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design value of number symbols through- ;
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INTRODUCTION

During the sixth century B. C., the world’s earliest scientific society
was holding meetings in Greece. Pythagoras, a pioneer in the teaching
of mathematics, had founded a brotherhood of young men and women
in which secrecy, magi~ and religion were conglomerated with number
inquiries. These inquiries laid a profound groundwork for the future
development of mathematics.

Pythagoras discovered that the pitch of a note produced by a
plucked string is closely related to its length; mathematics may,
therefore, be used for describing musical intervals. With this insight he
conjectured that mathematical language is qualified to help unravel
nature's secrets, and thus mathematical physics was born.

The startling discovery that revealed an interdependence between
number and physical phenomena intrigued the master. He thought
he had found the nucleus of man’s most cherished dream—an under-
standing of the universe in which he lives. ‘“Number is a universal
measure of everything,” he reiterated, ‘‘number rules the universe,’’
“‘the essence of all things is number.”

What did he mean by “number’’? How have more than two millennia
in the evolution of mathematics affected his notions? Was Pythagoras
right in his philosophy that number is the key for an understanding of
our world?

For more than 2000 years generations of mathematicians have
endeavored to understand numbers fully. The concept of number has
been extended and mathematical reasoning has become more rigorous
and generalized. Has modern man, on the basis of these devzlopments,
lost Pythagoras' viewpoint?




1. THE GROWTH OF
NUMBER NOTIONS

Historical Develgpment

Somewhere in prehistoric time, some human being—maybe several
at the same time—became inquisitive. It must have been a Pekingman
who, looking perhaps at a group of animals, queried: How many? This
question aroused the number notion, but whoever first exhibited this
mental curiosity must forever remain anonymous.

What is it that enables man to conceive of number, to develop num-
ber systems? Is counting instinctive? Can all animals count?

NATURAL NUMBERS (TALLY NUMBERS)

Animal experiments have been reported indicating a non-linguistic
ability for counting. This appears to be a capacity for comparing
groups of elements side by side as well as for remembering unnamed
numbers. These two facets are unified in man’s faculty of number
perception. Beyond this animal manner of thinking of numbers to
which no names are assigned, man is the only animal possessing the
faculty for language and the use of symbols.

In establishing simple number relationships, numbers are not always
used. The young child who sets the table for the family dinner does
not necessarily need to know that there are five in the group. She just
puts “one for daddy, one for mummy, one for Johnny . . . and thus
employs a most important mathematical principle. It is the principle
of matching the elements of two sets and establishing a one-to-one
correspondence, mathematically speaking. The elements in the one set
are the dishes; in the other are the members of the family.

This matching process leads to more than a comparison between two
sets. If a model collection is known, say the fingers on one hand, then
establishing a one-to-one correspondence with the members of this set
means that there must be five elements in the given collection. Birds’

2
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wings, clover leaves, legs of four-legged animals are other examples of
such model collections. The origins of number words are often traced
to these beginnings.

The use of the principie of correspondence leads to the concept of
cardinal number. The artifice of counting requires linguistic ability.
Without it, man would not have been able to arrive at insights into
natural phenomena. Ordinal numbers were necessary to translate
events into the language of mathematics.

An artificial collection must be created, a sequence in ordered suc-
cession. Counting, then, consists of matching the numbers of the given
collection witk the ordered numbers of this model. The last term of the
model used in the matching process is called the ordinal number of
the collection. This number at the same time fixes the plurality of the
collection, its cardinal number. Two important principles penetrate
our number system. They are the correspondence principle which leads
to cardinal numbers and the principle of succession, the basis of ordinal
numbers.

To obtain the abstract set of the model is very difficult—the mathe-
matician would write it as {1, 2, 3, - - -}. Fingers are used invariably
to overcome the obstacles. Even after cur prehistoric ancestor had
already established some names for counting, he would have thought
of “three bears” or “three trees” but not of ‘“three.” The step from
understanding threesomes of that kind to understanding “‘three” is
an enormous advance, and marks the initial important climb in
mathematics. The very essence of inathematics is its abstractness, and
with this first abstractive encounter all humans in their maturing
process step into the world of mathematics.

Barbarous tribes have invariably disclosed some number concept
even if a very limited one. Some primitive tribes have been found who
conceive of one, two, and sometimes three things, but beyond that it
would be “many.”

Yet civilizations thousands of years before Christ already had a
well-developed idea of number. The Egyptians, Sumerians, Babylo-
nians, Indians, and later the Greeks and Romans understood large
numbers and had various ways of recording them and operating with
them. About 3500 B. C., the Egyptians recorded 120,000 prisoners,
400,000 captive oxen and 1,422,000 captive goats. The Greek Archi-
medes, a mental giant who anticipated his age by about two thousand
years, invented a nomenclature by which he could express numbers up
to 10*%1*, How early civilizations wrote their numbers and computed
with them will be told later.

Counting numbers are called natural numbers or tally numbers,
probably because they occurred to man almost naturally. In some

B e et




4 THE NUMBER STORY

mathematical treatises it seems expedient to include zero among the
natural numbers and to conceive of them as the set {0,1,2, - - - }. In
our discussion, we will mean the ordinary counting numbers, the col-
lection {1, 2,3, : - -}. :

FRACTIONS

Two activities made necessary the invention of “‘new’’ numbers. One
was measuring; the other, sharing. In measurement if one takes, for
example, a certain unit of length and then compares a given length
with it, left-aver parts usually occur. These could be taken care of by
deciding on sub-multiples of the units and naming them separately.
The Romans relied largely on this method. The alternative was to
invent numbers that constitute parts of the natural numbers, namely
fractions.

Problems of sharing also invariably led to these numbers. After all,
man had acquired possessions by this time and wanted to assure each
of his children a just share. These partitives or partitioners were not
even considered numbers, but only broken parts, and they posed real
difficulties in writing as well as in computation.

A considerable portion of the early Egyptian arithmetic consisted
in explanations of fractions and operations with them. Fractions were

limited to unit fractions—that is, those of the type -;-, where a is a

natural number. The only exception was -§ Elaborate tables were

developed to express fractional quantities in terms of unit fractions.
The reader may gain some appreciation of the mental struggle involved

by an attempt to represent %—;— as a sum of unit fractions. He might
. | 1 1 1 1 1
obtaln§+l—9+3—8'0r2+'i-§+m.
The Babylonians also studied fractions intensively. They, however,

used sexagesimal fractions—that is, fractions of the type %, where a

and # are natural numbers. Our system of minutes and seconds is a
heritage from the Babylonians.

The Romans adopted the custom of expressing the common fractions
-;-, %. and -;- in terms of a new unit. They primarily used twelve and
multiples of twelve as their subdivisions, and they talked about “un-
ciae” as one-twelfth of the unit of weight. The terms ounces and inches
are derived from this word.

gL VAT g st g i N AT s g Yyt e b 4o B R




GROWTH OF NUMBER NOTIONS S

The Egyptian and the Babylonian systems were used by the
Greeks, who aiso employed common fractions. The modern treatment
and the terminology of common fractions were given by Robert
Recorde (1510-1558). To him, incidentally, we also owe the equality
sign. He said, when introducing this symbol in his Whetstone of Wilte,
“T will sette as I doe often in woorke vse, a pair of paralleles, or
Gemowe (i.e., twin) lines of one lengthe, thus =, because noe 2. thynges
can be moare equalle.”

The system of sexagesimal fractions (Babylonian) and duodecimal
ones (Roman) prepared the way for decimal fractions. Christoff
Rudolff in the first part of the 16th century wrote in the usual notation
of decimal fractions, putting a comma for the decimal point. The
complete systematic treatment of decimal fractions, however, had to
wait for Simon Stevin (1548-1620). His discovery will be better under-
stood after our discussion of the Hindu-Arabic decimal system in

Chapter 2.

IRRATIONAL NUMBERS

Pythagoras’ strong interest in number has been mentioned. Number
to him meant the collection of natural numbers and fractions; these
suffice for the ordinary needs of daily life, for counting individual items
and measuring various quantities. Around 500 B. C., the master
decided to work on a simple but important problem in class. He wanted
to find the length of the diagonal of a square whose side is one unit.
No difficulty could be posed since the relationship that may have been
first generally proved by him, the “theorem of Pythagoras,” could be
used. Alas, the relationship led to the fact that the diagonal ¢ would

have to equal /2 in our present symbols. This convinced him that
there was no number (number meaning positive integers and fractions)

such as V2.
By indirect reasoning, we may assume the /2 to be a number, say

V2= %, where @ and b are positive integers. For convenience consider

these as relatively prime (having no common factor), since a fraction
may always be reduced to lowest terms. Squaring both sides of the
equation and clearing fractions gives 2b* = a*, This means that a® must
be even, and consequently a itself must be even, say @ = 24, with a,
an integer. Substituting and reducing leads to b* = 2a,% But this
forces b to be even also which contradicts the original assumption that
a and b have no common factor. Therefore, there is 70 number (of the
type known) which gives the measure of the diagonal of such a square.
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Pythagoras’ grief was overwhelming because number, this omnip-
otent concept, had failed him. Number did not rule the universe after
all. Legend will have it that a devoted student Hippasus, also in
despair, forgot the school rule of secrecy within the group. Drowning
was his punishment.

While this incident dealt a fatal blow to the Pythagoreans, the
difficulty was resolved masterfully about 370 B. C., by Eudoxus
(408 B. C.-355 B. C.). He cleared up the “'scandalous situation” by a
rather involved definition of these new quantities, admitting them into

the realm of number. We now write these numbers as Vs, Va, - - -

va - . . wherea may be any natural number, and a » b* with b as
another natural number.

ZERO AND NEGATIVE NUMBERS

In the early A. D.'s the Hindus, joyously playing with numbers,
contributed many developments in the evolution of the number con-
cept. They were not handicapped by the restrictive standards of Greek
thought. They were imaginative formalists with a flair for flowery
language, and they worked on mathematical problems simply for
pleasure. A notable contribution they made with respect to symbolizing
numbers will be discussed in the second chapter.

Astronomical studies in Babylonia had already suggested the useful-
ness of zero and negative numbers. The Greeks, mainly Diophantus,
met equations at least one of whose roots was a negative number. But
such solutions were meaningless, and were rejected. About 1150
Bh&skara admitted negative integers for x and y in an equation of the
type ax + by = ¢, where a, b, and ¢ are integers. But he, too, exhibited
some skepticism as to the validity of negative numbers. Symbols for
negative numbers and zero also came from the Hindus about this time.

In Italy, Fibonacci, or Leonardo of Pisa (1180-1250), evidently
obtained from the Arabs his knowledge of negative quantities, which
neither he nor the Arabs considered as roots of an equation. Jerome
Cardan (1501-1576) recognized such roots but called them “‘aestima-
tiones falsae,” not attaching any independent significance to them.
Michael Stifel (1486-1567) in Germany called negative quantities
“numeri absurdi.” It is rather interesting to note that the irrationals
had met a similar fate. An irrational number was referred to as
‘“‘analogon,” the unutterable.

The Englishman Thomas Harriot (1560-1621) was the first mathe-

‘matician to give status to negative numbers. Descartes (1596-1650)

dared to use the same letter for positive and negative quantities in his
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geometry. He did, however, falsely consider a negative number of
greater absolute value larger than another of smaller abeolute value;
to him, (—5) was larger than (—3). Thus it fell to mathematicians of
the seventeenth century to deal with operatione involving negative
numbers.

CLASSIFICATION OF NUMBERS

So far we have given a bird’s-eye view of the historic development
and some of the extensions of our number system. We might pause a
moment to see what numbers we have covered and how they may
be classified. The set of natural numbers {1, 2, 3, - - -} has been ex-
tended to include zero and the negative integers. The new collection
obtained is called the set of integers, and may be designated by

" « . =3, "20 "looo 102930 ¢ "-

The set of rational numbers constitutes the next enlargement of our
set of numbers. Rational numbers are those which can be expressed
as the ratio of two integers, that is, as a/b, where a and b are integers
and b » 0. Every integer is a rational number since it is equal to the
ratio of itself to one. The other rational numbers are usually written as
common fractions (fractions in which the numerator is an integer and
the denominator is an integer different from 0) or as decimals. The
decimal expansion of a rational number is either finite or it is an infinite
decimal which, from some point on, has a repeating block of digits.
So far then we have the following.

Rational Numbers
Integers T Fractions Symbolized as
Periodical
Natural Finite Repeating
Negative Integers Zero Numbers Common Decimal
Fractions* Fractions*
(- =3, =2, ~1} {0} (1,2,3,- - -} || Negative | Zero | Positive

* See p. S8 fl.

There are also numbers that cannot be expressed as ratios of integers;
Pythagoras' ‘“scandalous” class episode involved such a number.
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These are the so-called “irrationals” or ‘‘incommensurables,”” a very
important sub-class of our number system. Archyatas by about 400
B. C. had already classified real numbers as rational and irrational.
The number system inciuding both of these sets is called the real
number system. At this stage, our chart has the following form:

Real Numbers

Rational Numbers Irrational Numbers

Integers Fractions
Negative | Positive

Negative | Zero | Positive | Negative | Zero | Positive

MORE ABOUT IRRATIONALS

It is one of the strange quirks in the history of mathematics that as
difficult an idea as irrationals should have been chanced upon so early.
Euclid (300 B. C.), in his Elements, presented an investigation of
irrational quantities, thereby establishing the irrationality of /2. His
reasoning process was like the one previously shown.

Christoff Rudolff (first part of the 16th century) gave a few rules
for operations with irrationals or radicals, as these may also be called.
Pioneering work of Karl Weierstrass (1815-1897), Richard Dedekind
(1831-1916) and Georg Cantor (1845-1918) finally secured a rigorous,
purely arithmetic theory for irrational numbers. This new treatment
is based upon the theory of functions with considerations of continuity
and discontinuity and upon the theory of series with investigations of
criteria for convergence and divergence.

However, numbers of the type ~/a where n and a are natural
numbers and a » b*, with b another natural number, are not the only
irrationals encountered. In 1794, Legendre had suspected a new kind
of irrational number which could not be thought of as a root of an
algebraic equation. The French mathematician Liouville expressed
this idea in 1844 and even realized that these new numbers would
constitute a very extensive class. Thus it became necessary to sub-
divide irrationals into two sets, the algebraic irrationals and the trans-
cendentals. A real number a is said to be algebraic if it is the root of an
algebraic equation of the form aex® + aix** + « « + + @a1x + aa = 0

<L ———y - X




GROWTH OF NUMBER NOTIONS 9

where the coefficients a; are integers, ay # 0, and n is a natural number.
This type of equation is commonly called a polynomial equation. For
instance, V2 is algebraically irrational because it may be considered
one of the solutions of the equation x* — 2 = 0. Every rational number

is obviously algebraic since any number of the form % may be con-

sidered a root of the equation bx — a = 0. Any irrational number
which is not algebraic is a transcendental. Transcendentals play a most
important role in mathematics, and surprising facts about their den-
sity, that is, the frequency of their occurrence, will be discussed later.

One of the transcendentals that a mathematician encounters early
in his studies is », the number indicating the ratio between the circum-
ference of a circle and its diameter. Others are most of the logarithms,
the majority of the values of the trigonometric functions and an espe-
cially interesting number called e. We shall discuss some of these in
Chapter 4.

Transcendentals have a fascinating history. The idea of the number
x was first encountered in the ancient Orient. The King James version
of the Bible (I Kings 7:23, II Chronicles 4:2) twice gives it the value 3—
a far step from recognizing its true status as a transcendental irrational.

4
The Egyptian Rhind Papyrus (about 1650 B. C.) specifies » = (%) ,a

real rational number. About 240 B. C,, Archimedes obtained the
inequality -2%-3 << %2- by a most ingenious method which, computed
to two decimals, gives the value » = 3.14. Further attempts to capture
the nature of this number were made by Ptolemy of Alexandria, who
calculated » = 3.1416 (about 150 A. D.); a Chinese ohysicist (about
480) who obtained » as = 3.1415929; the Hindu, Aryabhata, who
secured the approximation » = 3.1416 (about 530); and Bhiskara,

whose interesting values (about 1150) were = = 4/10 for ordinary

3927 22 .
work, 1250 2® an accurate value, and T asan approximate one.

In 1767, Johann Heinrich Lambert established the irrationality of =
and in 1882 F. Lindemann was able to prove its transcendentality.
The Eniac, an electronic calculator, gave—in approximately 70 hours—
the value of x to 2035 places. In 1873, William Shanks of England had
spent 15 years to compute » to 707 places—a most thankless and
perhaps foolish task!

