By-Stolzenberg, Gabriel
Geometry Report: Cambridge Conference on School Mathematics Feasibility Study No. 39.
Cambridge Conference on School Mathematics, Newton, Mass.
Puib Date [69]
Note-52p.
EDRS Price MF - $\$ 0.25$ HC Not Available from EDRS.
Descriptors-Arithmetic, *Elementary School Mathematics, *Geometric Concepts, Grade 7, *Instruction, *Number Concepts, *Secondary School Mathematics
Identifiers-Cambridge Conference on School Mathematics, Massachusetts
These materials were written with the aim of reflecting the thinking of the Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for school mathematics. This report deals with some seventh grade mathematical concepts taught at Cambridge Friends' School. The discovery approach was utilized by the teacher in order to involve students in the classroom discussions. The problematic areas which are dealt with in this report focus on (1) geometry as physics versus geometry as mathematics. (2) proofs and mathematical reasoning. (3) area, and (4) infinite process (approximations). Instructional procedures are described and student reactions to various procedures and activities are listed. [Not available in hard copy due to marginal legibility of original document]. (RP)
U.S. DEPARTMENT Of heath. eovcailion \& Welfare

GEOMATRI EMEORT offle of educhion

This document has been reproouced exicily as recived from the person or orgailiation originaling it. polnis of view or opminons staite do mot mecessarity represent official office of educailon POSIIION OR POLICY.

This report represents much time spent thinking and planning - and ruch too little time spent in class - 20 meatings.

1. I met twice a weax Ircm Februevy into inay, with the 7th grade ciass at the Cambridge Friends" School. (There were tro long breats.) The class was smail - 8 boys and 7 girls - the children were usugliy thoughtful and responsive, and the atnospiere for learning was good. I was helped suostanisially by the teachex, wr. Ehemas Waring, who has a strong feeling for the mathermtical point of view - and for the child s.
2. I learned much more then I taught. Time was short. I used various approaches and did not olways follor through and reinforce what was done. I tried deliberately to explore problematic, sensitive areas and, not surprisingly, thene was frequent troubie and frustration.

For example:
a. They hated $\sqrt{2}$ when they found thet "it doesn"t come out even".

So much so that they asked at one point to study only rectangles which were not squaires in the hope of avoiding $\sqrt{2}$ (and its companions.)
b. They eventually followed the proofs of the Pythagorean Formula done on the board but they were not at ald convinced it would really yield the (corsect) answer in they actualiy measured the sides of a particular right triangle. (Often It didn't, because oit their errors in measuring and inaccuracies in the constuction of the triangle.) I thini this
is in parit a reflection of their lack of confidence in the "corcectness" of their reasoring. Sometines when they seem to be following a proof they may really be saying "I can't find enythirg wrons with it."

Can such matters be dealt with proitably in grade 7 (or earliex)? I think so. It seemed to me that the hardest thing for the childsen was that these ideas were very nesy, unfamiliax, scmetimes even startling. In that case, perhaps the eaxlier they're presented the better it would be, so that the long process of iamiliarization (and understanding) can get going.
"Familiaritity breeds content" - I hope.
3. Scme of my prejudices.
a. Difficult points which are natural paris of the theory and which can be understood by the student should be squarely faced. Whenever such a point is not going to be adequately treated that fact should be plainly stated. Gaps, unmotivated assumptions and devices, evasive action (even when logically legitimate) should be clearly labeled as such.
b. It is unfortunately easy to make children think that they know certain things which they plainly do not, and that certain things are obvious which obviously are not. It is notoriously difficult to undo this. This goes on all the time at 211 levels of mathematics instruction. In fact, I think it is "the rule". (It is attractive because it is comforting and frequently yields correct answers.) The mishmash made in treating area is a particularly scandelous situation.
c. Appeals to intuition are extremely valuable in teaching mathematics and are also extremely abused. Many different kinds of thinking are confused under this heading. For instance,
(i) Some things, especially in geonetry, may be visually evident: For examples, If a line crosses one side of a triangle it also crosses another.

Two edges of a triangle form a larger path than the third side。
The circumference of a circle is about 3 times the lengith of the diameter.
(ii) Sometines one reasons by analogy.
(iii) Sometimes one generalizes after checking a fevr special cases.

Usually (ii) and (iii) are combined.
Neeling is thet assertions gotten by (ii) or (iii) should be identified plainly as conjectures or working hypotheses. The best thing to do with them, when you can, is to verify them (or disprove them). If you can't, you frequently go ahead anyway and see what follows. But the provisional status of these essertions should be made clear.

I think visually evident things have a different character. They "feel" true - verified. In a satisfaitory discussion only statements of this kind should be taken for granted and (since this is a subjective matter) even these are naiurally open to challenge.
4. Here are four large problematic axeas which need to be developed in detail and worked into the school mathematics curriculum.
a. Geometry as physics versus gecmetry as mathernatics.
b. Proofs, mathematical reasoning.
c. A satisfaciory treatment of area.
d. Infinite processes (approximation)

I will comment briefly on these on the next few pages.
a. Geometry as physics versus geometry as maithematics. As a rule this relation - or contrast - is not discussed. Perhaps it is considered too sophisticated a matter or too fuzzy a problem to be amenable to teaching. Maybe. I don't know.

Neverthless, it seems that children first experience and understand geometric objects physically and so, somehow, have to make the transition to mathematical geometry i.e. - to abstract out the relevant formal properties and relations of the physical objecícs,

This is a hard series of steps. Perhaps the teacher can help. I triad. I began the first geometry class by posing finding the Pythagorean Formula as a physical problem: Find a formula, in terms of the lengths of two adjacent sides of a rectangle, that will predict the result of measuring the diagonal. In fact, to begin I pussd this problem for three particular rectangular objects in the classroom. I encouraged measurements and hunches. My aim was to show them, what is to me very striking, how a line of mathematical reasoning can be used to solve a physical problem.

