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USES OF THE FIELD PROPERTIES TN ELEMENTARY SCHOOL

1. Totroduction

Do such words and phrases as "reziprocal”, "additive inverse", "commutative
property of multiplication", "distributive property” sound familiar to you? If
you have been involved with the teaching of arithmetic recently, or if you are
preparing to teach, you probably answered "yes". You have probably learned
these and other related terms, and the concepts which they describe. You may
even have learned that a mathematical system with certain properties is called
a group, while if it has these and other similar properties, we call it a field.

Suppos: wo press on a little bit farther. Do you know, for example, what
good a reciprocal is? Do you know where this idea is used in elementary school
teaching and learning? Do you know how the associative property of addition is
used in adding columns of figuves? Do you kiow what arrays, such as 3 rows of
21 dots, have to do with the distributive property?

The purposc of this unit is o give Jou anstevs ro questions such as those o
we huve ;just asked. You have undoultedly heen told that the field properties
play a key role in developing elementery aiihmatic--but it is entirely possible
that no one has actually shown you whit this role Is.

In this unit, we will look at places where the field properties are used v
in developing arithmetic as it is currently tanght in the elerncutery school.

We hope that you will gain a better undevstaonding of the field properties, of
the arithmetic of positive, negetive, whole, and rational oumbers, and ol the

importance of the Tiecld properties in teaching arithwetic. These properties
: . € Proj

are basic to the study of the structure of number systems. This study is a
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unifying threrd in maothematics, which continues in high school and college,
building on the foundation laid herxe.

For your convenience the field properties ave listed in Table 1 to sexve

as a review and a convenient reference page.

TABLE T.
TNE FIETD PROPERTIES

Closure Property of Multiplication:

Closure Property of Addition: For every
and b, a+b is &
For example, 3 4 7 is

two numbers, a For evary two numbers, & and b,

unique number. a x b is a unique number. For

a unique number. example, 2 x 9 iz a unique number.

Commutative Property for Addition: For Commutative Property of Multiplication:

every two numbers, a and b, For every two numbers, a and b,
a+b=">b+ a.

4"’*'6”‘6'*’44

axb=Dhbuxa.
w8 =8 x5,

For example, For example,

Associantive Property of Addition: For Associgtive Property of Multiplication:

every three numbers, a, b, and c, For every three numbers, a, b, and ¢,
a+(b+e)=(at+b)+ec=a+b+ec ex(bxcy=(axb)xe=axbxec
For example, 3+ (4 + 8) = {3+ 4) + 5= For example, 2 x {6 x 11) = (2 x 6) x L1 =

3+ 4+ 5. 2 x6x 1L,

Additive Identity: There is a numbex There is a
0, such that for every number a,

a+ 0= 0+ a= a,

Multiplicative Identity:

number 1, such that for every number a,

For example, axl=1xa=a For example,

74 0= 0+ 17 = 17.

Additive Inverse: For every number a,

thera exists a number, -a, read "negative

a", such that a + (-a) = (-a) + a = 0,
For example, 6 4 {~6) = (~6) + 6 = 0.

Distributive Property of multiplication over addition:
ax{b+ec)=(axb)+ (axc).
5x (44 8)= (5% 4)+ (5x38)
S5x 7= 20+ 15
35 = 35

a, b, and c,

32 x 1= 1L x 32 = 32,

Multiplicative Inverse (Reeiprocal):

For every number a (excapt 0),

. . 1
theore exists a numbexr, = such that

”}“X&""l-
a

r:.xlc..

3 x 3" g ® 3= 1.

a x For example,

150
1.

For every three numbers

For example,
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Before we examine the uses of the field propertles systcmatically, ve
have provided a few practice exercises to help you review these properties.

Practice Bet 1

L. Name the property or properties which show each of the following statement®

to be true:

(a) 3x8=28x3 (b) 7x%(10x3)=(7x%10)x38
(¢) 4+ [24(-2)I=4+0 (d) 4+ 0=4
(&) 12x(4+L)=(12x4) +(12x1) (£ Exi=1
(g) 3+ (8-+17) = (3+8)+ 17 () 5 xo25=1
(1) 8x1=3 (D GxPxi=ix@Exd

2. Look at each expression below. How was it changed from the preceding form?
Write the name of the propexty that permits the fsct. The answer. "numeration
system" would be acceptable in cascs ruch as 24 = 20 + 4. Your mmswer will be
either "numeration systen' or the appropriate field property.

16 x 3+ 16 x4 =16 % (8 + 4)

a 16 v 7

w 7w 16

= 7 % (10 + 6)

=w(7 x 10)+(7 x 6 )

= 70 + 42

= 70 4+ (40 + 2)

= (70 + 40) + %

3. Clessify the following sentences as trwe or folee:

(a) 8+ (5x4d)=(8+5)x(8+4) (b) (6+7)+4=4d+(6+7)
) 7.9 M 4,3
(¢) 83x0x5=15 (d) FRXITXHRFT g
18 o L1y _ 1 . 13 , N
(e) (m?ﬁ)x?mﬁ (£) Ex(4+6-3)= (8x4)+(5x6) -

' (53&3){
(8) 5Xx6+(7+4)=(5x6+7)+4 (h) L7T2(4+2)= (174 4) + (174 2) 3
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Z. ADDITION AND SUBTRACTION OF WHOLE NUMBERS

2.1 MANTPULATION OF CONCRETE OBJECTS.

Some of the em liest mathematical experiances the child has in achool
iavolve joining two sets of concrete objects to form a single set. For example,
a child may have 3 red disks on his desk in one bunch, and 2 black disks in

another bunch. [See Figure 1 (a)l.

= .
" ()

o ﬁ@ 0@’ ., &
L K o o &
(a) (b) (e)

Figurve 1

He bas several ways he can put the two sets together to get a single set.
Por example, he may push the black disks over to the red ones {Pigure L (b)].
Then again, he may push the red ones oveyr to the black ones [Figure 1 (c)l.

Each of these procedures leads to one set of 5 elements. This is the sort of
motivational materinl from which one develops an understonding of the commutastive
property of addition.

Of course, these are not the only choices open to the c¢hild. le could pick
the red disks up in hie left hand, pick up the black ones in his right at the®
game time, and dump the contents of his hands simultanecously into a bag. He
could igrore the disks and begin fo vesd a book. lle could line the disks up, red,
Dlack, red, black, red. None of thesce respounges changes the fact that this is
an illustration of the addition fact 3+~ 2 = §, but none of these responses
have anything particulor to do with the commutative pronexrty of addition.

If & person has three sets of disks (for example, red, blue, and yellow),

and he wishes to push the sets together to foxm one large set, he has some choices

ERIC

Aruitoxt provided by Eic:
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to make. He may decide to leave one sot fived, and then push the others to it.
Probably he also will decide which of the other sets he will move first. lle
realizes (or can be led to realize) thet it doesn't meke any difference which
choices he makes-—he ends up with the some mumber of clements in the larxge set.
(Of course, he ends up with the large set in different places, but that has no
effect on the number in the set). This manipulation is motivation for the
associative property of addition.

A varigtion of this sort of concrete object manipulation is to use Llarge
cubes with dots painted on the faces, Like dice. By throwing a palr of dice and
counting the total number up, the pupils will see that the sam, for that throw,
is the same regardless of which dic we gtavi counting on--another demonstration
of the commutative law of addition. Three dice could be used similavly to motivate
the associative law of addit?on.

2.2 "RINGING"™ SETS

In the kindergarten and early primary grades, sets and set pictures are
often uged to convey basic ideas. Often children are asked to "ring” seta to
indicate the set undex consideraticn.

Suppose 3 sets are given, ss Follows:

AN XBE Qry
e C AZT

Suppose we wish o combine these three sets to forn one set. e may wigh
to firet combine the right~hand twe sets, into one set, and indicate this by
"ringing” them; then to combine the remaining set with this set, as follows:

ﬁf" (ﬁ“ Q@ 6 2 @31" QPY)
C AZT AZ )

Another possibility would be wo combine first the two left~mogt gets and

then combine this set with the remaining set, o8 shown below:

/"— i :
A XBE ) Qpy fEss TR ey
+ ¢/ azr y AZT

Bt SRR et
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Children will soon see that the number of objects included 1n the final set
is the same in either case. This builds rcadiness for the asscciative propexty
of addition.

2.3 REGROUPING

The process of regrouping is strongly connected with the fact that our
aystem of writing numbers is a place-value system and has a base of 10. Place
value and the base create the need for vegrouping; the base detevmines the size
of the groups we ave obtaining.

Regrouping always uses the essoclative propeity of addition; often it ulso
involves the commutative property of addition ag well. Following are a few

examples of regrouping. Can you sive a reason Tor each step below”

Example L. 2+ 8 = (1 + 2) + 8 (since 3 = 1 4 2)
m 14+ (24 8)
= 1 4 10 (since 2 + 8 = 10)
w 1L

Example 2. 34 8= 34 (7 1)
= (34 7))+ 1
= 10 + L
= 1l

Example 3. 23 4 9= (20 + 3) + 9
= 90 + {3 + 9)
= 20 + {{2 + 1] + 9)
= 20 4+ (24 [1L+ 9])
e 20 + (2 + 10)
= 20 + (10 + 2)
w (20 4 10) + 2
= 30 + 2
= 32
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Example 4. 197 = (100 + 00 + 7)
+348 = (300 + 40 + 8)
400 4+ 130 -+ 18
= (400 + 100) + (30 + 10) + 5
= 500 4+ 40 + &
= 546

Example 5. 197= 1 - 100+ ¢ » 10+ 7
+848 = 3 - 100+ 4 - 10+ 8
(L+3) » 100+ (9+4) " 10+ {7+ 3)
g = 4 - 100 + (10 + 3) - 10 + (15)
® 4 ° 2004 [1°200+3-10] +[1- 10+ 8]
= (44 1) W00+ 3 10+ (1 10+ 5]
= 5 « 1004+ [3+1] - 10+ &
=5« 100+ 4 1045
- 545

Example 6. 197 = 1 - 10°+ 9 - 10 + 7
+348 = 3 - 10° 4 4 - 10 + 8
(1+8) + 10° + (9 +4) « 10 + (7 + 8)
= 4« 10% 4 (10 + 3) + 10 + (10 + B)
= (4 10°+1 - 10°) + (81041 - 10) + 5
m(4+1) - 0%+ (241 - 10+ 5
=5 . 10° + 4+ 10+ 5
= 545

Example 7. 276 = (200 + 70 + 6) = 200 + 60 + 16
-138 =-(100 + 30 + 8) = ~(100 + 30 + 8)
100 + 30 + 8

w ]38

2.4 ADDING IN DYFFERENT ORDERS
A common way to have pupils check their addition is to tell them that, if

they added from the top down, they should check by adding from the bottom ups
llere cne is relying on the sssociative and commutative properties; It ie because

thege propertiss hold that this check works.




