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Reviews of ﬁlms

A REPORT OF SOME REVIEWING COMMITTEES
Some films prepared for use in secondary school
mathematics classes and in teacher education classes

During 1962, three committees of high
school and college mathematics teachers
met on several occasions to review many
of the available mathematics films for
junior and senior high school. These meet-
ings were financed by the National Coun-
cil of Teachers of Mathematics. The re-
sults of these reviewing sessions are to be
found on the following pages.

Originally, the project director, Joseph
A. Raab, contacted approximately one
hundred film producers and suppliers, and
more than two hundred and fifty films
were supplied for reviewing. There are, of
course, many more mathematics films
available from various sources, but those
films which were viewed by the com-
mittees seem to constitute a good sample.

Wach of the three committees was made
up of five or six mathematics teachers who
were instructed to examine the films with
regard to their mathematical content,
pedagogical effectiveness, and technical
quality. In addition, where possible, par-
ticular uses for each film were to be in-
dicated as well as the general level of the
film. In general, the committees followed
through with these instructions although
it was deemed necessary to edit the re-
views somewhat in order to achieve some
uniformity in style and to condense some
reviews.

Thus, each review represents the com-
posite opinion of five or six mathematics
teachers. Generally, they have placed
more importance on the mathematical
content of the film than on its technical

are listed and reviewed.

aspects. Such emphasis is probably well
justified since a film which is mathe-
matically correct will be useful in the
classroom in spite of some technical faults
while no amount of technical skill can
make a useful film from one that is mathe-
matically incorrect. Several committee
members have commented that the mathe-
matical quality of many of the films is
poor even in cases where a mathematics
consultant is listed in the production. This
is an unfortunate situation which might
be remedied by more effective use of these
consultants in the actual production of
the film. Moreover, there seem to be rela-
tively few films designed to illustrate a
particular topic in less than ten minutes,
say, and a great many films thirty min-
utes long, each covering a great many
topics. Animation seems to be used less ex-

" tensively and effectively than one might

expect in view of the number of topics in
mathematics which involve motion of
some sort. Many members felt that short
films on the history of mathematics would
be of particular value to the mathematics
teacher. In short, the consensus of the re-
viewers seems to be that more mathema-
tics films should be designed to do tasks
that the ordinary classroom teacher can-
not do effectively, and fewer films de-
signed to ‘“teach’ an entire course.

The following mathematics teachers
constituted the three committees. Their
concerted efforts, constant attention to
the job, and open minded attitude are
greatly appreciated.

578 The Mathematics Teacher | December, 1963




gz T

Project Director
Joseph A. Raab, Wisconsin State College

Reviews Editor
Robert Johnson, Colorado State Ccllege

Western Reviewing Commitlee

Howard Wilson, Chairman, Eastern Ore-
gon College, La Grande, Oregon

John Fujii, Oakland City College, Oak-
land, California

Alice Graeber, San Fraacisco Public
Schools, San Francisco, California

Richard Hermans, Beaverton High School,
Beaverton, Oregon

Robert Johnson, Colorado State College,
Greeley, Colorado

Central Reviewing Commilttee

Joseph Raab, Chairman, Wisconsin State
College, Oshkosh, Wisconsin

Don Lichtenberg, Patterns in Arithmetic,
University of Wisconsin

James Martin, Niles Township High
School, Skokie, Illinois

Robert Prielipp, Wisconsin State College,
Stevens Point, Wisconsin

Warren White, Sheboygan High School,
Sheboygan, Wisconsin

Eastern Reviewing Committee

Sigmund Smith, Chairman, State Uni-
versity College, Brockport, New York

Norman Gunderson, University of Roch-
ester, Rochester, New York

Norman Morreale, Rochester Public
Schools, Rochester, New York

Edward Stephany, State University Col-
lege, Brockport, New York

Frank Viggiani, Rochester Public Schools,
Rochester, New York

SUBJECT INDEX OF FILMS

ALGEBRA .
Advanced Algebra Series, 581-83
Algebra and Powers of Ten—=Special Lessons
in Physics, 600
Algebraic and Complex Fractions, 592
Arrangements and Combinations, 585
Azioms in Algebra, 586
Complex numbers
Complex Numbers and Roots of Equations,
583
Concept of a Function, 597
Determinants
Determinants and Cramer’s Rule, 582
Determinants of Any Order, 582
Equations
Algebra of Points and Lines, 593
Complex Numbers and Roots of Equations,
583
Developing and Solving Linear Equations,
591
Equations with Unknowns in the Ezpo-
nents, 594
General Methods for Solving Quadratic
Equations, 594
Graphs of Quadratic Equations, 583
Introduction to Graphs of Equations, 583
Introduction to Quadraitc Equations, 582
Introduction to Simultaneous Equations,
582
Linear Equations in One Unknown, 582
More Solutions of Linear Equations, 592
Quadratic Equations, 592
Solution of Equations Beyond the Second
Degree, 583
Solving Equations tn Fractional Form, 592

Solving Simultaneous Linear Equations,
592
Theory of Equations and Synthetic Division,
583
Using Logarithivs to Solve Equations, 594
Exponents
Using Fractional and Rational Exponents,
593
Working with Positive and Negative Ez-
ponents, 593
Factoring
A Plus B Squared, 585
Introduction to Factoring, 581
Special Products and Factoring, 592
Standard Techniques of Factoring, 582
Five Fundamental Postulates for Algebra, 581
Formulas in Mathematics, 590
Graphs
Equations and Graphs of the Parabola, 594
Graphing Linear Equations, 591
Graphs of Quadratic Equations, 583
Hyperbola, Ellipse, and Circle, 594
Introduction to Graphs of Equations, 583
Language of Graphs, 596
Historical Iniroduction to Algebra, 581
Infinite Series and Binomial Expansion, 594
Intermediate Algebra Series, 591-94
Language of Algebra, 595, 596
Logarithms
Using Logarithms to Solve Equations, 594
Numeration systems
Addition and Subtraction of Rational Num-
bers, 591
Imaginary and Complex Numbers, 593
Irrational Numbers, 598
Multiplication of Rational Numbers, 591
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Natural Numbers, Integers and Rational
Numbers, 591
Number Fields, 598
Radicals and the Real Number System, 593
Patterns in Mathemalics, 598
Permutations and Combinations, 583
Progressions, Sequences and Series, 594
Proportions at Work, 599
Quadratic formula
Solving Problems with the Quadratic For-
mula, 582
Roots of Higher Order, 593
Sentences and Solution Sets, 597
Simplifying Complex Fractions, 582
Symbols in Algebra, 600
Variation—A Lesson in Reading, 593

ARITHMETIC
Base and Place, 604
Big Numbers, 604
Estimating and Checking Answers, 585
Fractions, 605
Fundamental Operations, 604
How Man Learned to Count, 584
Junior High Mathematics Series, 595
Numeration systems
Decimal Numbers, 595
Earliest Numbers, The, 604
Idea of Numbers, 591
Integers, The, 595
New Numbers, 605
Number System and Its Structure, The, 598
Numerution Systems, 595
Quicker Than You Think, 584
Rational Numbers, The, 595
Whole Numbers, The, 595
Short Cuts, 605

GENERAL MATHEMATICS
Adventures in Number and Space Series, 584~
85
Arrangements and Combinations, 585
Careers in Mathematics, 585
Donald in Mathmagic Land, 587
Electronic Computers and Mathematics, 587
Formulas in Mathematics, 590
How’s Chances?, 585
Language of Mathematics, The, 596
Meaning of Pi, The, 598
Mysterious X, 584
Numeration systems
Natural Numbers, Integers and Rational
Numbers, 591
Number System and Its Structure, The, 598
Patterns in Mathematics, 598
Proportions at Work, 599
Sign Language, 585
Similar Triangles in Use, 599
Stretching Imagination, 585
Time, 600
Variation—A Lesson in Reading, 593
What's the Angle?, 584

GEOMETRY
Discovering Solids Series, 586
Meaning of Pi, The, 598
Pythagorean Theorem: Proof by Area, 599
Similar Triangles in Use, 599
Solids in the World Around Us, 586

Stretching Imagination, 565
Surface Areas I and 11, 586
Volume and Its Measurement, 605
Volumes of Cubes, Prisms, Cylinders, 586
Volumes of Pyramids, Cones, Cylinders,
586

What's the Angle?, 584

GRAPHS
Graphs of Periodic Functions, 604
Language of Graphs, 596

History
The Earliest Numbers, 604
Historical Introduction to Algebra, 581
How Man Learned to Count, 584

LoGArrTHMS
Characteristics, 590
Computing Logarithms fromn Arithmetic and

Geometric Series, 583

Engineering Problems Series, 589-90
Introduction to Logarithms, 602
Logarithmic Systems, 590
Logarithms and the Slide Rule, 596-97
Logarithmic Operations I and 11, 590
Mantissas, 590
Nature of Logarithms, 583
Practical Use of Logarithms, 603
Trigonometric Applications, 590
Using Logarithms in Problems, 583
Using Logarithm Tables, 603

ProBaBIiLITY
How's Chances?, 585

Ser THEORY
Concept of a Function, 597
Sentences and Solution Sets, 597

SripE RuLe
Engineering Computation Skills, 587-89
Logarithms and the Slide Rule Series, 596-97
Slide Rule—=Special Lesson in Physics, 600

TRIGONOMETRY

Addition Formulas and DeMoivre’s Theorem,
604

Cosecant, Secant and Cotangent, 602

Double and Half Angle Formulas, 604

Eight Fundamental Trigonometric Identities,
602

Elements of Trigonometry, 600

Graphs of Periodic Functions, 604

Interpolation in Trigonometric Tables, 602

Large Angles and Coordinate Azes, 603

Low of Cosines, 603

Law of Sines, 603

Low of Tangents, 603

Pythagorean Theorem: Cosine Formula, 599

Right Triangles and Trigonometric Ratio,
601

Sign Language, 585

Tables of Trigonometric Ratios, 602

Trigonometric Ratios as Periodic Functions,
603

Trigonometry and Shadows, 601

Trigonometry Measures the Earth, 602

Trigonometry of Large Angles, 603

Trigonometry Series, 601-604

Using Sines, Cosines, and Tangents, 601

Working with Trigonometric Identities, 602
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LisT OF FILM DISTRIBUTORS

Association Films, Inc.
347 Madison Avenue
New York 17, New York

Ceuco Fducational Films
1700 Irving Park Road
Chicago 13, Illinois

Colburn Film Distributors
1122 Central Avenue
Wilmette, Illinois

Coronet Instructional Films
65 East South Water Street
Chicago 1, Illinois

Educational Research Council of Greater Cleve-
land

Rockefzller Building

Cleveland 13, Ohio

Encyclopaedia Britannica Films, Inc.
1150 Wilmette Avenue
Wilmette, Illinois

Indiana University
Department of Astronomy
Bloomington, Indiana

International Film Bureau
332 South Michigan Avenue
Chicago 4, Illinois

MeGraw-Hill
330 West 42nd Street
New York 36, New York

Modern Learning Aids
3 East 54th Street
New York 22, New York

State University of Iowa

Bureau of Audio-Visual Instruction
Extension Division

Iowa City, Iowa

University of Michigan Films
4028 Administration Building
Ann Arbor, Michigan

Walt Disney Productions
Educational Films Division .
Burbank, California

ALPHABETICAL LISTING
AND REVIEWS OF FILMS

ADDITION AND SUBTRACTION OF RATIONAL
NumBERS. See Intermediate Algebra Series.

ApprrioN Formuras aNnp DeEMoivre’s THE-
orEM. See Trigonometry Series.

* The following is a key to the symbols used:

sd: sound jh: junior high school
si: silent sh: senior high school
bw: black and white je: junior college
co: color sc: senior college
el: elementary a: adult

guide: teacher’s guide available
manual: student manual available

ADVANCED ALGEBRA SERIES. 20 films, 1960.
sd, bw; sh, jc; tchrs. of sh.*
Modern Learning Aids, $3000.1

Historical Introduction to Algebra. 27 min.,
$150; jh, sh, je; tehrs. of jh, sh.

This delightful first ilm in the advanced
algebra series is ably narrated and would be of
interest to algebra students at almost any level.

Algebra is discussed as a generalization of
arithmetic and is shown to have gone through
the rhetorical, syncopated, and symbolic stages
of development. Some great books in the story
of mathematics are discussed with photos of the
Rhind Papyrus, copies of the Diophantos Arith-
melic, and Al-Jabr (from which ‘“algebra” is
derived) being shown.

An excellent discussion of a cultivation prob-
lem brings out questions of manipulation which
are to be answered in later films.

Five Fundamental Postulates of Algebra. 30
min., $150; sh, jc; tchrs. of sh.

Five fundamental postulates 2are given,
namely: commutative and associative laws for
addition and multiplication, and the distributive
postulate for multiplication over addition. It is
emphasized that these postulates are not the-
orems. An interpretation of the process of divi-
sion and the implications of dividing by zero
are discussed, along with the ideas of least com-
mon multiples and least common denominators.

More grouping symbols need to be used in
connection with the fundamental postulates.
The principles for multiplying by one and for
adding zero are called obvious. The discussion
of division by zero is not carefully done. The
geometric model used to show that the product
of two negative numbers is a positive number is
very confusing. The film will be fair for review
but is poor for teaching these ideas.

Introduction to Factoring. 30 min., $150; sh,
je; tchrs. of sh.

After a review of the five fundamental postu-
lates for algebra, factoring forms are specifically
stated for monomials with common terms, dif-
ference of two squares, and quadratic perfect
squares. The ideas of factoring algebraic expres-
sions are developed with reference to the factor-
ing forms. A discussion of errors that occur in
cancelling is related to factoring.

Although the review of the previons film on
postulates is good, the lecturer fails to use these
postulates in the discussion on factoring. These
factoring techniques involve memorization of
certain forms. Stress is placed on the idee that
factorization is simply the mastery of certain
rules which are to be applied in nine out of ten
cases! The third form of factoring is given as
A*+2A4B+-B?=(A+B)? which is incorrect.

+ The priceslisted are either purchaseprice orlong-
term lease. Rental prices may vary depending on
source and for this reason are not listed.
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Standard Techniques of Factoring. 30 min.,
$150; sh, je; tchrs. of sh.

The following standard forms to be used for
factoring are stated: quadratic perfect squares,
quadratic nonperfect squares, sum of cubes,
and difference of cubes. The lecturer discusses
“gplitting the middle term” as a method of
handling forms involving the quadratic nonper-
fect square. Certain wrong techniques which
are sometimes used in cancelling are identified.

Apparently, these factoring forms are to be
memorized. The formula for factoring a general
quadratic form is grossly oversimplified. The
display of “wrong techniques of cancelling” is
not good.

Simplifying Complex Fractions. 30 min.,
$150; sh, jc; tchrs. of sh.

Mechanical operations for handling complex
fractions are discussed including: (1) in simple
cases, invert the denominator and multiply this
tivies the numerator; (2) simplify the numerator
then simplify the denominator before using rule
(1). Cancelling is mentioned as a factoring
technique when both numerator and denom-
inator have been expressed in simplest terms.
Certain examples are provided to show the
errors that arise when caucelling across addition
or subtraction is performed.

The simplifying of complex fractions is gen-
erally void of any logical or mathematical rea-
soning. That “invert and multiply”’ is equiva-
lent to the ‘logical”’ procedure is shown by
giving one example. The language used in this
entire film is extremely sloppy.

Linear Equations in one Unknown. 30 min.,
$150; sh, je; tchrs. of sh.

The solution of linear equations is introduced
by considering the ‘distance-rate-time’” prob-
lem in great detail. A small portion of the film
is devoted to the transformation of equations to
equivalent equations. Extraneous roots of linear
equations are touched upon.

Good techniques are used for setting up an
equation although the point of view toward
equation solving is old-fashioned. Some checking
of results is shown but often tbe result is simply
shown to be reasonable. The treatment of ex-
traneous roots is not clear and too much time is
spent on mechanical details which really do not
help a student understand how to solve linear
equations.

Introduction to Simultaneous Equations. 30
min., $150; sh, jc; tchrs. of sh.

The solution of two simultaneous linear
equations is introduced by a verbal problem.
Two methods of solution are discussed—com-
parison and determinants.

The treatment is definitely not introductory
in nature as the title suggests. The ‘“method of
comparison’’ is good but the use of determinants
is hastily done. The emphasis on mechanical

operations is distinctly inappropriate and too
much mathematics is passed by as being obvi-
ous.

Determinants and Cramer’s Rule. 30 min.,
$150; sh, jc; tchrs. of sh.

Two simultaneous linear equations are
solved using determinants of order two followed
by an analysis of three simultaneous linear equa~-
tions from which Cramer’s rule is derived. Deter-
minants of order three are expanded by a
method of “bordering’’ using first and second
columns.

The algebraic ideas are grossly oversimpli-
fied and there is too much emphasis on mechan-
ical techniques using determinants. The student
may be left with the impression that the use of
determinants is always easy and the best tech-
nique for solving such systems.

Determinants of Any Order. 30 min., $150;
sh, jc; tchrs. of sh.

A general theorem for expanding a deter-
minant by minors of rows or columnsis statedand
the notion of minors is fully discussed. Careful
attention is given to the general applicability
of Cramer’s rule to determinants of any order.

Although too much stress is placed on tech-
niques and not ¢nough on understanding, the
explanation of minors is very good. Such
phrases as ‘““throw the zeros in the first column”’
indicate the nature of the terminology used.

Introduction to Quadratic Equations. 30 min.,
$150; sh, jc; tehrs. of sh.

Verbal problems are proposed whose solu-
tions invoive quadratic equations. The prob-
lems are actually worked out and the emphasis
is on the solution of the quadratic equation by
completing the square. A derivation of the
quadratic formula follows.

The word problems used to give rise to
quadratic equations are good. The method of
completing the square is reasonably well done
but the emphasis is on the quadratic formula
which is to be memorized.

Solving Problems with the Quadratic Fofmula.
30 min., $150; sh, jc; tchrs. of sh.

The quadratic formula is used to solve a
quadratic equation whose roots are irrational.
The square root of a number is approximated
by the square root algorithm, by the slide rule,
end from tables of squares and square roots.
Emphasis is placed on location of the decimal
point. The use of tables in approximating cube
roots concludes the film.

The algorithm for approximating square
roots is given purely as a mechanical process
without appropriate foundation. Emphasis is
on memorization of the quadratic formula with
no mention of the principles underlying it. The
simplifying of radicals is done well. The film
title is misleading since the major portion of the
work is devoted to handling square roots.
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Complex Numbers and Roots of Equalions. 30
min., $150; sh, jc; tchrs. of sh.

Analysis of the discriminant includes the
cases where the discriminant is greater than
zero, equal to zero, and less than zero. Defini-
tions of the square root of negative one, a com-
plex number, and an imaginary number are
given. The representation of complex numbers
in the number plane is described. The film con-
cludes with a discussion of tk< nature of the
roots of systems of quadratic equations.

Although 7 is defined, very little is done with
operations with complex numbers. The complex
number plane is handled in a very sketchy man-
ner. The discussion of the nature of the diserim-
.nant of a quadratic equation is satisfactorily
handled.

Introduction to Graphs of Equations. 30 min.,
$150; sh, jc; tchrs. of sh.

Systems of quadratic equations are dis-
cussed along with a system of a quadratic and
a linear equation. The use of graphs in inter-
preting systems of quadratic functions is dis-
cussed.

The technique of substituting a linear equa-~
tion in a quadratic is poorly done. No satisfac-
tor; definition of a ‘“quadratic system” is
given,

Graphs of Quadratic Equations. 30 min., $150;
sh, jc; tchrs. of sh.

Attention is given to the graphical inter-
pretation of circles, ellipses and parabolas. The
discussion is an extension of the presentation in
the preceding film. The technique of completing
the square is employed in graphing these func-
tions in order to determine a set of transformed
axes to reduce the functions to a standard form.

Entirely too much is attempted in this film
with the result that the viewer may not under-
stand the basic differences between the graphs
of circles, ellipses, and parabolas. The use of
the technique of completing the square is satis-
factory but is overwhelmed in the bulk of ma-
terial.

Theory of Equations and Synthetic Division.
30 min., $150; sh, jc; tchrs. of sh.

Several parabolic functions are graphed us-
ing the technique of completing the square.
Finding the roots of a cubic equation motivates
the introduction of synthetic division which is
subsequently used as a test for roots.

Not enough is made of the role of the Factor
Theorem and Remainder Theorem. The role of
the “missing term” and the linearity of the
divisor in synthetic divisior is not made clear.
The viewer is likely to be confused by the film.

Solution of Equations Beyond the Second
Degree. 32 min., $150; sh, je; tchrs. of sh.

A quartic equation is used to motivate dis-
cussion of the Rule of Signs as well as other

rules which enable a student to carry out a
limited search for rational roots.
Unfortunately, the discussion here is almost
completely centered on rules with very little
analysis of the relationship between coefficients
and roots of the polynomial equations. The re-
sult is a film on manipulaticn and technique.

Permutations and Combunations. 30 min.,
$150; sh, jc; tehrs. of sh.

The meaning of permutations and combina-
tions is discussed. The basic formulas for num-
ber of permutations of n different objects taken
r at a time, without repetitions; permutations of
a set of objects not 21l different; and number of
combinations of n different objects taken r at a
time are derived and discussed. These formulas
are then applied to problems with the admoni-
tion tha* restrictions are often necessary in order
to carry through with these formulas.

For a person who is already well acquainted
with these topics the film should be acceptable.
The derivations of the basic results are not
particularly well done. We suggest the film be
used for reviewing only.

Nature of Logarithms. 30 min., $150; sh, ic;
tehrs. of sh.

A complicated multiplication problem is
used as motivation for the study of logarithms.
Mantissa and characteristics are discussed
carefully. The emphasis is on the base ten.
The use of positive mantissas with negative
characteristics iz discussed.

Although the development is consistent with
the traditional approach, we feel the stress
should be placed more heavily on the underlying
mathematical notions.

Using Logarithms in Problems. 30 min., $150;
gh, je; tchrs. of sh.

Logarithms with arbitrary bases are dis-
cussed including the definition of logsc=b as
ab=c. Such logerithms are used to solve prob-
lems.

The unfortunate inference that the viewer
will draw is that the primary purpose of loga~
rithms is to simplify computation. The film will
be satisfactory for review purposes.

Computing Logarithms from Arithmetic and
Geometric Series. 30 min., $150;sh, jc; tchrs.
of sh.

A short history of logarithms is given as well
as an explanation of the derivation of the tables.
Interpolation is discussed at some length as well
as other topics in the use of tables of mantissas.

The historical introduction for the evalua-
tion of logs for tables is good. The tie-in with
the previous film, Nature of Logarithms, is
timely. The title of the film is misleading since
very little discussion centers on these series.
The major use of the film should be for review.
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ADVENTURES IN NUMBER AND SPACE SERIES.

board (sand). It is mentioned that the counting

9 films, 1958. sd, bw; el, jh, sh, a; tchrs. of
el, jh; Association Iilms, Inc., $1,250.

The series consists of nine films originally
produced for television. Although a variety of
topics are presented, the series is made contigu-
ous by the pre ence of Mr. Bill Baird and his
marionettes. The resulting vehicle is very effec-
tive as a Jevice to arouse interest in mathe-
matics. A note of levity is constantly provided
by the discourse, antics, and predicaments of
the marionettes. Mr. Baird provides lectures
and, at times, problem solving techniques for
getting the marionettes out of their scrapes.

The props and devices used in the film will
rnot generally be found in the classroom. Thus,
the individual films provide much in the way of
motivation and ‘ntroduction to new topics that
would not ordinarily be possible. On the other
hand, very little teaching of substantial subject
matter will be accomplished directly from use
of these films due to the elementary level of
treatment. However, the amount of interest
generated should easily carry over to regular
classroom instruction and give real support to
more advanced levels of treatment.

The series has been very well edited on the
whole. We found little which could be added or
deleted to improve the resultant product. Cam-
era technique is excellent throughout the series
and dthe result is a series which is technically very
good.

The most receptive audiences for the series
would probably be found at the seventh- through
ninth-grade levels. At these levels the flms will
be good motivational devices for the introduc-
tion to algebra, geometry, trigonometry, statis-
tics, and other areas. However, we suggest
caution in relying on them as sources of mathe-
matics content as indicated above. The mathe-
matical notions treated are elementary and are
not always well developed or connected.

How Man Learned to Count. 30 min., $150;
el, jh, a.

The following notions are dealt with: the
elementary reasons and ideas for counting, the
Egyptian numeration system up to thousands,
the Roman and Babylonian numeration sys-
tems, the counting board, the abacus and
modern calculators, and the origin of zero.

The reason for counting and having a nu-
meration system is motivated through a classical
problem involving cavemen bartering for an ax
in terms of “one-two-and a heap” of shells. The
difficulties in some notational systems are ex-
emplified by a Roman general attempting to
reach a decision about the total number of
spears he needs to outfit his army when he
knows the number of columns of men and the
number of men in each column.

The major portion of the film is devoted to
developing the rules governing the counting
board. Examples are given and solved by addi-
tion using marbles (stones) and grooves in a

board was the beginning of the modern decimal
system. The abacus is explained and problems
are solved on it in competition with a modern
electric calculator.

An overwhelming majority of historians be-
lieve that the Arabs had little if anything to do
with the invention of a zero symbol. Their chief
contribution was transmitting the zero symbol
to the Western World.

Quicker Than You Think. 30 min., $150; el,
jh, a.

This film is essentially concerned with a de-
velopment of the binary system, done rather
quickly. The motivation for the study of such a
system is provided by a chart from which a
person’s age might be deduced when the person
selects the variouc columns in which his age
appears. The presentation is at first a bit awk-
ward, but as the film progresses, there is a good
set of devices used %o introduce the notion of
the binary system. Modern computing machines
are demonstratea by visiting a laboratory in
which a Westinghouse computer is used, and a
brief description of the mechanics of its cpera-
tion is given.

Mysterious X. 30 min., $150; el, jh, a.

This film gives good motivation for algebra.
Examples of the use of algebra in life are given
with the use of formulas exemplified by: The
“cricket chirp’”’ formula for temperature, New-
ton’s Jaws, and Einstein’s E =mc?,

The presentation defines algebra as a set of
laws governing numbers and states some of the
laws—for exampie, the commutative laws. Solu-
tion of equations i8 poorly done since it is being
done intuitively rather than by taking advan-
tage of the laws previously considered and
named. The word “variable’’ is not well defined.

This film might be usable at the fifth-
through ninth-grade level.

What's the Angle. 30 min., $150; el, jh, a.

What’s the Angle is an historica' introduction
to the notions of a right triangle and some of the
consequences thereof. The film is motivated by
the marionettes’ confusion over the shape of a
baseball diamond, that is, its being a square
rather than what they thought a diamond
should look like. This leads into the notion of a
right triangle and from this Mr. Baird proceeds
into a discussion of the ancient pyramids of
Egypt. The 3-4-5 relationship is mentioned and
the famous rope stretchers are considered in
connection with the construction of the pyra-
mids as well as with the beginnings of plane
surveying along the Nile. Map and map-making
follow with some simple ideas of projective ge-
ometry being described through the use of a
light source and a translucent sphere.

The film should be usable to aid in introduc-
ing geometry although the terminology used
may be a bit advanced for a simple introduction.
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Some care should be taken by the user to check
the understanding of the students’ for those
words used but not defined in the film.

Arrangements and Combinations. 30 min.,
$150; el, jh, a.

This film provides a very interesting and
clever introduction to combinations. The gen-
eral theme of the film is to give careful examples
of the uses of combinations in problem solving.
Some situations are: the various positions of
trains of cars, different clothing changes, the
number of menus from a few food items, entry
of a preseni~-day newspaper puzzle wherein
1,000,000 solutions would have to be entered
to guarantee a winner, and several more.

Greatest use of this film is suggested in
Grades 7 through 9. The presentation, though
very interesting, is probably too frivolous in
nature to provide much in the way of mathe-
matical concepts.

How's Chances. 30 min., $150; jh, a.

This film will serve as a good introduction to
elementary topics in probability and statistics.
It refers to the sampling technique of predict-
ing election outcomes. The binomial and normal
distributions are discussed and various applica-
tions, such as army supplies and a supermarket,
are presented. Motivated by a discussion of an
incompleted game of points, the marionettes use
simple probability. The film provides excellent
motivation for elementary study of probability.

Stretching Imagination. 30 min., $150; jh, a.

Notions of topology are discussed in this
film. A fairly intuitive definition of ‘“topologi-
cally equivalent” is given and a few examples
involving ‘‘outside” and ‘inside’” are men-
tioned. The illustrations include the cup and
donut surfaces. Industrial applications are
touched upon with items like the roofs of cars
and the pressing of plastic materials. A problem
involving a paperboy and his shortest delivery
route is also menticned.

The fundamental equation for a polyhedron
which expresses the relationship between the
number of edges, vertices, and faces is given by
an algebraic formula, i.e., e+2=v+4f. The
mobius strip is discussed, as well as the problem
of removing one’s vest without removing one’s
coat. This film might be very useful for mathe-
matics clubs at the high school and junior high
school levels. The presentation is not given on
quite such an elementary level as many of the
others in the series.

Sign Language. 30 min., $150; jh, a.

This is an introductory film on trigonometry.
The first discussion involves the tangent rela-
tion given as a ratio of rise to run. Applications
of this ratio are suggested in navigation and ar-
tillery. The use of tables is mentioned for com-
putational purposes. Mr. Baird’s enunciation of
101 thousandths comes out “101 thousands.”

The sine curve is investigated later, although
it is presented as disjoint from the preceding
discussion of tangent. Much of the vocabulary
in the film is used rather glibly, such as the
words period, loudness, length and periodicity.
Actually, some improper relationships are sug-
gested in this film which make it usable only as
an introductory film for a lower level treatment
of trigonometry.

Careers in Mathematics. 30 min., $150; jh,
sh; tchrs. of el, jh, sh.

This film is a short summary of the eight
preceding films and points out that there are
careers for women as well as for men in mathe-
matics. Essentially nothing new is presented in
this last film of the series and we do not recom-~
mend its use separately from the series even for
the possible benefit of prospective mathematics
students. The film provides a too-brief review of
previously discussed topics using references to
the earlier films in the series.

