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AsSTRACT
This study is conc9rned with certain aspects of

approximation theory which can he introduced into '.he mathematics
curriculum at the secondary school level. The investigation examines
existing literature in mathematics which relates to this subject in
an effort to determine what is available in the way of mathematical
concepts pertinent to this study. As a result of the literature
review the material collected has been arranged in a structured
mathematical form and existing mathematical theory has been extended
to make the material useful to instructional problems in high school
algebra. The results of the study are found in the expository
material which comprises the ma-ior portion of this report. This
material contains ideas of approximation theory which relate to
elementary algebra. Also, included is a collection of references for
this material. The report concludes that certain techniques of
approximating a root of a polynomial by finding roots of a derived
polynomial can be presented in a manner which is suitable for courses
in elementary algebra. (DI')
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SUMMARY

It is a well-known mathematical principle that certain solutions

to an algebraic equation may be approximated by considering an equation

derived from the original equation by "ignoring" certain terms of the

equation. Estimates of the errors introduced by this sort of procedure

are given in advanced courses in mathematics. At present, mathematical

instruction at the secondary level does not include such principles.

This is true even though other areas of science instruction have need

for the basic concepts involved in this principle.

The fundamental question for this investigation is: Is there a

systematic body of mathematical knowledge which covers this approxima-

tion technique and is it possible to present this knowledge in some con-

venient form whereby a program of instruction can be established in

courses in elementary algebra at the secondary school level? The basic

task is to answer this question.

In order to answer this question it was first necessary to make a

rather extensive examination of the existing literature in mathematics

to find out what was already available in the way of mathematical con-

cepts pertinent to the study. A search was made of educational litera-

ture to determine if an attempt had been made to relate these approxi-

mation techniques to elementary algebra at the secondary school level.

The search of the literature revealed some sources of mathematical

information but no reference was found in the educational literature on

the subject of this study. The mathematical concepts were classified by

areas and those pertinent to the study were put in a convenient struc-

tured mathematical form for future use.

One significant observation was made about the level of mathemati-

cal concepts found in the literature. Almost all were at an advanced

level and those which might be pertinent to the study were found in re-

search journals in the period from 1900 to 1930. The trend in mathe-

matical research in recent years has not included the area of this spe-

cific study. As a result of this, many of the ideas presented in the

expository material in Appendix A had to be developed and/or extended

as original research.

The criteria used to determine if the concepts could be used in

elementary algebra and if these concepts were to be included in the

expository material were the following: Is it pertinent approximation

theory? Is it good mathematics which is readable by the"average" high

school mathematics teacher? Is it related to high school algebra in the

sense it depends upon strictly algebraic and/or geometric concepts? Is

the material presented in the expository section at a level that a high

school teacher can understand? Is it adaptable to what a high school

student knows about mathematics?

The results of the study are found in the expository material in



Appendix A. In this material one can find the pertinent ideas of approxi-

mation theory as related to elementary algebra. It is clear that the

basic question of this study can be answered and in the affirmative.

Certain aspects of approximation theory can be presented with some rigor

and/or in an intuitive manner to make an additional contribution to

mathematics education at the secondary school level. This contribution

has two significant aspects. One, it broadens the range of mathematical

concepts which are available at a given experience level. Secondly, it

provides the kind of mathematical experience which the applied sciences

can use and provides it early enough to be relevant to the first courses

in these sciences at the secondary school level.

A by-product of the study has been the additional insight into

mathematics obtained by the principle investigator during the course of

the investigation. There is no quantitative way to measure this, but it

has been significant.

The principle recommendation which should be made as the result of

the findings is the continuing of this work to the last and ultimate test

of its value. Some teaching units should be prepared and be used in an

experimental situation to determine the teachability of the concepts out-

lined in the expository material. The expository material is essentially

background for the units and should not be used as teaching material at

the secondary school level. It would be appropriate for prospective

mathematics teachers.



I. PROBLEM UNDER CONSIDERATION

Certain equations which arise from physical problems prove to be

difficult to solve because of the numerical computations which have to

be completed. Sometimes an approximation for a 6olution of the original

equation can be obtained by ignoring a given term of the equation and

solving the "reduced" equation. For example:

An equation such as

(1)
\IT
7 iloo

n3.1

can be transformed into the equation

(2)
d 6.2d d2

= 9.617 110o 1,210,000

A solution to (2) is approximated by solving the equation

(3)
6.2d

7 if55 = 9.61 .

Equation (3) is obtained from (2) b-- "ignoring" or deleting the term in

d2. The solution of (3) is approximately 111 and this comes reasonably

close to satisfying (2) and, hence, satisfying (1).

One might be tempted to conclude that this is an "accident" of the

equation involved but this is not the case. Physicists use the proce-

dure just described quite frequently and chemists are known to use a

similar procedure in the solution of some of their equations. Moreover,

there appears to be a desire on the part of teachers in these sciences

that some instruction take place in the mathematics curriculum on

precisely these procedures.

The fundamental question which should be answered is:

Is there a systematic body of mathematical knowledge which covers

such examples as just described (and consequently others) and is it

possible to present this knowledge in some convenient form whereby a

program of instruction can be established in courses in elementary

algebra at the secondary level?

The last half of the question depends upon answers to the first half of

the question and several other factors which do not readily lend them-

selves to research and analysis. These other factors, such as teachers,

curriculum, etc., are not necessarily included in this study. However,

a significant portion of the fundamental question can be answered if the

specific objectives of investigation are:
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1(a) to determine if any significant body of knowledge exists in approxi-
mation theory which could be made available for secondary mathe-
matics instruction, and

1(b) if such information is available, to systemize this information in
order that secondary teachers of science and mathematics might
have a significant and structured elementary mathematical model
to use in relating mathematics and science,

2. to extend this information in whatever manner necessary to make the
mathematical model more convenient for use at the secondary
level and

3. to present the various aspects of the findings of the first three
objectives in an expository form which would be readable by the
"average" secondary mathematics teacher.

One rather clear limiting factor imposed within the objectives just
noted is the relevancy of the material to be investigated to the secondary
school level. This means, in essence, that no mathematical concepts
should enter into the results of the investigation which do not have a
basis within high school Algebra or Geometry. Any approximation te,lh-

niques which depend upon the Calculus are automatically excluded from the

investigation. For a similar reason infinite series are also excluded
even if there might be a partial justification for including this ap-
proach on the grounds that one or two high school textbooks include some
discussion of the subject. What should be clear is that the results of

the investigation depend upon the "usual" (and perhaps traditional) con-

tent of the subjects of Algebra and Geometry. This limitation has par-
ticularly significant implications for educational applications of the
results of this study.

II. METHOD3LOGY FOR THE INVESTIGATION

The procedures followed in this study were essentially the same as
those of any scholarly investigation. These procedures are given here by
phases with appropriate comments on each phase.

Phase 1. An extensive examination of existing literature related to

the general area of approximation theory was made. This was done in order

to determine what is already known in the area and what might be appro-

priately related to this investigation. Library resources, such as the

Educational Index, were examined for references to the topic. Books in

the areas of numerical techniques, engineering applications, computer

sciences and any area which might make use of approximation techniques

were examined for suitable materials and for references to other possible

sources. The mathematical journals, both pure and applied, were examined

for papers and references on approximations. Members of the mathematical

community were consulted for sources of information and the free ex-

change of ideas with their members has been most helpful during the in-

vestigation.
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Phase 2. After the material and sources of literature had been
collected, it was necessary to examine each reference found to determine

if it was related to the problem and if it might be useable material.

This was clearly a judgment decision determined by the previously men-

tioned specific objectives of the study. It was not always clear, at

that point, that some source was necessary for future use. This was

minimized by the establishment of certain criteria for selection of

materials. These criteria were established before the investigation
actually began and are enumerated here. In many instances during the
search of the literature a source was rejected at that point because it

obviously failed to meet these criteria.

The criteria used ad(the following questions:

(a) Is it pertinent? Does it really belong in approximation theory?
(Some material was related, but quite secondary in nature.)

(b) Is it good sound mathematics? Is it readable by the "average" high

school mathematics teacher? (Much periodical literature in mathe-

matics is presented so abstractly only another research mathema-

tician can read it.)

(c) is it related to high school Algebra? Does it depend upon strictly

algebraic and/or geometric concepts (deducible from these subjects

at the high school level)? (Some methods depend upon Calculus and

were not specifically suited for this project.)

(d) Is this material at a level that a. high school teacher can unde -

stand? (This means making a decision on what most teachers know

and what their training has been. It is clear from various
studies that this is not as high as desired and for this study to
have any impact or application it must produce something which
most teachers can study and, hence, learn.)

(e) Is it adaptable to what a high school student knows about mathe-

matics? This follows naturally from (d).

(f) If more than one technique is available to accomplish some approxi-

mation procedure, which one best lends itself to teaching and

learning theory?

These criteria were adequate for the job intended, except the last

one was never actually used. The reasons for this are given in the

findings.

Phase 3. The next step was to order the material by areas of appli-

cation. As it turned out this was essentially done concurrently with

Phase 2, and frequently as early as Phase 1. For instance, to order or

group desirable information on procedures to obtain approximations to

roots of an algebraic polynomial into one area called for all material

on. Horner's rule, Newton's method and others to be classed together as a



certain general approximation concept. In contrast, the approximation of

a solution of a quadratic equation by solving a linear equation obtained

from the quadratic constitutes an entirely different order of approxima-

tion concepts. The areas of grouping were somewhat arbitrary but, gene-

rally speaking, were determined by what the investigators found in the

literature.

Phase L. The next phase consisted of arranging the accumulated in-

formation in some conveniently structured mathematical form. This was

essentially a matter of developing the mathematical aspects of existing

theory into a logically coherent system which can be used by teachers of

secondary school mathematics. In some instances this was easily done due

to the circumstances but in others this was possible only as a result of

work done during Phase 5.

Phase 5. Existing mathematical theory was extended, wherever possi-

ble and where needed, in a manner to make the system of Phase 4 more com-

plete and useful in application to instructional problems in Algebra.

Some very large gaps were noted during Phase 4 in certain areas. While it

was not anticipated that significant mathematical research would be needed,

it turned out that the literature left significant gaps in the mathematics

(which may be filled by information known or assumed by others and not

available to this investigation). These gaps were filled by mathematics

generated by the principal investigator.

Some aspects of this phase began as early as Phase 4 and extended in-

to Phase 6, with a great deal of this kind of activity in the last phase.

Phase 6. The last step of the investigation was the preparation of

an expository presentation with adequate reference to explicit mathema-

tical development which covered the structured system developed and ex-

panded in Phase 5. The presentation was prepared in a form consistent

with the objectives of the study and special emphasis was placed upon the

level of abstractness of the material. The expository development is

found in Appendix A of this report.

FINDINGS AND RESULTS

Since the major portion of this investigation is the preparation of

some expository material, it would be proper to include that material at

this point. However, due to the structure of the expository material, it

will be found in Appendix A, along with the collection of references for

this material. However, there are several observations which are perti-

nent to the investigation as a whole and these are made at this time.

A review of the literature reveals two rather significant facts.

