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CHAPTER I

INTRODUCTION

Orientation to the Problem

Since mathematics, and the sciences in general, are becoming in-
creasingly important subject areas in the school curriculum on all
educational levels, much revision and restructuring in content has
been ard is being done. Such reorganization is evidenced by the many
experimental programs in the "new math." Such programs are the Univer-
sity of Illinois Committee on School Mathematics (UICSM), the Madison
project at Webster College in Missouri, the School Mathematics Study
Group (SMSG) at Stanford University, the Ball State University experi-
mental mathematics program in Muncie, Indiana, and the Minnimath Pro=-
gram at the University of Minnesota., New approaches to content
presentation in physics (fhysical Science Study Committee - PSSC),
Biology (Biological Sciences Curriculum Study - BSCS), and chemistry
(CHEM Study Program) are also being tried.

In the field of mathematics, Marks, Purdy and Kinney discuss this
activity toward reorganization of content:

The school mathematics curriculum at every level from

the primary grades through the high school and college pre-

sents a scene of reexamination and innovation, Different

emphases, different grade placement, new top’ecs, changed

methods for promoting learning, and new materials = both

textbooks and multisensory aids - are characteristic at

all levels. (37, p. 1)

Spencer and Brydegaard say:

Today’s school program emphasizes problem=-solving in
which the learner is challenged to question, to experiment,

1




and to explore, in order to find basic ways of attacking
problems., Learning is conceived to be a persoinal achieve-
ment that can be accomplished only through problem-solving
behavior on the part of the learner. (65, p. V)

If one glances through a mathematics textbook with a current publi-
cation date, he finds very different content and format than was used
in a text in the same area ten years ago. Mathematics textbook authors
admit the influence of the experimental work cited above. Robison states
in the preface of a college text in modern algebra and trigonometry:

In selecting the content of this book, I have been
guided by the recommendations of various curriculum study
groups, such as the Committee on the Undergraduate Program
F in Mathematics (CUPM). The textbooks of the School Mathe-
matics Study Group (SMSG) influenced much of the writing.
(515 p. 7) ;

In the preface of a beginning college text that uses a somewhat rigorous
approach, Britton, Kriegh and Rutland state:

This is the first of two volumes that are intended
to provide college and university students with a sensi-
ble continuation of the modern approach to mathematics
that is being introduced in most elementary and secondary
schools, with more emphasis than in the past placed on an
understanding of fundamental concepts. Certain advanced
topics in algebra and trigonometry, along with analytic
geometry and calculus, are unified into a sequential ex-
pos? iv on that eliminates much unnecessary duplication and
jg .-udueive to an efficient development and use of ideas
and techniques, Fundamental concepts are discussed in a
reasonably rigorous fashion, with adequate emphasis on
important skills, and without an excess of sophistication.
Many applications of mathematics have been included, and
they have frequently been made the motivation for the in-
troduction of mathematical concepts. An intuitive dis-
cussion often precedes the formal treatment of a new idea,
(8, preface)

Although content reorganization is important for effective teaching,

so is teaching method. We often hear Bruner’s thesis debated: a child

can learn any topic if it is presented in an "intellectually honest!




manner., (9) In mathematics, in particular, Kaplan believes that not
only is teaching method important, but that it has changed as a result
of change in content, He writes:

By now, most people are aware that a "reveolution" has

taken place in the teaching of arithmetic - mathematics -

in our schools., This revolution is not only of content
but of approach, (26, preface) ;

Yet, educators would not dispute the fact that content and method
are intimately related, Swenson concludes: {

True, some teachers do rveremphasize subject matter; they

do act as if the arithmetic in and of itself were more im-
portant than the people who are to learn arithmetic. The
critics of this attitude, however, are just as naive when
they declare that we should teach children instead of
arithmetic, Both these points of view lead us nowhere;

they advocate purpose impossible of achievement, (68, p. 12)

Others feel that personality and rapport of the teacher are as im-
portant as content and teaching method, This is true because the latter
creates positive or negative attitudes toward the subject area, In a
doctoral study dealing specifically with attitudes of prospective ele-
mentary school teachers, Purcell concludes:

With students entering (college) with better prepara-
tion in mathematics and the resulting more favorable atti-
tudes (as shown by the study), it will be possible to
increase these favorable attitudes even more as a result
of planned college instruction directed at changing atti-
tudes toward elementary mathematics. The teacher shortage
will continue, but the experimental study results give in-
dications that more favorable attitudes are being achieved.
Thus, the teachers entering on their careers have more
favorable attitudes toward elementary mathematics. (L8, p. 89)

In summary, it can be said that a combination of effective teaching
method, wholesome teacher personality, and appropriate content is to be

sought in any satisfactory pupil-teacher relationship. Johnson supports

this statement,




Mathematics instruction must do more than build an
understanding of the logical structure of mathematics,

even while acknowladging that this is the basic founda-

tion for understanding mathematics,

The mathematics program must in addition, strive

for broader objectives, such as creativeness, habits,

attitudes and values - objectives which are increasingly

difficult to attain and to measure. (2L, p. 185)

Iet us now look more closely into the area of teaching methods,
considering the teaching of advanced mathematics topics in particular,
We can ask, "If subject matter is taught by two different teaching
approaches, by which approach will a student learn more effectively?"
Such a question s empirically verifiable and researchable.

For the teaching of advanced topics of a discipline, teaching
methods have rarely been investigatedes Such an investigation, if con-
ducted at all, has usually been secondary to some other main area of
investigation. (11) Perhaps little research exists in this area be-
cause it is felt that those studying an advanced topic are above-aver-
age in intelligence (however measured), highly motivated, and will
learn under almost any reasonable teaching conditions, In a study by
Ady at the University of Wisconsin, an experimental group and a con-
trol group of student teachers in an advanced education course were
given two review methods over lecture material. He concludes:

Although there were no measurable differences in

learning results between the visually programmed self-

evaluation item group and the verbal leaderless discus-

sion group, the subjects did express different opinions

about these instructional methods. The visual progranmmed

item group believed their method was "organized," "helpful,"

and contributed to "high learning" and "high retention,"

On the other hand, the verbal leaderless discussion group

believed their method was "lively," "interesting," "good,"
and "intelligent." (1, p. 127)




f;

5

Also, those teaching advanced topics may not have teaching as their

primary concern, As Sharp states:

. « o« I can think of at least three reasons for university
teachers neglecting undergraduate students; . o o 2) Despite
pious declarations in faculty handbooks and administrative
speeches good teaching is not rewarded. If one wants to
get ahead, one publishesj dull or disorganized teaching
wWill not hurt one’s chances much, and successful teaching <
will be noticed only by the students. (59, p. 75)

Yet, this investigator believes that even in an exact discipline
such as mathematics, a highly motivated student may experience more i
permanent and meaningful learning of an advanced topic by one teaching %
approach than by another. The investigator also believes that when |

superior teaching approaches of advanced topics are used, good teaching |

will be recognized and rewarded,

Review of the Literature

There is a decided absence of empirical studies relating to the
teaching of advanced topics in mathematics including the teaching of
calculus,.

In the Tield of science, however, two studies are relevant., A
study by William Schefler investigated the teaching of college freshman
biology by an inductive laboratory approach and a traditional lecture
approach, Four groups of students were taught Ly two instructors.

Each instructor had both an experimental and a corntrol group. A pre-

test on genetics was given, The original hypothesis favored the induc-
tive method. An analysis of covariance was performed at the .05 level

of significance, investigating the following hypothesis:

When an inductive laboratory approach to teaching a unit cn
genetics is compared with a traditional lecture-illustrative




laboratory approach, students taught by the inductive
laboratory approach will show a significantly greater
achievement in terms of the following criteria:

(1) Knowledge of facts and principles, and their applica-
tions, as measured by a genetics test,

(2) An understanding of the nature and methodology of
science, as measured by the "Test on Understanding
Science,"

subscale of Kuder Preference Test, Form C.

(3) An interest in science, as measured by the scientific
(L) A positive attitude toward scientists and science, as
measured by an application of the semantic differential i
technique. (56, pe 7) |

A significant difference was found in group test scores only on the |
basis of instructors., No support for the original hypothesis was found.
Schefler concludes:

Referring back to the main hypothesis of this study, it is
apparent that within the limitations imposed on the data,

the hypothesis concerning a significant difference in achieve-
ment between students taught by an inductive laboratory method
and those taught by a traditional lecture-illustrative labor-
atory approach is not supported by the evidence. Specifically,
} this study has provided no evidence that the experimental method
|

|

|

was superior to the control method in terms of achievement as
measured by the specified criterion instruments. It should
also be reiterated that this study has at the same time pro-
duced no evidence that the inductive laboratory approach is
inferior to the traditional method used.,

The evidence provided by the data suggests that the
effects of teacher difference may be of greater significance
than the effects of method difference, and suggests a possible
need for further research in the area of teacher effects on
achievement, (56, p. 5)

In the area of high school chemistry, 0fConnell compared an induc-
tive and deductive teaching approach. She concluded that inductively
taught students had a more thorough knowledge of chemistry than those

taught deductively. (LL, p. 1679)




Wallace studied the effects of two self-instructional methods of

improving spelling in high school and college., A traditional deductive
text and a programmed inductive text, of 103 frames, were used with
606 high school and college students in 26 paired experimental
classrooms. One member of the pair used the traditional text and the
other the programmed text. The following conclusions were formulated J
as a result of the study:
1, An analysis of covariance on raw scores on the Traxler
High School Spelling Test, Form I, before instruction, com-
bined with the mean score on 13 tests during instruction
showed no significant difference for method alone,
2., An analysis of variance on Terminal Traxler, Form 2
test scores after instruction showed the boys with the
programmed text made higher scores, significant at the

.05 level, Such a finding was absent for the girls in
the study,

3. An analysis of variance showed girls were better spel-
lers before, during and after instruction than boys.

i, General improvement in spelling was found, due to stu-
dents’ self-instructional efforts, irrespective of method.
Effort seemed more decisive than method. (72, p. 5801)

For studies investigating different teaching approaches in ad-

vanced topics in mathematics, we can cite Shelton’s findings for his

hypotheses on teaching the limit concept in beginning calculus by an
inductive and deductive approach, He concludes:

Any generaligzations based on results of this study
mist be made with caution, but for the particular popula-
tiony, treatments and criterion test used in this study the
following conclusions were drawn:

1, No advantage in achievement of either treatment
program was apparent.

2. No difference in achievement between the two
levels was found.




3. No advantage in achievement of either treatment
program for a particular level was apparent.

(60, p. 61)
Kenneth Cummins replicated a study in the teaching of selected
topics in calculus at the secondary level for a one-quarter course.
The one~quarter experimental sections were conducted for
two quarters in an atmosphere rich in encouraging dis-
covery, whereas the control groups were taught more or
less traditionally by capable men of long university
teaching experience, The same text was used in all
sections. (1L, p. 163)
Using a regression analysis involving previous grades, a pre-test, the
American Council of Education Psychological Test, a test designated
Test A for the traditional section, and a test designated Test One for
the experimental section, the following results were obtained:
a. The students in the experimental group scored on the
average 27,10 points higher on Test One than would be
expected on the basis of their preliminary test scores
(significant at the 1% level).
b. The students in the traditional group scored 51.59
points lower on Test One than would be expected
(significant at the 1% level).

c. The difference was not significant on Test A.

(14, p. 168)

Many articles by mathematics teachers, educators, and research per-
sonnel at all academic levels state views on inductive methods which are
sometimes called discovery or heuristic methods and deductive methods
of presentation. let us consider some of the views of these authors.

In questioning and supporting the value of both procedures, Clark

writes:

e o o Should both procedures be used? Most teachers today
are searching for workable transitions from the informal-
intuitive to the formal-deductive, This search is a




significant aspect of the current "reform movement" in
teaching elementary mathematics. (12, p. 99)

Courant writes:

The interplay between generality and individuality, de-
duction and construction, logic and imagination - this

is the profound essence of live mathematics. Any one or
another of these aspects of mathematics can be at the
center of a given achievement. In a far-reaching develop-
ment, all of them will be involveds Generally speaking 4
such a development will start from the "concrete" ground, i
then discard ballast by abstraction and rise to the lofty

layers of thin air where navigation and observation are
easy: after this flight comes specific goals in newly
surveyed low plains of individual "reality." In brief,
the flight into abstract generality must start from and
return again to the concrete and specific. (13, p. L3)

To support an inductive method, Schlinsog states:

Contemporary conceptions of teaching place less emphasis
on the familiar "telling and showing" approach and more
emphasis on student discovery. #¥hile psychologists have
not devised an adequate theory of instruction and while
they hold many conflicting ideas, there are some basic
principles upon which they tend to agree. Readiness,
motivation, exploration and discovery, feedback and re-
inforcement have been widely discussed elsewhere,

(579 De 293)

In a dialogue between a student and teacher involving the introduction

of the commutative property of addition in the elementary school, Rup-
key favors the inductive method., He wishes one to draw this conclusion
when he questions:

Both teachers taught topics from modern mathematics, but
were both teaching modern mathematics? Can a teacher use
a modern text and yet fail to accomplish the most impor-
tant objectives of modern mathematics? Which method of
teaching - inductive or deductive - is more useful in
teaching modern mathematics? (52, p. 220)

In teaching the specific process of differentiation in calculus,

Saxelby sayss
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e o o it too often happens that a student . . . acquires a
merely fatal facility in differentiation, regarding it as
a mechanical juggling with symbols but having no conception
of its relation to experience. (5L, p. V)

He then adds, in support of an irnductive approach,
e o o this intuitional direct vision method is intended,
not to take the place of, but to prepare the way for, a
more rigorous analytical study of the subject. . . o The
most natural method of advance is by a series of succes-
sive approximations to logical rigor, and, in fact, this
is the way in which the subject has actually grown up.

e o« o The process by which the science itself was formed
is also the most natural for the mind of the student.

(54 ppo v-vi)

The number of empirical studies of inductive and deductive teaching
methods is small, particularly in advanced mathematics topicse. Thus,
it might be helpful to consider the presentation of the topic‘of this
study, the derivative, as given in calculus textbooks.

In these texts, the teaching of the derivative concept in calcu-
lus eventually presents the definition of the derivative as the limit
of the difference quotient %% s the derivative interpreted as the slope
of the tangent line to a curve, and instantaneous velocity and general
rate of change, The ancillary notions of limit and continuity are not
considered, The deductive approach is considered as proceeding through
the above topics in the order of the definition of the derivative, fol-
lowed by one or all of its interpretations, in any order., The inductive
approach begins with some or all of the applications of the derivative,
followed by the definition of the derivative, again possibly followed

by one or more of the remaining applications. Thus, we see that there

can be a variety of both the inductive and deductive approaches.
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Most textbooks in beginning calculus present the topic of the deriv-
ative in a deductive manner. This is probably a typical approach to the
writing of a text book. Such an expository presentation is given for
both ease of writing and conservation of space. The reader may be con-
fronted with the phrase "the reader can easily prove" or a similar
statement, In this case, a deduction is implied, for which the reader
is to supply his own proof. Appropriate examples follow such a
statement.,

Or the reader may be confronted with the phrase "it is intuitively
obvious" or a similar statement, Here a form of induction is sometimes
implied. In these cases, the reader is asked to make the inductive
leap to the desired generalization by a series of reasonable and "ob-
vious" examples,

The investigator reviewed 33 calculus books dating from 1911 to
the present. These books are listed in the bibliography. The topic
of the derivative is deductively by 23, inductively by nine, and by a
combined approach in one. This last approach, in Menger, Calculus, A

Modern Approach, is on the abstract level, so one might say it is

deductive, Yet, for the derivative in particular, the slope of the

tangent line to a curve is used throughout the text as a way of intro-

ducing other more formal ideas, theorems and corollaries., For one fa-
miliar with Menger’s approach to calculus, a further analysis is
difficult, since his presentation is somewhat unconventional and cannot
be categorized as clearly inductive or deductive as defined above,

Most revisions (second or third editions) are inductive or deductive

according to the original printing. This is probably the case because
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revisions frequently involve only changes of language, increased preci-
sion of wording, small inserts of supplementary material, and correction
of errors. The total structure remains essentially the same as the orig-
inal edition, This we see in the deductive approach of Love, Differen-

tial and Integral Calculus (19L3), Love and Rainville, Differential and

Integral Calculus (1954), and Rainville, Unified Calculus and Analytic

Geometry (1961), each of which follows the sequence of the definition
of the derivative, slope of the tangent line to a curve, instantaneous
velocity and acceleration, and related rates.

In Thomas, Calculus (1953) and Thomas, Calculus and Analytic Geom-

etry (1962) , inductive approaches follow the sequence of the slope of
the tangent line to a curve, the definition of the derivative, instan-

taneous velocity, and related rates. Ieighton, Calculus and Analytic

Geometry (1960) reorders the chapters of leighton, Calculus (1958), in-
serting a chapter on curve discussion before the derivative discussion.
This is understandable since the added topic of analytic geometry is
presented in the latter edition. In both editions, the derivative pre-
sentation is deductive; i.e., definition of the derivative, instantaneous
velocity, related rate, and slope of the tangent line of a curve are
presented deductively.

The editions Wade, Calculus (1953) and Taylor and Wade, University

Calculus (1962) are exceptions to the inductive or deductive approach
being used in both editions. The former presents an inductive approach

for the derivative (slope of the tangent line to a curve, definition of

the derivative, instantaneous velocity, general rate of change). The
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latter gives a deductive approach (definition of the derivative,; 3lope
of the tangent line to a curve, instantaneous velocity, related rates).

Morrey, University Calculus and Analytic Geometry (1962) and Prot-

ter and Morrey, College Calculus with Analytic Geometry (196l) follow

essentially the same deductive approach (definition of the derivative,
slope of the tangent line to a curve, instantaneous velocity, and re-
lated rates). One is not surprised at no change in this case since a
lapse of only two years prompted no more than a super:icial revision.

Granville, Elements of the Differential and Integral Calculus (1952),

a reprint of the 1911 version, Granville, Smith and Longley, Elements

of the Differential and Integral Calculus (1941) and (19L5) , and Longley,

Smith and Wilson, Analytic Geometry and Caleulus (1952) all have almost

identical deductive approaches (definition of the derivative, slope of
the tangent line to a curve, instantaneous velocity, related rates),
with the interchange, addition and expansion of cer*ain selected chap-
ters in the last text,.

Peterson, Elements of Caleulus (1950) and Peterson, Calculus with

Analytic Geometry (1960) both exhibit inductive approaches (general rate

of change, definition of the derivative, slope of the tangent line to a
curve, instantaneous velocity and acceleration), There is an insertion
of two chapters on analytic geometry in the latter edition,

For the inductive approach in Calculus in the First Three Dimensions,

Stein writess

The introduction of many concepts, such as the definite in-
tegral, the derivative and the limit of a sequence begin with
numerical examples and exercises. This is done not only to




make the abstract concrete, but also to compensate for a
lack of down-to-earth mathematical experience in high
school. In particular, both the definite integral and
the derivative are preceded by four of their applications.

(66, p. vi)

Nature of the Study

This study is concerned with the problem discussed in the last
paragraph of the first section, that of investigating two teaching
methods in an advanced subject matter area. The specific area of
teaching method investigated is mathematics. In this area, the limit
and derivative concepts in calculus are the topics. Allendoerfer has
stated that the 1limit is an important concept in calculus.

The essential idea in calculus is that of limit, and
without a clear exposition of limits any calculus course
is a failure. . o o There are those, however, who begin
the course with a brief, but full dress, treatment of
limits, using the epsilon-delta technique. This almost
universally is wasted on the class, for they are con-
fronted with a difficult new idea without an intuitive
preparation. (2, p. L8L)

The present study is an outgrowth of a similar study by Ronald M.
Shelton in the teaching of the limit concept in beginning calculus by
two different methods. Shelton presented this concept by a concrete in-
ductive approach defined as:

Concrete inductive approach: a presentation of a sequence

of items leading from specific numerical examples in which

students will calculate the limits of particular functions

at a definite point by appeal to intuition to the general

case of a general function at any point, After the general
case is reached rigorous proofs will be presented. (60, p. 8)

He also presented the material on the limit by an abstract deductive

approach defined as:




Abstract deductive approach: a presentation of a sequence
of items leading from the abstract 6-¢ -definition of a
limit of a function to calculating the limits of particular
functions at a definite point. (60, pp. 8-9)

The samples Shelton used in two independent studies were small,
one of 2L subjects and the other of 28. The two groups were divided
into high and low achievers (levels) on the basis of pre~test scores,
From a 2 x 2 (levels X treatments) analysis of covariance design, tests
of significance made at the .05 level showed no statistically signifi-
cant difference in treatments, between levels, or in interaction, as
measured by a criterion test constructed by Shelton.

The investigator believes that perhaps there might have been a
significant difference in treatments, hed the samples been larger and
had other variables been controlled. Yet, results of similar studies
to be cited later are not encouraging. In the present study the inves-
tigator replicates Shelton’s study and, in addition, develops two pro-
grammed units that teach the derivative concept in calculus by an
inductive and a deductive approach. The present study then attempts
to determine the effectiveness of learning, as measured by an achievement
test, that results from using various combinations of inductive and de=-
ductive methods of presentation of the limit and derivative topics.

The purpose of using programmed materials in the experiment is to
remove the "teacher variable" and thus control the method of presentation.
Scandura discusses the problems with the "teacher variable" in educational
research, He states:

As you well know, the traditional methods paradigm for re-
search on teaching and learning has been designed to assess
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the relative effectiveness of two or more instructional
methods, A major difficulty with this sort of research
is that too often both method and content are varied si=-
multaneously but not independently. Such an approach
allows one to say nothing about either separately.

(55, p. 131)

It should be noted that a study of teaching methods may yield dif-
ferent results for "live" teaching compared to "canned" or programmed
teaching. Students may tend to become bored with the latter and lose
interest in the material, Thus, a real difference in teaching methods
presented by programmed materials may be masked. Experimeantal and con-
trol groups may both receive low scores on a criterion measure. Their
dislike of the method of presentation may cause hostility and low
scores in all students to a greater degree than teaching method might
cause differences in scores in the experimental and control groups.

During the course of this study, classroom teachers were to do no

more than answer individual student questions over the written text

material. This procedure was stressed to insure that learning took

place from the programmed units entirely. This way, any change in
criterion test scores could be attributed to the teaching methods pro-

{ grammed into the units. If some students were reading far less than

i the minimum number of frames per day, these students were allowed to

take their units home to finish the reading in approximately a week’s

time., In such a short time period it seemed reasonable to assume that

a student would not have time to read the alternate treatmente.
The investigator wrote two programmed units of comparabl~ length
to teach the derivative concept in beginning ¢ lculus., One of these

units was written by an inductive approach and the other by a deductive

»
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approach., (See Shelton’s definitions of these terms cited above.) These

units were paired with the limit units to insure that all students par-
ticipating in the study had comparable preparation for the derivative
unit. The derivative unit assumed familiarity with the limit concept
as prerequisite knowledge. Thus, there were four treatments: induc-
tive limit~-inductive derivative, inductive limit-deductive derivative,
deductive limit-inductive derivative, deductive limit-deductive
derivative,

Each participant was given the pre-test for the limit unit. On
the basis of the score he received on this pre-test, he was assigned
to a high or low achievement group (level). On either level, the four
treatments were randomly assigned. Scores on the common derivative
criterion test are used in an analysis of covariance to determine if a
statistically significant difference existed in treatments, between
levels, or in interaction.

A pilot study on the derivative units showed that the text mater-
jal did indeed teach the derivative concept somewhat effectively. The
units were revised from suggestions obtained by students participating
in the pilot studies,

It is to be noted that this study is not intended to evaluate pro-

grammed instruction, This method of text format is only the vehicle of

instruction, Yet, some ancillary effects of the programmed texts may be

derived,




Statement of the Problem

This study is to determine if there is a difference in learning
the 1imit and derivative concepts in beginning calculus as measured by

a common criterion test. An ordered combination of two teaching ap-

proaches for the two sequential topics of the limit and derivative is
used. The two approaches are concrete inductive and abstract deduc-
tive and the two sequential topics are the limit and derivative, in

that order. All four possible pairings for the two units are con- 4
sidered and constitute the four treatments: inductive limit-inductive |
derivative, inductive limit~deductive derivative, deductive limit-
inductive derivative, and deductive limit-deductive derivative. The
problem is to determine if there is a statistically significant dif-
ference in the four trea’ments among the two levels (high and low)

used in the study, empleying an analysis of covariance on the common
criterion measure.

The study attempts to determine if ability and knowledge of mathe-
matics before beginning the study of calculus, and the method of presen-
tation of a beginning topic in calculus, would have an effect on learning
this topic of the derivative by its respective method of presentation.

Shelton’s study is also replicated.

Statement of Hypotheses

A replication of Shelton’s original study is felt appropriate, to

test his non-significant findings for small groups of 2L and 28 students
in each of his two independent studies of an inductive and deductive

treatment of the limit concept. In the present study, Shelton’s three




null hypotheses are investigated:

L 1. There is no difference in the results on the achievement
test on limits after adjustment for the scores on the pre-test between
the two treatments.

L 2. There is no difference in achievement as measured by the

test on limits between the two levels used in the experiment.
1 3. There is no interaction between treatments and levels --

the treatments will produce similar results at both levels. (60, p. 11)

In the present study, two areas of investigation are of interest.
These are the total treatment used for both the limit and derivative
units, controlling for the pre-test score, and the treatment used only
in the derivative unit, controlling for the pre-test score. For the
total treatment, three null hypotheses are investigated:

T 1, There is no difference in results on the achievement test

on the derivative among the four total treatments after adjustment for
the scores on the pre-test.

T 2. There is no difference in achievement as measured by the test
on the derivative between the two levels used in the study, controlling
for the pre-test score.

T 3. There is no interaction between the four total treatments

and two levels,

For the derivative treatment alone; since results from the pilot
studies seemed to favor the inductive approach, we might state three
one-tailed hypotheses. However, evidence from other studies give little

support for the superiority of an inductive approach over a deductive
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approach, Hence, the three hypotheses under investigation for the deriv-
ative unit are also two~tailed hypotheses:

D 1., There is no difference in results on the achievement test on
the derivative, controlling for pre-test, between the two derivative
treatments.

D 2, There is no difference in achievement as measured by the
test on the derivative, controlling for the pre-test, between the two
levels used in the experiment,

D 3. There is no interaction between the derivative treatments

and levels,




CHAPTER II

DEVELOPMENT OF TREATMENT AND EVALUATION INSTRUMENTS

It is felt that a sequence of concrete applications of the deriva-
tive (slope of the tangent line to a curve, instantaneous velocity,
general rate of change), leading to the formal 1imit definition of
the derivative, is more effective than the presentation of the formal
definition, followed by applications. If such is the case, it might
be possible to teach the important and basic topic of the derivative
more meaningfully and effectively in the future.

The derivative units, both inductive and deductive approaches,
are written assuming a knowledge of the limit concept which normally
precedes that of the derivative in a beginning calculus course. Both
units are written to contain the same content: the definition of the
derivativey the application of the derivative as the slope of a tangent
line to a curvey theorems for the derivative of sums, differences, pro-
ducts and quotients of algebraic functions, the constant function, the
independent variable, a real power of the independent variable, and a
composite function. A section on composite functions is included be-
fore the presentation of the theorem on composite function
differentiation., Corollaries for the derivative of a constant multi-
plied by a function and the derivative of a real power of a polynomial

function are presented. Numerous examples and exercises are identical

21
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in both units; or otherwise the same in content and difficulty. The
section on the composite function review and the first 17 frames of
each unit, which involved a change of notation for the limit, from
xl;i%lf(x) toA;ci_z’nof(x1+ Ax), are identical. From either unit the stu-
dent is to be able to differentiate simple algebraic, rational, and
polynomial functions and to apply this knowledge to the derivative
interpreted as an instantaneous velocity and general rate of change.
The units are approximately the same in length, 346 frames in the
inductive unit and 359 frames in the deductive unit. Each unit was
prepared to take a high school student approximately five 55-minute

periods to read, a week’s time in most secondary school schedules.

Development of the Abstract Deductive Derivative Unit

The deductive unit proceeds, without exception, from abstract
statements of theorems and definitions to numerous examples and exer-
cises, This approach parallels a rul-eg (rule to examples) programming
sequence. (36) The strategy of exposition of a deductive approach is
useds Under the strategy of exposition, logical deduction is also
used, (22)

Exposition follows the teaching model of: 1) stating the item of
subject matter to be taught - a generalization, theorem, definition,
algorithm, etce3 2) clarifying or paraphrasing the item, giving examples
and/br stressing various componentss 3) justifying the statement;

i) summarizing the teaching by restating the initial item of subject
matter or giving an applicationj and 5) making a transition to another

item of subject matter,




After a brief section on change in notation for the limit of a

function from x1;§1f(x) to A%Egof(xl+ Ax) , this section identical to
one appearing at the start of the inductive unit, the student is given

£(x,* bx)- £(x,)
the definition of the derivative by exposition, asb%igo A ’

provided this limit exists. This section is followed by several examples

that express the derivative as the limit of this difference quotient for
simple polynomial functions. This approach leading to the definition of
the derivative is just the reverse of that used in the inductive deriva-
tive unit.

The abstract forms of the theorems for the derivatives of the in-
dependent variable, the constant function, a real power of the independ-
ent variable, and sums, differences, products and quotients of algebraic
functions and the corollary for the derivative of a constant multiplied
by a function are abstractly stated. Each theorem and the corollary is
proved by logical deduction. Following each theoren appear several con-
crete numerical examples to illustrate the particular theorem. Exer-
cises for the student to complete are given at appropriate places in the
text material., These exercises use the definition of the derivative and
theorems proved up to that point in the development.

A section on composite function identification, which is introduced
by exposition and is of 2 review nature, then follows. This section is
the same as one appearing in the inductive unit, and is presented there
for the same purpose. The theorem for the differentiation of a com-

posite function is then stated and proved by logical deduction. Again,

concrete numerical examples follow.
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Functions not possessing derivatives at all points are introduced

by exposition using the expressions defining them and their graphs.
There functions are identical to those in the inductive unit, and are
defined by the following expressions: f£(x)= 1/x, g(x)=|x-1|, h(x)=

Vx-2,

Finally, again by exposition, the application of the derivative

as the slope of the tangent line to the graph of f at the point with
x=-coordinate X, is presented and related to the same notion expressed
in the 1limit unit, Following these applications, the writer next in-
cludes several examples of functions exhibited by both their defining

expressions and their graphs. ©Some of these functions possess and

some lack tangent lines at certain points on their graphs. The next
topic presented in the unit is the writing of equations of tangent
lines, both when the derivatives exist at the point of tangency and
when the derivatives don’t exist but the tangent lines exist. The
format used is similar to that in a corresponding section in the in-
ductive unit.

Tracing the development of this deductive program, we see that it

is characterized by exposition and logical deductior, Logical deduc-

tion is used in proving the various derivative theorems. Throughout,

the abstract definitions or theorems are given and concrete numerical

examples and exercises follow.
The first written format of the deductive derivative unit was read

by seven male high school students in their fourth year of mathematics

at Urbana Senior High School, Urbana, Illinois in the spring semet ter
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of the school year 1965-1966. It was read also by four more students
in the same high school in an advanced third year mathematics course,
and by one fourth year male student at University High School, Urbana,

I11inois. These students gave the investigator suggestions for revis-

ing mathematical content. At the same time, six students in a programmed

learning course at Illinois Teachers College , Chicago=South read the
unit and of fered programming techniques to improve it, None in the
last group felt competent to criticize the unit regarding mathematical
content,

The 359 frames making up the deductive unit were duplicated by the
mltilith process. Each 8 1/? by 11 inch page contains two or thrae
frames, depending on the length of the frame, FEach frame has it. un-
derlined answer on the page following, with the letter "At followed
by the frame number. Most of the frames require a one-word response
of a fill-in-the-blank nature, or a short answer, A few require more
than one answer and some are simple expository or introductory frames,
requiring no answer, This format is the same as that in the limit
unit. It is used to provide continuity in reading the two programs,
More important is the elimination of a second possible variable, that
of type of format in the limit and derivative units, by programming
the units in the same way.

The student read through the frames at the top of the pages, to
the last page, and then returned to page one for the answer to the

frame on the last page, He proceeded reading through the pages again,

following the frames across the middle of the pages on this reading.




He then returned to page one for the answer to the last frame on the
middle of the page. He proceeded through the pages one last time, read-
ing across the bottom of the pages. The deductive derivative unit was
covered in white cover stock, labeled Treatment L, and fastened with two
large staples,

The inductive and deductive limit units that were to precede the
derivative units were bound in the same manner. The inductive 1iuit
unit was labeled Treatment 1 and the deductive 1limit unit Treatment 2.
A page of instructions was provided in both units, giving directions
for the reading of the two sequential units. A copy of the abstract

deductive derivative unit is included as Appendix B.

Development of the Concrete Inductive Derivative Unit

In general structure, the inductive unit proceeds according to the
strategies of simple enumeration and difference and agreement of an in-
ductive presentation. (23)

The strategy of simple emmeration of an inductive teaching approach
gives only ccnfirming instances of the item of subject matter to be
taught. No counterinstances are exhibited. The inductive strategy of
difference and agreement is obtained by combining the two inductive
strategies of "the method of agreement" and "the method of difference."
(6, ps 296) The basic logic of the strategies of the joint method of
agreement and difference and of simple enumeration is the samej the
joint method simply provides a more plausible argument.

The method of agreement provides that every generalization or other

item of subject matter to be taught has the property that every case of
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p is also a case of q. Each instance confirming the generalization says
that in addition to p and g, other factors, r; sy t; ...y are present
or absent, Only p and q occur in all casesy and no case is found where-
in p occurs and q doesn’ty i.e., no contrary evidence is present, Thus,
probably every case of p is also a case of q and the agreement of all
confirmatory instances has been demonstrated in the presence of only
p arnd Q.

The method of difference takes the same form as that of the method
of agreement - every case of p is also a case of q. The initial instance
confirming the generalization states that in addition to p and q, other
factors, ry sy ty .esy are present, also as in the method of agreement.
The next confirmatory instance, however, says that when factors r, s, t,
eee are present and q is absent, p is also absent, (23)

Exceptions to an inductive approach in the unit are the proofs of

the theorems for the derivatives of the sum and product of functions
f(x1+ Ax) - f(xl)
Ax

writing of the equations of the tangent lines, the review section on

the discussion of the non-existence of A%EQO s the
composite functions, and the introductory section in the first 17 frames
of the program, presenting the change of notation for the limit from
xl;§1f(x) to A%igof(xl+ Ax). These sections are presented in an ex-
pository manner to effect economy of time and text space, thus keeping
the two formats of the derivative units somewhat the same length, The
inductive unit is programmed by an eg-rul (example to rule) technique.

(38)

Based on his knowledge of the limit from the preceding unit, by

simple enmumeration the student is lead to the reasonable conclusion
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f(x1+ AX) = f(xl)
that if A%igo I exists, this limit can be interpreted as

the slope of a tangent line to the graph of f, at a point with x-coor-
dinate Xy This is achieved by having the student calculate this limit

for several elementary polynomial functions accompanied by a graphical

representation. In fact, the slope of a tangen£ line to the graph of
f is then defined in this manner, if the limit exists,

The notion that this limit may not exist for selected values of
Xq is introduced by several functions., These functions are defined by
£(x)= 1/x, g(x)=|x~1|, h(x)=\/%=2. They are the same as those appearing ‘
in the deductive unit. The slope of the tangent line,

f(x1+ Ax) - f(xl)
A%EQO A s May not exist at a point if the slope of the tan-

gent line is undefined at the point or if the function itself is unde-
fined at the point. By difference and agreementy, it is then emphasized
that if this limit exists, the derivative of the function f, evaluated
at X9 is defined as this limit, This is the first time the term
"derivative" is used. Throughout the remainder of the unity, "derivative"
and "slope of the tangent line to the graph of f, if it exists," are used
interchangeably,

The slope of the tangent line to a curve is induced by simple
enumeration., This is developed from a sequence of slopes of secant

lines to a curve through the point of tangency and a nearby point,

Tables of values showing slopes of secant lines approaching in values
the slope of the tangent line at the fixed point are to be completed

by the student. It is then an easy step to proceed to the writing of

the equation of the tangent line, if the latter exists, at a fixed




point. For the sake of economy of time and available text space, as
mentioned above, presentation of the writing of the equation of the tan-
gent line is expository in nature.

