1,1) -11= 0 THEN PUT SKIP (4) LIST
('SOCIO OPTION IS ACTIVE.);
IF FACT_ARR (1,1) 0 THEN PUT SKIP (4) LIST
('FACTOR ANALYSIS OPTION IS ACTIVE.);
IF RUN_ACT (1,1) -1= 0 THEN PUT SKIP (4) LIST
('SPSS OPTION IS ACTIVE.);
IF NUMARR (4) = 0 THEN PUT SKIP (4) LIST ('FOLLOWING PAGES ARE PRIN 936

TOUT OF QUESTION RESPONSES.); 917

141

882
883
884
885
886
887
888
889
P90
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
915

142

IF NUMARR (51 = 0 THEN PUT SKIP (41 LIST ('FOLLOWING PAGES ARE ERRO 938
R CHECK ON THE OATA'); 939

CALL SUR (READ); 940

/* CARD 941 INSTRUCTS THE READING OF A DATA CARD. */

READ: READ FILE (INDATA) INTO (CSTG); 941
CONT_NUM = SUBSTR (CSTG, 1, 21; 942
IF HM = -1 & MUMS = 1 THEN GO TO ENDPROG; 943
IF HM = -1 C CONT_NUM -I= 901, THEN GO TO READ; 944
IF CONT_NUM = ' THEN GO To PGM6; 945
HM = CONT_NUM; 946
IF HM = 1 THEN HMT = 0; 947
IPO = INDEX (CSTG, DELIM(111; 948
TD = LESBLKS (SUBSTR (CSTG, 3, IPO - 31); 949
IF SEL_IN (11 = DELIM (11 THEN GO TO PGM5; 950

/* CARDS 951 - 959 ARE CONCERNED WITH THE ,SELECT-IN, AND 'SELECT -OUT'
OPTIONS. */

DO I = 1 TO HBOUND (SELJN,11; 951
IF To = *ENO, THEN GO TO PGM7; 952
IF TD SEL_IN (I1 THEN GO TO PGM5; 993
END; 954
GO TO READ; 955

PGM5: IF SEL_OUT (1) = ()Film (1) THEN GO TO PGM7; 956
DO I = 1 TO HBOUND (SEL_OUT,1); 957

IF To = SEL_OUT (I1 THEN GO TO READ; 958
END; 959

/* CARDS 960 - 992 ARE CONCERNED WITH THE 'SUBSECTION' OPTION, */
PGM6: IF CONT_NUM = THEN TO = "; 960
PGM7: IF CONT_NUM = $01, 1 CONT_NUM = THEN DO; 961

IF ONUM1 " & NUMARR (41 + NUMARR (5) -.= 2 THEN DO; 962
IF ID " THEN D0; 963

PUT SKIP (4) DATA (ID); 964
PUT PAGE; 965
END; 966
END; 967

IF CONT_NUM = ' THEN DO; 968
IF NUMARR (6) = 0 THEN no; 969

1241 = 1; 970
GO TO ANALYZE; 971
END; 972

IF NUMARR (6) = 1 THEN On; 973
ID = "; 974
GO TO READ; 975
END; 976

TD = "; 977
END; 978

TSTG = "; 979
IF TO = 'END' THEN GO TO ANALYZE; 980
ID = T); 981
END; 982

/* CARDS 983 - 995 DEAL WITH DATA CARDS OUT OF CORRECT SEQUENCE. */

ELSE IF ID TO THEN DO; 993
PUT LIST ('ERROR: CARDS OUT OF 3RDER BY ID NUMBER WHERE: 11; 984

143

PUT DATA (ID, TD); 985
HM = -1; 986
GO TO READ; 987
END; 988

IF HMT > HM THEN DO; 989
PUT EDIT ('ERROR: CARDS OUT OF ORDER BY CONTINUATION NUMBER WHE 990

RE ID = 11 ID 11 ' AND THE NUMBERS ARE: ', HMT, HM) 991

(SKIP(4),2(A,F(4))); 992
HM = -1; 993
GO TO READ; 994
END; 995

HMT = HM; 996

/* CARDS 997 - 1012 ISOLATE A QUESTION NUMBER AND ITS QUESTION STRING
FOR PROCESSING IN 'BREAK' AND MANIPULATION IN THE OTHER
SUBROUTINES. */

