
DOCUMENT RESUME

ED 026 737 24 EA 001 982

By- Bashaw, W. L., Ed.; Findley, Warren G., Ed.

Symposium on General Linear Model Approach to the Analysis of Experimental Data in Educational Research
(Athens, Georgia, June 29-July 1, 1967). Final Report.

Georgia Univ., Athens.
Spons Agency-Office of Education (DHEW), Washington, D.C. Bureau of Research.

Bureau No-BR-7-8096
Pub Date 23 Aug 68
Contract- OEC -2- 7-008096-0496
Note-243p.
EDRS Price MF -$1.00 HC-$1225
Descriptors- Analysis of Variance, Computer Oriented Programs, *Data Analysis, *Educational Research,
*Experiments, *Models, Research Methodology, *Statistics, Symposia

This volume contains the five major addresses and subsequent discussion from
the Symposium on the General Linear Models Approach to the Analysis of Experimental
Data in Educational Research, which was held in 1967 in Athens, Georgia. The
symposium was designed to produce systematic information, including new

methodology, for dissemination to the educational research community to (1) promote
wider use of sound methodology and (2) provide caveats regarding limitations of this
powerful approach. The authors and their papers are: (1) Graybill, Franklin A.
"Introduction to the Use of General Linear Models in the Analysis of Experimental
Data," (2) Ward, Joe H., Jr., "Synthesizing Regression Models--An Aid to Learning
Effective Problem Analysis: (3) Winer, B. J., "Problems in the Use of General Linear
Model Methods," (4) Bargmann, Rolf E., "A Survey of Appropriate Methods of Analysis
of Factorial Designs," and (5) Bock, R. Darrell, "Remarks on Analysis of Variance and
Analysis of Regression." The papers and ensuing discussion elucidate strengths and
limitations of the general linear models approach, discuss procedures for handling
computations, and present the independent views of major authorities on theory and
of established practical authorities on the use and usability of methods. (HW)



O

11 o

o

c

,

c o o
I I

SYMPOSIUM

6 `4,o'o0 0

0
0

(1: 0°

0,
CI' °

0

o

O P

r w °Pall

ON GENERALLINEAR MODEL APfROCII TO Ilk ANALYSIS OF

EXPERIMENTAL ,DATA IN EDUCATIONAL RESEARCH
0

W. L. °Buhr*/ aid Warren G. Fi

,.

.:,iimai sport
Project 74096

Csitract Nt-90EC2-7108096-04
, 0

0

a o

0

° a O

0 g

Unhtersity of Geor0

oo" 0

Mhenti Geot: a<,

c

0



Final Report

Project No. 7-8096

Contract No. OEC2-7-008096-0496

SYPOSIUM ON GENERAL LINEAR MODEL APPROACH

TO THE ANALYSIS OF EXPERIMENTAL DATA IN EDUCATIONAL RESEARCH

August 1968

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.



SYMPOSIUM ON GENERAL LINEAR MODEL APPROACH

TO THE ANALYSIS OF EXPERIMENTAL DATA IN EDUCATIONAL RESEARCH

Project 7-8096

Contract No. OEC2-7-008096-0496

W. L. Bashaw and Warren G. Findley

August 23, 1968

The research reported herein was performed pursuant to a
contract with the Office of Education, U. S. Department

of Health, Education, and Welfare. Contractors undertaking

such projects under Government sponsorship are encouraged

to express freely their professional judgment in the conduct

of the project. Points of view or opinions stated do not,
therefore, necessarily represent official Office of Education

position or policy.

The University of Georgia

Athens, Georgia



TABLE OF CONTENTS

Introduction of Dr. Franklin A. Graybill 1

Introduction to the Use of General Linear Hodels
in the Analysis of Experimental Data - Dr. Graybill 3

Introduction of Dr. Joe H. Fard, Jr 25

Synthesizing Regression Models--An Aid to
Learning Effective Problem Analysis - Dr. Ward 27

Introduction of Dr. B. J. Uiner 50

Problems in the Use of General Linear Uodel Methods - Dr. Winer 51

Introduction of Dr. Rolf E. Bargmann 83

A Survey of Appropriate Nethods of Analysis of Factcrial

Designs - Dr. Bargmann 84

Introduction of Dr. R. Darrell Bock 107

Remarks on Analysis of Variance and Analysis
of Regression - Dr. Bock 108

Discussion of Specific Problems Related to the Use of

the General Linear Nodel 146

A



References

Anderson, T. P. The choice of the degree of a polynomial regmJsion

as a multiple decision problem. Annals of nathematical Statistics,

1962, 33, 255-265

Bock, R. D. A computer program for univariate and multivariate analysis

of variance. Proceedings of scientific symposium on statistics,

(Thomas J. l'atson Research Center) Yorktown Heights, New York: (1964).

Bock, R. D. Multivariate analysis of variance of repeated measures.

In Harris, C. W. (Ed.). Problems in measuring change. Madison,

Visconsin: University of Visconsin Press, 1963

Bock, R. D. Programming univariate and multivariate analysis of variance.

Technometrics, 1963, 5, 95-117.

Bodewig, E.. Matrix calculus. Amsterdam: North-Holland Publishing

Company, 1959.

Bose, R. C. Classnotes in least-squares analysis. Chapel Hill, North

Carolina: University of North Carolina, 1960.

Box, G . E. P. and Hunter, G. S. Multifactor experimental designs for

exploring response surfaces. Annals of Mathematical Statistics, 1957,

28, 195-241.

Bottenberg, Robert A. and Ward, Joe H., Jr. Applied multiple linear

regression, Technical Documentary Report PRL-TDR-63-6. Lackland

A.F.B., Texas: 6570th Personnel Research Laboratory, Aerospace

Medical Division, Air Force Systems Command, March 1963.

Clyde, D. J., Cramer, E. M. and Sherin, R. J. Multivariate statistical

programs. Coral Gables, Florida: Biometric Laboratory, University of

Miami, 1966.

Cochran, W. G.
1957, 13, 26

Cochran, W. G.
variance are

Analysis of covariance: its nature and use. Biometrics,

1-281.

Some consequences when assumptions for the analysis of

not satisfied. Biometrika, 1947, 3, 22-38.

Cohen, Jacob. Multiple regression
Mimeographed paper, March 1967.
N.Y.U.,21 Washington Place, New

as a general data-analytic system.

(Address: Graduate Psychology,
York, New York 10003)

Dixon, W. J. (Ed.) BMD biomedical computer programs. Los Angeles,

Calif: Health Sciences Computing Faculty, Department of Preventive

Medicine and Public Health, School of Medicine, University of California,

September 1, 1965.



Draper, Norman R. and Smith, Harry, Jr. regression

New York: Wiley, 1966.

Durand, D. A note on matrix inversion by the square-root method. Journal

of the American Statistical Association, 1956, 51, 288-292

Elston, R. C. and Bush, Y. The hypotheses that can be tested when there

are interactions in an analysis of variance model. Biometrics, 20,

1964, 681-698.

Finn, J. D. Multivariance: Fortran program for univariate and multivariate

analysis of variance and covariance. Buffalo: School of Education,

State University of New York at Buffalo, 1967.

Freese, Frank. Linear re ession methods for forest research. Madison,

Wisconsin: Forest Service, 1964.

Gaito, John and Wiley, David E. Univariate analysis of variance procedures

in the measurement of change. In Harris, C. W. (Ed.) Problems in

measuring change. Madison, Wisconsin: Univ. of Wisconsin Press, 1963.

Graybill, Franklin A. An introduction to linear statistical models,

Volume I. New York: McGraw-Hill, 1961.

Harvey, Walter R. Least s muares anal sis of data with une ual subclass

numbers. Beltsville, Maryland: Biometrical Services, Agricultural

Research Service, U. S. Department of Agriculture, Plant Industry

Station, July 1960.

Hoffman, P. J. The paramorphic representation of clinical judgment.

Psychological Bulletin, 1960, 57, 116-131.

Householder, A. S. Principles of numerical anal:mils. New York:

Mc3raw -Hill, 1953.

Householder, A. S. The theory 9f matrices in numerical analysis.

New York: Blaisdell, 1964.

Mood, Alexander M. and Graybill, Franklin A. th!ozy

of statistics. New York: McGraw-Hill, 1963.

Roy, S. N. and Bergmann, R. E. Tests of multiple independence and the

associated confidence bounds. Annals of Mathematical Statistics,

1958, 29, 491-503.

Scheffe', H. A. The analysis of variance. New York: Wiley, 1960.

Winer, B. J. Statistical principles in experimental design. New York:

McGraw-Hill, 1962.

.1,



PIZFACE

The Symposium on the General Linear nodels Approach to the Analysis

of Experimental Data in Zducational :esearch Tyas held in Athens, Georgia

during June 29 - July 1, 1967. This report preseats the major addresses

and the discussion of particular vethodolo!ical problems.

The Symposium was held to allow experts to discuss with each other

the merits and limitations of the use of general linear models and least

squares analyses in the analysis of experiments an..1 quasi-experiments. The

discussion is based on the consideration of related issues raised by the

co-ed.Aors and the several participants. Thus, the discussion is indirectly

related to the five najor papers whicn are instructional in nature.

The five major papers were presented by five leading statisticians.

Franklin A. Graybill, author of the definitive text An Introduction to Linear

Statistical Models (Graybill, 1961) presented the introductory address. His

comments throughout the meeting concerning practical considerations of analysis

and interpretation should become well-quoted in the elucational research

literature.

The second paper, by Joe H. 1ard, Jr., co-author of the widely used

Aulieck Linear Regressior, (Bottenberg and Ward, 10), was also instructional

and was intended to show similarities 1-detween alternative analyses.

B. J. Winer, noted among educators and psycholog.ists for his Statistical

rrinciples in Experimental 22210., was asked to discuss possible problems

related to the linear models - least so.uares approach.

The fourth paper was by aolf E. Ilargmann, who was asked to outline

particularly appropriate occasioas fo-r using linear models and least squares

analyses. Bergmann presents some orizinal research in this area which is
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not yet generally available elsewhere,

The last paper was by R. Darrell Bock. This paper draws together and

critiques the previous four presentations. The reader will be especially

interested in Bock's discussion of computer routines and his discussion of

the proper analysis of repeated - measures designs.

The second major section of this book presents the discussion of relevant

problems. This session was chaired by T,7arren G. Findley. The participants

included the five major speakers and the following persons:

Harry E. Anderson, Jr., University of Georgia,

Elliot Cramer, University of Yorth Carolina,

Robert Bottenberg, Personnel Laboratory, Lackland AFL',

Jacob Cohen, New York University,

Larl Jennings, University of Texas,

F. J. King, Florida State University,

Leslie ILeLean, Ontario Institute for Studies in Lducation, and

David E. Wiley, University of Chicago.

The discussion was tape-recorded and the transcription was edited by

the co-editors. The speakers were not always identifiable, and in some cases,

errors could have been made in the identification of persons making remarks.

Uoreover, the original intent of the speakers, in some cases, might have

been distorted in the transcription and editin[Y process.

No attempt was made to reorganize the discussion remarks. The reader

will find many helpful suggestions and recommendations tnroughout this section.

Hopefully, the editors have preserved in this document a little of the flavor

and excitement of the discussion.

The editors would like to thank the many persons who shared in the work
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of this project. Rolf Bergmann and Larry Anderson were particularly helpful

in the planning of the Symposium and the identification of other participants.

In the long period between the original conception of the meeting and the

preparation of this report, many typists and secret/sties assisted tne editors.

We wish to express our special gratitude to

Nrs. Sherry Wilson,

/its. Carol Donaldson, and

Urs. Patsy Jennings.

We wish to acknowledge the financial support of the U.S. Office of

grant to us made the Symposium possible. We are also gratefulEducation, whose

for the support of time, funds, and facilities of the University of Georgia

and the Research and Development Center in Educational Stimulation.

August,.1968
V.L. Bashaw and

Warren G. Findley



Introduction of Dr. Franklin A. Graybill

by

Clifford Cohen
University of Georgia

As a representative of the Statistics Department, I'd like to add my

welcome to that which has already been extended to you who are participating

here today. We are pleased that we are able to cooperate in at least a small

way; and later in the program you will hear from a member of our department,

Dr. Rolf Bargmann. I might say that Dr. Carl Kossack, who is chairman of

our department, is unavoidably absent since conflicting schedules made it

imperative that he be out of town at this time. It is regretful that he is

unable to be with us.

Now, I would like to proceed to the task which I was requested to perform

and it is indeed a pleasure to be called upon to introduce the speaker.

He is, perhaps, best known for his very excellent book, An Introduction

to Linear Statistical Models (McGraw-Hill, 1961) which has been quite

widely distributed and very well received. Incidentally, this book is

labeled volume one. Dr. Graybill tells me that volume two is coming

along very nicely and will soon be released. Frankly, I think if he were

inclined to do so, he could just rest on his laurels with his first

volume but he's not that type of person. He is also quite well known

for his work in a revised edition of one of the leading advanced texts,

An Introduction to the Theory of Statistics (Mood, and Graybill, 1963).

The first edition was written by A. M. Mood and the revision is largely

the work of our speaker and Mood.
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Now, besides these two works I have mentioned, which perhaps are the

reasons for so many people knowing about him, he has published a number of

research papers in the leading statistical journals, particularly the Annals

of Mathematical Statistics and the Journal of the American Statistical Asso.

ciation. He is a member of the Institute of Mathematical Statistics, the

Biometric Society, and is a fellow of the American Statistical Association.

His undergraduate work was done at William Penn College where he received

his Bachelor of Science Degree and then he received his Master of Science

from Oklahoma State University. His Ph.D. was from Iowa State University.

He taught at Oklahoma State for several years before accepting a position

as Chairman of the department at Colorado State University, a position

which he still occupies. At Oklahoma State, he was, I guess you might

say, Carl Marshall's right-hand man. I saw Carl shortly after it had been

announced that Dr. Graybill was going to Colorado State and you would have

thought Carl had lost his right arm. I just tell you that to let you

know how much his former department head thought about him. Well, since

going to Colorado he has been quite active; he's quite energetic in vari-

ous and sundry programs and with that I will yield to our speaker,

Dr. F:ank Graybill.



INTRODUCTIOr Ti{1.3 ESE OF GENERAL LIME MOD=

IN TTh MALYSIS OF EXPERDINFAL DAM;

Franklin A. ("xaybill

Colorado State University

You knair one of the nice things about a meetina such as this is that

you get to know each other on a first-name basis. I've been inqolved in a

number of these with groups of geologists and biologistsnone with educa-

tion people, however. /t seems that you run into each other frm tine

to time at neetings and various paaces like this and I think it is a good

opportunity to get together and find out what's going 0116 I'm a little

dismgrad to be the first speaker in a sense that / suppose being the first

speaker is sort of like calisthenics in the morning--get that out of the

way and get going.

I wanted to know what credentials I could bring to a group like this.

You see, you have me at a disadvantage; you all know some statistics and T

knad nothing about education even though I'm heavily involved in the educa-

tional process or, at least, I think I am. I thought back as to what

I could bring to increase my status with you and one thing I can say is that

my undergraduate degree led tory receiving a high school teaching certifi-

cate, so I guess that's sarething.

Nell, since this Symposium does involve linear models, I will say

something about this. But I think that before linear models shoule enter,

I must say a little bit about some of the techniques in statistics that

I presume will be discussed and debated here today and tomorrow.

I'd like to preface my remarks with a few worts about statistics in

general since I believe that fron time to time during the Symposium cer-

tainly our deliberations will lead us to some ct the foundations upon

which the theory of linear models must rest.
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I presume I ill not say anything today that is new but I may say

something that is controversial. I hope everyone does; this is the day

we can get ideas across. And even though I may say something that will be

controversial to some people, I won't take time in every instance to Point

out every side of controversial statements. It is popular these days, and

alnost mandatory, for a statistician to declare his rarty affliation. By

that I mean, in particular, we are seeing an influx of what we call Bayesian

statisticians these days. I don't know whether you've been involved in

Bayesian statistics or not, but in a political venacular, I'm an independent.

Yolmight say that I'm a fence strattler. Bayesian when I think it's

appropriate and non-Bayesian when I think it's demanded. co I guess in

sophisticated language, I'm what you'd call a neo-Bayesian. But I think that

we're all Bayesians in the sense that we must bring to bear upon each of

our problemsnot only in a scientific atmosdhere, but in everyday affairs

of men and waren to all the knowledge we have. One way bD do this in sta-

tistical formulations is through what we might call Bayesian rethods.

Bayesian formulations are not very well lefined vet and perhaps never will

be. If we're interested in this tonic in the symncsium, wemight say a

little hit about it later.

Nag statisticians, I think, and statistical ccamunities today are di-

vided into two groupsnot by natural division or by any intended thing--

but I think we are divided. There are the mathematical statisticians who

really don't live very close to data nor who care much about data. Then

there is a group, and I think a grcwing group, that feel that the real job

of a statistician is to be a data analyzer. Mith the advent of the computer

our prdblem is made not easier but perhans more difficult; because we can

make wrong decisions and use wrong methods and techniques much more quickly
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and make many nore errors than we could a decade ago. But, be that as

it may, I presune that we as data analyzers are to take a set of data and

make sate sense out of it.

tob want to talk &cut linear models and so I will lay a ground work

so that we might have a starting point. We might start off by saying

that we live in two worlds. We have what we might call the real world

and the abstract world. Now, the abstract world is a world of syntols,

of conceptualization, and so forth. Those of you who have knaln mathe-

maticians and have thought frcim tine to tine that mathematicians are out

of this world, what you probably nean is that they are out of the real

world; they're in this abstract world.

But, in contrast to this abstract world, I think it helps, at least

it helps my thinking, to focus on the real world. This is the world of

the senses, perhaps, the world of neasurenent--this is the world we

really live in. In the abstract world we would include the world of

thought--what our thoughts, our reasonings, and so forth are. I think

the problem of modeling, not only linear modeling, is to dip freely

back and forth from the real and abstract worlds.

For example, Galileo dropped rocks from the leaning taller, and from

these acts he developed a formula relating tine and the distance that a

body falls under free flight. Now if he obtained this result by working

in the real world, he looked at the data. I don't know if the data

indicated 1/2 gt
2

or maybe it indicated 1/2 gt
1.99999. But anyway,

he arrived at 1/2 gt
2. Now, by dipping into the abstract world of symbols,

we can obtain the velocity at any given time and the acceleration at any

given tine. We can obtain a natter of things like that. Galileo could

have also done exactly the sane thing by working conpletely in the real

world.
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But what I'm saying is that the reason for modeling is so that we can

work in the abstract world and save a great deal of time. And, not only save

time, but perhaps by working in this abstract world, which is much easier,

we can fit in ideas, thoughts, perhaps new techniques, and so forth, that

we may never be able to synthesize in the real world. It is a condensation

of ideas using symbols. I think it is extremely important. But I think

it is also important that if we go to the abstract world to do our manipu-

lations from time to time we get back into the real world to check these

calculations, to check these equations and symbols. This is, in my opinion,

why we try to model either simple or complex situations.

Now, I would like to work toward the goal that I will call a fundamental

proposition as far as modeling is concerned. You'll notice that I will almost

never use the words, "cause" and "effect." I think that technically speaking

cause and effect are very difficult to defend. But, nevertheless, I'd like

to take the following as a rough proposition.

First, y is some measureable quantity in the real world and we want to

predict it. However, it is something we'd like to predict without measuring

it. We can think of a lot of examples for y. We take as a proposition that

there exists a finite number of quantities that are not directly related to

y, and a function, f, such that, if these quantities were known and if the

function f were known, then I could predict y exactly.

There are some who will find fault with this fundamental proposition,

but in spite of the fault that they find--and there is some--I think that

this is the way a scientist actn. I think what scientists do is decide to

predict or describe some quantity. Then they pick out some other factors

that they think have a be..ring on this quantity of interest--factors that

they believe will be useful in understanding the system, that somehow

determine or drive the system, and they try to find a mathematical model
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relating the factors and the quantity of interest. The use of this derived

model puts us in the abstract world. We work in the real world with all of

our knowledge to decide on the factors that contribute to driving the system

that determines y. Then we put these factors with some kind of a formula

or function and we use these to try to predict y.

Sometimes we use "functions" in our prediction formula in a very loose

sense. For example, we know that when it rains, there must be clouds. When

there are clouds, it is more apt to rain than when there are not clouds.

If my father and mother were very tall, I would expect my children to be

tall. If my father and mother were short and I'm short, then perhaps my

Children will be short.

If we find out that these statements or derived models do lead to some

measure of predictability--but not perfect as, of course, they never would

be--then what we try to do is to find other factors that also contribute to

driving this system and we bring in these additional factors to try to have

a better prediction under more and different varying circumstances.

I think this is an idealized way to look at modeling. We believe there

are factors that we can find, that we can observe in the real world; we can

use some kind of a symbolism or some kind of equation or formula, and use it

to predict quantities in which we're interested. We believe these factors

somehow help determine and drive this system of interest and yet they're not

directly associated with it. As an example of this "indirect relationship,"

consider the prediction of a variable y. I'm going to measure the square

root of y and square itI've got a perfect predictor for y. One predictor,

6, is directly related to y. This is not what we're looking for; this is

not of very much help if any help at all to us.

One of the objectives in science is to describe, predict, and relate

quantities in the real world, and mathematics is used to describe connections



between events, but mathematics doesn't prove the s

is not a science of truth; it's a science of logi

why we use mathematics to do the modeling. We

reasoning is called for and mandatory. It'll

the relationships in the abstract world, b

nothing about the real world. And so th

use in the abstract world are what is

it is important that logical reasoni

sense, so it is important that we

in the abstract world, but it is

Now, I'd like to continue

related to linear models. L

8

tatements. Mathematics

cal reasoning. This is

certainly think logical

tell us something about

t it will tell us absolutely

input to these formulas that we

really important. Now, of course,

ng be instituted and used in the best

know how to manipulate these quantities

n't the wtole answer.

this a little further to show you how it is

inear models are very special cases of more

general models. Linear models are the only ones that have been developed

very far and in some sense, perhaps, the only ones that ever will be, but

we may be able to do

in the past. I wil

of the height of

factors that w

reaches a ce

"determine'

importan

person

kind

1

a little bit more with non-linear models than we have

I use as an example something very simple - -the prediction

an individual. Let us assume that I'm trying to find some

11 predict what the height of an individual will be when he

rtain age. Suppose there are n factors X1, X2, ..., Xn that

' height. Suppose we find two factors, X1 and X2, the: will be

t. Maybe these are the heights of the parents of this particular

whose height we are trying to predict at a later age. We find some

of a function of these factors, say f(X1, X2). In other words, we're

ooking only at two factors in our prediction. The model can be written

y f(X1, X2) + g(X3, X4, Xn). We know that these two factors, X1 and

X
2,

are not the only quantities that determine an individuals height at a

certain age, because if we observe many people whose parents have the same
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height, these people would probably all differ in height. We know that

there might be other relevant variables--X3, X4, ..., Xn, for example,

diet, grandmother's height, etc. In other words, I make an observation of

an X
1

and an X
2

for an individual. I observe another individual and he

has the same X
1
and X

2
values, but the heights of the two individuals differ.

The reason is that other factors are really affecting height but we haven't

brought them into our model. We consider the non-used factors in the func-

tion g(X3, X4, ..., Xn) and examine Ole way g(X3, X4, ..., Xn) varies when

Xi and X2 are held fixed. We treat g(X3, X4, ..., Xn) as a random error

and write y* f(X )
1,

X
2- +

e

This is the first approximation to understanding--we begin to lay it

out, stretch it out, tear it apart, find out what factors drive this par-

ticular event of interest. We may collect some data and estimate the vari-

ance of an error term. If the variance is zero, this means that we have

an exact predictor. This never really happens or I've never known it to

happen, but the variance might be quite small. If so, we have a popula-

tion of heights that can be predicted with quite good accuracy and per-

haps enough accuracy to solve our problem.

I think we're never interested in predicting the height of an indi-

vidual to the nearest one ten billionth of an inch, or closer, as we might

if we were looking for what we call deterministic model or point determi-

finistic model. We might settle for what we call an interval deterministic

model. With an interval deterministic model we would predict, for example,

height to within a millimeter, because for all practical purposes and

even many impractical purposes, I'd have my problem solved. The determi-

nistic models are formally stated and summarized in Table 1.
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Table 1

qathematical Deterninistic lodels quurary

FUndamental Proposition

For any Y there is a function f and variables X1, X2,

The

yinf(X1, )121

three "levels" of deterministic models

NI)

I Xn
such that

1. Point deterministic: y = f (X1, X2, ...,

2. Interval deterministic: y = f(X1, X2, Xn).

where each X. is observed to be in an interval x .i + e1 .

3. Iavel 3 is the same as 2, exoept that y is observed to be in

an interval r + E with a probability less than one.
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So the goodness ct our model depends on the error variance. If it

takes various individuals and measure height of their mother and father,

and their predicted heights vary as much as 50 pounds for the same mother's

height and the same father's height, then my variance is too large, my

prediction is not precise enough. Therefore, I may decide there are other

factors entering into this system or I may have the wrong function relating

the factors.

Suppose / decide that there are other factors entering in and such as

X
3

that has to do with diet. We find a different function and now try to

measure y as a function of the three variables. Impose I have several

observations, Llch of which has the same mother's height, the same father's

height, and the same nutritional measurement. If these individuals have

different heights, then I do not have either the correct function or all

the variables that go into exactly determining the hvi lop_mx, again, if

I can put a probability distribution on g2(X4, X5, ..., Xn) at least to

a first approximation, gl varies and acts as a random variable, thal I

could write my model as f2 (X1, X2, X3) Plus another random error which

is different from the earlier one. Now, let's again examine the variance

of that random error. In other wands, what I examine really is how g2 (X3, xc,

Xs) changes when X1, X2, and X3 are held fixed to tell me more or

less whether these three factors are contributing enough to the pre-

dicticn of height. Suppcee I had examined the error variance of the two-

factor model and found it too large. It gave me, perhaps, a distribution

that has a spread of let's say six inches. So when I measured the mother's

height and the father's height, I still could not predict within less than

six inches so it wasn't precise enough.
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So I brought the third variable into my model and got a three-factor

model. Now I examine the error variance of the new model. If the variance

is a great deal smaller than the variance of the two-factor model, then the

X
3
variable has done some good. It means instead of six inches of spread

on the prediction, I have reduced it to something like, say, one inch, and

if the variation is now one inch, perhaps I will decide that I've got a

model that is good enough for my predictive purposes. I realize and recog-

nize and kna4 that I will not be able to predict the height of an individual

exactly by only knowing these three quantities of input and this particular

function ct the model because there are other important things that will

determine the height that causes individuals with the same X1, X2 and X3

bo have different heights. But if the heights don't vary too much-44

the error variance is tolerable so to speak--then I've got a pretty good

model and so I say 'Here is the model I will use."

Now, to continue this a little lAt further, we ordinarily don't use,

at least in the initial stages of exPerimentation, just any function. We

ordinarily use what we call a linear function. And when we say linear

function, we nean linear in the unknown parameters. ve don't care about

linearity in the X's--it may be loaarithms, expcmentials, squares, cross-

products, almost anything like that--but the model must be in the unknown

parameters.

Now, let's digress a =rent. I need to point out that in rodeling

ct this kind, there are two types of errors. "e may make measurement

error in trying to observe our variables. For example, when any kind of

continuous variable is involved we know we make measurement errors. If

somebody says "What's my height?" I can't tell you exactly what it is.
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There's a measurement errnr involved. The only time there isn't a measure-

nent error involved is when we count. For examnle, howinimmy neople are in

this roam? I preme we could count the number of peonle in this roam and

everybody in here would agree. Now, if I had ineentified the exact function

and the exact factors that drive this function to predict our variable y,

if there were errors involved in measuring the X's and an error involved in

measuring the y, I would not predict the exact value of y's, just due to

measurment error.

On the other hand, there is a second kind of error. Supnose I could

measure all of the quantities X1, X2, and X3 exactly--and yet when I try

to predict y by using these three quantities and the function f2(X1, X2, X3)

I don't predict exactly because there are other things contributing to y.

This is what I would call an equation error. It's an error in predicting

because I don't have the correct cruation. There are two general UMNS

can have an equation error. ly equation nay have imnortant vredictors

omitted or the function chosen may be thewonq function.

I think the fact of the matter is that in every real world situation,

the reason we don't predict sone things exactly is because we make both

types of error. make measurement error and we also make an equation

error. Nod the question is which of these in a particular situation

should we examine more closely; which should we try to take into account?

qhat we've discussed orimarily today is trying to take into account the

equation error. Our first model might not be the right equation. The

second model might not be the correct equation either, but it's more correct,

let's say, than the first one if 10B have been good exnerimenters with

good insight. Theme is still some equation error involved but there is

also undoUbtedly a neasurement error involved.
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Now, there are some sciences, and education is one, where measurement

error is a very real and important error and may be equal in magnitude in

many situations to the equation error. Ile may have a good equation but

ourmeasurenent error may be so high that it somehod invalidates our model

as a good prediction equation.

jaw, let's try to use our model to relate the real world and the

abstract world. If we can enter the abstract world and find this model

then we can go through cur mathematical manipulations and do zmarly things

and find out perhaps even same nod things without doing all the

experimentation that would be necesiary if we wcrked only in the real

world. Now, there are some reasons isil.m(we can't bridge the two worlds.

There are many reasons, in fact. Cme, as I said, mathematics perhaps

is too exact and maybe it is. But it is exacting amd that's just the

way mathematics finds itself. Another thing is real world quantities

are not well defined. For example, height is not really well defined

and we need same kind of operational definition. I'll sgy I'll take

a certain kind of reasurommtdevice and I'll measure a thousand times

and take the average. It's an operational definition, but height itself

is not well defined at all. ;le could, I suppose, hold the whole

symposium in discussing what we rean by the length of this table. If

we mean length perhaps to the nearest foot, the problem is solved. But

suppose I said / needed to know the length of this table to the nearest

micron. Well, the problem is not scaved and so we would have to wave it

and there are very deep difficulties with something even as simple as that.

Another reason why perhaps it is difficult to relate the real world

and the abstract world through mathematical modeling here is that there's

measurement in the real world. We've gct to live with it. Physical
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sciences so vtimes solve Clips in many of their problems, so suasurenent

error is not tho important to them. Yeas t errors have a way of

accumulating when you take a number, when you square it, !hen vou take

logarithms, exponentials, and etc, and so even in the physical sciences

where the measurement error is very small, it offers 93M8 Problem.

Another difficulty in relating the two worlds is the difficulty in

holding a certain quantity fixed in the real world while others vary.

lathematically you can do this very easily. Say, let's hold X1 fixed, let

X
2

vary, and see what happens. Well, ynu, perhaps, can't really do that

in the realwarld. You can't holdheiOt fixed and let weight vary. You

couldn't let weight go up to 300 pounds and the height be 18 inches or

something like that. It just doesn't mike sense, so it's difficult to

do that in the real world and so we have to be careful.

Another difficulty in relating the two worlds is that real mai

quantities may not be independent in mathematical sense. That is why we

can't hold same constant while others vary. 'le can consider them mathe-

matically independent, but in the real world that may not be the case.

Now, this is one reasonwhy we've got bp be very careful when we use the

computer. Ke run away with ourselves and come up quite often with nonsense.

Finally, there are no reasons why we should be able to relate these

two worlds actually.

Note, the feeling is that we as mathematicians and as statisticians

many times spend a great deal of time getting precise scautions to the

wrong Problem and I think we could, perhans, spend time better getting

approximate solutions to the correct prdblem.

Now, I'd like to classify these particular models. These models are

called quantification models. They're models to be used when the variables

At,
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are quantitative variables, variables that I can neasure, variables that

have interval or ratio scales. These are things like height and weight,

things that have a pretty good definition of reasurenent even though maybe

I can't necessarily measure them. Now, there are a number of classifi-

cations that cmild be made here and I would just make some of them before

I start. We've got to bring in linear models here. We'll use X's to

denote independent variables and y to denote the dependent variable.

The first model is where the independent variables are pre-selected

real variables--not random, they're pre-selected. We use this all the

time. We decide well, I'm going out and get sonebody that weighs 50

pounds and his mother weighs 140 pounds and things like this. They're

actually pre-selected. Now, of course, y is always a random conponent,

a random variable.

The second case is where y, X1, X2, and so fozth are jointly randan

variables. Now, this may be a situation where I go out and select people

at random. Let's say if I'm talking about height and weight, I select

people and they have a height and a weight. I select another person,

he has a height and a weight, so the height and the weight, the y and

X, are random variables. In the former case we purposely select sone-

body that weighs 50 pounds and measure his height, select sanebody that

weighs 60 pounds and measure his height, and select samebody that weighs

70 pounds and measure his height. This would be the first type. In the

second case, I might take the person at random saneway, but his height

and weight would not be pre-cletennined by ne.

+44,4



17

Now, the third situation is either case one or trAlwhEnt some or all of

the independent variables can not be observed. !la:, that is really almost

always the situation. Bor example, in the height and weight example, I

can't really observe height and weight. You have a true height, and a true

weight, but / can't Observe it. Nhat I observe is a measurement of your

height and weight and if this is not truly your height and weight, it turns

out that a different kind of model is appropriiMtethan is needed in cases

one and two. / don't observe these y's. I observe the X's Plus scme kind

of randan errors. You might say, "Well, these models almost look the same."

