ED 037 733

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
PEPORT NO
PUB DATE
NOTE

EDRS PkICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME
AL 002 367

Woods, W. A,

RAugmented Transiticn Networks for Natural Language
Analysis.

Harvard Univ., Cambridge, Mass. Computation Lab.
National Science Foundation, Washington, D.C.

CsS-1

Dec 69

111p.

EDRS Price MF-$0G.50 HC-$5.65

*Algorithms, *Computational Linguistics, *Context
Free Grammar, Grammar, *Mathematical Linguistics,
Mathematical Models, *Semantics, Transformation
Generative Grammar

The augmented transiticn network described in this

report was developed in the course of work in semantic interpretation
in the context of a computer system which answers English questions.
In order to provide mechanical input for the semantic interpreter, a
parsing program based on the notion of a "recursive transition
network grammar" was developed. The form of presentation of rules
made possible by this grammar is called a "recursive transition
network," the augmented version cof which is presented here. The
parsing system has proved to be an extremely powerful system capable
of performing the equivalent of transformational analysis in 1little
more time than that customarily required for context free analysis
alone. The system is also convenient for the designer of the gramnar
and facilitates experiments with various types of structural
representations and various parsing strategies. This report, the
first of several, presents a discussion of the augmented transition
network as a grammar mnodel, including a number of theoretical results
concerning the efficiency of the model for parsing. (FWB)

U'S. DEPARTMENT OF HEALTH. EDUCATION 8 WELEARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING 11. POINTS Of VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY

THE AKEN COMPUTATION LABORATORY
-~ Harvard University “

EDO 37735

AUGMENTED TRANSITION NETW.dRKS |
FOR '

NATURAL LANGUAGE ANALYSIS

Report No. CS-1

to the
National Science Foundation -
= WA Woods -

Principal Investigator.

AL 002 867

December 1369

Cambridge, Massachusetts

~

EDO0 37735

THE AIKEN COMPUTATION LABORATORY

Harvard University

AUGMENTED TRANSITION NETWORKS
FOR

NATURAL LANGUAGE ANALYSIS .

Report No, CS-1

to

the National Science Foundation

W.A. Woods

Principal Invéstigator

Cambridge, Massachusetts

December 1969

PREFACE

One of the major objectives of NSF grant G5-2301 is the implementation
of the semantic interpretation procedure described in Woods (1967) and the
idvestigation of various semantic interpretation problems as they arise in
the context of a computer system which answers English questions. Accordingly,
one of the first tasks performed under the grant was the implementation of

the semantic interpreter and the verification of its performance. Woods (1968)

describes the basic semantic interpretation system as implemented and gives
a number of exampies of its interpretations., The implementation at that
time comsisted of the semantic interpretation procedure alone--the syntax
trzes which were input to the procedure were produced by hand, and there
was no retrieval component implemented for answering the questions,

Late in the fall of 1968, in order to provide mechanical input for
the semantic interpreter, I began constructing a parsing program based on

the notion of a recursive transition network grammar, a model very much like

a finite state'transitiod graph except for the presence of non-terminal as
well as terminal symbols as labels on the arcs. A non-terminal label causes
a recursive application of the transition network to recognize a construction
of the type indicated by the label before the transition so labeled is
permitted. This model, which is wveakly equivalent to a non-deterministic

pushdown store automaton, occurred to me as a patural representation of

ii

the type of grammar that one would get if he carried the use cof the Kleene
* gperator and bracketed alternatives in the right-hand sides of context
free grammar rules (a notation used by many linguists) to its logical
conclusion by permitting arbitrary regular expressions as the right-hand
sides of rules. One could then merge all of the rules with a given non-
terminal symbol as their left-hand side and could represent this rule
either by its regular expression or alternatively by an equivalent finite
state transition graph (over the total vocabulary of terminal and non-
terminal symbols). It is this latter form of representation which 1

have called a recursive transition network., In the course of this

implementation, I learned that a similar approach to natural language
analysis had been used by Thorne, Brately, and Dewar (1968) and by
Bobrow and Fraser (1969). My approach is in effect a generalization
and formalization of these earlier parsers and provides a number of
additional capabilities.

In addition to many advantages for efficient context free
recognition and improved strong generative power, the transition network

model also provides a convenient means for incorporating syntactic and

semantic conditions for guiding the parsing and for performing transformations

and relocations of constituents. This is done by associating arbitrary

conditions and structure building actions with the arcs of the network.

This augmented network is a kind of "transducer", whose effects are to make

iii

[N Y

Py SN

P

changes in the contents of a set of registers associated with the network
and whose transitions can be conditional on the contents of those registers.
Registers can be used to hold pieces of syntactic structure whose position
and function in the syntactic structure being built might not yet have been
determined,

éxperience with the parsing system has shown it to be an extremely
powerful system--capable of performing the equivalent of transformational
analysis in little more time than that customarily required‘for context
free analysis a1one. In addition, the system is convenient for the designer
of the grammar and facilitates experiments with various types of structural
representations and various parsing strategies, By the spring of 1969, an
expanded version of the parser was in preparation and an early version was
in operation with a basic tramsition network of about 30 states. During
the summer of 1969, with the help of Mrs. Madeleine Bates, a graduate
student who di& muéh of the grammar development for the parser, the
expanded version was completed and debugged and a numbér of experiments
with various parsing strategies were carried out. A considerably more
powerful grammar was also developed during this time, and a second semantic
interpreter program, incorporating a number of improvements over the original
interpreter was put into operation. Two other graduate students who worked
with me during the summer developed programs for use in a retrieval
component for use by the system. Mr. Benjamin Brosgol wrote a set of data

base functions and semantic rules which enable the system to answer English

iv

T

oot d Tt ok

Loat

questions about the transition network that drives the parser, and Miss

oo S Wi

Nancy Neigus wroie a regolution theorem prover to be used in the

execution of "smart quantifiers" in the retrieval component.

This report presents a discussion of the augmented transition

IR < NN

netvork as a grammar model, including a number of theoretical results
concerning the efficiency of the model for parsing. A second report
will describe the implemented transition network parser and some of the
experiments which have been performed with the system. Research dealing
with the semantic interpreter and the retrieval component is continuing

and will be described in a later report.

W. A, Woods
December, 1969

CONTENTS

Page

PREFACE [] ° [] [] [] .] [] [] . [] L] L] . ° . [] ° [] . ° ° [] [] [] [] [] [] ii

¥, LIST OF FIGURES ¢ ¢ o o © o o o o o ¢ ¢ o o o ¢ o ¢ o o 0 o o o viii

SECTION 1, TRANSITION NETWORK MODELS ¢ ¢« ¢ o ¢ o o o ¢ o o o o 1
1,1 Motivation « « o« « o ¢ o ¢ ¢ ¢ 6 o 6 o 6 ¢ 6 6 o o o 1

1.2 Recursive transition networks . « ¢ o o o ¢ ¢ o o & 2

1.3 Augmenged transition Networks .« o o« o o ¢ o ¢ o o o 6

1.3.1 Representation of augmented networks . . . « 9

1.3.2 An illustrative example . « ¢ ¢ ¢ o ¢ o o o 15

g 1.4 Transformational recognition'. o 6 o o o o s s o o o 22
1.5 Augmented transition networks for

transformational recognition « « o« ¢ ¢ ¢ ¢ ¢ o o o o 26

1.6 Previous transition network models . ¢« ¢« o ¢ ¢ ¢ o o 29

1.6.1 The Thorne SYSLEM « o o o o o o o o o o o o 29
1.6.2 The system of Bobrow and Fraser . « ¢« « + & 30
1.6.3 Comparison with the present system « o + & 31

1.7 Advantages of the augmented transition
network model .« ¢ o ¢ o ¢ o ¢ o ¢ ¢ o ¢ o o o o o o 37

1.7.1 Perspicuity .« ¢ ¢ o ¢ o o ¢ o o o o o o o o 37
1.7.2 Generative POWEY o o ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o 39
1.7.3 Efficiency of representation . « « ¢ ¢« ¢ s o 40

1.7.4 Capturing regularities « ¢« « ¢ o« o o ¢ o o & 43

vi

1.7.5 Efficiency of operation . « o« o « « o o o o 43

1.7.6 A second example « ¢« « o o o o o o o o o o o 48

1.7.7 Flexibility for experimentation . + « « « « 37

SECTION 2., REGULAR EXPRESSION GRAMMARS AND
GRAMMAR OPTIMIZATION & 4 o o ¢ o o s o o o o o o o 00]

2,1 INtroduction « « o « o o o s ¢ o s s o o o s o o o 60
2,2 Regular expression grammars .« o« « s o ¢ o o s o o o 61

2.3 Recognition automata for regular
eXpression Erammars . « « o o < o o o o o o ¢ ¢ o o 03

2.4 Reduced regular expression grammars . « « ¢ « o o o 06
2,5 The reduction algorithm . « ¢« ¢« ¢ o o o o o o o o o 67

2.5.1 Elimination of left and right recursion . . 69

2.5.2 Elimination of direct left recursion 71
2.5.3 Elimination of direct right recursion . . . 76

SECTION 3. RECURSIVE TRANSITION NEIWORKS AND THE
EARLY RECOGNITION ALGORITHM o ¢ o o o o o o o o o o /19

3.1 Introduction « o« o« o o o o o o o o o o o o0 o o oo 19
3.2 Time boundS « o o o o o s o s o o o o s o o o o o o 80
3.3 Formal definitions o« o « ¢ o ¢ o o o o s o o o s o o 82
3.4 The Early algorithm .« « « o « o o o o o o o o o o o 84
3.5 A comparative example « « o« < o o o o o o o o o o o 89
3.6 Time bounds for the Early algorithm . « « ¢ o o o « 93
SECTION 4, CONCLUSION o ¢ o o o o o ¢ o o s o o o o o o ¢ o o 98

BIBLIOGRAPHY [] L] [] [] [] L] L] [] L] [] [] [] [] [] L] [] L] [] L] [] [] [] L] [] L] 100

vii

Figure

1-1

1-2

LIST OF FIGURES

A sample transition NELWOrK « o « o « o« o o o o o o

Specification of a language for representing
augmented transition networks . o . « ¢ ¢ ¢ o o o o

An illustrative fragment of an augmented transition
NELWOTK & ¢ o o o o o ¢ o o o o o ¢ o o o o ¢ o o o

A partial transition network . « « o« ¢ o o o ¢ o o
Elimination of direct left recursion . ¢« ¢« ¢ « o &
Elimination of right recursion . « ¢« « ¢ ¢ ¢ ¢« ¢ &

An optimized transition network for a context
free grammar . o ¢ . ¢ o o 6 o 6 0 ¢ s 0 s 0 o o o

Comparison of the Early algorithm using an ’

optimized transition network versus -the original
context-free gramar e 06 o o o @ ¢ o o o o o o o o

viii

Page

11

17
50
75

78

91

93

T

PRIy

R R

SECTION 1

TRANSITION NETWORK MODELS

1.1 Motivation

One of the early models for natural language grammars was the finite-
state transition graph corresponding to a finite-state machine that
accepted (or generated) the sentences of a language. In this model,
the grammar is represented by a network of nodes and directed arcs
connecting them. The nodes correspond to states in a finite state
: machine, and the arcs represent transitions from state to state. Each
arc is labeled with a symbol whose input can cause a transition from
the state at the tail of the arc to the state at its head. This model
has the attractive feature that the sequences of words which make up a
sentence can be read off directly by following the paths through the
grammar from the initial state to some final state. Unfortunately, the
model is grossly inadequate for the representation of natural language
grammars because of its failure to capture many of the regularities of
natural language grammars. The most notable of these is the pushdown
mechanism that permits one to suspend the processing of a constituent
at a given level while using the same mechanism to process an embedded
constituent.

Suppose, however, that one added the mechanism of recursion directly
to the transition graph model by fiat. That is, suppose that one took a

collection of transition graphs each with a name, and permitted not only

terminal symbols to be labels on the arcs but also non-terminal symbols
naming constructions which must be present in order for the transition
to be followed. The determination of whether such a construction was
in fact precent iﬁ a sentence would be done by a '"subroutine call'' to
another transition graph (or the same one). The resuiting model of

grammar, which we will call a recursive transition network,is equivalent

in genmerative power to that of a context-free grammar or pushdown store
automaton, but as we will show, allows for greater efficiency of
expression, more efficient parsing algorithms, and natural extension

by "augmentation" to more powerful models which allow various degrees

of context dependence and more flexible structure-~building during
parsing. We will argue in fact that an "augmented" recursive transition
network is capable of performing the equivalent of transformational
recégnition without the necessity of a separate inverse transformational
component, and that this parsing can be done in an amount uf time which

is comparable to that of ordinary context free recognition.

1.2 Recursive transition networks

A recursive transition network is a directed graph with labelled

states and arcs, a distinguished state called the start state, and a
distinguished set of states called final states. It looks essentially
like a non-deterministic finite state transition diagram except that the

labels on the arcs may be state names as well as terminal symbols. The

interpretation of an arc with a state name as its label is that the
state at the end of the arc will be saved on a pushdown store and the 5
control will jump (without advancing the input tape) to the state that E
is the arc label. When a final state is encountered then the pushdown
store may be "popped" by transferring control to the state which is ;
named on the top of the stack and removing that entry from the stack. ?
An attempt to pop an empty stack when the last input character has
just been processed is the criterion for acceptance of an input string. g
The state names that can appear on arcs in this model are essentially
the names of contructions that may be found as "phrases" of the input

tape. The effect of a state~labeled arc is that the transition that it

represents may take place if a construction of the indicated type is
found as a "phrase" of the input at the appropriate point in the input
string.

Figure 1 gives an example of a recursive transition nework for a
small subset of English. It accepts such sentences as "John washed the
car," "Did the red barn collapse?", etc. It is easy to visualize the
range of acceptable sentences from inspection of the transition network.
To recognize the sentence, "Did the red barn collapse," the network is
started in state S. The first transition is the aux transition to state
9, permitted by the auxilliary "did". From state q, we see that we
can get to state 43 1f the next '"thing" in the input string is a NP.

To ascertain if this is the case, we call the state NP. From statz NP

we can follow the arc labeled det to state 9 because of the determiner

o i

“the". From here, the adjective "red" causes a loop which returns to
state q., and the subsequent noun "barn" causes a trausition to state ;
q4. Since state 4, is a final state, it is possible to "pop up" ;
from the NP computation and continue the computation of the top level
S beginning in state qq which is at the end of the NP arc. From

dq the verb "collapse' permits a transition to the state 9y and since :

this state is final and "collapse' is the last word in the string, the

string is accepted as a sentence,

re NP ‘
= 7(%9) y0)

S 1is the start state

q4, qs, q7, dgs and q10 are the final states

Figure 1: A sample transition network

The fact that the recursive transition network is equivalent to a
pushdown store automaton is not difficult to establish. Every recursive
transition nutwork is essentially a pushdown store automaton whose stack
vocabulary is a subset of its state set. The converse fact that every

pushdown store automaton has an equivalent transition net could be

established directly, but can be more simply established by noting that
every pushdown store automaton has an equivalent context-free grammar

which has an equiﬁalent recursive transition net as we will show.