At this stage our table extends itself again, and the mathematician

would chart it in the real number system.
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The Real Number System

Rational Numbers Irrational Numbers
Integers Fractions Algebraic Transcendental
Nega- Posi- | Nega- Posi- || Nega- | Posi- | Nega- | Posi-
tive | Zero | tive | tive | Zero | tive tive tive tive tive

COMPLEX NUMBERS

It has been stated that the Hindus already used negative numbers
in their computations although they did not regard them as ‘“‘proper"”’
solutions of an equation. Bhaskara (born 1114 A. D.) attempted to
extract a square root of a negative quantity and realized correctly
that it does not exist for the real number system.

For a long time, such “imaginary” quantities, as they were later
called, received very little attention. But complex numbers forced
themselves into the picture in the sixteenth century for the Italian
algebraists who attempted to solve equations. Strangely enough, while
they were not able to analyze the nature of such quantities, men like
Jerome Cardan (1501-1576) and Rafaele Bombelli (born 1530), called
them “impossible numbers” and gave several rules for computation
with imaginary numbers (v —a, where a is a positive real number)
and with complex numbers (¢ 4+ bv/—1, where @ and b are real
numbers).

This is an example in the history of mathematics where the pencil
was superior to the brain, where results were obtained on formalistic,
mechanical grounds without real understanding.

It was the great mathematician Carl Friedrich Gauss (1777-185S)
who began an explanation of the nature of imaginary and complex
quantities. A new number was introduced whose square equals minus
one. Through Gauss's influence its symbol 4, suggested by Euler,
became generally accepted. This newly created number i aroused great
suspicion, and it was considered fictitious, not really existing. Now we
consider the name smaginary number an unfortunate misnomer, another
historical remnant of early hesitations toward abstract and formalistic
treatment in mathematics. Complex numbers proved invaluable in
mait's attempt to use the language of mathematics for a description of

b e S
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natural phenomena. They are, of course, indispensable from the point
of view of pure mathematics.

The chart below is the completed system to date.

The Complex Number System

6 + bi, a and b are real numbers, ¢ is a number such that §* = —~1

Real Numbers Pure | Complex
6#£0,0=0 Imagi- | Numbers
naries | (Specific)
e=0,| a#0,
Irrational Numbers |0 #0] 030

Rational Numbers

Integers Fractions Algebraic | Trans-
cendental

Neg. Zero | Pos. | Neg.| Pos. | Neg. | Poe.

Zero l Pos. | Neg.

Logical Development

Capricious and incalculable are the ways in which man developed
understanding. The history of the number system follows no logical
pattern. Chance elements, fads, and interests were sometimes respon-
sible for advances in a certain direction.

The modern viewpoint involves such rigorous, painstaking analysis
that we cannot attempt to do justice to it in this discussion. We will,
however, venture to give a somewhat intuitive mathematical develop-
ment of this structure, and then gaze toward a modern mathematician's
demands for a rigorous development.

THE DESIRE TO MAKE OPERATIONS OMNIPOSSIBLE

Let us start with the natural numbers, the ordinary counting num-
bers {1, 2, 3, - - -}. What operations may one perform on them? We
are now thinking of the word operation, a very important idea in
mathematics, in the elementary way. Moreover, we consider only
binary operations, those that combine two numbers in a prescribed
manner to obtain a third. In this sense, we have the four fundamental
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operations—addition, subtraction, multiplication and division—as well
as raising to a power and extracting a root.

Taking any two natural numbers and adding, a third natural number
results. Addition is a short process for combining two numbers in a
way which could be done by counting. The mathematician says,
“addition is omnipossible in the system of natural numbers” or, “the
system of natural numbers is closed under addition.” Likewise, multi-
plication and raising to a natural number exponent are omnipossible.
However, with any pair of natural numbers chosen in a certain order,
subtraction cannot always be performed.

Subtraction is the inverse operation to addition. Thus, to perform
the task ¢ — b means to find a number ¢ such that @ = b 4 ¢. Multi-
plication means repeated addition. To find ab is equivalent to obtaining
the sum of a equal addends b.

To make subtraction omnipossible, zero and the negative whole
numbers have to be introduced. The enlarged set is the set of integers,
written as {+ -+ =3, =2, =1, 0,1, 2, 3, - - -}. It is closed under
addition, subtraction, and multiplication. Now division causes trouble.

To close the system under division, except by zero, quotients or ratios
of integers must be introduced. These are the rational numbers, signi-

fied by % where a and b constitute an ordered pair (in general % o g)-

a and b are both integers, and b # 0. These new numbers satisfy the
following three conditions:
EquaLiTy: Two rational numbers % and -5 are equal if and only if

ad = be; in symbols,% - EcHad = b,

AppiTioN: Two rational numbers '—;- and 5 when added again form a

, ed+bc, a_ c_ad+bc
rational number 24 %% + d bd

MuLTIPLICATION: Two rational numbers '—;- and 5 when multiplied

. . . ac _a c_a
result again in a rational number %5 d " bd

(3

Division is defined as the inverse of multiplication, just as sub-
traction is the inverse of addition. To divide ¢ by b (b » 0) means

finding a number ¢ such that a = bc. To divide two rational numbers

a, ¢ . . X a ¢ X
3 by 3 therefore means finding a rational number y such that 3=d'y
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But by the definition for multiplication, -3 . ; - % Using the equality

principle, this becomes interpreted as ady = bcx. One pair of solutions
for this statement is x = ad and y = bc. This secures a rational number
as an answer to the divisiongb- + -3if y 5 0. But b » 0 by the definition
of rational numbers and ¢ # 0, or else 5 = (; and division by zero has
been excluded.

Extraction of roots is, however, still not omnipossible in our ex-
tended set, the set of rational numbers. Two difficulties may occur. The
first put Pythagoras into a grave dilemma. Even square roots of
certain numbers are not to be found in the realm of rational numbers.

We have seen that V2, for instance, cannot be expressed as % with a

and b being integers. The numbers necessary to perform this operation
are called algebraically irrational numbers. Secondly, not even the
introduction of these irrationals secures the possibility of always being
able to extract roots. For instance, the square root of a negative number
is not an element of the set of real numbers as our extended number
realm is called. Complex numbers, that is, numbers of the form a + bs,
where @ and b are real numbers and 7 is a number such that ¢ = -1,
had to be introduced. Rules for operating on these numbers were
established. These are:

EquaLiTy: Two complex numbers a + b and ¢ + di are equal if the
real as well as the pure imaginary components agree, respec-
tively,or:a + bi = c +di>a =cand b = d.

ADDITION: The sum of two complex numbers a + bi and ¢ + di is
formed by adding the real as well as the pure imaginary parts
separately: (a + b7) + (¢ + di) = (a + ¢) + (b + ).

MuLTIPLICATION: The product of two complex numbers a + bi and
¢ + di is obtained in the following manner: (& + %) (¢ + di) =
(ac — bd) + (ad + bo)i.

One can see that the number 7 behaves like any other number, and
that the only condition imposed on it is that 2 = —1.

As explained, the set of complex numbers (the number system of
ordinary algebra) is closed with respect to the elementary operations.
Yet in this field another remarkable property can be established. This
is the famous “fundamental theorem of algebra first proved by Gauss
at the age of 22 in his doctoral dissertation (1799). It states that within
the system of complex numbers every polynomial equation has at
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least one root. Also, if one counts multiple roots ‘“correctly,” the
number of roots equals the degree of the equation. What relief this
must have been to mathematicians who for generations had explored
and investigated algebraic equations as to their solvability and
methods for obtaining solutions. To look for a solution without
knowing if it is actually there is as bad as digging for oil in a place
whose oil content has not been established.

THE DESIRE TO SOLVE POLYNOMIAL EQUATIONS

One might treat the development of the number system from the
point of view of polynommial equations altogether. Again we would start
with the natural numbers and investigate the solvability of an equation
of the form x 4+ a = b, where @ and b are natural numbers. To assure
a solution for this equation, zero and negative integers have to be
introduced, the former for the case @ = b, the latter for b < a.

The linear equation gox + @; = 0 (a9 and a, are integers and ao 5 0)
necessitated the introduction of fractions.

The quadratic equation a¢x? + ayx + a2 = 0 with a 0 becomes
solvable only if irrationals and complex numbers are recognized.

It was one of the pleasant surprises in the development of mathe-
matics that as one increases the degree of the equation under investi-
gation (@ex" 4+ ¢\x* 1 + « + « 4 @p1% + @y = Owithao % 0and# = 3),
the number system does not have to be enlarged. Rather, on the basis
of Gauss'’s investigation, all these equations have a root in the complex
realm even if the coefficients a4z = 0, 1, - - - ) are not necessarily
integers but complex numbers themselves.

It has to be pointed out that this informal sketch, as well as the
previous one based on a desire to make the fundamental operations
omnipossible, does not explain the occurrence of transcendentals.
A discussion like this is a far cry from a modern mathematician’s
critical standards of rigor. Descriptive, intuitive arguments have to
give way to a formalistic, flawless structure. Assumptions and proper-
ties, laws and relationships have to be carefully recognized and
distinguished, and appropriate proofs given for all deductions made.

ORDERED NUMBER PAIRS

Integers., A useful idea which may now be reviewed is the notion of
an ordered number pair, symbolized by (a, b). By ordered we mean that
there is a first and a second number in the pair in such a manner that
(a, b) == (b, @) unless a = b.

Once again the natural numbers are taken for granted, and it is
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designated that both a and b are natural numbers. With this number-
pair notation all fundamental properties of integers can be established.

One would first give the basic definitions in the new language as:
A EquaLiTy: Two number pairs (g, b) and (¢, d) are equal if and only if
/ the sum of the first member of the first pair and the second of
the second pair equals the sum of the remaining parts, or:

(@, ) = (c,d) @a+d=0>b+c.

ApDITION: Two number pairs (a, b) and (¢, d) are added by writing a
number pair whose first member equals the sum of the first
members of the given pairs and whose second member is the
sum of the remaining members, or: ‘

(a, b) + (¢, d) = (@ + ¢, b + d).

MULTIPLICATION: Two number pairs (a, b) and (¢, d) are multiplied
as follows:

(a, b) « (¢, @) = (ac + bd, ad + be).

The reader will have recognized that (g, b) signifies what is generally
thought of as a — b. For instance, (5, 3) would represent the integer 2.
All integers may be symbolized in this manner. Zero would be given by
any one member of the set {(1, 1), (2, 2), (3, 3) - - -}, or, generally
speaking, by (g, @). A negative integer would be a number pair (e, )
such that b > a.

This, of course, necessitates an order concept among natural num-
bers, which one may introduce by stipulating that only three possi-
bilities occur in the comparison of two natural numbers @ and b:

1. There exists a natural number ¢ such that a = b +¢, in which
case we say that a is greater than b, and write @ > b.

2. a=0b

3. There exists a natural number d such thata + d = b. This would
mean that a is smaller than b, and would be written as @ < b.

To illustrate, let us test the fact that zero added to any integer leaves
the integer intact. We would write (e, b) + (¢, ¢) = (a, b). Applying the
addition rule: (a, b) + (c,¢) = (@ + ¢, b + ¢). But does (¢ + ¢, b+ o)
equal (a, b)? By the definition of equality, this would mean establishing
that @ + ¢ + b = b + ¢ -+ a, where g, b, and ¢ are natural numbers.
Here a new difficulty is encountered. May one be sure that the order
of adding is immaterial with natural numbers? Intuitively we are
quite convinced of that; has not two plus three always yielded the
same result as three plus two? However, this type of thinking would
not secure analogous behavior in all circumstances.

*
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Such experiences force the mathematician to stipulate certain
properties for operations with natural numbers, often referred to as the
five fundamental laws of arithmetic. They are:

THE COMMUTATIVE LAw: The order of elements is immaterial in
addition as well as in multiplication.

at+b=b+a (1)
g-bmbd-a (2)

THE AssOCIATIVE Law: The grouping of elements in addition or
multiplication may be taken in any manner.

a+b+c=(@+b+c=a+ (b+c) 3)
ga-b-cm(a-bc=al-c) (4)

Tue DisTRIBUTIVE LAW: This combines addition and multiplication.
ab+c)=a-b+a-c (5)

Using the commutative law, form (1), we have completed our test.

Here is another one. Is the product of any number other than zero
and zero itself really equal to zero? That is, is @ + 0 = 0 where a is any
integer? In the language of number pairs, we wonder if (a, d)(c, c) =
(d, d).

Using the definition for multiplication, (a, d)(c, ¢) = (ac + be,
ac + bc). To establish the equality (ac + bc, ac + bc) with (d, @),
investigate to determine whether the equality rule is fulfilled. Since it
would give ac + bc + d = ac + bc + d, the correctness of the state-
ment is seen immediately.

Let us try the multiplication rule for negative integers, a great
tiouble-maker in the teaching of mathematics. We wish to establish
the fact that the product of two negative integers is a positive integer.
To simplify matters, let us first try to prove that (—=1)(—1) = (+41).
In the language of number pairs, we wonder if (g, @ + 1)@, a+1)
equals (a + 1, a), where a is a natural number. If the left member is
evaluated according to the definition of multiplication, it becomes:
[ae + (@ + 1)(a + 1), a(a + 1) + (a + 1)a], where a + 1 and aa are
natural numbers, since this system is closed under addition and multi-
plication. With the use of the distributive law this number pair may be
written as [aa + (@ + 1)a + (a + 1)1, a(a + 1) + (a + 1)a]. Stipu-
late a further property for natural numbers, namely that #1 = #, and
use the distributive law again; the new simplification reads:

(ae +aa +a +a + 1, aa + aa + a + a).

This number pair, however, equals (a + 1, a), the right member of the

11
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above relationship under investigation. The last assertion may be seen
by examining to find if the equality condition is satisfied, that is, if
aa +aa +a +a+1+a equals aa +aa +a +a +a+ 1. Once
again, on the basis of the commutative law for addition, this equality
holds. The idea that minus one times minus one equals plus one results
as a logical necessity by postulating properties of natural numbers and
defining integers, their equality, addition, and multiplication.

We might now attempt the more general proof, namely that the
product of any two negative integers is positive. In number pair
notation, to say that (a, b) and (¢, d) are to be symbols for negative
numbers is paramount to conditioning that b > aand d > c. In other
words, the relationships b = a + m and d = ¢ + n, where m and »
are natural numbers, must be superimposed on the given number pairs
(a, b) and (¢, d). Substituting, and using the multiplication rule, we
obtain:

(a, b)(c, d) = (a,a + m)(c, ¢ + n)
= (ac+ac+mc+an+mn,ac+an+ac+mc),

in which statement the distributive law for natural numbers has, of
course, also been utilized. On the basis of the commutative law for
addition, the first number of this pair exceeds the second by the
product mn and, by the definition of order, is greater than the second
number. This means that the product is a positive integer.

Rational Numbers. Rational (not necessarily integral) numbers
of the form % may also be discussed by means of the ordered number

pair notation. Here it must be recognized that (a, b) denotes a number
where @ and b are integers and b # 0. In this discussion it will be
assumed that the second number of each pair differs from zero. Then
we adopt the following definitions:

EQUIVALENCE: (a, b) = (¢, d) «>ad = bc.
ADDITION: (a, b) + (¢, @) = (ad + b, bd).
MULTIPLICATION: (@, b)(¢, @) = (ac, bd).

It may be seen immediately that the integers form a subset of these

numbers, namely the set denoted by (a, 1).
Let us establish the rule for dividing fractions. To show that

we will have to see that (a,b) + (¢, d) = (ad, be) or rather that (s, b) =
(ad, bc)(c, d). The right side of this statement, by definition, equals
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(adc, bed). To establish the equality between (a, ) and (adc, bed), the
equivalence relation must be fulfilled; that is, one must prove abcd
equals badc, where @, b, ¢ and d are integers.

The proof would be complete if we could assure ourselves of the
commutative and associative laws for multiplication of integers (having
previously stipulated these laws for natural numbers). If a return is
made to the number pair notation for integers, the task now becomes
one of showing that if (a, b) and (¢, @) are two integers, then (a,b)(c,d) =
(¢, d)(a, b). By the definition for multiplication of integers, the left side
reads (ac + bd, ad + be); the right side is (ca + db, cb + da), where
a, b, ¢, and d are natural numbers. Using the commutative law for
addition and for multiplication of natural numbers, we settle part of
the query. We use a similar argument for establishing the associative
laws for integers.