First, there is a sizeable body of knowledge available in various places

about approximation theory. Nearly all of this is in advanced texts,

journal articles and technical reports. All of these sources are

available to mathematicians who regularly require their use and are

versed in tY. general area. A good deal of the recent information is

frequently linked to numerical analysis and the computer. One also
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finds the application sources are frequently the best sources of
readable mathematics in this area. This suggests that most mathematics
is so abstractly written and presented that only a relatively small seg-
ment of the population has an opportunity to digest and use the informa-
tion presented in such form.

The second significant fact obtained from the review of the litera-
ture is that there is no source on approximation theory which presents
in an elementary fashion those aspects of approximation theory which are
used in moderate amounts by the various scientific disciplines found in
secondary school courses of study. This was somewhat anticipated and was
a motivation factor of this investigation. However, it was anticipated
that some sources, maybe obscure, would be found, This was not the case.
In fact, the search for this kind of material continues, even as the
final report is being prepared.

Another related observation was the recognization that mathematics
changes rather rapidly. Prior to 1935 a great deal of attention was de-
voted to algebraic polynomials and their solutions. By 1940 there are
almost no references in periodical literature to such matters and fewer
references are to be found since then. The general area of mathematics
which had its central theme in courses called Theory of Equations has
essentially disappeared or been absorbed by other areas of mathematics.
This shift in interest by mathematicians probably contributed to the
shortage of useable material on certain topics in approximation theory
and forced the creation of certain theorems to fill gaps left by this
shift. Their theorems may not be as original as some but no references
have been found for them. The theorems are identified in the expository
material by a D in the theorem number, such as Theorem D2.

IV. CONCLUSIONS AND RECOMMENDATIONS

The conclusions of the investigation are to be found in the exposi-
tory material as this was to be the major task of the study. As has been
previously indicated the material is not as extensive as had been antici-
pated and there might be an aspect which could have been included, but
the expository material is representative and respectable mathematics.

There are some recommendations which should be made as a result of
this study and all are within the capability of educational endeavors.
First, and not necessarily dependent upon this study but obviously
recognized in carrying out the investigation, is the need for expository
materials in mathematics which translate some phases of the subject into
a form which high school teachers can use. This project has attempted
to do this for an area of mathematics (applied in nature) and there are
many and perhaps more important areas which need the same treatment.
For instance, the social sciences are becoming more mathematical as
these areas develop tho science aspect of their endeavors. The present
high school mathematieF, is almost totally mathematical or physical
science orientated. If rahe other areas are important to our society,
there should be some literature which describes these relationships and
which suggests how it might be adapted to existing patterns of curricu-

9
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lum and instruction. Examples of problems from economics, psychology,and

other disciplines are appropriately a part of mathematics instruction and

expository material would seem to be the best avenue to get these ideas

into the hands of teachers.

Second, a natural consequence of this study would be the preparation

of suitable material for lessons for high school students to use. This

is essentially the adaption of this report to a practical situation.

This set of lessons should be tested in a classroom situation to deter-

mine the success of the whole idea. Mathematically, there is no reason

why it cannot be done. Perhaps there are non-mathematical reasons why
approximation theory of any sort has no place in secondary school mathe-

matics, but none are now known.

Finally, the investigation revealed the lack of material at any

level on the general area of "theory of equations." It would seem that

in our rush into "modern mathematics" we may have left out significant

educational concepts which ought to be restored. It is unlikely that the

college and university mathematics courses will include these ideas and

perhaps a major portion of it can go into high school mathematics. It is

mathematically feasible and has already been done on an experimental

basis.

10



Appendix A

Expository Material on Approximation Theory
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I. Introduction.

The general area of approximation theory is qu
to be adequately covered in a publication of this
are aspects of this general theory which are quit
school mathematics and on more than one occasion
DO) science teachers have suggested that some
might be quite appropriate for the curriculum
early stage in the secondary schools. The q
available and appropriate is essentially an
the literature is concerned. Moreover, if
appropriate, can these portions be organi
mathematical sense and which is strictl
secondary school mathematics?

The purpose of this material is
to these questions and to present s
which might be appropriate for sec
shall do in the following section
of mathematics and some types o
present the mathematics of one
rems and facts. Most of the
place and they only need to
There are included certain
to fill gaps in the area.

One very important
of this material. It

teacher can use with
enough mathematics s
The latter restrict
reasonably good a

II. Histo

ite broad, too broad
size. However, there

to pertinent to secondary
(for example, see Bowen

portions of this material
in mathematics and at an

uestion of what portions are
unanswered question as far as

there are portions which are
zed in a manner which makes good

y dependent upon a bare minimum of

to provide some affirmative answers
ome aspects of approximation theory
ondary school mathematics. This we

s. We begin by examining some history
approximation. Following this we will

of these types by citing pertinent theo-
theorems are already in the literature some-

be assembled into a meaningful presentation.
theorems which were not found but were needed

principle was kept in mind in the presentation
should be material which the "average" high school

relative ease and it should be ,based upon elementary
o that it could be adapted to a classroom situation.

Lion essentially means a year of algebra and maybe a
e.quaintance with graphing.

rical Background on Solving Equations.

In this section we will give a very brief review of the historical
development of the solving of equations and in particular, the solving of
the quadratic and cubic equations. The purpose in reviewing the back-
ground of these equations is to recognize that approximations played an
important part in the early history of solving of equations, and to recog-
nize that this process was a long, evolutionary one. We shall not be
complete in our presentation, but will touch upon only the significant
highlights of that history. This will be accomplished by first treating
the quadratic, then the cubic and finally all other degrees of algebraic
polynomials.

1. The Quadratic Equation. The earliest solutions of problems involving
equations were obtained by trial. At least no written record has been

found to indicate otherwise. By 1500 B.C. the Egyptians (as described in
in the Ahmes Papyrus) were able to make a trial guess and adjust the re-
sults of the trial guess in a manner which gave the correct solution of

12



the equation under consideration. This technique was called the "Rule
of False Position" and the procedure was used by subsequent students of
mathematics as late as the 1700's.

A similar technique called the "Rule of Double False Position" was
used rather extensively for many centuries. This technique, as well as
the other one, were subsequently replaced by our modern techniques but
only after the algebraic symbolism was developed by Vieta and others.

A study of the history of early mathematics (before 1600) reveals
that most solving of algebraic type equations was done by trial and
error with the initial step being to make a guess or approximation of the
solution and make subsequent adjustments on the basis of the first ap-

proximation. This procedure was applied to all degrees of polynomial
equations which arose from the problems to be solved.

In the Berlin Papyrus (c. 2160-1700 B.C.) one finds the first known
solution of a quadratic equation. The problem reduces to solving the

equations

x2 .tY2 ir 100 and Y s"

3 x .

The solution technique reduces to a simple case of the "Rule of False

Position."

The Greeks were able to systematically solve quadratic equations by
geometric means. Euclid (c. 300 B.C.) gave solutions and procedures to
solve problems such as

xy = k and x - y = a

and a(a - x) = x2.

The Hindus may have been able to solve quadratic equations by
500 B.C. although no record of the method of solution has been found.
By 500 A.D. we do find a rule, relating to the sum of geometric series,
which shows that the solution of the quadratic equation was known, but
we have no rule for the solution of the equation itself. About 628 A.D.

Brahmagupta gave a definite rule for solving a quadratic. Smith [19]

gives the steps of solution for an example of a quadratic (x2 - 10x = -9)

which turns out to be, in modern terminology,

-9.1 + (-5)2 - (-5)
x = m 9

1

One might note the similarity of the solution to the quadratic formula
except he found only one solution, i.e., the positive one. This was
quite typical of all early attempts to solve equations in that only posi-
solutions were acceptable.

13



Mahavira (c. 850) had a way of solving quadratics for a positive
root, but did not write it out. However, an analysis of his solution
leads one to believe he knew substantially the modern rule for finding a
positive root of a quadratic.

The Hindu Rule was first given about 1025 and was widely used in
India.

Al-Khowarismi (c. 825) gave two general methods of solving quadra-
tics of the form

x2 + px q .

Negative roots were neglected. Omar Khayyam (c. 1100) also gave a rule
for solving the equation

x2 + px = q .

The techniques of solution mentioned above are typical of ways of
solving quadratics until about 1600. Solutions for other higher degree
equations were essentially based upon an approximation and a subsequent
adjustment, as in "Rule of False Position".

In 1631 Harriot gave the first important presentation of the solu-
tion of a quadratic (and other equations) by factoring.

Vieta (c. 1600) replaced the geometric method of solving quadratics
by an analytic method. The solution of the equation x2 + ax + b 0 was
given as

x 1 1- -fa:Ey a - 4n .

The symbolism introduced by Vieta and others of his time made possi-
ble such a representation and a closeness to the complete solution of any
quadratic. It is easy to see that the trial and error stage is being re-
placed by a systematic and complete method of solving a quadratic.

2. The Cubic Equation. The earliest known (c. 350 B.C.) cubic equation
was of the form x3 = h although same Babylonian tablets give tables of
cubes about two thousand years earlier. The problem of the duplication
of the cube (said to have been known by Hipprocrates (c. 160 B.C.)) de-
pends upon the finding of two mean proportionals between two given lines.
This means to find x and y in the equations

a x
X y b

Archimedes referred to a problem of cutting a sphere by a plane so that
the two segments shall have a given ratio. The problem reduces to the
proportion

14



2
c x c

x2

and this produces the cubic x3 + c2b = cx2. Eutorius (c. 560) tells how

Archimedes solved the problem by finding the intersection of two conics.

Diophantus apparently solved the equation x3 + x = 4x2 + 4, possibly by

noting that x(x2 + 1) = 4(x2 + 1).

Several Arabic mathematicians, notably Almahani (c. 860), Tabit ibn

Qorra (c. 870), Abu Ja far al-Khayin (c. 960) and Alhazen (c. 1000) dis-

cussed the cubic and at least one found solutions to certain equations

in a manner similar to Archimedes.

Omar Khayyam (c. 1100) specificed thirteen forms of the cubic that

had positive roots. This is a distinct advance in general theory but a

long way from complete solutions for any cubic. However, he did expand

the number of cubics of certain forms which could be solved by the

"intersection of conics" techniques. Most Arab writers believed that

the cubic equation, in general, was impossible to solve.

From about 1200 to 1500 several writers in western civilization

mentioned the cubic but were unable to solve all cubics, although several

special cubics were solved by special techniques, such as factoring.

The real interest in the cubic lies in the work of Cardan and

Tartaglia.. History does not clearly describe who should receive the

credit and the stories surrounding the Cardan-Tartaglia controversy make

interesting reading. It is clear that the solution for the cubic

x3 + ax2 = c was obtained by 1535 and very shortly after that a method

of solution for the cubic x3 + bx = c was found. Cardan in his Ars Magna

(1545) showed how to transform the first form into the second and suc-

ceeded in transforming the general cubic x3 + ax2 + bx + c = 0 into a re-

duced equation type xi + px = q. This he already knew how to solve and,

therefore, every cubic was solvable. Cardan's examples showed positive

and negative roots, the latter being included for the first time.

Vieta (1615) subsequently found the transformation which reduced

the general cubic to the form y3 + 3by = ?c and, by a second transforma-

tion or substitution, arrived at a form z0 + 2cz3 = b2 and the latter

was solved as a quadratic in z3.

