
ED 033 848

AUTHOR
TITLE

INSTITUTICN

Pub Date
Note

EDRS Price

Descriptors

Identifiers

Abstract

DCCUMENT RESUME

SE 007 212

Hatch, Nary Jacqueline
[Experimental Course in Elementary Number
Theory, Cambridge Conference on School
Mathematics Feasibility Study No. 35.]
Cambridge Conference on Schccl.
Mathematics, Newton, Mass.
[69]
173p.

EERS Price MF$0.75 HC Not Available from
EEFS.
Additicn, Arithmetic, Divisicn,
*Elementary School Mathematics,
*Instructicn, *Instructicnal Materials,
Multiplication, *Number Ccncepts,
Suttracticn
Cambridge Conference on Schocl Mathematics

In the winter of 1965, an experimental
course in Elementary Number Thecry was presented to a 6th
grade class in the licsmer School, Watertown, Massachusetts.
Pricr to the intrcducticn cf the present material, students
had been exposed in class to such topics from the
University cf Illinois Arithmetic Project as lattices,
number lines, frame eguaticns, and linear affine
transformations. The present materials are ccncErned with
such mathematical ccncepts as (1) fundamental operations
involving integers, (2) division of integers which included
remainders, factorizaticn, and the Sieve cf Eratosthenes,
and (3) number systems in bases 2, 7, 1C, and 12. Teacher
and student materials that were used for a pericd of 14
weeks are included. [Nct available in hardcopy due to
marginal legibility cf original document.] (RP)



.46

OC1

CCI
1411

Pc\
C,
CI Preface:

1.1.1

U.S. DEPARTMENT HEALTH. EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT
OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

Experimental Course in Elementary Number Theory (A continu-
ation of work begun at the 1964 Ceelbridge Conference by
Peter Hiltoniornell University' and Brian Grifliths)
Southampton University) .

CC ='

Feasibility study 'Jo. 35

Mary Jacqueline Hatch
28 March 1965

A greatly expanded version of the course, first presented to twelve
students at the 1964 Morse School summer session,- is-beieg-tsstedewith a
6th grade class at the Homer School in Watertown, Massachusetts. The
teacher is (Mrs.) Mary Jacquelin Hatch, who observed the summer school
experiment and who is now a staff member of the University of Illinois
Arithmetic Project at Educational Services Ineorporated.

The students being used in the current phase of the experiment
are in a regular 6th grade class in the Watertown Public schoole0
Heterogeneously grouped, the twenty-three chilFeren range from a very
high aptitude in mathematics to a few whose previous performance in
basic arithmetic has been consistently very poor. There are thirteen
boys and ten girls, Because they are segregated on two eeparate sides
of the room it is very noticeable that the boys are much more verbal in
class than the girls, although performance on tests seems to spread
evenly among both sexes.

Before the cours on Elementary Number. Theory was begun, Mrs Hatch
had taught tae class daily for three months, including such topics from
the University of Illinois Arithmetic-Project as lattices, number lines,
frame equations,and linear affine transformations, Thus the students
were already familiar with negative numbers and readily. accept new symbols
and concepts

Outline and Observations:

I. Operations on the Integer. (Jan. 4 - Jan. 14)
Rather extensive tables were made by each student for addition,
subtraction, multiplication and division of the integers. Each
was arranged like a coordinate plane with the numbers being oper-
ated or placed aiorg twe pereendicicular number lines intersect-
ing at zero° Significant patterns on the tables were noted and
described to ramniarize the students ulth rows, columns) sym-
metry, diagonals, nua3rants, et.:, This was the first time in
their experience that the students had organized such a vast array
of mathematics]. information for study and instant referral. Being
so accustomed to rote learning in arithmetic, the pcssilAlity of
being allowed to use tables as a short cut to tedious computation.
came as an unexpected surprise to the youngsters. The sudden
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Outline and Obseurations (continued)

appearance of fractions on the division table drove home the
idea that necessity is indeed the mother of invention,

II. Division of Integers (Jan 15 - Feb. 1 )

1. Remainders - whole numbers including zero.
2. Factors of N, Solutions to ..] x = N

a. Proper factors
b. Smallest Possible Factors

3. The Sieve of Eratosthenes

In traditional arithmetic remainders in division appear only after
years of experience with carefully contrived situations where the quotient
is always a whole number. The students had no trouble "reverting" to
expressing remainders as a natural number rather than a fractional part
of the quotient. However, consideration of zero as a legitimate remainder
Vets a tore difficult hurdle. Factors were defined as divisors which give
zero as a remainder and prime factorization was approached as the list of
smallest possible whole numbers which, when multiplied together, have the
given number as a product. The uniqueness of prime factorization was noted
long before the word "prime" was introduced.

Prime numbers were hinted at by looking for all possible factors of
several consecutive numbers (i.e. 45, 46, 47, 48, 49, 50) as larger numbers
were considered, various tests of divisibility were explored for divisors
2, 3, 4, 5, 6, 8, 9, and 10. (#7 left out on purpose). Three different
arrangements of the natural numbers were used as Sieves of Eratosthenes,
and primes were first defined as numbers not crossed cut on the Steve and
latter as numbers having no proper factors. Some unsolved problems of
history about primes were mentioned to show the students that the primes
which they had just met for the first time have fascintated and confounded
man for thousands of years. The distribution of perfect squares on a spiral
array of natural numbers led into consideration of the sum of consecutive
odd number series as a challenge for the more able students. The concept
of Relative Prime pairs was introduced and included in a fresh look at low-
est common denominators of unlike fractions. Euler's 0 function was
briefly explored for numbers 2 through 200

III. Number systems of bases 10, 7, 2, 12 (Feb. 2 - March 5) includes
a week's vacation.

The fundamental structure of our base 10 number system was laid bare
as bases 7,2, and 12 were explored in great detail, Translations from
base 10 proved more difficult than translations to base 10. Numberlines
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were used and negative numbers and fractions as well as
counting numbers weve considered in the various bases.
The students we.ne encouraged to try. to "think" in the

new bane and to check computations by translating the

entire problem into base 10.

Russian Peasant's multiplication was used as an intro-
ductim to hate 2 and was of great fascination to the
students. Vertical repeated division by 2 was rotated
90' to provide a less confusing method for the students
translate from base 10 into base 2.

/ . l 0 0 / 0
re I

/ 1 j ../o. /,:; -DI lad Remainders:
Base 2 notation.

2,
Am.

2 z
This same method was then used for other base translation

by some of the children. In doing some rather long multi-
plication with base 2 numbers thd students had their first
experience in carrying over more than one column. The need

for two additional digits in base 12 notation was easily
accepted after considerable familiarity with bases 7 and

2.

There was a great deal of class discussion about base in

general. Some tables were prepared and compared to base 10

tables. Perfect squares, even and odd numbers, and the

behavior of the digit (b.1) for base b were exp]orcd for all

cases.

v. Arithmetic Mod 10 (March 8 - March 18)

The importance of the units digit in regular addition,

subtraction and multiplication was noted. A very large

table of addition Mod 10 was made so that the students

would see the repetition of the 100 digit array of infor-

mation. The introduction of several new symbols =10, + 10,

X,o, (mod 10) was taken in stride by most of the
students as they made mod 10 tables for both addition and

multiplication and carefully studied the resulting patterns.

Equivalence classes were extended into the negative numbers

and solutions to the congruence an! == 1.0, (mod 10) gave

meaning to certain fractions with denominators relatively

prime to 10. The pattern of successive powers of integers

mod 10 was explored in great detail, looking firat at rows

of 1st, 2nd, 3::d and 4th powers before writing 5 th powers
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and discovering them to be the same as the let

power row.

Page Four

V. Arithmetic Mod 7 (March 19 - March 26)
The concept of arithmetic Mod 7 was suggested by

comparison to a calendar, Coincidentally March
1st fell on a Monday this year and gave a conven-
ient and timely array of numbers following into

Mod 7 equivalence classes It was decided that

we could arbitrarily call the days of April by
numbers 32,33,34.., and a student volunteered the

suggestion that then Feb 28, Feb, 27, etc. could

be thought of as 0, (.,1),(-2,.,0.With the equivalence

classes (Hod 7) written in this calendar form on the

blackboand the children said it looked just like a

seven-fold lattice,only upside down.

The class uas able to predict correctly the pattern.

of the 49 digits of the Mod 7 addition table and for

the first time this cylic permutation was verbalized

as "all seven digits, always in the right order, but

eaal time starting at a different place." The class

quickly and efficiently filled in the Mod 7 multipli-

cation table with no unnecessary computation, The

CAP laws were tested on arithmetic Mod 7 as they had

been on Mod 10, Similarities and difference between

the tables for the two mods have been noted, especially

the shuffles (permutations) of digits on every row of

mod 7 multiplication table, though no specific explana-

tion has been souelt out at this stage. Solutions of

linear congruenaes Mod 7 will be explored, along with

the accompanying equivalent fractions.

VI Topics to be Completed (Apr!' )
In the coming weeks Mods 2,3,4,5,6,8,9,1l,and 12

will, be quickly introduced and compared to Mod 7

and Mod 10. Explanations for casting out 9's, a's

and 11's will be discerndd from equivalence classes to

these moduli. Finally, the importance of prime moduli

will by culminated in a p=asantatiln of Fermat's theorem

(P-1) 1 (Mod p) and Wilson's theorem (p-1)!= -1
(Mod p).
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The material included in this experiment has without question

captivated the natA:.6.A curiosity of these students. With relatively

few exceptions they have kept up an active interest in the continuing

exploration and have in fact communicated much of the content to friends

who are learning only traditional 6th grade arithmetic. Moat involun-

tcriiy take notes whenever a new concspt is being introduced with its

new symbolism and terminology, and all ha'yc systematically kept their

growing collection of tables. Of particular interest is their lively

verbal participation (mere noticeablefrom the boys however) and their

keenness and enthusiasm in seeking out patterns in new data

Their homeroom teacher gives some work (mostly word problems)

every day in arithmetic along more traditional lines. He has noticed

a considerable difference in both attitude and approach in the students

as the year has progressed.

The children all tock the Stanford Achievement Tests this month

(March 1965). This test of course does not include any of the experi-

mental material these students have been working with this year, so

their scores can be considered only as an indication of speed and skill

in traditional arithmetic content. The scores of the children in this

particular class ranged from,., high of 1161 (first month in eleventh

grade) to a low of 3A9 with a median of 7,0. When compared to scores

of the ether three 6th grade classrooms in the same school, this parti-

cular group had lower scores on computation, about the same en applica-

tion, and higher scores on concepts.

lbt/29/Mar/65.
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ELEMENTARY N1ZD3ER. THEORY

Experimental Class with 6th Grade Children - 1965

Introduction:

In the winter of 1965 an experimental course in Elementary Number Theory was

presented to a 6th grade class in the Hosmer School, Watertown, Massachusetts.

The group of twenty-three students (13 boys and 10 girls) was widely heterogeneous

with respect to mathematical ability, but all had had only traditional arithmetic

1 in their previous years of schooling. It was a characteristic of this particular

"set" of children that the boys were more verbal than the girls, but the perfor-

mance in written work showed a broad span of interest and ability in both sexes.

The work in number theory represents a daily hour of classroom time over a period

of fourteen weeks.

The following is a summary of notes taken during the classes on number theory.

