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INTRODUCTION

The Cambridge Conference on School Mathematics during the summer of 1963

invited people with a research interest in mathematics (though not only

mathematicians) to consider a long range problem. They were asked to answer,

as best they could, the ouestion:

"What mathematics would you like to have students learn From
kindergarten through twelfth grade, if there were no restric.-
tions other than the child's innate capacity?"

Difficulties, such as the need for highly trained teachers, were to be

ignored on the ground that, if the program was. meritorious enough, these

other problems could be solved in the long run.

The much discussed report "Goals for School Mathematics" (Houghton-

Mifflin, 1963) was the conferees' response to their assignment. Although it

raises general pedagogical questions (the discovery technique, the spiral

approach) and makes contact with some experimental material tested in the

classroom, it is largely in the framework of mathematical needs rather than

classroom needs. It gives opinions on what it may be useful for the student

to know at a certain level, but does very little to suggest the specific unit

which may teach such material.

Since that time several people connected with the conference have worked

in the classroom to develop a practical response to some of the challenges

of the "Goals" report. From 1963 to 1965 the Miss Mason School (Princeton,

New Jersey) under the initial direction of the late Wilks developed detailed

units for pre-first graders that included number line and other concepts

recommended by "Goals". B. Friedman worked out and tried a geometry based

on mirror symmetry for Junior High School students in Berkeley. At Estabrook

Elementary School (Lexington, Massachusetts) E.Lomon with several of the local
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teachers tried material connected with inequalities, real number, symmetry,

2.

probability and slope in grades 1 to 6. In the summer of 1964 at the Morse

School (Cambridge), under the auspices of CCSM, a team of research people

and school teachers under the chairmanship of A. Gleason tried out subject

matter from counting through symmetry to number theory, for a five --week

period. Several of these units were tried again in schools during 1964-65.

A report of those projects will soon be available.

To some of those in CCSM it seemed to be time, in view of this experience,

the experience of other curriculum groups, and of the general diseussion

since 1963, to take the next step in evolving the "Goals". For this purpose

CCSM invited the present group to meet in June and July of 1965.. The group

consists largely of mathematicians, some of whom had curriculum development

experience, and some who had not. We were charged with the task of 'producing

material for the experimental classroom, in geometry and applications for

grades K to 6. We were to show how one could make a start on translating

the mathematical needs expressed by the "Goals" report, to meet the needs of

the young student in the classroom. The importance of the "function" concept

to applications led us to treat this as a separate problem.

Fr'rtunately for the present writers, wezvere not reouired at this stage

to produce units for the usual classroom and its teacher. The present level

of experience argues against the success of any such attempt and we feel none

of our material should be used in this way. Rather we have addressed our-

selves to those individuals and groups with experience and capability in the

development of experimental mathematics and science curriculum materials for

the schools. We hope that we have expressed ourselves in sufficient detail,

and clearly enough, so that such people will know what type of classroom ex-
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perience we have in mind. Then if a researcher wants to test our ideas, he

can do so in his own way and yet feed back information relevant to the general

CCM enquiry as related to the "Goals for School athematics".

We are aware that we have fallen short of even this limited task; 'that

there are fuzzy aspects as to how some concepts are actually to be taught,

and incomplete development along some lines. We are also aware that some

of the material is likely to be too difficult for the young student, at least

in the garb we have given it. We have offered such material in the belief

that the child's innate abilities have still to be suffic ently tested, and

in the hopes that more teachable variants would be found by those who choose

to read this report and work with some its suggestions.

Many of the things we discuss here have already been suggested and

worked with by other individuals and groups. We include them so that they

can be viewed in the "Goals" context and so that future research with such

material may in part be made to bear on questions in that context. The

bibliography at the end is not complete, but we hope that it gives some idea

of the debt we owe to previous writing and research.

We hope the reader will bear in mind the general principles and outlines

of "Goals for School Mathematics" while reading this, report. While some-

times, in the papers that follow, explicit reference is made to pedagogical

technique or educational goals that are to guide the teaching of the material,

often these comments are absent in the expectation that the "Goals" report

has given the necessary direction and context. If the reader still has the

patience with all the burdens we have placed on him, we hope he will read on

and find some suggestions and methods useful to his own curriculum and class-

room research.



Section I - Chapter 1

GEOMETRY

We have found that the problem of designing a curriculum for the study

of elementary geometry in grades K - 6 does not have an obvious and straight

forward solution. There are no objective criteria for evaluating a given

curriculum or for the comparison of two curricula. The production of such

criteria requires a good deal of concrete classroom experience with such

subject matter at the various grade levels. Unfortunately, sufficient ex-

perienee of this type is not at hand, and it is not known what children of a

given age can digest and profi from when suitable preparations have been made

lh earlier grades. Moreover, it is clear that any forward-looking explicit

4

statement of a curriculum serves merely as hopeful anticipation as to what can

be accomplished. In the final analysis, the decisive factor (unless there

k.

exist teaching materials which do not require a teacher) is the teacher in the

classroom - his mathematical proficiency, his teaching skill and technique,

his enthusiasm, and his understanding of and empathy for children. The

training and preparation of teachers of mathematics has not entered into oFr

considerations, especially since this problem is to be the focus of a conference

to be keld in the summer of 1966. Rather, our concern has centered on the

mathematics itself - its content, the approach to it, and its organization.

By and large, we have found ourselves in substantial agreement as to

what the "geometry experience" of a child in grades K - 6 ought to be, which

facts he should become acquainted with, and what attitude and intuitions he

should develop. For example, the principles guiding the development of

teaching style and materials should include: the spiral approach - where

topics are repeated and then extended at different stages, with increasing

levels of sophistication and deepening of the child's understanding; the



Chapter 1

discovery method - in which children learn things from their own experience

and by indirection whenever possible; the open-ended approach - where topics

are to be examined and investigated and not tied up into neat packages.

It follows from this that, especially in the earlier grades, the approach to

geometry should be concrete, manipulative and operational; that is to say,

the child should learn by "playing" with geometric objects. Formal proofs are

to be avoided (while the student's ability to reason deductively is to be

stimulated) and the passage from the concrete to the abstract should be slow,

tentative and imperceptible. Among the objectives of all this work, as we see

them, are the building of a solid intuition for Euclidean space,the preparation

of the child for an axiomatic treatment of geometry, and the fostering of

familiarity with approximations and limits.

We have chosen to take these guiding principles for granted and, therefore

to structure our discussion according to the internal logic of the mathematics

involved. Thus we have constructed first a general framework for geometry - on

which pieces of geometric information can be hung and organized. This may be

viewed as a curriculum generator in the senses that various crxricula can be

constructed out of it according to the needs and desires of a given school. In

particrlar, this framework deals with more material than can be covered in a

single curriculum.

This material is then broken down into various topics (the list of topics

is meant to be suggestive or illustrative rather than exhaustive) which are

treated with varying degrees of detail. Some topics are discussed in profuse

detail - even to the extent of describing what shoulC go on in the classroom -

while others are sketched in the form of a developmental sequence. Other topics

are omitted entirely. Of course, the selection of topics for extensive treat-

ment is, in part, arbitrary, and is not necessarily related wit the importance

of these topics and the emphasis to be placed upon them. On the other hand,
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each topic is designed according to increasing

difficulty with no hard and fast decomposition

its components should be taught. The decision

taught, and when, is best left to the ultimate

3.

order of complexity and

as to the grade level at which

as to exactly what should be

users.
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FIRST PROVISIONAL WORKING SUMMARY OF GEOMETRY

Geometry for a child begins with his first perceptions of physical

objects. As his hand and eye muscles develop, his simian curiosity and

his appetite for exploration lead to his exercising those muscles and

with them his brain circuitry and nervous system. From the interplay of

these he develops, among other things, his world of geometry. In this

world three levels can be distinguished for our present purposes: physical

objects, such as bricks, balls, boards, paper wire, etc. occupying a three-

dimensional (3D) world; drawings, or pictorial models, of physical objects,

or of certain aspects of them, occupying a 2D or 3D "drawing (or model)

world"; and such abstractions as line, plane, circle, etc., occupying a 3D

abstract mathematical world. We shift and slide between these levels, some-

times even mixing them up by thinking, for example, of a mathematical circle

as being in the room with us, or of a piece of cardboard as being a drawing.

We shall therefore use figures in this discussion to mean either physical

objects, drawings, or abstractions, depending on which level it is in which we

are worAing. We are also concerned with mappings, or transformations. For

physical objects, a mapping is a movement of the object or of a part of it;

moving a car, folding a piece of paper. For a drawing it can be an actual

physical movement of the material on which the drawing is made, or only an

imagined but describable movement. For an abstraction it is a function in

the mathematical sense of that word. In geometry for grades K-6 we shall

emphasize figures and treat mappings only secondarily.

The objects children begin with are those near them in the physical world;

pots and pans, balls, oranges, spoons, sticks, stones, blocks, etc. Through
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pre-school manipulation and exploration children have already begun to in-

vestigate, quite naturally and entirely on their own, certain ideas and

approaches which run through or too much of mathematics and indeed much of

the rest of the world. They learn aspects of a single figure; edges and

corners, roundness, straightness, holes, and perhaps some symmetry. They also

compare two figures: does one fit with or inside the other, do they look and

act alike? And they make new figures from old: putting one object inside or

next to another is using two figures to make a third; tearing a piece of

bread into pieces is making new figures from old; and so is stamping a rubber

stamp or folding a piece of paper or cloth.

These are all natural processes, and it is these/ that underlie all

treatments of figures.

In learning figures children begin with physical objects and eventually

are led to drawings as substitutes, substitutes which take on a life of their

own. Slowly a "zoo" is built up, and classifying begun; and the children

learn the figures and their properties by seeing and handling them and by

finding them andiby making them, whether physical objects, or physical objects

approximating drawings (as a stretched thread is almost a line segment), or

drawings. They also manipulate them: comparing, matching, taking apart,

composing, associating, the more freely the better. All these should be

keptlin mind in constructing any geometry program for children.

The figures themselves not only divide into the three groups mentioned

above, but also can be distinguished by dimensions. Although all figures

will be regarded as being in 3D space, each such figure has an intrinsic

dimension and an extrinsic one. A line segment has intrinsic dimension 1

no matter how it is bent, or not bent, in 3D space, but its extrinsic dimension

does depend on how it is bent, (or not bent). If a pipe cleaner is straight

its extrinsic dimension is, 1, and we shall say it is "16 in 1D". Bent in one
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place like this , it is "1D in 2D", because it can be laid flat but not

on a line; and bent at two places so that it sits up on a table like this,L,7

it is "1D in 3D" since it cannot be put flat on the table top. The surface

of a ball is 2D in 3D, a triangle is 1D in 2D, a disc is 2D in 2D.

In building the zoo, we begin with the most familiarly shaped physical

objects: blocks, bricks, balls, wedges, etc., as solid, or 3D in 3D, objects:

paper and plastic figures are "almost 21i'objects and string, wire, thread,

and pins are almost 1D objects. Aspects of these are end and corner points,

edges, faces, insides, outsides, and so forth. These can be straight or flat

or curved or rounded, or a combination of these qualities. The transition

to drawings can `start with slavish tracing of these objects and then moves to

more general drawings, done by designed and composed tracings, and finally to

freehand. As a child progresses through the grades the zoo expands; in the

class of physical objects, the types of drawings and the sophistication of

drawing methods, and the class of such abstractions as line, ray, plane, circle,

polygon, half-plane, etc.

A great deal of elementary geometry falls into the categories loosely

titled related figures and forming new fiEartlImmoll. Such figure rela-

tions as inclusion, congruence, similarity, perpendicularity, and parallelism,

are standard, while others such as equidecomposability, tangency, equicomple-

mentarity, and interiority are less so. There are also such relations as

"being the convex cover of", that is, being the smallest convex set containing

or "being the flat cover of" or "the boundary of" or "the interior of", each

of these being a relation that is a figure function. Here we propose to only

discuss the five standard ones listed above together with the figure functions

"flat cover" and "convex cover". Forming new figures from one old figure

can be done internally by decomposition (chopping, slicing, extraction) or
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externally either by mapping the figure or by observing a decomposition it

forces on its complement. Given several old figures, new ones can be formed

by adjunction, union, intersection, and cartesian multiplication. Almost all

of these relations and methods are at least touched upon in any treatment of

elementary geometry, and all will be considered here.

For these topics there are certain natural lines of investigation and

development. Consider, for example, any figure relation and figure A. To

find out about the class of figures so related to A, one first tries to find

some figures that are in this class, or, failing that, to see if the class

is void. If there are figures in the class, we try to find some criteria, not

too difficult to'use, that will tell us whether or not a figure is in the class.

The rest of the job is to divide the class into whatever subclasses happen to

interest us. For example, if the realtion is inclusion and A is a point, we

can find line segments, discs, triangles, sets of three points each, blobs,

all sorts of figures that contain A, and many that do not. If we decide we

are curious about all the line segments that contain A, we can ask what all

of these, as a class, are. What do those that have A as an end point look like?

Among these, what are all those that are congruent to a given line segment,

and what is the locus of their non-A end points? What are all the line seg-

ments that have A as an end point and go through a given second point B? What

would their union be? What are all those that have A as an end point and their

other end points on a given line? Among the fatter which ones, if any, are

perpendicular to the line?

Similar questions could be asked about disco containing Pi., or triangles,

or square regions. Some answers might be dull, some interesting. We could

change A to two points, or three points, or a line segment; we could change

the relation to that of congruence. The many questions possible will vary

in difficulty, interest, and generative power. The point here is this; given
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figure relations and figures, one can choose any relation and any figure and

generate many questions about the figures having that relation to that

figure, and that leading children to generate, out of their own curiosity and

imagination, questions like these is a desirable way of their exercising and

developing geometric curiosity, imagination, and knowledge.

There is somewhat the same freedom in building new figures from old.

For example, in composing figures we are given a set of figures and certain

ways of combining them. (In Kindergarten the figures are blocks or cutouts,

the ways are unrestricted.) There are two inputs here: a set of figures,

and a method of combining them; and the output is a figure. Given any two

of these, one can ask for the third; for a very simple example - I have four

pipe cleaners; how can I connect them on this table-top to make a tree?

To make a tree with two limbs? Or: I have 5 congruent sqilarea connected thus:

How can I fold them to make an open top carton? Here the set of figures and

the resulting figure are specified, and part of the composing is partially

restrited (the squares are connected); the rest of the composing is to be

found. Or we ,!an be giver,. a figure, say a rectangular region, a method of

combining (tiling), and be asked to find those plane polygonal regions each

of which will tile the given figure. Or for example, here is a cylinder; the

method of composition is cartesian multiplication: find two 41gures that

so compose to form the cylinder.

There is a similar situation with decomposition. Let F be a figure, say

a solid cone. How .can it be chopped up or sliced or decomposed? Can it be cut

up into balls? Solid cylinders? Can it be sliced into discs? Conical paper

hats? Circles? Line segments? Points? Two congruent figures? Points and

line segments? Obviously there are many possiblities.
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DEVELOPMENT

Fiuxes

Play with blacks and other figures in the list of physical objects; on these

identify faces, edges,.corner points. Discussion of roundness, straightness, and

flatness. Sorting of figures. Ball, sphere, brick, box disc, circle, line seg-

ment, three and four-sided plane figures, rectangles, squares, points;

equilateral, and right triangles; tetrahedra and polyhedra, both surface and solid.

These figures found, then made from paper, cardboard, clay; for example, folded

paper to make straight edges, points, and square corners. Polygons, closed poly-

gons, regular polygons, simple closed plane curves.

A given line segment is part of many line segments; taken all together, these

make what is called a straight line; similarly two ways are determined by the given

segment. Any triangular region is included in many other such regions; the union

of these forms what is called a plane. Angle can begin crudely as the trace of a

corner of a plane region and become the union of two line segments with common

and point; right angle starts with a square corner and later is either. part of

any bisection of any straight angle.

Cylinder, prism, cone, pyramid, wedge, and torus, and their solids, start

as named physical surfaces and blocks, and later are viewed as the unions of

collections of lower dimensional figures, and as cartesian products where that is

possible. The conic sections appear as such as also as loci. Annuli and annular

regions, Moebius strips, trews, knote; composed figures.

Figure relations

Develop from the beginning the idea of one figure being contained in, or

part of, another figure. Paces and edges are parts of blocks, a squiggle on a

face is part of the face and part of the block. There are many line segments

and many points contained in any line segment. A disc contains many discs, line

segments, square regions, and is contained in many discs, rectangular

regions... Determining all figures of a particular kind that contain (are contained
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in) a particular figure; later raise maximality questions about these figures.

Ordering by inclusion should begin early, be not confined to similar figures,

and should progress from two fi:ures to finitely many to nested squences of

figures. Intersections of pairs of 1D and 2D figuTes, physical and drawn.

Intersection of line and plans, plane and ball, etc. The intersection of a

decreasing sequence of line segments, of rays. Intersection of a finite number

of half-planes, half-spaces.

Given any figure, by drawing all line segments on print pairs in the figure

lead into the smallest convex set containing the figure;r3,21acing line segments

by lines introduces the smallest flat set containing the figure. Find these

smallest sets for certain cases, including figures of two points, three points,

and four points. Given a convex set, what of it can we erase and yet recover

the set; extreme points for discs, balls, tetrahedra, polygonal plane regions,

mixtures..

Congruence begins as the motion of two physical objects fitting precisely

in superposition, translates into the idea of two drawings that can be fitted

together precisely, and ends with there being a rigid motion that maps one onto

the other. Finding, then making, congruent pairs of physical objects (straight

edges, folded paper, cut-outs); then, given a physical object, to find 03r make

a physical object or drawing that is congruent to it; then, given a drawing, to

make a congruent drawing, for line segments, right angles, circles, angles,

polygons. Always begin with free copying of figure, later narrowing to restricted

cases. Bisection problems, first using string and paper folding, for line segments,

angles, discs, rectangles, some triangles.

Perpendicularity can begin with the edges of a paper square corner; tracing

in a plane leads to perpendicular line segments and then to perpendicular rays

and lines. Two coplanar segments, rays, or lines are parallel if they have a

common perpendicular. Construction of perpendiculars and parallels, unrestricted
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or through a given point, using square .corners and then straight edge and compass.

.Using blocks and paper square corners, introduce idea of a plane and a line being

perpendicular. Follow wit: parallelism for two planes, a plane and a line, and

two lines. Look at relations between parallelism with the property of either

coinciding or not intersecting. Perpendicularity for two planes.

Similarity.

Composition and atcsauzia2n of figures

Composition of figures should start with free composition of physical objects,

including 3D, 2D ID and 2D-in-3D figures; then ask for\certain figures to be

composed. Later have free composition of drawings and free hand drawings. In

the plane make polygons, curves, trees; compose line segments to make such

standard figures as isosceles equilateral, and right triangles, squares, ree-

1

tangles, parallelograms, etc.

Adjunction of line segments to make a line segment, of angles to make an

angle, of some polygons to make a polygon. Tiling of line segments on a line

segment, of angles in an angle, of polygonal regions in 2D regions; the integral

number line and the integral number plane. Tiling 3D regions within a 3D region.

Folding 2D cardboard figures to make 2D-in-3D figures: first free, then pre-

scribed, e.g., four congruent equilateral triangular regions to make a tetrahedral

surface, or five congruent square regions to make an open box. Given enfigured

cardboard, to cut and fold to get prescribed 2D-in-3D figure.

Do much decomposition of figures into subfigures: first free, than re-

stricted; use string and paper, then drawings. Example: here is a rectangular

region - can you fold or divide it into two pieces that fit each other exactly?

In how many different ways can you so divide it? .Decomposition of .a particular

figure into particular subfigures. Folding of a paper triangle to show that the

angles of a triangle can be joined to form a straight angle. Decomposition of

line segments into.points, rectangular regions into congruent line segments and
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into points, discs into circles, solid cylinder, into congruent discs piled

along a line segment and into congruent line segments attached over a disc, etc.

Introduction of cartesian product of two figures. Analysis of certain figures to

see if they are cartesian products. Decompositions of cone, pyramid, wedge,

ball, etc. into line segments 1D-in-2D, and 2D-in-2D subfigures. Start co-

ordinatizing, by length, on line segment and circle, then on cartesian product

sets in 2D and 3D; cylindrical and polar coordinates. Simple equidecomposability

problems.

Begin separation phenomena with "inside" and"outside"of rope circle, stick

frame, cardboard carton and sphere. A simple closed curve in a plane separates

the plate, and so does a line in the plane, but differerftly;
similarly for a

plane and a simple closed surface in space. Observe that 2 points can be

separately enclosed by: line segments in their line, discs in any plane con-

taining them, and balls in space. Intersection of half-planes and of half-spaces.

2915-65
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FUNCTIONS IN PREPARATION FOR CALCULUS

A Point of View

If there is something that distinguishes the point of view of

this working paper from others being written at the conference, it is

contained in the assumption that children can imagine things they can't

touch or even see. It is not a simple matter to make such a charac-

teristic come clear and be explicit, because probably it really isn't

explicit at all but .rather implicit in the way one would write and

teach the mathematics itself. To begin with the objects of this par-

ticular discussion are functions, and when you try to look at a func-

tion it becomes shapeless, or falls into fragments, or hides behind

a name, or assumes some spurious form or other. Worst of all, it

finds a haven in the bosom of the sophisticate who doesn't see any-

thing especially hard about a function. But just try to dissect and

examine a function that is at all non-trivial with only the resources

of the unsophisticate, say a K-6 child, or your lawyer, or your wife,

or your engineering friend even, and you'll quickly reach an unreward-

ing point of diminishing (ed) return.

It may help in getting a discussion started to assume that every-

body is hopeless in this regard except the sophisticate who knows

more about functions than we do, and just perhaps the K . 6 child,

too, who still has the time as well as the curiosity to entertain,

and even ask some sensible questions in a context (meaning learning

situation) consisting of the universe of functions. Furthermore,

the K - 6 child can be forced to listen to some information and learn

lt,-he'll question without quarreling, _he'll wander off and doze

from Inattention and fatigue rather than from prejudice and disdain,
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and he'll command a lot more sympathy and worry from his teacher

than anybody else does. Functions are the ingredients of calculus

so we must take advantage of the little kids' wide open eyes and ears,

their trusting attitude, and subtly or overtly (as suits us) bend

their thinking to our will.

The study of a particular function may be considered in two use-

ful aspects, global and local. Some global properties are size (car-
/

dinality of the domain set), periodicity, exis ence of an 4.nverse

(one to one,ness). Local properties at the beginning are limited to

single domain entries, or perhaps to small groups of them; in the

story function "Snow White" has a happy ending'. Until children have

enough number work to know about fractions, or get a feel for the num-

ber line as a continuum so they have dense sets to use for their domains,

there's little point in belaboring local phenomena early. But even

when measuring with a ruler marked in.inches, say, it could be noticed

that something might happen near the middle of the ruler contrasted

with whaCmight happen way out at the ends. The idea of a neighbor-

hood, thus topology of a domain, ought to come in as soon as it makes

sense.

To reinforce the function as an entity, it shouldn't be difficult

(returning to the global view) to compare functions, classify them,

find sub-functions, compose them, and, as soon as some structure is

found in the domain and range, produce an algebra of functions.

Numerical-valued functions produce examples of these things most

readily and are ultimately especially useful for elementary analysis.

Furthermore, practice with arithmetic, that,is, the "facts", familiarity
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with fractions, decimals, etc., can be hung on a framework of the

study of functions, Simple counting is a successor function, addi-

tion is a function on pairs, numeral is a function on numbers to names,

equations are functions on numbers to true, false. This is not to

say that everything is a function, but that there must be continuing

exercise in the recognition of those things that can be viewed as

functions for some use or just for fun.

Still in the global view, suppose/that children can add and

multiply whole numbers, and that there are ten kids in a particular

group. Joined in a circle they count around and each child collects

the numbers that he himself says. Then they pair off and add each

others' numbers, each time asking who's got the answer. Each pair of

children will find a "sum" child who goes with them, and the homomor-

phism this game generates can give exercise in addition of numbers to

begin with at an early stage, and ultimately, at a later stage, a

formulation of the Euclidean algorithm and use of residue classes of

integers.

Pictures are essential in all function study, and included as

pictures are tables with connecting arrows, graphs, facsimilies of

physical setups, equations - anything by way of a record which collects

data about a function and optimally suggests extra properties of it.

It should emerge in the student's mind, over any sequence of lessons

and over the years representing arms of the learning spiral, that a

function is a mental construct that is only represented in part by any

"picture" and can be attacked definitively only by mathematical reason-

ing. Cr better, by reasoning alone, which reasoning can be called

mathematical when and if it produces definitive results about the func-

tion. For small finite functions, the exhaustion of all possible cases
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is mathematical reasoning. For large finite and infinite functions

- -the mathematical reasoning assumes its essentially distinctive charac-

ter,, and by this we mean relies on the techniques of logical qualifica-

tion. By sixth grade, we might presume, most normal children should

begin to sense this and, hopefully, be intrigued by it. The inter-

play between plausibility with persistent skepticism and rigor with

finality, recognizing all the time the use and peril of both (how they

on the one hand reinforce each other, and on the other hand get in

each others' roads) is the main object of the study of functions, from

the beginning of a curriculum. Within mathematics the narrow use of

functions as a foundation for calculus is secondary, but, in the pre-

sent instance, controls the direction. of the exercises.

NCTIONS IN k . 6 IN PREPARATION FOR CALCULUS

E2122gRGE2RUS...11.4.:1E

We begin with the hypothesis that functions should be shown to

children whenever the opportunity arises, and that there al:e such

opportunities at every stage of their school experience beginning in

kindergarten. In class periods devoted to mathematics explicitly,

examples of functions should be observed along with examples of geo-

metric things and numbers. Outside of mathematics lessons as such,

functions and the terminology associated with them occur frequently,

are widely applicable in virtually all subjects, and should be built

into the vocabulary and expressions children are taught to accumulate

and use. The concept of a function is of course important in its own

right, it is of use more broadly than just in mathematics, and as a

device for teaching it makes use of all the objects that arise in

mathematical work for its illustration. As correspondences between
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sets of things are observed and practiced with, these sets of things

and their members gain structure and life especially as techniques and

terminology are developed to treat both the structure of these sets

internally and their relations with each other.

It is the purpose of this brief essay to suggest ways by which

functions may be brought into the experience of children in the grades

K 6, and also discovered in and extracted from experiences they al-

ready have or are having in other activities within or outside of

school. This may be very unstructured and undirected to begin with,

but by grade 6 ought to be strongly influenced by and pointed toward

the theory of functions as mathematicians know lit and use it. This is

not to say that the function idea is an absolute trunk of the tree of

mathematics from which all else branches out, or that all else in the

mathematics curriculum has to be connected-with or related to it in

detail, but such a metaphor as this might aptly consider function to

be the life blood of the tree of mathematics. We make this remark to

hedge against the accusation that we view the introduction of functions

at the outset as a cure-all for the ills of mathematics curricula. We

do not, any more than should we view a preoccupation with sets or with

binary numerals as such a panacea. But functions are fundamental in

mathematics in its broadest definition, simple things about them are

understandable by young children, they come in a wide variety, and

they are interesting.

If children are to be expected to buy this package . a study of

functions interwoven into their general studies - we better lay in a

store of aspects of them which are interesting in an open-ended way,
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That is, ultimately fascinating. What these are can be discovered

only by experience in teaching them, but one way to begin is to go

out on a limb and cnnsider some characteristics of functions that in.

terest us and which persist in doing so the more intensively we inves-

tigate them.