ALcEBRA AND PoweRs oF TEN. See Special
Lessons in Physics.

ALceBRA OoF PoINTs AND LinEes. See Intermedi-
ate Algebra Series.

ALcEBRAIC AND CoMPLEX FrACTIONS. See Inter~
mediate Algebra Series.

A Prus B Squarep. 1954. sd, bw; 10 min.; jh;
International Film Bureau, Inc. $50.

Finding the area of a square motivates the
early discussion of (¢-+b)? During the presenta- -
tion the narrator says, ‘“We know how to
multiply numbers but how do we multiply let-
ters?” Such language is poor, especially for a
film. It is geometrically shown that the area of
a square of side-measure a--b is a%+42ab-+b?
but no mention is made of the distributive and
commutative laws when (a-b)? is expanded
algebraically. Most teachers could probably
present this material as well as it is presented
here. In spots the sound was poor on the film
used by the reviewers.

AriTaEMETIC: ESTIMATING AND CHECKING AN-
SWERS. 1962. 8¢, bw; 11 min., el, jh; Coronet
Instructional Films, $60.

After an introduction showing the need for
estimeoting answers, procedures for rounding off
numbers are presented and applied in illustrated
word problems using large numbers and using
decimals. Checking the four fundamental proc-
esses is stressed.

The type of word problems and the method
of illustrating them would appeal to sixth-grade
students as an introduction to the topie.

ARRANGEMENTS AND COMBINATIONS. See Ad-
ventures in Number and Space.
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Axioms IN ALGEBRA. 1960. 8d, co, 13 min., jh,
sh; International Film Bureau Inc., $135.

The axioms discussed in this film are not the
axioms of a field but are the traditional version
of Euclid’s axioms for addition, subtraction,
multiplication, division, powers, and roots. The
film does not point out that subtraction and
division axioms are redundant nor does it re-
strict the root axiom to principal roots. No
recognition of the commutative and associative
laws is made. A great deal of effort is made to
motivate the learning of each axiom using
“practiv 0’ illustrations. The narrator speaks of
subtracting trucks, adding cages, and multiply-
ing pages which will serve to indicate the lack
of consistency with current usage of mathemati-
cal language. .

Although the photographic techniques are
good, this treatment of the axioms in algebra

leaves much to be desired.

Base AND Prace. See Understanding Numbers.
Biz Numsers. See Understanding Numbers.

CAREERS 1IN MATHEMATICS. See Adventures in
Number and Space.

Crarn OpPERATIONS. See Engineering Computa-
tion Skills: The Slide Rule.

ComrrLEx NUMBERS AND RoOTS OoF EQUATIONS.
See Advanced Algebra Series.

ComposiTE AREAS. See Engineering Computa-
tion skills: The Slide Rule.

CoMPUTING LOGARITHMS FROM ARITEMETIC
AND GEOMETRIC SERIES. See Advanced Alge-

bra Series.

ConcEPT OF A FUNCTION. See McGraw-Hill
Teacher Education Series.

CoNSTRUCTION OF Basic ScaLEs. See Engineer-
ing Computation Skills: The Slide Rule.

ConvERsioNs. See Engineering Computation
Skills; The Slide Rule.

COSECANT, SECANT AND COTANGENT. See Trig-
onometry Series.

DeciMAL NuMEraLs. See Junior High Film
Series.

DETERMINANTS AND CRAMER’S BULE. See Ad-
vanced Algebra Series.

DETERMINANTS OF ANY ORDER. See Advanced
Algebra Series.

DEVELOPING AND SOLVING LINEAR EQUATIONS.
See Intermediaie Algebra Series.

DiscovERING Sorips. 5 films, 1959. 8d, co or
bw; jh, sh, je; tchrs. of jh. Cenco Ed. Films,
Inc., bw $375, co $750.

Solids in the World Around Us. 5 min., bw
$75, co $150; jh, sh, jc.

This film shows solid geometric form in
everyday life through familiar objects such as
flowers, butterfly wings, and even the shell of a
turtle. In the manner of an art exhibit, the film
shows modern geometric figures such as struc-
tural steel, manufactured goods, and rockets.
Definitions of point, line, radius, a sector, and
other terms are given near the conclusion of the
film.

The use of natural and artificial art is very
effective and will make the film quite useful for
motivation in geometry. Although the film con-
tains little explaining, it is definitely a worth-
while and enjoyable film.

Volumes of Cubes, Prisms, Cylinders. 5 min.,
bw $75, co $150; jh, sh; tchrs. of jh.

After an examination of solids that exist in
the world around us, a cube is defined to be the
basic “unit”’ used in the calculation of volumes.
Rectangular prisms are seen to be made up of a
series of cubes. Various odd shaped figures are
made and their volumes computed by counting
the number of cubic units from which they were
constructed. An excellent development of the
formula for the volume of a rectangular prism
follows. The formula for the volume of a cyl-
inder is developed from the relationship already
established for the prism.

The development of these formulas is excel-
lent and easily followed. The illustrations and
practical applications are well chosen.

Volumes of Pyramids, Cones, and Cylinders.
15 min., bw $75, co $150; jh; tchrs. of jh.

Volume is introduced as it is seen in every-
day life with animation being used to illustrate
that the volume of a prism is equal to area of
base times height. The formula for the volume
of a pyramid is thoroughly illustrated and leads
to the formula for the volume of a cone. Finally,
in the same careful manner, the formula for the
volume of a sphere is derived.

Animation is used to excellent advantage
and the film is definitely a “must” for almost
any group studying volume.

Surface Areas of Solids, Parts I and II. 15
min. each, bw $75, co $150; jh, sh; tchrs.
of jh.

In the first film, surface areas of cubes,
prisms, and pyramids are considered, drawing
applications from real life situations. The second
film considers surfaces of cylinders, cones, and
spheres which are shown to be surfaces of revo-
lution. In both films, the formulas are developed
through animation and applied to everyday
situations.
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While the development of the formulas is
well done, those on surfaces of revolution will
require additional amplification by the teacher.
In any case both films will make excellent intro-
ductions to the topics.

DoNALD IN MarEMAGIc Lanp. 1959. sd, co,
26 min., el, jh, sh, jc; tchrs. of el, jh, sh;
Walt Disney Productions, $250 (10 yr.
lease).

Donald Duck enters a fantasy land of ani-
mated numerals and geometric forms and is
guided in his journey by a “Spirit of Adventure”
whose articulation is much clearer than Donald’s.
The relation between length and pitch of a vi-
brating string serves as an excuse for a visit to a
Pythagorean jam session. Animated diagrams
of the Pythagorean’s symbol, the pentagram,
show its connection with the golden rectangle
and the occurrence of these forms in art and
nature. After a discussion of games, including
some views of expert billiard shots, the scene
shifts to a miscellany of plane and solid ge-
ometric forms and their physical applications.
Repeating pentagrams within pentagrams and
other similar situations are used to introduce
the notion of infinity.

The viewer will be attracted by the music,
art, animation, and humor rather than by the
mathematics. There is probably some motiva~
tional value here but an extensive follow-up will
be required in order to teach mathematical con-
cepts. Nevertheless, the film is good entertain-
ment for almost any age level.

DousBLE AND HALF ANGLE FoRMULAS. See
Trigonometry Series. ‘

BaruLeEsT NumBERs. See Understanding Num- -

bers.

Erricient OPERATIONS 1. See Engineering Com-
putation Skills: The Slide Rule.

ErricieENT OPERATIONS 1I. See Engineering
Computation Skills: The Slide Rule.

Eigar FuNpaMENTAL TRIGONOMETRIC IDEN-
TiTiEs. See Trigonometry Series.

EiLecrroNIic COMPUTERS AND MATHEMATICS.
1961. sd, co, 25 mix.; jh, sh, je, a; tchrs. of
jh, sh; bw $119, co $220.

The history of computers is shown in this
film from finger counting, use of pebbles, the
abacug, to modern electronic giants adaptable
to many purposes. The binary system is ex-
plained and compared with the decimal system.
Many illustrations of working computers are
given, identifying the major components such
as input, storage, processing, and output units.

‘Although the film is very interesting and
stimulating, the emphasis is on the mechanical
and vocational aspects of computers rather than
the mathematical aspects. This does not detract
from its use as a film for motivation.

ELEMENTS OF TRIGONOMETRY. See Special Les-
sons in Physics.

ENGINEERING CoMpUTATION SKILLS: THE SLIDE
Ruwe. 15 films, 1960. sd, bw; sh, jc, a;
Bureau of Audio-Visual Instruction, State
University of Iowa, $1,025; guide, manual.

The series is best suited for use in service
courses designed primarily for pre-engineering
or science areas where interest is in the manipu-
lative or technical skill in the use of the slide
rule. There are no mathematical notions derived
or developed with any degree of rigor in any part
of the series. We feel that the presentation is
well organized, that the lecturer is well pre-
pared, and that his use of props is generally
quite adequate.

The mathematics is basically correct. There
are some misuses of terminology, and a question
concerning the cancellation of units arises in
one or two films of the series. The lecture and
demonstration methods of instruction are
appropriate for the subject matter and seem to
be paced so that the average high school or col-
lege student should be able to follow along
easily. The devices used for instruction are very
good and are not generally found in the class-
room, especially the chalkboard faced slide
rule used in demonstrating the construction of
scales. Most of the films end with a brief but
thorough review of the topics discussed in that
film.

We recommend the series as very useful in
teaching skill in the use of the slide rule. The
first two or three films could be used separately
but the remainder of the series should be used
in a consecutive sequence.

Construction of Basic Scales. 23 min., $75;
sh, je, a. :

The construction of the C, D, and A scale is
very carefully done. A chalkboard faced slide
rule is skillfully used in the film. This film might
be used separately from the remainder of the
series whenever an explanation of the means
of construction of the simple slide rule is desired.
Possibilities for use by mathematics clubs or for
enrichment programs also exist.

Multiplication and Division. 30 min., $75;
sh, jc, a.

This film shows the two standard demon-
stration slide rules of the series with the CI, CF;
DF, and CIF scales. The construction of these
scales and their relation to the C and D scales
are briefly noted. The :ilm does a good job of ex-
hibiting the slide rule as a tool and showing its
application to problems in mathematies. It can
be .used geparately from the remainder of the
series.

Chain Operations. 28 min., $75; sh, jc, a.

In this film the lecturer uses the entire
family of the C and D scales to solve some sim-
ple problems in multiplication. end division.
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We do not recommend the use of this film
separately from the previous film because the
identification of the scales is made in the earlier
film. The procedure and treatment is quite for-
mal, although the devices are excellent. The
positioning of the decimal point is done by an
approximation procedure rather than a tech-
nique involving scientific notation.

Ratio Problems. 29 min., $75; sh, je, a.

By solving problems involving ratio, the
lecturer gives a good example of the finesse and
ingenuity required of the skilled slide rule
operator. He insists on the requirement that
both the hairline and slide must be moved no
more than once in a given operation, hence call-
ing for some ingenuity on the part of the
operator. The presentation then proceeds to
show a single setting method involving the C
and D scales to solve problems involving propor-
tionality.

Conversions. 30 min., $75; sd, bw; sh, je, a.

The question of converting from one system
of units to another is discussed. The various
uses of equality have not been discussed in any
of the previous films; however, in this film, the
lecturer makes a distinet point of ‘1 ft.#12 in.”
The reason given for such-a=s#stement is that
“1£12” and “ft.#in.” The need for this
particular illustration is not clear and as a con-
venience, portions of this notion are discarded
later. We recommend that the concept and tech-
nique of “cantelling units” be thoroughly dis-
cussed with the intended viewers before this film
is shown.

Squares, Cubes, and Roots. 30 min., $75; sd,
bw; sh, jc, a.

This film contains an adequate presentation
of the technique of use and application of the
A, B, K, Ry, and R scales. Simple illustrations
are used to find the second and third powers and
second and third roots of numbers.

Efficient Operations I. 27 min., $75; sd, bw;
sh, jec, a.

The theme of this film is the use of shortcuts
in using®%e slide rule. The film opens with a dis-
cussion of the importance of the study of loga-
rithms. In this discussion the lecturer refers to a
set of examples on the chalkboard which are
too numerous for easy comprehension and seem
contrived. We feel that this discussion should
have been placed much earlier in the series since
the notion of logarithm is at the foundation of
the theory behind the slide rule. :

Manipulations of the slide rule to solve equa-~
tions in the form ¢ =kx? are demonstrated for
slide rules with A and B or R, and R; scales.
The manipulation necessary for finding the area
of a circle in one setting is shown, as well as a
method of finding the ecircumference of a
circle.

Efficient Operations I11. 32 min., $75; sd, bw;
sh, jc, a.

The content of this film is similar to the pre-
vious one, and the theme, namely that of short
cuts in the use of the slide rule, continues. The
topics considered range from area comparisons
to approximate solutions of a quadratic equa-
tion. The latter topic is restricted to those quad-
ratic equations where one root is known or, at
least, can be estimated. In the summary, the
comment is made that the intent was to obtain
solutions to problems not necessarily directly
adapted to the slide rule.

Raising Numbers to Powers. 31 min., $75; sd,
bw; sh, jc, a.

The film deals with the construction and use
of log log scales discussed to an extended degree.
When factoring an expression such as 8° to ob-
tain 83.8?, the lecturer calls this ‘“factoring the
exponent” which seems to us to be inappropri-
ate. The same phrase is used to .describe the
sentences: 85 = (82:6)2 and 86=2545, In the sum-
mary at the conclusion of the film, the lecturer
uses what we feel is more appropriate terminol-
ogy in dealing with this issue.

Roots and Exponential Equations. 29 min.,
$75; sd, bw; sh, jc, a.

The film begins with a good review of the
previous film and then proceeds with the general
problem of extracting roots by means of the
slide rule. The symbol N¥r is written on the
chalkboard on several occasions and the lecturer
leaves us with the impression that r is the root
of N rather than the index of the root. We are
also left with the feeling that the extraction of
roots is simply a mechanical process since no
mention is made of the theoretical background
involved. The relation between the log log
scales and the natural logarithm of a number
is not made clear in this film although an ex-
ample is given involving this relationship.

Trigonometric Scales. 31 min., $75; sd, bw;
sh, jec, a.

An introduction to the use of the slide rule
in trigonometry is given in this film. The trigo-
nometric scales of the slide rule are constructed
with care and in a manner which is descriptive
of the nature of the sine and cosine functions.
Graphs of the sine function and log sine function
for small arguments are shown and are quite
adequate for the purpose of the film.

Decimal notation for degrees and fractions
thereof are justified on the basis that they are
more useful in engineering and science, and the
scales on the demonstration slide rule are labeled
accordingly. The cofunction relationship be-
tween sine and cosine is described in detail and
is used to justify the use of the S scale to find
values of the cosine function. The T and ST
scales are constructed and discussed.

Little computation is performed in this film
and consequently it moves rather rapidly. This
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film might be used as an introduction to the use
of the slide rule in trigonometry by giving an
explanation of the construction of the trigo-
nometric scales.

Right Triangles. 32 min., $75; sd, bw; sh, je, a

Methods of solving right triangles are dis-
cussed with emphasis on the problem: given two
sides, find the hypotenuse and angles. The sine-
tangent method, which solves the problem in
two settings, and an approximation method, are
derived and demonstrated.

The following quotation, taken directly from
the sound track, serves to illustrate the degree
of detail used in teaching the techaiques of slide
rule manipulation as well as to illustrate other
features of the series. ‘. . . and thirdly we have
the relationship that says the angles of a right
triangle are complementary. To handle these
problems, we often use our sine-tangent tech-
nique that is particularly useful when we know
the values of the two sides of a triangle and are
looking for the hypotenuse. This method we
know to be good for all cases of angle A greater
than 5.75°. If the angle is less than 5.75° we
must use our approximation method. In the
approximation method itself, which is: the
hypotenuse is equal to the long side plus the
short side squared over twice the long side, is
good up to 23°. So we see the sine-tangent
method will work down to 5.75° and the ap-
proximation method up to 23°. These methods,
then, will help us solve fcr right triangles using
our slide rule.”

Right Triangle Applications. 31 min., $75;
sd, bw; sh, je, a.

The film begins with a synopsis of the previ-
ous film and the precise steps for calculation in
the sine-tangent method are listed. A few very
simple problems are worked out using this
method from definitions of the cosine function
as equal to the “adj’”’ over the “hypot” and
sine function as equal to the “opp’ over the
“hypot.” '

Mention is made of types of problems in-
volved in practical applications but no example
from any of the types is worked out in detail.
There are no significant examples of any sort
completed in this film.

Scalars and vectors are used as different
concepts but no clear distinction is made be-
tween them and no definition of vector no-
tation is given.

Oblique Triangles. 30 min., $75; sd, bw; sh,
ic, a.

A chart is used to coordinate the relation-
ships for the general triangle. The sum of the
angles of a triangle is given as 180°; the Sine
and Cosine Laws are stated. Fairly trivial geo-
metric illustrations of each of these are presented
using the slide rule whenever possible for calcu-
lations. We note the absence of any reference to
the Law of Tangents. Some of the problems
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dealt with could be more easily solved with the
slide rule by using the Law of Tangents.

There is an unusual amount of very distract-
ing busywork on the chalkboard at the end of
the film.

Composite Areas. 26 min., $75; sd, bw; sh,
ic, a.

The computation of areas of polygons and
curves by considering them as composite areas
is discussed. The composite area is determined
by summing the areas of triangles, rectangles,
segments, and sectors. The slide rule is used
whenever possible to calculate these partial
areas. The constructions and diagrams used for
dismemberment are very well executed. No
summary of the series is included at the end of
this final film.

ENGINEERING PrROBLEMS. 6 films, 1958. 8d, bw;
sh, je; Bureau of Audio-Visual Instruction,
State Univ. of Iowa, $400.

The use of the series is recommended only in
situations where qualified staff is not available
to teach logarithms or to provide a service course
for the techniques of logarithmic manipulation.
The films could serve only in a situation wherein
the student has no demand for mathematical
theory.

Nothing is done in this series which could not
be done better in a classroom by most regular
faculty members. The lecture method is used
throughout the entire series with the result that
the presentation is very formal and, in turn,
very uninteresting. In the early films the lec-
turer often mumbles while performing computa-
tions at the chalkboard. The lecturer habitually
speaks directly to the chalkboard with no

* microphone provided for such action making it

difficult to hear what is said. Generally, the use
of the chalkboard is good, and the solutions of
examples are presented in step-by-step develop-
ments rather than referring to pre-obtained
results. The camera techniques are also to be
commended although some drawings and
sketches are smaller than desirable and make
for insurmountable problems for the camera-
man. This is especially true of the film on
interpolation of mantissas.

The mathematical concepts presented are
basically correct, although not generally couched
in contemporary terminology. Exceptions to this
are the derivations and definitions of the trigo-
nometric functions which are done very well in
the manner of circular functions. No applica-
tions of logarithms to any mathematics or sci-
ence are presented. There are many instances of
poor phrasing and symbolism. In this category
we include the mix up between number and
numeral, the omission of identifying symbols
such as degree and minute marks and decimals
before mantissas, the consistant substitution of
the word “power” for ‘“exponent,”’ and the
phrasing which leads the viewer to believe in the
exactness of decimal approximations to irra-
tional numbers, e.g., loge =.4343.
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A student may achieve some understanding
of techniques of logarithmic manipulation and
their use in problem solving through the use of
these films. However, we suggest that there will
be serious confusion about certain mathematical
concepts for those students who may be inter-
tested in pursuing careers in mathematics rather
than careers in engineering or technical fields.

Logarithms—Characteristics. 26 min., $75;
sh, jc, a.

We cite the following errors: the logarithm
of one to the base two is denoted as two; the
first power of ten is said to be equal to one. These
errors indicate & need for editing. We also call
attention to the need for consistency in “round-
ing off numbers.”

In this film there is a mix up between ‘‘num-
ber” and “numeral” which is further compli-
cated by the use of such phrases as “behind the
number”’ and ‘“the plus partof a number.” Such
statements as ‘“The power of a number is a
number,” and “In scientific notation, the power
of ten is the characteristic of the number,”
exemplify that “exponent” and “power” are
often interchanged.

The illustrative examples seem contrived;
they consist of the ordered sequence of the
digits 1, 2, 3, 4, 5, 6, and 7 with the decimal
point being placed in various positions, e.g.,
123.4567, 1234.567, 12.34567, etc. A more
random sequence of digits would have been
more effective and illustrative.

Mantissas. 26 min., $75; sd, bw; sh, jc, a.

The film deals with obtaining the mantissas
of logarithms. It gives a good graphic portrayal
of linear interpolation to find an approximation
to a desired mantissa. The non-linearity of the
logarithm function is pointed out as is the partial
correction of interpolation through the use of
larger tables. We feel it is poor pedagogy to omit
symbols for degrees and minutes and decimal
points before mantissas.

Logarithmic Operations I, IT1. 27 min., each,
$75; sh, je, a.

In these films, the algebraic theorems involv-
ing exponents are applied to the definition of
logarithm to arrive at the theorems on loga-
rithmic operations. The illustrative examples,
however, seem to be contrived and have little
meaning to the viewer. The lecturer seems to be
mumbling to the chalkboard a good deal to the
extent that he appears to be talking to himself.

These films follow the mood of the series by
teaching the manipulation of logarithms rather
than theory of logarithms. The objective, there-
fore, seems to be to develop the tool of log-
arithmic manipulation.

In the second film of this pair, log logs are
investigated as well as fractional powers of
fractional numbers. The definitions of the trig-
onometric functions are given by means of co-
ordinate geometry. A table of algebraic signs is

constructed for the four most important trig-
onometric functions and is to be memorized.
This again emphasizes the stress being placed
in this series on manipulative rules and memo-
rized devices.

Trigonometric Applications. 32 min., $75;
sh, jc, a.

Contained in this film are a brief review of
the unit circle definition of the trigonometric
functions, statements of the Law of Sines and
Law of Cosines without proof of either, and ex-
amples of the application of each of these laws.
Finally, definitions of sin, cos, and tan are given
in terms of a right triangle. The lecture method
is continued and the presentation is extremely
formal.

Logarithmic Systems. 21 min., $75; sh, je, a.

The last of this series compares logarithms
of base ten with logarithms of base ¢. Base ¢ is
tied to base ten in such a specific manner that
the viewer may be left with the impression that
logarithms of base e exist only as related to
logarithms of base ten. The derivation of char-
acteristics and mantissas for base e could have
been given just as formally as those for base
ten and without the use of logarithms of base
ten. Unfortunately, the viewer may also have
the impression that the logarithm of ¢ to the
base ten is exactly 0.4343.

EquaTioNs AND GrAPHs oF THE PARABoLA. See
Intermediate Algebra Series.

EquaTioNs witH UNENOWNS IN THE Expo-
NENTS. See Intermediate Algebra Series.

Five FUNDAMENTAL POSTULATES OF ALGEBRA.
See Advanced Algebra Series.

Formuras IN MarHEMATICS. 1960. sd, co, 10
min.; jh; International Film Bureau, Inc.,
$110.

A treatment is given of the distance formula
D =rt with the example of an airplane in flight.
The use of this formula is illustrated.

A perplexing use of language is noticed in this
film. For example, the narrator states that
ninety miles divided by one hour is ninety miles
per hour. This will likely make it seem as if
division is an operation on objects other than
numbers. The viewer is cautioned to use the
same units of measure but is not told why. We
find it difficult to conceive of a place in a mathe-
matics program where this film might be profit-
ably used.

Fractions. See Understanding Numbers.

FunpaMENTAL OPERATIONS. See Understanding
Numbers.

GENERAL METHODS FOR SOLVING QUADRATIC
EquaTtIons. See Intermediate Algebra Series.
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GrapruiNG LiNear EquaTions. 1961, &d, co, bw,
12 min.; jh, sh; Coronet Instructional
Films, bw $60, co $110, guide.

The step-by-step construction of linear
graphs is shown in detail as well as the relations
between the line graph and the points in rec-
tangular coordinates. Slopes and intercepts are
discussed as weli as the effect that changes in
these parameters have on the graph.

In general the film is good and would be use-
ful for senior high school algebra students but the
discussion of slope and intercept will need
extension.

Graruas oF Pgriopic Funcrions. See Trig-
onometry Series.

Graras oF QuabpraTic EQUATIONs. See Ad-
vanced Algebra Series.

HisToricAL INTRODUCTION TO ALGEBRA. See
Advanced Algebra Series.

How MAN LEARNED To CoUNT. See Adventures
in Number and Space.

How’s CuANCES. See Adventuresin Number and
Space.

HyperBoLa, ELLIPSE AND CirRcLE. See Inter-
mediate Algebra Series.

Tae Ipea or NUMBERS: AN INTRODUCTION TO
Numser Systeus. 1960. sd, co, 14 min.; el,
jh; tchrs. of el, jh; International Film
Bureau, Inc., $135.

The development of the number concept is
givon historically, but confusion arises in this
film as to the difference between number and
numeral. Systems of numeration such as the
Babylonian, Mayan, Arabic, and Roman are
discussed as well as calculating aids that have
been used. Place value systems are noted with
some emphasis on base two. The notion that a
number is an idea, not a mark on paper, is not
made clear and is further complicated by terms
like “three place number.”” However, with care-
ful correction of these errors by the teacher
using this film, we recommend its use because
of its technical qualities and its historical
material.

TMAGINARY AND ComrLEX NUMBER. See Inter-
mediate Algebra Series.

INFINITE SERIES AND THE BIiNoMiAL ExpPAN-
s10N. See Intermediate Algebra Series.

Tae INTEGERS. See Junior High Film Series.

INTERMEDIATE ALGEBRA SERIES. 24 films, 1959.
sd, bw; Modern Learning Aids, $3,600; sh,
je; sh.

This series of twenty-four films presents a
selection of topics usually included in a second
course in high school algebra.

Natural Numbers, Integers and Rational
Numbers. 30 min., $150; jh, sh, je; tchrs.
of jh, sh. ’

The instructor considers the natural numbers
and some of their properties. These include
comparison of magnitudes, addition, and multi-
plication along with the allied notions of closure,
identity elements, and the commutative, as-
gociative and distributive laws. Solution of
simple equations is discussed, but the viewer
may be left with the impression that —a is a
negative number. Reciprocals are used to intro-
duce the rational numbers.

Despite a few misleading examples, the film
is usable for algebra classes or for in-service
teachers.

Addition and Subtraction of Rational Num-
bers. 30 min., $150; sh, jec; tchrs. of sh.

After a brief review of the preceding film,
the instructor proceeds to a consideration of the
number line. It is indicated that every rational
number corresponds to a point on the line and
the absolute value of a number is defined to be
the distance between a point corresponding to
the number and the point corresponding to zero.

Although some proofs of theorems involving
additive inverses are given, no mention is made
of the dependence upon the uniqueness of the
additive inverse. The “rules” for addition in
terms of absolute value are poorly presented.
The convention in connection with the equality
of 3—2 and 3+ (—2) is not explained.

The content of this film is not as well pre-
sented as in the first film, nor is it presented in
the spirit of contemporary mathematics.

Multiplication of Rational Numbers. 30 min.,
$150; sh, jc; tchrs. of sh.

Theorems co .cerning multiplication of ra-
tional numbers are given, but the basic theorem
on the uniqueness of the additive inverse is
again slighted. The viewer may also be led to
believe that (—a)(—b)=ab is a theorem con-
cerning the product of two negative numbers
since the symbol —a is not clearly defined.
Division is covered hastily and includes a dis-
cussion of the three signs of a fraction, which is
not the best way of handling this. Algebraic
expressions are considered and the division of
polynomials is discussed in a strictly traditional
fashion.

Developing and Solving Linear Equations.
30 min., $150; sh, jc; tchrs. of sh.

The instructor discusses the solving of linear
equations with restrictions placed on the vari-
able z. Graphs are used to picture the set of
points which satisfy these restrictions. The
instructor is not careful in his use of the lan-
guage when he states “we want z alone” and
¢ 4’ ig in the parentheses and clearly we must
get it out.” The checking of a solution is empha-
sized.
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The film could be used to introduce liner
equations or as a quick review but should not be
used in contemporary mathematics programs.

Solving Simultaneous Linear Equations. 30
min., $150; sh, jc; tchrs. of sh.

After a brief review of the solving of linear
equations in the variable z, conditions involving
two variables are discussed by means of ex-
amples. The domains of the variables are not
specified. The procedure for picturing an ordered
pair of numbers is outlined.

Although a linear function is graphed, no
mention is made of the terms “intercept” or
“slope.” Graphing is illustrated as an approxi-
mate method of finding a simultaneous solution
of two linear conditions by inspecting the pic-
tures of the graphs. A pair of simultaneous
equations is solved algebraically. Nothing is
said of the concept of equivalent equations. The
solving of simultaneous conditions involving
inequalities is not considered.

More Solutions of Linear Equations. 30
min., $150; sh, jc; tehrs. of sh.

This film deals with the problem of solving
verbal problems. Four such problems are worked
as examples. These involve a problem on digits,
mixtures, and uniform velocities. It is clearly
indicated that the solution to the equation is a
number while the solution to the problem may
be a number of units. The viewer is assured that
there is no set procedure in the solution of
verbal problems. :

This film is very good and could make a
valuable contribution to any course in inter-
mediate algebra.

Special Products and Factoring. 30 min., $150;
sh, je; tchrs. of sh.

Although the instructor uses the word
#factor”’ in explaining the process of “factoring,”
the distributive law is used as related to factor-
ing a common factor and to the multiplication of
binomials. Little is said of the basic use of
factoring, that is, to write equivalent expres-
sions in a different form, and too much is said
about the time worn gimmicks for factoring the
usual types of quadraties.

In discussing a®—b3, the instructor relies too
heavily upon the experience of the student to
suggest the facter a—b. More needs to be said
about the reasons why a?--b? is not factorable.
The instructor evidently assumes that a, b, ¢,
and d are integers only when finding, by trial
and error, factors of the form (az-b) and (cx
+4-d). The domain of these variables should be
extended to the rational numbers, real numbers,
and possibly even the complex numbers for
intermediate algebra students. Another:error is
indicated by the statement that v/a® =4, which
should be restricted to non-negative numbers.