For the sake of readability, much of the classroom discussion has been condensed

into what would seem to be more of a lecture by the teacher than was actually the

case. Verbatim dialogue is included only when it shows the development of an idea

of particular significance. In this case questions, answers, or comments made by

the students are indicated by quotation marks. A few explanatory notes added by

the writer are inserted from time to time and are shown in brackets.



I. The CAD Laws of Arithmetic

[It is assumed that by the time a unit in Elementary Number Theory is present

to a group of students, they would already be familiar with the laws of arithmetic;

at least in an informal way. The laws were restated in this lesson both as a re-

view and so that they could be referred to later on as criteria for developing

modular arithmetic. They might be explored in greater detail with some classes

or omitted entirely with others, depending upon previous exposure.]

Suppose for some reason you suddenly needed to know the product 7 x 8 and,

for the life of you, you could not remember what it was. We all have spent a lot

of time memorizing the multiplication tables, but there are moments when for no

apparent reason we forget bits of information that usually we know very well.

Whet is a long sure way we could go about finding the answer to 7 x 3 (which

for the moment we have forgotten)?

"You could add 7 eight times."

"Or add 8 seven times."

Would the answer be the same in both cases? Can we always depend on this,

even if we use larger messy numbers like 6358 x 719, or fractions like

15 3/4 x 26 1/2 or negative numbers like (-17) x (-53)? Of course we know a short

way of finding the product of 6358 x 719 without too much work but we could also

take the very long route and add 719 6358 times or 6358 719 times. Notice that

even in using the short way of finding the product of 6358 x 719 we still must

know the product of 7 x C and this is just exactly the thing which we can't re-

member today.

Often we can find out something we've forgotten by starting with something

we're sure we remember. Now everybody should know what 5 x 8 is 7 x 8 is two more

8's than 5 x 8 and we certainly all know what 2 x 8 is. So if we put 40 and 16

together by adding we get 56 which is the number we were trying to remember.



9 x 12 is another one of the things that people often forget. Mat is a quick way

to think this one through?

10 x 12 is easy, but that's one 12 too many so we have to subtract 12 from

120 to get the answer we really wanted.

We can think of many specific problems, but it saves us a lot of time and

energy if we can write some general statements about these ideas.

We all know that 3 + 2 and 2 + 3 both equal 5, but even more important is

that there is a true principle here no matter what two numbers we want to add

together. Again, 3 x 2 and 2 x 3 both have the same answer and it is always true

that the product of any two numbers is the same no matter which of the two number

we happen to write first. In symbols we can quickly say all this by writing

El* A+ , OKA
In words we can simply say that addition and multiplication are both

commutative.

Sometimes we have more than two numbers to add. Does it make any difference

which two we group together first? The often check additions of several numbers

by adding from bottom to top instead of the other way around.

7 12 7

) 27

5 18 .

5 ) 20
6

27
6 lc

.4 9
ir '-

+ )

The sums of course should come out the same both ways, but because we have

grouped the numbers differently we get different partial sums along the ray and

have a good check that we probably added correctly.

This same kind of thing is also true when we have more than two numbers
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to multiply ( 3 x 7) x 5 = 3 x (7 x 5)

21 x 5 = 3 x 35 (notice the different grouping)

105 = 105

Because these are ideas that are true for all addition and all multiplication in

regular arithmetic we once again can write this in symbolic form as

(

(

( V)
XA) X V = DX (AX )

In words we can say that both addition and multiplication are associative.

In our original attempt to remember the product of 7 x C we took a route

where we combined multiplication and addition in our thinking. We broke up the

multiplication problem whose answer we could not remember into two smaller ones

and then added the two products together. Remember,

7 x 8 = (5 x 8) (2 x 8) = 40 i 16 = 56

Since this works for any two numbers we wish to multiply we can write it symbolic-

ally as

x ) = X A) (

and in words we say that multiplication is distributive over addition.

Can we also say that addition distributes over multiplication? Is it certain

that for any numbers we want to put in the three shapes the following will always

be true?

+ Z\ x ) x 11 V)
Try several numbers. What do you find? are there any numbers for which this is

true?

The short cut we commonly use in multiplying two numbers of more than one digit

works because it is merely using the distributive law several times. For in

multiplying we actually break up each number into parts which are quick and easy



for us to work with. 6 7 =
X 3 5 =

3 3 5
2 0 1
2 3 4 5

60 -:. 7

x 30 + 5

35 .

300
210

1800

2345

5.

Having memorized the products of pairs of one digit numbers enables us to

find the product of 6" and 35 by four easy multiplications and some addition.
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THE LAWS OF ARITHMETIC

For all number chosen completely at random, the following properties always

hold true, Because these properties are true for any numbers we wish to use

(whole numbers or fractions, positive numbers, negative numbers and zero)

they are called the Laws of Arithmetic.

(Eix6(G7=- (A)(7)

Commutative law of addition

Commutat.,ya law of multiplication

Associative law of addition

Associative law of multiplication

The distributive law of multiplication over addition.



SI. Tables for Addition, Subtraction, Multiplication and Division of Integers.

Much of your time in arithmetic in the early grades was spent in memorizing

the basic facts (as they are called) of addiL!on and multiplication. You probably

remember writing them out in long tables or reciting them aloud.

lx 1 = 1 1 x 2 = 2 1 x 3 = 3 1 x 4 = 4

2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 0

3 x 1 = 3 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12

0
9

Writing tables this way takes up a lot of space. We could say the seven's

table quickly simply by counting by sevens. 7, 14, 21, 26, etc.

Once we have learned these facts by memory we usually don't refer to the

entire tables again but there are other important uses for tables of this kind,

Sometimes it is necessary to use data that is too complicated for most people

:o memorize. If all the information can be collected and arranged ahead of time

some orderly way then it can be refermid to quickly whenever needed. Another

very important useof tables in mathematics is to study the special patterns an

array of information makes. In this way we can often learn a great deal without

doing a lot of unnecessary work. I think you will see later what I mean about

both of these uses of tables as we put together many tables of our own.

Take a number line (Illustration 1) and mar% off on it the whole numbers as

far as you wish to go. We can draw a second number line, crossing the first one

at O'and perpendicular to it. Where the two lines meet will also be 0 on the

vertical number line, and like a thermometer, we shall put the positive integers

above and the negative numbers blow the O. [The tables were begun in this fashion

in order to provide a first exposure to the concept of a cartesian plane. ]

In order to tell the two number lines apart, we'll mark the one going left

and right with a and the one going up and down with a



(Addition table on Cartesian Plane) (illustration l)
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lots of lighter lines parallel to both number lines we have filled the space with

lots of little squares and each light line goes through a number on one of the

number lines. (See Illustration 1)

Suppose we think now of the mathematical sentence [1:11+ =

Each time we choose a pair of numbers to put in the 0 and Athere is only

one number that can be put in the 0 to make the sentence true. Using the

grid we have just made we can begin to record the values for as we change the

numbers in and A
For instance 4 + 2 = 6 so where the 4 Lline meets the 2 line we

will write 6, the sum of 4 and 2. What numbers then shall I record here, and here,

and here?

riWe can of course use both positive and negative numbers in and A
What is Fi] + ? What is + ?

Each child was then given a sheet of li" graph paper and drew the two

in intersecting number lines in order to make his own table for addition of

integers. No short cuts for filling in the sums were mentioned but after a short

while most children discovered an efficient method for recording data without

further computation. Those few who used haphazard values for .and "would

have gone a long time before noticing an emerging pattern and in fact these same

students made a sufficient number of errors in calculation that the pattern was

obscured, especially in the 2nd, 3rd, and 4th quadrants.

Observations of the table +A (Illustration 2)

1. "Wherever you start you just count up or down."

2. The rows all look like number lines."
"So do the colnrane

3. "The diagonal line from upper left to lower right is all zeros.
Then all positive ones above, negative ones below, and so on.'

4. "How about the diagonals going the other way? They count by two's.
Either all odd numbers or all, even numbers on any one of the
diagonals going from lower left to upper right.'?





8.

5. Here is another thing that you probably would not notice on your own.
What happens if you fcl.d that table in half along this diagonal?

Each nte.noer folds on to a rnimber just like itself, so
the upper left hr 1 and lower right half are exactly
the same. This diagonal is called the main diagonal
and when numbers fold on themselves in this way we say
that they reflect across the main diagonal. This
happens because addition is commutative, because

6. What happens if we fold the table along the other (secondary) diagonal?
Each ?Lumber folds on to another just like it but of opposite sign.

Homework: Make a similar table for subtraction.

Be careful always to think along the number line first

and do think twice when using negatives.

rAlthough the subtraction table begins harmlessly enough, it is full of

booby-traps for the unwary student. There was a great tendency among a few stu-

dents to always subtract the smaller number from the larger one thereby avoiding

negative differences in the first quadrant. Handling one or more negative inte:Ars
WW411.0

for Land A resulted in so many errors for these same few children that it was

more successful to point out the pattern of the table to enable them to fill it out

accurately and quickly.1
No*

The importance of using two colors of chalk on the board and two colors of

ink and/or pencil on the students' tables became quickly apparent with the sub-

traction table. Most had not noticed or thought unimportant an unusual occurrence

along the vertical numberdine.)

Look for a minute at your addition table. What happens in 1 I

1.7

if either Li or znse is zero? ID 0 = Lui 0 .4-A =

Go where we would have recorded the sum, the number we needed was already there,

on the numberline itself.

Now, in subtractipn, if A is 0 we have [1:1-0 and once again

the number on the number line is the same as the difference we would
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lotherwise record. But what If E,is zero? and so

for the difference we need to writs the negative of the aomber a:ready there.

Just putting in a negative cign before each nwAber on this vertical number line

t-'11 make things very confusing because then the number line looks upside down

from what we want it to be. The easiest way out of this difficulty is to use two

diaerent colors, one for the values of

second color for the differences or values of

and&LongAttle number lines and a

we record on the table. Then

along the vertical number line itself we have two numbers, one of each color.

These numbers will always look alike (have the same absolute value) but will be

opposite in sign.

Observations of the Subtraction Table: [1] (Illustration 3)

1. "It looks sort of like the addition table but it's turned around
part way." (rotated 90° clockwise)

2. "The zeros all go the other way." (are along the main diagonal
instead of the secondary one)

3. "Each row is still a number line, but each column is now like an
upside down thermometer with the below zero numbers on the top."

4. Will this table fold or reflect along the main diagonal? "Not
really." You get the same number but with opposite sign which
is the same thing as saying

AA= °<Z\
With numbers we can quickly see that this is indeed true. 8 - 2 = 6 but

2 - 8 = -6. Subtraction then is not commutative and the order of the numbers

cannot be changed without chanting their difference except in the trivial case

when r--] and are exactly alike, The addition and subtraction tables as

we have written them are concerned only with sums and differences of whole numbers.

But we can use them to help us see what happens if ni or or both happens

to be fractions.



Suppose H = 7 3/5 and 5 6/7 . Now 7 < 7 3/5 (8 and

10.

5 <5 6/7 ('6 . We can see quickly by glaLcing at the table that 7 3/5 + 5 6/7

mast be somewhere between 12 and 14. Because the sum must fall somewhere in

tne square bounded by

What if we had 7 1/2+ 5 1/2 . Here we can quickly see that the horizontal

and vertical lines through these two numbers will meet on the diagonal that

connects all the 13's on our table.