Traditionally, functions have been introduced one by one, the

6.

graph of each one plotted, extreme valus of etch one formed, problems

posed for which a single function is useful in each case, and so on.

Only much later, in fact never in the experience of most non.math

majors, are classes of functions viewed as determined by properties of

the functions themselves, functions as objects.' this latter point

of view may be the easier one to start with for children, and we will

explore this attack in what follows. Any non-trivial function is apt

to be intricate enough to demand considerable skill with formulas

(meaning mathematical symbollism quite generally) in order to study it,

and so we propose that initially functions be talked about as objects

roughly in the same way squares and circles and numbers are. To lead

toward this and support it, then, work in geometry, arithmetic, and

algebra should include emphasis on linear order, nesting of neighbor-

hoods, and other things appropriate for the later study of local pro-

perties of particular functions, when problems in analysis are studied

with greater precision and in depth.

As targets beyond the K - 6 range, one might consider what pro-

perties of functions: Properties of their domains., and what devices

for examining. them, ought to be built into the experience of students

in order that they can tackle an honest treatment of continuity of a
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function on the one hand, say, and on the other hand a vector space

of continuous functions. The reader can make a list of such ingredi.

ents for himself, it is not brief; but we believe he will discover

that many of these elements in the study of :fUnction are intuitive

enough to children to be iscussable with them in the K - 6 ages. As

we noted above, the overture must play on the theme, a function is a

function is a function, and let the resolving power of instruments i.-.

vented to examine particular functions increase at a somewhat deliber-

ate pace.

Children learn new words every day. Why not learn a new function

every day, too? It will reenforce the notion of a function as an en-

tity to be examined for its own characteristics and to be compared,

contrasted with, and related to other functions. This is important,

a function should emerge as an object. Each time a function is pre-

sented there should be enough discussion (or play) with it to identify

its domain and range, the rule which describes what the correspondence

inherent in the function is, and some kind of picture of it. These

observations should become regular exercises; just as we would expect

to do some reading, numbers, geometry, and other things practically

crery day, we would do some relating and corresponding, too. Let us

insert image and pre-image, inverse function (one -to -one correspondence),

composition of functions, and cartesian product of sets into the cata-

logue of things to be dealt with from the beginning, and see how these

notions might be talked about in, say,kindergarten and first grade.

Ask each child in the class the name of the street on which he

lives. If someone doesn't know, have him find out and report tomorrow.
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Make a table everyone can see and connect the names with their corres-

ponding streets. Likely more than one child lives on the same street.

Some observations would be:

Are there more names than streets? (cardinality of sets)

Which column is "Joe" in? which iv. 25th in? (Domain and range sets)

How did we know "Elm" goes with "Eve"? Possible answers, "We asked
her", or ;'You drew a line between them". (rule of correspondence)

Who lives on Broadway Street? (pre-:image)

What shall we call this game? (name of a function)

Just a few observations of this kind are enough. The next day

another game like this, when played, may generate other questions but

gradually the kinds of things seen in such exercises should classify

themselves into stock questions about functions that arise over and

over again. These eventually come to define the nature of the entity

called a function, but there is no hurry about it. A child may play

with blocks for many years before the naming of a cube, "cube"4 adds

more to his knowledge and mental versatility than it detracts by appear-

ing to complicate a familiar and clearly simple configuration. Thus

with functions, the indoctrination process must be gentle and seductive,

the objects themselves entering by the side door, so to speak. Only

much later on (by grade five, perhaps?) can they appear as actors on

the main stage, listed on the program.

The simplest elements of a function are the existence of two sets,

one of them favored over the other, and a decision process attached to

each member of one of the sets; domain, range, and rule. The decision

process is to be unambiguous. The example just cited contains the set
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of students, the set of streets, and the rule x lives on street y. It

also contains a non-functional relation if the preferred set roles are

reversed, and this appears when two children live on Elm Street, for

instance, and it is required to specify the person who lives on Elm

Street. The situation is different when there is doubt about what the

answer should be. Certainty and doubt can distinguish between .2Unc-

tional and non-functional relations.

Some functions which could be used for the e early exercises are,

to begin with, possessions of the children, that is, a common domain

could be the set of children in the class. "Belonging to" is a familiar

idea -in the context of personal possession

child his birthday

child his coat

child his desk (where desks are distinguished in some way)

child ---pcolor of his house

A function on a set to itself arises when choosing partners for

projects done by couples. This example generates a function-making

machine as partners are chosen in different ways. Thus

child his partner Tuesday's choice

child --> his partner Wednesday's choice

and these are different functions, Tuesday's choice 0 Wednesday's

choice. We remarked earlier that the assignment of a name to a par-

ticular function tends to emphasize the possibility of its existence,

and the present example illustrates this.
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At some place along the way, at least as soon as these natching up

games become expected and familiar elements of the "activity space" of

school, some generic name should be used to refer to then. "Function"

is the only candidate, apparently. Our hesitation on this point stems

from two misgivings - one the artificiality of injecting a stranger

(the word) into a comfortable family (the games), the other the sheer

ugliness of the word itself in both appearance and sound. But this

has to be done just as soon as nore is gained than lost by it. A

tentative SUggestion is to observe that in some games there is a doubt

about the outcome,

Who lives on Elm 'Street? Eitter.Susie-or, Joe, .whom did. you, mean?

and in others there is no doubt at all,

Where does Joe live? On Elm Street, certainly.

In cases such as the second of these the teacher can let fall the

utterance "function" each time, but take care to avoid its use other-

wise.

As a preparation for the introduction of functional notation the

children should get used to talking about the function games with names

for the functions themselves, as we have been emphasizing, and along

with this they should use some rudimentary form of "f(x)". This might

start concurrently with reading and writing exercises, so that a writ-

ten form of the record of the street game would include statements such

as,
Joe's street is Elm,

which would later be written,

The street for Joe is Elm,
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sooner or later to become abbreviated to

Street(Joe) = Elm.

11.

Up to the time at which geometric objects and arithmetic are

symbollized, then, children should be led to experiment with those

aspects of functions described by domain, range, rule, image of a do-

main element, and to understand that a function (if only perceived as

a particular kind of game) can be described in writing. We are not

ina position to specify when this stage can be reached, but we are

proposing that the children be made ready for, and be given the vocabu-

lary to use in, exercises of the following kind using "numeral" and

"place holder" symbols.

Numerical-valued functions have been encountered, presumably,

before much arithmetic has been done. With arithmetic available in

the range of such a function, exercises with functionG can be extended

to their algebra. An example should be sufficient to explain this

here, many examples necessary to explain it to a class. The post

office provides one of these. Consider all packages in the shape of

boxes. The length function L assigns a number, which is the largest

of the three dimensions (in the usual sense), to each package

L: package L(package)

The girth function G picks out, for each package, its girth in a plane

perpendicular to the axis of the dimension L(package).

G: G(package)

Since L(package) and G(package) are numbers, uniquely assigned to each

package, their unique sum is assignable to each package and a new func-

tion is born. By the time this kind of game is familiar, the need for
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record keeping, that is, writing things down, might support the plau-

sibiltty of the name L + G for this new function.

We do not address ourselves, in these remarks, to the construction

of specific lesson plans for the teaching of the example in the last

paragraph. Ne do plead, however, for the inclusion of an exercies of

its kind just as soon as the function game is understood and playable,

.1

and right along with the study of addition in arithmetic. It (and

many others like it)* should be presented to the children as soon as

it can be made comprehensible to them for several reasons, among which

we observe that

1. its does something with functions beyond viewing them just

one by one,

2. it introduces a binary operation in a set of abstract (sic.)

things,

3. it contains a reenforcing review of virtually all that has

been said about function prior to its occurrence,

4. the record keeping associated with it focuses attention on

the pairwise notational distinctions between x, f, and f(x), in what-

ever symbollic guise a teacher may prefer to write them,

5. it is the kind of process that can be repeated with variations

of content, reemphasizing important ideas in a sugarcoated drill.

It can be decided only by trial in the classroom whether the

algeera of functions is a more or less primitive notion than is their

composition. Composition is the simpler in that is has fewer ingredi-

ents (no operation in the range is required) but it may not seem so to

*Whenever measuring is done, a function (object >its measure) is in
use. See "Circular Functions" for an example of how measurement can be
exploited.
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the beginner. However this may be, composition games should be played

as soon as composable functions are at hand, and notation leading to

fog(x) = f(g(x)) worked into the record keeping apace. Examples are

easy to find, for instance

child) his street ---17on bus line, or not

child his desk *number of pencils on it

package length plus girth ; amount of postage.

The first two are kindergarten examples; the last combines addition

with composition in the same illustration.

We are influenced by aims more lofty than just keeping primary

school children busy, and two of these serve to direct our thinking at

this point. Mapping structures by isomorphism is one of these, and

recognizing a topology in the domain of a function to support analysis

(calculus) is the other. When the function concept is useable, and,

in particular, when functions with inverses (one-to-one correspondences)

are recognizable, their isomorphisms and homomorphisms should be acces-

sible at least by example. This is where algebra in the early grades

could start, and here is where a pre-algebra essay should be written.

We are tracing pre-analysis more narrowly here and are shunted onto

the other track, which means that we devote attention to linear order

in the number system and, through measurement, nesting of intervals

and regions.

We understand that "inequalities" and their "solution sets" are

already in the vocabulary of primary school children. The "conjunctive"

_inequality

a4x<b
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should be included, if it isn't already, and problems worked which lead

-to names for intervals. With this, preparation, a real valued function

of a real variable (actually limited to rational numbers) can be seen

to create a set function. What, for example, is the image of the in-

terval Et,b lin the function f? "Number lines" and graphing are by now,

we assume, familiar, so the notational record keeping can be bolstered

by graphs. Graphs, it must be noticed, are often inadequate and it

should be emphasized by examples that it is the reasoning that really

counts. Consider the image of (0,1) in the function
1

f: f(x) = x 0,2

which is not graphable in toto on the usual rectangular coordinate

scheme. That image does exist, however, as an open interval and is

visualizable on a different kind of graph, say by polar projection of

the plane onto a sphere. Children should be brought to realize that

it is the mapping which contains the content of such an exercise and

that the graphs serve only as visual models helpful for keeping things

straight.

Whether explicit calculus problems can be introduced by the sixth

grade or not can be learned only by trial 1.n the classroom. We con-

,elude these remarks by suggesting some projects which might be tested

the projects being under examination, not the students. Consider the

folliming simple, indeed somewhat crude, example of an integral opera-

tor. Let f be a linear function (real valued on a real interval and

nowhere negative), so that the region-"under its graph" is a trapezoid.

The area of a triangle being easy to compute leads to the construct-

ability of the new "area function".

g: g(x) =_faxf ax:5-b



Chapter 2 15.

which can be given the notationally reasonable designation fa. Any

such linear function can be thus integrated, and the operator, c ap-

pears in the role of a function; It Would seem that curiosity might

arise as to the possibility of integrating a quadratic function, and

the difficulty encountered in computing values off's! in this case

(assuming the skill of the teacher is adequate to the task) could moti-

vate a more intensive study in later grades of area as a measure of

the size of a region.

In order to illustrate this in greater detail, suppose a large

collection of rectangles, each member of which has the same altitude,

is arrang4d so as to appear like

lt:1:111-1

This can be interpreted as a picture of any one of several functions,

Rectangle length of base etc.,

and, in particular, look at the functions

b = Length of base altitude of rectangle = H(b)

A
b = Length of base _2, area of rectangle = A(b)

Partial tables of H and A are,

H(b) b A(b)

2 1 2 2

3 1 3 3

4 1 4 4

and these functions have, we suppose, been given names heretofore, so

what we see is the relation between functions H A. Relations

which symbollically look like this have been given names before, so why
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not call this relationfright away? Thus

HI, A =fir,.

And why-the curious ogive shaped symbol? Well, why not? With suf-

ficient "preconditioning" for freedom in the use of symbols in games,

it just may seem to be fun.

A sequence of examples which develop therrelation is fairly di.

rect now. If (maps the unit function to the identity function, it is

reasonable to inquire what it does to the "2" function and other con-

stants. The perplexing problem of notation is hard to decide. Per.

haps eventually a tabulation of the form

H

I0

21°

A =

21

kI° kI

or some adaptation of it could serve to preserve the essential function

aspects of the traditional statement kdx = kx. Any notation what.

aver injects irrelevant features into the things it stands for and

exacts a price for its practical utility. As 'it lends clarity to and

facility ern the use of its objects, it actually does in math classes

usurp too much of the primary role of the thing it denotes, and yet

this primary role cannot be played without symbollism, very likely can-

not be even conceived without it. Unresolvable dilemma:
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Continuing along a scale of functions, try triangles next. They

take on the appearance of

."7

A 3
leading to the two functions

b H (b)

1 2

2

3 6

2 4

3 9

where H is the doubling function, A = 21 and

A = 12. Thus f2I = i2. Further trials with

A: is the squaring function

other sets of right tri

angles nested in this way would lead to the function relation described

byfkI = 1/2k12.

It is hard to say at what point, or in what direction, to branch

off into other important aspects of integration, be they substantive

or notational, but any such next aspect ought to be, while simple

enough to be accessible, clearly non-trivial. Extended scrimmage is

necessary, but it should never to too long between games.

Suppose the last example is reversed, i.e. given the identity

-function, what sort of diagram would lead to its image under f? This

presupposes simple algebra and graphing, and could go as follows:

Let f (x) = x ol.Ex5-3, and picture the function on a graph.

Three right triangles can be put in the figure so it looks just like
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the last one drawn above.
Graph of f

I

3

This is nothing new. Suppose other triangles were nested in the dia-

gram as before, but of different sizes, does the image of I under I
come out to be 1/2 I

2
independently of how big the triangles are? At

this place the "arbitrary typical" triangle, measured in formula lan-

guage would yield,

b H (b) b , A (b)

x x x 1/2 x2

whioh, by some mental alchemy, should transfer to

I = 1/2 12 .

The hope (pious?) is that this last sentence says more about the nature

of the f relationship between functions than a comparison of the par-

tial tables for I and 1/2 12 did.

Remember, we hold no particular brief for the nomenclature in

which this is being written at the moment, but only that something has

to be put on paper which indicates a route through function and into

calculus (end of disclaimer).

After a similar referral to the rectangle case, i.e. starting with

the function kI° and reaching, kr = kI independent of how the rec-

tangles are inserted, we proceed consistently starting with f and aiming

toward j f, Here is a place to vary the domain of f and get a version

of the definite integral of f.
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Suppose f: f(x) = 2x, 3 x t 5 with graph:

1 ......*
3

We compare the height and area functions as before, first by a fe5w

cases, (using trapezoids)

x H (x) x A (x)

3 6 3 0

4 8 4

5 10 5 16

and it's not very clear whether we have seen A before or not. This

may be an object lesson in the power of a more general, symbollic method.

Look at tge figure

L.
2x

x - 3
The area function ought to havL the formula

s (x) = ave. of altitudes x base

= 1/2[6 + 2x] (x 3)

= x2 - 9

(or add the rectangle to the top triangle, or however the kids get the

area of a trapezoid), which can be recorded in this case asj f = 12 -91°.

By now there's enough variety in life to require some cataloguing.

Suppose several trapezoids like the last one have been treated, all with

tor taken from 21,
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21 [05] 12 [0,5]

21 [3,5] 12 - 910 [3,5]

21 [0,8] 12 [0,8]

21
[3,8] 12 9Io [3A]

and some more like this. Apparently the area function corresponding to

21, on some domain, in f, has the same domain and changes f6rm depend-

ing on the initial point of the domain.; It is reasonable to agree on a

distinguishing symbol, and write ( ot5.8.4:10 [a,b] = 1
2
-a

2
IP

[a,b] .

We have tried our hand at the invention oJi examples leading to the

derivative of a function but only with questionable success. However,

the idea that is embodied in the words "how fast", some version of, it

at least, must exist in classroom K. That some things go faster than

others is obvious to the very wee children, and so also they see that

some things grow faster than others do. Our aim is to get them to use

functions,, measurement and numbers to quantify the idea, to define it

and, ultimately, to relate it to the rest of calculus.

In the spirit of this paper it is presumed that any class of kids

is stockpiling functions, and should soon have useful ones lying around

for whatever purpose. Exactly which functions would best serve the

purpose of pinning dorm rate at the beginning is impossible to say

when thinking in the vacuum we are here. However, it would seem that

a class might compare the heights of two (or more) bean stalks recorded
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day by day to get tables such as

day height I height II

1 1/2 0

2 1 .1/2

3 2 1 1/2

4 .31/2 3

5 5 1/2 5 1/2

21.

wherein'the first plant started first but grew, more slowly than the

.second.. These are global observations. There are others, too, such as

the.monotarlicity induced by the nature of the experiment.

In the context of "how fast" if would probably occur to a class to

ask "how much growth each day" and this leads at once to first differ-

ences. Thus local behavior of the functions can be observed with a re-

solution limited to one day. Doubtless this work would go along with

the area studies of Section 2 and a graphical record could be kept.

It will help to move the project along if weekends are included so a

couple of days are skipped now and then. Graphs could be

1'

J
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with points joined by line segments. In order to get the daily growth

over the weekend, a difference quotient would necessarily arise, so the

daily rate measures would be recorded as

A I
day 6day I .6 I &lay

1 1/4

1

2 1

3 2

1

3 1/2

1

5 5 1/2

3

8 91/2

All
II 6 II day

0

3/4 3/4 1/2 1/2

, 1/2

11/2..11111.11.s.....

1 1/2 1 1/2

3

1 1/2 1 1/2

2 2 2 1/2 2__1/2

5 1/2

4 1/3 5 1 2/3

101/2

3/4 3/4 1

101/4

r

The points to notice being that the first differences measure how fast

the plants are growing and that these are useful as long as the time

intervals are the same, but that over the weekend the time interval is

different and to get a useful consistent measure of "how fast" the

difference quotient is the better. On the growth graph, this ratio

appears as the slope of the line segment over the corresponding time

interval.
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More generally, one might have the students sketch a tangent lice

on the graph of a smooth function measure its slope and thus construct

a rough approximation to the derivative function, and with this back-

ground illustrate what the derivative operator might be. In a context

of mechanics this activity can be viewed, quite properly, as a graphical

study of rate problems and is all to the good. However, in order to pro-

ceed closer to the "pre-analysis" line, attention should be given along

with this, if not before it, to "inverse image f intervals" games. These

games should ultimately contain the question, "Given f and the interval

I in its range, what are some intervals in the domain of f whose images

are contained in I?" It is epsilontics readine)s that we are creating,

and there is no. escape from the necessity for it. This technique, and

the concept it treats, in whatever form it appears, is the distinguishing

characteristic of analysis and must be faced sooner or later. The sooner

the better.

By sixth grade what else should, and could, be done to prepare the

children lc:? calculus? Sequences have not been mentioned here, and per-

haps they ought to be. Experience with college students underlines the

need for Preservation of the greater openmindedness they seem to have

had as children. Presently students seem to have been conditioned to

get an answer to a given math problem by a well-learned procedure, in a

small finite number of steps by a small number of deductions. True, it's

easy to find the tangent line to a polynomial curve by the naive process -

just write a new polynomial (derivative), evaluate it to get a number

(slope) and substitute into the point slope line formula. But this

avoids calculus. To generate curiosity about the existence of a tangent
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line, or more basically its very definition, and to generate a notational

technique that facilitates such a definition more than abfuscating it is

a matter of a different order.

So perhaps, on a much lower spiral arm, it may loosen things up to

start with some practice with sequential problems, such as:

Find a point on the number line (not 0) closer to 0 than I is.

Find lots of these and list them. Now close to 0 is each of these ans-

wers? Which is the closest one of those found? Find one closer than

that, etc. As soon as possible this must be done more systematically,

by use of formulas, but to get less trivial cases, such exercises should

be extended to other points of accumulation than zero.

Introduce a measure of "closeness", in the example above, say, 1/5;

then find several numbers closer to 0 than that and eventually agree

that if such a measure is e, then e/2 is still closer, and that e/2 is

one such number for each e.

Try nesting intervals; take 2 and let [1,3] be an interval con-

taining 2. Find several more intervals containing 2 and compare them

(overlapping, nested, disjoint?). Look for a shortest one, and then

get one shorter than that. Given e, find intervals shorter than e, all

containing 2. Play the "e game" - given some e, find a point closer in

than e, or an interval shorter thane. Ease with these games should in-

crease with familiarity.

n-1

Given the sequence n , it should be discovered that it is increa-

sing, bounded, and that given a measure e, the sequence eventually stays

closer than e to 1. The success of this process will depend on the in-
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genulty with which sequences and nests can be concocted which are sim-

ple enough and yet possess variety enough to be intriguing.

Before this palls and after the essentials of the test for a limit

of a sequence are familiar, sequences on two number lines can be com-

pared where the number lines are connected by a mapping. Suppose the
n-1

lines are X and Y with the mapping y = 3x. For the sequence xn = n

what is the image sequence for yn ? Lots of these. Compare the "e

games" on the two number lines together.
1 x

x = 0 for y = x, and for y = x near zero

The nested interval game near

should be interesting variations.

The object of this is to build into childrens' conception of what

goes on in math some understanding of limit techniques as a bona fide

part of the business along with the many other activities they come to

feel are really math. This can be done with geometry, too. For example,

how smell should squares be if when they are packed into a right tri-

angle their total area comes short of the area of the triangle by less

than e? For curved figures this e question could take the form, how

small must these squares be if the total area of the covering minus the

inscribed sauares is to be less than e? Another project could be to

find and test by the e game a set of nested intervals condensing on 2.

These problems should all be chosen so the e game can be played;

otherwise they are little more than drill on arithmetic fundamentals,

and the aim here is to create, as we remarked earlier, an epsilontic

.readiness.

2915-65



Section 1 Chapter 3

APPLICATIONS

Mathematics presents an intellectual challenge that is stimulating

to many, even to youngsters. This, by itself, makes the subject interesting

and viable in elementary school even if it should seem to be void of prec-

tical applications. However, the number of young students intrigued by

mathematics, and the level of interest of all, is increased greatly if the

importance of its applications is made evident from the earliest grades.

The arithmetic skills may be better learned while doing the very things

for which they are important, instead of through sterile drill. It is then

important to do the calculations speedily and accurately to get at the

interesting results ahead. Also, abstract questions of sets and algebraic

structure attain increased importance if they lead to some technique and

power that permit one to predict the probability of an event or the motion

of a particle.

Geometry, especially at the elementary school level, is closely

associated with its application to the approximately Euclidian space in

which we live. The ability to describe, construct the objects that sur-

round us, and to predict the results of their composition and decomposi-

tion, is an application of some immediate interest to children.

Functions and analysis are the tools of most of the applications in

science and technology. The concept is introduced to youngsters in terms

of the physical objects for which the functions are models - children and

classrooms, areas of figures, rolling wheels, particle trajectories.

Measurement is an application of geometry and functions. It also involves

probability, itself an application we will discuss below.
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In the presentation advocated in this report, all of the material

involves application. However, it is also our purpose to describe a

part of the curriculum in which the topic is dominated by the application,

which may need various types of mathematics for its exploratiOn. The two

subjects of this type discussed in some detail are probability and mechan-

ics. These two differ from each other considerably in the type of mathe-

matics used, and also in the proportion'of mathematical concepts to physi-

cal or scientific concepts involved.

Probability is in one sense a mathematical discipline, which can be

axiomatized an4 treated in the abstract. But when its principles are

evolved experimentally it is a problem in modelling - a central aspect of

applications. Furthermore, analyzing distributions of events and answer-

ing questions about expectations requires the application of the arith-

metic operations, averaging, graphing, functions, real variable, set oper-

ations, permutations and combinations, symmetry, and other mathematics.

The physical experiments to be done are simple, require only a little tech-

nique, and can be associated immediately with some mathematical manipula-

tions. Some care has to be taken as to whether events are independent,

generated in a consistent manner, and unbiased by external factors. It

must be established that the physical events correspond approximately to

the assumptions of the model,so that the experimental, physical aspect

must not be slighted. But this_ aspect is not as difficult as the speci-

fically mathematical problems involved in the probability unit described in

. this report.

The science of mechanics demands a great deal :lore of physical experi-

ments in the classroom. In modern times there are few people who are in-

terested in mechanics as a deductive discipline, although in the nineteenth
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century it was treated, at times, as an extension of geometry. To abstract

the principles of kinematics and dynamics a long sequence of experiments

is required. Many of these involve painstaking measurement, but only triv-

ial mathematics. Friction, rolling constraints, the lack of weightless

ropes, etc., introduce many complications into experiments that would other-

wise lead more directly to simple mathematical formulation. The temptation

must be avoided of drawing conclusions which the experiments actually per-

formed do not indicate. Instead one must do more difficult experiments,

get along with fewer results, or use guesses as working hypotheses. In

this last case, the experiments performed up to the time of making the

hypotheses only indicate the hypotheses as possible extrapolations from

the data. This is only worthwhile if one can eventually predict from the

model, perhaps after considerable mathematical reasoning, events which can

be verified by experiment in the classroom. While there are many loopholes

in guessing at Newton's laws of motion from spring and inclined plane

,experiments, the predicted parabolic motion of a particle in a uniform

,force field can be closely verified by the,motion of a solid object thpugh

air over the span of a classroom. There are no rolling constraints and

frict4on is small. But the connection of the parabolic orbit to the 1p,ws

requires much more mathematics than does straight line motion and must

come after several years of preparation.

Other topics may present very fruitful applications of mathematics

for elementary school. Some of these appear briefly in some of the other

units discussed in this report. The discussion of functions uses daily

plant growth as an early example, and later applies similarity and trigo-

nometry to measurement. There will be many opportunities in the course

of all the mathematics described in this report to make brief applications.
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It is highly desirable to do so providing that it sufficiently illustrates

the power of the mathematics at hand and that it does not distort the meaning

and use of the application. We have concentrated on two problems to pro-

vide a comparatively full description of the richness of the mathematics

evolved in several years of development of an applied topic; and also to

show that no violence need be done to the non-mathematical aspects of the

'*torace

The relative timing of the experience with various mathematical and

physical ideas is very important in this area. The child's movements and

playing with blocks and other toys are his earliest introduction to geo-

metrical and physical concepts and develop the intuitive response to these

phenomena. This must come before any more explicit approach to the mathe-

matical or scientific content. On the other hand, a certain facility with

numbers is required before measurement can be used to quantify any of the

scientific conjectures. This interplay is evident throughout the grade

levels in the applications.

The importance of permitting time for an experimental and discovery

approach may well be more important in the applications than it already

is elsewhere in mathematical education. The process of modelling is

delicate and all but unteachable in any direct way. An intuition for

modelling can be built by allowing time for trial and error and for mul-

tiple apnroaches that stimulate inductive reasoning. It is doubtful if

the classical method of teaching by example (case histories of modelling)

_is adequate. Direct experience of the struggle seems to be a requirement.

As a consequence in the probability unit, it is appropriate to let the

child who wants to, to experiment with different objects in the cups,



'differently marked, without replacement, etc. In short, with any set of

rules he may think of, even if the teacher is aware that that experiment

..is a "bad" one - in the sense that it may lead to complex, confusing, or

5.

biased results. This is part of the problems of experiment and modelling

that a student needs to find out for himself. Similarly in the early

mechanics many blocks, springs and balance boards should be available

to allow the testing of some hypotheses, e.g. the effect of the color

of the balance arm on weighing, that may occur to the student. The connec-

tion may seem unlikely to the teacher, but many important connections have

seemed unlikely in earlier times. What connection did light have with

lodestone to the pre4Iaxwellian intellect? The mental freedom to cast

about for associations is essential to research.