The next section is developed using examples of simple polynomial
functions, Some of these examples were previously discussed in intro-
ducing the definition of the derivative. Theorems for the derivative
of the constant function, the independent variable, a real power of
the independent variable, sums, differences, products, and quotients
of functions, and a composite function are induced by simple enumeration.
The proofs for the theorems involving the sum and product of two func-
tions and a real power of the independent variable are given deductively
for reasons cited above, Before the theorem for the differentiation of
a composite function is stated, a review section enabling the student
to identify composite functions is ziven, This review is the same as
that appearing in a corresponding section in the deductive unit. A
suitable number of exercises enforce and confirm student learning at
various points throughout the text. These exercises are identical to
or similar in content and difficulty to those in the deductive unit,
Figure 1 exhibits the logical development of the units in the form of
a flow chart., Figures 2 and 3 exhibit the content development of the
units in the form of flow charts.

A first draft of the inductive unit was read by a class of 19 fourth
year high school students at Bremen High School, Midlothian, Illinois in
the fall semester of the 1966-1967 academic year., From the suggestions
of these students, mathematical content and programming features were

revised, The text material, as revised, appears as Appendix A,




FIGQRE 1

FLOW CHART OF DEVELOPMENT OF DERIVATIVE UNITS

TREATMENT 3
(Concrete Inductive Unit)

f(x.+ bx)= £(x) Simple Definition of slope of a
1i 1 1 exists Enumeratio; tangent 1line to a graph
1x250 Ax grap
at x..
1
f(x1+ Ax) = f(xl)
Simple Abstract common Difference and Al}go
= z . > AX Ax
Enumeration properties., Agreement
may or may not exist.
Definition of the
derivative.
X Simple Theorems and corollaries for derivatives of sums,
Enumeration differences, products, quotients of functions and

other selected functions,

TREATMENT L
(Abstract Deductive Unit)

L f(x)=A%&§of(xl+ Ax)  Expositiop Definition of the Logical
1 derivative. Deduction

Theorems and corollaries for derivatives of sums, Exposition
differences, products, quotients of functions and "
other selected functions,

The derivative may not Expositiog Application of the derivative
always exist. as slope of a tangent line to
a curve,




FIGURE 2

FLOW CHART OF CONTENT OF INDUCTIVE DERIVATIVE UNIT

f(x)axg .\ AR f(x1+ Ax) =

Change notation from f£(x)=x"+ x=6
4R, 100 2Bt ) T 2 V52 | gt Tl )
f(x)=x .
£(x) =k ) o £(xy* 8x)
There exist functions Definition of slope of

_ such that A%igof(xl+ Ax) s the tangent line to a

. curve at x
exists at x-. °

1 Examples
Exercises |
f(x)=x2
£(x)=x"4 x~6 Equations of Generalize !
f(x)=x tangent lines, — (y~y1)= f”(xl)(x~x1) |
|
f£(x)=k
£(x)=/%-2 . , ; There exist functions such
£(x)=1/x A%Egof(xl+ Ax) doesn’t __ that A%igof(xl+ Ax) doesn’t
£(x)=]x-1] exist at x,. exist at x,.
Definition of the derivative. Theorem 1., Derivative of a
(Same as the definition of the constant function.
slope of the tangent line.,) Theorem 2. Derivative of the
independent
variable.
(Previously proved as problems.)
f(x)=x3
f(x)=x Previous examples Theorem 3., Derivative of a
f£(x)=x or exercises. f(x)=xﬂ real power of the
independent
variable.
Proof
Exercises
f(x)=x2+ x=6 Theorem L. Derivative of a
. Previous examples —_—
f(x) =x42 . sum.
3 9 or exercises, — > Proof
f(x)=x"4 x"+ x+411

Exercises




FIGURE 2 (Continued)

f£(x)=x-2 Theorem 5, Derivative of a

- . difference,
f£(x) x3 x;é Previous examples., ; No proof
£(x) =x"=x"~x~11
f(x)=x3ox3 Theorem 6. Derivative of a f(x)=7x5
f(x)=xhox2 —_— g;oduct, f(x)=-6(x+L)

5 oof

f(x)=x"«x Exercises

f(x)=n(x5+x3+x2+1)
Theorem 7. Derivative of a quotient. ,
—_— £(x)=1x~2

No proof
—_ Examples Y s Sl
Exercises £(x) *V/x"-2x 3
f(x)=\/x-2x2 ‘
Compositg function 5 Theorem 8. Der?vative of a com-
review, posite function.
No proof
Examples
Exercises
o Corollary, Derivative of a power of

a function of x.

f(x)=\/25-—x2

—— (%) =(x*-2x-3)

£(x) =(xl-1) "2

Exercises
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FIGURE 3

FLOW CHART OF CONTENT OF DEDUCTIVE DERIVATIVE UNIT

Examples
Change notation from Definition of the i&; o
. . { - .
x;;glf(X) toA%Emof\xl+ Ax) —> derivative, ——m> f(x)=x2
£(x) =2x%
£(x) =x~x
Thecrem 1, Derivative of the Theorem 3, Derivative of a
independent variable. real power of
Theorem 2, Derivative of a con- —> the independent
stant function,. variable.,
(Previously proved as problems.,) Proof
Examples Theorem lj. Derivative of Examples
f(x) =x a sum. —  f(x)=x+7
f(x)=x —— Proof £(x)=x=-6
f(x)=x2 f(x)=xh+x
Exercises f(x)=x8/7-x2
Theorem 5. Derivative of a Examples
difference. f(x)=n=-x
No proocf 2
£(x) =x=-x
#(x) =S/ T-( VD) T
Theorem 6. Derivative of a Examples Corollary.
product. —_— f(x)=x2ox3 ———3 Derivative of a
Proof constant multiplied
P(x) =x(1L~x) by a function of x.
£(x) =(x2+1) (x°+1)
Examples Theorem 7. Derivative of a Examples
f(x)=7x5 —_— quotient. —_— f(x)=x7 /%2
£(x) =3 (x04x) Proof (0 =(x+1)/(x-3)
= -6(x+
f(x)= -6(x+1) f(x)_x3+3x

X +1
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FIGURE 3 (Continued)

Exercises Theorem 8, Derivative of a

Composite function
review,

Corollary., Derivative of a power

composite function, —
Examples
Exercises

Examples

of a function of x¢ —mm £(x) = /25-x2

Proof

There exist functions
such that A%Egof(xl+ Ax)

doesn’t exist at Xy 0
Examples f(x)%|x=1

Examples
f(x)=x2

f(x)=\/25~x2

f(x)=x2&x-6
f(x)=x3-2x2+5x=1

Examples
f(x)=|x-1]

f(x)8\/25-x2

f(x)=x1/h

£(x)=1/%-2

£(x)=1/x

£(x)n(xP2x-3)"? — >

£(x) (1) 2

f(x)a\/x=2x2

Exercises

Definition of the slope
of the tangent line to a

curve at Xl.

(Same as the definition
of the derivative.)

—_—

Equation of a tangent There exist func-

line, tions such that the

y-y1= f”(xl)(x=x1) slopes of the tan-
—— gent lines at xl

Exercises .
don’t existe.

Graphical interpretation
of theorems 1 and 2.

Exercises




Development of the Evaluation Instrument

A common 28-item criterion test on the derivative units was de-
signed to measure student knowledge of differentiation of simple alge-
braic and rational expr=ssions, and application of this knowledge to the
derivative as the slope of the tangent line to a curve, instantaneous
velocity and general rate of change, Care was taken to avoid wording
and item construction favoring one treatment over the other. The cor-
rect choices for each of the 2 miltiple~choice items are randomly
distributed among the four possible alternatives. Each multiple-choice
answer 1is worth one point. The last four short answer questions in-
volve one proof, one computation and two discussionsj each of these
answers is worth three points, The total number of possible points
on the test is 36,

The test was revised from results of the pilot study on the de-
ductive derivative unit. The primary revision was the addition of a
brief explanation for the questions involving instantaneous velocity
and general rate of change. The revised text material did not contain
these last two topics., However, they were feit important in an under=-
standing of the derivative and are included in the evaluation.

The multiple-choice items are arranged in order of difficulty from
easiest to hardest, in clusters of related topics. A split-=half reli-
ability coefficient of .69 was calculated from the pilot study for the
inductive derivative text material. The split-half reliability coeffi-
cient in the present study is .78, The odd item=total item score cor-

relation is .87 and the even item-total item score correlation .93.




The correlations for the deriws*tve study are significant (p<.001).

Inter-coder reliability was L.a..ed for the last four short answer
questions, using the instrusctors of the classes in the pilot studies
and present study, as well as university calculus teachers,

The test was to be given during two 55-minute class periods, |
splitting the instrument after item 18. The pre-test and criterion §
test for the limit units, developed by Shelton, are used in the statis-
tical evaluation of the present study. This procedure was incorporated
into the study for a more complete analysis. The derivative test was

constructed according to the format of the 1limit tests 2l mltiple=

choice items worth one point each and four short answer items worth
three points each, for a total of 36 points. A copy of the criterion
test for the derivative units appears as Appendix C.

A table of specifications for the derivative test, constructed

according to Bloom’s Taxonomy of Educational Objectives (7), was help-

ful in constructing the derivative test and appears as Table 1,

Preliminary Studies

Pilot Study I. The deductive unit was written while the investigator
was in residence at the University of Illinois, Urbana, Illinois, for
the doctoral degree, during the spring of 1966,

As mentioned in a preceding section, seven boys at Urbana Senior

High School, Urbana, Illinois in a fourth year mathematics course par-
ticipated in the pilot study. They read the programmed material as part

of their course requirement near the end of the 1965-1966 academic year.,

None of the boys had had a former exposure to calculus, Four advanced




TABIE I

CONTENT ANALYSIS OF DERIVATIVE CRITERION TEST

Ttem of knowledge needed to

Question Number

complete questions. 1 2

5 6 7 8 9 1011 12 13 1k

1, Definition of the

derivative. X X X
2., Definition of the

slope of a ‘tangent line, X X X
3, The derivative of the

independent variable. X X X X X X X X X X

i, The derivative of a
constant functione. X X

5., The derivative of a real
power of the independent

variable. X ¥ X X X
6, Derivative of a sum, £
7. Derivative of a
difference. X X X X X X X X X X X X

8. Derivative of a
product. X

9, Derivative of a
quotient,

10, Derivative of a constant
multiplied by a function

of x. X X X

11, Derivative of a compo-
site function,

12, Deriwvative may not exist

if function undefined at
Xl’

13, Derivative doesn’t exist,

1y, Equation of the tangent
line,

15, Instantaneous velocity.

16, General rate of change,
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TABLE I {Continued)
Item of knowledge needed to Question Number
complete questions, 15 16 17 18 19 20 21 22 23 2 25 26 27 28
1. Definition of the
derivative, X X X X X X X X X X X X X X
2. Definition of the
slope of a tangent line. X X X X X X X !
3. The derivabtive of the
independent variable, X X X X X
i, The derivative of a
constant function, X ¥ X X X X X X X X p ¢
5., The derivative of a real
power of the independent
variable. X X X X X X X X
6, Derivative of a sum. X X X X X
7. TDerivative of a
difference., X X X X X X p.¢
8. Derivative of a
product. X X X ¥ X X X X
9, Derivative of a
guotient., X
10. Derivative of a constant
miltiplied by a function
of Xe p o X X X X X
11, Derivative of a compo-
site function, X X X X X prd
12. Derivative may not exist
if funetion undefined at
Xlo X
13, Derivative doesn’t
exist. X 4
1li, Equation of the tangent
line, X X X
15, Instantaneous velocity. X X X

16, General rate of change. X X X
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students (three boys and one girl) in a third year mathematics course

at the szme high school expressed a desire to read the material, Their
backgrounds represented a good foundation in college algebra. A fourth
year male student in mathematics at University High School, Urbana, Illi-
nois also participated, The last student’s background was probably the
best of the high school students. He was then enrolled in a course in
vector geometry, Six students in a programmed learning course at Illi-
nois Teachers College, Chicago-South read the program at the same time.
The high school students’ comments were used for revising the mathematical
content of the program., The college students’ comments were used for re-
vising the programming techniques of the program,

Before the derivative unit was read, ¢ach of the high school stu-
dents was given the programmed unit on the limit concept, the inductive
and deductive approaches being randomly distributed., The reading of
these units was to provide the students with the necessary background
to read the derivative unit. Shelton’s pre-test was administered to
each student before either unit was distributed., His test for the
limit unit was alsoc given. The criterion test on the derivative unit
was given after the completion of the investigator?s unit. The adminis-
tration of the three tests served as student motivation and teacher
evaluation,

Each participant was told to read his 1limit and derivative units.

He was to write the answer for each frame on his own paper. The seven
boys at Urbana High School were allowed to ask questions of their in-

structor over the material they could not understand. When the
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investigator was present during the class sessions; she answered such
questions, The other participants in Urbana were allowed to call the
investigator by telephone or meet with her personally if questions
arose, Very few questions were asked during the course of the pilot
studye It took the high school students approximately three weeks to
complete both units and the three tests. They spent a 50-minute class
periody; or its equivalent for those working out of class, five days
each week,

In generaly, the comments from the high school students on the de-
ductive derivative units were favorable., In informal conversations
with the writer the participants said they believed they had learned
from the material., The ample number of examples, graphs and exercises
were cited., It was suggested by some that the section on composite
functions be reworked., Other criticism concerned the format of pre-~
sentation of frame answers, These answers appeared next to their cor-
responding frames., The students preferred the format of the limit unit,

in which an answer to a frame appears on the following page.

The college students were given only the derivative unit. They
criticized the unit from the standpoint of programming techniques.
They felt too much material was covered and the "steps" between ma-

terial were too large.

Pilot Study II. The inductive unit was written during the summer of
1966, while the author was in residence at the University of Illinois,

Urbana, Illinois,.
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The mathematical content of the inductive unit was *"cut down"

slightly from that of the deductive unite. This was due to the sugges-
tions of the students in the programmed learning course at the Teachers
College. The sections on instantaneous velocity and general rate of
change that appeared in ‘the deductive unit were omitted in the inductive
unit., They were finally omitted in both units in their final form. The
criterion test content was the same as that administered to the deductive
group. The only difference was that an introductory sentence or two
were necessary to explain what was wanted of the student in aquestions

involving instantaneous velocity and general rate of change.

The unit was read by 19 students in their first semester of fourth
year mathematics at Bremen High School, Midlothian; Illinois in the fall
of 1966, The class contained ten girls and nine boys. Each student had
had a course through modern dl gebra in the Dolciani series.

Only the deductive limit units were used in this study, but the
other features of this pilot study were conducted in a manner similar
to those of the first study. Both the teacher of the class and the in-
vestigator, when present, answered questions of the students during the
LO-minute class period. Most of the questions were asked on the deduc-
tive limit unit. The students found this unit difficult and became
somewhat bored with it. The reading of both the 1limit and derivative
units and the administration of the three tests took approximately one
month, The students did all their work during the mathematics class
periode

The inductive derivative unit was more to the students’ likings.

By individual questioning by the investigator, the class said it found
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the derivative unit Yeasier" than the preceding unit. No mention was

made by the investigator or the class instructor of the different ap-
proaches in the two units., The students seemed to find the material
interesting and were able to answer all but about ten of the original
total of 381 frames. This was determined by an analysis of written
responses, The difficulty centered on the composite functions section
primarily, which was later revised.

The students commented on their liking the "discovery approach,"
In many cases they formed the generalization before reading it, A few
thought some of the “discovery" could have been accomplished in less
time, No mention was made of proofs being too rigorous or frequent.
The class seemed to think the criterion test on the derivative unit was

"fair® and covered the material presented in the unit.




CHAPTER III

THE EXPERIMENT

Experimental Design

The subjects in this study were divided into two levelsy; high and

low, on the basis of points on a pre-test. For both levels, the four
total treatments were randomly distributed., These treatments are in-
ductive limit~-inductive derivative designated as treatment A, induc-

tive limit-deductive derivative designated as treatment By, deductive |

limit-inductive derivative designated as treatment C, and deductive
1limit=-deductive derivgpive designated as treatment D,

The difference between the means of the four totai treatments and
between the two ievels are to be tested for signﬁficanc&non the basis
of criterion test scores, The table below exhibits the treatments by
levels design of this experiment,

TABLE II

S

o’

Treatments X Levels Experimental Design for Total Treatment Study

Treatments
Levels 1. A 2, B 3. C L. D
1, High A-H B-H C-H D-H
2. Low A=-L B=L C-L D-L

The final analysis of the criterion measures employs a L x 2 treat-
ments X levels analysis of covariance to test for significance between
the adjusted criterion total treatment means, the adjusted level means,

and interactione.

L3
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For the total treatment, the predictor variable is the score on the

pre-test. This test includes material on absolute-value inequalities and
graphing primarily, Items from algebra, trigonometry, and analytic geom=-
etry considered necessary for the learning of the limit and derivative
concepts in beginning calculus also appear. The final criterion vari-
able is the score on the common derivative test. This test was given
to all students upon completion of both unitse.

An analysis of covariance was chosen to statistically control the
pre-test score and to refine further the results. The primary variables

controlled are (1) length of the two derivative treatments and the deriv-

ative criterion test, (2) content of the derivative treatments and the
derivative criterion test, and (3) administration of the derivative treat-
ments and the derivative criterion test by randomization within levels

and between treatment groups. These variables were similarly controlled
for the two limit treatments and the limit criterion test in Shelton’s
study. The .05 level of significance was deemed appropriate in this
exploratory study,

The hypotheses, in null formy, to be tested for the total treatment

Tl, There is no difference in results on the achievement test on
the derivative, controlling for the pre-test score, among the four total
treatments,

T2. There is no difference in achievement as measured by the test
on the derivative between the two levels used in the study, controlling

for the pre-test score.,
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T3, There is no interaction between the four treatments and the

two levels.

Shelton’s study is replicated using only the inductive and deductive
1imit units., A test of significance of the difference between the means
of his two treatments and between the means of his two levels (high and
low), on the basis of limit criterion test score only, is to be

performed., The table below shows Shelton’s treatments by levels

designe

TABLE III

Treatments X Levels Experimental Design for Limit Study

Treatments
Levels 1l, Inductive 2. Deductive
1, High I-H D-H
2. Low I-1L D=L

An analysis of covariance is employed on the criterion measures to
test for significance between the adjusted criterion limit treatment

means, the adjusted level means, and interaction.

l

F For Shelton’s replicated study, procedures similar to those for the
total treatment are followed., The predictor variable is the score on the

, pre-test. The criterion variable is the score on the common limit test.
This test was taken by all students in the study upon completion of the

limit unit only.
The hypotheses, in null form, to be tested for Shelton’s limit treat-

ments only, ares
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11. There is no difference in the results on the achievement test
on limits after adjustment for the scores on the pretest between the two

limit treatments.

12. There is no difference in achievement as measured by the test

on limits between the two levels used in the experiment,

13, There is no interaction between limit treatments and levels -
the 1limit treatments will produce similar results at both levels,

An analysis of covariance is also performed to test for significance
of the difference between the means of the two derivative treatments and
between the means of the two levels (high and low), on the basis of
derivative criterion test scores only. The table below shows the treat-

ments by levels design in this experiment.

TABLE IV

Treatments X Levels Experimental Design for Derivative Study

Treatments
Levels 1, Inductive 2. Deductive
1, High I-H D-H
2. Low I-L D-L

For only the derivative treatments the predictor variable is again
the score on the pre-test. The final criterion variable is the score
on the common derivative criterion test. Other procedures are similar
to those of the total and limit treatments procedures.

The hypotheses; in nmull form, to be tested for the derivative treat-

ment only ares
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Dl. There is no difference in results on the achievement test on
the derivative, controlling for the pre-test score, between the two

derivative treatments,

D2. There is no difference in achievement as measured by the test
on the derivative, controlling for the pre-test score, between the two

levels used in the experiment.

D3. There is no interaction between the derivative treatments and

levels,

Population and Sampling

Eigat subrrban Chicago high schools participated in this study,
They supplied a total of LL9 students., These LL9 students were enrolled
in 22 third and fourth year mathematics courses in the fall term of the
1967-1968 year., There were 338 males and 111 females in the total study.
Table V gives a more detailed description of the population in the
experiment,

A11 the students in the fourth year classes had had courses in alge-
bra, geometry, and trigonometry. Some had had analytic geometry. The
students in the third year classes were generally taking trigonometry

at the time of the study and had had courses in algebra and geometry.

Procedures

A pre-test, written by Shelton, was given to each of the LL9 stu-
dents in the study the first full class day of the 1967 fall school term
by their respective teachers. The pre-test consisted of 36 multiple-

choice questions., Each teacher graded his pre-tests by a pre-determined




TABLE V

Population and Sampling of Chicago Suburban Schools in Experiment

R e

< Number of
School Mathematics Classes Students

Arlington Heights Seven fourth year classes 147
High School taught by three instructors

Arlington Heights

Downers Grove North One fourth year class 29
High School

Downers Grove

Downers Grove South Two fourth year classes, each
High School taught by a different instructor 38

Downers Grove

Forest View High One fourth year class 1L
School

Arlington Heights

Hinsdale Township One fourth year class 26
High School

Hinsdale

Rich Hast Community Three fourth year classes, each 22
High School taught by a different instructor

Park Forest

West Leyden High Two fourth year classes taught 33
School by the same instructor

Northlake

York Township Community Two third year classes taught
High School by one instructor 3l

Elmhurst Four fourth year classes taught

by three instructors 106

TOTAL

LL9
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key and sent the scores to the investigator. The scores were arranged
from a high of 35 out of a total of 36 raw score points, to a low of
three raw score points. In the cases of numerous duplicate scores the
schools were arranged alphabetically and the students within each school
were also arranged alphabetically., The 222 students in the high groups
received scores of 21 points or higher on the pre-test; the remaining
227 students constituted the low group,

The four total treatments, A, By C, and D, were randomly assigned
in the high group from the highest to the lowest scores; proceeding
through duplicate scores and beginning with treatment A. A similar
procedure was followed for the low group. Several students were (ran-
domly) removed from cells to give equal numbers in each cell. With
equal cell numbers in the high groupy there were 50 students readirng
treatment A, 50 treatment B, 50 treatment C, and 50 treatment D. Zor
the low group, the cell numbers are the same for the four treatments.
Thus, no one school in the study had an equal number of students for
each treatment at each level. Table VI (c) displays the mean pre-test
scores of the students in each cell.

For the four cells imn the experimental design of Shelton’s repli-~
cated 1limit studyy, 100 subjects in each cell were obtained by randomly
removing the excess subjects. Table VI (a) displays the mean pre-test
scores of the students in each cell of this experimental design.

One hundred subjects were similarly assigned to the four cells in
the experimental design for the derivative unit. Table VI (b) displays

the mean pre=test scores of the students in each cell of this experimental

design,



50
Each school participating in the study had class periods 55 minutes
in length. The programs for hoth units were passed out at the beginning
of each class period to the proper students and collected at the end of
the period., This procedure was followed to attempt to eliminate expo-
sure of a student to both formats of the 1limit and derivative units,
The teachers were present in the classes during reading of the units,
and were allowed and encouraged to answer only individual questions of
the students., They were not to conduct a general discussion. Such a
procedure attempts to control the teacher variable and insure that the
students learned from the programmed material only,

Most students asked questions over beth deductive units, the de-
ductive limit and the deductive derivative units. Students found the
deductive units more difficult thar the inductive ones and tended to be-
come somewhat bored, ©Since a number of students were initizally confused
by the immediate presentation of the definition of a 1limit in the deduc-
tive limit unit, some teachers conducted a limited discussion in a con-
fined section of the classroom for these students only. None of the
students reading the inductive limit unit were involved in this re-
stricted discussion. Such a procedure is considered acceptable within
the framework of the procedures of the study.

Because some students were reading far less than the minimum number
of 50 frames per day, they were allowed to take their units home. 1In
such a short period of time it seemed reasonable to assume the students
would not have time to read the alternate treatment. To insure against

this type of contamination even further, answer sheets for the responses




PABLE VI (2)

Mean Pre~test Scores by Cells in the Three Studies

Limit Treatment

level Inductive Deductive

High 25,87 25456

LOW 15 072 15 058
Derivative Treatment (b)

Level Inductive Deductive

High 25.72 25,71

Low 15,62 15,68

Total Treatment (c)

Ievel A B C D

High 25 092 25082 25052 25060

Low 15,68 14,76 15,56 15 .60
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to the programmed text material were required of each student before he
was allowed to take the criterion test over the particular unit,

The average reading time for the 309 frames in the 1imit units was

six days. The administration of the criterion test on the limit unit,
given upon completion of the unit, took two class periods. The average
reading time for the 346 frame inductive derivative unit and the 359
frame deductive derivative unit was seven class periods., The adminis-
tration of the criterion test on this unit took two class periods, This
test was given upon the completion of the derivative unit,

The investigator visited each school at least once during the study.
During these visits she observed the classes reading the units and answered
student questions., She met with the class instructors to answer their
questions and give them further instructions if needed, Numerous telephone
calls were made to the schools during the course of the study to Jjudge
student progress, Correspondence was sent when schools requested further
directions,

The teachers in the respective schools were more than willing to co-
operate in this study., This was evidenced by their constant communica-
tion by telephone and letter to check procedural policy and report progress
and results during the study. Their attitudes remained favorable through-
out the duration of the study. However, as the study progressed students
became bored with the procedure of reading programmed material for 55
minutes, five days a week for at least two weeks. An attitude measure

of mostly negative responses to programmed instruction was obtained and

should be considered in interpreting any statistical findingse.
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Statistical Treatment of Data

All subjects in this study are to learn elementary concepts of the
limit and derivative in beginning calculus by programmed texts. Thus,
any positive or negative influence of attitude toward programmed material
is equated for all subjects, levels, and treatments., The novelty of par-
ticipation in an experimental study should also be equated for all sub-
jectsy, levels and treatments,

The criterion test over the limit unit was given in two class periods
immediately after completion of this unite. The investigator’s pilot
studies indicated the test was too long to be completed in one 55-minute
period. Each of the first 24 items is of the four-alternative, multiple-
choice type, worth one point each. Questions 25-28 call for two defini-
tions and two proofs of theorems, each worth three pcints, The total
number of possible points is 36, the same total as the pre~test,

The teachers of the classes involved in the study administered and
graded the tests by a predetermined key. Each teacher was provided with
sample answers to questions 25-28, This procedure was followed to pro-
vide for a uniform grading of these test itemsy particularly in the case
of partial credit., For all classes the investigator requested the stu-
dents’ written answers for the limit criterion test to check the grading
on the last four items., Eighty-three scores on the limit criterion were
lowered and 16 raised as a result of this checking.

The criterion test on the derivative unit (Appendix C) was given
immediately after the completion of the total study. Two class periods

were allowed, splitting the test after item 18, Pilot study results
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indicated the test was too long to be completed in one 55-minute period.

The questions are constructed and weighted similarly to those in the limit
criterion testy the first 2L questions are four-alternative mltiple-
choice items, worth one point each, tollowed by four short answer ques-
tions worth three points each. Each teacher was again provided with
sample answers to the last four questions, The investigator requested
student answer sheets for regrading of these last four questions,

Fifty~seven scores on the derivative c¢riterion test were lowered and 13

raised as a result of this regrading.,.

The scores on the limit criterion test range from 32 to 3 in the
high group, with a mean of 15,93, The scores on the same test range
from 26 to O in the low group, with a mean of 9.20, |

The scores on the derdivative criterion test range from 35 to 3 in
the high group, with a mean of 17.27., The scores on the same test range
from 31 to 2 in the low group, with a mean of 8.99.

A more thorough discussion of both the limit and derivative cri-

terion test scores appears in the next chapter,




CHAPTER IV

RESULTS AND DISCUSSION

Summary of Procedures

The statistical design used in the three studies in this experi-
ment is an analysis of covariance., The limit study tests for a dif-
ference in inductive and deductive teaching of this conecept. The
derivative study tests for the same difference in teaching methods
for the derivative concept. A total treatment study tests for differ-
ences in teaching the ordered combination of the 1limit and derivative
concepts by the four possible pairings of inductive and deductive
approaches,

The pre-test score is the covariate in all three studies. The
limit criterion test scores are used in the analysis of covariance for
the 1imit study. The derivative criterion test scores are used in the

analyses of covariance for the derivative and total treatment studies,

Criterion Test Scores

The scores on the limit criterion test have a range of 0 to 32.
The scores on the derivative criterion test have a range of 2 to 35.
Tables VII, VIII and IX give a summary of pre-test and criterion test
scores and standard deviations by cell, treatment and level for the
three studies.

Figure li shows the total regression line for the limit study with

the dependent variable being the limit criterion test score and the

55
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TABLE VII
Summary of Fre-test Scores, Criterion Test Scores, and
Standard Deviations by Cell for the Limit Study
Inductive Deductive Total
X=25 .87 X=25.56 X=25.71
G.B 23
» 3.57 GX 3ol2
High
Y=15.94 ¥=15,92 Y=15.93
S = 32 O'm 8."‘
¥ 5.3 - 73
n= 100 n= 100
X=15,72 X=15.58 X=15 .65
6.;’ 3\‘33 6);= 502)-;
Low
¥» 9,11 Y= 9.29 ¥= 9.20
€= 002 6-'5 (-}
y 5 5 L35
n= 100 n= 100
X=20.79 X=20,57 X=20.68
Total _ _ _
Y=12,53 Y=12 .61 Y=12,57
x' 607
= 65,96
¥ 9
N= },00
KEY TO SCORES

X=pre~-test score
Y=criterion test score
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TABLE VIII
Summary of Pre-test Scores, Criterion Test Scores, and
Standard Deviations by Cells for Derivative Study
Inductive Deductive Total
=25,72 X=25,71 X=25,71
G = - 2
High
Y=16416 Y=18.38 ¥=17.27
G =17, S = 8.1
- 7495 - 9
n= 100 n= 100
i X=15 .62 X=15,68 X=15 .65
i 6-13 6-
% - 3.38 X 320
E Low
T= 7,97 Y= 9.91 Y= 8,99
&= )y, 73 G = 6,22
y heT y
| n= 100 n= 100
X=20.68 X=20,69 X=20,68
| Total _ _ _
Y=12,07 Y=1,.15 Y=13,12
Xs 6407
= 8,1
. i
N= 100
KEY TO SCQRES

X=pre-test score
Y=criterion test score




TABLE IX

Summary of Pre-test Scores, Criterion Test Scores, and

Standard Deviations by Cells for Total Treatment Study

A B C D Total
X=25,92 X=05,82 X=25,52 X=25 .60 X=25,71
- & - 6 =
igh &= 3.56 % 3,58 § 3,39 > = 3,15
¥»15 s ¥-18.84 ¥=16,88 T=18,32 ¥=17.37
6-- ° 62'.' °8 6_8 °8 Gﬂ .
¥ 7«95 . 6.3l > 709 ¥ 9 ¢35
n= 50 n= 50 n= 50 n= 50
¥=15,68  X=14.76 X=15,56 X=15,60 X=15 .40
> ™ €= = ~
6; 3657 » 3,07 » 3,17 6; 3631
Low
F= 7,78 Y= 9,56 Y« 8,16 ¥=10.26 T= 8,94
6-8 €s 6—25 j (z
v .95 X 54504 v i1 L6 6482
n= 50 n= 50 n= 50 n= 50
X~20.70 X#20429 X=20,54 X=20,60 X=20,68
Total _ . _ _ _
T=11.61 Y=14,20 Y=12,52 Ye1l1629 Y=13,10
< 6607
yB 8.1,.1
N= L,00

Key to Treatments
A=inductive limit-inductive derivative
B=inductive limit-dedu=tive derivative
C=deductive limit-inductive derivative
D=deductive limit-deductive derivative

Key to Scores
X=pre-test score
Y=criterion test

score
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Regression Lines and Means for the Two High and Two Low

TLevel Cells for the Limit Study

L 18

- 17

{ 1 ] b 1 1 ] 1 A

15 16 17 18 19 20 21 22 23 2l 25 26
Pre~-test Score

KEY TO TREATMENT GROUPS KEY TO GRAPHS
H-I= High-Inductive Within Cell Regression
H-D= High-Deductive Total Regression Line - - -
L-I~ Low-Inductive
L-D= Low=Deduc tive
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independent variable being the pre-test score. Also on the graph are

the points corresponding to the mean values of these two variables and
the accompanying regression line for each cell., On each level for the
two treatments there is very little difference in eriterion test score
means. In raw score points the difference is .02 for the high groups

and .18 for the low groupsy with the deductive treatment means higher

at each level,

Figure 5 shows a corresponding graph for the derivative study.

For both levels the deductive mean scores are higher by approximately
two raw score points than the inductive mean scores. The actual dif-
ferences are 1.9l for the low groups and 2.22 for the high groups. In
the analysis of covariance we will see that such a difference in raw
score points is significant,

Figure 6 shows the total regression line fur the study involving
the four total treatments of Y (the derivative criterion test score) on
X (the pre-test score). The greatest differences in raw score points
between mean scores exist for inductive limit-inductive derivative (&)
and deductive limit-deductive derivative (D) treatments at the low level
and the inductive limit-inductive derivative (4A) and inductive 1limit-
deductive derivative (B) treatments at the high level. We might thus
expect significant differences between treatments A and D and treatments

A and B in the statistical analyses in the next section.

Results of the Data Analyses for the Limit Study

All the statistical analyses of data in the three studies were per-

formed on the University of Illinois, Chicago Circle Campus 360-50 IBM
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computer., Sixteen significant digits (double precision)'were used in

all computations.

Hypothesis L 1. There is no difference in the mean achievement test

scores on limits, after adjustment for the scores on the pre-test, for
the deductive and inductive treatments.

A 2 x 2, treatments by levels analysis of covariance was performed
on the limit criterion test scores, replicating Shelton’s study. An
analysis of variance was also performed as a check for interaction in
the analysis of covariance.

The results of these two analyses are exhibited in Table X. For
the analysis of variance there is no significant difference in
treatments. For the analysis of covariance, the F value for the two
treatments (.12) is not significant at the ,05 level for 1 and 395 df.
Since the F value is not significant at the .05 level, we do not re-
ject the null hypothesis., We have no evidence that there is a differ-
ence in achievement between the two treatments.

Hypothesis L 2. There is no difference in the adjusted mean achievement

scores as measured by the test on limits between the two levels in the
experiment.

For the analysis of variance there is a significant difference
(p<.001) between the high and low achievement levels used in the study,
since the experimental design was constructed using a high and low
achievement group on pre-test scores, The F of 1,13 between levels in
the analysis of covariance is not significant at the .05 level, It

should be noted that there is an increase in the probability levels for

the F between levels, proceeding from the analysis of variance to the




TABLE X

Inductive Limit Treatment wversus Deductive

Limit Treatment for Limit Study

Analysis of Variance Summary Table

6ly

Source Sum of Squares df Mean Square F Probability
Level

Treatments N 1 6l .02 -

Levels 529,29 1 14529.29 120,72 001

Treatments

X Levels 1.00 1 1.00 <03 -

Error (Within) 14857.38 396 3752

Analyeis of Covariance Summary Table
The pre-test score is the control wvariable.

Source Sum of Squares df Mean Square F Probability
Level

Treatments h.23 1 L.23 .12 -

Levels 38.Lk 1 38.LL 1,13 oT7

Treatments

X LeVels 928 1 .28 001 -

Error (Within) 13419.26 395 33.97

KEY TO TREATMENTS KEY TO LEVELS

Inductive limit High

Deductive limit Low
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analysis of covariance. This is due to the covariate determining the
levels for the experimental design.,

The r:11 hypothesis concerning achievement and the two levels used
in the experiment is not rejected.

The bar graph of limit criterion test score means for the four
groups in the limit study in Figure 7 may be helpful in understanding
the results of the tests of the preceding two hypotheses.

Hypothesis L 3. There is no interaction between the inductive and de-

ductive limit treatments and the high and low levels ~ - the treatments
produce similar results at both levels,

The analysis of covariance of Table X shows that the treatments by
levels interaction for the limit criterion test is not significant at
the .05 level., The analysis of variance table displaying no interac-
tion effects supports this finding, Thus, the null hypothesis concern-
ing interaction achievement is not rejected,

Lack of evidence to reject the three foregoing hypotheses is exact-

ly the conclusion Shelton reached in his 1limit study.

