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CHAPTER

INTRODUCTION

Orientation to the Problem

Since mathematics, and the sciences in general, are becoming in-

creasingly important subject areas in the school curriculum on all

educational levels, much revision and restructuring in content has

been and is being done. Such reorganization is evidenced by the many

experimental programs in the "new math." Such programs are the Univer-

sity of Illinois Committee on School Mathematics (UICSM), the Madison

project at Webster College in Missouri, the School Mathematics Study

Group (SMSG) at Stanford University, the Ball State University experi-

mental mathematics program in Muncie, Indiana, and the Minnimath Pro-

gram at the University of Minnesota. New approaches to content

presentation in physics (Physical Science Study Committee - PSSC)

Biology (Biological Sciences Curriculum Study - BSCS): and chemistry

(CHEM Study Program) are also being tried.

In the field of mathematics, Marks, Purdy and Kinney discuss this

activity toward reorganization of content:

The school mathematics curriculum at every level from
the primary grades through the high school and college pre-
sents a scene of reexamination and innovation. Different
emphases, different grade placement, new topfss, changed
methods for promoting learning, and new materials - both
textbooks and multisensory aids - are characteristic at
all levels. (37, p. 1)

Spencer and Brydegaard sgy:

Today's school program emphasizes problem-solving in
wtich the learner is challenged to question, to experiment,

1
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and to explore, in order to find basic ways of attacking

problems. Learning is conceived to be a personal achieve-

ment that can be accomplished only through problem-solving

behavior on the part of the learner. (65, p. v)

If one glances through a mathematics textbook with a current publi-

cation date, he finds very different content and format than was used

in a text in the same area ten years ago. Mathematics textbook authors

admit the influence of the experimental work cited above. Robison states

in the preface of a college text iA modern algebra and trigonometry:

In selecting the content of this book, I have been

guided by the recommendations of various curriculum study

groups, such as the Committee on the Undergraduate Program

in Mhthematics (CUPM). The textbooks of the School Mathe-

matics Study Group (SMSG) influenced much of the writing.

(51, p. 7)

In the preface of a beginning college text that uses a somewhat rigorous

approach, Britton, Kriegh and Rutland state:

This is the first of two volumes that are intended

to provide college and university students with a sensi-

ble continuation of the modern approach to mathematics

that is being introduced in most elementary and secondary

schools, with more emphasis than in the past 'placed on an

understanding of fundamental concepts. Certain advanced

topics in algebra and trigonometry, along with analytic

geometry and calculus, are unified into a sequential ex-

posf'on that eliminates much unnecessary duplication and

is :-Aucive to an efficient development and use of ideas

and techniques. FUndamental k;oncepts are discussed in a

reasonably rigorous fashion, with adequate emphasis on

important skills, and without an exness of sophistication.

Many applications of mathematics have been included, and

they have frequently been made the motivation for the in-

troduction of mathematical concepts. An intuitive dis-

cussion often precedes the formal treatment of a new idea.

(8 preface)

Although content reorganization is important for effective teaching,

so is teaching method. We often hear Bruner's thesis debated: a child

can learn any topic if it is presented in an "intellectually honest"
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manner. (9) In mathematics, in particular, Kaplan believes that not

only is teaching method important, but that it has changed as a result

of change in content. HP writes:

By now, most people are aware that a "revolution" has
taken place in the teaching of arithmetic - mathematics -
in our schools. This revolution is not only of content
but of approach. (26, preface)

Yet, educators would not dispute the fact that content and method

are intimately related. Swenson concludes:

True, some teachers do rveremphasize subject matter; they
do act as if the arithmetic in and of itself were more im-
portant than the people who are to learn arithmetic. The
critics of this attitude, however's, are just as naive when
they declare that we should teach children instead of
arithmetic. Both these points of view lead us nowhere;
they advocate purpose impossible of achievement. (68, p. 12)

Others feel that personality and rapport of the teacher are as im-

portant as content and teaching method. This is true because the latter

creates positive or negative attitudes toward the subject area. In a

doctoral study dealing specifically with attitudes of prospective ele-

mentary school teachers, Purcell concludes:

With students entering (college) with better prepara-
tion in mathematics and the resulting more favorable atti-
tudes (as shown by the study), it will be possible to
increase these favorable attitudes even more as a result
of planned college instruction directed at changing atti-
tudes toward elementary. mathematics. The teacher shortage
will continue, but the experimental study results give in-
dications that more favorable attitudes are being achieved.
Thus, the teachers entering on their careers have more
favorable attitudes toward elementary. mathematics. (48, P. 89)

In summary, it can be said that a combination of effective teaching

method, wholesome teacher personality, and appropriate content is to be

sought in any satisfactory-pupil-teacher relationship. Johnson supports

this statement.



Mathematics instruction must do more than build an
understanding of the logical structure of mathematics,
even while acknowladging that this is the basic founda-
tion for understanding mathematics.

The mathematics program must in addition, strive
for broader objectives, such as creativeness, habits,
attitudes and values - objectives which are increasingly
difficult to attain and to measure. (24, p. 185)

Let us now look more closely into the area of teaching methods,

considering the teaching of advanced mathematics topics in particular.

We can ask, "If subject matter is taught by two different teaching

approaches, by which approach will a student learn more effectively?"

Such a question Ls empirically verifiable and researchable.

For the teaching of advanced topics of a disciplim2 teaching

methods have rareTy been investigated. Such an investigation, if con-

ducted at all, has usually been secondary to some other main area of

investigation. (11) Perhaps little research exists in tklis area be-

cause it is felt that those studying an advanced topic are above-aver-

age in intelligence (however measured), highly motivated, and will

learn under almost any reasonable teaching conditions. In a study by

Ady at the University of Wisconsin, an experimental group and a con-

trol group of student teachers in an advanced education course were

given two review methods over lecture material. He concludes:

Although there were no measurable differences in
learning results between the visually programmed self-
evaluation item group and the verbal leaderless discus-
sion group2 the subjects did express different opinions
about these instructional methods. The visual programmed
item group believed their method was "organized," "helpful,"
and contributed to "high learning" and "high retention."
On the other hand, the verbal leaderless discussion group
believed their method was "lively," "interesting," "good,"
and "intelligent." (1, p. 127)
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Also, those teaching advanced topics may not have teaching as their

primary concern. As Sharp states:

I can think of at least three reasons for university

teachers neglecting undergraduate students; 0 . . 2) Despite

pious declarations in faculty handbooks and administrative

speeches good teaching is not rewarded. If one wants to

get ahead, one publishes; dull or disorganized teaching

will not hurt one's chances much, and successful teaching

will be noticed only by the students. (59, p. 75)

Yet2 this investigator believes that even in an exact discipline

such as mathematics, a highly motivated student may experience more

permanent and meaningful learning of an advanced topic by one teaching

approach than by another. The investigator also believes that when

superior teaching approaches of advanced topics are used, good teaching

will be recognized and rewarded.

Review of the Literature

There is a decided absence of empirical studies relating to the

teaching of advanced topics in mathematics including the teaching of

calculus.

In the :ield of science, however, two studies are relevant. A

study by William Schefler investigated the teaching of college freshman

biology by an inductive laboratory approach and a traditional lecture

approach. Four groups of students were taught by two instructors.

Each instructor had both an experimental and a control group. A pre-

test on genetics was given. The original hypothesis favored the induc-

tive method. An analysis of covariance was performed at the .05 level

of significance, investigating the following hypothesis:

When an inductive laboratory approach to teaching a unit en
genetics is compared with a traditional lecture-illustrative
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laboratory approach2 students taught by the inductive
laboratory approach will show a significantly greater
achievement in terms of the following criteria:

(1) Knowledge of facts and principles, and their applica-
tions, as measured by a genetics test.

(2) An understanding of the nature and methodology of
science2 as measured by the "Test on Understanding
Science."

(3) An interest in science, as measured by the scientific
subscale of Kuder Preference Test, Form C.

(4) A positive attitude toward scientists and science, as
measured by an application of the semantic differential
technique. (56, P. 7)

A significant difference was found in group test scores only on the

basis of instructors. No support for the original hypothesis was found.

Schefler concludes:

Referring back to the main hypothesis of this study2 it is
apparent that within the limitations imposed on the data,
the hypothesis concerning a significant difference in achieve-
ment between students taught by an inductive laboratory method
and those taught by a traditional lecture-illustrative labor-
atory approach is not supported by the evidence. Specifically,
this study has provided no evidence that the experimental method
was superior to the control method in terms of achievement as
measured by the specified criterion instruments. It should
also be reiterated that this study has at the same time pro-
duced no evidence that the inductive laboratory approach is
inferior to the traditional method used,

The evidence provided by the data suggests that the
effects of teacher difference may be of greater significance
than the effects of method difference, and suggests a possible
need for further research in the area of teacher effects on
achievement. (56, p. 54)

In the area of high school chemistry, O'Connell compared an induc-

tive and deductive teaching approach. She concluded that inductively

taught students had a more thorough knowledge of chemistry than those

taught deductively. (44, p. 1679)
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Wallace studied the effects of two self-instructional methods of

improving spelling in high school and college. A traditional deductive

text and a programmed inductive text, of 103 frames, were used with

6o6 high school and college students in 26 paired experimental

classrooms. One member of the pair used the traditional text and the

other the programmed text. The following conclusions were formulated

as a result of the study:

1. An analysis of covariance on raw scores on the Traxler
High School Spelling Test, Form I, before instruction, com-
bined with the mean score on 13 tests during instruction
showed no significant difference for method alone.

2. An anal7sis of variance on Terminal Traxler, Form 2
test scores after instruction showed the boys with the
programmed text made higher scores, significant at the
.05 level. Such a finding was absent for the girls in

the study.

3. An analysis of variance showed girls were better spel-
lers before, during and after instruction than boys.

L. General improvement in spelling was found, due to stu-
dents' self-instructional efforts, irrespective of method.
Effort seemed more decisive than method. (72, p. 5801)

For studies investigating different teaching approaches in ad-

vanced topics in mathematics, we can cite Shelton's findings for his

hypotheses on teaching the limit concept in beginning calculus by an

inductive and deductive approach. He concludes:

Any generalizations based on results of this study
must be made with caution, but for the particular popula-
tion, treatments and criterion test used in this study the
following conclusions were drawn:

1. No advantage in achievement of either treatment
program was apparent.

2. No difference in achievement between the two
levels was found.
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3. No advantage in achievement of either treatment
program for a particular level was apparent.
(60, p. 61)

Kenneth Cummins replicated a study in the teaching of selected

topics in calculus at the secondary level for a one-quarter course.

The one-quarter experimental sections were conducted for
two quarters in an atmosphere rich in encouraging dis-
covery, whereas the control groups were taught more or
less traditionally by capable men of long university
teaching experience. The same text was used in all
sections. (14, p. 163)

Using a regression analysis involving previous grades, a pre-test, the

American Council of Education Psychological Test, a test designated

Test A for the traditional section, and a test designated Test One for

the experimental sections the following results were obtained:

a. The students in the experimental group scored on the
average 27.10 points higher on Test One than would be
expected on the basis of their preliminary test scores
(significant at the l% level).

b. The students in the traditional group scored 51.59
points lower on Test One than would be expected
(significant at the l% level).

c. The difference was not significant on Test A.
(14, p. 168)

Many articles by mathematics teachers, educators, and research per-

sonnel at all academic levels state views on inductive methods which are

sometimes called discovery or heuristic methods and deductive methods

of presentation. Let us consider some of the views of these authors.

In questioning and supporting the value of both procedures, Clark

writes:

. . Should both procedures be used? Most teachers today
are searching for workable transitions from the informal-
intuitive to the formal-deductive. This search is a
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significant aspect of the current "reform movement" in

teaching elementary mathematics. (12, p. 99)

Courant writes:

The interplay between generality and individuality, de-

duction and construction, logic and imagination - this

is the profound essence of live mathematics. Any one or

another of these aspects of mathematics can be at the

center of a given achievement. In a far-reaching develop-

ment, all of them will be involved. Generally speaking

such a development will start from the "concrete" ground,

then discard ballast by abstraction and rise to the lofty

layers of thin air where navigation and observation are

easy: after this flight comes specific goals in newly

surveyed law plains of indiviaual "reality." In brief)

the flight into abstract generality must start from and

return again to the concrete and specific. (13, p. 43)

To aupport an inductive method, Schlinsog states:

Contemporary conceptions of teaching place less emphasis

on the familiar "telling and showing" approach and more

emphasis on student discovery. 'While psychologists have

not devised an adequate theory of instruction and while

they hold many conflicting ideas, there are some basic

principles upon which they tend to agree. Readiness,

motivation, exploration and discovery, feedback and re-

inforcement have been widely discussed elsewhere.

(57, P. 293)

In a dialogue between a student and teacher involving the introduction

of the commutative property of addition in the elementary school, Rup

key favors the inductive method. He wishes one to draw this conclusion

when he questions:

Both teachers taught topics from modern mathematics, but

were both teaching modern mathematics? Can a teacher use

a modern text and yet fail to accomplish the most impor-

tant objectives of modern mathematics? Which method of

teaching - inductive or deductive - is more useful in

teaching modern mathematics? (52, p. 220)

In teaching the specific process of differentiation in calculus,

Saxe lby says:
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it too often happens that a student . . acquires a

merely fatal facility in differentiation, regarding it as
a mechanical juggling with symbols but having no conception
of its relation to experience. (54, p. v)

He then adds, in support of an inductive approach,

. this intuitional direct vision method is intended,
not to take the place of, but to prepare the way for, a
more rigorous analytical study of the subject. . . The

most natural method of advance is by a series of succes-
sive approximations to logical rigor, and, in fact, this
is the way in which the subject has actually grown up.

. . The process by which the science itself was formed
is also the most natural for the mind of the student.

(5)49 pp, v-vi)

The number of empirical studies of inductive and deductive teaching

methods is small, particularly in advanced mathematics topics. Thus,

it might be helpful to consider the presentation of the topic of this

study, the derivative, as given in calculus textbooks.

In these texts, the teaching of the derivative concept in calcu-

lus eventually presents the definition of the derivative as the limit

of the difference quotient
2
the derivative interpreted as the slope

Ax

of the tangent line to a curve, and instantaneous velocity and general

rate of change. The ancillary notions of limit and continuity are not

considered. The deductive approach is considered as proceeding throuzh

the above topics in the order of the definition of the derivative: fol-

lowed by one or all of its interpretations, in any order. The inductive

approach begins with some or all of the applications of the derivative,

followed by the definition of the derivative, again possibly followed

by one or more of the remaining applications. Thus, we see that there

can be a variety of both the inductive and deductive approaches.
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Most textbooks in beginning calculus present the topic of the deriv-

ative in a deductive manner. This is probably a typical approach to the

writing of a text book. Such an expository presentation is given for

both ease of writing and conservation of space. The reader may be con-

fronted with the phrase "the reader can easily prove" or a similar

statement. In this case, a deduction is implied, for which the reader

is to supply his own proof. Appropriate examples follow such a

statement.

Or the reader may be confronted with the phrase "it is intuitively

obvious" or a similar statement. Here a form of induction is sometimes

implied. In these cases, the reader is asked to make the inductive

leap to the desired generalization by a series of reasonable and "ob-

vious" examples.

The investigator reviewed 33 calculus books dating from 1911 to

the present. These books are listed in the bibliography. The topic

of the derivative is deductively by 23, inductively by nine, and by a

combined approach in one. This last approach, in Menger, Calculus, A

Modern Approach, is on the abstract level, so one might say it is

deductive. Yet, for the derivative in particular, the slope of the

tangent line to a curve is used throughout the text as a way of intro-

ducing other more formal ideas, theoremo and corollaries. For one fa-

miliar with Menger's approach to calculus, a further analysis is

difficult, since his presentation is somewhat unconventional and cannot

be categorized as clearly inductive or deductive as defined above.

Most revisions (second or third editions) are inductive or deductive

according to the original printing. This is probably the case because
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revisions frequently involve only changes of language, increased preci-

sion of wording, small inserts of supplementary material, and correction

of errors. The total structure remains essentially the same as the orig-

inal edition. This we see in the deductive approach of Love, Differen-

tial and Integral Calculus (1943), Love and Rainville, Differential and

Intel Calculus (1954)0 and Rainville, Unified Calculus and Analytic

Geometry (1961), each of which follows the sequence of the definition

of the derivative, slope of the tangent line to a curve, instantaneous

velocity and acceleration, and related rates.

In Thomas Calculus (1953) and Thomas, Calculus and Analytic Geom-

etry (1962), inductive approaches follow the sequence of the slope of

the tangent line to a curves the definition of the derivative, instan-

taneous velocity, and related rates. Leighton, Calculus and Analytic

Geometry (1960) reorders the chapters of Leighton, Calculus (1958), in-

serting a chapter on curve discussion before the derivative discussion.

This is understandable since the added topic of analytic geometry is

presented in the latter edition. In both editions, the derivative pre-

sentation is deductive; i.e., definition of the derivative, instantaneous

velocity, related rate, and slope of the tangent line of a curve are

presented deductively,

The editions Wade, Calculus (1953) and Taylor and Wade, University

Calculus (1962) are exceptions to the inductive or deductive approach

being used in both editions. The former presents an inductive approach

for the derivative (slope of the tangent line to a curve, definition of

the derivatives instantaneous velocity, general rate of change). The
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latter gives a deductive approach (definition of the derivative, slope

of the tangent line to a curvel instantaneous velocity, related rates).

Morrey, University Calculus and AnalELE Geometry (1962) and Prot-

ter and Morrey, Colleae Calculus with Analytic Geometry (1964) follow

essentially the same deductive approach (definition of the derivatives

slope of the tangent line to a curve, instantaneous velocity, and re-

lated rates). One is not surprised at no change in this case since a

lapse of only two years prompted no more than a superficial revision.

Granville, Elements of the Differential and Integral Calculus (1952))

a reprint of the 1911 version, Granville, Smith and Langley, Elements

of the Differential and Integral Calculus (1941) and (1946), and Langley,

Smith and Wilson, Analytic Geometry and Calculus (1952) all have almost

identical deductive approaches (definition of the derivative, slope of

the tangent line to a curve, instantaneous velocity, related rates),

with the interchange, addition and expansion of cer+ain selected chap-

ters in the last text,

Peterson, Elements of Calculus (1950) and Peterson, Calculus with

Analytic Geometry (1960) both exhibit inductive approaches (general rate

of change, definition of the derivative, slope of the tangent line to a

curve, instantaneous velocity and acceleration). There is an insertion

of two chapters on analytic geometry in the latter edition.

For the inductive approach in Calculus in the First Three Dimensions,

Stein writes:

The introduction of many concepts, such as the definite in-
tegral, the derivative and the limit of a sequence begin with
numerical examples and exercises. This is done not only to
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make the abstract concrete, but also to compensate for a

lack of down-to-earth mathematical experience in high

school. In particular, both the definite integral and

the derivative are preceded by four of their applications.

(661 p. vi)

Nature of the Study

This study is concerned with the problem discussed in the last

paragraph of the first section, that of investigating two teaching

methods in an advanced subject matter area. The specific area of

teaching method investigated is mathematics. In this area, the limit

and derivative concepts in calculus are the topics. Allendoerfer has

stated that the limit is an important concept in calculus.

The essential idea in calculus is thRt of limit, and
without a clear exposition of limits any calculus course

is a failure. . . . There are those, however, who begin

the course with a brief, but full dress, treatment of

limits, using the epsilon-delta technique. This almost

universally is wasted on the class, for they are con-
fronted with a difficult new idea without an intuitive

preparation. (2, p. 484)

The present study is an outgrowth of a similar study by Ronald M.

Shelton in the teaching of the limit concept in beginning calculus by

two different methods. Shelton presented this concept by a concrete in-

ductive approach defined as:

Concrete inductive approach: a presentation of a sequence

of items leading from specific numerical examples in which

students will calculate the limits of particular functions

at a definite point by appeal to intuition to the general

case of a general function at any point. After the general

case is reached rigorous proofs will be presented. (60, p. 8)

He also presented the material on the limit by an abstract deductive

approach defined as:
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Abstract deductive approach: a presentation of a sequence
of items leading from the abstract 6-e -definition of a
limit of a function to calculating the limits of particular
functions at a definite point. (60, pp. 8-9)

The samples Shelton used in two independent studies were small,

one of 24 subjects and the other of 28. The two groups were divided

into high and low achievers (levels) on the basis of pre-test scores.

From a 2 x 2 (levels X treatments) analysis of covariance design, tests

of significance made at the .05 level showed no statistically signifi-

cant difference in treatments, between levels, or in interaction, as

measured by a criterion test constructed by Shelton.

The investigator believes that perhaps there might have been a

significant difference jn treatments h&d the samples been larger and

had other variables been controlled. Yet, results of similar studies

to be cited later are not encouraging. In the present study the inves-

tigator replicates Shelton's study ands, in addition, develops two pro-

grammed units that teach the derivative concept in calculus by an

inductive and a deductive approach. The present study then attempts

to determine the effectiveness of learning, as measured by an achievement

test, that results from using various combinations of inductive and de-

ductive methods of presentation of the limit and derivative topics.

The purpose of using programmed materials in the experiment is to

remove the "teacher variable" and thus control the method of presentation.

Scandura discusses the problems with the "teacher variable" in educational

research. He states:

As you well know, the traditional methods paradigm for re-
search on teaching and learning has been designed to assess
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the relative effectiveness of two or more instructional
methods. A major difficulty with this sort of research
is that too often both method and content are varied si-
multaneously but not independently. Such an approach
allows one to say nothing about either separately.
(55, p. 131)

It should be noted that a study of teaching methods may yield dif-

ferent results for "live" teaching compared to "canned" or programmed

teaching. Students may tend to become bored with the latter and lose

interest in the material. Thus, a real difference in teaching methods

presented by programmed materials may be masked. Experimental and con-

trol groups may both receive low scores on a criterion measure. Their

dislike of the method of presentation may cause hostility and low

scores in all students to a greater degree than teaching method might

cause differences in scores in the experimental and control groups.

During the course of this study, classroom teachers were to do no

more than answer individual student questions over the written text

material. This procedure was stressed to insure that learning took

place from the programmed units entirely. This way, any change in

criterion test scores could be attributed to the teaching methods pro-

grammed into the units. If some students were reading far less than

the minimum number of frames per day, these students were allowed to

take their units home to finish the reading in approximately a week's

time. In such a short time period it seemed reasonable to assume that

a student would not have time to read the alternate treatment.

The investigator wrote two programmed units of comparab1, length

to teach the derivative concept in beginning c lculus. One of these

units was written by an inductive approach and the other by a deductive
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approach. (See Shelton's definitions of these terms cited above.) These

units were paired with the limit units to insure that all students par-

ticipating in the study had comparable preparation for the derivative

unit. The derivative unit assumed familiarity with the limit concept

as prerequisite knowledge. Thus, there were four treatments: induc-

tive limit-inductive derivative, inductive limit-deductive derivative,

deductive limit-inductive derivative, deductive limit-deductive

derivative.

Each participant was given the pre-test for the limit unit. On

the basis of the score he received on this pre-test, he was assigned

to a high or low achievement group (level). On either level, the four

treatments were randomly assigned. Scores on the common derivati7e

criterion test are used in an analysis of covariance to determine if a

statistically significant difference existed in treatments, between

levels, or in interaction,

A pilot study on the derivative units showed that the text mater-

ial did indeed teach the derivative concept somewhat effectively. The

units were revised from suggestions obtained by students participating

in the pilot studies.

It is to be noted that this study is not intended to evaluate pro-

grammed instruction. This method of text format is only the vehicle of

instruction. Yet, some ancillary effects of the programned texts may be

derived.
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Statement of the Problem

This study is to determine if there is a difference in learning

the limit and derivative concepts in beginning calculus as measured by

a common criterion test. An ordered combination of two teaching ap-

proaches for the two sequential topics of the limit and derivative is

used. The two approaches are concrete inductive and abstract deduc-

tive and the two sequential topics are the limit and derivative, in

that order. All four possible pairings for the two units are con-

sidered and constitute the four treatments: inductive limit-inductive

derivatives inductive limit-deductive derivative, deductive limit-

inductive derivative, and deductive limit-deductive derivative. The

problem is to determine if there is a statistically significant dif-

ference in the four treatments among the two levels (high and low)

used in the study, employing an analysis of covariance on the common

criterion measure.

The study attempts to determine if ability and knowledge of mathe-

matics before beginning the study of calculus, and the method of presen-

tation of a beginning topic in calculus, would have an effect on learning

this topic of the derivative by its respective method of presentation.

Shelton's study is also replicated.

Statement of Hypotheses

A replication of Shelton's original study is felt appropriate, to

test his non-significant findings for small groups of 24 and 28 students

in each of his two independent studies of an inductive and deductive

treatment of the limit concept. In the present study, Shelton's three
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null hypotheses are investigated:

L I. There is no difference in the results on the achievement

test on limits after adjustment for the scores on the pre-test between

the two treatments.

L 2. There is no difference in achievement as measured by the

test on limits between the two levels used in the experiment.

L 3. There is no interaction between treatments and levels --

the treatments will produce similar results at both levels. (60, p. 11)

In the present study, two areas of investigation are of interest.

These are the total treatment used for both the limit and derivative

units, controlling for the pre-test score, and the treatment used only

in the derivative unit, controlling for the pre-test score. For the

total treatment, three null hypotheses are investigated:

T 1. There is no difference in results on the achievement test

on the derivative among the four total treatments after adjustment for

the scores on the pre-test.

T 2. There is no difference in achievement as measured by the test

on the derivative between the two levels used in the study, controlling

for the pre-test score.

T 3. There is no interaction between the four total treatments

and two levels.

For the derivative treatment alone, since results from the pilot

studies seemed to favor the inductive approach, we might state three

one-tailed hypotheses. However, evidence from other studies give little

support for the superiority of an inductive approach over a deductive
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approach. Hence, the three hypotheses under investigation for the deriv-

ative unit are also two-tailed hypotheses:

D 1. There is no difference in results on the achievement test on

the derivative, controlling for pre-test, between the two derivative

treatments.

D 2. There is no difference in achievement as measured by the

test on the derivative, controlling for the pre-test, between the two

levels used in the experiment.

D 3. There is no interaction between the derivative treatments

and levels.



1 CHAPTER II

DEVELOPMENT OF TREATMENT AND EVALUATION INSTRUMENTS

Selection of Material to be Learned

It is felt that a sequence of concrete applications of the der:Lva-

tive (slope of the tangent line to a curve: instantaneous velocity:

general rate of change), leading to the formal limit definition of

the derivative, is more effective than the presentation of the formal

definition, followed by applications. If such is the case, it might

be possible to teach the important and basic topic of the derivative

more meaningfully and effectively in the future.

The derivative units, both inductive and deductive approaches:

are written assuming a knowledge of the limit concept which normally

precedes that of the derivative in a beginning calculus course. Both

units are written to contain the same content: the definition of the

derivative; the application of the derivative as the slope of a tangent

line to a curve; theorems for the derivative of sums, differences: pro-

ducts and quotients of algebraic functions: the constant function: the

independent variable, a real power of the independent variable: and a

composite function. A section on composite functions is included be-

fore the presentation of the theorem on composite function

differentiation. Corollaries for the derivative of a constant multi-

plied by a function and the derivative of a real power of a polynomial

function are presented. Numerous examples and exercises are identical

21
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in both units, or otherwise the save in content and difficulty. The

section on the composite function review and the first 17 frames of

each unit, which involved a change of notation for the limit, from

x14 f(x) totilf.of(x1+ Ax), are identical. From either unit the stu-
1

dent is to be able to differentiate simple algebraic, rational, and

polynomial functions and to apply this knowledge to the derivative

interpreted as an instantaneous velocity and general rate of change.

The units are approximately the same in length, 346 frames in the

inductive unit and 359 frames in the deductive unit. Each unit was

prepared to take a high school student approximately five 55-minute

periods to read, a week's time in most secondary school schedules.

Develo ment of the Abstract Deductive Derivative Unit

The deductive unit proceeds, without exception, from abstract

statements of theorems and definitions to numerous examples and exer-

cises. This approach parallels a rul-eg (rule to examples) programming

sequence. (36) The strategy of exposition of a deductive approach is

used. Under the strategy of exposition, logical deduction is also

used. (22)

Exposition follows the teaching model of: 1) stating the item of

subject matter to be taught - a generalization, theorem, definition,

algorithm, etc.; 2) clarifying or paraphrasing the item, giving examples

and/Or stressing various components; 3) justifying the statement;

4) summarizing the teaching by restating the initial item of subject

matter or giving an application; and 5) making a transition to another

item of subject matter.
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After a brief section on change in notation for the limit of a

function from x10 f(x) to Aligbf(x1+ Ax) this section identical to

1

one appearing at the start of the inductive unit, the student is given

f(x
1
+ Ax)- f(x

1
)

the definition of the derivative by exposition, asalk Ax

provided this limit exists. This section is followed by several examples

that express the derivative as the limit of this difference quotient for

simple polynomial functions. This approach leading to the definition of

the derivative is just the reverse of that used in the inductive deriva-

tive unit.

The abstract forms of the theorems for the derivatives of the in-

dependent variable, the constant function, a real power of the independ-

ent variable, and sums, differences, products and quotients of algebraic

functions and the corollary for the derivative of a constant multiplied

by a function are abstractly stated. Each theorem and the corollary is

proved by logical deduction. Following each theorem appear several con-

crete numerical examples to illustrate the particular theorem. Exer-

cises for the student to complete are given at appropriate places in the

text material. These exercises use the definition of the derivative and

theorems proved up to that point in the development.

A section on composite function identification, which is introduced

by exposition and is of a review nature, then follows. This section is

the same as one appearing in the inductive unit, and is presented there

for the same purpose. The theorem for the differentiation of a com-

posite function is then stated and proved by logical deduction. Again,

concrete numerical examples follow.
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Functions not possessing derivatives at all points are introduced

by exposition using the expressions defining them and their graphs.

There functions are identical to those in the inductive unit, and are

defined by the following explressions: f(x) = l/X g(x)=1x-11, h(x)m

Vii:7

Finally, again by exposition, the application of the derivative

as the slope of the tangent line to the graph of f at the point with

x-coordinate x
1
is presented and related to the same notion expressed

in the limit unit. Follawing these applications, the writer next in-

cludes several examples of functions exhibited by both their defining

expressions and their graphs. Some of these functions possess and

some lack tangent lines at certain points on their graphs. The next

topic presented in the unit is the riting of equations of tangent

lines, both when the derivatives exist at the point of tangency and

when the derivatives don't exist but the tangent lines exist. The

format used is similar to that in a corresponding section in the in-

ductive unit.

Tracing the development of this deductive program, we see that it

is characterized by exposition and logical deduction. Logical deduc-

tion is used in proving the various derivative theorems. Throughout,

the abstract definitions or theorems are given and concrete numerical

examples and exercises follow.

The first written format of the deductive derivative unit was read

by seven male high school students in their fourth year of mathematics

at Urbana Senior High School, Urbana, Illinois in the spring semeEer
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of the school year 1965-3966. It was read also by four more students

in the same high school in an advanced third year mathematics course,

and by one fourth year male student at University High School, Urbana,

Illinois. These student5 gave the investigator suggestions for revis-

ing mathematical content. At the same time, six students in a programmed

learning course at Illinois Teachers College, Chicago-South read the

unit and offered programming techniques to improve it. None in the

last group felt competent to criticize the unit regarding mathematical

content.

The 359 frames making up the deductive unit were duplicated by the

multilith process. Each 8 1/2 by 11 inch page contains two or thr e

frames, depending on the length of the frame. Each frame has iL un-

derlined answer on the page following, with the letter "A" followed

by the frame number. Most of the frames require a one-word response

of a fill-in-the-blank nature, or a short answer. A few require more

than one answer and some are simple expository or introductory frames,

requiring no answer. This format is the same as that in the limit

unit. It is used to provide continuity in reading the two programs.

More important is the elimination of a second possible variable, that

of type of format in the limit and derivative units, by programming

the units in the same way.

The student read through the frames at the top of the pages, to

the last page, and then returned to page one for the answer to the

frame on the last page. He proceeded reading through the pages again,

following the frames across the middle of the pagps on this reading.



He then returned to page one for the answer to the last frame on the

middle of the page. He proceeded through the pages one last times read-

ing across the bottom of the pages. The deductive derivative unit was

covered in white cover stock, labeled Treatment 49 and fastened with two

large staples.

The inductive and deductive limit units that were to precede the

derivative units were bound in the same manner. The inductive liAit

unit was labeled Treatment 1 and the deductive limit unit Treatment 2.

A page of instructions was provided in both units, giving directions

for the reading of the two sequential units. A copy of the abstract

deductive derivative unit is included as Appendix B.

Development of the Concrete Inductive Derivative Unit

In general structure, the inductive unit proceeds according to the

strategies of sinple enumeration and difference and agreement of an in-

ductive presentation. (23)

The strategy of simple enumeration of an inductive teaching approach

gives only confirming instances of the item of subject matter to be

taught. No counterinstances are exhibited. The inductive strategy of

difference and agreement is obtained by combining the two inductive

strategies of "the method of agreement" and "the method of difference."

(6, p. 296) The basic logic of the strategies of the joint method of

agreement and difference and of simple enumeration is the samei the

joint method simply provides a more plausible argument.

The method of agreement provides that every generalization or other

item of subject matter to be taught has the property that every case of
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p is also a case of q. Each instance confirming the generalization says

that in addition to p and q2 other factors r, s2 t, are present

or absent. Only p and q occur in all cases2 and no case is found where-

in p occurs and q doesn't; i.e., no contrary evidence is present. Thus,

probably every case of p is also a case of q and the agreement of all

confirmatory instances has been demonstrated in the presence of only

p and q.

The method of difference takes the same foTm as that of the method

of agreement - every case of p is also a case of q. The initial instance

confirming the generalization states that in addition to p and q, other

factors, r2 s2 t2 are present, also as in the method of agreement.

The next confirmatory instance, however, says that when factors r, s, t,

are present and q is absent, p is also absent. (23)

Exceptions to an inductive approach in the unit are the proofs of

the theorems for the derivatives of the sum

the discussion of the non-existence of al440

and product of functions2
f(xl+ Ax)- f(x1)

the
Ax

writing of the equations of the tangent lines, the review section on

composite functions, and the introductory section in the first 17 frames

of the program, presenting the change of notation for the limit from

lim f(x) to l0 im f(x
1

Ax). These sections are presented in an ex-Ax>xi

pository manner to effect economy of time and text space, thus keeping

the two formats of the derivative units somewhat the same length. The

inductive unit is programmed by an eg-rul (example to rule) technique.

