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ABSTRACT

This paper, a discussion of the methodology of matrix sampling,

and the empirical and theoretical research on matrix sampling, at-

tempts to demonstrate the f llowing points:

1. Matrix sampling can be viewed as a simple two factor, ran-

dom model analysis of variance design, the matrix sampling formulas

for estimating the mean and variance being simply the point estimate

formulas for estimating components of the underlying linear model.

2. These formulas can be based on the weakest possible set of

assumptions, viz., random and independent sampling of examinees and

items. No assumptions about the statistical nature of the data need

be made.

3. The literature is unclear about what effect the above samp-

ling assumptions have upon matrix sampling in the estimation of the

mean and, especially, the variance.

4. Of the three alternative procedures suggested for dealing

with negative variance estimates in multiple matrix sampling--equa-

ting the negative estimate to zero, Winsorizing the distribution of

estimates, or treating all estimates alike regardless of sign--the

third procedure appears to be most promising. A simulation study is

necessary to determine the shape of the distribution of variance com-

ponent estimates for matrix sampling as well as the relative effi-

ciency of the three methods for handling negative estimates.



INTRODUCTION

Matrix sampling as a psychometric technique for estimating test

score parameters is a relatively new technique. The most concise and

complete discussion of this technique appears in Lord and Novick

(1968). The theory used by Lord to derive the matrix sampling estimate

formulas is, however, highly sophisticated and equally complicated.

If matrix sampling were to become a sufficiently useful technique so

as to warrant its inclusion into a less sophisticated, but more widely

readable textbook on measurement theory (such as Gullikson, 1950;

Horst, 1966; Magnusson, 1966), the Lord presentation would be un-

desirable from the standpoint of its complekity. The present

formulation relies on the direct application of familiar point

estimate procedures in the analysis of variance. Since such procedures

are more widely known and have greater intuitive appeal, the author

feels that they would be more amenable to the purposes of the "average"

measurement text.

The material that follows is organized into four sections. The

first two sections concentrate on describing the technique of matrix

sampling (with examples) and reviewing most of the literature on the

theoretical development and empirical validation of the technique.

Section 3 presents the derivation of formulas for the mean and

variance estimates using a relatively simple analysis of variance

design. In section 4, the assumptions underlying the estimate

formulas are discussed in relation to the use of multiple matrix
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sampling. Emphasis is given to the negative variance estimate problem

and procedures suggested to handle this problem.
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I. THE MATRIX SAMPLING TECHNIQUE

Consider a large high school with, say, 250 students in the

eleventh grade. Suppose th,1 school administration decides for one

reason or another that it is interested in knowing how proficient

(defined in terms of the mean and variance) the eleventh grade is in,

say, arithmetic fundamentals as measured by some test having, say,

30 arithmetic fundamental items.

Obviously, one approach would be to give all 250 students or

examinees (denoted the population of examinees) the arithmetic

test -- that is, each examinee would respond to all 30 problems or

items (denoted the population of items) . This would amount to 7500

(250 x 30) examinee-item responses. Depending upon how many examinees

could take the test at one time and how long it would take to respond

to each of the items, this testing could amount to a fairly long time --

more time, perhaps, than would be feasible given the schedules of the

students, personnel, and school in general.

A second approach, one traditionally used in establishing norms

for standardized tests, would be to randomly select a sample of

examinees, say 125, and give them the entire 30-item test -- this

procedure will be referred to as examinee sampling. Here, the sample

of examinees' scores would be used to estimate what the mean and

variance would have been had all 250 examinees taken the 30-item test.

A third approach, called matrix sampling, follows the procedures
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of the second approach, but with one important exception -- items, as

well as examinees, are randomly sampled. For example, the sample of

125 examinees might each be given a sample of 15 items. Again, the

data would be used to obtain estimates of what the mean and variance

of the arithmetic fundamental scores would have been had the population

of examinees responded to the population of items.

Now clearly, the first procedure, that of collecting complete

data on everybody, would be most desirable. We would not have to

estimate the mean score of all 250 examinees -- we could, in fact,

compute the actual mean. The assumption that is being made here, how-

ever, is that the collection of complete data is not practical for

various reasons, e.g., lack of time, money, personnel, etc.

If complete data are :'ot obtained, then it would seem desirable

that the sampling procedure employed sample as many items and examinees

as possible. Thus, it would appear that examinee sampling is

preferable to matrix sampling since the former sampled half of the

examinee-item responses in the matrix population and the latter

sampled only one quarter of these responses. However, if more than

one matrix sample is strategically extracted from the population

matrix -- a procedure called multiple matrix sampling -- matrix

sampling can be more representative of the population than any other

sampling procedure, given fairly stringent economical requirements.

Figure 1 illustrates this point. The large rectangle represents the

examinee-by-item population matrix of responses for a population of

100 (randomly arranged) examinees and 25 (randomly arranged) items.
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The smaller rectangles, arranged diagonally, represent 5 random

matrix samples having 20 examinees and 5 items each; thus, each

matrix sample contains 100 examinee-item responses. The shaded

rectangle represents one possible examinee sample of 20 examinees

responding to all 25 items -- a total of 500 examinee-item responses.

Clearly, both the combined matrix samples and the single examinee

sample require the same number of examinee-item responses (one fifth

of the matrix population). However, the matrix samples are more

representative of the matrix population of examinee-item responses

than is the examinee sample. Each of the 5 multiple matrix samples

would yield estimates of the mean and variance of the arithmetic

fundamental scores. The 5 mean estimates can be averaged to produce

a final estimate of the mean; the 5 variance estimates can be averaged

to produce a final estimate of the variance.

By way of summary, the fundamental methodological advance of

matrix sampling is this: every examinee (from a finite or conceptually

infinite population of examinees) need not respond to every item (from

a. finite or conceptually infinite population of items) in order to

obtain estimates of the moments of the distribution of the population

of examinees' responses to the population of items. This paper will

be concerned only with the first and second moments, i.e., the mean and

variance of the examinee score distribution. Analogous procedures

can be used to estimate these parameters of the item "score" distribu-

tion.

From this description of the technique, it should be clear that

the more popular name "item sampling" is a misnomer. It is not only
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items that are being sampled, but examinees are being sampled as well.

In other words, it is a two dimensional, examinee-by-item array of

responses that is being sampled from the population examinee-by-item

response array. For this reason, the older term "matrix sampling"

(see review of Lord's initial papers in section 2) is used in this

paper.
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2. REVIEW OF THE LITERATURE

The research available regarding matrix sampling can generally

be divided into two classes: that concerning the empirical validation

of matrix sampling and that dealing with the theoretical development

of matrix sampling. This chapter will briefly review these two

classes of literature in that order.

