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l Introduction

Do such words and phrases as "reciprocal", "additive inverse", "commutative

property of multiplication", "distributive property" sound familiar to you? If

you have been involved with the teaching of arithmetic recently, or if you are

preparing to teach, you probably answered "yes", You have probably learned

these and other related terms, and the concepts which they describe. You may

even have learned that a mathematical system with certain properties is called

a gma, while if it has these and other similar properties, we call it a field.

Suppose wo press on a little bit farther. Do you know, for example, what

good a reciprocal is? Do you know where this idea is used in elementary school

teaching and learnng? Do you know how the vesociative property of addition is

used in adding columns of figures? Do you know what arrays, such as 3 rows of

21 dots, have to do with the distributive property?

The purpose of this unit Is LAioo anel.ee h.i Tiestione such as thosc

we have just asked. You have undcul:iediy heen told that the field properties

play a key role in developing elementery arithmeticbut i is entirely possible

that no one has actually shown you livt this role is

In this unit, we will look at places where the field properties are used

in developing arithmetic as it is current1y taught in the elwe,Itery school.

We hope that you will gain a better understanding of the field properties, of

the arithmetic of positive, negetive, whole, and rotional numbere, and of the

importance of the field properties in teaching arithwetic. These properties

are basic to the study of the structure of number systems. This study is a
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unifying threrd in mathematics, which continues in high school and college,

building on the foundation laid here.

For your convenience the field properties are listed in Table I to serve

as a review and a convenient reference page.

TABLE I.

TAB Flap_ PROPERTIES

g1.imials922EtyLof Addition: For every

two numbers, a and b, a + b is a

unique number. For example, 3 + 7 is

a unique number.

Commutative Pr petty for Addition: For

every two numbers, a and b,

a + b = b + a. For example,

4+ 6 = 64- 4.

Associative trapqy_g_Addltion: For

every three numbers, a, b, and e,

a+ (b + c)=(a + b) +cie a+b+ e.

For example, 3 + (4 + 5) = (3 + 4) +

3 + 4 + 5.

Additiv dent: There is a number

0, such that for every number a,

a 4. 0 m© -1- a m a. For example,

17 + 0 = 0 + 17 = 17.

Additive Inverse: For every number a,

there exists a number, -a, read "negative

a", such that a -I- (-a) = (a) + a = 0.

For example, 6 (-6) = + 6 = U.

CloallY4langIy of MulIalicatien:

For every two numbers, a and b,

a x b is a unique number. For

example, 2 x 9 is a unique number.

Commutative .Prelmllg_2411.12112sIloq:

For every two numbers, a and b,

axbubxa. For example,

5 x 8= 8 x 5.

Ass°0-...22ativePP1.12fmulli21121V9n:
For every three numbera, a, b, and c,

ex(bxe) = (axb)xemaxbx e,
For example, 2 x (6 x 11) = (2 x 6) x 11

2 x 6 x 11.

11121112yeative Identitz: There is a

number 1, such that for every number a,

axl = 1xa= a. For example,

32 x 1 = 1 x, 32 am 32.

Hui j2licative inverse (Reciprocal):

For every number a (except 0),

there exists a number, -., such that
a

axe1 x a = 1.. For example
a

3 x x 3 1.

DistributimlEmEtz of multiplication over addition: For every three numbers

a, b, and c, a x (b + c) = (a x b) + (a x c). For example,

5 x (4 + 3) = (5 v. 4) + (5 x 3)

x 7 = 20 + 15

35 35



.3_

Before we examine the uses of the field properties systematically, we

have provided a few practice exercises to help you review these properties.

Practice Set 1

l "Name the property or properties which show each of the following statement

to be true:

(a) 3 x 8 x x 8 x 3 (b) 7 x (10 x 3) 7 x 10) x3

(c) 4 +1:2 + (-2)) r4 4 + 0 (d) 4 + 0 as 4

(e) 12 x (4 + 1) 1:4 ( 12 X 4) + (12 x 1) (f) 73. xi, =1 1

(g) 3 + (8+ 17) a (3+ 8) + 17 (h) x2 1

(a) 3 x 1 (j) 4 3 7 4 8
'g') x x)

2. Look at each expression below. How was it changed from the preceding form?

Write the name of the property that permits the fact. The answer."numeration

system" would be acceptable in cases such as 24 82 20 + 4. Your answer will be

either "numeration system'? or the appropriate field property.

16 x 3 + 16 x 4 st% 16 x ( + 4)

as 16 x 7

t. 7 x 16

xl 7 x (10 + 6)

ta(7 x 10)+(7 x 6 )

ts 70 + 42

= 70 + (40 r 2)

(70 + 40) +

3. Clrssify the following sentences as true or false:

(a) 8 + (5 x 4) szt (8 + 5) x (3 + 4)

(c) 3 x 0 x 5 a* 15

13 13
(e) ("17: x 14

(g) 5 x 6 + (7 + 4) r= (5 x 6 + + 4

(b) (6 + + 4 01 4 + (6 + 7)
7 r9f 11 3

4

(2) 5 x (4 + 6 - 3) (5 x 4) + (5 x 6) -
(5 x 3

(h) 17 4. (4 + 2) 03 (174 + (17 4. 2)
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2. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

2.1 MANIPULATION OF CONCRETE OBJECTS.

Some of the ealliest mathematical experiences the child has In school

Involve joining two sets of concrete objects to form a single set. For example,

a child may have 3 red disks on his desk in one Lunch, and 2 black disks in

another bunch. [See Figure 1 (a)].

C

0
0

04.14.17.4..4.....a..... M

(b) (e)

Figure 1

He bas several ways he can put the two sets together to get a single set.

For example, he may push the black disks over to the red ones (Figure 1 (b)3.

Then again, he may push the red ones over to the black ones (Figure 1 (c)].

Each of these procedures leads to one set of 5 elements. This is the sort of

motivational material from which one develops an understanding of the commutative

property of addition.

Of course, these are not the only choices open to the child. He could pick

the red disks up in hie left hand, pick up the black ones in his right at the

same time, and dump the contents of his hands simultaneously into a bag. He

could ignore the disks and begin to read a book. He could line the disks up, red,

black, red, black, rad. None of these responses changes the fact that this is

an illustration of the addition fact 3 5, but none of these responses

have anything particulal: to do with the commutative property of addition.

If a person has three sets of disks (for example, red, blue, and yellow),

and he wishes to push the sets together to form one large set, he has some choices



to make. He may decide to leave one set fixed, and then push the others to it.

Probably he also will decide which of the other sets he will move first. He

realize (or can be led to realize) that it doesn't make any difference which

choices he makes--he ends up with the same number of elements in the large set.

(Of course, he ends up with the large sot in different places, but that has no

effect on the number in the set) . This manlpulation is motivation for the

associative property of addition.

A variation of this sort of concrete object manipulation is to use large

cubes with dots painted on the faces, like dice. By throwing a pair of dice and

counting the total number up, the pupils will see that the sum, for that throw,

is the same regardless of which die we start counting on another demonstration

of the commutative law of addition. Three dice could be used similarly to motivate

the associative law of addit!on.

242 "RINGING" SETS

In the kindergarten and early primary grades, sets ant' set pictures are

often used to convey basic ideas. Often children are asked to "ring" sets to

indicate the set under consideration.

Suppose .3 sets are given, as follows:

XBF QPY
C AZT

Suppose we wish to combine these three sets to form one set. We may wish

to first combine the righthand two sets, into one set, and indicate this by

"ringing" them; then to combine the remaining set with this set, as follows:

* QPY f: aft QPY
fit" C AZT C AZT

Another possibility would be -ce combine first the two leftmost sets and

then combine this set with the remaining set, ns shown below:

; xB QPY
AZT

QPY
AZT



Children will soon uee that the 'lumber of objects included in the final set

is the same in either case. This builds readiness for the associative property

of addition.

2.3 REGROUPING

The process of regrouping is strongly connected with the fact that our

system of writing numbers Is a place-value system and has a base of 10. Place

value and the base create the need for regrouping; the base determines the size

of the groups we are obtaining.

Regrouping always uses the associative propeAy of addition; often it ulso

involves the commutative property of adCtion as well. Pollowing are a few

examples of regrouping, Can you rave a reason for each step below?'

Example 1. + 8 cx (1 + 2) + 8

1 ( 2 + 8 )

1 ÷ 1 0
1 lL

Example 2. 3 4- 8 = 3 + (7 .1- 1)

= (3 + 7) -F

= 10 + 1

ra 1).

