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Preface
The author has no intention of adding to the already long list of text-

books on the theory of numbers. This booklet gives an informal account
of some of the more elementary results of the subject without going into
detailed proofs. The theory of numbers lends itself naturally to such
treatment. Its appeal lies in the fact that its results may be readily
understood by those who are not professional mathematicians, and the
truth of the general theorems may be verified easily for special cases.

Some of the material will have direct application for teachers of
arithmetic, algebra, and geometry. Furthermore, it is hoped that the
general reader, as well as the teacher, will be stimulated to go more
deeply into the subject. A few of the books from which the author him-
self has benefited are listed in the bibliography for those who wish to
go into the proofs and learn aspects of the subject that cannot be in-
cluded in a brief treatment.
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CHAPTER

I
The Natural Numbers

The positive integers 1, 2, 3, are called the natural numbers. The
doss represent numbers that have been omitted, and the sequence con-
tinues indefinitely; in other words, there is no largest positive integer.
The natural numbers form the basis for the study of the theory of num-
bers, or higher arithmetic as it is sometimes called. The mathematician
studies the behavior of these numbers just as the chemist classifies the
elements according to their atomic weights and their reactions with each
other.

1. What is number theory?
From earliest times man has shown curiosity about numbers. This

was particularly true of the ancient Greeks and Chinese, whose interest
was mainly in the study of relationships among numbers. It was not
until the seventeenth century that the first serious study of the subject
was made. This work was done by the famous French mathematician
Pierre Fermat (1601-1665), who is considered the founder of the theory
of numbers.

The theory of numbers is regarded as the purest branch of pure mathe-
matics because it has very few applications to other sciences. Many of
its general results were discovered and suggested by special cases which
were observed not only by mathematicians but also by amateurs. The
world-famous German mathematician, Carl Friedrich Gauss (1777-
1855), referred to mathematics as the "Queen of the Sciences" and to
higher arithmetic as the "Queen of Mathematics."

Gauss made many original contributions to the subject; he also sys-
tematized all the materials available and put them in the form we have
today. In this respect his work in number theory may be compared with
that of Euclid (about 300 n.c.) in geometry.

2. The sequence of consecutive odd numbers
We begin with some very simple observations regarding the natural

numbers. We note first that they divide themselves into two groups, the
1



2 SOME IDEAS ABOUT NUMBER THEORY

odd and the even numbers, which resemble the parent group in that
neither of the groups has a largest number.

Adding consecutive odd numbers, one obtains a striking result:
1 + 3 = 4 = 22; 1 + 3 + 5 = 9 = 32; 1 + 3 + 5 + 7 = 16 = 42;
and so on. It is true without exception that the sum of the first n odd
numbers is equal to n2. Thus the sum of the first 1000 odd numbers is
equal to (1000)2, or 1,000,000. This result, as well as many others of a
similar character, was proved geometrically by the ancient Greeks.
The proof of the statement under consideration is given below (12:
1-11) :*

0 ,
3
n 11___.

16

3. The Fibonacci sequence
Another interesting sequence of natural numbers arises from a problem

suggested by the thirteenth century mathematician Leonardo of Pisa
(about 1170-1250), who is called Fibonacci since he was the son (figlio)
of Bonaccio. In his famous book Liber Abaci the following problem
appears (7: 27-31; 6: 76-78): How many pairs of rabbits can be produced
from a single pair, if it is supposed that every month each pair begets a
new pair, which from the second month on becomes productive?

We are led to the following sequence of natural numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ,

where each new term is formed by adding the last term to its predecessor.
Thus 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2, 8 = 5 + 3, 13 = 8 + 5, .

Fibonacci sequences occur in plant growth and in art, as well as in
geometry. We shall not attempt to explain the occurrence of these
numbers in plant growth; the reader is referred to the topic "Phyllotaxis"
in an encyclopedia.

We now turn to a geometric application of Fibonacci numbers. Let
us first recall how a regular decagon (a ten-sided polygon, all of whose
sides and angles are equal) may be inscribed in a given circle. We shall
describe the construction, which is to be made with ruler and compasses
only, without going into the proof (8: 213).

* The symbol (x: y) will be used to refer to page y of reference x in the numbered
list at the end of this pamphlet.



THE NATURAL NUMBERS 3

In a circle with radius 1 unit and center 0, draw two perpendicular
diameters AN and BB'. Bisect OA' and call the midpoint P. With P
as center and with radius PB, draw the arc of a circle cutting AO at C.

B

Then BC is the length of the side of the inscribed regular pentagon
(the five-sided figure all of whose sides are chords of the given circle and
are of equal length); and OC is the length of the side of the regular
decagon. In the proof of the construction the ratio AC to CO (the ratio
of the segments into which C divides the radius) turns out to be

or .0 1
P

2

and this ratio is approximately .618.
Let us now return to the Fibonacci sequence of numbers and find, start-

ing with 2, the ratios of pairs of consecutive terms: 2/3 = .667; 3/5 =
.600; 5/8 = .625; 8/13 = .615; 13/21 = .619; 21/34 = .618; 34/55 =
.618; 55/89 = .618; 89/144 = .618, and so on. We note that the ratios
of these pairs of numbers seem to be getting closer to the ratio
2/(1 + .0). In fact, it has been shown (12: 44-45) that the limiting value
of the ratio of two successive terms of the Fibonacci numbers, as we go out
indefinitely, is precisely the ratio of the side of the regular inscribed dec-
agon to the radius of the circumscribing circle.

The expressions golden section and divine proportion refer to the ratio
2/(1 + VS) or .618. To the Greeks the most pleasing rectangular
figures were those whose sides were in the ratio 3/5 (approximately the
divine proportion .618).
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CHAPTER

II
Primes and Composites

4. What are prime and composite numbers?

Both Aristotle (384-322 B.c.) and Euclid distinguished between such
numbers as 2, 3, 5, 7, 11, 13, 17, which they called primes, and 4, 6, 8,
9, 10, 12, 14, which they called composites. A prime has no exact divisor
other than itself and unity. It is obvious that the only even prime is 2.
The number 1 will not be considered a prime for reasons that will be ap-
parent later.

Anyone can tell at a glance whether a number is odd or even; to de-
termine whether a number is prime or composite is much more difficult
and may not even be feasible. If we want to find out whether 30,031 is
prime or composite, we have the tedious task of testing the primes in
succession as divisors, until we find one prime which divides exactly
into 30,031. In this case the first prime divisor is 59, and the other
factor, also a prime, is 509. Thus we find that 30,031 is composite. Tables
of primes have been constructed up to 10,000,000, and certain other
large primes have been found by ingenious methods. At the present time
the largest verified prime is 23217 1, which, when written in the usual
form, contains 969 digits.

5. The distribution of primes
If we start with a small prime, we may readily find the next consecu-

tive prime by trial. But nobody yet knows the prime that immediately
follows 2" 1. Such a prime exists, since, as we shall prove later,
there is an endless sequence of primes.

The smallest interval between two consecutive primes starting with 3
is, obviously, 2, but we can show that there are consecutive primes as
far apart as we choose, though we cannot give their exact values. Let
us illustrate. First, we may write as many consecutive composite num-
bers as we please. If we wish to have 1000 consecutive composite
numbers, all we need do is write the sequence

1001! -I- 2, 1001! + 3, 1001! + 4, , 1001! + 1001,

4



PRIMES AND COMPOSITES 5

where the notation 10011has the usual meaning (2) (3) (4) (5) (1001).
Since 10011 contains the factor 2, the first term, 10011 + 2, is exactly
divisible by 2. Likewise the term 10011 + 3 contains the factor 3, and
so on, until we arrive at the thousandth member of the sequence,
10011 + 1001, which is exactly divisible by 1001. Thus each of the 1000
members is a composite number. The largest prime preceding 1001! + 2,
and the first prime following 10011+1001, are two consecutive primes
whose difference is at least 1000. In this way we can prove that there
exist two primes that are arbitrarily far apart, even though we cannot
give the values of these primes.

The primes are very irregularly distributed. There are 25 primes
among the first 100 natural numbers. The following table shows the
distribution of primes among the natural numbers up to 1000 (10: 75-77).

Numbers from

to

1 100 200 300 400 500 600 700 800 900

100 200 300 400 500 600 700 800 900 1000

Number of
Primes 25 21 16 16 17 14 16 14 15 14

The primes seem to occur less frequently as we go farther out in the
sequence of natural numbers. It has been shown by ingenious calculations
that in the interval from 1012 (one trillion) to 1012 + 1000 there is the
following distribution of primes.

Numbers from

to

1012 + 0 100 200 300 400 500 600 700 800 900

1012 + 100 200 300 400 500 600 700 800 900 1000

Number of
Primes 4 6 2 4 2 4 3 5 1 6

6. A formula for the number of primes
In spite of the fact that the primes are irregularly spaced, mathe-

maticians have found a formula giving the approximate number of
primes between 1 and any natural number N. Although the formula
gives approximate results, the approximation becomes more and more
exact as N increases in size.

This formula is most easily described in terms of the number e, which
is known as the natural or Naperian base of logarithms after the Scottish
mathematician John Napier (1550-1617).

The meaning of this number e may be explained in connection with a
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problem of compound interest. If $1 is invested at 100 percent interest,
the investment will amount to $2 in a year. If, however, the money
is compounded twice a year, the investment will amount to $2.25;
if compounded quarterly, the amount will be $2.44. If we now figure
the compound interest continuouslynot annually, semi-annually, or
quarterly, but at each instantthe original $1 grows to $2.72 (to the
nearest cent) at the end of one year. This limiting value 2.72 is the
approximate value of the number e. The reader acquainted with the
concept of limit will recognize that the number e just described is really

lim (1 + 1)t .

We are now ready to give the formula for the number of primes from
1 to N. This number, which must of course depend on N, is usually
denoted by ir(N). The Greek letter r corresponds to p in the English
alphabet and refers to the first letter of the word prime. The 7 used in
connection with the circle has no relation to the r used here as a notation
for this particular function of N.

The first estimate concerning the magnitude of ir(N) seems to have
been made independently (about 1800) by the French mathematician
Adrien Legendre (1752-1833) and by Gauss. The formula is

r(N).1
loge

N
N '

where 4-- signifies approximate value.
The following table gives values of w(N) and the corresponding values

of N/logeN. It also shows that the ratio of r(N) to NjlogeN seems to
approach 1. The values of 7(100,000,000) and 7(1,000,000,000) were
obtained (about 1870) by special methods.

AT w(N) N/logeN ir(N) N/logeN / Nr(N)/ logeN

1,000 168 148 20 1.135

10,000 1,229 1,086 143 1.123

100,000 9,592 8,686 906 1.104

1,000,000 78,498 72,380 6,118 1.085

10,000,000 664,579 620,440 44,139 1.071

100,000,000 5,761,455 5,428,610 332,845 1.061

1,000,000,000 50,847,478 48,255,600 2,591,878 1.054

It was actually proved that the ratio
7(N)

N
logeN
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tends to 1 as a limit as N approaches infinity. This remarkable result is
one of the mathematical highlights of the nineteenth century and is
known as the Prime Number Theorem. It was proved independently
in 1896 by the French mathematician Jacques Hadamard (1865 -) and
by the Belgian mathematician C. J. de la Vallee Poussin (1866- ).

7. The fundamental theorem of arithmetic
Before discussing the question of the existence of an infinite number of

primes, we note that every composite number, no matter how large,
may be decomposed into a product of primes (1: 12-21). For example,
15 = (3)(5); 36 = (2)(2)(3)(3) = (22)(32); 150 = (2)(3)(52). It is also
true, although more difficult to prove, that this decomposition can be
accomplished in only one way, apart from the order in which the factors
are written. We find that 1665 = (32)(5)(37), and this number cannot
be expressed in any other way as a product of primes.

These two results together constitute what is known as the funda-
mental theorem of arithmetic or of number theory. The theorem tells us that
every natural number can be obtained by the single operation of the
multiplication of specific primes, and the same number can never be the
product of a different set of primes. We see now why the number 1 is
not called a prime; it maybe introduced into a factorization as frequently
as we wish without changing the value of the number, and the unique-
ness of factorization does not apply.

In our daily use of arithmetic, we unconsciously assume the funda-
mental theorem without realizing it. If, for example, the product of two
integers a and b is exactly divisible by c, and if a and c have no factors in
common, then b is divisible by c. Thus 144 is divisible by 8, so that if we
write 144 = (9)(16), it follows that the 16 absorbs all the factors of 8,
since 9 does not have a factor in common with 8. This is a result of
the unique factorization of 144, and of 8, since we are really assuming
that there is no other way of using up all the prime factors of 8 except
through those of 16. Without going into further instances, we may say
that all the divisibility properties of the natural numbers depend on the
uniqueness of the factorization of a natural number into its prime factors
(1: 28).

8. The number of primes is infinite
We shall now show by very simple reasoning that there is an infinite

number of primes. Euclid was the first to do this, and his proof is still
a model of beauty and simplicity. His method consists in showing that
if we assume there is a largest prime, we arrive at a contradiction. Say-
ing that there is no largest prime is tantamount to saying that there
must be an infinite number of primes. To illustrate the method let us

i



8 SOME IDEAS ABOUT NUMBER THEORY

suppose that the number 89 is the largest prime. We shall then show
that there exists a larger prime. The same method will work whether
the largest assumed prime is 89 or 23217 1.

Form the product of all the primes from 2 through 89, and add 1
to the product. Let N be this result so that

N = (2)(3)(5) (83)(89) + 1.

This number N is very large, obviously greater than 89, and it must be
either prime or composite. If it is prime, 89 is not the largest prime
number, as we had originally supposed, and we have arrived at a con-
tradiction. If it is composite, it may be factored into a product of primes.
(We are now using only the first part of the fundamental theorem of
arithmetic.) The number 2 is obviously not an exact divisor of N, since
we see that, if we divide N by 2, we obtain a remainder of 1. Indeed,
every prime in the series 3, 5, , 89, when used as a divisor of N,
leaves a remainder of 1. As every composite number must have prime
divisors, we conclude that even the smallest prime divisor of N must
be greater than 89, which contradicts our assumption that 89 is the
largest prime. We may apply this method to any prime p which we
assume to be the largest prime, and our proof is complete.

9. Formulas that yield only primes
Attempts have been made to give formulas that yield only primes

(10: 80-81). For example, we may easily verify that the formula

x2 x + 41

will give a prime for every value of x that is a whole number, from x = 0
to x = 40. Notice however that the primes thus obtained will not be
consecutive. Thus when x = 0, the value of the expression above is
41; when x = 1, its value is again 41; when x = 2, the value is 43; when
x = 4, the value is 53. When x = 40, the value is 1601, which may be
verified to be a prime. However when x = 41, the expression obviously
reduces to 412, which is composite. This is one example showing that a
property may hold in many instances and yet not be true in all cases.
Another such formula is x2 + x + 17, which yields a prime for each of
the 17 integral values from x = 0 to x = 16. But we see that for x = 17,
we obtain the composite number (17)(19).

Other such expressions could be given. The two cited are examples of
polynomials in the single variable x. A polynomial is a sum of terms each
of which has a numerical factor multiplied by a non-negative integral
power of x. Explicitly, a polynomial has the form

a + bx + cx2 + + lxn



PRIMES AND COMPOSITES 9

where a, b, c, , I are numerical coefficients. The number n, the high-
est power of x, is called the degree of the polynomial. In the two examples
given above, the degree of each of the polynomials is 2, and the numerical
coefficients are integral; for the case x2 - x + 41, a = 41, b = 1, c = 1.

The reader may wonder whether there is a polynomial in x that
will yield only primes when integral values are substituted for x. The
answer is no. It has been proved that no polynomial with integral coeffi-
cients, irrespective of its degree, can yield only prime values when all pos-
sible natural numbers are substituted for x in the polynomial (10: 80-81).

While no polynomial can yield only primes, an exponential expression
has been found that always yields primes. In 1947 the American
mathematician W. H. Mills proved the following theorem: There exists
some real number R for which the greatest integral value in R3" gives only
primes as n assumes the infinite set of values 1, 2, 3, .

