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FOREWORD

The National Council of Teachers of Math-
ematics is pleased to make the papers in this
booklet available to those who were unable to
attend the sessions at which they were origi-
nally presented: a program presented by the
Mathematical Association of America, at its
fiftieth annual meeting, with the cosponsor-
ship of the NCTM.

The papers were presented at three ses-
sions, under the headings of "Geometry and
School Mathematics," "High School Geometry,"
and "School Geometry of the Future"; but they
are, of course, interrelated. The authors
speak as individuals, not as official spokes-
men for either sponsoring organization, and
the viewpoints expressed are even more stim-
ulating and thought-provoking in that they are
not always in agreement.

The NCTM is grateful to the contributors
and to the MAA for permission to publish the
material presented here.

W. K. McNabb
Program Coordinator and Editor
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GEOMETRY IN THE UNITED STATES

By Bruce E. Meserve
University of Vermont
Burlington, Vermont

The changing role of geometry is a source of confusion
to many teachers and administrators, a challenge to all who
are alert to the needs of their students. In the few min-
utes available I shall try (a) to identify some of the
changes that have taken, or are taking, place, and (b) to
suggest some of the implications of these changes for the
future of geometry in mathematics education in the United
States. Since several of you could probably undertake
these tasks more effectively than I can, it is with consid-
erable trepidation and humility that I make this initial
presentation at our joint MAA -NCTM meeting concerned with
geometry. As a basis for discussion, I present my concept
of the problem. Other speakers will speak to various as-
pects of the problem. You will have opportunities to ques-
tion us individually here and at future meetings.

What Is Going On?

Solid geometry as a separate course has almost disap-
peared. However, paradoxically, we seem to feel that the
geometry of space deserves greater emphasis than it has
received in the past.

The traditional plane geometry course has lost its
"sacred cow" status and, from the point of view of some
mathematicians, has been defiled by the injection of the
use of algebra, as in

Coordinate systems
Distance and midpoint formulas
Slope
Equations of common curves and surfaces
Use of inequalities to represent regions on a plane

and in space

The geometry course that is evolving from the traditional
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plane geometry course has been overwhelmed with topics
proposed for inclusion:

Coordinate approaches to geometry
Transformation groups
Vector approaches to geometry
Solid geometry
Emphasis upon postulational systems
Emphasis upon logical structure
Study of other geometries such as spherical

geometry, finite projective geometries, topology,
and the non-Euclidean geometries

Sometimes it seems that for each course in geometry at a
university there is a corresponding suggestion for includ-
ing related concepts in school geometry.

It seems to me that the formal course in secondary
school geometry is currently floundering as an over-
encumbered giant circumscribed by drastically sharpened
standards for definitions, postulational systems, uses
of logical concepts, and the use of mathematical terminol-
ogy.

Consider the postulates for secondary school geometry.
Except for the works of a very few individualists such as
Swenson, Veblen, Birkhoff, and Beatley, teachers formerly
had some security in a very stable (even though imperfect)
system of postulates. Today the exceptions of the past
provide guidelines for a wide variety of postulational sys-
tems. Mathematicians, almost universally, take an inde-
pendent "I'll define it as I please and be consistent with
myself" attitude. I appreciate and, to a considerable ex-
tent, share this attitude. However, we need to let others
understand the reasons behind some of our proposed changes.
We especially need to allow and encourage secondary school
teachers to comprehend what we are trying to accomplish by
our independent approaches to geometry. Only with this
background can teachers enter into the true spirit of the
teaching of geometry.

Let us look briefly into the background for some of our
"idealistic whims" and see why we are changing the ground
rules for secondary school geometry. Each of our changes
is intended to enhance the student's understanding and
appreciation of geometry as a mathematical system and, in
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particular, as a system concerned with points, lines, planes,
relations among figures, and the representations of figures
in the world around us.

1. Existence. --We used to assume the existence of any
geometric figure that could be constructed. Even though
Euclid's postulates were probably based upon Plato's pos-
tulates for constructions, we were very casual about the
possibility of making constructions. In our present em-
phasis upon geometry as a postulational system independent
Df physical representations (models), we now include pos-
tulates of existence in our mathematical system. For ex-
ample:

There exists at least one line.

If 111 is a line, then there exists at least one point

C that is not a point of AB.
If ABC is a plane, then there exists at least one point

D that is not a point of ABC.

2. Equality versus congruence. --We used to say,

"Base angles of an isosceles triangle are equal."

Now we reserve the equality relation for different names
given to the same number, figure, or other element. We
use the congruence relation to indicate that two figures

have the same measure. Thus we now say,

"Base angles of an isosceles triangle are congruent."

Secondary school teachers rapidly grasp the distinction
that we are trying to make, when we take the trouble to
tell them what we are trying to do.

3. Figure versus picture. Many secondary school text-
books used to have a postulate such as this:

"A line may be extended to any required length
in either direction or in both directions."

We now consider a line to be an undefined element. We do

not extend lines; rather, we extend pictures (models, rep-

resentations) of lines. We need to help teachers under-
stand that we have a situation in geometry that is analo-
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goes to the number-numeral problem in algebra and arithme-
tic.

4. GeneraZity.--We used to select definitions so that
there was as little overlapping as possible. For example,
an isosceles triangle had exactly two congruent sides; a
trapezoid had exactly two parallel sides. Now, with our
emphasis upon generality and interrelations among figures
(rather than just in naming them), we include an equilat-
eral triangle as a special case of an isosceles triangle,
a parallelogram as a special case of a trapezoid, and a
cube as a special case of a rectangular parallelepiped.
Other such examples could be cited.

5. Varied uses of terms. Differences in the usage of
terms in different textbooks provide awkward and embarrass-
ing pitfalls for many teachers. For example, are all poly-
gons simple curves? All polygons convex? All quadrilat-
erals convex? All measures numbers? Is a line parallel
to itself? I am strongly in favor of the independence of
authors in such situations; but I think we need to be very
explicit about our assumptions, and we should not hesitate
to remind our audience periodically of our assumptions.

Other changes and the reasons for them could be cited,
but let us return to our original charge. Each of the
items that I have mentioned seems to me to be adding to
the confusion and congestion in secondary school geometry
courses. What are we doing to reduce that confusion?

We might, as some schools do for their slower students,
simply reduce the number of proofs and present a course
based upon applications of rules without concern for "dis-
covery" techniques, developmental-type exercises, or proofs
based upon extensive analyses of problems. However, such
an approach is definitely contrary to the pedagogically
sound trend toward student discoveries and the develop-
ment of skills in analyzing problems.

Most geometry curricula appear to be eliminating con-
structions with straightedge and compasses whenever an
analysis of the problem is needed. While sympathetic to
the need for reducing the bulk of the geometry course, I
personally consider the elimination of advanced construc-
tions as a misguided effort that is out of keeping with
our desire to develop the reasoning abilities of our stu-
dents.
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Where Are We Headed?

The changes in geometry are part of the basic changes
that are taking place in mathematics curricula from kinder-
garten through college. Geometry in the United States is
in the process of assuming a basic role throughout a com-
prehensive mathematics curriculum, in place of maintaining
its previous isolated position.

One of the most encouraging trends of our time is the
rapidly expanding informal treatment of geometry in ele-
mentary and junior high schools. Common geometric figures
are identified, defined, and used in the development of
the student's concept of mathematics. Constructions with
straightedge and compasses are considered while most stu-
dents are still anxious to work with their hands, are in-
terested in developing geometric patterns, and are curi-
ous about a wide variety of things.

Another encouraging trend is the recognition that rea-
soning should be a part of all branches of mathematics.
Thus, simple implications are considered in elementary
school, and the logical steps that are used in algebra are
specifically recognized.

Each trend that I have mentioned, along with many other
aspects of the teaching of geometry, is being extended and
explored in a wide variety of experimental programs. Such
explorations seem to me to indicate a very healthy situa-
tion. We need divergent views. We need to explore dras-
tically di-!ferent approaches and methods. Above all, we
need to maintain a flexibility in our curriculum which al-
lows us to modify our courses to take advantage of changes
for students who can profit from them, without placing all
students in a straightjacket of either new or old curricu-
lar material.

Geometry and algebra should be expected to continue
their evolution as two interrelated approaches to the study
of mathematics. Each approach reinforces the other. Geo-

metric concepts help students understand algebraic concepts,
and vice versa. We should encourage students to use either

an algebraic or a geometric approach (and sometimes both)

in solving problems. Neither approach should dominate or

exclude the other.
In conclusion, let us look at the formal course in geom-

etry that has traditionally been a course in synthetic plane
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geometry. The informal treatment of geometric figures and
elementary constructions in earlier grades and the recog-
nition of patterns of logical reasoning in algebra reduce
some of the pressures on this course. However, it is still
not realistic for most students to attempt thorough treat-
ments of plane and solid geometry from both synthetic and
coordinate points of view in a single course that also in-
cludes the recognition of other geometries. There are many
pedagogical advantages to considering selected properties
of three-dimensional figures at the time that corresponding
properties of plane figures are studied. These advantages
provide the basis for the inclusion of both plane and solid
geometry in a single course. However, the treatment cannot
be as thorough as many of us would like it to be, and the
time allotment of a full year for the geometry course cannot
be cut unless geometric concepts are considered extensively
in several other courses, possibly from other points of view.
Experimental programs are beginning to consider drastic re-
visions of the structure of secondary school mathematics so
that both geometric and algebraic concepts can be emphasized
in the study of mathematics at each grade level.

I believe that the paths along which we are headed and
which are the most promising as we search for solutions to
the many problems before us are these:

Informal development of geometric concepts throughout the
elementary and junior high school mathematics curriculum

Increased use of geometric concepts in the development of
arithmetic and algebraic concepts

Introduction of, and explorations with, constructions
with straightedge and compasses before the formal study of
geometry

Emphasis upon visualization of plane and space figures at
all grade levels

Inclusion of mensuration of geometric figures at several
grade levels

Increased emphasis upon coordinate geometry of two dimen-
sions and of three dimensions in the last two years of high
school

A full-year course with a primary emphasis upon geometry



based upon a substantial introduction of synthetic postula-

tional geometry and including a coordinate approach to many

of the problems considered for both two- and three-dimen-

sional figures.
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THE ONTARIO K-13 GEOMETRY REPORT

By H. S. M. Coxeter
University of Toronto

Toronto, Ontario

In the prevalent desire for single courses in mathemat-
ics rather than separate courses in its various branches,
there has been a tendency for geometry to be squeezed out.
This tendency is not only regrettable but unreasonable.
Geometry has interactions with other branches of mathemat-
ics and should be taught alongside them, not before or
after; but it should by no means be neglected. The pur-
pose of the Ontario K-13 Geometry Report is to outline a
program whereby this downgrading of geometry can be avoided.

