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Measurement: Problems of Theory and Applicationl
Patrick Suppes
Institute for Mathematical Studies in the Social Sciences
Stanford University

Those of you who have just heard and enjoyed the fascinating lecture
by Prcfessor Blakers may have a certain deja vu sense as you hear what I
am going to say. This will be true especially of those who also attended
Mr. Mitchell's lecture earlier. To reduce this deja vu feeling, I shall
deal initially with questions of measurement that have systematic or
formal interest, but that diverge rather sharply from the mainstream of
mathematics. From the standpoint of applying the theory of measurement
in the social sciences, or indeed even in the physical sciences, many
conceptually unsatisfactory things arise about a theory of measurement
that is related directly to standard structures in mathematics. The
structures widely studied in mathematics are almost without exception
iﬁfznitistic, and they are almost without exception error-free. In
concentrating on the problems of finitude and error, I shall organize
vhat I havg to say under four headings.

First, I want to formulate a general viewpoint that is much in
agreement with that expressed by Professor Blakers. Second, I shall
discuss necessary and sufficient conditions for the existence of numerical
measures on finite structures. Third, I shall talk about algebraic theory
of error, and finally, I shall comment on nonalgebraic--error theory, with
some remarks about linear regression and the structural models discussed

by Professor Williems.

l‘I‘his paper is based on a lecture given at a UNESCO Seminar at the
University of Syndey, Australia on May 24, 1968. The content of the paper
reflects research that has been supported by the National Science Foundation.
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1. General Viewpoint

We begin with measurement procedures that are fundamental in the
sense that they assume no prior numerical results. . We may represent the
empirical situation in most cases by a set A that is the set of objects
or phenomena under consideration, and a finite sequence of finitary rela=:: .
tions R, on this set. Such an object, 0l = < 4, Rys eees R >, 1is

ordinarily called a relational structure. I deliberately have chosen

relations rather than operations to represent the experimental or measure-

ment procedures of a fundamental character, because when we consider actual
procedures, the closure properties so characteristic of ordinary mathematical
operations clearly lead us into infinistic idealizations that are not happy
idealizations for many applicatiéns of measurement. For example, if we
impose a closure condition on our algebra of operations fa the measurement
of length, then we are committed almost at once to postulating the exis-
tence of lengths of arbitraril§ great size. If we use relations instead

of operations, no such commitment is required, and we can restrict con-
siderations entirely to finite sets and finite relational structures.

(By a finite relational structure, I mean a relational structure in which
the basic set A of objects is finite.)

In this general viewpoint, two formal problems should be solved for
any fundamental measurement procedure or fundamental theory of measurement.
From a formal or mathematical standpoint, we characterize the class of
relational structures that satisfy the empirical procedure or the theory
by stating the axioms that must be satisfied by each structure. The first
formal problem then is to prove a representation theorem for any structure

satisfying the axioms. Ordinarily in order to call the theory a theory of

2
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measurement, this representation theorem should show that any structure

'satisfying the axioms may be mapped homomorphically into the real numbers.

The restriction to the real numbers is not critical. Mapping into a
structure closely related to the real numbers is. For example, in the
case of multidimensional scaling, what is desired is a mapping into an
n-dimensional Euclidean space rather than the set of real numbers them-
selves. One point about the representation theorem needs clarification.
When the structures are finite there is no problem of mapping them homo-
morphically into the real numbers with some arbitrary relations on the
real numbers. The interest of the problem is rather to provide in advance
the numerical relations in terms of which the numerical structures should
be defined. The homomorphism then must be relative to these given numerical
relations.

The second formal problem is that of uniqueness. How unique is
the homomorphism mapping a given structure into the real numbers? In
the classical measurement theory of mass or distance, for example, we
expect the mapping to be unique up to a positive similarity transformation.