Complex Numbers. Complex numbers also accommodate them-
selves to the number pair device. We agree on the following definitions.
A complex number a + b4 is represented by (@, b), where a and b are
real numbers, in such a manner that the following relationships hold:

EQUIVALENCE: (a,b) = (c,d)ifand only if ¢ = ¢, b = d.
ADDITION: (a, b) + (¢, d) = (@ +¢, b + d).
MULTIPLICATION: (a, b)(c, d) = (ac — bd, ad + be).

Let us see if the product of two conjugate complex numbers & + b4
and a — bi results in a real number; (@, b)(a, —b) is under investigation.
On the basis of the definition the product reads (a* + 6%, —ab + ab) or
(a* + b3, 0). This, however, is a real number.

THE IRRATIONALS

The idea of ordered number pairs cannot be used for the irrationals
of the real number set. Nor would ordered n-tuplets of rational numbers
suffice. The formation of the set of all real numbers from the rationals
is the most difficult phase of constructing the entire system of complex
numbers from the natural numbers. One method of doing this is based
on the partitioning notion, the so-called Dedekind Cut (proposed by
Richard Dedekind, 1872). Another way uses the concept of a regular
sequence of rational numbers as devised by Georg Cantor (1845-
1918). Decimal representations of real numbers offer a third possibility.
A fourth approach involves sequences of nested intervals.

The Dedekind Cuts will be used here because they more closely
resemble the concept of ordered number pairs. Ordered pairs of classes
of numbers instead of number-couplets must be introduced. Objections
have been raised against all devices for defining a real number. An
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analysis of these in detail goes beyond the scope of this discussion.

Dedekind generated a set of real numbers by classifying the rational
numbers in a special way. Symbolize the Dedekind Cut, which sepa-
rates the rational numbers into two classes 4 and B, by (4|B). Thus
a real number is defined. We stipulate the following conditions on this
partitioning into two clasees:

1. The set of rational numbers is exhausted, that is, every rational
number is in either 4 or B.

2. A and B each contains at least one rational number.

3. Every element of A is less than every element of B. This property
orders the classes.

Three possible types of Dedekind Cuts (4|B) occur in the set of
rational numbers.

Type 1 Example

A has a largest element a and B | 4 contains all rational | B contains all remain-

has no sniallest element. numbers smaller than | ing rational numbers,

or = 2,

The cut defines the rational The cut defines the rational number 2.
number .

Type 2 Example

A has no largest elenient and B | 4 contains all rational | B contsins all remain-
has a smallest element b. numbers smaller thar | ing rational numbers.
2.

The cut defines the rational The cut defines the rational number 2.
number b.

For a definition of rational numbers, the description of Type 1 or Type 2 may be followed

Type 3 Example
A has no largest element and B | 4 contains all negative | B contains all remain-
has no smallest elernent. rationals, zero, and all | ing rational numbers,
positiverationalswhose | that is, all positive ra-
square is smaller than | tional numbers whose
2, square is larger than 2.

The cut defines an irrational The cut defines the positive square root of
number. two (4/2).

Further definitions for the equality of the cuts and the basic operations
are introduced. It can be shown that this newly defined real number
set satisfies the five basic laws of arithmetic. Thus the set of rational
numbers is extended to the set of real numbers by making Dedekind
Cuts in the set of rational numbers.
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MODERN DEMANDS FOR RIGOR

Recall again that the modern mathematician’s approach to an under-
standing of the notion of number still differs significantly from anything
we have done so far. He might create a set of mathematical objects such
as {1, 2, 3, - + -} by clearly postulating their behavior or properties.

The natural numbers consist of those elements which may be
generated by starting with a first one, called 1, and passing from any
element # already generated to its successor (n + 1). Peano’s famous
five Postulates resulted, in 1889, from this definition.

1. 1 is a natural number.
2. If n is a natural number, then (# 4+ 1) is a natural number.
3. For any two natural numbers # and m, if n + 1 = m 4 1, then
n=m,
4. For any natural number n, # < 1 »£ 0.
S. P(»n) is a meaningful property for natural numbers under the
conditions:
a. 1 has the property P(1).
b. if n has the property P(n) and (n + 1) has the property
P(n + 1); then for every natural number m, P(m) holds. This
is the well-known principle of mathematical induction.

With such a start the ensuing theory of a rigorous development of
our number system may become rather complex and involved. These
remarks were inserted to help the reader glimpse the spirit of the
abstractions of modern mathematics in some small measure. Con-
temporary abstract mathematics presents a form of mentally gyrating
gymnastics with enormous consequences, and the creation of abstract
models has proved profoundly valuable. A wealth of ready-made under-
standing about real, concrete objects is obtainable by the establishment
of relationships in the structure of an abstract mathematical model.

The Infinities of Numbers

How many numbers are there in our complete number system? Or,
for that matter, how numerous are the integers, the fractions, the
irrationals? Surely, the uninitiated skeptic says, there is an infinite
number of each, and it is meaningless to pose such questions. But a
pleasant surprise appears. Cantor has established a hierarchy of
‘““quantitative infinities’ and we shall attempt to give you the gist of
these thoughts.

The process of counting can conceivably be carried on without
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termination. Every natural number is assumed to have a successor.
Hence, the infiniteness of the natural numbers is aseured. Their
plurality may be expressed by the symbol Ne (aleph null). Are all
integers (positive and negative integers and zero) more numerous than
just the positive integers?

A hasty reply would certainly be made in the affirmative. Yet the
infinite has no less a shock for us than the idea that part of a whole
may equal the whole.

Man's innate mental curiosity has always been challenged by the
infinite, and his imaginative and resourceful attempts to solve the
mysteries of the infinitesimally small and the infinitely large play an
important role in the history of thought. It is the idea of the infinitely
large with which we are here concerned. It permeates the entire realm
of mathematics. Since mathematics pursues generality and deals with
abstract models and structures, collections of mathematical elements
are studied rather than the behavior of a single member. Georg Cantor
through his modern theory of sets has strikingly influenced the thinking
of contemporary riuathematicians. With the help of this theory many
trouble-making problems were solved, new insights were gained,
“‘known mathematics” was made more rigorous and precise, and analy-
ses of mathematical situations became clarified and often simplified.
In fact the new theory of sets reached the heart of the philosophical
foundations of mathematics.

Briefly, and with simplifications, the theory first describes the basic
idea of a set or collection or aggregate or assemblage. A set is any
collection of elements, with a prescribed rule that determines whether
or not a certain element belongs to the given collection. For instance,
the reader has surely surmised that the set of natural numbers, the
set of integers, and the set of rational numbers are illustrations of such
collections.

By an infinite class or set Cantor understands a set with the very
property just mentioned. An infinite class is one in which the whole is
no greater than some of its parts. This statement, however, is meaning-
less unless we establish a means for comparing the numerosity of
infinite classes. This leads to the next important definition, that of
equivalence. Two infinite sets are said to be equivalent (have the same
numerosity) if a bi-unique matching procedure may be effected by
which to each element of one set there belongs one and only one
element of the other and vice versa. The reader will recall the matching
principle discussed early in this monograph which was one of the
components that led to man’s arrival at the notion of number. The
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power of this principle is apparent because without its help our knowl-
edge of transfinite cardinals would be impossible.

THE INTEGERS

Having given the symbol ¥, to denote the cardinal number of the
set of natural numbers, let us try to settle the query we have posed and
establish the cardinal number of the set of all integers

I{--- -3 -2-1,0123, ).

We might arrange the set I as follows: I {0, 1, —1,2, =2,3, =3, - - -}
and compare it with the set of ordinary counting numbers

N{1,2,3,- - -}.

The following pairing can occur:
0 1 -1 2 =2 3 -3

t: ¢t ¢t ¢ ¢ 1 1
1 2 3 4 5 6 71

To check the bi-uniqueness of this matching process, let us see it in
detail.

1. Let & ¢ I (¢ meaning “is an element of"’); then
if B = 0 then 2 & 1 (k is mated to 1)
if # > 0 then k & 2k
if 2 < 0then k &2|k|+ 1.

2. Let n ¢ N; then #n is either odd or even, that is,
n=2+1(2=2012:---)orn=2h0b=1,23-:-")
if n =2a 4 1thenne —a
if n = 2b then n & b.

This establishes the one-to-one correspondence bi-uniquely and we
may behold the astonishing result. All integers together are only as
numerous as the natural numbers themselves. The cardinal number
of I is also N or, as the mathematician now says, the set of integers is
“countable” or ‘‘denumerable.”

THE SET OF ALL RATIONAL NUMBERS

So-called common sense is in for another jolt. Let us put the set of
all rational numbers, symbolized by R, under investigation. This time
it is not so easy to arrange our given numbers. What kind of design
should we choose? Surely, the rational numbers can’t be arranged by
size. There is no such thing as the “next larger” fraction, because
between any two specified rational numbers an infinite number of
fractions could be inserted.
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Cantor's famous “weaving procedure” solves the dilemma. Here is
a possible arrangement of all positive rationals:

11 1 1
1 2 3 1
2 2 2 2
1 2 3 4
3 3 3 3
1 2 3 4
4 4 4 1
1 2 3 4

It has been shown that the set of all integers is equivalent to the
set of all positive integers. Analogously, the set of all rationals is
equivalent to the set of positive rationals. Therefore the set of positive
rationals suffices. You will notice that fractions with numerator one,
ordered by magnitude, were put in the first row, those witk numerator
two in the second row, and so on. It may be objected that we allowed
duplications to slip into the scheme. But even with this slightly larger |
collection, the matching will be possible although the array extends

ad infinitum horizontally as well as vertically. The ingenious device
suggested by Cantor now traces these numbers in a diagonally weaving ;
way as suggested by the following guide lines: |
d . / v / " / v / . / . '
/X /x / X /x /X X
_ X / X /x /x X X |
X X X X X X
/x / X X X X X
/X X X X X X
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This means the pairing:

1 2 1 1 2 3 4 3
1 1 2 3 2 1 1 2
() () () () () () ) ()
1 2 3 4 5 6 7 8

Behold, we will never run out of natural numbers, and msirabile dictu—
contrary to so-called common sense—all the rational numbers are not
any more numerous than the natural numbers. There are exactly as
many fractions as there are counting numbers 1, 2, 3, - - : despite the
fact that between any two such numbers is to be found an infinite
number of fractions! Again in scripta mathematica: the class of all
rational numbers is denumerable (countable). Its numerosity is No.

THE SET OF IRRATIONALS

Approaching the irrationals, we first select a subclass, the set of all
algebraically irrational numbers. These numbers (by definition) are
solutions of an algebraic equation whose form is

ax® + a4 -+ apax a0 =0,

with # a natural numberand a; (¢ = 0, 1, 2, : - ) integers. Introducing
a technical thinking procedure and a new concept—the ‘‘height” of an
algebraic equation—the countability of the algebraic irrationals may
be established. (The “height’ of an algebraic equation is determined
by combining the degree and the coefficients as follows:

b= |ao|+|6:|+|as|+ -+ - +]aa]|+n

where || represents the absolute value of the number %.) By virtue ot
this definition # must be an integer 1. Since there is a finite number
of polynomial equations of a given height &, any value of % yields a
finite number of algebraic irrationals. The reasoning process which
proves the denumerability of algebraic numbers orders them by
successively listing the roots of the equations of height 1, then those of
height 2, and so on.

It might seem that all enlarged number domains are as numerous as
the original set of natural numbers. Alas, this is not correct!

It can be established that the set of real numbers is not matchable
with the natural numbers. Since the set of real numbers includes the
rational and irrational numbers as subclasses and since the countability
of the rational and of the algebraically irrational numbers has already
been shown, it would follow that the transcendental numbers alone are
responsible for the increased numerosity. This, in turn, means that
there are more transcendental numbers than integers, fractions and
algebraically irrational numbers together!
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Let us try to establish this. We resort to an especially important and
helpful method, indirect reasoning. Let us assume that we have been
successful in ordering the entire real number class. Decimal notation is
our preference in this argument since any real number may be written
as a terminating or a non-terminating decimal fraction. The scheme is:

R; = Ix.axazar ..
Rg = Ig.b;bgbg' ° e
R. = 13.616363' > .

A terminating decimal is included in this scheme:

Ry = Lidyls - -« tm
= Iy -« - tn000 - - -

When a real number has two infinite decimal expansions, that is,
3.199999 . . . = 3.2000000 - - -, only one of them need be considered.

The Ri(4 = 1,2, 3, - - ) designate ordered real numbers; I; (¢ =
1,2,3, - - ) are their integral parts and the small letter sequences are
the decimal parts of our numbers. Even though we may not know what
values to give these letters, that is, how to order the numbers for what-
ever arrangement, the scheme is incomplete. This would pose a contra-
diction to the assumption that the real numbers are countable.

By what sleight of mind can one catch the omission of a certain
number if one can’t even “see” what numbers are written down?
Cantor’s elegant diagonal proof demonstrates the mathematician’s
power of abstract reasoning. However “‘complete’’ the array is supposed
to be, he asserts, he is always able to write a new number which was
not included in the scheme. Joining the decimal digits of the array by
a diagonal line, one will encounter the digits a;bscsds - - - in this order.
Write a new number R = I.kjksks - - - in which no k;is 0 or 9 and
such that its first digit k) 7 a,, its second digit ks 5% bs, ks 7 c3, ke 7 d,
and so on. This number R will therefore differ from R; at least in the
first decimal digit, from R; in the second decimal digit, and so on.
It is a number not contained in the original, supposedly complete array.
Adding this number to the scheme would not help either because then
the diagonal thinking process can be repeated and a further new num-
ber created. The assumption of being able to denumerate all real
numbers in an array is untenable. The domain of real numbers,
attributable to the numerosity of the transcendentals, exceeds the
numerosity of the natural numbers. This new transfinite number is
often referred to as ¢ since it may also be established that it is the
numerosity of the continuum. There are ¢ points on a straight line or
¢ points on a line segment of however small a length.
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NUMBERS

= 1 .
a = 2§l n = D)2 is a number,

o
as = / e¢—** dx is a number, and so are
0

5 -2 0 1\n
as = |3 0 —4| and @, =lim (l + —) .
1 2 7 n—o ”n

These quantities look very sophisticated. The first one is written as an
infinite sum, the second as an improper integral, the third as a deter-
minant, the last as a limit of a function. It requires some mathematical
instruction to recognize the first one as 1.0986 - - - (In 3), the second

as 0.88624 - - - (-‘;—;) the third as 90 and the last as 2.7183 - - - (é).

But how did the writing of numbers originate?

Again we return to early civilizations for clues. Man’s earliest
attempts at recording numbers consisted of a collection of marks and
notches. Remnants of these are the first numerals in the Roman system.
From such primitive efforts all our different written number systems
evolved.

Non-Positional Systems

SIMPLE GROUPING SYSTEMS

Possibly the earliest type of number system employed elementary
grouping. In such a system a natural number b is selected as base and
different symbols represent the successive powers b* of this base
(k=0,1,2, - - -). To write a given number, repeating symbols means
adding their values.

26
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L njse2 k| f [T
1 10 10? 10° 10* 10° 10¢
a vertical | a-heel |a scroll | a lotus | a point- | a burbot :s‘:c')?l?sll:
staff bone flower |ing finger fish ment
Figure 1

Early Egyptian hieroglyphic numerals (3400 B. C.) illustrate this
approach. The symbols (Figure 1) are adopted for the successive
powers of 10. For instance, 24,657 would be written as

(rifsss i

For writing numbers less than 60, the early Babylomans (2000 B. C.
to 200 B. C.) used simple grouping. Like the Egyptians

\J « | they used the base ten, but they employed a subtrac-
one | | ten | tive as well as an additive principle. The symbols are
Figure2  illustrated in Figure 2. Repetition of symbols repre-

sented addition; subtraction was indicated by a special

symbol "". Thus,
35 = KK ""' and 28 (or 30 — 2) = €< 1T}

One of the Greek systems, the Herodianic or Attic (prior to 300
B. C.), also fits into our description of a simple grouping system.
Although ten is again the base, a symbol for five is added to those for
the powers of ten. A multiplicative principle is also established and
is indicated by joining two symbols. As symbols the initial letters of
the respective number names were chosen (see Figure 3).

| r A H X M
1 S 10 10 10 104

I, an old | A, thecapi- | H, the old Attic | X, the capi- | M, the capi-

form for tal delta; breathing, like tal chi; tal mu;
I, the our h, late repre-
letter pi; sented by ’;
initia of initial of initial of initial of initial of
IOENTE AEKA HEKATON XIAIOI MTPIOI
(pente) (deka) (hekaton) (chilioi) (myrioi)
Figure 3

We would write the number 3,786 as X XXFH H [NAAA r |
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The reader is probably quite familiar with the Roman numerals.