This film certainly needs much supplementa-
tion if it is to be used at any level.

Quadratic Equations. 30 min., $150; sh, jc;
tehrs. of sh.

The discussion of az?+bx+c=0 as a quad-
ratic equation does not restrict @ to non-zero
numbers. Use is made of the statement, “If
a-b=0, then a=0 or b=0,” but should be
clearly stated as a bi-conditional statement. The
method of completing the square iz handled well
by using the statement, “z?=y if and only if
=+ \/y.rr

However, the method of completing the
square is uot shown to be a method of factoring
over the real numbers and inequalities are not
developed parallel to this work with equalities.
More work will be needed with the method of
completing the square in order to make the
derivation of the quadratic formula meaningful
to most students.

The film could be used to summarize the
factoring and completing the square methods of
solving quadratic equations if the curriculum
design is along traditional lines.

Algebraic and Complex Fractions. 30 min.,
$150; sh, jc; tchrs. of sh.

Without proof the instructor states that the
reciprocal of a product is the product of the
reciprocals and assumes the uniqueness of the
multiplicative inverse. No complete proof of

b #0, d #0, is given and the instructor ‘‘obtains
the value” of

a..lﬁlc-ln

instead of obtaining an equivalent expression.
Use is made of the commutative and distribu-
tive laws but no mention is made of them when
they are used. Cancelling is described in terms of
dividing the numerator and denominator by the
same number without mentioning restrictions.
The summary is a restatement of traditional
rules of manipulation which serves to indicate
that the function of the film will be as a lesson
in symbol manipulation.

Because the basic axioms developed in the
first film of the series are not emphasized here,
the film may be of questionable value to algebra
teachers who are stressing fthe structure of
algebra. g

Solving Equations tn Fractional Form. 30
min., $150; sh, jc; tchrs. of sh.

A fractional equation is defined as one in
which the unknown appears in a denominator.
It is noted that it immediately follows that
z %0 since division by zero is not defined. Ex-
amples are used to illustrate technique which is
set down by three rules:
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1. Multiply by theleastcommon denominator.
2. Solve the resulting equation.
3. Check the solutions,

The use of such a list of steps is questionable
since it leaves no room for originality and, in
fact, the instructor does not always conform to
these steps himself.

In general, the instructor does a good job of
handling traditional material.

Algebra of Points and Lines. 30 min., $150;
gh, je; tchrs. of sh.

The instructor uses the background of the
development in the fifth film of this series,
“Solving Simultaneous Linear Equations,”
and begins by asking what the equations of
parallel lines have in common. Slope and y-
intercept are then discussed. Slope is defined in
terms of increments and not defined for lines
parallel to the y-axis. It is not made clear
whether the term y-intercept refers to the num-
ber b or the point (0,b). The equaiion of a line
through two points is discussed in the conclusion
of the film.

The instructor does a good job of presenting
this material but the film covers too much
ground to be used for any purpose other than
review.

Variation: A Lesson in Reading. 30 min.,
$150; sh, jc; tchrs. of sh.

The film emphasizes the many verbal expres-
sions we have for the functions defined by equa-
tions of the form y=Fkz and y==% Of particular
interest is a definition of inverse variation in
terms of direct variation, namely: y varies in-
versely as z if and only if y varies directly as the
reciprocal of x.

Examples from geometry and physics are
used to illustrate variation problems. Quadratic

and cubic variation are discussed as well as
linear variation and joint variation.

This film could be used not only in algebra
and physical science classes but also in teacher
training classes as an example of sound mathe-
matics teaching.

Radicals and the Real Number System. 30
min., $150; sh, jc; tchrs. of sh.

After a brief review of earlier comments on
irrationa] numbers, a short historical sketch of
the discovery of non-rational numbers, and a
sketch of +/2 as the diagonal of a square of unit
side, the instructor extends the numeration
system by defining a number for which he has a
need and which is not in the present system. This
was well done and included & brief comment on
imaginary numbers.

Addition of radicals is presented and associ-
ated with the distributive law and the rules for
multiplying and dividing square roots. The
instructor emphasizes an often overlooked no-
tion that +/3 has only a decimal approximation
and no decimal equivalent.

Many additions will need to be made by the
teacher who uses this film. The fact that

3= —g, if £ <0, should be stressed, as well as
the fact that the operations with real numbers
are the means to write expressions in other
equivalent forms.

Use of this film is suggested for viewing as &
summary of material which has already been
discussed in class.

Roots of Higher Order. 30 min., $150; sh, jc;
tchrs. of sh.

A recursive definition of radicals is given
and product and quotient of radicals is ex-
tended to orders higher than two. Imaginary
numbers are introduced as well as complex
numbers and their notation.

The film is quite carefully done and could be
used by students as a summary for material
covered in class.

Imaginary and Complex Numbers. 30 min.,
$150; sh, jc; tchrs. of sh.

Complex numbers are defined as numbers of
the form a-bi where a and b are real numbers
and 2= —1. Addition and multiplication of
complex numbers are illustrated.

All the mechanical aspects of complex num-
bers are included in this film including a brief
discussion of complex numbers plotted on a
plane but the really important ideas are missing.
Nothing is said about the ultimate objective
which is to construct a new system of numbers
which will contain the real numbers as a subset,
which wiil have all the properties of the real
numbers, and which will contain solutions for
equations which have no solution in the real
numbers. The construction of the system of com-
plex numbers as ordered pairs of real numbers is
not hinted at here.

It is hard to see how this film will be of any
help in clarifying the introduction to complex
numbers.

Working with Positive and Negative Expo-
nents. 30 min., $150; sh, jc; tchrs. of sh.

Integral exponents are defined together with
the rules of operation for positive integral expo-
nents. The discussion brings out the rationale
behind the definition of negative and zero expo-
nents. A discussion of scientific notation brings
out the subject of significant digits.

The film could be used as an introduction to
or review of integral exponents.

Using Fractional and Rational Exponents. 28
min., $150; sh, jc; tchrs. of sh.

Definitions of fractional exponents are given
and shown to have properties consistent with
the properties of integral exponents. Some fur-
ther discussion of the restrictions on the base
will be called for from the teacher. Examples
show the use of fractional exponents in treating
roots of various orders.
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General Methods for Solving Quadratic Equa-~
tions. 30 min., $150; sh, jc; tchrs. of sh.

A quadratic equation in the variable z is
defined as a condition which can be put in the
form ax?+bzr+c=0 where a %0 and a, b, and ¢
are real numbers. It is pointed out that the
parameters could be complex numbers but that
the discussion here will be limited to reals.

The methods of factoring<and completing
the square are reviewed and the quadratic
formula is derived. Relationships between the
parameters and the sum and prociuct of roots
are given, and the use of the discriminent to
determine the character of the roots is outlined.

In general this film is well worth showing to
intermediate algebra students.

Equations and Graphs of the Parabola. 30
min., $150; sh, jc; tchrs of sh.

Graphs of equations of the form y=az?+bx
+c¢ and close relatives are considered in this
film. The restriction a0 is not mentioned.
Pictures of the various graphs are compared to
indicate the effects of changes in parameters.
Axis of symmetry is discussed in relation to the
process of completing the square, and the term
vertex is defined.

The film’s best use will be in reviewing the
parabola.

Hyperbola, Ellipse and Circle. 30 min., $150;
sh, je; tchrs. of sh.

A brief review of the parabola is presented
but the necessary restriction a0 is omitted.
The point is made that one draws a picture of a
graph and does not draw the graph itself. Two
general types of hyperbolas are indicated,
namely: zy=c, and az?+by?=c (ab <0). Dis-
continuity is not mentioned and asymptotes
need fuller explanation. Ellipses are discussed
and the circle is seen as a special case of the
ellipse. Solutions of simultaneous linear and
quadratic equations are given by graphing and
algebraic techniques. Finally, solutions of two
simultaneous quadratic equations are considered
and the methods of solution are outlined.

Although this film gives a good presentation
of these topics, the competent teacher could do
as well in the regular classroom.

Progressions, Sequences and Series. 30 min.,
$150; sh, jc; tchrs. of sh.

Arithmetic and geometric progressions are
discussed including the four elements of an
arithmetic progression, namely: first term,
common difference, number of terms, and last
term; similarly, the elements of a geometric
progression are discussed. A series is defined as
the sum of the terms in a progression. Analytic
methods for determining the sum of terms of
arithmetic and geometric progressions are dis-
cussed fully.

The words ‘“progression” and ‘‘series’” are
confused on occasion. Grouping symbols are
badly needed in the formula for the sum of a

geometric progression. The development is much
too rapid for an introduction to these ideas. Not
enough examples are given for either progres-
sions or series.

Infinite Series and the Binom’al Expansion.
29 min., $150; sh, jc; tchrs. of sh.

Using a geometric series in which the number
of terms added increases without bound, it is
demonstrated that if the common ratio of a
geometric series falls in the range from —1 to 1
and if the number of terms increases without
bound, then the sum, S.=a/(1—r). A discus-
sion of limits and repeating decimals follows.
The film concludes with a statement concerning
the binomial expansion and the application of
the binomial expansion to ar example.

The instructor fails to define terms used in
the discussion. Series has never been carefully
defined here. The development of the rationale
behind the coefficients in the binomial expansion
is entirely omitted. We fear that the viewer may
gain the impression that getting a rule or formula
is the heart of mathematics. The nature of
limits is poorly handled and no men‘ion is made
of =0 in the sum of an infinite geometric
series.

Equations with Unknowns in the Exponents.
30 min., $150; sh, jc; tchrs of sh.

A general exponential equation is given,
namely: b*=aq. It is mentioned that this equa-
tion has « solution if b is positive and not equal
to one and if a is positive. It is shown that
b*=q is equivalent to logwa =z. Basic ideas of
logarithms are then discussed along with the
use of scientific notation. Definitions of man-
tissa and characteristics are given.

In the equation b*=ga, no mention is made as
to why such an = exists and none as to why
b==bv implies z=y. The property that log
(ac) =log a-+log ¢ is given without any explana-
tion. The treatment of scientific notation is
poorly done.

Using Logarithms to Solve Equations. 30 min.,
$150; sh, jc; tchrs. of sh.

Beginning with 52=3, the fact that x=Ilog
3/log 5 is derived. This indicates a need for
tables of approximations. These tables could be
used to find approximate values for products,
quotients, and roots of numbers.

The lecturer gives us the impression that
each rational number can be written with a
finite number of decimal places. ‘“Distance”
between numbers is mentioned, and the distinc-
tion between ratio and proportion is not made
clear. It is pointed out that solutions with
logarithms are approximations, and the empha-
sis on checking the reasonableness of solutions is
good.

INTERPOLATION IN TRIGoNoMETRIC TABLES.
See Trigonometry Series.
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INTRODUCTION To FAcroriNg. See Advanced
Algebra Series.

INTRODUCTION To GRAPHS oF EQUATIONS. See
Advanced Algebra Series.

INTRODUCTION To LoGARITHMS. See Trigonom-
etry Series.

INTRODUCTION To QUaDRATIC EQUATIONS. See
Advanced Algebra Series.

INTRODUCTION TO SIMULTANEOUS EQUATIONS.
See Advanced Algebra Series.

IRRATIONAL NuUMBERS. See McGraw-Hill
Teacher Education Series.

Junior Hice FiLm SERIBs. 6 films, 1962. sd,
bw; jh, tchrs. of jh; Educational Research
Council of Greater Cleveland, $720; guide.

Numeration Systems. 30 min.,.$720 the set;
jh; tchrs. of el, jh; guide.

The film begins with remarks on the posi-
tional nature of our numeration system based on
ten. Supposing that seven had been originally
chosen as a base instead of ten, the lecturer
does some counting in base seven and goes on to
discuss the role of seven and its powers, addition
and multiplication in base seven, and carries out
some manipulations. Binary numeration is dis-
cussed, including tables of addition and multi-
plication. The film closes with some implications
resulting from choice of greater and lesser
bases.

The mathematics in this film is without fault,
and the presentation has been done beautifully
in 2 concise and informative manner. The film
will find use in junior high school classes and
would be valuable for teacher training and in-
service work.

The Whole Numbers. 30 min., $720 the set;
jh, sh; tehrs. of el, jh, sh; guide.

The film deals mainly with the whole num-
bers and emphasizes the difference between
numbers and the symbols which represent them.
Commutative, associative, and distributive
principles, as well as properties of 0 and 1 are
discussed. The instructor illustrates the fact
that by applying these principles we can cut
down on the number of facts that need to be
learned.

Elementary teachers might profit from the
discussion of computation which shows how the
steps involved in the process can be justified.
The film concludes with some comments on
the association of arithmetic and geometry
through the number line.

The film could be used as an introduction to
structure for junior and senior high school
students and as a teacher training film.

ST T B R w g bk e e

The Intégers. 30 min., $720 the set; jh, sh;
tehrs. of jh. sh; guide.

Basically, the film demonstrates a fairly
rigorous introduction to negative integers. The
need for signed numbers is suggested by the
notion of a thermometer with degrees above and
below zero. The existence of negative numbers
is postulated and it is assumed that the unique
solution of a4+b=0 is b=(—a). After a brief
digression to define absolute value, operations
with the integers are illustrated. Proofs are
based on fundamental postulates.

The pace of this film makes it more suitable
for teacher training than for viewing by students.

The Rational Numbers. 30 min., $720 the set;
jh; tehrs. of el, jh, sh; guide.

It is seen that measurement necessitates
numkers in addition to the set of integers. The
number called “a divided by b is defined as the
number such that (a--b)-b=a for all integers a
and b except b=0. This set of numbers is then
named the set of rational numbers and it is seen
that the integers form a subset of the rational
numbers. Using the basic laws of integers, the
properties of rational numbers are derived.

Although the development does not follow a
completely rigorous design, the subject is
treated quite well and may, in fact, give many
teachers a clearer picture of the rational number
system. The students will probably find the film
most satisfactory as a review.

Dec. i Numerals. 30 min., $720 the set; jh,

sh, tchrs. of el, jh, sh; guide.

The positional numeration, base ten, is
extended to include not only numerals for whole
numbers but also all rational numbers. This is
accomplished through the process of division.
Repeating and non-repeating decimals are noted
making the point that if § is a rational number,
then & has a decimal numeral which either ter-
minates or is periodic. The converse of the
preceding conditional is also indicated as being
true. The teacher’s film guide will be of great
help in using this film.

We heartily recommend the film for viewing
by all teachers of elementary and gsecondary
mathematics. Although it proceeds at a rather
rapid rate, it would be suitable for pupil viewing
where the student has been well prepared and
especially suited for review. The film provided
the reviewers had poor sound and synchroniza-~
tion in spots.

Language of Algebra. 30 min., $720 the set;

jh, sh; tchrs. of jh, sh; guide.

Teachers who feel that the modern approach
to algebra is not for them should view this film.
The lecturer gives a concise introduction to
algebra which is very illuminating. Open
sentences, set selector, and solution set are dis-
cussed as well as variables and domain.

The film will be excellent not only for
teachers, but also as an introduction to algebra
for beginning students.
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LANGUAGE oF ALGEBRA. 1960. sd, co, 16 min.,
jh, sh; International Film Bureau, $165.

Beginning with a display of symbols like
“gstop” and ‘“‘go’’ lights, highway markers, and
other signs which give directions, this film goes
on to identify symbols for things, names of
people and places. The development of some
symbols is reviewed, such as word and letter
symbols. In spite of this introduction, the use of
symbols in the remainder of the film is very con-
fusing particularly with respect to constants,
variables and numerals.

The language used in this film is mathemati-
cally poor. No mention is made of basic alge-
braic principles which results in statements like
“2 is removed from the parenthesis.’”” The re-
viewers feel that the film is not usable in algebra
courses.

LANGUAGE oF ALGEBRA. See Junior High Film
Series.

LANGUAGE OF Grarms. 1948, sd, bw, 13 min.,
jh; Coronet Instructional Films, $62.50, co
$150.

Practical uses of bar graphs, line graphs,
circle graphs, and graphs of a function are illus-
trated. The value of a graph in telling a story
with pictures is shown as well as the algebraic
relations between = and y values on a straight
line. Insight into some business principles is also
offered.

This film will be of particular use to students
studying some simple applications of mathe-
matics.

T'aE LANGUAGE OF MATHEMATICS. 1950. 8d, bw,
11 min., jh; Coronet Instructional Films,
$60, co $120.

A fire drill is used as a starting point in a
simple discu .on of the use of precise informa-
tion in mathematics to solve problems. The
language of mathematics is shown to be a way
of communicating ideas as in blueprints, gra,...s,
and other forms.

The issues considered in the film suggest
that a more appropriate title would have men-
tioned something about precise measurements.

Larce ANGLES ANpD COORDINATE AXEs. See
Trigonometry Series.

Law or Cosings. See Trigonometry Series.
LAw oF SINEs. See Trigonometry Series.
Law oF TangeENnTs. See Trigonometry Series.

Linear Equations in ONE UnkNowN. See
Advanced Algebra Series.

Logaritamic OrERATIONS, I, II, See Engineer-
ing Problemsd.

LocariTaMIc SysTEMS. See Engineering Prob-
lems.

LoGARITHMS AND THE SLIDE RULE. 8 films,
1961. sd, bw; sh, je, a; International Film
Bureau, Inc., $795.

This series of eight films might be usable in
technical courses in which skills alone are de-
sired. Certainly no one should use this series who
wants to derive mathematical understanding of
logarithms and the slide rule. The four films on
slide rule are more satisfying than the four on
logarithms probably because we view the slide
rule as more of an instrument than a mathe-
matical idea. The most serious criticism of the
series is the disregard for standard notation and
the reliance on rote learning of rules that are
often very arbitrarily conceived.

Logarithms and the Slide Rule—Lesson I. 30
min., $125; sh, je, a.

The series opens with a general discussion of
the need for speed in computation. The slide
rule and digital computer are mentioned as
important advances in the area of computation,
and a iypical slide rule is displayed as well as
several other types including the spiral type
with a 500-foot scale.

After a problem in regular multiplication,
the rules of exponents are reviewed. The pos-
sibility ¢f expressing numbers as powers of ten
and multiplying by adding exponents is shown
by example. It is not mentioned that 16.53 is
only approximately equal to 1021837, A defini-
tion of logarithm is given but the base b is not
restricted as it needs to be for this discussion.
For example, it should be pointed out that one
is not a logical choice for b. Using the rules for
exponents, the parallel rules for logarithms are
presented. The traditional procedure for deter-
mining the characteristic by noting the powers of
ten which bracket the given numeral is given
but the rule “one less than the number of digits
to the left of the decimal point”’ is entirely in-
adequate. A number ‘“partly positive and partly
negative’” is invoked to explain the method for
determining the characteristic of numbers less
than one. Furthermore, it is not mentioned that
these numbers are restricted to the non-negative
numbers.

Logarithms and the Slide Rule—Lesson II.
30 min., $125; sh, jc, a.

Following an extensive review of Lesson I,
several examples are worked to practice using
the rule for numbers greater than one. The
reason given that numbers 68.0 and 680 have
the same mantissa is that these numbers are
“the same distance along the way’’ between 10
and 100, 100 and 1000, respectively.

The method of adding and subtracting 10 to
a logarithm for convenience of operation is pre-
sented. Phrases such as ‘0.0068 is penned in be-
tween 0.01 and 0.001” and “a number farther
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in the hole” are used in the development which
indicate the lack of precision in language and
the general intuitive aspect of the series.

Logarithms and Slide Rule—Lesson III. 30
min., $125; sh, jc, a.

An extensive review of the first two lessons is
followed by a simplification of

3o/ (6.278) (2.06)
(92.563) (0.00806)

using a logarithmic scheme to ease computation.
No justification is given in many cases with
complete dependence on rules.

An elementary methed for devising entries
in the logarithm table is presented. It is shown
that logarithms are in arithmetic progression
while the corresponding powers of ten are in
geometric progression. The general development
here is good although until this point the in-
structor has not mentioned that he deals with
approximations.

Logarithms and the Slide Ruie—Lesson IV,
30 min., $125; sh, jc, a.

A lengthy review of the method for comput-
ing any power of ten could be considerably
shortened by noting that, for example, 10%§
=/ 10F.

The extraction of the square root of 100,000
by means of the algorism is done in detail but
does not seem to be of interest here and could be
deleted.

A logarithm table is examined carefully and
the entries explained. An example is shown us-
ing the table but the definition of significant
digits is inadequate. An example of the method
of finding an anti-logarithm is carried out, but
the rule for interpolation is simply given without
any justification. In fact, interpolation is treated
much too briefly and the student who knows
little about the technique will find the film of no
help.

Logarithms and the Slide Rule—Lesson V. 30
min., $125; sh, jc, a. :

The discussion of the slide rule begins in this
film. The C and D scales are identified and the
relative positions of the numerals on these scales
are explained in terms of logarithms. In this
explanation the lecturer says “the little 9 is less
than the large 2"’ which leaves something to be
desired. Several examples of multiplication are
shown including some in which the problem of
“going off the scale” appears.

Logarithms and the Slide Rule—Lesson VI.
30 min., $125; sh, jc, a.

After a review of the previous film, the C
and D scales are used in division and the “off the
scale’” problem is handled for division. The
principle of proportion in the use of the slide
rule is discussed in some detail and several prob-
lems involving proportions are solved. Examples

of problems in which both multiplication and
division are involved are carried out with good
technique. The rules for multiple gettings on the
glide rule are discussed.

Logarithms and the Slide Rule—Lesson VII.
30 min., $125; sh, jc, a.

The CI scale is discussed and several prob-
lems involving this scale are solved. The use of
the slide rule in reciprocals, multiplication, and
division is demonstrated. The CI scale is empha-
sized because it shortens calculation time by
reducing the number of set*ings required.

The A and B scales are explained and used
for squaring and extracting square roots.

Logarithms and the Slide Rule—Lesson VIII.
30 min., $125; sh, je, a. '

The A scale, settings, square root, and result
reading are reviewed. The rule for locating the
decimal point is given but couid be handled
snore easily through the use of scientific nota-
tion. The decimal point is “moved around to
the left” indicating noor use of language. The K
scale and cube roots ure discussed but the method
for locating the decimal point is not good.

LocARITHMS—CHARACTERISTICS. See Engineer-
ing Problems.

McGraw-HiLL TEACHER EDUCATION SERIES. 5
films, 1959. sd, bw; jh, sh; tchrs. of el, jh, sh;
guide; McGraw-Hill Text Films, $660.

Sentences and Solution Sets. 21 min., $140;
jh, sh; tchrs. of el, jh, sh; guide.

The instructor points out that the concept of
set plays a very basic role in our daily lives. He
claims that the major advantages accruing from
the use of sets in mathematics are clarification,
simplification, and unification. By means of a
somewhat artificial classroom scene, the idea of
an open sentence is presented. The terms *‘seb
selector,” “subset,” “universal set,” and *‘solu-
tion set” are illustrated. A variable is defined
precisely and this definition is contiasted with
the various vague descriptions given in many
traditional algebra classes.

We recommend this film very highly for
viewing by all teachers and prospective teachers
of elementary and secondary mathematics.

Concept of a Function. 16 min., $105; jh, sh,
je, sc; tehrs. of jh, sh; guide.

In this film the lecturer develops the notion
of function from the set concept. Sentences in
two variables are discussed including the graphs
and solution sets of such sentences. This back-
ground serves as preparation for the definition
of function which is defined as a set of ordered
pairs such that no first element can appear with
different second elements. Domain, range, and
rule of a function are defined with emphasis on
the point that a function is not a formula but
rather a set of ordered pairs. The expression
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F(z) is defined as the value of the function at z
or the value of y. We feel it would be more con-
sistent with the definition of function to define
it as the second element of the ordered pair
whose first element is x.

The lecturer succeeds in presenting sound
mathematics and uses his time efficiently. Al-
though the films are designed for teacher train-
ing we feel this film could be used with high
school students who have some background in
conteinporary mathematics.

Irrational Numbers. 23 min., $150; jh, sh, jc,
sc; tehrs. of jh, sh; guide.

¢An irrational number is the square root of a
number that we can’t take the square root of.”
The lecturer submits that a statement such as
this would more often than not summarize an
algebra student’s knowledge of irrational num-
bers. He then demonstrates, with the help of
classroom scenes, that the road to far greater
understanding is not a rocky one and is certainly
worth traveling,

The film emphasizes the importance of the
study of the decimal expansions of numbers. A
rational number is defined as a number which is
the quotient of two integers. Also discussed are
properties of order and denseness in the set of
real numbers.

Except for a puzzling statement about the
period of a repeating decimal, namely: “We say
the decimal has period 2 because it starts to
repeat after the second place,” this film is well
done. It should prove quite valuable if put to use
in preservice and in-service teacher training.

Number Fields. 17 min., $115; sh, je, sc;
tehrs. of jh, sh; guide.

The film opens with a dialogue between a
student and his teacher concerning rationalizing
the denominator of (12—74/3)/(3—24/3). The
scene then shifts to the regular lecturer who
indicates that the teacher would have been
better prepared to give answers to such ques-
tions as “Why do we rationalize the denomi-
nator? Will we always get an answer of the form
a-+by/3?” if she had been well versed in the
concept of number fields.’

Then follows a quick review of the concept
of set and properties of an operation. A defini-
tion of closure is carefully given. A field is defined
and the laws concerning its operations are listed.

The set of integers is used as an example of a
set which is not a field. The rational numbers,
real numbers, and complex numbers are shown
to be fields before returning to the numbers
whose numerals are of the form a 4+b+4/3 and this
get is shown to be a field also.

The presentation is well done but we feel that
number fields is too large a topic for a film of
this length. We also feel that better motivation
could have been provided for the topic although
this does not detract from its effectiveness. The
film can be used for in-service education or
teacher training if the instructor is careful to
give further examples including finite fields.

Patterns in Mathematics. 14 min.; $90; jh, sh;
tchrs. of jh, sh; guide.

The opening scene of the film shows the in-
instructor in a discussion of the essential nature
of mathematical problems. He notes that while
the mathematician looks for patterns, the high
school student often looks at mathematics as a
bag of tricks. High school mathematics should
be a study of patterns, says the instructor, since
this is the essence of the “new mathematics.”
Some of the patterns discussed are the distribu-
tive law, commutative law for multiplication,
graphs of straight lines, and the solving of si-
multaneous linear equations. The point is made
that patterns develop ability to generalize,
understand relationships, improve insight,
power, and readiness for further study.

This would be an excellent film for teacher-
education classes or seminars. The reviewers
are especially pleased by the accuracy of the
mathematics in this film and series.

ManTIssAs. See Engineering Problems.

THE MEANING OF Pr. 1949. sd, bw, 12 min., jh,
sh; Coronet Instructional Films, $60, co.
$120.

The terminology for circles is introduced and
illustrated with several objects. It is shown that
it takes a “little more” than three diameters to
give the circumference of a circle and it is seen
that as diameter increases, the circumference
increases. Further comparison shows that the
ratio of circumference to diameter is slightly
more than 3.14. A brief history of several nota-
tions for expressing = is given. It is emphasized
that the value 3% is chosen for convenience only.

MoRre SorutioNs oF LINEAR EQUATIONS. See
Intermediate Algebra Series,

MULTIPLICATION AND DivisioN. See Engineer-
ing Computation Skills: The Slide Rule.

MULTIPLICATION OF RATIONAL NUMBERS. See
Intermediate Algebra Series.

MysTERIOUS X. See Adventures in Number and
Space.

NaTURE oF LocariTEMs. See Advanced Algebra
Series.

New Numsers. See Understanding Numbers.

NumBeR FieLps. See MecGraw-Hill Teacher
Education Series.

Tue NuMBER SYSTEM AND ITS STRUCTURE.
1961. sd, co, bw, 11 min,; jh, sh; Coronet
Instructional Films, bw, $60, co. $110,
guide.

After a brief history of number which in-
cludes the notion of place holder, concepts con-
cerning the number system are discussed. The

v
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property of closure, the commutative and asso-
ciative laws, and the distributive law are in-
cluded in this discussion.

For a review of our number system’s struc-
ture and fundamental principles, this film should
be excellent. However, if used as an introduc-
tion, too much will be covered to allow good
understanding, There are some errors which will
need correcting by the teacher.

NuMERATION SysTeMms. See Junior High Film
Series.

OBLIQUE TrianGLEs. See Engineering Com-
putation Skills: The Slide Rule.

PATTERNS IN MATHEMATICS. See MecGraw-Hill
Teacher Education Series.

PERMUTATIONS AND COMBINATIONS. See Ad-
vanced Algebra Series.

PracTical Use oF LocarrTHMS. See Trigonome-
try Series.

PROGRESSIONS, SEQUENCES, AND SERIES. See In-
termediate Algebra Series.

ProroRTIONS AT WORK. 1961. ad, co, bw, 12
min., jh, sh; International Film DBureau,
Inc. $120.

A biologist at work using proportions serves
as motivation for this film. A vague definition
of ratio is given and some properties of propor-
tions are dealt with briefly. The rule that the
product of means equals product of extremes is
derived but done too quickly for most students
to follow easily. Units of linear and area meas-
ure are included but their use in proportions
follows the pattern used in many physics courses.

The film does not seem to cover too much
material and, if used, could promote consider-
able clagsroom discussion in general mathema-
tics or algebra classes.

PYTHAGOREAN THEOREM: THE CosiNE For-
MULA. 1960. sd, bw, 5} min., sh; Coronet
Instructional Films, $30.

This film uses animation to illustrate the
derivation of the law of cosines. The Pythag-
orean theorem is then derived as a special case
of this law by algebraic methods and by geo-
metric animation.

The pace of the film may be too fast for
average students and the development may be
too rigorous for most students to follow if used
as an introduction.

PYTHAGOREAN THEOREM: PROOF BY AREA.

1960. sd, bw, 5% min.; jh, sh; Coronet In-
structional Films, $30.

The Pythagorean theorem is stated and a
special case of an isosceles right triangle is con-
sidered. The equality of the areas of parallelo-
grams with equal bases and altitudes is con-

[P USVINPIRES TSR S

sidered and the notion used to justify the
Pythagorean theorem for any right triangle.
Examples are illustrated.