We can of course make a table not only for whole numbers but also for some

fractions as well, but there is always the problem of deciding which fractions

to include and which to leave out.

With a new Sheet of graph paper let's make a table for multiplication of the

integers. This means thinking of products x4Land recording these just as

we did for sums and differences.

For the benefit of some in the class the products of signed numbers was re-

viewed at this point although it had been covered previously.]

From the number line it is easy to tell that a positive number times a

negative number is negative.

-
-6 -5 -4 - 1 0 1 2 3 4 5

-4

3 x (-2) = (-6) and 2 x (-3) = (-6) = (-3) x 2

It is more difficult to see why the product of two negative numbers must be

positive. But if we insist that the laws of arithmetic must hold true in all cases

then we can show a rather simple proof.

We know for instance that any number times 0 is 0.
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11.

(-7) x 0 = 0 But 0 can be written in many different ways.

(-7) x (5-5) = 0 Because (5-5) is another name for O.

(-7 x 5) ..:- ((-7) x (-5)) = 0 Because multiplication distributes over addition.

(-35) +((-7) x (-5)) = 0 Slrce we already know that (-7 x 5) is (-35) and that

there is a zero on the right hand side we know nat

( (-7) x (-5) ) must be the number that, when added

to (-35) will give O.

(-35) (t-35) = 0 There is only one such number and it is of course

".hi n then proves that the product of two negative numbers is positive. Now go ahead

and fill in the table for keeping in mind whether the product

is positive or negative. Look for your own short cuts in order to save yourself

time' and energy.

Since we are especially interested in the general patterns these tables make

it is helpful to have names for the various parts. The'two crossed number lines,

called axes, divide the entire surface into four quarters which are called quadrants,

and each of these has a number so we can quickly tell them apart. (Illustration 4)

Starting in the upper right hand corner is the first quadrant. Then we move counter-

clockwise into the second, third, and fourth quadrants. The main diagonal passes

thrcugh the 1st and 3rd quadrants and going the opposite way, in the 2nd and 4th

quadrants, is the secondary diagonalo

Observations of the Multiplication aTable: (Illustration 5)

1. "The 1st and 3rd quadrants are all positive."
"The 2nd and 4th quadrants are all negative."

2. 'There are zeros all along both number lines."

.. How about the main diagonal. Do these numbers look familiar?

D=0

0 1 4 9 16 25
(0x 0) (1x 1) (2 x 2) (3 x 3) (4 x 4) (5 x 5) ...

MO

A
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Michael: "You add 1 to 0 to get 1. You add 3 to 1 to get 4. You add5 to 4 to get 9, and this keeps on golL,g if that."
Let's see if Michael is right.

Main diagonal: 0, 1, 4, 9, 16, 25, 36, 49, 64 ...
Differences: 1, 3, 5, 7, 9, 11, 13, 15,
This is a very nice pattern and what Michael has noticed is true no matter howfar out we go on this

diagonal. Last fall when we made up some machines that didthings to numbers (operated on them) we had a special name for the machine thattook whatever number we put in and
multiplied it by itself. We called it a "squareeand this list of numbers is called the list of perfect squares. You should becomeso familiar with these numbers that you immediately

recognize them as perfectsquares.

The same list of numbers is on the lower part of the main diagonal and thesame numbers, only negative, on the secondary diagonal.
4. What about the rows and columns on this table? We can call any particularrow or column by the number that it passes through on the number line.
"The 1 row (and column)

are just the counting numbers.The 2 row (and column) is counting by 2's.The 7 row (and column) is counting by 7's.The 53 row (and column) would be counting by 53's."
[This came as a surprise to some of the students, indicating a somewhat hazy

understanding of what
multiplication really is.]

5. Is it always true that x x Lb if so, then this meansthat we should be able to fold the entire
along the main diagonal and haveevery number land on another just like it. Because multiplication is commutativethe table does reflect across this diagonal.

What about fractions? Svppose we wanted to multiply 2 1/2 x 3 1/2 .
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Looking at the table what limits are there on the product? 2 x 3 = 6 and

3 x 4 = 12 so 6 c (2 1/2 x 3 1/2) .c 12. In fact the lines going through 2 1/2 and

3 1/2 would meet right in the center of the square which has these numbers at the

corners.

.12
..?

, . 6

If we look at the diagonals, the difference between any two numbers along a

diagonal is not always the same. Half way between 8 and 9 would be & 1/2, but

half way between 6 and 12 would be 9. Only one number could be at this exact spot

sc lets figure out exactly what 2 1/2 x 3 1/2 is.

2 1/2 x 3 1/2 = (2+ 1/2) x (3 1/2) = (2 x 3) x 1/2) +(1/2 x 3),+ (1/2 x 1/2)

8 3/4 = 6 + 1 + 1 1/2 + 1/4

3 3/4 happens to be the average between 8 1/2 and 9.

[Much more time could have been spent in interpolation, but since the work in

number theory would be concerned almost entirely with integers, fractions were not

pursued any further.'

The division table is a little bit trickier than the others so I think it is

best we begin it together in class. Once again we make the intersecting number

lines and then begin to fill in the quotients when
f i is divided by Q .

It is important that we keep in mind which of the two numbers is the divisor.

or7We can sayLi /1\
, but in any case we must think of the [ I

,number first and divide it by the number, no matter which is bigger.

8 -:- 1 =
0 2 = 4

-:-- 3 = 2 2/3
8 = 8 = 1

8 -:- 9 = 8/9

For the first time we find that not all of the data on
this table will be integers. When a number is not whole
we shall agree on writing it as a mixed number if possible
and you can reduce a fraction to lowest terms if you wish.
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Go ahead now and fill in the first quadrant of the table and as usual look

for a short cut to save yourself unnecessary work.

[Many of the children soon noticed a pat%t.Irn which enabled them to fill in

the first quadrant with little calculation. They were obviously delighted with

their discovery= For a few students division is such a stumbling block that

filling in this table was a terrible chore. They were unable to do even the

Simplest divisions without writing out the traditional algorithm ( 2/ 8 )

and had a great tendency to always use the smaller number as divisor thus

greatly distorting the pattern. Even when the pattern of the table was discussed

by the class they were not able to proceed on their own to correct their errors,

so that it was necessary to spend an extra hour working with them alone to be

sure their division tables were filled in correctly.]

Observations of the Division Table El .Z;,

1. "It has lots of fractions on it."

2. "There are ones all along the main diagonal."

3. "The 1 row is just like the numberline."

4. "On the 2 row you count by 1 /2's
11 11 3 :1 it ' 1/3Is
etc.

5. "The 1 column goes 1, 1/2, 1/3, 1/4, 1/5,
" 2 " " 2, 2/2, 2/3, 2/4, 2/5,

etc.

(Illustration 6)

[As the third quadrant was filled in a child noted; "IC's just like the 1st one,

sort of turned over." Following this, the 2nd and 4th quadrants were completed

with the comment that "these would be the same only negative."]

More Observations of the Division Table

1. "There are mostly fractions with a few whole numbers."

2. "The main diagonal is all +1 and the secondary diagonal all -1."

3, Where are all the twos? "In a straight line that slants a little below
the ones, but they a:e further apart." How about the 3's, 4's, 5Is, etc.?
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4. "All the numbers above the line of ones are proper fractions."

5, Where are "le zeros? [Most had no put any answers down for 0
The fractions here are getting smaller and smaller. As soon as we cross~
the vertical number line from the first to the second quadrant we are
into negative fractions. Somewhere along the way there must be a zero,
"It would be right on the number line because 0 divided by any number
is 0. (Use two colors)

[A child started to put 0's also along the horizontal number line.

Wait, is it true that .7' 0 al 0 ? When we say that 8 2 = 4 then it

must also be true that 4 x 2 = C, because division and multiplication are closely

interrelated. Then if we say that0-.: 0 = 0 (let's use C in the [11 )

8 0 = 0 then it must also be true that 0 x 0 = 8. Now other rules we have

tell us that 0 x 0 = 0 and so we know then that 84- 0 cannot be O. What about

04-0 = 0? This seems to work because it is true that 0 x 0 = 0. But this

problem breaks another law we have which says that any number divided by itself

is always I. = 1 . So if I obey this rule r must equal 1 not O.

Division by zero leads us to so many contradietoryideasthat we just avoid the

whole thing by saying that division by zero is not allowed. So on our table

we won't put any answers along the I number line; in fact I have marked mine

with a wiggly line just to try to show that there are no answers there.

Michael: "What if we wrote the answers to division in decimals instead of

regular fractions"? That would be all right, although it might be harder to see

the patterns because some of the decimals (like that for 1/3) don't come out

nicely so it would get rather messy.

More than a week has been devoted to making the tables and discussing their

patterns. Tomorrow there will be a test. You may use all of the tables to help

you with the test in any way yet, like so be sure to have them with you.

[There was an attempt in 4:116. first test at discussion questions which might

draw verbal generalizations ~roan all of the children about material that should
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have been long familiar to them in bits and pieces. Answers to this type of

question ranged from thorough descriptions to complete blanks. The tables

spread out before them did not prove to be much help to those already weak in

computational skills or still insecure with manipulation of negative numbers.

Perhaps with a such slower pace and more classroom practice in using tables,

these few children could have developed more faith than fear.)
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16a.

Name

I. In the following problems use the word positive or negative in the blanle.s
to make these sentences true.

(1) A negative number plus a negative number is a number.

(2) A negative number times a negative number is a number.

(3) (-11) - (7) is a number.

(4) (-11) - (-7) is a number.

(5) A negative number divided by a positive number is a number.

(6) (-10) subtracted from (-3) is a number.

(7) A negative number divided by a negative number is a number.

(8) (-107) times (I33) is a number.

(9) (-5672?i) divided by 7 1/3) is a number.

(10) 13,576 - 31,576 Is a number.

II. Write true or false beside each of these sentences.

(1)

(2)

(3)

(4)

0 x (-7) = 0

(-5) - (-5) =

50 x (-1) =

8 x (8-8) =

(-10).

56

0

.....

4100000...........
(5) 0 4- 0 = 1

(6) 0 - 9 = 0

(7) 9 -;*-- 0 = 0

(8) 0 - (-14) = 14

(9) (-4) ((-8) 4- 4) = 0

(10) (-8) - ((-4) 4) = 0
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III. Find the numbers to put in the boxes which will make these sentences true.

(1) 7 x

(2) x 4 = -24

(3) ..:.. 3 = 2 1/3

(4) 54 4- = 9

(5) 8 1/3 5 2/5 41
(6) (-4) - Ej= -11

(7) (-5_ = (-9)

(8) 2/3x 1/2 =[J
(9) 4 1/2 x 7 =0

(10) 9 1/2 4 =0
IV. Here are some problems in old fashioned arithmetic. Use your tables

to help you or to check your work.

(1) 7536
x89

(2) 27/ 4928634

(3) 6 3/4 x 9 1/3 (4) 5678599
9794

(5) 67 (6) (7) 7 3/8 - 4 1/4 =75/15

103
58

75

449
4- 72

(8) 857.5 1366.49 = (9) 17.375 - 14.25

(10) 10 1/2 -:-. 1/4 =



16c

(1) Suppose you were trying to describe the addition table (Dx A)

to someone without actually showing him the table itself. What things

would you say about it to help him picture it in his mind?