This way of looking at theories of measurement is not special in any
sense to the domain of measurement procedures. In all areas of mathematics,
it is standard to search for representation theorems for structures of
primary interest and also to ask about the uniqueness of the representations
obtained. Professor Blakers has already mentioned the familiar classical
example, namely, the representation theorem for plane geometry in terms of
Cartesian coordinates, and the proof that this representation is unique
up to the group of Euclidean motions. In the context of the present

discussion, it is perhaps worth mentioning that classical synthetic
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geometry can be axiomatized in an elementary fashion as a relational

structure. The basic set A 1is the set‘of-points, and the two rela-

tions we define on the set A are the ternary relation of betweenness
between points and the quaternary relation of equidistance. The rela-
tion of equidistance means that the distance between points x and y
is the same as the distance between points u and v.

Still another example of considerable physical interest is to be

found in the relation between measurement and the theory of special

relativity. In this case, greater interest has been attached to the

uniqueness theorem than to the representation theorem. We may show,

T T T L AP e W

for exsmple, that preservation of the relativistic length of inertial

segments is the only assumption needed to prove that any two inertial

SRR PP 7

frames are related by Lorentz transformations (Suppes 1959). More
recently, Zeeman (1964) has shown that by using slightly stronger assump-
tions about the number of dimensions (n > 3). it is possible to pos- :
tulate that the time-like partial ordering of points is preserved in

order to obtain the Lorentz transformations. From the standpoint of

the theory of measurement, it is interesting to find that no additionsal

physics is required to derive the Lorentz transformations.

I mention these examples of geometry and relativity, because there
has been a recent tendency for the literature on the theory of measure-
ment to become isolated from other domains of science, and I regard this

as unfortunate in view of the close connections of the sort just described.

2. Necessary and Sufficient Conditions

If we undertake to formulate a fundamental theory of measurement, °
we should recognize that it is important and interesting to state axioms
L
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that are not only sufficient, but also necessary. Such axioms give us

~a better sense of understanding the nature of the theory. There also are

more practical reasons of application for seeking necessary and sufficient
conditions. In considering collections of objects of a similar sort whose
properties are to be measured, we do not want to restrict the collections
of objects because of extraneous existential assumptions. We naturally
ask what minimal conditions can we assume guarantee the existence of a
measure? Existential conditions, for example, that are sufficient but

not necessary unduly restrict the range of structures that fall within
the theory. To seek necessary and sufficient conditions is to seek a
bare-bones characterization of all the structures that intuitively should
be brought within the framework of the theory.

At this point it may be useful to look at a simple example. Consider
binary structures, that is, structures consisting of a set A and a binary
relation R on this set. It is natural to ask what necessary and suf-
ficient conditions exist that make a binary structure homomorphic to a
numerical structure 72 =< N, <> where N 1s a set of real numbers
and < 1is the usual numerical relation less than restricted to NW.

If the set A is finite, the answer is simple. The relation R
must just be asymmetric, transitive, and connected on A. That is, the
following three axioms must be satisfied in the structure. For every
X, % and 2z in A:

Axiom 1. xRy then not yRX.

=

Axiom 2. If xRy and yRz then xRaz.

Axiom 3. If x £y then xRy or yRx.




In the finite case, the proof of the necessity and the sufficiency is
obvious and need no’ be discussed further,

If we relax the restriction that the set A be finite, then the
three axioms are no longer sufficient, but only necessary. To see that
the axioms are not sufficient, we observe that they have models of arbi-
trary high cardinality. When a relation R satisfies these three axioms,
however, any homomorphism also must be an isomorphism, but there cannct
be a one-one function imbedding models of arbitrarily large infinite
cardinality into the real numbers. To imbed such an ordering in the
real numbers, we must add an additional condition. Iu the present case
a relatively simple answer is at hand. An ordering that:gatisfies the.above
three axioms also must have a countable order-dense subset in case the
set A 1is infinite. However, this condition for the infinite case is
not really interesting from the standpoint of the theory of measurement.