(since 3 1 + 2)

(since 2 + 8 = 10)

Example 3. 23 9 = (20 3) 9

m 20 + (3 1- 9)

= 20 .1- (12 1) + 9)

= 20 -1- (2 + (1 93)

m 20 + (2 + 10)

= 20 .1. (10 -1- 2)

tu (20 10) .1- 2

= 30 + 2

a 32



Example 4. 197 m (100 + 90 7)

8 '72

400 + 1.80 + 15

(400 + 100) + (30 + 20) + 5

m 500 4 40 + 5

545

Example 5 197 n 1 " 100 10 + 7

+348 m 3 100 4 10 + 8

(1 + 3) g 100 + (9 + 4) 10 + (7 +

m 4 100 + (10 + 3) - 10 + (15)

m4
u 100 + [1 LOU + 3 10] + [1 a 10 +5]

(4 + 1) 100 + 3 10 + (1 10 + 5]

5 - 100 + 13 + 11 30 +5
5 . 100 + 4 10+5

m 545

ample 6, 197 - 1

+348 8

(1

a + 9 10+

4 10 + 8

1 (9 + 4) 1.0 + (7 + 8

4 10 (10 + 3) . 10 (10 + 5)

m (4 102 1 102) + ( 10 + 1 10) + 5

(4 + 1) 102 + (3 + I) 1a+ 5

6 10
2
+ 4 10.5

546

Example 276 m (200 + 70 + 6) a 200 + 60 + 16

+0+ ja 100 + 30 4-..2)

100 + 30 8

t 138

2.4 ADDING IN DIFFERS T R ERS

A common way to have p Is check their addition is to tell them that

they added from the top down, they should- check by adding from the bottom up.

here one is relying on the associative and commutative properties; it is because

these properties hold that this check works.



It

Example: 3

2

4
+7

In adding from the top down, we follow the procedure below:

3 + 2 + 4 + 7 ta [(8 + 2) +.4] + 7

ttu [5 + +

= 9 + 7

=16

We can think of the procedure in adding from the bottom up in either of the two

wayst

or

+ 2 + 4 + 7 igs 8 + 12 + (4 + 7)1
as 3+ [2+ 11)

3 +

7 + 4 + 2 + 3 = I + (4 + +

7 + f4 + 5)
7+9
16.

In all of these procedures, the use of the asaoc.ttive property is evident.

In comparing the second of the "bottom up procedures with the "top down" method,

wo see thmt we have used the commutative property by assuming that 3 + 2 + 4+ 7 tos

7 + 4 + 2 + 3.

2.5 ADDITION TABLES

If we study the addition table (see Figure 2), we can find all sorts of

interesting patterns. If we pursue the reasons for the patterns, we can turn

up many interrelationships among the numbers in the table. Some of these

patterns are directly related to the properties we are examining. Suppose,

for example, we fold the table on a line extending from the upper left corner to

the lower right corner of the table. This line is called the "main", or

"principal" diagonal, of the table. When you fold the table in this manner,



each number above the diagon,)1 is folded ogainst a number below the di_agonal.

What do Au notice about the two numbers? Why do you suppose this happene

0 1

1 2

2 3

4

4 5

6

6 7

7 8

8 9

9 10

2

ADDITION TABLE

4 5 6 7

2 3 4 5 6 7

3 4 c
., 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 1.1

7 8 10 1.1 12

8 9 10 11 12 13

9 10 11 12 1.3 1 4

10 1.1 12 13 14 15

11 12 13 14 15 16

Figure 2

8

9

10 11

11

12

12

1 3

13 14

14 15

1 5 16

1.6 17

17 18

L 's look at one of the pair s of colocidiAg flomtirays. FOY example,

2 + 4 is 6. Does the 6 in the 2 + 4 posftion coincid,) tot) avrAhey 6? IlAtL

that 6 represent the sm 4 + 2? What property is iLlwitfated here

Do you see a row In the talae that i8 jleriUual tho row outside the

table? which row is ItY 1 there a volumn Jn the ta'ole that is ideutical to a

column outside the table? %hich column 36 it? Nhrlt is the identjty elemeot

for addition? How do this row and this column illustrate that there is an identity

element for addition?
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In teaching stud 1 s the addition combinations, how could we use th

commutative property of addition and the additive identity to cut down our work

as we fill in the table?

When you etudied the field properties, you may have looked at abstract

operations expressed in tables. An example of this sort of thLng is given in

Figure S.

A B C

Figure 3

To read a table of this type, let us consider Locate B on the

left; go across that row until we find the column headed C. The table entry

is A. Thus B C ra A.

If you did study this sort of topic, you may have been told, "You can tell

from looking at the operation table whether a set is closed or not. If there

is an element in the interior of the table that is not in the outside row or

outside column, the set is not closed with respect to that operation. If no such ,

element exists, the set is closed with respect to that operation,"

According to this statement, you might think, "Addition of whole numbers

is obviously not closed. For example 7 5 w 12, and 12 is not in the outside

row or column." This would be a perfectly natural reaction, but it is a false

conclusion. The above statement is true whenever you have the entire set you

are working with represented in the outside row or column. In our case, however,

the set of whole numbers is an infinite set 't is simply not possible (even

theoretically) to list all the whole numbers. Time, our addition table is only

a part of the complete addition table for whole numbers (and, in fact, we could



nut wr te a COMplete Whil WP call the a Oillon table for whole numbers

as a t x ble or the basic combinations with these and the use of place value we

can get any addition i eail it w des

Whwriever we cannot wt i.fi.e a complete addition table for s set of numbers,

the question of whether or not that set is closed under addition mist, be decided

by referring to the definit ton of closure, This definition states that a set

of numbers is c Lased under addition if (and only if), for any two numbers we

select from the set, the scan is alrio in that set, bet UN return to the case

we have teen conside tng .h is wh,:?the th set of whole numbers is closed

under addition, Our experience teollt, us We lalie not proved that it is,

but we will accept, at a postulate, That the scat of whole numbers is closed

under addition.

Exercise&:

Tell, in t:l e toi Jowing cases, wh thee or not the set is closed

under the operation ga.ven.

'1) 0 , addition

(3)

A A B C D

C A E

C C

DB AC

2,6 THE NUMBER LIN

A

(2) muiLiplication

(4) I 3 4

1 1

2 2 2 2

3

4 4 4 4 4

5

The number line Is an extremely useful. graphic device at virtually al

levels of elementary mathematics. it provides a clear p'

the numbers with which one 36 working

order of
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In the early gradee, we can use the number line to motivate the commutative

property oL addIttoa. For examplc, suppose we wish to get the eum 9 + 1.

We tart at 0, jump. 9 units to the right, then jump one more unit to the

right tus landing finally at 10, Th1s is illustrated below:

In the same ay, 1 + 9 can be iilustrated as followa:

We sea that in each case. we eno up at th aane epot, 10. Doing this sort

of thing with vailous combinations will serve to make clear the concept that

2.7 A. GENERAL REARRANGEMENT PROPFRTY

It is extremely tedious and somewhat pointless for students to time and

again go through all possible steps in an addition process (for example),

justifying each step by the ':sociative or commutative property. Because of

this it is common in elementary texts to develop the associative and commutative

properties, and then to show that these allow us to use a general rearrangement

principle, allowing us to shift the order and arrangement in a sum or product

at will.

Example (Using associstive and commutative properties):

35 + 27 0 (30 + 6) + (20 + 7) 0 1(30 + 6) + 20] +

0 130 + (6 + 20)) + 7 m 130 + (20 + 5)) +

r(80 + 20) + 5) + 7 = (30 + 20) .4- (5 + 7)

0 50. + 12 0 50 + (10 4. 2)

0 (50 + 10) + 2 su 60 + 2 A 62

Example (Using general rearrangement principle):

35 + 270 (30 + 5) + (20 + 7) = (SO + 20) + (6 + 7)

0 50 + 12 0 60 + 10. + 2 0 60+2 0 52



MULTI! 'CATION OF WHOLE NUM1WRE

THE MULTIPLICATION AL GORI'

The algorithm which we use to faud the answer to multiplication problems

Leans heavily on the distributive property. Ac we develop this algorithm in

the elementary school, the distrilautive property z continually stressed

To see that what we have beer say3ng is actt;aiiy the case let us consider

several examples. First, ellopoae we are multiplying a 3-digit number (683)

by a 1 -digit number (7).

(a) 683 x 7 m (600 + 80 + 0 (because of the place-value numeration system
we use)

m (600 x. 7) + (BO x 7) + 3 x 7) 41), an extended form of the
distributive property)

" 4200 560 4 21 (using place value end multiplication facts)

m 4781 (by using addition principles)

Tha person performing molt4Lication in the mnannev above la working a coriect,

but somewhat cumbersome,, process. A step toward a more efficient notation

is the following.