Example:
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In adding from the top down, we follow the procedure below:

8424+ 4+ 7= [(3+2)+4]+7
| =[5+ 4] & 1

= Q4

= 16

We can think of the procedure in adding from the bottom up in either of the two
ways s

B4 24 44+T7e 8+ {2+ (44 7]
= 3+ [2+ 11]
= 3+ LY
= 16

TH4+248=7+ [4d+ (24 3)]
= 74 {4+ 5]
=740
= 16.

In all of these procedures, the use of the associstive property is evident.
In comparing the second of the "bottom up"” procedures with the "top down" method,
 ve see that we have used the commitative property by agsuming that 3+ 2 + &4 4 7 =
Td 4+ D+ B
2.5 ADDITION TABLES

If we study the sddition table (see Figure 2), we can find all sorte of

 interesting patterns. If we pursue the ressons for the patterrs, we can turn

up many interrveletionshipe among the numbere in the table. 8ome of these

 patterns ave directly relsted to the properties we ave examining. Suppose,

ﬁ for exsmple, we fold the tasble on a line extending from the uppex left corxner to

g the lower right corner of the table. This line is called the "main", or

. "principal’ diagonal, of the table.

When you fold the table in this manner,




each number above the diagona! i{s folded sgainet a mumber below the diagonal.

What do yeu notice about the two numbeys? Why do you suppose this happens?

ADDLTTON TABLE

«l .0 X 2 .3 4 5 6 7 B 9
ol o L 2 3 4 5 6 71 8 9
1] 1 2 3 4 5 s 78 9 10

4 | 4 5 6 7 8 9 10 11 12 13

8 8 9 10 11 12 12 14 15 10 17

9 9 10 11 12 13 14 156 16 17 18

Figure 2

Let's look at one of these pairs of coinciding nambers. For example,
2+ 4 is 6. Does the 6 in the 2 + .1 pesition coincide with another 67 Does
that 6 represent the awm 4 + 27 What property is illustrated here'

Do you see a vow in the table that is identicel with the row outside the
table? Which vow is it? 1s there a column in the tavle that is identical to a
column outside the table? Which column js 11?7 hat is the identity elemeot
for addition? IHow do this row and this colwmn illustrate that there is an identity

element for addition?
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In teaching students the addition combinatinn&. how cnuld we use the
commutative property of addition end the additive identity to cut down our work
as we £11l in the table?

Wnen you etudied the field propertlies, you may have loocked at abstract

opgrations expressed in tables. An example of this sort of thing is given in

Figure 8.
A B £
A B A c
, B c B A
¢ A B C
Flgure 3

To read a table of this type, let us consider B 1@?fc. Locate B on the

left; go across thet row until we find the column hesded C. The table entry
e 4. Thue 3@c - a.

If you did study this sort of topic, you may have been told, "You can tell

from looking at the operation table whether s set is closed or not. If there
is an element in the interior of the table that ig not in the outstde row or
outslde column, the set is not closed with respect to that operation. If no such
element axists, the set ig closed with respect to that operation.”

According to this statement, you might think, "Addition of whole numbers
ls obviously not cloged. For example 7 + 5 = 12, and 12 ie not in the outside
row or column.” This would be a perfectly natural resction, but it 1e a false

conclugion. The above statement ie true whenever you have the entirxe set you

are working with represented in the outside row or column. In our case, however,
the set of whole numbers 1s an infinite set--it 18 simply not possible (even
theoretically) to list gll the whole numbers. Thus, our sddition table is only

a part of the complete addition table for whole numbers (and, in fact, we could




‘ 1 :
not write a complete tabir). What we call the addition table for whole numbers 4
16 4 tdble of the basic combinstions; with these and the use of place value we %
can get uny addition result we desire. é

Whenever we cannot write a complete addition table for & set of numbers, %
the question of whether or not that sel 18 closed under addition muet be decided E
by referring t¢ the definition of c¢losure. This definition states that a set E
of numbers is closed under addition if (and only i), for any two numbers we §
select from the set, the sum ig also in that set. Let us return to the case §
we hgve been considering, which is whether the set of whole numbers is closed %
under addition. Qur experlence telle us 17 is8  We have not proved that it is, ;
but we will acecept, a8 a postulate, vhat the set of whole mumbers is closed i
under addition. 5
Exercises:
Tell, in each of the following cases. whether or not the set is closed é
under the operation given. é
(1) {0 1, ?3 , addition (2) (i),, i.} » multiplication
(38) + (A B C D (4) 0 }J1 2 3 4 5 i
AjA B C D 141 1 1 1 1 f
B{D C A E 212 2 2 2 2
clc p B a 393 3 3 3 3 1
DB A C D 4 14 4 4 4 4
5 +6 b & 8 5 g
2.6 THE NUMBER LINE
The number line is an extremely useful graphic device at virtually all é

% levels of elementsry mathematics. It provides a clear picture of the order of
; the numbexs with wliich one is working. :
f
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In the esrly gradee, we can uge the number line to motivate the commutative
property of addition. FPor exampl., suppose we wish to get the sum 9 + l.
We tayt at 0, jump 9 units te the right, then Jump one more unit to the

right, thus landing finally at 10. This ie illustrated below:

ral | Y
At e e %
0 1 2 3 4 §

| N N ] + - 1
| ] k] i ) ‘ i ¥
6 7 & v 10 1} 12 13
In the save way, L + 9 can be illustrated as follows:

e
'jg*“f%**gr*~i‘ g g { ~£ e e e

)
V
6 8 9 1w 11 12 13

>

We see that, in each case. we enc up at the same epot, L0. Doing this sort
of thing with vavlous combinations will serve to make clear the concept that
a+b=b+a

2.7 A GENERAL REARRANGEMENT PROPERTY

It iv extremely tedious and somewhat pointlese [or gtudents to time and
again go through all possible steps in an addition procees (for example),
justifying esch step by the --sociative or commutative property. Because of
+his, it 1s common in elementary texts to develop the associative and commutative
properties, and then to show that these allow us to use g general rearrangement
principle, sllowing us to shift the order and arrangement in a sum or product
at will.

Example (Using associutive and commutative properties):

36 + 27 = (30 + 5) + (20 + 7) = [(30 + &) + 20] + 7
= {30+ (B + 20)] + 7= [80+ {20+ 5)] + 7
= [(80 + 20) + B] & 7= (80 + 20) + (& + 7)
= 50 4+ 12 = 50 + (10 + 2)
w (50 4+ 10) + 2 % 60 + 2 = 62

Example {Using general rearrangement principle):

35 4 27 = (80 + §) + (204 7) = (30 + 20) + (5+ 7)
= 50 + 12 = 50+ L0+ 2% 60 4+ 2 = 62




3. MULTIPLICATION OF WHOLE WNUMBLRS

3.1 THE MULTIPLICATION ALGOR1ITHM

The algorithm which we use to find the answer to multiplication problems
lesns hisavily on the dietributive property. As we develop this algorithm In
the elementary school, the distrilbutive jruperty 1s continually gstressed.

To gee that what we have been eaying is actually the cese, let us consider
saveral examples. Fivst, suppose we are multiplying e 3-digit number (683)
by & 1-digit number {7).

fg) 683 x 7= (600 + 80+ 3) x 7T (because of the place-value numeration system
we use)

(600 % 7) 4+ {80 % 7} + 783 x 7) {by an extended form of the
distributive property)

s 4200 + 560 + 21  (ueing place value end multiplication facts)
= 4781 (by using addition principlee)

1b) The person performing multiplication in the manner above is working & correct,
but somewhat cumbersome, procees. A step toward a more efficient notatlon

ie the following:

683
®x 7
T 4 (7 x 3) |
560 & {7 x 80) using the distributive property
4200 e {7 x 600) |
4781

As another exsmple of the use of the distributive property in multiplicetion,
congider the following:

375 x 100 = (300 + 70 + §) x 100
= (500 x L00) + {70 x L00) + (5 x 100)
= 30,000 + 7,000 + 500
= 37,800

A final example sgain illustrates the dependence of our multiplicgtion

algorithm upon the distributive property.

R
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248
x 318
48%~ (6 x 8)
240 ® (6 x 40)
1200 e-ka % 200)

80 ¢= (10 x 3)
400 ¢= (10 x 40)
2000 ¢=(10 % 200)
240 ¢={300 x 8)
12000 ¢ {300 x 40)
60000 % (3800 x 200}

76208

3.2 MULTIPLYING DY MULTIDPLES OF 10.

If 8 child has learned that multiplying by powers of L0 results in
"edding zar@a".'he can develop some short-cuts to multiplication by multiples
of 10. (0f course, when we use the term "adding zeros”, we are indulging in
arithmetical slang. Imprecise terme of this type are useful 1f introduced &fter
the etudents understand the idees ipvolved. In multiplying by 10 or & multiple
of 10, the sctusl result is that the digits of the multiplier are shifted into
places designating higher powere of 10.) Suppose he faces the problem 42 x 20;
this could convenlently be handled by either of the following procedures:

42 x 20 ® 42 % (2 x 10) = (42 x 2) x 10 = 84 x 10 = 840

42 x 20 = 42 x (2 x 10) = 42 x (10 x 2) = (42 x 10) x 2 = 420 x 2 = 840.