Synthetic geometry develops and refines spatial intui-
tion. In the physics of crystals or the chemistry of com-
plicated organic compounds, many significant geometric
relationships are revealed. There are also increasingly
complicated problems of architecture and the subtle intri-
cacies of the space -time continuum.

We believe that visual and intuitive work is indispen-
sable at every level of mathematics and science, both as
an aid to clarification of particular problems and as a
source of inspiration. Great care should be taken to en-
courage the mental constructions of the student, whether
rudimentary or advanced. Self-reliance goes hand in hand
with the cultivation of intuitive judgment and artistic
taste.

By dealing with geometry informally, by plausible rea-
soning rather than by strict proof, it is possible to reach
interesting and surprising results much more quickly: the
student does not spend a whole hour on a proof of something
he regards as obvious. Thus several theorems can be covered
in one lesson, and students can be given a bird's-eye view
of the subject as a whole.

The good and bad features of our geometrical tradition
must be carefully disentangled. In the hands of a good
teacher, who does not take the textbook too seriously, a



geometry lesson can be a stimulating experience. One
Ontario student said, in an essay, that geometry lessons
were a revelation to him, because in arithmetic and alge-
bra he was told what to do, but in geometry there was dis-
cussion and reasons were given.

In geometry, perhaps more than in the other subjects,
a student can exercise originality and ingenuity in devis-
ing a construction or seeking a proof.

In former times, the wholesale adoption of Euclid's
axiomatic method as an authority, and as a model to be
emulated, presented an enormously difficult program for
most students. Instead of the axiomatic approach, with
rules and definitions, we recommend the intuitive "inter-
est" approach through problems significant to the student.
Certain properties of simple figures are assumed. These
lead to short chains of easy deductions. Later a more
ambitious use of assumptions can be made, so that a wider
range of problems is accessible, and some of the old tenta-
tive assumptions become theorems. This method minimizes
the laying down of authority and the making of apparently
arbitrary rules at the outset.

It has been well remarked that, in general, a definition
sums up an experience and should not precede it.

The systematic use of axioms in geometry is admissible
only after the students have already had several years of
experience with simple deductions. Actually, for exercises
in deductive reasoning, algebra is probably more suitable
than geometry. Geometry should be taught rather for its
interesting results and as an exercise in informal reason-
ing. After all, the work that culminated in the discovery
of non-Euclidean geometry occurred before the logical gaps
in Euclid had been noticed. Neither Bolyai nor Lobachevsky
lived to see a proof of the relative consistency of hyper-
bolic geometry. Incidentally, as the discovery of the non-
Euclidean geometries is the most significant development in
the whole field of geometry since Euclid, neglect of this de-
velopment would hardly be compatible with the position of
geometry in contemporary liberal education. As Felix Klein
once remarked, non-Euclidean geometry "forms one of the few

parts of mathematics which is talked about in wide circles,
so that any teacher may be asked about it at any moment."

In the primary school, children should become familiar
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with simple objects that illustrate the ideas of shape,
size, and measurement. Solids such as spheres, cylinders,
cones, pyramids, prisms, antiprisms, and other polyhedrons
can be appreciated at an earlier age than their two-
dimensional counterparts: circles, triangles, squares,
rectangles, parallelograms, pentagons, hexagons, and other
polygons. The square first arises as a face of a cube!

As soon as a child has become familiar with two- and
three-dimensional figures, he should begin to make patterns.
He will soon see that some shapes, such as triangles, regu-
lar hexagons, and cubes, can be repeated to fill and cover
the plane or space, whereas other shapes, such as regular
pentagons, circles, and spheres, cannot. When a child is
ready to handle a straightedge and a pair of compasses,
he should be encouraged to invent and color patterns of
his own liking, and to construct models by such means as
straws and pipe cleaners, soft wire, sticks with glue,
plasticene, cardboard, and ready-made polygons. Pairs
of plane mirrors can be used to study reflection, rota-
tion, translation, and the simplest notions of symmetry
(as in the Minnemath film Dihedral Kaleidoscopes). The

teacher should draw attention to the fact that the rim of
a lampshade may cast shadows that are circles, ellipses,
parabolas, or hyperbolas.

The comparison of size of similar figures and of angles
can be considered at an early age, in preparation for the
idea of measuring volume, area, length, and angle, and for
the use of instruments such as set square, parallel ruler,
compasses, and protractor for making scale models and maps.

A good informal treatment of mensuration is illustrated
by the problem of finding the volume of a pyramid of height
z based on a rectangle 2x x 2y where x, y, z can have any
convenient values, such as 3, 4, 5 (inches or centimeters).
A cuboid x x y x z is dissected into six pieces ("ortho-
schemes") by planes joining one pair of opposite vertices
to each of the other three pairs in turn. It is very
plausible that these six pieces all have the same volume

6
af.. (Those pairs of pieces which are congruent are not

directly congruent but oppositely congruent, like a pair of
shoes or an arbitrary solid and its mirror image.) The

whole construction is then repeated so as to produce twelve
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pieces. (These can be mixed up. One child is asked to
choose a piece, and another to find a mate for it, either
directly congruent or oppositely congruent.) Finally,
eight of the twelve pieces are reassembled to form the de-

sired pyramid, whose volume is thus seen to be 4 , that

is, one third the base times the height.
The remaining four pieces, with four of the eight, make

amother pyramid (with base 2y X 2z and height x, or base
2z x 2x and height y).

We follow the British and Russians in recommending the
introduction of geometric transformations (or "motion ge-
ometry") as early as possible, not only as a tricky way
to prove theorems but as a means of inculcating a feeling
for space. This idea is closely related to symmetry and
thus appeals to the artistic side of children. A child is
aware of the symmetry of a butterfly before the concept of
distance has become fully clarified. He will enjoy making
his own "butterfly" by folding a sheet of paper with a wet
spot of ink near the crease. The classification of frieze
patterns according to their seven symmetry groups can be
appreciated by children in Grades 4 through 6, and still
holds interest for much older students.

Motion geometry includes the concept of translation,
another name for which is vector, and for the first time
children meet the plus sign in a nonarithmetical context.
In expressing a translation as the "sum" of two half-turns,
they obtain a first taste of a noncommutative algebra.

Cartesian coordinates can easily be introduced in Grade 6
or Grade 7, so as to provide a stimulating synthesis of
geometry, arithmetic, algebra, and trigonometry. Vectors,
having previously appeared as translations, can be repre-
sented by pairs or triples of numbers, and then by forces
or velocities, thus linking pure and applied mathematics.

The algebraic aspect of motion geometry can be developed
by using matrices (of two rows and two columns) to represent
translations, half-turns, quarter-turns, reflections (in
the coordinate axes or their angle bisectors), and dilata-
tions (from the origin). Trigonometry, which many children
used to dislike, can be enlivened by judicious use of vec-
tors and of polar coordinates. The dull routine of numeri-
cal solution of triangles should be replaced by a taste of
the most elegant trigonometric identities.

11
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Any child old enough to handle a pair of compasses can
appreciate the idea of coaxal circles, leading naturally to
inversion: the simplest example of a transformation that
changes shape (more precisely, a conformal transformation
that is not merely a similarity). From this it is an easy
step to continuous transformations and an informal intro-
duction to topology: the sphere, torus, and MObius strip;
maps and coloring problems; topological networks or "graphs";
the unsolved problem of classifying knots; and Euler's
formula connecting the numbers of vertices, edges, and faces
of a polyhedron.

Exceptionally able students should be encouraged to study
quadric surfaces, the geometry of complex numbers, and the
possibility of using various sets of axioms so as to replace
Euclidean geometry by other geometries: affine, inversive,
projective, absolute, spherical, hyperbolic. Such excur-
sions will give the correct impression of geometry as a
subject that is still developing in a lively manner.

12



GEOMETRY IN GREAT BRITAIN

By Andrew Elliott
Royal Military College of Canada

Kingston, Ontario

When any program of school mathematics in Great Brit-
ain is discussed, one must always remember that great
variety is possible. In theory, at least, and to a large
extent in practice also, each elementary school principal
and each high school head of department has complete au-
thority to design and implement his own curriculum. How-
ever, once we bear this in mind, we can discuss general
trends and programs in the country.

At present, apart from the traditional arithmetic in
the elementary schools (five- to eleven-year age group,
approximately Grades 1 to 6), there are two main new pro-
grams. The first is the Nuffield Mathematics Teaching
Project, under Dr. Geoffrey Mathews, which undoubtedly
owes something of its inspiration in methodology to Miss
Edith Biggs of the Ministry of Education. The second is
the Leicestershire Experiment, which is based largely on
the proposals of Dienes.

