DOCUMENT RESUME

ED 024 636 24 SP 001 889

By- Glass, Gene V.. Maguire, Thomas O.

ANALYSIS OF TIME-SERIES QUASI-EXPERIMENTS. FINAL REPORT.

Alberta Univ., Edmonton.; Colorado Univ., Boulder.; Illinois Univ., Urbana. Center for Instructional Research and
Curriculum Evalvation (CIRCE).

Spons Agency- Office of Education (DHEW), Washington, D.C. Bureau of Research.

Bureau No-BR-6-8329

Pub Date 24 Mar 68

Grant- OEG-3-7-008329-2065

Note- 1 22p.

EDRS Price MF-$0.50 HC-$6.20

Descriptors- Computer Programs, Control Groups, Educational Psychology, *Educational Research. Experiments,

*Models, Psychology, *Research Design, *Research Methodology, »Statistical Analysis
[dentifiers- Time-Series Quasi-Experiments
The objective of this project was to investigate the adequacy of statistical
models developed by G. E. P. Box and G. C. Tiao for the analysis of time-series
quasi-experiments: (1) The basic model developed by Box and Tiao is applied to
actual time-series experiment data from two separate experiments, one in psychology
~and one in educational psychology. (2) The same model is applied in a relatively
complex experimental design to analyze data on traffic fatalities in the state of
Connecticut before and  after a legislative crackdown on speeding (3) A
generalization by Tiao of the basic model (as yet unpublished) is applied to data on
the effects of a revision of Germany's divorce laws in 1900 on the rate of divorce:
this model incorporates a “drift" parameter which accommodates series which show
either a rise or fall over time. (4) A model which is a particular generalization of the
"drift" model is presented; this more general model (developed for this study by Tiao)
incorporates a parameter to account for instantaneous change in the direction of

the drift of a series associated with the introduction of a treatment. Appendixes A |

and B contain printouts of computer programs for analyses illustrating (3) and (4).
(Author/SG)




b

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE ’

OFFICE OF EDUCATION BA- & -£22
TS DOCUMENT HAS BEENREPROUCED ECACLY S RECENED ROM T+~ 7 74 ’25/ l

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY. Final Report

Project No. 6-8329
Grant No. OEG~3-7-~008329-2065

EDO 24656

Analysis of Time-Series Quasi—~Experiments

Gene V Glass
Laboratory of Educational Research
University of Colorado
Boulder, Colorado

Thomas 0. Maguire
University of Alberta
Edmonton, Alberta

March 24, 1968

The research reported herein was performed pursuant to a
grant with the Office of Education, U.S. Department of
Eealth, Education, and Welfare. Contractors undertaking
such projects under Government sponsorship are encouraged
to express freely their professional judgment in the con-
duct of the project. Points of view or opinions stated do
not, therefore, necessarily represent official Office. of
Education position or policy.

| U.S. L ?ARTMENT OF
HEALTH, ETCUCATION, AND WELFARE

Office of Education
Bureau of Research




Table of Contents

Acknowledgments e o o o o o o o o o o o o o o o o il

Chapter I.

Chapter II.

Chapter III.

Chapter 1IV.

Chapter V.

Appendix A.

Appendix B.

Introduction « « o o ¢ o

Analysis of a Class of
Time-Series Quasi-
Experiments with the
Box-Tiao Model « « « « &

Analysis of Data on the
Connecticut Speeding
Crackdown as a Time-
Series Quasi-Experiment .

Analysis of Data on the
Revision of German
Divorce Laws as a Time-
Series Quasi-Experiment .

An Analytic Technique
Employing a Change in
Drift of a Time-Series
Associated with the
Introduction of a
Treatment o« ¢ o o o o o o

Computer Program for
Analysis of Time-Series
Experiment with Constant
Drift o« o« o o o o o o o o

Computer Program for
Analysis of Time-Series
Experiment with Possible
Change in Drift . . « . &«

® ® ® ® ® l

® ® ® ® -loo

® ® ® ® lol




Acknowledgments

The research reported herein was partially supported by
a grant from the U.S. Office of Education to the University.
of Illinois. The bulk of the work was carried out while the
authors were in residence at the Center for Instructional
Research and Curriculum Evaluation of the University of Illi~-
nois, the principal investigator as a staff member of that

unit and the co~investigator as a'graduate student. In June

1967, we both left the University of Illinois for our respec~- ‘u
tive positions. The»Uhiversity of Colorado and the University |
of Alberta have contributed to our efforts in the final stages
of this work; however, these institutions =~ and not the Uni=-
Qersity of Illinois ==~ are credited on the title pagé of this
report only because of explicit directions from the funding
agency to list institutional affiliations at the date of sub-
mission of the final report.

Three colleagues made substantial contributions to our
work. Dr. Donald T. Campbell of the Department of Psychology,
Northwestern University, served us as a consultant and supplied
data for the analyses which comprise Chapter III. Dr. David E. B
Wiley of the Department of Education, University of Chicago,

contributed valuable insights as a consultant to the project.

ii

i sk

b i B s S e e L ST — T o don i) PP N v ” oY
! bl TSRS R e e ahe S s T 3 P el T ARSI TR M ST AT I T K £ e 0 - 6 et e




The greatest debt is owed to Dr. George C. Tiao of the

Department of Statistics, University of Wisconsin.

Dr. Tiao responlded to our earnest requests for assistance : 1
with unselfish concern and with an intellectual competence §
|

which is amply displayed in the analytic techniques he

derived specifically for Chapters IV and V. 1In responding ?
with ingenuity and sophistication fd a practical need in
data analysis, Dr. Tiao has performed in the manner of the
significant statisticians of our day and has won our sincere
gratitude.

Numerous graduate students contributed to our efforts
over the past two yeérs; among them were Thomas'Bligh,

Donald Bosshart, and Perc D. Peckham. The typing of most

of the final report was done by Linda Lou Schmale.

Gene V Glass

Thomas O. Maguire

March 24, 1968
Boulder, Colorado




INTRODUCTION

The publication of "Experimental and Quasi-Experimental

e - e e e T S S e I
Chapter I | ]
Designs for Research on Teaching" by D. T. Campbell and 1
J. C. Stanley in the Handbook of Research on Teaching (1963)
represents a major advance in educational-research method=-
ology. - Already this chapter has become a much-used refer-

ence in numerous departments of psychology and sociology as

well as in schools of education. The.Campbell=Stanley chap-

ter was a presentation of various designs for the assessment
or comparison of treatment effects with a discussion of
their strengths and weaknesses. "In general, [ the multiple-
group time-series designl] is an excellent quasi=-experimental
design, perhaps the best of the more feasible designs....

The availability of repeated measurements makes [the design]

particularly appropriate to research in schools" (Campbell
and Stanley, 1963, p. 227). To date,.appropriate inferen-

tial statistical analyses of treatment. effects in all types

of time-series experiments have not been developed. Campbell
and Stanley (1963) and Campbell (1963) have lamented the lack

of appropriate analytic techniques for important time-series

quasi-experimental designs.
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Recent developments in mathematical statistics by Box
and Jenkins (1962) and Box and Tiao (1965) provide statisti-~
cal models which may very well £ill the need identified by
Campbell and Stanley. Broadly conceived, the objective of
this project was the investigation of the adequacy of statis-
tical models developed by Box and Tiao for the analysis of
time-series quasi-experiments. This investigation involved 1
the following: (1) the investigation of the Box=Tiao models

as to their adequacy as descriptions of time-series experi-

mental data, (2) investigation of tﬁe possibility of exten~
sion of the models of Box and Tiao to the analysis'of more
general classes of time=series quaéi-experiments, (3) the
development of computer programs for statisticél analysis
based on the models, (4) the application of the models to

the analysis of actual time-series quasi-experiments.

The Time-Series Experiment

The time-series experiment was identified and discussed

at length by Campbell and Stanley (1963) in Gage's Handbook
of Research on Teaching and by Campbell (1963). This singu-
larly useful design for experimental research has long been

a paradigm for experimentation in the physical sciences.

-2-
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In the social sciences, and education, a person or group of
persons might be observed and measured at regulér intervals
prior to the introduction of an experimental treatment (T).
Several observations on the group follow the introduction of
T. An abrupt change in the level of the average score for
the group between the observation immediately preceding T'
and those following it may indicate a cause and effect rela-
tionship between T énd the variable being measured. thé
how in the figure below the introduction of T (a new curric=-
ulum perhaps) appears to have increésed the "achievement"

. of the class.

Achievement

Time
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A multiple~group time-series quasi-experiment might

involve three treatments (Tl, T2

taneously to a different group. One would then compare the

,-Té), each applied simul=-

three gains between times 4 and 5. Another modification of
the basic time~series design might be called a dependent=

groups time—-series design. In such designs, the same group
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of persons is involved in nmultiple time-series designs for

the evaluation of more than one treatment (T) effect.

Analysis of Time-Series Expegiments

A.crucial problem, identified but not resolved by
Campbell and Stanley, is that of the decision whether the
gain in "achievement" between times 4 and 5 should be attri-
buted to random flucﬁuations in the tiwe-series curve or to
an outside influence (presumably T, the new curriculum).
This is an inferential statistical §rdblem. Campbell and
stanley (1963) considered several significance-testing pro-
cedures for analysis of the time-series design; in the end,
each procedure suffered either from implausible assumptions
or weaknesses such as disregard.for most of the data or lack
of power (i.e., failure to produce significant results when
any reasonable observer would attribute an effect to T).

A simple correlated t-test of the difference between

the pre-treatment and post-treatment observations was judged

inappropriate by Campbell and Stanley because it would pro-
duce significant results for nonstationary time-series in
which no abrupt change occurred. A test for the deviation

of a value from the regression line derived on all observa=-

tions preceding it (Mood, 1950, pp. 297-298) was considered.

-4
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The deéendence of this test on the unrealistic (for time-
series analysis) assumption of independeﬂt observations
makes it inappropriate. By far the greatest amount of
research into the problem of analysis of time-series exper-
iments has been accomplished under the direction of Donald
T. Campbell at Northwestern University. Much of the work
of Campbell and his éssociates has not yet been published.

Box and Tiao (1965) presenfed a statistical model for
the analysis of the change in level of a nonstationary time-
series. The problem they considered was that of making
inferences about a possible shift in the level of a time-
series associated with the occurrence of an event, which
we have called T. This model (an integrated moving average
mocdel) is based onvstétistical assumptions likely to be met
in many time-series quasi-experiments. The integrated moving
average model is reported to represent quite well a éurpris—
ingly large number of time-series in economics and industry,
but it is practically unknown to behavioral scientists and
- @ducational researchers. |

The mere existence of statistical models and analysis
procedures does not guarantee their usefulness for educa-

tional or psychological research. The economist and chemist
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have many statistical models that are of no use to behavioral
scientists. Response surface methoaology (Box, 1954) was
designed (primarily for the chemist) to answer questions
about optimal combinations of many factors; the method is

an invaluable tool for the chemist. However, due to the
generally small ratio of treatment effects to experimental
error which plagues researchers in the social sciences, they
rarelf use response surface methodology. One focus of the
résearch reported here was to determine whether the methods
of time~series analysis developed by‘Box and Tiao suffer
from the same inability to dis#inguish treatment effects

when they are small compared to error.




The remainder of this report falls into four chapters
and two appendices. In Chapter II, the basiec model devel-
oped by Box and Tiao (1965) is applied to actual time-series

experiment data from two separate experiments, one in psych-

ology and the other in educational psychology. In Chapter
III, the sameAmodel is applied in a relatively complex
experimental design to analyze data on traffic fatalities

in the state of Connecticut before and after a legislative
crackdown on speeding.. A generalization by George C. Tiao
of the basic model =-- as yet unpublished -=~ is applied to
data on the effects of ; revision of.Germany's divorceplaws
in 1900 on the rate of divorce, in Chapter IV. This gener-
alized model incorporates a "drift" parameter which accom=-
modates series which show either a rise or a fell over time.
In Chapter V a model which is a particular generalization of
the "drift” model in Chapter IV is presented. The most gen-
eral model in Chapter V incorporates a parameter to account
for an instantaneous change in the direction of the drift of.
a series associated with the introduction of a treatment.
The general model of Chapter V was also developed‘for this
study by Dr. Tiao. In Appendices A and B appear print outs |

of computer programs for the analyses illustrated' in Chap-

ters IV and V, respectively.
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Chapter II1

ANALYSIS OF A CLASS OF TIME-SERIES QUASI-EXPERIMENTS

WITH THE BOX-TIAO MODEL

" In a recent article, Box and Tiao (1965) developed a method of
evaluéting the change in level between two successive points in time of

a non-stationary time-series. Observations z_ are taken at equally

t

spaced time intervals and one wishes to make inferences about a possible
shift in level of the time-series associated with the occurrence of an
event at a particular point in time. This is precisely the situation

- described by Campbell and Stanley (1963).as a time-series quasi-experi
mental design. Several observations are taken before and after the SR

17273 5°6°
is an abrupt shift in the level of a time-series between the third and

administration of a treatment, T, e.g., 0. O, O, T 0, 0. 0 If there

fourth observations, evidence of a treatment effect may exist. Campbell

and Stanley recognized the shortcomings in the statistical tests they
suggested as possible analytic techniques (Campbell, 1963; Campbell and
Stanley, 1963). The model and statistical techniques.developed by Box
and Tiao‘(1965) appear to be the most suitable methods now available
which wight have applicaﬁion to the analysis of time-series quasi-
experiments. | |

The statistical model underlying the Box-Tiao.analysispof change
"in level of a time-series is the integrated moving average model.

t-1 -

zZ, =a and z =L+y I a

_ +a (3.1a)*
1M1 oy 1 % |

for the n, observations prior to the introduction of T, and

 %*Equation numbers are the same as those in Box and Tiao (1965).
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t-1

L+d+y Zoa _,+Q, (3.1b)
i=1ti’ 1 .

2¢

for the ny = N - n; observations follo&ing T, where:

2¢ is the valué of the variable observed at time t,

L is a fixed but unknown lgcation parameter,

v is a parameter descriptive of the degree of

interdependence of.the observations in the time-series and -
takes values 0 < Y ¥ 2,

Q. is a random normal deviate with mean 0 and variance g2.

® is the changé in level of the time-series caused by T.

Essentially the model implies that tﬁe system is gubjected to periodic
random shocks (%.) a proportion (y) of which are agsorbed into the level of the
series. Data which conform to the mddel in (3.1a) evidence the following
properties (among others):

1. The graph of the time-series follows an erratic,
somewhat random path with slight, but no systematic
drifts, trends, or cycles.

2. The correlogram (i.e., the graph of the auto-
correlations) of the observations, Z,» does not
"die out," (i.e., does not tend systematically
toward zexro as ﬁhe'lag between values correlated
increases) nor does it show cycles characteristic -
of cyclic time-series.

3. For the N-1 differences between adjacent
observations, 2z, - 2.1 the lag 1 correlation
equals (v - 1)/[1 + (r - 1)2] and all higher lag

correlations equal zero.
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‘ t-2 .
By setting y; = z;, and y, = z - ¥ j§1(1 - 7)J Zeo1a40 the model can
be written as ¥ = X 6 + e where X is defined as an N x 2 matrix of weights as |

follows: ' \

~

‘A ‘
go| PGV PRl a-ptl, L. q- il
i = |
0 0 0 I 1 QA-=-7)e..(Q@Q-yp021
\ J )

6 is a 2 x 1 vector containing as elements L and & and e is an N x 1 vector of
random normal deviates, el = (@ ... %) , the elements of which have mean O

and variance az.

When y is known, simple least squares estimates of L and § can be

found from the familiar solution to the least-squares normal equations:

N\

A L
= 1= (XTX) -1 xly ' (3.4)
Box and Tiao showed that the least squares estimate of 9, namelé,‘g,
has a t distribution with N - 2 df when divided by an appropriate estimate of its -
standard error.
When y is unknown (as will generally be true) a Bayesian analysis using
sample information about y is used in making inferences about 5. The posterior

distribution, h(T)Z), of vy given a set of N observations and assuming a uniform

prior distribution is known to within a constant of proportionality.

h(rlz) oc r(2-y) HEED g
Vi-A-2y) [1-(1-p) 20

where s is the residual variance and is given by

s? = -N-l; Ty - 6TxTxe), | (3.18)

for a given value of y.
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Computing Procedures

The present program performs the following operations:
1. The correlograms (autocorrelations for lag 1 through lag 3nj/4 or 3n,/4)

are calculated for 2z, and for z, - Zeo1 separately for pretreatment and

posttreatment data.

