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PIZFACE

Ti:e Symposium on the General Linear rodels Approach to the Analysis
of Experimental Data in Cducational - esearch was held in Athens, Georgia
during June 29 = July 1, 1967. This report preseats the major addresses
and the discussion of particular methcdological protlens.

The Symposiun was held to allow experts to discuss with each other
the merits and limitations of the use of pemeral linear models and least
squares analyses in the analysis of experimesnts and cuasi-experiments. The
discussion is based on the consideration of related 1ssues raised by the
co~edi.ors and the several participants, Thus, the discussion is indirectly
related to the five nmajor papers which are instructional in nature.

The five major papers were presented by five leading statisticians.

Franklin A. Graybill, author of the defiritive text An Introduction to Linear

Statistical ifodels (Graybill, 1961) presented the introductory address. Eis

comments throughout the meeting concerning practical considerations of analysis
and interpretation should becore well-quoted in the 2iucational research
literature,

The second paper, by Joe i. 'lard, Jr., co-author of the widely used

Applied Linear Fegression (Bottenberg and Vard, 1253), was also instructional

and was intended to show similarities Letween alternative analyses.,

5. J. Winer, noted among educators and psycholozists for his Statistical

Principles in Experimental Design, was asked to discuss possible problems

related to the linear models = lcast squares approachi.
The fourth paper was by Rolf E, sargmann, vho was asked to outline
particularly appropriate occasioas foxr using linear models and least squares

analyses. bargmann presents some orizinal researci in this area which is
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not yet generally available elsewhere,

The last paper was by R. Darrell Bock. This paper draws together and
critiques the previous four presentations. The reader will be especially
interested in Bock's discussion of computer routines and his discussion of
the proper analysis of repeated - measures designs.

The second major section of this book presents the discussion of relevant
problems. This session was chaired by 'arren G. Findley. The participants
included the five major speakers and the following persons:

Harry E. Anderson, Jr., University of Georgia,

Elliot Cramer, University of orth Carolina,

Robert Bottenberg, Persomnel Laboratory, Lackland AFZ,

Jacob Cohien, llew York University,

Larl Jennings, Urniversity of Texas,

¥, J. King, Florida State University,

Leslie i.cLean, Ontario Imstitute for Studies in ducation, and

David E. Wiley, University of Chkicago.

The discussion was tape-recorded and the transcription was edited by
the co-edicors. The speakers were not always jdentifiable, and in some cases,
errors could have been made in the identification of persons naking remarxs.
loreover, the original intent of the speakers, in some cases, might have
been distorted in the transcription and editing process.

HNo attempt was made to reorganize the discussion remarks. The reader
will find many helpful suggestions and recommendations tiroughout this section.
Hopefully, tlhe editors have preserved in this docuuent a little of the flavor

and excitement of the discussion.

The editors would like to thank the many persons who shared in the work
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of this project. Rolf Bargmann and Larry Anderson were particularly helpful
in the planning of the Symposium and the identification of other participants.
In the long period between the original conception of the meeting and the
preparation of this report, many typists and secreeapies assisted the editors.
We wish to express our special gratitude to

iirs, Sherry VWilson,

Yirs. Carol Donaldson, and
Hrs, Patsy Jennings.

e wish to acknowledge the financial support of the U.S. Office of

Education, whose grant to us made the Symposium possible. Ue are also grateful
for the support of time, funds, and facilities of the University of Georgia

and the Research and Development Center in Educational Stimulation.

August,. 1968 W,L. Bashaw and

Varren G. Findley




Introduction of Dr. Franklin A. Graybill

by

Clifford Cohen
University cof Georgia

As a representative of the Statistics Department, 1'd like to add my

welcome to that which has already been extended to you who are participating

here today. We are pleased that we are able to cooperate in at least a small

way; and later in the program you will hear from a member of our department,

Dr. Rolf Bargmann. I might say that Dr. Carl Kossack, who is chairman of
our department, is unavoidably absent since conflicting schedules made it
imperative that he be out of town at this time. It is regretful that he 1is
unable to be with us.

Now, I would like to proceed to the task which I was requested to perform
and it is indeed a pleasure to be called upon to introduce the speaker.
He is, perhaps, best known for his very excellent book, An Introduction

to Linear Statistical Models (McGraw-Hill, 1961) which has been quite

widely distributed and very well received. Incidentally, this book is
labeled volume one. Dr. Graybill tells me that volume two is coming
along very nicely and will soon be released. Frankly, I think if he were

inclined to do so, he could just rest on his laurels with his first

volume but he's not that type of person. He is also quite well known

for his work in a revised edition of one of the leading advanced texts,

1 An Introduction to the Theory of Statistics (Mood, and Graybill, 1963).

The first edition was written by A. M. Mood and the revision is largely

the work of our speaker and Mood.




Now, besides these two works I have mentioned, which perhaps are the

reasons for so many people knowing about him,

he has published a number of

research papers in the leading statistical journals, particularly the Annals

of Mathematical Statistics and the Journal of the American Statistical Asso-

ciation. He is a member of the Institute of Mathematical Statistics, the

Biometric Society, and is a fellow of the American Statistical Association.

His undergraduate work was done at William Penn College where he received

his Bachelor of Science Degree and then he received his Master of Science

from Oklahoma State University. His Ph.D. was from Iowa State University.

He taught at Oklahoma State for several years before accepting a position

as Chairman of the department at Colorado State University, a position

which he still occupies. At Oklahoma State, he was,

I guess you might

say, Carl Marshall's right-hand man. 1 saw Carl shortly after it had been

announced that Dr. Graybill was going to Colorado State and you would have

thought Carl had lost his right arm. I just tell you that to let you

know how much his former department head thought about him. Well, since

going to Colorado he has been quite active; he's quite energetic in vari-

ous and sundry programs and with that I will yield t

Dr. F.ank Graybill.
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INTRODUCTION' TO 1Y USE OF GEWERAL LINEAR MODELS
IN THE AVALYSIS OF EXPERIMENTAL DATA

Franklin A. Graybill
Colorado State University

vou know one of the nice things about a meeting such as this is that
you get to know each other on a first-narve basis. I've been involved in a
nunber of these with groups of geologists and biologists--none with educa-
tion pecple, however., It scems that you run into each other from time
to time at meetings and various places like this and I think it is a good
coportunity to get together and find out what's gcing on. I'm a little
dismayed to be the first speaker in a sense that I suppose being the first
speaker is sort of like calisthenics in the morning--get them out of the
way and get going.

I wanted to know what credentials I could bring to a group like this.
You see, you have me at a disadvantage; you all ¥novw some statistics and I

know nothing about education even though I'm heavily involved in the cduca-

tional prccess or, at least, I think I am. I thought back as to what

I could bring to increase my status with you and one thing I can say is that

my undergraduate degree led to ry receiving a high school teaching certifi-
cate, so I guess that's samething.

Well, since this Symposium does involve linear models, I will say
something about this. But I think that before linear models should enter,
I must say a little bit about some of the techniques in statistics that
I presume will be discussed and debated here today and tomorrow.

1'd like to preface my remarks with a few words about statistics in
general since I believe that fram tire to time during the Symnosium cer-

tainly our deliberations will lead us to some of the foundations upon

which the theory of linear models must rest.




I presure I will not say anything today that is new but I may say

something that is controversial. I hope everyone does; this is the way

we can get ideas across. And even though I may say samething that will be
controversial to some people, I won't take time in every instance to voint
out every side of controversial statements. It is popular these days, and
almost mandatory, for a statistician to declare his rarty affliation. By
that I mean, in particular, we are seeing an influx of what we call Bayesian
statisticians these days. I don't know whether you've been involved in
Bayesian statistics or not, but in a political venacular, I'm an indenendent.
You might say that I'm a fence strattler. I'm Bayesian when I think it's
appropriate and non-Bayesian when I think it's demanded. So I guess in
sophisticated language, I'm what you'd call a neo-Payesian. But I think that
we're all Bayesians in the sense that we must bring to bear upon each of

our prcblems—not only in a scientific atmosvhere, but in everyday affairs
of men and women—to all the knowledg: we have. One way to do this in sta-
tistical formulacions is through what we might call Bayesian imethods.
Bayesian formulations are not very well Jefined yet and perhaos never will
be. If we're interested in this tonic in the symnosium, we might say a
little bit about it later.

Now statisticians, I think, and statistical communities today are di-
vided into two groups—not by natural division or by any intended thing--
but I think we are divided. There are the mathematical statisticians who
really don't live very close to data nor who care much about data. Then
there is a group, and I think a growing group, that feel that the real job
of a statistician is to be a data analyzer. With the advent of the carmputer
our problem is made not easier but perhaps more difficult; bhecause we can

make wrong decisions and use wrong methods and techniques much rmors quickly
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and make many more errors than we could a decade ago. But, be that as
it may, I presume that we as data analyzers are to take a set of data and
make some sense out of it.

We want to talk about linear models and so I will lay a grcund work
so that we might have a starting point. We might start off by saying
that we live in two worlds. We have what we might call the real world
and the abstract world. Now, the abstract world is a world of synbols,
of conceptualization, and so forth. Those of you who have known mathe-
maticians and have thought from time to time that mathematicians are out
of this world, what you probably mean is that they are out of the real
world; they're in this abstract world.

But, in contrast to this abstract world, I think it helps, at least
it helps my thinking, to focus on the real world. This is the world of
the senses, perhaps, the world of measurement--this is the world we
really live in. In the abstract world we would include the world of
thought--what our thoughts, our reasonings, and so forth are. I think
the problem of modeling, not only linear modeling, is to dip freely
pack and forth from the real and abstract worlds.

For example, Galileo dropped rocks from the leaning tower, and from
these acts he developed a formula relating time and the distance that a
body falls under free flight. Now if he cbtained this result by working
in the real world, he locked at the data. I don't know if the data
indicated 1/2 gt2 or maybe it indicated 1/2 gt1'99999. But anyway,
he arrived at 1/2 gt2. Now, by dipping into the abstract world of symbols,
we can cbtain the wvelocity at any given time and the acceleration at any
given time. We can cbtain a number of things like that. Galileo could
have also done exactly the same thing by working completely in the real

world.
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But what I'm saying is that the reason for modeling is so that we can
work in the abstract world and save a great deal of time. And, not only save
time, but perhaps by working in this abstract world, which is much easier,
we can fit in ideas, thoughts, perhaps new techniques, and so forth, that
we may never be able to synthesize in the real world. It is a condensation
of ideas using symbols. I think it is extremely important. But I think
it is also important that if we go to the abstract world to do our manipu-
lations from time to time we get back into the real world to check these
calculations, to check these equations and symbols. This is, in my opinion,
why we try to model either simple or complex situations.

Now, I would like to work toward the goal that I will call a fundamental
proposition as far as modeling 1is concerned. You'll notice that I will almost

never use the words, "cause" and "effect." I think that technically speaking

cause and effect are very difficult to defend. But, nevertheless, 1'd like
to take the following as a rough proposition.

First, y is some measureable quantity in the real world and we want to
predict it. However, it is something we'd like to predict without measuring
it. We can think of a lot of examples for y. We take as a proposition that
there exists a finite number of quantities that are not directly related to
y, and a function, f, such that, 1f these quantities were known and if the
function £ were known, then I could predict y exactly.

There are some who will find fault with this fundamental proposition,
but in spite of the fault that they find--and there is some--I think that
this is the way a scientist acts. I think what scientists do is decide to
predict or describe some quantity. Then they pick out some other factors
that they think have a beuring on this quantity of interest--factors that
they believe will be useful in understanding the system, that somchow

determine or drive the system, and they try to find a mathematical model
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relating the factors and the quantity of interest. The use of this derived

model puts us in the abstract world. We work in the real world with all of

our knowledge to decide on the factors that coniribute to driving the system
that determines y. Then we put these factors with some kind of a formula

or function and we use these to try to predict y. :

Sometimes we use "functions" in our prediction formula in a very loose :

sense. For example, we know that when it rains, there must be clouds. When

there are clouds, it is more apt to rain than when there are not clouds.
1f my father and mother were very tall, I would expect my children to be
tall. If my father and mother were short and I'm short, then perhaps my g

children will be short.

1f we find out that these statements or derived models do lead to some

measure of predictability--but not perfect as, of course, they never would

be--then what we try to do is to find other factors that also contribute to {

—
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driving this system and we bring in these additional factors to try to have
a better prediction under more and different varying circumstances.

1 think this is an idealized way to look at modeling. We believe there

are factors that we can find, that we can observe in the real world; we can

use some kind of a symbolism or some kind of equation or formula, and use it

to predict quantities in which we're interested. We believe these factors

e o s

somehow help determine and drive this system of interest and yet they're not
directly associated with it. As an example of this "indirect relationship,"
consider the prediction of a variable y. I'm going to measure the square

root of y and square it--I've got a perfect predictor for y. One predictor,

St

/;; is directly related to y. This is not what we're looking for; this 1s

R Lr OB G Hairrm

not of very much help if any help at all to us.

One of the objectives in science i{s to describe, predict, and relate

quantities in the real world, and mathematics is used to describe connections

£
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between events, but mathematics doesn't prove the statements. Mathematics
is not a science of truth; it's a science of logical reasoning. This is
why we use mathematics to do the modeling. We certainly think logical
reasoning is called for and mandatory. It'll tell us something about

the relationships in the abstract world, but it will tell us absolutely
nothing about the real world. And so the input to these formulas that we
use in the abstract world arc what is really important. Now, of course,
it is important that logical reasoning be instituted and used in the best

sense, so it is important that we know how to manipulate these quantities

in the abstract world, but it isn't the whole answer.

Now, I'd like to continue this a little further to show you how it 1is

related to linear models. Linear models are very speclal cases of moce

general models. Linear models are the only ones that have been developed

very far and in some sense, perhaps, the only ones that ever will be, but

we may be able to do a little bit more with non-linear models than we have

in the past. I will use as an example something very simple--the prediction

of the height of an individual. Let us assume that I'm trying to find some

factors that will predict what the height of an individual will be when he

reaches a certain age. Suppose there are n factors Xl, 12, cesy Xn that

"determine" height. Suppose we find two factors, X, and X,, that will be

important., Maybe these are the heights of the parents of this particular

person whose height we are trying to predict at a later age. We find some

kind of a function of these factors, say f(xl, Xz). In other words, we're

looking only at two factors in our prediction. The model can be written

y= f(xl, Xz) + g(x3, Kyo ooo» Xn). We know that these two factors, X, and

X,, are not the only quantities that determine an individuals height at a

certain age, because if we observe many people whose parents have the same

o 7 s
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height, these people would probably all differ in height. We know that
there might be other relevant variables--X,, Xyo oovs X for example,
diet, grandmother's height, etc. In other words, I make an observation of
an X, and an X, for an individual. I observe another individual and he

1 2
has the same X, and xz values, but the heights of the two individuals differ.

1
The reason is that other factors are really affecting height but we haven't
brought them into our model. We consider the non-used factors in the func-
tion g(x3, Xa, cony Xn) and examine tbe way g(x3, xa, coey Xn) varies when
xl and x2 are held fixed. We treat g(xa, Xa, ceoy xn) as a random error
and write y* = f(xl, xz) + e.

This is the first approximation to understanding--we begin to lay it
out, stretch it out, tear it apart, find out what factoers drive this par-
ticular event of interest. We may collect some data and estimate the vari-
ance of an error term. If the variance is zero, this means that we have
an exact predictor. This never really happens or I've never known it to
happen, but the variance might be quite small. If so, we have a popula-
tion of heights that can be predicted with quite good accuracy and per-
haps cnough accuracy to solve our problem.

I think we're never interested in predicting the height of an indi-
vidual to the nearest one ten billionth of an inch, or closer, as we might

1f we were looking for what we call deterministic model or point determi-

fnistic model. We might settle for what we call an interval deterministic

model. With an interval detcrministic model we would predict, for example,
height to within a millimeter, because for all practical purposes and
cven many impractical purposes, 1'd have my problem solved. The determi-

nistic models are formally stated and summarized in Table 1.




Table 1

"fathematical Deterministic odels Sumarv

Fundamental Proposition

For any Y there is a function f and variables Xl' :~:2, coey xn such that

yf(Xl, X eeer xn)
The ti1see "levels" of deterministic models
1. Point deterministic: y = £(X,, Xor eeey Xn).
2. Interval deterministic: y = £(X;y X5/ coer xn).
where each X is cbserved to be in an interval Xq + €
3. lewvel 3 is the same as 2, except that y is ohserved to be in

an interval y + ¢ with a orobability less than one.
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So the goodness of our model derends on the error variance. If it
takes various individuals and measure height of their mother and father,
and their predicted heights vary as much as 50 pounds for the same mother's
height and the same father's height, then my variance is too large, my
prediction is not precise enough. Therefore, I may decide there are other
factors entering into this system or I may have the wrong function relating
the factors.

Suppose I decide that there are other factors entering in and such as

X., that has to do with diet. We find a different function and now try to

3
measure y as a function of the three variables. Suwpose I have several
ocbservations, each of which has the same mother's height, the same father's
height, and the same nutritional measurement. If these individuals have
different heights, then I do not have either the correct function or all

the variables that go into exactly determining the h. i .. ’lxexwr, again, if
I can put a probability distribution on g, (Xgr Xgo ooes Xn) at least to

a first approximation, 95 varies and acts as a randan variable, then I

could write my model as £, (X;, X,, X,) nlus another random error which

is different from the earlier one. Now, let's again examine the variance

of that random error. In other words, what I examine really is how g, (3{3, X,,
ceer Xs) changes when X0 Xo0 and Xy are held fixed to tell me more or

less whether these three factors are contributing enough to the pre-

diction of height. Suppose I had examined the error variance of the twe-
factor model and found it too large. It gave me, perhaps, a distribution

that has a spread of let's say six inches. So when I measured the mother's

height and the father's height, I still could not predict within less than

six inches so it wasn't precise enough.

1
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So I brought the third variable into my model and got a three-factor
model. Now I examine the error variance of the new rmodel. If the variance
is a great deal smaller than the variance of the two-factor model, then the
x3 variable has done some good. It means instead of six inches of spread
on the prediction, I have reduced it to something like, say, one inch, and

if the variation is now one inch, perhaps I will decide that I've got a

model that is good enough for my nredictive purposes. I realize and recog-
nize and knaw that I will not be able to predict the height of an individual
exactly by only knowing these three quantities of input and this particular
function of the model because there are other important things that will
determine the height that causes individuals with the same Xl, X, and X3
to have different heights. But if the heights don't vary too much~-if
§ the error variance is tolerable so to speak--then I've qgot a prettv good
model and so I say "Here is the model T will use."

Now, to continue this a little bit further, we ordinarily don't use,
at least in the initial stages of exverimentation, just any function. %e
ordinarily use what we call a linear function. 3nd when we say linear
function, we mean linear in the unknown parameters. "e don't care about
linearity in the X's—-it may be logarithms, exponentials, squares, cross-
products, almost anything like that--but the model must be in the unknown
parameters.
p Now, let's digress a mavent. I need to point out that in riodeling
of this kind, there are two types of errors. "e may make measurement
,;“ error in trying to cbserve our variables. For examnle, when any kind of
continuous variable is involved we know we make measurement errors. If

somebody says "What's my height?” I can't tell you exactly what it is.
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There's a measurement error involved. The only tine there isn't a measure-
ment error involved is when ve count. For examle, how many neople are in
this roan? I presuwe we could count the number of neorle in this roam and
everybody in here would agree. Now, if I had indentified the exact function
and the exact factors that drive this function to predict our variable vy,

if there were errors involved in measuring the X's and an error involved in
measuring the y, I would not predict the exact value of y's, just due to
measurement error.

On the other hand, there is a second kind of error. Supmose I could
measure all of the quantities xl' xz, and x3 exactly--and yet when I try
to predict y by using these three quantities and the functian f,(X;, X5, X,)
I don't predict exactly because there are other things contributing to y.
This is what I would call an equation error. It's an error in predicting
because I don't have the correct ecuation. There are two general wavs I
can have an equation error. “ly equation may have immortant predictors
omitted or the function chosen may be the wrong function.

I think the fact of the matter is that in every real world situation,
the reascn ve don't predict same things exactly is because we make both
types of error. 'e make reasurement error and we also make an equation
error. Now the question is which of these in a particular situation
should we examine more closely; which should we try to take into account?
what we've discussed orimarily todav is trying to take into account the
equation error. Our first model might not be the right equation. The
secaond model might not be the correct equation either, but it's more correct,
let's say, then the first one if we have been good experimenters with
good insight. There is still some equation error involved but there is

also undoubtedly a measurement error involved.
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Now, there are sawe sciences, and education is aone, where measurenent

errorisaveryrealandixrportanterrorandmaybeequalinmgnituﬂei.n

many situations to the equation error. ‘le may have a good equation but
our measurement error may be so high that it samehow invalidates our model
as a good prediction equation.

ilow, let's try to use our model to relate the real world and the

abstract world. If we can enter the abstract world and find this model

then we can go through our mathematical manipulations and do many things

and find out perhaps even same new things without doing all the g
experimentation that would be necesiary if we worked only in the real |

world. Now, there are same reascns why we can't bridge tne two worlds.
There are many reasons, in fact. One, as I said, rmathematics pernaps

is too exact and maybe it is. But it is exacting and that's just the

way mathematics finds itself. Another thing is real world quantities ;;j'

are not well defined. For example, height is not really well Jefined

and we need save kind of operaticnal definition. I'll say I'll take

G et

a certain kind of measurement device and I'll measure a thousand tirmes
and tzke the average.. It's an operational definition, but height itself
is not well defined at all. We could, I suppose, hold the whole

symposium in discussing what we mean by the length of this table. If

we mean length perhaps to the nearest foot, the problem is solved. But

ai suppose I said I needed to know the length of this table to the nearest

micren. Well, the problem is not solved and so we would have to solve it

and there are very deep difficulties with samething even as simple as that.
Another reason why perhaps it is difficult to relate the real world

and the abstract world through mathematical modeling here is that there's
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measurement in the real world. ile've got to live with it. Physical
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scicnoes savtimes solve tiis in many of their problens, so ncasurement
error is not too important to them. Measurcment errors have a way of
accunulating when you take a nurber, whan you square it, vMen vou take
logarithms, exponentials, and etc, and so even in the physical sciences
where the measurement error is very small, it offers same problem.

Another difficulty in relating the two worlds is the difficulty in
holding a certain quantity fixed in the real world while others vary.
Mathematically you can do this very easily. Say, let's hold X, fixed, let
X, vary, and see what happens. "ell, vnu, nerhaps, can't really do that
in the real world. You can't hold height fixed and let weight vary. You
couldn't let weight go up to 300 pounds and the height be 18 inches or
something like that. It just doesn't make sense, SO it's difficult to
do that in the real world and so we have to be careful.

Another difficulty in relating the two worlds is that real world
quantities may not be independent in mathematical sense. That is why we
can't hold same constant while others vary. 'l can consider them mathe-
matically independent, but in the real world that may not be the case.

Ncw, this is one reason why we've got to be very careful when we use the

coputer. We run away with ourselves and come up quite often with nonsense.

Finally, there are no reasons vhy we should be able to relate these
two worlds actually.

Now, the feeling is that we as mathematicians and as statisticians
many times spend a great deal of time gettina nrecise solutions to the
wrong problem and I think we could, perhans, spend time better getting
approximate solutions to the correct problem.

Now, I'd like to classify these particular models. These models are

called quantification models. They're models to be used when the variables
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are quantitative variables, variables that I can measure, variables that
have interval or ratio scales. These are things like height and weight,
things that have i pretty good definition of measurement even though maybe
I can't necessarily measure them. ilow, there are a nunber of classifi-
caticns that could be made here and I would just make some of them befare
I start. We've got to bring in linear models here. We'll use X's to
denote independent variables and y to denote the dependent variable.

The first model is where the independent variables are pre-selected
real variables—not random, they're pre-selected. We use this all the
time. We decide well, I'm going out and get somebody that weighs 50
pounds and his mother weighs 140 pounds and things like this. They're
actually pre-selected. Naw, of course, y is always a random ccamponent,

a randam variable.

The second case is where y, X,, X,, and so fcrth are jointly random
variables. Now, this may ke a situation where I go out and select pecple
at random. let's say if I'm talking about height and weight, I select
pecple and they have a height and a weight. I select another person,

Le has a heignt and a weight, so the height and the weight, the y and

X, are random variables. In the former case we purposely select scme-
body that weighs 50 pounds and measure his height, select samebody that
weighs 60 pounds and measure his height, and select samebody that weighs
70 pounds and measure his height. This would be the first type. In the
second case, I might take the person at random scmeway, but his height

and weight would not be pre-detemmined by re.
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Now, the third situation is either case one or two when sorme or all of
the independent variables can not be chserved. !ov, that is really almost
always the situation. For example, in the height and weight examnle, I
can't really observe height and weight. You have a true height, and a true
weight, but I can't observe it. ‘hat I observe is a measurement of your
height and weight and if this is not truly your height and weight, it turns
out that a different kind of model is amnrooriate than is needed in cases
one and two. I don't chserve these y's. I observe the X's plus same kind
of random errors. You might say, "Well, these models almost lock the same.”
But the difficulty is the appropriate solution to case three has never
been found.

The particular prcblem here has never been adequatelv solved. There is
same indication that it never will be, that the situation where I have errors
in !i\easuring my independent variables is not amenable to actual solution.
Now, I say this so we iight keep it in mind. Now, if the measurement error
or the X variance of the reasurement error is very, very small relative to
the magnitude of the quantity measured, then the method we go through in
the first two cases are very good and almost the same as would be if I
measured them without error. But the problem exists and somotimes it is
sort of glossed over and we don't recognize it. This is sametimes called
"regression' or "linear model with error of observation in the devendent
variable." It doesn't matter if we have errors of cbservation iny.

It just increases our variance and we don't do quite as good a job, but
we can still do the job we set out to do. If there are errors of obser-
vation on the X's, then that problem has not been solved and can offer some

real difficulty. I think we need to be aware of that.




There are two things we are generally interested in doing in these models.

one is predicting, the other is to estimate, and these are two different

problems.
If we are interested in only the prediction problem, predict the height

let's say of an individual, we don't care nerhaps vhat the parameters in

the model are as long as we have a good model for prediction. If all we

want to do is predict the distance a body falls in a free flight in a vacuum

T e e Tt e

under the influence of only gravity, we may just like to be able to predict
it as a function of time. This is what I call a nrediction nroblem.

Now, the estimation problem means that there are some reasons why the
model parameters are important. They may be important in their own right,
not only important in just being able to predict. For example, in Galileo's

model the constant of the model is a measure of the gravitational constant.

So while I would need to know the constant fairly accurately to have a

good prediction, I need to know it for some reason in its own right and so

I'd like to estimate it. Usually, regression constants may not have par-

ticularly important pronerties to me, but I'm just trying to obtain these
factors to get a good prediction of y, so I'm interested in qgood estimation

of weights only in so far as good estimation werild lead me normally to good

prediction.
The problems I think are quite clear. I think that there are times
when we want to do one and times when we want to do the other. Tell, that's

all I have to say about this particular model--what I call the quantificatioh

model, or quantitative variables model.
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Now, I'd like to turn just for a minute to what I call qualitative
models. These have ordinarily been called analysis of variance models.
Now, to a mathematician and a mathematical statistician, they're exactly
the same, but you know in some ways, the interval from 2ero to one is
exactly the same as the interval from 10,000 to 10,001, but if you're
going to have your salary in dollars per year in one of those intervals,
I think perhaps you wouldn't want to consider them the same. So, while
to a mathematician and a mathematical statistician, what I call the
qualitative or analysis of variance models can be cbtained as a special
case, mathematically speaking, from the models on the quantitative vari-
ables that I just discussed, I don't think there is much value in that
except perhaps as a teaching aid. You just have to go through theory
once, but to sameone who is going to use it, even though as I say,
mathematically they're equivalent, I think it's very inportant we go
through these models independently.

Now, these models generally can be written

* &3k

Yisk = Mij
The u's are what we call the means; thz e's are what we call the random
compcnent, and both the u's and the e's are uncbservable. The y's are
what we cbserve. The subscripts i and j tske the place of the X's. Sub-
script i takes the place, for exanple, of cne X; j of another, etc.

I shall classify these into three categories and I'm classifying on
the nature of the u's: ane, the fixed effect models; two, the random
effect models; and three, the mixed, or random and fixed effect models.

Now, let's just take the fixed effect model and sub-classify it.

Let's cansider a two-way classification of data. Let's use n; j to mean

that the number of cbservations in the ith row and jth colum. If nij




equals zero it means thers are no cbservations in the ith, jth group;
that is, y:i.j doesn't even exist. We say that a model is "cawplete" if
all nij are positive. If at least one nij is zero, then we have an
"incomplete"” model. In other words, if all cells have something in them,
we have a cawplete model; if there is at least one cell with no data we
call the model "incamplete."

In our breakdown we could have a tree of classifications. The first
breakdown is models with and without interaction. This is very inportant.
Models specifying interaction, we call “"non-additive." Suppose in order
for discussion, we have ocne cbservation per cell. If we want to check
for presence of interaction we have a test due to John Tukey and varia-
tions of that test. A second breakdown is by cell sanple sizes. First,
we could have one cbservation per cell as above. Second, suppose we have
more cbservations in each cell, but the number of cbservations per cell
is the same for each cell, say nyy = m > 1. This can be analyzed by con-
vential ANOV. Third, we may have an unequal number of cbservaticns per
cell. There are two things we may want to do here. e may want to sub-
classify this. If we have equal numbers, things are pretty straight for-
ward. You can check interaction, you can check what we might call main
effects, and so forth. If we have a conplete design with unequal nuibers,
let's say more than one in some cells at least, we can check for inter-
action and we can check main effects and I call both of those conventional
methods. The main effects are estimated by unweighted means analysis.

Now, let's consider additive models, or models that specify no inter-
action. First, consider the case with one cbservation per cell. This
has a conventional analysis. Second, consider additive models with equal

nurbers in each cell, but the n:i.j are greater than one (n:i.j =m>1),
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This model also kas a conventional analysis. The third one is, of course,
its counterpart, with unequal mumbers in the cells. These various models
are summarized in Table 2.

There are problems we need to solve after we have the model. We need
to examine the data for interaction--where and what kind. This is basic,
not cnly find where the interaction is, but what kind of interaction is
present. Is it a strengthening kind or is it a reversal kind? These
are very important prcblems, it appears to me. We perhaps want to examine
for row and colutn effects. If there are effects, where are they? What's
operating here? What's pushing the system? More important than any of
these is to examine individual cell effects.

The first thing I think should be done in a situation is to find the
sufficient statistics. Now, if you're not well trained in mathematical
statistics, you may not know what that means. But what it means in a
nutshell is this--reduce the data as far as possible without losing any
information. For example, if you have data here that involves, let's
say 500 cbservations, you may be able to reduce that to 50 cbservations
without losing any information under the model which you are assuming.
Again, don't take the model as gospel too much. You should go back and
examine the model. You should use your data not only to check what you
started to determine, but you should also use it to examine the model
in which you use it. I think one chould reduce the data as far as possible
without losing any information--to what we might call the smallest set of
sufficient statistics. It's just a matter of simplicity, it seems to me,

it's easier to lock at 50 numbers and read something out than it is to

lock at 500,




Table 2

A Sumary of Some Fixed Effect, Complete “4odelsl

A.

B.

Interaction (Non-Additive)

j= 1; Tukey test for interaction

2. Foual cell sample sizes: n:i.j =m > 1; conventional analysis

1. One observation per cell; n,

3 not equal for all i and j

Interaction--conventional analysis

3. Unequal cell sample sizes; n,

Main effects--unweighted means analysis

No Interaction (Additive)

1. One observation per cell; nij = 1; conventiocnal analysis

2. Equal cell sample sizes; nij =m > 1; conventional analysis

3, Uncrual cell saple sizes; nij" conventional analysis

incomplete models.

]This breakdown can also be applied to random components models, and
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I think the important thing in a two-way classification is to esti-
mate the cell means. You may not want to do this; you may have other
things you want to do. But this is what we should estimate to begin
with, it seems to me. Preliminary analyses are very useful.

Another thing is to use some kind of a technique to milk the data
after you do the things for which you set up the experiment, because
this is where you get the new ideas.

I think something else should be done as you use the data to examine
the model. Use the data in another way to decide how you could go on
to another experiment in sort of a sequential fashion to inprove cn the
result=--to either confirm or deny your conclusions.