The animated demonstrations given are good
but of course, do not constitute proofs. The pace
of the film is probably too fast for the average
eighth grader who sees these ideas for the first
time but might be adequate for reviewing.

QuapraTic EquaTions. See Intermediate Al-
gebra Series.

Quicker THaN You THINEK. See Adventures in
Number and Space.

RADICALS AND THE REAL NUMBER SYSTEM. See
Intermediate Algebra Series.

Rarsing NumBERs To PowEeRs. See Engineering
Computation Skills: The Slide Rule.

RaTro ProBrEMs. See Engineering Computa-
tion Skills: The Slide Rule.

Tug RarioNalL NumBers. See Junior High Film
Series.

RicuT TRIANGLE APPLICATIONS. See Engineer-
ing Computation Skills: The Slide Rule.

RicuT TrIaNGLES. See Engineering Computa-
tion Skills: The Slide Rule.

RicHT TRIANGLES AND TRIGONOMETRIC RaTIO.
See Trigonometry Series.

RooTs AND ExPONENTIAL EQUATIONS. See En-
gineering Computation Skills: The Slide
Rule.

Roots oF HigHER ORDER.. See Intermediate Al-
gebra Series.

SENTENCES AND SOLUTION SETS. See McGraw-
Hill Teacher Education Series.

SgorT CuTs. See Understanding Numbers.

SigNn LanNguacE. See Adventures in Number
and Space.

Srvmar TRIANGLES IN Use. 1961. sd, co., 11
min., jh, sh; International Film Bureau,
Inc., $120.

Two examples of the use of similar triangles
and their proportional sides are given to illus-
trate practical applications. Trigonometry is
coupled with similar triangles and some of the
special tools of occupations using these ideas are
shown.

It is probably the case that most teachers
could stage situations that would be at least as
effective as those in the film. The emphasis on
trigonometry as a tool of the occupations illus-
trated is probably misplaced in the light of
present use of trigonometric functions.
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SimpLIFYING CoMpLEX FraAcTIONS. See Ad-
vanced Algebra Series.

SripE RuLE. See Special Lessons in Physics.

SoLips IN TEE WORLD ArouND Us. See Dis-
covering Solids.

SoLuTION OF EQUATIONS BEYOND THE SECOND
DEGREE. See advanced Algebra Series.

SoLviNGg EquaTions IN FracTioNAL ForM. See
Intermediate Algebra Series.

SoLving ProBrLEMS WITH THE QUADRATIC
ForMULA. See Advanced Algebra Series.

SOLVING SIMULTANEOUS LINEAR EQUATIONS.
See Intermediate Algebra Series.

SpeciaL Lussons IN Prysics. 3 films, 1957. sd,
bw, sh; tchrs. of sh; Encyciopedia Britan-
nica Films, Inc., bw, $495 co $990; guide.

Elements of Trigonometry. 30 min., sh; tchrs.
of sh; bw $165, co. $330.

Ideas on significant figures are discussed at
the outset, but unless the viewer is already famil-
iar with these notions, we feel he will have some
difficulty in following the discussion. A large
demonstration slide rule is effectively used to
examine the parts and scales of the slide rule.
Multiplication and division are carefully dis-
cussed as well as the computation of squares
and square roots.

The closeups of the slide rule are better than
would be possible in the usual classroom dem-
onstration. No attempt is given to show the
rationale behind the processes. We feel that the
film might be useful as an introduction to the
slide rule but that the pace of presentation is too
fast.

Algebra and Powers of Ten. 30 min, sh,
tchrs. of sh; bw $165, co. $330.

Equations as pictures of experiments are con-
sidered. A balance is used to demonstrate some
transformations of special equations. A term of
the type L +1 is simplified. Some common errors
that occur in the treatment of literal equations
are pointed out. A model is shown in an attempt
to illustrate the square of a binomial. A defini-
tion of exponent and several cxamples with base
ten are discussed. Scientific notation is discussed
as a practical way of writing very great or very
little numbers.

The use of a balance in transforming equa-~
tions is not very good. The treatment of frac-
tional equations involves much symbol juggling.
The model used to illustrate the square of a
binomial needs dark and light shading of its
parts since it is difficult to see. Scientific nota-
tion is very hastily introduced and, although
examples are cited, no definition of negative
exponents is given. The definition given for ex-
ponent is very poor. We do not recommend that
this film be used in secondary schools.

v

Stide Rule. 30 min., sh; tchrs. of sh; bw
$165, co. $330.

An angle is defined and a specific angle is
constructed. Using the right triangle, definitions
of sine, cosine and tangent are given. If ¢ and b
are the acute angles of a right triangle then it is
seen that a-4b=90° and sin a=cos b. An ex-
periment is performed to examine the ratio of
sides to fixed hypotenuse of 50 centimeters.
Projections of line segments on a given line are
discussed.

The visual aids used in the film are very
good. The material presented will be incomplete
for those who have never studied trigonometry
and is, in general, hastily presented. After the
experiment described above, no mention is
made of the purpose of a table of such ratios.
The film would do a fair job of reviewing sine,
cosine, and tangent.

SpeciaL Propucts AND FacroriNG. See Inter-
mediate Algebra Series.

Squares, CusEes, AND Roors. See Engineering
Computation Skills: The Slide Rule.

STANDARD TECENIQUES GF FACTORING. See Ad-
vanced Algebra Series.

STRETCHING IMAGINATION. See Adventures in
Number and Space.

SuRFACE AREAS oF Sorips I anp II. See Dis-
covering Solids.

SyMmBoLs IN ALGEBRA. 1961. sd, bw; jh, sh:
Coronet Instructional Films, bw $60, co. $120
11 min.; guide.

An introduction shows that the students
have been using formulas in arithmetic and that
the basic purpose of algebra is the establishing
of general rules such as these formulas. The film
shows how letter symbols are used in much the

same way as numerals in arithmetic and con-

cludes with an example showing the use of a
letter symbol as an unknown in an equation.

The best use of this film would be to intro-
duce a unit on algebra in Grade 8 since it
does a good job of relating algebra to arith-
metic. The solving of equations is handled only
briefly.

TaBLES OF TRIGONOMETRIC RaTIOS. See Trig-
onometry Series.

TaEORY OF EQUATIONS AND SYNTHETIC DIVI-
stoN. See Advanced Algebra Series.

TrmE. 1959. sd, co, bw, 15 min.; el, jh, sh, jc,
a; tchrs. of el, jh, sh; Indiana University,
bw $75, co. $150.

The use of time in daily living is the theme
of this film. The sun is shown to be one of man’s
oldest time pieces. A detailed treatment is given
to the development of the time zones with an
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animated sequence of a rocket circling the earth
being used to illustrate the necessity for the In-
ternational Date Line. Daylight Saving Time
is explained. A discussion follows on how as-
tronomers take photographs of stars’ paths to
determine time and the film concludes with a
summary of the ideas discussed.

The animation and models are excellent.
The inclusion of an examination of pendulums
is well done and the familiar examples given are
good. The use of a rocket to show the need for
the International Date Line makes this idea
easy to understand. This is one of the best films
this committee has seen.

TRIGONOMETRIC APPLICATIONS. See Engineering
Problems.

TrigoNoMETRIC RaTios As Pmriopic Func-
TI0NS. See Trigonometry Series.

TrIGONOMETRIC ScaLEs. See Engineering Com-
putation Skills: The Slide Rule.

TRIGONOMETRY AND SHADOWS. See Trigonome-
try Series.

TrigoNoMETRY OF LargeE ANGLEs. See Trig-
onometry Series.

TRIGONOMETRY MEASURES THE EARTH. See
Trigonometry Series.

TriGoNOMPTRY SERIES. 21 films, 1960. sd, b,
sh, je; Modern Learning Aids, $3,150.

This series may be useful in technical, voca-
tional, or service courses Where the theory un-
derlying trigonometric skills is unimportant.
There are a few exceptions to this statement as
will be noted in the individusl film reviews, but

it is generally the case that skill in techniques

receives greatest emphasis. Therefore, the series
is not to be recommended for contemporary
curriculum programs.

Pedagogically, we feel that too much infor-
mation is given to be memorized. Certainly some
facts need to be memorized but the quantity re-
quired here is excessive. There are inconsisten-
cies in notation, for example, ‘N.D.’ is used for
the words ‘not defined’ in an early film and the
symbol for infinity is used later. The emphasis
on what not to do is questionable and yet stress
is often placed on procedures that are not to be
done. Repetition is also useful in teaching when
used sparingly but often items are repeated to
the limit of boredom. It seems to this committee
that the most important constructions should be
made in the presence of the students and yet in
these films it is often the case that these con-
structions are already on the chalk-board at the
beginning of the film. This leaves the viewer
with no idea as to the development of the no-
tion. This committee objects to the colloquial
language used in the series. Such terms as
«ghuffling fractions,” “divided out,” ° ‘penned
in,” “knock out,” ‘‘cleaning up,” ‘‘opening

parenthesis,” “this number is really real,” ‘““the
sine of zero is nothing at all,” ‘‘a segment is
capable of,” “the square roots will lift off,”
and many more, are not acceptable in a series
designed for wide distribution.

Definitions are, in general, poorly stated, if
indeed given at all. ‘The logical structure of trig-
onometry is not well presented in spite of the
stated intent of making trigonometry an exten-
sion o? geometry. No clear distinction is made
between convention and definition. As seen
above, the language used is imprecise and the
mathematics suffers as a consequence.

Trigonometry and Shadows. 26 min., $150;
sh, je, a.

A review of various applications of trig-
onometry—surveying, construction, navigation,
warfare, and cartography—is given briefly
around the early history of trigonometry. The
significance of the ratio of the lengths of the
sides of a triangle is stressed, and the sine of an
angle is defined.

The historical comments at the beginning of
the film are good although most teachers would
be able to provide similar comments of their
own. The drawing illustrating Thales’ solution
to measure the inaccessible height of a pyramid
seems to be too intricate. The notion of a stand-
ard triangle comes very fast and it will be dif-
ficult for most students to follow. The ideas of
sine as a ratio is not the notion which is cur-
rently being used. This is also true of the other
functions which are discussed here.

Right Triangles and Trigonometric Ratio. 29
min., $150; sh, jc, a.

Thales’ method for finding the height of a
pyramid using the ratio of corresponding sides
of similar triangles is generalized in the defini-
tions of the sine, cosine and tangent of an angle
as ratios of the sides of a triangle having one
right angle. The values of these functions for
angles of 30, 45, and 60 degrees are derived.

This is an extension of the traditional treat-
ment found in the first film. The statement that
the square root of 3 is 1.732 implies that the
square root of 3 is a rational number. Other
errors are noted such as a line segment being
called a ratio. Defining “function” as “depends
on” is extremely confusing. This presentation of
trigonometry will hardly be in line with any of
the contemporary programs.

Using Sines, Cosines and Tangents. 29 min.,
$150; sh, je, a.

After a brief review of the definitions and
values of the sine, cosine, and tangent functions
for 30, 45, and 60 degree angles, a series of ex-
amples is demonstrated. Emphasis is placed on
proper choice of function to make the solution
ecasiest. An arc of a unit circle is defined and
used to expand the relationships among the
simple trigonometric functions and to show
that these functions are linear.
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The instructor wisely guides the observer to
consider the plausibility of answers that are
obtained and uses some good illustrations. The
unit circle is used in the classic manner to define
the functions rather than to use the unit circle
coordinates and a winding function. The non-
linearity of the tangent function is not made
clear. The accuracy of the statements about
the history of the word “sine” is doubtful.

Trigonometry Measures the Earth. 28 min.,
$150; sh; je, a.

The film illustrates the power of trigonome-
try in the solution of complex and difficult
problems. It shows in some detail how Eratos-
thenes measured the circumference and diame-
ter of the earth. A method of finding the dis-
tance to the moon is also deseribed.

The reaction of the reviewers to this film is
favorable and they recommend its use in any of
the different types of trigonometry courses—
contemporary or traditional. It provides excel-
lent historical interpretation of the applications
of trigonometry. It is suggested, however, that
the teacher using this film carefully preview it
and make reference to the fact that the lecturer
does not refer to the diagrams as triangles.
The use of props is definitely primitive.

Cosecant, Secant and Cotangent. 27 min.,
$150; sh, je, a.

The cosecant, secant, and cotangent func-
tions are defined and shown to be the reciprocals
of the sine, cosine, and tangent functions. The
representation of these functions as line lengths
associated with the unit circle is described in
some detail and the origin of the names of the
various functions is given. Values of these func-
tions are developed for angles of 0, 15, 30, 45,
60, 75, and 90 degrees. The complete range of
trigonometric tables is hinted at but not yet
developed.

Inconsistency in language is persistent. The
terms ‘‘trigonometric functions,”” ‘‘trigono-
metric relationships,”” ‘‘trigonometric ratios,”
and even ‘‘trigonometric segments’’ are used syn-
onymously. The observer may derive the impres-
sion, from the phraseology of the instructor,
that sine is an increasing function and cosine is a
decreasing function.

Eight Fundamental Trigonometric Idenlilies.
28 min., $150; sh, jc, a.

This film was not reviewed. However, the
publisher’s description is given here.

The Pythagorean relation for right triangles
is used to develop three trigonometric iden-
tities involving the squares of the simple trig-
onometric functions. The two ratio relationships
for tangent and cotangent in terms of sine and
cosine, and then the three reciprocal relation-
ships defined in the previous film complete the
eight fundamental trigonometric identities.
Several examples of the use of these identities
for simplifying complex trigonometric rela-
tionships are worked out in step-by-step detail.

Working With Trigonomeiric Identities. 29
min., $150; sh, jc, a.

A brief review of the eight fundamental
identities serves as a basis for analysis of more
complicated identities. Techniques such as
working on only one side of the identity, watch-
ing the form of the terms, and checking results
are shown in detail. Geometric illustrations of
the identities are developed on the unit circle.

The instructor does not make it clear that
identities are theorems and fails to write these
proofs in such a way that the form of the proof
is clear. The fact that the domains of the eight
fundamental identities have not been restricted
allows for some errors in conclusions. There are
also occasional errors on the chalkboard both in
mathematics and in pedagogical efficiency. The
terminology is often colloquial and idiomatic
and, in too many cases, the language is not
precise.

Tables of Trigonometric Ratios. 29 min.,
$150; sh, jc, a.

Conventional tables of trigonometric func-
tions are described and examples of their use
illustrated. This film could be used in some
courses to supplement a lecture on the use of
trigonometric tables.

The use of materials in this film is good. On
the other hand, the pedagogy is questionable,
particularly when stress is placed on things that
should not be done. Moreover, great emphasis
is placed on memorization of large amounts of
madterial.

Interpolation in Trigonometric Tables. 28
min., $150; sh, jc, a.

After a review of the form and organization
of trigonometric tables, the technique of reading
such tables is deseribed with care. Examples
are worked out in detail, showing how to carry
out interpolation and inverse interpolation pro-
cedures. The importance of careful organization
of one’s work, and the errors to be watched for
and avoided, are considered.

This film is a good summary of the use of
trigonometric tables. The methodology in the
film indicates that the development is reflecting
a cookbook version of trigonometry. This is
particularly shown by the rigorous patterns
that are required for interpolation. '

Introduction io Logarithms. 28 min., $150;
sh, jc, a.

Logarithms are introduced as a useful
mathematical technique for carrying out the
computational manipulations required in solv-
ing complex trigonometry problems. A log-
arithm is first defined as an exponent in the
general cense that if N =BP, then logsN =P,
where P is the logarithm of N to the base B.
Examples of the use of logarithms are then
worked out, and in the process the definitions
of mantissa and characteristic are developed.
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The first rule for determining the characteristic
involves “counting the number of digits to the
left of the decimal point, and subtracting one.”

Practical Use of Logarithms. 30 min., $150;
sh, jc, a.

Various applications of the use of logarithms
are presented including problems of multiplica-
tion, division, raising to powers, and extracting
roots. All discussion is restricted to base ten and
the emphasis is on the service aspect of trig-
onometry rather than as an important branch of
mathematics.

U‘s:z'ng Logarithm Tables. 29 min., $150; sh,
ic, a.

Finding the mantissa of a logarithm from a
three-place table and then the reverse process of
finding a number given its logarithm, is shown.
A brief discussion of significant digits is applied
to logarithms and antilogs. Examples are worked
out showing how to interpolate in log tables,
and how to do inverse interpolation. The log of
a trigonometric value is found in a table, and the
existence of log trig tables is presented briefly.
Finally, the nature of the scales and the use of
a slide rule are discussed.

The major part of the film is devoted to the
continuation of the study of logarithms that
was begun earlier. The section on the nature and
use of the slide rule will provide the user with no
help in teaching the slide rule.

Large Angles and Coordinate Azes. 30 min.,
$150; sh, jc, a.

Many applications of geometry and trig-
onometry involve angles greater than 90°. This
film defines and describes these large angles and
their trigonometric values. Positive and nega-
tive angles, the four quadrants of a plane, and
the coordinates of a point in any of the four
quadrants are discussed. The values of the sine,
cosine, and tangent (with proper signs) are de-
fined for all quadrants. Methods of reducing the
large angles to equivalent smaller ones for the
use of trigonometry tables are explained.

Trigonomelry of Large Angles. 30 min,,
$150; sh, jc, a.

After a review of the nature of large angles,
it is shown that all the definitions of the trig-
onometric functions in terms of R, z, and y apply
to any large angle if proper care is taken to
identify the sign of the function. Thus, trig-
onometric functions are signed quantities. All
eight of the simple trigonometric identities are
shown to work in all four quadrants. Finally, a
number of examples are worked out in detail
showing the reduction of functions of large
angles to small, and of functions of negative
angles to equivalent functions of positive angles.

Again, there is a tendency to ask the student
to memorize too much extraneous material,
such as the “CAST” rule for remembering the
positive functions in each of the four quadrants.

LTI I T ST S, | LT A L P e IR L ST LA A L

Law of Sines. 30 min., $150; sh, jc, a.

The equation for the Law of Sines is derived
and then used to solve a problem in which two
angles and the included side are known. The
solution provides directly the values for all three
sides and all three angles. Finally, an ambiguous
problem is deseribed in which are given two
sides and the angle opposite one of them. Either
of two solutions is possible. A single solution
would occur if one unknown angle is a right
angle.

The reviewers feel that this film could
possibly be used separately from the sequence.
However, there is a continuing use of sloppy
language. The derivation of the Law of Sines
may be a bit sophisticated. It is geometric in
nature, however, and in this respect, ties in well
with background materials in the other films of
the series.

Law of Cosines. 30 min., $150; sh, jc, a.

A derivation of the Law of Cosines is shown
and its application to a problem is carefully
worked out. The problem of three given sides is
worked out. The tedious calculation is pointed
out and the advantages of logarithms in such
situations are made obvious. However, the Law
of Cosines is not written in a form suitable for
the use of logarithms.

This film might be used as a supplement to
the “in-class” teaching of the Law of Cosines.
The film is not as good 28 the one on the Law
of Sines. Extreme monotony arises in this film
because of the large amount of repetition. The
film would be more useful if it had been more
carefully edited.

Law of Tangents. 28 min., $150; sh, jc, a.

The Law of Tangents is presented and used
in a practice problem. The derivation of the
Law of Tangents is quickly done with the help
of previously prepared figures and equations.

Law of Tangents could be used as a supple-
mentary film to a lecture on the Law of Tan
gents or as a filler on that particular topic in
case the teacher chooses this method. It is a
good film for enrichment for able students as it
presents an unusual geometric proof of the Law
of Tangents.

Trigonometric Ratios as Periodic Functions.
28 min., $150; sh, je, a.

Conic sections, periodic and harmonic mo-
tion, and the general form of the sine curve
are discussed. The general presentations seem
to be satisfactory although since this is the first
consideration of the sine function as a periodic
function, the development may be difficult for
the average student to follow. This is one of the
unfortunate consequences of this kind of de-
velopment. Several definitions are not clearly
given and such terms as “period of a function”
and “amplitude’” are only incidentally men-
tioned. The graph of y = A Sin Bz is not carefuily
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explained. The film may be useful in some situa-
tions but the pace will be too fast for most stu-
dents.

Graphs of Periodic Functions. 29 min., $150;
sh, je, a.

Furtker discussion on y=A sin Bz is pre-
gented as well as radian measure. Plotting
periodic functions in terms of radians is de-
scribed, and the sine curve is contrasted with
the tangent curve.

The use of this film is not recommended in
any class because of the extremely poor ter-
minology that is used in it. To cite an example,
the amplitude of a sine curve is defined as
tthe thickness and thinness of the up and
down.” The relation s=x-r (where s represents
the arc length,  the number of radians in the
central angle, and r the radius) is given without
any appeal to intuition or proof. The student
is asked to memorize that “= is equal to 180°”
and later the statement is given that = radians
is equal to 180°.

Addition Formulas and DeMoivre’s Theorem.
28 min., $150; sh, je, a.

This film is a rapid survey of several ap-
plications of trigonometry to algebraic equa~
tions. Complex roots of a cubic equation are
derived from DeMoivre’s Theorem which is
itself derived from addition formulas for trig-
onometric functions.

The film covers entirely too much material
to be conveniently understood by most students.
DeMoivre’s Theorem is not well established
and the formula for the sine of the sum of two
angles is deveioped for first quadrant angles
only.

Double and Half Angle Formulas. 28 min.,
$150; sl jc, a.

The addition formula developed in the pre-
vious film is used to derive the double-angle
formulas for sine, cosine, and tangent. The use
of these formulas in simplifying identities is
worked out in a problem. The half-angle for-
mulas for sine, cosine, and tangent are derived
and used to simplify another identity.

This film presents nothing that could not be
presented by a regular classroom teacher. The
developments are standard for the double and
half-angle formulas. In the lecturer’s summary,
he mentions that he has tried to illustrate the
logical and psychological unity of trigonometry.
The logical unity was certainly not apparent;
neither was the psychological!

UNDERSTANDING NUMBERS. 7 films. sd, bw; jh,
sh, je, sc, a: tchrs. of el, jh, sh; University of
Michigan TV, $700.

The Earliest Numbers. 30 min., $100; jh, sh,
je, sc, a; tehrs. of el, jh, sh.

Some early numeration systems are dis-
cussed with emphasis on the Egyptian and

Babylonian systems. A good demonstration of
the use of a counting board in computation is
given. The relationship between number and
language is considered.

The historical development is well done, al-
though at one point the Egyptian and Babylon-
ian systems were interchanged and at a later
point in the film Arabic symbols were used in
place of Egyptian symbols. No differentiation
was made between symbols used to compute
and symbols used to record in the systems dis-
cussed. This committee feels that the film def-
initely covers too much historical ground and
that the summary, which is given orally by the
instructor, fails to tie up the ideas given. Over-
all, the film is well done in spite of these weak-
nesses and it would certainly be worthwhile as a
film on the history of numeration systems.

Base and Place. 30 min., $100; sh, jec, sc, a:
tehrs. of el., jh, sh.

A presentation of the binary system and a
demonstration of the use of the system in the
digital computer are given in this film. The
most outstanding feature of the film is the fine
treatment of the binary system and its rela-
tionship to the development of digital com-
puters. The lecturer fails to mention the rela~
tionship between the base and the number of dis-
tinct digits.

Big Numbers. 30 min., $100; jﬁ, sh, je, sc,
a; tchrs. of el, jh, sh.

The film illustrates and demonstrates the
use of scientific notation. A rather extensive dis-
cussion of perfect numbers is also included.

The title of the film is slightly misleading
since the discussion also centers on lesser as
well as greater numbers. As a teaching instru-
ment, the film will probably not serve too well,
although it might be used in a mathematics
club or for any occasion of general interest. The
statement that only fifteen perfect numbers are
known is no longer correct and will clearly date
the film.

Fundamental Operations. 30 min., $100; jh,
sh, jc, sc, a; tchrs. of el, jk, sh.

The fundamental operations of addition,
multiplication, subtraction, and division are the
main issues here as well as the postulates asso-
ciated with each of these operations. Subtraction
is shown to be the inverse of the operation addi-
tion and similarly for multiplication and divi-
gion. Addition and multiplication tables are
given for modulo 5 and used to carry out a few
exercises. Discussion is briefly extended to the
rational numeration systems.

We recommend the film as a review of a sec-
tion on modular arithmetic or as a preview of
such a section. The emphasis on the patterns
and fundamental operations in mathematics
and the use of modular arithmetic to demon-
strate these is good. The analogy of a “‘com-
mutor” and the commutative law did not seem
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satisfactory to this committee. The tables for
addition and multiplication in modulo 5 are
introduced without sufficient development
leaving the student to wonder where they came
from.

Short Cuts. 30 min., $100; sh, je, sc, a; tchrs.
of jh, sh.

This film explains and illustrates some
mathematical short cuts as a means of simplify-
ing computation. The grating or gelosia method
of multiplication, the principles of logarithms,
and the slide rule are considered.

We suggest that this film be used for review
rather than as an introduction to the topics
given here. Use is made of the notion that
logarithms are exponents prior to the statement
of this relationship. The instructor mentions
that to multiply numbers it is necessary to add
exponents, but neglects to restrict this operation
to numbers with a common base. No summary
is given and the over-all organization of the ma-
terial is poor.

Fractions. 30 min., $100; jh, sh, a; tchrs. of
el, jh, sh.

The fable concerning the distribution of
nineteen head of cattle by the portions 3, 1, and
3 is used to introduce fractions. A common
fraction is defined and its five different meanings
are analyzed with visual aids. The history of
fractions is reviewed from the viewpoint of
number theory. A chart is used to illustrate sev-
eral types of fractions such as decimals, ra-
tional fractions, and duodecimal fractions, Some
efforts are made to elucidate the meaning of the
fractions and the relations between them. At-
tention is also given to repeating decimals.

The exploration of the five implied meanings
of a fraction is adequate and stimulating with
the use of visual aids being very helpful. The
brief review of the history of fractions is satisfac-
tory. The film seems appropriate for a course in
mathematical appreciation for a group with
widely different preparation in mathematics.
The level of material is uneven and the range of
difficulty is wide, although the presentation of
the topics is not rigorous. Little attention is
given to operations with, and applications of,
fractions. The lecturer makes occasional slips
in writing and in talking which indicate a need
for more editing.

New Numbers. 30 min., $100; sh, jec, sc, ;
tchrs. of sh.

This film introduces the student to some of
the new numeration systems. Rational, irra-
tional, complex, and transfinite numbers are
discussed in some detail. A good demonstration
of the meaning of a one-to-one correspondence
is given. The film provides the student with an

excellent opportunity to consider numbers other
than the familiar real numbers. A great deal of
emphasis is placed on the proper naming of
numbers.

The lecturer occasionally uses the word
“pumber” when he should say “numeral.”’
Many of the mathematical terms used, ‘‘car-
dinal” for example, are casually mentioned with-
out adequate development or further use. The
oral presentation is too rapid and the chalk-
board work is not up to the par established in
the other films of the series.

Using FRACTIONAL AND RATIONAL EXPONENTS.
See Intermediate Algebra Series.

Using LoGarRiTHMS IN PrOBLEMS. See Ad-
vanced Algebra Series.

Using LogariTEM TasLEs. See Trigonometry
Series.

Using LogariTEMS TO SoLve EQUATIONS. See
Intermediate Algebra Series.

Using SiNgs, CosiNgs AND TANGENTs. See
Trigonometry Series.

Variation: A Lesson v Reapina. See Inter-
mediate Algebra Series.

VOLUME AND ITs MEASUREMENT. 1960. sd, bw,
11 min.; el, jh; guide, Coronet Instructional
Films.

Beginning with definitions of volume, for-
mulas for volumes of rectangular solids, prisms,
and pyramids are developed using plastic
models. The need for a unit of measurement is
stressed. Although the development of the vol-
ume formulas for rectangular solids and tri-
angular prisms was incomplete, the film might
be useful in junior high school classes on intui-
tive geometry.

VorLumes or CuBes, Prisms, AND CYLINDERS.
See Discovering Solids.

VoLuMEs oF PYramins, CoNEs, AND CYLINDERS.
See Discovering Solids.

WHAT's THE ANGLE? See Adventures in Numbér
and Space.

Tas WHoLe NUMBERs. See Junior High Film
Series.

WOREKING WITH POSITIVE AND NEGATIVE Ex-
PONENTS. See Intermediate Algebra Series.

WORKING WITH TRIGONOMETRIC IDENTITIES.
See Trigonometry Series.
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COMPUTER ORIENTED MATHEMATICS

Photo by permission of Electronic Associates, Inc.

Fig. 2-1. An Electronic Analog Computer

volve the representation of physical situations by mathematical equations.
Large numbers of components of the type referred to above can be connected
into a network by wires which can be plugged into sockets; this becomes an
electrical analogy of an event such as, for example, the launching and subsequent
orbiting of a satellite. Thus it is possible to produce a “mathematical”’ flight of
the satellite in the laboratory, and thereby study the design of the system prior
to actual testing.
Fig. 2-1 illustrates one type of electronic analog computer.

Digitai Computers

Numerous textbooks and other written materials that describe the technical
operation of digital computers are available. In line with the basic philosophy of
this book, this chapter will stress the mathematical concepts related to the
digital computer, rather than the technical details of the computer or its opera-
tion. At times, however, it is not possible to present such material without some

- overlapping.

The examples given in Chapter 1 were intended to show that efficient problem
solving depends on some sort of logical sequence of steps; to this extent all the
examples were similar. In other words, the solution of each problem depended
on (1) certain information being available at the beginning, (2) some kind of
operation or operations being performed on this information, and (3) some result
being produced as a result of these operations. The procedure can be represented
by a diagram as follows:

o aabia
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, OPERATIONS
BASIC |  PERFORMED |  RESULTS
INFORMATION ON BASIC PRODUCED
INFORMATION

Note that the arrows indicate the flow of the process.