(36)

Based on his knowledge of the limit from the preceding unit, by

simple enumeration the student is lead to the reasonable conclusion
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f(x1+ Ax)- f(xl)

that if alio ' exists, this limit can be interpreted as

the slope of a tangent line to the graph of f, at a point with x-coor-

dinate xi. This is achieved by having the student calculate this limit

for several elementary polynomial functions accompanied by a graphical

representation. In fact, the slope of a tangent line to the graph of

f is then defined in this manner, if the limit exists.

The notion that this limit may not exist for selected values of

x
1

is introduced by several functions. These functions are defined by

f(x)= g(x)=Ix-ll, h(x)=0. They are the same as those appearing

in the deductive unit. The slope of the tangent line,
f(x1+ Ax) f(x1)

63,--340 Ax may not exist at a point if the slope of the tan-

gent line is undefined at the point or if the function itself is unde-

fined at the point. By difference and agreement, it is then emphasized

that if this limit exists, the derivative of the function f2 evaluated

at x
1'

is defined as this limit. This is the first time the term

"derivative" is used. Throughout the remainder of the unit, "derivative"

and "slope of the tangent line to the graph of f2 if it exists," are used

interchangeably.

The slope of the tangent line to a curve is induced by simple

enumeration. This is developed from a sequence of slopes of secant

lines to a curve through the point of tangency and a nearby point.

Tables of values showing slopes of secant lines approaching in values

the slope of the tangent line at the fixed point are to be completed

by the student. It is then an easy step to proceed to the writing of

the equation of the tangent line, if the latter exists, at a fixed
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point. For the sake of economy of time and available text spaces as

mentioned above, presentation of the writing of the equation of the tan-

gent line is expository in nature.

The next section is developed using examples of simple polynomial

functions. Some of these examples were previously discussed in intro-

ducing the definition of the derivative. Theorems for the derivative

of the constant function, the independent variable, a real power of

the independent variable, sums, differences, products, and quotients

of functions, and a composite function are induced by simple enumeration.

The proofs for the theorems involving the sum and product of two func-

tions and a real power of the independent variable are given deductively

for reasons cited above. Before the theorem for the differentiation of

a composite function is stated, a review section enabling the student

to identify composite functions is given. This review is the same as

that appearing in a corresponding section in the deductive unit. A

suitable number of exercises enforce and confirm student learning at

various points throughout the text. These exercises are identical to

or similar in content and difficulty to those in the deductive unit.

Figure 1 exhibits the logical development of the units in the form of

a flow chart. Figures 2 and 3 exhibit the content development of the

units in the form of flow charts.

A first draft of the inductive unit was read by a class of 19 fourth

year high school students at Bremen High School, Midlothian, Illinois in

the fall semester of the 1966-1967 academic year. From the saggestions

of these students, mathematical content and programming features were

revised. The text material, as revised, appears as Appendix A,



FIGURE 1

FLOW CHART OF DEVELOPMENT OF DERIVATIVE UNITS

TREATMENT 3
(Concrete Inductive Unit)

30

f(x1+ Ax)- Simple__> Definition of slope of a

Ax
--- exists Enumeration tangent line to a graph

at x
1°

f(x
1
+ Ax)- f(x

1
)

2111211_4. Abstract common Difference and lim_> Ax-u Ax
Enumeration properties. Agreement

may or may not exist.

Definition of the
derivative.

S111021_0. Theorems and corollaries for derivatives of sums,
Enumeration differences, products, quotients of functions and

other selected functions.

TREATMENT 4
(Abstract Deductive Unit)

lim f(x)m f(x + Ax) Explositio Definition of the Logical
x.-fflb Ax-->u -------->xi

derivative. Deduction

Theorems and corollaries for derivatives of sums,
differences, products, quotients of functions and
other selected functions.

The derivative may not Eaositio4
always exist.

Application of the derivative
as slope of a tangent line to
a curve.



FIGURE 2

FLOW CHART OF CONTENT OF INDUCTIVE DERIVATIVE UNIT

2
f(x)=x2

Change notation from f(x)=x + x-6

xf(x) totillkf(x1+ hx) f(x...\/ 24m1
) 25x

f(x)'sx

f(X)=k

There exist functions

---> such that lim_f(x
1
+ Ax)

A.)u
exists at x

1
.

f(x)=x;
f(x)=x + x-
f(x)=x
f(x)=k

f(x)=A/i:
f(x)=1/X
f (x) = fx-1 1

Equations of
tangent lines.

f(x1' °x)ri

Alik+
f(x1+ Ax)"

f(x1+ Ax)

Definition of slope of
the tangent line to a
curve at x

1
.

Examples
Exercises

Generalize

------> (y-y1)= f'(x1)(x-x1)

31

There exist functions such
+ Ax) doesn°t

Ax->u 1 > that f(x
I
+ Ax) doesn't

Ax-4.0
exist at x

I
.

exist at x
1

.

Definition of the derivative.
(Same as the definition of the
slope of the tangent line.)

f(x)=x3
f(x)=x

2
Previous examples

f(x)mx or exercises.

f(x)=x
2
+ x-6

f(x)=x+2

f(x)'ex
3
+ x

2
+ x+11

Theorem 1.

Theorem 2.

(Previously

Theorem 30

f(x)mx4

Previous examples
or exercises.

Theorem

Derivative of a
constant function.
Derivative of the
independent
variable.
proved as problems.)

Derivative of a
real power of the
independent
variable.
Proof
Exercises

Derivative of a
sum.

Proof
Exercises



FIGURE 2 (Continued)

f(x)=x-2

f(x)mx2-x+6 Previous examples.

f(x)=x
3
-x

2
-x-ll

,/

f(x)=x3ox3

f(x)=x4.x2 >

f(x)mx5.x

32

Theorem 5. Derivative of a
difference.
No proof

Theorem 6. Derivative of a
product.
Proof
Exercises

Theorem 7. Derivative
No proof
Examples
Exercises

of a quotient.

---->
f(x)=-6(x+i)

f(x)--.11(x5tx3+x2+l)

f(x)=1/7"-T

f(x)w-47:2;

f(x)=A/x-2x

Composite function Theorem 8. Derivative of a com-
review. posite function.

No proof
Examples
Exercises

Corollary. Derivative of a power of
a function of x.

f(x)=(x2 -2x -3)

f(x)=(x4-1) -2

Exercises



FIGURE 3

FLUd CHART OF CONTENT OF DEDUCTIVE DERIVATIVE UNIT

Examples
f(x)=3x

Change notation from Definition of the

lim f(x) toaLaof(x1+ dx) --> derivative. ------> f(x)sgx2
f(x)mx
f(x)=2x'2
f(x)=x-x

Theorem 1.

Theorem 2.

Derivative of the
independent variable.
Derivative of a con-
stant function.

(Pt.eviously proved as problems.)

33

Theorem 3. Derivative of a
real power of
the independent
variable.
Proof

Exampls Theorem 4. Derivative of Examples

f(x)=x-1 a sum. f ( x) =x+7

f(x)=x
7

f(x
)=x2

Exercises

Theorem

WOON.11

Proof f(x)=x3-6

f(x)=x +x

f(x)=x
8 / 7-x 2

Derivative of a
difference.
No proof

Theorem 6. Derivative of a

product.
Proof

Examples

f(x)=7x

f(x)=3(x34x4)

f(x)= -6(x+1)

Examples
f(x)urr-x

f(x)wx -x2

f ( =x9/7- ( \if) 7

Examples

f (x) =x2 ox3

f(x) =x(1-x)

f(x)=(x2+1)(x3+1)

Theorem 7. Derivative of a
quotient.

Proof

Corollary.
Derivative of a
constant multiplied
by a function of x.

Examples

------> f(x)=x7 /x2
f ( x) =(x+1)/( x-3)
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Exercises Theorem 8. Derivative of a

Composite function composite function. ----).

review. Examples
Exercises

Corollary. Derivative of a power
Examples

of a function of x. ------0 f(x)42
Proof

There exist functions
such that f(x

1
Ax)

Ax-i>.0

doesn't exist at

Examples f(x) gelx-11

Examples

f(x)=x2

f(x)=A/g7

f(x)=x24x-60

f(x)=x3 -2x2+5x-1

Examples
f(x)=Ix-il

f(x)

/ 1A4
fkx)=x

f(x)=A/X -2

f(x)=2./x

f(x)M(X2 -2x-3)7/2`>
f(x)W(x4-1)"2

f f23 AAC°2

Exercises

Definition of the slope
of the tangent line to a
curve at x

1
.

(Same as the definition
of the derivative.)

Mm 40/I
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Equation of a tangent There exist func-

line0 tions such that the

1
y-y = f°(x

1
)(x-x

1
) slopes of the tan-

------0. gent lines at x
1

Exercises

Graphical interprbtation
of theorems 1 and 2.

Exercises

don't exist.
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pleyelameEL of the Evaluation Instrument

A common 284tem criterion test on the derivative units was de-

signed to measure student knowledge of diffenmtiation of simple alge-

braic and rational exprrissionss and application of this knowledge to the

derivative as the slope of the tangent line to a curves instantaneous

velocity and general rate of change° Care was taken to avoid wording

and item construction favoring one treatment over the other. The cor-

rect choices for each of the 24 multiple-choice items are randomly

distributed among the four possfble alternatives. Each multiple-choice

answer is worth one point. The last four short answer questions in-

volve one proofs one computation and two discussions; each of these

answers is worth three points. The total number of possible points

on the test is 36.

The test was revised from results of the pilot study on the de-

ductive derivative unit. The primary revision was the addition of a

brief explanation for the questions involving instantaneous velocity

and general rate of change. The revised text material did not contain

these last two topics. Howevers they- were felt important in an under-

standing of the derivative and are included in the evaluation.

The multiple-choice items are arranged in order of difficulty from

easiest to hardests in clusters oF related topics. A split-half reli-

ability coefficient of .69 was calculated from the pilot study for the

inductive derivative text material. The split-half reliability coeffi-

cient in the present study is .78. The odd item-total item score cor-

relation is .87 and the even item-total item score correlation .93.



The correlations for the deri';"ve study are significant (p<.001).

Inter-coder reliability was ed for the last four Short answer

questions, using the instructors of the classes in the pilot studies

and present study as well as university calculus teachers.

The test was to be given during two 55-minute class periods,

splitting the instrument after item 18. The pre-test and criterion

test for the limit units, developed by Shelton, are used in the statis-

tical evaluation of the present study. This procedure was incorporated

into the study for a more complete analysis. The derivative test was

constructed a=ording to the format of the limit tests 24 multiple-

choice items worth one point each and four short answer items worth

three points each, for a total of 36 points. A copy of the criterion

test for the derivative units appears as Appendix C.

A table of specifications for the derivative test, constructed

according to Bloom's Taxonomy of Educational Objectives (7), was help-

ful in constructing the derivative test and appears as Table 1.

Preliminary Studies

Pilot Study I. The deductiie unit was written while the investigator

was in residence at the University of Illinois, Urbana, Illinois, for

the doctoral degree, during the spring of 1966.

As mentioned in a preceding section, seven boys at Urbana Senior

High School, Urbana, Illinois in a fourth year mathematics course par-

ticipated in the pilot study. They read the programmed material as part

of their course requirement near the end of the 1965-1966 academic year.

None of the boys had had a former exposure to calculus. Four advanced



TABLE I

CONTENT ANALYSIS OF DERIVATIVE CRITERION TEST
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Item of knowledge needed to
complete qaestions.

1. Definition of the
derivative.

2. Definition of the

slope_21L,Itta.ii_Ent line.

Question Number
1-7-7-4-7-6-7-8-9---10 11 12 13 14

X X X

3. The derivative of the
indtEendent variable.

4. The derivative of a
constant function.

X X X

X X X X X X X X X XX

X X X X X X X X X X X X XX
5. The derivative of a real

power of the independent
variable. X X X X X

6. Derivative of a sum.

7. Derivative of a
difference X X X X X X

8. Derivative of a
roduct. xxxx

90 Derivative of a

quotient.

100 Derivative of a
multiplied by a
of x.

constant
function

x x x

110 Derivative of a compo-
site function

12. Derivative may not exist
if function undefined at
xl.

X XX X X X X X

13. Derivative doesn8t exist.

14. Equation of the tangent
line.

15. Instantaneous...221.

16. General rate of chan e.
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TABLE I (Continued)

EWE;

Item of knowledge needed to Question Nmmber

adalale questions.__ T-571-677-17TT-75-21 22 23 2h 25 26 27 28
.

1. Definition of the
derivative X X X X XX X XX X XX XX

2. Definition of the

__2122LaILLiLaLIE2ELlirie.,xxxx
3. The derivative of the

inLpaident variable

h. The derivative of a
constant function

5. The derivative of a real
power of the independent

6.

X X

X X X X XXX XX

X X

variable. x x x x x x x

Derivative of a SUM X X

7. Derivative of a
differeme.

8. Derivative of a

PE.21.312

9. Derivative of a

10. Derivative of a constant
multiplied by a function
of x.

31. Derivative of a compo-
site function X X X

12. Derivative may not exist
if function undefined at
x
1

.

13. Derivative doesn°t
exist.

14. Equation of the tangent
line.

15. Instantaneous velocity

16. General rate of chan

X X X

X X X



students (three boys and one girl) in a third year mathematics course

at the same high school expressed a desire to read the material. Their

backgrounds represented a good foundation in college algebra. A fourth

year male student in mathematics at University High School, Urbana, Illi-

nois also participated. The last student's background was probably the

best of the high school students. He was then enrolled in a course in

vector geometry. Six students in a programmed learning course at Illi-

nois Teachers College, Chicago-South read the program at the same time.

The high school students' comments were used for revising the mathematical

content of the program. The college students' comments were used for re-

vising the programming techniques of the program.

Before the derivative unit was read, (:ach of the high school stu-

dents was given the programmed unit on the limit concept, the inductive

and deductive approaches being randomly distributed. The reading of

these units was to provide the students with the necessary background

to read the derivative unit. Shelton's pre-test was administered to

each student before either unit was distributed. His test for the

limit unit was also given. The criterion test on the derivative unit

was given after the completion of the investigator's unit. The adminis-

tration of the three tests served as student motivation and teacher

evaluation.

Each participant was told to read his limit and derivative units.

He was to write the answer for each frame on his own paper. The seven

boys at Urbana High School were allowed to ask questions of their in-

structor over the material they could not understand. When the
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investigator was present during the class sessions, she answered such

questions. The other participants in Urbana were allowed to call the

investigator by telephone or meet with her personally if questions

arose. Very few questions were asked during the course of the pilot

study. It took the high school students approximately three weeks to

complete both units and the three tests. They spent a 50-minute class

period, or its equivalent for those working out of class, five days

each week.

In general, the comments from the high school students on the de-

ductive derivative units were favorable. In informal conversations

with the writer the participants said they believed they had learned

from the material. The ample number of examples, graphs and exercises

were cited. It was suggested by some that the section on composite

functions be reworked. Other criticism concerned the format of pre-

sentation of frame answers. These answers appeared next to their cor-

responding frames. The students preferred the format of the limit unit,

in which an answer to a frame appears on the following page.

The college students were given only the derivative unit. They

criticized the unit from the standpoint of programming techniques.

They felt too much material was covered and the "steps" between ma-

terial were too large.

Pilot Study II. The inductive unit was written during the summer of

1966, while the author was in residence at the University of Illinois,

Urbana, Illinois.



The mathematical content of the inductive unit was "cut down"

slightly from that of the deductive unit. This was due to the sugges-

tions of the students in the programmed learning course at the Teachers

College. The sections on instantaneous velocity and general rate of

change that appeared in the deductive unit were omitted in the inductive

unit. They were finally omitted in both units in their final form. The

criterion test content was the same as that administered to the deductive

group. The only difference was that an introductory sentence or two

were necessary to explain what was wanted of the student in qaestions

involving instantaneous velocity and general rate of change,

The unit was read by 19 students in their first semester of fourth

year mathematics at Bremen High School, Midlothian, Illinois in the fall

of 1966. The class contained ten girls and nine boys. Each student had

had a course through mode'rn algebra in the Dolciani series.

Only the deductive limit units were used in this study, but the

other features of this pilot study were conducted in a manner similar

to those of the first study. Both the teacher of the class and the in-

vestigator, when present, answered questions of the students during the

40-minute class period. Most of the questions were asked on the deduc-

tive limit unit. The students found this unit difficult and became

somewhat bored with it. The reading of both the limit and derivative

units and the administration of the three tests took approximately one

month. The students did all their work during the mathematics class

period.

The inductive derivative unit was more to the students' likings.

By individual questioning by the investigators the class said it found



the derivative unit "easier?' than the preceding unit. No mention was

made by the investigator or the class instructor of the different ap-

proaches in the two units. The students seemed to find the material

interesting and were able to answer all but about ten of the original

total of 381 frames. This was determined by an analysis of written

responses. The difficulty centered on the composite functions section

primarily, which was later revised.

The students commented on their liking the "discovery approach."

In many cases they formed the generalization before reading it. A few

thought some of the '1:discovery" could have been accomplished in less

time. No mention was made of proofs being too rigorous or frequent.

The class seemed to think the criterion test on the derivative unit was

"fair" and covered the material presented in the unit.



CHAFTER III

THE EXPERIMENT

The subjects in this study were divided into two 1evels9 high and

low9 on the basis of points on a pre-test. For both levels9 the four

total treatments were randomly distributed. These treatments are in-

ductive limit-inductive derivative designated as treatment A9 induc-

tive limit-deductive derivative designated as treatment B9 deductive

limit-inductive derivative designated as treatment C9 and deductive

limit-deductive derivative designated as treatment D.

The difference between the means of the four total treatments and

between the two levels are to be tested for significance on the basis

of criterion test scores. The table below exhibits the treatments by

levels design of this experiment.

TABLE II

Treatments X LevelLExperimental Deeign_for Total Treatment Studz

Levels 1. A

Treatments

2. 8 3. c 4. D

1. High

2. Low

A-H B-H C-H D-H

A-L B-L C-L D-L

The final analysis of the criterion measures employs a 4 x 2 treat-

ments X levels analysis of covariance to test for significance between

the adjusted criterion total treatment means9 the adjusted level means,

and interaction.
143
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For the total treatments the predictor variable is the score on the

pre-test. This test includes material on absolute-value inequalities and

graphing primarily. Items from algebras trigonometrys and analytic geom-

etry considered necessary for the learning of the limit and derivative

concepts in beginning calculus also appear. The final criterion vari-

able is the score on the common derivative test. This test was given

to all students upon completion of both units.

An analysis of covariance was chosen to statistically control the

pre-test score and to refine further the results. The primary variables

controlled are (1) length of the two derivative treatments and the deriv-

ative criterion tests (2) content of the derivative treatments and the

derivative criterion tests, and (3) administration of the derivative treat-

ments and the derivative criterion test by randomization within levels

and between treatment groups. These variables were similarly controlled

for the two limit treatments and the limit criterion test in Shelton's

study. The .05 level of significance was deemed appropriate in this

exploratory study.

The hypothesess in null forms to be tested for the total treatment

are 2

Tl. There is no difference in results on the achievement test on

the derivatives controlling for the pre-test scores among the four total

treatments.

T20 There is no difference in achievement as measured by the test

on the derivative between the two levels used in the studys controlling

for the pre-test score.
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T30 There is no interaction between the four treatments and the

two levels,

Sheiton°s study is replicated using only the inductive and deductive

limit units. A test of significance of the difference between the means

of his two treatments and between the means of his two levels (high and

low), on the basis of limit criterion test score only, is to be

performed. The table below shows Shelton9s treatments by levels

design.

TABLE III

Treatments X Levels E erimental Desi

Treatments

Levels 1 Inductive

1. High

2. Low

for Limit Stud

Deductive

D-H

D-L

I -H

I -1J

An analysis of covariance is employed on the criterion measures to

test for significance between the adjusted criterion limit treatment

means, the adjusted level means, and interaction.

For Shelton°s replicated study, procedures similar to those for the

total treatment are followed. The predictor variable is the score on the

pre-test. The criterion variable is the score on the common limit test.

This test was taken by all students in the study upon completion of the

limit unit only.

The hypotheses, in null form, to be tested for Sheltonts limit treat-

ments only, ares
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Ll. There Id no difference in the results on the achievement test

on limits after adjustment fcr the scores on the pretest between the two

limit treatments.

L2. There is no difference in achievement as measured by the test

on limits between the two levels used in the experiment.

L30 There is no interaction between limit treatments and levels -

the limit treatments will produce similar results at both levels.

An analysis of covariance is also performed to test for significance

of the difference between the means of the two derivative treatments and

between the means of the two levels (high and law), on the basis of

derivative criterion test scores only. The table below shows the treat-

ments by levels design in this experiment.

TABLE IV

Treatments X Levels Experimental Design for Derivative Study

Treatments

Levels 1. Inductive 2. Deductive

1. High I-H D-H

2. Low I-L D-L

For only the derivative treatments the predictor variable is again

the score on the pre-test. The final criterion variable is the score

on the common dertvative criterion test. Other procedures are similar

to those of the total and limit treatments procedures.

The hypotheses, in null form2 to be tested for the derivative treat-

ment only areg
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Dl. There is no difference in results on the achievement test on

the derivatives controlling for the pre-test score, between the two

derivative treatments.

D20 There is no difference in achievement as measured by the test

on the derivatives controlling for the pre-test scores between the two

levels used in the experiment.

D30 There is no interaction between the derivative treatments and

levels.

population and amling

Eight subrxban Chicago high schools participated in this study.

They supplied a total of 449 students. These 449 students were enrolled

in 22 third and fourth year mathematics courses in the fall term of the

1967-1968 year. There were 338 males and 111 females in the total study,

Table V gives a more detailed description of the population in the

experiment,

All the students in the fourth year classes had had courses in alge-

bra2 geometry2 and trigonometry. Some had had analytic geometry. The

students in the third year classes were generally taking trigonometry

at the time of the study and had had courses in algebra and geometry,

Procedures

A pre-test., written by Shelton2 was given to each of the 449 stu-

dents in the study the first full class day of the 1967 fall school term

by their respective teachers. The pre-test consisted of 36 multiple -

choice questions, Each teacher graded his pre-tests by a pre-determined



TABLE V

Taal aLtiL2nar2_..cri lin of Chics.L_Suburban Schoo3criment

Number of
StudentsSchool Mathematics Classes

14 8

Arlington Heights
High School

Arlington Heights

Seven fourth year classes
taught by three instructors

1147

Downers Grove North
High School

Downers Grove

One fourth year class 29

Downers Grove South
High School

Downers Grove

Two fourth year classes, each
taught by a different instructor 3 8

Forest View High
School

Arlington Heights

One fourth year class 114

Hinsdale Township
High School

Hinsdale

One fourth year class 26

Rich East Community
High School

Park Forest

Three fourth year classes, each
taught by a different instructor

22

West Leyden High
School

Northlake
,....111=10111,

Two fourth year classes taught
by the same instructor

33

York Township Community
High School

Elmhurst

Two third year classes taught
by one instructor
Four fourth year classes taught
by three instructors

TOTAL

314

106

14)49



key and sent the scores to the investigator. The scores were arranged

from a high of 35 out of a total of 36 raw score points, to a low of

three raw score points. In the cases of numerous duplicate scores the

schools were arranged alphabetically and the students within each school

were also arranged alphabetically. The 222 students in the high groups

received scores of 21 points or higher on the pre-test; the remaining

227 students constituted the low group,

The four total treatments2 A9 Bs, C, and Ds) were randomly assigned

in the high group from the highest to the lowest scores, proceeding

through duplicate scores and beginning with treatment A. A similar

procedure was followed for the low group. Several students were (ran-

domly) removed from cells to give equal numbers in each cell. With

equal cell numbers in the high groups there were 50 students reading

treatment A2 50 treatment B2 50 treatment C2 and 50 treatment D. For

the low group2 the cell numbers are the same for the four treatments.

Thus, no one school in the study had an equal number of students for

each treatment at each level. Table VI (c) displays the mean pre-test

scores of the students in each cell.

For the four cells in the experimental design of Shelton"s repli-

cated limit study, 100 subjects in each cell were obtained by randomly

removing the excess subjects. Table VI (a) displays the mean pr3-test

scores of the students in each cell of this experimental design.

One hundred subjects were similarly assigned to the four cells in

the experimental design for the derivative unit. Table VI (b) displays

the mean pre-test scores of the students in each cell of this experimental

design.
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Each school participating in the study had class periods 55 minutes

in length. The programs for both units were passed out at the beginning

of each class period to the proper students and collected at the end of

the period. This procedure was followed to attempt to eliminate expo-

sure of a student to both formats of the limit and derivative units.

The teachers were present in the classes during reading of the units,

and were allowed and encouraged to answer only individual questions of

the students. They- were not to conduct a general discussion. Such a

procedure attempts to control the teacher variable and insure that the

students learned from the programmed material only,

Most students asked questions over both deductive units2 the de-

ductive limit and the deductive derivative units. Students found the

deductive units more difficult than the inductive ones and tended to be-

come somewhat bored. Since a number of students were initially confused

by the immediate presentation of the definition of a limit in the deduc-

tive limit units some teachers conducted a limited discussion in a con-

fined section of the classroom for these students only. None of the

students reading the inductive limit unit were involved in this re-

stricted discussion. Such a procedure is considered acceptable within

the framework of the procedures of the study,

Because some students were reading far less than the minimum number

of 50 frames per dgy2 they were allowed to take their units home. In

such a short period of time it seemed reasonable to assume the students

would not have time to read the alternate treatment. To insure against

this type of contamination even further2 answer sheets for the responses



TABLE VI (a)

51.

Mean Pre-test Scores by Cells in the Three Studies

Limit Treatment

Level Inductive

High 25.87 25.56

15.72 15.58

Deductive

Low

Level

High

Low

Derivative Treatment (b)

Inductive

25.72

Deductive

25.71

15.62 15.68

Level A

High 25.92

Low 15.68

Total Treatment (c)

B C D

25.82 25.52 25.60

4.76 15.56 15.60
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to. the programmed text material were required of each student before he

was allowed to take the criterion test over the particular unit.

The average reading time for the 309 frames in the limit units was

six days. The administration of the criterion test on the limit units

given upon completion of the units took two class periods. The average

reading time for the 346 frame inductive derivative unit and the 359

frame deductive derivative unit was se7en class periods. The adminis-

tration of the criterion test on this unit took two class periods. This

test was given upon the completion of the derivative unit.

The investigator visited each school at least once during the study.

During these visits she observed the classes reading the units and answered

student questions. She met with the class instructors to answer their

questions and give them further instructions if needed. Numerous telephone

calls were made to the schools during the course of the study to judge

student progress. Correspondence was sent when schools requested further

directions.

The teachers in the respective schools were more than willing to co-

operate in this study. This was evidenced by their constant communica-

tion 'by telephone and letter to check procedural policy and report progress

and results during the study. Their attitudes remained favorable through-

out the duration of the study. Howevers as the study progressed students

became bored with the procedure of reading programmed material for 55

minutess five days a week for at least two weeks. An attitude measure

of mostly negative responses to programmed instruction was obtained and

should be considered in interpreting any statistical findings.
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Statistical Treatment of Data

All subjects in this stady are to learn elementary concepts of the

limit and derivative in beginning calculus by programmed texts. Thus,

any positive or negative influence of attitude toward programmed material

is equated for all subjecbs levels, and treatments. The novelty of par-

ticipation in an experimental study should also be equated for all sub-

jects, levels and treatments,

The criterion test over the limit unit was given in two class periods

immediately after completion of this unit. The investigator's pilot

studies indicated the test was too long to be completed in one 55-minute

period. Each of the first 2h items is of the four-alternative, multiple-

choice type, worth one point each. Questions 25-28 call for two defini-

tions and two proofs of theorems, each worth three points. The total

number of possible points is 36, the same total as the pre-test.

The teachers of the classes involved in the study administered and

graded the tests by a predetermined key. Each teacher was provided with

sample answers to questions 25-280 This procedure was followed to pro-

vide for a uniform grading of these test items, particularly in the case

of partial credit. For all classes the investigator requested the stu-

dents° written answers for the limit criterion test to check the grading

on the last faar itams. Eighty-three scores on the limit criterion were

lowered and 16 raised as a result of this checking,

The criterion test on the derivative unit (Appendix C) was given

immediately after the completion of the total study. Two class periods

were allowed, splitting the test after item 18. Pilot study results
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indicated the test was too long to be completed in one 55-minute period.

The questions are constructed and weighted similarly to those in the limit

criterion test the first 24 questions are four-alternative multiple-

choice itemss worth one point eachs followed by four short answer ques-

tions worth three points each. Each teacher was again provided with

sample answers to the last four questions. The investigator requested

student answer sheets for regrading of these last four questions,

Fifty-seven scores on the derivative criterion test were lowered and 13

raised as a result of this regrading.

The scores on the limit criterion test range from 32 to 3 in the

high groups with a mean of 15.93. The scores on the same test range

from 26 to 0 in the low groups with a mean of 9.2C.

The scores on the derivative criterion test range from 35 to 3 in

the high groups with a mean of 17.27. The scores on the same test range

from 31 to 2 in the low groups with a mean of 8.99.

A more thorough discussion of both the limit and derivative cri-

terion test scores appears in the next chapter,



CHAPTER IV

RESULTS AND DISCUSSION

SEmmaa of Procedures

The statistical design used in the three studies in this experi-

ment is an analysis of covariance. The limit study tests for a dif-

ference in inductive and deductive teaching of this concept. The

derivative study tests for the same difference in teaching methods

for the derivative concept. A total treatment study tests for differ-

ences in teaching the ordered combination of the limit and derivative

concepts by the four possible pairings of inductive and deductive

approaches.

The pre-test score is the covariate in all three studies. The

limit criterion test scores are used in the analysis of covariance for

the limit study. The derivative criterion test scores are used in the

analyses of covariance for the derivative and total treatment studies.

Criterion Test Scores

The scores on the limit criterion test have a range of 0 to 32.

The scores on the derivative criterion test have a range of 2 to 35.

Tables VII, VIII and IX give a summary of pre-test and criterion test

scores and standard deviations by cell, treatment and level for the

three studies.

Figure 4 shaws the total regression line for the limit study with

the dependent variable being the limit criterion test score and the

55
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TABLE VII

19malArzof Fre-test Scores Criterion Test_1=1Land

Standard Deviations b Cell for the Limit Stud

[
High

Inductive

bil25.87

47-- 3.57

Deductive

1=2.5.56

6-x' 3./42

Y=15.9/4 rf=15.92

5.32 craw 8.73
Y Y

n= 100 n= 100

Total

TC=25.71

Yati5.93

Low

Y=15.72 1=15.58

3,33 (-c= 302hd7=

Y= 9.29

6"-= 14035

n= 100

5E-15.65

t--= 9.20

Total

Te.=20.79

Y=12.53

1=20.57

Y=12.61

1=20.68

/=12.57

= 6.07

= 6.96

N= /400

KEY TO SCORES
X=pre-test score
Y=criterion test score
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TABLE VIII

.garml.1_2L2r test Scores Criterion Test Scores and

Standard Deviations b Cells for Derivative Study

High

Low

Mr....11=NYEE7

Inductive

itig25.72

3.48

l'=16.16

6-w 7.95

nw 100

1.2.115.62

6:;= 3.38

Deductive

1.025.71

6-w 3.52

.5g18.38

67= 8.19

n= 100

Total

IC=25.71

1:=17.27

Ym15.68

6;clu 3.20

Tclei5.65

YEs 9.91 Yam 8.99

67.1. 6.22

nim 100

Total
1'020.68

Y=12.07

3-(=.2069.

Yft111.3.5

5t..-20.68

m 6.07

m 8.14

Nw 100
KEY TO SCORES
Xwpre-test score
Ywcriterion test score
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TABLE IX

SummarofPest,Scoresterion Test Scoreql_and

Standard Deviationsja_2911111112111tmenI_LutIy

A

High

Tt=25.92

G7'm 3.56

Yag15.44

6-11 7.95

So

'2=25.82

çc 3.58

6-= 6.84

n= 50

Tfrs25.52

6-= 3.39

-M6.88

Cm 7.89

nm 50

Low

itiff15.68

ras 357

x2414.76 `in15.56

6;cmc 3.07 67'r- 3.17

7.78 Y= 9.56 Y* 8.16

5.54

nn 50 nn 50 nEd 50

7Iamr....;mommi

Total

Y=25.60

Cm 345

Y=18.32

9.35

n= 50

itu15.60

erm 3.31

Ygg10.26

6 7= 6.82

nn 50

1=25.71

Y=17.37

Tcm15.40

Ylos 8.94

Total

Yr120.70 1-320.29 5En20.54 `5ZEt20.60

Yrai.61 Yralt 020 Y:m12 52 Yrel 4029

Key to Treatments
Aninductive limit-inductive derivative
Bminductive limit-deductive derivative

Cmdeductive limit-inductive derivative

Dmdeductive limit-deductive derivative

Tcg,20.68

Y=13.10

= 6.07

= 8.14

Nm 400

Key to Scores
X=pre-test score
Ymcriterion test

score
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Pre-test Score

KEY TO TREATMENT GROUPS
H-Im High-Inductive
H-D= High-Deductive
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L-Drn Low-Dedu(tdve
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KEY TO GRAPHS
Within Cell Regression
Total Regression Line
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independent variable being the pre-test score. Also on the graph are

the points corresponding to the mean values of these two variables and

the accompanying regression line for each cell. On each level for the

two treatments there is very little difference in criterion test score

means. In raw score points the difference is .02 for the high groups

and .18 for the low groups, with the deductive treatment means higher

at each level.

Figure 5 shows a corresponding graph for the derivative study.

For both levels the deductive mean scores are higher by approximately

two raw score points than the inductive mean scores. The actual dif-

ferences are 1.94 for the low groups and 2.22 for the high groups. In

the analysis of covariance we will see that such a difference in raw

score points is significant,

Figure 6 shows the total regression line for the study involving

the faux total treatments of Y (the derivative criterion test score) on

X (the pre-test score). The greatest differences in raw score points

between mean scores exist for inductive limit-inductive derivative (A)

and deductive limit-deductive derivative (D) treatments at the low level

and the inductive limit-inductive deriva-Ave (A) and inductive limit-

deductive derivative (B) treatments at the high level. Ne might thus

expect significant differences between treatments A and D and treatments

A and B in the statistical analyses in the next section.

Results of the Data Analyses for the Limit Stucly

All the statistical analyses of data in the three studies were per-

formed on the University of Illinois, Chicago Circle Campus 360-50 IBM
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computer. Sixteen significant digits (double precision) were used in

all computations.

Hypothesis L 1. There is no difference in the mean achievement test

scores on limits, after adjustment for the scores on the pre-test, for

the deductive and inductive treatments.

A 2 x 2, treatments by levels analysis of covariance was performed

on the limit criterion test scores, replicating Shelton's study. An

analysis of variance was also performed as a check for interaction in

the analysis of covariance.

The results of these two analyses are exhibited in Table X. For

the analysis of variance there is no significant difference in

treatments. For the analysis of covariance, the F value for the two

treatments (.12) is not significant at the .05 level for 2 and 395 df.