(2) Now do the same thing by describing the multiplication table

(FHA).
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III. Factoring: Remainders of 0 (factors) ,

The tables we have made for addition, subtraction, multiplication and

division have included both positive and negative numbers. Although they arc

concerned mostly with whole numbers (integers) we have seen that they could be

useful in working with fractions as well. For a while we are going to conceatrete

on positive whole numbers only (sometimes called the counting or natural numbers)

and so we shall be thinking mainly of the first quadrant in these various tables.

Look for instance at the 12 row and the 12 column on the division table.

0/12, 1/12, 2/12, 3/12, 4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12, 11/32,

12/12, 13/12, . . .

0, 1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12, 1, 1 1/12,

time."

4,

"The denominator is always 12, but the numerator get one bigger every

Are you sure this will keep on this way, no matter how large we make the

table?

What number will be in the numerator if we go all the way out to where f--1 = 113?

"Some of the fractions can be reduced and some are really whole numbers,

like 12/12 ."

Look at the 12 column, starting from the bottom.

12/1, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9,, 12/10, 12/11, 12/12, 12/132.0.

12, 6, 4, 3, 2 2/5, 2, 1 5/7, 1 1/2, 1 1/3, 1 1/5, 1 1/11, 1, 12/13,

"This time the numerator is always 12, but the denominators get one

bigger the higher up we go."

As the denominators keep getting larger and the =orators always stay 12,

what happens to the numbers themselves?

"They are getting smaller and smaller. After you pass 12/12 or 1 you

won't ever get any more whole numbers because from then on the denominator will

always be larger than the numerator."
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Suppose that we had a table which was long enough to go out to the 24 column.

Then we are talking about 24:

remainder as a whole

24

24 =

24

24=

24

24

24 4,

24 .÷

() and this time, I shall write the

number instead of as a fraction.

1 = 24 r 0 24i- 9 2 r 6 =2417= 1 r 7

2 = 12 r 0 24-: 10 = 2 r 4 24 4 13 = 1 r 6

3= u r 0 24 +11 = 2 r 2 24 + 19 = 1 r 5

4 = 6 r 0 24 1'712 = 2 r 0 24 -20 = 1 r 4

5 = 4 r 4 24 t.-13 = 1 r 11 24 = 21 = 1 r 3

6= 4 r 0 24+ 14 = 1 r 10 24 22 = 1 r 2

7 = 3 r 3 24 4-15 = 1 r 9 24 -; 23 = 1 r 1

8= 3 r 0 24+16 = 1 r V 24 + 24 = 1 r 0

[The pattern of this particular table should evoke a variety of comments

from the students11

What whole numbers can I put in this sentence to make it true?OxL= 24

"Any of the pairs in the list above where the division came out even

(had a zero remainder)"

How about r--1 x 96?

96 x 1 = 96

48 x 2 = 96
24 x 4 = 96
12 x 8 = 96
6 x16 = 96
3 x32 = 96

How about [I]

Homework Find

162 and

[After a few pairs of factors were suggested
at random, Michael said "You can just
by 2 and multiply by 2."]

rix A= 1857

all the whmi, numbers that will work

when )is 45, 46, 47, 48, 49, 50.

r-1 Afor i jx

The numbers from 45 through 50 are all nearly the same size but when

x 2./A=look for whole numbers which will makeFl
we

true we find out that 48

has several pairs of numbers which will work, 47 has only one pair, and so forth.
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45= 45 x 1 = 15 x 3 = 5 x 9

46= 46 x 1 = 23 x 2

47 = 47 x 1

48 = 43 x 1= 24 x 2= 16 x 3= 12 x 4= C x 6

49 = 49 x 1 = 7 x 7
,

50 = 50 x 1 = 25 x 2 = 5 x 10
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The size of the number does not seen to be of much importance here. The whole

numbers which will divide exactly (leaving 0 for a remainder) into a number are

called the factors of that number. Every number seems to have at least two

factors, itself and 1, and we found that 47 had only these two while 48 just a

little bit larger had many other factors as well.

Let's go back to these same numbers 45 - 50 and on a piece of paper I have

written out the possible pairs of factors for each. Sometimes a factor itself

can be factored into two even smaller numbers. Notice that 1 said smaller

numbers and so this rules out the trivial pair ('O, 1), 1f we keep on doing

this as far as we can go, what do you notice?

"We always end up with the same small numbers to multiply together, no

matter which pair of factors we start with."

All of these numbers are factors of our original number and we can make

some generalizations.

1. Every number has at least two factors, itself and 1.

2. Some numbers have other factors as well, which are called proper factors

(excluding 1 and the number itself).

3. For every number there is a unique list of smallest possible numbers

(not counting 1) which can be multiplied together to give that nuw but for

a few numbers there is only one number in this list (the number itself).

[Primeness was not elaborated on or called by name at this point because

it would be developed later on. For the same reason prime factors were called

instead "smallest possible factors".]

Let's take another list of numbers that are all near each other on the

number line and look for their proper factors. ['students did these at the board]



120 121 122 123 124 125

5, 24 11 2 3 2 25

6, 20 61 41 62 5

2, 60 4

4, 30 31

10, 12

3, 40

8, 15

[Michael who had been working with 124, went on to find its prime factors.]

124 = 2 x 62 = 2 x (2x 31)

= 4 x 31 = (2 x 2)x 31

[The class observed the unexpected occurrence of 11, 61, 41, and 31 among

the proper factors, listed above, so these numbers and others of similar nature

were explored still further.]

Which of these numbers has proper factors?

11 = 11 41 = 41 71 = 71

21 = 3 x 7 51 = 3 x 17 81 = 9 x 9 = 3 x 27

31 = 31 61 = 61 91 = 7 x 13

['The factors for 51 and 91 were of course not readily apparent and un-

fortunately the curious appearance of 3, 7, 13, and'17 were not pursue'i.]

Homework: Find the list of smallest possible factors (prime factors)of:

408 480 804 840



IV. Divisibility - Primes

How can we quickly tell if a number is exactly divisible by 2?

"If it ends in 0, 2, 4, 6, or C."

Then looking only at the units digit tells us immediately what the remainder

is when we divided by 2. If the number is even the remainder is 0. If it is odd

the remainder is le

2 is an even number and, as we have seen before, we can think of E for even,

0 for odd, and write tle following table.

ExE= E
E x 0 = E
OxE= E
0 x 0 = 0

So if the number we are considering
is even, it must be the product of
2 and some other number, which could
be either odd or even.

Does anyone know a quick way to tell if a number can be divided exactly by 3?

[The class had already been shown the test of adding digits by a previous

teacher, although they had no explanation for this procedure at this time.]

"You have to add up all the numbers (digits). If the answer (sum) can

be divided by 3, so can the original number."

What about 4?

"If you divide by 2 and the number is still even, it can be divided by 4."

[Pythagoras called this "evenly even".] Are there any other ways that might

be even faster For instance, if we are going to bother to divide a very large

number (one of many digits) by 2, it might be just about as fast to divide by

4 in the first place. Is 32 divisible by 4? How about 232, 732, 55532, etc.?

Is 86 divisible by 4? 386, or 2286, or 100,000,086? Then a quick test can be

to look only at the first two digits on the right. If this small number is

divisible by 4, then so will be the entire number regardless of what all the

other digits are. Can anyone explain why this is so? Is 100 divisible by 4?

Is 700? Is 331500?
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Mark: "Any number which ends in hundreds can be divided by 4,"

So then all we have to bother about is whether the tens and units digits

part of the number is divisible by 4,

How about telling if a number can be divided by 5?

"If it ends in 0 or 5."

That's an easy one, of course, and suggests the test for divisibility by 10.

Let's make a chart of all the information we have so far.

Divisibility by Test

1 Any number.
2 If the units digit is 0, 2, 4, 6, fL
3 If the sum of the digits is a multiple of 3.
4 If the first 2 digits on the right form a

number divisible by 4.
5 If the units digit is 0 or 5.
6 Filled //If if passes the test for 2 and for 3.
7 in later iNo easy test.

If the first three digits is a multiple of 8.
9 If the sum of the digits is divisible by 9.
10 If the units digit is O.

We still have 6, 7, 8, and 9 to do

"You can cast out 9's for the 9 one."

"Can you cast out 818 too?"

We can try. 88 certainly works, but 96 does not. So I guess we have to

find some other way.

"You can divide by 4 and then if its still even, it could be divided

by 8."

But this is nearly as much work again as dividing by 8 from the start. This

idea might give us a hint though for a shorter way. Look at the test for 4.

"Do you mean if the first two digits can be divided by 8, it works?"

Let's try. How about 132? "No." 264? "No."

Michael: If the first three digits can be divided by C it works,

because thousands are always divisible by C.
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How about 6? What other numbers must it also be divisible by?

2 and 3 - divide by 2 first and then see if you can still divide by 3."

Do we have to bother to actually divide? Can't we just see if the tests for

2 and for 3 both work? I think we had better leave 7 blank for now. There are

some tests but they are complicated to remember and nearly as much work as dividing

by 7 at the outset.

Let's look at some large numbers and practice using these divisibility tests.

24730596
1047240

(A. 10 x 10 array of numbers (with 1 omitted) was passed out to each student.)

(Illustration 8)

Nore than two thousand years a$o a man named Eratosthewas did a great deal

of thinking about divisibility and came up with a clever scheme. You all know

what a sieve or strainer is. Eratosthenes thought of an imaginary sieve which

would be of many levels, with holes spaced evenly apart. He thought of all the

counting numbers stretched out in one long continuous row and dropping through

each level of the sieve. The first level would have holes at every other number

holding back all even numbers, but letting the odd numbers fall through. The next

level of the sieve would hold back all the numbers exactly divisible by 3, the next

level by 5, (not 4 because the even numbers had already been caught by the first

level) and so on. At each screening a few more numbers would be held back.

Although the idea is for all whole numbers, we shall try it only on the

first 100 of them. On the. sheet I gave you start with the first number 2 and then

cross out all other numbers that can be divided exactly by 2.

"Why isn't there any 1?"

What would happen if we crossed out all numbers that can be exactly divided
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"All the numbers would be crossed out."

[Most children immediately saw the short cut for crossing out all even

numbered columnsi What is the smallest ntuber now that is not crossed out?

Then this time cross out everything that is left which can be divided by 3. -0311

about 4?

"The even numbers are already crossed out."

So the next number left is 5, and so on. Finish it up at home tonight.

What numbers have you left on your chart that did not get crossed out?

These are the same numbers that would be the first in each level of Eratosthenes'

imaginary sieve. These numbers cannot be divided exactly by any other numbers

except themselves and 1. We might also say that they cannot be written as the

product of two smaller numbers.

There is a special name for numbers of this kind - prime.

"2 is the only even one,"

"Except fol: 2 and 5 they all have 1, 3, 7, or 9 in the units digit."

This is one reason for arranging the chart this way. Will they continue
to be so if we go on to numbe.es bigger than 100?

If we write them out another way, just in a long row, we might notice

something else.

2 (3 5 7,

13,x)1, 3' .1

37, (41, 43047, 53, 61; 67,

83, 89, 97, . .

47,_,

Several of them are only two numbers apart. These are called prime twins.