There is another problem that is important and deals with the Bayesian
point-of-view. If I use a linear model, it's a very formalized thing.
You all have a great deal of knowledge to bring to bear cn a problem you
camnot model. I think that this is where the jdea of what I shall call
the target and sample population was developed. There are two popula=~
tions. You sample populations, and from that sanple, using statistical
techniques, you can cbtain probability inferences to that population
that was sampled. 'That perhaps is not the real population you want to
discuss. The real population you want to discuss is called the tarxget
population. You sanple cne population. You can draw valid probabilistic
statistical inferences to the sarple population. Then the population
you're really interested in, the target population, must be given con-
sideration. After you have the information on the sanple population,

the inferences you draw to the target population are perhaps non-proba=

bilistic, more personalistic.




Now, I recamend some “"don'ts" and I wish we could discuss these.
First, "Don't use a statistical test." There is a one-to-one corre-
spondence between statistical tests and statistical confidence intervals.
For example, mathematically, in a sense, they're equivalent; but the
way we think about these things is very, very far from equivalent. I
would like to discourage the use of any kind of a statistical test and
even talking of the phrases "statistical significance" or "tests of
hypothesis.” Use confidence intervals where possible.

The other "don'ts" are "Don't be restricted by absolute pre-con-
ceived linear models," and "Don't reduce the data toco far." Show the

cell means. Show the sufficient statistics.

e
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Introduction of Dr. Joe H. Vard, Jr.
by
W, L. Jashaw
University of Georgia
I would like to introduce Dr. Joe H. Ward, Jr., who is
the next speaker. Dr. Ward is a Texan who earned his Ph.D.
at the University of Texas. Our major reason for choosing him

to speak is his co-authorship cf Applied Linear Regression.

This is a book that has Leen very useful to many of us since
it was onec of the few documents that has been available on the
subject over the last several years. A secondary reason for
asking Lr. Ward to participate is that he has, over the last
few years, been traveling arouni the country giving lectures
and workshops on general linear methods. We certainly would
have been amiss if we had not gotten him on the program.

Some of you will be surprised at his institutioral affilia-
tion. &ll of you will identify him with Lackland Air Force
Base's Personnel Research Laboratory. I understand he ha. been
at the Personnel Lab now some seventeen years. This year he
is on a one year lecave of absence so he has not broken his
connection with the Lab. At the present time he is Program
Director for the Southwest tducational Development Laboratory.

A fev of his researcl. arecas might interest some of you,
in addition to myself. One, of course, is application of
linear models; a second is homogeneous multivariate grouping.

This is a set of grouping techniques that was developed for
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grouping many things. liy interest primarily is grouping veople
altnough tie tccliniques are used for such things as grouping
regression systems ana things of this sort. Third, many of

you will know him primarily for his computer programming,
particularly for the Persub Programming System. This is a

very complete set of matrix subroutines that can he tied
togetiher to do any set of matrix operations.

Finally, I would like to say that Dr. 'YJard has consented
to give us the one day workshop on Saturday. This was his idea
and I would like to repeat, for those of you who have not been
informned, everyone is welcome to attend.

Dr. “ard's paper today is "Synthesizing regression models,

an aid to learning effective problem analysis."
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SYNTHESIZI!:G RECRESSION i"ODELS--
AN AID TO LEARNII'G EFFECTIVE PROBLE!C ANPLYSIS

Joe ll. Ylard, Jr.
Southwest Lducational Development Laboratory

Regression models cen ke used tc assist in the analysis of
a wide variety of problcms. iiowever, the power of reqgression
models is not widely utilized. There are two major recasons for
the lack of use of general regression models. First, there
have been too few attempts by teachers to develop the lL: aviors
in stucents that are necessary to effectively create models
appropriate to the particular problen of interest. Second,
many of the models that should be utilized for a particular
problem require the use of a computer, but many research workers
do not have effective software systems to facilitate communica-
tion with the computer.

These two problems can be helped by 1) providing an instruc-
tional system that will develop in stucents the capability of
defining regression nodels appropriate to their proklens of
irnterest; and 2) providing computational software that facili-
tates the ai:alysis by a .ijh speed computer.

Even though both of the above areas are important, the
first--defining appropriate models--is the most important and
difficult behavior to bring about in research workers. The

following presentatiorn will be devoted to the discussion of

several aspects of this prohklen. First, a few general comments

will be made about the general problem of teaching (and learning)

techniques of model generation. This will be followed by a
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specific exaiple of an instructioral approach--a descrintion of

a syntiesis of several aiffercnt rogrussion nodelz.

Ti.,e Generation of . odels

Some of the internediate ehavioral orjeutives taat leac

to effective model generation are:
1. A rescarcia vworier should bz able to define the vector of

interest (i.e., ceperdent vector) apnropriate to his proh-

le {ois is Gevelowed by exteusive practice or problems

W 1eld c
witia iicrcasine cifficulty.
< L researcl worier must develop the capa:bility of expressing
ais vactor cf interest (call it ¥), as a linear corvina-

tion of appropriectely defineu vectors (call tren X(1), ¥(2),

2(k)) nlus an error vector (call it I). rxtensive

practice in definina vootors is required to develop the

desired. capawsility. The research wvorker should think "I
need to [ind ‘ancther name for Y' so that tie statements

that I make awout this ‘other nawme’ will Le relovent to ny

problerm.” A student should uave extensive practice in
cefiningy tl.ose vectors which are to Le use’ in the "remailning”

<
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3. After tie vector of interest (Y) iLas been expressed as a
lirear corilination cf the new vectors (2(), (2), eeoy
A(k)) pluc an errecr, the research worker can then make state-

-otheses) atout "expected' or "predicted" values

ments (or ayge

cf Y. This involves the translation of the research question

from natural language into the lancuage of the nmathematical
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representation. This translation process is sometimes
quite difficult, and the student should have extensive
practice, using simple problems in the beginning.

4. The translation of statements about the model leads to the
imposition of restrictions on the model. The student should
impose his restrictions on the model tc cetermine the effects
of the restrictions on the error. It is sometimes helpful
to view these restrictions as the "giving up" of information.

5. After the student has imposed the restrictions it is impor-

tant that the student verify that the restricted model
actually Goes possess the properties imposed by the restric-
tions. This serves as a check for the student's substitu-
tion. It also provides frequent insights into previously

unrecognizec¢ properties of various models.

A Synthesis of Regression !lodels

The following illustration is Cesigned to show the idea
that is common to four regression models that are often treated
quite separately in our instructioral pregrams. The basic prob-
lem of interest ic the same in all four models; however, the

models appear quite different due to the differences in the

original assumptions that were made for the four models.

For our example, we consider four different research workers
who are studying the effects that different amounts of practice
have on typing proficiency. Furthermore, there is some concern
by these research workers for the possible “contaminating® effect
of the age cf the stucdents on the research results. Each research

worker feels that something should Le done to "hold age constant"
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or "take out the effects of age." However, a couple of the
researchers aren't quite sure what they must do to “take out
the effects.”

Now the first rescarch worker was located at a university
(ANOVA U.) where there vas strong emphasis on aralysis of
variance--with very little instruction in covariance analysis,
or multiple correlation and regression. »2And this research worker
was particularly fond of the "two-factor design." The second
researcher was at a university (COVARIA U.) which to no ~ne's
surprise was really strong cn covariance analysis. This school
had a complete course in covariance analysis to stress its
importance. The third worker received his education many years
ago at a university (iiULCOR U.) that had only taught multiple
correlation and regressicn analysis. The analysis of variance
and covariance course was started the year after he completed
his statistics course.

The fourth researcher had attended a university (VARICO U.)
that hac stressed a slightly different approach which they
described as "a sort of reverse covariance analysis" which they
have namec¢ VARICO ANALYSIS.

All four of these research workers have conceptualized a
common problem. First, they are all interested in studying the
effect of practice on typing proficiency while "controlling”
or “taking out the effects" of age. rurthermore since they
are dealing with the age information, they all wish to test for
interaction since it may be that the effects of amount of practice

are different for students of different ages. All four are
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interestec in, first, testino for interaction, and then if
there is no interacticr they will tost for the effect of
amount of practice.

Even though these four research ‘orkers have a coonon problem,
each one would probauly perform quite different analysis becaure
of the variec educational emphasis. Also, they might each argue
that they are doing quite different analyses. These analyses
appear even more aifferent because the computational procedures
appear cuite different.

The four different approaches will be presented Lelow in

a form that will emphasize tnat there are basic ideas common

to all.




Approach 1 - (ANOVA U.)
The research worker at ANOVA U. wishes to think of his

problem as a "two-factor design."

tle assume for all problems that there are observed 15

levels of practice (16, 17, ..., 30 hours) and that there

are 5 ages (14, 15, ..., 18 years).

\le define the following vectors:

Y = a vector containing the typing proficiency

scores of the n students in the study

X(i,j) = a set of vectors with elements defined
as 1 if the corresponding element of
Y is observed from a person with practice
hours i, and age j; and O otherwise,
(i = 16,17,...,30), (j = 14,15,..., 18)

Notice that if some X(i,j) vectors are null they are not

included in the model.

E = a residual vector

Then the full model is

Y = §§ aij X(i,j) + E

or in the extended form

(1) ¥ = a;q 14¥(16,14) + a16,15%(16,15) + ...* aj,18%(16,18) +

a17’14X(17,14) + a17’ISX(17,15) + oot 317,1BX(17»18)

+ a30’14X(30,14) + aBO’ISX(30,15) + eeet a30’IBX(30,18)-+E
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Figure 1
Latandcd Form of Vectors of Model (1)
Y X(16,14) X(16,15)...%X(30,14) x(30,15)...X(30,18)
Y16,14,1 1 0 0 0 0
Y16,14,2 1 0 0 0 0
Y16,24,3 1 0 0 0 0
Y16,15,1 0 1 0 0 0
Y16,15,2 0 1 0 0 0
¥Y30,14,1 0 0 1 0 0
¥30,15,1 0 0 0 1 0
Y30,15,2 0 0 0 1 0
Y30,15,3 0 0 0 1 0
y30,18,1 0 0 0 0 1
¥30,18,2 0 0 0 0 1
Y30,18,3 0 0 0 0 1
Predicted (or expected) value for an individual who practiced
16 hours and who is 15 years old.
E(16,15) = (a16'14* 0) + (316,15* 1) + (316,16* 0) + ... +
(a30,18* 0)
E(16,15)= 216,15
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In this discussion different symbols will not be used

to distinguish between the unknown parameters and their least
squares estimators. In the model above the symbols ay 5 will

be used to represent both the unknowun parameters and the esti-

mators.

Consider four different students having the following

characteristics:

Student Hours of Practice Age in years
1 Y P
2 s p
3 q
4 s q
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The hypothesis of no interaction can be stated as follows:
The difference between expected (or predicted) typing

performance of the two students at age p but with different
practice levels r and s is equal to the difference between
the expected (or predicted) typing performance of the two
students at age g but with different practice levels r and s.
This is hypothesized for all values of p, 9, r, and s where
p #q and r # s.

Calling the four expected values E(rp), F(sp), E(rq),

and E(sq) the hypothesis of no interaction is

F(rp) - F(sp) = E(rq) - E(sq).
Now in the model employed by the ANOVA U. research worker

E(rp) = arp
E(sp) = agp
E(rg) = arq
E(sq) = agq.

Then we see that the hzgothesis of no interaction is

arp = gp ™ 3rq " 4sq p#4
q=14, .,. 18
r #s
s =16, ... 30

*Then we impose these 56 restrictions on the model the
restricted model can be written as
(2) Y = a5¢ X(16) + a4 X(17) + ... ¢+ 410 X (30)
+ byy Z2(14) + byg Z(15) + ... + by Z2(17) + R
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where
X(i) = 1 if the corresponding element of Y is from a
student who practiced i hours;
0 otherwise (i = 16,17,...,30)
Z(j) = 1 if the corresponding element of Y is from a

student having age j.
R = the residual vector
a; and b; = unknown coefficients
Notice that 2(18) is not included in this model since it is a

linear combination of the other vectors.

Let

Q
[
H

i E. , the sum of squares of errors in the full model
z
i

1
Ri , the sum of squares of the error in the restricted

Q
N
i

model

Then if the F statistic is desired to test the hypothesis we

F = (q, - qy)/(75-19)
qy/(n - 75)

Now we will consider the situation in which the no-interaction

hypothesis has been accepted as true.

Then we use the model

| Y = ajg X(16) + a;9 X(17) + ... + a3, X (30)

! + byg 2(14) + byg 3(15) + ... + byy 2(17) + R

» The next hypothesis (the effects of practice) is that the
difference between the expected typing performance for two
students at the same age p but who have practiced different

amounts r and s is squal to zero. This must be true for all

ages.
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Then we consider the two expected values F(rp) and E(sp).

The hypothesus is

E(rp) - F(sp) = 0
Now in the above model we find that

E(rp) = a, + bp

E(sp) = ag + by
Then we see that the hypothesis is

(a, + bp) - (ag + bp) = 0
a, - ag = 0 r#s

r,s = 16,17,...,30

Then we impose these 14 restrictions on the model; the new
restricted model can be written as
(3) Y = byy 2(14) + byg Z2(15) + ... + byg 2(18) + G
Notice that this restricted model has no information to dis-
tinguish amounts of practice; i.e., we have given up the in-
formation about differences in amounts of practice.
Let g3 = ZGiz, the sum of sqguares of the error in the new
restricted model.
Then if desired we have

qp; / (n-19)

3 W -
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Approach 2 - (COVARIA U.)

Since the research worker from COVARIA U. likes to do
covariance analysis it is necessary to have his "contaminating"

or covariable in "continuous" form. Therefore, it is necessary

to accept a certain hypothesis about the model used in the

ANOVA approach (model 1) above. Before beginning his analysis

this research worker must make the following assumptions:

216,14 = 16 + Iy " 14
816'15 = CI6 * dls ‘ 15

316,18 = %16 * %16 " 1°
317,14 ¥ €17 * 417 * 14
; 217,15 = €17 * 917 7 1
a17'18 = CI7 + d17 * 18
230,18 = €30 * 430 * 18
or
§ _ . . _
; aij - Ci + di * J 1 ; 17'18'000'30

14,15,...,18

e

where

c; and d; are unknown parameters to be estimated by the
% least squares method. These assumptions then lead to the
acceptance of the following mocdel:

(4) Y = Cy¢ X(16) + d,¢ A(16) + cy9 X(17) + d,4 A(17)

+ [ 3K BN ] + 030 X(30) + d30 A(30) + E
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where
X(i) = 1 if tne corresponding elenment of Y is from a student
whe practicec i hours; 0 otherwise
A(i) = the age of the student if the corresponding element
of Y is from a student who practicec¢ i hours;
¢ otherwise
dow, we enphasize the basic common element between the two
approaches. Tihe COVARIA approach is now stated exactly the same
as the ALIOVA approach, i.e., the hypothesis of no interaction
is the Gifference between the expected (or predicted) typing
performance of the two students at age p but with different
practice levels r and s is equal to the difference letween the
expected (or predicted) typing performance of the two students
at age q tut with different practice lcvels r and s.
This is hypothesized for all values of 2, q, I, anc s
where p # q and r # s.

Exactly as in approach 1 the hypothesis of no interaction is

C(xp) = E(sp) = C(rqg) - E(sag).
Notice that the two research workers are thinking about the prob-
len in the same way.
liow we oroceed to find that the expected values in the

COVARIA approach are

E(xp) = cx + Gy * P
E(sp) = cg + dg * p
E(rq) = cr + dy * g
E(sq) = cg + dg * q

Then the hypothesis is

(cp +dp * ) - (cg + d5 * p) = (cp +dp * q) - (cg ¢ dg * q)

&

(@, - ) * (p-q =0

T,
%,
LTSN |
a
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But since » # g
Then it is necessary that
dr - ds = 0

or dr = ds r
r,s

I S

716,17,...,30)
Then imposing the restrictions on the full model (4) we have:
(5) Y = cy¢ X(16) + cy9 X(17) + ... + c4 X(30) + d5 A+ R
where
do = a new unknown parameter which represents the
coefficient common to all practice categories.
A = a vector containing the ages associated with the

elements in Y.

Let
2

a =i Ej
qp = I Ry 2

Then the F statistic
F = (g, - ay) / (30 - 16)

ay / (n - 30)

can be computed as a test for the interaction.

As before we consider the case where the research worker
accepts the above hypothesis.

The hypotheses of the effects of practices is thought of
in the same way as in the previous approach. The difference
between the expected typing performance for two students at

the same age p but who have practiced different amounts r and

s is equal to zero.
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Then the hypothesis is written exactly as in Approach 1.

E(rp) - E(sp) = 0

But in this COVARIA model we have

E(rp) = c, + 45 P
E(sp) = cg ¢+ d0 P

Then by substitution the hypothesis is
(cr + dop) - (cg + dop) =0

or c_=20C r#s
r S r,s = (16,17,...,30)

Then imposing the restrictions on model (5) we have
= +
(6) Y co v do A+ G
where U = the unit vector of all 1l's
€y = an unknown coefficient associated with
the unit vector

Notice that in this model all information about practice

has been eliminated.

Then

2
a3 = IG;

P and F= (33 -4qy) / (16 = 2)
% d, / (n = 16)
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Approach 3 - (MULCOR U.)

Now the research worker vhe was trained at MULCOR U,

needs to have all his information in a continuous form since

that's vhat is required in his approach.

Then before the 'IULCOR man can start he assumes not only
the restrictions representec by the COVARIA worker (see
model 4) but in addition he must assume in model (4) that

the following are true:

c16 = to + tl * 16
d16=w0+w1*16
Cy9 = to + tl * 17

* dig =W * ¥

¥

€30 = %o
= g *
t d30 ‘0 + w1 30
| or
{ ey =ty tty *i (i = 16,17,...,30)

Imposing these assumptions on rodel (4) we develop a starting

model as follows:

Y= (t + & * 16) X(l6) + (w0 + wy * 16)A(16)
+ o0 + (tg + £y * 30) X(30) +(wgy + wl* 30)A(30) + E

Y = t[X(16) + ... + X(30)]
+ £y [16 * X(16) + ... + 30 * X(30)]
| + wg [A(LE) + ... ¢ A(30)]
3 #wy [16 * A(16) + ... + 30 * A(30)] + E
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Then
(7)
Where

to U + tl P + Vo A+ w (P*a) + E
= the unit vector of all 1l's

a vector containing hours of practice

P W C <
u

= a vector containing ages

P*A = a vector whose elements are the product of the

corresponding elements of P and A. This is

called the direct product of P and A.

Again we emphasize that the MULCOR research worker thinks

about the problem in the -same manner as the previous two.
His hypothesis of no interaction is as before

F(rp) - E(sp) = E(rg) - E(sq)
Now we determine the expected values in the model assumed by

the MULCOR researcher. Looking at model (7) we find

E(rp) = tg + t) * © + wy *p+w * (r*p)

& N

E(sp) = ty + tl * g + Wo *p + Wy * (s*p)
E(rq) = to + ty * r + Wo *a+w * (r*q)
E(sq) = to + t * s + Yo *q+ vy * (s*q)

Then the hypothesis becomes

{tyg +t, *r +w, *p+w * (x*p)] -

1
{tg +t) *s+wy*p+w* (s*p)] =
{tg+tp *r+w *qg+w * (r*q)) -
[tg + £ * s +wy * g+ w * (s*q)]

or wllp - qllr - s] =0
Then for this to be always true the hypothesis is
v, = 0
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Imposing this restriction on the assumed model (7) we obtain

the restricted model (8).
(8) Y=ty U+t) P+ wo 2 + R

Then we can compute

2
qQ = §Ei

LR 2
qz il
and the F statistic is

F = (02 - ql) / (4 - 3)
q3 / (n - 4)

Mow if model (8) is accepted as true then we proceed to

test the effects of practice as in the previous two
approaches. The hyrothesis is as before
E(rp) - E(sp) = 0

Now in model (8) we have

E(rp) = to + t1 *r + Vo * D

E(sp) =ty + &) * s +wy *p

And our hypothesis is

)
Qo

(ty + ty * r + Yo * p) - (t0 + ty * s + Vg * p)

)
o

. t; (r-s)

and since r # s then the hypothesis is
) t, =0
Imposing this restriction on model (8) we have
(9) Y=ty + wgA + G

Then if

3 = {Giz
we have
F = {ay - qp) / (3-2)

q, / (n=3)
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The research worker for VARICO U. has always preferred
to have his data in a different form from the others. He
wishes to assume that model (1) of the ANOVA approach has the

following restrictions:

316'14 = k14 + m14 * 16
19,94 = kg + Mg * 17
Bun . = Kyg + Myq * 30
or 30,18 ~ 718 © "18 i=17,18,...,30
aij = kj + mj * b § J = 14'15'000'18
where kj and mj are unknown parameters to be estimated by the

least squares method. These assumptions lead to the acceptance

of the following model:
(10) Y = qu Z(14) + T, P(14) + k45 Z2(15) + my¢ P(15)
+ ... + le z(18) + Mg P(18) + E
where

2(1)

1 if the corresponding element of Y is from a
student who is i years of age; 0 otherwise and
P(i) = the hours of practice of the student if the

corresponding element of Y is from a student
who is i years of age; G otherwise.
Again, we emphasize the idea that is common to all four

approaches.

The hypothesis of no interaction is still stated as

E(rp) - E(sp) = E(rq) - E(sq)
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Then we obtain these expected values from model (10).

E(rp) = p + mn * r

= *
F (sp) kp s
E(rq) = kq + mq *r
E(sqg) = ko + m. * s

Then the hypothesis is

(k. + My * r) - (kp + mp * g) = (kq + mq

p * r)—(kq + Mg * s)

- * - ]
(mp mq) (r - s) 0
But since r # s then the hypothesis must be

-m, =0
Mp = Mg ’ q

or P
m, =Tg  P.q

14,15,...,18)

Imposing these restrictions on model (10) we obtain the

restricted model
(11) Y = k14 2(14) + k15 Z(15) + ... + k18 Z(18) + my P + R

where
a new urknown parameter which is common to

Mo

all ages.

P = a vector containing the practice hours

associatad with the elements in Y.

Then we can compute
. 2
q = ¥y

q, = IR, 2

1

et g G R A oot SN e B ke Bt "
B, S TS T b P s g S 3o S o Al S A A 555

P

and
F= (gqy = qq) / (10 - 6)
ql / (n - 10)

can be computed to test the hypothesis.

3 e O e 0 0 R i a5 N
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As in the threec previous approaches,ve next explorc the

case of no interactions and hypothesize that the difference in
typing performance for two students at the same age p but
who have practiced different amounts r and s is equal to

zero. Again, the hypothesis is the same in all three previous

approaches.
E(rp) - E(sp) = 0
Then we obtain these expected values in our VARICO model.
E(rp) = kp + mgr
E(sp) = kp + m,s
Thea the hypothesis is

(k.. + mor) - (kp + mos) = 0

P
or m, = 0
Then imposing this restriction on model (11l) we have

Y = k14 z(14) + le z2(15) + ... #+ le 2(18) + G

computing

2
az = IG;

we can determine
F = (CI3 - q2) / (6 -5)
qz / (n - 6)

Summary

The ideas that were emphasized above are:
1. In all four approaches the statement of the hypothesis

of no interaction was the same in the original thinking

about the problem. Not until the specific assumed model
was introduced did the approaches appear different.

2. In all four aoproaches the hypothesis testing the effects
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of practice (which followed the acceptance of no inter-
action) was the same. Not until the specific model was
introduced did the approaches appear different.

3. The assumed models in all four approaches were obtained
by accepting assumptions about the first approach (ANOVA).

I1f desired the research worker from COVARIA, MULCOR,

and VARICO could test their assumed models to determine
if these starting models are appropriate.

4, Even though the computational aspects were not emphasized,
it can be observed that computing procedures required

in all four approaches are quite similar.

It is interesting to notice that the original model of
approach number one was basic to all others, and that the last
three research workers chose to accept assumptions about the
first model. Now the predictor vectors in this basic model
that was the originator (or paren.) of all others are binary
coded, mutually exclusive vectors. Sometimes these basic
vectors are called dummy vectors. This seems to imply that
there is something "not gquite right" or "bad" about these
vectors. These binary vectors are really the parents of the
other vectors and are in effect the most "brilliant" of them
all. I would think that they should be called the "bright”
vectors, and the other vectors might be called "dummy".

My guess is that since the binary (parent) vectors
were recognized much later than their offspring, there was

some attempt to apologize for the introduction of the parent.
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Also, since many early studies were thought of in
a multivariate normal setting, there existed more need for
users of these binary vectors to apologize for their use
since they were not multivariate normal.

The first three approaches, ANOVA, COVARIA, and
IIULCOR are frequently treated quite separately in the
education of rescarch workers. The fourth approach
VARICO is not likely to appear at all.

I urge those teachers who are interested in develop-
ing in their students the capability of effective research
analysis to consider carefully the objoctives presented in
the carlier part of this paper on page one. Then I suggest
that the specific synthesis of models that has been pre-
sented will contribute to the development of the research

capabilities that are decired of research workers.




Introduction of Dr. B. J. Winer

by

Joseph Harmmock
University of Georgia

It is a pleasure to welcome the next speaker to the University of
Georgia and Athens. He really needs no introduction because of his text,
Statistical Principles in Experimental Design. It has had phencmenal

success. He certainly needs no introduction for students who have
been arcund Purdue and have taken his graduate courses in statistics.

It's rare, and I'm sure you will go along with this, to hear a
really excellent statistics teacher conpete with the other excellent
teachers on the campus. At Purdue, I am told by all the students who
have been in and around psychology and statistics, Dr. Winer is the
master teacher. I think that's very important.

You may not know that he is a native of Oregon. He earned his
Bachelor's and Master's degrees at the University of Oregon. He got
all involved with World War II and worked with the Adjutant General's
Office of the Army and the Civil Service Cammission. He returned to
Chio State and earned his Ph.D. there with therry. For a couple of
years, he was at North Carolina where he worked with Cox and others.
He has now been at Purdue University as Professor of Psychology for
several years. It is a real pleasure to introduce to you Dr. Ben J.

Winer.




PROBLEMS IN THE USE COF GENERAL LINEAR MODEL METHODS

Bo Jo "Jiner
Purdue University

The topic that I was originally assigned was the mis-
use of general linear models, but on the program it got
translated "Problems in the Use of the General Linear
Model." I think that, historically, the use of the general
linear model as we know it today stems from R. A. Fisher.
Certainly the general linear model, as ijt was taught to me
by Professor Eose and others at Chapel Hill, very clearly
indicated the connection between the experimental use of
the general linear model and the ideas of R. A. Fisher in
his analysis of variance methodology.

pefore I talk about problems in the use of the general
linear model, let me quote from R. A. Fisher and essentially
jndicate what Fisher thought about statistics in general,
which is going to be relevant to what I have to say. I am
quoting from a paper by Fisher entitled "On the Mathematical
Foundaticns of Theoretical Statistics" which appeared in

the Philosophical Translations of the Royal cociety of

London in 1922, Fisher says the following:

The problems which arise in the reduction

of data may be conveniently divideé into
three types. (1) problems of specifications.
These arise with the choice of the mathe-
matical form of the population. (2) Problems
of estimation. These involve the choice of
methods of calculating from a sample statis-
tical derivatives, or as we shall call them
'gtatistics' which are designed to estimate
the values of parameters of the hypothetical
population. (3) Problems of distribution.




These include discussions of the distribution
of the statistics derived from samples or,

in general, any functions of quantities whose
distribution is known.

It will be clear that when we know what parameters

are required to specify the population from which a sample

is drawn, how best to calculate the sample estimates of
these parameters, and the exact form of the distribution
of our derived statistics in different samples, then the
theoretical aspect of the treatment of any particular
pody of data has been completely elucidated.

I want you to pay particular attention to the next
quotation. Fisher was very much concerned with the
application of statistics; he was a shrewd man, experi-
mentally. Here is what he had to say about problems of

specification. This is essentially the problem of which

Dr. Graybill spoke.

As regards problems of specification,
these are entirely a matter for the
practical statistician. Those cases
where the guantity and nature of the
hypothetical population is known do not
involve any problem of this type. 1In
other cases, we may know by experience
what forms are likely to be suitable,
and the adequacy of our choice may be
tested a priori or a posterori. We
nmust confine ourselves to those forms
which we know how to handle or for which
any tables which may be necessary have
been constructed.

Let me repeat that sentence for emphasis. I may

contradict Fisher a little later in this regard. I think

Fisher is just being a little rigid here. "We must confine

ourselves to those forms which we kpow how to handle or

for which any tables which may be necessary have been
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constructed. More or less claborate forms will be suit-

able according to the volume cf the data.” EKere Fisher
shows some flexibility. "The volume of data in turn,” he

says here, fdetermines which forms may or may not be

suitable.” A

Evidently these are considerations the nature of wvhich |
may change greatly during the work of a single generation.
This was written in 1922. This is approximately 1967.

I think we are certainly tihrough a single generation and

I think some things have changed and we have solved some
of the distributional problems. But I am not sure, in

my own mind, that the problems of specification are any

nearer soluticn than they were in Fisher's time.

Let me quote again briefly from Fisher. This is a
quote from "The Logic of Inductive Inference," which was
published in 1935.

I have called my paper 'The Logic of
Inductive Inference.' It might just

as well have been called 'A Making

Sense of Figures.' For everyone who

does habitually attempt the difficult
task of making sense of figures is in
fact essaying a logical process of the
kind we call 'inductive' and, that is,
attempting to draw emphasis from the
particular to the general, or as wve

more usually say in statistics, from

the sample to the population. Such
inferences we recognize are not mathe-
matically rigorous inferences; they are,
however, statistically rigorous because
they contain within themselves an adequate
specification of the nature and extent of
the uncertainly involved.

Now Dr. Graybill and Dr. Ward both very deliberately

avoided tests of significance. I think they avoided this
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because it is a difficult problem. Since I have been
assigned the topic "problems," I don't think I can avoid
the topic although I'm going to try to do so, believe
it or not. Let me at the start here again give you
Fisher's view of tests of significance. According to
Neyman, Fisher never did make a test of significance;
of course, Fisher is first to admit it.

Let's see what Fisher has to say. This is a quote

from the Design of Experiments.

The improvement of natural knowledge, that
is, learning by experience or by planned
chains of experiments, conculsions are

always provisional and in the nature of
progress reports, interpreting and enbodying
the evidence so far accrued. Convenient as
it is to note that hypothesis is contradicted
at some familiar level of significance such
as five per cent, or one per cent, we do

not in inductive inference ever need to lose
sight of the exact strength which the evidence
has in fact reached or to ignore the fact
that with further trial it might come to be
stronger or weaker.

So this is what Fisher has to say about tests in an
overall way. Incidently, notice that Fisher said nothing
about the word "power" hore at all. Neyman is right;
Fisher didn't consider power as such, but I'm not sure it
is really necessary. You see, I come from a Fisherian
background. It is hard to contradict the o0ld mastér,
in a certain sense.

Now, I've come to talk about possible misuse of the
linear model. Misuse and problems, I suppose, are
synonymous in some sense. What I'd like to talk about

first in the way of problems or misuses is the difference

B SIS A 2t U z - N i B
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between the analysis of planned data and the analysis

of unplanned data. I suppose this is the difference
between a designed experiment and one which has not been
designed. There are many dangers in trying to interpret
regression analyses, particularly, to try and get any
kind of causal relationship. Dr. Graybill spoke of that.
An example that Dr. Box of the University of Wisconsin
has used illustrates, I think, the major issues involved.
Box distinguishes between what he calls observable variables
and latent variables, and very carefully distinguishes
between regression analysis associated with a planned
experiment versus regression analysis obtained through
historical data. Let me give you his example. The
example is from the chemical industry, as any example
from Box would be. I think the constructs will carry
over to any field in which one is asked to incerpret
data or to make sense of figures, to use Fisher's term.
Box cites an example in which the criterion is the
production of a final product in a production system.

He has a regression of the form Y = lel + Bzxz.

The estimated productivity, Y, is a linear function of
two variables. He gives this very interesting example
in which historically whenever frothing is observed in
the chemical process the operator is told to apply
pressure to the system. So X, is pressure applied to
the vat in which the process is going on. Pressure

is applied historically whenever there are impurities.
This is the operational rule-~if frothing occurs,

increase pressure.
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Other variables in the system are latent variables,
latent in the sense that they cannot be measured easily.
Through historical data one finds a relationship. Let me
change the notation here and replace X, by Xy. It can't
be measured. There are other variables here such as
temperature control and so forth. We cannot observe Xy
directly and get a fairly cecent prediction of productiv-
ity, historically. Notice éhat there 1s a set of pro-
cedures that define what is done at various stages.

Another question arises here, can one increase
productivity in this sort of setup by merely increasing
pressure? There is a high correlation between the increase
of pressure and the increase of productivity. Historically
the correlation is very high; the validity is very high
on a historical basis, But this correlation is not of
any use at all in building a system or in revising the
production system to increase the production. If one
increased pressure when the impurities were not present,
it would not increase productivity.