Again history reveals the struggle to solve an equation and the

subsequent success some two thousand years after the known existence of

the equation. The cubic equation can be solved although some of the

solutions involve complicated radicals and these are frequently approxi-

mated for ease of computation. The application of a cubic to a physical

problem almost necessitates the approximation in order to have a suita-

ble answer to use in a physical sense.

15



3. The Quartic Equation. One should probably suspect that any conside-

ration of a quartic equation would be minor during the time the cubic was

unsolved. History reveals this to be the case. One can find only slight

mention of the Quartic prior to the time of Cardan. The first serious

consideration of the Quartic came in 1540, almost immediately on the

heels of the solution of the cubic.

A young Italian student by the name of Ferrari solved the problem

by reducing the equation to an equation involving a cubic. Cardan did a

great deal to clarify the process and spread the knowledge of the method

in his book Ars Magna.

Not all solutions were necessarily included as negative ones were

frequently ignored. Vieta (c. 1590) and Descartes (1637) improved the

system of solution and the modern form is due to Simpson (1745).

4. The Quintic Equation. Euler found a method different from Ferrarils

for reducing the solution of the general quartic equation to that of a

cubic equation. He attempted, to apply this technique to the Quintic in

hopes of reducing the solution of, it to the solution of the quartic and

thereby solve the quintic. However, he failed as did other notables in

the world of mathematics. These failures prompted Ruffini (1803, 1805)

to try and show that the quintic could not be solved by such means.

Abel and Falois eventually resolved the question. Galois (1846)

essentially answered the total question in his posthumously published

works. Abel had earlier shown (1824) that the roots of the general

quintic cannot be expressed in terms of its coefficients by means of

radicals. This we are able to do for the quadratic, cubic and quartic.

Intuitively it would seem possible to be able to do the same for the

quintic, but it is not.

5. Solutions of other equations. The question of higher degree equations

does not seem to have interested mathematicians of western civilization

until quite late. The examination of the equations of higher order takes

two major directions. The first is to find out from the equation all you

can about the roots without actually solving for them. (We often do this

for the quadratic by looking at the value of its discriminant.) Cardan

may have known about the Rule of Signs which tells how many positive

roots were possible. Harriot (1621) may have made the formulation of the

Rule oftSigns and Descartes (1637) certainly gave such a Rule.

The second direction for the solution of equation of higher order

was to approximate solutions and by some process of iteration subse-

quently obtain better approximations. The Chinese scholars of the 13th

and 14th centuries were outstanding in this area and this seems to be

China's particular contribution to mathematics. In 1247 Chin Kiu- shao's

writings reflect a high degree of perfection in this aspect of equation

solving and equivalent form of Homer's method (1819) is given.

Fibonacci (1225) attempted some improvements as did Vieta (1600).
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Newton (1669) simplified Vieta's work and perfected an approximation

technique. Horner (1819) further simplified Newton's work.

It is interesting to note that Newton's method was replaced by

Horner's method (as can be observed in any of the Theory of Equations

books) because of, the ease of hand computation. However, with the ad-

vent of computers, some of the earlier methods are better ones to use

because they adapt easier to machine language. Progress does not always

make old things obsolete.

6. The Fundamental Theorem of Algebra. Perhaps the most interesting

problem related to the 'solution of equations was the apparent disregard

of negative solutions long after techniques were available to find them.

It is not too difficult to understandthe ignoring of complex solutions,

as concepts of complex numbers had not been fully developed. However,

there came a time (c. 1608) when mathematicians began to assert that an

equation of nth degree has exactly n roots. It was restated at various

times without proof and Gauss (1799) gave the first rigorous demonstra-

tion of the theorem.

The theorem, together with the techniques of the solving of linear,

quadratic, cubic and quartic, completes the major theory of equation

solving. For the quintic and others of higher order, the theory is not

quite as complete, but complete as mathematically possible.

7. Review and Summary of Historical Background. We have just sketched

the basic highlights of the solution of certain types of equations. It

should be noted that all early attempts at any particular type of equa-

tion were essentially based upon approximations (and, in some instances,

adjustments on these approximations). After rather lengthy periods of

time, solutions were found for just one, then another and then another

type of equation. Only after the symbolism became fully developed does

one find significant contributions in this area.

For those equations
mathematicians seemed to
some degree of accuracy.
loped to improve a given

which no techniques of
be able to approximate
Subsequently, certain

approximation, usually

solution were found,
roots of equations with
techniques were deve-
by an iteration process.

In recent times the users of mathematics, i.e., physicists,

chemists, etc., have begun to solve certain equations by deleting some

term of the equation and solving the resulting equation. This is fre-

quently done even when formulas are available to solve the starting

equation. This is essentially an approximating technique and tends to

indicate a cyclic treatment of the subject as far as history is con-

cerned. It also suggests that a second stage should follow at some fu-

ture time and a general theory be founded to justify the procedures and

approximations now being used. In what follows we partially provide an

indication of what this second stage should contain.
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III. Types of Approximations.

When one begins to examine approximation theory it becomes clear that
there are different types of approximations which may arise from or be
related to different circumstances. In this section we will examine a
few different types which will serve to illustrate different aspects of
approximation theory. Some are elementary and have already been seen even
by the beginning high school student.

1. Approximating a number by another number. In the elementary
school arithmetic one finds the establishment of a decimal representation
of the rational (and sometimes irrational) numbers by giving decimal
equivalents to certain fractions. Thus

1
.5

1
= .25

= 0.25

The list is usually limited to the more common (in usage) fractions.
However, we may see statements like this:

or, in some instances,

7 = .333

2
-5 = .666

22

T or = 3.14 .

As every good student of mathematics knows, these last statements are not
actually correct. The fraction 1 is not .333, and n is neither 22 nor 3.14.

7 7

1
What should be properly written is a statement that

3
is approximately

.333 or that n is approximately
22

or 3.14. This is sometimes written

with a variety of symbols for the equality but a ". or me distinguishes
these examples from the first ones. Thus we may write

1
.333

and n. ---
22

or n 3.14 .

7
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What we really mean in these instances is that .333 is a decimal

1
whose value is reasonably close to the value of 3 and that 3.14 is

reasonably close to value of v. This is usually done in computational

situations either because we do not know the exact value of some number

(v for instance) or because we are willing to settle for an answer

reasonably close to some number. For example the circumference or area

of a circle with radius of 10 can be precisely given by the formula

which in this case bec

C 2vr

and A = vr2

ome

C = 20v

and A = 100v .

If, because the problem depends upon physical data or because we want to

know approximately what C and A are,, we may use an approximation for it

and obtain

Thus 62.80
100v.

C cts 20(3.14) or C ti 62.80

and A pe 100(3.14) or A Av., 3114

and 314 become approximations for the exact values 20v and

When public officials say 160 million Americans watched the recent

walk on the moon they are approximating (actually an estimate or guess)

the actual number who did watch. When an engineering student counts the

number of steps between two points and multiplies this by 3 he determines

approximately the number of feet between the two points. These are but

two instances in which the actual number involved is not known but is

approximated by a number, the closeness of the approximation being deter-

mined by the actual amount of information exactly known. Each step of

the engineering student is not exactly three feet in length and the com-

puted distance varies as the length of the step. Sometimes the exact

value of a number could be stated, but we are satisfied with something

which approximates it. It may have rained .475 of an inch but most

people would probably say it rained one-half of an inch, being satisfied

with the message one-half conveyed in the conversation.

In all these instances we see an actual value of a number being re-

placed by a number which is approximately correct. For the fraction

1 we might use .3 or .33 or .3333, depending on precisely how close we

3
1

.wish.
3

to approximate

2. Approximating a root of an equation. The concept of finding a
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number which approximates another number is also found in other circum-
stances. If the second number is the root of an equation, i.e., a number
which satisfies some mathematical expression, it is frequently possible
to use the equation or parts of it to determine an approximation for one
of its roots. This is similar to finding an approximation for, say
1 but the significant difference is that we have an equation and the
3

equation becomes the source of approximations whereas one must guess or

develop a source of approximations for Ire . There is no mathematical

equation which would determine how many people watched the walk on the
moon. In the case of the equation, we have a basis for making an approxi-
mation. In section II we observed how early attempts to solve equations
began with guesses and the guess was refined by making use of the equa-
tion. In the case of the Rule of False Position a refinement produced
the correct number and not just an approximation. The equation itself
was used to determine what the second approximation should be. In the
case of Hornerts Method (which we will describe shortly) the first ap-
proximation for the root of an equation, together with the equation, prl
duce a second and better approximation. There are several techniques
which are similar and the computer makes it possible to repeat the pro-
cess as long as one wishes and one can refine the sequence of approxima-
tions to obtain as close an approximation as one wishes.

We give a description of Horner's Method as a device to approximate
a root of algebraic equation*. First, a real root of the algebraic equa-

tion P(x) = aoxil + a
1
xn-1 + a2xn-2 + + an = 0 must be isolated, that

is, it must be determined that a root lies between a and b, a < b.
This can be done by several techniques, but the most elementary way is to
find (guess at) two values a and b such that P(a) is opposite in sign
from P(b). If this be true then there exists c , where a < c < b such

that P(c) = 0. Hence, c is a root of P(x) = 0.

Second, the equation

(1) P(x) = aoxP + aixn'l + + an = 0

is now transformed by replacing x by x - a, and this diminishes the
roots by a . We now have a new equation.

( 2 ) P1(x) = ao21 + blxP-1 + b2xP'2 + + bn = 0

with a root of this equation between 0 and (b - a). We now determine two

more values c and d such that 0 < c < d< (b - a) and P (c) is oppo-
site in sign from P1(d). Now repeat the transformation again. Each new

*We assume for all discussions that the algebraic equations are poly-
nomial equations with real coefficients.
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step of the sequence, 0 < o < x< d< (b a) 1 produces numbers

and d which are closer to the root of Pi(x) = 0 than previous approxi-

mations, and, if b a m 1 in the beginning, the approximations get

better much quicker in this process. Fortunately, this process can be

done by using synthetic division and the computational work is con-

siderably reduced by this procedure.

Newton's Method (1676) is a similar procedure and it has an advan-

tage over Horner's Method in that it can also be applied to trigono-

metric, or logarithmic, or other simple functions. Horner's method is

strictly reserved for algebraic polynomials with real coefficients.

The technique of successive approximations where each new approxi-

mation is a refinement of the preceding approximation is an excellent

technique to apply to the task of finding a root of an equation. Ber-

noulli's method of approximating the largest root of the equation

X3 111 ax2 + bx + c

with real coefficients is one such example. The method uses a set of

recursion formula such that successive values for a variable An(a,b,c)

when compared with the preceding value An_1(a,b0c) gave an approxima-

tion for the absolute value of the largest root of the cubic, if that

root were real.

T. A. Pierce f13] gave a recursive technique for finding the least

root of a cubic by developing Bernoulli-type formulas for approximating

the absolute value of that root, if it is real. The formulas are strict-

ly algebraic in nature, but rather complicated to deduce. Moreover,

other techniques seem to be more elementary and cover more types of

equations than just the cubics.

Other techniques employing the method of successive approximations

can be found which use the equation and various derivatives of the poly-

nomial function. These techniques employ mathematics beyond the secon-

dary school level and, therefore, are not appropriate for this investi-

gation. As an example of this type involving the derivative, see Ford

C71.