1.3 Augmented transition networks

It is well known (c.f. Chomsky,1964) that the strict context free
grammar model is not an adequate mechanism for characterizing the
subtleties of natural languages. Many of the conditions which must be
satisfied by well-formed English sentences require some degree of
agreement between different parts of the sentence which may or may
not be adjacent (indeed which may be separated by a theoretically
unbounded number of intervening words). Context sensitive grammars
could take care of the weak generation of many of these constructions,
but only at the cost of losing the linguistic significance of the
"phrase structure" assigned by the grammar (c.f. Postal, 1964).
Moreover, the unaided context free grammar model is unable to show the
systematic relationship that exists between a declarative sentence and

its correspounding question form, between an active sentence and its

passive, etc. Chomsky's theory of transformational grammar (Chomsky, 1965),
with its distinction between the surface structure of a sentence and its
deep structure, answers these objectiéns but falls victim of inadequacies
of its own (c.f. Schwarcz; 1967, or McCawley, 1968). 1In this section we
will describe a model of grammar based on the notion of a recursive
transition network which is capable of performing the equivalent of
transformational recognition without the need for a separate transformational
component and which meets many of the objections that have been raised
against the traditional model of transformational grammar.

The basic recursive transition network model as we have desecribed
it is weakly equivalent to the context-free grammar model and differs in
strong equivalence only in its ability to characterize unbounded

branching,as in structures of the form:

] S

S an cee and S

The major features which a transformational grammar adds to those of the
context free grammar are the abilities to move fragments of the sentence
structure around (so that their positions in the deep structure are
differeat from those in the surface structure), to copy and delete
fragments of sentence structure, and to make its actions on constituents
generally dependent on the contexts in which those constituents occur.

We can add equivalent facilities to the transition network model by

adding to each arc of the transition network an arbitrary condition
which must be satisfied in order for the arc to be followed, and a

set of structure building actions to be executed if the arc is followed.
We call this version of the model an augmented transition network.

The augmented transition network builds up a partial structural
description of the sentence as it proceeds from state to state through
the network. Tﬁe pieces of this partial description are held in
registers which can contain any rooted tree or list of rooted trees
and which are automatically pushed down when a recursive application

F of the transition network is called for, and restored when the lower
2}-5 level (recursive) computation is completed. The structure-building
actions on the arcs specify changes in the contents of these registers
in terms of their previous contents, the contents of other registers,
the current input symbol, and/or the results of lower level computations.
In addition to holding pieces of substructure that will eventually be
incorporated into a larger structure, the registers may also be used
to hold flags or other indicators to be interrogated by conditions on the
arcs.

Each final state of the augmented network has associated with it
one or more conditions which must be satisfied in order for that state
to cause a "pop"--i.e., to return from a lower level computation to the
next higher one, or to complete the analysis when the end of the string

is encountered. Paired with each of these conditions is a function which

computes the value'tc be returned by the computation. A distinguished
register, *, which contains the current input word when a word is
being scanned, is set to the result of the lower level computation
when the network returns to the arc which called for the recursive

computation.

1.3.1 Representation of augmented networks

To make the discussion of augmented transition networks more
concrete, we give in figure 2 a specification of a language in which
an augmented transition network can be represented. The specification
is given in the form of an extended context free grammar in which a
vertical bar separates alternative ways of forming a comstruction
and the Kleene star operator (*) is used as a superscript to indicate
arbitrarily repeatable constituents. The non-terminal symbols of ‘the
grammar consist of English descriptions enclosed in angle brackets, and
all other symBols.except the vertical bar and the superscript * are
terminal symbols (including the parentheses, which indicate list structure).
The * which occurs as an alternative right-hand side for the rule for
the construction <form>, however, is a terminal symbol and is not to be
confused with the superscript *'s which indicate repeat;ble constituents.
The first line of the figure says that a transition ;etwork is represented
by a left parenthesis, follwed by an arc set, followed by any number of

arc sets (zerc or more), followed by a right parenthesis. An arc set in

turn consists of a left parenthesis, followed by a state name, followed

by any number of arcs, followed by a right parenthesis, and an arc can

v

be any one of the four forms indicated in the third rule of the grammar.

fﬁ The remaining rules are interpreted in a similar fashion.

S xS e s

7 «,(,“. i

11

<transition network> + (<arc set>» <arc set>*)

<arc set> - t<atate> <arc>*) |

<arc> + (CAT <category name> <test> <action>*’<£erﬁ.§ct§j' r
(PUSH <state> <test> <action> <term act>) l' |
(TST <arbitrary label> <test> <acti§§>* <term-§ct>) |
(POP <form> <test>)

<action> » (SETR <register> <form>) | ;
. (SENDR <régister> <form>) |

(LIFTR <register> <form>)

<term act> + (TO <state>) |
(JUMP <state>)
<form> -+ (GETR'<register>) |
* |
(GETF <feature>) |
(BUILDQ <fragment> <register>*) I
(LIST <form>") |
(APPEND <form> <form>) |

(QUOTE <arbitrary structure>)

Figure 2: Specification of a language

for representing augmented transition networks.

12

The expressions generated as transition networks by the grammar of
figure 2 are in the form of parenthesized 1ist structures, where a list
of the elements.A, B, C, and D is represented by the expression (A B C D).
The transition network is represented as a list of arc sets, each of
which is itself a list whose first element is a state name and whose
remaining elements are arcs leaving that state. The arcs also are
represented as lists, possible forms of which are indicated in the
figure. (The conditions and functions associated with final states are
represented as "arcs" with no actions or terminal action.) The first
element of each of these arcs is a word which zames the type of the arc,
and the third element is the arbitrary test which must be satisfied in
order for the arc to be followed., The CAT arc is an arc which can be
followed if the current input symbol is a member of the lexical
category named in the list (and the test is satisfied), while the PUSH
arc is an arc which causes a pushdown to the state indicated. The TST
arc is an arc which permits an arbitrary test to determine whether an
arc is to be followed. In all three of these arcs, the actions on the
arc are the structure-building actions, and the terminal action specifies
the state to which control is passed as a result of the transition. The
two possible terminal actions, TO and JUMP, indicate whether the input
pointer is to be advanced or not advanced, respectively--that is, whether
the next state is to scan the next input word or whether it is to continue

to scan the same word. The POP arc is a dummy arc which indicates under

AT T TABINS, 1. o S

SEBHNL € 3 2 e, D S oty W W

13

what conditions the state is to be considered-a—final—state;—and the
form to be returned as the value of the computation if the POP altermative
is chosen. (One aﬁvantage of representing this information as a dummy

arc is the ability to order the choice of popping with respect to the

other arcs which leave the state.)

The actions and the forms which occur in the network are represented
in "Cambridge Polish'" notation, a notation in which a function call is
represented as a parenthesized list whose first element is the name of
the function and whose remaining elements are its arguments. The
three actions indicated in figure 2 cause the contents of the indicated
register to be set equal o the value of the indicated form. SEIR
causes this to be done at the current level of computation in the
network, while'SENDR causes it to be done at the next lower level of
embedding (used to send information down to a lower level computation)
and LIFTR causes it to be done at the next higher level computation (used
to return additional information to higher-level computations).

The forms as well as the conditions (tests) of the transition network

may be arbitrary functions of the register contents, represented in some
functional specification language such as LISP (McCarthy et 2l., 1962),
a list processing programming language based on Church's lambda calculus
and written in Cambridge Poliszh notation. The seven types of forms
listed in the figure are a basic set which is sufficient to illustrate

the major features of the augmented transition network model. GETR is

14

a function whose value is the contents of the indicate register, * is
a form whose value is usually the current input word, and GETF is a
function which determines the value of the specified feature for the
current input word. (In the actions which occur on a PUSH arc, * has
tlhie value of the lower level computation which permitted the PUSH
transition.)

BUILDQ is a useful structure-building form which takes a list
structure representing a fraément of a parse tree with specially marked
nodes and returns as its value the result of resplacing those specially
marked nodes with the contents of the indicated registers.f Specificslly,
for each occurrence of the symbol + in the list structure given as its
first argument, BUILDQ substitutes the contents of one of the listed

registers (the first listed register replacing the first + sign, the

The BUILDQ function which is implemented in the experimental parsing
system (to be described in a later report) is considerably more versatile
than the version described here. Likewise, the implemented parser contains
additional formats for arcs as well as other extensions to the language
specified here. There has been no attempt to define a basic irredundant
set of primitive conditions, actions, and forms, but rather an effort
has been made to allow flexibility for adding "natural" primitives which
facilitate the writing of compact grammars. For this reason, the set
of possible conditions, actions, and forms has been left open-ended to
allow for experimental determination of useful primitives. However,
the arc formats and actions described here, together with arbitrary
LISP expressions for conditions and forms, provides a model which is

equivalent in power to a Turing machine and therefore complete in a
theoretical sense.

second register the second +, etc.). In addition, BUILDQ replaces

occurrences of the symbol #* in the fragment with the value of the

form *.

The remaining three forms are basic structure-building forms (out
of which any BUILDQ can be duplicated) which respectively make a list
of the values of the listed arguments, append two lists together to
make a single list, and produce as value the (unevaluated) argument
form, An illustrative fragment of an augmented transition network is
given in figure 3. In the next section we will describe the operation
of this network and discuss some of the features of the augme;ted

transition network model.

1.3.2 An illustrative example

Figure 3 gives a fragment of an augmented transition network
represented in the language of figure 2. This fragment_is an augmentation
of the portion of the transition network of figure 1 which consists of
the states S/, Ql, Q2, Q3, Q4, and Q5. The augmented network
builds a structural representation in which the first constituent of a
sentence is a type (either DCL or Q) which indicates whether the sentence
is declarative or interrogative, the second constituent is the subject
noun phrase, the third is an auxilliary (or NIL if there is no auxilliary),
and the fourth is the verb phrzse constituent. This representation is

produced regardless of the order in which the subject noun phrase and

16

the auxilliary occur in the sentence. The network also produces a
representation of a verb phrase constituent even though there is no
pushdown in the network corresponding to a verb ﬁhrase. It will be
helpful, both for the understanding of the notation and for th~
understanding of the operation of the augmented network, to follow
through an example at this point using the network fragment of
figure 3.

Before proceeding to work an example it is necessary to explain
the representation of the parse trees which is used by the network
fragment. The parse trees are represented in a parenthesized notatiop
in which the representation of a node consists of a list whose first
element is the name of the node and whose remaining elements are the

representations of the constituents of that node.

(s/

Q1

(Q2

(Q3

(Q4

Q5.

17

(pusH NP/ T
(SETR SUBJ *)
(SETR TYPE (QUOTE DCL))
(TO Q1))
(CAT AUX T
(SETR AUX *)
(SETR TYPE (QUOTE Q))
(TO Q2)))
(CAT V T
(SETR AUX NIL)
(SETR V %)
(TO Q4))
(CAT AUX T
(SETR AUX %)
(TO Q3)))
(PUSH NP/ T
(SETR SUBJ *)
(T0 Q3)))
(CAT V T
(SETR V %)
(TO Q4)))
(POP (BUILDQ (S + + + (VP +)) TYPE SUBJ AUX V) T)
(PUSH NP/ T
* (SETR VP (BUILDQ (VP (V +) *) V))
{T0 Q5)))
(POP (BUILDQ (S + + + +) TYPE SUBJ AUX VP) T)
(PUSH PP/ T
(SETR VP (APPEND (GETR VP) (LIST ¥)))
(TO Q5)))

Figure 3: An illustrative fragment

of an augmented transition network.

o o

18
For example, the parse tree:
/S
ﬁP NP
John v NP
likes Mary

would be represented in this notation by the expression:
(S (WP John) (VP (V likes) (NP Mary))).

This representation can also be viewed as a labelled bgacketing of the
sentence in which a left bracket for a phrase of type X 1is represented
by a left parenthesis followed by an X, and the matching right bracket
is simply a righct parenthesis.

Let us now consider the operation of the augmented network fragment

of figure 3 for the input sentence "Does John like Mary?".

1. We begin the process in state §/ scanning the first word of
the sentence, "does". Since this word is an auxilliary, its
dictionary entry would mark it as a member of the category
AUX ;nd therefore (since its arbitrary condition T is the
universally true condition) the arc (CAT AUX T ...) can be
followed. (The other arc which pushed down to look for a
noun phrase will not be successful.) 1In following this arc,
we execute the actions: (SETR AUX *), which puts the current
word ''does" into a register named AUX, (SETR TYP' (QUOTE Q)),

which puts the symbol "Q" into a register named TYPE, and

2,

19

(TO Q2), which causes the network to enter state Q2 scanning
the next word of the sentence "John'.

State Q2 has only one arc leaving it, which is a push to
state NP/. The push will be successful and will return a
representation of the structure of the noun phrase which will
then become the value of the special register *., We will
assume that the representation returned is the expression

"(NP John)". Now, having recognized a construction of type
NP, we proceed to perform the actions on the arc. The actioﬁ
(SETR SUBJ *) causes the value " (NP John)" to be placed in the
register SUBJ, and the action (TO Q3) causes us to enter the
state Q3 scanning the next word "like". The register contents

at this point are:

TYPE : Q
AUX : does
SUBJ : (NP John).

From state Q3, the verb "like" allows a transition to state

Q4, setting the contents of a register V to the value '"like"
in the process, and the input pointer is advanced to scan the
word ''Mary".

Q4, being a final state could choose to 'POP", indicating that
the string that has been processed so far is a complete sentence

(according to the grammar of figure 1); however, since this is

5.

20

not the end of the sentence, this alternative is not successful.
However, the state also has an arc which pushes down to state
NP/, and this alternative will succeed, returning the value

"(NP Mary)". The action (SETR VP (BUILDQ (VP (V +) *) V))

will now take the structure fragment "(VP (V +) *)" and
substitute the current value of * for the occurrence of *

in the fragment and replace the occurrence of + with the
contents of the indicated register V. The resulting structure,
"(VP (V like) (NP Mary))" will be placed in the register VP,
and the action (TO Q5) causes a transition to state Q5 scanning
beyond the end of the input string. The register contents at

this point are:

TYPE Q

AUX : does

SUBJ (NP John)

v : like

VP : (VP (V like) (NP Mary))

We are now scanning the end of the sentence, and since Q5

is a final state (i.e., it has a "POP'" arc), and the condition
T 1is satisfied, the sentence is accepted. The form

"(BUILDQ (S + + + +) TYPE SUBJ AUX VP)" specifies the value to
be returned as the analysis of the sentence. The value is

obtained by substituting the contents of the registers TYPE,

T o ea

21

SUBJ, AUX, and VP for the successive instances of the symbol
"+" in the fragment "(S + + 4+ +)'" to give the final sentence

analysis:
(S Q (NP John) does (VP (V like) (NP Mary)))

which represents the parse tree:

S
— % S
| /.
\Y) NP

John

like Mary

In ordinary context free recognition, the structural descriptions
of sentences are more or less direct representations of the flow of
control of the parser as it analyzes the sentence. The structural
descriptions assigned by the structure building rules of an augmented
transition network, as we can see from the example, are comparatively
independent of the flow of control of the algorithm. This is not to
say that they are not determined by the flow of control of the parser,
for tnis they surely are; rather we mean to point out that they are
not isomorphic to the flow of cont¥ol as in the usual context free
recognition algorithms, It is possible for a constituent that is
found in the course of analysis to appear in the final structural
description several times or not at all, and its location may be entirely

different from that in which it was found in the surface structure.