The mathematical models invented by children in the classroom also

must be treated with respect and the readiness to understand what experience

they are trying to express. The feeling, expressed by ten-year-olds, that

bodies reach a maximum velocity under a constant force is a deduction from

their experience in pushing things and trying to push as hard while the

speed increases. Care must be taken not to "prove" to them that they are

wrong in any absolute way. After all, terminal velocities are reached in

a frictional medium when the applied force is steady. Also relativistic

effects do lead to a common maximum velocity, although this effect will

not be seen in the elementary classroom.

In summary, the classroom technique, as well as the curriculum material,

must indicate not only the variety of mathematical and scientific content

to be explored eventually, but also the variety of ways in which indivi-

duals examine evidence, cogitate, hypothesize and generalize. If some of

these basic features of the researcher can be developed in the student,
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mathematics will have been well served in two ways; by the awareness of

the importance of the subject, and by the growth of an ability to reason

fruitfully as well as accurately. The latter is equally important to the

scientific disciplines which have been invoked as an application of

mathematics.

2915-65
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PROBABILITY

Today, probability is one of the most widely used branches of mathe-

matics, not only in various vocations, but in the everyday life of "the

Nan in the Street." The ordinary citizen is coastantly bombarded with

statistics about toothpaste, automobile accidents, the probability that

there is a connection between smoking and various kinds of illness, the

probability that candidate A is going to win an election, etc.

As well as being useful in the real world, probability is an interesting

and exciting means of getting children to practice arithmetic. It is also

a good mathematical model of the real world, and offers children considerable

practice in creating mathematical models with approximate reality.

All of these reasons seem to point to the early teaching of some prob-

abilistic concepts in the elementary grades. Certainly, a considerable

amount of probability should be learned by all pupils before some discontinue

their formal mathematical education. A further reason for the early intro-

duction of probability into the curriculum is that many people have the

feeling that mathematics studies only exact data and exact numbers --

probability will give the feeling of studying distributions and uncertainties

before the pupils become overly enamoured with "getting the exact answer."

It is our belief that the study of probability (as well as the early

study of other mathematics) ought to be closely associated with the real

world. This means that the children will perform many experiments, and will

attempt to draw mathematical conclusions from those experiments. In the

early grades, the mathematics will be of a very informal nature, and the

children will be getting a feeling for certain concepts, without necessarily

stating them explicitly. At a later time, more explicit, quantitative con-

clusions will be drawn, and analyzed.
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The following sequence of events might be appropriate for grades 3

through 6. A large amount of deduction is required by the 5th and 6th

grade materials. Experience may show that, even for properly prepared

Children, this part of the.unit is more successful a grade or even two

grades later.

GRADE 3

The purpose of the early experiments, in the third grade would be to

develop a feeling for the long range stability in a situation in which each

individual event is unpredictable. For this purpose, a variation of the

thumbtack throwing experiment would be used. (See Estabrook Progress Reports.

A forthcoming C.(.S.M. Volume will give details of classroom presentation.)

The advantages of the thumbtack are that the children do not have a precon-

ceived notion of what the probability OUGHT to be, and yet the long ratio of

successes to trials will become quite stable (if care is taken to use the

same method of throwing the tack each time). Another advantage is that chil-

dren can get some feeling for the connection between the physical situation

and the results by varying the length of the tack (using a coin as the limit-

ing case in one direction, and a finishing nail as the limiting case in the

other direction). For young children, the obvious danger in using thumbtacks

may outweigh the advantages, and other objects can be used for the same pur-

pose. For example, small corks in which the circular bases are relatively

large with respect to the height can be used, and other corks with different

shapes can be used to get the same effect as varying the length of the

thumbtack.

The arithmetic involved in this experiment is little more than counting.

However, a strong feeling for ratio should be built up as the children note

that (e.g.) 3 out of 10 times, the point is up; I2 out of 100 times it's up;

391 out of 1000 times it's up, and so on.
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After the relative stability of the long run ratio has been accepted by

the children, it will be worthwhile to see if they are inclined to make pre-

dictions for specific events. For example, if they believe that in the long

run about four-tenths of the trials will come out with the point up, and it

happens that the last six events have all resulted in the point's being down,

do the children think that the probability of getting a point up is still .4,

or do they think that it is greater than . 4 (or, perhaps, less than .4). If

a careful enough, and long enough, record is kept, it should be possible to see

that, in the long run, after the tack has landed with the point down six times,

it will land with the point up about .4 of the times on the sevenp trial (if

that is its probabil4y generally). Thus, the children should get a feeling

that the "law of probability" has to do with the long term, ratio, not individual

events.

Other experiments, of a similar nature which can be carried on in the third

grade include placing a number (say 10) colored corks in a malted milk cup,

drawing one without looking, recording the results, replacing the cork and

starting over. Experiments of this type have been tried in Ithaca, New York

schools, by David Block. Again, the long range ratio of red corks to the

number of draws should become rather stable, and in this case, the ratio should

stabilize around the expected number,(the true ratio of red corks to corksin

the cup). If more than two colors of corks are used, the data may be difficult

for the children to accumulate -- this can be simplified by providing the appro-

priate number of pegs, colored with the same colors as the corks and placing a

washer over the appropriate peg whenever that color cork is drawn.

Games can be played using the cork drawing experiment, in which the teacher

places corks in the container and the children try to guess, after a few drawings,

what the proportion of various colors of corks is. With only ten corks and two

colors, the children will find it advantageous to guess rather wildly. Therefore,
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it will usually be desirable to use at least three colors. Other games can also

be made up rather easily. For example, each child can have his own cup, make

up his own distribution and then let another child try to guess the distribution.

Rules for these games are quite flexible -- each child can be allowed one guess,

if it's right he wins, if its wrong, he loses; each child can guess after each

drawing with the first right answer winning, etc,

Other variations on the cork drawing experiment are also possible. For

example, one could number the corks and then determine the probability of

getting corks in various subsets, and intersections and unions of various subsets.

That is, the pupil might calculate the probability of getting a cork which is red

and has an even number associated with it; a cork which is either green or has a

number divisible by 3 associated with it, etc.

In general, the purpose of the experiments in the third grade is for the

-children to acquire a feeling for the long term stability of the ratio of

successes to trials in probabilistic events. They should also realize that the

ratio can often be predicted closely by using a prior argument of symmetry an

intuitive compounding. 'Many other experiments involving dice, coins, cards, etc.

are possible if time permits. The children should learn to keep careful records,

and should learn to interpret those records with some degree of sophistication.

At the be inning, the teacher would keep the records and help with the interpre-

tations, but these activities should be turned over to the children as soon as

possible.

GRADE 4

Measures of dispersion, randomness, and sampling procedures will be the main

concepts developed in the fourth grade probability study.

The range is the most obvious measure of dispersion for a set of data, but

after having suggested this, and used it to measure the dispersion of several
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sets of data, the children will probably feel that some better measure could be

found. The data on which the measures are tried can be collected from more

experiments such as those used in the third grade, or by the collection of data

from other sources (e.g.,have all the children measure the length of a table and

record the answers ialanklax, record the heights, weights, or ages of the

children in the class, have each child flip a coin ten times, and record the total

number of heads).

As they plot the data from their experiments on a graph, the children may

notice that one or two pieces of data tend to increase tL range greatly, and

don't seem to be significant in terms of all of the data. That is, two distri-

butions may look very similar except that in one, one oritwo data may be much

further from the mean than in the other distribution. In spite of this, the

children may have the feeling that the dispersion in the two distributions is

.,-essentially the same. This will be more apparent to them the larger the number

of data in the distribution. From these facts,, two other measures of dispersion
_ _ _

can probably be elicited from the pupils. First, at "trimmed range," in which the

two data which are furthest from the mean at either end of the distribution are

simply removed befoe the range is determined. The second measure of dispersion

would In quartiles.

Once a measure for dispersion has been decided upon (or several measures

have been considered), it will be interesting to see how the dispersion .is

affected by increasing the number of data. For example, suppose each child in a

class of 25 throws a coin 20 times and records the number of heads, what will be

the relation between the trimmed range (or other measure of dispersion) of this

data and the trimmed range of 100 such data? Would the trimmed range be the same?

Would it be four times as great? Would it be somewhere between these possibilities?

Where? Through experimentations, the children can get a pretty good estimate of

where it will be.
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Another interesting experiment which can be tried at this level is to

have a child throw a coin, and record his results on uP,Pk.paper, adding one

to the ordinate of the previous point if the coin lands head, and subtracting

one if .the coin lands tails.. The distribution would look something like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IG 17 18 19 20 21 22 23 24 25 26

If this procedure continued, relatively few of the points will actually be

on the line, but they will tend to cluster around it -- generally fitting inside

of a parabola which has the x-axis as its axis of symmetry. This again, should

give them a feeling for the non-predictability of individual events, but the

long range stability of the proportion of heads to trials. As a variation on

this procedure, a thumbtack, or other object, (with probability not equal to

1/2) can be thrown and the slope of the axis of symmetry of the parabola will

approximate the probability in question.

The above experiments lead naturally into a discussion of random walk

experiments, and if the appropriate science has been studied, this can lead on

into a discussion of Brownian motion, and molecular activity. If this effect

could by observed through a microscope (the projecting type would be good with

young children) it would be desirable.

Next, a 4iscussion of random sampling would be appropriate. "How would you

choose a random sample of people in the fourth grade of this school?" Have each

child pick a random sample of ten people, and then collect some data about those

people (maybe height, weight, sex, etc.): Then, have them create. a random number

table, and use the random number table to choose a sample of ten more people.
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Collect the same data, and compare the results. Then, compare the averages in the

samples with the averages in the total population. Hopefully, this, will demon-

strate the power of random sampling.

There are many ways to create the random number table. One method is to

go through a telephone directory, and choose the fourth digit (say) of the top

telephone number in each column. Variations on this can be used, but it is im-

portant to avoid possible non-random effects which would result from using a di-

git in the exchange (one of the first three digits), or by taking names that

follow each other immediately since members of the same family may be listed, or

large corporations or agencies may have their numbers listed several times. It

is also possible to construct a table using a purely constructive means.( such as

rolling a die and flipping a coin -- H,1 results in 1; H,2 in 2; H,5 in 5; T, 1

in 6; 2 in 7, etc; with H,6 and T,6 being ignored), but it is important to know

that the objects are "honest. This means that the proportion of l's, 2's, etc.,

should be approximately the same. Of course, it is also possible for the pupils

to go to a previously constructed random number table but this is not as in-

structive as creating their own. Once having constructed the table, the pupils

should compare the total number of times each digit turned up then the totals

for the first half of the table, and soon. They should also look for runs of

two of the same digit, runs of three, etc. What is the average number of digits

passed over to arrive at a specified digit from an arbitrary starting point?

After a run of that digit?

An experiment in which a normal curve is created is very effective in

showing children both the dispersion and the central tendency of random events.

One beautiful experiment of this sort is to pour salt (or sugar, or sand, or any

substance with small grains that will tend to bounce -- not slide or ro,1 --

down the paper) onto a folded sheet of paper so that the grains will bounce

down the paper towards the fold, It is important to always pour in the same spot,
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In the presentation adv.)cated in this report, all of the material

involves application. However, it is also our purpose to describe a

part of the curriculum in which the topic is dominated by the application,

which may need various types of mathematics for its exploratiOn. The two

subjects of this type discussed in some detail are probability and mechan-

ics. These two differ from each other considerably in the type of mathe-

matics used, and also in the proportion of mathematical concepts to physi-

cal or scientific concepts involved.

Probability is in one sense a mathematical discipline, which can be

axiomatized an4 treated in the abstract. But when its principles are

evolved experimentally it is a problem in modelling - a central aspect of

applications. Furthermore, analyzing distributions of events and answer-

ing questions about expectations requires the application of the arith-

metic operations, averaging, graphing, functions, real variable, set open.

ations, permutations and combinations, symmetry, and other mathematics.

The physical experiments to be done are simple, require only a little tech-

nique, and can be associated immediately with some mathematical manipula-

tions. Some care has to be taken as to whether events are independent,

generated in a consistent manner, and unbiased by external factors. It

must be established that the physical events correspond approximately to

the assumptions of the modeloo that the experimental, physical aspect

must not be slighted. But this aspect is not as difficult as the speci-

fically mathematical problems involved in the probability unit described in

this report.

The science of mechanics demands a great deal more of physical experi-

ments in the classroom. In modern times there are few people who are in-

terested in mechanics as a deductive discipline, although in the nineteenth
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century it was treated, at times, as an extension of geometry. To abstract

the principles of kinematics and dynamics a long sequence of experiments

is required. Many of these involve painstaking measurement, but only triv-

ial mathematics. Friction, rolling constraints, the lack of weightless

ropes, etc., introduce many complications into experiments that would other.

wise lead more directly to simple mathematical formulation. The temptation

must be avoided of drawing conclusions which the experiments actually per-

formed do not indicate. Instead one must do more difficult experiments,

get along with fewer results, or use guesses as working hypotheses. In

this last case, the experiments performed up to the time of making the

hpotheses only indicate the hypotheses as possible extrapolations from

the data. This is only worthwhile if one can eventually predict from the

model, perhaps after considerable mathematical reasoning, events which can

be verified by experiment in the classroom. While there are many loopholes

in guessing at Newton's laws of motion from. spring and inclined plane

,experiments, the predicted parabolic motion of a particle in a uniform

,force field can be closely verified by the.motion of a solid object through

air over the span of a classroom. There are no rolling constraints and

frict4on is small. But the connection of the parabolic orbit to the laws

requires much more mathematics than does straight line motion and bust

coMeAdter several years of preparation.

(
Other topics may present very frUitfUl applications of mathematics

for elementary school. Some of these appear briefly in some of the other

units discussed in this report. The discussion of functions uses daily

plant growth as an early example, and later applies similecrity and trigo-

nometry to measurement. There will be many opportunities in the course

of all the mathematics described in this report to make brief applications.
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It is highly desirable to do so providing that it sufficiently illustrates

the power of the mathematics at hand and that it does not distort the meaning

and use of the application. We have concentrated on two problems to pro-

vide a comparatively full description of the richness of the mathematics

evolved in 6everal years of development of an applied topic; and also to

show that no violence need be done to the non -mathematical aspects of the

topic.

The relative timing of the experience with various mathematical and

physical ideas is very important its this area. The child's movements and

playing with blocks and other toys are his earliest introduction to geo-

metrical and physical concepts and develop the intuitive response to these

phenomena. This must come before any more explicit approach to the mathe-

matical or scientific content. On the other hand, a certain facility with

numbers is required before measurement can be used to quantify any of the

scientific conjectures. This interplay is evident throughout the grade

levels in the applications.

The importance of permitting time for an experimental and discovery

approach may well be more important in the applications than it already

is elsewhere in mathematical education. The process of modelling is

delicate and all but unteachable in any direct way. An intuition for

modelling can be built b allowing time for trial and error and for mul-

tiple aprtroadhes that stimulate inductive reasoning. It is doubtful if

the classical method of teaching by example (case histories of modelling;

is adequate. Direct experience of the struggle seems to be a requirement.

As a consequence in the probability unit, it is appropriate to let the

child who wants to, to experiment with different objects in the cups,
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-differently marked, without replacement, etc. In short, with any set of

rules he may think of, even if the teacher is aware that that experiment

is a. "bad" one - in the sense that it may lead to complex, confusing, or

;

biased results. This is part of the problems of experiment and modelling

,that a student needs to find out for himself. Similarly in the early

mechanics many blocks, springs and balance boards should be available

to allow the testing of some hypotheses, e.g. the effect of the color

of the balance arm on weighing, that may occur to the student. The connec-

tion may seem unlikely to the teacher, but many important connections have

seemed unlikely in earlier times. What connection did light have with

lodestone to the pre.Naxwellian intellect? The mental freedom to cast

about for associations is essential to research.

The mathematical models invented by children in the classroom also

-must be ireated with respect and the readiness to understand what experience

they are trying to express. The feeling, expressed by ten-year-olds, that

bodies reach a maximum velocity under a constant force is a deduction from

their experience in pushing things and trying to push as bard while the

speed increases. Care must be taken not to "prove" to them that they are

wrong in any absolute way. After all, terminal velocities are reached in

a frictional medium when the applied force is steady. Also relativistic

effects do lead to a common maximum velocity, although this effect will

not be seen in the elementary classroom.

In summary, the classroom technique, as well as the curriculum material,

must indicate not only the variety of mathematical and scientific content

to be explored eventually, but also the variety of ways in which indivi-

duals examine evidence, cogitate, hypothesize and generalize. If some of

these basic features of the researcher can be developed in the student,
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mathematics will have been well served in two ways; by the awareness of

the importance of the subject, and by the growth of an ability to reason

fruitfully as well as accurately. The latter is equally important to the

scientific disciplines which have been invoked as an application of

mathematics.

2915-65



Section II - Chapter 4

PROBABILITY

Today, probability is one of the most widely used branches of mathe-

matics, not only in various vocations, but in the everyday life of "the

Man in the Street." The ordinary citizen is constantly bombarded with

statistics about toothpaste, automobile accidents, the probability that

there is a connection between smoking and various kinds of illness, the

probability that candidate A is going to win an election, etc.

As well as being useful in the real world, probability is'an interesting

and exciting means of getting children to practice arithmetic. It is also

a good mathematical model of the real world, and offers children considerable

practice in creating mathematical models with approximate reality.

All of these reasons seem to point to the early teaching of some prob-

abilistic concepts in the elementary grades. Certainly, aconsiderable

amount of probability should be learned by all pupils before some discontinue

their formal mathematical education. A further reason for the early intro-

duction of probability into the curriculum is that many people have the

feeling that mathematics studies only exact data and exact numbers --

probability will give the feeling of studying distributions and uncertainties

before the pupils become overly enamoured with "getting the exact answer."

It is our belief that the study of probability (as well as the early

study of other mathematics) ought to be closely associated with the real

world. This means that the children will perform many experiments, and will

attempt to draw mathematical conclusions from those experiments. In the

early grades, the mathematics will be of a very informal nature, and the

children will be getting a feeling for certain concepts, without necessarily

stating them explicitly. At a later time, more explicit, quantitative con-

clusions will be drawn, and analyzed.
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The following sequence of events might be appropriate for grades 3

through 6. A large amount of deduction is required by the 5th and 6th

grade materials. Experience may show that, even for properly prepared

Children, this part of the unit is more successful a grade or even two

grades later.

GRADE 3

2.

The purpose of the early experimenta in the third grade would be to

develop a feeling for the long range stability in a situation in which each

individual event is unpredictable. For this purpose, a variation of the

thumbtack throwing experiment would be used. (See Estabrook Progress Reports.

A forthcoming C.e.S.14. volume will give details of classroom presentation.)

The advantages of the thumbtack are that the children do not have a precon-

ceived notion of what the probability OUGHT to be, and yet the long ratio of

successes to trials will become quite stable (if care is taken to use the

same method of throwing the tack each time)4 Another advantage is that chil-

dren can get some feeling for the connection between the physical situation

and the results by varying the length of the tack (using a coin as the limit-

ing case in one direction, and a finishing nail as the limiting case in the

other direction). For young children, the obvious danger in using thumbtacks

may outweigh the advantages, and other objects can be used for the same pure..

pose. .For example, small corks in which the circular bases are relatively

large with respect to the height can be used, and other corks with different

shapes can be used to get the same effect as varying the length of the

thumbtack.

The arithmetic involved in this experiment is little more than counting.

However, a strong feeling for ratio should be built up as the children note

that (e.g.) 3 out of 10 times, the point is up; 42 out of 100 times its up;

391 out of 1000 times it's up, and so on.
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After the relative stability of the long run ratio has been accepted by

the children, it will be worthwhile to see if they are inclined to make pre-

dictions for specific events. For example, if they believe that in the long

run about four-tenths of the trials will come out with the point up, and it

happens that the last six events have all resulted in the point's being down,

do the children think that the probability of getting a point up is still .4,

or do they think that it is greater than . 4 (or, perhaps, less than .4). If

a careful enough, and long enough, record is kept, it should be possible to see

that, in the long run, after the tack has landed with the point down six times,

it will land with the point up about .4 of the times on the sevenp trial (if

that is its probability generally). Thus, the children should get a feeling

that the "law of probability's has to do with the long term ratio, not individual

events.

Other experimeni:s, of a similar nature which can be carried on in the third

grade include placing a number (say 10) colored corks in a malted milk cup,

drawing -one without looking, recording the results, replacing the-cork,-and-

starting over. Experiments of this type have been tried in Ithaca, New York

schools, by David Block. Again, the long range ratio of red corks to the

number of draws should become rather stable, and in this case, the ratio should

stabilize around the expected number,(the true. ratio of red corks to corksin

the cup). If more than two colors of corks are used, the data may be difficult

for the children to accumulate -- this can be simplified by providing the appro-

priate number of pegs, colored with the same colors as the corks and placing a

washer over the appropriate peg whenever that color cork is drawn.

Games can be played using the cork drawing experiment, in which the teacher

places corks in the container and the children try to guess, after a few drawings,

what the proportion of various colors of corks is. With only ten corks and two

colors, the children will find it advantageous to guess rather wildly. Therefore,
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it will usually be desirable to use at least three colors. Other games can also

be made up rather easily. For example, each child can have his own cup, make

up his on distribution and then let another child try to guess the distribution.

Rules for these games are quite flexible each child can be allowed one guess....

if it's right he wins, if it's wrong, he loses; each child can guess after each

drawing with the first right answer winning, etc.

Other variations on the cork drawing experiment are also possible. For

example, one could number the corks and then determine the probability of

getting corks in various subsets, and intersections and unions of various subsets.

That is, the pupil might calculate the probability of getting a cork which is red

and has an even number associated with it; a cork which is either green or has a

number divisible by 3 associated with it, etc.

In general, the purpose of the experiments in the third grade is for the

children to acquire a feeling for the long term stability of the ratio of

successes to trials in probabilistic events. They should also realize that the

s

ratio can often be predicted closely by using a prior argument of symmetry and

intuitive compounding. Many other experiments involving dice, coins, cards, etc.

are possible if time permits. The children should learn to keep careful records,

and should learn to interpret those records with some degree of sophistication.

At the bevdinning, the teacher would keep the records and help with the interpre-

tations, but these activities should be turned over to the children as soon as

possible.

GRADE 4

Measures of dispersion, randomness, and sampling procedures will be the main

concepts developed in the fourth grade probability study.

the range is the most obvious measure of dispersion for a set of data, but

after having suggested this, and used it to measure the dIspersion of several
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sets of data, the children will probably feel that some better measure could be

found. The data on which the measures are tried can be collected from more

experiments such as those used in the third grade, or by the collection of data

from other sources (e.g.,have all the children measure the length of a table and

record the answers independently, record the heights; weights; or ages of the

children in the class, have each child flip a coin ten times, and record the total

number of heads).

As they plot the data from their experiments' on a graph, the children may

notice that one or two pieces of data tend to increase tL range greatly, and

don't seem to be significant in terms of all of the data. That is, two distri-

butions may look very similar except that in one, one oritwo data may be much

further from the mean than in the other distribution. In spite of this, the

children may have the feeling that the dispersion in the two distributions is

,essentially the same. This mill be more apparent to Clem the larger the number

of data in the distribution. From these facts, two other measures of dispersion

can probably be elicited from the pupils. First, a "trimmed range," in which the

two data which are furthest from the mean at either end of the distribution are

simply removed befoll:e the range is determined. The second measure of dispersion

would be quartiles.

Once a measure for dispersion has been decided upon (or several measures

have been considered), it will be interesting to see hau the dispersion .is

affected by increasing the number of data. For example, suppose each child in a

class of 25 throws a coin 20 times and records the number of heads, what will be

the relation between the trimmed range (or other measure of dispersion) of this

data and the trimmed range of 100 such data? Would the trimmed range be the same?

Would it be four time as great? Would it be somewhere between these possibilities?

Where? Through experimentations, the children can get a pretty good estimate of

where it will be.
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Another interesting experiment which can be tried at this level is to

6.

have a child throw a coin, and_record.his results on graph. paper, adding one

to the ordinate of the previous point if the coin lands head, and subtracting

one if the coin lands tails. The distribution would look something like this:

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
4

If this procedure continued, relatively few of the points will actually be

on the line, but they will tend to cluster .around it -- generally fitting inside

of a parabola which has the x-axis as its axis of symmetry. This again, should

give them a feeling for the non-predictability of individual events, but the

ling range stability of the proportion of heads to trials. As a variation on

this procedure, a thumbtack, or other object, with probability not equal to

1/2) can be thrown and the slope of the axis of symmetry of the parabola will

approximate the probability in question.

The above experiments lead naturally into a discussion of random walk

experiments, and if the appropriate science has been studied, this can lead on

into a discussion of Brownian motion, and molecular activity. If this effect

could be observed through a microscope (the projecting type would be good with

young children) it would be desirable.

Next, a ciscussion of random sampling would be appropriate. "How would you

choose a random sample of people in the fourth grade of this school?" Have each

child pick a random sample of ten people,. and then collect some data about those

people (maybe height, weight, sex, etc.). Then, have them create ea random number

table, and use the random number table to choose a sample of ten more people.
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Collect the same data, and compare the results. Then, compare the averages in the

samples with the averages in the total population. Hopefully, this will demon-

strate the power of random sampling.

There are many ways to create the random number table. One method is to

go through a telephone directory, and choose the fourth digit (say) of the top

telephone number in each column. Variations on this can be used, but it is im-

portant to avoid possible non-random effects which would result from using a di-

git in the exchange (one of the first three'digits), or by taking names that

follaw.each other immediately since members of the same family may be listed, or

laige corporations or agencies may have their numbers listed several times. It

is also possible to construct a table using a purely constructive means.( such as

rolling a die.and flipping a coin -- 11,1 results in 1; H,2 in 2; H,5 in 5; T, 1

in 6; 2 in 7, etc; with H,6 and T16 being ignored), but it is important to know

that the objects are "honest." This means that the proportion of l's, 2's, etc.,

should be approximately the same. Of course, it is also possible for the pupils

to go to a previously constructed random number table but this is not as in-

structive as creating their own. Once having constructed the table, the pupils

should compare the total number of times each digit turned up then the totals

for the first half of the table, and soon. They should also look for runs of

two of the same digit, runs of three, etc. What is the average number of digits

passed over to arrive at a specified digit from an arbitrary starting point?

After a run of that digit?

An.experiment in which a normal curve is created is very effective in

showing children both the dispersion and the central tendency of random events.

One beautiful experiment of this sort is to pour salt (or sugar, or sand, or any

substance with small grains that will tend to bounce -- not slide or roll --

down the paper) onto a folded sheet of paper so that the grains will bounce

down the paper towards the fold. It is important to always pour in the same spot,
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and to have the spot quite a distance from the fold, so that a large number of

bounces will occur before the grains stop. Of course, the line of the fold should

be horizontal. A normal curve will appear on both halves of the paper, and

careful observation will show an inverted normal curve in the "hollow" 7-:etween the

other two curves. This experiment has to be tried to be fully appreciated.

