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PROBLEM-SOLVING ON A COMPUTER-BASED TELETYPE
1

Patrick Suppes, Elizabeth F. Loftus, and Max Jerman

Institute for Mathematical Studies in the Social Sciences
Stanford University

At Stanford University over the last five years, the Institute has

been developing a working computer-assisted instruction (CAI) system for

classroom use that follows two distinct approaches: tutorial and supple-

mentary drill and practice. The tutorial approach to CAI uses the computer

as a "teacher" to present new concepts as well as to determine subsequent

student work with the concepts. In contrast, drill-and-practice systems

supplement classroom instruction by improving the skills and concepts

introduced by the classroom teacher.

In the spring of 1965, a CAI drill-and-practice program was initi-

ated in an elementary school. To implement this program a computer at

Stanford was used; telephone lines connected the computer to the teletypes

located at the school. Fourth-, fifth-, and sixth-grade students received

daily drills in arithmetic (Suppes, Jerman, and Groen, 1966). Beginning

in the fall of 1965, this operation was expanded (Suppes, Jerman, and

Brian, 1968); by the fall of 1966, computer-controlled drills were given

to approximately 900 students in six different schools. During the past

academic year, 1967-68, these drills reached over 2,000 students per day.

Elementary schools in Kentucky and Mississippi, where children received

daily drills in arithmetic, were also linked to the c :Lral computer at

Stanford.

The research reported here is a small part of an investigation of the

potential use and value of CAI drill-and-practice systems. This study,

in particular, reports a new use for such systems. The students who

participated were first taught the mechanics of how to use a computer-

based teletype to solve arithmetic word problems. Following this, a series

of word problems was presented to them. A central characteristic of these

problems was the requirement of a quantitative answer, but the arithmetical
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operations were not explicitly indicated. An example of a problem in

arithmetic providing the pupil with an opportuni,y to use his knowledge of

subtractiun is the following:

Tom collected 500 seashells and placed 43 of them

in a showcase. How many shells were not placed in

the showcase?

We attempted to determine the factors related to problem difficulty by

analyzing the solutions of the problem series. An example of what we

mean by a factor related to problem difficulty is the length of the problem.

A natural assumption is that the larger the number of words in a problem,

the harder the problem is to solve.

2
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I. THE THEORY

The discussion of the regression model follows Suppes, Jerman, and

Brian (1968). What is desired is an analysis of factors that lead to

varying difficulty. We would like to attach weights to the various

factors that may be objectively identified in each item, and then to

use estimates of a few such weights to predict the relative dtfficulty of

each of a large number of items. To this end, the aim of the present paper

is to formulate and test some linear structural models that lead to para-

metric predictions of relative difficulty.

For the word problems analyzed in this paper, the central difficulty

was to identify the factors that contributed to the complexity of the

problem. As a matter of notation, the jth factor of problem i in the set

ofproblemsisdenotedbyX...The statistical parameters estimated from
ij

the data are the weights attached to the factors. The weight askigned to

thejthfactorisdenotedbya..It should be emphasized .,hat the factors

identified and used in the model presented in this paper are not abstract

constructions from the data. Rather, they are always objective factors

identifiable by the experimenter in the problems themselves, independent

of any data analysis. Which factors turn out to be important is a matter

oftheestimatedweightsa..All the factors used in the analyses presented

here have an intuitive and direct relevance to commonsense ideas of diffi-

culty, and their definitions are straightforward.

Consider the analysis of the response data. Let pi be the observed

proportion of correct responses for a group of students on problem i. The

central task of a model is to predict the observed proportion p
i

. The

natural linear regression model in terms of the factors X
ij

and the weights

a. is simply

p. = a.X.. + a, .

1 1,] v

A difficulty with this model, however, is that probability will not neces-

sarily be preserved as the estimated weightings and the identifiable factors

are combined to predict new observed proportions of correct responses.
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In order to guarantee preservation of probability, that is, to insure that

predicted pi's will always lie between 0 and 1, it is natural to make the

f

(1-p.)

z
i
= log (1)

p.