In this simple form many processes can be described. Consider the case of a
person being asked a question. It is easily seen that three basic steps are involved:
(1) The basic information (spoken word) is received by the ear. (2) Certain
operations are performed (in the brain) on the basic information. (3) The result
(verbal answer) is given. In this sense, a human being can be considered an
information processing device, which is a generalized name sometimes given to
digital computers. For convenience, the three basie concepts involved may be
expressed as input, operation, and output. They may also be diagrammed as fol-
lows:

INPUT ? OPERATION ? OoUTPUT

Each of the operations listed below involves the concepts of input, operation
and output, as illustrated by the following example:

ExampLe. A mathematics classroom.
Input. Teacher’s verbal or written directions on the assignment re-
ceived by the student.
Operation. Student performing necessary operations to do assignment.
Quitput.  Assignment turned in to the teacher in written or verbal form
by the student.
. Using a dial telephone.
. Using an adding machine.
.Using an automobile fuel gauge.
.Using a food vending machine.
. Using an electric clock.
.Using a typewriter.
.A football team on the offense.
. A combination of airplane, pilot, and control tower while the plane is ap-
proaching a landing.
.A meeting in which the chairman is listening to a number of persons dis-
cussing the two sides of a question which is finally settled by (1) the chair-
man’s decision and (2) a vote.

A digital computer is similar in many ways to the examples and discussion
given above: (1) It receives information. (2) It performs operations on the infor-
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STORAGE
INPUT ? CONTROL 7 OUTPUT
ARITHMETIC
Input | | Operation | | Output I

I | l I
Fig. 2-2. Three-Step Device with Storage, Control, and Arithmetic Subelements

mation. (3) It produces results. By studying the idea of a three-step process
(input-operation-ouput), it is possible to gain a clearer concept of the basic
elements of a digital computer. The three-step diagram now has the appearance
shown in Fig. 2-2.

Input places information into the computer. This may be done by means of a
card with holes punched in it; paper tape with holes punched in it; magnetic
tape with magnetized spots on it; or an electronic device, which automatically,
by means of a radio signal, puts information into the machine.

Information may also be put into the computer by direct keyboard entry.
However, the pressing of keys on a keyboard is a relatively slow process. Since
most computers are unable to perform any other operations while input is under
way, keyboard entry is avoided except for limited amounts of information. It is
more economical to prepare cards or tape by hand, away from the computer and
to enter the information at high speed through the special input devices.

A punched card, punched tape, and magnetic tape are shown in Fig. 2-3. The
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card and paper tape contain holes. The combination and position of the holes
provide a code corresponding to numerals, letters of the alphabet, or other sym-
bols. The magnetic tape (similar in appearance to the tape used in home or office
tape recorders) does not contain holes; instead, on its surface are spots which
may be magnetized. Again, the position and combination of magnetized spots
correspond to various symbols. The piece of tape shown in Fig. 2-3 was sprinkled
with fine iron filings to make the positions of the magnetized spots visible. In
actual use these spots are not visible and are detected electronically as the tape
moves across a reading element, which is similar to the one used in home tape
recorders.

Information may be entered on the cards or paper tape by means of a special
machine which has a typewriter keyboard. As the operator presses the keys, holes
are made in the card or paper tape. The cards or paper tape are placed in the
input device, where the holes are sensed electrically or optically with the aid of
photoelectric cells. The resulting electrical impulses are then entered into the
operation element and appropriate circuits are activated.

Operation does the work on the information entered into the computer through
the input element. It consists of three basic units: storage, control, and arithmetic.
The diagram shown in Fig. 2-2 may now be amplified as follows: The storage
unit is used for temporarily storing information until required for some purpose;
the arithmetic unit performs the usual operations (addition, subtraction, multi-
plication, and division) on the numbers; the control unit keeps the steps of the
process going according to previously entered instructions.

OQutput gets the information out of the machine. It may punch holes in cards or
paper tapes, record information on magnetic tape, print on paper, or even make
other computers or machines do certain things.

A natural question at this stage is: How does everything get started in the
first place? The process starts when an individual begins to analyze the problem
in a manner similar to the one demonstrated in Chapter 1. A flow diagram may
be made of the process which is to be followed. After the flow diagram or other
similar procedure is completed, it is necessary to enter into the machine (through
input) the data on which operations need to be performed as well as machine
instructions for carrying out the problem-solving procedure.

Fssentially, this means that the human being must “communicate” with the
machine, not in English or Russian or Japanese, but in still another language
in such a way that the computer’s capabilities for addition, subtraction, etc.,
will be called for in the proper sequence, the proper number of times, and in con-
nection with the proper data. Since the machine can essentially do but one thing
at a time, the human being may need to write thousands of instructions in the
language “understood” by the machine to get his problem done. The magnitude
of this task may be realized to some degree by imagining the process of giving
instructions for solving simultaneous linear equations to an individual who only
knows how to add, subtract, multiply, and divide, but knows no other concepts
of arithmetic or mathematics and who must follow the list of instructions exactly,
without benefit of questioning or inquiry.

The remainder of this chapter is devoted to discussing the digital computer
and techniques for using it. Part II pertains to the use of what is known as
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(a) Magaetic tape records information by the presence and absence of magnetized

areas arranged according to code as shown in the representation above. Actual
tape is one-half inch wide.

N

(b) Punched tape, numerical code reads left-to-right, 0.9.

N

(c) Punched tape, alphabetic code reads left-to-right, a-z.
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(d) Punched card showing alphabetic and numerical codes.

Fig. 2-3. Media for Input Information
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machine language programming. Part III deals with what is called compiler
programming. Both techniques are similar in the sense that in either case the
problem must be carefully considered and its solution planned accordingly. They
are different in the sense that, once the planning is done, the compiler allows the
remainder of the job to be done relatively easily.

Part Il. Machine Language Programming

Detailed instructions must be given to a computer for each part of the job to
be done. In some ways this parallels the procedure for solving a problem with
pencil and paper or a desk caleulator. Of course, there are differences as well.

The COMPIAC Computer

For illustrative purposes an imaginary computer called COMPIAC (Computer-
Oriented Mathematics Project Illustrative Automatic Computer) is desecribed.
In general, it is like many computers now in operation. In detail it is, of course,
unlike any specific computer. For example, the codes corresponding to the arith-
metic operations, the size of numbers it can accommodate, the storage numbering
systems, etc., should be considered only as being typical of real computers.
Furthermore, it is a simplified computer that does not include all types of input-
output devices or operation codes. A diagram of COMPIAC is shown in Fig. 2-4.

Within the computer elements of input, output, storage, arithmetic unit, and
control, certain connections between electronic components are represented by
arbitrary symbols. Since the machine is designed to do arithmetic, the symbols
usually chosen are those of the familiar decimal notation for numbers. For ex-
ample, the operation add may be represented by the symbol “12.” The control
unit is designed in such a way that connections among various components cause
addition to be performed in the arithmetic unit as a result of “12” being “‘read,”
or “sensed,” and decoded by the machine. .

This means that the person solving a problem must somehow arrange for the
control unit to have a “12” available for use when the operation add is required.
Likewise, other symbols such as “12” must be available in sequence for all the
other steps of a given problem.

A person operating a desk calculator or adding machine may have a written
sequence of instructions to help him remember what he is to do, or he may have
the entire sequence “stored” in his brain. He then performs the proper steps one
by one. The point is that the sequence of instructions is not stored inside the
desk calculator itself.

In the case of the digital computer, the sequence of operations necessary to
solve a given problem is entered into it before the problem-solving process starts.
The sequence of instructions is held within the storage unit which can hold many
symbols. Accordingly, the entire sequence of instructions for solving a problem,
represented by symbols such as the “12” mentioned above, is placed in the stor-
age unit prior to the time the problem is to be solved. Such computers are called
stored-program computers since all the steps in a procedure are stored before the
problem-solving process is begun.
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The ability to store symbols—the stored-program concept—is one of the most
important single features of the digital computer. Another important feature is
its speed of operation. However, these two items, stored-program capability and
speed, are closely related; that is, the speed is great, but the cost to develop and
build a device which has this speed is also great. It behooves the user, then, to
take full advantage of this speed. In other words, if an arithmetic operation such
as addition can be performed in a few millionths of a second, it would be absurd
to slow down an expensive computer by giving it something to do only every
five or ten seconds—as one would operate a desk calculator.

By means of comparatively inexpensive machines, the entire sequence of
instructions for a complete problem may be recorded on cards or tape. A card
punching machine is shown in Fig. 2-5. These instructions are then entered into
the storage unit very quickly, at one time, through the card or tape reading
machines that comprise the input element. Once the entire program of instruc-

Photo by permission of the UNIVAC Division of Sperry Rand Corp.
Fig. 2-5. Card Punching Machine
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tions is stored, the execution of the steps necessary to solve a given problem can
follow without the delay which would occur if after each step was completed the
operator had to enter the next instruction manually.

Of course, the problem cannot be solved by instructions alone—there must be
some data, too. Again, to make use of the computer’s speed, the data also must
be in the storage unit when it is needed, since it would be just as uneconomical
for the computer to wait for data as for instructions.

In general then, problem solving does not get under way until both the data
and the instructions are in the storage unit—both having been entered with the
aid of card- or tape-reading machines which make it possible for information
to be entered rapidly into the storage unit. After all the instructions and data
have been entered into storage, COMPIAC will take its first instruction from
storage location 0000. It will execute the instruction found in 0000, then proceed
to 0001, then 0002, etc.

It should be pointed out that as far as COMPIAC is concerned there is no
characteristic difference between the symbols in storage representing data and
those representing instructions. That is, the svmbol “12” which represents the
instruction add looks just the same in its part of the storage unit as the number
12 would look if it were located elsewhere to represent a piece of data. A natural
question is then: Why don’t they get mixed up? The answer is that they would
get mixed up if the problem were not properly prepared in advance.

Most computers are designed to manipulate the symbols stored in them so that
the results may be interpreted either as operations or numbers. For this reason
the word number may seem ambiguous in the discussion which follows. However,
the meaning should be clear from the context whenever the word number is used
in reference to what more properly may be called a symbol.

For this discussion suppose COMPIAC has a storage unit large enough to
hold two thousand numbers or two thousand instructions or some combination
not exceeding two thousand; and that each number consists of six digits and its
algebraic sign, + or —. If two numbers are to be added, it is necessary for the
control unit to select the proper numbers from the storage unit and for the arith-
metic unit to add them. Actually, the control unit must be “told”” where the two
numbers are stored. Accordingly each of the two thousand storage locations
has what is called an address (analogous to the number on a seat in a theatre)
which the control unit uses to select the proper storage unit position.

The addresses of the storage unit are considered to begin at 0000 and extend
consecutively to 1999. The numbering depends on the design of the machine
and cannot be changed by the operator just as the ‘‘address” of a theatre seat
cannot be changed by a theatre patron.

If an instruction such as “12 1010” is received by the control unit, it will
be decoded as meaning: Add the number stored in the location that has the ad-
dress 1010 to whatever number is already in the a ithmetic unit. (For brevity,
the phrase “the location that has the address XXXX” is condensed simply to
“gddress XXXX” or “location XXXX” in the following text.)

Before writing a sample program, assume that the following instructions are
wired into the circuits of COMPIAC. That is, COMPIAC has been constructed

A o
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in the factory to decode certain numbers and, as a result, set up particular cir-
cuits to do certain things.

The following table shows how COMPIAC would decode a given operation
code and address number and carry out the instruction.

Operation .
code Address number Action

12 XXXX Add the number in storage location
XXXX to the number already in the
arithmetic unit.

13 XXXX Subiract the number in storage location
XXXX from the number already in the
arithmetic unit.

14 Reset the arithmetic unit to 0.

15 Put the contents of the arithmetic unit
into storage location XXXX, replac-
ing whatever may be there, but retain
the value in the arithmetic unit as well.

Stop the computer. When the START
button is pressed out, start executing
operations again at address XXXX.

More. The notation “XXXX” is used to symbolize any address. In a real

problem, of course, numbers would replace the X’s as shown below. Since the
reset operation (code 14) does not involve any storage location, no address is
given for it.

Programming for Addition

Let us suppose the problem of adding six numbers is to be solved. The following
questions come to mind: How will the numbers be entered into the computer?
How will the instructions be entered into the computer? What will the instruc-
tions be? How will the result be taken out of the computer? The answers to these
questions are as follows:

The program planner must be careful to keep the data or numbers separate
from the instructions so that they will not get mixed up. Accordingly, he may
arbitrarily decide to put the data in the middle part of the storage unit since
COMPIAC will automatically start its operation at location 0000.

Using a card-punching machine (shown in Fig. 2-5), the operator will »unch
six data cards. Some samples of data cards are shown in Fig. 2-6. These cards,
when read by the input card reader (shown in Fig. 2-7), will cause the data to be
entered into the storage unit; for example, the number 000067 will be stored in
the location 1000, the number —000164 will be stored in location 1001, ete.

The following sequence of instructions will cause the six numbers previously
stored in locations 1000, 1001, 1002, 1003, 1004, 1005 to be added and the result
to be put in storage location 1999.
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Fig. 2-6. Examples of COMPIAC Data Cards
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Photo by permission of International Business Machines Corp.

Fig. 2-7. Card Read Punch Machine
(This machine performs the functions of reading and punching cards.)

Storage location Contents of the location Meaning
Operation Address

06000 14 Reset arithmetic unit to 0
0001 12 1000 Add 1st number
0002 12 1001 Add 2nd number
0003 12 1002 Add 3rd number
0004 12 1003 Add 4th number
0005 12 1004 Add 5th number
0006 12 1005 Add 6th number
0007 15 1999 Put away the result
0008 16 0000 Stop

Fig. 2-8 illustrates cards of the type that are used to place the above instruc-
tions into the storage unit in the same way that was used in entering the data.
Although the data and the instructions are in the same numerical form, they are
placed in the storage unit in such positions that they do not interfere with each

other.
After the data and instruction cards have been punched, they are placed in a
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0004
0005
0006
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Photo by permission of International Business Machines Corp.

Fig. 2-7. Card Read Punch Machine
(This machine performs the functions of reading and punching cards.)

Contents of the location

Operation

14
12
12
12
12
12
12
15
16

Address

1000
1001
1002
1003
1004
1005
1999
0000

Meaning

Reset arithmetic unit to 0
Add 1st number

Add 2nd number

Add 3rd number

Add 4th number

Add 5th number

Add 6th number

Put away the result

Stop

Fig. 2-8 illustrates cards of the type that are used to place the above instruc-
tions into the storage unit in the same way that was used in entering the data.
Although the data and the instructions are in the same numerical form, they are
placed in the storage unit in such positions that they do not interfere with each

other.

After the data and instruction cards have been punched, they are placed in a
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single pile and put into the hopper of the card reader, ready for the process to
begin. Since each card is identified by its storage location number, the order of
the cards is not important. When the operator is ready to begin, the START
button on the console of COMPIAC is pressed. This causes the cards to be read
in—one at a time, but without interruption—until all have been read. After the
last card has been read, the control unit initiates the problem-solving process by
first executing the instruction in address 0000 and continuing automatically
until the siop instruction is reached.

Self-Modified Instructions

The operation part of the instructions (“12”) is the same in all of the steps
0001 through 0006. Notice also that the corresponding addresses increase by 1
from 1000 through 1005.

The instruction in location 0001 (12 1000) could be used again for the second
number and do the same job as the instruction in 0002, if the number 1000 could
be somehow changed to 1001. And if this change were made, the same instruction
could be used once more for the third step, if the number 1001 could be changed
to 1002.

The stored-program computer can be made to change its own instructions;
this is one of its greatest advantages. If properly programmed, it can execute an
instruction such as the 12 1000 in location 0001; then, the machine will itself
add 1 to the instruction, making it now 12 1001; then, the machine will execute
this new self-modified instruction; and, then, modify and execute the next and
so on in accordance with the program given the machine.

If one hundred numbers. were to be added instead of six, the above listing of
instructions would have 103 steps. This would be tedious to write. Also, 103
positions in storage would be required for all the necessary steps, instead of the
nine required above.

Some of these undesirable features can be eliminated if the computer has cer-
tain other instructions available, as follows:

Operation )
code Address number Action

17 XXXX Execute as the next instruction whatever is found
in storage location XXXX and then continue,
in sequence.

This instruction then can interrupt the step-by-step sequence .nd direct it to

begin in a new place.
The following additional instruction is also needed to allow self-modification of

instructions:

Operation .
code Address number Action
18 XXXX If the number in the arithmetic unit is positive,

execute as the next instruction whatever is
found in storage location XXXX and then con-
tinue from that point. If the number is zero,
proceed in sequence.
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With the aid of these instructions it is possible to produce repetitive cycles, or
loops, and thus perform the self-modifying steps necessary to add 100 numbers
without using 103 steps. The general procedure is to have the computer perform
the following operations: (1) add 1 to the addresses as necessary to go from step
to step; (2) keep track of how many times this has been done so that the cycling
can be stopped after 100 times. Since the computer must have something to use
in changing the addresses from step to step, the number 1 must be available in
some storage location. The number 100 must also be available so that in each
cycle, by subtracting 1 to obtain 99, then 98, then 97, etc., the computer will
be able to stop the cyclic process (with instruction code 18) when the subtrac-
tions finally reduce the 100 to 0.

One additional instruction is necessary for the output printer of COMPIAC

to print the result:

Operation
. code Address number Action

19 XXXX  Print the number, which is in storage location XXXX, on the out-
put printer.

Fig. 2-9 illustrates a typical printer.

B e Y
L8

Photo by permission of International Business Machines Corp.

Fig. 2-9. Printing Machine
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Tally and Instructions

Now assume that the 100 data numbers are stored in locations 1000, 1001,
1002 . . ., 1099; that the sum will be stored in 1999; and that the number 1 (a
stored constant to be used for changing the addresses) is stored in location 0100.
Location 0101 will initially contain the number 100 from which 1 is repeatedly
subtracted to keep track of the number of times the cycle has been completed.
This method of controlling a loop by repeatedly subtracting 1 until a number
has been reduced to zero is one way of keeping a tally. Another way of keeping
a tally is to start with 0 and repeatedly add 1 until a specified value is reached.
Fig. 2-10 shows graphically the logic of the subtraction method. Fig. 2-11 shows
how the instructions for the key punch operator would be written on a standard
form. It should be noted that the comments are not part of the program used
by the computer, but are actually notes made by the program:ier for his own
use.

Notice that the steps listed on the coding sheet might be written in a flow
diagram form and that they do not always follow in sequence. lor example,
step 6 may be followed either by step 7 or step 8, depending on the value of the
tally. Also, step 15 is followed by step 1 as the problem proceeds, and the process
is finally terminated by a jump from step 7 to step 16 and then step 17.

Note. Some teaching aids for introducing the concepts discussed in the fore-
going text are described in Appendix B.

References

The reader who is interested in further detail on the subject of machine lan-
guage programming should consult the following references, which are identified
in the Bibliography, Appendix C:

5,9, 10, 22, 26, 44, 45, A5, A8, 03, P4.

EXERCISES

1. Copy the form shown in Fig. 2-12 and use it to follow through the example
in Fig. 2-11. First, complete writing the instructions in the proper addresses;
then begin at 0000, simulating the functions of the control and arithmetic units
by decoding and executing each instruction until the tally in location 0101 has j
been reduced to 060093. If this is done on a blackboard where erasing is easy,
the arithmetic unit can be represented by a box and its contents changed as the
process proceeds. On paper it may be more practical to represent the arithmetic
unit as shown in Fig. 2-12 by writing the successive numbers in a long row and
indicating reset by drawing a line through the “erased” values. This will also
give a record of the process.

2. (a) What is the value stored in location 1999 when the tally in location
0101 is reduced to 060093? (b) What are the contents of location 0001 at the
time the tally is reduced to 000093? (c) The program will not add the same num-
bers again if it is restarted at location 0000. Why? (d) Modify the program so
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STORAGE

INSTRUCTION

ADDRESS — 0000 0002 0004 ARITHMETIC

UNIT

OP CODE — 151999 120101 o
DATA ADDRESS 7

0011 0014

120100 121999

0016 0019

191999

STORED

CON?TAN TA%LY

ADDRESS — 0100 l 0101 l

000001 000100

SUM

DATA ‘
ADDRESS — 1000 LOCATION
1999

DATA — 000067
-77

1005

171005

Fig. 2-12. Computer Simulation Form

that it will work correctly the second time through; that is, when it is restarted
at location 0000.

3. (a) Can the data stored in location 1005 be interpreted as an instruction?
(b) Can COMPIAC distinguish between instructions and data? (c) Assume that
chrough a coding error the control unit is directed to execute the “instruction”
at 1005. What will happen? (d) If through error the control unit executes the
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«instruction” at location 1006, what are the two possible courses COMPIAC
can follow?

4. (a) What is the greatest possible number of digits in the sum of one-hundred
4-digit numbers?; 6-digit numbers? (b) How many digits must the arithmetic
unit hold to retain the digits developed in (a)?

5. The following problems can be flow-diagrammed and programmed with the
few COMPIAC machine language instructions presented. (Of course, computers
have multiply, divide, shift and many other instructions, but these quickly lead
to complications that preferably should be studied later, in the references sug-
gested for this chapter.) (a) Count the number of non-zero integers stored in
locations 0100-0199, inclusive, and put this count in location 0200. (b) Select
the greatest number stored in locations 1350 through 1399 and store this greatest
number in location 0850. (¢) Choose locations for a, b, ¢, and d and code a program
to evaluate z = @ + b — 2¢ — d. (d) Code a program to examine @, b, ¢, and d
and change the sign of all positive values. Then store any changed values in the
original locations. (e) A series of numbers is stored consecutively starting at
location 0100. Write a program to add twenty values in 0100, 0101, 0103, 0106,
0110, 0115, . . . and print the result. (Notice that the differences between succes-
sive pairs of addresses change according to a pattern.)

ANSWERS

2. (a) 74,504. (b) 121006. (c) The tally has been reduced and the address of
the data incremented. These instructions and constants would have to be reset
to their initial values for the program to run again. (d) Store the initial contents
of locations 0001 and 0101 in two other locations also, say 0102 and 0103, and
add some instructions following location 0017 that will put these numbers into
locations 0001 and 0101 before control returns to execute instruction 0000.

3. (a) Yes. It has legal operation code and address digits. (b) No, it cannot.
(¢) The operation code of 17 will cause COMPIAC to transfer control or “jump”’
to 1005, the same location. Thus the poor machine is hopelessly caught in a
one-instruction loop and cannot get out of it without human assistance. (d)
COMPIAC will unsuspectingly proceed to add and subtract; at location 1008 it
will decide to return to the loop at location 1005 or else print the number 181005,
The choice depends upon the number that happened to be in the arithmetic unit
just prior to the error.

4. (2) Six digits; eight digits. (b) Eight digits. Most computers have an arith-
metic unit that holds twice as many digits as a storage location, so COMPIAC’s
arithmetic unit would hold 12 digits as well as the sign.

Part Ill. Compiler Language Programming

The type of coding discussed in Part II of this chapter may become quite
complicated for three reasons:

1. Tt is necessary to remember several numerical codes that stand for the arith-
metic operations.
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2. Tt is necessary to resort to some unusual techniques (in the “counting 100”
part of the procedure) to keep track of what is happening.

3. It is difficult to correct a list of instructiors either by adding a new instruc-

tion to, or removing an instruction from a list of steps since this disturbs the
sequence that the computer must follow. For example, there is no convenient
way of inserting an instruction between the two instructions located in positions
1010 and 1011—and still keeping the steps in sequence—except by renumbering
all the instructions that follow the place in the sequence where the change was
made. The same problem ocecurs if an instruction is removed.
" Fortunately many improvements have been made during the past few years
in developing so-called languages for use with computers. The example given in
Part II of this chapter can be described as having been written in machine language.
In other words, codes (such as 12 for addition) that correspor. . to the design of
the computer are used by the human programmer. This places a burden of trans-
lation on the programmer. That is, he must continually translate his own thoughts
involving adding, printing, etc., into machine language.

Translation by the Computer: The Compiler

Because of the problems presented by machine language it became necessary
to find ways in which the computer itself could perform the translation. This
would relieve the programmer of this task and give him more time for the mathe-
matical formulation of the problems at hand. An ideal solution would be to make
it possible for the programmer somehow to “talk’ to the computer in the language
of mathematics, thus avoiding the problem of translation.

The following pages will discuss some translating techniques that have been
developed and, in particular, a device known as the compiler. This is a “language’
consisting of a sequence of instructions, prepared by the methods that were used
in the example given in Part II. The compiler is therefore a sequence of instruc-
tions to solve a special kind of problem—that of translating a mathematical
language used by a human " eing into the machine language “understood’’ by
the computer.

The development and improt ement of compilers has attracted much attention
among professional computer users. The construction of these languages is a
complex and expensive job, and many groups, some on an international level,
are actively working in this field. The most prominent current international
effort revolves around a language called ALGOL (Algorithmic Language).

Although the preparation of a co npiler requires a great deal of effort, it needs
to be done only once for a given type of computer. Thereafter, all other; problems
can be prepared in a more convenient language. The preparation of a compiler
is therefore worth the investment.

The rest of this chapter will describe the compiler and show how it is used in
actual practice. For illustrative purposes an imaginary COMPIAC compiler
will be discussed. It is similar to compilers now used in the United States and
other parts of the world, although it may be different in detail. It is patterned
after NELIAC, one of several compilers that are similar to ALGOL, mentioned
above. The differences between the COMPIAC compiler and NELIAC ere
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minor and appropriate to the objective of this discussion: to show, in a few pages,
how a compiler can be used, without undue emphasis on fine points that may be
beyond the interest of the general reader. It is intended here to point out some
of the differences between the type of problem presentation and coding described
in Part IT of this chapter and the type of problem preparation and coding used
in most computation laboratories, including those that do technical work as well
as those that are concerned with fiscal or other management-type work.

Compiler languages, such as the one to be described—and there are several
of them—do not relieve human beings from the task of thinking carefully about
a mathematical or payroll or automation job. The language merely makes it
easier to prepare instructions for the computer after the planning phases have
been completed.

The type of coding discussed in Part II of this chapter depended on the sym-
bols 0,1, 2, - - - 9. That is, 12 was a code for what is other "ise symbolized by
4, the addition sign. Similarly, 13 meant subtract, and so forth.

The important point is that if some symbol, such as 12, can be used for instruct-
ing the computer to perform the operation called addition, why not develop
symbols that are more easily associated with the requirea operations? That is,
since all symbols are similar in the sense that on paper tape or cards they are
represented by certain arrangements of holes, a system is needed whereby the
human being can use whatever symbols he wishes and make the compiler trans-
late them.

Accordingly, then, the compiler about to be described, like all now in common
use, can distinguish the letters of the alphabet, the numbers 0 through 9, and
many special characters such as punctuation marks, parentheses, arithmetic
signs, and others.

It is worth emphasizing again that thc compiler is itself a computer program
originally prepared in machine language. (Actually, only part of a compiler
must be written in machine language. After the basic translation of symbols is
doae, in machine language, the remainder of the compiler can be compiled by
itself. That is, after the basic part is done, the compiler can “lift itself by its own
bootstraps.””) As a program, the compiler consists of many instructions that can
interpret symbols, such as 21, 6, ?, (62), A, 4+, (z = 2), singly or in combinaiion
and according to certain rules, translate thoughts expressed by these symbols
into the numerical language of the computer—the same type of nume.ical lan-
guage that the human being would otherwise have to write himself.

Some compilers used with large computers (the compiler discussed here is
typical) produce from five to ten machine instructions (like those in the previous
example) for each compiler instruction, at a rate of 500 to 1000 per minute. In
other words, a prcgrammer who prepares a problem in compiler language and
uses 50 compiler statements (such as those shown in Fig. 2-18) would atherwise
need to prepare from 250 to 500 machine instructions. A specific instance of this
economy is seen in coding the cyclic operations in the example where it was
necessary to “count from 100.” It took several instructions to get this simple job
done. The compiler can operate on a single “human-being-type” instruction
meaning “Do this operation 100 times, changing the addresses as necessary,”
and can produce all the individual instructions itself.
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Programming for a Compiler

In general, the program that the human being prepares for translation by the
con.piler consists of two parts. These are called: (1) the names and (2) the state-
ments.

The names are merely symbols used in solving the problem. For example, a
name may be the word, NUMBER. The compiler will interpret this word—
which is merely a particular set of symbols—as designating some part of the
problem to be solved. (This is similar in concept to a teacher telling a class,
«Take a number.” The class realizes that the word number will be referred to
again; it is a part oi the problem about to be described.) The compiler, upon
encountering this word, will use it to designate a particular storage location.
Thus the program writer needs no longer to worry about, for example, a specific
storage location, such as 1062. He needs only to remember that a storage location
called NUMBER is available. Whether the storage location is really 1062 or
1063 or some other is up to the compiler. The compiler will keep track of the
“bookkeeping.”’

Sometimes more than one number must be considered in a problem. Thus, the
statement

NUMBER (100)

means that 100 locations will be specified in the p.oblem at hand. Accordingly,
when the card shown in Fig. 2-13 is read by the card reader, the compiler will set
aside, in a manner similar to the problem above, 100 storage locations.

HUMBER (100X
i

0"0'0000000000000000000000000000000000000000000000000000000000000000000
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Fig. 2-13. Compiler Name Card: Sef aside 100 storage locations.
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A possible problem involves 100 students, each one of whom had his height,
age, and weight recorded. The following names may be used:

HEIGHT (100),
AGE (100),
WEIGHT (100).

For each of the three items the compiler would assign 100 storage spaces and
keep track of them. “Keeping track’ means that, whenever a reference is made to
one of the storage positions identified by the word HEIGHT, the compiler would
not mistake it for any other position such as one of the group identified by the
word AGE. It is the same idea as, in the example, ascigning the 100 values for
height to storage positions 1000, 1001, 1002 . .. 1099, the 100 values for age to
1100, 1101, 1102, ... 1199, and the 100 values for weight to 1200, 1201, ... 1299.
The difference is that there are no actual storage location numbers to worry about.
The compiler will allow references to the 100 locations called HEIGHT equiva-
lent to: “Add the contents of the first (or seventh, or seventy-sixth) location in
the group of 100 called HEIGHT.”

An Addition Program

The following paragraphs show how a program for adding six numbers and
storing the answer may be written.
First, the names:

NUMBER (6),
ANSWER (1);

instruct the compiler to set aside six locations, which will be referred to in the
program as NUMBER, and to set aside one location referred to as ANSWER.