But the difficulty is the appropriate solution to case three has never

been found.

The particular preblem here has never been adequately solved. There is

some indication that it never will be, that the situation where I have errors

in neasuring my independent variables is not amenable to actual solution.

Vtmr, I say this so we raight keep it in mind. New, if the measurement error

or the xvariance of the reasurement error is very, very small relative to

the magnitude of the quantity measured, then the method we go through in

the first two cases are very good and almost the saw as would be if I

measured them without error. But the problem exists and scmntimes it is

sort of glossed over and we dcn't recognize it. This is sometimes called

"regressionr or "linear model with error of observation in the dependent

variable." It doesn't matter if we have errors of observation in yr.

It just increases our variance andt4e don't do quite as good a jdb, but

we can still do the job we set out to do. If there are errors of Obser-

vation on the X's, then that prdblen has not been solved and can offer some

real difficulty. I think we need to be aware of that.
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There are two things we are generally interested in doing in these models.

One is predicting, the other is to estimate, and these are two different

problems.

If we are interested in only the prediction problem, predict the height

let's say of an individual, we don't care nerhaps what the parameters in

the model are as long as we have a good model for prediction. If all we

want to do is predict the distance a body falls in a free flight in a vacuum

under the influence of only gravity, we nay just like to be able to predict

it as a function of time. This is what I call a Prediction Problem.

Ncw, the estimation problem means that there are some reasons why the

model parameters are important. They may be important in their own right,

not only important in just being able to predict. For example, in Galileo's

model the constant of the model is a measure of the gravitational constant.

So while I would need to know the constant fairly accurately to have a

good prediction, I need to know it for some reason in its own right and so

I'd like to estimate it. Usually, regression ccnstants may not have par-

ticularly important pronerties to re, but I'm just trying to obtain these

factors to get a good prediction of y, so I'm interested in good estimation

of weights cnly in so far as good estilaticniomild lead yre normally to good

prediction.

The problems I think are quite clear. I think that there are times

when we want to do one and times when we want to do the other. Well, that's

all I have to say about this particular model--what I call the quantification

model, or quantitative variables model.
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Nag, I'd like to turn just for a minute to what I call qualitative

models. These have ordinarily been called analysis of variance models.

Now, to a mathematician and a mathematical statistician, they're exactly

the same, but you know in sone ways, the interval from zero to one is

exactly the sane as the interval fran 10,000 to 10,0011 but if you're

going to have your salary in dollars per year in one of those intervals,

I think perhaps you wouldn't want to consider them the sane. So, while

to a mathematician and a mathematical statistician, what I call the

qualitative or analysis of variance models can be obtained as a special

case, mathematically speaking, from the models on the quantitative vari-

ables that I just discussed, I don't think there is much value in that

except perhaps as a teaching aid. You just have to go through theory

once, but to soneone who is going to use it, even though as I say,

mathematically they're equivalent, I think it's very inportant we go

through these models independently.

Now, these models generally can be written

Yijk Pij eijk

The p's are what we call the neans; the e 's are what we call the random

component, and both the u's and the Os are unobservable. The y's are

what we observe. The subscripts i and j take the place of the X's. Sub-

script i takes the place, for exanple, of cne X; j of another, etc.

I shall classify these into three categories and I'm classifying on

the nature of the II's: one, the fixed effect models; two, the random

effect models; and three, the mixed, or random and fixed effect models.

Nag, let's just take the fixed effect model and sub-classify it.

let's consider a two-way classification of data. let's use nij to nean

that the number of observations in the ith row and jth colunn. If nii
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equals zero it news there are no observations in the ith, jth group;

that is, yij doesn't even exist. We say that a model is "complete" if

all nij are positive. If at least one nij is zero, then we have an

"incomplete" model. In other words, if all cells have something in them,

we have a complete model; if there is at least one cell with no data we

call the model "incomplete."

In our breakdown we could have a tree cl classifications. The first

breakdown is models with and without interaction. This is very important.

Models specifying interaction, we call "non-additive." Suppose in cmder

for discussion, we have one observation per cell. If we want to check

for presence of interaction we have a test due to John Tukey and varia-

tions of that test. A second breakdown is by cell sample sizes. First,

we could have one observation per cell as above. Second, suppose we have

more observations in each cell, but the number of observations per cell

is the sane for each cell, say n.. = m> 1. This can be analyzed by con-
13

vential ANCIV. Third, we may have an unequal number of observations per

oell. There are two things we may want to do here. We may want to sub-

classify this. If we have equal numbers, things are pmetty straight for-

ward. You can check interaction, you can check what we might call mein

effects, and so forth. If we have a complete design with unequal numbers,

let's say more than one in some cells at least, we can check for inter-

action and we can check main effects and I call both of those conventional

methods. The main effects are estimated by unweighted means analysis.

Now, let's consider additive models, or models that specify no inter-

action. First, consider the case with one observation per cell. This

has a conventional analysis. Second, consider additive models with equal

j
geater than cne (n.. = m > 1).are

i 13
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This model also has a conventional analysis. The third one is, of course,

its ccunterpart, with unequal numbers in the cells. These various models

are summarized in Table 2.

There are problems we need to solve after we have the model. We need

to examine the data for interactionwhere andwhid: kind. This is basic,

not only find where the interaction is, but what kind of interaction is

present. Is it a strengthening kind or is it a reversal kind? These

are very important problems, it appears to me. We perhaps want to examine

for rag and column effects. If there are effects, where are they? What's

operating here? What's pushing the system? More irrportant than any of

these is to examine individual cell effects.

The first thing I think should be done in a situation is to find the

sufficient statistics. Now, if you're not well trained in mathematical

statistics, you may not km/ what that means. But: what it means in a

nutshell is thisreduce the data as far as possible without losing any

information. FOr example, if you have data here that involves, let's

say 500 observations, you may be able to reduce that to 50 observations

without losing any information under the model which you are assuming.

Again, don't take the model as gospel too much. You should go back and

examine the model. You should use your data not only to check what you

started to determine, but you should also use it to examine the mcdel

in which you use it. I think one should reduce the data as far as possible

without losing any informationto what we might call the smallest set of

sufficient statistics. It's just a matter of simplicity, it seems to me,

it's easier to look at 50 numbers and read something out than it is to

look at 500.
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Table 2

A Summary cl Same Fixed Effect, COmplete Models1

411110

A. Interaction (Non-Additive)

1. One observation per cell; nij = 1; Tukey test for interaction

2. Fclual cell sample sizes; nij = m > 1; conventional analysis

3. Unequal cell sample sizes; n.
i

not equal for all i and j
j

Interactionconventional analysis

Main effectsunweighted means analysis

B. No Interaction (Additive)

1. One observation per cell; nij = 1; conventional analysis

2. Equal cell sample sizes; n.. = m 1; conventional analysis
13

3. Unerpal cell sample sizes; nij; conventional analysis

1This breakdown can also be applied to random components models, and

incomplete models.
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I think the important thing in a two-way classification is to esti-

mate the cell means. You may not want to do this; you may have other

things you want to do. But this is what we should estimate to begin

with, it seems to me. Preliminary analyses are very useful.

Another thing is to use sore kind of a technique to milk the data

after you do the things for which you set up the experiment, because

this is where you get the new ideas.

I think sonething else shoukl be done as you use the data to examine

the model. Use the data in another way to decide how you could go on

to another experiment in sort of a sequential fashion to inprove on the

result--to either confirm or deny your conclusions.

There is another problem that is important and deals with the Bayesian

point-of-view. If I use a linear nodel, it's a very formalized thing.

You all have a great deal of knowledge to bring to bear on a problem you

cannot model. I think that this is where the idea of what I shall call

the target and sanple population was developed. There are two popula-

tions. You sample populations, and from that sanple, using statistical

techniques, you can obtain probability inferences to that population

that was sampled. That perhaps is not the real population you want to

discuss. The real population you want to discuss is called the target

population. You sanple one population. You can draw valid probabilistic

statistical inferences to the sartple population. Then the population

you're really interested in, the target population, must be given con-

sideration. After you have the information on the sample population,

the inferences you draw to the target population are perhaps non-proba-

bilistic, more personalistic.
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Mow, I recommend some "don'ts" and I wish we could discuss these.

First, "Don't use a statistical test." There is a one-to-one corre-

spondence between statistical tests and statistical confidence intervals.

For example, mathematically, in a sense, they're equivalent; but the

way we think about these things is very, very far fram equivalent. I

would like to discourage the use of any kind of a statistical test and

even talking of the phrases "statistical significance" or "tests of

hypothesis." Use confidence intervals where possible.

The other "don'ts" are "Don't be restricted by absolute pre-con-

ceived linear models," and "Don't reduce the data too far." Shad the

cell neans. Show the sufficient statistics.



Introduction of Dr. Joe H. Vard, Jr.

by

W. L. 2ashaw
University of Georgia

I would like to introduce Dr. Joe H. tqard, Jr., who is

the next speaker. Dr. Ward is a Texan who earned his Ph.D.

at the University of Texas. Our major reason for choosing him

to speak is his co-authorship cf Applied Linear Regression.

This is a book that has been very useful to many of us since

it was one of the few documents that has been available on the

subject over the last several years. A secondary reason for

asking Dr. Ward to participate is that he has, over the last

few years, been traveling arouri C. the country giving lectures

and workshops on general linear methods. We certainly would

have been amiss if we had not gotten hin on the program.

Some of you will be surprised at his institutional affilia-

tion. All of you will identify him with Lackland Air Force

Base's Personnel Research Laboratory. I understand he ha., been

at the Personnel Lab now some seventeen years. This year he

is on a one year leave of absence so he has not broken his

connection with the Lab. At the present time he is Program

Director for the Southwest tducational Development Laboratory.

A few of his research areas might interest some of you,

in addition to myself. One, of course, is application of

linear models, a second is homogeneous multivariate grouping.

This is a set of grouping techniques that was developed for
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grouping many things. ny interest primarily is grouping people

although the techniques are used for such things as grouping

regression systems anu things of this sort. Third, many of

you will know him primarily for his computer programming,

particularly for the Persub Programmina System. This is a

very complete set of matrix subroutines that can he tied

together to do any set of matrix operations.

Finally, I would like to say that Dr. 1-:ard has consented

to give us the one day workshop on Saturday. This was his idea

and I would like to repeat, for those of you who have not been

informed, everyone is welcome to attend.

Dr. %ard's paper today is "Synthesizing regression models,

an aid to learning effective problem analysis."



SYNTHESIZIVG ?ECRESSION MDELS--
AN AID TO LEARNII!G EFFECTIVE PROBLE!': AVPLYSIS

Joe H. T4ard, Jr.
Southwest Lducational Development Laboratory

Regression models can Le used to assist in the analysis of

a wide variety of problems. iiowever, the power of regression

models is not widely utilized. There are two major reasons for

the lack of use of general regression models. First, there

have been too few attempts by teachers to develop the !, aviors

in students that are necessary to effectively create models

appropriate to the particular problem of interest. Second,

many of the models that should be utilized for a particular

problem require the use of a computer, but many research workers

do not have effective software systems to facilitate communica-

tion with the computer.

These two problems can be helped by 1) providing an instruc-

tional system that will develop in students the capability of

defining regression models appropriate to their problems of

interest; and 2) providing computational software that facili-

tates the artalysis by a ,L1jh speed computer.

Even though both of the above areas are important, the

first--defining appropriate models--is the most important and

difficult behavior to bring about in research workers. The

following presentation will be devoted to the discussion of

several aspects of this problem. First, a few general comments

will be made about the general problem of teaching (and learning)

techniques of model generation. This will be followed by a
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specific exaziple of an inctruetional approach--a 6.ascription of

a syntneci cf several different regression node17.

Me Generation of oJels

Some oi the interriate ehavioral oLjeetiver t.lat leae

to effective Nouel generation are:

1. A research iorier should b :, able to define the vactor of

interest (i.e., c.:epen.lent vector) ap-3ropriate to his prob-

len. 4.A.:; is develo,?ed by extensive practice or problems

with incrc:asiri Ctifficulty.

1. A research worr must elevelop the capezility of expressing

nis vtor of intereet (call it Y), as a linear corbina-

tion of appropriately defineu. vectors (call t).e.1 X(1), X(2),

1( )) rilus an error vector (call it r). rxtensive

practice in definiLg vcetors is required to develop the

desirec:t ;aa4lity. Th:: research mrker should think "I

need to finc: 'another name for Y' so that t:e statements

that I make aout thil 'other name' will be relavent to ry

problem. A stuc:ent shonla i.ave extensi7e practica in

eefining v,Ictors which are to be usee. in the "remaining"

of

3. After tile vector of interest (Y) L been expressed as a

licar conlination of the new vectors (:(1).

4(1)) pluz an error, the research worker can then rake state-

ments (or nypotheses) aLout "expected' or "pre,iicted' valucs

et Y. This involves the translation of the research question

from ni2tura1 language into the language of the mathematical

frAr
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representation. This translation process is sometimes

quite difficult, and the student should have extensive

practice, using simvle problems in the beginning.

4. The translation of statements about the model leads to the

imposition of restrictions on the model. The student should

impose his restrictions on the model to determine the effects

of the restrictions on the error. It is sometimes helpful

to view these restrictions as the "giving up" of information.

5. After the student has imposed the restrictions it is imporn.

tant that the student verify that the restricted model

actually Coes possess the properties imposed by the restric-

tions. This serves as a check for the student's substitu-

tion. It also provides frequent insights into previously

unrecognized properties of various models.

A Synthesis of Regression Models

The following illustration is C.esigned to show the idea

that is common to four regression models that are often treated

quite separately in our instructional programs. The basic prob-

lem of interest is the same in all four models; however, the

models appear quite different due to the differences in the

original assumptions that were made for the four models.

For our example, we consider four different research workers

who are studying the effects that different amounts of practice

have on typing proficiency. Furthermore, there is some concern

by these research workers for the possible "contaminating" effect

of the age of the students on the research results. Each research

worker feels that something should be done to "hold age constant"
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or "take out the effects of age." However, a couple of the

researchers aren't quite sure what they must do to "take out

the effects."

Now the first research worker was located at a university

(ANOVA U.) where there was strong emphasis on aralysis of

variance--with very little instruction in covariance analysis,

or multiple correlation and regression. And this research worker

was particularly fond of the "two-factor design." The second

researcher was at a university (COVARIA U.) which to no nne's

surprise was really strong on covariance analysis. This school

had a complete course in covariance analysis to stress its

importance. The third worker received his education many years

ago at a university (.IULCOR U.) that had only taught multiple

correlation and regression analysis. The analysis of variance

and covariance course was started the year after he completed

his statistics course.

The fourth researcher had attended a university (VARICO U.)

that hat: stressed a slightly different approach which they

described as "a sort of reverse covariance analysis" which they

have named VARICO ANALYSIS.

All four of these research workers have conceptualized a

common problem. First, they are all interested in studying the

effect of practice on typing proficiency while 'controlling"

or 'taking out the effects" of age. Furthermore since they

are dealing with the age information,they all wish to test for

interaction since it may be that the effects of amount of practice

are different for students of different ages. All four are
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interesteL in, first, testino for interaction, and then if

there is no iuteracticr they will tcst for the effect of

amount of practice.

Even though these four research 'Iorkers have a common problem,

each one would probaLoly perform quite different analysis becaure

of the varied educational emphasis. Also, they night each argue

that they are doing quite different analyses. These analyses

appear even more aifferent because the computational procedures

appear quite different.

The four different approaches will be presented Lelov in

a form that will emphasize that there are basic ideas common

to all.
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Approach 1 - (ANOVA U.)

The research worker at ANOVA U. wishes to think of his

problem as a "two-factor design."

We assume for all problems that there are observed 15

levels of practicv (16, 17, 30 hours) and that there

are 5 ages (14, 15, ..., 18 years).

We define the following vectors:

Y = a vector containing the typing proficiency

scores of the n students in the study

X(i,j) = a set of vectors with elements defined

as 1 if the corresponding element of

Y is observed from a person with practice

hours i, and age j; and 0 otherwise,

(i = = 14,15,..., 18)

Notice that if some X(i,j) vectors are null they are not

included in the model.

E = a residual vector

Then the full model is

EE
Y = ij aij X(i0j) + E

or in the extended form

(1) Y = a16,14X(16,14) + a16,15X(16,15)

a17,14X(17,14) + a17,15X(17015)

+ a30,14X(30,14) + a30,15X(30,15)

+ ...+

+ ...+

+ ...+

a16,18X(16,18) +

a17, 18X(17,18)

a30,18X(30,18) +E
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Figure 1

L'Ati-211dcd Form of Vectors of Model (1)

Y X(16,14) X(16,15)...X(30,14) X(Z0,15)...X(30,18)

Y16,14,1 1 0 0 0 0

Y16,14,2 1 0 0 0 0

Y16,14,3 1 0 0 0 0

Y16,15,1 0 1 0 0 0

Y16,15,2 0 1 0 0 0

Y30,14,1

Y30,15,1

Y30,15,2

Y30,15,3

Y30,18,1

Y30,18,2

Y30,18,3

Predicted (or expected) value for an individual who practiced

16 hours and who is 15 years old.

E(16,15) = (a--16,14* °) + (a16,15* 1) + (a16,16* °) + ... +

(a30,18* 0)

E(16,15)= a16,15

. .
. . .
. .

0

0

0

0

o 1 o

o o 1

o o 1

o o 1

. .

0

0

0

0

. . ..
. . .

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1



In this discussion different symbols will not be used

to distinguish between the unknown parameters and their least

squares estimators. In the model above the symbols aii will

be used to represent both the unknown parameters and the esti-

mators.

Consider four different students having the following

characteristics:

Student

1

2

3

4

Hours of Practice Age in years
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The hypothesis of no interaction can be stated as follows:

The difference between expected (or predicted) typing

performance of the two students at age p but with different

practice levels r and s is equal to the difference between

the expected (or predicted) typing performance of the two

students at age q but with different practice levels r and s.

This is hypothesized for all values of p, q, r, and s where

p # q and r # s.

Calling the four expected values E(rp), E(sp), E(rq),

and E(sq) the hypothesis of no interaction is

E(rp) E(sp) = E(rq) - E(sq),

Now in the model employed by the ANOVA U. research worker

E (rp) = arp

E (sp) = asp

E (rq) = arq

E (sq) = asq,

Then we see that the hypothesis of no interaction is

a -alma - a
rp sp rq sq P #

q = 141 18

r # s

s = 16, ..., 30

Men we impose these 56 restrictions on the model the

restricted model can be written as

(2) Y = a16 X(16) + a17 X(17) + + a30 X(30)

+ b14 Z(14) + b15 Z(15) + + b17 Z(17) + R



36

where

X(i) = 1 if the corresponding element of Y is from a

student who practiced i hours;

0 otherwise (i = 16,17, ...,30)

Z(j) = 1 if the corresponding element of Y is from a

student having age j.

R = the residual vector

al ,and b. = unknown coefficients

Notice that Z(18) is not included in this model since it is a

linear combination of the other vectors.

Let

q = f E.2, the sum of squares of errors in the full model

g2 R the mita squares cf the error in the restricted

model

Then if the F statistic is desired to test the hypothesis we

have

F q1)/(75-19)I

c11/(n 75)

Now we will consider the situation in which the no-interaction

hypothesis has been accepted as true.

Then we use the model

Y = a16 X(16) + a17 X(17) + + a3 X(30)

+ b14 Z(14) + b15 Z(15) + + b17 Z(17) + R

The next hypothesis (the effects of practice) is that the

difference between the expected typing performance for two

students at the same age p but who have practiced different

amounts r and s is squal to zero. This must be true for all

ages.
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Then we consider the two expected values F(ro) and F(sp).

The hypotheses is

E (rp) F(sr) = 0

Now in the above model we find that

E (rp) = ar + bp

F(sp) = as + bp

Then we see that the hypothesis is

(ar
+ bP ) - (a + b ) = 0

p

a
r
- as = 0 r 0 s

res = 16,17,

Then we impose these 14 restrictions on the model; the new

restricted model can be written as

(3) Y = b14 Z(14) + b15 Z(15) + + b18 Z(18) + G

Notice that this restricted model has no information to dis-

tinguish amounts of practice; i.e., we have given up the in-

formation about differences in amounts of practice.

Let q3 = Mi. 2
, the sum of squares of the error in the new

restricted model.

Then if desired we have

F =
(13

-._c42)_/

ci2 / (n-19)
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Approach 2 - (COVARIA U.)

Since the research worker from COVARIA U. likes to do

covariance analysis it is necessary to have his "contaminating"

or covariable in "continuous" form. Therefore, it is necessary

to accept a certain hypothesis about the model used in the

ANOVA approach (model 1) above. Before beginning his analysis

this research worker must make the following assumptions:

a 16,14 = c16 d16
* 14

a16,15 = c16 J16 * 15

a16,18 = c16 d16 * 18

al7,14 = c17 + d17 * 14

a17,15 = Cin 11. d17 * 15

a17,18 = c17 + d17 * 18
. .

.

. .

= c30 + d30 * 18a
30,18

or

a1 .. = c. + d. * 4
3 1 1

where

i = 17,18,...,30
j = 14,15,...,18

ci and di are unknown parameters to be estimated by the

least squares method. These assumptions then lead to the

acceptance of the following model:

(4) Y = c16 X(16)
+ d16 A(16) + c17 X(17) + d17 A(17)

+ + c30 X(30) + d30 A(30) + E
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where

X(i) = 1 if the corresponding element of Y is from a student

who practicec i hours; 0 otherwise

A(i) = the age of the student if the corresponding element

of Y is from a student who practiced i hours;

0 otherwise

Now, we euphasize the basic common element between the two

approaches. The COVARIA approach is now stated exactly the same

as the Ai.:OVA approach, i.e., the hypothesis of no interaction

is the difference between the expected (or predicted) typing

performance of the two students at age p but with different

practice levels r anki s is equal to the difference Letween the

expected (or predicted) typing performance of the two students

at age q but with different practice levels r and s.

This is hypothesized for all values of p, q, r, and s

where p q and r s.

Exactly as in approach 1 the hypothesis of no interaction is

E (r) = F(sp) = C(rq) E(sq).

Notice that the two research workers are tilinYing about the prob-

lem in the same way.

Ilow we ,xoceed to find that the expected values in the

COVARIA approach are

E (rp) = cr + dr * p

E (sp) = cs + ds * p

E (rq) = cr + dr * q

E (sq) = cs + ds * q

Then the hypothesis is

(cr + dr * p) - (cs + ds * p) = (cr + dr * q) - (cs + ds * q)

* (p - q) = 0



But since p 0 q

Then it is necessary that

dr - ds = 0

or dr = ds r 0 s
r,s = (16,17,...,30)
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Then imposing the restrictions on the full model (4) we have:

(5) Y = c16 X(16) + c17 X(17) + + c30 X(30) + do A + R

where

d = a new unknown parameter which represents the
0

Let

coefficient common to all practice categories.

A = a vector containing the ages associated with the

elements in Y.

E E.
2

Ei R2i

Then the F statistic

F = (q2 - ql) / (30 - 16)

gl / (n - 30)

can be computed as a test for the interaction.

As before we consider the case where the research worker

accepts the above hypothesis.

The hypotheses of the effects of practices is thought of

in the same way as in the previous approach. The difference

between the expected typing performance for two students at

the same age p but who have practiced different amounts r and

s is equal to zero.



(6)
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Then the hypothesis is written exactly as in Approach 1.

E (rp) E(sp) = 0

But in this COVARIA model we have

E (rp) = cr + do P

E (sp) = cs + do P

Then by substitution the hypothesis is

(cr + d 0p)
(c

s
+ d

0
p) = 0

Or C = C r 0 s
r s rots = (16,17,...,30)

Then imposing the restrictions on model (5) we have

Y =c
0
U+d

0
A+ G

where U = the unit vector of all l's

c = an unknown coefficient associated with
0

the unit vector

Notice that in this model all information about practice

has been eliminated.

Then

and

q3 = EGi
2

F = (q3 iti;) / (16 - 2)

(12 / (n 16)
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Approach 3 - (MULCOR U.)

Now the research worker whe was trained at MULCOR U.

needs to have all his information in a continuous form since

that's what is required in his approach.

Then before the 1ULCOR man can start he assumes not only

the restrictions represented by the COVARIA worker (see

model 4) but in addition he must assume in model (4) that

the following are true:

or

c
16

= t
0
+ t

1
* 16

d16
w
0
+ w

1 *
16

c
17

= t
0

+ t
1

* 17

d17
=

0
W
1

* 17

c
30

= t
0
+ t

1
* 30

d30 = "0 + wl * 30

c- t
0
+ t

1
* i (i = 16,17,...,30)

Imposing these assumptions on model (4) we develop a starting

model as follows:

Y = (to + ti * 16) X(16) + (wo + wl * 16)A(16)

+ + (to + ti * 30) X(30) +(wo + w * 30)A(30) + E
1

Y = t
0
[X(16) + + X(30))

+ t
1

116 * X(16) + + 30 * X(34)1

+ wo [A(16) + + A(30)]

+ wl 116 * A(16) + + 30 * A(30)) + E

.4.0,01.0.111.6......100mn
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Then

(7) Y=t0
U+t1P+w

0
A w

1
(P*A) + E

Where U = the unit vector of all l's

P = a vector containing hours of practice

A = a vector containing ages

P*A = a vector whose elements are the product of the

corresponding elements of P and A. This is

called the direct product of P and A.

Again we emphasize that the MULCOR research worker thinks

about the problem in the lame manner as the previous two.

His hypothesis of no interaction is as before

F(rp) - E(sp) = E(rq) - E(sq)

Now we determine the expected values in the model assumed by

the HULCOR researcher. Looking at model (7) we find

F(rp) = to + t1 * r + wo * p + wl * (r*p)

E (sp) = to + t1 *s+w
0
*p+ w

1
* (s*p)

E (rq) = to + ti * r + w * +
0 wl * (r*q)

E (sq) = to + t1 * s + wo * q + w1 * (s*q)

Then the hypothesis becomes

(to + t
1
* r + w

0
* p wl * (r*P"

(to + t1
* s + w0 * p + 1071 * (s*p)]

fto + t1 * r + w0 * q wl * (r*q)]

(to + t
1

* s + w
0

* wl * (s*(1)]

or wl[p ql[r - s] = 0

Then ror this to be always trde the hypothesis is
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Imposing this restriction on the assumed model (7) we obtain

the restricted rodel (8).

(8) Y =t
0
U+ t

1
P+w

0
A+ R

Then we can compute

ql = 1E12
2

q2 = iRi

and the F statistic is

F = (a
2

cr1) / 3)

(11 / (n - 4)

Now if model (8) is accepted as true then we proceed to

test the effects of practice as in the previous two

approaches. The hypothesis is as before

E (rp) E(sp) = 0

Now in model (8) we have

E (rp) = t
0
+ tl * r + w

0
* p

E (sp) = t
0
+ tl * s + w

0

And our hypothesis is

(to + t
1

* r + 1,40 * p) - (t
0
+ t

1
* s + w

0
* p) = 0

t1 (r-s) = 0

ami since r s then the hypothesis is

t1 = 0

Imposing this restriction on model (8) we have

(9) Y =t0 U+w0 A+ G

Then if

c13 =

we have

F = tas
'-3 c12) / (3-2)

EG.
2

i 1

q2 / (r1-3)
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Approach 4 - (AMI/C0 U.)

The research worker for VARICO U. has always preferred

to have his data in a different form from the others. He

wishes to assume that model (1) of the ANOVA approach has the

following restrictions:

a16,14
= k14

+ 11114 * 16

or

k14 + m
14

* 17a 17,14 =

a30,14 = k14 m14 * 30

a30,18 = k 18 + m18 * 30

= kJ + mj * i
i = 17,18,...,30
j = 14,15,...,18

where kj and mj are unknown parameters to be estimated by the

least squares method. These assumptions lead to the acceptance

of the following model:

(10) Y = k14 Z(14) + nu P(14) + k15 Z(15) + m15 P(15)

+ + k18
Z(18) + m

18
P(18) + E

where

Z(i) = 1 if the corresponding element of Y is from a

student who is i years of age; 0 otherwise and

P(i) = the hours of practice of the student if the

corresponding element of Y is from a student

who is i years of age; 0 otherwise.

Again, we emphasize the idea that is common to all four

approaches.

The hypothesis of no interaction is still stated as

E(rp) - E(sp) = E(rq) E(sq)

.14
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Then we obtain these expected values from model (10).

E (rp) = kr + mu * r

F(sp) = kp + mn * s

E (rq) = kg + mg * r

E (sq) = 'cc + mo, * s

Then the hypothesis is

(kp + mp * r) - (kp + mu, * s) = (kg + mg * r) (kg + m * s)

(np mq) * s) = 0

But since r 0 s then the hypothesis must be

mp - mg = 0
or P 0 q

mp = ma, pfq = (14,15,...,18)

Imposing these restrictions on model (10) we obtain the

restricted model

(11) Y = k14 Z(14) + k15 Z(15) + + kle Z(18) + mo P + R

where

m = a new unknown parameter which is common to
0

all ages.

P = a vector containing the practice hours

associated with the elements in Y.

Then we can compute

ql = Eii2

q2 = ERi2

and

'1" (c12 - q1) / (10 - 6)

ql / (n - 10)

can be computed to test the hypothesis.
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As in the three previous approachesswe next explore the

case of no interactions and hypothesize that the difference in

typing performance for two students at the same age p but

who have practiced different amounts r and s is equal to

zero. Again, the hypothesis is the same in all three previous

approaches.

E(rp) - E(sp) = 0

Then we obtain these expected values in our VARICO model.

E(rp) = kp + mor

E(sp) = kp + mos

Then the hypothesis is

(k + m
0
r) (k + m

0
S) = 0

P D

or m = 0
0

Then imposing this restriction on model (11) we have

Y = k14
Z(14) + k

15
Z(15) + + k

18
Z(18) + G

computing

= .

2
a
-3

EG1

we can determine

r = (q3 - (6 -5)

cl2 / (n 6)

Summary

The ideas that were emphasized above are:

1. In all four approaches the statement of the hypothesis

of no interaction was the same in the original thinking

about the problem. Not until the specific assumed model

was introduced did the approaches appear different.

2. In all four approaches the hypothesis testing the effects

atv 4,
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of practice (which followed the acceptance of no inter-

action) was the same. Not until the specific model was

introduced did the approaches appear different.

3. The assumed models in all four approaches were obtained

by accepting assumptions about the first approach MM.

If desired the research worker from COVARIA, MULCOR,

and VARICO could test their assumed models to determine

if these starting models are appropriate.

4. Even though the computational aspects were not emphasized,

it can be observed that computing procedures required

in all four approaches are quite similar.

It is interesting to notice that the original model of

approach number one was basic to all others, and that the last

three research workers chose to accept assumptions about the

first model. Now the predictor vectors in this basic model

that was the originator (or paren0 of all others are binary

coded, mutually exclusive vectors. Sometimes these basic

vectors are called dummy vectors. This seems to imply that

there is something "not quite right" or "bad" about these

vectors. These binary vectors are really the parents of the

other vectors and are in effect the most "brilliant" of them

all. I would think that they should be called the "bright"

vectors, and the other vectors might be called "dummy".

My guess is that since the binary (parent) vectors

were recognized much later than their offspring, there was

some attempt to apologize for the introduction of the parent.



Also, since many early studies were thought of in

a multivariate normal setting,there existed more need for

users of these binary vectors to apologize for their use

since they were not multivariate normal.

The first three approaches, ANOVA, COVARIA, and

MUM are frequently treated quite separately in the

education of research workers. The fourth approach

VARICO is not likely to appear at all.

I urge those teachers who are interested in develop-

ing in their students the capability of effective research

analysis to consider carefully the objectives presented in

the earlier part of this paper on page one. Then I suggest

that the specific synthesis of models that has been pre-

sented will contribute to the development of the research

capabilities that are desired of research workers.



Introducticn of Dr. B. J. Winer

by

Joseph Hammock
University of Georgia

It is a pleasure to welcare the next speaker to the University of

Georgia and Athens. He really needs no introduction because of his text,

Statistical Principles in Experimental Design. It has had phenomenal

success. He certainly needs no introduction for students who have

been around Purdue and have taken his graduate courses in statistics.

It's rare, and I'm sure you will go alcng with this, to hear a

really excellent statistics teacher compete with the other excellent

teachers on the campus. At Purdue, I am told by all the students who

have been in and arcund psychology and statistics, Dr. Winer is the

master teacher. I think that's very important.

You mgy not km, that he is a native of OTegon. He earned his

Bachelor's and Master's degrees at the University of Oregon. He got

all involved with World War II and worked with the Adjutant General's

Cffice of the Army and the Civil Service Commission. He returned to

Ohio State and earned his Ph.D. there with Wherry. For a couple of

years he was at North Carolina where he worked with Cox and others.

He has now been at Purdue University as Professor of Psychology for

several years. It is a real pleasure to introduce to you Dr. Ben J.

Winer.



PROBLEMS IN THE USE OF GENERAL LINEAR MCDEL METHCOS

B. J. Winer
Purdue University

The topic that I was originally assigned was the mis-

use of general linear models, but on the program it got

translated "Problems in the Use of the General Linear

Model." I think that, historically, the use of the general

linear model as we know it today stems from R. A. Fisher.