TSTG = TSTS II SUBSTR (CSTG, IPO + 1); 997

PGMS: QUES = "; 998
IPO = INDEX (TSTG, DELIM (1)); 99S

IF IPO = 0. THEN GO TO READ; 1000
QUES = SUBSTR (TSTG, 1, IPO - 1) 11 DELIM (2); 1 001

TSTG =,SUBSTR (TSTG, TPO + 1); 1002
IPO = INDEX (QUES, DELIM (2)); 1003
QNUM1 = LESBLKS (SUBSTR (QUES, 1, IPO - 1)); 1004
ON CONVERSION GO TO PGM9; 1005
QNUM2 = QNUM1; 1 006

REVERT CONVERSION; 1007
QUES = SUBSTR (QUES, IPO + 1); 1008
GO TO PGM10; 1009

PGM9: PUT EDIT ('CONVERSION ERROR ON QUESTION NUMBER.') (SKIP(4),A); 1010
GO TO PGMB; 1011

PGM10: IF QNUM2 < (HBOUND (QUES_SIZE,1) + 1) THEN CALL BREAK; 1012
FREE QUES_ARRAY; 1013
GO TO PGM8; 1014

/* CARDS 1015 - 1024 CONTROL TOTALLING AND OUTPUT ACTIONS AT THE END OF
THE PROCESSING OF EACH DATA SET SPECIFIED AS COMPLETE. */

ANALYZE: PUT PAGE; 1015
OP = 1; 1016
J = HBOUND (QUES_SIZE,1); 1017
QNUM2 = 0; 1018

PGM11: QNUM2 = QNUM2 + 1; 1019
CALL PROC_CALL; 1020
IF QNUM2 > J THEN GO TO PGM12; 1021
GO TO PGM11; 1022

PGM12: RK = -1; 1023
IF 1241 = 1 THEN CALL SUB (READ); 1024

ENOPROG: END PRGM; 1025

DCL. 1026
LESBLKS RETURNS (VAR CHAR (320)), 1027
(NU3,NJ4) CHAR (2), 1028
NU5 CHAR (3), 1029
QI VAR CHAR (3), 1030
V'K CHAR (6), 1031
(IN,INDATA) RECORD INPUT, 1032

OUT OUTPUT, 1033
(LS,LK) FIXED BIN (15,0) INIT (1), 1034
(I,J) FIXED DEC (2,0), 1035
(PERCE4T1,PERCENT21 FIXED DEC (4,1), 1036
CSTG CHAR (80) 9 1037
(NUMOJM2) VAR CHAR (2), 1038
(NUM1, NUM3) FIXED DEC (30)1 1039
TSTG VAR CHAR (800), 1040

/* CARD 1041 DECLARES THE ARRAY 'NUMARR.' THIS ARRAY IS FILLED WITH
VALUES READ FROM THE INSTRUCTION CARDS NUMBERED 1 - 27. THEN THESE
VALUES ARE ENTERED IN CARDS 754 - 796 AS SIZE DECLARATIONS OF THOSE
VARIABLES AND ARRAYS. */

NUMARR (27) FIXED DEC (3,0); 1 041

NUMARR = 1; 1042
NUM8 = 0; 1043
TSTG = "; 1044
PUT LIST ("INSTRUCTION CARDS UTILIZED THIS RUNO); 1045
PUT SKIP (2); 1046

/* CARDS 1047 - 1073 DETERMINE THE VALUES OF THE CELLS OF 'NUMARR'
AS READ FROM THE INSTRUCTION CARDS. */

INST1: READ FILE (IN) INTO (CSTG); 1047
NUM = LESBLKS (.SUBSTR (CSTG, 1, (INDEX (CSTG, 6)°) - 1))); 1048
NUM1 = NUM; 1049
IF NUM1 > 8 E NUM1 < 28 THEN NUMB = 1; 1050
IF NUM = 28 THEN DO; 1051

