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On the Problems of Using Mathematics in the Development

of the Social Sciences 1

Patrick Suppes

Institute for Mathematical Studies in the Sccial Sciences
Stanford University

To begin with I want to say that, although this is my first triD

to Australia, for very special reasons I look upon Australia as a kind

of paradise or Dromised land. During World War II, I spent two years

in the Pacific--a year in the Solomon Islands and a year in Guam The

ambition of nearly every American serviceman in the South Pacific area

was to have a leave in one of the main cities of Australia, and while

a few friends of mine occasionally got to Australia, I was not so for-

tunate. I am pleased, however, to have realized that longstanding

ambition years later. To be here is a pleasure thus enhanced by

memories and hopes that go back for more than two decades.

As I turn to the topic of this first lecture, the second thing I

would like to emphasize is that I am going to try to say and talk about

more than I should. I think we all respect the seriousness and importance

of academic specialization. In this first general talk dbout problems

of using mathematics in the social sciences, I shall talk about things

that many of you know better than I do, so I ask your indulgence as I

1
This paper is based on a lecture given at a UNESCO Seminar at the
University of Sydney, Australia on May 20, 1968. The content of the
paper'teflects;resparch that has been supported by the National Science
Foundation.
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attempt to say some general things about the relation between mathematics

and the social sciences. Also, before turning to a consideration of

problems, I would like briefly to review what I feel are important trends

of mathematics in the social sciences since the end of World War II.

Obviously, it is not possible to give a detailed survey or to cover

with equal emphasis all disciplines. If, however, we look at the work

that has taken place since 1945, five or six main lines of activity

emerge as an impressive beginning. They represent developments that

did not exist in substance prior to 19450

I would first mention in this context the general topic of decision

theory. There are at least three important aspects of decision theory,

namely, game theory, statistical decision theory, and normative economics.

Each of these three is closely related to the other two. In the case

of normative economics, it is easy enough to cite important and major

papers that appeared before World War II, but it still seems proper

to claim that the mathematical development of normative economics has

received a very great impetus since 19450 The early papers in game theory,

particularly the early work of von Neumann and Borel, occurred even before

1930, but certainly the entry of game theory into the mainstream of thought

in the social sciences dates from the appearance in the 1940s of the

von Neumann and Morgenstern treatise. Above all, the work in statistical

decision theory is almost entirely a product of research that has taken

place since World War II, even though earlier papers of Ramsey, deFinetti,

and others are of considerable conceptual and historical importance.

To move quickly to other topics of importance, macroeconomics has

been a major development in terms of economic theory, and recently,
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especially the economics of growth. Within psychology there has been

a continuing strengthening and deepening of work in psychometrics, but

I would claim the area that has changed the most is learning theory.

There are, of course, clear and definite mathematical antecedents in

the application of mathematics to learning theory. Most of you will

knaw at least something about the work of Clark Hull and know that he

was very much concerned with the application of mathematics to behavioral

psychology, particularly to learning theory, Yet I think it is fair

to say that Hull's work was not really mathematically viable or effective,

On the other hand, it does seem that Hull's work was almost a necessary

stage leading up to the development of more realistic mathematical

developments. What we now have is a generation of younger psychologists

who are at home in mathematical ideas, and who can use these ideas both

in constructing theory and in applying theory to experimental data.

This is a development that simply did not exist prior to World War II.

Another area closely connected with psychometrics, but that goes

beyond psychometrics or related problems of econometrics, is the general

theory of measurement, It too has had an intensive clathematical develop-

ment in the last two decades, Probably more papers have appeared on

the foundations of measurement and the development of particular approaches

to measurement theory in the last ten years than have appeared in all

previous years put together. Again, of course, in the case of measurement

theory, there is a distinguished and important history dating from the

work of Helmholtz in the nineteenth century, of prominent mathematicians

like Ifcilder at the turn of the century, of people like Norbert Weiner,

and of Frisch, Ramsey, and others in the series of papers in economics

on the measurement of utility,
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Another area of important development since 1950 is the coming of

age of structural linguistics. Linguistics, like economics, is a dis-

cipline that has a distinguished history, but we all sense that new and

important things have happened in linguistics in the last decade, and

the impact of linguistics on other parts of the social sciences has been

felt increasingly. In my second lecture I deal in some detail with the

relations between the psychology of learning and structural linguistics.