Certainly the general linear model, as it was taught to me

IT Professor Bose and others at Chapel Hill, very clearly

indicated the connection between the experimental use of

the general linear model and the ideas of R. A. Fisher in

his analysis of variance methodology.

Before I talk about problems in the use of the general

linear model, let me quote from R. A. Fisher and essentially

indicate what Fisher thought about statistics in general,

which is going to be relevant to what I have to say. I am

quoting from a paper by Fisher entitled "On the mathematical

Foundaticns of Theoretical Statistics" which appeared in

the Philosophical Translations of the Royal, Society of

London in 1922. Fisher says the following:

The problems which arise in the reduction

of data may be conveniently divided into

three types. (1) Problems of specifications.

These arise with the choice of the mathe-

matical form of the population. (2) Problems

of estimation. These involve the choice of

methods of calculating from a sample statis-

tical derivatives, or as we shall call them

statistics' which are designed to estimate

the values of parameters of the hypothetical

population. (3) Problems of distribution.
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These include discussions of the distribution
of the statistics derived from samples or,
in general, any functions of quantities whose
distribution is known.

It will be clear that whkm we know what parameters

are required to specify the population from which a sample

is drawn, how best to calculate the sample estimates of

these parameters, and the exact form of the distribution

of our derived statistics in different samples, then the

theoretical aspect of the treatment of any particular

body of data has been completely elucidated.

I want you to pay particular attention to the next

quotation. Fisher was very much concerned with the

application of statistics; he was a shrewd man, experi-

mentally. Here is what he had to say about problems of

specification. This is essentially the problem of which

Dr. Graybill spoke.

As regards problems of specification,
these are entirely a matter for the
practical statistician. Those cases
where the quantity and nature of the
hypothetical population is known do not
involve any problem of this type. In
other cases, we may know by experience
what forms are likely to be suitable,
and the adequacy of our choice may be
tested a priori or a posterori. We
must confine ourselves to those forms
which we know how to handle or for which
any tables which may be necessary have
been constructed.

Let me repeat that sentence for emphasis. I may

contradict Fisher a little later in this regard. I think

Fisher is just being a little rigid here. "We must confine

ourselves to those forms which we know how to handle or

for which any tables which may be necessary have been



constructed. More or less elaborate forms will be suit-

able according to the volume of the data." Here Fisher

shows some flexibility. "The volume of data in turn," he

says here, "determines which forms may or may not be

suitable.'

Evidently these are considerations the nature of which

may change greatly during the work of a single generation.

This was written in 1922. This is approximately 1967.

I think we are certainly through a single generation and

I think some things have changed and we have solved some

of the distributional problems. But I am not sure, in

my own mind, that the problems of specification are any

nearer solution than they were in Fisher's time.

Let me quote again briefly from Fisher. This is a

quote from "The Logic of Inductive Inference," which was

published in 1935.

I have called my paper 'The Logic of
Inductive Inference.' It might just
as well have been called 'A Making
Sense of Figures.' For everyone who
does habitually attempt the difficult
task of making sense of figures is in
fact essaying a logical process of the
kind we call 'inductive' and, that is,
attempting to draw emphasis from the
particular to the general, or as we
more usually say in statistics, from
the sample to the population. Such
inferences we recognize are not mathe-
matically rigorous inferences; they are,
however, statistically rigorous because
they contain within themselves an adequate
specification of the nature and extent of
the uncertainly involved.

Now Dr. Graybill and Dr. Ward both very deliberately

avoided tests of significance. I think they avoided this
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because it is a difficult problem. Since I have been

assigned the topic "problems," I don't think I can avoid

the topic although I'm going to try to do so, believe

it or not. Let me at the start here again give you

Fisher's view of tests of significance. According to

Neyman, Fisher never did make a test of significance;

of course, Fisher is first to admit it.

Let's see what Fisher has to say. This is a quote

from the Design of Experknents.

The improvement of natural knowledge, that
is, learning by experience or by planned
chains of experiments, conculsions are
always provisional and in the nature of
progress reports, interpreting and embodying
the evidence so far accrued. Convenient as
it is to note that hypothesis is contradicted
at some familiar level of significance such
as five per cent, or one per cent, we do
not in inductive inference ever need to lose
sight of the exact strength which the evidence
nas in fact reached or to ignore the fact
that with further trial it might come to be
stronger or weaker.

So this is what Fisher has to say about tests in an

overall way. Incidently, notice that Fisher said nothing

about the word "power" hore at all. Neyman is right;

Fisher didn't consider power as such, but I'm not sure it

is really necessary. You see, I come from a Fisherian

background. It is hard to contradict the old master,

in a certain sense.

Now, I've come to talk about possible misuse of the

linear model. Misuse and problems, I suppose, are

synonymous in some sense. What I'd like to talk about

first in the way of problems or misuses is the difference
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between the analysis of planned data and the analysis

of unplanned data. I suppose this is the difference

between a designed experiment and one which has not been

designed. There are many dangers in trying to interpret

regression analyses, particularly, to try and get any

kind of causal relationship. Dr. Graybill spoke of that.

An example that Dr. Box of the University of Wisconsin

has used illustrates, I think, the major issues involved.

Box distinguishes between what he calls observable variables

and latent variables, and very carefully distinguishes

between regression analysis associated with a planned

experiment versus regression analysis obtained through

historical data. Let me give you his example. The

example is from the chemical industry, as any example

from Box would be. I think the constructs will carry

over to any field in which one is asked to interpret

data or to make sense of figures, to use Fisher's term.

Box cites an example in which the criterion is the

production of a final product in a production system.

He has a regression of the form Y = B1X1 B2X2'

The estimated productivity, Y, is a linear function of

two variables. He gives this very interesting example

in which historically whenever frothing is observed in

the chemical process the operator is told to apply

pressure to the system. So X1 is pressure applied to

the vat in which ale process is going on. Pressure

is applied historically whenever there are impurities.

This is the operational rule--if frothing occurs,

increase pressure.

a
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Other variables in the system are latent variables,

latent in the sense that they cannot be measured easily.

Through historical data one finds a relationship. Let me

change the notation here and replace X, by Xk. It can't

be measured. There are other variables here such as

temperature control and so forth. We cannot observe Xk

directly and get a fairly decent prediction of productiv-

ity, historically. Notice that there is a set of pro-

cedures that define what is done at various stages.

Another question arises here, can one increase

productivity in this sort of setup by merely increasing

pressure? There is a high correlation between the increase

of pressure and the increase of productivity. Historically

the correlation is very high; the validity is very high

on a historical basis. But this correlation is not of

any use at all in building a system or in revising the

production system to increase the production. If one

increased pressure when the impurities were not present,

it would not increase productivity.

I want to make the point from this example that

historical correlation may indeed be an accident of

procedure. If one had run a controlled experiment, such

that one independently manipulated the variables in the

regression equation, one could certainly be dealing with

uncorrelated variables. Again, the experiment is part of

the history.
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The important message that I want to give here with

respect to the use of a linear model is this: to a large

extent correlations are man made. Men we conduct an

orthogonal experiment as opposed to a non-orthogonal one,

almost at will we can increase correlation or reduce it

to zero.

The question that arises in any particular application

of the linear model is this: to what population are we really

trying to generalize? As Box puts it, if you are trying

to predict what will happen if you alter variables in your

prediction system, then you have to build your regression

equation from an experiment in which these variables were

altered. You cannot alter at will variables in a regression

equation computed from historical data and hope that just

by increasing the numerical value of X1 (if it has a

positive regression weight) that production will be in-

creased. It might up to a point, but certainly it would

be very limited. That is, the utility of X1 in the pre-

diction system really depends on the latent variable Xk.

Let me repeat, and this has a great deal to do with

disproportionalities in data which is analyzed, correlations

to a considerable extent, particularly in design work,

depend upon how one designs the experiment and blind use

of a regression model or any kind of analysis of variance

model can be quite misleading.

I have a certain distaste for applying the principles

developed within ezperimental design to data which were not

obtained experimentally. I said I had a distaste for it;
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that doesn't mean I don't do it or that I don't advise

others to do it. But there are many dangers there, and I

think perhaps it's a misuse of design models.

We must not lose sight of the population to which one

is trying to generalize; we must not lose sight of what

one is trying to predict. Methods suitable for one kind

of data may be quite inappropriate for methods of another

kind; that is, methods of analysis of data gathered one way

may be quite inappropriate for data gathered another way.

Now let me return to Fisher here. In terms of what we

call misuse of the linear model, I don't think that applied

statisticians are essentially erring in distribution

problems. I don't think they are erring in estimation

procedures. They know these. Perhaps the error is applying

these estimation and distribution principles to a model

which is inappropriate. Misuse of the linear model lies

primarily in the specification aspect.

Let me go on to another point. Joe Ward spoke at

considerable length this morning about the general reg-

ression model and the difference in treatment that this

model would have depending upon whether you were from

ANOV University, Purdue University, University of Georgia,

or what.

Let's look at an example in which perhaps the principles

about which Ward talked are utilized in perhaps a slightly

more effective way.



(f

Table 1

Two-factor Numerical Example of Cell Totals (Cell N's = 5)

1

Levels of factor 8

3 5 7

0 10 26 58 106

2 24 52 96 156

Levels of
factor A 4 38 78 134 206

6 52 104 172 256

I have a set of data that has been classified into rows

and columns, a two-factor problem. We have an A factor at

levels 0, 2, 4, and 6. Notice the levels are equally spaced.

The 13 factor is at levels 1, 3, 5, and 7, also equally

spaced. Now let's suppose these data are obtained from an

experiment. One is trying to evaluate the relative effec-

tiveness of factors A and B, if they were applied to, say,

a collection of elements which are untreated. So at the

beginning of this experiment there is no population, except

conceptually, to which we are trying to generalize. But

what we are doing in the experiment is creating from a

specified state of elements a new population, a population

of which elements have been treated. One can draw in-

ferences with reference to this new population in our

experiment. This seems strange to some to talk this way.

It seems strange to me even to say this--that in an experi-

ment, we actually create a population. ;Ye create a sample
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from a non-existent population. Well, tho elements that we

work on are drawn at random early in this case. Now, notice

that I have randomization, in this case, on a population

of elements and we want to draw inferences about the hypo-

thetical population of treated elements.

Berkson in two or three different papers has distin-

guishod between tho oxporimontal creation of a population

as opposod to drawing samples from an already existing

population. I think the latter is essentially historical

research, as opposed to experimental research in the former.

Fisher had a great deal to say about the inadequacies

of historical research. I remember back a few years that

Fisher came through Indiana and talked about the relation-

ship between smoking and cancer. He quoted all these

figures that had been gathered by his esteemed colleagues

in England. The data if you merely looked at them, in

terms of cell frequencies, were enough to convince alrost

anyone about the relationship between smoking and cancer.

Mile he was delivering his talk, he was chain smoking. I

think the hint there is a good one; he wasn't convinced.

The brochure that he put out vas rather vehement against

historical data as relating to cause and effect in any way.

I think that some of the ajections that he had in this

survey data have since been supplemented by direct experi-

mentation, more direct causal relations.

Well, let's get back to the example. There are a

series of numbers in the cells. I have said that there are

five observations in each cell. If I had not specified cell
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sample sizes, it would be almost irrelevant. I would

probably analyze these data in exactly the same way

even if they were disproportionate.

The population to which I want to generalize is hypo-

thetical, a hypothetical population of treated individuals.

I want to know which of the treatments should be used for

the basic population of untreated elements with which we

started. In this case it makes no sense to assign any kind

of differential weighting to any of the cells, even though

by accident the cell frequencies might be highly dispropor-

tional. Any good experimenter would want equal precision

with respect to each of the cells and therfore, would

assign equal cell frequency. If he didn't want equal cell

precision with respect to each of the cells, he might

deliberately assign different numbers of observations to

each.

That doesn't mean that in certain aspects of the

analysis, we will necessarily have to use certain procedures.

Let me emphasize this one roint. There are generally

several ways in which one can analyze exactly the same

data. The different ways are used to look at different

aspects of the data.

Let me take the easy way out. There are equal

frequencies in each of the 16 cells in the example. I am

just going to be concerned for the moment with the

between-cell variation. I'm a Fisherian, and being in a

Fisherian mood, I'm not going to take on anything that

Pearson did first. Let's look at the analysis of variance
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approach to these 16 cells and remember here that we are

interested in making sense of these figures.

Well, let's examine the between-cell variation. The

summary is in Table 2. We want a picture to determine

whether interaction is nresent or not.

Table 2

Between Cell Analysis of Variance of the Numerical Example

Source SS df

Between Cell 15,020.80 15

3A 4,096.00

Alinear 4,096.00 1

All other 0.00 2

10,204.80 3

Blinear 10,000.00 1

Bquadratic 204.80 1

Bcubic 0 .00 1

A x B 720.00 9

A . xlin. lin.
720.00 1

All other 0.00 8

Now, what happens if we sum over the levels of B and just

look at the marginal effects of A? First of all, the

between-cell variation is 15,021 with 15 degrees of freedom.

Focusing our attention on just the marginal totals, the

variation of the main effect due to A is 4,096 units, the
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main effect of the variations due to B is 10,205 units and

the variation due to the interaction is 720 units. I'm

treating the data as if they were orthogonal. They are

orthogonal as far as this is a designed experiment with

equal cell frequencies and there is no problem about

orthogonality there. Incidentally, the A-by-B interaction

is the culprit there.

Now, let's focus our attention on the linear comparison

among the marginal totals of the A--that accounts for all

the variations of A. Now focus attention on the marginal

totals for B and look at the linear comparison associated

with the Ws. The linear trend accounts for 10,000 units

of the 10,204.00, and the quadratic component accounts for

the remaining 204.80 units. All of the interaction is con-

centrated in a single comparison, namely the linear-by-linear

with 720 units of variation. From this table, we have a

description Jf the between-cell variation.

Table 3 shows the residuals. It is the residual table

after we use the original table for the main effects. This

is essentially that part of the original table which is not

predictable from the marginal totals alone, the residual

between-cell variation. Uhat we do essentially in the

analysis of variance is to successively residualize what

we are working with. If things are orthogonal, it is

very readily done.

Zei4vaWite,,,:',,,,.111"'"

-14
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Table 3

Cell Totals Adjusted for Main Effects and Over-all Mean

Levels of factor B

1 3 5 7

0 27 9 -9 -27

Levels of 2 9 3 -3 - 9

factor A 4 -1 -3 3 9

6 -27 -9 9 27

Now, what I'd like to do in the next table (Table 4)

is to relate the partition of the between-cell variation in

the analysis of variance sense to a correlational approach

to exactly the same data.

Table 4

Correlations Obtainable hop Analysis of Variance

41.

Source r
2

Alin

B.

Bquad

Alin 2c Blin

SSAlin/8Sb.cell

SS /SSb.cell

SS
Bquad

/SS
b.cell

S
S B

/SAlin
x

lin
Sb.cell

.27268

.66574

.01363

.04793

.52218

.81593

.11672

.21896
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We have 15,021 units of variation, plus the amount of

uncertainty in the cell totals (or the cell means, which is

the same thing, essentially, if we have equal cell fro-

quencies). Let's partition all the between cell variation

into single contrasts, single contrasts carrying single

degrees of freedom. If we take the ratio of the linear

component in the main effect of A to the total between-cell

variation we get a squared correlation of .273, or a corre-

lation of .522.

What this means in terms of prediction is this: If

we paid attention only to the linear trend in A, the corre-

lation between what we could predict and what we observe

is .522. If we add to our regression system a second term

that corresponds to the linear component of B divided by

the sum of squares for between cell, we get, in this case,

.666, or a correlation of .82. The main effects are

orthogonal in this case, hence the overall predictability

is q.12 = .273 + .666 = .938.

The marginal totals for B are a much better predictor

of the cell frequencies than are the marginal totals of A.

Now, we add to this the ratio of sum of squares for B

quadratic to sum of squares between cell. Ve have t.ge effect

of adding another orthogonal variable to our regression

system. The additional predictability is .014. Of

course, that is not a product-moment correlation. It is

something called a semi-partial correlation, the additional

contribution of the quadratic component to a system already

containing the linear component of B. Then of course, we
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can add in the contribution of the linear-by-linear. That

has a squared correlation of .04G or a correlation of .22.

In figure 1 I have actually sketched the relatively

simple surface represented by the initial data. It is a

surface that is linear in one direction and quadratic in

the second direction.

If we were to take the usual regression approach,

and this is done in Table 5, we would have to compute the

correlations between the X's. I want to point out when I

am through the fact that, in a certain sense, I can make

these correlations anything I want them to be. Here are

our variables. X1 is the level of A and X2 is the level

of B. Now, if you'll notice in the analysis of variance,

only the linear component of A has any contribution what-

soever to the 15,021 units of variation between cells.

The B linear as well as the B quadratic make contributions.

2
Let me define a dummy variate to be X3 = X. Since these

are quantitative variates (they are usually handled this

way), X3 assumes the values 1, 9, 25, and 49. Now, if

you will notice in the analysis of the interaction, there

is only one component there--the linear-by-linear--so we

can define a variate X4 equal to the simple product

X1 x X2. In actually setting up the intercorrelation

matrix associated with this sort of analysis, each cell

in the matrix would be described by some combination of

these. For example, let's consider the 16 observation

points, one corresponding to each cell. Associated with
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Table 5

Intercorrelations of Regression Variables

X
1
= levels of factor A

X
2
= levels of factor B

2X
3
= X

2

X
4
= X

1
X
2

xl X
2

X3 X
4

X
1

X
2

X
3

X
4

1.00000 .00000

1.00000

.00000

.97590

1.00000

.73209

.54772

.53451

1.00000

.52218

.81593

.82174

.91764

1.00000

the cell (0, 1), one has X1 = 0, X2 = 1, X3 = 12 = 1,

X
4
= 0'1 = 0. The actual observation of Y is 10; so here

is an observation vector, (X1, X2, X3, X4; Y) = (0, 1, 1, 0; 10),

and there would be 16 of these. One can compute the inter-

correlation matrix and in the traditional sense get the

validity coefficients. The latter are indicated in the

Y column of Table 5, the validities of X1, X2, X3, and X4

as predictors of Y.

These kinds of data can be very easily converted to

the usual correlational form. This can be taken as a starting
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point. I don't think they should be. I think that they

should be taken as an end point instead of the starting

point. Ward and I may have some arguments about this.

There are a whole sequence of regression equations

that can be derived whether you start with the entire

matrix of intercorrelations and then define hypotheses by

restrictions or start with the analysis of variance table

and then try to fit an appropriate surface to the data,

This may be a matter of taste. In terms of operations, it

is simpler to first find the analysis of variance. One

should first find what the possible contributors to the

prediction system are. The analysis of variance will do

this in a well designed experiment, or does this for you

orthogonally to begin with. A little later in our predic-

tion system we may introduce correlated variates. Some

of these artificial variates that we set up may be indeed

correlated.

Now, in Tables 6 and 7 I have a series of regression

equations that can be used for prediction. Although the

analysis of variance shows, if you look at each of these

separately, that you have some variation predicted from

each, we are going to find, indeed, that these four predictors

are redundant in spite of the fact that in the analysis of

variance each of them essentially contributes in terms of

non-error variation. In terms of final prediction, to

include all four of them will prove redundant. We are

going to find that with these particular data there is

a linear dependency. The entire augmented matrix including
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the Y column is a singular matrix, so that from the point

of view of efficiency of prediction, all of these are not

neededone drops out.

Table 6

Regression Equations and Correlations

(1) Y* = .52218 X* + .81593 X
21

r2 = .93841
Y.12

rY1
= .52218

r
Y2

= .81593

(2) Y* = .52218 X* + .29387 X; + .53495 X;
1

r2 = .95204 r
l

.52218
Y.123 Y

r
2

.81593Y

rY(3.12) = .11672

(3) Y
*
= .13055 4 + .52219 X

2
+ .53629 X4

r2 = .98635 ryl = .52218
Y.124

(4)

- .81593ry2

rY(412) = .21895

Y* = .13043 XI + .53501 X; + .53643

2
Y.134

1.00000 ryl = .52218

ry3 = .82174

=rY(413) .22819
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go Mol mon-
$S df ANOV Source

X X
11 2 r2

v.12SSY
14,096

r2
l

SS = 4,096
Y

r2
2

SS = 10,000
Y Y

2 A
lin+ Blin

1 A
lin

1 Blin

X
le

X
21

X
3 r2

23
SS 14,300

Xs1

r2
1

SS
Y

= 4,096
Y

r2
2

SS = 10,000Y

r2
Y(3.12)

SS = 205

3 A
lin

+ B
lin

+ B
guad

X
le

X
2'

X
4 r Y.124 SS = 14,816

r2
l

SS = 4,096Y

r2
2

SS, = 10,000
Y

r2
Y(4.12)

SS
Y

= 720

3 A
lin

+
lin

+ A
lin

+ un

1 Alin

1 B
lin

1 Alin "lin
2X

11
X
3,

X
4 rIal3A

SS
Y

= 15,021

r2 SSy 4,096Yl

r2 SS = 10,143
73 Y

r7(4.13)ss7
782

3 Alin+ lin
+ A

lin
Blin

1 Alin

1 Blin + B
quad

1 + A
lin x B

quad

r 2 $S = 15,021 4 Alin Blin Bguad7.1234 Y

Alin Blin

r2 SSy = 4,096Yl

r2 SS = 10,000
Y2

r2
7(3.12)

SS = 205

r2 SS = 720
7(4.123) Y

1 Alin

1 B
lin

1 B
quad

1 Alin x Bun
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Need we strive for conplete efficiency? I think there are

instances in which we may want to carry redundant variables

along. Think about this for a while. Need we eliminate all

the redundancy? If you will look in detail at the regression

equations that have been computed here and the various corre-

lations that are recorded in Tables 6 and 7, you'll find that

one can do a more efficient prediction job in terms of fewer

variates. The data will give you a multiple correlation of

unity. These are artificial data.

I said nothing about hypothesis testing here, but I may

be forced to shortly. This is just a small numerical example

that I think ineicated an alternative way of combining

estimation problems with prediction problems. In this case,

notice what I have done, the details are unimportant. / have

obtained estimates of various sources of variation and then

built a prediction pin-pointed at just these sources. But

the prediction system that I would build just by looking at

these sources is redundant and we can eliminate one of then

if we want to. rut from the point of view of predicting,

taking statistical pictures on the original table, all four

of these variants were relevant. For purposes of predicting

the 1C cell totals, if this is all we want, these four

variables do not constitute a minimal set. But notice here

that in the analysis of variance in the original description

of these 16 cell entries I added eight more entries, the row

marginals and the column marginals. For the complete de-

scription of the 16 cell entries plus the eight additional
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sums, one needed the entire set of four variants. Well,

the reason fr)r. V'at is that certain of these cross-product

terms become constant when you sum down the columns and

that is what makes one of these variables drop out.

Dr. Graybill mentioned problems associated with errors

in observation. This is a very serious problem in the area

of behavioral sciences. The observations that we make are

considerably less than perfectly reliable. Repetition of

the same instrument to the same individual does not give

one, in most cases, a distribution of error which is insigni-

ficant compared to the magnitude of what we are trying to

estimate.

There is a description of how one can handle in part

this problem in Graybill's book and there is a somewhat more

extensive treatment of this problem in the literature.

This is the problem, I think, education and psychology people

have called the combination of reliability, that is, the

error of measurement, and experimental error. They are quite

distinct conceptionally and the problems of handling them

are also distinct.

Madansky had a fundamental article a few years ago in

the Journal of the American Statistical Association on

various ways of combining the usual regression approach with

problems of reliability. More recently, in connection with

design of experiments, Box and some of Kempthorne's students

have tackled the following problems. (This is very closely

related to the problem in which we in psychology and education
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have been concerned for a number of years). It comes up

under a new name. Box as well as Ziskind and Kempthorne

call this the problem of errors in the levels of factors.

That is, let's suppose that in the experiment we have

levels a
1 and a

2 of some factor. Upon replication of this

experiment, levels al and a2 aren't quite the same sort of

thing. That is, al and a2 involve some instrument setting,

a specified dosage which can only be measured within X units

of accuracy. In a certain sense, upon replicating al and

a2, we really have as the first attempt at replicating

all, a12, and a13. They're all supposed to he al, but they

are slightly different.

Now most of you in psychometrics will find after some

study that this is almost completely equivalent to the test-

ing problem. You want to measure a trait A and a trait B;

all, al2, and a13 are simply items in trait A. They are all

different; they are all supposed to be pin-pointed at al,

but they are not exactly al. They differ from it by the

fact that al can have three different aspects, or it can be

measured in three different ways, or there are three different

items, each pertaining to al. So all the factors associated

with trait A essentially enter in the measurement of the level

of the factor and we see that the problem is directly rele-

vant to the work in psychometrics. It doesn't appear to be

on the surface, but it is. I think it is due time that the

experimental-design oriented people realize that this type

of error is worthy of considerable study. We have it
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particularly in trying to replicate control conditions in

which, in behavioral sciences, al and a2 are groups, or

correspond to high-versus-low in terms of a factor such as

"anxiety". Let me conclude this point by saying this is

relevant. It is one of the problems that we face in trying

to experiment, in using the ordinary linear model, when the

levels of the factors themselves cannot be reproduced exactly

from one replication to the next.

Incidentally, this book that I wrote has been a problem

for me, but it has been the source of my getting all sorts

of letters. Some of these letters are very strange sorts

of things. It's really amazing the things that can be put

in print and can be misinterrreted the way they are. One of

the central topics, one of the repeating themes of the types

of letters I get, concerns how one estimates variance

components. One measures these variance components to

evaluate what Fisher calls the strength of relationship.

Essentially, a correlation is nothing more than a ratio of

two components.

If something is statistically significant, what is the

strength of association? What is the measure of association?

What the variance components are depends very, very much on

what the proper specification of the model is. In practice,

I don't hesitate to use several different.estimation proce-

dures. I don't hesitate to get estimations based upon the

assumption that certain factors are fixed. I don't hesitate

to get another estimate under the assumption that certain
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ors are random. I take solace again, being a Fisherian,

the statemont Vlat you'll find a Fisher somewhere. I

d it somewhere, but I couldn't find it Olen I was looking

it the other day. The fact that Fisher says, and this

sloppy, sloppy from some points of view, that any data no

tter how it's gathered is a sample from some population.

Sampling theory people tell you that the population

comes first, then the sample. There is no such thing in a

ertain sense. Some data is better than none. This does,

in part, justify one's intuitive attempt to make the most

sense possible out of any set of data. I don't think there

is such a thing as an appronriate model; "appropriate for

what" would be a better designation. One model may be more

appropriate than another for interpreting given data one way.

As I say, the problem of estimating variance components

does not have a single answer. It does have a unique

answer only if you have complete specification of the initial

model.

One of the purposes of experimentation is to specify

sequentially a model. I think we lack, in our general

experimental approach, the facility to tackle data, especially

in education and psychology, sequentially. One of the ad-

vantages of this type of approach is that one can sequen-

tially specify a model. Models are guides, not taws.

Now, one of the problers, and my book is just full of

this kind of problem, is that in which the same experimental

unit is used under a variety of treatment conditions. In

five cents jargon, it is a repeated measures problem if we
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are dealing with individual subjects. To what extent does

the fact that we've used the same experimental unit, the same

subject, under a sequence of treatment conditions affect

various models that we might present?

Let me give you an example. First of all, let me

indicate why under certain assumptions, it is a multivariate

problem. Here you have an individualindividual one,

individual two, individual three, etc. You make a series

of observations on this individual under several treatments.

These may be over different time periods under the same

treatment, it makes no difference. And what you have here

essentially is an observation vector having several components.

You have a series of observation vectors. There is corre-

lation between, say, between period one anr1 period two, or

treatment one and treatment two.

In the traditional agricultural setting, this may be

viewed as a split-plot design of some form. This is the

jargon in the agricultural field. The whole plot is the

individual; split-plots are observations within the individual.

Call w the individual difference component associated

with the individual subject. As long as the w's remain

constant, then it can be shown that the variance-covariance

matrix associated with these data must have a very special

pattern. So if n is a constant, if w does not change under

these treatments, you get a very highly patterned covariance

matrix which has just two distinct roots. The usual approaches,

the analysis of variance approach and the multivariate

1

m momaam.
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analysis approach, will give you exactly the same answer.

It doesn't look like it, but it is true. You are really

doing a very special case of a multivariate analysis, but it

looks like a univariate analysis, because of the fact that

in the model we can assume that n does not change. In other

words, that individual number one is exactly the same (after

the treatment effect wears off) when you look at him under

each of the other treatments.

But, of course, if w is not a constant, then this very

highly structured variance-covariance matrix takes on one of

these complex forms that Bergmann talks about.

Note the use of the same subject under repeated conditions.

This is the central problem about which I get many letters.

Suppose I have a repeated caesuras design and I don't get

anything near the variance-covariance matrix I should under

the assumption that w remains constant. What can I do about

it? Well, let me reverse this problem. I think that it is

more usual that an individual who uses this method to begin

with probably knows what he can do about it, but may not want

to do it. Many ask this question: How much am I wrong by

assuming n to be a constant when it really is not? How much

violation is created by approximating one covariance pattern

by another? I don't think anyone knows the answer to that

yet. On the other hand, again this is a computer age and we

have Bock in our audience. Bock has a whole series of

programs for which you just press a button and you'll get all

sorts of multivariate analyses of variance for your data. I

am not sure that this kind of button-pressing is the solution.
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I think we will increase in our facility in the inter-

pretation of multivariate analysis of variance once we gain

experience with multivariate data and essentially its

generalization to canonical analysis. That is, so far, we

are working here with only one dependent variable.

Interpretations of the outcomes of multivariate analysis

of variance is difficult. I think they are difficult mainly

because we have had no experience with them. I think this is

a coming problem in the field.

The computer revolution solves some problems, but I think

creates as many as it solves. This is one instance I think

where our cortexes have not quite kept up with the computer

facility for doing operations. Before computers were

available to us, we thought our problems would be solved once

we could do the operations. Now that we can, the inter-

pretation is quite difficult, and this leads me to the

concluding section of what I want to talk about.

That is problems of interpretation, particularly in the

analysis of variance setting, and particularly with respect

to hypothesis testing. As I say, since I was assigned the

topic of problems, this is a problem area and it's been

complicated in recent years. I know that when I was at

Chapel Hill in my student days we made an F-test, we made

another F-test, we made another F-test and at that time

the systematic use of various kinds of error rates was not

quite in vogue. Within the last ten years, there has been a

series of developments, among others, those of Scheffe.
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We are, in our hypothesis testing work, plagued with

this problem. This is another one about which I receive

letters all the time. Which of several possible error rates

in hypothesis testing should be used? Should it be an indi-

vidual comparison error rate, a per-experiment error rate,

an experiment-wise error rate--and I dare say, that there are

all kinds of additional error rates that are in the process of

being published right now.

This is, I think, an important theoretical question.

Should the unit with which we are concerned for error rate

be just a subcollection of the entire experiment or the

entire experiment? Should one be concerned with one row

and test hypotheses with an error rate which has as its base

unit all possible comparisons within any one row, or within

any one column, or within any two rows? Suppose I have four

rows in the table. One row might be an early phase, or

another row might be a late phase, or there just might be

only two rows. Well, you might just say that Winer produced

a half experimental unit. Does it make logical sense to

describe the data in terms of a unit of error rate which

considers all possible differences or all possible generalized

contrasts? Are you going to work with a Scheffe level of

significance or a kind of Tukey level?

This is a problem that I think has no answer. Fo

answer in purely mathematical terms. I dare say, though, in

practice it has an answer. Remember that the purpose of our

A,,
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statistics is to make sense of data. If it makes sense to

set an error rate cn just a portion of the data, to focus

on this portion, and to set a separate error rate on a dif-

ferent portion of data, by all moans, do so.

If you read Tukey carefully, you will find that he is,

ultimately, very much in the same spirit as Fisher. As a

matter of fact, mathematically Tukey is much more sloppy

than Fisher ever dreamed of being. Yet, I think that Tukey

is probably the outstanding mathematical statistician in this

country today. If you'll read Tukey very carefully, you will

find that he does things that I would never advise my students

to do. Except, that he indicates very carefully just in what

kind of sense this particular procedure applies.

There are many problems in applying the linear model.

Having computer programs available to us, I think, simplifies

the computational task. In a certain sense it makes much

more difficult the specification task, the task of the

individual experimenter. This, perhaps, can be computerized,

but it hasn't yet. But, perhaps, if one could write a

program in which all the relevant inputs could be coded and

all the possible utility functions associated with each input

specified, then I think the computer can give you alternative

specifications. We are not yet quite at this stage, so that

I think that the problem of specification and the problem of

interpretation are linked.

As Fisher noted we are limited in our choice of models.

