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Chapter 1
PURPOSE

Most students taking advanced mathematics will take a course on ordinary differential equations
at about the Junior level. The material presented in this monograph is intended to be included in
such a course. It provides an introduction to the numerical integration of ordinary differential equa-
tions, and can be used to supplement a regular text on this subject.

The material on numerical integration could be given at almost any stage in the course. It
would be preferable to give it in the latter half, after the student has gained some familiarity with
the analytical behavior of solutions of ordinary differential equations.

Some of the exercises require the preparation of computer programs. These problems can be
omitted, but it would be highly desirable to include them if possible.

There is corAsiderable motivation for including material on numerical analysis in a course on
ordinary differential equations. For anyone with any interest at all in applications there is the very
practical reason of using the methods to find approximate solutions to those problems for which
analytic solutions either cannot be found, or are too difficult to evaluate. Computing machines have
made the task much easier by taking over practica'iy all of the tedious parts of the numerical work.
There is additional motivation for Ile mathematician because the field is rich in results which are of
mathematical interest, especially in connection with questions of convergence and stability, and
mathematical results in this area are increasing steadily.
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Chapter 2

OUTLINE

We begin by describing one very simple procedure, known as Euler's procedure, which generates

approximations to the solutions cf ordinary differential equations. Convergence of this procedure is

then discussed, and the basic existence theorem for ordinary differential equations is stated without

proof.
We then find a bound for the error which is propagated through a calculation with Euler's pro-

cedure. Many of the important features of more complicated methods are already present in the re-

sults for Etder's procedure.
Although Euler's procedure does converge (under suitable circumstances), its rate of conver-

gence is not good enough for numerical work. In Chapters 6 through 9 we therefore introduce the

two main classes of numerical methods which are in general use. They are the Runge-Kutta and

Predictor-Corrector methods, and they will appear as natural generalizations cf Euler's procedure.

In each case an error analysis is given, which is quite similar to the one given for Euler's

procedure.
Brief mention is made of other methods in Chapter 10. Error control and a few programming

considerations are discussed briefly in Chapters 11 and 12. References to the literature are given

in the bibliography.
Throughout it is intended that the relative merits of the various procedures be made as clear as

possible. The merits are judged in terms of realistic criteria, as they arise in the construction

and use of computer programs. We will be concerned mainly with accuracy and reliability. In

principle, any method (as long as it converges) can be made arbitrarily accurate, and reasonably

reliable. But it is much more expensive to do so with some than with others, and therefore the

relative merits of different procedures depend mainly on cost, We will also be concerned to some

extent with convenience.
It should be emphasized, however, that even a good computer program will not do everything.

There is no substitute for sound analysis of the original problem, and careful preparation of ',hat

problem for computing. This may involve judicious changes of variable, special treatment of singu-

larities, awareness of inherent instabilities in the differential equations, and so on. But it is

equally important to understand well the nature and limitations of the numerical procedures that one

is going to use. Our concern here will be only with what is relevant to the numerical procedures.

For convenience the discussion is mainly in terms of single first-order equations with initial

conditions. Except for two relatively unimportant restrictions which will be mentioned specifically

later on, it is quite easy to apply the results we obtain to systems of first-order equations with

initial conditions. Some scalar quantities must be replaced by vectors, others by matrices, and

some absolute values must be replaced by norms of vectors or matrices. Moreover, higher order

equations can also be handled, because they can be replaced by systems of first-order equations.

Only initial-value problems will be considered. Procedures for initial-value problems are often
5



6 Numerical Integration

used as a basis for "hit-or-miss" attempts to solve boundary-value problems, especially when the
latter are non-linear. Otherwise the handling of boundary-value problems usually involves matrix
calculations, and the subject is therefore more appropriate to a course on linear algebra.



Chapter 3

EULER'S PROCEDURE

Let the differentia: equation be denoted by

31' = f(xl 31),

and the associated initial condition by

Y (x0) = 310.

We must have a procedure for generating approximate solutions. The simplest is Euler's pro-

cedure, which is based on the following recurrence:

yo Yo'

31).
rl + h Yi 11 2,3, . ,

Here h is the step-size'', . = f(x., y. )9 and y. is the approximation to the value of the true

solution yi = y(xi).
It is convenient to define the appru.A....,ate solution y (x) to be the polygon one obtains by joining

all pairs of points (xi...1, yi_1) and (xi, yi ) by straight line segments. We then have the situation

shown in Figure 1.

Y3

yo
1

XO x1 x2 x3

true
(x)

y (x)
approximation

x

FIGURE 1. Graphs of the true solution and a polygonal
approximation to the solution.

rrl the next two chapters we discuss the convergence of Euler's procedure, and obtain estimates

of the error y* y. Although Euler's procedure is not goed enough kir numerical work it is a
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convenient example to use for establishing the basic results we will need. It will then be relatively

easy to extend these results to the more sophisticated methods which are used in practice.

EXERCISES

1. Write a computer program based on Euler's procedure to provide an approximation to y(4),

where y' = 1-y and y(0) = 0. Use h = 1/4.

2. Repeat the calculation in (1) with h = 1/8, and with h = 1/16.

3. On the basis of the results in (1) and (2), how good an approximation can you be reasonably sure

of having?



Chapter 4
CONVERGENCE OF EULER'S PROCEDURE

The polygonal approximation provided by Euler's procedure depends on the step-size h. Of

course we expect the approximation to be better for smaller values of h. To be more precise we

need a theorem which guarantees the convergence of Euler's method, i.e. which guarantees that the

approximations will approach the true solution as h approaches zero.

The theorem can be established for functions f(x, y) which satidy the following two conditions:

(1) Continuity condition. The function f(x, y) is a continuous function of both x and y, in

some region, say R, of the x-y plane which contains the point (x0, yo). This means in
particular that f is bounded in R, i.e. there is a constant M such that I f(x, y) I < M in R.

