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INTRODUCTION

The Cambridge Conference on Schooi Mathématics during.the summer of 1963
invited people with a resesrch interest in mathematics {(though not only
mathematicians) to consider a long renge problem. They were asked to answer,
as best they could, the question:

"What mathematics would you like to have students learn “rom

kindergarten through twelfth grade, if there were no restric-

tions other than the child's innate capacity?"

Difficulties, such as the need for highly trained teachers, were %o be

ignored on the ground that, if the program was meritorious enough, these

other problems could be solved in the long run.

The much discussed report "Gosls for School Mathematics" (Houghton-

Mifflin, 1963) was the conferees' response o their essignment. Although it

raises general pedagogical questions (the discovery technique, the spiral
approach) and makes contact with some experimental material tested in the
classroom, it is largely in the fremework of mathematical needs rather than

classroom needs. It gives opinions on what it may be usefui for the student

to know at a certain level, but does wery little_to sugeest the specific unit

which mey teach such materisl.

Since that time several people connecﬁed with the conference have worked
in the classroom to develeop & practical response to some of the challenges
of the "Goals" report, From 1963 to 1965 the Miss Mason School (Princeton,
Ngw Jersey) under the initial direction of the late Wilks developed detailed
units for pre-first graders that included number line and other concepts
recommended by "Goals". B, Friedmen worked out and tried a geometry based
on mirror symmetry for Junior High School students in Berkeley. At Estabrook

Elementary School (Lexington, Massachusetts) E.Lomon with severel of the local
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Intro. 2.

teachers tried material connected with inequalities, real number, symmetry,

probability end slove in grades 1 to 6., In the sumer of 1964 at the Morse |

School (Cambridge), under the auspices of CCSM, a team of research people
and school teachers under the chajrmanship of A, Gleason tried out subject
matter from cownting through symmetry to number theory, for a five-week
period, Seversl of these units were tried again in schools during 1964-65,

A report of those projects will soon be available.

T6 some of those in CCSM it seemed t§ be time, in view of this experience,
the éxperience of other curriculum groups, and of the general diséhssi?ﬁfi
since 1963, to take the next step in evolving the "Gosls". For this purpose
CCSM invited the present group to meet in June and July of 1965, The group
consists lergely of mathematicians, some of whom had curriculum development
experience, and some who had not. We were charged with the task Qf‘produciﬂg
meterial for the experimental classroom, in geometry and applications for
grades K to 6._ We were to show haw one could make a start on translatiég
the mathematical‘ﬁeeds expressed by the "Goals" report, to meet the neéds of
the young student in the classroom. The importance of the "functionv'concept

to appliéations led us to treat this as a separate problem.

Frrtunately for the present writers, wer#ere not required’ét this stage
to prodﬁce units for the usual classroom and its teacher. The present level
of experiénce argues sgeinst the success of any such sttempt and we feel none

- of our material should be used in this way. Rather we have addressed our-
gelves to those individuals end groups With experience end capability in the
development of experimental mathematics and science curriculum materials for
the schools. We hope that we have expressed ourselves in sufficienﬁ detail,

and clearly enough, so that such people will know what type of classroom ex-
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perience we have in mind, Then if a researcher wants to test our ideas, he
can do so in his ovn way end yet feed back information relevent to the general

CCSH enquiry as related to the "Goals for School Mathematics".

We are awafe that we have faller short of even this limited tasky} that
there are fuzzy aspects as to how some concepts are actually to be taught,
and incomplete development along some lines, We are also aware that some
of‘thg'material is likely to be too @ifficult for the young student, at least
in the gérb we have given it. We have offered such material in the bellef
thaﬁjthe child's innate abilities have still to be suffic ently tested, and
in fpg‘hopes that more teachable variants would be found by those who choose

to reaq this report and work with some its suggestions,

Many of the things‘we discuss here have alreadv been suggested and
worked with by other individuals and groups. Ve include them so that they
can be viewed in the "Goals" context and so that future research with such
material may in ﬁart be made to bear on questions in that context., The
bibliography at the end is not complete, but we hope thali it gives some idea

of the debt we owe to previous writing and research.

We.hope the reader will bear in mind the general principles and outlines
of "Goais for School Mathematics™ while reading this repert. While some-
times, in the papers that follow, expliclt reference is made to pedagogical
‘technique or educational goals that are to guide the teaching of the material,
often these corments sre absent in the expectation that the "Goals" report
hes given the necessary direction and context. If the reader still has the
patience with all the burdens we have placed on him, we hope he will read on
and find some suggestions and methods useful to his own curriculum and class-

room research.

i o o




Section T - Chapter 1

g

GEOMETRY

We have found that the problem of designing a curriculum for the study
of elementary geometry in grades K -~ 6 does not have an obvious and straight
forward solution. There are 1o objective criteria for evaluating a given
curriculum or for the comparison of two curricula. The production of such
criteria requires a good deal of concreté classroon experience with such
subjéct matter at the various grade levels, Unfortunately, sufficient ex~
perienbe of this type is not at hand, and it is not known what children of a

given age can digest and profit from when suitable preparations have been made

,
|b'- -

*in ‘earlier grades. Moreover, it is clear that any forwvard-looking explic1t
statement of a curriculum serves merely as hopeful anticipation es to what can
%J f‘ be accomplished. In the final analysis, the decisive factor (unless there
| . exist teaching materials which do not require a teacher) is the teachér in the
classroom - his mathematical proficiency, his teaching skiiI and technique,
his enthusiesm, and his understanding of and empathy for children. Thé
training and preparation of teachers of mathematics has not entered inté'byr,
considerations, especiall& since this problem is to be the focus of & conference
to be reld in the summer of 1966, Rather, our concern has centered on the
mathematics itself - its content, the approach to it, and its 6rganization.
By and large, we have found ourselves in substantial agreement as to
what the "geometry experience" of & child in gredes K -~ 6 ought to be, which
 facts he shouid.become acquainted with, and what attitude and intuitions he
should develop., For example, the principles guiding the development of
teaching style and materials should include: the spirsl approach - where
topics are repeated end then extended at different stages, with increesing

1evels of sophistication and deepening of the child's understanding; the
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discovery method - in which children learn things from their own experience'
and by indirection whenever possible; the opén-ended approach « where topics
ere t0 be examined and investigated and not tied up into neat packages.

It folloﬁs from this that, especially in the earlier grades, the approach to
geometry should be concrete, manipulative and operational; that is to say,

the child should learn by "playing" with geometric objects. Formal proofs are

to be avoided (while the student's ability to reason deductively is to be

stimulated) and the nassage from the concrete to the abstract should be slow,

tentative and imperceptible. Among the objectives of all this work, as we see

them, are the building of a solid intuition for Euclidean space,the preparation

- of the child for an axiomatic treatment of geonetry, and the fostering of

familiarity with approximations and limits,

We have chosen to take thesé guiding principles for granted end, therefore

 to structure cur discussion according to the internal leogic of the mathematics

involved. Thus we have constructed first e general framework for geometry -~ on
which pieces of geometric information can be hung and organized. This may be

viewed as a curriculum generator in the sense, that various ewcericula can be

" eonstructed out of it according to the needs and desires of a given school, In

particrlar, this framework deals with more material than can be covered in s
single éurriculum;

This material is then broken down into various topies (the list of topics
is meant to be suggestive or illustrative rather than exhaustive) which are

treated with varying degrees of detail. Some topics are discussed in profuse

 detail - evenfto'the extent of describing what shoulc go on in the classroom -

vhile others are sketched in the form of a developumental sequence., Other topics

are omitted entirely. Of course, the selection of topics for extensive treat-

: ment is, in part, arbitrary, and is not necessarily related wit the importance

of these topics and the enphesis to be placed upon them, On the other hand,
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hﬁ.. | each topic is designed according to.increasing order of couplexity eand
difficulty with no hard and fast decomposition es to the gréde level at which
its components should be taught. The decision as to exactly what should be

. taught, and when, is best left to the ultimate users.

-




~ Chapter 1

FIRST PROVISIONAL WORKING SUMMARY OF GEOMETRY

Geometry for a child begins with his first perceptions of physical
objects. As hié hand and eye muscles develop, his simiean curiosity.and
his appetite for exploration lead to his exercising those muscles and
.with them his brain circuitry and nervoué‘system. From the interplay of
these he develops, anong other things, his world of‘geometry.‘ In this
world three leQels can be distinguished for our preseht purposes: physical
- obJects, such as bricks, balis, boards, peper,wire, et~. occup&ing & three~
dimensional (3D) world; drawings, or pictoriel models, of physical objects,
or of certain aspects of them, occupying & 2D or 3D "drawing (or model)
world”; end such sbstractions as line, plgne,_circle,.etc., occupying & 35
abstract mathematical world, We shift and slide between these levels, some-
times even mixing them up by thinking, for example, of a mathemaﬁical cifcle
as being in the éoom with us, or of a piece of cardboard as being a drawving.
We shall therefore use figures in this discussion to mean either physical
objects, drawings, or abstractions, depending on which level it is in which we

‘are worxing. We are also concerned with me ings, or transformations., For

pbysical objects, & mapping is a‘mdvement of the obJect or of & part of it;
moving a car, folding a piece df paper, For a drawing it can be &an actual
physical movement of the material on which the drawing is made, or only &an
imagined but describeable mbvement. For an abstragtion it is a function in
the mathematical sense of that word. in geometry for grades K-6 we shall

emphasize figures and treat mappings only secondarily.

The obJjects children begin with are those near them in the physical world;

pots and pans, balls, oranges, spoons, sticks, stones, blocks, etc. Through
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pre~school menipulation and exploration children have already begun %o in-
vestigate, quite naturally end entirely on fheir own, certain ideas‘and
approaches which run through or toc much of mathematics and indeed much of

the rest of the world. They learn aspects of a single figure; edges and

corners, roundness, straightness, holes, and perhaps some symmetry. They also

compare two figures: does one fit with or inside the other, do they look and
act alike? And they make new figures fronm olq: putting one object inside or
next to another is using two figures to make é third;| tearing s piece of
breéd’into pieces is making new figures from old; end so is stamping a rubber
stamp or folding & piece of paper cr cloth.

These,are_all natural proceéses, and it 1is thesé‘that ﬁnderlie all
treatments of figures, ;

In learning figures children begin with physical objects and eventually

are led to dfawings as substitutes, substitutes which take on a life of their

own. Slowly a "zoo" is built up, and classifying begun; end the children

Jearn the figures and their properties by seeing and handling them and by

finding them and‘by making them, whether physical objects, or physical objects

 approximating drawings (as a stretched thread is almost a line segment), or

drawings. They also manipulate them: comparing, matching, taking apart,

composing, associating, the more freely the better. All these should be

kept in mind in constructing any geometry prograu for children.

l
The figures themselves not only divide into the three groups mentioned
above, but also can be distinguished by dimensilons. Although all figures
will be regarded as being in 3D space, each such figure hes an intrinsic
dimension and an extrinsic one. A line segment has intrinsic dimension 1

no matter how it is bent, or not bent, in 3D space, but its extrinsic dimension

does depend on how it is bent (or not bent). If a pipe cleaner is straight

its extrinsic dimension is 1, and we shall say it is "1H in 1D". Bent in one

lie Ve ady b -y Wt n exin e 4o o o pagy v o T L
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place like this «- , it is "1D in 2D", because it can be laid flat but not
on 8 line; and bent at two places so that it sits up on a table like this,L77 ’

it is "1D in 3D" since it cannot be put flat on the table top. The surface

" of a ball is 2D in 3D, a triangle is 1D in 2D, a disc is 2D in 2D,

In building the zoo, we begin with the most famiiiarly shaped physical

objects: blocks, bricks, balls, wedges, ete., as solid, or 3D in 3D, objects:

~paper and plastic figureé are "almost 21'objects, and string, wire, threcd,

and pins are almost 1D objects. Aspects of these‘are end and corner points,
edges, faces, insides, outsides, end so forth. These can be straight'or flat

or curved or rounded, or & combination of these qualities. The transition

to draﬁings can Ltart with slavish tracing.of these objects and then moves to
more general drawings, done by designed and composed tracings, and finally to
freehand. As a child progresses through the grades the zoo expands; in the
class of‘physical obJects, the types of drawings and the sophistiéation of
drawing methods, end the class of such abstréctions as line, ray, plane; circle,

polygon, half-plane, etc.

A greai deal of elementary geometry falls into the categories loosely

titled related figures and forming new fipgures from old. Such figure rels-

fions as inclusion, céngruenée, similarity, perpendicularity, and parallelism,
are standard, while others such &s equidecomposability, tangency, equicomple-
Imentarity, and interiority are less so. Ther; are also such relations as
"being the cenvex cover of", that is, being the smallest convex set containing
or "veing the flat cover of" or "the boundary of" or "the interior of", each
of these being a relation that is a figure functioﬁ. Here we propose to only
ﬁiscuss the five standard ones listed ebove together with the figure functions
"flat cover" and "convex cover". Forming new figures from cne old figure

can be done internally by decomposition (chopping, slicing, extraction) or

|
o/
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externally either by mapping the figure or by observing & decomposition it

forces on its complement. Given several old figures, new ones can be formed
by adjunction, union, intersection, end cartesien multiplication, Almost all
of these relations and methods are at least touched upon ir any treatment of

elementary geometry, and all will be considered here.

For these topics there are certain natural lines of investigation and

development. Consider, for example, sny figure relation and figure A.l To

find out about the class of figures so reiated to A, one first tries to find
some figures that ere in this class, or, failing that, to see if the.class

is void., If there are figures in the class, we try to find some criteria, not
too difficult\to%use, that will tell us whether or not a figure is in the class.
The rest of the job is to divide the class into whatever subclasses happen to
interest us. For example, if the realtion is inclusion and A is a point, we
can find line segments, discs, triangles, sets of three points each, blobs,

all sorts of figures that contain A, and maﬁy that do not. If we decide we-
are curious aboubt all the line segments thet contain A, we can ask what all

of these, as a class, are. What do those that have A as an end point look like?

- Among these, what are all those that are congrueﬁt to a given line segument,

end what is the locus of their non-A end points? What are all the line seg-

‘ments that have A as an end point and go through a given second point B? What

would their‘union be? What are all thoss that have A as an end point and their
other end points on & given line? Among the Intter which ones, if any, are
perpendicular to the line?

Similar gquestions cquld be asked about disce containing A, or triangles,
or square regions, Some answers might be dull, some interesting. We could
change A to two points, or three points, or & line ségment; we could change
the relation te that of congruence. The many questions possible will vary

in difficulty, interest, and generative power. The point here is this; given

)
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- figure relations and figures, one can choose any relation and any figure and
generate many guestions ebout the figures having thét relation to that
figure, and that leading children to generate, out of their own curiosity and
imagination, questions like these 1s a desirable way of their exereising and

There is somewhat the same freedom in building new figures from old,
For exsmple, in composing figures we are given a set of figures and certain

" ways of combining them. (In Kindergarteﬂ the figures are blocks or cutouts,
the ways are unrestricted.) There are two'inputs here: a set of figures,
and a method of combining them; and the output is a figure, Given any two
of these, one can ask for the third; for e very simple exemple -~ I have four
pipe cleaners; how can I connect them on this table-top to make a tree?

To make & tree with tvo limbs? Or: I have  congruent squares connected thus:

]

How can I fold them to make an open top carton? Here the set of figures and

- the resulting figure are specified, and part of the composing is partially
restriwtéd (the squares are connected); the rest of the composing is to be
found. Or we can be giver a figure, say a rectangular region, a method of
combining (tiling), and‘be asked to find those plane polygonal regions each
of which will tile the given figure. Or for example, here is & cylinder; the
method of composition is cartesian multiplication: find two *igures that
80 compose to form the cylinder.

There is a similar situvaetion with decomposition. Let ¥ be a figure, say

a s0lid cone, How can it be chopped up or sliced or decomposed? Can it be cut
up into balls? Solid cylinders? Can it be sliced into discs? Conical paper
hats? Circles? Line segments? Points? Two congruent figures? Points and

,1ine.segménts? Cbviously there are many possiblities.
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|  DEVELOPMENT |

Figures

Play with blocks and other figures in the list of phycical objects; on these
identify faces, edges, .corner points, Discussion of roundness, straightness; and
lflathess. Sorting of figures, Ball, sphere, brick, box disc, circle, line seg-
ment, three and four-sided plane figures, rectangles, squares, points;
equilateral, and right triangles; tetrahedra and polyhedra; both surface and solid,
These figures found, then made from paper, cardboard, clay; for example, folded
péper to make straight edges, points, and square cornexs. Polygons, closed poly-

- gons, fegular polygoﬁs, simple closed plane curves,

A given line segment is part of many line segments; taken all together, these
make what is called a straight 1ine; similarly two ways are determined by the given
segment, Any triangular region'is included in ﬁany other such regions;_the union |
» of these forms what is called a plane. Angle can begin crudely as the trace of a
corner of a plane region énd become the union-pf two line segments with common
- and point; right angle starts withla square corner and later is either part of
any'biséction of any straight angle.

Cyliﬁder,.priSm, cone, pyramid, wedge, and torus, and their solids, start
as named physical surfaces and blocks, and later afe viewed as the unions of
collections of lower dimensional figures, and as cartesian products where that is
possible, The conic sections appear as such as also as loci. Annuli and annular
regions, Moebius strips, tream, kﬁote; composed figures,

Ficure relations

Develop from the beginning the idea of ome figure being contained in, or

~ part of, another figure, Faces and edges are parts of blocks, a squiggle‘on a
face is part of the face and part of the block, There are manybline segments
and many points contained in any line segment, A disc contains many discs, line
gegments, square regions, +ss and is contained in many discs, rectangular

regions, ., Determining a11 figures of a particular kind that contain (are contained
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in) a particular figure; later vailse maximality questions about these figures,
Ordering by inclusion should begiﬁ early, be not confined to similax figures,
and should progress from two fizures to finitely many to nested squences of
figures., Intersections of pairxs of 1D and 2D figures, physical and draun,
Intersection of line and plans, plane and ball, etc, The intersection of a
decreasing sequence of line segments, of rays, Intersection of a finite number
of half-planes, half-spaces,

Given any fizure, by drawing all line segments on pcint pairs in the figuxe
léad into the smallest convex set containing the figuve;roplacing line segments
by lines introduces the smallest flat set containing the figure. Find these
smallest sets for certain cases, including figures of two points, three points,

and four points, Given a convex set, what of it can we erase and yet recover

the set; extreme points for discs, balls, tetrahedra, polygonal plane regions,

mixtures,

Congruence begins as the motion of two physical objects fitting precisely

' 'in superposition, translates into the idea of two drawings that can be fitted

together precisely, and ends with there being a rigid motion that maps one onto
the other, .Finding, then making, congruent pairs of physical objects (straight
edges, folded paper, cut-outs); then, given a physical object, to find or make

a physical object or drawing that is congruent to it; then, given a drawing, to

- make a congruent drawing, for line segments, right angles, circles, angles,

- polygons, Always begin with free copying of figure, later narrowing to restricted

cases, Bisection problems, first using string and papex foldihg, for iine segments,
angles, discs, rectangles, some triangles;
Perpgndicularity can begin with the edges of a paper square corner; tracing
in a plane leads to perpendicular line segments and then to perpendicular rays
and lines, Two coplanar segments, rays, or lines are parallel if they have a

conpmon perpendicular, Construction of perpendiculars and parallels, unrestricted
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or through a given point, using square . corners and then straight edge and ccmpass;

. Using blocks and paper square corners, introduce idea of a plane and a line being:

perpendicular, Follow wit parallelisn for twc‘planes, a plane and a line, and
two lines. Look at relations between parallelism with the property of either
coinciding or not intersecting., Perpendicularity for two planes.

Similarity.

Composition and decomposition of figures

tangles, parallelograms, etc.

Composition of figures should start with fr?e composiﬁion of physical objects,
including 3D, 2D, 1D and 2D-in-3D figures; then ask for\pertain figures to be
composed, Later have free composition of drawings and free hand drawings. In
the plane make polygons, curves, trees; compose line segments to make such
standaré figures as isosceles equilateral, and right trilangles, squares,_rec;

&

Adjunction of line segments to make a line segment, of angles to make an
angle,.of'some polygons to make a polygon, Tiling of line segments on a line
segment, of angles in an angle, of polygonal regions in 2D regions; the integral
number iine and the integral number plane, Tiling 3D regions within a 3D region,
Folding 2D cardboard figures to make 2D-in-3D figures: first free, then pre=-
scribed, e.g., four congruent equilateral t:iangulér regions to make a tétrahedral
surface, or five congruent square regions to make an open box., Given enfigured
cardboard, to cut and fold to get preécribed 2D-in-3D figure.

Do much decomposition of figures into subfigures: first free, than re-
stricted; use string and paper, then drawings. Example: here 1s a rectangular
region ~ can you fold or divide it into two pieces that fit each other exactly?

In how many different ways can you.so divide it? Decomposition of .a particular
figure into particular subfigures, Folding of a paéer triangle to show that the

angles of a triangle can be joined to forxm a straight angle. Decomposition of

line segments into points, rectangular regions into congruent line segments and
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fnto points, discs into circles, solié cylindew into congruent discs piled

along a line segment and {into congruent line segments attached over a disc, etc.
Tntroduction of cartesian product of two figures, Analysis of certain figures to
sce if they are cartesian products. Decompositions of cone, pyramid, wedge,
ball, ete, into line segments 1D-in-2D, and 2D-in~2D subfigures. Start co-
ordinatizing, bywlength, on line segment and circle, then on cartesian product
sets in 2D and 3D; cylindrical and polar coordinates. Simple equidecomposability

problems. j ‘

Begin separation phenomena with ninside” and'outside’of rope circle, stick

frave, cardboard carton and sphere. A simple closed curve in a plane separates
the plare, anﬁ so does a line in the plane, but differeqtly; similarly for a
plane and 2 simple closed surface in space. Obsetrve th#t 2 points can be
‘separately'enclosed by: line segments in their iine, discs in any plane con-

" taining them, and balls in space. Intersection of haif-planes and of half-spaces.
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| Section I - Chapter 2 -
\‘ ~  FUNCTIONS IN PREPARATION FOR CALCULUS

A Point of Vlew

If there is somethlné that distinguishes the p01nt of view of

this working paper from others being written at the conference, it is

| conta%ned in the assumption that children can imagine things they can't
vtouch or even see, It is not a simple matter to make such a charac-
teristic come clear and be explicit, because probably it really isn't
'explicit at all but rather implicit in the way one wquld write and
teach the mathematics jtself. To begin with the obJects of this par-
ticular discussion are functions, and when you try to look at a func~
~tion it becomes shapelesé, or falls into fragments, or hides behind
& name, Or assumes some Spurious forﬁ or other. Worst of all, it

finds a haven in the bosom of the sophisticate who doesn't see any-

£ it

i
|-,

..

- thing especially hard about a function, But Just try to dissect and

. examine a function that is et all non-trivial with only the resources
of the unsophisticate,'Say e K-6 child, or your lawyef, or your wife;
or your engineering friend even, and you'll quickly reach an unrevard-

ing point of diminishing (ed) return.

It mpay help in getting a discussion started to assume that every-
body is hopeless in this regard except the éophisticate who knowvs
more about functions than we do, and Just perhaps the X - 6 child,
too, who still has the time as well as the curiosity to entertain,
and even ask sone sensible questions in a context (meaning 1eaxning
gsituation) consisting of the universé of functions. 'furthermore,
the K - 6 child can be force@ to listen to some information and learn
C‘,? o ——-4t, he'll question without quarreling, .he'll wander off and doze

from inattention and fatigue rather than from prejudice and disdain,
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end he'll command‘a lot moré sympathy énd worry from his teacher
than’an&bo&y else does., Functions are the ingredients of calculus

so we must take advantage of the little kids' wide open eyes and ears,
their trusting attitude, and subtly or overtly (as suits us) bend.

their thinking to our will,

The study of & particular function may be considered in two use-~
ful aspects, globél and local, Some g%obal properties are size (car-
dinality of the domain set), periodicity, existence of an ‘nverse
(one to onewmess). Local properties at the beginning are limited to
single domain entries, or perhaps to small grou?s of them; in the
story function "Snow White" has a happy ending, Until children have
enough number work to know about fractions, or!get & feel for the num-
ber line as a continuum so they have dense sets to use for their domains,
there's little point in belaboring local phenomena early. But even

vhen measuring with a ruler marked in inches, say, it could be noticed

that something might happen near the middle of the ruler contrasted

'with'what§might happen way out at the ends, The idea of & neighbor-

hood, thus topology of a domain, ought to come in as soon as it makes

sense,

To reinforce the funection as an entity, it shouldn't be difficult

(returning to the global view) to compare functions, classify them,

- find sub-functions, compose them, and, as soon as some structure is

found in the domain and range, produce an algebra of functions.
Numerical-valued functions produce examples of these things most
readily and are ultimately especially useful for elementary analysis.

Purthermore, practice with arithmetic, that,is, the "facts", familiarity
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with fractions, decimals, etc., can be hung onv‘a framework of the

 gtudy of functions, OSimple counting is a successor function, addi-

tion is a function on pairs, numeral is & function on numbers to names,
equations ere functions on mubers to true, felse, This is not o

say that everything is & function, but that there must be continuing
exercise in the recognitiqn of those things that can be viewed es
funqtions for some use or Just for fun.

Still in the global view, suppose that children cen add and
multiply ﬁhole numbers, and that there ere ten'kids in & particular .
group. Joined in a circle they count eround and each child collects
the numbers ﬁhat he himself says. Then they pﬁir off and add each
othérs' nunbers, each time asking who's got tﬁg ansver. Each pair of
children will find a "sum" child who goes witﬁ them, and the homomor-
phism this game generates can'giVe'exercise in additiqn of numberé'to
begin with at an eariy stage, and ultimately, at a later stage, a
rofmulatioﬁ of the Euclidean algorithm and uée of residue classes'of
integers;

Pict&res are essential in ell function study, and included as’

plctures are tebles with connecting arrows, graphs, facsimilies of

" physical setups, equations ~ anything by way of a record which collects

data about a function and optimally suggests exira properties of it.

It should emerge in the student's mind, over any sequence of lessons
and over the years representing arms of the learning spiral, that &
function is a mental construct that is only represented in part by any
"picture" and can be attacked definitively only by mathematical reason-
ing. Or better, by reasoning ealone, which reasoning can be called
methematical when and if it produces definitive results about the func-

tion. For small finite functions, the exhaustion of all possible cases
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. is mathematical reasoning. For large finité and infinite functions
...-the mathematical reasoning assunes its essentlally distinctive‘charac~
. ter, end by this we mean relies on the techniques of logicel qualifica-

- tion. By sixth grade, we might presume, most normal children shéuld

" begin to sense this and, hopefully, ve intrigued by it, The inter-

- pley between plausibility with persistent skepticism and rigor with

 finslity, recognizing all the time the use and peril of both (how they
on the one hand reinforce each other, and on the other hand get in

 each others' roads) is the main objéct of the study of functions, from

- the beginning of a curriculum. Within mathematics the narrow use of

. functions as & foundation for calculgs,is secondary, but, in the pre-

- sent instance, controls the direc%ibh of the exercises.

3
§

. bmoTIONS Tif K - € IN PREPARATION FOR GALCULUS

' Bome Suggested Directions

We begin with the hypothesis that functions should be shown to
':children vhenever the opportunity arises, end that there are such
opportunities at every stage of their school experience beginning in
kindergarten. In class periods devoted to mathematics explicitly,
““examples of functions should be observed elong with exemples of geo-
xmétriévthingé and numbers. Outside of mathematics lessons as such,
—Arﬁnctions and the terminology associated with them occur frequently,
are widely appliceble in virtually all subjects, snd should be built
"into the vocabulary'and expressions children are taught to accumulate
wéﬁd use., The concept of a function is of eoﬁrse important in its own
k“figﬂi:wizmis'éf use more broadly than Just in mathematics, and as &
device for teaching it mekes use of all the objects thet arise in

mathematical work for its illustration. As correspondences between
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sets of things are observed end practiced with, these sets of things
end their members gain structure and life especially asg techniqpes and
terminology are developed to treat both the structure of these sets

inuternally and their relations with each other,

It;is the purpose of this brief essay to suggest ways py which
functions may be brought into the experience of children inlthe grades
K« 6 and also discovered in and extracted from experiences they al-
ready have or ere heving in cther act1v1t1ee wﬂfhln or out51de of
school, This may ba.very unstructured and undifected to begin with,
but by grade 6 ought to be strongly influenced by and po:nted toward
the theory of functions as mathematlcians know'it and use it., This is

not to say"that the function idea is an absolute trunk of the tree of

athematlcs from~which 8ll else branches out or that all else in the

- mathematics currlculum has to be connectea with or related to it in

detail ‘but such = metaphor as this might aptly con51der function to

- be the 1ife blood of the tree of mathematies. We make thls remark to

hedge agalnst the accusation that we view the introduction of functions
at the outset as a cure-all for the ills of mathematics curricula. We

do not, any more than should we view a preoccupaetion with sets or with

binary numerals &s such a panacea. But functions are fundamental in

methematics in its broadest definition, simple things about them are

understandable by YOung children, they come in a wide variety, and

they are interesting.

If children are to be expected to buy this package - a study of
functions jntervoven into their general studies - we better lay in &

store of sspects of them which are interesting in an open-ended way;
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That is, ultimately féscinating. What these are can be discovered

| cnly by experience in teaching them, but one way to begin is to go
out on & limb end cnnsider some characteristics of functions that in-
terest us and which persistin doing so the‘moré intensively we inves-

tigate them.

Tyaditionally, functions have been introduced one by one, the

graph of each one plotted, extremenvalués of each one formed, problems
posed for which a singlé function is‘useful in each case,tand SO on.
Only much later, in fact never in the experience of most non.math
majors, are classes of functions viewed as detqrmined by properties of
the functions thenmselves, functions as objects{ Yet this latter point
of view may be the easier one to start with for children, and we will
explore this attack in what follows, Any non-trivial function is épt
to be intricate enough to demand considerable skill with formulas

| (meaning ﬁathematical symbbllism quite generally) in order to study iﬂ,
Aand so we propose that initially functions be talked about as objects
roﬁghly in the same way squares and circles and numbers are, To lead
toward this and support it, then, work in geometry, arithmetic, and
algebra should include emphasis on linear order, nesting of neighbor-
hoods, and other things appropriate for the later study of local pro-
perties of particular functionms, when problems in analysis are studied

‘with greater precision and in depth.

