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PIZFACE

Ti:e Symposium on the General Linear rodels Approach to the Analysis
of Experimental Data in Cducational - esearch was held in Athens, Georgia
during June 29 = July 1, 1967. This report preseats the major addresses
and the discussion of particular methcdological protlens.

The Symposiun was held to allow experts to discuss with each other
the merits and limitations of the use of pemeral linear models and least
squares analyses in the analysis of experimesnts and cuasi-experiments. The
discussion is based on the consideration of related 1ssues raised by the
co~edi.ors and the several participants, Thus, the discussion is indirectly
related to the five nmajor papers which are instructional in nature.

The five major papers were presented by five leading statisticians.

Franklin A. Graybill, author of the defiritive text An Introduction to Linear

Statistical ifodels (Graybill, 1961) presented the introductory address. Eis

comments throughout the meeting concerning practical considerations of analysis
and interpretation should becore well-quoted in the 2iucational research
literature,

The second paper, by Joe i. 'lard, Jr., co-author of the widely used

Applied Linear Fegression (Bottenberg and Vard, 1253), was also instructional

and was intended to show similarities Letween alternative analyses.,

5. J. Winer, noted among educators and psycholozists for his Statistical

Principles in Experimental Design, was asked to discuss possible problems

related to the linear models = lcast squares approachi.
The fourth paper was by Rolf E, sargmann, vho was asked to outline
particularly appropriate occasioas foxr using linear models and least squares

analyses. bargmann presents some orizinal researci in this area which is
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not yet generally available elsewhere,

The last paper was by R. Darrell Bock. This paper draws together and
critiques the previous four presentations. The reader will be especially
interested in Bock's discussion of computer routines and his discussion of
the proper analysis of repeated - measures designs.

The second major section of this book presents the discussion of relevant
problems. This session was chaired by 'arren G. Findley. The participants
included the five major speakers and the following persons:

Harry E. Anderson, Jr., University of Georgia,

Elliot Cramer, University of orth Carolina,

Robert Bottenberg, Persomnel Laboratory, Lackland AFZ,

Jacob Cohien, llew York University,

Larl Jennings, Urniversity of Texas,

¥, J. King, Florida State University,

Leslie i.cLean, Ontario Imstitute for Studies in ducation, and

David E. Wiley, University of Chkicago.

The discussion was tape-recorded and the transcription was edited by
the co-edicors. The speakers were not always jdentifiable, and in some cases,
errors could have been made in the identification of persons naking remarxs.
loreover, the original intent of the speakers, in some cases, might have
been distorted in the transcription and editing process.

HNo attempt was made to reorganize the discussion remarks. The reader
will find many helpful suggestions and recommendations tiroughout this section.
Hopefully, tlhe editors have preserved in this docuuent a little of the flavor

and excitement of the discussion.

The editors would like to thank the many persons who shared in the work
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of this project. Rolf Bargmann and Larry Anderson were particularly helpful
in the planning of the Symposium and the identification of other participants.
In the long period between the original conception of the meeting and the
preparation of this report, many typists and secreeapies assisted the editors.
We wish to express our special gratitude to

iirs, Sherry VWilson,

Yirs. Carol Donaldson, and
Hrs, Patsy Jennings.

e wish to acknowledge the financial support of the U.S. Office of

Education, whose grant to us made the Symposium possible. Ue are also grateful
for the support of time, funds, and facilities of the University of Georgia

and the Research and Development Center in Educational Stimulation.

August,. 1968 W,L. Bashaw and

Varren G. Findley




Introduction of Dr. Franklin A. Graybill

by

Clifford Cohen
University cof Georgia

As a representative of the Statistics Department, 1'd like to add my

welcome to that which has already been extended to you who are participating

here today. We are pleased that we are able to cooperate in at least a small

way; and later in the program you will hear from a member of our department,

Dr. Rolf Bargmann. I might say that Dr. Carl Kossack, who is chairman of
our department, is unavoidably absent since conflicting schedules made it
imperative that he be out of town at this time. It is regretful that he 1is
unable to be with us.

Now, I would like to proceed to the task which I was requested to perform
and it is indeed a pleasure to be called upon to introduce the speaker.
He is, perhaps, best known for his very excellent book, An Introduction

to Linear Statistical Models (McGraw-Hill, 1961) which has been quite

widely distributed and very well received. Incidentally, this book is
labeled volume one. Dr. Graybill tells me that volume two is coming
along very nicely and will soon be released. Frankly, I think if he were

inclined to do so, he could just rest on his laurels with his first

volume but he's not that type of person. He is also quite well known

for his work in a revised edition of one of the leading advanced texts,

1 An Introduction to the Theory of Statistics (Mood, and Graybill, 1963).

The first edition was written by A. M. Mood and the revision is largely

the work of our speaker and Mood.




Now, besides these two works I have mentioned, which perhaps are the

reasons for so many people knowing about him,

he has published a number of

research papers in the leading statistical journals, particularly the Annals

of Mathematical Statistics and the Journal of the American Statistical Asso-

ciation. He is a member of the Institute of Mathematical Statistics, the

Biometric Society, and is a fellow of the American Statistical Association.

His undergraduate work was done at William Penn College where he received

his Bachelor of Science Degree and then he received his Master of Science

from Oklahoma State University. His Ph.D. was from Iowa State University.

He taught at Oklahoma State for several years before accepting a position

as Chairman of the department at Colorado State University, a position

which he still occupies. At Oklahoma State, he was,

I guess you might

say, Carl Marshall's right-hand man. 1 saw Carl shortly after it had been

announced that Dr. Graybill was going to Colorado State and you would have

thought Carl had lost his right arm. I just tell you that to let you

know how much his former department head thought about him. Well, since

going to Colorado he has been quite active; he's quite energetic in vari-

ous and sundry programs and with that I will yield t

Dr. F.ank Graybill.
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INTRODUCTION' TO 1Y USE OF GEWERAL LINEAR MODELS
IN THE AVALYSIS OF EXPERIMENTAL DATA

Franklin A. Graybill
Colorado State University

vou know one of the nice things about a meeting such as this is that
you get to know each other on a first-narve basis. I've been involved in a
nunber of these with groups of geologists and biologists--none with educa-
tion pecple, however., It scems that you run into each other from time
to time at meetings and various places like this and I think it is a good
coportunity to get together and find out what's gcing on. I'm a little
dismayed to be the first speaker in a sense that I suppose being the first
speaker is sort of like calisthenics in the morning--get them out of the
way and get going.

