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Status of Uspekhi Experiment

July 1969

Summary

The main points of the June 1965 Buckland- Weaver proposal to AIP for an ex-

periment in creating a labeled machine file together with some of the assorted by-

product publishing outputs, have now been successfully carried out.

Eighteen pages of journal photocomposition appended hereto were generated

from a labeled machine file of Uspekhi data by computer programs, as planned. A

sample of an index page, similarly generated, but from a different journal,* is also in-

cluded.
These programs are tested and ready to be used in the production of further

journals and indexes.
Costs and procedure breakdowns are shown in Table II-VI. Production details

will be seen to hav7.. varied in some cases from the 1965 concepts, but not the con-

cepts themselves.
Comparisons between 1965 predicted costs and actual costs in 1969 are shown

in Table:, VII-IX.
Briefly:

The machine file right now costs about 18% more than predicted; it will cost slightly

less (6%) within the year.

The journal page output costs at this point 24% more than predicted, mainly due to

poorly adapted character generating equipment. CRT character generation promises

a lowering of these costs significantlyto 27% below. 1965 predictions.

Index output presently costs 14% more than predicted, with the promise of sub-

stantial savings dependent upon the use of CRT equipment.

The systems developed can be applied without changes to immediate Uspekhi pro-

duction at a cost of $37.91 per (English) page. With the installation of on-line PDP-8

editing equipment (planned for Fall), the page cost drops to $34.00. Further im-

*The Physical Review.
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provements (provision of an adequate Photon disc and a translation bridge from SKIL
to SIPL*) would reduce the page cost to $31.00. With an investment in a translation
program and a suitable character set for CRT typesetting equipment, the page price
falls to $24.00.

Assuming the addition to TPS of display-equation programs, SKIL access, and the
CRT character generator bridge, one can try to predict per-page costs for a primary
journal on the Uspekhi model:

Operation
Per page costs

(6700 cc)
Copymark $ 1.00
Keyboard text (4,200 cc) 6.60*
Keyboard equations (equiv. 2,500 cc) 6.00*
Proofread (1) all data 4.00
Proofread (2) storage data only .40
Edit and zorreet 2.80
Edit-display monitor 1.30
Generate master file 1.10
TPS, including equations 4.20
CRT proof run (for author) 3.30
Keyboard additional corrections 2.00
CRT final run 3.30
Page makeup, manual 3.00
Proofs, miscellany 1.00

TOTAL $40.00

For simplicity, it is assumed that illustration, tabular material,etc. can be handled
within the cost limits for a 60-40 text-equation mix.

Procedures: Creating the Machine File

Copymarking

It will be seen from Table II that only $.70 per page has been allocated to copy-
marking. This is a low figure compared to the line for this item in AIP's normal pro-
duction budget. One of the major reasons for this is that the data for Uspekhi has
already been typeset once in Russia, and a style established during this process.

It has been found in other experiments, however, that even for primary manu-
script the amount of copymarking necessary to guide keyboard operators through
material of this complexity is minimal; certainly far less than in conventional direct-
setting systems. To a large extent the reason for this is that the need for repetition

*See SKIL: Science Keyboard Input Language, V. Weaver, October 1968, a report to AIP. SIPL is
an acronym for Scientific Information Processing Language, used in Inforonics' MasterFile.
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of complex strings of typographical commands is avoided. The entire command for
choosing a typeface, leading, measure, and format for a footnote. for example, is fn.
More than 250 separate information items exist in the Uspekhi program, but the
identification vocabulary is considerably smaller. Eq, meaning equation, has different
control meanings depending,on whether it occurs in a text or footnote.

Another reason is that identifier language is chosen for mnemonic value. If Om
transfers the keyboarder to the mathematics character set, then a calls out an arrow,
g calls out greater than, and i calls out infinity. These are standard for all typefaces
and jobs, and are quickly learned. Since only the general identification is required
(the specific choice of typeface and point size being made by the computer), there
would be no point in copymarking such occurrences.

In practice, about 20 labels (fn, tx, eq, etc.), each with easy mnemonic associ-
ations, keep recurring, and these can be written in the manuscript margins by people
withhlittle or no typographical background.

Codes

Creation of the machine file requires that all data be labeled as to its nature so
that future uses, including typographical ones, can be designed to take advantage of
the labeling. (Author names, for example, can be searched and/or typeset distinc-
tively, provided they are flagged.)

In addition, certain purely typographical functions (such as the use of boldface
for vector expressions, for example) are embedded in the data, since they do not
follow simple deductive rules.

It is interesting that in the present case the number of tape codes required to
label the data on input is almost the same as the number of control codes required
on the Photon tape (see Table I). They are, of course, quite different. The recogni-
tion that a belongs to the Greek character set and the assignment of a prefix Og to
the b code, does not require the same degree of mathematical or typographical
sophistication needed to recognize that the a must be italic because it is embedded
in a mathematical expression and that a certain Photon matrix position and lens
must be synchronized to produce the proper point size on output.

It is surprising that the number of codes needed in the two cases is so nearly
equal. One objective of input system design should be to make fewer input codes do
the job.

The SKIL system (described in reports of March and October 1968 to AIP)
moves in this direction, cutting the number of keyboard labeling codes by 40%,
actually somewhat below the number needed to tag the data in machine storage.

Since the program to translate SKIL input into master-file codes is still missing,
no consideration of the effect of this potentially powerful tool is given in the cost
analysis section of this report.

Keyboarding

Input languages used in these experiments have been largely independent of the
kind of equipment employed. Custom built keyboards have been avoided, and input
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systems have been designed to work within the standard 44-keybutton range. Costs
shown in the tables are based on work with paper-tape perforating keyboards. Ex-
periments for other purposes have convinced us that magnetic tape keyboards are
faster and more reliable. Table IV, showing costs for a Fall 1969 production system,
is built around the use of an IBM Selectric keyboard (#735 I /O), linked to a time-
shared computer and writing a magnetic tape whose records (typewriter lines) are
immediately numbered and made accessible to a keyboard-operated editing program.

This system, known as Astrocomp, is being marketed by Information Control
Systems, Inc., of Ann Arbor, Michigan. It is scheduled to be installed at VWC in
August, and we hope it will be operating shortly thereafter.

Using this system, control language is identified by a key-controlled shift to
control mode which is accompanied by a ribbon color shift. Otherwise, the key-
board is the standard IBM Graphics configuration, on 44 buttons.

Astrocomp is discussed further under Editing.

Listback and Proofreading

For all input systems in which hardcopy is to be proofread, we have employed
a listing of the keyboarded tapes to provide an accurate record of codes and to
identify, via a parity check, as many machine errors as possible.

The actual method of production for the Martynov article (Table II) included
a listback of DURA tapes before proofreading.

The recommended method (Table III) substitutes for this an immediate con-
version to magnetic tape and a line-printer dump to obtain proofreading copy. This
step provides a better check of codes, and also a larger character set (and therefore
fewer characters to be proofread in coded form).

From a proofreader's standpoint, an ideal initial printout would involve the full
character set, and enough formatting to verify that item labels had been correctly
recorded (including, of course, the assembly of displayed equations when that be-
comes part of the system). Such a systeminvolving a preliminary Photon output
in a typographical form designed exclusively for efficient proofreading, and not in-
tended for any publishing outputis being used to produce The Physical Review In-
dex, but has not yet been designed for Uspekhi.

Considering that the computer processing and character-generation time and ex-
pense for such an ideal step would probably be only very slightly less than that for
actually producing journal pages, it is doubtful whether this is a practical feature of
any system designed to handle translation journals. Where a proof of his data must
be submitted to an author for approval, the costs of such a procedure may seem less
formidable.

It will be noted that Table I reflects two complete and independent proof-
readings of the input data file. If the entire file is to be stored in machine form, this
is the recommended procedure. If, however, the file be thought of as having two
parts: one, those items to be stored for later search and processing, and two, those
items that will be used only oncefor typographical production of the primary
journal; the proofreading technique can be altered. A single proofreading can be
given the "journal only" portions (which is the present practice under conventional
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production methods), with a double reading reserved for the "storage" portions of
the file. This is the procedure shown in Tables III and IV. The assumption is that the
"journal-only" part of the file will be discarded after output of the journal pages.

Editing and Master-File Generation

Tables II and III include the use of Inforonics' CRT-monitored Edit-Display
programs for correction of the data. Changes are made as the tapes are fed into the
Master File. A human editor works from marks previously made on a listback hard-
copy, and checks his work immediately on a scope display.

Table IV recommends use of the Astrocomp editing and correction programs.
These are not unlike the IBM Datatext package (also called the Administrative Ter-
minal System). Checking is not via CRT, but via computer-controlled printout on
the Selectric I /O; a slower, but cheaper method. Since the system is not yet in-
stalled, reliable predictions as to price cannot be made. A small allowance is left
in the budget for continued monitoring of the read-in operation, with the hope
that this step will prove unnecessary.

The Master File format is a standardized coding scheme used within the In-
foronics Text Processing Service. It forms the basis for all future file manipulation
and storage functions.

Cost Tables

TABLE I. Comparative output character and code counts for the
Martynov article.

Input keyboard codes,
Inforonics keyboard

Total

Per
English

page

Percent
of nondata

codes

language 87,800 5,100 18

Input keyboard codes,
SKIL 81,400 4,750 12

Master file (storage) codes 84,756* 4,930 15

Typesetting tape codes,
Photon (for journal
pages) 87,552* 5,100 18

Output (printing) charac-
ters and spaces
(journal pages) 71,800 4,200

Mese two totals are computer-counted. Other totals are human estimates.
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TABLE II. Step-by-step costs for production of the machine file
for the Martynov article, actual method.

Per thous-
and output

Hours Rate Total characters Per page'

Copymark 1.5 $ 8. $ 12.00 $ .17 $ .70
Keyboard2 12.3 11. 136.00 1.90 7.90
Listback 2.4 4. 7.60 .14 .56
Proofread (1st) 6.0 8. 48.00 .67 2.81

Proofread (2nd) 6.0 8. 48.00 .67 2.81

Consolidate
marks 2.0 8. 16.00 .23 .94

Edit display 102.00 1.42 5.93
Generate

master file .25 45. 11.25 .16 .66
TOTALS $5.36 $22.31

1. A convenient unit for comparison; there is no such thing in the machine file, of
course.

2. DURA Mach 10. Paper tape. Inforonics keyboard langup,

TABLE III. Step-by-step costs for production of machine file,
recommended and immediately applic ?ble method.

Per thous-
and output

ifours Rate Total characters Per page

Copymark 1.5 $ 8. $ 12.00 $ .17 $ .70

Keyboardl 12.3 11. 136.00 1.90 7.90
Convert to mag

tape, dump on
line printer2 .67 45. 30.00 .42 1.75

Proofread (1s03 4.2 8. 33.60 .47 1.97

Proofread (2nd)4 .5 8. 4.00 .06 .24
Edit display 102.00 1.42 5.93

Generate master
files .25 45. 11.25 .16 .66

TOTALS $4.60 $19.15

1. DURA. Inforonics language.
2. 120-character chain. Partial typographic conversion.
3. Read full record.
4. Read storage data only. Storage data consists of information items to be retrieved

for other purposes than primary journal production.
5. Full record.
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TABLE IV. Step-by-step costs for production ofmachine file,
recommended and applicable in the Fall of 1969.