Since the F value is not significant at the .05 level, we do not re-

ject the null h othesis. We have no evidence that there is a differ-

ence in achievement between the two treatments.

Hypothesis L 2. There is no difference in the adjusted mean achievement

scores as measured by the test on limits between the two levels in the

experiment.

For the analysis of variance there is a significant difference

(p<.001) between the high and low achievement levels used in the study,

since the experimental design was constructed using a high and law

achievement group on pre-test scores. The F of 1.13 between levels in

the analysis of covariance is not significant at the .05 level. It

should be noted that there is an increase in the probability levels for

the F between levels, proceeding from the analysis of variance to the
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TABLE X

Inductive Limit Treatment varsus Deductive

AnalalsLcriance SummaLIge

Source Sum of Squares df Mean Square F Probability
Level

Treatments .64 1 .64 .02

Levels 4529.29 1 4529.29 120.72 .001

Treatments
X Levels 1.00 1 1.00

Error (Within) 14857038 396 37.52

.03

ApplEis of Covart.21222.

The pre-test score is the control variable.

Source Sam of Squares df Mean Square F Probability
Level

Treatments 4.23 1 4.23 .12

Levels 38.44 1 38.44 1.13 .77

Treatments
X Levels .28

Error (Within) 13419.26

1

395 33.97

.28 .01 OM

KEY TO TREATMENTS
Inductive limit
Deductive limit

KEY TO LEVELS
High
Low



analysis of covariance. This is due to the covariate determining the

levels for the experimental design.

The rll hypothesis concerning achievement and the two levels used

in the experiment is not rejected.

The bar graph of limit criterion test score means for the four

groups in the limit study in Figure 7 may be helpful in understanding

the results of the tests of the preceding two hypotheses.

10E2ILI2sis L :i. There is no interaction between the inductive and de-

ductive limit treatments and the high and low levels - - the treatments

produce similar results at both levels.

The analysis of covariame of Table X shows that the treatments by

levels interaction for the limit criterion test is not significant at

the .05 level. The analysis uf variance table displaying no interac-

tion effects supports this finding. Thuss the null hypothesis concern-

ing interaction achievement is not rejected.

Lack of evidence to reject the three foregoing hypotheses is exact-

ly the conclusion Shelton reached in his limit study.

Results of the Data Analyses for the Derivative Study

al21122E122_10 There is no difference in mean achievement on the deriv-

ative criterion test scoress controlling for the pre-tests between the

inductive and deductive derivative treatments.

A 2 x 2, treatments by levels analysis of covariance was performed

on the derivative criterion test scores with the pre-test score as the

independent variable. An analysis of variance was also performed as a

check for intera?,tion effects. The results of these two analyses are

exhibited in Table XI.,
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TABLE XI
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Inductive Derivative Treatment versus Deductive Derivative

Source

Treatments

Levels

TEeltment for DertiveiStud

Ana._ JyrLl_s2LVari a nc e Summary Tab le

Sum of Squares df Mean Square

432.64

6938.89

1 432.64

.1.iCM....M.i101111.11e...
8.95

1 6938.89 143.62

Treatments
X Levels 1.96 1 1.96

Probability
Level

.01

.001

.040 IMMO

Error (Within) 19132.10 396 48.31

Analllis of CovarianceSwnmaryable

The pre-test score is the control variable.

Source Sum of Squares df Mean Square F Probability
Level

Treatments 424.50 1 424.50 10.30 .01

Levels 5.59 1 5.59 .14
ILIIIMIIMMIVallIIIIMMIIMaalaMINI.

Treatments
X Levels

(MP

2.81 1 2.81 .07

Error (Within) 16283.06

MID

395 41.22

KEY TO TREATMENTS
Inductive derivative
Deductive derivative

KEY TO LEVELS
High
Low
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For the analysis of variance there is a significant difference be-

tween treatments (p001) for 1 and 396 df. For the analysis of covari-

ance, there is a significant difference between treatments (p001) for

1 and 395 df.

Thus, the null hypothesis that there is no difference in results

on the derivative criterion test, controlling for pre-test scdres be-

tween the two derivative treatments can be rejected from the above

evidence. There is a significant difference in derivative achievement

scores between the two derivative treatments. The graphs in Figures 5

and 8 show that it is the deductive derivative treatment that has a

higher mean score on the derivative criterion test than the inductive

derivative treatment on both levels

1.1222±42111.1121. There is no difference in mean achievement as measured

by the test on the derivative, controlling for the pre-test, between

the two levels used in the experiment.

For the analysis of variance, there is a significant difference

(p.(701) for the levels of the experiment. As in the limit study this

difference is due to the experimental design. By use of analysis of

covariance it was fuund that there is no significant difference in

levels. Thus, the null hjrpothesis concerning achievement and the two

levels used in the experiment is not rejected. The bar graph in Figure

8 is helpful in interpreting the result of the test of this hypothesis.

apothesis D 3. There is no interaction between the inductive and de-

ductive derivative treatments and the high and low levels.

The analysis of covariance of Table XI shows that the treatments

by levels interaction for the derivative criterion test is not
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significant at the .05 level. Again9 no interaction effects in the anal-

ysis of variance design confirm this finding. Thus, the null hypothesis

concerning interaction achievement is not rejected.

Results of th( Data Analnes for the Total Treatment Slyly.

EasthesiLLI. There is no difference in results on the achievement

test for the derivative, controlling for the pre-test scores, among the

four total treatments, inductive limit-inductive derivative (A)2 in-

ductive limit-deductive derivative (B), deductive limit-inductive

derivative (C), and deductive limit-deductive derivative (D).

A 4 x 2, treatments by levels analysis of covariance was performed

on the derivative criterion test scores for the total treatment study.

An analysis of variance was also performed to check for interaction

effects in the analysis of covariance. The results of the two analy-

ses are exhibited in Table XII.

Both the analysis of variance and the analysis of covariance sum-

mary tables show significant differences :in the four treatments, the

former with probability less than 005 and the latter with probability

less than 0010 Both of these probabilities satisfy the .05 level of

significance of this study.

ScheffPs method of post-hoc comparisons shows a significant dif-

ference at the .05 level between the inductive limit-inductive derivative

(A) and deductive limit-deductive derivative (D) treatments. A glance

at Figures 6 and 9 exhibit these differences in raw score points be-

tween treatments A and D at both levels and bear out the above finding.

In the graphs we see that for the high and low groups, a difference in
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TABLE XII

Combinations of Inductive Treatments versus Deductive Treatments

fo2Tea....chIBoththe Limit and Derivative ConceEILL.L.the

Source

Total Treatment Study

Anaisof Variance Suxnniary

Sum of Squares df Mean Square F Probability
Level111[,6Mi J.MMAAllOWIII!

Treatments

Levels

478.25

6938.89

3

1 6938.89

159.42 3.28

142.68

0o5

.001

Treatments

X Levels 24.141

Error (Within) 19064.04

3

392 48.63

8.14 .17 /MN

Source

Treatments 496033

4.36

1E222-sis_of_Coyariance Summsy Table

The pre-test score is the control variable.

Sum of Squares df Mean Square

M.L.MOMMIll.M

Probability
Level

Levels

3 16544

1 4.36

h000 .01

.11

Treatments
X Levels 30.79 3 10.26 .25 IMP

Error (Within) 16183.28 391 41.39

KEY TO TREATMENTS
AHinductive limit-inductive
Bminductive limit-deductive
Cmdeductive limit-inductive
Dmdeductive limit-deductive

KEY TO LEVELS
derivative High
derivative Low
derivative
derivative
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total raw score points of almost three exists between treatments A and

D. Since the means of treatment D at both levels are higher than those

of treatment k, the superiority of the deductive treatment over the in-

ductive treatment is indicated. These findings correspond to those of

the derivative study,

Using Scheffe's method the difference between the inductive limit-

inductive derivative (A) and inductive limit-deductive derivative (B)

treatments approaches significance at the .05 level. This is also seen

graphically in Figures 6 and 9 and might again indicate the superiority

of the deductive derivative treatment. For the low group the difference

between treatments A and B is almost two raw score pcints and for the

high group the difference is over three raw score points.

There is a raw score point difference between treatments B and 0

(deductive limit-inductive derivative) of less than t:o points on both

levels. Treatment B is superior in either case. This may indicate that

the inductive limit-deductive derivative (B) treatment is slightly better

than the deductive limit-inductive derivative (C) treatment. The differ-

ences us, ScheffPs method for these treatments are not significant.

However2 in the derivative study we did find the superiority of the de-

ductive derivative treatmant.

The other differences in treatments for the total study are not

significant by Scheffg's method.

ap2212sis T 2. There is no difference in mean achievement as measured

by the test on the derivative between the two levels in the total treat-

ment study0 controlling for pre-test score.
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The significant difference in levels for the analysis of variance

was expected. However, in Table XII we see there is no significant dif-

ference for the analysis of covariance concerning achievement of the

derivative topic and the two levels in this study. The null hypothesis

that there is no difference in achievement as measured by the test on

the derivative between the two levels used in the study is not rejected.

itaLlesis_11_2. There is no interaction between the four total treat-

ments and the two levels.

The analysis of covariance of Table XII shows no treatments by

levels interaction for the total treatment study at the .05 level of

significance. The analysis of variance table displaying no interaction

effects supports this finding. Thus, the null hypothesis concerning

interaction achievement is not rejected.

FUrther Statistical Anal=
It was felt that if any significant difference in treatments were

to exist in the three studies of this experiment, the difference mould

be in favor of the inductive treatments. Such a belief was supported

by the pilot studies and related research studies. Before the analyses

of variance and covariance were performed, correlation and multiple re-

gression coefficients were computed. In these preliminary analyses the

inductive treatments were coded +1 and the deductive treatments -1.

Table XIII displays the correlation matrix with the five variates

(pre-test score, limit treatment, limit score, derivative treatment,

derivative score) in the experiment. This analysis includes all 449

subjects in the experiment. We see that there are moderate correlations



75

between pre-test score and limit score (.621) and between pre-test score

and derivative score (0607). Former analyses indioated both these cor-

relations significant (p<.001). Thus9 the pre-test score may be a some-

what good predictor of the limit and derivative scores.

There is a correlation of 0745 between the limit score and the deriv-

ative score, signifivant for t (p<0001) by a former analysis. Thus, the

limit score is a fairly good predictor of the derivative score. In fact,

it may be an even better predictor of the derivative score than the pre-

test score.

The negative correlation of -.137 between the derivative treatment

and derivative score is significant (p<.005) by a former analysis. The

negative value of this correlation coefficient shows that the deductive

derivative treatment, coded -1, produced a higher derivative score than

the inductive treatment. It is worth noting that there is a very law2

non-significant correlation (.0.16) between limit treatment and limit

score. This indicates a negligible effect of limit treatment on limit

score. The other correlations in the table are very low and non-

significant.

To further support the high correlations among pre-test score,

limit score and derivative score, and the experimental superiority of

the deductive derivative treatment, prediction equations were derived

using standardized beta weights. Table XIV (a) displays the standard-

ized beta weights and their probability levels of t for predicting the

limit score from the pre-test score and limit treatment. Table XIV (b)

shows the standardized beta weights and their probability levels of t



TABLE XIII

Correlation Matrix for the Five Variates in the Three Studies

Number Name 1 2 3 14 5

1 Pre-test Score 1.000 .621 .010 .607 -.003

2 Limit Score .621 1.000 .016 .7145 -.002

3 Limit
Treatment .010 .016 1.000 -.032 -.009

76

14 Derivative
Score .607 .714S -.032 1.000 -.137

5 Derivative
Treatment -.003 -.002 -.009 -.137 1.000
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for predieting the derivative score from the other four variates in the

experiment. The variates are numbered as in Table XIII.

Below each table is the linear multiple reg:ression prediction equa-

tion for the respective score. A multiple regression model is appropri-

ate since none of the analyses of variance showed interaction effects.

The multiple R, the correlation between the a'Aual score and the predic-

ted score, is also displayed. Again an inductive treatment is coded +1

and a deductive treatment -1.

In Table XIV (a) we again see that it is the pre-test's beta weight

of .621 (p<.001) that seems to contribute considerably more to the pre-

dicted limit score than does the limit treatment beta ueight. Table

XV (a) shows the per cent of the total and explained variance in the

limit criterion test score contributed by the pre-test score and limit

treatment. We see that 38.56 per cent of the total variance and 99+

per cent of the explained variance is due to the pretest score in

predicting the limit score. The per cent of the total variance and

the explained variance contributed by the limat treatment is negligible.

Table XIV (b) shows that the pre-test score, limit score, and deriv-

ative treatment seem to contribute more to the predicted derivative score

than the limit treatment. The beta 'weights fox the pre-test score, limit

score and derivative treatment are all significant (p<.001). Since the

beta weight for the derivative treatment is negative, this favors the de-

ductive derivative treatment. A higher predicted derivative score for

the deductive treatment will result since the last term in the derivative

score prediction equation will be positive.
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TABLE XIV (a)

Standardized Beta Wel.fIrtsforpr2clict Score

Number Predictor Variate Standardized Student's t Probability
Beta for Beta Level for t

1 Pre-test Score .621 16.692 .001
NMI/ ..mmw.....*...ums

3 Limit Treatment .010 .270 .078

Standardized predicted limit score fzeystandardized pre-test score)

+5(1imit treatment)
3

Multiple R .622

Standardized Beta Wei

TABLE XIV (b)

hts for Predictin Derivative Score

Number Predictor Variate Standardized Student's t Probability
Beta (&) for Beta Level for t

1 Pre-test Score1 .233

2 Limit Score .601

6.139

15.802

-1496

.001

.001

.1353 Limit Treatment -.045

It-

5 Derivative
Treatment

..18041malti Immt.

-.135 -4.544 .001

Standardized predicted derivative score Ix 94m(standardized pre-test score)
41,0:;(standardized limit score)

-1V-(limit treatment)

(derivative treatment)

Multiple R .780
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Per Cent of the Total Variance!ncLEnlained Variance in

Limit Criterion Test Score Co.n1111212.1ecbre-Test

Score and Limit Treatment

Number Predictor Variate r 6i: r X100

.*

1 Pre-test score

3

Total

.621 .621

Limit Treatment .010 .010
XeruaaNIIIMIWOm

r261)(100

38.56

.01

38.57

99.97

.03

100.00

TABLE XV (b)

Per Cent of the Total Variance and Ex lained Variance in

Derivative Criterion Test Score Contributed b the Other

Fbur Variates

Number Predictor Variate

CINIMEN=111141....=.=.111111111=4,110111.10.1.1=i1IMMIN11111.I

1 Pre-test Score
1111amta=r1m.........m.......

Limit Score

(3
ree 100 -1'001100

23.22

73.51

.607 .233 1)4.1)4

.745 .601 14.77

3 Limit Treatment -.032 -.045 .23

5 Derivative
Treatment

Total

-.137 -.1351...11- 1.85 3.04

60.90 100.00
toftAlt

KEY TO qpium HEADINGS
Oi= standardized beta weight
r m raw correlation coefficient

4x100 = per cent of total variance accounted for by the variable

_rAx100 = per cent of explained variance accounted for by the variable
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Table XV (b) shaws the per cent of the total and explained variance

in the derivative criterion test score contributed by the pre-test2

limit score, limit treatment, and derivative treatment. The pre-test

score contributes 14.14 per cent of the total variance and the limit

score contributes 44.77 per cent of this variance. The per cent of the

total variance contributed by the limit treatment and derivative treat-

ment is negligible. The pre-test score contributes 23.22 per cent of

the explained variance and the limit score contributes 73051 of this

variance. Again the per cent of the explained variance contributed by

the limit treatment and the derivative treatment is inconsequential.

In this study we can see that a student's past mathematical know-

ledge accounts for much more of the total variance than the teaching

method does. In learning the limit concept the pre-test score was

the important determinant of achievement. For the derivative concept

knowledge of the immediately preceding topic of the limit was most im-

portant: followed in importance by the prerequisite knowledge measured

by the pre-test.

All the foregoing results substantiate those discussed for the

correlation matrix of Table XIII.

General Discussion

The high2 significant correlations among pre-test score, limit and

derivative scores, and derivative treatment indicate a definite relation

between these variables in this experiment. This relationship is pre-

sented in the graphs in Figures 4, 5, and 6. Thus, some precision

might be gained by using an analysis of covariance design rather than an
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analysis of variance. However, using the covariate to determine the

levels of the experimental design in the analysis of covarianJe is sta-

tistically questionable.

Shelton's study for the inductive and deductive limit units was

replicated. Thilure to reject any of his three hypotheses in the present

study supports Shelton's conclusions. Figure 4 indicates no appreciable

difference in the mean scores for the inductive and deductive limit

treatments at either level. To explain his results, Shelton writess

Care was taken to insure that the two programs had
the same mathematical content. The same mathematical
theory was covered in both programs, and most of the nu-
merical examples were the same. The main difference was
in the order of development of the ideas. It may be that
the students rearranged the order of development inetheir
minds after completing the programs. (60, pp. 53-54)

For the present study using the inductive and deductive derivative

units, a significant difference was found between treatments (p.0l).

The hypothesis of no difference between derivative treatments is

rejected. From tabIes of correlation coefficients and multiple re-

gression analyses, the deductive derivative treatment is found to be

superior to the inductive derivative treatment. Figure 5 shows the de-

ductive derivative groups at both levels with higher derivative criterion

test score means than the inductive derivative groups. This is a sur-

prising result since pilot studies and related research pointed to the

superiority of an inductive approach if any difference in treatments

existed. FUrther computation of a multiple regression equation to pre-

dict the derivative score shows the pre-test score and limit test score

to be the determining factors in predicting the derivative score. The
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derivative treatment carries very little weight in predicting the deriv-

ative score.

Considering the four total treatments at the two levels, a signifi-

cant difference (p005) was found among treatments, as in the derivative

study. Again, the difference favors the deductive treatments, since the

difference between the inductive limit-inductive derivative treatment (A)

and the deductive limit-deductive derivative treatment (D) is significant,

with the means of treatment D higher than those of treatment A on both

levels. Figure 6 presents this finding graphically.

In none of the three studies are interaction effects evident. Mb

thus have no evidence that effectiveness of these teaching units is de-

pendent upon mathematical level as measured by the pre-test.

The results on both the limit and derivative criterion tests indi-

cate that the programs do indeed teach their respective topics. On the

basis of chace alone a mean of six would be expected on the first 24

four-alternate multiple-choice questions on each test. However, means

of 12.57 and 13.12 for the 449 subjects in the experiment were obtained

for the limit and derivative tests, respectively.

The pilot studies for the derivative units also showed evidence of

the units' teaching. Mb can only hope that the content of the units and

the criterion tests contain the types of achievement necessary for the

testing of the nine hypotheses in this experiment.



CHAPTER V

SUMMARY AND CONCLUSIONS

Re-statement of the Problem

The original purpose of this study was to study the merits of an

inductive and deductive teaching approach for the derivative concept in

beginning calculus. The ..tear;her variable" was contrclied by using pro-

grammed text material f:ir each teaching approach. To insure that a stu-

dent participating in the study had the necessary mathematical background

to learn the derivative, a unit on the limit comept was first read by

each student. This unit was also an inductive or deductive programmed

text.

It was then decided to expand the study. A former study to eval-

uate the effectiveness of an indwAive or dedutive approach to teaching

the limit conzept in beginning calculus by the programs used in this

study was replicated. A total treatment study was also conducted, using

both the limit and derivative programs. The four paired teaching treat-

ments (inductive limit-inductive derivative, indu!Aive limit-deductive

derivative, deductive limit-inductive derivative, deductive limit-deduc-

tive derivative) were compared.

Students were divided into a high and low level on the basis of pre-

test scores to check for interaction between treatments and levels. This

was done to see if those students at the high level might learn better

from one treatment, while those at the low level might learn better from

an alternate treatment.

83
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The effectiveness of the treatments in each study was determined by

a limit criterion test and a derivative eriterion test. The limit cri-

terion test was used in the statistical analyses of the limit study and

the derivative criterion test in the statistical analyses of both the

derivative and total treatment studies.

Instructional TI-22Ilm

The treatments constituted the reading of two linearly programmed

sequential texts on the limit and derivative concepts over a two week

period. Four programs were used, two to teach the limit concept and

two to teach the derivative concept. The main difference in the two

programs for each topic was the method of presentation of the material.

One program was written by an inductive formats proceeding from con-

crete, numerical examples to a general abstract ease. The other pro-

gram was written by a deduetive approach, proceeding from an abstract

generalization to concrete numerical examples. Both programs for each

topic contained essentially the same content of basic theorems, corol-

laries? and numerieal examples. The time exposure allowed for each

treatment was controlled by the number of frames in the units.

ERerimental Desk.E

A treatments by levels analysis of covarianee was used in each of

the three studies in this experiment. All subjects were assigned to a

high or low level on the basis of scores, on a pre st designed to

measure prerequisite mathematical knowledge for the study of the limit

concept in beginning calculus. For the limit and derivative studies
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each level was divided into two treatment groups, induc.tive and deductive,

giving rise to a 2 x 2, treatments by levels de3sign. For the total treat-

ment study each level was divided into four groups, thus establishing a

14 x 22 treatments by levels design.

Each subject in the experiment received one limit treatment and one

derivative treatment. Criterion scores for the limit and derivative

tests were compared for treatments, levels and interak,tion by the analy-

ses of covariance. Analyses of variance were performed for each study

to check for interaction effets in the analyses of covariance and to

interpret the analyses of covariance revults more meaningfully. Tests

of significance were made at the .05 level.

Preliminary compJtations of correlation coefficients and multiple

regression equations were also made.

Po2ulation and Sampllng.

The experiment was conducted in eight Chicago suburban high schools,

using eleventh and twelfth grade mathematics students. Of the total of

1463 atudents who began the study., 449 completed it. The scores of these

40 students were used in the statistical analyses.

The students were enrolled in 22 mathematics classes in the eight

high schools in the fall of 1967. There were 3738 males and 111 females

in the total study. Four hundred scores were randomly selec,ted for the

statistical analyses in the three studies. Thus, there were 100 sub-

jects in each of the four cells of the limit and derivative experimental

designs and 50 subjects in each of the eight zells of the total treat-

ment experimental design.
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Admirlistrative Procedures

The pre-test, limit and derivative units, and limit and derivative

criterion tests were administered to each class as it met in its respec-

tive high shool classroom. The class teacher proctored all the class-

room reading time, answered all the individual student questions except

when the investigator was present and graded all the multiple-choice

questions on the criterion tests. The treatments were distributed and

collected each class session. For students needing additional reading

time, extra cdass sessions during or after the school day were arranged.

A few very slow reading students were allowed to take their units home

for extra work.

Criterion Tests

Two paper and pencil criterion tests were used in the three studies

as a measure of achievement. The limit criterion test was developed in

a former research study. It consisted of 24 four-alternate multiple-

choice questions and four short answer questions. Two of the short

answer questions required proofs and two required definitions.

The derivative criterion test was developed for this study. It had

the same format as the limit criterion test - 24 four-alternate multiple-

choice questions and four short answer questions. One short answer ques-

tion required writing a proof, one giving an explanation, one doing a

computation, and the fourth exhibiting an example of a function satis-

fying certain conditions. Care was taken to avoid favoring eifier

treatment in the item construction of the test.
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Both tests were given in two parts on successive days, immediately

after the completion of the respective program.

Results

The three research hypotheses in each of the three studies were

tested by an analysis of covariance. Fbr the limit study, the investi-

gator foundg

1. There were no statistically significant differences in achieve-

ment between the two ltmit treatment groups shown by the adjusted limit

criterion test means.

2. There were no statistically significant differences in achieve-

ment shown by the adjusted limit criterion test means between the two

levels used in the study.

3. There was no statistically significant interaction between the

limit treatments and levels as measured by the limit criterion test.

For the derivative study, it was found thatg

1. There was a statisti ally significant difference in achievement

between the two derivative treatment groups shown by the adjusted deriv-

ative criterion test means. The deductive treatment was favored.

2. There were no statistically significant differences in achieve-

ment between the two levels used in the study shown by the adjusted

derivative :xiterion test means.

3. There was no statistically significant interaction between the

derivative treatments and levels as measured by the derivative criterion

test.
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For the total treatment study, the investigator founth

1. There was a statistically 9ignificant ifference in achieve-

ment between the four total treatment groups shown by the adjusted deriv-

ative :riterion test means. This difference was between the inductive

limit-inductive derivative and deductive limit-deductive derivative

treatments, the latter superior.

20 There were no statistically significant differences in achieve-

ment oet4een the twc levels used in the total treatment study shown by

the adjusted derivative criterion test means.

3. There -was no statistically significant interaction between the

total treatments and levels as measured by the derivative criterion test.

Conolusions

In drawing any genevadzations in this experiment, we must keep in

mind the particular sample, treatments and their method of presentation,

as well as the evaluation instruments used. Aware of these restrictions

we can concludeg

1. No advantage in achievement of either limit treatment was appar-

ent, but advantages were noted in the derivative treatment and the limit-

derivative (total) treatment. The deductive treatments were favored.

2. NO differeme an achievement between the two levels was found

in the limit, derivative or total treatment study.

3. No athantages in achievement of the treatments for a particular

level were apparent in the limit, derivative, or total treatment studies.

The novelty of the programmed texts used in this study was definitely

a negative motivating factor. After two weeks of learning the calculus
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material only by reading, with no class discussion and little teacher

interaction, most students expressed a negative attitude toward pro-

grammed texts. This was indicated by a response to an attitude question

asked of each student at the end of the experiment. Yet, since all stu-

dents used materials of the same format and since these materials were

randomly distributed among all the subjects in the experiment, it is

felt that any negative or positive effects of the programmed texts were

present for all students.

In summary, the results of Shelton's replicated limit study indi-

cate that it is not the teaching method but the student's prior knowledge

of mathematics, as measured by a pre-test, that enables him to learn the

limit concept in beginning calculus. The results of the derivative study

show that the student's prior knowledge of mathematics, indicated by a

pre-test and limit test score, has important weight in learning the deriv-

ative concept. The teaching method is secondary in such learning. This

is true even though the deductive teaching method for the derivative study

was shown to be significantly better than the inductive teaching method.

The results of the total treatment study show that for the teaching

of the combination of the limit and derivative concepts in beginning cal-

culus to eleventh and twelfth grade students, as given in these programs,

the deductive approach in teaching both concepts together is superior to

the inductive approach in teaching both concepts together. If each of

the concepts is taught by a different method, no difference in student

learning, as measured by an achievement test on the final derivative
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unit, is evident. There is also no difference between a mixed treatment

and a strictly inductive or deductive treatment,

Cautions of Inter retations of Methods Studies

Any interpretations of the conclusions of this study must be made

with caution, particularly when attempting to apply the findings to an

actual classroom teaching situation. The following limitations should

be considered:

1. In attempting to control for the teacher variable in this study,

programmed text material was used. The high school students learned en-

tirely from a written format for two weeks, with little teacher inter-

action. The students may have had discussions over the material after

class, although these discussions would have been of a limited nature

since the materials were not to be taken from the classroom. The teacher

could not guide or stimulate student discussion. He could not let his

personality or skill enter into his preference for an inductive or de-

ductive teaching approach. If human interaction and after school work

had been allowed, the results of this experiment might have been

different.

2. The time exposure to the material in this study was limited to

only two weeks. Perhaps this was too dhort a period of time to test the

effectiveness of a teaching method. If the study had been extended over

a whole semester or whole school years a teaching method found effective

for a short period of time might not be so for a longer time. Or a

teaching method found effective for an isolated topic might not be so

for a total unit of study involving a number of different concepts.
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3. The students in this study were rather mathematically sophisti-

cated eleventh and twelfth graders. Such students may be accustomed to

getting much of their teaching from text books written by a deductive

approach. They may learn from just one example leading to or following

a generalization. For these students economy of learning time may be

important, and such economy may best be effected by a deductive teach-

ing approach. If junior high school students had been subjects in this

experiment, they might have shown a preference for a less formal) more

heuristic, inductive teaching method.

4. The students' mathematical backgrounds in this study were con-

trolled only to the extent of pre-test scores. Since this pre-test is

not a single, perfect measuring instrument, we might better have consid-

ered a student''s total past academic performance. Results of this study

favored the deductive derivative treatment. We might find that students

reading the deductive treatments had higher total grade point averages

in mathematics, or in all academic subjects, than did those reading the

inductive treatment.

S. The psychological constructs operating in the testing-inference

design of this experiment are also to be questioned. Is a test score a

true indication of student learning? Will the material taught in the

respective limit and derivative units be available for later recall and

transfer when it is really needed?

Implications and Questions for Further Research

In terms of the limitations of these studies just cited, we can see

a number of implications for further research in the area of mathematics)
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particularly mathematics taught at an advanced subject matter level.

As indicated in the first limitation, programmed text material may

not be the best vehicle to use in testing a teaching method. A study

might be devised to use actual classroom teachers in testing for differ-

ences in teaching methods. Each teacher might be "programmed" to teach

both inductively and deductively. If some classes of a particular teach-

er taught by one method show higher achievement than those taught by the

same teacher by the alternate method, certain personality constructs

might be inferred to be operating in both the students and teacher.

The permanence of the effectiveness of a teaching method in

mathematics might be investigated. If a particular teaching method is

superior for the teaching of an isolated mathematical concept over a

short period of time, will this method still be effective over a longer

time period, with a change in concepts to be taught?

The factor of student year in school may determine the effective-

ness of teaching method. One might investigate if an inductive or deduc-

tive teaching approach is as effective with elementary school children

as the same teaching method is with high school students. Is a teaching

method effective with high school students as effective with college stu-

dents or is type of teaching method no longer a factor in student learning

at this advanced learning level?

Up to this time very little research has been directed toward the

teaching of advanced topics in a subject area. Perhaps teaching method

is not really important. Maybe prerequisite knowledge is the determining

factor. Or perhaps students learning an advanced topic may be so highly
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motivated, they will learn by any acceptable teaching method. After

being introduced to an idea these mature students have their own methods

of learning.

Finally, perhaps one should be more concerned with level of achieve-

ment related to a teaching method than with differences in achievement.

Perhaps the scores produced in the present study of the teaching of the

limit and derivative concepts were too low to be really acceptable as

a minimum level of achievement for either teaching method. Maybe an

acceptable score could only be obtained by a combination of several

teaching approaches.

Certain questions also come to mind. Perhaps the results of this

study might have been different had the length of instruction been ex-

tended or abbreviated. The limit and derivative units required approxi-

mate reading time of two weeks in the average high school program. What

if a whole semester or whole school year had been used to develop a par-

ticular teaching method?

A deductive method of teaching may be more successful for a short

period of time and an inductive method for an extended period of time.

This might be particularly true when teaching isolated concepts such as

the limit and derivative in the larger discipline of the calculus. Or

perhaps certain concepts in calculus are learned better by a deductive

approach rather than an inductive one, namely the derivative concept in

beginning calculus. Other topics in calculus may be taught more effec-

tively by an inductive approach. For yet other concepts, the teaching

method may be unimportant, but the prerequisite knowledge in mathematics

may be the important variable. We showed this in the teaching of the
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limit concept in this experiment.

The quality of the material in the two programs was intended to be

similar. Care was taken to make content and length of exposure to topics

the same. Most of the numerical examples were the same. Comparable

programming techniques were used to write both inductive and deductive

programs. If a student reordered the material after its presentation,

the experimental design had no control over this. Thus, the individual

student could have used his own combination of inductive and deductive

teaching methods to learn the material in the studies.

The removal of the human element from the teaching situation in

this experiment should cause concern. If teachers, rather than text

material, had been "programmed" to teach only inductively or deductively,

results might have been different. As mentioned before, many students

in this study were bored by learning only by reading for an extended

period of time. Even if there were again no differences in teaching

approaches in an actual classroom situation, we might find higher scores

on the criterion measure than were obtained by programmed texts.

One can also argue a long-range effect of teaching -- later ap-

propriate recall of the material learned. Might it be that a teaching

approach could produce higher immediate criterion test scores but an

alternate approach produce higher retention and transfer test scores?

It can also be said that the level of the student may have an

effect on his reception of a certain teaching method. Perhaps the

rather mathematically mature eleventh and twelfth grade students in

this study were more conditioned to a deductive type of teaching.

These students were obviously accustomed to learning much of their
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mathematics from text books, which are primarily deductive in exposition

as stated in Chapter I. Even more important, these same students probably

had the knowledge to abstract from given instances and, conversely, to

apply given abstractions.

Perhaps junior high school students (seventh and eighth grade stu-

dents) would learn mathematics better from a more numerical, illustrative,

non-verbal, inductive approach. They may still find the reading of text

material difficult. For them discovery may be an important learning

method for building up prior empirical knowledge. They may not yet have

the experience essential for making concepts and generalizations meaningful.

Im lications for Education

If we again take caution to avoid overgeneralizing, some interesting

educational implications emerge from this study.

Although programmed materials were used as the vehicle of instruc-

tion in this experiment, several interesting results of their use are

evident. Programmed texts can and do teach, but probably not as effec-

tively as a classroom teacher. As this experiment also shows, programmed

texts can be used in a meaningful way in research studies if conservative

generalizations are made.

The results of this experiment show several interesting findings.

From pilot study results and related research, it was believed that a

difference in teaching approaches might favor an inductive method. When

differences did exist in this study, the deductive teaching method was

found superior. Perhaps for the advanced level of students in this ex-

periment, a formal, abstract, deductive teaching method was more
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effective. If a less mathematically mature group of students had been

chosen as subjects, a concrete, numerical, inductive approach might have

produced higher achievement scores. If a combination of inductive and

deductrve teaching had been used, mean criterion test scores might have

been higher than for either method used alone.

As this eyperiment clearly indicated, perhaps it is the student°s

prior mathematical knowledge that determines his proficiency in mathe-

matics. This may be what Ausubel meant when he wroteg

The cognitive structure of the particular learner must in-
clude the requisite intellectual capacities, ideational
content, and experiential background. It is on this basis
that the potential meaningfulness of learning material
varies with such factors as age, intelligence, occupation,
cultural membership, etc. (5, p. 20)
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CONCRETE INDUCTIVE DERIVATIVE PROGRAMMED UNIT
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1. The derivative is a very important topic in mathematics and related

sciences. It is the basis of a beginning course in calculus and provides

a foundation for more advanced courses.

A118.

119. The equation of this tangent line passing through the point (-1, 1)

is

A233. 14c:2

234. V% know by Theorem 3 that if w(x) x9 wf(x1) =



.2. Since we will need the limit in studying the derivative of a func-

tion, let us review the notion of a limit of a Aznction. We know that

it f(x) L, we can make f(x) ars uclosen to L as we please for x

in a suitably chosen deleted neighborhood of x1. (The student should

review the mathematically precise 84.4 definition of a limit of a

Pinction.) Which of the numbers in the set 2.9, 2.99, 2099, 3.001,

341 belongs to the deleted neighborhood defined by the inequality

< AM?