We then use as the regression model

z. = a.X.. + a .1.313 0
(2)

It should be noted that the reason for putting 1 - pi rather than pi

in the numerator of equation (1) is that it is desirable to make the

varialdes, z. increase monotonically in difficulty. For example, if the

length of a problem increases with the difficulty of the problem, it is

desirable that the model reflect this increase directly rather than

inversely.

The variables we consider are of two types. The first type are

0,1-variables. Such variables would be appropriate, for example, in dealing

with a problem that requires a conversion of units. If a problem requires

a conversion of units, such as from months to weeks, the conversion variable

for that problem receives a value of 1, and 0 otherwise. The second kind

of variable is one that assumes a finite set of values, but the set is greater

than 2. Such a variable would be appropriate, for example, in dealing with

the length of the problem; the length variable receives a value which is

equal to the number of words in the problem.

Two other variables of the second type are the operations variable and

the steps variable. The operations variable refers to the minimum number

of different operations required to reach the correct solution. For a given

problem, this variable could take on a value of 1, 2, 3, or 4. The steps

variable refers to the minimum number of steps required to reach the correct

solution.3 These two variables may be distinguished more clearly if we

consider a problem which requires two or more computational processes before

the answer can be found. This type o- problem is called a "multiple-step"

problem, and "multiple-step," as used here, refers not to the details of
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the processes, but to the number of binary operationsaddition, subtraction,

multiplication, or division--required to obtain the answer. A problem that

asks the student to find the average of 11 numbers would give a value of 11

to the steps variable and a value of 2 to the operations variable,

A few words must be said about the length variable. Sentence length

is frequently proposed as the most Obvious and plausible variable in deter-

mining sentence difficulty, This factor is generally determined by total

count of the number of words in the sentence. Studies in language acqui-

sition (Miller and Ervin, 1963; Ervin, 196)4) gave evidence of the gradual

progression of children's language development from one-word sentences,

holophrases, to two-word pivot sentences, to sentences consisting of greater

numbers of words. In imitation of adult sentences, children tend to use a

"telegraphic code," a sentence form which is a shortening of adult sentences

that retains only content words. Braun-Lamesch (1962) found that younger

children cannot recall whole sentences easily. Because this evidence in-

dicates that young children in early language development lack the ability

to process long sentences, it seems safe to say that long sentences are more

difficult for children to comprehend than shorter sentences. For the present,

we shall generalize these results and assume they imply that longer word

problems will be more difficult than shorter ones. In subsequent studies,

however, we hope to look at the actual syntactic structure of the sentences,

which should be a more meaningful index of difficulty than mere word count

alone.

The sequential variable is the first 0,1-variable0 Post (1958) completed

a carefully designed study which investigated the effects of several factors

on problem-solving in arithmetic. The factors studied were: (a) size of

numbers; (b) superfluous numerical data; (c) number of steps; (d) familiarity

with setting; (e) type of operation; and (f) symbolic terms. Each factor

was investigated on two levels that were studied in conjunction with each

level of the remaining factors, giving sixty-four (26) treatment combinations

in all. The findings indicated that the type of operation was the most

important factor, although familiarity of setting and superfluous numerical

data were significant also. These results suggest a new factor, which we

chose to call the sequential variable. If a problem may be solved by the

5
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same operation(s), in the same order, as the problem that preceded it,

the sequential variable for that problem is assigned the value of 1, and

0 otherwise. The possible importance of this factor in the present context

was suggested to us by Professor Leon Henkin. Successful use of it in the

analysis of fractions is found in Suppes, Jerman, and Brian (1968, Chap. 7).

The verbal-clue variable is the second 0,1-variable. Brownell and

Stretch (1931) felt that a problem could be analyzed into several elements

or factors, one of which was a verbal clue to the operations. This factor

was not varied systematically, and so no conclusions could be drawn about

it. Brownell and Stretch did suggest that there were other factors, yet

unknown, which influence problem-solving. We are again indebted to Leon

Henkin for suggesting this variable in the present context. He chose to

define it as follows:

1. The verbal clue for problems requiring a single addition is the word

"and"; if the problem contains this word, the verbal-clue variable

for that problem is to be assigned a value of 1, and 0 otherwise.