Per thous-
and output

Hours Rate Total characters Per page
Copymark 1.5 $ 8. $ 12.00 $ .17 $ .70
Keyboard 1 11.3 12. 136.00 1.90 7.90
Listback2 2.6 5. 13.00 .18 .76
Proofread (1 st)3 5.0 8. 40.00 .56 2.34
Proofread (2nd)4 .6 8. 4.80 .07 .28
Edit and corrects 2.0 15. 30.00 .42 1.76
Edit displays 14.50 .20 .84
Generate master

file .25 45. 11.25 .16 .66
TOTALS $3.66 $15.24

1. Inforonics language. Selectric #73 735 I/O.
2. #'; 35 I/O.
3. Complete record.
4. Storage data only.
5. Astrocomp editing programs via keyboard.
6. Monitored read-in via Edit-Display and scope.
NOTE: Use of the SKIL system for input was tested earlier on this same data. No

computer programs are available to read SKIL coding into Inforonics' Master
File. It can nevertheless be reliably stated that use of SKIL in the production
system outlined above would result in savings of $1.26 per page for keyboard-
ing and $.67 per page for proofreading, resulting in a page cost of $13.31.



TABLE V. Costs for primary journal output from the machine
file, (Martynov article), actual method.

Per thous-
and output

Inforonics
typesetter
program run

Photon 560 run
IBM Composer,

Hours

1.0

5.5

Rate

$45.
30.

Total

S 45.00
165.00

characters Per page

S .63 S 2.63'
2.30 9.652

patches3 .65 11. 7.15 .10 .42

Check, set or
steal missing
characters,
insert's 5.0 11. 55.00 .77 3.22

Makeup pagess 7.0 9.50 66.50 .93 3.89
Proofs, miscella-

neous 20.00 .28

TOTALS $5.01

_1.17
$20.98

1. The Inforonics typesetter program now produces paper tape to drive the Photon
560. Running speed is punch-lim' ited (about 110 cps). Conversion to CRT type-
setting implies magnetic tape, which can be written fader, with consequent reduc-
tion in computer time. This would be reflected in a lower price. Since the exact
amount is not known, the effect is ignored.

2. No interface program has yet been aitten to drive a CRT character-generator from
the Inforonics typesetter program. Such a program would create access to service-
bureau composition faplities currently quoting rates per thousand characters less
than one-fourth those for the Photon. It should be borne in mind that none of these
service bureau operations yet offers a character-set adequate for Urpekhi. The poten-
tial saving is $7.15 to $7.55 per page.

3. To translate patches for figure labels and table beads.
4. The Martynov article was originally chosen to present a difficult character set The

average Uspekki article contains approximately one-fifth as many off -disc symbols.
A price for inserting these characters for the average article would be $1.00 rather
than $3.22. An investment in a suitable disc would entirely eliminate this item.

5. This item includes dealing, re-breaking (in some cases), and inserting displayed
equations from the Russian typeset version.
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TABLE VI. Costs for subject and author index output from the
machine file, (Martynov article), actual method.,

Present
cost per tick

Mag-tape OZT
cost per tick

Author and subject sort $ .19 45 .19

Inforunics typesetter .42 .422

Photocomposition .78 .30
Check, dummy, and makeup .813 .554

Update master files .10 .10
TOTALS $2.30 $1.56

1. Taken from experience with The Physical Review Index, now in production. Photon
560 character generation.

2. See note 1 to Table V.
3. This figure subject to reduction with pester work volume; the present load is 16.20

pages per month, too small for efficiency.
4. No consideration is given to the economics inherent in computer-controlled page

makeup, although (for indexes) this capabliity is akeady a part of some systems.
5. This item allows an editor to apply hindsight to subject category loadings prior to

emulations..

TABLE VII. Predicted vs. actual costs for creation of machine
file, Per Par-

Actual Marf_ynov method
(Table II)

Recommended method,
immediate (Table III)

Recommended, Fall 1969
(Table N)

Predicted
1965

$16.251

Actual
1969

$22.31

19.15

15.24

Percent
variation

+7

+8

6
1. See June 1965 proposal, pp. 3 and 4. This lime is the total of items 14,14,

and 15 ($7.72), multiplied by the Russian-English page ratio (1.7:1) and ad-
justed for the Consumer Price Index increase (109.9 to 130.0). Seventy cents
per page has been added for copymarking, which was considered an editorial
function in 1965.
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TABLE VIII. Predicted vs. actual costs for paged journal-form
output from machine file, per page.

Predicted Actual Percent
1965 1969 variation

Actual Martynov method
(Table V) $15.101 $20.98 +39

Average Uspekhi article
(Table V, see Note 1) 18.76 +V.

Average Uspekhi article,
adequate Photon disc 17.7.6 +18

With CRT character-genera-
tion (Table V, note 2) approx. 11.00 27

1. See June 1965 proposal, pp. 3 and 4 and footnote to Table VII. This figure covers
items 5-11 and 13. Note that in 1965 the Linofilm was (a) assumed to havean
adequate character set, (b) quoted at $20 an hour, versus the $30 an hour now
being billed for the Photon, and (c) predicted to have a throughput rate of 7 cps,
versus an actual Photon throughput rate discovered to be 3.5-4 cps.

TABLE IX. Predicted vs. actual costs for paged index-form
output from machine file, per article.

Predicted Actual Percent
1965 1-69 variation

Actual Physical Review
method (Table VI) $2.021 $2.30 +14

With CRT character-
generation 1.562 23

1. See June 19E5 proposal, p. 4 and footnote to Table VII.
2. This is a maximum, with no consideration given to computer-controlled page make

up capabilities. See Note 4 to Table VI.
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SEPTEMBEROCTOBER 1967

Statistical Theory of Electrolyte Solutions of Intermediate Concentrations

G. A. MARTYNOV

Institute of Physical Chemistry of the Academy of Sciences of the USSR

Usp. Fiz. Nauk 91,455-483 (March, 1967)

INTRODUCTION

I. In his preface to the Russian translation of
Robinson and Stokes' .monograph Electrolyte Solutions,
published in 1963, Academician A. N. Frumkin writes,
"Although the number of experimental and theoretical
studies on electrolyte solutions at present considerably
exceeds ten thousand, interest in this field is not waning.
On the one hand, this is explained by its great practical
significance both in technology and in laboratory
practice, and on the other hand, by the difficulties that
the theory encounters in trying to interpret and generalize
the experimental facts." The latter statement is of
especial interest here, and it can be formulated more
sharply: the theory of electrolyte solutions is now
undergoing a definite crisis. As we see it, the reason for
this is that people try automatically to extend to more
concentrated solutions the methods that have brilliantly
proved themselves for dilute systems, while neglecting a
certain qualitative difference existing between them.

In fact, as the Debye-Hfickel theory" implies, in dilute
solutions the radius of correlation R, between the
positions of individual ions (which equals the Debye
radius r2 = { e1131/8rvk2e21*) is considerably greater than
the mean distance k between particles. Hence, the Debye
sphere contains a large number of particles at one time,
and the mean electrostatic-interaction energy per particle
is small in comparison with 0. In consequence of the
latter, the spatial distribution of the particles hardly
differs from that in an ideal gas. Finally, since R. >> 4,
where r, is the diameter of the ions, the contribution of
the Born repulsive forces to all the macroscopic
characteristics of the system is negligibly small in
comparison with that of the electrostatic forces.

The volume of the Debye sphere v2 = 4irri declines
with increasing concentration as v-32, while the mean

The following notation is adopted here: e is the dielectric constant
of the solvent, 0 = kT is the temperature ea, = 1e is the charge of an
ion of type a, and ica is its valence,

.._- E v.
i.v.i4A1

is the total number of particles per unit volume, and M is the number of
different types of particles in the system. Hereinafter we shall restrict
ourcelves to treating only binary symmetric electrolytes. for which
M = 2, it. = k_ = it, and v. = v_ = v.

volume per particle v declines as v-1. Consequently, e.g.,
in aqueous solutions having

0.05 -- 0.10
v , moles/liter

kg
(I)

the quantity vv becomes equal to v. At the same time, a
substantial rearrangement takes place in the system:
when v > v2, each ion is now shielded by only one
counterion. Hence, a pairing of oppositely-charged
particles seems to occur in solutions of intermediate
concentrations. In this process, the mean distance 1._ =
II_+ between ions of opposite type becomes considerably
less than the mean distance K calculated without account
of the interaction between the particles.* And although K
is rather large, as before, in solutions of intermediate
concentrations, Born repulsion forces begin to play an
important role because 11+_ ,:.: ro. Evidently, R.._ can
differ appreciably from R only when the energy of pair
interaction of the ions > 0.

In going to very concentrated solutions or to molten
ionic salts, the radius of correlation R, increases again,
and in the limit it becomes several times ro. The structure
of the melt thus proves to be similar to that of determined
by Born repulsion forces.

Thus, the type of distribution of the ions in the system
undergoes substantial changes with increasing con-
centration. Correspondingly, the approach in constructing
a theory of electrolytes of different concentrations must
also differ.

II. In 1946, Bogolyubovm was the first to find the
second ( Debye) term of the virial series of a system of
charged particles by expanding the configuration integral
of the system in a power series in the small parameter v/v2,
= 3)04 where

13Avk2e2r:
X2 0 . X

k2e2
.2 4xp, p - 2nvr:. (II)ter°

Subsequently Mayerm and Haga" have considerably
refined Bogolyubov's result by calculating several more
terms of the series .

Xx 1 .2 X2i-3
D I lX1C1 7'.' =2 6 2 A-6 (2j)1(21 3)

j.0

1

8 (Xx)3 In (Xx)

*This effect is manifested more strongly as the maximum value of the
electrostatic energy, e2k2lero increases in comparison with the energy 0
of thermal motion.
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1 3
(Xx)

2
2x2 32 In

x

4

6 X2)-2 + 0 i(xx)41, (III)4=1 (2/ 1)! (2j-2)
)=2

where p = PI Phi = 2v0 is the ideal-gas pressure, and
C = 0.577... is Euler's constant. One can easily convince
one's self by direct substitution that when x > 1* and v
> v21 (i.e., when xi( > 1/3), the virial series (III)
converges very slowly, or perhaps may diverge completely.
Hence, condition (I) practically defines the boundary
between systems for which one can construct a theory by
expanding the initial quantities in power series in the
small parameter v/v2 (or equivalently, in the concentration
v), and systems not admitting such an approach.