A119. y-1 111 mi2S X

120. For the second function f defined by f(x) = x2+ x - 6$ for which

we expressed the slope mt = 2x1+ 1 of the tangent line to the graph of

f at any point, at the point (3,6) the slope of the tangent line is

A2314. I4x3.3

235. WsknowbyTh.orei3tht1tv(x) is x2, v*(xi) =



111P

A2. 2.999Q 34002

3. We will now introduce an alternate notation for lIgxif(x) m L. Mb

know that 100.0(xl+Ax) m xi where Ax is a variables its value usually

small in magnitude. Thus, if Ap is a variable9 lim (1)14*Ap) m

A1200 7

121. The equation of the tangent line passing through the point (396)

is

A235. 2xi

236. Consider the follawing tables

Rule Defining the FUnctions Derivative Evaluated

Evaluated at x
1

at xi

w(x) x144,

v(x) IC12**

amormomasKtmet

413

Mt you see that it is possible to obtain the derivative of f(x) m x69

i.e., (6x15)9 by taking the sum of the products of the terms on the

opposite ends of the arrows? That is9 xi4.2x1 xl
2
.4x1 m

3



t3.

4. If Ax approaches 02 (xi', .pproaches xi. Therefore 9 f( m

1140f (Xi+ Ax). If Ax approaches 02 (x1+ Ax) approaches xV so groxig(x)

"oe )

A121. y-6 is 7(x-3)

122. For the point with coordinates (-2p-4) on the graph of f defined

by f(x) x2+ x-62 the equation of thp tangent line at this point is

237. let f(x) Is x6 be rewritten x6 al 3C5 lc. In this case f(x) B

r(x) s(x), where r(x) gm x5 and s(x)



S. If xl m 59 x1+ Ax m 5 AX0 AS Ax approaches 09 (x1+ Ax) Lpproaches

A122. y + 4 ge 3(x 2)

123. For the fourth function f defined by f(x) m x2 which we discussed

in frame 722 we.found that the slope of the tangent line at aqy point

on the graph of f had numerical value

tant.21

2380 So Dlx(x6) m Dx( 639.50

4211101131101PIPM,



AS. 5

6. Therefore, At 5f(x) f(5 + Ax).

1:113

(Tour answer should correctly complete the shaded box.)

A123. 1

124. We noted that the graph of the function and the tangent line at

any point A: with x-coordinate xi coincided, so the equation of the tan-

gent line at any point on the graph of f is

A2,8. x

239. WO know by Theorem 3 that if r(x) = x5, e(x) =



A6. Ax-0

7. If xi -32 xi+ Ax = -3 + Ax. At Ax approaches Os xi+ Ax

approaches

x

125. Mt can check the above statements by writing the equation of the

tangent line to the graph of f defined by f(x) = xo For the point uith

coordinates (2,2), since mt= ls the equation of the tangent line at this

point is y - 2 = 1(x - 2) or (in simplified form).

A239. xi

240. Mt also know by Theorem 2 that if s(x) = xs sqx1)



8. Therefore, 14.3g(x) n 1140g( 1/*

f x x

126. For the point with coordinates (0,0), the equation of the tangent

line at this point is

241. Consider the following tables

Rule Defining The Fdric- Derivative Evaluated

tion, Evaluated at xi at xi

519.4

Do you see that it is possible to obtain the derivative of f(x) = x6 by

taking:the sum of the products of the terms on the opposite ends of the

arrows? Thus, x15. +



A8. -3 * Ax

9. It may be the case that x is to the right of xi and sufficiently

close to xis or that x is to the left of xi and sufficiently close to

xi. Mt recall from the section on limits that f(x)9 now shown

to be equivalent to iimolf(xl+Ax)s exists if f(x) approaches the same

value L when me consider numbers which mailyte either greater or

than x.

A126. y - 0 = 1(x - 0) (or y

127. For the last function f defined by f(x) = k which we discusseds

we found that the slope of the tangent line at ally point it with x-coor-

dinate x on the graph of f had a value of 0
1

544
A241. ls

242. Let f(x) = x6 be rewritten x6 = x30 x3. In this cases f(x) =

p(x) 0 q(x) 9 where p(x)



A9. less (smaller).

100 If we consider numbers only greater than xi, then we denote the

limit by lin 4,;(x) = L. If we restrict our consideration to numbers

1"cl
less than xi, then we denote the limit by lim .1(x) ms LC L is called

the right hand limit. Hence, the left hand limit of f(x) would be

A127. 0

128. We noted that the graph of this ftnction and the tangent line at

any point A coincided, so the equation of the tangent line at any point

on the graph of f is

A242. x3 x3

243. Thus, 10131:(A = Dix(x3. x3) =



11. Let us now translate the notation for right and left hand limits

into Ax notation. If Ax approaches 0 from the right9 then xi+ Ax

approaches xi and (xi+ Ax) is (E22:22ILIIITEs_222.EilE) xi. This

means x approaches xi from the right and we write x--3.

A128. y = k (or f(x) = k)

IZIIINN00011170

129. Let us verify the above reasoning for the function f defined by

f(x) = k. For the point (29k) on the graph of f9 since me 09 the equa-

tion of the tangent line at this point is y k es 0(x-2) or

A243. 6xl
5

244. Wb know by Theorem 3 that if p(x) = q(x) = x39 pqx1) e(31)



All. greater than, xi

12. If Ax approaches 0 from the lefts then (xi+ Ax) approaches xis

(xi+ lix)4;xis and we writs

A129. 70

130. For the point (7sk), the equation of the tangent line at this

point is (in sinp14ied form).

A2111to 3391,2

2115. Consider the following tables filling in the nissifig entries.

Rale DefininA th_hp, Fans-
t1;qns E'veluated at xi

x
1
3

Derivative Evaluated
at xi

32



*12. xl

13. Then Um 4.f(x) = lim 4f(x141. dx) and lim .f(2) lii ..f(X1+

Xa`a °XI Ax-Ki x-Dmi Ax-folD

The right hand limit is thus expressed as lim 4f(x14. dx) and the left

Ar-lop a

hand limit is expressed as

4130. yk

131. Let us now extract some of the common properties from the abolm

discussion. For any function fp we can express the slope of the tan-

gent line at the point with y-coordinate xi as mt gi (limit form).

3x3.2

A216. xl3

3x12.1 x13, ui2s,
2L Finn the preceding tables x3.3.



A13.

/WWI

14. Consider the function f discuseed in the

2 x 4. 1

x + 1
section on limits, defined by f(x)

For this function, lim 40f(4 n UM 4Alca ft)

V-06"4 Ale'"11.0

n 2 and lin f(x) = lim f(-1 AX) "
Ax-0.6"

A231. lim f(x1+ Ax)
Ax-10 Ax

0

132. Since the point A has coordinates (xia f(xi)) or (x19 yi) we can

write the general equatiqn of the tancent line at point A on the graph

of fs with slope mt9 as

A246. 6x15

247. Let us now collect the 1w...Liud.G.Lon rrom the preceding frames and

deternine if a pattern exists in evaluating the derivative of the pro-

duct of two ftnctions. Mb haves

If f(x) = x6 = x
4

x
2

9 14(x1 ) x14. 2x1+ xi
2*
41

3 (.
xl

5)

If f(x) = x6 = x x 9 f(x2) m x15. 1 + xi 0 544 (km 6x15)

If f(x) m x6 = x30 x39 f'(x.1) = x13. 3x12+x13 3x12 (= 6x15)

If f(x) so w(x) 17(x), fq3C1) at II( xl) wi(xi?



A14. -2 (Note If you do not recall this2 take time now to convince

yourself that Um 41.f(x3 = 2 and lim f(A) m -203
V"Ork...14"

1 so

1150 For the nostage stamp function discussed 1

i
1

in the section on limits2 P m 1'(w)9 where p 1

1

1

is the postage and w is the weights we have 1 ,

,

r9 I

1

I

liM 4.f(5 + &I) n 302 where Aw is a variable, , 1

Aw-100 v S 4

Also, lim f(5 + Aw) m .

A2320 3r - mt(x - xi)

1330 For the exercises in Frame 1152 write the equations of the taikT.-

gent lines at the indicated points.

A2470 vt(xj.) v(x)

248. In words the above patterns [if f(x) w(x)0v(x)s fi(xl) w(x1)0

vqx1) v(x) ow°(x1)] states that the derivative of the product of two

ftnetionss evaluated at xis is the sum of the first function multiplied

by the derivative of the function and the second function multi-

plied by the derivative of the functions assaming the two deriva-

tives exist. This generalization is trues as you will prove later. It

will be our sixth theorem. Enter this theorem on your list as Theorem

6.



16. Recall that the limit of a function exists as x-Dmi if the limit

of the fUnction as x.Fx., through values of x greater than xi is the

same as the limit of the function as 2-0=x1 through values of x less

than xl. ThussAkf(x) a L if lim .f(x) = L and urn f(x)

xe-"cl

A1330 (a)
1s1(or x-Y-1 0);

SI) L.fALISE x"axis/I_SAJE121A&SSW*5

134. Thus faro me have considered fulactions
(oio

whose graphs possess tangents at each point with

x-coordinate xl. Consider the function f defined (1,0

by f(x) = lx-11. Graph this function on your own

paper on axes similar to those at right.

A2480 seconda, first

249. It should be noted that it is not necessarily the case that if the

derivative of one of the functions in the product of 2 functions doesn't

exist at some points the derivative of the product won't exist at this

1
point. Consider w(x) m x 2 and v(x) a 7,71.79 where v(x) does not pos-

sees a derivative at the point with x-coordinate xi =



A16. L

17. In our notationsAW0f(xl+ Ax) L if lim Ax) L and

Ax-loo°

135. Referring to the graph of this functions note that the 2 lines

11 and 12 making up the graph and intersecting at point P with coordi-

nates (190) make angles of 45 and degrees9 respectively9 with

the positive x-axis.

A249. -2

250. Rowevers for the product of the above functions9 f(x) a W(X) °

V(2) a (X f 2) /41Tx a 1, VOCi)



Arr. lin 461 (xi+ a.%) L
Ax-00

18, We will begin the discussion leading to the derivative of a funa-

tion f evaluated at xi. Consider the slope of a tangent to the graph

of f evaluated at a point on the graph whose x-coordinate is 0

1360 Choose a point B on the graph with an x-coordinate slightly

greater than Xia i0e09 Ax a I # Ax m 101 where

Indicate this point on your graph.

0

251, Now consider f(x) m x
2
0 x

3
where w(x) a X

2
and v(x) as x30 Here

ii(X1) and v(x1) m



A18. xi.

INIMINIONIMICIOMPC

19. For the function f defined by f(x) m x29 we showed in the section

on limits that the slope of the tangent lime at point P with x-coordi-

nate 1 is 2. Graph this function and sketch the tangent line at the

point with x-coordinate 1 on a separate paper for reference.

A1360 .1

137. For point Bo a secant line PB is the same as the line 0

A251. x12, x13

2520 Then wqx1) m and vqxi) m 0



A190

200 Let us recompute this slope. Indicate the coordinates (xpoi? of

point P on the graph.

A137. 1

138. The limiting position of such a secant line PB as B approaches P

is line 0

A2520 2xis, 3xl
2

2530 Thus if f(x) m x2. x39 fqx1) E4W(Xl? o Te(71) V(x3)

CINW.MCW=Mally=11110
0

C11:211dGIMS:M3==



4200

210 Consider a point Os (xceyq) on the graph of f defined by f(x) X29

whose x-coordinate is slightly greater than 1 i0e0 Xq m 1 * Ax0 For

this choice of point Q3 x m x - 1 and is (greater than less than) 00

Indicate such a point Q on your graph0

1390 Since 1 makes a h$ degree angle of inclination with the positive

x-axis9 the slope of this line is 0

A253, 3xi $

2540 If f(x) m x20 x3, f(x) m x59 so by Theorem 3p fqx1) n

Do the two answers for fqx1)y obtained in differentwgys, check?



423....t_enater than
1

air

22. Points P and Q determine a line which intersects the graph of f in

2 points in a deleted neighborhood of P. Line PO is called a secant

line because, recalling our knowledge of a circle, a secant line inter-

sects a curve in at least distinct point(s).

A1390 1

140. Now consider a point A with x-coordinate slightly less than

xim 1; i.e. xl* Ax n 4' AX n .5. Here Ax sis . Indicate this

point on your graph.

A254. 5x1
4 Yes

2%. If f(x) x(1-), w(x) so x and v(x) , so w(x)

and v( xi) 13 0



23 Let us %ow compute the slopes of secant lines PO and see how these

slopes are related to the slope of the tangent line at P0 For any 2

points P and Q with coordinates (x 9y ) and (x
q

937.
q
) nspectivelys theP P

slope m of the line PO9 if the slope existss is m 0

1410 For point JC9 a secant line AP is the same as line

A2550 l-x9 x $

2560 Then for this functions wqx.i) al and vqx1)
001011C111.111111C10



INP

Y Y
A23.

x x
or

24. The slope of Ftlt will not exist if x

parallel to the

A1410 1
2

in which case PQ is

142. Since 12 makes a 135 degree angle of inclination with the positive

x-axis, the slope of this line (12) is
1111110111C1110

Skip a page for the answer to Frame 1420

A256* l. -1

257. Thus, if f(30 x(1-x), fl(xi) W(CI) * I14(x1) * v(11:1) * 100[1?

ale



A24 xn Y
-_____-af,-..

250 We will now investigate the existence of the slope of the tangent

line for the function f defined by f(x) m x29 at point N (191)0 To

do this9 we will compute the slopes m.,,se ,.7.7112Y2 of secant lines PQ for
0

several values of Ax prepfor 02 and surmise the limit of the slopes

as Ax approaches 00 Comolete the table below9 noUng the accompanying

graphe

2111(X )
P P

Xq

(PQ1)

(12Q2)

(PQ )
3

(PQ
/4)

(NO

ynn-y f(x)-f(x)

y Esf(x )I_Axmx -x
5,41

m mx -x m x -x
P P

1 1 2 4

t 1 1.5 2025

1 1. 101 1021 .1

1 1 1001 100201 001 00201

3

100001 1000020001 0001

Oz,

S.

000020001

3

205

258, Me could have found the derivative of the above function f defined

by f(x) m x(l-x) in another manner0 Do you see how? If f(x) x.(1-x)a

f(x) x - x29 so by Theorem 5, f*(x1) m 0 Do your answers

check?



A

A25. 0.5 1025
.21 2.1

2.01

...2,=0.0001

260 Note the pattern of values of m in your table. Here Ax m xp.

As Ax gets smallerg reading dawn the table, the slopes ms of the secant

lines get close to the value

A1420

143. Mr the function f defined by f(x) = Ix-1 at xisg ls recalling

from the limit section the function f defined by f(x) m !xis you should

show that for the present function lim Alt) - f(x1)

1140 Ax
011.13,

A258. 1 - 2x
19

/es
,Cmc7erZnifwmCru

2590 If f(30 m 7z, f(x1) as

0 7 o

v(X1) o 149(3C1)



A26. 2

270 Me surialse them the limit of this sequence of slopes of secant

lines is probably

A143. 1

144. For the function f defined by f(x) m Ix-11 at xis 12 reasoning

.as above2 you should show that Urn ax) f(x1) lim .11E1

ax-4100 ax-,0 ax
ax

0LIE .....MONOMI.sa

A2590 7 5x14 or 3544, x150 0 or 02 541

260. If f(x) m -6(x41)2 f'(x2) m w(xi)

IS -6

vi(xi) v(x1) ws (xi)



A

A270

28, Mb expect the slope of the tangent lime to the graph of f defined

hy f(x) xF at the point (1,1) to have the value

145. Thus, for f defined hy f(x) 1x-1

uated at x
1
(existslaemaLLuistl.

A260. 6 1, (xii- 1). Os 1

G111710111111411170.

) eval-

261, If 1(4 a ff(X5* X3+ 1), f/(X1) a W(X1)0 V/by 11(X1)6

Wp(X1)
0 se tr.



A280 2 (That the slope actuallT is 2 will now be shown.)

29. We will now comnutP thP slOne of the tangent line at sly point Ag

(xi9 yi) on the graph of the above function f defined by f(x) m x20

For this fUnction9 another way of expressing the coordinates (xi, yi)

of A9 since y m x
2

or f(x) m x
2
9 iS (X19 f(x1)) or (x19 ). Indi-

cate such a point on the graph of f on axes as below.

A11450 doeset exist (since lim xililx)41x Urn
f(xl+Ax)-2(xl)

Ax Ax-or0 Ax

146. Let us consider the function f defined by f(x) 0N/i20 Graph this

fun0404 00 ii0i

A261. rr9 5x
4

3,51
2
+ 2x19 xi

5
4. x13+ x

2
+ 19 09 544+ 3x 2+

2620 Let us summarize our results from the three previous frames and

see if a general rule emerges.

If f(x) m 73c 9 fqx1) s 7 Sx 14

If f(x) m -6(x+1) D fqxi) m -60 1

If f(x) m u(x5+x3tx2+1) 9 fl(Xi) °I V ° (544+ 32C12+ 2x1)

If f(x) m k 0 g(x) where k is a constant, fqx1) m k



ita9. xi2

0

30. Consider a point B on the graph of the above function whose x-coor-

Noteg Your point A. may have been

placed slightly differently*

dinates xi+ Ax$ is greater than that of point A0 For this choice of

point B$ Ax is (matertilms.22221_221.) 00 Indicate such a point B

on your graph0

As146.

1470 For this functions the domain is the set of all real numbers greater

than or equal to 2 and the range is

A262. e(xi)

2630 The above generalization [if f(x) kog(x) where k is a constants

then f'(xi) k*gt(x1)1 provided e(xi) exists is a theorem which you

can easily prove from Theorem 6o A. theoremwhich is easily derived

from an immediately preceding theorem is called a



A2211EselmAlaa

31. Let us compute the slope of a secant line AB0 The coordinates of

point B for the function f defined by f(x) a x2 are (xi* Axs f(x1+ Ax))

ors since f(x) m x2s (xi* Axs )0

A11470 the set of noxl:RtEgv resa numbers

148. Referring to the graph of this functions at what point(s) would

the tangent line(s) be parallel to the y-alis?

A20.2_22E2I1anz (Enter this corollary on your list.)

264. The corollary, stated in wordss says that the derivative of a

constant multiplied by a function of x is the constant multiplied by



A310 Ax) kor xl
2
.4, 21x Ax Ax

2
)

2

.710. At 2

320 For the points A 1n4 P 401r, cnordinates are given above; the

Yb- Ya
f(x + Ax)-ax )

1 1
slope m m of a secant line AB is -7-----=:--- w

8 XIII. Xa
OC + 0,2EP-Zi1

4' 2 2
(x

1
46

A x) - x1f(x
1+ Ax

)-f(x
1) or if ft pl 0 then we simplify -,------v--- 4.--1"- and

______- x1
1

get

Alh1.23.ig 1121

0

Mao At what point(s) would the s100(s) of the tangent line(s) not

exist?

A264. the derivative of the function evaluated at xi; if this deriva-

tive exists

2650 Let us now prove the theorem for the derivative of the product

of two functions0 Theorem 6. If f(x) m w(x). v(x) ; fqx1)

le(xl) v(xi). wqx1); if wqx1) and le(x1) exist0 Before proving

this theorem; consider an alternate notation for w(x1); w(xi+ Ax);

v(x1); v(x1+ Ax); which will simplify the notation in our proof* Let

w(xi) w wl. If xl changes by an amount Ax; ie0, x w x1+ Ax; then;

since w is a function of x; w1 will change by a corresponding amount;

which we will call Aw0 Thus; w(xl+ Ax) will be denoted by w1+ Aw0

Reasoning in a similar manner; /et v(x1) be denoted by vl and let

v(xl+ Ax) be denoted by 0



132. 2x1+ Ax

33. Point B can be made close to point A. by choosing Ax

A1490 (290)

150. Let us now proceed to evaluate the slope of the tange.t to the

graph of the function f defined by f(x) al3VX at any point with x-

coordinate xi, ard then consider the point where the tangent to the

graph is parallel to the y-axis, the point having x-coordinate xi a

A265. vi+ Av

266. Returning to the proof of Theorm 6, we will follow the fbur

steps in the "delta process" for finding the derivative of f(x) eval-

uated at xi. In step (1), if f(x) Ng w(x) a v(x), then f(x1+ Ax)

w(x14. Ax). v(x1+ AX) a (W1+ AW)40 (71+ Av) and f(x1) 1,(x1)



A33. small ("close to 0" or similar wording)

f(x1+ Alc)- £(2cl)

34. When Ax takes on values close to 0.1 maw Ax

2x1+ Ax takes on values close tO
MINORCONCONIIMiliNI.M.*

A150. 2

la. If we consider both rigbt and left limits againp we can evaluate

f(x14. Ay) - foci)

ailge Ax

f(x1+ Ax) f(x)

Ax

41.

4266.

at xlmi 2. It is not possible to evaluate

at 7.1113 2 because

267. In step (2) f(x14. Ax)- f(x1) (w1+ Aw)(vi+ wle vi



4

A3ii. 2x1

35. From the section on limits9 we know we can rewrite the above con-

f(xl* Ax)- f(x)
dition as lim !bur answer should correctly complete

Ax

the shaded box.

A151 the domain of f doesn't include real numbers less than 2

f(x.14. Ax)- f(x

1$2. In step (1) for finding lim Ax
Axe-*0

f(x)siViC29 f(x1+ Ax) Es V(x1+ Ax)- 2 and f (xl.)

A267. w
1
0 Av 4- v Aw Aw Av

f(xi+ ex)- foy
2e8. In step (3),

for f defined by

w Av 4- v
1

Aw 4- Aw Av
1

(expressing each term in the numerator over the denominator Ax)

Avas w1 &A Ax



A35. dx,--*0

36, Thus5, the slope of the tangent line at pointAfor the function

f defined by f(x)= x
2 may be derived from a line Aliso where AB is a

line to the graph of f.

A152, Vic":1 2

1530 In step (2)0 f(xi+ Ax)- f(xl) 0

A2680

2690 In step (4),

f(x1+ ax)- f(x).)

A410 fot agig40(w3: + vl° aw IP

(1) arkowom. 42.46x1 ]+ tvf Au-ax +Aloof& 0 &a.]

(2) fallowilaasorciljArt°v1Iivo Lawx)

+IA10'14% 11)

(3) wl ciAl+YAgiOti+6404w)ogg#03141)

Sdpply reasons for (1), (2)9 (3).



A36 secant

37. Since point B can be made as close as desired to point A by taking

Ax small enough9 a secant line AB has a slope close to the value of the

slope of the line at point A.

1540 In step (3)9 expressing the difference quotient9

f(x1+ 84= f(xl)
Lx

A2694, 121The limit of a sum is the sum of the limits if the,limits

existl(?) The limit of a roduct is the roduct of the limits if the

limits exist. (3) The limit of a constant is that constant (w1 and vi

are independent of Ax and hence are constantslt

270. Recalling the alternate notation for the derivative of y m f(x)

Aw
evaluated at xl as fi(x1) aiMA0 Ax9 we haveApperx W (x1) and

Av
Lak) rx m if wqx1) and vf(x1) exist.



A37. tanwyt

...-.,...

38. The slope of the secant line AB$

f()Ci+ A2C)a' 1(3C3.)
thus gets

close to the slope of the tangent line at A as Ax gets close to 0. We
Ax)- f(x,)

may express this condition as a limit$Apo

M40(2x1+ Ax). This limit has the value 0

Ax)- 2 -1,/rt.FE

A1540 I. Ax

f(x14. -

155. Finally, in step (4), lim

Ax) f(x)

A270. vqx1)

Ax
Ax-004.

271. The terms in the last line of frame 269 can now be expressed as

Av

w1661-40 111° vt(x1) SI YAW vie

/AO Aw °ARO IRAVO Aw
0

and



A38.

39. Thus, if f(x)- x2, we can express the slope of the tangent line

at a point on the graph of fs with x-coordinate x1, as
f(xl+ Ax)- f(x)

staAAPO Ax

Vlx1+ 8x5":71- x1r3.---. 2ja-55
ax-40,0.

Ax

1/57+ Ax)- 2 - x1r7:1:7
1 0

156. If we try to evaluate lila we obtain 15,
AxAx-00

which is

A271. le(x1), vt(xl)

2720 Thus, we have

f(xi+ Ax)- f(xi)
Alloo Ax alw1. vl(x1). Iff le(x1)+



A390 .4.11

400 At the point ,191) on the graph of f9 xla le For slope of the

tangent line at this point9 m 2x1 or 8 Does this answer

check with that surmtsed from oar table In frame 25?

Al560 undefined (or indetermiAate)

1$70 Howewr9 the ib© limit does exist0 To find it value9 we can

10451-77777,-i -N617-'=.1
.2 ' I

express the differene quotient in a different

form() You remember from the limit seAton that we rat onalize the

numerator by muI tiplying both numerator ard _denominator of the expres-

Agi-
sion by v&T : Thus ------- --------- becomes

2738 The limit of the difference quotient on the left hand side of

the expression in frame 269 is f8(x.1)0 We have fqx) a wie v4(xi) *

v1°30(x1)*A11100 ti o vp(x) 0 Reviewing the statement of the theorem

on your list f f(x) w(x)e v(x)9 000] and comparing-this statement

to our expression for f°(x.1) in the preceding entence9 we must show

that the term (alto AO. vi(x1) is



A400 2 Yes

410 Fbr the point with coordinates (294)2 xia so the slope of

the tangent line at this point is obtained from me 2x1 and is numer-

ically

A157.
Axhi(xii hix) 2 +1/3c3.-

Ax

f( Ax)- f(x)

1580 Let us now evaluate this limit3 lin
Ax-0

lim
ax x.ft/r.7.'i7-3c 2 i) -2-1404. Cift/r) 2 4' 3Vire:wi

1

mg

0
CM:IMI17MICMI..

A273. zero

271g* Since vt(xl) is a constants, i.e. the value of the derivative

of v evaluated at a fixed or constant value xi, we must shaw

m 0.



410 22_4

142. If we consider the points with coordinates (-5925)9 (090)9

(b on the graph of f9 xim 9 9 respectively and the

slopes of the tangent lines are 9 9 respectively.

A1580

2 xlrf=2

Ax
159. Why can we write lim a

."0

s
ax. ax(xix.2 *Vii7)

\Axle itxr--2-

A2740 agao kw

2750 To do this, we must show that as 6x approaches 09 4w approaches

0. Consider the expression w(x14. Ax)m wi* 6w m w(x1)41. 6w9 in terns of

our alternate notation. For w(xit Ax)9 we see that as 4x approaches 09

1140 w(Xi+ eix) 0



A42. .59 09 .,10) OD ?

s. 2
1430 Consider the t de. .4ed by y " 1(x)=-3 X 4, X - 60

Graph this fanction and skketr,th tangeot, line at tha4 point P with x.

coordinate 2 on a separate paper for Tefevenfto

.11112.2_ Sinese Ax. r-4 OD_ afirl divides bc2th numerator

and_denominator 0,..f the ditference._quoIlent.nx_Ax.,

160. let /16 now wnsider tne polAt OA the, vaph of t defined by

f(x)saltii-7-? whine th tangent IiAe is parallel, to the y-axis. This

point has an x-coordinatl

w(xl) (or ly (Note that W4 must here assume the conttnuity
of the function 449 a concept we will not dis .

tn this un'ktos)

276. If this is the .2ase9 then the right side of the above equa1ity9

w(xi+ Ax)m w(x1).# to9 must approach the same value w(ici) as Ax approaches

0. This is the same as saying that as Ax approaches 09 Aw approaches 0



Als3.

44. Let us now compute the slope of the tangent line at point P& (290)0

Consider a point Q: (xcliyq) on the graph of f defined by f(x) es x24, x-69

whose x-coordinate is slightly greater than 2 i0e09 xcles 2 4- U. For

this Choice of 00 Ax = Xq xpo which is (pollijmiuLavall9. Indicate

such a point on your graph.

A160. 2

161. The slope of the tangent line at ally point (xliyi) such that

1
Xi rs 2 iS ii ag If xis' 2, mt=

Skip a page for the answer to Fftme l610

£276.

277. Thus, if Ax approaches 0, then Aw approaches 0, soalipo Aw can

be expressed asaillo Lw nag% aw and this limit has the value
ell I I I I I I I= I



positive

45. lie will now compute the slopes of sietant lines 11 and surmise the

limit of the slopes as tix aneroaches 0. Complete the table below,

noting the accompanying graph.

x elf(x )
P P P

Xq y 91(x X!XqIIXp
q

-7q P
gef(x

q
)-f(x )

P

-7
m ea .4.2

X caqp

(PQ1) 2 0 3 6 1 6 6

(PQd 2 0 2.5 2075 5o5

(PQ3) 2 0 2.1 .51 01

( PQ4 ) 2 0 2.01 .0501 .01

( POs ) 2 0 20001 005001

Y

A277. 0

.001

278 iie have now proved the result required in frame 2739 since

ii40 Awe v4(x1)in 0 0 vqx1)-



A450 05 2075

.51 501

5,o1

5.00l

460 Note the pattern of values of ms in your tableo As Ax x4- xv

gets smaller9 the slopes ms of secant lines get close to

Al6lo undefined

0
C=11711.1011:70

f(x141. Ax)- f(x)

2.620 We see that lin evaluated at xia 2 is not

Ariww0"
Ax

defineda so the slope of the tangent line for xla 2 (existsa doesn't

exist)*

2790 Reviewing9 we have proved the theorem that if f(x)mw(x)o

fqxi)sa w(x1)0 v"(x1)* v(x1)0 11qx1)9 if wqx,i) and v4(xi) exist, We

can answer the mipl+ion nosed in frame 230 that sought to determine if

the derivative of the product of two functions evaluated at xi was the

same as the product of the derivatives of the two functions evaluated

at xio Mb know from previous examples and Theorem 6 that the answer is



Ak6?_..1

470 We would expect the slope of the tangent line to the graph of f

defined by f(x) 111 x,4* x - 6 at the point (290) to be 0

£162, doesn°t exist

f(xl+ Ax)- f(x1)

163. Since alto
Ax

is the slope of the tangent to the

graph of f at the point with x-coordinate xis we know that this limit

will not erist (will not be defined) at points on the graph for which

the slope of the tangent line assumes a (horizontall vertical) position.

£2790 no

280. lie will next consider a function f defined as a quotient of two

fUnctionsi i.e0, f(x)m 40. for v(x) / 0. We know that the limit of

the quotient of two binctions is the quotient of the limits of the

two functions, if these limits exist, so we shall want to investigate

if a corresponding relationship holds for the derivative. Since the

derivative of the product of two functions was not the product of the

derivatives of the functions, would you expect the derivative of the

quotient of two functions to be the quotient of the derivatives of the

two fUnctions?



4

A47. 5 (That the slope actually is 5 will naw be shown.)

48. Now let us compute the slope of the tangent line at apy point As

(xiori) on the graph of the above function f defined by f(x)m x2.4. x-6.

Graph this function on your awn paper on axes similar to those below

and indicate such a point A0

Xi

416,0 vertical

1640 Yeti) we can writa the equation of the tangent line to the graph

of the function f defined by f(412157.---20 Recalling that this line

is parallel to the y-axis and passes through the point (290)9 its

equation is

A2800 nu would not e t this to be the case* Read the following

proof to convince yourself()

28lo The theorentreades Theorem 70 If f(x) a v(z)i 0 and

v(x)0 w0(x3)- w(x) v°(xi)

V(xi) and vt(xl) exista then fqxj)is
(v(x3.)]2

provided 0. (Add this theorem to your list.)



A48. Notes Your point A: may have been placed

slightly differently.

xi

49. Consider a point B on the graph of f9 as defined above9 whose x-

coordinate (x14 Ax) is less than that of Ao For this choice of point

BD Ax is (m_AatertalLatmigiligl) 0. Indicate such a point B on the

graph of f.

Alao x m

1650 Consider the function f defined by f(x) sa 1. Graph this ffianction

on your own paper.

A281. v(xl)

2820 Stated in words9 the theorem says that the derivative of the quo-

tient of two functions evaluated at xis assuming the existence of the

derivatives of the two functions9 is the denominator multiplied by the

derivative of the numerator minus the numerator multiplied by the deriv-

ative of the denominator, this quantity divided by 0

1



Als9, less than

50, Points A and B determine a secant line of the graph of £9 the

slope of which will enable us to find the slope of the tangent line

at A. The coordinates of point B are (x.1+ Ax9 f(x1+ Ax)), or since

f(x) si x2+ x 69 (xi+ Ax J. Indicate these coor-

dinates on your graph,

Th
1660 The domain of f defined by f(x)Es is the set of all real numbers

except zero and the range of the function is

A2820 the square of the denominator, provided the denominator is non-

283, We will omit the proof of this theorem, which can be found in most

beginning calculus books. Let us illustrate its use9 however, If

f(x) ag x 3$ w(x) $ v(x) w( xi) in 9 v(x1)

ws( xi) am v° (xi)



1
i

A500 (x_46 Ax)
2
46kx # lix) 6

1

51)- yia ftx1+ Ax)- f(xl)

51, The slope of the secant line AB9 msar.--b7-7cla is

f(xi* Ax)- f(x1) ((xi* Ax)2* (xi+ Ax)- 6)-(x12+ xi- 6]
or

Ax

(in sim lest form ) if Ax 00

A166, there taw slt of all real mut__a3erw____Ltzero

1670 Nom the graph of this function9 for what value(s) of would

ynu expect the slope(s) of the tangent line(s) no,s to exist?

A283, x * 19 x 39 * 19 xi- 39 19 1
.=.77=toaSslal..

284, Thus9 f9(x1)
v(xl) 0 w qx3.)- w(x) 0

Fir(x,)
)2

xi 3)0 1 - (xj! 1)0 1

(xl- 3)2

as (simplifying the numerator)9 if xi II 3o



A510 2xl Ax *

520 Pbint B can be made as close to point A as desiredg by choosing

sufficiently close to 00

A1670 0

1680 tat us proceed to show that the conjecture in the previous frame

is indeed true0 You should verify that for f(x)a lg

f(x1.0. Ax)- f(xl) 1 f(x27 Ax)- f(x1)
1

lim . 4=-2 and lim
Ax Ax 72Ax-ge xl

Ax-114)-

if x1 , 0

-4
A2840 3)2

2850 If f(x)

.5

11---ca 5e+ 1 Or 09 11(246a
9

9 V(X)w 9

X3* 1

9 le (Xi) eR (Xi) Ea



1.52.

f(x1+ ax)- f(x.1)
53. When Az is close to Os) In

AX

a is close toa

A168. a

2x1+ Ax + 19 BO

169. Thusa if 3c3.r OS Nal t340
f(x l.i+ Aax)- f(x)

(exists82 camod

doesn°t exist)0

x2+ x3+ 19 x.12.s. 3x3.9 x3.3+ 19 2x.1+ 39
3,2

v(x3.) le(x].)- w(x)0 70(xl.)
286. Thus, f1(x1)

Ev(x3.)]
2

(x2+ 1)(2x3.41. 3)- (x3.2+ 3x3)(3x3.2)
(x3.34. 1)2

(simp1ifyingthe numerator) if x3.3+ 1 00



A53. 2x1+ 1

54. Muss) the slope of the tangent line to the graph of f defined by

f(x)e, x2+ x - 6 can be derived from the slope of the secant line AB0
f(x1+ Ax) f(x)

This slope can be expressed aeispoo
Ax

isesitio(2x1+ Az + 1)

1169. exists

1700 For xisa 0, evaluating mtai - 2E9 we conclude nit is 0

xl

xi
4

6113 2x1+ 3A286.