(2) Lipschitz condition. The function f(x, y) satisfies a Lipschitz condition in R with respect

to y, 1. e. there is a constant L sucl, that f(x, y)-f(x, -37) I < L I for any (x, y) and

(x,i) in R.
The theorem then guarantees convergence over a certain interval of the x-axis. The interval is most

easily described by means of the diagram in Figure 2, where it is denoted by I.

FIGURE 2. The interval I depends on the region R, the
bound M and the initial point (xo, yo).

The straight lines through (x0' y
0

) with slopes M and -M determine four sectors of the x-y plane.

The interval I extends to the left as far as possible while keeping in R all the points of the "west-

ern" sector which are above I. Similarly I extends to the right, keeping in R the points of the

"eastern" sector which are above I.
The theorem can now be stated as follows:

THEOREM: If f(x,y) satisfies the continuity and Lipschitz conditions then the Euler approximations
9



10 Numerical Integration

col, zerge in I to the unique solution of the differential equation which satisfies the initial condition.
The proof will be omitted, but a reference is given in the bibliography.

Our statement of the theorem emphasizes the convergence of the Euler procedure because this
is so important from the numerical point of view. But the theorem can be appreciated from another
point of view, since it guarantees the existence and uniqueness of a solution, under the stated condi-
tions. Thus the proof of convergence of a numerical procedure can, at the same time, be an exis-
tence proof.

When Euler approximations are used to prove existence the theorem is associated with the names
of Cauchy and Lipschitz. The details of the proof show that only the continuity condition is needed
to prove existence, whereas the Lipschitz condition is needed only for the proof of uniqueness. (Both
conditions can be weakened slightly.) Another form of the existence and uniqueness proof is due to
Picard, but it uses quite different approximations which are not related to a common numerical
procedure.



Chapter 5

ERROR ANALYSIS OF EULER'S PROCEDURE

From now on we assume that f(x, y) satisfies the continuity and Lipschitz conditions in some

region of the x-y plane which contains (xo, yo). In the absence of rounding errors this leads us to

consider values of x in the interval I. But we do not want to ignore the effect of rounding errors

and we therefore assume that the values of x are restricted somewhat further. The purpose is

only to ensure that f(x,y) is still bounded by M, and that the Lipschitz condition still holds for all
points of the x-y plane that enter into the calculations.

In a numerical calculation one does not deal with the values of y (x), since these values are de-

fined by a procedure which uses exact arithmetic. To include the effect of rounding errors we
**

introduce a new approximation y (x) which is defined by the same procedure, except that rounding

errors are allowed. Of course these errors depend on details of the computer program and of the

machine being used. But in any given instance it is usually possible to find a bound for the rounding

error in an individual step in the calculation, and this is often all that is required. In any event we

ere
yi = yi + hf(xi yi 1) - ri

The rounding error r. is therefore just the amount by which the Euler equation is not satisfied by
**

y . In an analogous way we can define the truncation error Ti by means of
yi = + hf(xj_i, + T.

The truncation error is then the amount by which the Euler equation if3 not satisfied by the true solu-

tion. (The signs for ri and Ti were chosen merely for later convenience.)
If f(x, y) is sufficiently differentiable Taylor's formula gives

h2
Ti

where x1 .. Of course one would not in general know the numerical value of the truncationi-
error. However, we will make use of the fact that it is 0(h2) as h-.0, at least when f(x, y) is suf-

ficiently differentiable.
Subtracting our two equations we obtain

** ** **
h [f(x1-1,3ri-1)-f(xi-l'yi-1)1 ri Ti

We 'low define the error e. y.-y**. and we define . to be 0 if y.-y**. = 0, otherwise by
** **

f(xi, ) = gi(yryi ). Then our error equation becomes
e. (1+hg. )e. +r.+T..1-1 1-1

Let us now introduce the difference equation
Ei = A E + B,i-1,

and Iri + TiP B.
I<Ei, provided I el:v. Eo. The equation for Ei is called a dominating difference

where I 1 + hgi A,

It is clear that I e

equation for the erro
We obtain

r.

11



12 Numerical Integration

so that

E
1-

= A E
0

+ B'

E
2

= A2Eo
+ (A+1)B

Ei = AiE0 +tT B,
provided A 1. (No special result is needed for the case A = 1, since it can be obtained from the

result for A 1, by taking the limit at A = 1.)
We find it convenient to assume h > 0. We will thereby avoid having to write I hi in place of

h in a large number of places.
An interesting result is obtained by taking A = 1 + hL. If moreover I ri I < r and I Ti I < T we

can take B = r + T. We also note that (1 + hL)i < eL(xi-x0). Putting E0 = 1e0 I we then obtain
L(xi-x0)_ile)

11 " 1

eL(xi-xn)ie
01

i

hL
e (r + T).

1

The main contribution to the right side is
r + T L(x. - x )

hL e 1 0 ,

Of course we have derived only a bound for the propagated error; the error itself may be very much
less than the bound. However, in some circumstances the error can also approach the bound, and
the term given above is a good indication of how the various factors contribute to the accumulated

error. The exponential factor in this term is to be expected when g is close to L, because then
the differential equation itself is close to y' = Ly + f(x), and the general solution of this equation
includes a term proportional to eljx. Since T = 0(h2) when f (x,y) is sufficiently differentiable,

we see that the bound will decrease as h decreases, until the contribution due to rounding becomes
dominant, at which point a further decrease in h causes the bound to increase. This behavior of

the bound, and often of the error itself, is quite typical.
Of course we have been considering only a bound, and the preceding discussion cannot be ex-

pected to apply to all cases. One important possibility is that the value taken for A, namely 1 + hL,
may be much too crude. The value of g may be quite variable so that most of the time I g I << L and

the bound is therefore much too pessimistic. But more than that, it could happen that -1<hg<-11/<0,

so that we could put A = 1 -h/. This leads to

eI < Ci(xi-x0) le0'I + 0) (r + T).i 1 hi
in which the main contribution to the right side is

r ,+ T
hi

The decrease of error with h, until rounding is dominant, is as before. But we no longer have the
exponential growth with xi- xo. (With systems of equations, instead of a single equation, it is the
dominant eigenvalue of the matrix I + hg which plays the role of A in this discussion.)