In‘eitn@; case, we see that the associative property of multiplication is
used. In the latter situatlon, we have also used the commutative property of
maltiplication.

The use of the sssocigtive property of multiplication ts shown ggein in
the following exampls:

b4 x 600 = 64 x (6 x 100) = (64 x 6) x LOO
m [160 + 4) x 6] x 100 = [{60 x 8) + (4 x 8)) x 100
= (360 ++ 24) x 100 = 384 x 100 = 38,400.

You will undoubtedly have noticed that we also used the distributive
property when we choge to think of 64 x 6 a8 (60 + 4) x 6 and then found 60 x 6
gnd 4 x 6. These are the sorts of procedures one begins to perform extremely

rapidly if one prsctices mentel calculation.
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3.8 SPECIAL MULTIPLICATION ALGORITHMS
"Crigse-cross”, or "lightning", multiplication, ie a mental shortecut to
the multiplicatlon process. 1t is illustreted below, and the arrows drawn

clearly Indicete the origin of the name "criss-crose'.

S % 32 32
X231 %2 1 %221
2 72 6172

Can you see how the distributive property ig being usad in this procedure?
Extending "crise-cross” multiplication to 8~digit situations mekes the

mental celculation a bit more complex. lowever, the technique works for §

(or any rumber of) digits. A 3-digit example ies given below.

24§ 235 2 48 %58 248 1
. , f%%i X 4 t ]
27 x 327 x 32 x 327 x 327 |
B6 496 5096 23,096 81096
] 4 »y = =

Notice that "carrying” into the place beyond the one in which we are
working often occurs. We must make a mental note of the amount cearried, and uee
thet amount 1n the next stap.

Naturally, the "eriss-crosa' method i8 not meant to be & staple in the
mathematical diet of your students. It is properly an enrichment topic, which
will probsbly sppeal ¢o some of your students, who mey continue to use it. It

ig not an item to be taught for mastery.

zxarcises

Woxk the following exercises, using "ecries-crose” multiplicetion.

(1) 28 x 45 (2) 808 x 89 (8) 236 x 687

in the Middle Agee, & multiplication algorithm commonly used by the Arabs
made use of a lattice disgram. This labtlice congisted of a rectangle divided

inte squares; sach squsere wess further divided into 2 trlangles by drawing the

]
A

:
3
b
/

:

diagonal between the upper right and lower left cornere of the square. §



w16

Suppoee we wish to multiply 446 by 217, using the lattice method.

We wrlte the 346 above the lattice and the 217 to the right, as shown below.

3 4 6

) ,

The discributive property is used Lmplicitly in obtaining the partial products,

which ave recorded in the interior of the luttice, @3 is ehown below.

For example, the entry in the o ecolumn any the 7 row is , and

21 is the product of 3 and 7. T éﬂ
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The answer is ovbtained by adding down the diagonsla, with carrying, where
necessary, into the next column. The role of the disgonels is to line up the

unite digits, tens digits, etc. For example, the dlagonal starting beeide the

L in 217 has vhe entries 8, 4, and 6. This dilagonal is the tens diagonsl,
and so we really have (8 + 4 + 6) x 10. The answer is written around the lattice

et the bmee o’ the diagonals.

The: £.nal form of the problem is as follows:

4

7 .
5
Therefore, 346 x 217 = 75,082.
Juet as with "criss-cross” multiplication, lattice multiplicetion 1 an
enrichment topilc--not to be taught for mastery. Lattice multiplication sppesxe
in many current elementsry text seriea.
Exexcises:
Work the following exercises, using lattice multiplication.
(1) 846 x 18 (2) 192 x 307 (8) 4153 x 6872 .
i
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3.4 DOUBLING A PRODUCT

A common mlsteke made by students of «il zges ie their assumption that, to
double & profuct, one must double each factor. A knowledge of the asgociative
property of sultiplication is sufficient to demonstrate that doubling one factor

e all that !s required. This is demonstrated in the following example:

Y X (Ex9) =2 x 45 = 90

2xi5x9)*(2x8)»9 (b the associstive property of multiplication)
= 10 %9
= 90

This could a.so be calculated as follows:

2x(8x9)=2x(9x5) (by the commitative property of multiplicetion)
= (2 x9) x5 (by the associative property of multiplication)
= 18 x &
= 90

Howevar, doubling both factore makes ihe product 4 times as greust, as shown below:
(2 x8) »(2x9)=10x 18
= 180.
8.6 ARRAYS AND RECTANGULAR REGLONS

Arrays of objects and rectangular regions play important parts in the

development of the concepts of multiplication and the distributive property.

At a very early stage in the child's schooi experience, arrays are used

L S
LR
@

 to motivate the multiplicetion of whole numbers. For example, the array

*
s

méy be used to present the idea, 3 x 4. Merely rotating the array 90°, so that

it looks 11ke iig » shows that we can slso thinh of this a8 4 x 2. This Torms
a good intuitive basis for accepting the commutative property of multipiicetion.
Even without reovienting the arrpy, ve can see that it can be thought of either
as 3 rows of 4 objects or as 4 columns of 3 objecte each.

The partitioning of arrays is exvellent moivation for the distributive

property of multiplication over addition. Tor exemple, ;;55 E:; showa that

L I A J 4 & w




SX T2 {5 xd4)+ (b x 3). Similarly,

(2x3)+{(2x3)+(2x2)+{2x2)ordx5=(2+2)(3+2). In the same

. 9 LR A 4
o

wWaYy, -ce.... demonstrates that 8 x 7= (5 + 3) x 7= (5x7)+(3x 7).
In the same way, one cwmn nse rectangular regions which are partitioned.

This 1s illustrated below.

4x4=4x(3+1)

Of course, the distfibufive praperﬁ? is a two~way street. One may start
with an expression like 3 x 6 and express it as (3 » 4) + (3 x 2), or one may
express (3 x 4} + (3 x 2) in the form 3 x 6. This indicates that we might provide
more understanding of the distributive property if we sometimes join two arrays

rather than always partitioning them. This process is shown below.

S oo o e Joined o . b e
T I A - LIS & t o1 ouw HKoom
s o on g bon th}’ « LI AR W S
3 x 6) + i3 x 2) = (3 x 8

Arrays cen also serve to motivate the idea that 1 serves as an identity
element for multiplication. For exauwple, . . . . . . clearly shows that
1 xb6= 63 é ghows equally clearly that 4 x 1 = 4.

3.6 CONCRETE OBJECTS

Just as with addition apd subtraction, multiplicetion is of'ten motivated
by ueing concrete objects. Actually, the array of dots and the rectangular
reglons used in the last section are semi~concrete objects~-in using them, we
have just stylized concrete objects for convenient vepresentastion on the printed
page. EBverything we did there could be done with concrete objects, and, if so
done, would be more meaningiul to some studenis.

One concrete device that we could use to motivate the associative property

of multiplication is stacking rows of blocks in layers to form & rectangular
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8nolid. The associative princijle comes Into play when we wish to determine the
total number of bLlocks in the selid

Suppose we have a base consistiiy of <+ rows of 5 blocks each.

Supposs: also that we have built the solid 3 layers high. By examining the

e on.—

box in different ways, ve can show thet we can (ind the number in one layer
(4 x §) and then amultiply by the number of layers (3}, or we can find the
number of blocks on a "side" (3 x 5 and multiﬁly by the number of rows (4),
or we can find the number of blocks on an "end" (3 x 4 and moltiply by the
numbers of columng (5). That is,
2 fdxd)={3xbx4=(3x ) xdH=3xJxSs.

Notice that to get the expression (3 x 5) x 4, we have used both the commutative
and the assoclative properties of multiplication.

3.7 MULTIPLICATION TABLES

If we examine the multiplication table, (see Figure 4 below) we can observe

many of the same things that we sew when we examined the sddition table.

«]0 1 2 3 45 6 7 8 9
olo 00 000 0 0 0 o
110 1 2 3 4 65 6 7 8 9
210 2 4 6 8 10 12 14 16 18
3 3 6 9 1215 18 21 24 27
410 4 8 12 16 20 24 28 32 36
510 5 10 15 20 25 80 35 40 45
610 6 12 18 24 30 26 12 48 54
710 7 14 21 28 35 42 49 56 63
810 8 16 24 32 40 48 56 64 72
910 9 B 27 2 45 54 63 B 81

Figure 4
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First, what happens when we foid the table along the main diasgonal?
}s the part ol the table on one side of the diagonal a mirror image of the part
on the other side? 1f so, what does this say about the multiplication of whole
numbers? That is, which of the field properties does this illustrate?

1s thers an identity element for multiplication? How did we tell for
addition? Then, ig there & row or column (or both) in the teble identicel
to the row (or eolwmn) outside? What is the multiplicative identity?

Cen we tell f{rom the table whether or not the whole numbers sre closed
under multiplication? Support your answer with a reason.
4. DIVISION OF WHOLE NUMBERS

4.1  THE "STACKING' ALGORITHM

One {eature common to most contemporary zlementary mathematics proglams
ls that they introduce students to the divigsion process with the use of an
algorithm which is appreciably different from the one we used when wu: learned
division. Thie slgorithm involves the etacking of partial quotients, either
down the side of the problem or on the top. For this reason. this form of the

divieion algorithm is often called the "stacking" algorithm. What gives us the

right to write partial quotients and then add them up to get the finel quotient?

Basicslly, it is the same process which allows ug to write partial products in
multiplication and then add them up to get the final product. That is, the
"stacking" algorithm makes use of the distributive property of multiplication

over gddition.