Results of the Data Analyses for the Derivative Study

Hypothesis D 1., There is no difference in mean achievement on the deriv-

ative criterion test scores;, controlling for the pre-test, between the
inductive and deductive derivative treatments.

A 2 x 2, treatments by levels analysis of covariance was performed
on the derivative criterion test scores with the pre-test score as the
independent variable. An analysis of variance was also performed as a

check for interastion effects, The results of these two analyses are

exhibited in Table XI.




FIGURE 7

Mean Limit Criterion Test Scores of High and Iow

Achieving Students for the Inductive and Deductive Limit Units
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TABLE XI

or Derivative Study

df Mean Square F Probability
Level
1 432,64 8495 0L
1 6938.89 143.62 .001
Treatments
X Levels 1.96 1 1,96 .00 -
Error (Within) 19132.10 396 48,31

Analysis of Covariance Summary Table

The pre~test score

Inductive Derivative Treatment versus Deductive Derivative
Treatment f
Analysis of Variance Summary Table
Source Sum of Squares
Treatments 1132 .64
Ievels 69 48,89
|
k

is the control variable,

Source Sum of Squares df Mean Square F Probability
Level

Treatments 421,50 1 L2k .50 10,30 .01

Levels 5059 1 5059 01)4 -

Treatments

X Ilevels 2.81 1 2.81 007 -

Error (Within) 16283.06 395 41,22

KEY TO TREATMENTS KEY TO LEVELS

Inductive derivative High

Deductive derivative

Low
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For the analysis of variance there is a significant difference be-
tween treatments (p<.0l) for 1 and 396 df, For the analysis of covari=-
ance, there is a significant difference between treatments (p<.0l) for
1 and 395 df.

Thusy the mull hypothesis that there is no difference in results
on the derivative criterion test, controlling for pre-test scores, be-
tween the two derivative treatments can be rejected from the above
evidence, There is a significant difference in derivative achievement
scores between the two derivative treatments., The graphs in Figures 5
and 8 show that it is the deductive derivative treatment that has a
higher mean score on the derivative criterion test than the inductive
derivative treatment on both levels,

Hypcthesis D 2., There is no difference in mean achievement as measured

by the test on the derivative, controlling for the pre-test, between
the two levels used in the experiment,

For the analysis of variance, there is a significant difference
(p<.001) for the levels of the experiment. As in the limit study this
difference is due to the experimental design. By use of analysis of
covariance it was found that there is no significant difference in
levels. Thus, the null hypothesis concerning achievement and the two
levels used in the experiment is nct rejected. The bar graph in Figure
8 is helpful in interpreting the result of the test of this hypothesis.

Hypothesis D 3. There is no interaction between the inductive and de-

ductive derivative treatments and the high and low levels,

The analysis of covariance of Table XI shows that the treatments

by levels interaction for the derivative criterion test is not
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FIGURE 8

Mean Derivative Criterion Test Score of High and Low

Achieving Students for the Inductive and Deductive Derivative Units
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significant at the .05 level, Again, no interaction effects in the anal-
ysis of variance design confirm this finding. Thus, the null hypothesis

concerning interaction achievement is not rejected,

Results of the Data Analyses for the Total Treatment, Study

ﬂzgothesis T 1, There is no difference in results on the achievement

test for the derivative, controlling for the pre -test scores, among the
four total treatments, inductive limit-inductive derivative (A), in-
ductive limit-deductive derivative (B) y deductive limit-inductive
derivative (C), and deductive limit-deductive derivative (D).

Al x 2, treatments by levels analysis of covariance was performed
on the derivative eriterion test scores for the total treatment study.
An analysis of variance was also performed to check for interaction
effects in ‘the analysis of covariance., The results of the two analy-
ses are exhibited in Table XII.

Both the analysis of variance and the analysis of covariance sum-
mary tabies show significant differences in the four treatments, the
former with probability less than .05 and the latter with probability
less than .0l, Both of these probabilities satisfy the .05 level of
significance of this study.

Scheff€%s method of post-hoc comparisons shows a significant dif-
ference at the .05 level between the inductive limit-inductive derivative
(A) and deductive limit-deductive derivative (D) treatments, A glance
at Figures 6 and 9 exhibit these differences in raw score points be-
tween treatments A and D at both levels and bear out the above finding.

In the graphs we see that for the high and low groups, a difference in




TABLE XII

Combinations of Inductive Treatments wversus Deductive Treatments

for Teaching Both the Limit and Derivative Concepts in the

Total Treatment Study

Analysis of Variance Summary Table

Source Sum of Squares df Mean Square F Probability
Ievel
Treatments 478,25 3 159 .42 3,28 .05
Levels 6938,89 1 6938,.89 142,68 .001
Treatments
X Levels 241 3 8.1l .17 -
Error (Within) 1906i.0l 392 48.63
Analysis of Covariance Summary Table
The pre-test score is the control variable,
Source Sum of Squares df Mean Square F Probability
level
Treatments 196,33 3 165,Lh .00 001
Ievels L. 36 1 1,36 ol1 -
Treatments
X Levels 30,79 3 10,26 25 -
Error (Within) 16183.28 391 1639
KEY TO TREATMENTS KEY TO LEVELS
A=inductive limit-inductive derivative High
B=inductive limit-deductive derivative Low

C=deductive limit-inductive derivative
D=deductive limit-deductive derivative
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totai raw score points of almost three exists between treatments A and
D. Since the means of treatment D at both levels are higher than those
of treatment A, the superiority of the deductive treatment over the in-
ductive treatment is indicated, These findings correspond to those of
the derivative study,

Using Scheffé’s method the difference between the inductive limit-
inductive derivative (A) and inductive limit-deductive derivative (B)
treatments approaches significance at the .05 level, This is also seen
graphically in Figures 6 and 9 and might again indicate the superiority
of the deductive derivative treatment. For the low group the difference
between treatments A and B is almost two raw score pcints, and for the
high group the difference is over three raw score points,

There is a raw score point difference between treatments B and C
(deductive Llimit-inductive derivative) of less than tuo points on both
levels., Treatment B is superior in either case, This may indicate that
the inductive limit-deductive derivative (B) treatment is slightly better
than the deductive limit-inductive derivative (C) treatment, The differ-
ences uStag;Scheff€VS method for these treatments are not significante
However, in the derivative study we did find the superiority of the de-
ductive derivative treatment.

The other differenzes in treatments for the total study are not
significant by Scheffé’s method,

Hypothesis T 2. There is no difference in mean achievement as measured

by the test on the derivative between the two levels in the total treat-

ment study, controlling for pre-test score,
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FIGURE 9 (a)

Mean Derivative Criterion Test Score of High Achieving
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Test Students for Total Treatment Study
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The significant difference in levels for the analysis of variance

was expected, However, in Table XII we see there is no significant dif-
ference for the analysis of covariance concerning achievement of the
derivative topic and the two levels in this study. The null hypothesis
that there is no difference in achievement as measured by the test on
the derivative between the two levels used in-the study is not rejected.

Hypothesis T 3. There is no interaction between the four total treat-

ments and the two levels.

The analysis of covariance of Table XII shows no treatments by
levels interaction for the total treatment study at the .05 level of
significance. The analysis of wvariance table displaying no interaction
effects supports this finding. Thus, the null hypothesis concerning

interaction achievement is not rejected,

Further Statistical Analyses

It was felt that if any significant difference in trecatments were
to exist in the three studies of this experiment, the difference would
be in favor of the inductive treatments. Such a belief was supported
by the pilot studies and related research studies. Before the analyses
of variance and covariance were performed, correlation and multiple re-
gression coefficients were computed. In these preliminary analyses the
inductive treatments were coded +1 and the dedﬁctive treatments 1.

Table XIII displays the correlation matrix with the five variates
(pre~test score, limit treatment, limit score, derivative treatment,
derivative score) in the experiment. This analysis includes all LL9

subjects in the experiment. We see that there are moderate correlations
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between pre-test score and limit score (,621) and between pre-test score
and derivative score (.607). Former analyses indicated both these cor-

relations significant (p<.001l), Thus, the pre-test score may be a some-
what good predictor of the limit and derivative scores.

There is a correlation of 745 between the limit score and the deriv-
ative score, significant for t (p<,001) by a former analysis. Thus, the
limit score is a fairly good predictor of the derivative score. In fact,
it may be an ewven better predictor of the derivative score than the pre-
test score.

The negative correlation of «,137 between the derivative treatment
and derivative score is significant (p<.005) by a former analysis, The
negative value of this correlation coefficient shows that the deductive
derivative treatment, coded ~1, produced a higher derivative score than
the inductive treatment., It is worth noting that there is a very low,
non-significant sorrelation (.0L6) between limit treatment and limit
score, This indicates a negligible effect of limit treatment on limit
score. The other correlations in the table are very low and non-
significant.

To further support the high correlations among pre-test score;
limit score and derivative score, and the experimental superiority of
the deductive derivative treatment, prediction equations were derived
using standardiged beta weights. Table XIV (a) displays the standard-
ized beta weights and their probability levels of t for predicting the

1imit score from the pre-test score and limit treatment. Table XIV (b)

shows the standardized beta weights and their probability levels of t




Correlation Matrix for the Five Variates in the Three Studies

TABLE XIII

Number Name 1 2 3 L 5

1 Pre-test Score 1.000 0621 .010 607 -,003
2 Limit Score 621 1,000 016 .7LS - o002
3 Limit

Treatment 010 016 1.000 ~ o032 -,009

1

L Derivative

Score 607 75  -.032 1.000 -,137
5 Derivative

Treatment ""0003 haid 0002 -’0009 -0137 1.000
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for predicting the deraivative score from bhe cther four wvariates in the
experiment. The variates are numbered as in Table XIIIL.

Below each table 13z the linear multiple regression prediction equa~-
tion for the respertive score. A multiple regression model is appropri.-
ate since none of the analyses of variance showed interaction effects,
The multiple R, the correlation between the aztual score and the predic-
ted score, is also displayed. Again an inductive treatment is coded +1
and a deductive treatment -1,

In Table XIV (z) we again see that it is the pre-test’s beta weight
of .621 (p<.001) that seems to contribute considerably more to the pre-
dicted limit score than does the limit treatment beta weight. Table
XV (a) shows the per cent of the total and explained variance in the
limit criterion test score contributed by the pre-test score and limit
treatment. We see that 38.56 per cent of the total variance and 99"
per cent of the explained variance is due to the pre-test score in
predicting the limit score. The per cent of the total variance and
the explained variance contributed by the 1limit treatment is negligible.

Table XIV (b) shows that the pre-test score, limit score, and deriv-
ative treatment seem to contribute more to the predicted derivative score
than the limit treatment. The beta weights for the pre-test score, limit
score and derivative treatment are all significant (p<0001)a Since the
beta weight for the derivative treatment is negative, this favors the de-
ductive derivative treatment. A higher predicted derivative score for

the deductive treatment will result since the last term in the derivative

score prediction equation will be positive.




TABLE XIV (a)

Standardized Beta Weights for Predicting Limit Score

Number Predictor Variate  Standardized Student’s t Probability

Beta (&) for Beta level for t
1 Pre-test Score 621 16,692 .001
3 Limit Treatment 010 0270 .078 |

Standardized predicted limit score = 61( standardized pre-test score)

+63( 1imit treatment) !
l
Multiple R = ,622 |

TABLE XIV (b)

Standardized Beta Veights for Predicting Derivative Score

Number  Predictor Variate  Standardized  Student’s t  Probability
Beta (&) for Beta Level for t

1 Pre~-test Score 0233 64139 .001
2 Limit Score .601 15.802 .001
3 Limit Treatment - 40L5 «1,L96 135
5 Derivative

Treatment ~.135 «li o 5Lk .001

@, (standardized pre-test score)
-@]2'( standardized limit score)
+B° (1imit treatment)
+@2(derivative treatment)

Standardized predicted derivative score =

Multiple R = ,780




TABLE XV (a)

Per Cent of the Total Variance and Explained Variance in

Limit Criterion Test Score Contributed by the Pre-Test

Score and Limit Treatment

Number Predictor Variate r 6(.' r@®, X100 —i-z-B‘ X100
1 Pre-test Score H21 62l 38.56 9997
3 Limit Treatment 010 .010 .01 .03
Total 38.57 100,00 %
TABLE XV (b)

Per Cent of the Total Variance and Explained Variance in

Derivative Criterion Test Score Contributed by the Other

Four Variates

Number  Predictor Variate T 6 . rB‘: x 100 _E".;_Gé x100
c Rd
1 Pre-test Score .607 «233 1h.1l 23,22
2 Limit SCOTC o?hs 0601 h’-‘o?? 73 051
3 Timit Treatment -,032 =.0LS o1l .23
5 Derivative _
Treatment «o137 =.135 1.85 3.0L
Total 60,90 100.00

KEY TO COLUMN HEADINGS
;= standardized beta weight
r = raw correlation coefficient
r&p:lOO = per cent of total variance accounted for by the variable
_%,xloo per cent of explained variance accounted for by the variable

v
R2
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Table XV (b) shows the per cent of the total and explained variance
in the derivative criterion test score contributed by the pre-test,
limit score, limit treatment, and derivative treatment. The pre-test
score contributes 1li.1l per cent of the total variance and the limit
score contributes Lli.77 per cent of this variance. The per cent of the
total variance contributed by the limit treatment and derivative treat-
ment is negligible., The pre-test score contributes 23,22 per cent of
the explained variance and the limit score contributes 73.51 of this
variance. Again the per cent of the explained variance contributed by
the 1limit treatment and the derivative treatment is inconsequential,

In this study we can see that a student’s past mathematical know-
ledge accounts for much more of the total variance than the teaching
method does. In learning the limit concept the pre-test score was
the important determinant of achievement. For the derivative concept
knowledge of the immediately preceding topic of the limit was most im-

portant, followed in importance by the prerequisite knowledge measured

by the pre-test.
A11 the foregoing results substantiate those discussed for the

correlation matrix of Table XIII.

General Discussion

The high, significant correlations among pre~test score, limit and
derivative scores, and derivative treatment indicate a definite relation
between these variables in this experiment. This relationship is pre-

sented in the graphs in Figures l, 5, and 6. Thus, some precision

might be gained by using an analysis of covariance design rather than an
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analysis of variance, However, using the covariate to determine the
levels of the experimental design in the analysis of covariance is sta-
tistically questionable,

Shelton’s study for the inductive and deductive Limit units was
replicated, TFailure to reject any of his three hypotheses in the present
study supports Shelton’s conclusions. Figure 4 indicates no appreciable
difference in the mean scores for the inductive and deductive limit
treatments at either level, To explain his results, Shelton writess

e o« o Care was taken to insure that the two programs had

the same mathematical content. The same mathematical

theory was covered in both programs, and most of the nu-

merical examples were the same., The main difference was

in the order of development of the ideas. It may be that

the students rearranged the order of development in their

minds after completing the programs. (60, pp. 53-5L)

For the present study using the inductive and deductive derivative
units, a significant difference was found between treatments (p<.0l).
The hypothesis of no difference between derivative treatments is
rejected. From tables of correlation coefficients and multiple re-
gression analyses, ‘the deductive derivative treatment is found to be
superior to the inductive derivative treatment. Figure 5 shows the de-
ductive derivative groups at both levels with higher derivative ecriterion
test score means than the inductive derivative groups. This is a sur-
prising result since pilot studies and related research pointed to the
superiority of an inductive approach if any difference in treatments

existed, Further computation of a multiple regression equation to pre-

dict the derivative score shows the pre-test score and limit test score

to be the determining factors in predicting the derivative score. The
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derivative treatment carries very 1ittle weight in predicting the deriv=-
ative score,

Considering the four total treatments at the two levels, a signifi-
cant difference (p<.05) was found among treatments, as in the derivative
study. Again, the difference favors the deductive treatments, since the
difference between the inductive limit-inductive derivative treatment (A)
and the deductive limit-deductive derivative treatment (D) is significant,

with the means of treatment D higher than those of treatment A on both

levels. Figure 6 presents this finding graphically.

In none of the three studies are interaction effects evident. We
thus have no evidence that effectiveness of these teaching units is de-
pendent upon mathematical level as measured by the pre-test.

The results on both the limit and derivative criterion tests indi-

cate that the programs do indeed teach their respective topics. On the

basis of chawce alone a mean of six would be expected on the first 2l
four-alternate multiple-choice questions on each test. However, means
of 12.57 and 13.12 for the LL9 subjects in the experiment were obtained

for the 1limit and derivative tests, respectively.

The pilot studies for the derivative units also showed evidence of

the units® teaching. We can only hope that the content of the units and
the criterion tests contain the types of achievement necessary for the

testing of the nine hypotheses in this experiment,




CHAPTER V

SUMMARY AND CONCLUSIONS

Re -statement of the Problem

The original purpose of this study was to study the merits of an
inductive and deductive teaching approach for the derivative concept in
beginning calculus. The "tearher variablew was contrclled by using pro-
grammed text material for each teaching approach, To insure that a stu-
dent participatiug in the study had the nesessary mathematical background
to learn the derivative, # unit on the limit conzept was first read by
each student., This unit was also an inductive or deductive programmed
text,

It was then decided to expand the study. A former study to eval-
nate the effectiveness of an indu:tive or deducstive appreach to teaching
the limit conzept in beginning ralculus by the programs used in this

study was replicated, A total treatment study was also conducted, using

both the 1imit and derivative programs. The four paired teaching treat-
ments (inductive limit-inductive derivative, induztive limit-deductive
derivative, deductive limit-inductive derivative, deductive limit-deduc-
tive derivative) were compared,

Students were divided intc a high and low level on the basis of pre-
test scores to check for interaction between treatments and levels. This
was dorne to see if those students at the high level might learn better
from one treatment, while those at the low level might learn better from

an alternate treatment,

83




8L

The effectivenass »f the treatments in each study was determined by
a limit criterion test and a derivative <riterion test., Th2 limit cri-
terion test was used in the statistical analyses of the limit study and
the derivative criterion test in the statistical analyses of both the

derivative and total treatment studies.

Instructional Programs

The treatments constituted the reading of two linearly programmed

sequential texts on the limit and derdivative concepts over a two week

period, Four programs were used, two to teach the limit concept and
two to teach the derivative concept. The main difference in the two
programs for each topic was the method of rresentation of the material.
One program was written by an inductive format, proceeding from con=~
crete, numerical examples to a general abstract zase, The other pro-
gram was written by a deductive approach, proceeding from an abstract
generalization to concrete numerical examples, Both programs for each
topic contained essentially the same content of basic theorems, corol-
laries, and numerical examples, The time exposure allowed for each

treatment was controlled by the number of frames in the units.

Experimental Design

A treatments by levels analysis of covarianze was used in each of

the three studies in this experiment. All subjects were assigned to a
high or low level on the basis of scores, on a pre-test designed to
measure prerequisite mathematical knowledge for the study of the limit

concept in beginning caleulus., For the limit and derivative studies
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each level was divided into two treatment groups, inductive and deductive,
giving rise to a 2 x 2, treatments by levels dersign. TFor the total treat-
ment study each level was divided into four groups, thus establishing a
L x 2, treatments by levels design,

Each subjest in the experiment received one limit treatment and one
derivative treatment., Criterion scores for the limit and derivative
tests were compared for treatments, levels and interaction by ‘the analy-
s&s of covariance. Analyses of variance were performed for each study
to check for interacticn effests in the analyses of covariance and to
interpret the analyses of covariance recults more meaningfully., Tests
of significanze were made at the ,05 level,

Preliminary compuatations of correlation woefficients and multiple

regression equations were also made.

Population and Sampling

The experiment was conducted in eight Chicago suburban high schools,
using eleventh and twelfth grade mathematics students. OFf the total of
463 students who began the study, LL9 completed it. The scores of these
LL9 students were used in the statistical analyses.

The students were enroliled in 22 mathematies classes in the eight
high schools in the tall of 1967. There were 338 males and 111 females
in the total study. Four hundred scores were randomly selested for the
statistical analyses in the three studies. Thusy, there were 100 sub-
jects in each of the fuur cells of the limit and derivative experimental
designs and 50 subjects in each of the eight zells of the total treat-

ment experimental design,




Administrative Procedures

The pre-test, 1limit and derivative units, and limit and derivative
¢riterion tests were administered to each class as it met in its respec-
tive high szhouvl classroom., The class teacher proctored all the class-
room reading time, answered all the individual student questions except
when the investigator was present, and graded all the multiple-choice
questions on the criterion tests., The treatments were distributed and
collected each class session. For students needing additional reading
time, extra class sessions during or after the school day were arranged.
A few very slow reading students were allowed to take their units home

for extra work,

Criterion Tests

Two paper and pencsii criterion tests were used in the three studies
as a measure of achievement. The limit criterion test was developed in
a former research study, It consisted of 2 four-alternate multiple-
choice questions and four short answer questions, Two of the short
answer questions required proofs and two required definitions.

The derivative criterion test was developed for this study. It had
the same format as the limit criterion test - 24 four-alternate multiple-
choice questions and four short answer questions., One short answer ques-
tion required writing a proof, one giving an explanation, one doing a
computationy, and the fourth exhibiting an example of a function satis-

fying certain conditions, Care was taken to avoid favoring eit er

treatment in the item construction of the test.
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Both tests were given in two parts on successive days, immediately

after the completion of the respective program.

Results

The three research hypotheses in each of the three studies were
tested by an analysis of covariance, For the limit study, the investi-
gator found:

1. There were no statisiically significant differences in achieve-~
ment between the two limit treatment groups shown by the adjusted limit
criterion test means,

2. There were no statistically significant differences in achieve-
ment shown by the adjusted limit criterion test means between the two
levels used in the study.

3. There was no statistically significant interaction between the
limit treatments and levels as measured by the 1imit criterion test,

For the derivative study, it was found that:

1. There was a statistically significant difference in achievement
between the two derivative treatment groups shown by the adjusted deriv-
ative criterion test means. The deductive treatment was favored,

2, There were no statistically significant differences in achieve-
ment between the two levels used in the study shown by the adjusted
derivative zriterion test means.

3. There was no statistically significant interaction between the

derivative treatments and levels as measured by the derivative eriterion

teste




For the total treatment study, the investigator found:

L, There was a staticstically significant difference in achieve-
ment between the four tobtal treatment groups shown by the adjusted deriv-
ative zriterion test means., This difference was between the inductive
limit-ilndactive derivative and deductive limit-deductive derivative
treatments, the latter superior,

2o There were ro statistically significant differences in achieve-
ment, bet-eern the twe levels used in the total treatment study shown by
the adjusted derivative criterion test means,

5. There was no statistically significant interaction between the

total treatments and levels as measured by the derivative criterion test.

Corzlusions

In drawing any generalizations in this experiment, we must keep in
mind the particular sample, treatments and their method of presentation,
as well as the evaluation instruments used, Aware of these restrictions
we can concludes

l. No advantage in achievement of either limit treatment was appar-
ent, but advantages were noted in the derivative treatment and the limit-
derivative (total) treatment. The deductive treatments were favored.,

2o No differense in achievement between the two levels was found
in the limit, derivative or total treatment study.,

3. No advantages in achievement of the treatments for a particular
level were apparent in the Limit, derivative, or total treatment studies.

The novelty of the programmed texts used in this study was definitely

a negative motivating factor. After two weeks of learning the calculus
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material only by reading, with nc class discussion and little teacher
interaction, most students expressed a negative attitude toward pro-
grammed texts., This was indicated by a response to an attitude question
asked of each student at the end of the experiment. Yet, since all stu-
dents used materials of the same format and since these materials were
randomly distributed among all the subjects in the experiment, it is
felt that any negative or positive effects of the programmed texts were
present for all students.

In summary, the results of Shelton’s replicated limit study indi-
cate that it is not the teaching method but the student’s prior knowledge
of mathematics, as measured by a pre-test, that enables him to learn the
limit concept in beginning calculus, The results of the derivative study
shocw that the student’s prior knowledge of mathematics, indicated by a
pre-test and limit test score, has important weight in learning the deriv-
ative concept. The teaching method is secondary in such learning. This
is true even though the deductive teaching method for the derivative study
was shown to be significantly better than the inductive teaching method,

The results of the total treatment study show that for the teaching
of the combination of the limit and derivative concepts in beginning cal-
culus to eleventh and twelfth grade studentsy as given in these programs,
the deductive approach in teaching both concepts together is superior to
the inductive approach in teaching both concepts together., If each of

the concepts is taught by a different methody; no difference in student

learning, as measured by an achievement test on the final derivative
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unit, is evident. There is also no difference between a mixed treatment

and a strictly inductive or deductive treatment,

Cautions of Interpretations of Methods Studies

Any interpretations of the conclusions of this study must be made
with caution, particularly when attempting to apply the findings to an
actual classroom teaching situation. The following limitations should
be considereds

1., In attempting to control for the teacher variable in this study,
programmed text material was used. The high school students learned en-
tirely from a written format for two weeks, with little teacher inter-
action., The students may have had discussions over the material after
class, although these discussions would have been of a limited nature
since the materials were not to be taken from the classroom, The teacher
could not guide or stimulate student discussion., He could not let his
personality or skill enter into his preference for an inductive or de-
ductive teaching approach, If human interaction and after school work
had been allowed, the results of this experiment might have been
different,

2., The time exposure to the material in this study was limited to

only two weeks., Perhaps this was too short a period of time to test the

effectiveness of a teaching method. If the study had been extended over

a whole semester or whole school year, a teaching method found effective
for a short period of time might not be so for a longer time. Or a

teaching method found effective for an isolated topic might not be so

for a total unit of study involving a number of different concepts,
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3. The students in this study were rather mathematically sophisti-
cated eleventh and twelfth graders, Such students may be accustomed to
getting mich of their teaching from text books written by a deductive
approach, They may learn from just one example leading to or following
a generalization, For these students economy of learning time may oe
important, and such economy may best be effected by a deductive teach-
ing approach. If junior high school students had been subjects in this
experiment, they might have shown a preference for a less formal, more
heuristic, inductive teaching method,

i. The students’ mathematical backgrounds in this study were con-
trolled only to the extent of pre~test scores, Since this pre-test is
not a single, perfect measuring instrument, we might better have consid-
ered a student’s total past academic performance, Results of this study
favored the deductive derivative treatment. We might find that students
reading the deductive treatments had higher total grade point averages
in mathematicsy; or in all academic subjects, than did those reading the
inductive treatment,

5. The psychological constructs operating in the testing-inference
design of this experiment are also to be questioned. Is a test score a

true indication of student learning? Will the material ‘taught in the

respective limit and derivative units be available for later recall and

transfer when it is really needed?

- Implications and Questions for Further Research

In terms of the limitations of these studies just cited, we can see

a number of implications for further research in the area of mathematics,
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particularly mathematics taught at an advanced subject matter level,

As indicated in the first limitation, programmed text material may
not be the best vehicle to use in testing a teaching method., A study
might be devised to use actual classroom teachers in testing for differ-
ences in teaching methods, Each teacher might be "programmed" to teach
both inductively and deductively., If some classes of a particular teach-
er taught by one method show higher achievement than those taught by the
same teacher by the alternate method, certain personality constructs
might be inferred to be operating in both the students and teacher.

The permanence of the effectiveness of a teaching method in
mathematics might be investigated. If a particular teaching method is
superior for the teaching of an isolated mathematical concept over a
short period of time, will this method still be effective over a longer
time period, with a change in concepts to be taught?

The factor of student year in school may determine the effective~
ness of teaching method. One might investigate if an inductive or deduc~
tive teaching approach is as effective with elementary school children
as the same teaching method is with high school students. Is a teaching
method effective with high school students as effective with college stu-
dents or is type of teaching method no longer a factor in student learning
at this advanced learning level?

Up to this time very little research has been directed toward the
teaching of advanced topics in a subject area, Perhaps teaching method

is not really important., Maybe prerequisite knowledge is the determining

factor. Or perhaps students learning an advanced topic may be so highly




motivated, they will learn by any acceptable teaching method. After
being introduced to an idea these mature students have their own methods
of learning.,

Finally, perhaps one should be more concerned with level of achieve-
ment related to a teaching method than with differences in achievement.
Perhaps the scores produced in the present study of the teaching of the
1limit and derivative concepts were too low to be really acceptable as

a minimum level of achievement for either teaching method. Maybe an
acceptable score could only be obtained by a combination of several
teaching approaches.

Certain questions also come to mind, Perhaps the results of this
study might have been different had the length of instruction been ex-
tended or abbreviated. The limit and derivative units required approxi-
mate reading time of two weeks in the average high school program. What
if a whole semester or whole school year had been used to develop a par-
ticular teaching method?

A deductive method of teaching may be more successful for a short
period of time and an inductive method for an extended period of time.
This might be particularly true when teaching isolated concepts such as
the 1limit and derivative in the larger discipline of the calculus. Or
perhaps certain concepts in calculus are learned better by a deductive
approach rather than an inductive one, namely the derivative concept in
beginning calculus., Other topics in calculus may be taught more effec-
tively by an inductive approach. For yet other concepts, the teaching

method may be unimportant, but the prerequisite knowledge in mathematics

may be the important variable. We showed this in the teaching of the
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1imit concept in this experiment.

The quality of the material in the two programs was intended to be
similar. Care was taken to make content and length of exposure to topics
the same, Most of the numerical examples were the same, Comparable
pfogramming techniques were used to write both inductive and deductive
programs, If a student reordered the material after its presentation,
the experimental design had no control over this., Thus, the individual
student could have used his own combination of inductive and deductive
teaching methods to learn the material in the studies,

The removal of the human element from the teaching situation in
this experiment should cause concern., If teachers, rather than text
material, had been "programmed" to teach only inductively or deductively,
results might have been different. As mentioned before, many students
in this study were bored by learning only by reading for an extended
period of time. Even if there were again no differences in teaching
approaches in an actual classroom situation, we might find higher scores
on the criterion measure than were obtained by programmed texts.

One can also argue a long-range effect of teaching -- later ap-
propriate recall of the material learned. Might it se that a teaching
approach could produce higher immediate criterion test scores but an
alternate approach produce higher retention and transfer test scores?

Tt can also be said that the level of the student may have an
effect on his recgption of a certain teaching method. Perhaps the
rather mathematically mature eleventh and twelfth grade students in
this study were more conditioned to a deductive type of teaching.

These students were obviously accustomed to learning much of their
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mathematics from text books, which are primarily deductive in exposition
as stated in Chapter I. Even more important, these same students probably
had the knowledge to abstract from given instances and, conversely, to
apply given abstractions,

Perhaps junior high school students (seventh and eighth grade stu-
dents) would learn mathematics be? ter from a more numerical, illustrative,
non~verbal, inductive approach, They may still find the reading of text
material difficult. For them discovery may be an important learning
method for building up prior empirical knowledge. They may not yet have

the experience essential for making concepts and generalizations meaningful.

Implications for Education

If we again take caution to avoid overgeneralizing, some interesting
educational implications emerge from this study.

Although programmed materials were used as the vehicle of instruc-
tion in this experiment, several interesting results of their use are
evident. Programmed texts can and do teach, but probably not as effec-
tively as a classroom teacher. As this experiment also shows, programmed
texts can be used in a meaningful way in research studies if conservative
generalizations are made,

The results of this experiment show several interesting findings.
From pilot study results and related research, it was believed that a
difference in teaching approaches might favor an inductive method, When
differences did exist in this study, the deductive teaching method was

found superior. Perhaps for the advanced level of students in this ex~

periment, a formal, abstract, deductive teaching method was more
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effective, If a less mathematically mature group of students had been
ciiosen as subjects, a concrete, numerical, inductive approach might have
produced higher achievement scores. If a combination of induztive and
deductive teaching had been used, mean criterion test scores might have
been higher than for either method used alone.

As this experiment clearly indicated, perhaps it is the student’s
prior mathematical knowledge that determines his proficiency in mathe-
matics. This may be what Ausubel meant when he wrote:

The cognitive structure of the particular learner must in-

clude the requisite intellectual capacities, ideational

content, and experiential background. It is on this basis

that the potential meaningfulness of learning material

varies with such faciors as age, intelligence, occupation,
cultural membership, etc, (5, p. 20)
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l, The derivative is a very important topic in mathematics and related
sciences, It is the basis of a beginning course in calculus and provides

& foundation for more advanced courses,

A118, -2

119, The equation of this tangent line passing through the point (-1, 1)

is ° J
4
A233. 3P¢x2
234, We know by Theorem 3 that if w(x) = xh, w'(xl) = .
o

Aruitoxt provided by Eic:




'2, Since we will need the limit in studying the derivative of a func~-
tion, let us review the notion of a limit of a function. We know that
it &xlf(x) = L, we can make f(x) as "close" to L as we please for x
in a suitably chosen deleted neighborhood of x,. (The student should
review the mathematically precise S~¢ definition of a limit of a
functiori,) Which of the mumbers in the set $2.9, 2.99, 2.999, 3.001,
3&1} belongs to the deleted mighborhc'od defined by‘ the inequality
|x=31 < 01?

Al19, y-1 = -2(x + 1)

120. For tie second function f defined by f(x) = x°+ x = 6, for which

we expressed the slope m, = 2x1¢ 1 of the tangent line to the graph of
f at any point, at the point (3,6) the slope of the tangent line is __ .,

A23kL. hx13

235, We know by Thecrem 3 that if v(x) = x°, v/(x) =




A2, 2,999, 3.901

3, We will now introduce an alternate notation for §1g #f(x) = Lo We

know that %%gbo(xj+bx) = x; where ix is a variable, its value usually

small in magnitude, Thus, if Ap is a variable, %im.o(p1+Ap) = 0

Al20, 7

121, The equation of the tangent line passing through the point (3,6)

is .

236, Consider the following table:

Rule Defining the Functiong Derivative Evaluated
Evaluated at x at xl
1
- B 3
w(xl) x'l ‘\ hxl
- 2
Vi) = m e 2%y

Do you see that it is possible to obtain the derivative of £(x) = xé,

p P N (6x15), by taking the sum of the products of the terms on the

opposite ends of the arrows? That is, xlhole + xla.hxl3 =

el




A3. 12

k., If Ax approaches O, (x1~‘r A} :pproaches x,. Therefore, lim £f(x) =

B.‘&of(xf Ax). If Ax approaches O, (x1+ Ax) approaches Xy 80 lim 1g(x)

- moe(___).

A21,  y=6 = 7(x=3)

122, For the point with coordinates (=2,-4) on the graph of f defined

by £(x) = x24- x=6, the equation of the tangent line at this point is

1236, 6x)°

237. let f(x) = x6 be rewritten x6 = x5o x. In this case f(x) =

r(x) ¢ s(x), where r(x) = é and s(x) = .




Al X, + Ax

5. Ifx, = 5s x,+ Ax = 5 + Ax, As Ax approaches O, (114- Ax) cpproaches

2122, y + L = <3(x + 2)

123, For the fourth function f defined by f(x) = x, which we discussed

in frame 72, we found that the slope of the tangent line at any point
on the graph of f had numerical value .

A237. X

238, SoD(x%) =D () = 6x°.




AS, 5

6. Therefors, *gsr(x) = 1lim £(5 + &x).

(Your answer should correctly complete the shaded box.)

Al23, 1

12}, We no%ed that the graph of the function and the tangent line at
any peint A with x-coordinate Xy coincided, so the equation of the tan-

gont line at any point on the graph of f is _ N
‘228. ;. X

239, We know by Theorem 3 that if r(x) = ;, r'(xl) - .




AS, Ax-»0

7. 1f x, = =3, x, 4 Ax = =3 + &x. As Ax approaches 0, Xx,+ Ax

approaches .

A2k, y = x (or £(x) = x)

125, We can check the above statements by writing the equation of the
tangent line to the graph of f defined by £f(x) = x, For the point with
coordinates (2,2), since m,= 1, the equation of the tangent line at this
paint is y = 2 = 1(x - 2) or (in simplified form).

240, We also know by Theorem 2 that if s(x) = x, 8’(x)) = __.




-3

T ———"

8. Therefore, }g;_3g(x) = %ig,os(_____)e

A125.  y = x (or £(x) = x)

126, For the point with coordinates (0,0), the equation of the tangent

1lins at this point is .

A240, 1

2l1., Consider the following table:

Rule Defining The Func- Derivative Evaluated
tion, Evaluated at x, at Xy
5 Y
i &
xl 1

Do you see that it is possible to obtain the derivative of f(x) = x6 by

taking the sum of the products of the terms on the opposite ends of the

arrows? Thus, zl?' X " 6115.