So far we have used only a bound for ri. In practice the rounding errors accumulate in a way

very much like the accumulation of random quantities. And this means, very roughly speaking, that

the accumulated rounding error will be proportional to r/Nir,, after i steps, instead of r. We
need not consider any further details of this phenomenon because the truncation error is almost



Error Analysis of Euler's Procedure 13

always the most important contribution. If it is not, one should be using a larger value of h, or

one should be carrying more significant figures in the calculation.

Finally we now consider briefly how one would use Euler's procedure in practice. Apart from

what has already been said about the method, the main problem in practice is to control the errors.

One way to do this is to find several approximations using different step-sizes, say h, h/2, h/4.

Here h is a value which one would have to choose on the basis of qualitative knowledge of the solu-

tion of the problem. For example, noting that Euler's method is exact only for straight line solu-

tions, we need to choose h to be small enough so that straight line segments can approximate the

solution sufficiently closely. On the other hand, there is no point in taking h so small that the

rounding errors will be dominant.
Once several solutions have been obtained one can compare them at several values of x. If

they agree to a number of decimal digits which is accurate enough for the purpose, these results

can probably be taken to be satisfactory. If they do not agree it may still be possible to extrapolate

from several results to a better one, especially if these results correspond to values of h for

which the propagated error is approximately proportional to a power of h, as it probably will be if

the truncation error is dominant. In the case of Euler's procedure it will be the first power of h in

most cases.
The main disadvantage of this approach is that the same value of the step-size is being used

throughout each calculation with the differential equation. This rm ans that no advantage is taken of

the possibility that larger step-sizes might be suitable for parts of the calculation, thereby reducing

the cost of the calculation. We will return to this possibility in Chapter 11.

EXERCISES

1. Use a computer program (such as the one developed for Exercise 1 of Chapter 3) to solve a num-

ber of differential equations. In each case results should be obtained for several different

values of h, including some that are somewhat extreme in order to show the change of error

with h both, when truncation is dominant and when rounding error is dominant.

The following problems can be used as examples:
esin

(a) y' = (cos x)y, y(0) = 1, Exact solution:
x

(b) y' = 2xy, y(0) = 1, Exact solution: y = e-x2

2s.
(c) y' = y-2y

, y(0) = 1, Exact solution: y =42x + 1.

(d) y' = y2, y(0) = 1, Exact solution: y =

You should have trouble with the third equation if you try to integrate to x = 100. Why? How

close can you get to the singularity in the fourth equation?

2. Develop a program for handling systems of equations and try it on:

(a) y' = z, y(0) = 0, Exact solution: y = sinx

z' = -y, z(0) = 1, z = cos x

(b) y' = z/(y2 + z2)3/2, y(0) = 0, Exact solution: y = sin x

z' = -y/(y2 + z2)3/2, z(0) = 1, z = cos x

3. Integrate each of the following to x = 4.
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(a) y" + 3 y' + 2 y = 0

(b) y" - 3y - 4y = 0
(c) y" + 101y' + 100y = 0

x-
If the initial conditions are y(0) = 1, y' (0) = -1, the exact solution is y = e

Why are the numerical approximations so different from each other?

in each case.



Chapter 5

SECOND-ORDER RUNGE-KUTTA PROCEDURES

So far only Euler's procedure has been used to generate approximations to the required solution.

Analogous results can be obtained for other procedures which are more accurate than Euler's. (By

a more accurate procedure we mean one in which the truncation error is smaller. This does not

necessarily mean that the propagated error will be smaller.) Most of our new results are simple

generalizations of what we obtained for Euler's procedure. However, some new features arise, in-

cluding the possibility of procedures which do not converge.

There are two main generalizations of Euler's method. In this section and the next we consider

one which produces Runge-Kutta methods. (Special cases were developed originally by C. Runge,

W. Kutta, and K. Heun in the period 1895-1901.) In this section we develop ths second-order Runge-

Kutta methods. They will be described with the help of figure 3.

Slope
s

2
Slope
s

1

yi

Slope
as

1
bs2

FIGURE 3. A geometrical interpretation of
second-order Runge-Kutta methods.

Suppose the calculations have been carried as far as the point (xj_1, y*i_1)0 From here Euler 's

procedure would use the slope
s1 = f(xi_1, yi_1)

to continue the polygon all the way across the next step of length h. We would expect it to be more

accurate if we used this slope to go only part of the way, say a step of length uh, and then evaluated

the slope s2 at the intermediate point, i.e.

82 *1-1 + uh' Yi-1 uhf (x1-1'
and then finally used some linear combination of these two slopes to make the full step. This leads

us to
* *

yi_1 h(as1 bs2)

as the basic recurrence formula. The question of choosing the fraction u, and the weights a and b,

still remains.
15



16 Numerical Integration

In a standard notation the procedure is defined by
* *

= y + ak + bk1,
where

k0 = hf(xj_1,

k1 = hf(xi_1 + uh, yi_1 + uk0).

To obtain values of the parameters a, b and u, we substitute the true solution y in place of y
in both sides of the formula. The true solution does not satisfy this equation in general, but, if the
functions involved are sufficiently differentiable, the two sides can be expanded in powers of h, and
we can choose the parameters so that the coefficients on either side are equal, up to as high a power
of h as possible. The coefficients of 110 are already equal. For the coefficients of h 1 to be
equal we find that

a + b = 1,

a requirement which would have been expected from our geometrical considerations. For the co-
efficients of h2 to be equal we find that 2bu = 1. To make the coefficients of h3 equal we are led
to two more equations which must be satisfied by a, b and u, and, not surprisingly, it turns out
that all four equations cannot be satisfied simultaneously. Taking only the first two equations, and
solving for a and b in terms of u, leads us to the following one-parameter family of methods:

* * 2u-1 b. 1 1,

yi Yi-1 2u: "0 2u "1'
where

k0 = hf(xj_i,

k
1

= hf(x1 y1+ uh, : + uk0).i- 1-
If the functions involved are sufficiently differentiable, the truncation error associated with these
methods turns out to be

h3T. = [3ufry" + (2u-3)y" +

where f , y" and y"' can be evaluated at any points within distances from (xi, yi) which are
0(h).