A real number is one such as 232 or V7. If in the formula R3n, we
let R = 2% and n = 1, we obtain 15%; the largest integer in 15% is
15. Obviously this value of R does not give a prime even for n ..-- 1,

let alone for all values of n. In fact, the actual value of this real number
R cannot be determined; we know only that there is such a number.

We have proved (Section 8) that there always exists a prime larger
than any given prime. For example, 2112" 1 is the largest prime known
today, discovered in 1964 by two American mathematicians, Alexander
Hurwitz and John L. Selfridge. This number, when written in the ordi-
nary number system, contains nearly 3400 digits.

10. Diriehlet's theorem

Euclid's result on the infinitude of primes stood for more than 2000
years without essential modification. In the nineteenth century the
German mathematician Lejeune Dirichlet (1805-1859) looked for
sequences of natural numbers, other than the odd numbers, among which
there would be an infinite number of primes. He stated and proved a
far-reaching generalization of Euclid's result.

To express the fact that all integers are even or odd, we need only say
that they are of the form 2n or 2n + 1, where n is any natural number.
We may equally well classify integers on the basis of their divisibility
or non-divisibility by 3 instead of 2. Thus we may say that every natural
number has one of the forms 3n, 3n + 1, 3n + 2, where n assumes any
integral value. For example, 16 is of the form (3)(5) + 1 while 23 is of
the form (3)(7) + 2.

Let us now give some numbers of the form 3n + 1:
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3n + 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

We see that among these 15 numbers there are six primes: 7, 13, 19, 31,
37, 43. Dirichlet proved that in this infinite sequence of natural num-
bers of the special form 3n + 1, there is an infinite number of primes.
The same is true for numbers of the form 3n + 2. In fact, if we form the
arithmetical sequence or progression an + b, where a and b are relatively
prime (have no common factor), we obtain a sequence containing an
infinite number of primes.

The general theorem stated and proved by Dirichlet is that in every
arithmetical progression of the form an + b (as n takes on the values 1, 2,
3, ) there is an infinitude of primes. His proof (2: 269-305) used very
advanced methods of the calculus. Only a few years ago the American
mathematician A. Selberg proved the same result by using elementary
methods dealing with the natural numbers only.

jai



CHAPTER

III
The Divisors of a Number

11. The number of divisors of a number

In considering the decomposition of a natural number into its prime
factors, we have already noticed that each prime factor may occur any
number of times. We might think of each natural number as a compound
that is decomposed into its elements (prime factors) and each element
may occur once, twice, or more often. Thus, 15 = (3)(5); 60 = (22)(3)(5);

144 = (24)(32). If we now consider all the prime and composite divisors,
including 1 and the number itself, we find that these divisors play an
important role in the development of number theory.

As an example, we see that while 15 has only two distinct prime factors,
3 and 5, it has four divisors, 1, 3, 5, 15. The number 60 has the distinct
prime factors 2, 3, and 5, and it has the 12 divisors:

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

These divisors may be counted systematically as follows. Since the prime
decomposition of 60 is (22)(3)(5), we note first that the two factors 2 give
rise to three divisors, 1, 2, and 22; the factor 3 gives rise to two divisors
1 and 3; the factor 5 gives rise to two divisors 1 and 5. Now each of the
three divisors 1, 2, and 4 may be combined with each of the two divisors
1 and 3; this gives rise to the six divisors:

1, 2, 4; 3, 6, 12.

Each of these six divisors may be combined with each of the divisors 1
and 5. In this way we obtain the 12 divisors:

1, 2, 4; 3, 6, 12; 5, 10, 20; 15, 30, 60.

The number of divisors is found from the following rule (1: 22-23).
Let the natural number N have the factorization

N = "be
where p, q, r, are the prime factors raised to the powers a, b, c, ,

11



12 SOME IDEAS ABOUT NUMBER THEORY

respectively. The number of divisors of N, denoted by d(N), is found
by the formula

d(N) = (a + 1)(b + 1)(c + 1) ,

where the dots mean that we continue until we have exhausted all the
exponents.

When N = 60 = (22)(3)(5), we see that p = 2, q = 3, r = 5; a = 2,
b = 1, c = 1, so that d(60) = (2 + 1)(1 + 1)(1 + 1) = 12.

Note that the number of divisors depends only on the exponents of
the prime factors and not on the prime factors themselves. If N =
(72)(3)(5), the number of divisors of N is still 12.

12. The sum of the divisors
Let us next consider the sum of the divisors. For N = 15, this sum is

equal to 1 + 3 + 5 + 15 = 24. For N = 60, the sum is 1 + 2 + 3 +
4 + 5 + 6 + 10 + 12 + 15 + 20 + 30 + 60 = 168. Using the sys-
tematic method for finding all the divisors of 60, we obtain the sum of
the divisors in the following form:

1 + 2 + 22 + 3(1) + 3(2) + 3(22) + 5(1) + 5(2)

+ 5(22) + 15(1) + 15(2) + 15(22),

and this sum may be put in the more abbreviated form

(1 + 2 + 22)(1 + 3)(1 + 5).

In general, if N = paerc , the sum of the divisors denoted by 0.(N)
is given by the formula (1: 23):
Q(N) = (1 + p + 2)2 + + pa)(1 + q + q2 + + qb)

(1 + r + r2 + + rc) ,

where again we take all the products until the prime factors of N are
exhausted. The sum of the divisors is denoted by 0.(N) because a is the
Greek letter corresponding to our s, the first letter in sum. The following
examples illustrate the fact that the formula gives the same sums we
found above by direct addition:

N= 15 = (3)(5); p = 3, q = 5; a = 1, b = 1;
Q(15) = (1 + 3)(1 + 5) = 24;

N = 60 = (22)(3)(5); a(60) = (1 + 2 + 22)(1 + 3)(1 + 5) = 168.

We note that the formula for a(N) involves not only the exponents
but also the prime factors themselves.

Si
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i
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13. The Euler phi-function or totient 4

iThe two expressions d(N) and cr(N) are examples of number-theoretic
functions. The term function is used because the values of d(N) and
Q(N) depend upon N. They are called number-theoretic because the
functions always yield integers when N is itself an integer. Another such
function is r(N), the number of primes from 1 to N, which we discussed
in Section 6. On the other hand, the function V N is not of this type,
since, for example, V2 is not an integer.

We now consider another function, called the totient of N or the phi-
function of N, denoted by 0(N). This was first introduced about 1760
by the Swiss mathematician Leonard Euler (1707-1783). By 4(N) we
mean the number of natural numbers less than N that have no factor
in common with N. Thus 0(6) = 2, since there are only two numbers,
1 and 5, less than 6 having no factor in common with 6. In contrast to
this, r(6) = 3 since there are three prime numbers, 2, 3, and 5, less than
6 (1 is not a prime). The following values of 0(N) for N = 1, 2, ,15
assigning the value 1 to 0(1)may be easily verified:

0(1) = 1 0(6) = 2 0(11) = 10
0(2) = 1 0(7) = 6 0(12) = 4
0(3) = 2 0(8) = 4 0(13) = 12
0(4) = 2 0(9) = 6 0(14) = 6
4)(5) = 4 0(10) = 4 0(15) = 8

We observe that the values of 4(N) are irregular. In spite of this, Euler
gave an exact formula for 0(N):

If N = paere , then

4)(N) = N(1 1/p)(1 1 /q)(1 1/r) ,

where the dots mean that we continue until all the prime factors of N
are exhausted (10: 110-11). The following examples demonstrate the
use of the formula:

15 = (5)(3); 4(15) = 15(1 1/3)(1 1/5) = (15)(2/3)(4/5) = 8;

144 = (24)(32); 0(144) = 144(1 1/2)(1 1/3) = 48.

The second example tells us that there are 48 natural numbers less
than 144 that have no factor in common with 144.

Of course it is quite obvious that if N is a prime p, then 4(p) = p 1,

since each one of the p 1 numbers less than p can have no factor in
common with p. In particular, 0(2) = 1, 0(3) = 2, 0(5) = 4, 447) = 6,
0(11) = 10, , 0(p) = p 1.

The following interesting property of the Euler phi-function is worth
1
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mentioning (10: 119). If we denote the divisors of N, including N itself,
by the letters u, v, w, , N, then 0(u) + 0(v) + 4(w) + + 4)(N)
is equal to N. Note the following examples:

If N = 9, the divisors of N are 1, 3, and 9, and
(1)(1) + 0(3) + 0(9) = 1 + 2 + 6 = 9;

if N = 30, the divisors are 1, 2, 3, 5, 6, 10, 15, 30,
and 4)(1) + 0(2) + 0(3) + 0(5) + 0(6) + 0(10) + 4410 +

0(30) = 1 + 1 +2+4+ 2 +4+ 8 +8=30.
A property common to all the three functions d(N), a(N), and 0(N)

is the following: if N is the product of two natural numbers m and n
which have no factor in common, then

d(mn) = d(m)d(n), (r(mn) = a(m)a(n), cb(mn) = 0(m)0(n).

Thus in each case the function of the product of the two factors is equal
to the product of the functions of the separate factors. The following
examples illustrate this common property:

d(15) = d(3)d(5), since d(15) = 4, d(3) = 2, d(5) = 2;
a(15) = 0-(3)(7(5), since a(15) = 24, a(3) = 4, a(5) = 6;
0(15) = 0(3)0(5), since 4)(15) = 8, 0(3) = 2, 0(5) = 4.

This property is usually referred to as the multiplicative property (1: 48)
and is not possessed by the function T(N), as we see from an example:
r(12) is not ir(3)7(4), since 7(12) = 5, 7(3) = 1, 7(4) = 2.

14. Perfect numbers
The formula for the sum of the divisors of a number N has many

interesting consequences. One of these is connected with perfect num-
bers. A perfect number N is a number for which the sum of its divisors
including 1 but excluding N is equal to N itself.

A simple example of a perfect number is 6, since the divisors are 1,
2, and 3, and their sum is 6. The next perfect number is 28. Its divisors
are 1, 2, 4, 7, and 14, and 1 + 2 + 4 + 7 + 14 = 28. Numerologists
from time immemorial have attributed special significance to the
numbers 6 and 28, because God created the world in 6 days, and 28 is
the number of days required for the moon to circle the earth.

Seventeen perfect numbers were known in 1953. The twelfth one,
containing 37 digits, is

2,658,455,991,569,831,744,654,692,615,953,842,176.

The Greeks knew the first five: 6, 28, 496, 8,128, and 33,550,336.
In fact, Euclid proved (12: 80-81) that if p is a natural number that

)

1
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makes (2" 1) a prime, then 2P---1(2P 1) is a perfect number. The fol-
lowing examples illustrate this relationship:

When p = 2, 2" 1 = 3, which is a prime number.
Then 2P-1 = 2, and (2) (3) = 6, which is a perfect number.

When p = 3, 2" 1 = 7, which is a prime number.
Then 2P-1 = 22 = 4, and (4)(7) = 28, which is a perfect

number.
When p = 5, 2" 1 = 31, which is a prime number.

Then 2"--1 = 24 = 16, and (16)(31) = 496, which is a perfect
number.

If we let p = 4, we find that 2" 1 = 15, which is not prime. Then
2P-1 = 8, and (8)(15) = 120. Euclid's formula does not tell us that 120
is a perfect number. Neither does it tell us that it is not perfect. Actually
every even value of p except 2 will make 2" 1 a composite number.
Furthermore when p itself is a prime, 2" 1 is not necessarily a prime.
For example, when p = 11, 2' 1 = 2047, which is (23)(89). In these
cases the formula fails.

Although Euclid's formula gives us a way of discovering even perfect
numbers, the question may be asked: Are there other formulas that
would yield even perfect numbers? The answer is no. Euler proved
(10: 91-93) that if a number is to be an even perfect number, it must be
expressible in the form 2P-1(2P 1), where the value of p makes (21' 1)
a prime. Thus the entire question of discovering even perfect numbers
depends on finding the values of p for which (2' 1) is prime. The
search for such values of p is still going on.

Numbers of the form 2" 1 with p a prime are called Mersenne
numbers after the Franciscan Father M. Mersenne (1588-1648). It is
clear that once we know a Mersenne number which is prime, then
2P-1(2P 1) would be a perfect number by Euclid's result. With the
advent of computing machines, large Mersenne primes have been found,
and the known perfect numbers are much more numerous than the
Greeks anticipated. In 1952 the Mersenne prime (232" 1) was dis-
covered, and this gave rise to the perfect number 23216(23217 1), which
contains 1,937 digits.

Euclid's formula, as already indicated, gives only even perfect num-
bers. No formula has been devised that will give odd perfect numbers
In fact, not a single odd perfect number has as yet been discovered; and
calculations indicate (10: 359a) that none exists less than (1.4)(1014).

We shall now indicate the proof of a well known property of even
perfect numbers, that they always end in 28 or in 6 preceded by an odd
digit. This property is true not only for the perfect numbers but also for
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every member of the sequence a where a, = 22n(221$ +1 1). Obviously,
the even perfect numbers 2P-'(2P 1) are included among these if we
confine ourselves to the odd primes p, so that p 1 will be an even
number 2n and p = 2n -I- 1. (The only even perfect number not included
in the sequence a, is 6, which results when p = 2.)

Let us first consider the odd values of n in the sequence an, namely,
al, a3, a6, a2k+1. We may verify the following by direct computation.

al = 28
a3 = 256a1 + (60)(16)
a6 = 25603 + (60)(162)

a2k4-1 = 256a2k-1 + (60)(169

Since al = 28, we see that a3 = (256)(28) + (60)(16). When the
product (256)(28) is divided by 100, the remainder is 68; when the prod-
uct (60)(16) is divided by 100, the remainder is 60. When the sum of
68 + 60 is divided by 100, the remainder is 28. Hence a3 has the re-
mainder 28. In a similar manner we find that a5, a7, , 02k+1 all leave
remainders of 28 when divided by 100.

Proceeding to the terms of a, with even subscripts, namely, a2, a4, t

a2k +2, we may verify the following:

02 = (16)(31) = 496
Ct4 = 256a2 + (240)(16)
as = 256a4 + (240)(162)
aft = 256a6 -I- (240)(163)
ai0 = 256a8 + (240) (164)

a2k+2 = 256a2k + (240) (16k).

The first term 02 leaves a remainder of 96 when divided by 100.
Similarly, al leaves a remainder of 16; a6 leaves a remainder of 36; 08
leaves a remainder of 56; al° leaves a remainder of 76. Finally, 012 leaves
the same remainder as a2.

Thus we have verified that in the sequence ai, a2, a3, the a's with
odd subscripts end in 28 while those with even subscripts end in 6,
preceded by an odd digit.

15. Amicable numbers
Two numbers are said to be amicable if the sum of the divisors of the

first number is equal to the second number itself and if the sum of the
divisors of the second number is equal to the first number. Here the
divisors of a number include all the divisors except the number itself

1
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(see Section 11). The smallest pair of amicable numbers is 220 and 284.
To verify that they are amicable, let us first compute the sum of the
divisors of 220 = (22)(5)(11). By the formula in Section 12, o(220) =
(1 + 2 + 22)(1 + 5)(1 + 11) = 504. Since this sum includes the number
itself, we subtract 220 from 504 to obtain 284. Similarly, 284 = (22)(71),
so that g(284) = (1 + 2 -I- 22)(1 + 71) = 504. When we subtract the
number itself, 284, we obtain 220, the first number.

The ancients believed that two people wearing talismans bearing
these numbers would be friendly and in harmony, hence amicable.
Such numbers were known to the Greeks about A.D. 320, more than 500
years after the discovery of perfect numbers.

During the middle ages the Arabs were attracted to the study of
amicable numbers, and the search for additional pairs has continued
to the present day. In 1747 Euler published a list of 60 pairs; in 1866
an amateur mathematician found a remarkably small pair, 1184 and
1210 (10: 96-100).

i
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CHAPTER

Iv
Some Proven Facts of

Number Theory

In this chapter we shall state some results for which we shall give
numerical illustrations without formal proofs.

16. Chebyshev's theorem
The Russian mathematician Chebyshev (1821-1894) proved that

between every integer greater than 1 and its double, there is at least one
prime. Between 2 and 4, for example, there is the prime 3. Between 6
and 12 there are two primes, 7 and 11.