Other techniques were developed in the twenties and thirties for

solving certain polynomials. For example, Kennedy ro showed an alge-

braic treatment for polynomial equations of a certain kind via a loga-

rithmic process to find approximations for the roots of those certain

polynomials. Running rio gave techniques for finding real roots of

cubics and quartics from graphs of certain straight lines which depended

upon the discriminant of the equation. Grant 18] gave still more infor-

mation on how to solve quartic equations by graphical means.

This brief summary of some pertinent papers on roots of polynomials

shows the search for various techniques to simplify or avoid laborious
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calculations necessary in finding approximations to roots of an equation

by methods such as Hornerls Method. An entire period of mathematical

work has been devoted to this kind of research. In some ways, the compu-

ter has made some of this work obsolete, while making other aspects of it

even more valuable.

3. Approximating a function by another function. One of the most

widely used approximation procedures in analysis and applied mathematics

is the procedure of approximating some function by another function.

This technique is particularly useful if the original function is compli-

cated and the approximating function is simpler. We are not mathemati-

cally able to find the values of certain functions, but we are able to

use these functions because we cati approximate them by ones which we can

evaluate.

A classic example of this sort of a procedure is given by a very im-

portant theorem from analysis. The first Weierstrass Approximation Theo-

rem [11 asserts that

if f(x) is a function which is continuous in the

finite interval Ca0b3 then for every e > 0 there exists

a polynomial Pn(x) of degree n n(e) such that the in-

equality

If(x) Pn(x)I s e

holds throughout the interval ra,b3.

The theorem is really very powerful for two reasons. First, any

continuous functions on a closed interval can be approximated by a poly-

nomial of degree n , where the degree n depends only upon how close

one wishes to approximate the function. When we say any continuous func-

tion, this includes an extremely large collection of functions which are

riot polynomials. It would include, except for certain instances or for

certain levels of definition, the logarithmic, trigonometric, hyperbolic
and magyothers.
The function f(x) =

1 -x
on [01.9] can be approximated by a polynomial in1

The functions which can be approximated seem endless, except they are all

continuous on [alb].

Second, these functions are approximated by a single kind of func-

tion, namely the polynomial. The polynomial function is also a con-

tinuous function and, perhaps is the most used class of continuous func-

tions. It is clearly simple, and it is the first kind of function dis-

cussed in secondary school mathematics. It is a well-defined class of

functions with many facts already established and well-known. There is

no general class of continuous functions which is simpler than the poly-

nomial class, and at the same time, has so much known about it.

Another theorem which illustrates this type of approximation is
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WeierstrassIs Second Theorem [1] and it says

If F(t) is a continuous function of period 2u, then

for every e > 0 there exists a trigonometric sum

Sn(t) 811 ao + (ak cos kt + bk sin kt)
k -i

where n = n(e), such that

1F(t) Sn(t)1 e

for all t .

This theorem is not as general as the first theorem but illustrates

a similar kind of procedure. Here periodic functions are approximated

by a function of sines and cosines. The two observations about the first
Weierstrass Approximation Theorem would also seem to be correspondingly

appropriate for the Second Weierstrass Approximation Theorem.

Both theorems are existence theorems in the sense that an nth degree

polynomial exists which approximate an f(x) on [a,b]. It may be very

difficult to actually find such a polynomial. However, it turns out that

Bernstein [3] provided a subclass of polynomials which would do the job.

The Bernstein theorem states that

If f(x) is continuous on [0,11, its Bernstein
polynomials Bn, where

n

Bn(x) <11ni )(1 xko. 20n-k (n
k
)

0 k
kt(n - kg

converge uniformly to it on [0,1] as n 4 0.

Thus we have a specific collection of polynomials which are known and

which can be used to approximate any continuous function on [0,1].

it. Approximating Roots of One Function by Roots of Another Related

Function. The last type of approximation technique to be mentioned is

not obvious and, as we shall see later, has its difficulties and

limitations. We shall describe the technique by using the example men-

tioned in section I. SuppoL,, we drop a stone into a well and measure

the time from releasing the stone until the sound of the stone hitting

the water reaches our ears. Suppose this time is 3.1 seconds. Then the

time for the stone to fall can be written as ti and the time for
1

the sound to return to the ear as t
2 1100

where 1100 ft. per sec. is
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the assumed velocity of sound in air. Thus the total time elapsed is

(1)
d 3.1

tl t2 TAT 117%

If we want to know the depth of the well, we must solve this equation for

d . To do so, we use the technique of squaring both sides to eliminate

the square root and we obtain

(2)
d 6.2d d2

16 1100 1,210,00
9.61

This is a quadratic in d and can be solved by the quadratic for-

mula but the computations involved are going to be lengthy. So we look

for a way out. Ige observe that the well could not be very deep because

the two times, t1 and t2 have to be small and, therefore, d/1100 is rela-

tively small. As a consequence d2/1,210,000 would be very small relative

to the other terms of (2). If we ignore this term, or consider only

(3)
d 6.2d

ilTX5 ' 9.61

we find a new equation which can be solved for d . Incidentally, the

solution of (3) for d certainly requires less computational work than

solving (2) for d

Solving (3), we find d = 141. Checking this in (2) one can verify

that it approximately satisfies (2) and therefore, can be verified as

satisfying (1). So a solution to our original problem has been obtained.

The basic technique used in the solving of this problem is an ap-

proximation. We found equation (2) which needed to be solved. We ob-

tained equation (3) from equation (2) by deleting a certain term. The

solution of equation (3) is an approximation for a solution of equation

(2). Thus we are actually approximating the roots of one function by the

roots of another related function. The related function must in some way

depend upon the original function, or in the case of polynomial equations,

depend upon the coefficients of the polynomial.

It would appear, at first glance, that this technique might be ques-

tionable. In fact, it is not above a blemish or two, but it works in a

surprisingly large number of cases. We shall explore this kind of an

approximation in some depth in later sections. It is this procedure

which the science teachers would like to see developed in our courses in

algebra.

5. Comments. If one looks at these four types of approximations

one observes that they all involve finding one number which approximates
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another number. The basic difference is where does one get the informa-

tion to make an approximation. In the last three types described there

is given something about a desired number, i.e., root of an equation,

etc., and the equation has been the basic source of information for the

approximations. In sections 2 and L. we did quite different things with
the same information, thus providing different approximation procedures.

IV. Some Theorems Related to A22roximations.

1. Introduction. In this section we shall cite some theorems which
have some bearing upon roots of polynomial equations. These are not to

be considered all that could be cited here, but are representative of
those already available. A few will be essential for later sections and
many illustrate related kinds of information. Some are too advanced to

be considered at the secondary level, but those which can be proven by
elementary algebraic means are proven. The proofs are included merely

to illustrate their adaptability to secondary school mathematics.

2. Locations of Roots of P(x) = 0. A short reference to the loca-

tion of roots of a polynomial equation was given in the historical back-
ground. We would like to expand on this here by citing several different
types of locating theorems and concepts. At least one is elementary

enough to be intuitively justified at the secondary level. In all the

examples selected one determines something about the roots by examining

the coefficients of the polynomial or by examining certain computations

entirely dependent upon these coefficients.

Mathematically, we are justified in doing this because the coeffi-

cients of any polynomial equation can be expressed in terms of the roots

of the equation. For example, a quadratic equation with roots a and

b can be written as

(x a)(x - b) = 0

Multiplying and collecting terms we have

x2 - (a + b)x + ab = 0 .

Thus any quadratic of the form x2 - px + q = 0 has its coefficients
uniquely determined by the roots of that quadratic. All quadratic equa-
tions may be transformed to this form by dividing by the coefficient of

x2, if it is not already 1.

A similar argument for a cubic equation produces a form

x3 - (a + b + c)x2 + (oh + ac + be )x - abc = 0

where a, b and c are the roots of the cubic. Likewise the nth de-

gree polynomial equation has as its corresponding form

xn - (al + a2 + a3 + an)xn'l + al a2 a3 an = 0
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where the signs depend upon n being odd or even.

Thus, every coefficient of any polynomial P(x) = 0 is a function of
the roots of that equation and the coefficients should determine some-
thing about the location of the roots of P(x) = 0. In what follows the
equation P(x) = 0 shall be understood to be

(1) P(x) = xn + aixn -1 + a2xn -2 + an = 0

unless otherwise stated with ai being real numbers.

We take as a first example of location of roots the RouthHurwitz
criterion. The Routh-Hurwitz criterion provides an algebraic manipula.
tion of the coefficients of a polynomial to find out if the roots are to
the right or left of the y-axis. Given the polynomial equated to zero

P(x) = xn a
1xn-1 a

2
xn-2 + an = 0

form the Hurwitz determinants D1, D2,...pn given by

Dk

k = 1,2, ...,n

a1 a3 as

1
a2

O
a2k1

a2k-2

0 al a3 a
2k-3

0 1 a2
a2k-14.

000 000 000 000

0 0 0 0

where the coefficients with indexes larger than n or with negative in-

dexes are replaced by zeros.

A necessary and sufficient condition that there be no zeros of P(x)
= 0 to the right of the y-axis is that all the Dic's be positive° For
each determinant with a negative sign there is a root to the rjjht of the
y-axis. Further, if Dn is the only one which is negative, there is a
single root to the right of the y-axis, and this root must lie on the
x-axis. If Dn is zero, the single root is at the origin. It is clear
from this statement, which is given without proof that one can determine
something about the character of the roots of ?(x) = 0 without being able
to actually find the roots.

Van Vleck [151 proved a theorem which further aids in the location
of the roots of P(x) = 0 if the theorem is applied along with the Routh-
Hurwitz criterion. The theorem is as follows:



Co

If ci is real and the terms of the sequence

Cl

c
1

c
2
1 )

co cl c2

Cl c2 c3

c2 c3 c4

are positive, all the roots of the equation

co Cl c2 c

cl c2 crol

...

. ...

...

cn cn+1 c2n4.2

co + cix + c2x
2

"' c2nx
211 _

are imaginary, and all but one of the roots of the equation

co + c
1
x + c2x2 + + c2n+1

x211+1 - 0

are imaginary.

Descartes' Rule of Sign is a similar kind of criterion for deter-

mining the character of the roots of P(x) = 0. The rule states that the

number of positive real roots of P(x) = 0 is equal to the number of

changes of sign in the coefficients (when taken from xn down to x°) di-

minished by 2k, where k is an integer with minimum value of zero. The

rule simply describes the maximum possible number of real positive roots

and not actually how many exists. Descartes' Rule of Sign applied to

P(-x) = 0 gives the maximum possible number of real positive roots of

P(-x) = 0 and hence, the maximum possible number of real negative roots

of P(x) = 0.

These criteria are helpful in determining some information about

P(x) = 0 but in no way aid in solving P(x) = 0 or in approximating any

roots of P(x) = 0.

Consider the example

(2) x3 + 6x2 + llx + 6 0 ,

the Hurwitz determinants may be computed'and they give

D = 60D
1
= 6 2

D
3

= 360
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and the Routh-Hurwitz criterion applied to this case reveals no roots to

the right of the y-axis.

