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Bonus Puzzle 1: A city planner, after pondering over the Koenigs-
berg Bridge puzzle, commented "I could have relocated any one of the
existing bridges and made it easy for the burghers to take their prome-
nade." Explain why the city planner could comment thusly.

Bonus Puzzle 2: A basketball league consists of 7 teams who play a
round robin against each other. If each team plays each of the other 6
teams once, is it possible to have an exact 7-way tie between the teams
at the end of the 21 game league season? If so, describe a possible
sequence of wins and losses between the teams that will result in this
7-way tie.

Bonus Puzzle 3: A 10-pin connecting terminal is wired as shown at
the left for a special piece of electrical equipment. An industrial en-
gineer claims that the simple wiring shown at the right will do, using the
existing connections. He claims that all we need do is to rename the
terminals and, in fact, we can do away with five of the 14 wire connec-
tions. How did he rename the pins?

Bonus Puzzle 4: A sanitation engineer has the unpleasant task of in-
specting every foot of an underground drainage system by crawling
through it. Since climbing into and out of the system is difficult, he
wants to make as few entries and exits as possible while inspecting each
section exactly once. Refer to the drawing below to determine how
many trips he must make and where he should enter and exit from the
system.
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Bonus Puzzle 5: A young man began a paper route with 29 "corner"
customers. Before his first delivery, he was given a map with the loca-
tion of customers shown at the numbered corners. Wishing to be
efficient, he decided to plan his route so that he could start at any
customer's home and deliver papers to each succeeding customer with-
out passing any customer's home twice and end his deliveries at the
initial customer's home. Can you plan the route for the young man?

25* 2e 27 28 29

Bonus Puzzle 6: A city council decided to convert all possible streets
in a business section into strictly one-way streets except for the two
existing boulevards and the freeway over which they had no control.
The business section is shown in the map on the opposite page. Direct
all the possible streets bounded by the circled intersections so that a
motorist can travel the streets in a reasonable manner and go from any
intersection within the area to any other intersection within the area
without going wrong-way on a street.

Bonus Puzzle 7: Show that the heptagons, opposite, are isomorphic.
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Bonus Puzzle 8: Sally and Bill were given a chance to visit a distant

museum. Not wishing to miss any exhibits or waste time in the mu-
seum, they obtained a map of the museum. Question: Can they plan a
single tour of the museum such that they would see all of the exhibits in

one continuous trip without missing or revisiting any of the exhibits
from entry to exit? If so, plan their tour. Note: The shaded parts of the

map are the exhibits facing the aisles.

Exit

Entry

Aisle

Aisle

Aisle

Aims

Aisle

Bonus Puzzle 9: Mr. Jones wants to install a set of 6 connected
sprinklers in his garden, using one water outlet. Planning to do all of
the work himself, he determines that each sprinkler head will cost him
$2.25 and the pipe connections he may possibly require will cost him,
in materials, the amounts listed in the table below. What arrangement
of connections will result in a minimal cost for the material and what
will this minimal cost be?
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TABLE 2
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Connection Cost Connection Cost Connection Cost

WO* to SHt 1 $7.00 SH 1 to SH 3 $4.25 SH 2 to SH 6 $7.75
WO to SH 2 8.75 SH 1 to SH 4 4.00 SH 3 to SH 4 6.25
WO to SH 3 7.50 SH 1 to SH 5 3.50 SH 3 to SH 5 6.50
WO to SH 4 6.25 SH 1 to SH 6 6.50 SH 3 to SH 6 6.50
WO to SH 5 9.00 SH 2 to SH 3 4.00 SH 4 to SH 5 4.25
WO to SH 6 8.00 SH 2 to SH 4 4.25 SH 4 to SH 6 5.50
SH 1 to SH 2 $3.75 SH 2 to SH 5 $5.75 SH 5 to SH 6 $5.25

Water Outlet
t Sprinkler Head

Bonus Puzzle 10: A rice farmer has his rice fields laid out as shown
below. As is usual in rice cultivation, the rice fields are set low and
surrounded by earthen dikes. The entire farm is surrounded by a lake
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and in cultivation a dike is broken to immerse a field in water from the
lake. The farmer would like to kn w what is the least number of dikes
he must break in order to immerse ll of his fields of rice.
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Bonus Puzzle 11: Can you draw a single path from point A to point
B without crossing the curve or lifting the "marker"?
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Bonus Puzzle 12: Three continuous closed curves wind about, as
shown. Match the four lettered points to the four numbered points by
drawing paths connecting a lettered point to a numbered point without
crossing the curves: that is, find the letter-number pairs in each of the
four regions formed by the three curves.

Bonus Puzzle 13: The base of an electrical instrument is to be rede-
signed as a printed circuit. The design engineer is given the diagram of
the old base, wired as shown. He must design the new circuit so that
the etching and plating for the printed circuit an be done without
causing short circuits while retaining the arcs shown in the given base.
If the plugs and two terminals, shown in dashed lines, can be relocated
can he design the printed circuit as required or must the design of the
base wiring be changed?

Bonus Puzzle 14: A man wishes to install a stairwell light and con-
nect it with two switches so that he will be able to turn the light on or
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off from either switch. Each switch has two positions with two circuits
possible; when one circuit is closed the other is open, and vice versa.
There are ten points of connection. How should he connect the ten
points between the light, power, and switches?

Power

vt 13, Switch
B

1 O.- 5

5

Light

Bonus Puzzle 15: A man wishes to install a stairwell light and con-
nect it with three switches so that he will be able to turn the light on or
off from any one of the switches. Two of the switches are single pole
switches having two positions with two circuits possible; when one cir-
cuit is open the other is closed, and vice versa. The third switch is a
double pole switch having two positions with four possible circuits; the
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circuits are paired so that when two circuits are open the other two are
closed, and vice versa. There are 16 points for connections. How
should he connect the 16 points between the light, power, and switches?

Bonus Puzzle 16: Color the "picture," including the border, using
just three distinct colors so that no two faces with a common edge have
the same color.

1

12

6
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Bonus Puzzle 17: Color this "picture," including the border, using
just three distinct colors so that no two faces with a common edge have
the same color.

Bonus Puzzle 18: A small network of telephone lines is known to
have breaks. A repairman at point A and another at point B can call
each other. However, when the repairman at A disconnects his lines to
points C, D, and E he cannot call the man at B. Connecting his line to
point E, the repairman at A calls the man at B to discuss the situation.
When the repairman at B disconnects his lines to C and to F the line
goes dead until the man at A connects his line to point D. Since they
now have located two breaks in the network, the repairmen decide to
proceed to the broken sections to repair them. Where are the two
breaks located?
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Bonus Puzzle 19: A technician makes six continuity checks of a
network of lines connecting two terminals. If the six checks result in the
information given below, then which of the 13 segments in the network
are open and which are closed?