Most of the empirical research on matrix sampling has consisted

of studies attempting to verify that matrix sampling does what it is

intended to do. These studies have followed one basic paradigm:

1. Obtain the entire matrix population of responses, thus

obtaining the actual values of the population parameters to be

estimated.

2. Generate parameter estimates using both the multiple matrix

sampling and the more traditional examinee sampling methods.

3. Compare the matrix sampling estimates to those of the

examinee samples in terms of closeness to the actual population values.

The first such study (Lord, 1962) employed a 70 item test and

1000 examinees. All 70,000 examinee-item responses were obtained, and

the mean and variance of examinee test scores were calculated. Then

10 matrix samples of 7 items and 100 examinees each were randomly

generated; the separate matrix sample estimates were averaged, yielding

final estimates of the population mean and variance. Also, the 100
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examinees in each sample were scored on all 70 items, creating 10

examinee samples; for each of these samples, mean and variance esti-

mates were obtained in the usual manner. By comparison, the matrix

sampling estimate of the mean was closer (in absolute difference) to

the population mean than were 7 of the 10 examinee sampling estimates;

the matrix sampling estimate of the variance was closer to the

population variance than 5 of the 10 examinee sampling estimates. Lord

points out that one reason why these results are not more strikingly

in favor of matrix sampling is that the item samples were drawn with

replacement -- that is, they were not nonoverlapping as a more effi-

cient design would dictate.

Plumlee (1964) followed the basic paradigm with a 30 item test

and 200 examinees. Although nonoverlapping matrix samples were used,

the matrix sampling variance estimate was closer to the population

value than only 1 of 10 examinee sampling estimates. Matrix sampling

estimated the mean, however, better than all but 2 examinee samples.

Cook and Stufflebeam (1967 or 1967) extended the paradigm for

validating the estimation procedures of matrix sampling by using

variable sized matrix samples on both the item and examinee dimensions.

Their results generally support the findings of the above studies.

Again, the variance was not as well estimated as the mean by matrix

sampling.

Husek and Sirotnik (1967) followed the above paradigm but with

two different kinds of tests: an achievement test designed to maximize

variability among subjects and an objective-meeting test designed to
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minimize variability among subjects. For the achievement test data,

matrix sampling was more efficient without exception than the examinee

samples. For the objective-meeting test, matrix sampling estimated

the mean better than 4 and the variance better than 3 out of 5 examinee

samples. It was concluded that the efficiency of matrix sampling

might be dependent upon the purpose for which the test was intended.

Cahen, et al. (1967) used a different design to investigate

the efficiency of matrix sampling estimates. Matrix sampling data

(not the matrix population) was collected initially, for a 50-item

test on the first day of testing. On the second day, the entire

matrix population of data was obtained for a "nominally" parallel

50 -item test. Comparisons were then made between the matrix sampling

estimates of the mean (variance estimates were not considered) of the

first day with the population mean obtained on the second day.

Discrepencies were discussed in relation to varying testing time

limits and examinee sample sizes.

The theoretical literature will now be considered. The concept

of matrix sampling as a psychometric technique for estimating popula-

tion score parameters from partial data apparently originates with

Fredrick Lord. In a series of five publications, Lord discussed

the technique under several different names and within different but

related contexts.

In 1955, Lord referred to matrix sampling as Typte_12 sampling,

a logical extension of Type 1 sampling (the sampling of examinees)

and Type 2 sampling (the sampling of test items), with primary emphasis
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on resulting standard errors of measurement. Matrix sampling was the

term used by Lord (1959a) wherein the main concern was with the

estimation of various moments of the distribution of examinee true

scores and the relationship of true scores to observed scores. The

term item sampling was introduced by Lord (1959b) referring again to

the same process of matrix sampling, which was discussed as one of

several possible true score models available in mental test theory.

In 1960, Lord showed how the "item sampling" model could be used to

estimate (a) true score distributions on lengthened and shortened

forms of a given test and (b) the relationship between observed scores

on two parallel test forms given data on only one form. Finally, Lord

(1965) discussed the concept of matrix sampling explicitly in terms of

a data gathering procedure. Most recently (1968), this last work has

been revised and incorporated as a comprehensive chapter on "item

sampling" in Lord and Novick's text on mental test theory.

In order to present matrix sampling in a rigorous and generalized

framework, Hooke (1956a, 1956b) developed an algebra involving

symmetric polynomials of the elements in a matrix. The functions are

called generalized symmetric means (gsm's) and have the property of

being inherited on the average, i.e., the expected value of a gsm in

a matrix sample is equal to the same quantity in the matrix population.

Certain linear combinations of gsm's, called bipolykays, turn out to

be estimates of the moments of the matrix population, thus providing

a convenient way to obtain formulas for the estimated examinee score

mean and variance from a matrix sample. Appendix 3 contains a brief
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introduction to Hooke's formulation and how it is used by Lord (1965

or Lord and Novick, 1968) to derive the following formulas for the

estimated mean and variance (see Appendix 1 for notational

definitions):

(1) µ = X for finite and infinite matrix

(2)

(3)

populations

n(N-1
NM(n-1)(m457 A

[m(M-1)s
2

- (M-m)(i(1-7) - s23]

for finite matrix populations

A2 2
ax

( n -1) m -1)
buy - y(1-y) + s

2
for infinite

matrix populations .
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3. ANALYSIS OF VARIANCE FORMULATION OF MATRIX SAMPLING

The main purpose of the present paper is to derive the formulas

(1, 2, and 3) given at the end of the previous chapter using a simple

examinees-by-items, repeated measures analysis of variance design.

Although the use of analysis of variance procedures to obtain first

and second moment estimates has been suggested by Lord and Novick

(1968), the above formulas have never been explicitly derived without

the use of bipolykays. Since Hooke's formulation is relatively

complex and difficult to readily follow, the author feels that the

subsequent presentation provides a convenient and simple exposition

of the actual use of matrix sampling with perhaps a more intuitive

feeling for the above formulas. Also, certain empirical problems

resulting from the use of multiple matrix sampling, not explicitly

clear in Lord's presentations, appear to be more easily discussed

in terms of the present framework.