The Descartes Rule of Signs applied to this example indicates no
changes in sign so there are zero positive real roots. If we replace x
by -x in the example, we obtain

(3) -x3 + 6x2 llx + 6 = 0

and the Descartes Rule of Signs shows 3 sign changes so equation (3) has

at most 3 positive roots or possibly only 1. Hence, the original equa-

tion (2) has 3 or 1 negative roots. The Routh-Hurwitz criterion applied
to (3) indicates 3 roots to the right of the y-axis. Hence, (2) has 3

real negative roots. The Descartes Rule of Signs gave 3 as a maximum num-
ber but we could not know that 3 was actually the right number. In this

sense, the Routh-Hurwitz criterion is better than the Descartes Rule of
Signs, but it is also more complicated to apply (in the computational
sense).

A second, (and frequently useful ) piece of information about the
character of the roots of P(x) = 0 can be found if one can determine the

limits or bounds upon the roots themselves. By this, we mean, is it
possible to say that all roots of P(x) = 0 are numerically smaller than
some M, and M being a function of the coefficients of P(x)? A great deal
of attention was directed to this kind of a mathematical problem during
the early 1900's and much of it is quite appropriate to this discussion.
We cite several of these to illustrate this technique.

If we refer to a theorem from complex variables we note that the
region in which all roots of P(x) = 0 lie is a circle with center at the

origin and a radius of

(4) 1 + laid max.

The lak
max means to use the absolute value of the largest coefficient

of P(x). For example all roots of (2) would be within 12 of the origin.
This is true because the roots are -1, -2, and -3. For this example the
radius is too large for it to be really effective or to be used as an ap-
proximation for the largest root. However, it is very easy to compute.

There are other estimates and approximations for the location of
roots of P(x) = 0. We give three such expressions to illustrate further
this kind of investigation into bounds on the roots.

The expression in (4) can be replaced by other, yet similar, expres-
sions giving the values of the radius of a circle containing all the
roots of P(x) = 0. Walsh 116] gave the following limits on roots.

1. All roots of x2 + aix = 0 lie in or on the
circle with center at origin and a radius of tall.
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2. All roots of x2 + a1x + a2 = 0 lie in or

on a circle with radius of 1a1 1 + v47.7 (Center is
21'

always at the origin.)

3. All roots of x3 + a
1
x2 + a2x + a3 = 0 lie in

or on a circle with radius lall + Fia2 + 671
3

For the example (2) this radius would be

or approximately

161 + +

6 + 3.3166 + 1.8171 = 11.1337

which is some better, but not much. This sequence of values for the

radius finally can be expressed as

4. All roots of P(x) = xn +
.

a
1
xn'l + + an = 0

lie in or on a circle at the origin and with a radius of

Tall "' FIC11

Carmichael and Mason r53 proved that all roots of P(x) = 0 are in

absolute value less than or equal to

1/1 'a112 la212 lan12

For example (2) this would be 091 which is actually larger in value

than the value of 12 which we obtained earlier.

Williams [18] later showed that the absolute value of any root of

P(x) = 0 was less than

A. + la1 112 1a2 a1l2
an an-112 1an12

Again for our example this would be VIM, or better than the other esti-

mates.

From the literature on this subject one is notable to determine,

except for special equations P(x) = 0, when these values stand a chance

of being a reasonably good approximation for the largest root of P(x)

= 0. There are several sources which give expressions for the least

root of P(x) = 0 and we cite a few at this time.
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Landau [10] was able to show that every equation of the form axn + x

+ 1 = 0 has a root, the absolute value of which is not greater than 2,

and that every equation of the form axn + bxm + x + 1 = 0 has a root, the
absolute value of which is not greater than 8. These two observations

were to establish a chain of discoveries and refinements which are excel-

lent illustrations of the creative process in mathematics.

Allardice [21 was able to generalize these results to obtain the
following theorems:

Theorem. The equation axn + x + 1 = 0 has a root, the absolute
value of which is not greater than n/n-1, which is the value of equal
roots.

Theorem. The equation axn + bxm + x + 1 always has a root whose

absolute value is not greater than
n m

(n-1)(m-1)

Theorem. The equation axn + bxm + cx + + aix + ao = 0 has a

root whose absolute value is not greater than

ao J2

al n-1 m-1 .k -1

regardless of the other coefficients of the equation.

Applying Allardice's approximation to example (2) we find this value

18to be with 1-11 less than this, a surprisingly good approximation.
T

Landau's condition would have been a root whose absolute value was less

than 8 and not a good approximation.

About the same time Fejer L61 also generalized Landau's results by a

very elegant theorem. We state the theorem for algebraic polynomials
with integral exponents although the theorem is more general than this

case.

Let

ao + alx + a2x2 + + anxn = 0

be an equation of n+1 terms, ao )i 0, al 0. Let p be the root of this

equation of least absolute value. Then

a()

p s n
al
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ao
The value n -- gives both Landau's value for axn + x + 1 and

al

Fejgr's value for the same equations. For our example (2) we see

6 I 18
P 3 TTI

Carmichael and Mason rsi, Montel [113 and others were able to pro-
vide a slightly generalized statement on the last root. It is easy to
intuitively verify these results for the quadratic equation and should
make interesting enrichment material for some secondary school students.

3. Some Approximation Theorems.

In this section we will note some theorems which have previously
been proven and are related to our discussion. One should note that
there are various and diverse techniques for isolated instances of root
finding. In the following theorems we shall be concerned with the nth
degree polynomial equation of the form

(1) P(x) = xn + alxn'l + a2xn°12 + + an = 0

If P(x) = 0 has a numerically large real root it is possible to
find an approximation for this root by solving the equation

x - al = 0

The reasoning for this is that the coefficient al in equation (1) is the

sum of all roots of P(x) = 0. If al is this numerically large real root,

then

al = + a2 +a3 + . + an

where a2,m3,...lanare the other roots of P(x) = 0, al is approximately

ial if al is large in comparison to cf2 + a3 + + an. However, this

approximation idea has limited application because al must be so large
with respect to other roots.

There is, however, a technique for finding this large root and it
is stated in the following theorem.

Theorem l.* If al is a numerically large root of P(x) = 0, where

*The Theorem is said to be well-known by Oldenburger [123 and we give a

similar proof.
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7 ,51fw,..si., V77. "raTI

P(x) = xn + alxn'l + a2xn-2 + + an

Then m1 approximately satisfies the equation

x2 + aix + a2 = 0 .

Proof:

follows

a2/a3"
general
written

Let a
1
be the sum of the other roots e

2,
m
3

of (1). It"ftn
that al = -(mi + al). Let (1.2 be the sum of the products of

..lan in pairs (that is, (72 = m2m3 + met + m3mt + ) . From

knowledge about theory of equations the coe. °ficient a2 can be
as

a2 = (1,17,2 mlm3 0.1% apn + a2a3 + a2a4 + a3a4 + an-104,n.

Hence,

a2 = al (a2 + a3 + a14 + + an) + a2m3 + a2a4 + a3m4 +

or

a2 =
alai

+ (12

Since mial is large compared to a2 (since 02 does not contain a term with

al in it), then we can say a2 is approximately TheThe equation

x2 + apt + a2 = 0 can now be written as

x2 - + al)x + alai = 0

and ft, is a root of this equation.

There are equations for which x2 + alx + a2 = 0 will not give a good
approximation for in in which case we increase the degree of the equa-

tion by one to obtain

x3 + a1x2 + a2x + a3 = 0

A similar argument can be given to show that ml, if large, satisfies this
equation. One must also assume ft, is the only large root, as one tacitly
assumed in Theorem 1.

In fact, one may generalize this to produce the following theorem:
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Theorem 2. If al is a numerically large root of P(x) = 0, then al ap-

proximately satisfies the equation

xn -1 a
1
xn '2 + a2xn -3 + + an -1 0 .

The proof is similar to the proof of Theorem 1.

A word of caution is necessary here. By a numerically large root,

we mean either positive or negative. The proof essentially rests upon

absolute values and this is clear if we go back to equation (2) of

section IV, 2. The equation x3 + 6x2 + 11x + 6 0 has as its largest

root 1-31. If x2 + 6x + 11 - 0 is used as an approximating equation,

the roots of it are

-6 4:16a
x

2

The absolute value of x is "6 '"/"T III 17 a reasonably good approximation
2 °

for 1-31 considering that 1-31 is not relatively large with respect to

the other roots. If one takes the equation

x3- 9x2- 12x +20 =0

which has roots of 10, 1 and -2, the approximating equation becomes

x2 - 9x - 12 0

and its largest root is 9 1579 or approximately 10.18, which is a
2

very good approximation for the largest roots which was 10.

We mentioned previously in section III the Weierstrass Approxima-

tion Theorem where a function is approximated by a polynomial under a

certain set of conditions. We restate the theorem for immediate

reference.

Weierstrass Approximation Theorem: If f(x) is a continuous func-

tion on the closed interval [alb], then for e > 0 there exists an

n = n(c) and a polynomial Pn(x) of degree n such that

(2) 11(x) - Pn(x)1 < e for a s x s b.

The polynomial Pn(x) and n are not unique. That is, one may find a
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second polynomial of degree m which would satisfy (2) for the same e.

Thus, polynomial approximations to f(x) exist which have a predetermined

accuracy on ra,b1. The theorem says the polynomials exist, but does not

give any clue as to how to find them.

One class of functions f(x) which are continuous is the class of

polynomials. Thus P(x), a polynomial of degree m is a continuous

function. In fact, it is continuous for every real number x, and there-

fore, would be continuous for any closed interval Ca,b). The Weierstrass

Approximation Theorem applied to this continuous function Pm(x) over some

interval ralbl states there exists a polynomial of degree n which is

within a certain els distance of Pm(x). It is clear that one of the poly-

nomials which approximates Pm(x) is the polynomial Pm(x) itself. However,

this is not necessarily the only one as we observed in the preceding

paragraph. Immediately, two questions which are of importance to this

study need to be answered. First, are there polynomials of degree n

where n s m, which approximate Pm(x) to a desired accuracy?' Second, if

there is a polynomial Pn(x), n s m which approximates Pm(x) on some in-

terval, do the roots of Pn(x) approximate the roots of Pm(x)?

What we really would like to find is a polynomial Pn(x), n< m,

which approximates Pm(x) and where the coefficients of Pn(x) are obtained

in some fashion from the coefficients of Pm(x). If the roots of Pn(x)

could approximate the roots of Pm(x) whereever possible, then we could

solve for the roots of Pn(x) 0 and obtain approximations for the roots

of Pm(x) 0.

In what follows we shall establish some conditions under which the

answers to the two questions just raised are affirmative, and, in par-

ticular, which allow us to do what we expressed in the last paragraph as

a desire to be able to do. The following theorems, some of which were

not found in the literature, will outline some of these conditions. We

shall be much more specific in the section on quadratics.

Let P(x) = xn + alx11-1 + a2xn"2 + + an = 0 with single roots.

Let Q(x) be composed of all terms of P(x) except that one term, say

b.x11"j0lsjsn-1,isdifferentfromthecorrespondingtermweiajx n

by an arbitrarily small amount less than e over the interval [0,13. Let

0 be a lower bound and 1 be an upper bound on the roots of P(x) - 0.

Then we have

Theorem D3. If x2 is a root of Q(x) = 0, then it is an approximation of

a root xl of P(x) = 0.