But don't hesitate to use the existing models even though

4,4



none is ideal for your purpose. Instead of throwing up

your hands in utter despair, the chances are any tractable

model would be an over-simplification of real data in

education and psychology. tut remember, it is only a first

approximation, and a series of approximations gets us much

closer to the information we want than no activity at all.
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Introduction of Dr. Rolf E. Bergmann

bY

Harry E. Mderson, Jr.
University of Georgia

I have the pleasure of introducing Dr. Rolf Ba,rgmann of the University

of Georgia's Departnent of lathematical Statistics. He was fornerly manager

of the information sciences in MR research; Professor of Statistics at

Virginia Polytech Institute; Head of the Statistics Department, Institute

for International Education Research at Frankfurt, Germany. He did his

undergraduate work in Chentstry at the University of Berlin and did

graduate shay in physical chemistry at the University of Hanburg. He

did psychanetric work with Ihurstone in Chicago and took his Ph.D. in

mathematical statistics at the University of North Carolina. lie is a

fella./ in the Anerican Association for the Advancenent of Science, mem-

ber of the Averican Statistical Association, Et:anal/I:trio Society, Psy-

chi:metric Society, and others. It is a great pbaasure to introduce

Dr. Rolf Bergmann.



A SURVEY OF APPROPRIATE METHODS OF

ANALYSIS OF FACTORIAL DESIGNS

Rolf E. Bargmann
University of Georgia

The model for a two way or two factor design

E(yijk) = u + ai + Oj + 6ij

i = 1,2,...r; j =

plays a key role in a majority of experimental situations,

both as a self-contained model, and as an easily inter-

pretable submodel of a more complicated design. Also, in

most industrial and educational applications, the number

of observations in each cell can be quite irregular,

often leaving whole cells empty.

It must be understood, first, that the above model

is insufficiently specified. It is easily shown that,

with this generality, comparisons or contrasts in e-effects

or 0-effects are non-estimable. This is probably best

illustrated by a perfectly legitimate assumption that all

ai and all Oj are zero. Under this assumption (a condi-

tion on the model, not a constraint on the estimates) we

would have a one-way classification model with r x s groups.

This model specification is obviously not what we wanted,

else we would not have postulated a two factor model in

the first place.
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In many industrial applications, the lowest level of

each factor designates its absence, hence an absent factor

could not 'interact" with another one. The specification

to (1) would thus be

61j = 0 for all j and dil = 0 for all i.

This leads to an extremely simple estimation procedure

for, if Yij denotes the cell total in cell (i,j) and nij

the number of observations in that cell,

(di dk) = Yil/nil Ykl/nkl

A A

(0i 01) m Ylj/nlj lillL

A

13
= y1..)

1
/n.j - ai - Oj YU/nil

with obvious generalizations to more than two factors.

Thus, row effects are estimated only from data in the first

column, and column effects only from data in the first row,

while the remaining information is used to estimate inter-

action effects.

There has been searching, and entirely unjustified,

criticism of this simplest of all analyses. Why, its

opponents agree, should I estimate the main effects--in

which I am vitally interested--from so few observations

only? The fact of the matter is, of course, that this

model brings us back to the classical assumptions of

experimental planning: If factors can, notPntially,

interact with other factors, one should attempt to study

each factor in the absence of others in order to ascertain



its own, isolated, effect. In educational research,

alas, this principle is seldom anplicable. We cannot

plan an experiment with "absence' of intelligence or

"absence" of color, to name a few absurd examples.

One set of specifications for the description of

the model has attained rather widespread acceptance. It

is usually stated as follows.

Eni4

= 0 for all

and

ij
= 0 for all j
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The name "natural constraints" given to these r + s - 1

conditions is poorly chosen. These specifications are

neither natural, nor are they constraints (the latter

must be arbitrary specifications of estimates). It is,

in fact, a set of conditions which maximizes the non-

centrality parameter in the joint chi-square statistic used

for testing the hypothesis of equality of all main effects,

i.e.,(Sum of Squares for Columns, unadjusted + Sum of

2 2
Squares for Rows, adjusted)/ a , for fixed a . The class-

ical formulas, involving adjusted normal equations, for

the irregular design without interaction, provide the

estimation procedure in this case.

When the interaction effect becomes significantly

large in this instance, the additive model is a poor repre-

sentation of the data. Outliers in individual cells may,

of course, produce such significant interaction effects,
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and can easily be detected. If outliers do not explain

the departure from additivity, two modifications of the

model are availahle.

(1) The interactions affect the cell means in an

irregular fashion; one assumes that they will show different

patterns in repeated experiments. The proper model would

then be a "Random Interaction Model".

(2) The interaction effects show some definite

trend from level to level of the main effects. Here it

is necessary to make an assumption r^garding the mechanism

(specifying the trend except for proportionality constants).

The residual portion of the interaction can again be re-

garded as fixed effects or random components. These models

will be called Covariance nodels.

The Random Model

Yijk = °Li 8j dij eijk

E(dij) = 0; E(eijk) = 0

var (d..) = a2 var ( ) = 02 , all covariances zero.
13 , eijk

The analysis is quite similar to the irregular fixed

effect analysis, with the incidence matrix replaced by a

matrix of weights

w.. = 1/(p
2

+ 1/n..)13

where p 2 = 0
2 / 0 2 Unbiased estimates and approximate

confidence bounds for p 2 are available from the fixed



model analysis. They utilize the F-statistic for inter-

action of the fixed model. The coefficients are some-

what involved, in the irregular design, but are easily

programmed. Confidence bounds are based unon the improved

variance-stabilizing (cosh-1) transformation of non-

central F.

It may be noted that the weights become quite

similar to each other if p2 is large and/or if the smallest

non-empty cell is appreciably large. In this case then,

the "unweighted means" analysis (regular if all cells are

occupied, the usual irregular "treatment-block" analysis

if some cells are empty) is the limiting form of the

Random Model analysis.

The Covariance Models

(a) Fixed Residuals:

+ Mi f(ildlyif2001fm)
ljA = y . e

-ijk

13(eijk) = 0 var (eijk) = a:

where f(i, jiy1,y2 ym) is a non-linear function of

concentrations of a- levels i and concentrations of 0-

levels j. A simple form (neutralization) would be f =

where c are concentrations. The analysis proceeds

like an irregular design analysis with one or more cova-

riates. The latter represent the function or functions

of the levels which are assumed to explain the mechanism

of the interaction effects. A linear combination of i and
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2
(e.g., ylci + 1(29) is ruled out, since these covariates

would affect (and be assumed to affect) main effects.

(b) Random Residuals:

Yljk = 0 *i (4j
dij + eijk, where

E(eijk ) = 0, var (e.l)k) = o
2

1
, E(d..) = f(i,j1y1...fm)

e 3

2var (d..) = ad'
all covariances zero,and p 2 = 2/a 2

ij d e*

This is a weighted irregular covariance analysis, with

weights equal to those in the random model without covariates.

The estimates and confidence interval estimates for p2 are

based upon the F for interaction in the fixed residual

covariance model. The coefficients are somewhat more in-

volved than those in the random model without interaction.

Demonstration Studies:*

Two computer programs have been written which serve

as tools to determine whether some of the two-way classi-

fication models considered above provide the best estimation

of main effects when the interaction effect possesses

certain characteristics. For instance, when the inter-

action is significant and possesses a random character,

or when the interaction is significant and is directed or

biased in a definite manner, it would be expected that one

of the methods of analysis should be superior. One program

*From F.C.Clark, "The Role of Interaction in Two-Way
Classification Models", unpublished Ph.D. dissertation,
University of Georgia, 1967.
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performs the complete classical maximum main effect

analysis, the Random model analysis using the unbiased

estimate of the variance component ratio 02, as well as

the lower and upper 1-a confidence points for p2, and

finally an unweighted mean analysis. The other program

performs the so-called Covariance Model analysis. Special

variants of these programs make use of a data-generating

subroutine which utilizes a random normal number generating

program. Values for the main effects, interaction term,

error term, and entries of the incidence matrix are fed in

as input information for the data-generating subroutine.

The studies which make use of the first program were

designed in such a way that the interaction is significant

under the maximum main effect model and such that the

interaction effect possesses a random character.

In the ensuing four studies we will make use of the

following symbols for purposes of convenience: "Av"

will denote the average value of the estimate over 10

data sets. "T" will denote the true value of the effect.

"S.D." tAll denote the standard deviation of the estimate.

"R.M.S." will denote the root mean square of the estimate.

"Fixed" will denote the estimate assuming the fixed,

maximum main effect model. "Unbiased" will denote the

estimate under the Random Model using the unbiased

estimate of p2. hIsower" will denote the estimate assuming

the Random Model but using the lower 1-a confidence point

of p2. "Upper" will denote the estimate assuming the
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Random Model but using the upper 1-a confidence point of

p
2 "

. Unweighted' will denote the estimate assuming the

unweighted mean analysis.

For the first study we have the following details:

Factors: A, 13

Levels : A @ 5 levels, @ 10 levels

Incidence Matrix

3 28 3 4 39 43 42 25 36 23 246

20 41 38 36 37 22 28 35 26 36 319

0 25 3 37 6 7 42 14 39 32 205

43 39 38 38 25 9 0 25 36 2 255

37 39 42 0 38 39 1 37 25 26 284

103 172 124 115 145 120 113 136 162 119 1309

An interaction term of one multiplied by a random normal

(0,1) number is added to each cell. This gives dij a

random effect. An error term of one times a random normal

(0,1) number is added to each cell. Thus, p 2= 1. The

mean was chosen to be 20. The main effects which were

fed into the program are: al = -2.0, a2 = -1.0, a3 = 0.0,

a4 = 1.0, a5 = 2.0, 01 = -2.5, 02 = -2.0, 03 = -1.5,

04 = -1.0, 05 = -0.5, 06 = 0.0, 07 = 0.5, 08 = 1.0,

89 = 1.5, 810 =
2.0.



Only scme of the parameters are shown in the tables.
The others exhibit similar properties. "B" denotes the

best value and "W" denotes the worst value.

Main effect estimates

a 1 Av S.D. R.M.S

Fixed
Unbiased
Lower
Upper
Unweighted

-2.000
-2.000
-2.000
-2.000
-2.000

-1.889
-1.885
-1.886
-1.884
-1.878

.3427

.3549

.3603

.3531

.3415

.3600B

.3728

.3779W

.3716

.3629

a3 Av S.D. R.M.S.

Fixed 0.0 -.0647 .2959 .3029W

Unbiased 0.0 -.0278 .2362 .2378

Lower 0.0 -.0272 .2374 .2389

Upper 0.0 -.0294 .2249 .2267B

Unweighted 0.0 -.0321 .2274 .2297

a5 T Av S.D.

Fixed 2.000 1.968 .3894 .3907

Unbiased 2.000 1.979 .3303 .3309

Lower 2.000 1.979 .3348 .3354W

Upper 2.000 1.977 .3264 .3272

Unweighted 2.000 1.974 .2898 .2909B

81 Av S.D. R.M. S .

Fixed -2.324 -2.281 .3518 .3544B

Unbiased -2.324 -2.222 .3819 .3953

Lower -2.324 -2.229 .3758 .3879

Upper -2.324 -2.219 .3949 .4084

Unweighted -2.324 -2.195 .4263 .4453W

04
Av S.D. R.M.S

Fixed -0.824 -.8579 .4039 .4053

Unbiased -0.824 -.7218 .4547 .4660F!

Lower -0.824 -.8049 .3975 .39793

Upper -0.824 -.8047 .3991 .3995

Unweighted -0.824 -.8112 .4097 .4099

92
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07 T Av S.D. R.M.S.

Fixed 0.676 .7011 .f230 .6235W
Unbiased 0.676 .6701 .5385 .5385
Lower 0.676 .6696 .4989 .4989
Upper 0.676 .6703 .5302 .5302
Unweighted 0.676 .6608 .4564 .4567B

810 Av S.D. R.M.S.

Fixed 2.676 2.884 .5513 .5841B
Unbiased 2.676 2.983 .5493 .6292
Lower 2.676 2.979 .5502 .6283
Upper 2.676 2.997 .5491 .6359W
Unweighted 2.676 2.994 .5440 .6299

In the second study we have the following information:

Factors: A, B.

Levels : A @ 5 levels, P @ 10 levels.

Incidence Hatrix

3 28 3 4 39 43 42 25 36 23 246

20 41 38 36 37 22 28 35 26 36 319

0 25 3 37 6 7 42 14 39 32 205

43 39 38 38 25 9 0 27 36 2 255

37 39 42 0 38 39 1 37 25 26 284

103 172 124 115 145 120 113 136 162 119 1309

An interaction term of 4 multiplied by a random normal

(0,1) number is added to each cell. An error term of 8

multiplied by a random normal (0,1) number is added to

each cell. Thus p 2= k. The mean was chosen to be 20.
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The main effects which were fed into the program are:

al = -2.0, a2 = -1.0, a3 = 0.0, a4 = 1.0, as = 2.0,

01 = -2.0, 02 = -1.5, 03 = -1.0, 04 = -0.5, 05 = 0.0,

06 = 0.5, 07 = 1.0, 08 = 1.5, 09 = 2.0, 610 = 2.5. This

study was taken over 10 data sets. Under the maximum

main effect analysis, F for interaction versus error is

6.5 (Average). Best values are denoted by "B" and worst

values are denoted by "W".

Main effect estimates

al AV S.D. R.M.S.

Fixed -2.000 -1.540 1.526 1.593
Unbiased -2.000 -1.609 1.449 1.501
Lower -2.000 -1.534 1.492 1.563
Upper -2.000 -1.509 1.523 1.599W
Unweighted -2.000 -1.442 1.363 1.473B

a3 Av S.D. R.M.S.

Fixed 0.0 -.1454 1.250 1.259W
Unbiased 0.0 -.2513 1.113 1.141B
Lower 0.0 -.2361 1.133 1.157
Upper 0.0 -.2502 1.119 1.146
Unweighted 0.0 -.3495 1.175 1.226

a5 AV S.D. R.M.S.

Fixed 2.000 2.065 1.534 1.536
Unbiased 2.000 1.963 1.508 1.508
Lower 2.000 1.960 1.539 1.540W
Upper 2.000 1.965 1.389 1.389
Unweighted 2.000 1.993 1.183 1.183B
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81
T Av s.D. R.M.S.

Fixed -2.324 -2.159 1.493 1.502

Unbiasee -2.324 -2.177 1.482 1.489

Lower -2.324 -2.213 1.455 1.45913

Upper -2.324 -2.135 1.529 1.541

Unweighted -2.324 -1.888 1.898 1.948t,

84
T Av S.D. R.A.S.

Fixed -0.d24 -.9259 1.714 1.717

Unbiased -0.824 -.7988 1.673 1.673

Lower -0.824 -.8101 1.666 1.6668

Upper -0.324 -.7899 1.683 1.683

Unweighted -0.824 -.7748 1.795 1.796r

07 T Av S.D. R.M.S.

Fixed 0.676 .7233 2.463 2.464

Unbiased 0.676 .6175 2.444 2.445

Lower 0.676 .6089 2.477 2.4777

Upper 0.676 .6271 2.409 2.409

Unweighted 0.676 .7776 1.961 1.9638

010
Av S.D. R.M.S.

Fixed 2.676 3.494 2.344 2.4921;

Unbiased 2.676 3.765 2.441 2.673

Lower 2.676 3.733 2.385 2.609

Upper 2.676 3.813 2.548 2.789

Unweighted 2.676 3.973 2.495 2.8121

In the third study we have the following information:

Factors: A, B.

Levels : A @ 3 levels, B @ 5 levels.

Incidence Matrix

0 9 3 1 4 17

3 1 0 5 6 15

9 0 6 3 0 12

12 10 9 9 10 50
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An interaction term of itr,T multiplied by a random normal

(0,1) number is added to each cell. An error term of /17

multiplied by a random normal (0,1) number is added to each

cell. Thus p2 = 1/3. The mean was chosen to be 20. The

main effects which were fed into the progrdm are :

al = -1.0, 02 = 0.0, 03 = 1.0, 01 = -2.0, 02 = -1.0,

03 = 0.0, 04 = 1.0, 05 = 2.0. The study was taken over

10 data sets. Under the maximum main effect analysis the

F for interaction

best estimate

al

versus error was equal 2.12.

and "W" means worst estimate.

Main effect estimates

"B" means

R.M.SAv S.D.

Fixed -1.000 -.9630 .3946 .3963
Unbiased -1.000 -.9440 .4921 .4952V
Lower -1.000 -.9521 .3899 .3928
Upper -1.000 -.9399 .3445 .3497B
Unweighted -1.000 -.9328 .3540 .3E03

a3 Av S.D.

Fixed 1.0 .9192 .4256 .4332B
Unbiased 1.0 .8991 .4359 .4474
Lower 1.0 .9128 .4282 .4369
Upper 1.0 .9391 .5024 .5061W
Unweighted 1.0 .8674 .4562 .4751

Av S.D. R.M.S.

Fixed -1.920 -1.687 .5788 .6238W
Unbiased -1.920 -1.843 .6084 .6131
Lower -1.920 -1.732 .5928 .6219
Upper -1.920 -1.925 .5989 .5989
Unweighted -1.920 -1.922 .5925 .5925B
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03 T Av S.D. R.M.S

Fixed 0.08 .23S3 .5489 .5715tv
Unbiased 0.00 .2164 .5081 .5260
Lower 0.08 .2507 .5139 .5415
Upper 0.08 .1710 .4995 .5077B
Unweighted 0.08 .1910 .5373 .5488

Os T Av S.D.

Fixed 2.080 2.232 .4962 .5188B
Unbiased 2.080 2.037 .5636 .5652
Lower 2.080 2.188 .7668 .7743W
Upper 2.080 1.969 .5799 .5902
Unweighted 2.080 1.976 .6138 .6226

The fourth study contains the following results:

Factors: A, B.

Levels : A @ 5 levels, B @ 10 levels.

Incidence Matrix

3 28 3 4 39 43 42 25 36 23 246

20 41 38 36 37 22 28 35 26 36 319

0 25 3 37 6 7 42 14 39 32 205

43 39 38 38 25 9 0 27 36 2 255

37 39 42 0 38 39 1 37 25 26 284

103 172 124 115 145 120 113 136 162 119 1309

An interaction term of 11:172- multiplied by a random normal

(0,1) number is added to each cell. An error term of 1

multiplied by a random normal (0,1) number is added to

each cell. Thus 02 = 0.2. The mean is taken to be 20.



The main effects are arbitrarily chosen as! al = -2.0,

*2 n -1.0, *3 = 0.0, 014 = 1.0, a5 = 2.0, 01 = -2.0,

02 = -1.5, 03 = -1.0, 04 = -0.5, 05 = 0.0, 06 = 0.5,

07 = 1.0, 08 = 1.5, 09 = 2.0, 010 = 2.5. The study was
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taken over ten such data sets. The F, interaction versus

error under the maximum main effect analysis is 8.86. The

best value is denoted by "B" and the worst value is denoted

by "W.

'31 T

Main effect estimates

Av S.D. R.I.S.

Fixed -2.000 -1.927 .1919 .2053w

Unbiased -4.000 -1.926 .1755 .1905

Lower -2.000 -1.928 .1790 .1929

Upper -2.000 -1.925 .1781 .1932

Unweighted -2.000 -1.916 .1604 .1811B

*3 T Av S.D. R.M.S.

Fixed 0.0 -.0848 .1079 .1372

Unbiased 0.0 -.0943 .1149 .1486

Lower 0.0 -.0939 .1145 .1481

Upper 0.0 -.0857 .1293 .1551W

Unweighted 0.0 -.0861 .1042 .1352B

a5 T Ay S.D. R.M.S.

Fixed 2.000 2.029 .3745 .3756W

Unbiased 2.000 2.029 .2326 .2344

Lower 2.000 2.031 .2346 .2366

Upper 2.000 2.027 .2320 .2336B

Unweighted 2.000 2.011 .2339 .2342

, _



01 T Av S.D.

99

R.M.S.

Fixed -2.324 -2.276 .2091 .2075P

Unbiased -2.324 -2.272 .2110 .2173

Lower -2.324 -2.281 .2065 .2109

Upper -2.324 -2.259 .2162 .2258

Unweightee -2.324 -2.215 .2612 .2830V

84
Av S.D. R.".S.

Fixed -0.824 -.7002 .3075 .331517

Unbiased -0.824 -.7049 .2649 .2904

Lower -0.824 -.7C68 .2714 .2956

Upper -0.824 -.7045 .2600 .2861

Unweighted -0.824 -.7181 .2361 .258813

07 Av S.D. R.9.S.

Fixed 0.676 .8919 .2881 .3600

Unbiased 0.676 .8564 .3114 .3598B

Lower 0.676 .8E59 .3123 .3655

Upper 0.676 .8748 .3220 .3784

Unweighted 0.676 .8809 .3530 .4082w

010 T Av S.D. R.M.S.

Fixed 2.676 2.672 .1731 .2277'11

Unbiased 2.676 2.722 .1688 .2137

Lower 2.676 2.718 .17C3 .2149

Upper 2.676 2.725 .1678 .2017

Unweighted 2.676 2.694 .1715 .1905F

Additional studies were made using this program with

smaller and larger samples. They yielded the same pattern

of results as the foregoing ones. Also, due to the sim-

plicity of the procedure involved in the setting up of

a study, it would be quite easy to process as many studies

as is desired.
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Filch study was made using ten sets of data, each of

which being the same for a given study, except fot the random

numbers used in the interaction and error terms. For each

main effect estimate, and for each type of analysis, the

average value, the standard deviation, and the root mean

square of the estimate was calculated over the ten data

sets. The root mean square of the estimate was taken as

the basis for comparison among the different estimating

procedures. The root mean square of the estimate may be

said to serve as a type of "goodness of fit" statistic.

Tables of the row and column contrasts were printed out

for each proceeure. Also, tables of standardized role and

column contrasts were printed out. These could also serve

as a basis for comparison of the estimates of the different

models.

In the first study the F value for interaction versus

error under the maximum main effect analysis is quite signi-

ficant. The F value for interaction versus error in the

second study is only slightly significant. In the third

study the F value for interaction versus error is slightly

significant at the .01 level and non-significant at lower

levels. In the fourth study the F value is significant.

Considering all of the studies made it is clearly

evident that there is no best procedure to use for estimat-

ing the main effects. The computer results plainly state

that one method is as good as the next. Logically, if for

a given experiment the interaction effects appear significant

ta.1
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after a 4xed, raximum main effect anllysis, and if the

interaction effect possesses a ranJor character, then one

of the random type analyses should he best suited for

estimating the main effects. Powever, as these and many

other studies have shown, differences in estimates are

quite small for the different techniques. Logical consis-

tency would clearly earmark the random interaction analysis

as best. In practice, the entire range of procedures, from

fixed model least squares to unweighted means, differed

so little that none of the techniques can be marked as

consistently superior.

The covariance studies are designed in such a way

that the interaction is significant under the maximum main

effect model, and such that the interaction effect posse-

sses a definite direction.

In one of the covariance studies the covariate was

chosen in the following way: Xij = i.j/10, where i = 1,

... 3, j = 1, 2, Mt 5, or F(d) = i.j/10.

The incidence matrix has the form,

0 90 30 10 40 170

30 10 0 50 60 150

90 0 60 30 0 180

120 100 90 90 100 500

An interaction term of i0-72- multiplied by a random

normal (0,1) number simulates the residual effect, in addi-

tion to the covariance term. An error term of one times a



random normal (0,1) number is added to each observation.

The main effects that were fed into the program are,

al = -1.0, a2 = 0.0, 03 = 1.0, 01 = -2.0, 02 =

03 = 0.0, 04 = 1.0, 05 = 2.0. This particular study is

taken over 10 sets of data.

The results of this study are as follows: Under the

fixed, maximum main effect analysis, F for interaction

versus error is very significant, with an average value

over the ten data sets of 49.05.

Rows:

Main effect contrasts

True Value 1.000

;3- ;2 &3- &I

1.000 2.000

. 5350 1.199 1.734

. 9402 1.201 2.141

. 7457 .4058 1.052

Covariance .5195 .5714 1.091

Analysis_ 13509 1.639 3.149

1.378 1.298 2.836

1.748 2.318 4.066

- .2322 .5251 .2929

1.326 1.115 2.863

1.209 .4878 1.697

Average .9678 17-07-6- 2.092

-3.358 - .9172 -4.275

-2.935 - .9054 -3.840

Fixed, -2.811 -1.528 -4.339

aiiiiium -3.244 -1.474 -4.718

Main Effect -3.036 - .8311 -3.867

Analysis -3.358 -1.364 -4.722
- 3.541 - .5566 -4.098

-3.252 -1.116 -4.3E8

-2.899 -1.411 -4.311
-2.940 -1.768 -4.709

Average -3.137 -1.18 -3.854

+SAO
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Columns! i.,... i. i3-. i2

True 1.000 1.000

Value

1.502 - .3306

.5880 .9871

Covari- .8944 .0520

ance .7717 .8658

Ahalysis 1.911 .2812
1.466 .6617
3.445 .2759

- .7513 .3850
1.482 1.921

- .0860 2.287

Average 1.122 .8473

-3.067 -1.254
-3.960 .5850

Fixed, -3.282 - .8962

Maximum -3.646 - .0273
Main -3.426 - .7976

Effect -4.283 - .5003

Analysis -2.765 - .3385
-4.297 - .3316
-3.974 .8184
-4.958 1.301

Average --.71:7VT -1.441

1.000 1.000

1.329 .6248
.9481 .7920
.9807 .8039
.3777 .8218

1.579 .9540
1.625 1.599
1.503 1.442
.5349 1.249
.4671 1.313
.8134 1.569

1.015 1.116

- .2974 -.3645
- .6717 -.1922
. .5060 -.0993
-1.195 -.1342
- .3201 -.2016
- .4219 .3557
- .7077 .0981
- .7272 .4811
-1.476 .1329
- .9216 .5149
- .7245 -76-5I1
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4.000

3.126
3.833
2.628
2.837
4.725
5.351
7.306
1.417
5.183
4.583

7715-918

-4.984
-4.239
-4.783
-5.003
-4.745
-4.850
-3.713
-4.874
-4.499
-4.064
747575

The covariance studies all indicate that if for a

given experiment the interaction is clearly directed then

the fixed, maximum main effect analysis leads to erroneous

results. This can be seen by considering the table of main

effect contrasts of the previous study and observing the

true values, the values obtained by the covariance analysis,

and the values obtained by using the maximum main effect

,

F'

:
analysis.

C
We have already witnessed from the results of the

studies made using the random analysis without covariance
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that it would not improve the situation relative to main

effect estimates to perform the random covariance analysis.

In order to study the effect of making a wrong assump-

tion on the interaction bias, that is, using incorrect

values for the X's, we simulated a model where the inter-

action is positive if either a or 0 is at a low level

and where the interaction turns negative at higher levels

of a and 0. This can be expressed algebracially by the

following equation:

irj, if either i or j < 2.

-i,j, if either i, j > 3.

In the analysis we make the wrong assumption that the ex-

pected value of interaction components is proportional

to -i.j, for all i and j. The results of this study are

given below.

Incidence Matrix

0 90 30 10 40 170
30 10 0 50 60 150
90 0 60 30 0 180
35 52 6 34 21 148

155 152 96 124 121 648

A residual (interaction) variance of .5 and error variance

of 1.0 is used in this study. The F value (average) for

interaction versus error is very significant under the

fixed, maximum main effect analysis.



Rows -

True
Tri %re

Covari-
ance

Aiiii-i-

sis

Averacre

Main effect contrasts

1.000 1.000 1.000 3.000

18.819 - .0520 9.403 28.170

19.527 1.212 9.961 30.700

18.890 .0490 9.631 28.570

18.393 - .1550 9.532 27.770

18.338 .0740 9.278 27.690

19.105 1.131 8.904 29.140

19.709 - .5740 11.305 30.440

17.539 - .0350 8.696 26.200

18.908 .6884 8.788 28.380

18.582 .1040 9.474 28.180

18.781 .2358 9.497 -211732-4"

C2lumns 2
- 1 133 1- 32 134 1343 13.5

84
IA35

True
VriarCe

Covari-
ance

Analy-
sis

Average
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1.000 1.000 1.000 1.000 4.000

16.262 .5179 9.402. 9.938 36.120

17.113 .7766 10.121 10.604 38.620

14.782 1.472 9.377 8.869 34.500

15.493 .4795 8.531 9.857 34.410

15.591 1.588 9.056 9.775 36.010

16.939 - .5245 9.229 10.437 36.080

15.319 1.634 8.978 9.748 35.680

14.132 .4110 9.128 10.019 33.790

15.394 - .5750 9.227 11.034 35.080

15.983 .4672 8.233 8.477 34.940

15.701 .6247 9.133 9.876 35.523

It is apparent from these results that it is very

crucial that we make a reasonably good assumption of the

X values. The results also point out that an erroneous

assumption on the trend of expected values of interaction

may yield as inadequate values as the assumption that they

are all zero, as a comparison between this and the previous

study indicates.
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Thus, in summary, it may be concluded that, if

interaction effects are significant but show no systematic

trend from level to level, the method of analysis is, in

practice, irrelevant. The entire range, from fixed effects

to random effect to unweighted means analysis, yields

similar results, quite adequate in all cases under study.

If the interaction effects are directed, the presence-

absence or covariance analysis, with good assumptions re-

garding the interaction mechanism, are the only adequate

methods of analysis. Disregard of, or a wrong assumption

relative to the trend of such effects, leads to entirely

erroneous estimates of main effect comparisons.
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Rolf E. Bargnann
tbiversity of Georgia

It is ncw my privilege to introduce our next speaker, Profess=

Darrell Bock. Dr. Bock is Professor of Education and Human Develcp

went at the University of Chicago and was forgerly a Professor at the

Psychometric Laboratory at the University of North Carolina at aural

Hill. Dr. Bock received his B.S. in Chemistry at Carnegie Tedi and

his M.A. and Ph.D. in Eclucational Psychology at the University of

Chicago. lie is an the Board of Trustees of the Psychometric Society

and on the Board of Regional Advisors of the Bicnetric Society. His

research preference is psychometrics and psychological statistics,

and with his permission I am dropping the word psychological, so shall

we say, psydxmetrics and statistics, and carputaticn. Dr. Bock will

give a summary, but he will introduce it by sane rather important

research concerned with the analysis of variance in ncn-experimantal

settings in uttich Dr. Bock will present scre of his ideas.

A



REMARKS ON AVALYSIS OF VARIANCE AND

ANALYSIS OF REGRESSION

R. Darrell Bock
University of Chicago

Our hosts, Dr. Findley and Dr. Bashaw, have given me

the assignment of commenting upon the excellent papers which

we heard yesterday from Professor nraybill, Dr. Ward, and

Professors winer and Bargmann. The task will be an easy

one because our speakers touched on so many of the problems

which arise in the use of linear models in data analysis

that I have a wide field to play on. They were also con-

siderate enough to leave at least a few questions unanswered,

thus, giving me the opportunity to interject my own opinions

here and there. You can be sure I will not let this

splendid opportunity pass me by. I would like, however,

to have the privilege of speaking on a selection of topics

suggested by yesterday's papers, rather than the more

difficult task of discussing each paper as a whole. If

you will permit me this, I will begin by directing some

comments to Professor Winer.

Analysis of repeated measurements data

Let me correct slightly Professor Winer's reference

to the computer programs which we use at Chicago for



analyzing repeated mcasurement data by means of multi-

variate analysis of variance. Actually, we have only one

programa higIlly general univariate and multivariate

analysis of variance program. It gives exact least-

square analyses in the case of missing and unequal numbers

of observations within subclasses, and includes provisions

for analysis of covariance and analysis of regression.

This program, which bears the cryptic title MFSA 95,

was written by Jeremy Finn, now with the Department of

Educational Psychology, State University of New York at

Buffalo. The program is based on flow diagrams which I

prepared for the IBM Computer Symposium on Statistics,

1963 (Bock, 1965). The original version of the program

utilized special features of the Chicago operating system

and could not readily be used at other installations. In

the meantime, however, Finn has prepared a new version,

called "MULTIVARIANCE", which is written entirely in

FORTRAN IV and should operate on any machine which has

FORTRAN IV capability (Finn, 1967). Finn now has this

program and its documentation ready for distribution. As

many of you know, a similar program, called "%NOVA,"

has been prepared by Dr. Elliot Cramer, and is available

from the Biometric Laboratory, University of Miami (Clyde,

Cramer, and Sherin, 1966).
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Professor Winer remarked correctly that the multi-

variate analysis of variance program can be used to analyze

repeated measurements data under more general models than

those assumed in the mixed model analysis. He added the

qualification, however, that multivariate analysis of

variance is difficult to interpret. Actually, this has

not been our experience at Chicago. We find that, if the

person using the program has some familiarity with uni-

variate analysis of covariance and with component and

factor analysis, he has little trouble in understanding

such multivariate content of the program as the "step-

down" F-statistics, discriminant functions, canonical

variates, or multivariate tests of the joint significance

of multiple dependent variables. His difficulties in under-

standing the analysis occur more often in regard to the

analysis of variance as such, rather than with its multi-

variate aspect. Typically, his problems concern the inter-

pretation of significant interactions, or how to judge the

importance of a significant main effect, how to interpret

the adjustments made in the analysis of covariance, how

to decide what is testable or estimable when there are

significant interactions, how to choose the appropriate

error term in mixed-model analysis, etc. In addition,

there are, in the case of unequal subclass numbers, special

problems in the interpretation of non-orthogonal analysis

of variance which come as an unpleasant surprise to perdons

who feel they are expert in orthogonal analysis of variance.
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In short, our experiehce has been that, if we can

assume on the part of the user a good knowledge of analy-

sis of variance, then we can offor him in the multi-

variate analysis of variance program a convenient and

hightly flexible vehicle for the analysis of repeated

measures designs. This is particularly true when the

design is some complex form such as the Lindquist type

VI design, with a crossed or nested classification of both

measures and subjects. In the multivariate treatment, the

investigator need only concern himself with setting up the

appropriate analysis for the design of the subject classi-

fication, and of specifying a certain linear transforma-

tion of the repeated measurements. Once these two types

of information are supplied, the appropriate analysis,

including the choice of error terms, falls out of the

analysis in a natural way.