22

In addition, the structural description assigned to a comnstituent at
one point during the analysis may be changed or transformed before that
structure is incorporated into the final structural description of the
sentence as a whole. These facilities plus the ability to test
arbitrary conditions allow the equivalent of a transformational deep
structure to be constructed while the parser is performing transitions

that are isomorphic to the surface structure of a sentence.

1.4 Transformational recognition

The usual model of transformational grammar is a generative model
consisting of a context free (base) grammar and a set of transformational
rules which map syntax trees into new (derived) syntax trees. The
generation of a sentence with such a grammar consists of first constructing

a deep structure using the base component grammar and then transforming

this deep structure into a surface structure by successive applications

of transformations. The terminal nodes (or leaves) of the surface
structure tree give the final form of the sentence. This model of
transformational grammar is totally oriented toward the generation of
sentences rather than their analysis, and although there is clearly an
algorithm for the use of such a grammar to analyze a sentence--namely

the procedure of "analysis by synthesis" (Matthews, 1962)--this algorithm
is so inefficient as to be out of the question for any practical

applicatien. (The analysis by synthesis method consists of applying the

T N TR

23

rules in the "forward" (generative) direction in all possible ways to]
generate all of the possible sentences of the language while looking
to see if the sentence which you are trying to analyze turns up in the

list.)

8t

Two attempts to formulate more practical algorithms for transformational

I

recognition (Petrick, 1965, and MITRE, 1964) resulted in algorithms which

T R e

'l

were still too time consuming to be practical for the analysis of more than
a few test sentences with small sample grammars. Both of these algorithms

attempt to analyze sentences by applying the transformations in reverse,

a procedure which is far less straightforward than it sounds. The
difficulty with simply performing the transformations in reverse is
twofold. First, the transformations operate on tree structures and
produce tree structures as their values. In the forward direction, they
begin with the deep structure tree and end with the surface structure
tree. In order to reverse this process, one needs first to obtain a
surface structure tree for the input sentence. However, there is no
component in the transformational model which characterizes the possible
surface structures (their only characterization is implicit in the
changes which can be made in the deep structures by means of the
transformations). Both the MITRE and the Petrick analysis proceaures
solve this problem by constructing an "augmented grammar'' which consists
of the rules of the original base component grammar plus additional

rules which characterize the structures which can be added by transformations.

Ealali<

LA RS S

ST O & § Ay U R

24

In the MITRE procedure this '"surface grammar' is constructed by hand
and no formal procedure is available for constructing it from the
original transformational grammar. In the Petrick procedure, there is
a formal procedure for obtaining an augmented grammar but it will not
necessarily terminate unless the length of the possible input sentences
is first circumscribed (which unfortunately reduces the class of
sentences that can be accepted to a finite set-—theoretically
analyzable by table lookup).

In the MITRE procedure, the augmented grammar is used to assign
a complete "tentative" surface structure which is then subjected to
inverse transformations. In the Petrick procedure inverse transformations
are applied to partially built up surface structures and the processes of
applying transformations and building structure are interwoven. In both
systems, the inverse transformations may or may not produce a legitimate
deep structure, If they do, then the sentence is accepted, but if they
do not, then the tentative surface structure was spurious and is rejected.
There is no way to construct a context free surface grammar which will
assign all and only legitimate surface structures. One must settle
for one which will assign all legitimate surface structures plus
additional spurious ones. Moreover, the only way to tell the two apart

is to perform the inverse transformations and check the resulting

"tentative'" deep structures.

25

The second difficulty in this method of analysis is the combinatorial
explosion of the number of possible inverse transformation sequences
that can be applied to a given surface structure tree. Although many
of the transformations when applied in the forward direZifgﬁ”are
obligatory so that only one possible action can be taken, almost all
of the inverse transformations are optional. The reason for this is
that even though a given structure looks like it could have been
produced by a given forward transformation so that the inverse
transformation can be performed, there is no guarantee that the same
structure could not have arisen in a transformat@bnal derivation in
some other way. Therefore both the alternative of applying the inverse
transformation and that of not applying it must both be tried whenever
an inverse transformation can apply. The number of active paths can
grow exponentially with the number of transformations applied. Moreover,
the forward transformations usually don't sp;cify mucii information about
the structure which results from applying the transfermation (even
though the linguist may know a good deal about what the resulting
structure must be like). For this reason the inverse transformations
are not as selective as their forward counterparts and many more
spurious applications of transformations are allowed. That is, whereas

most forward sequences of transformations will lead to successful

surface structures, most inverse sequenc.s will not lead to legitimate

26

deep structures, and a large amount of unnecessary wasted effort is
therefore expended on dead end paths. To make matters worse, it is
not always clear what the stopping conditions on the inverse
transformational process snould bz. Some inverse transformational
sequences could go on forever and it is not clear what set of
conditions is sufficient to guarantee that a given sequence will not
eventually lead tc a legitimate deep structure. In short, the inverse
transformational process is an extremely complicated one and is

impractically inefficient to implement.

1.5 Augmented transition networks for transformational recognition

Kuno (1965) suggested that it should be possible to augment the
surface structure grammar of a transformational grammar in such a way
that it "remembered" the equivalent deep structure constructions and
could build the deep structure of the sentence while doing the surface
structure parsing, without the necessity of a separate inverse
transformational component. The model which he propcsed at that time,
however, was not adequate to deal with some of the more powerful
transformational mechanisms such as the extraposition of a constituent
from an arbitraril& deep embedding. The augmented transition network,
on the other hand, provides a model which is capable of doing everything
that & transformational grammar can do and is therefore a realization of

part of the Kuno prediction. It remains to be seen whether a completely

27

mechanical procedure can be developed to take a transformational
grammar in the usual formalism and translate it into an equivalent
augmented transition network, but even if such a procedure is available,
it may still be more appropriate to use the transition network model
directly for the original linguistic research and grammar development.
The reasons for this are several: First, the transition network that
could be devéloped by a mechanical procedure from a traditional
transformational grammar could not be expected to be as efficient as
that which could be designed by hand. Moreover, the transition network
model provides a mechanism which satisfies many of the objections which
have been raised by linguistis against the transformational grammar as

a linguistic model (such as its incompatibility with many psycholinguistic
facts which we know to characterize human language performance).

A third reason for preferring the transition network model to the
usual formulation of transformational grammar is the power which it
contains in its arbitrary conditions and its structure building actions.
The modei is equivalent to a Turing machine in power and yet the actions
which it performs are "natural" ones for the analysis of language.

Most linguistic research in the structure of language and mechanisms of
grammar has attempted deliberately to build models which do not have the
power of a Turing machine but which make the strongest possible hypotheses
about language mechanisms by proposing the least powerful mechanism that

can do the job. As a result of this approach many variatioms of the

28

transformational grammar model have been proposed with different basic
repertories of transformational mechanisms. Some have cyclic transformation
rules, others do not; Some have a distinct 'post cycle" that operates in a
different mode after all of the cyclic rules have been applied. There

are various types of conditions that may be asked, some models have
double structural descriptions, some have ordered rules, some have
ohligatory rules, some have blocking rules, etc. Im short there is not

a single transformational grammar model, there are myriad. Moreover

these models are more or less incomparable. They do not fali within a
single general framework so that their relative merits can be compared.

If one such model can handle some features of language and another can
handle different features, there is no systematic procedure for
incorporating them both into a single model. In the augmented

transition network model, the possibility exists to add to the model
whatever facility is needed and seems natural to do the job. Omne can

add a new mechanism by simply inventing a new basic predicate to use in
conditions or a new function to use in the structure building rules.

It is still possible to make strong hypotheses about the types of
conditions and actions that are required, but when one finds that he

nieeds to accomplish a given task for which his basic model has no
"natural" mechanism, there is no problem extending the augmented transition
network model to include it. This requires only the relaxation of the
restrictions on the types of conditions and actions, and no.reformulation

of the basic model.

29

1.6 Previous transition network models

Two previous parsing systems based on a form of augmented
transition network have been described in the literature. Thorne,
Bratley, and Dewar (1968) describe a procedure for nz2tural language
analysis based on a 'finite state tramsition network" (which is applied
recursively), and Bobrow and Fraser (1969) describe a system which is
"an elaboration of the procedure described by Thorne, Bratley, and
Dewar.” Although these systems bear considerable similarity to the
one we have descriged, they differ from it in a number of important

respects which we will describe shortly. Let us first however, briefly

describe thne two systems.

1.6.1 The Thorne system

The Thorne system assigns a representation of syntactic structure
which attempts to simultaneously represent the deep structure and the
surface structure of a sentence. Constructions are listed in the order
in which they are found in the surface structure, with their deep
structure functions indicated by labelling. Inversions in word order
are indicated by marking the strﬁctures which are found "out of place"
(i.e., in positions other than their deep structure positions) without
moving them from their surface structurz positions, and later in the
string the position where they would have occurred in the deep structure

is indicated by the appropriate deep structure function label followed

30

by an asterisk. (They do not describe a procedure for constituents which

are found in tﬁe surface structure to the right of their deep structure

positions. Apparently their grammar does not deal with such constructions.)
Thorne views his grammar as a form of transformational grammar

wvhose base component is a finite-state grammar and permits recursion to

take place only via transformations. According to Thorne, the majority

cf transformation rules can be viewed as "meta rules" in the sense that

"they operate on other rules to produce derived rules rather than

operating on structural descriptions to produce new structural

descriptions.”

He uses an augmented transition network contaiming both
the original deep structure rules plus these derived rules as the
grammar table to drive his parsing algorithm, but is not able to

handle the word order inversion transformations and the éonjunction

transformations in this way. Instead, he implements these features as

exceptions embedded ia his parsing program.

1.6.2 The system of Bobrow and Fraser

Bobrow and Fraser (1969) describe a parsing system which is an
elaboration of the Thorne parser. Like the Thorne parsings, the general
form of their analysis ''resembles the surface structure analysis of the
sentence, with added indications of moved constituents and where they

are located in deep structure.” This grammar model is also a form of

augmented transition networl . whose actions include setting flags and

31

function labels and whose conditions include testing previously set
flags. Unlike the Thorne system, however, Bobrow's system provides a
facility for transferring information back to some previously analyzed
constituent. In general the conditions on an arc can be arbitrary
LISP functions (the system is programmed in LISP), and the actions
for transferring information can be arbirary LISP functions. The
conditions and actions actually implemented in the system, however, are
limited to flag testing and to the transferriang back into previously
recognized structures new deep structure function labels.

According to Bobrow (personal communication) the major differences
between his system and that of Thorne is the use of symbolic flag
names (instead of bit positioms), a facility for mnemonic state names,
the ability to transfer information back to previously analyzed
constituents, and a facility for active feature values in the dictionary
(these are actually routines which are stored in the dicgionary entry

for the word rather than merely activated by features stored in the

dictionary.)

1.6.3 Comparison with the present system

In comparing the augmented transition network system described in
this paper with the systems of Bobrow and Fraser and of Thorne et al.,
there are two domains of comparison which must be distinguished--the

formal description of the model and the implementation of the parsing

32

system. One of the major differences between this parsing system and
those of Bobrow and Thorne is the degree to which such a distinction
is made. The Thorne paper does not describe the augmented transition
network model which they use except to point out that the grammar
table used by the parsing program "has the form of a.finite-state
network or directed graph--a form appropriate for the representation
of a regular grammar." The transition network model is apparently
formalized only in the form in which it actually occurs in the parsing
program (which is not described). The conditions on the arcs seem to
be limited to tests of agreement of features associated with lexical
items and constituents, and the actions are limited to recording the
current constituent in the output representation, labeling constituents,
or inserting dummy nodes and markers. The mechanisms for word order
inversion and conjunction are not represented in the network but are
"incorporated into the program."

The Bobrow and Fraser paper improves considerably on the power of
the basic transition network model used by Thorne et al. It adds the
facility for arbitrary conditions and actions on the arcs thus increasing
the power of the model to that of a Turing machine. In this system as
in Thorne's, however, there is no distinction between the model and the
implementation. Although the conditions and actions are arbitrary as
far as the implementation is concerned, there is no separate formal

model which characterizes the data structures on which they operate.

R s £ it S e i S 1 22 X ok

33

31 k. That 1s, in order to add such an arbitrary condition, one would have to
know lLiow the LISP implementation of the parsing algorithm works, and
where and how its intermediate results are stored. The range of
conditions and actions available without such information--i.e., the
condition and action subroutines actually provided in the implementation--
%_ é consist c¢f setting and testing flags and transmitting function labels
A back into previously analyzed constituents. Both in Bobrow's system
and in Thorne's the actual representation of constituent structure is
isomorphic to the recursive structure of the analysis as determined by
the history of recursive applications of the transition network, and it
is produced automatically by the parsing algorithm.

The augmented transition network as we have defined it provides a
formalized transition network model with the power of a Turing machine
indeggndent of the implementation. The model explicitly provides for

the isolation of various partial results in named registers and allows

arbitrary conditions and actions which apply to the contents of these

registers. Thus it is not necessary for a grammar writer to know
details of the actual implementation of the parsing algorithm in order

to take advantage of the facility for arbitrary conditions and actions.+

¥ In the experimental parsing system there ic sometimes an advantage

to using conditions or actions which apply to features of the implementation
that are not in the formal model. Actions of this sort are considered

to be extensions to the basic model, and the features of the implementation
which allow them to be added casily are largely features of the BBN LISP
system (Bobrow, Murphy, and Teitelman, 1969) in which it is written,

34 ;

The building of the constituent structure is not performed automatically

WALV [P Y e 3l Ly

by the parsing algorithm in this model, but must instead be specified

by explicit structure building rules. The result of this feature is

that the structures assigned to the sentence no longer need to be
isomorphic to the recursion history of the analysis, but are free to
move constituents around in the representation. Thus, the representation
produced by the parser may be a true deep structure representation

of the type assigned by the more customary transformational grammar
models (or it could also be a surface structure representation, a dual
purpose repreéentation as in the Thorne and Bobrow systems, or

any of a number of other representations such as dependencv
representations). The explicit structure-building actioms on the arcs
together with thé use of registers to hold pieces of sentence structure
(whose function and location may not yet have been determined) provides
an extremely flexible and efficient facility for moving constituents
around in their deep structure representations and changing the
interpretation of constituents as the course of an analysis proceeds.
It is even possible to build structures with several levels of nesting
while remaining at a single level of the tramsition network, and
conversely to go through several levels of recursion of the network
while building a structure which has only one level. No facility like

this is present in either the Thorne or the Bobrow systems.