As targets beyond the K - 6 range, one might consider what pro-
perties of functions. properties of their domains, and what devices
L . for examining them, ought to be built into the experience of students

in order that they can tackle an honest treatment of continuity of 2
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function on the one hand, say, and ou the other hand.a vector space

of COﬂtlﬂ“GUu functlons. The reader can make & &iut of such ingredi-

s,

ents for himself, 1t is not brlef bux we belneve he wxll discover
that many of these elements in the study of function are 1ntuitvve
enough bo children to be $iscussable with them in the K- 6 ages. As
we noted above, the overture must play on the theme, & functlon is a
funct101 is a function, and let the resolving power of instruments in-
vented to examine particular functions increase at & somewhat deliber-

ate pace.

_ Children leemn new words every day. th noi ieann a nen function
every day, too? It Wlll reenforce the notion of 8 function as an en-
tlty to be examined for its own characteristlcs end to be compared,
contrasted w1th, and related to other functions. This is 1mpo*tenb

a functlon should emerge as an object. Each time a functlon is pre-

)

¢
e’

sented there should be enough d15cussmon (or play) with it to identify
1Ls domain and range, the rule whlch descrlbes what the correspondence
inherent in the Eunctzon is, and some kind of picture of it. Tneee
observatlons should become regular exercises; Just as we would expect
no do some. readmng, numbers, geometry, and other thlngs practically
rery day, we would do some relatlng and correspondlng, too. Let us
insert imege and pre-image, inverse functlon (one-to-one correspondence),
composition of functlons, and cartesian product of sets into the cata-
llogue of thlngs to be dealt w1th from the beginning, end see how these

notions might be talked about in, say,klnderge*ten and first grade.

Lo

Ask each child in the class the name of the street on whlch he

lives. If soneone doeen't know, have him fmnd out and report tomorrow.
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Make & table everyone can see and connect the names with their correse-
ponding streets. Likely more than one child lives on the same strect.
Some observations would be: |

Are there more names than streets? (cardinality of sets)

Which column is "Joe" in? which iz 25th in? (Domain and range sets)

How did we know "Elm" goes with "Eve"? Possible answers, "We asked
her s OF ,'You drew 2 line between them". (rule of correspondence)

Who lives on Broadway Street? - (pre-image)

' /
What shall we call this game? (name of a Apnction)

V

Just & few obgervations of this kind are enough. The next day
enother game like this, when played, may generatF other questions but
.graduélly the kinds of things seen in such exeréises should classify
themselves into stock questions about functions that arise over and
over again. These eventually come to‘define the nature of the'eﬁfiﬁy
called & function, but ‘there is no hurry about it. A chila nay play.
wlth blocks for many years before the naming of a cube, "cube", adds

- more to his knowledge and mental versatility than it detracts by appear-
1ng'to compiicate a familiar and clearly simple configﬁration. Thus
with functions, the indoctrination process must be gentle and seductive,
the objects themselves entering by the side door, so to speak, Only
~much later on (by grade five, perhaps?) can they appear as actors on

the main stage, listed on the progranm.

' The simplest elements of a function are the existence of two sets,
| one of them favored over the other, and & decision process attached to
each member of one of the sets; domain, range, and rule. The decision

process is to bz unambiguous. The exumple Just cited contains the set
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of students, the set of streets, and the rule x lives on street Y. It

‘also contains a non-functionsl relstion if the preferred set roles are

reversed, and this appears when two children live on Elm Street, for
instance, and it is réquirgd to specify the peréan who lives on Elm
Street; The situation is different when there is doubt about what the
answer éhould be. Certainty and doubt can distinguish between iunc-

tional end non-functional relations.
j |
Some functions which could be used for thelse early exercises are,

\

to begin with, posgessions of the children, thav is, a commdn:domain

9.

could be the set of children in the class, "Belonging to" is a familiar

|

ides in the context of personal possession
. 4 f

child - his birthdsy |
- child --> his coat
child —> his desk (where desks are distinguished in some way)

child —> color of his house | K

A function on a set to itself arises when choosing partners for

,prbjects dene by couples. This example generates a function-making

machine as partners are chosen in different ways. Thus

child —> his partner = Tuesday's choice

child —» his partner Wednesday's choice
and these are different functions, Tuesday's choice # Vednesday's
choice. We remarked earlier that the assignment of a name to a par-

ticular function tends to emphasize the possibility of its existence,

and the present example illustrates this,
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At some place along the way, at 1east as soon as these matching up
games become expected and femiliar elements of the "gctivity space" of
school, some generic name should be used to refer to them. "Function"
is the only candidate, apparently. Our hesitation or this point stems
from two misgivings - one the agrtificiality of injecting a stranger
(the WOré) into & comfortable family (the games), the other the sheer
ugliness of the word itself in bo%h appearance and gound. DBut this

has to be done just as soon as more is galned than lost by it. A

~ tentative éuggestlon is to observe that in some games there is a doubt

gbout the outcome,

Who ljves on Ela Street? Either, Susie or Joe, whon did you mean?
]

‘and in others there is no doubt at all,

Where does Joe live? On Elm Street, certalnly.
In cases such as the second of these the teacher can let fall the
utterance "function" each time, but teke care to avoid its use other-

wise,

As e preparation for the introdﬁction of funetional notation the
children should gét used to talking about the function games with names
for the functions themselves, &as we have been emphasizing, and a.Long
with this they should use some rudimentary form of "£(x)". This might
start concurrently with reading end writing exercises, SO that a writ-
ten form of the record of the street game would include statements‘such
es, |

Joe's street is Elm,
which would later be written,

The street for Joe is Elm,
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sooner or later to become abbreviated to

.. Street{Joe) = Eln.

‘Up tb the time at which geometric objects and.arithmetic are
’éymbollized, then, children should be led to experiment with those
;éspects of functions described by domain, range, rule, image of d do-
mein element, and to understand that e function (if only perceived as
Pé particular kind of geme) can be described in writing. We are not

tﬂina position to specify when this stage can be reached, but we are
:ﬁroposihg that the children be made ready for, end be given the yocabu-

lary to use in, exercises of the following kind using "numeral” end

s

"place holder" symbols.,

-Nﬁmerical»valued functions have been encountered, presumably,

'-jbefore much arithmetic has been done., With arithmetic available in

<

the range of such a funcﬁion, éxercises with functions can be e§tendea
;§ their algebra. An examplé éhould be sufficient to explain ﬁhis
here, many examples necessary to explain it to & class. The g$§§~-
office provides one of these, Consider all packages in thg sigéé of
fi@#éé; -Thé'lenéih function L assigﬁs‘a nﬁmber, which is tﬁe largest

of the three dimensions (in the usual sense), to each package

L package.—4> L(paékage)

The girth function G picks out, for éach package, its girth in a plane

mﬁerpéhdicular to the exis of the dimension L(package). |

| 'G: package —> G(package)

SincéiL(paékage) andvé(package) are numbers, uniquely assigned to each

'package, their unigue sum is assignable to each package and a new func-

tion is born. By the time this kind of game is femiliar, the need for
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record keeping, that is, writing things down, might support the plau-

sibiltty of the name L + G for this new function.

We do not address ourselves, in these remarks, to the cénstruction
of specific lesson plans for the teaching of the example in the last
paragraph. Ve do plead, however, for the inclusion of an exercies of
its kind Just as soon as the function game is understood and playable,
end right along with the study of additicn in arithmetic. It (and )

_ many oﬁhers like it)* should be presented to the children'as soon as
it can be made comprehensible to them for several regsons, amonnghich
we observe that

1. ié does something with functions beyond viewing them just
oné by oﬁe, |

2, it introduces e binary operation in a set of abstract (sic.)

things,

3. it contains a reenforcing review of virtually all that has
| beeﬂ said sbout function prior to its occurrence,
| 4. the record keeping associated ﬁith it focuses attention on
fhe pairvise notational distinctions between x, f, and f(x), in what~
é#er symbollic guise a teacher may prefer to write them,

5. 1t is the kind of process that can be repeated with variations

of content, reemphasizing important ideas in = sugurcoated drill.
? P ]

It can be decided only by trial im the classroom whether the
alge.ra of functions is & more or less primitive notion than is their
.composition. Composition is the simpler in that is has fewer ingredi-
—ents (no operation in the rsnge is required) but it may not seem so to

s G S0 SR G5 SRR S GBS B S Y VA Tion f

®Whenever measuring is done, a function (object —> its measure) is in
use. See "Circular Functions" for an example of how measurement can be
exploited.-

<y
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. - the beginner, However this may be, composition games should be played
-~ @g-soon &5 composable functions are at hand, and notation leading to
fog(x) = f{g{x)) worked into the record keepine apace. Examples are
easy to find, for instance
child — his stréet —>on bus line, or not
child —3 his desk —> number of pencils on it
package ——3> length plus girth —> amount of postage.

The first two are kindergarten exdmples; the last combines addition

with composition in the same illustration.

We are influenced by aims moie lofty than just keeping primary
gchool children busy, andttwo of these serve to direct our thinking at
this point. WMapping structures by isomorphism is one of these, and
recogznizing a tOpology in the domain of a function to support analysis>
(ca;culus) is thé other. When the function concept is useable, and,
in pérticular, when functions with inverses (one-to~one correspondences)

. are recognizable, their isomorphisms end homomorphisms should be acces-
’sible gt least by example. This is where algebra in the early grades
could start, and here is vhere a pre-algebra essay should be written.
.We are tracing pre—anglysis nore nérrowly here and are shunted onto
the other track, which means that wé devote attention to linear order
in the number system and, through measurement, nesting of intervals

ead regions.

We understand that "inequalities” and their "solution sets" are
 already in the vocabulary of primary school children. The'"conjunctive"
...inequality . e e

adx<dbd
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T < - . .should de included,';f.it isn't already, and problems worked which lead
o S miwm;to.names for intervalsLW With this preparation, a real valued function
-0f & real variable (actually limited to rational~number§)»can be seen
to create a set function., What, for example, is the'image of the in-
tervel &,b ]ih the function f£? "Nﬁmber lines" and graphing are by now,
we sssume, familiar, so the notational record keeping can be bolstered .
by graphs. Graphs, it must be noticed, are often inadequate and it
should be emphasized by éxamples that it is ihe reasoning that really
counts, Consider the image of (0,1) in the function |
£: £lx) = %’ 0,2
vhich is‘not graphable.in totb on the usual réétanguiéf coordinate
- } |
scheme, '&hat image does exist, however, as an open intérval and is
visuaslizable on a\differentvkiﬁd ¢f graph, say by:polar projection of
i@’jj L 'fhé plane onto a sphere.- Children should be‘brought fo}realize fhatA
- | it is the mapping which contains the content of such an exercise and

'that the graphs serve only as visual iodels helpful for‘keeping things

straight.

Whether explicit calculus prpblemg.pgn be»intrpdugg@ py phg sixth
grade or not.qan be learned only by trial in the c;assroom.k Wg con-
- elude these remsrks by suggesting some projects vhich(might;be tested -
',thé projects being under examination,_not the students. Consider the
- Polléying simple, indeed somewhat crude, example of an integral opera-
tor.A Let £ be a linear function {real valued on a resl interval and
.ndgheré>negative); so that the region "under its graph' is a trapezoid.
A Thé area of a triangle béing eésy tc compute leads to»the cbnétruct—

“ability of the new "area function".

b
g: dx)=J%Xf a<x<b
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| wvihich caﬁ be.giVen tﬂé notationally reasonable designation'f;. Any
iff)“ | | - such iihéér fﬁncfibn can be thus integréted, and the operator:f; ap-
| pears in the role of a functioni It tould s'eem that curiosity might
erise as to the possibility of integrating a quadratic function, and
i‘ the difficulty encountered in computing values of,f;f in this case
 (assuming the skill of the teacﬁer is adequate to the task) could moti-
g-‘ | . vate a more intensive study in later grades of area as a measure of

the size of a region.

In order to illustrate this in greater detail, suppose a large

collection of rectangles, each member of vhich has the same altitude,

is arrenged so as to appear like

1

1=

A < L .
’Q;)ﬁ This can be interpreted as a picture of any one of several functions,
Rectangle — length of base - ete.,
and, in particular, look at the functions
S = Length of base _§> altitude of rectangle = H(b)
b = Length of base 4ﬁ9 area of rectsngle = A{b)
Partial {ables of H and A are,
b H(b) b A(b)
2 1 | 2 2
3 1 3 3
4 1 b L
and these functions have, we suppose, been given names heretofore, so
‘ . ._ | vhat we see is the relation between functions H —3 A. Relations

vhich symbollically look like this have been given names before, so why

[y -
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not call this relation,/ﬁright avay? Thus

EA

And why the curious ogive shaped symbol? Well, why not? With suf-

ficient "preconditioning" for freedom in the use of symbols in games,

it Just may seem to be fun.

A sequence of examples which develop the-f\relation is fairly di.
rect now,. If.fqmaps the unit function to the identity function, it is
reasonable to inquire what it does to the "o" function and other con-
stants, The perplexing problem of notatlon is hard to decide. Per-

haps eventually & tabulation of the form

H | a=/n

I° I
21 ‘- 21
kIC ' kI

or some adaptation of it could serve to preserve the essential function
aspects of the traditionai statement~j:x kdx = kx. Any notation what~
aver inJects irrelevant features into the things it stands for and
exacts & price for its practical utility. As it lends clarity to and
fecility in the use of its objects, if actually does in math classes
usurp too much of the primary role of the thing it denotes, ana yet

this primary role cannot be played without symbollism, very likely can-

" not be even conceiv¢d7withbut it. Unresolvable dilemms!
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- Continuing along e scala of functions, try trisngles next, They

‘TjLﬁV;mﬂ .. take on the.appearance of .. | - A
o , ,//J
: 1
- /’i
w// i
: - | 2
;
/Z 045
) i # {
=
- e ey LA
leading to the two functions '
b H(b) b A ()
1 2 1 1 \ |
2 - b 2 Y
o3 6 .39 |
 where H is the doubling function, A = 21 and Aﬁis the squaring function
A= 12. Thus.[;l = T2, Further trials with other sets of right trie-
4wiy> - | angles nested in this way would lead to the function relation described

byf kI = 1/2k12.

It is hard to say at what point, or in what direction, to branch
off into ?ther important aspects 6f integration, be they substantive
or notatiénal, but any such next aspect ought to be, while simple

ehough to be accessible, clearly non-trivial. Extended scrimmage is

‘pnecessary, but it should never to'too long between games.

e W N - N e e s PO -

Suppose the last example is reversed, i.e. given the identity
] . A
‘function, what sort of diagram would lead to its image under,!? This

.pwesupposes'simple elgebra and graphing, and could go as follows:

Let £ (x) = x 0%£x %3, and picture the function on & graph.

Three right triangles can be put in the fipure so it loocks jJust like
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e the last one drawn above, | A
Sulb} ~ Graph of f 1
~ A \
[] i
t
]
)
{
, | 3 |
This is nothing new, Suppose other triangles were nested in the dia~
gram as before, but of different sizes, does the image of I under vf‘
cone out to be 1/2 Iaindependently of how big the triangles afe? At'
this place the "arbitrary typical" triangle, measured in formula lane
) guage'would yield,
b  E(b) b A (v)
x .ox | x 1/2 x°
which, by some mental slchemy, should transfer to
§)
I—>J1=1/212,
‘ yﬂz; 1 The hope (pious?) is that this last sentence says more about the nature

’of'the_f‘relationship between functions than a compariscn of the par=

tial tebles for T and 1/2 I aid.

 Remember, we hold no ﬁarticular brief for the nomenclature in
_which this is being written at the moment, but only that something has
to be put on paper which indicates a route through function aﬁd into

caleulus (end of disclaimer).

After a similar referral to the rectangle casé, i.e., starting with
~ the function kI° and reaching\jﬂk1° = kI independent of how the rec-
tangles are inserted, we proceed consistently starting with f and aiming
Atoward jnfa Here is a place to vary the domain of f and get a version

of the definite integral of f.
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Suppose f: f£(x) = 2x, 34x £5 with graph:

,.-..---.\

‘ 3
We compare the height and area functions as before, first by a few

 cases, (using trapezoids)

X H (x) X A (x)
3 6 | 3 0
L 8 L. 7
5 10 | s 16

and it's not very clear whether we have seen A before or not. This
mey be an object lesson in the power of e more general, symbollic method.

Look et the figure

| 2x
j
i
| ' R =3
The erea function ought to have the formula

f

AN

~
---.-‘-ho-

/
s

s —> A (x) = ave. cf altitudes x base

1/2[6 + 2x] (x - 3)

= x2 -9
(or 2dd the rectangle to the top triangle, or however the kids get the

area of a trapezoid), which can be recorded in this case as ff = 12 -91°,

By now there's enough variety in life to require some cataloguing.
- Buppose several trapezoids like the last one have been treated, all with

tor ; taken from 2I,
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£ 't |
o1 | 0,5 1@ -+ [0,5]
o1 - 3,5 12 .91 [3,5]
. 08 12 ~ [o,81
o - [3,8] 12 - 91°  [3,8]

end some more like this. Apparently the area function corrésponding to
2I, on some domain, in\f: has the same domain end changes form depend-

ing on the initial point of the ddmain.; It is reasonable to agree on a

distinguishing symbol, and write { oza<b) 21, [a,b] £25far = 1221,

[3,‘13] '.

_We have tried our hand at the invention of examples leading to the

'derivative of & function but only with questionable success. However,

the idea that is embodjed in the words "how fast", some version of it
et least, must exist in classroom K. That some things go faster than
others is obvious to the very wee children, and so elso they see that

some things grow faster than others do. Our aim is to get them to use

| functionsﬂ measurenent and numbers to quantify the idea, to define it

and, ultiﬁately, to relaste it to the rest of calculus.,

In the spirit of this paper it is presumed that any class of kids
is stockpiling functions, and should soon have useful ones lying around

for whatever purpose. . Exactly which functions would best serve the

purpose of pinning down rate at the becinning is impossible to say

vhen thinking in the vacuum we are here. However, it would seem that

- & class might compare the heights of two (or more) bean stalks recorded !

o ey
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- day by day to get tables such as

-day | . height I height IT

1 1/2 | 0
2 o 1 | L1)/2
3 2 ' 11/2
e 31/2 3
5  sue 5 1/2

_wherein the first plant started first but grew more slowly than the
gecond. These are global observations. There ere others, too, such as

the.mqnotaﬁicity induced by the nature of the experiment.

In the context of "how fast" if would probably occur to a claés to
' i ask "hqw much growth each day" and this leads at once to first differ-
ences. Thus local behavior of the functions can be observed with a re-
solution limited to one day. Doubtless this work would go along with
the: area studies of Section 2 and a graphical record could be kept.
It'will help to move the project along if weekends are included so g

couple of days are skipped nov and then. Graphs could dbe

:WEB@QErwfu R wﬁ“r"' . I SR PE AL ': " R




Chapter 2 . | ) | 22,

with points Joined by line segments, In order to get the daily growth
over the weekend, a difference quotient would necessarily arise, so the

daily rate measureswould be recorded as

AL Anx
day Aday I Al A day 11 AII  Aday

1. 1/h 0

3/h 3/ - 1/2 1/2

The points to notice being that the first differences meaSureyhow fast
~; the plants are growing and that fhese aré usefﬁl as long as the time
intervels are the same, but that over the weekend the time interval is
different and to get a useful consistent measure of “how fast" the
. difference quotient is the better. On the growth greph, this ratio

appears &8s the slope of the line segment dvervthe corresponding time

intervel.
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G;jwi. | . More genersally, one might have thevstuéénts sketch & tangent line
| on the graph of a smooth function, . measure its slope and thus construct

a rough approximation to the derivative function, and with fhis back~-
ground illustrate what the derivative operator might.be. In a context
of mechanics this activity can be viewed, quite properly, as s graphical
study of rate problems and is all to the good. However, in order to pro-
ceed closer to the "pre-analysis" line, gttention should be given along
with this, if not before it, to "inverseiimage %f intervals" gemes. These
games shbuld ultimately céntain the quéstion, "Given f and the interwval
I in its range, what are sdme intervals in the domeain of f whose images
are contained in I?" It is epsilontics readiner that we are creating,
and there is no. escape from the necessity for ié. This technique, and
the concept it treats, in whatever form it eppears, is the distinguishing.

3£ﬁ£> - characteristic of analysis and must be faced sooner or later. The sooner

the better.

By siﬁth grade what else should,'and could, be done to prepare the
children foL calculus? Sequences have not been mentioned here?.and per-
haps they ought to ﬁe. Experience with college students underlines the
need for preservation of the greater openmindedness they seem to have
haed as children. Presently students seem to have been conditionéd to
get en answer to a given math problem by e well-léarned procedure, in a
small finite number of steps by a small number of deductiouns. True, it's
easy to find the tangent line to a polynomial curve by the naive process -
‘Just write a new polynomial (derivative), evaluate it to get a number
(slope) and substitute into the point slope liﬁe formula. But this

»ﬁkwia aevoids calculus. To generate curiosity sbout the exlstence of a tangent
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line, or more basically {%s very definition, and to generate a notatioral
technique that facilitates such & definition more than abfuscating it is

a matter of & A1 fPerent order,

So perhaps, < & much lower splral ernm, it may loosen things up to
start with some practice with sequential problems, such as:

Find a pqint on the number line (not 0) closer to 0 than 1 is.
Find lots of these and 1list them, How close to O is each of these ans-
wers? Which is the closest one of those found? Find one closer than
that, etc. As soon as possible this must be done more systematically,
by use of formulas, but to get less trivial cases, such exercises éhould

‘pe extended to other points of accumulation than zero.

Ingroduce & measure of "oloseness", in the example above, say, 1/53

then find seversl numbers closer to O than that and eventually agree

“that if such a measure 1is e, theﬁ e/2 is still closer, and that e/2 is
one such number for each e, | |

Try nésting intervaleg; take 2 and let [1,3] be en interval con-

taining 2. Find several more intervals cogtaining 2 and compare them
(overlapping, nested, disjoint?). Look for & shortest one, and then
get one shorter than that., Given g find intervals shorter than e; all
containing 2. Play the "e game" - glven some €, £ind a point closer in
then e, or an jnterval shorter than-e. Ease with these games should in-
crease with familiarity.

' n-1
. Given the sequence n , it should be discovered that it is increa-

sing, bounded, and that given & measure €, the sequence eventually stays

closer then e to 1. The success of this process will depend on the in-
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genuity with which sequences and nests can be concocted which are sim-

ple enough and yet possess variety enough to be intriguing.

Before this palls and after the essentials of the test for a limit
of a sequence are familiar, sequences on two number lines can be com-

pared vhere the number lines are connected by a mapring. Suppose the
‘ n-1

St

lines are'x and Y with the mapping ¥y = 3x. For the sequence xp = n ,
‘what is the image sequence for yn 7 Lots of these. Compare tﬁe Ye

, games" on the two number lines together. The nested interval game near
x=0forys= %} and'for y = ﬁ'near iero should be interesting variations.

The object of this is %o build into childrens! conéeption‘of vhat

goes on in math some understanding of limit techhiques as & bona fide
part of the business along with the mﬁny other activities they come“to
feel are really math. This can be done with geometry, too. For example,
‘how smell should squares be if when_ihey are packed into a right tri-
angiéftheir total area comes short of the area of the triangle by léss

than e? For curved figures this e question could take the form, how

small must these squares be if the total area of the covering minus the
inscribed squares is to be less than e? Another proJect could be to

find end test by the e game a set of nested intervals condensing on 2,

These problems should sll be chosen so the e game can be played,
-~ : otherwise they are litile more than drill on arithmetic fundamentals,
' and the aim here is to create, as we remarked earlier, an epsilontic

.readiness.

2915-65
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Section 1 ~ Chapter 3

1 - APPLICATIONS

Mathematics presenté an intellectual challenge that is stimlating

to many, e#en to youngsters. This, by itself, mekes fhe subject interesting
and viable in elementary school even if it should seem to be void of prac-
tigal applications. However, the number of young students intrigued by"
mathematics, and the level of interest of all, is increased greatly if the
importance of its dpplications is made evident from the earliest grades.

' The arithmetic skills may be better learnéd while doing the very things
for which they are important, instead of through sterile drillo‘ It is then
important to do the calculationé speedily and accurately to get at the
interesting results shead, Also, abétract questions of sets and algebraic
structure attain inﬁreased importance if they lead to some technique and
pover that'permit one to predict the probebility of an event or the»motibn

of a particle.

‘Geometry, éspecially at the elementary school level, is closely
associated with its epplicetion to the approximately Euclidian space in
| which we live. The ability to describe, constrﬁct the objects that sur-
round us, and to predict the results of their composition and decomposi-

tion, is an applicetion of some immediate interest to children,

Functions and analysis are the tools of most of the applications in
 science and technology. The concept is introduced to youngsters in terms
of the physical objects for which the functions ere models ~ children and
classrooms, areas of figures, rolling wheels, particle trajectories. :
I | WMeasurement is an epplication of geometry and functions. It also involves

probability, itself an application we will discuss below.
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~ In the presentation advocated in this report, ell of the material

involves application. However, it is also our purpise to describe &

part of the eurriculum in which the topic is dominated by.the application,
which may need various types of mathematics for its exploration. The two

subJects of this type dlscuseed in sowe detail are probabillty and mechan-

ics, These two differ from each other considerably in the type of mathe-

| matics used, and also in the proportion ofkmathematleal concepts to physi-

~ cal or scientific concepts involved.

- Probability is in one sense a mathematical discipline, which can be

_axiomatized an¢ treated in the abstract. But when its-principlés are

evolved experimentally it is a problem in modelling - & central aspect of

- applications. Furthernore, snalyzing distributions of events and answer-

ing questions sbout expectations requires the application of the arithé

{metic operations, averaging, graphing, functions, real varisble, set oper-

at:ons, permutatiens and comblnations, nymmetry, and other mathematlcs.

The physical experlments to be done are simple, require only a little tech~

"nique, and can be associated immediately with some mathematical manipula-

tions. Some are has to be taken as to whether events are independent

~ generated in a consistent manner, and unbiesed by externsl factors. It

‘must be established that the physical events correspond approximately to

the assumptions of the model,so that the experimentsal, physical aspect

- must not be slighted. But this aspect is not as difficult as the speci-

nfically ﬁathematical problems involved in the probability unit described in

The science of mechanics demands a great deal more of physical experi-
ments in the classroom. In modern times there are few people who are in-

terested in mechanics as a deductive discipline, although in the nineteenth

U P A - SR o
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| century it was treated, at tlmus, as an extension of geometry. To abstract

the principles of kinematics and dynamics a long sequence of exnerlments

is required. Many of these involve painsteking measurement, but only triv-
ial mathematics. Friction, rolling constraints, the lack bf weightless
ropes, etc., introduce many complications into experiments that would other-

vise lead more directly to simple mathematical formulation. The temptation

pust be avoided of drawing conclusions vhich the experiments ectually per-

. formed do not indicate. Instead one must do more difficult experiments,

get along with fewer results, or use guesses as vorking hypotheses. In

this last case, the experiments pérformed up to the time of making the

hypotheses only indicate the hypotheses as possible extrapolations from
-the data. This is only worthwhile if one can eventually predict from the

; ' fmodel, perhaps after considerable mathematical reasoning, events which ran

be verified by experlment in the classroon. Whlle there are many loopholes

in guess1ng at Newton's laws of motion from spring and irclined plane -
‘experiments, the predicted parebolic motion of a particle in e uniform
.force field can be closely verified by the motion of a solid object thfough
air over the span of a classroom. There are no rolling constraints anq

. friction is small, But the connection of the parabolic orbit to the laws

requires much more mathematics than does straight line motion and must

come after several years of preparation.

Other topics may présent very fruitful applications of mathematics
for elementary school. Same of these appear briefly in some of the other
unité discussed in this report., The discussion of functions uses deily
plant growth es an early example, and later epplies similafity and trigo-
nometry to measurement. There will be many opportunities in the course |

of all the mathemstics described in this report to meke brief applications.

R L I T
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It is highly desirable to do so providing that it sufficiently illustrates

the power of the mathematics at hand and that it does not distort the meaning

end use of the application, We have concentrated on two problems to pro-
vide a comparatively full description of the richness of the mathematics
evolved in several years of deVelopment'of an applied topic; and also %o
show thet no violence need be done to the non-mathematical aspects of the

topics

"
N

The relative timing of the experience with various mathematical_and"'

physical ideas is very important in this area. The child's movements and

| playing with blpcks eand other toys are his earliest introduction to geo—

metrical and phy51ca1 concepts and develop the intuitive response to these

.phenomena. This must come before any more expllclt approach to the mathe—

metical or scientific content. On the other hand a certain facility with

numbers is required before measurement can be used to quantify any of the

seientific conjectures. This interplay is evident throughouf the grade

levels in the applications.

The importance of permitting time for an experimental end discovery

‘approach may well be more important in the applications than it already

is elsewhere in mathematical education. The process of modelling is
delicate and all but unteachable in any direct way. An intuition for

modelling can be built by allowing time for trial and error end for mul-

gtiple‘apnroaches that stimulete inductive reasoning. It is doubtful if
ythe classical method of teaching by example (case histories of modelling)

__is adequate. Direct experience of the struggle seems to be a requirement.

As a consequence in the probability unit, it is sppropriate to let the

child who vants to, to experiment with different objects in the cups,
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_~differently marked, without replacement, etc. In short, with any set of

rules he may think of, even if the teacher is aware that that experiment
is & "bad" one - in the sense that it may lead to complex, confusing, or
-bilased reéults; This is part of the problems of experiment and modelling

that & student needs to find out for hiwself. Similarly in the early

mechanics many blocks, springs and balance boards should be available

to allow the testing of some hypotheées, e;g. the effect of the color

of the balance arm on weighing, that may ocrur tc the student. The connec-

tidn may seem‘unlikely to the teacher, but many important connections have

'seemed unlikely in earlier times. What connection did light have with

'lodestone to the pre-lMaxwellian intellect’ The mental freedom to cast

-~

. about for assocaat1ons is essentlal to research.