CONTINUITY CHECKS

A-1 to B-1 Closed
A-1 to B-2 Open
A-2 to B-1 Closed
A-3 to B-1 Open
A-3 to B-2 Closed
A-4 to B-3 Closed



Glossary

Arcset of successive edges
when two vertices are con-
nected directly or through
other vertices so that no vertex
is entered twice

Brancheschoice of exit edges
at a vertex

Branching vertexvertex of local
degree three or greater

Circuit arc arc which returns to
its initial vertex

Circuit edgeone which, with
an arc, forms a circuit

Complete circuit arcone which
includes all of the vertices
(not necessarily all of the
edges) and returns to its initial
vertex

Complete cyclic pathone which
includes all the edges and re-
turns to its initial vertex

Complete graphone with every
pair of vertices connected by
an edge

Connected graphone in which
every vertex is connected to
every other vertex by an arc

Contracting a graphdeleting
vertices and/or edges
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Cyclic pathone which returns
to its initial vertex

Directed edgeone on which di-
rection is indicated

Directed graphone in which
every edge has a one-way
direction

Dual grapha "new" graph
from a given graph, with
vertices the points introduced
in the faces of the given graph
and edges the segments drawn
crossing the edges of the given
graph. (For more complete
explanation, see page 43.)

Edgessegments connecting
vertices of a graph

Euler graphgraph with an
Euler line

Euler linecomplete cyclic path

Even faceone bounded by an
even number of edges

Expanding a graphintroducing
new vertices and/or edges

Faces nonoverlapping regions
of a polygonal graph

Grapha geometric figure made
up of certain points and line
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segments connecting some or
all of the points

Hamilton linecomplete circuit
arc

Incidentif a vertex is the end-
point of an edge, the edge is
incident to the vertex

Incoming edgesedges to vertex
directed inward

Infinite faceregion exterior to
the bounding edges of a polyg-
onal graph

Isolated vertexone with no
edge

Isomorphic graphsthose with a
one-to-one correspondence be-
tween the vertices and edges

Local degreenumber of edges
incident to a vertex

Local incoming degreenumber
of incoming edges incident to
a vertex

Local outgoing degree--number
of outgoing edges incident to
a vertex

Mixed graphone in which some
edges are directed and others
are not, or in which some
edges have a two-way direc-
tion

Null graphone with isolated
vertices

Odd faceone bounded by an
odd number of edges
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Outgoing edges edges from
vertex directed outward

Pathset of successive edges
forming a route so that each
edge is used just once while
a vertex may be entered more
than once

Planar graphone in which the
edges do not cross or have
common points except at the
vertices.

Polygonal graphconnected pla-
nar graph with no single edge
surrounding a region

Regular of degree rlocal de-
gree of every vertex in a graph
is r

Separating edgeone which is
the only connection between
two vertices

Separating vertexa vertex sepa-
rating a graph into two or
more parts so that every arc
connecting the vertices in dif-
ferent parts of the graph must
pass through it

Terminal edgeseparating edge
that separates one vertex from
the remainder of the graph

Terminal vertexone with only
one edge incident to it

Verticescertain points of in-
terest on a graph
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(h)

Since our intuition is often properly led or misled by the appearance
of a graph, developing an ability to construct convenient isomorphic
graphs and the skill to determine when two graphs are isomorphic are
worthy activities. To construct a graph isomorphic to a given graph we
might begin by forming a null graph with the same number of vertices
as in the given graph. Next, we can expand the null graph by introduc-
ing the required edges one by one in a convenient manner. The result-
ing expanded null graph should then be isomorphic to the given graph.
Examining our "new" graph, we can often relocate the vertices and
arrange the positioning of the edges so that our final graph is not only
isomorphic to the originally given graph but also may reveal properties
"hidden" in the given graph. For example, Figure 15 illustrates three
such isomorphic graphs.

(h)

Nom 15
(c)

To determine whether two graphs are isomorphic can involve some
rather subtle problems. In many cases, however, a simple counting of
vertices and/or edges may suffice to establish that two graphs are not
isomorphic. A second step is to note the number of edges connected to
various vertices of the graphs. For example, if one graph has a vertex
with four edges connected to it while the other has no vertex with four
edges connected to it, then we can say that the graphs are not isomor-
phic. (The graphs in Figure 14 illustrate this type of situation.) After
an initial examination we might then begin to identify vertices by classi-
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fying them according to the number of edges connected to them. Next
we can follow the "loops" around the edges in order to set up a corre-
spondence. If we can establish a one-to-one correspondence between
the vertices and edges of two graphs, then we can assert that the graphs
are isomorphic. For example, the graphs in Figure 13 with their vertices
identified illustrate the correspondence. The corresponding vertices of
the graphs in Figure 15 have been labeled to identify the corre-
spondence which establishes the isomorphism between them.

Now let us return to our consideration of planar graphs. Note that
graphs may have edges which cross and have common points other than
at the given vertices of the graph. For example, the graph in Figure
13(b) is such a graph. It has two points where the edges cross which
are not vertices of the graph. It is often useful to be able to determine
whether there is an isomorphic graph such that the edges do not cross
or have common points other than at the vertices. For example, the
graph in Figure 13(a) is isomorphic to the graph in Figure 13(b) and
furthermore shows us that the graph does have the distinctive property
of being connected so that the edges need not cross or have common
points except at the vertices. The complete graph on four vertices
shown in Figure 10(a) appears to require a crossing of the edges at a
point other than at a vertex but the isomorphic graph shown in Figure
11 reveals that this is not a necessary property of the graph. That is,
the complete graph on four vertices may be drawn so that there are no
crossings or common points of the edges except at the vertices of the
graph.

Recall that a given graph is said to be planar if an isomorphic graph
can be drawn in such a way that the edges have no crossings or com-
mon points except at the vertices. Determining whether a graph is
planar may be quite difficult. However, examining two particular graphs
may be helpful. Consider how we might construct a complete graph on
five vertices.

We begin with a null graph with five vertices as shown in Figure 8.
Expand the graph by introducing the edges AB, BC, CD, DE, EA, AC,
and AD. The graph thus far is planar. We must still expand the graph by
introducing edges BE, CE, and BD. To avoid crossings we may intro-
duce the edges BE and CE as shown in dashed lines in Figure 16. In
order to introduce BD, however, we must cross CE or CA or AE, so
that it is impossible to construct the complete graph on five vertices
without crossing edges at a point other than at a vertex.

For our second particular graph, consider the puzzle of the three
tenant farmers and their wells. We can connect Farm A and Farm B to
each of the three wells as shown in Figure 17. Farm C can be connect-
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ed to Well 2 and Well 3 as shown by the dashed lines in Figure 17. We
cannot connect Farm C to Well 1 now without crossing one of the
previously constructed paths. Thus, it is impossible to construct the
paths so that they do not cross. If we compare the hexagonal graph
shown in Figure 12 with the graph of Figure 17 expanded by the edge
from Farm C to Well 1, we can show that they are isomorphic. Thus
the hexagonal graph in Figure 12, as well as the complete graph on five
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vertices, is not planar. That is, we cannot construct isomorphic graphs
for these graphs such that the edges do not cross or have common
points other than at the vertices.

A Polish mathematician has shown that a graph is' planar if and only
if it cannot be contracted to a graph which is isomorphic to the com-
plete graph on five vertices [Figure 10(b)] or to the hexagonal graph
in Figure 12. For example, the graph in Figure 18 cannot be planar
since it can be contracted to the graph shown in Figure 19 which is
isomorphic to the hexagonal graph in Figure 12.

Flours 1$ HIM 111

The graph in Figure 20, however, is planar. To see this we must
construct a graph which is isomorphic to the given graph such that the
constructed graph does not have edges which cross or have common
points other than at the vertices. For our construction we recall that the
location of the vertices can be moved and the edges need not be
straight. Some experimentation might lead to the graph shown in Figure
21. Thus, since the requirements for a planar graph have been met, we
can see that the graph in Figure 20 must indeed be planar.