Since P(x) is continuous and Q(x) is arbitrarily close to P(x) over

an interval [0,11 the Weierstrass Approximation Theorem holds. We know that

1P(x) - Q(x), = Ibixn-j - < e for some fixed j 1 s j s n-1.

Suppose x2 is a root of Q(x) = 0 and xl is the corresponding root of



P(x) - 0. We know that

IP(x1) P(x2) (4(x2)1 s Mx].) Cl(x1)1 IP(x2) Q(x2)I

< c + e

But Q(x2) 0 and P(xl) 0 so

1P(x2) - Q(x1)1 < 2e

This can be written as

layTi <

Since x2'i and areare positive, and we lose no generality assuming

aj >bi, then we have

laix3-3 - aixT.31 s laix3-J - < 2e

Therefore

or

lail - xi'3l <

IxTmj < 2
'ail

but

x'i - xy. = (x
2 xl)(x3 -1 + -2 . xl + 41.-j -1)

We have

1x2
- xil 1x2-j

-1 + x2-j-2 xi + + < 2
!ail

or

where

2e

I IM1

14-j-1 xl +
xr1..j.11
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Since 'ail and IMI are finite, we have

1x2 xi l < el

Thus x2 and xi are arbitrarily close, depending

P(x) and Q(x). Hence, a root of Q(x) = 0 is an
of P(x) = 0.

This theorem is intuitively obvious if one
P(x) and looks at where Q(x) must go.

upon the closeness of

approximation to a root

constructs a graph of

Since Q(x) must lie between P(x) + e and P(x) -

x -axis in some small interval about xl. Hence
obtained at x

2.

Q(x)

)44

e it must also cross the
an approximation for xl is

It is also intuitively obvious that not all roots of Pn(x) = 0 can
be roots of any polynomial of degree n-1. The following theorems show
this to be true and under what circumstances.

Lemma Dl. If bi,b2,b3,...,bn are the roots of the nth degree polynomial
equation

P(x) = xn + aixn'l + a2xn'2 + + an = 0

and if an / 0, then bi / 0, i = 112,...,n.
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Proof: Let bi be a root of P(x) = O. Since an # 0, then bi # O. For

if bi = 0, then

(b )n (b)n-1
1 1

-r + an II 0

and every term containing a bi is also zero and this would mean an would

also have to be zero for bi to be a root of P(x) = O. Since an # 0, then

bi # O.

Theorem Db. Let 131013201)30 ,bn be the roots of the nth degree polyno-

mial equation

P(x) = xn + a1xnml + a2x
n-2

+ + an = 0

Further, let an be non-zero. Then no root of P(x) = 0 can be a root of

Q(x) = 0, where Q(x) is obtained from P(x) by deleting the xn term.

Proof: Assume bi also is a root of Q(x) = O. Then Q(bi) 111 0 and

we already know P(bi) = 0; but P(x) = xn + Q(x) for all x and

therefore,

or

P(bi) (bi)n + Q(bi)

0 = (bi)n + 0

The only way this last equation can hold is for bi = O. But by the lemma

bi # 0, thereforeobi cannot be a root of Q(x) O.

Theorem D5. Let bi, (i = 1,...,n) be the roots of P(x) = O. Let Q(x)

P(x) - aixn'i, j = aj # 0, an # O. Then no root of

P(x) = 0 can be a root of Q(x) = O.

Proof: Since an # 0, then bi # 0, Assume bi is a root of Q(x) = O.

Then we have Q(bi) = P(bi) ai(bi)nmi or 0 so 0 - aj(bi)n'i. Since

a.,i0and(bl.)21-i # 0dthen bi cannot be a root of
Q(x) = O.

In both of these theorems the condition an # 0 holds and the theo-

rems hold for large collections of polynomial equations, but not all.

For example, if P(x) = x4 - x3 + x2 - x = 0, a root of this equation

satisfies the equation

or

Q(x) = -x3 + x2 x = 0
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Q(x) = x4 - x3 - x = 0 .

It is clear that the root which does this is the zero root. We will now

examine the cases in which an = 0 and see if we can enlarge the collec-

tion of polynomial equations which satisfy Theorems D4 and D5. If an 0 0

then the polynomial equation P(x) = 0 can be written in the following

manner:

P(x) = xk R(x) where k = 1,2, .0

If an is the only zero constant of P(x) then k = 1. R(x) is a polynomial

of degree n-k with the constant an_k being nonzero. This expression for

P(x) is obtained for any P(x) with an = 0 by factoring the highest power

of x from P(x) and R(x) is the remaining factor. One may deduce two

interesting relationships between the roots of P(x) = 0 and R(x) = O.

Theorem D6. If an = 0, b1 m 0 and P(bi) = 0, then R(bi) 'I O.

Proof: Let

or

where

P(x) = xk R(x)

P(x) = xk (xn 'k + aixn 'k '1 + + an -k)

an_k yi 0

(If an_k were equal to zero, an additional factor of x could be removed
from R(x) and some other nonzero coefficient would be the constant term

of a new R(x).) Then consider

R(bi) = brk + a
1
(b-)

Since b1 = 0 we have

and

n-k-1
an-k

R(b1) = R(0) = On'k + al(0)//44-1 + + an-k

R(0) = an_k

Fencelthe zero root of. P(x) = 0 is not a root of R(x) = O.

Theorem D7. If an = 0, and bi is a nonzero root of P(x) = 0, then R(bi)

= O.
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Proof: Let P(x) = xk R(x). If bi # 0 and is a root of P(x) = 00 we

have

P(bi) = 0 (bi)k R(bi)

Since bi # 0, (bi)k # 0 and consequently, R(bi) must be zero. Hence bi

is a root of R(x) = O. These two theorems together say that the nonzero

roots of P(x) - 0 (where an 0) are the nonzero roots of R(x) = 0, and
any zero roots of P(x) = 0 are not roots of R(x) = O. Lemma 1 further

says that R(x) so 0 has no zero roots. We shall now reconsider theorems

D14 and D5 in a broader sense.

Theorem D8. Let b1lb2,...lbn be roots of the nth degree polynomial equa-

tion

P(x) = xP + alx114 + a2x114 + + an In 0

Then no nonzero root of P(x) = 0 can be a root of Q(x) n 0 where Q(x) is
obtained from P(x) by deleting the xn term.

Proof: If an # 0, then D4 holds. If an = 0, then P(x) 0 takes on the

form

P(x) = xkR(x) = xk(xp-k + an -k) = 0

Then Q(x) = P(x) - xn. If bi # 0, then

Q(bi) P(bi) - bi .

Since, by hypotheses P(bi) = 0 and (bi)n.yi 0, we have

Q(bi) = (bi)n # 0

and bi is not a root of Q(x) O.

Theorem D9. 'Let bi, i = 112,...0 be' the roots of P(x) = 0(where P(x)

is the polynomial of Theorem 108). Let Q(x) = P(x) - ajO-J where al # O.

Then no nonzero root of P(x) = 0 can be a root of Q(x) O.

Proof: If an , 0, then Theorem D5 holds. If an - 0, then we can write

P(x) = 0 as xk R(x) 0 as we did in Theorem D8. Then Q(x),

= xk R(x) - ajxn-j. If bi # 0, then we have

Q(bi) = 0i)k R(x) ai(bi)nmi

but, by Theorem D7, if P(bi) = 0, P(x) = xk R(x), and bi # 0, then

R(bi) = 0, and
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Q(bi) = 01 0 - aj(bOnnsi

or

Q(bi) = -aj(bi)11-i # 0 .

Hence bl cannot be a root of Q(x) al 0. The sequence of theorems have

shown that a nonzero root of a polynomial equation P(x) = 0 cannot be a

root of a polynomial equation obtained by deleting some nonzero term of

the original polynomial equation.

If we examine Theorems D3 and D9 together, we may observe one very

interesting possibility. Theorem D9 says no nonzero root of P(x) = 0

canbearootofQ(x)=P0 ajx se 0. Theorem D3 says if P(x) and

Q(x) are alike except for some term aj.xrilej and these terms are arbi-

trarily close, then a root of Q(x) = 0 is an approximation to a root of

F(x) = 0. The roots cannot be the same but can be close to being the same.

Theorem D3 can be used on the P(x) and Q(x) of Theorem D9 if aj is rela-

tively small with respect to the other coefficients and Q(x) then can be

takentohavenoterri ajx in it. In this case we have the following

theorem.

Theorem D10. If P(x) = 0 has a term aixn-i with a relatively small with

respect to the other coefficients of

i

P(x), then the polynomial Q(x)

= P(x) - = 0 has a root which approximates a root of P(x) = 0.

If Ilmj is relatively small on some interval then, by the Weier-ajx

strass Approximation Theorem, Q(x) is an approximation for. P(x) over this

interval. Hence, by Theorem,D3 Q(x) = 0 has a root which is an approxi-

mation for a root of P(x) = 0, and the theorem is proved.

In the section on the quadratic equation we shall see the implica-

tions of this theorem in application.

V. Some Approximation Techniques for Quadratic Equations.

1. Introduction. We have already presented some general theorems on

approximations of polynomials of nth degree. Now we will direct our

attention to the quadratic equation and the approximating equations for

the quadratic. The quadratic is especially important because it is the

most elementary polynomial, besides the linear one, which is found in the

algebra taught at the secondary school level. Moreover, we can be more

specific for this polynomial in several ways and this makes the approxi-

mations more valuable.

We will not consider the case where we approximate the roots of a



quadratic by the roots of another quadratic. Since we would have to

solve the second quadratic anyway, the effort involved might just as

well be directed toward solving the first quadratic. It is also true

that, for elementary problems, this is the least interesting case. We

will consider approximating the roots of a quadratic by deleting a term

of the quadratic and solving the resulting equation for its roots. This

will be done by considering the various possible types of roots of the

quadratic equation and the various terms which can be deleted for each

type of root considered. We will be concerned with the deletion of only

one term from the quadratic, and there will be a total of six cases to

he considered.

2. The Quadratic Equation with Real ,Roots. Write the quadratic equation

P(x) = 0 in the form

P(x) = x2 - (a+b)x + ab = 0

where a and b are the real roots of P(x) = 0 and a # b. We now con-

struct Q(x) = 0 from P(x) 0 by deleting a term of P(x) = 0.

Case A. The first term we shall delete is x2. Let

Q(x) = P(x) - x2 = 0 .

Then

Q(x) = -(a+b)x + ab = 0 .

We wish to know how the root of Q(x) = 0 is related to either root of

P(x) = 0. Solve Q(x) = 0 for x . Since

Q(x) = -(a+b)x + ab = 0

we have

x
ab
a+b

abNote that the expression --- is a symmetric one in a and b, so
a+b

whatever we might say relative to a could be said relative to b .

Since a # b, let a be greater than b . If a is large relative to b

the expression 22Lbecomes relatively close to b i.e., ::+b is an ap-

proximation for b if a is large relative to b . But this means that

ab
7743 approximates a root of P(x) = 0 under this set of conditions. The
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related question of just how good an approximation one has can be deter-

mined by looking at the following table.

Table I - Values of AL
a+b

a a n 2b a = 4b a = 8b a = 20b a = 100b

b b b b b b

ab 25b
14 8 20

2-1 b
100
im. b

a+b

ab

As one observes in the table the expression gg takes on values which get

closer and closer to b as a becomes larger (relative to b). In fact,

ab
ithe limit of a.--ft is b , as a increases without bound. Moreover, from

the conditions described for this particular case, the approximation ob-

tained is always for the smallest of the real roots.