The proof of this result, while not lengthy, requires some mathematical
maturity for its understanding (12: 86).

17. Fermat's little theorem
In the year 1640 Fermat mentioned the following result in a letter to

another French mathematician (1: 46): If p is a prime that is not a
divisor of the natural number a, then the expression aP-1 1 is exactly
divisible by p. Following are two examples:

If a = 2 and p = 7, then 27-1 -- 1 ..--- 63, which is divisible by 7;
if a = 8 and p = 5, then 85-1 1 = 4095, which is divisible by 5.

The reason for the restriction on a is obvious. If a is divisible by p,
then aP-1 is also divisible by p, and hence aii--' 1 cannot be divisible
by p.

There is no doubt that Fermat himself had a proof for this theorem,
but no record of it exists. Euler was the first to publish a proof; many
others have since been given.

A converse of Fermat's little theorem has been proved, but it is
rather involved and will not even be stated (10: 327, 339).

Fermat's little theorem is so called to distinguish it from another
result stated by Fermat and known as Fermat's last theorem, for which
no proof has yet been found (Section 28).

From the statement of the little theorem, it is clear that when p is
18

1
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not a prime, the result is in doubt. For example, if p = 4 and a = 3,
34-1 1 = 26, which is not divisible by 4. However, when p = 4 and
a = 5, 54-1 1 = 124, which is divisible by 4.

18. Euler's generalization of Fermat's little theorem
In 1760 Euler gave the following extension of Fermat's little theorem,

which includes the case when p is not prime: Let m and a be any two nat-
ural numbers with no factor in common. Then the expression a#(m) 1

is divisible by m. Thed)(m) is the Euler phi-function (Section 13); that is,
the number of natural numbers less than m having no factor in common
with m (1: 47). For example, let m = 10, so that 0(10) = 4. If
a = 3, 34 1 = 80, and 80 is divisible by 10.

That Euler's result is a true generalization is seen by substituting
p for m. Then 4)(m) = cp(p) = p 1, and the Euler result becomes
a'-1 1, which is Fermat's little theorem.

19. Wilson's theorem
In 1770 Edward Waring published the following theorem, which he

ascribed to his student John Wilson (1741-1793): If p is a prime, then
the product of all the natural numbers up to and including p 1, that
is, (1)(2)(3)(4) (p 1), increased by 1, is divisible by p. In other
words,

(1)(2)(3) (p 1) -I- 1

P
is a natural number (10: 259).

This result may also be stated in another form: The expression
(p 1)! + 1 is divisible by p. For example, if p = 7, then 6! + 1 = 721,
which is divisible by 7.

The first proof of this theorem was given in 1770 by the French
mathematician J. L. Lagrange (1736-1813).

The converse to Wilson's theorem is: If the product of all the numbers
from 1 to (n 1) increased by 1 is exactly divisible by n, then n must be a
prime (10: 261).

To prove the converse, suppose n is not a prime so that n = ab, where a
lies between 1 and n. Then a must occur as a factor in (1)(2)(3)
(n 1) = (n 1)!, and hence (n 1)! -I- 1 could not be divisible by
a, much less divisible by n. Thus we have reached a contradiction, and
n must be a prime.

However, this is not a practical test for primeness since for any
sizable n, the value of (n 1)! + 1 would be a very large number, and
it would involve much computation to determine whether n is an exact
divisor.
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20. Fermat's two-square theorem
If we ignore the even prime 2, the other primes may be arranged in

two classes:

A: 5, 13, 17, 29, 37, 41, ;

B: 3, 7, 11, 19, 23, 31, .

All the primes in A leave a remainder of 1 when divided by 4; those in
B leave a remainder of 3 when divided by 4. We may now state the
following result discovered by Fermat: Any prime of the class A can be
represented as the sum of the squares of two natural numbers. For
example, 5 = 12 + 22; 13 = 22 + 32; 593 = 232 + 82. No prime of the
class B can be represented as a sum of two squares.

The proof of these results is not simple and can be understood only
by an experienced mathematician (1: 115-20).

In the examples given for the class of primes A, each prime is repre-
sented as the sum of the squares of two natural numbers, and cannot
be the sum of two other squares. If now we consider a number like
65, which is not itself a prime but is the product of the two primes 5
and 13, each of the class A, there are exactly two ways of expressing 65
as a sum of two squares:

65 = 42 + 72 and 65 = 12 + 82.

We shall now state a more general result for the number N which is
the product of any number of prime factors, each of the form 4h + 1.
This is the same as saying that each prime factor when divided by 4
leaves a remainder of 1 and thus belongs to class A.

When N has r distinct prime factors each of the form 411 + 1, there are
exactly 2r--1 ways of expressing N as a sum of the squares of two natural
numbers which are relatively prime to each other.

In particular, when N has only one such prime factor (when N is
itself prime), as in the case N = 13, already cited, r = 1 and 21-1 =-.

2° = 1. Hence, there is only one way of writing a prime of the form
4h + 1 as a sum of two squares, apart from the obvious possibilities of
interchanging the squares and changing their signs.

It is apparent that the number 125 = 53 may be written as a sum of
two squares in two ways: 125 = 112 + 22, and 125 = 102 + 52. In this
case r = 1, since 5 is the only distinct prime factor; hence 2r-1 = 21-1 =
20 = 1. However, in the representation 125 = 102 + 52 the numbers 10
and 5 are not relatively prime, and there is no contradiction.

On the other hand, when N = 65 = (5)(13), r = 2 and 2r-1 = 21 = 2,
and there are two ways of expressing 65 as a sum of two squares.

If the number N = (5)(13)(17) = 1105, we find the four ways of

t
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writing N as a sum of two squares: 42 + 332, 92 + 322, 122 + 312, and
232 + 242. Here r = 3 and 23-1 = 4.

The first recorded proof of the number of representations was given
by Euler in 1746, although more than 100 years earlier Fermat indicated
in a letter to another mathematician that he had a proof. There is no
reason to doubt Fermat's claim.

21. Lagrange's theoremsum of four squares
The following is another result first announced by Fermat: Every nat-

ural number N, no matter how large, may be written as a sum of four or
fewer squares (1: 124-26).

Euler made many efforts to find a proof, but without success. The
first proof was given in 1770 by Lagrange. It is not simple and required
considerable insight, so that Lagrange is entitled to the honor of having
this theorem named for him.

The following examples illustrate Lagrange's theorem:

600 = 242 + 42 + 22 + 22 = 576+ 16 + 4 + 4;
600 = 202 + 102 + 102;

102 = 102 + 12 + 12;
102 = 82 + 52 + 32 + 22.

Fermat's two-square theorem and Lagrange's theorem together tell
us that some numbers may be written as the sum of two squares, but
every number may be written as a sum of, at most, four squares.

Mathematicians have successfully investigated the number of repre-
sentations of a number as a sum of four squares, but the formula will
not be stated here (1: 128; 11: 175-78).

22. Sum of three squares
A more difficult problem is the representation of N as the sum of

three squares. Certain numbers such as 15 and 23 cannot be represented
as the sum of three squares.

In general, all numbers are representable as a sum of three squares,
except those of the form 4'(8k + 7), where r and k may be any natural
numbers or zero. A few examples will illustrate this theorem. When r = 0
and k = 1, the expression equals 15, which cannot be represented as the
sum of three squares. Similarly, when r = 0 and k = 2, or when r = 1
and k = 5, we obtain 23 or 188, respectively, neither of which can be
represented as the sum of three squares. On the other hand, 29 is not of
the form 4' (8k + 7), and it can be represented as the sum of squares as
fol lows : 29 = 22 + 32 + 42 = 22 + 52.
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23. Waring's theorem
It seems natural that once we have disposed of the problem of ex-

pressing a number as a sum of squares, we may proceed to think of
expressing a number as a sum of cubes or as a sum of higher powers.

In 1770, the same year in which Lagrange proved his famous theorem
that every number may be expressed as a sum of four squares, the English
mathematician Edward Waring (1734-1798) announced his belief that
every number may be expressed as the sum of a limited number of cubes,
fourth powers, or higher powers. Waring offered no proof, but he arrived
at this conclusion from much numerical evidence.

In 1909 David Hilbert (1862-1943), one of the most famous mathe-
maticians of modern times, proved that every number, no matter what
its size, may be written as the sum of a finite number of specified powers.
For example, if we specify that the sum should be of kth powers, Hil-
bert's result tells us that every number N may be written as the sum
of a finite number of kth powers, and this finite number depends only on
the power specified and not on the size of N. Lagrange's theorem is a
special case of Waring's theorem when k = 2 and the limited number of
kth powers is actually four.

Note that N = lk + 1k + 1k , to N terms, will not lead to a
limited number of kth powers as N increases in size.

Hilbert used intricate methods of the calculus, and he proved only
that the number of kth powers is limited; he could not determine in
general how many terms it would take to express the number N. Later,
other proofs were given by mathematicians in England, Russia, and
America, and their work included some special results for particular
values of k. Thus it is known that every natural number is expressible
as a sum of 9 or fewer cubes, as a sum of 19 or fewer fourth powers.
Some numbers take the maximum of 9 when written as a sum of cubes.
For example, 23 may be written in only one way as the sum of cubes:
23 = 28 -I- 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13, and no fewer
than 9 cubes will do. As a matter of fact, it has been shown that 23 is
the only number that takes the full complement of 9 cubes.

For fourth powers we find that 79 takes 19 of them: 79 = 24 + 24 +
24 + 24 + 14 + 14+ 14 + 14 + 14 + 14 + 14 + 14 + 14 + 14 +
14 + 14 + 14 + 14 + 14.



CHAPTER

V

Some Conjectures and
Unsolved Problems

A fascinating aspect of number theory is the great variety of problems
that have been proposed and that often are simple enough for a
layman to understand, though their solutions have eluded the efforts
of mathematicians. The nature of some of the unsolved problems will be
indicated briefly.

24. Twin prime problem
The name twin prime is given to the pairs of primes which differ by 2.

Thus 3 and 5 are twin primes. A short list of twin primes is: 3 and 5;
5 and 7;11 and 13; 17 and 19; 29 and 31; 41 and 43; 59 and 61; 10,006,427
and 10,006,429.

Twin primes may be found as far out as we are able to go in the table
of primes, although they become scarcer as we move out. A striking
result concerning twin primes occurs if we form the infinite sum of the
reciprocals of the primes that form the twins, as follows:

1/3 + 1/5 + 1/7 -I- 1/11 + 1/13 + 1/17 + 1/19 + 1/29 -I- 1/31 + .

This sum will actually be a finite number, or, as the mathematician
says, this sum will converge. From this fact two conclusions are possible:
either the twin primes come to an end, or they are infinite in number but
so scarce that their sum still has a limit. The conjecture about the twin
prime problem is that the number of pairs of twin primes is unlimited.
No proof of this conjecture is known.

25. A conjecture on a quadratic progression
The problem about to be stated appears so elementary that it seems

almost unbelievable that its solution has not been found. We have al-
ready seen that among the arithmetical progressions of the form an + b,
an infinite number of primes occurs as n takes on the values 1, 2, 3, .

However, we do not know whether the progression n2 + 1, for n = 1,
2, 3, , contains an infinite number of primes (4: 18-19).

23
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The following table shows the values of n2 + 1 for n = 1, 2, , 16:

ft 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n2 + 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257

We see from the table that among the first 16 numbers of the form
n2 + 1 there are only seven primes. The conjecture is that there is an
infinite number of primes in the infinite sequence n2 + 1.

26. Is there a prime between consecutive squares?
Chebyshev proved that between any natural number and its double

there is at least one prime, but it is not known whether there is a prime
between every two consecutive squares.

When the numbers studied are small, one may actually find the primes.
Thus between 62 and 72 are 37, 41, and 47. Between 112 and 122 we find
127, 131, 137, 139. However, no mathematician has as yet found an
answer to the question in general.

27. The Goldbach conjecture
Christian Goldbach (1690-1764), an obscure eighteenth century

mathematician, carried on an extensive correspondence with Euler on
problems of number theory. In this correspondence Goldbach considered
the following two questions:

A. Is every even number the sum of two odd primes? (Of course the
numbers 2 and 4 would be ruled out.)

B. Is every odd number the sum of three odd primes? (Now 3, 5,
and 7 must be ruled out.)

It is easy to see that if we could answer A in the affirmative, B would
also be true. For if N is an odd number and if p is any odd prime smaller
than N, then N p is even. If now N p could be written as the sum
of two odd primes, q and r, then N itself could be expressed as the sum
of three odd primes, namely, N = p q r.

For small values we may verify A. Thus:

6 = 3 + 3 14 = 3 + 11 = 7 + 7
8 = 3 + 5 16 = 3 + 13 = 5 + 11

10 = 3 + 7 18 = 5 + 13 = 7 + 11
12 = 5 + 7 20 = 3 + 17 = 7 + 13.
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These verifications have been made for all even numbers up to 100,000.
For small values, B may also be verified. Thus:

9 = 3 + 3 + 3 25 = 3 + 5 -I- 17 = 7 + 7 + 11
11 = 3 + 3 + 5 39 = 7 + 13 + 19 = 13 + 13 -I- 13
19 = 3 + 5 + 11 57 = 3 + 7 + 47 = 19 -I- 19 + 19.

While no proof of the Goldbach conjectures has been given, certain
advances have been made, especially in the attempts to prove conjec-
ture B. One of these was due to the Russian mathematician J.
Vinogradoff, who in 1937 showed that every sufficiently large odd num-
ber is the sum of three odd primes. However, the proof is an existence
proof (see Section 9), and no one knows how large the numbers are
that can be written as the sum of three odd primes. The methods
Vinogradoff used are intricate methods of the calculus and not those
involving the natural numbers.

The difficulties involved in the Goldbach conjecture arise from the
fact that we are trying to decompose a natural number into a sum of
primes. But the primes and their properties all depend on the operation
of multiplication. All questions relating to such problems are included
in additive number theory.

28. Fermat's last theorem
Perhaps the most famous conjecture in all number theory is Fermat's

last theorem, so called to distinguish it from Fermat's little theorem.
Fermat seems to have had very little interest in publishing any of his

results. He corresponded extensively with other mathematicians of his
day, and these correspondents recognized his great originality. Had he
published his ideas as they occurred to him, the world would have had
to credit him with more than the discovery of numerous original results
in number theory. He might have been regarded, along with Rene
Descartes (1596-1650), as the co-inventor of analytic geometry. He
would have shared the honor of discovering the differential calculus
with Sir Isaac Newton (1643-1716) and with Gottfried Leibniz (1646-
1716). Finally, he would have been recognized, along with Blaise Pascal
(1623-1662), as having laid the foundations of the theory of probability.

Everyone who has studied plane geometry knows the Pythagorean
Theorem (about 570 B.c.): In a right triangle the square of the hypotenuse
is equal to the sum of the squares of the other two sides. If, therefore, nu-
merical values are assigned to any two of the sides, the value of the third
side is found by a simple calculation. As a problem in number theory,
however, our interest lies in the study of those integral values of the
hypotenuse for which the sides are also integers. Thus when the hy-
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potenuse is 5, the other two sides are 3 and 4, since 32 + 42 = 52; when
the hypotenuse is 13, the other two sides are 5 and 12, since 52 + 122 =
132. But this relationship does not hold for arbitrary integral values of
the hypotenuse such as 2, 3, or 4.

Fermat encountered the problem of right triangles with integral
sides in a work on number theory by the Greek mathematician Diophan-
tus (about A.D. 250). Diophantus considered the problem of separating
certain integral squares into a sum of two other integral squares. In the
margin of his copy of Diophantus' book Fermat left the following note:
"However, it is impossible to write a cube as the sum of two cubes, a
fourth power as the sum of two fourth powers; and, in general, any
power beyond the second as the sum of two similar powers. For this I
have discovered a truly wonderful proof but the margin is too small
to contain it."

This is the celebrated Fermat's last theorem, which still remains
unsolved although some of the outstanding mathematicians of the last
three centuries have tried to prove or to disprove it.