At the high school level (ages eleven to eighteen,
approximately Grades 6 to 12 or 13) there are several
programs. In Scotland, the Scottish Mathematics Group
is essentially alone. In England the School Mathematics
Project, directed by Professor Bryan Thwaites of South-
ampton University, is perhaps dominant in the public
(private) schools and academic grammer schools. The
Midlands Mathematics Experiment, directed by Cyril Hope
of Worcester, is active in the modern secondary, technical-
commercial, and academic high schools of the national
(public) school system. A third group is the Mathematics
and Industry Conference, which includes some public and
national high schools. In all these programs it is safe
to say that the traditional Euclidean geometry course
is nonexistent and that relatively little emphasis is
placed on analytic geometry either.
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But let us look first at geometry at the elementary
school levels. Here the Nuffield project has even gone
so far as to avoid almost deliberately the word "geome-
try." The leaders claim that so many teachers in ele-
mentary schools have a profound fear of the Euclidean
deductive high school geometry that they are repelled
by the word "geometry." In its whole program the Nuf-
field project makes a special plea that teachers must
teach the enjoyment of learning mathematics rather than
the fear of the subject. For this reason, also, their
methodology tries to emphasize intrinsic motivation
rather than external motivation by either reward or pun-
ishment through prizes, marks, or extra drill. In com-
mon with proposals developed in the last three years in
Ontario, they insist that geometry must be a continuous
experience from kindergarten onwards. They also insist
that the geometry of the real world is three-dimensional,
so that it should receive almost equal emphasis with two-
dimensional work throughout the program. Their present
publications Shape and Size, 1 and 2, carry the program
only to the Grade 3 or Grade 4 level, but they indicate
very clearly that symmetry, tessellations (tiling pat-
terns), and classification of two- and three-dimensional
shapes play a major role. Formal drawing and construc-
tion is minimized at this stage; for example, right
angles are formed by paper folding, and string and thumb-
tacks (or ropes and pegs, out-of-doors) are used to show
that the shortest distance from a point to a line is
along the perpendicular. Line symmetries and reflections
are studied with mirrors, blot patterns, and folding;
congruencies by direct superposition of cutout models
and later by the transfer of tracings; and similarity
by matching of corners and by visual projections. Tes-
sellations are formed at first from gummed paper cutouts
and later by tracing round card models. The problem of
covering the plane by geometric figures is introduced
in this way, as is the study of translations, rotations,
and reflections in interrelation. In three dimensions
as well as two, model building is stressed. The triangle
is realized as a strong figure that is undeformable.
The tetrahedron is discovered as a space quadrilateral
with its stiffening diagonals. The decomposition of
shapes, skeletons as well as polygons, into triangles

14



and tetrahedra arises informally in such experimental
studies. The covering of irregular areas by unit squares
and triangles leads to area measurement; the computation
of area by multiplication follows later. Volume measure
is studied in a similar way.

An outline written for internal circulation in the
project makes it obvious, even if these initial publi-
cations did not, that the final aim of the program (up
to the age of thirteen) is to form a firm basis for a
high school geometry of vectors, translations, rotations,
and reflections, with coordinate methods as one way of
writing these topics. Intimately bound in with this ap-
proach is the concept of the invariance of geometrical
properties under the transformations, and the group and
other properties of the transformations themselves. This
is indicated clearly in the "Conspectus of Ideas" section
of Shape and Size, 2.

All the high school projects mentioned treat geometry
mainly as a study in transformations, and they use vec-
tors, group properties, coordinate systems, and matrices
as required. The differences arise mainly in emphasis
and in the order of topics.

The Midland Mathematics Experiment, for example, be-
gins the first book (for Grades 6-7) with a treatment
of navigation problems by drawing on a coordinate back-
ground. Then parallels are discussed informally in as-
sociation with parallelogram tessellations. Modular
arithmetic patterns on circles lead to paper-folding
studies of polygons (including the regular pentagon);
towards the end of the book vectors are introduced on
a coordinate system, using eastings and northings from
navigation. In the following book (for Grades 7-8) vec-
tors are restudied as line segments and on a Cartesian
coordinate background in two dimensions, including the
scalar product. The study includes proofs of some of
the usual geometrical properties of triangles and par-
allelograms, but with no formal theorems. Transforma-
tions are introduced with matrices and include rotations
and various deformations. They are studied first by the
detailed direct plotting of image points on a coordinate
lattice. Later the rotations are studied in more detail,
and the symmetry rotation groups for the equilateral tri-
angle, rectangle, and square are examined in some detail.
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Incidentally, sine and cosine are introduced at this level.
In the final book before 0-level (Grades 9-10) the study
of transformations continues, but vectors and matrices are
carried to n-vectors and the algebra of matrices rather
than being used in geometry. The weaknesses of this pro-
gram are the paucity of three-dimensional work and an
overemphasis on the coordinate background.

On the whole, the School Mathematics Project pursues a
coordinate independent approach, beginning with line and
rotation symmetries and translations in Grades 6-8. Again
tessellations are used to study parallels and translations.
Some elementary topological ideas of sidedness, convexity,
connectibility, and networks are studied from the experi-
mental viewpoint. The traditional defining properties of
the various special triangles and parallelograms are devel-
oped through, and associated with, their symmetry proper-
ties, which are regarded as more fundamental. Similar
triangles are introduced, and the proportionality of the
sides is discovered by means of a tessellation with tri-
angles. In the later books, Grades 9-10, great emphasis
is placed on the reflection transformation; and, in fact,
a rotation is treated as a two-reflection process in non-
parallel mirrors, while a translation is treated as the
result of two reflections in parallel mirrors. This gives
a very interesting slant to geometry, but, unfortunately,
it is confined to two dimensions. Vectors are introduced
at this level as directed line segments indicating trans-
lations and, together with matrices, are used in a more
general study of transformations in a coordinate system.
However, vector methods are also used to study the appro-
priate properties of triangles. In this program, again,
three-dimensional studies are rather slight except for an
early chapter on the construction of regular polyhedra and
later a good chapter on plans and elevations.

The Scottish program strongly emphasizes the experimen-
tal approach to the group-symmetry properties of geometri-
cal figures, in both two and three dimensions. In the
first book cubes and various rectangular prisms are fitted
into corresponding boxes, and the different ways in which
this can be done are noted and used to classify the prop-
erties of the solids. This type of work is repeated with
models of squares, rectangles, and right-angled isosceles
and equilateral triangles. Coordinates are used sparingly
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to assist in the study of tessellations and isosceles and
equilateral triangles. In the second book the work is ex-
tended to more complex figures, such as rhombuses, kites,
and parallelograms, and to their association with the stan-
dard constructions in geometry. It is uncertain from these
publications how far this group will go in the use of
vectors and matrices in later years, and the work in three
dimensions is again rather slight.

It should be remenbered that all these high school pro-
grams are based on a traditional, almost nonexistent,
study of geometry in the elementary school (Grades 1-5).

The other vital point in all these programs, in contrast
to approaches in the United States, is that no attempt is
made in Grades 1-10 to introduce any axiomatic deductive
system, nor is much work done along the traditional lines
of ruler-and-compass construction. Indeed, one might almost
say that the topics are deliberately avoided. The first
topic is avoided because British opinion is, and has been
for many years, that axiomatic deductive geometry is suit-
able only for about the top 5 percent or less of the student
body. The second topic is reduced because it is relatively
useless and irrelevant in realistic geometrical, architec-
tural, engineering, or artistic drawing. Geometry is pre-
sented to the mass of pupils as a useful tool and a thing
of artistic beauty, but it is presented in such a way that
it forms a good base which the mathematics specialist can
use as a foundation for modern higher mathematics in vector
algebras, transformation theories, and topology, as well
as in projective, affine, and inversive geometries, and in
Euclidean deductive geometry also.
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AFFINE GEOMETRY

By G. P. Johnson
Oakland University
Rochester, Michigan

I assume we are here today out of at least two convic-

tions: that the Great Society needs a better geometry
course and that the war on Euclid needs to be escalated.
In order that I might try to advance both of these causes
I would like you to allow me a couple of other assump-
tions, which are not quite as easy. The first is that
there is merit in basing introductory geometry on algebra,
or at least in putting a lot of algebra into it. The sec-
ond is that, other things being more or less equal, the
fewer axioms one has to inflict on a mathematical system,
the better and an introduction to axiomatics is no excep-
tion. Like students, axioms are essential in our business,
but they can become burdensome in large numbers.

There is not the time now nor, I am sure, a need--for
me to argue at great length the case for a fusion of alge-

bra and geometry at the secondary school level. Klein was

doing so at the turn of the century, and he has had a good
deal of very respectable company since then, including, in
recent years, the authors of the SMSG texts. The main
point is that the concept of number is now the predominant
notion in mathematics education and, for that matter, in

much of the rest of mathematics. Number comes first in a
student's education and gets the bulk of his attention in
the courses he takes before tenth grade. It is therefore
unnatural and undesirable to isolate the first formal ge-
ometry from numerical considerations to the extent that
traditional courses have. Students entering tenth grade
are well prepared to accept, for example, the number line

as a prototype for the lines of formal geometry; and it
seems plausible that they should find a geometry so based

that is, a coordinate geometry--to be at least as natu-
ral as the customary development and to be no more formi-

dable. What is even more important and, I think, no less
plausible is that they should also find such a course more
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relevant to the mathematics they subsequently study. Is

it not reasonable to believe that the notion of proof
should carry over more readily to quite different kinds of
mathematics? If geometry were really doing its job, it
ought to be not quite as painful as it is to teach under-
graduates what a proof is in, say, analysis.

The question of axiom counting, which is a dubious game
on several counts, is of less importance. I am aware that
my concern about it comes in part from the fact that in
the early stages of the writing project I shall describe
shortly, at a time when things were not going very well,
we frequently consoled ourselves that if our system had no
other virtues, at least it had fewer axioms than anyone
else's system we could think of! It is, of course, pleas-
ant to a mathematician not to have a cumbersome logical
structure. But elegance is not of much point in a case
such as this, where the main concerns are pedagogical.
Nevertheless, I believe there is a point. In his first
encounter with an axiomatic system a student is likely to
have trouble keeping straight all the rules of the game
that is, the axioms--if there are a great many of them.
Just what has been assumed and what has been proved gets
more than a little hard to remember. Furthermore, espe-
cially if he is perceptive, he may feel that too much is
being assumed, and much of the axiomatic method's power
fails to be revealed to him. It certainly is not a very
good game if it appears that many of the important results
are postulated, particularly if one has to admit that some
redundant axioms have been introduced for the purpose of
avoiding hard proofs.

Now there is conceptually an easy way around these prob-
lems, and that is to define the Euclidean plane to be the
Cartesian product of the reals with themselves. Lines are
the loci of linear equations, and distance is defined in
the obvious way. The geometric structure of the plane can
then be developed, first strictly by analytic methods and
soon thereafter by synthetic methods as well. There is no
lack of analysis in the process and, if the reals are as-
sumed, no need whatsoever for axioms. This last is rather
too much; for we are, after all, trying to inculcate an
appreciation for axiomatics. Also, a good deal of the
spirit of geometry, in either an historical or a modern
sense, seems to get lost, at least at the outset. That
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spirit is not easy to define; but, whatever it is, most
of us feel it is of considerable value to the student of
mathematics.