A E A

Figure 20

It can be shown that a planar graph can be drawn so that all the
edges are straight, providing no pair of vertices is connected by more
than one edge. This leads to planar graphs which appear like a set of
adjoining polygons: for example, the graph in Figure 21. The graph in
Figure 22 can be represented by the isomorphic graph in Figure 23.
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Figure 23

Figures 21 and 23 suggest a special type of planar graph. If a planar
graph is connected and is such that no single edge surrounds a region,
then the graph is called a polygonal graph. For example, the graph of
the Koenigsberg Bridge puzzle shown in Figure 5 is a polygonal graph.
The graph of the puzzle devised by Sir William Rowan Hamilton in
Figure 2 is also a polygonal graph. To have a polygonal graph we must
first have a planar graph. Furthermore, the graph must be connected;
that is, we must be able to move along successive edges from any vertex
to any other vertex of the graph. Finally, if no single edge "loops"
around to enclose a single region, then we have a polygonal graph. The
graph in Figure 24 is not polygonal since it is not planar. Figure 25
does not represent a polygonal graph even though it is planar because
the graph is not connected. Although the graph in Figure 26 is planar
and connected it is not polygonal, for a single edge completely sur-
rounds a region. The graph in Figure 27 is polygonal.

Figure 24: Not planar

Figure 26: Surrounded

Figure 25: Not connected

Figure 27: Polygonal
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In a polygonal graph the edges and vertices bound various regions.
The nonoverlapping regions are called the faces of the graph. It is also
convenient to call the region exterior to the bounding edges of a polyg-
onal graph a face. To distinguish this region, it may be called the
infinite face of the graph. For example, the polygonal graph in Figure
23 has five faces. We can refer to the faces by naming the successive
vertices which bound each face: ABCGFA, CDGC, DEFGD, AFA,
and the infinite face ABCDEFA.

We began this section with the question, "How can we begin to
understand and explain puzzles of the kind illustrated in Section 1?"
We have begun by laying a general foundation for a model with the
characteristics, properties, and relationships assumed to exist in the
puzzles of interest. The model thus far consists of geometric figures
which we call graphs, with vertices and edges. In the next section we
will examine a few of the properties and characteristics of these graphs.



Arc and Paths

What are the "puzzling" aspects of the puzzles we have posed? In
working with the puzzles, the object was to trace a path of some special
sort through the puzzle. In terms of our model graphs, this would in-
volve the vertices and edges. For example, for Puzzle 1 illustrated in
Figure 3(a) and Figure 3(b) we might ask whether there are special
properties of the vertices and edges which might answer our problem
and lead to a solution. For convenience in what follows, let us restrict
our considerations to those graphs in which every edge connects a pair
of vertices.

In our model graphs if a vertex is the endpoint of an edge, we will
say that the edge is incident to the vertex. The number of edges inci-
dent to a vertex is called the local degree of the vertex. If A is a vertex,
we denote the local degree of A by d(A) = n. For example, in Figure
28 the local degrees are

d(A) = 4 d(B) = d(C) = d(D) = 3 d(E) = 5 d(F) =2

A

Figure 2$

In a graph with edges connecting pairs of vertices each edge must
have its endpoints at a vertex. Thus, the sum of the local degrees of
the vertices of a graph must equal twice the number of edges in the

14

r-
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graph. That is, if A1, A2, . . . , Ak denotes the vertices of a graph and N
the number of edges, then we must have

d(A1) + d(A2) + d(Ad + + d(Ak) = 2N.

For example, for the graph in Figure 28, we have

4 + 3 + 3 + 3 + 5 + 2 = 2N, so that 20 = 2N or N = 10.

Observe that the sum of the local degrees of the vertices of a graph
must equal an even number. But the local degree of a given vertex may
be either even or odd. If a sum is even, however, there must be an even
number of odd summands (addends). Thus, we have: In a graph the
number of vertices of odd local degree must be an even number. For
example, the graph in Figure 28 has 4 vertices of odd local degree. Our
statements include those graphs with no vertices of odd local degree
since 0 is considered an even number. The graph of the Koenigsberg
Bridge puzzle shown in Figure 5 has all 4 vertices of odd local degree:
d(A) = d(B) = d(D) = 3 and d(C) = 5.

If the local degree of every vertex in a graph is the same, say r, then
the graph is said to be regular of degree r. For example, the complete
graph on four vertices [Figure 10(a) or Figure 11] is regular of degree

3. Every complete graph of n vertices is regular of degree n 1

because every vertex must have n 1 edges to the other n 1

vertices in the graph (see Figure 10). The hexagonal graph in Figure
12 and the graphs in Figure 13 are regular of degree 3.

We have mentioned that edges connect vertices. When two vertices
are connected directly or through other vertices by edges so that no
vertex is entered twice, the set of successive edges is said to form an

C

Figure 29 Figure 30

arc between the vertices. The graph in Figure 29 illustrates an arc.

When a set of edges forms a route so that each edge is used just once
while a vertex may be entered more than once, the set of successive
edges is said to form a path. The graph in Figure 30 illustrates a path.

An arc connects vertices, and in Figure 29 it can be denoted by
ABCDE where no vertex appears twice. A path describes a "sightsee-

1
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ing" route through the edges of a graph, where a vertex may appear
twice or more and each edge just once. In Figure 30 we can denote it
by ABCDBE. In the Koenigsberg Bridge puzzle, the object is to con-
struct a complete path through all the edges of the graph. In Hamilton's
travelers puzzle, the object is to construct a complete arc through all
the vertices of the graph.

If every vertex in a graph is connected to every other vertex by an
arc we say that the graph is connected. When a graph is connected, arcs
and paths may return to their initial vertices. An arc which returns to
its initial vertex is called a circuit arc. In a circuit arc the initial vertex
is the only vertex appearing twice and edges of the graph may not have
been traversed. For example, in Figure 30 the arc BCDB is a circuit
arc. Hamilton's travelers puzzle requires us to find a complete circuit
arc of all of the vertices of the graph. In general, any arc which returns
to its initial vertex may be called a circuit arc.

A path which returns to its initial vertex is called a cyclic path. In a
cyclic path each edge is traversed exactly once while vertices may be
entered more than once. The object of Puzzle 1 in Section 2 is to find a
complete cyclic path traversing all of the edges of the graph exactly
once. The Koenigsberg Bridge puzzle can be interpreted as requiring a
complete cyclic path. In general, any path which returns to its initial
vertex may be called a cyclic path. Notice that every circuit arc is a
cyclic path but that a cyclic path need not be a circuit arc.

The graph in Figure 31 has a complete circuit arc (as shown in
Figure 36) but no complete cyclic path, whereas the graph in Figure 32
has a complete cyclic path (as shown in Figure 37) but no complete

circuit arc.

Figure 31 Figure 32

In considering arcs and paths we have tacitly introduced the idea of a
direction along an edge. Of course, for arcs and paths, a direction on an
edge is a convenience for we can usually go in either direction. How-
ever, situations may arise in which a direction is essentialfor example,
in considering one-way streets on a city map or a game competition in
which one of two teams wins and the other loses. When a direction is
indicated on an edge, we call the edge a directed edge. If every edge of
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a graph is directed, the graph is called a directed graph. Figures 29 and
30 are directed graphs. We can indicate a directed edge with an arrow-
head on the edge. If some edges of a graph are directed while others
are not, then the graph is said to be a mixed graph. Figure 33 is a
directed graph which depicts four teams in a pairwise competition: A
and B play, and A wins; C and D play, and C wins. When A and C
play, C is shown as winning. Figure 34 is a mixed graph, since the
edges DE and GF are not directed. The directed edges indicate a path,
DCBDAB or DABDCB, and a small circuit arc, EGHE.

