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A new iterative algorithm is presented to solve for an n by 1

solution vector w, if one exists, to a set of linear inequalities, i

A w > 0 which arises in pattern recognition and switching theory. The
algorithm is an extension of the Ho-Kashyap algorithm, utilizing the
gradient descent procedure to minimize a criterion function for a

solution of the linear inequalities. The criterion function to be
N 2

minimized is J(y) = 4 ] (cosh % yi) where y = Aw-band b is a
i=1

vector with all positive elements. This criterion function has a

larger gradient than previously used criterion functions. The algorithm

is expressed below:

w(0) = 5#3(0), b(0) > 0

y(k) = A w(k) - bk

b(k+l) = b(k) + p(k) h(k)

h(o = [h (0] & [stnh y, (k) + stnh y, (1) |]

wkHl) = w(&) + p(k) ATh(K)
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where k is the iteration step and A" 1is the generalized inverse of the

N by n pattern matrix A. p(k) can be expressed as p(k) = 1/cosh ymax(k)
with ymax(k) - Mix |yi(k)| or as p(k) = Num./Den. where
t
Num. = [y(k) + |y(k)|] R(k) [y(k) + |y(k)|] and
t
Den. = 2[y(k) + |y(0) |1 ROOIL - & ATIRW [y + |y0)]]
where R is a diagonal matrix [rii] with rii = ginh yi/yi. The algorithm
also simultaneously tests for the nonexistence of a solution of the linear
inequalities whenever all Yy are nonpositive with at least one Yy negative.
This algorithm applies to two-category classification problems.

The algorithm has a faster rate of convergence than Ho-Kashyap
algorithm for a certain range of the initial value of b, b(0). A comparison
has been made between the improved algorithm with p(k) = Num./Den. given
above and the Ho-Kashyap algorithm with p=l. The convergence rate is
greatly increased for 0.001 < bi(O) < 0.5 (1=1,2,...,N) as verified by
computer results of sample problems in switching theory and pattern
recognition. For problems where a large number of iterations, for example,
greater than twenty, were required for the Ho-Kashyap algorithm, the
proposed algorithm reduced the number of iterations by a factor of 20 to
450. The total computing time was approximately reduced by a factor of
three and in one case by 380 with the proposed algorithm. For problems where

a small number of iterations were required by the Ho-Kashyap algorithm,

ottt et ey - e s € o m—
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for example, less than twenty, the proposed algorithm reduced the number
of iterations by as much as 30 percent.

The generalization of the proposed algorithm applicable to multi-
class pattern classification problems has been presented and a convergence
proof has been given. The algorithm solves for an n by R-1 solution matrix
U of a set of linear inequalities éﬁg.(gjjgi) > 0, (for all i¥j and
j=1,2,...,R), where the_gi's and the R vertex vectors of a (R-1) dimen-

sional equilateral simplex. This generalized algorithm is given in the

following equations:

u(o) = A’B(0)

Y(k) = A U(k) - B(k), 2,(k) = Y (k) E

1 =5 3
B(k+1) = B(k) + p(k) H[Y(K)]
-1
H[X(0) = (8, (200 + A, (O E,

Uktl) = UCK) + pCk) ATH[Y()]
where again k is the iteration step,

A
S, (Z(k) lns

24 (2())] = [sinh (2, (K)], (E=1,...,R-1)

iq 273

A (k) & [

A, k)],

jq
and

A
ihyq() = 454[200)) Sen (2, ().
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p(k) 1is expressed as
R 1.-1 t
t - -
k) = k) + H (Y(k E Z (k))E H, (Y(k
p(k) jzl lzl {nej( ) %—j(—( ))(—d ) R (k—j( ))—j z—j(—‘ ))
R-1
2 ] n°a-aahn
q.l q —q
where
) t. \-1,-1 _ t
nej(k) [153(“)3‘2% (k)) + zAj(k)](Ej E_j) R (ngj (k)_l}_(z_Z_j (k)) R-A-j (k)]
Bﬁzzj(k)) a a diagonal matrix [rii(kzj(k))]
and
Sinh ,Z
Cz.) & —2  (4a1,2,...,8-D).

1140 110

The proof of convergence of this multiclass algorithm utilizes the concept

of mapping the pattern classes into vertices of the equilateral simplex.
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I. INTRODUCTION

A. General Background

A great amount of research for the solution of linear
inequalities has been undertaken in the past ten years. One of the
reasons for this research is the development of linear separation

(1-5,12-19) *

approaches to pattern recognition and threshold logic

(6-11) Both of these problems require the determination of

problems.
a decision function or decision functions which, in the case of

linear separation, involve a system of linear inequalities.
1. Pattern Recognition

The problem of pattern recognition requires the consideration
of three fundamental aspects: namely, characterization, abstraction,

(13) The characterization aspect is concerned

and generalization.
with the measurement selection and feature extraction. ¥From the
measured patterns or raw data, a set of independent variables are
selected to describe the patterns under consideration. These
independent variables are known as primary attributes or measurements,

and are denoted by UgpsUnpeeellye These attributes can be further

processed to give a set of independent variables xl,xz,...xr, where

xi=¢i(u1,...ud), i=1,2,...r1,

*Parenthetical references placed superior to the line of text gefet

to the bibliography.

[




which adequately characterize the original patterns for the purpose

of classification. The vector x formed by the components X;,...X

ig called the pattern vector. The abstraction aspect is the
determination of the decision functions or discriminant functions

so as to separate the given sample patterns according to their
respective classes. This aspect is also called the training aspect.

For a R-category pattern classification problem, a set of R discriminant
functions, gj(g), j =1,2,...R, are to be determined from N sample
patterns of known classification such that gj(§)>’gi(§) for all i#j

if the pattern x is of ciass Cj’ For a two-category classification

or dichotomization problem, a single discriminant function,
g(x) = gl(gc_) - gz(v_c_).

may be used so that it separates all the sample pattern vectors
into two classes. Thus the function, g(x), must satisfy the following

two inequalities:
g(x)>0 for all sample patterns belonging to the class Cl’
g(x)<<0 for all sample patterns belonging to the class C,.

The ability of the determined discriminant functions to recognize

correctly the class of new sample patterns is considered the

generalization aspect which assesses the error rate after training.




2. Switching Problems

The switching problems referred to here are a special class
of pattern classification problems in which the primary attributes

are the r independent switching variables of the problem,

X 9XypeooX o Each of these variables can assume only one of

two values which can be represented by either 0 and 1

or <1 and 1. The pattern vectors, x's, are the vertices of a
r-cube, which are 2¥ i{n number. Every vertex of the hypercube may
belong to either one of the two classes or remain unspecified with
regard to its class. A Boolean function g(x), known as a switching

function is associated with every switching problem. It is a

~decision function to separate the vertices into two classes. Such

a decision function can be realized by a threshold logic circuit.
Thus the switching problem is essentially an abstraction problem .

and the techniques of linear inequalities have been applied to such

switching problems.(6’10:11)

B. Ho-Kashyap Algorithm

The deterministic abstraction problem for two-category
classification, as mentioned above is to determine a decision

function, g(x), of the pattern vector x such that




g(x)>0 if x belongs to class C,
g(x)<0 if x belongs to class C,

for all of the N sample pattern vectors. For the linear separation
of the pattern vectors x's, g(x) is a linear decision function

represented by

8(3‘_) - w1+ wf‘1+ oo + wr+1xr,

where the weight components W) oW s Wy are to be determined. For
notational simplicity, let x be now redefined asan n by 1 augmented
pattern vector whose first component is unity and the remaining
(n-1) components are the pattern components X,,X,se«.X. mentioned

previously, where n=r+l. The transpose of x is
xt = (1,x,,x x_) (1.1)
- ’ 1’ 2’... r * °
Let the transpose of the n by 1 weight vector be
wt = (Wq,w w.) (1.2)
w 1’ 2...0 n [
The discriminant function for the dichotomization problem is

g(x) = x"w. (1.3)

Among the N sample or training patterns, let n, of them belong to

class (!1 and n, of them to class Cz, where nl-l-nz = N. They are

designated respectively by 110 (1 = 1,2,...n1), and 4Xo»




(1 = 1,2,...n2), where the subscript on the right denotes the

pattern class and the subscript on the left denotes the ith pattern

in that class. Then the problem is to determine a weight vector

w such that

1%1 w>0 for i = 1,...n,,
and (1.4)
t =
1%, w<0 for 1 = 1,...n,.

Ho and Kashyap have developed an iterative algorithm to solve

for w, which is considered one of the best available algorit:hms.(lz)

Let A be the N by n matrix of sample patterns defined below:
xv )
-1

A= _ Lt (1.5)




Inequality (1.4) then becomes inequality (1.6):

Aw>0. (1.6)

Let b be a;N by 1 vector with all positive components and y be the

N by 1 vector defined by
l = A‘i - ho (1.7)

The Ho-Kashyap iterative algorithm for a solution of w is given by

w(0) = _#_1_3_(0). b(0)> 0 but otherwise arbitary

(k) = Awi) - b(k)
w+l) = w(®) + pA’[y® + |y®|1, O0<ps1

b(k+1) = b(k) + ply(k) + |x(lt)|l
e
it

where k denotes the iteration number and A 1is the generalized inverse

(20) The algorithm is exponentially convergent and a solution

o A.
of w can be obtained in a finite number of iterations when all of
the components of y(k) become positive or zero, provided that the
given sample patterns are linearly separable.

The Ho-Kashyap algorithm was developed from the view point
of minimizing a criterion function J = “Ag - 9_"2 - “1"2. The

derivation consists of the following two steps: (1) for a fixed

b>0, determine a w to be a least square fit to Aw - b = 0, and

(2) for a fixed w, allow b to change in the direction of steepest




descent of J, subject to the constraint b>0. This algorithm has

a high convergence rate for a number of pattern recognition problems.
It also provides a test for nonlinear separability of the sample
patterns. If the given sample patterns are not linearly separable,
that is, the system Aw>0 is inconsistent, this is indicated at

a certain step '-k* in the iteration by y( k*)s 0 which is defined as
all components of xﬁkf) are negative or zero but with at least one

non-zero component.

The generalization of the Ho-Kashyap algorithm to multi-

class pattern classification has been attempted by Blaydon(ls) and

(16)

Fu and Wee and Li, et e1(°3). Experimental results have also

been reported.

C. Objectives of the Dissertation

As ascertained by Devyaterikov, Propoi, and Tsypkin(m),

a general recursive formula can be obtained for the system of
inequalities (1.6) by minimizing a suitably chosen convex criterion
function J(y). In addition to the original Ho-Kashyap algorithm

which uses J(y) = yi, other well known non-parametric learning

algorithms may a].s:):‘)e interpreted as obtained from minimizing

1 different criterion functions J(y), for example, J = |1| -y for

type training algorithm. Thus the solution of a system of linear

i perceptron's training algorithm, and J -(|1| - 2)2 for the relaxation
E

|

| inequalities can be made equivalent to a minimization problem.

é

ff
|




With this concept as the motivation, it has been attempted
to choose another criterion function J having steeper gradient than
Ho-Kashyap's with a hope to further accelerate the convergence of
the algorithm. Thus, the main objectives of this dissertation are:
(1) to develop an improved iterative algorithm for the two-category

classification problem with the choice of

N 2
J(Y) -4§ (Cosh 1/2 y)°,
3
At

and (2) to generalize this algorithm for multiclass pattern classi-
fication. The convergence proofs are given in Chapter II and
Chapter V respectively. The improvement on the convergent rate has
been demonstrated by a number of computer experiments on switching

problems and pattern recognition problems. These experimental

results are presented in Chapters III and IV.




II. AN ACCELERATED ALGORITHM OF LINEAR

INEQUALITIES FOR DICHOTOMIZATION

A. Development of the Algorithm

In this chapter, an accelerated iterative algorithm will be
developed for the solution of the set of linear inequalities (1.6)

which is rewritten in the following equation:
Aw>0. (2.1)

This algorithm is an improvement of the Ho-Kashyap algorithm by choosing

a criterion function

N K
J(y) = &4 ) (cosh 3 y,) (2.2)
i=1

to be minimized where y, is the ith component of the N by 1 vector y
defined in equation (1.7), that is,

y=Aw-b, b>0 | (2.3)

The improvement lies in an acceleration of the Ho-Kashyap algorithm caused
by a steeper gradient of J(y) as can be seen when a comparison is made

between the two criterion functions. Let J;,(Y) designate the criterion

function used in the Ho-Kashyap algorithm,
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N 2
) y, - (2.4)

2
3, - x| =L

Since J(Y) and Jhk(x) reach their respective minimal when each (cosh-% yi)2
’
and each yi“ are respectively minimized, one can simply compare J(yi) and

Jhk(yi)’ the convex functions of one variable only, where

J(yy) = 4(cosh %:-yi)2 (2.5)

and
J ., (y,) = 2 (2.6)
he'\Vi) © Y4 .