How can we use the distributive property of multiplication over addition

when we are involved in divislon? First, we must remember that multiplication

and division are inverse operations; thus, avery division peoblem can be recast

in multiplication form. TFor example, when we ask for the number x that results

when we divide 1554 by 37 (in equation form, 1554 < 37 = x), we are looking

(3

for the number x which, vhen multiplied by 37, equals 1534 (in equation form,

37 » x = 1554).

B e s S

e S

R e T

g e S




.92,

If we solve lur x, we find out the value of x in this case 18 42. By
ueing the distributive property, we cen write the equation 387 x 42 » 1554 as
37 x (40 + 2) = 1554, or even 37 x (10 + 10 + 10 4+ 10 + 2) = 15654.

Now let us apply this to the "stacking” algorithm. Our first step to
finding the quotient i to select a multiple of 87 that e less than (or possibly
equal to) 1854. Often we use multiples and powers of 10 Lo help us. A good
aetimator might see that forty 37's 1s less than 1554 but Fifty 47's is
more than 1554. He would then sae that the difference between 1551 and

forty 87's 1s 74, or two 37's. lence for him the "stacking” would look like

thig: 37 , 1854
1480 30 * (40 x 37}
74

74 2 w2 x 31

R 0 M‘l1 - S »

Q0 42

Therefore he has actuslly followed the procedure 37 x 42 = 37 x (40 + 2) =
(37 % 40) + (37 x 2) = 1480 + 4.
A less sble estimstor might perform the same division as follows:

37 /(554 |
3701 10

1184

570 10

814
Sy
444
370 | 10
74
SO B
37
LA

0 42

Thie pereon has Implicitly used the distributive property also. Hie

process hes been:

o o o
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ST x 42 = 37 x (10 + 10+ L0 + 10+ 14 1)
w (37 x 10) + (37 x 10) + ( 37 x 10) + (37 x 10) + (37 x 1} + {87 = 1)

= 370 4+ 370 + 370 + 370 + 37 + 37 g

. 1554
Another example of the "stacking" algorithm is the following: ;

38 /6914 ;

3800 100 That 18, 06914 = (100 x 88) + (20 x 38) + (5 x 38) 4

N # (3 x 28) + 3 5

1111 (3 x 38) + 30 |

JEny 20 - (128 x 38) + 30 %

Bad ;

20 b

144 2

11 3 %

J0 128 i

Here, we see that our quotient is not an exact multiple of the divisor; é

i

there ig a remainder. But, if we exprees the sltustion ia the Lowm ;
6914 ~ 30 = {100 x 38) + (20 x 88) + (b x 88) + (3 x 38), we see that we are ;
1

atill, in reality, using the digtributive law %, help us. ]
In some elementery materials, the "stacking" algorithm ig written in a %

different way--the "stacking" is done on the top. This has the advantage that
the conversion to the usuel method of writing cuotients ls easier. Its primary
disadvantage 1s that it is difficult for the student to judge the amount of
space he will need to allow sbove the problen.

The following 1s an example of "stacking" oun the top
g P

s TR
24 i i i
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i
Lo
5
3
160

6 /T EEST Tthus, 4837 = 26 = 186 R

2237
1200

0 ]
650

28"
260
20
7
20

it A

-

I

4.2 DISTRIDUTIVITY OF DLVISYON OV ADDITTON

We have often retarred to "the distributive property' s that is, the
digtributaive property of multiplication over addition. We call this propeity
the distributive pruperty not beceuse it ix the only one that exists. but because
in our vsual work 1t is the only one that we use. [lowever, there is &lso a
distributive property of division over addition, which is demonstreated in the

following example: |

§6~8 = (48 + 8)r B8 % (48 8) + (B % 8) = 64+ )| = 7.
Symbolically, we can gtate the digtvibuirive property of division over
addition as follows:
(atbydmc = {amce)d (b2or

In dealing with the distrinutive propervty of adtiplication over addition,

we know and use the {act that

Sl i i s

cx{(p+b) = ecwa)tlcxb)

and also the fact that (a+ b)) » ¢ = (g ® o) + (b w ¢} Thus, in effect we are §
actually using two distributive laws; they arve connected b the Ffact that §
miltiplication is commutative. ]
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18 division commbative”  Ihis 18 easily checkad by trying sn example.
2 e g pot the same es o3 oo Thevefove, divislon is not commutative.
We heve just seen that fa+ b))% c = {(asc) + (b %wc)- Ig there a
gecondd distributlve law of division over addition? That is, 18 it true thet
ca {g+ by ={csa)+(c b3? Let's fry an exemple. If we let ¢ = 18,
a6, 3nd b® 3, o (a+b) ™18 o+ 3) = 182932, and (e a) + (e~ b} =
(184 6) + (184 3) = 3+ 6= 9. [n this case ¢ (a+ ) # (c2 a) + (cg by
Should we try other cases? What would be gained? We have seen already
that 1t ie pot true for ul1 values of a, b, c, thet c=-(a + by = (ca a) + (¢ b).
Therefore, examining moce cuees would add nothing. We might, indged, find epecisl
values of 4, L, ¢, wire the relation would be true. However, the one example
»
we have used showe thet It is sometines Loalse, and thus cannot be a general
property ol whole numbﬁrS;
Finding an example to show that something is not true i6 known as finding
4 counter-sxample. This 18 an important technique in muwthematlcs. It i8 extremely
easy to pruve something fslee IF one can find 8 counter-exemple. It I8 not
posgible to prove something t us b citing examples, except in ceseg wheve e

can exsmine every possibie example Most of ihe sets we work with are either

infinite, in which case it is not noesible 1o exanine all cases, or they are large
finlte sets, where it wouid be higply impractical to look at every pussible case;
thus, we are not normally able to rove anything by citing 1, 10, 100, or 1000
caBes -

Consider the addition of tw. even mumbers. By examining several cases,
guch as 4+ 8 = 12, 2 4 126 = 128, eic., we wili quickly be led to the conviction
that the sum of iwo even munbers is «lways even. However, no nuumber of cases would
prove this conjectore. £ proof by dirvect meens 18 guite easy here. Let 2n be
one even number, and ot 2m be an ther. Then in % 2m = 2(n + m) by the distribuotive
propecty. Since m and 0 were whole mubers, by the elosure property of
addition their sum is a whole nunber, and then by definition of even number

2(n + m) i8 even.
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The slert reader may have wondered about subtractlion. Do there exist
distributive lawe of multiplication over subtraction or of division over subtraction?
Thie ie 2 warthwhilé 1dea to pursue~-~and ve will leave 1t for the Iintevested
resder. |
4.3 THE DISTRIBUTIVE PROPERTY AND THE EUCLIDEAN ALGORITIM
As teachers, you may have eésen the technigue for finding the greateet

common divisor of two numbers by & sequence of divisions. 7This procedure is

known ge the Euclidean Algorithm. The basis for the procedure is an application
of the dlatributive lav of division over addition.
The Euclidean Algorithm is illustrated by the following exemple.
To find the gresteet common divisor of 346 and 2348, we start by writing
2348 = 6 x 345 + 278.
Thet 1e, we have divided 846 into 2348, getting a quotient of & and &
remainder of 278. We are looking for the greatest common divisor of 345 and
2348, and now conclude that the number for which we are sgarching also divides
28, Thus..we lock for the greatest common diviesor of 278 snd 24,
345 = 1 % 278 + 67.

Continuing in the same way, 278 & J x 07 + 10
67 * 6 x 10 + 7
10*1x74+3
7= 2x3+1
3=3x1+0
Thue, 1 is the greatest common divisor of 345 and 2348.
How is the distributive property involved? It was involved when we said
that if the divisor divided 845 and 2348, i1t slso divided 278. ‘That is,
1f a= bxgqg+r, and @ number d divides a and also divides gy it must divide
r« This is true since r = & ~(p % aﬁ' Symbolically, we can write a divides b as

a lb- Thus, what we have said is: If g ib and a~§c. gand b > e, then

a,g(b - ¢), for whole numbers e, b, and c.
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4.4 DIVIDING A PRODLCT BY TWO

It is extremely common to {ind that students, dividing a produet by two,
gttempt to divide both of itq&actcrs by two. A little use of the associatlive
property of multiplication can show them that their process is wrong. Tor

example,

(7 x8)= 2 7x(4x2)-2
= (7 x 4) » 2= 2 {by the sagocinrive property of multiplication)

= 7 x 4 {2+ 2 198 1)
* 28

and, 8ince 7 x 8 = 5 and 28 is 56 < 2, only one factor need be divided by two
to cut & product in half. '
5. COMPARING AND CONTRASTING ADDITION WITH SUBTRACTION AND MULTIPLICATION WITH DIVISION
You are awaré that, with our four major operaiions, we have two pairs of
inverse operatlons. Addition and subtraction are inverse operations, as are
multiplication and divislon. That i&, subtracting 5 is the inverse of adding
5 {subtraction of & number "undoes™ the adding of that number), and dividing by
6 is the inverse of multiplying by 6.
Since we do have these pairs of inverse operations, it is only natural
to compare and contrast the operatiocns~~to find similarities and differences
in the ways thet they work.

In the firet place, we see that closure of addition and multiplication does

not guarantee closure of their respective inverse operastions. Examples of

this are easy teo illustrate; 2 - 2 = E and 4= § mD have no solutions in the
set of whole numbers.

In the second place, we Find that subtraction and division are not
commutative, as ave addition and wmultiplication. For example, 6 - 2 # 2 - 6,

and 6= 2 ¢ 26,

bt b

T
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In the same manneyr, we sec that subtvaction and divisiou do not sgtisfy
the sssocistive property. For an example of thls, let us consider the followlng:

(6 ~2)~1®4~2=23 but 6 «(2~1)m6~-1=5

(B 4)+2=2+2=1 but 8% (4-2)=8P2=4

We have a Lit better luclk with the identlity elements. If we subtyset 0
from & whole number, we get as a result the whole number with which we started.
That 18, & = 0 = & for all whole numbers a. Ilowever, subtracting a number
from 0 does not give us the number; an fact, we have no solutlon for this problem
in the sat of whole numbers. This 1s a Lit different from the way O works in
addition; 0 + @ = a + 0 = 4. Therefore, we usually say that ¢ is a right
identity for eubtraction; it acts as an identity when written on the right, but
not when writteu on the left.