I wanted to know what credentials I could bring to a group like this.
You see, you have me at a disadvantage; you all ¥novw some statistics and I

know nothing about education even though I'm heavily involved in the cduca-

tional prccess or, at least, I think I am. I thought back as to what

I could bring to increase my status with you and one thing I can say is that

my undergraduate degree led to ry receiving a high school teaching certifi-
cate, so I guess that's samething.

Well, since this Symposium does involve linear models, I will say
something about this. But I think that before linear models should enter,
I must say a little bit about some of the techniques in statistics that
I presume will be discussed and debated here today and tomorrow.

1'd like to preface my remarks with a few words about statistics in
general since I believe that fram tire to time during the Symnosium cer-

tainly our deliberations will lead us to some of the foundations upon

which the theory of linear models must rest.




I presure I will not say anything today that is new but I may say

something that is controversial. I hope everyone does; this is the way

we can get ideas across. And even though I may say samething that will be
controversial to some people, I won't take time in every instance to voint
out every side of controversial statements. It is popular these days, and
almost mandatory, for a statistician to declare his rarty affliation. By
that I mean, in particular, we are seeing an influx of what we call Bayesian
statisticians these days. I don't know whether you've been involved in
Bayesian statistics or not, but in a political venacular, I'm an indenendent.
You might say that I'm a fence strattler. I'm Bayesian when I think it's
appropriate and non-Bayesian when I think it's demanded. So I guess in
sophisticated language, I'm what you'd call a neo-Payesian. But I think that
we're all Bayesians in the sense that we must bring to bear upon each of

our prcblems—not only in a scientific atmosvhere, but in everyday affairs
of men and women—to all the knowledg: we have. One way to do this in sta-
tistical formulacions is through what we might call Bayesian imethods.
Bayesian formulations are not very well Jefined yet and perhaos never will
be. If we're interested in this tonic in the symnosium, we might say a
little bit about it later.

Now statisticians, I think, and statistical communities today are di-
vided into two groups—not by natural division or by any intended thing--
but I think we are divided. There are the mathematical statisticians who
really don't live very close to data nor who care much about data. Then
there is a group, and I think a growing group, that feel that the real job
of a statistician is to be a data analyzer. With the advent of the carmputer
our problem is made not easier but perhaps more difficult; bhecause we can

make wrong decisions and use wrong methods and techniques much rmors quickly
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and make many more errors than we could a decade ago. But, be that as
it may, I presume that we as data analyzers are to take a set of data and
make some sense out of it.

We want to talk about linear models and so I will lay a grcund work
so that we might have a starting point. We might start off by saying
that we live in two worlds. We have what we might call the real world
and the abstract world. Now, the abstract world is a world of synbols,
of conceptualization, and so forth. Those of you who have known mathe-
maticians and have thought from time to time that mathematicians are out
of this world, what you probably mean is that they are out of the real
world; they're in this abstract world.

But, in contrast to this abstract world, I think it helps, at least
it helps my thinking, to focus on the real world. This is the world of
the senses, perhaps, the world of measurement--this is the world we
really live in. In the abstract world we would include the world of
thought--what our thoughts, our reasonings, and so forth are. I think
the problem of modeling, not only linear modeling, is to dip freely
pack and forth from the real and abstract worlds.

For example, Galileo dropped rocks from the leaning tower, and from
these acts he developed a formula relating time and the distance that a
body falls under free flight. Now if he cbtained this result by working
in the real world, he locked at the data. I don't know if the data
indicated 1/2 gt2 or maybe it indicated 1/2 gt1'99999. But anyway,
he arrived at 1/2 gt2. Now, by dipping into the abstract world of symbols,
we can cbtain the wvelocity at any given time and the acceleration at any
given time. We can cbtain a number of things like that. Galileo could
have also done exactly the same thing by working completely in the real

world.

RIS e A G s et

e T,

T

3,
b
e
3
4
3




But what I'm saying is that the reason for modeling is so that we can
work in the abstract world and save a great deal of time. And, not only save
time, but perhaps by working in this abstract world, which is much easier,
we can fit in ideas, thoughts, perhaps new techniques, and so forth, that
we may never be able to synthesize in the real world. It is a condensation
of ideas using symbols. I think it is extremely important. But I think
it is also important that if we go to the abstract world to do our manipu-
lations from time to time we get back into the real world to check these
calculations, to check these equations and symbols. This is, in my opinion,
why we try to model either simple or complex situations.

Now, I would like to work toward the goal that I will call a fundamental
proposition as far as modeling 1is concerned. You'll notice that I will almost

never use the words, "cause" and "effect." I think that technically speaking

cause and effect are very difficult to defend. But, nevertheless, 1'd like
to take the following as a rough proposition.

First, y is some measureable quantity in the real world and we want to
predict it. However, it is something we'd like to predict without measuring
it. We can think of a lot of examples for y. We take as a proposition that
there exists a finite number of quantities that are not directly related to
y, and a function, f, such that, 1f these quantities were known and if the
function £ were known, then I could predict y exactly.

There are some who will find fault with this fundamental proposition,
but in spite of the fault that they find--and there is some--I think that
this is the way a scientist acts. I think what scientists do is decide to
predict or describe some quantity. Then they pick out some other factors
that they think have a beuring on this quantity of interest--factors that
they believe will be useful in understanding the system, that somchow

determine or drive the system, and they try to find a mathematical model
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relating the factors and the quantity of interest. The use of this derived

model puts us in the abstract world. We work in the real world with all of

our knowledge to decide on the factors that coniribute to driving the system
that determines y. Then we put these factors with some kind of a formula

or function and we use these to try to predict y. :

Sometimes we use "functions" in our prediction formula in a very loose :

sense. For example, we know that when it rains, there must be clouds. When

there are clouds, it is more apt to rain than when there are not clouds.
1f my father and mother were very tall, I would expect my children to be
tall. If my father and mother were short and I'm short, then perhaps my g

children will be short.