I wanted to (somehow) wean them from physical objects and
measuring to imagined "idealizations" and reasoning, and to lead then through a statement and proof of $c^{2}=a^{2}+b^{2}$. Ny attempt was clumsy, naive, inadequate. But an approach like this showld be tried again. Perheps starting with the 3-i4-5 triangle. Pexhaps working more with squares. Perhaps starting by telling what the formula is.
b. Proofs, mathemotical reasoning.

I feel strongly that a proof that doesn't convince is not worth much.

Practice in proofs and mathematical ways of talking and reasoning should begin as early as possible.

It should be made clear that what's put in or left out in writing down or telling a proof is very much a matter of convention - the standards of the times or the particular classroom.

Proofmaking is a mathematical skill which should be learned along with the others. Number theory and inequalities seem natural
areas to do this in at an early age.
c. A satisfactory treatment of area.

This is my main goal and I am still far from it. But I have learned some things.

I think the measure theory should be faced up to. There is much that can be done. And there are many interesting basic problems that, can be tacicled. The problem, of course, is to demonstrate the existence of an area function which has all the properties it's supposed to have.

I would like to distinguish two kinds of difficulties that arise in trying to do this.
(i) There are problens of approximation. Pro things have the same area if you con approxinately cut one up and rearrange the pieces to form the other, Infinite processes are involved. If you try to compute the area of a triangle like this

then you have to sum $\sum \frac{1}{2 m}$.
In dealing with such questions it may be good, at first, to emphasize inequalities and bounds rather than equalities. Start with the concept - one region is smaller than another if it can be cut up and reformed to fit inside it. (After such a discussion Bolyai's Theorem on cutting up triangles is especially striking.)
(ii) The other kind of problems are like this. Take a square. Cover it with fine graph paper whose lines are parallel to the sides of the square. Count the number of boxes which hit the square. Now put the graph paper down some other way and count again. The answers will be about the same. Explain this.

Related problem. Taks a 1 by 1 square and cut it up into pieces that can be rearranged to form a rectangle. Then the lenghts of the sides of that rectangle will alway satisfy the relation $a, b=1$.

Prove it. (i, e, Shoy why.) (In particular, shov why ir the rectansle is a square, it will again be a 1 by 1 square.) These are extrenely interesting facts which ane not visually evident (though they can easily be checked empirically) and are basic to understanding area.

This is the approach to area I suggest. I think it can be taught and learned.

In the "postulational" approach to area such questions are avoided with such success that most people I've talked to find it hard (often. fripossible) even to understand the questions. I had this experience last sumer with a group of college graduates - mathematics majors - who were preparing to teach geometry. This surprises me even less now that I have looked through a number of the standard works on measure theory and found these matters either absent (which is fair enough), faked, or hidden in the exercises.
d. Infinite processes (epproximation).

Approximation has to come up - in decimals, in area, in fact, begimning with division.

The problems on infinite processes are fascinating. Work can begin early - - How many numbers are there?

By tray of illustraion here is a list of questicns I once used to begin a project on infinite processes with in llth grade class at the Commonwealth school.

1. $2,4,6,8$, what comes next?
2. $0+0+0+\ldots=$?
3. $\quad 1-1+1-1+1-1+\ldots=$?
4. $I+I+I+I+\ldots=$?
5. $\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}+\ldots=$?
6. $\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2}+\ldots=1$. iny?
7. Is there a number \mathbb{N} such that
$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{2}>3:$
Do you think there is an N such that
$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{N}>1000 \% 00 ?$
8, About how big do the numbers
$1+\frac{1}{2^{2}}+\frac{1}{3}+\ldots+\frac{1}{n^{2}}$
get as you take n biggex and bigeer?
8. Try adēing up the sums
$I, I-\frac{1}{2}, I-\frac{1}{2}+\frac{1}{3}, 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}, 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}$,
with more and more terms. What hippens when there are many
terms? Js the sum always positive? Always negative?
Sometimes positive and sometines negative? About how big does it get to be?
9. Can an inifinite region have only a finite amount of erea? (I do not include a report of this project here.)

Before the ist meeting, I gave cut a set of problems, to be worked on at home, and then handed in. The problems were:
i) to get an idea of how they thought about geonetric objects and that they knew about them (very, very roughly).
ii) to get them primed, i.e. to give theli an idea of what we would be doing.
iii) (hopefully) to find some interesting leads!

Their answers were more or less what I expected and I won't comment on them in any detail here. I enclose two sample replies.

Here is a square (approximately.)

Which side is shortest? Measure it.
Is there 4 square smaller than the tip of a needle? Could you measure it?
Is there a square bigger than the earth?
Can you make a square that is more accurate than my square?
By the way, what is a square? A circle?
Make a circle (out of something) that surrounds just as much space as iny square " How long is your circle across?

How long is it around?
Finally, make a circle that is just as long around as the square is. How long around is that?

$-11-$

Finally, maise a circie that is just as long around as wive square is, How j.eng arcoud is that?

How long jis this circle across?
P.S. Try to finish this circle. Find the center and measure the radius.

THE ANSWER TO SCME OF YOUR EROBTHES

No sides of a square are shorter or longer. A square has equal sides.

There are squares everywhere that you can't see (like a point). You can not measure it. There is a square bigger than the earth. There are an infinite number of them and them and their made from the con number of planes, and + lines. I can imagine one that is perfect square, but you can not see it.

A square has 4 line segments that endpoints only meet two other endpoints. A squaie is not a circle because a circle is just one perfectly round closed curve, and has no end-end.