I want to make the point from this example that
historical correlation may indeed be an accident of
procedure. If one had run a controlled experiment, such
that one independently manipulated the variables in the
regression equation, one could certainly be dealing with
uncorrelated variables. Again, the experiment is part of

the history.
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The important message that I want to give here with
respect to the use of a linear model is this: to a large
extent correlations are man made. ft’hen we conduct an
orthogonal experiment as opposed to a non-orthogonal one,
almost at will we can increase correlation or reduce it
to zero.

The question that ariscs in any particular application
of the lincar model is this: to what population are we recally
trying to generalize? As Box puts it, if you are trying
to predict what will happen if you alter variables in your
prediction system, then you have to build your regression
equation from an experiment in which these variables were
altered. You cannot alter at will variables in a regression
equation computed from historical data and hope that just
by increasing the numerical value of X, (if it has a
positive regression weight) that production will be in-
creased. It might up to a point, but certainly it would
be very limited. That is, the utility of X, in the pre-
diction system really depends on the latent variable Xy.

Let me repeat, and this has a great deal to do with
disproportionalities in data which is analyzed, correlations
to a considerable extent, particularly in design work,
depend upon how one designs the experiment and blind use
of a regression model or any kind of analysis of variance
model can be quite misleading.

I have a certain distaste for applying the principles
developed within eirperimental design to data which were not

obtained experimentally. I said I had a distaste for it;
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that doesn't mean I don't do it or that I don't advise
others to do it. But there are many dangers there, and I
think perhaps it's a misuse of design models.

We must not lose sight of the population to which one
is trying to generalize; we must not lose sight of what
one is trying to predict. Methods suitable for one kind
of data may be quite inappropriate for methods of another
kind; that is, methods of analysis of data gathercd one way
may be quite inappropriate for data gathered another way.

Now let me return to Fisher here. In terms of what we
call misuse of the linear model, I don't think that applied
statisticians are essentially erring in distribution
problems. I don't think they are erring in estimation
procedures. They know these. Perhkaps the error is applying
these estimation and distribution principles to a model
which is inappropriate. Misuse of the linear model lies
primarily in the specification aspect.

Let me go on to another point. Joe Ward spoke at
considerable length this morning about the general reg-
ression model and the difference in treatment that this
model would have depending upon whether you were from
ANOV University, Purdue University, University of Georgia,
or what.

Let's look at an example in which perhaps the principles

about which Ward talked are utilized in perhaps a slightly

more effective way.
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Table 1

Two-factor Numerical Example of Cell Totals (Cell N's = 5)

Levels of factor B

{ 1 3 5 7

| 0 10 26 56 106
2 24 52 96 156

| Levels of .

: factor A 4 38 78 134 206
6 52 104 172 256

I have a set of data that has been classified into rows

and columns, a two-factor problem. Ve have an A factor at

e

levels 0, 2, 4, and 6. Uotice the levels are equally spaced.

The B factor is at levels 1, 3, 5, and 7, also equally

spaced. DMow let's suppose these data are obtained from an

experiment. One is trying to evaluate the relative effec-

tiveness of factors A and B, if they were applied to, say,

¢ a collection of elements which are untreated. So at the

(i beginning of this experiment there is no population, except
conceptually, to which we are trving to generalize. But

what we are doing in the experiment is creating from a

specified state of elements a new population, a population
of which elements have been treated. One can draw in-
ferences with reference to this new population in our

experiment. This seems strange to some to talk this way.

i It seems strange to me even to say this--that in an experi-

? ment, we actually create a population. ‘ile create a sample

i
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from a non-cxistent population. Vell, the clements that we
work on are drawn at random early in this case. Now, notice
that I have randomization, in this case, on a population

of elements and we want to draw inferences about the hypo-
thetical pcpulation of treated elements.

Berkson in two or three different papers has distin-

guished between the oxporinental crcation of a population

as opposcd to drawing samples from an already existing

pcpulation. I think the latter is essentially historical
research, as opposed to experimental research in the former.

Fisher had a great deal to say about the inadequacies
of historical research. I remember back a few years that
Fisher came through Indiana ané talked about the relation-
ship between smoking and cancer. He quoted all these
figures that had been gathered by his esteemed colleagues
in England. The data if you merely looked at them, in
terms of cell frequencies, were enough to convince alrost
anyone about the relationship between smoking and cancer.
vwhile he was delivering his talk, he was chain smoking. I
think the hint there is a good one; he wasn't convinced.
The brochure that he put out was rather vehement against
historical data as relating to cause and effect in any way.
I think that some of the okjections that he had in this
survey data have since been supplemented by direct experi-
mentation, more direct causal relations.

Well, let's get back to the example. There are a
series of numbers in the cells. I have said that thére are

five observations in each cell. If I had not specified cell
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sample sizes, it would be almost irrelevant. I would

probably analyze these data in exactly the same way

even if they vere disproportionate,

The population to which I want to generalize is hypo-

thetical, a hypothetical population of treated individuals.

I want to know which of the treatments should be used for

the basic population of untreated elements with which we

started. 1In this case it makes no sense to assign any kind

of differential weighting to any of the cells, even though

by accident the cell frequencies might be highly dispropor-

tional. Any good cxperimenter would want equal precision

B S e —

with respect to each of the ceils and therfore, would

assign equal cell frequency. If he didn't want equal cell

precision with respect tc each of the cells, he might

deliberately assign different numbers of observations to

each.

That doesn't mean that in certain aspects of the
analysis, we will necessarily have to use certain procedures.
Let me emphasize this one point. There are generally

several ways in which one can analyze exactly the same

data. The different ways are used to look at different

asrects of the data.
Let me take the easy way out. There are equal
frequencies in each of the 16 cells in the example. I am

just going to be concerned for the moment with the

between-cell variation. 1I'm a Fisherian, and being in a
Fisherian mood, I'm not going to take on anything that

Pearson did first. Let's look at the analysis of variance




approach to these 16 cells and remember here tnat we are
interested in making sense of these figures.

Well, let's examine the between-cell variation. The
summary is in Table 2, We want a picture to determine

whether interaction is present or not.

Table 2

Between Cell Analysis of Variance of the Numerical Example

1
Source S8 df %
l
Between Cell 15,026.80 15
A 4,096.00 3
Alinear 4,096.00 1l
All other 0.00 2
B 10,204.80 3
Blinear 10,000.00 1l
Bquadratic 204.80 1
A X B 720.00 9
Alin. p'4 Elin. 720.00 1l
All other 0.00 8

Now, what happens if we sum over the levels of B and just
look at the marginal effects of A? First of all, the
between-cell variation is 15,021 with 15 degrees of freedom.
Focusing our attention on just the marginal totals, the

variation of the main effect due to A is 4,096 units, the
{

e
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main effect of the variations due to B is 10,205 units and
the variation due to the interaction is 720 units. I'm
treating the data as if they were orthogonal. They are
orthogonal as far as this is a designed experiment with
equal cell frequencies and there is no problem about
orthogonality there, Incidentally, the A-by-B interaction
is the culprit there.

Now, let's focus our attention on the linear comparison
among the marginal totals of the A--that accounts for all
the variations of A, Now focus attention on the marginal
totals for B and look at the linecar comparison associated
with the B's. The linear trend accounts for 10,000 units
of the 10,204.80, and the quadratic component accounts for
the remaining 204.80 units. All of the interaction is con-
centrated in a single comparison, namely the linear-by-linear
with 720 units of variation. Froo this table, we have a
description of the between-cell variation.

Table 3 shows the residuals. It is the residual table
after we use the original table for the main effects. This
is essentially that part of the original table which is not
predictable from the marginal totals alone, the residual
between-cell variation. Vlhat we do essentially in the
analysis of variance is to successively residualize what
we arc vorking with, If things are erthogonal, it is

very readily done.
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Table 3

Cell Totals Adjusted for 'lain Effects and Over-all Mean

Levels of factor B

1 3 5 7

0 27 9 -9 -27

Levels of 2 9 3 -3 -9
factor A 4 -3 -3 3 9
6 =27 -9 9 27

Now, what I'd like to do in the next table (Table 4)
is to relate the partition of the between-cell variation in
the analysis of variance sense to a correlational apbroach
to exactly the same data.

Takle 4

Corrclations Obtainablec fron Analysis of Variance

Source r r

Alin SSa,; . /S5b.cell .27268  ,52218
Blin SSBI- /Ssb.cell .66574 .81593
in
Byyad SS /SS .01363  .11672
qua Bquad b.cell

lin 1lin
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We have 15,021 units of variation, plus the amount of
uncertainty in the cell totals (or the cell means, which is
the same thing, essentially, if we have equal cell fre-
quencies). Let's partition all the between cell variation
into single contrasts, single contrasts carrying single
degrees of freedom. If we take the ratio of the linear
component in the main effect of A to the total between-cell
variation we get a squared correlation of .273, or a corre-
lation of .522.

What this means in terms of prediction is this: 1If
we paid attention only to the linear trend in A, the corre-
lation between what we could predict and what we observe
is .522. If we add to our regression system a second term
that corresponds to the linear component of B divided by
the sum of squares for between cell, we get, in this case,
.666, or a correlation of .82. The main effects are
orthogonal in this case, hence the overall predictability
is r2 15 = .273 + .666 = .938,

The marginal totals for B are a much better predictor

of the cell frequencies than are the marginal totals of A.

Now, we add to this the ratio of sum of squares for B

quadratic to sum of squares between cell. Ve have ti.e effect

of adding another orthogonal variable to our regression
system. The additional predictakility is .014, Of

course, that is not a product-moment correlation. It is
something called a semi-partial correlation, the additional
contribution of the quadratic component to a system alrcady

containing the lincar componeont of B, Then of course, we
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can add in the contribution of the linear-by-linear. That
has a squared correlation of .048 or a correlation of .22,

In figure 1 I have actually sketched the relatively
simple surface represented by the initial data. It is a
surface that is linear in one direction and quadratic in
the second direction.

If we were to take the usual regression approach, |
and this is done in Table 5, we would have to cdmpute the
correlations between the X's. I want to point out when I
am through the fact that, in a certain sense, I can make
these correlations anything I want them to be. Here are
our variables., Xj; is the level of A and X2 is the level
of B, Now, if you'll notice in the analysis of variance,
only the linear component of A has any contribution what-
soever to the 15,021 units of variation between cells.

The B linear as well as the B quadratic make contributions.
Let me define a dummy variate to be X5 = X%. Since these
are quantitative variates (they are usually handled this
way), X3 assumes the values 1, 9, 25, and 49. Now, if

you will notice in the analysis of the interaction, there
is only one component there--the linear-by-linear--so we
can define a variate X4 equal to the simple product

X3 x X2. In actually setting up the intercorrelation
matrix associated with this sort of analysis, each cell

in the matrix would be described by some combination of

these. For example, let's consider the 16 observation

Xt M At a3 35 St R Bt T .

points, one corresponding to each cell., Associated with
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Table S
Intercorrelations of Regression Variables i
x1 = levels of factor A
X, = levels of factor B |
¢ %
= 2 |
X3 = X2 | 'i
X4 = X1X2 *
| 1
Xl X2 X3 X4 Y i
X, 1.00000 .00000 .00000 .73209 .52218 1
X, 1.00000  .97590 .54772 .81593 |
Xq 1.00000 .53451 .82174
Xy 1.00000 91764
‘ Y 1.00000
| the cell (0, 1), one has X, = 0, X, = 1, X, = 1% = 1,

x4 = 0°*1 = 0. The actual observation of Y is 10; so here

is an observation vector, (X;., Xp, X3, X4; Y) = (0, 1, 1, 0; 10),

oot

and there would be 16 of these. One can compute the inter-
correlation matrix and in the traditional sense get the
validity coefficients. The latter are indicated in the

Y column of Table 5, the validities of X, Xy, X3, and X,

AR R B i F i

as predictors of Y.

These kinds of data can be very easily converted to

the usual correlational form. This can be taken as a starting
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point. I don't think they should be. I think that they
should be taken as an erd point instcad of the starting
point. Ward and I may have some arguments about this.

There are a whole sequence of regression equations
that can be derived whether you start with the entire
matrix of intercorrelations and then define hypotheses by
restrictions or start with the analysis of variance table
and then try to fit an appropriate surface to the data,
This may be a matter of taste. In terms of operations, it
is simpler to first find the analysis of variance. One
should first find what the possible contributors to the
prediction system are. The analysis of variance will do
this in a well designed experiment, or does this for you
orthogonally to begin with. A little later in our predic-
tion system we may introduce corrclated variates. Somne
of these artificial variates that we set up may be indeed
correlated.

Now, in Tables 6 and 7 I have a series of regression
equations that can be used for prediction. Although the
analysis of variance shows, if you look at each of these

separately, that you have some variation predicted from

each, we are going to find, indeed, that these four predictors

are redundant in spite of the fact that in the analysis of

variance each of them essentially contributes in terms of
non-error variation. In terms of final prediction, to
include all four of them will prove redundant. We are

going to find that with these particular data there is

a lincar dependency. The cntirc augmented matrix including

R S T T 2
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the Y column is a singular matrix, so that from the point
of view of efficiency of prediction, all of these are not

needed--one drops out.

Table 6

Regression Equations and Correlations

(1) Y* = .52218 X; + .81593 x;
2
r?2 = .93841 r.. = .52218
Y.12 Yl
= .8
Zy, 1593
(2) Y* = .52218 X, + .29387 X3 + .53495 X3
2 = =
T3 123 .95204 ry; = .52218
Tyy = .81593

ry(3.12) = ,11672

(3) y* = .13055 X] + .52219 X + .53629 X,
r2 ., = 98635  ry = .52218
Tys = .81593
Ty(4,12) = -21895
| (4) | v* = ,13043 X} + .53501 X3 + .53643 X}
r2 134 = 1.00000  ry) = .52218

ry, = .82174

ry(4.13) = ,22819

o e i




(1)

(2)

Y, Neeer

(3)

(4)

(5)

Analysis of Regression

Source (15 af ANOV Source
2
Xy0 X, _ .f‘:.-}.ﬁf!: 14,096 2 Apgnt By
2
X, *y, SSy = 4,09 1 AL
X, r2, ssy =10,000 1 B,
2
X1: Xor Xy . T¥.123%% T 14,300 3 Ayip + Bign * Boyag
2
X, Ty sS, = 4,096 1 AL
X, r, SSy =10,000 1 B,
2
X3.12 rY(a.lz)ssY 205 1 Byuad
2
fz:-fz:-fs--------Ex;;zeffz-f-ff:fif---3---fliei-fziaf-fxxni-flie
2 N
X, ry, SSy = 4,09 1 Ay
2
?
2
Sl X TyaaaSSy T 18021 3 Byt By Ay ox By,
2
2
X, ry3 SSy = 10,143 1 By, + Bquad
2
X4.13 rY(4.13)ssY 782 1 + Ay4p X Bquad
2
xl, xz, x3, ry,123dssY = 15,021 4 Ayin ¢ Blin + Bquad
________________________ e ¥ Bygp X Byyg
2
X, ry; SSy = 4,096
L 5 )
X, re, SSy = 10,000
2
x3.12 rY(B.IZ)SSY 205
X r SS. = 720
4.123 ¥(4.123) Y
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Noed we strive for cooplete efficiency? I think thorc arc
instances in which we may want to carry redundant variables
along. Think about this for a while. Need we eliminate all
the redundancy? If you will look in detail at the regression
equations that have been computed here and the various corre-
lations that are recorded in Tables 6 and 7, you'll find that
one can do a nore efficient prediction job in terms of fewer
variates. The data will give you a rultiple correlation of
unity. These are artificial data.

I said nothing about hypothesis testing here, but I may
be forced to shortly. This is just a small numerical example
that I think incicated an alternative way of combining
estimation problems with prediction problems. In this case,
notice what I have done, the details are unimportant. I have
obtained estimates of various sources of variation and then
built a prediction pin-pointed at just these sources. But
the prediction system that I would build just by looking at
these sources is redundant and we can eliminate one of them
if we want to. Put from the point of view of predicting,
taking statistical pictures on the original tahle, all four
of these variants were relevant. For purposes of predicting
the 1C cell totals, if this is all we want, these four
variables do not constitute a minimal set. Put notice here
that in the analysis of variance in the original description
of these 16 cell entries I added eight more entries, the row
marginals an¢ the column marginals. For the corplete de-

gcription of the 16 cell entries plus the cight additional
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sums, one needed the entire set of four variants. Well,
the reason for tat is that certain of these cross-product
terms become constant when you sum down the columns and
that is what makes one of these variables drop out.

Dr. Graybill mentioned problems associated with errors
in observation. This is a very serious problem in the area
of behavioral sciences. The observations that we make are
considerably less than perfectly reliable. Repetition of
the same instrument to the same individual does not give
one, in most cases, a distribution of error which is insigni-
ficant compared to the magnitude of what we are trying to
estimate.

There is a description of how one can handle in part
this problem in Graybill's book and there is a somewhat more
extensive treatment of this vroklem in the literature.
This is the problem, I think, education and psychology people
have called the combination of reliability, that is, the
error of measurement, and experimental error. They are quite
distinct conceptionally and the problems of handling them
are also distinct.

Madansky had a fundamental article a few years ago in

the Journal of the American Statistical Association on

various ways of combining the usual regression approach with
proklems of reliability. More recently, in connection with
design of experiments, Box and some of Kempthorne's students

have tackled the following problems. (This is very closely

related to the problem in which we in psychology and education
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have been concerned for a number of years). It comes up
under a new name. Box as well as Ziskind and Kempthorne
call this the problem of errors in the levels of factors.

That is, let's suppose that in the experiment we have

levels a; and a, of some factor. Upon replication of this
experiment, levels a; and a; aren't quite the same sort of
thing. That is, a; and a, involve some instrument setting,
a specified dosage which can only be measured within k units

of accuracy. 1In a certain sense, upon replicating a, and

a,, we really have as ») the first attempt at replicating
a11, @35, and a;3. They're all supposed to be a;, but they
are slightly different.

Now most of you in psychometrics will find after some
study that this is almost completely equivalent to the test-
ing problem. You want to measure a trait A and a trait B;
all, a1, and a;3 are simply items in trait A. They are all
different; they are all supposed to be pin-pointed at aj,

but they are not exactly aj. They differ from it by the

fact that a; can have three different aspects, or it can be

measured in three different ways, or there are three different

items, each pertaining to a;. So all the factors associated

with trait A essentially enter in the measurement of the level

of the factor and we see that the problem is directly rele-

vant to the work in psychometrics. It doesn't appear to be

on the surface, but it is. I think it is due time that the
experimental-design oriented people realize that this type

of error is worthy of considerable study. %e have it
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particularly in trying to replicate control conditions in
which, in behavioral sciences, a; and a, are groups, Or
correspond to high-versus-low in terms of a factor such as
"anxiety". Let me conclude this point by saying this is
relevant. It is one of the problems that we face in trying
to experiment, in using the ordinary linear model, when the
levels of the factors themselves cannot be reproduced exactly
from one replication to the next.

Incidentally, this book that I wrote has been a problem

for me, but it has been the source of my getting all sorts
of letters. Some of these letters are very strange sorts

of things. 1It's really amazing the things that can be put

in print and can be misinter~reted the way they are. One of
the central topics, one of the repeating themes of the types
of letters I get, concerns how one estimates variance

components. One measures these variance components to }

evaluate what Fisher calls the strength of relationship.
Essentially, a correlation is nothing more than a ratio of
two components.

If something is statistically significant, what is the

strength of association? What is the measure of association?

what the variance components are depends very, vVery much on
what the proper specification of the model is. 1In practice,
I don't hesitate to use several different estimation proce-
dures. I don't hesitate to get estimations based upon the i

assumption that certain factors are fixed. I don't hesitate

to get another estimate under the assumption that certain
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factors are random. I take solace again, being a Fisherian,
in the stateimoent that you'll find a Fisher somewhere. I

found it somewhere, but I coulén't find it vhen I was looking 1
for it the other day. The fact that Fisher says, and this

is sloppy, sloppy from some points of view, that any data no

matter how it's gathered is a sample from some population.

Sampling theory people tell you that the population i

comes first, then the sample. There is no such thing in a
certain sense. Some data is better than none. This does,
in part, justify ore's intuitive attempt to make the most
sense possible out of any set of data. I don't think there
is such a thing as an appronriate model; "appropriate for
what" would be a better designation. One model may be more
appropriate than another for interpreting given data one way.
As I say, the problem of estimating variance components

does not have a single answer. It does have a unique

answer only if you have complete specification of the initial
model.

One of the purposes of experimentation is to specify
sequentially a model. I think we lack, in our general
experimental approach, the facility to tackle data, especially
in education and psychology, sequentially. One of the ad-
vantages of this tyme of approach is that one can sequen=-
tially specify a model. Models are guides, not binrs,

Now, one of the problems, and my book is just full of
this kind of problem, is that in which the same experimental
unit is used under a variety of treatment conditions. 1In |

five cents jargon, it is a repeated measures problem if we
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are dealing with individual subjects. To what extent does
the fact that we've used the same experimental unit, the same
subject, under a sequence of treatment conditions affect
various models that we might present?

Let me give you an example. First of all, let me
indicate why under certain assumptions, it is a multivariate
problem. Here you have an individual--individual one,
individual two, individual three, etc. You make a series
of observations on this individual under several treatments.
These may be over different time periods under the same
treatment, it makes no difference. And what you have here
essentially is an observation vector having several components.
You have a series of observation vectors. There is corre-
lation between, say, between period one and period two, or
treatment one and treatment two.

In the traditional agricultural settirng, this may be
viewed as a split-plot design of some form. This is the
jargon in the agricultural field. The whole plot is the
individual; split-plots are ohservations within the individual.

Call n the individual difference component associated
with the individual subject. As long as the 7's remain
constant, then it can be shown that the variance-covariance
matrix associated with these data must have a very special
pattern. So if n is a constant, if = does not change under

these treatments, you get a very highly patterned covariance

matrix which has just two distinct roots. The usual approaches,

the analysis of variance approach and the multivariate
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analysis approach, will give you exactly the same answver.

It doesn't look like it, but it is true. You are really
doing a very special case of a multivariate analysis, but it
looks like a univariate analysis, because of the fact that
in the model we can assume that = does not change. In other
words, that individual number one is exactly the same (after
the treatment effect wears off) when you look at him under
each of the other treatments.

But, of course, if 7 is not a constant, then this very
highly structured variance-covariance matrix takes on one of
these complex forms that Bargmann talks about.

Note the use of the same subject under repeated conditions.
This is the central problem about which I get many letters.
Suppose I have a repoated measures design and I don't get
anything near the variance-covariance matrix I should under
the assumption that n remains constant. what can I do about
it? Well, let me reverse this problem. I think that it is
more usual that an individual who uses this method to begin
with probably knows what he can do about it, but may not want
to do it. Many ask this guestion: How much am I wrong by
assuming t to be a constant when it really is not? How much
violation is created by approximating one covariance pattern
by another? I don't think anyone knows the answer to that
yet. On the other hand, again this is a computer age and we
have Bock in our audience. Bock has a whole series of
programs for which you just press a button and you'll get all

sorts of multivariate analyses of variance for your data. I

am not sure that this kind of button-pressing is the solution.
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I think we will increase in our facility in the inter-
pretation of multivariate analysis of variance once we gain
experience with multivariate data and essentially its
generalization to canonical analysis. That is, so far, we
are working here with only one dependent variable.

Interpretations of the outcomes of multivariate analysis
of variance is difficult. I think they are difficult mainly
because we have had no experience with them. I think this is
a coming problem in the field.

The computer revolution solves some problems, but I think
creates as many as it solves. This is one instance I think
where our cortexes have not quite kept up with the computer
facility for doing operations. Before computers were
available to us, we thought our problems would be solved once
we could do the operations. MNow that we can, the inter-
pretation is quite difficult, and this leads me to the
concluding section of what I want to talk about.

That is problems of interpretation, particularly in the
analysis of variance setting, and particularly with respect
to hypothesis testing. As I say, since I was assigned the
topic of problems, this is a problem area and it's been
complicated in recent years. I know that when I was at
Chapel Hill in my student days we made an F-test, we made
another F-test, we made another F-test and at that time
the systematic use of various kinds of error rates was not

quite in vogue. Vithin the last ten years, there has been a

serics of developments, among others, those of Scheffe,
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We are, in our hypothesis testing work, plagued with
this problem. This is another one about which I receive
letters all the time. Which of several possible error rates
in hypothesis testing should be used? Should it be an indi-
vidual comparison error rate, a per-experiment error rate,
an experiment-wise error rate--and I dare say, that there are
all kinds of additional error rates that are in the process of
being published right nou.

This is, I think, an important theoretical question.
Should the unit with which we are concerned for error rate
be just a subcollection of the entire experiment or the
entire experiment? Should one be concerned with one row
and test hypotheses with an error rate which has as its base
unit all possible compnarisons within any one row, or within
any one column, or within any two rows? Suppose 1 have four
rows in the table. One row might be an early phase, or
another row might be a late phase, or there just might be
only two rows. %Yell, you might jus? say that Winer produced
a half cxperimental unit. Does it make logical sense to
describe the data in terms of a unit of error rate which

considers all possible differences or all possible generalized

contrasts? Are you going to work with a Scheffe level of
significance or a kind of Tukey level?

This is a problem that I think has no answer. FNo
answer in purely matheratical terms. I dare say, though, in

practice it has ar. answer. Remember that the purpose of our




R AT T TN W st

T T = . VA ST - ) Lt 7y PR e e L R S P LT TR - R g R A

o 4 e S e Smy

statistics is to make sense of data. If it makes sense to
set an error rate cn just a portion of the data, to focus
on this portion, and to set a separate error rate on a dif-
ferent portion of data, by all means, do so.

If you read Tukey carefully, you will find that he is,
ultimately, very much in the same spirit as Fisher. As a
matter of fact, mathematically Tukey is much more sloppy
than Fisher ever dreamed of being. Yet, I think that Tukey
is prébably the outstanding mathematical statistician in this
country today. If you'll read Tukey very carefully, you will
find that he does things that I would never advise my students
to do. Except, that he indicates very carefully just in what
kind of sense this particular procedure applies.

There are many problems in applying the linear model.
Having computer programs available to us, I think, simplifies
the computational task. 1In a certain sense it makes much
more difficult the specification task, the task of the
individual experimenter. This, perhaps, can be computerized,
but it hasn't yet. But, perhaps, if one could write a
program in which all the relevant inputs could be coded and
all the possible utility functions associated with each input
specified, then I think the computer can give you alternative
specifications. Ve are not yet quite at this stage, so that
I think that the problem of specification and the problem of
interpretation are linked.

As Fisher noted we are limited in our choice of models.

But don't hesitate to use the existing models even though
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none is ideal for your purpose. Instead of throwing up
your hands in utter despair, the chances are any tractable
model would be an over-simplification of real data in
education and psychology. Eut remember, it is only a first
approximation, and a series of approximations gets us much

closer to the information we want than no activity at all.
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Introduction of Dr. Rolf E. Bargmann

by
Harry E. Anderson, Jr.

University of Georgia

I have the pleasure of introducing Dr. Rolf Bargmann of the University
of Georgia's Department of .lathematical Statistics. He was formerly manager
of the information sciences in IBM research; Professor of Statistics at
Virginia Polytech Institute; Head of the Statistics Department, Institute
for Internaticnal Bducation Research at Frankfurt, Gemmany. le did his
undergraduate work in Chemistry at the University of Berlin and did
graduate study in physical chemistry at the University of Hanmburg. He
did psychanetric work with Thurstone in Chicago and took his Ph.D. in
mathematicsd statistics at the University of North Carolina. He is a
fellow in the American Association for the Advancement of Science, mem-
ber of the American Statistical Association, Econometric Society, Psy-

chametric Society, and others. It is a great pleasure to introduce
Dr. Rolf Bargmann.




A SURVEY OF APPROPRIATE METHODS OF

ANALYSIS OF FACTORIAL DESIGNS

Rolf Y. Bargmann
University of Georgia

The model for a two way or two factor design
E(¥ijjg) = v + o+ By + S8i5
i=1,2,ceex; 3 =1,2,0..8
plays a key role in a majority of experimental situations,
both as a self-contained model, and as an easily inter-
pretable submodel of a more complicated design. Also, in
most industrial and educational applications, the number
of observations in each cell can be quite irreqular,
often leaving whole cells empty.
It must be understood, first, that the above model
is insufficiently specified. It is easily shown that,
with this generality, comparisons or contrasts in a-effects
or B-effects are non-estimable. This is probably best
illustrated by a perfectly legitimate assumption that all
a¢j and all B4 are zero. Under this assumption (a condi-
tion on the model, not a constraint on the estimates) we
would have a one-way classification model with r x s groups.
This model specification is obviously not what we wanted,
else we would not have postulated a two factor model in

the first place.
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In many industrial aprlications, the lowest level of
each factor designates its absence, hence an absent factor
could not "interact" with another one. The specification
to (1) would thus be

61j = 0 for all j and Gil = 0 for all i.
This leads to an extremely simple estimation procedure
for, if Y,

)
the number of observations in that cell,

denotes the cell total in cell (i,j) and nij

(a; - &) = Yj31/n41 = Ye1/nx)
(B, - 53) = Ylj/nlj - Yy0/n12

833 = Yi3/Mi5 ~ %1 - 85 - Yu/npy

with obvious generalizations to more than two factors.
Thus, row effects are estimated only from data in the first
column, and column effects only from data in the first row,
while the remaining information is used to estimate inter-
action effects.

There has been searching, and entirely unjustified,
criticism of this simplest of all analyses. Why, its
opponents agree, should I estimate the main effects--in
which I.am vitally interested--from so few observations
only? The fact of the matter is, of course, that this
model brings us back to the classical assumptions of
experimental planning: If factors can, potentially,
interact with other factors, one should attempt to study

each factor in the absence of others in order to ascertain
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its own, isolated, effect. 1In educational research,

alas, this principle is seldom applicable. We cannot
plan an experiment with "absence" of intelligence or

vabsence" of color, to name a few absurd examples.

One set of specifications for the description of
the model has attained rather widespread acceptance. It
is usually stated as follows.

f“ij 61j = 0 for all i
and

inij 613 = 0 for all j

The name “natural constraints" given to these r + s - 1
conditions is poorly chosen. These specifications are
neither natural, nor are they constraints (the latter
must be arbitrary specifications of estimates). It is, ;
in fact, a set of conditions which maximizes the non-
centrality parameter in the joint chi-square statistic used
for testing the hypothesis of equality of all main effects,
i.e., (Sum of Squares for Columns, unadjusted + Sum of
Squares for Rows, adjusted)/ oz, for fixed oz. The class-
jcal formulas, invoclving adjusted normal equations, for 3

the irregular design without interaction, provide the

estimation procedure in this case.
Wwhen the interaction effect becomes significantly
large in this instance, the additive model is a poor repre-

sentation of the data. Outliers in individual cells may,

of course, produce such significant interaction effects,




87

and can easily be detected. If outliers do not explain
the departure from additivity, two modifications of the
model are availahle.

(1) The interactions affect the cell wmeans in an
irreqular fashion; one assumes that they will show different
patterns in repeated experiments. The proper model would
then be a "Random Interaction Model".

(2) The interaction effects show some definite
trend from level to level of the main effects. Here it
is necessary to make an assumption rrgarding the mechanism
(specifying the trend except for proportionality constants).
The residual portion of the interaction can again be re-
garded as fixed effects or random components. These models
will be called Covariance 'odels.

The Random Model

yijk =4 + aj + Bj + dij + eijk
E(dij) = 0; E(eijk) =0

- 2 _ .2 .
var (dij) = od , var (eiik) = 0g v all covariances 2zero.

The analysis is quite similar to the irregular fixed
effect analysis, with the incidence matrix replaced by a

matrix of weights
2
Wij = 1/(p + l/nij)

where p2 = 03 / 02 . Unbiased estimates and approximate

2

confidence bounds for p“ are available from the fixed




model analysis. They utilize the F-statistic for inter-
action of the fixed model. The coefficients are some-
what involved, in the irregular design, but are easily
programmed. Confidence bounds are based unon the improved
variance-stabilizing (cosh'l) transformation of non-
central F.

It may be noted that the weights become quite
similar to each other if 92 is large and/or if the smallest
non-empty cell is appreciably large. In thig case then,
the "unweighted means" analysis (regular if all cells are
occupied, the usual irregular "treatment-block" analysis
if some cells are empty) is the limiting form of the
Random Model analysis.