TSTG = 11; 1052
HM = NUMARR (13) * NUMARR (14); 1053

IF NUMARR(27) > NUMARR(13) THEN HM = NUMARR(27) * NUMARR (14); 1054
CALL PRGM; 1055
GO TO END_IT; 1056
END; 1057

PUT EDIT (CSTG) (SKIP(2),A); 1058
IF NUM1 = 4 1 NUM1 = 5 1 NUM1 = 6 THEN DO; 1059

NUMARR (NUM1) = 0; 1060
GO TO INST1; 1061
END; 1062

NUM2 = LESBLKS (SUBSTR (CSTG, (INDEX (CSTG, ' =') + 1), 1063
(INDEX (CSTG, '0) - 1))); 1064

ON CONVERSION PUT EDIT ('MOST LIKELY ERROR IS PERM) MISSING AT END 1065
OF INSTRUCTION CARD #', NUM) (SKIP(2),A,A); 1066

NUM3 = NUM?, 1 067

REVERT CONVERSION; 1068
IF NUM1 = 13 THEN NUM3 = NUM3 + 4; 1069
IF NUM1 = 19 THEN LK = (NUM3 * 2) + 4; 1070
IF NUM1 = 24 THEN LS = NUM3 * 3; 1071
NUMARR (NUM 1) = NUM3; 1072
GO TO INST1; 1073

END_IT: PUT PAGE; 1074
END STGPRO:; 1075

APPENDIX TWO

RESPONSE TYPE AND SUBRESPONSE: SUGGESTED TABULATION SHEET

Response Number
(From 1 up by
increments of 1)

Number of
Response
Types

Number of
Subresponses

Number of
Character
Symbols

Maximum Number,
1 of Symbols

APPENDIX THREE

THE INSTRUCTION CARDS

Following are the general forms of all the STGPROC instruction cards.

1) NUMBER OF DELIMITERS = n.

2) NUMBER OF QUESTIONS = n.

3) RESPONSE LENGTH = 20.

4) ACTIVATE PRINT RUN.

5) ACTIVATE ERROR RUN.

6) ACTIVATE SUBSECTION RUN.

7) ACTIVATE SELECT-IN RUN, NUMBER OF RESPONDENTS = n.

8) ACTIVATE SELECT-OUT RUN, NUMBER OF RESPONDENTS = n.

9) :NUMBER OF ITEM CT RUNS = n.

10) ITEM CT LENGTH OF .RESPONSE = 1.

11) ESTIMATE OF MAXIMUM NUMBER OF UNIQUE ITEMS IN AN ITEM CT RUN = e.

12) NUMBER OF CLASSIFY RUNS = n.

13) CLASSIFY LENGTH OF RESPONSE = 1.

14) ESTIMATE OF NUMBER OF UNCLASSIFIED RESPONSES = e.

15) NUMBER OF THESAURI UTILIZED = n.

16) LARGEST NUMBER OF CATEGORIES IN A THESAURUS = n.

17) LARGEST NUMBER OF ITEMS IN A CATEGORY = n.

18) NUMBER OF SOCIO RUNS = n.

19) SOCIO LENGTH OF RESPONSE = 1.

20) SOCIO LARGEST TOTAL NUMBER OF NOMINEES IN A RUN = n.

14.7

21) MAXIMUM NUMBER OF NOMINATIONS PER NOMINATOR IN A SOCIO RUN = n.

22) SPSS RESPONDENT ESTIMATE = e.

23) SPSS NUMBER OF RUNS = n.

24) MAXIMUM NUMBER OF SUBRESPONSES IN AN SPSS RUN = n.

25) FACTOR ANALYSIS CONTINUATION NUMBER = c.

26) FACTOR ANALYSIS NUMBER OF RUNS = n.

27) MAXIMUM LENGTH OF ID STRING = 1.

28) IDENTITY OF DELIMITERS = d d
2'

dn.

29) SUBRESPONSES PER QUESTION = sl,s2, sn.

30) RESPONSE TYPES PER QUESTION = t t
2'

tn.

31) ITEM CT QUESTION NUMBERS PER RUN = q1,q2, qn.