Pe
3
e
>

35

Another feature of the augmented transition network parsing
system presented here which distinguishes it from the Thorne and Bobrow
systems is the effort that went into designing a language for the
specification of the augmented transition network that would be convenient
and natural to the grammar designer rather than to the machine or to a
computer programmer. It is possible in a few pages to c;mpletely specify
the possible syntactic forms for the representation of an augmented
transition network to be input to this parsing system. Each arc is
represented by a ﬁnemonic name of the type of arc, the arc label, an
arbitrary condition, and a list of actions to be executed if the arc
is followede The condition and actions are represented as expressions
in Cambridge Polish motation with mnemonic function names, and care has
been exercised to provide a basic repertoire of such functions which is
"natural" to the task of natural language analysis. One of the goals of
the experimental parsing system is to evolve such a set of natural
operaticns through experience writing grammars for it, and many of the
basic operations described in this paper are the result of such
evolution. One of the unique characteristics of the augmented transition
network model is the facility to allow for evolution of this type.

Other distinguishing features between this system and the systems
of Bobrow and of Thorne lie in the method of implementation and the goals
of the system. For example, Thorne was interested in characterizing

certain psychological features of the ways in which humans parse sentences

36

whereas this is not the major concern of the system of Bobrow and

Fraser nor of the system des.cibed here. Both Bobrow and Thorne,
however, were concerned with producing all of the analyses of a

sentence without performing repetitive analyses of the same constituent
for different overall analyses in which it appears, and both use a
parallel parsing strategy to accomplish this. Neither of them perform
any semantic analysis of the sentences. The present parser was designed
to be used with a semantic interpreter in a system whose objective is to
select the "most likely" syntactic analysis which "m=":2s sense' to the
semantic interpreter. In this system we may require the capability for
enumerating all of the analyses of the sentence in scme cases. However,
if it is possible to select the "most likely'" parsing vhich "makes sense"
without exhaustively processing all of the ambiguous syntactic structures
which could be assigned to the sentence, then this system attempts to do
so. For this reason and other reasons having to do with the flexibility
of the experimental system for the investigation of different basic
operations, the experimental parsing system which we have implemented
pursues the individual parsings independently rather than in parallel.

In practice, the result is simply avoiding much of the processing which
would have to be done otherwise in most of the sentences thch are encountered,
We show in a later section that the transition network model that we have
presented is amenable to parsing by a modified form of the Early recognition

algorithm--a parallel-type context free recognition algorithm which operates

37

within a general time bound proportional to the cube of the length of
the input string and is one of the most efficient context free parsing
algorithms yet devised. The general n3 time bound still applies to
the augmented transition networks provided that the conditions and

k actions on the arcs take a bounded amount of time.

1.7 Advarn*ages of the augmented transition network model

% The augmented transition network model of grammar has many advantages
as a model for natural language, some of which carry over to models of
programming languages as well. In this section we will review and
summarize some of the major features of the transition network model

which make it an attractive model for natural language.

3 1.7.1 Perspicuity

Context free grammars have been immensely successful (or at least
popular) as models for natural language in spite of formal inadequacies
of the model for handling some of the features that occur in existing
natural languages. They maintain a degree of "perspicuousness' since
the constituents which make up a construction of a given'type can be
read off directly from the context free rule. That is, by looking at
a rule of a context free grammar, the consequences of that rule for the
types of comstructions that are permitted are immediately apparent. The

pushdown store automaton, on the other hand, although equivalent to the

38

context free grammar in generative pover does not maintain this
perspicuousness. It is not surprising therefore that linguists in
the process of constructing grammars for natural language have worked
with the context free grammar formalism ard not directly with pushdown
store automata, even though the pushdown store automaton through its
finite state control mechanism allows for some economies of representation
and for greater efficiency in resulting parsing algorithms.

The theory of transformational grammar proposed by Chomsky is one
of the most powerful tools for describing the sentences that are possible
in a natural language and the relationships that hold among them, but
this theory as it is curreatly formalized (to the limited extent to
which it is formalized) loses the perspicuousness of the context free
grammar., It is not possible in this model to look at a single rule
and be immediately aware eof its consequences for the types of construction
that are possible. The effect of a given rule is intimately bound up
with its interrelation to other rules, and in fragments of transformational
grammars for real languages, it may require an extremely complex analysis
to de-ermine the effect and purpose of any given rule. The augmented
transition network provices the power of a transformational grammar but
maintaigglypch of the perspicuousness of the context free grammar model.
1. the transition network model were implemented on a computer with a
graphics facility for displaying the network, then it would be one of the

most perspicuous (as well as powerful) grammar models available.

39

1l.7.2 Generative power

Even without the conditions and actions on the arcs, the recursive
transition network model has greater strong generative power than the
ordinary context free grammar, This is due to its ability to characterize
constructions which have an unbounded number of immediate constituents.
Ordinary context free grammars cannot characterize trees with unbounded
branching without assuming an infinite set or rules. (Another way of
looking at the recursive transition network model is that it is a finite
representation of a context free grammar with an infinite set of rules.)
When the conditions and actions are added, the model attains the power
of a Turing machine, although the basic operations which it performs
are "natural" ones for language analysis. Using these conditions and
actions, the model is capable of performing the equivalent of transformational
analysis without the need for a separate transformational component,

Another attractive feature of the augmented transition network grammar
model is the fact that one doesn't seem to have to sacrifice efficiency
to obtain power. 1In the progression from context free grammars to context
sensitive grammars, to transformational grammars, the time required for
the corresponding recognition algorithms incresses enormously. The
transition network model, however, while achieving all of the power of
a transformational grammar, does so without apparently requiring much
more time than is required for ordinary context free recognition. (This

will be illustrated to some extent by the example in section 1.7.6.)

40

An additional advantage of the augmented transition network model
over the transformational grammar model is that it is much closer to a
dual model than the transformational grammar. That is, although we have

described it as a reccgnition or analysis model which analyzes sentences,

there is no real restriction against running the model in a generative

mode to produce or generate sentences. The only change in operation that
would be required is that conditions which look ahead in the sentence
would have to be interpreted in the generation algorithm as decisions to
be made which if chosen will impose constraints on the generation of
subsequent portions of the sentence., The transformational grammar model
on the other hand is almost exclusively a generative model. The analysis
problem for the transformational grammar is so extremely complicated that

no completely satisfactory recognition algorithm for transformational

grammar has yet been found, The only existing algorithms are prohibitively

time consuming and expensive.

1.7.3 Efficiency of representation

A major advantage of the transition network model over the usual

context free grammar model is the ability to merge the common parts of

many context free rules thus allowing greater efficiency of representation.

For example, the single regular-expression rule S -+ (Q) (NEG) NP VP

replaces the four rules:

MLy st adatg i gt Lo s

N RN

.
K
4
#
¥

.

41

S>NP VP
S>Q NP VP
S > NEG NP vp

S>Q NEG NP vpP

in the usual context free notation. The transition network model can
frequently achieve even greater efficiency through merging because of
the absence of the linearity constraints that are present in the regular
expressicn notation.

The merging of redundant parts of rules not only permits a more
compact representation but also eliminates the necessity of redundant
processing when doing the parsing. That is, by reducing the size of
the grammar representation, one also reduces the number of tests which
need to be performed during the parsing, In effect, one is taking
advantage of the fact that whether or not a rule is successful in the
ordinary context free grammar model, information is frequently gained
in the process of matching it (or attempting to match it) which has
implications for the success or failure of later rules. Thus, when two
rules have common parts, the matching of the first one has already
performed some of the tests required for the matching‘of.the second one.
By merging the common parts, one is able to take advantage of this
information to eliminate the redundant processing in the matching of the

second rule.

42

In addition to the direct merging of common parts of different
rules when constructing a transition network model, the augmented
transition network through its use of flags allows for the merging of
similar parts of the network by recording information in registers and
interrogating it with conditions on the arcs. Thus it is possible to
store in registers some of the information that would otherwise be
implicitly remembered by the state of the network and to merge states
whose transitions are similar except for conditions on the contents of
registers. For example, consider two states whose transitions are alike
except that one is "remembering" that a negative particle has already
been found in the sentence, while the other permits a transition which
will accept a negative particle, These two states can be merged by
setting a flag to indicate the presence of a prior negative particle
and placing a condition on the arc which accepts the negative particle.
to block it if the negative flag is set.

The process of merging similar parts of the network through the
use of flags, while producing a more compact representation, does not
result in an improvement in processing time and usually requires slightly
more time. The reason for this is the increased time required to test
the condipions and the presence of additional arcs which must be
processed even though the conditions will prevent them from being
followed. In the absurd extreme, it is possible to reduce any transition

network to a one-state network by using a flag for each arc and placing

?
3
2
-

43

conditions on the arcs which forbid them to be followed unless one of
the flags for a possible immediately preceeding arc has been set. The
obvious inefficiency here is that at every step it would be necessary
to consider each arc of the network and apply a complicated test to
determine whether the arc can be fnllowed. There is thus a trade off
between the compactness of the rapresentation which can be gained by
the use of flags and the increase in processing time which may result.
This seems to be just one more example of the ubiquitous space-time
trade off that occurs for almost any computer programming problem.

In many cases, the use of registers to hold pileces of an analysis
provide automatic flags, so that it is not necessary to set up special
registers to remember such information., For example, the presence of a
previous negative particle in a sentence can be indicated by the .non-
emptiness of a NEG register which contains the particle. Similarly the
presence of an auxilliary verb is indicated by the non-emptiness of an

AUX register which contains the auxilliary verb.

1,7.4 Capturing regularities

One of the linguistic goals of a grammar for a natural language is

that the grammar capture the regularities of the language, That is, if
there is a regular process that operates in a number of environments,
then the grammar should embody that process in a single mechanism or

rule, and not in a number of independent copies of the same process for

20 218 2o

44

each of the different contexts in which it occurs. A simple example

of this principle is the representation of the prepositionmal phrase

as a constituent of a sertence because the construction consisting of

a preposition followed by a noun phrase occurs often in English sentences
in many different environments. Thus the model which did not treat
prepositional phrases as constituents would be failing to capture a

generality. This principle is a variation of the economy principle,

which says that the best grammar is that which can characterize the
language in the fewest number of symbols. A grammar which made essentially
independent copies of the same information would be wasting symbols in its
description of the language, and that model which merged these multiple
copies into a single one would be a better grammar because it used fewer
symbols. Thus the economy principle tends to favor grammars

which capture regularities.

The transition network model with the augmentation of arbitrary
conditions on the arcs and the use of registers to contaiﬂ flags and
partial constructions provides a mechanism for recognizing and capturing
regularities. Whenever the grammar contains two or more subgraphs of
any size which are essentially copies of each other, then it is a symptom
of a regularity that is being missed. That is, there are two essentially
identical parts of the grammar which differ only in that the finite state
control part of the machine is remembering some piece of information, but

otherwise the operation of the two parts of the graph are identical. To

3roa S Xk 2

45

capture this generality, it is sufficient to explicitly store the
distinguishing piece of information in a register (e.g., by a flag)

and use only a single copy of the subgraph.

l.7.5 Efficiency of operation

In addition to the efficiency of operation which results from the
merging of common parts of different rules, the transition network model
provides a number of other advantages for efficient operation. One of
these is the ability to postpone decisions by reworking the network. A
great inefficiency of many grammars for natural language is the procedure
whereby the grammar "'guesses' some basic feature of a construction too
early in the process of recognizing it. For example, guessing whether a
sentence is active or passive before the processing of the sentence has
begun. This results in the parser having to follow several alternatives
until that point in the sentence where enough information is present to
rule out the erroneous guesses. A much more desirable approach is to
leave the decision unmade until a point in the construction is reached
where the necessary information is present to make the decisiont, The
transition network model allows one to take this approach.

As we will show in section 2, the transition network model allows
one to "optimize" the network by making it deterministic (except for
recursion). If several arcs with the same label, leave a given state,

then a modified network can be constructed whichk has at most one arc with

46

a given label leaving any given state, This results in an improvement
in operation efficiency because of the reduced number of active
configurations which need to be followed during the parsing., The
deterministic network keeps identical looking analyses merged until that
point at which they are no longer identical, thus postponing the decision
as to which path it is on until the first point where the two paths differ,
at which point the input symbol usually determines the correct path. THe
augmented transition network may not permit the completely automatic
optimization which the unaugmented model permits, but it is still possible
to adopt the general approach of minimizing the number of- active
configurations by reducing the non-determinism of the network, thus
postponing decisions until the point in the input string where they make
a difference. The holding of pieces of the analysis in registers until
their appropriate function is determined allows one to wait until such
decisions have been made before building the syntactic representation,
which way depend on the decision. This facility allows one to postpone
decisions even when building deep structure rep;esentations of the type
assigned by a transformational grammar,

The necessity of following several active configurations during
parsing is a resulc of the potential ambiguity of natural language.
The source of this ambiguity lies in the recursion operation of the
network, since without recursion the network would be a finite state

machine which can be made completely deterministic. As we will show

el

47

in the next chapter, it is possible to eliminate much of the recursion
from a transition network (in fact we can eliminate all of the recursion
except for that induced by self embedding symbols), thﬁs reducing still
further the number of active configurations which need to be followed.
In the augmented network model, one seems in practice to be able to
use conditions on the arcs to determine uniquely when to push down-for
a recursion, leaving only the action of popping up as the source of
.; ambiguity and the cause for multiple active configurations. The use

of appropriate conditions (including semantic ones) on the POP arcs

of the network allows one to reduce this ambiguity still further.

One of the most interesting features of the use of registers

3 in the augmented transition network is the ability to make tentative
decisions about the sentence structure and then change your mind later
in the sentence without backtracking. For example, when one is at the
point in parsing a sentence where he is expeéting a verb and he encounters
the verb "be", he can tentatively agsign it as the main verb by putting
it in the main verb register. If he then encounters a second verb
indicating that the '"be" was not the main verb but an auxilliary helping
verb, then the verb "be'" can be moved from the main verb register into an
auxilliary verb register and the new main verb put in its place. This
technique, like the others, tends to reduce the number of active
configurations which need to be followed during the parsing. In the

next section we give an example which provides a number of illustrations of

s

N0

48

this technique of making tentative decisions and then changing them.

1.7.6 A second example

In this section we give an example that illustrates some of the
advantages of the sugmented transition network which we have been
discussing~—-especially the facilities for making tentative decisions
that are changed as the parsing proceeds. Figure 4 gives a fragment
of a transition network which characterizes the behavior of the
auxilliary verbs "be" and "have" in indicating the passive construction
and the perfect tense, We will consider the analysis provided by this
sample network for the sentence "John was believed to have been shot,"

a sentence with a fairly complex syntactic structure. In doing so, we
will see that the augmented traﬂsition network clearly characterizes the
changing expectations as it proceeds through the analysis, and that it
does do without the necessity of backtracking or pursuing different
alternatives.