]
)
a

2. The posterior distribution, h(y}z), of y given the data z for a uniform ;rior
distribution is claculated and plotted. The value of h(y/z) is found for

200 values of y from .0l to 2.00 in steps of .bi. For each of these 200

values of y,
3. Bis calculated,
4. The variance error of ® is calculated
5. The t-statistic edual to the ratio of‘g'to its standard error is calculated
and plotted on a graph which is superimposed on the graph of h(y|z). . |
Formation of the matrix of weights,§ in (3.3) raises problems with | !
"underflow." As y approaches 1.0, successive ;lements of X get very small. ;
Consequently, when | X1} < 1.0 x 10‘15, the effects of the weights can be
considered negligible and each subsequent value of Xe1 is set equal to zero for
that y. The same problem and treatment apply to Koo
2

The vector'a is formed by equation (3.4.)and the residual ‘variance s

calculated from formula (3.18). The standard error of B is given by

8@y ./ s2y (2-y) [1-(1-p%) @-2)
[1-(1-1) 201 [1- (1-y ) 2R2] (N-4)

The t value for testing the significance of the difference of B from

0 is given by t = :\8_/6"(3 ).
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Special problems of computer accuracy arise in the calculation of the

posterior distribution of y. When s is large, the posterior distribution can
-~ be very small, since s=(N-2) is a multipiicative factor in formula (5.8). To
prevent any problems associated with this calculation, all factors are transformed
to 13510 prior to the calculation of the ordinates of the posterior distribution,
which are then transformed by subtracting the largest value thus obtained. Thus,
all values of the posterior disﬁribution are divided by the maximum value. With
one slight exception, antilogs are taken to restore the values to their original
form. The exception is that when the log of a given value differs from the log
of the maximum value by more than 35 (i.e., given value / maximum value < 10'35),
the value of the ordinate corresponding to the given value is set équal to zero.
Each of the values ofﬁa,'g: sz,‘ﬁigir), t, h(r|z), is stored for each
value of y. (The values of the posterior distribution of y are rescaled by-

fitting trapezoids so that the curve has unit area.)

Illustrative Analysis

An illustrative analysis will be performed on data from an experiment
by Deese and Carpenter which was adapted for presentation in Brown (1961, pp. 118~
119). Two groups of ratslwere given 24 training trials in running a short alley
for food. Group A had been fed wet mash for one hour prior to the experiment;
group B had not eaten for 22 hours.: After 24 trials the conditions were |
reversed, group A being deprived of food for 22 hours and group B being fed for
one hour prior to a final eight trials. Observatioﬁs were made of the length of
time between start of a trial and a running response for each rat; Opservations
were converted to logarithms of this latency period for each rat which were then

averaged and divided into 1 for both groups. The reciprocals. of the average log
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latencies for groups A and B.over 32 trials appear in Figure 1. Data for Group
B (high drive followed by low drive state) appear as the solid line; the broken

line is for Group A.

Figure 1 about here

The significance of the effect of shifting from a low drive state to a
high drive state (Group A) is apparent and would not be enhanced by further
statistical analysis. However, the significance of the slight downward shift

between the 24th and 25th trials for Group B is worthy of further investigatiom.

Assuming that the fundamental time-series process generating the series
is the same for both Groups A and B, the n; = 24 pretreatment observations for
both groups should provide a reasonably good, though somewhat unstable, estimate
of the correlograms for raw data, 2z, and differences, 2z, = Z¢.1- The n, = 8
posttreatment obserQations are insufficient in number to add any substantial

information concerning the fit of the model. Even the small number of pretreat-

ment observations probably represents fewer than a minimal number from which one
may draw inferences about the fit of the model with any confidence. The correlo-
grams for Groups A and B for the data in Figure 1 were calculated. To conserve

space these correlograms are not reproduced here. These two sets of autocorrela-

tions evidenced neither cycles nor systematic dampening effects characteristic of

time series of types other than moving average series. On the basis of ingpec-
tion of Figure 1 and the correlogfams of the original data.we can continue to
entertain the model Qf'equationg (3.1a) and (3.1b).

The adequacy of the model is further investigated by observing the

correlogram of the differences between adjacent observations in a series, i.e.,

‘i ' ) -14-




the correlogram of 2.7 - 2¢, £ = L, «.., N=1,The correlograms were calculated
for the pretreatment data in Figure 1. The lag 1 through lag 10 autocorrelations
of the differences between successive observations appear in Figure 2.

Figure 2 about here

The correlogram for z_ - 2z..1 where z, conforms to the model in (3.la)

t
should show a lag 1 correlation of (y - 1) [1+ (v - 1)2] and lag k autocorrela-
tions of zero (k > 1). For sample data, an approximation to the standard error
of an autocorrelation coefficient due to Bartlett (1946) is availablic. The
slanted, straight lines at the top and bottom of Figure 2 mark off a distance of
two standard errors of the autocorrelation coefficient of lag Kk, Zark- Note '
that only.one (lag 9 - Group B) of the 18 autocorrelation coefficients in JFigure
2 lies in a region of rejection that the population value of an autocorrelation
of lag greater than 1 is zero.

As will be seen later, the maximum likelihood estimates of y are O and
.25 for Groups A and B, regpectively. The lag 1 autocorrelation for group A is
almost equal to the expected (on the b#sis of the model) value.of (v - 1)/[1 +
r - 1)2] = =,50. If the model fits exactly, one would expect a lag 1 auto-
correlation for Group B of (.25 - 1)/[1 + (-.75)2] = -,48. The oS£ained value
of -.28 does not differ significantly from this expected value. Acknowledging
the limited power of these statistical tests and the fact that to accept uncriti-
cally a model on the basis of so few observations is largely a matter of faith,

we proceed with the analysis of the data for Group B assuming that the model of

(3.1a) and (3.1b) holds.
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In Figure 3 appear the following: (a)'the posterior distribution -
of Yy, which indicates the likely values which y might assume for these
data (the maximum likelihood estimate of y is found by noting that value
of y under the peak of‘the curve) ; (b) the t-statistic used in tésting
thé hypothesié that 8, the shift in level of the series associated with
the events betweep trials 24 and 25, is equal to zero; (c) the values
(dotted lines) of t needed for significance at the .15, .10 and .05

levels in testing the hypothesis EO: § = 0 against the hypothesis

H;: 6 < 0. Note that if y = .20, H, can be rejected at the .05 level
in favor of H.. If y is .50 or above (whicih appears relatively unlikely),

1

HO cannot be rejected at the .15 level. Our impression is that the data

do indicate a statistically significant shift downward after the 24th
trial for Group B.

The data in Figure 4 are the number of times in a 50-minute period
in school that a four-year-old hyperactive child changéd activities over
28 consecutive days. (Allen 2t al., 1967) For the last seven days,
the child was given verbal, social. reinforcement for attending to a
single activity for more than a minute. The question} Is there a
decrease in activity changes associatedlwith introduction 6£‘reinforce-
ment of attending behavior between days 21 and 22?

The decrease of approximately 25 activities in 50 minutes from day
21 to day 22 is less than the ''natural' decrease of the time-series
between days 3 and 4 and days 14 and 15. Can the activity of the time-

series over the last seven days be viewed as the regular progression of

the time-series over the first 21 days? An inferential statistical

analysis will illuminate these data.
-16~




The data in Figure 4 show neither upward nor downward trends nor
cycles. The lag 1 autocorrelation coefficient for the differences
between successive pre-treatment observations is -.5, which corresponds
closely to the expected value when y = O (which is the maximum likeli-
hood estimate of y for these data). The other autocorrelations for the
differences are not significantly different from zero. Thus the data
in Figure 4 appear to conform to the model.

As was pointed out earlier, the objective of the analysis of a pos-~
sible change in level of a time-series of the integrated moving average
type is to obtain a least=-squares estimate of § and a distributional

statement about the estimate. Provided y is known, this objective is

WERPEEDN

relatively easily attained. ' The least-squares estimate of §, namely 3,
and an estimate of its standard error were given in Box and Tiao in their
1965 paper. Under suitable assumptions of normality and independence of
errors, (8 - §)/9(3) has a t-distribution with n, + n, - 2 degrees of
freedom. A test of the hypothesis that § = 0 can be carried out with
the test statistic t = 8/a(S).

However, if y is not known'(as is generally true), it is necessary

to obtain information from the sample of N observations about probable

values for y. Either of two strategies might be followed: 1) find the
maximum likelihood estimate of y and estimate & and ;(8) using only that
maximum likelihood estimate; 2) plot both the likelihood distribution of

Y and the value of £.='§/3(3) against the value of y as it ranges between
O and 2 and see if the t~-statistic is clearly significant or non-sigﬁi
ficant over the range of probable values for Y. '[The likelihood distri-

bution of y given the N sample observations is given in Box and Tiao

-17-




(1965)] Both strategies will be employed at differcut points in the analy-
ses to follow.
. Oof coﬁrse, vy is unknown. The likelihood &istribution of y given
the data is plotted as h(ylz)'in Figure 5. The‘chances are practically
nil that y is above .10; the maximum likelihood estimate of y is zéro.
Over the range of likely values of y, 0 to .10, the value of t for
testing the hypothesis that 8§ = 0 is clearly statistically significant ’
(t is never greater than -4.4). Without much question, then, the intro- |

duction ¢f the treatment at day 21 worked an effect upon the rate of

activity change. | N | ]
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| adjacent observations in the two time-series in Figure 1,
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Chapter 1III
i ANALYSIS OF DATA
T ON THE CONNECTICUT SPEEDING CRACKDOWN

AS A TIME-SERIES QUASI-EXPERIMENT

J

= 5 A A = o i i

PR Y

In late 1955 in Connecticut, the number of fatalities per 100,000 “

f population in motor vehicle accidents reached a record high for the
1950's. On December 23, 1955, Governor Abraham Ribicoff took unpre- .
cedented legislative action to reduce traffﬁc fatalities. Ribicoff
announced that persons convicteé of speeding would have their }i-
censes suspended for thirty days at the first offense, for sixty

? days at the second offense, and for an indefinite period (subject

to a hearing after ninety days) at the third offense. Data on traf-
fic fatalities before and after the Connecticut crackdown on speed-
ing can‘pe regarded as a time-series quasi-experiment (Campbell and
Stanley, 1963; Campbell, 1963) with some significance for the social

sciences. When supplemented with traffic fatality data for the states

- b g e e

of Massachusetts, Rhode Island, New York, and New Jersey, the col-
lection of observations can be viewed as a multiple-grou§ time-series

experiment (Campbell and Stanley, 1963; Campbell, 1963). The mul-

tiple-group time-series design can be diagrammed as follows:

- - f eeie s - - [P
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Time

ceely = 1 n, n, + 1 n, + 2...
Cconn.: .0 0 T 0 0...
Mass.: ees0 . 0 0 0...
R.I. : ee.0 0 0 O...
N.¥Y. : eesl 0 0 0...
N.J. ¢ I I 0 0 0...

The 0's represent monthly observations of traffic fatalities

. foxr the Qi months prior to T, the treatment, and for'the‘g_2 observa-

tions following T. The treatment, T, is the Governor's crackdown on
speeding in the state of Connecticut, Nblccmparable alteration of
the legislation of'the four "control" states tbok place.

Evidence of the effectiveness of the Connecticut crackdown’ on
speeding can be gained by comparing the path of the post-T obsexva-
- tions of ¢onnecticut with those of the four control states. A sharp
drop in fatalities in Connecticut fbllowing T in the absence of simi-
lar drops in the control states is compelling evidence of the effect-
iveness of the crackdown on speeding.

The problem of measuring the abrupt change in 1evei of a time-
series and méking statistical inferential statements about it .s the

problem with which the remainder of this report is concerned.

Analysis of Déta
The Underlvying Model |
The statisticai modei upon which analysis of theVCOnpecticut
speeding data is based was developed by Box and Tiao (196?). Box

and Tiao presented an analytic téchnique for estimating and makiﬂg
S 27 | g




inferences about the change in level of a non-stationary time-series.

The model upon which the analysis is based is a restrictive one; how-
ever, many sets of data can be manipulated or transformed into special
indices in such a way that the assumptions of the model will be large-
ly met. The statistical model here employed is a special case of the

integrated moving average process (Box and Jenkins, 1962):

t-1

zt = L +Y .z at-j+ atl t = ll o oo ’ n . (l)
3=

L is a "location parameter" descriptive of the over-all general

level of the series,

Y is a parameter which depends upon the interdependency of the

observations in the time-series, and

a, 1S an observation of a random normal variable with mean 0

and variance ¢? . -

Formula (1) describes the n, ‘observations taken prior to the i
introduction of a treatment, e.g., the Connecticut crackdown on épeed- %
ing. The n, observations following the introduction of the treaﬁment
into the time-series differ from (1) only in that a treatmept effect,

§, is present.

zt=L+in @y 4+ %e+8, € =ny ..., np Ny . ()

The parameter § is the increment or decrement in the level of

the time-series due to the introduction of the treatment. The treat-
ment is assumed to work an immediate and constant effect, 6§ , upon the
time-series.

The fundamental time~series model regards the system aé being
subjected to periodic random shocks, the ay. (which have zero mean).‘

Furthermore, a proportion,Y, of each shock is assumed to remain in

the system to influence the movement of the system through time.
-28~ '
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Hence, the effect of some extraneous, random influence on the system

is not immediately dissipated but continues to work a lessened in-

fluence on subsequent obsexvations. In a sense, the model describes
the path of a point taking a randoh walk which is imbedded in "noise.”

If the value of'v is known, least~squares estimates of L, which
is generaily of no interest, and 6§, which is of primary interest, can
be readily dbtained (see formulas 3.7 and 3.8 in Box and fiao, 1965).
However, one‘is unlikely td know Fhe value of Y. Not knowing y, one
may usé sample information to determine probable values for Y. Box
and Tiao (1965) presented a Béyesian approach to obtaining informa-
tion abouﬁ'the value of Y; Wﬁén a uniform prior distribution is set
on Y,’the.Bayesiah énalysis is equivalent to inspecting the likelihood
function of Y. .Thélikelihood of vy as a function of the sample.data
is given in equation (5.8) in Box and Tiao (1965).

The analytic strategy which the Box-Tiao procedure leads to in
most instances is one of calculating the likelihood distribution of
Y from the data, finding an estimate of ¢ and its standard error for
all values of Y from O to 2.0, and setting confidence intervals around
the estimate of § or testing the significance of the difference of
the estimate of § from'zero'for the likely values of y. |

However, before such an analysis of data may proceed, an effort
must be made to check the appropriateness of the model in (1) and (2) N

for the data in hand. This can be done in large part by inspecting

the graph of the time-series and of the correlograms of the data.

Data which conform to the model in (1)'and (2) will have the follow-

ing properties:

-29-




l. There will be an absence of cycles in the original data, i.e.,
- the nj + nj observations z,. The data will appear to fluc-

tuate around a constant elevation, L, with only minor or
momentary drifts away from this baseline. In other worxds,
sustained "drifts" from a baseline in one direction probably
indicate a violation of the model, viz., ¢, probably has a
non-zero mean.

2. The correlogram of the original data, the 2y, is free of

cycles and shows a random fluctuation around a baseline. The
correlogram does not show the familiar damped cyclic curve
characteristic of autoregressive time-series. (In a time-
series quasi-experiment it is necessary to calculate correlo-
grams separately for pre-treatment and post-treatment obser-
vations, since a large treatment effect will produce strong
lag correlations.)

3. The correlogram of the differences between successive obser-
vations in the time series, i.e., the correlogram for
2, = 2.4, (E=2, ..., n, + n,) has a lag 1 correlation

which is largz in absolute value when Y deviates from 1.0
and all higher lag correlations are near zero. In fact,

2 .

- - E— - (o) - ’

cov(zt zt-l' zt+l zt) (L -v) and cov(zt zt-l
Beax T 2.4k=1? = 0 for k > 1. The associated lag 1 auto-

- (1 -v)
correlation of the differences is .
1+ (1 -y)2

For example, if vy = 1, all lag correlations of the differ-
ences between successive values are expected to be zero.
Fortunately, approximate hypothesis tests are available for
testing the significance of the lag correlations (Bartlett,
1946) . -

Investigation of the Fit of the Model to the Data

The basic data were traffic fatalities for the 66 months prior
to the Connecticut speeding crackdown in January 1956 and for the
subsequent 40 months for Connecticut, Massachusetts, Rhode island
New York and New Jersey. As the first step in the investigation of
the fit of the integrated moving average model to thsse daté, each

monthly fatalities count was divided by the number of miles driven

in the state during that month. The transformed raw data thus became
-30~ '




"monthly fatalities per 100,000,000 miles driven" for all five states.

Such a transformation would effectively eliminate any upward linear
trend in the data [no such trend may appear in the integrated moving
average process in equation (1)] due to increases in population,
number of drivers, number of cars, etc.