NotEe. The name ANSWER (1), listed above, can be written simply as ANSWER, it
being unnecessary to designate a single location. That is, the compiler processes a name
as if it pertained to one location unless otherwise specified. The use of the (1), however, does
not cause difficulty—it is merely redundant. The same applies to the use of names in
statements that make up the program.

In reading names, the compiler interprets a comma as meaning: “There is one
more name in the list.”” The semicolon, on the other hand, is understood to mean:
¢“There are no more names; the next item will be part of the program.”

Second, the statement: ‘

NUMBER [1] + NUMBER [2] + NUMBER [3] + NUMBER [4] + NUMBER (5]
NUMBER [6] — ANSWER (1].

This means that whatever is in the first location called NUMBER is added to
whatever is in the second location called NUMBER, etc., and the sum is finally
placed in the place called ANSWER.

Nore. In an array of numbers, it is advantageous to refer to the first number as 0;
the second, as 1; the third, as 2; etc. In attempting to describe the compiler without
introducing too many details, this text refers to the first number of an array as 1; the
second, as 2; ete.

The perio means: “This is the end of the statement.” The symbol —, of
course, is just another symbol such as a comma, 6, or A. It is understood by the




THE COMPUTER AND PROGRAMMING PROCEDURES 45

BER [1]+ NUMBER [2] + NUMBER [3] + NUMEER [4] -+ NUMBER [S5]+
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Fig. 2-14. Compiler Statement Cards
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compiler to mean: “Put whatever is on the left side of the arrow into the location
designated on the right side.” (Notice how much this method of writing resembles
our usual day-to-day writing.)

The two cards shown in Fig. 2-14 contain a statement of the problem. When
they are entered into the storage unit by the card reader, as before, the compiler
will interpret this set of symbols and, by #self, produce instructions such as those
listed for the problem discussed in Part IT of this chapterunder “‘Programming for
Addition.”

As programs are prepared for the compiler, it will be seen that there is more
than one way of writing statements for solving a problem. In this sense there is
no one “right” way of writing statements. There is, of course, a “‘best” way,
depending on whether or not factors such as the programmer’s time or computer
operation time need to be considered.

A Program Involving Multiplication, Addition, and Division

Consider another problem: Find the areas of four rectangles the sides of which
are given. Store the value for each area in a separate position. Add all the areas
and divide by 4 to obtain the average. Finally, store the average value thus
obtained.

First, the names:

SIDE (4),
OTHER SIDE (4),
AREA (4),
AVERAGE (1),
HOLD (1),
TOTAL = 4;

will be entered into the computer on the card shown in Fig. 2-15.

As before, the compiler will set aside four locations to accommodate one side
for each rectangle, four locations for the other side of each rectangle, four loca-
tions for the four areas, one location for the average, and one location called
HOLD. (The names can be listed in any order. Their sequence is independent of
their individual use in the statements which follow.) The location known as
HOLD (1) (it can, of course, be called anything else) is used to “hold” the sum
while preparing to obtain the average by dividing by 4. The location called
TOTAL will have the number 4 stored in it.

Note. At this point, it may be of interest to get a glimpse of the compiler action. The
compiler reads the symbols from left to right across successive cards and obtains its
internal translatory instructions from the sequence of symbols it finds. For example,
whenever alphabetic characters are found to the right of a comma and to the left of an
equal sign (in this case, the word TOTAL), the location designated by these alphabetic
characters has put into it the quantity found to the right of the equal sign (in this case,
4). In like manner, symbols between commas, such as, AREA (4), are interpreted as storage
locations, provided no semicolon has yet been read. Symbols between a comma and a
semicolon are interpreted as the last storage location in the list. These examples merely
illustrate the procedure—in general, the compiler knows what to do according to rules
that were originally programmed into it and which in turn are based on particular com-
binations of pairs of symbols as they appear in the sequence that, starting from the be-
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Fig. 2-15. Compiler Name Card: Compute the areas for four rectangles and find the average.

ginning, constitutes the program. As in any language, the punctuation helps to make the
meaning clear.

Second, the statements:

The program listed below has explanatory remarks. Again, these statements
would be punched on cards and entered into the computer through the card
reader. Note that in writing statements square brackets [ ] are used to indicate
particular values within a group specified by name.

Statements Explanatory remarks

SIDE [1] X OTHER SIDE [1] —» AREA (1], Obtain area of first rectangle. (The
symbol X means multiply.)

SIDE [2] X OTHER SIDE 2] —» AREA [2], Obtain area of second rectangle.

SIDE (3] X OTHER SIDE (3] — AREA (3], Obtain area of third rectangle.

SIDE [4] X OTHER SIDE [4] » AREA 4], Obtain area of fourth rectangle.

AREA [1] + AREA [2] + AREA [3] + AREA [4] — Obtain sum of the four rectangles

HOLD (1], and store sum teraporarily in loca-

tion called HOLD [1].

HOLD [1]/TOTAL — AVERAGE (1]. Divide the sum (HOLD [1]) by 4

(TOTAL) and put result in loca-
tion called AVERAGE [1]. (The
symbol / means divide.)

Consolidating Repetitive Steps

Although the above steps are simple, it is time-consuming to write them; this
would be especially so if, instead of 4 rectangles, there were 400 rectangles.




48

COMPUTER ORIENTED MATHEMATICS

The compiler has been developed so that the repetitive steps can be consolidated.
This can be described by considering the idea of subscripts, so often usad in
mathematics. The symbol X; indicates that, whatever is represented by X, it
has several values; the 7 refers to the fact that a particular value of X may now
be designated and that later another value of X may be designated; and so on.
For example, if ¥ equals the sum of ten consecutive values of the expression

(azx + b), where a and b are constants, this can be written as:
=10

Y = ,;1 (az; +b).

Here the Greek letter D, called Sigma, means “obtain the sum’ and refers to the
sum of the ten values of the expression ( + b) developed by using different
values of z, starting with the value refer ... to as No. 1 and ending with the
value referred to as No. 10.

It is often the case that a procedure starts with a value and proceeds one-by-
one until the last one is accounted for. A previous example was of this kind.

In the example above the “first’”’ SIDE is multiplied by the “first” OTHER
SIDE and the result is placed in the “first” AREA. Then the ‘“‘second” SIDE is
multiplied by the “second” OTHER SIDE and the result is placed in the “sec-
ond” AREA. That is, the process is “stepping” through three separate parts of
storage, as follows: (1) starting with the first one, (2) step one at a time; (3) do it
four times. These three items can be written as follows:

1 1 4
/ 7 N
Start with Size How many values to
this one of be considered?
(first) step 4)
1

In like manner, 1 (2) 25 means (1) start with the first one, (2) step two at a time,
(3) continue until 25 values have been considered. (Even if it was skipped it was
considered.) This involves the first, third, fifth, seventh, etc., up to the twenty-
fifth value, or 13 values in all, describing how ¢ as a subscript, as in X, is to be
treated. In the statements below, ¢ is written as the upper-case I and is sometimes
called an index. When u-ed in writing a program, the value of I precedes the
other steps in order to tell the compiler in advance what to expec’ ™ ie problem
involving the rectangles is written below, using indexing.

Names:

SIDE (4),
OTHER SIDE (4),
AREA (4),
AVERAGE (1),
HOLD (1),
TOTAL = 4;
Statements:

I=1(Q)4

{SIDE (I} X OTHER SIDE [I] — AREA [I},},
AREA [1] 4+ AREA [2] + AREA [3] + AREA {4] — HOLD [1},
HOLD [1]/TOTAL — AVERAGE [1}] ..
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The compiler has been developed so that the repetitive steps can be consolidated.
This can be described hy considering the idea of subscripts, so often used in
mathematics. The symbol X; indicates that, whatever is represented by X, it
has several values; the 7 refers to the fact that a particular value of X may now
be designated and that later another value of X may be designated; and so on.
For example, if ¥ equuls the sum of ten consecutive values of the expression
(axz + b), where a and b are constants, this can be written as:
2==10

y = 2, (az; +b).

i=1
Here the Greek letter Y, called Sigma, means “obtain the sum’ and refers to the
sum of the ten values of the expression (az + b) developed by using different
values of z, starting with the value referred to as No. 1 and ending with the
value referred to as No. 10.

Tt is often the case that a procedure starts with a value and proceeds one-by-
one until the last one is accounted for. A previous example was of this kind.

In the example above the “first’” SIDE is multiplied by the “first” OTHER
SIDE and the result is placed in the “first” AREA. Then the “second” SIDE is
multiplied by the “second” OTHER SIDE and the result is placed in the “sec-
ond” AREA. That is, the process is “stepping”’ through three separate parts of
storage, asfollows: (1) starting with the first one, (2) step one at a time; (3) do it
four times. These three items can be written as follows:

1 1) 4
7/ T N
Start with  Size How many values to
this one of be considered?
(first) step 4)
@

In like manner, 1 (2) 25 means (1) start with the first one, (2) step fwo at a time,

(3) continue until 25 values have been considered. (Even if it was skipped it was

considered.) This involves the first, third, fifth, seventh, etc., up to the ‘twenty--
fifth value, or 13 values in all, describing how 7 as a subseript, as in X, is to be

treated. In the statements below, ¢ is written as the upper-case I and is sometimes

called an index. When used in writing a program, the value of I precedes the

other steps in order to tell the compiler in advance what to expect. The problem

involving the rectangles is written below, using indexing.

Names:

SIDE (4),
OTHER SIDE (4),
AREA (4),
AVERAGE (1),
HOLD (1),
TOTAL = 4;
Statements:

I=1Q)4 _

(SIDE [I] X OTHER SIDE [I] — AREA [I],},
AREA [1] + AREA [2] + AREA [3] + AREA [4] » HOLD i),
HOLD [1]/TOTAL — AVERAGE [1] ..
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/

The names are the same as before. There are two differences in the caleulation
of the areas. First, the cyclic nature of the procedure is specified by I = 1 (1) 4.
Second, the part of the process which is to be repeated according tv I is enclosed
in braces, { }. These are simply symbols which the compiler interprets as
follows: “The statement inside the braces is going to be repeated in a manner
specified by the value of I.” Parentheses, if employed within the braces, are used
in th~ usual manner to enclose an operation.

The symbols corresponding to {, }, [, ], and others, are not available on the
standard keypunch keyboard, but can be provided just as the symbols (, ), and /
are provided. In some computer laboratories such symbols are used, and for
this discussion the COMPIAC installation is assumed to have this capability.

The card in Fig. 2-16 illustrates the kinds of codes which could be used to
indicate these symbols. It should be pointed out that the symbol for multiply,
X, is not the same as the letter » in the alphabet.

Still another refinement is possible by considering, again, the symbol —.
This means, as stated above: “Put whatever is on the left side of the arrow in
the location on the right side.” Suppose the statement is as follows:

ANSWEX: [1] + RESULT [t] —» RESULT [1].

This weculd be interpreted by the compiler, on a given cycle of a repetitive
sequence, as follows: “Add the quantity in the location called ANSWER [1]
to the quantity in the location called RESULT [1] and put this sum back into
the location called RESULT [1].” In the example it would have been possible

1 {3 + - X/ S e >
i i
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to accumulate, at each step, the separate areas in location HOLD [1], rather
than to put each area in its own location and then finally to accumulate in
HOLD {i]. This would be written as follows:

I=1(@)4

{HOLD [1] + SIDE [I] X OTHER SIDE (] — HOLD [1],},
In other words, whatever is in HOLD [1] is added to the product of SIDE [I] X
OTHLER SIDE [I] and, according to the arrow, put back in HOLD [1] again.
Now, of course, HOLD [1] contains what it originally held, plus the product.

This loop is continued according to the value of I, as before. Of course, to

start this loop it is necessary to be sure that HOLD [1] is zero at the beginning—
that is, cleared of other numbers and ready to accept the accumulation. This can
be accomplished by simply putting zero into HOLD [1] to start with, as shown
below.

Names:

SIDE (4),
OTHER SIDE (4),
AVERAGE (1),
HOLD (1),
TOTAL = 4;
Statements:

0 — HOLD [1},

I=1(@)4

{HOLD [1] + SIDE [I] X OTHER SIDE [I] — HOLD [1],},
HOLD [1}/TOTAL — AVERAGE [1]..

Nore. AREA (4) is no longer needed, since accumulations will be performed in HOLD.

Computer Punctuation

Before developing additional parts of the compiler language a point should be
emphasized. The language discussed consists of statements separated by punctua-
tion marks in a way similar to the statements in English. The rules of compiler
language are more rigid, however, than those of English; in compiler lenguage
only certain types of statements are acceptable, and the proper use of punctuation
is necessary, as shown below. .

The comma is used to separate (1) one name from the next and (2) one program
statement from the next. -

The semicolon is used to signify the end of the names.

The colon has two uses:

1. To separate a group of words, as, for example:

FIRST PART OF ANSWER:

I=1(1)4

{SIDE [I] X OTHER SIDE [I] — AREA (1]},
This means that the programmer has chosen to separate the problem into parts;
thus, the statements following the colon are designed to produce what he has
chosen to call FIRST PART OF ANSWER. The symbols or words preceding
the colon constitute a title or label that identifies the group of statements
appearing after the colon.
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2 The colon is used in making & comparison and selecting alternatives accord-
ingly. For example, a preblem may take one of two directions, depending on the
relative size of two numbers, 4 and B, such that if A is larger, a calculation
called REAL ROOTS is performed; otherwise, if B is larger, a calculation called
IMAGINARY ROCTS is performed. This is written as follows and illustrates
the second use of the colon:

A > B: REAL ROOTS. IMAGINARY ROOTS.

IMAGINARY ROOTS:
STATEMENT,

STATEMENT,
STATEMENT.

REAL ROOTS:
STATEMENT,
STATEMENT,
STATEMENT.

The compiler will interpret the above as follows: “If the value 4 is greater than
the value B, go to the part of the problem entitled REAL ROOTS and continue
from that point. If A is not larger than B, go to the part of the problemn en-
titled TMAGINARY ROOTS and continue from that point.”

The comparison statements always take the same form—the ‘“True” alterna-
tive is immediately after the comparison, the “False” alternative is in the second
position after the comparison. It does not matter where the two other parts of
the program are located: the compiler will locate the proper part and continue.

In addition to the “greater than” symbol, >, comparison can be based on the
“Jess than” symbol, <, and the “equal” symbol, =.

The period is used in two ways:

1. The single period signifies that a part of the program has ended and the
next part may be out of the usual sequence. For example, if A were greater thanB,
the REAL ROOTS part would have been done, but the period after REAL
ROOTS indicates that the next part to be done is out of sequence; that is, the
IMAGINARY ROOTS part is skipped.

2. A double period means that the end of the program has been reached.

The explanation of these punctuation rules shows that they are not much
different from the usual use of the punctuation marks in writing ordinary Eng-
lish.

The following example demonstrates the use of punctuation rules: There are
100 pairs of numbers, corresponding to 100 figures, which include both squares
and rectangles. The first number of a given pair is one side of the figure, and
the second number of a given pair is the other side of the figure. Assume that
the numbers are presented in the following order, and that there s at least one
of each type of figure.

First number of first figure
Second number of first figure
First number of second figure
Second number of second figure
First number of third figure

Second number of third figure
ete. ete.
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ProsrLeM. Compute the perimeter of all figures; also, compute th.c area if the figure is
a square. Determine ;he average area for the figures that are squares.

The problem can be solved in more than one way. The particular progrem
shown below lists the necessary names followed by the parts of the problem.
There are seven distinct parts of this problem and they have the following titles.
SET CERTAIN VALUES
START OF PROBLEM
CALCULATE FOR SQUARES
CALCULATE FOR RECTANGLES
RETURN
GET AVERAGE FOR SQUARES
. STOP
Other words can be used for the titles. Each of the seven is marked by a colon.
Notice how the seven parts of the problem can be made to fit a flow diagram
(see Fig. 2-17). Also notice that it is possible to choose one’s own words and to
arrange the operations in much the same way as when a problem is written on
the blackboard or explained to another person.

NS o oo

Names Explanatory notes

NUMBER (200), This is the list of names, ending with a semicolon.
RECTANGLE PERIMETERS The names are of the same type as mentioned earlier.

(100), Some of the values of 100 will probably not be used,
SQUARE PERIMETERS (100), but they represent the maximum number possible. That
SQUARE AREAS (100), is, it is not known in advance how many squares there
AVERAGE FOR SQUARES (1), will be, but there will not be more than 100; thus, if
TOTAL SQUARES (1), 100 is used in the name list, it will be adequate.
SUM AREAS (1); TOTAL SQUARES is the name of a location that

will be reset to zero in preparing to count the squares.
(See statement below.)

Statements Explanatory notes
SET CERTAIN VALUES: 1 — K — L means that K is set toequal 1, and then
1-K-—-L, L is set to equal K. As a result, K and L both are equal

0 — TOTAL SQUARES [1], tol.
K will be used to keep track of squares. L will be
used to keep track of rectangles.

START OF PROBLEM: The expression I = 1 (2) 199 is similar to that al-
I=1(2) 199 ready described. It means that whenever I is referred
{(NUMBER [I] — NUMBER to, a sequence of operations follows which, in this case,

[I 41} =0: starts with the first one and proceeds by steps of 2 until
CALCULATE FOR 199 is reached.

SQUARES. The first I corresponds to “the first number of the
CALCULATE FOR first figure”. The I + 1 corresponds to “the second

RECTANGLES. number of the first figure.”

I and I + 1 refer to pairs of numbers in the original
list of 100 pairs.

The braces, { }, enclose the statements to be per-
formed repetitively under the control of I. Note that
the closing brace is not reached until we arrive at
RETURN:} (see below).

The first statement within the braces is for deter-
mining whether the figure is a square, i.e., whether one

S




THE COMPUTER AND PROGRAMMING PROCEDURES 53

SET
1-K-L SELECT NEXT
0 — TOTAL VALUE OF I

SQUARES (1]
i Yes, Calcu-
\ late for 2(NUMBER (I}

NUMBER [I] Squares % + NUMBER (I + 1))

— NUMBER (I + 1} — SQUARE
=0? j

PERIMETERS [K]
No, Calculate

for S

Rectangles

NUMBER [7] X
number [I 4+ 1]
2(NUMBER (I} --» SQUARE
+ NUMBER (I + 1)) AREAS [K]
— RECTANGLE

PERIMETERS (L] l

K — TOTAL
SQUARES

1

hd

, ARE ALL
No, Return f NUMBERS

USED?

Yes, Get
Average for
Squares

SUM THE
AREAS OF
THE K

SQUARES

\

SUM OF AREAS/TOTAL SQUARES

Fig. 2-17. Flow Diagram of Square — AVERAGE FOR SQUATES

and Rectangle Problem
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Statements

CALCULATE FOR SQUARES:

2 X (NUMBER [I] +
NUMBER (I + 1))

— SQUARE PERIMETERS
(K],

NUMBER [I] X NUMBER
I+1] -

SQUARE AREAS [K],

K — TOTAL SQUARES [1]

K+ 1-K,

RETURN.

CALCULATE FOR
RECTANGLES:
2 X (NUMBER [I] +
NUMBER (I 4 1))
— RECTANGLE
PERIMETERS [L],
L+1->1L,
RETURN.

RETURN:},

GET AVERAGE FOR

SQUARES:

0 — SUM AREAS [1],

M =1 (1) TOTAL SQUARES

[1] (SQUARE AREAS [M] +
SUM AREAS [1]

- SUM AREAS [1},},

SUM AREAS [1]/TOTAL
SQUARES [1]

— AVERAGE FOR
SQUARES [1],

STOP.

Explanatory notes

side subtracted from the other side equals zero. If the
difference is zero, the figure is a square, and the next
operation is the part CALCULATE FOR SQUARES.

If the difference is not zero, the figure is a rectangle;
and the next operation is the part CALCULATE FOR
RECTANGLES.

The first statement obtains a perimeter for the first
figure and puts the result in the first (since K is now
equal to 1) location of the storage part reserved under
the name SQUARE PERIMETERS. The same applies
to the area put into the fi... "~eation of what was re-
served under the name SQUARE AREAS. (K is still 1
at this stage and is later increased to 2, for the next
time around.)

The remainder of the CALCULATE FOR
SQUARES part first records the value of K in the loca-
tion called TOTAL SQUARES. This will be needed to
obtain the average later on.

K is now increased by 1.

The last statement “sends” control to the place called
RETURN;, and then, because of the brace, }, to the
beginning of the cycle.

At this stage the value of I is adjusted by 2.

Notice that, regardless of the alternative, i.e., square
or rectangle, the last operation is to “send” the con-
trol to RETURN :. Thus, in either case, the direction
to return to the beginning of the cycle originates from
the same place and is signalled by the brace, }.

K and L are used in somewhat the same way as I,
except that it is not known in advance how many K’s
or L’s there will be. (Initially K and L were both set
equal to 1.) After each time that K or L are referred to
they will be increased by 1 (by the procedure
K 4+ 1 — K, instead of by the method used for I).

By the time this cycle has beeu repeated until I has
reached the value 199, a certain number (K) of perime-
ters and areas of squares will have been stored; also a
certain number (L) of perimeters of rectangles will have
been stored. When I reaches its limit, control will go
to the place to the right of the brace, }. A similar ex-
planation would apply to the CALCULATE FOR
RECTANGLES part.

In the part GET AVERAGE FOR SQUARES the
first action is to set the location called SUM AREAS
to zero. This is necessary prior to accumulating the
areas of the squares. As before, M is a value which,
when referred to in the repetitive operation to follow,
will start with the first one and increasce by steps of one,
up to and including TOTAL SQUARES. But TOTAL
SQUARES has already been set to the value of K,
which is the number of squares.

The statement in the braces, { }, accumulates the
areas of squares. This is done by adding the first area
(M = 1 initially) to SUM AREAS (initially reset to
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Statement Eaplanatory notes

zero) and putting the total back in SUM AREAS.

" For the next cycle, M = 2, and this second area isadded
to the first, and the sum put back where the first sum
had been, and so forth, until iv has been done as many
times as TOTAL SQUARES.

STOP:.. The double period indicates the end of the program.
Note. This program can also be terminated as follows:
AVERAGE FOR SQUARES [2], ...

Fig. 2-18 shows how some of the compiler instructions used in the above ex-
ample may be written on a standard form. From this the key-punch operator
punches the cards, which are then read into the computer with the data cards
needed in the computation.

The following example shows the program for obtaining the real roots for a
group of ten quadratic equations which have the form:

a2+ br+c=0

and in which all b’s and ¢’s are not equal to zero.

A (10),

B (10),

C (10),
DISCRIMINANT (1),
RESULT = -0,

FIRST ROOT (10),
SECOND ROOT (10),
SQUARE ROOT (1);

DETERMINE ROOTS:
I=1@Q)10
{BII1 X BlI] —4X (A1 X CU) — DISCRIMINANT (1],
DISCRIMINANT [1] < 0: NOT REAL. REAL.

NOT REAL: «
RESULT — FIRST ROOT [I] — SECOND ROOT (I},
RETURN.

REAL:
SQRT (DISCRIMINANT 1) —» SQUARE ROOT (1],
(—B [I] + SQUARE ROOT [1))/@2 X A [I]) — FIRST ROOT (1],
CIy/@Aix FIRST ROOT ([I}) — SECOND ROOT [I1,
RETURN.

RETURN:},

STOP.

STOP:..

Note 1. Although not previously defined, the compiler can be programmed so that
symbols such as SQRT, like SIN, COS, etc., will perform the proper operations upon the
quantity in parentheses immediately following, and locate the result as directed.

Notg 2. The compiler follows strict rules of order of arithmetic operations in that
multiplications and divisions take precedence over additions and subt.ractions, and that
operations of the same precedence level are performed from left to right. For example,
A + B/C, without a strict rule, could be interpreted as A + {B/C) or as (4 + B)/C.
Since division takes precedence over addition, A + B/C would be interpreted by the
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compiler as A + (B/C). In the case of the same precedence levei, such as A/B X C,
the compiler, going from left to right, would make this interpretation: (A/B)C. Of course,
parentheses can be used to eliminate ambiguity as in the REAL part of the above pro-
gram.

This procedure sets the starting value, step size and range of I. Then, within
the braces, the value of the discriminant is obtained. If it is less than zero, the
roots are not real, and the number —0 is put in the locations where the real
roots of that particular equation would have been placed. This value, —0, merely
indicates that the result was imaginary. It is, thus, distinguishable from any real
roots that might be computed. If the roots are real, the first one may be obtained
from the quadratic formula and the second one may be obtained by dividing the
known term C by the product of the first root and the coefficient of X2, That is,
if the roots are X and X:,

=B + VB — 4AC) (—B — VB — 4AC) _¢
24 24 A

XIXX2=(

and
X. = C/AX,.

The procedures for Taput and Output have not been described for the com-
piler language. For this discussion they are considered sufficiently similar to
those already mentioned in the part on machine language that they will not be
described.

References

The reader who is interested in further detail on the subject of compiler and
machine language programming should consult the references listed below,
which are identified in the Bibliography, Appendix C: 24, 29, 35¢, 35f, 35i, 39,
03, P2.

EXERCISES

1. Write COMPIAC compiler language instructions for solving the problems
described in Exercise 5, at the end of Part II of this chapter. Jn part 5 (a) use
the following names: INTEGERS (100) for data, and COUNT (1) for the loca-
tion of the number of nonzero elements. In part 5 (b), name the data NUMBERS
(50), and name the location for the greatest value GREATEST (1).

Hinr. Consider beginning and comparing the ‘“next” number with its successors
and if the “next”’ number is greater than some successor, exchange the pair.

2. (a) Write a set of compiler instructions that will direct COMPIAC to sum
the squares of the first 100 integers, that is:

12 4 22 + 32 4 ... + 100? (b) Write a compiler program that will set up a
loop to sum the first 50 factorials, that is:

14+124+123+ ... +1:2:3- ... -49-50.
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3. Have COMPIAC prepare a table of values of z and y for y = 2° using
integral values of z such that y < 10,000.

4. (a) Sum the first n terms of the arithmetic progression @, ¢ + d, @ + 2d,

. @ + (n — 1)d using arbitrarily selected values of a, d, and n. For this ex-

ercise, do not use the formula S, = g (a + L)’ where L stands for the last term

in the series. (b) Sum the first n terms of the geometric progression @, ar, ar?, . ..
ar~1 using arbitrarily selected values of a, r, and n. Do not use the formula:

_ a(r* — 1)
(r—1) -
5. Many of the series developed in calculus provide interesting material. Have

COMPIAC approximate the value of the following functions correct to the near-
est ten-thousandth.

Sn

<we=1+%+%+%+%”.
3 5 7
(b) sinm=m-—%+§_!—%+...
‘ 2 3 4
(c) e”=1+m+%+%+%+...

6. Write COMPIAC compiler programs for Exercises 6, 9, 15, 18, 19, and 20 at
the end of Chapter 1.
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Chapter 3

REPETITIVE PROCESSES
AND APPROXIMATIONS

Part |. Repetitive Processes

It was pointed out in the Introduction that a digital computer may be very
useful in solving problems, provided that the means of solution have been
properly organized and the procedures thus developed can take advantage of the
computer’s ability to perform operations rapidly and repetitively. This chapter
discusses some aspects of repetitive processes and shows how they can be used
in solving mathematical problems. More advanced examples of repetitive pro-
cesses are given in Chapter 4.

Norte. No attempt has been made in this book to prove the validity of the equations
used. If the reader desires rigorous proofs, he should consult the references listed on page
69. This also applies to parts of Chapter 4 and the Appendix.

Example 1. Multiplication by Repeated Addition

One way to multiply one nonzero number by another is to add successively the
multiplicand and subtract 1 from the multiplier for each addition. When the
result of the subtraction sequence reaches zero the process is finished, with the
product being equal to the final sum. As an example, use this method to multiply
12 by 5.

Multiplicand = 12 Multiplier =

Step number Sum Difference
0 = 00
1 0412 =12 b—-1=4
2 12 4+ 12 =24 4 —-1=3
3 24 4 12 = 36 3-1=2
4 36 4+ 12 = 48 2-1=1
b 48 + 12 = 60 1-1=20

An advantage of this method is that no multiplication table need be learned.
A disidvantage is that the process is slow. For example, in order to multiply
144 by 265, either 144 additions of 265 or 265 additions of 144 are needed, de-
pending on which number is selected as the multiplier. Figure 3-1 shows a flow
diagram for multiplying by the repeated addition process.

59
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SET SUM
TO ZERO

ADD
MULTIPLICAND
TO SUM

SUBTRACT
ONE FROM
MULTIPLIER

REPLACE
MULTIPLIER
WITH
DIFFERENCE

IS
DIFFERENCE
ZERO?

Yes

RECORD
PRODUCT

Fig. 3-1. Addition Process for Multiplication

No |
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Example 2. Multiplication by Repeated Addition and Shifting

A faster method for multiplying is the repeated addition and shifting process.
It also does not require knowledge of the multiplication table. In using this
method, begin, as in Example 1, by subtracting 1 from the multiplier and adding
the multiplicand. However, when the right-hand digit of the remainder becomes
zero, start subtracting 10 from the multiplier and adding 10 times the mul-
tiplicand to the sum. After the tens’ digit of the multiplier becomes zero, begin
subtracting 100 from the multiplier and adding 100 times the multiplicand. Con-
tinue this process until all the digits of the multiplier have been reduced to zero.
For example, to multiply 324 by 123 one would proceed as follows:

Step number Sum Difference
0 000 123
1 4324 -1

324 122

2 +324 -1
648 121

3 +324 -1
972 120

4 +4-324* —1%*
4212 110

5 +324* —~1*
7452 100

6 +4-324+* —1**
39852 000

In Steps 4-6 the asterisks indicate the multiplications by 10 referred to above.
Notice that the same effect as multiplying by 10 can be obtained by shifting
the digits one place to the left. The dotted line segments at the end of Steps 3
and 5 indicate where shifts are to be made. The above method requires only 6
additions as compared to the 123 additions that would be necessary if the pre-
vious method were used. Fig. 3-2 shows a flow diagram for the repeated addi-
tion and shifting method.

On page 63 is a comparison of the steps needed to multiply 23 by 12 by the
two processes described above as well as the ordinary method for multiply-
ing (Method ITI).