It is natural to try to choose the free parameter so that the truncation error is in some sense
minimized. But for this family of methods there does not seem to be a simple connection between
this idea and any specific value of u. In any event we would expect u to be somewhere between
1/2 and 1. With u = 1 we obtain the following special case:

* *
yi = yi_1 + (1/2)k0 + (1/2)k1,

where

with

k0 = hf(xj_i,
k1 = hf(xi_i + h, yi_1 + k0),

h3T = [3f y" y" + 0014).12 y
Proof of the convergence of any of these methods can be carried through as with Euler's meth-

od. If we assume existence to begin with, the proof is very much simplified. Under this circum-
stance the best approach is to first find a bound for the propagated error. It turns out that with

0
0 and r = 0, this bound approaches zero as h approaches zero, and this fact establishes the

convergence of the method, merely as a by-product of the error analysis.
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The derivation of the bound follows closely the one used with Euler's procedure. To simplify

the formulas a little we will consider only the special case obtained with u = 1, but the argument is

applicable to any member of the family. The rounding errors are defined by
** ** **

= y1 + (1/2)k0 + (1/2)k1 -

where the asterisks on the k's have an obvious significance. The truncation error is defined by

yi = yi_i + (1/2)ko + (1/2)k1 + T.

On subtracting and making the same substitutions as with Euler's method we obtain the following

error equation:
e. = (1 + (1/2)hg + (1/2)hg + (1/2)hghg)e1 + r. + T.-1

The different appearances of g in this equation do not in general have the same values.

less each one represents a value of
f(x, f(x, z)

y z **
(or 0, if y = z) for some y and z near to y and yi_1. This means,

value of I gl is bounded by L, and this in turn means that we could put A

in this case A < e i 0 we are led to the following bound:xx ) -1
eL(xi-x0) e +

L(.-0
(r + T).e

0 hL
This bound is exactly the same as with Euler's method, except that now the

eral be smaller.
Note that the question of convergence is concerned only with the case where e0 = 0 and r = 0.

In this case the bound will clearly approach zero as h approaches zero, as long as T = o(h). This

is certainly true of T when the functions involved are sufficiently differentiable, for then T = 0(h
3).

In other cases a proof must be supplied, but as one would expect it follows from the conditions we

have imposed on f(x, y). Any method for which T = o(h), at least for the class of functions f(x,y)

which we have been considering, is said to be "consistent. " It is left as an exercise to show that

the condition a + b = 1 is all that is needed to guarantee consistency for the methods of this section.

Neverthe-

for example, that each
h2L2

= 1 + T + Since
2

value of T will in gen-

EXERCISES

1. Verify the calculations needed to obtain the one-parameter family of this section, and also the

expression for the truncation error.

2. How would you modify the error bound in case g < 0? If = g < 0, what is the largest value

of h for which you can be sure that the propagated error will not increase exponentially with

x. - x ?
1 0

3. Show that any second-order Runge-Kutta method is consistent, as long as a + b = 1.

Suppose that rounding errors are neglected. Then show that, for any particular problem, a

member of the one-parameter family given in this section will always be better than Euler's

method, as long as one's accuracy requirements are stringent enough. (By "better" we mean

it will give the same accuracy at less cost.)

5. Modify your earlier program to use the special Runge-Kutta method given in this section in

place of Euler's. Use it on some of the same examples and compare the results w those

obtained by Euler's method.



Chapter 7
HIGHER-ORDER RUNGE-KUTTA PROCEDURES

The discussion of second-order methods can now be generalized in a straightforward way to

higher-order methods. For example, instead of using a combination of the two slopes s1 and s2

to take the full step h, a combination of these slopes could be used to take another partial step, of

size vh say. Then a third slope could be obtained at this new point, and finally the three slopes

could be combined to give an average slope for taking the full step. This leads to the class of third

order Runge-Kutta methods, which can be defined by:
* *

yi = yi_1 + ako + bk1 + ck2,

k = hf(x. y. )
0 1-1' 1-1 '*

k1 = + uh, + uk0),

k2 = hf(xi_1 + vh, y1 + wko + (v-w)k1).

It is left as an exercise to find the four equations which must be satisfied by the six parameters

a, b, c, u, v and w, in order to ensure that the truncation error is 0(h4). A special solution of

these equations due to Heun yields the method:
* *

yi = yi_1 + (1/4) (ko + 3k2),

ko hf(xi yi 1),
k1 = hf(xj...1 4' (1/3)h, yi_i + (1/3)k0),

k2 = hf(xj_i + (2/3)h, yi* + (2/3)k1).

Another special case, due to Kutta is:
*yi = y1 + (1/6) (ko + 4k1 + k2),

ko = hf(xi_i,
h * 0ki = hf(xj..1 + +

k2 = hf(x1_1 h, y1 - ko + 2k1).
The four equations for the parameters will in general have a two-parameter family of solutions.

(There also are some singular solutions.) It is natural to ask if the two free parameters can be

chosen in a way so that the truncation error is in some sense minimized. The problem is not pre-

cisely defined, but the small amount of experimental evidence that is available suggests that there s

little that can be done in this respect, but also that the choice is not particularly critical. The com-

monly used methods seem to be reasonably well chosen.

By allowing still another intermediate evaluation of the slope, one is led to fourth-order meth-

ods. This time there are 10 parameters and 8 conditions with T = 0(h5). The derivation of the

equations is straightforward but extremely tedious. The best known example from this family of

methods, and probably the most frequently used of all Runge-Kutta methods, is due to Kutta. It is

defined by:
18
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where

* *
yi = y11 + (1/6) (k0 + 2k1 + 2k2 + k3),

k

k
1

k
2

*
= hf(xj_1, y1_1),

h * k0
= hf(xj_1 + --, +

h * k1= hf(xj..1 + ., 3r1.4 + -i),

k
3

= + h, + k2) .