The two dimensional array in Figure 2 (taken in conjunction with

the notation given in Appendix 1) definesthe quantities which are used

below. This array represents a typical matrix sample of n examinees

and m items drawn independently and at random from corresponding

populations of N examinees and M items. This array can also be

considered as an n x m factorial design with one observation per

cell. That is, an n-level examinee factor (E) is completely

13
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crossed (measured repeatedly) over the m-level item factor (I). The

observation in any given cell represents an examinee-item response

which can be either binary (0 or 1) or nonbinary (1, 2, 3, etc.).

Furthermore, E and I are random factors, i.e., the levels

(examinees) of factor E as well as those (items) of factor I are

randomly selected from corresponding populations of levels. (N and

M, the corresponding population sizes, can be either finite or

infinite, depending upon the model viewed most reasonable by the

researcher.)

In order to deal with the various sources of variability in

this design, the following linear and additive model is traditionally

used (Winer, 1962):

(10

where

X
ij

= + X. +
j

+ E .

1 ij

= general level effect equivalent to the matrix

population mean

X. = (A
i

- 4) = examinee i effect in the popula-

tion of examinees

- = item j effect in the population

of items

= (x.. - X. - 7r + 4) = residual effect assumedeij
ij 1

to be due only to error of measurement.
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In partitioning the total variability of the X. (s
2

intonto sources
x

corresponding to the components in (Ii) and deriving their expected

values (see Table 1), the following assumptions are made:

i) Xi, irj, and the Eij are independent, random variables

with means of zero and variances of u2 ,

2
uE
_2

.

*
(Note

homogeneity of error variances.)

ii) In view of the additivity of the model (no interaction effect),

homogeneity of covariance is assumed among the population of

error-free items. (This is equivalent to assuming that the

item intercorrelation or covariance matrix has rank 1 -- with

the exception of those populations of items where the inter-

correlations consist only of both perfect positive (+1) and

perfect negative (-1) correlations.)

Our main concern is to obtain estimates of 4 and off, denoted

off,a and
0.X

from the matrix sample data. (The estimate of item mean

2
variance can be obtained using analogous procedures.) This

can be done as usual, selecting the appropriate VMS] and solving

for the desired variance component using the appropriate MS estimates.

For the estimate of pl the expected value of both sides of (4)

is taken as follows:

EDC .] = E[P. + X. + Tr +Xi
1 j ij

=p+0+0+0 (by assumptions in i

It should be emphasized that the assumption that these effects are

normally distributed is not necessary in order to derive component

of variance estimates.
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Hence,

that is, the mean of the matrix sample is an unbiased estimate of the

mean in the matrix population, which is the same as formula (1)

above, given by Lord.

To estimate cry, the SS in Table 1 are first converted into the

more familiar matrix sample statistics as follows:

(6) SSE = nms
2

where s
2

is the sample variance of examinee

mean scores

(7) SS
I

= nms
2

where s
2

is the sample variance of item mean

scores

2
(8) SS

R
= nms

j
nms

2
where s

2
is the average item

variance in the sample.

(Proofs of these equivalencies are found in Appendix 2, Proofs 1, 2,

and 3.) We can now solve for the desired component of variance

A2
estimate ax. From Table 1 it is evident that

(9)
2

E[MS
E

] - (1 - ) ENS
R

u -

Using corresponding MS as estimates, we have

A2
SS
E

(1 - M) SS
R

(10) aX
m(n - 1) 17571)(i - 1T
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1.1

Making substitutions using the above equivalencies (6 and 8) for the

SS, we have

(11) a-
A)

._

X

IMO

nms2 (

m(n-1)

nm(m-l)s:

1 - ) (rmis-i2 - may)
2

:MIn-1 (m-1)

nms
2

+ nms
2

m(n-1)(m-1)

um
2 2 nm2 2+ s -

M
s
y

nM(m-1) s: - hej + nMs
2

+ nms - nms
2

i Y
2

M(n-1)(m-1)

:Is
2
[M(m-1) + M - m] - n-s- (M-m)

M

WM-1)22 (M-m)
-.2

M(n-1)(m-1)
]

2At this point it must be noted that the use of sigma in a
X

(and 4)

is valid only if this population variance is defined as follows:

N

(12) a = - 1) .

i
Since we are interested in the quantity more usually defined as

N 2,
Ei Xi /N, the estimate given by (11) must be corrected by a multi-

plicative factor of (N - 1)/N. Making this correction, and allowing

the use of the same sigma, (11) becomes

A2

m)s

nN-1) 2(13)
(TX NM(n-(1)(m-1) ilm(41-1)8; M (14-]

19



This formula will hold in general, whether or not the items are

binary. When the items are binary, we note the following relation-

ship:

(14) ;2 = 7(1 - - s2 . (See Appendix 2, Proof 4.)

Substituting (14) into (13) we obtain

(15)
n(N-1)

[ (M-1)s
2

- (M-m)(17(1-7) - 8
2
)]a -

X NM(n-1)(m-1)

which is exactly the same as formula (2) given above by Lord for

the case in which both examinee and item populations are finite.

For the case in which both N and M are infinite, we can

either (a) take the limit of (15) as both N and M approach

infinity or (b) note that the VMS] of Table 1 take the following

forms and perform a derivation analogous to that from (9) to (15)

above:

2 2
a
e

+ ma
X

E[MSI] = a: + na:

E[My = a: .

In general, then, for infinite populations we have

^2 2 2
LT

(16) (ms -s ) .X (n-1)(m- Y

20



If the items are dichotomous, then

A2
(17) ax - 717.77i71 7 [may - y(1-y) + s

A
] .

This is exactly the same as Lord's formula (formula (3) above) for

the infinite case.

A2
Formulas for ar in the finite and infinite case are symmetric

to those for a
2

.

It can be easily argued that the foregoing model was unnecessarily

restrictive in terms of the assumptions made. In the opening para-

graph of his chapter on "item sampling" (Lord and Novick, 1968),

Lord states that

This chapter deals with the case where
the ... test items are a random sample from
the population of items. This item-sampling
model makes no other assumptions about the
nature of the test. (p. 234)

He later states that the examinees are a random sample from a

population of examinees and makes the further assumption that the

... sample of items and the sample of
examinees are drawn independently of each

other. (p. 236)

In discussing the problems of sOtimation using this kind of model,

Lord states that (author's symbols substituted for Lord's)

In many of the usual, simple types
of estimation problem, a population is

21



completely specified by a convenient

univariate frequency distribution. Many

powerful estimation methods are available

for such problems. Similarly a matrix

population could be specified by an M-

variate or an N-variate frequency distri-

bution, provided that an appropriate and

convenient mathematical form could be

found... .