Therefore, I shall not enter into the subject in greater detail here,

Finally, in terms of the widespread use of mathematical ideas in

the social sciences, it is important to mention the ever more central

role of computers. I am sure that most of you are familiar with that

benchmark date of 1951, when the first commercial computer was sold.

The widespread use of computers in the academic world has only been

within the last ten years, and yet, already the impact of that develop-

ment has been felt, Problems may be tackled and investigations attempted

that simply would not have been entertained prior to the availability

of large-scale computing facilities,

In summary, I would say that in talking about the place of mathematics

in the social sciences we need not be too apologetic about the social

sciences as a set of intellectual disciplines. What has happened during

the period since World War II constitutes an impressive intellectual

development, There has been measurable and real progress in the appli-

cation of mathematics. This period will be regarded as historically

important in marking a major turning point in the development of math-

ematical social science. At the same time, all of us realize I think,

how much there is yet to be done and how incomplete these developments are.
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I would like now to turn to some discussion of the problems we

encounter, or will encounter, in attempting to deepen the use of math-

ematics in the social sciences. To begin with, I would like to take

up the first problem, the one mentioned by Chancellor Williams; this

is the matter of training. I would like to speak of the training of

graduate students, however, and not of the training of undergraduates.

Several years ago, as part of the activities of the Committee on

the Undergraduate Program in Mathematics of the Mathematical Association

of America, I served as chairman of the Panel on Mathematics for the

Biological, Management,and Social Sciences, We decided in this panel

to do a hard-data study of the actual mathematical background of graduate

students in various social sciences, the extent to which mathematics

was used in social science courses at the graduate level, and the extent

to which mathematics was used in the writing of dissertations in the

social sciences. I summarize here the main data from the study (American

Mathematical Monthly, 1962, 69, 515-522). The data are drawn from the

Insert Table 1 about here

records of ten of the most prominent universities in the United States

and are primarily for the academic year 1960-61, The eight academic

fields covered in the study are shown in Table 1, which classifies the

level of mathematical training of first-year graduate students in 1960-61

in each of the eight fields. The data are somewhat conservative, because

the transcripts did not include courses taken during the last half of

the senior year.
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In Table 2, each of the Ph.D. dissertations accepted between

September 1, 1958 and March 1, 1961 has been classified into one of the

same four categories used in Table 1. Simple computations and graphs

were not considered to be mathematics. Routine uses of standard statis-

tical tests were classified as precalculus, including standard analysis

of variance.

Insert Table 2 about here

Information was also obtained on graduate courses using calculus

and mathematics beyond calculus during the academic years 1959-60 and

1960-61. The data are briefly summarized in Table 3, which shows the

number of universities of the total surveyed that offered such courses

in each of the eight fields.

Insert Table 3 about here

A quick perusal of these tables shows that at the beginning of the

1960's the mathematical training of young social scientists just entering

the profession was scattered, and in some fields, almost nonexistent.

Over the last eight or nine years the situation has improved considerably,

especially in anthropology and political science, but it is still true

that a major problem in using mathematics in the social sciences is the

shortage of scientists trained to do so,

My second remark concerns the extent to which training in elementary

set theory, and to some extent logic, has been emphasized in the training

of young social scientists in the United States. The clarity of thinking

that can be taught by beginning with the elementary and easily understood
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material in logic and beginning set theory can form an appropriate and

proper place to begin the mathematical training of young social scientists.

It is not, however, in any sense the place to end. We are not going

to do much in the analysis of the real world with the mathematical devices

available to us in logic and set theory taken simply as deductive disci-

plines. Obviously, I am speaking here of the direct application of logic

to the construction of theories within the social sciences and not of

the way in which logic enters .nto the design of computer hardware and

software. More powerful mathematical methods and more complicated math-

ematical concepts than the fundamental concepts of logic and set theory

are needed for the analysis of the real world in quantitative fashion.