Here an additive as well as a subtractive principle is used. The former

is indicated by putting a smaller unit after a larger, the latter by

reversing the order (there is reason to believe the subtracting idea

was not commonly used in ancient times). Symbols for five and the

| fivefold multiples of powers of ten were introduced beyond those for
f; the powers of ten. The origin of the symbols

: 1|V X |L|cCc|[D|M

1 S 10 50 10? 500 10?

is uncertain although many explanations have been given. In this
system, 1959 is written as MCMLIX.

MULTIPLICATIVE GROUPING SYSTEMS

Upon a chosen base, the multiplicative grouping system imposes two
sets of symbols, one for 1, 2, 3, - - - (b — 1), the other for b, b2, 83, - . °
combining these in a multiplicative manner. It would be as if we used
our regular digits 1, 2, 3, - - - 9 and another sequence:

f t, hv Tv ’f’ t et
] f tens
: { hundreds
: thousands
tenthousands

Then we would write 6T5h3t2 for 6,532.

The traditional Chinese-Japanese numeral system, which writes
numbers vertically, is of this kind. The two sets of symbols are shown
in Figure 4, and the number 6,532 is shown in Figure §.

REIAN

415/6[7]8]9

2

Il
H
it

I+ bl Dt

Figure 4 Figure 5
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CIPHERED NUMERAL SYSTEMS

A third notion may be referred to as a ciphered numeral system.
Here, after selection of a base b, the following sets of symbols are
introduced and have their individual signs.

first set: 1, 2, 3 :---(b-1)
secondset: b, 2b, 3b, - - -(b—-1)
third set: 5%, 2b%, 3b%, . . - (b — 1)b?

llllllllllllllllllllllll

The later form of the Egyptian hieroglyphic number writing, the
hieratic or demotic, is of this type, as shown in Figure 6.

- 1] -
first set WM Wl (e
1 2 3 4 5 | 6 7 | 8 9
= !
second set AR NJL
10 | 20 | 30 | 40 | SO | 60 | 70 | 80 | 90

o

9

thirdset | 2| 2|72 |"7["M) M7 2) |XS &S
700 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900
Figure 6

This work requires much memorizing, but the numbers themselves
can then be written in a rather compact form. For instance, 875
would be %)lu'-

A Greek numeral system other than the Herodianic is the Ionic
(450 B. C.), another ciphered system. Instead of inventing special
signs for 21l the numbers, the Greeks used the letters of their aliphabet
supplemented by a few other symbols, as shown in Figure 7.

1 2 3 4 5 6 7 8 9

second set ' K /\ M N = 0 n q
10 20| 30| 40| SO | 60 | 70 | 80 | 9

third set PIZITIT|® | X |V ||
100 ] 200 | 300 | 400 | S00 | 600 | 700 | 800 | 900

Figure 7

Our number 875 would now be written as NLOE.

An alphabetic ciphered system was used by the Hebrews, the Hindu
Brahmi, and the Syrians, and in early Arabic and Gothic texts.

Let us digress for just a moment to ponder about the possible
remnants of the idea of alphabetic systems. In such a system numbers
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and letters become associated; this is the basic idea in many of the
still existent superstitions to be found in numerology. In such a
“treatise” (still available in our advanced age) a young lady is in-
structed to use a certain code with whose help the letters of her name
and her lover's name may be converted into numbers. Then the
numbers are combined by some magic formula and the resulting
number translated back into a word. Lo and behold—it may speil love!

The other analogy is part of a highly respectable phase of mathe-
matics—the symbolism of algebra. The power of algebra is to a large
extent a function of an effective symbolization of the generalizations
sought. The evolution of today's highly sophisticated symbolization
was long and tedious. Algebraic notation underwent three basically
different stages: the first was rhetoric algebra in which all arguments,
thinking procedures, and solutions were written out in detail. Next
came syncopated algebra. Abbreviations were resorted to for the most
frequently occurring ideas and operations. It was only very gradually
that the last stage emerged, a symbolic algebra, and a set of symbols
had to be devised to indicate numbers, operations, and functional and
many other relationships.

A fundamental concern was a desire to express by some symbol the
idea of any number. This is one of the basic ideas of algebra, and at the
heart of most generalizations. Instead of a whole new collection of wrig-
gles and squibbles, a familiar notation was taken—the alphabet. Thus
it was established that in this mathematical shorthand, {a, b, ¢, - - -}
means a set of numbers of any kind, sometimes specified as the set of
rcal numbers or the set of integers. .

Most of the symbols encountered in elementary algebra are about
300 years old. But one of the main ideas, the use of letters for numbers,
appeared in alphabetic ciphered systems about two millennia ago.
There is, however, one important difference. The letters in our algebra
generally serve as place holders for any number, or for any one member
of a set of specified numbers, whereas the early number systems
designated certain numbers by certain letters.

Positional Systems

All the systems we have encountered require repeated introduction of
new symbols for larger numbers. But in our number system ten digits
suffice to write any number. The explanation lies in a positional
principle which assigns a place value in addition to a quantitative value
for each digit. The history of this positional principle reveals that
different civilizations had found it independently.
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THE BABYLONIANS

The way in which the ancient Babylonians wrote numbers smaller
than sixty has already been mentioned. Later, work in astronomy
needed larger numbers. For those a positional type of numeration was
adopted and the number sixty was used as a base. Since | and ( were
symbols for one and ten and repetition of these symbols would mean
y addition, the number 311,723 would be written as

m m
1 << <« <«

We recognize that in our symbols this number reads (1)(26)(35)(23)
with “digits" enclosed in parentheses. Superimposing base sixty to this
representation, the number reads 23 + 35 - 60 + 26 - 60® + 1 - 60,
which will be found to equal 311,723.

If the position is a decisive factor in the value of a certain digit,
what does one do in the absence of a number in a certain place? To
indicate, for instance, that onc has 26 - 60? and 23 units, one could

attempt to write
«F «m

But that would surely be read as 26 « 60 + 23 = 1,583, or may cven
be interpreted as 26 - 60* + 23 - 60 = 04,980. One can leave a gap
but how big must a gap be to be a gap? This poses a serious obstacle
in a positional system and in that the Babylonian numeral form was
deficient. In Babylonian texts which have been deciphered, the true
value of a number can only be conjectured through careful study of

the context.

THE MAYAS

In the early sixteenth century Spanish Conquistadores in Yucatan
discovered a culture among the Mayan Indians which had many
analogies to the Bronze Age in Egypt. While this civilization showed
striking similarities with the South American cultures of the time, it
8 differed from them in a unique system of numeration. Its origin is of

S| o | o0 |oee|one :

o1 11 2314|5161 7] 8[9110

10| 12 | 13 | 14 | 15| 16 | 17 [ 18 [ 19
Figure 8

——

3 remote but unknown date. The Mayan number system is vigesimal,
‘ which means that twenty is the base. This system was carefully

'ERIC
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devised, but had a deviation from the usual scheme, which is explained
below. The digits are shown in Figure 8.

An example of a Mayan numeral is shown at right. Since
numerals were written vertically with the lowest order at the
bottom, we interpret thisas: 4 + 17 + 20 + 0 - (20 - 18) + | &=
6 - (202 - 18) = 43,544. It will be noted that the deviation | S
mentioned before consists in using 18 as one of the factors in
the successive powers of twenty so that the local values are
of the form 18 + 20*! instead of 20*. The Mayas had successfully
solved the problem of the vacant position by introducing a special
symbol €& as place holder—which we indicate by our zero.

HINDU NUMERALS

It is, perhaps, disrespectful to the originators of our system that we
often refer to it as the Arabic number system. The name might be
Hindu-Arabic numerals, since it is to the early Hindus that we owe
their existence. The Arabs were instrumental in bringing new ways of
writing numbers to Europe.

At first the system was a ciphered one. In the period of approxi-
mately 600-800 A. D., a fully developed positional system based on
ten and having a symbol for zero was known. Introduction of this
system to the Western world was almost completely due to one man,
Leonardo Fibonacci of Pisa (1202). The form of the digits changed
considerably and was not standardized until the invention of printing.

It often comes as a surprise to hear about the tremendous resistance
that the new numerals encountered. Ill feeling existed against the new
ways of writing numbers and algorithms for computing with them.
Man is very conservative, and Roman numerals and computation on
the abacus had become too strongly entrenched. It took longer to
extend the idea of positional notation “to the other side’—to make
possible the writing of decimal fractions. We owe the first satisfactory
exposition on decimal fractions to Simon Stevin (1585 A. D.).

The separation between the integral and the decimal part of a
number by a decimal point, or its equivalent, is still not standardized.
In our time the American decimal point rests on the base line (5.4); the
English put it in the middle (5-4); the Austrians have it at the top
(5°4); and several other countries use a comma (5,4). Following are
some examples of earlier decimal expression:

51 54" 51, 514, 5(4, 5:4.

Another discrepancy occurs in the form of some of the digits—
mainly of the one and the seven. The former is written as | oras 4,

and the latteras 7 or .




SR YT

RECORDING OF NUMBERS 33

Despite this lack of complete agreement, people using the Hindu-
Arabic system today have no trouble understanding each other. They
know that in this system any number N is expressed as

N=ga10"+a10"2+ : - - 4+ a4,110 4 a,
where the coefficients a; (f = 0, 1, 2, - - - n) are taken from the set
{0, 1, 2, - - - 9] and # is an integer. Restricting # to positive integers
would result in an integral number for N.

It must be emphasized that a positional system involves two aspects:
assigning positional value beyond an absolute numerical value to a
symbol, and creating a mark for the empty space. The idea of a sero
ranks among man’s most important inventions.

The first actual appearance of the symbol 0 for zero occurred in a
Hindu manuscript of 738 A. D. Originally, the zero sign had been
introduced as a place holder to indicate the empty column. It was not
considered a number.

COMPARISON OF NUMBER SYSTEMS

Studying man's varied attempts at recording numbers highlights
several features of a system of numeration. Basic to every such system
are (a) the type of symbols to be introduced and (b) the principle
upon which these symbols are to be combined. If we met a Roman
soldier today and taught him to write the digits 0, 1, 2, - - - 9, and
then tested him by asking him to read the number §2, he would, of
course, say seven. We had forgotten to enlighten him about the
positional principle underlying our number system.

Another characteristic of different numerals is the fact that the
system is either complete or it requires constant introduction of new
symbols when larger and larger numbers must be written. In our
system, for instance, ten digits suffice to write any number however
large. We can even visualize a googol—one followed by one hundred
zeros—or a googolplex—one followed by a googol of zeros. Of course
we have shorter ways of writing numbers of this kind. Every algebra
student knows that googols and googolplexes, if they are defined in the
manner explained above, can be written as 101® and 100!, respec-
tively. He might even know that the logarithm of a googolplex to the
base ten would be a googol and that the same kind of logarithm in the
case of a googol would be one hundred. The logarithm of a hundred,
however, would be two, and all this would be another way of describing
these numbers. We could tell the whole story in a compact form by
writing logllog(log googolplex)] = 2. We would, however, have to
know that the logarithm of a number to the base ten is the exponent to
which ten has to be raised to equal that number. Or, in symbols,
logio N = a is equivalent to 10* = N.
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A further point when comparing different types of numeration
concerns simplicity and complexity. The systems differ significantly in
the ease and compactness with which numbers can be written, and
in the manner in which they lend themselves to computation. About
the latter we shall hear more in the next chapter.

OTHER BASE SYSTEMS

The reader has noticed the recurrence of base ten and also the
choice of other bases at times. Any natural number greater than one
may, in fact, be chosen as a base. The number ten has been favored by
the chance element that we are normally born with ten fingers, and our
fingers are a natural computing machine.

The general form of a number N, restricted to natural numbers,
reads N = gob® 4 a,p*! 4 + - + + go_1b + a.. Here b is the chosen
base and is therefore an integer; > > 1 and the a; are taken from the
set {0,1,2,-..(b—1)},fori=0,1,2,: - . n.

Let us try out this idea by converting our number 573 into one whose
base is seven instead of ten. Then 573 = 7" 4 g,7%1 4 . . . 4 Q.
Since the largest power of seven contained in 573 is 7* = 343, n will
be 3 and the number will have four digits, a, being equal to one; 230
units have yet to be taken care of. This uses the number seven squared
four times, and therefore @, = 4 and 34 units still have to be dis-
tributed. But 34 equals four 7's and six, and therefore (573)) = (1446),
where the subscripts denote the base.

81 11
Repeated division, as: 7)573, 7)8_% and 11

would lead to an abbreviated method of converting a number from
our base system to another. Starting with the last quotient and then
writing the remainders of the successive divisions in reverse order
gives the digits of the new number. A two-column arrangement of the
two methods will clarify the abbreviated algorithm.

Basic Form Abbreviated Form
573 = 1 7% 4 230 S713=81:-7+6 %))
230 =4 .78 4+ 34 81=11.744 (2)
H¥=4.74+ 6 = 1.7+4¢ 3)
Combining the above: By substitution:
513m 1.7 4+4.7%4+4:.74+6 81=(1:.74+4)7+4
=1.7%4+4.7+4 [(3) in (2)] (4)

S5T3m (170447440746 [(4)in (1)]
=1:T4+4.7944.746
Therefore, (573)is = (1446)..

p i,
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To check our claim, let us convert (1446); into our decadic system.
This may be done by interpreting the number (1446);, as follows:
64+4-74+4-74+1:7 =573

The least possible value for the base of a positional system of numer-
ation is two. This is called the binary system. Its only digits are zero
and one. This was a perfect delight to Leibnitz (1646-1716), who saw
the image of creation in writing any number, however large, with the
use of these two digits. Zero represented the void and unity was God,
the Supreme Being, who drew forth the universe from this void in the
same manner in which all natural numbers may be created from zero
by the assistance of cone.

Although contemporary man has ceased to speculate in this fashion,
numbers in the binary system have become amazingly important to
him. Mathematical calculations performed by modern electronic digital
computers proceed with speeds which tax man's imagination. The
layman immediately attributes magic power to these machines and
regards them as omniscient and omnipotent “giant brains.”

Today we have a variety of mechanical devices, and undoubtedly
the next decades will bring further improvements and additional novel
constructions. It seems quite certain, however, that creative thinking
must still come from human beings who construct the machines, from
those who program the problems and feed them into the calculators,
from others who set the machines in repair, and from many more, but
never from the machines themselves. The superhuman element in the
electronic digital computers is their lightning speed, and therein is
their tremendous value.

The basic principle underlying the majority of the high speed
machines is primarily the binary system of numeration. If it is possible
to record any number by using two digits, then an array of vacuum
tubes may be laid out which translates this zero-one proposition into
an opening and closing of an electric circuit. While the wiring presents
many technicalities, the principie by which instructions are prepared
and transposed and finally followed by the machine is very simple.
This is one of the many cases where a mathematical idea—the idea of
a positional system of any base—taken up for mental curiosity and
for purely theoretical reasons, was later applied. Unexpected, enor-
mously vractical values ensued. We will come back to machines later.

R
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3. METHODS OF
COMPUTATION

Historical Considerations

As civilizations started to advance and industry and commerce
became more complex, operations with numbers became necessary
that could not be done by finger reckoning only. Early number systems
were too unwieldy for the required work, so artificial mechanical
devices were used. It is wrong to believe that the idea of computational
devices was reserved for modern man. These mechanical devices took
various forms, but ail of them employed much the same principle. The
basic notion is that of denoting a unit by a pebble or ball or button or
knot or disk or other similar physical object.

MECHANICAL DEVICES FOR COMPUTATION

One type of counting machine invented long ago is the counting
board or abacus. A general form of abacus is illustrated in Figure 9.
The successive parallel strings, each of which carries ten beads,
represent the place value classes. The first one on the right denotes

111411411
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units; the next, tens; and so on. The number represented in the figure
is 4,620.

The ancient Egyptians put pebbles in grooves in the sand, each
pebble in the first groove representing one unit; each in the second, ten
units; and so on.

While the origin of the abacus is a matter of conjecture, the ancient
Egyptians, on the testimony of Herodotus, used an abacus. In any
collection of Egyptian antiquities are found disks of various sizes which
may have served as counters.