‘8. "’3 + AX

9. It may be the case that x is to the right of x, and sufficiently
close to Xy OT that x is to the left of X and sufficisntly close to
X,o We recall from the section on limits that }g&ﬁf(x) s now shown

. to be equivalent to H-‘B»of("f“") 5 exists if f(x) approaches the same
value 1 when we consider numbers which may be either greater or
a tmn x.

K26, y -0=1(x<-0) (ory=x)

127, For the last function f defined by f(x) = k which we discussed,
we found that the slope of the tangent line at any point A with x=coor-
dinate x, on the graph of f had a value of °

A1, 1, 5x1h

2h2, let £(x) = x6 be rewritten x6 = x3o x3, In this case, f(x) =

p(x) ° q(x), where p(x) = and q(x) = R




A9, less (smaller)

10, If we consider numbers only greater than X359 then we denote the
limit by 1im _f(x) = L, If we restrict our consideration to numbers
less than x,, then we denote the limit by lim f(x) =1 L is called

%)

the right hand limit, Hence, the left hand limit of f(x) wouid be .

Al27., O

128, We noted that the graph of this function and the tangent line at
any point A coincided, so the equation of the tangent line at any point
on the graph of £ is __ .

a2h2, xi x>

243, Thus, Dx(x6) = Dx(zBo x3) - R




Al10, L’

11, et us now translate the notation for right and left hand limits
into Ax notation. If Ax approaches O from the right, then x1+ Ax

approaches x, and (x1+ Ax) is (greater than, less than) Xy This

means x approaches Xy from the right and we write x—> .

K128, y =k (or f(x) = k)

129, let us verify the above reasoning for the function f defined by
£(x) = k. For the point (2,k) on the graph of f, since m = 0, the equa=-

tion of the tangent line at this point is y = k = 0(x-2) or .

a3, 6::15

o, We know by Theorem 3 that if p(x) = q(x) = 3:39 p'(xl) = q'(xl) =



All. greater than, xl"

12, If Ax approaches O from the left, then (314- Ax) approaches X
(314 Ax)<x1, and we write x> .

_ﬂiu-k(or;(x) = k)

130. For the point (7,k), the equation of the tangent line at this

point is (in simplified form).

‘211!10 3:12
245, Consider the following table, £illing in the missing entries,
Rule Defining the Func- Derivative Evaluated
ign, Evaluated at x, at X,
3
x, -
2

—_— 3x,




ERIC
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Al2. Xy

13, Then lim  f(x) = lim ‘_f(xl‘* Ax) and 1im _f(x) = lim af(xf Ax) o

x*bxl Ax—>0 x-bxl Ax—>Q
The right hand limit is thus expressed as lim ‘_f(x.l* Ax) and the left
Ax—>0
hand limit is expressed as .
Al30, y =k

131, Ilet us now extract some of the common properties from the above
discussion. For any function £, we can express the slope of the tan-
gent line at the point with x-coordinate x, as m, = (1imit form).

3x12

2i, . From the preceding table, x13 o 3x124- x13 . 3x12- .




M3, lim _f{x,+ Ax)

Ax—>0 — LY
|
[
1, Consider the funotion £ discusded in the | 2
l
section on limits, defined by f(x) = 2—%{—‘:%0 .
Ly
For this function, lim _f(x) = 1im f(=1 + Ax) ' ! o A
Koo, Ax—»0 i -
=2 and 1im f(x) = lim f(-1 + &x) = . T
x->=1 Ax->0 |

A3, um 0y &) = £(x)
Ax-30 B

132, 8ince the point k has coordinates (xlg f(xl)) or (:c19 yl) we can

write the general equation of the tangent line at point X on the graph

of £, with slope m, , as _ °

6. 6x°

2h7. Ilet us now collect the iiuosmation rrom the preceding frames and
determine if a pattern exists in evaluating the derivative of the pro-

duct of two functions, We have:

It 2(x) = 0 = < 22, (x) = x111’ 2x)+ %, by (= 60‘15)

Iff(x 'xé-;ox,f'(xl)-xls.l 4.x1°511h(.6x15)

It £(x) = x° = < x, £7(x,) = x13. 3x1249:13° 3112 (= 6‘15)

If £(x) = w(x) » v(x), f'(xl) = w(xl) . .+ .t w'(xl).




A1, -2 [Notes If you do not recall this, take time now to convince
yourself that lim f(x) = 2 and lim _f(x) = =25

X1 K]

130 |
15, PFcr the nostage stamp tfunction discussed ‘ | |
S !
in the section on limitsy P = f{w), where P ; %zo |
is the postage and w is the weight, we have ) ;0 |
lim +f(S + Aw) = 30, where Aw is a variable., i ! E
Aw—0 ' Y s .

Also, lim £(5 ¢ Mw) = o

Aw—>0

K32, y-yy" m (x - xl)

133, For the exercises in Frame 115, write the equations of the tan-

gent lines at the indicated points,

K7, v(x), V()

248, In words the above pattern, [if f£(x) = w(x).v(x), f’(xl) - w(xl)o
v'(xl) + v(xl)vw’(xl)] states that the derivative of the product of two
functions, evaluated at Xy 9 is the sum of the first function multiplied
by the derivative of the function and the second function multi-
plied by the derivative of the __ function, assuming the two deriva-
tives exist, This generalization is true, as you will prove later, It

will be our sixth theorem, Enter this theorem on your list as Theorem

G




Al5, 25

16, Recall that the limit of a function exists as x=2Xx, if the limit
of the function as XXy through values of x greater than Xy is the
same as the 1limit of the function as XKy through values of x less

than x,. Thusgrg%.f(x) =1 if 1im f(x) = L and lim f(x) = .
p g X%,
1

A133,  (a) y = -2 (or £(x) = -2)3 (b) y = x5 (¢) y = x=1 (or x=-y=1=0)}
(d) y = 0 (or x-axis)s (e) y-3 = x42 (or X=y*5 = 0)

13%, Thus far, we have considered fanctions
. L (0)1)
whose graphs possess tangents at each point with

x-coordinate x,. Consider the function f defined ] (1,0)

by £(x) = |x-1]. Graph this function on your own

paper on axes similar to those at right.

A2L48, second, first

ol9. Tt should be noted that it is not necessarily the case that if the
derivative of one of the functions in the product of 2 functions doesn’t

exist at some point, the derivative of the product won’t exist at this

point, Consider w(x) = x + 2 and v(x) = , where v(x) does not pos-

1
x 42
sess a derivative at the point with x-coordinate 5" .




Al6, L

17. In our notation, A%i;gof(xf Ax) = L if lim cf(xlfﬂ- Ax) = L and
Ax=30

o

135, Referring to the graph of this function; note that the 2 lines
11 and 12 making up the graph and intersecting at point P with coordi-
nates (1,0) make angles of L5 and degrees, respectively, with

the positive x-axis,

AL, -2

250, However, for the product of the above functions, f(x) = w(x) °

v(x) = (x + 2) o(;-%“"éjal, f’(xl)- .

©

ERIC

Aruitoxt provided by Eic:



a7, lm {{x¢ &x) = L

Ax->0

A

18, We will begin the discussion leading to the derivative of a fune-
tion f evaluated at X Consider the slope of a tangent to the graph

of £ evaluated at a point on the graph whose x-coordinate is o

A135, 135

136, Choose a point B on the graph with an x-coordinate slightly
greater than x,= 13 i.e0y xy # Ax = 1 4 Ax = 1.1 where Ax = °
Indicate this point on your graph,

A250, O

3

251, Now consider f(x) = x2° x° where w(x) = x2 and v(x) = x3 o Here

w(xl) = and v(xl) = 0




Al8. X,

19, For the function f defined by f(x) = x29 we showed in the section
on limits that the slope of the tangent line at point P with x=coordi-
nate 1 is 2, Graph chis function and sketch the tangent line at the

» point with x-coordinate 1 on a separate paper for reference.

Al36, o1 Y

L
(N ﬂ’

P
,0)

137, For point B, a secant line PB is the same as the line °

A2510 x12 9 113

252, Then w'(x.l) = and v'(xl) = o

r

ERIC

Full Tt Provided by ERIC.




20, let us recompute this slope. Indicate the coordinates (xp,yp) of

point P on the graph.

Al37, 11

con

138, The limiting position of such a secant line PB as B approaches P

is line .0

2
A252, 2xy5  3x)

253, Thus if f(x) = X2 x39 f’(xl) = W(xl) ° v'(xl) + V(Xl) ° ﬂ'(xl) -

4' =2 o




7
A20,

y {0

o/ X

21, Consider a point Qs (xq,yq) on the graph of f defined by f(x) = x° 5

whose x-coordinate is slightly greater than 1j i.e. xq =] +« Ax, For

this choice of point @, 8x = X = 1 and is (greater than, less than) O.

Indicate such a point @ on your graph,

A138. 11

139, Since 11 makes a LY degree angle of inclination with the positive

x-axis, the slope of this line is °

b

K253, BX«lh 9 2*‘1 9 leb

25k, If £f(x) = %o x3, f(x) = :3(59 so by Theorem 3, f’(xl) = o

Do the two answers for f’ (xl) , obtained in different ways, check?




A21, greater than

22, Points P ard Q determine a 1ine which intersects the graph of f in
2 points in a deleted neighborhood of P. ILine PQ is called a secant
1line because, recalling our knowledge of a circle; a secant line inter-

. sects a curve in at least distinct point(s).

| A139. 1

140. Now consider a point A with x-coordinate slightly less than
x,= 15 1oee xp* Ax = 1 + Ax = ,5, Here Ax = o Indicate this

point on your graph.

A25ho gxlhg Yes

288, If £(x) = x(1=x), w(x) = x and v(x) = 5 SO w(xl) =

and v(x,) = o




K22, 2

23, Let us n.ow compute the slopes of secant lines PQ and see how these
slopes are related to the slope of the tangent line at P, For any 2
points P and @ with coordinates (xpgyp) and (xquq) respectively, the

slope m of the 1line PQ, if the slope exists; iz m =

AlhOo ""os

i

N,
P
A

¥ (1,00

141, For point A, a secant line AP is the same as line

K255, 1=X; Xy5 1=%;

256, Then for this function, w’ (xl) = and v'(xl) - 0




2, The slope of PQ will not exist if X, = in which case PQ is

parallel to the axis,

A1k1, 12

142, Since 1, makes a 135 degree angle of inclination with the positive

x-axis, the slope of this line (12) is o
Skip a page for the answer 1> Frame 112,

A256o ]L' "'1

257, Thus, if £(x) = x(1-x), f’(xl) - w(xl) » V'(xl) + v(xl) e "'(xl) -

+ = .




Rt il St AP" 4 £, vkl o

95, We will now investigate the existence of the slope of the tangent
line for the function T defined by f£(x) = 3:2 9 at point P: (1,1)o To

do this, we will compute the slopes m_= ;9'«--2 of secant lines PQ for

q P
several values of Ax greater than 0, and surmise the 1limit of the slopes
as Ax approaches O. Complete the table below, nouing the accompanying
grapho,
p‘yp =f{(x )‘ I ”f(x) Bx=x =X

I T

¥V, YTy Hx)-E (x))
Bf(x )y, msaxq“’zp *a p

(Pczl‘) i1 2 i i 3 3
(PQ) 1 1 1e5 2425 2,5
(PQ3) 1 1 1.1 1.21 o1
(PQh) 1 1 1,01 1.020L 01 20201
(PQS) 1 1 1.0001 1,00020001 ,001 .COC20001

y QQQ,

Q 3
i Qs"
2 1 —5

8257, x,(<1), (1oxy) 1, 1-=2x;

258, We could have found the derivative of the above function £ defined
by £(x) = x(1=x) in another manner. Do you see how? If £(x) = x(1=x),

f(x) =x = .x29 so by Theorem 5, f* (xi‘) = . Do your answers

check?




©

ERIC

JAruitoxt Provided

A25. 0.5 1.25
o2l 2,1
2,01
2 ..0007.

[ = D R P e

26, Note the pattern of values of m  in your table, Hexe &Ox = Xy xpo
As Ax gets smaller, reading down the table, the slopes n of the secant

lines get close to the value o

Alhe ) ='1

1,3, For the function f defined by £(x) = [£=2] at %,% 1, recalling

from the 1imit section the function f defined by £(x) = Ix|, you should

show that for the present function 1im.#f(x1¢ Bx) < f(xl) . lim &jﬁx] -
20 “rme v o et pren0 B
i Ax

Prurei - 4 N

s

4258, 1 - 2%y, Yes

259, If f(x) = szg f”(xl) a'w(xi)o vo(xi) + v(xl)o w'(xl) =

4 5370 °




6, 2

CRMR———) WCRCTX

27, We surmise that the limit of this sequence of slopes of secant

lines is probably .

Ah3, 1

1hli, For the function f defined by f£(x) = [x=1] at x= 1, reasoning

as above, you should show that lim _f(x. + &x) - f£(x;) _ lim {ax] _
Axe-DOxle L “ars0" Bx

A259, T ° 5x1h or 35x1h9 xlso 0 or O, Exlh

260, If £(x) = =6(x¢1), £(x;) = w(xy) « v/(x)) ¢ v(x)) o w'(x) =

+ 5660 °




K27, 2

28, We expect the slope of the tangent line to the graph of £ defined

by £(x) = x° st the point (1;1) to have the value .

Alhh [ ""’1

145. Thus, for f defined by £(x) = |x-1], A};gci(xl* 8x) = £(x)} ogar.
Ax

uated at x, (exists, doesn’t exist).

ﬁ260. ‘=’6 b 1, (xl" 1)0 0, 1

261, If £(x) = n(x0+ O+ £+ 1), £1(x)) = w(xy) e v/(xy) ¢ v(xy)e

W'(xl) - ° 4+ ° = 1 e °




A28, 2 (That the siope actually is 2 will now be shown.)

29, We will now comoute the slove of the tangent line at any point A:
(xlg yi) on the graph of the above function f defined by f(x) = 2,
For this function, another way of expressing the coordinates (xl‘9 yl)
of Kk, since y = 2 or £(x) = x°, is (%45 £(x;)) or (xy5 . )e Indi-

cate such a point on the graph of £ on axes as below,

4

X5, doesn’t exist (since 1im (x, rbx)=£(x) g 94 _ £(x, +ax)=2(x,)
Ax=>0 Ax Ax=>0 Ax

146, Iet us consider the function f defined by f{x) =1/x-2, Graph this

function on Yoy own paper.

3

A261, T, 5:11'+ 3%,%4 2x) 5 x15+ x ¢ 101, 0, 5x1h+ 3x, %+ 2x)

262, et us summarize our results from the three previous frames and
see if a general rule emerges,

If £(x) = 7% s £(xy) =7 o leh

If f(x) = =6(x+1) 5 f’(xl) = =bo 1

If £(x} = ﬂ(xsfmeg#l) 5 f'(xl) =q o (511 & 3x1 + 2x1)

If f(x) = k o g(x) where k is a constant, f'(xi) =k o .




Note: Your point A may have been
placed slightly differently.

30, Consider a point B on the graph of the above function whose Xx=coor=
dinate, ‘xl* Ax, is greater than that of point K. For this choice of

point B, Ax is (greater than, less than) O, Indicate such a point B

on your graph.

s,
!

IR

147, For this function, the domain is the set of all real numbers greater

than or equal to 2 and the range is o

A262, g'(xl)

263, The above gemeralization [if f£(x) = kog(x) where k is a constant,
then f'(xl) = kog? (xl)] provided g’ (xl) exists is a theorem which you
can easily prove from Theorem 6. 'k theorem which is easily derived

from an immediately preceding theorem is called a o




A30., greater than

K+OX

31, let us compute the siope of a secant line AB, The coordinates of

point B for the function £ defined by f(x) = x° ave (114# Ax, f(xl* Ax) )

or, since £(x) = :x?, (x.l'%* Ax, Yo

AlL7. the set of non-negative real mumbers

148, Referring to the graph of this function, at what point(s) would

the tangent line(s) be parallel to ths y-axis?

4263, corollary (Enter this corollary on your list.)

26li, The corollary, stated in words, says that the derivative of a
constant multiplied by a function of x is the constant multiplied by




A31, (x1+ Ax)2 (or xie‘% 2x1Ax + Axg)

32, For the points # »nd R whees enordinates are given above, the

. Yy~ Vo . ¢ Line AB 1 £x,+ Ax)wf(xl)
slope m_= —— of a secant line 8 eyl
8 xb xa (xl-i- Ax) xl , )
# impl (xy ¢ &) = %)
or if Ax 5 0 then we simplify -
(xl* ix) Xy

and

f(x1+ Ax) af(xl)
Ax

ge‘b o

A1L8., (299)

149, At what point(s) would the slope(s) of the tangent line(s) not

exist?

A26ly, the derivative of the function evaluated at x,, if this deriva-

tive exists i

265, ILet us now prove the theorem for the derivative of the product

of two functions. Theorem 6, If £(x) = w(x). v(x), f’(xl) = w(xl) o
¢ o s 0

v (xl) + v(xl) w'(xl)g if w (xl) and v (xl) exist, Before proving

this theorem, consider an alternate notation for w(xl) 5 w(x14- Ax) 5

v(xl) 5 v(xl+ Ax) , which will simplify the notation in our proof. Let

w(xl) * W, If x; changes by an amount Ax, i.e.; x = x,+ Ax, then,

since w is a function of x, LY will change by a corresponding amount,
which we will call Aw. Thus, w(x14- Ax) will be denoted by LIALE

Reasoning in a similar manner, let v(xl) be denoted by v, and let

v(x14 Ax) be denoted by 0




K32, 2114' Ax

33, Point B can be made close to point K by choosing Ax .

Alh9. (2.0)

150, let us now proceed to evaluate the slope of the tange.l to the
graph of the function f defined by f(x) =Vx-2 at any point with x-
coordinate X35 ard then consider the point where the tangent to the

graph is parallel to the y-axis, the point having x-coordinate x = .

A265, v, ¢ Av

266, Returning to the proof of Theorem 6; we will follow the four
steps in the "delta process" for finding the derivative of £(x) eval=
uated at x,. In step (1), if £(x) = w(x)o v(x), then f(xll- Ax) =
w(x1+ Ax) o v(x1+ Ax) = (w1+ M) o (v1+ Av) and f(xl) = w(x.l). v(xl) -




A33, small ("close to O% or similar wording)

f(x1+ Ax) = f(xl)
34, When Ax takes on values close to 0y m.= =

= 2:1+ Ax takes on values close to o

A150, 2

151, If we consider both right and left limits again; we can evaluate
£(x ¢ Ax) - £(x;)

Bt i at x = 2, It is not possible to evaluate
- f(xy+ &x) - £(x,)

Aiélo" 1 Ax ! at x,= 2 because .

‘266. ‘Hl' vl

267. In step (2) f(x1+ 4x) - f(xl) - (w1+ aw)(vlo Av)=- Wev, "
(simplified form).




nho 2x1

35, From the section on limits, we know we can rewrite the above con-
£(x 4 Ax)- £(x;)
Ax . Your answer should correctly complete

dition as 1lim
r,

the shaded x.

A151, the domain of f doesn’t include real numbers less than 2

f(xl* Ax) = f(xl)
Ax

152, 1In step (1) for finding lim
Ax—>0

f(x)=v/x=2, f(x.f Ax) E!\/thf Ax)- 2 and f(xl) = .

for £ defined by

K267, W, Av + vy© i + AW o AV

f(xl* Ax)af(xl) W.e AV + V.o M + Aw o Av

268, In step (3), = -t Lo

(expressing each term in the numerator over the denominator Ax)

Av“’ "Aw.% .

"W &




S I S v T

A35, Ax—>0

36, Thus, the slope of the tangent line at point A for the function
£ defined by f(x)= X may be derived from a line AB, where AB is &

1line to ths graph of f.

A152, \/x}"'a"

153, In step (2), f(x1+ Ax) = f(xl) = .

X268,

o

&
V1’ &

269, 1In step (L)

£(x ¢ &x)= £lx)) W, &

Pre Ax =i (v, % + 90 G 4 v
(1) = Jdp (o o AL1e 1 [v, o £21 +2ap [0 o &,
(2) = [lipw, )jiim, %]«r Limov, 11k, .,:_:_]
“igot g &
(3) = wye,lipo % + v o lip, R WHNCITR &

Supply reasons for (1), (2), (3).




A36, secant

37. Since point B can be made as close as desired to point A by taking
Ax small enough, a secant line AB has a slope close to the value of the
slope of the line at point A,

A153, Vix + 8x)- 2 -\/“"“""xf 2

15, In step (3), expressing the difference quotient,

f(xi* Ax)= f(xl)
Ax = °

k269, (1) The limit of a sum is the sum of the limits, if the limits
exist, (2) The limit of a product is the product of the limits, if the

1limits exist. (3) The limit of a constant is that constant (wl and 'vl

are independent of Ax and hence are constants).,

270. Recalling the alternate notation for the derivative of y = f(x)

evaluated at x, as f’(xl) = 3z %9 we have lime % - w'(xl) and

; ip _2.;.’:, = , if w'(xl) and v'(xl) exist,




f(xldr Ax)= f(x-l)

, thus gets

38, The slope of the secant line AB; m = e

as Ax gets close to O. Ve
f(xl*f Ax) = f(xl)
may express this condition as a limit, A&% 2%

H&O(le" Ax). This limit has the value o

close to the slope of the tangent line at &

Vix+ 8x)- 2 -Vx,= 2

A15L. =
£f(x,+ 8x)= £(x)
155, Finally, in step (), lim _ a e ! =
Ax—»0
A270. V'(xl)

271, The terms in the last line of frame 269 can now be expressed as

9a!ﬂ

_—Av. - L 4 -A—?-S L3
WoaklBe &x ™1 v(x)s Vi B " V1
Av
Ko & -adiBo & "o ¥ ——




A380 211

39, Thus, if f(x)= x° , We can express the slope of the tangent line

at a point on the graph of f, with x-coordinate X,y a8
£(x ¢ &x)- £(x))
R ax -

V(x# &)= 2 =Vx= 2
nss, um L 1

Vix,+ Bx)= 2 =V/xq= 2

156, If we try to evaluate lim v 5 We obtain g-,
Ax—>0
which is .
b

A271, w’ (xl) s V! (xl)

272, Thus, we have

£x ¢ 8)= £(x))

=, v (x )¢ v, w(x,)¢

a0 ax




339 o 2 x.l

R e i LT X o S

0, At the point 1,1) on the graph of £, x,= 1l For siope of the
tangent line at this point, m. = 2%, o M= o Does this answer

check with that surmised from cur table in frame 257

K156, undefined (or indetermisate)

157, Howewar, the above limit does exisi. To find 1ts value, we can

EK“*}’ ) = =
VIE S B 2 \/"“

express the differencs quobisut i, P E - in a different

form, You remember from the limit section that we rabionalize the

numerator by muitiplying botn nums wmw“gng"demmimtor of the expres-
| Y Xf AxJe 2 2 =% = 7]
sion ‘by\/(x + 8X)o 2 + *\/”w 2. Thus = 3 ==~ becomes

o

e 0 € e AT T T K Y

Py 0 w?
A272@~ﬁ;@:goﬂw) v ((xﬁ

273, The 1imit of the difference quotient on the left hand side of
. ' # < g Ve o W’
the expression in frame 269 is f (xl)o We have f (xl) Wye V (xl) +
o w? , o w2l O : .
V.o W (H)#A%go AW o v :(xzz‘)o Reviewing the statement of the theorem
on your list [if f{x)= wlxie ¥(X)y oo»] and comparing-this statement
to our expression for f’ (xl) in the preceding sentence, we must show

that the term (Eligo L) v'(xl) is o




Ao, 2, Yes

k1, For the point with coordinates (2,l), x,= so the slope of
the tangent line at this point is obtained from m, = 2x1 and is numexr-

ically .

Ax
dx( V(xy# Bx)= 2 +Vx= 2)

A157.

£(x,# ax)= £(x,)

158, let us now evaluate this limit; lim, i
Ax=3>0

1im
pes0’  ax(V(x* B= 2 +Vx - 2) ax>0"V(x* Bx)- 2 #VX = 2

o

|
:
|
E
i
E Ax ' = 1im 1 ]
|
|
|
|
|
|
!
:
|
I
{
|

K273, 2zero

27h, Since v’ (xl) is a constant, i.e., the value of the derivative

of v evaluated at a fixed or constant value X;5 W must show

= 0,

Aruitoxt provided by Eic:




g

A, 2, b

42, If we consider the points with coordinates (=5,25), (0,0),

;-zl, L‘%) on the graph of f; x,= 9 9 respectively and the
slopes of the tangent lines are 9 9 respectively.
K258, _.:,,._1'_“

2\/3:1- 2
159, Why can we write lim ax as

Ax-20" Bx( Vix* B)- 2 +Vx- 2 )
lim 1
Ax-20 \/(::14 Ax)= 2 4-\/;:1=» 2

?

‘ K27k, ARy &w

275, To do this, we must show that as Ax approaches O, Aw approaches
O. Consider the expression w(xl* Ax)= Wt b = w(x1)+ 8w, in terms of

our alternate notation, For w( X, * Ax), we see that as Ax approaches 0,

o vix* &) = y

Aruitoxt provided by Eic:

b LRIC
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43, Consider the function t defined by y = £ 4 X « 6 up £{%)= :xz# X = 6o
Graph this functlon and sketch tne tangend Line at the point P with x-

coordinate 2 on a separate paper for veferencs,

A159, Since Ax # O, tnt approaches 0, we can divide both numerator

and denominator of the differemcy quobient by &xo

160, Let us now consider tns pelnt ou the goapn of £ defined by
P(x)=1V/x = 7 wheve the tangent line is pavailel to the y-axis. This

point has an x-cooxdinats x, ™ )

CLLIMLT KT

A275, w(xl) (or wi) {Note that we must here assume the continuity
= —me  of the funchion W, a concept we will noi dis-
ouss o this unite)

276, If this is the case, then the right side of the above equality,

w(xl# Ax) = w(xl) ¢ bw, must approach the same valus w(xl) as Ax approaches

0. This is the sams as saying that as Ax approaches O, Aw approaches __ o




Lh. let us now compute the slope of the tangent line at point P: (2,0).
Consider a point Qs (xqsyq) on the graph of f defined by f(x)= x4 x=6,
whose x-coordinate is slightly greater than 23 i.e. xqs 2 ¢+ fx, For

this choice of @, Ax = Xq~ Xpo which is (positive, negative). Indicate

such a point Q on your graph.

A160, 2

161, The slope of the tangent line at any point (xl,,yl) such that

1l
> - — = =
11-213 llt 2,\/;1-:_ 'Y Ifxl 29 mt °

Skip a piga for the answer to Frame 161.

|
A276. © i

277. Thus, if Ax approaches 0, then Aw approaches O, so&g.go iw can

be expressed as AEEO Aw = AHO Aw and this limit has the value o




m D) Eaitin

-8 - -"

4S. We will now compute the siopes of sersnt lines PQ and surmise the

1imit of the slopes as Ax avproaches O, Compleie the table below,

noting the accompanying graphe

xp|Fpnf(xp) | g [7g=2(xg) | Axmey=x, -f(x:()ﬁl()xp) 'y %_Zi
(P))2 O 3 6 1 6 é
(P3))2 0 2,5 2075 545
(Pey)2 0 241 51 ol
()2 O 2,01 .0501 001 00501
(PQS) 2 0 2,001 ,005001 «001 «005001
4
[
X
A277. 0O

278, We have now proved the result required in frame 273, since

(iR, B v/(x))=0 - v(x)= .




A5, o5 2075
51 5ol
.01
5,001

L6, Note the pattern of values of m_ in your table, As Ax X~ %

gets smaller, the slopes m, of secant lines get close to 0

K161, undefined

£(x;+ 8x)= £(x,)

162, We see that 1im _ i evaluated at X = 2 is not
defined, so the slope of the tangent line for x,= 2 (exists, doesn’t
exist) . |

X278, O

279, Reviewing, we have proved the theorem that if f(x)= w(x)e w(x),
o = o W’ I ’ , 0

£ (xl) w(xl) v (11)4- v(xl)o w (x1)9 if w (xi) and v (xl) exist, We

can answer the mestion nosed in frame 230 that sought to determine if

the derivative of the product of two functions evaluated at Xy was the
same as the product of the derivatives of the two functions evaluated

at x,o We know from previous examples and Theorem 6 that the answer is




Aruitoxt provided by Eic:

ERIC

A6,

L7, We would expect the slope of the tangent line to the graph of f
defined by £(x)= x°+ x = 6 at the point (2,0) to be o

K162, doesn’t exist

f('xl‘* ax)= £(x,)
163. Since Ao i is the slope of the tangent to the

graph of f at the point with x-coordinate x,, we know that this limit
will not exist (will not be defined) at points on the graph for which

the slope of the tangent line assumes a (horizontal, vertical) pesition,

A279, no

280, We will next consider a function f defined as a quotient of two
functionsj i.e.y f(x)= ‘é{% for v(x) # 0. We know that the limit of
the quotient of two functions is the quotient of the limits of the

two functions, if these limits exist, so we shall want to investigate
if a corresponding relationship holds for the derivative, Since the
derivative of the product of two functions was not the product of the
derivatives of the functions, would you expect the derivative of the
quotient of two functions to be the quotient of the derivatives of the
o functions?




P TR T e

Al7, § {That the slope actually ig 5 will now be shown) .

T SR

118._ Now let us compute the slope of the tangent 1line at any point As
(x,57,) on the graph of the above function f defined by £(x)= x°+ x=6.
Graph this function on your own paper on axes similar to those below

and indicate such a point Ao Y

A163, vertical

164, Yet, we can write the equation of the tangent line to the graph
of the function f defined by f£(x)=V/x - 2, Recalling that this line
is parallel to the y-axis and passes through the point (2,00, its

equation is o

2280, You would not expect this to be the case, Read the following

proof to convince yourself,

281, The theorem reads: Theorem 7. If f(x)= %9 v(x}# 0 and

v(x,)e w(x,)= w(x,)e v/(x,)
[v(xy) iy

w'(xl) and v'(xl) exist, then f’(xl)-

provided 4 0o (Add this theorem to your listo)




Note: Your point A may have been placed
slightly differently.

R —

— X

9. Consider a point B on the graph of f, as defined above, whose x-

coordinate (xf Ax) is less than that of A, For this choice of point

B, Ax is (greater than, less than) O, Indicate such a point B on the

graph of f,

A, x =2

165. Consider the function f defimed by £(x)= %, Graph this function
X

on your own paper.

A281, v( xl)

282, Stated in words, the theorem says that the derivative of the quo-

tient of two functions evaluated at x99 assuming the existence of the

derivatives of the two functions, is the denominator multiplied by the

derivative of the numerator minus the numerator maltiplied by the deriv-

ative of the denominator, this quantity divided by




'
P a

B
5_1_120 less than 4

-3 _—:'L -—‘i ! ¥, X

X, AX X, \a/

50. Points A and B determine a secant line of the graph of f, the

slope of which will enable us to find the slope of the tangent line

at A, The coordinates of point B are (x,+ &x, £(x,+ 4x}), or since
£(x)= 3:2«0 x = by (114 Ax, Yo Indicate these coor-

dinates on your graph.

A_1_§2=1|Lx
N

166, The domain of £ defined by £(x)= X is the set of all real mmbers

except zero and the rangs of the function is °

A282, the square of the denominator, provided the denominator is non-

Zero

283, We will omit the proof of this theorem, which can be found in most
beginning calculus books, Iet us illustrate its use; however, If

)= 2, x 43, wlx)m o v s w(xy)e vzt

wix))=___, V(X))




A50, (x1+ Ax)z*(iI# Ax)= 6

o T KR

Vo ¥,  fle+ bx)= £(x,)
51, The slope of the secant line AB, m_= x:;w x: is h](Lxl rayeyps g;; =
£lx e dx)= £(x)) o (e ax) e (x,¢ &x)= 6]=fx12* x= 6]
T Mx T Ax =

(in simplest form ) if Ax # 0,

A166, the same (the st of all real numbers except zero).

167, From the graph of this funection, for what value(s) of x5 would

you expech the slope(s) of the tangent line(s) no. to exist?

A2830 X 4+ 19 X = 39 4 19 = 39 19 1
% *

(x50 wo(x )= w(x Yo v2(x;)
26k, Thus, £7(x,} = b “[ ’(fl )]: x)e vilx
Y

(%= 3)e 1 = (xy#1)e 1

(%= 3%
= (simplifying the rumerator), if x, £ 3




A51. 2x, ¢ Ax 4 1

52, Point B can be made as close to point A as desired, by choosing

sufficiently close to O.

R ——etT

A167. 0

168, et us proceed to show that the conjecture in the previous frame

is indsed true, You should verify that for £(x}= 2,

in £(xg+ dx)- £(x,) I N £(x,¢ ax)= £(x,) Y
A0 Ax 112 A io* Ax xi?
itx £ .

=i

T )

228k, (- 3)2

2
285, If f(x) = §§i=%§9 xj* 1 # 0, w(x)= s v(x)= 9
<+
w(x,)= s vixg)= s w(xy)= o Vixy)e o




N R

452, 4x

R ——CC———

£(x,+ 8x)= £(x,)

53, When Ax is close to 0, m = = = 2x,+ &x ¢ 1, 80

n, is closs to o

R168. ©

. P £xy+ &)= £x)) 4
165, Thus, if X F Oy m = Ai% e == =5 (exists,

doesn’t exist), gl

+1;, 2x¢+ 39 3x12

v(x))e w(x;)= wixy)e vi(x;)
[v(x,))?

3 3

A2850 x2+ 3!9 X+ 1’ 112‘7 3x19 xl

286, Thus, f'(xl)-

(x 3+ 1)(2x )+ 3)= (1% 3x) (3x,%)
(1134' 1)2 o

= (simplifying the mmerator) if x134r 1 £ 0,




‘530 2x1“‘ 1l

Sh., Thus, the slope of the tangent line to the graph of f defined by

£(x)= e x - 6 can be derived from the slope of the secant line AB,
£(x,+ Ax)= £(x,)
= "aiio(2xyt ax ¢ 1)

This slope can be expressed as&go

n69o exists
170, For X = 0, evaluating m= - -:!'3-9 we conclude m, is °
!
1
e R
32860 T 2
(x,7# 1)

2
287, If £(x)= ?;‘-{—'57, x # <h, w(x) = s v(x) =
wx) = sv(x)=___, w'(xl) * s V(xy) = o

m’




A5k, 2x,¢ 1

55, Kt the point (2,0) on the graph of f, x,= 2, The slope of the
tangent 1line at this point is m, = 211* 1 opr m, = o Does this
answer check with that surmised in frame 47?2

A170, undefined

171, For the function f defined by f(x)=V/x - 2, we Were able to write
the equation of the tangent line at (2,0) even though the slope of this
line didn’t exist, This was true because the tangent lire existed and
f(x)=Vx = 2 was defined at this point and had the value ____ .

2287, -7, xe+b; x=7, xelh, 2, 1

v(x;) e wi(x))- w(x;)e v/(x;)
[v(x) I

2880 Thusg f'(ﬁ)s

(xy+ b)o (25)= (x,°= 7)o

freih
= (simplifying the numerator) if 11;‘ =le
Your answer should correctly complete the shaded box,




Al?lo 0 ‘ 1

AS5., S5, Yes

56, Considering the points with coordinates (0,-6), (1,h); (%‘9.21)

on the graph of £, X, s P respectively and the slopes

of the tangent lines at these points are 9 s respectivelyo

172, For the functi-n £ defined by f£(x)= ;’gg this function not only
lacks a defined slope for the tangent line at a point with x=-coordinate
x,= 0, but £(x)= X is not defined if x;= .

x4 B+ 7 |
(x,+ 1) | | *

‘2880 1, xl‘ h"

3 .2 ' ’
289, If f(x)= l"h’ 7x3+ ox - h, 61,"-'22:34- 7x = 6 £ 0u(x)=
bx'= 2x"+ Tx = 6 o

"v(x)f ywix))= 5 v(x)e ' PR 29 L
v(x)e : I |
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57, Considsr the function f defined by y =125 = X% or £(x)=/25 = 2.
We showed in the section on limits that the slope of the tangent line

at point P with x-coordinate L was ”%», Graph this function and sketch
the tangent line at the point with x-coordinate L on a separate papsr

and indicats the coordinates of point P.