The Covariance Models

(a) Fixed Residuals:

E(eijk) = 0 var (eijk) = o: ’

where £(i, jlvy1,Y2 ++e Yy) is a non-linear function of
concentrations of a- levels i and concentrations of 8-
levels j. A simple form (neutralization) would be £ =
=YCiCy/ where ¢ are concentrations. The analysis proceeds
like an irregular design analysis with one or more cova=
riates. The latter represent the function or functions

of the levels which are assumed to explain the mechanism

of the interaction effects. A linear combination of i and j
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(e.qg., vlci + yzcj) is ruled out, since these covariates
would affect (and be assumed to affect) main effects.

(b) Random Residuals:

yljk =u + o4 + ﬂj + dij + eijk, where

2 . 2 _ 2,2
var (dij’ = 04 all covariances zero,and o° = °d/°e°

This is a weighted irregular covariance analysis, with
weights equal to those in the random model without covariates.
The estimates and confidence interval estimates for p2 are
based upon the F for interaction in the fixed residual
covariance model. The coefficients are somewhat more in-

volved than those in the random model without interaction.

Demonstration Studies:*

Two computer programs have been written which serve
as tools to determine whether some of the two-way classi-
fication models considered above provide the best estimation
of main effects when the interaction effect possesses
certain characteristics. For instance, when the inter-
action is significant and possesses a random character,
or when the interaction is significant and is directed or
biased in a definite manner, it would be expected that one

of the methods of analysis should be superior. One program

*From F.C.Clark, "The Role of Interaction in Two-Way
Classification Models", unpublished Ph.D. dissertation,
University of Georgia, 1967.
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performs the complete classical maximum main effect
analysis, the Random model analysis using the unbiased

2, as well as

estimate of the variance component ratio o
the lower and upper l-a confidence points for pz, and
finally an unweighted mean analysis. The other oprogram
performs the so-called Covariance Model analysis. Special
variants of these programs make use of a data-generating
subroutine which utilizes a random normal number generating
program. Values for the main effects, interaction term,
error term, and entries of the incidence matrix are fed in
as input information for the cata-generating subroutine.

The studies which make use of the first program were
designed in such a way that the interaction is significant
under the maximum main effect model and such that the
interaction effect possesses a random character.

In the ensuing four studies we will make use of the
following symbols for purposes of convenience: Ay
will denote the average value of the estimate over 10
data sets. "T" will denote the true value of the effect.
"S.D." will denote the standard deviation of the estimate.
"R.M.S." will denote the root mean square of the estimate.
"Fixed" will denote the estimate assuming the fixed,
maximum main effect model. "Unbiased" will denote the
estimate under the Random Model using the unbiased
estimate of p2. Lower" will denote the estimate assuming
the Random Model but using the lower l-a confidence point

of pz. "Upper"” will denote the estimate assuming the




Random Model but usino the upper l-a confidence point of
pz. "Unweighted' will denote the estimate assuming the

unweighted mean analysis.

For the first study we have the following details:
Factors: A, B

Levels : A @ 5 levels, B @ 10 levels

Incidence Matrix

3 28 3 4 39 43 42 25 36 23 246
20 41 38 36 37 22 28 35 26 36 319
0 25 3 37 6 7 42 14 39 32 205 i
43 39 38 38 25 9 0 25 36 2 255 é
37 39 42 0 38 39 1 37 25 26 284 |

103 172 124 115 145 120 113 136 162 119 1309

An interaction term of one multiplied by a random normal
(0,1) number is added to each cell. This gives dij a
random effect. An error term of one times a random normal
(0,1) number is added to each cell. Thus, p2= l. The
mean was chosen to be 20. The main effects which were

fed into the program are: @y = -2.0, ap = -1.0, a3 = 0.0,
ag = 1.0, ag = 2.0, By = -2.5, By = =2.0, B3 = -1.5,

B4 = -1.0, Bg = =0.5, B, = 0.0, B9 = 0.5, Bg = 1.0,

Bg = 1.5, 8,4 = 2.0.
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Only scme of the parameters are shown
The others exhibit similar properties.

in the tables.
“pn" denotes the
best value and "W" denotes the worst value.

Main effect estimates

01 T AV SoDo R.M.s
Unbiased -2,000 -1.885 .3549 .3728
Lower -2.000 -1.886 .3603 «3779W
Upper -2.000 -1.884 .3531 .3716
Unweighted _ -2.000 -1.878 .3415 .3625

03 T AV S.D. R.M.S.
Fixed 0.0 -.0647 .2959 «3029W
Unbiased 0.0 -.0278 «2362 .2378
Lower 0.0 -.0272 .2374 .2389
Upper 0.0 -.029%4 2249 .2267B
Unweighted 0.0 -,0321 .2274 . 2297

as T AV S.D. Ror!os
Fixed 2.060 1.968 .3894 .3907
Unbiased 2.000 1.979 .3303 .3309
Lower 2.000 1.979 .3348 «3354v
Upper 2.000 1.977 .3264 3272
Unweighted 2.000 1.974 .2898 .2909R

Bl T aAv SoDo Ro»ioSo
Fixed -2.324 -2.281 .3518 .3544B
Unbiased -2.324 -2.,222 .3819 .3953
Lower -2.324 -2.229 .3758 .3879
Upper -2.324 -2.219 «3949 .4084
Unweighted -2,324 -2.195 .4263 .4453W

54 T AV S.D. R.M.S
Unbiased -0.824 -.7218 .£547 .4660%
Lower -0.824 -.8049 «3975 «39798
Upper -0.824 -.8047 .3991 «3995
Unweighted -0.824 -.8112 .4C97 .4099




B9 T Av
Fixed 0.676 .7011 6230 .6235W
Unbiased 0.676 .6701 .5385 .5385
Lower 0.676 .6656 .4989 .4989
Upper 0.676 €703 .5302 .5302
Unweighted 0.676 .6608 .4564 .4567B

Blo T Av SOD. R.Pl.s.
Fixed 2.676 2.884 .5513 .58918
Unbiased 2.676 2.983 .5493 6292
Lower 2.676 2.97° .5502 .6283
Upper 2.676 2,997 .5491 .6359W
Unweighted 2.676 2.994 .5440 .6299

In the second study we have the following information:
Factors: A, B.
Levels : A @ 5 levels, B @ 10 leveis.
Incidence Matrix

3 28 3 4 33 43 42 25 36 23 246

20 41 38 36 37 22 28 35 26 36 319

0 25 3 37 6 7 42 14 39 32 205

43 39 38 28 25 9 0 27 36 2 255

37 39 42 0 38 39 1 37 25 26 284
103 172 124 115 145 120 113 136 162 119 1309

An interaction term of 4 multiplied by a random normal
(0,1) number is added to each cell.
multiplied by a random normal (0,l) number is added to

each cell.

Thus pz= %.

The mean was chosen to be 20.

An error term of 8

. AR
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The main effects which were fed into the program are:

01 = -2.0' 02
Bl = -200' Bz
Bs = 005' 87 = 100' 88 =

study was taken over 10 data sets.

= -100' a3
= -105' 83

= 0.0' 04 = loO' 0-5 = 2.0'

o= -1.0' 84 = -0.5' 65 = OOOI

1.5' 89 = 2.0' Blo = 205.

Under the maximum

main effect analysis, F for interaction versus error is

6.5 (Average).

values are denoted by "W",

Main effect estimates

Best values are denoted by "B" and worst

01 T Av SoDo R.M.S.
Fixed -2.000 -1.540 1.526 1.593
Unbiased -2.000 -1.609 1.449 1.501
Lower -2.000 -1.534 1.422 1.563
Upper -2.000 -1.509 1.523 1.599%
Unweighted -2.000 -1.442 1.363 1.473B

03 T Av S.D. R.M.s.
Fixed 0.0 -,1454 1.250 1.259W
Unbiased 0.0 -.,2513 1.113 1.141B
Lower 0.0 -,2361 1.133 1.157
Upper 0.0 -.2502 1.119 1.146
Unveighted 0.0 -,349¢ 1.175 1.226

05 T Av S.D. R.M.s.
Fixed 2.000 2.065 1.534 1.536
Unbiased 2.000 1.963 1.508 1.508
Lower 2.000 1.960 1.539 1.540%W
Upper 2.000 1.965 1.389 1.389
Unweighted 2.000 1.993 1.183 1.183B

This



Factors:

Levels :

2, B,

A @3 levels, P @ 5 levels.

Incidence Matrix

81 T Av s.D.
Fixed -2.324 -2.,159 1.493
Lower -2.324 -2,213 1.455
Upper -2.324 -2.135 1.529
Unweighted -2.324 -1.888 1.898
84 T AV S.D. R.M.s.
Unbiased -0.824 -.7988 1.673 1.673
Upner -0.324 -.7899 1.683 1.683
Unweighted -0.824 -,7748 1.795 1.79€6V
37 T Av SoDo Rol\‘oSo
Fixed 0.676 .7233 2.463 2.404
Unbiased 0.676 .6175 2,444 2.445
Lower 0.676 .6089 2.477 2.4777
Upper 0.676 .6271 2.409 2.409
Unweighted 0.676 .777€ 1.961 1.9638B
810 T Av SoDo R.M.S.
Fixed 2.676 3.494 2.344 2.452%
Unbiased 2.676 3.765 2.441 2.673
| Lower 2.67¢6 3.733 2.385 2.603
Upper 2.07€ 3.813 2.548 2.789
Unweighted 2.676 3.973 2.495 2.812%

In the third study we have the following information:
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An interaction term of v0.5 multinlicd by a random normal

(0,1) number is added to each cell.

An error term of V1.5

multiplied by a random normal (0,l) numker is added to each

cell. Thus 92 = 1/3. The mean was chosen to be 20.

main effects which were fed into the program are

01 = '1.0, 02 = 0.0, 03 = 1.0' Bl = "'2.0' 82 = -100'

B3 = 0.0, B4 = 1.0, Bg = 2.0. The study was taken over

10 data sets.

The

Under the maximum main effect analysis the

F for interaction versus error was equal 2.12. "B" means
best estimate and "W" means worst estimate.
Main effect estimates

01 T Av S.D. R.M.S
Fixed -1.000 -.9630 .3946 .3963
Unbiased -1.000 -.9449 .4921 .4952v
Lower -1.000 -,9521 .3899 .3928
Upper -1.000 -.939¢ . 3445 .34978B
Unweighted -1.CCO -,9328 .3540 .3€03

03 T Av S.D. Ro:’oSo
Fixed 1.0 .9192 .4256 .4332B
Unbiased 1.0 .89°1 .4359 .4474
Lower 1.0 .9128 .4282 .4369
Upper 1.0 .9391 .5024 .5061W
Unweighted 1.0 .8674 .4562 .4751

81 T Av S.D. R.MOS.
Fixed -1,920 -1.687 .5788 .6238W
Unbiased -1.920 -1.843 .6084 .6131
Lower -1.920 -1.732 .5928 .6219
Upper -1.920 -1.925 .5989 .5989
Unweighted -1.920 -1,922 .5925 .5925B




B4 T Av S.D. R.M.S
Fixed 0.08 02363 .5489 5715V
Unbiased 0.08 .2164 .5081 .5260
Lower 0.08 2507 «5139 .5415
Upper c.08 1710 .4995 «5077B
Unweighted 0.08 1910 .5373 .5483

Bs T v S.D. R.M.S
Fixed 2.080 2.232 .4262 .5188B
Unbiased 2.080 2.037 .5636 .5652
Lowver 2.080 2.188 .7668 7743V
Upper - 2.080 1.96¢ 5799 «5902
Unweighted 2.080 1.976 .6138 .6226

The fourth study contains the following results:
Factors: A, B.

Levels : A @ 5 levels, B @ 10 levels.

Incidence Matrix

3 28 3 4 39 43 42 25 36 23 246
20 41 38 36 37 22 28 35 26 36 319
0 25 3 37 6 7 42 14 39 32 205
43 39 38 38 25 9 0 27 36 2 255
37 39 42 0 38 39 1 37 25 26 284
103 172 124 115 145 120 113 136 162 119 1309

An interaction term of v0.2 multiplied by a random normal
(0,1) number is added to each cell. An error term of 1

multiplied by a random normal (0,l) number is added to

Thus pz = 0.2, The mean is taken to be 20.

each cell.
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The main effects are artitrarily chosen as:

02 = -loo'
Ba = -1.5,
By = 1.0,

taken over ten such data sets.

63 = 000' 04 = 1.0'
83 = "100' 84 = '0.5'
Be = 105' Bg = 2.0'

ag = 2.0,
Be = 0.0,

a; = =2.0,
By = -2.0,
Bg = 0.5,
810 = 2.5. The study was

The F, interaction versus

error under the maximum main effect analysis is 8.86.

best value is denoted by "B" and the worst value is denoted

by "t“!“.
Main effect estimates

01 T Av SOD. Ro'ﬂoSo
Fixed -2.000 -1.927 .1919 . 2053W
Unbiased -2.000 -1.926 «1755 .1905
Lower -2.000 -1.928 1790 .1929
Upper -2.000 -1.925 .1781 .1932
Unweighted -2.000 -1,916 .1604 .1811B

03 T AV S.D. R.M.s.
Fixed 0.0 -.03848 1079 1372
Unbiased 0.0 -.0243 .114¢ .1486
Lower 0.0 -.0939 .1145 .1481
Upper 0.0 -.0857  .1293 .1551%
Unweighted 0.0 -.0861 .1042 .1352B

as T Av S.D. RoiqoSo
Fixed 2.000 2.029 .3745 «3756W
Unbiased 2.000 2.02¢9 .232€ .2344
Lower 2.000 2,031 .2346 .2366
Upper 2.000 2.027 .2320 .2336B
Unweighted 2.000 2,011 2339 2342

il
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Bl T Ly SoDo R.-ﬁﬂos.
Fixed -2.324 -2.276 .2091 . 20758
Unbiased -2.324 -2.,272 .2110 .2173
Lower -2.324 -2.281 . 2065 .2109
Upper -2.324 -2.259 .2162 .2258
Unweightecd -2.324 -2.215 2612 . 2830V

84 T Av S.D. Ro“yoSo
Fixed -0.824 -.7002 .3075 . 33157
Unbiased -0.824 -.7049 .2649 .2904
Lower -0.824 -.7C€8 .2714 . 2956
Upper -0.824 -.7045 .2600 .2861
Unveightec -0.824 -,7181 .23€1 .2588B

B7 T Av S.D. R.'M.8,
Fixed 0.67C .8919 .2881 .3600
Unbiased 0.676 .8564 .3114 .3598B
Lower 0.676 .8€59 .3123 .3655
Upper 0.676 .8748 .3220 .3784
Unweighted C.67¢€ .8809 .3530 .4082%

Blo T AV SoDo Rot'loSo
Fixed 2.676 2.672 .1731 2277
Unbiased 2.676 2,722 1668 « 2137
Lower 2.676 2.718 .17C3 .2149
Upper 2.676 2.725 .1678 .2017
Unweighted 2.676 2.694 1715 .1905F

Additional studies were made using this program with

smaller and larger samples.
of results as the foregoing ones.

plicity of the procedure involved in the setting up of

Also, due to the sim-

They yielded the same pattern

a study, it would be quite easy to process as many studies

as is desired.




Fach study was made using ten sets of data, each of

which being the same for a given study, except fot the random

numbers used in the interaction and error terrs. For each

main effect estimate, and for each type of analysis, the

average value, the standard deviation, and the root mean

square of the estimate was calculated over the ten data

sets. The root mean squarec of the estimate was taken as

the basis for comparison among the different estimating
orocedures. The root mean square of the estimate may be
said to serve as a type of “"goodness of fit" statistic.
Tables of the row and column contrasts were printed out

for each procedure. Also, tables of standardizec rov and
column contrasts wvere printed out. These could also serve
as a basis for comparison of the estimates of the different

models.

In the first study the F value for interaction versus
error under the maximum main effect analysis is quite signi-
ficant. The F value for interaction versus error in the
second study is only slightly significant. 1In the third

study the F value for interaction versus error is slightly

significant at the .01 level and non-significant at lower
levels. In the fourth study the F value is significant.

Considering all of the studies made it is clearly

evident that there is no best procedure to use for estimat-
ing the main effects. The computer results plainly state
that one method is as good as the next. Logically, if for

a given experiment the interaction effects appear cignificant

Heffm ez
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after a fixed, maximum mairn effect analysis, and if the
interaction effect possesses a randon character, then one
of the random type analyses should ke best suited for
estimating the main effects. Yowever, as these and many
other studies have shown, differences in estimates are
quite csmall for the different techniques. Logical consis-
tency would clearly earmark the random interaction analysis
as best. 1In practice, the entire range of procedures, from
fixed model least scuares to unweighted means, differed
so little that none of the techniques can be marked as
consistently superior.

The covariance studies are designed in such a way
that the interaction is significant under the maximum main
effect model, and such that the interaction effect posse-

sses a definite direction.

In one of the covariance studies the covariate was
chosen in the following way: Xij = i.j/10, where i = 1,
oo e 3' j = 1' 2' 'R N 5' or F(dij) = ioj/lOo

The incicence matrix has the form,

0 90 30 10 40 170
30 10 0 50 €0 150
20 0 60 30 0 180

120 100 90 990 100 5G0

An interaction term of v0.2 multiplied by a random
normal (0,1) number simulates the residual effect, in addi-

tion to the covariance term. An error term of one times a

§
;
|
|




random norral (0,1) number is added to each observation.
The main effects that were fed into the program are,
@] = -1.0, ap = 0.0, a3 = 1.0, By = =-2.0, B2 = -1.0,
g3 = 0.0, Bg = 1.0, Bg = 2.0. This particular study is
taken over 10 sets of data.

The results of this study are as follows: Under the
fixed, maximum main effect analysis, F for interaction
versus error is very significant, with an average value

over the ten data sets of 49.05.

Main effect contrasts

ROWS @ as- &1 as- az a3= a)
True Value 1.000 1.000 2.000
.5350 1.199 1.734

.9402 1.201 2.141

.7457 .4058 1.052

Covariance .5195 .5714 1.091
Analysis 1,509 1.639 3.149
1.378 1.298 2.836

1.748 2.318 4.066
- 2322 .5251 .2929

1.326 1.115 2.863

1.209 .4878 1.697

Average .9678 1.076 2.092
-3.358 - ,9172 -4,275

-2,935 - ,9054 -3.840

Fixed, -2.811 -1.528 -4,339
ilaximum -3.244 -1.474 -4.718
Main Effect -3.036 - .8311 -3.867
Analysis -3.358 -1,.364 -4,722
-3.541 - .5566 -4,0°8

-3.252 -1.116 -4,3€8

-2.899 -1.411 -4,311

-2,.940 -1.768 -4,709

Average -3.137 -1.12 -3.854




Cnlumns éz“ 8-

True 1.000 1.000 1.0C0 1.000 4.000
Value

1.502 - ,3306 1.329 .6248 3.126
.5880 .9871 .9481 .7920 3.833
Covari- .8944 .0520 .9807 .8039 2.628
ance 7717 .8658 .3777 .8218 2.837
Analysis 1.911 .2812 1.579 .9540 4,725
1.466 .6617 1.625 1.599 5.351
3.445 .2759 1.503 1.442 7.306
- .7513 .3850 5349 1.249 1.417
1.482 1.921 .4671 1.313 5.183
- ,0860 2.287 .8134 1.569 4.583
Average 1.122 .8473 1.015 1.116 4.098
-3.067 -1.254 - .2974 -,3645 -4.984
-3.960 .5850 - 6717 -.1922 -4.239
Fixed, -3.282 - .8962 - .5060 -.0993 -4,.783
Maximum =3.646€ - ,0273 -1.195 -.1342 -5.003
Main -3.426 - .7976 - .3201 -,2016 -4,745
Effect -4.283 - .5003 - 4219 .3557 -4,.850
Analysis =-2.765 - ,3385 - 7077 .0981 -3.713
-4,297 - .3316 - 7272 .4811 -4,874
-3.974 .8184 -1.476 .1329 -4.499
-4,953 1.301 - .,9216 .5149 -4.064
Average =-3.766 -1. = .7245 L0591 -4.575

The covariance

studies all indicate that if for a

given experiment the interaction is clearly directed then

the fixed, maximum main effect analysis leads to erroneous

results.

This can be seen by considering the table of main

effect contrasts of the previous study and observing the

true values, the values obtained by the covariance analysis,

and the values obtained by using the maximum main effect

analysis.

We have already witnessed from the results of the

studies made using the random analysis without covariance




that it would not improve the situation relative to main

effect estimates to perform the random covariance analysis.

In order to stuly the effect of making a wrong assump-

tion on the interaction bias, that is, using incorrect
values for the X's, we simulated a model where the inter=-
action is positive if either o or B is at a low level
and where the interaction turns negative at higher levels
of a and 8. This can be expressed algebracially by the
following equation:
i,j, if either i or j < 2.
Eldiy) = . .
-i,j, if either i, j > 3.

In the analysis we make the wrong assumption that the ex-
pected value of interaction components is prooortional
to -i.j, for all i and j. The results of this study are
given below.

Incidence Matrix

0 90 30 10 40 170
30 10 0 50 60 150
90 0 60 30 0 180
35 52 6 34 21 148

155 152 96 124 121 648

A residual (interaction) variance of .5 and error variance

of 1.0 is used in this study. The F value (average) for
interaction versus error is very significant under the

fixed, maximum main effect analysis.




Main effect contrasts

)

4,000

36.120
38.620
34.500
34,410
36.010
36.080
35.680
33.790
35.080
34.940

35.523

Rows 2 Of.l u3 ad az 0L4 - 0.4 - Ql
True
Value 1.000 1.000 1.000 3.000
18.819 - .0520 9.403 28.170
19.527 1.212 9.961 30.700
18.890 .0490 9.631 28.570
18.3¢93 - .1550 9.532 27.770
Covari- 18,338 . 0740 9.278 27.690
ance 19.105 1.131 8.904 29.140
Analy- 19.70¢ - .5740 11.305 30.440
sis 17.539 - .0350 8.696 26.200
18,908 .6884 8.788 28.380
18.582 .1040 9,474 28.180
Averace 18.781 .2358 9.497 28.524
Columns 32 - Bl 83 - 82 64 - Bs - 84
True
Value 1.000 1.000 1.000 1.000
16.262 .5179 9.40% °.938
17.113 .7766 10.121 10.604
14,782 1.472 9.377 8.869
15,493 .4795 8.581 9.857
Covari- 15.591 1,588 9.056 9.775
ance 16.939 - .5245 9.229 10.437
Analy- 15.319 1.634 8.978 2.748
sis 14.132 .4110 0.128 10.019
15.394 - .5750 9,227 11.034
15,983 .4672 8.233 8.477
Average 15.701 .6247 9.133 9.876
It is apparent from these results that it is very
crucial that we make a reasonably good assumption of the
X values. The results also point out that an erroneous

assumption on the trend of expected values of interaction

may yield as inadequate values as the assumption that they

are all zero, as a comparison between this and the previous

study indicates.
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Thus, in summary, it may be concluded that, if
interaction effects are significant but show no systematic
trend from level to level, the method of analysis is, in
practice, irrelevant. The entire range, from fixed effects
to random effect to unweighted means analysis, yields
similar results, quite adequate in all cases under study.

If the interaction effects are directed, the presence-
absence or covariance analysis, with good assumptions re-
garding the interaction mechanism, are the only adequate
methods of analysis. Disregard of, or a wrong assumption
relative to the trend of such effects, leads to entirely

erroneous estimates of main effect comparisons.

e i e
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Introduction of ur. R. barrell Bock

by
Rolf E. Bargnann
University of Georgia

It is now my privilege tc introduce our next speaker, Professor
Darrell Bock. Dr. Bock is Professor of Education and Human Develop-
ment at the University of Chicago and was foxmerly a Professor at the
Psycharetric Laboratory at the University of North Carolina at Chapel
Hill. Dr. Bock received his B.S. in Chemistry at Carnegie Tech and
his M.A. and Ph.D. in Educational Psychology at the University of
Chicago. lie is on the Board of Trustees of the Psychometric Society
and on the Board of Regional Advisors of the Biametric Society. His
research preference is psychametrics and psychological statistics,
and with his permission I am dropping the word psychological, so shall
we say, psychametrics and statistics, and camputation. Dr. Bock will
give a sumary, but he will introduce it by same rather important
research concerned with the analysis of variance in non-experimental

settings in which Dr. Bock will present sawe of his ideas.




REMARKS ON AMNALYSIS OF VARIANCE AND
ANALYSIS OF REGRESSION

R. Darrell Bock
University of Chicago

Our hosts, Dr. Findley and Dr. Bashaw, have given me
the assignment of commenting upon the excellent papers which
we heard yesterday from Professor Graybill, Dr. Ward, and
Professors Winer and Bargmann. The task will be an easy
one because our speakers touched on so many of the problems
which arise in the use of linear models in data analysis
that I have a wide field to play on. They were also con-
siderate enough to leave at least a few questions unanswered,
thus, giving me the opportunity to interject my own opinions
here and there. You can be sure I will not let this
splendid opportunity pass me by. I would like, however,
to have the privilege of speaking on a selection of topics
suggested by yesterday's papers, rather than the more
difficult task of discussing each paper as a whole. If
you will permit me this, I will begin by directing some

comments to Professor Yiner.

Analyvsis of repeated measurements data

Let me correct slightly Professor Winer's reference

to the computer programs which we use at Chicago for

LAy xnﬁifmmm’;um*
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analyzing repeated mcasurement data by means of multi-

variate analysis of variance. Actually, we have only one

program--a higiily general univariate and multivariate

| analysis of variance program. It gives exact least-
square analyses in the case of missing and unequal numbers
of observations within subclasses, and includes provisions
for analysis of covariance and analysis of regression.
This program, which bears the cryptic title MESA 95,

was written by Jeremy Finn, now with the Department of

Educational Psychology, State University of New York at
Buffalo. The program is based on flow diagrams which I
prepared for the IB!M Computer Symposium on Statistics,
1963 (Bock, 1965). The original version of the program
utilized special features of the Chicago operating system
and could not readily be used at other installations. 1In
the meantime, however, Finn has prepared a new version,
called "MULTIVARIANCE", which is written entirely in
FORTRAN IV and should operate on any machine which has
FORTRAN IV capability (Finn, 1967). Finn now has this
program and its documentation ready for distribution. As
many of you know, a similar program, called "MANOVA,"

has been prepared by Dr. Flliot Cramer, and is available

from the Biometric Laboratory, University of Miami (Clyde,

Cramer, and Sherin, 1966).
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Professor "iner remarked correctly that the multi-
variate analysis of variance program can be used to analyze
repeated measurements data under more general models than
those assumed in the mixed model analysis. I!le added the
qualification, however, that multivariate analysis of
variance is difficult to interpret. Actually, this has
not been our experience at Chicago. We find that, if the
person using the program has some familiarity with uni-
variate analysis of covariance and with component and
factor analyvsis, he has little trouble in understanding
such multivariate content of the program as the "step-
down" F-statistics, discriminant functions, canonical
variates, or multivariate tests of the joint significance
of multiple dependent variables. His difficulties in under-
standing the analysis occur more often in regard to the
analysis of variance as such, rather than with its multi-
variate aspect. Typically, his problems concern the inter-
pretation of significant interactions, or how to judge the
importance of a significant main effect, how to interpret
the adjustments made in the analysis of covariance, how
to decicde what is testable or estimable when there are
significant interactions, how to choose the appropriate
error term in mixed-model analysis, etc. In addition,
there are, in the case of unequal subclass numbers, special
problems in the interpretation of non-orthogonal analysis
of variance which come as an unpleasant surprise to persons

who feel they are expert in orthogonal analysis of variance.
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In short, our experience has been that, if we can
assume on the part of the user a good knowledge of analy-
eis of variance, then ve can offer him in the nulti-
variate analysis of variance program a convenient and
hightly flexible vehicle for the analysis of repeated
measures designs. This is particularly true when the
design is some complex form such as the Lindquist type
VI design, with a crossed or nested classification of both
measures and subjects. In the multivariate treatment, the
investigator need only concern himself with setting up the
appropriate analysis for the design of the subject classi-
fication, and of specifyinc a certain linear transforma-
tion of the repeatcd measurements. Once these two types
of information are supplied, the appropriate analysis,

including the choice of error terms, falls out of the

analysis in a natural way.

The comparative study in behavioral research

My next comment is directed to both Professor Gray-
bill and Professor Winer. They have expressed a distrust
of statistical analysis applied to what they called
"historical research," that is, to research carried out
in a natural, as opposed to an experimental, setting. 1In
my view, the term "historical" is not entirely accurate
here. The events being studied are not fixed in the
historical past. The studies can be replicated and the

systematic nature of the events can be established. Since
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the ohijective of these studies is to comnare the re-

sponses of subjects under various identifiable conditions,

it would be more accurate to call them "comparative studies."
I do not Lbelieve that we can rule out the comparative study
in biological and behavioral research without sacrificing
sources of information wvhich are potentially of great
importance. If we were to exclude comparative studies

from biological research, we would for example, sacrifice

much of the field of epidemiology, where comparative

studies have been spectacularly successful. Can you
imagine Edward Jenner discounting, because it was based on
comparative study, the observation that the incidence of
smallpox was lower among milkmaids than in the population

generally? Fortunately for us, he did not ignore this

datum but went on to make the connection that milkmaids
E? were likely to have had cowpoX, and that cowpox produces

immunity to smallpox, and that possibly people could be

protected from sprallpox by vaccination with cowpox virus.
| Oor to take an example from behavioral science, I

E think that most of us would admit that the remarkable

{ constancy of the rate of incidence of schizophrenia in
different countries, in different socio-economic classes,
and in different historical periods, as revealed by
comparative studics, has an important bearing on where we
should look for the causes of this disorder. Certainly,

it discourages a theory exclusively based on response

environmental stress, which rust differ from one population




to another, and sugcests ''e cxplore instecad a blogenic
mechanism vaich is at a more-or-less steady state in
these populations,

I believe that we should accept the comparative study
in behavioral research, but we must be conscious of its
limitations. The most that such a study can achieve is a
description of systematic differences in the responses of

different classes of subjects. It may demonstrate that

certain responses and certain characteristics are associated,

but it does not tell us we can change subjects' responses
by changing their chavacteristics. It takes an experi-
mental studv following up the comparative study to establish
this kind of practical knowledge. |

Unhappily, the causal interpretations which are gra-
tuitously imputed to mere associations give comparative
studies a bad name. I recently came across an example of
this kind of abuse which is so flagrant that one is left
stunned. In summarizing responses to a questionnaire item

contained in the Coleman Report (Equality of Educational

Opportunity), one reviewer stated: "The most telling

factor in achievement is the attitude of students toward
themselves. UWhen students feel they have control over
their environment and destiny they achieve more."
Apparently, the converse interpretation--that students
who achieve more feel that they have more control over
their environment and destiny and will express this feeling

on a questionnaire item--did not occur to the reviewer.




Obviouslv, the data are incapabhle of distinguishing
between the two interpretations.

If we discount this kind of over-zealous embracing
of causal explanations, however, we can accept the com-
parative study as a useful research strategy in early
stages of investigation wvhere we are seeking ideas which
may be followed up in more experimentally-oriented studies.
In behavioral science especially, where most research is
at the stage of preliminary investigation, we can expect
the comparative study to be widely used, as indeed it is
at the present tirme,

When discussing the comparative study, in which the
investigator deliberately sets out to contrast certain
populations or sub-populations, I consider it important to
distinguish this type of study from a survey, in whkich the
investigator attempts to describe a single population on
the basis of a sample of subjects. Before selecting the
sample in the comparative study, the investigator identi-
fies the characteristics which identify the various sub-
classes which he wishes to compare. Ie then goes into
the population and, from among those subjects vho fall into
a particular subclass, he draws a random sample and measures
some response of the subjects he has selected. 1In effect
then, each subclass constitutes a separate population, and
it is only within these populations that the investigator

has to maintain random sampling. This is often advantageous
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since it is usually easier to randomly sample within a
narrow class, wherc the subjects may be geographically
more accessible, or where lists of all subjects in the
population are available. Furthermore, the numbers of
subjects to be selected for the subclasses are largely at
the disposal of the investigator, and he may choose them
so as to obtain the best possible precision in estimating
the comparisons of interest.