41111.10.1'
1)2

2 .7

287. If f(x)ii 334+°4-.19 x c14, u(x) a 0 v(x)

l'ir(x1) ...a-2 v(x) 111*( ...a-2 X1)



A54. 2x14. 1

550 At the point (290) on the graph of f9 Xim 20 Tbe slope of the

tangent line at this point is mtm 2x17 1 or mtm 0 Does this

answer check with that sarmised in frame 47?

A1700 undefined

1710 For the function f defined by f(x)Entr7-139 we were able to write

the equation of the tangent line at (290) even though the slope of this

line didn't exist0 This was true because the tangent lire existed and

f(x)es-Vi=i was defined at this point and had the value

A287. :Jc., 7, x 4, xi2- 7, x14. 14 2xr 1

v(xi)0 10(x1)- w(x1). .0(xl)
288. Thus, fqxl)m

[v(xi)32

(xi* 4)0 (2x1)- (xl!- 7

m (simplifying the numerator) if y-4.
Your answer should correctly complete the shaded box:.



A. S1 Yes

560 Considering the points with coordinates (09-6)s (194) (!941.)

on the graph of fs xim 9 9 respectively and the slopes

of the tangent lines at these points are 9 9 respectively.

A171.

172. For the functi-,n f defined by f(x) a -1.2 this function not only

lacks a defined slope for the tangent line at a point with 2c-coordinate

xim Ors but f(x) gi is not defined if xis 0



Ast

IP

1 1A560 Oa 1
4.4 2-2

570 Consider the fUnction f defined by y ERA/W:7 or f(x)sc-127:70

We showed in the oection on limits that the slope of the tangent lime

at point P with x-coordinate h was 1. Graph this fdnction and sketch

the tangent line at the point with x-coordinate 24 on a separate paper

and indicate the coordinates of point Po

A172. 0

l73. It is not possible to write tho aquation of the tangent line to

the graph of the fUnction f defined by f(x) lai at a point whose x-

coordinate 1.6 1,%.rs 0',41 loeoa the tangent does not exist at this pointa
L

because there is no corremnernding second element belonging to this

function whose first .%1'.0rent Is

A2890 3x
3
- 7x

2
4. 9x - 49 6x

4
. 2x

3
7x - 62 3x1

3
- 7x12 4. 9x1- 4,

6x14- 2 3+ 7x1- 6$
92

- 14x1+ 9a 24x13- 6x124. 7

v(x1)° le(x1)- w(xl)e
290. Thusa f(x)m

if v(x3.),4 0.

Skip a page for the answer to Frame 2900



P(1,1)

5

580 As for the previous fanctionso we will now attenpt to arrive at

a reasonable value for the Slope 01 this tangent line at (493) and

then investigate if it is indeed the correct value for the slope.

Consider a point Qg (xce 7.1) on the graph of f defined by

f(x)=512;7:721, whose x-cOordinate is slightly greater than 4g 10E309

x m 4 4. Ax9 where Ax 0 a is greater than 00Cmicawl

A173. 0

P

- 5 X

174. Thus9 in the case that the slope of the tangent line to the graph

of a function is undefined at a point with x-coordinate x19 it may not

be possible to write the equation of the tangent line at this point if

Skip a page for the answer to Frans 174.



A580 x (or 4),M0
590 lib will detertite if the dopes Of secant lines PQ approach a

limit as Ax approaches 0. Caaplete the table below9 noting the accom-

papying graphical representation.

c=!Y

x 'f(x ) X y sof(X ) AXE0cq p /IXq)flxP P

PQ.--714 3 7 o .1 ui31
PQ2 4 3 4.5
PQ

3
4 3 4.1

PQ
4

4 3 1.01
PQ5 4 3 4.001

A2900

ci
y y f(xn)-f(x )

Rt 125

8 X
q
X

P
X =3X

.3

20179 0.5
2.862 0.1 -1.38
2.98662 .01 -001338
2.99866 .00

f

6xl x134.7x1.6)(9xl!.14x149).(3x13.7xi2+9x1-4)(24x13-6x12+7)

(6x14 2x13+ 6)2

291. Let us erammarize our work. Ve have introduced the derivative of

a function f as the slope of a tangent to the graph of f at the point

with x-coordinate xi, and have presented seven differentiation theoremB

and one corollary. You should naw review your list of these theorems

and the corollary. Following is a group of exercises you should be

able to complete using these theorems and the corollary.

(a) If f(x)= (9x - 7)(x3* x2- ,4x - 17), fp(xl

(b) If f(x)0 gVis, + if + 1.
x 1

(c) If f(x)w(x2- 3)20 fqx1)"

(d) If f(x)
2

if x.i 59 fqx.j.)82 if x
1

;' 5.

(e) If f(x). (4x3- 7x2+ 9) if x 22-4 fqx.1)=J if xvi 2/-1.(x-2) (x+l)



-0.821 1.60
A59. -43.138

1.338
1.333

60. As fix
q

x gets smaller, reading down the table, the slopes
P

a of the secant lines get close to the value

r3typiw.

A1740 f(x) does not exist at this point

175. An example Of putits a farictiOn f just discussed is defined by

tfetk, 'Prt'gr V!!'

114

fo.,

a'444.

A291. (a) 36x2o6x3.2.86x1-345[0r(9x3.-7)(3x3.241x3:44)*(x241x12-14x3.-17)

-7x3,24.1cmi1 (x:4)(7)(7x3.4)(2x1)
2 2 2

Or
2 (c) 413- 12xl(9))9 (b)

(xl ma) (Xi ..1)

4' a 4136630X1n
O2.+15

(X14)(691.2"3)'2:1(2X12c°3)
(Or 141CPC3.21°3)) a PO r

(X1-5)G (x1-5)
2

(e) (x1-2)(x1+1)(12x12-141)-(4x13-7x1249)(2xim1)

(x1-2)2(x141)2

4.4. 4,

2920 Vre will introduce one more basic theorem to allow us to differ-

entiate functions of functions, or composites of one !Unction by-another*

Let us first discuss the composite of one function by another, or more

simply a composite function. Ay definition, a function is a set of

ordered pairs such that no two distinct ordered pairs have the same

element.



..M

-4
A6o. -103300 0or 5

610 Vre would expect the slope of the tangent line to the graph of f

defined by f(x)=A/g-72- at the point (493) to be

A175. x

176. It is also true that the slope of a tangent line to the graph of

a function may not exist at a point with x-coordinate x19 but it may

be possible to write the equation of the tangent line at this point

because

A2920 first (Review the definition of a function in the section on

limits if you had difficulty answering this item.)

293. A composite function (or a composite of one function by another)

is defined by f[g(x)] or (f o g)(x). An example of such a function

f o g is defined by f(g(x)P1(f o g)(x)[(x2+ 1)]23z ex)"

f(0111 f[g(x)]m z20



A61. -l033.00or
.4

(That the
3

62. Now we will compute the

(xi, y3) on the graph of the

Graph this function on your

and indicate the coordi

A176. f(x)

-4slope actually is 5 will now be shown.)

slope of the tangent line at any point As

above function f defined by f(x)mg1/25 xF0

awn paper on axes similar to those below

tes of point A.

(D)

(-5,0) 0 (5;0

is defined at this point and the tangent line exists0

1770 An

by (

example of such a function f previously discussed is defined

A293. x
2
+ 1

294. Fer this function, an ordered pair belonging to f o g is (10 ).



A62.

630 Consider a point B on the graph of the seAi-circle whose x-coor-

dinate9 xi+ Ax9 is slightly greater than that of A. In this cane9 dx

is greater than O. Indicate the coordinates of such a point B on your

graph.

A177

178. Thus faro we have considered the slope of the tangent line to

the graph of a Ainction f9 at a point on the graph of f with x-coor-

dinate x19 as a limitg Aglo

A2940 4

2550 Other ordered pairs belonging to the ftinction are (091)9 (2925)9

(-19 )9 (39 ). (Note here that we are emphasizing the fact that

a composite of one function by another is a function in the "ordered

pair" sense discussed in the section on limits.)



(xi+ Ax9 f(x1+ Ax))

Or
(xi+ 1/25 (xi+

f(x1+Ax)-1(x1)
64. The slope of a corresponding secant line AB is m

Ax

f(xl* Ax)A178. ax

or IR
a

1790 We then proceeded to show that this limit does not always exist

f(xl+ Ax)- f(xl)

ifAMPO
..groaaatm a^ is not defined (becomes infinite) or if

f(xl)

lim

A295. 4s, lOO

296. Another example of a composite function f o g is defined by

(f 0 g)(x)" f[ex)] =Ng-

z 81 ex) st x3

f(z) f[g(x)]



A64.
Ax

656 Wen Ax is close to OD both numerator and denominator of

Ax)2-1/g773!
m or is

xl+ -approach
Ax

ms
Ax

A1796 lim
Ax-w0

f(x,4. Ax)=' t(x)
180. UAW°

Ax
is undefined (becomes infinite) or if

f(x1+ Ax)- f(xi) f(x1-1. Ax)- fl,x1)

lbt 'I lin we know that the
Ax ex

AxHoem

slope of the tangent line to the graph of the function, at the point

with x-coordinate x
1
0 (existsidoeset exist).

297. Ordered pairs belonging to the composite function f o g defined

above are (101), (200r), (3, ), (0, ).



A65. 0

66. Vile will thus seek an equivalent expression9 if such exists, for

the above algebraic expression9 in order to evaluate its limit as Ax

approaches C. From the limit section, we know that we can rationalize

the numerator of the expression by multiplying both numerator and de-

nominator by

A180. doesn't exist

181. Following is a group of exercises for which you are to use the

information in the preceding discussion. (a) If f(x)=1x 4- 219 does
f(xl+ Ax)- f(xl)

APEO Ax for x el 2 exist? A graph may be helpful in

responding. (b) If f(x)se i39 find the equation of the tangent line

at the point whose x-coordinate is Lia 3. (c) If f(x)=1/x 4. 5, find

the equation of the tangent line at (-590). (d) If f(x)sil (x + 2)9

find the equation of the tangent line at (-290). (e) If

find the equation of the tangent line at (090). (f) If f(x) a x3+ x2

+ x + 119 find the equation of the tangent line at (-1910).

Or 3

298. Let us now concentrate on recognizing the form of certain compos-

ite functions (or composites of one function by another). This ability

will be needed for the next differentiation theorem. Note that f[g(x)]

= (f o g) (x) denotes that f is a function of g defined by g(x)= z and

g is in turn a function defined by the variable

Skip a page for the answer to Frame 298.



060 1,45 -(xl. %4.;:" xl2

1A; - x12 %46 .(xl* Ax)2.1/25.x12

67. Thus, if Ax r 09 ax

NA'S -(xl+ ex)2+1/565 xl2

eat

f(xl+ -
A181. (a) No. Far xi" 20 lim

ax) f(xi)
a 1 and

Ax
Ax-ioo

f(xl+ Ax)- f(xi)
lim

Ax
"14) (b) f(X) is not defined for xia 39

so the tangent line does not exist at this point.$) (c) x s

d s x 4- 2 0 or x-axi (16 10 a 2 x 1) 1

182. To summarize the discussion in the preceding section, you see

that there are functions for which the right and left limits exist but
f(x14. Ax)- f(x1) f(xid. Ax)- f(xl)

are not equals i.e. lill r lim -a- .
Ax Ax

Ax-00 Ax-wir

Some of these functions, defined as follows, we have discussed::

f(x)mtx - 119 g(x)aVii7:1". Wben it is the case for the function f

f(xl* Ax)- f(x) f(x1+ Ax)- f(x)
that lim a lim * we know that

Ax + ax
Ax-4.04° ax-*0

f(xl+ Ax)- f(xl

A51110 Ax
existsa doesn't exist).



A67. - - 2x
1
+ Ax

veC17.
25 0c1+ ax)

2
4' x.2l

68. Since the slope of a secant line AB can now be expressed as

- 2x
1
4

Ax

ViT-7,71-+-0+1/25 xi2

A1820 exists

9 when Ax is close to 00 m5 is close

f(x1' + Ax)- f(x
1
)

183* UAW,
Ax

exists for the fUnction f2 we define

the derivative of f evaluatod at xl to be this limit. The derivative

may also be considered a blinction.

Definition 28 The derivative of f2 evaluated at xi2 is

f(x
1+ Ax)-

f(xl)
' if this limit exists. Add this definition to

Ax

your list. Referring to the "List of Definitions and Theorems" we

see that the derivative of a function f evaluated at xi is the same

as

A298, x

299. The composite function f o g defined by (f o g)(x)m f[g(x)Im

(x2+ 1)22 considered in frame 2932 can be defined in another may as

the composite of one function by another. Since (x2+ 1)2mA/(x2+ 1)42

we mgy write (f o g)(x)m (p o q) (x) or p[q(x)]mi(T7740 z n q(x)m

(x2+ 1)42 p(z) m p[q(x)]m



. xi

A68. ---------
2

25 - xi

69. Thus9 the slope of the tangent line to the graph of f defined by

x2 can be derived fran the slope of the secant line AB.

(x)4
Ax)-

f(x1)
This slope can be expressed asialmo

.

Ax

2x1+ Ax

1.4;77 ax)2411452'
AAP° ..M.111C.CEMITIPM/1.1.

A1830 the slope of the tangent line to the graph of f at xl (or an

equivalent expression)

3.84. The derivative of f9 evaluated at xl9 is sometimes denoted by

fa(xi; 45,

f(xiii.
A4-

f(xl)
Ax

0 ff(x1)0 Other notations for the

derivative are y4,9 Dxy9 dx. Differentiation is the name given to the

process of finding the derivative of f evaluated at xi. Thus9 me dif-

1 ferentiate f(x) to find 0

A299. VE-

3000 The composite function f o g defined by (f o g)(x) x
2. 1)2

may

also be defined by o n)(x)r. m(n(x))0 (r/Wi )6 where n(x)0

and t(z) al 266



4=111,

A69.

70. At the point on the graph of f with coordinates (493)9 xia 4.
- xl

The slope of the tangent line at this Nint is mts m
........

2

Does this answer check With that surmiped in frame 61?

A184. f'(x1)±figt... Ax

f(xf* Ax)- f(x1)

185. Theorems exist that considerably simplify our work in computing

this limit0 lie vill now proceed to Drove some of these them-ems called
f(x1+ Ax)- f(2:1)

derivative theorems f (xi) mai% Ax
if this limit

exists and is the of the flinction f evaluated at

301. Thuss you see that a function has more than one representation

as a composite function - - in facts an infinite number of such

representations. Can you think of other ways in which (f o g)(x)a

f[g(x))a (x2* 1)2 is a composite of one function by anothers different

from the above representations? Some other representations follows

which may be the same as or different from yours. Check your results

with your teacher if you have questions.



£70. 7-4 Yes
39

71. Considering the points with coordinates (095) p (4493) 9 (19 lia)

on the graph of f9 the slopes of the tangent lines at these points

are 9 9 respectively.

A1850 derivative

186. We have already proved two derivative theorems in the first sec-

tion of this program that enable us to find fqx.i) for the function f

evaluated at x.i. The first of these theorems is suggested in frame 97.

Theorem ls If f(x) Es Ica f'(x3)E1 0. (Add this theorem to your list.)

In wordss this theorem states that the derivative of a constant func-

tion is

41 a
A3010 {(e+ 2 ( 11--"-x24-1.) 149

e (x2, 6

3020 Consider the second composite function f o g given above s defined

by (f o g)(x)Ek f[g(x) jag linecrs: x a 0 which may also be defined in a dif-

ferent way as the composite of one function by another. Since 3\473:

(Vir)3s we may write (f o g)(x)st(p o q)(x) or p[q(x)]in (07)3s,

z C1(4111Vir 13(0a gq(x)).



72. Let us now consider the identity function f defined kr f(x) es x.

We wish to compute the slope of the tangent line at arxy point A4 with

x-coordinate x on the graph of f0 araph this function on your paper

and indicate point Al using axes similar to those below.

A186. zero

187. This theorem is equivalent to the statenent that the slope of

the tangent line at a point with x-coordinate xi to the graph of f

defined by f(x) = k is

A302.

300 The composite function defined by (f o g)(x)= f[g(x)]=1,43 may

also be defined by (m o n)(x)= m[n(x)]= 16/1.cr where n(x)= and

m(z)28 INK7



A720

'XI

730 The point A has coordinates (x19 f(x1)) or since f(x)mt x9

A1870 zero

1880 The second theorem concerns the derivative of the identity func-

tion f defined by f(x) m x9 which we showed in frame 85 was one0

Written in mathematical notation, this theorem statess

Theorem 28 If f(x)s x$ fp(x1)10 0 (Add this theorem to your listo)

A3030 x6

3040 We have now expressed (f o g)(421133as the composite of one

function by another in three ways* Can you think of other ways, dif-

ferent from the given three, far which (f o g)(x)=145-i5 a composite

of one Ainction by another? Some such representations follow,



£73.

740 Consider a point B Lt wac.. graph of f whobe x-coordinate9 xi+ Ax9

is slightly greater than that of point A. For this choice of B9 indi-

cate this point on your graph.

£188. 1

189. This theorem is equivalent to the statement that the slope of

the tangent line to the graph of f9 defined hy f(x) m x: evaluated at

a point with 2D-coordinate xl9 is

A304.

9

9 ",/Fc A

/tiDa

305. Consider the composite fUnction f o g defined hy

1
1

(f o g)(x)m m (x lr '5 if x -19
x 1

1
or f(g(x))m (x 1)c* 3 where g(x) m x * 1 and f(a)m



A714

750 Points A and B determine a secant line of the graph of f. In this

case, such a secant line AB coincides with

A189 one

190. A useful theorem concerns the derivative of a power of x, the

function f defined by f(x) 50 xn, where n is a positive integer. For

f(x)w x2, we saw in frame 39 that f'(xi)m

- 1
306. The composite function f o g defined by (f o g)(x)mt (x + 1) 3

, may also be defined by (p o q)(x)" ( 4-7)-1 unere q(x)et

abd p(z)"



A75, the graph of f (or equivalent wording)

760 We know that the slope of the line which is the graph of f defined

by f(x)= x is

A1900 2xi

1910 For f(x) = x3s, (see the first term of the expression in exercise

181(f)) you can conclude fqxi)ha

fx
431360

z
-1 1(or )

3070 The composite function f o g defined by (f o g)(x)= (x + 1)

may also be defined by o n)(x)4(;7:71374: where n(x)=

and m(z)or



A76. 1

77o The tangent line at A coincides with

A291*
3,2

192. For f(x) ss x9 f(x) is a power of xo namely the power.

1

A3070 CX (or 374717), fim- (or z3)

- 1

3080 Can you define (f o g)(x)= (x 1) 3 as a composite function by

representations different from those cited above? Some such represen-

tations follow.



An' 0 the ELT. h of f (or equivale4t wording)

78. Thus9 the slope of Vs: tanosnt limo it A is

A192. first

0

193. For f(x)8 x x3', we showed in Theorem 2 that fqx1)
1 -1

A308. 1 [(x + 1)-2 lego [(x 4. 1)3] 9

* + 1

309. Following is a list of functions you are to define as composite

functions in two other ways as indicateds

(al) F(x)-(f o g)(x)= x where g(x)= x39 f(z) us f[g(x)]=

(a2) F(x)83(f o g)(x)- x where g(x)= xMl9 f(z)- f[g(x)]=

(b1) 11(x)=(f o g)(x)as = x 19 x 4609 where g(x)- x29 f(s)81 f[g(x)]
a

z

(b2) H(x)-(f o WOE Xlas X 00 where g(x)0 x9 f(s)33 f[g(x) z°10

1

-3

(01) (2(x) N(f 0 g)(x)al x 2, x 0 where ex)63 xs f(s)23 f[g(x)]yr
IS Z

4-3

(02) Q(x)25(f o g)(x)- (-10)383 x where g(x)os x 2 f(4- fa[gOCnis

(d1) P(x)si(f o g)(x)=

(d2) P(x)"(f o g)(x)0

=Afro

where g(x) ss 1 4' x9 f(s)al f[g(3) ]s.

where g(x)=(1 +
1111

p 114' ilex)]

(el) G(x)=(f o g)(x)mg) x29 -1 x 19 where g(x)=(1

f(s)" f[g(x) z

68 (Ire7;2), sa x 19 where g(x)si(l(62) G(x)=(f o g)(x )

110- f[g(x))= z.



A780 1

79. Let us compute the slope of the tangent line at point A for this

function and check it with the above reasoning. The coordinates of

point B are (xi* Ax9 f(xi+ Ax)) or since f(x)= x9 (xi+ Ax0

A1930

194. Let us now array.'" t) results of the previous frames. If

f(x)= 2j9 f0(x1)= 10 xil4= l xi°=101=1

f(x)sis x29 ff(xl)n 2. x121masog 2xl

f(x) se x39 fp (x1). 3x13-1,3 3x3.2

x x
fq

xl)gml 4X1"

A309. (al) 19 (a2) 444 (b1) (b2) -19 (01) 19 (a) 19

(a) +29 (d2) 49 (el) (e2) z

310. Cinsider once again the function 0 defined by G(x)"%/377:7E a

(X m 2).2 discussed in frames 146-164. G is a composite fUnction de-
1

fined by 0(x)-(f o g)(x)=(x 2).2 where g(x)= x - 2 and f(s)=



A79. x + Ax

(x1+ Ax)- xi

800 The slope of a seaant line AB is mem or %16

if Ax )410.
113

3
A1914. 4A1

1950 Generalizing to the PI power of x9 we surmise the following

theorems Theorem 3s If f(x) a xns where n is a positive intagers,

f°(x1)0 0 (Add this theorem to your list')

1
A3100

1
311. For this functions Gqx.ils as gtven in frame 1589 can

A 2Vii:72.

1 1
- 1 9 4= 1

also be e ssed as written Ge(x1)411(x17 2)2 (1)" (xi- 2)'

° Dx(x - 2)0



A80.

81. Point B can be made as close to point A as desired because

n-
A195. n x1 1

196. To prove this theorems we proceed through the four steps for

finding f'(x.i) as before. In Asp Ms' if f(x)- xits f(x3)111

and f(x.i+ A.1)-

A311. ip

1

312. Thus, if a(x)' (x 2 01(x1)m (rwritten form).



£81. AAx:cantjamalgLimetoOt.ri___......X..geater than 0 (or equivalent

wording)

82. Wen Ax is close to Os the elope of a secant line AB$
f(x1+ Ax)- f(x1) (xi+ Ax)- xi

9 is close to A]c O.
Ax

A196. xins (x1+ ax

197. We note that f(x1+ Ax)ii(xi+ Ax)11 can be expanded by the binomial

theorems aince n is a positive integer. Thus,

to)% n n-1 gall n-2 (1,42+
Ax * 21 xl

contain Ax with

Ss where S is the sum of other terms, all of which

xPonents peatar than 3 if n > 3.

1 11
A3120 (xi- 2) 2 D (x - 2

313. /at us naw consider the hinction H defined by H(x)mg

1

11 is a composite functiois i.e., H(x)-(f o g)(x)-(x2- 2x)I where
o

g(x)E1(x`"- 2x) f(z)es



A82 1 (Note that m is independent of Axe)

f(xi+ Ax)- f(xi)

83. We can rewrite the above statement asailoo Ax

mai:001a °

A1973
n(n-y(n-2) xin-3. tx3

198. Thuss in step (2)9 f(x1+ Ax)- f(x) 13 (xi* Ax)
n n If we Bub-

stitute the expression for (xit Ax)n derived by the binomial expansion9

we get f(x14. Ax)- f(ye

x111'

A3130 1

3140 Let us compute li(x1) by the only method we have at our disposal

at this times that of applying the four steps of the delta process.

For H(x) Si 42c3 2x 9 H(x1) and 11(x
1+

Ax)in



84. !that limit theorem did you woe in the above evaluation?

A198. 7.1% -10 x121-1* Az

Ax3+ sr

199. Simplifying f(xl Ax)- f(x1)21(xin* it x111'14, Ax Axn)

xin we obtain f(xe Ax)- f(x1)111

n-1 ax2+ n( n-a) (n-2) n-3
xl

A314. 3c3V-7.4727c1, y41+ ex)2 2(x14.

11(x1+ 1130° 11(x3.)
31$. Combining steps (2) and (3)Ax a



04. plak m k

850 Thus9 if f(x) a x9 the slope of the tangent line at any point on

the graph of f9 with x-coordinate x19 bas a value

n n-1
A199.

lA

CIIM11111=1:210

xl4=2.
Ax241. n(n=1)(n=2)

3)

f(xi+ 44° f(x)
2000 In step (3)

n n-1 n n-1 n-2 ei32,4. n n-1
xi Ax

Ax

113 Ax3+ S

(dividing each tern by Lx).

A315a

H(x1+ Ax)- 10.1)

316. In step (h) Ax

11:-;(7.-a---ciaioxi*Asx,c).1x3.2-2x1

Ax`Jai*
obtain

Letting Ax approach 09 we



A852 3.

860 For the point vith coordinates (090)9 on the graph of fa the slope

of the tangent line is 011.11111111.317.

n-1, n(n-1) n-2, Ax nA2000 n xi 21

f(xi+ ax)- f(c)

Ax201* In step
(4) 9 o

2

(n 0 xinc*1 + the sum

of terms9 each containing Ax)9 and since the limit of a sum ia the sum

of the limitsp we have Aill0
°

(the sum of terms9 each

containing Ax)* This is equal to

A3160 g9 which is undefined (or an indeterminate form0)

317* Recalling the procedure employed in such a case fromithe section

on limits9 we rationalize the numerator of

2x1 to obtain

Ax



A860 1

870 For the points with coordinates (191) 9 (n9w)9 (10910)9 the slopes

of the tangent lines at these points are 9 9 respectively*

A201. n xi71

f(x14- Ax)- f(xl)

202. Thus9 f°(x)mAppo
Ax

0 Referring to

frame 1959 does this result prove the theorem?

k3170

CINCM:=1111IMMCMCW

2x1Ax Ax
2
- 2Ax

Ax()/(xl. Ax)2- 2(x14. Ax)4.

318. In evaluating the limit now9

2x1Ax Ax
2
- 2Ax

dab we can divide both unmoor-

Ax(N/(x14. Ax)2- 2(x14. Ax)4,1412- 2x1)

ator and denominator of the difference quotient by Ax9 because



88. For arv. point P having coordinates (n9n) where n is a real number9

the slope of the tangent line of the graph of f defined by f(x)m x is 0

A202, n 0 19 Yes
n-

203. This theorem is sometimes referred to as the power differentia-

tion formula. Using this theorems if f(x) m x59 f8(x1)0 53E1140 If

f(x) Ea x79 fqx1)Es

A 18. Ax is not e ual to zero but gets as close to zero as we choose.

2x
1
Ax Ax

2
- 2Ax

3190 Thus91140

P3

fix( V/(x.f. Ax)2- 2(x3.4. ax)+

2x14- Ax - 2



A88. 1

89 tet us consider the constant function f defined by f(x)m ko where

k is any real number* We again want to compute the slope of the tan-

gent line at point Ao with x-coordinate xis to the graph of fo Graph

this function and the point A on axes similar to those belowo on your

own paper()

A2030
76

X

204. It will be proved later in your calculus course that if f(x) m xno

where n is any real numbers not simply a positive integers it is still

true that f9(xl)m nx
4

1n4L0 If 4 3f(4E3 3C39 (39.)a %.7 2r-i3e
3

If f(x) m x-59 fqx1)m 5

2x3.- 2

A319 if xi
2-

2x3. 0 (or x t 2 or x 0)

2 Vx3.2- 2x1

2x1.= 2
320e The above derivative can be rewritten

21412- 2x1
1 ,

(2x1 2) m 11(x12- 2x1)2 tlx(x- 2x).

1. 1r3(712.
2x1)2



A890

K)

900 The graph of this

X

function is a line whose slope is 9 so from

seem reasonable to

of the tangent line at point A has the flame

the preceding discussions, do you think it would

assume that the slope

numerical value as the slope of the graph of the function?

- 1

205. If f(x) m x 7, ft(X1)511

A3200

32lo Thus, if H(x)a)A2- 2x9 Ifqx1)" (rewritten form),



£90. 0 We will see:

91. Choose a point B9 with x-coordinate xi+ Ax0 Ax < 0. Indicate

point B on your graph.

8

e 1
A20,,

77 xi

1,45
206. If f(x) m x 0 f8(xl)m

1

A321.
2
- 2x1)

2
1. tx(x2.

1

322. Consider the function P defined by P(x)mx-V-7271B (x 2x)42.0

1

P is a composite function defined by (f o g)(x)m (x 2x2)2 where

g(x)m x 2x29 f(t)s. f[g(x)] es
SI.



A910

920 The coordinates of points A and B are (19.9k), (

respectively.

A206. VD5 xi

9 )9

2070 A usefhl theorem concerns the derivative of the sum of two or

more fhnetions0 Recalling the example in frame 542 f(x)m x 69

19(xl)lig 2x1+ 1. From the three theorems we have already proved for

the derivative of f evaluated at xi (you should have these on your

list)s) we know that the derivative of x2 which is the first term of

the expression x2+ x 6, evaluated at x10 in

1
A3220

2

1 1

3230 You should verity that r(x1)* 2x12 )1' (1 - 41)1

1
2 9;

11(x3.- 2xl <
1<Dx(x ) if 0 is Xi 2.



A920 xi* Ax0

930 The slope of a socant line AB, m
s

'nililtecoMes
8 Xba

f(x1+ 1/3c)=' f(xl) k k
--Air-Ax

A207. 2x,

200 The second term of the expreszion x24. x 6, which is x0 by

Theorem 22 has a dertvattve of

43122 2x2

0

3240 Let us now collect the results of the previous frames and deter-

nine if a generalization can be formed concerning the derivative of a

composite function.

1

If 00063(x 2)29 ( ) 14GR,xi, z.xf- 2

1

If 11(x)!1(x2-
2429

1

If P(x)a(x zx )
, 2.22 royal

0

2

-

2x1) ° Dx(x2° 2x)

1

2xi
2

1*
Dx(x 2x2)

0

If F(x)e(f o g)(x)m[g(x)r12 P4(xl)m ntexin gqx).



MILO

940 The slope of tbe tangent line at point A. can be expressed as a

limit as

A2080 1

0

2090 The third term which is .6 by Theorem 12 has a derivative of 0

A3240 n-a.

325. It should be noted that all composite Ainctions are not powers

of a function of xo An example of such a composite function is the

trigonometric function 1 o g defined by (f o g)(x)se sin(x2+ 7) where

g(x)is f(z)se sin zo



A

f(x14. Ax)- k k
A94. 340 Ax

oral% oralIk 0

950 The numerical value of the slope of the tangent line at point A

is thus 0

A2090 0

2l00 Cambining the results of the last three frames term by term9 if

f(x) = x2+ x 69 fqx1)81 . Does this answer agre() with that

obtained in frame 54 for the slope of the tangent line to the graph

of f at a point with x-coordinate xi?

A325 x2+

326. Thus9 the generalization in frame 324 (If F(x)=(f o g)(36

1,[g(x))n9 n-1, gqx1)) is a special case of our next

theorem'

Theorem 80 If F(x)=(f o g)(x)= f[g(x)), and f°(g(x1)) and g°(xl)

exist9 F°(x1)= f°[g(x1)]0 e(x1). (Add this theorem to your list.)

The generalization in frame 324 states9 for a composite function con-

sidered as a power of a fUnction of x9 that f°[g(x1)] as given in the

theorem is the same as as given in the generalization.



A95.

96o What limit theorem did you use in evaluating the above limit?

A2100 2x14- 19 /es

211. In exercise (d) of frame 1812 if f(x) m x + 29 f8(x1)0 10 The

first term (x) of the expression x 2 by Theorem 2 has a derivative

of 0
OIMMINININZONICMIN

1326. n[g(x1))1121

3270 Vb shall be primarily concerned with composite functions con-

sidered as powers of fUnctions of x in this unit. Hewes, we will

state the generalization in frame 324 as a corollary to Theorem 8

and use this corollary in the remainder of the discussion.

CoroIlmg If F(x)m[11(x)P0 and e(xl) existsa r (x1) n [ g(xi) 111-1

° (Add this corollary to your list.)



A960 hoetik k

97, Thus9 if f(x)=6 k9 the slope of the tangent line at the point on

f(x1+ 1/4c=' f(xl)
the graph of f with x-coordinata xi is inteAph)--. a

Ax

A2110 1

212. The second term (2) of the expression x 29 by Theorem 19 has

a derivative of

A3270 gt(x1)

CM.IMIIMMIM1111.111110

328. Ve will not prove this theorem or its corollary9 the proof of

which may be found in most beginning calculus books. Theorem 8 is

sometimes referred to as the chain rale differentiation formula be-

cause F(x1) is expressed as a chain of derivatives9 namely

in number as we have stated the theorem. More derivatives may be in-

volved9 depending on the complexity of the composite function.



A97* 0

98o To answer the question raised in frame 90s "Is the slope of the

tangent line at any point A on the graph of f defined by f(x)= k the

same as the slope of the line representing the graph 9f II", we can

now answer

A2120

2130 Combining the results of the previous two frames term by terms

if f(x) m x 2, fqx1)= * Does this answer agree with the

one obtained as the slope of the tangent line in exercise (d) of

frame 181?

3296 Let us consider how the corollarys on which we will focus our

attentions is used* If F is defined by F(x)=V25 x2s for

F is the composite function defined by (f o g) (x)

1

= f[g(x)1= (25 - x2)-2. where g(x)= 25 x2s f(i)=

-5 x 5.



A980 "Testi

99. Let us now generalize our above discussion. Consider a function

f such as the one whose graph appears belay. The coordinates of points

A and B are ( 9 ) 9 ( 9 ) respectively,

A2)3. 1 4- 0 la Yes

2140 In exercise (f) of frame 1819 if f(x) m x3+ x2+ x + 119 fqxi)

32 + 2x1* 10 The first term of the expression has a derivative

of $ the second term a derivative of 9 the third term a

derivative of and the fourth term a derivative of 9 each

evaluated at xl.