Inspection of the plot of "monthly fatalities per 100,000,000
driver miles" showed marked yearly cycles, as one might expect. The
"peaks“'of the cycles coincided with the winter months (Dec. = Feb.);
the "valleys" occurred during the summer. Such cycles are a clear
violation of the assumptions of the integrated moving average model.
The correlogram for "fatalities/loo,ooo,OOO'miles" for Connecticut
showed the "damped sine curve" with a period of 12 months which is
characteristic of data possessing yearly cycles. (The manner iﬁ
which the cycles were removed from the data will be discussed later.)
It will be instructive for the moment to observe the "monthly fatal-
ities per 100,000,000 driver miles" with the cyclgs left in. These
data appear in Figure 1.

It can be seen in Figure 1 that the fatalities per 100,000,000
driver miles reached Ehe highest point in the peried 1951-1955 in
»December, 1955. To the extent that this "emergency" prompted
Ribicoff's decision to crack down on speeding in late Decémber, 1955,
the decline immediately following the crackdown can be paitly inter-
preted as the natural tendency of observations chosen for their ex-
tremity to regress toward a central vaiue. |

There is a marked decrease in fatalities per 100,000,000 driver

miles from December, .1955, to January, 1956. However, there are also

-3]-
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| decreases in fatalities/100,000,000 mi. in six of the eight possible
comparisons of a December with the immediately following January. In
fact, the drop in fatalities/100,000,000 miles from December, 1957,
to January, 1958, is almost equal to the drop from December, 1955, to
January, 1956. A natural drop from any December to the immediately
following January in fatalities/100,000,000 miles is quite apparent
in Figure 1. Such cycles are also obvious in the.graphs of monthly
fatalities per 100,000,000 miles in the four "control" states.

The following technique was employed to remove the cycles from
the data. Since the cycle had.a period of twelve months, the average
fatalities/100,000,000 miles for each of the nine Januaries (1951~
1959) was subtracted from each January observation. Similarly, obser=-
vations on eagh of the other eleven months were deviated around'the
‘average (over nine monthly values) fatalities/100,000,000 miles for
that month. This was done for each of the five states. (A constant,
2 or 3, was then added te these transformed scores to make them all
positive.)

These transformed data showed neither apparent cycies nor upward
or downward trends. The data appear in Figures 2-6. In this form,
the data appear to satisfy the first condition of the integrated
moving average model in equation (l). The next step in the examina-
tion of the fit of the integrated moving average model to the data
involves the correlograms of the transformed observations ‘and the
differences between adjacent observations in the series.

Correlograms were calculated on the data in Figures 2-6 for pre-

January 1955 (n1=60) and post-January 1955 (n2=48) data separately.




(A marked change in level of a time-series due to a treatment effect
would alter the autocorrelations from what they would be in the fun-
damehtal process which generates the observations in the time-series;
hence, in judging the fit of a model to data from a time-series ex-
periment, correlograms must be calculated separately for pre- and
post-treatment observations.) To consexve space, these correlograms
are not reproduced here. None of them showed the "damped sine curve"
characteristic of autoregressive series. Indeed, each correlogram
appeared to be no more than a random érray of non-significant auto-
correlations characteristic of the correlogram to be expected from
data conforming to the integrated moving average mode;.

The next step in the investigation of the fit of the model in
(1) to the data is to calculate the correlogram for the differenées

between adjacent obserxvations, z It is necessary to calcu-

t = %g-1-
late these 'differences separately for the pre-treatment and post-
treatment data. Only the correlograms for the 60 pre-treatment ob-
servations for each state are examined here. As was pointed out earl-

ier, if the model in (1) is satisfied, the lag 1 autocorrelatioa of

2 .
the differences z, = 2.y will equal -(1L =-Y)/[1 + (L -Y) 1, where

‘Yis an unknown parameter in the model, and the lag 2 and greater
~autocorrelations of the same data will equal zero. Not knowing v,

it is necessary to obtain an estimate of it. Later it will be seen
how the likelihood distribution of Y can be found from the N observa-
tions, 244 and the maximum.likelihood estimate of vy found therefrom.
The maximum likelihood estimates for each of the five states were

found to be the following:

-33-
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Corresponding Expected

State Maximum Likelihood Lag 1 Correlation of
Estimate of Y 2 T %1
Connecticut .01 , -.50
Massachusetts 01 -.50
Rhode Island .01 ~.50
New York . .16 -.49
New Jersey ‘ .11 -.49

In light of the above data, the correlograms for the 59 observa-

tions of z¢ = 2Z¢.) for each state should present a lag 1 correlation

of approximately -.5 and lag 2 and greater correlations which differ

insignificantly from zero. The first such correlogram--for the Conn-
ecticut data--appears in Figure 7. The jagged line in Figure 7 is
the plot of the lag 1 thru lag 30 autocorrelations for the 59 pre-

treatment observations z, - z._, for Connecticut. The lag 1 autocor-

relation of -.555 agrees quite closely with the expected value of

=.30. Superimposed upon the graph of the correlogram are two curved

lines indicating those points which lie two standard deviations from
the mean, zero, in the distribution of the lag k autocorrelation co-
efficient for samples of size 59 from a population in which the co-

efficient is zero (see Bartlett, 1946). Only the lag 1 autocorrela-

tion coefficient is significantly different from zero in Figure 7;

hence, the conditiohs of the model--as reflected in the correlogram of

24 = 2Zg-j~—appear to be met by the Connecticut data.

The correlograms (lag 1 through iag 20) for Rhode Island, Massa-

chusetts, New York, and New Jersey for the 59 pre-~treatment
-34~ |




observations 2, = Z.., appear in Figure 8. ©None of the lag 1 auto-
correlation coefficients differs appreciably from the expected values
of -.50 and ~.49. The lag 2 and greater autoéorrelations are distri-
buted around zero with only three coefficients (viz., lags 18 and 19
for Massachusetts and lag 4 for New Jersey) lying further than two
standard errors from zero. (The curved lines marking off two stan-
dard errors in the distribution of the autocorrelation coefficients
‘'which appear in Figure 7‘can be applied to the data in Figure 8 as
well.) The total import of the data in both Figures 7 and 8 is that

the conditions of the integrated moving average model in equation (1)

which are reflected in the correlograms of zé -Z, ., are reasonably

satisfied by the data for the five states.

After transformation of the data and removal of cycles, the'data
on fatalities for the five states appear to satisfy all of the condi=-
tions of the integrated moving average model in equation (1) reason=-
ably well. We shall proceed with the analyses assuming the data are

adequately described by such a model.

Analysis for Change in ILevel of the Five Time-Series

First, we shall consider in turn the iﬂdividual analyses for
changes in level between the 60th and 6lst months of the five time-
series in Figures 2-6. The analysis of the Connecticut data (Figure
2) will be considered in detail. Summaries of the analyses will be
presented for the other four states. After consideration Qf the in-
’dividual analyses, the five sources of data will be combined into a

single analysis comparing Connecticut with the "control states.”

-35=
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As was pointed out earlier, the objective of the analysis of'a possibl
1change in level of a time-series of the integrated hoving average type is
to obtain a least-squares estimate of § in (1).and a distributional state=-
ment about the estimate. Provided Yy is known, this objective is relatively‘
easily attained. The 1eést-squares estimate of, g, namély 3, and an esti-
jméte of its standard error, 6(3), are given in Box and Tiao (1965) by for-
muias (3.8) and (3.11), respectively. Under suitable assumptions of.normalé
%ity and independence of errors, ( 3-6‘ )/ 6(8) has a t-distribution with ny +
n, = 2 degrees of freedom. A test of the hypothesis that § =0 can be -
icarried out with the test statistic t =8/6(8) .

However, if y is not known (as is generally true), it is necessary to

1

obtain information from the sample of N observations about probable values
| B

for y. Either of two strategies might be followed: 1) £find the maximum
llikelihood estimate of Y and estimate o and'a(s) using only that méximum
likelihood estimate; 2) plot both the likelihood distribution of y and the
value of t = &/3(3) against the valﬁe of vy as it ranges between 0 and 2 énd 
;ee if the t-statistic is clearly significant or noan-significant over the

range of probable values for y. [The likelihood distribution of y given the"

N sample observations is found from formula (5.8) in Box and Tiao (1965).]

Both strategies will be employed at different points in the analyses to fol-

:iow.*
A, Analysis for Change in Level of the Connecticut Data (Figure 2). .
The n; = 60 observations preceding'the crackdown on speeding in Connec-

‘ticut and the n, = 48 post-crackdown observations were subjected to the an- !

alysis outlined in Box and Tiao (1965) for unknown y. The likelihood

*Calculations performed on computer program described in Chapter II.
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distribution of y given the 108 observations is denoted by h(y| z) in
Figure 9. The area under the curve h(y|z) is one unit; The maximum like-
lihood estimate of y is seen to be 0. The curve denoted by t in Figure 9
is the value of §/qd(8)--read off the right ordinate in the figure--for |
each value of y from 0 to 2. |
As can be seen by inspection of the two curves in Figure 9 almost all
the mass of the likelihood distribution of y lies between 0 and 0.25, the
former being the maximum likelihood estimate and the latter being'quite un-:
likely; over this range (0 to 0.25) the value of tﬁe t-statistic for test=
ing the hypothesis that § = 0 (against le § < 0) ranges from =0,86 to
-2.05 (from nonsignificance at the .15 level to sighifidance at the .05
.level) . Note also that t is significant at the .05 level with a one-tailed'
"test only for y above .12. Ify is set equal to its maximum 1ikeiihood
estimate, namely O, £ is nonsignificant even at the .15 level. Inspection
of the graphs is facilitated by the dotted lines which mark off the values
of £ (df = 106) required for significance at the .0l, .05, .10 and .15
~levels for a one-tailed test of the hypothesis that 6 = 0. (For the four
control states the alternative hypothesis is that § > 0.) |
The analysis reported in Figure 9 will support neither a confident
acceptance nor rejéction of H: § = 0. The analysis proved sensitive to
the unknown value of y. H: 6 = 0 can be rejected at the .20 level of
significance; but a more cautious decision rule, say o = .Oi, would

not lead to rejection of H: 6§ =0 for any likely value of Y. A




conservative hypothesis tester would probably view the data as provi=-

ding noxr support for the rejection of H: ¢ = 0.
B. Anaiysis for Change in Level of the Massachusetts, Rhode Island,
| New York, and New Jersey Data.
In Figure 10, the likelihood distributions ‘and t-statistics for

testing H: § = 0 are presented for the four "control" states. 1In all

analyses, the likely values of f:he unknown parameter Y fall below .30A.

The maximum likelihood estimates of Y are .0l for both Massachusetts

and Rhode Island. For New York ahd ‘New Jer‘seir, the maximum likelihood | a
' estimates of yare .16 and .11, respectively. | |

Considering only the value of t for the maximum likelihood esti-

mates of v, the Massachusetts data yield the only value of § ~which -

»

differs significantly (p < .01) from zero. The t-statistics for

Rhode Island, New York, and New Jersey do not attain statistical sig-
nificance at the .15 level with a directional statistical test.

Conéidefing the value of t over the ranges of likely values of vy,

neither the Rhode Island, New York, nor New Jersey data present any'

evidence for a value of § significantly different from zero. The re-
sults for the Massachusetts data are equivocal. At the maximum like- ,

lihood estimate of Y, t is significant at the 01 level. At the

point on the Y-scale above which approximately half of the area under
h(y|z) lies, t is significant with an « between .Cl and .05 with a -
one-tailed test or .02 and .10 with a two-tailed test. The value of

t drops below significance at the .10 level for a one-tailed test

(or .20 for a two-tailed test) above the point on the y-scale above
which lies approximately 25% of the area under h(v|z).
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None of the analyses‘of the four control states yields compellingf

evidence of any abrupt change in fatality rate associated with the
events in that state immediately prior to Januaty, 1966. The evi- -
dence ranges from definitely not supporting the presence of abrupt
change in the case of Rhode Island to slightly equivocal as evidence
for an abrupt change in the case of Massachusetts. 2n alternat*ve
analysis exists of the multiple-group time-series experiment in which
Connecticut is compared with the four “control" states. The differ-
ence between fatalities/100,000,000 miles for Connecticut minus the
average fatalities/100,000,000 miles for Massachusetts, Rhode Island,
.New York, and New Jersey embodies an “experimental and control" comé
parison. These 108 differences have been calculated and graphed in
Figure 1ll. '

One might expect that the analysis of the differences between

experimental and control time-series would be scmewhat less sensitive

than the analysis employed above in which the ¢'s are estimated separ- .

ately for each series and then combined in planned or post-hoc com-
parisons. The process of taking difference compounds residual varia-
bility and thereby reduces power. The analysis of the déta in Figure
1l bears out this expectation. h

The maximum likelihood estimate of y for the data iﬂ Figure 1l
is .07 (see Figure 13). Thus one would expect a lag 1l aufocorrelation
for the differences 2y = 2,_9 to equal -.50 and the lag 2 and greater
autocorrelations to be essentially zero. These conditioﬁs are reason-

ably well met, as can be seen by inspecting the correlogram in Figure

12. 30
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In Figure 13, the likelihood distribution of Y for the 108 obser-{'
vations and the t-statistic for testing the hypothesis that § = 0 are
presented for values of vy between 0 and 2. It is apparent from in-
Spection of the two graphs that § is not significantly different from
zero over the entire range of likely values for y.

In summary, the five individual analyses gave no convincing evi-
dence for an abrupt change in level associated with the Connecticut
speeding crackdown for any of the time-series. The analysis of the
differences between the monthly observationé for Connecticut minus
the average for the four control states showed no ev'dence of a treat-
ment effect in Connecticut. 1In the followiﬁé section, a more powerful
analysis of the data is reportedl
The Analysis of a Planned Comparison of Connecticut with the CoAtrol
States.

If the time-series for each state can be regarded as independent
of the others, well-known inferential statistical techniques can be
employed in making comparisons between Connecticut and the four con-
trol states. Accordingly evidence was sought concerning tﬁe degree
of dependence among the time-series for the differenﬁ states.,

Given the normality assumption of the model in (1) and (2), the
independence of the various time-series can be demonstrated if the
series show no intercorrelétion. To reduce the burden of data analy-
sis without a serious reduction in the sensitivity of the test of the
hypotﬁesis of no intercorrelation, data for the first 50 months for

Connecticut, Massachusetts, and New York were used. Using "months"

as the unit across which correlations were computed, the three

-4 0=




intercorrelations of these states were computed for the variable "fa-
- talities/100,000,000 miles minus monthly average." The intercorrela-

tion matrix was as follows:

- Conn. N.Y. , Mass.
| 1 -.105 -.061
R = -.105 1 | -.207
(n = 50)
-.061 -.207 1

A test was made of the hypothesis that the 50 triplets of obser-

- vations were a random sample from a tri-variate normal distribution
in which all intercorrelations are zero (Bartlett, 1950). The test l
statistic, -{(n - 1) - (2m +.5)/6] logeIRI, is approximately distri-

buted as a chi-square variable with m(m - 1)/2 degrees of freedom,

where m is the number of variables. The value of the test statistic
for the data in question was 2.877, a value exceeded with probability
greater than .30 by a chi-square variable with three degrees of free-
dom. The three series can probably safely be regarded as independent.
(As a general procedure, when Y may depart appreciably from O, it

would be better to intercorrelate the estimated residual erroxs, the ‘ *

a's, using the maximum likelihood estimates of Y for each series.)
A single planned comparison will serve to evaluate the signifi-
cance of the change in level of the time-series for Connecticut as

compared to the changes or lack thereof in the four control states.

This comparison has the following form:

= - (6 + 4§ + 6 + 6 4
v 6C ( M RI NY NJ)/

The value of ¢y is estimated by replacing the parametefs with their

least-squares estimates; the variance of the comparison is estimated
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from the common residual variance for the five states multiplied by
[l2 + 4(1/4)2]. The estimated value of ¥ divided by the square root
of an estimate of its variance follows Student's t-distribution with -
5(106)df when ¢ = 0. (See Hays, 1963, Chp. l4). However, since the
estimated change of level effects and residual variances differ for
different values of Y, we shall estimate and test the significance of
the comparison for the maximum likelihood estimates of ¥y for each
state and for reasonable upper and lower limits to the value of y for
each state. |

The hypothesis to be tested is that y = 0 against the alternative'

hypothesis that ¥ < 0. In words, the hypothesis to be tested is that

the change in level of the Connecticut series is no different from

the average "change" for the four control states against the altérna-
tive that it is less.

Because the y 's are unknown, we shall specify a range between
which each Yy probably lies as well as the maximum likelihood estimate
of each Y. The lower limit to the range for each state will be that
value of y below which approximately 25% of the area under the like-
lihood distribution of y lies; the upper limit will mark off approx-

imately the upper 25% of the likelihood distribution. The data for

estimating and testing the comparisons appear in Table 1.