The mathematical models invented by children in the classroom also

;mmsf be treated with respect gnd the readiness to understand what experience

 they are trying to express. The feeling, expressed by ten-year-olds, that

bodies reach & meximum velocity under a constant force is a deduction from

: their experlence in pushing thlngs and trzlng to push as hard while the

speed increases, Care must be taken not to prove" to them that they are

vrong in any absolute way. After all, terminal velocities are reached in

a frictional medium when the applled farce is steady. Also relFthlStlc
effects do lead to & common maximum veloclty, although this effect w1ll ‘

not be seen in the elementary classroom.

PR

- In summary, the classroom technique, as well as the curriculum material,

must indicate not only the veriety of mathematical and scientific content

to be explored eventually, but also the variety of ways in which indivi-
duals examine evidence, cogitate, hypothesize and generalize. If soue of

these basic features of the researcher can be developed in the student,
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ﬁ:( ; mathematics will have been well sesrved in two ways; by the awareness of
the importance of the subject, and by the growth of an ability to reason
fruitfully as well as accurately. The latteris equally important to the
"scientific disciplines which have been invoked as en applicatinn of
mathematics.
/ \
._/l . S
|
|
2915-65
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~ Section II - Chapter &

PROBABILITY

Today, probability is one of the most wi&ely used brenches of maine-
matics, not only in various vocations, but in the everyday life of "the
Man in the Street." The ordinary citizen is coastantly bombarded with
statisties atout toothpaste, automobile accidents, the probability that
there is a connection between smoking and various kinds of illness, the
probability thaﬁ condidate A is going to win an election, etec.

As well es being}useful in the reel world, probability is an interesﬁiug

and exciting'means of getting children to practice arithmetic., It 1s also

a good mathematical model of the.real world, and offers children considersble

practice in crea%ing mathematical models with approximate reality.
A1l of these reasons seem to point to the early teaching of some prob-
gbilistic concepts in the elementary grades. Certainly, & considerable

amount of probebility should be learned by all pupils before some discontinue

“their formsl mathematical education, A further reason for the early intro-

~ duction of probability into the curriculunm is that many people have the

feeling that mathematics studies only exact data and exact numbers -

probability will give the feeling of studying distributions and uncertainties

before the pupils become overly enamoured with "getting the exact answer."
It is our belief that the study of probability (as well as the early
study of other mathematics) ought to be closely associated with the real
world., This means that the children will perforn many experiments, end will
attempt to'draw mathematical‘conclusions from those experiments. In the
early grades, the mathematics will be of a very informal nature, and the
childreﬁ will be getting a feeling for certain concepts, without necessarily
stating them explicitly. At a later time, wore explicit, quantitative con-

clusions will be drawn, and snalyzed.

i At S i - T e A mmnnit
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The following sequence of'evénts might be appropriate for gredes 3

- through 6. A large amount of deduction is regqiired by the 5th and Sth
grede materials, Experience may show thet, even for properly prepared
children, £his part of the unit is more successful a grade or even two

grédes later.

GRADE 3

The purposé of the early experiments in the third grade would be to
develop a feeling for the long range stability in a situation in which each
indi§idual event is unpredictéble. For this purpose, & variation of the
thumbtack throwing experiment would be used. (See Estabrook Progress Reports,
A fortheoming C.E.5.M. Volume will give details of elassroom presentation.)
The advantages of the thumbtack are that the children do not haVé.a precon=-
ceivéd notion of what the probability OUGHT to be, and_jet the long ratio of

e '~ successes to trials will become quite stable (if care is tsken to use the

-same method of throwing the tack each time). Another advantage is thet chile _

dren can get some feeling for the connection between the physical situation
end the results by varying the length of the tack (using a coin as the limite
ing case in one direction, and a finishing nail as the limiting case in the
other direction). For young children, the obvious danger in using thumbtacks
may outweigh the advantasges, and other objects can be used for the same pur-
'pose. For example, small corks in which the circular bases are relatively
large with respect to the height can be used, and other corks with different
shapeé can be used to get the same effect as varying the length of the'
thumbtack;!
The arithmetic involved in this experiment is little more than counting,

Hovwever, a strong feeling for rafio should be built up as the children note

that (e.g.) 3 out of 10 times, the point 1s up; 42 out of 100 times it's up;

391 out of 1000 times it's up, and so on.

]
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After the relative stability of the long run ratio has been accepted by
the children, it will be worthwhile to see if they are inclined to make pre-
dictions for specific events, For example, if they believe that in the long

run about four-tenths of the trials will come out with the point up, and it

“happens that the last six events have all resulted in the point's being down,

do the children think that the probability of getting a point up is still .4,

or do they think that it is greater than . & (or, perhaps, less than J4)., If

a careful enough, and long enough, record is kept, it should be possible to seé
that, in the long run, after the tack has landed with the point down six times,
it will land with the point up about .4 of the times on the seven;h trial (if
that is-its'probabiliﬁy generally)., Thus, the children should get a feeling
that the law of probability" hés to do with the long term ratio, not individual
events,

Other experiments, of a similar nature which can be carried on in the third

grade include placing a number (say 10) colored corks in a malted Qilk cup,

starting over, Experiments of this type have been tried in Ithaca, New York
schools, by David Block, Again, the long range ratio of red corks to the
number}of draws should become rather stable, and in.this case, the ratio should
stabilize around the expected number,(the true ratio of red corks to corksin
the cup).v‘IE more than two colors of corks are used, the data may be difficult
for the children to accumulate -=- this can be simplified by providing the appro-

priate number of pegs, colored with the same colors as the corks and placing a

" washer over the appropriate peg whenmever that cclor cork is drawn.

Games can be played using the cork drawing experiment, in which the teacher
places corks in the container and the children try to guess, after a few drawings,
what the proportion of various colors of corks is., With only ten corks and two

‘colors, the children will Zind it advantageous to guess rather wiidly. Thereiore,

ERAEM L. Wiapde)

“ drawing*one~without looking, recording the results, replacing>the~cork;”andw~”“““W“M“"'-W

L
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it will usually be desiiable to Qse at least ﬁhree colors, Other games can also
be made up‘rathet easily, For example, each child can have his own cup, make
up his own distribution and then let another child try to guess the distribution.
Rules for these games'are quite flexible =- éach child can be allowed one guess- -~
if it's right he wins, if it's wrong, he loses; each child can guess after each
drawing with the first right answer winning, etc, |

Othex vaxiations on the cork ch:awimT experiment are also poésible. For
example, one could number the corks and then determine the probabillty of
getting corks in various subsets, and intersections and unions of various subséts.
That is, the pupil might calculate the probability of getting a cork which 15 red
and has an even number associated with it; a coxk wvhich is either green or has a
number divisible by 3 associated with it, etc,

Inkgeneral, the purpose of the experiments in the third grade is for the

.children to acquire a feeling for the long term stability of the ratio of

successes to Erials in probabilistic events. They should also realize that the

ratio can often be predicted C10¢ely by us;n.nG a prior argument of symmeﬁry and

intuitive compounding. Many other experimencs involving dice, coins, cards, etc,

are possible if time permits, The children should learn to keep careful recoxds,

and should learn to interpret those records with some degree of sophisticatlon.

At the be.inning, the teacher would keep the records and help with the interpre-

tations, but these activities should bg_turned over to the children as soon as

pOSSible .

GRADE 4
Measures of dispersion, randomness, and sampling procedures will be the main
concepts developed in the fourth grade probability study.

The range is the most obvious measure of dispersion for a set of data, but

- after hav1no suggested this, and usaed it to measure the dispersicn of several
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sets of data, the children will probably feel that some better measure could be

found, The data on which the measures are tried can be collected from more

experiments such as those used in the third grade, or by the collection of data
from other sources (e.g.,have all the children measure the leﬁgth of a table and

record the answers independently, record the heights, weights, or ages of the

children in the class, have each child flip a coin ten times, and record the total
number of heads).

As they plot the data from their experimentg on a graph, the children may
notice that one or two pieces of data tend to increase t&e range greatly, and

don't seem to be significant in terms of all of the data. That is, two distri-

" butions may look very similar except that in one, one or‘two data may be much

further from the mean than in the other distribution, In apite of this, the

‘children may have the feeling that the dispersion in the two distributions is

- essentially the same., This will be more apparent to them the larger the'nuﬁber

i i T el AR, Mt S o s

of data in the distribution, From these facts, two other measures of dispersicn

can probably be elicited from the pupils., Fivst, a “trimmed range,"” in which the

twovdata which are furthest from the mean at either end of the distribution are
simply removed befoﬁe the raﬁge'is determinad. The second measure of dispersion
woﬁld he quartiles; |

Once a measure for dispersion has been decided upon (or several measures
have been considered), it will be interesting to see how the dispersion is
affected‘by increasing the numbexr of data. For example, suppose each child in a
class of 25 throws a.coin 20 times and records the number of heads, what will be
the relation between'the trimmed range (or other measure of dispersion) of this
data and the trimmed range of 100 such data? Would the trimmed range be the same?
Would it be four times as great? w?uld it be somewhere between these possibilities?
Where? Through experimentations, the children can get a pretty good estimate of

where it will be,

et el o et e s




= F
¥

L S Pt e
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Another interesting experiment which can be tried at this level is to
. have a child throv a coin, and recoxd his results on graph paper, adding one
to the ordinate of the previous point if the coin lands head, and subtracting

~one if the coin lands tails, The distribution would look something like this:

ol A .

0 1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 -

‘o

" If this proéedure %s continued, relatively few of the points will actually.be
‘on the line, but they'wili tend to cluster around it == generally fitting inside
of a parabola‘which has the x~axis as its axis of symmetry. This again, shoﬁld

" give them a feeling for the non-predictabiiity of individual events, but the

“long rahne Stablllt] of the proportion of heads to trials, As a variation on

B this procedure a thumbtack, or other obJect (with probabzllty not equal to
1/2) can be thrown and the slope of the aX1o of Symmetry of the parabola will
approxlmaue the probability in question.

The above experiments lead naturally into a discussion of random walk
experlments, and if the appr0pr1ate science has been studied, this can lead on
into a discussion of Brownian motion, and molecular acuivity.i I1f this effect
could be observed through a a2 microscope (the prOJectlno type would be good with
youn~ childcen) it would be desirable,

Next, a uiscussion of random sampling would be appropriate, "How wéuld"you
choose a randem sample of people in thé foufth grade of this school?” Have each

"~ child pick a random sample of ten people, and then collect some data about those
people (maybe height, weight, sex, etc,): Then, have them creafé"é}random number

table, and use the random number table to choose a sample of ten moxre people,
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Collect the same data, and compare the results, Then, ccmpare the averages in the

samples with the averages in the total pOpulatiqn. Hopefully, this will demon=

' gtrate the power of random sampling.

There are many ways to create the random number table, Cne method is_to'

go through a telephone directory, and choose the fourth digit (séy) of the top

‘telephone number in each column, Variations on this can be uwsed, but it is im-

portant to avoid possible non-random effects which would result from using a di-

- git in the exchange (one of the first three” digits ), ox by taking names that

follow each other immediately since members of the same family may be listed, or
large corporations ox agencies méy have their numbers listed several times, It

is also possible to construct a table using a purely constructive means .{ such as

. : i
rolling a die.and flipping a coin -= H,l results in 1; #,2 in 2; H,5 in 5: T, 1

in 6; 2 in 7, etc; with H,6 and T,6 being ignored) , but it is important to know

. that the objects are vhonest,” Thie means that the proportion of 1's, 2's, etc.,

should be approximately the same, Of course, it is also possible for the pupils
to go to a previously constructed random number table but this is not as in-

structive as creating their own, Once having constructed the table, the pupils

ghould compare the total number of times each digit turned up then the totals

for the first half of the table, and soon. They should also look for runs of
two of the same digit, runs of three, etc. vhat is the average number of digits

passed over to aryive at a specified digit from an arbitrary starting point?

After a run of that digit?

An experiment in which a normal curve is created is very effective in
showing children both the dispersion and the central tendency of random events.
One beautiful experiment of this sort is to pour salt (or sugar, or‘sand, or any
gubstance with small grains that will tend to bounce -~ not siide or ro.l --
dovm the paper) ontc a folded sheet of paper so that the grains will bounce

doun the paper towards the fold. It is imporxtant to always pour in the same spot,

“v-’tw__(uﬁ"ﬁ_,"vh R " N
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In the presentation,a&vucatedAin this report, all of the material
involves application, Howé&er; it ié aléo our purpose to describe a
part of the curriculum in which the topic is dominated by the apblication,
vhich may need various types of methematics for its exploration. The two
subjeéts of this type discussed in some detail are prdbdbility and mechan-
ics., These two differ from each otﬂer considerably in tﬁe type of mathe~
matics used, anﬁ also in the ﬁroportion of mathematical concepts to physi-

cal or scientific concepts involved.

Probability is in one sense a mathematical discipline, which can be
exiomatized eng treated in the abstract. But when its principles are
evolved experimentally it is a problem in modéifing - & central aspect of
applications. Furthermore, asnalyzing distributions of events and answer-
ing questions sbout expectations requires the application of the arith-
- metic operaetions, averaging, graphing, functions, real varisble, set Qper-
ations, permutations end combinations, symmetry, and other mathematics.
The physical ex@eriments to Ye dbne are simfle, require éﬁly a little tech-
'niqne, and can be associated immediately with some methemastical manipula-
tions. Somecaéé hae to be taken as to whether events §re independeﬁt,
~ generated in a consistent ménngr, gna unbiased by external factors. It
| must Be established that thé ﬁﬁ&;ical events correspohd approximately to
the assumptions of the model,so that the experimental, physical aspect
mist not be slighted. But this aspect is not as difficult as the speci-
fically methematical problems involved in the probebility unit described in

. this report.

The science of mechanics demands a great deal more of physical experi~
ments in the classroom. In modern times there are few people who are in-

terested in mechanics as a deductive discipline, slthough in the nineteenth
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g
century it vas treated, at times, as an extension of geometry. To ébé%igét
the principles of kinematics and dynamics a long sequence of'experiments

is required, Many of these involve painsteking measurement, but only triv-
ia)l mathematics. Friction, rolling constraints, the lack of weightless
ropes, etc., introduce many complications into experiments that would other-
vise lead more directly to simple mathematical formulation. The temptation
must be avoided of drawing conclusions vhich the experiments esctually per-~

) formed do not indicate. Instead one must do more difficult experiments,

get elong with fewer results, or use guesses'as working hypotheses. In

this last case, the experiments performed up to the time of making the
.hypotheses only indicate the hypotheses as possible extrapolationc from

_;he date. This is only worthwhile if one can eventually predict from tne
iodel, verhaps after considerasble mathematical reasoning, events which can
ée verified by experiment in the classroom. While there are many }QPpholes
in guessing at Newton's laws of motion from spring ead inclined piéég
_experimeﬁts, the predicted parasbolic motion of a particle in & uniform
force field can be closely verified by the motion of a solid object tgfough
air over the span of a classroom. There are no rolling constraints aga

- friction is small, But the conrection of the parabolic orbit to the laws

requires much more mathematics than does straight line motion and must

goﬁe_after several years of preparation.

/

Other topics may present very fg&itful applications of mathematics
for elementary school; Some of these appear briefly in some of the other
unité discussed in this report. fhe discussion of functions uses daily
plant growth as an early example, and later applies similarity end trigo-
nometry to measu&ement. There vill be many opportunities in the course

of all the mathematics described in this report to make brief applicationms.
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It is highly desirable to do so providing that it sufficiently illustrates
the power of the mathematics at hand and that it does not distort the meaning
end use of the epplication, We have concentrated on two problems to pro-
vide a comparatively full description of the richness of the mathematics
evolved in several years of development of an epplied topic; and also to
show thet no violence need be done to the non-methematical aspects of the

€

topic.
i

The relative timing of the experience with various mathematical and
physical ideas is very important ir this area. The child's moverments and
piaying with blpcks end other toys are his esrliest introduction to geo-
metrical and physicel concepts and develop the intuitive response to these
phenomena. This must come before eny more explicit approach to the mathe-
matical or scientific content; On the other hend, a certain facllity with
- pumbers is required before measurement can be used to quantify any of the
scientific conjectures. This interplsy is evident throughout the grade

levels in the epplications.

The importance of permitting time for an éxperimental and discovery
‘approach may well be more important in the applicstions than it already
is elsewhere in methematical education., The process of modelling is
delicate and all but unteachablé in any direct way. An intuition for
modelling can be built by allowing timé for trial and error end for mul-
“tiple aprroaches that stimulete inductive reasoning. It is doudbtful if
‘the classical method of teaching by example (case histories of modelling)

_is adequate. Direct experience of the struggle seems to be a requirement.

As 8 consequence in the probability unit, it is appropriate to let the

child who wants to, to experiment with different objects in the cups,
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_-differently marked, without replacement, etec. In short, with any set of
rules he may think of, even if the teacher is avare that that experiment
is & "bad" one - in the sense that it may lead to complex, confusing, or
-biased reéults; This is part of the problem; of experiment and modelling
that & student needs to find out for himself. Similarly in the early
mechenics many blocks, springs and ialance boards should be availabie
to allow the testing of some hypotheses, e.g. the effect of the color
of the balance arm on weighing, that may occur to the student. The connec-
tion nay seem unlikely to the teacher, but many important connections have
';eémed unlikely in earlier times. What connection did light have with
.ibdéstohe to the pre-laxwellian intéllect? The mental freedom to cast

~

ebout for associations is essential to research.

The mathematical models invented by children in the classroom also
ﬂms% be treated with respect and the readiness to understand what experience
they are trying to express. The feeling, expressed by ten-year-olds, that
bodies reach a meximum velocity under a constant force is a deduction from -
their experlence in pushing things and trying to push as hard while the
speed increases. Care must be teken not to prove" to them that they are
vrong in any absolute way. After all, terminal velocities are reached in
a frictional medium when the applled force is steady. Also relat1v1st1c
effects do lead to & common maximum velocity, although this effect will

not be seen in the elementary classroom.

- . . N -

In summary, the classroom technique, as well as the curriculum material,
mist indicate not only the veriety of mathematical and scientific ccatent
to be explored eventually, but also the variety of weys in which indivi-
duals examine evidence, cogitate, hypothesize and generalize. If sowe of

these basic features of the researcher can be developed in the student,
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mathemeties will have been well served in two ways; by the awareness of
the importance of the subject, and by the growth of an ability to reason
fruitfully as well as accurately. The latter is equally important to the

scientific disciplines which have been invoked as an application of

mathematics,
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Section II ~ Chapter &
PROBABILITY

Today, probability is one of the most widely used brenches of mathe-

matics, not only in various vocations, but in the everyday 1ife of "the

Men in the Street." The ordinary citizen is constantly bombarded with
statistics atout toothpaste, automobile accidents, the probability that
there is & connection between smoking and various kinds of illness, the
probability that cendidate A is going to win an election, etc.

As well es being useful in the reel vorld, probsbility is en interesﬁing
end exciting weans of getting children to practice arithmetic, It is alsc
e good mathematical model of the reel world, and offers children considersble 3
practice in crea%ing mathemétical models with approximete reality.

A1l of these reasons seem to point to the early teaching of some prob-
ebilistic concepts in the elementary grades. Certainly, g considersble f
anmount of probebility should be 1earnéd by 21l pupils before some discontinue :
‘their formel matheuetical education. A further reason for the early intro..
duction of probability imtc the curriculunm is that many people have the

feeling that mathematies studies only exact data and exact numbers --

probability will give the feeling of studying distributions and uncertainties
before the pupils become overly enamoured with "getting the exact answer,"

It is our belief that the study of probability (es well as the eearly
study of other mathematics) ought to be closely associated with the real
world., This means that the children will perform many experiments, and will
attenpt to'drew mathematical conclusions from those experiments. In the
early crades, the mathematics will be of a very informal nature, and the
childreﬁ will be getting & feeling for certain concepts, without necessarily

stating them explicitly. At a later time, mwore explicit, quantitative con-

clusions will be dravn, end analyzed.
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The folloving sequence of events might be appropriate for grades 3
through 6. A large amount of deduction is required by the 5th and 6th
grade materials, Experience may show that, even for properly prepared
children, this part of the unit is more successful a grade ¢r even tvwo

grades later,

GRADE 3

The purpose of the early experiments in the third grade would be to
develop a8 feeling for the long range stability in a smtuation in vhich each
indlvidual event is unpredlctable. For this purpose, a variation of the
thumbtack throwing experiment would be used. (See Estabrook Progress Reports.
A forthcoming C.&.S.M., Yolume will give details of classroom presentation.)
The advantasges of the thumbtack are that the children do not have a precon-
ceivéd notior of what the probability OUGHT to be, and yet the long ratio of

successes to trials will become quite stable (if care is teken to use the

same method of throwing the tack each time). Another advantage is that chil-

dren can get some feeling for the connection between the physical situation
end the results by varying the length of the tack (using a coin as the limit-
ing case in one direction, and a finishing nail as the limiting case in the
other direction)., For young children, the obvious danger in using thumbtacks
may outweigh the advantsges, and other cbjects can be used for the same pur-
pose, . For example, small corks in which the circular bases are relatively
large with respect to the height can be used, end other corks with different
shapes can be used to get the same effect as varying the length of the
thumbtack.’

The arithmetic involved in this experiment is little more than counting,
However, a strong feeling for ratio should be built up as the children note
t?at (e.g.) 3 out of 10 times, the point is up; 42 out of 100 times its ups;

391 out of 1000 times it's up, and so on,
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After the relative stability of the long run ratio has been accepted by

the children, it will be worthuhile to see if they are inclined to make pre-

dictions for specific events, For example, if they believe that in the long

run about four-tenths of the trials will come out with the point up, and it

happens that the last six events have all resulted in the point's being downm,
do the children think that the probability of getting a point up is still i,
‘2 or do they think that it is greater than . & (or, perhaps, less than &y, If
2 careful enough, and long enough, record is kept, it should be possible to sece
that, in the long run, after the tack has landed with the point doun six times,

it will land with the pbint up about .4 of the times om the sevensh trial (if 3

that is its probability gemerally). Thus, the children should get a feeling
that the "law of probability" h;s to do with the long term xatio, not individual
events,
Other experimenis, of a similar nature vhich can be carried on in the third
grade include placing a number (say 10) colored corks in a malted milk cup,
~drawing one without looking, recording the results, replacing the cork, and
starting over, Experiments of this type have been tried in Ithaca, New York
schools, by David Block. Again, the long range ratio of red corks to the
number of draws should become rather stable, and in'this case, the ratio should
stabilize around the expected number,(the true ratio of red corks to corks in
the cup), If more than two coloxs of corks are used, the data may be difficult
for the children to accumulate == this can be simplified by providing the appro-
priate number of pegé, colored with the same colors as the corks and placing a
3 washer over the appropriate peg whenever that color cork is drawn.
Games can be played using the cork drawing expeximent, in which the teacher
places corks in the container and the childzen try to guess, after a fev drawings,
(- what the proportion of various coloxs of corks is, With only ten corks and two

colors, the children will £ind it advantageous to guess rather wildly, Thereioxe,
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it will usually be desirable to use at least three colors, Other games can also
be made up rather easily, For example, each child can have his own cup, make
up his own distribution and then let another child try to guess the distribution,

Rules for these games are quite £lexible -~ each child can be allowed one guess--

if it's right he wins, if it's wrong, he loses; each child can guess after each
drawing with the first right ansver winning, etc,

Other variations on the cork drawing experiment are also possible, For

example, one could number the corks and then determine the probability of

o

getting corks in various subsets, and intersections and unions of various subséts.
That is, the pupil might calculate the probability of getting a cork which ié red
and has an even number associated with it; a cork which is either green or has a

number divisible by 3 associated with it, etc.

B P PR

In general, the purpose of the experiments in the third grade is for the

.children to acquire a feeling for the long term stability of the ratio of

successes to trials in probabilistic events, They should also realize that the
ratio can often be predicted closely by using a prior argument of symmetry and ~
fntuitive compounding., Many other experiments involving dice, coins, caxds, etc,

are possible if time permits., The children should learn to keep careful records,

and should learn to interpret those records with some degree of sophistication.
At the be inning, the teacher would keep the records and help with the interpre-
tations, but these activities should be turned over to the children as soon as

possible,

GRADE 4
Measures of dispersion, randomness, and sampling procedures will be the main
concepts developed in the fourth grade probability study.

The range is the most obvious measure of dispersion for a set of data, but
P

after having suggested this, and usad it to measure the dlspersien of several
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sets of data, the children will probably feel that some better measure could be
found. The data on which the measures are tried can be collected f£rom more
experiments such as those used in the third grade, or by the collection of data

from other sources (e.g.,have all the children measure the Iehgth of a table and

record the answers independently, record the heights; weights, or ages of the

children in the class, have each child £lip a coin ten times, and record the total
number of heads).

As they plot the data from their eXperfmentg on a graph, the children may
notice that one or two pieces of data tend to increase t&e range greatly, and
don't seém to be significant in texrms of all of the data, That is, two distri-
butions may look véry similar except that in one, one orltwo data may be much
further from the mean than in the other distributionm, I@ spite of th;s, the
children may hﬁve the feeling tﬁat the dispersion in th; two distribﬁtions is

--essentially the same, This will be more apparent to tuem the larger the number '

of data in the distribution, From these facts, two other measures of dispersicn

-can probably be elicited from the pupils, Fivst, a "trimmed range," in which the
two data which are furthest from the mean at either end of the distribution are
simply removed before the range is determined. The second measure of dispersion
would be quartiles, |

Once a measure for dispersion has been decided upon (or several measures
have been considered), it will be interesting to see how the dispersion is
affected by increasing the numbexr of data. For example, suppose each child in a
class of 25 throws a coin 20 times and records the number of heads, what will be
the relation between the trimmed range (or other measure of dispersion) of this
data and the trimmed range of 100 such data? Would the trimmed range be the same?
Would it be four timer as great? w?uld it be somewhere between these possibilities?
Where? Through experimentations, the children can get a pretty good estimate of

where it will be,
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. Another interesting experiment which can be tried at this level is to

_have a child throw a coin, and_ggc6§4_h§s results on graph paper, adding one

- pmmen e e -

to the ordinate of the previous point if the coin lands head, and subtracting

one if the coin lands tails, The distribution would look something like this:

. . )
- -~
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If this procedure %s continued, relatively few of the points will actually be
“on the line, but they will tend to cluster around it -- generally fitting inside
“of a parabola which has the x-axis as its axis of symmetry. This again, should

’ give them a feeling for the non-predictability of individual events, but the

| Iong range stabilzty of the proportion of heads to trials, As a variation on
“this procedure, a thumbtack, or other obJect, (vith probabllity not equal to
1/2) can be thrown and the slope of the axis of synmetry of the parabola will
épproximate the probability in question,

o The above experiments lead naturally into a discussion of random walk
experiments; and if the appropriate science has been studied, this can lead on
into 2 discussion of Brownian motion, and molecular activity.‘ If this effect
could be observed through a @ microscope (the projecting type would be good with
young childien) it wouid be desirable,

Next, a aiscussion of random sampling would be appropriate, "How would you
choose a random sample of people in the fourth grade of this school?" Have each
child pick a random sample of ten people, and then collect some data about those
people (maybe height, weight, sex, etc.). Then, have them create a random number

table, and use the random number table to choose a sample of ten more people,
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0011ect the same data, and compave the results. Then, compare the averages in the
samples with the averages in the total population. Hopefully, this will demon-
strate the power of random sampling.

There are many ways to create the random number table, One method 1s to
go through a telephone directory, and choose the fourth digit (say) of the top
telephone numbenr in eachi column, Variations on this can be used, but it is im-
portant to avoid possible non-random effects vhich would result from using a di-
git in the exchange (one of the first three” digits ), or by taking naues that
follow each other immediately since members of the same family may be 1isted, ox
large corporations or agencies may have theix numbexrs listed several times., It
is also possible to construct a table using a purely constructive means ( such as
rolling a die. and flinpinc a coin -- H,1 xesults in 1; H,2 in 2; B,5in 5; T, 1
in 6; 2 in 7, etc; with 4,6 and 0,6 being iguored), but it is important to know
. that the objects are vhonest.” This means that the proportion of 1's, 2's, etc,,
should be approximately the same, Of course, it is also pessible for the pupils
to go to a previously constructed random number table but this is not as in- -
structive as creating their own., Once having constructed the table, the pupils
ghould compare the total numbex of times each digit turned up then the totals
gor the first half of the table, and soon. They sﬁould also look for runs of
two of the same digit, runs of three, etc, What is the average oumber of digits
passed over to arrive at a specified digit from an arbitrary starting point?
After a run of that digit?