Algebraically stated, this conjecture says that it is impossible to find
three natural numbers a, b, c, which will satisfy the equation an + bn = en,
if n is an integer greater than 2. If any of the quantities a, b, or c is zero,
we obtain the "trivial" solutions, a = 0, b = c, etc. Such solutions are
not to be considered.

The simplest case of Fermat's theorem occurs when the exponent
is 4, so that a' + b4 = c4. Fermat proved this case to be impossible
(1: 161-63), and other mathematicians have proved the impossibility
for many other exponents.

Mathematicians believe that when x, y, or z does not have a factor in
common with n, then the equation xn + yn = zn is impossible in natural
numbers when n > 2. But even this has not yet been proved or dis-
proved.

It has been shown that if x9 + yP = zP has a solution when p is an
odd prime that is not a factor of x, y, or z, and if (29-1 1) is not di-
visible by p2, then Fermat's conjecture is correct.

For example, we may conclude from this last remark that there are no
natural numbers x, y, and z, which are not multiples of 7 and for which
x7 + y7 = z7. When p = 7, 27-1 1 = 26 1 = 63, which is not di-
visible by 72.

The same procedure proves that x' + y9 = zP is impossible for all
x, y, and z that have no factors in common with p for all primes p up to
1093. Since it has been shown, however, that 21092 1 is divisible by
(1093)2, the truth or falsity of the conjecture is left in doubt (4: 73).
Using similar criteria, mathematicians have proved that Fermat's



SOME CONJECTURES AND UNSOLVED PROBLEMS 27

conjecture is true for all exponents up to 250,000,000, provided no one
of the x, y, and z has a factor in common with p.

When x, or y, or z has a factor in common with n, some mathematicians
doubt that the conjecture is true at all.

Whether or not Fermat actually had a proof is a matter of speculation.
It seems most unlikely that we shall ever find out. In all Fermat's state-
ments on his discoveries, where he claimed to have a proof, everything
he said has been substantiated. His guess that a certain sequence of
natural numbers was composed entirely of primes (see Section 30) was
later shown to be incorrect, but Fermat had never claimed that he had a
proof of this.

The interest aroused by Fermat's last theorem has been so great that
it is not surprising to learn that an award was offered for its solution.
In 1908 a German mathematician who had worked on the problem
offered a prize of 100,000 marks (about $25,000 at the time) for the first
complete proof. This problem continues to attract amateur mathemati-
cians, and numerous incorrect "proofs" have been submitted.

The reader may wonder what effect a proof of Fermat's last theorem
would have on the progress of mathematics. Would its solution have any
bearing on initiating new mathematics? In seeking a solution of this
problem, mathematicians have been stimulated to create new types of
number theory and have contributed greatly to the development of
other aspects of mathematics. Once this problem is solved its value
as a stimulant for research will cease. It is very likely, however, that
the method itself may be applied to other problems still unsolved.

29. The method of infinite descent
The method of infinite descent, a modification of mathematical in-

duction, is a powerful tool used in proving Fermat's conjecture for the
particular exponents for which the conjecture has been verified. Fermat
used this technique to show that certain equations do not have solutions
in natural numbers. For example, Fermat proved in this way that when
all three sides of a right triangle can be expressed in natural numbers,
the area can never be the square of a natural number.

Briefly, the method consists in expressing the problem in the form of
an equation whose solution we are seeking in natural numbers. We
assume that the equation has a solution, and then we show that there
is a contradiction. We accomplish this by using certain facts of number
theory and of algebra to obtain a new equation of the same form as the
original, but one whose solution is in smaller natural numbers than those
assumed. By repeating this process we eventually come to the stage where
one of the numbers in the solution is zero. The contradiction lies in the

1
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fact that zero is not a natural number. Thus a solution of the equati. n
in natural numbers is not possible. (See Section 46.)

For example, the proof of the impossibility of x4 + y4 = z4 in natural
numbers is made by assuming that there is a solution x = a, y = b, z = r,
where v., b, and c are natural numbers. From this assumed solution it
can be shown that there is another set of natural numbers a', b', and ti
for which (a1)4 + (b')4 = (c')4, but with c' less than c. By repeating this
process, we obtain a set of solutions with a succession of z's, each smaller
than its predecessor. Eventually we arrive at a solution where the value
of z is zero, and hence not a natural number, as was assumed. This is
the contradiction (1: 162).

While Fermat himself had proved the impossibility of satisfying the
equation x4 + y4 = z4 with natural numbers, many years elapsed before
the proof of the impossibility of satisfying xs + y3 = z3 was given by
Euler in 1753. But Euler's proof lacked rigor at one point. In 1798 the
French mathematician A. M. Legendre (1752-1833) gave a complete
proof.

For some time we have known that Fermat's conjecture is correct for
n up to about 700. More recently, with the aid of electronic computers
it has been shown that the conjecture is correct for exponents to about
4000. However, no method seems to give promise of answering the
conjecture in general, either in the affirmative or in the negative.

i
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CHAPTER

VI

Fermat Numbers and Regular
Polygons

In this chapter we shall discuss the constructibility of regular poly-
gons and their relation to Fermat numbers. By a geometrical construc-
tion the Greeks meant a construction performed using only the straight
edge and compasses. With these tools they attempted to solve the three
famous problems of antiquity. They wanted (a) to trisect the general
angle, (b) to duplicate the cube (construct the side of a cube having twice
the volume of a given cube), and (c) to square the circle (construct the
side of a square whose area is equal to that of a given circle). In the past
century it has been proved that these problems cannot be solved with
straight edge and compasses.

30. Fermat numbers
The Fermat numbers can be represented in the form

22` -I- 1,

where t assumes the values 0, 1, 2, 3, 4, 5, .

The following table gives the values of 22' + 1 for the first six values
of t:

t 0 1 2 3 4 5

20 + 1 3 5 17 257 65,537 4,294,967,297

In numerous letters to his contemporaries, Fermat expressed the
belief that the numbers obtained from 22' + 1 would be primes; this is
verified in the above table for t = 0, 1, 2, 3, 4. It was not until almost
100 years later that Euler disproved this conjecture by actually ex-
hibiting the factors of 225 + 1:

225 + 1 = 4,294,967,297 = (641)(6,700,417).

29
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Since Euler's time many other Fermat numbers have been shown to
be composites. In fact no Fermat prime beyond the case for t = 4 has
yet been found. Not many have been investigated, since they become
so stupendous in size. When t = 10, for example, the number 22" + 1
contains 155 digits. Contrary to Fermat's guess, it is now thought that
no Fermat number beyond the fifth is prime, but this is still a conjecture.

31. Constructible quantities
Certain concepts and results in mathematics have lain dormant for

many years, even for centuries, until they have been connected with
other parts of mathematics or with the physical sciences. This was the
case, for example, with the conic sections such as the ellipse. The
ancient Greeks studied them for their own beauty, but centuries later
Johannes Kepler (1571-1630) showed that the planets move about the
sun in orbits that are elliptical.

For more than 150 years after Fermat introduced the Fermat numbers,
no application was found to connect them with other parts of mathe-
matics. About 1800 Gauss took up the problem of the construction of
regular polygons with ruler and compasses, and he showed that this
problem is related to Fermat numbers.

In the discussion of the Fibonacci numbers we indicated the
construction with ruler and compasses of a regular pentagon and of a
regular decagon. Nearly everyone knows from plane geometry how to
inscribe an equilateral triangle, a square, and a regular hexagon in a
circle. Gauss became interested in finding out which regular polygons
in addition to the triangle, square, pentagon, hexagon, and decagon
can be inscribed in a circle, and he gave the complete answer to this
question.

It should be understood at the outset that the word ruler means a
straight-edge without any graduations, enabling us to draw a straight
line through two given points. The compasses permit the drawing of arcs
of circles; they are also used to lay off a given length along a line.

Given any two line segments of lengths a and b measured in terms of
the same unit, we may make the obvious construction of a new line
segment equal in length to the sum or difference of a and b, using only
the straight-edge and compasses. While the constructions of the product
and quotient of two line segments of lengths a and b are not as familiar,
they too can be performed. We shall give only the construction of the
product of two given line segments.

Draw two intersecting straight lines, as in the figure. Starting at the
intersection 0, lay off a on one of the lines, and b on the other, thus
determining the points A and B, respectively. On OB lay off the unit

1
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OU, in terms of which the lengths of a and b are measured. Join U to A.
Through B construct BC parallel to UA. Then the segment OC repre-
sents the product ab. The proof depends only on the similarity of the
triangles OA U and OCB.

More familiar is the construction of a line segment whose length is
the square root of a. Along any line, lay off OA = a. Then, as in the
figure, lay off OU, the unit in terms of which a is measured. Now con-

struct a circle on UA as diameter. At 0 construct a perpendicular to
UA and let it intersect the circle at C. Then OC = Va. Again we have
used only the straight-edge and compasses.

By the expression constructibility of a figure we mean that the con-
struction can be made using only the operations of addition, subtraction,
multiplication, division, or extracting a square root, and any combina-
tions of these operations. The mathematician is then able to transform
the geometric criteria into algebraic ones. In fact, he is able to prove that
if a geometric quantity is constructible, this quantity must be the root of
a special algebraic equation. One requirement is that the degree of this
equation must be a power of 2. Gauss was able to use these algebraic
criteria for determining which regular polygons can be constructed (10:
340-58).

32. Gauss's criterion for the constructibility of regular polygons

Gauss proved that a regular polygon of p sides, where p is an odd prime,
can be inscribed in a circle with the aid of ruler and compasses only, pro-
vided p is a Fermat prime; that is, p has the form 22 + 1. Furthermore,
no regular polygon with a prime number of sides other than those just
described is so constructible.

i

1



32 SOME IDEAS ABOUT NUMBER THEORY i

Gauss's theorem tells us that it is possible to construct polygons of 3, 5,
17, 257, and 65,537 sides, since these numbers are Fermat primes. It
also tells us that it is impossible, by means of ruler and compasses, to
construct regular polygons of 7, 11, 13, 19, and 23 sides, since these
numbers, although primes, cannot be written in the form 22` + 1. Thus
the problem of finding other constructible polygons depends only on
finding additional Fermat numbers that are prime.

Gauss's theorem does not tell us how to draw the constructible poly-
gons. Euclid knew how to inscribe an equilateral triangle and a regular
pentagon. Almost 2000 years later (1796) Gauss gave the construction
of the 17-sided regular polygon (13: 372-73). The method of constructing
the 257-sided polygon was given in 1887 (13: 378).

Gauss requested, it is said, that a regular polygon of 17 sides be
inscribed on his grave. This was not done on his simple grave in Got-
tingen, but the polygon does appear on the monument in his native
town of Brunswick (10: 358).

The question still remains: Are polygons with a composite number of
sides constructible? First we note that since an angle may be bisected
by the use of ruler and compasses, it follows that if a regular polygon
is constructible, so is the regular polygon having twice as many sides.

Gauss proved the following more general rule of constructibility:
A regular polygon of n sides can be inscribed by ruler and compasses 1.1
and only if the number n is representable as the product of a power of 2 and
distinct Fermat primes.

Thus, since regular polygons of 3 and 5 sides are inscribable, so also
are (2)(3) = 6 and (22)(3) = 12 and (2)(3)(5) = 30, and (22)(3)(5) = 60.
However, a regular polygon of 9 = (3)(3) sides is not inscribable, since
(3)(3) is not a product of distinct primes. Nor would a 21-sided figure be
inscribable, since n is a product of two distinct primes only one of which
is a Fermat prime. Below is a table listing all the regular polygons of
n sides, where n lies between 3 and 25, showing, by the Gauss crite-
rion, which are inscribable and which are not.

Regular polygons of n sides

Inscribable

Non-in-
scribable

3 4 5 6 8 10 12 15 16 17 20 24

7 9 11 13 14 18 19 21 22 23 25

,



CHAPTER

VII
1

Congruences

It often happens that development of a subject is retarded because
suitable means of recording its results are lacking. This was true in music
and also in mathematics. Had the ancient Greeks known our present
system of writing numbers, there is little doubt that they could have
contributed much more to the development of mathematics. Even such
giants as Fermat and Euler had difficulties with statements and
proofs because of the lack of a suitable notation.

It was Gauss who first saw that, by extending the concept of equality,
he could express some of the known facts of number theory more simply.
With the notation discussed below many new results were found.

33. Meaning of congruence
Gauss introduced the idea of congruence, which he expressed in writing

as

a ..--- b (mod m).

This is read, "a is congruent to b (modulo m)," and means that a b
is exactly divisible by the number m.

Here a and b stand for any positive or negative integers or zero, while
m is a natural number. If a = b, so that a b is zero, the difference is
divisible by every modulus and there would be no point in writing
a ::--,--- a (mod m). If m = 1, it will always be true that a 7---- b (mod 1) no
matter what the integers a and b are, since a b is always divisible
by 1.

Examples of congruences are 7 B----- 3 (mod 2), since 7 3 is divisible
by 2; and 7 -.------- 3 (mod 4), since 7 3 is divisible by 4. However 7 is not
congruent to 3 (mod 3), since 7 3 is not divisible by 3.

An equally useful way of defining congruence, entirely equivalent to
the preceding, is to say that a .---.. b (mod m) means that when a is divided
by m, we obtain the same remainder as when b is divided by m. Thus
93 rr--- 18 (mod 5), since 93 divided by 5 and 18 divided by 5 both leave
the remainder 3. Also 93 :7= 18 (mod 25) since 93 and 18 both leave the
remainder 18 when divided by 25.

33
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34. Operations with congruences
Congruences may be applied to calendar problems, card

tricks, magic squares, and games of all sorts (12: 159, 206, 244). We
shall content ourselves here with a few simple applications to arith-
metic and algebra. Before explaining these applications, we shall
assume the validity of certain operations with congruences. These are
easily proved just as they are for equations (1:41 -42). Two numbers,
each congruent to a third, are congruent to each other provided each of
the congruences has the same modulus. Two congruences may be added,
subtracted, and multiplied, and we still obtain true congruences provided
the same modulus is used throughout. Thus, if a Es b (mod m) and c :----- d
(mod in), then a+cmb+d (mod m) and ac ---E---- bd (mod m). In par-
ticular, a2 ..-----. 62 (mod m); and a8 r---- 68 -7= (mod m).

In division we must be a little more careful. Although 76 ===.: 28 (mod 8),
it is not permissible to divide each member of the congruence by 4, since
this gives 19 7 (mod 8), which is false. The reason is clear. Although
76 28 is divisible by 8, 7% 2% is not divisible by 8. However,
dividing both members of a congruence by the same integer is valid if
the divisor has no factor in common with the modulus. For example,
50 5 (mod 9) implies that 10 7-..- 1 (mod 9); but 76 .--=:- 28 (mod 8)
does not imply that 19 is congruent to 7, modulo 8, since the divisor has
a factor in common with the modulus.

We call attention to another difference between an algebraic
equation and a congruence. In ordinary algebra the product of two
numbers equals zero only when at least one of the factors is zero. Al-
though (2)(4) ---E 0 (mod 8), neither 2 nor 4 is divisible by 8. However,
if the modulus is a prime p, then ab Ls 0 (mod p) implies that at least
one of the congruences a .----- 0 (mod p) or b ..---- 0 (mod p) must hold.

As an application of how congruences may be used in simplifying com-
putations, let us verify the fact, already mentioned, that 22 + 1 .--= 0

(mod 641). First we observe that 22 = 4, 24 = 16, 28 = 246, 216 =
65,536 -=-- 154 (mod 641), since it may be verified that 154 is the remainder
obtained when 65,536 is divided by 641. Furthermore, two congruences
having the same modulus may be multiplied, so that (216)2 = 232
(154)2 (mod 641). But (154)2 = 23,716 F:-: 640 E.- 1 (mod 641). Hence,
232 + 1 is divisible by 641, which is another way of saying that 22 + 1
.-- 0 (mod 641).

35. Some old and new results stated in congruential form
If we use the congruence notation, Fermat's little theorem, which

tells us that 0-1 1 is exactly divisible by the odd prime p, may be
written

aP-4 .--- 1 (mod p),
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provided a does not contain p as a factor. If we do not insist on this last
restriction, we may write the result in the form aP F--E a (mod p), for if
a contains the factor p, aP a will surely be divisible by p.