Is there an identity element for divieion? That 1s, 1s there & number x
guch that a4.x™ a and x- & = a? We see that the situetion is similar to
eubtraction; a< 1= & for gii whole numberg a, but there 1s no unique whole
number x 8uch that x& & < a for al) a. MHence, we gay that 1 is a right
identity for divislion.

You may have noticed that vie have not discussed additive or multiplicative
inverses. This is Lecause we do not have inverses in the set of whole numbers.
In order to get additive inverses, we would have to extend our set to include
negative integers; in order to get multiplicative inverses, we would have to
inelude the fractionsl numbers. In order to get a Cield. we would need to add
the sdditive and multiplicative inverses to the properties we have already;
thug, we would need to extend ouv set to include the rational numbers.

6. RENAMING FRACTIONAL AND MIXED NUMBERS

Moving from the set of whole numbers o the set of fractional numbers, we

see an immediste difference. Wheress, in our Hindu-Arsbic base 10 system,

we have one etandard form for representing a whols number, we have a vawvlety
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of standard names oy a fraetlonal number. For example, 342 + 178 would uveually
be expressed in the standard form 520, but the fractional number named by %*could
equally well be named Ly %; 239 oy giéé - We call the symbole b which we

recregent [ractooasl nunuers tracggona. Mractions that name the same {ractional

number are s okeo o as equivelent fractivns. Of course, we do in eowe seuge have

a single standard form £ frections; the "loweat-term”" form (when the numerstor
and denominator of the fractions have no common factor except 1.) Conelder
%%,'which enuals %w%&%“ The factors of 14 are 2 and 7; the factors of 18
are 2 and 9. The common factor is 2.

Any time we wish to select a fraction which 1s equivalent to a particular
fraction we are working with, we are using *the property of 1 &8s multiplicative
identity, where 1 Is written in the folm for some particular counting number
a. To illustrate this, let's consider & couple of examples. Suppose we have ﬁ
but need an equivalent fraction with denominatov 16. gtx %*‘ %% is the process
we use. Actually we are thinking “%'x L - %@ I need to multiply 4 by 4
to get 16 ae my denominator; 1 may be written as %- 1 4 %%a” Another

gxample: Suppose we wish to reduce %%co lowest terms. We can follow the procedure
B o O x6 . 9 6 _
G A R SR EREE S

A special case of renaming & fractional number ig found in the upper gredes,

when percent is Introduced. OFf course, when a percent is written in Cractional

form, 1t is simply a fractlon with denominator 100. Thus the problem %f“ f%g
\ ] ) ’
involves multiplying %»hy 1 in the form %ggérlj. Thaet is, %iﬁ - i3 8olved by

multiplying'§ by %% (20 is 100 = 5), and x +turns out to be 60.

Elementary school children are often asked to write "equivalence rows"

’ o4 4 e é
for fractional numbers. This is a row of equivalent fractions, such sz gﬁ% A e

7 14
%%-ﬂ 5%.« %%'“ %% %g aé' The students are using 1 repeatedly as the

multiplicative‘identity, firet as %y then as %5 then *%, then Z‘ %s %5 ete.

/

i
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For exsmple é" %x 1 = % X é' i T%; 57"‘ 3 x1* -‘.;;x L ﬁ’ ete. (Of course, when
studente begln to write equivelence rowe, at the start of their work with

fractional numbers, they a e not thinking in terms of the multiplicative identity.

At thar  cast vt cireston 0 caet et DambE g g bt 56T DUEL e s
Tasteac i AR DA ‘ Y. B
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process, alsoc involve L a8 multiplicative identity.
_ 1 1,18 .1 16
Examplee B% B+ig=(bx >+”“*§+%§““§
%‘@T“'?*@”“l"’ﬁ“ﬁm 1+(§xm) 1+(-§x1)u1+-§

32 28+ 5 _ 28 B _4x7.85_ o0 5. 5. .. 8
s abas bl A% SEs SEL RECEEORE SRCERES ERES
7. ADDITION AND SUBTRACTION OF F{ACTIONAL NUMBERS

As fractional numbers are developed Ln some elementary jrugrams, %’- 1s

defined to be the number such th4t b - %?- 1. Then g ls defined to bs =& - %*
The algorithm for adding fracticual numbers proceeds as followss
%4- % - g x %;‘ o ox %- (definition)
= (ga+¢) x % (dietributive property--which we havgto assume
for fyractional numbers if we follow this approach)
= éw%'.i.% (definition)

If we wish to add or subt .-act fractions with unlike denominators, the

development would take the following tack:

%- - %ﬁ' (% * %—) - (% X %) "(1 as multiplicative identity, used in the form
| ad b | ?5- and . which were chosen in order to make
R Y- denominator the same.)
%% % (commutative property of multiplicetion)
. fad o o L
= {ad )PB?) (be % bﬁ)

= (gd ~ be) x E% (aistributive property of multiplication over subtract
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Example 2. = (§'x Y - (i% % %ﬂ

=

This latter examnle was worked correctly, but the process could have been shortened

by noticing that the least common denominator of 8 and 16 1is 16. Thus, the

exsmple could have been worked as followas:
8§ 16 g "2 16
6

g

16

Lo <ol

16

o3
3

&

| =

Aniother exemple which shows the value (in terms of cutting down the number

of steps and the complexity of computation) of ueing the least common denominator

ig the following:
AT . SV R
wrg T ggxp *(
e 20 4.2
48 48
25

< QTR

48

¥,
"

Clioimid “

3
L6

) (48 is the least common deénominagtor)

wics

)

oda

Once the addition algorithm is established for fractional numbers, it is
pogsible to find many occasions where one would use the commutative and associstive
One such example is:

2ab.2.08

2w Bedy 202208
v ErP Ittt

properties of addition.
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Adding or subtracting mixed numbers can also invulve either the assoclative
property of addiiion or the commutative property of addition or both. For example:

11'; '___ig,r; .,.._; ;sg

e (3 +8) + (4 g) (using both the associative and the
commutative properties of addition)
=8 (o 15 ) (ueing 1 & the multiplicative identity)

L1

® 8 b o 15

[ 2] 8-»-&«

12
8. MULTIPLICATION OF FRACTIONAL NUMBERS

As with addition, multiplication of fractional numbers nrovides many
opportunities to nse the associative and commutstive properties. Most of these
are quite similar te the ways already dizcussed for vhole numbers, so there
would geem to be no need for further elaboration. There ave, however, a few
uses of field properties in multiplication of fractional numbers which are
different from those in whole~number arithmetic. Consider %'x ig When ve
teach the "cancelling” procedure, as in

7
28 Lx 7. 0
T A R
18

1

2 «

Y1

L
we are really developing a& shortent which uses the multiplicative identity, the
assoclative property of multiplication, and the commutative property of multiplica-
tion all in one bundle.

Let ug go through the above problem as we might if we wished to emphasize

the properties that e have used

3 28 ».) x 28
XTE" Tx 45

(8w dyx 7.8 4. 7
REEEE" 15 (3 X 4) * 18

s ot AR S B e Sl



i

P Do

EEx@rcise: In each of the steps in the process sbove, identify the property or
properties used.

Suppose we wish to multiply & whole number times a "mixed” number,

- guch s 6 % 2' 0Of course, we could convert the Vs tesgg in which csse we have

:e 2 ,
' tion can also use the "cancelling' procedures 6 X %»m 14. However, we could

~ have written 2%'as 2+ % {or mentally thought of itlthat way). Then, we could
? use the distributive property in the following manners
63@2%‘;63{(24*%;)%(6%'2)#(63:;%)“12*#2%14.

Multiplication of two mixed numbérs ig virtually the sane as the sbove

 situetion. Many paople would handle the problem 3% * Zi by cenverting each

mixed number to a fraction, %l l%, and then multiplying in the usual way:

oLy 10
é%«% ;3 22 x-ﬁ ~ 239 8%~. However, the same problem could be approached by

a double use of the distributive property, and is so presented in some materials.

f This approach is illustrated below:

2 . o oo By ool T O N - N
%%2’%“(@%‘%)x(24‘5)ﬁ(3**§)x2+(3+§)‘x?