Again there is evidence to suggest that this method is a reasonable choice from amongst all possible

fourth-order methods. With care one might reduce the truncation error by a factor of 2 or so, over
some fairly general class of problems, but the possible advantage is not very large, and anyway the

question is not really settled.
In all of the above examples the error bounds and the isulting proof of convergence are almost

exactly as before. (See Exercise 2.) However, one additional point should be kept in mind. We
will illustrate by ccnsidering the simple differential equation y' = Here the solution is a de-

creasing function of x. But the error is proportional to the i-th power of some polynomial in

ih. When ih is small this polynomial is close to e -111, as one would expect. But when /h is
,e 1large this polynomial can be considerably larger than e 1, and in fact it can even be larger than 1.

The procedure is said to be unstable. It is relative instability if the error dominates the solution.
It is absolute instability if the error not only dominates the solution but is also growing exponentially.

The phenomenon was hinted at in Exercise 2 of the preceding chapter.
We can continue the generalizations to still higher orders, but the algebra becomes very formid-

able. It turns out that allowing five function evaluations does not lead to T = 0(116), but only to

T = 0(h5), as with four evaluations. One needs six evaluations per step to achieve T = 0(116). It

also turns out that the largest possible value of p in T = 0(11p+1) may depend on whether the formu-

las are being applied to single equations, or to systems of equations. This anomaly does not appear
if the largest value of p is less than five. (This "largest value" is usually called the order of the
method, but we prefer to call it the degree, to be consistent with later sections. We will use the
term "order" to denote the number of evaluations per step. Order and degree are the same when

they are less than five.)

EXERCISES

1. Find the four equations for the parameters of third-order methods. Verify that the two exam-
ples given in the text do satisfy the requirements. Can you find the two-parameter, and the
one-parameter families of solutions of these equations?

2. Verify that expressions for the error bound can be found which are exactly the same for the
Heun method and the fourth-order Kutta method as was found earlier for Euler's method. What

is the effect on the error bound for the third-order Kutta method of having a negative value for

v?

3. The following method was once proposed:
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* *

Yi Yi-1 k3'
where

ko = hf(xj_i,
0

k1 = hf(xj_i yi_1
h K1

k2 hf(x11 yi_1
h * 2

k3 = hf(x +

What is wrong with it?

4. Show that, when f(x, y) satisfies our usual continuity and Lipschitz conditions, then every

Runge-Kutta method will be consistent, as long as the sum of the coefficients of ko, kl, is

equal to one.

5. For what range of values of x is 1 + x + x2/2 + x3/6 > 1? For what range is it > ex?



Chapter 8

ADAMS PREDICTOR-CORRECTOR PROCEDURES

There is a second class of methods which can be obtained as natural generalizations of Euler's

method. We will introduce it in the following way. We know from the mean value theorem that

Yi = hf(,3()),
where satisfies x. x1 .. We obtain a numerical procedure if we replace this exact result

by
* *

yi = + hs,

where s is some average of known values of f(x, y) near the point (xI.-1' y1. ). Euler's method
1-

defines s to be f(xi..1, yi_1), and we have already described the special way in which s is obtained

for Runge-Kutta methods.
As long as we are not near the beginning of the calculation, we will always have, in addition to

some earlier values of the slope, such as f(x1...2, yi..3), and so on. It is

natural to consider defining s in terms cA these earlier values. if we clenae Wc.a) by L we
J J JP

are led to consider a formula such as
* *

yi = yi...1 + + bf2 +
Of course we still have to choose the parameters a, b, and c. But this time the process of substi-

*
tuting y in place of y and expanding each side in powers of h is very much simpler than it was

f thorRunge-Kutta methods. If we expand about x. in is example, and equate coefficients of powers
1

of h, we obtain the following:
from hi": a + b + c = 1,

from h2: a + 2b + 3c = 1/2,

from h3: a + 4h + 9c = 1/3.

After solving for a, b and c, we finally obtain
* * hyi = + 12(23 fi...1 16fi_2 +

We can also show that
9_, 4 (4)

Ti 24n (xi) 4- 0(115)*

The details of the above derivation will be left as an exercise.

Four points are involved in the above formula, and it is called a third-order formula. It is a

straightforward matter to derive formulas of higher order. Results like these are usually obtained

with the aid of finite difference formulas, but the development here is more direct. A procedure

similar to the one obtained above was first used by J. C. Adams in work on capillary action which

was published with F. Bashforth in 1883.
Procedures like the above are extrapolation procedures. It turns out that their performance

can be improved if they are used in conjunction with certain interpolation formulas. An appropriate

formula in this case is obtained by keeping terms involving f. and and adding a term involv-
* 1-1 fi-2

ing f.. The derivation is almost exactly as before, and one obtains the following second-order

formula:
21
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* * h * * *

yi y. 4.12("i 8fi-1
along with

T. = h4y(4) (x. ) + 0(h5).
24

The reason why it is appropriate to use a second-order interpolation formuk, in conjunction with a

third-order extrapolation formula will be explained later when error control is being considered. It

turns out to be very convenient if the two truncation errors are proportional to the same power of h.

The largest value of p for which T = 0(hP+1) is the degree of a formula.

Again it is a straightforward matter to derive higher-order formulas.

It is clear that the interpolation formula is more accurate than the corresponding extrapolation

formula. This situation is typical. It would be better to use the interpolation formula, but there is

a difficulty because the interpolation formula defines yi only implicitly. This leads us to the idea

of a predictor-corrector method, which uses an extrapolation formula to "predict" an approximation

to yi, and then uses this "predicted" value to "evaluate" an approximate to fi, which is then used

in the right side of an interpolation formula to produce a "corrected" value of the approximation to

yi. The corrected value can then be used to produce a new evaluation of f, which leads to a new

corrected value, and so on. The process can be represented schematically by PECEC... , for

Predict, Evaluate, Correct, Evaluate, Correct, and so on.

A decision must be made about when to stop the process. Procedures based on the decision

represented by PE do not use the corrector at all, and are known as Adams-Bashforth procedures.