An experiment in vwhich a normal curve is created is very effective in
showing children both the dispersion and the central tendency of random events.,
One beautiful experiment of this sort is to pour salt (or sugar, or sand or any
gubstance with small grains that will tend to bounce -=- not slide or roll --
dovm the paper) onto a folded sheet of paper so that the grains will bounce

down the paper towards the fold, It is important to always pour in the same spot,

U wmeameT R TeRe o T A
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and to have the spot quite a distance from the fold, so that a large number of
bounces will occur before the grains stop. OL course, the line of the fold should
be horizontal, . A nommal curve will appear on both halves of the paper, and
careful observation will show an inverted normal curve in the "hollow” “etween the

other two curves, This experiment has to be tried to be fully appreciated,

One further experiment which can be tried at this time has to do with the way

in which people estiéate the number of fish in a pond, The procedure is to catch
2 large numbexr of fish, band them, throw them back, come back in a few days and
catch some more f£ish, From the proportion of fish caught the second time that
are banded, a gcoa estimate of the total number of £ish can be derived, This
same procedure can be used (witaout as many doubtfulassumptions.regarding the
psychology of fish)’with corks, Given a large number of corks in a container,
how can we decide how many (approximately) there are? The procedure would be
essentially the same as in the fish experiment except that the corks removed on
the first drawing would be replaced by coxks of a different color (also different
from any which might be in the container, of course), The container would bé
thoroughly shaken up before redrawing. The arithtmetic involved would be a simple

proportien, and should cause no great difficulty.
GRADE 5

In Grade 5, compound events would be considered in some detail, The proce-
dure, in general, would be for the pupils to begin with an experiment from which

they could deduce an hypothesis regarding the probabilities in a combination of

ok
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events in which the simple probabilities are already kaown, Having decided upon
an empirical hypothesis, the pupils should then be encouraged to conisider the |
problem in a more theoretical or mathematical context, and try to derive a general
theory that fits the empirical results very closely, From this mathematical dis-
cussion and resulting hypothesis, the pupils should be encouraged to predict
results for othe¥ experiments which are quite similar, and then predicﬁ results
of experiments which are quite dissimilar, Then, they should carry out these
new experiments and see if the empirical rééults are close to the predicted
results., TIf not, perhaps a reconsideration of the hypothesis would be in ordex.

In getting a general hypothesis, it is important that the teacher not in~ |
sist upon 2 correct and careful verbalization of the principle, but rather, a
good strong intuitive feeling for what the principle is, If the children can
predict with some accufacy the results of other experiments, they presumaﬁly
: have a good understahding of the principle involved, On the othe;.ﬁand, if
“over-emphasis is placed on the verbalization, the children will gena'to memorize
‘the words without pecessarily understanding the wmeaning.

The procedure discussed above could be applied to conditioned events in the
following way:

Ten corks are placed in a container. The corks are numbered from 1 to 10,
Numbers 1, 2, 4, 5, 7, and ¢ are green, and the otherxs are red, What is the
probability that a cork drawn at random 18 green? What is the prpbability that
it is red? .What is the probability that it has an even number? If you draw a
cork that is red, what is the probability that it has an even number =-- experiment
with at least 0 drawings to get an empirical probability. Draw pictures of the
:sets 1nvolved to clarify the notions. Suppose cork number 9 were red instead of
green, how would this change the probability that a red cork is even? Given the
corks in the original experiment (9 still green), what is the probability that a

green cork drawn at random is associated with a number that is divisible by 37
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Many other experiments might be tried to see if children could predict
the outcomes in advance. For example, twe chips are placed in & cup, One chip
is red on both sides, the other is red on one side and green on the other. If
a chip is drawn at random and placed on the table, and it happens ivhat a red
face is up, what is the probability that the sidé vhich cannot be seen is green? ;
Add three more chips that are green on both sides, how does this affect the
probability? Add a chip that is red on both sides, how does this affect the
.probability? For each of these experiments, thg children should first make a

j
prediction, and then experiment to sece how accurate the%r prediction is for a

large number of trials,

The case of disjunction should probably be done fivst with disjoint events,
though it may’ be interesting to start first with-events:which are not disjoint
and then consider disjoint events as a special case, Aﬁ advantage of trying
disjoint events first is that then the children are likely to make incorrect
hypotheSES regarding the non-disjoint cases, and will have an oppoxtunity to
correct a mistaken hypothesis in light of experimental evidence, For this, they
might start by considering such disjoint events as getting a two or a three on
a‘single die, The probability of getting either a red cork or a blue cork when i
there are a2 known mumber of red, green and blue corks in the container, etc,
After they have become quite good at predicting the probability eof the disjunction

of disjoint events (this should not take long), try a problem such as: Theve are

ten corks in the container, seven are red and three are green, The red ones are é

e e e b

numbered from 1 to 7, and the green ones are numbered frxom § to 10, What is the
probability that a cork drawn at random is either greem or has an even numbex? ;
Many of the children will answer 3/10 + 5/10 = 8/10., This answer is sufficilently

‘different from the correct one so that a reasonable amount of experimental evi-

dence should lead the children to suspect that something is wrong. Of couxrse,

the original experiment cught to be so designed that the obvious mistake will not

T T I ———_— e R e e s A e e n e
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“result in & probability greéter than 1, or the need for experimentation will be
by-passed,

| ‘Conjection of events should be studied first with independent events, such
as two dice, preferably colored differently (or thrown separately). Questions
might include: "What is the probability that the green die lands with an even
number showing and the red die shows a number divisible by 32" 'What is the
probability that the red die shows a number less than 5 and the grecn die -shows a
number greater than 2?" Etc, Similax expefimengs can be carﬁied on using othex
objects, For example, vihat is the probability that both thumbtacks land with
the point up?" What is the probability that the red tack lands with the point
up and the green one lands with the point down (two clorf-of tacks are desirable
for this)?" wyhat 1is the probability of getting a gree@ cork from container I
and a red cork from container IT (with known distributio;s)?" Etc., If thumb-

. tacks are used, it is important that they be thrown in essentially the same'way

~ they were thrown to calculate the simple probabilities.

After the pupils get quite good & predicting probabilities for the conjunc-
tion of indepeﬁdent events, they should try some in which the events are not
independent, For eﬂaﬁple, place two red, and one green cork into a container.
Shake well. Draw one cork, Leave it out of the cohtainer and draw another cork,
What is the probability that the first cork is red and the second cork is green?
If the pupils believe the probability is 2/9, it may be necessary to perform
close to 90 trials to convince them empirically that this is proSably incorrect,
however, with the entire class working on the experiments, considerably more
trials than this can be run in a very short time,

Other examples of non-independent events can be constructed easily. One
pice example of this involves gluing two dice together and rolling them ~- the
dependence is quite clear in this case, Other ekamples include: Throw a die,

what is the probability that the number showing is both even and greater than

e e G
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Chapter 4
three? Tie the points of two thumbtacks Together with a‘very fine, relatively
short thresd and determine the probability that both land with the points up.
Make the thread longer and repeat the experiment.
In the theoretical discussion of the various kinds of exéeriments dis-
 cussed sbove, ciildren will find it very helpful if pictures‘of the sets and

subsets involved can be drawn on the board to make it clearerwhy the particuler

results they sare getting seem reasonable, This is particularly true in the
/ i

case of conditional probeabilities end conjunctions of\non-inaependent events,

but will be valusble throughout the discussion. As set union and intersection
are useful concepts in this context, this is one of the more fruitful early

|

epplications of the set theory nov being taught in elementary school.

GRADE 6
As stated in the introductory section of this peper, the deductive nature

- of much of the material suggested here for the‘Sth end 6th grades mekes its
success in these grade levels even in the "Goals" context, difficult to fore-
cast. The experiment seems worthwhile to us because of the strong backing of

|

. }
experience and intuition to the reasoning required in this work.

If the principles developed in the fifth grade regarding compound events
were not stated explicitly at that time, they should be redeveloped quickly
-(without as much experimentation being needed) eand the children should bg
encouraged to state them explicitly so as to make the Job of applying them to
more complex situations easier. Then, these principles can be applied to such"
problems as "What is the probsbility of throvwing a seven with two dice?" "What
is the probability of throwing a five with three dice?" ‘What
is the probability that if five coins are thrown, exactly three of them will
lend heads?®  ™What is the probability of getting a thirteen with two 12-sided

dicet" For this last experiment, it will be necessary to discuss the question

of vhat is & 12-sided dle. Some of the children will have calendars at home
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which are printed on regular dodecahedrons, so this discussion should not be
difficult -~ of course, the teacher can acquire one of these in advance if he
wvants to. Then, the discussion can turn to the question of exactly how many
regular solids exist. The usual procedure of demonstrating that there can be
at most five (three with triangular faces, one with square faces, and bne with
- pentagonal faées) can be discovered by the children quite easily if they are
asked to consider the number of degrees in the angles meeting at a vertex.
Children can figure out the patterns for eohsﬁfucting\the regular solids, and
can do a good job of constructing them. Before tryiné experiments involving
cbmpound events, they should test the simple probabilities to see whether the
probdb:lltles are aspproximately what they should be. ]

Now, ask the children to determine the probabllluy of getting a twelve
with five b-sided dice. The problem is difficult enough so that very few,
if any, will be able to succeed, and yet, all will know the general principle
" involved. Then, try to analyze the problem with them. BSet down the favorable
céses in sbme sort of rational order., TFor example, start with the largest
possible number, and meke the number get smaller, or rexain constant as you

x

move from left to right (monotonic): L, ¥, 2,1, 1; b, 3,3,1, 1;
b, 3,2,2,1; L,2,2,2,2; 3,3, 3,2, 1. This part is relatively easy,
'Now, how many weys are there of rearranging the first set of numbers? They can
start by simply trying to find all the rearrangements, but this will be rela-
tively unsatisfactory. From this, it should be clear that some method of
studying rearrangements from a mathematical point of view would be desirable.

Once the need for a process of determining the number cof rearrangements
of & éet of objects has been established, we go back and consider simpler
problems, -First, how meny ways are there to arrange four objects in s row?
Try it. The children can either use resl objects, or better yet, use symbols

on paper - thus meking it easy to keep track of which errangements have been
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tried, and how many have been found, After the children have estaﬁlished

the fact that the number of rearrangementsAof the four objects is 2k, suggest
that perhaps they can find a pattern which would have tcld them this without

all of thé work of actually putting down ell 2L arranéements. There ﬁill
probably be several such patterns suggested, all correct (end maybe some
incorrect oneé'-- all should be checked to see that they give the correct
answer, not only for four»cbjects, but for three, twe and onée objects).

Correct patterns should not be discouragéd, even though the teacher feels that
théy will not be fruitful in the long run -- let the children find that out for
themselves. Next, try the number of reafrangements of seven objects. Is there
some wey of analyzing this situation? Probably the mFst fruitful method, which
the pupils-may discoverAwith'some encoursgement, is % tree diagram, Suppose the
objects are labéled a,b,c,d,e,f,g. There are seven positions, each to be filled
by one of the objects, How many choices are there for an object to fill.posi- 5
tion 1? Suppose a is placed in position 1, how many objects are left with

which to fili position 2?7 Suppose b had been used to fill position 1; how

many objectsywould be left with which to fill position 27 OSuppose ¢ had been

used in positionjl, how many objects would be left from which to choose for

position 2? This information can be summarized as in the following diagram:

Position 1 Position 2 Position 3

ke
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If the diagram is drswn in some detail, it is clear that since there are

seven choices for the first position, and for each of those seven cholces
there are six possible choices for the sscond pesition, there must be TX6

or 42 ways of filling the first two positions. Young children may think of
this as 6 plus_6 plus 6 plus 6 plus 6 plus 6 plus 6 at first, but that is
perfectly all right. Now, continuing the process, suppose b is chosen for
the first position and e for the second position, how many ways would there be
to £ill the third position? Would this be trug for e%ch of ‘the 42 ways of
filling the first two positions?

Continuing this procedure, the children should see that the number of
different arrengements of n objects is nl. At this éime, it is probably not
desirabie to introduce the usual notation, but rather'wait until the pupils
have written out 10x§x8x7x6x5xhx3x2xl, etc., several times and see some need
for a shorter notation. Oftentimes, e short notationk(guch as this) can obscure

relatively simple concepts in the minds of young children.

Now consider the question of how many ways there are to arrange six obJects,

three of which arg\identical to each other. Suppose the objects are a,a,a,b,c,d.

!
If the three a's were labeled so that they were distinguishable, how many ways

would there be to arrange the objects? Of those T20 ways, how many correspond
to the one arrangement a,a,a,b,c,d that we would like to count when the labels
are removed? That is, if the a's wefe distinguishable, how many arrangements
of a's would correspond to this one arrangement where the a's are not dis-
tinquishable? Would this be true for any other single arrangement we'd like
4o count (such as a,b,c,a,a,d)? Then, in counting the 720 ariangements, how

many times as many arrangements did we count as we wanted to count? Then, ic the

ansvwer we would like just 1/6 of 7207 Using the same procedure, analyze the
problem for a,a,a,b,b,b. Then, let the pupils consider such problems as
2,a,a,a,b,b; a,a,a,b,b,b,b; a,a,c,c,c,b,b,b,b,d; etc,, with explanations

of each step in their reasohing.
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It is entirely possible for them té ansvwer &ll of the questions in the
previous discussion without really understanding what they are doing, however,
8 complete discussion, by them, of similer cases should help to clarify the
idea. Some will still wonder why such a roundabout way of attacking the

problem is used, end this is good -- encourage them to try to find a more

efficient wethod.

There ere many problems available in standard textbooks for pupils to use
in practicing their knowledge of permutafionsﬁ For several of these problems,
they should actually write down all possible arrangements to show that ex-

perience corresponds with the theory. Then, they can go back to the dice pro-

blems, and decide probebilities such as getting a 15 Tith five k-sided dice; etc.
After this section is finished, have the childreﬁ expand each of the
following {using the distributive law): (atb), (a+5)2, (a+b)3, (a*b)h,
| (a+b)5, (a&b)s. Now, look for a pattern. With a smell emount of encouragement
they should be &ble to come up with Pascal's triangle, or something equivalent,
Then, reconsider one of the expansions without using Pascal's triangle
("suppose you don't know the expansion for (a+b)h"). It should be clear that

~ (aﬁb)s = (aﬁb)(a¥b)(a+b)(a&b)(a+b) = PaS + Qahb + Ra3b2 3 >

+ 522> + Tap® + Ub
where P, @, R, S, T, and U are numbers., The remaining problem is to determine
what those nﬁmbers are. In order to determine R, for example, we would note
that the three factors of a can come from any three of the original factors,
and the two factors of b must come from the other two original binomial
factors. Thus, if the factors are written in the order of their "parent”
factors, the possible ways of getting a3b2 are aasbb, aabab, abaab, baaab,
aabba, ababa, baaba, abbaa, babaa, and bbaaa; or, simply all of the ways of
arranging the letters aaabb. In each of the other cases, the reasoning would

be similar, and the children should, through similar reasoning, be able to

convince themselves that the binomisl theorem is true.
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"~ After some work with the binoﬁial theorem, the pupils can sgaln be

- ~‘ggked to compube the probabilities for all possible events when five coins
are flipped. Then, the same problem can be tried with thumbtacks (with
known probsbilities not equal tc 1/2 for individual events). Presumably,
'a relationship between this problem and the binomlal theérem will be
noticed, and should be discussed quite explicitly. Binomisl distributions
can then be computed for various values of p, end N (the number of trials).
‘The pupils should be sble to determine wgat conditions have to be met in
order to have a binomial experiment -- e.g., independent trials with p
“remaining constant, & predetermined number n, ete.

Now, they are ready to test various hypotheses. For example, consider
the question of spinning a new pénny on & flat surface. Most people would
}ﬁésume the probability of the penny's landing tails is 1/2. Suppose, howgver,

'3} o .that somebody claims that the probability that the ﬁenny lands tails is
;really .8. How would you test to see vhick hypothesis is true? Suppose
the true probebility is 1/2, if the coin is spun 10 times, what is the

probability that the coin will lend tails eithef 10 times, 9 times, or eight

times (i.e., eight or more times)? Then, if the coin lands tails eight or

»fmore times, can you be sbout 95% sure that the true probability of getting

‘e tail on any one spin is greater than 1/2? That is, is the probability sbout
05 that the true probability is 1/2? (Incidentally, for a relatively new

United States one cent piece, the probability of getting a tails with a spin

5 4w B 7. ponst oot ot w2 ¥ Ll 30T SRt Zlep

3 o of the sort dgscribed here is considerably greater than 1/2 -~ depending on

o how worn the edge is, it can approximate 1. For Canadian Pennies, & reverse
h&nting process is apparently used, and the resulls are reversed. )

.iie- Further experiments can be tried of & similar nature, and binémial

w\Mﬁ\ - probability tables can be created for verious values of N and'p.

R Saciadaceie:
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Simple experiments can be designed by the children to test to see
whether somebody has extra~-sensory-perception, to predict with a certain
deéiee of certainty that there are a given préportion of red corks in.a
contéiner etc. The question of being fair to two contradictory hypotheses
(say .5 and .8 for the penny spinning experiment) will lead them to the
conclusion that a larger sample is desirable, Quality control, and similar

statlstical concepts can be discussed with this much background, but,‘perhaps,

should be saved for a later time,

I N T Sy
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" Section II - Chapter 5 |
- | MECHANICS AND SLOPES
Prologue:

Among the applications of mathematics, mechanics is one of the oldest and
most fruitful, The phenomena modeled by mechanics are all around us, The de-
sire to understand them strongly motivates the devclopment of the model and the
feQuisite mathematics., Mechanics is not noxmally introduced into the curricu-

" -» . .
lum until late in high school, Below, we discuss units, for use throughgut the

eiementary school grades, which experimentally 1ntrcduce\statics and Newton' s

- v
Last The necessary analytical understandino and skills are developed in

paréliel. Mdthematlcal models of the experiments are eventually evolved, and
prédicﬁxons made and tested. The prediction of paraboli' motion in a gravita-
tional field is the culminatlon, in grade six, of combi;ino models based on
‘experiment.with the algebra and simple calculus developed over the elementary
‘séhooi years.. Thé ability to predict a free flipght trajectory ghould add greatly
‘to the'sense of achievement of the student, as an addition to hisAintrinsiE in-
tellectual interest in matters of analysis. |
kExperience in ?he classroom has shown that a proper appreciation of.thé
physics and mathemaﬁics needed for the trajectory problem does mot permit one~to '
treat ghis topic 1n isolation, A partial discussion of motion in a gravitational
field and the slope of a paravvla had some succesSs with students who had a con~
ventional education through sixth grade, but the drawbacks wete obvious, As the
need arose, it was necessary to teach graphing, the multiplication properties
of negative numbers and of fractions, and elementary algebra. This interzupted
the flov of ideas concerning limiting slopes and the solution of the equations
of mot}on. Interest and attention were frequently lost because of the interrup-

tions. In addition, a careful development of, for example, the early phases

of the treatment of fractions was impossible because of lack of time.
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Similarly, to extract Newton's Lavs, one»had to resort'to a quick extrapo-
lation of the students' previous experience, plus a few crude éxperiments with
the sliding of chalk and blackboard brushes écross the floor, and the tossing
of chalk through the air, It is, of course, better to let the stuﬁents build
up experimental techﬁiques, discover the hypotheses, check them to sufficient
accuracy, and test out alternate hypotheses.

The sequence of the following units is, it is hobed, consistent with the
needs of other parts of the curriculum for developed mathematical and physical
insights and skills., All the major mathematical material is.of such general
utility that its eaxly development would be thought desirable even in thé
absence of mechanicg in the curriculum,

- The road to free flight presented here is a possible one, but is not unique,

+ Students prepared for algebraic manipulation by a different course of étudy; or

awvare of Newton's Laus through a different set of experiments, may still analyze
the trajectory pxoblem as described below for the fifth and sixth grades, The
material presented for the earlier grades is given as an example of a éufriculum
which would permit the teaching of the fith and sixth grade units and also be

consistent with the present overall viewpoint of CCSM,

Grades K-2

In X and 1, the child should develop familiarity with geometrical figures,
with numbers, with measurement, and with balances and balance boards, The first
approach should be playful and open ended so that intellectual interest can be
awakened and an intuition based on experience developed. A liberal amount of

material such as the Miss Mason School project for CCSM, Marion Walter's mirror

cards, and some ESS units on the balance and special blocks, should be introduced,

By the end . of the first grade, a beginning can be made on the structure of

real numbers, using the material discussed in the progress reports from the

e e e
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Lexington project of CCSM, This uait should continue into the second grade., It
encdﬁ?aséeé'inequalitiés;order relatioﬁs,.additioﬁ and'subtraCti@n of segments
éﬁd'the properties of these operations, positive and negative regions on the
ﬁumber line, addition of equal segments and the rélatioﬁ of this to the cérdiﬁals,
the addition of small equal segments to equal a unit segment, and the consequent
development of fféctiohs. Overlapping this work on a number line, multiplication
éhoulﬂ be developed as rectangular arrays, first of dots and later of squares on
graph paper, The counting of squares is facilit&fed by marking the cardinals on
ﬁerpendicular co-ordinate axes, As described in.Andy Gleason's report of his
ﬁork at Morse School, and also in the May and June, 1965, Estabrook reports, this
quickly enables the child to multiply large integers and|fractions, Large groups
of squares ave blocked off, finally in the way suitable ?or decimal evaluation,
Cowmutéti#ity of multiplication is easily brought out,

The geometry described by other parts of this summer's CCSM material will

include descriptive elements and comparison of shapes and areas, relevant to the

work described here., Units on measurement, also being developed this summer
‘will be of importance for the experimental and graphical work below,
| \
In second grade the child car be exposed to the spring. In combination with

 the balance, results can be obtained concerning the gravitational force, its

local uniformity and its dependence on the quantity of material.

The scientist will recognize that the following suggested sequence of
measurements implies several important results, It is not intended that the
éﬁildren be instructed to do these and only these experimeqts. But if they are
given time to try things some of them ﬁill be done. These can be raised for

discussion by the teacher which will lead to questions Suggésting other experiments.
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Hang a weight on a spring and measure the spring's extension. While
oscillations are interesting, a well damped spring may be more useful at this

POintd‘

(Relative spring extensions, and for the balance relative distances from
the pivot, are all that are of interest herxe, It is prodably better for the
student to use calipers rather than a ruler. The caliper distance can then be

marked off on a line from a starting point. The first measurement fixes a unit

/
for that spring or student, I£, for instance, the subseguent measurement ¢

that of a spring under twice the tension, and the caliper meaSUremen£ is marked
off from the same starting point, the student can readily find with his calipers
(or dividers) ‘that the second interval is about twice the first., Ratios such as
2:1, 1:2, 3:2, etc., which will arise below, cén be arrfved at witﬁout requiring

. reading of a ruler and a subsequent reduction of the ratios to a common form,)

Starting Point

/_./

T

Calipers

Move the spring and weight around the room, up and down. Does the extension

change?

Balance a block by any convenient weights (heans willdo), Take another
block like the first and see if it balances against the same weights., If it does,

see if the blocks balance against each other. Switch pans and see if they still
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balance., Balance both blocks against beans. How many beans were needed com=
' _.pared to the number of beans to balance one block? If the added beans. have been
kept separate from the beans balancing one block (by a piece of paper), do the

two groups of beans balance each other?

Find two differevt loolfino pairs of blocks such that the members of a pair
’are similar and balance each other, Balance the members of one pair, then add

_the members of the otler pair to each side. What happen?

© With a pair of balanced blocks, measure the spring extension for, one,

then for the ctbér, and then for both together.

-~

Balance a balance board, which can be distinctly asymmetric, Then balance

on Lt twc blacks which have already been found equivalent by balancing against

4o

the same amount of beans in a pan balance, 0% by causing the sama gpring ex-

tension; Measure the distance from the prOt to the blocks, Shift one block,

N

.then re-balanve by shifting the other and measure again, Shift several times,
Baving found’ a)third similar block balance two agajnst one and measure distances
frqm pivot., Shift position of double block and re-balance with single block.

This should be repeated for 3 against 1, 2 against 3, etc.

The -omparing of weight ratios to distance ratios by tabulating the above

data is possible because of the simple ratios involved, In addition rectangles

can be formed with the length of one edge representing the number of blocks and
the length of the other edge the calipex spread. BY comparing areas the above

results can probably be extended to less simple ratios.

A VU s S A
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GRADES 3 AND 4:

During these grades the important algebraic skills and understanding of the
commutative, associative and distributive identities, the properties of 0 and 1,
and the addition and multiplication of ordinals and of fractions are to be de-
veloped sufficxently for the analysis of grades 5 and 6., A study of sequences
will develop the notion of limit. The graphing of pairs of numbers that make a
mathematical sentence true will develop graphiug‘skills.and the notion of
furiction. More experiments in statics (pulleys and force tébles) and a beginning
of dynamical experiments (objects rolling and sliding on thellevel, bouncing from
walls, and falling through aix) are to be intr;duced in'these grades,

It is vecOmmended that a discussion of true, false and open Sentences and

3 1dentities, as in the Madison Project, be given 2 proaminent role in third

grade, A pood sense of varlable is given by the use of frames into which numbars
éan be inserted. The method permits & trial and exrrox approach to f1nd1n° number
pairs or number n-tuplets (depending on the nunber n of different frames) which
'make a Sentence true. For non-identities a functional relationship is impiied
between the numbers of the n-tuplet, for which a graphical representation is to
be developed. This algo leads to the identities associated with the properties
of 0 and i, and the commutative, associative and distributive laws; These should
be discussed graphically as well, (The associative law for multiplication re-
quires a 3~dimensional construction).

The effect of adding constants to both sideé of an equality, or of multi-
plying both sides by the same number, should be discussed in terms of maintaining
a balance between the sides. Then this philosophy should be»ghecked by comparing

the *true pairs” (or true n-tuplets) before and after altering the form.
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Multiplication of signed numbers should first ba discussed in the context

A
_}” of physical situations which indicate the Wpatural? conventions for multiplica-

tion of signs. One situation found to be natural and convincing, though a little
laborious, uses rate x time: at this moment I am at zero on 3 number»line, a)

if I am travelling forward at 3 mi./hr; where will I be two hours from now, b)
where wvas I two ﬁours ago; c¢) if I am travelling backward at 3‘m1/hr., where

will I be two hours from now, and d) where was I two hours ago?

It has been found profitable to exploit the fact that multiplication has
been infroduced as rectangular arrays or areas. Marking off the areas on carte-
sian axes for 3 x 2, (=3) x 2, 3 x (-2) gives congruent rectangles appearing in

 different quadrants, It bhas usually already been accepted by the student, from
a wealth of examples, that (<)x() = ()x(~)=(~) are the convenient conventions,
‘Thus the opposite second and fourth quadrants are seen to imply the same sign.
i-}J :'Does ¢he third quadrant then give the same sign as the first? Attaching a
ngense’! to the area has proved of great interest to students. They have treated
3 x 2 as an ordered pair, represented by, for instance, 3 up and 2 across. In

that case while constructing the rectangle they are moving in a clockwise

‘-—~*-i direction around it. Similarly, (-3) x 2
g\ indicates counter-clockwise, etc. The
';"5*‘ ’ T fact that (=3) x (-2) circulates just as
Y ‘ .~ 3 x 2 is impressive to the young student,
s Later they will see that the choice

(=) x () =+ also has the property of keeping straight lines straight, even

when they havé negative siope. They can also check the distributive identity,

and see that it is maintained for negative numbers only with the above choice.
It has proven to be more difficult to teach a proper understandinglof

operations with fractions, and move time is required for teaching this. The

E e T n 2 - )
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addition of specific fractions on the number line and theilr multiplication on two

- dimensional rectangular co-ordinates leads to accurate results easily. In this

_ Ry baa b .
" » o ke

way, one illustrates in these particular cases that the distributive, commutative
and ascociative laws apply to fractions, It is more difficult to generalige.tha
particular results to the forms of the operational algorithms,

Subdividing the number line brings out the technique of least common denomina--
tor to add fractions, Similarly the equivalence of 2/4 (=2 x %) to %, etc., can
be shoun graphically. The denominator denotes the number of equal subdivisions of
the snit segment, and the numerator denotes the number of these added together,

With the same representation on crossed axes, the subdivisions of the unit square

(or rectangle or parallelogram, if flexibility is desired) can be seen to lead to
the rule of ”multiﬁly the numezators and the denominators’, For an able class,

this can be supplemented by an axiomatic approach, as described in the 1965

. Estabrook progress reports., The above approach to signed numbers is also reported

on, once for third and fourth grades, ahd again for fifth graders,

f With respect to the mechanics experiments, a quick review of K-2 results
with springs and balance arms should be supplemented by experiments with several
weights poised on hoth balance arms, In this way, the student should arvive at
the explicit law of the lever for parallel forces (gravity);ézfi LA 9,

- where v, is the weight of each object at a co-ordinate X, along the lever amm

i
from the pivot, Combined with the pulley, whose use is described below, the

law can be verified for vector (one-dimensional) forxces by arranging to pu}l up
on the arm. As in Ed Prenowitz's ESS work, pivot points should be available such
that cases of stable, neutral and non-equilibrium arise, The stqdents-can
discuss reasoﬁs for these three cases,
A free pulley is an example of a balance of foxces (there is no unknown
iﬂf constraint such as at a pivot). At the same time one learns that constant

tension is transmitted along a light rope and a class of simple machines is




Chapter 5 9.

discovered, With springs inserted along the rope the following experiments can
be done.

Find the extension of each of two springs when a given weight and pulley is
hung ffom them, Then insert them in a rope on‘each side of a simple free pulley,

Hang the weight from the pulley. The

weight should be substantially heavier than the -j\. ‘I;
rope and springs. Measure the extension of each ﬁ% -%
spring. Repeat with several weights. " &(j\J
To further illustrate the transmission of J;i
tension, the springs can be inserted in any [#ij
rope and pulled arbitrarily, érmwyn}.nudgﬁy~m~9 The spring

¢

extension will be rbughly proportional and in the same proportion as obtained
when hanging the same weight from each of them,

The class should then be given time to find ways of 1ifting the weight'with
less than half the force required to 1lift it directly. They should be supplied

with equipment whith permits them to put together systems such as that in the

figure,
3 'y
2 9
. o~
ok
t J
s
)
Lt’.
Non-vertical ropes as illustrated may lead the class e
into questions of forces not in line with each other. Work “h_ ) 3
with “"force tables'' can elucidate these questions jf
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In fourth grade the class may have had éxperience in the composition of trans-
lations leading to vector addition, as in the symmetry unit of the 1964, 1965
Estabrook'project. In that case, it would be natural for the class to consider

the components of the forces, using geometrical projection.