The procedure in a survey is much different. The
investigator samples randomly from the general population,
and then classifies subjects according to the character-
istics which he wishes to associate with the response vari-
ables. In this case a number of subjects in the subclasses
is a random variable which reflects the population portions
for the subclass. In a survey study, it makes sense to
collapse data over various ways of classification and to
describe differences between certain groups ignoring other
ways of classification. Since each way of classification
samples the entire original population, statistics based
on the collapsed data can be identified with definite
population narameters. In a comparative study, where the
number of subjects in the various classes are arbitrary,
it is in general meaningless to collapse some of the ways
of classification because the resulting groups of subjects
do not represent any real population. This means that the

statistics such as correlation coefficients or correlation
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ratios, which ncasure sonc variance conponents with

respect to the total variance, are meaningless in a compa-
rative study, because the total variance is arbitrary and
does not refer to any real population. Thus, the device

of quoting the per cent of variance accounted for (i.e.,
the multiple rz), which is popular among people vho use
regression methods to analyze this form of data, has no
general meaning when applied to comparative study. Vhat

is really of interest in these studies is the size of the
effects associated with the various classes of subjects or
the interactions of classes. If the metric of the response
measures is arbitrary, so that these differences have no
clear absolute meaning, then the best we can do is to
compare effects estimated for some classes or some variables
with other classes and other variables. Thus, it may be
possible to say that vwhile both A~ and B-way-of-classifi-
cation in a comparative study clearly have statistically
significant effects, the effects of the B-way are, say,

an order of magnitude smaller than those of the A-way.

It must be understood that we cannot get this information
by comparing, let us say, F-statistics for the respective
ways of classification, because the F-statistics reflect
the precision with which the effects are estimated and not
the magnitudes of the effects themselves. The actual
least-squares estimates of the effects need to be estimated

and examined.
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Considerations of interpretation have an important
connection with the prior question of how the investigator
should set up the analysis of data from a comparative study
assuming, as we are here, that the analysis is based on a
linear statistical model. From the point of statistical
method, it would be convenient if we could assume that the
investigator always selects equal numbers of subjects for
the subclasses of design. Then an orthogonal analysis would
be possible and the computation and interpretation would be
simplified. But a comparative study seldom works out this
neatly. Sometimes the design includes subclasses for which
few or no representatives can be found. Sometimes subjects
withdraw from the sample Lefore the data are collected, or
sometimes data are found to be erronecus or mixed up and
cannot be replaced. Inevitably, lack of time or money
prevents the investigator from filling out the design, and
he may elect to analyze the data he has on hand. If so, he
can take two approaches to the analysis, and they are well
represented by the papers given yesterday by Professor

Bargman and Dr. 'ard.

Analysis of variance vs. reqression analysis

Professor Bargmann, supposing in his paper that the
investigator has set up the analysis in the form of an
analysis of variance, raises the question of hcw accurate
are alternative methods for estimating main class effects
assuming unequal subclass numbers and the presence of inter-

action. His calculations show that the exact method, the
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method of fitting constants, is not appreciably different
from the approximate method of unweighted means in terms

of the accuracy with which they recover main class effects

in Monte Carlo data. Fe expresses some surprise that the
adding of an interaction in the form of a random cell effect
shows very little influence on the 2stimation of main effects.
I find less reason for surprise, however, since adding a
random cell effect is essentially the same as adding a random
sampling error to observations within cells so far as main
effects are concerned. The difference is only that the
variance contributed by the cell effect is larger in pro-
portion to the number of observations within the subclasses.
The random cell effects tend to average out, especially when
large numbers of levels are invo'ved as in Bargmann's
examples, and are not readily observable in the estimates of
main effects. In real data, however, they are systematic
rather than random and, as some of Bargmann's later examples
show, the main effects are not estimable in the presence of
such systeratic interactions.

As to the relative merits of the exact analysis versus
unweighted means, Bargmann's calculations show that it is
not in estimation, as such, that the difference between the
two methods is brought out. After all, both methods give
unbiased estimates of main class effects. The important

difference is that, irn unweighted means, one has only the
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crude estimate of the error variance computa2d using the
harmonic mean of the subclass numbers as a compromise figure

for sample size. In the least-square analysis one has a

best quadratic estimate of the error variance and, hence,

can calculate exact F-statistics and confidence intervals.
I, for one, would not wish to give up these advantages of
exact analysis of variance merely to avoid more complex
computation and somewhat more difficult interpretation. My
) preference is to make use of programs capable of performing

an exact analysis in the non-orthogonal case and to learn g

how the non-orthogonal analysis differs in its interpretation

from the orthogonal analysis with which we all are familiar.

g S

The other approach to the analysis of data from a

Ry

comparative study is closely identified with the work of Dr.

ward (even though in his paper he gives "equal time" to :

analysis of variance and analysis of covariance). In this
approach the investigator is advised to set up his analysis

as a regression problem, using dummy variables to represent

1

: the various classes in the design and their interactions.
As Dr. Ward points out, the analysis which results is
numerically equivalent to an exact least-square analysis
whether or not the subclass numbers are equal or unequal.

5} 1 think it must be admitted that a good part of the motivation

for using this approach is the fact that good regression
L programs have been available for computers longer than have

‘%i been flexible analysis-of-variance programs. But let's
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suppose the investigator has available both a regression
program and an analysis of variance wprogram such as MULTI-
VARIANCE or MANOVA. Is there any advantage to his taking

the pure regression approach to data obtained from a designed

experiment or comparative study?

Reparameterization of design models

A problem with the pure regression approach is that it

4 forces the investigator to rely almost entirely on F-ratios
and tests of significance, while making it difficult for him
to make use of the estimates of the effects reprcsented in
the fitted recression coefficients. This is tiues because
when applied to design models, the regression analysis has

the effect of transforming the parameters of the original

linear model without giving the user any indication of what

: e Yacasdsery 1

transformation is involved. Let me illustrate this by a

simple example. Consider the problem of analyzing data from

a two-by-three cross-classification. Suppose we attempt to

fit a model

vhere yjk is the measurement of the response of a randomly

selected subject from the j-th A-class and the k~-th B-class;

u is a constant term which incorporates the arbi-

trary origin of measurement on the response scale;
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is the effect on the response associated with
membership in the j-th class of the A-way-of-
classification and

is the effect on the response associated with
membership in the k-th level of the B-way-of-

classification.

To anyone acquainted with multiple regression analysis,
it will be clear that, since there are no limitations on the
independent variables of a regression problem, except that
they be real numbered variables, the problem of fitting a
model may be cast as a regression problem. This may be done
by deploying independent variables, the quantities Xp, X3,
X9y X3, Xg0 Xgo which take on values 1 or 0 according to

whether the associated effect is present or absent, that is,
E(yjk) = Xq + a1X) + azXxy; + B1xX3 + Box, + B3Xg .

This means that we can perform the recression analysis on
data which takes the form shown in Table 1.

A more efficient analysis from the point-of-view of
computation, however, may be formulated as a weighted least-
squared fitting of the subclass means, where the weights
are the subclass numbers, njj, nj2, nj3., D231, N22¢ and nj3.
All information in the data necessary for this solution may
be summarized in the form of Table 2. This form of analysis
calls attention to the estimated cell means and variances,
which as Professor Graybill stresses, should be available

for the investigator's inspection.
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Data for least-Squares Analysis

WWI

o A O -“f’hﬁﬁﬁg.ﬁfwﬂ?‘w@i

bPe-endent ndeaent

variable Unyioy 103

Y g ¥ 1 2 3 %% %5

Y ()11 1l 1l J 1l 0 D

Y(2)11 1 1 s 1 0 0

. :

)'4 (nll) 11 1 1l 0 1l 0 Q

Y(1)12 1 1 0 0 1 0

¥ (2)12 1 1 J 0 1 0

N4 1 1l v 0 1 J
(nlz) 12

(1) 23 1 0 1 0 0 1
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Table 2
Summary Data for Analysis of Variance

Subclass Dependent Subclass means
Numbers Variable Independent Variables
Subclasses (Weights) Variances Y. 3k ¥g ¥y Xy X%y X, Xg
1. 1,1 Ny A1 Y. 1 1 0 1 o O
2. 1,2 n, s?L2 Y.12 1 1 0 0 1 0
2
3. 1,3 n 4 Si3 Y.13 1.1 0 0 0 1
2 - .
4. 2,1 Ny S5, Y.01 1 0 1 1 0 0
5. 2,2 Ny 5%2 ¥.2o 1 0 1 o 1 O
2
6. 2,3 Nyy S54 Y.o3 1 0 1 o0 O 1

In matrix notation, the weighted regression solution for these data can
be expressed in campact form for a general model involving 6 subclass means
and 6 effects to be estimated. Required in the solution is the 6 x 6 matrix
of independent variables, X, shown at the right of Table 2, the 6 x 1 vector
of subclass means y shown in the center of Table 2, and a 6 x 6 diagonal
matrix, D, whose elements are the subclass numbers in the order shown at the
left. In this example, let the effects to be estimated be the 6 x 1 vector
&, with elements u, Gys Oor Bl' 82 and 83. Then the n = 6 equations of the
model can be expressed in the matrix equation

E(y.) = Xg .
It can be shown that the least-squares estimate of ¢ is a solution of

the so~-called "normal” equations,
X'DXg = X'Dy .

ey = W
S
i




Solving the normal equations 15 complicated, however, by the fact that
independent variables for experimental design models are subject to linear
dependencies because certain columns of the model matrix are the sums of other

X, + X =x3+x4+x5=xoina11rowsofthemode1

columns. In the example, X, 2

matrix, X. We say than that the model is of "deficient rank," or "not of full

rank," vhere rank refers to the mumber of linearly independent co:umns.

Many workers are aware that sophisticated regression algorithms are cap-
able of giving a solution in spite of the linear dependencies, but few under-
stand how these procedures work or how the model is altered in process. To

explain this, it is first necessary to establish that the normal equations have

a solution when the rank of X is less than m, the number of parameters. A
solution is assured by a theorem of elementary matrix algebra which gives

the necessary ccndition for a congistent solution of a system of linear
equations. The condition is that the constant terms on the right be subject

to the same linear dependencies as the matrix of coefficients. If it satisfies

this condition, a system of n equations in m unknowns, with matrix of coeffi-
cients of rark # < n, has a solution for ¢ of the m unknowns in terms of the
yemain n - 2 unknowns. If values for the latter unknowns are arbitrarily
assigned, the system has an actual mmerical solution. Clearly the solution
is not unique because it depends on the n-% arbitrarily assigned quantities.
It is easy to show in the context of linear statistical models, that the
normal equations fulfill this condition, and that the arbitrary assigmment
of unknowns merely amounts to choosing the origin of the scale of measure-
ment. of the effects. Because we are all accustaned to scales with arbitrary
origins, e.g., the Fahrenheit and Celsius scales of temperature, and because
most statistical procedures are invariant under translation of scale from
one origin to another, this form of non-uniqueness can be tolerated.

e
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The simplest method of solving the normal equat:.ons for models not
of full rank is to omit redundant variables as they are encountered in the
forward part of the solution of systems of linear equations by eliminaticn,
as in the Gauss-Doolittle , square-root, Gauss-Jordan, or simple bordering
methods (See Bodewig, 1959; Householder, 1953). As the eliminations are
performed, null rows will be encountered when a redundant variable is
reached. If these rows, and the corresponding columns of X'DX are dropped,
the remaining 2 equations are of full rank and may be solved in the con-
. ventional back solution. This is the soluticn most frequently used.
It is essential for the worker to understand, however, that an altera-

tion of the original model is implied in this procedure. It amounts to

arbitrarily setting to zero the last effect encountered in each way of
classification. This is easy to demonstrate in the present example. It
is clear that the parametric foirm of the model cin be altered in the
following way without distrubing the equalities,

E(y,)) = (u + 0y +83) + (o) - a,) + (8, - B3)

E(y,,) = (v + 0, + Bj) + (a0 = a,) + (B, = B3)
E(y,3) = (h + oy + 8,) + (@) - a,) + (85 = B4)
Ely,,) = (b + 0, + By) + (o, = a,) + 8y - B4)

E(y,,) = (u + ay + B3) + (o, = @) + (8, - B3)
E(yyg) = (u + a5+ B3) + (a, - ) + (B3 = B3)

Now let: +a.2 + 33 = "(c)’ @y = 0y = °1(c)’ Bl- 83 = Bl(c) and
maybeexpresse:iintemsoftle3parameters rather than 5, and the

lincar dependencies are eliminated:
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% 4
| {
Elyy)) =¥(e) * %2(e) * Fiee) i
E(vy13) = %) * %1(0) '
E(yy,) = ¥ (c) + 89 (q)
E(Yzz) = "(c) + BZ(C)
Blrzg) = ¥ (o)
In matrix notation
B =Kie)le) 2
= Kic)8c)r s g
where |
;
1 l 1 0| 3
1 1 0 1 T o0 1 0 0 1 §
i
1 l1 0 0 o0 1 -1 0 O0 O i
K = and L = {
@ 1 o 1 of’ ©@ 1o 0o 0 1 0 -1 i
1 0 0 1 0 0 0 0 1 -1_ !
1 0 0 O
In the corresponding normal equations %
' = ' %
K ) e)lic) £= Kie) ¥
i

the 2 x 2 matrix of coeffici.ents,K(c) 'DK(C) is of rank 2 and has an inverse.
The lgast-squares solution may therefore by expressed as
Lic)s = K(c) ' () K (o)PL-

= Mx.
"3
i.e., 8¢ is the least-squares estimate of L & -
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The 2 x n matrix M has heen called the “estimaticon” matrix for the

design (Bock, 1963).
We may illustrate this solution mumerically with the data of Table 3.

Table 3
Artificial Data

Classification Sﬁbclass Standard
Subclass A B Number Mean Deviation
1 1 1 10 21.2 5.83
2 1 2 10 23.4 5.56
3 1 3 9 28.7 5.65
4 2 1 7 20.1 5.87
5 2 2 9 21.3 5.36
6 2 3 10 23.5 5.92

The least-square estimate of @ (c) is:
™ 24,600 | Constant temm (u + a, + 83)
" 2.877 ay = a,y

() -
=(c) ~5.546 By = By

L_ "3.709- 82 - 83

The foregoing is a simple example of the reparameterization of a

linear molel. It is a linear reparameterization and the transformation
is represents is specified by the £ x m matrix L. The new parameters

R A R QT RS gl A AT Al b e i b A OIS A s AT R S s i N
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8(c) are called linear parametric functions of the original parameters §
(Bose, 1960). %
i
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Reparameterization in the partition of the total sum of squares

If it is true, as I have tried to show, that the reparameterization of
the design model implied in certain regression procedures should be made
explicit so that the user will know what is estimated, then it is doubly
true that the further reparameterization implied in the associated analysis
of variance mist be explicated if the user is to know what is being tested.
1f the user does not understand the logic behind the calculation of the
F-statistics in the regression analysis, he is in danger of misinterpreting
the tests of significance based on them, especially in the analysis of design
models. I have in mind, in particular, those computing algorithms which
produce an F-statistic for each parameter in the model, eliminating all
other parameters, or, equivalently, those which produce partial correla-
tions between the dependent variable ard each independent variable, while
holding fixed all remaining independent variables.

Fundamentally, these procedures involve the additive partition of
the total sum of squares which was introduced into statistical practice
by R. A. Fisher. There are many ways, gecmetric and algebraic, to understand
the meaning of this partition, but perhaps none is clearer than an explana-
tion in terms of the corresponding reparameterization of the design model.

The objective of this “"second” reparameterization is the construction
of certain parametric functions whose estimators are uncorrelated and have
cammon variance. Zpplied to data, thesé estinators yield what may be

called orthogonal estimates (to use temminology suggested by Bargmann),

although Durand has called them semi-partial regression coefficients

AT N R YRGS R
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(Durand, 1956) . If the sampling errors are similarly, independently, and

romally distributed, the squares of the orthogonal astimates are (possibly
non-central) independent chi-square variates, and the F-distribution applies.

The reparameterization implied in the partition of the total sul of
squares repays study because it makes utterly clear the meaning of the analysis
of variance. The reparameterization is accomplished by factoring the basis
matrix for the design into the product of a matrix orthonamal by columns
(possibly with respect to a matrix of weights), and an upper triangular matrix:
K = PT

nxft nxg 22x2

N

where P'DP = I. MNumerically, the factorization may be carried out by a gen-
cralized Gram-Schmidt process (Househoider, 1953, p. 72) or by Houscholder's
orthogonal triangularization (Householder, 1964, pp. 133-134). (Finn's
MULTIVARIANCE program uses the former and Cramer‘s MANOVA program the latter.)
whatever the numerical method, the reparameterized model becames,

E(y) = PTe

= Py , say.

The least-square estimate of v is

v = (P'DP)P'DY

= P'Dy

=u, say.

_X?A
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Its vector expectation and variance covariance matrix are, respectively,
E(u) = v=1T9 and
2l

V(w = Io? ,
2

where 02 is the common error variance.

The triangularity of T is crucial here:

e —
0 %12 t,-1 Y.
0 ty e Y Yy
.. . . . .
0 t-1,0-1 Ye-1,2
0 0 vee 0 t,,

It means that the last element of v involves only the last element of 9,

gg0,); that the next-to~-the-last element of v involves the

last two elements of O (i.e. =
8 (e vy ) =t, g1 Op ¥ Beo1,00) P WIS

(i.e., Uz =t

on, until the first element of v involves all elements 9.

It is clear, then, that a test of the hypothesis that v g = 0 is equiva-
lent to testing the hypothesis 0, = 6, since if T is of rank &, tos
cannot be zero.

A test of the hypothesis v,_; = 0, on the other hand, is equivalent to
a test of 0pny = 0 if, and only if, one or both of two conditions are met—-
either t,_, , = 0or o, =0. The salient difference between an orthogonal
and non-orthogonal analysis is that, in an orthogonal analysis, if 0, and

0 are effects of different ways of classification or different

L=-1
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interactions, the first of these conditions is met, i.e., ti1,= 0. Itis
’

because of the vanishing of certain above-diagonal elements of T that the

independent interpretation of each line of the analysis of variance table,

with which we are all familiar, is possible.

If the analysis is non-orthogonal, on the other hand, none of the above-
diagonal elements of T is zero independent of the arbitrary subclass numbers.
This means that an hypothesis such as 0,_, = 0 is testable in this repara-
meterization if, and only if, 02 is assumed null. In this case, only “step~
wise" testing of hypotheses about effects in the reparameterized model,

E(y) = Ko, is possible. If an independent estimate of the error variance is
available, e.g., from the replications within cells, then a variance ratio
corresponding to each orthogonal estimate, or for two or more of the estimates
pooled together, may be inspected for statistical significance. The inspection
begins with the last orthogonal estimate and proceeds in order to the first.
tthen one of the variance ratios is found to exceed a predetemmined critical
value, the process is terminated and the number of parameters to be included
in the model is established.

This procedure provides a decision rule for determining the most parsi-

monious model which is consistent with the data. Its statistical justification
has been given by Roy and Bargmann (1958) and T. W. Anderson (1962), who show
that, under the null hypothesis the tests at each stage are stochastically in-
dependent. The overall error rate of the procedure is therefore easy to cal-
culate. Specifically, if a test with type I error equal to a; is made at the
i-th stage, then the probability o of accepting the null hypothesis at each

stage when it is in fact false for at least ane of m stages is,

m
a=1-,1 (1-a).
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o sec how tixe foregoing results apply to the type of regression analy-
ses mentioned above, in vhich an P-statistic is caputed for each parameter
eliminating all others, we cbserve that this analysis is equivalent to orthogc-
nalizing K m times (if there are m parameters in question) wiith each para-
meter in turn in the last position. Viewad in this way, we see that there
are a nuiber of nitfalls associated with this procedure which may trap the
uwary user:

First, the Roy-Bargmann and Anderson result applies to only one
such ordering. Since the results of multiple orderings are not independent,
the calculation of error rates is ropelessly camplicated. This presents a

prcblem in the analysis of non-orthogonal factorial desions. A single parti-
tion of the sum of squares for the non-orthogonal design does not have the
same effect as the partition for the correspondiing arthogonal designs. To
cbtain the effect of an ortiogonal analysis, we nust perform as many parti-
tions as there are factors. In these partitions, we would order the bases
vectors in K so that vectors corresponding to each main-effect appear last

in one of the partitions. In practical work, we may need to test all factars
and thus may be cbliged to proceed in this manner. If we do so, we will be
able to make a probability statement which is correct for any given partition,

but not a statement which applies to the partitions jointly. Admittedly,

most practical workers will not be greatly disturbed by this limi tation
(although perhaps they should be), because in factorial analyses they usually
make their probability statements for each effect separately rather than
jointly. Strictly speaking, however, it would be preferable to identify

before the analysis the effect which is to be tested critically and to

employ a single partition in which that effect enters last. An exact
probability statement will then be possible.
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Secand, when design models with interactions are inwolved, there is no
logical justification for placing each possible parametric function last in
the ordering and testing it there. Consider, for example, the 2 x 3 design
discussed above. There are only two orderings possible for this design, and
they are shown, together with the numerical results for the artificial data,
in Table 4. The only room for cheice is in the order in which the two main
effects are introduced.

Table 4

Partition of the total sum of squares
for the 2 x 3 design

Sum of Sum of
Source d.f. Squares Source d.f. Squares
Constant Term 1 29404.0151 Constant Term 1l 29404.0151
A-classes, 1 83.1732 B-classes 2 259.0878
ignoring B ignoring A
B-classes, 2 288.3770 A-classes 1l 112.5323
eliminating A eliminating B
Interaction 2 41.4238 Interaction 2 41.4238
Within subclasses 49 1594.9993 Within subclasses 49 1594.9993
Total 55 Total 55

It would be illogical to attenpt to eliminate interaction from the main
effects for the following reason. There are actually six interactive para-
meters in the original model. %he two degrees of freedam for anteraction an
Table 4 represent merely the two possible linear functions of these six para-
meters which are linearly independent of the main effects. If one wanted to
eliminate the interactive effects, he would assign one degree of freedom to
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the constant texm and five to the interactions. But this would exhaust the
degrees of freedom for the design without the main effects having been
included. It would, in fact, reduce the analysis to a one-way design,
which is, of course, precisely what the interaction terms amount to.
Obviously, any cawputing procedure which would include interactive func-
tions ahead of main effect functions when orthogonalizing the models
(explicitly or implicitly) in the partition of the total sum of squares

is erroneous.

Third, there is no logical justification for testing individual degrees
of freedam within main effects or interactions unless the classes in the way
of classification are ordered or structured in some way. It should not be
thought that, say, the simple contrasts of each class with the last class (as
in the artificial example above) could be tested separately by means of the
corresponding orthogonal estimate if the classes are nominal. One must
remenber that a further reparameterization of the model occurs in the orthogo-
nalization. Indeed, when the subclass nuwbers are equal, the simple con-
trasts are turned into "Helmert" contrasts in the orthogonalization. (A
Helmert contrast is the difference between the effect of, say, the i-th group
and the mean of the effects of groups i + 1 to n when the n groups are ordered
in some way.) If the structure of the groups is meaningful, then “cne-degree
of freedom" tests in that order may be useful; if not, the degrees of freedom
and the oorresponding squared orthogonal estimates for the way of classifica-
tion should be pooled. Of course, when the groups are ordered with known
spacing, the one-degree of freedom analysis using orthogonal polynomial ccn-
trasts is meaningful and often valuable. Other types of structuring are possi-
ble. I am indebted to Dr. Elliot Cramer for the following example. Suppose
two related drugs and a placebo are being tested in three independent groups
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of subjects. I would consider it correct and meaningful to perform single-
degree-of-freedom tests on two ordered contrasts among the three groups. The
first would contrast the placebo group with the mean of the two drug groups.
The second would contrast the two drug groups. In a non-orthogonal analysis,
the effect for second contrast would be tested eliminating that for the first.
If this test should show that the drugs differed in their effects, the analysis
would terminate. A drug effect of some kind would have been demonstrated and
the estimated effects would be examined to determine the nature of the effect.
on the other hand, if the test of the second contrast did not show the drugs
to differ, then it would be necessary to test the first contrast, ignoring the
second, in order to getemmine if the assumed equal effects of the two drugs
are different from the placebo effect. This formulation of the analysis
assumes a linear model in which the effect of a drug is the sum of a placebo
effect and a true drug effect:, whereas the placebo has only the placebo effect.
Lastly, I would like to pcint out that when the independent variables are
random variables, the sum of squares of the orthogonal estimates, divided by

the total sum of squares, is a squared multiple correlaticn ccefficient .
The separate temms in this sum are valusble in that they show how much r? will
jncrease when the correspanding variable is added to the regression equation,
given that all variables preceding it in the ordering are already in the equa-
tion. Notice that this interpretation dspends upon the arbitrary order in
which tie orthogcnalization is carried out. It is deplorable, but true of the
psychological literature, that the product of the standardized regression
coefficients and the corresponding first order correlation has been advocated
as an index of the proportion of variance accounted for by each independent
variable which does not depend an the order of independent variables (Hoffman,

1960) . Actually, there is no sense in which one of these products can be
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regarded as proporticnal to the percentage of variance determined by an
independent variable. In the first place, the product can be negative,
which is not admissible for a proportion; and in the second place, it does
not correspond to the proportiocnate reduction of r2 when the variable is
removed fraom the regression, which is the only possible way to make a state-
ment about the contribution of a variable independent of arder. Iet us hope
that this errcneous index has not found its way into computer programs that
statistically naive educationists or psychologists might use.

Interpreting main-effects and interactions

A final problem which I see in the routine use of general regression
programs for designed studies concerns the interpretation of effects. Person=
ally, I find no difficulty in interpreting the quantities which are actually
estimable in the design models, namely, the contrasts of effects between
classes and subclasses. But after five years of unrelieved failure to get
any applied worker to think in terms of effect-contrasts, I am beginning to
get the message: the natural way to interpret effects ir a designed study is
in terms of the estimated means of the relevant main-classes and subclasses.

No doubt this fixation on marginal means is the result of constant ex-
posure to orthogonal analysis of variance where the marginal means are, in
fact, best unbiased estimates of effects in the model under conventional re-
strictions. Unfortunately, this practice can be carried over to non-
orthoganal analysis only in a study vhere the data as a whole constitute
a probability sample of the defined population. In this case, the marginal

means are best unbiased estimates of the population means for same classes

of the design vhen other ways of classification are ic—ored.
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If, on the other hand, the subclass numbers are arbitrary, either by
design or by attrition in the sample, the marginal means do not estimate the
corresponding mean effects. I have tried (unsuccessfully) to convince users
that they should fix attention on the effects, rather than on means, and
display best estimates of effects when reporting on a study.

Thus, if we wished to display the estimated efiects in our artificial

example, we would recall that these contrasts amount to setting the last class
in each way of classification to zero, and we would depict the effects for

each class separately as shown in Figures 1 and 2.

Figure 1
6
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A-class Effects (Arbitrary Origin)
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B-class Effects (Arbitrary Origin)

The points plotted in figures 1 and 2 are entirely plausible (the con-

necting lines are intended to guide the eye and do not imply functional rela-
tionship), but the scale is peculier because it is not in the range of the
original data. We need to change the arbitrary origin of the scale tc same
other point. A natural convention would be to choose the origin so that the

effects appear as they would in an orithogonal analysis where the effects are
‘ estimated by the marginal means. A general method of estimating such means
[; is, first, to estimate the subclass means from the fitted model, i.e.,

F y=K0

| and, second, to calculate the marginal means from the fitted cell means.

For the exemple, the matrix K is given on paje 126 ind the estimated

l.p.f. on page 127. The reproduced cell means are
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Y.pp = 21.931
Y.qp = 23.768
Y.y = 27477
Y.y = 19.054
Yogo = 20.891
Y.o3 = 24.600

The marginal means for A-classes 1 and 2 are 24.588 and 21.515; for

B-classes 1, 2, and 3 the means are 20.493, 22.329 and 26.039. The graphs

on this scale appear in Figures 3 and 4.
It must be understood, however, that only the differences between the

points in Figures 3 and 4 actually have meaning.

points do not estimate means of any naturally existing population.

The numerical values of the

They

estimate means for a hypothetical population in which each subclass is

equally represented.
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Interactions

In orthogonal analysis of variance, a widely used aid to interpreting
interactions is a graph of the marginal or cell means for the interacting
ways of classification. This device can also be adapted to non-orthogonal
analysis. The procedure is to fit a model including the significant inter-
actions, and to veproduce the cell means or marginal means with the fitted
model.

If the highest order interaction in the design is significant, the
rank of the model fitted must equal the number of non-vacant cells in the
design, and the cell means can then be fitted exactly. In other words, the
cell means in this case are their own best estimates. Thus, when all inter-
actions are significant, it is the cell means which are to be plotted in
both orthogonal and non-crthogonal analyses.

In mltiway designs, on the other hand, it will frecuently happen that
a low-order interaction is significant while higher-order interactiorss are
not. In this case, a model of which the rank is equal to (1 + d.£. for
main effects + d.f. for significant interactions) should be fitted and the
best estimates of the cell means calculated. The marginal means can then
be calculated for the interacting dimensions and plotted.

For an illustration of these calculations, let us extend our artificial
example by adding a third way of classification. In terms of subclass means
and standard deviations, the data might appear as in Table 5.
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Table 5

Artificial data for a 2x2x3 design

e T R T DL
) § 1 ) § 1 10 22.1 3.125 22.43
2 1 1 2 9 23.5 2,986 23.59
3 1 1 3 8 29.8 3.271 28.90
4 1 2 1 7 20.0 3.11 20.27
5 1 2 2 10 21.5 2.895 21.58
6 ) § 2 3 10 22.9 3.175 22.94
7 2 1 1 6 24.7 3.250 24.15
8 2 ) § 2 ° 25.4 3.011 25.31
9 2 ) § 3 10 29.9 2.943 30.62

10 2 2 ) § 9 22,2 2.751 21.90
11 2 2 2 8 23.4 3.167 23.30
12 2 2 3 10 24.7 3.112 24.66

An analysis of variance of these data appears in Table 6. We see an in-
dication of a significant B x C interaction, but no evidence vhatsoever of
other interactions. Since there is also evidence of a significant A effect,
it appears that the simplest model capable of describing the data is of
rank 7 and may be expressed in terms of the constant term, the four main-
effect contrasts and the two B x C interactive contrasts. If this model is
fitted to the data and the subclass means estimated by K9, the figures shom
in the right hand colum of Table 5 are obtained. From these estimates,
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the various marginal means shown in Table 7 are calculated. The marginal
means are simple, unweighted averages of the estimated suhclass means. In
effect, they predict what the investigator would have obtained for marginal

means had he been ahle to cbtain equal mumbers of observations in the
subclasses.
Table 6
Analysis of variance for 2x2x3 design
Mean

Source d.f. Square F P
Constant temm 1 62053.6411 4
c' 1gmm A' B' BC '

AC, AB, and ABC 2 194.1985 29.75 .0000
A, eliminating C and ignoring

B, BC, AC, AB and ABC 1 81.2782 8.67 .0040
B, eliminating C and A, and

ignoring BC, AC, AB and

ABC 1 318.7697 34.0679 .0000
BC, eliminating C, A and B

and ignoring AC, AB and

ABC 2 45.7028 4,.8844 .0096
AC, eliminating C, A, B and

BC, and ignoring AB and

ABC 2 4,3448 . .4643 .6300
AB, eliminating C, A, B, BC

and AC, and ignoring ABC 1 1,6044 1715 .6798
ABC, elmnam C, A, B, BC,

AC and AB 2 2.7515 .2941 7459
Within subclasses 94 9.3569




Table 7
Subclass and marginal means predicted by the rank 7 model

A
1 2
1 R
1 24.97 | 26.69 25.83
B , 1 21.60 ! 23.32  22.4C
L | +
23.28 | 25.01 ' 24.15
A
1 2
1 21.33 | 23.07 22.20
c 2 22,59 | 24.3 23 45
3 25.92 | 27.64 26.78
23.28 | 25.00 ! 24,14
B
1 2
1 23.73 | 21.13 22.20
c 2 24.45 | 22.44 23.45
3 20.76 | 23.80 | 26.78
25.83 | 22.46 ' 24.14
Figure 5
20
B 1
28 d
26 ///’
24 ////”
7 B 2
22 o = .
@ - e
20 ‘
1 2 3
C~classes

Interactive effects (natural origin)
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“le are primarily interested in the B x C table, which contains informa=
tion about the significant interaction. Plotting in Tigure 5 the entries in
the body of the B x C table, ve see that the interaction may be attriluted to
an excessive response in class Bl under C3. No evidence of snecific B-class
effects under Cl and C2 is evident,

I hope these examples serve to make clear my nresent views cn the ques-
tion of vhetuer we should take a "pure” regression approach to the analysis of
coamparative studies by means of the linear model, or vhether we should retain
the approaches and terminology that have grovn ug in the application of analy-
sis of variance to designed experiments. Since the two aprroaches are formally
jdentical and lead to the same rasult if properly carried out, the question
becames a ratter of precedent, convenience, and taste. Precedence certainly
favors the analysis of variance forrulation vhere designed studies are con-
cerned. It is the only treatment vhich appears in the widely used statistical
texts., The fact that the theory of experimental design is fornulated in analy-
ais of variance terms is also important here. In tems of convenience to the
user, the analysis of variance approach, vhich uses the subclass means as the
swmary form of the data and deals with effects in temms of class effects and
contrasts among class effects, seems easier to apply and interpret. In var-
ticular, construction of the bases matrix K is ruch easier than the construc-
tion of the deficient rank matrix for the original model, Turthermore, as
I mentioned in ry remarks to Professor \liner, if we extend analysis of variance
to the multivariate case, we have a convenient method of handling the mixed-
model analysis. This analysis is virtually irpossible by the direct regression
method if the random dimensions have many classes.