As the author of two textbooks on logic and one on axiomatic set theory,

I certainly am making this point without prejudice. Another way of

making the point is to say that the tradition of mathematical analysis

prominent in the training of physical scientists for several hundred

years also needs a place in the training of social scientists. It is

not that social scientists will make exactly the same use of analysis

that physical scientists have, but the concepts of analysis provide tools

necessary for the building of complex theories. This is especially true

of both theories and experiments that depend heavily on probabilistic

and statistical concepts,

My third problem is whether we have yet identified and can measure

variables that will prove significant in social science theories of the

future. On Mondays, Wednesdays, and Fridays I suppose my own intuition

is that we do have a good grip on significant variables, and our problem

is to be clearer about the theoretical framework in which we should
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consider these variables. On Tuesdays, Thursdays, and Saturdays my

intuition is that we are not thinking about the right variables, and I

do not see any hope of getting a grip on the right variables until

theoretical developments have proceeded much further than they yet have.

Whichever view is correct, I think there are some important analogies

in the history of the physical sciences that can be used to deepen our

reflection on the problem of significant variables and their measurement.

In the case of physics, its perfection in many ways certainly depended

upon the prior clarification, identification, and quantification of

significant variables. An example I find particularly striking and

impressive in this respect is the development of ancient astronomy.

Consider the period from the serious beginning of Babylonian astronomy

in 700 B.C. to the writing of Ptolemy's Almagest in 150 A.D., some 850

years later. It is fairly clear that there was a long period of clarifi-

cation of what variables to deal with, what variables should be recorded,

measured, and attended to. The theory could not advance until the ob-

servations had begun to accumulate, and Ptolemy's deep mathematical

synthesis of this long tradition certainly relied upon dbservations and

measurements dating from the Babylonians in 700 B.C. It is perhaps too

easy for us to forget how extensive in time and how tortuous was the

clarification of variables in the physical sciences. It is now hard

to believe, for example, that at one point in the development of physics

Aristotle's distinction between violent and natural motion was taken

seriously. There is a desire on the part of many people to believe

that the twentieth century will play the role in the development of the

social sciences that the seventeenth century played in the development

11



of the physical sciences, but it is important to keep in mind that there

was a great mathematical and quantitative tradition in the physical

sciences running all the way back to Babylonian times, and that vas

essential to the most important results achieved in the seventeenth

century. We are not operating in a similar deep tradition in the con-

struction of social-science theories in the twentieth century. Withcut

this tradition to fall back on in the social sciences, we do not know

whether we should properly think about theory first and expect the

appropriate variables to fall out from the conceptualization of the

theory, or whether the story is the other way around. My own uncertainty

about the true facts and what will turn out to be the real situation is

my reason for emphasizing as serious this problem of identifying

significant variables.

Closely related to problems of measurement and quantification, and

very deeply imbedded in almost all work in the social sciences, is the

problem of linearity. In every direction of theoretical development,

whether in economics, psychology, sociology, or political science, there

are very strong reasons why we have to linearize our assumptions, why

we have to deal with the mathematics that can be represented in terms

that are essentially linear in nature. Occasionally, in a robust and

ambitious moment, I try to look at nonlinear assumptions in learning

theory and am discouraged after the first hour of work by the difficulties

of making headway. We do have a powerful tool for escaping linearity

restrictions in the increasingly widespread use of computers, and it

could be that in terms of future development I am emphasizing a restriction

that will shortly disappear. I am not convinced, however, that this is
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the case. It also may be that when the variables are properly identified

and properly conceptualized, linearity will turn out to be natural to

mathematical assumptions governing their relationships. As far as I am

concamd, we are faced vith a typical kind of trade-off in scientific

research, a trade-off that has no clear resolution before the fact, and

the guidelines for making a choice are vague indeed. Should we put a

greater effort into pursuit of nonlinear assumptions in areas ranging

from learning theory to macroeconomics, or is this a mistake and is it

better to concentrate on rethinking the variables and formulating ideas

that may be properly expressed in linear relationships? The absence of a

clear-cut answer is my reason for restating the prdblem here.