My circle

It is two in. across.
It's circumtrence is 6 "
The square isn't round

1. Yes
2. Yes
3. Yes
4. Yes
5. A square is a two dimensionel object with four equal sides
6. A circle is a twomdimensional object that is round
7. $2 \frac{1}{4}$
8. $6^{\prime \prime}$
9. $8^{\prime \prime}$
10. $2 \frac{11}{2}$

P.B. 2"

1st Meeting

To begin we picked out 3 Iasge rectangles in the classroom: 2 large windows and a tablemtop.

I announcea that I rad a "method" whereby in I knew how long two (adjacent) sides of one of the rectangles were I could, by doing some figuring with pencij and paper (without looking at the rectangle any more), figure out how long the diagonal was.

I asked if anyone else thought they could do thilis. Several said yes. After a brief discussion it turned out that what they meant was that if they knew how long 2 adjacent sides were they could also tell how long the opposite sides were. I explained again what I proposed to do (determine the iength of the diagonal) and this time everyone seemed to catch on. No one said he could do it.

I proposed the following "experiments". With a yardstick several children measured the sides of the 3 rectangles. I drew pictures oi the 3 of them on the board, not at all precise, bui at least pieserving their relative shapes. I maxked the appropriate lengths.

Then we did the following. Two children measured the diagonals with string and a yardstick, I worked with pencil and paper, via the Pythagorean Formila. And the other members of the class thought about the problem, 1ooked at the objects, and tried to figure out the answer.

$$
-15
$$

When we had all finished (the neasurers had some trouble with the string stretching) I recorded the results on the board.

Oniy a few children had answers.

	A		B	c
	1.	$77 \frac{1}{2}$	55ix	81 $\frac{1}{4}$
Student's Answers	2.	98	65	902
	3.	98	66	90 ${ }^{\frac{1}{2}}$
	4.			76 (This was a guess)
Me	5.	69	$49+$	73.8
Measured	6.	67	4.9	$74 \frac{1}{2}$

4 was a guess. 2 and 3 had added the sides. I pointed out, and evexyone semed to see immediately, that this was clearly too big.

1. was Scotty's method. She juaged with her eye and estimated the length of the diagonal as the horizontal side plus half the vertical side.

We pursued her idea. Her answers were pretty close to the measured results.

First I pointed out that her answers depended on which way we looked at the objects. If we rotate them by 90° and apply her method then the answers change and in fact become quite inaccurate.

There was a lot of action at this point, various attempts to fix the method. Someone (was it Scotty?) suggested modifying it to be the long side plus half the shori side. This saved B and C. The answer for A got worse (compared with the measured result and mine) but not too much worse. I thought it interesting that the answer got worse only for the more square-like figure A; several children seemed to think this curious too.

So, to fix our attention on one aspect of this problem I assigned for a honework problem to check Scotty's method ior a square. That is, to find or construct several squares at home and to compare Scotiy's method against the mea.sured resuit.

There was surprisingly (to me!) little discussion about the fact that my answers were so close to the measured ones - (which was the main point I wanted to impress them with). I see now that this was principally due to the way I kanaled the situation. I treated the method as an edult secret - "not for children" my manner probably said. I openIy avoided explaining what I was doing ($t 0$ leave open the possibility that we would eventually "discover" it in class). This approach (which was not particalarly calculated on my part) contained the seeds of subsequent failure. In exect, I challenged them. We chose sides. I had yiy "method". They measured.

Only one boy asked about what I had done (just after the results were tabulated). He wondered if I had done something like make a scale drawing on my paper and then measured it. I told him that I hadn't done any measuring and made a mental note to try to pursue the ideas of scaling and simila itiv ilater on. Surprisingly, it never came up again, (except briefly on the very next day). Iet this is a basic point to work on. To understand that they only have to do it for one member of any class of similar rectangles.

2nd Meeting
Four children had done the homework. They found that Scotty's method and measurement gave very close answers for the squares they tried.
(Where did they get squares? I'm really not sure. That's a problem. I think some arew them on paper and cut them outo But getioing those right angles can be haxd.)

Some of the results were (I've lost one)

	Side	Diagonal (Measured)	Diagonal (Scotty's Method)
1.	$2{ }^{\prime \prime}$	$2-7 / 8^{\prime \prime}$	3^{17}
2.	$1{ }^{\prime \prime}$	1-3/4"	1-1/2 ${ }^{19}$
3.	$2{ }^{\prime \prime}$	$2-5 / 8^{\prime \prime}$	3^{11}

The general feeling was that the method worked pretiy well.
The $2-7 / 8^{\prime \prime}$ and $2-5 / 8^{\prime \prime}$ measurements for a square $2^{\prime \prime}$ on a side looked curious to say the least. I asked, what about it? This caused luts of unhappiness....must have been a mistake in measuring, they said. I tried to raise the question of the accuracy of the squares themselves; of how sfuare they really were. What about those right engles? Wouldn't inaccuracy there also throw the result off? This whole discussion didn't settle anything. \because I think they have great faith that any machine-cut object that looks like a right angle is one.

I raised the question Coila Scotty? method possibly be exactzy
right? (Cound the discrepancy between the ansiers be duesentirely to
"experimental errors") M My intention in posing this question was to move toward abstract mathematical reasoning I had in nind to prove that the method was wong (though close) This was another blunder on my part. For the following reasons. Principally, they knew that her (Scotty's) method didn ${ }^{\prime} t$ agree with mine during the lst meeting; so I must know it's wrong.

Why pretend? Why play innocent? Secondly, it has such a neaabive quality. Here am I with my "secret" adult formula proving that one of the children's formulae is mong. No matter how positively I tried to put it, in retrospect it was a bad business.