One further experiment which can be tried at this time has to do with the may

in which people estimate the number of fish in a pond. The procedure is to catch

a large number offish, band them, throw them back, come back in a few days and

catch some more fish. From the proportion of fish caught the second time that

are banded, a good estimate of the total number of fish can be derived. This

same procedure can be used (without as many doubtfulassumptions regarding the

psychology of fish) with corks. Given a large number of corks in a container,

how can we decide how many (approximately) there are? The procedure would be

essentially the same as in the fish experiment except that the corks removed on

the first drawing would be replaced by corks of a different color (also different

from any which might be in the container, of course). The container would be

thoroughly shaken up before redrawing. The arithmetic involved would be a simple

proportion, and should cause no great difficulty.

GRADE 5

In Grade 5, compound events would be considered in some detail. The proce-

dure, in general, would be for the pupils to begin with an experiment from which

they could deduce an hypothesis regarding the probabilities in a combination of

...
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events in which the simple probabilities are already known. Having decided upon

an empirical hypothesis, the pupils should then be encouraged to consider the

problem in a more theoretical or mathematical context, and try to derive a general

theory that fits the empirical results very closely. From this mathematical dis-

cussion and resulting hypothesis, the pupils should be encouraged to predict

results for other experiments which are quite similar, and then predict results

of experiments which are quite dissimilar. Then, they should carry out these

new experiments and see if the empirical results are close to the predicted

results. If not, perhaps a reconsideration of the hypothesis would be in order.

In getting a general hypothesis, it is important that the teacher not in-

sist upon a correct and careful verbalization of the principle, but rather, a

good strong intuitive feeling for what the principle is. If the children can

predict with some accuracy the results of other experiments, they presumably

Lave a good understanding of the principle involved. On the other hand, if

over-emphasis is placed on the verbalization, the children will tend to memorize

the words without necessarily understanding the meaning.

The procedure discussed above could be applied to conditioned events in the

following my:

Ten corks are placed in a container. The corks are numbered from 1 to 10.

Numbers 1, 2, 4, 5, 7, and 9 are green, and the others are red. What is the

probability that a cork drawn at random is green? What is the probability that

it is red? What is the probability that it has an even number? If you draw a

cork that is red, what is the probability that it has an even number -- experiment

with at least 2J drawings to get an empirical probability. Draw pictures of the

sets involved to clarify the notions. Suppose cork number 9 were red instead of

green, how would this change the probability that a red cork is even? Given the

corks in the original experiment (9 still green), what is the probability that a

green cork drawn at random is associated with a number that is divisible by 3?
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Many other experiments might be tried to see if children could predict

the outcomes in advance. For example, two chips are placed in a cup. One chip

is red on both sides, the other is red on one side and green on the other. If

a chip is drawn at random and placed on the table, and it happens Olet a red

face is up, what is the probability that the side which cannot be seen is .green?

Add three more chips that are green on both sides, how does this affect the

probability? Add a chip that is red on both sides, how does this affect the

probability? For each of these experiments, the children should first make a

prediction, and then experiment to see how accurate theltr prediction is for a

large number of trials.

The case of disjunction should probably be done first with disjoint events,

though it may' be interesting to start first with events.which are not disjoint

and then consider disjoint events as a special case. An advantage of trying

disjoint events first is that then the children are likely to make incorrect

hypotheses regarding the non-disjoint cases, and will have an opportunity to

correct a mistaken hypothesis in light of experimental evidence. For this, they

might start by considering such disjoint events as getting a two or a three on

a single die. The probability of getting either a red cork or a blue cork when

there are a known mumber of red, green and blue corks in the container, etc.

After they have become quite good at predicting the probability of the disjunction

of disjoint events (this should not take long), try a problem such as: There are

ten corks in the container, seven are red and three are green. The red ones are

numbered from 1 to 7, and the green ones are numbered from 8 to 10. What is the

probability that a cork drawn at random is either green or has an even number?

Many of the children will answer 3/104- 5/10 = 8/10. This answer is sufficiently

different from the correct one so that a reasonable amount of experimental evi-

dence should lead the children to suspect that something is wrong. Of course,

the original experiment cu3httobc: co designed that the obvious mistake will not
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result in a probability greater than 1, or the need for experimentation will be

by-passed.

Conjection of events should be studied first with independent events, such

as two dice, preferably colored differently (or thrown separately). Questions

might include: "What is the probability that the green die lands with an even

number showing and the red die shows a number divisible by 3?" "What is the

probability that the red die shows a number less than 5 and the green die shows a

number greater than 2?" Etc. Similar experiments can be carried on using other

objects. For example, "What is the probability that both thumbtacks land with

the point up?" What is the probability that the red tack lands with the point

up and the green one lands with the point down (two clorr of tacks are desirable

for this)?" ."What is the probability of getting a green cork from container I

and a red cork from container II (with known distributions)?" Etc. If thumb-

-tacks are used, it is important that they be thrown in essentially the same way

they were thrown to calculate the simple probabilities.

After the pupils get quite good a:predicting probabilities for the conjunc-

tion of independent events, they should try some in which the events are not

independent. For eample, place two red, and one green cork into a container.

Shake well. Draw one cork. Leave it out of the container and draw another cork.

What is the probability that tbe first cork is red and the second cork is green?

If the pupils believe the probability is 2/9, it may be necessary to perform

close to 90 trials to convince them empirically that this is probably incorrect,

however, with the entire class working on the experiments, considerably more

trials than this can be run in a very short time.

Other examples of non-independent events can be constructed easily. One

nice example of this involves gluing two dice together and rolling them -- the

dependence is quite clear in this case. Other examples include: Throw a die,

what is the probability that the number showing is both even and greater than
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three? Tie the points of two thumbtacks together with a very fine, relatively

short thread and determine the probability that both land with the points up.

Make the thread longer and repeat the experiment.

In the theoretical discussion of the various kinds of experiments dis-

cussed above, children will find it very helpful if pictures of the sets and

subsets involved can be drawn on the board to make it clearerwhythe particular

results they are getting seem reasonable. This i particularly true in the

case of conditional probabilities and conjunctions oisnon-independent events,

but will be valuable throughout the discussion. As set union and intersection

are useful concepts in this context, this is one of the more fruitful early

applications of the set theory now being taught in elementary school.

GRADE 6

As stated in the introductory section of this paper, the deductive nature

of much of the material suggested here for the 5th and 6th grades makes its

success in these grade levels even in the "Goals" context, difficult to fore-

cast. The experiment seems worthwhile to us because of the strong backing of

experience and intuition to the reasoning required in this work.

If the principles developed in the fifth grade regarding compound events

were not stated explicitly at that time, they should be redeveloped quickly

(without as much experimentation being needed) and the children should be

encouraged to state them explicitly so as to make the job of applying them to

more complex situations easier. Then, these principles can be applied to such

problems as "What is the probability of throwing a seven with two dice?" "What

is the probability of throwing a five with three dice?" "What

is the probability that if five coins are thrown, exactly three of them will

land heads?" "What is the probability of getting a thirteen with two 22-sided

dice?" For this last experiment, it will be necessary to discuss the question

of what is a 12-sided die. Some of the children will have calendars at home
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which are printed on regular dodecahedrons, so this discussion should not be

difficult -- of course, the teacher can acquire one of these in advance if he

wants to. Then, the discussion can turn to the question of exactly how many

regular solids exist. The usual procedure of demonstrating that there can be

at most five (three with triangular faces, one with square faces, and one with

pentagonal faces) can be discovered by the children quite easily if they are

asked to consider the number of degrees in the angles meeting at a vertex.

Children can figure out the patterns for constructing\the regular solids, and

can do a good job of constructing them. Before trying experiments involving

compound events, they should test the simple probabilities to see whether the

probabilities are approximately what they should be.

Now, ask the children to determine the probability of getting a twelve

with five 4sided dice. The problem is difficult enough so that very few,

if any, will be able to succeed, and yet, all will know the general principle

involved. Then, try to analyze the problem with them. Set down the favorable

cases in some sort of rational order, For example, start with the largest

possible number, and make the number get smaller, or remain constant as you

more from left to right (monotonic) : 4, 4, 2, 1, 1; 4, 3, 3, 1, 1;

4, 3, 2, 2, 1; 4, 2, 2, 2, 2; 3, 3, 3, 2, 1. This part is relatively easy,

Now, how many ways are there of rearranging the first set of numbers? They can

start by simply trying to find all the rearrangements, but this will be rela-

tively unsatisfactory. From this, it should be clear that some method of

studying rearrangements from a mathematical point of view would be desirable.

Once the need for a process of determining the number of rearrangements

of a set of objects has been established, we go back and consider simpler

problems. First, how many ways are there to arrange four objects in a row?

Try it. The children can either use real objects, or better yet, use symbols

on paper -- thus making it easy to keep track of which arrangements have been
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tried, and how many have been found. After the children have established

the fact that the number of rearrangements of the four objects is 214, suggest

that perhaps they can find a pattern which would have told them this without

all of the work of actually putting down all 24 arrangements. There will

probably be several such patterns suggested, all correct (and maybe some

incorrect ones -- all should be checked to see that they give the correct

answer, not only for four objects, but for three, two and one objects).

Correct patterns should not be discouraged, even tho gh the teacher feels that

they will not be fruitful in the long run -- let the children find that out for

themselves. Next, try the number of rearrangements of seven objects. Is there

some way of analyzing this situation? Probably the mpst fruitful method, which

the pupils may discover with some encouragement, is a tree diagram. Suppose the

objects are labeled a,b,c,d,e,f,g. There are seven positions, each to be filled

by one of the objects, How many choices are there for an object to fill posi

tion 1? Suppose a is placed in position 1, how many objects are left with

which to fill position 2? Suppose b had been used to fill position 1, how

many objects would be left with which to fill position 2? Suppose c had been

used in position 1, how many objects would be left from which to choose for

position 2? This information can be summarized as in the following diagram:

Position 1 Position 2

b

Position 3
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If the diagram is drawn in some detail, it is clear that since there are

seven choices for the first position, and for each of those seven choices

there are six possible choices for the second position, there must be 73(6

or 42 ways of filling the first two positions. Young children may think of

this as 6 plus 6 plus 6 plus 6 plus 6 plus 6 plus 6 at first, but that :.s

perfectly all right. Now, continuing the process, suppose b is chosen for

the first position and e for the second position, how many ways would there be

to fill the third position? Would this be true for etch of the 42 ways of

filling the first two positions?

Continuing this procedure, the children should see that the number of

different arrangements of n objects is lal. At this lime, it is probably not,

desirable to introduce the usual notation, but rather wait until the pupils

have written out 10x9x8x7x6x5x4x3x2x1, etc., several times and see some need

for a shorter notation. Oftentimes, a short notation (such as this) can obscure

relatively simple concepts in the minds of young children.

Now consider the question of how many ways there are to arrange six objects,

three of which are identical to each other. Suppose the objects are asa,a,b,c,d.

If the three a's were labeled so that they were distinguishable, how many ways

would there be to arrange the objects? Of those 720 ways, how many correspond

to the one arrangement a,a,a,b,c,d that we would like to count when the labels

are removed? That is, if the a's were distinguishable, how many arrangements

of a's would correspond to this one arrangement where the a's are not dis-

tinguishable? Would this be true for any other single arrangement we'd like

to count (such as a,b,c,a,a,d)? Then, in counting the 720 arrangements, how

many times as many arrangements did we count as we wanted to count? Then, is the

answer ue would like just 1/6 of 720? Using the same procedure, analyze the

problem for a,a,a,b,b,b. Then, let the pupils consider such problems as

a,a,a,a,b,b; a,a,a,b,b,b,b; a,a,c,c,c,b,b,b,b,d; etc., with explanations

of each step in their reasoning.
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It is entirely possible for them to answer all of the questions in the

previous discussion without really understanding what they are doing, however,

a complete discussion, by them, of similar cases should help to clarify the

idea. Some will still wonder why such a roundabout way of attacking the

problem is used, and this is good -- encourage them to try to find a more

efficient method.

There are many problems available in standard textbooks for pupils to use

in practicing their knowledge of permutations.; For several of these problems,

they should actually write down all possible arrangements to show that ex-

perience corresponds with the theory. Then, they can go back to the dice pro-

blems, and decide probabilities such as getting a 15 vith five h-sided dice; etc.

After this section is finished, have the children expand each of the

following (using the distributive law): (a+b), (a+b)2, (a+b)3, (a+b)

(a+b)5, (a+b)6. Now, look for a pattern. With a small amount of encouragement

they should be able to come up with Pascal's triangle, or something equivalent.

Then, reconsider one of the expansions without using Pascal's triangle

("suppose you don't know the expansion for (a+b)4"). It should be clear that

(a+b) 5 = (a+b)(a+b)(a+b)(a+b)(a+b) = Pa5 + Qa4b + Ra3b2 + Sa2b3 + Tab4 + Ub5

where P, Q, R, S, T, and U are numbers. The remaining problem is to determine

what those numbers are. In order to determine R, for example, we would note

that the three factors of a can come from any three of the original factors,

and the two factors of b must come from the other two original binomial

factors. Thus, if the factors are written in the order of their "parent"

factors, the possible ways of getting a3b2 are aaabb, aabab, abaab, baaab,

sabba, ababa, baaba, abbaa, babaa, and bbaaa; or, simply all of the ways of

arranging the letters aaabb. In each of the other cases, the reasoning would

be similar, and the children should, through similar reasoning, be able to

convince themselves that the binomial theorem is true.
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After some work with the binomial theorem, the pupils can again be

sakee to compute the probabilities for all possible events when five coins

are flipped. Then, the same problem can be tried with thumbtacks (with

known probabilities not equal to 1/2 for individual events). Presumably,

a relationship between this problem and the binomf_al theorem will be

17.

noticed, and should be discussed quite explicitly. Binomial distributions

can then be computed for various values of p, and N (the number of trials).

The pupils should be able to determine what conditions have to be met in

order to have a binomial experiment -- e.g., independent trials with p

remaining constant, a predetermined number n, etc.

Now, they are ready to test various hypotheses. For example, consider

the question of spinning a new penny on a flat surface. Most people would

assume the probability of the penny's landing tails is 1/2. Suppose, however,

that somebody claims that the probability that the penny lands tails is

-really .8. Hov would you test to see which hypothesis is true? Suppose

the true probability is 1/2, if the coin is spun 10 times, what is the

pr-obability that the coin will land tails either 10 times, 9 times, or eight

times (i.e., eight or more times)? Then, if the coin lands tails eight or

more times, can you be about 95% sure that the true probability of getting

a tail an any one spin is greater than 1/2? That is, is the probability about

745 that the true probability is 1/2? (Incidentally, for a relatively new

United States one cent piece, the probability of getting a tails with a spin

lof the sort described here is considerably greater than 1/2 -- depending on

how worn the edge is, it can approximate 1. For Canadian Pennies, a reverse

ndnting process is apparently used, and the results are reversed.)

Further experiments can be tried of a similar nature, and binomial

probability tables can be created for various values of N and p.
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Simple experiments can be designed by the children to test to see

whether somebody has extra-sensory-perception, to predict with a certain

degree of certainty that there are a given proportion of red corks in a

container, etc. The question of being fair to two contradictory hypotheses

(say .5 and .8 for the penny spinning experiment) will lead them to the

conclusion that a larger sample is desirable. Quality control, and similar

statistf.cal concepts can be discussed with this much background, but, perhaps,

should be saved for a later time.

2915-65
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Section II - Chapter 5

Prologue:

Among the applications of mathematics, mechanics is one of the oldest and

most fruitful. The phenomena modeled by mechanics are all around us. The de-

sire to understand them strongly motivates the development of the model and the

requisite mathematics. Mechanics is not normally introduced into the curricu-

luM until late in high school. Below, we discuss units, for use th:foughout the

bECBANICS ANT) SLOPES

etepentary school grades, which experimentally introduce\ statics and Newton's

LawSki The necessary analytical understanding and skills are developed in

parallel. Mathematical models of the experiments are eventually evolved, and

pre41Cfiens made and tested. The prediction of parabolic motion in a gravita-

tional field is the culmination, in grade six, of combining models based on

experiment with the algebra and simple calculus developed over the elementary

school years. The ability to predict a free flight trajectory should add greatly

to the sense of achievement of the student, as an addition to his intrinsicin-

tellectual interest in matters of analysis.

Experience in the classroom has shown that a proper appreciation of the

physics and mathematics needed for the trajectory problem does not permit one ,to

treat this topic in isolation. A partial discussion of motion in a gravitational

field and the slope of a parabola had some success with students who had a con-

'ventional education through sixth grade, but the drawbacks were obvious. As the

need arose, it was necessary to teach graphing, the multiplication properties

of negative numbers and of fractions, and elementary algebra. This interrupted

the flow of ideas concerning limiting slopes and the solution of the equations

of motion. Interest and attention were frequently lost because of the interrup-

tions. In addition, a careful development of, for example, the early phases

of the treatment of fractions was impossible because of lack of time.
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Similarly, to extract Newton's Laws, one had to resort to a quick extrapo-

lation of the students' previous experience, plus a few crude experiments with

the sliding of chalk and blackboard brushes across the floor, and the tossing

of chalk through the air. It is, of course, better to let the students build

up experimental techniques, discover the hypotheses, check them to sufficient

accuracy, and test out alternate hypotheses.

The sequence of the following units is, it is hoped, consistent with the

needs of other parts of the curriculum for developed mathematical and physical

insights and skills. All the major mathematical material is of such general

utility that its early development would be thought desirable even in the

absence of mechanics in the curriculum.

The road to free flight presented here is a possible one, but is not unique.

.. Students prepared for algebraic manipulation by a different course of study, or

aware of Newton's Laws through a different set of experiments, may still analyze

the trajectory problem as described below for the fifth and sixth grades. The

material presented for the earlier grades is given as an example of a curriculum

which would permit the teaching of the fith and sixth grade units and also be

consistent with the present overall viewpoint of CCSM.

Grades

In K and 1, the child should develop familiarity with geometrical figures,

with numbers, with measurement, and with balances and balance boards. The first

approach should be playful and open ended so that intellectual interest can be

awakened and an intuition based on experience developed. A liberal amount of

material such as the Miss Mason School project for CCSM, Marion Walter's mirror

cards, and some ESS units on the balance and special blocks, should be introduced.

By the end,of the first grade, a beginning can be made on the structure of

real numbers, using the material discussed in the progress reports from the
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Lexington project of CCSM. This unit should continue into the second grade. It

encompasses inequalities, order relations, addition and subtraction of segments

and the properties of these operations, positive and negative regions on the

number line, addition of equal segments and the relation of this to the cardinals,

the addition of small equal segments to equal a unit segment, and the consequent

development of fractions. Overlapping this work on a number line, multiplication

should be developed as rectangular arrays, first of dots and later of squares on

graph paper. The counting of squares is facilitated by 'narking the cardinals on

perpendicular co-ordinate axes. As described in Andy Gleason's report of his

work at Morse School, and also in the May and June, 1965, Estabrook reports, this

quickly enables the child to multiply large integers andlfractions. Large groups

of squares are blocked off, finally in the way suitable for decimal evaluation.

Commutativity of multiplication is easily brought out.

The geometry described by other parts of this summer's CCSM material will

include descriptive elements and comparison of shapes and areas, relevant to the

work described here. Units on measurement, also being developed this summer

will be of importance for the experimental and graphical work below.

In second grade the child can be exposed to the spring. In combination with

the balance, results can be obtained concerning the gravitational force, its

local uniformity and its dependence on the quantity of material.

The scientist will recognize that the following suggested sequence of

measurements implies several important results. It is not intended that the

children be instructed to do these and only these experiments. But if they are

given time to try things some of them will be done. These can be raised for

discussion by the teacher which will lead to questions suggesting other experiments.
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Hang .a weight on a spring and measure the spring's extension. While

oscillations are interesting, a well damped spring may be more useful at this

point.

4.

(Relative spring extensions, and for the balance relative distances from

the pivot, are all that are of interest here. It is pro:Dably better for the

student to use calipers rather than a ruler. The caliper distance can then be

marked off on a line from a starting point. The first measurement fixes a unit

for that spring or student. If, for instance, the subsequent measurement is

that of a spring under twice the tension, and the caliper measurement is marked

off from the same starting point, the student can readily find with his calipers

(or dividers) that the second interval is about twice the first. Ratios such as

2:1, 1:2, 3:2, etc., which will arise below, can be arrived at without requiring

. reading of a ruler and a subsequent reduction of the ratios to a common form)

Starting Point

Move the spring and weight around the room, up and down. Does the extension

change?

Balance a block by any convenient weights (beans windO). Take another

block like the first and see if it balances against the same weights. If it does,

see if the blocks balance against each other. Switch pans and see if they still
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balance. Balance both blocks against beans. How many beans were needed com-

_pared to the number of beans to balance one block? If the added beans.have been

kept separate from the beans balancing one block (by a piece of paper), do the

two groups of beans balance each other?

Find two different looking pairs of blocks such that the members of a pair

are similar and balance each other. Balance the members of one pair, then add

the members of the otter pair to each side. What happen?

With a pair of balanced blocks, measure the spring extension for, one,

then for the ether, and then for both together.

Balance a balance board, which can be distinctly asymmetric. Then balance

on it two blocks which have already been found equivalent by balancing against

the same amount of beans in a pan balance, or by causing the same spring ex-

tension'l, Measure the distance from the pivot to the blocks. Shift one

then re-balance by shifting the other and measure again. Shift several

Viv:ing found & third similar block, balance two against one and measure

from pivot. Shift position of double block and re-balance with single

This should be repeated for 3 against 1, 2 against 3, etc.

block,

times,

distances

block.

The lomparing of weight ratios to distance ratios by tabulating the above

data is possible because of the simple ratios involved: In addition rectangles

can be formed with the length of one edge representing the number of blocks and

the length of the other edge the caliper spread. By comparing areas the above

results can probably be extended to less simple ratios.
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GRADES 3 AND 4:

During these grades the important algebraic skills and understanding of the

commutative, associative and distributive identities, the properties of 0 and 1,

and the addition and multiplication of ordinals and of fractions are to be de-

veloped sufficiently for the analysis of grades 5 and 6. A study of sequences

will develop the notion of limit. The graphing of pairs of numbers that make a

mathematical sentence true will develop graphing skillsand the notion of

function. More experiments in statics (pulleys and force tables) and a beginning

of dynamical experiments (objects rolling and sliding on the level, bouncing from

walls, and falling through air) are to be introduced inithese grades.

It is recommended that a discussion of true, false and open sentences and

identities, as in the Madison Project, be given a prominent role in third

grade. A good sense of variable is given by the use of frames into which numbers

can be inserted. The method permits a trial and error approach to finding number

pairs or number n-tuplets (depending on the number n of different frames) which

make a sentence true. For non-identities a functional relationship is implied

between the numbers of the n-tuplet, for which a graphical representation is to

be developed. This also leads to the identities associated with the properties

of 0 and I, and the commutative, associative and distributive laws. These should

be discussed graphically as well. (The associative law for multiplication re-

quires a 3-dimensional construction).

The effect of adding constants to both sides of an equality, or of multi-

plying both sides by the same number, should be discussed in terms of maintaining

a balance between the sides. Then this philosophy should be checked by comparing

the "true pairs" (or true n-tuplets) before and after altering the form.
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Multiplication of signed numbers should first be discussed in the context

of physical situations which indicate the "natural" conventions for multiplica-

tion of signs. One situation found to be natural and convincing, though a little

laborious, uses rate x time: at this moment I am at zero on a number line, a)

if I am travelling forward at 3 mi. /hr. where will I be two hours from now, b)

where was I two hours ago; c) if I am travelling backward at 3 mi/hr., where

will I be two hours from now, and d) where was I two hours ago?

It has been foUnd profitable to exploit the fact that multiplication has

been introduced as rectangular arrays or areas. Marking off the areas on carte-

sian axes for 3 x 2, (-3) x 2, 3 x (-2) gives congruent rectangles appearing in

different quadrantsi. It has usually already been accepted by the student, from

a wealth of examples, that (-)::(0. = (+)x(-)=(-) are the convenient conventions.

Thus the opposite second and fourth quadrants are seen to imply the same sign.

Does the third quadrant then give the same sign as the first? Attaching a

"sense" to the area has proved of great interest to students.. They have treated

3 x 2 as an ordered pair, represented by, for instance, 3 up and 2 across. In

that case while constructing the rectangle they are moving in a clockwise

)---
direction around it. Similarly, (-3) x 2.

indicates counter-clockwise, etc. The

fact that (-3) x (-2) circulates just as

3 x 2 is impressive to the young student.

Later they will see that the choice

(-) x (-) = + also has the property of keeping straight lines straight, even

when they have negative slope. They can also check the distributive identity,

and see that it is maintained for negative numbers only with the above choice.

It has proven to be more difficult to teach a proper understanding of

operations with fractions, and more time is required for teaching this. The
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addition of specific fractions on the number line and their multiplication on two

dimensional rectangular co-ordinates leads to accurate results easily. In this

way, one illustrates in these particular cases that the distributive, commutative

and asoociative laws apply to fractions. It is more difficult to generalize the

particular results to the forms of the operational algorithms.

Subdividin3 the number line brings out the technique of least common denominaw

for to add fractions. Similarly the equivalence of 2/4 (1=2 x 3/4) to k, etc., can

be shown graphically. The denominator denotes the number of equal subdivisions of

the 'snit segment, and the numerator denotes the number of these added together.

With the same representation on crossed axes, the subdivisions of the unit square

(or rectangle or parallelogram, if flexibility is desired) can be seen to lead to

the rule of "multirily the numerators and the denominators". For an able class,

this can be supplemented by an axiomatic approach, as described in the 1965

Esthrook progress reports. The above approach to signed numbers is also reported

on, once for third and fourth grades, and again for fifth graders,

With respect to the mechanics experiments, a quick review of lc -2 results

with springs and balance-arms should be supplemented by experiments with several

neights poised on both balance arms. In this way, the student should arrive at

the explicit law of the lever for parallel forces (gravity);71, wixi = 0,

where w
i
is the weight of each object at a co-ordinate x

i
along the lever arm

from the pivot. Combined with the pulley, whose use is described below, the

law can be verified for vector (one-dimensional) forces by arranging to pull up

on the arm. As in'Ed Prenovitz's ESS work, pivot points should be available such

that cases of stable, neutral and non-equilibrium arise. The students can

discuss reasons for these three cases.

A free pulley is an example of a balance of forces (there is no unknown

constraint such as at a pivot). At the same time one learns that constant

tension is transmitted along a light rope and a class of simple machines is



Chapter 5
9.

discovered. With springs inserted along the rope the following experiments can

be done.

Find the extension of each of two springs when a given weight and pulley is

hung from them. Then insert them in a rope on each side of a simple free pulley,

Hang the weight from the pulley. The

tkweight should be substantially heavier than the

rope and springs. Measure the extension of each

spring. Repeat with several weights.
VS")

To further illustrate the transmission of

tension, the springs can be inserted in any

rope and pulled arbitrarily. The spring

extension will be roughly proportional and in the same proportion as obtained

when hanging the same weight from each of them,

The class should then be given time to find ways of lifting the weight with

less than half the force required to lift it directly. They should be supplied

with equipment whiblh permits them to put together systems such as that in the

figure,

Non vertical ropes as illustrated may lead the class

into questions of forces not in line with each other. work

with "force tables".can elucidate these questions
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In fourth grade the class may have had experience in the composition of trans-

lations leading to vector addition, as in the symmetry unit of the 1964, 1965

Estabrook project. In that case, it would be natural for the class to consider

the components of the forces, using geometrical projection.