The Chinese and the Japanese computing devices, called the Suan-
pan and the Soroban respectively, place a bar horizontally across the
frame so that five beads are strung on the wire in the lower compartment
and one or two in the upper. (The Japanese generally used only one
bead above the horizontal bar.) Each of the upper beads represents a
value five times as large as each of the lower beads. Whenever five
units of the lower column are reached, they are replaced by one of the
upper. A number is put on this computing machine by assembling the
appropriate number of beads near the cross bar. Figure 10 shows how
67 943 would look.

Flgure 10

Sliding the beads up and down in an appropriate manner enables one
to perform all arithmetic operations with natural numbers.

Contemporary Chinese and Japanese still use this form of abacus
and are unbelievably fast and accurate with it. During World War II
a speed and accuracy test resulted in the victory of Oriental abacists
over the Western world’s expert slide rule operators. Today the
Russians, the Turks, and the Armenians also use a form of the abacus.
The study of arithmetic operations on abaci is required in the schools
of these countries.
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A Roman abacus of bronze, now in the British museum, has two
sets of grooves arranged vertically, one below the other as shown in
Figure 11. The upper set contains one

pebble in each groove but its value is

O 0 O Q O O five times as large as each of the four
pebbles in the lower set. The similarity

@ @ @ @ @ to the Chinese and Japanese abaci is
quite striking. The Latin word for peb-

ble is calculus, from which our words
Figure 11 Calculus and calculate are derived.

The Greeks often used wax-covered tablets on which figures were
marked with a stylus. Sometimes sand was used instead of the wax
covering. Sand-reckoning as well as reckoning on wax tablets was
difficult because it was necessary to ‘‘erase” figures as soon as they
were used by smoothing out either the sand or the wax. The type of
algorithm used often presents this obstacle and some of the sand
reckoners had ingenious methods for checking their work; we will
discuss these later.

Another computational device used counters laid out on a counting
board. Again, counters on the first line represent units; on the second,
tens; and so on. Since paper was not in general use in Europe until
about the eleventh century, counters of various other substances were
employed. In medieval times the loose counter abacus consisted of a
table with lines chalked or painted across. Sometimes even a piece of
fabric with a pattern of threads was considered appropriate. Any type
of disk, button, or coin was used. The num-
ber 269, for instance, would be shown as in
Figure 12. In computation, counters were | hundreds —e-o——

thousands

literally carried or borrowed from one posi- N °
. s ———
tion to another; we have a contemporary | ‘"° .
linguistic remnant of those days. Even as | units —-0-0-0-—

late as the sixteenth century counter reck-
oning was used side by side with computa-
tion by pen for the perfection of certain algorithms to be used in con-
nection with the Hindu-Arabic numerals.

Figure 12

EARLY ALGORITHMS FOR ARITHMETIC OPERATIONS

The Egyptians. The type of arithmetic instruction given in Egypt
about 4000 years ago is fairly well known because of the Ahmes
Papyrus. Egyptian influence, with algorithms for the fundamental
operations, was prevalent for a long time.

Egyptian numerals posed no difficulty in addition and subtraction.
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In multiplication with these numerals we find the first approach to a
systematic multiplication algorithm. The method employs doubling
and halving, and it reduces

the number of multiplication  Halving Doubling

facts that must be known. 01 57 = 1.57
To multiply 91 by 57 two 45 114 = 2.57
chains of numbers are formed,
. . Even (22) 228
the first by successive halving 11 456 = 2%.57
of the numbers involved, the 5 912 = 24.57
second by doubling. In the
. . Even (2) _182%
halving process remainders 1 3648 =26.57
are discarded. Now those sec- —_—
ond column numbers which 5187

correspond to even numbers
in the first set are crossed out. The required product, 5187, is obtained
by adding the remaining values of the second chain.

For the proc{ of this strange procedure we turn again to the binary
system of numeration. The operation 91 + 57 may be written as

(1011011)3 « (57)30 = (1 + 2 + 2% 4 2¢ 4 2°) - 57.

This, however, is equivalent to the above addends. Thus 5187 results.

The generality of this method is seen by the abbreviated process for
converting a number from one base system to another (see p. 34).
Thus the binary form of a number represents the sum of those powers
of two which correspond to those steps whose remainders are one. The
addends correspond to the odd numbers which appear in the halving
column. This sum of the powers is then multiplied by the multiplier 57.
Repeated doubling of 57 and the addition of only those values which
line up with the odd numbers in the left column lead to the correct
result. To illustrate diagrammatically:

91 = 2 =45 remainder1 correspondsto1l - 57
«

45 + 2 = 22 « 1 “2 57

22+2=11 “ 0 “ “ 22. 87

11+2= 3 “ 1 T “ 23 .57

S5+2= 2 “ 1 “ “ 2457

2+2=1 “ 0 “ “« 28 . 57

1+2=0 “ 1 “ “ 28 .57
(91)10 = (1011011),.

Then

(91)10(57)10 = (1011011)2(57)10

= (1 + 2 + 2‘ + 2‘ + 26)10(57)10 = (5187)10.
This old Egyptian technique, we are told, is still being used by Russian
peasants.
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In the middle ages treatises on computations still dealt at length
with duplication (doubling) and mediation (halving). They were con-
sidered two more operations in addition to the four fundamental ones.

Division in ancient Egypt was done by using the inverse of the

, method for multiplication. To divide 5187 by 91, double 91 successively
f : until the double would exceed 5187. One obtains the chain:

91 b 1

182 2

364 4

PR

728 * 8

1456 . 16

2912 » 32

| Those partial products which add up to the dividend are determined
‘ and the corresponding powers of 2 are added. The answer is 1 + 8 +
! 16 + 32 = 57.

! If the division is not exact the remainder may be determined by use
of the above method. To illustrate, divide 433 by 23.

23 1
46 . 2
} 92 .
3 184 8
| 368 . 16

i Those partial products which add up to a number equal to 433 or less

. B than 433 by an amount less than 23 are 368 and 46. The sum of the

| corresponding powers of two is 16 + 2 = 18. Therefore the quotient
is 18. The remainder is 433 — (368 4 46) = 19.

The Babylonians. The civilization of ancient Babylonia has been

carefully studied and archaeologists have unearthed much information.

No arithmetic treatise like that of the Egyptians has been found, but

i ; the deciphering of clay tablets, many over 5000 years old, reveals that

| ? multiplication was generally done by elaborate tables which were

B clumsy and difficult to read.
The Hindu-Arabic System. The process of addition did not undergo |
any changes in the course of time except that it often was done from ‘
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left to right. Checking was done by reversing the direction of adding,
that is, from the bottom up, then from the top down or vice versa.

A check which may be used in all arithmetic operatnons—-—not only
m addition-—has recently lost some popularity. It is the process of

“casting out nines.” Let us consider an integer written in our number
system. It reads N = go10* 4 a410*! + + « + 4 @,_110 + a.. The
coefficients a; (¢ = 0,1, 2, - - -) are taken from the set {0,1,2, - - - 9)
and n is a natural number. We will investigate the number N with
respect to its divisibility by nine.

First we make the observation that 10¢(i = 0, 1, 2, - - -) leaves a
remainder of one when divided by nine. Let us use a very convenient
notation which was first introduced by Gauss. A number a is said to be
congruent to a number b with respect to the modulus m if it leaves a
remainder of b units when divided by m. Or, in symbols,

amb(m)e—ra=mt+bd

where ¢ is an integer. Note that the quotient ¢ does not appear in the
congruence notation. Using this symbolism the previous result may
now be expressed by saying that 10° m 1 (9) where ¢ is any natural
number or zero.

Second, we establish the behavior of congruences with respect to
some forms of addition and multiplication. It is evident that if

a=pb (m)'
and if ¢ is any integer, then
ac m bc (m)

also. This may be seen by translating the given congruence into the
equivalent equation ¢ = m¢ 4 b and multiplying each side by ¢ to
obtain ac = mct + bc. Since mct is a multiple of m, this relationship
may be restated as the above congruence. In particular, if 10¢ = 1(10)
then a.-;10° = a,_,(10).

Furthermore, if two congruences with respect to the same mod-
ulur are given, say a; = b, (1) and a; = b, (m), then the sum of the
left members is congruent to the sum of the right members with
respect to the same modulus, or: a; + a3 = b, + b, (m). In equa-
tional form, the data read @, = mt; + b,and as = mts + b,. Therefore,
ay + as = m(ty + t2) + (by + bs). Since ¢} + £z is an mteger, the claim
is established.

Let us apply these prmclples to our investigation of the divisibility
of a general number N by nine. To start with,

N=ael0"+a,10' 4 . . . 4 a,_,10 + a. (9)
since, if a = b, trivially, a = b(m) for any modulus.
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But: 1 =1 9) Thus: 1:a,=a, 9)
10=1 9) 10 - gy = Gy (9)
102 = | 9) 102 ¢ gps ™= a,—y 9)
=l () 107 - Go m g )

Adding, Nmao+ a1+ ¢ - - + aa 9)
In other words, with respect to divisibility by nine, any integral num-
ber N corresponds to the sum of its digits. Any integral number is a
multiple of nine if the sum of its digits is a multiple of nine. If the sum
of the digits divided by nine leaves a remainder R, then the same
remainder will be obtained if the original number itself is divided by
nine. All multiples of nine may be ignored when finding the sum of the
digits.

As an example, let us consider the numbers a = 76,543,281 and
b = 789,134,563. When investigating @ one would say: 1 4+ 8, discard;
2 4- 3 4+ 4, discard; 5 + 6, retain a 2; 2 4 7 = 9. Therefore, @ is
divisible by nine, or: @ = 0 (9). For number b the steps are: 3 + 6,
discard; § + 4, discard; 3 4+ 1 = 4, retain; omit the 9;4 4 8 = 3 (9),
retaina 3;3 + 7 = 1 (9). Hence, the number b leaves a remainder one
when divided by nine, or: b = 1 (9).

To use the idea of casting out nines as a check in addition, obtain all
respective remainders, often also called excesses. The sum of the excess
values of the addends should equal the excess of the sum.

To illustrate, the addition in Figure 13 is to be checked. We proceed
by obtaining the excess values of the addends (column A). Their sum
leads to the excess seven. The excess of the answer is also seven.

A B

567823 | 4 4
615204 0 0 S5=-4 (9)
34901 8 —1 6= -3 (9)
5678 8 ~1 T=-2 (9
234914 5 -4 8=-1 (9

1,4 58,520 7 —2
Figure 13 Figure 14

Incidentally, negative excess values (column B) may alse be used to
achieve the smallest absolute values of our numbers. Figure 14 estab-
lishes these values. Using negative excess values, column B results.
It checks again by using this method on the sum.

Casting out nines is not infallible. Correctly done, disagreement in
the final excess values would mean an error in the original arithmetic
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operation. Agreemcnt in the excess values, however, does not neces-
sarily mean correctness of the solution. If errors had occurred which
amounted to multiples of nine, casting out nines would not detect
them. A common error of this kind would be transposition of digits. -

To counteract the possibility of not detecting an error in casting
out nines, casting out elevens may be resorted to. Since

1= 1 (11
10 = —1 (11)
10= 1 (11)

we obtain a fairly simple rule as follows:
N = @g10" + a110"! + as10"2 + « - - + @n-110 + an then
Nma, — Gy + Gns — * * + + (—1)"as(11) or,
N = (an+an-2+ ana+ * ¢ +) = (@n—1 + Gn-s + G + - - 2)(11).

Using the addition problem in Figure 13, the follow- 6 — 3 = 3
ing excess values with respect to 11 accrue (negative 7 — 11 = -4
values may again be used). The sum of these values 2 — 4 = -2
leaves excess —3. When casting out elevens, 1458520 3 — 1 =2
becomes 11 — 14 = —3, and the check has been 5 — 7= =2
performed.

Subtraction was done by various methods. Subtracting a larger digit
from a smaller posed the main difficulty. An early suggestion was
borrowing. In a fifteenth century work three cases of subtraction were
treated, involving subtrahends smaller than, equal to and larger than
the minuends. In the first case the difference of the numbers is found.
In the second, the answer is zero. The last case will be illustrated by an
example. To perform the subtraction 734 minus 528, add the comple-
ment of the subtrahend—that is, ten minus that digit—to the minuend
and add one to the next digit of the subtrahend. This means adding
two (the complement of eight with respect to ten) to four to obtain six
in the unit place of the difference. Then add one to two to obtain
three. Subtract this from its equal to obtain zero in the tens’ digit.
The digit in the hundreds’ place is found to be two, the difference
between seven and five. The answer is 206. Fibonacci suggested a
“boriow-and-pay-back” method; the person subtracting 37 from 65
would say: seven from fifteen leaves eight, four from six leaves two.

These ar® among the forerunners of our present algo-

527 rithms for subtraction. An additive or a subtractive prin-
:385 ciple is employed, and in each case a borrowing or equal

142 complemerjt form may be selected. In the case of the sub-

traction af left, the following possibilities exist:

/
/
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1. additive, borrowing: § and what is 7
8 and what is 12
3 and what is 4
2. additive, equal complements: 5 and what is 7
8 and what is 12
4 and what is §

3. subtractive, borrowing: 5 from 7

8 from 12
3 from 4
4. subtractive, equal complements: 5 from 7
8 from 12
4 from §
A B
5927 5 -1 Here are the schemes for casting out
—-385 l 7 l 0 nines and elevens. Column A applies
to nines, column B to elevens.
142 | =2 | -1

Multiplication procedures also used many different devices. They
varied mainly in the manner of recording the partial products. In the
Treviso Arithmetic (1478) Gelosia Multiplication made its appearance.
The name Gelosia indicates a resemblance to a window grating. With
this method we multiply 786 by 534 as follows:

7 8 6
%15 4|4
Z4E 3|2
s 5 |

7 2 4

Figure 15

The answer is 419724, The diagrams are self-explanatory, illustrating
two main forms of multiplication. In this country multiplication is
almost always performed by starting with the digit of lowest place
value. In Europe both methods are used.

To check by casting out nines, the excess values of multiplicand and
multiplier, that is, three and three, are multiplied to obtain 0(9) which
agrees with the excess value of the product. In casting out elevens, one
would find five and six as the respective excess values of the factors and,
correctly, minus three as the excess of the product.

[ N———
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Division undoubtedly caused confusion
then as it does now. Fibonacci in the fif-
teenth century introduced a scratch or
galley method (so named perhaps because it
looked like a ship of his day), which was 1

(214; 343 still used more than 300 years later. We will !
show this method by dividing 7348S by 214. ,
The completed work would look like the
, illustration at left. The answer is 343 and
the remainder is 83.

TR =X M
BB -R--R B ]
T Bt W M DD V0 N M
=t n VR N W 00

L - N

Part I. The form of the quotient is 3 . _ (3 digits by observation).

Step 1 Step 2 Step 3
:‘ 9
1 10 102
: 73485 73485 73485
214 214 214
Three 2's are 6 Three 1's are 3 Three 4's are 12
plus1is 7. plus 0 is 3. plus 92 is 104.
Part I1. The quotient now becomes 34 ..
! Step 1 Step 2 Step 3
3 1 1 17
: 9 98 98
102 102 1022
? 73485 73485 73485
2144 2144 2144
21 21 21
l Four 2's are 8 Four 1's are 4 Four 4’s are 16
| plus 1 is 9. plus 8 is 12. plus 72 is 88.
! Part I11. The quotient is 343.
3 Step 1 Step 2 Step 3
; 1 1 1
§ 17 17 178
¥ 98 989 989
¥ 1922 1022 10223
‘ 73485 73485 73483 «
21444 21444 21444
211 211 211
2 2 2
R ' Three 2's are 6 Three 1's are 3 Three 4's are 12

plus 1 is 7. plus 9 is 12. plus 83 is 95.

i
i
f

Full Tt Provided by ERIC.
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To check division by casting out, rewrite the proposed relationship
in a multiplicative form so as to investigate 73485 = 343 . 214 + 83,
Casting out nines, one checks the corresponding relationship among the
remainders which here would’read 0 = 1 « 7 + 2. Since 7 + 2 = 0(9),
casting out nines checks the work. The corresponding relationship
with respect to eleven would be 5 = 2 « 5 4+ 6. But 16 = 5(11), which
concludes this check.

Although the arithmetic algorithms put an ease and elegance into
the art of written reckoning, the transition to these new methods was
far from rapid. Indeed, the struggle between the Algorists and the
Abacists lasted several centuries. It was not until the beginning of the
sixteenth century that the new rules for operation were fully adopted.

Computation Today

The seventeenth century brought a great step forward in computa-
tional work. John Neper (or Napier), a Scotch nobleman, politician,
and magician, turned to mathematics for amusement and relaxation.
Napier's Bones, an ingenious device for multiplying, dividing and
extracting roots was popular for a long time. A set of rods or bones was
made for the multiplication tables as shown in Figure 16.