1

A329. z (or lig

330. F(x) s f[g(x)]11[g(x)]2.

if F(x)eqg(x) fis then F*(xi)se

n as
111111M1d7110

0

The corollary to Theorem 8 states that

n(g(x1))11`10 g'(xi.) where, in this case,



1000 Referring to the graph of f with points A and B9 point B can be

made as close to point A as desired by choosing Ax

A2140
3,2

9 2x19 19 0

215. Summing the derivatives of eacb individual term9 we see that

for this example9 as in the previous example9 the derivative of a

sum of functions is the of the derivatives of the functions.

1

3310 For the composite function F(x) es f[g(x)]=1(25 2)29 g(x)= 25 -

so g(xl)m



A1000 close to (or equivalent wording)

101. If a paint B° were chosen to the left of point As such that

Ax < Os the coordinates of point B° would be ( 0 )o

A2150 sum

216. Fram this we surmise the following theorems which reads in

mathematical notations

Theorem j.

IV (x1) 000

If f(x) a g(x)+ h(x)4, m(x)4,. z(x) and g°(x1)9 le(x1)9

e(x1) exists then fqxl)el

(Add this theorem to your list.)

332. For the above compositelluncAdmns4Wm 25 - xFs so e(xl)m



11010 X.ft &Cs, 1(11 4' MC)

1020 The points A and B will deterndne a secant line having slope

yb- ya f(x1+ Ax)- f(x )1

s xa 41+ Ai) X1
in 129 or

2170 Let us formally prove this theorem for the sum of two flinctions 0

We will proceed through the four steps to find fu(x1) for f(x) ss w(x)

v(x)0 Step (1) for finding the derivative of f(x) evaluated at

gives f(xi+ w(xi. 64+ v(x3.4 ix) and f(x1)m 4113IiIND0

A332.

3330 Thus, if Ff,x)m g(x)2,

Fe(xl)es n[g(x1)] n4° gqx1)

r(x1)21 1[25 - x212 o (-2x3.)

m LlsiCAly_illsalavrleavinga negative exponent

on the quantity (25 - x12))0



A1020
PIC.m.MEmr-VBIl

103. The slope of the tangent line at point AD considering B to the

right of point AD or B° to the left of point A on i graph :r f9 can

be expressed in terms of a limit as

A2170 v(x1)

218. In step (2)9 f(xi. Ax)- f(xl)

[w(x1+ y(+ ax)) [w(x3.)-&' v(xl)]

m w(xl+ ax),* v(x14. Ax)- w(x1)- v(zi)

(grouping like terms)

SR (14(x1+ ft) c° w(2C1)]41

-1

A3330 -x1(25 x
2
) (Note that this expression mgy be rationalized0)

7

334. If F is defined by F(x)m(x2- 2x -
3)29 x2. F is the

7

composite function (f o

m X
2
° 2x - 39 f(z)m

0(x). /lex) ps(x2. 3)2



f(x14 Ax)- f(

A10). Aggo
Ax

104G From the sketch of the graph of this function f9 since the tan-

gent line at a point is unique9 we see that this notion can now be

visuagy reinforced0 Since the tangent line at A is unique9 the value

of the slope of the tangent line at A is

A2180 v(x1* Ax)- v(x1)

2190 In step (3)9

1'(Xl+ ax).. f(x.) [w(xi+ A610° w(xi) )tgiv(x37 6,1)-

Ax

11.1i177111Mr...VM.MI

ax

0

81 NOC1* 1120 `2 ( XI)) 4,,

ibC

7

3350 F(x) m f(g(x))m[g(x)] .9 so we use the corollary to Theorem 89

which states that if FWER(texnn9 Pb0 (X3.)8' n(gOy )flc:10
0



4

A1040 unive

105. To summarize our discusqinr To to this point9 we see that there

f(xl* Ax)"' f(xl)
are functions for which8400 exists, Some of these

Ax

functions that we have discussed are defined by f(x)Eg x29 g(x) m x2+ x

f(x14 Ax)- f(x1)
69 h(x)se-1217:729 p(x)sg xa q(xpg ic, When Aglo

Ax

exists9 we define as this limit the slope of the tangent line to the

graph of f at the point with xcoordinate xl0

Definition ls The shel_of the tanpntline to the graph of f9 at the

f(
x1

4
Acpoint with x-coordinate xi isiltpo 2

2
--
1:

, if this limit exists,
Ax

(Wite this definition on the enclosed sheet headed "List of Definitions

and Theorems09)

A2190 rv(x1+ 7(x1)3
Ax

2200 Thus90
Ax

f(x].+ Ax)- f(x1) Ax)
eau°

x,14, - w(

Ax

v(x,'+ Ax)- v(x1)1

Ax

v(x + Ax)- v(x)
+A1-40 1

(1) w(x + Ax)- w
mAARO 1

(2)

gm ve(x1)+ v°(xi)

A3350 g°

Supply reasons for (1) and (2).

3360 For F(x) m f(g(x))a(x2- 2x - 3) n m 0
.111111111C1M17071.



1060 Ire thus see that to find the elope of the tangent line9

f(xl# Ax)- f(xl)
at a point A with x-coordinate x1, 9 we

(1) compute f(x14. Ax) and f(x1).9

(2) find the difference f(xle Ax)- f(x1)9

f(x14 Ax)- f(x1)
(3) compute the difference quotient 4'

Ax

(4) findA300 0

This process is sometimes called the delta processs "delta" referring

to the small Greek letter A in the notation "Ax01°

A2200 (1) The limit of the sum of two functions is the sum of the

limits of the two functions if these limits exist 2 definition

w x14. Ax W 2c1

a
m w*(x1) and the same is true for sie(xi)0

2210 If f(x)a x - 2 (rather than x 2) you should expect from term

by term differentiation that fp(xi)m

7
A3360

2

.0
cmCwiezabasege

7

f[g(x)]m(x2- 2x - 3)293370 Far the above composite ftinction9 F(x) m

g(x) a x2- 2x - 3s so g(xi)a



A106.
f( + Ax)- f(xl)

Ax

107. Let us nom apply the four steps to the function f defined by

f(x) se - 2x - 1 to find the slope of the tangent line at any point

A with x-coordinate xi. Graph this function on your omn paper and

indicate the point A:on the graph on axes similar to those below.

A221.

2220 If f(x)e + x 6 (rather than x2+ x - 6) 9 you should expect

from term by term differentiation fqx1)81,

3380 For the above composite function9 g(x) ft x2- 2x - 39 so gs(xl)lo 0
CIMOINIIIMONI1011112



A1070

108c, In step (1)9 if f(x)sg - x2+ 2x - 19 f(xi+ Ax)s Ax)2

+ 2(x1+ Ax) - 1 and f(x.i)is

A222* 4" 2x3:- 1

2230 If f(x)es x3- x2- x - U (rather than x3* x2+ x 32) you should

expect from term by term differentiation that

A338* 2xi- 2

7

339. Nowa if F(x) 81 [g(x))29 r(x1)si n[g(x1)]n=10 e(x1) becomes

111r(x.i)s 2x1 - 3) (2x.r 2)0



A108. =0C.12 2x3.- 1

1090 In step (2) 9 f(Xifr A.70 f(Xi.) [-(x.14 A.x)2+ 2(x1+ Ax)- 1] -
2+ 2x1= 1] =

224. In genera19 if f(x) can be expressed as the difference of two

functions9 i.e.9 f(x)= w(x) - v(49 you should expect that f0(3c1)a

X3390 I - 1 (or
29 2

7

3400 Thus 5 if F(x)=(x2- 2x - 3)29 F°(x1)63 (simplify your answer9

leaving a fractional exponent on the quantity (x21- 2x.r. 3).
O...M.,==.



A1090 -brio Ax Ax2+ 2Ax

no. In step (3)
if Ax 00

f(x37 Ax)- f(x9) Ax2+ 2Ax
1.

A2240 wqx2)-- v(x1)

225. With the aid of the limit theorem for the difference of two

functionso one could proves

Theorem 50 If f(x)1914(4- v(4,9 and we(x1) and vO(xi) mdsto

f° (xj.)sat 0 (Add this theorem to your list of theorms0)

5

A3400 7(g12- 2x1- 3)11 (xi- 1)

Al. If F is defined by F(x)si - x14- 1 OD F(x)a(f 0 g) (X)
(X cm 1)22ke

gs f(g(x))es(x"- 1) .



A1100 -2x1+ 2 - Ax

f(x3.4. Ax).- f(xj)
111e In step (4)0,4110 Ax V40( 2x14. 2

- A.74°

2260 Stated in wordso this theorem says that the derivative of the

difference of two fUnctions is

3420 So F(x)st(f o g)(x)af f[g(x)Mx4- 2 where g(4- x . 19 f(z)"



£111. -2x1+ 2

112. Thus, for the function f defined by f(x)m - x2 .1. 2x - 1, the slope

of the tangent line at the point on the graph of f with x-coordinate

f(x1+ Ax)- r(x1)

xl ax

A226. the differenz6 cf the derivatives of the two functions, if

these derivatives exist.

227. It should be noted that it is not necessarily the case that if

the derivatives of 2 functions don't exist at some point, the deriva-

tive of the sum of the:4e functions won't exist at this point. Consider

g(x)01x1 and h(x)m -Ix!, neither of which possess derivatives at the

point with x-coordinate xl"

A342. z"2

343. F(x)* f[g(x)Mg(x)]2,so our corollary will be used with



A112. - 2x
1
+ 2

113. For the point with coordinates (1,0) belonging to f defined by

f(x) = .e+ 2x - 1, the slope of the tangent line is - 2x
1
+ 2 =

-2(1)+ 2 =

A227. 0

228. However, for the sum of the above functions,

f(x)= g(x)+ h(x)=1x1+(-1x1]= 0, fqx1)1,

A3430

344. For the above composite function F(x)= f(g(x)]=(x4- 1)-2,

g(x1)= and g8(x1)=



A1130 0

3140 FOr the points with coordinates (09-1)9 (-194)9 (49-9)9 the

slopes of the tangent lines at these points are 9 9

respectively.

A2280 0 see The.stall

229. We now have at our disposal five theorems for finding the deriva-

tive of f evaluated at xi. Review these theorems front your compiled

lifft. Following is a set of exercises you should be able to do using

these theorems.

(a) If f(x) m x3+ 69 fcyle
(b) If f(x) m ,J4+ x9 fg(xl)m

8

(c) If f(x)m XcI X29 fqx.i)se

(d) If f(x) m .3 x9 fqx1)m

(e) If f(x) m x1°7- 214-9 fqxl}m

(f) If f(x)m x x29 fqx1)0

A31140 (41 1)9 lac,
3

345. Now9 if F(x)w[g(x)]4m(x4- 1)49 Fqxl)s n[g(x1)]40 gi(x1)10

(simplify your answer leaving a negative exponent on the quantity

(xi40. 1).)

Skip a page for the answer to Frame 345.



115. Following are exercises for which you are to find the slope of the

tangent lines at the indicated points.

(a) If f(x) m -29 find the &lope of the tangent line at (79-2).

(b) If f(x) m x9 find the slope of the tangent line at (-99-9).

(c) If f(x) m x 19 find the slope of the tangent line at (190).

(d) If f(x)0(x - 1)29 find the slope of the tangent line at (190)0

(e) If f(x)m 1 = 3x - x2$ find the slope of the tangent line at (-2,3).

3

A229. (a) 3xi2, (b) 1=13+ 1$ (c) Xc 2x19 (d) -1$

(e) 1.7x3:7$ (f) 1 -

230. Let us now consider the derivative of the product of two functions.

Mre know that the limit of the product of two fanctions is the product

of the limits if these limits exist, so we shallwant to investigate if

the derivative of the product of two fhnctions is the product of the

of the tvo fanctione.



A.1110.2,..22,_h_oda

1160 For the first fUnot

pressed the slope mtm 2

point with x-coordinate

with coordinates (3,9

A2300 derivative

2310 For the

es

A3450 8

0

on f defined by f(x) m x21, for which we ex-

of the tangent line to the graph of f at any

x19 the slope of the tangent line at the point

) is
0111WW11111011112

notion f defined tori(x)m x69 by Theorem 39 f°(x1)

346o Following is a set of functions you Should be able to differen-

tiate

view

using the theorems and corollaries developed in this unit0 Re

your list of these theorems and corollaries at this times before

proceeding to the exercises below0

5

(a) If f(x) 0 (X ° 1)2, f'(Xi) a

(b) If f(X)
5

(X2.
1)20

(c) If f(x) 47 0 f°(xl) m

(d) If f(x) m ()/X - 1)5,9 fqx3) m 0

(e) If f(1) m (&7)29 14(1:1) "

(1) If f(x) 33N19 fqx1)

0



117. The equation of a straight line can be written if we know its

slope m and a point (x10.1) through which the line passes3 10e09

y yin m(x xi) This is the point.,-slope form for the equation of

a straight line. If a tangent line has slope 6 and passes through

the point (399)0 its equation is 0

A2310 611
5

232. Let f(x) si x
6

be rewritten as the product f(x) 19 x6EN x 0
CNIIMMEINIMINCON.

A3460 1)ia 5x1(x12- 1)29 3c g-Ocr, 1)1I (Ste (ail9

3 -1 3

5x1kx1 1) .9
ri(xi- 1) 3



- 9 FIACx:_= 31

118. For the point with coordinabes (-191) belonging to the function

f defined by f(x) a x29 the slope of the tangent line at this point

is
Cicill7=11114.10.N.

A232. x
2

2330 So9 Dx(x6) (see the alternate notation for a derivative in

frame 184) e px( ) 64150



APPENDIX B

ABSMACT DEDUCTIVE DERIVATIVE PROGRAMMED UNIT



222

1. The derivative is a very important topic in mathematics and related

sciences. It is the basis of a beginning course in calculus and provides

a foundation for more advanced courses,

A125. 5x14+ 32+ 2x1

126. Do you see that you could have computed the above derivative in a

different way? We can express f(x) Eqx24. 1)(5X 1) as f(x) al 3C54 x34 5C-24 10

Generalizing the theorem for the derivative of the sum of two functions

to the sum of any finite number of ftnctions9 in this case 4 functions9

we have fqx1)88 0 Do your 2 answers check?

A249. zero

250. It follows that the slope of a secant line AB approac7 the slope

of the tangent line at A4 denoted by. mt. Thus, we may write



Since we need the llmit in studying the derlvative of a functions

let us review the notation of a limit of a function. We know that if

lim f
9

fx)Ee L then f(x) is as close" to 1 as we please for x in a
x-Imi '

suitably choseh delisted neighboiLood of x.. (The student should now

review the mathematically precise 6-s definition of a limit of a

funotion.) Which of the numbers in the set 2.99 2099 209999 3401,

34 belongs to the deleted neighborhood defined ty- the inequality

ix <001?

A1260 511L4-. 3x124 2x19 Yes
71.711.1111.1.1103.1:rx.rainsiIirMalcm....

l270 Do not acquire the mistaken notion that a function which is dif-

ferentiated by the product rules A$ Theorem 6 is sometimes calleds can

always be differoIntiated In another manner. Ws hav:I. chosen only verY

elementar,ir examples to illustrate the theorem. More complicated exam-

ples of funationss composed of the product of two ftinctionss which can

be differentiated by the produot theorem onlys will be given later in

your calculus course.

A250.

251, Note that mtmlielpb has the exact form of the

derivative of f evaluated at xi. Thuss the derivative of a function

evaluated at xl and the slope of the tangent line to the graph of f

at a point with x-coordinate x19 are when both the

derivative and slope exist.



A2. 2.999, 3.001

3. We will now introd.ace an alternate notation for lim f(x) = L. lie
x>

xl

know thatAlk(x1+ Ax)=. xl where Lx is a variable, usually small in

magnitude. Thus, if Ap is a variable,Algb(p1+ Ap)=

12 . It is not necensarfl7 e cflso tat if the eorivktives of one or

more of the functions in the Product of two functions don't exist for

some vPlyie of
x1'

the derivative of the rroduct won't e37ist for this

7P1uo of xl. Consider f(::)= vH= where v(x)=Ixl,

v(x)=

A251. the sane (or equivalent wording)

252. e now have that for f defined by f(x), the slope of the tangent

line to the graph of f at a point whose x-coordinate is xi is



L. If Ax approaches 0, x1+ Ax approaches xl. The:^efore,

x-->
11.m f(x)== lim f(x

1
+ Ax). If Ax approaches 0

2
x
1
+ Ax approaches x

Ax>0 12xl

soxlly(x)=A:Wog(

A128. -Ixi

129. Neither lxi nor [-kJ) exist for xl=

A252. f2(x
1
) (or a statement equivalent to the derivative of f evalu-

ated at xl)

253. Let us now consider the function f defined by f(x)= x
2

. In the

section on limits, we computed the slope of the tangent to the graph of

this function at the point (1,1). This slope was 2. The student should

now review this section in the limit unit.



If x
1
= 5 x Ax Ax. As Ax arproaches 0 -1

+ Ax approaches
ff

$ 1

A129.

130. However2 for the product in the above function,

f(x)= w(x). v(x),21 I. -Ix1 ..!xl
2= ft(x1)=

254. We will now obtain the slope of the tangent line for any point on

the graph of f defined by f(x)=. x2 and then check its value at the noint

(121) with the above result. The derivative of f(x, x
2

2 evaluated at

xl is



A5, 5

60 Therefore9 iii5f(x)m lim f(5 + Ax).

!Our answer should correctly complete the shaded box.

A130. 0 for all values of x

131. We have now proved a theorem for finding the derivative of the

product of 2 functions. Let us use this theorem to prove a corollary.

amllamg If f(x) ss k 0 g(x)9 where k is a constant9 and g/(xi) exists

then fqx1)29 k gl(x1). Add this corollary to your list.

A2540

The slope of the tangent line at any point with x-coordinate xi

on the graph of f defined by f(x)m x2 is Not ff(xi)m



a.

a

A6. 62-4,0

7. If xi= x1.4. Ax -3 4. Ax. Se AX approaches 02 xi+ Ax approaches

132. Stated in words, this corollary says that the derivative of a

constant multiplied by a function is the constant multiplied by

2 provided the derivative exists.

A255. 2xi

256. For the point with coordinates (121) on the graph of f defined

by f(x)= x22 xi=



80 Thereforeir;03 g(x)=Aillo g( )

A132. the derivative of the fOnction evaluated at xi

1330 Me will apply Theorem 6 to the function f defined by f(x).= k g(x).

Here w(x)n k, v(x)- g(x), 141(x1)= 9 'lily-

A2560

2570 Thus2 me fqx1)* 2x1 for the point with x-coordinate xln 1 be-

comes f'(1)= 2 * 1 m DOes this result check with the former

result in the limit section?



A8. -3 4. Ax

9. It may be the case that x is to the right of xis and sufficiently

close to xis or that x is to the left of xis and sufficiently close to

xi. Wb recall from the section on limits thatxlisacif(x)s now shown to

be equivalent toaliso f(x14. Ax), exists if f(x) approaches the same

value L when we consider numbers which may be either greater or

than x.i.

A133. Os gqx1)

134. Thus, fqx1)10 w(x1). le(x1).4. v(x1). wqx1)- (in sivlified form).

A257. 2 Yes

2586 Mb cans of courses evaluate the slope of the tangent line at my

point on the graph of f defined by f(x)01 x
2

If we consider the point

(2,4), xist 2 so mtg. fqx1)= 2xis or f'(2)n



A90 smaller (less)

100 If we consider numbers only greater than xl$ then we denote the

limit by lim f(x)= L. If we restrict our consideration to numbers

x-ox
1

less than xl$ we denote the limit by lim f(x)= L is called the

xl

right-hand limit. Hence, the left-hand limit of f(x) would be 0

A1340 k g°(xl)

135. This corollary is very useful, since constants frequently appear

with variables in a hinction. If f(x)= 7x50 k = $ g(x)= $

g'(xi)is

7 9
2596 If we consider the points (-5325)$ (0p0)0 (

4
T$ .7) on the graph

7
of fp xi= 50 00 E respectively for these points, so mtp the slopes of

the tangent lines for these values of xis becomes

respectively.



416

4.

A10.

110 Let us now translate the notation for right and left hand limits

into Ax notation. If Ax approaches 0 from the right9 then xl+ Ax

approaches xi and xi+ Ax is (greater than9 less than) xi. This means

x approaches xi from the right and we write

A1350 79 x52 53E14

136. Thus9 if f(x)el 7x52 f'(xl)ss k a g°(xl)m 7 0 0

260. We can write the equation of the tangent line at apy pe.nt on

the graph of f defined by f(x)2 say the point with coordinates (xi2y1).

Recall that you can write the equation of a line if you know a point

on the line and the of the line*



All, greater than$

14 If Ax approaches 0 from the left$ then xi+ Ax approaches x10

xi+ Ax < xl0 and we write

A136. 35xl

137. If f(x) in 3(x3+ x11), k

A260. slope

$ g(x)= gl(x1)=

261. The slope of the tangent line, mt at the point (xi$ yi) can be

expressed as



.412.

Then lim f(3) a lira f(xi+ Ax) and Urn

-411c1

The right hand limit is thus expressed as UM
A3C11'0

hand limit is expressed as 0

A1370
x34 x4,9 324 toci3

f(x)m Urn f(xi+ 1000

f(x1+ Ax) and the left

1380 Thus9 if f(x)2= 3(x3+ x14)9 fqx1)E3 k 0 g°(xi)E3

A26l. f°(x1) (or an equivalent expression for the derivative of f evalu-

ated at x 1)

262. Using the point-slope form for the equation of a line y

m(x xj.) 9 we obtain the form for the equation of the tangent line as

y mt(x - xi) or y (x



A130 lim f(xi+ Az)
ax-ior -

14. Consider the function f9 discussed in the section on limits9 de-

fined by f(x) -4 For this functions lim f(x) s liM f(-1 AX)
2(X 4 1
1X

Ax-*0

g3 2 and lim f(x) F3 lim f(-1 4 Ax)E3 0
6 AI /P2M71110

(See the graph below as an aid to respnAing0)

A1380 3(33'12+ 4x1

0 -I I

139. If f(x) e3 -6x(7g 1)2--; -6[x(x 4 1)] 9 k 9 g(x) m x(x 1)9

e(x1)E.1 (lisseroduct rule Theorem 6 0

A2620 f(xi)

263. For the equation of the tangent line at the point with coordinates

(191) for the above function f defined by f(x) m x29 xim 9 yim 9

me fqxl)m 2x1 becomes me fp(1)m



A140 -2 (Notes If ypu do not recall this functions take time now to

convince yourself that lim f(x) m 2 and lim f(x) m -20)

15. For the postage stamp function discussed in the section on limits$

p m f(w) where p is the postage and w is the weights we have

lim tw)m 30 where Aw is a variable. Also lim f(.5 tw)m

Aw-0.01 AwAlbiC

(Sbe the graph below as an aid to responding.")

20

A1390 -6$ 2x14. 1

3-

140. Thus$ if f(x)m -6x(x If 1)$ fs(xi)m k 0 gs 0

A263, 19 19 2

264. Thus$ the equation of the tangent lines y - yin V(x1)(x xl)s

in this case i



A15. 25

16. Recall that the limit of a function exists as x-fti if the limit

of the fdnction as x-fti through values of x greater than xi is the

same as the limit of the function as x->x
1
through values of x less

than xi. Thussxf(x)m L if f(x)m L and lim f(X)11Ri Im

X-110X3.
1

A140. -6(23E1+ 1)

141. You might expect that there is a theorem for finding the deriva-

tive of a function which is the quotient of two functions. From what

was surmised concerning the derivative of the product of 2 functionsa

would you expect the derivativ9 of the quotient of 2 functions to be

the quotient of the derivatives of the two functions if these deriva-

tives exists i.e. if f(x)m fqxi)og rqx1) where .0(x1) and
initTYci

w*(x1) exist and v*(x1) O.

- 1 w 2(321_11 (or an equivalent expression)

265. For the above function at the point (-5, 25), xim

mtm fqxi)" f'(-5)=

9 yla



A16. L

17. In oar notation0A110 f(x14, Ax)= L if lim f(x1+ Ax)m L and

A1410 You shouldet e ct this - such is not the case.

142. As with the derivative of the product of 2 functions, the deriva-

tive of the quotient of 2 functions is not what might be expected. Let

us state the theorem. Theorem 7. If f(x) = 424-and wl(xi) and v9(xl)
V k X)

exist, then fqxi)m v(xi) wt(xi)m w(x1). 7e(x1) provided v1(x1)ii O.

iv(xi) 32

Add this theorem to your list.

A265. -59 252 -10

266. The equation of the tangent line at the point (-5, 25) on the

graph of f defined by f(x)= x2 is



A17. lim Ax)m L

ax-w0

18 lib are naw ready to define the derivative of a function.

Definition° The derivative of the fUnction fa evaluated at xis is

f(x1+ Ax)- f(xl)
' a provided this limit exists. The derivative

&WO Ax

is denoted by fp(x1) and may be considered a function itself. Other

notations for the derivative are y°9 Dxy9 de (raiter this definition

on the enclosed sheet headed "List of Theorems and Definitions.")

143. In words9 this theorem says that the derivative of the quotient

of 2 functions of x9 evaluated at xl provided these derivatives exist9

is the denominator multiplied by the derivative of the numerator minus

the numerator multiplied by the derivative of the denominators; this

number divided by

A266. y - 25 n 2192(x_t_5) (or an equivalent expression)

7 9
267. At the point on the above graph with coordinates (p -

47)9
the

equation of the tangent line is



3_90 The expression f(x14. Ax)ca7 f(xl) is called a difference quotient.
Ax

The numerator of this difference quotient can be considered as a small

change in y f(x)0 symbol used for f(xif ta)- f(x) is 0CIM:Milm117110

A1430 the s uare of the denompAtm_maided this is non-zero

1.44 lib will naw proceed with the proof of this theorem in a manner

exact4 analogous to that used in proving our former theorems. Perhaps

you can derive your own proof of this theorems follawing the 4 steps

for finding the derivative. Try to do so before reading the proof that

follows.

49A2670 (yo..-em 7(x - ) (or an equivalent expression)

268. Let us now consider another function whose slope you computed in

the section on limits0 the function F defined hy F(x)n1A5 - x2. Graph

this function on your own paper for ftture reference.



1.

A19. Ay

20. Thus9
1 Ax)- f(x1)

can be written asii410
Ax

145. liera is our proof.
w(xl)

v-7-1- it ( al ternate
x.1

If f(x). 0, step (1) expresses

notation)

269. For this functions we will compute the slope of the tangent line

at the point with x-coordinate xi= 4. The corresponding y-coordinate

of this point is yim



A200 (Notes At% gL is used in many texts as an expression for
Ax Ax

the derivative.)

21. In the definition of the derivatives it is important to note the

condition that the limit of the difference quotient must exist, lib

say f(x) is differentiable at xi if the limit of the difference quotient

exists. From the section on limitss we know that this limit (Fill alwaya

existaartalways exist).

wl
A1450

'1

w(x1.11. Ax)

1.146.1ffimiise9f0y.WE3.sil (alternate notation 0
v xiet. Ax

A2690 3 (Indicate this point on your graoho)

270. In the section on limitss we showed the slope of the tangent line

to the graph of F defined by F(x)n/g - x2 at the point with coordinates

(493) had the value le The student should now review this discussion

in the limit unit0



A210 may not always exi t

22. Thus9 the differentiability of a function f at xi is equivalent

to the statement that

ml Aw
A1460 yrri

(m14. Aw) ml
147. In step (2)0 f(x1+ hx)-

11'
(x.1)

-r3 (v1+ tar)
1

1/1(mlf Am)41. m1(v1+ Av)

(112.1.3n1)

271. lib can also express the slope of the tangent line to the graph

of F at the point with x-coordirate xi as

(Skip three pages for the answer to frame 271.)



f(xl* Ax)- 1(x.1)
A220 Alpo

Ax
exists.

23. Steps for Computing Derivative. There are four steps in computing

the derivative of the function f evaluated at x
1

:

(1) Express f(x37 Ax) and f(2.1)

(2) Find the difference f(xi* Ax)o. f(xi)gs Ay

f(x14. Ax)- f(x,)
(3) Compute the difference quotient ' 4 m

Ax Ax

f(X14. AX) f(x)
( 10 Find Alpo alasammamNilmk

Ax
maivo Max

vl. Aw w
1

Av

A147. 7--tvv1 4----71-7--v

1

148. In step (3)9
f(xi* Ax)- f(x,) v,0 Aw w10 Av

4 22 4
Ax AT717177-

1 1

Sdpply a reason for (1).

(1.1, 0 Aw A1.11
1 v

vs

vi.(vi+Av)



240 Let us now find the derivative of f evaluated at xl9 defined by

f(x) es 3x0 Step (1) tells us to express f(x1+ Ax)0 3(x1+ Ax) and

f(X1)2g

A1480 Both numerator and denominator of a frsstion_Em be divided hE

eroantitr_2....2thesamenon-zgithoutchaninitsvalue0

f(x1.4. Ax)- f(xl)
1490 Theno in step (4)9A1400 Ax

bw Av
V 0 W

1
<weever

1 Ax Ax
mAg10 v

1
(v1+ Av)

(1)

Wlo 111/440(v1(vi+ Av))

(2)

vl° :X mailk 111° IP/414o (vi(v1+ Av))

(3)

favo vloavo 41-410 wl. 13640 tcl1/4-400 v 1° Alt40(v1+ Air)

(NYAMADIri ITAPOO )/1.611.Ailk
(Y1+ ay)

SUpply reasons for (1)2 (2), (3), (4).

-.4.0.11Ver



214 0

25. Step (2) requires an expresk r f(x1+ bc)- f(x1)m

3(x1+ Ax) 3xim (in simplified form).

A149,111212_limit of a quotient is tile isatient of the limAta_0227

vided these limits exist0 2 The limit of a difference is the differ-

ence of the limits rovided these limits exist. (2)_Thelimit of a

teroducof..__t2_2_j.._Eroductistlimitsrovidedtheselimits exist.

(4) plak m k 64151 w(xi) and v mv(xi) are constant())

1500 Consider the final expression in the previous frame. As in the

bw
proof of Theorem 64441017m wf(x1) andR40 trc m 0



A25. 34

26. The difference quotient in step (3) is

Al50. vqx1)

f(xi, Ax)- f(x)

Lx

151. Also, as we reasoned before, assuming v is continuous,

Av approaches 0 as Ax approaches 0, soiglo(vi. Av)41114.40(v1+ AO"'

A271. F!(x) (or an equivalent evression)

272. To find the slope of the tangent line at (4,3) on tLil graph of

F defined above, we must evaluate 114( ).



3Ax
.A2 6 -

° Ax

27. Finallys computing the
f(x1+ Ax)- f(X)

givesialpo

son for (1).

A151. 1,1

limit of

°AIX 3

the difference

(l)

Ai* 3 m"rx

quotients step ().)

3. Supply a rea-

152. Substituting these results in the right hand side of the expres-

sion in the last line of frane 1499 we havealwo f(x1+ ilx)c° f(xl)

A272. 4

vl. WI (Xi) 111* .11' (Xi)

2
vl

= (changing notation for vi and wi)

273. The function F defined by F(x)nN/25 - x2 is a composite functions

so P4(xl) is obtained by using the corollary to the chain rule differen-

tiation formula; i.e. if F(x)m[g(x))11. pqNry)1111



A270 Since Ax 00 but approaches zero, both numerator and denominator

may be divided by Ax.

28. In evaluatingAilgo 3 = 3: what limit theorem did you use?

A152. v(x). /4*(11)-2 w(x1).

[v(xi) i2

153. We have thus proved the theorem that if f(x)mti and le(xl)

and vt(xl) exist, then fqx1)" 0 if v(xprO.

A273. n[g(x1))11-14, te(xi)

0
274. Ay this corollary, if F(x)121,,g7:7 (25 F4(x1)=



A28. For a constant k9 if f(x)se k9 glitf(x)m k

29. Thus9 if f is defined by f(x) m 3x9 the derivative of f9 evaluated

at x19 is f'(xl)m

A153.
v(39) 14(y vt(39.)

(v(xi)]2

154. Consider f(x)mw-H-
v x

wi(xi)se

A2740 - 29.(25 - x12/

IR
x7
22

x 0. Here w(x1)a. 179 v(X1)gr X 12$

1
2

275. Thus, F'(x.12= -
7

x1(25 - xl ) - we will rationalize this expres-

sion when we substitute in our value of xlc= so the slope of the tangent

line to the graph of Fat the point (493) is Fqx1) or



300 lot us now find the derivative of the function f defined by

f(x)* x, Step (1) exTresses f(xl)m and f(x1+ Ax)w

A154.

1)w(x, v*(xl?
/ x f (31_)155. Thus, for f(x) 2,

NOY )2

x12 7x, . x17 0 2x1

bc12)2

m (in simplified form)9 if Jcil 0.

A2750

276, toes this answer check with the results obtained in the section

on limits, as cited in frame 270?



A300 x12 xi+ Ax

31. The% step (2) requires an expression for f(xi+ Ax) f(x1)0

(in sip1ified

1560 You probe:ay realize you could find the derivativy of the above

7
example in a simpler way0 How could you rewrite f(x) e3 =-2s9 if X 0?

X

A2760 7es

277. Let us naw write the equation of the tangent line with slope
4
-5, passing through the point with coordinates (423) for this function.

Here xie Yr r(x1)0 Fp(4)° 0



A310 Ax

f(x17 Ax)- f(xl)

32. The difference quotient in step (3) is
AX

A156. f(x)gs x5

157. Mhat is the derivative of the rewritten encession9 i.e.

f(x) m 3c5? Does this answer check with that just obtained?

A277. 49 39

0

278. The equation of the tangent line, y - yin [r(x1))(x - xi) becomes



Ax
A32, rx

33. Finally, computing the limit of the difference quotient, step (4)

f(x3.-+ Ax)- f(xi)
(1)

0:vesA140 Ax %PIO weialo 1 m 1. Supply a reason

for (1).

A25 5x14, Yes

158. If f(x)is m ;cc 3i9 X ff 39 W(X1)("1 vOC.I.) 9

Ve(X1)11 Te(X1)111

-4A2780 Y - 3 am 4)(or an equivalent expression)
3

279, Let us consider a function not previously discussed in the sec-

tion on limits and compute mt, the slope of the tangent line, for any

point on the graph of this function, Graph f defined by f(x)m x24.x - 6

on your awn paper and draw the tangent line at the point (2,0),



A33o Since Ax yiro, but approaches zero, both numerator and denominator

may be divided by Ax.