These two functions are illustrated in Figure 1. Taking the gradients of

J(yi) and Jhk(yi) with respect to y, , one obtains

33(?1) 1 1
ayi = 4 (cosh 7 yi) (sinh 5 yi) = 2 sinh Yy
2 3 2 5
=2y, ¢ 5T V1 +-§? Yy + ... (2.7)
and
3J,, (y,)
hk 71" o oy (2.8)
¥y i
3J(y1)

It 1s clear that the absolute value of is greater than the absolute

y

value of everywhere except at Yy = 0 where they are equal. In

ay4
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J(yy)

1T 24

+ 22

1 2

J(yi) = 4 (cosh i'yi) 116

Figure 1. Comparison of Criterion Functions J(yi) and Jhk(yi)'




12

3J(y) 3J, . (1)
> is greater than the gradient
y

except at the origin y = 0. Since the gradient descent procedure 1s used

general, the gradient

in both algorithms, and since y and b, or y and w, are linearly related,

—- everywhere

it is' conceivable that'the proposed algorithm may have a higher convergence

rate for a solution w.

As mentioned before, J(y) reaches a minimum when each term

(cosh i yi)z, (i=1,...,N), is minimized. For each (cosh 1 yi)2 to be a

2 2
minimum, each yi, (1=1,...,N), must equal zero and y = 0 gives a desired
t
golution. Thus one is attempting to cluster the values [151] v and

t
-[jgt_z] w, (1-1,2,...,nl;j-l,Z,...,nz) about the positive scalers bi's,

(1-1,2,....,N). Since the bi's are only constrained to be positive, J(y)
can be minimized with respect to both w and b subject to the condition
that b » 0. Note that it is not necessary to attain the minimum value
of J(y); in fact, a solution y_* 1s obtained whenever y > 0 with b > 0

*
from which follows Aw > b > 0.

Let the matrix A defined in (1.5) be also represented as

rall CPREEE aln—
A 8,0 355 vr By . (2.9)
anl aNZ oo aNn
From (2.3), ) -
yi-ail w1+a12 w2+ +ain wn—-bi (2.10)

(i=1,2,...,N)
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and

8yi
55? = aij (2.11)
J
<
ayi
Sg;'= -dij (2.12)

where di is th- kronecker delta. Let

J

1.2 . ‘.
Ji(z) = 4(cosh E-yi) s (i=1,2,...,N) (2.13)
p then
L N
I = )} Iy (2.14)
i=1

The gradients of Ji(X) with respect to wj and bj are respectively

aJ, (y) dy
N S 1 1.y 74
o 4 (cosh > yi)(sinh > }i) rom
h| h|
8yi
o= 2 —— R . .
(sinh yi) e 2 aij sinh Y4 (2.15)
and
3, (¥) 3yi
= 2 — = - i .
Bbj (sinh yi) abj 261j sinh ¥y (2.16)




8bN

where the derivative of a scalar with resvect to a column vector is a

column vector. Hence,the gradient of J(y) with respect to w is given by

af(y) N 3J.(y)
M yoy ow

2 sinh Yy a1, + 2 sinh Y, a59 + ... + 2 sinh 20 N
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and the gradient of J(y) with respect to b is given by
po - o -
sinh Y1 sinh ¥y
3J(y) N aJi(X)
5B = b = - 21 | sinh y, |= - 2 |sinh y, . (2.20)
- i=1 - L] ]
sinh y sinh y
N N
e - e o
3J(y)
Since w is not constrained in any way,-7;;—“= 0 implies
(sinh v, | 0 |
sinh y,
sinh Y, ) 0
sinh YN L0

which, in turn, implies yi =0 for all i=1,2,...,N. Therefore, for a

fixed b > 0, minimizing J(y) with respect to w gilves

y=Aw-b>=0,

Solving the above equation for w, one obtains

w=alp (2.21)
(20)

where A# is the generalized inverse of A
9J(y)

On the other hand, for a fixed w, = 0 with b > 0 dictates

a descent procedure of the following form, with k denoting the iteration

number:




b(k + 1) = b(k) + Ab(k)

16

(2.22)

where the components of Abi(k), i=1,2,...,N, of Ab(k) are governed by

ab, (k)oK <

™ 3J(y(k))
o )4= 2simhy, ify >0,

Sy

0 ify <0.

(2.23)

Introduce a positive scalar p(k) as the proportionality constant and

rewrite equation (2.23) in the vector form,

where

As can be shown later, p(k) may be chosen as equal to

Ab(k) = p(k)

sinh yz(k) + |sinh yz(k)|

sinh yy (k) + | #inh yN(k)|

= p(k) h(k) ,

h(k) =

1
coshy (k)
max

p(k) =

- -
sinh yl(k) + |sinh yl(k)|

| -

- - - -
hl(k) sinh yl(k) + |sinh yl(k)|
hz(k) sinh y, (k) + | sinh yz(k)|

Lhﬁ(k) L.sinh yN(k) + |sinh yN(k)I

(2.24)

(2.25)

€2.26)

. — —— ———




where

Y ey () " Ma;x ly, ], (2.27)
Substituting (2.24) into (2.22) and, from (2.21), writing
# it
w(k + 1) = A'b(k + 1) = A [b(k) + 8b(K)]
- w(k) + p(l) A" h(W , (2.28)

one obtains the following algorithm:

P_g(O) = A#_b;(O) ’ b(0) > 0 but otherwise arbitrary

' y(k) = A w(k) - b(k)
| (2.29)

T bekt1) = b(k) + p(k) h(K)

w(ktl) = w(k) + p(R)ATR(K)
.

where h(k) and p(k) are given by equations (2.25) and (2.26) respectively.
Note that in this algorithm p(k) varies at each step and is a nonlinear
function of y(k). A recursive relation in y(k) can also be obtained from

(2.29).

y(ktl) = A w(ktl) - b(k+l) = A alb (1) - Bl#D)
o 4 aTBGO + p(ORO] - B - PAOBK)
- A w() - b0 + A AT - DpORW

Y1) = (0 + p() & A" - D no . (2.30)
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Just like the Ho-Kashyap algorithm, it can be shown that the
above algorithm (2.29) converges to a solution gf of tlie system of
linear inequalities in a fimite number of steps provided that a solution
exists, and simultaneously acts as a test for the inconsistency of the
linear inequalities. These properties are formally stated in a theorem

as given in the next section.

B. Theorem 1

Before discussing the main theorem, a lemma to be used in the
proof of the theorem will be given first.

Lemma 1:Let one consider the set of linear inequalities (2.1) and the

algorithm (2.29) to solve this set. Then
1) y(k) 3 0 for any k;
and

2) 1if the set of linear inequalities 1s consistent, then

y(k) ¢ 0 for any k.

(12)

This lemma is the same as the one given by Ho and Kashyap except that
the iterative algorithm is different. The proof of the lemma is not 3iven
here since it is identical to the proof of Ho-Kashyap lemma. Recall again
the notation used in the lemma: y(k) < O means that y (k) < 0 for all i
but y possesses at least one negative component. This lemma is a rigorous

statement that with a consistent set of linear inequalities A w > 0, the

elements of the vector y(k) cannot be all non-positive.
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Theopem 1: Consider the set of linear inequalities (2.1) and the

algorithm (2.29) to solve these inequalities, and let
vig®)l = |1y 112
1) If the set of linear inequalities ié consistent then
a) AV[y(W)] & Viy(k+D)]- Vy(k)] < 0 and lim V[y(K)] = 0
implying convergence to a solution in ::minfinite number
of steps; and
b) actually, a solution is obtained in a finite number of
steps.

2) If the set of linear inequalities is inconsistent, then

*
there exist a positive integer k such that

*
aV[y(k)] < 0 for k < k

AV[y(k)] = O for k > k", and

*
y(k) £ 0 for k < k
y(k) = y(k*) < 0 for k > K
and
X *
w(k) = w(k ) for k > k

x x
b(k) = b(k ) for k > k'

In other words, the occurrence of a nonpositive vector y (k)
at any step terminates the algorithm and indicates the incon-

sistency of the given set of linear inequalities.

‘-~




ERIC

FullToxt Provided by ERI
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Proof:

Part 1: Since the algorithm (2.29) can be rewritten as a recursive relatior:

in y(k) given by (2.30), and
Vig(0)] = ||y ||% > 0 for all y(k) # 0.  (2.31)

V[y(k)] can be considered as a Liapunov function for the nonlinear differ-

ence equation (2.30). Thus

A VIy()] & Viy(kt1)] - vly(k)]

- g0 | |2 - |1z ] 12 = yE(lel) y(k1) - y© (k) y(k)
- [y + p0 A A" - DR 15y + p (A A" - D)
yE(k) y(K)

pORt () (a A - Dy + pk) yE) A AT - D heo

+p200 1t s’ - pf@aa’ - w.

20
Since (é“é# - I) is hermitian idempotent( ),

@At - Dt = A

"_I_)’

- aae—

then,

VIy(o] = 2 p(k) hEG (4 A" - Dy + pRaort o - 4 Ahnwo.
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I
Now
# # g F
AAy(k) =AA [Aw(k) -b(k)] =AA[A A b(k) - b(k)]
- [A _#_ A# _ A A#lh(k) - [A ﬁ# _ Aé#lk(k)
= 9_’
hence
AV{y(k)] reduces to
aVIy(] = -2 poRt () 3 + p2(nT (0 (L - A ADAC, (2.32)
Let
po— - r- a—
sinh y, sinh Y1
L[] y2
y
sinh y, 1
. sinh y
w7 - |75
sinh y .
N sinh YN
Yy
| i YN N i
_— - L - r -
sinh Y, 0 0 ¥,
41
sinh y
| =l o 2 0 y
E Yo .2
.................. ;i;ﬂ.y .
0 0 N1 vy
N
R 4L d
v = R(y) ¥ (2.33)

ERIC

Aruitoxt provided by Eic:

.




= diag (rll’rzz’.”’rNN)' (2.34)

sinh y ¢
Note that r, = _—___ 15> 0 for all Y,» R(y) > 0 and R (y) = R(y).
14 N 1’ = = =
Then s(y) has the following properties

85 = 3R (p) = ¥Ry,
s | = [RYy| = R |y],

s 15 = [s @] = |y|° R(y) . (2.35)

From (2.25) and (2.35), the properties of h(y) are:

h(y) = s(y) + [s(y}|= R(y)y + R |y| = Ry + |y]],

t
B = e + 2@ = 8 @ + 15w =y + |y/ Ry
= [y + 31" R (2.36)
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Reducing the first term of equation (2.32) by the relation in (2.36), one

obtains

-2 p(KAE(K)y (k) = -2 p(k) [y(k) + |y(k) 1% R(K) y(k)
= —p(k) [y(k) + |y(k)[1® R(k) y(k)
-p(k) [y(k) + |y(k)|1® R(K)y (k).

Adding [z(k)| to the first term and subtracting IX(k)I from the second

term on the right hand side of the above equation gives

-2 p(RE(K) y(k) = -p(k) [x(k) + |y(k) 1% R(K) [y(k) + |y(k)|]
-p (k) [y (k) + |y(k)|1® ROy (k) - |y(k)]]. (2.37)

It will be shown that the second term on the right hand side of equation

(2.37) is zero. Since

[y(k) + |y() 1% R(K) [y(k) - y(k)] =

= ly, () + [y (O], cony y () + [y ()]

i _ _ -
r11<k> 0 ... 0 y, (K) lyl(k)l
0 (k) oo 0| |y, (k) - |y, (k)|
0 0 oo () | 1y (K) - |y (k)]

A NN N N—

(2.38)

{
<
(V'S
~
x
~

N
- 121 rii(k)[yi(k) + |yi(k)|][yi(k)




ly (k) - |y (K)]] = 0. 1f y (k) 20
1 N i

[y, (k) + ly ()1 = 0. 1f y (k) <0,

therefore,

(k) + |y 15REI [y(K) - 3] =0 . (2.39) ‘

Substitute (2.39) into (2.37). The first term of equation (2.32) is then ‘

reduced to

2 p()RS(K) y(k) = -p(K) [y(k) + ly () | 15RCK) [y (1) + |3(K)]. (2.40)

Substituting (2.36) and (2.40) 1into (2.32), one obtains ‘

AV[y(1)] = -p(k) [y(K) + Iy | 15RO [y (k) + |3 ]]

#p2(I) [y () + [y() [1°RAO (L - A ahrOO [z + |y ][]

- -[y(k) + lz(k)llt[p(k)_&(k) + p2(KIR(K) (A A# - DRK) ) [y(k) +| y() ] ‘

- |1y + [z [11° .
(2 (ORUVA A RO+ ORMK)-p* (R (1) }.