2. The corresponding verbal clues for the other operations are:

a. "left" or a comparative for subtraction;

b. "each" for multiplication;

c.
11average" cr "each" appearing in the question sentence of the

problem for division.

3. Problems requiring multiple operations must contain all of the verbal

clues pertaining to the required operations in order that the verbal-

clue variable be assigned a value of 1.

The conversion variable is the last 0,1-variable. If a problem

requires a conversion of units, such as from months to weeks, the conversion

variable for that problem is assigned a value of 1, and 0 otherwise. The

importance of this variable was suggested by the results of an informal

pilot study described below.

6



In summary, the variables we investigated are:

X
1

= the operations variEble, that is, the minimum nuMber of different

operations required to reach the correct solution;

X
2

= the steps variable, that is, the minimum nuMber of steps required

to reach the correct solution;

x
3

= the length variable, that is, the number of words in the problem;

x = the sequential variable, assigned a value of 1 if the problem is

of the same type (i.e., can be solved by the same operation(s)) as

the problem that preceded it, and 0 otherwise;

x
5

= the verbal-clue variable, assigned a value of 1 if the problem con-

tains a verbal clue to the operation(s) required to solve the problem,

and 0 otherwise;

x
6

= the conversion variable, assigned a value of 1 if a conversion of

units is required to solve the problem, and 0 otherwise.

II. DESIGN AND EXPERIMENTAL PROCEDURE

A. Subjects

The 27 subjects used in this study were taken from an accelerated

mathematics group composed of bright fifth-grade students from four different

elementary schools near Stanford University. The children all came from

middle-class, suburban communities. The students had received teletype

instruction in logic and mathematics drill-and-practice, so familiarizing

them with the machine was not a problem.

7



B. Equipment

The student terminals used in this project were commercially available

teletype machines, connected by private telephone lines to a computer at

the Institute for Mathematical Studies in the Social Sciences at Stanford.

There were 10 teletypes, all operating in a single classroom at one of the

elementary schools. The children from the other three schools were bussed

to that school for one hour every day. When not operating the teletypes,

the children in the special mathematics group received classroom instruction

in elementary mathematics from Mr. James Newland, a teacher associated with

the project.

The control functions for the entire system were handled by the PDP-1,

a medium-sized computer with a 32,000-word core and a 4,000-word core inter-

changeable with any of 32 bands of a magnetic drum, together with two large

IBM-1301 disc files. All input-output devices were processed through a

time-sharing system. Two high-speed data channels permitted simultaneous

computation and servicing of peripheral devices.

C. Instructional Program

To initiate a lesson, a student typed "P" (for problem solving) followed

by his assigned number and his name. When this was correctly done, the pro-

gram began. If the student made an error or gave a fictitious name, such

as Superman, he was asked to try again.

The computer consulted the student's file and began with the item

following the last one completed. The items were divided into two parts,

with the set of instructions presented before the set of problems.

The set of instructions. Instructions were presented, via computer,

to teach the students how to command the computer to perform operations on

given numbers. Table 1 lists and gives an example of each of the abbreviated

operation names that the student learned in the instruction set.

Insert Table 1 about here

8



TABLE 1.

Operation Abbreviations Taught in the Instruction Set

Comments

X THE ANSWER KEY

A ADD
1) 36

2) 41

1.2A 3) 77

SUBTRACT
1) 500

2) 48

1.2S 3) 452

M MULTIPLY
1) 59
2) 4

1.2M 3) 236

Q DIVIDE
1) 77

2) 7

1.2Q 3) 11

ENTER
1) 41
2) 7

The line number followed by X
indicates what line the answer
is on.

Q rather than D was used for divide
because D was used for something
else in the system.