Because the necessary and sufficient conditions are so obvious and
simple for finite orderings, we initially might expect the situation to
be the same or close to the same for relational structures that seem
only slightly more complex than orderings. The next simple class to
consider is that of orderings on differences as well as orderings on
the objects themselves. For example, in a psychological experiment,
subjects might be asked to judge whether tone x is closer in pitch
to y than tone u is to v. In other words, we ask the subject to
make judgments about differences as well as order. More generally, we
can think of asking for Jjudgments of relative similarity, that is, the
Judgment that x 1is at least as similar to y as u is to v. The,

real-valued mapping f we want for such a quaternary relation D is this:
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(i) xyDﬁv if and only if f£(x) - £(y) < £(u) - £(v) .

Keeping this representation in mind, we shall call a relational structure
consisting of a set A and a quaternary relation D +that satisfies this

condition a difference structure. The problem is to find the elementary

necéssary and sufficient conditions that a difference structure must
satisfy to guérantee the existence of such a measurement function f.

As in the case of orderings, let us restriét ourselves to finite
sets and ask what sort of necessary and sufficient conditions we would
like to find. The simple thing about the three axioms on orderings is
that we can check a binary structure to see whether it satisfies the
axioms by looking at no more than triples of objects. To cheék on
aéymmetry and connectedness, only pairs of objects need be examined.

To check ¢, transitivity, triples of objects need inspection to determine
whether there are any intransitive triads.

We would expect the situation to be somewhat more complex for
difference structures, but it still would be valuable as a first step
to seek generalizations of transitivity. For example, transitivity
of differenceg*#hich would require six variables for expression,would
demand a check on sextuples of objects in the set A +to see if the
necessary and sufficient conditions for the existence of a measure
could be stated in a relatively simple way, especially in a way that
could be checked either by hand or with a simple computer program. It
would be desirable to have an upper bound on the size of the n-tuple
needed to check on the existence of a measure. An upper bound independent
of the cardinality of A shows that the structures for which a measure

exists do not get essentislly more complicated as the cardinality of the

7
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set A increases. If we eliminate as axioms existential assertions,

then Dana Scott and I showed some years ago (1958) that for open sen-
tencrs or universal sentences, that is, for sentences that use only
universal quantifiers standing in front, it is not possible to give a
finite list of necessary and sufficient conditions that any finite structure
must satisfy in order to be a difference structure. In a subsequent paper,
Scott (1964) gave necessary and sufficient conditions in terms of an in-
finite schema that increases in complexity as the numbef of objects in

the set A increases and that in terms of elementary open sentences is
equivalent to a countable infinity of sucﬁ sentences. What is especially
important about this condition is that it requires checks on arbitrarily
large hrtuples of the number of objects when the set A increases.

To those interested in multidimensional scaling, it is worth re-

marking that the results Scott and I obtained have been generalized

recently to n dimensions by Titiev (1969). He shows that if we attempt
to represent similarity Jjudgments in an n-dimensional space vith an
Euclidean metric, then again necessary and sufficient conditions in
terms of a finite list of open sentences cannot bhe given. Titiev also
establishes a similar result for additive conjoiﬁt measurament in
n dimensions.,

Perhaps the best necessary and sufficient conditions yet found in
a single paper are in Scott (1964), but his examination of other cases,
including measurement of subjective probabilities or measurements of mass
or distance, shows that a simple finite list of necessary and sufficient
conditions cannot be found in any of the standard cases. In fact, it is

an interesting problem to ask for what cases other than those of simple

8
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ordering can necessary and sufficient conditions be found for finite
‘domains? A closely related example is given in the next section, but
I must confess that I cannot think of any other example that is of
genuine'interest.

One direction for further investigation in the literature is the
tightening of requirements on necessary and sufficient conditions. TFor
instance, by requiring that the measure assigned to the finite structure
be unique up to some classical group of transformations like the group
of linear or similarity transformations, we could increase the require-
ments for necessary =nd sufficient conditions and in this way find simpler
solutions in some cases. I cannot, however, at this time report any non-

trivial positive results in this direction.