Y ST B Y o 4 '3 4
?s(axﬁ)*!—(ng)ﬁ%(%x‘:;:)+(é§'x@z;}
6’4’} SAbT:

corGahrirGxdH g P

F (8
¥ X
“ 6+ & 4 1+ gg + ﬁ%

%35‘

a=
-3

e ]

f%

e
{2

&

& 7 4+ {14 5= ?8)

19
2%

- involved the multiplicative identity (2= 2x1" %sx %»g gai Then our multiplica-

s N i
g e S <
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This use of the distributive property twice is exactly the same g6 the use
f ol the distributive property in algebra, ag in the example below.
ta+b) x(ctd)yfla+d)wct{a+b)xd

@ xecy+(bxc)+{axd)+ (bxdj
‘ = ac + be + ad + bd
9. DIVISION OF FAACTLONAL NUMDERS
| 9.1 THE RECIPROCAL OF A NUMBER
One of the most convenient features of the set of fractionsl numbers is
i that for sach non-zero number % y there ies a number, %-, such that the product
i ol the two numbers is 1. For a binary (2-element) cperation, when there are
ﬁ 2 elemente which, when operated upon, produce the ldentity, these two elaments
% are called inverses, and each is said to be the inverse of the other. In our
§~ca$g, the operation is multiplication, and %~ 1s sald to be the multiplicative
; inveree of %u llowever, we often avoid the longer nams "multiplicatlve inverse"
E by using the equivalent term "reciprocal”.
E Exercigses: Pind the reciprocals of the following numbers:
B0 % 5 5 3 15k B 1)
The reciprocal is extremely useful in most methods of developing the division
? algorithm for fractional numbers, as we shall see in the next few sections.
; 9.2 REINTERPRETING DIVISION AS MULTIPLICATION
A common device for developing the usual rule for division of fractione
gis to reinterpret the divieion problem as a multiplication problem. Thus the
Edivision;prubl@m vm-&sw “ 7] means ; x [ = %. Assuming the students have had
Epreviau& @xpaxi@n@e with number sentences, they will wish to perform operstions
éwhieh leave us with [ on the left, and an expression on which they know how to

operate on the right. Multiplying both sides of the equation by the reciprocsl

 of %- (i.e., by %) resulte in the deaired golution. This is demonstreted below:

gragzes
&

R T

g i

Sl A S

i

e o TR R T T s
Rttt i



~35..
4 3
gxfl=7
%x (% x[}) = % p Z:,;* {multiplying both eides by the reciprocal of %)
5 4y g5 3 e
T X 3) x I:] TEXT i the associative property of multiplicsetion)
) x[j = %»x %‘ { the property of reciprocals; l.e., the product
of reciprocals is ls

[e2yd |

- S | (1 is the multiplicative identity)
E] - %% (algorithm for multiplying fractional numbexs)

The only problem with the procedure ss written, which rapidly leads
to the "multiply by the reciprocal of the divisor" technique. is that the
reciprocal of the divisor has been written to the left of the dividend. Since
the multiplication of fractional numbers is commutative, we could just ae well
have written the right-hand side ae -','.j;x %, without any particular comment.
Another related tecinique is actually to {ill in the box in the equation.
we thiank in the [oilowing @enners 'f waent the leit-hand side % bLe -7, glive
it 18 to be equal to the vight-bend side.  Ihereiore, the pumver I write in the
box must be the number which will result in -% when multiplied Ly % 1 know
%x % = 1, and 1 know that 1 x % "~ % Therefore 1 will fill the box with

%" %"" Symbolically, this is:

In interpreting division in texms of multiplication, we have acknowledged
that in a sense division is not a hasic operation--that all division problems
involve situgtions which may be interpreted as multiplicetion situgtions where

8 factor is miseing. Additlon and subtractlion are connected tc sach other in

exactly the same way. Every subtraction problem can be interpreted as an addition

B o T

ey
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liere we chose to write 1 in the form %%} becuuse 35 ig a multiple of
both 7 and 5, the derominators of the fractions invelved. As a matter of
fact 35 1s the leset common multiple of 7 and B, but it is not necesgary to
select the least common multiple. Any common multiple will work. For example,
we could use 105 in the above problem, ae follows:

éfx 105

%~% 1056

x5 TR T TRE 5

« 3.%21 L 3% (3 x‘g%,ﬁ g x7

9.4 THE COMMON DENOMINATOR TECHNIQUE

A less widely used, but convenient, technique for dividing Fractional
numbers, 1 one in which onas (2) gete common denominators for each fraction:

1 (b) divides the numarator of the dividend by the numeretor of the divieor; (c.

divides the denominator of the dividend by the dencminator of the divisox. This

- procedure 1s 1llustrsted below.

(use of the multiplicative ldentity

(1 &8 the multiplicative ldentity)

=67 (1 is used in the form 2 4 2)

In the example sbove, you may have besn bothared by the step 5= & fi » 228 e

hat justificetion 1s there for thie atep? We justify this below.




of

,.;;8*‘
2L I
bet STT 97 A

Then, by the definition of division in tewms of multiplication,
2z, bt L3
PO Ny

By our algorithm far multiplication of fractions, %%—“ %{m%%%i . Therefore,

12 = 14 x Qland 21 = 21 x & .  Agein, by the definition of division, 129 1.l = O

and 21+ 21 WA Therefore, substituting in the original equation for[7} end A gives

12 o 14 12 &+ 11
21021 L

Tuis procedure does not explicitly involve the reciprocal, but leads toward
it. Actually, there is a sense in which the reciprocal has been involved. The
numerat re belore getting common dencminatore were 4 and 2. After we obtalned
common denominators, they were 12 and 4. If we examine 12+ 14 (or %%i.
we see¢ that %%-* %fx~%- That s, the dividend hes actually been multiplied by
the reciprocsl of the divisor, but in rather disguised form.

10. FRACTIONAL NUMBERS REPRESENTED IN DECIMAL FORM.

0.1 ADDITION AND SUBTRACTION OF DECIMALS

Fundementally, of course, decimal {ractions are means of representing
th@ sat of fractional numbers. Thus, answers to computational probleme invelving
fractiongl numbers expressed in common fraction form and in daecimsl fraction
form differ only in the notetion. However, this notational differancé forces
ug to develop special aslgorithms for dealing with fractional numbers when they
are expressed In decimel form. The principles which allow us to develop these
particular algorithms, of course, are our particular system of numergtion (which
has a base ten and 1e positional) and certain of the field properties.

8ince decimal Crections are mevely sn extension, to the right of the

decimel point, of the numeration system we use for whole numbere, many of the uses

of the field properties which we cited for whole numbers slso are used with




056 e

decimais. llowever, the introduction of the decimal point produces new problems.
Foremost among these ie the proper placement of the decimal point in the answer.
In so-called traditional clesses, the placement of the deciual point in
8 particular type of computational problem wes hendled by teaching vules; these
rules were usually not explained--they were presented to studente as true because
they worked. The modern trend, as in all éthar phases of elementary mathematics,
ie to explain why these nrocesses work.
Suppose we wish to add 6.7 and 4.2. If the student has been taught
thet the base ten place value system has been extendsd to the right of the
declmel point, he will agree that we can write 6.7 as 67 x T% and 1.2 ae

42 x T%’ llence the process for adding these two numbers will follow the procedure

below:
6.7+ 4.2 ® (67 x I%O + (42 x E%Q (numeration fact--expanded notation)
= (67 + 42) x = lé {use of the dietributive propexty}
= (109) x T% (whole number computation)
= 10.9 { numeration fact).
Similarly, 83.25 4+ 79.48 m (8325 x e 00 Y + {7948 x °%G )
» (8325 + 7048) x == 139
A
> 16273 x 150
= 162.73

% vhere we used the distributive property at one point.
Whet 1f the numbers to be added have difﬁ@went numbers of decimal places?
% Conelder the following cases

2.43 + 3.7 = (243 x 100) + {37 X 7% ) (248 x sy 100 )+ (37 % i )

» (243 x 100) + (370 % = 100 = (613 x Tﬁﬁg = 6,13




oy
cee 0t e wvie 90 beod quickly to the 'vrule" thuat we line uvp the
decinyd prdats agod U the décmal sont o wn the answer in line with the other |
BELAT A 0TS
sabrrartion 1o idewics . an 311 vespoacts, except that here we use the
distribucive properm: of awltisticavion over subivaction. An exanple is given below:
476 ~ b 4w (2 oy w5~; 49 J%ﬁ
' . R ) [ AN 1) 11 &
L3760 J49) w 56 ‘1he distributive property of multiplica~
i tion over subfraction)
LA A T%ﬁ {whole numbex computation)
1.2
10.2  MULTIPLICATION OF DECGIMALS
Devetoping the wule foi Jocating the declmgl point in multiplication is
simd Loy vo what we have dene @ love, but rnvolves the associagtive and commutative
propecties of mulriplication, rather than vbe distvibutive property. For example,
, , 1 . . ).
o & 4 '7 . s " { 4} X, mera
6.78 % 2 4 ‘68},10{})‘)! Y X]D) P
= {678 » 24} » :T%ﬁ X v%j by using both the agsoclative and
| ) commutative properties of
multiplication)
L VA DD g ek vwe have multiplied the whole numbevs
VT R0 together and also multiplied the
fractional numbers together)
16779
Another example: 4
? TR ’71} . l - ¥ C oL ﬁ P J |
7.9 % 3.0 % LT ko b 36 % TF)
* « ] 1 E
R D 1 B P i
; | I EUNM X/ :
L I e
AN N 100
2y
L




And yet another:

0.21 x 0.435 = (21 x f%ﬁﬁ x (435 x y555)

@ (21 x 435) = (T%ﬁvx fﬁ%ﬁa
1

" L85 X Y5500

= 09138

Prom these examples, it 1g¢ clear to sse where we get the rule that the
numver of decimegl places in the snewer to & multiplicgtion problem is the sum of
the number of decimal pleces in the factoxs.

Of course, whexe we have written fractiong with denominator 100, we could
equally well have written powers of ten, using exponents. For example, 300
could be written 3 % 102, and .5647 could be wrltten 817 x 10“3

1f we used exponents and powers of ten, the flvst example we looksed &t
would be handled as follows:

6.78 x 2.4 = (678 x 1072) x (24 » 1079

= (678 x 24) x (1072 x 107%)
= 16272 x 107
= 16.272

10.2 DIVISION OF DECIMALS

The divieion of decimals is customarily sidesteppad by converting to an
equivalent fraction whose denominetor 18 a whole numbear. This is thé basls of
the relocation of the decimal point in the division process.

Suppose we nesd to divide 348.23 by 7.18.

848.23% 7.18 = = = @ 34523 5 718

‘ ?55a and the fact that L 1s the
multiplicetive 1dentity, in treaneforming this problem from division by & decimal
fraction to division by a whole number. The division as ususlly written is

given balow:




" 18 /T8 2%

anid here again we have implicitly multiplied by %%%'o

Another illustratimn of this process:

7,866 . 73.866 x 10 A9 . 1)
3T x 1D wo -

. 138:60

o)q,} .