(2.41)

in particular, avi{y(k)] = O only
2
) - p (ORZ(1)]

For AV([y(k)] to be negative semidefinite,

1f y(k) = 0 or y(k) <0, the matrix [pz(k)g(k) A Aﬂg(k) + p(k)R(k
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imust be positive definite. éﬂé# is positive semidefinite since é;é# is
hermitian idempotent, gFé_é# x >0 for any x; it follows that

o w—— o —— S o— — e — oowm — — — — —— c——

RA i is also positive semidefinite. Now one can choose a p(k) such

that [p()R(K) - p2(RZ(K)] is positive definite. From (2.34),

p(K)R() -p LIRZ(K) =

p()r (k) - pz(k)rllz(k) 0 . 0
11
0 b, (K)-p2(k)r2, () 0
- 22. 22 .
0 0 ()T (K)=p> (K)r2 (k)
NN ) NN

[p(K)R(k) - pz(k)E?(k)] is positive definite if

o)z, (1 - pz(k)riiz(k)] > 0 for all i=1,2,...,N. (2.42)
i
sinh Yy
Since rii(k) = -—3;———— > 0 for all i and p(k) is restricted to be positive,
i

the above condition reduces to the condition

1 - p(k) rii(k) > 0 for all i=1,2,...,N. (2.43)

For p(k) chosen in equation (2.26),
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where
y (k) = Max |y (K],
max i i
k
pllr, (k) = i (k)_Si“h ti;k) ) Si?:)Z§(h) (®)
cos ymax yi yi S ymax
3 5 2 4(k)
y; (k) y, (k) y; (K) Yy
(v, (0 + —Hgp—+ TS+ .) @+ Tp o+
4 = 4
9 yZ‘x(k) yiax(k) iax y'max(k)
v (k)1 +-—ﬂ%h———-+ Y eer) 1+ ==+ iy + ...
2n
@ (k)
e
n=o (2n+1) |
I max(®)
n=o (2n)!
Note that
2
(k)
71 < 1 for all i=1,...N
5 A
y max(k)
2n
Yy (k)
i=1,2,...,N
(2n+1) ! < 1 for all B
y22 (k) n=1,2,...,
max

(2n)!
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it follows that
© 2
Z Yin (k)
n=0 (2n+1)!
p(K)r, (k) = 5 < 1. (2.44)
i1 ° 2 gy
z ymax (
n=o (2n)!

Thus the condition (2.43) is satisfied and [p(k)R(K) - pz(k)gz(k)] is

1
cosh ymax(k)
property of negative semidefinite for p(k) =

positive definite for p(k) = Thus AV[y(k)] has the desired

1
cosh ymax(k)

and for any
finite y(k).

From equation (2.41) one notes that AV[zﬁk)] equals zero if and
only if y(k) = 0 ér y(k) < 0. Since it is assumed that the set of linear

inequalities (2.1) is consistent, and from the lemma y(k) { O, therefore

AVIy(k)] <O for all y(k) # O
(2.45)
= 0 if y(k) = 0,
By Liapunov's stability criterion, the equilibrium state y = 0 of the
2
discrete system (2.30) can be reached asymptotically, i.e., iim||xﬁk)|l =0,
~»00
*k

*k
which corresponds to a solution w with Aw =Db> 0. This completes

the proof of Part 1(a).

To prove the convergence of the algorithm (2.29) in a £inite number

of steps, one notes that b(k) is a nondecreasing vector. Let

bt(0) = [1,1,...1]
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then

bE(k) > b(0) > [1,1,...,1] for any k > O.

Since A w{k) = b(k) + y(k), Iy_t(k)l < [1,1,...,1] implies _éy_*(k) >0
when a solution w' is reached. But Viy(k)] < 1 implies Izﬁ(k)|<[1,...,1].
Since V[y(k)] comverges to zero in infinite time, it must converge to
, the region V[y(k)] = 1 in finite time, hence IXF(k)l < [1,1,...,1],
A w(k) > 0O, and a solution g* = w(k) is obtained in a finite number of
steps. This completes the proof of Part 1(b).

Part 2: It has been proved in Part 1 that V[y(k)]is negative semidefinite

v independent of the consistency of the linear inequalities. Now, if the
set of linear inequalities (2.1) is inconsistent, one notes that y(k)
cannot be 0 and hence V[y(k)] cannot become zero for any k > 0. There

*
must exist a value of k, called k , such that

*

AV[y(k)] <0 for 0 < k <k,
=0 for k=K,

%

y(k) 40 for 0 < k < k .

x
But V[y(k)] = 0 if either y(k™) = 0 or y(k) < 0. Since y(k*) #0,

*
this implies y(k*) < O and hence, from (2.25), h(k") = 0. Equation (2.30)

indicates that

g(k) = y(K) < 0 for all k > k"
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As a consequence, one obtains

*

aviy(k)] = 0 for all k > k
*

h(k) = 0 for all k > k
* *

w(k) = w(k ) for all k > k
% *

b(k) = b(k ) for all k > k

This completes the proof of the theorem.

C. An Optimum Choice of p(k)

1
The choice of p(k) = cosh y ®) in the previous section is
ma

only one of many possible choices of p(k) for the convergence of the
algorithm (2.29). The convergence rate may be further improved by
choosing a p(k) such that the decrease in the Liapunov function Viy(k)]
{s maximized at every step, that is, -AV[y(k)] is maximized with
respect to p(k).

Take the partial derivative of AV[y(k)] in equation (2.41)

with respect to p(k),

M{-avly(y ]y o[y +| y(0)|1°[PGIRA) + p2 (1 R(K) (AAT-D)R(K) ] [y () + |y (k) |]
a{(p(K)} 3p (K)

[y G0+ g (00 1RG0 -2 (ORG) (L-mDIRO I [y (R+]y (1. (2.46)

For -AV[y(k)] to be a maximum, a{—AZ[%iﬁ)]} must equal zero as a necessary
P

condition. Hence,
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200 [y (k) + |y(1) |1EROO (X - A ADRMO I [y(0) + |3 ]

= [y(k) + |y 1R [y(k) + |y)]]

[y(k) + |zﬂk)|]s§(k)[zﬁk) + |y(k)|] (2.47)

p(k) = .
20y (k) + |y ]1 ROIIT - A ATIRG) [y (1) + |y(0)]]

provided that

[y() + |y [15RAO (I - A ATIRGD [y + |y |1 £ 0.
(2.48)

During the iteration process, y(k) # 0 and y(k) $ 0. Since R(k) > 0
and I - A“A# > 0, the condition (2.48) is satisfied unless I - ézé# = 0;
therefore, for I - A”A# > 0, both numerator and denominator in (2.47)
are positive definite, hence p(k) given by (2.47) is positive. At this
value of p(k), AV[y(k)] is negative definite in [y(k) + lxﬁk)]] which
is required in the convergence proof of the algorithm (2.29). This can

be shown by substituting (2.47) into (2.41) which, upon simplification,

gives

AV[y(k)] = - -;-p(k) [y (k) +]y (k) |15RA) [y (k) +|y()|] < 0

2 (2.49)
3°{-avV[y(k)]}
For this value of -AV[y(k)] to be a maximum, 5 must be

3{p(k)}
less than zero for p(k) given by (2.47). Since, in general,




22 (-aviy(k) 1}
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3{p(k)}?

- [y + |y [1E[2R() A A - DROO Iy + [y

(2.50)

which is negative definite in [y(k) + ly(k)|1. Thus p(k) of equation

(2.47) does maximize -AV[y(k)] at each iteration and is the optimum

it

choice if _I_—_@_é > 0.

1¢ 1 - A AT = 0, cquation (2.48) is not satisfied and -AV[y(K}]

becomes a linear function of p(k),

Ay = [y + |y [150R [y (0 + |y ]

which has no finite maxima at finite p(k). Equation (2.47) cannot be

used but any other positive p(k) greater than

1 . will
ymax( )

cosh

improve the convergence rate.

D. Summary of the Procedure

The following ten steps summarize the procedure developed to

solve for a solution w of a set of linear inequalities A w > 0.

1.

w(0), where w(0) = Q#E(O).

Select a b(0) > 0. Calculate the initial weight vector,

A
Determine the z vector, where z = Aw.

Check if the z vector is greater than 0, that is all zy > 0,

for i=1,...,N.




9.

10.
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If z is greater than 0, a solution w has just been obtained
and the problem is linear separable; otherwise

Calculate the y vector by y = z - b.
Check the y vector if y < 0, that is, all yi'i 0, for
i=1,...,N, but with at least one negative component.

If y < 0, then the set of linear inequalities is incon-
gdistent or the problem is not linear separable; otherwise
Modify b such that b = b + p h, where h is calculated
from equation (2.25) and p from either equation (2.26)

or equation (2.47).

Modify w such that w = w + p th.

Return to step 2.

The above steps are shown in the flow chart in Figure 2. Notice

that, just like the tio-Kashyap algorithm, the process continues until

the consistency or separability of the problem is determined.




no
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is ,
y <0 y=z-b
yes yes

Problem is Problem is
not linearly
scparabie separable

p = equation(2.26)

or equation(2.47)

Figure 2.

Flow Chart of the Proposed Algorithm.




34

ITII. APPLICATION OF THE ACCELERATED ALGORITHM

TO SWITCHING FUNCTIOCNS

A. A Special Algorithm for Switching Functions

For a switching function of r binary variables, XqsXgse e esXy
one is concerned with the vertices of a r cube, each vertex being assigned
to only one of the two classes C1 or CZ' It is required to find a
separating hyperplane, if one exists, between the two classes.

If an n by 1 vector x, (n=r+l), as defined in (1.1), is associated

with each vertex of the hypercube, that is,

t
X = (xo,xl,xz,... xr)

where xo 1s the threshold attribute which will always equal +1 and
the components xl,...,xr are the coordinates of a vertex of the r-
dimensional hypercube. Assume that ea~h xi, (i=1,2,...,r), may take

on values +1 and -1 instead of +1 and 0. Let

{.x cees

%10 X1 n X;} € Class C

1 1

{ x.} € Class 02

(n1+1)-’52’ (n1+2)3‘—2’ a2

where the intersection of class 1 and class 2 is the empty set. Each one

of the 2f vertices of the r cube 1s allotted to one class or the other.

r
Then the total number of pattern vectors of the two classes is m=2",
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Finding a separating hyperplane g(x) = 0 between the two classes is

equivalent to finding a weight vector w as defined in (1.2) such that

t
g(jg) = JE' v >0 for j=1,2,...,n,

<0 for j=n1+1,...,m

(3.1)

which is the same as

where -w 1is called the threshold value and wi's, (i=2,3,...,n), are
1

called weights for the switching function g(x) = EFE- Write all j§.in

a compact matrix form as defined in (1.5)

- . -
1X1

A= t (3.2)
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The set of equations (3.1) can be rewritten as

Aw>0.

Then a weight vector w of the Boolean function g(x) can be obtained by
solving for the above inequalities. If a separating hyperplane or a
switching function does not exist, then the above inequalities will be
inconsistent.

The accelerated algorithm developed in the previous chapter will
be used to obtain a suitable weight vector for each of the switching
functions considered in the next section to show its hish convergence

rate and effectiveness. Following the Ho-Kashyap discussion(lz)

, the
algorithm can be significantly simplified, however, owing to the special

nature of switching functions. An essential property of the binary

2 9
variables xl...,xris normality and orthogonality(l“’“l), thus
AfA = 271 = 27y (1.)
and
4 -1 t -
At = AT At = 2T At = TTIAT = 27T At (3.4)

Hence, A# in the algorithm can be replaced by 2-T At for switching

functions. The accelerated algorithm in cquation (2.29) becomes
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Tg(O) = 2_(n—1)éfgﬁ0), b(0) >0 but otherwise arbitrary
y(k) = A w(k) - b(k)

‘i (3.5)
b(k+1l) = b(k) + p(k)h(k)
w(ktl) = w(k) + 271 p (1) ATh (k)

where h(k) is given by equation (2.25),.and p(k) can be given by either
equation (2.26) or equation (2.47). A digital computer program for the
special algorithm (3.5) has been written in MAD language and is listed

in Appendix A.

B. Example Problems

Seven switching function problems are presented to demonstrate
the effectiveness of the accelerated algorithm. Comparisons are made
between the results obtained by this algorithm and those ob.ained by
Ho-Kashyap algorithm to illustrate the improved convergence rate. The
first two examples are explained in detail while the results of the
other five examples are given and discussed. Example 3 is a Boolean
switching function defined by Winder(6) as a testing function for newly
created procedures for switching problems.

1. Example 1: A switching function of three binary variables.

Consider that in a Boolean function of three binary variables

A, B, and C,




Designate the true x's as of class C, and the false x's as of class

C Then

2.

Class C1

Class C2

Using (1,-1), instead

(i=1,...,r; r=3), one

38

T=AB'+AC' +B'C

F=BC+A'C+ A'B.