It looks from this chart that maybe there are no more pairs of prime twins after
but if yoL, made the sieve longer you will see that there are many more. Another

very famous ancient Greek named EuclidOho lived about 300 B.C. showed a very

elegant and simple proof that prime numbers go on forever. It is also believed that

althcugh they do become sparser, the prime twins are also infinite in number.
No one has ever proved that this is ,coy howJver.
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The study of prime numbers has been a source of fascination for thousands

of years and there are many unsolved problcns concerning them. For many centuries

it was thought that any number of the form (2P -1) was prime where 2 was raised to

a prime power p and 1 is then subtracted from the answer. For instance:

p = 2 2
2

-1 = 4 -1 = 3

P = 3 23

5

-1 = 8 -1 = 7
(3, 7, 31 and 127

are all prime)
P = 5 2 -1 = 32 -1 =*31

P=7 2 -1 = 128 -1 = 127

But in 1903 a professor at Columbia University in New York found that

(2
67

-1) is not prime but is the product of two very large primes.

(267-1) = (193707721 x 761838257287). If we multiply two 1 digit numbers we

usually get a 2 digit number. If we multiply two 2 digit numbers we get a number

of 3 or 4 digits. With two 3 digit numbers the product has 5 or 6 digits and so

on. So you can imagine how very large the product will be when a 9 digit and

12 digit number are multiplied.

[Very large numbers seem to intrigue students of this age. Even those who

have difficulty with multiplication of 2 and 3 digit numbers were somehow

entranced by the very thought of numbers of a far greater magnitude. Once pre-

sented with the idea of 2
67

-1) many set about to compute this by repeated powers

of 2 or by multiplying its two factors.]

This enormous calculation is obviously not prescribed as homework, but the

following is.

Find the prime factors of the following numbers:

(369), (396), (693), (639), (963), (936)

We have already seen two different arrangements of the infinite set of

counting numbers and the prime numbers that they contain. In one, the numbers

were placed in an endless chain like a number line; in the other in an infinite
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number of rows with 10 numbers in each row like a ten-fold lattice. There are

many other possible arrangements or patterns for picturing the natural numbers.

Here are two more.

The first of these (Xllustration9) places all of the counting numbers (1 is

included this time) in a continuous spiral. The heavy line marks the path of the

spiral as it unwinds from the center. The numbers shown here from 1 to 100 form

a 10 x 10 square which has quite a different pattern than the first 10 x 10

arrangement we looked at.

For a moment, looking at the lattice array, instead of considering prime

numbers, think even - odd. If we shaded in all the even numbers what kind of

pattern would we have?

"Stripes. All the columns starting with 2, 4, 6, 8, 10 are even. The

others (1, 3, 5, 7, 9) are odd,"

Suppose on this spiral array we shaded in all the even numbers. What would

the pattern be now?

"It will look like a checkerboard."

What about the perfect squares on this arrangement? They have a very specia

pattern along a diagonal which makes a job at the center,
%.,.

Here is an interesting homework problem for those of you who want to give it

some real thought. Suppose we started out to add a long list of consecutive odd

numbers, beginning with 1. (1 3 4- 5 - 7 -I. 9 + 11 4- ...) and we kept on going

until we had 50 numbers to add. Can you find a short cut for quickly giving the

sum of the first 50 odd numbers?

[Several of the children had attempted the sum by actually adding the 50

numbers. All of these had made one or more errors in their calculations so that

the results hovered around the exact sum. Michael was the only one who had the
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correct solution and he explained his method.]

"1 tried a few and found a way that worked. 50 divided by 10 is 5.

5 x 5 = 25 and then I multiplied this by 100 to get 2500."

Suppose then I asked for the sum of the first 60 consecutive odd numbers.

"60 divided by 10 is 6. 6 x 6 = 36, times 100 equals 3600."

Then how about the first 78 consecutive odd numbers?

"Than my method won't work because 78 cannot be divided (exactly) by 10."

Michael, your method is on the right track. But you put in an unnecossary

complication that caused you trouble in this last question asked.

First you divided the number by 10, then you squared, and finally you
2

multiplied by 100. ' x 100 = 52 x 100 = 25 x 100 = 2500
10

But suppose we leavelaDas the number to be squared.

2

(g.) x 100 as(E x x 100 x 100 = 2500
\w 100f

So you really end up dividing by 100 and multiplying by 100 which is the

same thing as not doing either of these things in the first place. You could

just have squared 50 right at the start.

We can explain this idea by looking at this spiral pattern of natural

numbers or by thinking of where we first came across the list of perfect squares.

Some time ago, When we made the multiplication

table for integers, we found the perfect squares

15 along the math diagonal. Each was the upper-

right hand corner of a square of numbers that

*kept getting largar.
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In this spiral pattern the perfect squares again

seem to line up along a diagonal, all the even

squares above and all the odd squares below the

16N' center. Every time we wrap enough numbers

around the unit square in the center to make a

new square we have reached the next hi3her

perfect square number. So now our original

square continues to grow, but this time it grows

by more blocks being wrapped around it alternately

on two sides.

In both of these arrangements we start with one small block. Then

we add three more, five more, seven more, etc. As each consecutive odd number of

blocks is added we keep getting a square. So here are two different geometrical

explanations of the fact that the sum of consecutive odd numbers is a perfect

square.

1 + 3 4- 5 4- 7 + 9 + (2n -1) = n2

1st 2nd 3rd 4th 5th nth

One day last year a mathematician named Stanislaw Ulam from Los Alamos

Scientific Laboratory was doodling during a boring meeting. He made this spiral

array of 100 numbers and then began to cross out all the prime numbers. Since 1

is in his spiral he included it as a prime. Usually it is not listed with the

prime numbers, but it is really not "non-prime" either. 2lr. Ulam noticed that

the prime numbers seemed to come in groups along various diagonals. Other people

have continued the spiral to thousands of numbers instead of only the first 100

and these diagonal groups of primes continue thgvughout the pattern, although there

are fewer and fewer primes as you get further away from the center of the spiral.



The Sieve of Eratcsthenes

1 2 3 4 5 6

7 3 9 10 11 12

13 14 15 16 17 18

19 20 22 23 24

25 26 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 50 59 60

.61 62 64 65 66

67 68 70 71 72

73 74 76 77 78

79 80 82 83 84

85 86 00 89 90,

91 92 93 94 95 96

97 98 99 100 101 102

103 104 105 106 107 103

109 110 111 112 113 114

115 116 118 119 120

121 122 123 124 125 126

127 123 129 130 131 132

1:13 134 135 136 137 130

139 140 141 142 143 144

145 146 147 14C

154

149 150

F-- 151 152 153 155 156

157 150 159 160 161 162
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Another interesting arrangement of the nature,. numbers is like a six-fold

lattice. (Illustration 10). If we cross ot't all numbers divisible by 2 on this

pattern, the 2nd, 4th, and 6th columns all drop out leaving 2 as the only even

prime.

Where are all the numbers which have 3 as a factor?

"In the 3 column and the G column (already crossed out)."

4 of course is even and all multiples of 4 are already crossed out so we

now mark out all multiples of 5. Where do all these numbers come?

"In the 5 column."

Look again.

"No, they are on diagonal lines."

How about multiples of 7?

"On diagonals going the other way."

:In retrospect it would have been interesting to look at multiples of 9 and

11 on the ten-fold array to see that these diagonals are always found in one less

and one more than the number of columns in the array.]

The multiples of 11 come on even steeper diagonals but all except 121 and

143 have already been crossed out.

If our picture continues into numbers greater than 162 there would be more

numbers to cross out. (Multiples of 13, 17, 19, 23...). Suppose you sh,14ed

in the numbers which are never crossed out. Where will they be in this arrangement?

"Except for 2 and 3 they will all be in the 7 column or in the 5 column."

This means then that all prime numbers except 2 & 3 are one more or one less that

a multiple of 6. We could say that all primes (except 2 and 3) can be written as

(6 x n4.1) or (6 x n -1) when n is a counting number. Not all of these numbers

written to these formulas are prime. For instance if n = 4.

(6 x n + 1 ) = (6 x 4) Jo. 1 = 25 which of course is 5 x 5. But all prime
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numbers greater than 3 can be mitten by one or the other of these simple formulas.

Sometimes we want to talk about two numbers which have no common factors.

(Other than 1 of course as all numbers can be divided exactly by 1) hen this is

true the numbers are said to be relatisehalme to each other.

9 = 3 x 3

8= 2 x 2 x 2

.121 = 3 x 7

25 = 5 x 5

Neither 9 nor 3 are prime numbers

but they are relatively prime to each other:.,

21 and 25 are relatively prime because

they have no common factor

x.21 = 3 x 7 21 and 24 are not relatively prime because

e24 = 3x0 = 3x2x2x2 they both have 3 as a factor.

If a pair of numbers are both prime they must also be relatively prime to each

other. If the first number is prime the pair is relatively prime unless the

second number is a multiple of the first.

Test tomorrowt

EZhis test took the children much longer than was expected, but the results

were otherwise encouraging. In discussing the test the next day most children

admitted to either forgetting or not using short cut methods for divisibility.

John said, "I didn't forget them, but I was afraid to trust them."

It is apparent that tIj boy and many others developed considerable trust as

the work on number theory progressed. Many of the students of this age and wide

ability-span either do not read written directions or cannot distinguish the subtle

distinctions between factors, proper factors, and prime factors merely by means of

verbal definitions
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All of the questions on this test are concerned only with positive whole

numbers. (natural, or counting numbers.)

I. In the followin3 sentences show all possible pairs of numbers that can be

put in the Li and the 2(...\ to make the sentences true. (the first problem

is done as a sample. Because the pairs of numbers (1, 35) and (7, 5) are

given, you do not have to show the same numbers in the opposite order (35, 1)

and (5, 7).

1. El A = 35

1 x 35 = 35

7 x = 35

3.
J10100.1111.1%

x = 37

5. 0 = 39

2. [1] x ,A= 36

4.
x f = 30

6 = 40
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II. In the following division.problems write the answers in the form shown in the

example. All remainders will be either 0 or a counting number.

1. 17 :t 5 = 3 with a remainder of 2

2. 49 f. 5 = II 1. 11 II

3. 49 i 7 = u u II II

4. 49 i 11 = II 11 It 11

5 . 99 .; 11 = 13 11 11 1;
...---

6. 999 i. 11 = n n la n

7. 777 7 = 11 II II II.-.......-.....-.--.--

8. 777. 7 _. II 11 11 II

9. 888 t 7 = II 11 h

10. 1,476 i. 2 = 11 11 II H
............-.................

11. 1,476 i 9 = u u u

12. 1,476 i. 25 =
u u II II

...........................

13. 6,741 4:- 25 = 21 . u H u
........------

14. 6,741 S. 1,471 = u 11 II it
. .....

15. 6,741; 6,742 = 11 11 II it

11 41.01

11111.1111MINFINNIMowesasexa.......

11.0,111.100011*1

III. Keep in mind the distinction between these three definitions:

(a) If a first number is divided by a second number and the remainder

is zero, we say that the second number is a factor of the first.

(b) All of the factors of a number, except itself and 1, are called

21:222y factors

(c) A factor is called a palm factor only if it is a prime number.