E is used to enter a number that is
not entered by the computer program.
For example, in a problem that asks
the student to find the number of
days in 12 weeks, the student would
be required to enter the number 7,
the number of days in one week. The

number 12 would be entered by the
computer as a "given number."

Note: Student entries are underlined.

9



The following sequence of interactions between the student and the

computer illustrates how a problem is solved in this context. Student

entries are underlined. The computer first types out the problem, and

then types out the numbers in that problem. The student sees on the

printout sheet before him:

Tom collected 500 seashells and placed 43 of them

in a showcase. How many shells were not placed in

the showcase...

1) 500
2) 43

"G " stands for "given nuMber."

The student then responds by telling the computer the operation he

wants the computer to perform, and the line numbers to which the opera-

tion should apply. In the present case, the student ordinarily types

out "1.2S" meaning "from the number shown on line 1 subtract the number

shown on line 2." The computer responds by typing the result of apply-

ing the operation, or by typing an error message if the operation

could not be applied validly.

The student also learned to indicate the answer by typing the

line number followed by an X. The complete protocol for a correct

response in the above example, then, might be:

Tom collected 500 seashells and placed 43 of them

in a showcase. How many shells were not placed in

the showcase...

1) 500
2) 43

1.2S 3) 457

3X
Correct

10



(Again, student entries are underlined.) If the answer is incorrect,

if answer is wrong" appears in place of "correct." The protocol for a

response which elicits an error message might be:

Tom collected 500 seashells and placed 48 of them in

a showcase. How many shells were not placed in the

showcase 0..

1) 500

2) 43

1.2AD There is no rule name "AD."

There are often many ways to solve a given problem. Which rule to

use and the details of use are matters of strategy determined by the

experience and ingenuity of the student. The computer allows any valid

step, regardless of whether it helps reach the solution. Any combination

of steps reaching a solution, valid within the rules, is entirely acceptable,

however idiosyncratic.

In the instruction set, easier examples preceded more difficult ones.

On several of the problems, the student was invited to ask for help after

a certain time lapse by the message, "TYpe H and a space if you want a

hint." No hints were available on multiple-choice problems; the student

had to guess until he got the problem correct.

The computer did four things while the student was trying to reach

a solution.

1. It examined each instruction by the student to see if the syntax

was correct and was a valid step. If the instruction was incorrect,

the computer printed out an error message.

2. It performed whatever valid step the student commanded, regard-

less of whether the step contributed to the correct solution.

3. It compared the solution indicated by "X" with the desired

solution. If they were identical, it terminated the problem

after typing "correct." If the solution was.incorrect, it typed

answer is wrong.

4. On certadn problems it offered a hint after a fixed-time lapse.

The hints programmed were usually starting hints. If the

11



student had already completed steps, the hint might no longer

be appropriate. Hints were available only for certain problems

in the instruction set, not for those in the problem set.

At the end of the six-minute session, the student was signed off

automatically as soon as he completed an unfinished problem, or if he

had a two-minute interval with no response.

The word-problem set. Because these fifth-grade students were from

an accelerated group, the 68 word problems used in this study were designed

to be of appropriate difficulty for sixth-grade students. The students

used the rules they learned in the instruction set to solve these problems.

As was done in the examples in the instruction set, the computer, after typing

out each problem, typed out all the numbers given in the problem as "given

numbers." The student then told the computer what to do with these numbers.

Figure 1 illustrates how a student went about solving a word problem in

this way. The type wheel of the teletype was positioned at the left-hand

Insert Figure 1 about here

side of the paper. After the student made his response, the computer

positioned the type wheel at the center of the page, typed the line number,

and the result of the operation the student had commanded the computer to

perform. If the final answer was correct, the computer typed the message
II

correct" and went on to the next problem. If the final answer was in-

correct, the computer typed "answer is wrong" and went to the next problem.

The students were not allowed to use pencil or paper when working

on the teletype. Each exercise was worked on the machine, so that all

responses could be recorded.

The student was signed off, as during the instruction set, with a

"goodbye" message, and "please tear off on the dotted line."