683
7

Tir 4 (7 x 3)
560 46 (7 x 80)

420 40. 1 x 6001

4781

using r mtive property

As another example of the use of the distributive property in mul lic 'ion,

consider the followingt

375 x 100 m (300 k 70 4 5) X 100

(500 x 100) 4 (70 x 100) 4 (5 x 100)

30,000 4 7,000 500

37,500

A final e ample gal alostrates the derendence of our n

algorithm upon the distributive property
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248
x 316

48o0 (6 x 8)
240 0.(6 x 40)
120040(6 x 200)

so to.(10 x S)

400 4d. (10 x 40)

2000 10 x 200)
240 os (300 x 8)

12000 4.0 (300 x 40)

60000 40(300 x 200)

76208

3.2 MULTIPLYING BY MMTIPLX$ UP 10.

If a child has learned that multiplyilg by powers of 10 results in

"adding zeroe", he can develop some short-cuts to multiplication by multiples

of 10. (Of course, when we use the term "adding zeros", we are indulging in

arithmetical slang. Imprecise terms of this type are useful if introduced after

the students understand the ideas involved. In multiplying by 10 or a multiple

of 10, the actual result is that the digits of the multiplier are shifted into

places designating higher powers of 10.) Suppose he faces the problem 42 x 20;

this could conveniently be handi ed. by either of the following procedures:

42 x 20 n 42 x (2 x 10) 0 (42 x 2) x 10 0 84 x 10 0 840

42 x 20 0 42 x (2 x 10) 0 42 x (10 x 2) 0 (42 x 10) x 2 0 420- x2 8404

In either case, we see that the associative property of multiplication is

U554. In the latter situation, we have also used the commutative property of

multiplication.

The use of the associative property of multiplication Is Shown again in

the follows ng example:

.64 x 600 0 64 x (6 x 100) 0 (64 x 6) x 100

0 [(60 + 4) x63 x100 0 [(60 x 6) + (4 x 6)] x100

mg (860 + 24) x 100 m 384 A 100 = $80400.

You will undoubtedly have noticed that we also used the distributive

property when we choae to think of 64 x 6 as (60 + 4) x 6 and then found 60 x 6

and 4 x 6. These are the sorts of procedures one begins to perform extremely

rapidly if one practices mental calculation.
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3 CIAL MULTIPLICATION ALGORITHMS

"Cri roes", or "lightning", multiplication, is a mental short-cut to

the multi lication procems. It is illustrated below, and the arrows drawn

clearly indicate the origin of the name "criss-cross".

$

t

32 3 2

21 x2 1 x 2 1

72 6 7 2

Can you see how the distributive property is being used in this procedure?

Extending "criss-cross' multiplication to 3-digit situations makaa the

mental calculation a bit more complex. However, the technique works for 3

or any number of) digits. A 3-digit example is given below.

2 4 8

x 3 2 7

2 4 8

x 3 2 7

496 6096
me

21096 21096

Notice that "carrying" into the place beyond the one in which we are

working often occurs. We must make a mental note of the amount carried, and use

that amount in the next step.

Naturally, the "criss-cross" method is not meant to be a staple in the

mathematical diet of your students. It is properly an enrichment topic, which

will probably appeal to some of your students, who may continue to use it. It

is not an item to be taught for mastery.

Work the following lees, using "cries-cross" multiplication.

(1) 23 x 45 (2) 808 x 89 (3) 238 x 687

In the Middle Agee, a multiplication algorithm commonly used by the Arabs

made use of a lattice diagram. This lattice consisted of a rectangle divided

Into squares each square was further divided into 2 triangles by drawing the

diagonal bet-en the upper right and lower left corners of the square.
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Suppose we wisb to multiply 346 by 217, using the lattice method.

We write the 346 above duo lattice and the 217 to the right, as shown b..

4

The diszributive property is ussd implic n obtaining the partial produc

which ,e recorded in the interior of the lattice: as is shown below.

3 4 6

For example, the entry in the

21 is the product of 3 and 7.

column a4 the 7 row is and



t
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'The answer ia obtained by adding down the diagonals, with carrying, where

necessary, into the next column. The role of the diagonals is to line up the

unite digits, tent digits, etc. For example, the diagonal starting beside the

1 to 21.7 has the entries 8, 4, and 6. This diagonal is the tens diagonal,

and so we real3/ have (8 4. 4 x 10. The answer is written around the lattice

at the base cv. the diagonals.

Th,t fnal form of the problem is as Poll, e:

Tiler , 346 x 217 78,082.

Just as with riss-cross" mu .ti 1 cation, lattice multiplic

enrichment topic--not to be taught for mastery Lattice multiplic

in many current elementary text series.

Exercises:otaNts01,10/4WISI

Work the following ex ieee, using lattice multiplication.

(1) 846 x 18 (2) 192 x 307 4168 x 6872

n app

Un



3,4 DOUBLING A PRODUCT

A common mistake made by students of ha ages it, their assumption that to

doubl. e a product, one must double each factor A knowledge of the associative

property of multi lication is sufficient to demonstrate that doubling one factor

to oil that !,e1 required. This is demonstrated in the following example:

x (5 x 9) 4, 2 x 45 0 90

2 x (5 x 9) (2 x 5) x 9 (b the Associative property of multip -ion)

10 x

90

This could a:.sa be calculated as follows:

x (5 x 9) 0 2 x (9 x S) (by the commuteive prop or multii licdtion)

0 (2 x 9) x 5 (by the Jissociative property of multiplication)

18 x 5

90

However, doibling both factors makes product 4 times as great, shown belowt

(2 x 5) x (2 x 9) a 10 x 1.

m 190

8.5 AIRAYS AND RECTANGUL AR REG10N5

Arrays of objects and rectangular regio rs play important~ parts in the

development of the concepts of multiplication and the distributi.ve property.

At a very early stage in the child's school. experience, arrays are used

otivate the m ul,ti pli catloft of whole numbers For example, the array
k II 00

., 111

may be used to present the idea, 3 x 4, Merely L tilting the arrily 90°, so that
I)

it looks like shows tt
400

cod Intuitive basis for accepting the commutative property of multiplication.

1so thin of th.s x 3- This forms

n without reorienting the array n see that it flan be thought of either

as 3 rams of 4 objec as 4 edumns of objects each.

The partitioning of arrays is excellent molvation fox the distributive
v f *

property of multiplication over addition. ror. example, :::: :.
*

: shows that4,A u,
fy9 4ev



f

5 x X 4) (5 X 3). rly,

19

demonstrates that 4 x 5

(2 x 3) 4
or 44

0 .. 0

0 44,

nway, ,...
0111111010011

x 3) 4. (2 x 2) (2 x 2) or 4 x 5 = (2

onstrates that 8 x (5 3) x 7

4- 2)(3 4-

(5 x 7)

2).

-4-

In the same

(3 x 7),

44

0

in the same way, one can use rectangular regions which are partitio d.

This is illustrated below.

4 x 4 m 4 x (3 1)

Of courses the distributive property is a two wo street. One may s t

with an expression like 3 x 6 and express it as (3 1 4) + (3 x 2), or one may

express (3 x 4) f (3 x 2) i n the form 3 x 6. This I dicates that we might provide

re understanding of the distributive property if we sometimes join two arrays

rather than always partitioning them. Thi$ process i.s shown below,

0 e p 01 wo
^ t. I, n ith

4f t
n

,43 x 6) +..3 Y. 2) 8)

Arrays cal also serve to motivate that 1. serves as an identity

rent for multiplication. For exavie

x 6 m 5; : shows equally clearly that 4 x

6 CONCRETE OBJECTS

Just as with additionat ditiorn and subtraction, multiplication 'ten motivated

by using concrete objects. Actually, the -rdy of dots and the rectangular

regions used in the last section are semi ncrete objects--in using them, we

have just stylized concrete objects for convenient representation on the printed

page. Everything we did there could be done with concrete objects, andands i.f so

done, would be more meaningful to some students.

One concrete device that we could use to motivate the associative pr el

of multiplication is stacking rove of blocks in layers to form a a.Mectangula

. clearly shows that

*31
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solid The associative principle cornea Into play when we wish to determine the

total number of blocks the vi id

Suppose we have a base consisfing 4 rows of 5 blocks each.

Surpobr also that we have built the solid 3 layvus high. By examining the

box in diffc ient way"; 1,e can show we can ftnd the number in one layer

(4 x 5) and then faultiply by the number of layers y 3), or we can Lind the

number of blocks on a "side" (3 x 5) and muitfply by the number of rows (4)i

or we can find the number of blocks on an 'rend" (3 x 4) and multiply by the

numbers of columns (5). That

x (4 x 5) m (3 x `3x

atice that to get the expre n (3 x 5) x 4, we have used both the commutative

and the associative properties of mu liplication.

3.7 MULTIPLICATION TABLES

If we examine the multiplication table, (set Figure 4 below) we can observe

many of the some things that we saw when we examined the addition table.