The original proposal for predictor-corrector methods was of the PECE type, and was used by

F. R. Moulton for ballistics calculations during the first world war. Procedures of this type are

often called Adams-Moulton procedures. There is evidence to suggest that either PECE or PECEC

is best in practice. PEC would be best, except that it is prone to instability, a phenomenon which

we will discuss in the next section. More than two evaluations of f(x,y) per step seem to be not

worthwhile
Of course we must also decide on the degree of the predictor-corrector formulas. This choice

depends on one's accuracy requirements, the more stringent the requirement the higher the degree.

In practice one usually uses formulas of degree 3, as in the examples of this section, or possibly

a little higher.
We will now carry out an error analysis of the Adams methods based on the formulas of this

section. In order to avoid a lot of detail we will content ourselves with deriving a bound which is

slightly larger than we would like to have.

We can define r. as before with
*gr ** h ** ** **

yi = yi-1 12(5fi 8fi-1 ri'
but this time r. includes more than just the effect of rounding; it also includes the effect of not

iterating indefinitely on the corrector. We define T. by means of
h 1

yi y1-1 +.1-2.(5fi 8fi-1
Subtracting, and substituting as before, we obtain

. T.
e. (1 + 8hg/12) e.

h /12 e. +
ri + i.

1 1 - 5hg 12 1-1 1 - 5hg 12 1-2 1 - 5hg/12'
where we have again used the generic symbol g to represent different values of (f(x,y) - f(x, z))/(y-z)

in the region of interest.
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If 5hL/12 < 1 the error is dominated by the solution of
Ei = AEj.-1 + B,

with
1 + 9hL/12

B r + TA 1 - 5hL/12' 1-5hL/12
and with E

0
= max (le

0
I ' le

1
1). A bound is easily found and, for small h, it becomes approximately

7L(x.-x
0

)

1
6

e
6

-x )
E0 (r + T).

0
+

e
hL

-

This expression is very similar to the bound obtained earlier for Runge-Kutta methods. The factor
7/6 is unfortunate, and turns out to be even worse with higher-order methods. But with more care
this factor can be reduced effectively to 1. To show that this is true, and also to deal more carefully
with the effect of the predictor and other details, requires a more tedious analysis which we will not
consider.

With Adams procedures there is some choice in how you define convergence. The simplest way
is to consider only the exact solutions of the corrector equation so that r = 0, thus ignoring the
predictor entirely. With exact initial conditions we also have E0 = 0. It then follows from the
error bounds that Adams procedures do converge, as long as T = o(h) as h 0. If this last condi-
tion does hold the corrector formula is said to be "consistent. " (See Exercise 6.)

Before concluding this section we will consider briefly the relative merits of Adams methods and
Runge-Kutta methods. The Adams methods are more difficult to use, but they involve only two func-
tion evaluations per step. Since this is true even for higher-order methods, it is clear that Adams
methods are likely to be much faster than Runge-Kutta methods, at least when one requires relative-
ly high accuracy. (We are assuming that the function f(x, y) is fairly complicated so that its
evaluation accounts for most of the computing time.)

EXERCISES

1. Derive the third-order predictor and the second-order corrector given above, along with their
truncation errors.

2. Derive predictor and corrector formulas of degree 4, i. e. with T = 0(h5), and obtain the cor-
responding truncation errors.

3. Derive an approximate error bound for a method based on the formulas of Exercise 2.
4. Write a program based on the formulas of this section of type PECE. You can use your

Runge-Kutta program to provide starting values. Then find new approximate solutions to the
earlier examples, and compare the results with what you got with Runge-Kutta.

5. Consider the idealized process of iterating indefinitely with the second-order corrector formula
of this section in the absence of rounding errors. Show that the iterations converge if 5hL/12 < 1.

6. Show that any formula of the form
* * * *

yi yi-1 h(afi bfi-1 *)
is consistent for functions which satisfy our continuity and Lipschitz conditions, as long as
a + b + = 1.
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GENERAL PREDICTOR-CORRECTOR PROCEDURES

A more general class of predictor-corrector procedures, which includes the Adams procedures

as special cases, uses earlier values of the ordinates as well as the slopes. Such general methods

are often called multi-step methods.
The predictor formulas are of the form

yi aryi-1 Pyi-2 + b(afi-1 + bfi-2 -E. )'
and the correctors are of the form

* *
yi = + (Syi_2 + + h(cfi + + ...).

One could now proceed as with the Adams formulas, substituting y for y , expanding, and

matching coefficients of like powers of h. But one soon runs into difficulties. The main difficulty

is that the methods obtained in this way will usually be unstable, especially the higher-order meth-

ods. We will not be able to consider this question in detail. But it is important to understand the

basic idea, and we will therefore give a brief indication of the nature of the instability, and also dis-

cuss what this implies regarding a choice of methods.
With Euler's procedure we replaced a first-order differential equation by an approximation

which was a first-order difference equation. But now, in trying to achieve higher accuracy, we are

replacing the first-order differential equation by a higher-order difference equation. A kth-order

difference equation will in general have k independent solutions.
One of these solutions should approximate the solution of the original differential equation, but

the other k - 1 are extraneous. The trouble is that one of the extraneous solutions may be so large

that it completely dominates the calculation.
The theory about this phenomenon can be quite complicated. But in the limiting case when 0

it is very precise and elegant. And this case gives important indications about what to expect in the

general case when h may be small, but not zero.
As h -00 the difference equation becomes a linear difference equation with constant coefficients.

To illustrate, let us assume that the effect of the predictor is negligible, and let us consider only a

third-order corrector formula. Then the limiting difference equation becomes

yi Nyi-1 + 64-2 +
If we attempt to satisfy this equation with y. = sl, we find that

s3 yS
2 -âs-O.s

If the roots are s1' 2's and 53' the general solution of our difference equation is a linear combina-
.

tion of si ' si and sl ' provided the roots are distinct. (Our argument needs to be modified slightlyl 2 3
when the roots are not distinct.) It turns out that one loot must be si = 1, and this root corresponds

to the desired solution of the differential equation. The other two are extraneous. If either of them,

say s2, is much bigger than 1 in magnitude, then it is clear that the solution of the difference

equation will in general be dominated by the term s12, at least when i is large.