In the absence of an adequate para-

metric form for a frequency distribution,

how are we to describe a matrix population

without using a huge number of parameters?

(pp. 237-238)

Lord goes on to answer this question with the presentation of Hooke's

formulation of matrix sampling, which rests in fact only on the

assumption of independent and random sampling of examinees and items.

It is well known that point estimates of the variance components

for the model given by (4) do not require any assumption regarding

the shape of the distributions (see footnote, p. 17). In fact, this

parametric model with several modifications can be used with the

same, weak assumptions of the Hooke approach. This can best be

seen by gradually relaxing the restrictions put on (4) for deriving

the expected mean squares.

One severe restriction in the model was the assumption of

additivity, viz., the lack of provision for an interaction effect

apart from error. Eliminating this assumption, the model given by

(1.) can be slightly modified to produce the following linear and

nonadditive model:

(18) X
ij

= µ + X + 7 + X7
i3

+ e
ij
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where

X7
ij

= an additional independently distributed random

variable representing the interaction effect

between examinee i and item j in the

matrix population.

We now possess a model where the form of the error-free item co-

variance matrix among items in the population is arbitrary, i.e.,

there is no necessity for assuming the matrix to be of rank 1.

But with the addition of an interaction effect, the unrealistic

assumption of its independence of examinee and item effects is made.

Furthermore, the restriction of homogeneity of error variance is

still present. Cornfield and Tukey (1956) have demonstrated that

expected values of mean squares can be derived using what is referred

to as a "pigeonhole" model. Specifically, for the two-way class-

ification the authors describe the model as follows (corresponding

symbols of the present paper are substituted for those of Cornfield

and Tukey):

Let there be NM pigeonholes arranged

in N rows and M columns. Let there be at

least R elements in the population in each

pigeonhole. Let a sample of n rows be drawn

from the N potential rows. Let a sample of

m columns be drawn from the M potential

columns. The nm intersections of a selected

row with a selected column specify the nm

pigeonholes which become the cells of the actual

experiment. In each of these nm cells, let a

sample of r elements be drawn. The values of

the nmr elements thus obtained are the numbers

which are to be analyzed. Assume that all the
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samplings -- of rows, of columns, and within
pigeonholes -- are at random and independent
of one another. This is the only assumption
we shall make. Note that it is an assumption
about the set-up of the experiment and not
about the behavior of those things on which
the experiment is performed. (p. 909)

They go on to point out the generality of their model in that (a) no

constant variance is assumed for the cells and (b) no assumption is

made about interaction, i.e., the interaction effects are dependent

upon the particular rows and columns that happen to be sampled.

Now consider Table 2 which presents the most general form of

the E[MS] for this model. When r = 1 in this pigeonhole model

(see Table 3), we have the matrix sampling situation, but based only

on the above assumptions.

At this point, a subtle and important conceptual problem arises.

How are we to treat the MN "populations" of replications of size

R, given that r will always equal one? Three distinct choices

are available: (a) R = op, (b) R finite and greater than r, or

(c) R finite and R = r = 1. We must also be concerned with our

treatment of M (as finite or infinite) since it enters into the

VMSE]. From Table 4 it is evident that (a) when M is finite, R

2
must be finite and equal to one in order that be computed exactly

and (b) when M is infinite, the exact estimate of a-2 can always

be computed regardless of the value of R. (In Table 4 both M and

N are treated alike to illustrate the analogy for estimating (2 O

In any case, it is clear that the explicit use of analysis of

variance estimation procedures can be used to derive formulas

24.



Source

E

I

EI

Error

Source

E

I

EI

TABLE 2

General Form of the E[MS]
for the Two-Factor Design

(1

(1

(1

(1

E[MS1

2
- r/R)a2 + r (1 - m/M)4 + rmax

- r/R)a2 + r(1 - niN)4. + rna:

- r/R)a2 + raxr

- r/R)a2

TABLE 3

The E[MS] of Table 2 when r = 1

E [MS I

(1 - 1/R)a: + (1 - m/M)47 + maZ

(1 - 1/R)a: + -
,2

no
,2

2
- 1/R)a: + a

X
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TABLE 1.

E[MS] of Table 3 for Indicated Values of M and R

(and N) finite

Source VMS]

R infinite

E QE + (1 - mim)axv + max

I

2 2

a
s
+ (1 - n/N)4. + na;

2 2
EI a

e
+ aXy

R finite. R > r

E (1 - 1/R)a: + (1 - m/M)axv + ma
2

I (1 - 1/R)a: + (1 - n/N)47. + na;

EI (1 - 1/R)a: + a27

R finite; R = 1

E (1 - m/M)47 + m4t.

I (1 - 0)47 + nom:

EI a
2

XY
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Source

E

TABLE 4 (continued)

(and N) infinite

E[MS]

2 2 2
+ + ma

XcrE aXT

I 2 2 2
a
E
+ a

Xr
+ nar

EI a
2

+ a
2

E Xr

R finite; R > r

E (1 - 1/R)a: + a + mad
X
2

I (1 - 1/R)a: + a,
2

+ na2
Ar r

EI (1 - 1 /R)c2
a2

XT

R finite; R =

E

I

EI

27

aX2

2
+ ma

Xr

2 2
a, + nu7XT

2
cr



equivalent to those of Lord without making any stronger assumptions.

Although the derivations for the variance estimate in this section

were based on the strong model given by (4), exactly the same algebra

would be involved for any of the models in Table 4. However, the

usual procedure of taking the expected value of both sides of (18)

to obtain an estimate of p cannot be done in view of the weak as-

sumptions made (e.g., Xxii was not assumed to be statistically

independent of the remaining effects). It can easily be shown,

A
however, that 4 = X under the sampling assumptions made (see

Appendix 2, Proof 6).



4. DISCUSSION

This section will attempt to coordinate the theoretical

development of matrix sampling given in the previous chapter

with the actual use of, and problems with, the technique

when applied to psychometric data. Specifically, the discussion will

center around the use of multiple matrix sampling, the possibility of

obtaining negative variance estimates being given particular attention.

Multiple matrix sampling (briefly discussed in the first section)

is the process of randomly drawing more than one matrix sample from

a matrix population, computing the desired parameter estimate from

each sample, and combining these estimates to produce one final,

more stable estimate. There are at least three ways in which sampling

from the item population can be systematically accomplished: (a)

sampling with replacement, i.e., any given item sample can be drawn

more than once, (b) sampling with "restricted replacement," i.e.,

any particular item sample cannot be drawn more than once but any

given item can appear in more than one item sample, or (c) sampling

without replacement, i.e., no item or item sample can be drawn more

than once. Since the same remarks apply to the sampling of examinees,

there is a total of nine different ways to draw matrix samples from

the matrix population.