Anyway, I did it. I drew the following diagram on the board.

I waited for ideas. One boy made it into this

but that led nowhere. So I led them through some reasoning. First I attacked Iabels.
a.

I argued:---by Scotty's method $b=\frac{3}{2} a$; so $d=\frac{3}{4}$ ris so, again by Scottir: s method, $a=\frac{3}{2} d=\frac{9}{8} a \neq a$, a contradiction.

Some bought this; others asked "What's a ? So I did it with a $=1$. Then they wanted to try $a=2$. Instead, I set $a=$ Jche (one of the boys), drew a wavy square,

and did it again.
As I mentioned before, this didn't come oif.
Also, notice how far away we seem to be from our oxiginal problem.

3rd Meeting

Something nev has been addeds Richard brought in the Pythagorean Formula, $c=\sqrt{a^{2}+b^{2}}$. He "goi" it from the sister of a friend. He tried it on several rectargles and found it worked very nicely.

What do I do? I was well amare beforehand of such an event possibly coming to pass. Still I had no plan. I'm afraid my look and manner suggested to Richard that he had done somethirg whong - which he hadn't.

At any rate, I asked Richard if he thought the Formula was exact (whatever that means), where the friend's sister had gooten it from, why he believed her (why not?, of course), how it might have been बicovered (trial and error, he said).

Roger and Scoti also had a nev formila (the same, but independ intiy): long side plus a quarter short side, Rather than follow this up, I suggested they try on their own to apply the reasoning of the previous meeting to the new formula and see what happened. (Significantly, I realize now, I didn't suggest this to Richard).

Instead I drew the square again and tried to see if we could get any positive results by reasoning.

Nothing happened. So I improved the picture, thus,

trying to make a square based on the diagonal. Nif picture looked bad. David had a good idea and drew it as follows:

Then draw

After a short discussion (in which Mr. Haring, the teacher, gave the key idea) we got

Area of small souare $=\frac{1}{2}$ area of biq sguare

At this point I thought we were home; but, to my surprise, no one seemed to have learnt the formula for the area of a square of side s (or d). As it turned out, we didn't get back to this for a while. But actually they did know that, e.g. the area of a square of side 2 is 4 , of side 3 is 9 , of side $\frac{1}{2}$ is $\frac{1}{4}$, etc. It was the " s " that threw them.

Abstract symbols have to be introduced, but there are good and bad ways to do it.

4th Meeting.
Still responding to Richard and his Pythagonem Fozmula (Note: He didn't know it "by name" and I never said "Yes; that's it")。 I came in with a list of possible formilae. For $b \leq a$, I lisinc:

1. $a+b$
2. $a+\frac{b}{2}$
3. $a+\frac{b}{4}$
4. $\sqrt{a i+b^{2}}$
5. $a+\frac{1}{2} \frac{b^{2}}{2}-\frac{1}{8} \frac{b^{4}}{a^{3}}+\frac{3}{48} \frac{b^{6}}{a^{5}}$
(our firs: try)
(scoverys)
(Roger \& Scotty)
(Rj.chard \& Pyì̛agoras)
(Me, via the binomial sexies, first 4 éerms)

I drew a big chart with these formula matched against some of our previously measured rectangles. It was unwieldily, the algeira was a little hard (and too fast) for them, and there was much too much on the boarä to have to look at. Richard and Fythagoras won, end no one cared.

We went back to our squane. But thene was s.:ne oniy to ask them:
What is axea? In particular, what is the area or a syuare?

Some More Problems

These were done for homework before the fifth meing, The first 3 were exercises involving arithmetic and algenra that came up.

The last 3 were to ret on into area. The responses were not particularly inceresting.

SOME MORE PROBLEMS

2. Which is bigger, $\frac{7}{32}$ or $\frac{23}{200}$? $\frac{41}{83}$ or $\frac{42}{84}$?
$\frac{1}{2}$ or $\frac{2}{3}$? $\frac{3027}{698}$ or $\frac{3028}{699}$? $\frac{a}{b}$ or $\frac{a+1}{b+1}$???
What are your reasons?
3. Find a number a such thai \mathfrak{a}.e is between 5 ana 6 . Find another number b such that \underline{b}. $\underline{1}$ is between $1 \frac{1}{2}$ and $2 \frac{1}{2}$.
4. What is $\frac{x}{y^{2}} \cdot \frac{z^{2} y^{2}}{x^{3}}=$? $=?$
5. What is the area of a square whose side is $1 \frac{17}{2}$?
6. What is the area of a square whose side is $1 / 3^{\prime \prime} ? 2 / 5^{\prime \prime}$?
7. Which one has the most area? mine least?

B

It began with a question related to a homerork problem. Why was $\frac{a}{a}=1 ?$ That is, why doesn't it all "cancel ous" (get erased from the. board)? I always find it difficult to reply to a negasive interrogative, (and was tempted to say "when you multiply, I is the eoro") o Instead, I just passed.

We worked on area. It turns out they:ve had son classrocm experience with it before (at least, some of them have) and roally seem to understand well what they know.

I put a rectangle like this
2.

on the board. They said the area is 6. I asked why, They told me. David went to the board and made a grill,

and explajned" 6 unit squares.
They could also do:

breaking up a unit square itself into $\underline{4}$ subsquares. I tried a square $\frac{1}{100,000}$ on a side and they did it. They understand this.

Chucls suggested using a cormon denominator to determine how to subdivide the general rectangle, Good idea. (But I note that quibe reasonably, they think, indeed they "know" without thinking, that all numbers are rationa工. I plan a surpxise for them - later.) [Note: For some reason my terse changes here]]

I go to the other exireme now and ask about the area of an irregular figure. I draw something like this.