A H

A E r
Figure 33 Figure 34

Under what conditions can the edges of a graph be directed so that
there is a directed path from any given vertex to any other vertex in the
graph? If a graph is not connected, then it is clear that there are two
vertices which do not have a path connecting them. Figure 35 is such a
graph. If there is a complete circuit arc, the edges of the arc can be
directed in a "circular" manner so that it is possible to go from any
vertex to any other vertex along the directed edges. The edges which
are not traversed by the arc may be directed either way. Figure 36
shows a directed complete circuit arc. If there is a complete cyclic path,
the edges of the path can be directed in a "circular" manner following
the path so that each edge of the path will be directed. To go from any
vertex to any other vertex we need only to follow the directed path.
Figure 37 shows a directed complete cyclic path. Thus, any connected
graph with a complete circuit arc or a complete cyclic path can be
directed so that there is a directed path from any given vertex to any
other vertex in the graph.

figure 35 Figure 36 Figure 37
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In studying directed paths in graphs we observe that the edges of
graphs can be classified. For example, the edges DE and GF in the
graph in Figure 34 are not only undirectedthey are quite distinct
in their relationship to the vertices as compared to the other edges of
the graph. If an edge is the only connection between two vertices of a
graph, it is called a separating edge of the graph. In Figure 38, CD is a
separating edge of the graph. A separating edge divides a graph into
two parts and is the only connection between them. If a vertex has only
one edge incident to it, the edge is called a terminal edge and the vertex
a terminal vertex of the graph. A terminal edge is a special type of
separating edge; it separates one vertex from the remainder of the
graph. In Figure 38, EF is a terminal edge and vertex F a terminal
vertex of the graph. If an edge is not a separating edge, then there must
be another arc connecting the two vertices to which the edge is incident.
Because the arc and given edge will form a small circuit, the edge is
called a circuit edge of the graph. In Figure 38, AB and BC are circuit
edges of the graph. In Figure 34, DE is a separating edge and GF a
terminal edge with terminal vertex F.

Figure 3$

Recalling that a common problem in geometric puzzles is to con-
struct paths through them, let us consider how this might be accom-
plished in connected graphs. We begin with two simple situations. First,
a separating edge of a graph can be made into a two-way undirected
edge as shown in Figure 39(a). Second, a circuit edge, because it can
be made a part of a small circuit, can be directed in a "circular" man-
ner to form a circuit of vertices as shown in Figure 39(b).

(0)
A

Figure 39 (b)
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To enlarge our considerations: If a circuit edge has a vertex in com-
mon with a separating edge, the two-way "direction" of the separating
edge enables us to leave and return to the circuit to form a path cover-
ing additional vertices of the graph. If a circuit edge has a vertex in
common with another circuit edge, we can direct the new circuit edge to
conform to the direction of the previously directed circuit edge and thus
form another directed circuit of the graph. Figures 40(a) and 40(b)
illustrate these enlargements in the directioning of the edges of a graph.

(0)

Num 40

Po)

In a similar manner we can continue to enlarge a directed path in a
graph until the entire graph has been "directed." That is, an undirected
connected graph can always have its circuit edges directed and its sepa-
rating edges made two-way so that there is a "directed" path from any
given vertex to any other vertex in the graph. If there are separating
edges, these edges must be made into one-way directed edges for the
graph to be considered a directed graph. Otherwise, the graph must be
considered a mixed graph. For example, Figure 40(a) is a mixed graph
whereas Figure 40(b) is a directed graph. Figure 41 illustrates a some-
what more complicated directed graph.

Figur. 41

Notice that in the directed graph of Figure 41 we cannot go from an
arbitrary vertex to many other vertices in the graph along the directed
edges. The separating edge BC being directed from C to B shows that
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once we are at a vertex to the left of B, we cannot return to the vertex
C or to any vertex to the right of C. We cannot reach the terminal
vertex D from any other vertex in the graph since the terminal edge
incident to D is directed away from D. Once we enter the terminal
vertex E we cannot leave because the terminal edge incident to E is

directed to E. We might ask, "Is there a path from some vertex through
the directed edges which will take us through all the other vertices of
the graph?" If there is, we must begin at the vertex D and end at the
vertex E. But, to reach all the vertices, we must traverse the separating
edge BC. If we traverse the edge from C to B, we cannot return to end
at E. Thus, there can be no path in the graph from any vertex which
will take us through all other vertices of the graph along the directed
edges.

If a connected graph has separating edges, then there can be no
complete circuit arc or cyclic path for the graph. This is evident since a
separating edge would require a two-way direction and the use of a
vertex twice. Recall that a path allows just a single use of an edge and
an arc only one entry and exit from a vertex.

Now let us return again to a consideration of the number of edges
incident to a vertex. In a directed graph we can describe the edges
incident to a vertex as outgoing edges from the vertex or as Wowing
edges to the vertex. Thus, we can distinguish between the local outgoing
degree and the local incoming degree of a vertex in a directed graph. If
A is a vertex, we can denote the local outgoing degree of A by do(A)

= n and the local incoming degree of A by di(A) = m. Notice that
d(A) = do(A) (1;(A). For example, Figure 42(a) shows a vertex
A with do(A) 3, di(A) = 2, and d(A) = 5. Figure 42(b) illus-
trates a vertex B with do(B) = 4 and (WS) = 0, so that d(B) =
do(B). Figure 42(c) shows a vertex C with do(C) = 0 and di(C) =
3, so that d(C) = di(C).

B
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Because a directed edge has one initial and one terminal end, we can
obtain the number of edges in a directed graph either by summing the

(c)
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local outgoing degrees of all the vertices or by summing the local in-
coming degrees of the vertices. For example, consider the directed
graph shown in Figure 43. In Table 1 we have tabulated the local
incoming, the local outgoing, and the local degree of each vertex. The
number of edges in the graph is given by the sums (totals) of the local
incoming and local outgoing degrees, and is equal to one-half the sum
of the local degrees of the vertices.

Figure 43

TABLE 1

Local Local
Incoming Outgoing Local

VERTEX Degree Degree Degree

A 1 2 3

B 2 2 4
C 1 1 2
D 1 1 2
E 2 1 3

F 3 2 5
G 1 1 2
H 1 2 3

Total 12 12 24

If the local degree of a vertex of a directed graph is even, then the
local outgoing and local incoming degrees of the vertex must be both
even or both odd. If the local degree of a vertex of a directed graph is
odd, then the local outgoing or local incoming degree of the vertex (but
not both) must be odd. These observations can be verified in Figure 43
and Table 1. They are illustrated in Figures 44(a) and 44(b).
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(a) (b)

figure 44

Since the initial and terminal ends of a complete cyclic path must be
the same vertex and each edge is traversed just once, it is evident that a
complete cyclic path cannot be drawn in a connected graph unless every
vertex of the graph is of even local degree. Consider also that a path
which enters a vertex must leave the vertex unless the vertex is the
terminal end of the path. Now, recalling the Koenigsberg Bridge puzzle,

we can say that the promenade is impossible because its graph has
vertices of odd local degree.