The development of geometry I shall describe today
bears resemblance to the Cartesian product development,
as does any coordinate geometry, and shares some of its
drawbacks. Yet it retains a pronouncedly geometric
flavor. In general terms, the axioms that are used pro-
vide for a metric development of plane Euclidean geometry.
However, these axioms are such that Euclidean structure
is by no means immediately apparent in them. It takes,
in fact, quite a bit of analysis not very difficult but
lengthy to show that it is possible to define distance
and perpendicularity appropriately. Once this has ueen
done, one has Euclidean structure displayed explicitly
and Euclidean geometry can proceed normally. But in the
meantime an impressive amount of geometry can be done,
and it makes sense to do it. Thus the axioms are first
taken at face value to develop the incidence properties
and parallelism--that is, the affine structure--that
exists in the plane. Along with preliminaries and much
discussion to convince the student that in terms of his
background in informal geometry the axioms are at least
reasonable requirements but not to convince him as yet
of their efficacy this affine geometry makes up not
quite half the course. The rest is Euclidean geometry.

The work is self-contained, except for its assumption
of the real numbers and their immediate properties. Even
here there is an admission that some properties are more
immediate, at least more familiar, than some others; and
material appears that deals with inequalities and pairs
of linear equations, those parts of the algebraic machine-
ry used which are most likely to be unfamiliar. A fair
indication of the level of sophistication required is that
which goes with an understanding of the function concept.
Functions not only appear; they pervade. A coordinate
system, for example, is a mapping from a line to the reals;
a congruence is a restriction of an isometry. Again, all
the necessary background appears in the text, but undoubt-
edly a student will do better in the course if he has be-
come facile with very simple functions beforehand.

Before going into further detail, I should like to
discuss the project's history. The basic ideas for the
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development are contained in the book Foundations of Ge-
ometry and Trigonometry (Prentice-Hall, 1956 and 1960) by
Howard Levi. So far as I know, the first high school use
of material in this form was made during 1958/59 by S. S.
Willoughby, who has reported his observations in a mathe-
matics education note appearing in the June-July 1966
issue of the American Mathematical Monthly. Another such
experiment was conducted in 1961/62 by a group of six
teachers headed by Harry Sitomer, and it is because of
favorable reaction to this experiment and, in no small
measure, Sitomer's untiring efforts over several years,
that the writing project came into being. In the summer
of 1964 a group of high school and university people, di-
rected by R. A. Rosenbaum and sponsored by Wesleyan Uni-
versity and the National Science Foundation, wrote a text
and commentaries for teachers. These were used during the
following year in some thirty-five classes in various
parts of the country and were revised by the writing group
the next summer. Additional testing has gone on since
then, and after further but minor revision the text,
Modern Coordinate Geometry, now published by Wesleyan,
will be published commercially.

The content, in general terms, is as follows. Immedi-
ately following introductory material, the axioms for a
line appear. A line is a set with coordinate systems
that is, one-to-one correspondences from the set to the
reals such that two points determine exactly one coordi-
nate sustem and any two coordinate systems are related
affinely. There then follows a short development of the
line and of isomorphisms between lines, after which the
axioms are completed by introducing those for the plane.
A plane is a collection of at least two lines, the points
of these lines being the points of the plane such that any
pair of points determines exactly one line, Euclid's par-
allel postulate holds, and parallel projection from one
line to another is an isomorphism of the lines. Planar
coordinate systems now fall out directly, and we are in
business to do simple analytic geometry and the affine
geometry I mentioned. This includes treatment of trian-
gles, quadrilaterals, and polygons generally; Desargues's
theorem; plane separation; convex sets; and linear pro-
gramming in the plane. The main purpose of the last,
admittedly, is to glamorize the content in the eyes of the
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students, and they do seem to like it. The remainder of
the affine development has likewise proved very satisfy-
ing; for a great deal gets accomplished, and most of it
comes out rather easily once the necessary machinery has
been set up.

The move to Euclidean structure is not as nice; indeed,
in my opinion, it is the least attractive point in the
course. The problem, in one form, is to show that one can
introduce planar distance and perpendicularity so that
they make sense and are compatible with the affine struc-
ture that has gone before. There are two difficulties:
first, it is hard to explain to the student what the prob-
lem is, and, second, each of the two methods we have used
in the two versions of the text is long. Either one might
well be considered cruel and unusual punishment.

Once this hurdle is past and a number of teachers have
found a fairly satisfactory way to get by it, namely,
skipping parts of it things go comfortably again through
such standard topics as perpendicular projection and bi-
sector, similarity and congruence, and the circle. Then
another problem arises, although a lesser one. Up to this
point the course has been logically complete, at no un-
reasonable expense in time or in effort. But we want now
to treat arc length, angle measure, and areas; to do so
calls for explicit use of the completeness of the reals;
and this in its full-blown glory is not reasonable at the
tenth-grade level. A compromise is called for, and we
have chosen to discuss the role of completeness at some
length but to sketch proofs in most cases where the anal-
ysis required is of calculus nature. Actually, students
and teachers are especially fond of these chapters, the
final ones of the text. I'm not sure whether this means
that the topics are especially appealing, or that the stu-
dents have had enough of logical completeness, or that
they are just glad to be done.

In the course as a whole, virtually all the classical
results of Euclidean geometry are treated, with one nota-
ble exception. There is no discussion of solid geometry.
This was omitted for reasons of time and also because the
algebra required is enough more complicated to restrain
us from asking it of tenth graders. To me it does not
seem a serious loss, but not everyone agrees with me.

In the note I cited, Willoughby asks the two essential
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questions on evaluation of new materials: Can they be
taught, and should they be taught? The evidence that has
been gathered on this project provides a substantially
convincing answer to the first. There is no real doubt
on the part of teachers or those from universities who
assisted them that an acceptable proportion of the stu-
dents involved, including those of average ability,
learned the content satisfactorily. That same evidence,
however, does not provide much for the second question.
To be sure, the reaction of the users has been enthusias-
tic, and the view is widely held among them that the
course does impart important and relevant understanding.
But the warm feelings for the undertaking in any of us in-
volved with it, including the students, is likely to have
come in some degree from the novelty of the approach, its
elegance, and some, perhaps subconscious, allegiance to
the project. It is hard to say to what extent this is so.
Also, some disaffection has been voiced, mostly in terms
of the demands put upon the students' preparation in alge-
bra and in terms of text's sophistication. Thus, although
it would be ungracious and illogical to see other than
encouragement in the testing, I feel compelled at this
point to rely mainly on my own intuition and prejudices.
To me it is doubtful the course will work well with fair-
to-middling college-bound students. But I believe that
with moderately select groups it provides, on all the con-
siderations I have discussed with you, a very attractive
alternative to the traditional course. I shall not try to
defend this belief further, for all that I could add would
be platitudes. The real defense must wait on additional
experience.
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VECTOR GEOMETRY

By Herbert E. Vaughan
UICSM, University of Illinois

Urbana, Illinois

This report concerns a two-year secondary school mathe-
matics course which is now in the final stage of develop-
ment by the University of Illinois Committee on School
Mathematics and of testing in a number of schools in vari-
ous parts of the country. This work is supported by a
National Science Foundation grant.

Very briefly, three-dimensional Euclidean geometry is
developed as the theory of an inner product space T--the
set of translations--acting on a set E of points the
points of Euclidean space.

The original version of the course was written in
1962/63, and a revised version of the first year's materi-
al was taught in 1963/64 to two classes of tenth-year stu-
dents in University High School. These students continued
studying the second year's material in 1964/65, and addi-
tional students began their study of a second revision of
the course. In 1965/66 four other schools (in New Jersey,
Missouri, Nevada, and Washington) began to use the materi-
als. As one result of an institute held during the summer
of 1966, two more schools (in Pennsylvania and California)
were added to those in which the course was being taught.
At present the text for the first year is being revised in-
to final form for publication. There will be a teacher's
edition which will include much background material. It is
expected that the final version of the text and commentary
for the second year will be completed during 1967/68.

The course is intended for rather bright students who
have had a beginning algebra course in which some attention
has been given to the deductive organization of their knowl-
edge of the real numbers and, so, to some of the techniques
of deduction. Since the course bases geometry on mappings,
some knowledge of functions is highly desirable. Neverthe-
less, the course is being taught with apparent success to
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students of varied abilities and backgrounds. As with

any organization of geometry, those students will profit

most who have had a continuing experience with intuitive
geometry throughout their previous schooling.

The course has been described in more detail than is
possible here in an article by Steven Szabo in the March
1966 issue of the Mathematics Teacher. Hence I shall con-
fine my remarks to some general comments on its relation
to other treatments of geometry and on its notation and
postulates.

To begin with, it is worth stressing that the course
deals with translations as members of a vector space
operating on points. The subject matter is actually Eu-
clidean (metric) geometry, as contrasted with the centered
Euclidean geometry of a vector space. Since "vectors" are
mappings and points are points--there is no danger of con-
fusing the two fundamental types of objects.

In the second place, the introduction of translations
per se bypasses the conceptual difficulties which are in-
herent in defining vectors as equivalence classes. (These
difficulties would not be serious for students who had had
the experience with equivalence relations which, hopefully,
students in future years will have had. But, at present,
few students at this level have had such experience.) In-
tuition concerning translations is readily developed
through the use of various mechanical devices and provides
the basis for postulates and definitions and also for con-
jecturing theorems.

As mappings, translations can be composed with one an-
other, and, being one-to-one, they have inverses. Also,
as mappings, translations act on points. The first postu-
lates describe how translations act on points and how they
react with each other under composition and inversion. In

describing these matters, capital letters are used as vari-
ables over the set E of points, and lowercase arrow-letters
(see below) are used as variables over the set T of trans-
lations. Later, lowercase letters (without arrows) are
used as variables over the set R of real numbers.

A fundamental peculiarity of translations is that a
translation is completely determined once one knows the
image under it of any single point. This fact is made use
of by speaking of the translation from A to B and, for this
phrase, introducing the notation 'B - A'. With this nota-
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4 4
tion it is convenient to use 'A + a' [rather than 'a(A)']

in referring to the image of a point A under a translation

a. The first two postulates introduce this notation and

formulate this two-point property of translations:

1. (a) B-ACT (b) A+acE
4

2. (a) A+ (B - A) aB (b) = (A +a) -A

(Postulate 2 amounts to saying that A + a = B if and only

4
if a = B - A.) Since a resultant of translations is a

translation, the translation from A to B followed by the

translation from B to C is the translation from A to C.