1f we find out that these statements or derived models do lead to some

measure of predictability--but not perfect as, of course, they never would

be--then what we try to do is to find other factors that also contribute to {

—
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driving this system and we bring in these additional factors to try to have
a better prediction under more and different varying circumstances.

1 think this is an idealized way to look at modeling. We believe there

are factors that we can find, that we can observe in the real world; we can

use some kind of a symbolism or some kind of equation or formula, and use it

to predict quantities in which we're interested. We believe these factors

e o s

somehow help determine and drive this system of interest and yet they're not
directly associated with it. As an example of this "indirect relationship,"
consider the prediction of a variable y. I'm going to measure the square

root of y and square it--I've got a perfect predictor for y. One predictor,

St

/;; is directly related to y. This is not what we're looking for; this 1s

R Lr OB G Hairrm

not of very much help if any help at all to us.

One of the objectives in science i{s to describe, predict, and relate

quantities in the real world, and mathematics is used to describe connections

£
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between events, but mathematics doesn't prove the statements. Mathematics
is not a science of truth; it's a science of logical reasoning. This is
why we use mathematics to do the modeling. We certainly think logical
reasoning is called for and mandatory. It'll tell us something about

the relationships in the abstract world, but it will tell us absolutely
nothing about the real world. And so the input to these formulas that we
use in the abstract world arc what is really important. Now, of course,
it is important that logical reasoning be instituted and used in the best

sense, so it is important that we know how to manipulate these quantities

in the abstract world, but it isn't the whole answer.

Now, I'd like to continue this a little further to show you how it 1is

related to linear models. Linear models are very speclal cases of moce

general models. Linear models are the only ones that have been developed

very far and in some sense, perhaps, the only ones that ever will be, but

we may be able to do a little bit more with non-linear models than we have

in the past. I will use as an example something very simple--the prediction

of the height of an individual. Let us assume that I'm trying to find some

factors that will predict what the height of an individual will be when he

reaches a certain age. Suppose there are n factors Xl, 12, cesy Xn that

"determine" height. Suppose we find two factors, X, and X,, that will be

important., Maybe these are the heights of the parents of this particular

person whose height we are trying to predict at a later age. We find some

kind of a function of these factors, say f(xl, Xz). In other words, we're

looking only at two factors in our prediction. The model can be written

y= f(xl, Xz) + g(x3, Kyo ooo» Xn). We know that these two factors, X, and

X,, are not the only quantities that determine an individuals height at a

certain age, because if we observe many people whose parents have the same

o 7 s
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height, these people would probably all differ in height. We know that
there might be other relevant variables--X,, Xyo oovs X for example,
diet, grandmother's height, etc. In other words, I make an observation of
an X, and an X, for an individual. I observe another individual and he

1 2
has the same X, and xz values, but the heights of the two individuals differ.

1
The reason is that other factors are really affecting height but we haven't
brought them into our model. We consider the non-used factors in the func-
tion g(x3, Xa, cony Xn) and examine tbe way g(x3, xa, coey Xn) varies when
xl and x2 are held fixed. We treat g(xa, Xa, ceoy xn) as a random error
and write y* = f(xl, xz) + e.

This is the first approximation to understanding--we begin to lay it
out, stretch it out, tear it apart, find out what factoers drive this par-
ticular event of interest. We may collect some data and estimate the vari-
ance of an error term. If the variance is zero, this means that we have
an exact predictor. This never really happens or I've never known it to
happen, but the variance might be quite small. If so, we have a popula-
tion of heights that can be predicted with quite good accuracy and per-
haps cnough accuracy to solve our problem.

I think we're never interested in predicting the height of an indi-
vidual to the nearest one ten billionth of an inch, or closer, as we might

1f we were looking for what we call deterministic model or point determi-

fnistic model. We might settle for what we call an interval deterministic

model. With an interval detcrministic model we would predict, for example,
height to within a millimeter, because for all practical purposes and
cven many impractical purposes, 1'd have my problem solved. The determi-

nistic models are formally stated and summarized in Table 1.




Table 1

"fathematical Deterministic odels Sumarv

Fundamental Proposition

For any Y there is a function f and variables Xl' :~:2, coey xn such that

yf(Xl, X eeer xn)
The ti1see "levels" of deterministic models
1. Point deterministic: y = £(X,, Xor eeey Xn).
2. Interval deterministic: y = £(X;y X5/ coer xn).
where each X is cbserved to be in an interval Xq + €
3. lewvel 3 is the same as 2, except that y is ohserved to be in

an interval y + ¢ with a orobability less than one.
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So the goodness of our model derends on the error variance. If it
takes various individuals and measure height of their mother and father,
and their predicted heights vary as much as 50 pounds for the same mother's
height and the same father's height, then my variance is too large, my
prediction is not precise enough. Therefore, I may decide there are other
factors entering into this system or I may have the wrong function relating
the factors.

Suppose I decide that there are other factors entering in and such as

X., that has to do with diet. We find a different function and now try to

3
measure y as a function of the three variables. Suwpose I have several
ocbservations, each of which has the same mother's height, the same father's
height, and the same nutritional measurement. If these individuals have
different heights, then I do not have either the correct function or all

the variables that go into exactly determining the h. i .. ’lxexwr, again, if
I can put a probability distribution on g, (Xgr Xgo ooes Xn) at least to

a first approximation, 95 varies and acts as a randan variable, then I

could write my model as £, (X;, X,, X,) nlus another random error which

is different from the earlier one. Now, let's again examine the variance

of that random error. In other words, what I examine really is how g, (3{3, X,,
ceer Xs) changes when X0 Xo0 and Xy are held fixed to tell me more or

less whether these three factors are contributing enough to the pre-

diction of height. Suppose I had examined the error variance of the twe-
factor model and found it too large. It gave me, perhaps, a distribution

that has a spread of let's say six inches. So when I measured the mother's

height and the father's height, I still could not predict within less than

six inches so it wasn't precise enough.