Table 1

Values of § and g(§) for the Maximum Likelihood Estimate and

Reasonable Upper and Lower Limits of y for All Five States

State Max. Likeli. Reasonable ﬁpper Reasonable Lower |
Estimate of y Limit for ¥y Linit for y
> .01 » .10 .0l
lo Conn. § a - 152 - 594 . } . e 152
a(s) ' .176 .391 .176
| Y — .01 15 .01
2. Mass. 8 472 .259 472
a(8) .126 .341 .126
| Y .01 .10 .01
3.R. L. 38 .079 , -326 | .079
a(8) .276 .617 .276
Y 16 .25 .10 |
4. N. Y. § .275 ' <247 .337
G(8) .289 .375 .233
: Y .11 .20 .07
5. N. J. ¢ .198 .093 .331
o (8) | .292 .391 .236
Table 2
Results of Planned Comparisons ofAS for Connecticut
with the Average § ,
for Massachusetts, Rhode Island, New York, and New Jersey
Max. Likeli. Reasonable Upper Reasonable
- Estimate of vy Limit for vy Lower Limit for vy
P -.408 -.825 -.457
8@ .269 484 .241
t = &/8@ -1.517 -1.705 -1.896
Prob {£530 <t} .065 . 045 .030




For a given set of five values of v (one for each state, ¥ is
estimated by subtracting the average § for Massachusetts, Rhode Island,
New York, and New Jersey from the value of § for Connecticut. The
residual variance, assumed to be equal for all five states, is esti-
mated from the average of the residual variances forlall states. The
~values of &3,6;“' and t which correspond to the maximum likelihood es-
timates of and reasonable upper and lower limits to Y are reported in
Table 2. The bottom row of Table 2 is the probability of a Student
t-variable falling below the value of &/8@. (The probabilities in

the last row of Table 2 can be interpreted as the smallest levels of

significance for which the planned comparison is significantly differ-

ent from zero with a one-sided test.)

%
Conclusion 1

It can be seen in Table 2 that one may conclude that there is a

statistically sionificant reduction associated with the speeding

crackdown in fatalities/100,000,000 driver miles for Connecticut as

compared with the four control states.

The above conclusion must not be accepted without due considera-

tion of a source of potential invalidity in the experiment. As Ross

and Campbell (1965) pointed out, the fact that Governor Ribicoff was

prompted to take action in late 1955 by the alarmingly high fatality

rate for that period introduces the possibility of a regression effect

from the observations immediately preceding his actions to the obser-

vations immediately fdlowing. If one observes a time-series for a

period of time and selects that obserxrvation which appears quite extreme,




subsequent observations are likely to be relatively less

extreme. The exact extent of any regression effect in the

Connecticut time-series experiment is difficult to estimate.
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o " Figure 7. Correlogram of Differences for Pre-Treatment (n,=60)

Monthly Fatalities/100,000,000 Miles dMinus Monthly Average Plus 2
for Condiecticut. ‘ '
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0. Introduction.
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In 1959, Wolf, Luke and Hax publiched Scheldunc uind ccheidungsxecat

(Divorce and Divorcs Lew). This worl deart with the effects oI revision
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a reappraisal in licht of appropriate statis

clusions drawa in both of the above Works.

cn Jenuary 1, 1900, the new Civil Code of the German Empire re-

the various legal statutes then in effect.* The Civil Code

f'i

placed

*The remcinde: of this section draws hc avily upon Scheidung und
ngsrecht by Wolf, Like, and Eax (1959) and “Divoxce and the
Law in Germany: A Review" by “”e;nSteih (1¢60) .
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If the trend of the pre-T opservations is altered sharply by the

introduction of T, we are inclinad to attribute the alteration (whether
it be a.dhange in level, change in direction of drift, etc.,) to T. A
particularly important problem is to determine vhether the activity of
the time-series in the neighborhkood cf T indicates a genuine effect of
T or whether it is merely an o:derly coatinuation of an undistuxbed
time-series. We judge the problem to be "particularly importaxnt® be-

cause the inferential statistical intuitions of. social scientists seem

seldom to have been developed on nca-~independent observations (as are

10

in evidence in most time-series), thus formal statistical sigmificance
tests are a nécéssary overseer of “considered im@ressions“ we might
form of the data.

The divorce rate (divorce/100,000 persons) for the German Empire
from 1881 through 1914 is plotted in Figure 1. In Figure 2 appears
the rate of petitioning for reconciliation proceedings for all of Ger-
many f£rom 188l throush 1913;N Both indexes are plotted in Figure 3 for
those states under the Prussian Code prior to 1900; the same data ap-

pear in Figures 4 and 5 for the states under the common 1law and Code

Napoléon prior to 1900, respectively.

3. Statistical Analvtic Technigues.

Finding an appropriate inferential statistical analysis of data‘
from a time=-series experimenﬁ has been repeatedly recognized as an im-
portant problem (Campbell, 1963; Campbell and Stanley, 1963). The data
in Figure 1 offer an excellent iilustration of the need to perform a

valid inferential statistical analysis in which the probabilities of
-63-
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repair a disruoted marrlizce in due tlug wlll zogand the Quvoree race
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as most significent., %o tham, the srovention of broken hiches at all
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ings) as a more valid mcasure of muzital acccoxd:; they would argue

since any countyxy can reduce its diverce rete to zero by making divorce
illegal (as witness, ltaly) without materizlly affecting the stebility
of the home. This is not the plice to evaluate the social and human |

value of legal vs. illecal divorce, aclithough it is entirely within the ;
means of the present-day social sciences to do so. EHence, znalyses of
both iﬁdexes vill be performed here.

The pericd from 1881 through 1914 aid the intervening revision of
the divorce lzws can be regarded as an interzupted time-series guasi-
experiment (Campbell and Stanley, 1983} for the purpose o assessing
the effects of the legislative cliange, Diagrammatically,.the design
of the quasi-experiment is as follows:

-

01,02,...,0nl T o,

LI N B 4 On+ f 4

I
!—.l
-i-
}-s
-~
]
|

represents the "treatment" -- in this case, the revision of the

-3

divorce laws.
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Protestant marriage. German common law was in effect in 12 states

prior to 1900,
Similar in practice to the German common law was the Code‘Napoléon,
which was in effect in approximately four states. Divorce was granted

only in cases of guilty misconduct; disruption of a marriage consti-

tuted insufficient grounds for divorce. (Divorce by mutual agreement
! was a legal possibility but rarely ccéurred in practice due to burden-
some iegal procedures.,)

Undexr the new Civil Code instigafed in January of 1900, divorce

was to be granted solely on the grounds of guilty misconduct by one

partner (adultery, desertion, extreme cruelty, etc.). Divorce by

mutual agreement was abolished. The “"enlightened disruptive princi-

ple” of the Prussian Code was totally displaced by the "guilt princi-
ple" in the new Civil Code. Divorce became far more difficult for
those who formerly lived under the Prussian Code; it became generally

easier to obtain for those formerly under the common law (divorce was

legally available to Catholics in ex-common law states for the first

time).

2. The dData and the Design.

Two sets of déta are available which bear on the question of what
effects if any the revision of the divorce léws had: decrees of di-
vorce per 100,000 population (the divorce rate), and petitiqhs for ini-
tiation of reconciliation proceedings per 100,000 population (which

were mandatory under German law both before and after 1900). These

data were reported by Wolf, Luke, and Hax (1959) for the period 1881-
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brought about sz general

"tichtening w" of divorce laws., The Civil

Code divorce izws nad been dra

divorce and with the inte:

divorce rate, (Divorce par 100,000 imhzbitants in Cermany rose from
8.7 in 1881 to 17.0 in 1899.) Under the new law, divorce was %o be

granted only in the case of guilty miscoaduct; divorce was not to be

allowed in cases where there was nmutuzl = cgreement that the marriage

should be dissolved or where circumstances had thoroughly disrupted

the marriage,

The new Civil Code was uniform across he Gernan states, whereas

divorce laws in effect in

.

he var

i

Cus sgtates prior to 1900 were of

three general types. The possible @Zfects of the new Civil Code could

have depended upon the particular divorce laws in effect bero:e 1200;

thus it will be advisabl @ To analyze the effect of the new Civil Code

on the divorce rzte for three groups of states —- corresponding to

the three types of pre~1%00 legislation -~ as well as for the German

Empire as a whole. i

Approximately eight states were under the divorce laws of the

Prussian General Code prior to 1900. %The Prussian Code was the most

lenient as regards divorce. Divorces were granted in cases of mig-

conduct, mutual agreement, and even upon grounds of "insuperable aver-

sicn: of one party for the other. The Prussian Code recognized "dgis-

ruption" of the marriage beyond repair as grounds for divorce,

In contrast to the lenient Prussian Coda, the Gerxman "comnmon law"

entodied ecclesiastical law concerning divorce, Catholics could not

divorece, and only grave misconduct was grounds for dissolution of a

-66= - L
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incorrect decisions can be known uxactly and controlled. The data in
Figure 1 appear to show the expected drop immediately after the change
of legislation in 1200.% In fact, the novement of the divorce rate

index is larger between 1899 and 1900 than between any other pair of

~years. However, the 3 point drop between 1899 and 1900 is oanly 0.2
larger than the 2,8 rise between 1881 and 1882. It would seem in=-

cautious, then, to attempt to draw any conclusions by mere inspection

of the data ox by the application of intuitive judgment.

Wolf, Lilke, and Hax (1959) considered analyzing the data in Fig-
ures 1 through 5 by fitting least-squares regression lines (dependent
variable-divorce‘rate; independent variable-year) to the prthreatment
and post-treatment data separately and testing "whether the two lines
connect” or whether the datum for 1200 appears to be a simple extra-
polation of the pre-treatment regression line. Their suggestion is
equivalent to the "Mood-test" suggested by Campbell and Stanley (1963,
p. 213). WolZ, Luke, and Hax recognized the shortcomings of their
suggestion and refrained from any inferential statistical. analysis.

They stated their concerns about statistical procedures for analyzing

their data as follows*¥:

*There are 18 observations for the 19 years from 1881 to 1899. Divorce
data were not available for the entire German Empire in 1892 and 1893.
The observation graphed half-way between 1892 and 1893 is an estimate
determined in Wolf, Lilke, and Hax (1959).

**The following passage was rather freely rendered from the original
; Gexman, but it 1s substantially correct.
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"If the post-treatment regression iine connects directly with
the pre-treatment regression line, then the change of laws has not
brought about a shift of level. If, however, it lies hicgher or
lower, the possibility exists that we are dealing with an effect
of the new laws . « .« .

"Where in fact a material shift can be established, it is a
question of ascertaining whether this shift is to be ascribed to
the influence of the change of laws. This can only be accepted
when the data show that the shift of level occurred exactly be-
tween 1899 and 1900.

"One could suppose that the data are randomly distributed
around the regression line. The shift in level between 1899 and
1900 could be regarded as significant under this assumption if
the datum for 1899 lay within the chance region surrounding the
pre-treatment regression line but the datum for 1900 fell outside
this chance region. One could run the alternative test and estab-
lish whether the datum for 1900 lies within the chance region of
the post-treatment regression line and the datum for 1799 lies
outside of the chance region around this regression line.

"If one were to proceed in this way, then one would have to
make use of the standard deviation, ¢, in ascertaining the limits
of the chance region. The standard deviation of a series of
values is given by the dquadratic mean of all deviations of the
individual values from the arithmetic mean. In the case of a
regression line, the deviations of the data from the correspond-
ing predicted value take the place of the deviations from the
arithmetic mean. If there exist reasons for assuming that the
data are distributed as a Gaussian (normal) distribution, then
the probeabilities would amount to .6827, .9545, and .9973 that
a value deviates less than one, two and three standard deviationms, -
respectively, from the mean. For a deviation of a value from the
mean of more than three standard deviations it could be assumed
rather safely that a special influence instead of a cHance fluc=-
tuation is being exhibited. The same conclusion would no doubt

‘be clear if the deviation were merely two standard deviations

from the regression line.

"It can not be assumed, however, that the process is repre-
sentative of the present case. Can it be assumed that the fluc-
tuations of the number of divorces are the result of a neutral
and unchanging law of a random distribution? Is the number of
divorces described as the result of a series of mathematically
isolatable factors? Is the chance region into which this number
must fall unequivocally determined when these factors remain con-
stant? The answers to these questions have been given in part
previously. [See page 12 in Wolf, Like, and Hax (1959).] There
exists little inducement to assume that the data are distributed
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around the regression line according to a constant mathematical
~distribution law let alone according to the law for the Gaussian
normal distribution. Hence, the calculation of chance regions
in this connection appears to be senseless."

(Wolf, Lilke, and Hax, 1959, pp. 129-132.)

Wolf, Like, and Hax seem overly concerned about the 9alidity of
the assumption of a normal distribution. Aand in fact, in the passage
quoted and on page 12 of their book they express reservations about
the validity of any stochastic model as a répresentation of a social
system. They appear to argue that "chance" is an inadequate explana-
tion of social phenomena for which we can find explanations, and they
aprear to draw some.gratuitous connection between the normal distribu-
tion and chance phenomena. ¥We can with gtod snccess predict and "ex-
plain" human stature; the fact that height tends to be ﬂormally dis-
tributed in adults does nbt mean that stature is the result of unknown,
chance influences.

A valid infexential statistical analysis is available for time-

series experiment data, but it is more difficult than fitting and

extrapolating least-squares regressioh lines.

In 1965, Box and Tiao develoged a method of evaluating the change
in level between two successive points in time of a non-stationary time-
series. Obsexvations 2, are taken at equally spaced time intervals and

one wishes to make inferences about a possible shift in level of the
time-series associated with the occurrence of an event at a particular
point in time. If there is an abrupt shift in the level of a time =-

series between the third and fourth observations, evidence of a treat-

ment effect may exist.
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The statistical model underlying the Box-Tiao analysis of change

in level of a time-series was the integrated moving average model.

t-1

= 2 = < 1
2 = L+a; and z =L+ Yizl o, te | (1)

for the B, observations prior to - he introduction of T, and

' t-1
.zt=L+6+y I

+ o, (2)
i=1 t

t-1

for the 32 =‘§'-'21 observations following T, where:

zt is the value of the variable observed at time E,

L is a fixed but unknown location parameter,
Y is»a’parameter descriptive of the degree of interdependence ?
of the obserxvations in the time-series and takes values

O0<y <2,
o is a random normal deviate with mean 0 and variance o2 '

§ is_the change in level of the time-series caused by T.

Essentially the model implieé that the system is subjected to
'periodic'random shocks, ¢., (with zero mean) a proportion ({) of which
are absorbed into the level of the series. Data’Which conform to the
model in (1) and (2) are sucﬁ that the graph of the timeéseries follows |
an erratic, somewhat random path with slight, but no systematic drifts,
trends, or cyecles. Data which show a systematic ihcrgase or decrease
over time =-- such -as population and various growth curves -- violate
the assumption of zero mean for the random variable ¢ .. For generality,
the random variable portion of»the‘model can e allowed to assume an

expected value other than zero; thus "drifting" time-series -- those

showing a constant rise or fall over time -- can be accommodated. The
| 20 )




generalization of the model in (1) and (2) is called the “"integrated

moving average model with deterministic drift"* and takes the following

form:
t-1

zl=L+Bl and zt=L+726 + B

2Bt e (3)

for the n, observations prior to the introduction of T, and

t~1
2z =L+8§+y I B + B
t i=1 t"'l

. (4)

for the n, = N - o, observations following T,

vhere L, y and § are interpreted as in the model in (1) and (2),

but now g is a normal variable with variance g2 and mean equal

-t

Snpsp— u hd

The parameter , describes the rate of ascent or descent of the

time-series.

It is illuminating to express 8 as u + a and manipulate (3)
into a form similar to (1): -
t~-1
z =L+ uy(t=1) + u+vy 5_21 Gy t O - (5)
One sees by inspection of (5) that the time-series in (3) will be

expected to have "drifted" uyt units at time t.
In the setting of the time~series quasi~experiment, interest cen-

ters on estimating 6 in (4) and testing its significance. The

*The "integrated moving average model with deterministic drift" was pre-
sented by G.E.P. Box and G.M. Jenkins on pp. 33-34 of "Models for Pre-
diction and Control, III.. Linear Non-stationary Models," Technical
Report No. 79. Madison: Dept. of Statistics, University of Wisconsin,
July, 1966. . L
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following steps lead to the least-squares estimate of § and its distri-

bution.
t-2 .
By setting Yy = 23 and Ve = % Yy & (l-Y)J z

the model
j:O ' .

t-1-j°

can be written as ¥ = X O + e where X is defined as an N x 3 matrix of
weights as folloﬁ;:
1 1 ... 1 1 cee 1

nl-l

| 1

11-7) ... @=-y2

- -— --‘—

o 0 .. 0

© is a 3 x 1 vector such that OT = (uy, L, §); and eis an N x 1 veétor

of random normal deviates, eT = (ai .« o o aNf, the elements of which

have mean u and variance o2.