Figure 4 is divided into three parts-—-a pictorial representation
of the network with numbered arcs, a description of the conditions
and forms associated with the final states, and a list of the conditions
and actions associated with the arcs of the network. In the pictorial
representation, S, NP, and VP are non-terminal symbols, AUX and V are
lexical category names, and the arcs labeled "TC" and "RY" are to be

followed only if the input word is "to" or "by" respectively. The

Cda i rait e e S e] S st

49

dotted arc with label NP is a special kind of "virtual" arc which
can be followed if a moun phrase has been placed on a special 'hold
list" by a previous HOLD command. It removes the item from the hold
1ist when it uses it. The hold list is a feature which provides a
natural facility for dealing with constituents which are found out
of place and which must be inserted in their proper location before
the analysis can be complete. The items placed on the hold list are
marked with the lavel at which they were placed on the list, and the
algorithm is prevented from popping up from that level until the item
has been "used" by a virtual transition at that level or some other level.
Final states are represented in the pictorial representation by
the diagonal slash and the subscript 1, a notation which is common in
the representation of finite state automata. The conditions necessary
for popping up from a final state and the expression which determines
the ;alue to be returned are indicated in part (b) of the figure. The
parenthesized representagion of tree structure is the same as that used
in section 1.3.2. Conditions TRANS and INTRANS test whether a verb is
transitive or intransitive, respectively, and the condition S-TRANS
tests for verbs like "believe" and "want", which can'take an embedded
nominalized sentence as their "object". Features PPRT and UNTENSED
mark respectively the past participial form and the standard untensed

form of a verb.

2 Te T ITOLR Pl B T, WD

49

dotted arc with label NP is a special kind of "virtual" arc which
can be followed if a noun phrase has been placed on a special 'hold
list" by a previous HOLD command. It removes the item from the hold
1ist when it uses it. The hold list is a feature which provides a
natural facility for dealing with constituents which are found out
of place and which must be inserted in their proper location before
the analysis can be complete. The items placed on the hold list are
marked with the lavel at which they were placed on the list, and the
algorithm is prevented from popping up from that le%el until the item
has been "used" by a virtual transition at that level or some other level.
Final states are represented in the pictorial representation by
the diagonal slash and the subscript 1, a notation which is common in
the representation of finite state automata, The conditions necessary
for popping up from a final state and the expression which determines
the ;alue to be returned are indicated in part (b) of the figure. Tae
parenthesized representagion of tree structure is the same as that used
in section 1.3.2. Conditions TRANS and INTRANS test whether a verb is
transitive or intransitive, respectively, and the condition S-TRANS
tests for verbs like "believe" and "want", which can'take an embedded
nominalized sentence as their "object'. Features PPRT and UNTENSED
mark respectively the past participial form and the standard untensed

form of a verb.

30

1 ‘7"' 5&6
xR Q
n [1]
@ NP 7 %@ BY" 9 @
NP) \ NP 8 =

@ / - "TO" NP

10 13 "BY"

12
O-ma K

e
o

(a) Pictorial representation with numbered arcs.

Q3:
Condition: (INTRANS (GEIR v))
Form: %
(BUILDQ (S + + (TNS +){(VP (V +))) TYPE SUBJ.TNS V)

Q4 and Q6

Condition: T

Forw:

(BUILDQ (S + + (TNS +) (VP (V +) +)) TYPE SUBJ INS V 0BJ)

(b) Conditions and forms for final states

Figure 4: A partial transition network

(continued on next page)

LY SR Ry

TR

B L A

LT W T TR T T R T AT R R TR T AR TR TR AT PR TN TR SR AT

Bt

L

i S IS ik i

1.

7.

9.

10.

51

Conditions Actions

T (SETR V *)
(SETR TNS (GETF TENSE))
(SETR TYPE (QUOTE Q))

T (SETR SUBJ #)
(SETR TYPE (QUOTE DCL))
T (SETR SUBJ *)
T (SETR V %)
(SETR TNS (GETF TENSE))
(AND (GETF PPRT) (HOLD (GETR SUBJ))
(EQ (GETR V) (SETR SUBJ (BUILDQ
(QUOTE BE))) (NP (PRO SOMEONE))))
(SETR AGFLAG T)
(SETR V *)
(AND {GETF PPRT) (SETR TNS (APPEND (GETR 1INS)
(EQ (GETR V) (QUOTE PERFECT)))
(QUOTE HAVE))) (SETR V %)
(TRANS (GETR V)) (SETR 0BJ *)
(TRANS (GETR V)) (SETR OBJ *)
(GETR AGFLAG) (SETR AGFLAG NIL)
(S~TRANS (GETR V)) (SENDR SUBJ (GETR OBJ))

(SENDR INS (GETR TNS))
(SENDR TYPE (QUOTE DCL))

T (SETR OBJ *)
(GETR AGFLAG) (SETR AGFLAG NIL)
T (SETR SUBJ *)
(GETF UNTENSED) (SETR V *)

(c) Conditions and actions on arcs. -

Figure 4: A partial transition network (concluded)

RS dE Al

RiAr il o

52

We begin the analysis of the sentence, "“"John was believed to have
been shot," in.state S, scanning the first wcrd of the sentence, "John."
Since "John" is a proper noun, the pushdown for a noun pﬁrase on arc 2
will be successful, and the actions for that arc will be executed placiag
the noun phrase (NP (NPR JOHN)) in the subject register SUBJ and recording
the fact that the sentence is declarative by placing DCL in the TYPE
register. The second wezd of the sentence, hwas", allo?s the transition
of arc 4 to be followed, setting the verb regiéter V to. the standard
form of the verb "BE" and recording the tense of the sentence in the
register TNS. The register contents at this point cofrespond to the
tentative decisioﬁ that "be" is the main verb of the sentence, and a
subsequent noun phrase or adjective (not shown in the sample network)
would continﬁe'this decision unchanged.

In state Q3, the input of the past participle "believed" tells us
that the sentence is in the passive and that the verb "be" is merely an
auxilliary verb indicating the passive. Specifically, arc 5 is followed
because the input word is a past participle form of a verb and the
current ccntent of the verb register is the verb "be". This arc revises
the tentative decisions by holding the old tentative .subject on the
special hold list, settiﬁg up a new tentative subject (the indefinite
someone), and éetting the flag AGFLAG which indicates that a subsequent
agent introduced by the preposition "“by" may specify_the'subject. The

main verb is mow changed from "be' to "believe" and the network veturns

33

to state Q3 scanning the word '"to". The register contents at this

point are:

SUBJ (NP (PRO SOMEONE))
TYPE DCL

v BELIEVE

INS PAST

AGFLAG T

and the noun pﬂrase (NP (NPR JOHN)) is being held on the hold list.

None of tpé arcs leaving state Q3 are satisfied by the input word
"to". lowever, the presence of the noun phrase "John" on the hold list
allows the virtual transition of arc 8 to take place just as if this
noun phrase had been found at this point in the sentence. (The
transition is permitted because the verb "believe" is marked as being
transitive,) The effect is to tentatively assign the noun phfase
(NP (NPR JOHN)) as the object oif the verb believe. If this were the
end of the sentence and we chose to pop up from the resulting state
Q4, then we woul& have the correct analysis 'someone beiieved John."

The input of the word "to" to state Q4 tells us that the "object"
of the verb "believe" is not merely the noun phrase "John", buc is a
nominalized sentence with '"John" as its tentative subject. The effect
of arcs 10 and 11 is to send down the necessary information to an embedded
calculation which will complete the embedded clause and return the result

as the objecf of the verb “believe". Arc 10 prepares to send down the

54

noun phrase (NP (NPR JOHN)) as the embedded subject, the tense PAST,
and the type DCL., Arc 11 then pushes dovm to state VP.scanning the

word “have'.

At this point, we find ourselves in an embedded computation with

%

the register contents: R ' f

SUBJ (NP (NPR JOEN)) :

TYPE DCL
TNS PAST

The arc 14 permits a transition if the current input is a verb in its

standard untensed, undeclined form (i.e., one cannot say. "John was
believed to has been shot"). Since "have" is such a form, the transition
is permitted and the main verb of the embedded sentence is tentatively
set to "have" as would befit the sentence "John was believed to have
money."

The subsequent past participle "been" folleowing the verb "have"
causes transition 6, which detects the fact that the embedded sentence
is in the perfect tense (the effect of the auxilliary "have') and
2dopts the new tentative verb 'be" as would befit the éentence, ""John
was believed to have been a druggist.'" The register contents for the

embedded computation at this point are:

SUBJ (NP (NPR JOHN))
TYPE DCL
TNS PAST PERFECT

v BE

Sk Rhailar

TV

35

Once again in state Q3, the input of the past participle 'shot”
with a tentative verb "be" in the verb register indicates that the
sentence is in the passive, and transition 5 puts the noun phrase
(NP (NPR JOHN)) on the hold list and sets up the indefinite subject
(NP (PRO SOMEONE)). Although we are now at the end of the sentence,
both the presence of the noun phrase on the hold list and the fact
that the verb "shoot" is transitive prevent the algorithm from popping
up. Instead, the virtual transition of arc 8 is followed, assigning
the noun phr#se "John" as the object of the verb "shoot"., The

register contents for the embedded computation at this point are:

SUBJ (NP (PRO SOMEONE))
TYPE DCL
INS PAST PERFECT
. \Y SHOOT
AGFLAG T

OBJ (NP (NPR JOHN))

56

At this point, we are at the end of the sentence in the final state
Q4, with an empty hold list so that the embedded computation can return
control to the higher level computation which called it. The value
returned, as specified by the form associated with the state Q4, is

(S DCL (NP (PRO SOMEONE)) (‘NS PAST PERFECT) (VP (V SHOOT) (NP (NPR JOHN))))

corresponding to the tree:

| ﬁ_x / \

.PRO PAST PERFECT

l
SOMEONE SHOOT NPR

JOHN

The higher level computation continues with the actions on arc 11,
setting the OﬁJ régister to the result of the embedded ?omputation.
Since the higher level computation is also in a final state, Q6, the
sentence is accepged and the structure assigned to it (as specified by
the form associated with state Q6) is:

(S DCL (NP (PRO- SOMEONE)) (INS PAST)(VP (V BELIEVE)(S DCL (NP (PRO

SOMEONE)) (TNS PAST PERFECT) (VP (V SHOOT) (NP (NPR JOHN))))))

which in tree form is represented as:

57

7 T,
L

SOMEONE BELLVE nc% \'ms\'p
-

PRO PAST PERFECT ' p
SOMEONE SHOOT NPR
JOHN

This structure can be paraphrased "Someone believed that someone had
shot John." 1If ﬁhe sentence had been followed by the phrase, "by Harry,"
there would have been two possible interpretations depending on whether
the additional'pﬁrase were accepted by the embedded computation or the

top level computation, Either case would have resulted in replacing one

at

The structure produced in one case would be paraphrased "Someone believed

 of the indefinite subjects SOMEONE with the definite subject "Harry."

that Harry had shot John," while the other would be "Harry believed that

someone had shot John."

1.7.7 Flexiﬁili:y for experimentation

Perhaps one of the most important advantages of the augmented
transition network model is the flexibility that the model provides for

experimental linguistic research. The open ended set of basic operations

58

which éan be used on the arcs allows for the development of a fundamental
set of "natural" operations (for natural language analysis) through
experience obtained while writing grammars. The powerful BUILDQ function
was developed in this way and has proven extremeliy useful in practice.
The use qf the hold list and the virtual transitions are another example
of the evolution of a special "nratural" operati&n to mgét 5 need.

A second area of experimentation that is facilitated by the transition
network model is the investigation of different types of structural
representations. The explicit structure building actions on the arcs of
the network allow one to experiment with representaiicns such as dependency
grammars, tagmemic representations,which explicitly label the functions bf
the constituents as well as‘kheir types, and various combinations of these.
It should even be possible to produca some types of semantic representation
by means of the structure building actions on the arcs.

Finally, it is possible to use the conditions on the arcs to experiment
with various types of semantic conditions for guiding the parsing and
reducing the number of "meaningless" syntactic analyses that are produced.
Within the framework of the augmented transition network one can try to
take .advantage of much of the information which human beings seem to have
available duriné parsing. Many good ideas in this area have gone untried

for want of a formalism which could accomodate them.

59

The experimental parsing system which has been implemented on the
time sharing system at Harvard has been constructed in a modular fashion
which lends itself to evolution and extension without major changes to
the overall system structure. Much of this flexibility is due to the
convenience of fh; LISP programming language in which it is implemehted.
The system has already undergone several cycles of evolution and a
number of new features have been developed in this way, many of which -
together with the experiments which have been perforped with the system
are described in a subsequent report. In the next two sections, we
will give detailed proofs and constructions for the optimization of the
basic transition network model and for its recognition by a modified

form of the Early context free recognition algorithm,

R

.

60

SECTION 2

REGULAR EXPRESSION GRAMMARS AND GRAMMAR OPIIMIZATION

Although variations of context-free grammars which_al;ow'ghg :1ght-h§nd
sides of rules to contain optional, repeatablie, and al;ernatiye constituents
have been used for some time both by linguistis and by dggignerg of art}fical
programming languages+, many of the potential advantages of this form of
grammar have not'been exploited. We will show in this section that a form-

alization of such grammars {called tegulat‘exgression;gtamma:s) is closely

related to the recursive . transition network modei of grammar and permits
one to "optimize" a context free grammar to allow for more efficient parsing.
This is done by "factoring out" the part of the ovammar qhichtis_essgn;ially
finite state {or "regular") from that part which inherently requires the

use of the pushdown store, thus permitting finite state optimization

techniques to aﬁply wherever possible.

2.1 Introduction

The context-free grammars contain as a subclass the class of finite-state
grammars, which unlike the class as a whole permit tvansformations that take
a given grammar into an equivalent grammar that is "more efficient" in a
specialized sense. Using well-known techniques for finite state machine
optimizativ- . it is possible to construct an unambiguoué (deterministic)
parsing algorithie which will recognize an input string of length n in n

steps, and it is possible to algorithmically construct such a machine with

T See for example, MITRE (1964) and Cheatham (1964).

61

the minimal number of states. Finally it is possible to use techniques for
machine dececmposition to obtain a componential representation of these states
which simplifies the logic of the parsing algorithm. Since a number of
results (e.g., theﬁequivalence between context-free grammars and pushdown
store automata) suggest that a context free grammar consists of a "finite
state part” plus some more powerful mechanism, it would be desirable if there
were a way to "factor cut" the finite state part Jf a context free grammay
in such a way that the above techniques could be applied to the finite state
part of the grammar to yield an improved parsing algorithm. We will present
here one method for realizing such a factoring, and show that the recursive
transition network is the "natural parsing algorithm to take advantage of

it.

2.2 Reguiar expression grammars

Define a regular expression grammar to be a quadruple (V._, VT’

where VN is a vocabulary of non-terminal symbols, VT is a vocabulary of

terminal symbols, S is a distinguished symbol in VN called the initial

§, P).

symbol, and P 1is a set of productions of the form:

X~ R

62

where X 1is a symbol in VN and R is a regular expression? over
V= Vle YN' The interpretation of a rule X + R is that the symbol
X in a derivatioﬂ may be replaced by any string of symbols 1# the regular
set denoted by k. That is. we say that a string ¢ directly produces
a string ¢ - (written ¢ > ¢) if ¢ = wlx Wy Y = wiyﬁz, X >R 1is a rule
in P, and Y . is a string in the regular set denoted by R (written <YeR).
A regular expression grammar is clearly equivalent in weak generative
- § power to an ordinary context free grammar, since every regular set has a-
finite state grammar aand consequently the rule X + R could -be replaced
)] by the set of rules of the-finite state grammar for the ‘Set R (with X -
as the initial symbol) to- give an equivalent context -free grammar. (The

converse is immediate since any context free grammar is a special case of a

¥ A regular exbression over a vocabulary V can be defined recursively as

follows: «

(1) If x 1is astring in V then x 1is a regular expression denoting
the set {x} N

(2) If x is a regular expression over V denoting the set X, then x
(or (x)* if parentheses are required for grouping) is a regular expression
denoting the set X*, the set of all concatenations of instances of
strings.in X.