5. Algebraic Theory of Error

The easiest place to begin looking at the problem of error is in
simple orderings. We may ask how the provlem of error can be introduced
without going to probabilistic considerations. In other words, what can
we say at the algebraic level about a theory of error combined with the
theory of order? It is pleasant to report that in this case a simple
sqlution is at hand. Surprisingly, the idea was not introduced in an
explicit way much earlier in the literature. The concept of a semiorder,
combining the ideas of error and order, was introduced first by Luce
(1956), and the axioms were simplified later by Scott and me (1958).
Axioms are stated for binary structures I =< A, P>, where the
intended interpretation of the relation P is that of strict precedence
or strict preference., The axioms are just the following three for any

X, ¥y w,and v in A:

‘
s i
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Axiom 1. Not xPx .

Axiom 2. If xPy and uPv then either xPv or uPy .

Axiom 3. If xPy and uPv then either wPy or uPw .

The intuitive idea of the axioms in the representation is that objects
not in the relation of strict precedence fall below a threshold of dis-
crimination. The theorem that can be proved is that in the finite case

the relation P may be represented as follows:

e P,

- e

(2) xPy if and only if £(x) > £(y) + ¢ , Wwith €> 0.

In reference to our earlier discussion, it also is pleasing to report
that these three axioms are necessary and sufficient for the kind of
representation just shown vhen - the set A is finite,

A natural part of the algebraic theory oi error is to disregard
considerations of order and to consider only the relation between sGujects
not discriminable, that is, objects that lie within the threshold of
diserimination. Iet I stand for such a relation of indiscriminability.
Tt is apparent that the relation I should be reflexive and symmetric--
the following two axioms are satisfied for any two objects x and 'y
in the basic set A of the structure:

Axiom 1. xIx .

Axiom 2, If xIy then yIx .
It is also clear what our intended representation for the set I is.

We want to find a representation of the following sort:
(3) xIy if and only if |f(x) - £f(y)] < € with €> 0.

One would expect that similar simple necessary and sufficient conditions

for the relation I could be found as in the case of the relation of

10
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negative. This recently was proved by Fred Roberts (1968) in his
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strict precedence given above. Once again, however, the answer is

Stanford dissertation. The result is similar to the one obtained
earlier for difference structures. No finite set of elementary open
sentences can characterize the necessary and sufficient conditions to

obtain tbe representation required by (3) In the case of the indis-

criminability relation, the heart of the proof lies in the fact that

indiscriminability cycles of ever greater size must be excluded. Iet
a connecting line segment indicate that the objects are indiscriminable.

We must exclude cycles of arbitrary size as shown in Figure 1. Excluding

D D WD G W AP G G G R e Wh EE AR D D G W WE W A W e

D WD D R D e G G WD D D WY we WD WS WD W .

such cycles means that in examining specific data on indiscriminability,
we cannot check on the existence of a representation function just by
looking, as we might like to, at pairs or triples or quadruples of
objects. We must check n-tuples of arbitrary size to make sure that

a representation exists.

Again, as in Scott's (1964) results for difference structures,
Roberts (1968) does give an infinite set of necessary and sufficient
conditions for representability cof relations of indiscriminability on
finite sets. The most important axiom schema is the one that excludes
the countable list of cycles of the kind described above.