1

(0,4,5,6} = {1x), 2%15 3%35 4%}

{1,2,3,7} = {x }

5%2° 620 772’ 82
of (1,0), for the binary representation of x
obtains

(1,-1,-1,-1)

(1,1,-1,-1)

(1,1,-1,1)

(1,1,1,-1)

(1,-1,-1,1)

(1,-1,1,-1)

(1,-191,1)

(1,1,1,1)

i’
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Note that x always equal to +l1 and, in this case, n=4, m=8. The matrix
o
A is
- - - -
1 -1 -1 -1
1*1
1 1 -1 -1
2%
3% 1 1 -1 1
X 1 1 1 -1
41
A= —552 - -1 1 1 -1
- -1 -
652 l1 -1 1
- -1 1 -1 -1
7%2 1
8%y -1 -1 -1 -1
. d - d .
Choose
bt (0) = [1,1,1,1,1,1,1]
then

Lr o1 -
w(0) = —=— A% =g [o] [ o
27 4 1/2

4 |=|-172

-4 -1/2

= b . -




and

R S L o

Since é;ﬂﬂo) > 0, the procedure terminates at the zeroth iteration.

result is the same as obtained from the Ho-Kashyap algorithm.

40

This

t
function g(x) = x w is obtained by taking the threshold element -w, = 0

1 1

=1 = _1 =
and the three weight components W, = 3 w3 -3 W =5 Note that

this w(0) should also satisfy the relationships fof the Boolean function

T and F and 4t does as shown below:
AB' »>1/2 - (-1/2) =1

AC' »1/2 - (-1/2) =1

B'C' + —(~1/2)-(-1/2)

B C -+ (-1/2) + (-1/2)

A'C +» -(1/2) + (-1/2)

A'B +» —(1/2) + (-1/2)

2. Example 2: A switching function of

>0
>0

1>0

-1 <0
-1 <0

-1 <0

four binary variables.

In a Boolean function of four variables A, B, C, and D, consider

T=BCD+AC+AD+ AB'

F=BC'D'+A'C' +A'D' +A'B".

A switching
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This corresponds to Class C1 and Class C2 of x,

Class C; = {7,9 to 15} = {;%;,...g%,}

Class C2 = {0 to 6,8} = x } .

9_2,...162(—2

Using (1,-1) for the binary representation of x,, (i=l,...,r;r=4), one

obtains

= (19—1,1’191)

xt = (,1,-1,-1,1)

“
n

(191’—1’1’—1)

X = (1’1"1’1’1)

= (1’191’”1”1)

v
%
=

X = (1’1,1’-191)

= (1)1’1’1’-1)

= (1’1’1’1’1)

Tx
=

= (1,-1,-1,-1,-1)

t = (1’—1’—1’—1’1)
t

xt = (1,-1,-1,1,-1)

(19—19—1’1’1)

>
n

- m——— ey - e
- v st <o s e—— r—
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xt. = (1,-1,1,-1,%1)
= (1,-1,1,-1,1)

X = (19'191’19-1)

(1,1,-1,-1,-1)

The m by n matrix A, where n=5, m=16, 1s represented by

>
]
-
-
-
-
-
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Choose
v5(0) = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
|
E
i
then
- -
w(0) = —— A%B(0) = I¢ 0 0
on-1 12 .75
4 1= |.25
4 25
4 .25 [ ]
L - -

Since A w(0) 1 0, oné has to determine y(0), S(0), h(0), and p(0). Since
y€0) $ O, one can proceed with the algorithm, to calculate w(l). Let
p(k) in gqquation (2.26) be used,

1 1 1

p(O) = = =
cosh y___(0) cosh 1l 1.54305
max

where

y (0) = Max |y (0)] =1 .
max i i

w0 = s5(0) + |s°(0) ]

= [0,0,0,0,0,0,0,1.04218,1.04218,0,0,0,0,0,0,0]
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The algorithm terminates after the first iteration where A w(l) > 0 with

w(l) = %3- 0 + %3 0 "%g 0
12 67546 12.67546
4 67546 4.67546
4 67546 4.67546
4 67546 4.67546
I n - L -

This is a desired weight vector w to be used in the switching function

g(x) = it_"l-

3. Example 3: Winder's problem of eight binary variables(6)

Consider a Boolean function of eight binary variables which correspond

to the separation of two classes:

Class 1 = {27 to 31, 39,41,to 47, 49 to 63, 71,73 to 79
81 to 127, 131, 133 to 255}

= {j§1} , (j=1,2,...,207)

Class 2 = {0 to 26, 32 to 38, 40,48,64 to 70, 72, 80,

128 to 130, 133}

- {152} (y=208,...,256)

Here n=9 and m=256. For

b5 (0) = [1,1,1,...1,1,1].
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and p(k) given in equation (2.26), the algorithm terminates after the 4th

iteration and gives a solution weight vectorg3 for the switching function

g(x) = _:gtg.

1.0077
0.6136
0.4694
0.4694
0.3508
=3 0.3508
0.1.704
0.1405

0.1405

4. Exampld 4: A switching function of six binary variables

Consider a Boolean function of six binary variables which

correspond to the separation of two classes:

Class C1 = {30,31,41 to 63} = { §l} (3=1,...,25)

3

Class\C2 = {0 to 29, 32 to 40} = {jiz} (§=26,...,64)

Here n=7 and m=64. For

bo(0) = (41,.1,.1,....1,.1,.1]
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and p(k) given in equation (2.47), the algorithm terminates after
the lst iteration and gives a solution weight vector Eﬁ for the

switching function g(x) = 593,

-0.8287 i
1.9149
1.2763

=| 0.9954%

JLS

0.3425
0.3425

0.1246
. -

5. Example 5: Ancther switching problem of six binary variables

Consider a Boolean function of six binary variables which

corresponds to the separation of two classes:

Class C1 = {46,47,53 to H3} = {jzl}’ (§=1,2,...,15)

Class 02 = {0 to 45, 48 to 52} = {jiz}, (§=16,....,64)

Here n=7 and m=64. For

b%(0) = [1,1,1...,1,1,1]
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and p(k) given in equation (2.26), the algorithm terminates after
the 18t iteration and gives a solution weight vector v, for the

switching function g(x) = 593,

20,7598 |
0.5723
0.4219
5 7| 5.3281
0.2344
0.1406

0.0469

| -

6. Example 6: Another switching problem of eight binary variables

Consider a Booiean function of eight binary variables which

corresponds to the separation of two classes:

Class C = {127,191,215,217 to 255} = {

. 351} (4=1,...,42)

Class 82 = {0 to 126, 128 to 190, 192 to 214, 216}

- {jr,) (3m43,...,250)

Here n=9 and m=256. For

bt = [.1,.1,.1,...,.1,.1,.1])
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and p(k) given ir equation (2.47), the algorithm terminates after

the 10th iteration and gives a solution weight vector 26 for the

switching function g(x) = Efg,

0.3732 ]
0.2278
0.2278

= | 0.1654

J\S

0.0769
0.0569
0.0247
0.0247

0.0247

_ _

7. Example 7: A nonlinearly separable problem of eight binary variables

Consider the following two classes of vertices of an eight-

dimensional hypercube:

Class C1 = {5 to 11,20,21,27,28,35,3%,44,51,60,76,91,92,106,
107,121,122,136,137,151,152,167,182,183,197,198,

212,123,227,228,243 to 252} = {jil} (3=1,...,46)

Class C2 = {0 to 4, 12 to 19, 22 to 26, 29 to 34, 37 to 43,
45 to 50, 52 to 59, 61 to 75, 77 to 90, 93 to 105,
108 to 120, 123 to 135, 138 to 150, 153 to 166,

168 to 181, 184 to 196, 199 to 211, 214 to 226,

229 to 242, 253 to 255} = {jEQ) (3=47,...,256)
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Here n=9 and m=256. For

bt(0) = [.1,.1,.1,...,.1,.1,.1]

add p(k) givea in equation (2.47), after the zeroth iteration, the
algorithm gives y(0) < O which indicates that the given sets of vertices

are not linearly separable.

8. Discussion

The last five example Problems have been solved by the use

of the proposed algorithm with various values of b(0) and with either
1

cosh ypay (k)

cases, b(0) has equal components, i.e, bl(O) =b(0) = ... = bm(O). The

p(k) = as given by (2.26) or p(k) given by (2.47). 1In all
numbers of iterations required to solve the example problems in all
experiments are shown in Table 1 and Table 2. These example problems
have also been solved using the Ho-Kashyap algorithm, and the results
are shown in Table 3 and Table 4. Note that in each of these examples
with the Ho-Kashyap algorithm the number of iterations required does not
change for different initial values of the b(0) vector. But the number
of iterations required does change for different initial values of the
b{0) vector with the proposed algorithm, as shown in Table 1. This 1is

so because b(0) influences p(k). Also note that the number of iterations
1

required for the proposed algorithm with p(k) = and

cosh ymax(k)
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Table 1. Number of iterations required to solve the example
problems using the proposed algorithm with

1
p(k) =
cosh ymax(l)
*
Example No. 3 4 5 6 7
bi(O)
2.0 9 112 2 0
1.0 4 42 1
0.5 3 29 1 0
0.2 3 26 1 231 0
0.1 3 25 1 229
0.05 3 25 1 229
0.01 3 25 1 229
0.001 3 25 1 229
1074 3 25 1 230
10~2 3 25 1 245
1076 3 29 1 340
10~7 5 32 1
*

Not linearly separable.

Table 2. Number of iterations required to solve the example
problems using the proposed algorithm with p(k) given by
equation (2.47).

*
Example No. 3 4 5 6 7

b, (0)

2 1 1 10 O

*Not linearly separable.




51

Table 3. Number of iterations required to solve the example
problems using the Ho-Kashyap algorithm with p=0.5.

Example No.3 4 5 6 7

o
'l

N O O
(&)
~r

52
52
52
52
52
52
52
52
52
52
52
52 1

(N e

462
462
462
462

o
b

.00

HHOOOOOOHN

OI Ol L] L] L] L]
o v

e e e

=
3

-

o =
wun
Lnmuummumurutut Ut i

=
o

*
( Not linearly separable.

Table 4. Number of iterations required to solve the example
problems using the Ho-Kashyap algorithm with p=1.0.

Example No.3 4 5 6 7
bi(O)
2.0 3 25 1
1.0 3 25 1
0.5 3 25 1 0
0.2 3 25 1 0
0.1 3 25 1 229
0.05 3 25 1 229
.01 3 25 1 229
0.001 3 25 1 229
10-4 3 25 1 229
1072 3 25 1 229
1076 3 25 1 229
1077 3 25 1

*
Not linearly separable.
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0.5 > b (0) > 0.001 is less than that for the Ho-Kashyap algorithm
i

with p = 0.5, and is equal to that for the Ho-Kashyap algorithm with

p=1.0. The value of p = 1.0 for the Ho-Kashyap algorithm minimizes

the number of iteraticns required for switching functions(13). For
extremely small bi(O), bi(O) §_10—4, as well as larger b (0),
i
1
> 0. d al ithm wi k) =
bi(O) 0.1, the propcsed algor with p(k) v ymax(k) may take

more iterations, for the proposed algorithm with the optimum p(k)
given by (2.47), the number of iterations required is less than or
equal to that of the Ho-Kashyap algorithm with p = 1.0. In the
problems where the Ho-Kashyap algorithm required a very large number
of iterations, the proposed algorithm reduced this number by a fairly
large factor.

It has bein observed in these experiments that the proposed
algorithm reduced the computing time also. For example, for problems
requiring a few iterations for the Ho-Kashyap algorithm the total
computing time was reduced from 90 seconds to 19 seconds and execution
time reduced from 30 seconds to 10 seconds with a dollar saving of $4.00,
from $5.00 to $1.00. For problems requiring a large number of iterations
for the Ho-Kashyap algorithm the proposed algorithm reduced the total
computing time from 80 minutes to 50 seconds and execution time from
30 minutes to 5 seconds with a cost reduction of $22.00, from $23.50
to $1.50.

For a given problem, different initial values of the b(0)

vector lead to different solution weight vectors, w.
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It has also been observed that if two b(0) vectors differed by
a constant factor, the solution weight vectors thus obtained also
differed by the same factor as long as the number of iterations required
remained the same.