2 3 4

C) 0 0 0 0 0

) 3 2 3 4

2 0 2 4 6 8

3 0 3 6 9 12

O 4 8 12 16

O 5 1 0 1 5 2 0

6 0 6 12 .18 24

7 0 7 14 2a. 28

8 0 8 16 24 32

9 0 9 38 27 36

5 6 8 9

0 0 0 0 0

5 6 7 8 9

10 12 14 16 18

15 18 21 24 27

20 24 28 32 36

2 5 3 0 35 40 45

30 36 12 48 54

35 42 49 56 63

40 48 56 64 72

45 54 63 72 81

Figure 4
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Fimt, what happens when we fold tht, iable along the main diagonal?

ls thc, part or the table on one side of the diagonal a mirror image of the part

on the other side? If so, what does this say about the multiplication of whole

numbers? That is, which of the field properties does this illustrate?

Is there an identity element for multiplication? How did i%se tell for

addition? Then, is there a row or column (or both) in the table identical

to the row (or column) outside? at is the multiplicative identity?

Can we tell from the table whether or not the whole numbers itrei, closed

under multiplication? Support your answer with a realson,

4. DIVISION OF WHOLE MUMBEAS

4.1 ME "STACKING" AL30a1THM

One feature common to most contemporary aiementary inn hemat ic programs

is that they introduce studenta to the division process with the use of an

algorithm which is appreciably different from the one we used when wt learned

division. This algorithm involves the stacking of partial quotients, either

down the side of the problem or on the top. For this reason this form of the

division algorithm is often celled the "stacking" olgorlthm at gives us the

right to write partial quotients and then add them up to get the final quotient?

Basically, it is the same process which allows us to write partial products in

multiplication and then add them up to get the final product, That is, the

"
stacking" algorithm makes use of the distributive property of 'multiplication

over addition,

How can we use the distributive property of multiplication over addition

when we are involved in division? First, we must remember 1:hat multiplication

and division are inverse operat ions; thus, every division problem can be recast

in multiplication form. For example, when we Fisk for the number x that results

when we divide 1554 by 37 (in equation form, 1554 37 x x), we are looking

for the number x which, When multiplied by 37, equals 1654 (in equation form,

37 x 0 1554),
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If we solve Cup x. we find out the value of x in this case if 42. By

using the distributive property, we can write the equation 37 x 42 1554 as

37 x (40 + 2) 1654, or even 37 x (10 f 10 10 + LO 4- 2) a; 1554.

Now let us apply this to the stacking" algorithm. Our first step to

finding the quotient Is to select a multiple of 37 that is less than (or possibly

equal to) 1554. Often we use multiples and powers of 10 Lo help us. A good

estimator might see that forty 37's is less than 1654 but fifty 37's is

more than 1554. lie would then see that the difference betueen 1554 and

forty 37's is 74, or two 37's, Hence tor him the "steickIno would look like

this: 31 , 3:n4
1480 1 40 0- (40 :4 37)

74

74
i

2

Therefor lab actual

(37 x 40') + 1,3"! x 2) I; 1480

A less able estimator might perform the same divitsion as fol. -z

37 /7554

pros

0 4 42

-ocednre 37 K 42 0- x (40 + 2)

'7

1184
37() 10

'10

814
370 10

444
370 10

74

37 1

0 42

Th person has imp i-ly used the distributive property also.

has been



37 x 42 m 37 x (30 + 10 + lo 4 10

(37 x 10) (37 x 10)

370 + 370 + 370 + 370 +

1554
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1 4 1)

( 37 x 10) + (37 x 10) + (37 x 1) + (37 x 1)

37 + 3,

Another example of the "stacking" algorithm is the following:

38 ilmr
3800 100 That is, 6914 m (100 x 38) + (20 x 38) + (5 x 38)

1114
+ (3 x + 30

7eo
tNe.,

20 m (123 x 38 + 30

144
li4 3

128

Here, we see that our quotient is not an exact multiple of the divisor;

there is a remainder, But, if we express the situation in the toi.m

6914 30 m (100 x 38) + (20 x 38 + (5 x 38) + (3 x 38) we see that we are

still, in reality, using the distributive law t ) help usw

In some elementary materials, the "kttacking" algorithm is written in a

different way--the "stacking" is done on the tu. This ha the advantage that

the conversion to the usual method of writing cauotients is easier, Its prlmary

disadvantage is that it is difficult for the student to judge the amount of

space he will need to allow above tht, probten

The following is an example of "stack g" on the top
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186

'thus, 4837 -; 20 m 186 R 1

1

4.2 DV.STRIBUTIVITY OF DINI$YON ( ADDITION

We have often rutorred to 'the distrIbuUve pcoperty'; that

distriWtIve propt:rty of multi;qic:4tion over addition, We Ca 1 0117 prooPi:ty

the distributive Jopty uot bocause it i, the only one that exists, Out because

in our usual work It is ti c outy oGe rhat we uhe . iiweii(tr, there is olso a

distributive property of di,- "ion over additLon, which is demonstrated In the

following exi-vtple:

56+ (48 + 8) 48 8) 4. (8 8 m 6 4- I 7.

Symbolically, we cAu state 11-. OlJtv;hui:Ive c)ro);-2,rt_ of Lvision

addition as follows:

b) e) (b I r,

In dealing with the distA tive property of mItiplication ove.. iddition7

we know and use the fact that

c x (a + b) tc x a) 4. Ce x b)

and also the fact that t. ( b x Tnus, in effeci Ne mre

actually using two distributive Ilws; they are connected b the 2.act that

multiplication is commutative.
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d] 'i t oil (,:otnnint,,it I s 38 I, ty checked by try Cng an example

not the ,t7,anic, 3 4, moo:pfore di vis Ion not commutative.

We have Just seen that + 14 (a c) + (b is there a

second distributtve law of division over addition? That le, is it true that

a (c ) + b)" Let's try en ex nple. If we let c = 18,

a 6, and b :3, c (a + b) 18 1`6 + 3) IP 18 .14- 9 2, and (c a) + (c

(184 6) + (18 4 3) we 3 + 6 Al 9. In this case c a + b) ( *- + 13).

Should we try other cases? What would be gained? We have seen already

that it is not true for Zl values of a, 1,, c, that c (a + b) (cmi- a) + b).

Thereiore, examining mo:e cases would add nothing. We might, indeed, find special

values of le 119 c, tihtre the relation would be true. However, the one example

we have used shows the it it: sometimes fJs e, and thus cannot be a general

property of whote hiabers,

Finding in exampi

a counter-example. Thiti is an iwp,irtialt technique In rnwt1ematic

that !rnmething .16 not trot: i Inown as f ad n

extremely

easy to prove something false if ooe can find a counter-example, It 18 not

possible to prove something C114,, t: citLOg exImples, exeept in C8808 where lqe

can examine Ible lusiall Most of the sets WE work with are either

Infinite in which case it is not :cilasible to examine all cases, or they are large

finite sets, where it wohLd be higply impractical to look at every possible case;

thus, we are not normally able to ,,rove anything by citing 1, 1.O 100, or 100()

cases

r;onsider the addition of tw I even inner. By examining several cases

such as 4 J2. 2 4 126 n 128, eLo., 1.t4 1,j11 quiokly btu Lod to the conviction

that the sum of two even nhmberH ro olwayb ev(-11 However, no number of cases would

prove this coner.torQ. f proof b di rcct trieens ;9 quite easy !le)e, Let 2n be

one even number, and lot 2n be ant ther, Then 'w.n + 2m 2(n m) by the distributive

propeoty. Since IT, and n wem whole mobei8, by the cqosnre property of

addition theii sum is a whole nvober, and then by definition of even number

2(n + m) it even.



-26-

The alert reader may have wondered about aubtractLon. Do there exiat

distributive laws of multiplication over subtraction or of division over subtraction?

This is a worthwhile idea to pursueand we will leave it for the interested

reader.

4.3 THE DISTRIBUTIVE PROPERTY AND THE EUCLIDEAN ALGORITHM

As teachers, you may have seen the technique for find La the greatest

common divisor of two numbers by a sequence of divisions. This procedure is

known as the Euclidean Algorithm. The basis for the procedure is an application

of the distributive law of division over addition.

The Euclidean Algorithm is illustrated by the following example.

To find the greatest common divisor of 346 and 2348, we start by writing

2348 als 6 x 345 + 276.

is, have divided 845 into 2348, getting a quotient of 6 and a

remainde 278 We are looking for the greatest common divisor of 346 and

2348, and now conclude that the number for which we are searching also divides

27F. Thus, we look 'or the greatest common divisor of 278 and 346.

345 1 x 278 4- 61.

Continuing in the same way, 215 x o7

67 w 6 x 10 4.