4172, 0

A T 4

173, It is not possible to write the sgquation of the tangent line to
the graph of the function f defined by f(xj= ?}? at a point whose x-
coordinate is % = 05 1.20, the tangent does not exist at this point,
because there is no corrz2anonding second element belonging to this

function whose first ~Ve#mant is .

.

1289, 30 TxPe 9x - b,  Gd'e 2504 Tx - 6, 3x 0= Txy o+ 9x= by

2
6x1h= 2x134' Tx,= 6, 9x12- lhxi*‘ 9, 2%1.13 - 63:1 + 7

v(xy) e wi(x,)- w(xg) e vi(x;) _
[v(x) 12

290, Thus, f(x)

if v(zzl);‘ 0.

Skip a page for the answer to Frame 290,




AS7. 4

5

-5 | - 5 .

1)
58, As for the previous functions, we will now attempt to arrive at

a reasonable value for the slope o1 this tangent line at (4,3) and
| then investigate if it is indeed the correct value for the slope.
Consider a point Q: (x_, ¥.) on the graph of f defined by
q” q
£(x)=1/25 = x?, whose x-coordinate is slightly greater than k3 i.e.,

%" i + Ax, where &x = X" _ is greater than 0,
i
5
TTENF D
- Q
T 2 X
Al73. O

174 Thus, in the case that the slope of the tangen®t line to the graph
of a function is undefined at a point with x-coordinate X9 it may not

. be possible to write the equation of the tangent line at this point if

o

. Skip a page for the answer to Frame 17i.




A58, x, (or L)

59, We will determiie if the slop#s 4f secant lines PQ approach a
1limit as Ax approaches G, Complete the table below, noting the accom-

panying graphical representation.
=

¥ =y, =
p q’p y.=y,. f(x )=f(x)
_ _ R ='q9%p ‘g D
xp ‘Z(xp %q | ¥q f(xq) Ax-xq X, f(xq) f(xp) m xﬁg X
P, b 3 LS 2,179 0.5
PQ; L 3 Lol 2,862 0.1 =1,38
mh h 3 ,-:001 2098662 001 "’001338
PQ5 L 3 4,001 2,99866 00 .

/1/»?00193&\ .
/ Qz
. ; 4438
A29o; ( 6‘1h;2x13*7x1-6) (9x12=1bx1+9) =( 3x13-7x12+9x1=b) ( 2);9(13@&12*7)
| (6,&1._ 2x 3¢ T2 - 62

291, let us sammarize our work., Wé have introduced the derivative of

a function f as the slope of a tangent to the graph of f at the point
with x~-coordinate X35 and have presented seven differentiation theorsms
and one corollary. You should now :review your list of these theorems
and the corollary. Following is a group of exercises you should be

able to complete using these theorems and the corollary.

() I 2(x)= (9% = I)(x+ x°= Ix = 17), £2(x))= .
(b) If £(x)= :ij : i’ x## %r'(xl)- ifx A1,
() If £(x)=(x"= 3), £*(x,)= :
2
(@ 1¢ £(x)= K23, 4p 0 45, £(x))e if x, A 5,

3 .2
(e) If £(x)= (,aa;)'h(cleg) if x £ 25«1, f’(xl)a if xl)‘ 25=1,




“0.821 =1.642

‘59 ° "0‘138 .
«1,338
-14333

60, As Ax = x'q‘- x, gets smaller, reading down the table; the slopes

m, of the secant lines get close to the value .

R
P TR »
S £ R

AT7h, f£(x) does not exist at this point

175, An example of such a furictiqn £ just discussed is defined by
B e b o A
£(x)= . CET

it XA ey
sy .
e Pooadmer

1291, (a) 36x>e6x, 2eBlx 125 [or(9x, =7} (3x, 242y b) #(x) “ox) =lix, <17)
xPon (22 (N=Tx 5 (2x)
9

3 .
(991, (b) (x12-1)2 or (x12-=-1)2 (¢) lx,”= 12x
. ERIN TR P ) 3 2 2 2
P ., “=3 15  (x,=5)(6x “=3)=x (2x. =3
(o by 2oy, (@) Ao PN O 4
L (x,-5) (x,-5)

(8) (x,2)(x41) (12x 2-1lix; )~ (lex, *-7x, 249) (22, 1)
(x,2)2(xy#1)°

292, We will intré&ﬁcé one more basic theorem to allow us to differ-
sntiate functions of functions, or composites of one function by another.
Let us first discuss the ;:ompésite of one function by another, or more
simply a composite function., By definition; a function is a set of
ordered pairs such that no two distinct ordered pairs have the same

element,




1600 © =10330000T Q‘%

61, We would expect the slope of the tangent 1ine to the graph of f
defined by £(x)=1/25 = x° at the point (k;3) to be o

A175, %

O — T —

176, It is also true that the slope of a tangent line to the graph of
a function may not exist at a point with x-coordinate X9 but it may
be possible to write the equation of the tangent line at this point

because °

T ————

2292, first (Review the definition of a function in the section on

1limits if you had difficulty answering this item,)

293, K composite function (or a composite of one function by another)

i8 defined by flg(x)] or (f o g)(x}. An example of such a function

f o g is defined by £[g(x)]=(f o g) (x)-[(x2+ 1) ]2, z = g(x)=
£(z)= 2lg(x)]= 22,




Abl, <=1.33...0r "—g- (That the slope actually is '% will now be shown.)

62, Now we will compu'be the slope of the tangent line at any point A:
(xlf' yl) on the graph of the above function f defined by f(x)=\/25 = x° 0

Graph this function on your own paper on axes s:ulil_ar to those below

and indicate the coordinates of point A.
Y

L (0,5)

TR

<T
o

=)

A176, f(x) is defined at this point and the tangent line existso

177. An example of such a function f previously discussed is defined
by f(X)' °

4293, x°+ 1

29L, For this function, an ordered pair belonging to £ o g is (4, __ ).

ERIC

Aruitoxt provided by Eic:




A 4%5?

A62,

(o) %10 (50)X

63, Consider a point B on the graph of the semi=-circle whose x-coor-
dinate, x1+ Ax, is slightly greater than that of k., In this case, Ax

is greater than 0, Indicate the coordinates of such a point B on your

graph,

Ai??o VX @_g

178, Thus far, we have considered the slope of the tangent line to

the graph of a function f, at a point on the graph of f with x=coor=

dinate Xy9 88 a Jimite A}EEO °

A29L, L

295, Other ordered pairs belonging to the function are (0,1), (2,25),
(=15 ), (3, . (Note here that we are emphasizing the fact that

a composite of one function by another is a function in the "ordered

pair® sense discussed in the section on limits.)




/

A B
ags, (%10 1050 //”“\\\(ﬁ+u@ﬂﬁ+un
or
(xis VES - %) (¢ bx, VES -(xg+ 40)%)
£(x, +Ax) ~£(x, )
6. The slope of a corresponding gecant line AB is m = =
or m = o

f(x14~ Ax) - f(xl)

A178, Ax

179, We then proceeded to show that this limit does not always exist
£(x, ¢ ax)= £{x;)

if&i.ggo —e is not defined (becomes infinite) or if
f(x,+ Ax)- £(x,)
lim _ 1 = 1y o

A295., Lo 100

296, Another example of a composite function f o g is defined by

(£ 0 &) (X)= £lg(x)] =
z-g(x)-x3

£(z) = flg(x)] = ____.

44444




A6k, V25 =(x,+ 1x)%-1/55 - x12

S I D T, N TR

65, When Ax is close to O, both numerator and denominator of
£(x,+ &x)- £(x;) V25 ~(x)+ 0)2-1/25 = x°

L = or m = Ax approach .

f(x.+ Ax)= £(x.)
K179, lim  —= e

Ax->0 b
2+ 83 £(x))
180. If&igo = o is undefined (becomes infinite) or if
f(x,+ Ax)= £(x.) (%, + Ax)= £{x.)
Yim 2 0 AP 1. we know that the
- Ax + X
Ax->0 Ax—>0

slope of the tangent line to the graph of the function, at the point

with x-coordinate x,, (exists, doesn’t exist).

A296, \/z_

297. Ordered pairs belonging to the composite function f o g defined

above are (1,1), (2,V8 ), (3,

—)

b (09____) »

Y L




Aé5. 0O

O ——— et

66. We will thus seek an equivalent expression, if such exists, for
the above algebraic expression, in order to evaluate its limit as Ax
approaches O, From the limit section, we know that we can rationalize

the mumerator of the expression by m1ltiplying both numerator and de-

nominator by .

A180., doesn’t exist

181. Following is a group of exercises for which you are to use the

information in the preceding discussion. (a) If £(x)=|x + 2{, does
£(x,+ ax)- £(x,)
A2 T for x,= 2 exist? A graph may be helpful in

responding, (b) If f(x)= 5:%’ find the equation of the tangent line

at the point whose x-coordinate is xf'- 3. (e) If f(x)=\/x # 5, find
the equation of the tangent line at (=5,0). (d) If f(x)= (x + 2),

find the equation of the tangent line at (=2,0), (e) If f(x)s\/:?',
find the equation of the tangent line at (0,0), (f) If f(x)= O+ x°

+x + 11, find the equation of the tangent line at (-1,10),

* A297, \/é—;f (or 3\/3_)L 0

298, let us now concentrate on recognizing the form of certain compos-
ite functions (or composites of one function by another). This ability
will be needed for the next differentiation theorem. Note that f[g(x)]
= (f o g)(x) denotes that £ is a function of g defined by g(x)= z and

g€ 18 in turn a function defined by the wvariable o

Skip a page for the answer to Frame 298,




166, /25 ~(x ¢ 82)%4\/25 - x)?

" S 0 ™ WK

VS ~(x+ Bx)2- /25 - x.2 _\/55 “(x+ &) 2= \/25-x,2
Ax Ax

67, Thus, if Ax £ O,

.ﬁs =V=(x1** AX)Z*\/QS - "12
\és ~(x,+ 8x)24/25 - x.°

£(x,+ &x)= f(xl)

A181, (a) No. For X, " 2, lim e =1 and
- (¢ &x)- £(x,) |
lim _ = =<1, (b) £f(x) is not defined for x,= 3,

Ax—>0

So the tangent line does not exiat at this pointo, (c) x = <5,

(A y=x+2;, (e)y=0(or x-axis), (f) y-10=2(x +1),

182, To summarize the discussion in the preceding section, you see

that there are functions for which the right and left limits exist but

£(x,+ Ax)= £(x.) f(x,+ Ax)= f(x.)
are not equal; i.e, lim + 1 Ax 1 / lim _ 1 e 1 o
: Ax->0 Ax—>0

Some of these functions; defined as follows, we have discusseds:

f(x)=}x - 1|, g(x)=\/x = 2. When it is the case for the function f

f(x,+ &x)=- f(x,) f(x,+ Ax)= £(x,)
that 1im _ ! = ! = 1lim _ i A% ! s Wwe know that
Ax->0 Ax—>»0

£(x,)+ ax)- £(x;)
a¥2Bo &

(exists, doesn’t exist).

Aruitoxt provided by Eic:
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= 2xl* Ax

A67,

\/275 =(x;+ 4x) 2, \/2;::?

68, Since the slope of a secant line AB can now be expressed as

= 2x1% Ax

ms=
T VB xpe b0PeVES - xy

9 when Ax is close to O, n, is close

to .

A182, exists

f(xl" AX)“‘ f(xl)
183, If Jimy i exists for the function f, we define

the derivative of f evalupated at xl to be this limit, The derivative

may also be considered a function,

Definition 2: The derivative of f, evaluated at X, is

f(x1+ Ax) = f(xl)
Ai&ﬂo = Af this limit exists, Add this definition to

your list. Referring to the "List of Definitions and Theorems," we

see that the derivative of a function f evaluated at xl is the same

as

X298, x

299, The composite function f o g defined by (f o g)(x)= £lg(x)]=

(xz* 1)2, considered in frame 293; can be defined in another way as
the composite of one function by another, Since (x2+ 1)2-\/(x2+ l)E,

we may write (£ o g)(x)= (p o q)(x) or pla(x)]=\/(x°+ l)Es z = q(x)=
(¢ DY, p(z)= plax)l= .




!

V25 = x12

69, Thus, the slope of the tangent line to the graph of f defined by

A68,

£(x)= \/25 ~ x° can be derived from the slope of the secant line AB.
f(x 4+ Ax)- f(x ‘)
This slope can be expressed as &4&0 i =

e
V25 ~(xy+ ax)2e /25 = 112 ) |

X183, the slope of the tangent line to the graph of f at X, (or an

equivalent expression)

18h, The derivative of f, evaluated at x,, is sometimes denoted by
o s f(xy# Ax)= £(x;) .
£2(xy7 3 1080y, 3im, e = f (xi)o Other notations for the

derivative are y’, D.¥s %xxo Differentiation is the name given to the

process of finding the derivative of f evaluated at X0 Thus, we dif-

ferentiate f(x) to find o

K299, \/z_

300, The composite function f o g defined by (f o g)(x)s(x24= 1)2 may

also be defined by (m o n)(x)= m[n(x)]= (\3/ 3:2+ 1 )6 where n(x)=

and m(z)= 20,




b

::xl

Va5 = x1§

A69,

70, At the point on the graph of f with coordinates (L,3), x,= k.

cxl .
V25 = 112
Does this answer chack with that surmised in frame 612

The slope of the tangent line at this puint is m, =

f(x1* Ax) = f(xl) dy
K18k, £°(x,) (O?A%Agc T s ¥'s D¥s agy i

; 185, Theorems exist that considerably simplify our work in computing

this limit., We will now proceed to prove soms of these theczems, called
f(x1+ Ax) = f(xi)
Ax

derivative theorems. f’(xl) = Ll 5 if this limit

exists and is the | of the function f evaluated at X 0

t £300, FxPe1

I 301, Thus, you see that a function has more than one representatiocn
as a composite function = = in fact;, an infinite number of such

representations, Can you think of other ways in which (f o g)(x)=

flg(x)]= (x?* 1)2 is a composite of one function by another, different
from the above representations? Some other representations follow,
which may be the same as or different from yours, Check your results

with your teacher if you have questions,

ERIC
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A70, ‘”%, Yes

71, Considering the points with coordinates (0,5), (=h,3), (1,12k)
on the graph of f, the slopes of the tangent lines at these points

are 9 9 respectively.

K185, derivative

186, We have already proved two derivative theorems in the first sec-
tion of this program that enable us to find f’ (xl) for the function f

evaluated at x.l. The first of these theorems is suggested in frame 97,

Theorem 1: If f(x)= k, £’ (x1)= 0. (Add this theorem to your list,)
In words, this theorem states that the derivative of a constant func-
tion is °

%8
por, [2e )] , (ARt VPenb

302, Consider the second composite function f o g given above, defined
by (f o g)(x)= f[g(x)]a'\/XBQ x 2 0 which may also be defined in a dif-

ferent way as the composite of one function by another. Since x3 =
(VE)?, we may write (£ o g)(x)=(p 0 9)(x) or plax)]= (V)
z = q(x)}=Vx, p(z)= pla(x}]= ____.




A71. O, «;319 ‘”\g

72, let us now consider the identity function f defined byr f(x)= x.
We wish to compute the slope of the tangent line at any point A, with
x=coordinate Xy ON the graph of f, Qraph this function on your paper

and indicate point A, using axes similar to those below,

Y

2186, zero

187, This theorem is equivalent to the statement that the slope of
the tangent line ‘at a point with x=coordinate x to the graph of f
defined by f(x)= k ia .

X302, 23

303, The composite function defined by (f o g)(x)= f[g(x)]= \/;5- may
also be defined by (m o n)(x)= m[n(x) )= \"/xE where n(x)= and

n(z)= ¥z,




73. The point X has coordinates (xl, f(xl)) or since f(x)= x,

(xlg ..._,.,.) o

K187, zero

186; The second theorem concerns the derivative of the identity func-
tion f defined by f(x)= x, which we showed in frame 85 was one,
Written in mathematical notationg; this theorem states:

Theorem 2: If f(x)a x; £7(x,)= o (Add this theorem to your list,.)
theorem c oS R

2303, x°

304, We have now expressed (f o g)(x)-'\/x3 as the composite of one

function by another in three ways, Can you think of other ways, dif-
ferent from the given three, for which (f o g) (x)-\/x3 is a composite

of one function by ancther? Some such representations follow,




A73, xl

74, Consider & point B <. uwi graph of f whose x-coordinate, x,+ Ax,

is slightly greater than that of point A, For this choice of B, indi-

cate this point on your graph,

A188, 1

189, This theorsm is equivalent to the statement that the slope of
the tangent line to the graph of £, defined by f(x)= x evaluated at

a point with x-coordinate X35 is °

2 2
mh.%c:,}/:‘c’zg%ﬁ

305, Consider the composite function f o g defined by

.
?/x*l

- 1
or f{g(x)]= (x + 1) 3 where g(x)= x + 1 and £(2z)= _ _—

1
(£ o g)(x)= =(x+1)” 3, if x £ -1,




75, Points X and B determine a secant line of the graph of f. In this

case, such a secant line AB coincides with .

X189, one

190, A useful theorem concerns the derivative of a power of xy the
function f defined by f£(x)= x"; where n is a positive integer. For

f(x)= xz g We saw in frams 39 that £’ (xl)- °

N

1 322

=-1 -
A305, z 3 (oFV/z) or °

-1
306, The composite function f o g defined by (f o g)(x)= (x¢+1) 3

may also be defined by (p o q)(x}= (Vx * 1)-'1 nnere q(x)=

and p(z)= .




>

A75. the graph of f (or equivalent wording)

76, We know that the slope of the line which is the graph of f defined

be(X)' x1is o

5‘1900 2X1

191, For £(x)= 50, (see the first term of the expression in exsrcise

161(£)) you can conclude £ (%)= .

\3/x+1

‘3060 zl (or %)

-1
307, The composite function f o g defined by (f o g)(x)= (x + 1) 3

may also be defined by (m o n) (x)--\/:3 (x ¢ 1)"! where n(x)=
and m(z)= o




AT6, 1

T T N~

77. The tangent line at A coincides with °

K91, 3x,°

192, For f(x)= x, f(x) is a power of x, namely the pover,

1

K307, (x + )71 (or ;—1—'—1-)3 Yz~ (or 2°)
-1

3

308, Can you define (f o g)(x)= (x + 1) as a composite function by
representations different from those cited above? Some such represen-

tations follow,

ERIC
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AVi, the graph of f (or equivalent wording)

78. Thus, the slope of the tangent line at A is o

K192, first

193, For f£(x)= x = x*, we showed in Theorem 2 that £(x)= ___.
-1

1 =
B8, 1, [x+2E, [xen)?®

4 ;i L

309. Pollowing is a list of functions you are to define as composite

functions in two other ways as indicateds
(al) F(x)=(f o g)(x)= x where g(x)= x3, £f(z)= flg(x)]= zm.

(a2) F(x)=(f o g)(x)= x where g(x)= x, £(z)= £lg(x)]= z7o

(b1) H(x)=(£ 0 g)(x)= % = x™1

» X 40, where g(x)= x°; £(2)= £[g(x))

(b2) H(x)=(f o g)(x)= xﬂ, x £ 0, where g(x)= x, £(z)= £g(x)]= zcl.

=3
(e1) Q(x)=(f o g)(x)= (\7;1_-’)3- x 2, x > 0 where g(x)= xy £(2)= £[g(x)]
x

-z .
-_3_ -
(c2) Qx)=(f 0 g)(x)= (2)3= x 2 uhere g(x)=x , £(z)= £[g(x}]= z~L,
X

(1) P(x)=(f o g)(x)=

- 1 = vhere ()= 1+ x, £(2)= [6(x) - 2"
+ X

|

(42) P(x)=(f 0 g)(x)= ———> where g(x)=(1 +x) , £(z)= £lg(x))]

(1 +x)
=z ,
(e1) G(x)=(f o g)(x)=V1 - x°, -1 € x £ 1, where g(x)=(1 - )2,
£a)= Llg()Tm o s
(e2) a(x)~(£f o )(X)=VA1 = x®), =1 S x 5 1, where g(x)=(1 - 12).a |
£(s)= £[g(x) ]= 2>,




A78, 1

T — T ——

79. et us compute the slope of the tangent line at point & for this
function and check it with the above reasoning, The coordinates of

point B are (x,+ &x, £(x,+ Ax)) or since £(x)= x, (x,+ 8%, )e

K193, 1

194, Iet us now arranse the results of the previous frames, If

£(x)= xl, f”(x1)= 1. xll'_:l- 1e xlo.. l1e1=1
£(x)= 22, £9(x))= 20 x,° 0= 2x = 2x)
£(x)= 2, £2(x))= 33 e 3x,°

£(x)= o, £9(x) It e

Bos. 3 @ F @ DG (2%

(1) «2, (d2) b, (o)) F, (e2) g

310, Cgnsider once again the function G defined by G(x)=Vx - 2 =
(x = 2)2 discussed in frames lhéil6h. G is a composite function de-

fined by G(x)=(f o g)(x)=(x = 2)E where g(x)= x = 2 and f(3)= z..




A79, x1+ Ax

8o | : b= Ya (x)¢ &x)- x)
o The slope of a seczant line AB is n= X, or m.= (11‘ x)- %

= if Ax ¥ 0.

A19L, hxl3

195, Generalizing to the nth power of x, we surmise the following

theorem: Theorem 3: If f(x)= x", where n is a positive integer,

f”(xi)s o (Add this theorem to your list,)

310, %—

1 —, a8 given in frame 158, can

2\f£'12"2'

311, For this function, G’ (xl)-

1.1

=1
also be expressed as written G"(xl)-l(xf 2)2 « (1)=1 (xle 2)2
° Dx(x = 2)e




A0, 1

81, Point B can be made as close to point A as desired because

41950 n.x1n=1

196, To prove this theorem, we proceed through the four steps for
finding £’ (xl) as before, In step (1), if £(x)= x", f(xl)-

and f(xlb AI)' -
1 1
Buo i, ’E

nNf=

312, Thus, if G(x)= (x - 2)°, G'(xl)- (rewritten form).

ERIC
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AB1, Ax can be chaseij clase to © but greater than 0 (or equivalent

wording)

82, When Ax is close to 0O, the slope of a secant line AB; m
_ £(x, ¢ ax)- £(x,) ) (x)¢ 8x)= x,
Ax Ax

; is close to if Ax F 0.

n96. 3" (x¢ 80)”

197, We note that f('x1+ ax) =(x, + Ax)? can be expanded by the binomial

theorem, since n is a positive integer; Thus,

(x,+ Ax) " xln* -l%,.*' xln 1. oax 4+ ﬁ-gi:]-'l Hn=2. (ax)%+
+ S, where S is the sum of other terms, all of which

contain Ax with exponents greater than 3 if n > 3,

1.,

2, 2(x-2)° Dx-2)

313. Let us now consider the function H defined by H(x)=1/x°- 2x.
1
His a composite mnctioi, i.009 Hx)=(f o g)(x)-(x - 2x)2 where

g(x)=(x- 2x) , £(z)= 22,




AB2, 1 (Note that m, is independent of Ax.)

£(x,+ Ax)- £(x,)
Ax

83, We can rewrite the above statement as ABO

g 1 *

.u97° nSnj}iESanQ xlnwz_ Ax3

) , o Ve (v n _n
198, Thus; in step (2), f(xf Ax) = f(xl) (xlf Ax) X, 0 If we sub-

stitute the expression for (x ¢ Ax}" deriwed by the binomial expansion,
we get f(xl* Ax) = f(xl)s

n
axl.

A313, 1

31ly, let us compute H’( xl) by the only method we have at our disposal
at this time, that of applying the four steps of the delta process,
For H(x)=Vx"~ 2x, H(x;)" and H(x+ &x)= .




AB. 1

8L, What 1imit theorem did you use in the above evaluation?

198, x M Do x "l gx o HED o 02, o2 a-Li(n2) , 13,
A;éq- S

199. Simplif"ying f(x14- AX)" f(xl)'(xln* ";"1‘. xln?l‘ AX 4 c00 * Axn)
- xln we cbtain f(xlﬂﬂ- Ax)- f(xl)-

A3k, \/x12= 2x15 \@f ax) - 2(x,+ Ax)

H(x,+ Ax)= H(x,)
315, Combining steps (2) and (3), 1 = o .




Aeho ;g‘k =k

85, Thus, if f(x)= x, the slope of the tangent line at any point on
the graph of £, with x=coordinate X5 has a value

X199, %. . 1, Ax*ﬁ;i_r%lxl 2 BSEﬂ-%&B‘Zglxln'3a ‘,943

0

fix, + &x)= £(x,)
200, In atep (3) e !

Ax
D _n=l n(n 2 nnl n=2) _ n=3
B e 2 02 e 5> w0 8
Ax

(dividing each term by £x).

\ﬁxr* ax)2- 2(xy + Ax)a\/x;za 2x

A315; e 1

H(xld- Ax) = H(xl)
316, In step (k) oo e

\/(xl* Ax)2= 2(x14~ Ax)=\/x12«= 2x,

=B e o letting Ax approach 0, we

obtain .




AB5. 1.

86, For the point with coordinates (0,0), on the graph of f; the slope

of the tangent line is o

- WY ngnmlz n=2 n(n-1)(n-2) _n-3_ ,2, 8
A200, n * x4 Ax # Xy bx"+ &=

f(xl* ax)= £(3,)
201, In step (4),,3im, = = = Mg, (n 14 the sum

of terms, each containing Ax) . and since the limit of a sum is the sum

of the limits, ve haveJig: n o x," "4 2w, (the sum of terms, each
containing Ax). This is equal to °

O which is undefined (or an indeterminate form.)

A316. 0

317, Recalling the procedure employed in such a case from the section

on limits, we rationalize the numerator of

\le" ax)- 2(x, + "‘)"‘Al—z" 2%y 4o obtain
Bx




AB6, 1

R ———

87, For the points with coordinates (1,1), (w,w), (10,10), the slopes

of the tangent lines at these points are

9

respectively.

A201, n o xln"l

£(x.+ Ax)= £(x,)
202, Thus, f”(x)s&égo ! ! =

frame 195, does this result prove the theorem?

2x, bx + AxPe 28x

A‘Bl?o m—
ax(Vixys 5% 2(x¢ m0)ev/x 2= 2x))

318, In evaluating the limit now,

2x,Ax + AxP 2Ax

A . Referring to

A;;?EO s We can divide both numer-

Ax( \/(x1+ ax) - 2(x, ¢ Ax)*\/xlz= 2x,)

ator and denominator of the difference quotient by Ax;, because




AB7, 1, 1, 1

88, For any point P having coordinates {nyn) where n is a real number,
the slope of the tangent line of the graph of f defined by f(x)~ x is __ ,

2202, n o x1n°19 Yes

203, This theorem is sometimes referred to as the power differentia-
tion formula, Using this theorem, if f(x)= ; 9 f”(xl)a 5:(1,"0 If
f£(x)= 3:79 f”(xi)s °

k318, Ax is not equal to zero but gets as close to zero as we choose,

2, Ax ¢ AxP— 28x

3190 Th 9
it — = :
Ax( (xl* Ax) = 2(x1+ bx)é\/x; = 2x1)

2114’A‘x=>2

gt

(\/(xf ax) - 2(xy¢ Ax)*\[xii 2x,)




A88, 1

89, let us consider the constant function f defined by f(x)= k, where
k is any real number, We again want to compute the slope of the tan-
gent line at point A, with x-coordinate X3 to the graph of f, Graph
this funetion and the point A on axes similar to those below, on your
oWn paper, Y

10 k)

2203, 7x,°

20k, It will be proved later in your calculus course that if f£(x)= x,

where n is any real number, not simply a positive integer, it is still

trae that f”(xl)a nxlnmlo If L L _ 1

2 1
f(z)= x39 f’(xl)a g! “’@:3 = % xl?o

o

If f(X)s x-g, fp(xl)s as . xlasqls

2x. - 2
A319 . 1

2 \/xfa 2x1

if312=2x1>0(orxi2orx§0)

2x.= 2
320, The above derivative can be rewritten xl = Q(xlz- 2x1)2

1 2VE = 2xy

cm ey

(2x,= 2) = E(xf- ?xl)z ° Dx(xa-» 2x} o




K89, A !
(I

X, X

90, The graph of this function is a line whose slope is ____, so from
the preceding discussion, do you think it would seem reasonable to
assume that the slope of the tangent line at point A has the same

' mmsrical value as the slope of the graph of the function?

mw.a5°ﬁ%

-1
205, If £(x)=x |, £/(x)=

1 1
A320o "é"

29

321, Thus, if H(x)=\/x2=- 2%, H‘(x.l)- (rewritten form) .




A90., 0, We will see.

91, Choose a point By, with x-coordinate X, * Ax, Ax < 0, Indicate

point B on your graph.

<

8
. =1, 7
A208. 70X

V16

206, If f(x)=x f”(xl)ﬂ o 0

1

21, 3(x°- 2x)° Yo (- 20
1
322, Consider the function P defined by P(x)=V/x - 2x% (x = 2x2)2o
1
P is a composite function defined ty (f o g)(x)= (x - 2x2)2 where

g{x)= x - 2129 £(z)= flg(x)]= 2 ﬁ'.




(0,K)
x'-m/'( x‘ Q

respectively,

V10 = 1
K206, \/fc')'-xl

X

92, The coordinates of points A and B are (xlgk)p (

207, K useful theorem concerns the derivative of the sum of two or

more functions, Recalling the example in frame 5L, f£(x)= 2ok X - 6,

£ (,cl)a 2x,¢ 1, From the three theorems we have already proved for

the derivative of f evaluated at X, (you should have these on your

list) , we know that the derivative of

2

1
53220 "2"

al_

= 3lx;- 2x) )?

T T T e T e e T T
.

the expression x"+ x = 6, evaluated at X,y is

L] - < <1
D(x=-__ _ )ifo3x

X~ which is the first term of

o

Z.-1
323, You should verify that P'(x)= 5(x- 26%)% . (1 = Ix)




. Yy~ Ya
93, The slope of a sicant line AB, m = =—2~ becomes
a
f(xl" Ax)':’ f(xl) . k k o
Ax Ax el

A92, xl"' Ax,? k

208, The second term of the expression xz# x - 6, which is x, by

Theorem 2, has a derivative of ____ o
323, 21

30l;, et us now collect the results of the previous frames and deter-

mine if a generalization can be formed concerning the derivative of a

composite function,
1 1_4
1r 6(x)=(x - 2)2; 6*(x;)= F(x~ 22 oD (x=2)
1 i_,
If H(x) -(x2=» 2x)2 g H? (x1)= %(xlza 2::1)2 ° Dx(xze 2x)
1 1_4
12, P(x,)= 3(xy= 25 9)°

It P(x)=(x - 2x° + D (x - 2x%)

1t F(x)=(f o g)(x)=[g(x)]"; F'(x;)~ n[’g(xl)lo g'(x).




A93, 0
9L, The slope of the tangent line at point A can be expressed as a
limit as . R
€
A208, 1

209, The third term which is =5 by Theorem 1, has a derivative of o

Ajgh ) n“'l

325, It should be noted that all composite functions are not powers
of a function of xo 4An exampls of such a composite function is the

trigonometric function £ o g defined by (£ o g)(x)= sin(x°¢ 7} where

g(x)= s £(z)= sin 2z,




£+ )= 2(xy) -
a9k, Jimo = or 3o kAx or Jigi; 0

95, The numerical value of the slops of the tangent 1ine at point A

is thus °

CCIC——"

A209, O

R — )

210, Combining the results of the last three frames term by termy if

f(x)= Xo# X = 6, £’ (x1)= . Dces this answer agre® with that
obtained in fvame Sk for the slope of the tangent line to the graph

of £ at a point with x-coordinate xl‘?

2325, x°¢ 7

326, Thus, the generalization in frame 32) (If F(xj=(f o g)(x)
=[g(x) ]ng F’(xl)- n[g(xl) ]n«=»1° g'(xl)) is a special case of our next

theorems:

Theorem 8, If F(x)=(f o g)(x)= £[g(x)], and f”(g(xl)) and g"(xl)
exist, F"(x.l)- f'[g(xl) Jo g’ (xl) . (add this theorem to your 1list.)
The generalization in frame 32l states, for a composite function con-=
sidered as a power of a function of x; that £o[ g(xl)] as given in the

theorem is the same as as given in the generalization,




A95, ©

96, What limit theorem did you use in evaluating the above limit?

A210, 2114- 1, Yes

211, In exercise (d) of frame 181, if f(x)= x + 2, f”(x1)= 1. The
first term (x) of the expression x 4 2 by Theorem 2 has a derivative

of o

X326, n[g(xl) ]n=1

327, We shall be primarily concerned with composite functions con-=
aidered as powers of functions of x in this unit, Hence, we will
state the generalization in frame 32l as a corollary to Theorem 8
and use this corollary in the remainder of the discussion,

Corollary: If F(x)=[g(x) 17, and g’(x,) exists, F/(x,)= nlg(x) -1

0 . (Add this corollary to your list,)




K96, B&ak sk

97, Thus, if f(x)= k, the slope of the tangent line at the point on
f(xl+ Ax) - f(xl)
the graph of f with x-coordinate e is mf&égo 2% = .

A2ll, 1

212, The second term (2) of the expression x + 2, by Theorem 1, has

a derivative of e

A327, g° (xl)

328, We will not prove this theorem or its corollary, the proof of
which may be found in must beginning calculus books, Theorem 8 is

sometimes referred to as the chain rule differentiation formula be-
cause F'(xl) is expressed as a chain of derivatives, namely

in number as we have stated the theorem, More derivatives may be in-

volved, depending on the complexity of the composite function,




A97. O

98, To answer the question raised in frame $0, "Is the slope of the
tengent line at any point A on the graph of f defined by f(x)= k the

same as the slope of ths line representing the graph of 2%, we can

now answer 0

A212, O

213, Combining the results of the previous two frames term by term,

if f(x)=x + 2, f“(xl)- — . Does this answer agree with the

one obtained as the slops of the tangent line in exercise (d) of
frame 1817

A32 80 two

329, let us consider how the corollary, on which we will focus our

attention, is used, If F is defined oy F(x)=1/25 = x°, for

=5 Sx 85, Fis the composite function defined by (£ o g)(x)
1
= £[g(x)]= (25 - x°)? where g(x)= 25 - x°; £(z)= for

5 sxs5.




A‘980 "Yes™

99, Let us now generalize our above discussion. Consider a function
f such as the one whose graph appears below, The coordinates of points

A and B are ( 9 ), ( ’ ) respectively,

/ o X +AX o

X213, 1 40=1, 7Jes

21li, In exercise (f) of frame 181, if £(x)= x34~ 124- x + 11, f”(xl)
= 3x12* 2x14r 1., The first term of the expression has a derivative

of ; the second term a derivative of s the third term a

derivative of and the fourth term a derivative of 9 Gach

evaluated at xl.

1
A329., 22 (or\/z)

1
330, F(x)= flg(x)1=[g(x) ]2. The corollary to Theorem 8 states that

if F(x)=[g(x) 1™, then F’ (xl)- n[g(xl) ]n-l. g'(xl) where, in this case,

n= o

A




499, 119 f(xl)p x-l" Ax, f(xl" Ax)

100, Referring to the graph of f with points A and B, point B can be

made as close to point A as desired by choosing Ax o

A21k, 31(129 2%y 1, ©

215, Summing the derivatives of eacb individual term, we see that

for this example, as in the previous example, the derivative of a
sum of functions is the of the derivatives of the functions,

N

K330,

Nf =

, g(x)= 25 = x°

331, For the composite function F(x)= f[g(x)]=(25 - 3:2)

8o g(x;)= o

I P T




A100, close to 0 (or eguivalent wording)

101, If a point B’ were chosen to the left of point A, such that

Ax < 0, the coordinates of point B’ would be ( 9 Yo

216, From this we surmise the following theorem, which reads in
mathematical notation:
Theoxem Lo If £(x)= g(x)+ h(x)4 m(x)< ... + z(x) and g"(:t:._,'_)‘9 h’(xl)9

m”(xi) 0ce 2"(3:1) exist, then f”(:;l)s .

(Add this theorem to yourliist.)

K33, 25 - x,°

332, Fer the above composite function, g(x)= 25 = 12, so g”(:ti)*i




MO0l, =4 Ax, f(x¢ Ax)

102, The points A and B will determine a secant line having slope

TP 4 £f(x.+ Ax)- £(x.)
mBb a or 1 1 _ .