As for taste, I can only agree with Dr. Vard that it seems to be accounted

for largely by what one has been taught and thus varies dramatically fram one
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university to ancther. This is not the most satisfactory state of affairs.,
Clearly, it is our responsibility in teaching, not to treat multiple recression
and analysis of variance as if they were unrelated torics. There is really

no excuse for doing so when an integrated account of these subjects is

available in Professor Cravbill's axcellent text, Introduction to Linear

] Statistical liodels, Volume I. On this optimistic note let me thank you for

your attention and end my remarks here.
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DISCUSSION OF SPECIFIC PROBLEMS

RELATED TO THE USE OF THE GENERAL LINEAR MODEL




Discussion of Specific Problems
Related to the Use of the Gemeral Linear Model

Dr. Findley:

As a basis for significant discussion, a series of questions and

11lustrative problems is offered as a point of departure. The first question
is
1. Can designs in which one or more cells contain no

data be analyzed by the general linear model? Are

there rules of thumb that one could apply regarding

the number or pattern of missing cells that could

be allowed in an analysis? Should one use formulas

for estimating missing data from row and column

means?
We are all familiar with the practical rules of thumb given in basic statistical
texts on chi-square as to what you may do. I recall that in a text I have used
about five very specific guide rules on the use of chi-square were listed. I
think what we are asking is whether we can pass on to the educational research

community similar guidelines on linear models, though perhaps not of such speci-

ficity.

Dr. Graybill:

The answer to the first question is "yes." The general linear model
with missing cells is of no consequence except that it makes the computational
problem more difficult. As to using formulas for estimating missing data, the
only advantage of such a formula is computational. Let us say that you have a
two-way design with omne observation in all cells but one. In that case, it is
easier to go through a missing data procedure than it is to invert the matrix

or solve the system of equations and so I would use that. However, 1f the




thing gets more complicated, then perhaps it would be easier to go shead and
do a regular least squares analysis. But, by and large, the missing data esti-

mations are just for computational ease and the data can be analyzed with general

linear models whether cells are missing or not.

While I am talking about this, let me add that 1 am not clear what is
meant here in this conference by disproportionate subclass numbers. Does this

mean that if they are proportionate in the analysis, it is easier, or something

like that? I have heard this referred to a number of times. But if you perform

an analysis and the subclasses are proportional, but not equal, and you perform
an analysis by proportional subclasses, you have weighted ycur effects, so you

need to be very careful not to do a proportional subclass analysis if you do not

want to weight means for the subclass numbers. So I am not sure what is meant

here. The fact that proportionality gives orthogonality is completely by the

way. You should make the analysis that is mezringful to you relative to the

cell means and if you do it by proportional analysis, if they are not equal,

but proportional, you weight the cell means. So if you do not have a survey,

you may not get what you want, 1 think you should be very careful about pro-

portional analysis. I do mot know what you mean, but I have heard talk of dis-

proportionality. If there is something easier about proportionality, that 1is

nice, but you may have the wrong analysis.

Dr. Bargmann:

1 agree with Dr. Graybill and would underline even more strongly that

the least sjuares analysis of the two-way classification, even irregular, even

disproportionate, even with missing cells, 1s very &asy and I am sure all oy
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students will agree. If you use adjusted normal equations, there are only

very small equations you have to solve. This is a lot easier than using
Snedecor approximations for other things. As for the question, specifically,
how many empty cells should be or could be tolerated before one would discard
this whole model, there is, of course, a very simple indicator: if the degrees
of freedom for interaction become zero, if you have missing cells, your subtotal
degrees of freedom always get reduced by one for each missing cell and you

come to a point where there is no more room for interaction in the degrees

of freedom. At that stage, I would say consider the reformulation of your
model and assumptions, because otherwise confounding or aliasing is going on

in the main effects which makes interpretation extremely hazardous.

Dr. Wiley:

You might point out that Dr. Graybill's comment is appropriate
here, because missing cells are a form of disproportionality. The pattern
of missing cells may be as important as particular effects, so that it may
be important which cells are missing. Some rules of thumb are found in Elston
and Bush (1964). There are some problems related to that article that have
not been brought up here which I think are very important and need to be
discussed. One is relative to the models you are comparing in the nonorthogonal
analysis of variance and relative to the fact that, when you are talking
about testing a certain main effect, you have to be very specific because
there are many tests of the very same main effect depending on which models
you are comparing., I believe Elston and Bush were concerned with testing a

main effect when there is an interaction in the model and I believe their test
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of a main effect was a test eliminating both of the other main effects and

the interaction. The point that would have to be considered here is what

tests of main effects are appropriate in the situation where you are allowing

for interaction. Is it proper generally to test your main effects, ignoring

the interactions after you have tested them and found them to be null, or

£ main effects

should you do what some people say and get so-called clean tests o

where you are eliminating interaction? I think this is a question that has

not been brought up and is a very important one that should be discussed.

Dr. Findley:

It might come up in discussing the specific problem that is mentioned

next.

: e B RV AR T

Dr. Cramer:

Could I make a comment on this question? I think Dr. Bargmann's

f: point was a good one in that when the number of missing cells is quite large,

you have a high degree of confounding in your estimation of main effects

versus interaction. One kind of thing that can be done that is quite feasible

given the modern computation equipment is to actually calculate alias matrices

; where you show exactly how your estimates are aliased by other effects.

Dr. Bargmann:

Not quite. Main effects are always aliased with jnteraction, but

if ;he number of missing cells gets too large, then there is no degree of

d main effects start to be aliased with other main effects.

freedom left an
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Dr. McLean:

A latin square design is a complete design with a lot of empty i

cells. The main effects are completely confounded with certain interactions.

Dr. Wiley:

I wonder if one should use formulas for estimating missing data from

row and column means? That also involves the question of the way you are going

to test your effects. For if vou use the exact formula for estimating missing

data, you are automatically saying that what you are zving to do is test main i

effects, eliminating your interaction. So this is really tied in with the more

general problem.

Dr. Cohen:

It happens that the problem, particularly in the educational context,
arises frequently in surveys. Probably the most significant part of such data

is the correlation between the two factors in a two-way design implied by the

We sometimes lose sight of the fact that this

pattern of missing observations.

means that the main effects are correlated. If one effect is educational level

AT SRR

and the other is income, tryinz to get estimates of means gets to be relatively

meaningless. The first point is that these two factors are themselves correlated.

Indeed they relate to the independent variable, but not only do each of them do

so in an overlapped way, so does their interaction. Rather than be so concerned

about the question of how one makes estimates of marginal mean differences in

A,
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circumstances like this, I think a more meaningful procedure is to understand

that you are not dealing with an experiment -- that the nonorthogonality or the

correlation among your factors is a real phenonenon that needs to be incorporated

into the analysis of the data.
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Dr. Graybill:
I would like to say "Amen" to that and, in fact, I think we get
hidebound by this v + a, + Bj‘ This is what the experimenter in agricultural

experiments has invented. This is wrong. We should look at the cell means.

We can estimate the cell means and, if we have repeated observations, we can
use something like the studentized maximum modulus and put multiple confidence
intervals on these. From there do what you want to do--do not be hidebound
by some pre-conveived model somebody twenty years ago invented. I think this

is a very serious mistake. I would not let the statisticians shove something

down my throat. I would do exactly what Dr. Cohen said.

Dr. Bargmann:
For guidance on this point, the researcher should be referred to

the more standard textbooks. If a survey contains missing cells or highly

disproportionate or irregular entries, and if this is a reflection of the
proportion of such combinations in the population, why not simply subject

the data to a contingency table test which can be found in any textbook and
from such a contingency table test infer what kind of association exists between

these two principles of classification?

Dr. Bock:

I want to disagree with Dr. Graybill's comment on cell means. I
think that the whole point of analysis is to try to see if something that looks
complicated can be explained in a simpler manner. If you have ten thousand
cells in the design, eventually your model is going to contain these ten

thousand cell means.
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Dr. Graybill:

Yhat if your problem is such that means for rows and columns really
do not mean anything--but there is a diagonal that means something? If you do
not look at the cell means, you really are not analyzing your data. Now, I am
not saying you should not look at row and column means. These may be important,

but they are not sacred.

New Speaker:

That would show up in your interaction and then you would begin to
think, "Obviously this is not a simple additive situation with nothing else
going on. Let us try to find ..." Somewhere you want a model, I think, and it

ought to have fewer parameters than cells.

Dr. Graybill:
You see, that is part of the problem in data analysis. If you know
a great deal about your subject, you do model it and estimate it, but in initial

research stages it seems to me you have data in search of a model.

New Speaker:
That is why you need a preliminary work specification for which the

analysis of variance can be quite helpful.

Dr. Cohen:
Let me explain my notion with an example. Suppose for some dependent

variable you have an independent variable A that can be measured continuously

or nominally or whatever, and you have another independent variable B. Now,




if A and B are things like education and age, you know very well that the overlap
between the two of them is not similar to the disproportionality of cell
frequencies that happens in a laboratory when some fool technician drops a tray
of test tubes. It Egggg.somethinﬂ. Education and age are related to each

other; they both overlap the criterion independently; each accounts for portions
of the variance, but there is in addition some overlapping area for which they
both account. Now, it is purely a matter of your theory whether you are inte-
rested in how much of the criterion is accounted for by ape added to education,

or how much of the criterion they jointly account for, or whether the joint

contribution is to be split between them in some fashion. All of this has to

do with what we call models, but in any case, it should be an expression of

what you as a researcher have in mind.

Dr. Findley:

Well, I think we have explored the first question rather well and
I hope we can do that much with other topics. I put here second a rather
straight-forward type of study with which I am familiar. It is representative
of many others that have been made at many other institutions.

In studies of "native" vs. transfer students for evidence
of academic success later in college, it is common to use
all the data of a given period. Native students are compared

with transfers from other institutions: state system

junior colleges, other state system four-year colleges,
outside-of-system colleges, and so on. Sex is also ordinarily
an independent variable. Scores on common entrance tests

and similarly computed high school averages are continuous

variables. How appropriate is the use of a linear model

approach like Harvey's "Least Squares Analysis" (Harvey 1960)?
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That is the one used in the study I recall. 1f so, should
all interactions be automatically tried first? What overlap
on the continuous variables of test scores and high school

averages should be required, if any?

Dr. Bargmann:

I am not familiar with that particular computer program that USDA
uses. My answer is that this is a straight-forward two-way analysis with
covariates. In fact, one factor is sex, the other factor is the school system
from which the subjects came, and the continuous covariates or concomitant
variables are the entrance test scores. The computer program with which I am
familiar is one from the University of Illinois which we have on the 360 at
Georgia. This and other programs certainly handle this case, a special case
of the linear analysis. Incidentally, it is not a matter of setting up the
entire design or model matrix and then running through, who knows, 50 by 50
inversions. It resolves to perhaps a 2 by 2 inversion. In this particular
case it is one equation and one unknown - because one of these factors has only
one degree of freedom. So there is not even inversion involved. It is that
simple.

The other question was whether interactions should be automatically
tried first. I would say that most programs do it this way. Certainly, the
total effect iall effects combined) should be tried first, because if an
F-ratio shows no significance with all effects combined, then there is no need
to break the data down into components. Beyond that, an interaction test is

always quite useful because it may indicate to you many things.
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Of course, the most important thing, let me again concur with Dr.
Graybill -- and our computer programs certainly do it -- is to state the cell
means. State the unadjusted cell means and state the cell means adjusted
for the continuous covariaties. But after that, if you find significant
interaction, you may first of all consider whether there may be some outliers
in some cells. You can detect them right away. You eliminate them and then
look at the cell means to see if there is some kind of a trend or not. Again,
the sum of squares for interaction can be explained. It is for this reason
that I think the sum of squares for interaction is an important indicator to
have. It will tell you at once if there are outliers or not or if there is
still a lot of trend in the data or not. Eliminate that if you can. 1f Laere
is still something left (e.g., non-linearity) it will tell if we should make a
transformation. Yes, I would say this little number, sum of squares for

interaction, is very useful.

Dr. Anderson:
I £find Dr. Bargmann's comments very interesting. Such a testing
of the overall cell variation might well lead to a Type II error. It seems
to run contrary to the present day tendency to go ahead and run specific
contrasts or perhaps orthogonal contrasts in spite of the fact the the overall

F on cell variation may be insignificant.

Dr. Cohen:
Certainly one could partition the cells in a design like this into
three major families like row, column, and interaction, rather than use an

overall test in which one subset might be washing out another subset of

logically distinct pieces.




New Speaker:

It would wash it out of the estimate, but it certainly would not

wash it out of the statistical testing. That is unaffected.

Dr. Bock:
If you have any prior information that leads you to think that if
there is interaction it is going to be a simple one--linear x linear--you

ought to look at it.

Dr. Findley:

Well, the question asked here is, since you have all of these variables
in the picture, all the different colleges from which the subjects come, sex,
and the continuous variables, whether you should as a matter of rule deal with
all of the interactions first before prozeeding further. Or should I take your
last comment, Dr. Bock, to suggest that only if you suspect interaction you
should check it? That I certainly would. I am asking whether I should cheek

interactions even if I do not suspect any.

Dr. Winer:

I have heard of this approach proposed under the guise of "cleaning
up the model." You build everything by inference and you have no real a priori
guide. In going through a éeries of F-tests with no real systematic procedure,
you arrive at something by essentially a trial and error process. This aspect
of the complete regression model I abhor. I think in handling this kind of
problem one should be guided by the natural classifications, those which are

meaningful a priori. Either by tests of hypotheses, or by actually inspecting

the sources of variation, identify the relative sources of variation, then




158

build the model from those sources of variation which are identifiable, which
can be expressed. Now, any source of variation with more than one degree of
freedom can be broken up in several different ways. Parsimony, if this is

the only thing you can fall back upon, is a good guide. But if there is some
premise as to the nature of the underlying relationships, by all means use it
rather than the polynomial. Polynomials should be used only as a last resort--
particularly one involving anything above a second degree term. This is,
again, an appeal to parsimony.

As I tried to emphasize yesterday, a good guide is to break down the
total variation into orthogonal components or orthogonal sets of components.

However, this may not be necessary at all. And then for prediction purposes,

yes, formulate perhaps a regression model which included linear terms or

non-linear terms as the need may be.

Dr. Wiley:

There can be real danger here. If one has a rather highly cross-
classified design, say a two-to-the-tenth factorial arrangement, then the
likelihocd is quite high that some of the contrasts are automatically going to
appear to have low probability in terms of their size. In fact it's quite
likely that when you have considered a complete model and tested each of the
contrasts for all the main effects and interactions in a two-to-the-tenth
factorial design individually, you will find about 50 of them significant at

the .05 level.

New Speaker:
It seems to me highly important, especially when the design has a

large number of cells, to engage in some kind of overall test to make sure




(4]

that you are not simply dealing with complete error.

Dr. Graybill:

I do not know enough about this particular problem to know
whether you would want to do this initially but it seems to me that finally
one ought to use multiple procedures. I do not like to say "multiple decisionm,"
but it is sometimes used in cases where you can snip your data, take all your
comparisons. and look at them. You know exactly what your protection levels
are, so you can look at the data in terms of confidence intervals and not
as tests.

For example, if a confidence interval misses zero by just a very
small amount but is in a very narrow interval, it is practically insignificant
even though a statistical test may indicate significance at a very high level.
That's the main reason why I do not trust tests of significance. I trust them
more than I do tests of hypotheses, but I don't trust either of them.

A good experimenter, it appears to me, wants to look at his data, to
know what overall protection he enjoys, to know the confidence interval of the
estimates, to put these together, and to begin to read contours and stories
out of the data, realizing that he has a finite set of data.

Statisticians have put over tests of hypotheses on the data-analyzing
public for the reason that mathematically they are much easier to teach. If
we take the approach I have just suggested, we do not have to teach separately
the concepts of confidence intervals, tests of hypotheses, and tests of
significance. We can teach one thing. Neyman wrote a book on this. Nobody
in data analysis paid attention to Neyman's book. But one who studies

statistics should because this is the economical way to study data. I hope

some time before we end this symposium we can have a very heated debate on tests

P




of significance. I think it is extremely important that we data analysts
not let tests keep us from doing what we want to do. But I would also look at
the overall procedures to give you an overall protection in dealing with such

problems.

Dr. King:

I would like to agree with one thing Dr. Graybill says. We have not

looked very much here at the multiple correlations that may be derived from our w
data. That is a verv useful kind of information to know--what proportion of the ]
dependent variable is being accounted for by the others. As a matter of fact,

Dr. Ward's early work was to test multiple correlations and I always liked

R AT AR

that approach.

Dr. Bock:

If you are free to choose your subjects, you can make these correlations
practically anything. You can leave out the middle group which is very large.

A correlation only has meaning in reference to a population.

Dr. Findley:
We see that any question that starts from a specific example can
lead in all kinds of directions. As I indicated, this is a typical study in

which you take all the cases that are there, all the students who transferred

during a two year period and the ones who had been enrolled all along during
that same period so we are not talking about doing what we want to with the
data. We are asking what we may properly do with the data that has more or

less defined itself to us.
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Dr. McLean:

To a data analyst, the idea of looking at an array of cell means
and pondering what forces are operating is attractive. But we are dealing with
examples in which optimal cell means are very differently determined. Some
celis will have many observations and others will have few. Now, how does
the data analyst protect himself in cases 1ike this where he is trying to

compare means with unequal precision?

Dr. Bargmann:

He could put confidence bounds on each cell as a first guide to
protecting himself against over-interpreting. For example, if he has a cell
mean based on a very small sub-class, he finds a very wide confidence region

that spans many of the means of the larger, better defined sub-classes.

Dr. Anderson:

Would you say something like a Duncan's multiple range test might

be appropriate?

Dr. Bargmann:

That is certainly not indicated for interpreting the cell means.
A multiple range test would involve contradictions due to the disproportionality---
some effects that are way out are not significant whereas smaller ones are, SO
a multiple range test at this point would not be indicated. I would rather
take a least significant difference approach or look at every possible mean

comparison and put a plus-minus on it.
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Dr. Graybill:

Use the studentized maximum modulus.

New Speaker:

I think that you have presented an excellent example here because

it brings missing cells that result in this particular situation from the fact
that some students do not have high enough high school and other test scores

to get into the university, so they go to the junior college first.

Dr. Findley:

That is exactly the case and that is the reason for the last

question to which none of us have spoken directly.

New Speaker:
There are other problems. You are going to have different variability
within your cells because if you accept students from a junior college you may

accept only the A or perhaps B students. So their range of first two year

scores is going to be very restricted while the group you are comparing them
with, who were already in your college, will have practically a full range.

There will be other groups of colleges where the students will have full ranges,

so you have non-homogeneity of variance within cells.

Dr. Wiley:

Professor Bargmann's implicit model for that procedure does not
have the complications that were indicated in that he was using covariates
which were the entrance examination scores and the high school grade point

average. Certainly there would he complete data in the cell design for the

I

R P S S .
o Y LT YR IR )w.@‘ﬁmﬁ%mrwww,wum g s s e
y200 T AN

;. s S



source-by-sex classification. The essential question would be something like,
'"Would you expect an interaction between high school grade point average or

test scores and source of the student?" If you expected that interaction, you
would probably set up a different model than the one Professor Bargmann proposed

\
for this situation.

Dr. Findley:

Well, we do have the specific situation cited where the selective
admissions at one institution are less severe than the other and one of the
questions implied in this last question here is what we are to do if we get a
regression line for one group and a parallel one for another group but they are

over different ranges of the independent variable. Does that affect our ability

to interpret?

Dr. Cramer:

Given a model you think fits, it does not affect your interpretation.
That is, if you assume that there is no interaction, then you can certainly
use that model. On the other hand, if the ranges are so disproportionate that
there is minimal information about any common area in the regression line,

there is no ability to test the parallelism of those lines.

Dr. Cohen:

Dr. Bargmann made reference to outliers a moment ago. Of course,
they are quite troublesome, not only in situations of this sort, but .in other

cases. I wonder if he would say just a word about how he would proceed in

that regard.
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Dr. Bargmann:

There are just about as many tests for outliers as there are
statisticians. Each has his own ideas and I think there is no standard
objective definition as to what constitutes an outlier, sc one's subjective
definition determines what kind of a test he makes in order to determine if
something is an outlier or not. In nice, two-way classification presentations
of data, in each cell you can see the mean and the standard deviation, and look
at the pattern of meams. If you find a rather peculiar mean, first of all the
computer says "I find a very high interaction effect," so I look at these
peculiar means and at the same time I look at the correspending standard
deviations. Now if a deviate mean, one that does not fit into any trend, is
also associated with a large standard deviation in the same cell, I think you
have proof-positive that you should look at those raw data once more. This
is as snoopy an indicator for outliers as I know and it is a fast one. Other

techniques can be used.

Dr. Anderson:
You keep saying to look at the cell means and yet you tell us not to

interpret chance.

Dr. Bargmann:

I look at the complete effects first; I mean I look at the F-test of
all effects combined first. If that is nonsignificant, if that is very small,
I have a perfectly good, plausible, parsimonious model. There is only a general

effect. Why should I look for anything more complicated?
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Dr. Anderson:
What you are saying, then, is if you do an overall test and it is

insignificant, you cannot do something like Duncan's multiple range.

Dr. Findley:
The third question is one submitted by Dr. King:

"The following problem was encountered by Dr. Garrett Foster.
In a peneral sense, it is the problem of measuring change
(pre-post design) on the dependent variable as a function

of the interaction of two independent variables. This is
often done by putting the pretest data in as a predictor
and testing that contribution of the interaction of the
independent variables which is, in fact, independent of

the pretest vector. The problem arises when one finds that
the estimated regression weights for the pretest data vary
(interact) with one of the independent variables (e.g.,
there are significantly different regression weights for
the pretest by group product vectors). I have worked out
several possible solutions, such as testing the triple
order interaction among the predictors (e.g., pretest,

SCAT, and school) and plotting the results when significant.

Dr. Bargmann:

I think the answer is extremely simple. The question is not about

a univariate analysis, but it is a clear case of the multivariate analysis model.

I think we should try to point out that in a mathematical model we.say "y is
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equal to the function of x or several x's." We say "the right hand side is
independent and the left hand side is dependent” and this defines it. In a
statistical model where we say "expected value of y is a function of x's,"

we do not have the subdivision into independent and dependent sets of variables.
In fact, we assume in the univariate model that the right hand side variables

are known without error or at least knowable without error. They are pre-

specified. They are part of the design. They are concomitant variables. It
is on the left side that we have the random variable. ilow, in multivariate |
analysis we have precisely the same model except that on the left hand side we
have, in this case, two random variables, the pretest and the posttest variables.
One of them could be dependent: the other one could be independent. I can take
the left hand side in a multivariate model and split it into dependent and
independent variables. The analysis tools for this are quite well known and
already available to the practicing statisticians and applied statisticians.
Morrison (1967) has described these methods auite fully. The situation described
is multivariate. There is a very freat number of tests, confidence intervals,

and statements you can make if you view it appropriately. If you confuse the

idea of a concomitant variable and a random variable--Dr. Bock was hinting at

—————

this--you can prove anything you please. We must not confuse these two. This

is a case requiring multivariate analysis and not univariate.

Dr. Wiley:

There is an interesting point here. You can see this situation as an
experimental situation where you have random assignments, say in the independent
variables of interest other than the pretest, or design factors by which the

subjects are randomly assigned to the groups. If so, the circumstance can
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not possibly occur, so in one sense it has to be a pseudo situation in a
natural situation treating the covariate or the pretest variable as an
independent variable. But the real implication of this is that the pretest
score is being affected in some way by the other independent variables in the
design. That can not possibly happen in an experimental situation. So that

is why no one would run across this problem.

New Speaker:

I am not sure that I understand this. I wonder if one might have a
situation in which we could have two treatment groups and random assignment to
them, ana a pre-measure. Now, does the question here relate to whether the

regression coefficients are the same in the two groups?

New Speaker:
The groups will not differ in their composition because of random
assignment. They will not differ in their composition on the pretest measure,

at least in expectation.

New Speaker:

You should no more expect them to do that than to differ in mean

on the pretest measure if randomly assigned.

New Speaker:

But could not the effect of the treatment be to change the regression

coefficient?




Dr. Bock:
That would just be giving the test of means then because the groups

would start out at the same initial point on the average.

Dr. King:
Well, obviously this is not an experiment. This arose from an attempt
to evaluate school program and the subjects were randomly selected within the

schocls but obviously could not be assigned to schools randomly. So it would

be possible in this case for the pretest to interact in the manner you speak of,

but it is not an experiment.

Dr. Findley:

Let us turn to another question that may be the same problem but
stated just a bit differently.

"In a study, two sets of intact classes are taught by three
teachers. The classes are not matched, but students were

assigned in essentially alternate fashion to classes meeting

at the same hour. Shifts of classes after registration and

some attrition account for different subclass numbers. Can

inferential statistics be properly applied here? %What

differences in numbers would give pause to comparisons?"

There is another element to this question, but isn't this the kind of

situation you have in mind where you actually have these people in intact classes?

New Speaker:

"In alternate fashion" doesn't imply a random sample.
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Dr. Findley:
Well, I think so. If you send the first registering to class number

one, the second registering to number six, and the third to number nine, etc.

New Speaker:

Well, they arrive in random order, and therefore, they are assigned

in random positions.

New Speaker:
You are dealing with an experimental situation: however, one can
point out that in this case each treatment is applied to each class as a whole

and the class as a whole is the sampling unit.

New Speaker:
The classes could be resarded as blocks in this design and we have
a very irregular treatment-block situation. Ve can now rerard these block

effects--class effects--as fixed ones or we can say they represent a random

sample from many more classes and treat them as random effects.

Dr. Graybill:
You need to be very careful about using the within-class variance

as error, as I think Dr. Bock pointed out, and this generally would underestimate

error if you use it.

New Speaker:

Use treatment-block interaction.
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New Speaker:
The means would be the adequate statistics and classes would all be

pretty much the same size.

Dr. Findley:

I did not mean to draw us away from the other question, but it does

seem to me that we are beginning to verge on some of what was in the other

question. Is there any further discussion of this point?

Dr. King:

There is one thing I would like to ask. Possibly this could be
directed to Dr. Bargmann. This he says is a multivariate case because the
pretest is not known without error. I can certainly see that this is true, but
{s it not true very often that we use independent variables such as I.Q. and
so forth? These we do not know without error, so if we use that criterion,

are we illegitimate very often?

Dr. Bargmann:

There is a very simple distinction. If you use the pretest in order
to select your subjects, for example, if you use the pretest in such a way as
to take five subjects with this score, five subjects with this score, five
subjects with this score, you make it a regressional, univariate problem because
the very fact of selecting on the score makes it a concomitant variable. All
regression that we are talking about is a conditional expectation. We ask what
is the expected value of y in the posttest score given x in the pretest score.

Now, this is the case as soon as you start assigning by the actual pretest score.
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This is, in fact, a univariate study, the pretest score is a concomitant variable.
On the other hand, if you did not use the pretest to select students, but merely
obtained pretest measures on all subjects, then both tests are random variables.
For every experimental unit, for every student, you observe randomly those two
scores.

It may be of interest that the simplest of all well-known multivariate
tests is the t-test. The t-test, when you come to look at it closely, is a
multivariate test. You have two random variables, you take the differences.
In this case, it reduces to a univariate problem. In this sense then, the
inference of what happens between pretest and posttest is either made by a
regression or prediction equation. This presupposes that vou have actually
selected students on their pretests or you make your inference in terms of a
correlation between pre- and posttest, or shall we say confidence bounds with
certain differences or weighted differences of these two. The crucial thing is
wbether or not you select on this variable. If you do, then it certainly is a
concomitant variable. If you do not, then it is a random variable and multi-

variate procedures should be advised.

Dr. Ward:
Is it possible that multivariate procedures are too restrictive, so

that you may be getting far away from the problem at hand?

Dr. Bargmann:
Why should they be more restrictive? Actually they are less
restrictive. They contain more information than the univariate procedures.

They take into account all of the relationships and overlaps. When you make




e ¥
Lo o e, e SRR ST TSR e o,

172

confidence statements in multivariate cases, you do not simply make confidence
statements on each variable separately, but you determine joint confidence

regions and talk about the joint probability of the set of parameters having

certain values. I would say multivariate analysis is not more restrictive but
less restrictive. It takes a little practice, I assure you, to make sense of

it and it usually takes two pages of relevant comments to explain one or two

confidence intervals that a computer puts out.

Dr. Ward:

In a multivariate case where you think product or squared terms are

relevant, how does that affect the assumptions that are involved in multivariate

analyses? Suppose you actually did not collect a large number of variables

but it was closer to your thinking about the problem to generate squares and

products of a few variables that do not yield multivariate normal joint

distributions?

Dr. Bargmann:

The interpretation will orobably become so messy that I would have to

program a computer to interpret it.

P O

Dr. Bock:

Well, you might concentrate on what kind of transformation you might

make or +he variables.

A o povided by ERic: o
'qu;wmwm««:wWJMfm\flwﬁﬂﬁww,o&mngMWna«MMm' WIS 2 L L A Rt AN TG

| Erdc e o ]

A A A e A S S et i A 300 B i kN Sye.




g5 TS B WA M i 0T T

Dr. Bargmann:

Transformations very frequently reduce matters to a single point.

Then I don't know what this point means. A log transformation that all of a

sudden matches your data to a single point--I'm lost.

Dr. Bock:

But there may be some useful transformation with the independent

variables.

Dr. Winer:

I think one needs a balance between trying to stay close to the
problem at hand and looking at other situationms, then deciding upon which
procedure is appropriate. As was mentioned yesterday, an exact solution to the

wrong problem is worse than an approximate solution to the problem you are

interested in.

Dr. Findley:

May we turn to question 4 submitted by Dr. Jennings?

I think most of the elementary texts typically used ir an
educational statistics course do a very good job of giving
the student both the computational tools and an intuitive
understanding of the meaning of the comparison between two
means. As the designs become more complicated, however, it
seems to me that the student is simply asked to accept the
fact that a particular computational procedure produces a
good number called "the main effect" or a "linear component"
without much guidance as to the inferences one might draw

from the presence of such an neffect." The student is thus
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encouraged to learn the computational procedure and the "names"
of his questions without knowing in many cases what the questions

actually are.

"Let me give you an example. It is not uncommon for texts

that deal with so-called trend analysis to separate the total
sum of squares into an error term, a term called "deviations
from linear regression," and a term called the "linear component.
Frequently recourse to a table of orthogonal polynomials is

In no treatment I have seen are the basic model
The

required.
and the restrictions on the parameters identified.
inforence I draw from the text is that a significant "deviation"
implies that the means do not lie on a straight line and that
the presence of a significant "linear component" implies that

the means do lie on a straight line, although I have never

seen that stated in so muny words. What inference is to be

drawn when they are both significant? It seems to me that
if a researcher is encouraged to formulate his questions in
terms of perameter restrictions, he defines operationally,
by means of the restrictions he imposes, what he means by
a "linear component," and the problem just never comes up

unless he had a question to go along with it."

Dr. Cohen:
The significance of linear components 1 have always understood simply

means that the best fitting line is not horizontal. A function can be anything

you like but if you set a straight line to it, the rejection of the hypothesis

of linearity means simply rejection of the hypothesis that the best fitting line

js flat, so both can be simultaneously true.
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Dr. Viley:

If you insist upon fitting a polynomial model, and if you get

significant departure from linearity, you cannot consider any component

individually. You have to consider just the curve that is the best fit curve.

Consequently, if you get departure from linearity and you insist upon going

on, then you fit more terms. The usual procedure is to fit terms to account for

the curvelinearity or whatever it might be. Then you would want to plot the

predicted response from whatever level the analysis indicated.

Dr. Findley:

Further possible comments here?