At present there are only two groups of methods in
statistical physics for calculating the configuration
integral of gaseous and liquid systems: the methods based
on virial expansions and the so-called methods of
liquid-state theory.') However, as was shown above, the
former are unsuitable for constructing a theory of
electrolyte solutions of intermediate concentrations.
Hence there remains only one way out: to use for this
purpose the integral-equations method of liquid-state
theory.t As will be shown below, one can make some
progress in this way, mainly because the absolute values
of the density of the ionic subsystem, which are
characterized by the dimensionless parameter p = 21743,
are sufficiently small, as before. On the one hand, the
latter situation permits us to neglect the nonlinear terms
in the integral equations, which considerably simplifies
the entire calculation. On the other hand, it permits us to
limit the treatment to a very simple model of the
electrolyte solution in which the solvent is described by
its dielectric constant e alone, and the ions are treated as
hard Acres of diameter re.. Within the framework of
this model, the energy of pair interaction of particles of
types a and b is evidently equal to

Dab (r) 0(s) (r) AV) (r),

0(5) ,-f--f--w, 0 .ro, (Mel)
;". ub0, r r ,

eat%

Both these simplifications lose force in going to
concentrated solutions or to fused ionic salts. Hence, the
calculation of the configuration integral for concentrated
systems is entirely a special problem, which we shall not
take up in this review.

We recall that x 2-3 for aqueous solutions of univalent
electrolytes, and for bivalent ones, x 8-12.

t Another variant of liquid-state theory, the "free-volume" method,
which is based on a certain analogy between a liquid and a crystal is
also unsuitable in this case, since the structure of the ionic subsystem of
electrolyte solutions of intermediate concentrations is very far from
crystalline.
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CHAFFER I: THE BINARY DISTRIBUTION FUNC-
TION OF THE IONIC SUBSYSTEM OF THE
SOLUTION

In essence, any integral equation of liquid-state theory
(and there are a great many of them at present*) can be
used to describe systems of charged particles. (This is
because, as a rule, no special restrictions on the nature of
the decline with distance of the binary-interaction energy
are introduced in deriving these equations.) Nevertheless,
all of the progress in the theory of electrolytes has
involved only several very simple equations,12. 6-91 to which
we shall limit the treatment here. Here we shall begin
with presenting the theory of Debye and Heckel," an
analysis of which will permit us to reveal the physical
meaning of the later theories more pictorially.

1.1 The Debye-Hiekel Theory"

I. Let us put the coordinate origin at the center of an
ion of type a bearing the charge 4. Since this ion interacts
with the other ions in the solution, the mean concentration
of particles near it will be altered. This will produce a
spherically-symmetric charge ("Debye atmosphere")
about the central particle, of density

qa(r)= E ebvbYab (r).

where Yo(r) is the binary distribution function determining
the probability of finding an ion of type b at the distance
r from ion a. If the two particles are so far apart that they
no longer interact, then all correlations between them
vanish, and 9. becomes unity, while c(r) becomes the
constant

%Ace). E ebvb-
14Kis

Obviously the latter quantity must equal zero, since
otherwise an electric field of non -zero intensity would
exist at great distances from our selected particle. This
would give rise to an electric current. Hence, the
condition of neutrality

NI vbeb 0
1 ..c.b< M

(1.2)

must be fulfilled in ordci that the system of charged
particles be at equilibrium.

We can derive another, very important formulation of
the condition of neutrality from the well-known formula
of electrostatics"°'

d3'
(r) = (r' )E r

r
r' I ' (1.3)

which describes in this case the potential distribution v' (r)

*The most complete review of the results obtained in the theory of
ordinary liquids is given in Ilk
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near the central spherical particle. By using Green's
formula to transform the integral appearing in this
expression, and taking into account the fact that q,( Co)

0, we obtain
OD OD

43r tit(pa=
4

S CIO) ts dt
r T

+e {ea-I- 4n S qa (r) r2 dr} . (1.4)
r

Now we note that any macroscopic system can have finite
values of its thermodynamic parameters only when

lin r3I Nab 11 = O.*

Correspondingly, as is known, q. must approach zero
faster than r-3, and sp. faster than r-I.
However, the latter is possible only when the expression
enclosed in curly brackets in (1.4) is zero. That is

ea 4rt ebvbYab (r) r2 dr (1. (1.5)

ro

In other words, in order that the binary c:istribution
function decline rapidly enough toward infinity, the sum
of charges of the central ion and its atmosphere must be
zero. Fulfillment of condition (1.5) provides for shielding
of the field of the central ion, since only in this case does
the integral term in (1.3), which represents the potential
producing the Debye atmosphere, "throw out" a term
"cancelling" the potential 41 er of the central ion. As will
be shown below, such a situation is typical of the integral
equations describing systems of charged particles.

II. The Debye-HOckel theory is based on the idea of
using formula (1.3)f to calculate .(r). Evidently, to do
this we must assume that §. = yjsp.(r)), since otherwise
(1.3) does not form a closed equation. The concrete form
of the sought relation can be found as follows.

First we note that the definition of the binary
distribution function implies that it can always be
represented in the formum Ur) = 7(r)G.(r), where the
coefficient y(r) = exp [Ipw(r)10 I does not depend on
the charges of the ions. Hence, tip,. and v, can be related
only by way of the function G.. Second, . must by
definition be a symmetric function of the charges e, and eb
of the particks.m On the other hand, we can easily derive
from (1.3) and the neutrality condition (1.5) the fact that
Icy,. e,. This implies that G. can depend only on the
product ea.. Third, since G. is dimensionless, it can be a
function only of the dimensionless potential 44)710 =
(e.ed ro)1li(r) = (eed Icie2)Xle(r).

Thus, if 9. is determined by the value of then this
relation must have the form y.=.yG.d(e.ejk2e2))0/i1. Let

For example, the density fluctuations, which are proportional to
h. [Saar) 1Jr2dr, go to infinity when this condition is violated.

tOr, equivalently, Poisson's equation, of which (1.3) is the solution.

us expand the unknown function a,. in a series, and limit
it to the first two terms. In this approximation,

Nab (r) y (r) [i xli2 Cr) . (1.6)

The unknown expansion coefficient 82 appearing here is
in general a function of the dimensionless parameters x
and K of the problem. Debye and HOckel assumed it to be
unity. As will be shown below, the more exact theories
confirm this assumption.

III. Taking B2 = 1, let us substitute (1.6) into (1.3),

taking (1.1) and (1.2) into account. Consequently, (1.3)

acquires the form

0 1'
(t )117 (1 )

tic 0, (1.7)

where t = r/ro and 7(t) = 0 when 0 5 t < 1;* or 1 when
1 < t < . Let us calculate the integral appearing in
(1.7) using Green's formula, using the condition of
neutrality (1.5). Thereupon, (1.7) is reduced to

dE jr.
(1)

~
X2 (t) (g.

Now assuming that 4i = mIt)/t, we transform the
integral equation (1.8) into a differential equation:

I). (1.8)

re (0 x2m. (t) = (1.9)

It directly follows that m = Finally, we determine
the constant A from the condiC3n of neutrality (1.5), and
we obtain

ab (I) y (t) eget, X 1)01 I)
k2e2 1

Upon substitution into the expressionuu

U (V, e) _ _ Uo (e)
00

(1.10)

!) N aN h ('jab (r) :ti (r) 4312 dr.. (1.11)

0 1-<-za,

which relates the internal energy U of the system to 9, it
gives (f. being defined by formula (IV))

U (I, e) Uo (0) xxx
(1.12)

This is the final result of the Debye-HOckel theory.
IV. We shall make some remarks on the formulas

derived above.
First, the Debye-HOckel theory is based on the

hypothesis that, in the region r > /0, the distribution
function arises only from the Coulombic interaction
among the particles (since it is assumed that G. =
Gjebip./ 0). Evidently, the latter implies complete neglect

*Of course, the latter is true only of systems of hard spheres.

13]
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of short-range forces at distances exceeding the diameter
ro of the ions. However, as is known, 1 for r >
even in a system of uncharged hard spheres. Here the
thickness of the spherical shell to r < RC(') in which the
positions of the individual particles are correlated
increases rapidly with increasing concentration.15-113
Conversely, the thickness of the spherical shell 12,4 lo
manifesting electrostatic correlation declines with
increasing concentration. The decline approximately
follows the law /2,m) ro /u ti 1NTI, as (1.10)
implies. Hence, the condition Rem ro << kw)
which has to be fulfilled in order that we can take G,b to
depend only on the electrostatic potential $0., holds only
over the limited concentration range p < p.u. If we use
the more precise values of the radii of correlation km and
kw given in 19-121, we find that for aqueous solutions of
univalent electrolytes for which 2.0 < x S 3.0 (see
below), the value of 0.2. This corresponds to
concentrations of the order of 2-3 moles/liter.*

Second, the Debye-Mickel theory is based on
expanding the function Gab = Gayfteebik2e2)X01 in a
power series in x#(r), and dropping terms of the order of
(X102 and higher. Evidently, the latter is possible only
when xip(r) « 1 throughout the region r > to. Hence,
the results obtained become more accurate for smaller x,
other conditions remaining the same. And since x is
proportional to k2, it follows that the Debye-Huckel
theory is inapplicable to solutions of intermediate
concentrations for bivalent electrolytes, for which x
8-12, as is known.* At the same time, the Debye-Hfickel
theory should give quite satisfactory results for univalent
electrolytes, for which the product xip is less than unity
for almost all r > 41-

Third, the Debye-Huckel theory has the fundamental
defect that it doesn't permit one to obtain full
information on the distribution function. Indeed, we note
that, since the charges of the particles enter into the
configurational energy U. of the system only in the form_
of pair products, therefore G. = G.(44). Hence, let us
represent G. in the form

1 gab(earb) 1 Igah(eaeb) gb(eob)1

+-figab(eaeb) gab(earb)1, (1.13)

where we have written the term unity separately in order
to emphasize the fact that G. 1 when r 03 .

Evidently, for a symmetrical binary electrolyte, for which

'It is usually assumed that the Debye-Hfickel theory is applicable
only for P 0.01 moles/liter. This statement is based on a
misunderstanding, since it results from comparing formula (1.12) with
virial series such as (III). However, such a comparison cannot serve as a
satisfactory criterion, since when v > vz, the virial series generally
diverge, while (1.12) continues to hold true. Insofar as we know, no one
has yet made any special estimates of the limits of applicability of
formulas (1.10) and (1.12).

tOne can easily convince one's self of this by considering Eq. (1.1).

[14

e. = -e_ = ke, the expression within the left-hand
square brackets changes sign as we go from G ++ = G__ to

= G_+, while the second square bracket remains
unchanged. This implies that the binary distribution
function can always be written as

(1) [ I XM (I) R(t)1 (1.14)

where we have written the coefficient ( x) separately
only for convenience. Evidently, since

tl t3(ab 1) = 0,-00

I im (t) = =1im 13R (i) 0. (1.15)
1_40.