A fifth problem area that I find depressing concerns the analytical

difficulties of probability theory. The difficulties of obtaining solu-

tions in closed form of even the simplest sorts of probabilistic processes

are very discouraging to mathematically oriented social scientists. The

deterministic differential equations that have dominated physics since

the eighteenth century are much easier to handle and to apply in a con-

structive way. In generalizing, for example, the simplest models of

learning from discrete trials to continuous time, analytical nightmares

turn up dealing with situations that are conceptually and experimentally

extraordinarily simple. The analytical difficulties I refer to is the

problem of actually finding solutions in closed form of the appropriate

conditional probabilities or asymptotic distributions. It is possible

to prove that the quantities sought exist, but working them out in closed

form in order to proceed with parameter estimation and to apply some

version of statistical methods to fitting data to the theoretical results
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is extraordinarily time-consuming and difficult, even for the simplest

cases.

Much of the work by mathematicians on the properties of stochastic

processes does not yield results that are significant for those using

mathematics in applied fashion. What we need for applications are powerful

constructive methods of getting numerical answers, or parametric answers

in closed form. This is not to criticize the high level of current

mathematical work in probability theory. It is to reflect the judgment

that we probably need a deeper contact between those working with the

applicatdon of stochastic processes and those responsible for the mathemat-

ical developments within pure mathematics. I emphasize this problem also

because of my own deep conviction that probabilistically formulated theories

are here to stay in the social sciences. We shall not soon see a return

to the deterministic sorts of theories that have been the glory of clas-

sical physics. I know that counterexamples to my statement can be found

in some of the beautiful work on equilibrium questions in pure competition

in mathematical economics in the past couple of decades, but most of

that work has not yet made extensive contact with real data, and it would

be my own conjecture that as it does, theories of a probabilistic sort

will be needed.

Having mentioned problems about identification of variables,

linearity of assumptions, and the analytical difficulties in studying

probabilistic processes, I want to generalize these difficulties to a

query about the present theories in the social sciences. The query is

this. Are the theories we have in front of us essentially and funda-

mentally too simple in character, or is it rather that they are not too



simple, but that we do not have the mathematical prowess and experimental

insight to develop the theories in appropriate ways? It is now very

fashionable in several areas of the social sciences to say that the

theories that have been current and dominant for several decades could

not possibly explain the actual complex patterns of behavior which form

the subject of investigation. This has been a constant theme, for example,

of cognitive psychologists who maintain that the fundamental concepts and

assumptions of behavioral psychology are far too simple to explain any

complex behavior, especially the complex verbal behavior of humans. The

apparent complexity of learning to speak a first language, of learning

to interact in subtle social fashion, or of learning a complex body of

cognitive concepts, as in the case of mathematics, seems to cognitive

psychologists clearly an impossible task to account for within the frame-

work of behavioral psychology, or more especially, stimulus-response theory.

On the other hand, much of the work in cognitive psychology is

oriented toward earlier work in social psychology, and the past several

decades of social psychology provide a very good example of scientists

rushing about for continually new sets of concepts. No single set of

concepts receives a very deep or very articulated form of systematic

development. To put the matter another way, the response of behavioral

psychologists can be that cognitive psychologists have been effective

only in their negative criticisms. Their own contributions in terms of

the development of systematic theory are very thin indeed.

A two-sided argument of the same sort can easily be developed in

economics regarding the status of classical theories of the market and

of pure competition. I do not want to suggest for a moment that it is
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clear to me in any of these instances which particular view is correct.

There is one conceptual point, however, that I do wish to emphasize.

From a casual commonsense viewpoint, it would seem that the negative

arguments are surely the sound ones. From a perusal of the basic ideas

of stimulus-response theory, for example, it would scarcely seem possible

on a commonsense basis to develop a set of concepts and ideas rich enough

to account for complex behavior. I suspect that this commonsense viewpoint

is deeply a part of the view of those cognitive psychologists who are so

skeptical about the possibility of an adequate development of stimulus-

response theory. It is also characteristic of most cognitive psychologists

who express this viewpoint that they themselves do not have any extensive

mathematical experience with a complex deductive elaboration of a few

simple concepts. My reservation about the correctness of the commonsense

viewpoint emanates exactly from this way of looking at the problem. There

exists in mathematics itself a beautiful counterexample to the commonsense

viewpoint, and I would like to expand upon this example.