34. In evaluatingAW0 1 la 19 what limit theorem did you use?

A1580 xi* 19 xi 39 19 1

ft(
159. Thus, if ftxra

w(x) x * 1
Vriy x 39

A279.

rvoy?
(xl. 3)0 1 . (xi* 1)0 1

(xf* 3)2

a (combining terms in numerator)

if xlpr30

280. If f(x)mg x24. x 69 the slope of the tangent lire at apy point

on the graph of this function whose x-coordinate is xi is fl(xl)go



A340 For a constant k if f(x)16 ka OxYlm k

350 Thusa if f is defined by f(x)- xa then the derivative of f evaluated

at xia is f(x1)0.....0

A1590 ---.141-5-
(xi- 3)`

l600 If f(x)el 112,* 3x0 x +
2e+ 1

11 0a w(x3.)ft v(xi)'

W8 (Xi) et 9 V X1) Mg ..02

A2800 2x1+ 1

2810 Let us now evaluate me fqxi) at the point with coordinates

(200)0 }bre xi= so fe(x1)In 2x1+ 1 becomes V(2)-



A35.

36. Let us now find the derivative of f defined by f(x)m x2. Step

(1) yields f(x1+ ax)m (xi+ Ax)
2
and f(xl)m

A1600 x12+ 371$ xl3+ 1$ 2x,* 39 3x12

v(xl) w xl) w (xl) xl
161. Thus if f( (x_ )

X3+ 1 1
[v(3C1) ]2

1) lo(2x14 3) 44 2+ 3x1) (3x12)

if x
1
3+ 1 Yr 0.

A281. 29 5

282. You should now be able to write the equation of the tangent line

to the graph of f defined by f(x)m x246- x - 6 passing through the point

(220). This equation is



A36. x1.2

37. Step (2) in the process of finding the derivative of f defined by

f(x)m A
2

9 evaluated at x19 gives f(xl# Ax)- f(x1)45c
a

if dx)
a

(xl) ft

(x12+ 2x1 Ax ex2).

A161.

x12 m (ilL21,101112LISEE)

.x1 . * 2 x1 ,3

Or-13+

1.62. Now itps your turn: If f(x)
:3 2x2 ,44. x 1 i 1 nr

x14+ 1

A1.42.1112.__E.21.2.1 (or an equivalent expression)

283. Me will now find the equation of the tangent line to the graph

of f defined by f(x)' Xc 2x241. 5x . 1 at the point (-13 -9). Perhaps

you will want to derive your own solution before reading that which

follows. Here m
to

the slope of the tangent line "'or any general point

(xis y1)9 is f4(xl)ft

Skip two pages for the answer to frame 283.



A37. 2x1 Ax Ax
2

38. Expressing the difference quotiento step (3) gives

f(x14. Ax)- f(x1) (2x1 Ax 4 Ax2)
Srararawrammamowmarimr/....Caacanr,A

Ax
0

CMrM.G=C-Mamwrolal....

(x1
4
4. 1)0(3x,

2+4xl* 1)-(x13+ 2x1241. xi-1)00mM
4

1)
d

A162. 4* if (2:
1
* r 0 ,

(x, * 1)

1630 Let us summarize our work up to this point. We defined the deriv-

ative of a function f as the limit of the difference quotient

f(x1+ Ax)- f(x1)

Ax
if this limit exists, We then proved a number of

basic theorems to enable us to find derivatives of certain functions.

These theorems involved derivatives of sums, differences, products and

quotients of functions, the derivative of the constant function, and

the derivative of the independent variable. A corollary was proved

for the derivative of a constant multiplied by a function of x. Reviev

the theorems, definition and corollary from your list at this time.



A380 2x14. Ax. Since Ax pOs but approaches zeros both numerator and
=1=7-.,.MCMWMwrII

denominator mgy be divided by a non-zero quantity0

390 Finallys expressing the limit of the difference quotients 3tep(4)

f(xif tix)-
givestkao Ax

mii140 2x1+ Ax 0

lao Following is a set of exercises you should be able to complete

using the theoremss corollary and definitions0

(a) If f(x) sig 1x3- 20x2- 9s fqxl)m

7_

(b) If f(x)Es X2c
x203* 7x-89

(c) If f(x)R(9x 7)(x3+ x2- 4x - 17)D f°(x1)0

(d) If f(x)E3 x )1( ± 19 f°(xl)ft

x 1

0

(e) If f(x)m(x2- 3)22 fqx1)0

(f) If f( 419 x(2:21ii) D X / 5D f X1) /9



A390 2x1

40. Thus9 if f(x)m x29 f°(xl)m 2x14 If f(x)u 2x29 find the derivative

of f evaluated at x10 Here f(xl)m and f(x1+ Ax)m

5

A164. (a) 3=12- h0x19 (b) 2 Oxi
1

°
3

.., 56x-9,

(c) (9xf 7)(3x12+ 4)* 9(x13+ x

7(xl
2

1)a. 2x1(71c1... 5)

( d)
2 i,2 if xi, (e) )4ici(x3.2- 3),

17),

5)(6xi
2

(2x2.m. 3xi)
( fl if 5

(xi' 5)2

arvacirastp/MMEIM

165. We will introduce one more basic theorem to allow us to differen-

tiate functions of functions9 or composites of one function by another.

Let us first discuss the composite of one ftnction by another, or more

simply a composite function. Ay definition9 a function is a set of

ordered pairs such that no two distinct ordered pairs have the same

element.

__
A2830 32 4xxl 1+ 2

284. At the point (-19 -9)9 the slope of the tangent line to the above.

graph of f defined by f(x) m x
3

2x
2
* 5x - 1 is fqx

1
)m fq-l)m



410 In step (2) in the process of finding the derivative of f(x) as 2x29

evaluated at xv f(x1+ Ax)- f(xl)m (implalifkd form).

Aga__LnEt. (Review the definition of a function in the limit sec-

tion if you had difficulty answering this item())

166. composite function (or a composite of one function by another)

is defined by f[g(x)] or (1 o g)(x). An example of such a function

f o g is defined by f[g(x)]m (1 o g)(x)m [(x2+ 1))2

z m g(x)n

f(z) m f[g(x)]m z2

A284. 12

285. The equation of the tangent line at (-1,-9) with slope 12, for

the above function is



A41. 2(2x,Ax * Ax2)

42. In step (3)9 the difference quotient

A166 x2* 1

f( Ax)- f(

Ax
0

167. For this ftnction9 an ordered pair belonging to f o g is (19 )0

A1850 9 mg 1LOLI.11(or an equivalent expression)

2860 In the following set of exercises9 find the slope of the tangent

line at the indicated point and write the equation of the tangent line

at that point.

(a) f(x)ag -2 at (79-2)

(b) f(x)25 x at (-90-9)

(c) f(x)mg x 1 at (190)

(d) f(x)mg(x - 1)2 at (190)

(e) f(x)a 1 - 3x - x2 at (-203)



A42. 2(2x1* Ax) (Notes We have divided by non-zero Ax.)

43. In step (4)9 the limit of the difference quotient is expressed as

f(x1+ Ax)- f(x1)

APPO
------- m (22E1222.your answer in final form after eval-

uating the limit).

A1671 4

168. Other ordered pairs belonging to the function are (091)9 (2925)9

(-19 )9 (39 )0 (Note that we are here emphasizing the fact that

a composite of one function by another is a function in the "ordered

pair" sense discussed in the section on limits.)

pjiojr x°495...12/11,2_:_a_t_25. 4' 2

287. Since the derivative of f(x) evaluated at xi is the same as the

slope of the tangent line to the graph of f at the point with x-coordinate

xv when this slope exists9 we can see why our previous example of the

function f defined by f(x)siglx 11 did not possess a derivative at x16., 10

Referring to the graph of f below9 note that the 2 lines9 11 and 129

making up the graph and intersecting at the point P1(190)9 make angles

of 45 and degrees9 respectively9 with the positive x-axiso



440 Thuss if f is defined by f(x) m 2x29 f°(xl)m

100

0
CIIISCUMWM177121

1690 Another example of a composite function f o g is defined by

(f g)(x)m, f[g(x))261;c5s x 0

z 113 g(x) ft X3

gig
f(Z)ft f(g(X))m Z 0

(Your answer should correctly complete the shaded box0)

288, Choose a point B on the graph of the function on your own papers

with an x-coordinate slightly greater than xi* ls say xi. Ax m 1 Axs

where Ax is (2n212E_Ilapa less than) zero. Indicate such a point B

on your graph.



it1414. 14x3.

450 Let us now consider a ftinction f defined by f(x) w x 3c9 composed

of 2 terms9 and compute its derivative. As you might expect9 the pro-

cess will be a bit more complicated in this case. Step (1) gives

f(xl)m and f(x14. Ax)m

170. Ordered pairs belonging to the composite function f o g defined

above are (191)9 (2920)9 (39 )9 (09 )0

A2880_greater than

(1;0)

289. For such a point 139 a secant line PB to the graph of f is the

same as the line



A45. xi- x122 (xl* Ax)-(xit Ax)2

460 The difference f(xl+ Ax)- f(x1) in step (2) is

((x1+ h"Xl+ 664 2114X1" 3C12 Jr1
0

A170 7 or 3

171, Let us now concentrate on recognizing the form of certain compos-

ite functions (or composites of one function by another). This ability

will be neaded for the next differentiation theorem, Note that

f[g(x)]u(f o g)(x) denotes that f is a function of g defined by

g(x) mg zs and g is in turn a function defined by the variable 0

A2890 11 (or PB)

290, The limiting position of a secant line PB as B approaches P is

the line



A46. Ax 2xiAx Ax2

f(x14. Ax)- f(xl) Ax 2x1° Ax Ax2

47. The difference quotient in
Ax

step (31) is

Al 7l. x

Ax

172. The composite function f o g defined by (f o g)(x)m f[g(x)] 11

(x
2
4. 1)

2
considered in frame 166 can be defined in another manner as

the composite of one function by another. Since

we may. write (f o g)(x)n(p o q)(x)

or gq(x)]4-74-74

m q(x)m(x240, 1)4

011

p(z) se p[q(x)] s z

A2900 1
1

(or PB)

(x2+ 1)2,03 (21/7:79

291. Since 1 makes a 45-degree angle of inclination with the positive
1

x-axiss, the slope of this line is



A470 1 - 2x1- Ax

48. Finallyp the limit of the difference quotient in step (4) is

f(x14. ex). f(xl)

Atiago Ax
maglo (1 - 23(.1- Ax)E3 0

1
P11720 -

2

173. The composite function f o g defined by (f o g)(x)m(x24. 1)2 may

also be defined by (in o'n)(x)E2 m[n(x)]83( 2+ 37) 6 where n(x)ss

and m(z)m z6.

A291. 1

292. Check your answer with our former reasoning for f defined by
f(x14. Ax)- f(x1

f(x)mlx - 11 in frame 235* There lim evaluated at
4. Ax

Ax-40.0

xi= 1 had numerical value



W. 1 - 2xl

490 Thus9 if f(x) m x - x29 fqxl)m 0
C211:11111M7711171O

1740 Thus9 you see that a function has more than one representation

as a composite function - in fact9 an infinite number of such

representations0 Can you think of other ways in which (f o g)(x)u

f[g(x)]m(x
2
4- 1)

2 is a composite of one ftnction by another9 different

from the above representations? Some other representations follow9

which may be the same as or different from yours0 Check your results

with your teacher if you have questions0

A2920 1

2930 Now consider a point A on the graph of f defined by f(x)mlx - 11

with x-coordinate slightly less than xim 19 say. xi+ Ax m 1 + Ax m 0,0

Here Ax has numerical value 0 Indicate point on your graph.



500 By now9 you realize that the process of differentiating is tedious

and could be rather complicated and lengthy. Fortunatelyo there are a

number of theorems that allow us to shorten our wofk. In facto we have

already proved one of the basic theorems. You recall that in frame 35,

if f is defined by f(x) m x9 then the derivative of f evaluated at xi is

1.;) i.e. f'(xl)m

1750 Consider the second composite function given aboveo defined by

(f o g)(x)m f[g(x)]mlic59 x 01,9 which may also be defined in a dif-

ferent way as the composite of one function by another. Sincei/gm

(0)39 we may. write (f o g)(x)m(p o q)(x) or

pro4(x)M1A)3

m q(x)mIii

p(z) m p[q(x)]m zo

A293.

X

294. For point Ao the secant line AP to the graph of f defined by

f(x)mlx 11 is the same as the line



A500 1

510 We express this in words9 as the following theorem

Theorem 10 The derivative of the independent variable is one. In

mathematical notation9 we haves If f(x) m x9 f"(x1)E2 0 (Enter

this theorem9 in both forms9 on the enclosed sheet headed "List of

Definitions and Theorems0")

Pa7

176. The composite function defined by (f o g)(x)w f[g(x)]0N/J may

also be
1
defined by (m o n)(x) mln(x)jaR46 where n(x)E1 and

m(z)28 0

A2940 2
( or AP)

295. Since 1
2
makes a 135-degree angle of inclination with the positive

x-axis9 the slope of this line is 0



A51. 1

52. /et us naw state and prove a second theorem in differential cal-

culus that enables us to find the derivative of a function more easily.

Theorem 28 The derivative of the constant function9 evaluated at x
1

9

iS zero. In mathematical notation9 we haves If f(x) E4 k9 where k is a

constant9 then f°(x1)* 0 (Enter this theorem9 in both forms9 on

your listo)

177. We have now expressed (f o g)(x)an/c3 as the composite of one

function by another in three ways. Can you think of other wayss dif-

ferent from the given three9 for which (f o g)(x)wA/c3 is a composite

of one function by another? Some such representations follow.

A295. -1

296. Check your answer with our former reasoning for f defined by
f(x dix)- f(x,)

f(x)mix - 11 in frame 236. There lim
1

evaluated at xim 1. Do the two results check?

tiX



A52. 0

53. We shall proceed to prove this theorem by applying the 4 steps in

the process for finding the derivative of the function f evaluated at

xl. In step (1)0 if f(x)m k0 f(x1)0 k and f(xi# Ax)ft

178. Consider the composite function f o g defined by

.1
1

(f o (x 4- 1) x -10 or

.1

f(g(x))m(x # 1) 5 where

z m g(x) x 46. 1

f( z)n 2.11

A296 -1.2____yeg

2970 The derivative of a function f defined by f(x) 2 evaluated at xl0

is the" same as the slope of the tangent line to the graph of f.at the

point with x-coordinate xi. For the above function2 at (120) no such

tangent line



115). k (For all x9 f(x)" k0)

Sito In step (2)9 f(x1+ Ax)- f(x1)*1

A178
.1

.

-1

179. TLe composite function f o g defined by (f o g)(x)m(x * 1) may

also be defined by (p o q)(x)s (-17.71,Y1 where g(x)s and

p(z)m 0

A2970 exists (or an equivalent expression)

298. The slope of the tangent line at (leo) doesn't exist because

right and left hand limits of the function at this point are unequal§

f(x1+ Ax)- f(x) f(x
1
* Ax)- f(x )

1
i.e0 if x,sa 1 lim It- es -1 and lim

Ax o
"I" Ax-me Ax-lit0

Ax



A54. o

r(x1+ ax). r(x1)

550 In step (
AX

Erf 0

1

A1790 'iY2777. (or (x 1)3),9 24 (or 2)

.1

180. The composite function r o g defined by (r 0 g)(1)e(x 4 1) may

also be defined by (m 0 n)(x)IsiGTTI: whore n(x) ,and

m(z)m
1...a.......-,.1Mram=m1.1M7C70

299. Consider the function r defined by r(x)m x. We proved as our

first theorems, that for this function9 fqx1)111 0



A550...0 (Here againp Ax /00)

f(X,4° AX)= f(x )1 ,

560 Fina1179 in step (4)44N) v
MICrartas-mr.sralt MICV"Vfo.rs

0
ONCSINtsme..1.0(.21.20/ 7.CTIMM

1-

A1800 (x i 1) (or ---1---)0 fE (or )
x -

.1

1810 Can you define (f o g)(x)(x 4- 1) as a composite fanttion by

representations different from those cited above? Some such representa-

tions follawo

fr.300o 1

3010 Let us relate the value of this derivative to the interpretation

of the derivative as the slope of the tangent to the graph of f at a

point with x-coordinate x
1
if the tangent exists. Graph the function

f defined by f(x) P-4 x on your own paper0

Skip a page for the answer to frame 301,0



A560 09 since yfak k for any constant k
CIIMM11[7=7111711....3011CMILAMOMS

570 We have just proved that the derivative of a constant function f

defined by f(x)s k is fO(x)s 0

X18166

cautamemr..c.a.u.a.c

1 .1
[(x 4 1)

JIMIOTORViii111.1010.19W2MOMMI.W*IMICWWW.C.W....

1820 Following is a list of functions you are to define as composite

functions in

(al) F(i)-(f
(a2) F(4F4(f

(bl) H(x)H(f

(b2) H(x)*'qf

(a) 4(x)(=i(f

two other ways as indicate&

o g)(x) x'where g(x) H x39 f( z) f[g(x)1u z 610

o g)(x)H x where g(x) H x f(z)H f[g(x)] f,3 z70

o g)(x)s X°4 X 09 where g(x)H x29 f(z)H f[g(x)) z"

o g)(x)s 9 X / 09 where g(x) s xo f(z) H f[g(x)jH 2i:10

3 30 g) (X) a X x 09 where g(x) xs f(z)Hyr 1111

f[g(x)31-4 z 0

-3
X E9 X > 09 where g(x)s x 9 f(z)H

f[g(x)] E-/ z7-10

(a) Q(x)(f 0

1(dl) P(x)H(f o g)(x)s where g(x) r 1 4). xs f(z) E3 f[g(x)] i4 2
(1 *

(d2) P(x)s(f o g)(x)s 1 where g(x)s(1 x) 9 f(z)1 f[g(x)]
(1 dr x)c32

Ari70

(el) G(x)s(f o g)(x)H 11779 -1 fi x 19 where g(x)s(1 - x2)29 f(z)H

f[g(x)). z

2(e2) G(x)a(f o g) (x)sV47772)'9 cl x 19 where g(x)s(1 - x) 59 f(z)H

frg(x)3s z:::40



A570 0

58. Thus9 if f(x) 1=i 79 f8(x1)si 00 If f(x) 1:9 f

Aa.82. (al) .5 (a2)
7 9

(b1) (b2)
2

.0=,..er AMCWIENTAMINI1.7r-

(d1) 28 (d2) 49 (el) (e2)
4.1mCMnn,

(ci) 1.9

0

(4 2) 3.8

lb'. *We are now ready to state and prove the theorem for differentia-

tion of a composite function. Theorem 8. If F(x)(f o g)(x)H f(g(x))9

and f°[g(x)] and e(xl) exist9 then r(x1)E-3 r[g(x1)10 g8(x1). Add

this theorem to your lista,

k3010

X

302. Considering any point P on the graph of f with x-coordinate x19

choose a point B on the graph whose x-coordinate is slightly greater

than x19 say 3C14 dx. Indicate such points P and B on your grapho



A580 o

59t A useful and basic theorem of differential calculus involves the

derivative of a positive intsgral power of the independent variableo

This theorem readss Theorem 30 If f(i) xn9 where n is a positive

integero then f°0c1)!ri n 0 x0 Stated in words9 this theorem says

that the derivative of a positive integral power of the independent

variable9 evaluated at xl9 is the original exponent9 n9 multiplied by

a power of xl9 and xi has as the exponent)

l840 This theorem is emmetimes called the chain rule of differentiation

because V(Ici) is expressed as a chain of derivatives9 namely (fill in

numeral) in number as we°ve stated the theoremn

Skip a page for the answer to frame '1840

A3020 Notes Your points may have been placed
differently0

3030 A secant line PB to the graph of f is the same as



A590 n 1

60. To prove this theorem9 we proceed through the four steps in find-

ing the derivative of f evaluated at xio as before. In step (l)9 if

f(x) 21 x11.9 f(xl)m and f(x14. Ax)a

A3030 the graph of f defined by f(x)w x (or an equivalent expression)

3040 The tangent line to the graph of f defined by f(x) a 34 i.e. the

limiting position of a secant line PB as point B approaches point Ps, iS

Skip a page for the answer to frame 3040



610 We note that f(x1,4- hx)0(xj* hx)
n
can be expanded by the binomial

theorems since n is a positive integer() Thus9 (x1+ hx)nsl

xi
n Tr 0 xi

n-1
0 Ax 4 1L.(iNQ

)
X
1
n-2

0 Ax
24 (next term ?) 4. Ss where Sn

is the sum of other termss all of which contain tix with exponents

greater than 3 if n> 30

Ala two (More functions than two may be in the chains depending

on the complexity of the composite function())

1850 Proceed to prove this theorem by the same method previously useds

that of the four steps in the process for finding the derivative of F

evaluated at x10 In step (1)9 if F(x)n f[g(x))9 F(xl)a f[g(x1)] and

F(x141. Ax)b:s



620 Thus, in step (2)9 f(x14. Ax)- f(x1)"(x14. Ax)n- xin0 If we sub=

stitute the expression for (x14. Ax)n derived by the binomial expansion,

we have f(xi. Ax)- f(x1)0

A1850 f[g(x14- Ax)]

1860 In step (2)9 F(x1.4. Ax)-F(

A3040 the graph of f

3050 The graph of f makes an inclination angle of 45 degrees with the

positive x-axis and hence has slope



630 Simplifyingp Ax)- f(x1) ( xin+ir. x1=1=1. Ax 4 00.
A.n). xlno

we obtain f(xi+ Ax)- f(x1)0

A1860 f[g(x14. Ax)]- ffg(x1)]

F(xl+ Ax)- F(x1)

187. Step (3) gives
Ax

A305, 1

306. Choose a point A on the graph with x-coordinate slightly less than

P. Indicate such a point A on your graph.

Skip two pages for the answer to frame 306.



A63. x
I

0 Ax
1 n (n -1) n-

Ax
2 2 r2(1_1.,:a.L.a:21 n-3 3

S
1 xi 31 _all

f(x,+ dx)- f(xi)
640 In step (3)9 3-

Ax
FR

fl
xinc210 Ax * 421-xin40 Ax'

-1)(n-2) n-3 ,..

"
34

xl
Ax

a

A1870 f1g(x1+ frg(x1))lix

D dividing each term by Axe

1880 Let us rewrite the above difference quotients

before proceeding to step (4)0 Why can we write

f[g(x1+ A101-f[g(
Ax

f[g(xl* Ax)1= ffg(x1)) frex`i+ Ax)1 f[g(x1)3 g(x1+

Ax
aa

1

) 3



A640 n 0 xin'l+
CmismlaiCammomta. yolk

n-2 n(n-1)(
0 Ax

2 1
=',01101.-210.20.7.2WaISIMISECION

f(x ax)., f(x )

65. In step
1

Axwo Ax

masiVo (n o x4. the sum of terms each containing Ax)

malpo n o xi
n-1 APAAR9 (the sum of terms9 each containing Mc)

A188. If both numerator and denominator of_an elatssion are multi lied

by the same non-zero quantity - in this case g(xl. Ax)- g(x1) - the re-
MKIENZI/mIZO71110.

sultinger_i_nsemiyalent to the origlEgAmmsgana

f[g(xii. Ax))- f[g(x1)]

189. In step (4)9 r(xl)mh140
Ax

--_-=

(ffg(x1+ lix)i7 ffg(xl)] g(xl+Ax)cg(x.ft.)
(substituting from above)nigto Ax

(1) flex
1
+ /ix) j=trexi ) J e

ii,
x41.4046c,g(X1)

AxT777g--- QAx-P0 Ax

(2) f[g(x14 Axil- f[g(x1)]

Siipply reasons for (1) and (2)

m

0



A650 n 0 xinwl

660 We have now completed the proof of the theorem which states that

if f(x) F3 xnd where n is a positive integers f8(x1) 4

Al89'0 (1)212_11Eit of a product is the_attuct of the limits0

(2) By definitionsAyao
g(x *

Ax
)c-, ) E3 e(x)

AX
CIINIMENCIINN,Malg 7s..1111:111M7GalIC

l900 Referring to the statement of this theorem on your list and con-

sidering the final eypression for r(xl:) in the previous framed ineo

f[g(x1 4 Ax))- f[g(xi)]
AV° 0 e(xi)d we must show

f[g(x1.0. Ax)j- ffg(x1))
Appo

A3060

3070 For this point A9 let its xF-coordinate be xi+ dx9 where Ax is

(Enter than,0 less than) zer00



n-1
A660 n ° xi

670 This theorem is smmetimes referred to as the power differentiation

formula. Using this theorem, if f(x)eg x3,9 fqx1)R 3x120 If f(x) w x7

fqx1)86

A190. fg[g(x1))

191. As we reasoned before for the function w in the proof of the pro-

duct and quotient rules, where we assumed continuity0 as Ax approaches

0, g(xl. Ax) approaches g(x1) assuming g is continuous. Thus

f[g(x14. f[g(x1)]AP-io wr.j.
f[g(xi+ atc))r. f[gocin

g

A307 less than

308. The limiting position of a secant line APs as point A approaches

point P, is the tangent line to the graph of f at point Po This is

the line



A670 7x16

680 Can the derivative of the function f defined by f(x)E3 x29 whose

value is given in frame 409 be evaluated by the theorem just proved?

Why?

/0910 ex1+ Ax) exi)

f [g(x3.4. ax) f[dx3)]
l920 Thus9Algo

Ax)1- f[g(x1)1

axg(x1+ 134-114gikx.1i 1
377

By changing to alternate notation9 g(xl* Aic) gl* Ag and g(xl)sa

A308. making hgrph off

0771.1.111PC=C1110

3090 This tangent lines obtained from the limiting position of the

secant line AP9 has slope 0



A680 Yes9 it can because n

69, Thus9 if f(x) E:4 x29 f'

that obtained in frame 40?

A1920 gl

193. Thus9

A309 0 1

lim
g(Li* ft)c-FAT(:x1)

1im
(g1.0,

e 3.1M

(g1+ 44*g1

a ths_positive inteEr

0
1.10.210.1.0474

Does this answer agree with

f[g(x14. AX) ]=3 f[g(X1)

111,

frg14 116c f[gI2

f[gl* 11141 f[gl]
.1...1.MC.W.lSMK

310. Thus9 the slopes of the secant lines as we approach P on the graph

of f by points to the left and right of P9 are numerically (2s114212_2ns22100



A690 2x19 Yes

7o0 Mb might also check Theorem 1 (if f(x) s x9 then fqx1)0 1) bI the

power differentiation formula0 lib see that f(x) m x can be written with

a positive integral exponent as f(x)a

f(g141. Ag)
f(g)

1940 Mak+ A4rdog1 as Ag...09 so lira

(g14. Aggl
Ag

f(g14) -Ag)-f(g
1
)

Ag

A3100 equal

311. The previous statement is equivalent to the statement that

f(x14. Ax)- f(xl)

Ax



A700 xi

71. Thuss if f(x) $.1 xis by the pawer differentiation formulas

fooci)E-4 0

A2211__Aett2

f(g14 Ag)- f(
gl

)

91950 By definition ilk
AgA P 0

4*

f(x.1+

A311. lim
Ax

Ax-oblo

312. Thuss if f is defined by f(x) e xs the derivative of fs evaluated

at xi (the slope of the tangent to the graph of f at x xl) xists

and has numerical value Is this result consistent with Theoram

1?



An. 10: oE-101*3 1

72. Does the answer in the previous frame check with the result of

the first theoreml

A1950 f1(g1)

196. In alternate notation, f'(g1)

A3120 1 Yes

3130 Consider the second theorem we proved concerning the derivative

of a function f defined by f(x) ft k, where k is a constant. For this

function, fp(x1)0



A:72p Yes

no It will be proved later in your calculus course that if f(x)c,4 xns

where n is

true that

ta9
(sow

anz real numbers rather than a positive integers it is still

f°(x1)64

6. fotex1)]

197. Referring back to frame 1909 we have shown the required equality()

You should review the proof of this theorems since it is the most diffi-

cult proof demonstrated thus far. Stated agains the theorem readss

If F(x) ft f[g(x)10 and f°[g(x1)] and g°(xl) exists then F°(xl)ft

4313. 0

314. Graph this function on your own papers indicating a point P with

x-coordinate xi on your graph.



A730 n 0 xin'l

4

74. ThusD if f(x) x fft 3 qx )E1 3 4 xi3 -5
-5 xl - * 0 If f(x/a x 9

fqxl)m -5 xl°5-1m 0fiMraraor=M..vmar.t

A1970 ft[g(x1)J0 gq,(1)

1980 Since most of the composite functions co want to consider will

be powers of a function of x3 i.e. [g(x)Pwbe)re n is a xeal numbero

-le can prove a corollary to Theorem 8. CorollEz. If F(x)qg(x)Pp

and gp(xl) exists9 F0(x1)c n[g(x1)]
n-1

0 g°(x1). Add this corollary

to your list.

k3140

(04

(Noteg Your point P may have

been placed differently.)

315. Choose a poInt B on the graph of f defined by f(x) m k9 with

x-coordinate slightly greater than x19 say xi+ Ax. Indicate such a

point B on your graph.



A740 -5
Caoaawczat..t

750 We have now proved three basic theorems for finding the derivative

of simple functions. These theorems express the derivativt of the in-

dependent variables the constant funotions and a positive integral power

of the independent variables the last of which we extended to any real

exponent. Review these theorems from your list at this time.

199. If F(x) .1 f[g(x)]41[g(x)Ps where g(x)..,

f[g(x) f(Z) Z

A315.
65,10 f, 3

X
XI X14.40(

3160 A secant line PB to the graph of f is the same as the graph of .



760 Following are 6 exercises you should be able to do using the

theorems.
8

(a) if f(x)s x f°(xl)m,

(b) If f(x) fie '4"9 ( Xl)

(c) If f(x) m x1.70 f0(X1)21 ...smlummmmwom

(d) If f(x) s 10°2 f°(x1)23

(e) If f(x) tq ies f(x1)6i

(f) If f(x)$a xus f8(x1)s

A1990 n

200. If we let g(x) F3 z in the statement of Theorem 8s we have

F(x) s f[g(x)]m f(z), F°(xl)ba f'[g(x1)]0 gp(x) fq )0 zi

A316. f (or an equivalent expression)

317. The tangent line to the graph of f defined by f(x) m ki; i.e0 the

limiting position of a secant line PB as point B approaches point Ps

is

Skip a page for the answer to frame 317.



3
8

A76. (a) Xi 9 (13) 09 (C) 1.7X3:79 (a) 0, (e) You do not yet

know haw to find Iht_tbetrimIlIts1_21141Leamallim beJause the vari-

t21D1._..12,i_.:p_...,_tlieexonent rather than the bastLas_isicsialtheLsol_ier

differentiation formula. (f)

77. As you might expect, the three theorems we have proved certainly

are not sufficient to find the derivatives of all functions one en-

counters in differential calculus. We will now prove four more theorems

that permit differentiation of slightly more complicated functions com-

posed of sums, differences, products and quotients of simpler functions.

Because a derivative is a limit, you should expect theorems concerning

derivatives of functions composed of sams differences, products and

quotients of functions to depend on limit theorems concerning 9

and of functions.

A2000 z
1

201. If we let g(x) m z in the statement of the corollary, we have

F(x)m[g(x) jneR zn

Fi(x1)" nEg(x1)]n-1. gP(x1)" n(z1) n=1.° C111111111=711C,OGI



A770 SUMS differenceAu2tients

78. Our next theorem concerns the derivative of a sum of 2 functions.

From the preceding remarks9 because the limit of the sum of 2 functions

is the sum of the limits of the fUnctions3 you should expect that the

derivative of the sum of 2 functions is

A2010

202. Comparing the final expressions for F°(x1) in both the theorem

and the 13orollary (fp(1 z ). w° and n[z
1

]
n-1

2°) we must show
1

A3170 Att_u_aph of f

318. The graph of f makes an inclination angle of degrees with

the positive x-axis and hence has slope



080 the sum of the derivatilves of the functions

79. Our next theorem readss Theorem 4. If f(x) n w(x)+ v(x)9 where

w and v are functions of x as indicated9 and w°(xl) and va(xl) exists

then f°(xl)i.s w2(x1)+ le(x1). Enter this theorem on your list.

A2020
ntzip.-1

203. That°s easy: Since f(z)H tn (see frame 201)9 by the power dif-

ferentiation formu1a9 f"(z1)010
/bur answer should correctly complete the statement when placed in the

box.

A318 0 01L__

3290 Choose a point A on the graph with x-coordinate slightly less

than P. Indicate such a point A on your graph.



80. This theoy'em xvate6 that the darisatiTe of 1,:ne SUM of i furrtions

IS the f th? derl4Ati7es of thi5 2 faactionso prOWilel tne

atives exist0

-n-1 0

204. Taass, If F(x)e, zns rOt, ;) zzn j 0 9 V ;f = g(x)s thel

coro7..lary readvt IfF(109.g6OP,9andig(t) and gq) x 8A1601.5)
L A

VOL.1)

A319.

exi) which VAZ t0 be pr.:,:ye4i0

./(1),K)

A F
13

0 xl

3200 The limiting position of a seant line APs as point A approaches

point Ps is the tangent line to the graph of f at point P. This is

0



A80 sum

81. Let us proceed through the nwJessary 4 steps to find the derlf-

ative9 f°(x1)9 evaluated at xv, for f(x) w(x)4. v(x)0 Step (1) gives

A204. n 0 ig(x1)311c4

and f(x1+ Ax)m

205. It should again be emphasized that a:11 composite functions are

not powers of a function. An example of such an exception is the

i

trigonometric function f o g defined by (f o g)(x)r, sin kx
2
4 7)9 where

g(x)t4e f(z)E., sin z.

A2.221-Jilf_Eitet-of f

321 . The graph of f has slope 4



820 In step (2)9 f(x14 Ax)- f(x1)m[w(x14 Ax)-#. v(x14 Ax)]-(14(x/).4- v(x1)]

m w(x1+ Ax)* v(x14i Ax)- w(xI)- v(x1)

(grouping like terms) ba[w(x14. Ax)- w(x1)1+(v(x1llf Ax)-

A200 (x24. 71

206. We will not now consider such composite functions as cited in

the previous frame. Let us focus on the use of the corollary to Theorem

80 If F is defined by F(x)1e1A5 - x22 -5

function defined by o g)(x)E3 f[g(x)]H(25

f(z)m z
IN

'0

A321. 0

x % 59 F is the composite

1

x2)-9 where g(x) 25 x
2
9

322. Thus9 the tangent lines at point P exist because as we approach

P on the graph of f by points to the left and right of P9

f(xl+ AX). f(x1)

lim m
Ax



A82. v(x1)

83. step (3)

1
A206*

2

expresses
Ax

f(x1+ Ax)- f(x1)

(putting each expression
in square brackets over
the denominator Ax.)