Notice that the example showing the ordinary method for multiplying (Method
III) is not written in the usual manner. However, if a flow diagram (as previously
shown for Methods I and II) were made for this method, it would be necessary
to follow a procedure similar to the one shown above. The “00” may be thought
of as representing a clean sheet of paper; the first addition, as writing down the
multiplicand.

In terms of speed, Method II is superior to Method I; in turn, Method III is

,
!
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SET P EQUAL
TO ONE P = the digit position
in the multiplier,
starting at the

IS P GREATER
THAN NUMBER
OF DIGITS IN
MULTIPLIER?

No
.

DOES MULTIPLIER
DIGIT EQUAL
ZERO AT P?

Yes

SHIFT ADD

l\odgglgf k(lyngND MULTIPLICAND
TO SUM

TO LEFT

1

ADD ONE SUBTRACT ONE
TO P FROM MULTIPLIER
AT P

Fig. 3-2. Addition Process for Multiplication Using Digit Positions
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Metnod I Method II Method III

00 12 00 12 00
+ 23 -1 -+ 23 -1 + 23

23 11 23 11 23
+ 23 -1 +23 -1 X 2

46 10 46 10 46
+ 23 -1 +23* -~1* +23* (10 X 23)

69 276 00 276
+ 23

92
+ 23

.

115
4+ 23

138
4+ 23

161
4+ 23

——

184
4+ 23

207
4+ 23

e

230
+ 23

253
+ 23

276

superior to Method II. However, each succeeding method requires more complex
logical operations. For example, the flow diagram for Method IT is more complex
than the one for Method I. The number of additions in Method I is equal to the
value of the multiplier (12). In Method II, the number of additions is equal to
the sum of the digits of the multiplier (1 + 2 = 3). In Method IIT the number
of additions is equal to the number of digits in the multiplier (2).

It is worth noting that Method II, repeated addition and shifting, can be
applied to make a useful multiplying device out of any desk adding machine
equipped with a repeat key. Since most desk adding machines can also subtract,
they can be made to divide, by the procedure discussed below.

Example 3. Division by Repeated Subtraction

It is possible to divide one number by another by successively subtracting the
divisor from the dividend and counting the number of subtractions necessary to
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reduce the remainder to a number smaller than the divisor. For example, to
divide 24 by 6 proceed as follows:

Number of Is remainder
subtractions  smaller than divisor?

24
-6

—e

18
- 6

—treaase

12
- 6

————

6
- 6

————

0 Yes

Thus, in this case, 24 + 6 = 4, with no remainder.
To divide 27 by 5 do the following:

Number of Is remainder
subtractions  smaller than divisor?

Yes

Thus 27 <+ 5 = 5, with a remainder of 2.

Fig. 3-3 shows a flow diagram for division by the repeated subtraction process.

A question to ask at this point might be, What happens if zero is used as a
divisor? The answer is, of course, that the process as diagrammed will continue
going through the boxes labeled SUBTRACT DIVISOR FROM DIVIDEND,
IS DIVISOR LARGER THAN DIFFERENCE?, and ADD 1 TO NUMBER
OF SUBTRACTIONS without stopping, since the answer to the last question
will never be Yes (see Fig. 3-3). This demonstrates the reason for excluding
division by zero from our arithmetic. It also points out a difficulty in analyzing
problems to be solved by computers: since computers follow a sequence of steps
without deviating, it is the responsibility of the programmer or problem analyst
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START

SELECT A
DIVIDEND AND
A DIVISOR

SET NUMBER OF
SUBTRACTIONS
TO ZERO

&
e

R

SUBTRACT
DIVISOR FROM
DIVIDEND

1s DIVISOR No ADD ONE TO NUMBER
OF SUBTRACTIONS

LARGER THAN
DIFFERENCE? PERFORMED SO FAR

Yes

N

RECORD QUOTIENT
(NUMBER OF
SUBTRACTIONS)

RECORD
REMAINDER
(FINAL
DIFFERENCE)

Fig. 3-3. Division Process
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to ascertain that no elements exist which might lead to an unending repetition
of the same set of steps. Thic kind of nonstop repetition is sometimes referred to
as being caught in a loop, and care must be exercised to prevent its occurrence.

Example 4. Finding All the Prime Factors of an Integer

Suppose it is desired to find the prime factors of 210. Assume also that a list
of prime numbers is available. The process, or algorithm, to accomplish this is
as follows:

Notke. For a given integer, the integer itself and 1 are not considered factors.

1. Try the first (next) prime, 2, as a factor.
It is a factor (210 <+ 2 = 105).
2. Try 2 again as a factor.
It is not a factor (105 + 2 = 52 4+ 1 remainder).
. Try the next prime, 3.
It is a factor (105 =+ 3 = 35).
. Try 3 again as a factor.
It is not a factor (85 + 3 = 11 + 2 remainder).
. Try the next prime, 5.
It is a factor (35 + 5 = 7).
6. Try 5 again as a factor.
It is not a factor (7 =+ 5 = 1 + 2 remainder).
7. Try the next prime, 7.
It is a factor (7 = 7 = 1).
Since the quotient is 1, there are no more prime factors, and the process is
completed. This process can be diagrammed as follows:

2 (210
3 [105
5 B
7
1
Therefore, 210 = 2-3-5-7.

Computers can be programmed to generate prime numbers, but for the
purposes of this illustration, it is assumed that a table of prime numbers, to
which the computer can refer, is in storage.

A flow diagram for most of the procedure might be as shown in Fig. 3-4.

NotE. The next prime can be the first prime as far as the computer is concerned when
it begins the program. Assume that this selection process excludes the integer itself if it
is also the next prime. After that it will change from 2 to 3 to 5, etc., on each loop.

Example 5. Finding the Greatest Commeon Divisor of Two Integers

Euclid, the famous Greek mathematicia\n,' is responsible for this algorithm.
It involves repeated division:
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SELECT AN
INTEGER

SELECT
NEXT
PRIME

DIVIDE THIS
INTEGER BY
THIS PRIME

/ EXCLUDING THIS
Yes INTEGER ITSELF,

IS THIS PRIME
A FACTOR?

IS QUOTIENT
RECORD EQUAL TO ONE No
FACTOR AND IS REMAINDER
EQUAL TO ZERO?
Yes
IS QUOTIENT \
EQUAL TO ONE Yes ,
AND IS REMAINDER
EQUAL TO ZERO?
No
REPLACE
DIVIDEND ggg‘l%gM
BY QUOTIENT

Fig. 3-4. Finding All the Prime Factors of an Integer
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Euclid’s algorithm is as follows:

1. Divide the larger integer, Ro, by the smaller integer, R, *o obtain a

remainder, R, .

2. Divide R; by R, and obtain a remainder, R;.

3. Divide R: by R; and obtain a remainder, R, .

4. Continue until any remainder equals zero.
The last divisor just used is the greatest common divisor.

Suppose the greatest common divisor of 24 and 36 is wanted. Then, using
Euclid’s algorithm:

1
24 36
2% 2
12 P4

24
0

The greatest common divisor is 12.
Find the greatest common divisor of 17 and 2, and of 11 and 3:

8 3
2 [17 301
16
1

9
2

O b TOI b

Here the greatest common divisor, in each case, is 1, as might be expected when
two primes are used.

The algorithm for finding the greatest common divisor can be expressed as
follows:

&
R: [Ro

x
R.

That is, each cyele can be represented by:
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where # is reluted to the number of the cycle and, of course, increases as the
process continues. When the remainder, R..1, becomes zero, the greatest
common divisor will have been found and it is R.411 = R. . Specifically, on
the fourth cycle, the above would be:

Qs Q4

Bi R equals R4 By
La Ta
R R;

If Ruy1, or Ray for this cycle is zero, the greatest common divisor is Ry =
R.,or Ry = R.. The flow diagram for this algorithm is shown in Fig. 3-5.

Example 6. Finding the Greatest Common Divisor of More Than Two
Integers

Knowing Euclid’s algorithm for finding the greatest common divisor of two
integers, it is easy to apply the technique to more than two integers. Suppose
the greatest common divisor of more than two integers is desired; for example,
determine the greatest common divisor of 36; 114; 570; and 33. Choose any pair
to begin with:

36 and 114 3
36 [114

108 6

"6 36

36

0

The greatest common divisor of this pair is 6. Use 6 and the next integer and
continue as above:

95
6 and 570 6 [570

570
0
The greatest common divisor is still 6. Use 6 and the next integer and continue:
5
6 and 33 6 33
30 2
GCD— 3 [(_‘)
6
0

Therefore, 3 is the greatest common divisor of 36; 114; 570; and 33.

References

Further information on the processes discussed in the foregoing text can be
found in the following references, which are identified in the Bibliography,
Appendix C: 16, 71, P6.
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SELECT TWO INTEGERS
GREATER THAN ZERO
Ry AND Ry, WHERE Ry,
IS GREATER THAN Ry

SET VALUE OF N
(A CYCLE COUNT)
EQUAL TC ONE

DIVIDE Ry BY By

IS THE REMAINDER, Ry,
EQUAL TO ZERO?

No Yes
ADD1TO N G.C.D. EQUALS
By
. PROBLEM
Fig. 3-5. Finding the Greatest Common Divisor SOLVED

of Two Integers
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EXERCISES

Exercises Based on Examples 1, 2, and 3

1. Use the method shown in Example 2 to multiply (a) 16 X 42; (b) 123 X 123;
(c) 421 X 342.

2 What is the minimum number of additions necessary to multiply 197 X 236
by the method of (a) Example 1? (b) Example 2?

3. In Example 2 three methods are shown for doing the same problem. What
is the effect on the methods if the numbers to be multiplied contain zeros? For
example, how does (a) 1768 X 2496 compare with multiplications such as
(b) 1768 X 2006, or (c) 1708 X 20067

4. Code Example 1 in machine language as shown in Chapter 2.

5. Consider the problem of coding Example 2 in machine language. What
are some of the “tricky”’ sequences of instructions that would have to be written?
Can you think of some additions to the operations that COMPIAC can perform
that would make the operations more convenient to program?

6. Use the method shown in Example 3 for (a) 210 + 30; (b) 152 + 41.

7 Does the subtraction method of division work for 42 - —5? Extend the
flow diagram for Example 3 so that signed numbers may be used.

8. In Example 2 a “fast”” method (Method III) of multiplication is illustrated.
Draw a flow diagram for this method.

Exercises Based on Examples 4, 5, and 6

9. Is 1237 a prime? Draw a flow diagram showing how an organized itera-
tive approach leads to a decision.

10. Find the prime factors of (a) 525; (b) 264; (c) 265; (d) 267.

11. In searching for the divisors of 1237, all successive primes less than 1237
could be used. This is a waste of time, however. Starting with 2, 3, 5, 7, etc.,
what is the criterion for terminating the search and being confident that the
number is prime? Incorporate this feature into the flow diagram for Exercise 1.

12. Find the greatest common divisor of (a) 32 and 56; (b) 28 and 65; (c) 114
and 34; (d) 108, 118, and 30.

13. In Exercise 12 (d), does the selection of the first pair affect the complexity
of the computation?

ANSWERS

2. (a) 197; (b) 11.

5. One of the “tricky” sequences would be a method of shifting the digits to
the left which is the same as multiplying by 10, and doing this at the correct
time. Some additional operation codes that would increase the capability of
COMPIAC are multiply, divide, shift, etc. Computers can perform other basic
operations than those discussed in Chapter 2.

7. No.

9. Yes.

10. (a) 3-5-5-7; (b) 2-2-2-3-11; (¢) 5-53; (d) prime.
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11. The search can be terminated when all the primes (p) not exceeding the
square root of the number (n) have been used as trial divisors. If there has been
no division without a remainder, n is prime.

12. (a) 8; (b) 1; (c) 2;(d) 2.

Part il. Approximations

Before discussing the use of repetitive processes in mathematical calculations,
it is important to mention a few things about approximation. Life, in general, is
o matter of making approximations. This is particularly true of making measure-
ments. Measurements of physical objects depend on the comparison of the
object with some sort of scale—a ruler or a micrometer, for example—either
directly or indirectly. If an object is measured with a ruler divided into tenths
of an inch, the result will be accurate only to the nearest tenth of an inch,
although some good approximating can be done to less than one-tenth of an
inch. For example, if measurement with such a ruler results in the value 3.4, the
exact value is probably somewhere in the range between 3.35 and 3.45. The 3.4
is merely an approximation of the true value. In other words, it is a number
which approximates another number. An important question is thus introduced:
If in calculating, approximations of numbers are used instead of the exact num-
bers, how does this affect the result?

In using computers, it is very important to consider the errors that may occur
in the result of a calculation when numbers which approximate other numbers
are used. This is especially pertinent to the use of computers because problems
solved by computers are usually very long and involve very large numbers of

 steps. Otherwise, they would not be solved by computers in the first place. Such

problems, then, may involve thousands of arithmetic steps, and when numbers
that are not exact are used, the total build-up of small errors may cause a
serious error in the result.

Consider the following three numbers.

r 3.1416 3.14

These three numbers are different, and either 3.14 or 3.1416 might be used to
represent 7 in calculating, depending on practical considerations. In other
words, 3.14 and 3.1416 are numbers which approximate . Other examples are
the replacement of /2, v/3, 3, % with numbers such as 1.414, 1.732, 0.33333334,
0.667, respectively. The choice of a number to replace another number depends
on how many digits are required in the calculation process to insure the required
accuracy in the result.

A given digital computer can accept numbers up to a certain maximum size
only. This maximum may be eight, ten, or some other number of digits, depending
on the particular computer.

Accordingly, if digital methods are used for calculating and the arithmetic
register of the computer can accommodate only ten digits, some fractions must
be approximated. Using decimals, § might be approximated either by

R T R T

AR R AN o >

S o
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0.3333333333 or by 0.3333333334. Both figures are only slightly different from
1 but the difference is important and may lead to difficulty.

To show what problems may develop when numbers that are slightly in-
accurate are used, suppose an imaginary computer can handle only two decimal
digits. In this case either 0.33 or 0.34 may be used as an approximation of 3.

1 100 33 99
Now§ = %—O,ando.33 = 100 — 300°
Thus 1 and 0.33 differ by 333 However, using the same procedure, 3 and 0.34
are seen to differ by 525; so 0.33 is closer to § than is 0.34.

Here is another example. One two-digit approximation of £ is 0.66; another

is 0.67. Which is better?

2 200 198 201
3= 300" 0.66—3-0—0, 0.67—§6-0.
Thus 0.67 is a better approximation of % than is 0.66.

To better understand some of the difficulties in using approximations, add 3
to itself, and also add the “best” two-digit approximation for §, as above, to itself.
Compare the result:

+

Now 0.33 differs from 1 by g5, but 0.66 differs from 3 by z3v. Thus, the addition
of the “best”” approximations of  to itself, does not produce the “best’’ approxi-
mation of 3.

Notice the effect if the process is continued one more step:

= 2 with  0.33 4 0.33 = 0.66.

ool
ool

= 1.0 but 0.66 + 0.33 = 0.99.

Wl w

2,1
3t3~

Now, 0.99 is used to approximate 1.0, and the difference is T4¢ = z99. Lhis
result is a poorer approximation than the original one, and the error is building
up as the process continues.

Multiply 3 X % = 3. One approximation would be 0.33 X 0.33 = 0.1089.
The result, 0.1089, is a four-digit number. Suppose it is possible to retain only
two-digit numbers in the imaginary computer after the product is formed. There
are two choices: (1) Discard the last two digits of the product 0.1089 and use
0.10 as the approximation of the product of 5 X § = 5. (Such a process is called
truncation, in this case from four digits to two digits.) (2) Round off the number
0.1029 to the number 0.11. In both cases new approximations are being intro-
duced.

If 0.10 is used as the approximate product, the difference is 55 because

= and .]_'.=!'_Q,

10 90’ o 90

However, if 0.11 is used as the approximate product, the difference is only 3§
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et =

because - L
_nm _92_ 1 100

100 900’ 9 900°

This is smaller than 35, the difference between § and its approximation, 0.33.

Thus, it appears that some repetitive calculating with approximations will
increase the error and some will decrease the error. In some instances when the
automatic digital computer is used in calculating with approximations, a detailed
analysis of the kinds of errors that may possibly occur is necessary in preparing
the problem for the machine. If it is known what kind of errors are likely to
oceur, it is usually possible to arrange the calculating procedure in such a way
that the total error in the result remains smaller than some prescribed value. In
other words, even though there may be approximation errors in the calculations,
the results will still be useful, since the total error will not exceed some specified
limit.

All this is designed to point out some of the difficulties that arise from the
necessity of using approximations, particularly in repetitive computation. A full
discussion of approximation, truncation, and round-off is beyond the scope of
this publication, but it is an important aspect of numerical analysis.

The following paragraphs show how the effects of using approximations can
be determined. Suppose the value 0.001 is recorded in an operation and it is
known that the value is not exact—it may vary by 0.0005 in either direction,
larger or smaller. This may be expressed as 0.001 = 0.0005 or as 0.001 (5). Either
expression defines the range within which the true value lies. In the above case
the upper limit of the range is 0.0015, and the lower limit is 0.0005.

For convenience in manipulation, the range may be expressed as follows.

0.0015
0.0005

Consider the problem of adding 0.001(5) to 0.035(2). This, also, can be ex-

pressed as follows. )

0.0015 + 0.0352 0.0367

00005 = |00348| |00353

We see by this example that if one adds the number 0.001 (which may be in

error by as much as 5 in the fourth place to the right of the decimal) to the num-
ber 0.035 (which may be in error by as much as 2 in the fourth place to the
right of the decimal), the result may be any where in the range of 0.0353 to
0.0367. Consequently, in this kind of example, one should attach only limited
significance to the result beyond the second decimal place because the answer is
“geeurate’” to two places only.

The error is even more pronounced in multiplication, as shown by the fol-
lowing example in which the number 0.001(5) is multiplied by the number

0.035(2).
0.0015 % 0.0352 0.00005280
0.0005_ 0.0348 0.00001740

0.11 and
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In other words, the true value of the product is somewhere between 0.00001740
and 0.00005280.

If one had assumed in a given problem that the original values (0.001 and 0.035,
for example) were exact, when actually they were subject to variations in the
fourth place to the right of the decimal point by 5 and by 2 respectively, the re-
sulting error might become very important, since the “‘exact’’ result equals
0.000035.

The paragraphs above have suggested certain difficulties which may arise as
a consequence of using certain numbers as approximations for other numbers.
On the other hand, approximations are required. As stated before, the develop-
ment and use of such numbers as are used to represent other numbers is a very
important part of numerical analysis, because essentially ““the answer is no better
than the numbers which were used to produce it.”

References

For more information on the subject of approximations, consult the following
references, which are identified in the Bibliography, Appendix C: 21, 32, 34, 47,
52, 56, 60.

EXERCISES

1. Find the measures of the area of a circle with a radius of 21 units by using:
(a) 3%, and (b) 3.14 as approximations of 7. (¢) What is the difference be-
tween the two measures of area?

2. One approximation for = is 3.14159265. What is the difference between
3.14159265 and 3% approximated to the same number of decimal places?

3. As explained in Part IT of Chapter 3, what is the upper and lower limit of
the range indicated by the following expression: 0.004(5)?

4. Find the upper and lower limits of the following addition and subtraction
problems:

(a) 0.003(5) + 0.024(3)

(b) 0.537(2) + 0.423(4)

(c) 1.000(5) — 0.987(2) =

HinT: Are the upper and lower limits found in the same way as in addi-
tion?
() 2.856(1) — 1.742(3) =
5. Find the upper and lower limits of the following products:

(a) 0.002(5) X 0.045(2)

(b) 0.34(3) X 0.21(5)

(e) 1.2(6) X 1.2(5)

ANSWERS

1. (a) 1386 sq. units, (b) 1384.74 sq. units. (¢) 1.26 sq. units.
2. 0.00126449.
3. Upper limit, 0.0045; lower limit, 0.0035.
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70.027877 (b) [0.96067] (c) [.0137] (d) [1.1144]
| 0.0262 0.9594 0123 1.1136

00011300 (b) [.073745] (e) 1.5625]
| .00006720 069685 1.3225

Part lll. Further Examples of Numerical Calculatior

The following examples involve procedures that are not only repetitive but
may also introduce errors because approximate numbers are used. Additional
illustrative examples are given in Appendix B.

Example 1. Evaluating an Algebraic Function

Tt is frequently necessary to evaluate an expression, such as the one below,
for several values of x.

y = 6t + 413 — 5a* + 62 + 4

It is possible, of course, to start with a given value of z, develop the powers of
x which are required, perform the necessary multiplications by the coefficients,
and finally produce the sum. The following steps might be called for by this
process:
. Select x
. Multiply « by z and store 2?
. Multiply 22 by x and store x*
. Multiply 23 by = and store x*
. Multiply = by 6 and store 62
. Multiply stored x2 by & and store 5x®
. Multiply stored x* by 4 and store 42°
. Multiply stored z* by 6 and store 6z*
. Add 6«*
10. Add 4«?
11. Subtract 5a*
12. Add 6z
13. Add 4.
Another possible approach to the problem is to rewrite the expression

y = 6x* + 4a2® — 52% 4+ 62 + 4

y = x(62® + 4a? — 5z + 6) + 4.
The expression inside the parentheses can be rewritten as:
x {622 4+ 42 — 5] + 6.
Again, the expression inside the brackets can be rewritten as:
z{6x + 4} — 5.
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Once more, the expression inside the braces can be rewritten as:
z(6) + 4.
By reassembling the above expressions as follows:
y = z(x[r{x®) + 4} — 51+ 6) + 4

the order of operations would be:

Select «

Multiply by 6

Add 4

Multiply by =

Subtract 5

Multiply by =

Add 6

Multiply by =

. Add 4.

In this way the process is completed in fewer steps and can be reduced to an
iterative procedure, which is adaptable either to a digital computer or to hand
calculations.

Tables 3-1 and 3-2 show the effect of using the two methods described above
as far as the introduction of error is concerned. This is done by using three
values of z—2, 2.05, and 2.01—for each method to allow comparison in the
result. 'The error is introduced because intermediate results may be rounded off.
For example, to obtain the results in the columns headed “Round-off,” the digit
in the second decimal place in calculating was increased by 1 when the digit in
the third decimal place was 5 or greater; that is, 0.267 would be rounded to
0.27, whereas 0.264 would be left as 0.26.

Where the round-off error is not involved, as in the first columns of both

© NGO

TazsLE 3-1
First METHOD

Forx =2 For x = 2,05 For z = 2.01

Operation

rounN£oﬁ Round-off No round-off Round-off No round-off

. Seleet x 2.05 2.05 2.01 2.01

z-z = X2 4.20 4.2025 4.04 4.0401
223 = 23 8.61 8.615125 8.12 8.120601

L 2Bex = gt 17.65 17.66100625 16.32 16.32240801
.26 = 62 12.30 12.30 12.06 12.06

. 2.5 = Da? 21.00 21.0125 20.20 20.2005

. 284 = 423 34.44 34..460500 32.48 32.482404

. 246 = 64 105.90 105.96603750 97.92 97.93444806
. B4 105.90 105.96603750 97.92 07.93444806
. +4ax8 140.34 140.42653750 130.40 130.41685206
. —bx? 119.34 119.41403750 110.20 110.21635206
. +6z | 131.64 131.71403750 122.26 122.27635206
. +4 135.64 135.71403750 126.26 126.27635206
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TABLE 3-2
SEconp METHOD
Forx = 2 For x = 2.05 For x = 2.01
Operation

routllil?oﬁ Round-off No round-off Round-off No round-off
1. Select « 2 2.05 2.05 2.01 2.01
2. ‘6 12 12.30 12.30 12.06 12.06
3. + 16 16.30 16.30 16.06 16.06
4. -x 32 33.42 33.4150 32.28 | 32.2806
5. —5 27 28.42 28.4150 27.28 27.2806
6. -z b4 58.26 58.250750 54.83 54.834006
7. +6 60 64.26 64.250750 60.83 60.834006
8. -z 120 131.73 131.71403750 122.27 122.27635206
9. +4 124 135.73 135.71403750 126.27 126.27635200

tables, the results are, of course, the same for both methods. Likewise, the results
are the same in both tables for x = 2.05 and # = 2.01 in the columns headed
“No round-off.”

Notice, however, the difference in the results for a given column depending on
whether or not round-off is used. For the first method, when x = 2.05, the
difference to two decimal places is as given below. ‘

135.71
—135.64
07

For the second method, the difference to two decimal places is as given below.

135.71
—135.73
- 02

Similarly, when # = 2.01, the first and second methods show different values
of round-off error.

First method Second method

126.28 126.28
—126.26 —126.27
02 01

It can be seen that simple expressions are desirable not only because they are
more easy to use. Because they require fewer operations, the errors that are
introduced by round-off are not operated on so many times. As a result, when a
simple process is used, the final answer is less inaccurate than the answer ob-
tained by an extended process.

The above example showed errors that were comparatively small. However,
in complex numerical calculations, which require many thousands or even
millions of operations, the error introduced, due to round-off, may be of very
great importance.
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A particulariy sensitive situation is such as the following:

R’
(M -N)’

Y

If M and N each are the results of many previous calculations, the ¥ might have
a different algebraic sign than it should have if M and N were very nearly the
same size and the errors had been “just right.” Also, such errors might produce
the situation where an attempt would be made to divide by zero. For exwmple,
suppose the “true” value of M is 500 and the “true” value of N is 499. That is,
assume that there were no round-off errors in the calculations which produced
M and N.

However if, because of error introduced by round-off, M were 499.57, that is,
“t00 small” by 0.43; and N were 499.57, that is, “too large” by 0.57, the result
would be

(M —N)=0

a condition which, in the subsequent computation of Y, could not be taken care
of in the usual manner.

Note. Computers can be programmed to check for the zero condition, for example,
before any division step where it might possibly occur. In the COMPIAC compiler, such
a statement might be

(M — N) = 0:STOP. CONTINUE.

Example 2. A Method for Finding Square Root

If A is an integer, and zo # 4/ A is an approximation for the square root of A,
then A /x, will be either larger or smaller than the square root of A, depending
on whether z, is smaller or larger than the desired root. Xf o is smaller than the
root, for example, then the quotient A/zo will be larger than the root. The
average of 2o and A /xo will be a better approximation of the square root of A
than either o or A/xz . Conversely, if xo is larger than the true root, a similar
relation holds. Thus we may improve an initial estimate of the square root of a
number, 4, by successively dividing it by an estimate of the root and averaging
this quotient with the estimate to get a new estimate. The algorithm is as
follows:

1. Make an estimate of the square root of the number.

9. Divide the number by the estimate.

3. Obtain the average of the divisor just used and the quotient just obtained.

4. Divide the number by this average.

5. Repeat steps 3 and 4 until the desired accuracy is obtained.

As an example, use this method to find the square root of 25.

1. Let 2 be the first estimate.

125
2. Divide: 2[25
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3. Average: 12,5 725
+ 20 21450
14.5

4. Divide: 345
7.2525.00

5. Average: 3.45 5.35
+7.25 2[10.70
10.70

4.67
6. Divide: 5.35(25.00

7. Average: 5.35 5.01
+4.67 2[10.02
10.02

4.99
8. Divide: 5.01{25.00

Notice that the process is continuous and has no stopping point, and that
there is no indicated way of deciding how acct te the estimate has become
after n steps. One way to solve both problems is to include certain steps after |
each division in which the new quotient is squared. The squared value can then 4,
be compared with A, and if the difference between A and the quotient squared is “
less than a specified number, the process is stopped.

A question may occur on how to start the process: How is the first estimate
obtained? This may be accomplished by various methods, one of which is to
take one-half of A as an initial estimate. The diagram in Fig. 3-6 indicates the
procedure for calculating the square root of a number in such a way that the
difference between the original number and the square of some later estimate
is less than 0.0001. The steps are as follows:

Take one-half of the number as the first estimate of the root.

Divide the number by this estimate.

Average the divisor just used and the quotient just obtained.

Multiply the average obtained by itself (square the average).

Subtract the product thus obtained from the number. If the absolute value
of the difference is less than 0.0001, go to Step 8; otherwise, go to Step 6.

6. Use the average value just obtained as the next estimate.

7. Repeat Steps 2, 3, 4, and 5.

8. Stop. Last average is desired root.

It may be noticed that Steps 1 and 2 of this procedure are redundant, since
on the first cycle Step 2 will always give a result of 2. These two steps, however,
serve to get the procedure started, and the rest of the steps produce the approxi-
mate square root.

Srs o=

Norte. The above procedure can be expressed in another way, as follows: If 4 is the
number the square root of which is desired and zs is an approximation of the square root,
3 , an improved approximation can be determined by

a1 = (2o/2) + (A/2x0).
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SELECT A NUMBER

NUMBER =+ 2 = ESTIMATE

' F

NUMBER + ESTIMATE
= QUOTIENT

|

(ESTIMATE + QUOTIERT) + 2
= AVERAGE

(AVERAGE)? — NUMBER
= DIFFERENCE

IS ABSOLUTE V..uUE OF
DIFFERENCE ™S8

THAN 0.0001?
Ye- No
AVERAGE IS LET AVERAGE BE
DESIRED ROOT NEW ESTIMATE

Fig. 3-6. Method of Approximating the Square Root of a Number

Example 3. Measuring the Area of An Irregular Figure

For solving certain problems there is an iterative method which usually
depends on the availability of a computing machine, since very many iterations
are often requircd. Thus, this method may not be practical for caleulating by
hand. |

In this method the principle of operation is quite unusual and is based on the
construction of a mathematical model of the problem to “let nature take its
course.”
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For example, suppose it is desired to determine the area of an irregularly shaped
figure, such as the one below:

Given enough time, the following method would provide an answer.
1. Cut out a piece of metal of known size, say 2 by 2 inches. Call this piece
of metal A.
2. Cut out a piece of metal shaped like the figure the area of which is to be
determined. Call ihis piece B.
3. To each piece of metal attach a counter which advances by 1 each time a
raindrop strikes the metal piece.

. Suspend the two pieces of metal in such positions that raindrops are as
likely to strike one piece as the other.

. Let nature take its course for a while. This assumes that raindrops fall in
a random manner; that is, knowing where all previous raindrops have
fallen, it is not possible to predict where the next one will fall.