1
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So I brought the third variable into my model and got a three-factor
model. Now I examine the error variance of the new rmodel. If the variance
is a great deal smaller than the variance of the two-factor model, then the
x3 variable has done some good. It means instead of six inches of spread
on the prediction, I have reduced it to something like, say, one inch, and

if the variation is now one inch, perhaps I will decide that I've got a

model that is good enough for my nredictive purposes. I realize and recog-
nize and knaw that I will not be able to predict the height of an individual
exactly by only knowing these three quantities of input and this particular
function of the model because there are other important things that will
determine the height that causes individuals with the same Xl, X, and X3
to have different heights. But if the heights don't vary too much~-if
§ the error variance is tolerable so to speak--then I've qgot a prettv good
model and so I say "Here is the model T will use."

Now, to continue this a little bit further, we ordinarily don't use,
at least in the initial stages of exverimentation, just any function. %e
ordinarily use what we call a linear function. 3nd when we say linear
function, we mean linear in the unknown parameters. "e don't care about
linearity in the X's—-it may be logarithms, exponentials, squares, cross-
products, almost anything like that--but the model must be in the unknown
parameters.
p Now, let's digress a mavent. I need to point out that in riodeling
of this kind, there are two types of errors. "e may make measurement
,;“ error in trying to cbserve our variables. For examnle, when any kind of
continuous variable is involved we know we make measurement errors. If

somebody says "What's my height?” I can't tell you exactly what it is.
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There's a measurement error involved. The only tine there isn't a measure-
ment error involved is when ve count. For examle, how many neople are in
this roan? I presuwe we could count the number of neorle in this roam and
everybody in here would agree. Now, if I had indentified the exact function
and the exact factors that drive this function to predict our variable vy,

if there were errors involved in measuring the X's and an error involved in
measuring the y, I would not predict the exact value of y's, just due to
measurement error.

On the other hand, there is a second kind of error. Supmose I could
measure all of the quantities xl' xz, and x3 exactly--and yet when I try
to predict y by using these three quantities and the functian f,(X;, X5, X,)
I don't predict exactly because there are other things contributing to y.
This is what I would call an equation error. It's an error in predicting
because I don't have the correct ecuation. There are two general wavs I
can have an equation error. “ly equation may have immortant predictors
omitted or the function chosen may be the wrong function.

I think the fact of the matter is that in every real world situation,
the reascn ve don't predict same things exactly is because we make both
types of error. 'e make reasurement error and we also make an equation
error. Now the question is which of these in a particular situation
should we examine more closely; which should we try to take into account?
what we've discussed orimarily todav is trying to take into account the
equation error. Our first model might not be the right equation. The
secaond model might not be the correct equation either, but it's more correct,
let's say, then the first one if we have been good experimenters with
good insight. There is still some equation error involved but there is

also undoubtedly a measurement error involved.
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Now, there are sawe sciences, and education is aone, where measurenent

errorisaveryrealandixrportanterrorandmaybeequalinmgnituﬂei.n

many situations to the equation error. ‘le may have a good equation but
our measurement error may be so high that it samehow invalidates our model
as a good prediction equation.

ilow, let's try to use our model to relate the real world and the

abstract world. If we can enter the abstract world and find this model

then we can go through our mathematical manipulations and do many things

and find out perhaps even same new things without doing all the g
experimentation that would be necesiary if we worked only in the real |

world. Now, there are same reascns why we can't bridge tne two worlds.
There are many reasons, in fact. One, as I said, rmathematics pernaps

is too exact and maybe it is. But it is exacting and that's just the

way mathematics finds itself. Another thing is real world quantities ;;j'

are not well defined. For example, height is not really well Jefined

and we need save kind of operaticnal definition. I'll say I'll take

G et

a certain kind of measurement device and I'll measure a thousand tirmes
and tzke the average.. It's an operational definition, but height itself
is not well defined at all. We could, I suppose, hold the whole

symposium in discussing what we mean by the length of this table. If

we mean length perhaps to the nearest foot, the problem is solved. But

ai suppose I said I needed to know the length of this table to the nearest

micren. Well, the problem is not solved and so we would have to solve it

and there are very deep difficulties with samething even as simple as that.
Another reason why perhaps it is difficult to relate the real world

and the abstract world through mathematical modeling here is that there's
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measurement in the real world. ile've got to live with it. Physical
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scicnoes savtimes solve tiis in many of their problens, so ncasurement
error is not too important to them. Measurcment errors have a way of
accunulating when you take a nurber, whan you square it, vMen vou take
logarithms, exponentials, and etc, and so even in the physical sciences
where the measurement error is very small, it offers same problem.

Another difficulty in relating the two worlds is the difficulty in
holding a certain quantity fixed in the real world while others vary.
Mathematically you can do this very easily. Say, let's hold X, fixed, let
X, vary, and see what happens. "ell, vnu, nerhaps, can't really do that
in the real world. You can't hold height fixed and let weight vary. You
couldn't let weight go up to 300 pounds and the height be 18 inches or
something like that. It just doesn't make sense, SO it's difficult to
do that in the real world and so we have to be careful.

Another difficulty in relating the two worlds is that real world
quantities may not be independent in mathematical sense. That is why we
can't hold same constant while others vary. 'l can consider them mathe-
matically independent, but in the real world that may not be the case.

Ncw, this is one reason why we've got to be very careful when we use the

coputer. We run away with ourselves and come up quite often with nonsense.

Finally, there are no reasons vhy we should be able to relate these
two worlds actually.

Now, the feeling is that we as mathematicians and as statisticians
many times spend a great deal of time gettina nrecise solutions to the
wrong problem and I think we could, perhans, spend time better getting
approximate solutions to the correct problem.