Unfortunately, Lord's discussion of multiple matrix sampling

is rather vague from both theoretical and methodological standpoints.
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In fact, the only discussion of multiple matrix sampling approaching

some degree of rigor deals only with estimating the population mean

(Lord and Novick, 1968). The author can find no such discussion

regarding the estimation of the population variance; yet the procedures

of multiple matrix sampling have been employed for both estimates,

starting with Lord (1962). To be more specific, in section 11.12

(Lord and Novick, 1968) Lord offers (with no formal proof) the

following statements (corresponding symbols of the present paper

have been used in place of Lord's):

The methods of the preceding section
[estimating a mean from a single matrix
sample ] do not make full use of the ad-
vantages of item sampling. Under a more
efficient procedure to be outlined in this
section, the examiner administers different
samples of binary items to different sub-
groups of examinees. This procedure draws

on a mathematical formulation that has
arisen from certain unpublished suggestions
of Dr. William W. Turnbull.

Suppose K nonoverlapping random
samples of m binary items each are drawn
(without replacement) from an M-item test
and treated as separate subtests; it is not

required that K = M/m or K = N/n. A

different subtest is administered to each
of K nonoverlapping random samples of n

examinees drawn from a population of N
examinees. If Itic is the mean relative
score of subgroup k on an m-item test,

then the average )(it is an unbiased
estimater of po the mean score of the
N examinees on the M-item test. (p. 255)

No parallel theorem is stated for variance estimates, yet the

^2
above procedure has been used for the a

X
as well as the Xk of

the matrix samples (see Chapter 2 starting with Lord, 1962). Consider,



however, the following statements in section 11.14 (Lord and Novick,

2
1968) regarding the estimation of

X
for finite populations:

As we saw in section 11.12, it is much
better to administer many different m-item
subtests than just one. If this is done, it
is again important ... that every item appear
an equal number of times; that all ['possible]
pairs of items appear in the subtestsu.if
possible; and that each pair be administered
to the same number of examinees. When all
[possible] pairs can not be used, good balanced
designs may sometimes be found with the help of
tables of balanced incomplete blocks.... (p. 259)

(Knapp (in press) gives a detailed discussion of the application

of balanced incomplete block designs to the estimation of the mean

and variance.) Clearly, if these above criteria are satisfied, then

it is impossible to have nonoverlapping samples of items.

The above conflicting points of view and practice must further

be reconciled with the following statements (Lord, 1962 -- see

discussion of this paper in Chapter 2):

In retrospect, the foregoing item-
sampling procedure is seen to have been
unnecessarily inefficient. Items were
sampled with replacement after each sampling
for the reason that such sampling is effec-
tively the same as sampling from an infinite
pool of items, and the available formulas in
Lord (1960) for utilizing the resulting data
are discussed in terms of sampling from an
infinite pool. It would have been better to
sample without replacement, thus dividing the
70 items at random into 10 overlapping 7-item
tests. Hooke's (1956a) basic derivations
show that the same formulas would be valid
for such sampling without replacement.
(pp. 261-262)
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The author can find no discussion of multiple matrix sampling

in Hooke (1256a or b). Perhaps Lord was simply referring to the

fact that theory was available for sampling a matrix sample when

the examinee and/or item population is finite. As seen in section 3,

the Cornfield and Tukey (1956) approach supplies the same finite

sampling theory. In both presentations, the process of selecting

more than one matrix sample is discussed only in the context of

defining the "inherited on the average" property. For example,

consider the following definition by Hooke (1956a):

Let x
I

(I = 1,2,...,N) be any pop-

ulation of N numbers, and let xi (i = 1,

2,...,n) represent elements of a sample of

size n from this population. Let

f(n; xl,...,xn) be a polynomial which is

symmetric in the x
i

and has coefficients

which are functions of n. Such a function

extends obviously to a polynomial f(N;

x
1 N

)
'

the coresponding symmetric

polynomial in the x1, with the coefficients

changed only by replacing n by N. Writing

"ave" for the operation of averaging over all

(N)
distinct samples of size n from the

population, we say that f(n; xl,...,xn) is

'inherited on the average' if

ave f(n; xl,...,xn) = f(N; xi, ...,xN) .

(P. 55)

Clearly, this type of sampling is the second type referred to above

as sampling with restricted replacement. It would seem appropriate

to stick to this type of sampling if estimates from multiple samples
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were to remain unbiased. In this case, nonoverlapping sampling

(the sampling of matrices without replacement) would be an invalid

restriction.

This point can perhaps be better illustrated from the analysis

of variance view point and the Cornfield and Tukey (1956) approach.

In order to derive expected values of mean squares, the only

assumptions made were that rows and columns were randomly and

independently sampled from their corresponding populations. In

multiple nonoverlapping matrix samples, only the first sample

satisfies these assumptions. The fact that these rows and columns

(examinees and items) cannot be included in subsequent matrix samples

imposes a dependence and non-randomness on the rows and columns

sampled in subsequent matrix samples.

The author does not know what effect the restriction of non-

overlapping matrix samples has on the resulting parameter estimates.

Although the kth (k > 1) matrix sample will not strictly conform

to the above sampling assumptions, it might be argued intuitively

that the items and examinees of this sample are unbiased in the sense

that they would have had the same chance of being selected at the

outset as those of any other sample. The parameter estimates might

then be considered in the same sense as being unbiased.

The reason for heavy concentration on the theory thus far lies

in the following fact: It is possible that the variance estimate

generated from the matrix sampling formula is negative. Recognition

of the fact that variance component estimates can be negative is not
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eN4

unique to the present paper. Thompson (1962) in regard to variance

component estimates makes the following statements:

The traditional estimators are
obtained ... by equating the mean-squares
to their expectations and .solving. Clearly
the traditional estimate may be negative;
should this occur, we do not believe that any
such statistical analysis would become useful
until it is decided what to do with the nega-
tive estimate. This, then, is an example of
what we mean by 'the problem of negative esti-
mates of variance components'. Two possible
explanations of a negative estimate present
themselves: (1) the assumed model may be
incorrect and (2) statistical noise may have
obscured the underlying physical situation.
(p. 274)

Husek and Sirotnik (1968) actually obtained a negative variance

estimate while conducting a study (see section 2) involving multiple

matrix sampling from an already known matrix population of data.