S X,° X3 (x, ¢ Bx)- x,

216, g’(xl)ﬂ- h”(xl)* m”(xl)* soo ¥ z"(xi)

217, let us formally prove this theorem for the sum of two functions,
We will proceed through the four steps to find f"(xl) for £(x)= w(x)

¢ v(x), Step (1) for finding the derivative of f(x) evaluated at Xy 5
gives f(xf Ax) = w(xj_*ﬂ" Ax) ¢ v(xl* Ax) and f(xl)a 0

A332 . “"2x1

A o

333, Thus, if Fix)= g(x)“,
n=1

F'(x;)= nfg(x) " 7 g°(x)
1

=1
F(x)= 5025 - 3307 o (-2x))

= (simplify your answer leaving a negative exponent

on the quantity (25 - xlz)) 0




£(x,# Ax)- £(x,)
Ax

A102,

103, The siope of the tangent line at point A, considering B to the
right of point A, or B’ to the left of point A on i graph £ f, can

be expressed in terms of a limit as _ .

£17, w(x,)+ v(x;)

218, In step (2), f(xl‘ﬂ' Ax)= f(xi)
= [W(x ¢ 8x)¢ v(x, ¢ ax) 1= [W(xy )+ vixy)]
= w(x,+ Ax)+ v(x;+ Ax)- w(x;)= v(x,)
(grouping like terms)

= [w(x+ Ax)QIW(xl) J#l____ Jo

-1

133, -x,(25 - x°) 2 (Note that this expression may be rationalized.)
z

334, If F is defined by F(x)=(x%= 2x = 3)2, X~ 2x = 32 0, F is the

7
composite function (£ o g)(x)= £lg(x) ]!(x2= 2X = 3)2 where g(x)

= x°= 2x = 3, £{2)= .

CHNPRMEr IS




f ax}= £
Al03, K;ch_t_go ——(-xf Ax) (xll

I e T P

10ii, From the sketch of the graph of this function f, since the tan-
gent line at a point is unique;, we see that this notion can now be
visuaily reinforced, Since the tangent line at A is unique, the value

of the slope of the tangent line at A is o

A218, v(xl* Ax) = v(xl)

219, In step (3),
fx, ¢ ax)= £(x;)  [w(xy¢ Ax)- w(x,) J#lv(xy# ax)- v(x;)]

Ax Ax

= [w(x,+ dx)- wix;)]
~ Ax

z
ABB’J o 22

4
335, F(x)= £[g(x) ]=[g(x) ]29 so we use the corollary to Theorem 8,

which states that if F(x)=[g(x)]", F’ (1:1)Eg n{g(xl) ]nmlo B

e




A10k, unique

105, To summarize our discuzsieon un tn this point, we see that there

r(xl% Ax) - f(xl)
are functions for whichﬂ%:_l_go —— i

functions that we have discussed are definzd by f(x)= x2 s g(x)= X4 x

exists, Some of these

(x4 Ax)= £(x,)
= 6; h(x)=1/25 = x°; p(x)= x, q(x)* ko When, Jim, e Ax 2

exists, we define as this limit the slope of the tangent line to the l
1

graph of £ at the point with x-coordinate X0

Definition 1: The slope of the tangent line to the graph of £, at the
f(;;l4 Ax)= f£(x
Ax
(Write this definition on the enclosed sheet headed "List of Definitions

)
1., if this 1imit exists.

point with x-coordinate Xy is A%;_.go

|

and Theorems,")

azzy, [Wx ¢ ax)e v(x,)]
Bx

£(x ¢ Ax)= £(x,) % %)= w(x,)
220, ThusgA;igo xl*Ax (xl EAM [w(xfr Ax) ‘w(xl

. v(xlé’ Ax) = v(xl)]

Ax
(y%i w(xlo :;)a u(xl) - ;ég v(xl* ::)“ ‘”(3‘1)

(2)
= w'(x.l)# v”(xl) Supply reasons for (1) and (2).

5335 o & ¢ (Xl)

2

336, For F(x)= flg(x)]=(x’~ 2x = 3)59 ne




106, We thus see that to find the slops of the tangent line,

f(xl* Ax) = f(xl)
A%Ig_,go - e "=y at a peint A with x-coordinate x,, we

(1) compute f(xi* Ax) and f(xl)s
(2) find the difference f(x14= Ax-)= f(xl)s

f(x. 4+ Ax)= f(xi)

(3) compute the difference quotient 1 i 9

(lﬁ) findA%}_mo _o

This process is sometimes called the delta process, "delta® referring

to the small Greek letter A in the notation "Ax,¥

2220, (1) The limit of the sum of two functions is the sum of the

limits of the two functions, if these limits exist., (2) By definition
w(x, ¢ 8x)= w(x,)
REE. = = w? (xl) and the same is true for v’ (xl)a

221, If f(x)= 4+ x = 2 (rather than x 4# 2) you should expect from term
by term differentiation that £'(x,)= o

7
A3360 ‘?2"

7
337. For the above composite function, F(x)= f[g(x) ]E(zzc 2x = 3)29

g(x)= %o 2% - 3, so g(xl)s 0




£ Ax)- £(x,)
A106o ¢ (x:l* Ax XI

107. Let us now apply the four steps to the function f defined by
f(x)= = e 2x = 1 to find the slope of tue tangent line at any point
A with x=coordinate X0 Graph this function on your own paper and

indicate the point A on the graph on axes similar to those below,

Y

A22l, +1

222, If f(x)= + x2=- x 4+ 6 (rather than X2+ x = 6), you should expect

from term by term differentiation f* (zr:l)Ii 0

. 2
K337, x)°- 2x.- 3

338, For the above composite function, g(x)= X°= 2% = 3, so g’ (xl)- °




108, In step (1), if £(x)= = 4 2x = 1, £(x+ Ax)= ~(x+ Ax)°
+ 2(x,+ Ax) = 1 and f(xl)" 0

‘.2225 %+ 2x1«= 1

223, If f(x)= x3 = x2-= x = 11 (rather than x34- x24' x 4 11) you should
expect from term by term differentiation that £’ (xl)a o
ﬁ380 2x1° 2

I

339, Now, 1f F(x)= [g(x)]%; F’(x)= nlg(x;)1" e g’(x)) becomes

F(xy)= l(x32= 2x,= 3) « (2x,- 2),




A108, =»x124» 2x;= 1

109, In step (2), f(x1+ Ax) - f(xl)a [=»(x14r Ax)2’+ Z(xl* Ax)= 1] =
[=~x12+ 2x,= 1] = R '

K223, + 3x12== 2x,= 1

22li, In gemeral, if f(x) can be expressed as the difference of two
functions; 1.6,y f(x)= w(x) = v(x), you should expect that f”(:&)s

[}

139, 5, L-1(or3)

4
340, Thus, if F(x) E(§c2-=- 2% = 3)2 g (xl)s (simplify your answer,

leaving a fractional exponent on the quantity (x21=- 2x1-= 3},




K109, -2x 0 Ax - AxC+ 28x

f(x+ A= £(x)) = 2xphx - AxC4 28x

110, In step (3), = = =
if Ax # 0,

A2k, W (%9)= v’ (xy)

225, With the aid of the limit theorem for the difference of two
functiong, one could proves

Theorem 5, If £(x)= w(x)= v(x), and'w”(zl) and v”(xl) exist,

£ (:t:j_)E o (Add this theorem to your list of theorems,)

5
B0 iy2= 2x= 37 (3= 1)

341, If F is defined by F(x}= 2-1-‘1—5-5, e 1 4 0, FX)=(£ 0 g)(x)
X =

L %
= flg(x)]=(x"=1) .




A110. =2x14- 2 = Ax

£(xy ¢ Ax)- f(xi)
111, In step (L), i, = = Jipo(- 2x,+ 2 = &x)= .

A225, w'(xl)% v (x;)

226, Stated in words, this theorem says that the derivative of the

difference of two functions is °

|
|
|
@
E
|
|
|
;
f
;
i
i,.
»

A3h1, =2

Y

342, So F(x)=(f o g)(x)= £[a(x) J=(x= 1)~2 where g(x)= x''= 1, £(z}=

(]




Alll. =2xp+ 2

112. Thus, for the function £ defined by £(x)= - x2 + 2% - 1, the slope
of the tangent line at the point on the graph of £ with x-coordinate

f(x1+ Ax) - f(xl)

Xy i0 Do & '

A226. the difference ¢f the derivatives of the two functions, if

these derivatives exist.

227. It should be noted that it is not necessarily the case that if
the derivatives of 2 functions don't exist at some point, the deriva-
tive of the sum of theze functions won't exist at this point. Consider
g(x)=|x| and h(x)= -|x|, neither of which possess derivatives &t the

point with x-coordinate X1* .

A342, 22

343. F(x)= £lg(x) I=[g(x)]2 s0 our corollary will be used with

nes=




Al112, -~ 2xl+ 2

113, For the point with coordinates (1,0) belonging to £ defined by
f(x)= - x‘+ 2x = 1, the slope of the tangent line is - 2x1+ 2 =

S —————

A227. O

228, However, for the sum of the above functions,

£(x)= g(x)+ h(x)=|x|+[-]x|]= 0, £’(x;)= o

ABhB ) "2

34}, For the above composite function F(x)= f[g(x)]=(xp- 1)72,

g(x,)= and g*(x;)= .




All3, O

11&0 FOI" tm pOints With coordimtes (09:’1)9 (ngc'h)g (h9=9)9 the

slopes of the tangent lines at these points ave 9 9

respectively,

2228, O (see Theorem 1)

tive of f svaluated at x] o Review these theorems from your compiled

|
229, We now have at our disposal five theorems for finding the deriva- 1
|
list. Following is a set of exercises you should be able to do using i

|

these theorems,
(a) If £(x)= 134 69 f’(xl)a
(b) If f(x)= xh+ ' fﬂ(xl)

8
(c) If £f(x)= r.gco x29 f'(x1)=

(d) If £(x)= w = x; £7(x,)=

() 1 2(x)= e 2VZ] £2(x )
(£) If £(x)= x = =, £9(x))=

A3Lb, (xlha 1, ,Jx13

35, Now, if F(x)=[g(x) 12=(xl'- 1), F(x,)= nlg(x)) =t g’ (x,)=
(simplify your answer leaving a negative exponent on the quantity
(x, " 1))

Skip a page for the answer to Frame 345,




Allbo 2497 h)) ‘=6

115, Following are exercises for which you are to find the slope of the
tangent lines at the indicated points.

(a) If £(x)= =2, find the siope of the tangent line at (7,-2),

(b) If £(x)= x, find the slope of the tangent line at (=9,=9),
(¢) If £(x)= x = 1, find the slope of the tangent line at (2,0).

|
(d) If £(x)=(x = 1), find the slope of the tangent line at (1,0).
() If £(x)= 1 - 3x = x°, £ind the slope of the tangent line at (-2,3).

| 3
229, (@) 3%, @I, (0 fx-2m, (@

(e) 1.7x1‘7, (£) 1 - 2xy

230, Let us now consider the derivative of the product of two functions,
We know that the 1imit of the product of two functions is the product

of the limits if these limits exist, so we shall want to inwvestigate if
the derivative of the product of two functions is the product of the

of the two functions,




A115, 0, 1, 1, 0, 1

116, For the first function f definéd by £(x)= x?s for which we ex=
pressed the slope m, = 2xl of the tangent line to the graph of f at any
point with x-coordinate X9 the slope of the tangent line at the point

with coordinates (3,9) is o

k230, derivatives

231, For the function f defined by f(x)= x69 by Theorem 3, !”(xl)

| - o

Bls. tx3(x " 1)

346, Following is a set of functions you should be able to differen-
tiate using the theorems and corollaries developed in this unit, Re-
view your list of these theorems and corollaries at this time, before

i proceeding to the exsrcises below,
j

5
(a) If £(x) = (x - 1)?, £°(x;) = o
5
( (b) If £(x) = (x°= D)%, £/(x;) = o
(¢) 1I£ £(x) 3{732 5 f”(xl) = °
(@) If £(x) = (VE= D7, £(x,) = :

(e) If £(x) = (Vx*= 1)%, (x) =
() 1f 2(x) = V-1, 1°(x) =

ERIC

Full Tt Provided by ERIC.




A116, 6

. ——

117, The equation of a straight line can be written if we know its
slope m and a point (xlgyl) through which the line pasmesy i.e.,
Y- ¥" n(x = xl). This is the point-slope form for the equation of
a straight line, If a tangent line has slope 6 and passes through

the point (3,9), its equation is 0 |

A231, 6x1S

232, let f(x)= 1:6 be rewritten as the product f(x)= x6 xho o

3 3 1
2 2

K3L6, g(xla 1) 9 le(xlze 1) 9 %xl 38 "25'(11° 1)2 (&9 (a))s

=3 -2
be(x?-1) %, Z(g-1 3

ERIC

Full Tt Provided by ERIC.




Kll?_o y = 9 = 6(1 = 31

118, For the point with coordinates (-1,1} belonging to the function

f defined by f(x)= :nc"‘g‘9 the siope of the tangent line at this point

is °

I

232, x°

233, So, Dx(xé) (see the alternate notation for a derivative in
; = bx.>
frame 18k4) = D, ( ) 6x,7
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222

1, The derivative is a very important topic in mathematics and related
sciences, It is the basis of a beginning course in calculus and provides

a foundation for more advanced courses,

A125, 5x12‘+ 3x124 2%,

126, Do you see that you could have computed the above derivative in a
different way? We can express f(x)a(x2¢ 1)(x3* 1) as f£(x)= 15# x5 x20 ie
Geheralizing the theorem for the derivative of the sum of two functions

to the sum of any finite number of functions, in this case i functions,

we have f’(x1)= o Do your 2 answers check?

A2l9, zero

250, It follows that the slope of a secant line AB approac’ the slope

of the tangent line at Ay; denoted by m,, Thus, we may write

me=akBo(mg)akiBo .




5 Since we need tne Limit in studylng the derivative of a functiong
let us review the notation of a limit of a funetion. We know that if
x;;gif(x)w L, then f(x) is as teloze® to I as we please for x in a
suitabiy chosen deisted neighboriood of - o {The student should now
review the mathematicaily precise 6-z definition of a l1imit of a
functione) Which of the numbers in the set 2.9, 2995 20999, 3001,
5.1 belongs to the deleted peighborhood defined by the inequality

jx = 2] = ,01%

A126, 5x1 4 3x1 + 2%y 9 Yes

127, Do not acquirs the mistaken notlon that a function which is dif-
feventiated by the product rule, sz Theorem & is someiimes cailed, can

aiways be differsntiated in another manner, We havs chosen only very

slementary examples %o illustrate the theorem, More complicated exam-
ples of functions, composed of the prodact ef two funetions, which can
be differentiated by the product theorem only, will bz given later in

your calculue course,

f(xl+ Ax) = f(xi)

) f(xlé Ax) = f(xl)

251, Note that mﬁma%igo 7 =~ has the exact form of the

derivative of f evaluated at x . Thug, the derivative of a function

evaluated at Xy and the slope of the tangent line to the graph of f

at a point with x-coordinate Xy aTe s When both the

derivative and slope exist,




£2. 2,999, 3,001

3, Ve will now introduce an alternate notaticr for lim f(x)= L. We
)

! £ i = X, W i i ally small in

know thxtA%lgc(xl+ Ax) x, where Ax is a variable, usually

magnitude., Thus, if Ap is a variable,Aligc(pl+ Ap) = .

et

0. Tt is not pecenserily the case that if the derivatives of one or
rore of the furctions in the product of two functions don’t exist for
some valne of = the derivative of the rroduct won’t exist for this

Consider f(x)= 1(x). v(z)=|x

walne of x o[-]2|] uhere u(x)=|x]|,

10

v(x)= .

. L—g——a—————

A251, the same (or equivalent wording)

252, 1e now have that for f defined by f£(x), the slope of the tengent

line to the graph of f at a point whose x-coordinate is Xy is

—————————————




A3. py

L. If Ax approaches 0, x,+ Ax approaches X, . Therefore,

x};gif(x)=A%}§Of(xl+ Ax). If Ax approaches O, xl+ Ax approaches xl,

S°xli¥1g(x)°A§i§0g( ).

A128. -lx|

129, Neither |x| nor [-|x|) exist for X, .

A252, f’(xl) (or a statement equivalent to the derivative of f evalu-

ated at xl)

253, let us now consider the function f defined by f(x)= x2. In the
section on limits, we computed the slope of the tangent to the graph of
this function at the poiat (1,1). This slope was 2, The student should

now review this section in the limit unit,




Ak,

5. If x As Ax avproaches 0, xy+ Ax sprroaches

Al29, O

130, However, for the product in the above function,

f(x)= w(x). v(x)alxlo -|x|= ~§x|2= -x2, f’(x1)= .

25),, We will now obtain the slope of the tangent line for any point on
the graph of f defined by f(x)= x2 and then check its value at the »oint

(1,1) with the above result, The derivative of f(x, = x2, evaluated at

xl is o




A5, 5

6o Thereforeg ;;msf(X)‘ %%g f(S + Axbo

Your answer should correctly complete the shaded box,

130, O for all values of X

131, We have now proved a theorem for finding the derivative of the
product of 2 functions, Let us use this theorem to prove a corollary.

Corollary: If f(x)=k o g(x), where k is a constant, and g'(xl) exists

then f”(xl)8 k o g'(xl). Add this corollary to your list,

A25ho le

255, The slope of the tangent line at any point with x-coordinate Xy

on the graph of f defined by f(x)= x2 is m, = f'(x1)= R

.




P P

X6, Ax20

7. If

N

132,

constant mltiplied by a function is the constant multiplied by

x,= -3, X, + Ax = -3 4 Ax, As Ax approaches 0, x,+ Ax approaches

Stated in words, this corollary says that the derivative of a

, provided the derivative exists,

256,
by £(x)= 2%, X

For the point with coordinates (1,1) on the graph of f defined




‘70 -

8, Therefore, lim, g(x) = Jip, g( )e

A132, the derivative of the fnnctidn évaluated at Xy

133, We will apply Theorem & to the function f defined by f(x)=k * g(x)o

Here w(x)= k, v(x)= g(x), w’(x,)= s v(x))= 0

. A2560 1

257, Thus, m, = f'(x1)= 2x, for the point with x-coordinate x,= 1 be-

comes £/(1l)=2 o 1 = ., Doss this result check with the former

result in the limit section?




9., It may be the case that x is to the right of X5 and sufficiently
close to Xys OF that x is to the left of X5 and sufficiently close to
X,o We recall from the section on limits thatx;_;%f(x) , now shown to
be equivalent to,lim, f(x.l* Ax), exists if f(x) approaches the same
value 1 when we consider numbers which may be either greater or

than xlo

Al133, O, g'(xl)

134, Thus, i"(xl)- u(xl)- v’ (xl)4- v(xl)o w (xl)- (in simplified form).

A257o 2 9 Yes

258, We can, of course, evaluate the slope of the tangent line at any

point on the graph of f defined by £(x)= x2. If we consider the point

(2,1)5 x,= 2 so m.= £/(x;)= 2x;, or £(2)= .




A9. smaller (less)

10, If we consider numbers only greater than X35 then we denote the

limit by lim , f(x)= L. If we restrict our consideration to numbers

1

less than x,, we denote the limit by lim _ f(x)= L’., L is called the
X—>X
1

right-hand limit, Hence, the left-hand 1imit of f(x) would be °

a13k. k o g’(x) 1

135, This corollary is very useful, since constants frequently sppear

with variables in a function, If f(x)= 7x5 9 k = ; g(x)= 9
lfe

g'(x))= o

A258, L

259, If we consider the points (-5,25), (0,0), (-'21-, L'%) on the graph

of f, Xy = =5y Uy -27- respectively for these points; so m, the slopes of

the tangent lines for these values of Xy becomes 9 ’ ’

respectively,




A0, L’/

11, Iet us now translate the notation for right and left hand limits
into Ax notation, If Ax approaches O from the right, then X, * Ax

approaches X and xld- Ax is (greater than, less than) Xq0 This means

- x approaches X from the right and we write °

5135 o 1 9 ; 9 leh

136, Thus, if f(x)= 7x5, £7(xy)= k g"(xl)E 7 o lel‘w 0

260, We can write the equation of the tangent line at any point on

the graph of f defined by f(x), say the point with coordinates (xlgyl}o

i

E

|
A259o ""10 9 0 3 7
Recall that you can write the equation of a line if you know a point

on the line and the of the line,




Kll. greater than, x—»xl*

12, If Ax approaches O from the left, then X+ Ax approaches X9

xld-Ax<x1, and we write x->» .

K136, 35x1h

137, If £(x)= 3(x°+ xh), k=___ 5 gx)= s g'(xg)= .

K260 ® Slope

261, The slope of the tangent line, m,, at the point (x19 yl) can be

expressed as .




K12, x1=

13, Then lim _ £(x)= Lim _ f(x1+ Ax) and lim _ £(x)= lim _ f(x1¢ Ax) o

x4>x1 Ax—>0 x??xl Ax—>»0
The right hand 1imit is thus expressed as lim _ f(xl* Ax) and the left
Ax=>»0
hand 1limit is expressed as °

A37, 3, x34" xhs 33(-124}’ hx13

138, Thus, if £(x)= 3(# 29, £2(x))= k « g’(x))" :

K261, f'(xl) (or an equivalent expression for the derivative of f evalu-

ated at xl)

262, Using the point-slope form for the equation of a line y = y,=

m(x - 11)9 we obtain the form for the equation of the tangent line as

yeypmlx=-x)ory-y=___ (x=-x)




£13, lim  £(x + Ax)
Bx=£-0 ~

1he Consider the function f, discussed in the section on limitsy de-

fined by £(x)= ﬁgﬁ-’z{% For this funetion; lin , £(x) - lin £(=1 + Ax)
Pt =

=2 and lim _ f(x)= Lim _£(=1 # Ax)= o
X1 Ax=2>0

(See the graph below as an aid to respa.ding.)

M8, 3(3x, %+ ix,)

139, If £f(x)= -6x{x + 1)= «6{x(x + 1)), k = s g(x)= x(x + 1},

g”(xi)@ (use the product rule - Theorem 6},

A262, f”(xi)

263, For the equation of the tangent line at the point with coordinates

(1;,1) for the above function f defined by f(x)= x29 x,= O 9

= 7 2 e 7 =
m = f (xl) 2x, becomes m.= £ (1) 0




Ali, -2 (Note: If you do not recall ‘this function, take time now to

convince yourself that lim , f(x)= 2 and lim _ £f(x)= =2,)
Xl X)),

15, For the postage stamp function discussed in the section on limits,
p = f(w) where p is the postage and w is the weight, we have

lim £(5 + &)= 30 where Aw is a variable, Also lim _ £(5 4 Aw)=

Aw-20 =20
. (%ee the graph below as z2n aid to responding.)
P
aat k_____
20}
sot
w
4 s 6
A139 o """6 9 2114' 1
140, Thusy if £{x)= <bx(x + 1), f’(xl)B k o g’(xl)B °

263, 1, 1, 2

26k, Thus, the equation of the tangent line, y =y, f'(xl)(x - x1)9

in this case is °




e A, sttt

Al5, 25

16, Recall that the limit of a function exists as x->x; if the limit
of the function as x>xq through values of x greater than Xy is the
same as the limit of the function as XX, through values of x less

. than x, . Thus,l;.!_.alf(x)- L if lim _ f(x)= L and lim _ £(x)= .

*Pxy Xy

AplhOo -6(211“‘ 1)

1h1, You might expect that there is a theorem for finding the deriva-
tive of a function which is the quotient of two functions, From what
was surmised concerning the derivative of the product of 2 functions,
would you expect the derivative of the quotient of 2 functions to be

the quotient of the derivatives of the two functions if these deriva=-

tives exist; 1.0 if £(x)= g-%-:%, f"(xl)- J l} where v'(xl) and

w/(x,) exist and v/(x,) ¥ 0,

K6h, 7 -1%2(x=1) (or an equivalent expression)

265, For the above function at the point (-5, 25), L I
= £ = £ {5)=
mt f (xl) f ( 5) ™

PAFulToxt Provided by ERIC




Alé, L

17, In our notation,Jip, f(xl* Ax)= L if lim _ i‘(.‘xl* Ax)= L and .

All. You shouldn’t expect this ~ such is not the case,

142, As with the derivative of the product of 2 functions; the deriva-

tive of the quotient of 2 functions is not what might be expected. let

v(x

exist, then :t‘”(xl)- v(xl) ) w’(xl)” w(xl)- v"(xl) provided vl(:xl)/ 0o
[v(x,) 12

Kdd this theorem to your list,

us state the theorem., Theorem 7, If f(x)= ?-’-%3%- and w'(xl) and v”(xl)

IS A265 [ "’5 9 25 9 =]..0

266, The equation of the tangent line at the point (=5, 25) on the
graph of f defined by f(x)= X is .




A17. lim | £(x.# AX)= L
s’ X3

18, We are now ready to define the derivative of a function,

Definition: The derivative of the function f; evaluated at X1 is

£yt 20~ £0xy) ists, The derivati
A%&Eo A s provided this limit exists, e derivative

is denoted by f”(xl) and may be considered a function itself, Other

notations for the derivative are y?, D.¥s %%o (Enter this definition
on the enclosed sheet headed ®List of Theorems and Definitions.")

143, In words, this theorem says that the derivative of the quotient

of 2 functions of x, evaluated at x, provided these derivatives exist,

is the denominator multiplied by the derivative of the mumerator minus

the numerator multiplied by the derivative of the denominator, this

number divided by 0

K266, y = 25 = =10(x + 5) (or an equivalent expression)

267. At the point on the above graph with coordinates (%b k% o the

equation of the tangent line is .

ERIC
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19, The expression f(xl* Ax)- f(xl) is called a difference quotient,
Ax

The numerator of this difference quotient can be considered as a small

change in y = £(x), A symbol used fer f(xlf Ax)= f(x) is 0

K13, the square of the denominator, provided this is non-=zero

1hli, We will now proceed with the proof of this theorem in a manner
exactly analogous to that used in proving our former theorems, Perhaps
you can derive your own proof of this theorem, following the l steps
for finding the derivative, Try to do so before reading the proof that

follost

A267, (y'«-é%)= (x = %) (or an equivalent expression)

268, Let us now consider another function whose slope you computed in
the section on limits, the function F defined by F(x)=1/25 - x°. Graph

this function on your own paper for future reference,




Al9, Ay
f(x14 Ax) - f(xl)
20, Thus, AMG Ax can be written aslligo .
15, e 3 .:.s our proof, If f(x)= g{%’ step (1) expresses
w(x,)

f(xl)- =y = (al ternate netatien),

A268, Y, (0,5)

!
M/\n

} X > 50,

| _

269, For this function, we will compute the slope of the tangent line

at the point with x-coordinate X, k. The corresponding y-coordinate
of this point is ¥y o

EKC

Aruitoxt provided by Eic




iili—

by
Ax

the derivative,)

A20, (Notes A%gmo‘%% is used in many texts as an expression for

21, In the definition of the derivativey, it is important to note the
condition that the limit of the difference quotient must exist, We

say f(x} is differentiable at Xy if the limit of the difference quotient
exists, From the section on limits, we know that thié limit (will always

exist, may not always exist).

-

L)
AlL5, ;l
1
w(xi* Ax)
16, Likewise, f(xlé Ax) = 7 * &) = (alternate notation),

. A269, (Indicate this point on your graph.)

270, In the section on limits, we showed the slope of the tangent line
to the graph of F defined by F(x)=1/25 - x° at the point with coordinates
(Ly3) had the value f%o The student should now review this discussion
in the limit unit.

Aruitoxt provided by Eic:

ERIC
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K21, may not always exist

22, Thus, the differentiability of a function f at xq is equivalent

to the statement that o
Eu
} w14~ w
A1L6, vt A
o 1
B (w1+ &) Wy
7. In step (2), f(x;+ Ax)= £(x,)= W - °v'°{
| ) vi(w1+ Aw)--wl(v14 Av)
v, (vy* &v)

= (in simplified form).

271s We can also express the slope of the tangent line to the graph

of F at the point with x-coordirate x, as °

(Skip three pages for the answer to frame 271.)

Aruitoxt provided by Eic:

ERIC




£(x,+ Ax)- £(
K2, Jin y* = %) exists,

23, Steps for Computing Derivative, There are four steps in computing

the derivative of the function f evaluated at X3
(1) Express f(x14- Ax) and f(xl)
(2) Find the difference £(x# x)- f(x1)= Ay

f(x,+ Ax)- f(xl)

(3) Compute the difference quotient ——x N4

Ax Ax

f(x,+ Ax)- £(x,)
(1) Pind Jige — L aaip A

7

vy° M - W, Av

vl( vl+ Av)

nh7.

f(xl# Ax) - f(xl) v,° M = LI

148. 1In step (3), Ax “ax Tv (v + &)]

(1)’10 M e ay
” Ax Ax
vl( v14- Av)

. Supply a reason for (1).




2li, let us now find the derivative of f evaluated at X3 defined by
f(x)= 3x, Step (1) tells us to express £(x,+ Ax)= 3(x,+ Ax) and
f(xl)' o

K148, Both numerator and denominator of a fraction may be divided by

the same non-zero quantity withdut changing its value,

£(x+ ) = £(x,)
Ax

149, Then, in step (1), Puk: N

‘Av

[« I

.1 e
Ax% v11v1+ Av)

(1) .

iy (Vo B = w0 B /plimo(v, (v + v))
(2)

“adiBo ¥9° %;’E) / 5o (v3(vy+ av))

Rl

A1

(3)
" 50 1 kB0 5 "o 1" k30 59 /o 1 iEolvye

(L)
'("1&%""“’1&9@30 )/ V1 abilo (V1* &v)

Supply reasons for (1), (2), (3), (k).




Kle ° 331

25, Step (2) requires an expres: ‘... T f(xl+ Ax) = i‘(x1 =

3(x1+ Ax) = 3x,* (in simplified form).

A9, (1) The limit of a quotient is the guotieni of the limits, pro-=

vided these limits exist, (2) The limit of a difference is the differ-

ence of the limits, provided these limits exisb, (3) The limit of a

product is the product of the limits, provided these limits exist.

(L) Lipk = k (wls w(xl) and v,= v(xﬁ) are constant,)

150, Consider the final expression in the previcus frame, As in the

proof of Theorem 69a&%ﬂo'%¥ = (x,) andﬁ&;gc,%i . o




A25, 38x

£(x,+ &x)- £(x,) )

Ax ———

26, The difference quotient in step (3) is

X150, v'(xl)

151, Also, as we reasoned befors s éssuming v is continuous,

Av approaches O as Ax approaches 0, so &go(vlé Av) -A%_i_go(v:ﬁ Av)= .

A2T1, F.'(xl) (or an equivalent expression)

272+ To find the slope of the tangent line at (k,3) on the graph of

F defined above, we must evaluate F/(__ ),




3

A26, Ax

27, Finally, computing the limit of the difference quotient, step (L)
plx ¢ bx)- £(x,) 3 g (D
etvos gy — g "o > % * g 3 = 3 Suwrly a rea-

son for (1).

AiSl Py vl

152; Substituting these results in the right hand side of the expres-

sion in the last line of frame 149, we have lim- £(xy+ &x)= £(x))
&

vy w’(x1)== W1° v’ (X-l)
vla

= (changing notation for v, and.wl)

A272, L

273. The function F defined by F(x)=1/25 - x° is a composite function,

so P?(x,) is obtained by using the corollary to the chain rule differen-
!

tiation formlaj i.e. if F(x)=[g(x)]". F*(x )=




X27, Since Ax # 0, but approaches zero, both numerator and denominator

may be divided by Ax,

28, In evaluating,lip, 3 = 3, what limit theorem did you use?

s, v(xy) e wi(x;)= w(x,). Vf(xl)
[v(x;) 1?

153, We have thus proved the theorem that if f(x)= :'-;83- and w'(xl)
and v'(x.l) exist, then f’(xl)- s if v(xl);{ 0.

K273 nlg(x) 1" g(x)

Ll

: 2
27h. By this corollary, if F(x)=1/25 - x° = (25 = 1:2) 5 F'(xl)' .




A28, For a constant k, if f(x)= k, %..ikaf(x)' k

29, Thus, if f is defined by f(x)= 3x, the derivative of f, evaluated

at x,, is f’(xl)" .

v(xy) e wi(x;) - wlxg)e v/ (x))

M153, 5
[v(x;)]
7
15he Consider f(x)= : z) = %5, x £ 0, Here w(x;)= x17, v(x,)= x12’
x

w’(xl)- , v'(xl)' .

-1
27h, - x1(25 - xiz) Z

-1

275. Thusg, F'(x.l)- —21(25 = xlz) 2 _ we will rationalize this expres-
sion when we substitute in our value of x; so the slope of the tangent

line %o the graph of F at the point (kL,3) is F'(xl) or F/(L)= .




A29, 3

30, let us now find the derivative of the function f defined by

f(x)= x, Step (1) expresses f(xl)ss ____and f(xl+ Ax) = .

msh, % 2x

v(x;)e wi(xy)= W(x1)° v/(x,)
[v(x)) 12

7
155, Thus, for .f.'(x)z‘. ,z_é.’ f'(x]_)w

2 6 7
e A TX) 7= X 0 2%y
[Jr12]‘2

= (in simplified form), if xI% O,

=k
‘ K275, "3

276, Does this answer check with the results obtained in the section

| on limitsy, as cited in frame 2707




ABOO x19 x14' Ax

31, Then, step (2) requires an expression for i'(x1+ Ax) - :t‘(xl)iTa
(in simplified form).

nss, sx”

156, You probably realize you could find the derivative of the above

x!

example in a simpler way, How could you rewrite f(x)= =55 if x # 07
X

K276, Yes

277, et us now write the equation of the tangent line with slope

=)
oy

30 Passing through the point with coordinates (k;3) for this function,

Here xla —_—3 yla — F'(xl) F”(b)u -—o




A3l, Ax
£(x ¢ bx)- £(x,)
32, The difference quotient in step (3) is o = °

K56, f£(x)= 15

157, What is the derivative of the rewritten expression, i.e.

£(x)= 15 ? Does this answer check with that just obtained?

R77. by 3, "%

278, The equation of the tangent line, y - y,= [F”(xl)](x - xl) becomes

r

ERIC
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A32,

RiE

33, Finally, computing the limit of the difference quotient, step (L)

(1)
£ Ax)- £(x.)
gives Jip Gt Ax) 1 = Jig, -ﬁ-x"- =Jig, 1 =1, Supply a reason

for (1),

X157, lez‘, Yes

158, If f(x}= ‘vli—:-;- -%2 ;9 x A3 uln)= s v(x)e____,
wix))e s vi(x)= .

MR8, y=-3= ;%(x - 4)(or an equivalent expression)

279+ let us consider a function not previcusly discussed in the sec-=
tion on limits and compute m o the slope of the tangent line, for any

point on the graph of this function, Graph f defined by f(x)= xa* x=-6

on your own paper and draw the tangent line at the point (2,0),




K33, Since Ax ¥ 0 s but approaches zero, both numerator and denominator

may be divided by Ax.

34e In evaluatingJip, 1 = 1, what limit theorem did you use?

Alseo x-l"' 13 x1= 33 13 1

v(xy) e w/(x))= w(xy) e v¥(x;)
[v(xy) 1°

159, Thus, if f(x)= g-g% = %‘;‘%9 fr(x_l).__

=« (combining terms in numerator) 4

if x ¥ 3

280, If f(x)= X4 x = 6, the slope of the tangent linz at any point

on the graph of this function whose x-coordinate is x, is f’ (xl)" .




a3k, For a constant k if f£(x)= k, Jig f(x)=k

35, Thus, if f is defined by £(x)= x, then the derivative of f evaluated

at x,, is £0(xy) o

“n "h
Al155, —7
(x,~ 3)
124 x 3, .
160, If f£(x)= 5,0 <t 1 £ 0y w(x,)= s V(x)= s
X .

wix))= s v (x,)= e

280, 2x14- 1

281, Let us now evaluate m = £’(x,) at the point with coordinates

(250), Here x,= ____ 80 f"(xl)= 2x,+ 1 becomes £77(2)= __




A35, 1

A — ——

36, let us now find the derivative of f defined by f(x)= xzo Step

(1) yields £(x;+ &x)= (x,+ )% and £(x,)= o

2

K60, x%¢3x, xIe1, 23, 3x)

V(x1)° w(x,)= w(xp)e V'(x.l)

2
161, Thus, if f(x)= ::9: ix, £/(x;)=

[v(x)°
(x,%% 1) o(2x# 3)=(x) %+ 3x))(3x,%)
(x, % 1)
if x°+ 1 4 0,

1

8, 2, S

282, You should now be able to write the equation of the tangent line
to the graph of f defined by f(x)= xz& x = 6 passing through the point
(2,0)o This equation is .