What is its anca? How do you find it? Tvo methods ane offered. 1. (Either Alix or Farlen). Place a string along the perimeter.

Reshape it into a square. That square will have the same area. 2. (Chuck) Fill it up with squares inside and add. There's some problem with the edges.

We discuss I which arouses lots of interest. One girl gets up to the board with a string, I suggest that it doesn't look zight for a long thin recta"gle, but this idea is not picked up.

We discuss 2. What about the edges? They're curved. Someone suggests cutting up unit squares into curved pieces to make it fit exactly. His plan is to cut one (or maybe a few) unit square up into pieces like.
and use them to cover the edges. I point out (and he realizes) that he must use all the pieces he cuts and we see that it is highly unlikely that this will work.

6th Meeting.

We begin by comparing again the two ways suggested for determining the area of a curvy region. This time I drew one like this.

Alix sees that her method (I) won work. She has a good idea, Namely; if (1) were right, then the figure above and the one below (gotten by a "flip") would have the seme area.

Some felt this was a paradox, that the same string can determine different areas. I passed.

Then I posed the iscoerimetric problem: How do you form a region With the biggest area? (Using a fixed piece of string.)

Immediatel.y there were two snswers: circle, square. We kicked this around a while. Then I simply told them that the answer was a circle, and tried to show heuristically why it couldn't be a square. I argued (with pictures) that if you push in the corners slightly, and then pull out the sides, you'Il increase the area.

Then I left this and went back to the question of the formila for the area of a square. It turned out (in the 5 th meeting) that they dis know this after all. Nomely (side) ${ }^{2}$.

From hene we moved quickiy and easily through our Pyihegorean relation for a square. We got $d^{2}=2 s^{2}$.

We wanted $d_{6} I$ said $0 . K$, given s, whadis d? We tried $s=15$, and got $d^{2}=450$. We tried various numbers for d. Got $21<a<21 \frac{3}{2}$. Class unsatisfied. We tried $s=3$. Got $4<\alpha<, 4 \frac{1}{2}$. Cléss frustrated. Finally, I suggested, let's try $s=1$. So the problem is $d^{2}=2$. What is de First response, $\frac{I}{2}$, cleared the air. $\underline{d} . \underline{d}=2$. What is d ? I. $I=1$. I is no good. Neither is 2. Neither is $1 \frac{1}{2}$ (Scotty's old formula)。 Neither is $1 \frac{1}{4}$. Class furious.'

I said "There is no answer". Then I went through the usual proof that $\sqrt{2}$ is irrational. They were snowed. First. by the use of abstract symbols, second by the logic of the axgument (proof by contradiction), third by nev ideas involving even and odd: A^{2} is odd if and only if A is odd.

7th Meeting,

This was a highly unsatisfactory meetinge I tried to "patch up" the proof that $\sqrt{2}$ is irrational. First we discussed odd and even. We defined even as $2 n$ (n whole) odd as ($2 m+1$) (m whole). We worked on even x even, odd + odd $=$ even, etc. There was great trouble working out $(2 m \div 1)$ $(2 m+1)=4 m^{2}+4 m+1$.

They were clearly not ready for this.
A long "Ijust don"t understand" question from Chuck provided an interIude and then we went back to on equally unhappy discussion of (again)
$\sqrt{2}$ is not rational. It still doesn't go.
I am very sad (and mad).

8th Mesting.

After the lost meating, I had a good idea...oa deeent way to show thern that $\sqrt{2}$ cannot possibly be rational. (See the section $" \sqrt{2}$ is not rationa " ${ }^{\prime \prime}$.)

They find the case $1 \frac{0 d d}{\text { odd }}$ hard. It involves the fact that (even) ${ }^{2}$ is divisiole by 4 but trice an odd is not. But they definitely seemed to believe the first two cases $\frac{o d d}{e V e n}$, $\frac{e v e n}{o d d}$ (which are easier) and there was no problem about disposing of $\frac{\text { even }}{\text { odd }}$.

At the end, I asked again: How do you explain this?
They said - you can only approximate it. One boy said - You must measure to find out exactly.

What to do????
(Notice how far wway we seem to be from our original problem.)

9th Meeting.

Two boys are pretty excited and pleased. They hove goten the Fythagorean Formia from an older iriend.

After a shori discussion they agree thei it is just the same os the one Richard has brought in earlier. (Richard meanwhile has forgotten hiso)

I asked them if the formula is right. They seem to have no idea,
Then I show theri, that for a square, it agrees with the formula we derived in class.

Someone suggested that since we had so much trouble with squares (i.e. Since $d=\sqrt{2 s^{2}}=-\sqrt{2} s$ usually didn't "come out; cven") we confine $0.2 x$ attention to rectangles which aren ${ }^{9} \mathrm{i}$ squares.

Or. try $s=3$ someone else said. $s=1$ is too hard. I pointed out that we had aiready tried $s=3$. We let it go at that.

The day before, at my request, Mr, Waring had reviewed the number line with the class. So I now sketched a number line on the board and maxked off $\sqrt{2}$ roughiy in place.

There seemed to be no question that $\sqrt{2}$ is legitimately there on the number line. That they took in stride. Also they seerncd convinced (or at least accepted) that $\sqrt{2}$ is not rational. 0.K.

What about representing it as a decimal? Sure. I briefly and sloppily reviewed decimals in terms of marching along the number line: unit sized steps, $1 / 10$ th sized steps, etc. Everyone seemed with it. I wrote 1.41 $-\sqrt{2}<1.42$. Sijill $0 . K_{e}$

And that's where the trouble staxted. I don't remember how but somehow I referred to the fact that the decimal expansion is always infinite.