Let the number of elements of A w(k) that are less than zero
be designated as an error index for a set of linear inequalities at
the kth iteration step. This error index is represented by the number
of ié‘g that are less than zero, where tﬁ is the ith row of the matrix
A. Table 5 shows the number of iéiﬂ >0 observed in the experiments
for examples 3, 4, 5, and 6 using both the Ho-Kashyap algorithm and
the proposed algorithm with QF(O) = [0.1,0.1,...,0.1]. The sum of
Aw >0 and ié:g_< 0 equals 2m which for examples 3, 4, 5, and 6

i
equal 256, 64, 64, and 256 respectively. Note that, after the zeroth

1

iteration, this error index for the proposed algorithm with p(k) = cosh ymax(k)
is less than or equal to the error index for the Ho-Kashyap algorithm
with p=0.5 and is equal to that for the Ho--Kashyap with p=1.0. The error
index for the proposed algorithm with p(k) given by (2.47) is always
less than or equal to that for the Ho-Kashyap algorithm with p=1.0. This
error information assures the effectiveness of the proposed algorithm.
For the algorithm developed there is no guarantee that all
wi > 0, (i=1,...,n), which is necessary for a threshold logic circuit
realizable by transistors. Since there is no prior knowledge about a Boolean

function, one does not know if it is Jlinearly separable by a weight

vector with all positive elements.
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|
j Table 5. Comparison of the Error Indices for the Proposed Algorithm
§ and the Ho-Kashyap Algorithm with bi(0)=0.1 for all 1{.

Iteration Ho-Kashyap Ho-Kashyap Ppoposed p(k) Proposed p(k)
Example No. p=0.5 p=1.0 given by Eq.(2.26) given by Eq.(2.47)
No. of No. of No. of No. of
( Aw>0) ({Aw>0) (;Aw>0) ( Aw>0)
0 241 241 241 241
1 250 254 254 242
2 250 254 254 256
3 3 254 256 256
4 254
5 256
0 60 60 60 60
1 62 63 63 64
2 62 63 63
3 63 63 63
4 . ces coe ces
24 63 63 63 '
29 63 64 64
51 63 t
52 64 i
5 0 62 62 62 62
1 64 64 64 64
0 242 242 242 242
1 246 250 250 250
2 250 250 250 250
3 250 250 250 250
4 250 250 250 2503
5 250 250 250 254
6 250 250 250 254
7 250 250 250 254
8 250 250 250 254
6 9 250 250 250 254
10 250 250 250 256
11 250 250 250
36 250 250 250
37 250 250 251 r
43 250 251 251 f
44 250 252 252 |
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TAble 5. (Continued)

Iteration Ho-Kashyap Ho-Kashyap Proposed p(k) Proposed p(k)
Example No. p=0.5 p=1.0 given by Eq.(2.26) given by Eq.(2.47)
No. of No. of No. of No. of
A0)  (Aw0)  (Aw>0) ((Aw>0)
74 250 252 252
75 251 252 252
90 251 252 252
6 91 252 252 252
228 252 252 252
229 252 256 256
461 252
462 256
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IV. APPLICATION OF THE ACCELERATED ALGORITHM

TO PATTERN RECOGNITION

For dichotomization of patterns other than switching function
problems, no simplification of the algorithm can be made, and the pro-
posed algorithm in equation (2.29) together with p(k) given in
equation (2.26) or equation (2.47) will be used. The generalized
inverse of the matrix A must be calculated once per problem for the
abstraction aspect in pattern recognition. When a solution weight
vector W is obtained from the application of the algorithm, it can be
used in the pattern recognizer as illustrated in Figure 3. A digital
computer program for the algorithm (2.29) has been written in MAD
language. The calculation of A# was obtained according to Kalman
and Englar's scheme(zz). The program was originally written in FORTRAN
and then translated into MAD language to be consistent with the
language used for the proposed algorithm. The complete computer program

is included in Appendix B. The proposed algorithm has been applied to

the two pattern classification problems as described in the next two

gsections.
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A. A Character Recognition Problem

In this study patterns consisting of four pairs of hand printed
alphanumeric characters were conaidered. The data werc obtained from the
Learning Research and Development Center at the Uni;ersity of Pittsbuvrgh.
One of the Center's activities is to teach children, ages five to eight,
the alphabet and numbers, via instructional devices and computers.

Hence, the machine recognition of hand printed characters is a current
research interest in the Center. The selected pairs of characters are
similar fn form and the patterns collected are representative of
children's hand printing. The four pairs considered here are A and H,
2 and 2, I and 1, and G and 6. Each character was written inside a
square with 12 by 12 divisions. Five attributes or pattern components,
xo,xl,xz,x3, and xa, were obtained from each pair of characters for
classification. The first attribute was the height of the character
and was normalized to be 1.0. The other attributes were certain length
and width, etc., each of which was a fraction of this height. The
attributes given to describe the four pattern pairs are shown in Figure 4
to Figure 7. These represent sets of crude but simple features of hand
printed character pairs. The pattern components of character pairs for
the sample or training sets are listed in Table 6. The original hand
printed characters are reproduced in Appendix C. Note that since the
normalized height is unity for all characters, it can be assigned as

the x  component or thieshold attribute of the x vector. Hence x is a

5 by 1 vector with n = 5.
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Pattern Components of the Character Pairs Used in the

Training Sets.

Table 6.

ﬁ
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It was desired to recognize A against H, Z against 2, I
against 1, G against 6 , or vice versa. For each pair group, designate
patterns of one character as belonging to class C1 and patterns of the
other character class C2' For example, character A belongs to class C1
in the first pair, character Z belongs to class C1 in the second pair,
character I belongs to class C] in the third pair, and character G
belongs to class Cl1 in the fourth pair. For each pair group, a dis-
criminant function, g(x) = EFE) was to be determined. As shown in
Table 6, there were eleven sample patterns for the A-H pair, fourteen
sample patterns for the Z-2 pair, and ten sample patterns each for
the I-1 and G-6 pairs. The size of matrix A varied from 10 by 5 to
14 by 5. The proposed algorithm was applied to each pair group with
'Et(O) = {0.1,0.1,...,0.1} and p(k) given by equation (2.47) to obtain

the following solution weight vectors, EAH’ EZZ’ EIl’ and EG6:

0070
.0100
w =] .0001
~.0001

.0001




= 4333
.6661
= .0001
Y66
.0001
-.0001
o -

where the first subscript refers to class C1 and the second subscript refers
to class C2 in each pair group. These solution weight vectors were all

obtained after the zeroth iteration.
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The solution weight vectors were also tested by some new sample
patterns. Only in the Z-2 pair group, there was one misclassification
among a total of twelve new sample patterns. This misclassified one was
a 2 which was written so ambiguously that even a human observer could

hardly distinguish it from Z.

B. A Biomedical Pattern Recognition Problem

The proposed algorithm was also applied to a biomedical pattern
recognition problem. The problem is to investigate whether or not a
change exists in the diurnal cycle of an individual person upon a change
in his environmental condition or physiological state and if such a change
may be used to diagnose physical ailements under strictly controlled con-
ditions by measuirng the amounts of electrolytes present in urine and
blood samples every three hours. The problem and data were presented
by Dr. Venucci of the School of Medicine, University of Pittsburgh. The
data consisted of thirteen sample patterns under two different conditions.
Each pattern has eight components which represent the concentrations of
electrolytes. Thus N = 13 and n = r+l = 8+1 = 9; the size of the pattern
matrix A is 13 by 9. The pattern matrix A is shown in Table 7. Let

b%(0) = [0.1,0.1,...,0.1]. For this problem the Ho-Kashyap algorithm

with p = 1 required 927 iterations to determine the separability. However,
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the proposed algorithm with p(k) given by equation (2.47) required only

two iterations, where p(0) = 5.270684 and p(l) = 3.197152. The problem

is linearly separable and a solution weight vector w obtained by the pro-

posed algorithm is

[13.6089 |
2.5915

1.6847

w=w(2) = 2.2314
0.3414
3.0077
1.8428
1.6559

0.0096

It was observed in this case that the proposed algorithm reduced the
number of iterations required by a factor of approximately 450 over that
required for the Ho-Kashyap algorithm.

Notice that in the examples above components of a weight vector
for a given pattern may differ in magnitude by as much as 1700. Although

the magnitude of the attributes differ by as much as 200 it 1is possible

that some of the attributes are not necessary to describe the pattern.
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This result is determined by noticing the small effect of the products
of these attributes and their corresponding weights have on the
inequality. For economic reasons one would choose the least number

of attributes to describe a pattern, but for flexability and reliability
it is necessary to have sufficient attributes. This suggests the

development of an experimental procedure to select an adequate set

of attributes.
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V. GENERALIZATION OF THE ACCELERATED ALGORITHM OF LINEAR

INEQUALITIES TO MULTICLASS PATTERN CLASSIFICATION

A. Preliminary Remarks

The problem of multiclass patterns classification is that it
must be determined to which of the R different classes, Cl’CZ””’CR’
a given pattern vector, X, belongs. If the R-class patterns are

linearly separable, there exist R weight vect:orsg:l to construct R

discriminant functions gj(i), (j=1,2,...,R), such that

g (x) = EFW: > xty, = gi(i) for all 1 # jJ, x e C

3 LA SN (5.1)

3
The improved algorithm for dichotomization obtained in Chapter 1II
will be generalized to the multiclass pattern classification. A
similar criterion function will be specified and a convergent iterative
algorithm will be devised, incorporating the gradient descent procedure,
to make the proposed multiclass algorithm a direct analog of the pre-
viously described dichotomous algorithm.

The notion of equilateral simplex will be used(14-17). Chaplin
and Levadi(la) have formulated another set of inequalities, other than

(5.1), which can be considered as the representation of linear separation

of R-class patterns. This set of inequalities is

D ——
e S g feeammd
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1x0 = 5, 1] < |Ix"u - 5 || for all 144, xeC
] L (5.2)

for all j=1,2,...,R
where U 1s an n by(R-1) weight matrix and the vectors gj's are the vertex
vectors of a R-1 dimensional equilateral simplex with its centroid at the
origin. If each gj is associated with one class, x is classified according

t
to the nearest neighborhood of the mapping U x, as illustrated in Figure §,

The (R-1) by 1 vectors gj's have the following properties:

||ej|| =1 for all j=1,2,...,R

(5.3)
e, -sill = lley - e || for all i, k #
and
t
ey (gﬂ -e) >0 foralli#f]. (5.4)
The components of'gtj, gfj - [ejl’°°°eji’°°°ej(R-1)]’ are determined as
follows:
"~ R ., R-1,,1/2
(G Jewrrerd for j=i
1 R R-1 1/2
_e..ji - < - (R-i) [(R-l) (R-1+1 )] for j > 1
(5.5)
i 0 for § < 1

(j-l’z"..’R; i‘l,Z,...,R-l).
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Inequalities (5.2) are, in fact, equivalent to inequalities (5.1). This

will be shown beloyw. Rewriting inequalities (5.2) one obtains

or

_—
|%
(=
=]
%
|
b
l=
o

t t t t t t
<{xUUx-xUe -e Ux+e, e
for al. 1 ¢ j, x ¢ Cj (5.6)
Since, from (5.3),
t 1= et
ey ey~ l=eqe

equation (5.6), upon simplification, reduces to

~xtU(e,-e,) < - (_e_ti-g_tj)y_t_)_c_, for all 1 # §, x € C,

...i
xtU(e -e ) > - [xtU(e -e )]t, for all 1 ¥ x e C (5.7)
==—3 ~ Ty =1 - h|
Since ity_(gj-_e_i) 1s a scalar,the above inequality implies
_:gty_(f;j __3.1) >0 for 8111*_1 X ecj . (5.8)
Let
= -1 LN BN J .
. LF H,gj. j=1,2,...,R (5.9)
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Then (5.8) becomes

zg_ty__>3<_ty_ for all i # j, xe C

] i h|

which is (5.1).

However, in order to generalize the dichotomous algorithm of
Chapter II to a multiclass algorithm, additionai information of linear
inequalities is necessary 15). Let the N x n pattern matrix A be

defined in the following manner.

I>
]
ne>

t (5.10)

ovand o sl

vhere A, is ann by:n submatrix having as its rows n

5 j 3

t
& j? (i=l,2,...,nj), and N = n1 + n, + ... + nR.

Designate the n by (R-1) weight matrix U as composed of (R-1) column

transposed pattern

vectors of clasé Cj’

vectors gq, (q=1,2,...,3—1).




U !