12



MIMEINIMGMLIMMIMOVram.0,

COMMITTEE MEMBERS BOUGHT 3 JARS OF CANDY
WITH 14 OUNCES IN EACH JAR, AND 2 BOXES OF CANDY
WITH 27 OUNCES IN EACH BOX. THEY PUT THE CANDY
INTO BAGS THAT CONTAINED 4 OUNCES EACH.
HOW MANY BAGS OF CANDY DID THEY FILL?

(1) 3
(2) 14
(3) 2
(4) 27
(5) 4

1.2M (6) 42
3.411 (7) 54
6.7A (8) 96

8.50 (9) 24
9X
CORRECT

Fig. 1. Sample solution of a word problem.
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D. Informal Pilot Study

Prior to running the experiment, three students at the elementary

school served as subjects in an informal pilot study. Each subject was

asked to read each problem aloud, to point out any difficult words in

the problem, and to indicate how to solve the problem. The student did

not actually perform the operations. The entire interview was recorded,

later studied, and the following information was extracted from the record-

ings, some of which resulted in the following modifications of the program

or problems.

1. Four- and five-digit numbers did not have commas separating the

hundreds- from the thousands-digit. For all three students, this led to

difficulty in reading the numbers for the five-, but not the four-digit.

numbers. The five-digit numbers were changed to include commas.

2. All three students had difficulty with the following problem:

"Jerry counted 444 names listed on a page in the telephone
directory, and there were 55 pages in the book. How many

telephone subscribers were listed in his directory..."

"Directory" was changed to "book." "Subscribers" was changed to "names."

3. The word "equatorial" in the phrase "the equatorial diameter"

was dropped; all three students found it difficult to read the word.

4. Reading difficulty resulted when a phrase was split so that half

of it occurred on one line and half on the line just below.

"Each of the 27 children in Miss
Brown's room planned to bring 250
pounds of newspaper..."

was changed to:

"Each of the 27 children in Miss Brown's room
planned to bring 250 pounds of newspaper..."

5. Final sentences such as "Hcw much did they both have," or

"how much did they have together" offered real cues as to what operation

the problem calls for. However, sentences such as "What was their net

gain in yardage" left the students without the slightest idea of what

operation to use. This suggested the possibility that the presence or

absence of a key word might be a powerful index of item difficulty.



ways:

,

6. A problem such as the following could be solved in several

"Paul delivered 140 papers. Of these he delivered 61

on Poplar Street, 58 on Garfield Ave., and the rest on

York Road. How many did he deliver on York Road "

It could be solved:

(140 - 61) - 58 or 140 - (61 + 58).

The interesting finding was that all three students used the latter

approach in solving this type of problem.

7. Two out of three students could not solve the following

problem:

"Steve has 13 toy soldiers, Tom has 18

and Richard has 41. What is the average number

of toy soldiers..."

Their understanding of the concept of average was unsatisfactory. Some

brief instructions were included in the instruction set of the program

to teach the students how to do such problems, since most of the division

problems required understanding of averaging.
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III. RESULTS

In this section, the main task is to report the predictive worth of

the six variables described earlier. The objective is successfully to

predict the probability of a correct response for each item. The first

step in analysis was to obtain regression coefficients for each of the

factors. A multiple linear regression analysis program, adapted for the

PDP-1 computer at Stanford, was used to obtain regression coefficients,

multiple correlation R and R
2

. The regression equation was

+ 087X + 018X
i2

+ .02X
i3

+ 2.13X* + .26X + 1.42X* .

14- i5 i6

(* indicates significance)

with a multiple R of .67, a standard error of estimate of 1.75, and an

R
2 of 45. The results obtained from this model were reasonably success-

ful, considering the complexity of the problems.

From scanning the coefficients, we see that X4, the sequential variable,

is the most important pf the six variables. The other weightings indicate

that the conversion variable, X6, and the operations variable, X1, are

valuable predictors of the probability of a correct response for each

item. A rough indication of the goodness of fit of the regression line

is given by the multiple aorrelation coefficient R and its square, R
2

which is an estimate of the amount of variance accounted for by the

regression model. In this case, 45 percent of the variance in probability

of a correct response is accounted for by the model.