Dr. Bock:

Well, regarding the general question of curve fitting, I did not

quite understand Dr. Winer yesterday. I understood what he said, but the tables

offered suggested two routes that yielded jdentical results--either the.

orthogonal polynomials fit or one must compute the regression values. His tone

seemed to imply that the orthogonal polynomial procedures were in some sense

better, although I could not see why. Then earlier, Joe Vard presented the five

ages by 15 practice sessions data matrix in which the analysis that he proceeded

to use implicitly involved an effort to fit all 75 of those cell means so that

in effect 74 degrees of freedom were being used for this purpose when it seems

to me no reasonable model about this would suggest the loss of more than at

most six degrees of freedom. Let us say a linear, quadratic, and cubic term for

each of the two variables, and indeed you could even cheaply use nine more degrees

of freedom for the interactions of these and get a very complicated surface.

By gaing the route of taking out all means, writing a model at the level of cell
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means in this situation, he was, in effect, from a practical point of view,
giving up 74 degrees of freedom to account for this variation. It seems to me
almost certain, given the nature of the data that were posited, that no more
than nine or ten would be needed for snooping purposes to account for what was
very likely going on in that entire complex surface. The problem can be handled
entirely by a regression analysis that does not in any way depend upon either
the equality of the intervals or the equality of the sample sizes. Set up terms
like age, age-squared, age-cubed (which is probably more than you need) and
then practice, practice-squared, practice-cubed, and then, if you wish, the
vector product of these two for nine more terms. Ward's initial N obviously
had to be enormous to have any cell replication. This approach uses N-15
degrees of freedom instead of N-7u4. Again, I find the regression to be not

only simpler, but in many ways more powerful in at least the fact that it does
not overfit, it keeps things as close to the data as you want them, and it is
relevant to the nature of the variables that you are using. The design in the
example that was offered would have been no different if the five-by-fifteen
factors were purely nominal. But there was no attempt at all to take advantage

of the fact that the data were in fact continuous, interval kinds of data.

Dr. Bargmann:

I think I can make this even stricter. You explained in very lucid
terms what I think I hinted at yesterday. If you have an interval scale in the
back ~7 ;o mind, go ahead and do your multiple linear regression and
curvilinear rogression right away. May we perhaps dramatize the situation by
poirting out that if your data or your levels are nominal, then by reordering

and placing these levels on some X axis, you can always draw a perfect straight
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line through the means. This may give people some food for thought who would
like to fit curves to levels, treating them as equally spaced or spaced in

some known order even if they are really nominal for a certain length. Even
in ordinal data you can do a lot of jugeling and produce a practically gtraight
line as all people dc in bioassay, growth curves, and learning curves, a more

meaningful approach than curvilinear resrression.

Dr. Jenninss:

My main question about this particular kind of formulation is that

I wonder hou manv of us have actually tried to ret a solution with these kinds

of predictors? My experience has been that when vou ret beyond quadratics into

cubes and interaction terms, the possibility of gettins a very accurate solution
is not good. ‘iou, of course, this depends uvon the computer program you are

using and so forth.

Dr. Graybill:

Usine the formulation that Dr. Bock has indicated. where one reparamete-
rizes the model explicitly and develops orthogonal polynomials in a computer, one

has absolutely no problems whatsoever.

Dr. Bock:

You always have problems, but the most accurate wav to handle these
problems is to orthogonalize the basis. There are some routines due to

i Householder which Cramer used in his program package. This is probably the best

way for doing the orthogonalization and the subsequent least squares analysis

even in single orecision.

A A




Dr. Cramer:

In Dr. Baremann's situation, we would choose our metric. If we
really knew what metric was necessary to fit a straight line, we could use it

and reduce the number of parameters.

Dr. YWard:

I think it would be good for computing to realize that, if you had
an orthogonal system that had to error in it, it would help to get from your
original system to the orthogonal system. Then things would be better because
you would just have to be sure to remember that the computing procedure involves
going from the original set to the orthcgonal set. As a matter of fact, some
ways of getting to an orthogonal basis involve exactly the same procedures that
ape involved in solving simultaneous equations. You have to be careful since

you may have exactly the same numerical inadequacy because you separate the two

systems somewhat artificially.

Dr. Cr=mer:

I think that this is not so. One does not have the same inadequacies
although it is true that you are doing the same thing as solving equations.
There have been presentations of methods of solving a least squares problem
using the orthogonalization procedures which are extremely well conditioned and
one does not run into the kinds of problems you get from using the ordinary

inversion nvocedures. So, if one works with orthogonalization methods, one

is much better off in either situation.
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Dr. Graybill:

ff If I understand this problem, the complaint is that Dr. Ward used

E: a two-way classification rather than multiple resression. It seems to me that
the multiple regression technique would be very good, but the two-way classifica-
tion is also good. You know, the geologists do something that I think is very,
very good. They take such a two-way classification and look at the cell means
and then they contour the means. This is not very respectable statistically, but
you get a lot more out of it. Some of you are suggesting fitting complex terms
in a model. I would discourage this unless I had no other alternative. There

is a great deal of merit in taking a row-column classification, looking at

spikes of interaction in the cell means and contouring them. Both methods
would be pood. I would not throw out the row-column analysis. There is a great

deal to be said for it.

New Speaker: No one is arguing that it should be thrown out. The only

argument is that once vou deal with the row-column presentation you should

try to find a parsimonious model to describe the data.

cem R TR TR TR AT SRR AT

Dr. Findley:

The next problem area is sugcested by Dr. McLean. "Let's talk about
more ways to check on the adequacy of the model, e.g., the examination of
residuals.” Maybe Dr. McLean would like to add to that brief statement before

we enter into the discussion.

Dr. McLean:

Thank you. People have hinted or made comments from time to time in

our discussions about checking on the adequacy of the model, i e., whether this
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method or that is a good way to test whether a model is good to explain the
data. But these statements have been somewhat offhand. In particular, I do
not think the residuals have been mentioned at all. I was just wondering why

that should be so.

Dr. Graybill:

The residuals are an excellent method in mv opinion to check the model.
In fact, using cell means, you might look at interaction in each cell. You can
even plot them on a half normal plot, for example. MHany think the theory of
residuals is open to criticism, but I think residuals are very valuable. In
fact, I think it was Winer who said that what we really do is examine residuals

all the time.

Dr. McLean:

I am concerned about something that is a little more uncommon. I
am not speaking about the residual variance that is left after vou take every-
thine else out. The residual, I suggest, is the difference between the value
the medel predicts for the particular model with which you are working, and
the c~imnal values you obtain with various values of the independent variables.
A separate calculation of these is not always done in the computation routine,
and i€ it is, it is often summarized as the residual sum of squares used for

the estimate of error. There is no option to print out the cell residuals.

Dr. Jennings:
A fairly recent book by Draper and Smith (1966) presents examples

for discussion of how to treat or locate a sequence to evaluate the model,
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Dr. Bock:

The Mesa A-5 program has as an option the computing of residuals
about the cell means in any model that you may fit. These are presented in
standardized form, that is, residuals are divided by the standard deviations,
and presented as t statistics. This is extremely effective. If you have an
interaction you want to try to figure out, you fit the model including everything
else except that interaction. You might even include other interactions, but
you omit the one that you want to interpret. You then look at the residuals
and ususally you find a systematic trend and sign that shows you what is going

on. As I said, residuals for interactions are in reality systematic.

Dr. Bargmann:

I am very glad indeed that the point has just been made that residuals
and error terms differ. In our development of the general linear model, we
regard this last term as error with expected value zero and common variance.
Ideally this holds only if you can repeat the experiments under identical
conditions. In many applications what goes into the error are merely high order
interactions. I think even a studv of the errors of replication would lend
itself to this type of analysis for the same reason that when you say you are
repeating the experiment under identical conditions you have to qualify your
results by assuming identical conditions. Some condition may have changed and

the residual may very well tell you what condition was affected.

Dr. Graybill:
Another thing that geologists do that is useful is to get the residuals

of the several cells and then contour them. It is a very effective method to
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look for anomalies. You can use the half normal plot. Or you can use something
like studentized@ maximum modulus even here and really get in and examine the
residuals. I think this is very effective. It has not been played up enough.
It is really just of recent origin that it has begun to appear in books, but

some of you might want to look into it.

Another point, with regard to examining the model. If you take
sufficient statistics to summarize the data, then whatever is left over is free
of all parameters. Therefore, under the model given, they are very effective
for examining the model. This is what I do when I use my sufficient statistics
under the model that I postulate. I take what is left over from the sufficient
statistics, which is free of all parameters if the model is true, and can do many

different things to reexamine the model. Fisher has done this.

Dr. Winer:

I think this should also be said. In any specificaticn of a model,
no matter how complete or incomplete, any test of goodness --- there may be,
for evamrle, two tests of goodness which indicate that the model is fit equally
well b both situations, but the pattern of residuals can be quite different --
providrs supplementary information to look at to help decide which way to modify
a model. Suppose we start with an incompletely specified model and eventually
look at +he pesiduals c¢7 +he model. I do not think tests, in many cases, are

sufficien~1r sensitive to tell us where to go next.

Dr. Wiley:
Let me just make one small point. That is very much a function of the

design of the experiment. That is, if you have a model, you base the design on
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the model that you are postulating and you allow in the desien of the experiment

for specific components of lack of fit or a priori possibilities for the lack

~ of fit in the model. Then you can have a fairly exclusive direction to go if

the model in fact does not fit.

Dr. Bargmann:
I think the goodness-of-fit dilemma is due to the fact that we are |
attempting to reduce the auality of fit to a single number and to a single
index. For example, in chi-square, when we want to have a little bit more
information to use for pointers, we should have a few more indexes. 'e might,
for example, consider doing the exact soodness-of-fit test, which is a
multinomial. In the non-central case, of course, it would have as many
parameters as there are classes. In that particular case, we would have
several numbers, and a pattern of these. I do not quite know how to interpret

them, but I can imagine that there would be information in the pattern of these

numbers that would direct further modification.

Dr. Graybill:

I think this points up my objection to tests of significance. You

summarize your data too far. You summarize it to one number. In the case of

goodness-of-fit, the empirical distribution function is very easy to inspect--
maybe a normal plot or something like it. It seems to me very important to
be alert constantly and look at the data, all the data. Summarize as far as

possible by sufficient statistics, but then when you amalgamate everything

together in some way to look at one number, I think you lose too much. You
are throwing away too much. Goodness-of-fit is a case in point. Even thoush

§ I must say I use it, I do not like it.




Dr. Findley:

There is one small point on the last numbered question we distributed
to which we did ot speak specifically, although perhaps you gave me an answer

to it:

"What differences in numbers would give pause to comparisons?"
Is there anything over and above the very specific insistence that we use
treatment blocks with repard to these variations in sizes of groups which come

about, so far as we can tell, by operation of unrelated factors?

Dr. Bock:
If you are using group means of the statistics, their precision is
going to differ in only a minor way due to differences in sample size. The

samples you listed vary from 17 to 32,

Dr. Findley:
Suppose it were 17 to 149, how about it? Do we have any kinds of

rules of thumb or helpful suggestions?

Dr. Rzek:
If the difference in U is ten-fold, vou might consider doing some

type cf veighted mcan crolrsis,

Dr. Grz=-hill:
I think it depends on what the variance is. For example, the

coefficient of variation might play a role here. If the variance is very small,
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seventeen cases give you a very good estimate and your precision of the mean
is very good. Of course, a sample of 100 ig better, but 17 is sufficiently
precise anyway. In fact, it makes little difference what the actual variance
is then. If I am talking about a score that goes from 100 to 110 and my

measurements are very precise, an N of five may be enough.

Dr. Findley:

I was not thinking so much in terms of additional sampling as I was
of the situation in which you take natural groups. If the sample sizes differ
from one to the other, is there some point at which you decide you had better
in some way randomly sample any large group so as not to give it a dispro-

portionate weight in what you are doing? How else do you deal with it?

Dr. Bock:

If you are usine the class means, they are not weighted by the
numbers of students in the classes. In fact, thev are under-weipghted a little
insofar as efficiency is concerned, so there is no bias involved. There is

only a question of efficiency.

Dr. McLean:
You might watch out for unequal variances, especially in a case like
this. 'le do know that you are hurt worst if your assumption of equal variances

is wrong in addition to having unequal cell sample sizes.

Dr. Graybill:

You should not use your within variance for vour experimental error.
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Take an extreme case. Suppose that every one of the 26 students in one class

had the same frade. The variance would be zero, and you would not worry about
unequal numbers. So if the variance is small, you do not need to worry about s
differences in sample gizes, since you are not going to use the within variance %

for error estimation.
Dr. Mclean:

i
|
i
I probably should correct my earlier statement. The fear I would !
have is if the problem differed and you have a lot of classrooms in one treat-
ment and only a few in another. That is the only situation to which my comment
i

would apply.

New Speaker:
This is a basic problem in educational research. Is the classroom

the sampling unit or are the students independeut replirations within classrooms?

I believe the classroom is used as a unit because one thinks the sStUlew+e are

correlated within replicaticns and therefore their differences are underestinates.

New Speaker:

Would you ever test to see if there is an underestimate? In other

words, test the unit against the within classroom?

Dr. Bargmann:

Unfortunately, there is only one way. You must be able to separate

the variation within the class from the variation of a student under test and

retest situations. I have always advised those doing research in school
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situations never to treat classes as units, but, if at all possible, to treat

students as blocks and to make sure to obtain more than one observation on

each student in the form of a test-retest or some kind of a verification

measure. The same situation holds perhaps with even more force in the

transition from model 1 to model 2 in paired comparisons using the Thurstone

approach, where you treat one judge making N judgments as equivalent to N

judges making one judgment. Well, this is not true. In any case, an experiment

¥ iy PR

can get directly at the effects--especially if we are dealing with educational

tests--by treating students as blocks and splitting the test into parallel forms

to produce two scores. Thus, we can make sure that we can regard individual

differences as block effects and not as an error component.

Dr. Warad:

I would like to throw in a word of support because I think this is

particularly imoortant in experimental situations. You have pre- and post-
measures and you ought to consider making equivalent forms out of the pre- and

posttests so you can do exactly what Dr. Bargmann is advising.

Dr. Findley:

To return to an earlier point, Dr. Bock suggested that when one does

o

not have all the classes filled, he could go ocut and fill the classes in advance

from various sources. I wonder if there might not be some danger in this kind

of selection that would be perpetrated upon the data by the fact that you

would have to look in certain places in order to find data to fill out those
classes. Is that a fair problem to raise? It seems to me this question is
often raised in disucssions of the relative merits of matched samples and the

analysis of covariance.
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Dr. Bock:
1f a universe is described by characteristics A and B, and there are
not many such people, it may take a while to find them, but I do not see why

that would lead to a biased sample.

Dr. Findley:

T don't know that it would have to.

Dr. Bock:
Unless, for some reason, to find cases you went to a different
locality or something like that. It is conceivable. One is assuming here that

the rare people have some special characteristics.

Dr. McLean:

Here is a perfect example of tr.s: the problem cf relating lifetime
income with education. We call it ngs.ggg.reasoning becau;e almost all the
rich kids go to college. If you try to get data on a sample of rich kids who
do not go to college, you select a very peculiar group. So while you might
be able to fill the cells by seeking these people out, there would be so many

contributing factors involved that it is just not good procedure.

Dr. Bock:

That is where the model comes in. If there are several other factors
involved, you will not be able to nredict the cell response by the general
factors that are in vour model. So you will find something special is operating

and know that you have to look further and elaborate the model quite a bit.




Dr. Cohen:

If it is true that you have a lot of trouble finding rich kids who
do not go to college, does this not almost certainly mean that there is some

profound interaction operating?

Dr. McLean:

There may be interaction between the independent variables associated
with the fact that some combinations are hard to f£ind. But vou are not
primarily studying relationships between those variables. You are studying the

effects they have on the response variables.

Dr. Cohen:

I am not trying to talk about real phenomena. Suppose that you are
interested in some dependent variable which is a function of things like
education and income. It seems to me the mathematics does not dictate this
by any means, but I would almost certainly expect a relatively profound inter-
action if you had trouble finding rich kids who did not get to college. On
almost any dependent variable that you are interested in where income and
education were independent variables, substantial interaction would be likely

to occur. It is the rarity of this phenomenon of the rich kid that does not

go to college that makes this probable.

Dr. Bock:

Nevertheless, because these two factors do not occur very often does

not mean that they do not affect the responses predictably.

S oo




Dr. Findley:

May we move on to the questions Dr. Bottenberg has put Lefore us.
Is it your notion that the rather algebraic fashion of expressing relationships
of beginning statistics courses would be helped if we used a more geometric

model? Is that the essence of your point?

Dr. Bottenberg:

Well, I don't know if I would call it a more geometric model. For
some time, it has secemed to me that if the statement of the model is given by
actually writing the entire array or, at least, representative sets of rows and
columns of the independent vectors, it is a good deal easier for a learner or
a beginner to understand what his model says. He can go into his model and
see how, for a particular combination of characteristics, this is what his
model says the expected value for that experimental unit is.

On the other hand, it has seemed to me with just the formulation of
Hy Q4 and.Bi, that these terms in the beginning of training are foreign to
a potential educational research worker who is not primarily interested in
acquiring a high level of competence in mathmatical statistics. Formulations
in terms of parameters alone tend to be confusing and impractical to the
potential research worker who wants to acquire some capability in statistics.
So, when the model is displayed with the predictor values and he has had some
practice in the development of statements of what the expected values are for
different categories and combinations of categories, he is in a position to
ask himself questions that are a lot more meaningful to him--such as whether
he thinks specified categories have comparable differences, or whether they are

equal, or any of a variety of kinds of relationships he can formulate. These

e
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questions would be difficult for him to ask in the context of a model 1like

u+ '* o0
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Dr. Cramer:

I want to disagree with that point most heartily. I do not think
the choice is between these two approaches; rather, if one has a student
who is familiar with ordinary, simple orthogonal analysis of variance, one
can talk in terms of what you put down in an analysis of variance table--
A, B, and AB--and one can express his model in terms of those effects that are
in the model. In the non-orthogonal case, one can completely express the
model in terms of the order in which one writes these effects. ‘le need not
get tc the a, + Bj idea and certainly one need never get to the point of
writing down columns of artificial variables, because they really are artificial
variables, and I do not think that they convey any great amount of information
to students. Furthermore, in my experience students have a great deal of
difficulty in routinely putting them down and putting in the restrictions.
It seems so unnecessary.

In the manner that Dr. Bock has formulated, specifying that we
parameterize or specify main effect contrasts of interest, you can deal with
a completely symbolic notation with which students already are familiar if
they know something about analysis of variance. The f~rmulation with regression
variables is the foreign one. It hides the basic differences that exist

between an analysis of variance model and the regression model.

Dr. Bargmann:

Dr. Cramer is addressing himself to a very minor subset of the
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question that was raised. The question that was raised was "Should we teach
our students parameterization or the algebraic expression as such?" I would
say '""non-parametrics" according to Savage means there are too many parameters.
In non-parameterics, and especially in the tests of fit that we use in queuing

theory, the representation is not so much interms of formal algebraic models.

Let us use a queue as an example. Let's use an ahorting queue so that people
will not add to it any more if it gets too long. You now have a simple two
decision rule: you watch your actual cases and, to compare them, you have a
simple non-central chi-square test. The goodness of fit and the contingency
tables are a step in the direction indicated by Dr. Bottenberg: the represen-
tation of your situation in expectancy tables of some sort, and vectors of
certain variables.

On the other hand, I saw something today to which I think statis-
ticians, and perhaps teachers, have paid too little attention. How much
information is there in the Venn diagrams? Can we translate the Venn diagrams
into some kind of parametric function? Everything is clear if we have very

few effects. Then we can graphically represent the model as proportionate

areas and this will give us all the information we want. But as soon as we
go into very high dimensions, we must somehow translate this graphical approach
into some parametric formulation, which may very well be the linear model in

any of its ramifications. In any case, I would certainly invite people who are

interested in the teaching of statistics to see how they can translate pseudo-

graphical-visual displays such as the Venn diagram into a model which represents
the situation.
Bear in mind that there is nothing holy or even unique about any

formulation that we present. There are many ways to represent the same
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underlying mechanism. What we must have is something that takes our
interpretation back to the physical or educational situation. And if the
situation is educational, it is perfectly meaningless to say these variables have
a correlation of, say, .78 against this criterion. Please tell us what is the
influence. How far does each variable overlap the criterion? How much does
this variable contribute? How much are these related to each other? I would
say as soon as we treat correlation, or regression, or these parameters, these
factors we invent in order to make our problem solvable in a computer, as

soon as we treat them as entities having their own life, we are making a mistake.

We are here dealing with symbolism only.

Dr. Findley:

May we ask, Dr. Bottenberg, if we are moving into your second
question here, "What is the most appropriate way to report predictive efficiency?"
I detect in your question the suggestion that one check on this point would be
how the means of successive intervals increase when you use a kind of expectancy

table.

Dr. Bottenberg:

In regard to prediction systems, I often think of the worker in
educational research. %orkers are not fully trained in mathematical statistics.
One need is some method of evaluating effectiveness of a prediction system or
a system they have for representing or predicting or accounting for a criterion
variable of interest. One of the ways that has been used very widely in the
past is a multiple R, or a multiple R-squared. It has seemed to me after

dealing with the problem for some time that this is a relatively uninformative

T
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item of informatiun. Some information with a great deal more impact, as far
as the experimental worker is concerned, would be to display the criterion
mean value for successive valuss of the predictor score scale. You can
demonstrate the impact of how the criterion does change as the predictor, or

the composite predictor, changes.

Dr. Findley:

How does this differ from the concept of the expectancy table, such
as we use for predicting achievement in college? Are we saying to ourselves
that once again we are in peril when we depart from tabulated data and compress

things intc an index?

Dr. Graybill:
Dr. Bottenberg, are you asking the question: When the multiple
correlation is .25 tell us something about whether the predictors are of

value or not?

Dr. Bottenberg:

Yes, I am trying to get at that.

Dr. Graybill:

Let me tell you how I get at it. You see I don't believe you can
answer the question you ask with what you are doing. Let me take an example
and talk about the height of people in Athens, Georgia. What I am looking for
is a representative number to call "height of the people in Athens." Vell,

the most representative number would be the mean. Another question is how good




195

that representation is. Well, if the variance is zero, if everybody is the same

height, the mean is a very good measure to use. However,if the variance is

five feet, the mean is not a very good predictor. I see somebody down the

street and I want to be able to predict his height. Perhaps I can learn his

weight. I carry a bathroom scale around with me all the time. So if I can

get his weight, I can perhaps predict his height. So I look at the correlation

coefficient. I am talking about that of the population, now, not samples. I

have this whole population under study and the correlation coefficient is such

that if I stratify on weight, so that now the variance within these sub-

an live with one inch, then I have a very good

populations is one inch and I ¢

predictor. So, it seems to me, what we are talking about is by how much I

decrease the variance.The correlation coefficient enables me to tell by what

I
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percentage I decrease it. But I have to have more than that percentage.

have to know if I decrease it enough to live with the result. For example, if

r I know that all persons with a specific weight in this town have heights that

differ only about an inch, then you tell me someone's weight and I can predict

his height accurately enough. The tolerance is the important thing.

Now, when you work with samples you have estimation problems. I

think we should first always think of the population. By and large, sample

! values reflect the population. But the thinking should be done first, it seems

to me, in regard to the population. What would I do if I had all my population

What would my thinking be? Now, I don't have that

values available to me?

Wrvriese

population value, but I would like to get as near it as I can, so I sample.
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: e have to be careful about making complete reflections of the sample to the
I think many

population, but this is the way I think it should be done. So,

times of how I can reduce my variance. We will, of course, have a variance

estimate if it is truly a multivariate situation.
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Dr. Wiley:

You have to be very careful to differentiate between two different
kinds of problems. One is where you actually want predictive efficiency,
and the other is where you are trying to elucidate some basic mechanism.

As an example, I was consulting on a study where the investigator
was using a testing variable criterion with item sampling. He was giving only
three or four items to each individual unit of population. This makes the
error of measurement very large. But he had an extremely large sample and he
had very accurate determination of the recression weights. If he cross-
validated this regression equation on a new sample that is based on a hundred-
item test, the multiple correlation would change radicallv. You have to be
very careful whether you are estimating a regression weight in a system where
there is a lot of measurement error versus trying to maximize predictive
efficiency in the system that you are currently working in with the current

precision of measurement.

Dr. Graybill:
The answer is the same. Here you are working with a different

population. You have to be careful at which population you are looking.

Dr. Cohen:

In references that we frequently see in statistics texts where the
applied areas are physical sciences, we in the behavioral sciences are left in
trouble. Unless we talk in terms of proportion of variance accounted for, we
can not express ourselves meaningfully. Contidence intervals do not help us

because our units do not mean anything. Units are usually somebody's pets
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which may be used for the first and last time in the particular study under
consideration. It does not help us tc know how large the estimation unit is.
It helps us to indicate how much variability we can account for by our model

in this ad hoc, maybe first and last time used, procedure.

Dr. Graybill:

In that case you would use tolerance intervals. You would say,
"Here is the population. What percentage of my population is in these values?"
You may not be interested in means, if means have no particular importance for

you,

Dr. Cohen:
I find the proportion of variance accounted for a relatively pure
measure that covers all kinds of circumstances, since I can not attach any

meaning to the units with which I am dealing.

Dr. Graybill:
Well, if you can not attach meaning to the unit, then how can you

attach meaning to the variance?

Dr. Cohen:
I can attach meaning to a proportion of the variance that this system

accounts for or that one feature of the system accounts for.

Dr. Graybill:
If someone takes your units and multiplies them all by a constant,

he will certainly change the variance.




Dr. Cohen:
It would not change the proportion of variance. That is why we

would want to use *that index.

Dr. Graybill:

A variance ratin is a kind of correlation.

Dr. Cohen:

Right, it is a squared correlation, the coefficient of determination.

Dr. Graybill:
That is what you use to express how much you have reduced the variance.
But the problem is that you may reduce it a hundred percent and it might still

be so big you could not live with it.

Dr. Cohen:

lell, it depends on how meaningful your units are. If the problem
is to predict freshman grade point average, then the unit is one we understand.
Jut if your problem is a theoretical one and the unit is meaningless, then you
must finally fall back on how much or what proportion of the variance is

accounted for. Our units are meaningless very often.

New Speaker:

It is not exactly that they are meaningless: it is that we have not

had enough experience with them to know what they mean. On "Joe's New Test

for Social Skills for the Mentally Retarded"” we do not know what the units mean.
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But we do know if we can account for sixty percent of the variance in this

test on the basis of certain variables or characteristics.

Dr. Bargmann:

I will first of all wholecheartedly underline what Dr. Graybill said--
look at the population. But I think there is a communication problem. Outside
of census figures, a population in other applications rarely is a collection of
things. A population is a conceptual unit. A population can be S = % gtz.

A population is a mathematical model. !le may assume actual test scores to be
distributed around some true score. The true score in this case, even if it
is a single one, represents a population in that sense. The important thing
is that as soon as you are dealing with indices--indices that are supposed to
reflect how well your data agree with some concept, how well your data serve
for predictive inference, how well they explain the mechanism--you should say,
"What would this look like in the population?" I do not mean in the population
of 100,000 students; rather, I mean, if the concept were exactly true. Now,
since I am taking a sample, how far can this fluctuate? What do I have to do
in order to condense or to expand the indices that I am looking at into terms
that have information for me? Insofar as we deal with arbitrary raw scores in
testing, we certainly cannot use confidence intervals in inches. In fa:t, if
we deal with multivariate analysis, we cannot do anything except scale stand-
ardized measures because what is our unit then? Is »ur unit inch-pounds? You
see, at one step we must standardize to some kind of statistical unit. The
idea is simply not to look at the sample that you get, but sav, "What would

happen in the conceptual unit called population?" Then say, "How much
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inference can I draw from the sample?"

Dr. Cohen:
Dr. Bargmann, would you agree that variance proportion terms are

acceptable?

Dr. Bargmann:

I like variance proportion very much, but I do nct like your inference
that it is the square of the multiple correlation. The variance ratio is a
statistic that happens to have the same distribution as the multiple correlation
under the null hypothesis. As soon as the null hypothesis is not true, then
one has a non-central F: the other one is hypergeometric. So you see that they
are intrinsically somewhat different. But they have enough similarity to
convey the same meaning for those people who have been living with correlation
as the last word. A psychologist who reads a .70 correlation has about the
same feeling as I would have to hear 70°, I feel comfortable with a temperature
of 709, and I feel comfortable with .70 as a validity. This is about all it
is--a convention that has been in practice so long that people think it has a
lot of information; but in many cases we condense so much in this one coefficient
that it is not going to help us any more either in predictive efficiency or in
understanding the mechanism. It is in this case that I would like to go along
with Dr. Bottenberg to say that we must have something more visual. Despite

anyone's misgivings, I like Venn diagrams.

Dr. Ward:

All I want to say about the Venn diagram is that its purpose is to

interpret additive parts of variance accounted for. I am not sure that this is
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what it does* it can be very misleading. In general, we do not have the

additivity implied in the Venn diagram.

Dr. Cohen:

I think it is there. The problem is that a piece of the diagram can

be negative.

Dr. Ward:

Yes, but what does that mean?

Dr. Cohen:

Look at this diagram.
The areas a, b, and ¢ add uo to the
squared multiple R and a is positive

because it is essentially a squared

beta kind of measure, and c is
positive, but I wish I could tell vou . epiterion
that b was positive. Indeed, I do not

know whether it is positive or not. In some instances it is; in some instances
it is not. That is where the problem lies. Two years ago I thought one

could add them up and interpret the sum as a variance proportion until I started
running into negative b's, which will happen when you have a substantial amount
of correlation in the system. What I think this says conceptually is that there
is a certain logical or substantive priority that goes into this scheme. It

matters whether you ask if set B is adding to what set A gives or if set A is

adding to what set B gives, because you are talking about different proportions




of variance. The covariance proolem for me is essentially deciding whether A
or B is the covariate. The covariate takes its variance out first. That is
what we mean by a covariance problem. A given substantive problem, depending

on who is doine what kind of research, may either want set A to be the covariate
and set B to be over and above the covariate, or the converse, and they can
make equally good sense either way. It does not matter how we define set A

and set B. Set A can be class memhership, it can be purely nominal, or it can

2, and x3 for that matter. I do not mean to interpret these as variance

be x, %
proportions Lecause we get uncomfortable about negative additions. The
relationship

Ifr = R2
looks like a great way to partition R squared into proportions that are additive,
and it seems like a final and ideal solution to the question, "How much does
each of the independent variables, however defined, contribute to the variance

of the criterion?" Unforfunately, it does not work. The algebra is true,

but some of the pieces can be negative.

New Speaker: Some of the pieces can be greater than one.

Dr. Cohen:

Which shows why some must be negative.

Dr. Anderson:
There are also other ways to partition the svstem; vou can compute

all of the semi-partial correlation coefficients, square them, add them up, and

you get R2.
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Dr. Cohen:

No you don't.

Dr. Bock:

With semi-partials you do.

Dr. Cohen:
{!

No, no! Only with successive ones.

Dr. Anderson:

Use higher order semi-partials.

Dr. Cohen:

That depends on what you mean.

Dr. Bock:

The term refers to a partial on an orthogonalized basis. Now, if

you want to call the semi-partial orthogonalizing in all different ways, then

55 A e B S S A s W

of course they won't add up.

Dr. Findley:
We agree, then, that in order to interpret correlation one needs

to know more than the correlation coefficient. Let's proceed to another topic.

Let us turn to another of Dr. Bottenberc's questions:

"What meaning does a test of main effects have in the presence

of interaction? How should it be tested?"
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Dr. Bock:

The theory is sound only if the order is prescribed beforehand.
Since we do have this strong theory for stepwise tests for prescribed order,
I think we should strive mishtily to prescribe the order. In my experience,
this is not so difficult. Certainly in a model that contains terms of low degree
and terms of hish degree we would like to throw out whatever terms we can.
In many substantive problems there are clearly some terms which, as I said, are
problematical, things that you really want to test, and other things that you
are pretty sure do have some effect so you want to put them in first. The

problematical things, should go in last. I do not think you can do much more

than that.

Dr. Cramer:

What I had in mind was a situation in which the investigator would
have liked to have desirfned an orthogonal experiment, and meant to design an
orthogonal experiment, but he just did not happen to get equal N's. What he
would like to do is draw the conclusions that he would have drawn had he gotten
equal N's., So he has two factors, A and B. He is certainly interested in making

statements about interaction of A and B, and also statements about A and B

themselves.

Dr. Bock:

You have to do them in all orders then.

Dr. Cohen:

You have to use least squares, orthogonalize to get A' and B'. A' and

B' are not quite A and B. Orthogonalize them and you see how much each takes.

Y . .
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That is all right if you have missing data because some idiot dropped the test
tubes. It is not pood when A and B are education and income because, if you
orthogonalize in that case, you are studying not quite education and not quite
income, but forced vectors that may be least squares approximations for education

and income, but are indeed neither.