We shall indicate a proof of Fermat's little theorem by the use of a
new property of congruences in addition to those given in Section 34.
By the hypothesis of Fermat's theorem, p is a prime, and a is not a
multiple of p. Then each member of the set

a, 2a, 3a, , (p 1)a

is congruent (mod p) to one and only one of the integers

but not necessarily in the order written (1:43). We shall not give a proof
of this elementary result, but shall merely illustrate it by an example.
Let p = 7 and a = 4. Then the integers 4, 8, 12, 16, 20, 24 are congruent
(mod 7) to 4, 1, 5, 2, 6, 3, respectively; and these are precisely the num-
bers 1, 2, 3, 4, 5, 6, when rearranged.

Since congruences with the same modulus may be multiplied together,
we obtain from the preceding remark that

(a)(2a)(3a) (p 1)a E (1)(2)(3) (p 1) (mod p).

But this congruence may also be written

aP-4(p 1)1 1------ (p 1) ! (mod p).

We may divide both members by (p 1)!, since (p 1)1 has no factor
in common with the modulus p, and thus we obtain al'--1 :__ 1 (mod p).

Euler's generalization of Fermat's theorem in congruence form is

en) . 1 (mod m),

provided a and m have no factors in common.
Wilson's theorem takes the form

(p 1)! . (mod p).

A series of interesting congruences results from considering the sums
of powers of integers. If p is an odd prime, it may be shown that (1: 51)

1 + 2 + 3 + - + (p 1) ..=---- 0 (mod p);

12 -I- 22 + 32 + + (13 1)2 E 0 (mod p);

13 + 23 + 33 + + (p 1)3 E 0 (mod p);

1k + 2k + 3k + + (p 1)k .---=- 0 (mod p);
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provided k is not a multiple of p 1. If k = s(p 1), then

P--4 + 2P-1 + 3P-4 + + (p 1)P-4 1 (mod p);
12(P-1) + 22(P-1) + 32(p-1) + + (p 1)20,--0 --5.. 1 (mod p);

Only the simplest of the first group of congruences will be proved;
namely,

1 + 2 + 3 -1- + (p 1) ---a 0 (mod p).

As we know from algebra,

1 + 2 + 3 + -I- (p 1) _ (P 1) p
2

,

since p is odd, is
2

1)P is an integer divisible by p, and the congruence

is verified.
Next we show that

1P-4 + 2P-' + 3P-1 + + (p 1)P--, .._ 1 (mod 2)).

Since p is an odd prime, the numbers I, 2, 3, , (p 1) have no factor
in common with p, so that we obtain by Fermat's little theorem

1P-4 ------ 1 (mod p); 2P-1 Es 1 (mod p);

3P-4 -z--.--- 1 (mod p); ; (p 1)P-' 1 (mod p).

We may add the p 1 congruences, since they all have the same
modulus (1: 41-42) and obtain

1P-4 + 2P-' + 3P-4 + -I- (p 1)P-' ----= 1 + 1 + 1 1 (mod p)..----p 1 terms,
..---,-.- p 1 (mod p)

= 1 (mod p).
The other congruences of this group are proved in a similar fashion.

Some of the familiar facts of arithmetic, algebra, and trigonometry
may be written as congruences. For example, consider the statement,
and its converse, that numbers which have the same last digit differ by a
multiple of 10. Thus 12 and 102 differ by 90; 102 and 1002 differ by
900; 37 and 497 differ by 460. These relationships may be expressed as
follows: If M -3--- N (mod 10), then the last digit of M equals the last
digit of N, and conversely.

The congruence notation may also be used in connection with the
well-known fact that the value of 1 to any power, written ( 1)n)
depends only on the evenness or oddness of n. In congruence form, this
says: If m :----- n (mod 2), then (-1)m = ( 1) n, and conversely.
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In trigonometry, angles which differ by multiples of 3600 have the
same trigonometric ratios. Thus if A ..------ B (mod 3600), then sin A =
sin B, cos A = cos B, and so on.

36. Divisibility by 9, 3, and 11
We are now ready for the application of congruences. Our everyday

system of writing numbers is based on powers of 10, so that 257 means
(2)(102) + (5)(10') + (7)(100), and the number 501.23 means (5)(102) +
(0)(10') + (1)(10°) + (2)(10-9 + (3)(10-2).

More generally, if u, t, and h, represent the units, tens, and hundreds
digits of a number N, the number itself is

N = u + 10t + 100h + .

Since 10 .---- 1 (mod 9), it follows that 10/ .---- t (mod 9), because we are
multiplying both members of the congruence by the same number 1.
Also, 100 --= 1 (mod 9), so that 100h =:- h (mod 9). Hence we may write
N as

NEu+t+h+ (mod 9).
By the very meaning of congruence this says that any number
differs from the sum of its digits by a multiple of 9. For example, 72381
(7 + 2 + 3 + 8 + 1) = 72,381 21 = 72,360 = (9)(8,040).

A consequence of the previous statement is that a number is exactly
divisible by 9 if the sum of its digits is divisible by 9, and only then. Of
course it is easier to test the sum of the digits for divisibility by 9 than
to test the number itself.

For example, if the number is 30,100,002, the sum of its digits is
3 + 1 + 2 = 6, which is not divisible by 9; hence, the number itself
is not. On the other hand, 511,101,000,009 is divisible by 9 because the
sum of its digits 5 + 1 + 1 + 1 + 1 + 9 = 18, a multiple of 9.

A similar rule applies to divisibility by 3; that is, a number is divisible
by 3 if the sum of its digits is divisible by 3, and only then. Thus 30,100,002
has 6 for the sum of its digits so that the number itself is divisible by 3.

The rule for the divisibility of a number by 11 is based on the fact that

10== --1 (mod 11), 102 = 1 (mod 11), 103= 1 (mod 11), ,

so that the equality

N = u + lot + 100h +
may be replaced by the congruence

N= ut+h (mod11).

7
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Stated in words, this last congruence tells us that a number is di-
visible by 11 if the units digit diminished by the tens digit increased by the
hundreds digit, etc., is divisible by 11. The converse is also true. For
example,

since 9,581 :----- 1 8 + 5 9 E--- 11 (mod 11),

9,581 is divisible by 11;

but 9,234 =4. 4 3 + 2 9 m 6 (mod 11), so that

9,234 is not divisible by 11.

37. Casting out nines as a check in arithmetic
If we apply the principle that after all the 9's are divided out of a num-

ber, the remainder is the same as that obtained when all the 9's are divided
out of the sum of the digits, we obtain simple checks for the operations
of addition, subtraction, multiplication, and division.

We shall give here the check for multiplication only. We shall not go
into the details of how the operations with congruences are applied,
since they may readily be supplied by the reader. Consider the product
of 3602 by 978.

3602 -4 11 --> 2
978 -4 24 -4 6

28816 12 > 3
25214

32418
3522756 --, 30 --* 3

We have indicated by the arrows to the right of 3602 that we have cast
out the nines by adding the digits, first obtaining 11 and then 2; for
978 we obtain 24 and then 6. We then multiply 2 by 6 obtaining 12, or 3.
We add the digits in the product 3522756, obtaining 30, or 3, the same
value that was obtained previously. This gives the required check.
We have here used the principle that the product of the remainders is
the remainder of the product. We should note that the test is not ab-
solute; if we had interchanged two digits in the answer, the check would
still have worked.

38. Congruences of the first degree
As we have already observed, there is a close analogy between equa-

tions and congruences. Analogous to equations of the first degree with
one unknown, ax = b, are congruences of the first degree ax as b (mod m).
However, there are differences. While the equation ax = b always has a

i
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solution when a 0 0, this is not the case with congruences. In fact,
even though a 0 0, there is no solution of 6x -7----, 4 (mod 3); for if x is
an integer, it follows from the meaning of congruence that (6x 4)/3
must be an integer; this is impossible because 6x is divisible by 3 while
4 is not. In solving the equation ax = b, on the other hand, we admit
values of x that are not necessarily integral. Again, every congruence
of the first degree that has a solution has more than one solution. For
example, the congruence 2x -=--- 5 (mod 7) is true when x = 6, but is also
true when x = 13 or 20. In fact it is true for x = 6 increased by any
multiple of 7. All such solutions are considered the same, and, indeed,
they all leave the same remainder 6 when they are divided by 7.

The most important results of congruences of the first degree

ax =----, b (mod m)

are the following:
A. Let d be the greatest common factor of a and m. Then the

congruence has no solution unless d is a factor of b.
B. If d is a factor of b, then the congruence has d solutions.
C. In particular, if d = 1, that is, if a and m are relatively prime,

the congruence has exactly one solution.
The following examples illustrate these results:

In 6x 7----- 4 (mod 3), d = 3 and d is not a factor of 4; hence
there is no solution.

In 3x 7--- 12 (mod 6), d = 3 and since d is a factor of 12 there
are three solutions: 0, 2, and 4. All other solutions will be
congruent to these modulo 6.

In 2x E.---- 5 (mod 9), d = 1, and the only solution modulo 9
is x = 7.

There are various methods for solving congruences. If the modulus m
is small, the answer may be found by trial, since we need to test only
those values of x among 0, 1, 2, up to rn 1. Other methods for
solving such congruences are illustrated by the problem in Section 39.

39. A problem leading to a congruence of the first degree
A farmer has seven baskets of eggs, with the same number of eggs in

each basket. After selling all his eggs by the dozen, he finds that he has
five eggs left over. What is the smallest possible number of eggs in each
basket?

If x is the number of eggs in each basket, 7x when divided by 12 must
give a remainder of 5. Stated in the language of congruences, this says
that

7x -7----- 5 (mod 12).
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Here 7 and 12 have only the factor 1 in common so that there is a
solution. In a simple problem such as this we could substitute 0, 1, 2
all the way to 11 for x, and find that the only value of x which would
make the congruence true is x = 11. Thus the smallest number of eggs
that the farmer could have had in each basket is 11. We could also have
worked this problem by substituting 7 for 5 in the right member of
the congruence, since 5 E--- 7 (mod 12). The original congruence then
becomes 7x = 7 (mod 12), and, since 7 and 12 have no common
factor, we may divide by 7 and obtain x = 1 (mod 12), or x = 11
(mod 12), the same answer as before.

In general, we may reduce a congruence of the form 7x = 5 (mod 12)
to a congruence in which the coefficient of x is 1. This is accomplished
by the use of Euler's generalization of Fermat's theorem. (Here we
cannot use Fermat's theorem itself since the modulus 12 is not a prime.)
We know from Euler's generalization that r('') 1 (mod 12), and since
0(12) = 4, this becomes 74 = 1 (mod 12). Hence, if we multiply the
congruence 7x = 5 (mod 12) by 73 = 7' (mod 12), we obtain 74x -.7-=
(5)(73)(mod 12). But 74 = 1 (mod 12), so that the congruence of the
first degree becomes x = (5)(73) (mod 12). Since 72 =---- 1 (mod 12),
73 = 7 (mod 12) and (5)(73) 35 = 11 (mod 12), so that x 11 (mod
12), and again the same result is obtained.

40. Chinese remainder theorem
As a final illustration, we consider a system of congruences each of the

first degree. This is analogous to a system of n simultaneous equations,
each of the first degree, in n unknowns. Such congruences arise fre-
quently in puzzle problems. The method of solving these congruences
was known to the ancient Chinese, and for this reason it is called the
Chinese remainder theorem.

We shall introduce a problem leading to simultaneous congruences.
To solve this problem we first give the method for solving a general
system of simultaneous congruences, and then we apply it to the special
case.

A centenarian was asked how many great-grandchildren he had. He
replied that he could not remember exactly, but he recalled that if you
put them in groups of three, there would be one left over; in groups of
five, there would he three left over. However, when you put them in
groups of eight, there would be none left over. What is the least num-
ber of great-grandchildren he could have had?

Here it would be a simple matter to try multiples of 8 until we find
that one that fits the data. However if we put the problem in the form
of congruences, we solve this problem and many more complicated
ones of a similar nature.
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If we let x equal the nun. ber of great-grandchildren, the stipulations
are

x m 1 (mod 3)

x r------ 3 (mod 5)

x r----- 0 (mod 8).

We must remember that in all these congruences the x stands for the
same natural number. That is why we call them simultaneous congruences.

The method for solving four simultaneous congruences will be given,
although it applies equally well to three or to any number of congruences:

x----3 a (mod k)

x ----.3 b (mod 1)

x --z---- c (mod m)

x =-=-. d (mod n).

We assume here that the moduli k, 1, m, and n, when taken two at a
time, have no common factor.

We must keep in mind that the numbers a, b, c, d; k, 1, m, n are given,
and we are seeking the number x for which all congruences will be true
at the same time.

Let R be the product of all the moduli; that is, R = klmn. Let K =
lmn, L = kmn, M = kin, N = klm; that is, each of these numbers
K, L, M, N is found by dividing R by k, 1, m, n in this order. Let us now
find solutions of the individual congruences in the unknowns y, z, v, w,
respectively:

Ky r=.-- 1 (mod k)

Lz w. 1 (mod 1)

Mu E. 1 (mod m)

Nw w-- 1 (mod n).

The congruence Ky ----= 1 (mod k) is a linear congruence; the modulus
k has no factor in common with K = lmn; hence, there is a unique
solution y. Similarly, there are unique solutions for the other three con-
gruences.

The general solution of the system of the congruences

x E a (mod k), x 7--- b (mod 1), x E--- c (mod m), x = d (mod n)

is
i

x = Kya -I- Lzb + Muc + Nwd

;
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where

K = lmn, L = kmn, M = kin, N = klm,

and y, z, u, w are the solutions of the congruences

Ky :--- 1 (mod k), Lz =---: 1 (mod 1),

Mu r.---- 1 (mod m), Nw 7--- 1 (mod n).

Any multiple of R = klmn added to or subtracted from x will also be
a solution.

Observe that the same value of x has to satisfy all four of the original
congruences, while the value of each of the unknowns y, z, u, w is found
by solving separately the four new congruences.

The derivation of the general solution is not obvious, but it may be
obtained from the simple properties of congruences (12: 189-91).

From the start the stipulation was made that the k, 1, m, n, when
taken two at a time, have no common factor. If even two of the moduli
have a common factor, the result must be modified (12: 184-89).

In the problem of the great-grandchildren x ==--- 1 (mod 3), x Ea 3
(mod 5), x m 0 (mod 8); k = 3, 1 = 5, m = 8; and the pairs 3, 5; 3,
8; and 5, 8 have no factors in common. Here a = 1, b = 3, c = 0; R =
(3)(5)(8) = 120, K = 12% = 40, L = 12% = 24, M = 12% = 15.

We now seek solutions of the separate congruences 40y E 1 (mod 3),
24z E 1 (mod 5), 15u E--- 1 (mod 8). We readily find by trial that y = 1,
z = 4, and u = 7. Hence, from the formula for the general solution,

x = (40)(1)(1) + (24)(4)(3) + (15)(7)(0) = 328.

Since we may subtract from 328 any multiple of R = 120, we see that
the least positive value of x is 328 (2)(120) or 88. This then is the
number of great-grandchildren.

The following is another example of a puzzle problem solved by means

of the Chinese Remainder Theorem. Determine the age of a person if
the remainders obtained by dividing his age by 3, 4, and 5 are given. It
may be shown that the person's age x is given by

x = 40/.1 + 45r2 + 36r3 (mod 60)

Here, r1, r2 , and r3 are the remainders he gives you after dividing his
age by 3, 4, and 5, respectively. For example, if ri , r2 , r3 are 2, 1, 2, the

above formula gives x = 197(mod 60), so that the person's age is 77 or
17, a choice that should present no difficulty.
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41. Congruences of degree higher than the first
So far the only congruences considered are of the first degree in the

unknown. We shall now state briefly some results for congruences of
higher degree.

Let the congruence be

ax" + bxfs'i + -I- 1 as 0 (mod m),

where a, b, , I are integers or zero. If the coefficient a of the highest
power of x is not divisible by m, the congruence is said to be of the nth
degree. (If a is a multiple of m, then the term ax" may be suppressed,
from the very definition of congruences. The congruence would then be
of degree lower than n.) The integer x = r is said to be a root of the con-
gruence if the value of ar" + brs-1 -I- + 1 is exactly divisible by m.