In the limiting case as h 0 one is led to identify the notion of stability with the requirement
24
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that the extraneous roots be in or on the unit circle I s I = 1 of the complex s- plane, the roots
which are on the circle being simple. And there is a remarkable theorem, due to Dahlquist, con-

cerning the maximum degree of a stable formula. It states that, if the corrector formula is stable
and of order k, then the maximum possible degree is k + 1, except that when k is even it is
possible to achieve k + 2 in very special circumstances.

All Adams formulas are stable in the limiting sense considered here because their limiting

polynomials are sk - 5k-1 = 0, so that all the extraneous roots are at the origin. Moreover, all
Adams corrector formulas are of degree k + 1, so we already know that this degree can be achieved

with stable formulas. But the theorem states essentially that you cannot improve the degree, even

though you have an additional k parameters which you are free to choose.
What you can do with these k parameteis is to adjust them in order to reduce the coefficient in

the truncation error, while still pre-serving the stability. Except for special cases it turns out that

one cannot gain very much in this way, in fact not as much as one can achieve by simply using a
higher-order method. For general purposes then, it is probably more economical to use Adams

procedures, if one is going to use predictor-corrector methods at all.
A rigorous treatment of the stability problem in the limiting case as h -4.0 leads to a fundamental

theca em about convergence which states that the two requirements of stability and consistency are

necessary and sufficient for convergence.
If we consider the more realistic case when h is not zero we find that the analysis is much more

complicated. Nevertheless we are still concerned with the zeros of certain polynomials whose zeros
are near to those of the limiting case. The difficulty is that the positions of these zeros change in

the course of a calculation, and they also depend on the problem being considered. It is moreover

not easy to know whether or not they are too large. However a method can still be defined to be

stable, at a particular point in a calculation, if the effect of the extraneous zeros is negligible. It

would be relative stability if the effect is negligible in comparison to the solution, but absolute sta-

bility if in comparison to 1. The Adams methods are more likely to be stable than any of the others.

The best known example of a general predictor-corrector procedure is due to Milne, and is

based on
* * 4 * *

yi yi-4 -§11 (2fi-1 2fi-3)

for the predictor, which has T. = A6y(6) (xi) + 0(h6),
90

and on
* * h * * *

Yi Yi-2 +.5<fi + 41i-1 fi-2)
-1for the corrector, which has T.

3.
= h5y(5)

I.
(x.) + 0(h6).

90
The corrector formula in Milne's method is one of the exceptional cases when the order k (here it
is 2) is even and the degree is k + 2. But note that the limiting polynomial in this case is s2 - 1 so

that the extraneous zero is at s = -1. This can cause serious instability when h 0.

EXERCISES

1. Find the corrector formula of order 3 with largest possible degree, and show that it is unstable,
at least in the limiting case as h--0. 0.
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2. Find a bound for the propagated error in Milne's method. (If a first-order dominating difference

equation is derived in the usual way, the exponential factor in the error bound turns out to be

approximately e2L (x
1.-x 0). To improve this result one must be more careful and deal directly

with the second-order dominating difference equation which follows directly from the second-

order error equations.)
3. Show that the corrector formula

i0
=hE b.f .n-i

= i=0

is consistent, for functions which satisfy the usual continuity and Lipschitz conditions, provided

E a. = 0, and Z (ia. + b.) = 0.
i=0 1

Notice that the first of these ensures a zero at s = 1 of the limiting polynomial.

4. Suppose that the corrector formula in Exercise 3 is solved exactly and suppose also that g is

constant. Find the error equation, and then the polynomial associated with this error equation.

Show that the zero which is at s = 1 in the limiting case becomes ehg + 0(hP+1) where p is

the degree of the corrector formula.

5. Consider the circumstances of exercise 4 and show that Milae's method is unstable if hg < 0.

6. If you are not convinced that instability can be catastrophic then write a program to try it. Use

the formula of Exercise 1, or use a high-order Adams method with moderately large, but nega-

tive hg.
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OTHER PROCEDURES

We will mention very briefly a number of variants of the two classes of methods described so
far in this pamphlet.

One can always deal with differential equations of order higher than the first by replacing them
with equivalent systems of first-order equations. However some methods, both of the Runge-Kutta
and the multi-step types, have also been designed especially for dealing directly with the higher-
order equations, mostly for second-order equations. An important modification of these is the
so-called "summed" form.

There have also been developed some "hybrid" multi-step methods which involve two formulas
which give two predicted values, one at xi and one at another point between x and xi. The
corrector uses both of these values. The remarkable thing about these methods is that they can be
of relatively high degree and still remain stable, in contrast to the multi-step methods. But these
hybrid methods are quite new and they have not been sufficiently tested.

There are also a number of other special results, such as implicit Runge-Kutta methods, and
multi-step methods based on fitting the solution with exponentials, or trigonometric functions, in
place of polynomials. But none of these has received much attention.

One other class of methods deserves special mention. These are the higher-derivative
methods. Typical formulas in this class are the following:

2 *" *II

yi 3Yi-1 3yi-2 y1-3 h (yi-1 Yi-2)
which can be used as a predictor, and which has

60
Ti 71-2-6 h

5
y/5) (xi) + 0(h

6
),

* * hi *1, *' h2, *" *"
yi Yi-1 y1-1/ 12Yi yi-1"

which can be used as a corrector, and which has

=4-.0 h5y0)
)

(x.
3.

0(h6).