By setting Lord's formula less than zero and simplifying the result-

ing inequality, they showed that a negative variance estimate would

be obtained whenever

or, alternatively, whenever

2 2 P
ms < s - s-

y x p

a < 0

where a is Cronbach's (1951) generalized coefficient of internal

consistency. (If the items are dichotomous, a = K - R 20, the

Kuder-Richardson (1937) coefficient.)
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In the present framework, this result is relatively trivial.

Hoyt (1943) showed that the repeated measures analysis of variance

design could be used as an alternative approach to obtaining a

measure of internal consistency equivalent to that of K R 20.

(See Appendix 2, Proof 5 for a derivation of this fact for the more

general case of Cronbach's coefficient alpha.) In the most general

form, Hoyt's result can be written as follows:

(19) a (msE mSIE)/mSE

11.y substituting the VMS] for the MS In this equation, it can

easily be seen that the ratio is a ratio of true score variance to

the total true score plus error variance. Although the above formula

was originally derived using the strong analysis of variance model

first presented in section 3, it is just as valid using the weakest

model, viz., the Cornfield and Tukey (1956) pigeon-hole approach.

This point was made by Cronbach, Rajaratnam, and Gleser (1963) who

attempted to free reliability theory from the concept of "parallel"

measures. They redefined reliability in terms of generalizing from

a sample of observations to a universe (or population) of observations.

They did not wish to be restrained by any statistical characteristics

of the item (or examinee) population (e.g., unit rank, no systematic

examinee - by - item interaction, equality of error variance); hence,

the Cornfield and Tukey approach provided the needed theoretical

framework.

Now, returning to (19), it is clear that whenever MSE
< MSIE,

a < 0. If we substitute the equivalence relations given in section 3
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for the sums of squares into this inequality, we .obtain

(20)

nms nms-2, - nms
22

n--1
X <

- (n-1)(m-1T

(m-1)s < 32 -
Y ay

2 2
msy

< s
2

s
x p

which is exactly the relationship found by HUsek and Sirotnik (1968).

A2
The relationship between ax and a can be seen directly by first

noting that

(21)
A2

=MI

and then combining (19) and (21) yielding

(22)
A2

MSE
a = a

A2
The point, again, is this: Since a

X
(not a ) can never be

A2
negative; when ax < 0, then either (a) the theoretical assumptions

underlying the derivation of the E[MS] have been violated or (b)

we have been victimized by extreme sampling fluctuation. With

respect to the first explanation, the literature is not clear on

what the effect (if any) is on variance component estimates when

matrices are sampled without replacement. Lord states (Lord and

Novick, 1968) that the estimates of the population mean from such
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samples are unbiased. He implies that the same holds true for esti-

mates of the population variance (Lord, 1962).

Suppose the second explanation is accepted. That is, suppose

a researcher is using multiple matrix sampling to establish norms'

on some test and he obtains a negative variance estimate from one

or more matrix samples. The researcher is in the position of having

to deal with these negative ,:-41ues in some kind of averaging process

to arrive at a final estimate. Consider the following three possible

approaches, presented in decreasing order in terms of mathematical

justification and increasing order (in the opinion of the author)

in terms of reasonability.

It is common practice to regard negative variance component

estimates as, for all practical purposes, zero. Mathematical

justification for this practice stems from the fact that the

maximum likelihood estimate of ax is zero when MSIE > MSE under

the restriction of positive component estimates (Thompson, 1962).

But consider the following remarks by Scheffe (1959):

It may happen with positive probability

that the estimate of a variance component is

negative ... Since the estimated parameter

is nonnegative, the estimate is sometimes

modified by redefining it to be zero when it

is negative ... We prefer not to use such

modified estimates: their distribution

theory is more complicated ... and the

modified estimates are biased. (p. 229)

Sometimes when the researcher is willing to break away from his

search for the mathematically rigorous solution, he can stumble upon
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more non-rigorous data analytic methods which might correspond more

closely to the behavior of the real world. (Such correspondence

would, of course, have to be validated empirically.) As Tukey (1962)

puts it in his discussion of the future of data analysis,

We should seek out unfamiliar summaries
of observational material, and establish their
useful properties.... Many seem to find it
essential to begin with a probability model
containing a. parameter, and then to ask for a
good estimate for this parameter (too often,
unfortunately, for one that is optimum).
Many have forgotten that data analysis can,
sometimes quite appropriately, precede prob-
ability models, that progress can come from
asking what a specified indicator (= a
specified function of the data) may reason-
ably be regarded as estimating. Escape from
this constraint can do much to promote
novelty. (p. 5)

Lindquist (1956) states that variance component estimates are

approximately normally distributed when the degrees of freedom

involved are very large. Clearly, in matrix sampling n and nm

are apt to be fairly small. The author knows of no research

regarding the small sampling distribution of variance component

estimates. The negative variance estimates in matrix sampling data,

however, suggest that at least one end of this distribution is

rather long-tailed. Making the assumption that this distribution is

approximately symmetrical, the other end can be regarded as long-

tailed, produced by extremely high component estimates. In other

words, in a distribution of variance component estimates obtained

from small samples, any negative estimates (and an equal number
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of largest positive estimates) might be regarded as "outliers" and

not representative of the population parameter.

A simple and intuitive procedure for handling these outliers is

to "trim" or "Winsorize" (Tukey, 1962) the distribution of estimates

before averaging to produce the final estimate. A trimmed distribution

is one where an equal number of lowest'llnd highest outliers are

eliminated from the distribution. In a Winsorized distribution,

these outliers are forced equal to the remaining lowest and highest

observations respectively.

Specifically, suppose k ordered variance estimates e
i

have

been obtained by multiple matrix sampling and t of these are

negative. Then the mean of the Winsorized distribution of these

estimates would be given as follows:

k-t

(Ik
t
e(t+1)

ei + te(k_t) .

i=t +1

Just what the shape of the sampling distribution of variance

component estimates is must be settled empirically, starting with

computer simulated data, and corresponding distributions of mean

variance component estimates using both maximum likelihood and

Winsorizing approaches. Depending upon the shape of obtained

distributions of variance component estimates for this type of small

sampling, various non-symmetrical Winsorizing approaches (Dixon,

1960) might also be compared.