Substituting (1.14) into (1.3) and (1.5), we obtain

x2
(I) -r 4n

"30

(131'y (OM (t)---
l

=0, (1.16)

1 x2 M (I) ,2 di, 0. (1.17)
1

Thus we see that the function R(t) completely vanishes
from all the electrostatic equations. owing to the
condition of neutrality (1.2). Nevert' less, if we could
find from (1.15)-(1.17) the exact value of the function
M(t), then this would suffice for correct calculation of the
internal energy U of the system in the case in which the
pair potential 4' (r) is given by relation (IV). In fact, by
substituting (IV) and (1.14) into (1.11) we obtain

00

U (V E)) (7 0 (0)- -142° xx2 M (i) t dt, (1.18)

That is, U(V,O) does not depend on R(t) at all. At the
same time, the pressure of the system

CO

Pid (1, H) 1 \I Va-Vb "ab (r)
) 1

r6 ;.2 dr

Vab(r)4nr2 dr (1.19)

cannot be found by using only one function M, since
after substituting (IV) and (1.14) into (1.19), we get the
expression

oo

P P i d
=

6
XM2 M (1) t dt -1,- pl1-; R (1)1, (1.20)

, 3

from which R(t) does not drop out. Hence, (1.10) gives
U(V, fa) correctly, but P( V, 0) incorrectly.

1.2. The Kirkwood-Pokier Theorym

I. Following Debye and Heckel, we set go = M(t) in
(1.16). Here the physical meaning of Eq. (1.16) is changed
considerably. Indeed, it formerly gave the electrostatic
potential 44t) at some arbitrary point t not directly
associated with any particle of the system. However, after

has been identified with M, it now gives the probability
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of finding the particle b at the distance t from the
"central" particle a (since the correlation function M is
part of the binary distribution function Yab). Hence, while
the integral found in (1.16) formerly described the field
created by the N 1 particles at the point t (i.e., all the
particles of the system but the central one), now it must
describe the influence of N 2 particles on the pair of
particles a and b that we have chosen, whose positions
are fixed. Correspondingly, we must perform the
integration in (1.16) over the entire space V, excepting the
volume occupied by these particles. However, the factor
7(0 within the integral already takes into account* the
excluded volume occupied by the particle a. Hence, we
have yet only to take into account the volume of the
particle b. We can do this by introducing the factor 7(1
t') into the integral. Consequently, (1.16) is converted
into the equation

I x2 -
M (/) Tr, M (t') y (t') v (It t

,
I) O.

(1.21)

which is the basis of the Kirkwood-Poirier theory. We see
from the arguments given above that it is a natural
refinement of the initial equation (1.7) of the Debye-Hiickel
theory.

II. The integral over the volume occurring in (1.21) can
be transformed by Green's formula into integrals over
the surface of spheres having centers at t = 0 and at t.
Upon substituting M = m" t, the latter are easily
calculated. Consequently, when t > 2, Eq. (1.21)
becomes

2 t co,

y.2
9/

If we let t co here, and take (1.15) into account, we
come again to the condition of neutrality (1.17), which
must be satisfied to remove the 1 /y xxt term from Eq.
(1.21). After simplifying (1.22) in t, we finally obtain (cf.

(1.9)):

2- t Mn (/) 27- in/ (/ 1) -; Ill (1 )1 0 . (1.23)

nt"
C0

I

t 1 Y.2 (/) /2 di}

1tn (t 1) tot 1)1 0. (1.22)

If the distance between the particles t < 2, then the
spheres intersect (Fig. 1). Correspondingly, the integral
must be taken only over the outer surface of the figure
formed. The end result of this is the expression

1 < t < 2, m" (1) -11 x2m (1 1) z-.in (1)

/
.42 ( nt: (1). (1.24)

The region 1 < t 5 2 is marked out physically because
there is always a "forbidden" zone between two particles
of diameter ro when ro 5_ r 5 24. The third particle over
whose coordinate the integration in (1.21) is performed
cannot enter this zone (see Fig. 1).

\\,
NV 4 N.\\
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FIG. 1. Diagram of the collision of three particles with ro 5_ ru
2ro.

We can easily convince ourselves by direct substitution
that a special solution of Eq. (1.23) is e-at, where a is the
root of the transcendental equation

a2 x2ch a . (1.25)

Since (1.25) has an infinite number of roots, the general
solution of (1.23) can be written as

in (I) V A ti Al
Imme
V A ) t1 A (1). (1.26)

IMMO

1 1

The unknown constants A, occurring here must be
determined from Eq. (1.24). Upon substituting (1.26) into
the latter, it gives

1 / 9. V = x- trit (1) (/-- 2) ///' (1);
(1.27)a 1

where Al* = (A,I A,)[a,2 1/2K 2e-4]. In essence, Eq. (1.27)
is an expansion of the known function (within the
accuracy of the constants rii(1) and rie(1)) on the
right-hand side in a series of the characteristic functions
e-airof Eq. (1.23). In principle we can find from (1.27) all
the A, but A,, which actually drops out of (1.27), owing to
homogeneity. The constant A, can be determined from
the condition of neutrality (1.17), which gives the
following when (1.26) has been substituted into it:

Ix2 On (1) in' (I))1 (1.28)

The study of the transcendental equation (1.25) made
in '141 showed that it has only two real roots a,a = (1,2; the
remaining roots are complex conjugates: a, = ak ± kok.
When K < 0.5, a, K, a2 > 5.5, and the values of the
other ak are even greater. Hence, when K 0.5, we can
drop all the terms of the series in (1.26) but the first, to a
sufficient degree of accuracy. As a result we obtain the
Debye formulas (1.10) and (1.12) for Y. and U.

III. We shall now make some remarks on the
Kirkwood-Poirier theory.

First, we stress the fact that its starting equation (1.21)
was initially derived directly from the Gibbs canonical
distribution, rather than from the electrostatic equation
(1.3) with the substitution of (1.6), as was done above.
Hence, the problem of the value of the expansion
constant 82 in (1.6) does not arise at all in this case. We
see from the . derivation given in 161 that B2 = 1.

151
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Second, in Eq. (1.10), which is also a consequence of
the Kirkwood-Poirier theory, let us transform to the limit
of uncharged hard spheres having ea = eb = 0. Then Yd,
proves to equal 7(r). Upon substitution into (1.19), this
gives the expression p = 1 + 23p, which amounts to the
first two terms of the virial series.1111 We can easily
convince ourselves by comparing p = 1 + 2/3p with the
more precise equations of state that this expression gives
satisfactory accuracy only when p N 0.2. For ro 3-4 A,
this corresponds to a concentration v 2-3 moles/liter.
As we should expect, this value coincides with the limit of
applicability of the Debye-Huckel theory (see above).

Third, Kirkwood and Poirier derived Eq. (1.21) by
expanding the initial quantities in a power series in x, and
then dropping the terms proportional to r, where n
2.* This is the very reason why (1.10) gives correctly only
the first two terms of the virial series of the system of
charged spheres (III) depending linearly on x: the
remaining terms of the series (III) depending on the
higher powers of x cannot be found by using (1.21).

Fourth, Eq. (1.21), just like (1.7), determines only the
"electrostatic" component M(t) of the binary distribution
function; its "short-range" component R(t) cannot be
found within the framework of the Kirkwood-Poirier
theory.

1.3. A Theory Based on Bogolyubov's Equationsism

I. Let us apply the operator V to (1.16), and assume
that 1G = M, following Debye and Mickel. Then by
following the same argument as in deriving the
Kirkwood-Poirier equation (1.21), we obtain

vII/ (t) V Or)

x2

1 43
,M(r)y(r)y(ltt , ;)T I

(1.29)

This expression is the equation of balance of electrostatic
forces acting on the particle b.t We can easily convince
ourselves of this by noting that in (1.29) the term V; is
proportional to the electric field intensity produced by
the central ion a at the point t, while the integral is the
mean electric field intensity produced by the remaining N

2 particles of the system at the same point. Evidently,
the force balance written in this way cannot under any
conditions be considered complete. This is because it
does not take into account the non-Coulombic forces
causing the impenetrability of the particles. Hence, a
natural generalization of the theories developed above is
to go over to Bogolyubov's equation121

OVIY.b gabVIOab + 1 vci;abcviOncd3r3 -0,
I" 1 -',..--c(31 (1.30)

*Sle also the original derivation of (1.21) given by Falkenhagen and
Kelbg.1151

t Or, equivalently, the forces acting on the particle a, since the latter
arc equal except for sign to those acting on the particle b.

[ 1 6

which is the equation of balance of all forces. In fact, let
us divide each term in (1.30) by Yo. In the expression that
we get thus, the term VA) will represent the total force
exerted on the particle a by the particle b, whose position
is fixed, while

f E vemb,/gadvioacor3

is the total average force exerted on a by the remaining N
2 particles of the system (here g abe is the ternary

distribution function). Correspondingly, the term VII
In Lb} will represent the "force" of the thermal
movement of the particle a balancing the potential forces
acting on it. We see from the derivation of Eq. (1.30)
given in 121 that it follows strictly from Gibbs' canonical
distribution. This is the very reason why we can write it in
the form of a condition of constancy of chemical
potential of the particle a in the system in which the
position of particle b is fixed.

II. Among the infinite multitude of solutions of
Bogolyubov's equation (1.30), the only ones that fit the
canonical distribution (and hence have physical meaning)
are those that satisfy the conditions of normalization,
symmetry, etc.12.5.111In essence, the latter play the role here
of ordinary boundary conditions as used in solving
differential equations (since both have as their purpose
the selection of a given solution from the entire class of
possible solutions). Hence, it is natural from the outset to
try to put (1.30) into such a form that the imposition of
additional conditions (or at least part of them) would be
superfluous.

The definition of the distribution function impliesuli
that xi, and a7ab.. can always be represented in the form
Y.b(r12) 'Y(r12)[1 +gab], .9,,k(r12, r13, 1'23) = lf(ru)y(ri3)1(r23) X
[1 + Gabc].* Here the unity terms are written separately to
emphasize the fact that

and

lim ab 1 1 .
r12* co

urn abc °r
12'

r13'r23
00

The condition that the correlation should decline also
implies that if, in the group of three particles a1, b2, and c3,

one of them (e.g., c3) moves infinitely far away, then abc

becomes equal to nab. Hence, when r13, r23 co, the
function Gab, gab. Taking into account the symmetry of
Go, with respect to permutation of particles, we obtain

/ gJab12 ab!1 ,

gain. Y i2Y13123 1 gab gac gGc gabc11 (13 1)

Evidently, the correlation function g,,,c describes here the

*Here as before, 7 = exp Icp(0/0



STATISTICAL THEORY OF ELECTROLYTE SOLUTIONS 177

non-linear effects that arise in the simultaneous
interaction of all three particles. Substituting (1.31) into
(1.30), we get a system of two equations for the functions
g.. = g__ and g, = g,:

(-Alvah+ (1 +gab) vio,(,e,,,)

+ z ve it gab +gac gbc gabc1

X VI3V23/710acd3r3= 0. (1.32)

This way of writing Bogolyubov's equation (1.30) has the
advantages that it ensures satisfaction of the conditions
of normalization and symmetry, the condition of
declining correlation, and the condition that the
distribution function be bounded at the zero-point,* for
any approximation of the unknown function g,

III. Now we recall that each ion is shielded by only one
counterion in electrolyte solutions of intermediate
concentrations. Here the mean distances between the
thus-formed particle pairs are rather large, as before.
This means that in these systems the simultaneous
collision of three or more particles is a rather rare event.
And if this is so, then we can completely drop the term
gth,. in (1.32) describing the non-linear effects in ternary
collisions. Using (1.14) to transform from gai, to the
functions M(t) and R(t), we obtain instead of (1.32) the
system of two equations:

V.11 (/) V (1-)
t

,

tt .
M (1') (I t t' I) v

I I

I' 11 (I) (1 ) V t i) d3/' UM v (

(1.33)

(t) It (t)-: (1')

lilt I) Y (1) V Y t 1) d31' X2

3 (It 1) Y (It 1) V (I') V 5
V

fm (I) v (jr)

t X131'. (1.34)

The left-hand sides of (1.33) and (1.34) are the equations
of balance of the electrostatic (cf. (1.29)) and short-range
forces, respectively. The right-hand sides describe the
interaction effects.