32) ITEM CT RESPONSE TYPES PER RUN = ri,r21 rn

33) CLASSIFY QUESTION NUMBERS PER RUN' = q1,q2, qn.

34) CLASSIFY RESPONSE TYPES PER RUN = ri,r2, rn.

35) CLASSIFY THESAURUS USED PER RUN = t t
2'

tn.

36) NOMINATOR QUESTION NUMBERS PER SOCIO RUN = q1,q2, qn.

37) NOMINATOR RESPONSE TYPES PER SOCIO RUN = r r
2'

r
n

38) NOMINEE QUESTION NUMBERS PER SOCIO RUN = q1,q2, qn.

39) NOMINEE RESPONSE TYPES PER SOCIO RUN = rl,r r
n

.

4o) NUMBER OF NOMINEES PER SOCIO RUN = n n
2'

n
n

41) CLASSIFY RUNS ACTED UPON BY FACTOR ANALYSIS = c c
2'

c
n

42) ITEM CT RUNS ACTED UPON BY SPSS = il,i2, in.

43) SELECT-OUT RESPONDENT ID'S = id1,id2, idn.

44) SELECT-IN RESPONDENT ID'S = id
l'

id
2'

id
n

148

45) THESAURI DECLARATIONS.

THEZAURUS (n).

CATEGORY (n-1) = c1,c2,

CATEGORY (n) = c1Ic2, on.

46) END OF INSTRUCTION CARDS.

APPENDIX FOUR

JOB CONTROL CARDS

The following is a sample of the job control language necessary for

the utilization of STGPROC. This job control language is only an example,

effect^Ni at the University of Oregon Computation Center at the time of

the development of STGPROC, and is set up to read the program and all data

from IBM cards. There are many alternatives to this (such as reading from

tape,) and it is suggested that the researcher consult his resident compu-

tation center for the job control most effective for his STGPROC runs.

//job.name JOB job.number,user.name,MSGLEVEL=1

//JOBLIB DD DSNAME=SYS1.PL1,DISP=(OLD,PASS),UNIT=2314,VOLUME=SER=WRITER

// EXEC PROC=PULFCLG,PARM.PL1L='SIZE=999999,NA,X,NST,LC=61'

//PL1L.SYSLIN DD SPACE=(TRK,(10,4))

//PL1L.SYSUT1 DD SPACE=(TRK,(30,2))

PPL1L.SYSUT3:DD SPACE=(TRK,(20,2))

//PL1L.SYSIN DD *,CARDS=1300,BLOCK=5

(place the program here)

/*

//I,KED.SYSLIB DD VOLUME=SER=WRITER,UNIT=2314

//00.0UT DD SYSOUT=B,SPACE=(80,(1500)),DCB=(RECFM=FB,LRECL=80,

// BLKSIZE=800)

150

/ /GO. IN DD *,CARDS=181,BLOCK=21

(put instruction cards here)

//GO.INDATA DD *ICARDS=3000,BLOCK=21

(Put STGPROC respondent data here)

/*

APPENDIX FIVE

BASIC STGPROC PROGRAM OUTPUT

The output from the STGPROC program varies greatly, according to

what options have been utilized within the program run. Generally speak-

ing, the output takes the following form.

1. The information appearing on the instruction cards utilized for the

run is reproduced for convenience in checking what has been spedified

for the run.

2. The subroutine options utilized during the program run are listed.

3. The specific output follows, subsection by subsection. Each subsec-

tion is plainly marked, and a page is skipped between subsections,

3a. If individual data are to be output, respondent by respondent, they

preceed any tables created by the various subroutines that present

the data totals for that subsection (such as ITEM CT, or SPSS).

3b. If error messages are to be output, this preceeds any tables cre-

ated by the various subroutines that present the data totals for

that subsection (such as CLASSIFY or FACT AN).

3c. The output from the various subroutines totaled for the subsection

in question,prceedd#4-the runs (from one up in increments of one)

from each type of subroutine appearing, one after the other, with

a blank page between types of subroutine output.

4. All paper output is clearly labelled and identified by means of page

headings and subheadings, as shown in the appropriate textual examples.

L._

152

5. All punched card output decks are clearly labelled and identified on

the first card of the deck.