_- Ull...
!
i

i
:_L_xt cee g u (5.11)
) |
| |

Also define an N by(R-1) matrix B as

- -l

whose row vectors zl_a_tj, (j=1,2,...,R; IL=1,2,...,nj ), correspond to the

class groupings in the A matrix and satisfy the following inequalities

p_t (e,-_e:i)>0 for all 1 # j
N (5.13).

for all j=1,2,..R,

B is a nj by (R-1) submatrix of B, j=1,2,...,R. Let an N by (R-1) matrix
i




p
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Y be defined as
A
YSAU-B, (5.14)

The representation of Y may be in the form of either an array of (R-1)

column vectors, Xq’ (gq=1,2,...,R-1).

o
g-[xl RO 'Yn-1] (5.15)
b i

or an array of N row vectors il[_j, (j=1,2,...,R; i=1,2,...,n ), corresponding

to the class groupings in the A matrix

(5.16)
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where Y is ann

j by (R-1) submatrix of Y,
3
Y =A U-B (5.17)

or

Y §=1,2,...,
= =3 =] ; ¢ (5.18)

2=1’2’ LI N ’n

The set of linear inequalities which will be discussed in this chapter

is, from (5.8),

Aj_g_(_e_j—gi) > 0 for all i1 # j

(5.19)
. for all j=1,2,...,R
Associated with it is another set of linear inequalities
Y (e.-e,) = (AU-B )(e,~e,) >0 5.20
X, (e, —i) (—j—- —j) &, —i) 0 ( )
for all i ¥ j
for all j=1,2,...,R
or
Y (e-e)=(x°,U- b")(e,-e) >0 (5.21)
L7373 Ty 3 -3y )
for all 1 # }

all j=1,2,...,R

all 2=1,2,...,nj
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Since, by (5.13), Q_(gj -'Ei) is constrained to have positive components
for all 1 ¢ j, inequalities (5.20) or (5.21) implies the inequalities
(5.19) and hence (5.1) or (5.2). When inequalities (5.19) are satisfied
for all 1 ¥ j and for all j=1,2,...,R, a solution weight matrix U 1s
reached which will give linear classification of R-class patterns; that is,

if

§Fg_(gj - gi) >0 for all 1 ¥ ]

then x is classified as of class C Also, if R wéight vectors Yy,

j.
j=1,2,...,R, are computed from U according to (5.9), then R discriminant

functions, gj(g) - §F » (J=1,2,...,R), can be obtained for use in the

LY

R-class pattern recognizer shown in Figure 9,

B. Development of the Algorithm

For the notational simplicity in the derivation of the gradient
function to be developed below, let the matrices A, U, B and Y in
equations (5.10), (5.11), (5.12), and (5.15) be represented respectively

A=1 ... .0000.. (5.22)
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asuod

o—<—

say

*19zTue8109y UId3IBJ SSETOTITNK € JOo weadelq APOTd

4y
X0JJ9A
m.mu.mu Amvzw Iy3ropM
Fa
10329373S |¢ x0
399
WwnW Xey _”Mum = (%) nw Iy3rom
T8 %= (®) 78 Ly
03997
suorIdung | 3y3yopM
JUBUTWIIDSEQ

*6 2an31yg
J03J9A
uxajjed pajuaum3ny
[ 1
X
c|l=%
Cx
Ty




=

-]

and

=<

Y12

n2

u
1 ’R_l

“n yR-1

Substituting these into equation (5.14), one obtains

Yy

Let C(Y) be anN by (R-1) matrix defined by

c() =

n

-1

k=

1

3k kg

by,

1 ‘12 “1,r-1

1 w2 cN,R-1L

- 1 1 1, ™

cosh 5 11 cosh 2 Y19 cosh ¥ ’_'l,R—l
1 1 1

Lcosh 2 yN,l cosh 7 Yyo cosh 2 yN,R-l

a—
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(5.23)

(5.24)

(5.25)

(5.26)

(5.27)




““.

The criterion function J(Y) to be minimized is chosen as the trace of

4 ctew,

@ & 1acto) 4I§Rfl i 41§Rf1( Loy?
J¥) = Tr(4aCc C) = c,, ™ cosh - y
i} i=] §=1 1 =1 =1 2 713

N R-1

1=] §=1
where

1 2
Jrij():) = 4(cosh 3 yij)' (5.29)

Following the same approach of the dichotomous case, determine the

gradients of J(Y) with respect to both U and B.

13 =" 1 £ 14
Byi
= 2 sinh Yy 3 (5.30)

where the derivative of a 8calar yith respect to a matrix is a matrix.

From (5.26) and (5.30),

0 0 0 B
0 ag; 00
0 00 a, 0O
aJij(X) 12
— = 2 ginh y,, | . ¢« ¢« ¢« ¢« ¢ ¢ ¢ o« & 5.31
U mhy, ( )
000 a_ 00
S

-
jth column
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Then the gradient of the criteriBn function, J(Y), with respect to

the matrix U is

N N N
)} a, sinhy ... ) a, sinhy, ... ] a, sinhy
=1 11 11 =1 11 13 °°0 44 T4 1,R-1
] ) )
a , sinh y o o o a ., sinhy cao a, sinhy
1=1 12 i1 4o 12 13 42 C12 1,R-1
J(Y)
ag' 2 L ] L [ ) L ] L ] L L ] [ ] L ] L ] L ] L ] L ] L ] L o0 L L L L L L L L L L ] L ] L ] [ ] [ ] L ]
] ) ]
a, sinhy . .. a, sinhy cos a, sinhy
=1 1 11 =1 1 G 1 1,R-1
a7 8y v aNl sinh Y, sinh Yip *°° sinh yl,R—l
- a1, Ay, e aN2 sinh y21 sinh Yog o sinh y2,R-1
|
e o o © o o o o o o 4 e o o o o o o o 8 8 o o o o o e o o ¢ 3
a, aZn cee aNn sinh le sinh Yo " sinh yN,R-l
= - -
t
=2 A S(Y) (5.32)

where S(Y) is an N by (R-1) matrix with the following representation.




s(Y) =

- e @ @s e an

3

1]

5,() = [sinh Y(nj_1+1).1"”’31"h Y(ny_y+1),B-1
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and where ;S (Y) is a row vector of the following form

(5.33)

(5.34)




From (5.29)

a3, (V) 1 oy
—31 7 =4 (cosh 1 sinh Ty ) |

y
3B 274 13" 8
ay
= 2 sinhy,, 5 (5.35)
2B
h
From (5.26) )
0 ve. 0...0 |
0 oo 0

14 0 o0 o ""1 o s 0

1] . 0 «.. O . (5.36)
B

23, (D) 0 ... sinhyg; .0 «—1

- =2 (5.37)

9B O ... 0 «v¢ O
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Hence, the gradient of the criterion function J(Y), with respect to

the matrix B 1is

sinh y sinh y «e. sinh y, o1
23(Y) 11 12 b
aE = “'2 ¢ 6 e 6 6 e e e e e e e o o & ¢ ¢ o
sinh N1 sinh yNZ «e. 8iny yN R-1
L S
- -2 S(Y) (5.38)

J(Y
aaér) = 0 implies that

Since U is not constrained in any manner,

S(Y) = 0, which, in turn, implies that sinh y = 0 and hence y_ = 0

for all i=1,...,N and j=1,2,...,R-1. Therefore, for T 0 and a

fixed B,

U= afs . (5.39)

On the other hand, for a fixed U and the constraint gj(g.fgi) > 0 for
]

all 1 ¥ j as given in (5.13), B may be incremented according to the

following gradient descent procedure to reduce J(Y) at each step,

B(k+1) = B(k) + 8B(k) (5.40)
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where the q-th element, S[ijq(k)], of G[QEjt(k)] in ng(k) is given by

93 (¥) (k))

-p(k) [ 2B ]jq = 2p(k) R_S_jq(}'_(k)),
if mzj(k)(gj_gq) > 0 for any q#j
d[zqu(k)] =
. 0 if 2_‘g_j(k)(_e_j-gq) < 0 for any q#j .

However, zzj(k)(gjfgq) > 0 does not imply zgj(zﬁk))(gj-gu) > 0. In order to

make G[Eth(k)](gj-gq) > 0 so that (5.13) can be satisfied at each step, a

modified gradient descent procedure is to be used. Let a (R-1) by (R-1)

non-singular matrix Ej be defined as

Ej = [gj ~8yreees eJ Ej-l’ gj-gj+1,..., e, —_gR]. (5.41)
Also define
Zj = Xj Ej for all j=1,2,...,R. (5.42)

The increment G[ij (k)] is then given in terms of
q

Y _
p(k) Rqu(_Z_(k)) p(k)lzsjq@(k)) +2qu(k)]

t
{ b, (k =
6{z—j ( )Ej]q it zzjq(k) zztl

) if z2 (k)

1
<
”~~
w
~
~
o

|
®
~
A
o
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where

M (0 = 8, (2(0) sgn (2

(k)) (5.44)
iq

iq
and, following (5.33),
isqug(k)) = Sinh szq(k). (5.45)

Putting into vector representation,

$,2y (OE] = p(B) [[S (ZUD) + A (1]

j

]
or
; -1
SE,0, (0] = P [S,(2(R) + A (K)IE,
= p(k) Eﬂj(!ﬁk)) (5.46)
where

-1
My (200) =[5, (Z(0) + A OIE™ . (5.47)

-1
ﬂj (Y(k)) » [§-:l (Z(k)) + l\_J(k) lgj

nam] T 1 (X09) )}

H(Y(K)) = gj(i(k))1 = | H, (xw)

L3

|1 (1 () .nRgRig_(k) ).

= (b (X(K)) ... b (D) ... hg 3 (XK.  (5.48)

h
—-q




It follows from (5.46) and (5.44) that

Glzgj(k)](gjigi) > 0 for all 1#j and for all j.

Then

§[B(k)} = p(k) H(Y(K))
Substituting the above equation into (5.40), one has
B(k+1) = B(k) + p(k) H(Y(K)) (5.49)
Using the above equation in (5.39), one has
U(k+l) = _fgjk+1) =‘é# {B(k) + p(k) H[Y(k)}!}
= u(k) + p(k) ATRIY (K] (5.50)
Therefore, an iterative algorithm to solve for U can be proposed in the

following:

" U(0) = é#_fi(c')

Y(k) = A U(k) - B(k), _Z_j(k) = _!j(k) _F;j

B(k+1) = B(k) + p(k) H[Y(K)], ﬂj(z(k))=[§j(k))+1\_j(k)]%’1
| U(ktl) = U@ + p(k) AT HIY(K)] (5.51)
where p(k) may be chosen as equal to
n
k| ty-1 t
jzl I ey + By (XG0 (€O 7RO Z 00, A (10))
plk) =~ R-1
27 nt@-aahn
=1 1 —q (5.52)

provided that

n
R 3
t t
Y
A jLGl (16400 + B (1(0) (B, OIR(Z, (E;Hy (XD} > O

(5.53)

where jLej(k) and_g(zgj(k)) are defined in (5.62) and (5.60) respectively as

will be shown later. The initial B matrix, B(0), may be chosen from




d

where e!s are vertex vectors of (R-1)-dimensional simplex and 8 is an

_j

arbitrary positive constant. A recursive relation in Y(k) is also

obtained as follows:

Y(lel) = Y(K) + p(k) (A AT - DY) (5.55)

Compare (5.51) and (2.29), it is evident that the above algorithm for

multiclass pattern classification is a generalization of the dichotomy

algorithm developed in Chapter II.

C. Theorem 2

In order to prove the convergence of the algorithm (5.51), the

following discussion is necessary.




Lemma 2.

Proof.

Since

Then
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Consider the set of inequalities (5.19) and the algorithm
(5.51) to solve it. Then
}) !ﬂ(k)(fj'fi) iﬂg for all 1#j

for all j=1,2,...,R

for any k
2) If (5.19) is consistent, then
Y.(k)(e,~e 0 for all {1
Y, 00 (eye) 10 #

for all j=1,2,...,R

for any k

1) Let

Y, (k)(

1,0 e —gi) > 0 for all 1¥§

for all j=1,2,...,R

for some k

B (k)(e 151) > 0 for all i#j

.—j

o

t
(e;-ey) zjt(k)g_j (k) (e,-e,) > O for all 1#3

t
Y (k) Qj(k) >0 for all j=1,2,...,R
h
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it follows that

Y(k)B(k) > O

But
vy = & A" - D B,
¥t (0B = B8 4 af - D B <0
since
(A _A_# -I)<0.

This is a contradition. Hence

jl_j(k) (gj - e,) 1 0 for all i¥J

for all j=1,2,...,R

for any k.

2) Assume that (5.19) 1is consistent but

g_j(k) (g_j-_e_i) <0 for all i#j
for all j=1,2,...,R

for some k

X *
Consistence of (5.19) implies the existence of aU and a B such that

] *
AU =B




and
*
A (o2
Therefore
t t
(eye) X
t
x° ¢
and
¥ (k)

But for any Y(k),
A%y (k) = A% (A UC
it

- (A"AA

thus

Ej*(fjfii) > 0 for all 1#4,

for all j=1,2,...,R

j(k)*yj (_g_j-gl) <0 for all i#j
KB, <0 for all j=1,2,...
R
B« 7 ¥t (0B, <O
3=1 )

1 - B) = afa A’ - 1) B

- A% B(k) = 0 B(K) = 0 .

*
u't At y(k) = 0.

or

¥'k) AU

which is a contradition.