IV. We shall restrict ourselves in solving the system
(1.33) and (1.34) to the case of not very great
concentrations, for which p « 1. Dropping all the
terms proportional to p in (1.33) and (1.34), we obtain

*The latter condition is ensured by writing the factors separately in
$.6 and Tat.

cm (1) --c' (1-)
x2

4a , (r)v (/')v (If t'I) v it t, d31,
V

(t) V t , (1.35)

00

V 11 (t) ,eM (1) V t , R (i) = )(2 1111P- (h. (1.36)

By assuming in (1.35) that M = t, and
transforming the integral contained in it by Green's
formula, we can reduce the system (1.35) and (1.36) to a
single equation:

2<t< co, mtir (1) x2 m:(1)

1!;-[nz' (/ + 1)m' (t-1)] 0. (1.37)

In going from (1.35) and (1.36) to (1.37), we have taken
into account the condition of neutrality (1.17). As before,
the latter must be fulfilled to remove from (1.35) the term
Vit, which declines too slowly toward infinity. When t2 >
Kx, we can drop the term containing )(2 in (1.37).* As a
result, we obtain the following equation (cf. (1.9) and
(1.23)):

t* =-- < t oo ,

rn" (1) 1-1-211rn' (1+ 1) m' (1 1)1= 0, (1.38)

Evidently, the general solution of the latter has the form

00

m (1) ---- A e't im (1), )!,2 811 (1, . (1.39)a.
i=1

The constants 2 appearing here must be
determined from the condition that Eq. (1.37) should
vanish identically in the region 2 ,S t < t*, and the
equation obtained from (1.35) and (1.36) should vanish in
the region 1 s t s 2, which is considered separately, as
before. Just as in the Kirkwood-Poriier iria theory, the
constant A, is found from the condition of neutrality
(1.17), which leads to the expression (1.28).

The study of the transcendental equation (1.39) made
in NI shows that when K < 1,t the first root of this
equation a, K, while the real part of the remaining
roots a, 6, i 2. Hence, when K. 1, we can drop all
the terms of the series (1.39) but the first. Consequently,
the expression for the binary distribution function takes
on the form

*This estimate can be obtained by substituting the special solution
e-alt of Eq. (1.38) into (1.37), and matching the terms in X2 and K2.

t Rather than K < 0.5, as in he Kirkwood-Poirier theory.

17]
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go, (t) y (/) 1 I e,ier, ;("--1)
4 2e2 I z

...).)

-* :---- \ -- th . (1.40)

In distinction from the Debye formula (1.10), it is
positive for all values of t and X. However, upon
substituting (1.40) into the formula (1.11) for the internal
energy, we get the Debye expression (1.12) as before.

V. We shall now make some remarks on the theory
developed here.

First, if we go to the limit e. = eb = 0 in the initial
system (1.34), (1.35), then we obtain

vP(t)-4--: c 11 (t) R (1')

R t 1'1)1y (r) V --1' d3t' 0. (1.41)

It was shown in (161 that (1.41) gives correctly the first
three virial coefficients, but gives the fourth one with a
small error, which amounts to only 3.5 percent for a
system of hard spheres.* The more precise solution
obtained in (12J showed that (1.41) gives quite satisfactory
results up to p ,`-1 0.6-1.0. For r. = 4 A, this corresponds
to a concentration of 20 moles/liter or more 1. The latter
overlaps the entire region of electrolyte solutions of
intermediate concentrations with room to spare.
However, we cannot say the same for the system (1.35)
and (1.36), since it was derived from (1.33) and (1.34) by
dropping all the terms of the order of p. In this
approximation, (1.41) correctly describes only the first
two virial coefficients. Correspondingly, the region of
applicability of the solutions obtained cannot exceed 2-3
moles/liter.

Second, as the derivation given above implies, the
fundamental system of equations (1.33) and (1.34)
involves no expansions whatever in the parameter X. This
is the very reason why it gives correctly the first three
virial coefficients of the system of charged hard spheres.
We can convince ourselves of this as follows. In the case
of dilute enough solutions at small distances, we can
neglect in (1.32) not only the non-linear effects in the
collective interactions (i.e., the term g,), but also
generally all the collective effects described in (1.33) by
the integral term (since the latter are small in comparison
with the pair interaction described by the term V(p.b(0).
Thus we directly find that at small distances 1 + gie =
exp [( e.ed(0)(1/r)]. Correspondingly, for great
distances with K 1, we find from (1.40) that 1 +
= 1 (ex/J(0 )-1IexP r/91/r1. Combining the two
results together into a single interpolation formula, we
arrive at the well-known Tyablikov-Tolmachevimisi

We recall that (1.7) and (1.21) give correctly only the first two virial
coefficients.
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expression
r /r2

gab (r) =
e

y (r) [ . (1.42)
e eb

Upon substituting (1.42) into (1.19) and calculating the
integral by expanding the exponential in a power series in
(exa(0) rexp ( r/r2)1r1, we obtain p =1 (xx16)
1/2(x02 X Zbe-3/(2.1)(2.1 3)] + O(K3). This exactly
corresponds with the first three terms of the series (III).
Since here the K2 term contains all the powers of x,
evidently dropping the gab, term in (1.32) imposes no
limitations on the value of the parameter X.

Since the formula (1.42) can also be derived from the
"abbreviated" system (1.35), (1.36), the latter remark
fully pertains to it as well. However, this does not mean
that the expression (1.40) for the binary distribution
function found by solving the "abbreviated" system is
valid for all values of X. As was shown in NI, the result of
dropping all the terms of the series of (1.39) but the first
is that (1.40) describes only aqueous solutions of
univalent electrolytes, for which x does not exceed 2-3; it
is not valid for multivalent electrolytes.

Third, as we see from (1.40), the equation of balant..,
of all forces (1.32) completely determines the binary
distribution function. This permits us directly to calculate
not only the internal energy U of the system, but also the
equation of state P(V, 0). When (1)ae and gab are given by
the formulas (IV) and (1.40), the latter has the form

e- dT (1.43)
xx x2ex

6 i_ix T i-Fx t3

If we know P and U, we can test the theory for
self-consistency. In fact, we know from thermodynamics
that P and U are connected by the relation 119i

(aumv).= e2(apeme)v.

Hence,

P= 0{ fe(a1/1311(03102)+ const .*

If we substitute into this U from (1.11), we obtain

P = 1 .2xC2 R1 -1 x) (1 ; 111(1 i x))-1---p

(1.44)

This expression differs greatly from (1.43) in external
form. However, as we see from the data of Table I, which
gives the values of A = po44) p(I.43) calculated for x = 2,
the quantitative difference between the two formulas
practically nowhere exceeds the experimental error 6 =
±1 X 10-3. The fact that A nevertheless is not strictly

*The constant appearing here mint be assumed equal to 7/3p for the
case of hard spheres in order to take into account the excluded volume
of the particles within an accuracy of terms of the order of p, inclusive.
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Table I

X 0 . I 0 . 2 0 4 0 , I; 0 X

if -0.44/1, 103 28.1 46.8 66.1 67.0 54.

A 103 0.0 0.3 1.2 1.8 2

A 100
o .0 ((.6 1.8 9.7 4 .I -_p(1.-1-1) 0

1.0

30.5

3.2

zero is most probably to be explained by the fact that
(1.40) is an approximate solution of the system
(1.35), (1.36). Thus, the initial equation unambiguously
determines the thermodynamic parameters of the system
of charged spheres.* This is quite natural, since the
conditions of normalization, correlation, etc., in turn
determine unambiguously the linear terms of Eq. (1.32).

We see by comparing the equations for the distribution
functions (1.7), (1.21) with (1.33), (1.34) that each of the
latter is a natural refinement of the former. Without
vitiating the fundamental corollary of Eq. (1.7) (the
Debye-Hiickel formula (1.12) . for the internal energy),
these refinements nevertheless show that the latter is valid
only for K < 1 and x < 3. A direct calculation of the value
of U( V, ()) by the Monte Carlo method confirms this
conclusion.1351

CHAPTER II: THERMODYNAMIC FUNCTIONS OF
SOLUTIONS AND COMPARISON WITH EX-
PERIMENT

The formula (1.12) for the internal energy of the ionic
subsystem of the solution was first derived by Debye and
Mickel as early as 1923." In the 40 years that have
passed, all its consequences have been subjected to
thorough experimental testing. It has turned out that the
theory does not satisfactorily agree with experiment at
any appreciable concentrations unless one introduces
empirical corrections.120,211 Up to now, the observed
disagreement has usually been explained by saying that
the theory itself is crudely approximate and semiempirical.
Although this viewpoint has become widespread now, it
is wrong, since as was shown above, Eq. (1.12) is a direct
consequence of the Gibbs canonical distribution. But
then the question arises anew: what then is responsible
for the stated discrepancy?

To answer it, we recall that the theory involves the
dielectric constant e of the solvent, which arises from
averaging the configuration integral of the system over all
possible states of the solvent molecules.119,22,231 Evidently,
the result of this averaging cannot fail to depend on the
temperature () of the system and the concentration v of

*One can show that Eq. (1.41), which is a special case of
(1.33), (1.34), also unambiguously determines the thermodynamic
pardaieters in the case of a system of uncharged particles.
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the solute (and of course, on the other parameters of the
electrolyte and the solvent, such as the valence of the
ions, the diameter of the particles, etc.). hence we can
state a priori that always e = e(0, v).

It was noted long ago that one must take into account
the temperature-dependence e = e(0) to explain certain
properties of extremely dilute aqueous solutions of
electrolytes.* On the other hand, the concentration-
dependence (v) was said to play no role. However, such
a disparity between O and v only stems from the fact that
the concentration parameter f, = (1110(8011) is always
small in dilute solutions, while the temperature parameter
0 = (to /e)(ae / a()) for water proved fortuitously to be of
the order of unity (more exactly, ee = 1.4.1241). The
situation alters with increasing concentration, since then
the value of e, also rises. For aqueous solutions it attains
a value of 0.2 at v = 1 mole/liter.1251 If in addition we
take into consideration the fact that e, occurs in the final
expressions in the form of the product xet and that
always x > 2-3, then it becomes obvious that we must in
no way neglect the concentration-dependence e = e(v),
even at v > 0.1-0.2 moles/liter. Unfortunately, this
feature hasn't received due attention in calculating the
thermodynamic characteristics of electrolyte solutions of
intermediate concentrations. On the one hand, this has
given rise to some inner contradictions in the ther-
modynamics itself (see below). On the other hand, it has
made it impossible to attain good agreement of theory
with experiment.