B G

K36, 212

37, Step (2) in the process of finding the derivative of £ defined by

£(x) = .x29 evaluated at x,, gives f(xl»ﬂ- Ax) = f(xl)e(gi,e- Ax)ze, (xl)za

(xlzd- 2x, &x ¢ A*xz)w x12's (in simplified form).

L 3, .
=x1-6x14 23(14'}

K161,
34 5420 v o ,
162, Now it’s your turn{ If £(x)= X 2"&* x=1 e 1 ¥ 0,
x4 1

f'(xl)a °

A282, y = 5(x = 2) (or an equivalent expression)

283, We will now find the equation of the tangent line to the graph
of f defined by f(x)= X 2x24= Sx = 1 at the point (=1, =9). Perhaps
you will want to derive your own solution before reading that which

follows. Here m s the slope of the tangent line “or any general point

(x5 ¥y)s 18 £(xy)= 0

Skip two pages for the answer to frame 283,




H%?ﬁﬂ*&z

38, Expressing the difference quotient, step (3) gives

£xy ¢ bn)= £(x)) (2 &x 2 sz)
Bx Ax ” °

(x, L, 1) o (3x1 lox, # 1)==(x1 & 2xl xp=1) e (hxl ) it ("1 e 140
(xl + 1)°

K162,

L

163, let us summarize our work up to this point., We defined the deriv-
ative of a function f as the limit of the difference quotient

f(xl4= Ax)-- i‘(xl)
: Ax
basic theorems to enable us to find derivatives of certain functionss.

if this limit exists, We then proved a mumber of

|
| These theorems involved derivatives of sums, differences; products and
’ quotients of functions, the derivatiwve of the constant function, and

the derivative of the independent variable, A corollary was proved

k‘ for the derivative of a constant mltiplied by a function of x, Review

the theorems; definition and corollary from your list at this time,




K38, 2x1* Ax, Since Axlﬁ 0, but approaches zero, both numerator and

denominator may be divided by a non-zero quantity.

39, TFinally, expressing the limit of the difference quotient, step(ﬁ)
£(x)+ ax)= £(x;)
gives 3igy ——x “shigho Xyt v o

16, Following is a set of exercises you should be able to complete
using the theorems, corollary and definitions,

(a) If £(x)= mO= 20x7= 9, £°(x;)° L
7

() I 2(x)e 22 227 70, £o(x))e :

(0) If 2x)o(ox - TV(P* 2= lix = 17, £2(xy)e

(d) If £f(x)= 73‘2" 59 x # + 1, £7(x,)=
) X = L

(o) It 2(x)=(x’= 3%, £7(x))= ;

2
(£) 1f 2(x)= KZE=F) 5 45, £2(x))e :

7’




K39, le

t e 2

40, Thus; 1f £(x)= x%; £9{x))= 2xs If £(x)= 2x°; find the derivative

of f evalvated at Xy 0 Here f(x'l)B and f(x1+ Ax) = °

o\

A16ly, (a) 3“312= boxla (b) %xl - 20331;03” 5éxm99

() (9x= 7)(3x, 2 2x =~ L)+ 9(x 7+ x, - o - 17),

g MEitl @ ERCASER
- 1)

* vor

gy T 56 3)- (2x,- 3%)
(x,- 5)°

165, We wili introduce one more basic theorem to allow us to differen-
tiate functions of functions, or composites of one function by another,
let us first discuss the composite of one function by another; or more
simply a composite function, By definition, a function is a set of
ordered pairs such that no twe distinet ordered pairs have the same

element,

. 2
A283o 3x1 g b-xl* 5

28l At the point (=1, =9), the slope of the tangent line to the above .

graph of £ defined by f£(x)= x0- 2x°

4 5x - 1 is f’(xl)B £/ (=-1)= .




o, 2x,°,  2x x)°

L1, In step (2) in the process of fiuding the derivative of f(x)= 2x2,

evaluated at X, £(x,* Ax) - f(xl)s (in simplifisd form).

K165, first. (Review the definition of a function in the 1imit sec-

tion if you had difficulty answering this item.)

166, KX composite function (or a composite of onme function by another)
is defined by flg(x)] or (£ o g)(x)s An example of such a function
f o g is defined by flg(x)]= (£ o g){(x)= [(3:24- 1) ]2
2z = g(x)~
£(z) = £lg(x)]= 2°

x28h4, 12

585, The equation of the tangent 1line at (-1,-9) with slope 12, for

the above function is o




AM°2QﬁM*A£)

£(x + &x)- £(x,)
2. In step (3), the difference guotient = = o

K166, x°# 1

167, For this function, an ordered pair belonging to f o g is (1, Yo

A285, 7 + 9 = 12(x + 1)(or an equivalent expression)

286, In the following set of exercises, find the slope of the tangent

1ine at the indicated point and write the equation of the tangent line

at that point,

(a) £(x)= =2 at (7,~2)

(b) £f(x)= x at (=9,=9)

(¢) £(x)= x = 1 at (1,0)
(4) £(x)=(x = 1)% at (1,0)

(e) £(x)= 1 = 3x = x> at (=2,3)




A2, 2(2x14r Ax) (Note: We have divided by non-zero Ax,)

43, In step (1), the 1limit of the difference quotient is expressed as

2+ ax)= £(x;)
mlé-lﬂo Ax = (express _your answer in final form, after eval-

uating the limit),

N16T. I

168, Other ordered pairs belonging to the function are {0,1), (2,25},
(=1,__ ), (3, o (Note that we are here emphasizing the fact that

a composite of one function by another is a function in the "ordered

pair® sense discussed in the section on limits,)

286, (a) O3 vy # 2 = 0 (or f(x)= <2}y (b) 13 x = y, () 1: y = x =1

(d) 03 y = 0 (or x=axis), (e} 13y -3 =x +2

2870 Since the derivative of f(x) evalnated at x1 is the same as the
slope of the tangent line to the graph of f at the point with x-=coordinate
Xy 5 when this slope exists, we can see why our previous example of the
fanction f defined by f£(x)= ]x = 1| did not possess a derivative at X, 1,
Referring to the graph of f belowy; note that the 2 lines, ‘11 and 12 9
making up the graph and intersecting at the point P3(1,0), make angles

of L5 and degrees, respectively, with the positive x-axis,




&h3, hxl

Wi, Thus, if £ is defined by f{x)= 2x°, £2(x,) = .

OO

Kié68, L, 100

169, Another example of a composite function f o g is defined by

(f o g)(x)= f[g(x’)]a\/;ia x2Z0
z = g(x)=
£(z)= £g(x) 1= zg 0

(Your answer should correctly complete the shaded box.)

A287, 135

288, Choose a point B on the graph of the function on your own paper,
with an x-coordinate slightly greater than X" 1, say x14r» Ax = 1 + Axy
where Ax is (greater than, less than) zero. Indicate such a point B

on your graph,




Ailo bx

45, Tet us now consider a function f defined by f(x)= x xgg composed
of 2 terms, and compute its derivative, As you might expect, the pro-
cess will be a bit more complicated in this case, Step (1) gives

f(x1)= and f(x1* Ax) = 0

1
5169 o ‘Z

o M.

170, Ordered pairs belonging to the composite function £ o g defined

above are (1,1), (2,2V2), (3, )o (05__ Do

A288, greater than sz%\\v/);/ﬂv
P

T e

289, For such a point B, a secant line PB to the graph of f is the

same as the line .




et N Sty s B S

M5, x° xlzg (g 8x)~(x, # £x)°

i6, The difference f(xl# Ax)= f(xl) in step (2} is

[(:xlé' AX)“'(X-I‘" Ax)z]’[xl" xlz]” o

X170, V37 or 3V/3, O

171, let us now concentrate on recognizing the form of certain compos-
ite functions (or composites of one function by another}., This ability
will be neaded for the next differentiation theorem., Note that
fleg(x) 1=(f o g)(x) denotes that f is a function of g defined by

g(x)= 2, and g is in turn a function defined by the variable °

A289, 11 (or PB)

290, The limiting position of a secant line PB as B approaches P is

the line .




M6, x = 2xphx = A

| £+ 8x)= £(x)  Bx = 2x)° Ax = &
47. The difference quotient = = i in
step (3} is o
ALT71, _35

172. The composite function £ o g defined by (f o g)(x)~ flg(x)]=

(x?4'1)2 considered in frame 166 can be defined in another manner as

the composite of one function by another., Since (x2* l)za\/(xz* l)ig

we may write (£ o g)(x)=(p o q)(x)

or pla(x)1=1/(x°+ ?JE

z = q(x)=(x%+ 1)

p(z)= pla(x}]= 2z .

A290, 11 (or PB)

U S s S — -

291, Since 1, makes a li5-degree angle of inclination with the positive
x=axis, the slope of this line is .




DR AR e s T L

Ah7o l = 2x1“'Ax

48, Finally, the limit of the difference quotient in step (L) is

£(x, 4 Ax)= £(x,) |
B — g g (- 2

Al72,

-

173, The composite function f o g defined by (f o g)(x)a(x2¢ 1)2 may

: , o 572 .6
also be defined by (m o n)(x)= m[n(x)I=( ¥x“# 1)~ where n(x)=
6

and m(z)= z ,

A291, 1

292, Check your answer with our former reasoning for f defined by

£(x,# Ax) = f(xl)

f(x)=]x = 1] in frame 235, There lim . =
Ax—2>0

evaluated at

xi= 1 had numerical value "




S —

Khso l = Qxl

19, Thus, if £(x)= x = x°, £(x))= .

A173, 12+ 1

17ij, Thus, you see that a function has more than one representation
as a composite function = in fact, an infinite number of such
representations, Can you think of other ways in which (f o g)(x}=
f[g(x)]%(xzé 1)2 is a composite of one function by another, different
from the above representations? Some other representations follow,
which may be the same as or different from yours, Check your results

with your teacher if you have questions,

K292, 1

293, MNow consider a point A on the graph of f defined by f(x)=|x = 1}

with x-coordinate slightly less than x,= 1, say x,+ Ax =1 + Ax = .5,

Here Ax has numerical value o Indicate point A on your graph,




KL9. 1= 2x,

50, By now, you realize that the process of differentiating is tedious
and could be rather complicated and lengthy. Fortunately, there are a

number of theorems that allow us to shorten our work. In fact, we have

already proved one of the basic theorems, You recall that in frame 35,

if £ is defined by £(x)= x, then the derivative of f evaluated at x, is

1y i.e, f”(xl)B o

=1

K17he  [(x%# 1) -2-]"1‘9 (/x4 l)hL 7 (P4 l)E

175, Consider the second composite function given above, defined by

(f o g)(x)= f[g(x)]m\/;ﬁ@ x 2 0, which may also be defined in a dif-
ferent way as the composite of one function by another, Since\/ggs
(VE)3, we may write (£ o g)(x)=(p 0 @)(x) or |
pla(x) I=( V&>
z = q(x)=Vx

p(z)= pla(x}]=2__ .

o 00

29, For point &, the secant line AP to the graph of f defined by

£(x)={x -~ 1] is the same as the line 0




A50, 1

R — S————, 2

S1, We express this in words, as the following theorems

Theorem 1, The derivative of the independent variable is one. 1In

mathematical notation, we haves If f(x)= x, f’(:xl)ﬁ o (Enter
- this theorem, in both forms, on the enciosed sheet headed "List of

Definitions and Theorems,")

Al75, 3

176, The composite function defined by (f o g)(x)= f[g(x) ]B\A:i may

also beldefined by (m o n)(x)= m[n(x) ]=%'.g where n(x)e and
T

m(z)= z ",

. A29L, 1, (or AP)

295, Since 1, makes a 135-degree angle of inclination with the positive

x-axis, the slope of this line is o




A5l, 1

52, let us now state and prove a second theorem in differential cal-
culus that enables us to find the derivative of a function more easily.

Theorem 23 The derivative of the constant function, evaluated at Xy 9

is geroc, In mathematical notation, we haves If f(x)= k, where k is a
congtant, then f”(x1)= o (Enter this theorem. in both forms, on

your 1isto)

Aﬁ.76o x6

177, We have now expressed (f o g)(xJ@\ZQB as the composite of one
function by another in three ways. Can you think of other ways, dif-
ferent from the given three, for which (f o g)(x)ﬂxA;§ is a composite

of one function by another? Some such representations follow.

A? 95 o “"1

296, Check your answer with our former reasoning for f defined by
. £(x ¢ ax)= £(x;)
f(x)=]x = 1] in frame 236, There lim = = ,

Ax—0"

evaluated at xlw l. Do the two results check?




AS2, O

53, We shall proceed to prove this theorem by applying the Ij steps in
the process for finding the derivative of the function f evaluated at

Xq 0 In step (1), if £(x)= k, f(xi)Es k and f(31* Ax)® .

. 9
e [ 8 -
arr, 92, (¥, VAP

178, Consider the composite function f o g defined by

(¢

Wi

;.
9 X § =ly or

1
(f o g)®)=3pg = (x 1)
' =1

flg(x) I=(x + 1) 3 where

z = g(x)ex+ 1

L

£(z)=

! R296¢ ""19 YeS

297, The derivative of a function f defined by f(x), evaluated at x,
is the same as the slope of the tangent line to the graph of f at the

point with x-coordinate X For the above function, at (1,0) no such
tangent line o




A53, k (For all x, f(x)= ko)

5u, In step (2), .f(:xl# Ax) = f(xl)E* o

K178, %
P

=

Wi

179, Tte composite funcition f o g defined by (f o g)(x)=(x #+ 1) 7 may

also be defined by (p o q)(x)= (;‘/Sc 4 l)'m"l‘ where g(xj= and

ORI L £ I BT W TSNS

p(z)= 0

4297, exists (or an equivalent expression)

298, The siope of the ‘tangent line at (1,0) doesn’t exist because

right and left hand 1limits of the function at this point are unequalg
f('x1+ Ax)=- £(x f(xfk Ax) - f(xi)
Ax Ax

1)

8 -] and 1im &
Ax~20

i.eo if xlﬁ’- 1 1im
Ax-50"

= ©




£, 0

| £(x,+ &)= £(x))
550 In Step (3)9 Ax & s 0

L
79, Vx+ 1 (or (x + 1)3)9 - (or %’5)

=l
180, The composite function f o g defined by (f o g) (x)e(x + 1) 3 may
ailso be defined by (m o n)(x)=v(x #+ 1):'1 where n(x)e= and
m(z)as I
X298, 1

299, Consider the function f defined by f(x)= x, We proved as our

first theorem, that for this function, f’(x1)= 0




P 2, X I Y

~

| n f(Xﬁf'ﬂx)m f(xl)
56 Finally, in step (i), 4lim, ==z Y L ——

Q

L
- / e "-’1 X m‘£m Y - . '{
ﬁLBOg‘ (x 4-1) (or ——Zmg=i g Ve (oraf-{
L’):L

=g

18l, Can you define (f o g)(x)=(x + 1) 3 as a composite funztion by

representations different from those cited above? Some such representa-

tions follow,

A300, 1

301, Let us relate the value of this derivative to the interpretation
of the derivative as the slope of the tangent to the graph of f at a

point with x-coordinate x, if the tangent exists, Graph the function

1
£ defined by f(x)= x on your own paper,

Skip a page for the answer to frame 301,




A56, 0, since Yip k = k for any constant k

57, We have just proved that the derivative of a constant function f

defined by f(x)= k is f”(xl)s 0

=l

€L .
26 pxe 3] ?

5'18106 1 9 [(x & 1)

iz + 1)°

.‘1.829 Following is a 1list of functions you are to define as composite
functions in two other ways as indicateds

. . 3 , Ea
(aly F(x)~(f o g)(x)= x where g(x)~ x°, £(2)= flg(x)]= 2~ o

(a2) F(x)=(f o g)(x)*» x where g(x)+ x '5;" £(z)~ flg(x) )= 270

(bi) H(x)=(f o g)(x)= 31; 7 xﬁlg x & 0, where gfx)= :x23 £(z)= f£lg(x) ]~ zg

(b2) H(x)=(f o g)(x)= :*tH o 2 # 0, where g(x)= x, £(z)= f[g(x)]= ™,

=3
(c1) Q(x)=(£ o g)(x)=(—2=)= x %, x » 0, wheve g(x)= x, £(2)=
vVx &
' X fle(x))= 2z o

(=3
o=

(e2} Qx)=(f o g)(ﬂﬁ(“"';ﬁ”“)% x %, x> 0, where g(x)= xma £(z)=

X
£lglx) i= ™t

(d1) P(x)=(f o g)(x)= _"-1’_’:2' where g(x)= 1 + x, f(z}= fle(x)] = 2
(1 + x)

1
(1 + x)

—5 where g(x)=(1 + X)m o £(z)= £lg(x)]
8\/%70

(e1) G(x)=(f o g)(x)=VL = x°5 =1 & x S 1, where g(x)=(1 = x°)°, £(z)"

flg(x)I= 2 o

(d@2) P(x)=(f o g)(x)=

[}

[+

(-]

| , =
(62 G(x)=(f o g) (x)=V(1 = x° s <l = x 1, wheve g(x)=(1 - xz) g £(z)=
o £lglx) 1= 27,




A57, O

58, Thus, if f(x)= 7, £/(x;)= 0o If £(x)= “%9 P (%)% o

K82, (al) %9 (a2) %9 (b1) %, (b2) =i, (oW) 2, (2)

RO
A\

)

(@) 2, (@), () (e1) %

183, We are now ready to state and prove the theorem for differentia-

tion of a composite function, Theoyem 8, If F(x)=(f o g)(x)= £lelx) ],

and f”[g(xi)] and g”(xi) exist, then F”(xl)ﬂ f”fg(xl)]o g”(xl)o Add

this £heorem to your 1ist;

301,

302, Considering any point P on the graph of f with x-coordinate 49

choose a point B on the graph whose x=coordinate is slightly greater

than X3 say'xiﬁ Ax, Indicate such points P and B on your graphe




A58, O

59, A useful and basic theorem of differential calcuius involves the
derivative of a positive integral power of the independent variable,
This theorem reads: Theorem 3, If f(x)e %", where n is a positive

integer, then £ (361)9a no xln“lo
that the derivative of a positive integral power of the independent

Stated in words, this theorem says

variable, evalnated at X9 is the original exponent, n, mltipiied by

a power of X9 and Xy has as the exponent,

184, This theorem is sometimes called the chain rule of differentiation
because F’ (xl) is expressed as a chain of derivatives, namely (£111 in
mmeral) in number as we’ve stated the theowem.,

Skip a page for the answer to frame 18i.

V
5
A302, P/ Note: Your points may have been placed
J differently.
X o
X, Xtrax

302, A secant line PB to the graph of f is the same as

@




A59, n -1

60, To prove this theorem, we proceed through the four steps in find-
ing the derivative of f evaluated at X5 a8 before, In step (1), if

£(x)= an ;t‘(x'l)Eg and f(x14 Ax) = o

X303, ‘the graph of f defined by f(x)= x (or an equivalent expression)

304, The tangent line to the graph of f defined by f(x)= x3 i.e., the

limiting position of a secant line PB as point B approaches point P, is

[/

Skip a page for the answer to frame 30L.




K60, fxlng (xj“}"‘ AX)n

6L, We note that f(xi* Ax)z(Xj%~Ax)n can be expanded by the binomial

theorem, since n is a positive integer, Thus, (x 4 A:x)ng

n, n_ n(n=1) ®
X, # 97 ° xl Yo Ax 4 =57 1 24 Ax+ (next term ?) + S, where S

is the sum of other terms, all of which contain Ax with exponents

greater than 3 if n > 3,

xi8li, two (More functions than two may be in the chain, depending

on the complexity of the composite function,)

185, Proceed to prove this theorem by the same method previously used,
that of the four steps in the process for finding the derivative of F

evaluated at x,. In step (1), if F(x)= £lg(x)], F(xl)E f[g(xj)] and

P(x, ¢ Ax) = o

IR SAAAT T T U




o, D), v, 43

: . n__n
62, Thus, in step (2), f(xlé Ax) = f(xl) (xlé Ax) Xy o If we sube
stitute the expression for (x1+ Ax)? derived by the binomial expansion,

we have f(xl* Ax) - f(xl)”
. x"

N85, flg(xy+ &x)]
186, In step (2}, F(x1+ Ax)ap(xi}a .
j
;

X304, the graph of f

305, The graph of f makes an inclination angle of 45 degrees with the

positive x-axis and hence has slope .

ERIC

Full Tt Provided by ERIC.




n. n n=1 n(n-1) n=2_, 2 n(n=1) (n=2) n=3 34}~S
L N e M "‘*"""""’3@" e W

= n n
63, Simplifying, f(x * Ax)= £(x;)=(x," Jr x" Lo tx # 000 + )= 5"

we obtain f(x]_* Ax) = f(xl)a 0

A186, flg(x,+ ax)]- £lg(x;)]

g F(x, ¢ Ax)- F(x.)
187. Step (3) gives ol = ! & 0

K305, 1

306, Choose a point A on the graph with x-coordinate slightly less than

P, Indicate such a point A on your graph.

Skip two pages for the answer to frame 306,




)

r63. Bp P le ax o BED) o 02, g2, Beslincd) o B3 pde s

f(x1+ Ax) f(xl)

6ls, In step (3), e

n-1 n(n=1) _ n-2 2 n(n=1)(n=2) _ n=3 3,
x1 o Ax # 51 xl o Ax '+ T xl o Ax"4 S
Ax

H|=

®

, dividing each term by Ax.

flel(x,* ax) ]- £lg(x,)]

K187, A

£lg(x# ax) =fle(x,)]
188, Iet us rewrite the above difference quotient, '

ax
before proceeding to step (L), Why can we write

fle(x+ &)= fle(x))]  flelx* ax)]- £le(x)]  glxy+ &x)- elxy)

e aJs o ?

glx,+ Ax)- g(xl) Ax

b




n=l, n(nw 02, p o

Ablt, n o X, Xy = )

n(n-1)(n-2) . n=3 . 2

3
Ax 4 Ax

' £(x,* Ax) - f(xl)
65, In step (h79A%3Eo A

i (0 © 'xlnml‘# the sum of terms, each containing Ax)

= i 0 o xj-nml *AMO (the sum of terms, each containing Ax)

=

X188, If both numerator and denominator of an expression are multiplied

by the same non-zero quantity - in this case g(x]t& Ax) < g(xl) = the re=

sﬁlt:ing expression is equivalent to the original expression,

f[g(xi* Ax) J- f[g(xl)]

189, 1In step (I), F"’(:xl)*sﬁalég0 =
fle(x,+ 4x) J- flg(x )1 glx #ax)-g(x,)
(substituting from above)eaMléigo g(‘x oy g(:x:.) ° i

(1) £leglx® ax) J=rlg(x,) ] g(x. *Ax)mg(xl)
" %P0 g(:xl# Ax) = g(x.l) Ax-go Ax

(2)  flglxy# &x)]- £le(x)]
" k8o glx,* &)= g(x)) g’(xy)

~ Supply reasons for (1) and (2),




Aégo no Xln=1

66, We have now completed the proof of the theorem which states that

if f(x)= x*, where n is a positive integer, fﬁ(:*cl)f*g 0

-4

X189, (1) The limit of a product is the product of the limits,
g(x,# &x)= g(x,)
Ax

|

l

(2) By definition,,li e p/(x.) |
)t o pBo g 8xy %

1

190, Referring to the statement of this theorem on your iist and con-
sidering the final expression for F’ (:xl) in the previous frame, i.eo

- flelxy» ax) )= £le(x,)]
akFo g(lx, * Ax)= g(x)

o g’ (.x.l)9 we must show

£g(x;* ax) ]= £lg(x;)]
e gl Bx)= glxy)

rz
&

307, For this point A, let its x-coordinate be x + Ax, where Ax is

(greater than, less than) zero,




K66, n ° xln-1

67. This theorem is sometimes referred to as the power differentiation

formla, Using this theorem, if f(x)= x39 f"(xl)Fj Bxizo If f(x)e x79

f’(xl)“ .

K190, £°[g(x;)]

191; As we reagsoned before for the function w in the proof of the pro-
dgct and quotient rule, where we assumed continuity, as Ax approaches
0, g(x1* Ax) approaches g(xl) assuming g is continuous, Thus

£le(x* ax} - £lg(x))]
Predy g(x,# ax)= g(x,)

flg(x+ ax) ] £le(xy)]
i % g(xy+ &x)= glxy)

X307, less than

3080 The limiting position of a secant line AP, as point A approaches
point P, is the tangent line to the graph of f at point P, This is

the line .




©

ERIC

Aruitoxt provided by Eic:

a7, 7x,°

68, Can the derivative of the function f defined by f(x)« xgg whose

value is given in frame L0, be evaluated by the theorem just proved?

Why?

K91, glxy* &x) = g(x;)

£[g(xy* 8x) )= £lg(x,)]
192, Thus,Jlip, g(xi#-AX)m g(xl)

fle(x+ Ax) 1= £le(x,)]
g(x,+ &)= g(x,)

= lim
glx,+ sx)-mg(x,)

By changing to alternate notation, g(x14 Ax) = g,+ Ag and g(xl)g 0

4308, making up the graph of f

309, This tangent line, obtained from the limiting position of the

secant line AP, has slope o




A68, Yes, it can becanse n is the positive integer 2.

€9, Thus, if fx)= x?s fp(xljﬁl,.,_,o Does this answer agree with

that obtained in frame L0?

A192, :41

935, " fle(xy* ax) J= £lelx,) ]
o Thus m : o
’ g(x,+ Ax)->glx,) glxy+ Bx)= glxy)

fi:gl'# Ag'j"" f[g."ﬁ.]
(g, g} &,

= lim
(gy¢ 8g)-2g,

flg.+ bgl- flg,]
2 1im 1 1'—‘ P

(81"' Aé)‘" 81 m

K309, 1

R S ST SC——

310, Thus, the slopes of the secant lines as we approach P on the graph

of £ by points to the left and right of P, are numerically (equal, unequal) o




K69 . 2%y, Yes

70, We might also check Theorem 1 (1f £(x)= x, then f"(xi)a 1) by the

power differentiation formla, We see that f(x)= x can be written with

a positive integral exponent as f(x)= o

X193, Ag
| £(g,+ 8g)= £(g,)
194, But (g + Ad>e, as 8g»0, so  lim A 1
R
£(g,* 8g)= £(g,)
«  lim e .
- g

k310, equal

311. The previous statement is equivalent to the statement that

f Ax)- £
im0 Ax) (x)
Ax-20

[}




K70, xl

71, Thus, if f(xj= xlg by the power differentiation formula,
1=1

s o

f"(xl)H 1o Xq

A19), Ag—=>0

£(g,* 4g)~ £(g;)

195, By definition, A%iﬂo iz & o

f(x + Ax)~- £(x,)
M1, lim , — 1
Ax50

312, Thus, if f is defined by f(x)= x, the derivative of f, evaluated
at x, (the slope of the tangent to the graph of f at x xl),, xists

and has mumerical value o Is this result consistent with Theorem

1?




S T o o T I e R ok R v e
e ————

ATL, 1 o xloh 1o1®1

72, Does the answer in the previous frame check with the result of

the first theorem?

A195, fO(g13

196, In alternate notation, f”(gl)* o

A312 o 1}) Yes

313, OConsider ‘the second theorem we proved concerning the derivative

of a funstion f defined by f(x)= k, where k is a constant, For this

function, f"(xl)ES °




K72, Yes

7%, Tt will be proved later in your calculus course that if £(x)= xpg

where n is any real number, rather than a positive integer, it is still

true that f”(xi)ﬂ o

K196, £7[g(x)]

197, Referring back to frame 190, we have shown the required equality.
You should review the proof of this theorem, since it is the most diffi-
cult proof demonstrated thus far, Stated again, the theorem reads:

If F(x)= flg(x)], and £°[g(x)] and g’(x;) exist, then F(xy)=

A313, 9

R ————

31li, Graph this function on your own paper, indicating a point P with

x=coordinate X, on your graph,




A73, n o x1n°1

-t

st

Tho Thus, if f(x)= x33 £(x;)= Loy = %-° xy70 If £(x)= x=59

= - y 05-18
f”('}fi) -5 o xl

8197, £'[glx;)]e 8'(x;)

198, Since most of the composite functions we want to consider will

be powers of a function of x3 1., [g(x) I® whure n is a yeal number,

e can prove a corollary to Theorem 8. Corsilary. If F(x)a[g(x)?ng
of 4 N n=1 0 S N . <

and g (x1) exists, F (xi) n[g(xl)T o g (xijo Add this corollary

to your liste.

A31h, ¥ (Note: Your point P may have
(oK) P been placed differently.)

o)

315, Choose a point B on the graph of f defined by f(x)= k, with

x=coordinate slightly greater than Xy S8y xl* Ax, Indicate such a

point B on your graphe




A7bo '=’5 ° xlﬂé

\\\ 75, We have now proved three basic theorems for finding the derivative

of simple functions,

dependent variable, the constant function, and a possitive integral power
of the independent variabie, the last of which we extended to any real

exponent, Review these theorems from your list at this time,

A315, Y
(0K)

P

These theorems express the derivative of the in-

199, 1f F(x)= f£lg(x) J=[g(x) ]né, where g(x)= 2

£le(x) 1= £2(z)= 2 B,

B

X,

XFax

316, K secant line PB to the graph of f is the same as the graph of .




76, Following are 6 exercises you should be able to do using the

theorems,

oo

(a) If f(x)=x", f”(x1)=

(b) If £(x)= 5/59 £o(xy)s

(¢) If £(x)= x1°7, £7(x))=

. (d) 1£ £(x)= 10°, £(x,)=

(e) If f(x)= 3™, £7(x,)=

(£) If £(x)s x5 £/(x)"

A“199 o Il

200, If we let g(x)= 2 in the statement of Theorem 8, we have

F(x)e flg(x)I= £(z), F(x;)= £’ [e(x;)] g”(x)= £o(___)e 29

%316, f (or an equivalent expression)

317, The tangent line to the graph of f defined by f(x)= k3 i.e. the

limiting position of a secant line PB as point B approaches point P,

is o

Skip a page for the answer to frame 317,

ERIC
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3
A76, (&) gﬂxigs (p) 0, (o) lo?x1°73 (d) 0, (e} You do not yet

know how to find the derivative of this expression, because the vari-

able is the exponent rather than the base, as is required in the power
el

differentiation formula, (f) =

77. As you might expect; the three theorems we have proved certainly
are not sufficient to find the derivatives of ajil functions one en-

counters in differential calculus. We will now prove four more theorems

that permit differentiation of slightly more complizated functions com-
posed of sums, differences, products and quotients of simpler functions.

Because a derivative is a limit, you should expect theorems conecerning

derivatives of functions composed of sums, differences, products and

quotients of functions to depend on 1limit theorems concerning 9

9 and ___ of functions,

K200, Zl

201, If we let g(x)= z in the statement of the corollary, we have
F(x)=[g(x) ]"= 2"

F(x,)= nle(x)) "o g#(x)= nlz, "




A77., sums, differences, produckts, quctients

78, Our next theorem concerns the derivative of a sum of 2 functions,
From the preceding remarks, because the limit of the sum of 2 functions
is the sum of the limits of the functions, you should expect that the

derivative of the sum of 2 functions is °

hd

4 4
K201, 23

202, Comparing the final expressions for F”(xl) in both the theorem

and the corollary (f”(zl)- z{ and n[21]n=1. 22 we must show

1

4 ®
f (Zl) .

A317. the graph of f

318, The graph of f makes an inclination angle of degrees with

the positive x~-axis and hence has slope o

ERIC

Full Tt Provided by ERIC.




A78, ‘the sum of the derivatives of the fanetlions

79, Our next theorem reads:s Theorem he If £(x)= w(x)+ v(x), where
w and v are functions of x as indicated, and w”(xl) and v”(xl) exist,

then f"(:xl)Sd w’{x1)+ v”(xl)° Enter this ‘theorem on your list.

A202, n[zl]nml

203, That’s easy! Since f(z)= 7" (see frame 201), by the power dif-
ferentiation formula, i“’(zl)a nozq o
Your answer should correctly complete the statement when placed in the

boxo

A318, 0, O

419, Choose a point A on the graph with x-coordinate slightly less

than P, Indicate such a point A on your graph.




80, This theorem svatey that the darivative of wne sum of ¢ fun:tivns

is the __

ativeg exist,

A203, Dy

20L. Tnus, it Flx)= 2 F’(xl)” n[213 )

corosary readss If F(x)ﬁ[g(x}]ng and 1g(xi);nmL and g”(xl) gxisty

¢ &
Pole)=

319, 7

P

I 2T M T

5f the derivatives of ths 2 fuaxiiong, provided the derive

° g”(xi) which was to be provede

320, The timiting position of a secant line AP, as poiht A approaches

point Py is the tangent 1ine to the graph of f at point P,

o

“o zfg sr if & = g{x), the

This is




480, _sum

- poares |

8i, let us proceed through the necessary iy steps to find the deriv-
ative f”(xl)s evaluated at Xy for £(x)s w(x)+ v(x)o Step (1) glves

f(xl)* _ and f(x1+ Ax)= o

A?0i4o n o 'l'g(::cl)i’”"JL

-

205, It shoulid again be emphasized that a.i composite functions are

not powers of a function, An exampie of such an exception is the

trigonometric function f o g defined by (f o g){x)= sin (x2¢ 7Y, where

F
| gx)= ____, £(z)= sin z,
|

A320. the graph of f

321, The graph of f has slope o




AB3, w(x1)+ v(x1)9 w(xl* Ax)é'v(x1¢ Ax)

82, In step (2), f(x1# Ax) = f(xl)a[w(x1* Ax) + v(xl* Ax)]m[w(x1)4 v(xl)]
= w(x14 Ax)+ v(xlé Ax )= w(xl)w v(xl)

(grouping like terms) afw(x14 Ax) = W(Xﬁ)]*{v(xlf Ax)= _ ]

5205, (x°+ 1)

206, We will not now consider such composite functions as cited in

the previous frame, Let us focus on the use of the coroliary to Theorem

8, If F is defined by F(x)=1/25 = ng =5 &x &5, F is the composite
1
function defined by (f o g){(x)= £[g(x)]=(25 = xg)gg where g(x)# 25 = x°

ooy 2 o

A321, g

322, Thus, the tangent lines at point P exist because as we approach

P on the graph of f by points to the left and right of Py

f(x1+ Ax%) = f(xl)

Tim -
Ax=30"

Ax o




. e i

A82, v(xl)

83, Step (3) expresses Flxy+ ax)- £(x,) - (W (x) +8) =u(x) ) J#{v(xy +8x) =v(x; ) ]

Ax Ax
(putting each expression w(x1+ Ax) - W(xl)
in square brackets over = Ax #
the denominator Ax.)
K206, %
1

207, PF(x)= f[g(x)]n[g(x)]z, so the corollary states that if F(x)=

[g(x) ", then Ff(x,)= n[g(xl)]n“I- g'(xl) where, in this casey, n =

£(x,+ x)- £(x;)
K322, lim " A%

323, Thus, if f is defined by f(x)» k, the derivative of f evaluated
at x; (the slope of the tangent line to the graph of f at xl) exists

and has mumerical value o Is this result consistent with Theorem 27%




v(xlé Ax) > v(xl)
‘ Ax

A83,

8ii, In step (L) we take the limit of the above difference quotients

f(x1¢ Ax) - f(xl) w(x1+ Ax)- w(xl) “v(xl% Ax}e v(xl)
skEo Bx “akBol Ax -3 x
(1) Wiy ax)o wlx) vz eax)= vixg)
"m0 * B i T &
(2)

e g0 ) Of e
W (xl) 4 v (xl)

Supply reasons for statements (1) and (2).