When y is known, simple least-squares estimates of u, L and & can

be found from the familiar 'solution to the least-squares normal equations:

()

-~

o= - (x?x)“% Xy - o (o)

O e

\ J -
The least-squares estimates in (6) each have a t-distribution with

N - 3 df when divided by appropriate estimates of their standard error.

In particular,

G-w/GeV )y~ S ¢
- @ - /N2 )~ ty g and | . (®
(8 - 6)/(S‘dc33 )"'tN;3,~ where | ) (9

s2 = (YTY - GTXFXQ)/(N-B)' and cjj is the jth diagonal element of (X?X)-l.

The above results follow from the linear model Y = X 0 + e in which

the errors,.g; are assumed to be normal, homoscedastic, and independent. -
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The quantity s is the residual variance, i.e., the variance of \%

after the model X § is fitted to it.

All of the above operations on the linear model are made for a
given value of y . Wﬁen Y is unknown (as will generally be true) a
Bayesian analysis using sample information about Y - is used in making
inferences about § . The posterior distribution, h(le), of Y given
@ set of N observations and assuming a qniform prior distribution is
known to within a constant of proportionality. The posterior distri-
bution of y assuming a uniform prior (in which case the posterior
distribution is equivalent to the likelihood distribution of v ) is

given to within a constant of proportionality by the following formula:
h(y|z) « lx?xl'llz s ~(N-3) (11)

Illustrations of how the posterior distribution of y in (1ll1) is

considered jointly with § in making inferences about & for the simple .

integrating moving average model in (1) appear in Box and Tiao (1965)

and Maguire and Glass (1967).

4. Data Analyvsis and Results. The data in Figure 1 were subjected to

the analysis outlined in Section 3.* 1In Figure 6 appear graphs of the

*One condition which data following the model in (4) must satisfy is

- stated in terms of the correlogram of the differences between succes-
sive observations, i.e., Z 41=z;. The lag 1 autocorrelation coeffi-
cient should approximate - (l=y) /114 (1-v)*] , and lag 2 and greater
autocorrelation coefficientd of Z¢4+1 =2+ should approximate zero for
the 18 pre-~treatment observations, the lag 1 autocorrelation of the

17 differences Z2:41~2, was 0.127, which corresponds reasonably closely
to the expected value ~- calculated Ffrom the maximum likelihood esti=-
mate of y =~ of 0.100. The lag 2 through lag 9 autocorrelations were
.027, .033, =.419, -.013, .003, =.434, -.504 and .155, respectively.

-7 3

Qaigmen . vy




B TIE A S At

likelihood distribution of Yy and the t-statistic inq(?l for testing

the significance of the deviation of § from a hypothesized value of O.
Nearly all of the mass of the likelihood distribution of y is contained
between the values 0.50 and 1.90.- The maximum likelihood estimate of
the unknown y is approximately 1l.13. The value of t= Sﬁkg) is
clearly significant.-- it is never greater than'e4.50'-- over the
entire range of likely values of y. The hypothesis HO: § =0 can be
confidently rejected in favor of the-alternative that § < 0.: Thus we
see that the downward shift of the rising divorce rate after 1900 was
quite statistically significant; chance can safely be discounted as

the explanation of tne downward movement of the time-series after 1900.
;nspection'of Figure'l Seeme to_indicate that the effect of revision of
the divorce laws was temporary. The conclusion that'the_effect of'the

change_in legislation was temporary depends upon the perhaps gratuitous

assumption that the trend from 1881 to 1913 would have been linear (as

‘opposed to curvilinear) in the absence of legislative change.

The results of the analysis of the data in Figure 2 appear as
Figure.l. The dotted linee on Figure 7 indicate the values below
which '_t_:_ must fall to allow rejection of 6= 0 in favor of § < 0 at the
.05, .025 and .005 levels of significance. Thevgraphs of n(‘ﬂz) and t
present a picture of somewhat marginal statistical significance. The
value of £ is'significant at the’.OS level and beyond for y above l.09.
The fact that approximately 80% of the likelihood distribution of vy
exceeds 1.09 lends support to~reﬁection of § = 0 in favor of § < 0
at a respectable level of significance.

The analysis in Pigure 7 of the petition for reconciliation rate

data in Figure 2 is particularly interesting in that'visual‘inspection"




of the time-series leaves an impression of no treatmént effect which
is at variance with the results of the statistical analysis. Wolf,

Like, and Hax (1959) and Rheinstein (1959) concluded that the revision
of the divorce laws in 1900 had no effect on the rate of petition for
reconciliation. It is difficult to interpret whether these authors

are using the terms "no effect" to mean "no statistically significant
effect," “#o socially significant effect," or "no pexrmanent effect.”

- In the first sense, one could reasonably take issue with the conclusion
of "no treatment effect." It is not our purpose to argue the validity
of conclusions of "no éffect“ in the second and third senses.

In Figure 8 are presented the analyses for change in level of the
divorce rate and the petition for reconciliation rate for the German
'states grouped by type of 1egislatidn prior to 1900. These analyses
will be summarized below for the three‘groups of states in turn.

The average divorce rate and petition for reconciliation rate for
12 Prussian Code states are graphed in Figure 3. The graphs of the
data create a distinct impression of a strong effect due to tﬁe revision
of legislation in 1900. The analyses graphed in the left portion of
Figure 8 substantiate the statistical significance of fhe observed down-
ward shifts in the divorce rate and the petition for reconciliation rate.
For the divorce raté, the value §f t = §/(8) is nevef greater than
~3.90; t is approximately ?4 at the maximum likelihood estimate of vy .
It can be confidently concluded that the divorce rate shifted its level
downward at 1900. The petition for reconciliation rate also showed a

significant downward shift at 1900; t was less than -3 for all likely

values of y, as can be .seen in the upper-left portion of Figure 8.
=7 5= '




lower-middle portion of the figure, the graphs of h(y|2) and t appear

i ol et et

rate is nonetheless statistically significant and can not be reasonably
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As was pointed out earlier, the new Civil Code instigated in 1900 con-

stituted a "tightening" of divorce laws in those states previously
under the Prussian Code. Introduction of the new legislation should
have worked a negative effect upon the divorce and petition for recon-

ciliation rates. Such effects are reliably observable in the data.

The average divorce and petition for reconciliation rates for

‘eight Common Law states are graphed in Figure 4. Inspection of the

' behavior of both time-series in the vicinity of 1900 would probably

lead to no confident concluéions about the possibility of treatment |
effects. The petition for reconciliation rate increases from 1899 to
1900, but not dramatically so. The decrement in the divorce rate from
1899 to 1900 is even less dramatic, and can not be confidently ruled

out as a chance occurrence by mere inspection. The analyses for change

in level of the petition for reconciliation and divorce rates at 1900

appear in the middle~upper and -lower portions of Figure 8. 1In the

for the divorce rate. The value of t is less than -3 for all likely

values of y. Hence, the rather small downward shift in‘the divorce

attributed to chance. The shift in level of the petition for reconcil-
iation rate is equally statistically significant for the Common Law

states; however, whereas there was a decrement in the divorce rate at

1900, there was a statistically significant increment in the petition

for reconciliation rate. It should be recalled that under the new Civil
T

Code, divorce became legal for Catholics in Common Law states for the

first time. One might speculate that the data support the conclusion

-7 6=
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that the new Civil Code brought about petitions for reconciliation
from Cathoiics in the Common Law states, but that.the'coﬁrts held to
their newly enécted unsympathetic attitude téward divorce. Of course,
such speculation goes far beyond the data.

The average_divorce and petition for reconciliation rates for four
states under the Code Napoléon prior to 1900 are graphed in Figure 5.
There appears to be a downwaxd shift of level in the divorce rate at
1900; however, the petition for reconciliation rate does not appear to
have been affected by the introduction of the néw Civil Code. This
latter obserxvation was borne out by the failure of t = §/6(8) to
attain significance in the test for a change in level at 1900 of the_
petition for reconciliation rate. Aas cah be seen in the upper-right
portion of Figure 8, t falls below +2 for approximately the upper 75%
of the likelihood distribution of y; at the maximum likelihood esti-
mate of Y, namely 0.67, the value of t is +1.10. The data on the
divorce rate for the Code Napoléon states show a statistically signi-

ficant downward shift at 1900 (see the lower-right portion of Figure 8).




Conclusions

The conclusions we shall draw from thé above analyses will be at
variance with those drawn by Wolf, Like, and Hax (1959) and Rheinstein
(1959) . Wﬁth'respectvto petitions for reconciliation proceedings, Wolf,

.Lﬁke and Hax concluded the'following:

The introduction of the new Civil Code [in 1900] has not re-
duced the increase of the number of petitions for conciliation
proceedings and has thus not reduced the extenl: of the divorce
desire. Preponderantly the new law has not hadi any effect in
this respect. In some regicns in which the divorce law was liber-
alized one can observe a certain increase of the trend. It is by
‘no means certain, however, whether this increasz would not have |
occurred independent of the change in the law. Nowhere was the
progressive trend retarded. Even in the regicns of the Prussian
law, where the divorce law was tzqhtened, the trend did not change |
in any significant way . ¥ - §
4

'Rheinstein (1959, p. 493) observed that Wolf, Like and Hax were i

"certainly justified in concluding that the draftsmen. of the new code 1
"have failed in their expectation of reducing the desire for divorce." i
With respect to the divorce rate, Wolf, Like, and Hax concluded‘
that "the shape of the law of divorce was neither the cause of the
divorce wave nor even one of its essential»conditions; In the face of

other circumstances, the influence of the law did not make itself felt

at all."”

Rheinstein (1959, p. 495) concurred:

« « o before 1900 the [divorce rate] was rising in the dis-
tricts of most and, since 1900, in those of all appellatc courts.
In a few court districts the trend shows a slight downward break
in 1900. The majority of the latter districts belongs to the
region of the Prussian Code, but there are among them also two
districts of Protestant common law. In all these districts the

ot s NN B s o S g ——t - . m—

*The translatmon is due to Rheinstein (1959, p. 493).
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break is small, and the trend rose continuously after’1900. While
the break in the Prussian law districts may be attributed to the
change of the law, it was insignificant and without lasting effect.,
Nowhere did the change turn the trend downward; and nowhere did

it prevent its continuous rise. (Italics added.)

Both Scheidung und Scheidungsrecht and Rheinstein's review leave

us with the conclusion that

The experiment made by makers of the Civil Code refutes the
. notice (sic] that a limitation of the statutory catalogues of

grounds for divorce to situations of guilt could result in a re-
duction of the number of divorces or even in their rate of in-
Crease. On the other hand, the present Marriage Law [of 1938]
has refuted the apprehension that the introduction of the dis-
ruption principle would naturally result in an increase of divorce.
No causal or even statistical connection exists in one direction

A0 _causal or even statlstlcal connection exists in one direction
or the other.

Rheinstein saw Wolf, Like and Hax's-work'as confirmation of
Willcox's conclusion that "the immediate, direct and meaaurable in-
fluence of legislation is subsidiary, unimportant, almost.imperceptible.".
(Willcox, 1897).

We contend that the conclusions just stated make an unfortunate

use of the word "significant" and that they depend for their validity

upon extrapolations of pre-1900 trends for which there exist as a basis

neither compelling logical reasons nor convincing empirical evidence.
FurEhernore, we feel that the only.conclusion which may be drawn from
the data with confidence is that the effect of the introduction of the
new Civil Code in 1900 is clearly reflected in both the'divorce rate
and the petition for reconciliatipn rate.

All too frequently, social scientists extended the meaning of the

term "slgnlflcant" beyond its strlctly approprlate sense as it applies

to statzstlcal hypothesis testlng and made unwarranted 1nterpretatlons'
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of social value, merit, or importance of data when they are ﬁerely in-
ferentially.reliable -- the appropriate meaning of '"statistically sig-
nificant." Having been disabused of this confusion in our enlightened
age, social scientists now react quite cautiously to the words "signi-
ficant" or "insignificant" when they are applied to data; they are

careful to read inferential reliability into the word and nothing else.

Thus, Rheinstein risked.serious misinterpretation of the facts when he

chose to call the break in the divorce rate curve at 1900 "insignifi-
cant" without the benefit of a valid statistical analysis and without

apprising the reader of the value system against which he judged the

- downward shift to be without social value or importance =- the populat

sense of "insignificant." We have shown that the changes in level of
the divorce and petition for reconciliation rates around 1900 are
statistically significant (with the exception of the petition for re-

conciliation rate in the Code Napoléon states). It does not seem

Jjustifiable to refer to the shifts in level as "“insignificant" in any

inferential statistical sense.

It was also concluded above that if any effect of the 1200 revi-

. sion of the divorce laws did occur it was "temporary" or "without last-

ing effect." It was claimed that granting a remote possibility of an
effect of the new Civil Code the graphs of the divorce rate and the
petition for reconciliation rate quickly returned to'a trend line one
could extrapolate from the pre-~1900 trends. Such a casual imptession
can be "read into" the graphs in Figures 1-5, though in most instances
it is equally easy to confirm an-impréssion of the decrement accruing
during 1900 lasting_through 1914. However, both impressions are

~-80~-
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uncritical. Why must one assume that a somewhat linear trend from 1881

to 1899 should continue from 1900 to 1913 or 1914? The answer is of

course that one need not. In fact, to do so is a matter of faith. One

could argue that the new Civil Code was instrumental in preventing an

~exponential increase of the divorce and petition for reconciliation

rates after 1900.* But to argue either point goes beyond the data.

‘Without comparable "control groups" -- states like those in the Gexman

Empire ﬁhosé divorce laws wére not feviséd in 1200 == no unequivocal
answer can be given to the question "What would the post-1900 trend
of the divorce and petition for reconciiiation rates have been?"
Previous discussions of the data in Scheidung uﬁd Scheidungsrecht
by Rheinstein and Wolf, Iiike and Hax have discredited the one conclu~

sion which can be drawn with defensible validity. The time-series

-quasi-experiment rivals the completely randomized experimental design

‘for validity in some instances. But the inference which enjoys a

healthy measure of validity concerns an instantaneous shift in the
level of the time-series at the introduction of the experimental treat-
ment and not suppositions about how the time-series should behave long

after the treatment has been introduced. There appears to be little

doubt that tl.e revision of thg divorce laws in 1900 did produce statis-~

tically significant effects on bcth the divorce and petition for

*In the U.S. the divorce rate was rising at a faster rate during the
second half of the period from 1887-1917 than it was during the first
half of that period. The divorce rate rose 31 points (47 to 78) from
1887 to 1902, but it rose 42 points (78 to 120) from 1902 to 1917. A
comparison of the pre-1900 and post-1900 trend lines for both the di-
vorce rate and the petition for reconciliation rate in Germany reveals
about the same acceleration of the rates after 1900.
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reconciliation rates. Whether the effects were temporary or relatively
permanént cannot be determined validly from the available data. The
supposition that the effects were temporary should not be cited as
though it somehow calls into question the one conclusion for which
convincing evidence exists, namely that both the divorce and petition

for reconciliation rates show the evidence of adoption of the new Civil |

Code in 1900.
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' Chapter V

| AN ANALYTIC TECHNIQUE EMPLOYING A CHANGE IN DRIFT
; | . OF A TIME-SERIES ASSOCIATED WITH
. ‘THE INTRODUCTION OF A TREATMENT

¢

The model of Chapter IV with its procedures for the
esfimétion and significance ﬁés;ihg of both the constant

- drift, y, of a time-series and its instantanegus-shift in
level, §, at the infroduction of a treatment provideé a
powerful tool for-analyzing a large class of time-series

experiments. In this chapter, we shall report on an even

-more general model and analysis which were developed by

Dr. George C. Tiao for use in this projeét.

PERPIRS

The Problem
It may occur that the effect of the introduction of a

treatment, T, into a time-series does not result in an

PR R s R e g i o D B T

instantaneoﬁs change in the level of the series but does'
change the direction of its drift. The series of observa-
tions in Figurg 1l evidenge no change in level af_g,but a
change in direction of drift. InFigﬁre 2, both changes

at T are present.

A L g WP R BN PR YLy €T SOTMERAT SRR TP S -

o~
.
"
H
S
4
H
$
B
4
]
H




I ) [ ! | ! Time
8 .

-
V)
w
o
o
~

Figure 1. A Time-Series Showing a Change of Direction of
Drift but No Change in Level at T.

t t 3 Y Time

Figure 2. A Time-Series Showing Both a Change in Level
and a Change of Direction of Drift at T.
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The model of Chapter IV can be modified s’o. that a para-
mlet'er' descriptive of . a chaﬁge in y, the drift of the series,
is incorporated. We éhéll see how it is ﬁhen possible to
" estimate all of the. parameters in the model for a given
value of ¥ and to test hypotheses about each. Finally, the
likelihood distribution of y can be found for a' set of n
observations for use in inferential analyses »of §, u, .and

the change in u.