1. List all theme factors of the following numbers, showing the original

number as the product of all its prime factors. (for example 12 = (2 x 2 x 3))



54 =

19 = (

222 = (

264 = (

169 = (

-.10111,

)

)

)

)

)

2. List all the factors of the followinc numbers.

26

27

23

29

30

J. List
the factors of the following numbers.WP.WMMW,

51

52

53

54

55

IV. Tell which of the following numbers can be divided exactly by 2, 3, 4, 5

6, 7, 0, 9, 10 by writing them in after the appropriate numbers. Some of

the numbers will go in more than one list.
1.

055) , (238), (97),

Divisible by 2: (233)

(78), (504), (882), (3176)

(78) (504) (882) (3176)

30c
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Divisible by 3:

4:

5:

6:

7:

8:

9:

"10:

V. Write a paragraph about Prime Numbers. This should include a definition

of that a Prime Number is and as much other information about primes as you

can remember.

(continue on the back of the page if you need more space.)

30d.
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V. Lowest Common Denominators, Perfect Numbers, 01)

Some of you are confusing the idea of prime twins with pairs of number which

are relatively prime. It is true that when we speak of prime twins we are talking

al-out a pair of numbers, but these cannot be jLst any old numbers.' First of all

they must both be prime numbers and secondly the difference between them must be

exactly 2. In other words, if p1 and pl are any two primes, they are prime twins

only if pl = p24- 2 or p2 = p1 + 2. When we creak of a pair of numbers which are

relatively prime to each other, one or both or neither of these numbers needs to

be prime by itself. A pair of numbers are relatively prime to each other only if

they have no common factor other than 1.

For instance, think of the following numbers and write down all the different

relatively prime pairs there are among them.

5 8 13 27 24 18 30 10

You should find 13 different pairs.1

Try it again with these numbers.

35 17 3 16 12 23 31 28

This time there are 23 possible pairs.]

I think you have been using the idea of relatively prime pairs of numbers for

a long time without really knowing it. For instance suppose we want to add two

fractions.

2 5

+ 6-

3 5

4 6

2 5

5 6

2 5

9 6

[Mary Ann verbalized her method as followsd

[The students each worked on these problems

at their desks. Many of the children proceeded

without hesitation to correct solutions. About
2 5 7

5 children had answers of this type -5+-6. =

-6-

5
and one girl had

2
+ = 79.]
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"When adding two fractions whoac denominators are different, uoe the

larger of the two denominators. If the other denominator goes into it you divide

to find out how many times. Then you multiply that number times the numerator and

add. If it doesn't go in exactly you keep multiplying the biggest denominator

until it will."

This is a difficult thing to try to put into words,, Instead let's look at

the various steps you go through for these specific problems.

3 "' +
2 5 (2

x
5 4 5 9 1

'

X 5' = + 1 12
3 5 3 (5 2.) 3 4, 10 ... ), 10 9 10 19 7

6

2 5 2 (! 2 25 !) 25 12 25 37 i 75± "r x 3 + 30 x + 30 30

i t -1 6 x 1) + w ard + -6
TV

-6
X

4-3- 1 7 8 '1 75 id 1)7E1
5 4 5 4 (5 3 4 , 15 19 1

Of course it is possible for us to combine several of these steps, but even

if we do the whole thing in our heads this is probably the path our calculations

take. Let's look at the factors of the denominators, breaking each denominator

of the original problem and the first solution into its prime factors.

2 5 2 5 9 9

3 .4. 6 3 4* (2x3) 6 (2x3)

6

2 5

3

2

9 6

(24- (2x3) 12

2 5 37

5 r (2x3) 30

5_ 2 5 19

(3x3) (2x3) 18

(2x2x3)

37

(2x3x5)

19
(223x3)

We con see that the denominator of the answer must contain all the factors of the
two original denominators, and so the process of finding the lowest common denominator
depends upon factoring. If the two denominators are relatively prime their product
is the lowest common denominator. There are several interesting things one can do

when considering the counting numbers. Suppose we start a list of these numbers,
list d...1 their factors (this time we will include 1 but not the number itself) and
finally list the sum of all these factors.



gunber N

1

2

3

5

6

7

8

9

10

0

0

33.

Factors of N Sum of Factors
excluding itself)

None 0

1 1

1 1

1, 2 3

1 1

1, 2, 3 6

1 1

1, 2, 4 7

1, 3 4

1, 2, 5 8

0

0

What do you notice from this list?

"For all the prime numbers the sum will always be 1 because these

numbers have only 1 and themselves as factors."

"For the number 6 the sum also equals 6."

This is particularly interesting and because of this the ancient Greeks called

6 a "perfect number ". By definition then a number 4.s perfect when it equals the

sum of all of its factors not counting itself.

Homework: Continue the list until you find another perfect number.

[The next morning only one student had found the next perfect number. Sheila

did not usually take much part in class discussion, but she was very observant

and quietly pursued ideas and patterns on her own.]

Sheila does have the right number, but before she tells what it is I'm curious

what the rest of you found out.
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Mark: "I tried numbers up to 20 but then I gave up."

Michael: "1 went all the way to 50 and couldn't find one. But 32

almost works."

32: 1, 2, 4, 8, 16 - sum = 31

John: "I think 112 works."

112: 2 + 4 + 8 + 14 + 28 + 56 = 112

"He left out 1."

I think he must have left out some others too. Let's list all the factors

of 112.

1, 2, 3, 72 8, 14, 16, 28, 56, 112.

112 is a very nice try, John, but if we obey our original definition and

use all the factors except 112 the sum is a bit bigger than 112. Michael, I think

you must have made some mistake in your work because there is a number between 6

and 50 which is perfect.

Sheila: "28 works. 1 + 2 + 4 + 7 + 14 = 28".

So 6 and 28 are the first two perfect numbers. About bow big do you think

the next one might be?

"About 100."

"Maybe 22 more than 28 because 28- 6 =22."

Let's see. 28 + 22 = 50 which Michael says he's tried. I'm going to save

you a lot of hard work by telling you that you would have to go all the way to

496 to find the third perfect number. For over 2000 years only twelve perfect

numbers were known, but now by using computors, several more have been found.
1

They do get very large very fast. The first five perfect numbers are:

'Note to reader: 2P-1(2P-1) is perfect if 2%1 is prime.



r

6

Let's check 496

35.

28 496 8128 33550336

1 x (496) omit from sum
2 x2148
4 x 124
8 x 62

16 x 31
31 X65

31

There is quite a different way we can consider the natural numbers and

their factors. Suppose this time we make a new list in which we shall think of

all the numbers smaller than the number we are considering and relatively DriL:.e

to it. People have counted these numbers and given them the name 0 the

greek letter Phi.

,A.11 Numbers <N How Many. umbers
Number N and relatively prime to N. in Iiiddle Column

1. None By definitionf/(1)= 1
instead of 0

2 1 0 (2) = 1

3 1,2 p (3) = 2

4 1, 3 9 (4) = 2

5 1, 2, 3, 4, rt (5) = 4

6 1,5 ye (6) = 2

7 1, 2, 3, 4, 5; 6, 0 (7) = 6

8 1, 3, 5, 7 0 (8) = 4

9 I, 2, 4, 5, 7,8 V (9) = 6

10 1, 3, 7, 9 o (10)= 4

"They are all even except the first one,fi (2) .

"When N is a prime number all of the numbers less than N are relatively

prime to it, so there will always be (N-l) of these."
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Then we can sayP(p) = (p-1) when p is any prime number.

"One less than a number is always relatively prine to that number."

That's true, so after 1 and 2 . know that all the other numbers will have

at least 1 and (N-1) in the second column.

(10.-- 2 for all N except 1 and 2.



VI. Base 7
I

37-

I understand that Mr. Carroll did a little work in bases with you last fall.

Of course you know that our every day number system uses 10 as a base and the

real value of a digit depends on its position or place value.

Thousands
103=1000

4

8

Hundreds Tens Units

102=100 I 101=10 100=1

3 5 1

8

8 0

8

4351 = (1 x 1) (5 x 10) + (3 x 100) -1- (4 x 1000)

8000 = (0 x 1) or (0 x 10) I- x 100) .4- (8 x 1000)

There are of course more columns to the left of the thousands column (each

one multiplies by 10 more) and more columns to the right of the units for showing

decimal places.

As we begin now to speak about a different base I shall use two colors of

chalk. Everything in white chalk will be our familiar base 10 and everything in

orange chalk will be base 7. The use of colored chalk conveniently eliminates the

need of 52 subscripts, and proved an effective device especially since it avoids

the misunderstanding about why there is no digit 7 in base LI

With base 10 all numbers, no matter how large or how small, can be written by

using the same ten digits in different ways (0, 1, 2........9). The arrangement

of the digits, their place in other words, determines their actual value. In base

7 how many digits would you expect to use and what will they be?

We can make a chart and write several numbers first in base 10 and then show

in orange chalk how to write the number with the same value in base 7.
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Base 10 Waite chalk)

38.

Base 7 (orange chalk)

(2A_1221.1LILIJ5-2LJ8L2) _fo, 1, 2, 3,

Tens Units
9

1. 2

1 5

2 2

1 9

2 1

3 0

4 2 -------->

Sevens Units
1 2

1 5

2 1

3 1

2 5

3 0

4 2

6 0

In translating from base 10 to base 7, we think first how many sevens are

in the number, and remainder is the units digit. Translation in the reverse

direction undoes this process. You think of the place value of each digit

multiply, and then add. For instance 537 means (3 x 1) + (5 x 7) = 3 + 35 = 3810

We can arithmetic with numbers in base 7 the same way we use base 10

numbers. In fact there's no reason why we can't combine the two different bases

in the same problem.

310 + 610 10
[1:1 10

3
7

+ 6
7

r.. [--1
7

3
7

+ 6
7

=
10

4 5 = r---
7 . 7 7

14 -

310 = [117

14
10

14
10 = 7

20
7

+ 20 =
7 ---10

2010 + 20
10=

7

17 + 117 =E17

110 + 11

110 1110 "--1 7

17 + 117 =
I 10

257 + 257

2
510

+

2 +
510

25
10

+ 25
7

10

25
10 7

25 r--
7 10

7
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One way to check arithmetic in a new base is to translate the problem into

base 10, find the answer (also in base 10) and then translate this back to base

7 again. The translation should of course agree with the solution you found

originally. If the two numbers do not agree then somewhere a mistake has been made.

For, instance:

;5
7 is,

12
10

Because 29
10

translates into

23
7

17
10

41
7

we know our addition was
+

41
7

29
10

correct (provided we can add to base 1011!)

Base 7 Base 10 Base 7 Base 10

6 ik.--- 6 13 4.....--- 10

15 ,./- 12 24 L.,- 18

4 L,- 4 16 k.,- 13

22 4.......- 16 + 5 k..--- 5

53
7

= 38
10

64
7

= 46
10

The fact that 44
7
= 4610 was an interesting and unexpected reversal of digits

that occurred in a problem chosen completely at random. This prompted a separate

investigaticn whil.ch was not presented to the class because of its algebraic

approach and beaause it concerned generalizations about bases that would have

been premature.. However, the problem of when these reversals occur for various

baoes would be a challenging question to pose to the more able students in junior

high school at the conclusion of a study of bases. A copy of the generalization

has been included at the enA of Mtii dl.c cc vo or. 1aa

Homework: All problems in base 7

16 11 25 25 32

23 12 -13 -16 -24

4 1 It
J.0

6 +14
+ 13

3 x 4 = r--1 2 x 6 = n 5x5 =LJ 6 x 5 =



Here is a number line using base 7 numbers.