In connection with the subtraction-addition notation

already introduced, it turns out to be convenient to re-

fer to function-composition--as
well as to function-

application [see Postulate 1(b)]--as addition. Specifical-

ly, 'a + b' is used in place of the more usual v o a'.

(In practice, it turns out that the two uses of '+' give

rise to no confusion.) The third postulate formulates the

closure of under function-composition:

3. (B - A) + B) = C A

Postulates 1-3 tell how translations act on points and

also imply the associativity of addition in T. The remain-

ing postulate, 4 (which is built up gradually), gives addi-

tional information as to how translations react with each

other and how they are acted on by real numbers. To begin

with, composition of translations is commutative, and it

follows from this and the preceding postulates that

4'''. T is a commutative group with respect to addition.

(This, rather than merely the commutativity of addition in

T, is adopted as a provisional postulate. It will be

strengthened as time goes on, becoming, successively, 4",

4', and, finally, 4.)
At this point the advantages of the notation become evi-

dent. Given a sentence--say:

A+ -C) = B + (4 - C)

of the language developed up to this point, there is an

easy way for students to check whether or not this sentence
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is a consequence of 1-4"'. Any such sentence has a real
number analogue obtained by replacing all variables by
(distinct) real number variables. In the example in ques-
tion, the sentence:

a + (b c) = b + (a -

is such an analogue. It can be proved that the given
sentence follows from 1-4"' if and only if its real num-
ber analogue is a consequence of the additive group postu-
lates for real numbers. So, with the exercise of a little
care, students can carry out symbolic manipulations at
this stage with the same skills they have mastered during
their study of real 'number algebra. [The care that is
needed is sufficiently illustrated by noting that since ad-
dition of points is not defined, '(A + B) - C = + A) - C'
is not a theorem even though its real number analogue is a
theorem.] Of course, skill in manipulating symbols is mere-
ly an essential for an easy life. Students (and readers)
are encouraged to investigate the content of theorems by
drawing figures.

The next step in the development of Postulate 4 is to
note that since, intuitively, a translation moves all points
the same distance and in the same sense, multiplication of
translations by real numbers can be introduced. There is no
need, here, to go into details. The usual postulates for
this operation are easily motivated in the usual ways, and
4''' is strengthened to:

4". Tis a vector over R.

After a study of linear dependence, leading to defini-
tions of line, segment, plane, etc., and the proof of vari-
ous incidence properties, 4" is strengthened to:

4'. Tis a three-dimensional vector over R.

At this point and even with the provisional Postulate
4"--affine geometry is present and many conventionally
"geometric" theorems can be proved. Also, it is a trivial
matter to introduce coordinates and, when desired, to use
analytic methods of proof.

To arrive at Euclidean geometry, one needs distance and
perpendicularity. At this point intuitive notions concern-

ing orthogonal projection are developed, and these suggest
the postulational introduction of an inner product with the

27



Vr,S,474. 4' 4

usual properties. The final version of the fourth postu-

late is, then:

4. T is a three-dimensional inner product space over R.

Postulates 1, 2, 3, and 4 (together with the implicit
postulate that R is a complete ordered field) constitute
the basis for the entire course. (Completeness of R is not

needed until rather late.)
Distance and perpendicularity are defined in terms of

the inner product [for example, d(A, B) = JIB All]; the
cosine and sine functions are defined; and congruence theo-
rems, for example, are consequences of now-trivial algebra-

ic identities such as the law of cosines. Incidentally,

the definition of the sine function shows the importance
of orientation--an important subject usually neglected in
the high school curriculum. (The cosine and sine referred
to above have sensed angles for arguments. This is suffi-

cient for much of geometry, but the usual circular func-
tions are needed also, and their definition and that of
angle measure depends on the completeness of R.)

Two concluding remarks are in order.
First, the preceding outline has probably given the im-

pression that the course is purely algebraic and departs
undesirably from the spirit of geometry. Fortunately, this

is not so. From the beginning the algebra is "translated"
into pictures of geometric figures. Moreover, once some
basic geometric theorems have been proved, others are de-
duced from them by the usual synthetic methods. This gives

ample scope for the development of "geometrical thinking,"
and the fundamental use of translations furnishes addition-
al purely geometric tools for the solution of geometric

problems.
Second, it has been noted earlier that analytic methods

involving the use of coordinates are at hand quite early
for the use of those who delight in them. As one might sus-
pect, however, the algebra proper to the course not only is

simpler but has the advantage of dealing with geometric ob-
jects rather than with a "coding" procedure. So, except as

a very useful vehicle for practice in real number algebra,

analytic methods are of little use in this course. (They

must be [and are] introduced, of course, as preparation for

later courses.)
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GEOMETRIC TRANSFORMATIONS

By Seymour Schuster
Minnemath Center, University of Minnesota

Minneapolis, Minnesota

During the past several years, there has developed
something of a stir concerning the introduction of geo-
metric transformations into the high school program.
This stir is due partly to the influence of certain Euro-
pean programs and partly to our own "growing up" the
result of a decade or more of curriculum reform. Certain-
ly, SMSG's publication of Yaglom's book Geometric Trans-
formations, in the "New Mathematical Library" series,
helped give prominence to the subject in the minds of many
school people.

There are several indications of the increased interest
in geometric transformations: three recently published
high school textbooks (that I know of) introduce transfor-
mations; virtually all of the recent textbooks for pro-
spective teachers treat geometric transformations; during
the past year, there appeared an excellent pamphlet by
Walter Prenowitz and Henry Swain for in-service teachers
concerning a study of congruence by means of transforma-
tions; there are now at least three translations of foreign
works dealing with the subject at a moderately elementary
level; and, finally, the most significant indication is
that my orders for today clearly stated that I was to talk
on "Geometric Transformations."

I take it that my responsibility is to tell you why I
think that this stir is a good thing and, in particular,
why I believe that the transformation viewpoint belongs
in high school geometry.

Congruence

The reformers of high school geometry began their ef-
forts with an attempt to give a mathematically sound
treatment of the Euclidean geometry that is now taught
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mainly in the tenth grade. The primary problem was to
come to grips with the question of order in geometry: the
order of points on a line, betweenness, inside and outside
of a figure, and so on. Another order of business was to
give honest, but not overly complicated, proofs of theo-
rems that depend upon completeness of the real line. The
third problem--the one I wish to dwell on was the problem
of congruence.

Virtually all the high school textbooks up to 1955 dis-
cussed congruence in terms of superposition, as did Euclid.
Superposition is unsatisfactory as a logical basis for the
notion of congruence. First of all, it is a physical no-
tion and not a mathematical one. There is nothing in the
usual axiom systems that allows one to lift up a triangle
and place it somewhere else. Of course, almost any idea
can be introduced as an axiom, but then one has to give a
careful description of the procedure and draw only con-
clusions implied by the axiom. But even if this were done,
the idea of superposition would still be unsatisfactory,
if only for the reason that it doesn't generalize. It

might be relatively simple and quite satisfactory if axioms
for superposition were set forth to treat two-dimensional
problems. But what happens in three dimensions? You can-
not superimpose one sphere on another, and this means that
you cannot prove that two spheres having equal radii are
congruent. (For a more detailed discussion of these
matters, see Congruence and Motion in Geometry by Walter
Prenowitz and Henry Swain, D. C. Heath and Company.) Now,

there are various ways in which the theory of congruence
can be given a satisfactory basis from a mathematical and
logical point of view. However, I want to make a pitch
for using the idea of an isometry, a distance-preserving
transformation.

Let me digress with some examples of transformations.
The particular transformations encountered in elementary
Euclidean geometry of the plane are one-to-one mappings of
the plane onto itself. If a is such a transformation,
then a associates with each point P a point P', called the
image of P under a. This is often written as

a:P ---- P' .

"One-to-one" means that a establishes a one-to-one corre-
spondence between the points P and their images P'; "onto"
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means that every point in the plane is the image of some
point.

Example 1: Translation (alias "shift")

With a given directed segment AA', we associate a
translation T, defined as follows. If

T:p ---- PI,

then the directed segment PP' has the same length and di-
rection as AA'.

P'

A

Example 2: Reflection

With a given line Z we associate a reflection p in the
line Z.

p:P ---...- P'

defined as follows:

(i) If point P is not on Z, then P' # P and Z is the
perpendicular bisector of segment PP'.

(ii) If P is on It, then P' = P. That is, each point
of 9. is invariant. The line Z is called the axis
or mirror of the reflection.

P'

. Q
/

S=S? x" Q'

P



Example 3: Rotation

With a given point 0 and any given real number 6, we
associate a rotation a,

8:P Pt,

defined as follows:

(i) If P = 0, then P' = P. That is,

6:0 --- 0,

so 0 is invariant.

(ii) If P # 0, then segments OP and OP' are equal in
length and the counterclockwise measure of L POP'
is equal to 6.

pr

n

--y7diC 16

0// /0\
\ P

Q

The transformation a is called a rotation with
center 0 through 0 radians.

The three examples are of transformations that preserve
distances. (The image of a segment is a segment of equal
length; it follows that the image of an angle is an angle
of equal measure.) Therefore, these are examples of isom-
etries.

Very briefly, congruence is defined in terms of isome-
tries by stating that two figures F and F' are congruent
if there exists an isometry a under which F maps into F';
that is,

a F F t .

Again, I refer you to Congruence and Motion in Geometry
by Prenowitz and Swain for a more extensive treatment of
this subject.

The notion of an isometry is a mathematical abstraction
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of the idea of superposition, but as a mathematical ab-
straction it has many advantages. First of all, it has
logical cleanliness. Secondly, it is general, so that the
same notion holds for zero-dimensional, one-dimensional,
two-dimensional, three-dimensional and n-dimensional con-
figurations. And, thirdly, it is general in the sense
that the congruence of general figures is dealt with in a
single idea. Whereas many logically satisfactory develop-
ments of congruence are based on axioms and definitions
for, first of all, the congruence of triangles, and then
later of polygons and polyhedra building from segments on
upward the theory of congruence based on isometries has
the advantage of dealing with all figures simultaneously.
The two figures F and F' are general geometric configura-
tions point sets, if you like. The mathematical economy
is obvious, and I believe the method has aesthetic appeal
as well.