Now, I'd like to classify these particular models. These models are

called quantification models. They're models to be used when the variables
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are quantitative variables, variables that I can measure, variables that
have interval or ratio scales. These are things like height and weight,
things that have i pretty good definition of measurement even though maybe
I can't necessarily measure them. ilow, there are a nunber of classifi-
caticns that could be made here and I would just make some of them befare
I start. We've got to bring in linear models here. We'll use X's to
denote independent variables and y to denote the dependent variable.

The first model is where the independent variables are pre-selected
real variables—not random, they're pre-selected. We use this all the
time. We decide well, I'm going out and get somebody that weighs 50
pounds and his mother weighs 140 pounds and things like this. They're
actually pre-selected. Naw, of course, y is always a random ccamponent,

a randam variable.

The second case is where y, X,, X,, and so fcrth are jointly random
variables. Now, this may ke a situation where I go out and select pecple
at random. let's say if I'm talking about height and weight, I select
pecple and they have a height and a weight. I select another person,

Le has a heignt and a weight, so the height and the weight, the y and

X, are random variables. In the former case we purposely select scme-
body that weighs 50 pounds and measure his height, select samebody that
weighs 60 pounds and measure his height, and select samebody that weighs
70 pounds and measure his height. This would be the first type. In the
second case, I might take the person at random scmeway, but his height

and weight would not be pre-detemmined by re.
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Now, the third situation is either case one or two when sorme or all of
the independent variables can not be chserved. !ov, that is really almost
always the situation. For example, in the height and weight examnle, I
can't really observe height and weight. You have a true height, and a true
weight, but I can't observe it. ‘hat I observe is a measurement of your
height and weight and if this is not truly your height and weight, it turns
out that a different kind of model is amnrooriate than is needed in cases
one and two. I don't chserve these y's. I observe the X's plus same kind
of random errors. You might say, "Well, these models almost lock the same.”
But the difficulty is the appropriate solution to case three has never
been found.

The particular prcblem here has never been adequatelv solved. There is
same indication that it never will be, that the situation where I have errors
in !i\easuring my independent variables is not amenable to actual solution.
Now, I say this so we iight keep it in mind. Now, if the measurement error
or the X variance of the reasurement error is very, very small relative to
the magnitude of the quantity measured, then the method we go through in
the first two cases are very good and almost the same as would be if I
measured them without error. But the problem exists and somotimes it is
sort of glossed over and we don't recognize it. This is sametimes called
"regression' or "linear model with error of observation in the devendent
variable." It doesn't matter if we have errors of cbservation iny.

It just increases our variance and we don't do quite as good a job, but
we can still do the job we set out to do. If there are errors of obser-
vation on the X's, then that problem has not been solved and can offer some

real difficulty. I think we need to be aware of that.




There are two things we are generally interested in doing in these models.

one is predicting, the other is to estimate, and these are two different

problems.
If we are interested in only the prediction problem, predict the height

let's say of an individual, we don't care nerhaps vhat the parameters in

the model are as long as we have a good model for prediction. If all we

want to do is predict the distance a body falls in a free flight in a vacuum

T e e Tt e

under the influence of only gravity, we may just like to be able to predict
it as a function of time. This is what I call a nrediction nroblem.

Now, the estimation problem means that there are some reasons why the
model parameters are important. They may be important in their own right,
not only important in just being able to predict. For example, in Galileo's

model the constant of the model is a measure of the gravitational constant.

So while I would need to know the constant fairly accurately to have a

good prediction, I need to know it for some reason in its own right and so

I'd like to estimate it. Usually, regression constants may not have par-

ticularly important pronerties to me, but I'm just trying to obtain these
factors to get a good prediction of y, so I'm interested in qgood estimation

of weights only in so far as good estimation werild lead me normally to good

prediction.
The problems I think are quite clear. I think that there are times
when we want to do one and times when we want to do the other. Tell, that's

all I have to say about this particular model--what I call the quantificatioh

model, or quantitative variables model.
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Now, I'd like to turn just for a minute to what I call qualitative
models. These have ordinarily been called analysis of variance models.
Now, to a mathematician and a mathematical statistician, they're exactly
the same, but you know in some ways, the interval from 2ero to one is
exactly the same as the interval from 10,000 to 10,001, but if you're
going to have your salary in dollars per year in one of those intervals,
I think perhaps you wouldn't want to consider them the same. So, while
to a mathematician and a mathematical statistician, what I call the
qualitative or analysis of variance models can be cbtained as a special
case, mathematically speaking, from the models on the quantitative vari-
ables that I just discussed, I don't think there is much value in that
except perhaps as a teaching aid. You just have to go through theory
once, but to sameone who is going to use it, even though as I say,
mathematically they're equivalent, I think it's very inportant we go
through these models independently.

Now, these models generally can be written

* &3k

Yisk = Mij
The u's are what we call the means; thz e's are what we call the random
compcnent, and both the u's and the e's are uncbservable. The y's are
what we cbserve. The subscripts i and j tske the place of the X's. Sub-
script i takes the place, for exanple, of cne X; j of another, etc.

I shall classify these into three categories and I'm classifying on
the nature of the u's: ane, the fixed effect models; two, the random
effect models; and three, the mixed, or random and fixed effect models.

Now, let's just take the fixed effect model and sub-classify it.

Let's cansider a two-way classification of data. Let's use n; j to mean

that the number of cbservations in the ith row and jth colum. If nij




equals zero it means thers are no cbservations in the ith, jth group;
that is, y:i.j doesn't even exist. We say that a model is "cawplete" if
all nij are positive. If at least one nij is zero, then we have an
"incomplete"” model. In other words, if all cells have something in them,
we have a cawplete model; if there is at least one cell with no data we
call the model "incamplete."