758,860 < 53.2 =
= 738,66 < 332

Tn the division algorithm, thie would be written which

hae +he same result and relies on the same property.

Another axemple is 2.400-%'30600 » %5%%% » which could be handled in either

of the following ways:

2,400 _ 2.300
(1) 55573 ™ “%o0

sy 2400 o 2,400 % 10 24.00
(2) 360.0 . 500.0 % 10 8000

= 2,400 «» 300

= 24 % 3000

11. INTEGERS AND RATIONAL WUMBERS

11.1 ADDITIVE INVERSES

then we axtend the saet of whole numbers to the set of integers, or extend

th@ set of fractional numbers to the set of ratiunel numbevse, we Introduce snother
of +he fleld properties. Now, for esch mumber & in our set, thers is another
numbar, -8, vead "negstive a," euch that a + (-8) » 0. For exemple, the
gdditive inverse of 6 18 -6, because 6 + (=6) = 03 the additive inverse of

7 is . because (=) b el l

gxgggggage (1) Pind the additive inverses of the following numbers:

B, =3, 12, 0, - 33;, , "1"’.%’ gf%, 0.83217

(2) If a+ %r" 0, what ig a?

11.2 ADDITION AND SUBTRACTION OF POBITIVE AND NEGATIVE NUMBERS.
Supposs we wish to add two negstive numbers, eay -7 and -4. We can use
th@ pxﬁp@rty‘@f additive inverges to help us. Thet is, we know thet (~7) + 7= 0
‘ 1_@nﬁ,ﬁhat%(~4) $4m0. If e 8dd these two equetiona, we have [(=7) + 7] +

I(-4) + 4] = 0+ 0.
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} By using the commutative end associstive propevties of addition, we can
eventually arvive at the form [(-7) + (~4)] + [7 + 4] = 0 + 0. Since we know
7+ 4= 11, and since 0 + 0 = 0 (0 is the additive identity), we have

”:? [C-7) + {~4)] + 11 = 0, Thus, whatever (-7) + (-4) is, it must result in ©

) when added to 1l. iowever, this is merely another way of saying that [(-7) + (~4)]

.

is the additive inverse of 1l. We glready know that the additive inverse of

11 is =1l. CTherefore, (=7) + (-4) = =11.

/
1

The general cese follews exactly the same steps. Let -s snd -b be
two negative numbers. Then we have additive inverses a and b respectively,
go (=a) + a= 0 and (=b) + b = 0.

[(~a) + al + [{-b) + D) = 0+ 0

Rearranging by means of the associative and commutative properties of
addition, we get [(~a) + (-b)] + [a + b) = 0 + 0, and since 0 + 0 o 0,

[(~a) + (~b)] + [a + b] = 0.

Therefore, (~a) + (-b) 1s the sdditive inverse
L"% of a+ b. Thus, {-a) + (~b) = ~ (g + b).
H Suppose we wish to add a positive and g negative number. If they are

additive inverses, there is no trouble--the sum i 0. If they are not additive

;8 inverses of each other, the sum may be either positive or negative, depending
{if on the two numbers involved. Let us examine two examples.

| ]

| 4 (8) 5+ ~8 = 54 (=5 + ~3)

g ? = (54 ~5) + (-3) (the associative property of addition)
1‘% = 0 + (~3) ({5 + -5 are additive inverses)

i'é = -3 (0 is the additive iLdentity)

(b) 17+ 4 = (134 4) + (-4}

CE

2 13+ (4 + -4) (the associative property of addition)

? % « 13 + 0 (4 and -4 are additive inverses)
%Af = 13 ( 0 is the additive identity)
i %’ Now let us consider the process of subtraction when dealing with positive

| - and negative numbers. Again, some examples would be helpful.

e A S
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1 -2 1is & problem we have aliready seen. This is the same as whole
number subtraction; hence the answer 18 2. We may also note that 4 + (~2) = 2,

What about 7 - 10 = {]7 We can use our knowledge of the relationship
between addition and subtraction to write this in edditive fomm, ag 10 +[3 = 7.
One way of handling this is the Following: we know that 10 + (~10) = 0; we
algo know that 0 + 7 » 7; therefore the answer to the problem must be ~10 + 7,
which we can calculate as ~3. By the commutative property of addition, we can

write L0+ 7 as 7+ (-10). This and the preceding example seem to Buggest

that we can get the answer to a subtraction problem by adding the additive inverse

of the number we ave subtracting to the number we are subtracting from. That
18, @ - b= g+ (~b). Let's see if this continues to hold in the following cases.
(a) =5~ {~3) = [} can be rewritten in additive form as =3 H) = -B.
Since (~3) + 3~ 0, and 0 + -5 = -5, -3+ (=8), or =2. Again,
we see that 3 + (~5) may be written -5 + 3, so we can add the
additive inverse of ~3 /i.e., 3) instead of subtracting -8,
(b) ~18 - (--31) =[], rearranged, is -81 +[= ~18. (-31 + 31) = 0,
0+ ~18 & 18, gofd = 31 + (-18) = ~18 + 81 = 13.
(¢) 12 - -7 =[]
~7 +[d= 12
~T+ 7= 0, 0412 =12, sofl]= 7+ 122 12+ 7 = 19
(d) 15 - (-18) = []
-18 +i]= 18
-8+ 18 =0, 0+ 15= 15, gso[J= 18 + 15 » 15+ 18 = 33
(e) -16 - 18 = [
18 +[1 = -18

18 + <18 = 0, 0+ -16 = -16, so[] =~18 + (-16) = -16 + (~18) = 34




M

(£} =21 - 14 =]
14 +[1= 21
4+ -ld =0, 0+ 21 = 21, goll}= ~14 + (~21) ® 21 & (-14) = 38
In each cege, we have seen that a - b = a’+ (~b). This can be proved
generelly, 8o we sce that we can alwaye transform & subtraction problem into an
addition problem when dealing with positive and negative numbers.

Lxercisess

Find the answers to the following problems:
(a) 6+ (~7) (b) (-8) + (~5) (e) (~9) ~ 6
() (~2) = (-3) (e) (-8) + 10 (£) 2 - (-7
(g) =-23 « 12 (h) («27) + 27 (1) (-11) 4+ 10

11.3 MULTIPLICATION OF POSITIVE AND NEGATIVE NUMBERS

Some elementary programs introduce the multiplication and division of
positive and negatlive numbers in the upper grades of the elementary gchool.
These programs vely heavily upon the concepts of the additive inverse and the
distributive property to develop the rationsle for the "rules of gigns" in
multiplication.

Suppose we want to find the product of =3 and 7. We know that
3 4+ 8% 0 (that js, that <3 and 5 are additive inverses). Then 7 [~3 + 3] =
7% 0, and 7x 0= 0. Therefore 7[-8 + 2] = 0. Using the distributive property,
we can vrite the left~hand side of the equation ss 7{~8) + 28}, so
W(-8) + 7(8) = 0. We know that 7(3) = 21. ‘Thus 7(~8) must be the sdditive
inverse of 21; we also know that =-21 is the additive inverse of 21. 8o we
have esteblished that 7(-3) = -~21.

By repeating the above process with -z vaplecing -3, b replacing 7,
where a and b stand for positive numbers, we can prove that b(~s) = «ba.

Now consider (=-3) x 7. S8ince the commutative property of multiplication

holds, this must also be ~21. In the general setting, (-a)(b) = -ba.
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Finally, let us examine (~3)(~7). The same process we used above holds
some promise. ~7 + 1= O,'a@ ~3[ =7 + 7} » ~3(0) = 0. By the dietributive
property, we can write the left-hand side as {(=3)(~7) + (~8)(T), 8o we now have
(=3)=7) + (=3}{7) = 0. We heve slready established that (~3)(7) = ~21, BO
(«37¢=7) + (~21) = 0. Thus (~3)(~7) must be the additive inverse of «21;
that ig, (~8)(~7) = 21.

Agein, by following the identicsl steps, using -2 for -3 and «b for
-7, with 8 and b positive numbers, we establish in general thet
(~a)(=b) = ab = ba = (~b)(~a).

11.4 DIVISION OF POSITIVE AND MEGATIVE NUMBERS

The division of a negative number by another nagative number can sasily

Le eetablished as givingg a p@s:!.ti,w guotient. For exam.le, (~7) -~ (-18) =

’::;Tg | ).83: > TT%’ ﬁ x le “";7"& Here we have relied upon the use of 1
ﬁ ~1:\

a8 ?-«My and the fact that 1 is the multiplicative identity. In geneval,
{~8) o~ {~b) *

; L2 - %«x %-5% - %x 1= % (a and b are here considered
to be pogitive numbera).