-=A force has a magnitude and direction, like a vector. Is it also the
equivalent of its components, i.e. two forces with magnitude and direction of
the components? This can be checked as in the diagram,

Balance two welghts (they must balance onm equi-distant

lever arms to balan%e on the force table). By dropping
perpendiculars to right angled axes marked cm the table from a unit distance

: along the direction of one rope, and multiplying the projections byvthe number
'of_units of the weight, one obtains the components, The weight on that rOpe»is,
iemoved and one éan try to balance the remaining weight by weights pulling'along
the axes, When balanced one can compare to the components. Then balance 3
weights in arbitrary directions and add up compouents in two orthogonal difections.

Different orthogonal axes should be tried for the same set of weights,

It is also worthwhile to test the independence of components of force
~ roughly with respect to the horizontal part of the motion in free flight:

Knock the plece of chalk out horizontally, which releases the pendulum at the

same time. Count the swings of the pendulum until
the chalk hirs the floor. Then knock out the chalk with .
. Lt
much greater speed horizontally. Are there more o &
ad tﬁ:f:::
/

swings of the pendulum before the chalk hits the

floor? Gently push the chalk out so that it falls almost straight down. Hoﬁ
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many swings do you expect now? DIscuss the result with respect to the indepen-
dence of horizontal and vertical ﬁotion. In which direction is the force acting?

Does the vertical force change with increased horizontal speed? What determines

how long'the chalk takes to hit the floox?

The question should then arise as to what happens if forces are not in
balance. Then things move. Do things ever move when tﬁere are no forces on
themzw The sliding of blackboard brushes on the t"loor3 followed by the rolling
of balls, etc., would lead to a discussion of whéther tﬁg slowing down is due
to a ffﬁctional force, or if the slowing is there in the¥absence of forces,

The children can suggest ways of decreasing the friction such as greasing a piece
of chalk before gliding it. .To com§are the slowing dow& of objeéts that start

off at about the same speed one can slide them down a steep inclined plane for

a start, or give them an impulse from a rod on a spring (as in a pinball machine),
By these means the class can reasonably conclude that when the forces on an object

’grg removed,.it mcvesvnearly in a straight line and keeps up its speed for a2 long

time, The conjecture that with no force it would move uniformly would not be
'émiss, but should n?t be considéred as proved, but oniy to be a working
pypothesis, |

In the f£ifth or sixth grade these students will work with a dry ice puck.
With éhe'very small friction imvolved ip that case the above hypothesis will work

within experimental accuracy.,

GRADES 5 AND 6

In grade 5 the investigation of motion without force should . bé extended
to the dry icc pucks on glass plates of PSSC as mentioned above., The timing as
the ﬁﬁck goes Ey uniformly spaced lines on a iong table can be made with a series

of stop watches, or by marking paper tape as it is pulled uniformly, perhaps by

gt
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the puck itself,
By marking vertical lines on a wall it should be possible to verify

approximately the uniformity of the horizontal part of the motion of an object

in free f£light.

It is then time to investigate the behaviouxr under a uniform force such as

gravity. In questioning the students it arises that many believe that a constant

force increases the velocity at first, but then the effect saturates at some
velocity dependent on the force. That this is not a ridiculous idea is illustra-
ted by the known effect of forces as *{~'lapproaches the velocity of light, In-
deed, fluid frictional forces bring about a terminal velocity, as they come into
equilibrium with th? applied force. Experiment is clearly required to separate

out possible hypotheses,

The following "inclined trough“‘experiment has been suggested by Steve

.+ Willoughby. The use of a trough instead of a plane allows the timing of eqﬁal

intervals, with acéuracy, by the periodic oscillations from side to‘side. With
the trough in a horizontal position, hold a2 small steel ball up against one
side and release, .The number of oscillatiéna in 5, 10, 15, 20, and 25 seconds
can be counted. The same procedure can be repeated with the ball released from

a higher or lower positiom,

\E::::jgzggﬁ// trough, end-on

- If the students have had the ESS pendulum unit they will not be surprised at the

constancy of the period of oscillation with respect to amplitude., In any case,
this is to be accepted as a timing device, not to be understood in detail. The
vertical motion to be imvestigated will be assumed to be independent of this

sideways motion, Thé period of sideways oscillation is not independent of the

S T
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tilt (it increases as sec &) because “'sideways' chariges ite orientation

with respect to the vertical, The period

nmust be remeasured for every angle of tilt used,

Once having established the period, the rate of

motion "along" the trough can be investigated., A piece of carbon paper over
white paper (or simply a piece of impregnated paper) is laid smoothly in the
trough. The ball is released from the side, near the top end of the trough, and
traces out its path as it oscillates downwafd. To establish the uniformity of the
aéceieration one need only compare the differences of the distances between
successive pairs of nodes (or maxima, whichever is more convenient). These
increases in distance between nodes should be roughly constant. Discussion is
required to relate this to a constant increase in the average velocity between
nodes, As the node spacing represents equal time intervals, this implies a
';cbnstant increase in the average velocity in each unit of time. The increaée

in velocity in feet/second each second can be computed, and will depend on S .
By observing the trend of this accelerétion with (& , the students can find a
lower limit to the.vertical acceleration, aﬁd probably extrapolate to within a
_féctor of two of the correct result, Because the rolling motion has through

the rolling constraint force, transferred some energy into the balls rotation,
this acce'eration is not g. It is Vﬁgrgﬁmn for a uniform sphere which pfobably
will not be experimentally distinguishable from g ‘.

The studeats have now been able to hypothesize, and check to a reascnable
extent, Newton's First and Second Laws (they do not need the Third Law for the
work described below) if one ignores the rvolling constraint., An eﬁperiment in
which the constraint is not hidden, is to drop a weight which is pulling a paper
tape through a PSSC bell clapper timer., Depending on classroom experience this
latter experiment can be used to supplement or replace the inclined trough ex-

periment, In either case, one should use several balls or weights to arrive
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at the independence of the acceleration from the object's mass (when rolling,
the mass distribution matters).

" In fourth grade, in investigating true pairs, the students have probably
plotted some straight line graphs and.other functions., Then, Or now in £ifth
grade, they could also plot e.g., the height of a semi-circle against the length
of the perimeter/to that point and obtain the trigonometric functlons experi-
mentally. Other functional relationships can be explored graphically. A unit
ofvthis type is described in the "functions" section of this conference report.

In:the‘fifth grade the details of the linear function graph should be
4nvestigated as in the Morse School and Estabrook projects., The special motiva-
‘tion in this context is the need to have an expression for the motion of bodies
sliding along the floor. Is the slope (increment up divided by increment
acfoss) the same between all pairs of points on the line? What paﬁt of the
" mathematical sentence determines the slope? Find a sentence whose graph has
h.very steep slope., A very small slope. A negative slopé; A horizontal line.
- A vertical line, How can»we get sentences whose gréphs have the same slope but
-are displaced parallel to each other? Given these two points, what is the slope

of the line joining them? What is its mathematical sentence? What is the

gsentence of a line with this slope going through this other point?

The introduction of sequences was suggested for the third and fourth grades
but not discussed further. The following can be started in fourth grade and

g

continued in fifth grade.

The series 1 + 3 4+ 5 +...4(2n = 1) can be summed geometrically as a series
of "wrappings” making up an n x n square array. This is discussed in the

Estabrook 1964 reports for third and fifth grade. To continue with the idea of

mathematical induction to an algebraic proof of the above sum is optional to the
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following material, A discussion of a surface wrapping about a cube in a three
dimensional corner, would be a valuable extemsion of the geometric reasoning
fnvolved in the plane; leading to a series that sums to n3. How do these
sequences behave for large n ?

They can discuss the sequences given by 1 -141=-1+.. .+(_1)n41,

.
-l

The harmonic series can be 3roﬁped to show that it diverges. They could check

1/2, 3/4, &/5, , with respect to upper and lower limits for large n.
the closed form of the sum of a geometric series by substitution for many m, and

then look at the large n behavior.

In the sixth grade one can note that thrown objects do not move in
straight lines and that some familiarity with mathematical sentences whose slopes
change is requiréd to be able to handle this aspect of mechanics, The fitth
‘-grade 1965 Estabrook project and thz Moxse School 6-7 grade summer prcject cam
~QWJQ  be followad., This develops the limiting procedure of successive choxds to ob~
tain the tangent to a parabola at a point. In addition to the algebra preﬁious}y
discussed they must be able to factor y2 - xz. This can be done by'using the

distributive law twice on (y -~ x) (y + x). It can also be done geometrically

—— y+x >
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The Estabrook "slope" unit should be preceded by a careful discussion of nested

! O intervals and successive approximations as indicated by the Function section of

-----

this report,
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The previous classes have only had time té find the slope at a given point,

This can be extended to the slope at a variatle point in a few more sessions.

- Using the First and Second laws of Newton one can go through the folléwing

algebraic steps, using a horizontal speed of say 2 feet/sec, andv
g = 32 feet/sec/sec., At every stép many time bairs are to be found, to give a
well understood meaning to the mathematical sentence;
»From Newton's First Law |
[] = norizontal displacement in feet = 2 x (:)where(:}= time in secs.
A vertical displacement in féet = <> x(OO

where C’ average velocity in feet/sec.(average of initial and final’
' ' | velocities)

The use of average velocity is frankly taken as an estimate at this time,

1f ~-7 = final velocity in feet/séc |

32 x ( from Newton's Second Law andvexperiment.
= (32 xCD-% 0)/2=16x().

Then by substitution (which is an algebraic device that requires discussion
and checking) | | . : |
£\ =16xOxO=16;;1/sz;;1/2xD=4xDx[:l.

Thus the average velocity "approximation” gives the parabola, It now‘re-
mains to cefer back to the tangent result to show that the rate A changes with
(O 1s 2 x 16 féet/sec/sec, at every fnstant, Thus,'Néwton's Second Law is

exactly satisfied.

If aparabola is drawn on the blackboard it is not difficult to throw a
piece of chalk so that it follows it closely., If one gfaphs a family of para-
bolas with a common vertex, then it is easy, by starting the chalk horizqntally
at the vertex, to closely follow one of them, While looking by eye is inaccurate
point by point, the following of the wiole length of the cuxve makes a

fairly accurate experiment,

2915-65
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~ Section III -~ Chapter 6
’ CIRCULAR FUNCTIONS

During the early experiences with meésurement, children will be given
several wheels of differenct sizes toc measure, These could be bicycle wheels,
wheels made out of several layers of corragated cardboard (in which case spokes
should be drawn on the cardboard, and there should be the same wumber of spokes
on each wheel), etc, They'will be asked how big is the wheel, and be expected to
come up with many different answers, Differences In answers will come from the
fact that different things will be measufede

One Set of measurements which the children would be encouraged to get would
be the lengths (to the nearest unit) of many chords, They would note that there
seems to be a largest one (namely, the diameter) which would give a feeling for
least uppex Eound. Strings could be attached for chord measurements,

They would also measure the radii, Within their limits of accuracy, each
child should find that all the radii of a given circle have the same lengih.

=dhe children would be asked to find out how{”far around’’ the circle is, and
presumably would txy to wrap a string around the wheel, and also roll it along
a straight path {marking the starting place on both wheel and floor) and measure
the length. Thexe are also various other methods which they might try, such as
ﬁeasuring small chords, etc.

The children would be asked to place the centerxs of the circles together

(holes through the centers would make this an easy task) and notice that the

spokes "line up,” Then, one of the circles could be rotated to notice that

the angles (or spoke spaces) are congruent and that there are the same number on
each wheel even though one wheel is larger than the other -- thus, getting a
feeling for congruence of angles. Arec length for a particular spoke space, or

a particular number of spoke spaces would be measuied (roll the wheel or wrap the

string) for the varlous wheels, and compared with other numbers also, to begin
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developing a feeling for radian ﬁeasure. The Eotal angle (number of spoke
spaces) for cach circle would also be noticed.

Area o% the circles would be approximated by placing a grid (on transparent
plastic) over them and counting the number of squares. Now, the various mea-
sures for the circles would be compared and 1t would be noted that there is a

linear relationship between the various one dimensional measures and a quadratic

relationship between one and two dimensional measures -~ these would be found
from the table. For this purpose, it would probably be desirable to have the

rat19s of the radii of the three different gizes of wheels be 1:2:3.

COMPARISON GAMES

' used
Late in the}elementary school program, the wheels would bef again to develop

thg sine énd cosine functions, For this unit, it would be desirable to have a
whee}.which has radius of one decimeter, and use a meter stick and tape for 2ll
'méésurements. A long sheet of paper (brown wrapping paper, oY butcher's paper,
or something of that sort) would be taped to the wall with masking tape,'and the
wheel would be rolled along the floor with a pencil through the hub so that a
horizontal 1ine can be drawn at ;he height of the hub, 1f there is8 a signiflcant
base boatd in the classroom, it may be desirable to use a long (at least thfge t
meters) piece of plywood as a backing for the paper, o
Now, attach a metric tape measure to a point on the edge of the wheel,
start the wheel in position 1, and roll it to the left., After the wheel has
moved a given distance, say ten centimeters (this figure can be found by looking
at point of the meter tape that is on the hub line), mark the center point with
a colored pencil, and mark the position of point P with the same colored pehcil,
Continue doing
this for various points, Then, draw line segments (corresponding to tadii)
between corresponding center points and P's; and measure and record, in tabular

form, corresponding arc lengths (2), heights of P above the hub line (b),
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. . and horizontal distances of the center from the perpendicular projection
of P onto the hub line w,  As the dots are being made, the value of a could

written beside each position

\//"\

, ﬂ_,.}{~,, S,
\' nF Y

Y,

S~

After a dry run, in which the pupils would make only a few measurements,

the class would be divided into small teams, and collect déta for values of

a between 0 aﬁd 125 centimeters which are multiples of 2 centimeters, Each
teamrcould work on this while the other pupils were working on some other
éubject so as not to waste the entire class's time, It would be agreed in
édvance that values of h would be positive above the hub line and negative be-
1ow, vhile value of w would be positive if P is to the right of the center and
negative if P is to the left of the center.,

Tables would be made to compare each of th; following: number of spoke
épaces and érc length; afc length and h; numbe; of spoke spaces and length;

"arc length and w; and mmber of spoke spaces and‘ﬁ.

D .screte graphs would be drawn for each of these five tables, and the
pupils wouid then try to guess intermediate values == checking by going back and
making the appropriate measurements, -

Then, the pupils would be asked to look for various interrelatipns among
Ehe fﬁnctions. They would presumably notice that becth the sine and cosine
functions are»periodic and that the cosine is % of a phése behind the sine
function. They might then be asked to square each value of the sine and cosine

and look for a relationship, Presumably, they would notice that the sum seems O

be relatively constant and would be asked whether they think the variations are
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measurement errors, or more essential than that, Then, they would be agked if
they could give a convincing argument for the faci that sﬂnzx + coszx = 1 for
any value of x (using their knowledge of the pythagorean relationship).

Before the paper is destroyed, it would be worth noting that the dots on
it are points of another curve known as the cycloid, It might be possible to
have some pupiis construct‘a curve of quickest descent using cardboard and

marbles to test,

Numerous physical examples of sine functions would be contructed by the
pupils at this time. For example, a circular trough (similar to the trough
used in the physics experiment to demonstrate Newton's second law) would be
placed horizontafly and a ball would be shot into it near the top of an edge..
The path traced would be essentially a sine curve (or a dampened sine curve) .

Another experiment could be done with a pendulum with a long period., This
can be achieved by attaching a2 long rope to the top of the gymnasiumand having
a child swing on it. Marks would be made on the flooxr at equal intervals, and
and the time at which the child crosses each mark would be recorded, and later,
the distances would be plotted against time, Again, the result should be a
dampened sine curve. |

If the average mean temperature in a particular city for every day of the
year can be acquired from the weather bureau, the graph of these will approximate
a sine curve also -~ the process of determining whefe the origin is may take a
few minutes, but is an interesting procéss. (By mean temperature, we mean the
average of the high and low tempefatures for the day, and the average mean tempera-
ture is the arithmetical mean of these cver a long period of years.,)

Other examples of sine curves (or approximations to sinme curves)lcaﬁ be
found in many places, The path of an earth satelite is one example, alternating
current can be used to generate an.example, var10usjoscilisc0pe type machines are
used in some garages to test avtomobiles and are ex;;cted to produce sine curves

if the automobile is healthy.
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Various functions would be studied, including the ma@ping of arc length (8)
onto height of P (h) (the sine cuxve); s onto a (angle measure =-- number of
spolies could be replaced by number of degrees, etc., to get still different
functions): & onto r (length of radius); and s onto V(cosine). The domain
would be changed so that it included only arc lengths from O to 2 at first, and
then this would be increased to include larger domains, finally including the

entire range of real numbers, positive and negative (roll the wheel backwaxd).

Composition of functions would have been considered earlier, but would be
reconsidered in relation to these functions. 1In partlcular, the composition of
the functions from a to s, and the function from s to h would be used to produce
a different sine function which has as its domain the set of angle measures rather
than arc lengths, etc, J

The question of which functions have inverses would be discussed, and tﬁe
pupils would be asked toAdécide what the domain should be in order to havé a sine
'fnnction that has an inverse function (and similarly for cosine).

Now the sine and cosine functions would be studied in considerable detail,.
with the children explicitly mentioning all symmetries they could find including
the translational symmetry of pegiodicity. Even and odd functions would be
studied and other functions which are even and odd wuld be found by‘the pupils,
These wéuld int¢lude the obvious polynomial functions, the absolute value function,
“and any othex function they.might discover (a graph ﬁithout an explicit algebraic
formula would be entirely acceptable in this regard, though it might be fun to

try to find an algebraic rule)., From all of this information, the children

would be asked to decide how much of the table for (e.g.) the sine function they

would need in order to construct 2 sine function whose domain is the set of all

real numbers,
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Next, the question "What is sin (x+y)?" would be asked. The obvicus
answver of sin x - sin y could easily be shoun to be wrong by using simple
counterexamples (the children can provide these easily). Then, using their
knowledge of coordinate geometry (including the
distance formula) they would graph points at
a circular distunce of y, 2, and x~y from ;he
point (1,0), find the lengths of appropriate
chords, set them equal, and see what happeﬁed.

Using the fact that sinzz = 1, they could easily

‘derive the usual formula for cos (x-y). From this, with a few simple algebraic
manipulations, they can derive the formula for cos (®+y), the usual relation
between sin x and ;os x (which they will have suspected earlier), énd the
corresponding formulas for sin, Then, the double and.half angle formulas would'
be derived.

Now, it is time to use this new found power to construct a better table.
The values of sin , CO3 , 8in , et¢,, can be determined with complete

accuracy using the pythagorean relationship, and the formulas mentioned in the

above paragrah can be used to find the values of any numbers which can be written

in the form sin-{ig , or sin etc, Thus, if a value of 71 were known
3
with sufficient accuracy, it would be possible to detexmine the value of sin X

P

to any desired degree of accuracy for any %, Some values of a table should be
calculated in this way (e.g., sin 47/8, co9 22%0, etc,).

The pupils will now have constructed two different tables. One based on their
original mez-urements with the rolling circle, and a seqﬁnd based on theory. It
can be pointed out that there arg still other methods of calculating the values
for such tables, but infinite series should probably not be considered in detail

at thisAtime. Now, it would be appropriate to give them tables which have been

2915--65
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mwade up by others, This should include tables with a domain of real numbers (or

arc measute ~~ the tables look the same even if the functions are technically

diffevent) as domain, and tables with angle measure in degrees as domain,

Then, as a theorem, it can be shown that the traditional formulas sin €

- and cos @ where 8 is an acute angle of a right triangle are ture, and epplica-

tions involving right triangles can be considered, Included in this would be
explizit considé%atioﬁ of the inverse functions. During this study, it would
become clear that another function (namely the tangent function) would be

very convenient, and .tan x would be defined in terms of sin x and cos x and
studied first as a function from the reals to the reals (“Is tan even or odd?"
Is it pericdic?” "What is an obvious difference between it and thé other two
function?" ete.). A very informal'discussion of limits might be apﬁropriate at
this time. Then, of course, the tan function would be used to do some right

triangle trigonometry.

Work with oblique triangles and trigonometric identities and equations

should probably be saved for a later time ~-- presumably somewhere in the junior

high., When identities and equations are considered, the pupils #ould be expecfed
to mention quite explicitly any restrictions on the domain.

Qircuiar functions will be reconsidered again in later grades in conunection
ﬁith cdmplex numbers, vectors, and analysis, as well as the usual topics

mentioned above,
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Section IV
WORKING PAPERS O GEOMETRY : . |

SR Most of the men-power, and all the woman-pover of the conference was
concentrated on geometry., This, and the inclusion of brief outlines to-

gebther with units described in some detail, has resulted in the fifteen

working papers presented in this section. These papers were not written o |
for sequential presentation, nor does each take into account 8ll the pos-

sible interactions with the other units, We believe they are 2ll suffi. 3
ciently consistent with each other to be in éne curﬁiculum, and that they
indicate a large part of the coverage such a curriculum should have, Sonme
of the units rely on the earlier teaching of other materisl as indicated in

the paper. Some papers or subsets of papers are neérly independent of the

rest. i

For the above reasons the order in which these papers are presented is
somewhat arbitrary.' We have attempted to put those units which start in
“the'eariier grades before those méant to start in later grades. ‘There‘is
still much overlapping invgrade lével between papérs, es scme units that.
start in K or liend in‘gfade 6 or later. In general the fine grained choice
»of grade level and ordering bf material has beén left to be decided by ex- |

perience.

e aaega o o g




T R T T SR S SN ¥ LSt ke Skt SRR R S i .

EXAMINATION AND DESCRIETION OF COMMOW OBJECTS

(( ). : ‘ | -
An assortwent of "standard" physical objects (cubz, ball, cylinder, ete.)
of various sizes and colours is used,
The physical properties are discussed (e.g. flat-round, size, hard-soit,
number of vertices, etc,)
Discusa which properties could be determined if the objecte were in a
cloth bag, which could be felt but not opened,
Cames of the followiung sort should be used:
] .
1. Attribute blocks
2. Fitting blocks in holes
‘f(f:\\‘ ot . . . ]
{ ¥ 3, GCuessing games with one person putting an object in the bag and answering

questions abeut its physical nature - This 1s an exercise in abstract visualiza-

 tlon,

4, Games in which partners describe unspecified objects on paper - exchange

papers - and then guess what object was meant,

Y -
AP UMM A .. ALAIPRE
E
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EXAMINATION AND DESCRIETION OF COMMON OBJECTS

I. Pressman
Rewrite M. Walter

I don't think thexe is anything mew here that is not available already. But
anyway, here is a shortened version, 1 think Attribute Blocks is the only'mew”
thing.

l

ProPeLties (such as flat, round, hard) of obJecLs &such as a cube, ball,

*pencil, glass) of various sizes, shapes and colors are discussed, Which properties

could be determmned if objects could be felt but not seen? Games such as:
TAttribute Blocks'w |
Fitting blocks into holes
Twenty Questions

_can be played,

*Available from ESS

Comment by E. Lomon: I recommend that in the final version Bill Pettis should
inciudeIrwin Pressman's remarks in Chapter 1, Them Chapter 7 can be omitted
and all later chapters re-numbered, Marion Walter's condensation indicates

how it can easily be included in Chapter 1.
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Section IV - Chapter 8

PLAYING WITH FIGURES, BLOCKS, AND TESSELATIONS

Assumption: The children know the distinguishing features and the names of the
the triangle, square, hexagon, pentagon, n-gon, regular n-gon,

quadrilateral (4-gon), etc.

I. Blocks
The blocks considered are the set constructed by E. Prenowitz, Some time
will be given for familiarization through play. |
1, The'children are 2gsked tc make a squaré using\f SQUarés. Next they
are asked to make a larger square. \
Can a square be made out of 2, 3, or 5 squares? Give reasonms.
Do the same thing with triangles. . '
2. Make a hexagon of two (red) quadrilaterals, 3|(b1ue) parallelograms,
and 6 (green) triangles. Surxound.
Make a large hexagon using all sorts of pieces - Can it be made larger
(i.e. by using more pieces)’ Introduce the idea that by bringing in more pleces
the figure gets -bigger - and the only limiuations are the number of pieces, size
of floor, number of workers, etc.
Create a chip trading game by noting that from the comparison of sizes

1 yellow = 2 red 3 blue = 6 green

At a later tlme assign some value to the orange square - let the children
choose ~ (or let 5 yellow = 1 orange). These might be used instead of
Cuisenaire rods.

3. Regulér n-gons, Ask the children to create regular 9-ggns (1 triangle,
3 squares on the edges and thgn £111 in with 3 parallelcgrams). Tcace this on

the paper.

The regular 12-gon next. (hexagon at center, 6 squares, then 6 triangles)

Trace thils on paper.

Doy Lo niabn Sl 1 %
el gt L. carth
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Chapter 8 A 2.

Make a 5-gon and a 7-gon., Llet the children convince themselves that regular

,E¥¥F/ 5-gons and 7-gons cannot be made with this set,

What 1s the largest square that can be made with this set?

4, Create symetric patterns of blocks, Consider various types of symmetry
a) Symmetric about a line (180 degree symmetry)
b) 120'&egree symmétry
¢) 90 degree symmetry

d) 60 degree symmetry

Decide which patterns are left unchanged by putting 1 or 2 mirrors
along the line (s)%of symmetry, (In the above cases all may be obtained =
it should be demonstrated to the children that if they make a synmetric pattern

and set up the mirrors then all the blocks btehind the mirrorscould be removed,)

AN " A . A
km)f “ 5. Tile the plane using only 1 type of block at a time (square, triangle,
| parallelogram, hexagon)., Trace these and keep.
Now txy to do it with all the blocks together,
Encourage the children to relate the traced diagram with the actual
configuration of blocks,
II. Paper Cutting and Pasting
1, Cut a large number of "congruent' paper triangles and arrange them
symmetrically on a plane, Obtain 600, 900, 1200, and 180° symmetry,
Now tile a page with these triangles (paste them down if necessary).
Rej 2at this with irregular congruent quadrilaterals. Tile the page
with these also - This can be done, |
(-. 2, Cut up a rectangle to make a triangle,

Cut up a triangle to construct a quadrilateral

3. Ask the children to cut as good a regular pentagon as possible, Teach

!
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Chapter 8 3.
them the following technique:‘ take a long thin strip of paper, tie an over-

hand knot, pull it tight slowly, and behold a regular 5-gon!

T b AT -y v P O

|

4. Cut a congruent regular hexagon into 3 irregular congruent pentagons

as shown in the diagram, Then persuade the

kids to tile with these,

Next cut arbitrary irregular pentagons and try to tile,

. Indicate that
these don't work because there need not be a way of filllng in all the

xaglon abouﬁ caeh cornez,

Iry this for 7-gons too,

- Js Tile with “stretched! hexagons

. o Y
o o
sl

These can be cut into 2 equal pentago

ns in varicus ways - and one can
tile with them also
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6., Get children to solve tiling problems on graph paper - without cutting

and pasting £rom a different sheet -

T |

g ——
H

AR and what they will,

9 _ }__drr..ﬂ

e.g' - F

i i
b

Tt iy’

Do the same with the Chinese checkerboard configuration,

7. Make a large squaxe tiling on graph paper, Subdivide each square into
4 squares., Note that this is a tiling also. Repeat agiin. Let childrenvconsider

how long this process might continue (i.e, until the ph&sical dimensions become

- impractical).
' Repeat with triangles.

8, Cut a long string of paper dolls (cut several stirings and paste
together if needed). Get children to suggest mnames for the dolls - then suggest

numbers ~ then finilly number then ese =3, =2, =1, 0, 1, 2, 3, .., symmetrically,

12915-65

hen Ealin L TROARE .
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Section IV = Chapter ©

CONSTRUCTIONS

Gonsidefable timé and effort should be devoted to the development of
jntultive geometry at all grade levels. Students should have many experiences
with physical aspects of geometry long before any formalizatioﬁ and abstraction
of geometry is attempted. The formal study of geomelLy should szsrve to organize
and to structure cénaepts of geometry, many of which are (orx, cught to be) present
in the studénts' stockpile of intuitions about geometry, in particular, and about
mathematics in general. To gain these intuiéions, the students should look at

and handig objects of various ghapes to see ''how they are put together', and they

" ghould leayn to make models of and replicas of common objects, and they should

learn to use compasses, straight edges, pencils, and the like to draw pictures of
i | :
objects and shapes. Much of this work {nvolves what can be thought of as con-

styuction,

Geometric constructionsprovide much substance for applications in geometry

as well as for motivating the study of geometiye The term ggnstruction in this
context is to be interpreted vetry broadly, and jncludes, in addition to the |
gtandard uses of straight edge and compasses, such notions as folding, cutting,
and posting of materials as well as replicating, molding and drawing vbjects, S0,
constructions should be an integral part of both informal and formal developments

of gecmetric notions at all grade Ievéls.

Early Period. At the earliest stages, any K-2, construction activities

- . might be classified in the categories (a) pattern-building activities, (b)

replication and modeling activities, and {¢) cutting and folding activities.
Among the activities in (a) are building with blocks, making tiling patterns
with blocks (both regular and irreguler shapés), making wall paper designs by |
posting polygonal shapes on rectangular sheets of paper and for cylindrical

tubes, putting together jigsaw puzzles, and making beads-on-wire designs., From

o
e e b § 20 v e - oot L
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. Chapter 9 | ‘2.
 these activities, the studentS“should be expected to gain some familiarity for
for the Yfeel" of various geometylc shapes as well as for hov certain shapes
Vfit togethex! well while others don't, In particular, the students shonld gain
. an awareness of the fact that a plane can be tiled with copies of an arbitrary
triangle and, also, with copies of an arbitrary (plane) quadrilateral., The
natural extension of this notion to try to build an avaveness fox Bfilling up"
space is almost tco inviting to aveid, The students should be able to verify
 experimentally that space can be filled up By, say, cubes (the 3~dimensional
. analogue of the square) but th by regulax tetrahedra (the 3-dimensional analogue
~ of the regular triangle).