The third approach to be suggested will be prefaced by the
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following discussion regarding confidence intervals far variance

component estimates by Scheffe (1959):

Some discussion is required because
one or both end points of the interval may
be negative while the true value of [the
parameter' is of course nonnegative...

It would be mathematically correct to
modify the interval so that if the left end
point is negative it is replaced by zero
and if the right end point is negative it
is also replaced by zero...

Although there is nothing in the formal
theory of confidence intervals to justify it,
most users of confidence intervals have a more
or less conscious feeling that the length of
a. two-sided confidence interval is a measure
of the error of some point estimate of the
parameter...

In light of the above discussion we see
that if the interval is considerably shorten-
ed by deleting the part, if any, to the left
of the origin, a misleading impression of the
accuracy of the estimation may result. If the

interval is completely to the left of the
origin one might consider translating it until
it just includes the origin, to meet the above
objection to shortening it. However, one
might again feel on nonmathematical and in-
tuitive grounds that an interval estimate
like that from -5 to -3 is stronger
evidence that the true value of a nonnegative
parameter is zero than that from -2 to 0.

(pp. 229-231)

Extrapolating from Scheffe's argument to the situation in multiple

matrix sampling, one might intuitively feel that the magnitude of

variance component estimates carries with it important information --

regardless of whether it is positive or negative. Thus, it would

seem reasonable to average these estimates without any modifications

whatsoever.



Table 5 presents the ten matrix sample estimates obtained in the

Husek and Sirotnik (1968) study (see section 2). Averages obtained

under the three pos'Sible ways of handling the negative estimate are

also presented. it can be seen that equating the negative estimate

to zero or symmetrical Winsorizing produce nearly the same result.

Averaging in the negative estimate, however, yields a final estimate

which is substantially closer to the actual population value. Again,

a simulation study is needed to evaluate the relative merits of the

three proposed procedures.



I

4)

TABLE 5

A Comparison of Three Alternative
Procedures for Handling Negative Variance

Component Estimates*
Data taken from Husek and Sirotnik (1968)

Equating
Negative

Matrix Obtained Estimate Symmetrical
Sample Estimates To Zero Winsorizing

1

2

3

4

5

6

7

8

9

lo

Average

.00645 .00645 .00583

.00 583 .00583 .00583

.00479 .00479 .00479

.00412 .00412 .00412

.00384 .00384 .00384

.00276 .00276 .00276

.00191 .00191 .00191

.00179 .00179 .00179

.00074 .00074 .00074

-.00181 0 .00074

.00304 .00322 .00323

(Population variance = .00258)

*Variance estimates are of examinee mean scores.

42



Cahen, L. S., Romberg, T. A.
achievement scores for
Paper presented at the

REFERENCES

, & Zwirner, W. The estimate of mean
schools by the item-sampling technique.
meeting of the Psychometric Society, 1967.

Cook, D. L., & Stufflebeam, D. L. Estimating test norms from varia-
ble size item and examinee samples. Journal of Educational Mea-
surement, 1967, 4, 27-33. (a)

Cook. D. L., & Stufflebeam, D. L. Estimating test norms from varia-
ble size item and examinee samples. Educational and Psychological
Measurement, 1967, 27, 601-610. (b)

Cornfield, J., & Tukey, J. W. Average values of mean squares in fac-
torials. Annals of Mathematical Statistics, 1956, 4, 907-949.

Cronbach, L. J. Coefficient alpha and the internal structure of
tests. Psychometrika, 1951, 16, 297-334.

Cronbach, L. J., Rajaratnam, N.,
izability: A liberation of
of Statistical Psychology,

& Gleser, G. C. Theory of general-
reliability theory. British Journal
1963, 16, 137-163.

Dixon, W. J. Simplified estimation from censored normal samples.
Annals of Mathematical Statistics, 1960, 31, 385-391.

Gulliksen, H. Theory of mental tests. New York: Wiley, 1950.

Hooke, R. Symmetric functions of a two-way array. Annals of Mathe-
matical Statistics, 1956, 27, 55-79. (a)

Hooke, R. Some applications of bipolykays to the estimation of vari-
ance components and their moments. Annals of Mathematical Sta-
tistics, 1956, 27, 80-98. (b)

Horst, P. Psychological measurement and prediction. Belmont, Calif.:
Wadsworth, 1966.

Hoyt, C. Test reliability estimated by analysis of variance. Psycho-
metrika, 1941, 6, 153-160.

Husek, T. R., & Sirotnik, K. Matrix sampling in educational research:
An empirical investigation. Paper presented at the 1968 conven-
tion of the American Educational Research Association.

43



Knapp, T. R. An application of balanced incomplete block designs to

the estimation of test norms. Educational and PsychologicalNea-

surement. in press.

Lindquist, E. F. Design and !minis of experiments in psychology
and education. Boston: Houghton Mifflin, 1956.

Lord, F. M. Sampling fluctuations resulting from the sampling of

test items. Psychometrika, 1955, 20, 1-22.

Lord, F. M. Statistical inferences about true scores. Psychometrika,

1959, 24, 1-17. (a)

Lord, F.
24,

Lord, F.
and

M. An approach to mental test theory. Psychometrika, 1959,

283-302. CO-

M. Use of true-score theory to predict moments univariate
bivariate observed-score distributions. Psychometrika,

1960, 25, 325-342.

Lord, F. M. Estimating norms by item sampling. Educational and Psy-

chological Measurement, 1962, 22, 259-267.

Lord, F. M. Item sampling in test theory and research design. Prince-

ton, N. J.: Educational Testing Service, Rb-65-22, 1965.

Lord, F. M., CI Novick, M. R. Statistical theories of mental test scores.

Reading, Mass.: Addison-Wesley, 1968.

Magnusson, D. Test theory. Reading: Addison-Wesley, 1967.

Plumlee, L. B.

data--an
cational

Estimating means and standard deviations from partial
empirical check on Lord's item sampling technique. Edu-

and Psychological Measurement, 1964, 24, 623-630.

Scheffe, H. The analysis of variance. New York: John Wiley & Sons,

1959.

Thompson, W. A. The problem of negative estimates of variance compo-

nents. Annals of Mathematical Statistics, 1962, 33, 273-289.

Tukey, J. W. The future of data analysis. Annals of Mathematical

Statistics, 1962, 33, 1-67.

Winer, B. J. Statistical principles in experimental design. New York:

McGraw-Hill, 1962.

44



APPENDIX 1

Notation

a Cronbach's generalized coefficient of internal
consistency among items.

E
i j

Error effect in the examinee-by-item analysis of
variance design (see p. 15).