In this section we have developed and discussed some of the charac-
teristics and properties expected in graphs representing geometric puz-
zles. In the next section we will examine the specific problems posed by
Euler's Koenigsberg Bridge and Hamilton's travelers puzzles.



4 and Hamilton Lines

In what graphs is it possible to find a complete cyclic path? Because
of Euler's article on graphs which poses this question, such a cyclic
path is called an Eukr line and a graph with an Euler line is called an
Euler graph. Our conclusion in the last section was that the Koenigs-
berg Bridge puzzle did not represent a graph with an Euler line. Figure
45 shows an Euler graph with an Euler line drawn on it. Any vertex
may be taken as the starting and finishing point.

flews 4S

4 Figure 47

Puzzle 1, depicted with Figures 3(a) and 3(b) on page 3, asked you
to trace the figures without taking the pencil from the paper. Figure 46

23
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depicts the solution for Figure 3(a): It does not have an Euler line, but
it does have a complete (not cyclic) path. Figure 3(b), whose graph is
shown in Figure 47, does not have an Euler line nor even a complete

path.
Careful examination of the graphs in Figures 45, 46, and 47 will

show that the graphs differ in the local degree of certain of their ver-
tices. For example, every vertex in the graph in Figure 45 is of even
local degree. The terminal and initial vertices of the complete path in
Figure 46 are of odd local degree while all of the remaining vertices in
the graph are of even local degree. The graph in Figure 47 has four
vertices of odd local degree.

Imagine drawing a path on a graph. As we draw the path we can
direct the edges and "delete" them from further consideration. If we
enter a vertex of even local degree, we can always leave the vertex,
"deleting" two edges at a time until every edge has been used just once.
If we enter a vertex of odd local degree, we have an even number of
edges remaining incident to the vertex so that on leaving there is an odd
number of edges left incident to the vertex. Now, eventually the vertex
of odd local degree will have one edge remaining and upon entering the
vertex, we will be unable to leave. Thus, a vertex of odd local degree
must be a terminal end of a path on a graph, either the beginning or the
end. Since a complete cyclic path has no terminal ends and uses all the
edges of a graph, there can be no complete cyclic path in any graph
with a vertex of odd local degree. Also, because a complete path has
just two ends and uses each edge once, there can be no complete path
in a graph with more than two vertices of odd local degree. Figure
48(a) and Figure 48(b) illustrate our imagined entry and exit from
vertices of even and odd local degrees.

(0)

Figur* 4$

(b)

Any connected graph with even local degree at every vertex has an
Euler line.

To construct an Euler line on an Euler graph we can begin at any
convenient vertex. We draw a directed path from vertex to vertex tra-
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versing undirected edges and directing them. Because the local degree
of each vertex is even we can always leave the vertex unless we return
to the initial vertex. If our directed path has traversed all edges, we
have constructed an Euler line. If there are undirected edges, there
will be a vertex on our directed path to which an undirected edge is
incident. But, since the local degree of this vertex was even, there must
be an even number of undirected edges incident to the vertex. This
must be true at every vertex with an undirected edge incident to it.
Figure 49 illustrates the beginning of an Euler line in an Euler graph.

Figure 49

Figure 50

We can expand on our directed path from any vertex with an undi-
rected edge. We proceed to direct these remaining edges as before, tra-
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versing only those edges which are not yet directed and directing them.
As before, we can always leave a vertex we enter unless we return to
our initial vertex. Eventually we must do so and have thus expanded
our directed path. If now our directed path has traversed all the edges,
we have constructed an Euler line. If not, we can repeat the process
and expand the path still further until we have attained an Euler line.
Figure 50 shows the graph of Figure 49 with the previously directed
edges in dashed lines, and the expansion of our directed path.

We can, if we wish, "smooth" the path constructed above to avoid
"cross-overs" at vertices by rearranging the connections between incom-
ing and outgoing edges. The final complete cyclic path or Euler line for
the graph in Figure 49 is shown on the graph in Figure 51. Notice that
the direction has been omitted from the path. The path could begin and
end at any vertex, and could go in either direction.

figure 51

Euler lines impose strong restrictions on a graph. The requirement
that the local degree of every vertex be even limits the edges of Euler
graphs to circuit edges. To see this, we note that a separating edge
divides a graph into two parts and forms the only connection between
them. Thus a path through a separating edge cannot be cyclic. Further-
more, a separating edge is incident to a vertex of even or odd local
degree. If the vertex is of even local degree, there must be an odd
number of edges other than the separating edge incident to the vertex.
Thus, there must be a vertex of odd local degree connected to this
vertex through edges other than the separating edge. We can conclude
that if a connected graph has a separating edge, then it must have at
least two vertices of odd local degree; one on each "side" of the sepa-
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rating edge of the graph. Figure 52 is a connected graph with a separat-
ing edge incident to one vertex of even local degree and one vertex of

odd local degree.

Figure 52

In many situations we can drop the cyclic requirement for a complete
path through a graph. That is, we can ask in what graphs it is possible

to find a complete path traversing all edges. The initial and terminal

ends of the path may be at different vertices.
In order to have a complete path a graph must be connected. If a

path has its initial end at a vertex of even local degree, it must termi-

nate in the same vertex. If a path has its initial end at a vertex of odd
local degree, it must terminate at some other vertex. Furthermore, if a
graph has one vertex of odd local degree, it must have a second vertex
of odd local degree. Because each vertex of odd local degree must be a
terminal end of a path, we have: Any connected graph with exactly two

vertices of odd local degree will have a complete path traversing all

edges of the graph. The initial and terminal ends of the path will be

the vertices of odd local degree.
The graph in Figure 52 has exactly two vertices, A and C, of odd

local degree. A complete path for the graph with terminal ends at A
and at C is illustrated in Figure 53.

Figure 53

If a connected graph with two vertices of odd local degree is expand-

ed by connecting the vertices of odd local degree with an edge, the
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resulting connected graph will have all vertices with even local degrees

and thus an Euler line.
Since a connected graph will have an even number of vertices with

odd local degrees, we can generalize our results to the number of paths
necessary to traverse all edges of a graph. Any connected graph with

2K vertices of odd local degree will require K paths which, taken to-
gether, will traverse all edges of the graph exactly once. The graph can
be expanded to an Euler graph with the addition of exactly K edges
connecting the 2K vertices of odd local degree.

Figure 54 illustrates a connected graph with two vertices of odd local
degree. A complete path can be drawn on the graph. The addition of
the edge shown in dashed lines would result in the graph becoming an
Euler graph. Figure 55 shows a graph with six vertices of odd local
degree. Thus, three paths would be required to traverse all of the edges
exactly once. Addition of the three edges shown in dashed lines would
result in an expanded graph that would be an Euler graph.

... om NOM 71.
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Figure 55

Given a graph, when is it possible to find a complete circuit arc
which passes through each vertex of the graph exactly once? Recall that
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Hamilton's travelers puzzle requires us to find such a complete circuit
arc of a graph. When a complete circuit arc can be found for a graph it
is called a Hamilton line. Thus, a Hamilton line is a succession of edges
which enter each vertex of a graph exactly once to form a "route"
through the vertices of the graph and such that no vertex except the
initial vertex appears twice.