Functions and Other Themes

No one argues with the fact that the idea of function
is one of the most important ideas in all of mathematics,
if not the most important. The first reforms in colle-
giate mathematics that took place after World War II took
cognizance of this and worked toward giving students a
clearer idea of what a function is, in order to provide
them with a more solid foundation on which to build their
mathematical education. These efforts had overtones that
soon affected the high school programs and now affect some
of the elementary school programs.

Increasing numbers of students are being exposed to the
ideas, including the language and notation, of functions.
But no matter what a student's elementary program was like,
his eighth- and ninth-grade algebra have certainly made
explicit use of functions and functional notation. Then
along comes tenth-grade geometry, which appears an anomaly
if it is only slightly related to previously studied math-
ematics. I expect we all agree that this is a bad thing
and that the more relationships and interrelationships we
can show between mathematical ideas in various subjects,
the better our curriculum will be. I therefore assert
that we should bring into geometry the all-important idea
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of function in its most natural geometric form, namely, as
a geometric transformation.

The "spiral approach" to curriculum seems to be favored
by many in recent years. For those who prefer the spiral
approach, here is a golden opportunity to reiterate an im-
portant theme (functions) and to do so in a most natural
way.

If the study of groups is already part of the curricu-
lum, then transformations present still another golden
opportunity for reinforcement. The transformation groups
are nontrivial yet quite accessible, especially because
they are geometric. If the students haven't encountered
groups, then the geometric transformations, serving as
motivation, may furnish an excellent entree. (In fact,
it is the study of groups of transformations that enabled
Felix Klein to give his famous classification of geome-
tries which, in some sense, answers the question: What
is a geometry?)

Still another tie-up with high school work is with the
subject of linear algebra. While the number of schools
that teach linear algebra is still small, that number is
increasing with the availability of excellent books like
the SMSG Introduction to Matrix AZgebra and Philip Davis'
book entitled The Mathematics of Matrices, published by
the Blaisdell Publishing Company. Since matrices have
their most natural interpretation as geometric transfor-
mations, any school that intends teaching linear algebra
would be wise to consider introducing transformations syn-
thetically in the geometry course before the linear alge-
bra. Among other advantages is the fact that the linear
course will be provided with built-in drama, since it will
be giving students an algebraic interpretation of a famil-
iar topic along with deeper insights that result from the
power of the algebra.

Symmetry

If we think of where our students are likely to go and
what kind of use they will make of the mathematics we are
teaching, then we are likely to come up with a list that
includes as subjects of future interest: physics, chemis-
try, engineering, biology, economics, and mathematics
(pure and applied).
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The notions of symmetry are of extreme inportance in
all of these fields. There is no time to go into very many
ways in which symmetry comes up in the different academ-
ic disciplines, so I'll confine myself to mentioning only
one specific application, but a pervasive one: X-ray crys-
tallography. This is the subject that deals with ascer-
taining the molecular structure of a compound in crystal
form. It is important in physics, chemistry, and molec-
ular biology. Its importance to physics and chemistry is
obvious; as for biology, suffice it to say that the struc-
ture of the DNA molecule was determined by the methods of
X-ray crystallography. The entire subject of crystallog-
raphy rests on the notions of geometric symmetry and the
group theory used to classify the symmetry groups of the
plane and space.

What does all of this have to do with geometric trans-
formations? The answer is simple. Transformations pro-
vide the key to understanding symmetry. Symmetry cannot
be defined or understood without the notion of a transfor-
mation. Artists and many lay people use the work "symme-
try" as part of their normal vocabulary, but very few
could give a precise definition that would be useful in a
scientific sense.

If a definition of symmetry is to serve science, it
should enable one to distinguish, with precision, figures
that are symmetric from those that are not; the judgment
of whether or not a figure has symmetry must be taken out
of the realm of the subjective. The scientists' defini-
tion of symmetry can be stated as follows: If figure F
is invariant under a transformation a, that is, if

Ot F F,

then a is called a symmetry operation for F, and F is said
to have a-symmetry.

A

A ABC has reflective symme-
try (= bilateral symmetry).

C B
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D

C ,

A

O ABCD has several kinds of
reflective symmetry and also
rotational symmetry.

Extensions of the idea of symmetry are prevalent in
physical science. Since invariance is a basic ingredient,
every conservation law (which says that some quantity is

invariant) is a statement of symmetry. This has convinced
physicists--especially those who work in particle theory
that the fundamental laws of the universe are symmetry
laws. For an excellent discussion of this topic, I sug-
gest The World of Elementary Particles by Kenneth W. Ford,
especially Chapter 4.

Problem Solving

Transformations are problem-solving instruments because
they often provide a method for transforming a hard prob-
lem into an easy one. After solving the easy problem, you
obtain a solution to the original hard one by applying the
inverse of the first transformation.

A problem concerning a general triangle might be solved
by transforming the general triangle into an equilateral
triangle.
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A problem concerning an ellipse can be converted into
a problem concerning a circle.

A problem concerning a pair of nonintersecting circles
can be transformed into a problem with the circles concen-
tric.

C I

Again, there is no time to discuss specific problems,
so I refer you to Introduction to Geometry by H. S. M.
Coxeter, where you will find many such problems strewn
throughout the book. I suggest, also, a paper by M. S.
Klamkin and D. J. Newman entitled "The Philosophy and
Applications of Transform Theory," SIAM Review, January
1961, pages 10-36. This paper is devoted to a discussion
of problem solving via transformations; the problems
range from the elementary to the esoteric. Another good
reference to problem solving by means of transformations
is the earlier-mentioned book by Yaglom.

The application of function theory to engineering prob-
lems relies principally on applying conformal transforma-
tions. Boundary-value problems can often be solved by
transforming the problem with an impossible boundary con-
dition into one that is just intolerable.

So, one again, the argument is that by introducing a
student to geometric transformations we are contributing
to the mainstream of his mathematical education and pro-
viding him with an instrument of lifelong value.

Finally, I would like to close with two points that
might temper some of my earlier remarks.

First, I am not proposing that tenth-grade geometry be
reorganized so that it be developed around the notion of
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a geometric transformation. Perhaps this extreme kind of
reorganization is appropriate, but I have not looked at
the problem carefully enough, nor do I have sufficient ex-
perience with high school geometry, to assert that this
is the most advisable way to go.

Second, I want to plead for maintaining a sense of per-
spective with regard to the geometry program at the tenth-
grade and, for that matter, at any level. To be explicit,
let me present the following point of view. Geometry is
a subject that deals with things such as points, lines,
surfaces, area, volume, etc. There are various mathemat-
ical tools that are used to study these entities and to
solve problems involving them. There are the synthetic
method, the vector method, the analytic method, methods of

calculus, etc. I don't think that any one method is pref-
erable to all others. A problem may admit of a simple syn-
thetic solution while the analytic solution may be vicious;
the opposite will be true of another problem. At different
stages in his career a student should be acquainted with
new techniques and new approaches. And if any one method
is to be adopted for a segment of a student's life, it
should be adopted for only a finite time and should not be
treated as sacrosanct. Maintaining this kind of perspective
will help to inculcate in students the freedom so essential
to do mathematics and to enjoy it.

38



GEOMETRY: THE CAMBRIDGE CONFERENCE VIEW (Abstract)

By Edwin E. Moise
Harvard University

Cambridge, Massachusetts

There were two Cambridge Conference views described in
the CCSM report, one algebraic and "modern," the other more
classical. In support of the classical (minority) view,
the following points were made.

1. In a choice of content and style, at a given teach-
ing level, a fundamental criterion is the availability of
challenging and workable problems. At low maturity levels,
calculus and classical geometry outrank linear algebra and
transformation groups under this criterion.

2. A vectorial conception of geometry is on a high
level of abstraction because one cannot significantly say
of a point that it is a vector; the significant statement
is that a space (considered as an entity in itself) is a
vector space.
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TOPOLOGY

By Gail S. Young
Tulane University of Louisiana

New Orleans, Louisiana

I would like to begin by making quite clear the tenta-
tive nature of my proposal in topology for the schools.
The process of curriculum development in education is a
good deal like having the pieces for four jigsaw puzzles
put into one box and attempting to make the most attrac-
tive picture out of the box. There are in mathematics
many more things that are both interesting and important
than can possibly be taught in the schools. The process
of selecting and ordering the topics in a curriculum is a
fascinating and deep intellectual exercise.

Many intellectual solutions are possible. But in my
mind these solutions are all inadequate because they do
not in fact they cannot--take proper account of the psy-
chology of mathematical learning. The reason they neglect
this psychology is that our knowledge of it hardly exists.
We have the brilliant intuition of Piaget and very little
else.

When we properly understand the psychology of mathemat-
ical learning, it could turn out that topological ideas
will replace much of current geometry, or it could turn
out that all such ideas will be postponed to college; and
I have no idea, myself, which way this will go. In the
meantime I will describe some things that, it seems to me,
topology can do in the schools.

First of all, topology has already entered the curric-
ulum, particularly in the elementary schools. There are
now many elementary school students who can talk about
simple closed curves and tell you that simple closed
curves divide the plane into two pieces.

There is room for somewhat deeper ideas based on such
intuitive concepts. For example, the reader will recall
the water-light-gas problem: Given two sets of three
points in the plane, join each point of one set to each
point of the other set by arcs that meet only at end points.
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If one accepts the Jordan curve theorem as intuitive, then
it is almost as easy to accept the theta-curve theorem,
that a figure homeomorphic to the Greek letter theta
divides the plane into three connecting pieces, in the
obvious way. With that result, it is easy to see that the
water-light-gas problem has no solution. I must say that
it makes me nervous to see such arguments presented as
mathematics when I know that there are formidable techni-
cal difficulties that are not being faced; and I am not
convinced of its desirability. However, quite fascinating
things can be done, based on this problem. For example,
ask the child if it is possible to solve the problem on
the surface of a doughnut, a torus. He will find that it
is. Then ask him about the water-light-gas-telephone-
sewerage problem on a torus, and he will decide that he
can't do that. Ask him if it would be possible to do it
on the surface of a doughnut with two holes.

I would also discuss unicursal problems, like the prob-
lem of whether it is possible to draw a square plus its
diagonals without lifting the pencil off the paper or re-
tracing steps. The argument that wherever one begins, one
must end at both the first and the second vertex with an
odd number of edges coming in, is rather easy.