--A force has a magnitude and direction, like a vector. Is it also the

equivalent of its components, i.e. two forces with magnitude and direction of

the components? This can be checked as in the diagram.

Balance two weights (they must balance on equi-distant

lever arms to balan"ce on the force table). By dropping

perpendiculars to right angled axes marked on the table from a unit distance

along the direction of one rope, and multiplying the projections by the number

of units of the weight, one obtains the components. The weight on that rope is

removed and one can try to balance the remaiaint; weight by weights pulling along

the axes. When balanced one can compare to the components. Then balance 3

weights in arbitrary directions and add up components in two orthogonal directions.

Different orthogonal axes should be tried for the same set of weights.

It is also worthwhile to test the independence of components of force

roughly with respect to the horizontal part of the motion in free flight:

Knock the piece of chalk out horizontally, which releases the pendulum at the

same time. Count the swings of the pendulum until

the chalk hits the floor. Then knock out the chalk with

much greatei speed horizontally. Are there more

swings of the pendulum before the chalk hits the

a*

rer:-...7==.
1 1

floor? Gently push the chalk out so that it falls almost straight down. How
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many swings do you expect now? D:cuss the result with respect to the indepen-

dence of horizontal and vertical motion, In which direction is the force acting?

Does the vertical force change with, increased horizontal speed? What determines

how long the chalk takes to hit the floor?

The question.should then arise as to what happens if forces are not in

balance. Then things move. Do things ever move when there are no forces on

them?. The sliding of blackboard brushes on,the floor, followed by the rolling

of balls, etc., would lead to a discussion of whether tle slowing down is due

to a frictional force, or if the slowing is there in the absence of forces.

The children can suggest ways of decreasing the friction such as greasing a piece

of chalk before .tilding it. To compare the slowing down! of objects that start

off at about the same speed one can slide them down a steep inclined plane for

a start, or give them an impulse from a rod on a spring (as in a pinball machine) ,

By these means the class can reasonably conclude that when the forces on an object

are removed, it moves nearly in a straight line and keeps up its speed for a long

time. the conjecture that with no force it would move uniformly would not be

amiss, but should n?t be considered as proved, but only to be a working

hypothesis.

In the fifth or sixth grade these students will work with a dry ice puck.

With the very small friction involved in that case the above hypothesis will work

within experimental accuracy.

GRADES 5 AND 6

In grade 5 the investigation of motion without force should. be etended

to the dry ice pucks on glass plates of PSSC as mentioned above. The timing as

the puck goes by uniformly spaced lines on a long table can be made with a series

of stop watches, or by marking paper tape as it is pulled uniformly, perhaps by



Chapter 5 12.

the puck itself.

By marking vertical lines on a wall it should be possible to verify

approximately the uniformity of the horizontal part of the motion of an object

in free flight.

It is then time to investigate the behaviour under a uniform force such as

gravity. In questioning the students it arises that many believe that a constant

force increases the velocity at first, but then the effect saturates at some

velocity dependent on the force. That this'is not a ridiculous idea is illustra-

ted by the known effect of forces as 4 approaches the velocity of light. In-

deed, fluid frictional forces bring about a terminal velocity, as they come into

equilibrium with the applied force. Experiment is clearly required to separate

out possible hypotheses.

The following "inclined trough" experiment has been suggested by Steve

-Willoughby. The use of a trough instead of a plane allows, the timing of equal

intervals, with accuracy, by the periodic oscillations from side to side. With

the trough in a horizontal position, hold a small steel ball up against one

side and release. The number of oscillations in 5, 10, 15, 20, and 25 seconds

can be counted. The same procedure can be repeated with the ball released from

a higher or lower position.

trough, end-on

If the students have had the ESS pendulum unit they will not be surprised at the

constancy of the period of oscillation with respect to amplitude. In any case,

this is to be accepted as a timing device, not to be understood in detail. The

vertical motion to be investigated will be assumed to be independent of this

sideways motion. The period of sideways oscillation is not independent of the
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tilt (it increases as sec d?) because "sideways" changes its 'orientation

with respect to the vertical. The period

must be remeasured for every angle of tilt used.

Once having established the period, the rate of

13.

motion "along" the trough can be investigated. A piece of carbon paper over

white paper (or simply a piece of impregnated paper) is laid smoothly in the

trough. The ball is released from the side, near the top end of the trough, and

traces out its path as it oscillates downward. To establish the uniformity of the

acceleration one need only compare the differences of the distances between

successive pairs of nodes (or maxima, whichever is more convenient). These

increases in distance between nodes should be roughly constant. Discussion is

required to relate this to a constant increase in the mEgae velocity between

nodes. ,As the node spacing represents equal time intervals, this implies a

(Th constant increase in the average velocity in each unit of time. The increase

in velocity in feet/second each second can be computed, and will depend on CD

By observing the trend of this acceleration with 0' the students can find a

lower limit to the vertical acceleration, and probably extrapolate to within a

factor of two of the correct result. Because the rolling motion has through

the rolling constraint force, transferred some energy into the balls rotation,

this acceteration is not g. It is
g

for a uniform sphere which probably
7

will not be experimentally distinguishable from g

The students have now been able to hypothesize, and check to a reasonable

extent, Newton's First and Second Laws (they do not need the Third Law for the

work described below) if one ignores the rolling constraint. An experiment in

which the constraint is not hidden, is to drop a weight which is pulling a paper

tape through a PSSC bell clapper timer. Depending on classroom experience this

latter experiment can be used to supplement or replace the inclined trough ex-

periment. In either case, one should use several balls or weights to arrive
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at the independence of the acceleration from the object's mass (when rolling,

the mass distribution matters).

In fourth grade, in investigating true pairs, the students have probably

plotted some straight line graphs and-other functions. Then, or now in fifth

grade, they could also plot e.g., the height of a semi-circle against the length

of the perimeter to that point and obtain the trigonometric functions experi-

mentally. Other functional relationships can be explored graphically. A unit

of this type is described in the "functions" section of this conference report.

In the fifth grade the details of the linear function graph should be

investigated as in the Morse School and Estabrook projects. The special motiva-

tion in this context is the need to have an expression for the motion of bodies

sliding along the floor. Is the slope (increment up divided by increment

across) the same between all pairs of points on the line? What part of the

'mathematical sentence determines the slope? Find a sentence whose graph has

a very steep slope: A very small slope. A negative slope'. A horizontal line.

£ vertical line. How can we get sentences whose graphs have the same slope but

are displaced parallel to each other? Civen these two points, what is the slope

of the line joining them? What is its mathematical sentence? What is the

sentence of a line with this slope going through this other point?

The introduction of sequences was suggested for the third and fourth grades

but not discussed further. The following can be started in fourth grade and

continued in fifth grade.

The series 1 -1- 3 -:- 5 1-...4(2n - 1) can be summed geometrically as a series

of "wrappings" making up an n x n square array. This is discussed in the

Estabrook 1964 reports for third and fifth grade. To continue with the idea of

mathematical induction to an algebraic proof of the above sum is optional to the
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following material. A discussion of a surface wrapping about a cube in a three

dimensional corner, would be a valuable extension of the geometric reasoning

involved in the plane; leading to a series that sums to n
3

. How do these

sequences behave for large n ?

They can discuss the sequences given by 1 - 1 + 1 - 1 +. . .+(-1)
+1,

1/2, 3/4, 4/5, , with respect to upper and lower limits for large n.

The harmonic series can be grouped to show that it diverges. They could check

the closed form of the sum of a geometric series by substitution for many n, and

then look at the large n behavior.

In the sixth grade one can note that thrown objects do not move in

straight lines and that some familiarity with mathematical sentences whose slopes

change is required to be able to handle this aspect of mechanics. The fifth

grade 1965 Estabrook project and the Morse School 6-7 grade summer project can

be followed. This develops the limiting procedure of successive chords to ob-

tain the tangent to a parabola at a point. In addition to the algebra previously

discussed they must be able to factor y
2

- x
2

. This can be done by using the

distributive law twice on (y x) (y + x). It can also be done geometrically

4'
x

2,y - x
A

Y
I .

X

The Estabrook "slope" unit should be preceded by a careful discussion of nested

intervals and successive approximations as indicated by the Function section of

this report.
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The previous classes have only had time to find the slope at a given point.

This can be extended to the slope at a variaUe point in a few more sessions.

Using the First and Second Laws of Newton one can go through the following

algebraic steps, using a horizontal speed of say 2 feet/sec, and

g = 32 feet/sec/sec. At every step many time pairs are to be found, to give a

well understood meaning to the mathematical sentence.

From Newton's First Law

= horizontal displacement in feet = 2 x ,;where o = time in secs.

= vertical displacement in feet = x(:)

where = average velocity in feet/sec.(average of initial and final'
velocities)

The use of average velocity is frankly taken as an estimate at this time.

If /.7 = final velocity in feet/sec

then F 32 x0from Newton's Second Law and experi neut.

Then 0= (32 x(D 0 ) /2 = 16 x (:),

Then by substitution (which is an algebraic device that requires discussion

and checking)

= 16 x0x0= 16 x 1/2 x 1/2 x El = 4 x1:1 x C.
Thus the average velocity "approximation!' gives the parabola. It now re-

mains to refer back to the tangent result to show that the rate A changes with

0 is 2 x 16 Mt/sec/sec. at every instant. Thus, Newton's Second Law is

exactly satisfied.

If aparabola is drawn on the blackboard it is not difficult to throw a

piece of chalk so that it follows it closely. If one graphs a family of para-

bolas with a common vertex, then it is easy, by starting the chalk horizontally

at the vertex, to closely follow one of them. While looking by eye is inaccurate

point by point, the follouinG of the whole length. of the curve makes a

fairly accurate experiment.

2915.-65
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CIRCULAR FUNCTIONS

During the early experiences with measurement, children will be given

several wheels of differenct sizes to measure. These could be bicycle wheels,

wheels made out of several layers of corragated cardboard (in which case spokes

should be .drawn on the cardboard, and there should be the same number of spokes

on each wheel), etc. They will be asked how big is the wheel, and be expected to

come up with many different answers. Differences in answers will come from the

fact that different' things will be measured.

One set of measurements which the children would be encouraged to get would

be the lengths (to the nearest unit) of many chords. They would note that there

seems to be a largest one (namely, the diameter) which would give a feeling for

least upper bound. Strings could be attached for chord measurements.

They would also measure the radii. Within their limits of accuracy, each

child should find that all the radii of a given circle have the same length.

The children would be asked to find out how "far around" the circle is, and

presumably would try to wrap a string around the wheel, and also roll it along

a straight path (marking the starting place on both wheel and floor) and measure

the length. There are also various other methods which they might try, such as

measuring small chords, etc.

Tho children would be asked to place the centers of the circles together

(holes through the centers would make this an easy task) and notice that the

spokes "line up." Then, one of the circles could be rotated to notice that

the angles (or spoke spaces) are congruent and that there are the same number on

each wheel even though one wheel is larger than the other -- thus, getting a

feeling for congruence of angles. Arc length for a particular spoke space, or

a particular number of spoke spaces would be measueed (roll the wheel or wrap the

string) for the various wheels, and compared with other numbers also, to begin
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developing a feeling for radian measure. The total angle (number of spoke

spaces) for each circle would also be noticed.

Area o2 the circles would be approximated by placing a grid (on transparent

plastic) over them and counting the number of squares. Now, the various mea-

sures for the circles would be compared and it would be noted that there is a

linear relationship between the various one dimensional measures and a quadratic

relationship between One and two dimensional measures -- these would be found

from the table. For this purpose, it would probably be desirable to have the

ratios of the radii of the three different sizes of wheels be 1:2:3.

COMPARISON GAMES
used

Late in tlp- elementary school program, the wheels would be/again to d

the sine and cosine functions. For this unit, it would be desirable to h

wheel which has radius of one decimeter,, and use a meter stick and tape

11 measurements. A long sheet of paper (brown wrapping paper, or butcher'

or something of that sort) would be taped to the wall with masking to

wheel would be rolled along the floor with a pencil through the hub

horizontal line can be drawn at the height of the hub, If there i

base board in the classroom, it may be desirable to use a long (at

meters) piece of plywood as a backing for the paper.

Now, attach a metric tape measure to a point on the edge of

start the wheel in position 1, and roll it to the left. After

moved a given distance, say ten centimeters (this figure can

at point of the meter tape that is on the hub line), mark th

a colored pencil, and mark the position of point P with the

this for various points. Then, draw line segments (corre

between corresponding center points and F's; and measure

form, corresponding arc lengths (a), heights of P ab

evelop

ave a

for all

s paper,

pe, and the

so that a

s a significant

least three

the wheel,

the wheel has

e found by looking

e center point with

same colored pencil,

Continue doing

sponding to radii)

and record, in tabular

ove the hub line (h) ,
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and horizontal distances of the center from the perpendicular projection

of P onto the hub line w. As the dots are being made, the value of a could

written beside each position of P.

After a dry run, in which the pupils would make only a few measurements,

the class would be divided into small teams, and collect data for values of

a between 0 and 125 centimeters which are multiples of 2 centimeters, Each

team could work on this while the other pupils were working on some other

subject so as not to waste the entire class's time. It would be agreed in

advance that values of h would be positive above the hub line and negative be-

low, while value of w would be positive if P is to the right of the center and

negative if P is to the left of the center.

Tables would be made to compare each of the following: number of spoke

spaces and arc length; arc length and h; number of spoke spaces and length;

arc length and w; and number of spoke spaces and w.

Discrete graphs would be drawn for each of these five tables, and the

pupils would then try to guess intermediate values -- checking by going back and

making the appropriate measurements.

Then, the pupils would be asked to look for various interrelations among

the functions. They would presumably notice that both the sine and cosine

functions are periodic and that the cosine is 4 of a phase behind the sine

function. They might then be asked to square each value of the sine and cosine

and look for a relationship. Presumably, they would notice that the sum seems to

be relatively constant and would be asked whether they think the variations are
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measurement errors: or more essential than that. Then, they would be asked if

they could give a convincing argument for the fact that sin
2
x + cos

2
x = 1 for

any value of x (using their knowledge of the pythagorean relationship).

Before the paper is destroyed, it would be worth noting that the dots on

it are points of another curve known as the cycloid. It might be possible to

have some pupils construct a curve of quickest descent using cardboard and

marbles to test.

Numerous physical examples of sine functions would be contrueted by the

pupils at this time. For example, a circular trough (similar to the trough

used in the physics experiment to demonstrate Newton's second law) would be

placed horizontally and a ball would be shot into it near the top of an edge.

The path traced would be essentially a sire curve (or a dampened sine curve).

Another experiment could be done with .a pendulum with a long period, This

can be achieved by attaching a long rope to the top of the gymnasium and having

a child swing on it, Marks would be made on the floor at equal intervals, and

and the time at which the child crosses each mark would be recorded, and later,

.
the distances would be plotted against time. Again, the result should be a

dampened sine curve.

If the average mean temperature in a particular city for every day of the.

year can be acquired from the weather bureau, the graph of these will approximate

a sine curve also -- the process of determining where the origin is may take a

few minutes, but is an interesting process. (By mean temperature, we mean the

average of the high and low temperatures for the day, and the average mean tempera-

ture is the arithmetical mean of these over a long period of years.)

Other examples of sine curves (or approximations to sine curves) can be

found in many places, The path of an earth satelite is one example, alternating

current can be used to generate an example, various osciliscope type machines are

used in some garages to test automobiles and are expected to produce sine curves

if the automobile is healthy.
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Various functions would be studied, including the mapping of arc length (s)

onto height of P CO (the sine curve); s onto a (angle measure -- number of

spokes could be replaced by number of degrees, etc., to get still different

functions): s onto r (length of radius); and s onto w(cosine) . The domain

would be changed so that it included only arc lengths floor 0 to 2 at first, and

then this would be increased to include larger domains, finally including the

entire range of real numbers, positive and negative (roll the wheel backward).

Composition of functions would have been considered earlier, but would be

reconsidered in relation to these functions. In particular, the composition of

the functions from a to s, and the function from s to h would be used to produce

a different sine function which has as its domain the set of angle measures rather

than arc lengths, etc.

The question of which functions have inverses would be discussed, and the

pupils would be asked to decide what the domain should be in order to have a sine

function that has an inverse function (and similarly for cosine).

Now the sine and cosine functions would .be studied in considerable detail,

with the children explicitly mentioning all symmetries they could find including

the translational symmetry of periodicity. Even and odd functions would be

studied and other functions which are even and odd muld be found by the pupils.

These Would include the obvious polynomial functions, the absolute value function,

and any other function they might discover (a graph without an explicit algebraic

formula would be entirely acceptable in this regard, though it might be fun to

try to find an algebraic rule). From all of this information, the children

would be asked to decide how much of the table for (e.g.) the sine function they

would need in order to construct a sine function whose domain is the set of all

real numbers.
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Next, the question "What is sin (x+y)?" would be asked. The obvious

answer of sin x -:- sin y could easily be shown to be wrong by using simple

counterexamples (the children can provide these easily) . Then, using their

knowledge of coordinate geometry (including the

distance formula) they would graph points at

a circular distance of y, x, and xy from the

point (1,0), find the lengths of appropriate

chords, set them equal, and see what happened.

Using the fact that sin22 = 1, they could easily

derive the usual formula for cos (x-y). From this, with a few simple algebraic

manipulations, they can derive the formula for cos (x;I), the usual relation

between sin x and cos x(which they will have suspected earlier), and the

corresponding formulas for sin. Then, the double and half angle formulas would

be derived.

Now, it is time to use.this new found power to construct a better table.

The values of sin 2 cos , sin , etc., can be determined with complete

accuracy using the pythagorean relationships and the formulas mentioned in the

above paragrah can be used to find the values of any numbers which can be written

rar
in the form sin 7; , or sin -Y4 etc. Thus, if a value of were known

2r 3.2 2

with sufficient accuracy, it would be possible to determine the value of sin x

to any desired degree of accuracy for any x. Some values of a table should be

calculated in this way (e.g., sin /8, cos 22k°, etc.).

The pupils will now have constructed two different_ tables. One based on their

original meseurements with the rolling circle, and a second based on theory. It

can be pointed out that there arg still other methods of calculating the values

for such tables, but infinite series should probably not be considered in detail

at this time. Now, it would be appropriate to give them tables which have been

2915 -.65
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made up by others. This should include tables with a domain of real numbers (or

arc measure -- the tables look the same even if the functions are technically

different) as domain, and tables with angle measure in degrees as domain.

Then, as a theorem, it can be shown that the traditional formulas sin 0

and cos 0 where 0 is an acute angle of a right triangle are ture, and applica-

tions involving right triangles can be considered. Included in this would be

explicit consideration of the inverse functions. During this study, it would

become clear that another function (namely the tangent function) would be

very convenient, and tan x would be defined in terms of sin x and cos x and

studied first as a function from the reels to the reels ("Is tan even or odd?"

Is it periodic?" "What is an obvious difference between it and the other two

function?" etc.) . A very informal discussion of limits might be appropriate at

this time. Then, of course, the tan function would be used to do some right

triangle trigonometry.

Work with oblique triangles and trigonometric identities and equations

should probably be saved for a later time -- presumably somewhere in the junior

high. When identities and equations are considered, the pupils would be expected

to mention quite explicitly any restrictions on the domain.

Circular functions will be reconsidered again in later grades in connection

with complex numbers, vectors, and analysis, as well as the usual topics

mentioned above.



Section IV

WORKING PAPERS ON GEM:TRY

Most of the man-power, and all the woman-power of the conference was

concentrated on geometry. This, and the inclusion of brief outlines to-

gether with units described in sone detail, has resulted in the fifteen

working papers presented in this section. These papers were not written

for sequential presentation, nor does each take into account all the pos-

sible interactions with the other units. We believe they are all suffi-

ciently consistent with each other to be in One curriculum, and that they

indicate a large part of the coverage such a curriculum should have. Some

of the units rely on the earlier teaching of other material as indicated in

the paper. Some papers or subsets of papers are neelrly independent of the

rest.

For the above reasons the order in which these papers are presented is

somewhat arbitrary. We have attempted to put those units which start in

the earlier grades before those meant to start in later grades. There is

still much overlapping in grade level between papers, as some units that

start in IC or i end in grade 6 or later. In general the fine grained choice

of grade level and ordering of material has been left to be decided by ex-

perience.



EXAMINATION AND DESCRIPTION OF COMMON OBJECTS

An assortment of "standard" physical objects (cube, bail, cylinder, etc,)

of various sizes and colours is used.

The physical properties are discussed (e.g. flat-round, size, hard-soft,

number of vertices, etc.)

Discuss which properties could be determined if the objects were in a

cloth beg, which could be felt but not opened,

Games of the following sort should be used:

1. Attribute blocks

2. Fitting blocks in holes

3. Guessing games with one person putting an object in the bag and answering

questions' about its physical nature This is an exercise in abstract visualiza-

tion.

4. Games in which partners describe unspecified objects on paper - exchange

papers - and then guess what object was meant.



EXAMINATION AND DESCRIPTION OF CONMON OBJECTS

I. Pressman

Rewrite M. Walter

I don't think there is anything new here that is not available already. But

anyway, here is a shortened version. I think Attribute Blocks is the only"new"

thing.

Properties (such as flat, round, hard) of objects such as a cube, ball,

pencil, glass) of various sizes, shapes and colors are discussed. Which properties

could be determined if objects could be felt but not seen? Games such as:

"Attribute Blocks"*
Pitting blocks into holes

Twenty Questions

can be played.

*Available from ESS

Comment by E. Lomon: I recommend that in the final version Bill Pettis should

includeirwin Pressman's remarks in Chapter 1. Then Chapter 7 can be omitted

and all later chapters re-numbered. Marion Walter's condensation indicates

how it can easily be included, in Chapter 1.
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PLAYING WITH FIGURES, BLOCKS, AND TESSELATIONS

Assumption: The children know the distinguishing features and the names of the

the triangle, square, hexagon, pentagon, ngon, regular n-gon,

quadrilateral (4-gon) , etc.

I. Blocks

The blocks considered are the set constructed by E. Prenowitz. Some time

will be given for familiarization through play.

1. The children are esked to make a equart using 4 squares. Next they

are asked to make a larger square.

Can a square be made out of 2, 3, or 5 squares? Give reasons.

Do the same thing with triangles.

2. Make a hexagon of two (red) quadrilaterals, ,(blue) parallelograms,

and 6 (green) triangles. Surround.

Mae a large hexagon using all sorts of pieces - Can it be made larger

(i.e. by using more pieces)? Introduce the idea that by bringing in more pieces

the figure gets bigger - and the only limitations are the number of pieces, size

of floor, number of workers, etc.

Create a chip trading game by noting that from the comparison of sizes

1 yellow = 2 red 3 blue = 6 green

At a later time assign some value to the orange square - let the children

choose - (or let 5 yellow = 1 orange). These might be used instead of

Cuisenaire rods.

3. Regular n-gons. Ask the children to create regular 9-gons (1 triangle,

3 squares on the edges and then fill in with 3 parallelograms). Trace this on

the paper.

The regular 12 -'gon next. (hexagon at center, 6 squares, then 6 triangles)

Trace this on paper.

44.
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Make a 5-gon and a 7-gon. Let the children convince themselves that regular

5 -goes and 7-gons cannot be made with this set.

What is the largest square that can be made with this set?

4. Create symetric patterns of blocks. Consider various types of symmetry.

a) Symmetric about a line (180 degree symmetry)

b) 120 degree symmetry

c) 90 degree symmetry

d) 60 degree symmetry

Decide which patterns are left unchanged by putting 1 or 2 mirrors

alongthelineWof symmetry. (In the above cases all may be obtained -

it should be demonstrated to the children that if they make a symmetric pattern

and set up the mirrors then all the blocks behind the mirrorscould be removed.)

5. Tile the plane using only 1 type of block at a time (square, triangle,

parallelogram, hexagon). Trace these and keep.

Now try to do it with all the blocks together.

Encourage the children to relate the traced diagram with the actual

configuration of blocks.

II. Paper Cutting and Pasting

1. Cut a large number of "congruent" paper triangles and arrange them

symmetrically on a plane. Obtain 60°, 90°, 120
o

, and 180
o
symmetry.

Now tile a page with these triangles (paste them down if necessary).

Relaat this with irregular congruent quadrilaterals. Tile the page

with these also - This can be done.

2. Cut up a rectangle to make a triangle.

Cut up a triangle to construct a quadrilateral

3. Ask the children to cut as good a regular pentagon as possible. Teach
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them the following technique: take a long this strip of paper, tie an over-
hand knot, pull it tight slowly, and behold a regular 5-gon!

00/111.......Insta.07.. ...v.*,

4. Cut a congruent regular hexagon into 3 irregular congruent pentagons

as shown in the diagram. Then persuade the

kids to tile with these.

............... I

3.

Next cut arbitrary irregular pentagons and try to tile. Indicate that
these don't work because there need not be a way of filling in all the111...11.04.0.........1..Waisr ...., ....111xogion about tub corner.

Try this for 7-grins too.

5. Tile with "stretched" hexagons

These can be cut into 2 equal pentagons in various ways - and one can
the with them also

etc.
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6. Get children to solve tiling problems on graph paper - without cutting

and pasting from a different sheet -

e.g.
and what they will.

Do the same with the Chinese checkerboard configuration.

7. Make a large square tiling on graph paper. Subdivide each square into

4 squares. Note that this is a tiling also. Repeat again. Let children consider

how long this process might continue (i.e. until the physical dimensions beco

Inpractical).

Repeat with triangles.

8. Cut a long string of paper dolls (cut several strings and paste

ft

together if needed). Get children to suggest names for the dolls - then suggest

numbers - then fin4ly number then -3, -2, -I, 0, I, 2, 3,

2915-65
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Section IV - Chapter 9

CONSTRUCTIONS

Considerable time and effort should be devoted to the development of

intuitive geometry at all grade levels. Students should have many experiences

with physical aspects of geometry long before any formalization and abstraction

of geometry is attempted. The formal study of geometry should serve to organize

and to structure concepts of geometry, many of which are (or, ought to be) present

in the students' stockpile of intuitions about geometry, in particular, and about

mathematics in general. To gain these intuitions, the students should look at

and handle objects of various shapes to see "how they are put together", and they

should learn to make models of and replicas of common objects, and they should

learn to use compasses, straight edges, pencils, and the like to draw pictures of

objects and shapes. lamb of this work involves what can be thought of as con-

struction.

Geometric constructionsprovide much substance for applications 'in geometry

as Weil .as for motivating the study of geometry. The term construction in this

context is to be interpreted very broadly, and includes, in addition to the

standard uses of straight edge and compasses, such notions as folding, cutting,

and posting of materials as well as replicating, molding and drawing objects. So,

constructions should be an integral part of both informal and formal developments

of geometric notions at all grade levels.

Barlyjaild. At the earliest stages, any K,2, construction activities

might be classified in the categories (a) pattern-building activities, (b)

replication and modeling activities, and (4) cutting and folding activities.