The activities involved in category (b) include making models of figures

- from clay, cérdboard, wire and striag, making faﬁimilesiof coins (and ~ther

. raised patterns) on aluminum foil, making figures with iine symmetry using ink
“ blots, and replicating figures through the use of carbon paper and potato biock
, printing. As with the activities described earlier, the students should be ex-
;pected_to»become familiar with various geometric shapes and how these shapes
~are'put together’,

-A Az the early ltages, the activities of category (c), cutting and folding,
w”sl-xo:':-uld be of very simple sorts. As a most elementary observation, the students
kshould note that vwhen a sheet of paper is folded in half, the edge of the fold
“1s straight. As a qoﬁtrast to this phenomenon, they should cbserve what happens
when a "non-flat” surface, such as irregularly stretched crepe paper, is folded,
That the edge of a fold in a sheet of paper (essentlally a model of a plane) is
'straight illustrates an 1mportant theorem about intersect;no planes. This
"allows one to meke a straiaht edce from a sheet of paper. Among the kinds of

exerci es that might be attempted at this level are the following, each involving

making a particular fold to meet specified conditionms:

Smrsia § TN B B
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| 1.
‘ffii' . 2.

3.
6.
7.

Make (or, construct) a line or segment,

Make a line that passes through a given point. Make several guch lines,
if possible,

Make a line that passes through two given points. Make several of
these, if possible.

Make a line that passcs through three given points (if possible).
Make several, if possible,

Make two parallel lines,

Make several equally spaced parallel lines.

Make a line parailel to a given line, |

Fold a sheet of paper so that (2) one given point falls on another;
(b) one given line falls on another; (c) one end point of a segment
falls oa the other end point,

Make use of a folded paper straight edge to (a) compare the length
of various segments; (b) draw replicas of a segment; (c) compare the

length of a segment with itself "'turned around’,

Making'use of tracing and/or cutting operations, the students can work at

the task of producing models of triangles with properties described in these

exerciges,

1o,

11,

12,

SR Y PO

b 14.

Jdake a triangle that will £it back into the hole from which it is cut‘u
in only one way.

Make a triangle that will fit back into the hole from which it is.cut
in two ways.

Make a triangle that will fit back into the hole from which it is cut

" in more tham two ways.

Try exercises 10-12 making a quadrilateral instead of a triangle.

If you had two tfiangles like the one described in exercise 10, in

ki o oimt Ao . s .
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in how many different ways could you place one of them on top of the -
other so that the vertices touched? Now answer this question for

figures like the ones described in exercises 11-13,

Intermediate Period, In the intermediate period, say grades 3~4%, the

work with folding and replication continues, In addition, compasses are brought

in as constiruction Instruments,

The folding and cutting activities can be extended from folding to make a

line to folding a line onto itself to make a square cormer., The notion of a

square corner gives rise to properties of perpendicularity. Some suggeéted

activities that involve folding a sheet of paper are the following:

1.
2,

3
4,

Je

6.
1.

Make a line that is perpendicular to (makes a square coxner with)
a given line. Msake several, if possible,

Make a line that is perpendicular to a given line and pasees through
a given point which is not on that line., Make several, if possible,

Make a line that is perpendicular to a given segment at its mid-point,

Given three points A,B, and C, make three successive folds such that A
falls on B, B falls on C, and C £alls on A, What appears to be the
case about the three lines (folds) that are obtained? Repeat with four
points and four folds, .

Given three points L, M, and N, make three successive folds such that
L falls on M, M falls on N, and N falls on L. Repeat with four lines
and four folds, ‘

Fold a sheet of paper in halves, thirds, fourths, etc.

Fold and/or cut a sheet of paper to obtain a rectamgle, a square, and
other polygons,

Having become familiar with various geometric shapes, the motion of line

symmetry can be introduced through folding, -The shapes (triamgle, cixcle,

~ square, rectangle, heatrt, ellipse; parallelogram, diamond, kite, egg, etc.) can

be folded to test for line symmetry, and can be classified in texms of the number

- of symmetrical “olds, Cutting a folded sheet of paper to obtain symmetrical
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" figures should also be done. (One activity that might prove interesting here io

to try.to cut a triangle from a folded sheet of paper.)

Figures éan be replicated on a piece of paper by folding. Simply draw the
figuze with a soft-leaded peuncil, fold the papex and rub the back to obtain the
replica.. Doing this with points, segments, angles, triangles, and others, one
can notice that Eﬁe fold is the perpendicular bisector of the segment between
eny point in the original drawing and its "image" in the replica., Some suggested

activities that involve this process of repiication by folding are the following:

1. Make a segment that is congruent to a given segment and has a given
point as end point.

2, Make a segment that is congruent to a given segment and lies on a
given line,

3, Make a segment that is congruent to a given segment, lies on a given
line, and has a given point as end point,

Make an angle which is (a) congruent to a given angle; (b) congruent
to a given angle and with one side coumon to the given angle,

o

5. Make an angle which is congruent to a given angle and (a) with one
’ side on a given line; (b) with a given point as vertex.

6. Replicate'various polygons with conditions similar to those in 4 and 5,

It is probably feasible to obtain replications of replications by suc¢essive
foldings in parallel lines (to obtain an image under a translation) and in intex-
secting lines (to obtain an image under a rotation). Just how much of thié can
be done in the intermediate stage is not at all clear, but develoément of intui-
tions about motions of this sort certainly is a worthwhile long-range objecfive.

Having done work with folding and replication, it is a reascnable extension
to consider the problem of constructing figures when we are restricted to working
on a rigid metal sheet or other flat unfoldable surface, For this, motivation

must be provided to get to the use of the straight edge for drawing lines and the

compasses as dividers for transferring lengths, Suggested activities involving
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~construction with straight edge alone are the following:

IR T

1. Given point A, comstruct a segment that contains A, Construct several, |

2, Given points A and B, construct a segment that contains A and B,
Construct sevcral. '

et ot G S o St S 2

3. Given points A and B, construct a segment that has A as an end point ;
and contains B, Construct several, o

4, Given points A and B, construct a segment that has B as an end point
and contains A, Construct several,

5., Given points A and B, construct a segment that has A and B as end points.

6. Given points A, B and C, txy to construct a segment that has A and B
as end points and contains C. Is this possible?

7. Given segment Kﬁ, construct a segment with end peint A that contains AB,
Construct anothexr., Find a few more.

8. Civen segment Kﬁ, construct a segment with end poiﬁt B that contains AB,
Construct several. '

9., Given segment AB, construct several segmeatsthat contain AB, Construct
scveral segments that contain AB and do not have A or B as end points,

Yo 10. Given segment AB, construct a segment which meets AB only in point A.
11, Given segment AB, construct a segment which when taken together with AB
forms a segment. Construct several, Must the segment have A as an

end point? Can the segment have A as an end point?

12. Given segment AB, construct several segments that contain AB, Can you
construct a largest segment containing AB?

Suggeéted activities involving construction with straight edge and dividers

'(compass;s) include:
1. Given two segments, test to find out 1f one is smaller than the other.
2. Given two segments, test to find out if one is larger than the other,

) 3. Given a segment, constuu:: Several larger segments, Is there a largest
. 0f these?

4, Civen a segment, construct several smaller segments. Is there a
smallest of these?

5. 'Given KE, construct CD laxger than AB. Construct EF larger than cD.
6. Given Kﬁ, construct OO smaller than AB. Construct EF smaller than CD.

7. Given a ségment, construct a segment which 1s twice as laxge; three
times as large; five times as large.
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(7 : 8. Given AB and point_P. Counstruct a segment with end polnt P that is
xﬁ[’ , twice as large as AB, Construct several, The same for a& segmeht
’ three times as lazge; four times as large. |

9. Given AB and point P, Construct a segment with end point P that is
congruent to AB, Coastruct several.

10. Given AB, line L and point P on L. Construct a segmenﬁ congruent to
AB that has end po1nL P and lies on Line L,

11, 1In Problem 10, how many such segments can you construct?

12, Given point A, find two points B and C such that AB is congruent to AC,
Find another pair of such points., Find several points.

13, Given point A and point B, find point C such that AB is congruent to AC.
Find several such po;nts. :

14, Given point A and point B, find C such that 2B is smaller than AC. Find
several, The same for -“larger than'. :

15. - Given pcint A, _find two points B and C such that AB is congruent to Ar
~ and A lies in BC. We call A the midpoint of BC.,

16.. Given point A, find several segments whose midpoint is A. Can they all
lie on the same line? Must they all lie on the same line? '

</ |
g 17, Given point A on line 1., find a segment that is contained in L and has
midpoint A, Find several,
18, Given point A and point B, find’painn C such that B is the midpoint of
AC. How many such points can you find?
19. Given points A and B, find C such that AC is twice as large as AB,
Three times; five times,
20. Given points A, B and 53. Find point C on line AB such that AC is
' nongruent to PQ., How many such points can you f£ind?
21. Given points A, B and‘ﬁﬁ. Find C on ray A% such that AC is congruent
" to PQ. How many such points can you find?
22, Given points A, B and PQ. Find C such that A lies in CB and AC is
congruent to PQ. How many such points c¢an you find? o
Later Period, 1In the later period of elementary school, namely grades 5-6,
the use of compasses and étraight edge as construction instruments is to be
o I
(Wrﬁ extended, (Even though the use of replication through folding is being " faded

out" as a construction tool, some thought should perhaps bez given to making use
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- of thls process to illustrate the rigid motions of & plane.) Some suggested

activities that involve prohlems about lines and circles are the followxng

1. Given line L and point A not on L, Find a point B such that 1L does
" not mest AB., Find another such point C., Does L meet BG?

Given_line L and point A not on L. Find a point B such that L does not
meet AB. Find a point C such that L does not meet AC. Does L meet BC?

Given 1ine L and point A not on L. Find a point B such that L meets AB.
Find another such point C. Does L meet BC?

Given line L and point A not on L. Suppose BC does not meet L, Will L
meet AB or AC or both?

Glven line L and point A not om L. Suppose BC meets L. Will L meet
AB or AC ox both? '

Suppose line L meets segments Kﬁ,'EE} 55, and DE. Will L meet AR?
“ & .

Make up some problems similar to Problem 6 and solve them.

Construct a circle. Construct several.,

Given point A, constxuct a circle wvith center A. Construct several if
you can,

Civen points A and B, Construct a circle with center A that contains B,
Construct several if you can.

Construct a circle with given center and given radius. Construct
several if you can. | o

Given a circle, construct a circle that lies inside the glven one.
Construct another. How are the two constructed circles related, For
-example, do they have the same center? Does one lie inside the other?

Given a circle, construct a circle that lies outside the given one.
Construct another. How are the constructed circles related?

Given a circle with center A, Mark a point B inside the circle,
Construct segment AC congruent to AB, Where does C lie? Test several
such g”ints C. Lhe same 1f AC is smaller than AB. If AC is larger
than AB,

Given a circle with center A, Mark a point B outside the circle,
- Construct segment AC congruent to AB. Where does C lie? Test sgeveral
' such points C. The same if AC is smaller than A8, 1If AC 1is larger
than AB, :
Given a circle, mark point A and point B inside it. Construct AB.
What do you observe? Try several cases,
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17.

18,

19,

gy Gutat et 202 e Ll
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Given a civecle, mark point A and point B outside it. Construct A3,
What do you obsexve? Try several cases.

Can you find other interesting questions involving a circle and two
points?

Given a circle, marxk points A, B, and C inside the circle, Construct
AB, BC, and AC to foxm a triangle. Mark point D inside the triangle.
How is D related to the circle?

Given a circle, mark point A inside it. Construct BC contajining point A.
How is BC related to the circle? Try several cases.

Given a circle with point A marked inside it. Construct line L
containing A, How is L related to the circle? Tzy several cases.

‘Given a circle with point A marked on it. Construct line L contajning

A. How is L related to the circle, Try several cases,

‘Given line L, construct a cirecle that doesn't meet L,

z |
Given line' I, construct a circle that meets L in two peints.

Given line 1, construct a circle that meets L in just orepoint,
(this is hard to do at this stage but will be easier later. Note -
that ve ave trying to construct a circle, not just to find one by

" trial, However, the student should not be discouraged from applying

trial and ervor methods,)

Given a circle, construct a lime that meets the circle in two points, .

Given a circle, construct a line that meets the circle in just one

point (Difficult):
Given a circle, construct a line that doesn’t meet the circle,

Given a circle, construct a cirvcle that doesn't meet it.

Given a circle, construct a circle that meets it in just one point.
Bow 1s this point related to the centers?

Given a circle, construct a circle that meets it in two points. Note

how the points are related to the centers of the circles, Let A and B
be the centers; let P and Q be the points of intersection, How are

AP and AQ related How are BP and BQ related?

//\\
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Chapter- 10,
Sometimes we say A is equidistant from P and ¢, similariy B is
equidistant from P and Q. Construct line AD and line PQ. These
are examples of perpendicular lines,

32, Given point A and point B. Mark a third point P, Construct the circle
with center A that contains P. Construct the civcle with center B that
contains P. What do you cbsexve about these civcles? Try several cases
If the circles intevsect in a point Q, different from P, how axe P and
Q related to line AB? Pow is line PQ related to line AB?

33. leg line L and point P not on L, Construct a line that passes through
P and is perpendicular to L., Try to construct another.

34, What happens in Problem 33 if P lies on 1.?

Some activities that involve properties of angles and triangles are the
fOIIOW1ng:

1, Civen ¢4§3 ABC and segmen;wﬁﬁ congruent to AB, Construct a triangle
congruent to /\ ARC with DE as one side,

2, Given o\ ABC, construct a triangle congruent to ‘é& ARC with AB as
one side,

3. In Problem 1, can you comstruct a second triangle that f£its the conditions?
Several?

4, In Problem 2, can you construct a second tridpgle that fita the conditions?

- Several?

5. Compare your answer to Froblems 3 and 4,

6. Given points A and B, construct C such that CA is congruent to CB.
Can you find a second such point? Several? ,

Definition: If CA is congruent to CB we call "\ ABC an isosceles
triangie, ’

7. _iven segment AB, Construct an isosceles triangle /\ ABC such that
(A 1s congruent to CB. Construct another such triangle A\ ABC, Mark
the intersection of line AB and line CD as E, Then A is congruent
to EB and E is called the midpoint of AB.,

8. How many pairs of congruent triangles can you find in the figure of
Problem 7? Anything else of interest?

9. In Problem 7, choose ABC so that DA is congruent to CA, This
makes the construction shorter,

10. Given AB, construct its midpoint and label i Construct D, the

t C.
midpoint of AC, Construct E, the midpoint of A

SR bR e L . e o
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o . 11, Given_segment AB, Construct its midpoint C. Construcqug point D such
~(#;j ~ that DA is congruent to DC, Draw line CD. Then lines CD and AB are
N an example of perpendicular lines., (See Sectiom C, Problem 31).

12, Given line L and point P on L. Construct a line that passes through
P and is perpeadicular to L. (Now we are better prepared to tackle
Section C, Problem 27.)

13. Given line L and pbinﬁ A on'L. Construct a circle which meets L just at
A, Construct several such circles, How are they related? How are
their centers related? Describe the figure formed by the line and the
circles,

14, Given circle C and point A on C, Construct a line which meets C just
at A. Construct several such lines. How are they vrelated? Describe
the figure formed by the circle and the lines.x ‘

15, Given line L and points A and B not on L. Try to discover whether the
circle with center A that passes through B meets L, but do not draw
this circle, Discuss various cases. '

| |
]
[

These suggestions are not intended to be exhaustiveQ Many books and

Qﬂﬁ\ - pamphlets on straight edge and compass constructions are available for reference.
Ly . |

What is important here is that motivation be provided for these activities and

that a spirit of inquiry be inhereat in the performance of those tasks,

¥ CONSTRUCTING POLYHEDRAL ANGLES

Consider the following figure: I
_ _ | : ' / T e
. . : # '\\' ~~. 8

1f this'figure were cut out, fblded along the lines b and ¢ so that line a falls

on line d, and then taped together, the resuliing figure would be a trihedral

| - N
.~ angle that looks something like this: g'i
. A/
( Y . ' '/ | \
a ' : F’ d! a b

a
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Some questions that might be raised are the following:

(1) Is it always possible to fold a pattérn like the first figufe into &
trihedral angle?

(2) Given fixed angles between b and ¢, and between ¢ and &, what is the
smallest angle that a and b can make so that the resulting figures
can still be folded into a trihedral angle? )

(3) What is the largest angle a and b can make so that the resulting
figure can be folded into a trihedral angle?
These questions can be answered even before”angle measure is discussed by having
the students draw pictures of the angles that serve as greateét lover and‘least
upper boﬁnds. 0f course; once the notion of dégree measure 1is discussed, the
above questions can be answered in terms of inequalities., At all stages, the
;

ansvwers given by tha students can, and probably should, be verified by construc-

tion,

This work extends nicely to polyhedral angles with more than three face

angles by adding onc face at a time. For example, given three face angles,
the greatest lower bound for the fourth face angle will be zero if the given three
face angles can form a trihedral angle and will be the difference of the two

smaller from the greatest of the three given angles. i
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Section IV - Chapter 10

GRAPHS, TREES & CONVEX POLYGONS

At this stage the studenté should have become femiliar with geometric
objects,(one,-two and three dimensional) which exist in the classroom.
They should have clear notions of "straight line", "flat surface", "cuived
surface", "eorner" etc. The objective of this section is to give the stu-
dent experience in constructing geometric objects and noticing some of

their properties.'

Construction of geometric objects by paper folding and the drawing of
geometric figures on paper are considered in other sections, Here we use
Sticks.for constiuction one and two dimensional objects and cut three

dimensional objects from potatoces.

*.. I. GRAPHS
o For these constructions we use sticks of various lengths. No particu-
lar relaxionship among the lengths of'the sticks 1s desired; the properties'
we consider here.don't depend on the stick lengths., | |

1. Trees

Sticks are laid on a table so thet if any two sticks touch, then

they touch at their ends. Thus we allow

Twovmore crnditions are required for a tree. The aggregation of sticks
must be connected and must contain no léops.

These conditions should not be mentioned explicitly but should come out by
analogy with real trees,

Construct lots of trees and non-trees until the students can eesily decide

when the sticks form a tree.
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5} Call the sticks edpes and points where one or more stick ends are present

vertices, By counting lots of cases, become convinced that:

For any tree there is slways exsctly one more vertex then there are

edses.,

V-E=1
The students can probably get an idea of e proof of this fact by asking how
the numbers of edges and vertices are changed when an edge is added té a |
tree to form a new tree.

2. G@General graphs

Sticks are put down as before (so that if two touch at all they
touch at their ends), but we no longer require connectedness or absence

of loops. Thus all trees and non-trees considered sbove are allowed and

these figures are called graphs.

K
i"(‘

Deiine the order of a vertex to be the number of edges (sticks) coming

in to the vertex.

Practice giving orders of vertices on constructed graphs. We say that
a vertex is odd if its order is an odd number, gven if its order 1s an even

punber., Practice counting the number of even and odd vertices in graphs.

Exampl ¢

This graph has 3 vertices of order 1.

3 vertices of order 2.
1 vertex of order 3.
1 vertex of order 4.

Thus the graph has b odd vertices and 4 even vertices.
.

By examining lots of cases become convinced that:

The number of odd vertices in any graph is an even nunber.
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Chapter 10

Again the students can probably see an inductive proof by asking what

happens when a nev edge is added.

3. Biwmple closed curves

An important special kind of graph is the simple closed curve, for

which the criterion is easy: each vertex has order 2.

Examples: . - | d:f?’”di\gkza\\%Fﬂﬂ::::iib

- VAN

Notice thatfor a simple closed curve the number of vertices and edges

1

are equel, V = E,

Notice that a simple closed curve divides the plane (table) into a part

- inside the curve and a part outside the curve.

4, Graphs in 3~space

For this we need to be able to attach the ends of sticks so that

Lt S G Y S0 S ol p B el T L T W I LR L LS LV T < B S ] WY dy /P
AR A - A AT, L Y Lt A S AR S Ly kL o

e At

the graph will h?ld together. Tinker toys should do the Job if the "vertices"

allow "edges" to come out in enough directions. -

Example: Put 3 vertices Al, A2, A3, in a plane (i.e.on the table) and

- 3 vertices Bl, B2, B3, above.

Connect each top vertex to each bottom vertex as shown. (Possibly call
bottom 3 houses and top 3 water, light, gas plents. Then each utility
must be furnished to each house.)

See if one can make the same graph in a plane. Use wires which can be

bent to form the.edges. Become convinced that even then this graph cannot

be put in the plane.

e
BT I L e
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Conclude that: Noil all graphs can be dravn in the plane,

II. POLYGONS

When we considered grephs we were considering one-dimensional objects.

It is true that we made the graphs in a plane or in space, but the graphs

. themselves were made up of edges, which are one-dimensional In this sece

tion we consider two-dimensional objects.

, 1. Intersection of polygons

We noticed above that a simple closed curve (made of edges) divides
- the plane into an interier region and an exteriof region, We call this
cinterior region a polyson, |

- If the boundafy simple closed curve of a pelygon has 3 edges (exactly) the

- polygon is a triangle. If it has 4, the polygon is a gquadrilateral.

If more, we just call it a polygon with sides.

Construct some polygons. Learn to draw polygons on paper.

Consider polygons vhich uney overlap. Look at the common part.

For example, the shaded area is the common part

R A A2
Cee - . //. 4%§if/// \\‘j:x,E

"of the two triangles. \\\\\\~“~QBB

The two triangles together don't make a graph because edges touch
(actually cross) at points which ere not ends of the edges. But we can

make this into a graph if we use more and shorter edges. Instead of the

stick AB we use three sticks AP, PQ, QB. Similarly, we make CD into two

‘sticks CP, PD and make CE into two sticks CQ, QE.

(It mey be best to cut the original sticks into appropriate pieces for the
first few examples. After that we can iﬁégine cutting them and Just draw

the results on paper.)
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Notice that for this example, once we hsve cut the sticks, the common part
of the two triangles is itself a triangle.

Things don't elwaeys work this nicely when we consider the common part of

two polygons.

Example: : | \\\\\\\\;\ e

T/ J—— 1
7 2
o

.Here (after cutting edges where they cross) the common part consists of a

triangle and & guadrilateral. |

Examine maﬁy intersections.

(1) Intersect triangles to get & quadrilateral.

(i1) Intersect quadrilaterals to get oretriangle.

(iii) Intersect quadrilaterals to get two triangles.

(iv) Intersect two polygons to get a 5-sided polygon.

eta., | ‘ J

Become convinced that: The common part of two volyesons is one or more

polygons.,

2. Convexity

We noticed that when we took the interseetion (common part) of i
two polygons we sometimes4got one polygon énd other tiwes we got more than :
one. We -7ill now consider‘some special polygons which have thé property | . 1
that the intersection of any two of them is a single polygon and again._

one of the special kind.
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Consider the difference between

N\
A

Imagine two-dimensional creatures living in these polygqnsg In A any two
such creatures could always sce each other, but in B they may be "around
the corner" from each other. Another way of saying this is that for polygon
A if & straight stick has both ends in A then the stick must lie in A, but
this is false for B.

Call & polygon convex if any straight stick with its ends in the poly-
gon must lie in the polygon.
Draw lots of polygons. Decide which are convéx and which are not convex.
Considef intersections of convex polygons. Examine enough to become con-
vipéed that: |

" The intersection of two convex polygons is & convex polygon.

See if students can decide (by logic) if the intersection of three convex

Qplygons“willlbe & convex polygon,

Number vertices in order around polygons (sterting point is not important).
Call aAline segmenf (or stick) which goes from a vertex n to vertex n 4 2
(1.e. skips one) a testing line ségment.

If = polygon is convex then all testing line seguments afe in the polygon
(some may lie completely'aiong the boundary-éthis is considered to be

in the polygon), Become convinced that: If all test line segmentsilie

in the polygon, then the polygon is convex,

et B ot A 2 N L B R e R R M R A S T S L e
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Chaptexr 10 | ' 1.
. 11X, SO0LID FIGURES |
The solid figures may be cut from potatoes. Probably the teacher will
have to do most of the construction here, but the students can handle the
podels, aoant suges and faces, ete.
Construéf cubes and more general parallelepipeds. Define face to Dbe
& plane polygon on the boundary. Edges are the boundaries of these faces
{one edge will be part of the boundary Qf two faces). Vertices are points
where edges come together.
Count number V of vertices
mmmbér%E of edges
puber F of faces
for woay selid figures, (Point out that some solid figures have been given
I ™ 7 pamva. wed use rames. )

Mzke & table.

Figure v E F V-E+F
cube 8 12 6 2
tetrahedron b 6 o 2
pyranmid 5 8 5 2
etc.

Finally become convinced that: for any solid fisure V- E + F = 2.
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Section IV - Chapter 11

TESSELLATIONS
This material can be presented guite early, some in kindergarten
gnd some in the first and second grades., The approach'is primarily

empirical, and the fev mathematical arguments are_quite simple,

I. Teésellations of a plane.

Give the student 2 bun~h of congruent triangular blocks and esk

him to start tiling the floor (or table) with them. Then use other

triangular blocks, again =1l congruent. The student should become
convinced that he can tile the plane with any kind of triangular blocks,

provided sll blocks are congruent. It should be noted that al any one

- vertex we have the three different angles of the triangle, each occurring

twice, Also this gives a visual demonstration that the angles of any

triangle add up to a straight angle.

Next we tile (or tessellate) the plane with quadrilateral blocks.
It is easy to see how to do this with recténgualr blocks, but it is not
obvious that it ean be done with any quadrilateral. So many different
quedrilaterals should be used so.the student becomes convinced that it
is elways possible. TFor exémple, tessellate with blocks like

AN

In thie case, we find that at each Vertek all four angles are present.

This shows that the angle sum of any quadrilateral is 360°,

222 e ALY L F pamay e N N PV s
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B - Vhen we try to tessellate the plane with pentagons, the situation
is quite different, The—étﬁdents should easily convince themselves that
onie cannot tessellate the plane.with regular pentagons. Furthermore,
they will probably sea that this_is beéause the angle sums don't add up
right. If only three come into & vertex a gap is ieft, but four would
overlap.” However, we can tessellate with some pentagons. For example,

blocks like

will tessellate the plane,

It méy be interesting to let the students pley with blocks of several
shapes at once to form coubinabtions which will tessellate., In some cases
%hey'shoulﬁ be able tq discover that some combinations form & triasngle or
a quadrilsteral, thus assﬁming the pessibility of %esgeilations with

such combinations. Also, tessellation with some cther polygons (for

example, regular hexsgons) can be seen to be possible,

1I. OQther tessellations,

-

Sametimes we may want to tessellate a plane region w' ;h & boundary
o thet wey"m@me out even" at the boundary. “gér example, if we want to
#ile the floor of & room we want no gaps at the walls in sddition to
wanting the tiles to fit together without gaps on other parts of the floor.
This changes the problem dréstically. For one thing, Qhen tessellating
the plene we didn't care sbout the size of'the blocks, only about their
shape. For another, if at some stage the edge of our afray of bvlocks

was of & strange shape, we didn't care because we planned to continue
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3.

edding more blocks indefinitely (or at least to conceive of doing SO .

One interesting illustration uses a checkerboard and rectangular
blocks such that each block will cover exactly two sgueres of the
checkerboard.. It is'easy to tessellate the board with such blocks.,
However, if we try to tessellate all of the board except two dlagonally
opposite corner squares with these blocks, we‘fin& this to be impossible.

(Proofi Each block covers one white square snd one black square; and
/

'~ we no longer have equal number of wvhite and bla&k sQuares.)

In grades four, five, and six the students might try tessellations
of cylauders and spheres with curved blocks, If is interesting to notice
thet although the plane cannot be tessellated w;th equal regular penta-
gogs; the sphere can be with twelve equal regular (curved) pentagons.

It is pfebably best to stay away from surfaces (such as the torus) whose
cu?#ature is different ét different points because a curved block which

will fit one place wlll fail to fit at some other places.

2915-65
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Section IV - Chapter 12 ' .1
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DISSECTION OF FICURES

Figu -es can be classified into physicel objects and drawings, for

présent purposes. They also fall into dimensional classes, l.e., 3ID~in-3D,
lD~in~?D, ete. Tach of these is subdivided into fypes; the 3D-in-3D into
balls, bricks, solid polvhedra, poWygons, simple closed curves, etc., as

examples.

A dissection of a fipure is reaiiy a portitioning, by physical cutting,
Or‘by lines on a drawiné'or on e physical object, of the figure into sub-
figures that are (eusentlally) pairvise disjoint and have the original figure
for their union. Dissections can be classified by the types of figures that
occur in each partition, the number of each type, and relations between the
figures in the partition: are &ll the trianglps congruent? ‘Similar? ete.

The remalnder of dlscussion shall consider only partitions into flgures

of the same dimension class, for sake of time, effort, end sanity. Thus we

shall not con31der such probleums &s partitioning Mariner IV into line seg-

ments spheres, brlchs, and bent pipe cleaners.

DISSECTION OF PHYSICAL OBJECTS
(or XITCHEN GEOMETRY comnm“n)

Examples of physical objects: potatoes, bananas, doughnuts, wedges
(ceke slices), cones, solid cylinders (brown bread, cranberry jelly), bricks
(ice éream, wooden plans, etc.). Oranges. Jello. Balls. Pipes |

"~ A1l paper materials: the works, Straws, certons, rolls, shirt card-
Soards, drinking cupSsees
Plastics. Thin metal lamina, Rubber balloons.
Thread, string, wire, rope, plastic. Spider web. Rope coils.

Soap Films on wire f{rames,
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I. One object
Since this is dissection, we start with a narticular object and ask
'for‘its dissection(s), First, of course, must deVeiop idea., Given figuré
and & dissectidn, is it a dissection of the fipure, Asking for all dis-
sectionswis too much, But we may ask'for the following, for a given
figure f:
- (i) Find some dissection. Fiﬁd several,
- (ii) Find a disséction that has two figures; e fiéures; ete,
| (iii) Find a dissecfion of F into two congruent figufes; two similar
gigures; n congruent; n similar,
(iv) Dissect F into figures all of which ere of a spgcifigd type;

of specified types and numbers,

=l

1’&,/

(v) Dissect F into figures all of which are congruent (similar),
Variety of othefs, obtained by varying the characteristics of the dis-
section (see introductory paragreph above), and depending on original

. flgure, its shape end material,

A. Object is 3D-in-3D., Partitioned into
(i). Finitely of infinitely many 3D-in-3D figures. This includes

3D-in~3D tesselations. For problems, see (i) - (v) + above.