10 4° 1 x 7 + 3

7 0 2 x 3 + 1

3 0 3 x 1 0

Thus, is the greatest. common divisor of 345 and 2348

How is the distributive. property involved? It was involved when we said

that if the divisor divided 845 and 2348, it also divided 278. That is,

if a b x r, and a number d divides a and also divides q, it must divide

is true since r x Symbal.ical1y, we can write a divides b as

lb. Thus, what we have said is: xe a lb and a c, and b > c, then

(
c), for whole numbers a, b, and c.



4.4 DIV114NC A PROBbCT BY TWO

it is extremely common to f tnd that Students, di.vi ding a product by two,

attempt to divide both of it actors by two. A little use of the associative

property of multiplication can show them that their process is wrong. For

example,

( 7 x 8) 7 x (4 x 2 ) + 2
( 7 x )

a 7 x 4
a 28

x (by the assoc:fkr.ive property of multiplicatiou

(2, 2 is 1)

and, since 7 x 8 0 56 and 28 is 56 2, only one factor need be divided two

to cut a product in half.

5. COMPARING AND CONTRASTING ADDITION WTTU SUBTRACTION AND MULTJPLICATION WITH DIVISION

You are aware that, with our four major operaions, we have two pairs of

inverse operations. Addition and subtraction are inverse operations as are

multiplication and division. That is x subtracting 5 is the Inverse of add ing

5 (subtraction of a number "undoes" the adding of that number):, and dividing by

6 is the inverse of multiplying by 6.

Since we do have these pairs of .t

reverse of >erat i cans r it is only naturaal

to compare and contrast the operstWns--to find simi

in the ways that they work.

In the first place, we see that closure of addition and mu plicstion does

not guarantee closure of their re pective inverse operations Examples of

thin nre easy to illustrate; find 4.f 5 0 have no solutions in the

set of whole numbers.

In the second place, we find that subt-action and division are not

commutative, as are addition and mnitiplieition. For example, 6 2 0 2

and 6i- 2 0 2 6.

and differences



In the same manner, we see that subtraction and division do not satisfy

the asaocI,ative propewty. For an example of this, let us consider the following

(6 2) - 1 m 4 - 1 3 but 6 --( 2 - - 1 ) 6- 1 5

(8 4) 2m 2 m 1 but 8 (4 2) a 42 w 4

We have a bit better luck with the identity elements. If we subtract 0

from a whole number, e get as a result the whole number with which we atnrt

That is, a - 0 m a for all whole numbers a. However, subtracting a number

from 0 does not give us the number; in fact, we have no solution for this problem

in the set of whole numbers. This Is a bit different from the way works in

addition; Otam a+ew a. Therefore, we usually say that 0 is a Lilt

identity for subtraction; it acts as an identity when written on the right, but

riot when written on the left.

Is there an identlty element for division That is, is th. ere a numbs). x

such that a 4x m a and x c a? We see that the situation is similar to

subtraction; a 1.1 m a for all whole numbers a, but there is no unique whole

number x such that x a = a fo all asy that

identity for division.

You may have noticed that we ha' not discussed additive or multiplicative

inverses. This is because we do not have inverses in the set of whole numbers.

le a si,Art

In order to get additive sxv we would have to extend our set to include

negative integers; in order to get mult1 licative inverses, we would have to

include the fractions. numbers. In order to get e field we would need to add

the additive and multi licative inverses to the properties we have lready;

thus, we would need to extend our set to Include the rational numbers.

6. RENAMIN4 FRACTIONAL AND MIXED NUMBERS

Moving from the set of wi )1e numbers to the set fractional numbers,

see an immediate difference. Wile eas, in our Hindu-Arab c base 10 system,

we have one standard form for representing a whole number, we have a variety
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of standard names for a fractional number. For example 42 be 178 would usually

be expressed In the standard form 520, but the fractional number named by could

equally well be named 1..),z47,

22 or mr . We call the symbols b- which we

reeTesent react' 'eel numoerm fractions. reactions that name the same fractii 181

number are wokee s,c ab feectIons. Of course, we do in mile sense have

a single standard form for fractions; the "lowest-term" form (when the numerator

and denominator of the fractions have no common factor except 1.) Consider

L4 2 7x
which equals The factors of 1Li are 2 and 7; the factors of 162 918 x

are 2 and 9. The common factor IS 2.

Any time we wish to select a fraction which is equivalent to a particular

fraction we are workine with, we are using the oroperty of 1 as multiplicative

identity, where 1 is written in the form for some particular counting number

a. To illustrate this, let's consider a couple of examples. Suppose we have

8 4 12but need an equivalent fraction with denominator 16. x is the process

we use. Actually we are thinking ix 1 4need to multiply 4 by 4

4 3 4to get 16 as any denominator; 1 may be written as xer
4 4

Another

ple; Suppose we wish to reduce V co lowest terms. We can follow the procedure

x 6 9x6 9 ,

341-77c x 1-7 x e

A special case of renaming cti n 1 number is found in the upper grew,

when percent is introduced. Of course, when a percent is written in

form, it is simply a fraction with denominator 100 Thus the problem

4
involves multiplying lg

100 b
. by 1 in the form ----Teee That is,

1 ID
$ 20

multiplying -5 by 2( (20 is 100 5), and x turns out to be 60.

Elementary school children are often asked to write "equivalence

for fractional numbers. This is a row of equivalent fractions, such as

0 0 100

21.
10 12 14 16
:SP 172 49 e6

multiplicative identity, fire

Tonal

x

solved by

* 0
art

The students are using 1 repeatedly as t

SS then as then
y
then

4
etc.
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l'or exempla rf 7

2 2

'Y "

students begin to lel. te equivalence rowe, at the s

tracttonal numbers they a e fhinkina a

pV000O

Examples :

rt

.e8M01-.

etc. or course, when

aria of their work with

terms of the multiplicative identity

$.7' 5.14- ,r

trW,Cite!;!I t101w

also involve 1 as multiplicative identity.

15 1 16
Ss3.

32

6 +

9 + 3

28 + 5 28 A..r

(5

7. ADDITION AND SUBTRACTION OF

At fractional numbers are

4 x 7 r..,_

(ACTION& NUMBERS

x 1)

developed in some elementary programs,

defined to be the number such tli b s = Then fl Is d ftned to

algorithm for adding fractiolal nu ben; proceeds as follows:

§4,+ex" (definition)

= (a + c) x

If we wish to

develop

c

1

F

be a

4+

is

(distributive property--which tide have to assume
for fractional numbers if we :follow this approach)

(definition)

dd or subtact fractions with unlike denominato

would take the tollohing tack:

§xt -4x0
d cb

ad be

(ad

(ad - bc)

(1 as muulti.pl.icative identity, used in the form
b d
E. and which were chosen in order to make

denominator the a me.)

(commutative property of mu plic

(d butive property of multi li.c ion over subtract



Let , colsldor SCWIC mimerIcal exampLes

Example 1.

Example 2. 1.011kt.

4 3

7

This latter example was, worked correctly, but the process could have been sh ene

by noticing that the least common denominator of 8 and 16 is 16. Thus, tbe

example could have been worked as follows:

3 1 3 2,

16 16

16

Another example which shows the value (in terms of cutting down the number

of steps and the complexity of computation) of using the least common denominator

is the following:

4 , 3 44

26

48

(48 is the least common d nominator)

Once the addition algorithm is established for fractional numbers, it is

possibie to find many occaolons where one would use the commutatLye and associative

properties of addition. One such example is:

4
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Adding or subtracting mixed numbers can also invtilve either the associative

property of addition or the commutative property of addition or both. For example:

2

4
3 5- (3 )

(3 Jr. 5) -4-

im 8 11

(using both the associative and the
commutative propert Les of addition)

(using 1 al the multiplicative identity)

MULTIPLICATION OF FRACTIONAL NUMBERS

As with additon, multiplication of fractiol I n bera rovides many

opportunities to use the associative and commutative properties. Most of these

are quite similar to the wa:/s already discussed for whole numbers, so there

would seem to be no need for further elaboration. There are, however, a few

uses of field properties in multiplication of fractional numbers which are

different from those in whole-number arithmetic. Consider

teach the "cancelling" proc

7

1$

we are really developing a shortcut which uses the multiplicative identity, the

associative property of multiplication, and the commutative property of multiplica-

tion all in one bundle.

Let us go through the above problem as we might if we wished to emphasize

the properties that we have used.

ure, as in

7
15

When we
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Exercise: in each of the steps in the processprocee above, identify the property or

properties used.

Suppose we wish to multiply s whole number times a "mtxed" number,

1
such as 6 x 21. Of course, we could convert the 2 to in which case we have

3 6,
involved the multiplicative identity (2 w 2 x 1 Then our mu1tipiica*

2 ,

tion can also use the "cancelling" procedure: x 40 14. Uowever, we could

have written 2-- as 2 +2 or mentally thought of itlthat way). Then, we could

use the distributive property in the following manners

1 1
12 4-2 r4 14.