To get the rule of signs for a positive number divided by & negative number
or for a negative number divided by a positive number, we use our old technique
of changlng the divielon problem %o a velated multiplication problem. We will

go through this development in genexal; it might be useful for you to €ry

particular examples to understand the process better. In all of the following.
p and b are positive numbsrs. a8 (~b) = Qmay be rewritten (-b) x[J= a.
We know that w;% ig the reciprocgl of b -~that is, {(-b} » (-:'5{;) = 1. Also, since
1 is the multiplicative identity, 1 x a™ &. Thna,ﬂ - -% X a® ':E' But b

1s glso (1) x b. 8o the multiplication problem could be written (-1) x b x03= a-
(-1) x{J= (%;') % 4= %‘ Maltiplying by -1, we heve []= J%?» Therefo e,

We know thet the reciprocal of b is %‘-s (b x %-m 1) and 1 x &%= g

T T S A
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‘"?“5 = U* *-(g-), 0y :53 w -vtvil«% and the quotient of a positive number Ly a nepative
aumbey is negative.
Now consider =-ae b ® [] . The corresponding multiplication equation is f
b u 3= -a. lleve we can use the reciprocal of b, since b ¥ %5* 1, and the fact %
that 1 is the multiplicative identity, since 1 X & = -a. Sol]}= %!x (wa) -':g, ;
But -% %X (~g) 1s plso %-x la x (~1)]. By the associstive propeyty of multiplica- ;
tion, %?x [a x (-1)] = (%-x 8) x (~1) = g'x (-1) = -€§ﬁ. Thus the quotient i
resulting when & negative number is divided by a positive number is negative. 5
12. MISCELLANEQUS USES OF THE FIELD PROPERTIES ?
There are a variety of othev situations in which the field Properties play i
8 role in the elementsry curriculum. Some of these are indicated below. You %
will undoubtedly encounter others as you teach elementary school arithmetic. g
12.1 MEASURES '
j
In applications involving measurement, money. quantity, time,; etc., a '%
unit le gttsched to the number to tell what the number means., as < feet 6 inches, i
b% squars miles, 75 miles per hour. 3 quarts 1 pint. 3 hours 45 mimutes 12 seconds. 2
The symbol consisting of the numeral and the unit i» sometimes referred to as %
a denomingte numbexr.
The measure, or denominate number, has, in all cases, grown out of some
physical situetion, where we have been megsuring in terms of some unit. In
fact, where we use units and subunits, thce purpnge has been to avold the use of
{ractions. 4 yards 2 feet 10 inches could easily De written as 4%% yarda, and
we could then operate using our procedures for handling fractions. llowever, if ‘é
we were to work with the units and evbunits themselves, then we would need only
our knowledge of whole numbexs to hendle tlie situation. é
In actual situations, of course, our measurements are epproximationeg. We é

§ do wot have perfect measuring equipment, nor are we able to read any megsur ing

 device precisely. The mathematical quarts we deel with are exactly two pints; the

physical querte are merely approximately two pints.
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In adding and subtracting using denominate numbers, regrouping is used

in converting from one unit to another. This regrouping ie similar to the re-

groupiong ueed for whole numbers and uses the associative property of addition.
Examples of this are sliown below.
va) 2 vyds. 6 ft. 4 in.
R E T

= § yda. 13 fr. (12 + 1) in} here we have converted the 12 inches to
w5 yds. (13 + 1) £t. 1 in. 1 foot and associsted 1t with the 13 feet

s 5 yde. 14 £t. 1 in.

= 5 yds. (12 + 2) ft. 1 1n.|{ here w2 have converted the 12 feet to 4 yards
- (5+4) yde. 2 ££. 1 in. and essoclated the ¢ yards with the 5 yards

= 9 yds. 2 £t. 1 in.

(b) 8 qgt.
kot 2 q‘to 1 pto
" g gz; ? %E:,‘ here 1 quart has been converted to

2 pints, and the 2 pints has been

gt. 2 pt._ associgted with the 0 pints

-
-2 qt. 1 pt.
b qt. 1 pt.

Of course, in dealing with fractionel perts of a measure, performing
operations on denominate numbers, etc., other of the field properties may be
called into play, but these would be uses previously described in one or another
of the sections of this unit.

12.2 ABSTRACT OPERATIONS AND OPERATION TABLES

One way to tell if s person really understands certain of the field properties
i8 to introduce an abstract operation, and ssk questions about it. This is often
done by using finite sets and ¢llowing the operation to be charamcterized by
exhibiting the operation teble. Sometimes, however, the operstion is described
in werdg‘or symbols, and is an operetion on certain of the sets of numbers the
studente are famlliar with. In any case, 21l of the properties can be investigated
in this way (of course, for a dietributive preperty to function, we need two

operations for the distrvibutive property to connect). .
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Below are two oxamples: The first is an operation table; the second is
an cperation defined on whols numbers.

(a) C

O 0w =i
O D » i
S > o Ol
W S Oty

>z Wm0 o>

We can sae the operation 1s closed; gll elemente of the eet can be listed,

and there is no element in the table not belonging to the eet. The operation

g
o i

is clearly not commutative; for example, B¥ A 4g A but A* B is C;
also this can be verified by noticing that the table ie not symmetric around the
main disgonal. B ie e left identity (B * x = x where x iz any element in
the set), but there is no right identity. BEvery element has an inverse, since
B eappears ir every row. In fact, each element 1 its own inverse. The operation
is not assoclative, since, for example, A ¥ (B*C) * A* C= Abut (A% BY*Cm
C*C= B. There is no point in investigating for distributivity, since only
one operation 1s given.

(b) Let the operation l mean ﬁ%%mgl where & and b are whole numbers.
(In other words, we are taking the avarage of the fwo numbers). The operation is

not closed (for example, X ;,2, - %5 which is not a whole number. It is

commutetive (a;z b ﬁ,g;%@g y b X g™ Qm%»Q » and §m§¥2?ﬁ @~27§ s 8lnce sddition

of whole numbers is commutagtive). Ie the operation i asgocigtive?
Let's try 4 f (& J 7) and §4f] ) I 7.
sl n=a]6ns.

eyt nel lnwly 9wl 14,23 28 .3
(4!5)!75-{7 e§+7 5-1"2 *&"‘-‘Z‘ Ors‘zv

Therefore, we have a counter-example and the operation is not associstive. There
is no identity element, since thare is no number x such that x”ﬁ y=®y X ey o
for every whole number y. 8ince there is no identity element, the question of

inverses iz meaningless.
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Llereises :
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Investigate wiich of the field proverties hold in the following situations.

G EABCDE (2) %|/a B ¢ D
Ala B C D E T
BlB ¢ D E A sln B oa &
“je o E A cla A& c A
DL A B C ola s & b
E{E A B C D |

(3) ¥~4 means the smaller of & and b where s and b  are whole numbers.
That 1g, lok43 = 3, 1l 1] = 11, 5 = 4,

, 2a + 20
(4) D4 means S where a8 and U are fractional numbers. Fov exampie,

iIfas7adb =12, aBbb = ?E-%‘-EB L2 x M b (2x18)  liral .

2 : 5
Similexly, i a = é- and i = gzﬁ slmp b = 28502 (2 x %7’ + (2 % ) -
2. 30 16 % 30 46 J
S8 9L = 57 = 23,
2 —5

'15 .5 APFLLLATLONS

Various types of applied, or practical, probleme. ma. involve one or more
of the field properties. It would be impossible to anticipate all possible uses
of the field properties in applied prollems We will merely sliow one example

{taken from page 256 of the Unifying Mathematics text put out &s & sixth grade

text by the American Book Company). A buteh of papere were being sold by a boy,
who received a certoln commission on each paper. The boy chose to figure the
commission on each paper, and then maltiply by the number of papers sold; his
father, on the other hand, ftigured the total amount of money received for the
napers, and figured the total commiss.on by mulviplying this amount by the
appropriate percentage. The fact that the result is the same Iin iLoth cases 1s,
of c:“@uwrsé; due to the fact that multiplication is associative.

You will undoubtedly find many similayv situations wh@r@ the {ield

proparties figure prominently in applications.

12.4 MENTAL ARITIMETIC

The shortcuts used in mental arithmetic are usually b&&edvpn one ox another

of the field properties. For example, to multiply 247 x 13, one m¥ght think:
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"100 x 18 = 1300, 200 x 18 = 2600, 50 x 13 = 680, 8 x 13 = 39, g0 247 x 13 =
2600 4 650 ~ 39 = 8280 ~ 39 = 8211." In doing this, we have used the digtributive
property in a genergl form (distributivity of multiplication over both subtraction
and addition) to think of 247 x 18 as (200 + 50 - 8) x 18,= (200 % lS)!+ (80 x 18)
- {3 x 18). We also used the associative property of multiplication, 8% we
thought of 200 x 18 &8 2 » (100 x 18).

Another example is the mental csleulation of 4 x 199. We can think of
199 as 200 - 1, and use the distributive property of multiplication over subtraction,
g8 follows:

4% 199 = 4 x (200 « 1) = (4 x 200) - (4 x1) =800 = 4= 796.

If you analyze the ehortcute you or your students use for mentsl computation,

you will run into many other uses of the field properties.
13. CONCLUBION
In the preceding pages, you have been made awsre of the important role
of the field properties in sll sreas of elementsry arithmetic. e hope that this
anelysis of the role of the field properties has provided you with additionsl
Insight into arlthmetic. We further hope that you see the importance of these
propexties and why modern mathemetics curriculs lsy such grest strese upon them.
Above all, we hope that these properties no longer seem to you g8 just a
collection of names and ideas which have been imposed on the arithmetic of the
elementary school; that you see that »oal understanding of avithmetic requires
an understanding of these properties; that learning them is not Just a fancy
frosting on the cake, but that these propertiee deturmine the structure of ouwr
sygtems of numbers.
It would be fruitless to hope that we have listed all possible uses of the

field properties. By reading this unit, perhaps you will be a Lit more cognizant

of these properties in the future, &nd you will be more alert to point out their
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uses to your students. Probably you will discover still more placee whers these

properties play a useful and important role-~this is as it should be. Hathematics

18 @ subject In which one continually gets deeper Insights.

i vy
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GRADE RANGE WHERE TOPICS ARE SPUDIED
Section Primary Grades Upper Elementary
. (K - 3) . (4 -.6)
2.1 L
2.2 1
2.3 I M |
) T M
2.5 I M
2.6 18&M Mo
.7 I&M M
3.1 I &M M
3.2 . I&M.
3.8 1
3.4 I &M
3.5 1 S S
3.6 T
8.7 1 M
dal 1 Mo
T4z Y |
4.3 1 (Oceasionally)
&4 e L EH
5 1 "
6 i W
Vi 1 » 1&g
8 1 (QccaQiunally) I1&M
9.1 | T &M
9.8 TeM
9.3 T&M
9. T &M
10.1 I&M
710.2 1&M
10.8 I &M
11.1 I &M
11,2 R
11.3 i
1.4 7 L 1 |
12.1 1 I&M
12.2 I
12.3 I&M I&M
12.4 T o Ten

I ~ Introduced
M - Maintained