2.1. Thermodynamics of Electrolyte Solutions

I. Averaging the configuration integral of an electrolyte
solution over all possible positions of the solvent
molecules is equivalent to going from the real solution to
a model system consisting of N charged particles, each of
which moves freely (i.e., frictionlessly) in a continuous
medium of dielectric constant e. However, the previous
chapter essentially treated not this model, but a gas of
particles bearing the effective charge ehre-, and moving in
a vacuum. Hence we must first of all analyze to what
extent the results obtained above can be used to construct
a thermodynamics of electrolyte solutions.

All calculations of the binary distribution function of
an ion gas are based on the assumption that its
configurational energy UN equals the sum of the pair
potentials $,6(r) given by relation (IV). In order that UN

should have the same form for the model system as well,
we must assume: a) that the charge within the ion-spheres
is distributed with spherical symmetry, and b) that the
dielectric constant e(i) of the medium within the ions

*Without this, for example, one fails to explain not only the
concentration-dependence of the heats of dilution, but even the sign of
the effect itself.1241

tSee, e.g., the expression (2.7) for the free energy, which contains
the term 112(x xo) nc 1/2x0e,.

19]
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equals the dielectric constant t of the solvent.* If both
these conditions are satisfied, then we can assume that
the above-derived formulas for ,, are equally valid both
for the ion gas and for the model. However, the
expressions for the thermodynamic functions of the ion
gas derived by using (1.11) and (1.19) cannot be extended
to electrolyte solutions. This is because, generally
spe3:4;.ng, these formulas do not define the relation
between the binary distribution and the macroscopic
characteristics of the model that we are studying. The
latter can be seen especially well from the example of the
formula (1.19) for the pressure, which implies that the
solvent influences the equation of state of the solution
only by way of the ionic subsystem. However, as is
physically evident, the contribution of the ionic
subsystem to P is generally very small, and fundamentally
P depends precisely on the properties of the solvent.

In order to establish the relation between the binary
distribution function and the macroscopic parameters of
electrolyte solutions, we shall start with the well-Inown
expression for the internal energy of the systemPunt

LI" (rt. . r.v) ( dr \ !E2
E ) 8:t-

0 de F2

de) 8:t r-
f-

Since in our case

(2.1)

E.= E E,,

where F., = Emr nit) is the field of the ith ion, then

. E2 = EE? +E

Substituting this expression into (2.1), we obtain the
following for the electrostatic component of the
configurational energy of the solution:

( 0 ay7 (-re-)
Ero crii

(2.2)

if to) f, then the solution of Poisson's equation Ay =
(4w1t)q(r, r.) for the system of charged spheres, where the r, are
the coordinates of the ith ion, cannot be represented in the form

= ed1,_

The introduction of the quantity to). whicn has no clear physical
meaning, is necessary only because otherwise we cannot formulate the
initial electrostatic problem.

tSince the macroscopic volume average of any quantity in a
homogeneous system is a constant, then f also cannot depend on the
value of the coordir ate r. The latter is higaly essential, since in the
literature attempts hay.- repeatedly been undertaken to treat f as a
function of the distano between ions. This, of course, is false.

[20

where r, = r, r,. Here, in calculating integrals such as

Ei2d3r

we have omitted the portion of them that is localized i a
sphere of radius 4 centered at c, since the latter depends
only on the nature of t he charge distribution within the
ion. Hence, it is of no interest.

Averaging (2.2) over the ensemble at constant volume
V of the system, we obtain

L-01) r 0 dt
t: de

1 NI

2 ttrzaat.:11

Nte21

Er°

NaNb c(e1)
(r)

fi
2 Yi lib

1-:rt.b":-:!

gab (r) 4nr2 dry= (1 1E2- d3r. (2.3)
e dti; :t8

This expression represents the electrostatic component of
the internal energy of the solution.* It differs from the
usual formula (1.11) for U, first, by containing the factor
1 + (0/e)( af/ae), which describes the change in the
entropy of the folvent in the field of the ions, and second,
in having the additional term

j1(Na2ea2/fro)
a

characterizing the intrinsic energy of the ions. Both these
corrections make an appreciable contribution to the
increment of the internal energy of a solution of finite
concentration with respect to an infinitely-dilute solution,
for which e = to, and §. E 1,

Avon wen (v) u(ei)(v. 0)

--,1 (I u..4121\11 )17
.mesa

0 NatA:b 961ebi) (r) Gab (r) 4111.2 dr}I:

2 (1 1° )
/ac:

EO

1

d,, eoro
(2.4)

In the special case in which yo is given by Eq. (1.40),
iirifich has the form

N J ( . e dc \ I A-2,-2

2 I 430-) I. rro

(
0 (4'0 \ ii2e2 1
FBI

k2e2

(ro ; r

(2.5)

'The initial formula (2.1) for We' care mpresent either the internal
energy, or the enthalpy. depending on whether the expression
(114w)tE dE was integrated at constant volume or at constant pressure.
In distinction, the formula (2.3) always represents the internal energy.
since the condition V = const was made explicitly in the averaging.
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If the dielectric constant 40, v) = const, then (2.5)
coincides with the Debye formula (1.12). However, in the
general case in which E = E(0 , v), they differ quite
substantially.

II. When the quantity 41U has been found, it is not
hard to calculate the increment in the free energy of the
system A,F = F(v) F ( = 0) by the Gibbs-Helmholtz
formula U = 01(4a0XF/0). Indeed, upon substituting
into it the 41,U from (2.5) and integrating the expression
obtained between the limits 0 = 0 , and 0 = O we find
that

to2

02 H J

v
1

(y yo) (1 Z.) %
- 2 11

(2.6)

where AEA I I 03 ,e2 I le - e, The subscript 0
applied to x implies that in x = k2e2/e erc, the quantity
= e(v) is taken at v = 0, and is equal to to = E(0). We
note now that the free energy F of the system is a
single-valued state function. Hence, the value of A,F(0)
at 0 = O , cannot depend on the arbitrary temperature

= 02. The latter condition is compatible with (2.6) only
if

LI,S NH 1,7 (%- -x,,) I In(' z) z

1(1') I (19 -V*" 1,1.""-

Here A,F15) = N9[/in) f(0)] and the function J(n),
which is an arbitrary integration constant (since 0 J(n) =
0), can depend only on the relative concentration n =
N,IN where N, is the total number of solvent molecules
and N is the total number of particles of the solute.. Since
the expression enclosed within curly brackets in (2.6) is
valid only at concentrations not exceeding one mole/liter
Isince always K < 1), then we can assume to a higher
degree of accuracy that J(n) J(0) Bn.

If we assume in (2.7) that x = )0, then the term 'Mx
x,,) first introduced by Hiickelm vanishes, and we arrive
anew at the ordinary Debye expression for the free energy
increment. We emphasize that this applies particularly to
the free energy A,F, but not at all to the thermodynamic
potential A,:r = D,F + PA,V, as has often been
stated.w21 And although the numerical difference
between A.F- and A,F is small (because liquids are
practically incompressible and ,1,11 'Al 0), it is very
important, since it means that the chemical potential of
the solvent has been calculated incorrectly heretofore (see
below).

III. Using the ordinary formulas of thermodynamics,
we can find from (2.7) the rest of the thermodynamic
functions of the solution: its entropy, enthalpy, etc.
However, we shall not do this, but shall restrict ourselves
to treating only the chemical potentials of the solute

and the solvent We must bear in mind in calculating
them the fact that AF(41 = j(0, V, N, e, to), and in turn,
that E = 40, V, N, N,), and to = IIMN E(0, V, N,
Since by definition µ = (aR aN)e.vms, and
(aF/aNi)43.....,we can neglect the dependence of AF, e, and
et, on 0 and V in the differentiation. Hence,

AP a 'id
0 "F

-
(kV

id

SF a f or
11. s or

11%1:

IN H. I".
S

.1E0

or soN
(2.8)

(2.9)

where p,, = µroe + 0 Inn and 1001+ 0 In (1 n) Aso

@Aare the chemical potentials of the solute and the solvent
for the case of an ideal solution, atidaN =
(afiaN), and h /aN, = lim, 4 (3:/aN,). In taking the
derivative in (2.9), we must bear in mind the fact that
only A,Fin = 0B(N2/N,) depends directly on N, in (2.7);
on the other hand, the electrostatic component 41,Fu, =
B(N2I NJ depends directly on the electrostatic component
.1,Fien of the free energy depends only indirectly on N, via
E and f...* Substituting (2.7) into (2.8) and (2.9), we obtain

.1p (1 I t, i

1's (in (1

1H i2I-In I. --; x !

I
. "r" 1

41/4

lin

1

N or .

I, 0.V j"

(2.10)

p hr.I

2 1 X F s

1 -VP (IF,. I

-7 oNs (2.11)

where is = + 9 In 1, and is the activity coefficient; gs
= 0, and g is the osmotic coefficient.

By using (2.3), the electrostatic component of the
chemical potentials can be written in the form

Aul a* I I r r/L __ "71 alt" I . (2.12)
--N g-T

Vert I
S

I
T di .

' (2.13)
-%s na lit .

to

where r = N V. is the density of the solvent. Thus we
see that Alea, is determined (as calculated per ion) by the
increment in the total electrostatic energy (the integral
fvo(fE2/87) dV, minus the portion die to the change in
the dielectric constant of the solvent (the integral J:4

And of course, via V = Nv + N,vi. where v and v, are the partial
molar volumes of the solute and solvent, respectively. However, we
need not take into account the dependence of A,Fleil on N. via IC V-12,

since V is held constant in the differentiation

211
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(E2182-)N(a( laN)dV), while ;0.0 is the electrostatic work
done in changing the density of the solvent. As we should
expect, the expression for ii,kb exactly coincides with the
usual definition of the chemical potential of a dielectric in
an external field.121

IV. If we assume in (2.10) that E = to = const, then we
get the well-known Debye expression for the activity
coefficient with Onsager's correction*

In/ 1
X 2fin, (2.14)

whereas the expression (2.11) for the osmotic coefficient g
does not transform under any conditions into the
formula used in the theory of electrolyte solutions.120.21241
In order to understand what the trouble is here, let us
examine the course of the arguments usually used in
deriving the expression for g. First, one assumes at the
outset that (2.7) gives the increment in the thermodynamic
potential which is wrong, as we have seen. Then one
finds Ail, by the formula

0.14 1.7 Oft;
dr (as riNs ' dru ION

Here one drops the terms containing atiaN, and ato/aN,
for unknown reasons, although, as we know, (7 moor)

1.1101 The error in this derivation is evident. Even if we
define p, as (0.C8aN,),3, then by virtue of the identity
= F + PV, P = way, the term in pt., containing
a /al, nevertheless vanishes, and we again arrive at Eq.
(2.9). This is natural, since it = (aFlaN)e.,, =
(657M)e...""