In our breakdown we could have a tree of classifications. The first
breakdown is models with and without interaction. This is very inportant.
Models specifying interaction, we call “"non-additive." Suppose in order
for discussion, we have ocne cbservation per cell. If we want to check
for presence of interaction we have a test due to John Tukey and varia-
tions of that test. A second breakdown is by cell sanple sizes. First,
we could have one cbservation per cell as above. Second, suppose we have
more cbservations in each cell, but the number of cbservations per cell
is the same for each cell, say nyy = m > 1. This can be analyzed by con-
vential ANOV. Third, we may have an unequal number of cbservaticns per
cell. There are two things we may want to do here. e may want to sub-
classify this. If we have equal numbers, things are pretty straight for-
ward. You can check interaction, you can check what we might call main
effects, and so forth. If we have a conplete design with unequal nuibers,
let's say more than one in some cells at least, we can check for inter-
action and we can check main effects and I call both of those conventional
methods. The main effects are estimated by unweighted means analysis.

Now, let's consider additive models, or models that specify no inter-
action. First, consider the case with one cbservation per cell. This
has a conventional analysis. Second, consider additive models with equal

nurbers in each cell, but the n:i.j are greater than one (n:i.j =m>1),
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This model also kas a conventional analysis. The third one is, of course,
its counterpart, with unequal mumbers in the cells. These various models
are summarized in Table 2.

There are problems we need to solve after we have the model. We need
to examine the data for interaction--where and what kind. This is basic,
not cnly find where the interaction is, but what kind of interaction is
present. Is it a strengthening kind or is it a reversal kind? These
are very important prcblems, it appears to me. We perhaps want to examine
for row and colutn effects. If there are effects, where are they? What's
operating here? What's pushing the system? More important than any of
these is to examine individual cell effects.

The first thing I think should be done in a situation is to find the
sufficient statistics. Now, if you're not well trained in mathematical
statistics, you may not know what that means. But what it means in a
nutshell is this--reduce the data as far as possible without losing any
information. For example, if you have data here that involves, let's
say 500 cbservations, you may be able to reduce that to 50 cbservations
without losing any information under the model which you are assuming.
Again, don't take the model as gospel too much. You should go back and
examine the model. You should use your data not only to check what you
started to determine, but you should also use it to examine the model
in which you use it. I think one chould reduce the data as far as possible
without losing any information--to what we might call the smallest set of
sufficient statistics. It's just a matter of simplicity, it seems to me,

it's easier to lock at 50 numbers and read something out than it is to

lock at 500,




Table 2

A Sumary of Some Fixed Effect, Complete “4odelsl

A.

B.

Interaction (Non-Additive)

j= 1; Tukey test for interaction

2. Foual cell sample sizes: n:i.j =m > 1; conventional analysis

1. One observation per cell; n,

3 not equal for all i and j

Interaction--conventional analysis

3. Unequal cell sample sizes; n,

Main effects--unweighted means analysis

No Interaction (Additive)

1. One observation per cell; nij = 1; conventiocnal analysis

2. Equal cell sample sizes; nij =m > 1; conventional analysis

3, Uncrual cell saple sizes; nij" conventional analysis

incomplete models.

]This breakdown can also be applied to random components models, and
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I think the important thing in a two-way classification is to esti-
mate the cell means. You may not want to do this; you may have other
things you want to do. But this is what we should estimate to begin
with, it seems to me. Preliminary analyses are very useful.

Another thing is to use some kind of a technique to milk the data
after you do the things for which you set up the experiment, because
this is where you get the new ideas.

I think something else should be done as you use the data to examine
the model. Use the data in another way to decide how you could go on
to another experiment in sort of a sequential fashion to inprove cn the
result=--to either confirm or deny your conclusions.

There is another problem that is important and deals with the Bayesian
point-of-view. If I use a linear model, it's a very formalized thing.
You all have a great deal of knowledge to bring to bear cn a problem you
camnot model. I think that this is where the jdea of what I shall call
the target and sample population was developed. There are two popula=~
tions. You sample populations, and from that sanple, using statistical
techniques, you can cbtain probability inferences to that population
that was sampled. 'That perhaps is not the real population you want to
discuss. The real population you want to discuss is called the tarxget
population. You sanple cne population. You can draw valid probabilistic
statistical inferences to the sarple population. Then the population
you're really interested in, the target population, must be given con-
sideration. After you have the information on the sanple population,

the inferences you draw to the target population are perhaps non-proba=

bilistic, more personalistic.




Now, I recamend some “"don'ts" and I wish we could discuss these.
First, "Don't use a statistical test." There is a one-to-one corre-
spondence between statistical tests and statistical confidence intervals.
For example, mathematically, in a sense, they're equivalent; but the
way we think about these things is very, very far from equivalent. I
would like to discourage the use of any kind of a statistical test and
even talking of the phrases "statistical significance" or "tests of
hypothesis.” Use confidence intervals where possible.

The other "don'ts" are "Don't be restricted by absolute pre-con-
ceived linear models," and "Don't reduce the data toco far." Show the

cell means. Show the sufficient statistics.

e
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Introduction of Dr. Joe H. Vard, Jr.
by
W, L. Jashaw
University of Georgia
I would like to introduce Dr. Joe H. Ward, Jr., who is
the next speaker. Dr. Ward is a Texan who earned his Ph.D.
at the University of Texas. Our major reason for choosing him

to speak is his co-authorship cf Applied Linear Regression.

This is a book that has Leen very useful to many of us since
it was onec of the few documents that has been available on the
subject over the last several years. A secondary reason for
asking Lr. Ward to participate is that he has, over the last
few years, been traveling arouni the country giving lectures
and workshops on general linear methods. We certainly would
have been amiss if we had not gotten him on the program.

Some of you will be surprised at his institutioral affilia-
tion. &ll of you will identify him with Lackland Air Force
Base's Personnel Research Laboratory. I understand he ha. been
at the Personnel Lab now some seventeen years. This year he
is on a one year lecave of absence so he has not broken his
connection with the Lab. At the present time he is Program
Director for the Southwest tducational Development Laboratory.

A fev of his researcl. arecas might interest some of you,
in addition to myself. One, of course, is application of
linear models; a second is homogeneous multivariate grouping.