Multiplication of two mixed numbers is virtually the same as the above

situation, any people would handle the problem & x 2 by converting each

27 8
mixed number to a fraction, -Tx 11F,

and then multiplying in the usual way:

27 27 9 248. B. However, the same problem could be approached by

a double use of the distributive PX!OPertYu nd is so presented in Some materals

approach is illustre.ved below:

+,:t x 2 +4). (3 + ) x 2 + (3 +

8 x 2) + (x -2) + (8 4) + ,)

A.

17.

6 +

6+

7 +

7 4-

8

21-

47

28

1

19

+ 1

of y
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This use of the dilitributive propefty twi ce is exactly the same 80 the LIAO

of the distributive property in a1gebra as in the example below.

B b) x (c d) (a 4. b) x e + (a + b) % d

(a x c) + x c) + (a x d) + (b x d)

ac + be + ad + bd

DIVISION OF MACTIONAL NUMBERS

9.1 THE RECINOCAL OF A NUMBER

One of the most convenient features of tilt: set of fractional numbers is

that for each non-zero number there is a number, , such that the producta

of the two numbers is 1. For a binary (2-element) tperation when there are

2 elements which, when operated upon, produce the identity, these two elements

are called inverses, and each is said o be the inverse of the other. in our

case, the operation is multi lication, and is said to be the multiplicative
a

inverse of However, we often avoid the longer naMe "multiplicattve inverse"

by using the equivalent term "reciprocal".

Exercises; Find the reciprocals of the following numbers

1 - 3
, b"ft 5

14
In 1 4. 1

The reciprocal is extremely useful in most methods of developing the division

algorithm for fract tonal numbers as we? shall see in the next few sections.

9.2 REINTERPRETING DIVISION AS MULTIPLICATION

A common device for developing the usual rule for division of fractions

is to reinterpret the division problem as a multiplication problem. Thus the

ivision prjblem Assuming the students have hadd I me a 118

previous experience with number sentences, they will wish to perform operations

which leave us with on the left, and an expression on which they know how to

operate on the right. Multiplying both sides of the equation by the reciprocal

4 5
of 3. (i.e., by 1.) results in the desired solution. This is demonstrated below;



3

,5 4

L7, x 3)

35-

(multiplying both sides by the reciprocal of

the associative property ot multiplication)

the property of reciprocals; i.e., the product
or reciprocals is 1)

(1 is the multiplicative identity)

(algorithm for multiplying fractionalfractiortal numbers)

The only problem with the procedure as written, which rapidly leads

to the "multiply by the reciprocal of the divisor" technique is that the

reciprocal of the divisor has been written to the left of the dividend. Since

the multiplication of fractional numbers is commutative, we could just as well

have written the right-hand side as x without any particular comment.

Another related teclnique is actual"' to fill in the box in the equation.

we think in the following lannerl "i wfolt t t-h4nd sldo be

1. be equal, to tlw vIght-hen6 4,04- ih.J'eior, the nurriuei 1 write in the

box must be the number which wIll resuLt in when multiplied by
7

4 5 n
3, x 44 1, and I know that 1 x

$ " ,
.44r b bolically, this is

4
8

4
x

4
6

I know

Therefore I will, fill the box with

In interpreting division in terms of multiplication, we have acknowledged

that in a sense division is not a basic operation--that all division problems

involve situations which may be interpreted as multiplication situations where

a factor is misstng. Addition and subtraction are connected to each other in

exactly the same way. Every subtraction problem can be interpreted as an addition .
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liere we chose to write 1 in the form
3

because e 35 is a multiple of

both 7 aid 5, the denominators of the fractions involved. A$ a matter of

fact 35 is the least common multiple of 7 and 8, but it is not necessary to

select the least common multiple. Am, common multiple will work. For example,

we could use 105 in the above problem, as follow:

x 105105

105

9.4 THE COMMON DENOMINATOR TECHNIQUE

A less widely used, but convenient, technique for dividing fractional

numbers, is one in which ones (a) gets common denominators for each fraction:

(b) divides the numerator of the dividend by the numerator of the divisor; (c

divides the denominator of the dividend by the denominator of the divisor. This

procedure is illustrated below.

14

6

2 .

(use of the multiplicative entity,

(1 as the multiplicative identity)

(1 is used in the form 2 4. 2)

1i

In the example above, you may have been bothered by the step

Whet justification is there for this step? We justify this below.



Let

Then, by the deiinition 0 diva ion in terms of multiplication,

1 14 0
rr

2
By our algorithm fm. multiplication (4 fract one, Tr. Therefore,:

12 = 14 x and 21 w 21 x A Again, by the definition of divisiun, 12 14 m

and 21 Therefore, substituting in the original equation forD and gives

12 r 14 12 4- 14

Yr # 21 21 +21'

This procedure does riot explicitly involve the reciprocal, but leads toward

Actually, there is a sense in which the reciprocal has been involved. The

numerators before getting comon denominators were 4 and After we obtained

1.common denomInato.s they were 1.2 and 14 If we examine 2 14 (or 1,1'
12

we eee that is Thet is, the d vIdend has actually been multiplied

the reciprocal of the divisor, but in rather disguised form,

10. FRACTIONAL NUMBERS REPRESENTED IN DECIMAL FORM

10.1 ADDITION AND SUBTRACTION OF DECLMALS

Fundamentally, of course, decimal fractions are ans of repraeaentir g

set o1 fractional numoers. Thus. answers- to computational aroblems involving

actional numbers expressed in common fraction form and In decimal fraction

rm differ only in the notation. However, this notational difference forces_

us, to develop special algorithms for dealing with fractional numbers when they

are expressed in decimal fom hepri.nciples which allow us to develop these

articular algorithms, of course, are our particular system of numeration* (which

has a base ten and is positional) and certain of the field properties.

Since d cisel fractions are merely an extension, to the right of tai

decimal point, of the numerationnumeratiot system we use for whole numbers, many of the uses

of the field properties which we cited for whole numbers also are used with



However, the introduction of the dftimal point produces new probleml

Foremost among these is the proper placement of the decimal point in the answer.

In so-called tvaditional classes the placement of the decimal point in

a particular type of computational problem was handfed by teaching rules; these

rules were usually clot explained--they were presented to students as true because

they worked. The modern. trend, as in all other phases of elementary mathemati

is to explain itz these processes work.

Suppose we wish to add 6.7 and 4.2, If the student has been taught

that the base tan place value system has been extended to the right of the

1
and 492 adecimal point, he will agree that we can write 6.7

1
42 x

below:

as 6'

Hence the process for adding these two numbers will follow the irocedure

6.7+ 4.2.E (67 x 10) (42 x

(67 +42) x

(109) X

10.9

S.milar1.y, 83.25 79.48 me (8326
00

(8826

16273

162.73

7948)

3.

100

(numeration f ct--expanded notation)

(use of the distributive property)

(whole numbel' computation)

(numeration fact).

(7948 x r3r-io

where we used the distributive property at one point.

at if the numbers to be added have diffevent numbers of decimal

Confider the following case:

2.43 + 3.7 si (243

(243 x

100 (37 x

7

00 ) (3' 1 0

) = 6.13
1



0!e, -q leod titC.ckly to thp 'yule" th4t we line up thc.

1,)HJits ta tho? Ahswer in Line with the other

';$0004

`litArAr.stiOfl tfl iii. es,'eLts, except that here we use the

du;ityibwivc, p1 op,:.,e12: of Au1t; Lieeion ovq,r 'tict An exipple is given below

:4 -6

0/6 )49)

1.49
t,00-

66

10,2 M7i674P11(11I(iN 01 DiCIMALS

the distribulive property of multiplica-
tion over subtraction)

(whole number computation)

Developing th uii w 1oc,iting tb ckelni1. point: in multiplication ie

J i,)r 'Alta we hdvi.? dcne Jove, but ivoLvo o the 4st=oclative end commutative

i

Jf mull-Adiaton, Jatlw thiln 'he AisttAbutive property, For example

1
(246,78 x 24 1. 6111 TiT6 ) (24,

7.9 3,6

24) i
x

,79 y W

23

by using both. the associative and
commutative properties of
multiplication)

we have multiplied the whole numbers
together and also multiplied the
fractional numbers together)



And yet anothert

0.21 x 0.435 * (21 x . (435

e (21 x 435) x (14-1-1

el 9135
IU67570

te .0913

From these exrnplee, it is clear to see where we get the rule that the

numuer of decimal places in the answer to a multiplicetion problem is the sum of

the number of decimal places in the factors.

Of course, where we have written fractions with denominator 100, we c u

equally well have written powers of ten, using exponents. For example, 300

could be written 3 x 102, and .547 could be written 547 g 104.