If the modulus m is a composite, it may be shown that the properties
of this congruence may, with few exceptions, be obtained by considering
the given congruence with each of the distinct prime factors of m as
modulus (12: 192-96). We may, therefore, confine our study to con-
gruences whose moduli are primes. The properties of these congruences
bear a great similarity to those of ordinary algebraic equations.

One such property is known as Lagrange's theorem on congruences
(12: 197-98). The congruence

ax" + bxs-4 + + 1 =1.-- 0 (mod p)

has at most n roots. For example:
A. x2 1 :----- 0 (mod 5) can have at most two roots, and, in fact,

it has exactly two roots, x = i 1.
B. x3 1 0 (mod 5) can have at most three roots, but actually

has only one, x = 1.
C. x2 1 :=:- 0 (mod 4) has the four solutions, x = ±1, x = 3,

but Lagrange's theorem does not apply, since the modulus is
not a prime.

While every algebraic equation has at least one root, this is not
necessarily true for congruences. For example, there is no solution of
x2 2 E.---- 0 (mod 5), as we can see by substituting for x the values 0,
1, 2, 3, 4.



CHAPTER

VIII

Diophantine Equations

Diophantine equations are so named because they were first considered
by the Greek mathematician Diophantus, who lived in the third cen-
tury A.D. They are also called indeterminate equations for reasons that
will be apparent presently. Just as in equations in algebra, Diophantine
equations may be of the first degree or of higher degree; they may be
in one or more unknowns; or there may be simultaneous systems of such

equations.

42. Diophantine equations of the first degree in two unknowns

We begin with a simple example. Suppose a person spent 40 cents in
a hardware store. If he gave the clerk a one-dollar bill, how could he
get his change in dimes and quarters? The solution here is obvious, but
it will be instructive to see how such a problem leads to a Diophantine
equation. The equation in terms of the number of dimes d and the num-
ber of quarters q is

10d + 25q = 60,

when the transaction is expressed in cents. Simplified, this equation
becomes

2d -1- 5q = 12.

We should bear in mind that d and q must be positive integers or zero.
If we solve the equation for d, we obtain

d= 6 - - 2 .
2

5
Since d and 6 are integers or zero, 2

q is s also an integer, which we shall

qcall r. Then 5 = r or 5q = 2r, an even integer. Since 5 is odd, q must
2

q5
be an even integer, say, q = 2s. Hence d = 6 i becomes d = 6 5s,

where 8 is an arbitrary integer. Furthermore 5s must be less than 6
44

1

7
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since d must be positive or zero. Thus we arrive at the two possibilities
shown in the following table:

a

0
1

d
6
1

q

0
2

Our problem has two solutions: no quarters and six dimes, or two
quarters and one dime.

In algebra every equation in two unknowns such as x + y = 7 has
an infinite number of solutions, since we may assign any arbitrary value
to one of the unknowns and determine the value of the other unknown
by means of the equation. In Diophantine equations the problem is
similar, except for the additional restriction that both unknowns must
be integers or zero. A Diophantine equation may have no solution, a
finite number, or even an infinite number of solutions. A Diophantine
equation is sometimes referred to as an indeterminate equation, since
it does not determine x and y completely.

It may be shown more generally that if x = r and y = s is a particular
(integral) solution of the Diophantine equation

ax -I- by = c,

then all integral solutions may be found from the formulas

x = r + bt,

y = s at,

where t may have any positive or negative integral value. The value
t = 0 gives the particular solution x = r, y = s (12: 56).

A Diophantine equation of the first degree is a congruence of the first
degree. For example, the equation already considered, 2d + 5q = 12,
may be written either as 2d =---- 12 (mod 5) or 5q :------ 12 (mod 2). For
2d --= -- 12 (mod 5) says that the expression 12 2d when divided by 5
must be an integer, say q. It is not surprising, therefore, to observe that
a Diophantine equation may have no solution just as a congruence
may have no solution. In fact, in order for the Diophantine equation
ax + by = c to have a solution, any common factor of a and b must
also be a factor of c. This condition becomes the criterion for the solva-
bility of congruences. For if ax + by = c, then ax ::---=-. c (mod b); and to
say that the Diophantine equation ax + by = c is solvable implies that
any factor of a and b is also a factor of c. This is precisely the condition
for the solvability of the congruence ax = c (mod b).

One final point is worth noting. We sometimes require, as in the prob-
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lem of dimes and quarters, that the solution be positive or zero. This
means that the I in the formula above must be chosen in such a way as
to make both r + 1)1 and s at positive or zero (12: 58).

43. The problem of determining a particular solution
So far nothing has been said about finding a particular solution

x = r, y = s of the Diophantine equation ax + by = c. We have already
done this for congruences in disguised form by the use of Fermat's
theorem or by Euler's generalization. The following method is a variant
of what is known as the Euclidean algorithm (1: 26-27). Although the
method to be given here is longer than the classical form of the Euclidean
algorithm, it is more easily remembered and may be understood by
pupils in an elementary algebra class.

We illustrate the method in the following problem. Suppose a man
cashes a check in a bank, and the teller, in giving him his money, inter-
changes the dollars and cents. Suppose also that the amount he received
is more than the amount of the original check. After accepting the money,
the man spends 67 cents and finds that what he has left is twice the
amount of the original check. What was this amount?

Let x equal the number of cents and y the number of dollars in the
original check. From the nature of the problem x and y are both natural
numbers, and each must be less than 100 to be interchangeable. The
problem, written symbolically, is to find the solution of the Diophantine
equation

100x + y 67 = 2(100y + x),

which, when simplified, becomes

98x 199y = 67.

If we solve this equation for x, we obtain

3y + 67 3y 4- 67x = 2y + or x 2y

Since x and y are natural numbers, so are x and 2y. It follows that

x 2y or 3y + 67 is a positive or negative integer or zero. Denoting
98

the difference x 2y by the letter z, we have

z = 3y + 67
98 '

or

/7

3y = 98z 67,
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so that

2z 67y = 32z + .

Again, since y and z are integers, so is y 32z, as well as 2z
3

67

Then let

or

and

2z 67u=
3 '

2z = 3u + 67,

z=u4-u+2 67

Since
u + 67 is to be an integer v, that is, v u + 67

, we finally obtain
2 2

u = 2v 67.

The expression for u contains no denominator, so that u is an integer
for every integral value of v.

We have thus arrived at the following conclusion: If there are two
integers x and y satisfying the original Diophantine equation, there
must be an arbitrary integer v in terms of which u, z, x, and y are ex-
pressible. By simple algebraic manipulations, we find

x = 199v 4489,

y = 98v 2211.

Since x and y are to be natural numbers, it follows that the arbitrary
integer v must be chosen so that 98v is greater than 2211 and at the same
time 199v is greater than 4489. The least value of v which fulfills both
these requirements is v = 23. Inserting this value of v in the above
expressions for x and y, we find x = 88 and y = 43, so that the amount
of the original check is $43.88. Any integral value of v greater than 23
will make both x and y greater than 100 and hence will not comply with
the conditions of the problem. There is only one solution to this problem.

The procedure given is perfectly general. We should observe that in
solving the above equations we always solved for that unknown with
the smaller coefficient. Thus, in the equation 98x 199y = 67, we
solved for x.
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44. Diophantine equations of the second degree

We have already referred to the equation x2 + y2 = z2, which arises
from the Pythagorean theorem for right triangles. This is a Diophantine
equation of the second degree in the three unknowns, x, y, and z, each
of which is to be a natural number. By a solution we mean a triple of
numbers such as 3, 4, 5; 5, 12, 13; or 8, 15, 17; which, when substituted
in the equation for x, y, and z, respectively, will satisfy the equation.
Thus 82 ± 152 = 17', since 64 + 225 = 289.

Particular solutions were known to the ancient Babylonians, Chinese,
and Hindus. The Plimpton Library at Columbia University contains a
Babylonian tablet which dates back at least 1000 years before the
Pythagoreans. It gives many solutions, some involving large numbers
(10: 175-78). The first general solution of the Pythagorean equation is
found in Euclid's Elements, where it is couched in geometric terms.

In algebraic form, the general solution of x2 + y2 = z2 is x = 2mn,
y= m2 ..... n2, z = m2 + n2, where m and n are arbitrary natural numbers
(13: 317). If we further require that x, y, and z have no factor in common,
we must stipulate that m and n have no factor in common, and also
that m and n be of opposite parity; that is, one of them is even while
the other one is odd. In this case, x, y, and z will have no factor in com-
mon, and the solution is said to be primitive.

We shall now indicate how the formulas for the general solution are
derived. If the equation x2 + y2 = z2 is to have a primitive solution,
x, y, z, it is not hard to see that x and y cannot both be odd, so that
one of them must be even and the other odd, and hence z must be odd.
For if x is odd, it is of the form 2a + 1 and x' is of the form 4b + 1.
Similarly, if y is odd, y2 is of the form 4c ± 1, so that x2 + y2 must
have the form 4d + 2. But, since z is even, z2 is of the form 4f, and
not of the form 4d + 2.

Let x be even; then y is odd and so is z. Write the original equation
in the form

x2 = z2 _ y2 = (Z ± Y) (Z y).

Since z and y are both odd, z + y and z y are both even, so that
we may put z + y = 2k and z y = 2/, and

x2 = (2k) (21) = 4k1.

Suppose that x, y, z is a primitive solution so that x, y, and z do not
have any factors in common; then k and I cannot have a factor in com-
mon. By solving z + y = 2k and z y = 2/, we obtain z = k + l and
y = k 1. If k and I had a common factor, so would y and z.

From x2 = 4k1, it follows that the product kl is itself a square, and
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since k and t have no factor in common, k and / must themselves be
squares. We may therefore say that there are integers m and n, such
that k = m2 and 1 = n2. Again there is no common factor in m and n,
since k and / have no factor in common. By substituting these expres-
sions for k and / in x2 = 4k1, y = k /, and z = k + 1, we obtain

x = 2mn, y = m2 n2, z = m2 + n'.

We have shown then that all primitive solutions of x2 + y2 = z2 must
be of this form.

Finally, by substituting these values of x, y, z in x2 + y2 = z2, we
obtain

(2mn)2 + (m2 n2)2 = (m2 + n2)2,

which when simplified gives an identity in m and n; that is, it is true
for all values of m and n. This shows that the above expressions for
x, y, z in terms of m and n are indeed solutions.

A list of all primitive solutions (sometimes called primitive Pythago-
rean numbers), where the hypotenuse z does not exceed 3000, was com-
puted in 1912. The 15 primitive solutions in the following table were ob-
tained from the formulas given:

m n x y z

2 1 4 3 5
3 2 12 5 13

4 3 24 7 25
4 1 8 15 17
5 4 40 9 41

5 2 20 21 29
6 5 60 11 61
6 1 12 35 37

m n x 5' s

7 6 84 13 85
7 4 56 33 65
7 2 28 45 53
8 7 112 15 113
8 5 80 39 89
8 3 48 55 73
8 1 16 63 65

The following fact concerning Pythagorean numbers may be verified
for the special triples given in the table. It has been proved in general
(13: 319).

In every triple of Pythagorean numbers, one is divisible by 3, one is
divisible by 4, and one is divisible by 5. In the triple 5, 12, 13, the 12 is
divisible by both 3 and 4; in the triple 8, 15, 17, the 15 is divisible by 3
and by 5. We may state this result in a more compact form: The product
of any triple of Pythagorean numbers is always divisible by 60.

45. Some Diophantine equations of higher degree
In this section we give some examples which lead to Diophantine

equations of degree higher than the second, involving three unknowns
and having infinitely many solutions.
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The first problem, one proposed and solved by Fermat, is to find a
right triangle whose hypotenuse is the square of a natural number, while
the sum of the other two sides is also a perfect square (12: 414-19).

If we denote the two legs by x and y, and the hypotenuse by z, the
problem may be stated in the form of three equations

x + y = v2, x2 + y2 = 22, z = u2.

Now let w = x y and eliminate the x and y, obtaining

2u4 v4 = te,

which is a Diophantine equation of the fourth degree in the three un-
knowns u, v, w.

It is known that this equation has infinitely many solutions. In terms
of x, y, z, the smallest solution is

x = 4,565,486,027,761

y = 1,061,652,293,520

z = 4,687,298,610,289.

The magnitude of the least solution is very large in contrast to the
least solution, x = 3, y = 4, z = 5, of the Pythagorean equation x2 +
y2 = 22.

There are other Diophantine equations for which the least solution
contains numbers with even more digits. The celebrated cattle prob-
lem (10: 140) attributed to Archimedes (287-212 B.c.) leads to the Dio-
phantine equation of the second degree in two unknowns

x2 (4,729,494) (y2) = 1.

In the least solution of this equation the number y has 41 digits
(5: 121-24).

The next Diophantine equation is of special interest because its solu-
tion is closely related to the well-known law of cosines in trigonometry
(see The American Mathematical Monthly 62: 251-52; April 1955).

Consider a Diophantine equation of the third degree in the three
unknowns x, y, z:

x2 + v2 + z2 + 2xyz = 1.

We write this equation in the form of a determinant of the third order

y1
z

x
z1

1
y
x

0.

In order that there be rational solutions x, y, z of the Diophantine

1.

i

i
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equation we know that there must exist three rational numbers a, b, c
for which

bx + ay = c

cy + bz = a

cx + az = b.

From these linear equations we readily find the solutions

b
2
+ C2 a2 02 c2 b2 02 b2 c2

X = I Y ) z
2bc lac 2ab

We may verify that these expressions for x, y, and z satisfy the Diophan-
tine equation. They give the well-known formulas for the law of cosines
in the triangle whose sides are the rational numbers a, b, c. It is in this
sense that the Diophantine equation characterizes the law of cosines.

We should note that there are infinitely many solutions of this Dio-
phantine equation. However, these solutions for x, y, z are rational
numbers and not integers as they have been in all previous illustrations.
But even for this Diophantine equation the general solution in integers
has been found (see The American Mathematical Monthly 64: 101-103;
February 1957).

46. A Diophantine equation having no solution

By using the method of infinite descent, Fermat proved the remark-
able geometric-fact that Ike area of a right triangle with natural numbers
for sides can never be the square of a natural number.

The area of a right triangle is one-half the product of its two legs x
and y, or

Area = Hxy.

Using the explicit formulas for the sides of a primitive right triangle
x = 2mn, y = m2 n2, we may write, Area = mn(m2 n2). From the
table of primitive solutions in Section 44, we see that the areas of the
fifteen right triangles are 6, 30, 84, 60, 180, 210, 330, 210, 546, 924, 630,
840, 1560, 1320, and 504; not a single one of these is a perfect square.
The proof of the general result depends on the method of infinite descent
(see Section 29), which was first given by Fermat (10: 200-202).

As a consequence of this result we are able to prove that the difference
of two fourth powers of natural numbers is never a perfect square.

If we again consider the right triangle with integral sides, we know
that its legs are given by 2mn and m2 n2. Since m and n may be chosen
arbitrarily, we may set m = u2 and n = v2; the area of the triangle is
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then 34(2mn)(0 n2) = mn(m2 n2) = u2v2(u4 v4). If it were pos-
sible for u4 v4 to be a square, say w2, the expression for the area
u2v2(u4 v4) would become u2v20, which is the perfect square of the natu-
ral number uvw. However Fermat proved that the area cannot be a perfect
square; it follows, therefore, that the difference between two fourth
powers cannot be a perfect square.

47. Pell's equation --a quadratic Diophantine equation in two
unknowns

We have already referred in Section 45 to a type of Diophantine
equation of the second degree in two unknowns,

x2 Dy2 = 1,

where D is a positive integer, not a perfect square.
This is known as Pell's equation. The name of the English mathe-

matician John Pell (1610-1685) was given to this equation by Euler,
who was under the impression that Pell was the first to solve it. It was
Fermat, however, who was the first to state that there is an infinite
number of solutions of this equation, while Lagrange was the first to
publish a proof. However, a method for solving this equation was
already known to the Hindus about A.D. 600.