A Hamilton line does not necessarily traverse all the edges of a
graph. As a matter of fact, since an arc may enter a vertex just once, a
Hamilton line traverses exactly two edges incident to each vertex of the
graph, once to enter the vertex and once to leave the vertex. Because a
Hamilton line must pass through each vertex of a graph, it is clear that
the graph must be connected. Furthermore, since a circuit is necessary
through all of the vertices of the graph, we cannot have separating
edges in the graph. Thus, in order to have a Hamilton line, all of the
edges in a graph must be circuit edges. Figure 56 shows a Hamilton line
drawn on the graph representing Hamilton's travelers puzzle.

400::0t76-
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Although the Euler line and Hamilton line problems appear to have
much in common, they are subtly different. Recall the graphs shown in
Figures 31 and 32. Figure 31 has a Hamilton line, as shown in Figure
36, but no Euler line. Figure 32 has an Euler line, shown in Figure 37,
but no Hamilton line.
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To examine a graph for an Euler line it was sufficient to note the
local degrees of the vertices of the graph. For a Hamilton line, however,
we must examine the succession of edges forming an arc. Once a vertex
has been entered with an arc, we cannot re-enter the vertex. For exam-
ple, in Figure 57, if an arc enters either vertex B or vertex D, both the
remaining edges must be traversed in order to pass all of the vertices of
the graph. Once we have traversed one of the edges incident to a ver-
tex, we cannot return to the vertex through any other edge for the
vertex can be entered only once. Thus, the graph in Figure 57 cannot
have a Hamilton line.

A
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Consider how an arc might be constructed in a graph. We begin at
some vertex in the graph and pass through successive vertices. At each
vertex entered, we have either a single exit edge or a choice of exit
edges to take in continuing the arc. If there is a single exit edge, we
must use this edge in order to continue the arc. If there are two or more
exit edges to take in continuing the arc, we must choose one of the
edges to continue the arc. In doing so the remaining edges incident to
the vertex become useless in a continuation of the arc. For example, in

B
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the partial graph in Figure 58, we begin an arc at vertex A and traverse
the edge AB to B. At B we have no choice but to continue the arc to
vertex C. At vertex C, however, we have a choice of CD, CE, or CF as
exit edges to continue the arc. If we choose the edge CF to continue the
arc to vertex F, the edges CD and CE become useless in a continuation
of the arc. When we have such a choice of exit edges at a vertex. to
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continue an arc, we say that the arc has brooches at the vertex. In
Figure 58, the arc has branches at vertex C, vertex D, and vertices E
and F. We also say that a vertex of local degree three or greater is a
branchbg vertex of a graph. That is, in Figure 58, the vertices A, C,
D, E, and F are shown as branching vertices.

Now let us consider how we can construct a Hamilton line for the
graph shown in Figure 59. We can begin at some convenient vertex, say
A. We have three choices of edges: AB, AD, or AL. if we were to
choose AD, we would have to traverse at least two more edges incident

to the vertex D: DC and DE, DF, or D.H. Thus, we avoid this edge and

traverse the edge AB (or AL). From the vertex B we have no choice

except to proceed to vertex C and thence to vertex D. At vertex D we

have three choices of exit edges: DH, DF, or DE. If we choose the

edge DH, then we have three choices at H. But the arc must pass
through all the vertices, and each of these choices at H would "cut off"

vertices. Similarly, if we choose the exit edge DF from vertex D, we
would have to proceed to E which would "cut" the remaining vertices
off or would have to proceed to G leaving vertex E isolated. Thus, we
choose the edge DE to continue our arc. Figure 60 shows our progress
with the "used" edges shown in dashed segments. We can denote our
arc thus far by ABCDE. As we pass through vertex D using the edges

CD and DE, the edges AD, DH, and DF become "useless" for continu-

ing the arc, since with an arc we can enter a vertex only once. AD, DH,

and DF are, therefore, also shown in dashed segments.

Figure 59

From vertex E we have no choice but to continue our arc to F. At
vertex F we have two choices: FR or FG. if we traverse FH, then we

are faced with having to traverse both HG and HK in order to pass
both vertices G and K. Thus, we traverse FG to G from whence we
must proceed to H in order to pass it on our arc. From H we have no



32 PUZZLES AND GRAPHS

choice except to proceed to K, then to L, and, finally, our arc completes

its circuit to vertex A. The complete Hamilton line is: ABCDEFGHK-

LA, as shown in Figure 61.
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For a second example, consider the graph in Figure 62. We might

begin an arc at vertex A and proceed to vertex B, then to vertex C and

D to form ABCD. At vertex D we have two choices for continuing the

arc. If we continue the arc through DE, the edge DN can no longer be

traversed, for then we would be re-entering the vertex D. If we continue

the arc through DN, the edge DE becomes useless for a continuation

of the arc. In continuing the arc through the branching vertex D to N,

all the edges incident to the vertex are eliminated with respect to the

arc. If the continuation of the arc results in a terminal or isolated vertex

with respect to the arc except for the endpoints of the arc, then the arc

cannot be continued to form a complete circuit arc for the graph be-

cause a vertex will be omitted from the circuit. That is, the arc would

have to have two terminal ends, the initial vertex and the terminal

vertex, or leave the isolated vertex.
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figure 62

If no terminal or isolated vertex with respect to the arc is formed,
then we continue the arc by entering and exiting from vertices not yet
passed. Figure 63 illustrates this procedure for the graph in Figure 62
with the arc ABCDNEFGH. The edges traversed by the arc and the
edges useless with respect to the arc are shown in dashed segments. At
vertex H in the graph we find that both possible branches for our arc
will result in leaving a terminal edge and vertex in the graph, other than
the ends of the arc, so that we conclude that our arc cannot form a
Hamilton line in the graph.

B

figure 63

Our construction of an arc is not a "positive" construction which will
determine the existence of a complete circuit arc. Rather, it will indicate
only when a given arc cannot be continued to form a complete circuit
arc. Consider the graph in Figure 64. Suppose we begin an arc at vertex
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A and traverse All to B. At B we have three choices for continuing the
arc: BC, BH, or 8G. Each of these choices results in a "loss" of two
edges but leaves all of the remaining edges as circuit edges.

A
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Suppose we continue the arc to vertex C. Upon "deletion" of used
edges, our graph would appear as shown in Figure 65. From vertex C
we could continue our arc to H or to D, in either case "losing" an edge
but leaving the remaining edges circuit edges. If we continue our arc to
vertex D, we must proceed to H, for otherwise continuing to E would
make H become a terminal vertex. If we continue our arc to vertex
H, we must proceed to D, for otherwise continuing to E would make D
become a terminal vertex. Figure 66 illustrates the results with the arc
ABCDH. From H the only possibility is to continue to E, where we
have two choices: EG or EF. if we continue the arc to G we must
proceed to vertex F and then to our initial vertex A to complete our
Hamilton line. If we continue the arc to vertex F we must next include
vertex G and then traverse GA to complete our Hamilton line. In either
case, we have completed the desired Hamilton line.

Now returning to the beginnings of our arc, suppose we had elected
to continue the arc from vertex B to G to form ABG. Upon "deletion"
of used edges, our graph would have appeared as shown in Figure 67.
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Although the remaining edges are all circuit edges, notice that vertex E
"separates" the remaining graph into two parts. Both the initial and

terminal ends of our arc ABG are on the same side of the graph,

separated by the vertex E. Thus, if we continue the arc through E to

pass vertices C, D, or H, we could not complete the circuit because this

would require re-entering the vertex E.