El ] . . Expected value operator.

k . Subscript denoting the k
th

matrix sample in multiple
matrix sampling.

K . Number of multiple matrix samples.

K-R 20 .

X7
ij

.

r.1%

Kuder-Richardson coefficient of internal consistency
among dichotomous items.

Examinee effect in the examinee-by-item analysis of
variance design (see p. 15 ).

Interaction effect in the examinee-by-item analysis of
variance design (see p. 23 ).

Mean and estimated mean of the matrix population.

m, M Sample and population sizes of the items.

n, N . . . Sample and population sizes of the examinees.

Item effect in the examinee-by-item analysis of

PJ
.,1)

r, R .

2

variance design (see p. 15 ).

. . Sample item j mean (I. .) and mean of the pj ..

. . Sample and population sizes of the cells in a 2-factor
analysis of variance design.

Variance and estimated

Variance and estimated

variance of the X..

variance of the 7..

* This appendix is to be used in conjunction with Figure d.



I
gr.

a
2

Xr
Variance of the Mr.

a
2 Variance of the E

ij
.

8
2

. . . Variance of the yi.
Y

s
2

. . . Variance of the P
P

.,i

2 2
S p S . . Variance of item j (computed over examinees) and
i i average of the , s2.

xij, X . . . The response of examinee i to item j and the mean

of the X
ij

.

yix-i Sample examinee mean (X1.) and the mean of the yi.



Proof 1

= mn

APPENDIX 2

Proofs

- )
2

as defined in Table 1

-
)2/n

= mas
2

by definition of a variance

nm (P

702
as defined in Table 1

TO2im

= nms
2

by definition of a variance

(X..
13

- yi - pj + )2 as defined in Table 1





and

-2
(X - p ) (y -

Substituting,

SS
R

= nms
j

2 2
+ nms - alms

2

Sy'_

= nmsj - rims

Proof 4

S =

= -2

= -2

= -2

=

(xii - pi)

(Yi T)(mYi a)

= -2nms
2

.

pp-p.Vn for binary items

Pi/ n -
J
n
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But

s2

',241P 3'

or, rearranging terms,

p
2
/n = s + A-

2 =2

SOstituting,

= - 3) s
2

or - 7) - s2

Proof 5

2 inms nms
Ar

MS
E

-

nm S

MS
R _ n:

_ai .
(n - 1)(m - 11

MS
E nm S2

n - 1

(m - 1s2 - ;
AY

2 + s2
/

(m - 1)s2

2 2
ms - S.

J

(m - 1)s2
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2 2-2mew m s
j (where s

2
= variance of examinee-

_ mY
(m - 1)s2 total scores)

my

2
m - 1

1
m

s2,
SLY

m ( 1
m _ 1 2.

s
my

= Cronbach's coefficient alpha

Proof 6

To show that a = X, it must be shown that the mean (7) of

the sampling distribution of X (generated under the sampling

assumptions of the model) is equal to p.

The sampling distribution is made up of the means of
(N )(M)
n m

possible n X m matrix samples from the N x M matrix population.

Each Xi . will appear in
n

(N-1
- 111-1

matrix samples .

For any given matrix sample,

1X=----(sumX..in that sample) .

nm ij

Over all possible matrix samples, then,



:1 )

T =

1 1

(N )(M) nm

n m

1 1 ( N-1) (M-1)
run n-1 m-1

(11:11)

(sum Xi in all samples )

7 7
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APPENDIX 3

A Brief Introduction to Lord's
Use of Hooke's Approach to Derive

Formulas for the Mean and Variance Estimates
in Matrix Sampling

Let (I. 11i, 2i' 3" ii" a be a set of a alternative indices

for examinees.

Let (ji,j2,j3,...,jj,...,jb1 be a set of b alternative

indices for items.

Let ipl,p2,p3, 'pia) be a set of ab integral

powers.

Let Xij be the response of examinee i to item j in the

n-examinee by m-item matrix randomly sampled from a population N-

examinee by M-item matrix. (For the following discussion, both N

and M will be taken to be infinite.)

Definition: Denoting a generalized symmetric mean as gsm,

gsm =
T

where

P1 P2 Pb Pb+1,,i Pb+2 P2b
(X. X.

i
"'X. )

11j1 11j 11 b 2-1
A

2-2 124b

P
(x

b(a-1)+1 Pb(a-1)+2 Pab
...X. )

i
a
j
1

X
i
a
j
2

1
a
j
b

T = n(n - 1) (n - a + 1)m(m - 1) (m - b + 1)
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and

denotes the distinctness of the ii and the J. .

Note: The gsm is symmetric, i.e., its value is invariant under

permutations of rows and/or columns of the matrix in X
ij

.

Definition: A bipolykay is a linear combination of gsm's.

Theorem: A gsm is inherited on the average, i.e.,

E[gsm in matrix sample] = E[gsm in matrix population] .

Corollary: A bipolykay is also inherited on the average.

For convenience, we can specify any given gsm by an "operator

matrix" whose rows specify the a alternative examinee indices,

columns specify the b alternative item indices, and elements

specify the a.b integral powers for the corresponding X. . . Thus,
liji

the gsm as defined above can be specified as follows:

P1 p2 p

Pb+1 Pb+2

Pb

P2b

Pb(i-1)+1 Pb(i-1)+2 Pb(i-1)+j ib

.....]
Pb(a-1)+1 Pb(a-1)+2 Pb(a-1)+j Pab
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There is only one 1
st

power gsm, namely (zero rows and columns

are used to achieve uniformity in notation for 1
st

and 2
nd

degree

gsm's) ,

that

n m

run

i

Xij =31

There are four possible 2
nd

degree gsm's, for example

Lo

o

0 0

10

n m

A
ijnm

i

n n m-1)

,
ij1

X
ij2

1 2

m-1 (msy nY
2

Y)

1

(n-1) (m-

X
i
1
j
1
X.

2
j
2

[(nm - n - m)y
2

ns
2

ms
2

+ sr]

Applying the expected value theorem for gsm's, it can be shown
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and

E = 02 4. H
"
2

X
0 0

Therefore (by the above corollary), the bipolykay equal to the

difference of the above two gsm's has the following expected value:

Hence,

E [

1 1

0 0]

1

0 1

,s2
Cr

x--4.

.111111

1

-Co

0

0 0 0 1

2= n- .
X

71:1N-T7 [ns; - - T) + s2] .

Referring back to the 1
st

degree gsm, it is clear that

A
= X
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