Without giving the method for deriving the solution of 0 - Dy2 = 1,
we shall give a formula for obtaining all the integral solutions of this
equation. First, it may be shown that the equation x2 Dy2 = 1, where
D is an integer and not a perfect square, always has a least positive
solution, x = r, y = s, where r and s are both natural numbers. By
this we mean that any other positive values of x and y which satisfy
this equation will have x greater than r, and y greater than s (1: 105).

From the least positive solution all other solutions are obtainable
(1: 111) by the use of the following formula:

x + yVT) = ±(r + sNiii)k, (k = 0, ±1, t2, ).

To illustrate how the formula gives solutions, consider a particular
equation

x2 3y2 = 1.

Obviously the least positive solution is r = 2, s = 1. (A table in The
Higher Arithmetic by Harold Davenport (1: 105) gives the least positive
solutions for all values of D from 1 to 50.) The formula for the general
solution now becomes

x + y 1 3 = ±(2 + 0)k, (k = 0, ±1, t2, ).

1
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For k = 0, x + yV5 = thl or th(1 + 00), so that x = 1 and
y = 0, is a solution, but it is not the least positive solution, since 0
is not a natural number.

Fork = 1, x + y1/3 = ±(2 + .0). By equating the rational terms
and the irrational terms of both members we obtain x = ±2, y = *1.
This value of k gave us the least positive solution as well as the solutions
x = 2, y = 1; x = 2, y = 1; x = 2, y = 1. Each k, other
than 0, yields four sets of solutions, but only one of them will be given
here.

For k = 2, x + y15 = (2 + .VV = (4 + 3 -I- 4'0), so that
x = 7, y = 4 is another solution.

1Fork= 1, x + yVg = (2+ 0)-1 = 0 =2 Vd, so

that x = 2 and y = 1 is another solution.
For k = 3, x + yV5 = (2+ Or = 8 + 120- + 18 + 3.0 =

26 + 150-, so that x = 26, and y = 15, is another solution.
In this way, we may obtain an infinite number of solutions.
We have seen that the general solution depends on finding the least

positive solution. This task may be extremely difficult, since even for a
small value of D, say D = 19, r = 170 and a = 39. The method for
finding such a solution requires a special technique of mathematics
known as continued fractions (1: 79-114).

48. A general result in Diophantine equations

We close our account of Diophantine equations with a statement of a
remarkable result discovered by the Norwegian mathematician Axel
Thue in 1908. It has no analogue in the theory of algebraic equations.
nue's theorem deals with Diophantine equations in two unknowns
which have a limited number of solutions. This is in contrast to Dio-
phantine equations of the second degree in two unknowns which have
an infinite number of solutions, an example of which is the Pell equation
just considered.

Before stating Thue's theorem, let us recall that a polynomial in a
single variable x, with integral coefficients has the form

axn + bxn-1 + cxn-2 + + 1,

where a, b, c, ,1 are integers or zero. If a is not zero, then the degree
is n. Analogously, a polynomial in two variables x and y, with integral
coefficients, has the form

ax" + bxn-ly + cxn-2y2 + + /yn,

where a, b, c, , 1 are integers. This is a special type of polynomial,

II
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called homogeneous, because the sum of the exponents of x and y
in each term adds up to the degree n of the polynomial. If this poly-
nomial cannot be factored into two other polynomials with integral
coefficients and of lower degree, we shall say that the polynomial is
irreducible.

Thus it is not difficult to show that x' + 302 + te is an irreducible
homogeneous polynomial of the third degree while x3 + 3x2y + 3xy2 +
ya is obviously reducible since it may be written as (x + y) (x + y)
(x + y).

We are now ready to state Thue's theorem.
The Diophantine equation

ax" -I- bxn-ly -I- cxn-2y2 + + ly" = K,

where the left-hand side is an irreducible 'polynomial of the third degree or
higher with integral coefficients, and where K is an integer, has either no
solution or at most a finite number of solutions (9: 263).

Clearly, the result would not apply to (x -I- y)3 = 1 since the left
side is reducible and, we readily see, there are infinitely many solu-
tions. For if y is assigned any arbitrary integral value, x = 1 y will
satisfy the equation, and thus infinitely many solutions are obtained.

Nor would Thue's theorem apply to x2 '''' Dy2 = 1, since the degree is
less than the third.

Although the Diophantine equations discussed in Section 45 were of
degree higher than the second, the number of unknowns was three, and
we can draw no conclusions from Thue's theorem.

Following are two illustrations of Thue's theorem:

The equation x4 2y4 = 1 is homogeneous in x and y, and of
the fourth degree. It is not hard to show that the left member
is irreducible, and it has been proved (12: 406) that the only
solutions are x = ±1, y = 0.

The equation x3 + 3x2y + y8 = 1 is of the third degree, and
its left member is homogeneous and irreducible. By Thue's
theorem there can be only a finite number of solutions.
It has been shown that this equation has exactly three solu-
tions, viz.: x = 1,y = 0; x = 0,y = 1;x = 3, y = 1. (See
Bibliography, 14: chap. vi.)

The following result is related to Thue's theorem.

The equation

aye + by + c = dxn, n Z 3
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has only a finite number of integral solutions if a and d are natural num-
bers, if b and c are integers or zero, and if the discriminant b2 4ac is not
zero. In y2 - 17 = x8, the conditions of the theorem are satisfied since
n = 3, V 4ac = 68, so that the equation has a finite number of solu-
tions. In fact there are exactly eight solutions, and these are x = 2,
y = 3; x = 1, y = 4; x = 2, y = 5; x = 4, y = 9; x = 8, y = 23;
x = 43, y = 282; x = 52, y = 375; x = 5234, y = 378661 (9: 265).



CHAPTER

IX

Generalizations of Number
Theory

Many topics of elementary number theory that are important for a
deeper understanding of the subject will not be included in our treat-
ment because of their technical nature. However we cannot omit a
generalization that is entirely a creation of the nineteenth century.
Since it is a generalization, it is bound to be abstract, but the beauty
of the results should repay the reader for the extra effort required to
understand them.

49. Complex integers

Mathematicians of the nineteenth century, Gauss and Kummer
(1810-1893) in particular, extended some of the concepts of number
theory. Gauss saw that many of the results of number theory would
still remain valid if, for natural numbers, he substituted numbers of
the form

a + bi,

where a and b are ordinary integers or zero and i is the well-known
imaginary unit. We recall that i2 = 1, i3 = = 1, and so on. It
must seem surprising that these so-called complex integers, a + bi,
should possess many of the characteristics of the rational integers (the
positive and negative integers). The sum, difference, or product of two
rational integers is a rational integer; the sum, difference, or product of
two complex integers is a complex integer. If a + bi and c + di, for
example, are two complex integers, their sum,

(a + bi) (c + di) = (a + c) + (b d)i,

is also a complex integer. Similarly, their difference,

(a + bi) (c + di) = (a c) (b d)i,

56
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is a complex integer, and their product,

(a + bi) (c + di) = (ac bd) + (ad + bc)i,

is also a complex integer.
Since complex integers were first systematically considered by Gauss,

we often refer to them as Gaussian integers, to distinguish them from
the rational integers. The rational integers are obtained from the
Gaussian integers when the coefficient b of the imaginary unit is zero.
We shall now extend some arithmetical concepts to complex integers.

50. Divisibility of complex integers
Although we usually denote a complex integer by a + bi, we shall

sometimes find it convenient to use a single letter such as x, y, or z.
For rational integers we say that 6 is divisible by 2 if there is a rational
integer r for which 6 = (2)(r). Analogously, we also define divisibility
of complex integers in terms of product. We say that a complex integer
x is divisible by a complex integer y if there is a complex integer z, for which
x = (y)(z); and y or z is said to be a divisor, or factor, of x.

Not every complex integer is divisible by another. For example, we
shall show that 3 + 2i is not divisible by 1 + 3i. Otherwise, there would
exist rational integers a and b such that

3 + 2i = (1 + 3i)(a + bi) = (a 3b) + i(3a + b).

By equating real and imaginary parts of the two members, we find that

3 = a 3b, 2 = 3a + b.

By the usual method for solving two simultaneous equations of the
first degree, we find a = ,940 and b = %o. These values are not in-
tegral; hence 3 -I- 2i is not divisible by 1 + 3i. On the other hand, 3 + i
is divisible by 1 + 2i and by 1 i, since (3 + i) = (1 + 2i)(1 i).

Every complex integer x always has the eight "trivial" divisors:

1, x, 1, x, i, ix, i, ix,
since 1, 1, i, i are complex integers. For example, x = (ix) ( i) ;
therefore ix and i are two divisors of x.

In rational integers (including both the positive and the negative),
1 and 1 are the only divisors of 1. In complex integers, 1 has four
divisors: 1, 1, i, i, which are called the unities of the complex in-
tegers. (We call them unities rather than units to distinguish between
the complex divisors of 1 and the rational integral divisors of 1.) We
also say that a complex integer x multiplied by a unity is an associate of x,
so that every complex integer has four associates: x, x, ix, ix.

.
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Although we did not introduce the concept of associates among the
rational integers, it is true that every rational integer has two associates,
itself and its negative.

51. Gaussian primes
We are now ready to describe certain Gaussian integers which we shall

call Gaussian primes. These primes, as we shall see, have many of
the properties of rational primes.

A Gaussian prime is a Gaussian integer, not 0 or a unity, which is
divisible only by the complex integers associated with itself or with 1.

We shall designate a Gaussian prime by the Greek letter w, not to be
confused with the r of the circle.

From the definition of a prime, it is clear that the prime w has no
divisors except the eight trivial ones,

1, w, 1, r, i, ill-, i, ir,
provided w is neither zero nor a unity. This definition of a Gaussian
prime reduces to that of a rational prime. Since there are only two units,
1 and 1, among the rational integers, and since the rational prime is
neither zero nor a unit, it follows that the only divisors of a rational
prime p are the trivial ones, p, p, 1, 1.

52. The norm of a complex number

In order to see how Gaussian primes are related to rational primes, we
introduce the concept of norm, familiar to anyone who is acquainted
with complex numbers. We recall, first of all, that if a + bi is a complex
number (not necessarily a complex integer), then a bi is called its
conjugate, and the product of the complex number by its conjugate is
the real number a2 + b2. The number a2 + b2 is called the norm of the
complex number a + bi. If, now, a + bi is a Gaussian integer, then the
norm a2 + b2 will be a positive rational integer or zero.

For example, the norm of the complex number 2 %i is 22 4. UV =
4%, a real number; while the norm of Nig. i is (0)2 + ( 1)2 = 4,
a rational integer.

It is easily seen that the norm of a unity of a Gaussian integer is 1;
that is, the norms of 1, 1, i, i, are 1. The norm of i is (0)2 -I-
( 1)2 ..---- 1.

Conversely, any Gaussian integer whose norm is 1 is a unity; that is,
it is one of the four numbers 1, 1, i, i. To see this, we suppose the
norm of a + bi is 1, so that a2 + b2 . 1. Since a and b are positive or
negative integers or zero, the only possibilities are : a = 1, b = 0; a = 1,
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b = 0; a = 0, b = 1; a = 0, b = 1. When these values of a and b are
substituted in a -I- bi, we obtain the four unities 1, 1, i, i.

We shall now state a general result about the norms of complex num-
bers, not necessarily complex integers.

If a + bi and c + di are two complex numbers, the norm of the product
(a -1- bi)(c + di) is the norm of (a + bi) multiplied by the norm of (c + di).

Since the product (a + bi)(c + di) is the complex number (ac bd) +
(ad + bc)i, the norm of this product is (ac bd)2 (ad + bc)2, which may
also be written in the form (a2 + b2)(c2 -I- d2). But this last product is
precisely the norm of (a A- bi) multiplied by the norm of (c A- di). This
completes the verification.

53. The relation between rational primes and Gaussian primes
We shall now state the theorem which relates rational primes to the

Gaussian primes.
A complex integer whose norm is a rational prime is a Gaussian prime.
Suppose that x is a Gaussian integer and that the norm of x is a

rational prime p. If x is not a Gaussian prime, it may be factored into a
product of two Gaussian integers, y and z, neither of which is a unity.
But p is the norm of the complex integer x, that is, p = norm of x = norm
of (yz); therefore p = (norm y)(norm z) by the previous result on the
norm of a product. Since the norm of y and the norm of z are rational
integers and p is a rational prime, the norm of y must be 1 or the norm
of z must be 1. Hence either y or z is a unity, and x is a Gaussian
prime. The following examples illustrate the relationship between ra-
tional and Gaussian primes:

The norm of (2 + 3i) is (2 + 3i)(2 3i) = 13, which is a
rational prime, so that both 2 + 3i and 2 3i are Gaussian
primes.

The norm of (1 + i) is (1 + i)(1 i) = 2, which is a rational
prime, so that 1 + i is a Gaussian prime.

The converse of this result is not true; that is, the norm of a complex
integer may be composite and yet the complex integer may be a Gaussian
prime. For example, the norm of 3 is the composite (3)2 + (0)2 = 9;

yet we shall show that 3 is a Gaussian prime. For if 3 is not a Gaussian
prime, it could be factored into two complex integers, neither of which is
a unity. Thus,

3 = (a + bi)(c + di).

We again make use of the previous result that the norm of a product is
the product of the norms, so that the norm of 3 equals the norm of
(a -I- bi) multiplied by the norm of (c + di). This results in the equation

9 = (a2 + b2) (c2 + d2)
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Since neither a2 b2 nor c2 d2 can be 3 by any choice of a, b, c, and d,
it would follow that either a2 b2 or c2 d2 must be 1. If a2 = 1,
the only possibilities are a = ±1, b = 0; a = 0, b = ±1. In each one
of these four cases a + bi would be a unity so that we have proved that
the only factorization of 3 is a complex integer multiplied by a unity,
and hence 3 is a Gaussian prime by definition.

54. Determination of Gaussian primes
All the Gaussian primes are found among the following (4: 218-19):

A. The complex integer 1 i is a Gaussian prime.
B. The positive rational primes of the form 4k + 3 are Gaussian

primes.
C. The factors a -I- bi of the rational primes of the form

4k + 1 are Gaussian primes.
The above list does not include the associates of the primes, which

are, of course, also primes. Since the norm of the complex integer 1 i
is 2, we know that 1 + i is a Gaussian prime. The complex integers
1 -1- i, 1 + i, 1 i, 1 i, which are associates of 1 + i, are all
Gaussian primes.

The method of showing that all rational primes of the form 4k -I- 3,
such as 7, 11, , are Gaussian primes is analogous to the method used
in proving that 3 is a Gaussian prime.

By Fermat's two-square theorem we know that every rational prime
of the form 4k + 1 may be expressed in essentially one way as the sum
of two squares a2 b2. Now, a2 b2 = (a -I- bi) (a bi), and hence
a2 b2 is the norm of each of the complex integers a + bi and a bi.
But this norm is a rational prime by hypothesis, so that its factors are
Gaussian primes.

Let us find the Gaussian prime factors of the rational integer 195.
While the factorization of 195 in rational primes is (3)(5)(13), in Gaussian
primes 195 = (3) (2 + i) (2 i) (2 3i)(2 3i). The fact that 2 +
and 2 -I- 3i are Gaussian primes follows from the result above, since 5
and 13 are rational primes.

Incidentally, we observe that a rational prime is not necessarily a
Gaussian prime. For example, 5 = (2 + i)(2 i).

55. The fundamental theorem of arithmetic for Gaussian in-
tegers

The fundamental theorem of arithmetic for Gaussian integers is the
analogue of the fundamental theorem of arithmetic for rational integers.

Just as with rational integers, any Gaussian integer, not zero or a unity,
is divisible by a prime. By repeated use of this result, we may show that
any Gaussian integer, not zero or a unity, is a product of Gaussian primes.
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It is more difficult to prove the uniqueness of the factorization in the
case of Gaussian integers.

These two results are combined in the following statement. Every
Gaussian integer may be expressed as a product of Gaussian primes, and
there is only one way of doing this (4: 184-87).