Dr. Cramer:

Let us stick to the case where some idiot dropped them. We still
have several tests that we can perform. If we are interested in testing A, we
can test A, eliminating B and ignoring AB. We can test A, ignoring both B
and AB. We can test A, eliminating both B and AB, but you have three tests in

that situation. If you have nore factors, you have many more tests of the

same thing. I wonder if there would be any agreement here as to which of these

tests are appropriate for what.

Dr. Findley:

Now, there is one type I thought Dr. Graybill was citing yesterday

where you use two variables that permit a certain degree of prediction. Then

he put a third one in, cut down the error, and improved the prediction. 1In

{ that case he had a chronological sequence, sort of a natural sequence like we
| talked about before in predicting grades. You had high school averages a long
time before you hLad test scores, for example. It seems to me the natural

question to ask is "How much do the test scores improve the prediction after

you have used high school grades?"
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Dr. Bargmann:
I will say I wholeheartedly concur with Dr. Bock's presentation that

some ordering of the variables should be studied and is indicated. This gives

us a lot of information provided that such ordering is based on the physical

Do not do formal-

content of the variables and is meaningful to the educator.
istic manipulation of all possible orders to try to find which one gets the :

greatest increment in F or which one has the least contribution to make. We

must not overlook the fact that in our stepwise procedures the best two

predictore do not necessarily include the best single one. They may be

different.

Now, I would say ordering, in the interest of interpretation, is

clearly indicated if the order itself has been established by some interpreter's

value criterion. I can very well imagine that in an educational setting you

P can say the teachers of mathmatics or physics or chemistry represent one

particular block. Teachers of English and social sciences, or of English and

i foreign languages, we treat as another block. In each block I may have a more
important, more prevailing criterion of ordering which means something

4 educationally. As soon as we go to partitioning and to the contribution of

the last x, unless we have a polynomial fit, this becomes rather hard and, I

might say, esoteric or even metaphysical.

Dr. Wiley:
Let me rephrase Dr. Cramer's question, because I think it got lost.
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The real question is basically "Is it ever legitimate to test the extra due to

LS S

a main effect above and beyond the interaction?"
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Dr. Bock:

It amounts to "Are you willing

It is basically illogical, I think.

to entertain the function X\ as your model instead of X + y?"

Dr. Cramer:

The question arises in a practical context. Suppose you have an

analysis of variance that was designed to be orthogonal and you believe there
is going to be interaction, but you want to get the same treatment precision

with respect to all levels of B, which would be something like a blocking

variable except with interaction. You want to make a practical applied decision

of giving a single treatment level to everybody on the basis of the data even ;
i

under the circumstances when a large interaction is present.

Dr. Bock:
Well., then you just ignore the other way of classification. There

would not be any interaction. If you are in a practical situation of just

wanting to know what the population sums are for two classes, you do not need

to worry about the other classification.
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¢ Dr. Cramer:

What is the appropriate error measure?

Dr. Bock:

I assume you have replications within class. You have only two cells
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Dr. Cramer:

In your replication, then, do you ignore the nonorthogonality of

A and AB?

A AP Bt A S

Dr. Bock:

Yes.

Dr. Cramer:
So the implication of this is that you never hold the interaction

constant. You would not correct for it.

Dr. Bock:

Yes.

Dr. Cohen:

You specified that. You said that you are not interested in

interaction.

Dr. Cramer:

But I am interested in it.

Dr. Bock:

Let us look at another case. Uhen would you want to use the

Well, there are models like that. The gas

expression Z = aXY as a model?

law is like that. But it is an application where you have well defined

variables and it turns out that that kind of functional relationship is a very

good one.
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Dr. Cramer:

Let us say that I am a naive psychologist and do not know anything
about models. I am used to doing my orthogonal analysis of variance, where I
do not have to worry about any of these complications, but somebody lost some of

m7 observations. Now, what is to be done?

Dr. Graybill:
I would like to go back to the cell means. Look at the cell means and

suppose you, for a moment, pretended that you actually knew the cell means. Now,

the question is; "What would you do if you knew the answer to the question?"

That is what I would look at. The fact is that you have to estimate these cell
means. Whether you estimate them by an orthogonal or a non-orthogonal technique
is by the way. What do you want to do with the real population cell means that
you had? Do you want to average them over the A classification and make general

recommendations? This is one possibility. Do you want to average over B? Do

it! You may say "I am going to pick out just one mean and make a recommendation

based only on it." Do that! Do whatever you want to do. Don't let the analysis

influence what you want to do as a result. After you decide what you want -to

do, then, in my opinion, use the best analysis possible to get the estimation

for the result of what vou want to do.

Dr. Anderson:

¢ This is not what Dr. Bargmann would suggest.

Dr. Graybill:

That is why I am suggesting it.

byrssipgriniies
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Dr. Anderson:

But Dr. Bargmann says, "Thou shall not interpret chance."

Dr. Bock:

This is a pseudo-question because if you do it in this order when
you re-orthogonalize, you will still get the same interaction term. You have
just exchanged interaction vectors as the basis for main effect vectors. The

same basis is there when you orthogonalize.

Dr. Anderson:
But you can always decompos2 a system into one term for: each degree

of freedom.

Dr. YcLean:

Yes, but the question is that if you wanted to make the decision
between the levels of A, regardless of B, why did you design the experiment
with B in it? You may have wanted to make it more precise, but what is the

precision going to do for you, if you are going to ignore B anyway?

Dr. Cramer:
Different investigators may want to use the same data for different

purposes.

Dr. Bargmann:
An interaction is a term that the model builder puts into the model.

I presented strong evidence yesterday that the model itself must be specified.




)

Ty romm el R
AT i S —— a Aoy e T e A

e vt i el i - i

211

We must now make additional assumptions about these interactions. You must
say, for example, that they are all zero or try to keep them as small as
possible in relation to some main effect, or assume some trend neutralization
or reinforcement. You must make the statement: "Would someone please tell me,
I don't know?" Why is there always a mix-up here? What does orthogonality

or non-orthogonality have to do with the presence or absence of interaction?
The two are completely different concepts. It may be harder to interpret
interaction if you have a very irregular design, but I do not know what the two
have ¢o do with each other. Computationally, both are very simple -- an

irregular design analysis takes less time than estimating missing data.

Dr. tcLean:

We do not understand the meaning of a main effect in the non-
orthogonal case, when we have had to do some sort of stepwise procedure to
arrive at the sum of squares. Whereas, we feel that in the orthogonal case,
we can partition the sums of squares into independent chunks and look at the

interaction separately.

Dr. Bargmann:

Do you visualize anything when you hear "sum of squares?" What is
a "sum of squares?" Why must they be additive? I often ask myself this
because I remember Clyde Cramer doing goodness-of-fit statistics and then after
he did marginal goodness-of-fit, he had a residual, of which he said, "Well, I
call that a residual." It certainly was not the test for interaction, it was

not the interaction sum of squares. If you want it negative, you can have it

negative; you can have it anything. It is simply a matter of symbolism. What




is a "sum of squares?" In two words?

New Speaker:
Very well, It is a useful simple tool if it is uniquely ascribable

by the design to a particular source.

Dr. Ward:

If one does not know what question to ask in the proportional or
equal cell case, then he has this problem. But if you know what the question
is in the first place, it does not matter to you whether it is an orthogonal or

non-orthogonal case.

Dr. Bargmann:

Yes, it is just harder to get the variance components. Variance
components mean something to me. They involve conditional inversions and all
kinds of things. That means something to me, but "sum of squares" is just as
meaningless as, let's say, applying least squares in the case in which you have
correlated variables. It is a formalistic expression to which I cannot give

any meaning.

Dr. Bock:

Well, you have to evaluate its expectation and see what parameter

is involved.

Dr. Bargmann:
Put it into quadratic form and get your estimate, unbiased perhaps,

in some confidence region of the variance components. That means something.

st




Dr. Cramer:

In the example I am talking about, in the orthogonal case, I think
the questions I ask are clear. Suppose my experiment actually consisted of
two random samples of subjects, and I have two different drugs and two different
dose levels. This is a two-by-two design and the question that I might ask in

the orthogonal case would be: Does the dose matter? Does the drug matter?

Now what I want to know is how I can test them.

Dr. Graybill:

We are not going to test them. Ye will look at the means.

Dr. Cramer:

Are you saying that it is not valid for me to say, "I want to know

if these two drugs are different?"

g::aker= It is going to be invalid unless you specify what it is supposed to
be.

New ¢+ I would have you test interaction rather than make an assumption
Speaker

about interaction.

Dr. Graybill:

Suppose you have a two-by-two design in which we will call the class«

é ifications A and B on which you have observations. You can estimate the cell

means with confidence intervals. Suppose you knew the cell means; let us talk

about what it would mean if I knew the population cell means. What questions

do you want to ask? If you want, you may ask: "How close is (u11 + “12) / 2

to (u21 + u22) / 2?" That is a very nice question to ask. It can be asked,
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whether there is orthogonality or not, so long as ycua do not have all data
gone. Well, suppose I want to ask another question: "How similar are

" S s s Y
("11 + u12) / 2 and (u12 + u22) / 22" This is a perfectly legitimate question.

Yes, I would look at this using data from the same experiment. There is another

: " - - ]
question that I might want to ask, "Is M1y = ¥y9 the same as Moy u22? That
is, is there interaction? This is a legitimate question to ask right along

with the other questions in the same experiment. You may want to ask the

question, "What is the value of a particular cell mean?" That is a perfectly
legitimate question that can be asked right along with everything else. As I
said this morning, I would use the studentized maximum modulus, ask all these
questions and answer them all in the terms of one sample with a known protection

level of error rate. So that is why I use the modulus in any analysis and then

say, "What questions do I want to ask?" Don't be limited in what questions you
ask by whether the data are orthogonal or non-orthogonal. This is immaterial,

by the way, if you have a computer. If you have a desk calculator and you have

to have your answers by 2:30 this afternoon, you have to ask different questions.
Even if some means are missing, you can still ask about the effect of A in the

presence of this level of B or mavbe one mean versus the average of two others.

So what I do first is say, "Do I know the population? Now, what question do I

want to ask?"' I write down the questions. Now, I say "What is the best answer
to those questions with the protection level that I am going to deal with?"

You can do it. Orthogonality and non-orthogonality are beside the point.

Dr. Bargmann:

You are going to do it for a two-by-two design, why not for a ten-by-

twenty.
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Dr. Graybill:

Yes, the same thing.

Dr. Bargmann:

You want to write down trillions of different questions that you might

have?

Dr. Graybill:

If I have those questions, yes. If I have the questions, I do.

Dr. Anderson:
Before you ask any specific question like this, would you test the

overall cell variation? Are you interpreting chance?

Dr. Graybill:

No, absolutely not. The reason I would not test is this. Suppose
I have a mean I am interested in and suppose I come up with a confidence
interval like I talked about before. Let's use as an example the averasge
height of people in Athens. Suppose that I come up with 5.11 to 5.12 feet
for the confidence interval of the average. But suppose I am testing whether it
is 5.10 feet. I would reject the hypothesis. Yet, when I use a practical point
of view, I say for all practical ourposes, if 5.10 is something sacred, yes,
I'd just as soon use 5.10. Now, my result is sipnificantly different from
5.10 at the .00l percent level. I would reach the same conclusion if I had
obtained an interval of six to seven feet. So, you see, a significance test

throws away too much data. It summarizes your data too far -- way past the
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sufficient statistic. The confidence interval if you are not a Bayesian, or
the probability interval if you are a Bayesian, does throw away a little informa-
tion, but not very much. I think the onus is on the experimenter to not say
if the average is different from 5.10 or not, but to say, "Look at this, I

have to make meaningful decisions on the basis that I believe quite strongly
that u is some place in this interval, that u,, is some place in this interval
and Yoy is in this interval. Now on the basis of that, I am going to ask
various questions and then I am going to do the best job I can today to answer
those questions. Let us not do just "yes-no" tests of significance or
hypotheses. You take a lot of time to collect the data and summarize it in one
little number. You are really sacrificing your data. I really think tests

of hypotheses are the worst thing of all, tests of significance are the next

to the worst thing of all. A test of an hypotiesis is like this. Suppose

I test u=0 and decide to use the five per cent level. If it is above five

per cent I reject, if it is below five per cent I accept. That is a two- |

decision problem.

Now, the test of significance says "Test u=0" and I ask the question
"At what level of sienificance do I reject u=0?" Mavbe rejection at the .001
level gives me a lot more information than rejection at the five per cent
level. You want to know at what level I rejected. This is not a decision
problem. And the power of a test has meaning in tests of hypotheses, but does

not have meaning in tests of significance.

Dr. Bargmann:
Assume that you state your model in terms of uij's and you ask
questions in terms of these uij's. Then by all means the confidence bounds

found have all the information that you want--the confidence bounds on the




questions that you ask in the various comparisons.

Dr. Graybill:

The F-test involves something in the numerator and something in
the denominator. MNow, when you put them together in an F-ratio, you throw
the two individual parts away. You throw the individual parts, the numerator
and the denominator, into one factor. Suppose I have a model in which I am
testing for a quadratic effect. Now, suppose I look at the data, and it is
such that there is no doubt in my mind--in fact, it is such that any experimenter
would say there is a quadratic effect operating. That is one possibility.
But suppose an atypical observation is included. This increases my variance so

that I get non-significance in spite of the obvious quadratic pattern.

Dr. Bargmann:

If you have extreme outliers, you should edit your data first.

Dr. Graybill:

I am trying to make it dramatic here. When you use the F-test only

as a test, you overcondense your data. You condense your data too far.

New Speaker:

The maximum modulus has a denominator, too, though.

Dr. Graybill:

But the maximum modulus would be used to set limits on each point.

New Speaker:
Are you saying that just because somebody misuses the F-test here,

we should throw out tests of significance?
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Dr. Graybill:

I am saying that it is always misused.

Dr. Bargmann:

I agree that it gives too little information. I said that you should
r.ot interpret what you get in a test of significance. I merely say that a
test of an hypothesis that all effects are equal is a test of a perfectly
legitimate, simple model. If you are left with accepting that particular model,
then I think you are an astrologer if you say, "Now, I'm going to take these
things and break them into components." You can break them into components in

infinitely many ways. But it is a matter of parsimony, the simplest model.

All of them are equal. The rest is just random. This is, by far, enough to
explain. Why look for a mechanism or even say later, "My confidence bounds
are proof of a mechanism?" This, I think, is dangerous, that's all. It is

a verboten sign. If you do not reach a certain level, it's verboten to go on.

That would be mv emphatic statement.

Dr. Graybill:

Now, I would like to ask you experimenters a question. Suppose 1
spend $100,000 getting data and I make an F-test and it is not significant.
Are you going to shove that data in the drawer and say nothing else can be

done. I don't think so. You are soing to milk that data for information.

Dr. Cramer:

I quite agree with everything that Dr. Graybill was saying. Things

should be phrased in terms of confidence
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intervals rather than tests of significance. Let us take our two-by-two

table of means and say that the statements I am interested in making about

the true means are about the differences of the sum of the diagonal element
minus the other two diagonal elements, the sum of the first two row means minus
the sum of the last two row means, the sum of the first two column means minus
the sum of the last two column means. Now, perhaps these have & profound
relationship with the parameters of the original linear model which I might have
written down to start with. I am interested in confidence limits for these and
I can get confidence limits or tests of significance under various circumstances.
What they amount to doing is comparing different models. I am not clear which

I should be doing.

Dr. Bock:
0. K., so these are not independent. You don't care. Use some method

of judging all contrasts that protects you even though they are not independent.

Dr. Cohen:

I'd like to take issue with Dr. Bargmann. Here is an R-by-C matrix
and the data mean something. I won't specify what, but they mean something.
They account for criterion variance. However, I know that some of it is
accounted for by the R variable and some of it by the C variable, and some of
it by the RC interacticn. Now, if there were no problems of power in this
system, I would have no difficulty at all going along with what you say. I'll
test the whole RC set and if I do not get significance, I am prepared to accept
the simplest model. I can't help but see the F-test on cells as sort of

"communism" in the extreme--taking all these effects and dividing them equally,

each according to its single degree of freedom as it were. Then it makes a
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decision about the average of them. If C happens to be a weak effect in the
population, R is a null affect in the population, and the interaction is a

null effect, then this operation will almost certainly leave me with an F-test
that will meet hardly any criterion. It won't meet the five percent level. It
may not meet even the ten percent lével. I would prefer to think of these

three sets, the R set, the C set, and the interaction set, as families, at least.
Within these families I would be quite prepared, if the R factor set was not
significant, not to pursue that further, then look at the C effect, and so onm,

rather than throw them all into a single RC conglomerate.

Dr. Bargmann:

This is really a very simple question. You observe only what happens
under a combination of R and C. You postulate in your mind that this is a
combined effect of R plus C, plus some interaction between the two. But that is
not enough. You now suddenly also say, "I want to make the contribution of R
and C as large as I can and deal with whatever remains as being non-additivity."
This is what you have in your mind. Your data can give the sufficient statistics,
namely the cell means and standard deviations, all this is available. But what
of the compound F-test? The compound F-test tells you whether the full R by C
design could have been brought about by chance, if all effects have the same
true u. Suppose I get an F that comes to the .10 level.

You want to say that you have a little of something because you
assume that you had a weak effect in C, practically none in R, and none in
whatever remained. Consequently, haven't you thrown something away?

I merely say, "Yes." This may be true. You have evidence. You may

go on and say. "I have a hunch that there may be something in C which is
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somewhat obliterated." I think the only way that you can demonstrate the
hunch to outsiders and make it convincing is to say, "In the presence of these
weak effects, I have got to take more data. I have to collect additional data
until I reach a somewhat reasonable significance level, .1C .let's say. The
effect presumably always works in the same direction, however weak. If you
assume that such a weak effect exists, then if you take enough data you will
eventually also prove it, prove it beyond a shadow of a doubt--and a shadow

of a doubt is .10, .05, .01, you name it.

New Speaker:

You didn't get to Dr. Graybill's problem though. He spent  $100,000

to get the data and wants to get something from it.

Dr. Bargmann:

I may treat it as a completely different problem. I may consider a
completely different scoring system, for example. Psychologists don't seem to
realize that as soon as they reject, as we say, or accept, a certain null
hypothesis, this means complete randomness. In many personality studies this
may be.true. But they haven't thrown away the data. They haven't done every-
thing in vain. They just have a poor scoring technique. Go back to your old
data and find some other scoring principles, graphology, for instance! Look
for more meaningful ways to handle the basic data till you find something. The

scoring has been insufficient. Eventually you can always take the data again,

re-evaluate them and re-quantify them in different ways and then you may come

up with something.
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But to try interpreting or breaking the total set down into row,
column, and interaction, if you know that the three could very well add up
to zero, does not seem scientifically tenable and does not hold up in

court.

Dr. King:
I recently encountered the opposite situation. I did a three variable
regression problem where the overall F was significant, but when I tested the

individual regression coefficients none of them was.

Dr. Eber:

(from floor) You are testing parts and each one of the parts excludes
the contribution of the others, including the joint contributions. I have
a specific example in mind. In some rehabilitation studies there are ten
factors we are studying. These are composite factor scores. Five of them
represent characteristics that the client brings to the counselor to begin
with. The sixth one represents college training that is given to the client.
Now, if college training turns out to be insignificant in its long-range effect
on the client, in terms of this model where the first five have been partialed
out beforehand, what we are saying is that college training as such is not a
significant influence. College training together with what there was about
this client that made us decide to give him this kind of training may be quite
significant. This is precisely the answer to the question that we want because
what the counselor is asking is, "If I go through this set of plans randomly and
sent everyone to college, will it really help?" No! That's what the model is

saying. No, it won't.
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Dr. Bock:

I think that is a little too causal an interpretation. What you are
saying is that it can be attributed to that, that it is associated with it. I

am not too sure about vour causal implication.

Dr. Eber:
Perhaps it i{s too causal. But the point is vou can at least make some

hypothesis about what is roing on psychologically in terms of what variables

exist in the system. So the statistical procedure is giving you the right

answers.

Dr. Findley:

There is a question that I think is very much in order. The third
question of Dr. Bottenberg is on the use of a binary criterion. This is rather
distinct from the other points that we have discussed. The use of a binary
criterion in the context of the smeneral linear reeression model is seldom

discussed.

Dr. Bottenberg:
Schemes based on discriminant analysis and likelihood ratios are

ordinarily suggested as the proper approaches to classification problems. But %

those techniques are usually difficult to understand. Those engaged in
educatioral research are interested in classification problems. They may well
consider the use of linear repression models with a binarv criterion. Some

empirical results obtained at the Personnel Research Laboratory indicate that

a regression model approach can be used effectively in dealing with classification
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problems. One can evaluate the effectiveness of the aporoach in terms of a
hit table, displaying the correct classification count weighted by payoffs and

costs.

Dr. Bargmann:

Certainly the regression approach, if vou have several variables in
the binary classification, is the correct approach. What is hapoening here is
that again we are dealing with the left side and the right side of the equation.
The right side in this case consists of 0's and 1's, or perhaps if we have more
categories O's, 1l's, 2's. These are the design constants. The left side is
the information that you have on all the random variables. HNow we can set up
discriminant functions, we can start classifying. It so happens that if we just
want to classify the binary way--0 or l--or if we want to exnlain the best
way to total a score so that the score leads to the best classification, the
multiple regression approcach gives the correct answer. This is a mere coinci-
dence. It happens to be the discriminant function. Take another instance.

In weighting items for college selection, we need to find the weipghts in such a
way as to discriminate best between those who will succeed in college and those
who will fail in collefe. The discriminant function identifies the best set

of weights, which happen to be the regression weights.

Now, there can be more than two groups. For example, when you have
people who are talented for office training, people for technical training,
people for general training, and people for KP. Now your set of tests have to
discriminate among four eroups. In this particular case, the solution is no
longer multiple resression. The solution happens to be the vector associated
with the largest root of a matrix product. It is a multivariate analysis that

yields the discriminant function.
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I would say that the claim that statisticians have not paid attention to this
problem is not correct. They have paid very close attention to it and it is
perhaps important to note that there exist multivariate techniques which are
well known, well developed, easy to obtain, and, I would say, available to
practicing people in education.

There is, of course, need for more study, especially in the case
where allocation to one group or another is a random variable. Box is doing
quite a bit of the research on this. There are many ways to handle the problem

and practical ways are available.

Dr. Anderson:
You are all right as long as the means of the groups are in a straight

line in the hyperdimensional space. If they are not, then you do have a problem.

Dr. Bargmann:

A straight line is not a requirement.

Dr. Anderson:
But it is. The means of the groups certainly enter into the
calculation and if vou do something like Rao does, you get an entirely different

set of weights for each group. You do not get the root and vector.

Dr. Bargmann:
You can make a pairwise split--A against B, A against C, A

against D, B against C, etc., and get useful information. If that is meaningful,
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then by all means do it, but if, as in education, someone wants a total score,
what weights should be used? Usually these weights should be given in terms of
a criterion set by the educator. But sometimes the weights are to be determined
in such a way as to give the sharpest discrimination between certain types of
groups, for example, interest differences between certain types of professions.
In this case, the means are not really on a straight line. You should look at
what I will call a calibration sample. Perhaps you have groups of extremely
successful physicians, extremely successful accountants, undertakers, and so on,
and you get a weighted total score of vour various measures. Yith this weighted

total score, you find out which one to take in order to discriminate best

between the groups. Then it is evaluated for each individual and probabilities

are minimized.

Dr. Anderson:

If you do it by the canonical abproach, do you get a root and a weight

for every variable and the same weights for every group?

Dr. Bargmann:

They may be the same but they may be only proportional: they are

arbitrary.

Dr. Anderson:
Now, if you do it by the Rao approach, do you get different sets of ]

weights for the variables for each group?

Nt
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preparing for college, or some other group? Without stating what you mean, I

can give no answer."

Dr. Findley:

Let us take time to go around the table for questions we may have

missed.

Dr. Wiley:

We have glossed over a couple of things in regard to models and design.
One essential point with respect to the usual general linear hypothesis class
of models is that there are distinctions between them. When Dr. Ward is fitting
the four models that he gives in his paper, those are four very different
kinds of models and are useful for very different kinds of purposes. There
ought to be some attention given to the question of under what circumstances
one formulates what models for what purposes. In a very special area Dr.

Bargmann has done that in his paper. In general, I still think there is wide

residual confusion among the audience and among the readership about what in
fact are the important distinctions. I would like one of the speakers to

conment on this.

Dr. Bargmann:

The only quick answer that we could give is that the investigation of

the plausibility of models--formulation A versus formulation B--of course, falls

into the domain of exploratory analysis, to which statistical tools are some-

times applied. The entire area of effect analysis, and I think I ought to

restrict it to effect analysis, is essentially an intent to try to indicate
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what kind of models would be plausible and what would not be plausible. 1

am sure there are many others in the entire area of spectral analysis, he
entire area of fitting curves of unknown degrees. Many stochastic processes

are made for the explicit purpose of providing pointers as to how to formulate
a proper model which you can later test versus various alternatives in a confir-
matory sense. So, a¢cention has been given to it. I must admit, though, the
attention given to it has been highly esoteric. In fact, some of the concepts
that have been introduced, concerning the nature of latent variables and their
relationship to observable ones, are quite difficult. When a psychologist

talks about a factor loading, chances that the biologists, who may have a very
similiar problem, would not even know what he is talking about. If one person
talks about a correlation meaning something to him, the next person might say,
"I don't know what it means." So, I would accept the challenge as one member of
the statistical profession, that we can do a lot more by exploratory tools

in order to help people get pointers to formulate models.

Eventually, however, all these tools, whatever numbers may come up,

whatever vectors, whatever vector leadings or interesting thoughts, will have

to be translated back intc the actual originally measured variable and not to

a principal component or to a latent factor score or something that no one can |

really interpret, but to what you really measured in the beginning. Once you

have done this, I think you have done a service to the problem of formulating
a model which under the circumstances seems plausible. It is never correct

or incorrect, true or false, but can be either plausible or implausible.

Dr. Winer:
One thing that we have lost sight of here is that all of these models

are man made. We have to admit this initially. The use of statistical procedures
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to add or subtract from a model, I think, is somewhat inappropriate in that
essentially these models really establish a probability metric that we use at
one stage or another. I just don't know the real answer. Fisher gave the job
of model specification to the applied man, not because he wanted to give up any
of his real mathematical work, but because he was, in ¢ sense, incompetent to

deal with this aspect of the problemn.

Dr. Ward:

I agree with many of the comments that have been made, particularly
Dr. Graybill's in the sense that we have to look at the probiem that we have
generated. The thing we have to do is develop the capability of our research
workers so they can formulate appropriately their own problems instead of asking
someone else to answer the question, "What is the right thing to do here?"
What you want to do is give them the capability of conceptualizing things in
their own situations. Now, related to this, I want to get back to Dr.
Bottenberg's first point. If we continue the practice of getting people to
understand well-developed models that may not be relevant to their problems, we
are being fundamentally inconsistent. I hope we keep on telling people to go
out and formulate their own problems. That is the only fair thing we can do.
We may want to continue the way we have been doing. But let's not keep on
trying to convince people they ought to think about problems in a very
restrictive way so that they get in trouble one time after another. Let us
try to determine the individual's objectives, but ask this person to think

about his own problems and not worry about proportionality unless it is relevant.
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Dr. Bock:
I had one other comment to make. It is the question of units of

measurement. A lot of this would be solved if we would stop denying the fact

that behavioral variables are almost entirely qualitative. We get around it by

using a test score which is the sum of qualitative responses. On such items

either you pass, fail, or omit. UWe hope that we can treat this test as a

continuous variable and model it with a linear model that defines values in
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terms of real life. In a sense, it is quite a fiction; it is quite removed

from the things with which we are actually concerned, that is, the qualitative

response the examinee makes. If you deal with qualitative data, then you very

i ™

naturally want to state the probability that he will respond this way or that

way, or that this individual will be classified this way rather than that way.

So all of the quantitative aspects of the discussion is in terms of probabilities.
i They are nice because they vary from zero to one on a well defined metric.

They are not so nice because they are confined in this way: you cannot easily
construct ordinary linear models for probabilities because the ordinary linear

models will quite often give you a negative value or a value of over one. It

is, however, possible to retain the usefulness of linear models if you introduce

- e~

the concept of a response law--a non-linear function relating a linear model
to probability of response, mapping this real line that the linear model defines
in the (0,1) interval. In the last few years, I think we have made some very
good progress on working with these types of models. I have been concerned
with two types.
One of these is for contingency type data. I have been using a
generalization of the logit, the multivariate form logit transformation and ]

using maximum likelihood to estimate parameters of an underlying linear model
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connected through the response law to the observable responses. More recently,
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a number of us have been working on models for dichotomously scored test
responses--one and zero responses--which treat this vector of ones and zeros
as a qualitative entity. We do not sum them to get a score or weight that is
treated as continuous. Again, the underlying model is linear, but it is
connected to the response probabilities by non-linear models and, again, maximum
likelihood serves very well.

I really think this is the direction in which we should move whenever
we can and this is the thing that really fits our kind of data. This idea was
really Thurstone's. We owe to him the idea of working with psychological data

in this form. I hope we czn push on and extend it.

Dr. Bargmann:

I do not want to detract from the importance or value of this approach
of postulating a linear response, logits, probits, etc. They are very useful.
They have one horrible handicap--they always fit much too well even if the data
is random. But I will say we are still dealing with two entirely different
problems. Why do you concentrate on behavioral sciences phenomena? The concept
of heat is extremely qualitative. Some esoteric mercurial scale was developed,
based on the behavior of a mercury column. Then someone introduced, somewhat
loosely and poorly, a concept of temperature. Temperature is now measured on
some scale and applied to this varying qualitative concept heat. It has nothing
to do with subjective heat because what I call cold in summer may have a
different temperature point from what I would call cold in winter. But it is
this concept of an almost artificial scale that we are using for communication
that has enabled us to establish relations between chemical reaction and this
scale for heat, between energies and heat, even between physiological phenomena

and the temperature scale. The approach of getting probabalistic or linearized
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models--stendardized, linearized, normalized, logit, ranked--is useful, but
the other approach eventually will be more effective. We want to find a scale,
perhaps a combination of the test scores, perhaps a scaling of the test scores,

that enables us to predict.

Dr. Bock:

I do not say the independent variables or the conceptual variables
should not be quantitative. The response may be quantitative if it is how
heavy a weight you can lift or something like that, but it is not very often

quantitative.

Dr. Findley:

Don't we often now in the field of measurement think of a person
doing a number of tasks successfully rather than simply a single task? Now
each single task is a qualitative response, but when we think of a person being
competent in any particular area, we seldom think of it as being made up of the
separate actions that the person does. There is a continuity of scaling. If
we define competence as all of the things he can do, then we have an infinite

set of actions that make a scale. The scale becomes continuous, in effect.

Dr. Bock:

That is the distinction that we live with, but we do not really ever
have this infinity of things and we do not know in many cases that we should
regard it as a metric measure. The only behavior variables we have that are
really quantitative are things like response time. They are really rare once

you think about it. Most of the variables are really qualitative.




Dr. Findley:

You seem to reject the notion I was taught when I was first introduced

to the use of bi-serial r--in item analysis. The assumption was that being

right or wrong was a normalized trait and that either you had just enough of it

to do the task or more, or you did not have quite enough to do it.

Dr. Bock:

No, I am not objecting to that. That is exactly what I am saying,
but the response is to pass or fail. The underlying trait is latent; you cannot
observe it, but it is in the model. The trait is on the scale for which the
linear model is set up. It is not the kind of linear model that we are talking
about here today because it has to be connected through the non-linear

response law to the pass-fail response.

Dr. Bargmann:

But it is a form of scaling. You take regression models.

New Speaker:

In other words the crux of a lot of this is really the scaling.

Dr. Wiley:
T have one more comment about design. I think that has probably been
the most neglected subject in this discussion. No one seems to be talking about

design and the really fantastic economy one can achieve by having a planned

i observational scheme or a designed experiment. I was thinking about the

example that Dr. Winer gave of the two quantitative independent variables which
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were classified into a cross-classification and the one that Dr. Vard gave which
~was 15 by 25, where the variables on which the classification was based were
inherently quantitative and were scaled on a reasonable metric. In such cases,
factorial designs are not the most efficient method of detecting or fitting

the model, testing the model, or looking for lack of fit in the mecdezl. So that
if one has a general quadratic model which one hypothesizes for a phenomenor,
something like a composite design would be an excelient way to fit the model
with a great deal more economy of observation, and a great deal more efficiency
for a similar sample size, than going to the problem of a whole factorial array
of data whether or not it is a designed experiment or a planned observational

scheme.

Dr. Findley:
This concludes our discussion. Our thanks to both the panelists

and the questioners.