The comparative study in behavioral research

My next comment is directed to both Professor Gray-

bill and Professor Winer. They have expressed a distrust

of statistical analysis applied to what they called

"historical research," that is, to research carried out

in a natural, as opposed to an experimental, setting. In

my view, the term "historical" is not entirely accurate

here. The events being studied are not fixed in the

historical past. The studies can be replicated and the

systematic nature of the events can be established. Since
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the objective of these studies is to comnare the re-

sponses of subjects under various identifiable conditions,

it would be more accurate to call them "comparative studies."

I do not believe that we can rule out the comparative study

in biological and behavioral research without sacrificing

sources of information which are potentially of great

importance. If we were to exclude comparative studies

from biological research, we would for example, sacrifice

much of the field of epidemiology, where comparative

studies have been spectacularly successful. Can you

imagine Edward Jenner discounting, because it was based on

comparative study, the observation that the incidence of

smallpox was lower among milkmaids than in the population

generally? Fortunately for us, he did not ignore this

datum but went on to make the connection that milkmaids

were likely to have had cowpox, and that cowpox produces

immunity to smallpox, and that possibly people could be

protected from smallpox by vaccination with cowpox virus.

Or to take an example from behavioral science, I

think that most of us would admit that the remarkable

constancy of the rate of incidence of schizophrenia in

different countries, in different socio-economic classes,

and in different historical periods, as revealed by

comparative studies, has an important bearing on where we

should look for the causes of this disorder. Certainly,

it discourages a theory exclusively based on response

environmental stress, which rust differ from one population
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to another, and suggests IT explore instead a biogenic

mechanism v.lich is at a rore-or-less stcady state in

these populations.

I believe that we should accept the comparative study

in behavioral research, but we rust be conscious of its

limitations. The most that such a study can achieve is a

description of systematic differences in the responses of

different classes of subjects. It may demonstrate that

certain responses and certain characteristics are associated,

but it does not tell us we can change subjects' responses

by changing their characteristics. It takes an experi-

mental study following up the comparative study to establish

this kind of practical knowledge.

Unhappily, the causal interpretations which are gra-

tuitously imputed to mere associations give comparative

studies a bad name. I recently came across *an example of

this kind of abuse which is so flagrant that one is left

stunned. In summarizing responses to a questionnaire item

contained in the Coleman Report (Equality of Educational

Opportunity), one reviewer stated: "The most telling

factor in achievement is the attitude of students toward

themselves. Men students feel they have control over

their environment and destiny they achieve more."

Apparently, the converse interpretation--that students

who achieve more feel that they have more control over

their environment and destiny and will express this feeling

on a questionnaire item--did not occur to the reviewer.
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Obviously, the data are incapable of distinguishing

between the two interpretations.

If we discount this kind of over-zealous embracing

of causal explanations, however, we can accept the com-

parative study as a useful research strategy in early

stages of investigation where we are seeking ideas which

may be followed up in more experimentally-oriented studies.

In behavioral science especially, where most research is

at the stage of preliminary investigation, we can expect

the comparative study to be widely used, as indeed it is

at the present tire.

When discussing the comparative study, in which the

investigator deliberately sets out to contrast certain

populations or sub-populations, I consider it irportant to

distinguish this type of study from a survey, in which the

investigator atterpts to describe a single population on

the basis of a sample of subjects. Before selecting the

sample in the comparative study, the investigator identi-

fies the characteristics which identify the various sub-

classes which he wishes to compare. Fe then goes into

the population and, from among those subjects who fall into

a particular subclass, he draws a random sample and measures

some response of the subjects he has selected. In effect

then, each subclass constitutes a separate population, and

it is only within these populations that the investigator

has to maintain random sampling. This is often advantageous
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since it is usually easier to randomly sample within a

narrow class, where the subjects may be geographically

more accessible, or where lists of all subjects in the

population are available. Furthermore, the numbers of

subjects to be selected for the subclasses are largely at

the disposal of the investigator, and he may choose them

so as to obtain the best possible precision in estimating

the comparisons of interest.

The procedure in a survey is much different. The

investigator samples randomly from the general population,

and then classifies subjects according to the character-

istics which he wishes to associate with the response vari-

ables. In this case a number of subjects in the subclasses

is a random variable which reflects the population portions

for the subclass. In a survey study, it makes sense to

collapse data over various ways of classification and to

describe differences between certain groups ignoring other

ways of classification. Since each way of classification

samples the entire original population, statistics based

on the collapsed data can be identified with definite

populat.ion parameters. In a comparative study, where the

number of subjects in the various classes are arbitrary,

it is in general meaningless to collapse some of the ways

of classification because the resulting groups of subjects

do not represent any real population. This means that the

statistics such as correlation coefficients or correlation

1+,
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ratios, which noasure sync variance components with

respect to the total variance, are neaningless in a compa-

rative study, because the total variance is arbitrary and

does not refer to any real population. Thus, the device

of quoting the per cent of variance accounted for (i.e.,

the multiple e), which is ponular among people vho use

regression methods to analyze this form of data, has no

general meaning when applied to comparative study. Mat

is really of interest in these studies is the size of the

effects associated with the various classes of subjects or

the interactions of classes. If the metric of the response

measures is arbitrary, so that these differences have no

clear absolute meaning, then the best we can do is to

compare effects estimated for some classes or some variables

with other classes and other variables. Thus, it may be

possible to say that while both A- and B-way-of-classifi-

cation in a comparative study clearly have statistically

significant effects, the effects of the B-way are, say,

an order of magnitude smaller than those of the A-way.

It must be understood that we cannot get this information

by comparing, let us say, F-statistics for the respective

ways of classification, because the F-statistics reflect

the precision with which the effects are estimated and not

the magnitudes of the effects themselves. The actual

least-squares estimates of the effects need to be estimated

and examined.
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Considerations of interpretation have an important

connection with the prior question of how the investigator

should set up the analysis of data from a comparative study

assuming, as we are here, that the analysis is based on a

linear statistical model. From the point of statistical

method, it would be convenient if we could assume that the

investigator always selects equal numbers of subjects for

the subclasses of design. Then an orthogonal analysis would

be possible and the computation and interpretation would be

simplified. But a comparative study seldom works out this

neatly. Sometimes the design includes subclasses for which

few or no representatives can be found. Sometimes subjects

withdraw from the sample before the data are collected, or

sometimes data are found to be erroneous or mixed up and

cannot be replaced. Inevitably, lack of time or money

prevents the investigator from filling out the design, and

he may elect to analyze the data he has on hand. If so, he

can take two approaches to the analysis, and they are well

represented by the papers given yesterday by Professor

Bargman and Dr. TTard.

Analysis of variance vs. regression anal.sis

Professor Bargmann, supposing in his paper that the

investigator has set up the analysis in the form of an

analysis of variance, raises the question of hew accurate

are alternative methods for estimating main class effects

assuming unequal subclass numbers and the presence of inter-

action. His calculations show that the exact method, the

`Wit



method of fitting constants, is not aidpreciably different

from the approximate method of unweighted means in terms

of the accuracy with which they recover main class effects

in Monte Carlo data. Fe expresses some surprise that the

adding of an interaction in the form of a random cell effect

shows very little influence on the 3stimation of main effects.

I find less reason for surprise, however, since adding a

random cell effect is essentially the same as adding a random

sampling error to observations within cells so far as main

effects are concerned. The difference is only that the

variance contributed by the cell effect is larger in pro-

portion to the number of observations within the subclasses.

The random cell effects tend to average out, especially when

large numbers of levels are irev:.-'ved as in Bargmann's

examples, and are not readily observable in the estimates of

main effects. In real data, however, they are systematic

rather than random and, as some of Bargmann's later examples

show, the main effects are not estimable in the presence of

such systematic interactions.

As to the relative merits of the exact analysis versus

unweighted means, Bargmann's calculations show that it is

not in estimation, as such, that the difference between the

two methods is brought out. After all, both methods give

unbiased estimates of main class effects. The important

difference is that, in unweighted means, one has only the
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crude estimate of the error variance compuLad using the

harmonic mean of the subclass numbers as a compromise figure

for sample size In the least-square analysis one has a

best quadratic estimate of the error variance and, hence,

can calculate exact F-statistics and confidence intervals.

I, for one, would not wish to give up these advantages of

exact analysis of variance merely to avoid more complex

computation and somewhat more difficult interpretation. My

preference is to make use of programs capable of performing

an exact analysis in the non-orthogonal case and to learn

how the non-orthogonal analysis differs in its interpretation

from the orthogonal analysis with which we all are familiar.

The other approach to the analysis of data from a

comparative study is closely identified with the work of Dr.

Ward (even though in his paper he gives "equal time" to

analysis of variance and analysis of covariance). In this

approach the investigator is advised to set up his analysis

as a regression problem, using dummy variables to represent

the various classes in the design and their interactions.

As Dr. Ward points out, the analysis which results is

numerically equivalent to an exact least-square analysis

whether or not the subclass numbers are equal or unequal.

I think it must be admitted that a good part of the motivation

for using this approach is the fact that good regression

programs have been available for computers longer than have

been flexible analysis-of-variance programs. But let's
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suppose the investigator has available both a regression

program and an analysis of variance program such as MULTI-

VARIANCE or MANOVA. Is there any advantage to his taking

the pure regression approach to data obtained from a designed

experiment or comparative study?

Reparameterization of design models

A problem with the pure regression approach is that it

forces the investigator to rely almost entirely on F-ratios

and tests of significance, while making it difficult for him

to make use of the estimates of the effects rerresented in

the fitted regression coefficients. This is true because

when applied to design models, the regression analysis has

the effect of transforming the parameters of the original

linear model without giving the user any indication of what

transformation is involved. Let me illustrate this by a

simple example. Consider the problem of analyzing data from

a two-by-three cross-classification. Suppose we attempt to

fit a model

"Yjk) = u aj 8k
(j = 1,2; k = 1,2,3)

where yjk is the measurement of the response of a randomly

selected subject from the j-th A-class and the k-th B-class;

is a constant term which incorporates the arbi-

trary origin of measurement on the response scale;
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aj is the effect on the response associated with

membership in the j-th class of the A-way-of-

classification and

ok is the effect on the response associated with

membership in the k-th level of the B-way-of-

classification.

To anyone acquainted with multiple regression analysis,

it will be clear that, since there are no limitations on the

independent variables of a regression problem, except that

they be real numbered variables, the problem of fitting a

model may be cast as a regression problem. This may be done

by deploying independent variables, the quantities xo, xi,

x2, x3, x4, x5, which take on values 1 or 0 according to

whether the associated effect is present or absent, that is,

E(yjk) = xo + aixi + a2x2 + 01x3 + 02x4 + 03x5 .

This means that we can perform the regression analysis on

data which takes the form shown in Table 1.

A more efficient analysis from the point-of-view of

computation, however, may be formulated as a weighted least-

squared fitting of the subclass means, where the weights

are the subclass numbers, nii, n12, n13, n21, n22, and n23.

All information in the data necessary for this solution may

be summarized in the form of Table 2. This form of analysis

calls attention to the estimated cell means and variances,

which as Professor Graybill stresses, should be available

for the investigator's inspection.
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Data for laast-Squares Analysis

endent
Variable

(i)
No x3 x , x5

.1=111

1 1 3 1 0 9

Y (1) 11
1 1 1 1 0 0

Y(2)11

1 1 0 1 0 0

Y (n11) 11
1 1 0 0 1 3

Y (1) 12
1 1 3 0 1 0

Y (2) 12

7 (n12) 12

(1) 23

Y (2) 23

17("23) 23

1

1

1

1

0

0

0

1

1

1

0

0

A

Ci

1

0

0

0

1

1

1
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Table 2

Summary Data for Analysis of Variance

Sdbclass Dependent Subclass means

NUmbers Variable Independent Variables

(Weights) Variances Y. jk
xixo xl x2 x3 x4

1. 1,1 n11 ti
11 Y-11

2. 1, 2
2112

812

3. 1, 3 n13 s2
13

4. 2,1 n21 s2
21 Y.21

5. 2 ,2 n22
s212 Ye 22

6 . 2, 3 n23 52
23 Y-23

1 1 0 1 0 0

1 1 0 0 1 0

1, 1 0 0 0 1

1 0 1 1 0 0

1 0 3. 0 1 0

1 0 1 0 0 1

In matrix notation, the weighted regression solution for these data can

be expressed in compact form for a general model involving 6 subclass means

and 6 effects to be estimated. Required in the solution is the 6 x 6 matrix

of independent variables, 34 dhown at the right of Table 2, the 6 x 1 vector

of subclass means y shown in the center of Table 2, and a 6 x 6 diagonal

matrix, D, whose elements are the subclass numbers in the order dhown at the

left. In this example, let the effects to be estimated be the 6 x 1 vector

.g.',., with elements u, al, a2, 01, 02 and 03. Then the n = 6 equations of the

model can be expressed in the matrix equation

E = xE .

It can be Shown that the least-squares estimate of E is a solution of

the so-called "normal" equations,

X'DXE = Nnly. .
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Solving the normal equations is complicated, however, by the fact that

independent variables for experimental design models are subject to linear

dependencies because certain columns of the model matrix are the sums of other

columns. In the example, xl + x2 = xi + x4 + x5 = xo in all rows of the model

matrix, X. We say than that the model is of "deficient rank," or "not of full

rank," where rank refers to the number of linearly independent columns

Many workers are aware that sophisticated regression algorithms are capr

able of giving a solution in spite of the linear dependencies, but few under-

stand how these procedures work or Yoe; the model is altered in process. To

explain this, it is first necessary to establish that the normal equations have

a solution when the rank of X is less than n4 the number of parameters. A

solution is assured by a theorem of elementary matrix algebra Which gives

tbs necessary condition for a consistent solution of a system of linear

equations. The condition is that the constant terms on the right be subject

to the same linear dependencies as the matrix of coefficients. Mit satisfies

this condition, a systan of n equations in m unknowns, with matrix of coeffi-

cients of rank i. < n, has a solution for t of tne m unknowns in terms of the

remain n 1 unknowns. If'values for the latter unknowns are arbitrarily

assigned, the system has an actual numerical solution. Clearly the solution

is not unique because it depends on the nrt arbitrarily assigned quantities.

rt is easy to show in the context of linear statistical models, that the

normal equations fulfill this condition, and that the arbitrary assignment

of unknowns merely amounts to choosing the origin of the scale of measure-

ment of the effects. Because We are all accustomed to scales with arbitrary

origins, e.g., the Fahrenheit and Celsius scales of temperature, and because

most statistical procedures are invariant under translation of scale from

one origin to another, this form of nonruniqueness can be tolerated.
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The simplest nethod of solving the normal equations for models not

of full rank is to omit redundant variables as they are encountered in the

forward part of the scaution of systems of linear equations by elimination,

as in tne Gauss-Doolittle, square-root, Gauss-Jordan, or simple bordering

methods (See Bodewig, 1959; Householder, 1953). As the eliminations are

performed, null rows will be encountered when a redundant variable is

reached. If these rows, and the corresponding columns of VDX are dropped,

the remaining equations are of full rank and may be solved in the con-

ventional back solution. This is the solution most frequently used.

It is essential for the worker to understand, however, that an altera-

tion of the original model is implied in this procedure. It amounts to

arbitrarily setting to zero the last effect encountered in each way of

classification. This is easy to demonstrate in the present example. It

is clear that the parametric form of the model cm Le altered in the

following way without distrubing the equalities,

E(y11) = a2 83) 4.

E(y12) = (P a2 83) 4' (al- a2)

E(Y13) =
(p

a2 83) (a1- a2)

E(y21)
(u a2 83)

E(y22) + a2 83)

E(y23) = (11 + a2 + 03)

( 83 )

( 2 83 )

+ (03 - 03)

(a2 a2) 4' (81 83)

+ (a
2

- a 2) + (82 83)

(a2 a2)
+ (03

Now let: u a2 + 03 = um; al - 02 = 01(c); 01 - 83 81(c) and

82 83 24. 82(c).
Sirae 6x2 - a2) x2 = 0 and (03 - 03) x5 = 0, the model

ney be expressed in terms of the 3 parameters rather than 5, and the

linear dependencies are eliminated:



E(y11) = P (C) (C) °1(c)

E(y12) 22 P (C) al(c)

E (y13) = + al

E (y21) = P (C)
+ 01(c)

Vy22) = P (c)

E(y23) = p

In matrix notation

E(x) = K(c)L(c)

K(c)1(c) F SaYF

K(c) =

1 1 1 o

1 1 0 1

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

+ 02
(c)

+ 02 (c)

and L(c) =

1 0 1 0 0 1

0 1-1 0 0 0

0 0 0 1 0 -1

0 0 0 1 -1
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In the corresponding normal equations

K ' DK L = K 'Dy

the I, x IL matrix of coefficients K(c) 'DK(c) is of rank It and has an inverse.

The Mast-squares solution may therefore by expressed as

= (K 'DK (c)(c) (c) (c)

i.e., (c) is the least-squares estimate of L(05_
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The z x n matrix M has been called the "estimation" matrix fcc the

design (Bock, 1963).

We may illustrate this solution numerically with the data of Table 3.

Table 3

Artifidial Data

Subclass
Classification

A B
Subclass
Nunber Mean

Staniard
Deviation

1 1 1 10 21.2 5.83

2 1 2 10 23.4 5.56

3 1 3 9 28.7 5.65

4 2 1 7 20.1 5.87

5 2 2 9 21.3 5.36

6 2 3 10 23.5 5.92

The least-square estimate of 0() is:

24.600-w Cbnstant term (IA + a2 + 03)

2.877 al 122

Itic) -5.546 01 - 03

-3.709 02 - 03

The foregoing is a simple example of the reparameterization of a

linear model. It is a linear reparameterization and the transformation

is represents is specified by the L x. m matrix L. The new parameters

24c) are called linear parametric functions of the original parameters

(Bose, 1960).
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Reparameterization in the partition of the total sum of squares

If it is true, as I have tried to shag, that the reparameterization of

the design model implied in certain regression promdures should be made

explicit so that the user will know what is estimated, then it is doubly

true that the further reparameterization implied in the associated analysis

of variance must be explicated if the user is to know what is being tested.

If the user does not understand the lcgic behind the calculation of the

F-statistics in the regression analysis, he is in danger of misinterpreting

the tests of significance based on them, especially in the analysis of design

models. I have in mind, in particular, those carputing algorithms which

produce an F-statistic for each parameter in the model, eliminating all

other paraneters, or, equivalently, those which produce partial correla-

tions between the dependent variable and each independent variable, while

holding fixed all remaining independent variables.

Fundamentally, these procedures involve the additive partition of

the total sum of squares which was introduced into statistical practice

by R. A. Fisher. There are many ways, geometric and algebraic, to understand

the meaning of this partition, but perhaps none is clearer than an explana-

tion in terms of the corresponding reparameterization of the design model.

The objective of this "second" reparameterization is the construction

of certain parametric functions whose estimators are uncorrelated and have

cannon variance. Applied to data, these estimators yield what may be

called orthogonal estimates (to use terminology suggested by Bargmann) ,

although Durand has called them semi-partial, regression coefficients
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(Durand, 1956). If the sampling errors are similarly, independently, and

Faunally distributed, the squares of the orthogonal astimates are (possibly

non-central) independent chi-square variates, and the P-distribution applies.

The reparaneterizatim inplied in the partitim of the total sus of

squares repays study because it makes utterly clear the meaning of the analysis

of variance. The reparameterization is accenplished by factoring the basis

matrix for the design into the product of a matrix orthonanal by colunns

(possibly with respect to a matrix of weights) and an upper triangular matrix:

K

nx& nxZ 2,xst

wal. Th

11-1 .\ (schema)

1 where P'DP = I. Numerically, the factorization may be carried out by a gen-

eralized Gram-Sdnidt process (Householder, 1953, I,. 72) or by Householder's

orthogonal triangularization (Householder, 1964, pp. 133-134). (Finn's

MULTIVARIANCE progran uses the former and Cramer's MANOVA progran the latter.)

Sihatever the numerical method, the reparaneterized model becates,

E(x) =

Pu say.

The least-square estimate of u is

ua = (P'DP)P'Dz

p it
u say.
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Its vector expectation and variance covariance matrix are, respectively,

E(u) = u = T1 and

V(u) = 102

vahere a2 is the =mon error variance.

%he triangularity of T is crucial here:

t12
t

OMMIOIIV

t11

0 t22 t2,1-1 t21

T =
0 ti-1,1

0 0 0 tii

It neans that the last element of u involves only the last elenent of 0,

(i.e., uz = tiled ; that the next-to-the-last elenent of u involves the

last two elemonts of o (i.e., vita.i -- 01.3. + t2-1,202) , and so

on, until the first element of u involves all elements 0.

It is clear, then, that a test of the hypothesis that v2, = 0 is equiva-

lent to testing the hypothesis GI = Of since if T is of rank 2, tii

cannot be zero.

A test of the hypothesis v = 0, on the other hand, is equivalent to

a test of 01-1 = 0 if, and only if, one or both of two conditions are net--

either t = 0 or 01 = 0. The salient difference bebieen an orthogonal
i-1,

and non-orthogonal analysis is that, in an orthogonal analysis, if 02, and

e are effects of different ways of classification or different

2,4VitLe
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interactions, the first of these conditions is met, i.e., tz.11i= 0. It is

because of the vanishing of certain abcme-diagonal elements of T that the

independent interpretation of each line of the analysis of variance table,

with which we are all familiar, is possible.

If the analysis is non-orthogonal, on the other hand, none of the above-

diagonal elements of T is zero independent of the arbitrary subclass numbers.

This means that an hypcthesis such as 01.1 = 0 is testable in this repara-

meterization if, and only if, Oz is assumed null. In this case, only "step-

wise" testing of hypotheses about effects in the reparaneterized mocbl,

E(y) = KO, is possible. If an independent estimate of the error variance is

available, e.g., from the replications within cells, then a variance ratio

corresponding bp each orthogonal estimate, or for two cr more of the estimates

pooled together, may be inspected for statistical significance. The inspection

begins with the last orthogonal estimate and proceeds in order to the first.

When one of the variance ratios is found to exceed a predetermined critical

value, the process is terminated and the number of parameters to be included

in the model is established.

This procedure provides a decision rule for determining themmt parsi-

monious model which is consistent with the data. Its statistical justification

has been given by Roy and Bargmann (1958) and T. W. Anderson (1962), who show

that, under the null hypothesis the tests at eadh stage are stochastically in-

dependent. The overall error rate of the procedure is therefore easy to cal-

culate. Specifically, if a test with type I error equal to ai is made at the

i-th stage, then the probability a of accepting the null hypothesis at each

stage when it is in fact false for at least one of m stages is,

a = 1 -
i=

n
1

(1 - ai) .

e 5.1 404,



sec now um foregoing results apply to the type of regression analy-

ses trentioned above, in which an F-statistic is caputed for ead: paraneter

eliminating all others, we observe that this analysis is equivalent to orthogo-

nalizing X m tines (if there are m paraneters in question) %iith each para-

meter in turn in the last position. Viewed in this way, we see that there

are a nunber of pitfalls associated with this procedure which may trap the

unwary user:

First, the Roy-Bargnann and Anderson result applies to only one

such ordering. Since the results of multiple orderings are not independent,

the calculati.on of error rates is hcpelessly ccmplicated. This presents a

prcblem in the analysis of non-orthogonal factorial designs. A single parti-

tion of the sum of squares for the nort-orthogonal design does not have the

sare effect as the partition for the corresporKling orthogonal designs. To

cbtain the effect of an orthogonal analysis, we must perform as many parti-

tions as there are factors. In these partitions, we would order the bases

vectors in i so that vectors corresponding to each main-effect appear last

in cne of the partitions. In practical work, we may need to test all factors

and thus may be cbliged to proceed in this manner. If we do so, we will be

able to make a probability statement which is correct for any given partition,

but not a statatent which applies to the partitions jointly. Adntttedly,

most practical workers will not be greatly disturbed by this limitaticn

(although perhaps they should be), because in factorial analyses they usually

make their prcbability staterents for each effect separately rather than

jointly. Strictly speaking, hadever, it would be preferable to identify

before the analysis the effect which is to be tested critically and to

anploy a single partition in which that effect enters last. An exact

probability statement will then be possible.
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Second, when design models with interactions are irwolved, there is no

logical justification for placing each possible paranetric function last in

the ordering and testing it there. Consider, for example, the 2 x 3 design

discussed above. There are only two orderings possible for this design, and

they are shown, together with the ntmerical results for the artificial data,

in Table 4. The only roan fcc choice is in the order in which the two main

effects are introduced.

Table 4

Partition of the total sun of squares
for the 2 x 3 design

Source d. f .
Sum of
Squares Source d. f .

Sum of
Squares

Constant Term 1 29404.0151 Constant Term 1 29404.0151

A-classes,
ignoring B

1 83.1732 B-classes
ignoring A

2 259.0878

B-classes,
eliminating A

288.3770 A-classes
eliminating B

1 112.5323

Interaction 2 41.4238 Interaction 2 41.4238

Within subclasses 49 1594.9993 Within subclasses 49 1594.9993

Total 55 Total 55

It would be illogical to atteript to eliminate interaction from the main

effects for the follaqing reascal. There are actually six interactive para-

rwters in the original model. 2te two degrees of freedan for interaction in

Table 4 represent irately the two possible linear functions of these six para-

meters which are linearly independent of the main effects. If one wanted to

eliminate the interactive effects, he would assign one degree of freeoan to
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the constant tenn and five to the interactions. But this would exhaust the

degrees of freedom for the design without the main effects having been

included. It would, in fact, reduce the analysis to acne-way design,

which is, of course, precisely what the interaction terms amount to.

Obviously, any computing procedure which would include interactive func-

tions ahead of main effect functions when orthogonalizing the models

(explicitly or implicitly) in the partition of the total sunk of squares

is erroneous.

Third, there is no logical justification for testing individual degrees

of freedan within main effects or interactions unless the classes in the way

of classification are ordered or structured in some way. It should nct be

thought that, say, the simple contrasts of each class with the last class (as

in the artificial example above) could be tested separately by means of the

corresponding orthogonal estimate if the classes are nominal. One must

remember that a further reparameterization of the model occurs in the orthogo-

nalization. Indeed, when the subclass numbers are equal, the simple con-

trasts are turned into "Helmert" contrasts in the orthogonalization. (k

Helmert contrast is the difference between the effect of, say, the i-th group

and the mean of the effects of groups i + 1 to nL when the n groups are ordered

in some way.) If the structure of the groups is meaningful, then "one-degree

of freedom" tests in that order may be useful; if not, the degrees of freedom

amd the corresponding squared orthogonal estimates for the usy of classifica-

tion should be pooled. Of course, when the groups are ordered with known

spacing, the one-degree of freedom analysis using orthogonal polynadal con-

trasts is meaningful and often valuable. Other types of structuring are possi-

ble. I am indebted to DT. Elliot Ctamer for the following example. Suppose

two related drugs amd a placebo are being tested in three independent groups
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of subjects. I would consider it correct and meaningful to perform single-

degree-of-freedan tests on two ordered contrasts among the three groups. The

first would ccntrast the placebo group with the nem of the two drug groups.

The secad would contrast the two drug groups. In a non-orthogonal analysis,

the effect for second contrast would be tested eliminating that for the first.

If this test should show that the drugs differed in their effects, the analysis

would terminate. A drug effect of sane kind would have been demcnstrated and

the estimated effects would be examined to determine the nature of the effect.

01 the other hand, if the test of the second contrast did not show the drugs

to differ, then it would be necessary to test the first contrast, ignoring the

second, in order to determine if the assured equal effects of the two drugs

are different frau the placebo effect. This formulation of the analysis

assumes a linear model in which the effect of a drug is the sun of a plaoabo

effect and a trua drug effect, whereas the placebo has only the placebo effect.

Lastly, I would like to point out that when the independent variables are

random vaxiables, the sun of squares of the orthogonal estimates, divided by

the total sun of squares, is a squared multiple correlation coefficient (r2) .

The separate terms in this sun are valuable in that they show hod much r2 will

increase when the corresponding variable is added to the regression equation,

given that all variables preceding it in the ordering are already in the equa-

tion. Notice that this interpretation depends upcn the arbitrary order in

which the orthogcnalization is carried out. It is deplorable, but true of the

psychological literature, that the product of the standardized regression

coefficients ard the correspading first order correlaticn has been advocated

as an index of the proportion of variance amounted for by each independent

variable which does not depend on the order of independent variables (Hoffman,

1960) . Actually, there is no sense in which one of these products can be

,
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regarded as proportional to the percentage of variance determined by an

independent variable. /n the first place, the product can be negative,

which is not admissible for a proportion; and in the second place, it does

not correspond to the proportionate reduction of r2 when the variable is

ranovad from the regression, Which is the only possible way to make a state-

neat about the contribution of a variable independent of order. Let us hope

that this erroneous index has not found its way into computer programs that

statistically naive educationists or psychologists might use.

Interpreting main-effects and interactions

A final problem whlch I see in the routine use of general regression

programs for designed studies concerns the interpretation of effects. Person-

ally, I find no difficulty in interpreting the quantities which are actually

estimable in the designmodels, namely, the contrasts of effects between

classes and subclasses. But after five years of unrelieved failure to get

any applied worker to think in terms of effect-contrasts, I am beginning to

get the message: the natural way to interpret effects in a designed study is

in terms of the estimatsd means of the relevant main-classes amd subclasses.

No doUbt this fixation on marginal means is the result of constant ex-

posure to orthogonal analysis of variance where the marginal means are, in

fact, best unbiased estimates of effects in the model under conventional re-

strictions. Unfortunately, this practice can be carried over to non-

orthogonal analysis only in a study where the data as a whole constitute

a probability sample of the defined population. In this case, the marginal

means are best unbiased estimates ce the population means for some classes

of the design when other ways of classification are ir-vred.
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If, on the other hand, the subclass nunbers are arbitrary, either by

design or by attrition in the sarrple, the marginal means do not estimate the

corresponding nean effects. I have tried (unsuccessfully) to convince users

that they should fix attention on the effects, rather than on means, and

display best estimates of effects when reporting on a study.

Thus, if we wished to display the estimated effects in our artificial

exanple, we would recall that these contrasts amount to setting the last class

in each way of classification to zero, and we would depict the effects for

each class separately as shown in Figures 1 and 2.

Dependent
Variable

6

4

2

0

- 2

- 4

- 6

Figure 1

1 2

A-class Effects (Arbitrary Origin)



Dependent
I.Tariable

4

2

0

-2

-4

-6

Figure 2

1 2 3

HI-class Effects (Arbitrary Origin)
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The points plotted in figures 1 and 2 are entirely plausible (the con-

necting lines are intended to guide the eye and do not imply functional rela-

tionship), but the scale is peculier because it is not in the range of the

original data. We need to change the arbitrary origin cf the scale to same

other point. A. natural convention would be to chocee the origin so that the

effects appear as they would in an orthogonal analysis where the effects are

estimated by the marginal means. A general method of estimating such mans

is, first, to estimate the subclass means fram the fitted model, i.e.,

2: = K 0 f

and, second, to calculate the marginal means from the fitted cell means.

For the example, the matrix K is sivuu on pa3e 126 Ind the estimated

1.p.f. on page 127. The reproduced cell means are
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1C11
21.931

= 23.768
17812

=
27.477

Y.13

21
= 19.054

Y*

= 20.891
Y.22

y.23 = 24.600

The marginal means for Arclasses 1 and 2 are 24.588 and 21.515; for

B-classes 1, 2, and 3 the means are 20.493, 22.329 and 26.039. The graphs

on this scale appear in Figures 3 and 4.

It must be understood, however, that only the differences between the

points in Figures 3 and 4 actually have meaning. The numerical values of the

points do not estimate means of any naturally existing population. They

estimate means for a hypothetical population in which each subclass is

ecjually represented.

Dependent
Variable

26

24

22

20

18

Figure 3

Dependent
Variable

28

26

24

22

20

18

Figure 4

1 2

A-classes
A-class Effects
(Natural Origin)

1 2 3

B-classes
B-class Effects
(Natural Origin)
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Interactions

In orthogonal analysis of variance, a widely used aid to interpreting

interactions is a graph of the marginal or cell means for the interacting

ways of classification. This device can also be adapted to non-orthogonal

analysis. The procedure is to fit a nodal including the significant inter-

actions, and to reproduce the cell means or marginal means with the fitted

nodel.

If the highest order interaction in the design is significant, the

rank of the model fitted Trust equal the number of non-vacant cells in the

design, and the cell means can then be fitted exactly. In other words, the

cell means in this case are their min best estimates. Thus, when all inter-

actions are significant, it is the cell means which are to be plotted in

both orthogonal and non-orthogonal analyses.

In multiway designs, on the other hand, it will frequently happen that

a lowi-order interaction is significant while higher-order interactions are

not. In this case, a model of which the rank is equal to (1 + d.f. for

main effects + d.f. for significant interactions) should be fitted and the

best estimates of the cell mews calculated. The marginal means can then

be calculated for the interacting dimensions and plotted.