(3) If x and y are regular expressions over V denoting the sets X
and Y, respectively, then xy or x:y (the concatemation of x and
y) is a regular expression denoting the set XY = {uv: u e X and
veV}l, Also (x+ y) 1is a regular expression denoting XU Y =
{fu: ueX or ue Y}

‘l..’

63

regular expression grammar.) The major difference between the ordinary
context free gfammar model and the regular expression grammar lies in the
strong generative power and the ability to construct an equivalent "reduced

regular expression grammar which factors out the finite state part of the

grammar from thé'bssentially recursive part? The regular expression grammar
also allows an efficiency of expression over that of the ordinary context;
free grammar in that common parts of different rules can be combined thus
eliminating both redundant symbols in the representation and also redundant
processing during the parsing. By constructing an equivalent reduéed

grammér, one can also reduce the number of non-terminal symbols in the grammar
and obtain a parsing program that minimizes the use of recursion and makes

use of the advantages of finite state parsing wherever it can.

2.3 Recognition automata for regular expression grammars

It is well known that the "natural" recognition automaton for parsing
context free grammars is the pushdown store automaton. 'That is, the class
of languages that can be accepted by npn-deterministic-pushdowﬁ store
automata 1is the same as the class of languages that can be generated by
context free grammars. However, although the construction which gives a
pushdown store automaton that is equivalent to a giveﬁ context free grammar
is quite straiéhtforward, the inverse problem is considerably more difficult.

The reason for this is that the usual construction that takes a context-free

B T
i
g

64

grammar into a pushdown store automatonf results in a one state pushdown
store automaton--i.e. does not take advantage of the finite state control
of the pushdowp store automaton. The inverse problem is complicated because
there is no analog of the finite state control mechanism in the ordinary
context free grammar model, and hence the usual construction involves first
constructing a pushdown store automaton which does not use any of its finite
state contrél but carries all of its information in the pushdown store. The
regular expression grammar, however, has an analog of the finite state control
mechanism in the regular expressions in the right—haﬁd sides of the rules,
and this permits a more natural correspondence between the regular expression
grammar and the pushdown store automaton. In fact, we will argue that the
type of pushdown store automaton which is "most natural" for the recognition
or regular expression grammars is the recursive transition network

The equivalence between finite state automata (as represented for example
by finite state transition graphs) and regular expressions is also well known
(See for example, McNaughton and Yamada, 1960, Ott and Feinstein, 1961).
Book et al. (1969) present a construction which shows that it is possible to
preserve ambiguity of representation under these constructions (and that
consequently every regular expression has an equivalent unambiguous regular

expression). We can make use of these results to construct a recursive

See Ginsburg (1966) for a presentation of the contructions which take
context-free grammars into equivalent pushdown store automata and vice versa.

65

transition network equivalent to a given regular expression grammar and

vice versa as follows:

l. To comstruct a transition network equivalent to a given regular
expression grammar, first transform the grammar by grouping all of the
rules according to the symbol on the left-hand side and replacing each
group by a single rule whose right-hand side is the union (+) of the
right-hand sides of all of the rules in the group. We now have one
regular expression Rx for each of the non-terminal symbols of the
grammar. Now for each non-terminal symbol X, construct the finite
state transition graph equivalent to the regular expfession Rx and
name the start state of this graph X. The collection of transition
graphs that result will have both terminal and non-terminal labels,
and taken as a whole they will constitute a recursive transition network

equivalent to the original regular expression grammar,

2. To construct a regular expression grammar equivalent to a given
recursive transition network, construct a rule X -+ Rx fof each non-
terminal symbol X, where Rx is the regular expression equivalent to
the portion of the transition network accessible froa the state X
(viewed as a finite state iransition graph over the terminal and non
terminal vocabulary ignoring its interpretation as a recursive transition
network). The resulting set of rules constitutes a regular expression'

grammar equivalent to the original recursive transition network.

L N S TR i b el)

66

We see then that the correspondence between the regular expression
grammafs and r?cutsive trangition networks is a direct extension of the
equivalence bet&een regular expressions and finite state automata, and that
this correspondence is much more "natural" than the usual correspondence
between context free grammars and pushdown store automata. In fact, as we
will show, the correspondence is so close that the finite state factoring
transformations that can be performed on the regular expression grammar
are preserved when transformed into an equivalent recursive transition
network. That is the recursion (pushdown) operation of the recursive
transtition net corresponds exactly to the rewriting‘Operatipn of the
regular expression grammar, and the finite state control of the. network
corfesponds exactly to the regular expression in the right-hand sides of

the rules.

2.4 Reduced regular expression grammars

The theorem that a context free language is essentially context free
(i.e., not regular) if and only if all of its context free grammars have
self embedding symbols (c.f. Chomsky, 1963) clearly suggests that the only
part of a context'free grammar that is not finite state is the self embedding
of symbols. Since the recursion operation of the recufsive transition network
and the rewrite operation of the regular expression grammar are the non-finite
state parts of these two models of grammar, one may ask whether it is possible
to "optimize" the grammar so that these operations apply only to the self

embedding of symbols. We will show that such is indeed the case and that it

67

can be done algor;thmically. That is, we will describe a "reduction

algorithm" which will reduce any regular expression grammar to an equivalent
one in which the only non-terminal symbols other than the initial symbol

are self embedding symbols. The implication of this result for the design

of parsing_aigorithms is that it is possible to optimize any context free
grammar so that the rewrite operation is confined exclusively to self ‘embedding
symbols, and ;11 other parts of the grammar may be optimized by finite state
techniques. 1f we take the regular expressions in a reduced‘regular expression
grammar and write minimal finite state machines for recognizing the strings
which they denote (representing these machines in the form of state transition
diagrams), then the resulting graph is a recursive transtion network which

recognizes the strings of the original regular expression grammar,

2.5 The reduction algorithm

We will give here a series of constructions which establishes the
following theorem:

For every regular expression grammar G=(VN, VT‘ S, P), there is an

equivalent regular expression grammar G—' = .(vl'q, VT’ S, P'Y), where

V& is a subset of VN consisting only of self-embédding symbolsiplus

the initial symbol S. We call such a grammar reduced. |
Proof:

First, it is clearly possible to obtain a regular expression grammar
equivalent to G which has only one rule for each non-terminal symbol in
VN--e.g. by replacing all of the rules:

YR Rl, Z > R2’ see o L Rn

68

for a particular non-terminal Z by the single rule Z *-Rz, where
Rz = (Rl + R2 + o0 + Rh)' Assume that G is in such a form. We can
now begin to construct a reduced grammar equivalent to G as follows:

1. Pick a non-terminal symbol Z other than S which does not occur

in the right-hand side of the rule Z » Rz. If there are no such symbols,

then halt.

2. Replace every occurrence of Z in all of the other rules of the

grammar with the regular expression Ri (this replacement preserves

T L A W N T I T

regular expressions).

3. Delete the rule Z + Rz and delete the symbol 2 from the non-

terminal vocabulary.

4, Repeat steps 1 through 3 until there are no more non-terminal
symbols (except possibly S) which do not cccur in the right-hand sides
of their rules. (The algorithm will converge because each interaction
eliminates one symbol from V. and there are only finitely many to

N
start with;)

We now have a grammar in which the only non-terminal symbols other than §
are recursive symbols, and we now proceed to give constructions for eliminating
those which sre not self-embedding~-i.e., the left- and right-recursive

symbols.

69

2.5.1 Elimination of left and right recursion

*
Let L(Z) = {X>e»Vh: Xw € RZ for some w.€-V. }.. ‘Then L(Z) ..is the
set of non-terminal symbcls which-can be accepted as the first symbol of a

*
string in R Let L (Z) be the "closure" of -L(Z) in the sense-that .

z°
L*(Z) is the smallest subset of VN such that L(Z) & -L*(Z) and
Xe L*(Z) =2 LX)< L*(Z) (i.e., L*(z) is the closure of {Z} wunder .
the operation "L).

Similarly, let R(Z)A- {X e VN: yx € Rz for some we V },x_ler

S(Z) = {X e % WIXWZ € R, for some Wi, Wy € VV } . and let R (Z)
and S (Z) be the closures of R(Z) and S(Z), respectively. Then

Z 1is left recursive if Z ¢ L (Z), |

Z 1is right recursive if Z ¢ R (z),

and 2 1is self-embedding if Z ¢ S*(Z).
A symbol X can be left (right) recursive for one of two reasons--

either it is in L(X) (R(X)) (i.e., it is‘'a ‘permissible initial (final)
symbol in the right-hand side of the rule X # Ri) or it is in L(Y) (R(Y))
for some Y in L*(X) (R*(x)). We will show in the next two sections that
it is possible to eliminate the first type of left and right recursion (which
we will call direct left and right recursion) by constructing an equivalent
rule that has no direct left (or right) recursion but which accepts the same
set of terminal strings when used in conjunction with the rest of the grammar.

In this sectionfwe will assume these results and show hew to eliminate the

second type of left and right recursion. We will describe the algorithm for

e R]

70

left recursion only, since the algorithm for right recursion will be
exactly analogous.
The existence of left recursion of the second type is due to the

existence of left recursion chains Y;, Y, «oo s ¥, where Y, ¢ L(X),

Yz € L(Yl)’ cee 1y Yn € L(Yn-l)’ and X e.L(Yn). We will call such a chain
simple if none of the intermediate 'Yi's are X's .and none of them are
repeated. The algorithm for eliminating left recursion from the grammar
will consist of the successive shortening of all of the simple left

recursion chains by substituting the expression RY for Y, in the

s 1
right-hand side of the rule X -+ Rx until there art no more left recursive
chains (and hence no more left recursion of the secon& type).

The argument is more difficult than it might seem to be at first because
of the flexibility of the regular expression grammar. It is possible that a
single rule may have several non-terminal symbols as initial symbols, and in
particular it is possible to have two initial symbols--one identical to the
left-hand side of the rule and the other involved in a left recursion chain
that goes through the first. (For example a rule Y + Yc + Xd + £ when
there exists andther rule X + Ya + b.) Consequently, a2 simple repeated
expansion of the initial symbols of a rule wkich are involved in a left
recursion chain may not terminate. (In the above example the repeated
expansion of Y in the second rule would never end.) It is necessary there-

fore to first eliminate direct left recursion from all of the, rules before

expanding. Each expansion, however, may reintroduce direct left recursion

A e Sy

71

(indeed this is the reason for doing it) and therefore it is necessary to
repeat the algorithm for eliminating direct left recursion before each
expansion.

It remains only to show that (71e repeated alternation of expansion and
elimination of direct recursion will converge in a finite number of cycles.
We can assure ourselves that it does by noting that each cycle of expansion
reduces the length of each simple left recursion chain by 1. This follows

directly from our method of expansion--we replace each symbol Y in L(X)

‘e

with the set of sumbols L(Y) (after first making sure that Y 1is not a
member of L(Y) by eliminating direct left recursion) thus permitting only
those left recursion chains in the new grammar which can be obtained from
left recursion chéins in the old one by the deletion of the first element
of the chain. Since the longest simple recursion chain orginally can be no
longer than the number of non-terminal symbols of the grammar and since each
cycle of expansion and elimination of left recursive symbols reduces this
length by 1, the algorithm will converge in a finite number of steps to a
grammar in which there is no left recursion of the second type. A final
application of the direct left recursion elimination algorithm removes all

left recursion from the grammar.
[4

2.5.2 Elimination of direct left recursion

To eliminate direct left recursion from the grammar, we construct for
each left-recursive symbol X a new rule X *?ik which does not permit X

as an initial symbol, but which produces the same set 6f terminal strings as

72

the original rule when used in conjunction with the rest of the grammar,

We do this by first constructing a finite state transition graph Dx

equivalent to Rx and then transforming it as follows:

1. Let X be the start state of the graph, and let an arc from state

x to state z with label y be represented by the triple [x, 'y, z].

\waiid 3 Al

P b | SO St g

If there is more than one arc with label X leaving the start state X,

LA S i

construct an equivalent graph Di in which there is only one such arc

as follows: ‘Let Q be the set of all states that are accessible from

the start state via a single arc labeled X. Add a new state q', and
3 for every arc ([x, y, z] leaving a state x in Q, add a new arc
i¢', v, z) leaving state q'. Now delete all of fhe arcs [X, X, z]
for z in Q and add the single arc (X, X, q']. Finally, delete

any states in Q which now have no arcs entering them. The resulting

i
|
i
|
|

graph Di has a single arc leaving state X with label X, namely the

arc [X, X, q'] and it is equivalent to the original graph Dye

2. Elininate the direct left recursion of the symbol X by deleting

A

the arc [X, X, q'], and for every arc [x, y, z] which enters a final
state z, adding a new arc [x, y, q'] (this is equivalent to adding an
e-transition from z to q'). The resulting graph 'ﬁk will accept

the same set of terminal strings as the original when used in conjunction

with the rest of the grammar, but without direct left recursion of the

symbol X.

73

+

3. Construct the regular expression 'ﬁi from the transiton graph D,.

We can show that the grammar which results from the above algorithm
will accept the same set of terminal strings as the original grammar by a
straightforwvard recursion on the depth of the parse trees. By construction
of the new rule x.»-ik, all of the rewritings of the original grammar are
vermitted by ghe new grammar except those which rewrite the symbol X as a
string beginning witii the symbol X. Therefore, any parse tree making use
only of these rewritings will still be accepted by the new grammar. Let

w hc any string recognizable as a comstruction of any type Y in - the

original grammiar, and let T be any parse tree for the string v -analyzed
as a Y. If the depth of this tree is 1, then it must result from a single

rewriting the right-hand side of which is the terminal string w (which

ANV RN ATR

cannot start with the non-terminal X), and hence the same rewriting is
possible in the new grammar. Now suppose it is true for all parse trees of
the original grammar of depth less than n that the terminal string of that
tree is also acceptable to the new grammar as a construction of the same type.
Suppose T has deﬁth n. Then let Z » Y1Y2 cee Yn be the topmost rewriting
of the parse tree and let Wis Wop eee s v be the segments of the terminal
string dominated b} Yl’ Yz, cee o Yn’ respectively. By the inductive
hypothesis, each of the strings Wy is recognizable as type Y1 by the new
grammar and unlcas Yl = X the topmost rewriting is also permitted by the new
grammar. Hence the only case of interest is when Y1 = X. In this case we

know that the string vy is accepted as an X both by the old and new grammars

74

and hence by the machine T)-x. However, by the construction of step 2,

every arc that enters a final state of Bx also has a copy which enters

state q'. Hence w, will take machine .D, . from state X to state q'.