APAPAR
YAFPAEY ‘2
Ak
30 20' 15 p

6

8
vl Vel

Figure 16 Figure 17

There was also a guiding rod which contained the successive digits.
To multiply 643 by 37, the “bones” would be laid out as in Figure 17.
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The partial results 4501 and 1929 are then easily read off, and the
final value of 23791 is obtained by the addition of 4501 and 19290.
(Note that in reading off the partial products, a diagonal form of
addition is used.)

Napier contributed other important computational aids. By study-
ing the relationships between points moving on two separate straight
lines with different velocities, he originated logarithms.

In today's notation a logarithm is defined as an exponent. In other
words, the logarithm of a number N to a base b is the exponent a
which has to be attached to base b to obtain N, or, in symbols:

logs Nmgerd* = N,

Any positive number b > 1 may be chosen as a base. The two numbers
most frequently taken are tzn and e, a most interesting transcendental
number we shall discuss later. Logarithms with base ten are called
common logarithms; those with base e are called natural logarithns.

By means of logarithms every arithmetic task of multiplication or
division may be reduced to one in addition or subtraction. The oper-
ations of raising to a power and extracting roots are reduced to very
simple multiplications and divisions. Logarithms saved years of
drudgery for mathematicians and those employed in computational
work. Anyone using a slide rule or logarithmic tables of any kind has
benefited from these inventions.

Blaise Pascal, at the age of 19, invented an adding machine in 1642,
Any automatic counter, the cash register, the speedometer of an
automobile, the fare register on a bus, the automatic recorder on a
Geiger counter, and innumerable other mechanisms are the modern
descendants of this idea.

About 1673, Leibnitz improved Pascal’s machine by a device which
makes it possible to perform repeated additions, or to multiply. When a
machine can add and multiply, however, it can also do the inverse
operations of subtraction and division simply by reversing the process.
Electrified and streamlined, such calculating machines are now found
in banks and other business establishments.

Greater developments were yet to come. Electronic computers re-
placed Pascal’s notched wheel with a tube or a circuit. This did not
mean a basic change in the principle of the computing machine; it did
mean tremendous increases in speed. The tube or the circuit counts
about 1,000,000 times faster than the toothed wheel!

Fundamentally there are two types of such machines, the analog
computers and the digital computers (arithmetical machines). The
former is constructed analogously to the mathematical structure of
the problem it is designed to solve. It is therefore nct adaptable in a
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general sense, and is mathematically limited somewhat in its use.

The digital computers not only perform arithmetic operations, they
store information, make comparisons, select numbers on the basis of
them, and follow a sequence of instructions. The programmer has to
break a problem down into a series of very simple basic arithmetic
steps which the machine keeps repeating. While the mathematician
in his work aims at simplification, abbreviation and shortcuts, the
machine “likes” tediousness, step by step approximation, trial and
error selections and repetition.

Suppose we compile a table of squares with the help of the electronic
digital computer. The programmer seeks a repetitive arithmetic
procedure. He finds that the squares of the natural numbers may be
obtained by arithmetic progressions according to the rule

143+5+ -+ @n—1) =n,

as an algebra student may verify. To find the successive squares, the
machine computes:

12=1 = 1
22=1+43 = 4
3=143+35 = 9
$2=1434+54+7=16

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

This is a very cumbersome procedure.

The new machines offer a means of handling a massive amount of
data, especially in statistics. We can now program social and economic
problems whose computation in the past would have overtaxed our
human calculating powers. Many new uses have been found, and
additional uses will undoubtedly be forthcoming. And yet may we
rightly call these machines giant brains? Do they think?

Electronic machines do more than compute; they are developing
into logical machines rather than mere calculating ones. It is correct,
therefore, to say that the machine can do logical “thinking."” This is
possible because deductive logic may be formalized and the formaliza-
tion can be built into the machine.

Although machines can use deductive logic, man’s reasoning powers
exceed this type of thinking. Seeking unifying principles, searching for
simplifications, exhibiting insight, having intuition and powers of
imagination, the very essence of man’s distinctly human qualities
transcend the machine’s ability. Man has not been able to construct a
machine which will imitate this precious gift of the mind.

s A S <L
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4. OUR NUMBERS TODAY

The Real Numbers

The real numbers are perhaps the most important in mathematics.
Most elementary functions are defined on sets of real numbers. Nearly
all mathematics leading to and including the calculus is a study of
their properties. The real numbers may always be thought of as those
that are used to label all the points on a scaled line.

THE RATIONAL NUMBERS

Integers. What we call arithmetic today was named logistica by the
Greeks. Arithmetica was the study of the theoretical aspects of number.
This was more highly regarded than logistica since the latter dealt with
practical considerations and was considered slave’s work.

Number Mysticism. The mystic number worship of the Pythago-
reans with all its magic and superstition was the forerunner of the
theory of numbers, orie of today’s most difficult and fascinating
branches of mathematics. The theory of numbers is a study of the
properties of natural numbers. In the same sense other sciences may
often be traced back to man's interest in the occult and the mysterious.
Was not astrology the forerunner of astronomy;alchemy the father of
chemistry?

Pythagorean number speculations created many strange notions
about numbers. “One” is not a number but the source of numbers.
It means reason. Even numbers are feminine; odd ones, masculine.
Lest the female reader rejoice she must be told that the reason for
this distinction lay in the fact that even numbers are divisible by two;
thus (in analogy to the females) they are soluble, ephemeral and
earthy. The odd numbers, lacking this divisibility, are indissoluble,
celestial, and, indeed, masculine. “Two" represents opinion; “four,"”
justice. Perfect marriage would be “‘five,"’since this is the union between
the first female and the first male number. “‘Six” is a perfect number,
since it equals the sum of its factors (except itself): one, two, and three.

49
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There are also abundant and deficient numbers. Incidentally, until
recently only 15 perfect numbers had been found, all of which are even
numbers. One of the many unsolved problems in the theory of num-
bers concerns itself with an investigation of the existence of odd perfect
numbers. Perhaps female readers may rejoice after all!

The number 50 also has an interesting past. It was regarded as ‘‘the
supreme principle of the production of the world.” It expressed the
perfection of a right triangle since the sum of the squares of the three
simplest numbers which can be used as the measure of its sides, three,
four, and five, equals 50.

“Master, what is friendship?”’ Pythagoras was asked. ‘‘Friendship,
indeed, is signified by the pair of numbers, 220 and 284,” was his
sinister reply. The uninitiated may

220 1 284 1 see the resemblance to friendship if
2 2 he lists the factors of both numbers;
4 4 the sum of the aliquot parts of each
5 71 number equals the other number.

10 142 To associate number characteristics
1 — with friendship and to consider this
20 220 a phenomenon to be marvelled at is
22 one thing. To see a number prop-
erty from the mathematical point
44 of view, and—as in this case—to
55 seek other numbers which exhibit
the same behavior is another. It
was not until the seventeenth cen-

tury that other such number pairs
were added to the list. This is an
example of number worship and

Figure 18 numerology bequeathing to us a
problem which stimulated investigations and research in the theory of
numbers.

Just as today's fraternities and sororities have special emblems as
keys or pins of their societies so also the Pythagorean brotherhood
had recognition symbols. Only if a pentagram was shown and some
mystic words spoken did the secret door open. The words were: *‘See,
what you thought to be four was really ten and a complete triangle
ar.d our password.” This idea was due to another strange Pythagorean
conception—representing numbers by dots. These ‘figurate numbers’’
were subdivided into triangular and square numbers, pentagonals, and
others. They are illustrated in Figure 19. The password explains itself
when we observe the fourth triangular number.

1
i
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Triangular numbers: ° 0% o'e’e %%’
1 3 6 10
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Square numbers: oo e 00 o 000
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1 4 9 16
Pentagonal numbers: o
[ J [ J
[ J e ©o
1 S 12 22
Figure 19

Although figurate numbers as such have been long discontinued,
many interesting number properties may be established in this geo-
metric fashion. For instance, the relationship
which shows that the square of any integer 1 ;J ol el o
may be obtained as the sum of an appropriate
number of odd integers starting with one may 3 o
be seen from the diagram in Figure 20. This
relationship was used in connection with our
example showing how an electronic digital
computer would obtain squares of numbers.
One other remnant of figurate numbers is our
use of the words square and cube in connection with numbers, and
probably also the term figures in referring to numbers, and fo figure.

Another direction which numerology took was alluded to in con-
nection with our discussion of alphabetic number systems. It is the
so-called “Gematria” which associates every letter in the alphabet with
a number. Numerous such examples in Greek anthologies may be
pointed to. For instance, Achilles’ superiority over Hector and Patro-
clus was seen to be the result of the corresponding numbers 1276,
1225, and 87.

Number mysticism was by no means confined to the ancient Greeks,
although their influence in this area was great. “Three” has a tran-
scendent meaning in many languages. The phrase thrice blessed indicates

Figure 20
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a very special blessing. Jupiter’s thunderbolt and Neptune's trident
were triple pronged. Cerberus, the watchdog of Hades, had three
heads. Trinities do not occur in Christian religions only.

The other most popular number is seven. There were the seven
heavenly bodies of the Babylonians, the origin of our seven days in
the week. There was the seventh day of rest propagated by the
Hebrews. The seven wonders of the world, the seven liberal arts, the
seven wise men of Greece, and sabbatical leave are other examples.

Gematria was also used by Christian theologists. There is the well-
known number 666 which was to be the Beast of the Apocalypse.
Numerous interpretations of this number have been given through the
ages—not long ago Hitler was added to the list. Devout Hebrew
scholars still consider Gematria a part of their study.

Some Ideas from the Theory of Numbers. Gradually, in the course of
centuries, the natural numbers lost their associations with mysticism.
But their special appeal to man has never waned. Number theory has
always been a favorite among mathematicians. Gauss's remark is well
known: ‘“Mathematics is the queen of the sciences and arithmetic is
the queen of mathematics.”” The theory of numbers is also the one
branch of mathematics that has a very intrinsic fascination for the
layman. Even amateurs have at times been able to make useful
suggestions and conjectures.

Very basic in this branch of mathematics is the class of prime
numbers. A prime is defined as an integer # > 1 which is not divisible
by any other integer a@ unless @ = 1 or a = n. Divisibility here means
divisibility without a remainder. Thus, with the help of the symbolism
we have already introduced, if for n > 1, #n # 0(a),a > 1 and a = n
then » is a prime number.

Numerous questions come to mind. How many prime numbers are
there? Is there an infinite number of them? How does one determine if
a given large number is prime? Is there a formula which yields only
primes? Is there one which gives all prime numbers? Do prime-twins,
that is, primes which differ only by two as 17 and 19, or 29 and 31,
occur in the realm of very large numbers? These are a few of the many
questions that naturally arise. Several have not yet been answered.
There remain many unsolved problems in this part of mathematics.

That the number of primes is infinitely large was known by the
ancient Greeks. Euclid’s proof is considered very elegant and a model of
indirect reasoning in mathematics. By a tentative assumption he
argued the contradiction of the theorem, and considered the class of
primes finite. Symbolizing this set by {p1, p2 - - - pa}, he then con-
structed a new number N as follows: N = pypaps - - - pa + 1. That is,

4
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he added one to the product of “all’ primes. Since this new number N is
larger than any of the primes, it cannot be prime by the above assump-
tion. Being composite, it must have cne of the above p; (1 =1,2,3, - - )
as a factor. But N = 1(p;) for ¢ = 1, 2, 3, - + + n and therefore the
assumption is untenable. The number of primes must be infinite!

Complete tables of primes have been computed at least within the
range (1, 10"). Certain much larger primes have also been found.
Recently one such number was seen to have 386 digits! It is nothing
less than the number 2!# — 1, and the calculation was not accom-
plished by an industrious man; it was the work of a digital computer.

To find the primes within a reasonable range, for instance, from one
to a hundred, a very simple device, the ‘‘sieve of Eratosthenes” (about
200 B. C.) may be used. One would write down the set of integers
from one to one hundred in order. Considering two as the first prime
number, all even numbers are crossed out. The first remaining number,
three, is the next prime. Now all numbers divisible by three are deleted.
The first remaining one in this series, five, constitutes the next prime.
The process is repeated in this manner.

Many attempts to find a law governing the distribution of primes
proved futile. No formula was found to yield all primes. None could
be established to give the exact number of primes contained in the
set of integers {1, 2,3, + + , (# — 1), n} where % is any integer. The
distribution of individual primes appeared exceedingly irregular. For
instance, there are 25 primes between 1 and 100, 11 between 1300 and
1400, five primes will be found over the 20-unit range from 1420 to
1440, but over the equally long interval between 2558 and 2578 there
is none.

Finally, attention was drawn to a study of the average distribution
of primes. Empirically, Gauss saw an amazing resemblance between
the behavior of primes and that of natural logarithms! He introduced
the idea of density of primes, defining it as the ratio of 4,, the
number of primes in the set {1, 2, 3, + - « n}, to n, the numerosity

of the set. And he noticed that this ratio % approaches l_ﬁl_;z more

and more closely with larger and larger values of n#. In sophisticated
symbolism, we would say:

lim 4&)
- X
Inx

= 1.

Gauss's insight could not be verified for another century. Powerful
concepts of modern mathematics were necessary to prove his theorem.
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This is one of the many cases in the history of mathematics where
ideas which at first are considered totally unrelated and isolated are
later found to be closely intertwined or to be different aspects of one
all-embracing theory.

Number Peculiarities. In the last section we glanced at some ideas
that would be met in the theory of numbers. We cannot do justice
to the many worthwhile number peculiarities that might be treated.

A little earlier we noticed how one may check the divisibility of a
number by nine or by eleven without actually doing the division.
Maybe this will delight only the mathematically minded since there
is not too much practical value in it. All these rules may be derived
by investigating the general form of an integer N, as previously done:

N = gol0® +a 102t 4 . .. + an-110 + a,.

The following divisibility rules are derived. They are grouped
according to similarities.

if and only it

N=02 — a, = 0(2)
N=0¢4) —— 10241 + a, = 0(4)}
N=0@8) e———— 100242 + 10a4s-; + an = 0(8)
N=0B) ———> o= o(s)l

{=0
N=09) ————— i a; = 0(9)5

f=0

N=0S) ——— a.=00ra.=5}‘
N=010) ¢———> g, =0

N = 0(2)
N=06) e———— and
N = 0(3)

Translating these into English, we have: an integer is divisible by 2,
4, or 8, if and only if the last digit, the last two digits read as a number,
or the last three digits read as a number are, respectively, divisible
by 2, 4, or 8. For instance, if ¢ = 56798, b = 56796, and ¢ = 56792
then a is divisible by 2; b by 2 and 4; and ¢ by 2, 4, and 8.

An integer is divisible by 3 or by 9 if the sum of the digits is divisible
by either 3or 9. If a = 5271 and b = 5274 then a is divisible by 3 but
not 9; & may be divided by 3 or 9 without a remainder.

Divisibility by 5 and 10 is determined by the last digit which in
the first case has to be 5 or 0; in the second, 0.

For divisibility by 6, criteria for both 2 and 3 must be fulfilled.

[T
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The factor 7 does not show simple behavior in this routine. An
especially impractical procedure would be the following. If one wishes
to see if a number, say 57813, is divisible by 7 without performing the
division, one may regard the number as if it were written to base
three—disregarding the fact that such a number could not have digits
equalling or exceeding 3. Here it would mean interpreting the num-
ber as

3+1:3+8:-94+7:274+5-81=3+3+472+4 189 + 405 = 672.

Now divisibility of this number with respect to seven has to be investi-
gated. The previous procedure is repeated:

(672); = 24+73+-6-9=2+4+21+4+54=177.
Continuing, we have (77)s =7+ 73 = 7 4+ 21 = 28. Then,
(28); =8+4+2:3=14and (14)3 =4+ 3 =17.

Therefore, 57813 is divisible by seven. Any grade school pupil may have
exceeded our speed, but would he have had as much fun?