Fbr an illustration of these calculations, let u s extend our artificial

example by adding a third way of classification. In terms of subclass neans

and standard deviations, the data might appear as in Table 5.
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Artificial data for a 2x2x3 design
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Subclass
Classification Subclass
A B C Number

Observed
Mean

Standard
Deviation

Estimated
Mean

1 1 1 1 10 22.1 3.125 22.43

2 1 1 2 9 23.5 2.986 23.59

3 1 1 3 8 29.8 3.271 28.90

4 1 2 1 7 20.0 3.111 20.27

5 1 2 2 10 21.5 2.895 21.58

6 1 2 3 10 22.9 3.175 22.94

7 2 1 1 6 24.7 3.250 24.15

8 2 1 2 9 25.4 3.011 25.31

9 2 1 3 10 29.9 2.943 30.62

10 2 2 1 9 22.2 2.751 21.90

11 2 2 2 8 23.4 3.167 23.30

12 2 2 3 10 24.7 3.112 24.66

An analysis of variance of these data appears in Table 6. We see an in-

dication of a significant B x C interaction, but no evidence whatsoever of

other interactions. Since there is also evidence of a significant A effect,

it appears that the simplest model capable of describing the data is of

rank 7 and may be expressed in terms of the constant term, the four main-

effect contrasts and the two B x C interactive contrasts. If this model is

fitted to the data and the subclass means estimated by KO, the figures shown

in the right hand column of Table 5 are obtained. From these estimates,
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the various marginal means sham in Table 7 are calculated. The marginal

means are simple, unweighted averages of the estimated subclass means. In

effect, they predict %ghat the investigator would have obtained for marginal

neans had he been able to obtain equal =bars of observations in the

subclasses.

Table 6

Analysis of variance for 2x2x3 design

Source d.f.
Mean
Square

Constant term 1 62053.6411

C, ignoring A, B, BC
AC, AB, and ABC 2 194.1985 29.75 .0000

A, eliminating C and ignoring
B, BC, AC, AB and ABC 1 81.2782 8.67 .0040

B, eliminating C and A, and
ignoring BC, AC, AB and
ABC 1 318.7697 34.0679 .0000

BC, eliminating C, A and B
and ignoring AC, AB and
ABC 2 45.7028 4.8844 .0096

PC, eliminating C, A, B and
BC, and ignoring AB and
ABC 2 4.3448 .4643 .6300

AB, eliminating C, A, B, BC
and PC, and ignoring ABC 1 1.6044 .1715 .6798

ABC, eliminating C, A, B, BC,
AC and AB 2 2.7515 .2941 .7459

Within subclasses 94 913569
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¶le are primarily interested in the B x C table, which contains informa-

tion about the significant interaction. Plotting in rigure 5 the entries in

the body of the B x C taller we see that the interaction may be attriluted to

an excessive response in class BI under C3. No evidence of specific B-class

effects under Cl and C2 is evident.

I hope these exartples serve to make clear my present views on the ques-

tion of whether we should take a "pure" regression approach to the analysis of

=operative studies by rearm of the linear model, or whether we should retain

the approaches and terminology that have grmyn up in the application of analy-

sis of variance to designed experiments. Since the two apnroaches are formally

identical and lead to the same rasult if properly carried out, the question

becates a raatter of rrecedent, convenience, and taste. Precedence certainly

favors the analysis of variance formulation where designed studies are con-

cerned. It is the only treatment which appears in tl* widely used statistical

texts. The fact that the theory of experinvntal design is formulated in analy-

sis of variance terms is also important here. In terms of convenience to the

user, the analysis of variance approach, which uses the subclass means as the

surnery form of the data and deals with effects in terms of class effects and

contrasts among class effects, seems easier to anply and interpret. In °ar-

ticular, construction of the bases matrix K is much easier than the construc-

tion of the deficient rank matrix for the original model. t'urtherrnore, as

I mentioned in ray =arks to Professor Winer, if we extend analysis of variance

to the multivariate case, we have a convenient method of handling the mixed-

model analysis. This analysis is virtually impossible by the direct regressice

method if the randan dimensions have many classes.

As for taste, I can only agree with Dr. Ward that it seems to be accounted

for largely by what one has been taught and thus varies dramatically from one
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university to another. This is not the most satisfactory state of affairs.

Clearly, it is our responsibility in teaching, not to treat multiple regression

and analysis of variance as if they were unrelated tonics. There is really

no excuse for doing so when an integrated account of these subjects is

available in Professor Cravbill's excellent text, Introduction to Linear

Statistical Bodels, Volume I. On this optimistic note let me thank you for

your attention and end my remarks here.
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Discussion of Specific Problems

Related to the Use of the General Linear Model

Dr. Findley:

As a basis for significant discussion, a series of questions and

illustrative problems is offered as a point of departure. The first question

is

1. Can designs in which one or more cells contain no

data be analyzed by the general linear model? Are

there rules of thumb that one could apply regarding

the number or pattern of missing cells that could

be allowed in an analysis? Should one use formulas

for estimating missing data from row and column

means?

We are all familiar with the practical rules of thumb given in basic statistical

texts on Chi-square as to what you may do. I recall that in a text I have used

about five very specific guide rules on the use of Chi-square were listed. I

think what we are asking is whether we can pass on to the educational research

community similar guidelines on linear models, though perhaps not of suCh speci-

ficity.

Dr. Graybill:

The answer to the first question is "yes." The general linear model

with missing cells is of no consequence except that it makes the computational

problem more difficult. As to using formulas for estimating missing data, the

only advantage of such a formula is computational. Let us say that you have a

two-way design with one observation in all cells but one. In that case, it is

easier to go through a missing data procedure than it is to invert the matrix

or solve the system of equations and so I would use that. However, if the
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thing gets more complicated, then perhaps it would be easier to go ahead and

do a regular least squares analysis. But, by and large, the missing data esti-

mations are just for computational ease and the data can be analyzed with general

linear models whether cells are missing or not.

While I am talking about this, let me add that I am not clear what is

meant here in this conference by disproportionate subclass numbers. Does this

mean that if they are proportionate in the analysis, it is easier, or something

like that? I have heard this referred to a number of times. But if you perform

an analysis and the subclasses are proportional, but not equal, and you perform

an analysis by proportional subclasses, you have weighted your effects, so you

need to be very careful not to do a proportional subclass analysis if you do not

want to weight means for the subclass numbers. So I am not sure what is meant

here. The fact that proportionality gives orthogonality is completely by the

way. You should make the analysis that is meaningful to you relative to the

cell means and if you do it by proportional analysis, if they are not equal,

but proportional, you weight the cell means. So if you do not have a survey,

you may not get what you want. I think you should be very careful about pro-

portional analysis. I do not know what you mean, but I have heard talk of dis-

proportionality. If there is something easier about proportionality, that is

nice., but you may have the wrong analysis.

Dr. Bergmann:

I agree with Dr. Graybill and would underline even more strongly that

the least squares analysis of the two-way classification, even irregular, even

disproportionate, even with missing cells, is very easy and I am sure all ay
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students will agree. If you use adjusted normal equations, there are only

very small equations you have to solve. This is a lot easier than using

Snedecor approximations for other things. As for the question, specifically,

how many empty cells should be or could be tolerated before one would discard

this whole model, there is, of course, a very simple indicator: if the degrees

of freedom for interaction become zero, if you have missing cells, your subtotal

degrees of freedom always get reduced by one for each missing cell and you

come to a point where there is no more room for interaction in the degrees

of freedom. At that stage, I would say consider the reformulation of your

model and assumptions, because otherwise confounding or aliasing is going on

in the main effects which makes interpretation extremely hazardous.

Dr. Wiley:

You might point out that Dr. Graybill's comment is appropriate

here, because missing cells are a form of disproportionality. The pattern

of missing cells may be as important as particular effects, so that it may

be important which cells are missing. Some rules of thumb are found in Elston

and Bush (1964). There are some problems related to that article that have

not been brought up here which I think are very important and need to be

discussed. One is relative to the models you are comparing in the nonorthogonal

analysis of variance and relative to the fact that, when you are talking

about testing a certain main effect, you have to be very specific because

there are many tests of the very same main effect depending on which models

you are comparing. I believe Elston and Bush were concerned with testing a

main effect when there is an interaction in the model and I believe their test

4.1r41M
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of a main effect was a test eliminating both of the other main effects and

the interaction. The point that would have to be considered here is what

tests of main effects are appropriate in the situation where you are allowing

for interaction. Is it proper generally to test your main effects, ignoring

the interactions after you have tested them and found them to be null, or

should you do what some people say and get so-called clean tests of main effects

where you are eliminating interaction? I think this is a question that has

not been brought up and is a very important one that should be discussed.

Dr. Findley:

It might come up in discussing the specific problem that is mentioned

next.

Dr. Cramer:

Could I make a comment on this question? I think Dr. Bargmann's

point was a good one in that when the number of missing cells is quite large,

you have a high degree of confounding in your estimation of main effects

versus interaction. One kind of thing that can be done that is quite feasible

given the modern computation equipment is to actually calculate alias matrices

where you show exactly how your estimates are aliased by other effects.

Dr. Bergmann:

Not quite. Main effects are always aliased with interaction, but

if the number of missing cells gets too large, then there is no degree of

freedom left and main effects start to be aliased with other main effects.
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Dr. McLean:

A latin square design is a complete design with a lot of empty

cells. The main effects are completely confounded with certain interactions.

Dr. Wiley:

I wonder if one should use formulas for estimating missing data from

row and column means? That also involves the question of the way you are going

to test your effects. For if you use the exact formula for estimating missing

data, you are automatically saying that what you are ving to do is test main

effects, eliminating your interaction. So this is really tied in with the more

general problem.

Dr. Cohen:

It happens that the problem, particularly in the educational context,

arises frequently in surveys. Probably the most significant part of such data

is the correlation between the two factors in a two-way design implied by the

pattern of missing observations. We sometimes lose sight of the fact that this

means that the main effects are correlated. If one effect is educational level

and the other is income, trying to get estimates of means gets to be relatively

meaningless. The first point is that these two factors are themselves correlated.

Indeed they relate to the independent variable, but not only do each of them do

so in an overlapped way, so does their interaction. Rather than be so concerned

about the question of how one makes estimates of marginal mean differences in

circumstances like this, I think a more meaningful procedure is to understand

that you are not dealing with an experiment -- that the nonorthogonality or the

correlation among your factors is a real phenonenon that needs to be incorporated

into the analysis of the data.
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Dr. Graybill:

I would like to say "Amen" to that and, in fact, I think we get

hideboundbythisu(1.4.0.. This is what the experimenter in agricultural

experiments has invented. This is wrong. We should look at the cell means.

We can estimate the cell means and, if we have repeated observations, we can

use something like the studentized maximum modulus and put multiple confidence

intervals on these. From there do what you want to do--do not be hidebound

by some pre-conveived model somebody twenty years ago invented. I think this

is a very serious mistake. I would not let the statisticians shove something

down my throat. I would do exactly what Dr. Cohen said.

Dr. Bargmann:

For guidance on this point, the researcher should be referred to

the more standard textbooks. If a survey contains missing cells or highly

disproportionate or irregular entries, and if this is a reflection of the

proportion of such combinations in the population, why not simply subject

the data to a contingency table test which can be found in any textbook and

ftivil such a contingency table test infer what kind of association exists between

these two principles of classification?

Dr. Bock:

I want to disagree with Dr. Graybill's comment on cell means. I

think that the whole point of analysis is to try to see something that looks

complicated can be explained in a simpler manner. If you have ten thousand

cells in the design, eventually your model is going to contain these ten

thousand cell means.
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Dr. Graybill:

What if your problem is such that means for rows and columns really

do not mean anythingbut there is a diagonal that means ssmething? If you do

not look at the cell means, you really are not analyzing your data. Now, I am

not saying you should not look at row and column means. These may be important,

but they are not sacred.

New Speaker:

That would show up in your interaction and then you would begin to

think, "Obviously this is not a simple additive situation with nothing else

going on. Let us try to find ..." Somewhere you want a model, I think, and it

ought to have fewer parameters than cells.

Dr. Graybill:

You see, that is part of the problem in data analysis. If you know

a great deal about your subject, you do model it and estimate it, but in initial

research stages it seems to me you have data in search of a model.

New Speaker:

That is why you need a preliminary work specification for which the

analysis of variance can be quite helpful.

Dr. Cohen:

Let me explain my notion with an example. Suppose for some dependent

variable you have an independent variable A that can be measured continuously

or nominally or whatever, and you have another independent variable B. Now,
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if A and B are things like education and age, you know very well that the overlap

between the two of them is not similar to the disproportionality of cell

frequencies that happens in a laboratory when some fool technician drops a tray

of test tubes. It means something. Education and age are related to each

other; they both overlap the criterion independently; each accounts for portions

of the variance, but there is in addition some overlapping area for which they

both account. Now, it is purely a matter of your theory whether you are inte-

rested in how much of the criterion is accounted for by age added to educatiop,

or how much of the criterion they jointly account for, or whether the joint

contribution is to be split between them in some fashion. All of this has to

do with what we call models, but in any case, it should be an expression of

what you as a researcher have in mind.

Dr. Findley:

Well, I think we have explored the first question rather well and

I hope we can do that much with other topics. I put here second a rather

straight-forward type of study with which I am familiar. It is representative

of many others that have been made at many other institutions.

In studies of "native" vs. transfer students for evidence

of academic success later in college, it is common to use

all the data of a given period. Native students are compared

with transfers from other institutions: state system

junior colleges, other state system four-year colleges,

outside-of-system colleges, and so on. Sex is also ordinarily

an independent variable. Scores on common entrance tests

and similarly computed high school averages are continuous

variables. How appropriate is the use of a linear model

approach like Harvey's "Least Squares Analysis" (Harvey 1960)7
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That is the one used in the study I recall. If so, should

all interactions be automatically tried first? What overlap

on the continuous variables of test scores and high school

averages should be required, if any?

Dr. Bargmann:

I am not familiar with that particular computer program that USDA

uses. My answer is that this is a straight-forward two-way analysis with

covariates. In fact, one factor is sex, the other factor is the school system

from which the subjects came, and the continuous covariates or concomitant

variables are the entrance test scores. The computer program with which I am

familiar is one from the University of Illinois which we have on the 360 at

Georgia. This and other programs certainly handle this case, a special case

of the linear analysis. Incidentally, it is not a matter of setting up the

entire design or model matrix and then running through, who knows, 50 by 50

inversions. It resolves to perhaps a 2 by 2 inversion. In this particular

case it is one equation and one unknown - because one of these factors has only

one degree of freedom. So there is not even inversion involved. It is that

simple.

The other question was whether interactions should be automatically

tried first. I would say that most programs do it this way. Certainly, the

total effect (all effects combined) should be tried first, because if an

F-ratio shows no significance with all effects combined, then there is no need

to break the data down into components. Beyond that, an interaction test is

always quite useful because it may indicate to you many things.
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Of course, the most important thing, let me again concur with Dr.

Graybill -- and our computer programs certainly do it -- is to state the cell

means. State the unadjusted cell moans and state the cell means adjusted

for the continuous covariaties. But after that, if you find significant

interaction, you may first of all consider whether there may be some outliers

in some cells. You can detect them right away. You eliminate them and then

look at the cell means to see if there is some kind of a trend or not. Again,

the sum of squares for interaction can be explained. It is for this reason

that I think the sum of squares for interaction is an important indicator to

have. It will tell you at once if there are outliers or not or if there is

still a lot of trend in the data or not. Eliminate that if you can. If Laere

is still something left (e.g., non-linearity) it will tell if we should make a

transformation. Yes, I would say this little number, sum of squares for

interaction, is very useful.

Dr. Anderson:

I find Dr. Bargmann's comments very interesting. Such a testing

of the overall cell variation might well lead to a Type II error. It seems

to run contrary to the present day tendency to go ahead and run specific

contrasts or perhaps orthogonal contrasts in spite of the fact the the overall

F on cell variation may be insignificant.

Dr. Cohen:

Certainly one could partition the cells in a design like this into

three major families like row, column, and interaction, rather than use an

overall test in which one subset might be washing out another subset of

logically distinct pieces.
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New Speaker:

It would wash it out of the estimate, but it certainly would not

wash it out of the statistical testing. That is unaffected.

Dr. Bock:

If you have any prior information that leads you to think that if

there is interaction it is going to be a simple one--linear x linear--you

ought to look at it.

Dr. Findley:

Well, the question asked here is, since you have all of these variables

in the picture, all the different colleges from which the subjects come, sex,

and the continuous variables, whether you should as a matter of rule deal with

all of the interactions first before proceeding further. Or should I take your

last comment, Dr. Bock, to suggest that only if you suspect interaction you

should check it? That I certainly would. I am asking whether I should cheek

interactions even if I do not suspect any.

Dr. Winer:

I have heard of this approach proposed under the guise of "cleaning

up the model." You build everything by inference and you have no real a priori

guide. In going through a series of F-tests with no real systematic procedure,

you arrive at something by essentially a trial and error process. This aspect

of the complete regression model I abhor. I think in handling this kind of

problem one should be guided by the natural classifications, those which are

meaningful a priori. Either by tests of hypotheses, or by actually inspecting

the sources of variation, identify the relative sources of variation, then



build the model from those sources of variation which are identifiable, which

can be expressed. Now, any source of variation with more than one degree of

freedom can be broken up in several different ways. Parsimony, if this is

the only thing you can fall back upon, is a good guide. But if there is some

premise as to the nature of the underlying relationships, by all means use it

rather than the polynomial. Polynomials should be used only as a last resort--

particularly one involving anything above a second degree term. This is,

again, an appeal to parsimony.

As I tried to emphasize yesterday, a good guide is to break down the

total variation into orthogonal components or orthogonal sets of components.

However, this may not be necessary at all. And then for prediction purposes,

yes, formulate perhaps a regression model which included linear terms or

non-linear terms as the need may be.

Dr. Wiley:

There can be real danger here. If one has a rather highly cross-

classified design, say a two-to-the-tenth factorial arrangement, then the

likelihood is quite high that some of the contrasts are automatically going to

appear to have low probability in terms of their size. In fact it's quite

likely that when you have considered a complete model and tested each of the

contrasts for all the main effects and interactions in a two-to-the-tenth

factorial design individually, you will find about 50 of them significant at

the .05 level.

New Speaker:

It seems to me highly important, especially when the design has a

large number of cells,to engage in some kind of overall test to make sure

,
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that you are not simply dealing with complete error.

Dr. Graybill:

I do not know enough about this particular problem to know

whether you would want to do this initially but it seems to me that finally

one ought to use multiple procedures. I do not like to say "multiple decision,"

but it is sometimes used in cases where you can snip your data, take all your

comparisons ,. and look at them. You know exactly what your protection levels

are, so you can look at the data in terms of confidence internals and not

as tests.

For example, if a confidence interval misses zero by just a very

small amount but is in a very narrow interval, it is practically insignificant

even though a statistical test may indicate significance at a very high level.

That's the main reason why I do not trust tests of significance. I trust them

more than I do tests of hypotheses, but I don't trust either of them.

A good experimenter, it appears to me, wants to look at his data, to

know what overall protection he enjoys, to know the confidence interval of the

estimates, to put these together, and to begin to read contours and stories

out of the data, realizing that he has a finite set of data.

Statisticians have put over tests of hypotheses on the data-analyzing

public for the reason that mathematically they are much easier to teach. If

we take the approach I have just suggested, we do not have to teach separately

the concepts of confidence intervals, tests of hypotheses, and tests of

significance. We can teach one thing. Neyman wrote a book on this. Nobody

in data analysis paid attention to Neyman's book. But one who studies

statistics should because this is the economical way to study data. I hope

some time before we end this symposium we can have a very heated debate on tests
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of significance. I think it is extremely important that we data analysts

not let tests keep us from doing what we want to do. But I would also look at

the overell procedures to give you an overall protection in dealing with such

problems.

Dr. King:

I would like to agree with one thing Dr. Graybill says. We have not

looked very much here at the multiple correlations that may be derived from our

data. That is a very useful kind of information to know--what proportion of the

dependent variable is being accounted for by the others. As a matter of fact,

Dr. Ward's early work was to test multiple correlations and I always liked

that approach.

Dr. Bock:

If you are free to choose your subjects, you can make these correlations

practically anything. You can leave out the middle group which is very large.

A correlation only has meaning in reference to a population.

Dr. Findley:

We see that any question that starts from a specific example can

lead in all kinds of directions. As I indicated, this is a typical study in

which you take all the cases that are there, all the students who transferred

during a two year period and the ones who had been enrolled all along during

that same period so we are not talkine about doing what we want to with the

data. We are asking what we may properly do with the data that has more or

less defined itself to us.
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Dr. McLean:

To a data analyst, the idea of looking at an array of cell means

and pondering what forces are operating is attractive. But we are dealing with

examples in which optimal cell means are very differently determined. Some

cells will have many observations and others will have few. Now, how does

the data analyst protect himself in cases like this where he is trying to

compare means with unequal precision?

Dr. Bargmann:

He could put confidence bounds on each cell as a first guide to

protecting himself against over-interpreting. For example, if he has a cell

mean based on a very small sub-class, he finds a very wide confidence region

that spans many of the means of the larger, better defined sub-classes.

Dr. Anderson:

Would you say something like a Duncan's multiple range test might

be appropriate?

Dr. Bergmann:

That is certainly not indicated for interpreting the cell means.

A multiple range test would involve contradictions due to the disproportionality---

some effects that are way out are not significant whereas smaller ones are, so

a multiple range test at this point would not be indicated. I would rather

take a least significant difference approach or look at every possible mean

comparison and put a plus-minus on it.
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Dr. Graybill:

Use the studentized maximum modulus.

New Speaker:

I think that you have presented an excellent example here because

it brings missing cells that result in this particular situation from the fact

that some students do not have high enough high school and other test scores

to get into the university, so they go to the junior college first.

Dr. Findley:

That is exactly the case and that is the reason for the last

question to which none of us have spoken directly.

New Speaker:

There are other problems. You are going to have different variability

within your cells because if you accept students from a junior college you may

accept only the A or perhaps B students. So their range of first two year

scores is going to be very restricted while the group you are comparing them

with, who were already in your college, will have practically a full range.

There will be other groups of colleges where the students will have full ranges,

so you have non-homogeneity of variance within cells.

Dr. Wiley:

Professor Bargmann's implicit model for that procedure does not

have the complications that were indicated in that he was using covariates

which were the entrance examination scores and the high school grade point

average. Certainly there would he complete data in the cell design for the
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source-by-sex classification. The essential question would be something like,

"Would you expect an interaction between high school grade point average or

test scores and source of the student?" If you expected that interaction, you

would probably set up a different model than the one Professor Bargmann proposed

for this situation.

Dr. Findley:

Well, we do have the specific situation cited where the selective

admissions at one institution are less severe than the other and one of the

questions implied in this last question here is what we are to do if we get a

regression line for one group and a parallel one for another group but they are

over different ranges of the independent variable. Does that affect our ability

to interpret?

Dr. Cramer:

Given a model you think fits, it does not affect your interpretation.

That is, if you assume that there is no interaction, then you can certainly

use that model. On the other hand, if the ranges are so disproportionate that

there is minimal information about any common area in the regression line,

there is no ability to test the parallelism of those lines.

Dr. Cohen:

Dr. Bargmann made reference to outliers a moment ago. Of course,

they are quite troublesome, not only in situations of this sort, but in other

cases. I wonder if he would say just a word about how he would proceed in

that regard.
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Dr. Bargmann:

There are just about as many tests for outliers as there are

statisticians. Each has his own ideas and I think there is no standard

objective definition as to what constitutes an outlier, so one's subjective

definition determines what kind of a test he makes in order to determine if

something is an outlier or not. In nice, two-way classification presentations

of data, in each cell you can see the mean and the standard deviation, and look

at the pattern of means. If you find a rather peculiar mean, first of all the

computer says "I find a very high interaction effect," so I look at these

peculiar means and at the same time I look at the corresponding standard

deviations. Now if a deviate mean, one that does not fit into any trend, is

also associated with a large standard deviation in the same cell, I think you

have proof-positive that you should look at those raw data once more. This

is as snoopy an indicator for outliers as I know and it is a fast one. Other

techniques can be used.

Dr. Anderson:

You keep saying to look at the cell means and yet you tell us not to

interpret chance.

Dr. Bargmann:

I look at the complete effects first; I mean.I look at the F-test of

all effects combined first. If that is nonsignificant, if that is very small,

I have a perfectly good, plausible, parsimonious model. There is only a general

effect. Why should I look for anything more complicated?
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Dr. Anderson:

What you are saying, then, is if you do .an overall test and it is

insignificant, you cannot do something like Duncan's multiple range.

Dr. Findley:

The third question is one submitted by Dr. King:

"The following problem was encountered by Dr. Garrett Foster.

In a general sense, it is the problem of measuring change

(pre-post design) on the dependent variable as a function

of the interaction of two independent variables. This is

often done by putting the pretest data in as a predictor

and testing that contribution of the interaction of the

independent variables which is, in fact, independent of

the pretest vector. The problem arises when one finds that

the estimated regression weights for the pretest data vary

(interact) with one of the independent variables

there are significantly different repression weights for

the pretest by group product vectors). I have worked out

several possible solutions, such as testing the triple

order interaction among the predictors (e.s.., pretest,

SCAT, and school) and plotting the results when sipnificant.

Dr. Bargmann:

I think the answer is extremely simple. The question is not about

a univariate analysis, but it is a clear case of the multivariate analysis model.

I think we should try to point out that in a mathematical, model we say "y.is

S
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equal to the function of x or several x's." We say "the right hand side is

independent and the left hand side is dependent" and this defines it. In a

statistical model where we say "expected value of y is a function of x's,"

we do not have the subdivision into independent and dependent sets of variables.

In fact, we assume in the univariate model that the right hand side variables

are known without error or at least knowable without error. They are pre-

specified. They are part of the design. They are concomitant variables. It

is on the left side that we have the random variable. Now, in multivariate

analysis we have precisely the same model except that on the left hand side we

have, in this case, two random variables, the pretest and the posttest variables.

One of them could be dependent; the other one could be independent. I can take

the left hand side in a multivariate model and split it into dependent and

independent variables. The analysis tools for this are quite well known and

already available to the practicing statisticians and applied statisticians.

Morrison (1967) has described these methods quite fully. The situation described

is multivariate. There is a very rmeat number of tests, confidence intervals,

and statements you can make if you view it appropriately. If you confuse the

idea of a concomitant variable and a random variable--Dr. Bock was hinting at

this--you can prove anything you please. We must not confuse these two. This

is a case requiring multivariate analysis and not univariate.

Dr. Wiley:

There is an interesting point here. You can see this situation as an

experimental situation where you have random assignments, say in the independent

1 variables of interest other than the pretest, or design factors by which the

subjects are randomly assigned to the groups. If so, the circumstance can
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not possibly occur, so in one sense it has to be a pseudo situation in a

natural situation treating the covariate or the pretest variable as an

independent variable. But the real implication of this is that the pretest

score is being affected in some way by the other independent variables in the

design. That can not possibly happen in an experimental situation. So that

is why no one would run across this problem.

New Speaker:

I am not sure that I understand this. I wonder if one might have a

situation in which we could have two treatment groups and random assignment to

them, ana a pre-measure. Now, does the question here relate to whether the

regression coefficients are the same in the two groups?

New Speaker:

The groups will not differ in their composition because of random

assignment. They will not differ in their composition on the pretest measure,

at least in expectation.

New Speaker:

You should no more expect them to do that than to differ in mean

on the pretest measure if randomly assigned.

New Speaker:

But could not the effect of the treatment be to change the regression

coefficient?
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That would just be giving the test of means then because the groups

would start out at the same initial point on the average.

Dr. King:

Vall, obviously this is not an experiment. This arose from an attempt

to evaluate school program and the subjects were randomly selected within the

schools but obviously could not be assigned to schools randomly. So it would

be possible in this case for the pretest to interact in the manner you speak of,

but it is not an experiment.

Dr. Findley:

Let us turn to another question that may be the same problem but

stated just a bit differently.

"In a study, two sets of intact classes are taught by three

teachers. The classes are not matched, but students were

assigned in essentially alternate fashion to classes meeting

at the same hour. Shifts of classes after registration and

some attrition account for different subclass numbers. Can

inferential statistics be properly applied here? What

differences in numbers would give pause to comparisons?"

There is another element to this question, but isn't this the kind of

situation you have in mind where you actually have these people in intact classes?

New Speaker:

"In alternate fashion" doesn't imply a random sample.

WIt.1
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Dr. Findley:

Well, / think so. If you send the first registering to class number

one, the second registering to number six, and the third to number nine, etc.

New Speaker:

Well, they arrive in random order, and therefore, they are assigned

in random positions.

New Speaker:

You are dealing with an experimental situation; however, one can

point out that in this case each treatment is applied to each class as a whole

and the class as a whole is the sampling unit.

New Speaker:

The classes could be reparded as blocks in this design and we have

a very irregular treatment-block situation. We can now reFard these block

effects--class effects--as fixed ones or we can say they represent a random

sample from many more classes and treat them as random effects.

Dr. Graybill:

You need to be very careful about using the within-class variance

as error, as I think Dr. Bock pointed out, and this generally would underestimate

error if you use it.

New Speaker:

Use treatment-block interaction.

t.
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New Speaker:

The means would be the adequate statistics and classes would all be

pretty much the same size.

Dr. Findley:

I did not mean to draw us away from the other question, but it does

seem to me that we are beginninr to verge on some of what was in the other

question. Is there any further discussion of this point?

Dr. King:

There is one thing I would like to ask. Possibly this could be

directed to Dr. Bergmann. This he says is a multivariate case because the

pretest is not known without error. I can certainly see that this is true, but

is it not true very often that we use independent variables such as I.Q. and

so forth? These we do not know without error, so if we use that criterion,

are we illegitimate very often?

Dr. Bergmann:

There is a very simple distinction. If you use the pretest in order

to select your subjects, for example, if you use the pretest in such a way as

to take five subjects with this score, five subjects with this score, five

subjects with this score, you make it a regressional, univariate problem because

the very fact of selecting on the score makes it a concomitant variable. All

regression that we are talking about is a conditional expectation. We ask what

is the expected value of y in the posttest score given x in the pretest score.

Now, this is the case as soon as you start assigning by the actual pretest score.

A
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This is, in fact, a univariate study, the pretest score is a concomitant variable.

On the other hand, if you did not use the pretest to select students, but merely

obtained pretest measures on all subjects, then both tests are random variables.

For every experimental unit, for every student, you observe randomly those two

scores.

It may be of interest that the simplest of all well-known multivariate

tests is the t-test. The t-test, when you come to look at it closely, is a

multivariate test. You have two random variables, you take the differences.

In this case, it reduces to a univariate problem. In this sense then, the

inference of what happens between pretest and posttest is either made by a

regression or prediction equation. This presupposes that you have actually

selected students on their pretests or you make your inference in terms of a

correlation between pre- and posttest, or shall we say confidence bounds with

certain differences or weighted differences of these two. The crucial thing is

whether or not you select on this variable. If you do, then it certainly is a

concomitant variable. If you do not, then it is a random variable and multi-

variate procedures should be advised.

Dr. Ward:

Is it possible that multivariate procedures are too restrictive, so

that you may be getting far away from the problem at hand?

Dr. Bargmann:

Why should they be more restrictive? Actually they are less

restrictive. They contain more information than the univariate procedures.

They take into account all of the relationships and overlaps. When you make
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confidence statements in multivariate cases, you do not simply make confidence

statements on each variable separately, but you determine joint confidence

regions and talk about the joint probability of the set of parameters having

certain values. I would say multivariate analysis is not more restrictive but

less restrictive. It takes a little practice, I assure you, to make sense of

it and it usually takes two pages of relevant comments to explain one or two

confidence intervals that a computer puts out.

Dr. Ward:

In a multivariate case where you think product or squared terms are

relevant, how does that affect the assumptions that are involved in multivariate

analyses? Suppose you actually did not collect a large number of variables

but it was closer to your thinking about the problem to generate squares and

products of a few variables that do not yield multivariate normal joint

distributions?

Dr. Bargmann:

The interpretation will nrobably become so messy that I would have to

program a computer to interpret it.

Dr. Bock:

Well, you might concentrate on what kind of transformation you might

make on the variables.
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Dr. Bargmann:

Transformations very frequently reduce matters to a single point.

Then I don't know what this point means. A log transformation that all of a

sudden matches your data to a single point--I'm lost.

Dr. Bock:

variables.

Dr. Winer:

But there may be some useful transformation with the independent

I think one needs a balance between trying to stay close to the

problem at hand and looking at other situations, then deciding upon which

procedure is appropriate. As was mentioned yesterday, an exact solution to the

wrong problem is worse than an approximate solution to the problem you are

interested in.

Dr. Findley:

May we turn to question 4 submitted by Dr. Jennings?

I think most of the elementary texts typically used in an

educational statistics course do a very good job of giving

the student both the computational tools and an intuitive

understanding of the meaning of the comparison between two

means. As the designs become more complicated, however, it

seems to me that the student is simply asked to accept the

fact that a particular computational procedure produces a

good number called "the main effect" or a "linear component"

without much guidance as to the inferences one might draw

from the rresence of such an "effect." The student is thus
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encouraged to learn the computational procedure and the "names"

of his questions without knowinp in many cases what the questions

actually are.