If we used exponents and powers of ten, the first example we looked at

1
low/

1000'

would he handled as follows:

6.78 x 2.4 (678 x 1O2) x (24 x

(678 x 24) x (104 x 10

= 16272 x 10

16.272

10.3 DIVISION OF DECIMALS

The division of decimals is customarily sidestepped by converting ,to an

suLv1ent fraction whose denominator is a whole number. This is the basic of

the relocation of the decimal point in the division process.

Suppose we need to divide 345.23 by 7.18.

345.23+ 7.18 4 8.0.23_X 100 4
.1 17111176 8

100
Notice that we have made use of 1 as 1-00 and the fact that 1 is the

multiplicative identity, in trensforming this problem from division by a dectmal

fraction to division by a whole number. The division as usually written is

von below:

34523 718



arid here again we have implicitly multiplied by

Another illustration of tius puoceas7

73.864 0
33.2 '4

73.866 x 10
3== Trur71 6
738.66

ir 738.66 + .

In the division algorithm, this would be written 33.i 7 which

has the same result and relies on the same property.

2.400
Another example is 2.400 300.0 which could be handled in either

300.0

of the following waya:

2.400 2.400
300.0 300(1) 04 300

2.400 2.40.0 x 10 E4.0

(2) 7576 nm.=:r171"
24 4. 3000

11. INTEGERS AND RATIONAL NUMBERS

11.1 ADDITIVE IgVERSES

When we extend the sat of whole numbers to the set of integers or extend

the met of fractional numbers to the set of rational numbers, we introduce another

of the field properties. Now, for each number a in our aet there is another

number, -a, read "negative

additive inverse of 6 is

:11 is because

Exercises:

a," such that a (-a)

cause 6 1. (-6)

0.

For example, the

additive inverse of

(1) Find the additive inverses of the following nunibersz

8
5

,
12, 0, 7,

4
!VX 0.38217

(2) If a +1 0 ITha a?

11.2 ADDITION AND SUBTRACTION OP POSITIVE AND NEGATIVE NUMBER .

Suppose we wish to add two negative numbers, say -7 and -4. We can use

tie property oe additive inverses to help us. That is, we know that (7) + 7 0

and that (0.4) + 0. If we add these two egtetione, we have [(-7) -I- 7) +

1(-4) +41 - 0 +



,
14

-43.

By using the commutative and associative properties of addition, we can

eventually arrive et the form ((-7) + (-4)1 + (7 + 4] e 0 + 0. Since we know

7 + 4 0 II, and since 0 + 0 a 0 (0 is the additive identity), we have

[(-7) + 4)) + ii u 0. Thus, whatever (-7) + (-4) is, it must result in 0

when added to 11. Rowever, this is merely another way of saying that ((-7) -4

is the additive inverse of 11. We already know that the additive inverse of

11 iv -11. Therefore, (-7) + (-4) 0 -11.

The general case followe exactly the same steps, Let a nd -b be

two negative numbers. Then we have additive inverses a and b respectively,

so a) + a 0 0 and (-b) + b

f(ea) + a] + ((el)) + b) e 0 + 0

Rearranging by means of the associative and commutative properties of

addition, we get ((-a) + (-b)] + la + b] 0 + 0, and since 0 4- 0 0 0,

r( ) (.1))) + (a + b1 0. Therefore, (-a) + ( ,b) is the additive inverse

of a + b. Thu, ) + (-b) et - (a + b).

Suppose we wish to add a positive and a negative number. If they are

additive inverses, thewe is no trouble--the sum is 0. If they are not additive

inverses of each other, the sum may be either positive or negative, depending

on the two numbers involved. Let us examine two examples

(a) 5 + -8 5 + (-5 + -3)

= (5 + -5) ( 3) (the associative property of addition)

= 0 (-3) (5 + -5 are additive inverses)

(0 is the additive identity)

(b) 17 + -4 et 13 + 4) +

(4 + -4) (the associative property of addition)

0 (4 and -4 are additive inverses)

( 0 is the additive identity)

Now let us consider the ocess of subtraction when dealing with positive

and negative numbers. Again, some examples would be helpful.
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2 is a problem we have already seen. This is the same as whole

number subtraction; hence the answer iS 2. We may also note that 4 + (-2) 0

What about / - 10 m 0? We can use our knowledge of the relationship

between addition and subtraction to write this in additive form, as 10 +Cam 7.

One way of handling this is the following: we know that 10 + (-10) w 0; we

also know that 0 + 7 n 7; therefore the answer to the problem must be -10 + 7,

which we can calculate as O. By the commutative property of addition, we can

write -10 + 7 as 7 + (-10). This and the preceding example seem to suggest

that we can get the answer to a subtraction problem by adding the additive inverse

of the number we are subtracting to the number we are subtracting from. That

is, a - b (...b). Let's see if this continues to hold in the following cases.

(a) -5 - (-3) so Dean be rewritten in additive form as -3 113 m 4.

Since (-3) + 3 rg 0, and 0 -5 = .5, m 3 + (-5), or -2. Again,

we see that 3 + (-5) may be written -5 + 3, so we can add the

additive inverse of , 3) instead of subtracting -3.

(b) -18 - (-31) cj, rearranged is 21 +CP -18. (.41 31) 1= op

0 4- -18 so cl n 31 f (- -18 Si 13.

(c) 12 -

-7 +U 12

-7 + 7 m 0 0 + 12 m 12, soij = 7 + 12 0 12 + 7 0 19

(d) 15 )

-18 +L IS

8 + 18 = 0, 0 + 15 mi 15., so = 18 + 15 15 + 18

(e) -16 - 18 =

IS +t7,1 m -16

8 + -18 0, + -16 a 16, so -16) es -16 + (-18) = -34



s

(2) 2L - 14 IP EJ

14 +DIP -21

14 + -14 0 0 -21 ,* '2l -14 + w-2 1) a -21 + ""14) -35

In each case, we have seen that a b 0 a + (-b). This can be proved

generally, so we see that we can always transform a subtraction problem into an

addition problem when dealing with positive and negative numbers.

Exercises:

Find the answers to the following problems;

(a) 6 + (-7) (b) (-8) "I' (4) (c) (-9) - 6

(d) (..2) - (.3) (e) (-8) ÷ 10 (2) 2 (-7)

(g) 23 - 12 (h) (-27) is 27 (i) (-11) + 10

11.3 MULTIPLICATION OF POSITIVE AND NEGATIVE NUMBERS

Some elementary programs introduce the multiplication and division of

positive and negative numbers in the upper grades of the elementary school.

These programs rely heavily upon the concepts of the additive inverse and the

distributive property to develop the rationale for the "rules of signs" in

multiplication.

Suppose we want to find the product of 3 and 7. We know that

0 0 (that is, that -$ and 3 are additive inverses ) Then 7 [

7 x 0, and 7 x 0 0 O. Therefore 7I-84- 3) 0 0. Using the distributive property,

we can write the left-hand side of the equation as 7(4) + 7(S) so

7(-3) + 7(8) r 0. We know that 7(3) m 21. Thus. 7(-S) must be the additive

inverse of 21; we also know that -21 is the additive inverse of 21. So we

have established- that 7(4) -21.

By repeating the above process with -a replacing b replacing

)
where a and b stand for positive numbers, we can prove that b

Now consider (-3) x 7. Since the commutative property of multi cation

holdso this must also be -21. In the general setting, ( )(b ) -ba.
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Finally, let us examine (-3)(-7). The same process we used above holds

some promise -7 4- 7 0, so + 71 m -8(0) m 0. By the distributive

property, we can write the left-hand side as (-8)(-7) 4. (-8)(7) eo we now have

(-3)(-7) 4- (-3)(7) m 0. We have already establiabed that (-3)(7) m -21, so

(4)(-7) 4, (-21) n 0. Thus ( .)(-7) must be the additive inverse of -21;

that is, (4)(-7) m 21.

Again, by following the identical steps, using a for 3 and b for

with a and b positive numbers, we establish in general that

( )(-b) m ab m ba

11.4 DIVISION OF POSITIVE AND NEGATIVE NUMBtRS

The division of a negative number by another negative number can easily

be established as giving a positive quotient. For examile, (-7) (-18)

8
Here we have relied upon the use of 1

x

1:-11
and the fact that 1 is the multiplicative identity. In general,

a a x
b %

a
(-b)

1 (a and b are here considered

to be positive numbera).

To get the rule of signs for a positive numbsr dtvided by a negative number

or for a negative number divided by a positive number, we use our old technique

of changing the division problem to a related multiplication problem. We will

go through this development in general; it might be useful for you to y

4 particular examples to understand the process better. In all of the following

and b are positive numbers. a (-b) 7/1 may be rewritten (-b) x a.