Figure 2 presents a graph of the predicted and observed proportions

of correct responses for each of the 68 items. The probabilities are

plotted as a function of the rank of observed proportion of correct responses.

Insert Figure 2 about here
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Consequently, the curve of the observed probabilities is monotonically

decreasing and smoother than the predicted curve. An inspection of the

two curves shows a reasonable fit for the regression model, especially in

view of the heterogeneity of problem types. For an analysis of goodness

of fit of the probability of a correct response predicted from the regres-

sion model and the Observed probability of a correct response, a computer

program was written to calculate the predicted probability, pi, of a

correct response for problem 1, and to give as a measure of fit X
2

where

X
2

= E (f. - p.N)
2
/ [Pi(1 - Pi) N]

i

and f. = observed frequency of correct response, N = number of students.

For the above model, X
2

= 555.76.

This rather high value for X
2 is an indication of a poor fit, but

a closer look at the components of X
2

shows that a few problems made ex-

tremely large contributions to the total X
2

. The following problem, for

example, contributed 26 percent to the total X
2

obtained:

"A school playground is rectangular, 273 feet long
and 21 feet wide. What is the total length of the fence
around the playground..."

The observed proportion of correct responses for this item was 059, while

the predicted proportion was .97; clearly, this is a very poor fit. As a

second example, the following problem contributed 16 percent to the total

X
2

obtained.

"Mary is twice as old as Betty was 2 years ago.
Mary is 40 years old. How old is Betty...

A reduction in X
2 obtained by deleting those few extreme problems,

is still insufficient to yield a value of X
2

such that the model would

normally be accepted. An analysis on a reduced set of data is suggestive,

however, and useful. This reduced set excludes seven of the problems

that have extreme individual X
2

contributions. Since calculation of the

regression coefficients included the extreme problems, a recalculation

of the regression coefficients omitting these problems from the data

yields better fits of the model to data than those previously obtained.

18



We emphasize that this procedure of dropping individual problems

with large X
2 values is certainly not admissible as an inference procedure.

The X
2 values reported here provide a useful descriptive statistic for

summarizing the order of magnitude of deviations between the observed and

predicted results for the bulk of the problems, and for 1denti2ying types

of problems, such as those two just mentioned, that require a more elaborate

theory.

The regression equation for the reduced set of 63 problems,

z = -7.85 + .78
*

+ .29X
12

+ 02x
i3

+ 2.35X + .27x
15

+ 1.33x
i6

xil

(* indicates significance)

has a multiple R of .73, with a standard error of estimate of 1.59, and

R
2

of .53. For this reduced set, X
2

= 168.51.

Consideration of the partial correlation coefficients indicates that

most of the variance can be accounted for by X1, X2, x4, and x6. If we

reduce the number of variables in the regression equation to include only

these, the reduction in multiple R and R2 is very slight. Considering

only these four variables, the regression equation (for the 63 problems)

becomes

z = -7.55 + .90x
*

+ .30X + 2.42X. + 1.34x
11 12 14 i6

with a multiple R of .72, a standard error of estimate of 1.58, and R2

of .52. For this model, X2 = 178.33.
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IV. DISCUSSION

Although the predictive results of our first relatively crude analysis

of the data are far from what we ultimately hope to be able to offer, they

are somewhat promising. There is considerable difficulty in intuitively

rank-ordering the expected proportions of correct responses obtained in

word problems. We believe that our results give a sense of the real pos-
1

sibility of analyzing and predicting in terms of meaningful variables,

the response performance of children who are solving arithmetical word

problems. At first glance, the problem set appears to be quite complex.

Yet, with a few variables we have brought a considerable amount of order

to it. The most suggestive single finding is probably the importance of

the sequential variable in all the analyses. It is significant beyond

the 0001 level, indicating that it is clearly an important variable con-

tributing to problem difficulty.