(w(x1+Ax)-w(x1))4[v(x1+Ax).v

W (Xi+ AX) 1.1(x2)

Ax

1

207. F(x) = f[g(x)]=[g(432 so the corollary states that if F(x)=

[g(x)311, then Fp(x1)=1 n(g(x1))
n-1. g'(x1) where, in this case, n = 0

A322. lim
Ax4.400

f(xi+ Ax)- f(xl)

323. Thus, if f is defined by f(x)so k, the derivative of f evaluated

at xi (the slope of the tangent line to the graph of f at xl) exists

and has numerical value 0 Is this result consistent with Theorem 2?



v(xl* Ax) -

A830 Ax
Caormw-lw.moramiorromrapar..an

840 In step (4) we take the limit of the above

f(x1' Ax)- f(c)
Ax alirt.o(w(x.i4

" ( Xi)

Ax

(2)
41° r °(X1)

Supply reasons for statements (1) and (2).

1
A2070 -2-

difference quotients

-37( 4 Ax) v(xxi
1

v(xl4tx)-

4AiiN0 Ax

1

208. For the above composite function0 F(x) w f[g(x),16(25 - x2)20

g(x) m 25 - x20 so g(x )61; -----°

A3230 2Ita

324. Since the derivative of f(x) evaluated at xl can be interpreted

as the slope of the tangent to the graph of f at the point with

x-coordinate x
13

we know that the derivative wuld not exist (would

not be defined) at points on the graph for which the slope of the

tangent line does not exist. At such points0 the tangent line may

assume a (horizontal vertical) position.



A640 (1) The limit of a sam_of two functions is the sum of the limits

of thc tmo functions if thesemliiIImLELIii_a_kfiniIIma.

w(x1+ Ax)- w(xl)

Alx10 Ax

le(x1).

The same is true of the second term

850 Ife have now proved that if f(x) w(x)4 v(x)9 and w°(x1) and v°(xl)

exist9 then fqx1)m w°(x1)4. v8(x1)0 Let us now consider several exam .

pies of this theorem. If f(x) 01 x 79 w(x) m x9 v(x) m 79 w°(x1)es 19

v°(xl)r, 09 so fqx1)ia w°(x1) vi(xl)m 4

A2080 25 xi
2

209. For the above composite ftnction9 g(x) 61 25 - x29 so e(xl)ag

A324. vertical

0
011=11111=1.1MO

325. Let us examine this situation in terms of the previously dis-

cussed function F defined by F(x)1(12-57-72. The domain of this function

is defined by the inequality -5 x 5 and the range is defined by the

inequality



A85 o

86. If f(x) si x3 6 m x3+ (-6)9 w(x) k== x39 v(x) m 69 we(xl)m 9

vt(xl)m , so fp(xl)mi w(x1)* vqx1)0

A2090

1

2100 Thus, if F(x)m[g(x)]7, r(xl)di n[g(x1)111140 e(x1)

1
1

7=;, 1
[25 )
2 xi

ponent on the quantity (25 -
IIIIMOC71112MIL,MINIMINIIIM=KMMI.0

A3250 0 y sl 5

326. Recalling the graph of this function, at what point(s) would the

tangent line(s) be parallel to the y-axis, or assume a vertical position?



A860 3x129 09 32X, 0 0

870 If f(x) *.i x4+ x9 w(x)al 9 v(x) 9 1C9

______,9 SO ff(x1)821,e(x1)* vl(x1)22 ,

.1

A2100 -x1(25 x ) (Note that this expression can be rationalized )

7

211. If F is defined by F(x)=(x2- 2x - 3)29 x2- 2x - 3 09 F is the

composite function f o g defined by (f o g)(x)gs f[g(x)]0(x2*- 2x - 3)29

Oil

where g(x)id x2- 2x - 30 f(z) fa z

A3260 (412)1_15_12/

327. At what point(s) would the slope(s) of the tangent line(s) not

exist?



8

88. Now it's your turn: If f(x) w x7- x20 f°(x )fti
1

A211.

7

2120 F(x) iir f[g(x)352(g(x)320 so we use the corollary to Theorem 80 stat-

ing that if F(x)m[g(x)]'0 then F°(xl)mg n[g(x1)3n-14, 0

A32745.2.2.1

328, At what points) would the derivative(s) of the function not

exist (not be defined)?



1
8

A88. -x ( - 2x
7 1 1

89. It should be noted that it is not necessarily the case that if the

derivatives of two functions fail to exist for some value(s) of x the

derivative of the sum of these functions fails to exist at xl. Consider 1

f(x)= w(x)+ v(x) =Ix1+[-Ixl] where w(x)=1x1 and v(x)=

213. For F(x)= f[g(x)]=(x2- 2x - 3)2: n =

A328. (-5,0), (5,0)

329. Let us now compute the derivative of F(x)=1/25 x
2

to see if

the above conjecture is actually the case. For F(x)=\/25 - x
2

s

Fqx1)= (Compute your answer without reference to previous

results.)



A89, -Ixl

90. Neither wqx
1
) nor vqx

1
) exist for x

1
=

'

7A213. -
2

214. For the above composite function F defined by F(x)= f[g(x)]=

7

(x2- 2x - 3)2, g(x)= x2- 2x - 3, g(x)=

-1

A329. - x1(25 - x12) 2

330. To find the slopes of the tangent lines at the points (4,0) and

(5,0), we must evaluate Fq ) and Fq ).



91, however, for the sum of the above functions, f(x)=. w(x)+ v(x)=

A211!, 1c12- 2x1- 3

215, For the above composite function, g(x) = x
2
- 2x -

A330,

331. Thus, if F'(x1)= -7.1(2 x
1 '

,

so g'(x1)=

and F'(5)=



A9lo 0 for all values of xo (asitsiatT112.

92. If an algebraic expression is the difference of 2 functions§ ioeop

f(x) n 'VW 9 you should expect fqx1)H

A215. 2x1 - 2

7
216. Nows if F(x)ft[g(x))29 Fi(x1)F4 j Oxi) becomes

asa
Fe(xl)ga (x12. 2xl. 3) (2xl. 2)0

A3310 Both answers are undefined,

332. What are the equations of the tangent lines to the graph of F

defined by F(x)9,121- 1:2 at the points (-590) and (590? (Remember

that these tangent lines are parallel to the y-axis and pass through

the points (-590) and (590)e)



A920 Wq1C1)= Ve(1:1)
OlIMMOMMW.044 arl mwaNK ,...mr.n.,,mcaawr

93. One could prove the above statement9 a theorems with the help of

the limit theorom that states the limit of tbe difference of two nine-

Lions is equal to the difference of thqb4 ...r-Mam.rAmorxm-mmei

(We will omit the proofs but the reader is advieed to complete the

proof as an exercise.)

A2160 4. or ci)

2V0 Muss if F(xHx2-- F0

c.D
.3, 4

!
- 4:4C, (2x_. 2)

2

(641Tella,..E3t13' answerLIANLLSE

a fractional exponent on the quanti
1

ty (x2
1

1=11121,7..101.1

A3320 x u -5 x 5

3330 In this cases the slopes of the tangent lines don"t exist at two

points on the graph of F9 but F is defined at these points and these tan-

gent lines exists so it is possible to write their equations. Draw these

tangent lines on your graph and label them.



A9:30 limits of the two binctions if these limits exist

940 The theorem readss Theorem 50 If f(x) sa w(x) - v(x) 0 then

fqx:dce w1(x1)- v/(xj.) if w°(xi) and v°(xl) exist. Add this theorem

to your list.

5

0170 7(x12- 2x1- 3)1'2 (x
1
- 1)

2180 If F is defined by F(x) Eg x 09 F(x)Ei(f o g)(x)Ea
(x4- 1)

f[g(x)]aa(x 4. 3.)12

A333. (0)5)

1

334. Consider the function f defined by f(x) re x149 x O. Graph this

function on your own paper for future reference.



95. If f(x)EN - x9 w(x)R iy v(x) Fg x9 w°(xi)es v8(xl)sia

f (xi) 23 ) ( 29 0

A218.

2190 So F(x)es(f o g)(x)a f[g(x)j.(.4. ir2 where g(x)0

f(z)10

A3340

X

335. The domain of this function is defined by the inequality x 09

as cited above a and the range of f is defined by



A950 Oa ip 1

96, If f(x) == x x29 w(x)= 9 V(X)111 9 Wlym 9 111(x1)E

wl(x1)- le(x1)-

A219. -2

2200 F(x)= f[g(x)]=[g(x)r2s, so our corollary will apply with n = 0

A3350 the inequality y 0

336. From the graph of this funntiono at what point(s) would the tan-

gent line(s) be parallel to the y-axis?



A960 X9 X
2

9 19 2x 1 c. 2X1
(Does your answer check with the

derivative of this functiond obtained by the 4 stepss, given in frame

49?)
9 ,

1

97. Again it°s your turn°, If f(x)mi fe(x )F9

A2200

221. For the above composite functions, F(x) 63 f[g(x)P4(

g(xl)Ed and g'(xl)H

A22.0a__(21421

14 -2
9

337. At what point(s) would the slope(s) of the tangent line(s) not

exist?



9 74
A970 IF ( v2 is a constant)

980 Since many algebraic expressions are products of simpler funo-

tions$ we will now prove a theorem concerning the derivative of the

product of 2 functions. Consider the function f(x) -i w(x)o v(x)0

Since the limit of a product of 2 functions is the product of the

limits of the 2 functions9 (i0e.x1IR [w(40 v(x) ] m w(x)o v(x))

would you expect that the derivative of a product of 2 fUnctions is

the product of the derivatives of the 2 fUnctions (100

WO. 44.

222. Nows if F(xYaig(x) 1)29 rifdy fic=110

(simplify L11glaurgmmslmrisaviaiamoEgm22mITTLEILIht_guanIitz

(44-

A3370,120/

338. At what poilt(s) would the derivative(s) of the function not

exist?



)C980TJmELITAmIEtq_:msa:_m were trickedg M.Lpiolatnrot

that simpltt

990 The theorem readss Theorem 6. If f(i) vi w(x) o v(x)D then

V(xl)rs w(x1)0 TP(x1)4. Ti(x1)0 w4(x1) provided w0(x1) and vqx1)

exist. Add this theorem to your list0

A2220 -8xl
3
(xi - )-3

1

223. For F(xHx - 2x2 )*2'9 n m g(xl)h- 9 ge(xl)m
1

.3

74-

339 0 At the point (090)3 fi(x1 ) 0 xi or V(0) is

0



100. Study the statement of this theorem carefully. Stating this

theorem in words9 we haves The derivative of the product of two func-

tions of x9 evaluated at xl9 is the first fUnction mu'L.tiplied by the

derivative of the second function plus the second function multiplied

by 9 provided these derivatives exist.

A2230 xl- 2x1
2

.9 1

1

2240 For F(x)R(x 2x2)29 F9(x1)E1 (1.ealeative_emser.L.torthe

quantity (xl- 2x12)0

P3390 undefined

3400 Can you write the equation of the tangent line for the above

function at the point (090)7 (Remember that this tangent line is par-

allel to the y-axis and passes through the point (090)0)

Skip two pages for the answer to frame 3400



A1000 the derivative of the first function (You should become familiar

with stating all the theorems in words9 as an aid to remembering0)

101. Before proving this theorem9 consider an alternate notation for

w(x1)9 w(x14. Ax)9 v(x1)9 v(x14. Ax)9 which will simplify the notation

in our proof, Let w(xl)a wit, If xi changes by an amount Axs 1.090

x xl Ax9 then9 since w is a function of x9 w will change by an

amount9 which we will call Aw6 Thus9 w(x1+ Ax) mall be denoted by

wfo. Ag. Reasoning in a similar manners let v(x1)$-- vi and let

v(xl+ Ax) be denoted by

-1

A2246 2.(xl- 2x1)
7(1

-
11111Callielal

2256 Following is a set of exercises you should be able to differen-

tiate using the theorems and corollaries developed thus far. Review

your list of these theorems and corollaries at this time9 before pro-

ceeding to the exercises below.
5

(a) If f(x)m(x - 1)744 fl(x1)0

5

(b) If f(x)s(x2- 1)79 fo(xl)m

(c) If f(x)49 fl(xi)m

(d) If f(x)ft()A-7.7)59 f°(x1)m

(e) If f(x)61('F--1-x2w 1)29

(f) If f(x)442., 19 fqx1)is



A1010 v
1
4. Av

102. Returning to the proof of Theorem 69 we will follow the four

steps for finding the derivative of f(x) evaluated at xl. In step (1)9

if f(x).., w(x)o v(x)9 then f(x1) w(x1)0 v(x1)ft (in alternate notation).

3 cra

A225, (a) i(x1.- 1 '29 (b) Sx1(xi i) s 4 4 9twa.sImr
3

(d) 1)7 (Sbe (a))9 (e)

-2

(r) :4- (x 1) 3
3}Me .1.11.11.111711711.NIMC

226. Let us return to the definition a the derivative o f evalaated

at x19 i.e. Jo f(xl* f6c1) when this limit exists. Thus far9

we have considered examples of functions such that this limit did

exist. However9 you know from the section on 'I:knits that it might

not always be the case that this limit exist. Gmsider the function

f defined by f(x)esclx - 11. Graph this function on a separate paper

for future reference.



A102. w 0 v..

103. If f(ip3 w(x)0 v( xi 9 f (x1+ (

(w1+ bw)0 (in ilternate notation).

A226.

V(X14 111c)

227. We will proceed to obtain the derivative of f(x)eitjx - 11 evalw.

afed at xi! 19 by proceeding througn the Youx slAps in expressing the

limit of the difference quotient. If f(x)qx = li9 f(x1) dxl- I and

f(x141. Ax)m

the yaxis

341. Again we note that even though the slope of the tangent line

doesn°t exist at the point (090) on the graph of f9 since f is de-

fined at (090) and the tangent line exists9 it (LEL is not) possible

to write the equation of the tangent line.



A2030 (v14. Av)

1040 la step (2)2 f(x14- Ax

(in slaiplifiAcialm).

A227. 1(x], Ax)- 11

f(x1)'(iii+ itil)*(y

228. In step (2)2 Ax) - f(xl)ms

A341. is

342. If f is defined by f(

Av) .11() vies

x 22 graph this fanction.



A1040 Av v Aw 4 AW o Av

i(x146 Ax)
105. In step (3)9

Ax

f(xl) wio Av 4 vio Aw Aw 0 AN.

Ax

(dividing each term AvW * *
in the numerator by 1 Ax
Ax)

A2280 1(x1* Ax)- 11-1x1- 11

1(197 ex)-
229. In step (3)

A342t

X

Ax

343. The domain of r is defined by the inequality x 29 and the range

Skip a page for the answer to frame 343.



( 1 )

eAlbk flvd AP +Am (tai 0 ID
( 2 )

( A300141) ( A.400 IP 4( AP405r1 14/40 4.< ) (Ai% 17)

413..e(atilfo 0+ vi(d6-4o rx)4(1,30o*(igxo

Stipply reasons for (1)# (2)9 (3) o



A202...._12) The limit of a smm is the sum of the limits if these limits

exist. _SD The limit of a roduct is the roduct of the limits if

these limits existC_i_yjj43T..mitofaconstant is that constant0

(w
1
and v are independent of Ax9 and hence are constants())

1

107. Recalling the alternate notation for the derivative of y m f(x)

evaluated at x19 f°(x1)mita40 to we haveAllpo fic/ 10(x) and

Av
Ax

f(x3.4 ex)- ll-bcf. 3.

A230, Alpo Ax

2:3l . Since we want to evaluate the limit of this difference quotient

for xim 19 the expremeion becomes

x1+ lt-fx1°
ex

11 1 1 4LL.-...4

Axse4010

A343. defined by the inequality y 0

344. From the graph of this function9 you would expect the derivative(s)

(the slope(s) of the tangent line(s)) not to exist at the point(s) with

coordinates 0



A107. vqx1)

108. The terms in the last line of frame 106 can now be expressed as

weal* me °*(31:1), °
AitTio gi vl 10(x1) andAw

Agadr iOEA0

*231
1.441

AWO Ax

1.4E232. Ifigik is to exists lirn
Ax,4!0" nA

3144.1122.91

345. Let us evaluate the derivative of the function f defined by

f(x)=1-077=-E and check the above conjecture. Thus fqx1)10



A108. v*(x1)

f(x.1+ ax)-
f(xl)

vf(x1)+ vi.v(x1)*
Ax109. Thus, we haveL0100

A2-..A232. lim Lc 1

Am-00 Ax

233. If this means toc > 09 so9 recalling from the limit sec-

tion the function f defined by f(x)mfxl, Jxfr 01171.101.

.1

A345. i(xl- 2) 42. (nu should have used the corollary to Theorem 8 for

this differentiation0.

346. For the point at which the derivative of the above function should

not exist, (2,0), f*(



A109. ApjelAw v0(x),)

110. Since the limit of the difference quotient on the left hand side

of the expression in frame 109 is f0(x1)0 we have

My" w. vp(x1)4. vlo AilroAw v0(x1). Reviewing the

statement of Theoram 6 on your list and comparing this statement to

our expression for P"(xl) in the preceding sentence we must show that

the termalik Aw o vp(xl) has numerical value

A233. Ax

2314. If Ax-4'0m0 this means Ax < 00 so reasoning as above, !Axiom

A31L60 2a undefined

3h7. Mb can write the equation of the tangent line for the function

f defined by f(x)laVi7:1- at the point (2,0) becalse f is defined at

this point and the tangent line exists. This tangent line has equation



lll0 Since Ne(xl) is a constantp i0e0

v evaluated at a fixed or constant value xv we must show 0 00

the value of the derivative of

A2340

2350 Thusa lim +IPA- lim Ax 0 lim 1 R
'-'"""-""" °AX 41. Ax

Ax-40 Ax-o0

16470 11. 2

348 0 In the case that the slope of a tangent line does not exists the

angent line may not exist either0 It is not possible to write the

equation of the tangent line to the graph of f if there is no second

elemento f(x1)$ belonging to the function f whose first element is
17110111021111.

0



A1110 A140 Aw

112. Thuso we must shaw that as Ax approaches Oo Aw approaches 00

Consider the expression w(x.1+ Ax) as wi+ Aw VI(x1)4 Aw19 in terms of

our alternate notation. For w(x
1

Ax)o we see that as Ax approaches

09t1243 ifi(JC37

A2350 I Note that we have used the theorem stating lAWc 63 k for a

constant k.

236. Ando lim 114 sa lim a liM col a

Ax.400
644, Ax-400 4m6

A3148. xj.

349 Consider the function f defined by f(x)0 1. Graph this function

on your own paper.



A1120 w(xl) or wl (Note that here we must assume the continuity of the

Amction ws a concept we will not discuss in this unit())

113. If this is the cases then the right side of above equalitys

w(x14. Ax)la w(x1)40. Aw'must approach the same value w(xl) as Ax

approaches O. This means that if Ax approaches 09 Aw approaches

A236. -1

Ax)- f(x )

217. In this cases we see that lim
1

m 1 and

f(Xi+ AX)° f(X3)
lim eve

Ax
0

Ir349.

0

350. The domain of the above ftinction is the set of all real non-zero

numbers and the range is the set of



A1122_2

114. Thuss if Ax awoaches 09 then Aw approaches 00 soatwolAw can be

0rewrittenailloAw 0414110w and this limit has numerical value

A237.

f(x
1
4. Ax)- f(x1

)

238. Sipa% Az
------- for x1H 1 doesn°t exist bem).use

A3500 all real non-zero numbers

351. From the graph of this functions, you would expect the derivative(s)

(slope(s) of the tangent line(s)) not to exist for value(s) of x163
GIMIENCREMA



Ail24.

115. Mb have nou proved the result required in frame 1109 since

Aill0Aw (
0 0 v°(x1)=3

A2380 the left ati_Eighthand limits art_poLtaEg (or an equivalent

expression)

Ax)- f(x0
23190 Thus9 if f(x)Htx 214100 doesn°t exist at

xital 1. This is equivalent to the statement that f0(x1)E-1 f°(1) 0

ALLE100-thetintlinesapr_p_oach a vertical position for points

on the graph of f with x-coordinates near 00

352. Evaluating the derivative of f defined by f(x)sa 19 we have

fp(xl)s



A115. 0

116. Reviewing2 we have proved the theorem that if f(x)H.w(x). v(x)9

and v*(xl) and wp(x1) exist, then fqx1)::. w1 vp(x1)+ v10 wqx1)is

w(xi)* v"(x1)4. v(x1). wqx1). Stated in words, the theorem says that

the derivative of the product of two functions of x9 evaluated at x19.

plus

each

is the first function multiplied by

the second function multiplied by

term in the sum evaluated at x10 provided the derivatives exist.

A239 doesn't exist

240. There are other examples of functions that don't possess deriv-

atives at some value(s) of x12 IONIA f(x14 f(xj) (4oes2 does not)

wdst.

A352.
2

xl

353. At the point with x-coordinate xiss 02 fqx.i)n ar, is
xl'



A116 the derivative of the second function the derivative of the

first function

117. Now consider f(x) sa w(x)* v(x) 10( X2) *(9C3) 9 where 14(4 " x2 9

31(3) 1" x3, wqx1)gg 2x1, v0(x1)n

A240. does not

0=1:Imdm.:1111

241. For the moment, we will confine our attention to functions which

possess derivatives at all points in the domain of definition of the

function. 'We will return tc other exceptional cases when writing

equations of tangent lines in the next section. One such exception

just cited is f(x)m evaluated at xis .

0

A353. undefined

354. The equation of the tangent line to the graph of the function f

defined by f(x) ms at a point with x-coordinate xime 0 doesn't exist be-

cause there is no corresponding second element belonging to this lune-

tion whose first element is ipstancmilo

Skip a page for the answer to frame 354.



13.80 If f(x) s w(x)° v(x)E4x2)0(x3)9 then f°(x1)23 w(x1)0 vqx1)*

v(x1)0 wp(x1)"(x12)0(3x12)4(x13)0(2x1)Ei 3x140 2x14w _Go 7ou should

check to see if the theorem is applied as we stated it aboveg i0e0 first

times the derivative of the second plus second times the derivative of

the firsto

A2410JX - i1 1

242,, Perhaps you have felt that much of our work with the derivative

thus far seems to be very much like that in the section on limits0

This is not surprising since the derivative is a limit, To extend

the analogy even further9 we can relate the applications of the limit

to applications of the derivative0 One such application is that of the

derivative considered as the slope of a tangent line to the graph of f

evaluated at x
1
g i0e0 evaluated at a point on the graph whose x-coordinate

is



All8.

ll90 Did you realize tha

f(x) t.1 x20 x3,9 evaluated

x20 x3R x5,9 we can use

fqx1)14

A2420 x
1

pleselmmilywaaleamea paimmo

24.3. Conside

below. The

on your ow

A3540 0

t you could also find the derivative of

at xis in a different wayl Since f(x)i-?

the power differentiation formula to obtain

r a general function f stmh as the one whose graph appears

coordinates of point A are ( 9 ). Copy this graph

n paper for fUture reference.

7

355. For the functions f defined by f(x)m)/25 x's f(x)IE x 9

x c=' 2$ we were able to write the equations of the tangent

lines at points on the graphs of these functions where the slopes of

these lines didn°t exist. This was the case because the tangent lines

471717111M=711111...=.....t
0



A119. 5x
1
4 Note that the answers in frames 118 and 119 are the same.

120. Let us now proceed to find the derivative of f(x) m w(x)o v(x)8

x(1 -x) by the above theorem. Here w(x)w x$ v(x)m 1-x0 w°(xl)m

VI(C1)=
1.1111INIMIMPO

2440 Choose a point B on the graph$ in the neighborhood of A9 with

x-coordinate x
1
41. Ax$ where Ax > 0. Indicate such a point B on your

graph.

A3550 existed (or an equivalent expression)

356. To summarize our discussion in the preceding section, we have

presented functions for which the derivative does not exist because

lim f(x14. Ax)e. f(xl) yr

Ax



-

A1200 la -1

121. Thus, if f(x)a w(x)o v(x)ms x(1-x)2 fqx1)6a-w(x1)0 v°(xi)*

v(x1)0 wt(xl)m x10( -1)+(1-x1)° 1 es 0

A2144.

245. Depending on haw "near" we want point B to be to point A will

depend on how near (x14. Ax) is to xi, or haw near Ax is to

f(xi+ Ax)- f(x )
1

A356. lim
Aixax-4.0

0

357. Also, the derivative of a fUnction will not exist if the expres-

f(xl. Ax)- f(x)
sion forAppo a'

Ax
becomes 2 even though f(xl)

exists.



A1210 1 - 2x,

1220 We could have found the derivative of the above function in,

another manner0 Do yru see how? If f(x) 18 x(l-x)H x-x
2
0 then flOys=

( m Theorem 5 for the dervative of the difference of 2 fUnctions)0

Does this answer check with that obtained in the previous frame?

A2450 zero

2460 Regardless of the value of Axs the point B has coordinates

( )0 Indicate these coordinates on your graph0

43570 infinite

3580 Both a function and its derivative may fail to exist at x10 In

this cases the tangent line at xl (does4 does not) exist0

Skip a page for the answer to fraine 3580



A1220 1 - 2x1 Yes

123, lie also computed the derivative of this

ing the theorems of differentiation. Check

with that obtained for ths function i(x)

3 answers the same?

A2460 Xi+

2470 The two points A

function before introduc-

the result here obtained

x x
2 in frame 490 Ate all

and B on the graph will determine a secant line,

so defined because this line intersects the curve in at least two points

in a neighborhood

cause in high se

as a line whi

of A. Such a definition should seem reasonable, be-

hool plane geometry, a secant line to a circle is defined

ch intersects a circle in distinct point(s).



42 Yes

124. If f(x) a Tv(x)o v(x)m(AF* 1)( 0 14(x) V(X) 0

V(Xl)n VrOti ........o

A247. two

248 We want to show that the derivative of f9 evaluated at x19 is

the same as the slope of the langsnt Ilne to tne gi'aph of f at the

point witn x-coordinate x1 wherA this d&4rivative exists. Let us use

a secant line as an aid. Referring t the above graphs, the slope of

a seant line AB9 this slope denoted by ms9 can be expressed in terms

of the coordinates of points A and Bg 10e09 m H f(I14. f(Xi) 0

A3580 does not

3 7i1717CT: Xi

:1590 Following is a set of exercises that will test your understanding

of the previous section.

(a) If f(1)4x 4.219 does f°(-2) exist? (A graph may be helpful in

respondinge)

1
(b) If f(x)L-i find the equation of the tangent line at the point

with x-rcoordinate x
1
a 3.

(c) If f(x)E9-4-77-9 find the equation of the tangent line at the point

(490)0

(d) If f(x)aA42- 99 find the equation of the tangent line at the point

(SA).

(e) If f(x)477 find the equation of the tangent line at the point

1

(f) If f(x) u x29 x 09 find the equation of the tangent line at the point

(090)0
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frf,x, ilt)- f(x)

22490 A 3e(ry,ant ifle AB aseApnr a 1.:Atit1:ag that of the tangent

line to the gx,iptA p)int AD a i approah6s

f(xi4 c, f(x.
.1"

A3590 (a) Nclg fay' "If =4:9 lila
aX6400
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tlae-f00"
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and

(b) Neither f(3) nor f°(3) Lisso there is no n'Lline at the

inaloirtto
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Sil2Le3 3 CV(31 tincleifipad., Vat
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APPENDIX C

CRITERION TEST ON THE DERIVATIVE
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Criterion

Mark the correct answer a

Test on the Derivative

nd do your computation on the answer sheeto

Make no marks on the testi,

10 If f(x) w 5x3+ 6x2- 7x: 1° 40

(a) 15x124- 12x1* 4

(b) 15x12+ 12x1- 7x1

(c) 15x1

(d) 15x124 12x14. 4

If f(x)-(x
24' 3X 5)(x3+ 6x .5x)9 V(x1)1-1

(a) (2x1+ 3)(3x12* 12x1 5)

b) (x12# 5x,- 5)(3x12+12x1- 5)-(2x1+ 3)(x13+ 6x12- 5x1)

(c) (x124+. 3x1- 5)(344 12x1- 5)4(x13+ 6x12- 5x1)(2x14- 3)

(d) none of the above

30 If f(x)ii x2(2x 1)(x2+ x 3)0 ff'(xl)m

(a) x1(10x11*
142

- 21x1+ 6)

(b) 14ari(2x3.*

(c) x12(67c12*-2x1 7)

(d) 2x12(2x14. 1)

4. If f(x)m(x2- 4)Ax 4. 2)0 x 11-23 ft(xl)*

(a) xi. 2

(b) 2x1

(c) 1

(0(3E12+ 2pci.* 14)Axi.* 2)



50 If f(x) ai x + 1/(x + 2)(x + 3)2 x -22 -32

(a) -(x3.2- 2x3.- 3-)/(5ri+ 2)2(x1+ 3)2

(b) 2x1+ 31(x1+ 2)2(x37 3)2

(o) x3.2- 2x1+ 1./((x1+ 2)(xj+ 3) )2

(d) 1,4x3.4.

6. If f(x)re(2x3- 7x2* 9)14, flOC:dic

(a) 4(23E13-
72

+ 9)3 (6x12- 141)

(b) 8x1(2x2- 72* 9)3 (3x3.- 7)

(c) (6:12- 14x1)4

(d) 4(2x13- 7x12+ 9)3

7. If f(x)"(x2- )07(2x - 3) 2 f*(3C1)"

(a) 14(xi- 4)
6

(b) 2(x12 4)7+ 1/42c1(3c121 4)6(2xf.

(c) 2(x12,-, 4)74 7(2x1 3)(x12 146

(d) none of the above

8. If f(x)44c2+ 2x, x2+ 2x 09 f"?(X))"

(a) 2/7 (xi+ 1)(x12+ 2x1)-6/7

(b) 1/7(x12+ 2x3)26/7

(c)V2(xi+

/
(d) 70c1

2* 2x1) 5/72(x1+ 1)



9. If f(x)111( ft(x1)he

(a) (YChx12- 3)5

(b) 63413- 3x1.4. 1) 2/3

(c) 5( Orc;:-. 3x1+ 1)3(x12

(d) 5( '43.3- 5xffr 3.)2(x3.2-

10. If f(x)gliVx 7P77:79 x 79 fp(x1)°

(a) \Ai- 6/A:7

(b) 1

(91%) 1/2 [(xi" 6)(xfo 7)3'1/2(xf 6) 1

(d) 1/2 [(xi- 6)(xi. 7)31/2

11.

(a) undefined
(b) 6
(c)
(d)0

12. The slope of the tangent line to the curve y f(x) 7X3.0 6X + 1

at the point (3.02) is

(a) 2
(b) 15
(c) 3.

(a) o

13. The slope of the tangent line to the curve y f(x)ie
x2_ x3.2/5(10 ) at the point with x-mcoordinate xisd 2 is

(a) 0
(b) 2/5(-11)"3/5
(c) fl
(d) undefined



.41.

14. The slope of the tangent line to the curve y 0 f(x)m

(x 3)
1
/ (x 3) 1 / 9 X t 39 at the point (491) is

(a) 1
(b) 1/2

(c) 5/6
(d) 1/3

15. The equation of the tangent line to the curve y m f(x)m

116 . x29 4 g x g 49 at the point (094) is

(a) y 4 s
(b) y N

(c) Y X 4
(d) x y Er 4

16. The equation of the tangent line to the curve y. m f(x)w

at (-59)9 is
(a) x u 0
(b) y -5
(c) y 0
(d) x s -5

17. The equation of the tangent line to the curve x
1 / '24y1 12

0 2 1 / 9

0 x 29 0 t y t 29 at (290) is

(a) y 0 0 (x-axis)
(b) y 2

(c) x m 0 (y-axis)
(d) x m 2

180 At what point(s) would the tangent line to the curyJ y m f(x)m

x
2

x - 12 be horizontal?

(a) (-340)0(4A)
(b) (1/29.49/14)
(c) (00 42)
(d) (10 -11)



The velocity at an instant t9 the instantaneous vel,..Aty9 can be

expressed as a derivative. If S n f(t)9 where s is distance traveled

by an object in t units of timess the instantaneous velocity at the

instant in time ti9 is r
f(t

1
)

(t1)=Aiiwo 1
At

47r----19. If s f(t)1fig 7t 9t
17

39 where s is the distance measured in

miles and t the time measured in hours9 find the instantaneous velo-

city in miles per hour at time tl.

(a).WETEBT:i

(b) 1/4(7t11- 9t12# 3)-3A

(c) 4(7t1
3. 9t 24 3)3(21t

1
2- 18t

1
)

1 ,

(d) 1/4(7t
1
3-

1
9t, 24 3) 314(21t

1
2- 18t

1
)

20. If s a f(t)a(t2t. 3)49 where s and t are defined as above9 find the

instantaneous velocity in m.p.h0 at time ta.E, 1.

(a) 256
(b) 8
(c) 512
(d) 16

21. At what Alt in time would a boOy whose position is given by the

distance equation s m f(t)m -3 4- lOt 3t29 where s is the distance

measured in feet and the time measured in seconds9 be momentarily at

rest?

(a) 1/3 sec.
(b) 0 sec.
(c) 3 sec.
(d) 5/3 sec.



The derivative of a function can be laterpeted as a x'ate 3f change g

i.e. the rat,:l of change of the function with respeL. to the variable de-

fining the funtion. Thuss if 5r rs f(x) 9 f° (Xd i th at'e of change of

y(or f(.)) wh respeA to x.

22. The perimete7 of a squares expressed as a functIon of xs the side

length of the square is f(x)m 4x0 Wes know that the peri,mtex) of a

square will change aa kts side length x change. U&g the above

formula fcxr the perimeter of a square (fe: )4x9 fTr..1 the .xe.te of
,

change of the perimeter with respecT to

(a) 4
(b)

(0) 4x1

(d) 2x1

23. The clr=mference of a circle can be exlressed as a function of

xs the mdius of the cir&le. The cimumfeewe af a will change

as its radius x changes. Using the appropriate formula for the circum-

ference of a circle expressed in terms of its radius xs fLnd the rate

the s.d-, ler4th x of tne square .

of change of the circumference

(a) %L:

(b)

(c) 2v
(d) v

with respect to the radius x of the circle.

24. The area of a square can be expressed as a function

length of the square. Using the appropriate formula fo .

square expressed in terms of its side length xs find the

of the area with respect to the side of the square.

(a) xl
2

(b) 24
(c) 4xt
(d) 2 i

of xs the side

the area of a

rate of change



25. Prove: If f(x) m kis where k is a constanto f(x1)2= 0.

260 Eoes f'( -7) exist for the function f(x) s-g Ix 40 71? Why?

You may-use a graph to explain your answer('

270 If f(x)fid x2- bx +7/x2+2x -# x r °:39 19 find f1(x1) in two

ways and show that your answers are the same in both caseso

28. Give an e2amp1e of a function that is defined at all points but

doeset have a derivative at all points.
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