"Let me give you an example. It is not uncommon for texts

that deal with so-called trend analysis to separate the total

sum of squares into an error term, a term called "deviations

from linear regression," and a term called the "linear component."

Frequently recourse to a table of orthogonal polynomials is

required. In no treatment I have seen are the basic model

and the restrictions on the parameters identified. The

inference I draw from the text is that a significant "deviation"

implies that the means do not lie on a straight line and that

the presence of a significant "linear component" implies that

the means do lie on a straight line, although I have never

seen that stated in so muny words. What inference is to be

drawn when they are both significant? It seems to me that

if a researcher is encouraged to formulate his questions in

terms of parameter restrictions, he defines operationally,

by means of the restrictions he imposes, what he means by

a "linear component," and the problem just never comes up

unless he had a question to go along with it."

Dr. Cohen:

The significance of linear components I have always understood simply

means that the best fitting line is not horizontal. A function can be anything

you like but if you set a straight line to it, the rejection of the hypothesis

of linearity means simply rejection of the hypothesis that the best fitting line

is flat, so both can be simultaneously true.
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Dr. Wiley:

If you insist upon fitting a polynomial model, and if you get

significant departure from linearity, you cannot consider any component

individually. You have to consider just the curve that is the best fit curve.

Consequently, if you get departure from linearity and you insist upon going

on, then you fit more terms. The usual procedure is to fit terms to account for

the curvelinearity or whatever it might be. Then you would want to plot the

predicted response from whatever level the analysis indicated.

Dr. Findley:

Further possible comments here?

Dr. Bock:

Well, regarding the general question of curve fitting, I did not

quite understand Dr. Winer yesterday. I understood what he said, but the tables

offered suggested two routes that yielded identical results--either the

orthogonal polynomials fit or one must compute the regression values. His tone

seemed to imply that the orthogonal polynomial procedures were in some sense

better, although I could not see why. Then earlier, Joe Uard presented the five

ages by 15 practice sessions data matrix in which the analysis that he proceeded

to use implicitly involved an effort to fit all 75 of those cell means so that

in effect 74 degrees of freedom were being used for this purpose when it seems

to me no reasonable model about this would suggest the loss of more than at

most six degrees of freedom. Let us say a linear, quadratic, and cubic term for

each of the two variables, and indeed you could even cheaply use nine more degrees

of freedom for the interactions of these and get a very complicated surface.

By gning tho rout s!? of taleinE out all means, writing a model at the level of cell
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means in this situation, he was, in effect, from a practical point of view,

giving up 74 degrees of freedom to account for this variation. It seems to me

almost certain, given the nature of the data that were posited, that no more

than nine or ten would be needed for snooping purposes to account for what was

very likely going on in that entire complex surface. The problem can be handled

entirely by a regression analysis that does not in any way depend upon either

the equality of the intervals or the equality of the sample sizes. Set up terms

like age, age-squared, age-cubed (which is probably more than you need) and

then practice, practice-squared, practice-cubed, and then, if you wish, the

vector product of these two for nine more terms. Ward's initial N obviously

had to be enormous to have any cell replication. This approach uses N-15

degrees of freedom instead of N-74. Again, I find the regression to be not

only simpler, but in many ways more powerful in at least the fact that it does

not overfit, it keeps things as close to the data as you want them, and it is

relevant to the nature of the variables that you are using. The design in the

example that was offered would have been no different if the five-by-fifteen

factors were purely nominal. But there was no attempt at all to take advantage

of the fact that the data were in fact continuous, interval kinds of data.

Dr. Bargmann:

think I can make this even stricter. You explained in very lucid

terms what I think I hinted at yesterday. If you have an interval scale in the

hack cr yo...a, mind, go ahead and do your multiple linear repression and

curvilinear regression right away. May we perhaps dramatize the situation by

poirting out that if your data or your levels are nominal, then by reordering

and placing these levels on some X axis, you can always draw a perfect straight
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line through the means. This may give people some food for thought who would

like to fit curves to levels, treating them as equally spaced or spaced in

some known order even if they are really nominal for a certain length. Even

in ordinal data you can do a lot of juggling and produce a practically straight

line as all people do in bioassay, growth curves, and learning curves, a more

meaningful approach than curvilinear repression.

Dr. JenninFs:

Pfy main question about this particular kind of formulation is that

I wonder hou many of us have actually tried to get a solution with these kinds

of predictors? My experience has been that when you get beyond quadratics into

cubes and interaction terms, the possibility of petting a very accurate solution

is not good. llow, of course, this depends upon the computer program you are

using and so forth.

Dr. Graybill:

Using the formulation that Dr. Bock has indicated., where one reparamete-

rizes the model explicitly and develops orthogonal polynomials in a computer, one

has absolutely no problems whatsoever.

Dr. Bock:

You always have problems, but the most accurate way to handle these

problems is to orthogonalize the basis. There are some routines due to

Householder which Cramer used in his program package. This is probably the best

way for doing the orthogonalization and the subsequent least squares analysis

even in single precision.

1, 4w...4.W...A Juu,
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Dr. Cramer:

In Dr. Bargmann's situation, we would choose our metric. If we

really knew what metric was necessary to fit a straight line, we could use it

and reduce the number of parameters.

Dr. Ward:

I think it would be good for computing to realize that, if you had

an orthogonal system that had to error in it, it would help to get from your

original system to the orthogonal system. Then things would be better because

you would just have to be sure to remember that the computing procedure involves

going from the original set to the orthogonal set. As a matter of fact, some

ways of getting to an orthogonal basis involve exactly the same procedures that

are involved in solving simultaneous equations. You have to be careful since

you may have exactly the same numerical inadequacy because you separate the two

systems somewhat artificially.

Dr. Crpmer:

I think that this is not so. One does not have the same inadequacies

althvArh it is true that you are doing the same thing as solving equations.

There have been presentations of methods of solving a least squares problem

using the orthogonalization procedures which are extremely well conditioned and

one does not run into the kinds of problems you get from using the ordinary

inversi.or ,rocedures. So, if one works with orthogonalization methods, one

is much better off in either situation.



Dr. Graybill:

If I understand this problem, the complaint is that Dr. '.!ard used

a two-way classification rather than multiple reFression. It seems to me that

the multiple regression technique would be very good, but the two-way classifica-

tion is also good. You know, the geologists do something that I think is very,

very good. They take such a two-way classification and look at the cell means

and then they contour the means. This is not very respectable statistically, but

you get a lot more out of it. Some of you are suggesting fitting complex terms

in a model. I would discourage this unless I had no other alternative. There

is a great deal of merit in taking a row-column classification, looking at

spikes of interaction in the cell means and contouring then. Both methods

would be good. I would not throw out the row-column analysis. There is a great

deal to be said for it.

New Speakerv No one is arguing that it should be thrown out. The only

argument is that once you deal with the row-column presentation you should

try to find a parsimonious model to describe the data.

Dr. Findley:

The next problem area is suggested by Dr. McLean. "Let's talk about

more ways to check on the adequacy of the model, e.g., the examination of

residuals.' Maybe Dr. McLean would like to add to that brief statement before

we enter into the discussion.

Dr. McLean:

Thank you. People have hinted or made comments from time to time in

our discussions about checking on the adequacy of the model, i e., whether this
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method or that is a good way to test whether a model is good to explain the

data. But these statements have been somewhat offhand. In particular, I do

not think the residuals have been mentioned at all. I was just wondering why

that should be so.

Dr. Graybill:

The residuals are an excellent method in my opinion to check the model.

In fact, using cell means, you might look at interaction in each cell. You can

even plot them on a half normal plot, for example. Hany think the theory of

residuals is open to criticism, but I think residuals are very valuable. In

fact, I think it was Winer who said that what we really do is examine residuals

all the time.

Dr. McLean:

I am concerned about something that is a little more uncommon. I

am not speaking about the residual variance that is left after you take every-

thinF rise out. The residual, I suggest, is the difference between the value

the model predicts for the particular model with which you are working, and

the E...tual values you obtain with various values of the independent variables.

A separate calculation of these is not always done in the computation routine,

and if 5.t is, it is often summarized as the residual sum of squares used for

the estimate of error. There is no option to print out the cell residuals.

Dr. Jennings:

A fairly recent book by Draper and Smith (1966) presents examples

for discussion of how to treat or locate a sequence to evaluate the model.
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The Mesa A-5 program has as an option the computing of residuals

about the cell means in any model that you may fit. These are presented in

standardized form, that is, residuals are divided by the standard deviations,

and presented as t statistics. This is extremely effectiw. If you have an

interaction you want to try to figure out, you fit the model including everything

else except that interaction. You might even include other interactions, but

you omit the one that you want to interpret. You then look at the residuals

and ususally you find a systematic trend and sign that shows you what is going

on. As I said, residuals for interactions are in reality systematic.

Dr. Bargmann:

I am very glad indeed that the point has just been made that residuals

and error terns differ. In our development of the general linear model, we

regard this last term as error with expected value zero and common variance.

Ideally this holds only if you can repeat the experiments under identical

conditions. In many applications what goes into the error are merely high order

interactions. I think even a study of the errors of replication would lend

itself to this type of analysis for the same reason that when you say you are

repeating the experiment under identical conditions you have to qualify your

results by assuming identical conditions. Some condition may have changed and

the residual may very well tell you what condition was affected.

Dr. Graybill:

Another thing that geologists do that is useful is to get the residuals

of the several cells and then contour them. It is a very effective method to
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like studentized maximum modulus even here and really get in and examine the

residuals. I think this is very effective. It has not been played up enough.

It is really just of recent origin that it has begun to appear in books, but

some of you might want to look into it.

Another point, with regard to examining the model. If you take

sufficient statistics to summarize the data, then whatever is left over is free

of all parameters. Therefore, under the model given, they are very effective

for examining the model. This is what I do when I use my sufficient statistics

under the model that I postulate. I take what is left over from the sufficient

statistics, which is free of all parameters if the model is true, and can do many

different things to reexamine the model. Fisher has done this.

Dr. Winer:

I think this should also be said. In any specification of a model,

no matter how LDmplete or incomplete, any test of goodness --- there may be,

for er,nple, two tests of goodness which indicate that the model is fit equally

well by both situations, but the pattern of residuals can be quite different --

provirlr, supplementary information to look at to help decide which way to modify

a model. Suppose we start with an incompletely specified model and eventually

look et the residuals c7 the model. I do not think tests, in many cases, are

sufficientl7 sensitire to tell us where to go next.

Dr. Wiley:

Let me just make one small point. That is very much a function of the

design of the experiment. That is, if vou have a model, you base the design on
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the model that you are postulating and you allow in the desim of the experiment

for specific components of lack of fit or a priori possibilities for the lack

of fit in the model. Then you can have a fairly exclusive direction to go if

the model in fact does not fit.

Dr. Bargmann:

I think the goodness-of-fit dilemma is due to the fact that we are

attempting to reduce the nuality of fit to a single number and to a single

index. For example, in chi-square, when we want to have a little bit more

information to use for pointers, we should have a few more indexes. Ve might,

for example, consider doing the exact goodness-of-fit test, which is a

multinomial. In the non-central case, of course, it would have as many

parameters as there are classes. In that particular case, we would have

several numbers, and a pattern of these. I do not quite know how to interpret

them, but I can imagine that there would be information in the pattern of these

numbers that would direct further modification.

Dr. Graybill:

I think this points up my objection to tests of significance. You

summarize your data too far. You summarize it to one number. In the case of

goodness-of-fit, the empirical distribution function is very easy to inspect--

maybe a normal plot or something like it. It seems to me very important to

be alert constantly and look at the data, all the data. Summarize as far as

possible by sufficient statistics, but then when you amalgamate everything

together in some way to look at one number, I thihk you lose too much. You

are throwing away too much. Goodness-of-fit is a case in point. Even though

I must say I use it, I do not like it.
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Dr. Findley:

There is one small point on the last numbered question we distributed

to which we did ;lot speak specifically, although perhaps you gave me an answer

to it:

"What differences in numbers would give pause to comparisons?"

Is there anything over and above the very specific insistence that we use

treatment blocks with regard to these variations in sizes of groups which come

about, so far as we can tell, by operation of unrelated factors?

Dr. Bock:

If you are using group means of the statistics, their precision is

going to differ in only a minor way due to differences in sample size. The

samples you listed vary from 17 to 32.

Dr. Findley:

Suppose it were 17 to 149, how about it? Do we have any kinds of

rules of thumb or helpful suggestions?

Dr. Pcnv.:

If the difforence in N is ten-fold, you might consider doing some

type of vrigIlted rran Err.17rAs.

Dr. Gr-,-1,411:

I think it depends on what the variance is. For example, the

coefficient of variation might play a role here. If the variance is very small,
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seventeen cases give you a very good estimate and your precision of the mean

is very good. Of course, a sample of 100 is better, but 17 is sufficiently

precise anyway. In fact, it makes little difference what the actual variance

is then. If I am talking about a score that goes from 100 to 110 and my

measurements are very precise, an N of five may be enough.

Dr. Findley:

I was not thinking so much in terms of additional sampling as I was

of the situation in which you take natural groups. If the sample sizes differ

from one to the other, is there some point at which you decide you had better

in some way randomly sample any large group so as not to give it a dispro.

portionate weight in what you are doing? How else do you deal with it?

Dr. Bock:

If you are using, the class means, they are not weighted by the

numbers of students in the classes. In fact, they are under-weighted a little

insofar as efficiency is concerned, so there is no bias involved. There is

only a question of efficiency.

Dr. McLean:

You might watch out for unequal variances,especially in a case like

this. Ue do know that you are hurt worst if your assumption of equal variances

is wrong in addition to having unequal cell sample sizes.

Dr. Graybill:

You should not use your within variance for your experimental error.
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Take an extreme case. Suppose that every one of the 26 students in one class

had the same prade. The variance would be zero, and you would not worry about

unequal numbers. So if the variance is small, you do not need to worry about

differences in sample sizes, since you are not going to use the within variance

for error estimation.

Dr. McLean:

I probably should correct my earlier statement. The fear I would

have ts if the problem differed and you have a lot of classrooms in one treat-

ment and only a few in another. That is the only situation to which my comment

would apply.

New Speaker:

This is a basic problem in educational research. Is the classroom

the sampling unit or are the students independent rep34,..=tiong within classrooms?

I believe the classroom is used as a unit because one thinks the stuu.....4-g

correlated within replicaticns and therefore their differences are underestimates.

New Speaker:

Would you ever test to see if there is an underestimate? In other

words, test the unit against the within classroom?

Dr. Bargmann:

Unfortunately, there is only one way. You must be able to separate

the variation within the class from the variation of a student under test and

retest situations. I have always advised those doing research in school
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situations never to treat classes as units, but, if at all possible, to treat

students as blocks and to make sure to obtain more than one observation on

each student in the form of a test-retest or some kind of a verification

measure. The same situation holds perhaps with even more force in the

transition from model 1 to model 2 in paired comparisons using the Thurstone

approach, where you treat one judge making N judgments as equivalent to N

judges making one judgment. Well, this is not true. In any case, an experiment

can get directly at the effects--especially if we are dealing with educational

tests--by treating students as blocks and splittinp the test into parallel forms

to produce two scores. Thus, we can make sure that we can regard individual

differences as block effects and not as an error component.

Dr. Ward:

I would like to throw in a word of support because I think this is

particularly important in experimental situations. You have pre- and post-

measures and you ought to consider making equivalent forms out of the pre- and

posttests so you can do exactly what Dr. Bargmann is advising.

Dr. Findley:

To return to an earlier point, Dr. Bock suggested that when one does

not have all the classes filled, he could go out and fill the classes in advance

from various sources. I wonder if there mi7ht not be some danger in this kind

of selection that would be perpetrated upon the data by the fact that you

would have to look in certain places in order to find data to fill out those

classes. Is that a fair problem to raise? It seems to me this question is

often raised in disucssions of the relative merits of matched samples and the

analysis of covariance.
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If a universe is described by characteristics A and II, and there are

not many such people, it may take a while to find them, but I do not see why

that would lead to a biased sample.

I don't know that it would have to.

Unless, for some reason, to find cases you went to a different

locality or something like that. It is conceivable. One is assuming here that

the rare people have some special characteristics.

Here is a perfect example of tz-ls: the problem of relating ]ifetime

income with education. We call it post hoc reasoning because almost all the

rich kids go to college. If you try to get data on a sample of rich kids who

do not go to college, you select a very peculiar group. So while you might

be able to fill the cells by seeking these people out, there would be so many

contributing factors involved that it is just not good procedure.

That is where the model comes in. If there are several other fact^rs

involved, you will not be able to nredict the cell response by the general

factors that are in your model. So you will find somethina special is operating

and know that you have to look further and elaborate the model quite a bit.

-



LI)

D Cohen:
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I do not go to college, does this not almost certainly mean that there is some

profound interaction operating?

,-
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If it is true that you have a lot of trouble finding rich kids who

Dr. McLean:

There may be interaction between the independent variables associated

with the fact that sone combinations are hard to find. But You are not

primarily studying relationships between those variables. You are studying the

effects they have on the response variables.

Dr. Cohen:

I am not trying to talk about real phenomena. Suppose that you are

interested in some dependent variable which is a function of things like

education and income. It seems to me the mathematics does not dictate this

by any means, but I would almost certainly expect a relatively profound inter-

action if you had trouble finding rich kids who did not get to college. On

almost any dependent variable that you are interested in where income and

education were independent variables, substantial interaction would be likely

to occur. It is the rarity of this phenomenon of the rich kid that does not

go to college that makes this probable.

Dr. Bock:

Nevertheless, because these two factors do not occur very often does

not mean that they do not affect the responses predictably.
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Dr. Findley:

Hay we move on to the questions Dr. Bottenberg has put before us.

Is it your notion that the rather algebraic fashion of expressing relationships

of beginning statistics courses would be helped if we used a more geometric

model? Is that the essence of your point?

Dr. Bottenberg:

Well, I don't know if I would call it a more geometric model, For

some time, it has seemed to me that if the statement of the model is given by

actually writing the entire array or, at least, representative sets of rows and

columns of the independent vectors, it is a good deal easier for a learner or

a beginner to understand what his model says. He can go into his model and

see how, for a particular combination of characteristics, this is what his

model says the expected value for that experimental unit is.

On the other hand, it has seemed to me with just the formulation of

11,a.,and 03 .,that these terms in the beginning of training are foreign to

a potential educational research worker who is not primarily interested in

acquiring a high level of competence in mathmatical statistics. Formulations

in terms of parameters alone tend to be confusing and impractical to the

potential research worker who wants to acquire some capability in statistics.

So, when the model is displayed with the predictor values and he has had some

practice in the development of statements of what the expected values are for

different categories and combinations of categories, he is in a position to

ask himself questions that are a lot more meaningful to him--such as whether

he thinks specified categories have comparable differences, or whether they are

equal, or any of a variety of kinds of relationships he can formulate. These
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questions would be difficult for him to ask in the context of a model like

y 2 ii + a. + O..
3

Dr. Cramer:

I want to disagree with that point most heartily. I do not think

the choice is between these two approaches; rather, if one has a student

who is familiar with ordinary, simple orthogonal analysis of variance, one

can talk in terms of what you put down in an analysis of variance table--

A, B, and AB--and one can express his model in terms of those effects that are

in the model. In the non-orthogonal case, one can completely express the

model in terms of the order in which one writes these effects. We need not

gettothea.+B.idea and certainly one need never get to the point of
7

writing down columns of artificial variables, because they really are artificial

variables, and I do not think that they convey any great amount of information

to students. Furthermore, in my experience students have a great deal of

difficulty in routinely putting them down and putting in the restrictions.

It seems so unnecessary.

In the manner that Dr. Bock has formulated, specifying that we

parameterize or specify main effect contrasts of interest, you can deal with

a completely symbolic notation with which students already are familiar if

they know something about analysis of variance. The f^rmulation with regression

variables is the foreign one. It hides the basic differences that exist

between an analysis of variance model and the regression model.

Dr. Bargmann:

Dr. Cramer is addressing himself to a very minor subset of the
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question that was raised. The question that was raised was "Should we teach

our students parameterization or the algebraic expression as such?" I would

say "non-parametrics" according to Savage means there are too many parameters.

In non-parameterics, and especially in the tests of fit that we use in queuing

theory, the representation is not so much inter= of formal algebraic models.

Let us use a queue as an example. Let's use an aborting queue so that people

will not add to it any more if it gets too long. You now have a simple two

decision rule: you watch your actual cases and, to compare them, you have a

simple non-central chi-square test. The goodness of fit and the conting,ency

tables are a step in the direction indicated by Dr. Bottenberg: the represen-

tation of your situation in expectancy tables of some sort, and vectors of

certain variables.

On the other hand, I saw something today to which I think statis-

ticians, and perhaps teachers, have paid too little attention. How much

information is there in the Venn diagrams? Can we translate the Venn diagrams

into some kind of parametric function? Everything is clear if we have very

few effects. Then we can graphically represent the model as proportionate

areas and this will give us all the information we want. But as soon as we

go into very high dimensions, we must somehow translate this oyaphical approach

into some parametric formulation, which may very well be the linear model in

any of its ramifications. In any case, I would certainly invite people who are

interested in the teaching of statistics to see how they can translate pseudo-

graphical-visual displays such as the Venn diagram into a model which represents

the situation.

Bear in mind that there is nothing holy or even unique about any

formulation that we present. There are many ways to represent the same
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underlying mechanism. What we must have is something that takes our

interpretation back to the physical or educational situation. And if the.

situation is educational,it is perfectly meaningless to say these variables have

a correlation of, say, .78 against this criterion. Please tell us what is the

influence. How far does each variable overlap the criterion? How much does

this variable contribute? How much are these related to each other? I would

say as soon as we treat correlation, or regression, or these parameters, these

factors we invent in order to make our problem solvable in a computer, as

soon as we treat them as entities having their own life, we are making a mistake.

We are here dealing with symbolism only.

Dr. Findley:

May we ask, Dr. Bottenberg, if we are moving into your second

question here, "What is the most appropriate way to report predictive efficiency?"

I detect in your question the suggestion that one check on this point would be

how the means of successive intervals increase when you use a kind of expectancy

table.

Dr. Bottenberg:

In regard to prediction systems, I often think of the worker in

educational research. Workers are not fully trained in mathematical statistics.

One need is some method of evaluating effectiveness of a prediction system or

a system they have for representing or predicting or accountinp for a criterion

variable of interest. One of the ways that has been used very widely in the

past is a multiple R, or a multiple R-squared. It has seemed to me after

dealing with the problem for some time that this is a relatively uninformative
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item of information. Some information with a great deal more impact, as far

as the experimental worker is concerned, would be to display the criterion

mean value for successive valms of the predictor score scale. You can

demonstrate the impact of how the criterion does change as the predictor, or

the composite predictor, changes.

Dr. Findley:

How does this differ from the concept of the expectancy table, such

as we use for predicting achievement in college? Are we saying to ourselves

that once again we are in peril when we depart from tabulated data and compress

things into an index?

Dr. Graybill:

Dr. Bottenberg, are you asking the question: When the multiple

correlation is .25 tell us something about whether the predictors are of

value or not?

Dr. Bottenberg:

Yes, I am trying to get at that.

Dr. Graybill:

Let me tell you how I get at it. You see I don't believe you can

answer the question you ask with what you are doing. Let me take an example

and talk about the height of people in Athens, Georgia. What I am looking for

is a representative number to call "height of the people in Athens." Well,

the most representative number would be the mean. Another question is how good
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that representation is. Well, if the variance is zero, if everybody is the same

height, the mean is a very good measure to use. However ,if the variance is

five feet, the mean is not a very good predictor. I see somebody down the

street and I want to be able to predict his height. Perhaps I can learn his

weight. I carry a bathroom scale around with me all the time. So if I can

get his weight, I can perhaps predict his height. So I look at the correlation

coefficient. I am talking about that of the population, now, not samples. I

have this whole population under study and the correlation coefficient is such

that if I stratify on weight, so that now the variance within these sub-

populations is one inch and I can live with one inch, then I have a very good

predictor. So, it seems to me, what we are talking about is by how much I

decrease the variance.The correlation coefficient enables me to tell by what

percentage I decrease it. But I have to have more than that percentage. I

have to know if I decrease it enough to live with the result. For example, if

I know that all persons with a specific weight in this town have heights that

differ only about an inch, then you tell me someone's weight and I can predict

his height accurately enough. The tolerance is the important thing.

Now, when you work with samples you have estimation problems. I

think we should first always think of the population. By and large, sample

values reflect the population. But the thinking should be done first, it seems

to me, in regard to the population. ghat would I do if I had all my population

values available to me? What would my thinking be? Now, I don't have that

population value, but I would like to get as near it as I can, so I sample.

We have to be careful about making complete reflections of the sample to the

population, but this is the way I think it should be done. So, I think many

times of how I can reduce my variance. We will, of course, have a variance

estimate if it is truly a multivariate situation.
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You have to be very careful to differentiate between two different

kinds of problems. One is where you actually want predictive efficiency,

and the other is where you are trying to elucidate some basic mechanism.

As an example, I was consulting on a study where the investigator

was using a testing variable criterion with item sampling. He was giving only

three or four items to each individual unit of population. This makes the

error of measurement very large. But he had an extremely large sample and he

had very accurate determination of the regression weights. If he cross

validated this regression equation on a new sample that is based on a hundred-

item test, the multiple correlation would chanre radically. You have to be

very careful whether you are estimating a regression weight in a system where

there is a lot of measurement error versus trying to maximize predictive

efficiency in the system that you are currently working in with the current

precision of measurement.

Dr. Graybill:

The answer is the same. Here you are working with a different

population. You have to be careful at which population you are lookinp.

Dr. Cohen:

In references that we frequently see in statistics texts where the

applied areas are physical sciences, we in the behavioral sciences are left in

trouble. Unless we talk in terms of proportion of variance accounted for, we

can not express ourselves meaningfully. Confidence intervals do not help us

because our units do not mean anything. Units are usually somebody's pets
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which may be used fur the first and last time In the particular study under

consideration. It does not help us to know how large the estimation unit is.

It helps us to indicate how much variability we can account for by our model

in this ad hoc, maybe first and last time used, procedure.

Dr. Graybill:

In that case you would use tolerance intervals. You would say,

"Here is the population. What percentage of my population is in these values?"

You may not be interested in means, if means have no particular importance for

you.

Dr. Cohen:

I find the proportion of variance accounted for a relatively pure

measure that covers all kinds of circumstances, since I can not attach any

meaning to the units with which I am dealing.

Dr. Graybill:

Well, if you can not attach meaning to the unit, then how can you

attach meaning to the variance?

Dr. Cohen:

I can attach meaning to a proportion of the variance that this system

accounts for or that one feature of the system accounts for.

Dr. Graybill:

If someone takes your units and multiplies them all by a constant,

he will certainly change the variance.
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Dr. Cohen:
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It would not change the proportion of variance. That is why we

would want to use that index.

Dr. Graybill:

Dr. Cohen:

A variance ratio is a kind of correlation.

Right, it is a squared correlation, the coefficient of determination.

51, 1

Dr. Graybill:

That is what you use to express how much you have reduced the variance.

But the problem is that you may reduce it a hundred percent and it might still

be so big you could not live with it.

Dr. Cohen:

Uell, it depends on how meaningful your units are. If the problem

is to predict freshman grade point average, then the unit is one we understand.

3ut if your problem is a theoretical one and the unit is meaningless, then you

must finally fall back on how much or what proportion of the variance is

accounted for. Our units are meaningless very often.

New Speaker:

It is not exactly that they are meaningless: it is that we have not

had enough experience with them to know what they mean. On "Joe's New Test

for Social Skills for the Mentally Retarded" we do not know what the units mean.
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But we do know if we can account for sixty percent of the variance in this

test on the basis of certain variables or characteristics.

Dr. Bergmann:

I will first of all wholeheartedly underline what Dr. Graybill .said--

look at the population. But I think there is a communication problem. Outside

of census figures, a population in other applications rarely is a collection of

things. A population is a conceptual unit. A population can be S = 1/2 gt2.

A population is a mathematical model. We may assume actual test scores to be

distributed around some true score. The true score in this case, even if it

is a single one, represents a population in that sense. The important thing

is that as soon as you are dealing with indices--indices that are supposed to

reflect how well your data agree with some concept, how well your data serve

for predictive inference, how well they explain the mechanism--you should say,

"What would this look like in the population?" I do not mean in the population

of 100,000 students; rather, I mean, if the concept were exactly true. Now,

since I am taking a sample, how far can this fluctuate? What do I have to do

in order to condense or to expand the indices that I am looking at into terms

that have information for me? Insofar as we deal with arbitrary raw scores in

testing, we certainly cannot use confidence intervals in inches. In fa,A, if

we deal with multivariate analysis, we cannot do anything except scale stand-

ardized measures because what is our unit then? Is lur unit inch-pounds? You

see, at one step we must standardize to some kind of statistic,a1 unit. The

idea is simply not to look at the sample that you get, but say, "What would

happen in the conceptual unit called population?" Then say, "How much
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Dr. Cohen:
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Dr. Bargmann, would you agree that variance proportion terms are

acceptable?

Dr. Bargmann:

I like variance proportion very much, but I do net like your inference

that it is the square of the multiple correlation. The variance ratio is a

statistic that happens to have the same distribution as the multiple correlation

under the null hypothesis. As soon as the null hypothesis is not true, then

one has a non-central Ft the other one is hypergeometric. So you see that they

are intrinsically somewhat different. But they have enough similarity to

convey the same meaning for those people who have been living with correlation

as the last word. A psychologist who reads a .70 correlation has about the

same feeling as I would have to hear 700. I feel comfortable with a temperature

of 700, and I feel comfortable with .70 as a validity. This is about all it

is--a convention that has been in practice so long that people think it has a

lot of information; but in many cases we condense so much in this one coefficient

that it is not going to help us any more either in predictive efficiency or in

understanding the mechanism. It is in this case that I would like to go along

with Dr. Bottenberg to say that we must have something more visual. Despite

anyone's misgivings, I like Venn diagrams.

Dr. Ward:

All I want to say about the Venn diagram is that its purpose is to

interpret additive parts of variance accounted for. I am not sure that this is
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what it does it can be very misleading. In general, we do not have the

additivity implied in the Venn diagram.

Dr. Cohen:
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I think it is there. The problem is that a piece of the diagram can

be negative.

Dr. Ward:

Yes, but what does that mean?

Dr. Cohen:

Look at this diagram.

The areas a, b, and c add up to the

squared multiple R and a is positive

because it is essentially a squared

beta kind of measure, and c is

positive, but I wish I could tell you criterion

that b was positive. Indeed, I do not

know whether it is positive or not. In some instances it is; in some instances

it is not. That is where the problem lies. Two years ago I thought one

could add them up and interpret the sum as a variance proportion until I started

running into negative b's, which will happen when you have a substantial amount

of correlation in the system. What I think this says conceptually is that there

is a certain logical or substantive priority that goes into this scheme. It

matters whether you ask if set B is adding to what set A gives or if set A is

adding to what set B gives, because you are talking about different proportions
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of variance. The covariance proJlem for me is essentially deciding whether A

or B is the covariate. The covariate takes its variance out first. That is

what we mean by a covariance problem. A given substantive problem, dependinr

on who is doing what kind of research, may either want set A to be the covariate

and set B to be over and above the covariate, or the converse, and they can

make equally good sense either way. It does not matter how we define set A

and set B. Set A can be class membership, it can be purely nominal, or it can

be x, x
2

, and x
3
for that matter. I do not mean to interpret these as variance

proportions because we get uncomfortable about negative additions. The

relationship

Uhl = R
2

looks like a great way to partition R squared into proportions that are additive,

and it seems like a final and ideal solution to the question, "How much does

each of the independent variables, however defined, contribute to the variance

of the cri+erion?" Unforfunately, it does not work. The algebra is true,

but some of the pieces can be negative.

New Speaker: Some of the pieces can be greater than one.

Dr. Cohen:

Which shows why some must be negative.

Dr. Anderson:

There are also other ways to partition the system; you can compute

all of the semi-partial correlation coefficients, square them, add them up, and

you get R
2

.



Dr. Cohen:

Dr. Bock:

Dr. Cohen:

No you don't.

With semi-partials you do.

No, no! Only with successive ones.

Dr. Anderson:

Use higher order semi-partials.

Dr. Cohen:

That depends on what you mean.

Dr. Bock:
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The term refers to a partial on an orthogonalized basis. Now, if

you want to call the semi-partial orthogonalizing in all different ways, then

of course they won't add up.

Dr. Findley:

We agree, then, that in order to interpret correlation one needs

to know more than the correlation coefficient. Let's proceed to another topic.

Let us turn to another of Dr. Bottenberg's questions:

"What meaning does a test of main effects have in the presence

of interaction? How should it be tested?"

CA
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Dr. Bock:

The theory is sound only if the order is prescribed beforehand.

Since we do have this strong theory for stepwise tests for prescribed order,

I think we should strive mightily to prescribe the order. In my experience,

this is not so difficult. Certainly in a model that contains terms of low degree

and terms of high degree we would like to throw out whatever terms we can.