The formulas have relatively small truncation errors, and yet some of them (the corrector here is
an example) have none of the stability problems of the multi-step methods. The disadvantage is of
course the need to evaluate the higher derivatives. This might be very time consuming or, if the
function f(x, y) contains tabulated information for example, it could be virtually impossible. How-
ever, methods based on formulas such as these may be the best of all when the functions can be
readily differentiated.

and

EXERCISE

1. Derive the corrector formula given above, and its truncation error.

27



Chapter 11

ERROR CONTROL

In connection with Euler's method we have already mentioned one way of estimating the accuracy

of a calculation. The same idea can be used with Runge-Kutta and predictor-corrector procedures

as well. It involves solving the problem several times with different Ftep-sizes, and comparing the

results.
For example, suppose it is known that the propagated error is proportional to the pth power of

the step-size. The result of a calculation using the step-size h is then the true result plus KhP

where K is assumed constant. The result when using the step-size h/2 is the true result plus
KhP/2P. The difference between the two results is then (2P-1)Kh4/2P, or (21'-1) times the error

in the second calculation. The argument is not rigorous of course. But if further runs are consis-

tent, the conclusions are at least extremely plausible.
One might consider extrapolating from the results of several calculations to obtain an improved

result. Just how this is done will depend on whether one assumes he knows the power of h that is

involved, as we have been doing, or whether one assumes only that the error is proportional to hP,

with the value of p not known in advance.
If it is obviously appropriate to change the step-size at various points during the calculation,

then this modification can be incorporated in whatever scheme one is using.

There is another approach which is often used. This is to estimate the error at each step in the

calculation, and then to make any necessary adjustments of the step-size before proceeding to the

next step. The usual way of accomplishing this with Runge-Kutta methods is similar to the above.

One compares the result of taking one step of size h with the result of taking two steps of size h/2.

If the error is ChP+1, where C is assumed constant and p is known, then the difference be-

tween the two results is taken to be a measure of the size of the error, in this case (2P-1) times

the error in one step, using the smaller step-size. (Note that this time the error in using the

smaller step-size is committed twice during the calculation being considered.)

With this idea a procedure can be arranged which will automatically adjust the step-size so that

the error is kept below some prescribed tolerance. Many programs based on this idea control the

error per step, without making allowance for the number of steps. It should be the error per unit

increase in x which is controlled. This means keeping ChP+1/h = ChP below a prescribed tolerance.

With predictor-corrector procedures one has a relatively easy way of estimating the error in a

single step. The difference between the predicted and corrected values is a measure of this error.

For example, with the first Adams method given earlier, the truncation error in the predicted value

can be taken, for the sake of this argument, to be approximately 9Ch4. In the corrector it is then

approximately -Ch4. The difference between the predicted and the corrected values is therefore

approximately loChel which is -10 times the error in the corrected value. The argument is of

course not rigorous.
If this way of estimating the local error is accepted, the decisions about when to raise or lower

28
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the step-size are still quite complicated, because of the fact that it is so troublesome to change

step-size with predictor-corrector methods. In fact the value of predictor-corrector methods de-

pends heavily on whether or not the step-size will have to be changed very often, and this clearly

depends on the problem being considered.

A weakness is this second approach to the problem of error control, whether with Runge-Kutta

or predictor-corrector methods, is that it does not take into account the way in which errors are

propagated through a calculation. Even though the local errors are kept small it may be that their

effect is growing exponentially in such a way that the accumulated error will not be tolerable. There

is no simple way of dealing with this situation except by knowing something about the way the errors

are being propagated. This knowledge might be obtained theoretically, or it might come from experi-

mental runs with sample problems of the right type.

Another weakness of the second approach to error control is that it will not detect instability in

the numerical procedure. The difficulty is analogous to what has just been described. The local

errors may be kept very small, but instability could still cause enormous growth of the error.

It is possible to monitor stability in a fairly simple way with single differential equations, but

no efficient procedure seems to be possible for systems of equations. The trouble is that one really

needs to know something about the eigenvalues of the matrix I hg, or I + hg + h2g2/2, etc. In the

limiting case, when h = 0, there is no problem concerning the stability of the methods which are

generally used. But in practice, when h O, the situation is quite complicated, as we have already

indicated. There does not seem to be any simple course of action which can be recommended, other

than simply knowing something about the way the errors are propagated, as we have already

suggested.
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PROGRAMMING CONSIDERATIONS

A good program library should have subroutines for the numerical integration of ordinary differ-

ential. equations. There should be at least one subroutine based on a Runge-Kutta method, such as

the fourth-order method quoted earlier, and another based on an Adams procedure of moderately

high order. It is clear that the Runge-Kutta program would be quite a bit easier to write, mainly

because of the need in an Adams subroutine for separate procedures at the beginning of the calcu-

lation, or after the step-size has been changed. A Runge-Kutta procedure could be used for this

purpose, but there are other possibilities as well.
In the parameter list for any such subroutine the user most provide xo, yo, xend, and fen,

where xend is the value of x to which the integration is to be taken, and fen is the name of the
procedure for evaluating the function f(x, y). He would also have to provide something about the

step-size. One good idea would be for him to provide a maximum step-size, which could be used

as a starting value and also as a bound for later choices of h. This would serve to prevent the

program from trying to use any ridiculously large values, as it might in regions where the solution

is very smooth.
The user would also have to provide an error bound which could, for example, be a vector giving

bounds for the local error in each component. A decision must be made about whether or not this

bound is to be an absolute error bound, or a relative error bound. If the latter, it is relative to the

solution, or to f(x, y), and what if either of these becomes zero?
The user would also have to provide some indication of whether or not the entry to the subroutine

is the first entry. This will enable the subroutine to initialize when necessary, and to choose an

appropriate value for h. Some attempt should be made to minimize the accululated effect of rounding

errors. One way is to accumulate the approximations to the solution in double precision. This de-

vice is known as partial double precision. If this is done, then the initialization will involve setting

the least significant halves to zero.
Finally, with most programming languages, the user will have to provide the order of the system

of differential equations, and also the working space needed by the subroutine.

With local error control a common technique is to halve the step-size whenever it is decided

that the step-size should be reduced, and to double it when it should be increased. There could be

some slight saving in computing time when this is done, but it is doubtful if it is worthwhile in the

long run. On the other hand, very little has been done about trying to find any better schemes.

In some applications it is important to make provision for an error exit in case the program has

difficulty with a singularity.
Project: Write a subroutine based on a Runge-Kutta procedure with automatic error control. Pro-

vide a clear description for the potential user of exaely how the subroutine is to be used, what it is

supposed to do, and what its limitations are. How do you know your subroutine fits the description?
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