If one had approached Euler or Lagrange, or any of the other prominent

mathematicians in the eighteenth century, and had said that all mathematical

notions could be defined just in terms of the simple notion of set mem-

bership, just in terms of an object being a member of a set, I am sure

the response would have been that an idea as simple as that of set mem-

bership could not possibly generate the rich complexity of mathematical

analysis and geometry characteristic of the best in eighteen-century

mathematics. The commonsense response among mathematicians surely would

have been that nothing of the sort was possible. Yet one of the great

triumphs from a conceptual standpoint in mathematics, especially the
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foundations of mathematics over the last hundred years, has been to show

precisely how such a reduction could be made in completely explicit and

rigorous terms. It is, it seems to me, one of the great intellectual

surprises about the structure of mathematics that all of the standard

mathematical notions can be reduced by explicit definition just to the

simple concept of set membership. The elaborate and complicated chain

of reduction, far from obvious to naive intuition, is a warning to

social scientists who want readily to dispense with theories because

of their presumed lack of adequate complexity.

It is apparent, of course, that my own sentiments lie for pushing

as far as possible the reduction of complex ideas to simple ones0

shall have more to say about this in my second lecture, but there is

another critical remark of a purely mathematical sort that bears upon

this argument within the social sciences. One of the great things we

have learned in mathematics during the nineteenth and twentieth centuries

is that negative arguments can be made in as powerful and precise a way

as positive arguments. From a general historical standpoint, the under-

standing of how such negative arguments can be put together is one of

the most important accomplishments of modern mathematics. So, if we

want to be very tough-minded with cognitive psychologists, for example,

who maintain that certain complex ideas cannot be explained by the simple

ideas of stimulus, response, and reinforcement, for instance, we can ask

them for a well-defined negative proof that such an explanation is not

possible. A classic example in mathematics of such a negative argument

is the proof that the three famous problems of the Greeks can indeed not

be solved by straightedge and compass. The most familiar of the three
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is the famous problem of trisecting an angle. However, even in the

case of this familiar example, the proof is by no means trivial, and

I would say the same of any of the claims of cognitive psychologists.

The proofs that would be needed to convert negative dogmas about stimulus-

response theory into negative proofs are not obvious, I hope to show

on Wednesday that the problem is difficult, and it is far from clear

that it has a definite negative solution.

Nevertheless, I do not want to end this discussion of the adequacy

of the complexity of theories on the note that I do think the simpler

theories that have been current necessarily are going to be sufficient

to the task. I do wish to emphasize the openness of the problem. What

is most discouraging in my own view is the lack of well-defined alternatives,

It is not easy to create substantial theories, and the number of well worked

out alternatives is small. Finally, let me mention that there have already

been one or two very satisfactory negative proofs in the social sciences,

One good example is Arrow's famous proof of the impossibility of having

a social-decision procedure satisfying certain intuitively attractive

postulates. Another example is Milnor's negative proof that there is

no strategy in games against nature satisfying all of the intuitive

postulates that have been advanced by people as desirable.

As a seventh problem, I mention the issue of mathematical rigor

versus mathematical power. It is probably the case that contemporary

mathematical economics is written with a considerably higher degree of

mathematical rigor than contemporary mathematical physics. There is

no doubt that among the social sélences the mathematical rigor and

sophistication of mathematical economics are greater than those of any
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other discipline. On the other hand, rigor in mathematical economics

seems to be a substitute for confrontation with data, There is great

concern for proving general theorems that everyone will agree are valid,

and yet these theorems do not fall together into a body of theory that

may be put to the acid test of confrontation with the empirical world.

It is easy to show that much of the work that has been judged most im-

portant and most profound in mathematical economics has had little if

any detailed contact with systematic empirical data, Nevertheless, I do

sense a change in attitude and an increasing concern for questions of

data among the younger mathematical economists of my acquaintance. There

is of course the long and distinguished tradition of econometrics in

economics, and much distinguished work in the statistical problems of

data analysis. In mathematical psychology at present there is little

concern for rigor and much greater concern for finding constructive

answers, but the bag of mathematical tools used by the current generation

of mathematical psychologists is relatively simple. Because there is a

very strong experimental tradition in psychology, I would predict that

psychology will develop like physics with an emphasis on constructive

mathematical methods for obtaining answers with minimal concern for

rigor. Yet it is all too easy to fall into a slogan of rigor versus

power. It was not really until this century that there was a strong

divergence between mathematics and physics. In the long term I would

consider it a mistake to encourage a continued separation and drifting

apart of mathematics and the mathematically oriented sciences. With

the advent of computers, which I discuss in more detail below, it is

very possible that many of the previous questions of rigor and power
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in mathematics will no longer seem relevant and will be replaced by a

new set of problems that have not yet been explicitly formulated.