The Model
Let z, denote the observation of a series at time k.
The following model is proposed for the n, observations

prior to the introduction of a treatment T:

t-1
= L+ yu(t=l) + u+y+y I a, + e, (1)

/zt
where the-interpretation of the elements of the model are
identical to their intexrpretation in Chapter IV. The fol-
l'owing mbdel is put forward as descriptive of‘the ioehavior

of the sekies for the n, obsexvations following the intro-

duction of I:

' t-1l
= L 4+ yu(t=1) + u + YA(t-nl-l) +A4+y I aj +a_+ 8, (2)

Z
t su1 t
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where é§ is the change of level of the series between times

Dy and n; + 1, and 4 is the change in the drift of the

series between these two times. Prior to I, the series

drifts (on the average) at a rate of Yu units (up or down

depending on the sign of ) for each unit of time; after T,

the series drifts y(u + 4) units on the average for each

unit of time.

Analvtic Procedures

As before, a collection of B, + n, observations of

given value of y as follows:

z are made; these values of z, are then transformed for a i
|
1
1%2% 1

y, = 2_=-vy L (l--y)j-1 z
t t '

j=1 t=j forE=2, .oy my

X

The (_r_xl +_r_1_2) by 1 vector of y's can be expressed.as a
linear model in terms of the design matrix X, the vector of
~ parameters QT = (L, §, u, 4) and 'the. vector, e, of observa-

tions of a random normal variable with variance ¢2, as in

Chapter IV:




y = X0+ e
o 2 B «
| 1 0 1 0 u o
1 0 (1-y) 0 A @,
s : L .
n,=-2 .
l 0 (1-y)1 _ 0 é .
- nl-l ,
1 0 (Q-y) 0 L34 .
---------------- + .
1 1 (Q-p™ 1 .
1 1 @ttt e : ‘
]
1 1 @-pfrmel g yme-t :
ny+n
L | y LTy
For a single value of y, the least-squares estimates
of the parameters in 0 are obtained from the equation
e
Y . “ ,
d=fd|= x"0 5Ty, (4)
L .
3
Y &
The "residual variance" in fitting the model in (1)
and (2) to the observations 2, is given by
2 ‘ - T 'A . .
s = [(y - XG} (y - ?s@)]/(nl +n, - 4). (5)




The following distributional statements about the esti-
mates of the parameters follow from the assumption of nor-

mality of at'and traditional sampling theory:

.

g=-u o ~
‘-:q=ﬁﬁ5‘nv t
A ¢ nl-l-n2-4’

i-a -
sN\Ne nytng-4> (6)

~ t , Where
c44 ‘nl+n2-4

¢33 is the jth diagonal element of (irx)'l.

The above calculations are performed for a single
value of vy which is restricted to the open intexval (0,2).

Since-&'is generally unknown, information regarding its

likely values must be found from the data themselves. The .
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likelihood distribution of y given the 2, + n, observations
z, is given -= to within a constant of proportionality =-

by formula (7):

h(‘le) « lexl-l/z s-(nl+n2-3). 7

Suppose one wishes to test the following hypotheses at

the a-level of significance:

H.:6=0, H.: A =0,

0 0

Hj: 8 # 0, Hy:a#0.

In this instance, the investigator wishes to ascertain

whethér or not the introduction of a treatment between time
n, and time h, + 1l results in either an instantaneous shift
of level of the sveries, an instantaneous shift in the direc-
tion of the drift of the series, or both.
For each value of y between 0 and 2, the values of 3,
and s

are obtained using formulas (4) and (5). The null

hypotheses H.: ¢ = 0 and H.: A = 0 are tested with the t-

0° o* .
statistics t = 8/(sNe?® )and t = 4/(s\c?? ) which both have
Student's t-distribution with h; +1n, - 4 degrees of free-
dom if the null hypotheses are true. These values of t are

likewise calculated for each value of y between 0 and 2.
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Next, 'the 1ikelihood distribution of ¥ is determined ’and
the graph of t for & and the graph of t for i are inspected
- over the range of v's which are shown t§ be likely by
inspection of h( Y |2) . It :I.S determined whether the value
of t for either 3 or Z\ tends to be significant [i.e., out-
side the 100(a/2) and 100(L - @/2) percentile points in the
| _t_—disti'ibution with n, + n, = 4 df] or nonsignificant over
the range of likely values of y. Of coﬁrse, very large (in

absolute value) values of t = 3/(s 044 Jor t= Z\/(s c2? )

lead to rejection of Hys 6§ =0 orxr I-Io': A = 0, respectively.

Computer Programs
Computer programs foi the analyses in Chapter IV and
this chapter appear as Appendices A and B, respectively,
to this repert. Source decks for both programs are avail-

able upon request from the authors.
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Appendix A

Computer Program for Analysis of
Time=-Series Experiment with Constant Drift

-100~

Aruitoxt provided by Eic:
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Appendix B

Computer Program for Analysis of
Time-Series Experiment with
Possible Change in Drift
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PARA
CARD
CARD
CARD
CARD
POST
CARD
TREA

NOOOYO O OO N

-
L

37

3

603

602
701

6E6

22
]

-

2022
1

- v -
P I ME

SFRIES INCORPORATING CHANGE IN DRIFT
METER CARD ONFE  COLSe 1.2 NB=NUMBER OF PROBLEMS TO BE RUN
S 2434 ARE REQUIRED FOR EACH PRCBLZM TO BE RUN
? COLS«?=8n TITLF QOF PROBLEM
3 COLS 1-80 FORMAT FOR DATA CARDSesIN THE FCRM (FORMAT)
4 COLSe 1-4 NUMBER QOF PRE TREATMENT MEASURES. COLLSe 5-=8 NUMBER OF
TREATMINT MEASURESe COLe 99 1 IF CORRELOGRAM REQUIREDs O OTHERWISE
5 ETCe DATA CARDS FCR FIRST PRCBLEM NO SEPERATICN BETWEEN PRE AND POST
TMENT DATA
DIMENSICON Z(50C)YsY(H5C( ) aX{50C a4 ) sXTXIN{L o4 ) o XTX(4a4) s XTY 1 &)
DIMENSION THFTA(L) oFMT(18)sTITLE(18),PD(200) o XOUT(201911)
DIMENSION SE(4)eT(4)sBl4&4e1)
DIMENSION XX(2004+10) sDELCON(20095) oFNAM(595)9G1(5)9G2(5)9G3(5)+64(
5)eG5(5)sGE(5)sGT(5)sG3(5)9G9(5)4+G10(5)
DATA Gl/?20HTee«CHANGE IN LEVEL /
DATA C2/20HTe««CHANGE IN SLOPE /
DAYA G3/20HSCALFD POSTERIOR /
DATA G4 /20HLOWER ¢9 PFERCENT /
CATA G5/20HLOWER 95 PERCENT /
DATA G6/20HDFLTA /
DATA GT7/20HUPPER 95 PERCENT /
DATA G8/20HUPPER 99 PERCENT /
XXCK=1e0E=-15
NBRB=0
RFAD(5436)NB
FORMAT(12)
READ(Se1)(TITLE(I)sI=1418)
FORMAT(18A4)
J¥=n
NTT=n0
G=0e N1
NRB=NRR+1
WRITF(6437)NRR
FORMAT(//9H PRCBLEM I2/7/)
WRITE(641)(TITLE(I)sI=1418)
READ{(S5s 1Y (FMT(I)sI=1+18)
READ{5+3)IN1 sN2eNCC
FORMAT(214411)
NTOT=N1+NZ
READ(SsFMTI(Z(I)sI=1eNTOT)
WRITE(64601)IN1eN2Z _
FORMAT( //8Xs4H N1=13s4H N2=13//)
WRITE{(64602) ,
JORMAT(15H INPUT DATA)
WRITE(54600)(Z{I)sI=14N1)
FORMATI(S {1XE13e5))
NNN=N1-1
WRITE(6+4603)(Z{1)sI=NNNSNTOT?
FORMAT(//2{1XE13e5}))
TFINCCYT0297016702
CALL CORREL (N1sN2+2Z)
CONTINIE
WRITF (£ +6656)
FORMAT{1HO)Y
WRITE(6422)

FORMAT(1X114H RESIDUAL T FOR CHANGE IN T
FOR T FOR CHANGE IN T FOR SCALED)

WRITE(602022) ‘ '

FORMAT (1X117HGAMMA VARTANCE LEVEL LEVEL LEVEL
CHANGE SLOPE SLOPE SLOPE CHANGE POSTERIOR)




| 25 CONTINUE
«C CALCULATION OF Y SCORES FROM THE DATA ««.CHECK FOR UNDERFLOW WHEN GAMMA

C IS 10 AND YI{N) IS NEARLY EQUAL TO Y(N-1)
Y(1)=Z(1)
DO 5 I= Z,NTOT
11=1-1
YY=ABS(Y(II))
‘ IF(YY=XXCK)Y&D 942 445
45 IF(YY=e000001)404404+41
40 GG=ARS(1.0-G)
CIF(GG=e001)42 42441
42 - Y(I)=2(1)=-2(11)
| GO TO 5
! 1 Y(I)={Z(I)=Z{II))+(1e0=G)*Y(II)
5 CONTINUE
C CALCULATION OF WFIGHTSs IF ABSOLUTE VALUE OF X IS LESS THAN 140E-15s THEN
C IS SET EQUAL TO ZERO TO PREVENT UNDERFLOW
DO 1000 I= laNTOT
1000 XtIs1)=140
. DO 2000 I=1,N1 |
2000 X(1s2)=040 1
|
i
|
|
|

1y
s
e IO A PRI A et OB b

| NNN1=N1+1

| | DO 2001 I=NNN1sNTOT
2001 X(I1s2)1=1.0

i X(1e3)=1e0

’ X(2+3)= 1 0-G
' DO & I=3,NTOT
I1=1-1 |
X{I193)=X{293)%X(I1+3)
XXX=ABS(X(Is3))
IF(XXCK=XXX)696932
32 X(I+3)=0e0
6 CONTINUE
DO 7 I=1,4N1
7 X(Is4)=0e0
NN=N1+1
DO 8 I=NNSNTOT
I1=1-N1
X{Is4)=X(11s3)
XXX=ABS(X(1:4))
: IF({XXCK~XXX)8+8+33
: 33 X(1s4)=040
y CONT INUE
DO 11 I=1+4
DO 11 J=1s4
XTX(TeJ)=0e0
; 11 XTXIN(IsJ)=0e0
| C CALCULATION OF X TRANSPOSE X INVERSE
DO 4050 1=144
DO 4050 J=1+4
DO 4050 K=1sNTOT
4050 XTX(I9J)-XTX(L’J)+X(K,I)*X(K9J)
DO 2002 I=1ls4
DO 2002 J=ls4
2002 XTAIN(I&J)=XTX(IsJ)
PO 4061 I1=1s4
4061 XTY(I)=0e0
DO 4062 I1=1s4
‘ DO 4062 J=1sNTOT
F 4062 XTY(IY=XTY(I)+X(Jde1)3Y(J)

o e st BRI el iyt v




- 2007 RIT41)y=XTY{
CALL MATINV{XTXINs4aBs1sDET)
DO 2020 =144
2020 THETA(I)=8B(I.,1)
o0 2004 1=144
2004 SEA{I)=XTXINC(ILI)
FNTOT=NTOT
YTY=0e(
C CALCULATION OF THE RESIDUAL VARIANCE
NO 18 T=14NTOT
18 YTY=YTY+Y(T)®x2
DO 31 I=144
31 XTY(I)=De0
DO 19 J=1+4
DO 19 I=1.4
19 XTY(J)Y=XTY(IY+THETA(I)*XTX(I+J)
FITVAR=0.0
DO 20 I=144
20 FITVAR=FITVAR+XTY({I)Y*THFETA(I)
S=YTY-FITVAR
S=S/{FNTOT=4.0)

C CALCULATION OF THE STANDARD ERRORS OF DELTA AND MU
DO 2010 1=1s44
SE{INV=SQRT(S*#SE(I))

2010 T(I)Y=THETA(IY/SE(I)

C CALCULATION OF THE POSTERIOR DISTRIBUTIONese LOGS ARE USED TO PREVENT

C OVERFLOW ‘ ‘
SK=ALCG( &)

DET=ALOG{DET}
={ = BRDET)I~{ « 5% (FNTOT~440)%SK)
H= o 434294 5%H
JK=JK+1
XOUT UK «1)=G
XOUT(JdKs2)=S
XOUT (I 43 )=THFTA(3)
XOUT (UK s£)Y=T(3)
XOUT{JK 45 )=THETA (&)
XOUT(IK «6 =T {4
XOUT (UK 7)=THFTA(]1)
XOUT (JK+81¥=T({1)}
XOUT (UK 9 3=THETA(2)
XOUT(JK«10)Y=T(2)
IF(NTCT=30)1004+100541005

1005 DEFLCON{JC 91 )=THETA(4)=2e58%S5E(4)
DELCONIJUK 92 )=THETA (4)=1e96%SE(4)
DELCON(UK #3)=THETA (&)
DELCOM (UK &6 )=THETA(L4)+1e96%SE(4)
DFELCON(JK 85 )=THETA {4 )+2e58%SE(&)

1004 NIT=NIT+HI
POINTITY=

C INCREMENT GAMMA RY «01 AND ITERATE
G=G+1.000000NNE=N2
IF(NIT—-199)30+20+26

in GO TO 25

. 26  CONTINUE

C FIND MAXIMIM VALUE OF THE POSTERIOR
FIMN=PD(1)

DO 806 1=2199
TE(FIN=-PD(I)I)I505+5064506




- 505 FIN=PD(I)
.~ 506 CONTINtIE .
C RESCALE POSTERIOR BY DIVIDING ALL VALUES OF THE POSTERIOR BY THE MAX VALUE
NG 507 1=1+199
PD(IVY=PD(I)=FIN
YY=ARS(PD(T))
IF(YY=35401509+508 4508
508 PD{I)=0.0
GO TO 507
509 PD(IV=PD(I)/e#4342945
PD{IV=EXP(PD(I))
507 CONTINUE .
C CONVERT AREA OF THE POSTERIOR DISTRIBUTION TO UNIT AREA. BY METHOD OF TRAPEZ
AREA=0e0
NO 511 1=24199
[I=1-1
511 AREA=AREA+e00S*(PD(I)+PD(II))
DO 512 1=1,199
512 PD(IY=PD(I)/AREA
DO 513 I=1,199
513 XOUT(Is11)=PD(I)
DO 514 I=14199
514 WRITE(6423) (XOUT(TeJ)ed=1911)
23 FORMAT(1X91F542s10(1XE1Ce3))
DO 700 I1=1,199
XX(I1)=XOUT(Is5)
XX(12)=XOUT(1+9)
700 XX(143)¥=XOUT(Is11)
M=199
N=3
IsCALE=1
C TITLE FOR PLOT OF THE POSTERIOR DISTRIBUTION AND FOR STUDENT T
DO 760 I=145
FNAM(1s1)=G1(1I)
FNAM{2+1)=G2(1)
7580 FNAM(3s1Y=G3(1)
CALL PLOT(MsNs ISCALEsXXsFNAM)
N=5
C PLOT CONFIDENCE INTERVALS AROUND DELTA
IFINTOT=30)1007+1006451006
1006 DO 1008 1=1,199
DO 1008 J=14+5 :
1008 XX(T4J)=DELCON(I,4J)
NO 756 I=1,5
FNAM(1e13=G4(1)
FNAM(2+1)¥=G5(1}
FNAM(31)=G6(I)
)
)

\

FNAM(4 9 1)=GT7(1
756 FNAM(S5+I)=G8(1
WRITE(6+1016)
1016 FORMAT(//34H CONFIDERCc INTERVALS AROUND DELTA)
WRITF(6451017)
1017 FORMAT(/3X9s5HGAMMA s2X+52H LOWER 99 LOWER 95 DELTA UPPER 95
1 UPPER 99)
Do 1019 1=1,199
1019 WDITf(ésTOIB)XOUT(Isl)s(DELCON(IaJ)sJ 1+5)
1018 FORMAT(3Xs1F54291X5E1063)
WRITE(E41015)
1015 FORMAT{(//1Xs47H GRAPH OF CONFIDENCE INTERVALS AROUND DELTA HAT)