V. Now we shall show that neglecting the con-
centration-dependence t = E(N) leads to inner contra-
dictions in the case of electrolyte solutions of intermediate
concentrations for which K 0.1. To do this, we recall
that when P, 0 = const, the chemical potentials of the
solvent and it of the solute satisfy the Gibbs-Duhem
relation n*(a/i/an*) + (1 nXaplan*) = 0, where n*
= N /(N + N,) is the so-called mole fraction. Upon
transforming from it and p., to In land g, we obtain 1 g
+ (1 n*) In (I n*Xdfadnn) + (d In fldn*) = 0.
When N << N so that n* n, this leads to the
well-known Bjerrum relationuit:

I g n g In fl. (2.15)

To start with, we shall assume that t = t(N,) is

Onsager suggested that in (2.14 the
second virial coefficient 'p13 of a system
1/20rON I V)(N,1 = 4(fro316XN,1111 =
and V, = V/ N,.

[22

term lb coincides with the
of hard spheres. Hence B =
V014 V where Vo = irro3/6

independent of the concentration n = NIN,.* In this
case, substituting (2.10) and (2.11) into (2.15) gives

T OE
-

E 0. (2.16)

Such an equality is impossible, since the left-hand side of
(2.16) is a constant, while the right-hand side
substantially depends on v by way of K Vi. This
contradiction can be removed only by assuming that t(v)
* const. In fact, if E = t(r, v), then substitution of (2.10)
and (2.11) into Bjerrum's relation (2.15) transforms the
latter into a partial differential equation in the unknown
function E. By solving it, we can find t(r, v), apart from
an arbitrary function to) = (00(7,,, v).

Equation (2.16) implies that (7/ fxatiar) = 1/3 for
extremely dilute solutions, for which K 0. Upon
substitution into (2.11), this gives 1 g = ilexk. Since
this expression, which coincides with the well-known
Debye- HUckel formula, agrees well with the results of
measurements,m2usi we can consider that in this case Eq.
(2.11) admits of experimental verification. However, this
becomes impossible at higher concentrations, since (2.11)
contains the unknown derivatives MT, v)/ar. In order to
remove this difficulty, we can determine the osmotic
coefficient g by integrating (2.15):

d ln f
1 g 71 n dn

8

where In J. is given by (2.10). The expression thus
obtained, which contains only E and afiaN, will evidently
be exact, since it is transformed into an identity upon
substitution of (2.10) and (2.17) into (2.15).

(2.17)

2.2. Commis= with Experiseemtm

I. Before going on to comparing directly the formulas
derived above with the experimental data, we shall make
some preliminary remarks.

First, the final formula (1.40) for the binary
distribution formula satisfies the system of equations
(1.35), (1:36) better as x and x becomes smaller. If we
assume that the system (1.35), (1.36) ensures the
necessary accuracy, then the discrepancy between the
thermodynamic and experimental curves must sys-
tematically increase with increase of these parameters.
Here it should become very large for K 2, I and x Z. 3
(since x -fx 1 and x 3 determine the limits of
applicability of the derived solution). In essence, only this
sort of agreement can serve to prove the correctness of
the initial system (1.35), (1.36). However, if the error of
the theory proves to be independent of the values of x
and K, this might mean only that it is due to some causes
other than a systematic error in the derived solution.

Since the constant E results from averaging over the N, solvent
molecules, it cannot fail to depend on N, (or more exactly I, on the
density r = N,/ Vo).
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Second, in the Debye model of an electrolyte solution,
all the forces of non-Coulombic origin are subsumed
under an intrinsic volume v. = irro3/6 occupied by the
particles of the solute. However, real systems can
manifest also other forces of a similar sort,* not explicitly
considered in this model. In part, the effect of these
additional (with respect to the chosen model) forces can
always be compensated by varying the value 4 with
respect to the crystallographic diameter rc of the ions.
Hence, in experimentally testing the theoretical formulas,
4 must be treated as a certain adjustable parameter
effectively characterizing all forces of non-Coulombic
origin acting in the system.

Third, any theory taking the solvent in to account only
i terms of its dielectric constant involves the arbitrary
function E = E(v, 0). Generally speaking, the form of the
latter can be determined by independent measurements
and appropriate calculation. However, such measurements
are practically lacking at present, rendering impossible an
all-sided test of the theory. The concentration dependence
E = E(v) has been determined only at 21:`C with more or
less accuracy for aqueous solutions of certain alkali
halides. Here it turned out thatusl

F9(1 FM. (2.18)

where v is measured in moles/liter, to = 78.5 is the
dielectric constant of pure water, and the mean value of EI
for solutions of LiC1, NaCI, KCI, RbC1, NaBr, and Nat
is 0.20 ± 0.03 (there are no data for the other alkali
halides). Using (2.18), we can calculate only the activity
coefficient (2.10)*

In f _
1 rot! ( 1 riv x.:r 1 v)

i%-

2r0 I (1 r 1v)2

where at 25-C, xo*
measured in A, and

X 1 riv r (1 riv)

- - 51i. if i. 1(1 Ir:,v. (2.19)

= 7.134, ,c* = 0.3289, ra is

x
1 I Ely

%or°
1 1 fir (2.20)

The remaining formulas of the previous section contain
the unknown derivatives af /ar or af/ao, preventing any
comparison of them with the experimental data.

*E.g., repulsive forces due to overlap of the hydration shells of the
ions, or ion-dipole attractive forces (see below).

*Here, according to Onsager,1291 the product Bn in (2.10) has been
assumed equal to V3p: the more general case in which Bn V* has also
been discussed in 12$1.

II. In order to show the nature of the influence of the
concentration-dependence of the dielectric constant, we
shall begin by discussing the very simple case E = E(v) =
const (i.e., e, = 0). Here, using (2.14) and (2.17), we get
the ordinary Debye expression for the osmotic coefficient
g:

1 g (1 %) 2 111 (1 v.)1 7, I). (2.21)

As was shown above, this gives qualitative results hardly
differing from Eq. (1.43), which was found firectly from
the expression (1.40) for the binary distribution function
by using (1.19).

Equation (2.21) (or equivalently, Eq. (1.43)) was
compared with experiment as follows: the theoretical
curve g = g(4, v) was fitted to the experimental curve at v
= 0.1 moles/liter by proper choice of 4. Then, assuming
ro = const, the difference ,log = g, was found at v
= 0.5 and 1.0 moles/liter. The values of g,, were taken
from the tables in 1341. The results of the corresponding
calculations for aqueous solutions of 15 alkali halides are
given in Table II.* We see from these data that (2.21)
gives an error that on the average is fourteen times the
experimental error 6 = 0.001, even at v = 0.5
moles/liter. At v = 1.0 moles/liter, the discrepancy
increases to a factor of thirty. Furthermore, there is no
correlation whatsoever between Ag and the parameter x
= e2/E04. Thus, the experimental test of Eq. (2.21) has
shown it unsuitable for describing electrolyte solutions of
intermediate concentrations. However, we should have
expected this (we recall that in deriving (2.21) the
assumption was made that E(v) = const, which is
inadmissible).

III. It is of definite interest to compare Eq. (2.21) with
other currently known expressions for the osmotic
coefficient. As was shown above, the most rigorous of
these is the Mayer-Naga formula (III). However, the
series in (III) converges rapidly enough only when v
0.05 moles/liter, i.e., in the concentration range in which
the correction to the limiting Debye-Huckel law is so
small that it can't be determined experimentally to a
sufficient degree of accuracy. Hence there is no point in
comparing (2.21) with the Mayer-Naga formula.

The next in order of reliability is the Tyablikov-
Tolmachev formula (1.42) for the distribution function.
At low concentrations it gives results agreeing with the
Mayer-Haga formula. Of course, (1.42) is approximate at
higher concentrations, since it does not include all terms
of the same order of smallness. However, as was shown
in Pm, it can be derived quite rigorously by selective
summation of a definite class of diagrams. If we assume
that the rest of the diagrams contribute only little to the
final expression, then we can consider the Tyablikov-

5A111 the calculations were performed by Yu. M. Kessler, for which
the author is highly grateful.
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Table H

Name
of

elec-
tro-
lyte

v -- 0.1 moles/liter v 0.5 moles/liter v 1.0 moles/liter

r0 (A)

A

g'theoF gexp
a

Ag Rtheor texp
A Eq.

(2.2:0 (2.21)
Eq.

(2.231 I

Eq.
(2.21)

Eq. 1

(2 231
Eq.

(2 21)

LiI (1.0f; 4.43 i.54 0.23 0.009 0.009 0.41 0.035 0.037

1.illr 11.1!S 4.04 4.11; 0.26 (1.014 (1.011 0.45 0.025 0.019
1).01 3.86 3.9i 0,27 11.13407 (1.000 0.47 0.016 0.004

Na! 0.04 :3.81 3.89 0.17 0.014 0.007 0.48 0.031 0.020

Nalk 0.04 3.60 3.65 (1.2$ 0.018 01019 0.50 IL:44 0.027

NaCI 0.04 3.53 3.57 0.28 0.02i 0.018 (1.51 0.058 0.039

KI (1.04 3.53 3.56 (1.1t4 11.028 0.10*) (1.51 0.067 0.048

1:11r 0.04 :3.32 3.12 0.30 (Lon 0.020 0.51 0.062 0.042

K( ;1 0.04 3.27 (1.:11) 0.018 0.019 0.55 0.067 0.044

fib( :1 0 0:1 3.07 :1.07 0.31 11.015 11.1/16 11.58 0.056 0.033

111111r 11.1)3 2.99 1.98 11.32 0.1120 0.01! (1.6(1 0.1151 0.028

RbI 0-1b.; 2.91 2.93 0.:*0 0.020 0.1111) 0.61 0.048 0.025

Csr.1 0.112 2.76 9.73 0.34 11.0)6 0.016 0.63 11.11541 0.027

0.11r 0.112 2.7i 2.70 0.31 0.017 0.018 0.64 0.051; ti.032

CsI 0.02 1.70 2.64 0.34 0.027 0.017 0.65 0.054i 0.031

; ft!' '2' r::2 11 0.025. Xlt 0.011; (1.1114 0.048; 0.030

Tolmachev formula to be a sort of extrapolation valid for
any concentration. We cannot determine directly the size
of the error that we make in such an extrapolation, since
this would require that we find an exact expression for
the binary distribution function. However, we can
estimate it indirectly to the same degree of accuracy to
which, e.g., the condition of neutrality (1.5) is obeyed. By
substituting (1.42) into it and transforming to dimen-
sionless variables, we obtain

x x2 sh l x /2 di. (2.22)

Table II gives values of calculated by this formula for K
= 0.3, 0.7, and 1.0 (this corresponds approximately to v
= 0.1, 0.5, and 1.0 moles/liter).* Since when the
Tyabilikov-Tolmachev formula is accurate enough:
however, on going to more concentrated solutions, the
value of v = 0.1 moles/liter, O is very small,t we can
assume that at this concentration the Tyablikov-Tolmachev
formula is accurate enough: however, on going to more
concentrated solutions, the value of increases sharply,
and hence the accuracy of (2.22) must decline.