In fact, this mention of computers takes me to the eighth problem

area, the assessment of the future role of computers in the social

sciences and their impact on mathematical developments, A number of

people have expressed the view that just as classical mathematical

analysis was the natural tool of classical physics, so mathematical

logic would be the natural mathematical tool of computers, and secon

darily, of the analysis of intellectual processing in human beings.

Nevertheless, certainly to date, the deep application of mathematical

logic to computers or to the cognitive processing of humans has been

disappointing. We do not have a body of mathematical ideas applicable

to actual computers in a fashion that is at all comparable to the depth

of classical analysis as applied to physics in the seventeenth, eighteenth,

and nineteenth centuries. On the other hand, the discipline is extremely

young and the theoretical developments scarcely are underway, From an

entirely different standpoint, it is true that because of large-scale

computers, problems are being investigated in terms of large bodies of

data which simply would not have been explored a decade ago.

In talking about the impact of computers in the social sciences,

it is important to distinguish between the two kinds of impact already

mentioned. One is the use of computers for large-scale numerical analysis

to study bodies of data that would have been impossible in the past.

I am skeptical about some of the endless correlation matrices that have

been looked at in the more purely empirical parts of psychology and

sociology. This use will not have a significant impact unless there
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are accompanying theoretical developments to extend the analysis beyond

rather superficial descriptive statistics. But I am not pessimistic

about this direction of development. The existence of the capacity,

even the relatively low-level mathematical sophistication required for

straight statistical and numerical work, has already had an impact in

the more mathematically naive parts of the social sciences.

The other kind of impact of computers seems to be more fundamental

and more significant for the future. This is the use of computers to

provide models of information processing, to investigate by simulation

or numerical analysis the effects of variations in parameters of well

formulated theories, and to realize optimization processes, whether in

teachingand learning or in the organization of the economy. The range

of these latter applications all require a deep use of mathematical

ideas, some of which are just in the process of development in many

parts of the social sciences. The current generation of graduate students

is coming to feel as much at home with the computer as their peers in

the physical sciences. I would hazard a guess that because of the

enormous impact computers will have in the social sciences, in another

couple of decades there will be little, if any, difference between the

mathematical training and outlook of social scientists and physical

scientists.

Finally, as the ninth problem area I mention real-world predictions

versus laboratory predictions. Which criterion is used for evaluation

makes an enormous difference in judging the success of a scientific

discipline. It seems to me that a central problem for most of us working

in the social sciences is that the criterion applied is that of predicting
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actual behavior. We are asked to analyze not simple paradigms of be-

havior, but actual behavior. We are asked to deal not with simple

paradigms of language behavior, but with the actual first-language

acquisition of a child. We are asked to deal not with simple paradigms

of economic behavior, but with the actual development of economic aspects

of our society, We are asked to deal not with simple paradigms of social

behavior, but with the actual course of development of tensions and con-

flicts in the inner city. And so it goes throughout the other disciplines.

This has not been the history of the physical sciences. Even today, for

example, physicists would be hard pressed to satisfy a tough-minded

criterion for predicting the actual weather or other secular physical

processes like those of geology and geophysics. A recent much discussed

example is the total inadequacy of geophysics to predict with any success

the occurrence of earthquakes. But, because physicists cannot predict

the weather or earthquakes, we do not judge that their science is unsuc-

cessful. It seems important for us in the social sciences to recognize

that we are working for a sterner master than are our colleagues in the

physical sciences.

I think we want to satisfy this sterner criterion. We want to be

able to meet the challenge of dealing with the course of developments

in our actual society and in the behavior of its individual members.

But it is important for us to keep in mind that a complete account of

this actual behavior, whether by social groups or by the individual,

will as in the case of the weather escape us. Yet we should not be

disgruntled with our science because we are not able thoroughly to master

all aspects of the behavior we intend to study.
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