(2 1-
A?O/o "é‘
1
[] 2 \ 2
208, TFor the above composité function, F(x)= f{g(x) J=(25 - x7)}%,

glx)= 25 = x?s S0 g(xl)8 o

A323, 0Oy Yes

324, Since the derivative of f{x) evaluated at X, can o interpreted
as the slope of the tangent to the graph of f at the point with
xécoordinate X9 W know that the derivative would not exist (would
not be defined) at points on the graph for which the slope of the
tangent line does not exist, At such points, the tangent line may

assume a (horizontal, vertical) position,




ABLi. (1) The 1imit of a sum of two functions is the sum of the limits

of thc two Punctions, if these limits exist., (2) By definition,

w(xl* Ax) = w(xi) .
A%EQO s = W (xl)o The same is true of the second term

v"(xl),,

85, We have now proved that if f(x}= w(x)+ v(x), and w”(xl) and v”{xl)

exist, then f’(xl)ﬁ w”(x1)+ v’(xl)o let us now consider several exame

ples of this theorem, If f(x)= x + 7, w(x)= %, v(x)= 7, w’(xl)aa 1,

vh(x)7 05 80 £/(xy )= Wi )+ vi(x)s ¢ |

A208, 25 = x12

209, For the above composite funection, g(x)= 25 - x2, so g'(xl)s 0

A32h. vertical

325, let us examine this situation in terms of the previously dis-
cussed function F defined by F(x)=1/25 - xzo The domain of this function
is defined by the inequality -5 S x = 5 and the range is defined by the

inequality o




AB5, 1, O

86, If f(x)= O 6 = o+ (=8) 5 W(x)= :x39 v(x)= -6g_W"(x1)=5' s

? - = w? - - .
v (xi) , SO f’(xl) W (xi)f v (xl) +

A2 09 o ‘=’2 xl

1

210, Thus, 1t F(x)=[g(x))%; F*(x;)= nlelx))1"e g2(xy)
i

L] ;.’ o 242

B 10 (mgxl)

= (simplify, leaving a negative ex-

ponent on the quantity (25 - xlz»

A325, 0SysS5s

326, Recalling the graph of this function, at what point(s) would the

tangent line(s) be parallel to the y-axis, or assume a vertical position?




A860 32{12 9 0 9 3x1 9 0

87, If f(x)= xh+ x, w(x)= 5 v(x)= 9 w”(xl)b 5 v”(xl)a

5 SO f'(x1)= w”(x1)+ v’(:xl)a 0

=)
4210, #x1(25 - xl) 2 (Note that this expression can be rationalized,)
7

211, If F is defined by F(XJZ(x?= 2% = 3)29 X

2. 2% =33 0, F is the

- 7
composite function f o g define%ﬂay (f o g)(x)= i‘[g(x:)]ﬂﬂ(:{am 2% = 3)2,

where g(x)= Xoo 2% = 3, f(2)=2__ .

A326, (=5,0), (5,0)

327, At what point(s) would the slope(s) of the tangent line(s) not

exist?




A87 ° xh 9 Xy llx13 9 19 bx13‘|' 1

8
88. Now it’s your turn? If f(x)= x'= x?, f”(xl)a .

7
A211, 5

7
212, F(x)= f[g(x)]a[g(x)]z, so we use the corollary to Theorem 8, stat-

ing that if F(x)=[g(x) 1", then F'(x1)= n[g(xl)]nmlo 0

A327, (=5,0), (550)

328, At what po}nt(s) would the derivative(s) of the function not

exist (not be defined)?




89, It should be noted that it is not necessarily the case that if the
derivatives of two functions fail to exist for some value(s) of Xqs the
derivative of the sum of these functions fails to exist at Xqe Consider
£(x)= w(x)+ v(x)=|x|+[~]|x]|] where w(x)=|x| and v(x)= .

o

A212, g'(xl)

7
213, For F(x)= f[g(x)]=(x2- 2x - 3)2, n = .

A328, (-5,0), (5,0)

329, ILet us now compute the derivative of F(x)=1/25 - x2 to see if

2
the above conjecture is actually the case. For F(x)=V25 - x°,

F’(x1)= . (Compute your answer without reference to previous

results.)




289, =|x|

90, Neither w'(xl) nor v'(xl) exist for x,= .

A213. :-27-

21)l,, For the above composite function F defined by F(x)= flg(x)]=
T
2
(x"= 2% - 3)2, g(x)= x2- 2x - 3, g(x1)=

1
o, 2
A329, -~ x1(25 - %y )

330, To find the slopes of the tangent lines at the points (-5,0) and

(5,0), we mst evaluate F/(__) and F/(__).




91, However, for the sum of the ahove functions, f(x)= w(x)+ v(x)=

-

|| +[-]=

Jo ¢, £7(x))= .

2

A21), %y - 2x1~ 3

215, For the above comvosite function, gz(x)= oo 2% - 3, S0 g’(xl)=

A330. -5, 5

(25 -2 %, T () ana (S)-

33i. Thus, if F’(xl)= ity




A9l, O for all values of x., (See Theorem 2).

92, If an algebraic expression is the difference of 2 functionsg i.e.,

f(x)= w(x)= v(x), you should expect f”(xl)H 0

A215, 2x1= 2

-J

216, Now, if F(x)m[g(x)]zg F’(xl)ﬂ n[g(xl)]nulo g”(xl) becomes

==
F(x)= M (x%-2x-3) (25~ 2),

K331, Both answers are undefined.

332, What are the equations of the tangent lines to the graph of F

defined by F(x)=1/25 - x° at the points (=5,0) and (5,0)? (Remember
that these tangent lines are parallel to the y-axis and pass through

the points (-5,0) and (5,0),)




2920 W (x)= 9°(x))

93, One could prove the above statement, a theoremy, with the heip of
the Limit theorem that states the limit of the difference of two funce

tions is equai to the difference of ths o

(We will omit the proof, but the reader is advized to complete the

proof as an exercise.)

(")-

22160 Ly %o (or 3

7
217, Thus, if F(x)ﬁ(xzm 2K = B)MQ F”(XI)“‘

‘\’iﬁ;

- <3
.

. i

. . .

g A, - e -5
K e 2K o 2K .= &

\ N 2} ( i J

T

?

]

~

simpiify your answer, leaving

Ny

a fractional exponent on the quantivty (::c:i - Qxln Yj)

A332, x® <5, x=5

333, In this case, the slopes of the tangent lines don’t exist at two

points on the graph of F, but F is defined at these points and these tan-

gent lines exist, so it is possible to write their equations, Draw these

tangent lines on your graph and iabel them,




B e o e i e e s

-

A95, 1imits of the two functions if these limits exist

9k, The theorem reads: Theorem 5, If f(x)= w(x)- ¥(x), then

0 . <g? Y g 0 2 ;
f (xl)h' W (xl) v (xl) if w (xl) and v (xl) exist, Add this theorem

te your list,

2
217, 7(xP= 2x= 3)% (2~ 1)

~ ¥
218, If F is defined by F(x)= z-E—lz;gb = 1 # 0, F(x)=(f o g)(x)=
x c»

i . B
flg(x) Js(x = 1)

33}, Consider the function f defined by f(x)= xu, x 2 0. Graph this

function on your own paper for future reference,




95, If f(x)= 1 = x, w(x)= wy v(x)= x, w"(xl)B 5 v”(x1)=

_,._,,9

£9(xp)= w(xg)= v/(x7)= ___ o

A218 ) ‘“2

219, So F(x)=(f o g)(x)= £le(x)I=(x"~ 1) where g(x)= x'= 1,

2 o

f(z)=

&33L,

—

o| A

335, The domain of this function is defined by the inequality x 2 0,

as cited above, and the range of f is defined by °




A95, 0, 1, =1

96, If £(x)= x = %2, w(x)= s v(x)= ____, wi(x))= s VIx)=E ___s

£/ ()= wi(x;)= v/ (x;)= 0

32'19 0 ""2

220, F(x)= fg(x)I=[g(x) ]"2 5 S0 our corollary will apply with n = o

A335, the inequality y 2 0

336, From the graph of this fun~tion, at what point(s) would the tan-

gent line(s) be parallel to the y-axis?




K96, x, xgs i 2x19 1l - 2x1 (Does your answer check with the

derivative of this function, obtained by the i steps, given in frame
u97)

g
97, Again it’s your turnt If f(x)=x -V2 , f”(xl)ﬂ

A220

o
..

=2

291, TFor the above composite function, F(x)= f[g(xﬂ]%(xha 1)”33

g(xl)% and g'(xi)a .0

4336, (0,0)

337, At what point(s) would the siope(s) of the tangent line(s) not

exist?




e

=}

7
A97, %xl (V2 is a constan’c)

98, Since many algebraic expressions are products of simpler fune=
tions, we will now prove a theorem concerning the derivative of the
product of 2 functions, Consider the function f(x}~ wixyo v(x)o

Since the 1limit of a product of 2 functions is the product of the

limits of the 2 functions, (i.e. lim [w(x)o v(x) 'jt—sxggé w(x) °x=§3"c v(x))
1 1 1

would you expect that the derivative of a product of 2 functions is
the product of the derivatives of the 2 functions (i.eo

me f’ (‘%j:);;; .:wép(x«.]-);-o «”v”w(xlz))?, e T e e var:

A223, xlﬂ*- 1, lx

V o (A =q\
220, Now, 1f F(x)=[g(x) I e(x'- 1), Fo(x,)" nlelx) "™ glx))=
(simpliiLour answerg leavingva negative exponent on the quantity

(xll’; 1)),,

337, _(0,0)

338, At what point(s) would the derivative(s) of the function not '
exist?




A98, If you answered “yes,® you were iricked; The problem is not

that simpie,

99, The theorem reads: Theorem 6, If f(x)= w(x)o v(x), then

y r o v? o w'(: . 0 i ¢
f (xl) w(xl) v (xl)# v(xl) W (xl) provided w (xi) and v (xl)
exist, Add this theorem to your 1list,

222, u8x13(x.ll‘= 1)=3

1
. 2.9
223, For F(x)=(x = 2x )2; n =55 g(x)- s B (xp)= o
}
ﬁ-
A338. (0,0)
| =3
339, At the pOint (090)3 f’(xl)g% ° 11 4 or fa(O) is °

ERIC

Aruitoxt provided by Eic:




100, Study the statement of this theorem carefully, Stating this
theorem in words, we have: The derivative of the product of two func-
tions of x, evaluated at x,, is the first function muitiplied by the
derivative of the second function pius the second function mmltiplied

by 5 provided these derivatives exist,

o 2
A22jo Xl==' 211 9 1 - l‘xl

1
225, For F(x)=(x - 2x2)29 F”(xl)ﬁ (leave a negative exponent on the

. 2.
quantity (x1= 2%,V e

A339, undefined

30, Can you write the equation of the tangent line for the above
function at the point (0,0)? (Remember that this tangent line is par-

allel to the y-axis and passes through the point (0,0).)

Skip two pages for the answer to frame 3L0.




Al00, the derivative of the first function (You should become familiar

with stating all the thuorems in words, as an aid to remembering,)

101, Before proving this theorem, consider an alternate notation for
w(xi)s w(x1+ Ax) 4 v(xl)s v(x1+ Ax) , which will simpiify the notation
in our proof. Let'w(xi)ﬂ'wlo If %, changes by an amount Ax, i.e,
X = X, 4 Ax, then, since w is a function of x, W will change by an

amount, which we wiil call Aw, Thus, w(x.+ Ax) will be dencted by
9 s WXy

w,* AWo Reasoning in a similar manner, let v(xi)& v, and let
v(x1+ Ax) be denoted by .
=1

225, Following is a set of exercises you should be able to differen=-
tiate using the theorems and coroliaries developed thus far, Review

your list of these theorems and corollaries at this time, before pro-

ceeding to the exer;ises below,

(8) 1t 2(x)=(x - 1%, £7(x)= :
>

(b) 1f £(x)=(x’= 1)%, £o(x,)=

(C) If f(X)"?/;’x‘é; f’(xl)ﬁ .
(d) If £(x)e( mgg f'(xl)sa ." T e

(&) If £(x)=( Vx’= 1)2, £7(x))= :
(£) 1f £(x) =V 1, £9(x))= o




A101, v1+ Av

102, Returning to the precof of Theorem 6, we will foliow the fouv
steps for finding the derivative of £(x) evaluatesd at x o In step (1),

if £(x)= w(x)e v(x), then f(xl)w w(x1)° v(xl)& (in &l ternate notation).

3 3 ool
A225. (a) -g—(xlm 1%, (v 5 (x,“~ 9% () %“1 -
3

i

3 | » .
(d) x,- 12 (see (), (6] & e, (.2 ) 5, o 3

_ 2 .
xl(xl < 1)

(UL

226, Yet us return to the definition uf the derivative of f evalaated

" f(x. 4 Ax)= f(x
at x5 1eeeydip, (x; Ax’ (x))

we have considered examples of functions such that this 1imit dig

» when this Limit exists, Thus far,

exist, Howevar, you know from the soction om 1imits that it might,
not always be the case that this limit existe Consider the funetion
f defined by f(x)&]x - 1[. Graph this function on a separate paper

for future reference,




{1—02 P ‘ﬁl ° Vl

T A B dons

103, If #(x)= w(x)o v(x)a f('_ﬁ'ﬁ- Ax) = w(xl.# Ax) o v(xl,,,, Ax) =
(W1+ tw)o (in alternate notation).

)I
226, ~
1

X9 !

227, We will proceed te obtain the derivative of £(x)={x « 1| evaluw
ated at X, " 1, by proceeding through the fouxr sieps in expressing the
1imit of the difference quotient. If f(x)=fx - 1], f(xj)m[xla i| and
f(x14 Ax)= o

4340, x = 0 (or the y-axis)

341, Again we note that even though the slope of the tangent line
doesn’t exist at the point (0,0} on the graph of fq since f is de-~

fined at (0,0) and the tangent line exists, it (is, is not) possible

to write the equation of the tangent line,




X103, (v14~ Av)

10k, In step (2), f(xl* Ax) - f(xi)=0u1+ aw)°(v1¢ Av)-'wlo h
(in simplified form).

K227, |(x¢ 8x)- 1]

228, In step (2), f(xiﬁ Ax) - f(xl)ﬂ e

ABhl e« 1is

342, If f is defined by f(x)=vx - 2, x & 2, graph this function,




KiOl, W.o AV 4 V.° AW 4 AW o Av

1 1 N
F(x.+ Ax)o £(x.) W.o AV ¢ V.o Aw % A4 o AV |
1 * ] il
105, In step (3), i = i
(dividing each term o Av Av
in the numerator by I R ¢ h oo Ax*

4x)

o al

K228, |(x;+ Mx)= 1]=|x = 1]

£(x,# 8x)- £(x,)

229, 1In step (3), i o

A3h2,

0 ('a.,o)

343, The domain of f is defined by the inequality x 2 2, and the range

is 0

Skip a page for the answer to frame 3kL3.




o5, Vlo %—s;
£(x,+ Ax)= f
106, In step (), Jig >y Ax? b
!1ig0(wo 1ﬁ"x4mo 2y
(1) Av
“aiPo (W° 5) “adigy (vye ”3 ) *adimy (& o “’
(2)
* (o) o 0 ko™ (s 90 stz gl o
(3)

(o £ V1 skiBo B+ abigod) (yiimg o

Supply reasons for (1), (2), (3).

[Gept ax)= 1f=]x = 1]
. B

£(xy# Bx)- £(x,)

230, In step (b),,}in, Ax




X106, (1) The 1imit of a sum is the sum of the Limits, if thess 1limits

exist, (2) The 1limit of a product is the produet of the limits, if

these 1imits exist, (3) The 1imit of a constant is that constant,

(H1 and v, are independent of Ax, and hence are constants.)

1

107, Recalling the alternate notation for the derivative of y = f£(x)

evaluated at x,, f”(xl)“ﬂiégo'%ﬁa'we have ,1ip, %% = w’(x,) and

Av
2380 Bx ¥ ———

[(xy# &x)= 1|-{x,= 1]

4230, 4dip, A%

291, Since we want to evaluaie the 1imit of this aiffersnce quotient

for X" 1, the expression becomes

e a-1l=fx- 1] Massdoal-p-af,
e = ax

A343. defined by the inequality y 2 0

3hli, From the graph of this function; you would expzct the derivative(s)

(the slcpe(s) of the tangent line(s)) not to exist at the point(s) with

coordinates °




K107, v’(xl)

108, The terms in the last line of frame 106 can now be expressed as

i T " Wye V(X)) vt 3iBe vy W) am

A
R *xkiBo Tx = akiBo & - .
ey, g, 11
232, If -LAE-I- is to exist, lim _LA_x_[_ o
adddo "B  penpe X
by, (2,0

345, let us evaluate the derivative of the function £ defined by

£(x)=V/x = 2 and check the above conjecture. Thus f’(x,)= _ .




ICI.OB. V’(Xl)

f(x14- Ax) - f(xl)
109, Thus, we have,lim, = -, v'(xl)* vy w'(x1)4

x|
Ax

A232, linm .
A0

233, If Ax—DO*, this means Ax > 0, soy recalling from the 1limit sec-

tion the function f defined by f(x)=|x|, |Ax|= o

-l
A3lLS, -21-(x1- 2) 2 (You should have used the corollary to Theorem 8 for

thiz differentiation,)

346, Por the point at which the derivative of the above function should

not exist, (2,0), £/(__ )= .




A109, A;l‘-i-%d" o V”(xl)

110, Since the limit of the difference quotient on the left hand side
of the expression in frame 109 is :t‘”(zicl)‘9 we have

’ 0 o w?’ : 0
f (xl)ﬂ'wla v (x1)+ v o ¥ (xl)* A%iyko oV (xl)o Reviewing the
statement of Theorem 6 on your list and comparing this statement to

our expression for f’ (xl) in the preceding sentence, we mst show that

the termh}c:jngo M oo v’ (xl) has mumerical value o
A233, Ax
234, If Ax-»0", this means Ax < 0, so, reasoning as above, | Ax | = 0

A3L6, 2, undefined

347, We can write the equation of the tangent line for the function
f defined by f(x)=\/x - 2 at the poinv (2,0) because £ is defined at

this point and the tangent line exists., This tangent line has equation




K110, z8T0
111, Since v”(xl) is a constant, i.e, the value of the derivative of
v evaluated at a fixed or constant value Xy We mast show 2 0o
)
| A23L, =Ax

Rl&

235, Thus, 11m+J%J—ee11m* o lim 1% __ .
Ax-50 ax20" XX px20

5:3,470 x =2

348, In the case that the slope of a tangent line does not exist, the

tangent line may not exist either, It is not possible to write the
equation of the tangent line to the graph of f if there is no second

element, f(xl), belonging to the function f whose first element is °

ERIC

Full Tt Provided by ERIC.




nll, A;g% Aw

112, Thus, we must show that as Ax spproaches 0, Aw approaches O,
Consider the exprassion.w(x1+ Ax) as Wyt i = w(xl)& Aw, in terms of

our alternate notation, For w(xlé Ax) , we see that as Ax approaches

Ooptfo Wix* £0)= ;

K235, 1 Note that we have used the theorem stating lim k =k for &

constant k.

236, A‘ndglim_-l-é—xlﬁlim m%ﬁlimaalﬂ o

Ave0" 8 ppr0” Ax—>0 —

349, Consider the function f defined by £(x)= X, Graph this function

on your own paper,




-

K112, w(x;) OF Wy (yote that here we mist assume the contimuity of the

function w, a concept we will not discuss in this unito)

113, If this is the case, then the right side of above equality,
w(x14 Ax) = w(xl)* #wiymust approach the same value w(xﬁ) as Ax

approaches O, This means that if Ax approaches O, &w approaches °

A"2360 "’1

f(;a:1 + Ax)- f(;xl)

247, In this case, we see that 1lim =1 and

Ax—20 bx

£ Ax)=- f
2 Ax) S
Ax—>0

A3h9, ‘

350, The domain of the above function is the set of all real non-zero

mumbers and the range is the set of




o TR A T T R T R R e TR R

Ali3, O

11y, Thus, if Ax approaches 0, then AW approaches 0, so,lip Aw can be

rewrittenAigmoﬂw ﬁﬁ&ggoﬂw and this limit has numerical value

o

A237, =1

f(x14 Ax) = f(xl)

o 9 .an’t axlg :
e for x1H 1 dozsn’t exist because

238, SbnlimO

X350, all real non-zero numbers

351, From the graph of this function, you would expect the derivative(s)

(slope(s) of the tangent 1ine(s)) not to exist for value(s) of X, ® °




Allh, ©

115, We have now proved the result required in frame 110, since

a0 v(xy)= 0 0 vi(x))= __

A238, the left and right hand limits are not equal (or an equivalent

expression)

f(x1+ Ax) = f(xl)

239, Thus, if f(x)=]x - ljgﬁ_:i.go e doesn’t exist at

X, ® 1o This is equivalent to the statement that f”(xi)w £2(1)

A351, 0O - the tangent lines approach a vertical position for points

on _the graph of f with x-coordinates near 0,

352, Evaluating the derivative of f defined by f(x)= 13';,, we have

f”(xl)s °




X115, ©

116, Reviewing, we have proved the theorem that if f(x)=.w(x)e v(x),
’ 0 ¢ e W o v’ ¢

and v (xl) and W (xl) exist, then f (xl)- Wye v (le v o W (xl)-

w(x1)° v'(x1)+ v(xl)- w/(x,). Stated in words, the theorem says that

the derivative of the product of two functions of x, evaluated at X0

is the first function multiplied by plus

the second function multiplied by s each

term in the sum evaluated at X9 provided the derivatives existe

A239, doesn’t exist

210, There are other examples of functions that don’t possess deriv-

atives at some value(s) of Xy 9 i°e°gliﬂo f(xlé 2:)u f(xi) (does, does not)

existe.

, -1
A352, —

M1

353, At the point with x-coordinate X" 0, f'(xl)8 215 is .
x
1
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K116, the derivative of the second function, the derivative of the

first fanetion

117, Now consider f(x)= w(x)e v(xﬁu(xz).(xs), where w(x)= xz,

v(x)= xB, w'(xl)a 2x1, v”(x1)= °

A240, does not

21, For the moment, we will confine our attention to functions which
possess derivatives at all points in the domain of definition of the
function, We will return tc other exceptional cases when writing
equations of tangent lines in the next sections One such exception

just cited is f(x)= evaluated at X, = 0

A353, undefined

354, The equation of the tangent line to the graph of the function f
defined by f(x)a'% at a point with x-coordinate x,= O doesn’t exist be=
cause there is no corresponding second element belonging to this func-=
tion whose first element is ___ .

Skip a page for the answer to frame 35k,




K117, 3x12

118, If £(x)= w(x)° v(x)=(x>)o(x"), then £7(x,) wixy)e v(x))¢
2 2 3 i L
o ¢ =
v(xy) o wO(x )=(x;7) o(3x 7} #(x) ") o(2xy)® 3%, 2x, 7w o You should
check to see if the theorem is applied as we stated it above; i.e. first
times the derivative of the second plus second times the derivative of

the firste

., |x-1], 1

2li2, Perhaps you have felt that much of our work with the derivative
thus far seems to be very much like that in the section on limits.

ihis is not surprising since the derivative is a limit. To extend

the analogy even further, we can relate the applizations of the limit
to applications of the derivative, One such application is that of the
derivative considered as the slope of a tangent line to the graph of f

evaluated at x93 i.e, evaluated at 2 point on the graph whose x-coordinate

is °
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K118, leh

o

119, Did you realize that you could also find the derivative of
f(x)= X?o xﬁa evaluated at X, in a different way? Since f(x}=

x?o xBE x59 we can use the power differentiation formila to obtain

f’(xl)8 0

A"Z’-l? o xl

2}i3, Consider a general function f such as the one whose graph appears

below, The coordinates of point A are ( 9 ) Copy this graph

on your own paper for future reference.

Y
A
S
/0 Xy

A35Lh, O

R ————————

_ 1
A
355, For the functions f defined by f(x)=125 = x°, f(x)= iﬁa

f(x)=v/ x = 2, we were able to write the equations of the tangent
lines at points on the graphs of these functions where the slopes of

these lines didn’t exist, This was the case because the tangent lines




———t

K119, leh Note that the answers in frames 118 and 119 are the same,

120, Iet us now proceed to find the derivative of f(x)= w(x)o v(x)s=
x(1-x) by the above theorem, Here w(x)= x, v(x)= l-x, w”(xl)— 9

vi(x)~ .

A2L3, xl’ | f(xl)

2hlio Choose a point B cn the graphy in the neighborhood of A, with
x~-coordinate Xy Ax, where Ax > O, Indicate such a point B on your

graph,

K355, existed (or an equivalent expression)

356, To summarize our discussion in the preceding section, we have

presented functions for which the derivative does not exist because
1im f(xl+ Ax) - i"(xl) Y

Ax-»0 Ax




K20, 1, -1

121, Thus, if £(x)= w(x)e v(x)= x(1-x), f’(xl)fi ‘H(x,l)o vo(;;l)+

v(x;) o wi(x;)= xlo(-l)*(l-xl)° 1= 0

e

/5[ X, X+ex

2h5, Depending on how "near" we want point B to be to point A will

depend on how near (x14- Ax) is to x;, or how near Ax is to °

f(x,+ Ax)= f(xl)

1
Ax

A356, 1lim ,
Ax-0

357. Also, the derivative of a function will not exist if the expres-
f(x14- Ax) - f(xl)
sion for lip, i becomes , even though f(xl)

exi 8158.
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Lo alind

122, We could have found the derivative of the above function in

another mammer, Do ycu see how? If £(x)= x(l=x)= xpx?a then f@(xl)e

(by Theorem 5 for the der.vative of the difference of 2 functions).

Does this answer check with that obtained in the previous frame?

LS5, zero

246, Regardless of the value of Ax, the point B has coordinates

( 5 o Indicate these coordinates on your graph.

k357, infinite

358, Both a function and its derivative may fail to exist at x,. In

this case, the tangent line at X, (does, does not) exist,

Skip a page for the answer to frame 358,




Al122, 1 = 2x1p Yes

123, We also computed the derivative of this function before introduc-
ing the theorems of differentiation., Check the result here obtained
ith that obtained for ths function £(x)% x = x° in frame L9, Are all

3 answers the same?

A2L6, X * Ax, f(xl* Ax)

247, The two points A and B on the graph will determine a secant line,
80 defined recause this line intersects the curve in at least two points
in a neighborhood of &, Such a definition should seem reasonable, be-

cause in high school plane geometry, a secant line to a circle is defined

as a line which intersects a circle in distinct point(s).
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Ki23e Yes

Bl If £(x)= w(x)o w(x)=(x ¢ 1) (x’+ 1), w{xj= Lo V(x)= 9
LAEN LIS A € L

rnt, two

248, We want to show that the derivative of f, evainated at x,, is
i the same as the slope of the tangznt Line to tne geaph of £ at the
point with X=eoordinate Xﬁ'when this darivative exists, Let us use
a secant line as an aid, Referring to the above graph, the slope of

a gerant line ABy this siope denoted by'mga san be expressed in terms

of the coordinates of points A and Bj 1.¢0y m. f(xi* Ax) = f(xi) & °
(x¢ Bx)e %)

A358, doss not

of the previous section,

(a) 1 £{x)=fx « 2], does £°(-2) exist? (A graph may be helpful in
respording.)

(b) If P(x)= ;f%*ga find the equation of the tangent line at the point

f 359, Following is a set of exsrcises that will test your understanding
|

|

! with x=2o0o0ordinate X4 3o

(c)'If f(x)=\/x # 5, find the equation of the tangent line at the point

(=5,0) 0

(d) If f(x)H\/;§:=;9 find the equation of the tangent line at the point
A (55). |

(e) If £(x)=V9 = x% find the equation of the tangent line at the point

(3,0)0 1
(£) If £(x}= x°y x 2 0, find the equation of the tangent line at the point

(090) o
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125, Tmmsy £20x )5 wix )o wi{x )+ v{x;}o‘w’(x&)aﬁxﬁ‘¢~1)o(3x12)#
L A 1 . 1 i

(.28 L) en Yo (zompindng like terms}o
A i £ ST L N AW T I ML W TEE T

flx 4 Axjo £(x. )
L B

A"Z P A 8 s e
249, A secant Line AB assumse a Limiting posisfong that of the tangent |
dine to the graph of £ at potat Ay a3z Ax approachss o

| f(xlé Ax)= f(xl}
k359, (a) Noy for m= =%, iim -~ =" = i and

Ax-50

_ f(xlé Ax) - £x. )
l " -
lim o Ax & el .

Ax20__

oac et

(b) Neither £(3) nor £/(3) exists, so thers is no tangent line at the

Inaicatsd poiat,
{e) x = =5

(d) 5x = ky = 9

(e) x = 3 (£9(3) is undefined but £(3) exists)

(£) x = 0 (or y=axis;




APPENDIX C

o

CRITERION TEST ON THE DERIVATIVE
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Criterion Test on the Derivative
Mark the eorrect answer and do your computation on the answer sheet,
Make no marks on the testo
1, If £(x)e 504 6x°= Tx & by £7(x)®

(a) 15xl2* 12x,# b
2

(b) lel + 12%, = 7x1

(e) 15x12# 12x1m 7

(4) 15x,°% 12x,+

2, If £(x)=(x>e 3x = 5) (x4 6x°= 5x), £9(x,)=
(a) (2x ¢ 3)(3x,°+ 12x;~ )
(B) (x,2 3, 5) (3 e 12y 5)~(2ry 3)(x 0% 6y 7= 5ixy)
() (xlz* 3x, 5)(33%4* 12x, = 5)4(x13 + 61'12= Sx,) (22,4 3)
(d) none of the above

3, If £(x)= x2(2x - 1)(xF x = 3), £1(x))=

(a) x,(10x, 7% lx;*= 21x+ 6)
(b) lx,(2x;+ 1)

(¢) x12(6x124.~ 2%~ 7)

(4) 2x12(2x14r 1)
he If £(x)m(xP~ 1) /(x + 2), x # -2, £9(x))=
(a) X, 2
(b) 2x,
(¢) 1
() (xy 2 kg e 1) /(xy# 2)




5o

6.

Te

8.

If f{x)m x + 1/(x # 2)(x + 3), x £ -2, =3, £°(x;)=

() ~(x,%~ 23y~ D/x+ 2)%(x;+ 3)°
(b) =x %= 2xy e 1/(x+ 2)2(xp+ 3)°
(c) x12~ 23+ 1/ (ay# 2)(x'14~3)]2
(a) 1,(2::14 5)

If f(x)=(2x3u 7x24' 9)24, f’(xl)"
(a) b(2x>= 72,2+ 9)7 (6x,%= Lisx,)
(b) 8x (2%, 7= 7x,%% 9)° (3x,- 7)
(e) (6x12- lbxl)h
(4) W(2x,7- 7x % 9)°

Ir £(x)=(x’= 1) (2x = 3), £/(x;)=
(a) 1hlxy- 1)
(b) 2(x,%= 1) "4 1hx, (2, 1)C(2x,- 2)
(c) 2(x12-= HEeY (2%, 3)(x12- 1)®
(d) none of the above

If f(x)-{'/?cz& 2%, x24- 2x & 0y f”(xl)’!
(a) 2/7 (xy# 1)(x12+ 2x1)"6/ !

=6/

(v) 1/7(x124 2x,)
(c) 7/2_(?1*_17
(@) 7(x;%e 25)% 2(x,¢ 1)




e e A AL A A A £ el

90 If £(x)= (V- 3x + 1)°, £(x))e

(a) (V3x,%- 3)°

(8) 5/3 (Y- 3+ 1) 23

() 5(va = 3+ 1)3(x, %= 1)

() 5( Py - 3+ 1)2(x 2 1)

100 If £(x)=vx = TAx =65 x 2 7, £2(x))=

(a) V= &/ V=7

(b) 1

(s) 1/2 [(x- 6)(xy- 7)]”1/%(x1= gl
() 1/2 [(xy= 6)(xy= 7) 12/2

11, If £#(x)=V/8 = 2x = x%5 8 = 2x = %2 3 0, £7(})=

(a) undefined
(v) 6
(e} V&

(dj o
12, The slope of the tangent line to the curve y = f(x)= 7x3=- éx + 1
at the point (1,2) is

(a) 2

(b) 15

(e) 1

(a) o
13, The slope of the tangent line to the curve y s f(x)=

(10 - 3x + X2 x3) 2/s at the point with x-coordinate Xy = 2 is

(2 Spe(cany3/5
(¢) VIz1

(d) undefined




e

1. The slope of the tangent line to the curve y = f(x)=
(x = 3Y2(x - 93, x2 3, at the potat (k1) 1is

(a) 1

(b) 1/2
(c) 5/6
(d) 1/3

15, The equa’cion of the tangent line to the curve y = f(x)=
\/16 - % s =h Sx 8k, at the point (0,k) is

(a) y = b =0

(b) y=0

(¢) y=x+k

() x+y =14
16, The equation of the tangent line to the curve y = f(x)=
V'; 4+ x at ("SQO)Q X 3 “’59 is

(a) x =0

(b) v = =5

(e) y=0

(d) x = =5
17 The equation of the tangent line to the curve xi/ 24 yl/ 2 21/ 2 2

0Sx52,05y %2, at (2,0) is

(a) y = 0 (x-axis)
(b) ¥y =2
(¢) x = 0 (y-axis)
(d) x =2

18, At what point(s) would the tangent line to the curvs: y = f(x)=

x°= x = 12 be horizontal?

(a) (=3,0),(k,0)
(%) (1/” wb9/ﬁ
(e) (0, ~12

(d) (19 "11)




The velocity at an instant ty the instantaneous vel.:ity, can be
expressed as a derivative, If ¢ = f(%)g where s is distance traveled
by an object in t units of time, ; the instantaneous velocity at the
f(%1+ At) - f(tl)

’ =
instant in time 1., is f (tl) AR, -

19, If s = f(t)-%yeth 9t2+ 3, where s is the distance measured in

miles and + the time measured in hours, find the instantaneous velo-

city in miles per hour at time tl.
(a) YZTE,= 16%,

(b) 1765 98,20 3=3/%
3 2 3tmaa 2 .
(¢) W(7t,"= 9%,%% 3)-(21%, - 18tl)
() 1/L(7t13= 9t12¢-3)“3/h(21t12w 18, )

20, If s = f(t):(tzf B)hs where ¢ and ¢ are defined as abovey, find the

instantaneous velocity in mop.h. at time t.= 1,
(a) 256

(b) 8

(e) 512

(a)y 16

1

21, At what i=:%:nt in time would a body whose position is given by the
distance equation s = f(t)= =3 + 10t - Btzs where s is the distance
measured in feet and the time measured in seconds, be momentarily at

rest?

(a) 1/3 Sece
(b) 0 seco
(e) 3 seco

(d) 5/3 SecCo




The derivative of a function can be Lnterpreted as a wabe >f changes
i.8, the rats of change of the fanchion with respe-® to tne variable de-
Pining ths funsiiom, Thusy Lf 5 = £(x), f”(x&) iz ths rate of change of
y{lor (1)) with rezpest o Xo
22, The perimeter of a squars, expressed as a funstlion of x, the side
length of the square is f£(x)= Lx, We kucw thau the perimeter of 2
squaye will change as its side length x changes, Using the abowe
formula for the perimeter of a squave (£(x)= Lxj, flcd the wale of

change of the perimeter with respest to the 3ide dength x of the square,

(a) &
(5} 0
(e) b
{d) le

230 Phe cipsamfepsncs of a cirele can be sxpressed as a function of

%, the radius of the zircie, The zircamferenze of a oirels will change

as its radius x changes, Using the appropriate formula for the clrcum-
ference of a clrcle expressed in terms of its radins x, find the rate

of change of the circumference with respect to the radius x of the circle,

(a) «
() anx
(c) 2w ~

(d) w
2li, The area of a square can be sxpressed as a function of x, the side
length of the square, Using the appropriate formuia for the area of a
square expressed in terms of its side length x, find the rate of change
of the area with respect to the side of the square,

() =
e

(e) Ei?
(d) 2

i




25, Prove: If f(x)= k, where k is a constant, f”(xl)a O.

26, Does £?(~7) exist for the function f(x)= |x + 7|2 Why?

o

You may use a graph to explain your answer,
27, If f(x)= xom hx + Z/x2+-2x -3, x £ =3, 1, find f’(xl) in two
ways and show that your answers are the same in both cases,
28, Give an example of a function that is defined at all points but

doesn’t have a derivative at all pointse
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