This is a set of grouping techniques that was developed for
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grouping many things. liy interest primarily is grouping veople
altnough tie tccliniques are used for such things as grouping
regression systems ana things of this sort. Third, many of

you will know him primarily for his computer programming,
particularly for the Persub Programming System. This is a

very complete set of matrix subroutines that can he tied
togetiher to do any set of matrix operations.

Finally, I would like to say that Dr. 'YJard has consented
to give us the one day workshop on Saturday. This was his idea
and I would like to repeat, for those of you who have not been
informned, everyone is welcome to attend.

Dr. “ard's paper today is "Synthesizing regression models,

an aid to learning effective problem analysis."
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SYNTHESIZI!:G RECRESSION i"ODELS--
AN AID TO LEARNII'G EFFECTIVE PROBLE!C ANPLYSIS

Joe ll. Ylard, Jr.
Southwest Lducational Development Laboratory

Regression models cen ke used tc assist in the analysis of
a wide variety of problcms. iiowever, the power of reqgression
models is not widely utilized. There are two major recasons for
the lack of use of general regression models. First, there
have been too few attempts by teachers to develop the lL: aviors
in stucents that are necessary to effectively create models
appropriate to the particular problen of interest. Second,
many of the models that should be utilized for a particular
problem require the use of a computer, but many research workers
do not have effective software systems to facilitate communica-
tion with the computer.

These two problems can be helped by 1) providing an instruc-
tional system that will develop in stucents the capability of
defining regression nodels appropriate to their proklens of
irnterest; and 2) providing computational software that facili-
tates the ai:alysis by a .ijh speed computer.

Even though both of the above areas are important, the
first--defining appropriate models--is the most important and
difficult behavior to bring about in research workers. The

following presentatiorn will be devoted to the discussion of

several aspects of this prohklen. First, a few general comments

will be made about the general problem of teaching (and learning)

techniques of model generation. This will be followed by a
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specific exaiple of an instructioral approach--a descrintion of

a syntiesis of several aiffercnt rogrussion nodelz.

Ti.,e Generation of . odels

Some of the internediate ehavioral orjeutives taat leac

to effective model generation are:
1. A rescarcia vworier should bz able to define the vector of

interest (i.e., ceperdent vector) apnropriate to his proh-

le {ois is Gevelowed by exteusive practice or problems

W 1eld c
witia iicrcasine cifficulty.
< L researcl worier must develop the capa:bility of expressing
ais vactor cf interest (call it ¥), as a linear corvina-

tion of appropriectely defineu vectors (call tren X(1), ¥(2),

2(k)) nlus an error vector (call it I). rxtensive

practice in definina vootors is required to develop the

desired. capawsility. The research wvorker should think "I
need to [ind ‘ancther name for Y' so that tie statements

that I make awout this ‘other nawme’ will Le relovent to ny

problerm.” A student should uave extensive practice in
cefiningy tl.ose vectors which are to Le use’ in the "remailning”

<
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3. After tie vector of interest (Y) iLas been expressed as a
lirear corilination cf the new vectors (2(), (2), eeoy
A(k)) pluc an errecr, the research worker can then make state-

-otheses) atout "expected' or "predicted" values

ments (or ayge

cf Y. This involves the translation of the research question

from natural language into the lancuage of the nmathematical
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representation. This translation process is sometimes
quite difficult, and the student should have extensive
practice, using simple problems in the beginning.

4. The translation of statements about the model leads to the
imposition of restrictions on the model. The student should
impose his restrictions on the model tc cetermine the effects
of the restrictions on the error. It is sometimes helpful
to view these restrictions as the "giving up" of information.

5. After the student has imposed the restrictions it is impor-

tant that the student verify that the restricted model
actually Goes possess the properties imposed by the restric-
tions. This serves as a check for the student's substitu-
tion. It also provides frequent insights into previously

unrecognizec¢ properties of various models.

A Synthesis of Regression !lodels

The following illustration is Cesigned to show the idea
that is common to four regression models that are often treated
quite separately in our instructioral pregrams. The basic prob-
lem of interest ic the same in all four models; however, the

models appear quite different due to the differences in the

original assumptions that were made for the four models.

For our example, we consider four different research workers
who are studying the effects that different amounts of practice
have on typing proficiency. Furthermore, there is some concern
by these research workers for the possible “contaminating® effect
of the age cf the stucdents on the research results. Each research

worker feels that something should Le done to "hold age constant"
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or "take out the effects of age." However, a couple of the
researchers aren't quite sure what they must do to “take out
the effects.”

Now the first rescarch worker was located at a university
(ANOVA U.) where there vas strong emphasis on aralysis of
variance--with very little instruction in covariance analysis,
or multiple correlation and regression. »2And this research worker
was particularly fond of the "two-factor design." The second
researcher was at a university (COVARIA U.) which to no ~ne's
surprise was really strong cn covariance analysis. This school
had a complete course in covariance analysis to stress its
importance. The third worker received his education many years
ago at a university (iiULCOR U.) that had only taught multiple
correlation and regressicn analysis. The analysis of variance
and covariance course was started the year after he completed
his statistics course.

The fourth researcher had attended a university (VARICO U.)
that hac stressed a slightly different approach which they
described as "a sort of reverse covariance analysis" which they
have namec¢ VARICO ANALYSIS.

All four of these research workers have conceptualized a
common problem. First, they are all interested in studying the
effect of practice on typing proficiency while "controlling”
or “taking out the effects" of age. rurthermore since they
are dealing with the age information, they all wish to test for
interaction since it may be that the effects of amount of practice

are different for students of different ages. All four are
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interestec in, first, testino for interaction, and then if
there is no interacticr they will tost for the effect of
amount of practice.

Even though these four research ‘orkers have a coonon problem,
each one would probauly perform quite different analysis becaure
of the variec educational emphasis. Also, they might each argue
that they are doing quite different analyses. These analyses
appear even more aifferent because the computational procedures
appear cuite different.