A
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Figure 67

If a vertex separates a graph into two or more parts such that every

arc connecting the vertices in different parts of the graph must pass
through this vertex, then the vertex is called a separating vertex of the

graph. For example, vertex C in Figure 68 is a separating vertex of the

graph.
A

If a graph has a separating vertex, then an arc must pass through the

vertex to connect vertices in the separated parts of the graph. Once an

arc has passed through a separating vertex, it cannot return to its initial
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end to complete a circuit arc because it would have to pass through the
separating vertex a second time. Thus, any graph with a separating
vertex cannot have a Hamilton line (a complete circuit arc).

Furthermore, in constructing an arc in a given graph, if at any stage
in the continuation of the arc a separating vertex occurs, so that the
initial and terminal ends of the arc are on the same side of the separat-
ing vertex, then the arc cannot be continued to form a Hamilton line
for the graph.

Returning to our observation of the graph in Figure 57 and to our
conclusion concerning the construction of a Hamilton line for the graph
in Figure 62, notice that we entered a branching vertex with exit edges
leading to vertices which did not branch. Continuing the arc would have
led to a terminal edge and vertex other than at the ends of the arc. If a
graph has a branching vertex such that on entering. the vertex from any
edge there are more thpil two exit edges incident to nonbranching ver-
tices, then a complete circuit arc cannot be constructed for the graph.

Although we have not completely answered the question of when it is
possible to construct a Hamilton line in a given graph, we have made
some useful observations indicating when such a line could not be con-
structed.

If a graph is not connected or has a separating edge or separating
vertex, a Hamilton line cannot be constructed on the graph.

If a graph has a branching vertex with more than two exit edges
incident to non-branching vertices, then a Hamilton line cannot be con-
structed on the graph.

Even if a given graph is connected, has no separating edges or sepa-
rating vertices, and no branching vertices with more than two exit edges
incident to nonbranching vertices, we still cannot assert that there is a
Hamilton line for the graph. For these graphs there appears to be no
simple approach. As a matter of fact, no general solution is known for
the question. Perhaps none exists and the only way of determining
whether a Hamilton line can be constructed may be simply a matter of
trial and error in these cases.

In this section we have concentrated on paths and arcs forming Euler
and Hamilton lines. An Euler line is a complete cyclic path of the kind
required in the Koenigsberg Bridge puzzle. A Hamilton line is a com-
plete circuit arc of the kind required in Hamilton's travelers puzzle. For
your enjoyment, we conclude with the following puzzle graphs.

Determine whether an Euler line can be drawn in each graph. If it
can, draw it. If it cannot, can a complete path be drawn?

Determine whether a Hamilton line can be drawn in each graph. If it
can, draw it. If it cannot, can a complete arc be drawn?







Graphs

Geometric puzzles often differ in their apparent objectives as well as
in the form in which they are presented. For example, consider Puzzle
2, propounded on page 3 with Figure 4(a) and repeated here with
Figure 69. Can you draw a single path crossing each edge of the
figure just once without going through a corner?ww
II II
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Figur. 69 Figur. 70

The wording and objective of the puzzle appear somewhat different
from our previous considerations with arcs and paths which went
through the vertices and traversed the edges of a graph. In this puzzle
we are concerned with drawing a curve which "cuts" the edges of a
graph. Let us examine this idea of a curve "cutting" the edges of a
graph.

A face of a polygonal graph is a distinct region bounded by vertices
and edges. If a point lies interior to a face and a second point lies
exterior to the face, then it seems "obvious" that any curve connecting
the two points must cross an edge or vertex bounding the face. This
seemingly obvious (though difficult to prove) assertion is known as the
Jordan curve theorem.

For convenience let us restrict our attention to planar and polygonal
graphs. Recall that a graph is planar if it is isomorphic to a graph
whose edges do not cross or have common points other than at the
vertices. A polygonal graph is a connected planar graph such that no
single edge completely surrounds a region.

39
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The Jordan Curve Theorem: A continuous nonintersecting closed
curve in the plane divides the plane into two regions, an outer and an
inner part, such that whenever a point P in the inner pail is connected
to a point Q in the outer part by a continuous curve, then the two
curves must intersect (have a common point). Figure 71 illustrates the
theorem.

Figure 71 figure 72

The Jordan curve theorem is useful in studying planar and polygonal
graphs with curves passing through them. For example, if A and B are
on a continuous closed curve, then any continuous curve connecting A
and B which has no other points in common with the closed curve must
lie entirely inside or entirely outside of the closed curve, as shown in
Figure 72. Puzzle 3 concerning the three tenant farmers and their wells
illustrates an application of the Jordan curve theorem.

Recalling how we began with puzzles, consider the problem of
drawing a single path crossing each edge of the graph in Figure 69 just
once without passing through any vertices. Suppose we start a curving
path through the edges of the graph from the exterior as shown in
Figure 73. Crossing successive edges just once, we might draw the path
P to Q.

Figure 73

Notice that we have failed to cross one of the edges in the graph.
Can we draw another path which will cross each edge? Consider the
simplest polygonal graphs consisting of a single "regular" face and the
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exterior infinite face. There are two types of faces: faces bounded by an
even number of edges and faces bounded by an odd number of edges. If
a face is bounded by an even number of edges, we call it an even face.
If a face is bounded by an odd number of edges, we call it an odd face.
Figures 74(a) and 74(b) illustrate two even faces. Figures 75(a) and
75(b) illustrate two odd faces. With these simple graphs we can draw
paths and observe the following:

(a)

(a)

Figure 74

(b)

Figure 75

(b)

A path through an even face must have its initial and terminal points
on the same side of the face: that is, both ends inside or both ends
outside of the face.

A path through an odd face must have its initial and terminal points
on opposite sides of the face: that is, one end must lie on the outside
and the other on the inside of the face.

When we construct a path in a polygonal graph, as we cross an edge,
we change the number of edges remaining to be crossed from even to
odd, or from odd to even, with respect to the path. If the initial point of
a path is on the inside of an even face, its terminal point must also be
on the inside of the even face. If the initial point of a path is on the
outside of an even face, its terminal point must also be on the outside
of the even face. The initial and terminal points of a path must be on
opposite sides of an odd face.
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Now notice that the graph in Figure 69 has three odd faces, so that a
path would have to have three ends to cross all edges just once. That is,
there is no single path crossing each edge of Figure 69 just once with-
out going through a vertex. The graph in Figure 70, however, has just
two odd faces so that a single path with an end interior to each of the
odd faces can be drawn. A path for the graph is shown in Figure 76.

Figure 76

We can summarize four situations as follows:

If a polygonal graph has three or more odd faces, then no complete
path crossing each edge just once can be constructed for the graph. See
Figures 73 and 77.

If a polygonal graph consists of all even faces, then a complete path
crossing each edge just once can be constructed for the graph and,
furthermore, this path can be made into a complete cyclic path with a
common initial and terminal end. See Figure 78. (The triangular area
actually has an even face, since there are four edges, two of them on
the same side of the triangle.)