Among the activities in (a) are building with blocks, making tiling patterns

with blocks (both regular and irregular shapes), making wall paper designs by

posting polygonal shapes on rectangular sheets .of paper and for cylindrical

tubes, putting together jigsaw puzzles, and making beads-on-wire designS. From
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these activities, the students should be expected to gain some familiarity for

for the "feel" of various geometric shapes as well'as for how certain shapes

"fit together" well while others don't. /n particular, the students should gain

an awareness of the fact that a plane can be tiled with copies of an arbitrary

triangle and, also, with copies of an arbitrary (plane) quadrilateral. The

natural extension of this notion to try to build an awareness for "filling up"

space is almost too inviting to avoid. The students should be able to verify

experimentally that space can be filled up by, say, cub .s (the 3-dimensional

analogue of the square) but not by regular tetrahedra (the 3-dimensional analogue

of the regular triangle).

The activities involved in category (b) include malting models of figures

from clay, cardboard, wire and string, making faatmilesof coins (and ether

raised patterns) on aluminum foil, making figures with line symmetry using ink

blots, and replicating figures through the use of carbon paper and potato block

printing. As with the activities described earlier, the students should be ex-

pected to become familiar with various geometric shapes and how these shapes

are"put together".

At the early stages, the activities of category (c), cutting and folding,

should be of very simple sorts. As a most elementary observation, the students

should note that when a sheet of paper is folded in half, the edge of the fold

is straight. As a contrast to this phenomenon, they should observe what happens

when a "non-flat" surface, such as irregularly stretched crepe paper, is folded.

That the edge of a fold in a sheet of paper (essentially a model of a plane) is

straight illustrates an important theorem about intersecting planes. This

allows one to make a straight edge from a sheet of paper. Among the kinds of

exercises that might be attempted at this level are the following, each involving

making a particular fold to meet specified conditions:
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1. Make (or, construct) a line or segment.

2. Make a line that passes through a given point. Make several such lines,

if possible.

3. Make a line that passes through two. given points. Make several of

these, if possible.

4. Make a line that passes through three given points (if possible).

Make several, if possible.

5. Make two parallel lines.

6. Make several equally spaced parallel lines.

7. Make a line parallel to a given line.

8. Fold a sheet of paper so that (a) one given point falls on another;

(b) one given line falls on another; (c) one end point of a segment

falls on the other end point.

Make use of a folded paper straight edge to (a) compare the length

of various segments; (b) draw replicas of a segment; (c) compare the

length of a segment with itself "turned around".

Making use of tracing and/or cutting operations, the students can work at

the task of producing models of triangles with properties described in these

exercpep,

101. Aake a triangle that will fit back into the hole from which it is cut

in only one way.

11. Make a triangle that will fit back into the hole from which it is cut

in two ways.

12. Make a triangle that will fit back into the hole from which it is cut

in more than two ways.

Try exercises 10-12 making a quadrilateral instead of a triangle.

14. If you had two triangles like the one described in exercise 10, in
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in how many different ways could you place one of them on top of the

other so that the vertices touched? Now answer this question for

figures like the ones described in exercises 11-13.

Intermediate Period. In the intsrmediate period, say grades 3-4, the

work with folding and replication continues. In addition, compasses are brought

in as construction instruments.

The folding and cutting activities can be extended from folding to make a

line to folding a line onto itself to make a square corner. The notion of a

square corner gives rise to properties of perpendicularity. Some suggested

activities that involve folding a sheet of paper are the following:

1. Make a line that is perpendicular to (makes a square corner with)

a given line. Make several, if possible.

Make a line that is perpendicular to a given line and Passes through

a given point which is not on that line. Make several, if possible.

Make a line that is perpendicular to a given segment at its mid - point,

4. Given three points A,B, and C, make three successive folds such that A
falls on B, B falls on C, and C falls on A. What appears to be the

case about the three lines (folds) that are obtained? Repeat with four

points and four folds.

5. Given three points L, M, and N, make three successive folds such that

L falls on M, M falls on N, and N falls on L. Repeat with four lines

and four folds.

6. Folds sheet of paper in halves, thirds, fourths, etc.

7. Fold and/or cut a sheet of paper to obtain a rectangle, a square, and

other polygons.

Having become familiar with various geometric shapes, the motion of line

symmetry can be introduced through folding. The shapes (triangle, circle,

square, rectangle, heart, ellipse, parallelogram, diamond, kite, egg, etc.) can

be folded to test for line symmetry, and can be classified in terms of the number

of symmetrical !olds. Cutting a folded sheet of paper to obtain symmetrical
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figures should also be done. (One activity that might prove interesting here is

to try.to cut a triangle from a folded sheet of paper.)

Figures can be replicated on a piece of paper by folding. Simply draw the

figure with a soft-leaded pencil, fold the paper and rub the back to obtain the

replica. Doing this with points, segments, angles, triangles, and others, one

can notice that the fold is the perpendicular bisector of the segment between

any point in the original drawing and its "image" in the replica. Some suggested

activities that involve this process of replication by folding are the following:

5.

1. Make a segment that is congruent to a given segment and has a given

point as end point.

2. Make a segment that is congruent to a given segment and lies on a

given line;.

3. Make a segment that is congruent to a given segment, lies on a given

line, and has a given point as end point.

4. Make an angle which is (a) congruent to a given angle; (b) congruent

to a given angle and with one side common to the given angle.

Make an angle which is congruent to a given angle and (a) with one

side on a given line; (b) with a given point as vertex.

6. Replicate various polygons with conditions similar to those in 4 and 5.

It is probably feasible to obtain replications of replications by successive

foldings in parallel lines (to obtain an image under a translation) and in inter-

secting lines (to obtain an image under a rotation). Just how much of this can

be done in the intermediate stage is not at all clear, but development of intui-

tions about motions of this sort certainly is a worthwhile long-range objective.

Having done work with folding and replication, it is a reasonable extension

to consider the problem of constructing figures when we are restricted to working

on a rigid metal sheet or other flat unfoldable surface. For this, motivation

must be provided to get to the use of the straight edge for drawing lines and the

compasses as dividers for transferring lengths. Suggested activities involving
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construction with straight edge alone are the following:

1. Given point A, construct a segment that contains A. Construct several.

2. Given points A and B, construct a segment that contains A and B.

Construct several.

3. Given points A and B, construct a segment that has A as an end point

and contains B. Construct several.

4. Given points A and B, construct a segment that has B as an end point

and contains A. Construct several.

5. Given points A and B, construct a segment that has A and B as end points.

6. Given points A, B and C, try to construct a segment that has A and B

as end points and contains C. Is this possible?
AINIMINI*110%

7. Given segment AB, construct a segment with end point A that contains AB.

Construct another. Find a few more.

8. Given segment AB, construct a segment with end point B that contains AB.

Construct several.

9. Given segment AB, construct several segments that contain AB. Construct

several segments that contain AB and do not have A or B as end points.

10. Given segment AB, construct a segMent which meets At only in point A..

11. Given segment A33, construct a segment which when taken together with AB

forms a segment. Construct several. Bust the segment have A as an

end point? Can the segment have A as an end point?

12. Given segment AB, construct several sesents that contain AB. Can you

construct a largest segment containing AB?

Suggested activities involving construction with straight edge and dividers

(compasses) include:

1. Given two segments, test to find out if one is smaller than the other.

2. Given two segments, test to find out if one is larger than the other.

3. Given a segment, constr several larger segments. Is there a largest

of these?

Given a segment, construct several smaller segments. Is there a

smallest of these?

5. Given AB, construct CD larger than AB. Construct EF larger than CD.

6. Given AB, construct CD smaller than AB. Construct EF smaller than CD.

7. Given a segment, construct a segment which is twice as large; three

times as large; five times as large.



Chapter 9 7.

8. Given AB and point P. Construct a segment with end point P that is
twice as large as AB. Construct several. The same for a segment

three times as large; four times as large.

9. Given AB and point P. Construct a segment with end point P that is
congruent to AB. Construct several.

tm.teme t

10. Given AB, line L and point P on L. Construct a segment congruent, to
AB that has end point P and lies on Line L.

11. /n Problem 10, how many such segments can you construct?

.-
12. Given point A, find two points B and C such that AB is congruent to AC.

Find another pair of such points. Find several points.

13. Given point A and point. B, find point C such that AB is congruent to AC.
Find several such points.

14. Given point A and point B, find C such that AB is smaller than AC. Find
several, The same for "larger than".

15. Given point A, find two points B and C such that AB is congruent to AC
and A lies in BC. We call A the midpoint of BC.

16.. Given point A, find several segments whose midpoint is A. Can they all
lie on the same line? Must they all lie on the same line?

17. Given point A on line L, find a segment that is contained in L and has
midpoint A. Find several.

18. Given point. A and point B, find point C such that B is the midpoint of
AC. How many such points can you find?

MIMP.M

19. Given points A and B, find C such that AC is twice as large as AB.
Three times; five times

20. Given points A B and PQ. Find point C on line AB such that AC is
congruent to PQ. Hoy many such points can you find?

21. Given points A, B and PQ. Find C on ray AB such that AC is congruent
to PQ. How many such points can you find?

22. Given points A B and PQ. Find C such that A lies in CB and AC is
congruent to PQ. How many such points can you find?

Later Period. In the later period of elementary school, namely grades 5-6,

the use of compasses and straight edge as construction instruments is to be

extended. (Even though the use of replication through folding is being "faded

out" as a construction tool, some thought should perhaps be given to making use
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of this process to illustrate the rigid motions of a plane.) Some suggested

activities that involve problems about lines and circles are the following:

Given line L and point A not on L. Find a point B such that L does

not meet AB. Find another such point C. Does L meet BC?

2. Given line L and point A not on L. Find a point B such that L does not
=Mwals

meet AB. Find a point C such that L does not meet AC. Does L meet EC?

3. Given line L and point A not on L. Find a point B such.that L meets AB.

Find another such point C. Does L meet BC?

Given line L and point A not on L. Suppose BC does not meet L. Will L

meet AB or AC or both?

5. Given line L and point A not on L. Suppose EE meets L. Will L meet

AB or AC or both?

6. Suppose line L meets segments AB, BC, CD, and DE. Will L meet lib

7. Make up same problems similar to Problem 6 and solve them.

8. Construct a circle. Construct several.

9. Given point A, construct a circle with center A. Construct several if

you can.

10. Given points A and B. Construct a circle with center A that contains B.

Construct several if you can.

11. Construct a circle with given center and given radius. Construct

several if you can.

12. Given a circle, construct a circle that lies inside the given one.

Construct another. How are the two constructed circles related. For

example, do they have the same center? Does one lie inside the other?

13. Given a circle, construct a circle that lies outside the given one.

Construct another. How are the constructed circles related?

14. Given a circle with center A. Mark a point B inside the circle.

Construct segment AC congruent to AB. Where does C lie? Test several

such 22Ants C. The same if AC is smaller than AB. If AC is larger

than AB.

15. Given a circle with center A. Mark a point B outside the circle.

Construct segment AC congruent to AB. Where does C lie? Test several

such 22ints C. The same if AC is smaller than AB. If AC is larger

than AB.

16. Given a circle, mark point A and point B inside it. Construct AB.

What do you observe? Try several cases.
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17. Given a circle, mark point A and point' B outside it. Construct AB.
What do you observe? Try several cases.

18. Can you find other interesting questions involving a circle and two
points?

19. Given a circle, mark points A, B, and C inside the circle. Construct
AB, BC, and AC to for a triangle. Mark point D inside the triangle.
How is D related to the circle?

20. Given a circle, mark point A inside it. Construct BC containing point A.
How is BC related to the circle? Try several cases.

21. Given a circle with point A marked inside it. Construct line L
containing A. How is L related to the circle? Try several cases.

22. Given a circle with point A marked on it. Construct line L containing
A. How is L related to the circle. Try several cases.

23. Given line L, construct a circle that doesn't meet L.

24. Given line'L, construct a circle that meets Lin two points.

25. Given line L, construct a circle that meets L in just ore point.
(this is hard to do at this stage but will be easier later. Note
that we are trying to construct a circle, not just to find one by
trial. However, the student should not be discouraged from applying
trial and error methods.)

26. Given a circle, construct a line that meets the circle in two points.

27. Given a circle, construct a line that meets the circle in just one
point (Difficult) $

28. Given a circle, construct a line that doesA meet the circle.

29. Given a circle, construct a circle that doesn't meet it.

30. Given a circle, construct a circle that meets it in just one point.
How is this point related to the centers?

31. Given a circle, construct a circle that meets it in two points. Note
how the points are related to the centers of the circles. Let A and B
be the centers; let P and Q be the points of intersection. How are
AP and AQ related. How are BP and BQ related?

B

,



Chapter.9. 10.

Sometimes we say A is gauidistant from P and similarly B is

equidistant from P and Q. Construct line AB and line PQ. These

are examples of psa2Easmlar lines.

32. Given point A and point B. Mark a third point P. Construct the circle

with center A that contains-Pe Construct the circle with center B that

contains P. What do you observe about these circles? Try several cases.
If the circles intersect in a point Q, different from P, how are P and
Q related to line AB? Hew is line PQ related to line AB?

33. Given line L and point P not on L. Construct a line that passes through

P and is perpendicular to L. Try to construct another.

34. What happens in Problem 33 if P lies on L?

Some activities that involve properties of angles and triangles are the
following:

1. Given e?-: ABC and segment DE congruent to AB. Construct a triangle
cougruent to ABC with Bias one side.

2. Given el ABC, construct a triangle congruent to L ABC with AD as
one side.

3. In Problem 1, can you construct a second triangle that fits the conditions?
Several?

In Problem 2, can you construct a second triangle that fits the conditions?
Several?

5. Compare-your answer to Problems 3 and 4.

6. Given points A and B, construct C such that CA is congruent to CB.
Can you find a second such point? Several?
Definition: If CA is congruent to CB we call LA ABC an isosceles
triangle.

7. liven segment AB. Construct an isosceles triangle 8 ABC such that
t;A is congruent to CB. Construct another such triangle zN ABC. Mark
the intersection of line AB and line CD as E. ThenIA is congruent
to ED and E is called the midpoint of AB.

8. How many pairs of congruent triangles can you find in the figure of
Problem 7? Anything else of interest?

9. In Problem 7, choose ABC so that DA is congruent to C.A. This
makes the construction shorter.

10. Given AB, construct its midpoint and label it C. Construct D, the
midpoint of AC. Construct Es the midpoint of AD.
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11. Given segment AB. Construct its midpoint C. Construct a point A such

that DA is congruent to DC. Araw line CD. Then lines CD and AB are

an exaxple of perpendicular lines. (See Section C, Problem 31) .

12. Given line L and point P on L. Construct a line that passes through
P and is perpendicular to L. (Now we are better prepared to tackle
Section C, Problem 27.)

13. Given line L and point A on L. Construct a circle which meets L just at

A. Construct several such circles. How are they related? How are

their centers related? Describe the figure formed by the line and the

circles.

14. Given circle C and point A on C. Construct a line which meets C just
at A. Construct several such lines. How are hey related? Describe
the figure formed .by the circle and the lines.

15. Given line L and points A and B not on L. Try to discover whether the
circle with center A. that passes through B meets L, but do not draw
this circle. Discuss various cases.

These suggestions are not intended to be exhaustive. Many books and

...pamphlets on straight edge and compass constructions are available for reference.

What is important here is that motivation be provided for these activities and

that a spirit of inquiry be inherent in the performance of those tasks.

CONSTRUCTING POLYHEDRAL ANGLES

Consider the following figure:

If this figure were cut out, folded along the lines b and c so that line a falls

on line d, and then taped together, the resulting figure would be a trihedral

angle that looks something like this: ,

/ I

/
C dia

/
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Some questions that might be raised are the following:

(1) Is it always possible to fold a pattern like the first figure into a

trihedral angle?

(2) Given fixed angles between b and c, and between c and d, what is the

smallest angle that a and b can make so that the resulting figures

can still be folded into a trihedral angle?

(3) What is the largest angle a and b can make so that the resulting

figure can be folded into a trihedral angle?

These questions can be answered even before angle measure is discussed by having

the students draw pictures of the angles that serve as greatest lower and least

upper bounds. Of course, once the notion of degree measure is discussed, the

above questions can be answered in terms of inequalities. At all stages, the

answers given by the students can, and probably should, be verified by construc-

tion.

This work extends nicely to polyhedral angles with more than three face

angles by adding one face at a time. For example, given three face angles,

the greatest lower bound for the foUrth face angle will be zero if the given three

face angles can form a trihedral angle and will be the difference of the two

smaller from the greatest of the three given angles.

2915-65
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Section IV - Chapter 10

GRAPHS, TREES & CONVEX POLYGONS

At this stage the students should have become familiar with geometric

objects (one, two and three dimensional) which exist in the classroom.

They should have clear notions of "straight line", "flat surface", "curved

surface", "corner" etc. The objective of this section is to give the stu-

dent experience in constructing geometric objects and noticing some of

their properties.

Construction of geometric objects by paper folding and the drawing of

geometric figures on paper are considered in other sections. Here we use

sticks for constiuction one and two dimensional objects and cut three

dimensional objects from Wages.

GRAPHS

For these constructions we use sticks of various lengths. No particu-

lar relationship among the lengths of the sticks is desired; the properties

we consider here don't depend on the stick lengths.

1. Trees

Sticks are laid on a table so that if any two sticks touch, then

they touch at their ends. Thus we allow

but not

Two more cemditions are required for a tree. The aggregation of sticks

must be connected and must contain no loops.

These conditions should not be mentioned explicitly but should come out by

analogy with real trees.

Construct lots of trees and non-trees until the students can easily decide

when the sticks form a tree.



Chapter 10

Call the sticks edges and points where one or more stick ends are present

vertices, By counting lots of cases, become convinced that:

For an tree there is always exactly one more vertex than there are

edges.

2.

V - E = 1

The students can probably get an idea of a proof of this fact by asking how

the numbers of edges and vertices are changed when an edge is added to a

tree to form a new tree.

2. General graphs

Sticks are put down as before (so that if two touch at all they

touch at their ends), but we no longer require connectedness or absence

of loops. Thus all trees and non-trees considered above are allowed and

these figures are called Empli.

Define the order of a vertex to be the number of edges (sticks) coming

in to the vertex.

Practice eying orders of vertices on constructed graphs. We say that

a vertex is odd if its order is an odd number, even if its order is an even

number. Practice counting the number of even and odd vertices in graphs.

ExampJe:

This graph has 3 vertices of order 1.

3 vertices of order 2.

1 vertex of order 3.

1 vertex of order 4.

Thus the graph has 4 odd vertices and 4 even vertices.

By examining lots of cases become convinced that:

The number of odd vertices in any graph is an even number.
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Again the students can probably see an inductive proof by asking what

happens when a new edge is added.

3. am12clos0 curves

An important special kind of graph is the simile_ closed curve, for

which the criterion is easy: each vertex has order 2.

Examples:

Notice thatfor a simple closed curve the number of vertices and edges

are eatlal, = E.

Notice that a simple closed curve divides the plane (table) into a _art

inside the curve and a art outside the curve.

4. Crams in 3s ace

For this we need to be able to attach the ends of sticks so that

the graph will hold together. Tinker toys should do the job if the "vertices"

allow "edges" to come out in enough directions.

Example: Put 3 vertices Al, A2, A3, in a plane (i.e.on the table) and

3 vertices Bl, B2, B3, above.

0 A3

B3

Al //' A2
Connect each top vertex to each bottom vertex as shown. (Possibly call

bottom 3 houses and top 3 water, light, ghs plants. Then each utility

must be furnished to each house.)

See if one can make the same graph in a plane. Use wires which can be

bent to form the edges. Become convinced that even'then this graph cannot

be put in the plane.
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Conclude that: Not all graphs can be drawn in t112.Elane.

4.

II. POLYGONS

When we considered graphs we were considering one=d1mensional objects.

It is true that we made the graphs in a plane or in space, but the graphs

themselves were made up of edges, which are one-dimensional In this sec-

tion we consider two-dimensional objects.

IllfalLeSII2a_521221.YEEls

We noticed above that a simple closed curve (made of edges) divides

the plane into an interier region and an exterior region. We call this

.interior region a polms.

If the boundary simple closed curve of a polygon has 3 edges (exactly.) the

polygon is a triangle. If it has 4, the polygon is a aLzadrilateral.

If more, we just call it a polygon with sides.

Construct some polygons. Learn to draw polygons on paper.

Consider polygons which may overlap. Look at the common part.

For example, the shaded area is the common part

of the two triangles.
B

The two triangles together don't make a graph because edges touch

(actually cross) at points which are not ends of the edges. But we can

make this into a graph if we use more and shorter edges. Instead of the

stick AB we use three sticks AP, PQ, QB. Similarly, we make CD into two

sticks CP, PD and make CE into two sticks CQ, QE.

(It may be best to cut the original sticks into appropriate pieces for the

first few examples. After that we can imagine cutting them and just draw

the results on paper.)
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Notice that for this example, once we have cut the sticks, the common part

of the two triangles is itself a triangle.

Things don't always work this nicely when we consider the common part of

two polygons.

Example:

Here (after cutting edges where they cross) the common part consists of a

triangle and a civadrilateral.

Examine many intersections.

(i) Intersect triangles to get a quadrilateral.

(ii) Intersect quadrilaterals to get onetriangle.

(iii) Intersect quadrilaterals to get two triangles.

(iv) Intersect two polygons to get a 5-sided polygon.

et.

Become convinced that: The common_part of two tolvgons is one or more

22110211P.

SM
We noticed that when we took the intersection (common part) of

two polygons we sometimes got one polygon and other times we got more than

one. We -111 now consider some special polygons which have the property

that the intersection of any two of them is a single polygon and again

one of the special kind.

6.
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Consider the difference between

and

B

Imagine two-dimensional creatures living in these polygons. In A any two

such creatures could always see each other, but in B they may be "around

the corner" from each other. Another way of saying this is that for polygon

A if a straight stick has both ends in A then the stick must lie in A, but

this is false for B.

Call a polygon convex if any straight stick with its ends in the poly-

gon must lie in the polygon.

Draw lots of polygons. Decide which are convex and which are not convex.

Consider intersections of convex polygons. Examine enough to become con-

vinced that:

The intersection of two conveluolusTsis a conve)uolygon.

See if students can decide (by logic) if the intersection of three convex

polygons will be a convex polygon.

Number vertices in order around polygons (starting point is not important).

Call a line segment (or stick) which goes from a vertex n to vertex n + 2

(i.e. skips one) a testing line segment.

If a polygon is convex then all testing line segments are in the polygon

(some may lie completely along the boundary--this is considered to be

in the polygon). Become convinced that: if all test line segments lie

in the pu_t______LII_E___L___Ieolgonisaonther convex.
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III. SOLID FIGURES

The solid figures may be cut from potatoes. Probably the teacher will

have to do most of the construction here, but the students can handle the

rode16, t':5111t eugw c' and faces, etc.

Construct cubes and more general parallelepipeds. Define face to be

plane polygon on the boundary. Edges are the boundaries of these faces

(one edge will be part of the boundary of two faces). Vertices are points

Aere edges come together.

Count number V of vertices

ntAberiE of edges

vaber F of faces

forIH &olid figures. (Point out that some solid figures have been given

napa 1.4se names.)

Make a table.

Figure

cube

tetrahedron

pyramid

etc.

8

14

12

6

6

4

V . E + F

2

2

5 8 5 2

Finally become convinced that: for any solid figure V - E + F = 2.

2915-6 5
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TESSELLATIONS

This material can be presented quite early, some in kindergarten

and some in the first and second grades. -The approach is primarily

empirical, and the few mathematical arguments are quite simple.

I. Tessellations of a plane.

Give the student a bunh of congruent triangular blocks and ask

him to start tiling the floor (or table) with them. Then use other

triangular ;blocks, again all congruent. The student should become

convinced that he can tile the plane with any kind of triangular blocks,

provided all blocks are congruent. It should be noted that at any one

vertex we have the three different angles of the triangle, each occurring

twice. Also this gives a visual demonstration that the angles of any

triangle add up to a straight angle.

Next we tile (or tessellate) the plane with quadrilateral blocks.

It is easy to see how to do this with rectangualr blocks, but it is not

obvious that it can be done with any quadrilateral. So many different

quadrilateral,. should be used so the student becomes convinced that it

is always possible. For example, tessellate with blocks like

In thik case, we find that at each vertex all four angles are present.

This shows that the angle sum of any quadrilateral is 3600.
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When we try to tessellate the plane with pentagons, the situation

is quite different. The students should easily convince themselves that

one cannot tessellate the plane.with regular pentagons. Furthermore,

they will probably see that this is because the angle sums don't add up

right. If only three come into a'vertex a gap is left, but four would.

overlap. However, we can tessellate with some pentagons For example,

blocks like

will tessellate the plane.

It may be interesting to let the students play with blocks of several

shapes at once to form combinations which will tessellate. In some cases

they should be able to discover that some combinations form a triangle or

a quadrilateral, thus assuming the possibility of tessellations with

such combinations. Also, tessellation with some other polygons (for

example, regular hexagons) can be seen to be possible.

II. Other tessellations.c.I.....ftlowe...011ImM.

Sometimes we may want to tessellate a plane region wh a boundary

so that we "come out even" at the boundary. For example, if we want to

tile the floor of a room we want no gaps at the walls in addition to

wanting the tiles to fit together without gaps on other parts of the floor.

This changes the problem drastically. For one thing, when tessellating

the plane we didn't care about the size of the blocks, only about their

shape. For another, if at some stage the edge of our array of blocks

was of a strange shape, we didn't care because we planned to continue

.s*
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adding more blocks indefinitely (or at least to conceive of doing so).

One interesting illustration uses a checkerboard and rectangular

blocks such that each block will cover exactly two squares of the

checkerboard. It is easy to tessellate the board with such blocks.

However, if we try to tessellate all of the board except two diagonally

opposite corner squares with these blocks, we find this to be impossible.

(Proof: Each block covers one white square and one black square, and

we no longer have equal number of white and blalk squares.)

In grades fours five, and six the students might try tessellations

of cylinders and spheres with curved blocks. It is interesting to notice

that although the plane cannot be tessellated with equal regular penta-

gons, the sphere can be with twelve equal regular (curved) pentagons.

It is probably best to stay away from surfaces (such as the torus) whose

curvature is different at different points because a curved block which

will fit one place will fail to fit at some other places.
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DISSECTION OF FIGURES

Figures can be classified into physical objects and drawings, fox

present purposes. They also fall into dimensioral classes, I.e., 3D-in-3D,

1D-in-2D, etc. Each of these is subdivided into types3 the 3D-in-3D into

balls, bricks, solid polyhedra, polygons, simple closed curves, etc., as

examples.

A dissection of a; figure is really a Eartitioning, by physical cutting,

or by lines on a drawing or on a physical object, of the figure into sub-

figures that are (essentially) pairwise disjoint and have the original figure

for their union. Dissections can be classified by the types of figures that

occur in each partitions the number of each type, and relations between the

figures in the partition: are all the triangles congruent? Similar? etc.

The remainder of discussion shall consider only partitions into figures

of the same dimension class, for sake of time, effort, and sanity. Thus we

shall not consider such problems as partitioning Mariner IV into line seg-

ments, spheres, bricks, and bent pipe cleaners.

DISSECTION OF PHYSICAL OBJECTS

(or KITCHEN GEOMETRY CONTINUED)

Examples of physical objects: potatoes, bananas, doughnuts, wedges

(cake slices), cones, solid cylinders (brown bread, cranberry jelly), bricks

(ice cream, wooden plans, etc.). Oranges. Jello. Balls. Pipes

All paper materials: the works. Straws, cartons, rolls, shirt card-

boards, drinking cups,...