X
Now also, by comnstruction, if the machine er - accepts. the string

Y,¥, ... Y where Y, = X then the machine D, when started in state

12 1 X
q' will accept the string Y2 cee Yi\’ .. Thus - the- total. sequence WiWy eee W
will take Bx ‘from state X to a final state and hehce w 18 recognizable
as an X by the new grammar. This completes the induction proof.

Example 1 shows the application of -this algorithm for the rule

X+ Xa + Xb + cd. . | - ey

75

Rx: Xa + Xb + cd

wFﬂ
0N
)
(P
%“’

* %
c(d+d (a+Db) (a+b)) =cd (a+b)

>“.P.Gi

Example 1: Elimination of Direct Left Recursion

R St /e Dbic T - R LR A

T TAY

L\ o

76

2.5.3 Elimination of direct right recursion

To eliminate right-recursion from the grammar, we again construct for
every right-recursive symbol X a new rule X - Rx which does not permit
X as a final symbol, but which wiil produce the same set of terminal strings
when used with the reét of the grammar. Again, we dd_this by first comstructing
a finite stateztransition graph Dx equivalent to Rx_ and transforming it
as follows: |
1. If there is more than one final state and it is not a dead end
state, then .construct an equivalent graph Qi in which there is only
one final state (and it is a dead end state) as follows: Add a new
state q' and for every arc [x, v, 2] entecing a final state z,
add a new arc [x, y, q'] entering state q'. Now delete any of the
old final states which are dead end, and let q' . be the sole final
state in the nev graph. The resulting graph D; has only one final

state (namely q') and it is a dead end state.

2, Eliminate_the right recursion of the symbol X as follows: Let

Q be the set of all states from which there is an arc labeled X which .
goes to thé final state, and for every arc [x, y, z] entering a state

z in Q, add a new arc [x, ¥, X] returing to thé start state. Now
delete all of the arcs [x, X, q'] for states x in Q and délete any
states in Q which now have no arcs leaving them, The resulting graph
Bk will accept the same terminal strings as D_, when used in conjunction

X
with the rest of the grammar, but permits no final symbols X.

3. Construct the expression §k from the graph 3&.

77

To show that the new grammar accepts the same set of strings as the
original grammar we again proceed by induction on the depth of the parse tree.
Let w be a string recognizable by the original grammar as a construction of
type Y and let T be any parse tree for the string w analyzed as a Y.

As before, if the depth of the parse tree is 1, then the rewriting cannot
involve recursion of any type and hence the string is accepted by the new
grammar. Assume the result is true for all parse trees of depth less than

n and consider T of depth n. Let 2 - Yle coe Yn be the topmost

rewriting of the tree and let Wis Wos eee v be the corresponding
segmentation of the terminal string. The only case of interest is when

Y_ equals X,*in which case the sequence Y will take

n > ¥

12 Tz2 =0 5 Yy

machine Qx (and also 3&) into a state in Q. Therefore by the construction

—

of D, the same sequence will also take ﬁk

and since v is recognizable as an X by the new grammar (by the inductive

back to the start state X,

hypothesis), the entire string w will also be recognizable as an X. This
completes the proof. Example 2 shows the application of the algorithm for

the rule X -+ (abX (bX)* + ¢).

SN T LTR orly T PEC

D!:

| =

f%

78

(ab X (X)" + ¢)

(o]
F = {q,, qs}

~\\\““‘\~\\ﬂ\\ c \\\\\\31\\ k{//f/////
Te— F={q'}
b \ X
O O T OO

G (b + b0) c= (@ BN 1 ¢

Example 2: Elimination of Right Recursion

SECTION 3

RECURSIVE TRANSITION NETWORKS AND THE EARLY RECOGNITION ALGORITHM

3.1 Introduction

Currently available recognition algorithms for context free grammars
fall into two categories according to the bound that can be placed on the
amount of time required to parse a string of length n. The straight-
forward parsing algorithms such as the Harvard Predicitive Amalyzer
(Kuno and Oettinger, 1963) which simulates the alternative computations
of a non-deterministic pushdown store automaton or the immediate

constituent analyzer (Herringer et al., 1966) which enumerates all of

the reductions that can be performed on a given string by a given context

free grammar require an smount of time which is an exponential function

T P

of n feor some grammars. This is inevitably true for any "straight-
forward" parsing algorithm because of the existence of context free
grammars which are exponentially ambiguous. Recently however, several
recognition algorithms have been discovered which have a general time
bound proportional to the cube of the length of the input string (e.g.,
Kasami, 1965, Younger, 1966, and Early, 1968). 1In addition, certain
subclasses of the context free grammars have been shown to be recognizable

with smaller time bounds--e.g., linear grammars in time n2 by Younger (1966)

Gt NN Sl o 2 e &

] and by Kasami (1967) and LR(k) grammars in time n by Knuth (1965). These

results are based on different algorithms for each of the special cases.

The Early algorithm, however, matches or surpasses all of these results
with a single algorithm which does not need to be '"told" the class of

grammar on which it is operating. The Early algorithm works within the

79

80

general n3 bound for any context free grammar. However, when the given
grammar is unambiguous or linear (and in may other cases) the bound is

only nz, and for an LR(k) grammar using look ahead of k symbols, as

well as for many other grammars,the Early algorithm has a bound proportional

to n. In addition, the Early algorithm operates on the grammar as it is -

given, whereas the Younger result depends on the construction of an

equivalent normal form grammar and the Kasami result requires a standard

2-form grammar.

3.2 Time bounds

Time bounds of the sort described above have a number of limitations

in their ability to characterize the "goodness" of an algorithm for

practical applications and may tend to be misleading if:not carefully
analyzed. First, they tend to be pessimistic in that they characterize

the behavior of the algorithms for the worst case grammars and the worst
case strings. Typically the grammars which one needs to parse in practice
will not be the worst case but some intermediate case, and the real

figure of concern is the number of operations required to parse a "typical"
string for a "typical" grammar. An algorithm such as the Younger algorithm
which always realizes its worst case bound for every grammar and every
string is clearly not as practical as one which has the same bound in the
worst case but génerally does much better. The other factor that needs

to be taken into account in the evaluation of a time bound of this sort

81

is the size of the constant of proportionality. It is true that tue
differences that arise between two algorithms due only to the size of
the proportionality constant will eventually be swamped by the growth
of the factor of n, but this assumes that one will actually parse
strings of indefinitely increasing length. Many of the algerithms that
achieve the n3 bound do so at the cost of an immense constant factor,
and the length of the input may not be long enough in the typical case
to make such an algorithm preferable to one say with an n4 bound and
a much smaller constant. (In comparing the constants of proportionality
for two rival algorithms, it is of course necessary to be careful that
the definitions of the basic operation (or "step") used for computing the
bounds in the two cases are comparable in the amount of time that they
would require on some machine.)

The Early algorithm and the bounds for it suffer very little from
the first limitation since the algorithm seems to do the best that can
be done with any particular grammar and string that it is given. Even
when the grammar as a whole is not unambiguous so that the nz result
holds, the algorithm may still require no more than nz time to recognize
those strings of the grammar which are not ambiguous. Similarly the
algorithm may operate in time n on a large class of strings for a grammar
which is not recognizable in time n in gemeral. With respect to the
second limitation, the Early algorithm is no worse than the other n3

algorithms which have been devised (and considerably better than some),

82

but it still suffers from an excessively large constant in some cases--
especially when it is using lookahead. We will now shew that the
transition network model of grammar can be used by a slightly modified
version of the Early algorithm to recognize strings within the same time
bounds, and that the finite state optimization of the network can provide
a reduction in the constant of proportionality. The recursion elimination
operation may also move a grammar from the n3 domain to n2 or even n,
as when the elimination results in a linear grimm~. >r even a finite state
grammar. Before we proceed however, we will present a formal definition
of a "transition network machine" which will provide the terminology

for the description of the recognition algorithm.

3.3 Formal definitions

A transition network machine is a quintuple (V., V

T° S, M, I), where

VN is a vocabulary of terminal symbols, V,, is a vocabulary of non-terminal

T
- t
symbols, S € VN is a distinquished initial symbol M is a set cf disjoint

finite-state automata with input vocabulary V = VN\J VT’ and I is an

indexing function which assigns to each non-terminal in V

N 2 unique

machine in M.

v By disjoint we mean that no two machines in M have any state names
in common. Thus, given the state name alone it is possible to determine
which machine we are referring to.

83

For the sake of simplicity we will assume that the start state
of the machine I(X) is named X. Let Q be the total set of states
of all the machines in M, F the total sét'6£~;ina1 states, and §
the transition function which is the union of the individual transition
functions of the machines in M (viewing these functions as sets of
orde?ed pairs). The fact that the machines in M are disjoint means
that their structure is preserved in this single resulting network
N = (VN, VT’ Q, 6§, S, F). It also means that each state in the set
Q uniquely determines the particular automaton to which it belongs
and hence the uon terminal symbel which it is trying to recognize.
Let h(q) be the function which gives for any state q the non-terminal
symbol which that state is trying to build. We will make use of this
function as well as the transition function & in the description of
the recognition algorithm. We will also make use of the function Lﬁ(q)
defined in section 2.5.1 which gives the set of all non-terminals which
can be pushed down for from state q (perhaps via a succession of pushes
through intermediate states). All of these functions can be represented
in the computer by storing them in the form of :ables.

We describe a computation of a transition network machine as follows.
A machine configuration consists of a triple (q, w, s) where q 1is a
state in Q, w 1is the string (in VT*) which remains to be scanned,

and s 1is a string of states in Q which keep track of the recursion.

84

* *
For q, q', €Q, w, w' € VT , and s, s' € Q we write

(q, w, s) }"—' (q', w', s')

if either
1. w=aw', s =5s5', and q' € 5{(a, a)
2. s'=gqs, q' €V, and qe &g, q")

3. s=q's'", w=w', and q €F

The first case is a normal transitionr, the s. :ond is a pushdown operation
(or recursion), and the third is the pop operation which returns from a
*
lower level of recursion. We define the transitive closure |— of the
relation F——- by the recursive definition:
*
<1 — <, iff

either c1 = c2 or

*
3c3 3> ¢ I—-—c3 and Cy f———-cz.
*
A terminal string w is accepted by the network if (S, w, &) F——— (q, e, €)

for some q € F (where e denotes the empty string consisting of no symbols).

3.4 The Early algorithm

The Early recognition algorithm parses an input string X XK Kq eee X

by constructing for each position i in the string a "state set" Si which
contaius all of the states in which a non-deterministic pushdown store
automaten cculd be at that point in the string. Instead of carrying a

pushdown store along with each state, the algorithm carries a pointer to

85

the position in the string where the last pushdown preceeding each étate
occurred. The n3 bound on the algorithm depends on the ability to
follow any such pointer back to the appropriate position in the string
in a fixed amount of time (independent of n)--i.e., it requires the use
of a random access store of unlimited size for storing the state sets.
This of course is only approximated by the core storage of a real
computer, but for reasonable length strings it is a useful approximation.
As long as the computation can be performed within the random access
memory of the computer the appreximation holds.

In this section we will describe a sligzhtly modified form of the
Early recognition algorithm which will recognize the strings accepted
by a recursive transition network in time proporticnal to the cube of
the length of the string. Early's result that the time is bounded by
n2 in the case of unambiguous strings and that the time is proportional

to n for strings for which the size of the active state sets at any

point is bounded will also hold.

The algorithm:
Given the input striang X XgXg eee X to be parsed, the algorithm
proceeds as follows:
1. Construct state set S0 = {[S, 0]} , and set the closure
86 = SOtJ {{q, 0] ¢ q ¢ L*(S)} . This represents the set of
all things which we can be looking for at the beginning of a

sentencae,

At Bt BNy

il 4 €4

T AT TV

2.

86

For i=1, 2, ... , n construct sets S, and S! as follows:

i i

2.1 (transitions)

2.2

For each [q, j] 1in Si-l for which &(q, xi) * g,
add ([q', j] to Si for each q' in ¢(q, xi). (That
is, S, = {lq', j1 : q' € &q, xi) & [q, j] € Si_l}.)
(closure operations)

Set S! initially equal to S, and scan the stateé in

i i
si in order performing the following operations on each
state ([q, j]:
2.2a (pushing down)

For each q' in L*(q) add {[q', i] to the end of

Si (so that it will be scanned) unless it is already

a member.
é.Zb (popping up)

If q is a final state, then scan the states

(g’ '] in s;

J
states which can push down for the symbol t(q)). Forxr

for which 6(q', h(q)) # ¢ (i.e.,

each such q' and for each q" in 6(q',h(q)), add

[q", j'] to the end of Si (so that it will be

scanned) unless it is already a member.

When the last state of Si has been scanned and no new

states have been added, then si is complete.

(ot Al +

DAL AT S

87

3. The string is accepted if the state set S; contains a state

[q, 0] for some final state q. It is rejected before it

reaches the end if any Si is empty.

To illustrate the operation of this algorithm, we will work through
the example "Did the red barn collapse?" using the transition network
of Figure 1 of Section 1. We assume that the words, "did", "the", "red",
"barn", and "collapse" are marked in a dictionary as members of the
lexical classes aux, det, adj, n, and v, respectively. We proceed as
follows:

0: S0 = {[S, 0]} by step 1

36 = {[s, 0], [nP, C]}
l: 6(NP, did) = ¢ and
8(s, did) = {qZ} since '"did" is an aux.
Hence §, = {[qz, 0]} by step 2.1.
<I*(q2) = {NP} (i.e., q, can push for a noun phrase), and
therefore Si = {[qz, 0], [NP, 1]} by step 2.2a

2: G(qz, the; = @ and

(NP, the) = {qé} since "the'" is a det.
Hence S, = {[q6, 1]} by step 2.1.
‘=S,

2 2
3: 8{qq, Ted) = {q6} since "red" is an adj.

1;(q6) =@ , heace §

Hence S, = {{qé, 1]} by step 2.1, and again S} = S,

88

6(q6, barn) = {q7} since "barn" is a noun.

Hence 54 = {[q7, 11}

4

Also, 94 is a final state, which meams that we have found

J*(q7) = {PP} and hence [PP, 4] is added to §

a complete construction. Its type is h(q7) = NP. We now refer

to the state set Si which caused the pushdown to look for this

NP (as indicated by the pointer 1 which we have carried along
with the state [q7, 1]). Of the two states (q2 and NP) in
the state set S!, the state q, can take an NP transition
to state q, (i.e., 6(qy, NP) = {q3}), and hence we add the

' now is

pair [q3, 0] to S by step 2.2b. The set Sa

4
equal to {[q7, 1], [pp, 4], [q3, 0]3.
6(q7, collapse) = @
§ (PP, collapse) = @
6(q3, collapse) = {qa} since "collapse'" is a verb.
Hence S. = {[qa, 0]}
<z’(q4) = {NP}, and therefore [NP, 5] is added to Sg.
Since q, is a final state and h(qa) a S, we check the state
set 86 to see if anything there can take am § transition
(this would handle left recursion if there were any). Since
there are no such arcs from either of the states S and NP,
the final value of Sé is {[qa, 0}, [NP, 5]}. Since this is
the end of the string and the state set contair [qa, 0] and

q, is a final state, the sentence is accepted by the algorithm.