Figure 77 Figure 78

If a polygonal graph has exactly one odd face, then a complete path
crossing each edge just once can be constructed with its initial and
terminal points on opposite sides of the odd face of the graph. See
Figure 79.
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U a polygonal graph has exactly two odd faces, then a complete path
crossing each edge just once can be constructed with its initial point
inside one of the odd faces and its terminal point inside of the other
odd face. See Figure 80.

NSW* 79 RION* $0

In our discussion of complete paths through polygonal graphs, the
similarity to Euler lines and complete paths as discussed in the last
section should be apparent. As a matter of fact, an important and close
relationship does exist.

For any polygonal graph we can construct a new graph, called its
dual graph, as follows:

Within each face of the given graph, including the infinite face, we
select a single point. If two points are separated by a single edge of the
given graph, they are connected by a segment crossing only the one
edge of the graph. If there are two or more common edges between
faces of the given graph, the points are connected with a segment for
each of the common edges. When altaf the pointwihave been connected
by segments as required, the "new" graph whose vertices are the points
introduced in the faces of the given graph and whose edges are the
segments drawn crossing the edges of the givenv lgoaph form the idol
graph of the given polygonal graph.

Figures 81(a) through 81(d) show the dual graphs of the Figures 77
through 80 respectively. The given graphs areshown imdashedilines.

The dual graph of a polygonal graph is itself a polygonal .graphs. The
dual graph has one vertex for each face of the givent.graph, including
the infinite face. The number of edges incident to sa yvertex inW the dual
graph corresponds to the number of boundary edges bathe lace of~ the
given graph. The local degree of each vertex in theridual graph thus
corresponds to the number of edges bounding the face of the given
graph. For each edge in the given graph there is a corresponding cross-
ing edge in the dual graph. For each vertex in the given graph there is a
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corresponding face in the dual graph. The number of bounding edges to
a face in the dual graph corresponds to the local degree of the vertex in
the given graph.

A polygonal graph and its dual graph thus have the same number of
edges; the number of vertices in the dual graph is the number of faces
in the given graph; the number of faces in the dual graph is the number
of vertices in the given graph.

(0)

(c)

Figure $1

(b)

(d)

Comparison of the paths drawn in the graphs shown in Figures 77
through 80 with their dual graphs shown in Figure 81 shows that the
paths cutting the edges of a polygonal graph and the paths following
and traversing the edges of the dual graphs are essentially the same.

Another common type of puzzle whose origins are found in pre-
Greek civilizations is illustrated in the following:



1617111111

A

Treasure
Room

Entry



46 PUZZLES AND GRAPHS

Puzzle 4: A feudal baron kept his treasure hidden in a room of his
castle. Not trusting anyone, he had a maze of corridors and doors built
so that a corridor could be traveled just once and each room could be
entered and exited just once. Given the map shown in Figure 82, can
you find a way to the treasure and a way out?

Although such a puzzle may not appear to be related to graphs,
notice that we might think of the rooms as vertices and the corridors as
edges. The object of the puzzle is then to construct an arc from the
entry through the treasure room and thence to the exit. We can repre-
sent the puzzle with the graph shown in Figure 83 by selecting points
for the rooms and then connecting them with edges which correspond
to the corridors.

Figure $3

The graphical representation of the puzzle diLgram clearly shows the
structure of the puzzle. There are two types of "traps" involved in the
puzzle: the separating vertices H and K and the "one-way loops" begin-
ning in the edges HI and I.M. A solution of the puzzle is the arc
LIK-T.R. to the treasure room and T.R.-ABM to the exit. An alternate
exit from the treasure room would be T.R.-ADBM.
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figure $4

Puzzle 5: A. single continuous closed curve winds about as shown inAs a final observation, consider the following..

Figure 84. Are the points A and B on the same side of the curve?



48 PUZZLES AND GRAPHS

This type of maze is quite different from the maze of Puzzle 4. Be-
cause a single continuous closed curve is involved, we recall the Jordan
curve theorem. The idea is that if we were to "smooth out" the closed
curve, and if the points are on the same side of the curve, then we
could connect them without intersecting the curve. And if the points are
on opposite sides of the curve, there would be a point of intersection
with the curve. Now, imagine a point which is clearly on the outside of
the closed curve. If we begin with this point and cross a boundary of
the curve once, then we must be on the inside of the curve. If we cross
the curve twice, we must be on the outside of the curve again. That is, a
connection which crosses the curve an odd number of times must have
its ends on opposite sides of the curve and a connection which crosses
the curve an even number of times must have its ends on the same side
of the curve. If we connect the given points A and B in the puzzle and
count the number of crossings the connection has with the curve, 13,
we can immediately note that the points are on opposite sides of the
curve. We might draw a connection from each point directly to the
outside of the curve and note that point B is outside the curve while
point A is inside the curve.

In this section we have considered two additional ideas with respect
to puzzles and graphs: the Jordan curve theorem and the notion of dual
graphs. The Jordan curve theorem was useful not only in studying paths
cutting closed curvesit also suggested a basic tool for the study of
planar graphs. The notion of dual graphs and the concept of isomorphic
graphs make available two powerful tools for the interpretation and
representation of a variety of situations. To help establish the ideas of
this section, you may wish to try the following:

Figure 85

Figure $7

Figure $6

Figure $$
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Can you draw a single path crossing each edge of Figure 85 just once
without going through a vertex? If so, draw the path. Similarly, consider
Figures 86 through 88.

Construct the dual graph for each of the graphs in Figures 85
through 88. If there is an Euler line or complete path for the dual
graph, construct it.

Can you find your way through the mazes shown in Figures 89 and
90 without retracing any corridors or entering any room twice?

7Exit .4
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:IRm Rm

Rm

Rm

Rm

Rm ?Rm Rm
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I Rm
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R
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Entry

Figure $9
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Given the single continuous closed curve shown in Figure 91, at the
top of the opposite page, is point A interior to the curve? Is point B
interior to the curve? Are the two points on the same or opposite sides
of the curve?

Can you enter and tour the house whose plans are shown in Figure
92 so that you pass through each and every door exactly once before
leaving?





Bo6s Puzzles

In our brief consideration of puzzles and graphs we have covered
only a few of the interpretations and developments possible in this di-
rection. In summary: We have suggested that-

1. A model which carefully describes the characteristics, properties,
and relationships assumed to exist in a situation of interest may lead to
valuable insights and understanding of the situation.

2. Graphs can be interpreted and used as models in a variety of
situations.

3. The ability to construct and recognize objects which have a one-
to-one correspondence with a given object is a valuable skill in develop-
ing our intuition and in revealing hidden properties of an object.

4. Arcs and paths can be described and their properties examined in
terms of the various properties of graphs.

5. The idea of a directed connection is useful in construction as well
as interpretations.

6. Euler and Hamilton lines result from definite and distinctive prop-
erties of graphs.

7. There are obvious (though difficult to prove) assertions which are
fundamental in developing the description of graphs.

8. Given any polygonal graph, we can construct a dual graph which
broadens the useful interpretations of graphs.

We began Section 1 with two classic puzzles and it seems fitting to
close with a few more. Puzzles, like many problems, are usually not
couched in direct easy-to-translate terms. The major hurdle in a puzzle
may be to determine the elements and relationships given. Once these,
and the objective of the puzzle, have been determined, we are ready to
focus on the problem. Most of the following puzzles might actually
occur as "real" problems. Some may require ideas not mentioned in this
article. However, a bit of ingenuity and determination should lead to
adequate solutions of all of them.

52