The two types of problems together permit one to bring
out early the difference between intrinsic properties of
the figure, those that do not depend on whatever space it
is located in, and the extrinsic properties of the figure,
those that depend on whether it is supposed to be located
is a plane or a torus or in three-space. All these are
problems about linear graphs, which are becoming increas-
ingly important, at least as a language, in many types of
applications of mathematics.

To my mind, one of the fascinating things about con-
temporary mathematics is the rapidity with which it is be-
coming unified again, particularly by the category-functor
concept. If people in other fields are to understand what
mathematics is doing, they too must learn this language
and see how many things are simplified by it.

One of the major standardizations in this unification
is the introduction of the language and methods of general
topology. Thus one could introduce open and closed sets,
limit points, closure, connectedness, etc., much earlier
than the graduate school and, in a program of the future,
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quite conceivably in the high school. As soon as one
knows the notion of open set, one can use the topologist's
definition of continuous function: that is, a function f
from a space A to a space B is continuous if the inverse
of every open subset of B is open in A. With this defini-
tion, elementary theorems of general topology give simple
proofs of what have been rather complicated existence
proofs in elementary real variables. The theorem that a
continuous function on the line which is positive at one
point and negative at another must have a zero at some
intermediate point follows immediately from the easily
proved theorem that the continuous image of a connected
space is connected. The fact that a continuous function
on a closed interval assumes a maximum and a minimum fol-
lows, equally easily, from the somewhat deeper theorem
that the continuous image of a compact space is compact.
The key theorems of elementary real variables are that in-
tervals are connected and that closed intervals are com-
pact. One might as well let the students in on these
facts as early as possible.

The tremendously powerful existence methods based on
fixed points can be brought in much earlier. We are al-
ways talking about finding the zeros of f4nctions. But
every problem concerning a zero is equivalent to a prob-
lem concerning existence of a fixed point. Every zero of
a function f(x) is a fixed point of the function f(x) x.

[If f(x0) + x0 = x0, then f(x0) = 0, and vice versa.] It

is easy to talk about the Brouwer fixed-point theorem in
lower dimensions. One can prove it quite rigorously for
mappings of the closed interval into itself, though I
suspect a general proof will never enter the high school
curriculum, at least until there are many more biological
mutations. Suppose, in fact, "let f:i 4 i" is a con-
tinuous function mapping the closed interval (0, 1) into
itself. If f(0) = 0, then 0 is a fixed point. Other-
wise f(0) must be a positive number. If f(1) is not equal
to 1, then f(1) is a nonnegative number less than 1. Con-
sider the function g defined by g(x) = f(x) x. This is
continuous, since it is the difference of two continuous
functions. We have g(0) = f(0) - 0 > 0; g(1) = f(1) -
1 < 0, and from the intermediate-value theorem we see that
therefore there must be a number g(x0) such that g(x0) = 0.
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But that implies that f(x0) = x0, so that we have a fixed
point.

I think it is rather easy to introduce the ideas of a
metric space and of a contraction mapping. Suppose we have

a metric space M and a function f01 4* M. The mapping f is
a contraction mapping if there is a constant k < 1 such
that for each two points x and y, dif(x), f(y)] < d(x, y),
that is, if each two points are moved closer together by
the mapping with a certain maximal ratio of distances. If

the metric space is complete, it is not hard to show the
existence of a unique fixed point. This takes a great deal
of time, at an elementary level, but the number of problems
that reduce to the contraction principle is astonishing. I

will not take time here to go into that. One excellent
place to see them is the book of Kolmogoroff and Fomin,
Elements of the Theory of Functions. This prinaiple is not
merely theoretical; it is the basis for many practical nu-
merical methods.

Closely related to the notion of a fixed point are the
concepts of index of a curve and degree of a mapping. If

we have a parametrized curve in the plane (by which I mean
not only the point set but a description of how one moves
over the point set), one has the notion of index of the

curve at a point which is, intuitively, the number of times

that the curve passes around the point. It is rather easy
to prove that the index of a curve is a homotopy invariant:

that is, if we deform one curve into another but at no time
in the deformation pass through a point p, then the indices
of both curves around p are the same. With this it is, for

example, rather easy to prove the fundamental theorem of

algebra. Suppose there is a polynomial "f(z) = a
0
z
n

+ ..."

that has no zero. Then f(0) 0, and the index of the

curve described by f acting on a small circle around the

origin must be zero. But by moving continuously from the

small circle to a large circle, it follows that the index

of the curve given by f on the large circle must also be

zero. However, on a large circle we can deform the mapping

f to the mapping "g(z) = aoz
n
" without passing through the

origin. One can compute directly that the degree of g with

respect to the origin is always n, which is not zero, and

this gives a contradiction. This is a typical example of
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an index argument as used in advanced mathematics. In par-
ticular, the notion of deforming the mapping to a simple
one where it is possible to compute the index is basic.

School geometry seems to me to be a very good place to
introduce the elementary concepts of what used to be called
combinatorial topology. The notion of a complex, in the
form of a figure made up of a number of elementary building
blocks, points, intervals, triangles, tetrahedra, is quite
simple and intuitive. One can ask questions like this:
Given that we will permit triangles to intersect only in
vertices or edges, what is the least number of triangles
needed to build a torus, acting as though the triangles
were made of rubber? One can introduce the Euler character-
istics and prove topologically the fact that there are only
five regular polyhedra. This is the place to talk about
orientability of surfaces, and one can at least state the
theorem that two closed surfaces are homeomorphic if and
only if they have the same characteristics and are both ori-
entable or are both nonorientable. This introduces the con-
cept of invariants, another of the unifying themes of con-
temporary mathematics, and the notion of a set of invariants
characterizing a space. One finds himself also faced at
once with questions (such as the real "existence" of Klein
bottles or projective planes) which lead quite naturally
into discussion of higher dimensional spaces, in a fashion
that seems to me more concrete than the approach by linear
algebra, and which to my mind greatly reinforce the stu-
dent's motive for studying linear algebra.

In summary: Topology can, first of all, provide early
some opportunities for creative work. In the overall de-
velopment of mathematics, the sooner topological ideas can
be introduced, the less time is wasted on successive gen-
eralizations and the sooner the student understands what is
"really" going on. And, lastly, very powerful tools in
mathematics have elementary expressions in rather elemen-
tary parts of topology. How much of all this can or should
be done in the schools must be left to experimentation and
further study. But there is no a priori reason why the top-
ics I have mentioned cannot be introduced.
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AN APPROACH TO ANALYTIC PROJECTIVE GEOMETRY

By C. E. Springer
University of Oklahoma

Norman, Oklahoma

In the summer of 1966 the author gave a series of 32
lectures on analytic projective geometry to a class of 40
high school students selected from 19 states. This was
part of a program sponsored by the National Science Foun-
dation at the University of Oklahoma. The academic
achievement of the students in this course on projective
geometry and their apparent enjoyment of the study were
sufficiently gratifying to suggest a repetition of the
course for another group in the summer of 1967.

The material covered in this course consisted of the
first three chapters of Harold Dorwart's The Geometry of
Incidence (Prentice-Hall, 1966) and of selected topics
and exercises from the author's Geometry and Analysis of
Projective Spaces (W. H. Freeman & Co., 1964). Following
an introductory treatment of homographies on a line, the
concepts of "join," "intersection," and "incidence in the
plane" were covered, with a view toward solution of prob-
lems on linkages, point loci, and line envelopes. The
geometric interpretation of invariants under projectivi-
ties on the line and in the plane constituted an impor-
tant segment of the course. An attempt was made to im-
press the fact that Euclidean geometry is a specializa-
tion of a more general geometry. Further, it was empha-
sized that linear algebra and projective geometry lend
richness to each other.

The principal aim of this paper is to suggest an
approach to homogeneous point and line coordinates as a
basis for the study of projective geometry in the high
school.

Point and Line Coordinates in E
(2)

It is assumed that the student has become familiar

with the set of points in the Cartesian plane E
(2)

whose
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coordinates (x, y) satisfy the equation

(1) Ax + By + C = 0,

where A, B, C are given real constants. The equation

(2) (kA)x + (kB)y + (kC) = 0, (k # 0)

represents the same set of points as that given by Equa-
tion 1. Therefore, the line represented by Equation 1 is
determined by the ratios [A:B:C]. The singly infinite
set of ordered triples [kA:kB:kC] is equivalent to the one
representative triple [A:B:C] for which k 1. Equations

1 and 2 are said to be dependent. Every choice of an
ordered triple of numbers for A:B:C in (1), with A and B
not both zero, yields a line. Hence, one calls A, B, C
coordinates of the line, written as [A:B:C], with square
brackets. Of course, by Equation 2, the coordinates may
be written as [kA:kB:kC] with k 0 O. The choice k = 0
would not determine a line, so the triple [0:0:013is ex-

cluded. The totality of lines in the Cartesian plane E
(2)

is given by the totality of ordered triples [A:B:C], with
A and B not both zero.

Examples: The line given by "2x - 3y + 6 = 0" has line

coordinates [2:-3:6]. The line "y = 0" has line coordi-
nates [0:1:0], and the line "x = 0" has line coordinates
[1:0:0].

The triple [0:0:C], with C 0 0, is apparently excluded
at this stage of the development because the equation
Ox + Oy + C = 0 gives C = 0, an apparent contradiction.
The simple representative of the triples [0:0:C] is
[0:0:1], which is not allowable at present. Note that if
A and B are not both zero, then C may be zero; that is,
[0:1:0] and [1:0:0] are acceptable as line coordinates.
Of all nonzero triples, only [0:0:1] is now excluded, but
a way will be found to include it also.

Equation 1 is an incidence relation. It states that a
line with given coordinates [A:B:C] is incident with a
point with Cartesian coordinates (x, y). Here, A, B, C
are fixed, and the variable point (x, y) is on the line
[A:B:C]. It appears one-sided and awkward to have three
coordinates for a line and only two coordinates for a
point. One could write the point (x, y) as (x, y, 1), or
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as (x, y, z) with z always regarded as 1. In this case

the incidence equation would be

(3) Ax + By + Cz = O.

It is clear that Equation 3 is equivalent to

(4) A(kx) + B(ky) + C(kz) = 0, k # 0;

that is, if (x, y, z) satisfies Equation 3, then (kx, ky,

kz) also satisfies that equation. This means that the

third coordinate in the triple (x:y:z) is arbitrary, sub-

ject to the restriction that z # 0 if (a, 1-, 1) is to be
z z

the point (=E, 1) in the Cartesian plane E(2). The triple
z a

(x;y;z), with parentheses, is a set of homogeneous point

coordinates of the point (L,1). The triple (2:b:0) does
z

not represent a point in the Cartesian plane.