That . 2734..omeans you've oniy figured it out approximately and that .2734 means $.2734,0000$...(with zexcs forever)

This caused great consternation. Even $1 / 3=.33300$ orhich they "inow".
To them decinal notation is part of what Mr. Varing calls "Main Street mathematics". Decinals stop. And things like . $331 / 3$ are cormon.

I ended the class with a discussion about .999000(nines forever)
I tried to convince them it represents the same number as 1.000 .0 they agree $i t^{*} s<1$, and by subtracting, that the difference between 1 and it is Iess than .0....01, no matter how many 0^{\prime} s you put in. There were 3 responses to this.
a, A blank face
b. 1.00000..0 -.9999... $=0$ but they would go no further.

Peter asserted (c) saying something like, "I can't help it. That's just hov it is."

10 in Meeting

Mr. Waring had a merino on my desk. The ama before he had asked the kids to make a square with area 2. Some tried side $1 \frac{1}{2}$ on $1 \frac{1}{4}$. Only Spotty thought to use what we had been doing.

To begin I wrote on the board
"If $I / 3=.3333 n \ldots$ and if
.3333
$\times 3$
-9999。
and if $1 / 303=1$ then ???"
(Complete the sentence)
I had them copy this down. Someone murmured "Now I see why .9999 Is $I^{\prime \prime}$. I suggested working on this at home, not discussing it in class. (I wearied to get on with area,)

Next, I draw a rectangle on the board

(I am never very accurate, except with circles)
and said, "suppose it's broken into 2 pieces like this"

They said "call them A and B ".
 Chuck salad, "Let's break them with a squiggly line". But I said let's keep it simple at first.

I asked，＂suppose the 2 pieces are in 2 different countries and．we want to figure out the whole area．＂

They：＂Area $A+$ Area $B=$ Area R＂．Also someone observed that since B contains 2 aajecent sides if you have just it alone you can determine the area of R ．

What about finding the area of B alone I asked，and began filling up B by squares（littler and littler）。 They stopped me，saying there was an easier way．David went to the board and broife B up neatily into a few rectangles and triangles．That would do it，they said．

I modified the pieces a bit，to

and timy soula still do it．（Same way．）
Jeff suggented filling it up by \square then cutting up $I \square_{1}$ is to fit into the irregular parts and＂see how much was lised．＂I didn＇t push him on this．（This kind of idea came up in the 5th meeting too．）

Nexi I broke the rectiangle in 3 like this

Again they said：Area $A+$ Area $B+$ Area $C=$ Area Ro （They＇re quite at ease with symbols for＂objects＂：much less bof fir，w， numbers：）

They handled this secup just as before. Nomely, they broke the piecss up into triangles ard rectangles.

Then I took up Chuck's suggestion and made the cuts wistly.

I begen filling A with squareso Jeff suggested his method again to fit pieces at the edges and tried it at the board. Hesald (as in the 5th meeting) that you couldn't expect it to work exactly.

Chuck said "who cares about an inch?" and we wicied this around 8 while. I suggested that it might matter, depending on the problem. Scmoone said that a scientist who kasn ${ }^{2}$ t exact enough might wind up with the wrong resulit.

It was agreed that you could gei as close as you like by Chuck?s method (or Jeff's). But it will never end - they said.

I went bacis now to the case of a triangle,

and asked how they would find itis area. David got up, turned it upside downg and eaid - it?s easier to work with rignt triangles. So he dropped the perpendicular

and said that for a right triangle the area is $\frac{a, b}{2}$, because (he said)

b
is half of

Note: Throughout the discussion there was a running argupent about whether the figures were dram accusefely, Some were quite bothered. Oihers seid, "Who cases? You're supposed to imagine it。" This happened of'cen,

Fine , Then I asked: Just supose I didn't happen to think of the idea that a right triangle is halit a rectangle. Cobld I still do it by filling it (approximately) with squares (or rectangles)。

I think the question annoyed them since they had alreacy showa te how to find tine area and felt that was tiat. Nevertheldss, I began filling in reci;angles.

They agreed this was O,K. in principle, but was really a poor idea, because "it wouldn't come out exactiny"

Perversely, I continued and said that by putting 2 such triengles together this would give us another way to work out the area of the rectangle. Humoring me, they agreed. But why not just do a.b?

Now I drew a rectancle on the board

wrote Area $=a, b$ and reminded them that the reason they had given was "you fill it up by unit squares."

Then we carefully worked out an example

After a bit of trouble a good cossinjn denomination (I2) was found and they worked it out to be 28×39 1/12 $\times 1 / 12$ scares $=1092$ 1/12 $\times 1 / 22$ squares. After a lititie confusion they san that it fook 244 1/12 $\times 1 / 12$ squares to cover a unit square and got i.092 Chuck suggestoa another way. Write $21 / 3=2+1 / 3,3 \frac{1}{4}=3+\frac{1}{40}$ "Make the picture
and do each piece separately"

(In writirg up this report I see now that throughout the mettings Chuck has maintained a very consistent apprach to area. It's elways "filling in the edges".)

114h Meeting.

We reviewed the end of the last meeting and continued that discussion. I now posed - work out the area of

by the same reasoning about unit squares. Ism not sure whether they actually saw (after I tried to explain it) or just "sensed" that it wouldn't come out - since $\sqrt{2}$ was not expressible es a fraction.

Mainly, their reaction was negative,
George: "an exceptiono.s.impossible to have $\sqrt{\text { 2 }}$ come out even"
Scott: "We donit know $\sqrt{2^{T r}}$
Jove: "The formula is right, but it doesn't come out"
David: "If it's \sqrt{c} you quit"
This negative mood was quite overwhelming, Still, I tried to push the point that by approximating $-\sqrt{2}$ as close? y as you like by fractions you covid then approximate the area as closely as you like. And, that the formula was correct.