The relatively sUbtle results obtained in this first study give a

clear indication of the difficulty in building a processing model, or,

to put it another way, in constructing an explanatory theory that is

adequate to account for all the difficulties students encounter in solving

word problems. From a theoretical standpoint, it' is apparent that nothing

short of a full syntactic and semantic analysis will suffice to predict

all the details that must be accounted for in the bahavior of students.

Even then, it is not simply a matter of an abstract syntax and semantics

for some significant portion of English or another natural language; it

is a matter of having a behaviorally sensitive syntax and semantics.

Many mathematicians concerned with mathematics education perhaps do not

appreciate sufficiently that until better fundamental theories are avail-

able, certain directions of deeper progress in mathematics education are

hardly possible. The present study was meant to be a very modest step

in a direction of much needed additional research,
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FOOTNOTES

This research was supported by the National Science Foundation and the

U. S. Office of Education. We are indebted to Professor Leon Henkin

for several specific suggestions that are acknawledged in appropriate

places in the text, and also to Mr. Roulette Smith for programming

assistance.

To take care of the case when the observed pi is either 0 or 1, we

use the following transformation

z =
log (2ni - 1) for pi = 0

log
1

2n - 1
for p. = 1 ,

i
i

where n. = the total number of subjects responding to item i. The

exact form of this transformation is not important.

3,To avoid any ambiguity, we always first minimize the number of steps

and then the number of operations.

4
The reason for designing the program in this way was to reduce the

time required for students to input large numbers themselves.

22



(Continued from inside front cover)

91 P. Suppes. Infccnation processing and choice behavior. January 31,1966.

92 G. Groen and R. C. Atkinson. Models for optimizing the learning process. February 11,1966. (Psycho!. Bulletin, 1966, 66, 309-320)

93 R. C. Atkinson and D. Hansen. Computer-assisted instruction in initial reading: Stanford project. Much 17,1966. (Reading Research

Quarterly, 1966, 2, 5-25)
94 P. Suppes. Probabilistic inference and the concept of total evidence. March 23,1966. (In J. Hintikka and P. Suppes (Eds.), Aspects of

inductive Logic. Amsterdwm North-Holland Publishing Co. , 1966. Pp. 49-65.

95 P. Suppes. The axiomatic method In high-school mathematics. Art 1112,1966. (The Role of Avlomatics and Problem Solving In Mathematics.

The Conference Board of the Mathematical Sciences, Washington, D. C. Ginn and Co., 1966. Pp. 69-76.

96 R. C. Atkinson, J. W. Breisford, and R. M. Shiffrin. Multi-process models for memory with applications to a continuous presentation task.

April 13, 1966. (J. math. Psychol., 1967, 4, 277-300 ).
97 P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. JuneI2, 1966.

98 R. Bjork. All-or-none subprocesses in the learning of complex sequences. (J. math. psychol., 1968, 1, 182-195).

99 E. Gammon. The statistical determination of linguistic units. July1,1966.

100 P. Suppes, L. Hyman, and M. Jerman. Linear structural models for response and latency performance In arithmetic. On J. P. Hill (ed.),

Minnesota Symposia on Child Psychology. Minneapolis, Minn.:1967. Pp. 160-200).

101 J. L. Young. Effects of intervals between reinforcements and test trials in paired-associate learning. August 1, 1966.

102 H. A. Wilson. An investigation of linguistic unit size in memory processes. August 3,1966.

103 J. T. Townsend. Choice behavior in a cued-recognition task. August 8,1966.

104 W. H. Batchelder. A mathematical analysis of multi-level verbal learning. August 9,1966.

105 H. A. Taylor. The observing response in a cued psychophysical 'Ask. August 10,1966.

106 R. A. Bjork . Learning and short-term retention of paired associates in relation to specific sequences of interpresentatIon intervals.

August 11,1966.

107 R. C. Atkinson and R. M. Shiffrin. Some Two-wocess models for memory. September 30,1966.

108 P. Suppes and C. Ihrke. Accelerated program in elementary-school mathematics--the third yew. January 30,1967.

109 P. Suppes and I. Rosenthal-Hill. Concept formation by kindergarten children In a card-sorting task. February 27,1967.