Examples: The point (0, 0) has homogeneous coordinates

(0:0:z), which is equivalent to (0:0:1). The point (0, 1)

has homogeneous coordinates (0:1:1). The point k-
2
r,

/ 3 \
corresponds to (2:-5:3), and the point (- 17, 7) may be

written as (-15:8:20), or equivalently as (15:-8:-20).

It is apparent that one advantage of homogeneous coor-

dinates is that a point with rational coordinates 01, II)
q s

can always be designated by a triple of integers (sp:rq:(13).

The left-hand member of Equation 3 is called the inner

product of the triples [A:B:C] and (x:y:z).

Examples: The line [1:2:3] is incident with the point

(-3:0:1) because the inner product (1)(-3) + (2)(0) +

(3)(1) = 0. The point (1:-2:1) is also incident with the

line [1:2:3] because the inner product (1)(1) + (-2)(2) +

(1) (3) = 0.

A Model for the Affine Plane

It is useful at this point to show that Equation 3, with

A, B, C as parameters, represents all planes through the

origin of Cartesian coordinates in Euclidean 3-space E(3) .
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(In accord with the Cambridge Report, it is assumed at
this stage that the student will have studied some elemen-
tary analytic geometry of three-dimensional Euclidean

space E(3) . This would include equations of lines and
planes, and conditions for orthogonality of lines and of
planes.)

A fixed set of ratios [A:B:C] determines the normal to

a plane in E (3) with (3) as its equation. The incidence
relation (3) is now an orthogonality condition under which
the normal [A :B :C] is orthogonal to all lines OP from the
origin 0 to any point P(x:y:z) in the plane with Equation
3. On the other hand, for a fixed set of ratios P(x:y:z)
and variable [A:B:C], Equation 3 is satisfied by the nor-
mals to all the planes that contain the line OP. One notes
that a given set [A:B:C] determines a plane through 0, and
a given set (r:y:z) determines a line through O. All
triples [A4:BaC] and (x :y :z) are allowable [except the set
(0:0:0)]. In particular, the point triple (2:22:0), which

was not allowed in the Cartesian plane E
(2)

, is now used
to determine the line from 0 to any other point (a, b, 0)

in the xy-plane of E (3)
. For instance, the point triple

(1:0:0) determines the x-axis. The line triple [0:0:1],

which was excluded as a line in the plane E
(2)

, now de-

termines a unique plane with the equation z = 0 in E (3)
.

It is possible to establish a one-to-one correspondence be-

tween the lines (and planes) through the origin in E (3) and

the points (and lines) in the plane E
(2)

. However, if
points with coordinates (2:b:0) and a line with coordinates

[0:0:1] are adjoined E
(2)

to obtain the extended Euclidean
plane, then the correspondence is complete. Note that for
arbitrary a and b (not both zero), all points of the set
(2:b:0) are incident with the line [0:0:1]. Let this line
be named the ideal line. With the addition of this ideal

line to the Euclidean plane E
(2)

, one obtains the affine

plane A
(2)

. It must be borne in mind that the plane z = 0

in E (3) plays a special role in the bundle of lines through
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the origin 0 in E(3) . Under a mapping in E(3) given by

= Aix +B iy + Clz,

(5) y = A2x + B2y + c2z

"if A3x + B3y C3Zg

it is required that the point (a:b:0) go into another
=MO

point (a:b:0) in the plane z = 0. This means that lines
of the plane z = 0 map into lines of the same plane. A
consequence is that A = B = 0. Equations 5 determine

either a change of coordinates in E (3) or a line-to-line
mapping, and the same equations determine either a change

of coordinates in A
(2)

or a point-to-point mapping in the

affine plane. The geometry of the affine plane A
(2)

is

completely equivalent to the geometry of the lines in a

bundle in E (3)
, in which one plane is fixed. The bundle

of lines with one plane invariant is a model for the af-

fine plane. In the affine plane A
(2)

, the ideal line

=. 0 maps into itself.
If the restriction that lines in the plane z = 0 of

E(3) map into lines of the same plane be dropped that is,
if the plane z - 0 is treated as any other plane of the

sheaf of planes through the origin in E
(3) --then the ideal

line in A
(2) is not distinguished from any other line in

the plane. With this generalization, the affine plane

A
(2)

becomes the projective plane P
,(2)

. The geometry of
the projective plane is completely equivalent to the geom-
etry of the lines of a bundle. The lines of the bundle

correspond to the points of P
(2)

, and the planes of the

sheaf correspond to the lines of P
(2)

. In the projective
plane, any line may be given the equation a = 0. The three

coordinates (r:y:z) are on a par. Any three nonconcur-

rent lines in P
(2)

can be given the equations x = 0, y = 0,

z 0, that is, the line coordinates [1:0:0], [0:1:0],
[0:0:1].
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Join and Intersection in P
(2)

Let [A:B:C] be the join of the points P1 (xl:y1:zi) and

P2(x2:y2:z2) in the projective plane By By the inci-

dence relation (3) one has

Axi + Byl + Cz1 = 0,
(6)

Axe + By2 + Cz2 = 0.

The solution for these equations may be written in the form

A -

y1

y
2

z1

Z2

Z
1

22

x
1

x2

xl

x2

y1

y2

C, B
oc1

x
2

y

y2

C,

so that

(7) A:B:C =

yl
zi

y2 22

Z
1

x1

z2 x2

x
1

y
1

X2 y2

It is seen that A, B, C are proportional to the three de-
terminants of the matrix

yl Zi

X2 y2 Z2

obtained by leaving out a column at a time and maintaining
the proper cyclical order. The triple [A:B:C] is called

the cross product of the triples (x1 :y1:z1) and (x2:y2 :z2).

Example: The join [A:B:C] for the points (3:-1:2) and
(1:2:4) is found from the matrix

/ 3 -1 2

1 2 4

to be [-8:-10:7], which is equivalent to [8:10:-7]. All
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points (x:y:z) on the join satisfy the equation

8x + lOy - 7z = O.

From Equation 7 it is seen that the join of the points

Pi(xi:yi:zi) and P2(x2:y2:z2) has the equation

x
y1 zi

y2 22
+y

Z
1

X
1

z2 x2
+z

xi yl

x2 y2
= 0,

which can be written in the determinantal form

(8)

x y z

xi yi 21 = 0.

x2 y2 z
2

This is the point equation of the join of P1 and P2.

The point (x:y:z) which is incident with both of the

lines 111111:Bi:Cli and L2[A2:B2 :C2] is called the inter-

section of the lines. Because of the incidence condi-
tions, one has

(9)

Aix + Biy + Ciz = 0,

A2x + B2y + C2z = 0;

and the ratios x:y:z are found (by the same algebraic pro-
cedure as that used for the join) to be given by the cross-
product components selected from the matrix

(Ai B1 Cfi

A2 B2 C2

Thus,

xyz =

B1 C
1

B2 C2

C
1

Al

C2 A2

Al B1

A2 B2

and a line [A:B :C] is incident with this point if and only
if
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A

B
1

C
1

B
2

C2
+B

C1 Al

C2 A2
+C

which can be written in the form

(10)

A B C

Al B1 C1

A2 B2 C2

= 0.

Al B1

112 B2
is 0,

This is the line equation of the intersection of lines L1
and L2.

Note that if C1 = C2 = 0, but A1:B1 # A2:B2, then the

lines L1 and L2 are distinct, and both are incident with

the origin of the Cartesian plane E
(2)

. From Equation 10
it follows that C = 0 is the line equation of the origin.

(Remember that z # 0 in E
(2)

.) The dual of the last state-
ment is obtained from Equation 8 as follows: If 21 = 22 =

0, but xl:yi # x2:y2, then the join of pl. and P2 is the

ideal line with the point equation z = 0 in A
(2)

. Note
(2)

that the dual exists in not in E
(2).

The incidence condition

Ax +By + Cz 0

can be interpreted in two ways. If A, B, C are fixed, it
is the point equation of a Zing of points. If x, y, z are
fixed, it is the line equation of a pencil of lines. A
pencil of lines is the dual of a line of points. One
notes that after the concepts of join, intersection, and
incidence are introduced, one has a built-in duality prin-
ciple by virtue of the algebraic framework. Also, one

deduces that complete duality is not attained in E
(2)

,

whereas it is in A
(2)

and P
(2)

.

Next, let the use of line coordinates be illustrated

by finding the intersection of two lines in E
(2)

.
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Example: Find the intersection of the lines

x + 2y - 4 = 0,

3r - 5y + 11 = 0.

Solution: One needs to write only

3-5 11
+ (2 : -23 : -11)

2 23
to obtain the Cartesian point coordinates (-

11'
yi) of

the intersection. The equation of the intersection is
24 - 23B - 11C = O.

The next example shows how the dual works.
3

Example: Find the join of the points (7r, - 1r) and
( 5 1

\ 7' 3)
Solution: The homogeneous coordinates of these points

are (8:-9:12) and (15:7:21). Write

8 -9

15 7 21

,+ [-273:12:191].

The equation of the join is 273x - 12y - 191z = 0.
The final example indicates a situation in the affine

plane A
(2)

.

Example: Find the intersection of the lines [1:2:-4]
and [2:4:5].

Solution:

1 2 -4
(26:-13:0) = (2:-1:0).

2 4 5

The result is a point on the line z = 0 in the affine
plane. This point has no image in the Euclidean plane.
There is no solution for the equations x + 2y - 4 = 0 and
2x + 4y + 5 = 0 in the Euclidean plane.
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Continuation

One would introduce next the necessary concepts of lin-
ear dependence of three distinct points on a line, and of
three distinct lines through a point. A basic set of
points P1(1:0:0), P2(0:1:0), P3(0:0:1), with a unit point

Li(1:1:1), or, dually, a basic set of lines 9,1[1:0:0],

2,2[0:1:0], ct3[0:0:1], with a unit line u[1:1:1], should be

studied next. With this background the student is ready
to have fun by solving many linkage problems, including
the Theorem of Pappus and the Theorem of Desargues on per-
spective triangles in the plane.
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