Plastics. Thin metal lamina. Rubber balloons.

Thread, string, 'wire, rope, plastic. Spider web. Rope coils.

Soap Films on vire frames.

itr
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I. One sal9acl,

Since this is dissection, we start with a particular object and ask

for its dissection(s). First, of course, must develop idea. Given figure

and a dissection, is it a dissection of the figure. Asking for all dis-

sections is too much. But we may ask for the following, for a given

figure F:

(i) Find some dissection. Find several.

(ii) Find a dissection that has two figures; e figures; etc.

(iii) Find a dissection of F into two congruent figures; two similar

figures; n. congruent; n similar.

(iv) Dissect F into figures all of which are of a specified type;

of specified types and numbers.

(v) Dissect F into figures all of which are congruent (similar).

Variety of others, obtained by varying the characteristics of the dis-

section (see introductory paragraph above), and depending on original

figure, its shape and material.

Object is 3D-in-3D. Partitioned into

(i) Finitely or infinitely many 3D-in-3D figures. This includes

3D-in-3D tesselations. For problems, see (i) - (v) + above.

(ii) Infinitely many (finitely many impossible) 2D-in-2D, i.e., cutting

into "slices". Now slice ball? Doughnut? Brick? Cylinder?

Must all slices be parallel? Comparison of slices from dif-

ferent slicings; e.g., doughnuts yields discs one way, annular

another, mixture another.

(iii) Infinitely many 2D-in-2D, that is curls, as with wood. Ball

into spheres, solid cylinder into cylinders (open-ended or not),

solid wedge into roofs, etc.
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(iv) Infinitely many 1D-in-1D, i.e., line segments.

(v) Infinitely many ID-in-2D, such as triangles, circles, quadri-

laterals, etc., What can be "fibered" into what?

(vi) Infinitely many 1D-in-3D. Bent wires, twisted circles. This

tricky.

B. Object is 2D-in-3D. Rich class: surfaces of balls, bricks, doughnuts.

Open-top boxes (cardboard cartons). Partition into

(i) 2D-in-3D. Tesselation of sphere, torus, etc.

(ii) 2D-in-2D. Only cases are either trivial or impossible.

(iii) .,r-in-3D. Crazy tesselation.

(iv) 1D-in-2D. Not so wild. HERE GET CONICS.

(v) 1D-in-1D. Disciplined. Ruled surfaces.

3.

Object is 2D-in-2D. Partition into

(i) 2D-in-2D. Paper folding. All plane tesselations: here can

play this meta-game in concocting problems, kits, and games:

three inputs, namely, figure to be tiled, permissible tiles, and

tiling rules, and one output, a tiling, Ring the changes.

Also, recall (i) - (v) + of introduction, including dissection

into 2 congruent figures: role of symmetry (lack of it puzzle

basis).

(ii) 1D-in-2D. Partition disc, square, etc into bent pins, triangles,

circles, etc.. Or have many (infinitely many?) kinds in one

dissection.

(iii) 1D-in-1D. Cutting plane regions into line segments, not neces-

sarily all parallel.

==...,,,`-
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D. Object is 1D-in-3D. Partition into

(i) 1D-in-3D

(ii) 1D-in-2D

(iii). 1D-in-1D

Object is 1D-in-2D. Partition into

(i) 1D-in-2D

(ii) 1D-in-1D

P. Object is 1D-in-1D. Partition into

(i) 1D-in-1D, Folding paper straight edge; wire; string.

(ii) OD-in-1D. Folding paper straight edge.

Need material on two decompositions of one figure.

IT. Two Ehyliv'l oblects.

saving worked on dissections of single figures, can now work on

problem such as the following:

(i)

4.

Given a figure and a dissection of it, find another figure that

has the same dissection. (This is really a composition problem.)

(ii) Given a figure, find a dissection and another figure that has

same dissection.

(iii) Given 2 figures, and a dissection of one: see if other figure

has same dissection.

(iv) Given 2 figures, try to find a common dissection.

(v) Given a figure and a dissection: see if latter is a dissection

of former.
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DISSECTION OF DRAWINGS

For bounded drawings, discussion parallels that of physical objects,

except may have richer zoo to work with.

Essentially new element here is class of unbounded drawings. Here

can occur separation theorems, if we wish. Line partitions plane, plane

partitions space, point partitions line.

Finite set of lines partitions plane (2-color problem).

Finite set of planes partitions space (?-color problem).

Finite set of,points partitions line (2-color problem).

Circle partitions plane: 4. cl. curve does.

Parabola partitions plane.

What else? Plane into squares. Infinite tiling: Ulan's biology.

Need more work.

2915-L5



Section IV - Chapter 13

ORDER

This unit is designed to provide some experience--both intuitive and con-

crete--of gross comparisons of size for geometric objects of various types. While

learning about the order relation, the child should learn to distinguish and

identify many of the standard geometric figures. Among other things, this work e

(or rather play) is to serve as preparation for the later study of measurement.

There are no pre-requisites, not even knowledge of the integers beyond

counting. It appears to us that this entire unit can be completed in kindergarten

or first grade. The teacher should have no difficulty in formulating classroom

games out of which the stated results will appear.

1. Compare two line segments (at first, sticks should probably be used

instead of line segments). Introduce the standard notation for bigger than,

e, smaller than, and.equality. As a general principle, whenever the children are
INIMP.VIVIMO..101~A,

asked to make a comparison, they should guess at the results in advance.

2. Given a line segment, produce a bigger one and a smaller one, (It may

be easier to work with string here.) Illustrate and discuss transitivity. As

an example of a non-transitive ordering, one might use the "paper, scissors,

stone" game.

a. 'Take 4 or 5 line segments and compare all possible pairs. Then arrange

the segments in a table of ascending size and practice reading off comparisons

from the table. (If the children are unable to read or write, the sticks may

be identified according to color. Since color blindness is not infrequent, it

would be helpful to have the sticks identifyable by their cross-sections.)

4. Given two line segments, produce one of intermediate sine. Repeat

this process several times. Discuss how many times this can be done.

5. Combine (that is, add) a line segment with itself. Do this several times

to make a long segment. Hint at the archimedean property. Introduce + as notation

for combining.
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6. Combine arbitrary line segments; observe comutativity and the

associative law.

7. Consider 4 or 5 sticks (that is, line segments) of different sizes and

colors; there should be several copies of each one. Form all possible sums of

pairs. Arrange these sums in ascending order and practice reading from the table.

Choose a pair and have the children ask questions about its order properties to

decide which pair was chosen. Row many questions are needed? Discuss adding

inequalities for example, a.cb and cc d imply a + c .. b d. Define some sets

based on the order relation.

8 Verify that the sum of any two sides of a triangle is greater than the

third side. (For a given triangle, this should involve writing out 3 or maybe

even 6 inequalities.) Given three sticks, under what conditions do they form a

triangle? Is it unique when it exists? What happens with 4 sticks?

9. Compare areas of similar planer figures: squares, rectangles, tri-

angles, circles, quadrilaterals, pentagons, hexagons, wiggly figures. Give them

names, as feasible.

10. Do #9 for non-similar figures. At this stage, placing one area (a flat

block) on another should make the answer obvious. Make tables,

11. Combine areas to cover other areas--for example, the set of area blocks

should at least include all the faces of the ESI multidimensional blocks.

12. Cut up an area (paper) in order to compare it with a given area. Areas

enclosed by polygons should be treated before circle. Do simplified versions of

3 and 7.

13. Give two areas for which one cannot decide which is larger.

14. Do volumes in analogous Eu..2... Comparisons should be based on the use

of a balance scale or the use of hollow objects which can be filled with water

or sand or both. Identify cubes, boxes parallelepipeds, spheres, cones, tetra-

hedra, cylinders, etc., as feasible. Do lumpy things, too.
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15. Illustrate some volume relations: for example, the vclume of a cylin-

der is three times the volume of a cone with same base and height. The volume

of these srlids depends only on the heights when the base is fixed.

16. Treat lengths of curves in the plane in 3-space, and surface areas.

The important thing here is for Sze children to decide that unravelling, unfolding,

or cutting up is the way to proceed. It shouldn't be hard here to make examples

in which visual perception is wrong. Surface areas are troublesome and should,

perhaps, be omitted.

17. Treat angles as in #1-7. It is not necessary, at this stage to define

the notion of angle. The children should become familiar with straight and right

angles; connect with paper folding.

18. Tear a paper triangle and at one vertex adjoin the other angles to get

a straight angle.

2915 -65
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MFASUREMENT

, K

Objectives; The role of measurement In our society is of fundamental ::_mpor-

tance. The development of the basic notions of measurement deserves consider-

able attention throughout all levels of experience in grades X - 5,

-Among the basic notions which should receive attention are ordering a

set of objects with respect to a given relative measure (such as length or

-

weight) , comparing relative measures with simple unsealed devices `such as

string) , making use of arbitrary units to assign 1,e,as--r-et, to objects, and making

use of standard units of measure to assign length, area and volume measures

tó objects. It may be quite appropriate to develop some of these notions in

conjunction with the development of the number line.

Students should handle the objects to be measured and compared, and

should use.the measuring deVices and record their own data. Emphasis should

be placed on the fact that the physical act of measurement yields approxima-

tions and that much depends on the tools at hand.

Ordering withirespect to a given relative measure

1. Let students place sticks in order of length from shortest to longest.

They should be able to do this by pairwise comparisons.. No sort

measuring instrument should be used to perform this task. One pro-

perty to mote here is that of transitivity--if stick .A is longer

than stick B and stick B is longer than stick C, than stick A is

longer than stick C.

2. Have students arrange themselves in order with respect to height.

This is essentially the same sort of exercise as .;41. It would pro-

bably be best to compare "shoes on" heights hare. In cases where

the children have trouble decid..:Jing. whether or not Student A is taller
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than Student B, let the students try to devise some method for making

a decision. If no decision can be made regarding some pair of stu-

dents, then agree that, for all practical purposes, that pair has the

same height. The property of transitivity of the relation is taller

than" should again be noted. It may also be worth noting that if

Student A is taller than Student B, then A is taller than each stu-

dent who is as tall as student B.

3. Have students arrange themselves in order with respect to.age.

likelihood of two students having the same birthday increases greatly,

of course, as the size of the class increases. In the event that two

(or more) students have the same birthday, agree that these students

are of th same age.

One can now ask the students to .compare the list obtained for "is

taller than" with that obtained for "is older than" in order ,to ans-

wer the following questions:.

Is it true that the older o two students is taller?
Is it true that two students of the same age Cheight)
are also of the same height (age)?

L Determine the order of distances that students' homes are from school.

This can be done by making use of scale maps of the school neighbor-

hood. that are"usually"drawn on this level.

The students can now be asked the following questions:

Is it true that the older of two students lives farther
from the school?

-Ts it true that the taller of two students lives farther
from the school?

Place stones (or other suitable common objects) in order of weight

from heaviest to lightest. Students should use a sim.17,12 beam balance

as an aid in making decisions.



Ask students to consider the list they obtained when they arranged

themselves according to height.

Have them consider questions like this:

Student A is taller than Student B. and Student C is taller
than Student D. If we combined the heights of A and C and
of B and D, which combined height would he grheate?

Student A is taller than Student B. If we combined the
height of A with any Student C and of B with the same Stu-
dent C, which combined height would be the greater?

The combining of heights can be thought of as "child-stacking" or

something similar to develop an appropriate story line. Looking ,at

the restats of combining heights leads nicely into the notions that

if a<13 then a + b + c and if a/D and c<d then a c<:b dw

It should be possible to even get at the notion that if 0<a<b and

0-,=c <d then ac<bd by considering the relative sizes of rectangles

of dimensions a by c and b by d.

Using unsealed devices (string, string compass, or the edge of an index

card) to compare measures.

1. Have students use a piece of string or an index card to compare the

lengths of segalents drawn in various positions on a piece of paper

or on the chalkboard. Some segments of "practically" equal lengths

,3hould be drawn on the same practice sheets. (It should be noted

that vertical segments sometimes ir seemTT longer than horizontal seg-

ments of the same length. This is the source of the reasonably well-

known optical illusion:
A

1-

C
in which the question is asked: Which is longer,

answer, in this case, is that neither is longer,

same length.) The need for a device such as a

'1'704-4-0 or CD? (The

i-
I are the

an aid in

comparing lengths can be brought out quite nicely by having the stu-



dents try to compare the lengths of various segments where visual

comparison can be incorrect and where it is impossible to move the

segments to he compared.

2. Use can be made of a string compass or index card to draw a sag-

ment which is as long as two given segments laid end to end. Th is

will get at the notion of additivity of lengths. This type of

activity will lay the foundation for development of the triangle in-

equality and for the notion that "it is as far from A to B as it is

from B to A". This activity will also h 1 to develop a feeling for

the preservation of length under a rigid motfon.

3. Practice adding lengths by making use of five sticks of lengths 1,

2, 4, 8, and 16 respectively, to obtain all integral lengths from

1 to 31. It is worthwhile to note the uniqueness of the-combination

of sticks needed to produce any one of these lengths from the given

sticks. It is also worth noting that once a particular combination

of sticks is chosen, the same length is produced regardless of the

order of addition.

If it is feasible to talk about the difference of lengths, practice

in adding and "differencing" lengths can be given by making use of

four sticks of lengths 1, 3, 9, 27, respectively, to obtain all in-

tegral lengths from 1 to 40. Uniqueness of representation and order

of operations is also worthy of discussion here.

4. Have each student try to guess the location of the midpoint of a seg-

ment about 6 inches long. Each student should have a copy of the

segment, and should do this without the aid of measuring instruments.

Then have the students fold their paper (or measure) in order to

locate the midpoint of the segment and decide ,.1-,,e-.1-)er their guess was

to the right or left of the "true" midpoint. TL-.;ulate the resu_,_,.s

and discuss whether the class thinks that they tend to guess towards



the left or the right.

5. Repeat 4, trying this time to guess the location of the "left hand"'

trisection point. After the students use measuring instruments to

locate the left point of trisection, discuss whether the class tends

to guess t. aids the.right or left in this case.

C. Measurement with a non-standard arbitrary unit

1. Have each student'measure the width of his desk using the span of

his hand (the distance between the tips of his little finger: and

thumb). Then have each student measure the width of another student's

desk in the same way. Discuss the following uuestions:

Given that Student A measures two desks and finds that each

is between 7 and 8 spans, can (or, should) he conclude that

both desks are the same width?

Student A finds his desk to be 8 spans wide and Student B

finds his desk to be 10 spans wide. Can we conclude that

B's desk is wider .than A's?

Given that Students A and B measure the same desk and A

findS the desk to be 8 spans wide while B finds the desk

to be 10 spans wide, can we conclude that either A or B

counted incorrectly? Can we.conclude that the desk is both

8 spans and 10 spans wide?

Problems of this sort should serve to illustrate the need for the

establishment of some fixed "standard" measures.

Have students use a "small" fixed length to measure the sticks that

they had previously ordered according to relative lengths. This will

give them classes of sticks in various ranges, such as those between

3 and 4--that is, at least 3 but less than 4--of our fixed unit, be-

tween 4 and 5 units,etc.

If we now agree to say that all sticks which are between 3 and 4

units have measure 3 of our "standard" units, then one thing worth

noting here is that no two sticks of measure 3 TTstan uc..rU

differ from each other by more than 1 unit.
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-
It may be worthwhile here to note the as-7_ers to cruebtions

in Ci if the students measure their desks with a given "standa.-"

length.

It may also lie worth noting that transitivity cy:
ttiLe_L1.8 shorter

than" still holds since any stick of, mea

is shorter than stick of 4 "standard" units,

3"standurd" units

and any stick

"standard" units is shorter than any stick of 5 (or more) "standard"

units.

One way to record the data on the measures assigned to the sticks

with resp:act to the given unit is illustrated below::
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This is a worthwhile activity'tto engage in as it gives the students

practice in making two-dimensional graphs and illustrates a reason-

ably efficient procedure for recording and organizing data. Graph

can be made on chalk board or on a felt board.

Changing the unit of measure to one which is say, half as long as

the initial one and making a graph of the "new" measures assigned to

the same sticks will emphasize both the similarities in appearance of

the graphs of this type as well as the effects of changing the size

of the unit of measure.

Have students use beam balance and washers (of the same size) to

weight measures to the rocks which wr--,e previously ordered

according to their relative weights. Make a graph of the results.
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Get washers each of which is about half the weight of an original

one and assign "new" weight measures to the rocks with respect. to

this new unit of measure. See if the students can guess the number

of smaller wa hors needed. Make a graph of the results and compare

with the earlier g.oaph,

4. Discuss what is meant by measuring to the nearest unit. The students

will have to have a feeling for "half of", "less than half", a'ild

"more than half" in order to understand this notion. Given this

understanding, have the students measure t,-.eir bunch of sticks to

the nearest of some prescribed unit. If this is done with the same

unit that was used in exercise 2, then the graphs could be compared

for, similarities and differences.

5. With the concept of measuring to the nearest unit developed to some

extent with linear measure, discuss the possibilities of weighing

the rocks (exercise C3) to the nearest unit. The need for a "half

washer" wi',11 probably arise here.

6. Draw a reasonably large triangle. 'Determine the location of the

midpoints of the sides of the triangle (perhaps by folding). The

midpoints of the sides of the original triangle determine a second

triangle. Compare each side of this new triangle with the sides of

the original triangle. Compare the perimeters of the triangles.

Compare the areas of the triangles (perhaps by tiling the larger with

copies of the smaller one).

7. The technique for treating volume measure should be based on the use

of hollow figures which can be filled with water or sand, or by using

a balance with solids of constant density.

We assume the existence of a large collection of 3-dimensional ol:.iocts

(1,4f.: many copies of each one) suitable for balance-weighing or for
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pouring. Each child is to select for himself (or construct) an

arbitrary unit of volume. Since it is not easy to reproduce this

volume precisely, pouring is the preferred technique here. The

volumes of given objects should then be measured--the results
to be

stated usually as between two consecutive :Lnteger3, and possibly a

choice of the nearest integer should be made. Scaling might be

illustrated by multiplying dimensions of a box by small integers.

Figures can be combined and the corresponding inequalities added

(if only pouring is used, it would be nice to be able to remove

faces). The unit volume might be halved by trial and error and this

new unit used for closer approximations. The child should become

convincedithat his unit of volume can serve to measure volumes of

solid figures, but may not give the same measures as someone else's

unit. The teacher can pursue this line as far as taste and desire

require--the finale being the need for a common unit.

Choose a particular cube as the common unit of volume. (Such a

choice, the question of scaling, etc. underlie our preference for

doing volumes after length rather than before it.) With this unit

of volume, the things done in 4-7 can be repeated. The students

should compare their answers and, as usual, whenever a volume is con-

sidered it should be estimated in advance. By repeated work with

rectangular boxes of integral dimensions, the students should dis-

cover the formula for their volume. Discuss the principles of

arithmetic that can be illustrated by combining volumes.

Pet z the unit volumaby halving one dimension (from work on line

segments the children can do this). Halve all three dimensions of

the unit cube to get a cube whose volume is 1/S of the original

'Cube. Given an arbitrary box, practice refinements and approxima-

tions to its volume.



-0-

Measure the volume of standard figures by refining approximations.

Among the standard figures to consider are the sphere, circular

cylinder, circular cone, paralleiepiped,.and prism. Among the re-

lations that can be noted are that a cone with base area B and

height h has one,third the volume of a cylinder with the same

dimensions, and that a sphere whose diameter is d has a vol11::1e

which is two-thirds the volume of a circular cylinder with di4meter

d and height H.

9. Choose a basic square as the unit of area. Compute areas of squares

and rectangles with integral sides by counting boxes. Construct

some figures with area specified in advance. Find the area of a

right triangle whose shorter sides have integral length. Decompose

parallelograms into rectangles with same height and base. How

could one find the area of any t/liangle?

Work with rectangles whose sides are allowed to be of form integer

+11. Find areas by counting halves and quarters of the unit square.

Move on to rectangles with rational sides--operationally, these are

the only ones that occur for the children.

10. Compute inner and outer approximations to the area of a simple

closed curve by using a basic unit square. Refine these approxima-

tions using square whose dimensions are halved. Discuss what

would happen as smaller squares are used. Compute the area of a cir-

cle whose radius is twice as long as the side of the basic unit

square.

D. Measurement with standard units of measure

1. Introduce 1 inch, 1 foot, and 1 yard as standard units of linear

measure. Students should get measures of "reasonal;le" distances

and lengths in the classroom to the nearest yard, nearest foot, and

nearest inch. Questions of this sort might be asked:
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If two desk tops are each found to be 32 inches long, to

the nearest inch, then are the desks necessarily the same

length? If not what can be_ the greatest difference be--

tween their lengths?

If two rooms are each found to be 10 yards long, to the

nearest yard, then what can be the greatest difference be-

tween their lengths.: How many feet is this difference?

How' many inches- is this difference?

Assuming that there has been some discussion of the meaning of area

of planar regions, it would be appropriate to have the students mea-

sure the leng hs and widths of various rectangular shapes to say,

the nearest inch and then to give estimates of the areas of these

shapes in square inches. Try to decide which of the completed areas

are overestimates and which are underestimates of the "true" area

Next, have the Students measure the lengths and widths of the same

rectangles to the nearest half inch. Discuss the fact that a square

,1 inch on a side can be divided into four squares each 1/4 inch on a

side. So, in effect, 1 sq. in. = 4 sq. (1/4 in:).

Have the students give estimates of the areas of the rectangular

regions in square inches, using the nearest z inch measures. Try

to decide which of these computed areas are overestimates and which

are underestimates. Also discuss whether these estimates of area

are "better"--that is, closer to the real areas--than the first es-

timates.

The arithmetic involved here can get a little messy, but getting

good estimates of the areas in question is a worthwhile activity.

Makng tables of values ought to halp in keeping the details straig

Here is one kind of table that could prove to be useful:



nearest inch

nearest 2 inch

nearest 3 inch

Rectangle 1

Dimensions

4. in x 3 in.

Area

12 sc. in

9(in) x G(lain.) 54 sc. .15-in.

or or
43-2. in. x 3 in. 132 sq. in.

l8 (kin,) x 12 (kin,) 215 sq. k-in.
or or

42 in. x 3 in. 134' sq. in.

etc.

Have three or four randomly spaced points marked on a segment about

7 inches long. Students should measure the lengths of the consecu-

tive "small"parts and the length of the whole segment to say, the

nearest 21 inch. Check the sum of the measures of the parts against

the measure of the whole segment. Repeat the measuring process to

the nearest k inch,nearest 1/8 inch, etc.

Standard volume mt2asures and weight measures need to be introduced

in such a way that the students are as actively engaged in measuring

volumes and weights of common objects or containers to the nearest

specified fraction of a standard unit as they were when using their

arbitrary units of volume and weight. These activities should

btrengLhen and reinforce the con,,ept that the measures derived are,

at best, reasonable approximations to the "true" measures.

.11
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SIMILARITY AND MAP MAKING

We divide map making into two parts. The first concerns making

maps of regions which are sufficiently small to be considered planar.

In this case it is simply a cuestion of changing the scale, that is,

it involves the notion of similarity. This part can probably be done

in the second or third grade. The other part concerns transferring a

map from a spherical surface to a plane ,by various methods. This is

much more complicatd, but it could probably be done in the fifth or

sixth grades.

Similarity and..sofplans_s_esions.

The concept of similarity of geometric figures can be introduced

by constructing triangles, quadrilaterals, etc., with sticks. For

example, have a set of blue sticks twice as long as some red sticks.

Then graduate to sticks of lengths, say, 1, 2, 3, 4, and make figures

with various combinations. It is important for the student to notice

that two triangles will be similar if their sides are proportional,

but that this is false for polygons with more than three sides. Discuss

how many angles of a polygon must be checked to make sure of similarity

(when sides are already known to be proportional).

Next we can build an enlarging machine.
Light

Pin k

hole

Figure /Paper

/

Enlarged
figure



Chap. 15 2.

Notice that the enlarged figure will be similar to the original if the

papers are parallel, but there will be distortion if they are not. It

may be worth studying the different amounts of enlargement for different

areas when the two papers are not parallels.

Now we can explain the process of map making as a similarity

transformation. Make scale maps of the room, the building, a city

block, etc.

Projecting from spheres.

For this we need a large, hollow, transnarent plastic sphere, say

about 2 feet in diameter. It should have about a 4-inch hole at the

top and'a stand at the base.

.111,011111

First we discuss latitude and longitude and draw various meridians and

latitudes. A discussion of time zones.and change of days would be ap-

propriate and helpful. With colored grease pencils, draw various maps

and finally a globe.

Pose the problem of transferring a map on the sphere to a flat

piece of paper. Let the students try putting translucent paper on the

sphere and try to trace the map. Let them become convinced that this

method is not good because the paver cannot be made to fit.
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Introduce a small penlight with a sharply-focused beam. See if

the students'will be able to suggest all of the following projections.

(i) CentraLuolections.

Put paper on the table. Extend your aril with flashlight to

the center of the sphere and shine the light toward the paper to trans-

fer a map in the southern hemisphere to the paper. Look at the images

of various meridians and latitudes. Discuss the amount of distortion.

Where is there the least distortion and where the most? What curves

on the spheres become straight lines on the paper? What are the images

of great circles?

Do the same experiments with other kinds of projections.

(ii) Stereographic nrolection.

We use the same set-up as for central projection, but shine

light from North Pole.

(iii) Cylindrical rojection from center.

Wrap stiff paper around the sphere to form a cylinder touch-

ing the sphere along the equator. Shine light from center. Use trans-

lucent paper so one can trace map on the outside of the paper. Then

flatten and get a plane map.

(iv) Cylindrical horizontal projection.

Use same set-up as (iii).

For any point on the sphere shine light from the same height

as the point (always from line joining the poles).
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Section IV Chapter 16

INTUITIVE WORK INVOLVING THE CONCEPTS OF SYMMETRY,

CONGRUENCE AND RIGID MOTION'

Before the concepts of congruence, symmetry and rigid motion are

studied on a theoretical level children should have a good intuitive grasp

of these concepts. On the earliest level children match simple figures

made out of cardboard, felt, and Paper, for example. Pieces can also be

fitted into spaces from which they were cut oat. Bu'ldine with blocks and

making copies of their own constructions helps build up the concept of con-

gruence in three dimensions. Tracing figures and printing figures using

potatoes can be included. Vork with Mirror Cards (sTe I below) continues

to build up acquaintance not only with congruence but also with synretry.

In II (below) work involving rigid motions, congruence and symmetry is dis-

cussed. The work described elsewhere in the report dealing with tessella-

tions and constructions strengthens some of these concepts further.

I. Mirror Cards2

One way to ';give children an intuitive feeling for concepts such as

congruence and symmetry is by use of the Mirror Cards. The mirror Cards

consist of fourteen different sets of cards. Each card has a pattern on it.

Each set has instructions on its cover card, and there is a teacher's guide,

The basic problem, however, is the sane for all the sets. Can one match a

pattern on one card to the pattern on another card by using a combination

of some part of that pattern and its reflection in the mirror? The Mirror

Cards vary in difficulty - starting with very simple patterns. The approach

1. Most of this work is described in more detail in a paper, "Informal

Geometry for Young Children", by m. Falter.

2. The Mirror Cards have been produced in a trial version by E.S.S. A

teacher's guide is available. It contains copies of one of the sets.