0
t

4 11

40.

Fill in the rest of the numbers.

If we made the number line long enough what will the last two digit numbers

be? "66
7
"

What number does that mean in base 10?

"(6 x 7) 6 = 48"

What number comes after 66
7 then? "1007"

If you translate 1047 into base 10 what do you get?

"(1 x 49) (0 x ) 1- 4 = 5310"

What is the largest three digit number in base 7?

"666"

And what is the translation of 1000
7
? "7 x 49 = 343"

"Are there negative numbers in base 7?"

"I don't think so."

"Why not?"

(After considerable discussion it was agreed that of course thlre could be

negative.]

How about fractions and decimals?

By using the number line to illustrate these ideas it was shown that fractions

-1

were possible.(

0 1 1 1 3 10 1

11
7

4
7

2
7

4
7

11
7

This looks rather strange, doesn't it. But we have taken the distance
1
7
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from 0 to 1 and divided it into eight equal parts. Only in base 7 we can't

write 1/8 because we have no digit C. Something just like decimals would of

course be possible too, only they would not be called decimals because deca means

10. But 3.2
7 would be 3

2
and .04

7
would be . This last one would of

4
7
10

49
104

course be written
100

7

For now we won't bother about negatives, fractions, and "decimals" in other
.4

bases, but it is important to know that they are possible*

Homework: printed work sheet. (2-3-65)

There seemed to be some difficulty with changing 2227 into base 10 and

22210 into base 7.

"2227 means (2 x 49) + (2 x 7) (2 x 1) = 11410"

Yes, that's fairly straight forward. Now, how about the other one. How

do we begin?

"You see how many sevens there are in 22210"
31 r 5

7/222 so 222 m 1
10

3157

Let's see if this 3157 translates back into 22210 . 3157 = (3 x 49) +

(1 x 7) + (5 x 1) which equals 15910 instead of the 22210 which we wanted.

Does anyone know what was wrong with the method we used? Look carefully at the

31 we got when dividing 222 by 7.

"It's right, isn't it?"

Well 222 i 7 certainly does give us 31 with a remainder of 5. But what

base is that 31 in? How do we write 31
10

in base 7?

"Four sevens and three left over, 43"

So if we Are trying to write the number in base 7 we'd better be sure all

of our steps are in base 7.



'That do we do then, write 4357 ?"

Let's see if it works.

435
7
= (4 x 49) + (3 x 7) + (5 x 1) = 196 21 4. 5 = 22210

This is exactly what we wanted.

Michael: "What about some really big numbers like 14627 ?"

How much is that 1 worth? "7 x 7 x 7 = 343."

So 14627 = (1 x 343) (4 x 49) + (6 x 7) (2 x 1) = 58310

How about 1462
10

? What would it be in base 7?

"Couldn't you think how many 343's there are in 146210 ?"

Then what?

"Then you see how many 49's there are in whats left over, then how

many 7's and finally how many l's are left,"

x 343) =
1462

.1372

(1 x 49) =
90

49
1462

10
=

41
(5 x 7)

war
35

6

4156
7

42.

Suppose we made addition and multiplication tables for base 70 Would they

look the same as the tables we made for regular numbers?

"All the numbers would use only 0-6 for digits, but the patterns of the

tables would be pretty much the same."

What will the perfect squares look like?

(0.x0) ( 1 x 1) (2 x 2) (3 x 3) (4 x 4) (5 x 5) (6 6) (10 x 10) (11 x 11)

0 1 4 12 22 34 51 100 121

Homework: Try to do these problems thinking in base 7. Then translate

into base 10 to check your work.
135

7
164

7

x 21
7

x 34
7



When doing arithmetic in base 7 some things look very strange to us because

we are so used to thinking in base 10. But certain patterns should seem familiar.

Look at the multiplication table for 6 in base 7,

0 .x 6 = 0 John: In the answers the digits always add up to 6."

1 6 = 6

2 x 6 = 15

3x 6= 24 Mark: "The units digits go 6, 5, 4, 3, 2, 1, and

4x 6= 33 the sevens column goes 1, 2, 3, 4, 5, 6."

5 x 6 = 42

6 x 6 = 51

10 x 6 = 60

Does this remind you of anything? Look at the multiples of 9 in base 10.

0 x 9 = 0

x 9 = 9 Sheila: ."Its the same pattern, only this time

2 x 9 = 16
it always adds up to 9."

3 x 9 = 27

4 x 9 = 36

5 x 9 = 45 Michael: "Can you cast out sixes in base 7

6 x 9 = 54
the way you cast out nines in base 10?"

7 x 9 = 63

8 x 9 = 72

9x 9= 31

10 x 9 = 90

I would presume so. If we can, this gives us another nice way to check

problems in base 7. But be careful. .then casting out sixes we should do our

thinking in base 7.



HOMEWORK
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In the following problems all numbers written are in base 10 and base 7. All

numbers in base 7 are indicated by an asterisk.

by the franc.

9

19

28

5 + 6 =

15 + 16 =

23 + 15 =

23 + 15 =

231A+ 15==

x9

5 x

VIVID
OEM

4 x11 =

*
:x 11

*
=

4
*
x 11

*
=

22

41

50

*

Give the answer whi2h is indicated

33

46

50

32

*



Place Value - Base 10

1

15 11 means (5 x 1)

II
15 10 means (0 .x 1) + (5 x 10)

1

15 ; 0 10 !means (0 x 1) + (0 x 10) + (5 x 10 x 10)

12 12
i

2 means (2 x 1) + (2 x 10) + (2 x 10 x 10)

Place Value - Base 7*

1

1

1

I

5 1 means (5 x 1)

1

I 5 t 01 means (0 x 1)

*

+ (5 x 7) *

5 1 0 01 means (0 x 1) + (0 x 7) + (5 x 7 x 7) *
1

2 1 2 2 means (2 x 1) + (2 x 7) + (2 x 7 x 7) *
1

What is the value of 222
*
in Base 10

How would you write 222 in Base 7*

24*
30*
15*

103*

36 36
*

61*

+142 + 142 61

1-111k

Check the problem on the left expressing
all numbers in Base 10.

43b.



142
35

160
36

%---%

...---.

..-,

----

%--

10

11

10

12

1

`-"

---

---

,.--,

%."'"

1

2

1

3

235
x 21

--,

-....

13

24

'"\-- 4

x3
15

..-- 6

235
503

436 -" 16 10 5265 ,%.,

44.

You were right, Michael. Casting out sixes works in base 7 the same way

casting out nines works in base 10. How about even and odd numbers? What will

they look like in this base?

Even: 0, 2, 4, 6, 11, 13, 15, 20, 22, 24, 26, 31, 33,...

Odd: 1, 3, 5, 10, 12, 14, 16, 21, 23, 25, 30, 32, 34,...

Michael: "I think a number is even when the sum of its digits is

even, and odd when the sum of its digits is odd,"

For homework tonight why don't you test Michael's idea. Use some base 7

numbers of 3 or 4 digits and see if they always translate into an even number

only if the sum of the digits is even.

[In preparation for a test several of the students were still confused about

translation, particularly from base 10 to base 7.1

There is more than one way to think of this. One is by repeated subtraction

and the other by repeated. division. Really this all boils down to the same thing

because division is a short cut for repeated subtraction in the same' way that

multiplication is a short cut for repeated addition.

At any rate it is important to keep in mind what the places mean in the new

base.

(2401) (343' s) (49's) (7's) (units)

(7x7x7x7) (7x7x7) (7x7) ( ) ( 1 )

244
10 = [1] 7



Repeated subtraction:

.HoW many 49's in 244? (ft x 49) = 244
-196
48

How many 7's in 43?

How many l's in 6?

Repeated division:

x 7) = - 42
6

(6 x 1) = - 6

0

244
10

= 466
7

The remainders give the

translation, the first remainder

being the units digit so that

244
10

= 466
7

7/ 244
7 /34 r 6
177- r W

0 r4

45.

It is important to keep dividing or keep subtracting until you get to zero.

This will keep you from falling into the trap of thinking that your first step

in dividing gives you the desired translation. It is very true that there are 34

sevens in 244
10

and a remainder of 6, but this 34 is a number in base 10. By

repeated divisions each step gives you a number in base 7

Let's translate several numbers.

1000's 100's 10's 1's 343's 49' 7' l's

2 4 4 4 6 6

5 2 5 ---) 1 3 5 0

4 3 6 1 1 6 2

1 0 0 0 2 6 2 6

2 4 4 <- 4 6 6

4 5 0 <----- 1 2 1 2

5 2 5 1 3 5 0
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Let's make an addition table for base 7.

[Data was filled in by the students argil the following comments were made

on the resulting pattern. ]

Addition
Base 7

6 '6, 10 11 12 13 14 15 16 20

6 10 11 1.2 13' 14 15 16

,

10 11, 12 13 14 15

10 11 12 13 14

2 2 3 4' 5 6, 10 11 12 13

I 1 2, 3 4 10 11 12

0 3 4 5 6 10 1.1

4 5 6 10 11

1. "The pattern is really just like it is on the base 10 addition table."

2. "Each row and each column is a piece of the number line."

3. "The main diagonal is counting by two's (even numbers)"

4. "The diagonals in the other direction are all one number."

5. "The pattern would just go on if we went into bigger numbers."

6. "If we put in negative numbers there would be all zeros on the

secondary diagonal."

Test tomorrow'.

[There was a wide variation in test results. Using a percentage grade the

range extended from 90 to 10. Mat=y otherwise high scores were lowered because of

failure to check arithmetic in base 7 by translation into base 10 which seems

to boil down to a lack of care in reading direction.]



TEST NAME:

46a.

I. Definition: Two numbers are said to be relatively prime to each other
when they have no common factor greater than 1.

For example: take the three numbers 4 5 6

4,5 and 5,6 are each relatively prime pairs. 4,6 is not a relatively
prime pair because they have 2 as a common factor.

1. Find all the possible relatively prime pairs for these six numbers.
(The pair 5,6 and the pair 6,5 in this case mean the same thing and
do not need to be counted twice.)
5 6 7 8 9 10

2. Find all the possible relatively prime pairs for these six numbers.

20 21 22 23 24 25

3. Below are four numbers (9, 10, 11, 12). For each of these make a list
of all the smaller numbers which are relatively prime to it. 9 is

completed as a sample.,

Number N

9

10

11

12

All numbers less thaw and rel, atively Qrim to N.

1, 2, 4, 5, 7, 8

4. When we want to add two fractions whose denominators are different it helps
us to know whether the two denominators are a relatively prime pair of
numbers.

a. 7

Complete these three addition problems.

12 3

b. 7 + 2 ra

12 5

C. 7 + 2 =

12 9

In which problem on the bottom of the previous page were the two denomina-
tors a relatively r4T" pnr?

In which problem was one denominator a factor of the other?

II. The rest of this test has to do with two different number systems.
Cur common number system (base 19rwill be written in blue ink.
All numbers written in the base 7"bystem will be shown in red ink.
Remember that the only digits in this system are 0,1,2,3,4,5,6,.

Base 10 will be indicated with one asterisk.
Base 7 will be indicated with two asterisks.
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1. On the number line below several points are shown above the line
as numbers written iii base 10.

Just below the line show what these same points would be called in
base 7.