If a is sufficiently large in the negative direction, i.e.,

la' > b, the same sort of approximation is obtained. Examine the table

below.

ab
Table II - More Values of a+b

a = -2b -4b 40.8b =10b 40100b

b= b b b b b

ab
DT. = +2b

. 8b 10b 100b

7 -9 99

Thus
a+b
ab is an approximation for b if la' is greater than b . The

closeness of the approximation, for a given b , depends only on the'

value of a.

If one takes the values found in Tables I and II and puts this .n

graphical form one obtains the equilateral hyperbola for a graph, prO-

vided one fixes b at sine value. Table III is one such graph for a

fixed b . The graph reflects the two observations made about

ab
a+b

being an approximation for b , provided lal is relatively large.

ab
Or should also note that --- does not approximate b in the central

a+b

region of the graph where a is close to -b. In the event a is close

to -b in value we observe (a+b) is very small and the coefficient of x

is small with respect to the other terms of the quadratic. This gives

14.2



Table III - Graph of jab , for fixed b .
a+b

Values of a.
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abus f ctv as to when we eon fiepend upon 37-4.13 being a epod approximation

['or roet P(x) 0. We )ormlize this in the following theoreei.

Theorem D11. If P(x) = x2 (011))x 4- ab = 0, with a,b real roots of
P(x) = U. a X 0, b 0 and lei > b, then the equation

Q(x) = P(x) - x2 = -(a+b)x + ab = 0

ab
has a ro)t, x = 17.6., which is an approximation for the smallest root of

P(x) = 0, provided the coefficient of x2 is relatively small in compari-
son to t.te coefficient of x and the constant term ab.

Comment 1. Note that if either root is zero, we have a special quadra-
tic which need not be solved by approximation.

baComment 2. Note that the key as to when one can depend upon
a+

to be an
b

approximation of a root of P(x) = 0 is the coefficients of the polynomial
P(x). the have written P(x) - 0 in the form x2 - (a+b)x + ab = 0 so as to
reduce the number of unknown coefficients. If the coefficient of x2,

i.e., 1, is small relative to 1-(a+b)! and !abl then It. provides an ap-
a+b

proximation to a root of P(x) = 0.

Comment 3. The theorem does not say so, but since lal > b, the root ap-
proximated is, numerically, the smallest.

Comment 4. The error of approximation is likewise not given in the theo-
rem, but it is easily determined by computing the following:

ab
Error = b -

a+b

However, this requires a knowledge of what b is and if we must know b
in order to compute the error then we already know a root of P(x) = 0 and
all this approximation business is needless. However, the Tables I and
II suggest a means to determine relative error and Table III gives enough
of a graphic picture to approximate the relative error. Error and rela-
tive error are strictly functions of two variables, a and b and,
therefore, for any fixed equation P(x) = 0 the amount of error is pre-
viously fixed by the roots of the equation.

Comment 5. This theorem justifies the procedure used in the introduction
to solve a certain well problem and puts the procedure on a sound mathe-
matical basis.

Case B. Consider how Q(x) = P(x) (a+b)x = 0; that is, take P(x) = 0
and delete the x term. We are still assuming a and b are real
roots of P(x) and a X b. Then

Q(x) = x2 + ab = 0
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and

x2 = -ab

for x2 of -ab to have real roots, either a or b must be negative.

Assume a is. Then b is positive and -ab is positive. Hence

x = 41/75,173 and the latter is a real number. But v75b can be av approxi-

mation for b only when a = -b. In either case the expression x = V-ab

can approximate a root of P(x) se 0 only if a is approximately equal to

-b. When this happens the coefficient of x i.e., -(a+b) becomes very

small and approximately zero. Thus the term being deleted from P(x) = 0

has a relatively small coefficient in comparison to the other coeffi-

cients in the equation.

For example, the equation

x2 + .01x = (12)(11.99) al 0

has a root which can be approximated by a root of x2 - (12)(11.99) = 0.

i.e., x = 407211.99)

In fact, we have approximations for both roots. These observations can

be stated in the following theorem.

Theorem D12. Let P(x) = x2 - (a+b)x + ab = 0, with a and b real,

a yi 0, b 0. Let 1-(a+b)1 be relatively small as compared to 1 and

lab!. Then, both roots of P(x) = 0 are approximated by the roots of

Q(x) = x2 + ab = 0.

Comment 1. If -(a+b) is approximately zero, then a is approximately

the negative, of b . Thus a and b must be real roots, otherwise ab

would be complex or, numerically smaller than a+b and neither are to be

allowed in the theorem.

Case C. Now we consider the case where Q(x) = P(x) - ab = 0 or

Q(x) = x2 - (a+b)x = 0. We still assume a and b are real roots of

P(x) = 0, a i b. Solving Q(x) = x2 - (a+b)x = 0, we obtain

x 0 and x = (a+b) .

If ab is to be relatively small with respect to 1 and 1-(a+b)11 then

either a is close to zero or b is close to zero. If a is approxi-

mately zero then I-(a+b)1 is approximately b . In this case the two

roots of Q(x) = 0 give approximations for the two roots of P(x) = 0.

Similarly, if b is approximately zero, 1-(a+b)1 is approximately a

and again we have two approximations for the roots of P(x) = 0.

We have, therefore, the following theorem.

Theorem D13. Let P(x) = x2 - (a+b)x + ab = 0, with a and b real,
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a 0, b 0, a > b. Let labi be relatively small as compared to 1 and

1-(a+b)1. Then the two roots of P(x) = 0 are approximated by the roots of

Q(x) = x2 (a+b)x = 0.

3. The Quadratic with Complex Roots. We consider now the cases where the

roots are complex. Suppose

x2 - aix + a2 = 0

has complex roots. Let a+bi and a-bi be these roots. rye know complex

roots of. P(x) = 0 occur in pairs and are conjugate paira3 Thus the quad-

ratic becomes

(1) x2 - (2a)x + (a2+b2) = 0

Now consider the various equations obtained from (1) by the deletion of

a term.

Gone A. We begin by considering the deletion of x2. Then

Q(x) = -tax + (a2+b2) = 0 .

Solving for x we have

or

a2+b
2

x
2 a

a b2

x + 75".

If a is relatively large and b is relatively small, thR value

for x becomes approximately a/2. If b is not small, then lace/2a

becomes a significant part of the value for x and x may be much lar-

ger than a/2. But if b is small in comparison to a then the root of

Q(x) = 0 enables us to find an approximation to a root of P(x) = 0. This

seems to be a contradiction for x is a real number from Q(x) = 0 and

the roots of P(x) are complex. This contradiction is no longer a contra-

diction if one locates these values in the complex plane. The roots of

P(x) = 0 and Q(x) = 0 are put on the graph as follows:

coif:

4"1111111119,1.....r
o
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Since b is relatively small the roots of P(x) = 0 lie close to the
x-axis. The root o' Q(x) - 0 is a/2 and it does not approximate either
root of P(x) = 0, but a does: Thus, for this case, Q(x) = 0 gives a
value which can be multiplied by 2 to get an approximation of either root
of P(x) = 0. Therefore, we may state the following theorem.

Theorem DI4. If P(x) = x2 - + a9 ms 0 has complex roots a + bi, and
a is relatively large and h is relatively small, then the root of
Q(x) = -a lx + a2 - 0 (or Q(x) P(x) - x2 Is 0), when doubled, becomes an
approximation for the roots of P(x) = 0.

Case B. Instead of deleting x2 from P(x) = 0, consider the Q(x) obtained
by deleting the x term. We have

Q(x) = x2 + (a2+b2) = 0

Solving for x we obtain

x = 4: 4a4b2)

or

x = i v4T;i

If a is relatively small, then the value of (a2+b2) is approximately
b2, ar1 thus x is approximately + ib. Hence, if a is small, the
solutions of. Q(x) = 0 are approximations to the solutions of P(x) = 0.
Again this bewlmes obvious if we locate these values on the complex plane.

I a+ b

I/1
1111

-

Thus we have the following theorem.
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Theorem D15. If P(x) = six + a2 = 0 has complex roots a bi, and
a is relatively small and b is relatively large, then the roots of

Q(x) - x2 + (a2+b2) - 0 (where a2 = a2+b2), then the roots of Q(x) 0

are approximations for the roots of P(x) m O.

Case C. If we delete the constant term we know that Q(x) 0 is defined
to be P(x) - a2 = 0 or

Q(x) m x2 - 2ax = 0 .

The roots of Q(x) 0 are x = 0 and x = 2a. If the roots of P(x) m 0 are
a 4: bi, then the only way for the roots of (x) to approximate the roots
of P(x) = 0 are for the roots to be close to zero or close to a . In
the first instance, a and b would both be close to zero and so would
a 4: bi. Thus both roots of (4) are approximations to the roots of P(x)
= O. In the second instance, if b is relatively small then 1/2 of the
root x m 2a will give an approximation to a * bi.

From this analysis we can state the following theorems:

Theorem D16(a). If P(x) x2 - alx + a2 - 0 has complex roots a 4: bi and

a is relatively large and .b is relatively small, then the nonzero root
of Q(x) x2 sax = 0 multiplied by 1/2 is an approximation for either

root of P(x) = O.

Comment: The roots of P(x) - 0 lie close to the x-axis on a graph and
thus a is an approximation for either root. Notice the similarity of
this case to Case A considered under the section on complex roots.

We also have one other theorem we may state at this time.

Theorem D16(b).. If a is also relatively small in Theorem D16(a), then
both roots of Q(x) = 0 are approximations to the roots of P(x) = O.

This must be true for if both a and b are very small, then a t bi
both lie close to the origin. Hence either 0 or 2a will be approxima-
tions for a bi.

It is interesUng to observe that in all cases of complex roots the
amount of error of an approximation to a root of P(x) = 0 obtained from a
Q(x) = 0 depends almost entirely upon just one part of.the complex root,
that is, either the real part or the imaginary part. The graphs asso-
ciated with the various theorems of this section show this rather clearly.

4. Comments and Observations. In every case considered we were able to
deduce conditions under which Q(x) = 0 produced roots which were approxi-
mations to P(x) = O. In each case the condition contained some stipula-
tion upon the roots in order to insure that approximations were possible.
If we do not know what the roots are, then we cannot insure whether the
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theorem applies or not. We could make some assumptions however and pro-

ceed on the basis of the assumptions. This i.3 not necessarily safe in

the game of mathematics. There is, however, an observation about the

six cases we have considered. They are mutually exclusive in character.

This means we can use each theorem under just certain conditions and no

others.

Take an example. Suppose P(x) = x2 - 7x + 9 0. Looking over the

6 theorems we conclude the only ones which could possibly apply (without)

knowing the roots of P(x) = 0 are Dll and D14. These two are the only

ones in which the coefficient of x2 is the numerically smallest coeffi-

cient. In both theorems we used Q(x) = -7x + 9 in 0 to approximate a

root of P(x) al O. Thus x 1111 ; is an approximation to the smallest root

of P(x) = 0 regardless of whether P(x) = 0 has real or complex roots:

If P(x) = 0 has complex roots, we know that (7 + b2 = 9 must hold

and b = J9 -(2)2 . But for Theorem D114 to apply b must be relatively

small with respect to a and this is not true in this case. Hence, D14

is out, leaving only D11.