Now let us take an integer other than zero and increase it by one.
Divide this sum by a number obtained by increasing the reciprocal of
the original integer by one. Lo and behold—the given integer results.
Try another one. We make the same observation. Start with a fraction
instead of an integer. The rule still holds. The initiated, of course,
translating this idea into algebra, and finding that

";+l

regardless of the choice of a, does not consider this mysterious.
Let us explore some more. Take number 8 and write:

1:8=8 and 84+0=38
2:.8=16 and 641 =7

3:8=24 and 4+2=6
4.8=32 and 24+3 =35
5.8=40 and 0+4 =4
6-8=48 and 8+4=1Z and 24+1=3
7.8=5 and 6+5=11 and 1+ 1 =2
8:8=64 and 44+ 6=10 and 041 =1
9:.8=172 and 24+7=9
10.8=80 and 04+ 8=38
11-8=88 and 84+8=16 and 6+1 =7
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and so on. The answers keep “rejuvenating’ themselves; this is a way
to get younger on paper as you grow older in years.
Maybe all digits behave in this manner. What about 9?

1:9= and 94+0=09
2:9=18 and 8+1=9
3:.9=27 and 74+2=9
4.9=36 and 6+3 =9
5:.9=45 and S5+4=9
6:9=54 and 44+5=9
7:9=63 and 3+6=9
8:9=172 and 2+4+7=9
9.9=81 and 14+8=9

10:9=90 and 04+9=9
11:9=99 and 94+9=18 and 8+1=9

and so on. This permits you to remain the same age, ad infinitum.

Here is a basic notion for those who teach the multiplication pairs.
A finger reckoning method obtains the product of any two digits
from S5 to 10. It is necessary to know the multiplication table to 5
times 5. Suppose we multiply 8 by 7. On one hand raise as many
fingers as the multiplicand exceeds 5, which in this case is 3. On the
other hand, in a similar manner, indicate with raised fingers the excess
of the multiplier over S, which is now 2. The upraised fingers or digits
(5) are units of (10) whose product is therefore 50. The clenched
fingers on the one harid (3) and on the other (2) are multiplied equal-
ling 6. The sum of 50 and 6 which equals 56 is the correct result. The
general proof of this finger method may make an interesting exercise
or project for the better students of an algebra class.

10(3+2) =50
2x3= 6

56

Figure 21

R
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What about the cubes of the first ten counting numbers? We make
another amazing observation as we check on the unit digits. All ten
digits occur, and each of them occurs just once! The corresponding
squares do not show the same peculiarity. However, duplications
occur very regularly as shown by the guide lines. (See Figure 22.)

1*= 1 1= 1 —

2= 8 R= 4—

P= 27 F= 0

4= 64 4= 16-1“

5= 125 5°= 25

6= 216 6= 36ﬂ

7'= 343 7= 49

8= 512 8= 64 —

9= 729 9= 8§ —

10°=1000 10>°=100
Figure 22

This behavior of squares and cubes may be used for quick extracting
of cube or square roots provided the radicands are perfect cubes or
squares. Let us obtain +/185193. We know the answer must be a
two-digit number such that the tens digit is 5 (the largest cube con-
tained in 185). The units digit must be 7 since it is the only digit whose
cube ends in 3. Therefore, the required number is 57.

The same procedure may be used for extracting square roots
provided one takes precautions regarding the repetitions noted. To
extract v/ 5476, the tens digit must be 7, the units digit could be 4 or 6.
We tentatively try 74 but have to verify this result by squaring 74.
Incidentally, for this procedure the algebraic idea of squaring a
binomial may be used since a number consisting of two digits may be
thought of as the binomial 10¢ + u, where ¢ is the tens and » the units
digit. The square of this binomial would follow the pattern of

(@ + b)? = a* + 2ab + V.

However, if the result be written from right to left, then place value
takes care of itself and we may think as follows: 742 equals (writing
right to left) 42 or 16, put down 6, carry 1, twice the product of the
two terms means 2 - 7 - 4 = 56 and 1 gives 57. Write down 7, carry 5.
72 = 49 and 5 is 54. The answer reads 5476, and hence 74 was the
correct solution. You could also square 74 by taking

70 X 78 + 16 = 5476.

frpimy e
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. Common Fractions and Decimal Fractions. 1t does not require much
| mental effort to recognize a common fraction as a rational number.

For instance, -;— could be interpreted as any one member of the set

{%, %, %, . —2%, . } and may therefore be thought of as the ratio

between the numerator of any of these fractions and its denominator.

That a terminating decimal fraction is rational is also easily seen;

5.678, for instance, could be stated as 51%7—:6 or as 5%%%. This is plainly

a rational number.

Among the non-terminating decimals we must, however, distinguish
two types, periodically repeating ones and irregular ones that do not
show any periodicity. The latter are always irrational, but that the
former are rational will now be shown. It is, of course, evident that
.3333 - - -, or .3 as it is often abbreviated, is the equivalent of 1/3
and is therefore rational. We will now present a simple procedure
whereby any non-terminating periodically repeating decimal may be
converted into a common fraction or mixed number. Several other
methods are well known.

The given number N is symbolized as

e i S -

N = (I.a102- « - Gbbs + -  babibz + - - babrba = + « ba - - )

(I.(haz s 0 e arb1bz LI b,.).

oras N

(@@« « * abybs - - - by) — (@102 - - - @)
99...900- -0

Then N=1+4

_—l

—

n r

where the symbolism (%, - - - kn) indicates a number whose suc-
cessive digits are &y, By, + © * RBm.
; In words, to convert a periodically repeating decimal into its rational
g | equivalent, write a fraction whose denominator has as many nines as
3 ‘ the period has digits followed by as many zeros as the anteperiod has
" digits. In the numerator, state the number obtained by reading up to
= , and including the first period. From this value subtract the anteperiod.
g : Simplify and reduce if necessary. : L
; To illustrate, we turn a = 3.234567856785678 - - - (or 3,2343373)
into a common fraction. In accordance with the foregoing, we obtain:

N e S Sy

_,2345678 — 234 _ ,2345444 _ 586361
= 979999000 9999000 2499750
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To check this value, we divide 586361 by 2499750. This shortcut may
be derived in two possible ways. To verify the general procedure, it
is necessary to use the general notation of the algebraic form of a
number.

Method I (In terms of geometric progressions).

234 5678 , 5618 5678
a=3+7p+ g ton TIow T

234  S678(, , 1 , 1
-3+ 28, 3 (1+Iﬁi+ib's+"')

234 - 5678 1
104

234 5678
=3+ 70 T 100100 — 1)
_ 5 234104+ 5678 — 234
= 10°10° — 1)
2345678 — 234
= 39999000

_ g2345444
= 9999000

586361
2499750

Method II (In terms of algebra).
Let d be the decimal part of the number 2. Then

d= .234567856785678 - - -
104d = 2345 .678567856785678 - - -

Subtracting, we obtain:

104d = 2345.678567856785678 - - -
d = .234567856785678 - - -

d(10* — 1) = 2345.444

d= 2345444 2345444 _ 586361
10%(10* — 1) 9999000 2499750

=3

~3 586361
¢ = 2499750
If a periodic decimal does not have an anteperiod, the arithmetic is

simpler. For instance, b = .648 would equal b = -g-%g = % Incidentally,

terminating decimal fractions may be considered a special case of
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periodically repeating, non-terminating decimals. Thus 5.678 would be
equal to 5.67800000 - - -, or to 5.6779999 - . .,

Let us see what happens if we permit zero to become part of our
fraction. We are considering the number %. This, by definition, consti-
tutes a value ¢ such that a = bc. If a = 0 and b 0 then the result
reads -g = ¢ or 0 = bc. This means that ¢ must be zero. Zero divided
by a non-zero number is zero.

What about % with a % 0 and 5 = 0? One would have a = bc or

a = 0. This, however, leads to a contradiction; there is no number
which answers the task of dividing a number by zero. Division by
zero is not permitted—it does not lead to a number.

If we tried % with @ = 0 and b = 0, then a = bc would just read

0 = 0 regardless of the choice for ¢. This case does not lead to a contra-

diction but to a peculiarity. From this point of view g could be any

number. So it is agreed that g is not a symbol for a definite number.

THE IRRATIONALS

Algebraically Irrational Numbers. As we mentioned previously, alge-
braic irrationals were first encountered in connection with line seg-
ments. The problem is
that of obtaining a meas-
ure for the length of the
diagonal of a square
whose side measurement
is given. We could use
the connection with line
segments as an interest-
ing and simple method
for obtaining successive
square roots graphically.
See the spiral in Figure
23. One starts with a right triangle whose sides have unit length. The
next right triangle has the hypotenuse of the previous one as one of its
legs. The process may be continued indefinitely. The successive hypote-
nuse measures of this set of right triangles is the set of successive
square roots {V/2, V3, - - -}.

An irrational number, as its name indicates, cannot be converted
into a fraction. Let us try a new idea—continued fractions. Any

ll
; Figure 23
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rational fraction, say % may be converted into a continued fraction

as follows:

c YAPRPS RN WU SN S T
TR A ST I
17 17 17
14

1+ 3 1+ 1 1+ 1

14+ 1+ 1+

14 14 1

3 4+

l+§

Eventually, this operation must terminate by a process called the
Euclidean Algorithm. Thus a rational number may always be expressed
as a finite continued fraction.

The Euclidean Algorithm could be set up as follows:

79 =312+ 17 4= 3.4+ 2
31 =17-1+14 3=2-1+ 1
17=14-1+ 3 2=1:2+ 0

A zero remainder ends the process. The structure of the Euclidean

Algorithm for a fraction % shows that every subsequent step involves

a smaller dividend than the preceding one. Since we may assume that
a and b are relatively prime, a remainder of 1 must eventually appear.
The next step gives the remainder 0. Also, note the role that the under-
lined quotients in the Euclidean Algorithm have in the continued
fraction. In order, they become the integral part and the successive
denominators.

Irrationals would naturally lead to infinite continued fractions.
Square root expressions, the class of algebraically irrational numbers
whose degree is two, may be converted into infinite continued fractions
in a simple manner. These continued fractions display great regularities
whereas the decimal expansions of these numbers remain irregular in
all circumstances. In fact, any irrational number which is the solution
of a quadratic equation with integral coefficients can be represented
by = periodically repeating continued fraction. We are indebted to
Euler for this theorem. Conversely, as Lagrange has shown, any
periodically continued fraction is a number which may be considered
a real irrational solution of a quadratic equation.

Y it S
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While the proofs of the above theorems need not be given here, the
following illustrations may help.

1

V2 + (V2 -1) + +\/§+l

V2 -1
1 1 1
1 =1+ =1+
+2+(\/§—1) 2 + 1 2 + 1
_ V2 +1
V2 -1
2 4+ ;
24+ ———
2 4+

2 +

To check, we call the value of the continued fraction x. Then

x=1+ 11 =1+ !
2+2+——l 1+11+ ll
24— 2+ 1
2+. 2+2+
1 -
or.x=l+l+x-

Since the original continued fraction reappears, ¥* = 2 and x = V2.
Here is a different one:
1 1
3=1 3-1) =1 =1
Vi=1+(V2-1)=14+— + 5

V3 -1 2

1 a4 1

1

[\
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1
1
14«

The check reads x=1-4

14

or.x’=3andx=\/3.

Another fascinating number in mathematics is G, the golden num-
ber. According to legend, a beauty contest took place in ancient
Greece. The charming competitors, alas, were the differently-shaped
rectangles. Which was most appealing to the eye? The consensus was
that the best-proportioned rectangle would be obtained in the following
manner. Take a rod 4B of unit length. Bend it at a point X in such a

manner that & = 1 - (see Figure 24). This relationship is called the

1 X
1
%‘
A x X 1-x B
Figure 24

divine proportion or the golden section. Choosing x as the length and
(1 — x) as the width of the rectangle, the most pleasing form will
result. The reader is encouraged to check modern ideas of beauty by
comparing the dimensions of the American flag, the postal card, The
Mathematics Teacher, The Arithmetic Teacher, index cards, and others
with this proportion. (See Figure 25.)

The above equation leads to a* + x — 1 = 0 which has the golden

number G = :l—-';—-é as its positive solution. To convert G into a

continued fraction, one derives

G = 1 = 1 = L— = 1
2 V5 +1 1_'_\/3—1 !+ 1
V5 -1 2 2 1+ 11
1+15—

This is also a most beautiful continued fraction in terms of simplicity.
The regular pentagon and pentagram are proportioned in such a
manner that comparisons between different parts almost invariably
lead to the occurrence of the golden number. This regularity and
beauty may have induced the Pythagoreans to pick the pentagram
as the emblem for their fraternity pin.

The continued-fraction representation of the golden number has
another interesting feature. If a continued fraction is terminated at

B o n e e 3
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Figure 2§

any stage, the result is an approximation of the number to which the
continued fraction amounts. Every subsequent fracturing produces
g a closer approximation than the preceding.
‘ Since G = 1 1
14 1

L
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the first approximation, G, = -:- = 1

1 1

G’=_="'
1+% 2

The series of convergents, as these approximations are known, is

{llzééi...}.

1’2’3’5’ 8’13’

From the above it is evident that beginning with the third ratio, each
succeeding numerator equals the sum of the two immediately pre-
ceding numerators. The same happens with the denominators. You
will also notice that beginning with the second ratio, each numerator
is the same as the denominator of its immediate predecessor. The set
of numbers made up of {1, 2, 3,5, 8,13, - + -} iscalled a Fibonacci
series.

Fibonacci numbers are found in nature. Take a twig perpendicular
to its base and select a bud on it. Then spiral around the twig until a
bud is reached which is vertically above the originally selected bud.
Not only will the number of buds encountered be a Fibonacci number
but the number of revolutions around the stalk will be another such
number. The particular number of the established group is a charac-
teristic property of that species of plant. The golden number emerges
not only in mathematics but also in architecture, phyllotaxis, mor-
phology, chemistry, and music.

Transcendentally Irrational Numbers. When a new number is under
investigation, for instance 3v?, it may sometimes be important for
the mathematician to determine if it is irrational, and especially if it
is transcendentally so. Both investigations become very intricate.
The establishment of the transcendentality of a given number does
not follow any repeatable pattern and new and sometimes very clever
devices have to be resorted to in each case. Indeed, until recently
only few of the mathematically interesting numbers could be shown
to be transcendental. Lest we forget, the transcendentals are more
numerous than all rational and algebraically irrational numbers
together.
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Three well-known problems, the ‘“‘famous problems of antiquity,"
have been thrust upon us. One¢ of these concerns the task of con-
structing the side of a square whose area should equal the area of a
given circle. This is the familiar problem of squaring the circle. Even
now, we sometimes cal! a person a circle-squarer if we want to indicate
that he is one who always attempts the allegedly impossible. Contrary
to the wishful thinking of the amateur who never ackznowledges defeat,
it has been proven mathematically that it is impossible to solve this
problem by construction. The term construction is a technical one in
mathematics and means the perfecting of a geometric configuration
with only a straight-edge and compass—a Platonic restriction.

Today 2n elementary student becomes acquainted with the rela-
tionship C = =d for tha circumference of a circle whose diameter is d
and with A = xr? for the area of a circle whose radius is r. He could
solve the problem immediately by letting the side of the square have x
units and equating the measure of its area, x3, to »r3, thus obtaining

x = /. This is not what we mean by obtaining the length of x by
construction. The constructional aspect has plagued mathematicians
for 2000 years. The nature of » was the crux of the problem.

A means for obtaining the value of » to any desired accuracy was
known to Archimedes (240 B. C.). He noted that the length of the
circumference of a circle lies between the lengths of an inscribed and a
circumscribed polygon. By successively increasing the number of sides
of these polygons, closer and closer approximations were reached. An
approximate value would be » =~ 3.1415926535898.

! It is one thing to have some idea of the value of a number, but
' quite another to understand its nature. It was not until 1882 that

Lindemann found a procedure to prove the transcendentality of .

This should have killed all the dreams of the circle-squarers. Straight-

edge and compass constructions can be used only if line segments have

lengths that are represented by numbers which are roots of first or

second degree polynomial equations. ‘

The fact that = is transcendental means that it cannot be the solu- ?
tion of any polynomial equation with integral coefficients. Still some
most surprising connections between = and the integers have been
found in the form of nested roots, infinite series, continued fractions,
and infinite products. Their proofs require complicated mathematical
machinery, but a few of them will be given here for the interest of
the mathematically curious.