-8 .3 0 1 5 7 11 15 i. 21
...-...... J

0 1

Here is another section further up the number line.
This time polnts are marked below the line in base 7.
Just above tL. number line show what these points would be
called in base 10.

55 62 100 106 123

2. Translate the numbers shown below into what they would be if
written in the other base.

Base 10 Base 7

16 22
29

100
234
12 = 15

66
0 135
= 1234

3. In the addition problems below try to do all the work and give the answer
in base 7,. Then tramilate each problem into base 10 numbers in order to
check your computation.

6 24
Je, 5 + 31

41 35
+ 53 +15

I. I
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4. Here is a partially completed multiplication table for numberi' in base 7.
It is arranged somewhat like the large tables you made for base 10 numbers. On
this table the numbers to be multiplied together are shown in the row and
column outside the double lines. All of the products (or answers) are shown
.n the squares above and to the right of the double lines. 4 x 2 = 11 so the
number in the 4 column and the 2 row is 11. What will be the product of x 4?
Fill it in in the empty square that is in the 2 column and the 4 row. Complete
the rest of the table by filling in all the empty squares. Remember that all
numbers are in base 7. **

6 0 6 24 51

5 0 5 26

22_

4

4 0 4

3

2 0 2 6 11 15

1 0 1 2 3 4 5 6

0 0 0 o 0 o

n-4

5. Referring to the multiplication table you have just made, what are the
first seven perfect squares in base 7? **

What will the next perfect square be if the multiplication table is
extended to numbers bigger than 6? **

6. Using the base 7 multiplication table to help you, try to do these
problems completely in base 7.** Translate numbers to base 10 to
check your work.*

32
x 3

502
x 11

312 502
x 4 x 26
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VII. Russian Peasants' Multiplication, Bases 2 and 12

There is a very old method for doing multiplication in which all you need to

know is how to divide by two, multiply by two and add. This is called the

Russian Peasants' method and it eliminates the need for knowing the multiplication

tables.

When we have tuo numbers to multiply, if we double one and divide the other

in half the product stays the same.

x 9) = (2 x 18) = (1 x 36) = 36

This same idea works for some larger numbers.

Divide by 2-Multiply by 2-Product

122 '1
244 U

433
976
1952 U

3904 aC 3904

Divideroduct.
32
16

8

4
2

1

x
x
x
x
x
x

64 .

32
16

8
4
2

x
x

x
x
x
x
x

23

46
92

184

36C
736

1472

U

ONO.

OEN..

000II 1472

"Use some really big numbers."

Divide by kijultipl.y Divide by 2-MultdOy by 2-Product

32 x 3458
16 x 6916
8 x 13832
4 x 27664
2 x 55328
1 x 110656

WM,
411011.

WO.
010.

= 110656

64 x )79
.11.032 x 358

16 x 716
'WM

1.11.13 x 1432
4 x 2864

Om*
IVO2 x 5728

1 x 11456 = 11456

Michael: "I checked by casting out nines. It works!"

3458 1/4., 2 179 k-^ 8

x 32 5 x 64 1

110656"--19'..°10 11456,--174,-8

Mark: "What if both numbers are odd?"

Well I was choosing numbers like 32 and 64 because they do divide so nicely

by 2.
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Michael: "When its odd, can't you divide and multiply by 3 inoteed?"

Let's try. Divide by 3-?Multiply jal-Product

27 x 54

9 x 162

3 x 406
1 x 1458 = 1450

Michael's idea works too, but if you begin to use numbers other than 2 to

divide and multiply by you are well on the way to needing to use the :aultiplicaticn

tables.

The doubling and halving method is a very old one and there is a way to =ix

it up so it will work for any two numbers. When we divide any integer by 2 there

is a r&Ininder of 1 if the number was odd and a remainder of 0 if the number was

even. When we kept dividing 32 or 64 by 2 the remainder was always 0 until the

very end and so the product was always the same at every step. But suppose we

use two odd numbers and for the moment ignore remainders.

Divide by 2MMu1 ti ply b 2- Product

13 x 65 = 845

700+ 65 = 845
6 x 130 = 700

3 x 260 =
520 + 260 = 780

1 x 520 = 520

We know from our regular method of mulzIpliciluu aide 13 x 65 is 645 and

not 520, so we lost something along the way. We can also see that the product

remained 700 for two steps because dividing 6 in half and multiplying 130 by

two doesn't make any change in the product. And so we can see that when we ignored

the remainder in dividing an odd number in half we lost exactly the amount in the

next column on the right. We can quickly find the true product by adding

65 + 260 + 520, in other words adding all the items in the second column except

those beside an even number. Let's do another one. While I am workinz: it out
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on the board you miht check it with regular multiplication and casting out nines

just to prove to yourself that this method works.

37 x 143

13 x 286
9 x 572
4 x 111's

2 x 2263
1 x 4576
Add 5291 =

Ignore remainders when dividing
but then cross out all numbers
in the second column which are
next to an even number in the
first column.

(37 x 143)

With practice you might become even faster with this method than the old way.

If you have trouble remembering multiplication facts this is a good method, but it

does take a lot of space.

The students were especially intrigued by Russian Peasants' multiplication

and kept asking for larger and larger numbers.]

All right, for homework then you can do these.

(68 x 9876 and 08 x 305607)

Suppose we take the number 29 and divide it repeatedly by 2. Compare this

to what we have just been doing.
0 r 1

2 /1 rl
2/ 3 r 1 RIYA1912z12'7 r0 129
2 /14 r 1
2 /29

0 14
1 7

1 3
1 1

Odd numbers leave
remainders of 1,
even numbers
leave remainders of
zero.

This should remind us of repeatedly dividing a number by 7 to translate it

into base 7. Repeated division by 2, producing a series of remainders of either

1 or 0, translat;es the number rota base 2. Sa
2910

1012

IA new color of chalk, blue, was used instead of the subscript.]

What are the possible digits in base 10? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
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What are the possible digits in base 7? 0, 1, 2, 3, 4, 5, 6

if 71 It 11.1 It 17 " 2? 0, 13

So base 2 numbers look very strange indeed, but any number can be translated

into a number using only the two digits 0 and 1.

Here is a number line. Let's try to fill in the same numbers in base 2

underneath the regular numbers.

-3 -2 -1 0 1 2 .3 4 6 7 8 9 10 11 12 13
-11 -10 -1 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101

[By filling in the number line in this way the students discovered together

how to write consecutive integers and of their own accord went into negative

numbers in base 2.]

So you see the base 2 numbers begin to get very long, very fast and this

is perhaps their main disadvantage. But arithmetic in them is very simple

because there are so few basic facts to remember. If you lived in a base 2 world

the only tables you would have to memorize are these:

0 + 0 = 0

0 + 1 = 1

1 + 1 = 10

0 x 0 =0

0 x 1 = 0

1 x 1 = 1

If we think of place value for base 2 we have:

(212x2x2x2x2)

25

32

(2x2x272)

24

16

(2x2x2)

23

8

What will the next place be after 32? "614"

And after that? "128"

(2x2)

22

14

2

21

2

Units

2
0

1



So we need a number of eight places to express what in base 10 has only

three digits.

164 32 16

1

1

1 0

1 0

1 1

1

8

1

0

1 1 0

0 1 0

1 0

1 I 1

Base 10

63

1 1 1= 23

0 0 0 = 48

1 0 0 = 68

1 0 1 = 85

1 1 1 = 255

51.

What is o ort way of doing the last one?

For hom,wo.,:t translate several numbers from base 10 to base 2 zA vl. a versa.

You seem to be having some trouble in translating into base 2.

Jimmy's method: 37 = 32+ 4+ 1 = 100101

Michael's method: 37 = 7 + 30 7 = 111
30 = 11110
37 =100101

In Michael's method we have to carry several times when we add. This is easy

to do if we remember that 1 + 1 = 10. So usually we have to carry in several

columns. We can also find what 37
10

is in bacte 2 by repeated division. I think

perhaps if we set it up this way it will be clearer for you. We shall sort of be

dividing upside down and backwards.

1 0 0 1 0 1 Remainders
0 Ll_a_tiii_D..L.J2z

2 2 2 9 2 2

So the row of remainders at the top gives us the translation. Be sure to keep

on dividing trtil you get to zero. How about some larger numbers,

1 1 0 0 1 0 0

L1 ....3 I§.1.1.2_L25 L59Z190
2 2 2 2 2 2 2
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Try some arithmetic with base 2 numbers. Check your work by translating the

problem into base 10.
10011 10110

+ 1101 x 101

For homework you can make up some of your own problems.

[The students brought in the following examples which they put on the board.]

11110 10111 100110
x 111 x1010 x 11010

1010101010101010
101010101010101

1010101010101011
101110

1111

11010101011100111

[Michael's addition problem was a source of utter amazement from the -.other

and it contained an unexpected lesson in carrying.1

When we add the ones in the units column of Michael's enormous problem we

write down 1 and carry 1. Now there are five ones in the 2 column and in base.

2 five is written 101 so we have to write one 1 and carry 10 into the next two

columns. This idea is continued until we have added up all the columns, carrying

into how ever many are necessary. Would someone like to find out the place value

of all the columns in Michael's answer.

"The last column on the left. is worth 65c16,H

Shall we make a multiplication table for base 2.
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1000 0 1000 10000 11000 100000 101000 110000

111 0 111 1110 10101 11100 100011 101010

110 0 110 1100 10010 11000 11110 100100

101 0 101 1010 1111 10100 11001 11110

100 0 100 1000 1100 10000 10100 11000

11 0 11 110 lopl 1100 1111 10010

10 0 10 100- 110 1000 1010 1100

1 0 1 - 10 11 100 101 110

0. 0 0 0 0 0 0

x 0 1 10 11. 100 101 110

Perfect squares:

Base 10; 0 4 9 16 25 36 49

Bee 2; 0 1 100 1001 10000 11001 100100 110001

Test tomorrow:

The test included a section on base 12 which was not obligatory. About

half of the students tried it, a few of these doing very well although base 12

had never been worked with or even mentioned in class. The concept.of evenness

and oddness had also deliberately not been included in class discussion. It was

hoped that the students would be led to discover for themselves the simple test

for parity in base 2. Several students did but Michael jumped to the erroneous

conclusion that it had to do with the sum of the digits, instead of only the

units digit.]

Some of you did very well indeed on the test although it included several new

ideas. If we start countingln base 2, sorting the members into two piles, what

do you notice?



TEST

Name .
f3a.

For this test all numbers written will be base 10 unless indicated by an

asterisk which will indicate base 2. Remember that all numbers in base 2

have as digits only 0 and 1.

I. Use repeated division and multiplication by 2 to do these multiplication

protl.ems. (This way of multiplying is often called the Russian Peasants'

Method.)

Divide by 2 Multiply by 2_ Divide by 2 Multiply. by 2

32 x 53 64 x 105

32 x 53 = ( 64 x 105 =

Divide by 2 Multiply by 2

17 x 39 =

Divide by 2 Multiply by 2

17 x 39 44 x 215

44 x 215 =

II. P:;-a, .s number line showing some points marked in base 1( .)ers

jur. ab the line. Show what these same points would be called in base

2 just b tow the line.
*

-5 -3 0 1 2 4 7 9 14

0 1 *

On the second number line several points are shown in base 2 numbers.
*

Just above the line SLOW what these same points would be called in

bas- 10.