Y, () (ey

(1) (e4-e) £ 0

*
B =0
-—-j —

R
*axfao Bt ] xS
=1 3

Hence, if (5.19) 1is consistent,

for all i¥#j
for all j=1,2,...,R
for any k.
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Theorem 2. Consider the set of linear inequalities (5.19) and the

algorithm (5.51) to solve them, and let

R 4 5
Hy I12=] I 1y wl|
*q j=1 1=1 173

1) If the set of linear inequalities is consistent, then
a) AVIY(K)] & V[Y(k+1)] - VIY(K)] < O and
lim V[Y(k)] = 0 implying convergence to a solution

o]
in an infinite number of iterations; and

b) Actually, a solution is obtained in a finite number of
steps.
2) If the set of linear inequalitics is inconsistent, then there
%
exists a positive integer k such that
*
AV[Y(k)]< O for k < k
*
AV[Y(k)] = O for k > k
Y, () (e,~e )40  for k < k'
e,~e or
2 -3 = for all i#j
for all j=1,2,...,R
%) *
(k) (e,-e4) = .Y . (k “(e -_e_i) <0 for all k > k

Y
27J 3 =3 J for all 1]
for all j=1,2,...,R

and
% %
U(k) = U(k')  for k> k

* *
B(k) = B(k ) for k > k




In other words, the occurrence of a matrix Y(k) with all non-positive
elements of Xﬂk)-(gjfgi) for all 1#j and all j at any step terminates

the algorithm and indicates the nonlinear separability of the R-class patterns.

Proof.

The proof of this theorem is similar to the convergence proof

of the generalization of Ho--Kashyap algorithm to multiclass pattern

classification(23).

Part 1l:

With reference to the recursive relation in Y(k) given by

(5.55), V[Y¥(k)] can be considered as a Liapunov function,

VIY(k)] = Te[¥ (Y(K)] > 0 for all Y(K)#0 . (5.56)

avIY(k)] & VIYGHD] - VX))
= Tr(YS ()Y (k) - YE(OY(K)). (5.57)

Since
t
Y (RHDY(kH) - X (R) Y(K)
o (rE (0 + p(OEEEG0) (A AT-D X490 & AT-DEE ()1 (X (K

- p(0) BELZ01(A AT-DY ) + p(0YEG) (4 AT-DRIX(]

+p2(1) HE[Y(O] (I - A ADuryood,
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and

aalyao = a af(a uo - Bao) = a afa a’B) - B0

- A A" - A a'B(0 = 0.

then

']
=]
"
oy

[
()

o
”~~
F
~
=

(g4

-
”~~
z‘
e’

3
”~~
F

3
N
”~~
F
e’
|
(g4

2]
”~~
z‘
e’

—
-
]
-
-3

"4&._
e’
oo
&
”~~
~
e’
=

V(Y(k)]

= -2p(k) Tr {HE[Y(K)]Y(k) M p2()Tr(ut (Y (k)] (1-a ADHIY(K)])

t 2, Kol ¢ #
= -2p(k)Tr{H[Y(K)Y (k)} + p°(k) ] h° [Y(K)](I-A A

d)h [Y(k)]
q.l q q
n
R e 2. Rl # |
- -2 H (Y(k) Y, (k k h ~(Y(k))(I-AA")h (X
p(k) 321 21 LNCION AEOL MU qzl b, (X)) (1-AADR
(5.58)
From (5.45) and (5.33),
Sinh ,2Z Sinh ,Z
2941 2°4,R-1
n§_j(g_) - bl (Zq1r e 3 nzj,n-1]
2241 2%3,R-1
Sinh ,2
A1 0 aun... 0
2941
- A N
223 S Sinh (2, ¢ )
0 Z
- L j9R-1 -
- ZR(2Z 5.59
z—j-( "'j) ( )




A
-E(Zgj) = diag [rll(zgj), ceey rR-l,R‘l(zEj)] (5.60)
(J’l’z’OOO,R; 2-1’2,000,nj)
Sinh ,2
A L74q
r ( Z_ ) = Z‘. 1, (q-l,ooo,R-l)o
qq "] 2qu

Substituting (5.59) into (5.47),

iy (XY = [2, (KIR(,Z, (k) + JL./Ljﬂd lﬁj-l
then o oon
LD
= -2p § % [2_2_15(2_2_1) + Ayl gj-l(gjt)'l ,ngc
R IR AT e AT R
o § L LZgRGZ) + oA, 1%‘1(51“)'13‘1(2;_1)[2%5(2_2_1) + ohyl"
1Lz + T e T2 Lz RG2) - )"
- -p § ) By 0 €7 17z )E i f )

, t . -1 -1
-p JZ % lo2,RG2Z) + A JESE) "R T(GZR(Z) -y A

t
| (5.61)

Since the off diagonal elements in (Ejtgj)-l are negative(23) 1(2§j)

1s a diagonal matrix with all positive diagonal elements, the off diagonal

and R™

elements of (ngQ )'l.gfl(zgj) are also negative. From (5.44), (5.47), and

(5.49), the elements of (,Z R(

Z )+ ,A ] are either positive or zero, and
==t 50 T sy P ’
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o il |

the corresponding elements of [ Z R( Z ) + %Aj] are either zero or negative.

Hence,

R (20 [,2R(,2) - 415 >0

[ZR(Z)+ A](I: J) _j ZsR oy

253 =3="¢3 =3 3

for all j and all g. (5.62)

Substituting (5.62) into (5.61) which in turn, is substituted into (5.58),

one obtains

=T - t -1 -1 Y t
AVIY(k)] = -p(k) § % My AN (BT TRV Z BT H, (X))
{
- 2 t - Al
p(k) § g (84K + pT(K) ggq (Y(k)) (L - A ADh (Y (k) |

- - . ) ty\-1p-1 t t
p(k) § %253(1\) + jL_}_ij(_sg(k))(_r_s_j ) 1R %Z:j’% ,,ﬂj (Y(k))

+ p(k) Z _uqt(_g(k))(_x_ - A _Q”)l_aq(}_(k))

R-1
= -p(k) (k) - p=(k) h B a afh (Y(k)
Zl le 0" qgl -q - —q
- p(k) If zj H (X)) (5 TR 20)-pUOLIE ") B, (X(K))

(5.63) ‘

V(Y(k)) 1s negative definite if the right hand side of the above equation ‘

is negative definite in [ Z R(2 ) + A.]. The first two terms on the right !

== =]

hand side are negative semi-definite. If a value of p(k) can be found such

that
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t.-1._-1 _ N
zﬂj(X(k)) {(_‘r;j ) (R (R.Z_j) p(k)_I__]J‘:j } g_lij(lf_(k)) >0

then AV(Y(k)) is negative definite in [%ng(%g ) + %ﬁ,]. Note that when
j J

1
\ = —1
p(k) cosh Y aX(k) ’ Ymax(k) j?zfq ‘Rqu(k)|’

[Bfl(zgj) - p(k)I] is positive definite and has real eigenvalues as can be

shown by following (2.43) and (2.44); but it is not certain that

(_1“:_‘_jt)-1 [gfl(%gj) - p(k)lj_gjt can be positive definite for all j and all
2. Let p(k) be so chosen as to maximize -AV[Y(k)] at each step, one

follows the procedure used in Section II-C to obtain a choice of p(k) as

given in (5.52), provided (5.53) is satisfied to make sure that p(k) > 0.

For this value of p(k),

n

5 ] t,-1 t 2
[jzl zgl (e (0 + H (LA (ED ™ R(Zy()E, " B (XU H
BV(Y(K)) = - -
4 7 nta-aa
=1 !

) h
q

< 0 for [zgjgngj) + Rﬁj] £0 .
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Hence, V[Y(k)] is negative definite in [ Z R( Zj) + Aj] Note that

( ) + A, =0 for all j and all 2 only if Z < 0, that is only

if Xﬁk) =_Q or i_Y_j(k)(g_j-—g_i) < 0 for all i#j and for all j. Since it
is assumed that the set of the inequalities (5.19) is consistent, from

the lemma‘xj(k)(gjﬁgi) 4 0 for all i#j and for all j, therefore

AV[Y(k)] < 0 for all Y(k) # O

=0 4if Y(k) = 0 (5.64)

and the solution Y = 0 of equation (5.55) can be reached asymptotically,

that is
2
Lm [|Y(k)||” =
koo
*% * % * %
which corresponds to a solution U with A U = B such that A U (e —gi)
ay 5 25— £

gj(gjﬁgi) > 0 for all i#j and for all j. This completes the proof of

Part 1{a).

Note that if the B(0) given in (5.54) is

EF (0)(e,-e,) = e (e -e ) > 0 for all i#j
Sl I B 1737 for all j (5.65)

Then the algorithm (5.51) gives
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t _ t -1
g%j (ktl) = 29 j(k) + p(k)[zgj(g(k)) + EAj(k)lgj

(3=1,2,...,R, 2=1,2,---,nj) (5.66)

which implies
t - t -—
2b J.(k+1)(e ei) > 2b j(O)(ej ei). (5.67)

From (5.65), (5.66) and (5.67), by induction

i_lltj(k+1)(__e_j-_e_i) > (1+e)_e_tj(_g_j-g_i), e > 0.

for all i#j
for all j
for all k (5.68)

which satisfies the condition given in (5.13). Since

n
R ]
ViY@ = ||Y) || = Zl o1y
js

2
(k)|]” <1
i=1 3

at a certain finite k, it implies that

llixjmllz <1

and
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RACTON R stj (e,-e,) 1f k is sufficiently large. (5.69)

for all i+#j
for all j

Let v be an n by 1 vector whose components all equal unity,

j
!“j = [1,1,1,...,1] (5.70)

From (5.68) and (5.69),
By () (e,mey) > (1+e)gtj (e -e,)v for all if] (5.71)
Xj(k) (ey-ey) - stj (e,-e;)y for all 14§ (5.72)

Since

Ajg(k) = Ej (k) + _Y_j (k)

it follows that

_éj_g(k) (Ej—gi) = By (k) (gj-g_i) ty (k) (e4-e,)

v - stj(s

> (1+e)gtj (_e_j—_e_ 5

{ e, )y

t

>egj(§_ -gi)_!

3

> 0 for all i#j
for all j=1,2,...,R (5.73)
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*
which indicates a solution U = U(k) is obtained in a finite number of

steps. This completes the proof of Part 1(b).

Part 2:
If the set of inequalities (5.19) is inconsistent, Y(k) cannot
be O and hence V[Y(k)] cannot become zero for any k > 0. There must

*
exist a value of k, k=k , such that

*
AV[Y(k)] < 0 for 0 < k < k

*
= 0 for k = k

*
But as shown in Part 1, AV[Y(k )] = O only if either Z(k*) = 0 or

* *
11j(k )(e4-e;) < 0 for all i#j and for all j. Since ¥Y(k ) # 0, this

implies that

*
Y.(k )(es;-e.) < 0 for all i#j
173 J =i for all j

hence, from (5.48), (5.44), and (5.51), (5.55) and (5.57), one has
*
H[Y(k)] = O for all k > k
*
B(k) = B(k")  for all k > k

* *
U(k) = Uk ) for all k > k

* *
Y(k) = Y(k ) for all k > k

and
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*
AV[(Y(k)] = 0 for all k > k

This completes the proof of Part 2.

Therefore, the algorithm (5.51), together with p(k) given by
equation (5.52) under the condition (5.53) and with B(0) given by
equation (5.54), is a convergent algorithm for the solution U of the
set of linear dnequalities (5.19). The nonlinear separability of the
multiclass patterns can also be detected by observing at a certain

step k*

*
Y. (k) (e, -e,) <0 for all i#j
3 =3 for all j=1,2,..,R.




VI. SUMMARY AND CONCLUSION

In this dissertation, a new iterative algorithm has been
developed to solve for a solution w, if one exists, to a set of
linear inequalities, A w > O which arises in pattern dichotomization
and switching problems. It is an improvement of the Ho-Kashyap
algorithm based upon the attempt to minimize a different criterion
function J(y) = 4151 (cos %T yi)z where y= Aw-band b is a
vector with all positive components. This criterion function has
a larger gradient than the one used by Ho and Kashyap. The algorithm
is expressed in equation (2.29) with the incremental coefficient
p(k) given by either equation (2.47) or equation (2.26). The
algorithm also simultaneously tests for the nonexistence of a
solution of the linear inequalities whenever y < 0.

This algorithm has a higher rate of convergence than previous
methods for a certain range of the choice of b(0). A comparison
has been made between this improved algorithm with p(k) given by
equation (2.47) and the Ho-Kashyap algorithm with p=0, the conver-
gence rate may be greatly increased for .001 :_bi(O) < 0.5 (i=1,2,..,N),
as verified by the computer results of switching theory and pattern
classification problems in Chapters III and IV. For problems where

a large number of iterations, for example, greater than twenty, were
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required for the Ho-Kashyap algorithm, the proposed algorithm reduced this
number of iterations by a factor of 20 to 450. For problems where a small
number of iterations were required by the Ho-Kashyap algorithm, for example,
less than twenty, the proposed algorithm reduced the number of iterations
by as much as 30 percent.