2
T = —_—
’_f‘/l 1 1 1 1 1 1 1
Vivitay/ sy itav/s+iy/t -
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xr_2.2 4466 8 8
2=1°3°3'5'5'7°7°9

[ S N Y VGRS B W —
x 1,1 1,1
g=1-3+t5-7%9-
1 _ 1 1 1
2'46'3-9+5-9'7-9+")+'

1 1 1 ___1 .. ..
‘(mo's-uw+s-uw 72300 T )
4

12
1+ 3

2t
2ty

T =

s+23+zs+4s+

‘l’

6

r 1.3, 1-.3.5 1.3.5.7

2= “"3(5) ( ) \2-4-6 (2.4-6-8"'"'

One of the most important of natural phenomena is growth. The
rate at which a whole population increases is related to the size of
that population. The rate at which a specific amount of a radioactive
substance diminishes is dependent on its original amount. The rate
of many chemical reactions is a function of the quantity of the par-
ticipating reacting substances. The rate of growth of a plant depends
upon the size of the plant and so does the growth of capital depend on
the principal. In each of these cases, the dependency encountered is
one of direct proportionality. This is the law of growth which applies
equally to organic and to inorganic processes. The rate of growth is
proportional to the growing quantity; the rate of decay is proportional
to the decaying quantity.

Translating this law into mathematical symbols, one obtains a
certain kind of equation, called a differential equation, which yields
the exponential function, written e#, as a solution. Careful investigation
of this function reveals its nature and properties. Since the exponential
function describes as important a natural phenomenon as that of
growth, it is omnipresent. Its use in the natural sciences, economics,
statistics, sociology, psychology, and the theory of games shows its
wide applicability today.

Those who are acquainted with the calculus may be able t “ranslate
this idea into the differential equation D,y = ky where % is the propor-
tionality factor and is therefore constant. If 2 > 0, a growth function
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is encountered; # < 0 leads to a decay function; 2 = 0 will be elimi-
nated since it would mean a constant function. The above relationship

is equivalent to / % =} / dx which becomes In ¥ = kx 4 In ¢ if we

wish to express the constant of integration as In ¢. Taking antiloga-
rithms of each side we obtain y = ce*s, the exponential function.

A special value of the exponential function is obtained by consid-
eringk = 1and x = 1. This leads to the famous Euler constant ¢ (given
by Euler in 1748) whose approximate value is 2.7182818284590 - - - .
The number e serves also as the basis for natural logarithms, whose
name indicates the close relationship with natural phenomena. In
other words, we have In N = a & ¢ = N as the definition for natural
logarithms with the corollary that In ¢ = 1. The conversion principles
of natural and common logarithms are:

Natural Logarithms (In N) to Common Logarithms (log N) to
Common Logarithms (log N) Natural Logzarithms (In N)
log N=ga InN=b
cin10=In N bloge=log N
Jog NIn10=In N In Nloge=log N
. In N . log N
slog N In 10 SIn N log ¢
(In 10 = 2,303) (log e =~ 0.4343)

Nine years before Lindemann’s proof for the transcendental nature
of », Hermite established ¢ as a transcendental. As in the case of the
number x, many relationships between ¢ and integers can be found—

some of them exceedingly regular and simple—with infinitely continued
procedures. We'il write some of these:

1 1 1 1
¢=1+I_!+.i_!+3.!+...+;z_!+...
e= 2+ 11

14 1

24+ 1
14 1
14 1
.4+ 1
14 1
l-l-6

et
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e =2+ ll
1 4+ 2
2 + 3
3 4 3
4+ 57
e=lim(1 <4~ -1-)'l
n—s00 n
-l-=l1m(l—1)"
e n=-rco n
1 1 1 1 1
c=aTsita TRt
Ve=1+ ll
1+ 1
1 4+ 1
14+ 1
S + 1
1+1+ 1
1+ !

=) (8 (2,

Before departing from the numbers » and e, we must give a most
striking mathematical relationship. While space limitations prevent
us from establishing it, or even from giving some of its implications,
let us just quote it as e’ 4+ 1 = 0. This is an equation that combines
the most important symbols of mathematics in an amazingly simple
form. Much mysticism has been read into it. Perhaps zero and one
represent arithmetic; ¢, algebra; =, geometry; and e, analysis!

Complex Numbers

Complex numbers met with distrust on their appearance. First
acquaintance with this idea still perplexes our students and leaves
them with a feeling of discomfort and mystery. As great a mathe-
matician as Euler—although he did not hesitate to apply complex

numbers—felt this way about them: “‘All such expressions as V' —1,
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v/ =2, etc., are consequently impossible or imaginary numbers; since
they represent roots of negative quantities; and of such numbers we
may truly assert that they are neither nothing, nor greater than
nothing, nor less than nothing, which necessarily constitutes them
imaginary or impossible.”

The other extensions of the number system, at least the domain
of the non-negative numbers, could be linked up with reality. They
could be seen as measures of real objects. Even the negative numbers
finally became generally accepted inasmuch as physical meanings
could also be attached to them. The mathematician, of course, does
not care about a connection with reality. For him, all numbers are
abstractions and their justifications are given by a formal structure of
definitions and derivations. But philology and ontology reveal the
slow acceptance of abstractions by mankind and by each individual.
How does one attach physical existence to a notion which introduces
a new number whose square would equal minus one?

Anticipated by Wessel, a Norwegian surveyor, and Argand, a
Parisian, Gauss (1777-1855) resorted to a graphic device to help the
concrete-minded. These are his own words (1831):

Our general arithmetic, so far surpassing in extent the geometry of the
ancients, is entirely the creation of moaern times. Starting originally from the
notion of absolute integers it has gradually enlarged its domain. To integers
have been added fractions, to rational quantities tﬁe irrational, to positive the
negative, and to the real the imaginary. This advance, however, had always
been made at first with timorous and hesitating steps. The early algebraists
called the negative roots of equations false roots, and this is indeed the case,
when the problem to which they relate has been stated in such a form that the
character of the quantity sought allows of no opposite. But just as in general
arithmetic no one would hesitate to admit fractions, although there are so many
countable things where a fraction has no meaning, so we ought not to deny to
negative numbers the rights accorded to positive, simply because innumerable
things admit of no opposite. The reality of negative numbers is sufficiently
justified since in innumerable other cases they find an adequate interpretation.
This has long been admitted, but the imaginary quantities—formerly and occa-
sionally now improperly called impossible, as opposed to real quantities—are
still rather tolerated than fully naturalized; they appear more like an empty
play upon symbols, to which a thinkable substratum is unhesitatingly denied
even by those who would not depreciate the rich contribution which this play
upon symbols has made to the treasure of the relations of real quantities.

The author has for many years considered this highly important part of mathe-
matics from a different point of view, where just as objective an existence can be
assigned to imaginary as to negative quantities. . . .

Geometric interpretations of real numbers as points on a line
always aided the visualization of numbers. One could see that a certain
arbitrary point on a line could represent zero, that the natural numbers
would be placed equidistantly on one side of the line (arbitrarily chosen
on the right side of it) and negative integers in the opposite direction.
If fractions, or even square roots, had to be located on this number
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line, the positions of the corresponding points could be determined by
construction. Even though this would not be true of higher algebraic
irrationalities nor indeed of transcendentals, it seemed intuitively clear
and understandable that there would be a point on the line which
would be = units away from zero in the positive direction, and could
therefore serve as the image of = and vice versa. Although many details
of this correspondence have plagued mathematicians, the intimate
relationship between the real number domain and the continuum of
points on a line was finally accepted. To every real number belongs a
point on a straight line whose distance from an arbitrarily selected
zero point equals that number, and for every such point there is a real
number which states its distance from that zero point.
Could complex numbers be interpreted in the same manner? The
reader recalls a theorem in plane geometry which states that the height |
C of a right triangle is the geometric
mean between the two adjacent
segments of the hypotenuse. In

|
| Figure 26 this relationship reads:

Ih ht = AD - DB. Returning to the

R number line for real magnitudes,

A D B one may draw a right triangle
Figure 26 choosing as its hypotenuse the line

segment whose terminal points are
the numbers (—1) and
(1). According to the I
theorem the square of
the distance OT will then
be (—1). Since we wish
to interpret a number
(called %) which displays —-2 -1 | 1
the property that its Figure 27
square equals (—1), the point I corresponds to the number 4, or line
segment OI is 4 units long.

This was the basic idea on which Gauss explained the entire complex
plane. Any number a + b5 becomes represented by a point whose
coordinates are (a, b), and vice versa. (Compare this also with the g
number pair notation of a complex number.) This means that to
locate the geometric image of a complex number one would again
start from an arbitrarily selected zero point, called the origin. Then
one moves a units on the previously discussed real number line, and
from that position one travels perpendicularly b units. To every com-
| plex number belongs a point in the plane, and to every point in the
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plane belongs a complex number. The real numbers are seen to con-
stitute a subset of the set of the complex numbers.

Instead of assigniig the point (e, b) to the complex number a + b1,
one may designate the directed line segment from the zero point to
(a, b) as its image. In this case we talk about the vector corresponding
to a@ + bi. By vector we mean a mathematical object which has both
magnitude and direction.

To add the complex numbers ¢ + b¢ and ¢ + di, a new complex
number (a + ¢) + (b + d)i is found. If geometry is used, a striking
similarity between the behavior of vectors and forces is exhibited. As
seen from Figure 28, the sum of the two vectors corresponds to the
resultant in the appropriate parallelogram of forces.

(a+c, b+d)

X))

"||||||llllll||nnm..,

hh.

l
ll!!l

(a,b) o 1

lll
mﬁ'

ullll[m

iii
\

"ii

|
|

Figure 28

Multiplying @ + b¢ by ¢ to obtain —b + a¢ also has a simple geo-
metric interpretation. The vector (a, b) has been rotated counter-
clockwise by a right angle. See Figure 29.

These ideas initiated a very important new branch of mathematics,
vector analysis (19th century). It was seen that such basic quantities
as forces and velocities could be presented by vectors. Combining of
physical quantities and investigating their relationships was reduced
to operating on geometric entities in a geometric manner.
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Figure 29

As has already been pointed out, no further generalizations of the
number concept are necessary to solve ordinary polynomial equations.
The fundamental theorem of algebra, one of the many gems in mathe-
matics, was bestowed on mankind by the ‘‘prince of mathematicians,"”
Karl Friedrich Gauss. It states that in the domain of complex numbers
every polynomial equation—even if the coefficients themselves are
complex numbers—has a root, and as many roots as the degree indi-
cates. Real numbers are, of course, a subset of complex numbers.

If, however, solvability of equations is not the motive for an exten-
sion of the number concept, then several avenues may be followed to
arrive at new kinds of numbers. A study of these would run beyond the
scope of our discussion. We might, however, mention one such exten-
sion, the introduction of quaternions. It will be recalled that the
complex numbers may be considered as ordered number pairs such
that (a, b) corresponds to the number ¢ + b:. For clarity we will list
the basic properties of these number pairs again:

EquaLIity: (a,d) = (¢c,d) if and only if a = cand b = d.
AbpitioN: (a, 8) + (¢, d) = (@ + ¢, b + d).
MULTIPLICATION: (a, b)(¢, @) = (ac — bd, ad + bc).

The reader might guess that our extension will now consist in
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considering number triplets rather than pairs. This could indeed be
done, but we will now jump a step further and consider quadruplets
of numbers to define our quaternions. Modelling our basic assumptions
after the structure of the complex numbers, we have:

EquaLITY: (8, b,¢,d) = (¢, f, g, h)ifandonly if a = ¢,b = f, c = g,
andd = k.

AppiTION: (@, b, ¢, d) + (e, f, g ) = (@ +e, b+ f,c+ g d+ h).

MULTIPLICATION: (@, b, ¢, d)(e, f, & h) = (ae — bf — cg — dh,
af + be + ch — dg, ag + ce + df — bh, ah + bg + de — ¢f).

The last relationship looks especially formidable. Should we let
b=cmdmfmgm=}h =0, the real numbers are seen to be a subset
of the quaternions. If only ¢ = d = g = /i = 0, the ordinary complex
numbers emerge. Now the complex number (a, ) would appear as
(a, b, 0, 0) just as the real number @ is written as (a, 0, 0, 0). The
imaginary unit < which in number pair notation reads (0, 1) becomes
(0, 1, 0, 0) in the new language, and the real unit (1, 0) now reads
(1, 0, 0, 0). However, there are two other such units among the
quaternions, namely (0, 0, 1, 0), called j and (0, 0, 0, 1), named k.
Using the multiplication rule, one obtains not only #* = —1 (as with
complex numbers) but also j* = —1 and k* = —1 without 4, Jrand &
equalling each other, as can be seen from the definition of equality.

Stranger surprises are in store. To compute the product ¢ « j we
have: (0, 1, 0, 0)(0, 0, 1,0) = (0,0, 0, 1) = k. To obtain j ¢ ¢ the rela-
tionship becomes: (0, 0, 1, 0)(0, 1, 0, 0) = (0, 0, 0, —1). This answer
could be established as equalling —% but whatever it is, it differs from &,
so that we can conclude that ¢ + j # j + <. The commutative law does
not hold in this number system!

This short glimpse toward further generalizations of our number
concept is included to help the reader see that what seems a “‘common
sense truism” need not be correct. Such an understanding is real
insight in mathematics,
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5. PANORAMA

We have finished the journey. We have explored the evolution of
number from the first step taken by prehistoric man because of his
curiosity about quantity. Many millenia were needed to ripen the
concept of natural number. Then began the march of further and
increasingly rigorous generalizations and abstractions that charac-
terize mathematics. No human being has ever ‘‘seen” a “three” any
more than he has ‘‘seen” a geometric “point’’ or any other mathe-
matical idea. But the mind of man does not stand still. The number
system was stretched to include zero, negative integers, fractions,
irrational quantities, and complex magnitudes. We have tried to show
how these generalizations came about and how the mathematician
orders them into a logical system.

Symbolization of numbers was also a tedious process. The fact that
we have varying number systems is an indication of man’s ingenuity.

It is one thing to conceive of a number and write its numeral. It is
quite another to understand how to operate with it. Computational
algorithms are, of course, closely interlinked with the type of numera-
tion used. A Roman or a Greek of old, dreaming of calculations on
modern high speed computers, would probably have beseeched his gods
for an explanation.

We have tried to tell the captivating story of number in very limited
space. In Chapter 4 we selected certain ideas connected with each
subset of our number system, and tried to highlight them. Many
other ideas were reluctantly omitted.

Somehow, we turn back to Pythagoras. ‘“Number rules the uni-
verse.” “The essence of all things is number.” The man who was
first to recognize the importance of generality in mathematical reason-
ing was also first to divine the role of number as an aid to interpreting
the laws of nature. Now, more than two millennia afterward, what are
modern man’s sentiments about number?

It has been estimated that more has happened in the world of
mathematics in the last 50 years than throughout the preceding 2000
years. The science of mathematics in its modern development is a way
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of thinking in a realm of complete abstractioni and generalization.
Strangely, this fact has not generally taken hold. The much-alluded-to
“certainty of mathematics” is attributed to its “‘concreteness.” It is,
in fact, the result of rigorous abstraction which thereby accomplishes
absolute generalization. Mathematics may be briefly described as that
Geld of knowledge which devotes itself to explorations in number,
form, abstract structures, and order relationships.

It is interesting to note that the more abstract mathematics became
the more widely were its ideas applied. The concept of functional
interrelatedness, a central idea in mathematics, found a “‘real” counter-
part in the laws of nature. The use of mathematical models which
analyze the structure of a given situation and explain it as an ordered
system has become more prominent. Indeed, only if a phenomenon
under investigation is translatable into a mathematical law is it con-
sidered explained and the underlying problem solved. The natural
sciences whick traditionally used the language of mathematics, em-
ploy it more and more. The emergence of nuclear physics presented
additional demands.

Mathematical ideas dominate not only the exact sciences. Our
present century has witnessed a tremendous increase in their power.
Mathematics became essential in the study of economic problems;
linear programming was developed; planning prices for maximum
profit and minimum cost became mathematicized; the theory of
probability and games was applied to merchandizing. To manufacture
a product which could stand up well against competitors but would not
be so efficient as to hinder continued production, quality control
borrowed methods from mathematics. Advances in engineering have
necessitated additional aid from mathematics. In biometrics, mathe-
matics is applied to biological data. More and more mathematical
models had to be developed for “operations research.” In the field of
communication, information theory profited from mathematical re-
search. Mainly under the mantle of probability and statistic. whose
methods had spread noticeably, mathematics has penetrated psy-
chology, sociology, medicine and advertising. The age of electronics
made many impositions on mathematics. Numerical analysis received
a tremendous impetus through the advent of automation and high
speed electronic computers.

Does number rule the universe? We leave this question to the theo-
logian and the metaphysician. It may be safe to assert one thing: to
construct a seeming representation of the conditions involved in the
order of the universe, number still seems all-important. In molding
the keys that man has so far been able to manufacture to unlock the
secrets of the universe an everpresent ingredient is the notion of number.