CALL PLOT(MsNsISCALE s XX sFNAM)
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1007 NR=NR-1
- IF(NR)Y 22438439
8 CONTINUF
STOP
E AR
SUBROUTINE CORREL (Nl1sN2s2Z)
DIMENSION Z(500)sRLAG{400)YsY{500)aXX{(200+10) sFNAM{545)
NIMENSTION GO(5)+G10(5)
DATA GY/20HPRE TREATMENT DATA 7/
DATA GlO0/20HPOST TREATMENT DATA /
NTOT=N1+NZ
PREPARATION OF TITLE FOR CORRELOGRAM PLOT
DO 804 JJJ=1s4
IND=UJJ
IF{IND=218054,806+807
807 IF(IND—-4)805,806+806
805 CONTINUE
DO 757 I=145
757 FNAM(14I)=G9(1)
GO TO 808
806 CONTINYF
DO 758 I=145
758 FNAM(1+1)=G10(1I)
808 CONTINUE
GO TO (809981098119812)91ND
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT DATA
809 NLAG=N1
' NLOW=1
NTOP=N1
WRITFE(6+813)
813 FCRMAT(//328H CORRELOGRAM OF PRE TREATMENT RAW DATA)
GO TO 814
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT DATA
810 NLAG=N?
NLOW=NI1+1
NTOP=NTOT
WRITF(6+815) :
815 FORMAT(//329H CORRELOGRAM OF POST TREATMENT RAW DATA)
8l4 I11=0
DO 706 I=NLOWSNTOP
IT=T1+1 '
706 Y(II)=2(T1)
GO TO 706
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS
811 NLAG=N1-1
NLOW=1
NTOP=N1-
WR I TE(ésSOO)
80O FORMAT(/ /41K CORRELOGRAM OF PRE TREA!4ENT DIFFERENCES)

ta)

0N

-

GO TO €16
C PREPARATION Or DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT
C DIFFZRENCES ETWEEN SUCCESSIVE OBSERVATICNS
812 NLAG=N2~}
NLOW=N1+1

NTOP=NTOT-1

WRITE(64803)

FORMAT(//42H CORRELOGRAM COF POST TREATMENT DIFFERENCES)
1I=0

DO 707 I=NLOWsNTOP

o o
=t O
o W




C
C
C

C SEARCH FOR

703

704
16

650

804

11 1
IK

Y{ =Z{IK)Y=2 (1)
JJI=NLACH*3/4

DO 716 K=1lsJJ
NUP=NLAG-K

=1
=1
I

V+H
it -

CROE=NeN

SUM1=060

SIM2=040

SUMS1I=0e N

SUMS2=0.0

DO 703 I=14NUP

NIND=T+K
CROS=CROS+Y({I)*Y(NIND)
SUM1=SUM1+Y(TI)

SUM2=SUM2+Y (NIND)
SUMS1=SUMSI+Y(1)#Y(I)
SUMS2=SUMSZ2+Y (NINDI*Y(NIND)
FNUP=NUP
DNUM=CROS—-(SUM1*SUM2) /F"IUP
DEN=(SUMS1-(SUM1*SUM1) /FNUP)* (SUMS2=(SUM2%#SUM2 ) /FNUP)

DEN=SQRT (DEN)

RLAG(KY=DNUM/DEN
- WRITE(65704)KsRLAG(K)

FORMAT(1Xs5H LAG=I343Xs3H R=F6e3)
CONTINUE :
ISCALE=1
N=1
M=JJ
DO 650 I=1sJJ

XX(Ts1)=RLAG(I)
CALL PLOT{MsNsISCALE s XXsFNAM)
CONTINUE
RFETURN

END
SUBROUTINE PLOT (MsNsISCALEsXXsFNAM)

A A A

ADAPTED FROM THE SUBROUTINE=GRAPH= OF —-PERSUB~ WRITTEN BY JeHeWARDsJ=4 s
KATHLEEN DAVISs AND JANICE BUCHHORNSLACKLAND AIR FORCE BASESTEXAS
ADAPTED FOR FORTRAN II 8Y TeOeMAGUIRESUNIVERSITY OF ILLINOIS

201
276

200

277
202
99

S8

100

DIMENSION RAT(10)sFND(5+10) sENCRMT(10)sPA(120)sFMT(3)sPB(10)
DIMENSION XX(200510) s AMAX(10) sAMIN(10)+B(10)sFNAM(5+5)9BB(10)
DATA BB(1)+8BB(2)sBB(3)+sBB(4)sBB(5)+B8(6)sBB(7)sB88(8)+88B(9)+88(10)/

11H191HS5 s 1HD 91HS551H1 9 1HO 9 1HX 9 1HM 9 1HH 9 1HA /

DATA PCROSSsPBLANK sPDASHSPERIOD/1H*91H 91H=91He/
DATA FMT(1)oFMT(2) oFMT(3)/1H. 91HC s 1H=/
IF(N=-5)200+201+200

DO 276 I=145

R(IV=R8R(I)

GO TO 207

PO 277 1=1,3

I11=1+5

B(I)=BB(II)

CONT INUF
FMS=FMT(ISCALE-])

DO 1n0 I=21¢N
AMIN(TY=+1eE+37
AMAX{I)==1eE+37

MAXIMA AND MINIMA

ABMIN=AMIN(1)
ARMAX=AMAX(1)
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DO 101 I=14M
NO 101 J=1,N
COMP=XX{TsJ)-AMIN(J)
IF{COMPY&0N024+400344003
4002 AMIN(J)Y=XX{Is4J)
4003 COMP=XX(T1+J)-=-AMAX(J)
IF(COMP)Y101+4101+4004
4004 AMAX(J)=XX(I4J)
101 CONTINUE
IF(N=5)2509251+250
251 DO 252 J=1s5
AMAX({J)Y=AMAX(5)
252 AMIN(JY=AMIN(1)
250 CONTINUE
N1=N
. DO 108 J=1N
C COMPUTE RESOLUTION OF GRAPH
108 RAT(J)=(AMAX{J)=-AMIN(J))/110.
DO 110 J=1eN
ENCRMT{J)=(AMAX(J)=AMIN(J) ) /4o
FND(1eJ)Y=AMIN(J)+e05
COMP=AMIN(J)
IF(COMP)I40Q05+400644006
4005 FND(13J)=FND(1leJ)—=el0
4006 FND(59sJ)=AMAX(J)—-e05 |
COMP=AMAX(J) : |
IF(COMP)I&40OCT, 400894008
C PREPARE ORDINATE LABELS
4007 FND(59J)=FND(59J)=s10
4008 FND(2sJ)=AMIN(J)+ENCRMT(J)+.05
COMP=FND(2+,J)
IF(COMP)Y4N09+401044010
4009 FND(2+sJ)=FND(29J)=e10
4010 FND{(3sJ)=AMIN(JII+(ENCRMT(J)*%2e)+605
COMP=FND{34J)
IF(COMP)I40114401264012
4011 FND{(3sJ)=FND(34J)=410
4012 FND(49J)-AMAX(J)“ENCRMT(J)+005
COMP=FND{44J)
IF(COMPY4&N13,1104110
4013 FND(4 o J)Y=FND(49J)=e1l0 A
110 CONTINUE J
C PRINT LEFT HAND LABELS
WRITE(H6s7I((FND(IeJ)eI=195)sB(J)sJ=1sN1)
7 FORMATI(///1XF6el s21XFbeles21XFbels 21XF6 1s21XFb6els3XAl)
C PLOT LEFT HAND MARGIN
DO 4014 1=1459
4014 PA(I)=PDASH
WRITE(698)(PA(I)sI=1+59)
8 FORMAT(1Xs59A2)
DO 140 I=1.M
DO 4015 11=1,120
4015 PA{IT)Y=PRLANK
DO 121 IX=27481427
121 PA(IX)=PERIOD
NCOMD= 1
4016 NCOMP=NCOMP-10
IF{NCOMPY12444017+40C16
4017 CONTINUE
DO 123 iX=6412062




130
135

6
6023
C PLO
136
2
140

6026

142
3

122
4

© 123
C RES
2

PA{IX)Y=PDASH

CALE DATA POINTS

DO 135 K=1,N

ZL=(XX(IQK)-AHIN(K))/RAT(K)+loO

L=ZI.

IF{L=1)6018+6019+6019

L=1

IF{110-L)6020+,6021,6021

L=11n

IF(PAIL)«EQePBLANK)IGO TO 130

IF(PA(L) «EQePERIOD)IGO TO 130

IF(PA(L)oEQePDASHIGO TO 130

PA(L)=PCROSS

GO TO 135

PR{K)Y=R{K)

PA{LY=PR(K)

CONT INiIF

IF(ISCALF=1)60234136,6023

FORMAT{AL)Y

WRITE(646)FMS
T DATA POINTS

WRITE(é’Z)IQPERIODQ(pA(J)9J=19110)9PERIODQI
FORMAT({1XsI39A15110A15A1513)

CONT INYF

DO 6026 1=1+59

PA(I)=PDASH

WRITE(6+8)Y(PA(I)s1=1559)
WQITE(697)((FND(IaJ)QI=195)9B(J)9J=19N1)

WRITE(643)

FORMAT{1HO 910X+ 16HPLOT DESCRIPTION/1H097X95HTITLEQIOX99HCHARACTER9
14X97HMINIMUM94X97HMAXIMUM94X9lOHRESOLUTION)

DO 122 J=1 4N
WRITE(694)(FNAM(JaK);K=195)QB(J)QAMIN(J)QAMAX(J)QRAT(J)
FORMAT(1X95A492X9Al97XF8-393XF8»394XF8.3)

RFTURN

END

SUBROUTINE MATINVIAsNsBsMsDETERM)

MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
DIMENSION A(494)98(491)QIPIVOT(4)QINDEX(492)9PIVOT(4)
EQUIVALENCE (IROWQJRCW)Q(ICOLUMQJCOLUM)Q(AMAXQTQSWAP)
INITTALIZATION

DETERM=1.0

DO 20 J=1sN

IPIVAT(JYy=n

DO 550 I=14N

SEARCH FOR PIVOT ELEMENT \

AMAX=0e0

NO 105 J=1 4N
IF (IPIVOT(J)=1)
100 K=1sMN
(IPIVOT(K)=-1)
{ABS (AMAX)=ABS
IR0W=J
1CohumM=K
AMEX =AU oK)
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605105460
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80+1005740
(ACJsK)) ) 855 85, 100

b=t b=t ()
mm

CAMTINNE
(ICOLUM)I=IPIVOT(ICOLUM)+1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
I[F TROW=ICOLUM) 14042605140
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ieT AN

C C




160
170
200
205
210
220
230
250
260
270
310
320

330
340
350
355
360
370

380
390
400
420
430
450
455
460
500
550

600
610
" 620
630
640
650
6C0
670
700
705
710

720
730
740

DETERM=<~DETERM

DO 200 L=1sN

SWAP=A{IROWsL )
ACTROWSL)=A{ICOLUM,LL)
ACTCOLUM L Y=SWAP

IF(M) 26092504210

DO 250 L=14M

SWAP=B(IROWL)
BIROWIL)Y=B(ICOLUML)
B{ICOLUMLL )I=SWAP
INDEX{I41)=IROW
INDEX(142)=ICOLUM
PIVOT(I)=A(ICOLUMsICOLUM)
DETERM=DETERM%PIVOT(I)
IF(PIVOT(I)) 33047204330
DIVIDE PIVOT ROW BY PIVOT ELEMENT
A(ICOLUMSICOLUM)Y=1,0

DO 350 L=1sN
A(TCOLUMaLI=A(ICOLUMSL) /PIVOT(I)
IF(M} 38093803560

NO 370 L=1sM
BICOLUMsL)=B{ICOLUMSL)/PIVOT (1)
REDUCE NON=-PIVOT ROWS

DO 550 L1=1sN

IF(L1-ICOLUM) 40055504400
T=A(L1sICOLUM)
A{L1sICOLUM)=0.0

DO 450 L=1sN
A(LLsL)=A{LYLsL)=A(ICOLUMsL)*T
[F(M) 55045509460

DO 500 L=1.M
BIL1sL)=B(L1sL)-BIICOLUMsL)*T
CONTINUE .

INTERCHANGE COLUMNS

DO 710 I=14N

L=N+1-~1
IF(INDEX(L91)=TNDEX(L92)) 63047104630
JROW=INDEX({Ls1l)

JCOLUM=INDEX (Ls2)

DO 705 K=1 4N

SWAP=A(KsJROW)
A(KsJROWY=A(K o« JCOLUM)

A(Ks JCOLUM)Y=SWAP

CONTINUE

CONTINUIE

RETURN

WRITF 15 s 730 )

FORMAT (20H MATRIX IS SINGULAR)
RETURN

END

IF{COMP)I40054,4006+44006
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602 FORMAT{i5H INPUT DATA)

TIME SERIES WITH CONSTANT DRIFT

PARAMETER CARD ONE COLSe 1,2 NB=NUMBER OF PROBLEMS TO BE RUN

CARDS 293294 ARE REQUIRED FOR EACH PRCBLEM TO BE RUN

CARD 2 COLSe2-80 TITLE COF PROBLEM

CARD 3 COLS 1-80 FORMATY FOR DATA CARDSeoIN THE FORM {(FORMAT)

CARD 4 COLSe 1-4 NUMBER OF PRE TREATMENT MEASURESe. COLSe 5-8 NUMBER OF

CARD 5 ETCe DATA CARDS FOR FIRST PROBLEM NO SEPERATION BETWEEN PRE AND POST
TREATMENT DATA
DIMENSION Z(500)sY(500)eX(50Ce3) sXTXIN(393)sXTX(393)sXTY(3)
DIMENSION THETA(3) sFMT(18)oTITLE(18)sPD{(200)sX0QUT(201510)
DIMENSION XX{200s10)sDELCON(20055) sFNAM(545)
DIMENSION G1(5)3sG2(5)sG3(5)9G4(5)9G6(5)5GT7(5)sG8(5)5G9(5)sG5(5)
DATA G1/20HTo«CHANGE IN LEVEL
DATA G2/20HSCALED POSTERIOR
DATA G3/2C0HLOWER 99 PERCENT
DATA G4 /20HLOWER 95 PERCENT
DATA G5/20HDELTA
DATA G6/20HUPPER 95 PERCENT
DATA G7/20HUPPER 99 PERCENT
XXCK=1e0E~15
NBB=0
READ(5936)NB
36 FORMAT(I2) ‘

NN N NN NN

39 READ(S5s1)(TITLE(I)sI=1418)

1 FORMAT(18A4)
JK=0
NIT=0
G=0.01
NBB=NBB+1
WRITE(6537)NBR

37 FORMAT{(//9H PROBLEM 12/7)
WRITE(Gs1J(TITLE(IYsI=1418)
READ(S91Y(FMTI(I)eI=1418)
READ(5+43)IN1sN2sNCC

3 FORMATI(2I4,11)
NTOT=N1+N2
READ(SsFMT)I(Z(I)sI=1aNTOT)
WRITE{(64601)IN1aN2

601 FORMAT{//8Xe4H N1=1394H N2=13//)
WRITE(69602)

WRITE(6+600){(Z(I)sI=1sN1)

600 FORMAT(5(1XE1345))

NNN=N1+1
WRITE{60603)(Z(1)sI=NNNsNTOT)

603 FORMAT{//5{1XE1345))

IF(NCC)YT70257019702
702 CALL CORREL (N1lsN2sZ)
701 CONTINUE

WRITE(64+6066)
666 FORMAT(1HO)

WRITE(S4+22)
22 FORMAT(1Xs116H GAMMA RESIDUAL VAR L HAT MU HAT STD ERR
1 MU T FOR MU CELTA STD ERR DELTA T FOR DELTA POST DIST GAMMA)

25 CONTINUE
CALCULATION OF Y SCORES FROM THE DATA «oCHECK FOR UNDERFLOW WHEN GAMMA
IS 1.0 AN Y{(N) IS NEARLY EQUAL TO Y(N-1)

Y{li=2(1}

DO 5 =2 4NT0T




11=I-1
YY=ABS(Y(II))
IF(YY=XXCK)42 942945
45 IF(YY=e000001)40040+41
40 GG=ABS(1ls0-0G)
IF(GG=a001)42342441
42 Y(1)=Z2(1)=Z2(I1)
GO TO 5
41 Y(1)=(Z(I)=Z(I1I))+(1leO0=G)*Y(II)