In many substantive problems there are clearly some terms which, as I said, are

problematical, things that you really want to test, and other things that you

are pretty sure do have some effect so you want to put them in first. The

problematical things, should go in last. I do not think you can do much more

than that.

Dr. Cramer:

What I had in mind was a situation in which the investigator would

have liked to have designed an orthogonal experiment, and meant to design an

orthogonal experiment, but he just did not happen to get equal N's. What he

would like to do is draw the conclusions that he would have drawn had he gotten

equal N's. So he has two factors, A and B. He is certainly interested in making

statements about interaction of A and B, and also statements about A and B

themselves.

Dr. Bock:

Dr. Cohen:

You have to do them in all orders then.

You have to use least squares, orthogonalize to get A' and B'. A' and

B' are not quite A and B. Orthogonalize them and you see how much each takes.
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That is all right if you have missing data because some idiot dropped the test

tubes. It is not Food when A and B are education and income because, if you

orthogonalize in that case, you are studying not quite education and not quite

income, but forced vectors that may be least squares approximations for education

and income, but are indeed neither.

Dr. Cramer:

Let us stick to the case where some idiot dropped them. We still

have several tents that we can perform. If we are interested in testing A, we

can test A, eliminating B and ignoring AB. We can test A, ignoring both B

and AB. We can test A, eliminating both B and AB, but you have three tests in

that situation. If you have more factors, you have many more tests of the

same thing. I wonder if there would be any agreement here as to which of these

tests are appropriate for what.

Dr. Findley:

Now, there is one type I thought Dr. Graybill was citing yesterday

where you use two variables that permit a certain degree of prediction. Then

he put a third one in, cut down the error, and improved the prediction. In

that case he had a chronological sequence, sort of a natural sequence like we

talked about before in predicting grades. You had high school averages a long

time before you had test scores, for example. It seems to me the natural

question to ask is "How much do the test scores improve the prediction after

you have used high school grades?"

4
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Dr. Bargmann:

I will say I wholeheartedly concur with Dr. Bock's presentation that

some ordering of the variables should be studied and is indicated. This gives

us a lot of information provided that such ordering is based on the physical

content of the variables and is meaningful to the educator. Do not do formal-

istic manipulation of all possible orders to try to find which one gets the

greatest increment in F or which one has the least contribution to make. We

must not overlook the fact that in our stepwise procedures the best two

predictore do not necessarily include the best single one. They may be

different.

Now, I would say ordering, in the interest of interpretation, is

clearly indicated if the order itself has been established by some interpreter's

value criterion. I can very wall imagine that in an educational setting you

can say the teachers of mathmatias or physics or chemistry represent one

particular block. Teachers of English and social sciences, or of English and

foreign languages, we treat as another block. In each block I may have a more

important, more prevailing criterion of ordering which means something

educationally. As soon as we go to partitioning and to the contribution of

the last x, unless we have a polynomial fit this becomes rather hard and, I

might say, esoteric or even metaphysical.

Dr. Wiley:

Let me rephrase Dr. Cramer's question, because I think it got lost.

The real question is basically "Is it ever legitimate to test the extra due to

a main effect above and beyond the interaction?"

A
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It is basically illogical, I think. It amounts to "Are you w;l1int7

to entertain the function Xl as your model instead of X + Y?"

Dr. Cramer:

The question arises in a practical context. Suppose you have an

analysis of variance that was designed to be orthogonal and you believe there

is going to be interaction, but you want to get the same treatment precision

with respett to all levels of B, which would be something like a blocking

variable except with interaction. You want to make a practical applied decision

of giving a single treatment level to everybody on the basis of the data even

under the circumstances when a large interaction is present.

Dr. Bock:

Well, then you just ignore the other way of classification. There

would not be any interaction. If you are in a practical situation of just

wanting to know what the poDulation sums are for two classes, you do not need

to worry about the other classification.

Dr. Cramer:

What is the appropriate error measure?

Dr. Bock:

I assume you have replications within class. You have only two cells

now.



Dr. Cramer:

A and AB?

Dr. Bock:
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In your replication, then, do you ignore the nonorthogonality of

Yes.

Dr. Cramer:

So the implication of this is that you never hold the interaction

constant. You would not correct for it.

Dr. Bock:

Dr. Cohen:

Yes.

You specified that. You said that you are not interested in

interaction.

Dr. Cramer:

But I am interested in it.

Dr. Bock:

Let us look at another case. When would you want to use the

expression Z = aXY as a model? Well, there are models like that. The gas

law is like that. But it is an application where you have well defined

variables and it turns out that that kind of functional relationship is a very

good one.

----1.1(

T
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Dr. Cramer:

Let us say that I am a naive psychologist and do not know anything

about models. I am used to doing my orthogonal analysis of variance, where I

do not have to worry about any of these complications, but somebody lost some of

M7 observations. Now, what is to be done?

Dr. Graybill:

I would like to go back to the cell means. Look at the cell means and

suppose you, for a moment, pretended that you actually knew the cell means. Now,

the question is; "What would you do if you knew the answer to the question?"

That is what I would look at. The fact is that you have to estimate these cell

means. Whether you estimate them by an orthogonal or a non-orthogonal technique

is by the way. What do you want to do with the real population cell means that

you had? Do you want to average them over the A classification and make general

recommendations? This is one possibility. Do you want to average over B? Do

it! You may say "I am going to pick out just one mean and make a recommendation

based only on it." Do that! Do whatever you want to do. Don't let the analysis

influence what you want to do as a result. After you decide what you want to

do, then, in my opinion, use the best analysis possible to get the estimation

for the result of what you want to do.

Dr. Anderson:

This is not what Dr. Bargmann would suggest.

Dr. Graybill:

That is why I am suggesting it.

,



Dr. Anderson:

But Dr. Bargmann says, "Thou shall not interpret chance."

Dr. Bock:
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This is a pseudo-question because if you do it in this order when

you re-orthogonalize, you will still get the same interaction term. You have

just exchanged interaction vectors as the basis for main effect vectors. The

same basis is there when you orthogonalize.

Dr. Anderson:

But you can always decompose a system into one term for each degree

of freedom.

Dr. ncLean:

Yes, but the question is that if you wanted to make the decision

between the levels of A, regardless of B, why did you design the experiment

with B in it? You may have wanted to make it more precise, but what is the

precision going to do for you, if you are going to ignore B anyway?

Dr. Cramer:

Different investigators may want to use the same data for different

purposes.

Dr. Bargmann:

An interaction is a term that the model builder puts into the model.

I presented strong evidence yesterday that the model itself must be specified.
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say, for example, that they are all zero or try to keep them as small as

possible in relation to some main effect, or assume some trend neutralization

or reinforcement. You must make the statement: "Would someone please tell me,

I don't know?" Why is there always a mix-up here? What does orthogonality

or non-orthogonality have to do with the presence or absence of interaction?

The two are completely different concepts. It may be harder to interpret

interaction if you have a very irregular design, but I do not know what the two

have 4.:o do with each other. Computationally, both are very simple -- an

irregular design analysis takes less time than estimating missing data.

Dr. McLean:

We do not understand the meaning of a main effect in the non-

orthogonal case, when we have had to do some sort of stepwise procedure to

arrive at the sum of squares. Whereas, we feel that in the orthogonal case,

we can partition the sums of squares into independent chunks and look at the

interaction separately.

Dr. Bergmann:

Do you visualize anything when you hear "sum of squares?" What is

a "sum of squares?" Why must they be additive? I often ask myself this

because I remember Clyde Cramer doing goodness-of-fit statistics and then after

he did marginal goodness-of-fit, he had a residual, of which he said, "Well, I

call that a residual." It certainly was not the test for interaction, it was

not the interaction sum of squares. If you want it negative, you can have it

negative; you can have it anything. It is simply a matter of symbolism. What
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New Speaker:

Very well, It is a useful simple tool if it is uniquely ascribable

by the design to a particular source.

Dr. Ward:

If one does not know what question to ask in the proportional or

equal cell case, then he has this problem. But if you know what the question

is in the first place, it does not matter to you whether it is an orthogonal or

non-orthogonal case.

Dr. Bergmann:

Yes, it is just harder to get the variance components. Variance

components mean.something to me. They involve conditional inversions and all

kinds of things. That means something to me, but "sum of squares" is just as

meaningless as, let's say, applying least squares in the case in which you have

correlated variables. It is a formalistic expression to which I cannot give

any meaning.

Dr. Bock:

Well, you have to evaluate its expectation and see what parameter

is involved.

Dr. Bergmann:

Put it into quadratic form and get your estimate, unbiased perhaps,

in some confidence region of the variance components. That means something.

aro,.
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Dr. Cramer:

In the example I am talking about, in the orthogonal case, I think

the questions I ask are clear. Suppose my experiment actually consisted of

two random samples of subjects, and I have two different drugs and two different

dose levels. This is a two-by-two design and the question that I might ask in

the orthogonal case would be: Does the dose matter? Does the drug matter?

Now what I want to know is how I can test them.

Dr. Graybill:

We are not going to test them. We will look at the means.

Dr. Cramer:

Are you saying that it is not valid for me to say, "I want to know

if these two drugs are different?"

New
:

Speaker
It is going to be invalid unless you specify what it is supposed to

be.

New
Spe ak er I

I would have you test interaction rather than make an assumption

about interaction.

Dr. Graybill:

Suppose you have a two-by-two design in which we will call the classd-

ifications A and B on which you have observations. You can estimate the cell

means with confidence intervals. Suppose you knew the cell means; let us talk

about what it would mean if I knew the population cell means. What questions

do you want to ask? If you want, you may ask: "How close is (u11 +
u12) / 2

to (u2
u22) / 2"

That is a very nice question to ask. It can be asked,
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whether there is orthogonality or not, so long as yet' do not have all data

gone. Well, suppose I want to ask another question: "How similar are

(u
11

+ u ) / 2 and (u
12

+ u
22

) / 2?" This is a perfectly legitimate question.
12

Yes, I would look at this using data from the same experiment. There is another

question that I might want to ask, "Is U22?U12 the same as u21 - at
Ull "

Th

is, is there interaction? This is a legitimate question to ask right along

with the other questions in the same experiment. You may want to ask the

question, "What is the value of a particular cell mean?" That is a perfectly

legitimate question that can be asked right along with everything else. As I

said this morning, I would use the studentized maximum modulus, ask all these

questions and answer them all in the terms of one sample with a known protection

level of error rate. So that is why I use the modulus in any analysis and then

say, "What questions do I want to ask?" Don't be limited in what questions you

ask by whether the data are orthogonal or non-orthogonal. This is immaterial,

by the way, if you have a computer. If you have a desk calculator and you have

to have your answers by 2:30 this afternoon, you have to ask different questions.

Even if some means are missing, you nan still ask about the effect of A in the

presence of this level of B or maybe one mean versus the average of two others.

So what I do first is say, "Do I know the population? Now, what question do I

want to ask?" I write down the questions. Now, I say "What is the best answer

to those questions with the protection level that I am going to deal with?"

You can do it. Orthogonality and non-orthogonality are beside the point.

Dr. Bergmann:

twenty.

You are going to do it for a two-by-two design, why not for a ten-by-

KA=



Dr. Graybill:

Yes, the same thing.

Dr. Bergmann:

have?

You want to write down trillions of different questions that you might

Dr. Graybill:

If I have those questions, yes. If / have the questions, I do.

Dr. Anderson:

Before you ask any specific question like this, would you test the

overall cell variation? Are you interpreting chance?

Dr. Graybill:

No, absolutely not. The reason I would not test is this. Suppose

I have a mean I am interested in and suppose I come up with a confidence

interval like I talked about before. Let's use as an example the average

height of people in Athens. Suppose that I come up with 5.11 to 5.12 feet

for the confidence interval of the average. But suppose I am testing whether it

is 5.10 feet. I would reject the hypothesis. Yet, when I use a practical point

of view, I say for all practical purposes, if 5.10 is somethincr sacred, yes,

I'd just as soon use 5.10. Now, my result is significantly different from

5.10 at the .001 percent level. I would reach the same conclusion if I had

obtained an interval of six to seven feet. So, you see, a significance test

throws away too much data. It summarizes your data too far -- way past the

,+.1
-l5 11
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sufficient statistic. The confidence interval if you are not a Bayesian, or

the probability interval if you are a Bayesian, does throw away a little informa-

tion, but not very much. I think the onus is on the experimenter to not say

if the average is different from 5.10 or not, but to say, "Look at this, I

have to make meaningful decisions on the basis that I believe quite strongly

that p is some place in this interval, that u12 is some place in this interval

and u
21

is in this interval. Now on the basis of that, I am going to ask

various questions and then I am going to do the best job I can today to answer

those questions. Let us not do just "yes-no" tests of significance or

hypotheses. You take a lot of time to collect the data and summarize it in one

little number. You are really sacrificing your data. I really think tests

of hypotheses are the worst thing of all, tests of significance are the next

to the worst thing of all. A test of an hypothesis is like this. Suppose

I test u=0 and decide to use the five per cent level. If it is above five

per cent I reject, if it is below five per cent I accept. That is a two-

decision problem.

Now, the test of significance says "Test u=0" and I ask the question

"At what level of significance do I reject u=0?" Maybe rejection at the .001

level gives me a lot more information than rejection at the five per cent

level. You want to know at what level I rejected. This is not a decision

problem. And the power of a test has meaning in tests of hypotheses, but does

not have meaning in tests of significance.

Dr. Bergmann:

Assume that you state your model in terms of uii's and you ask

questions in terms of these u..'s. Then by all means the confidence bounds
13

found have all the information that you want--the confidence bounds on the
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Dr. G7.aybill:

The F-test involves something in the numerator and something in

the denominator. Now, when you put them together in an F-ratio, you throw

the two individual parts away. You throw the individual parts, the numerator

and the denominator, into one factor. Suppose I have a model in which I am

testing for a quadratic effect. Now, suppose I look at the data, ani it is

such that there is no doubt in my mind--in fact, it is such that any experimenter

would say there is a quadratic effect operating. That is one possibility.

But suppose an atypical observation is included. This increases my variance so

that I get non-significance in spite of the obvious quagratic pattern.

Dr. Bargmann:

If you have extreme outliers, you should edit your data first.

Dr. Gravbill:

I am trying to make it dramatic here. When you use the F-test only

as a test, you overcondense your data. You condense your data too far.

New Speaker:

The maximum modulus has a denominator, too, though.

Dr. Graybill:

But the maximum modulus would be used to set limits on each point.

New Speaker:

Are you saying that just because somebody misuses the F-test here,

we should throw out tests of significance?
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I am saying that it is always misused.
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Dr. Bargmann:

I agree that it gives too little information. I said that you should

not interpret what you get in a test of significance. I merely say that a

test of an hypothesis that all effects are equal is a test of a perfectly

legitimate, simple model. If you are left with accepting that particular model,

then I think you are an astrologer if you say, "Now, I'm going to take these

things and break them into components." You can break them into components in

infinitely many ways. But it is a matter of parsimony, the simplest model.

All of them are equal. The rest is just random. This is, by far, enough to

explain. Why look for a mechanism or even say later, "My confidence bounds

are proof of a mechanism?" This, I think, is dangerous, that's all. It is

a verboten sign. If you do not reach a certain level, it's verboten to go on.

That would be my emphatic statement.

Dr. Graybill:

Now, I would like to ask you experimenters a question. Suppose I

spend $100,000 getting data and I make an F-test and it is not significant.

Are you going to shove that data in the drawer and say nothing else can be

done. I don't think so. You are going to milk that data for information.

Dr. Cramer:

I quite agree with everything that Dr. Graybill was saying. Things

should be phrased in terms of confidence



219

intervals rather than tests of significance. Let us take our two-by-two

table of means and say that the statements I am interested in making about

the true means are about the differences of the sum of the diagonal element

minus the other two diagonal elements, the sum of the first two row means minus

the sum of the last two row means, the sum of the first two column means minus

the sum of the last two column means. Now, perhaps these have a profound

relationship with the parameters of the original linear model which I might have

written down to start with. 'I am interested in confidence limits for these and

I can get confidence limits or tests of significance under various circumstances.

What they amount to doing is comparing different models. I am not clear which

I should be doing.

Dr. Bock:

0. K., so these are not independent. You don't care. Use some method

of judging all contrasts that protects you even though they are not independent.

Dr. Cohen:

I'd like to take issue with Dr. Bargmann. Here is an R-by-C matrix

and the data mean something. I won't specify what, but they mean something.

They account for criterion variance. However, I know that some of it is

accounted for by the R variable and some of it by the C variable, and some of

it by the RC interaction. Now, if there were no problems of power in this

system, I would have no difficulty at all going along with what you say. I'll

test the whole RC set and if I do not get significance, I am prepared to accept

the simplest model. I can't help but see the F-test on cells as sort of

ff communism" in the extreme--taking all these effects and dividinF them equally,

each according to its single degree of freedom as it were. Then it makes a
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decision about the average of them. If C happens to be a weak effect in the

population, R is a null affect in the population, and the interaction is a

null effect, then this operation will almost certainly leave me with an F-test

that will meet hardly any criterion. It won't meet the five percent level. It

may not meet even the ten percent level. I would prefer to think of these

three sets, the R set, the C set, and the interaction set, as families, at least.

Within these families I would be quite prepared, if the R factor set was not

significant, not to pursue that further, then look at the C effect, and so on,

rather than throw them all into a single RC conglomerate.

Dr. Bargmann:

This is really a very simple question. You observe only what happens

under a combination of R and C. You postulate in your mind that this is a

combined effect of R plus C, plus some interaction between the two. But that is

not enough. You now suddenly also say, "I want to make the contribution of R

and C as large as I can and deal with whatever remains as being non-additivity."

This is what you havy in your mind. Your data can give the sufficient statistics,

namely the cell means and standard deviations, all this is available. But what

of the compound F-test? The compound F-test tells you whether the full R by C

design could have been brought about by chance, if all effects have the same

true u. Suppose I get an F that comes to the .10 level.

You want to say that you have a little of something because you

assume that you had a weak effect in C, practically none in R, and none in

whatever remained. Consequently, haven't you thrown something away?

I merely say, "Yes." This may be true. You have evidence. You may

go on and say. "I have a hunch that there may be something in C which is
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hunch to outsiders and make it convincing is to say, "In the presence of these

weak effects, I have got to take more data. I have to collect additional data

until I reach a somewhat reasonable significance level, .10.1et's say. The

effect presumably always works in the same direction, however weak. If you

assume that such a weak effect exists, then if you take enough data you will

eventually also prove it, prove it beyond a shadow of a doubt--and a shadow

of a doubt is .10, .05, .01, you name it.

New Speaker:

You didn't get to Dr. Graybill's problem though. He spent $100,000

to get the data and wants to get something from it.

Dr. Bargmann:

I may treat it as a completely different problem. I may consider a

completely different scoring system, for example. Psychologists don't seem to

realize that as soon as they reject, as we say, or accept, a certain null

hypothesis, this means complete randomness. In many personality studies this

may be.true. But they haven't thrown away the data. They haven't done every-

thing in vain. They just have a poor scoring technique. Go back to your old

data and find some other scoring principles, graphology, for instance: Look

for more meaningful ways to handle the basic data till you find something. The

scoring has been insufficient. Eventually you can always take the data again,

re-evaluate them and re-quantify them in different ways and then you may come

up with something.

NrWsx-4



But to try interpreting or breaking the total set down into row,

column, and interaction, if you know that the three could very well add up

to zero, does not seem scientifically tenable and does not hold up in

court.

Dr. King:
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I recently encountered the opposite situation. I did a three variable

regression problem where the overall F was significant, but when I tested the

individual regression coefficients none of them was.

Dr. Eber:

(from floor) You are testing parts and each one of the parts excludes

the contribution of the others, including the joint contributions. I have

a specific example in mind. In some rehabilitation studies there are ten

factors we are studying. These are composite factor scores. Five of them

represent characteristics that the client brings to the counselor to begin

with. The sixth one represents college training that is given to the client.

Now, if college training turns out to be insignificant in its long-range effect

on the client, in terms of this model where the first five have been partialed

out beforehand, what we are saying is that college training as such is not a

significant influence. College training together with what there was about

this client that made us decide to give him this kind of training may be quite

significant. This is precisely the answer to the question that we want because

what the counselor is asking is, "If I go through this set of plans randomly and

sent everyone to college, will it really help?" No! That's what the model is

saying. No, it won't.
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I think that is a little too causal an interpretation. What you are

saying is that it can be attributed to that, that it is associated with it. I

am not too sure about your causal implication.

Dr. Eber:

Perhaps it is too causal. But the point is you can at least make some

hypothesis about what is roing on psychologically in terms of what variables

exist in the system. So the statistical procedure is giving you the right

answers.

Dr. Findley:

There is a auestion that I think is very much in order. The third

question of Dr. Bottenberg is on the use of a binary criterion. This is rather

distinct from the other points that we have discussed. The use of a binary

criterion in the context of the general linear regression model is seldom

discussed.

Dr. Bottenberg:

Schemes based on discriminant analysis and likelihood ratios are

ordinarily suggested as the proper approaches to classification problems. But

those techniques are usually difficult to understand. Those engaged in

educational research are interested in classification problems. They may well

consider the use of linear regression models with a binary criterion. Some

empirical results obtained at the Personnel Research Laboratory indicate that

a regression model approach can be used effectively in dealing with classification

;
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problems. One can evaluate the effectiveness of the approach in terms of a

hit table, displaying the correct classification count weighted by payoffs and

costs.

Dr. Bargmann:

Certainly the regression approach, if you have several variables in

the binary classification, is the correct approach. What is happening here is

that again we are dealing with the left side and the right side of the equation.

The right side in this case consists of O's and l's, or perhaps if we have more

categories O's, l's, 2's. These are the design constants. The left side is

the information that you have on all the random variables. Now we can set up

discriminant functions, we can start classifying. It so happens that if we lust

want to classify the binary way--0 or 1--or if we want to exPlain the best

way to total a score so that the score leads to the best classification, the

multiple regression approach gives the correct answer. This is a mere coinci-

dence. It happens to be the discriminant function. Take another instance.

In weighting items for college selection, we need to find the weights in such a

way as to discriminate best between those who will succeed in college and those

who will fail in college. The discriminant function identifies the best set

of weights, which happen to be the regression weights.

Now, there can be more than tRO groups. For example, when you have

people who are talented for office training, people for technical training,

people for general training, and people for KP. Now your set of tests have to

discriminate among four groups. In this particular case, the solution is no

longer multiple repression. The solution happens to be the vector associated

with the largest root of a matrix product. It is a multivariate analysis that

yields the discriminant function.



I would say that the claim that statisticians have not paid attention to this

problem is not correct. They have paid very close attention to it and it is

perhaps important to note that there exist multivariate techniques which are

well known, well developed, easy to obtain, and, / would say, available to

practicing people in education.

There is, of course, need for more study, especially in the case

where allocation to one group or another is a random variable. Box is doing

quite a bit of the research on this. There are many ways to handle the problem

and practical ways are available.

Dr. Anderson:

You are all right as long as the means of the groups are in a straight

line in the hyperdimensional space. If they are not, then you do have a problem.

Dr. Bargmann:

A straight line is not a requirement.

Dr. Anderson:

But it is. The means of the groups certainly enter into the

calculation and if vou do something like Rao does, you get an entirely different

set of weights for each group. You do not get the root and vector.

Dr. Bargmann:

You can make a pairwise split--A apainst B, A against C, A

against D, B against C, etc., and get useful information. If that is meaningful,
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then by all means do it, but if, as in education, someone wants a total score,

what weights should be used? Usually these weights should be given in terms of

a criterion set by the educator. But sometimes the weights are to be determined

in such a way as to give the sharpest discrimination between certain types of

groups, for example, interest differences between certain types of professions.

In this case, the means are not really on a straight line. You should look at

what I will call a calibration sample. Perhaps you have groups of extremely

successful physicians, extremely successful accountants, undertakers, and so on,

and you get a weighted total score of your various measures. With this weighted

total score, you find out which one to take in order to discriminate best

between the groups. Then it is evaluated for each individual and probabilities

are minimized.

Dr. Anderson:

If you do it by the canonical approach, do you get a root and a weight

for every variable and the same weights for every group?

Dr. Bargmann:

They may be the same but they may be only proportional: they are

arbitrary.

Dr. Anderson:

Now, if you do it by the Rao approach, do you get different sets of

weights for the variables for each proup?
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preparing for college, or some other group? Without stating what you mean, I

can give no answer."

Dr. Findley:

Let us take time to go around the table for questions we may have

missed.

Dr. Wiley:

We have glossed over a couple of things in regard to models and design.

One essential point with respect to the usual general linear hypothesis class

of models is that there are distinctions between them. When Dr. Ward is fitting

the four models that he gives in his paper, those are four very different

kinds of models and are useful for very different kinds of purposes. There

ought to be some attention given to the question of under what circumstances

one formulates what models for what purposes. In a very special area Dr.

Bargmann has done that in his paper. In general, I still think there is wide

residual confusion among the audience and among the readership about what in

fact are the important distinctions. I would like one of the speakers to

comment on this.

Dr. Bargmann:

The only quick answer that we could give is that the investigation of

the plausibility of models- -formulation A versus formulation B--of course, falls

into the domain of exploratory analysis, to which statistical tools are some-

times applied. The entire area of effect analysis, and I think I ought to

restrict it to effect analysis, is essentially an intent to try to indicate
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what kind of models would be plausible and what would not be plausible. I

am sure there are many others in the entire area of spectral analysis, he

entire area of fitting curves of unknown degrees. Many stochastic processes

are made for the explicit purpose of providing pointers as to how to formulate

a proper model which you can later test versus various alternatives in a confir-

matory sense. So, ati:ention has been given to it. I must admit, though, the

attention given to it has been highly esoteric. In fact, some of the concepts

that have been introduced, concerning the nature of latent variables and their

relationship to observable ones, are quite difficult. When a psychologist

talks about a factor loading, chances that the biologists, who may have a very

similiar problem, would not even know what he is talking about. If one person

talks about a correlation meaning something to him, the next person might say,

"I don't know what it means." So, I would accept the challenge as one member of

the statistical profession, that we can do a lot more by exploratory tools

in order to help people get pointers to formulate models.

Eventually, however, all these tools, whatever numbers may come up,

whatever vectors, whatever vector leadings or interesting thoughts, will have

to be translated back into the actual originally measured variable and not to

a principal component or to a latent factor score or something that no one can

really interpret, but to what you really measured in the beginning. Once you

have done this, I think you have done a service to the problem of formulating

a model which under the circumstances seems plausible. It is never correct

or incorrect, true or false, but can be either plausible or implausible.

Dr. Winer:

One thing that we have lost sight of here is that all of these models

are man made. We have to admit this initially. The use of statistical procedures
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to add or subtract from a model, I think, is somewhat inappropriate in that

essentially these models really establish a probability metric that we use at

one stage or another. I just don't know the real answer. Fisher gave the job

of model specification to the applied man, not because he wanted to give up any

of his real mathematical work, but because he was, in e sense, incompetent to

deal with this aspect of the problem.

Dr. Ward:

I agree with many of the comments that have been made, particularly

Dr. Graybill's in the sense that we have to look at the problem that we have

generated. The thing we have to do is develop the capability of our research

workers so they can formulate appropriately their own problems instead of asking

someone else to answer the question, "What is the right thing to do here?"

What you want to do is give them the capability of conceptualizing things in

their own situations. Now, related to this, I want to get back to Dr.

Bottenberg's first point. If we continue the practice of getting people to

understand well-developed models that may not be relevant to their problems, we

are being fundamentally inconsistent. I hope we keep on telling people to go

out and formulate their own problems. That is the only fair thing we can do.

We may want to continue the way we have been doing. But let's not keep on

trying to convince people they ought to think about problems in a very

restrictive way so that they get in trouble one time after another. Let us

try to determine the individual's objectives, but ask this person to think

about his own problems and not worry about proportionality unless it is relevant.
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Dr. Bock:

I had one other comment to make. It is the question of units of

measurement. A lot of this would be solved if we would stop denying the fact

that behavioral variables are almost entirely qualitative. We get around it by

using a test score which is the sum of qualitative responses. On such items

either you pass, fail, or amit. We hope that we can treat this test as a

continuous variable and model it with a linear model that defines values in

terms of real life. In a sense, it is quite a fiction; it is quite removed

from the things with which we are actually concerned, that is, the qualitative

response the examinee makes. If you deal with qualitative data, then you very

naturally want to state the probability that he will respond this way or that

way, or that this individual will be classified this way rather than that way.

So all of the quantitative aspects of the discussion is in terms of probabilities.

They are-nice because they vary from zero to one on a well defined metric.

They are not so nice because they are confined in this way: you cannot easily

construct ordinary linear models for probabilities because the ordinary linear

models will quite often give you a negative value or a value of over one. It

is, however, possible to retain the usefulness of linear models if you introduce

the concept of a response law--a non-linear function relating a linear model

to probability of response, mapping this real line that the linear model defines

in the (0,1) interval. In the last few years, I think we have made some very

good progress on working with these types of models. I have been concerned

with two types.

One of these is for contingency type data. I have been using a

generalization of the logit, the multivariate form logit transformation and

using maximum likelihood to estimate parameters of an underlying linear model

connected through the response law to the observable responses. More recently,
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a number of us have been working on models for dichotomously scored test

responses--one and zero responses--which treat this vector of ones and zeros

as a qualitative entity. We do not sum them to get a score or weight that is

treated as continuous. Again, the underlying model is linear, but it is

connected to the response probabilities by non-linear models and, again, maximum

likelihood serves very well.

I really think this is the direction in which we should move whenever

we can and this is the thing that really fits our kind of data. This idea was

really Thurstone's. We owe to him the idea of working with psychological data

in this form. I hope we can push on and extend it.

Dr. Bargmann:

I do not want to detract from the importance or value of this approach

of postulating a linear response, logits, probits, etc. They are very useful.

They have one horrible handicap--they always fit much too weal even if the data

is random. But I will say we are still dealing with two entirely different

problems. Why do you concentrate on behavioral sciences phenomena? The concept

of heat is extremely qualitative. Some esoteric mercurial scale was developed,

based on the behavior of a mercury column. Then someone introduced, somewhat

loosely and poorly, a concept of temperature. Temperature is now measured on

some scale and applied to this varying qualitative concept heat. It has nothing

to do with subjective heat because what I call cold in summer may have a

different temperature point from what I would call cold in winter. But it is

this concept of an almost artificial scale that we are using for communication

that has enabled us to establish relations between chemical reaction and this

scale for heat, between energies and heat, even between physiological phenomena

and the tempeieture scale. The approach of getting probabalistic or linearized
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models--standardized, linearized, normalized, logit, ranked--is useful, but

the other approach eventually will be more effective. We want to find a scale,

perhaps a combination of the test scores, perhaps a scaling of the test scores,

that enables us to predict.

Dr. Bock:

I do not say the independent variables or the conceptual variables

should not be quantitative. The response may be quantitative if it is how

heavy a weight you can lift or something like that, but it is not very often

quantitative.

Dr. Findley:

Don't we often now in the field of measurement think of a person

doing a number of tasks successfully rather than simply a single task? Now

each single task is a qualitative respcase, but when we think of a person being

competent in any particular area, we seldom think of it as being made up of the

separate actions that the person does. There is a continuity of scaling. If

we define competence as all of the things he can do, then we have an infinite

set of actions that make a scale. The scale becomes continuous, in effect.

Dr. Bock:

That is the distinction that we live with, but we do not really ever

have this infinity of things and we do not know in many cases that we should

regard it as a metric measure. The only behavior variables we have that are

really quantitative are things like response time. They are really rare once

you think about it. Most of the variables are really qualitative.

'tiO



234

Dr. Findley:

You seem to reject the notion I was taught when I was first introduced

to the use of bi-serial r--in item analysis. The assumption was that being

right or wrong was a normalized trait and that either you had just enough of it

to do the task or more, or you did not.have quite enough to do it.

Dr. Bock:

No, I am not objecting to that. That is exactly what I am saying,

but the response is to pass or fail. The underlying trait is latent; you cannot

observe it, but it is in the model. The trait is on the scale for which the

linear model is set up. It is not the kind of linear model that we are talking

about here today because it has to be connected through the non-linear

response law to the pass-fail response.

Dr. Bargmann:

But it is a form of scaling. You take regression models.

New Speaker:

In other words the crux of a lot of this is really the scaling.

Dr. Wiley:

I have one more comment about design. I think that has probably been

the most neglected subject in this discussion. No one seems to be talking about

design and the really fantastic economy one can achieve by having a planned

observational scheme or a designed experiment. I was thinking about the

example that Dr. Winer gave of the two quantitative independent variables which
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were classified into a cross-classification and the one that Dr. Ward gave which

was 15 by 25, where the variables on which the classification was based were

inherently quantitative and were scaled on a reasonable metric. In such cases,

factorial designs are not the most efficient method of detecting or fitting

the model, testing the model, or looking for lack of fit in the modal. So that

if one has a general quadratic model which one hypothesizes for a phenomenon,

something like a composite design would be an excellent way to fit the model

with a great deal more economy of observation, and a great deal more efficiency

for a similar sample size, than going to the problem of a whole factorial array

of data whether or not it is a designed experiment or a planned observational

scheme.

Dr. Findley:

This concludes our discussion. Our thanks to both the panelists

and the questioners.