Table II gives the values of /0 and ag calculated by the
formula t

1 g -6-
x2 c sh [ x

i

c-x1 X2/ di -- -ch Ixe-19, (2.23)
6X

'These data are taken from 131).
tWe recall that A must be identically zero in an exact theory.
*The values of Ag are taken from 1311.
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obtained upon substituting (1.42) into the expression
(1.19) for the pressure. The value of 4 was determined by
fitting the experimental and theoretical curves at v = 0.1
moles/liter. As we see from the data given in the table,
practically coincide (the arithmetic -mean value of the
difference Oro is only 0.025 A). However, Eq. (2.21)
proves to be more accurate at high concentrations than
the Tyablikov-Tolmachev formula (2.23), since at v = 0.5
and 1.0 moles/liter the value of ag calculated by Eq.
(2.23) is about 1.5 times as great as the value found by
Eq. (2.21).

IV. We shall now proceed to test Eq. (2.21), which was
derived under the assumption that e = e(v) = var. Table
III gives the values of 4 calculated for aqueous solutions
of 15 alkali halides by fitting the theoretical and
experimental values of log f at v = 0.1 moles/liter.* The
effective diameters re. of the ions are given in the same
table for comparison, as found from electrical-conductivity
data.1321 If we consider that in the former case the ionic
diameters are found by studying the equilibrium
properties of the solutions, but in the latter case, by their
kinetic properties, we must acknowledge the agreement
of the two quantities to be strikingly good.

A general graph of the relation of log f to the
concentration v of the electrolyte is given in Fig. 2. We
see that it shows good qualitative agreement between the
theoretical and experimental curves; however, the
quantitative agreement, which is very good for LiCI,

'The values of f are taken from 1341.
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Table III

No
Name

ofsalt r°
(A)

ref
(A)

oX

.1(A)

I %PO
h. - ric
(A).0

1 La 4.48 1.59 2.88 1.60
2 Li Br 4.00 - 1.78 2.61 1.36
3 Li CI 3.89 3.27-1-0.13 1.84 2.49 1.40

it Nal 3.69 3.81±0.26 1.94 3.18 0.51
5 Na Br 3.45 3.45 2.07 2.94 0.51
6 NaCI 3.30 3.28 +-0.22 2.16 2.79 0.51

7 KI 3.2.3 3.67±0.19 2.21 3.53 -0.30
8 KlIr 3.00 3.30+-0.08 2,37 3.29 - 0,29
9 KCI 2.90 3.06 r().16 2.46 3.14 -0.24

10 RbCI 2.59 2.90 2.76 3.30 -0.71
11 liblir 2.54 2.81 3.45 -0.94
12 RbI 2.45 - 2.91 3.69 -1.24

13 CsCI 2.04 2.61 3.49 3.46 - 1.42
14 (Mir 2.04 3.49 3.61 -1.57
15 CsI 2.04 3.49 3.85 I . 8 I

gradually deteriorates in the series Li > Na > K > Rb
> Cs. Here we observe a distinct correlation between the
error of the theory A log f = log - logf, and the
values of the parameters K and x (Fig. 3). The latter is a
convincing proof of the idea that the disagreement
between theory and experiment in this case is due to a
systematic inaccuracy of the obtained solution. However,
this inaccuracy is not so great, since the relative error
A log /of the theory nowhere exceeds 13 percent, even at
v = I mole/liter.*

V. As was noted above, the parameter 4 effectively
characterizes the value of all the forces acting in the real
solution. At the same time, the mean crystallographic
diameter r. = th(o--) rcw), . where the rcm are the
crystallographic diameters of the anion and cation,
respectively, defines the value of only those forces
involving the excluded volume occupied by the ions
themselves. Hence it is natural to assume that the
difference Oro = 4 r, is proportional to the additional
forces acting in the real solution, and not taken into
account explicitly in the charged-sphere model. And if
this is so, then some correlative dependence should exist
between an, and the parameters determining the strength
of the additional forces.

One of the sources of the additional forces in a real
solution could be the hydration of the ions.133-341 Two
particles of the solute can approach closely only after
their hydration shells have been disrupted, which takes a
certain expenditure of energy. Then evidently, hydration
must give rise to additional repulsive forces that can be
compensated only by an increase in ro with respect to

The relative error is 13 percent only for CsCI. It drops to al0
percent for RbCI, KCI, and NaCl. and is still less for LiCI.
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FIG. 2. Concentration-dependence of the activity coefficients of the
alkali chlorides. experiment, - - - theory.

Hence, correlation between the value of are and the
hydration energy flask) of ions must be observed most
clearly for those salts for which 44 > 0.

Now we recall that hydration is due to the influence of
the electric field of the ions on the solvent molecules,
which have a permanent dipole moment. Other
conditions being equal, the energy of this interaction is
proportional to the electric field intensity at the center of
the water molecules. The latter in turn is inversely
proportional to the square of the distance r,_.(*) = Ph(rr(*
± nip)] between the centers of the ion and of the solvent

17 20 23 ZS 29 32 35 3.8 41 4.4
krZa11/-4v)

FIG. 3. Relation of the absolute error O loaf = log ke, - log fe,0
to the parameter x.
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FIG. 4. Relation of Aro = ro r, to the hydration energy of the
cations Cloon

molecule (r.20 = 2.90 A is the diameter of a water
molecule). Hence we see that the anions, which have a
large diameter rc(--), are almost unhydrated, since their
hydration energy /fihYdf) ti (r,_ I -0-2 is very small.*
However, it is considerably larger for the cations, and
furthermore, IfibYdr) for them varies over the rather large
range (0.10 < (r,,m)-2 S 0.20). Hence Aro should be
distinctly correlated only with the hydration energy of the
cations, as is well confirmed by the factual data. Indeed,
Fig. 4 shows that the value of Aro increases practically
linearly with increasing (Joon for salts of Li +, Na*, and
K*. On the other hand, the salts of Rb+ and Cs+, for
which Aro is negative and large, fall off the curve.

We shall now examine what happens to the parameter
ro in the series MCI, MBr, MI, where M is one of the five
metal cations (i.e., Li, Na, K, Rb, or Cs). Since the
cations are hydrated but the anions practically not, then
when the Cl- anion in the salt MC1 is replaced by Br- or
I- , the increase in ro must be close to the increase in the
radius (rather than the diameter) of the anion Ihrv-). In
other words, the difference 1/21(ro)mi (ro)Ma] must be
approximately equal to Vtircis,) r,.(as,)] = 0.15 A. We see
from the data given in Table IV that this requirement is
satisfied quite well for the Li, Na, and K cations, but not
for Rb and Cs. All of this leads to the concl ision that the
additional forces in Rb and Cs salts do not arise from the
hydration effect, but from some other cause.

Since the value of Aro is negative for Rb and Cs salts,
we might naturally assume that for them the additional
forces are attractive. For example, the latter might be due
to ion-dipole interaction of two solute particles. When
neither of the particles possesses a permanent dipole

In the series Cl", Br- , I-, the value of (r,_(-9-2 ranges only from
0.078 to 0.098.
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Table IV

M I Li Na h I Ith Cs

1

ltro/M I (ro)Mci i2

1

2 t-l rontiBr (rohttci 1

0.59

0.11

0.39

0.15

0.33

0.10

- -0.14

0.04

0.00

0.00

moment, the energy of such an interaction is aE22, where
a, is the polarizability of the first ion, while E2 is the
electric field intensity caused by the second ion at the
center or the first ion. When the Cl- ion in a salt MCI is
replaced by I- or Br the value of EM remains
practically constant (since E. ti 1/r,2, while r, varies only
from 3.30 to 3.85 A for the Cs and Rb salts; see Table
HI). However, the polarizability of the Cl-, Br -, and l-
ions, being proportional to their volumes (i.e., to (0-13.
On the other hand, Aro should not depend on ov-13 at all
for the salts of Li, Na, and K, which show practically no
polarization interaction. This is precisely what is actually
observed (Fig. 5).

CONCLUSION

We shall briefly formulate the results obtained above.
(A) Depending on their structures, all electrolyte

solutions can be divided into three groups: dilute
solutions, solutions of intermediate concentrations, and
concentrated solutions. The distinguishing feature of the
first group is the high degree of "collectivity," such that
the Debye sphere contains a large number of ions at one
time. For the second group, the charge of the "central"
ion is screened by only one counterion, leading to
formation of neutral quasimoiccules in the system.
Finally, concentrated electrolyte solutions are characterized

/JO

120

0.R7

080

030

-a30

-QM

-1.20
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NaCt NaBr NaI
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KI

Rb I

cst

FIG. 5. Relation of Aro = ro r, to the volumes of the anions vo(-)
(1/20-93.
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by a structure of the ionic subsystem greatly reminiscent
of the structure of ordinary liquids in its close-range
order and coordination spheres.

(B) Since the absolute values of the density of the ionic
subsystem in dilute solutions and solutions of intermediate
concentrations are small enough, one can describe the
solvent in them in terms of the dielectric constant f =
E(0, v) alone. Here one can neglect in dilute solutions the
dependence of E on the concentration v (but not on the
temperature O!). However, in solutions of intermediate
concentrations, one must always take into account the
fact that E = E(v). One can't introduce the dielectric
constant at all in concentrated solutions, since the
discrete structure of the solvent plays the important role
in them.

(C) One can use methods of expansion in series in a
small parameter in constructing a theory of dilute
solutions, but these methods are not suitable for
describing solutions of intermediate concentrations or
concentrated systems, since then the corresponding series
diverge. Hence, the theory of the latter can be based only
on methods analogous to those used in the theory of
ordinary liquids. However, since the density of the ionic
subsystem is small in solutions of intermediate con-
centrations, one can use the linear equations of the theory
of liquids to describe them. The non-linear effects must
be taken into account for concentrated solutions.

(D) One can find a solution of the linear equations of
liquid theory in analytic form for solutions of intermediate
concentrations. Unfortunately, it is applicable only to
aqueous solutions of univalent electrolytes for v .< 1

mole/liter. This solution unambiguously determines the
free energy of the ionic subsystem of the solution, and
here it turns out that the derived expression for the
internal energy exactly coincides with that previously
found by Debye and Mickel.

(E) Heretofore, in constructing the thermodynamics of
electrolyte solutions of intermediate concentrations, one
has had to take account systematically of the fact that E
= E(v) for them. Introduction of the concentration-
dependence into the expression for the characteristic
functions of the system permits one to eliminate not only
the inner contradictions existing in the thermodynamics
of electrolyte solutions, but also to gain satisfactory
agreement of theory with experiment.

(F) An analysis of the values of the single adjustable
parameter of the theory (the ionic diameter ro) permits
one to establish the fact that in some solutions repulsive
forces act between the ions, due to overlap of their
hydration shells (hydration-type systems), while attractive
forces act in others, due to the mutual polarizability of
the ions (polarization-type systems).*

One usually speaks of positive and negative hydration. However, it
seems to us that the term "hydration- and polarization-type
electrolytes" corresponds better to the physical nature of the
phenomenon.
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