5 CONTINUE

C CALCULATION OF WEIGHTSs IF ABSOLUTE VALUE OF X IS LESS THAN 1.0E-15s THEN 1

C IS SET EQUAL TO ZERO 7O PREVENT UNDERFLOW
DO 1000 I=1oNTOT
1000 X(Is1)=1leO
X{192)=1e0
X(292)=160-G
DO 6 I=34NTOT
11=1-1
X(I1e2)=X{292)%X(1152)
XXX=ABS(X(I+2))
IF(XXCK=XXX)696932
32 X(l142)=060
& CONTINUE
DO 7 1=14N1
7 X(I193)=060
NN=N1+1
DO 8 I=NNSNTOT
Il=1-N1
X(T1931=X(1192)
XXX=ABS(X(I+3))
TF{XXCK=XXX)898+33
33 X(I+3)=0e0
8 CONTINUE
C CALCULATION OF X TRANSPOSE X INVERSE
DO 11 I=1,3
DO 11 J=1s3
XTX(I19J)=0e0
11 XTXIN(IsU)=0e0
FNTOT=NTOT
XTX(1s1)=FNTOT
DO 1001 I=1oNTOT
XTX(192)=XTX(192)+X(I191)%X(1s2) .
XTXC193)=XTX(193)+X(Is1)%X(I3)
XTX(292)=XTX(292)+X(192)%%2
XTX(363)=XTX(393)+X(1s3)%%#2
1001 XTX{293)=XTX(293)+X(I192)%¥X(I+3)
DO 1002 I=1,2
DO 1002 J=1,3
1002 XTX(JsI)=XTX(IsJ)
DET=XTX(191)%(XTX{2+2)1%XTX(393)=XTX(293)%%2)
DET=DET=XTX(291)#(XTX(1s2)¥XTX {393}~ ~XTX(392)%XTX(193))
DET=DET+XTX{3 1) ¥ (XTX(1s2)%XTX(293)=XTX(292)%¥XTX(1+3))
KTXIN(Is13=(XTX(292)%XTX(393)=XTX(2+3)%%2)/DET
XTXIN(242)=(XTX(1s1)%XTX(33)=XTX(1+3)%%2)/DET
XTXIN(393)=(XTX(191)%¥XTX(202)=XTX(12)%%2)/DET
XTXIN(L92)==(XTX(2s1)%#XTX(393)=XTX(3+1)%XTX(2+3))/DET
XTXIN(193)=(XTX(291)¥XTX(392)=XTX(3s1)%XTX(2+2))/DET
XTXIN(293)==(XTX(1s1)%¥XTX(292)=XTX(391)%XTX(1+2))/DET

DO 1003 1=1,2
DO 1003 J=1,3




E

L1002 XTXIN(JsTI=XTXIN(ISJ)
_ DO 13 12143
THETA(L}=(e0
13 XTY(I)=0.0

DO 14 U=1o3
DO 14 I=1sNTOT
14 XTY(CJ3=XTY(I)+X(TsJ)Y(T)
C CALCULATION OF THETAees L HAT AND DELTA HAT
DO 15 J=1,.3
DO 15 I=1,43
15 THETACJ)=THETA(II+XTXIN(JI$IIRXTY (1)
YTY=0e0
C CALCULATION OF THE RESIDUAL VARIANCE
DO 18 I=1oNTOT
18 YTY=YTY+Y(I)%#2
DO 31 I=1,43
31 XTY{I}=0.0
DO 19 J=143
DO 19 I=143
19 XTY(J)-XTY(J)+THETA(I)*XTX(IQJ)

FITVAR=0.0
DO 20 I=1,3
50 FITVAR=FITVAR+XTY(IV)*THETA(I)
S=YTY-FITVAR
S=S/{FNTOT=3.0)
C CALCULATION OF THE STANDARD ERRORS OF DELTA AND MU
SMU=S*XTXIN(1s1)
- SDELTA=S*XTXIN(3+3)
SMU=SQART { SMU)
SDELTA=SQRT(SDELTA)
TMU=THETA(1)/SMU
TOELTA=THETA(3)/SDELTA
C CALCULATION OF THE POSTERIOR DISTRIBUTIONeee LOGS ARE USED TO PREVENT
C OVERFLOW
SK=ALOG{S)
g DET=ALOG(DET)
Hz({—e 5%*DET)={ « 5*¥ (FNTOT=360)*5SK)
= 04342945%K
JK=JK+1
XOUT{JIK+11=G
XOUT(JIKe2)=S
XOUT(JKe3)=THETA(2)
XOUT(JIK 4 )=THETA(L)
XOUT(J&oS)-%MU
XOUT (JKe6)=TMU
XObT(Jko?) THETA(3)
XOUT(JKsB)I=SDELTA
XOUT(JK 5 )=TDELTA
IF(NTOT-30)10045100541005
1005 DELCON(JK o1)=THETA(3)=2458%SDELTA
DELCON{JK 92)=THETA{3)=1e96%SDELTA
DELCON(JK 3)=THETA(3)
DELCON{JK o4 )=THETA(3)+1.96%SDELTA
DELCON{JK 95)=THETA(3)+2.58%SDELTA

1004 NIT=NIT+1
PDINITI=H
C INCREMENT GAMMA BY 01 AND ITERATE
G=G+1.00000000E-02
IF(NIT=199)30+30+26
30 GO 70 25




26 CONTINUE
c FIND MAXIMUM VALUE OF THE POSTERIOR

FIN=PD(1)
DO 506 [=2+166
IF(FIN-PD(I))505+506+506
505 FIN=PD(I)
506 CONTINUE
C RESCALE POSTERIOR BY DIVIDING ALL VALUES OF THE POSTERIOR BY THE MAX VALUE
DO 507 I=1+199
PRD(I)=PD(I)}-FIN
YY=ABRS{(PD(I))
IF(YY-35.0)509+508+508
c08 PD(IY=0e0
GO TO 507
509 PD(IY=PDt1)/s4342945
PD(I)=EXP(PD(I))
507 CONTINUE
C CONVERT AREA OF THE POSTERIOR DISTRIBUTION TO UNIT AREA BY METHOD OF TRAPEZO
‘ AREA=Qe0 '
0O 511 1=2+199
II=1=-1 :
511 AREA=AREA+¢005%(PD(I)+PD(II))
DO 512 I=14199
512 PD(I)=PD(I)/AREA
DO 513 1=14199
513 XOUT(1+10)=PD(I)
DO 514 1=14199
514 WRITE(6523) {XOUT(IsJ)sJ=1510)
23 FORMAT(3X91F54294X99E11e3)
DO 700 I=1,199
XX(11)=XOUT(1s9)
700 XX(I1+2)=XOUT(I1+10)
M=199
N=2
ISCALE=1 ' 1
C TITLE FOR PLOT OF THE POSTERIOR DISTRIBUTION AND FOR STUDENT T _ J
- DO 760 I=1e5
FNAM({11)=G1(I)
760 FNAM(2+1)=G2(1) '
CALL PLOT(MsNsISCALEsXXsFNAM
N=5
C PLOT CONFIDENCE INTERVALS AROUND DELTA
IFINTOT-30)1007+100651006
1006 DO 1008 1=1+200
DO 1008 J=1,5
1008 XX{(I+J)=DELCON(IsJ)
DO 756 I=145
FNAM{19I1)=G3(1)
FNAM(2sI)=C4 (1)
FNAM(391)=G5(1)
FNAM(4+1)=G6(1)
756 FNAM(5+1)=G7(1)
WRITE(64+1016)
1016 FORMAT(//34H CONFIDENCE INTERVALS AROUND DELTA)

WRITE{(641017)
1017 FORMAT (/3Xs5HGAMMA 92X s52H LOWER 99 LOWER 95 DELTA UPPER 95
1 UPPER 99) :

DO 1019 1=1+199
1019 WRITE(691018)XOUT(IQl)s(DELCON(I’J)9J=195).
1018 FORMAT(3Xs1F5e291X5E11e3) '




WRITE(S501015)
1015 FORmAT( //1X94TH GRAPH OF CONFIDENCE INTERVALS AROUND DELTA HAT)

CALL PLOT(MaN, ISCALE s XX 9FNAM)
1007 N3=NB-1
IF(NBY385938+359
38 CONTINUE
CALL EXIT
END
SUBROUTINE CORREL (N1sN2s2Z)
DIMENSION Z{500)sRLAG(400)sY(500)sXX{200+10)sFNAM(545)
DIMENSION G8(5)sG9(5)
DATA G8/20HPRE TREATMENT DATA /
DATA G9/205P0OST TREATMENT DATA /
NTOT=N1+N2
C PREPARATION OF TITLE FOR 7TORRELOGRAM PLOT
DO 804 JJiJ=1l.4
IND=UJJ
IF{IND-2)18055,8064+807
807 IF{IND-4)805+806+806
805 CONTINUE
DO 757 I=1,5
757 FNAM{1+1)=G8{1I)
GO TO 808
806 CONTINUE
DO 758 I=145
758 FNAM{1-,1)=G9(1I)
808 CONTINUE
GO TO {809s810s8114812)sIND
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT DATA
809 NLAG=N1 .
NLOW=1
NTCP=N1
WRITE(64813)
813 FOQMAT(//:SF CORRELOGRAM OF PRE TREATMENT RAW DATA)
GO TO 814
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT DATA
810 NLAG=N2
NLCW=N1+1
NTOP=NTOT
WRITE(64815)
815 FORMAT(//39H CORRELOGRAM OF POST TREATMENT RAW DATA)
814 II=0
DO 705 I=NLOWsNTOP
IT=11+2
706 Y{(Ily=Z(1)
GO TO 709
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS
811 NLAG=N1-1
NLCW=1
NTOP=N1-1
WRITE(6,800) -
8§00 FORMAT{//41H CORRELOGRAM OF PRE TREATMENT DIFFERENCES)
GO TO &16
C PREPARATICON OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIDNS

812 NLAG=N2-1
MLOW=NI+1
NTCP=NTOT-1
WRITE{6+803)




. T can

803 FORMAT(//42H CORRELOGRAM OF POST TREATMENT DIFFERENCES)
816 11I=0

DO 707 I=NLOWINTOP

1I=11+1

IK=1+1
707 Y(II)=Z(IK)Y=Z(1)
709 JJ=NLAG*3/4

DO 716 K=1lsJJ

NUP=NLAG=K

CR05=000_

SUM1=0.0

SUM2=0e0

"SUMS1=0.0

SUMS2=0.0

DO 703 I=14NUP

NIND=I+K

CRQOS= CROS+Y(I)*Y(NIND)

SUM1=SUM1+Y (1)

SUM2=SUM2+Y (NIND) .

SUMS1=SUMS1+Y(I)*Y (1)
703 SUMS2= SUM52+Y(NIND)”Y(NIND)
FNUP=NUP
DNUM=CRO S~ ( SUM1#SUM2) /FNUP
DEN= (SUMSl-(SUMl*SUMl)/FNUP)*(SUMSZ~(SUM2*SUM2)/FNUP)
DEN=SQRT(DEN)
RLAG(K)=DNUM/DEN
WRITE(6+704)KsRLAG(K)
704 FORMAT(1Xs5H LAG=1393X93H R=F6e3)
716 CONTINUE

ISCALE=1 . .

N=1 S | .

M=JdJ

DO 650 I=1+JJ
650 XX{1s1)=RLAG({I)

CALL PLOT(MsN-"SCALEsXX9sFNAM)
804 CONTINUE

RETURN

END

SUBROUTINE PLOT (MoNos ISCALEsXX9sFNAM)
ADAPTED FROM THE SUBROUTINE-GRAPH=- OF ~PERSUB= WRITTEN BY JeHesWARDIJRe >
KATHLEEN DAVISs AND JANICE BUCHHORNSLACKLAND AIR FORCE BASESTEXAS
ADAPTED FOR FORTRAN II BY TeOeMAGUIRESUNIVERSITY OF ILLINOIS

" DIMENSION RAT(10) sFND(5510) sENCRMT(10)sPA(120)sFMT(3)sPB(10)

DIMENSION XX(200310)sAMAX(10)sAMIN(10)sB(10)9sFNAM(5+5)9BB(10)

DATA BB(1)sBB(2)sBB(3)9+BB(4) BB 5)aBB(6)aBB(7)aBB(8)aBB(9),BB(10)/

11H151H591HD 91HS591H191HO s 1HXs1HM e 1HH s 1HA/

DATA PCROSSsPBLANK sPDASHsPERIOD/1H*s1H 91H-,1Ho/

DATA FMT(L1)sFMT(2) sFMT(3)/1H 91HO91H~/

IF(N=5)200+201+200
201 DO 276 1I=1,+5
276 B(I)=6BB(I)
GO TO 202 .
200 DO 277 I=1,3
iI1=1+5
277 B(I)=BB(II)
202 CONTINUE
99 FMS=FMT(ISCALE-1)
98 DO 100 I=1,N

AMIN(I)=+1eE+37
100 AMAX(I)==1e.E+37




L SEARCH FOR MAXTIMA AND MINIMA
ARMIN=AMIN{1)
ABMAX=AMAX(1)
DO 101 I=1lsM
DO 101 J=1,N
COMP=XX{1,J)-AMIN(J)
IF{COMPY4&00294003+4003
002 AMIN(UI=XX{I4J)
4003 COMP=XX{IsJ)=~AMAX({I)
IF(COMPY1015101+4004
4004 AMAX{JII=XX(I1,J)
101 CONTINUE
IF(N=-5)25092514250
251 DO 252 J=1ls5
AMAX (J)Y=AMAX{5)
252 AMIN{J)=AMIN{1)
250 CONTINUE
N1=N
DO 108 J=1sN
C COMPUTE RESOLUTION OF GRAPH
108 RAT(J)=(AMAX{J)=AMIN(J))/110.
DO 110 J=1sN
ENCRMT CJ)Y=(AMAX(J) =AMIN(J) ) /4o
FND{1sJ)=AMIN{J)+e 05
COMP=AMINI(J)}
IFICOMPY4005%,400694006
4005 FND{1sJ)=FND({1loJ)=el0
4006 FND(59sJ)Y=AMAX(J)=-e05
COMP=AMAX (J)}
IF(COMP) 4007400844008
C PREPARE ORDINATE LABELS
4007 FND(54J)=FND{5sJ)=e1l0
4008 FND(2sJ)=AMIN{JI+ENCRMT(J)+605
COMP=FND(25J)
IF(COMPY4009,4010+4010
4009 FND(2sJ)=FND(29J)—el0
4010 FND(3sJ)=AMIN(JI+(ENCRMT(J) %24 )+e05
COMP=FND(39J)
IF(CCMP)4011+4012+4012
4011 FND{3sJ)=FND(3sJ)=s1lC
4012 FND{4sJ)=AMAX(J)=-ENCRMT(J)+.05
COMP=FND(49J)
IF(COMPI4013+5110,110
4013 FND(4sJ)Y=FND(49J)=el0
110 CONTINUE
C PRINT LEFT HAND LABELS '
WRITE(GSsTI({FND(IsJ)aI=105)eB(J)sJd= 1sN1) 1
7 FORMAT(//7/1XF6el1921XFbels21XFbe 1921XF6el921XFbe 193XA1)
C PLOT LEFT HAND MARGIN
DO 4014 1=1959
4014 PALI)Y=PDASH
WRITE(6s8)(PA(I)s1=1459)
8 FORMAT(1Xs59A2)
DO 140 I=14M
DO 4015 11=1,120
4015 PA{IIy=PBLANK
DO 121 IX=27+81+27
121 PA(IXY=PERIOD
NCOMP=1
LO16 NCOMP=NCOMP~-10




. IFINCCOMPY1IZ243 401794016
« 4017 CONTINUE
. : DO 123 IX=64120s2
« 123 PA{IX)=PDASH
C RESCALE DATA POINTS
124 DO 135 K=1sN
ZL=(XX{ I oK) =AMIN(K))/RAT(K)+140
=ZL
IF{(L-1)6018+560194+6016
6018 (=1
6019 IF{110-L16020+s6021+6021
6020 L=110
6021 IF{PA(L)~-PBLANK)S6022+130,6022
6022 . IF{PA{L)~-PERIOD)80244130,6024
6024 IF{PA(L)=-PDASH)60254+130+6025
6025 PA(L)=PCROSS
GO TO 135
130 PB{K}¥=B(K)
PA{L)=PB(K)
135 CONTINUE
IF{ISCALE=-1)60239136+6023
6 FORMAT(Al)
6023 WRITE(6s6)FMS
C PLOT DATA POINTS
136 WRITE(6+2)IsPERIODs(PA(J) 9J= 19110)9PERIOD9I
2 FORMAT(1XsI3sA19110A15A1513)
140 CONTINUE
DO 6025 1=1+59
6026 PA(I1)Y=PDASH
WRITE{6s8)(PA{I}s1=1459)
WRITE(6e7)({FND(loJ)YsI=195)9B(J)sJ=1sN1)

142 WRITE(6:3)
3 FORMAT(1HCs10Xs16HPLOT DESCRIPTION/1HOs7Xe5HTITLE»10Xs9HCHARACTERS

14X s THMINIMUM 9 4X s THMAXIMUM 9 4X s 1OHRESOLUTION)
DO 122 J=1sN
122 WRITE(6s4)(FNAM{JsK) sK=195)sB(J)sAMIN(JI) s AMAX(J) sRAT(J)
4 FORMAT(1X35A% 92X9sA1sTXFB8e393XF8e334XF843)
RETURN
END