The statement tacitly assumes that the order of writing the primes,
the introduction of unities, and the substitution of the associates of the
primes for the primes themselves are considered the same factorization.

Let us recall how we find the rational prime factors of a rational
integer. We test each prime in turn as a possible divisor, and we obtain
all the prime factors. This procedure is not feasible when the prime
divisors are very large; other means have been devised for determining
them in such cases (10: 54-64).

For Gaussian integers the method is somewhat similar. We have
already illustrated the factorization of the rational integer 195 into
Gaussian integers. Now we shall give an example of the factorization
of a Gaussian integer into its prime factors.

Consider the integer 24 + 54i. We see at once that 2 and 3 are rational
integral factors of the Gaussian integer. The 2 may again be factored
into the Gaussian primes (1 -I- 0(1 i), while the 3, as we know, is
itself a Gaussian prime. The remaining factor of 24 + 54i is 4 + 9i,
whose norm is 42 4- 92 = 97, which is a rational prime of the form 4k + 1.
It follows then from our general result that 4 + 9i is a Gaussian prime.
The Gaussian prime factors of 24 + 54i are 3, 1 + i, 1 i, and 4 + 9i.

Of course this factorization may take on various forms by the in-
troduction of unities and associates. For example,

24 + 54i = 3i(1 + i)2( 9 + 4i).
To find the Gaussian primes of a Gaussian integer, then, we must

know the prime factors of the norm, which is a rational integer.
The divisibility properties of Gaussian integers follow from the funda-

mental theorem for Gaussian integers, just as the divisibility properties
of the rational integers follow from the fundamental theorem for rational
integers. For example, it is true that if the product of two Gaussian integers
is divisible by a Gaussian prime, then at least one of the integers is divisible
by this prime (4: 187).

56. Fermat's little theorem for Gaussian integers
We shall not pursue the subject of Gaussian integers any further

ex'3ept to state the analogue of Fermat's little theorem (4: 219).
Let p + qi be any Gaussian prime different from 1 + i, and let a + bi

be any Gaussian integer which does not contain p + qi as a factor; then
the expression

(a + bi)P2-112-1 _ 1

i
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is exactly divisible by p + qi. This result may also be written:
(a + bi)N"' (1)+"1-1 1 is divisible by p + qi.

The following examples illustrate this result:
The Gaussian integer 2 + i is obviously not divisible by the

Gaussian prime 3. Hence, by the preceding result,
(2 + o(Norm of 8)-1 1, or (2 + i)" 1, or (2 + i)8 1

is divisible by 3. We find by computation that (2 + 08 1

528 3361, which is obviously divisible by 3.
The Gaussian integer 4 + 5i is readily shown not to contain

the Gaussian prime 2 + i as a factor. To verify Fermat's
theorem, we see that the norm of 2 + i is 5, so that
(4 + 51)" 1 must be divisible by 2 + i, as we see from
the computation

(4 + 504 1 = (-80)(19 + 9i)

= (2 + i)( 32 + 16i)(19 + 9i).

57. The integers associated with the cube root of unity

There is another class of integers which have many features in common
with the Gaussian integers, in particular, the property of unique fac-
torization.

We recall first that a Gaussian inttecr is of the form a + bx, where a
and b are positive or negative integers or zero, and x satisfies the equa-
tion x2 + 1 = 0. Now let us consider an integer of the form a + bp,
where a and b are again rational integers or zero, and p satisfies the
equation p2 + p + 1 = 0. It is readily seen that p is an imaginary cube
root of unity, and must satisfy the equation IP = 1 since IP 1 =
(1) 1) ( P2 + P + 1).

The totality of integers of the form

a + by

will be called the integers associated with the cube root of unity, just as the
Gaussian integers are connected with the square root of 1.

Of the two imaginary cube roots of unity, we shall, for the sake of
concreteness, take p = Y1( 1 + iV-3). We might equally well have
defined these integers as the numbers a + b p2. In view of the relation
p2 + p + 1 = 0, or p2 = 1 p, we see that

a + b p2 = a + b(-1 -- p) . (a b) by

and since a and b range over all the rational integers and zero, so do
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a b and b. Actually, a + bp2 is the conjugate of a + by as is shown
by the following computation:

a + by = a + b {%( -1 + iVi)) --= (a 0 + 2Z: Vi;

a + bp2 = a b bp = (a b) 1--; I -1 + iNli = (a ib) .g A/5.

The sum of two integers a + bp and c + dp is again an integer of this
form. Similarly, if we multiply a + by by c + dp, the product
is ac + (ad + bc)p +bdp2, which, in view of the relation p2 = 1 p,
becomes (ac bd) + (ad + be bd) p.

We define the norm of the integer a + by to be the product of a + by and
its conjugate a + bp2. By a simple computation we see that

Norm(a + bp) = (a -I- b p)(a + bp2) = a2 + b2p8 -I- ab p + abp2

= a2 ab -I- b2 = (a b2 ) 2 + 3b2 .4

From the above expression we see that the norm of a + by is the sum
of the squares of two real numbers. It follows then that the norm of

ba +
2

bp is positive except when a - = 0 and b = 0, in which case

a = b = 0, so that a + by = 0. We have shown that when the norm
of a + by vanishes, a + by is the zero associated with the cube root of
unity.

As in the case of Gaussian numbers, the norm of a product is the prod-
uct of the norms, that is,

Norm(a + b p)(c + dp) = Norm(a + bp)Norm (c + dp).

This statement is true for all real values of a, b, c, d, not necessarily
integral.

An integer a -I- by is said to be divisible by c + dp, if there exists an
integer e + fp for which a + by = (c + dp)(e + fP); and c ± dp and
e + f p are said to be divisors of a -I- bp.

For example, 1 + p2 and 2 p are divisors of 1 3p, since the
product (1 + p2) (2 p) , when simplified, reduces to 1 3 p. In
simplifying the product we have replaced p2 by 1.

A unity associated with the integers a + by is any integer of this form
which is a divisor of 1. This is equivalent to saying (compare Section 52)
that the norm of a unity is 1, and any integer a + by whose norm is
1 is a unity. To find the unities in a + bp, we need only solve
Norm(a + bp) = 1 or a2 ab + b2 = 1; which is the same equation
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as (2a b)2 + 3b2 = 4. All the solutions of this equation are given
by a = th1, b = 0; a = 0, b = ±1; a = 1, b = 1; a = 1, b = 1.
There are six unities in a + bp, namely, ± 1, ± p, ± (1 + p). These
may also be put in the form th1, thp, thp2.

We define an associate of a + by as the integer obtained when a + by
is multiplied by a unity. The associates of a + by are th (a + bp),
± p (a + b p), ± p2 (a + b p) .

A prime in a + by is an integer, not zero or a unity, which is divisible
only by its associates and by 1.

An integer a + by is a prime if its norm is a rational prime. The proof
follows the same lines as that for Gaussian primes (Section 53).

For example, Norm(1 p) = (1 p)(1 p2) = 1 + p3 p p2 =
1 + 1 + 1 = 3, so that (1 p) is a prime, since Norm(1 p) is the
rational prime 3.

The converse is false; the Norm(a + bp) may be composite and
yet a + by may be prime. The Norm(2) is the composite number 4,
and yet 2 is a prime among the integers a + bp. To prove that 2 is a
prime, suppose

2 = (a + b p) (c + d p) ,

so that Norm(2) = Norm(a + bp)Norm(c + dp), or 4 = (a2 ab + b2)
(c2 cd + d2). Now this equation is satisfied in three and only three

ways:
A. a2 ab + b2 .--- ±1, 0 cd + d2 = ±4, so that a + by is

a unity since its norm is 1.
B. a2 ab + b2 = ±4, c2 cd + d2 = ±1, so that c + dp is

a unity.
C. a2 ab + b2 = th2, c2 cd + d2 = th2. But a2 ab + b2

th2 is the same as (2a b)2 + 3b2 = th8, which is easily
shown to be impossible for rational integral values of
a and b.

Thus only the possibilities A and B remain: either a + by or c + dp
is a unity; hence, by definition, 2 is a prime.

It can be proved (4: 220-21) that all the primes among the integers
a + bp are given by

A. 1 p and its associates;
B. the rational primes of the form 3n + 2 and their associates;
C. the factors a + by of the rational primes of the form 3n + 1.

The analogue of the fundamental theorem of arithmetic for integers
of the form a + by will now be stated. The expression of an integer
a + by as a product of primes is unique, apart from the order of the primes
and the ambiguities arising from associated primes and from unities.
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For example, the rational integer 105 is also an integer of the form
a + bp, where a = 105 and b = 0, and 105 = (3)(5)(7). Starting with
3, the smallest rational prime factor of 105, we note that 3 =
(1 p)(1 p2), which may be factored further; 3 = (1 + p)(1 p)2.
Since pt is a unity, and 1 p is a prime by A above, the prime factors
of 3 are 1 p taken twice.

Since 5 is a rational prime of the form 3n + 2, it is also a prime among
the integers a + by by B above. Finally, since 7 is a rational prime of
the form 3n + 1, its factors 3 + 2p and 3 + 2p2 are primes by C. There-
fore, apart from unities and associates, the unique prime factors of 105
among the integers a + by are (1 p)2, 5, (3 + 2p), and (3 + 2p2).

There is a Fermat little theorem among the integers a + by analogous
to that for rational integers and for Gaussian integers. This theorem
says that if p + qp is a prime and if a -1- bp is not divisible by p + qp,
then

borrormcp+qp)-1 1

is divisible by p + qp. Written more explicitly, this says that
(a bp)P2-"+q2-1 1 is divisible by p + qp.

Let p + qp = 2 + 3p, which is easily verified to be a prime. If now
we take a + by = 1 p, we may show that 1 p is not divisible by
2 + 3p. Thus, the hypotheses of the Fermat little theorem are satisfied,
and we obtain the result (1 p)° 1 is divisible by 2 + 3p. In fact,
(1 p)6 1 = 28, which has the factors 4, 2 + 3p, and 2 + V.

58. Algebraic integers

The expressions a + bi and a + by are two examples of algebraic
integers. They are the integers x which are roots of the algebraic equation

xn + aixn-4 + + an = 0,

where the coefficient of the highest power of x is 1, and the other coefficients
al , az , , an are all rational integers or zero.

For example, if x = a -I- bi, then x2 = a2 b2 + 2abi, and since
2ax = 2a2 + 2abi, we find that x2 2ax = a2 b2 -I- 2abi (2a2 +
2abi) = a2 b2, so that

x2 2ax + a2 + b2 = 0.

We have now verified that a Gaussian integer is a root of a quadratic
equation with the coefficient of x2 equal to 1, the coefficient of x equal
to the integer 2a, and the constant term equal to a2 + b2. Therefore,
we have shown that a Gaussian integer is an algebraic integer.
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If now x = a + bp, then x2 = as + 2abp + PO = a2 + 2abp
b= b2p. Further, since x = a + bp,

(2a b)x = a(2a b) + b(2a b)p.

x2 (2a b)x = a' b2 + ab,

x2 (2a b)x + a2 + IP ab = O.

And again we have shown that a + by is an algebraic integer.
The two examples just given are instances of quadratic integers,

since each satisfies an algebraic equation of the second degree with
rational, integral coefficients, and with 1 as the coefficient of the x2
term.

From this point of view the rational integers are also algebraic in-
tegers. For if x is a rational integer a, x satisfies the linear algebraic
equation x a = 0.

Since a quadratic integer x satisfies the equation x2 + rx + s = 0,
where r and s are rational integers, then

r V72 - 4s
2 2

Hence

so that

x=

Each of these roots has the form

a + bVi-n

where a and b are rational integers or halves of rational integers; m is a
rational integer different from zero, not a perfect square, containing no
square factor. (We are excluding rational integers from our discussion of
the quadratic integers.)

If m is of the form 4k 1, as in the case of the Gaussian integers
where m = 1, then all the Gaussian integers will be obtained from
the quadratic integers a + bV:Ii. by allowing a and b to range over
all the rational integers (4: 207).

If, however, m is of the form 4k + 1, as in the case of integers as-
sociated with the cube root of unity where m = 3, these integers
will be identical with the quadratic integers a + bV-3, where a and b
need not be integers but may be halves of integers. Actually, if c and d
range over the rational integers, then it suffices to take a = c itici
and b = mci (4: 207).

We were able to state a theorem for unique factorization of the
integers a ± bi and a + bp. We naturally wonder whether there are

I

)

i
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other types of quadratic integers for which there is such a fundamental
theorem of arithmetic.

It has been proved that the negative values of m for which there is a
unique factorization among the quadratic integers a + b.J are the
nine values

m = 1, 2, 3, 7, 11, 19, 43, 67, 163.
The only additional value may be an m less than (-5)(109), but its exist-
ence is highly improbable (4: 212-13).

While we know as many as 16 positive values of m for which we have
unique factorization, we cannot say that there is a finite number of
such m's (4: 213).

Once we know that unique factorization is possible for a set of in-
tegers, quadratic or of higher degree, the results of number theory for the
rational integers may be extended to these new integers.

59. Integers for which unique factorization fails
We now give a class of quadratic integers a + bViit for which unique

factorization fails. The integers to be considered are of the form
a + b'/ -5, where a and b range over all the rational integers or zero.
(Here m is of the form 4k 1.) Of course the a + bV:::6 are complex
integers a + bi5i; they reduce to rational integers when b = 0. It is
clear that the sum, difference, or product of two such integers is an
integer of the same type. We may define prime, unity, and associate in a
fashion analogous to that of Gaussian integers or the integers of the
form a -I- bp. Thus, to define prime for the integers a + bV 5, we
first introduce the unities, those integers whose norm is 1. Since the
conjugate of a + bV 5 is a bV 5, the norm of (a + bV 5) is
a2 + 5b2. If the last expression is to equal 1, it is obvious that a = 1,
b = 0 or a = 1, b = 0, so that the only unities are 1, and 1. A
prime, then, is an integer a + bV 5, not zero or a unity, which is
divisible only by itself and its negative.

We shall now verify that 7 and 1 + 2V-----I are primes. Let
7 = (a + b V 5)(c + dam), where neither factor is a unity. But
since the norm of a product is the product of the norms, we obtain
49 = (a2 + 5b2)(c2 + 5d2). It is impossible for a2 + 5b2 to equal 7
when a and b equal any rational integers, or zero. Hence, 7 is a prime
among the integers of the form a + bV.7-8. Similarly, if 1 + 2V-275
were not a prime, we would have 1 + 2V-5 = (a + bV 5)
(c + dV 5), so that Norm(1 + 2V-5) = 21 = (a2 + 5b2)(c2 -I- 5d2).
If we examine the factors of 21, we see that neither 3 nor 7 is of the
form a' + 5P, and our assertion is proved.
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Now, consider the factorization of the integer 21 which is a generalized
integer of the form a + bV 5, when a = 21 and b = 0. We see at
once that 21 has two factorizations among the integers of the type
a + W----75-:

21 = (3)(7) = (1 -I- 21V -5)(1 2V-5).
We have already verified that 7 and 1 -I- 2V-5 are primes among these
integers, and we could show similarly that 3 and 1 2V---- 5 are also
primes. Thus we see that the integer 21 has been factored in two different
ways into a product of primes, and our fundamental theorem is false
for such integers.

In addition, we observe that the prime factor 3 is a divisor of the
product (1 + 2V2--7g)(1 2V7.--5-), but 3 does not divide either factor,
since each is a prime. Here again the results of number theory of ra-
tional integers do not hold.

60. Conclusion
It seems natural to ask several questions at this point. First, for what

types of "integers" will we have unique factorization? This was partially
answered in Section 58. Secondly, if we do not have unique factoriza-
tion, is it still possible to repair this defect by attaching a new meaning
to primes of such integers? The answers to these questions and to
others form the subject matter of what is known today as algebraic
number theory.

It is of interest to add that in his attempt to find a complete proof of
Fermat's last theorem, Kummer presented a proof in which he tacitly
assumed unique factorization for the integers he used. The error was
pointed out to him, and, in trying to rectify it, he was led to the dis-
covery of a sort of substitute for unique factorization which became
useful not only in the theory of numbers but in many other branches of
mathematics as well.
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