110 R. C. Atkinson and R. M. Shiffrin. Human memory: a proposed system and its control processes. March 21,1967.

I 11 Theodore S. Rodgers. Linguistic considerations in the design of the Stanford computer-based curriculum in initial reading. Junel, 1967.

112 Jack M. Knutson. Spelling drills using a computer-assisted Instructional system. June 30,1967.

113 R. C. Atkinson. Instruction in initial reading under computer control: the Stanford Project. July14,1967.

114 J. W. Breisford, Jr. and R. C. Atkinson. Recall of paired-associates as a function of overt and covert rehearsal procedures. July 21,1967.

115 J. H. Stelzer. Some results concerning subjective probability structures with semiorders. August 1, 1967

116 D. E. Rumelhart. The effects of interpresentation intervals on performance In a continuous paired vssociate task. August 11, 1967.

117 E. J. Fishman, L. Keller, and R. E. Atkinson. Massed vs. distributed practice In computerized spelling drills. AugustI8, 1967.

118 G. J. Groen. An investigation of some counting algorithms for simple addition problems. August 21,1967.

119 H. A. Wilson and R. C. Atkinson. Computer-based instruction in initial reading: a progress report on the Stanford Project. August 25,1967.

120 F. S. Roberts and P. Suppes. Some problems in the geometry of visual perception. August 31,1967. (Synthese, 1967, 17, 173-201)

121 D. Jamison. Bayesian decisions under total and partial ignorance. D. Jamison and J. Kozielecki. Subjective probabilities under total

uncertainty. September 4,1967.

122 R. C. Atkinson. Computerized instruction and the learning process. September 15, 1967.

123 W. K. Estes. Outline of a theory of punishment. October 1, 1967.

124 T. S. Rodgers. Measuring vocabulary difficulty : An analysis of item vulables in learning Russian-English and Japanese-English vocabulary

parts. December 18, 1967.

125 W. K. Estes. Reinforcement in human learning. December 20,1967.

126 G. L. Woiford, D. L. Wessel, W. K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection

models. January 31,1968.

127 R. C. Atkinson and R. M. Shiffrin, Some speculations on storage and retrieval processes in long-term memory. February 2, 1968.

128 John Hoimgren. Visual detection with imperfect recognition. March 29,1968.

129 Lucille B. Mlodnosky. The Frostig and the Bender Gestalt as predictors of reading achievement. April 12,1968.

130 P. Suppes. Some theoretical models for mathematics learning. April 15, 1968. (Journal of Research and Development in Education,

1967, 1, 5-22)
131 G. M. Olson. Learning and retention in a continuous recognition task. May 15,1968.

132 Ruth Norene Hartley. An investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968.

133 P. Suppes. Stimulus-response theory of finite automata. June 19, 1968.

134 N. Moier and P. Suppes. Quantifier-free axioms for constructive plane geometry. June 20, 1968. (In J. C. H. Gerretsen and

F. OW (Eds.), Compositio Mathematica. Vol. 20. Groningen, The Netherlands: Woiters-Noordhoff, 1968. Pp. 143-152.)

135 W. K. Estes and D. P. Horst. Latency as a function of number or response alternatives in paired-associate learning. July 1, 1968.

136 M. Schlag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psvchom. Sci., 1968, II, 141-142)

137 R. M. Shiffrin. Search and retrieval processes In long-term memory. August 15, 1968.

138 R. D. Freund, G. R. Loftus, and R.C. Atkinson. Applications of multiprocess models for memwy to continuous recognition tasks.

December 18, 1968.

139 R. C. Atkinson. Information delay in human learning. December 18, 1968.

140 R. C. Atkinson, J. E. Holmgren, and J. F. Juola. Processing time as influenced by the number of elements in the visual display.

March 14, 1969.

141 P. Suppes, E. F. Loftus, M. Jerman. Problem-solving on a computer-based teletype. March 25; 1969.