Chap. 16 2.

is non-verbal, the cards are highly visual and they are free of mathematical

notation. The children can check their own work without, resorting to the

authority of the teacher. They can make predictions and immediately check

and if necessary amend their predictions. They gain experience in recog-

nizing congruent figures. They gain experience in visualizing figures

after they have been reflected in a line. (,'e light is physically reflected

by the surface of the mirror. The resulting image in the plane of the paper

is the reflection of the pattern about a line - the line of contact of mir-

ror and paper.) The children notice that a mirror does not carry out a

translation. They notice intuitively that congruency of two parts is

necessary but not sufficient for a pattern to have been made from a picture

and its mirror image. ?laying freely with the mirror enables them to Notch

the.change of relative pozition of image and pattern as the mirror is moved.

II. SYMMETRY PROPERTIES OF FIGURES. RECOGNIZING CONGRUENT FIGURES.

This work gives experience:

a. In making patterns

b. In manipulating patterns

c. In visualizing patterns

d. With congruency and recognizing it

O. Pith symmetry and recognizing it

A. Arrangina sauares

Pia. a simple shape such as a box with equal sites and no top. How

many sides does it have? How might it look flattened out? How many ways are

there of arranging five squares? Obtain all ways of arranging five squares.

Which fold into boxes without tops?
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B. Congruency;

Decide when two patterns are congruent by actually using paper cutouts

and moving one on top of the other. For example,

and

are congruent because one fits on top of the other.

Game: Divide the class into two teams. Each team tries to draw all

twelve patterns on the board. This will probably result in several patterns

being repeated such as the two figures above.

C. EaminingAttattma2,

Why are some tatterns duplicated nore often than others? For example,

LP 1

are not often drawn twice, but

and

and

.2 for example, may be drawn as

Clnsider how many different positions each shape has.. For example,

has four different positions (in which edges are vertical or horizontal).

Find out that each of these twelve pieces has either 8, 4, 2, or 1 different

positions.

Discuss which motions leave the pattern in the same position. (This

work can be extended to include paper folding and mirrors.) For example,

for the piece a half turn 1/2, a full turn 1, a horizontal flip H,

a vertical flip V will leave the piece in the same position. What is the
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result of H 1/2, 1/2 1/2, 1, 1/2 1/2 1, etc.? Students will probably soon

be able to calculate the results of HHHHHHHHHH 1/2, EVVVVH, etc.

Can one tell what motion has been made if the piece is not marked and

one was not watching the motion? Lead to a discussion of how to mark the

figure. Try all the suggestions until an adequate marking is made.

Game: Half the class can have eyes closed. Consider e , say.

Make a motion such as a 1/2 turn. Let those students who had their eyes

4.

closed tell what the motion was. Repeat as often as is of interest. Pro-

bably students on their own will give the product ol two or more motions.

If not, introduce it. Now the game becomes more interesting since there is

more than one possibility. What motion is equivalent to the product of two?

If students cannot visualize, let them use marked paper cutouts.

Make a list of the possible successive two motions equivalent to each

one motion. This leads the children in a natural and motivated way to make

the group table., Repeat with other patterns. Note sub- groups that occur.

Are any two groups isomorphic? Repeat with other shapes such as all patterns

of four equilateral triangles.

For younger children use a felt board or individual shapes that they

can stick together. For example, give each child four equilateral triangles.

When he has made a pattern, he can stick it together. He can check whether

it is congruent to one he has already made by actually placing the new one

on the old one. The younger children can make three dimensional figures

from their shapes. Play a game: Move one square on a felt board to a new

position to obtain a new pattern. Example:

LA_
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D. Extending the work

The work with squares, triangles and other shapes can be extended in

several directions. This work might lead to the cuestion of how they could

actually construct squares and equilateral triangles. As mentioned earlier,

one can raise the question of which patterns fold - and into what shapes.

At an earlier age paper cutouts can actually be used. At a later age the

students can try to decJ6e by visualizing a pattern drawn. One can ask

questions such as: Mich square becomes the bottom? Where can one add a

square to make a box with a top? In any pattern how many places are there

for adding a sixth square? Which are congruent? Given a box without a top,

which cuts along edges will flatten it? What does the flattened pattern

look like? Example:

Ett
From the question of how many ways are there bf cutting a figure to

flatten it, one may lead to the more general problem of: How many "essen-

tially" different ways are there of choosing 1, 2, 3, etc., edges of a

figure - say, a cube.

Another version -perhaps at an earlier level: Take three or four or

five sticks. How many different ways are there of joining them if right

angled turns are demanded at every joint? CA game based on this and the

following ideas can be played.3) If straight or right angles are allowed?

Other spe-ific angles? This can be asked in two or three dimensions. One

may ask: how many ways are there of arranging four or five squares in

space if right angled turns are demanded at every edge? How does this

3. This is being developed by M. Walter.
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compare to arranging four sticks? These problems will entail a discussion

6.

of mirror images in three dimensions.

E. Other work involving congruency

Use sticks that can be joined at their ends of lengths 3, 4, 5, 6, 7,

. . . 10 inches, say. Pick three sticks and make a triangle is possible. .

Which triangles are congruent? Perhaps discuss similar triangles. Realize

S.S.S. condition for congruency. The sum of two sides of a triangle is

greater than the third side. Do two sides of a triangle determine it? Get

the notion of S.A.S. (this requires further thought and development). Pick

four sticks. Mgke a quadrilateral in the plane or in space. What can be

said about congruency? Investigate congruency of other figures.

Consider areas of congruent figures, perimeters. Can two figures

which are not congruent have the same areas? same perimeter? Given a peri.!

meter, make a figure - have children compare their areas. Which shape giyeS

biggest area? Smallest? Make a shape of a given area. How do the peri-

meters compare?

2915-65
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NOTES TOWARD A DISCUSSION OF TReNSFORmATION GROUPS

After working with the mirror cards,.one discusses what a mirror per-

pendicular to a plane 'does to a figure

can be gotten by a "rotation" which is

a mirror do to objects in space?

in the plane - and how this result

called a reflection. Also, what does

The symmetries of the figures such as those composed of five squares

have already been discussed by the children and some group tables have al-

ready been made, and so one may proceed, to more formal things.

Consider equilateral triangle. Consider first its rigid motions in the

plane, I = identity, R = rotation about center by 1/3 of a circle, and $ = R2.

Make a table for these operations. Then allow flipping the plane and intro-

duce the three altitudes. Compose the six operators; make a table of their

multiplications - practice associative law, inverses, etc.; non-commutativity.

Then label the vertices 1, 2, 3, and write each operation as a permutation
123

of vertices (abc); then deal with permutations in themselves, count them,

make a table of their multiplications. Show teat the one-to-one corres-

pondence is an isomorphism (end that we have the symmetric group on three

letters).

Then discuss symmetric group on four or more letters, subgroups, nI,

etc. (without ever defining a group. This wield be useful for probability

later. Do the group of rigid motions for the square in the manner used for

the triangle; do we get the full symmetric group?

Get the dihedral groups as rigid motions of regular Polygons oe ey2Y3

sides; it generalizes triangle and square done. already. Nov pass to symmetries
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of infinite patterns. For example,

which allows an infinite cyclic group of translations combined with the

reflection of this line in itself.

Or the figure consisting of a dot for each point of the plane with

integral coordinates; or use a tessellation of the plane by regulating

hexagons.

The important thing here is for the children to realize that the number

of symmetries is , but that there are some simple generators. They might

enjoy doing permutation6 of infinite sets.

The symmetries of solid figures such as the cube and the regular tetra-

hedron are also worth'discussing.

2915-65



Section IV - Chapter 18

ROTATIONS, MATRICES AND HOMOMORPHISM

Hamomorphism, and in particular isomorphism, are of basic importance

in modern mathematics. A desirable contribution to the mathematical base

of elementary school children would be provided by the introduction of this

concept in a way that illustrates its power. Homomorphisms between finite

rigid symmetry groups and matrices are useful/. The atrices can be set up

by direct construction or by using the properties of'group structure and

homomorphism.

Finite rotation groups have been introduced to third grade. (See Esta-

brook progress reports for example. A forthcoming C,C.S.M. report will give

details of these classes.) They prove to be interesting to the student and

feasible for a broad range of abilities. Matrices aaso have been introduced

(as in the Madison Project) motivated by linear operations other than symmetry

motions. We propose here, after developing the rotation group structure in

two dimensions (with"twists" or inversions) as in the Estabrook project, to

build up the 2 x 2 matrix representations, emphasizing the use of homomorphic

properties in their construction.

We assume that the children have studied the rigid symmetry motions of

regular polygons. The transformation elements have been discussed, together

with their equivalence classes, closure, identity and inverse. The students

have found that the rotations commute among themselves, but that the twists

do not commute with the rotations or with all other twists. This has been

done for equilateral triangles and squares in detail, and extended to all

regular polygons. In addition the symmetries of a rectangle may have been

examined.
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Bringing the students' attention back to a square, consider it on

(0,1)
Cartesian co-ordinates as in the figure.

List the co-ordinates of each vertex be-

fore and after a 75:: rotation.

2

(1,0) ---0,1) (0,1)---i-110) (-100) (0,-1)--(1,0)

These are "jumps in the plane". If they have had Page's recent' material,

they will already have arrived at rotations from algebraic expressions. If

not, they should, now be asked if these jumps can be written in terms of

linear equations (of which they should have had previous experience). They

may try some of the formOn = 0+ a An = b and other inhomogeneous

types (we use the superscript n for new co.ordinate). Having solved for a

and b, for one vertex, they should be asked to see if it works for another.

They will not have success with all their vertices until they try the form,

6n
= an+ b

, n = c[] + d

Because of the zeros appearing in the co-ordinates of each point they will

quickly get (a,b,c,d) (0,-1,1,0) by using the movement of two vertices.

Does it work for all four vertices? What does this transformation do to the

co- ordinates of points on the edges of the square? any points? To the

origin? The last shows why the transformation is homogeneous.

They should then find ( a,b,c,d) for '77 and -27rotations, and for twists
2

(or at least for the two easiest twists). As (a,b,c,d) determine the trans-

a b
formation equations above, the teacher can suggest the form (c d) as a
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mnemonic for the set of equations. They can then considei; SUCdessive motions

(0, A) ( n, An) (1-nn2Ann) that rotation matrix does one end up

with fallowing a r6tation of 7. by one of V; a /r rotation by another

rotation? What, is the identity matrix?

They should now look at their successive Operations without performing

the arithmetic at each step. They would then obtain for a rotation -/7
2

followed by a n- rotation

nn
x On + 0 x An =.1x (Ox 0+ (1) x 6.] + 0 x (1 x 0+ 0 x 4.1

=[...ix0+0x20x0+[-ix(.21) +0x0]x

and a similar series of steps for Ann.

They have already used an operator notation for the geometrical symmetry

motions: r1(polygon) = (rotated polygon), r2 (r1 (polygon)) = r2 (polygon

rotated according to r1) , etc. To follow up their algebraic transformations

concisely it should be suggested that they write

(011,61n) = (C" id) (0,z\)
It is not yet natural to suggest writing the co-ordinates in a column, but

it will be later, Now looking at their successive transformations in opera..

for form they have

(fn nn) (
(6 -1) (1

0
0) 0-11W 1

-1x0+0x1 -1x(-1) +0x0

0 x + x 1 O x (-1) + (-1) x
the

In this/pattern of row times column can be observed. This should be tested

for other successive symmetry motions of the square. Then one can indicate

on
(c

b, Ei,
that if one writes (e) = tc d) (11) the same pattern of row times column

On + bQ
gives(6.9=-Ac 0 +dL) from which one can read off the linear algebraic

equations.
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The properties of this multiplication among the set of matrices should

now be investigated. It is expected that the student will soon find that

he can predict results of matrix multiplication by using the correspondence

(homomorphic connection to the symmetry motions and isomorphic to the equi-

valence classes of symmetry motions) to the geometric results. They should

be able to find several ways of generating transformation matrices, including

any matrices which they had not previously obtained directly. The question

Of closure can be demonstrated by calculation, but also by reference to the

Closure of the geometrical symmetry motions. The identity element will come

*up in the same context, and can be found from many pairs of matrices. In-

verses must exit according to the correspondence, and can be found in this

way much more easily than by setting up the equations MM-1 = I. The ques-

tion of whether matrices commute under multiplication can be found out by

trial, or predicted by correspondence. If addition of matrices has been

defined, there may be some amusement in looking at the commutators.

It is proposed that the students now try to find the matrix representa-

tion of the symmetry group of the equilateral triangle. Tbas time they are

to see how much the construction can be simplified by using the isomorphic

correspondence. How many matrices do they have to find directly in order

to-generate the rest by multiplication?

If the triangle is placed on the co-ordinate system in this way, the

symmetry about the vertical axis makes

the "vertical twist" matrix easy to

find even before the vertex co-ordinates

A\ (0 /1r. 1)

/

I.
are known. For all three vertices this (-1,-1) I (1,-1)

yy -1 0

motion changes the sign ofrland leavesAalone. The matrix is thus (0 +1)'.
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Multiplication of this by itself gives the identity, so we need more. A

rotation or a "diagonal twist" must be found, requiring the location of ver-

tices. We can obtain these by finding the ratios of the sides of the 30°,

iN
/ \\

5.

60°, 90° triangle obtained by splitting the

equilateral triangle in half. The 90° an-

gles follow from symmetry. By construction

Q ab! = 1/2 lac!. If lab! is one unit long, then the Pythagorean theorem

tells us that lbc12 = 22 -12 = 3. An accurate evaluation of (Tis not re-

quired for what follows as we only use the fact that r3- x 3 = 3. The

class should however know what it is to about 5%, so that they can recognize

1

gross errors in their drawings and know the sign of a As,for rotation,

they want the center of the triangle to be at the origin, they must find

'del = Ids/. By symmetry / dab = / dac. It follows that bda is similar to

bac, and that Ibdf = ba x 2 = 1 . Then Idol = rf- 1 and the co-ordinates

be U Er
of the other vertices are easily found to be as in the figure.

To find the coefficients of the transformation easily one wants to

transform a point which has one zero co-ordinate. Hoy do we transform

-1(T = 1) to (-1, -1)?

r3

-1 =ax0 4.bx( - 1)

r3-

-1=cx o+ax (r3--1)
jT

The first equation gives b = 1 , and the second d =

- 1

TY r3-

What if the same transformation is to bring (1, -i ) to (0, (Y- 1)?

f5

0 =axl.i.bx(- 1)

. (-1)
1731



Chap. 18

The first equation gives a = 1 b = -1 / (13 - 1) = d

T3-=

and the second gives

1

c = - (3 -1) = -)c- = 3 - =2 =a cern y-3 -

-b

The students can now generate all the remaining matrices by successive

multiplications of this and the vertical twist matrix.

. The labor of calculating the components of the Eienerating matrices can

6.

be reduced by first discovering their orthogonality. Then they only need to

solve the first equation above for b, and then they get c = -b and a.= d =

07-7732.from the orthogonality. The sign in front of the radical can be

checked by inserting in the second equation. What does the other sign do?

The orthogonality is approached by noting that

(0 n)2 (h n)2
(0)2 (A)2

or

(a2 c2) 0 2
e (a.b +cd) Q + (b d2) 2 A2

A judicious seleption of a few particular points (with (1 or vanishing for

instance), for which the students know thnt the distance from the origin is

unchanged, will quickly give the result a2 + c2 = 1, ab + cd = 0, b2 + d2 = 1.

Insertion of results of the first and third into the second gives x

b + b2 = 0, which is solved by c = -b. That one should choose

a = d, c = -b for a rotation is indicated by the special case of the identity.

The opposite case is an inversion. This orthogonality relation could be

tested for the known n77matrices, and then used to derive the coefficients
2

of the 2grotation matrix.
3
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.

They could now look at the matrices representing the symmetry of the

rectangle. This is trivially a subgroup of the symmetry group of the square.

This relation could be exploited further.

If more practice with matrices, and more insight into the use of the

isomorphism is desired, one can continue as follows. What are the matrices

corresponding to the symmetry motion of a pentagon? A generating twist is

easily obtained if the pentagon is aligned symmetrically with respect to one

of the axes. (a = -d = ± 1, b = c = 0). A non-trivial rotation is much

harder. Can they find a rotation matrix without using geometry or trigo-

nometry? What happens if they multiply the 277 rotation matrix by itself over

5

and over? On equating the fifth power of the matrix to the identity they

Ivrill'zet, of course, a nasty equation. They could perhaps solve it numeri.1

Cell-y to one decimal place. (They know it is between -1 and 1.) They

should then check the effect of this approximate matrix on one or more very

tices. What is the 277 rotation followed by a twist matrix, approximately?

That is the 4 i rotation matrix, approximately? If they have had some trigo-

5
nometry, they could compare these results with C05 27/ .

5

The hexagon has the equilateral triangle and square subgroups. One

can then obtain the whole group by combining these and the problem of the

polynomial equation does not arise.

2 915 - 6 5



Section IV - Chap. 19

ITERATED REFLECTIONS IN MIRRORS

The material given here could be the basis for a presentation in the

sixth grade. The students should already know about reflection in single

mirrors (having worked with the Walter Mirror Cards, for example). They

also should know that the angle sum of a plane triangle is %y (or 180° if

they don't know radius measure); This material is an introduction to

crystallographic groups and is important also for study of Lie groups and

Lie algebras. In this sense what the student discovers here is all possible

generalized Weyl groups of two-dimensional Lie groups.

An object has just one image in a mirror, but with two mirrors we may

get infinitely-many images. If a room has mirrors on opposite parallel

walls (as for example in a barber shop) then one mirror reflects both the

object and the reflection of the object in the other mirror. Since both

mirrors are doing this we

each mirror.

get an infinite sequence of reflections in

Mirrors

4('

Images i Images

le it A.
i

h
I /I\ A,

1....,,A .--- .........,
..1,,

........,e..:;A---,.--.... /
.°\

a + a b + b a a t b
I

' b
j

a + a
.

a + a

.v..-.. Object

For experimental purposes we need two large mirrors. The distance

arrangement of images should be checked visually for different placements

of an object (preferably the observer). In particular we note that the

images are all evenly spaced when the object is midway between the mirrors.

Next we observe what happens when the mirrors are not parallel. The

more nearly parallel the greater the number of images. Find out at what

angle the number of images reduces to two. Try to get more images in one
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mirror than in the other. These observations should be explained in terms

of light rays having equal angles of incidence and reflection.

Now we want to use three mirrors so that we can form a triangle with

the observer inside. Alain we consider the nice situation first by making

an equilateral triangle. Here is a view from above:

Images

#

- 'Mit

'\ 1
.1*

7

0

.

2.

Solid lines are mirrors,

dashed lines are images

, of mirrors (and images of

Tir of images, etc.)
Object

r

A convenient way to locate images is to use images of the mirrors.

Then a new image is obtained by reflecting an image in the image of a mir-

ror. For example, the line labelled a in the diagram aboye is the image of

mirror 1 in mirror 3, and b is the image of mirror 2 in mirror 3. We con-

tinue by reflecting images of mirrors in other images of mirrors, etc., and

then we reflect object images in mirror images to obtain all object images.

Co back and use this kind of construction for two parallel mirrors.

Just as with two parallel mirrors it is instructive to see what happens

when le angles between mirrors are changed (so that the triangle is no lon-

ger equilateral). Consider for example a triangle with angles 90° ,45°,45°.

bobject

r'

_Images.+ .MM

41.011W

igeo 4.1. UM. MOW //

it

j
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As before, the images are evenly spaced throughout the plane in the diagram

above. The same situation occurs for a 30°, 600, 900 triangle.

Now'make the mirrors into some triangle other than the special three

(equilateral, 450i450,900 and 300,600,909. We see that the images are

not evenly spaced but tend to "bunch up" in some directions. Let us agree

to call the set of images discrete if they stay ecually spaced throughout

the prine and non-discrete if theybunch up in some directions.

There are two important things to notice.

(1) Whether the images are discrete depends only on which triangle

of mirrors we are using and not on the placement of our object in the tri-

angle.

(2) The only triangles which give discrete sets of images are the

three special triangles already examined.

These should he checked by experiment. There is, however, a very pretty

proof of (2) and we give a sketch of this proof now.

We must consider what happens when we have two mirrors at an angle and

consider an iterated reflection.

Mirror A / *. 2 Q

` Mirror B

Object

It, turns out that we can get from the object to the second image by a rotation

image of A in B

through an angle 2Q (where the G is the angle between the two mirrors). That

is, an iterated reflection is a rotation through twice the angle between the
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mirrors. Thus by repeating iterated reflections the image gets rotated

around the origin (where mirrors come together), and the image will get

back to the object position only if some integral multiple of 20 is 2 7.

If this doesn't turn out to be true, then the images will eventually bunch

up. (A rigorous proof of this is too difficult to give here.)

Once we accept the statements above, we can complete the proof by

more analytical techniques. Consider a triangle with angles 2,)e, r

r\\\\

and suppose the iterated images are not to bunch up. Then.

( = 2 «,
2

q = 'Tr

must be integers. Also we have

-(ii) 2 97, /7 r <

Combining (i) and (ii) we get

or
p r

(ill) 1 + 1, + 1 = 1.

p q r

2 p7-1 r =
r-

It follows that:

(a) p,q,r S 2, and at most one of them can equal 2.

(b) We cannot have plq,r, all> 3.

Using these results we easily get that the'only possibilities are that p,

q, r are (in some order)

2, 4, 4
2, 3, 6

3, 3, 3

and this proves that triangles with angles 71 , 2' , i and 17 , 7r, 77

14,

3

and 17_, 71 , 1? are the only ones which will give discrete sets of images.

3 3 3

2915.-65'



Section IV - Chap. 20

KNOTS

This section should be done when the students are old enough to mani-

pulate rope effectively and to draw representations of knots showing one

line passing under another. The equipment used could be lengths (about four

feet) of sash cord with some device for attaching the ends together.

Probably some kind of sleeve exists or can be devised. Otherwise Scotch

tape could be used.

1. Identifqa.,_ knots .

Tie an overhand knot in a cord and then attach ,the ends. Put the

cord on a table in various positions, e..

Do the same for other simple knots.

Figure 8 knot

Square(or reef)knot Granny(or false reef)knot

Learn to tie knots from looking at knot diagrams (like those we have

just drawn). Learn to draw diagrams from a given knot in a cord.
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Given two knotted cords, agree that they are the same knot if there

is one diagram which will give both. One can also"put one knotted cord on

top of the other" to see if two knots are the same. A cord with the knot

diagram

is called unknotted (or is called the trivial knot). Find lots of diagrams

representing the trivial knot, e.g.

II. Two-color theorem.

1110.01.11R.6..

We can consider that a knot diagram divides the plane into regions.

Try coloring the regions with two colors so that no two regions with a

common boundary line have the same color.

Example Red

,1,1ed
Green

Green' -----

Do this for enough knot diagrams to become convinced that it always works.

III. Links.

Use unknotted cord loops. Two such.are linked if they won't come apart.

For example, loops A, B are linked:

ACr) ,/)B



Section IV- Chap. 21

SPHERE, CYLINDER, TORUS, ITC.

The main print is to study the behavior of curves (in particular geodesics)

on various kinds of surfaces.

Division of surfaces into triangles.

Models of spheres, cylinders and torus are needed on which one may drag and

erase lines.

Divide these into curved triangles so that if two triangles have any part

in common, it is either a vertex or an ede.

For example,

is O.K. but

is

The triangles are to cover the entire surface. (For the cylinder, the

top and bottom edges will have to be nade up of edges of triangles.)

For example,

and then continue to fill up surface with triangles.
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Count vertices, edges, faces for each. Check that

Sphere Torus Cylinder

V E + F 2 0 0

Do this ieveral different ways and check that each time the same number is

obtained for V . E + F.

II. "Straight lines" on surfaces.

2.

Imagine 2-dimensional creatures living on the surfaces (sphere, torus,

cylinder), Ask what would "straight line" mean to them. Evolve notion that

taut string heldagainst surface is best answer for sphere and cylinder. For

for it is bard to keep string taut and still on surface for nearby points

on the "inner part" but O.K. for outer part. To solve this problem we use

narrow strips of colored cellophane tape which will stick.

Give a position (point) on the surface from which to start and a direc-

tion at that point. Seethat by keeping tape tight, allowing no bends, and

attaching a small bit at a time, the whole curve is dictated by initial

position and direction. It should be interesting Lo note how small errors

build up. Let students start with some initial point and direction and com-

pare end position for fixed (equal) lengths of tape.

Call these curves geodesics.

Show that!, Geodesics on the sphere are great circles.

Geodesics on the cylinder are helices (or degenerate helices: a

horizontal circle or a vertical line.)

Geodesics on a torus come in several types. (Note: The situation

is very complicated and one should not exnect these experiments to yield a
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complete solution.

III. Triangles on surfaces.

Instead of covering surfaces with triangles, we now look at single

triangles on surfaces. vge consider peodesic triangles: i.e. triangles

-whose edges are geodesics.

Construct such a triangle on a cylinder. Measure the angles and add

them to see that the sum is 1800, just as on a plane Do this several times.

Cut the cylinder and flatten it to see that we then get triangles made

of straight lines in the plane and with the same anles.

Next we construct geodesic triangles on the sphere and find the sum of

the angles of each. Check that the answer is always>180°. (Don't construct

degenerate triangles with two sides coinciding, etc.)

Nov we try the same on a torus. Can we get a triangle with angle sum

1800? with4180?

ti

IV. 922Ratudosphere.

A sphere is a surface with constant positive curvature; so a surface

with constant negative curvature is called a pseudosphere. (The curvature

of a plane and a cylinder are zero. The curvature of a torus is not constant

but varies from. point to point.)

Construct (or find some facsimile, e.g. the bell of a trombone) a

pseudosphere.
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Examine the behavior of geodesics on the pseudosphere, e.g. these two:

1 and 2

.
Measure the angle sum of triangles, noting that it always comes out 1800.

4.

This leads to a feeling for curvature of a surface. If we want to

know the curvature of a surface at a point, we draw a small geodesic tri-

angle near the point and measure the angle sum. The curvature is defined to

be pojake if this is >180°, zero if = 180° and negative if4180°.

By a limiting process this technique can be used to assign a numerical

value to the curvature at each point of a surface.

2915-65



Concluding Remarks:

It is clear to us that this report represents only a beginning in the

development of material that will teach mathematics in the schools as we

would like to see it taught. It touches on only a fraction (though not a

small one) of the topics for the elementary grades and has not yet peered

into the high school period. The presentation contains so little detail

and is so unstructured, that it requires mathematicians with experience in

curriculum research to attempt its teaching. Much of it has not been tested

at any level and so may easily fall on its face. Indeed we have our own

grave doubts of the efficacy of much of our material. The question of pre-

paring teachers to use such material has not been raised at this stage.

However, we hope the content of this report is sufficient to allow

these further steps to proceed. We hope that its intent and detail are
)

clear enough, and interesting enough, for research people working with chil-

dren to try them out. This may lead, after a while, to sufficient informa-

tion about what children can do in elementary school so that one can begin

to elaborate the form of the high school mathematics. Every experiment in

the classroom gives some suggestion as to the scope of the teacher training

problem ultimately involved.

We expect that a series of workshops, interleaved by classroom experi-

ence, will prove necessary in an iterated approach to our goals. We will

be pleased if our summer's work is of some significance in establishing this

chain of development.
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