The four different approaches will be presented Lelow in

a form that will emphasize tnat there are basic ideas common

to all.




Approach 1 - (ANOVA U.)
The research worker at ANOVA U. wishes to think of his

problem as a "two-factor design."

tle assume for all problems that there are observed 15

levels of practice (16, 17, ..., 30 hours) and that there

are 5 ages (14, 15, ..., 18 years).

\le define the following vectors:

Y = a vector containing the typing proficiency

scores of the n students in the study

X(i,j) = a set of vectors with elements defined
as 1 if the corresponding element of
Y is observed from a person with practice
hours i, and age j; and O otherwise,
(i = 16,17,...,30), (j = 14,15,..., 18)

Notice that if some X(i,j) vectors are null they are not

included in the model.

E = a residual vector

Then the full model is

Y = §§ aij X(i,j) + E

or in the extended form

(1) ¥ = a;q 14¥(16,14) + a16,15%(16,15) + ...* aj,18%(16,18) +

a17’14X(17,14) + a17’ISX(17,15) + oot 317,1BX(17»18)

+ a30’14X(30,14) + aBO’ISX(30,15) + eeet a30’IBX(30,18)-+E
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Figure 1
Latandcd Form of Vectors of Model (1)
Y X(16,14) X(16,15)...%X(30,14) x(30,15)...X(30,18)
Y16,14,1 1 0 0 0 0
Y16,14,2 1 0 0 0 0
Y16,24,3 1 0 0 0 0
Y16,15,1 0 1 0 0 0
Y16,15,2 0 1 0 0 0
¥Y30,14,1 0 0 1 0 0
¥30,15,1 0 0 0 1 0
Y30,15,2 0 0 0 1 0
Y30,15,3 0 0 0 1 0
y30,18,1 0 0 0 0 1
¥30,18,2 0 0 0 0 1
Y30,18,3 0 0 0 0 1
Predicted (or expected) value for an individual who practiced
16 hours and who is 15 years old.
E(16,15) = (a16'14* 0) + (316,15* 1) + (316,16* 0) + ... +
(a30,18* 0)
E(16,15)= 216,15
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In this discussion different symbols will not be used

to distinguish between the unknown parameters and their least
squares estimators. In the model above the symbols ay 5 will

be used to represent both the unknowun parameters and the esti-

mators.

Consider four different students having the following

characteristics:

Student Hours of Practice Age in years
1 Y P
2 s p
3 q
4 s q
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The hypothesis of no interaction can be stated as follows:
The difference between expected (or predicted) typing

performance of the two students at age p but with different
practice levels r and s is equal to the difference between
the expected (or predicted) typing performance of the two
students at age g but with different practice levels r and s.
This is hypothesized for all values of p, 9, r, and s where
p #q and r # s.

Calling the four expected values E(rp), F(sp), E(rq),

and E(sq) the hypothesis of no interaction is

F(rp) - F(sp) = E(rq) - E(sq).
Now in the model employed by the ANOVA U. research worker

E(rp) = arp
E(sp) = agp
E(rg) = arq
E(sq) = agq.

Then we see that the hzgothesis of no interaction is

arp = gp ™ 3rq " 4sq p#4
q=14, .,. 18
r #s
s =16, ... 30

*Then we impose these 56 restrictions on the model the
restricted model can be written as
(2) Y = a5¢ X(16) + a4 X(17) + ... ¢+ 410 X (30)
+ byy Z2(14) + byg Z(15) + ... + by Z2(17) + R
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where
X(i) = 1 if the corresponding element of Y is from a
student who practiced i hours;
0 otherwise (i = 16,17,...,30)
Z(j) = 1 if the corresponding element of Y is from a

student having age j.
R = the residual vector
a; and b; = unknown coefficients
Notice that 2(18) is not included in this model since it is a

linear combination of the other vectors.

Let

Q
[
H

i E. , the sum of squares of errors in the full model
z
i

1
Ri , the sum of squares of the error in the restricted

Q
N
i

model

Then if the F statistic is desired to test the hypothesis we

F = (q, - qy)/(75-19)
qy/(n - 75)

Now we will consider the situation in which the no-interaction

hypothesis has been accepted as true.

Then we use the model

| Y = ajg X(16) + a;9 X(17) + ... + a3, X (30)

! + byg 2(14) + byg 3(15) + ... + byy 2(17) + R

» The next hypothesis (the effects of practice) is that the
difference between the expected typing performance for two
students at the same age p but who have practiced different

amounts r and s is squal to zero. This must be true for all

ages.
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Then we consider the two expected values F(rp) and E(sp).

The hypothesus is

E(rp) - F(sp) = 0
Now in the above model we find that

E(rp) = a, + bp

E(sp) = ag + by
Then we see that the hypothesis is

(a, + bp) - (ag + bp) = 0
a, - ag = 0 r#s

r,s = 16,17,...,30

Then we impose these 14 restrictions on the model; the new
restricted model can be written as
(3) Y = byy 2(14) + byg Z2(15) + ... + byg 2(18) + G
Notice that this restricted model has no information to dis-
tinguish amounts of practice; i.e., we have given up the in-
formation about differences in amounts of practice.
Let g3 = ZGiz, the sum of sqguares of the error in the new
restricted model.
Then if desired we have

qp; / (n-19)

3 W -
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Approach 2 - (COVARIA U.)

Since the research worker from COVARIA U. likes to do
covariance analysis it is necessary to have his "contaminating"

or covariable in "continuous" form. Therefore, it is necessary

to accept a certain hypothesis about the model used in the

ANOVA approach (model 1) above. Before beginning his analysis

this research worker must make the following assumptions:

216,14 = 16 + Iy " 14
816'15 = CI6 * dls ‘ 15

316,18 = %16 * %16 " 1°
317,14 ¥ €17 * 417 * 14
; 217,15 = €17 * 917 7 1
a17'18 = CI7 + d17 * 18
230,18 = €30 * 430 * 18
or
§ _ . . _
; aij - Ci + di * J 1 ; 17'18'000'30
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