MR

89

3.5 A comparative example

Early's algorithm as originally described (Early, 1968) is essentially
a special case of the algerithm we have described here in which the states
of the transition net are pairs of integers p+k where p is the number
of a rule in the context free grammar and k is a count of the number of
symbels in the right-hand side of the rule which have been recognized.*
Instead of a single start state named X to begin a pushdown for the
symbol X, the original Early algorithm has a start state p*'0 for

each rule D +C C whose left-nand side is equal to X. The
P pl pn

final states are the pairs pp-np (where np indicates that all of the
right-hand side of the rule has been recognized). We will give here a
brief illustrative example that will indicate the advantages which can
be gained by using the transition network version over the unmodified
Early recognition algorithm.

Figure la shows a context free grammar for a class of propositional
calculus expressions irvolving the connectives "and, "or'" and "if...then",
where P is the only primitive proposition. Figure 1b shows an equivalent
recursive transition network, and figure lc shows the transition network

that is derived from it when left and right recursion are eliminated and

the network is minimized. Figure 2a shows the computaticn of the modified

When lookahead is involved, the state includes a k-tuple of symbols

which are expected values of X h1%442 00 Xigk

90

Early algorithm applied to the string "if P and P them P or P"
using the optimized transition network of figure lc, while figure 2b
shows the computation of the original Early algorithm using the grammar
of figure la. The improvement in the number of states that have to be

processed is apparent.

i 3 arsanfaedt aae P n bl JTe o

91

1. S+4if S then §
2. S+S and S
3. §$+S or S

4., S -+>P

(a) sample context free grammar

(b) an equivalent transition network

@<

then V@

@\P F = {3}

(c) an optimized transition network

Figure 1: An optimized transition network

for a context free grammar

R S

92

if P and P then P or P
0 1 2 3 4 5 6 7 8
$,0——>1,0 3,1! >$,1 73’1!/1890 >3,0! >S,0 >3,0!
S,1 2,0 2,0

Total 12 states.

(a) recognition using the transition network

of figure lc.

if P and P then P or P

1.0,0—>1.1,0 4.1,1! ’12.2,1 4.1,3! 1.3,0 4.1,5!

ev—aeagag—

2.0,0 1.0,1 1.2,0 1,0,3 2.3,11 1.0,5 1.4,0!

3.0,0 2.0,1 2.1,1 2.0,3 2.1,3 2.0,5 2.1,5

4.0,0 3.0,1 3.1,1 3.0,3 3.1,3 3.0,5 3.1,5

4.0,1 4.0,3 1.2,0 4.0,5 2.1,0
' 2.1,1 3.1,0
3.1,1
2.1,0
3.1,0

Total 50 states.

(b) recognition using the original grammar

Figure 2: Comparison of the Early algorithm using on optimized

transition network versus the original context-free grammar.

93

3.6_ Time bounds for the Early algorithm

The proof that the modified version of the Early algorithm that we have

presented requires no more than n3 time to parse a string of length n
parallels almost exactly the original proof given by Early. The proof

relies on the assumption of a random access memory for the storage of the

S5 g Lo

intermediate results that arise during the computation, and the achievement

Ay oy ng o Y

of the n3 bound (or the n2 bound for unambiguous grammars) requires 3
careful use of this memory. For example, the qualifications "unless it is

already a member" of steps 2.2a and 2.2b require special treatmeat in order

gl gk g

to achieve the n3 bound. If this were done by sequentially scarning the
list Si, then an extra power of n would be required in time bound
because the size c¢f the set Si can grow proportional to the length of
the string. On the other hand, if a random access array indexed by q'
and j' 1is used to store the state set Si, then the presence or absence
of [q', j'] from the state set can be determined by directly interrogating
a single bit. (It is sufficient to index the set Si by just the back
pointers j' and to scan the jEE’ subset for the value of q' since
there is a fixed bound on the number of states which can be in such a
subset.,)

In the computation of the time bound, we will count the number of
"operations", where an operation may be taken to be any computation which

can be done within a fixed time bound that is independent of the length

of the input string. In particular, for the appropriate organization of

9%

the random access memory, determining whether a state gset §' contains a

3

pair [q', j'] will be an operation. Likewise determining whether Sj
contains states which can push for a given non-terminal symbol X and
obtaining a pointer to a list of such states will be an operation.
If N is the total number of states in the network, then there are
at most N(i + 1) states in the state set Si' Let R be the maximum
number of arcs which leave any state, and let M be the maximum size of
the set L*(q) for any state q. A bound on tke number of operations
required to parse a string of length n can be computed as follows:
1. It requires at most M + 1 op:rations to construct the
initial set 86 since there are at most M states in L*(S).
2. At a gdven position 1 in the string\the following bound can be
placed on the number of operationms:
2.1 Transitions require at most R operations for each of the states
in Si-l’ or no more than NRi operations in all.
2.2 TFor each state in the set Si the number of operations
. required for the closure operations can be bounded as
follows:
2.2a 1t requires at most M operations to add all of the
states to which the current state can push down since
there are at most M states in L*(q).

2.2b When q is a final state, with a pointer to some

position j in the preceeding string, it requires at

95

most NR(j + 1) operations to scan the state set
83 and resume any of the computations which pushed
down for the current construction.
2.3 Since the operations of steps 2.2a and 2.2b are performed
on each of the states in Si, the total number of
operations for step 2.2 is bounded by
N(i+ 1)[M + NR(J + 1)] 2 NM(i + 1) + NR(1 + D? .
3. Since the operations of step 2 are performed at each position of
the input string for i=l, ... , n, the total number of operations
for this step can be bounded by

2

D Gop MM+ 1)+ NR(1 + 1)?] 2 v + 0(nd)

Hence the total number c¢f steps required by the algorithm is bounded by

NZRrr3 + O(nz).

The achievement of the n2 bound for unambiguous grammars requires a
little more care in the implementation of the algorithm. It is necessary
to get the number of steps required in step 2.2b down to a fixed amount for
each state [q, j] in S; . To do this we cannot afford to scan the entire
state set 83 to look for states which can push down for the symbol h(q).
It is necessary instead to be able to enumerate the class of such states
using no more than a fixed amount of time fc: each one. This can be
accomplished by keeping an array Sg of all the entries in 85 indexed

by the non-terminal symbols pushed for. With such an array it is possible

to instantly determine for any specified value of h(q) and position j

96

a pointer to the list of those states {q', j'] in S! for which

3

8(q', h(q)) # @. This list can be constructed and maintained by implemeating
the algorithm so that when we add {[q', i} to Si in step 2.2a, we also
add [q, j] to the list S;(q'). Then when we refer to a previous position
in the input string in step 2.2b to see whether any states in S' could
have pushed for the symbol h(q), we need only consult the appropriate
entry Sg(h(q)). (Since the only steps of the algorithm which refer tc

an earlier point in the string are those in step 2.2b, the only information
that needs to be kept about the state sets prior tn positions i-1 and

i are the sets Sg . The sets 83 (and Sj) are only used vhen i is
equal to j and j+l, and they may be discarded thcreafter. Hence it is
not necessary to keep multiple copies of the entire computation, but only
of the active-part of the computation Si-l and Si.)

Using this further clarification of the algorichm, the proof that the
bound is n2 for unambiguous grammars goes as follows: Since there can be
at most N(i + 1) states in state set Si there will be at most a number
of operations involved in step 2.2 proportional to N(i + 1) unless some
state is added in more than one way. This is true because we have organized
the stored information in S; so that it takes only one operation for
states [q, j] for which S;(h(q)) is @, and only one operation for
each state to be added otherwise. Hence the total number of cperations
in step 2.2 has a bound proportional to 1 unless some state is added in

more than one way, On the other hand, if some state is added in more

than one way, then the grammar will accept ambiguous strings (not

23
b
Y
3

97

necessarily the one that is currently being parsed however) unless the
predicted state is a dead end that cannot be completed for any string
(in which case it should have been removed from the network). Hence if
the grammar was unambiguous (and contained no misleading, ambiguous-
looking but dead end predictions) then the number of operations required
by step 2.2 is at most proportional to i, and the total number of
operations to recognize a string is proportional to -n

The time n bound on the number of operatioms for recognizing a
"pounded direct ambiguity grammar” (Early, 1968), which includes the
class of LR(k) grammars, is achieved, because the total number of states
in any state set has a fixed bound for such grammaxs.

Although we have described here the time bounds for a recognizer only,
it is possible as Early shows to use the algorithm as a parser (a routine which
not only determines whether a string is a sentence but also builds a
representation of all of the structural descriptions of the sentence)
within the same time bounds. This requires the use of a representation of
structural descriptions which merges the common parts of different
descriptions of the string (since some sentences can be exponentially
ambiguous even though they require only n3 steps to recognize them and
build the structural descriptions). It is also not difficult to add
conditions to the arcs of the transition network (which must be met in
order for the arcs to be followed) and still recognize the strings within
the same time bounds provided that the conditions have a fixed time bound.
For example, the lookahead feature for recognizing LR(k) grammars in time

. could be added as a condition on the arc.

P

98

4, Conclusion

We have presented a model of grammar based on the notion of a
transition network similar to a finite state transition network appiied
recursively, and have shcwn it to be a very promising model for natural
language analysis. It is capable of building deep structure representations
wvhile doing a surface structure analysis of a sentence without a separate
explicit reverse transformationa. component. Also it is capable of
considering semantic selectional restrictions while parsing, and it may
provide the basis for a harmonious interaction between syntactic and
semantic analyses. In addition to having a number of theoretical
advantages for efficient parsing, the model is convenient for a human
grammar designer to work with and answers a number of objections which
linguists have raised against the transformational grammar model.

A transition network parser along the line presented in this
report has been implemented in BBN LISP on the SDS 940 time sharing system
at Harvard, and a number of experiments have been carziad out exploring
various parsing strategies and special parsing techniques. Particular
attention has been devoted to exploring the interaction between the parser
and the semantic interpreter and using semantic information to guide the
parsing. The details of the parser implementation and the experiments
which have been conducted will be described in a forthcoming report.
Experimental evidence, as well as the theoretical arguments presented in

this report, indicate that this model will permit the mechanical analysis

o o e s fohe T A r
- s o YR Ay .

99

of natural language to a much greater depth than has been possible with

other grammar models and that it will not be necessary to pay an

exorbitant penalty in processing inefficiency in order to do this.

100

BIBLIOGRAPLY

Bobrow, D.G. and Fraser, J.B. 1969. "An Augmented State Transition]
Network Analysis Procedure," Proceedings of the International
Joint Conference on Artificial Intelligence, May 7-9, Washington, j
D.C. :

Bobrow, D.G., Murphy, D., and Teitelman, W. 1968. "“BBN LISP System,"
Bolt, Beranek and Newman Inc., Cambridge, Mass.

Book, R., kven, S., Greibacih, S., and Ott, G. 1969, "Ambiguity in
Graphs and Expressions," (mimeographed report), Aiken
Computation Laboratory, llarvard University, Cambridge, Mass.

Cheatham, T.E. and Sattley, K. 1964. "Syntax-Directed Compiling,"
AFIPS Conference Proceedings, Vol. 25, (1964 Fall Joint
Computer Conference).

Chomsky, N. 1963. 'Formal Properties of Grammars," in Handbook of
HMathematical Psychology, Vol. 2, Wiley, New York, (Luce, R.D.,
Busn, R.R., and Galanter, E., Eds.).

Chomsky, N. 1964. 'A Transformational Approach to Syntax," in The
Structure of Language, Prentice-Hall, Englewood Cliffs, New
Jersey, (Fodor, J.A. and Katz, J.J., Eds.).

Chomsky, N. 1965. Aspects of the Theory of Syntax, MIT Press,
Cambridge, Mass,

Early, J. 1968. "An Efficient Context-Free Parsing Algorithm,"
Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, (Ph.D. thesis).

Ginsburg, S. 1966. The Mathematical Theory of Context-Free
Languages, McGraw-Hill, New York.

Herringer, J., Weiler, M., and Hurd, E. 1966. '"The Immediate
Constituent Analyzer," in Report No. NSF-17, The Aiken
Computation Laboratory, Harvard University, Cambridge,
Mass.

Kasami, T. 1965. "An Efficient Recognition and Syntax-Analysis
Algorithm for Context-Free Languages,'" AFCRL-65-558, (also
presented at Summer School on Combinatorial Methods in Coding
and Information Th2ory, Royan France).

G Sl

T TR LT e TR

101

Kasami, T. 1967. "A Note on Computing Time for Recognition of
Languages Generated by Linear Grammars,'' Information and
Control, Voi. 1i0.

Knuth, D.E. 1965, "On the Translation of Languages from Left
to Right," Information and Control, Vol. 8.

Kuno, S. 1965. 'A system for Transformational Analysis,' in

Report No. NSF-15, The Computation Laboratory, Harvard
University, Cambridge, Mass.
-4,
Kuno, S. and Oettinger, A.G. 1963, '"Multiple Path Syntactic
Analyzer," in Information Processing 1962, North-Holland
Publishing Co., Amsterdam.

McCarthy, J. et al. 1962, LISP 1.5 Programmer's Manual, MIT
Computation Center, Cambridge, Mass.

HcCawley, J.D. 19638, "Meaning and the Description of Languages,"
Kotoba No Ucho, TEC Company Ltd., Tokyo.

McNaughton, R.F. and Yamada, 1. 1960, ''Regular Expressions and
State Graphs for Automata," IRE Transactions on Electronic

Computers, Vol. EC-9.

Matthews, G.H. 1962. "Analysis by Synthesis of Natural Languages,"
Proceedings of the 1961 International Conference on Machine
Translation and Applied Language Analysis, Her Majesty's
Stationery Office, London,

MITRE 1964. English Preprocessor Manual, Report SR-132, The
MITRE Corporation, Bedford, Mass.

Ott, G. and Feinstein, N.H., 1961. '"Design of Sequential Machines
from their Regular Expressions,' Journal of the ACM, Vol. 8,
No. 4,

Petrick, S.R. 1965, "A Recognition Procedure for Transformational
Grammars,' (Ph.D. thesis), MIT Department of Modern Languages,
Cambridge, Mass.

Postal, P,M. 1964. "Limitations of Phrase Structure Grammars," in
The Structure of Language, Prentice-Hall, Englewood Cliffs,
Vew Jersey, (Fodor, J.A. and Katz, J.J., Eds.).

102

Schwarcz, R.M. 1967. '"Steps Toward a Model of Linguistic Performance:
A Preliminary Sketch,' Mechanical Translation, Vol. 10,

Thorne, J., Bratley, P., and Dewar, H, 1768. ‘'The Syntactic Analysis
of English by Machine," in Machine Intelligence 3, American
Elsevier, New York, (Michie, D., Ed.).

Woods, W.A. 1967. "Semantics for a Question-Answering System,"
Report No. NSF-19, The Aiken Computation Laboratory,
llarvard University, Cambridge, Mass. (Ph.D. thesis).

Woods, W.A. 1968. '"Procedural Semantics for a Question-Answering
Machine," AFIPS Confereuce Proceedings, Vol. 33, (1968
Fall Joint Computer Conference).

Younger, D.,H., 1966. "Context Free Language Processing in Time n3,"
G.E. Research and Development Center, Schenectady, New York.