Farlan: "The area is $3-\sqrt{2^{11}}$
Jobs: "Ask a computer - it couldn't do it either. It would never stop".
At this point I was at a dead end. I left matters as they were and during the remaining class time I did something entirely different. Namely, I proved tine Pythagorean Theorem.

I used the following method. Draw
a

and wowk out the area as, on the one haina $(a+b)^{2}=a^{2}+2 a b+b^{2}$ gnd, on the other hana, $c^{2}+\frac{1}{2} a b+\frac{1}{2} a b+\frac{1}{2} a b+\frac{1}{2} a b=c^{2}+2 a b$. So $c^{2}=a^{2}+b^{2}$.

On course, the problem is "why is the axea of the big square (when computed by formula) equal to the sum of the areas of its parts?" But I disn't dwell any more on it.

12th Meeting-

As for my proof of the Py'thagorean Formula, last time it was as if it had never happened.

I began the proof again and drew a square $a+b$ on a side

We spent most of the time trying lots of different ways of using this piciure, none of which worked at 211.

At the end I again did the proof and worked some examples (rith particular numbers).
$13 \pm \mathrm{h}$ Meeting.

- It was still as if nothing happened. So I stopped and we had a long discussion about - winat would convince them that the Fythogorean Formula was correct? (They could easily follow the proof that I had given several tines - but it was clearly imelevant to themp

Various answers:
Measure.
They would believe it if the teacher told then.
Since they're tired they would say thay believe it, just to end maiters. Roger said that if a friend told him he vould beileve ito

Peter and wo girls believed the reasoning, but Peter said the crucial test for him was whether it worked when you :.easured. (The procf did not convince him that it must work when you measure, only that it was, in scme sense, logically correct reascning.)

We set up a test case. David measured a, b and c for some object in the room. Then we laioniously computed $\mathrm{al}^{2}+\mathrm{b}^{2}$ and were about to embark on $\sqrt{a^{2}+b^{2}}$ (to compare it with the measured c) when Jeff said (brilliantly) "Let's just square c ". So we did, and compared c^{2} with $a^{2}+b^{2}$. They were wide off. The first reaction in class was that David must have made an error in measuring. (Evidently they want the answer to come out.) He did. The string had stretched. He measured, gaining 3-3/4" on \underline{c} and I assigned the comparison for homework.

The class ended with an argument between Jeff and Peter about whether c uniquely determines a and b? Jerf said yes, Peter no. Peter convinced him, by draving varicus right triangles with the same hypotenuse on the board. Jeff then asked whether the area was uniquely determined. He

$$
-4!-
$$

evidently doesn't see the general principle.

14th and 15th Meetings.

We went through another proof of the Pythagorean Theorem. One with no algebra. You show explicitly how to cut up the 2 squares on the sides and rearrange them to form the square on the hypotenuse. This went somewhat better.

I stopped at this point. After a month I held 6 more meetings mainly devoted to lengths and areas of circles (and pne class on similarity).

During one session I had thern wite very briefly what they recalled from the first 15 meetings. (Some responses are atiached.)

I also had them, for an assignment, wori out the length of the diagonal of a unit cube and this went well.

We tried to figure out square root of two. Soncthing was cookoo first we decided that the fraction had to be odal over even. Then after we figured awhile we realized that it had to be even over even. Something was wrong, We spent about two periods trying to figure out what was going on, then we gave up and went on to the next.

PEIER

I don't remember any arguements, but the measurements seemed to prove the reasoning right.

RACHEL

I don't remember very much. Scotty had a formula that didn't always wcrk. (Long side $+\frac{1}{2}$ the short side.) Richard had a formula. Roger had something like Scotty's.

SCOITY O'NEIL

We were trying to find what C was in terms of A and B. In otherwords we were trying to make a diagonal of a square. We had all kinds of formulae. I had one in which one side plus haif the other side equaled the diagoral but that was too big. Another was that one side plus a quarter of the other equaled the diagonal but that was too small. We had several others. In the end we found that the square of the diagonal was two times the side squared. All you had to find out rias wat d was.

Scotty's method long side and half of the short side. Her metiod did not work. Method that worked:

$$
\begin{aligned}
C^{2}=a^{2}+b^{2} . \quad \text { For a square } D^{2} & =2 S^{2} \\
D & =2 . S
\end{aligned}
$$

Some other ones that didn't work

$$
\begin{aligned}
& a+b \\
& \sqrt{a a+b_{0} b} \\
& A+\frac{6}{4} \\
& A+\frac{2}{2} \frac{b^{2}}{2} \\
& A+\frac{1}{2} \frac{b^{2}}{a} \\
& A+\frac{1}{2} \frac{b^{2}}{a}-\frac{7}{8} \frac{64}{a^{3}}+\frac{3}{48} \frac{6^{2}}{a} 5
\end{aligned}
$$

The problems are that we tried to find how long a was compared to c in the triangle. We also tried to find the square root of two. We also tried to find two squares so that they would fit in one big square.

There are several differert ways of looking at numbers mathematically. There are the rationals as ratios of whole numbers, all numbers as points on the number line (or as directed lengths), and decimels. The student has to learn to be at home with all of these and to be able to go back and forth from one representation to another.

A hard problem for the strdent (and one which is probably rarely made explicit) is "which one is numbers?" It's even hard to say in English. I mean, decimals and points on a line certainly axen't the same thing, so "which one of them is numbers"? Several years ago I began a class at the Comonwealth School by saying something like "Let's take, for a Yorking definition, that numbers are the points on a line." One boy objected, say that "numbers may be in one-one correspondence with the points on a line but they certainly axe not the points on a line".