(11) Infinitely many (finitely many impossible) 2D-in-2D, i.e., cutting
into "slices". Now slice ball? Doughnut? Brick? Cylinder?
Must all slices be parallel? Comparison of slices from dif-
fercnt slicings; e.r., doughnut. ylelds discs one way, asnnular
another, mixture another.

(iii) Infiritely many 2D-in-2D, that is, curls, as with wood. Ball
into spheres, solid cylinder into cylinders (open-ended or not),

solid wedge into roofs, etc.

Wi
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(iv) Infinitely many 1D;in~lD, i.e., line segments.
(v) Infinitely many 1D-in-2D, such as triangles, cireles, quadri-
laterals, etc.,, What can be "fibered" into what?

(vi) Infinitely many 1D-in-3D. Bent wires, twisted circles. This

- tricky.

B. Object is 2D~in-3D. Rich class: surfages of balls, bricks, doughnuts,
Open-top boxes (cardboard cartons): Partition into
(1) 2D-in-3D, Tesselation of sphere, torus, ete.
(ii) 2D-in~2D. Only ceses are either trivial or impossible.
(iii) .7T~in~3D. Crazy tesselation, |
(iv) 1D~in-2D. Not so wild., HERE GET CONICS.

(v) 1D-in-1D. Disciplined. Ruled surfaces.

] - C. Object is 2D-in—2D. Parfition into

(1) 2D-in-2D. Paper folding. All plane tesselations: here can
play this meta—game in concocting problems, kits, and games:
tmree inputs, namely, figure to be tiled, permissible tiles, and
tiling tules, and one output, a tiling, Ring the changes.
Also, recall (i) - (v) + of introduction, including dissection

into 2 congruent figures: role of symmetry (lack of it puzzle

basis).

(ii) 1D-in-2D. Partition dise, square, etc., into bent pins, triangles,

circles, etc.. Or have meny (infinitely many?) kinds in one

dissection.

(i1i) 1D-in-1D. Cutting plane regions into line segments, not neces-

sarily all parallel.
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D. Object
(1)
(i1)

(iii).

E. Object
(i)
- (d1)

¥F. ObjJect

(1)
(11)

is 1D-in-3D. Partition into
1D~in-3D
1D-in-2D

1D-in-1D

is 1D-in~2D. Partition into -
1D~in-2D

1D-in--1D

is 1D-in-1D. Partition into
1D-in-1D. Folding paper straight edge; vire; string.

CD-in-1D. Folding‘paper straight edge.

Need material on two decoupositions of one figuré.

IT. Two phyéical objects.

Having worked on dissections of single figures, can now work on

problens

(1)

(11)

(iii)

(iv)
(v)

such as the following:

Given a figure and a dissection of it, find another figure that
has the same dissection, (This is really & composition problem, )
Given a figure, find a dissection énd another figure that has
saue dissection.

Given 2 figures, and a dlssection of one:l see if other figﬁre
has same dissection.

Given 2 figures, try to find & common dissection.

Given & figure and a dissection: see if latter is a dissection

of former,
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,1‘ : DISSECTION OF DRAWIHGS

For bounded drewings, discussion parallels that of physical objects,

except may have richer zoo to work with.

Essenéially nevw element here is class of unbounded drawingé. Here
can cccur separation theorems, if we Vish. Line partitions plaﬁe, plane
partiiions space, point partitions‘line.

Finite set of lines partitions plane (2-color probleﬁ).

Finite set of planes partitions space (?-color problem),

Finite set of;points partitions line (2-color problem).
- Circle partitions plane: &. ¢l. curve does,

Parabola partitions plane.

What else? Plane into squares. Infinité tiling: Ulenm's biology.

" Need more work.

2915~L)




Section IV ~ Chapter 13

ORDER

This unit 1is designed to provide some experience~~both intuitive and con-

crete-~of gross comparisons of size for geometric objects of various types. While

learning about the order relation, the child should learn to distinguish and
identify many of the standard geometric figures, Among other things, this work
(or rather play) is to serve as preparation for the later study of measurement,

‘There are no pre-requisites, not even knoﬁledge of the integers beyond

counting, It appears to us that this entire unit can be compléted in kindergarten

or first grade. The teacher should have no difficulty in formulating classroom

games out of which the stated results will appear.

1, Compare two line segments (aﬁ first, sticks should probébly be used
instead of line segments), Intvoduce the standard notation for bigger than,
smaller ;han,'and'equality.\ As a general principle, whenever the children are
aeke&.to mgke‘a comparison, they should guess at the results In advance,
| 2, Given a line segment, produce a biggei one and a smaller one,' (1t may
be easier to woik with string hexe,) -Illustrate and discusse transitivity. As
an example of a2 non~transitive ordering, one ﬁight use the ""paper, scissors,
stone' game,

5. "Take 4 or 5 line segments and compare all possible pairs., Then arrange
the segments in a table of ascending size and practice reading off comparisons
from the table, (If the children are unable to read or write, the sticks may
be identified according to color, Since color blindness is not infrequent, it
would be helpful to haQe the sticks identifyable by their crdss-sections.)

4., Given two line segments, produce one of intermediate sime, Repeat

~ this process several times, Discuss how many times this can be done,

5. Combine (that is, add) a line segment with itself, Do this several times

e ke e o . % e g

to make a long segment, Hint at the archimedean property. Introduce + as notation

for combining,
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6. Combine arbitrary line segments; observe commutativity and the
essociative law.

7. Consider & or 5 sticks {that is, line segments) of different sizes and

colors; there should be several copies of each one., Foxm all possible sums of

éairs. Arrange these sums in ascending order and practice reading from the table,
Choose a-pair{and have the children ask questions about its order properties to
decide which pair was chosen, How many questions are neaded? Discuss adding
fnequalities for example, a<b and c¢ d imply a4+ ce b+ d. Define some sets
based on the order relation, |

8 Verify that the sum of any two sides of a trisngle is greater than the
third side. (For a glven triangle, this should involve writing out 3 or maybe
even 6 inequalities.) Giveﬁ theee sticks, under what conditions do they form a
triangle? JTs it unique when it exists? What happens with &4 sticks? |

9, Compare areas of similar planer figures: squaxes, rectangles, txi-

" engles, clrcles, quadrilaterals, pentagons, hexagons, wiggly figures. Give then

 names, as feasible,

10, Do #9 for mon-similar figures. At this stage, placing one area (a flat -
block) on another should make the answer obvious, Make tables,

11, Combine areas to cover other areas-=-for example, the set of afea'blocka
ahould; at least include all the faces of the ESI multidimensional blocks.,

12. Cut up en area (paper) im orxder to comparé it with a given area, Areas
enclosed by polygons should be treated before circle. Do simplified vexsions of
3 and 7,

13. Give two areas for which one cannot decide which is larger.,

14, Do volumes in analogous ways, Comparisons should be bas. d cn the use

of a balance scale or the use of hollow objects which can be filled with water
or sand or both, Identify cubes, boxes parallelapipeds, spheres, cones, tetra-

hedra, cylinders, etc., as feasible, Do lumpy things, too,
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15, Tllustrate some volume relations: £or example, the vclume of a gylin~
der is threé times the volume of a cone with same base and height, The volume
of these 8nlids depends only on the heights when the base is fixed,

| 16, Treat lengths of curves in the plane in 3-space, and surface areas,
The important thing here is forthe children to decide that unravelling, unfolding,
or cutting up is the way to proceed., It shouldn't be hard here to make examples
in which visual perception is wrong, Surface areas are troublesome and shouvld,
perhaps, be omitted,

17; Treat angles as in #1-7., It is not nccessary, at this stage to define
the notion of angle, The children should become familiar with'straight and right
angles; connect with paper foldiﬁg. |

18, Tear a paper triangle and at one vertex adjoin the other angles to get

a straight angle,
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MEASUREMENT
"Objectives. The role of measurament in our society is of Tundamantal Imnor-

T = A N

tance. The developrment of the basic notions of messurement Jde@serves CONSLIEK

able attention throughout all levels of experience in grales X - 6.

,:

Among the basic notions which should receive attention ara order
set of objects with respect to a given relative measure (such &5 length or
weight), comparing relative measures with simple unscaled devices {such as

j
string), meking use of arbitrary units to assign measures to odjects, and making

use of standard units of measure to assign length, area, and volune measures
40 objects. It may be guite appropriate to develcp some of These notions in

conjunction with the development of the number lize.

" Students should handle the objects to be measured axzd compered, and
should use the measuring devices and record their own date, Emphasis sacuid
be placed on the fact that the physical act of measurement yields approxima-

+ions and that much depends on the tools at hand.

A. Ordering withjrespect to a given relative measuxre
1. Let students place sticks in order of‘length from shortest to longest.
'Théy should be able to do thié by pairwise ccrparisons. No sor
- measuring 1nsta.eﬁL should bea used To UG orm this tasx, One pro-
perty to wxote here is that of trensitivity--if stick A is longer
than stick B and stick B is longer than sticx C, then stick A Iis
longer than stick C.
2, Have students arrange themselves in oxder with respect To height.
This is essentially the same sort of exercica as Z1. "It would pro-

bably be best o compare "shoes on" heighis here. In cases where
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than Student B, let the students try to devise some method for making

jar

a decision. If no decision can be made regarding some palr o:
dents, then agree that, for all U”uut“Cdl DUYPOSES that pair has the
same height,  The property of transitivity of the relation "is taller
than" should acain be noted. It may also be woril noting that if
Student'A is taller than Student B, then A is taller than each stu-
dent who is as tall as student B.

Have stucents arrange themselves in order with respect to.age. Che

likelihood of two students having the same birthday increases greatly,

of course, as the size of the class increasec. In the event that Two
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(or more) students have the;séme birthday, agree tha
are of‘thg same age.

One can now ask the students to compare the list obtained for "is
tallef than”'with‘that obtained for "is older then" in order To ans-
wer the following questions:

Is it true that the older of two stucents

is aller?
Is it true that two students of the same age (reight)

are also of the same heiga: (age)?
Determine the order of distances that students® homes are from school,
This can be done by making use of scale mapns of the school neighbor-
hood. that areusuallydrawn on this level.

The students can now be asked the following cuestions:

o 'Y

Is it true that the older of two students lives

from the school? g

«Is it true that the taller of two studenis livas ferther
from the school?

Place stones (or other suitable common objects) in order of weight
from heaviest to lightest. Students should use & simplc beam balance

as an aid in making decisions.
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6. Ask students to consider the list T they obtainaed when they erranged
themselves according to height.

Have themn consider gquestions like this:

Student A is taller than Student B, and Student C is tallew
than Student D. If we combined the heights of A and C and
of B and D, which combined height would be greater?

Student A is taller than Student B. If we combined the
heicht of A with any Student C and of B with the same Stu-
dent C, which combined height would be tThe greatew '
The combining of heights can be thought of as ‘child- stacking™ or
something similar to develop an appropriate story line., Looxing &t
the results of combining heights leads nicely into the notions that
if a<b then a + b<b + ¢ and if a<b and c<d then a + c<b + G,
It should be possible to even get at the notion that if 0<a<b and

0<c <d then ac <bd by considering the relative sizes of rectangles

of dimensions a by ¢ and b by d.

RN
U (Y
M

ML B. Using unscaled devices (string, string compass, or the edge of an index

card) to compare measures,

1. Have students-use a piece of string or an index card to compare the
lengths of segments drawn in various positions on a piece of paper
or on the chaliboard. Some segments of "practically" equal lengths
should be drawn on the same practice sheets. (It sbould be noted
that vertical segments sometimes "seem" longer than H0M1zorfal seg-
ments of the same length. This is the éource of the reasonably well-

. N . . .
. known optical illusion: A

o

in which the question is asked: Which is longer, A3 or CD? (The
f( ﬁ answer, in this case, is that neither is lonzer, oz they arae the

same length.) The need for a device such as & string &3 an eild in

comparing lengths can be brought out qulpe nicely by having the stu-
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dents try to compare the lengthis of various segments wheore visuanl

comparison can be incorrcct and where it is impossible to move the
segments to be compared,

Use can be made of a string compass or index card to drav a sog-
ﬁent which is as long as two given segrents laid end *o end. This
will get at the notion of additivity of lengths. This type of

activity will lay the foundation for development of the +triansle

in-
(i)
equality and for the notion that "it is as far frcm A 1o B as it <
| | j -
from B to A", This activity will also helg to develop a feeling for
. e ;

the preservation of length under a rigid motZon.

PraeLlee adding lenGth by meking use of five sticks of lengths 1

s

2, 4 8, and 16 respectively, to obtain al gral lengthé from

?

1 to 31. It is worthwhile to note the unfqueneqs of the combinatio

of stleks needed to produce any one of these lengths from the given

L*D

sticks., It is also worth noting that once a particular corblxa_lon

-

of sticks is chosen, the same length is produced rewardless of the
order of addition.
If it is ?easible to talk about the difference of lencths

in adding and "differencing" lengths can be given by making use of

Practice

four sticks of lengths 1, 3, 9, 27, respectively, to obtain all in-
tegral lengths from 1 to 40, Unigueness of representation and ordexr
of operations is also worthy of discussion here.

Have each student try to guess the location of the midpoint of a seg-

ment about 6 Inches long. Each student should heve & copy of the

‘segment, and should do this without the ald T measuring instruments.

Then have: the students fold their paper (oM measure) in order to

locate the midpoint of the segment and decice wh

(v
|88
)
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e . q .

to the right or left of the "true" midsoint. Tesulate the results

e e




the left or the right.

Repeat 4, trying this time To guess the location of the "left hand”

' tpisection point. Al ~+ep the studenis use measuring instruments to

2.0,
N

locate the left point of trisection, discuss whether T

Ly ] R o
i@ CLASS Teus

to

=]

ouess 1 ;ards the-right or leift im ithis case.

C. Measurement with a non-standard arbitrary uait

1.

Have each student measure the width of his desk using tae span oI

his hand (the distance between the tips of his little finger and

thumb). Then have each student measure the width of another student’s

desk in the same way. Discuss the following cuestions:

Given that Student A measures two desks and finds that each
is between 7 and 8 spans, can (or, shou&d} he conclude that

both desks are the same width?

Student A finds his desk to be 8 spans wide anﬂ Student B
finds his desk to be 10 spans wide. Can we conclude that
B*s desk is wider . than A? s?

Given that Students A and B measure the same desk and A
finds the desk to be 8 spans wide while B finds the desk

to be 10 spans wide, can we conclude that either & or B

counted incorrectly? Can we conclude that the desk 1s both

8 spans and 10 spans wide? -
Problems of this sort should serve to illustrate +he need for the
establishment of some fixed "standard" measures.
Have students use a "small" fixed length to me e the sticks that

they had previously ordered according to pelative lengths. This will

give them classes of sticks in various ranges, such as those between

3 and Y--that is, at least 3 but less than 4--of our TFixed unit, be-

tween U4 and 5 units,etc.

If we now agree to say that all sticks which are between 3 and

units have measure 3 of our "standard™ units, then one thing wort

-~
[

noting here is that no two sticks of measure 3 o Tstanderd” uni

-
-

iffer from each other by more tnun 1 unit.

o i e




1
i
—{) 1
%
. \i .
It may be worthwhile here TO DNOTE +he p3-weps To The guestions askod i
i
in Cl if the students mcasure their lesks with a given "standond” |

length,
It may also be worth noting that transitivity of ”being shonrtern
+than' still holds since any stick of, say, meagulle 3t grandard” Units
is shorter than stick of b totandard” units, and any sticx of 4
“étandard” units is shopter than any stick of 5 (cr more) “shuvlaﬁd”
units.

- o

One way to record the data on the measures assigned to thne sticks

with respeet to the Ulven unit 1is 111ustfaced bclow.
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This is a worthwhlle activity- to engage in, as it gives the stuaents

practice in making two- dimensional graphs and illustrates a re&ason-
ably efficient procedure for recording and organizing daxa, Graph

can be made on chalk board or on a felt board.

Changing the unit of measure +o one which is, say, half as long as

the initial one and making a graph of the "new"” measures a;signed o
the same sticks will emphasize both the similepities in appearance oL
the graphs of this type as well as the effects of changing the size

of the unit of measure

Have students use beam balance and washers {(of the same size, <O

assign weight measures TO +he rocks which were nravicusly oxrcercd

dccording to their relative weights. DNMaxe
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Got washers cach of which is about half the welght oi an oxr oinal

}.J

™

onc and assign '"mew" weight measures To the ro ks with respect to

0

en guess the nunber

0

this new unit of meésure. See if the students
of smallesn washers needed. Make a graph of the results and compare
with the earlicr geanh,

4. Discuss what 1Is meant by measuring to the nearest unit. The students
will have to have a feeling for.”half of", "less than hali", gnd
"more than half" in order to understand this notiom. Given this
understanding, have the students meésure tveir bunch of sticks to
the nearest of some prescribed unit. If this is'doné with the same
unit fhat was used in exercise 2, then the graahs could be compéred
for similarities and differences, [

5. With the concept of measuring to the nearest unit developed ©To some

extent with linear measure, discuss the possibilities of weighing
the rocks (exércise C3) to the nearest unit. The need for a "half
washer" will probably arise here.

6. Dréw a preasonably large triangle. Determine the location of the
midpointF of.the sides of the triangle (perhaps by folding). The
midpointé of the sides of the original triangle determine a second

triangle. Compare each side of this new triangle with the sides of

0

}

o

the original triangle. Compare the perimeteré of th triangle‘.
Compare the areas of the triangles (perhaps by tiling the larger wit
copies of the smaller one).

7. The technique for treating volume measure should be based on the use
of hollow figures which can be filled with water or sand, or by using
a balance withvsolidé of constant dénsity,
We assume the existence of a large collection of Z-dimensional crleet

(wixi many copies of each one) sul
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pouring. Each child is to select for himself (or construct)

arbitrary unit of volume. Since it is 1ot.easy to peproduce

volume precisely, pouring 'is the preferredtechniqué here. The
volumes of given objects should then be measured--the results to be
stéted usually as between two consecutive integers, and possibly a
choice of the nearest integer should be made. Scaling might be
illustrated by multiplying dimensions of & box by small integers.
Figures can be combined and the gorre5ponding inequalities ad@ed

(if only pouring is used, it would be nice to be able to pemove
faces). The unit volume might be haived by trial and‘error'and this
new unit used for closer approximationé; The child should become

convinced‘that his unit of wvolume can sepve to measune volumes of

golid figures, but may not give the same measures as someone eise's
" unit. The teacher can pursue this line as far as taste and desiﬁe
prequire-~the finale ggihg the need for a -common unit. | ~
Choose a particular oube as the commor unit of volume. (Such a
choice, the question of scaling, etc. underlie our preference fdr
doing volumes after length rather than before it.) With this unit

of volume, the things done in &7 can be repeated. The students

should compare their answers and, as usual, whernever a volume 1s con-

sidered it should be estimated in advance. By repeated work with
rectangular boxes of integral dimensions, the studeﬁts should dis-
cover the formulé for their volume, Discuss +he principles of
apithmetic that can be illustrated by combining volumes.

Gef % the unif volumeby halving one dimension (from work on line
segments the children can do this). Halvc =11 three dimensions of .
thé unit cube to get a cube whose volume is 1/8 of the original
Gube. Given an arbitrary DoX, practice refinements and anproximé-

tions to its yrolume.
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Measurement with stfandard units of measure

1.

and rectangles with integral sides by counting boxes. Construct

Compute Lnner and outer approx1matlonc to the area of a simple

' tions using a square whose dimensions are halved. Discuss what

LN T e i i Dt b s bbb L T 0 BN 8 e e T 3N ¢

-0~
Measure the volume of standard figures by refining approximations.
Among the standard figures to cons ider are the sphere, circular

cylinder, circular cocne, paralleiepiped, and prism. Among the re-
lations that can be noted are that a cone with base area B and

height h has one third the volume of a cylinder with the samc

P
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dimensions, and that a sphere whose diame
which is two-thirds the volume of a circular cylinder with dismever
d and height h;

Choose a basic square as the unit of area. Compute areas of

S

w
O

quare

some figures with area specified in advance. Find the area of a
right'tfiangle whose shorten sides.have integral.length.. Decompose
parallelogfams into rectangles with same height and base. How
could one fim‘l the area of any t 'smgle? |

Work with rectan -les whose sides are allowed to be of form integer
+%. Find areas by counting halves.and-quarters of the unit scuare.
Move on to rectangles wifh rational sides-éoperationally; these are

ithe only ones that occur for the childwren.

closed curve by using a basic unit square. Refine these approxima-

~would happen as smaller sguares are used. Compute the area cf a cir-

cle whose radius is twice as long as the side of the basic unit

square,

Introduce 1 inch, 1 foot, and 1 yard as standard units of linear
measure. Students should get measures of Treasonasle’ distances

and lengths in +the classroom to the mearest yard, nearest foot, and

nearest inch. Questions of this sort micght be asked:
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If two desk tops are each roun& to be 32 1 long, to

nches
“the necpest inch, then are the desks necessarily the same
lencth? If not, what can be the greatest di fferonce be-
tween their lengths?
_  If two rooms are each Ffound to be 10 yarcs long, to the
nearest yard, then what can be the greatest difference be-
tween thelir lencrthso How many feet is this difference?

How many 1nchos is this difference?

AAssumlnc that there has been some discus ion of the meaning of_afea
of planar regions, it would be appropriate to have t“e students mea-
sure the lengths and widths of varlous rchmngul e sh”pes to; say,
the nearest 1nch and ‘then to give estimates of Lhe areas of these
shapes in square inches. Try to decide which of the completed areas
are overé?timétes and which are underestimates of the ”true” area.
Next have the students measure the lengths and widths of the same
rectangles to the nearest half inch. Discuss the fact .that a sqﬁare
-i inch on a side can be~divided into four squares each % inch on a
side. So, in effect, 1 sg. in. = qisq. & in.).

Have the students give estlmates of the‘areas of the rectangular
regilons in square inches, using the nearest % inch measures. .Try
to decide which of these computed areas are overestimates and which
are underestimates. ‘Also discuss whether these estimates of area
are "better"--that is; closer to the real areas--than the first es-
timates.
+ The arithmefic involveddhere can get a little messy, but getting
good eStlmates of the avreas in question is a worthwhile activity.

‘Mak ng tables of values ought to halp in keeplnﬂ the de;alls straight.

‘ Here is one kind of table that could prove to be useful:

- - -
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Reotancle 1.

Dimensions
nearest inch L.in, x 3 in.

nearest % inch 9 (3in) x 6 (%in.)

or
W in, x 3 in.
nearest % inch 18 (in.) x 12 (4in.)
or
W in, x 3 in.

ete. .

Have three or four randomly spaced points marxed on é'segment aboutl
7 inches long. Students should measure the lengths of the consecu-
tive "small"parts and the length of the whole segmeﬁt to, say, the
nearest % inch. Check the sum of the measures of the parts against
the measure of the whole segmeht. Repeat the measuring process to
the nearest % inch,nearest 1/8 inch, etec.

Standard volume measures and weight measures need to be introduced
in such a way that the students are as actively. engaged in measuring

volumes and weights of common objects or containers to the nearest

specified fraction of a standard unit as they were when using their

arbitrary units of volume and weight. The
strengthen and reinforce the ccnuept that the measures derived are,

at best, reasonable approximations to the "true" measurcs,

b
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Seqtion IV - Coapter 15
. SIMILARITY AND MAP MAKING

We divide map making into two parts. The first concerns making
maps of regions which are sufficiently small to be considered plénar.
In this case it is simply a quéstion of changing the scale, that is,

it involves the notion of similerity. This part can probably be done

in the second or third grade., The other part concerns transferring a
map from a spherical surface to a plane by various methods, This is
/
 much more complicated, but it could probably be| done in the fifth or

sixth gradés.

I, Similarity and meps of plane regions. ]

The concept of similarity of geometric fiéures can be introduced
by constructing triangles, quadrilaterals, etec., with sticks. For

example, have a set of blue sticks twice as long as some red sticks,‘

‘Then graduate to sticks of lengths, say, 1, 2, 3, I, and make figures

. with various combinations. It is importaent for the student to notice

that two triangles will be similar if their sides are pronortional,

but that this is false for polygons with more than three sides. Discuss
how many angles of a polyson must be checked to ﬁake sure of similarity

(when sides are already knowm to be proportional).

Next we can build an enlarging machine.
RN nght

A

Paper

Paper
Enlarged
figure ‘




Chap. 15 2,
Notice that the enlarged_figure will be similar to the original if the
papers are parallel, but there will be disﬁoftion if they are not., It
mey be worth studying the different amounts of enlargement fo£ different

arezs when the two papers ere not parallels.

Vow we can explain the process of'map making as a sinilarity
transformation, Make scale maps of the room, the building, a city

block, etec.

II, Projecting from spheres,

For this we need a lerpge, hollow, transvarent plastic sphere, say

gbout 2 feet in diameter. It should have about & h-inch hole at the

top and & stand at the base.

Y T

First we discuss latitude and longitude and drav various meridians and
letitudes. A discussion of time zones .and change of days would be ap=-
prbpriate and helpful. With colored grease pencils, draw various maps

end finally a globe.

Pose the problem of transferring a map on the sphere to a flat
piece of paper. Let the students try puttlnv translucent paper on the
snhere and try to trace the map. Let thenm become convinced that this

method is not good because the paner cannot be made to fit.




3.

Introduce a small penlight with & sherply-focused beam. See if
the students will be able to suggest all of'the following projectiouns.

(i) Central projections,

Put paper on the table. Extend your aym with flashlight to

the center of the sphere and shine the light toward the paper to trans-
fer a ma? in the southern hemisphere to the paper. Look at the images

of varlous meridians and latitudes. Discuss the amount of distortion.

Where is there the least distortioﬁ'and where the most? What curves

" on the spheres become straight lines on the paper? what are the images
of great circles?

Do the same expveriments with other kinds of projections.

(ii) Stereographic projection.

We use the same set—up as for central projection, but shize

light from North Pole.

(1ii) Cylindrical prolection from center.

Wrap stiff paper around the sphere to form a cylinder touch-
.1ng the sphere along the equator. Shine light from center, Use trans-
 lucent paper so one can trace map on the outside of the paper. Then

flatten and get a plane map.

(iv) Cyvlindrical horizontal projection.

' Use same set-up as (iii).
For any point on the sphere shine light from the same height

‘as the point (always from line Joining the poles).

2915-65




. Section 1V - Chapter 16

INTUTITIVE WORK INVOLVING THE CONCEPTS OF SYMMETRY ,

CONGRUENCE AND RIGID MOTIONL

Before the concepts of congruence, symmebry and rigid motion are

studied‘on a theoretical level children should have & good intuitive grasp

of fhese concépts. On the earliest level children match simple figures
made out of cardboard, felt, end vaper, fqr_example. Pieces can also be
fitted into spaces from vwhich they werexéut ot Bu’ldiﬁg with blocks and
making copies of their own constructions helps build up the concept of con-
gruence in three dimensions. fracing firures and printing figures using

potatoes can be included. Work with Mirror Cards (s$e I below) continues

to build up acquaintance not only with conpruence bu@ also with symmetry,.
In II (below) work involving rigid motions, congruence and symmetry is dis-
cussed. The work described elsevhere in the report dealing with tessella~

tions and coustructions strengthens some of these concepts further.

I. Mirror ggrdse

. One way to give children an intuitive'feeling for s~oncepts such as

congruence and symmetry is by use of the Hirrog;Cards. The Mirror Cards

consist of fourteen different sets of cards. Each card hés a pattern on 1%,
Fach set has instructions on its cover card, and there is a teacher's guide.
The basic problem, however, is the sane for all the sets. Can one matrh a
pattern on one card to the pattern on another card by using a combination

of some part of that pattern and its reflection in the mirror? The Mirror
Cards vary in difficulty - starting with very simple patterns. The_approach

e G G e M BB WD SR S T B G D W B S A

1. Most of this work is deseribed in more detail in a paper, "Informal
Ceometry for Young Children", by M. Walter.

2. The Mirror Czrds have been produced in a trial version by E.S.5. A
teecher's ruide is available, It contains copies of cne of the sels.
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is non-verbal, the cards are highly visuel aad they are free of mathematical
notation. The children can check their owm work without resorting to the
authority of the teacher., They can make predlctions and iﬁmediately check
end if necessary amend their predictions. They galn experience in recog-
nizing coﬁgrpent fipures. They gain experience in visualizing figures

after they heve been reflected in a line. (. e light is ohysicelly reflected
by the surface of the mirror., The resulting image in the plane of the papef
is the reflection of the pattern about a line - the line of contact of mir-
ror snd paper.) The children notice that a mirror does not carry qut &
trenslation. They notice intuitively that congruency of two varts is
necessary but not sufficient for a pattern to have been made from a picture

and its mirror fmage. Playving freely with the mirror enables them to watch

the change of relative positicn of image and pattern as the mirror is moved.,

II. SYMMETRY PROPERTIES OF FIGURES. RECOGNIZING CONGRUENT FIGURES,

This work gmives experience:

8. In making patterns

b. In manipulating pétterns

c. In visualizing patterns

d. With congruency and recognizing it

8., With syrmetry end recognizing it

A, Arranglineg squares

Piel & simple shape such as & box with equal sides and no top. How
many sides does it have? How mirht it look flattened out? How many ways ere
there of arranging five squares? Obtain all ways of arranging five squares.

Which fold into boxes without tops?

LG Moo ST AN Y A o 5 RN R T AR S, 07 Ll ns ST SR g L s e e “J
3 PPt P e S T A o Py
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B, Congruency.

Decide when two patterns are congruent by actually using paper cutouts

end moving one on top of the other. For example,

Al
R |

{1

and

-are congruert because one fits on top of the other.