If P(x) = 0 has real roots (and it has) then -(a+b) -7 and one

40

root is approximately
9 so the other must be +7 -

9 or + --, and we

observe that we were justified in using theorem D11.

If one really wished to insure the right selection, check the coef-

ficients of P(x) = 0 and compute the discriminant. Not only does the

discriminant of P(x) tell if the roots are real or complex, but the size

of the discriminant when it is negative determines when the complex roots

may lie close to the real or imaginary axis.

It turns out then
choose the appropriate
of P(x) = 0 can really

coefficients of P(x) =

tell us as much as the

that we do not really need to know the roots to

approximation theorem because the coefficients

tell us this. This is due to the fact that the

0 are specific functions of the roots and, hence,

roots do if we but know how to read them.

One last observation which can be made about quadratics has to do

with two quadratic functions which differ by a small amount.

Let P(x) = x2 (a+b)x + ab, where a and b are roots of P(x) - 0.

Let Q(x) 141 P(x) - el where Q(x) is a quadratic which differs from P(x)

by exactly e. From the Weierstrass Approximation Theorem and Theorem D10

we know the roots of Q(x) a 0 approximate the roots of P(x) = 0. In this

case we have

Q(x) = x2 - (a+b)x + ab - e = 0
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Solving by quadratic formula we have

x = 2

(a+b) (a +b)2 -

(a+b) 4: V/(a-b)2 + ICE

2

(a+b) f fVf(a-b)2 + V51
2

(a+b) + (a-b)

2
+ = a +(1) x

and

(2) x (a+b) (a-b) - = b -
2

Thus the roots of Q(x) = 0 differ from the roots of P(x) = 0 by at

most When Q(x) differs from P(x) by exactly e. A similar statement

can be made regarding a pair of cubic functions which differ by exactly

e , except the roots of one cannot differ from the roots of the other by

more than K where K is a specific function of the coefficients of
the cubic P(x). It is probably true that a corresponding statement can
be made for the nth degree polynomial.

VI. Approximations and Other Equations.

On the basis of what we have already seen, one would hope that the
concepts of sections IV and V could be extended to other polynomial equa-
tions of higher degree. The problem of such an extension is that we can-
not always solve an nth degree equation and, therefore, don't know if
approximations to the roots of one equation can be actually computed from
a derived equation. The Weierstrass Approximation Theorem and Theorem
D10 state that approximations do exist but finding them is another matter.
Even the cubic equation presents some serious problems as far as applying
the concepts of section V. We shall examine this one very briefly.

Suppose P(x) = x3 + a1x2 + a2x + a3 = 0. If we delete certain terms
one by one we have the following derived equations:

Ql(x) = alx2 + a2x + a3 = 0

Q2(x) x3 a2x a3

So



Q3(x) mi x3 + alx2 + a3 0

Q4(x) = x3 + alx2 + a2x = 0

Equations Q2(x) = 0 and Q3(x) = 0 are both cubics which would have

to be solved to obtain solutions which approximated solutions for

P(x) = O. There is really no advantage in solving these as precisely

the same kind of, effort would have to be exerted as would have been

necessary to solve the original equation, which is also a cubic. One

might just as well solve P(x) = 0 in these cases and obtain the actual

roots.

In the case of Qh(x) we are assuming one root of P(x) = 0 is approxi-

mately zero and the other roots are readily obtained by solving a quad-

ratic equation. One could, if the theorems applied, obtain solutions

of the quadratic via the theorems of section V but this would be finding

approximations to approximations to the actual roots and this could be

unsatisfactory as a process.

The only derived equation which shows any promise is Q1(x) = 0,

since it is a quadratic derived f:om P(x) = 0 on the condition that

al, a2 and a3 are all relatively large with respect to the coefficient

of x3, which is 1. Without going into all the possibilities (which are

really beyond the level intended in this study) we will cite some examples

to show how the approximations turn out.

Example 1. If P(x) = x3 - 9x2 - 12x + 20 = 0, then Ql(x) = -9x2 - 12x

+ 20 = 0 and we have

or

-(-12) f 1(-12)2- 4(-9)(20)

12
x

-18

Taking Vga. to be 29.39 we find x to be approximately
-41.39 d

an

17.18

39 The three roots of P(x) = 0 are 10, -2 and 1. Thus the roots of

Q1(x) give approximations to the two smaller roots of P(x) = O. The

third root of P(x) = 0 can be approximated by the expression

20 (-41.39V17.39N
-73--7V-18--)



This is true because 20 is the negative of the product of the three roots.

Example 2. If P(x) = x3 - 10x2 - 6x 200 = 0 then Q1(x) = -10x2 - 6x

+ 200 = 0 and

6 +U3,6
x -20

Taking VST16 to be 89.6 we find x to be -4.73 and 4.18. The roots of

P(x) = 0 are 7 i and 4 so one root of Q1(x) approximates the real root

of P(x) = 0.

Example 3. If P(x) = x3 + 13x2 + 32x + 20 = 0 then 01(x) = 13x2 + 32x

+ 20 = 0. But

x8` 26
-32 VT-376

and P(x) = 0 has only real roots of -10, -2 and -1. If we consider

we find

lx1 = -32

26

1.1 3'41

and this is numerically an approximation for the smallest root.

These examples are not, intended to take the place of the theory

which could be developed, but merely serve to show that, in one case, the

concepts of section V on the quadratic are extendable, with modifications

and additional conditions, to the cubic equation. Since the solutions of

the general cubic equation are not a part of the algebraic materials at

the secondary school level, there seems to be little need in developing

the approximation theory for this presentation.

It should be noted that approximations to solutions of an nth degree

equation can be obtained by methods such as Hornerls method or others of

a similar nature. These methods are adequately described in any of the

books on theory of equations (for example see Dickson, Theory of Equations).

VII. Implications for Secondary School Mathematics.

In this last section we wish to relate the previous sections to the

business of teaching secondary school mathematics and indicate some im-

plications for the future. We do this in the context of answering the

original basic question which motivated this entire investigation.

We wished, if possible, to determine if there was a systematic body
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of mathematical knowledge which covered the technique of approximating a

root to a polynomial by finding roots of a derived polynomial and if it

were possible to present this knowledge in some convenient form whereby

a program of instruction could be established in courses in elementary

algebra at the secondary school level. We believe the answer to this

two part question is in the affirmative for both parts and we elaborate

by giving our reasons for this belief.

In reviewing section III of this Appendix, we note the four types

of approximations listed include three for which an extensive amount of

structured mathematics exists. The three are

1. Approximating a number by another number

2. Approximating a root of an equation

3. Approximating a function by another function

Of these three, the first two are quite old techniques, which we hope

the historical material of section II amply indicates. The techniques

involved in these two range from simple arithmetic computations to such

complicated computations as finding Sterling's formula or others of a

similar nature from the theory of numbers area in mathematics. Approxi-

mating roots of an equation can be as simple as guessing or as complica-

ted as using recursive formulas depending upon the derivative of the

polynomial equations. In either case, these procedures are well founded

and are an integral part of the mathematical structure although they may

occur at various levels within the structure. In fact, the first educa-

tional implication might very well be stated at this point,

In the process of modernizing college and university level mathe-

matics, we have, for the most part, discontinued several courses as a

main portion of the mathematics required of those wishing to be mathema-

ticians (and I include teachers in this group). Of particular impor-

tance to this study and most closely related of all such courses was the

course offered by the title of Theory of Equations. This type of course

has nearly disappeared from the college catalog. There are probably good

reasons for this. Much of the content of such courses apparently has

teen absorbed, into other courses, most notably the abstract algebra.

However, if one examines these other courses one finds the so-called

elementary concepts have frequently been excluded because they are too

elementary. One may find some of these elementary concepts in a College

Algebra course, but not all. With more and more students coming to

college with College Algebra as a background in mathematics, it seems

that the algebraic content of the secondary school must include, in a

significant way, the basic concepts from the theory of equations. The

key here is the phrase, "in a significant way". This would mean that

techniques for finding approximations to roots of equations, such as

Horner's method, would be an appropriate part of the content of secon-

dary school mathematics. It would seem that this would be an essential

part of any accelerated program at that level. The mathematics is not

too difficult for the secondary school. We need only find the proper

kind of presentation to make such a program not only feasible, but prac-

tieal in implementation. In fact, the major accomplishment in mathema-



tics education for the next generation might very well be the creating of

elegant but simple ways to present the more complex mathematics at an s

earlier stage of instruction than at present. This would be only one of

many possible areas in which this could be done.

The third type of approximation referred to in section III, approxi-

mating a function by another function, is also a part of an existing

mathematical structure. In fact, it is a foundation principle for the
area in analysis which has made possible much of our current mathematics,

particularly the applied mathematics. Much of this mathematics depends

upon the calculus and, therefore, is not adaptable to the secondary school

curriculum. Moreover, there appears to be no mathematical reason or need

to suggest the necessity for such an adaptation.

With respect to the fourth type of approximation given in section

III, it is possible to make more positive statements of implication for

secondary school mathematics. This type of approximation, the approxi-

mating of roots of one function by roots of another related function, was

examined in some detail with various relations spelled out in the theo-

rems of sections IV and V. The following observations seem to be perti-

nent to these sections.

1. There is a mathematical structure available for this type of

approximation technique. It is not as clearly delineated in the litera-
ture as the other types and, for the purposes of this presentation, seve-

ral gaps were found.
2. It is possible to establish certain theorems, based essentially

upon concepts from the theory of equations and the elementary algebra
which show the connections necessary to fill the gaps noted.

3. The essential features of the mathematical structure are noted in

these two sections, first in a general way and then specifically for the

quadratic equation. This expository presentation was not intended to be
complete in every detail and perhaps there is a more elegant presentation,

but the features presented show that it is possible to put some systema-

tic order to this type of approximation.
?. Most of the concepts presented are dependent upon very elemen-

tary mathematics of the secondary school level and, hence, are adaptable

to this level. By implication, this means much of the material presented
herein can be made a part of mathematics instruction at the secondary
level. The material presented in this Appendix is intended for the high

school teacher who will have to make the necessary adaptation to the

classroom situation. There does not appear to be any source available

which has done this for the teacher.
The fact that it appears to be feasible to adapt these concepts

to secondary school mathematics and the fact that there appears to be at

least a suggested need for this material seems to imply that such an

adaptation should be attempted. The basic suggestion here is that a por-
tion of time and effort be directed to making the high school studentls

mathematics more relevant to his science instruction. (The same impli-

cation could be made relative to the social sciences, but from other
facts not necessarily related to approximation theory.)
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6. The presentation of this approximation theory should probably

he more intuitive than rigorous. This is essentially a psychological

question or observation and we have ample evidence from groups such as

the School Mathematics Study Group that such an approach is feasible

and that it actually works in the classroom on concepts in mathematics.

In summary, there is a significant area of mathematics in approxi-

mation theory which is elementary enough to be adaptable to secondary

school mathematics. It is mathematically possible to make such an adap-

tation, and, if properly presented, this adaptation could make a contri-

bution to mathematics and to science instruction at that level.
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