The axiomatic situation with respect to algebraic theory of error
for more complicated measurement structures is not yet entirely satis-
factory. Some relatively complicated necessary and sufficient conditions

for the measurement of subjective probability with a semiorder replacing

11
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Figure 1. Cycles of indiscriminability.
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the ordinary simple ordering are given in the Stanford dissertation of
Zoltan Domotor (1969). Earlier nonaxiomatic work on semiorders in ex-
tensive'measurement can be found in Krantz (1967)0

These difficulties of finding a workable formulation cast doubt,
it seems to me, upon the practicability of applying algebraic theories
of error to real data. In fact, I know of no place in the experimental
literature where the ideas I have Just described are used in a systematic
way. Probabilistic methods or some other approach--for example, the
kind of thing that can be got from using linear programming techniques--
has been used in all the studies I know about. It seems to me that an
important problem for measurement theory is to determine at a deeper
level whether there are serious possibilities of actually applying the

algebraic theory of error to real experimental data.

4. Nonalgebraic Theory of Error

Standing apart from fundamental theories of error is & very sub-
stantial applied theory abogt the analysis c¢f error in measurement. It
is not possible here, in the short space that remains, to review this
literature, but certain parts of it are so close to problems of measure-
ment in the social sciences that I would be remiss not to mention their
connection to the topics I have already dwelt upon. Of the normal family
of general methods, none is more common than that of regression, and the

brief remarks I make here can be restricted to regression models without

any loss. The first thing to note about such models is the absence of
an axiomatic basis in the subject matter of the phenomena being measured.
As Professor Williams rightly emphasized in his lecture earlier in the

Seminar, the appropriate use of regression models is in *he exploration
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of an area and in the identification of relevant variables. The framework
of regreséion itself does not provide a natural setting in which to inves-
tigate the properties of the structures generic to the domain. As he also
emphasized, we desire to pass from regression models to structural models
that postulate more about the mutual relationships holding in the given
domain. The widespread use of regression models in every area of the
social sciences bears witness to two things--first, to the superficiality
as yet of much of our theorizing, and second, to the absolute necessity

of taking account of errors in the relationships we study. It typically
is the case in a regression analysis that the error term does not really
refer to errors in the measurement of the variables but rather to the
inability of the interrelationship among the independent variables to
account for variations in the dependent variable.

Still another way to state the matter is this. We can hope to find
underlying structural models that will justify, at least as a first
approximation, the regression models that are so easily applied to the
study of phenomena in almost every domain. I wogld like to stress the
subtlety of the relation that can exist between structural models and
regression models by mentioning very briefly some of my own work. We

recently have begun to apply probabilistic automata models to the anzlysis

of performance on arithmetical tasks by young children. These probabilistic

automata constitute structural models, I believe, in almost anyone's sense
of the term. We attempt to give a detailed processing account of steps
the students execute in applying an algorithm for finding a numerical
answer. The probabilistic aspects of the automaton are adjusted to data

to fit the errors made by students. Of course, if students made no errors
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whatsoever, the experimental study would be trivialized,and we could
represent their behavior by a simple finite deterministic automaton.
Under a natural set of assumptions about sources of errors, we can pass
from the automaton model to actual analysis of the data in terms of a
simple regression model by taking the logarithm of the probability of
a correct answer.

In a situation like this, the regression model is no longer one
used simply to explore relevant variables; it is an important statistical
tool in testing a rather elaborate underlying structural modei. The
theory of error built into the regression model is then directly useful
in fitting the automaton model to the experimental data.

I realize that I have said only the most superficial things about
nonalgebraic error theory, but it is necessary to bring discussion to
an end at this point.

There is one final thing that I would like to say as an expression
of my own feelings about measurement. As we explore a new area of science,
as we develop new insights into a familiar area, or as we improve our
techniques of measurement, we should use those technigues to identify
important variables and to move from that identification to assumptions
that go beyond the theory of measurement itself. Another way of putting
the matter is this. I think that all of us interested in the theory of
measurement should keep an eye cocked at all times for the more general
conceptual framework within which we are working and try to use the
results of measurement to deepen our understanding of that framework,

and even on occasion, totally to rebuild it. In the social sciences

15




especially, sound use of the theory of measurement can contribute as
much to matters of general theory construction as to the improvement of

our empirical methods of investigation and data analysis.
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