Ceme: Divide the elass into two teams, Fach team tries to draw all
twelve patterns on the board. This will probably result in several vatterns

being repeated such as the two figures above,

C. Examining the patterns

Why are some vetterns duplicated more often than others? For exemple,

1

e ]

: - and

-

gy
.

are not often drawn twice, but [ ., for example, may be drawn &s
}

for
C)

Consider how many different positions each shepe has.. For example,

\

} .
- has four different positions (in which edges are vertical or horizontal).
Find out that each of these twelve pieces has either 8, L, 2, or 1 different

positions.,

Discuss which motions leave the pattern in the same position. (This

work can be extended to include paper folding and mirrors.) For exemple,

fousnces

for the piece a helf turn 1/2, a full turn 1, a horizontal flip H,

pmorvirnd

& vertical flip V will leave the piece in the seme position, What is the

MC
A

Provided by ERIC.
T h e
i
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result of H 1/2, 1/2 1/2, 1, 1/2 1/2 1, etc.? Students will probably soon

be able to celculate the results of HHHHHHHHHH 1/2, EVVVVH, etc.

Cen one tell what motion has been made if the piece is not marked and
one was not watching the motion? ILead to a discussion of how to mark the

figure. Try all the suggpestions until an adequate merking is made,

]

.’

Game: Half the class can have eyes closed. Consider

/'] ' \ [

Make:a motion such as a 1/2 turn. ILet those studentsrwho had their eves

s Say.

closed tell what the motion was. Repeat as often as is of interest., Pro-
bably students on their own will'give the product oﬂ two or more motions.
If not, introduce it. Now the gane becomes more intéresting“since there is

more than one possibility. What motion is equivalent to the product of two?

- If students cannot visualize, let them use marked paper cutouts.

Make & 1list of the possible successive two motions equivalent to each
one motion. This leads the children in a natural nnd motivated way to make
the group table.; Repeat with other patterns. Note sub-groups that occur.

Are any two groups isomorphic? Repeat with other shapes such as all patterns

- of fouf equilateral triangles.

For younger children use a felt btoard or' individual shapes that they
can stick together. For exemple, give each child four equilateral triangles.
When he has made a pattern, he can stick it together. He can check whéther
it is congruent to one he has already mede by actually placing the new one
on the old one; The younger children can make three dimensional figures
from their shapes. Play a geme: Move one square on a felt board to s new

——

osition to obtain a new pattern. Example: [£ D ‘Egi;_“w
’ [a[Elc] — [al3[<]
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D. Extending the wofk

-~

The work with squares; trisngles and other shapes can be extended in
gseveral directions., This work might lead to the quesﬁion of'how they could
sctually construct squares and equilateral iriangles. As mentioned earlier,
one can raisz the question of which patterns fold ~ and into vhat shapes.
At an earlief age paper putouts can actually be used., At a later ege the
stu@ents can try to decidie by visualizing a pattern drewn. One can ask
questioﬁs such as: VWhich square becomes the bottom? Vhere can one add &
square to make a box with a top? In any pattern how many places are there
for adding a sixth square? Which are congruent? Given a box without a top,
which cuts aloné edges will flatten it? What does the flattened pattern

look like? Example:

& -

From the question of how meny ways are there o cutting & figure to

flatten it, one may lead to the more general problem of: How many "essen~
tially" different ways are there of choosing 1, 2, 3, etc., edges of &

figure - say, & cube.

,‘/"\:\é . . ’
Ancther version A\perﬁaps ot an earlier level: Take three or four or
o

3

fzve sticks., How meny d*ﬁferent ways ere there of Joining them if right
engled turns are demanded at every Joint? (A game based on this and the
following ideas can be played.3) If straight or right angles are allowed?
Other spe~ific angles? This cean te asked iﬁ two or three dimensions. One
may ask: how many ways are there of arranging four or five squares in

A ¥

space if right angled turns are demanded at every edge? How does this

- e S W WS W T 80 SO Gur S T Vel wee S SRR Y S T GUR S W

3. This is being developed by M. Welter,

D T 2
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compere to arranging four sticks? These problems will entsil = discussion

of mirror images in three dimensions.

E. Other work invalving congruency

Use sticks that can be jJoined at their ends of lengths 3, k4, 5, 6, 7,
e + + 10 inches, say. Pick three sticks and mske a triangle is possible,
Which triangles are éongruent? Perhaps discuss similar trisngles. Realize
S.8.8, condition for congruency. The sum of two sides of a triangle is
‘ greéter than the third side. Do two sides of =& triangle determine it? Get
the notion of S.A.S. (this requires further thought and development), Pick
four sticks, Mdke & quadrilateral in the plane or in space. What can be

sald about congruency? Investigate eongruency of other figures.

Consider areas of congruent figures; prerimeters. Can two figures
wvhich sre not cong:uent have the same areas? game perimeter? Given a per%z
neter, make a figure - have children compare their areas, Whiéh shape giyeé
biggest area? Smallest? Mske g shape of a given area. How do the peri-i‘

meters compare?

2915-65




Section IV -~ Chapter 17

- NOTES TOWARD A DISCUSSION OF TRaUSPORMATION GROUFS

After working with the mirror cerds,.one discusses what a mirror per-
pendicular to e plane ‘does to a figure in the plane - and how this result

can be gotten by'a "rotation” which is called a reflection. Also, vhat does

g mirror do to objects in space?

The symmetries of the figures such as those composed of five sguares
have already been dlscussed by the children and some group tables have al-

ready besn made, and so one may proceed to more formal things.

Consider equileteral triangle. Consider first its rigid motions in the
; .

plane, I = identity, R = rotation about center by 1/3 of & circle, and 3 = R?,
‘Make s table for these operationz, Then allow flipping the plane and initro-
~ duée the three altitudes. Compose the six operators; make a table of théir'

multiplications - practice assoclative law, inverses, etc.; non~commutativity.

Then label the Yer%ices 1, 2, 3, and vrite each operation as a permutation

of vertices (i%é); then deal with permutatisns in themselves, count them,

make a table of their multiplications., Show tat the one-to-one corres-

pondence is an isomorphism (#nd that we have the symmetrie group on three

letters).

Then discuss symmetric group on four or more letters, subgroups, n!,
etc. (without ever defininz e groups. This weuld be useful for probability
| later, Do the gfoup of rigid motions for the square in the manner used for

the triengle; do we get the full symmetric group?

Get the dihedral groups as rigid motions of regular'polygons O w¥3

gides; it generalizes triengle and square done already. Now pass to symmetries
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of infinite patterns. For example,

e N, A
4 7 P

vhich gllows an infinite cyclic group of translations combined with the

reflection of this line in itself.

Or the figure consisting of a dot for each point of the plane with

integral coordinates; or use a tessellation of the plene by regulating

hexagons,

The important thing here is for the children to realize that the number

of symmetries is _ . but that there are some simple generstors. They might

Q"

enjoy doing permutations of infinite sets.

The symmetries of s0lid figures such as the cube and the rezular tetra-

hedron are slso worth discussing.




" Section IV - Chapter 18

ROTATIONS, MATRICES AND HOMOMORPHISM

Homomorphism, and in particular isomorphism, are of basic importance
in modern mathematics., A desirable contribution to the mathemstical base
of elementarywschool children would be provided by the introduction of this
concept in a way that illustrates its power. Homomorphisms between finite
rigid symmetry groups and matrices are uéefuli The natrices can be set up
by direct construction or by using the properties of ‘group structure and

homomorphism,

Finite rotetion groups have been introduced to third grade. (See Esta-
'brook progress reports for example. A forthcoming ¢.C.S.M, report will give
details of these classes.) They prove to be interesting to the student and

feasible for & broad range of abilities. Matrices also have been introduced

(as in the Madison Project) motivated by linear operations other than symmetry

motions. We propose here, after developing the rotation group structure in

two dimensions (with"twists" or inversions) as in the Estabrook project, to

build up the 2 x 2 matrix representations, emphésizing the use of homomorphic

properties in their construction,

We assume that the chiidren have studied the rigid’symmetry motions of
‘regular polygons; The transformation elements have been discussed, together
with their equivalence clesses, closure, identity and inverse. The students
have found that the rotations commute amoﬁg themselves, but that the twists
do not commutg_with the rotations or with all other twists. This has been
done for eguilateral triaﬁgles and squares in detail, and extended to all
regular polygons., In eddition the symmetries of a rectangle may have been

examined.
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Bringing the students' attention back to & square, consider it on
(0,1)

Cartesian co-ordinates as in the figure. //////\\\\\\
List the co-ordinates of each vertex be- (-1,0)
. ~ N (1,0)
fore and after a 7 rotation. \\\ '
2 ) . ) ) (o,‘“l)\\\ *

(1,0) "—P(O,l) (0’1) """3"”("1,0) ("lso) ‘“""‘/‘\’(O:"l) (Os‘l)' >(130)

These are "jumps in the plane". If they have had Page's reéent~material,
they will already have arriveq at rotations from aigebraic expressions., If
not, they.should,now be asked if these Jumps can be written in terms of
linear equations (of which they should have had previous experience). They
may try some of the form[JP = 1+ a AD = A+ b and other inhomogeneous
types (we use the superscript n for new co.ordinate). Having solved for a
end b, for one vertex, they should be asked to see if it works for another,

They will not have success with all their vertices until they try the fofm,
[ﬁnn =a[ ]+ b A\ |
‘an.= e[1+d A
Because of fhe éeros appearing in the co-ordinates of each point they will
quickly get (a,b,c,d) = (0,-1,1,0) by using the movement of two vertices;
Does it work for all four vertices? What does éhis transformation do to the
co-oruinates of points on the edges of the square? any points? To the
ofigin? The last shows why the transformation is hbmogeneous.

They should then find (a,b,c,d) for 77 and =77rotations, end for twists
2

(or at least for the two easiest twists). As (a,b,e,d) determine the trans-
‘ b

: a
fOrmation equations above, the teacher can suggest the form (c d) as a
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mnemonie for the set of equations. They cen then consider é{iéc‘éssive motions
(C1, A) '**“7?( %, A™) —> (-Dnn"Anﬁ),. What rotation matrix does one end up
with following e rétation of Qg_by one of 7T;.a 77 rotation by another 7T

. , (= ;
rotation? Vhat, is the identity matrix?

 They should nov look st their sucaksiive bpérations without performihg

the arithmetic &t each step., They would then obtain fdr g rotation _:/L
' 2
followed by a 77 rotation

Dén=.1xan+oxAn ul"x[Dx[j-i-(l)XA]+Ox[lXD+OXA]

=[-1x0+0x1) x{J+[-1x(-1)+0x0]lx A

and & simiiar series of steps for ,_’_\_nn.

They have é.lready used an operator notetion for the geometrical symmetry
motions: rl(polygon) = (rotated polygon), re (rt (polygon’) = r2 (polygon
. rotated according to rt), ete. To follow up their algebraic transformations

concisely it should be suggested that they write

ab
(0%, A" = (c a) ((,A) .
It is not yet natural to suggest writing the co-ordinates in a column, but

it will be later. Now looking at their successive transformations in opera-

tor form they have

T 0 Co-
=, pm = B -D3EF (@, }
1x0+0x1 1x(-1)+0x0

(0, A7)
0x0+(-1)x1 O0x(-1)+(-1)x0
the
In this/pattern of row times column can be observed., This should be tested

for other successive symmetry motions of the square., Then one can indicate
| n ‘
ab -
_ that if one writes {(AP) = (c d) (%) the same pattern of row times column
al ]+ bA
= (c t d ) from which one can read off the linear algebraic

equations.
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A The properties of this multiplication among the set of matrices should
now be investigated. It is'expected that the student will scon find that
he can predict results of matrix multiplication by using the correspondence
(homomorphic connection to the symmetry motions and isomorphic to the equi-
valence classes of symmetry motions) to the geometric results. They should
be able to‘fiﬁd several ways of generating transformation matrices, includiﬁg
ény matrices which they had not previously obtained directly. fﬁe question
%éf.closure can be demonstrated by calcuiation, but also by reference to the
'"Eiosure of the geometrical symmetry motions., The identity element will come
fup in the same context, and can be found from many pairs of matrices. In-
ferses must exi?t according to the correspondénce, and can be found in this
‘way much more easily than by setting up the equations MM'l = 1. The ques-

tion of whether matrices commute under multiplication can be found out by

trial, or predicted by correspondence. If addition of matrices has been

- defined, there may be some amusement in looking at the commutators,

It is propoéed that the students now try to find the matrix represgnta—
éion of the symmétry group of the equilateral triangle. This tiﬁe theyiare
fb'séé how much the construction can be simplified by using the isomorphic
éﬁfréspondence. _How many metrices do they have to find directly in order

to generate the rest by multiplication?

If the triangle is placed on the co-ordinate systém in this way, the

‘ /‘ji]\'\ (03 ; 3 "Y%-).
LA
the "veriical twist" matrix easy to // L\

y a
¢
/ \

£ind even before the vertex co-ordinates // \\

symmetry about the vertical axis makes

5 .. l to 'Y " ‘
gre known. For all three vertices thl§ (-1,-1) (1,~1) 1o
motion changes the sizn of[Jand leaves A alone. Theé matrix is thus (0 +1). .




Chap. 18

Multiplication of this by itself gives the identity, so we need more, A
rotation or a "diagonal twist" must be found,'requifing the location of ver-
tices, Ve can obbtain these by finding the ratios of the sides of tﬁe 30°,
60°, 90° triangle obtained by splitting the N /;\\

equilateral triangle in half. The 90°kan~ S / \\

\,
/ )

1abl = 1/2 lacl. If laB! is one unit long,. then the Pythagorean theoren

gles follow from symmetry, By construction

tells us that {bell = 22 -12 = 3, An accurate evaluation of {3 is not re-
quired for what follows as we only use the fact that Tg-x‘fg = 3, The

class should however know vhat it is to about 5%, so that they can recognize
gross errors in their drawings and know the sign‘of'{g.-fé. As,for rotation,
they want the center of the triangle to be at the origin, the& mist find
1dc! = Ida‘. By symmetry / deb = [/ dac. Iv follows that bda is similar to
bac, and that Ibd] = ba x 2 =1 . Then |de] =73 - 1 and the co-ordinates

_‘ . - be Y3 V3 :

of the other verticez are easily found to be as in the figure.

Mo find the coefficients of the transformation easily one wants to

transform & point which has one zero co-ordinate., How do we transform

S0 YT D) to (<1, - e T
3 - Y3 | | |

P \

i=ax0+bx (73-1)
, 3

l=ecex0+dax(/3-1)
3 13
The first equation gives b = =~ 1, and the second d = - Y3 .

. | T3 - 1- e e -1
S TE 5

_ Whet if the same trensformation is to bring (1,-1) to (0, V3 - 1)?

0=ax1l+bx (-1)

ER
Y3-1=cx1+ax(~1)
3 3
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The first equation givesa=1b=-1/ ({3 -1) =4
- '3 13 13

and the second gives

e=73-1- 1/ (3~
AR

__3_(- = ' l ="bo
73-1L Y3-L
Y3 V3

1.
1) = (13 - 73)°-3 =
Y3 Y3~ 1

The students can now generate all the remaining matrices by successive

multiplications of this and the vertical tvist matrix,
: /

/
- The labor of calculating the components of the generating matrices can
be.teduced by first discovering their orthogonality. Then they only need to

solve the first equation above for b, and then they %et c=~band a=4-=

+V1 - b2 from the orthogonality. The sign in front of the radical can be

checked by inserting in the second equation. Vhat does the other sign do?

The orthogonality is approached by noting that
(O™2 4+ (A2 = ()2 + (A2 or
(2 + 2) 02+ 2 (b +ed) N A+ (WP + ) A2 =72 4
A Judicious sele%::tion of a few particular points (withlj or A Vanishing for
- ‘instance), for which the students know thaot the distance from the origin is
unchanged, will quickly give the result a? + c2 =1, ab+cd =0, b2 + 32 = 1,
Insertion of results of the first and third into the second gives Yi'i'Z§ X
bieYl-bs= 0,.whicﬁ is solved by ¢ = -b., That one should choose
a =d, ¢ = ~b for & rotation is indicatzd by the special case of the identity.
The opposite case is an inversion. This orthegonality relation could be
tested for the knowﬁ gjzpatrices,‘and then used to derive the coefficients
of the gzz;otation.matiix. '

3
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. They could now look at the matrices representing the symmetry of the

rectahgle. This is trivially & subgroup of the symmetry group of the sguare.

*

This relation could be exploited further.

If more practice with matrices, and more insight into the use of the
isomorphism is desired, one can continue as follows. What are the matrices

corresponding to the symmetry motion of a pentagon? A generating twist is

uéasily obtained if the pentagon is aligned symmetrically with respect to one
6f the axes, (a=-d=%1,b=c= 0). A non-trivial rotation is much
wharder. Can they find a rotation matrix without using geometry or trigo-

‘nometry? What happens if they multiply the 277 rotation matrix by itself over

5
and over? On equatlng the fifth power of the matrix to the identity they

@Wlll get, of course, a nasty equation. They could perhans solve it numeri=

';”bally to one decimal place. (They know it is between -1 and 1.) They

should then check the effect of this approximate matrix on one or more Verw

tices.’ What is the 27 rotation follow redd by a twist metrix, apnroximately”
' P

Whaﬁ is the & 7 rotstion matrix, approximately? If they have had some tr;go~
5 | 3
nometry, they could compare these results with cos 27 . b

-~ P P .

PR —_—

‘ The hexagon has the ecullateral mrlangle and square subgroups. Oge

_can then obtain the whole group by comblnlng trese and the problem of the

“oe

. palynomlal equatlon does not arise.

[
e sl e P e i bk £ arn g T ] =
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ITERATED REFLECTIONS IN MIRRORS

The material given here could be the basis for a presentation in the
sixth grade; The students should already know about reflection in sinele
mirrors (having worked with the Welter Mirror Cards, for example), They
also should know thet the angle sum of a plane triangle is 77 (or 180° if
they don't know radius measure); This material is an introduction to
erystallogrephic groups and is important also for study of Lie groups and
Lie algebras., In this sense what the student discovers here is all possible

generalized Weyl groups of two-dimensional Lie groups.

An object has just one imege in a mirror, but with two mirrors we may
get infinitely-many images. If e room has mirrors on opposite parallel
wells (as for example in a barber shop) then one mirrer reflects both the

object and the reflection of the object in the other mirror, Since both

mirrors are doing this we get an infinite sequence of reflections in
each mirror., Mirrors
:Z/ \1!
Ima es - ’ Images
f\ | | | A
- o, - &\ M/& \\‘ ' / .L 4 —.J
. /‘\ ¥ ‘w \-"\~ / e Q. - -
s+ 3 b+ b a i a + e a+ 8

Qlu. Object

For experimental purposes we need two large mirrors. The distance
arrangement of images should be checked visuelly for different placements
of an object (preferably the observer). In particular we note that the

imeges are all evenly spaced when the object is midway between the mirrors.

Next we observe what happens when the mirrors are not perallel. The
'more nearly parallel the greater the number of images. ¥Find out at what

angle the number of images reduces to two. Try to get more images in one
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; mirror than in the other. These observations should be explained in terms

of light rays heving equal engles of incidence and reflection.

Now we want to use three mirrors so that we can form s trisngle with
the observer ingside, Ascain ve consider the nice situetion first by making

an equilateral triangle, Here is & view from ebove:

™ 8 - -

“ 3 7 .
. v , . , N
/,/?” . Yy o Solid lines are mirrors,
// -\”/,__ ..?. E \, P o . * ’
I ey e dashed lines are images
Images e > ¢ . . &
\ ‘ ... . '
\\\ﬁﬁ . A Vﬁa; s . of mirrors (and images of
- - RA. - a e
3 e .
. , of imases, etc.)
. : Object >

1 N s

hY

A convenient wey to locate images is to use images of the mirrors.

Then & pew image 1s obtained by reflecting an image in the image of a mir-

ror. For exemple, the line labelled a in the diagfam ghore is the image of
‘mirror 1 in mirror 3, and b is the.image of mirror 2 in mirror 3. Ve con-

tinue by reflecting images of mirrors in other images of mirrors, etc., and
then we reflect object images in mirror images.to obtein all object images.

Go beck and use this kind of construction for two parallel mirrors.

Just as with two parallel mirrors, it is instructive to see what happens
when rvhe angles between mirrors are chanped (so that the triengle is no lon-
ger equilateral). Consider for example a triangle with sngles 90°,L5°,45°,

abject
— =7

R R
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As before, the imeges are evenly spaced throughout the plane in the diagram

above., The same situation occurs for a 30°, 60°, 90° triangle.

Now make the mirrors into some triangle otﬂer than the speciél three
(equilateral, 45°,45°,90° and 30°,60°,90°). We see that the images are
not evenly spaced but tend to "buneh up" in some directions., Let us agree
to call the set of images discrete if they stay equally spaced throughout

the plane end non-discrete if theybunch up in some directions.

- There are two important things to notice.

(1) Whether the images ere discrete depends only on which triangle
of mirrors we ere using and not on the placement of our obJect in the tri-
angle.

(2) The only triangles whichvgive discrete sets of images are the
three special triangles slready examined.

These should be checked by experiment. There is, however, a very pretty |

proof of (2) and we give a sketch of this proof now.

We must consider what happens when we have two mirrors at an angle and

~consider an iterated reflection. P

image of A in B
/'<\ e

CAN. * 20
Mirror A / > /

//A? Q )ih; " Yirror B
| e Object
$ J

It turns out that we can get from the object to the second image by a rotation
through an angle 2@ (where the © is the angle between the two mirrors). That

is, an iterated reflection is a rotation through twice the angle betveen the
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mirrors; Thus by repeating iterated reflections the image gets rotated
“apound the origin (vhere mirrdrs come together),. and the image will zet

back to the oblect position only if some integral meltiple of 20 is 2 7.

If thls doesn't turn out to be true, then the images will eventually bunch

up. (A rigorouo proof of this is too difficult to give here. )

o

Once we accept the statements above, we can complete the proof by

more analytical techniqués. Consider a triangle with angles 2,/9, r
f\\\\ |

- and suppose thegiterated images are not to bunch up., Then

(1) »= %’I:G“"I’ r=17

/3 ‘ o

"must be integers. Also we have

(1) 247, LT T LT R PR T

' Combining (i) and (ii) ve get

JT + T+ L= g7 os OF
P q r

411y 1 + 1+ 1
P 9 r

1.

| Tt follows that:
(e) p,q,f”£‘2; and et most one of them cen equal 2.
(b) We cannot have 1,q,r, 8ll > 3.
Using these results we easily get that the only possibllitles ere that p,

-'q; r ere (in some order)

. - 2, b, b
2, 3, 6
3,3, 3

end this proves that triangles with angles W, 7., T_end 7, T, 77
' 2 % 2 3 6
end 7, 7_, 7 ere the only ones vhich will give discrete sets of images.
3 .3 3

{ ERIC 2915-65-
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Section IV - Chap., 20

KIoTS

This section should be done when the students are old enough to mani-
pulate rope effectively and to draw representations of knots showing one
line passing under another. The»equipment used could be lengths (about four
feet) of sash cord with some device for attaching the ends together,

Probably some kind of sleeve exists or can be devised, Otherwise Scotch

]

/
tape could be used.

I. Identifying knots,

Tie en overhand knot in & cord and then sttach khe ends. Put the

{

-~ L] [ 3 I
cord on a table in various positions, e.n. '

’ u

Do the same for other simple knots.

eD

Figure 8 knot

—/ [ C MM—M\\/‘Q)

Square(or reef)knot Grenny(or felse reef)knot

CED

Learn to tie knots from looking at knot diasrams (like those we have

Just drevm). Learn to drav diacrams from a ziven knot in a cord.
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Given two knotted cords, agree that they are the same kunot if there

is bne diasgram which will give both. One can also"put one knotted cord on
top of the other" to sce if two knots are the same. A cord with the knct

diagram

is called unknotted (or is called the trivial knot). Find lots of diaprams

representing the trivial kuot, e.g.

II};Eyo-coldr theoren,

We can consider that a knot diagram divides the plane into regions.
Try coloring the regions with two colors so that no two regions with a

common boundery line have the same c¢olor.

Example \ Red
' Gre o ——
| : Red Green

M»""/
~1Green

Do this for encugh knot diagrams to become convinced that it alweys works,

. IIT, Links.
Use unknotted cord loops. Two such are linked if they won't come apart.

For example, loops A, B are linked:




Section IV~ Chap. 21

SPHVRE, CYLINDER, TORUS, LTC,

The mein peint Is to study the behavior of curves (in particular geodesics)n

on various kinds of surfaces.

I. Division of surfaces into trisneales,

Models of spheres, cylinders and torus are needed on vhich one may drav end
erase lines. / ‘\

Divide these into curved triangles so that if two trianecles have eny part
‘.in common, it is elither a vertex or an edre.

For example,

e - ——

ya / ]
L is 0.K. but
T
.~ o \ -
J—— ”...\.,“,74-*.._.-.__..

! 1 .
' /////is Ll

The triangles are to cover the entire surface. (For the cylinder, the

top and bottom edges will have to be made up of edges of triangles.)

For exemple,

and then continue to fill up surface with triangles.
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Count vertices, edges, faces for each. Check that

N e

:;“"‘
S W

Sphere - Torus Cylinder -

V_E+P 5 o 0

Do this geveral different ways and check that each time the same number is

obtained for V - E + F,

IT, "Straight lines” on surfaces.

1

—Imagine o.dimensional creatures living on the surfaces (sphere, torﬁs,
cvlinder), Ask vhet wvould "strairht line" mean to them, Evolve notion that
taut string heldagainst surface'is best answver for sphere aﬁd cylinder. For
tor 5 it .is hard to keep string taut and still on surface for nearby points

on the "inner part" but 0.K. for outer part. To solve this problem we use

N "
IS

.’) . narrow strips of colored cellophane tape vhich will stick.

Give a position (point) on the surface from vhich to start and e direc-
tion at that point. See that by keeping tape tisht, allowing no bends, end
sttaching & small bit at a time, the whole curve is dictgted by initial
position and direction. It should be interestiﬁg ‘0 note how small errors
build up. Let students start with some'initial point and direction and com-

pare end vosition for fixed (equal) lenrths of tepe.

Call these curves geodesies.

Show that: Geodesics on the sphere are great ciréles.
Geodesics on the cylinder esre helices (or dercenerate helices: a
horizontal circle or a vertical line.)
}«if' Geodesics on a torus come in several types. (Note: The situation

is very complicated and one should not exvect these experiments to yield a

U pom re  14 bgb5 penlye
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complete solution.

ITI, Triangles on surfaces,

Tnstead of covering surfaces with triangles, we now look at single

triengles on surfaces, “e consider peodesic triancles: i.e. triangles

whose edges are geodesies.

Construct such & triangle on a cylinder. Measure the angles and add

them to see thet the sum is 180°, just as on 8 plane% Do this several times.,

Cut the cylinder and flatten it tc see that we then get trisngles made

of straight lines in the plane and with the same.angﬁes.

‘Next we construct geodesic trianegles on the sphére and find the sum of

the angles of each. Check that the answver is alwars >180°. (bon't construct

" degenerate triangles with tvo sides colnciding, ete.)

Now we try the same on a torus. Can we ret a triangle with angle sum >

180°7 with £180°7
\

" IV. The pseudosphere,

A sphere is a surface with constant positive curvature; so a surface

with constent negetive curvature is called a pseudosphere. (The curvature

of a plane and a cylinder are zero. The curvature of & torus is not constant

but veries from point to point.)

Construct (or find some fecsimile, e.g. the bell of a trombone) a

pseudosphere.
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J E’*camine the behavior of geodesies on the pseudosphere, e.z., these two:

1l and" 2

. Measure the angle sum of triangles, noting that it always comes out < 180°.

This leads to a feeling for curvature of a surface. If we want to
. know the curvature of 8 surface st e point, we draw a small geodesic tri-
engle near the point and measure the angle sum. The curvature is defined' to

be positive if this is »180°, zero if = 180° and negative ir<£180°,

W) | By a limiting process this technique can be used to assign & numerical

. value to the curvature at each point of a surface.

- 2915-65
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Concluding Rewmarks:

It iz clear to us that this report represents only a beginning in the
development of material that will teach mathematics in the schools as we

would like to see it taught. It touches on only s fraction (though not a

'small one) of the topics for the elementary grades and has not yet peered

into the higﬁ school period. The presentation contains so little detail

“and is so unstructured, that it requires mathematicians with experience in

currlculum research to attempt 1ts teacﬁing. Much of it has not been tested
at any level and so may easily fall on its face. Indeed we have our own
grave doubts of the efficacy of much of our material. The question of pre-

paring teachers to use such material has not been raised st this stage.'

However, we hope the content of this report is sufficient to allow
these further steps to proceed. We hope that its intent and detail are
clear enough,»and interesting enough, for research people working with chil~
dren to try them out. This may lead, after a wﬁile, to sufficieht.informa-
tion about what children can do in elementary school so that one can begin
to‘elaborate the form of the high school mathematics. Every experiment in

the classroom gives some suggestion as to the scope of the teacher training

problem ultimately involved.

We expect that a series of workshops, interleaved by classrcom experi-
ence, will prove necessary in an iterated approach to our goals, We will
be pleased if our summer's work is of some significance in establishing this

chain of development.

2915~65
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Entebbe Mathematics Workshop. Preliminery Ed. E.S.I. %
Primary 1 Unit 13 Ceometry !
Unit 17 Measurement j
Primary 2 Unit 3 Geometry :
Unit 13 Metric Geometry ;
Primary 3 Unit U4 Geometrny ﬁ
Unit. 8 Measurement | !
Unit ‘11 Geometry -
Secondary 1 Chapter 5 Sets of Points
| B Chapter 9 Measurements N
Secondary 2 Unit 2 Chapter 8 Use of Instruments
Chapter 9 Congruence
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Chapter 11 Symmelny
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Chapter 13 LOCl and Envelopes
. Chapter 14  The Pythagorean Property
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| Part 2 Ch., VI Length and arca
¥ Grade U Sets of Points
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: Linear Measurement
Grade 5. Congruence of Geometric Figures

- Measurement of Angle

Area
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