We know that is the reciprocal of -b --that is, (-b) x ( Also since

1 is the multiplicative identity, lxama. Thus,O 7:r x a But -b

Is also (-1) x b. So the multiplication problm could be written (-1) x b

1

b
50 We Wive,

We know that the reciprocal of h La j (b x ''"t31 I) and I

( ) xt3 ) x a 1%iultiplying by 1, we have fl .da- ith vett.heit
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7-,

and the qua-Lela of A positive number b:, a negative

Auma(-1 is negative.

Now conside The corresponding multi p.l titian ec,uation is

Here we can use the reciprocal of b, since b x ;m1 1, and the fact

that 1 is the multiplicative identityr since 1 x -0 m -a. So x (-8) 0

But x (-a) ie also x tax (-1)] . By the associative property of multiplies

tion (a x (-1)] x a) x (-1) ° x (-1) = -(43). Thus the quotient

resulting when a negative number Is divided by a positive number is negative.

12e MISCELLANEOUS USES OF THE FIELD PROPERTIES

There are a variety of other situations In w field properties play,

a role in the elementary curriculum. Soma of these art indicated below. You

will undoubtedly encounter others .is you teach elementary school arithmetic .

12.1 MEASURES

In applications involving measurement, anon y. qu ntity, time t a

unit is attached to the number to tell what the number means, as 4 feet 6 inches'

6-- square miles 75 miles per hour, 3 quarts 1 ont 3 hours 45 mlnutes 12 seconds

The aymbol consisting of the numeral and the unit is sometimes referred to as

a denominate number,
0000.****04.040*

The measure, or denominate number, haeq in all cases, grown out of some

physical situation, where we have been measurin,
. in terms of some unit. In

facts where we use units and subunits, the purpose has been to avoid the use of

fractions. 4 yards 2 feet 10 inches could easily be written as 4g yards, and

we could then operate using our procedures for handling fractions. Uowever, i.f

we were to work with the units and su iunits themselves, then we would need only

our knowledge of whole numbers to handle the situation.

In actual situations; of course, our measurements are app oximations. We

do not have perfect measuring equipment, nor are we able to read any measuring

device precisely. The mathematical quarts we deal with are exactly two pints; the

physical quarts are merely approximately two pints.
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in adding and subtracting using denominate number regrouping is used

i slierting from one unLt to another. This regrouping is similar to the re

grouping used fol.. whole numbers and uses the associative property of addition.

Examples of this are shown below.

a) 2 yds. 6 ft, 4 in.

Ia. 7 ft. 9 in.

3 t. 13 n.

yda. 13 ft. (12 + 1) in here we have converted the 12 inches to

5 yds. (13 + 1) ftle , 1
1 foot and associated it with the 13 feet

in.

n 6 yds. 14 ft. 1 in.

* 5 yds. (12 + 2) ft. 1 in here we have converted the 12 feet to 4 yards

(6 + 4) yds 2 ft. 1 In
and associated the 4 yards with the S yards

, .

9 yds. 2 ft, 1 in.

(b) 8 qt.
2 qt. pt.

8 qt 0 pt.

- 2 qt. 1 pt.

qt. 2 pt.

5 qt. 1 pt.

here 1 quart has been converted to
2 pints, and the 2 pints has been
associated with the 0 pints

Of course, in dealing with fractional parts of a measure, performing

operations on denominate numbers etc., other of the field properties may be

called into play, but these would be uses previously described in one or another

of the sections of this unit.

12.2 ABSTRACT OPERATIONS AND OPERATION TABLE

One way to tell if a person really understands certain of the field properties

is to introduce an abstract operations and ask questions about it. This is often

done by using finite sets and ellowiug the operation to be characterized by

exhibiting the operation table. Sometimes however, the operation is described

in words or symbols, and is an operation on certain of the sets of numbers the

students are familiar with. In any case, ell of the properties can be investigated

in this way (of course, for a distributive property to function, we need two

operations for the distributive property to connect).
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Below are two exampleal The first is an operation tablq; the second is

au ,0:ration defined on whole numbers.

(a) A 13 C

A 13C A
A BCD
DA BC

DCDA
We can see the operation is closed; all elements of the eat can be listed

and there is no element in the table not belonging to the set. The op ra.ion

is clearly not commutative; for example 2 * A is A but A * B is C;

also this can be verified by noticing that the table is not symmetric around the

main diagonal. B isaleft identity (B *x2ox where x is any element in

the set), but there is no right identity. Every element has an inverse, since

2 appears in every row. In fact, each element ie its own inverse. The operation

is not associative, since, for example, A* (B * C) sgA*C*Abut (A " 2) * C

C * C * B. There is no point in investigating for diatributivity, since only

one operation is given.

b
(b) Let the operation L mean where a and b are whole numbers .

In other words, we are taking the average of the two numbers).

94I cloaed (for example,

commutative (a b
2

of whole numbers is

Let's try 4

4 1 (5 1 7)

(4 7

1 + 2

The operation is

which is not a whole number. It is

biaasb+0,anda+b,ft. since addition

commutative). Is the operation

(5j 7) and (4! 5) 7.

4 I 6 * 5.

associ tive?

Therefore, we have a countercounter.exsmple and the operation is not

is no identity element, since there is no number x such that

for every whole number y. Since there is no identity element, th

ociative. There

inverses is meaningless.

x y

question of



Investlgate which of the field pro,,crties hold in the fo LOwLng situat4ons.

A B C D

AABCD
B B C D E A

CCDEAB
nDEABC
EEAOCD

t2)ZABCD
AAAAA
BABAA
C A A C A

DAAAD
(1) ieN.4 means the smallev of a and b where a and b are whole numbers

That is leiri4 3 43 34 11i'411 4 11 *: ift..4 5 43 4.

2a + 21)
, where a and b

if a 7 and b 12, a440 2a + 2b

are fractional numbers. Fot exampl

r2 (2.4"al 14 + 24 a=
42

6Eimilawly and b r SRO b =

10

12.3 AMILA110N

Various types of applied, o practical, problems, ma- Involve one or more

of the field properties. Yt would be impossible to anttcipate all poasible uses

of the field properties In applied prolilpms We will merely show one example

(taken from page 256 of the Eafxim text put out as a sixth grade

text by the American Book Company). A batch of papers were being sold by a boy,

who received a certain commission on each paper, The boy chose to figure the

commission on each paper, and then mIltiply by the number of papers sold; his

father, on the other hand, figured the total amouni of money received for the

p-Apers, and figured the total communion multiplying this amount by the

appropriate percentage The fact thAl: the rebult is the same in ooth cases is

.23
24

of course, due to the fact that multiplication is associative°

You will undoubtedly fpid many similav situations where the field

properties figure prominently in applications.

12.4 MENTAL ARITHMETIC

The shortcuts used in mental arithmetic are usually based on one or another

of the field properties. For example, to multiply 247 x 13, one eght think:

9.



r Iw

two x 12 1800, 200 % 18 m 2600, 60 x 13 vA 6609 3 x 1$ m 89 so 241 X 1p

2600 i- 650 - S9 0 8250 - $9 0 8211." in doing this we have used tha distributive

property in a general form (distributivity of multiplication over both subtraction

and addition) to think of 247 x 18 as (200 + 50 - 8) x .18, (200 x 18) (60 x 18)

. (8 x 18) We also used the associative property of multiplication, o4 we

thought of 200 x 18 as 2 x (100 % 18).

Another example is the mental calculation of 4 x 199. We can think of

199 as 200 - 1, and use the distributive property of multiplication over subtraction,

as follows:

4 x 199 m 4 x (200. - 1) 0 (4 x 200) 4 x 1) 800 - 4 796.

If you analyze the shortcuts you or your students use for mental -om-utatioh9

you will run into many other uses of the field properties.

18 a CONCLUSION

In the preceding pagoe9 you lave been made aware of the important role

of the field properties in all areas of elementary arithmetic. Wo hope that this

analysis of the role of the field properties has provided you w additional

insight into arithmetic. We further hope that you see the importance o2 those

properties and why modern mathematics curricula lay such great stress upon. them.

Above all, we hope that these properties no longer seem to you as just a

collection o2 names and ideas which have been imposed on the arithmetic of the

elementary school; that you see that real understanding of arithmetic requires

an understanding of these properties; that learning them is not just a fanry

frosting on the cake) but that these properties determine the structure of our

systems of numbers.

It would be fruitless to hope that we have listed all possible use of the

field properties. By reading this unit, perhars you will be a. bit more cognizant

of these properties in the future? and- you will be more alert to point out their



use to your stutIonts. bably you will discover still more places where these

prop rtiss play a useful and important rolethis is as it should be. Mathematics

a subject in 111 ich one continuall; gets deeocr insights.
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