Mathematicians have lots to say about this, but there is no good answer. The idea which is rather sophisticated, is that lots of different things have certain analogons properties, and those properties are what we're studying. Scme properties show up better from one point of view (i.e. in one representation)some in another.

I say 211 this because the kind of geometry I have been concerned with - really measure theory, involves different ways of looking at numbers, As prerequisites for this kind of work I would emphasize

1. Familiarity with the number Iine.
2. Decimals (infinite)

But a warning about decimals. For computation a student has to become familiar with manipulating "finite decimals".

But I'm concerned, hesice? :his, abur aecimais as infinite representations of nubers. This infin'tre aspect shoule je faces up to and Iived with.

Reiber than go furbler, I

* (It could well be part of some more general study of infinite representations and approximations of numbers.)

Algebra kept holdxg us mo bexe are sond thinsi that ther ahovid be familiar with beforchand.

1. Squares and scuape roots (enproximately).

In farbictiar, the formala

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

2. Lineais operations on an equation in one uninom (i.e. mulviplying by a constant or adaing a constant).
3. That odd numbers are thoce of the form $2 n+1$ and even ones those form $2 n_{0}$
4. More generally, using letiers in place of specific numbers. Arithmetic vas no problem, (Of course, when I was in grade 7 we didn't have any al.gebrac)

The one most successful thing I did was to rute up a new presentation of the pronf that $-\overline{2}$ is not antiong. It ${ }^{2}$ s mach longet that the usual proof, much less elegent and, ince, much easici for o chita to grasp. The usual proof goes like this:

If - To were rational we could express it as A / B where A and B are positive integers with no common factor. 'In that case $\left(\frac{A}{B}\right)^{2}=\frac{A^{2}}{B^{2}}=2$ so $A^{2}=2 B^{2}$
so A^{2} is even so A is even. Theretore A^{2} is divisible by 4o But $A^{2}=2 B^{2}$ so B^{2} is divisible by 2 so B is also divisible by 2. Thus both A and B are divisible by 2 contrary to their having no ccrmon faztoi。 This contradiction shows that there do not exist such A and B. This means that $\sqrt{2}$ is not rational.

Here the logic is intricate. One has to follow along line by line checking that each step does follow, without knowing where you're at. And at the end you're hit with a contradiction. The children I worked with found this very hard to follcw. The symbolism, the particular facts about odd and even, and the way of reasoning were all unfamiliar. At best they agreed with each step. But no one really grasped it.

I am enclosing 2 sheets which cutine my presentation. (These were given to the class after our work on $\sqrt{2 .}$)

First we tried vamious cendidates for expressed them in the form 1 and a fraction. To begin with they only tried "ruler numbers" $1.1 / 2,1-1 / 4,1-3 / 8, c \ldots . .$. They say imediately that $1<-\frac{1}{2}<2$ and that squaring preserves the relevant inequality.

I encouraged them to try numbers of different types:
$1 \frac{\text { odd }}{\text { even }}, 1 \frac{\text { ever }}{\text { of I }}, 1 \frac{\text { odd }}{\text { even }}$. It was obvious to them that. $1 \frac{\text { even }}{\text { even }}$ need. never be tried.

We got an approximation 1.41 .261042 and then we got tired. I proposed to eliminate all cases, categorizing them as follows.

1. $1 \frac{\mathrm{odd}}{\mathrm{even}}$
2. $1 \frac{e v e n}{\text { od }}$ Increasing order of difficulty
3. $1 \frac{\text { ord }}{\text { odd }}$
4. I $\frac{\text { even }}{\text { ever (Immediately eliminated) }}$

Ie $I \frac{\text { cid }}{\text { even }}=\frac{\text { even }+ \text { odd }}{\text { even }}=\frac{\text { odd }}{\text { even }}$

$$
\left(\frac{\text { odd }}{\text { even }}\right)^{2}=\frac{\text { odd }^{2}}{\text { even }^{2}}=\frac{\text { odd }}{\text { even }} \neq \text { whole number }
$$

(or else, odd $=$ (whole number) $\cdot($ even $)=$ even)
i.. $I \frac{\text { even }}{\text { odd }}=\frac{\text { odd }+ \text { even }}{\text { odd }}=\frac{\text { odd }}{\text { odd }}$
$\left(\frac{o d d}{(c u d)}\right)^{2}=\frac{o d d^{2}}{o d d^{2}}:=\frac{o d d}{o d d} \neq 2$ (or else odd $=2 . o d d=$ ever. $)$
3. $1 \frac{\text { odd }}{\text { odd }}=\frac{\text { odd }+ \text { od }}{\text { odd }}=\frac{\text { even }}{\text { odd }}$
$\left(\frac{\text { even }}{(\text { od ̃ })}\right)^{2}=\frac{\text { even }^{2}}{\text { odd}^{2}}=\frac{\text { even }}{\text { odd }}$. Now $\frac{\text { even }}{\text { od ad }}$ can $=2$.
For example $\frac{6}{3}=2$. We have to do better. Going back, say instead

so $\frac{e^{2} n^{2}}{\text { odd }}=\frac{\text { t, (whole munisei) }}{\text { odd }} \neq 2$
(or else good $=4$. (thole number) and then
odd $=2 \cdot($ whole numberil $=$ even. $)$

This last case is admiftedly hard. I vould oniy angue that the advantage of this approach is that the first 2 cases are basy and once the student has erosped then he really mows that at least no number of the form $1 \frac{\text { ond }}{\text { even }}$ or $1 \frac{\text { even }}{\text { odd }}$ can be $\sqrt{2 .}$

It might also be worthwhile wo run through the standard proof aftex this one.

That covers all cases. So what is D ???