The generalization of the proposed algorithm for a solution matrix

U of a set of linear inequalities A‘g(gjﬁgi) > 0, (for all i¥j and

2y
j=1,2,...,R), which is applicable to multclass pattern classification has
been presented and a convergence proof has been given. This generalized
algorithm is expressed in equation (5.51) with p(k) given by equation (5.52).
The convergence proof utilizes the concept of mapping the pattern classes
into vertices of an equilateral simplex whose vertex vectors are gi,
(i=1,2,...,R).

The following six problems are suggested for further inves-
tigations: (1) to study in detail the relationship between the rate
of convergence of the algorithm and the choice of p(k) and b(0); (2) to
incorporate the proposed algorithm into the group-pattern adaptive
procedure for pattern classification; (3) to apply the proposed
algorithm for the development of an algorithm for piecewise linear
separation in cases where the sample patterns are not linearly separable;
and (4) to develop explicit algorithms to solve for nonlinear dis-
criminant functions for some nonlinearity separable pattern recognition

problems; (5) to extend the algorithm so that it can assure all w, > O,

i




103

(i=1,2,...,n), for threshold logic circuits realizable by transistors;
and (6) to develop a procedure to select an adequate set of pattern

attributes providing for reliability and flexability in a teaching

machine.

¢ m—— —a - - Yy 5 8k © — v & o
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APPENDIX A

PROGRAM LISTING FOR THE SPECIAL

ALGORITHM OF EQUATION (3.5)




A MAD Program listing is shown on .the following pages

for the application of the accelerated algorithm to switching functions.
The program is devised so that the iterations for various initial
values of the b vector, b(0), can be performed successively. This 1is
done by inputing NVAL equal to the number of initial b vectors and
VALU (1)...VALU(NVAL) equal to the initial values of the b vector.
The matrix A is read in by FORMAB. FORMAB inputs

ID = identification number

N = number of columns of A

M = number of rows of A

NA = number of elements of class 1

MB = number of elements of class 2
and the elements of class 1 and class 2 with the minterm expressed in
decimal form, elements of class 1 are entered first. The value of

p(k) in equation (2.47) is used for the program listing.




U L B B B e VN S TR B LA
vo= AT
(I)—=(1)s=-CL)A / r
i VE=A LYl Oy £ Adlvy Fae L / ¢.

Av il LIenud o (Uu

ctalsS il a=ASteval

() (U)o *5aTu4d v calyd Livleo
A T G R A A e e 1A R e o 1T

106

AFLS e,y 4 Lt 1 1ooey 11 Ty / ¢
N®®e®é =" i ()5S T L, deo] st Troeld / <.
eeST U ®)® kv U oINS HelLles Lty Lal e itaa] / o
ppeeeese =] ud 9 °*9°* (1)Z "TTtv 41 °*¢ 7/ Y
AT1Tlv= *ATTTiv *Ad Laa
(~2)z®*®*°*(1)Z *AvH Lsa
I+ATIAV=ATIY *%y *9°® (1)Z2 Aal—=nH11 P ST
() (eI )Yy+(1)e=(1)12 vdro-Lls
Wy @0 el S I ard *VdAaqals tiulihianl
0o=(1)/
v *9® JT¢1CI=1 Ciid Cccdls riOMnlaHL
U=A"v
.J.....M“H \ N..
(N)mz(imtI)v+e®®+ ()= (c*I)v+ ()i (T*I)v=(1)¢ / &
w2 y=7 .N / el
COQOI®*9H® ¢ 1 6¢0=x4 .34 ¢ -iviwd FHIO91hgesri L
BTN ool Lve-il SIoY /7 e
(I=N) °®°d® °*¢ /7 & = ()i Tadls
(I)=x=(re¢l)v + & = viaals
vl ®*9® JeTeI=] GUd CVIAdALS HOOOUSHL
* Q=1L
N O el =0 dd CTdELS HONJarL
neeees1—r (i) (Ce)v+eee+ / el
(CIH=(C*IVH(T )L (C* 1)) (T—-N )i/ 1=() ) / be
(B2 e V) (T—=Nn)sd/ 1= °1T 7/ 3]
((I)=e*((re*I)V *N °*9°® C¢T*1=r) ¢n *9° JT¢1¢1=1)¢dlI ¢Lniyd L.d
’ ((w)dg*** (1 )u®*(a)NIVA) °*AvadS J31NnDHdX3
XIalvn 1 .. .a04d 7/ o]
VAN *9°® «*T¢T=a mid *dials HONOaHL

(N*q¢Y) *wIGLIS
*HYWad 91NnNDAXA NIODr
(TAVANIOITIVA* * * (T )NTIVA L TIVARN *7Tivad Lvwa0d gvids
A*TIVANCSTICATTTIVENSWENSre ] H3ILIALINMNI
VEWeN*UTI NOWWUOD wvd90sd
(000G )VN NOISNI3AWIU
(00T )INTIVA NOISNIAvIIAU
(00T )SKAS*(00T)AC(0E)YRA* (00T )Y s(oot)Zc(oekG0l1)V Ni1d
/777 SAILITTVNOSENT 3VvdANIT 4043 wHLIGUu9DY /777 ta)
dkOG*3A1NDOIAXIA*Advn 311dW0ODS




107

(I1)SHIdSx(IC )V +im=ii
W ®9® JTe1¢i=1I 2fld ¢V6d3alsS HOYNUAHL

*0O=m

N ®9°® (é¢T1¢1= HUd ¢6d31LS HONOHEHL
Neeees = ((W)SWdSx(renw)v+eee+ /
(2)SNASH(reg)Y+(T1)SHdSHx(reT)V)sxdx(T-N)*d®*2S/T + () = () /
SWASk Vacd( T=N) ®°d®c/1T + M=k LVHL HDONS M AA4Id0OWM *6 /

(I)ShWdS*kd + (I)g = (I)#
W ®*9°® I¢1¢1=1 d04d ¢8d5iS HONONHL

weeee®eer=] (I)SWdssxkd + (I)49 = (I)d /
SNcSwd + & = ¢ 1LVHL HDONS ¢ AJdIGUA NIAHL *y /

d Sid

(St lOu) /dminin = a

(I)SwHidSxwONIO + WluH = Wi

(CIVNK(r)sSwndsS + wuN3Ug = wuN3JA

W e9e (6161 HUHd *NAU HONOJIHL
®* O=WINFU

T + (1) (NN ¢ *3* I HIAINGHRM

(T=N) °d® °*Z/(1)VYyN = (A)VN
(CeI)VY=(re)vy = (TN = ()UYW

N ®9® (é¢T¢T= d0d *V9ddLsS HONOMHL
*0 = (T1)VN

e TIeT e T="T1 OS2 ¢H9dHILS HONO&EHL
W ege JTeTéeT=] ¥Ud *9d3ILS HONUHEHL
*0=/4L1L049

-

BO0LYNIWONAG 4LVINDTVD 7/
(I)SwdS=((I)A esdave+(I)A )+ dWNN=diNNiN
i e TeT¢T=1 dHOd *HNN HONOUHL
®* O=dWN

HOL1LvHd3wNN ILVINDTIVD /

SHASH((T=N) %%/ (1ViV =1)3%1SHAdS/SHAS (A *SEHVe+A ) =d 13dS /
*2 /(SWdS °*Sdv*® + SkdS) = (I)SWdS
(CI)YA  =)°*dX3=((I)A )*dX3 = SidS
W o*9°® I1¢T1¢1=1 dH0d4 ¢/Ld3LS HONOYHL

e eee =1 (((IYA  =)dX3A=((I)A )dX3) *syve /
+ ((I)A  =)dX3-((I)A )dX3) g/ 1=(1)ShdS /
SWdS = (S°SdV*+S) JLVINDIVD *L /

AYNOILIUNGD 40 aN3F
dO1lS 0l d3dSNvdl
M ¢TI0SONd 1vwdod INIdd

0O *3° ATV d3IAINTIHAM
dO1S ANV M 1N0 LNIdd OSTv /
¢ 1318V EYd3S ATIEVINIT LON SI W3TI80d¥ds s LNO LNIYd NIHL /
Weeees =1 ¥0d4 0 *3I1° (I)A v 4HI °*% /

I+ATTIV=ATY 0 *9° (I)A JIAINIHM

(I)8=-(1)Z=(I)A

e
&
d

!
&

e
b
d

]

e
o]
&

d
d
s

voedals
X

9d31S
N=U

d9d31 S
vVod3ls

NN

Ld31S

Sd3ls




108

2¢2aX VXS
[ STl
ovZ I IO RTAS
sesi Se&Tl 71
1¢1advVd v7iD MOT13H
Te¢H6 T+ IX1
ey 0Ls
*1= vD
tAR AN v X7l ed00M
761 1 XV
1¢1 1 Xv
TN V91S
7N vis
1= “HNS
N v7iD
XIdbva v oddid NOTLILdVd Vd «a04d VAvVAd 1d3anniDD =
OIand
e 6 1640070 aAX41 1SNI
T¢T¢T1+3x IX1
VIV Uv-+d 1¢1dvd 401 400
11 1 XV
1SNI aLs
ISl g STV
] ARS
HNCVYNCHWeENSOT ¢ Lind dv3ida
ViIVvQ NI dv3id s
76 78X VXS gvihd0d
Hvywad AdLINS

WVvdodd H0 GN3F
=(I)A IATLISUANON 40 H3YANN FHL+H
ANTLISUD HO d3gwN SHL-+HS=Ad4 S A
S (9°€Td0T1)/0HTIS=ATTTIVA S/

Szl =M HHz/+
=+HS$=TI0SONd SANTIVA dO0LDEFA
Gl =X HP/(#°64°2S) N
/7+ SI 0 *9° fikV 40 NUILNTIOS dHL -+HS$S=NTTI0S 4 S3NTTIVA dO1LDEHA
(7844 SS¢(9°21d42CS ) iNI*2S)//72D0+ WATTHOUT+HHS=1N0d S A
$x(8°0TH)LEIS=TIVAZ SIANTIVA HOLD3IA
N JTTGVIEVA 1VWd0d
NIO9H 01 d3d4dSNvyl
SNNILINOD
$0001T NVHL ¥H3LV3YD SI A -% INIWWOD INIJdd

0001 NVHL d31Vv3d9 SI Mes LNO INIdd 0001°9°M 41 /

7751+ S

ATIgVIVvdIdS ATIIVANITT LON ST W3d0dHd

¢ d31S 01 NIN13d 7/
Mmx(I-N)*d*c/d+(rIR=(r)im

FTIHNISSVS

!

1
1

al

d

INOQd

6d31sS




aNH

A(PI)BTI/¢CIES2I¢TIS2De % 104 e
I 0L SLIIANUD O * 1 D34 3TdVly
o I-— 0L S1&3IANOD 1 °*1- 234
o I- 0L SL3IANOD 0O °1- D30 JHVLY
— T OL SL1dIANUD T °1 240
00G¢2 SIH Levd
I SSH an
1 SsY VN
00001 WODWOS v
WeNSAQI  1SITDd
7l vl
7€ e 1Xvy 74X
&d0o yANRY
EIN GLS
I= £HNS
SIN viD
TOT® T+ IX1
1¢2¢3Dvy XIL !
PR 1 XV 22X
T4 T+ IXL !
7oV S i
2¢37evlg vD _
20 XV ct
28 zeuX VXS
I s
ovZ »Wove
sk SdT TN
1¢1uvd VD ZmG3y
TeH¢ T4 IXL
By 01S
*l-= V7D ‘
PAARAN VX 2doo m
XI&Eivmw V 304 NOILIJLavd €d d04 VIVG LEIANOD % ”
cd00T ZIN1
VN 0ls
I= ans
VN vD
TeT¢ T+ IXL
1¢2¢eyovy X141
2 ¢ sk IXV 28X
TeH6 [+ IX1
By Mms A
2¢379viv vD

2*o0 Xvd




APPENDIX B

PROGRAM LISTING FOR THE GENERALIZED

INVERSE OF A MATRIX
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A program listing in MAD language is shown on the following
pages for the calculation of the generalized inverse of a matrix. The

program is written for M = number of rows greater than N = number of

columns. The matrix A is read in by rows, ajq first.
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APPENDIX C

SAMPLE PATTERNS OF ALPHANUMERIC CHARACTERS 4

WRITTEN BY CHILDREN l




The letter A
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The letter H




119

7
i
i,

The letter H
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The letter 7




121

The letter 7
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The number 2

—— o
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The number 2

B




The letter I




-~

125

The letter 1
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The number 1}
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The number 1
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The letter G
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The letter G




T

The number 6
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1.

2.

3.

10.

11.

12.

13.

14,
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