. Read the counters and substitute the counts in the expression:

4 square inches _ Area of unknown figure
Counts on A Counts on B

If raindrops fall at random over a space containing two pieces of metal, the
probability that a raindrop will hit one part of the space is the same as the
probability that a raindrop will hit any other part of the space. In other words,
the probability that each part of the space will be hit by a raindrop gets closer
and cioser to certainty the longer the rain continues to fall on the space.

The number of raindrops hitting a given part of the space (one of the metal
pieces) is proportional to the area of the given part.

If the process does not continue for a sufficiently long time before the counts
are taken and substituted in the above expression, the answer may not be very
accurate. On the other hand, after a certain period of time the answer may not
improve very much either, since all of the area will have been affected.

This kind of process can be performed with a digital computer, usinz as a
substitute for the raindrops a list of numbers called random numbers. An im-
portant property of random numbers is that, given one or more of them, it is
not possible to predict what the next one will be. In other words, they are de-
pendent on chance. A computer can generate numbers which are very much like
random numbers, but since they are computed by a program, they are pre-
dictable and not really dependent on chance. They are called pseudo-random
numbers and are used just as if they were really random numbers.

Methods based on randomness are called Monte Carlo methods.
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Example 4. Finding the Ratio of Two Areas

The following example is similar to the one above. Take an area nine units
wide on each side and divide it as shown by the heavy line in Fig. 3-7. Call the
part above the dark line A and the part below the dark line B. The problem is
as follows: What fraction of the total area is Part A? The diagram in Fig. 3-8
shows one possible plan for solving the problem.

An interesting alternate method for solving this problem involves the use of
a pair of nine-sided dice. Let one die represent the Y axis and the other die repre-
sent the X axis. Assume that for each throw of the dice any number on each die
is just as likely to come up as any other number; in other words, the numbers
will come up in random fashion. The problem-solving procedure to follow is to
roll the dice and put marks in the appropriate squares according to the values
that come up. Continue to roll the dice and mark squares while keeping count
of the total number of throws. After a number of throws, determine the ratio
of the number of marks in Part A to the total number of throws. This will be
an approximation of the answer.

An important part of such a process is knowing when to stop. One way of
determining this is to calculate the ratio after a number of throws, then continue
to throw, and finally calculate again. If the two values of the ratio are sub-
stantially different, try it for a while longer and calculate again. At the time
when two successive values are sufficiently alike so that their difference is not

Y
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Fig. 3-7. What Fraction of Total Area Is the Area of Az
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START
DO I KNOW \ No COUNT SQUARES
NUMBER OF > IN A
SQUARES IN 4? J

Yes [¢ I
DO I KNOW No COUNT SQUARES
NUMBER OF —) IN B
SQUARES IN B?

Yes ¢

DIVIDE:

NUMBER OF SQUARES IN A
NUMBER OF SQUARES IN 4 + NUMBER OF SQUARES IN B

= RATIO
@B LEM

SOLVED

Fig. 3-8. Flow Diagram for a Counting Pro-
cedure

significant in view of the particular application, stop the process. This procedure
can also be used with regular dice and a square six-units wide on each side. This
method may give an answer that is not as accurate as the square-counting method,
although for a given application it can be accurate enough. It will also require a
great deal of dice-throwing. However, as stated above, computers can be made
to do the equivalent of dice-throwing and to do it very rapidly. Of course, com-
puters can count squares rapidly too. The use of random-number methods is
usually justified only when no better direct methods exist. The above examples
are merely intended to suggest a problem-solving technique.

The random-number method can be extended to the level where the model is
not a piece of metal nor even a graph but a mathematical expression. For ex-
ample, one can imagine that a circle is drawn inside the above 9 by 9 square and
the dice-throwing procedure followed. The procedure would work to some extent,
but in the squares through which the circle passed it would not be clear whether
the mark should be counted as being inside or outside the circle. Therefore, the
count would be rough—or in error. One way of overcoming this kind of difficulty

SR T AP
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would be to divide the square into smaller divisions so that the inside-or-outside
question would pertain to a smaller fraction of the total area. It can be imagined
that this fineness could be extended to a square with 100; 1,000; 10,000; or more
subdivisions. This, of course, complicates the dice-throwing and record-keeping
requirements.

Another approach is to select an X and a Y and determine, not graphically
but mathematically, whether the point selected is inside or outside the circle. To
visualize this approach imagine a square with a circle inside, such as shown in
Fig. 3-9.

For this particular situation the equation of the circle, X* + Y2 = R?, trans-
lated to the interior of the square so that its center isat X =6,Y = 5,is

(X —62+ (Y —5=3

Now if the computer does the equivalent of rolling dice to locate X and Y, each
between 0 and 9, both inclusive, of course the point can be considered to be
inside or outside the circle. But instead of plotting the points, the pair of num-
bers can be substituted for the variables X and Y in the equation. If the result
of the substitution is equal to or less than 9, the point is inside the circle; other-
wise, it is outside.

The procedure, then, is as follows:

1. Select an X and a Y.

2. Try the selected X and Y in the equation.

3. Keep count of whether or not the point is inside or outside the circle.

4. Eventually compare the count with the total number of trials.

This process can be refined by using a mathematical square with 1,000 units
per side, or with 10,000 units per side. The only difference in the requirements is
in the size of the sets of random numbers which the computer generates.

In summary, then, this example shows how areas bounded by curves may be
determined by an iterative process applied to mathematical models. Since the
determination of areas bounded by curves or straight fines is closely related to

Y
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Fig. 3-9. Ratio of Circle Area to Square Area
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the process of integration, it is not difficult to imagine extensions of Monte Carlo
methods to such problems. :

An interesting application of Monte Carlo methods is in the study of shields
offering protection to people working near sources of atomic radiation, the
question being: Will the radiation get through the shield? For a given sample
shield, the distribution of its atomic and molecular components—that is, the
number of each of the several types of atoms that make up the metal—would be
known. For a given source of atomic radiation there would also be known charac-
teristics. Also, the effect of one particle hitting another can be calculated, using
relationships known to physicists. For example, if a particle from the atomic
source (with a given mass, velocity, and direction of motion) strikes an atom in
the shield (which also has a particular mass, velocity, and direction of motion),
the resultant velocities and directions of motion can be calculated.

It is possible to simulate the path of a particle as it goes from collision to
collision and see whether the particle will penetrate the shield or will be stopped.
Monte Carlo methods can be used, for example, to select (by letting nature take
its course): (1) the initial direction of a radiated particle as it first strikes the
edge of the shield and (2) the types of particles in the shield—and their velocitres
and directions of motion—which the radiated particle will hit in successive
collisions.

The procedure, then, is to select at random the direction of striking the shield
and start the particle—certain characteristics of which are also determined at
random -on its way, collision by collision. The result will be one of the following
three possibilities: (1) The particle is stopped. (2) The particle penetrates the
shield. (3) The particle bounces back toward its source. The process is then
repeated, with another particle following another path, and so on.

The ratio of the number of particles that penetrate to the number of particles
that were started is a measure of the shield’s effectiveness. Thousands of trials
may be required before the ratio settles down. If too many particles get through
in the simulation, the mathematical model of the shield may be changed either
by giving it a new thickness or by giving it new chemical characteristics with a
correspondingly different distribution of components. The simulation is now
tried again for the necessary number of trials to obtain a new ratio, and the
shields are compared.

It is not difficult to imagine other uses of such methods for problems where it
is not possible to determine directly the effect of “nature” on the solution. Of
course, a digital computer is quite important in this type of problem solving
which involves such a great amount of arithmetic.

Example 5. Evaluating Trigonometric Relations

For many problems in mathematics and in engineering, the relationships
between the sides of a right triangle are important, and this, of course, may
suggest a general definition of trigonometry. It is interesting to consider some
of the aspects of this field from a computer-oriented point of view. That is to
say, if a computer is available, how can certain trigonometric problems be
approached differently than if they were done by hand.
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In a triangle there are the following six relationships:

a
A
b
g=sinA; é=cosA; g=tanA; E=cscA; f=secA; é=cotA.
c c b a b a

It is not necessary to consider the last three functions in the same sense as
the first three because, if any one of the first three can be obtained, the cor-
responding function of the last three can be determined simply by taking the
reciprocal.

The advantage of this capability is that in using a digital computer it is
desirable to avoid as much programming as possible, since not only does the
initial programming take time but storage capacity is required to contain the
program. Therefore, instead of preparing a computer program both for the sine
and cosecant of an angle—and thereby using storage space for two programs—
it may be advantageous to have but one program, say the sine, and to produce
the cosecant from it.

The paragraphs below describe two methods of obtaining the trigonometric
functions. One method calls for the expansion of a particular series; the other
calls for the evaluation of a polynomial. Before discussing these methods, how-
ever, the idea of reducing the number of mecessary funclions, as discussed above,
will be extended.

Reference to the triangle above shows that

a
tanA —-5

and that tan A is related to sin A and cos A by the following:

cosA b/c b

A similar manipulation is shown below.
Following the Pythogorean theorem,

a? + b? = ¢2
and dividing by c?
2 2 2
a b c
2Ta~a
or
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or
sin?A + cos? 4 = 1.

Apparently, then, since
cos A = V1 —sin? 4,

it is necessary only to be able to obtain sine A because with this—and the ability
to add, subtract, multiply, divide, and extract square root—the other five func-
tions may be obtained without needing to use any more storage capacity than is
required to obtain the sine of an angle and to obtain the square root of a number.
And, since the square root program is usually included anyway for other calcula-
tions, the six trigonometric functions can be made available by merely writing
a program for one of them.

However, in some instances it is necessary to have more than one function or
to be extremely careful in using the program. Consider:

sin?A 4 cos?4 =1
then
sin A = V1 — cos? A.

In attempting to compute sine 4 from cosine A by using the above function
for small values of angle A, cosine A differs so slightly from 1.0 that for all
practical purposes, considering a given number of significant figures, it will be
the same as 1.0. For example, consider a table of natural trigonometric functions
correct to four decimal places as given below.

Angle 4 Cosine 4 Sine 4
0°0’ 1.0000 0.0000
0°1' 1.0000 0.0003
0°2' 1.0000 0.0006
9°0’ 1.0000 0.0026
0°10’ 1.6000 0.0029

Obviously, using the above values for cosine 4 and computing sine A by the
procedure suggested, the value 0.0000 would be obtained for sine A from 0°0’
through 0° 10’, whereas the value for sine A actually ranges from 0.0000 through
0.0029 for small positive angles from 0° 0’ through 0° 10'.

Before discussing the methods of computing the sine, it should be pointed out
that in many practical applications of the trigonometric functions it is advan-
tageous to use the radian rather than the degree as the unit of angle measure-
ment. The advantage is noted particularly when the applications are related to
devices that may have circular motion (such as rotating shafts and generators)
and oscillatory motion based on rotation (such as pistons, sewing machines, and
lift pumps).

The radian, like the degree, is based on the division of a circle into a certain
number of parts.

Pow o)
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>

The are, A4, of the circle determines the size of the angle, B, and the degree system
of angle measurement is based on the division of the circle’s circumference into
360 equal parts. The degree, than, is defined as the angle determined, as above,
by an are, such as 4, which is 1 /360 of the circumference.

Of course, any other division of the circle would serve the same purpose, and
the trigonometric functions would be unchanged. For example, one other system
divides the circle into 6,400 parts, and the angle defined by the 1/6,400 part of
a circle is called a mil. This method of division is widely used in military gunnery
because it relates angular deflection to range.

The radian is based on still another system in which the arc of the circle, 4,
which defines the angle is equal to the radius, R, of the circle itself.

A =7

This means, then, that since the circumference of a circle is equal to 2R
and the radian system divides the circle into R parts, a radian is 1/Rth of a

circle. Therefore, there are

radians in a circle, or
or = 2 X 3.1416 = 6.2832 ... radians.

A radian, therefore, is equal to 360/6.2832 ... = 57° 17’ 44.8” or 57.29577°.
One way of calculating the sine of an angle, measured in radians, and there-
fore all the other functions as suggested above, is to substitute in the following
series:
3 5

-

+ ...

o8
s,

sihx =2 —

wis
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As can be seen, this method lends itself to repetitive calculations because suc-
cessive numerators can be developed merely by multiplying the last one by 2?2
and the successive denominators can be developed by increasing the value of the
factorial by the next two additional multiplications. For example, given x, the
following steps would produce the numerators:
Step 1. Obtain z?
Step 2. Multiply « by 2% = a8
Step 3. Multiply 22 by 2? = 2°
Step 4. Multiply «® by 2? = a7
ete.
In a similar fashion the denominators can be cbtained as follows:
Step 1. Start with digit 1
Step 2. Add 1 to last digit (1 4+ 1 = 2)
Step 3. Add 1 to this last digit (1 4 2 = 3)
Step 4. Add 1 to this last digit (1 -+ 3 = 4)
ete., to produce the following series:
1,23,456,7,8,9, ...
With this series, consider the numbers to be arranged as follows:

1(2-3)(4-5)(6-7)(8-9) ...

Now follow this series of steps:

Step 1. Use the first number (1) as the first denominator

Step 2. Multiply the next two numbers (2-3)

Step 3. Multiply the result of Step 2 by the result of Step 1: 1(2-3)

Step 4. Multiply the next two numbers (4-5)

Step 5. Multiply the result of Step 4 by the result of Step 3

ete.

Notice that each additional denominator is obtained by multiplying the next
two numbers together and multiplying this result by the result obtained up to
that time. In order to stop the process, it is possible to examine the contribution
of a given term, say the eleventh, by subtracting the accumulated value ob-
tained before the eleventh term was included from the value obtained after the
value was included. For example:

0.6283674 (total not including the eleventh term)
—0.6283680 (total including the eleventh term)

—0.0000006 (difference)

If the difference is small enough to be unimportant for the particular applica-
tion, the process can be stopped.

The sine of an angle can be computed in other ways, based on the evaluation
of a polynomial. This system depends on determining a polynomial with charac-
teristics that, within certain limits, can be substituted for the sine function
above. The following polynomial is taken from Approximations for Digital
Computers, by Hastings (reference 32).

sin (’—2’ : x) = 1.570794852z — 0.645920978z° -+ 0.0794876632° — 0.004362476x"
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This particular polynomial may introduce errors into the sixth decimal place.
Other polynomials, also listed in the same book, are available if greater accuracy
is desired. The value of z is limited to the range of —1 to 41. This means,
essentially, that the expression can be used for any value from 0 to 90 degrees,
inclusive, since

— -— —— @ — — o
forz = 1, 5% =3 1—20r90
p-—4 — —_ — s b— °
forz = 0, 5% = 3 0 = 0°

For example, using z = 1, the above expression would have the following value:

1.570794852
—0.645920978
+0.079487663
—0.004362476

0.999999061

which is a good approximation for the sine of 90 degrees.
The original expression is of the following form:

sin (—125 . a:) = Cx + Cix® + Oz’ + Cix’

where the C’s are the constants given above; = can be obtained for any number
of degrees by first converting to the equivalent value of 90 degrees or less, and
then expressing this vaiue as a fractional part of 90 degrees. For example:

o g =0 _,. oz =B _ 05 o g = 229 _
for90,x—-%-—-—1, for45,x—-90—0.5, for 22.5°% x 9

The above polynomial can be changed to the following form for convenience
in evaluation and for diminishing the effect of round-off error in repeated calcula-
tions. The steps in the calculation of the example are shown below.

z(C1 + Cs2?® + Cer* + Cq2f)
The quantity within the parentheses can be rewritten:
C, + z(Csx 4+ Csx® + Cxb)
Again, rewriting the parenthetical quantity,
z(C; + Csx? + Cz*)
and, following the same procedure for the quantity in the parentheses,
C; + z(Csx + Crx®)
and again for the quantity within the parentheses,

z(Cs + Crur?)

0.25.
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and finally for the quantity in parentheses,

Cs + x(Crw)

These can then be reassembled as follows:

sin (% . x) = ofz | & @(z{z[z(C)]+ Cs}) + Ca) | + Ci]

W N -

[y

No ok

S © w

Step
. C7‘$

T

. +Cs

T
T

. +Cs

T
T

. +C1

T

x=1

(90°)
—0.004362476
—0.004362476
0.075125187
0.075125187
0.075125187
—0.570795791
—0.570795791
—0.570795791
0.999999061
0.999999061

% =05

(45°)
—0.002181238
—0.001090619
0.078397044
0.039198522
0.019599261
—0.626321717
—0.313160858
—0.156580429
1.414214423
0.707107211

The values listed for Step 10 are good approximations of the sine of 90 degrees
and 45 degrees, respectively.

In trigonometric applications there is often need to consider inverse rela-.
tionship; that is, having computed the value of an expression, determine the cor-
responding angle. The inverse relationships such as the arc sine and arc tangent,
symbolically indicated by sin™ and tan™?, can be computed by the series methods
referred to above or by approximating the relation by a polynomial. The poly-
nomial given as an example is taken from Hastings’ book. Like the one given
for the sine above, the following expression introduces an error. However, if
the application warrants greater accuracy, other expressions, but with additional
terms, may be obtained from the same reference:

sintz = 7—; — VT = z(F(z))

where
F(z) = a0+ oz + ao2® + a:2® + as?
and where

Go 1.57078786
o0 —0.21412453
02 0.08466649
a3 —0.03575663
04 0.00864884

The use of this method is shown below. Suppose that in a certain mathemati-
cal application the following equation appears and values of y and z are known:

sin @ = cos y sin 2 + sin ¥ cos 2.

It would not be difficult to evaluate the right-hand side of the equation. For this
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illustration, suppose that it came out to be 0.36281743. This means that
sin @ = 0.36281743.

What, though, is the measure of the angle the sine of which is 0.36251743?
By letting a = =, above, and multiplying this value by +/1 = z and then sub-

tracting this value from E, we will obtain the value, in radians, of the angle the

sin= of which is equal to 0.36281743.
The calculations below show that sin—! 0.36281743 = 0.3712957 radians, or
21.2736 degrees.

F(zx) = 1.57078786 — 0.21412453 X 0.36281743 -+
0.08466649(0.36281743)% — 0.03575663(0.36281743)% +

0.00864884(0.36281743)*
= 1.50268708
V1 =z = V1 — 036281743 = V/0.63718257
= (.79823716
? = _——3'14;5927 — 15707963

sin—1 0.36281743 = 1.5707963 — (1.50268708 X 0.79823716)
1.5707963 — 1.1995006
0.3712957

Since
1 radian = 57.29577°,
0.3712957 radians = 0.3712957 X 57.29577°, or 21.2736°.
According to Peters’ Seven Place Values of Trigonometric Functions,
sin 21.273° = 0.3628121
and
sin 21.274° = 0.3628284

showing that the value as computed is in agreement to at least two decimal

places.
Note that if the value of cos z were also needed, it could be obtained merely

by rearranging the expression
sin?x + cos’xz = 1

or

cos z = 41 — (0.36281743)2

There are also polynomials listed in Hastings’ book for the tan™, one of which
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is as follows:
tan~iz = Cix + Cs® + Csa® + Ca’
where
C; = 0.9992150
C; = —0.3211819
C; = 0.1462766
C, = —0.0389929

It should be pointed out that in working with the tangent function care must

be exercised since for values of the angle near 1-2': (90 degrees), the value of the

function becomes very large.

All of the above indicates that with the aid of a computer it is possible and
feasible to perform all trigonometric manipulations that may be required, pro-
vided it is possible to (1) evaluate the three polynomials of the type given above
for sin %, sin—%, and tan—'z, and (2) extract square root. However, these pro-
cedures may introduce difficulties, such as in the sine-cosine relationships when
small angles are involved, or in tangent-cotangent procedures when the angles
are large.

Still another difficulty is retaining the proper algebraic sign during the calcula-
tion processes that call for the reduction of angles to their first-quadrant equiv-
alents. The computer-oriented methods, therefore, do not eliminate the need for
planning and careful attention on che part of the problem solver.

Example 6. Simultaneous Equations

Partly because of their speed, large digital computers, introduce the possibility
of using problem-solving techniques that might otherwise be difficult or un-
desirable because of the time involved. The following method is of the type that
takes advantage of a digital computer’s speed and puts into a position of second-
ary importance the making of complicated decisions on ‘“What to do next?”
If a person could solve a problem by one method which calls for a large number
of additions, subtractions, and other arithmetic steps or by another method which
calls for very little arithmetic, other things being equal, he would probably choose
the latter method.

In fact, mathematicians have spent much of their time in efforts to develop
powerful methods for solving large classes of individuaily simple problems. For
example, it is possible to perform multiplication by repeated addition. However,
most people do not use this method. More powerful methods, using the idea of
multiplication tables, have been developed; they reduce the number of arith-
metic steps needed.

The following example is a method of solving equations which is quite adapta-
ble to a large computer. The operations are simple, but many of them are re-
quired.

ProprEM: Solve the following equations for » and y.
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224 zy =10
2z + xy? = 22
Equation A can be rewritten as follows:
zizx +y) =10
_ 10
x+y’
Also, Equation B can be rewritten as follows:

2z + (vy)y = 22

22 — 2x

Y= (D)

Both Equations C and D are in unusual form since z and y appear on both

sides of the equal sign. This can be stated in another way: x and y are functions

of  and 3 combined. In other words,  is somehow represented by an inter-

relationship between x and y. Likewise, y is somehow represented by an inter-

relationship between z and y, but it is a different relationship. Stated in func-
tional notation,

r = fl(x’y) (E)

y = fo(z,9). )]

By making approximations for the values of z and y on the right side of equa-
tions E and F, it may be possible to establish an iterative procedure to improve
the approximation. With the improved value a still better one may be obtained,
and so on, until sufficiently good values are obtained and the process is stopped.

The determination of sufficiently good values depends on the requirements of
the particular application. For example, if in the iterative procedure two suc-
cessive approximations differ by no more than say =0.0001 (limit €), and if no
greater accuracy is required, it is not necessary to continue the process.

Because the iterative procedure refers to more than one x and y, that is, to
several approximations, it is desirable to establish an identification procedure
so that it is easy to keep track of the process. It is customary to use subscripts
for this identification where the first approximation for » is called zo , the second
approximation for x is called i, the third approximation is called z., etc. A
similar plan is used to keep track of the y’s.

Using this notation then, Equation E would be rewritten for the first step of
the process as follows:

21 = fil®o, Yo,.
Using the particular example above, Equation C would be written as:

10

r = .
' Zo + Yo
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In a similar manner, Equation F for y would be written as:
Y = f2(21, Yo)
and for this particular example, Equation D would be written as:

_ 22 — 2
1Yo )

W (H)

Notice that, in Equation H, the “new” z (that is, 21, just obtained) is used
to compute the “new” y. As soon as both the new = and new y are available, the
process is repeated, using Equations G and H with the subscripts increased by 1.
As the process settles down, or converges, so that, say, two successive trials
within certain limits (such as a 5 in the third decimal place) are unchanged, the
process can be stopped. A flow diagram for the general process is shown in Fig.
3-10.

The above example is shown in detail below using starting values of zo = 1
and yo = 4. To obtain the starting values it is possible to substitute values in the
individual equations and plot the results on graph paper. By noting where the
two curves thus plotted intersect, estimates suitable for starting the process can
be obtained. The illustration shows an intersection at = 2, y = 3. To show how
the process converges, o = 1 and yo = 4 were chosen. In actual practice the
graphical solution, although apparently adequate in this example, might be in-
adequate because a graph cannot be read or drawn with the accuracy that
might be needed—such as to the fourth decimal place—except by special, and
rather laborious, procedures.

An instructive exercise is to plot the successive approximations that are
produced by the process. This shows in a graphical way how the process con-
verges.

The procedure for selecting starting values—Equation A, 22 4+ zy = 10, is
written as follows:

____IO—x2
x

(1)

and for values of z, which are substituted, corresponding values of y are ob-
tained. In the same way Equation B, 2z + zy? = 22, is written as follows:
22
2+
In like manner, values of y are substituted to obtain corresponding values of z.
These tabulations (to one place only) follow and are plotted in Fig. 3-11.

(J)

For Equation I For Equation
x 3 ¥ x
1 9.0 1 7.3
2 3.0 2 3.6
3 0.3 3 2.0
4 -1.5 4 1.2

Although the starting values of o = 2 and yo = 3 would be good to select on
the basis of the intersection of the two curves, the values zo = 1 and yo = 4

AT o N WL 2
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SELECT z0, Yo,
AND LIMIT €

SET ¢ = 1

CALCULATE
z; = fi(@iay Yio1)

CALCULATE
Yy = fo(zi, Yio1)

Az and Ay are the differences
between successive values of
z and y, which are determined

CALCULATE at each cycle so that a com-

z; — zi1 = Az and parison can be made with e,

Yi — Yi-1 = AY the value used to indicate
when the procedure can be
stopped.

ARE ABSOLUTE VALUES
OF Az AND Ay BOTH
LESS THAN e€?

No Yes
. RECORD
ADD 1 to ¢ z: AND ;

Fig. 3-10. Solution of Equations by an lterative
Method
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Fig. 3-11. Graph of Equations (1) and (J)

were chosen as being better for demonstration purposes. The remaining ten
steps of the process are as follows:

AT Ay

1.00 4- 4.00 1.00

_ 22— (2X200) _22—4
Yt 2.00 X 4.00 8.00

_ 10 _ 10 _
5 +225 425

_ 22 — (2 X235) _ 22 — 470 _
Y2 235 X 2.25 5.29

10 10 _
T 235+ 327 562 178

_ 22 — (2 X 178) _ 22 — 356
Ys .78 X 327 582

= 2.25

Z2 2.35

3.27

T3

= 3.17
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10 10

™= gy 3i7 19 024
T = 302 1—|(-) 281 4?3 =207 6.05
%= 207 :(-) 307 51.?4 = 1% -0
yo = 22 1;5(2;;.(1)?5) =250 - s ~0.05
Y1 =195 }f 302 4%37 =20 0.6
% = 501 :E)2.96 = 41.37 =201 0.00
™ = 301 :(-)3.02 = 51.(())3 =19 —0.02
e A ek -002
Y10 = 199 :(-) 300 41.39 = 200 0.01

92— (2 X200) _22—400 _ 40, 0.00

Y = —500 X 3.00 6.00

This series is shown graphically in Fig. 3-12.

It should be pointed out that the above example is merely intended to demon-
strate a possible procedure and to call attention to iterative methods. This
method may run into practical difficulties if the solutions are such that machine
capacity is exceeded, as, for instance, when x is very small and y very large.
Many questions can develop in the analysis of such methods, one of the most
important of which is: How can one be certain that the procedure will finally
converge? This question cannot be answered here except to the extent that in
some circumstances convergence will not occur and in other circumstances the
convergence may be so slow that the method is impractical. The study of con-
vergence is an important part of numerical analysis and is treated in various
textbooks.

Briefly, the situation can be represented by the diagrams below, where x repre-
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ITERATION NUMBER
Fig. 3-12. An lterative Process Settling Down

sents the value being sought, x, the first approximation, and x, the value pro-
duced by using x, in the iterative procedure. When these are represented as
points on a line, such as the one below, it can be seen that the iterative procedure
was such that an improvement was made.

D
2o ] x
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ez




R T T T T TS

REPETITIVE PROCESSES AND APPROXIMATIONS 101

That is, the original difference, D (where D = = — o), was reduced to d (where
d = 2 — x1). The opposite might have happened:

Z1 X9 x
—e— —— ——

I :

Merely “going in the wrong direction” does not mean that the process will
not produce the desired result, since, as shown in Fig. 3-13, a procedure may
approach the solution from one side or it may oscillate around it. To show the
effect of successive trials, the z’s are connected by lines to show how processes
may or may not converge.

&r

\
>:n

Zo

Z

X2

\xa

Z2

x

xo.\>
s 21
>zs

\

xz<
>
.’C4< T4
&4 Ts &

\L ‘L R
CONVERGENCE CONVERGENCE DIVERGENCE
Fig. 3-13. Types of Convergence and Divergence

—

Example 7. Computations Invelving Rate of Change
Part A

One of the most important concepts in mathematics pertains to operations
performed on relationships that are not static but dynamic; that is, the treat-
ment of expressions that involve changing situations. This idea is most iraportant
because in the everyday world things are dynamic rather than static. In studying
either the motion of a rocket, the heating of a kitchen stove, or the growth of
living organisms, the concept of change must be considered. For example, it is
well known that if the speed of an automobile is given as 60 miles per hour and
the total travel time is given as 10 hours, the total distance traveled is 600 miles.
There is, in fact, the following relationship that applies to such problems:

d =l
where d = the measure of the distance, r = the measure of the rate of travel and
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¢ = the measure of the time traveled. However, there are few cases in real life
in which such a situation exists. In most cases the actual rate is zero to start
with, and it increases and decreases while the trip is under way. If the variations
in speed are such that the average rate is equai to 50, then the above expression
is true. The same argument would apply to other situations in nature ... as
time elapses, whether it is while a car is being driven, a plant is growing, or a
rocket is moving, the parameters describing the situation quite often change in
value. The following example will indicate some of the problems involved: As a
rocket leaves the launching pad, many factors influence its trajectory; some of
these are listed below.

1. The weight of the rocket
2. The amount of thrust delivered by the rocket motor
3. The density of the air through which the rocket must travel

The weight of course, is not constant, since as fuel is burned the whole rocket
becomes increasingly lighter until all the fuel is consumed. In other words, the
weight is not a constant value—it changes continually.

The effect of the thrust—even if the thrust itself is held to a constant value—
may not be constant if only because the whole rocket is getting lighter as fuel
is burned. Therefore, thrust of a certain value may push the rocket more effec-
tively during the third stage of flight than during the second, since the rocket is
lighter.

The density of the atmosphere is also a variable that affects the rocket’s
flight, since as one goes higher and higher above the earth, there is less and less
atmosphere to offer resistance. The density of the atmosphere, however, does not
change in a simple fashion—it is much more dense near the earth, and about half
of the entire atmosphere is below 18,000 feet. The rafe at which the density is
changing is stself changing. But, back to the rocket, thrust of a certain value
will have a different effect on the rocket depending on the air density at that
time; however, “at that time” is somewhat meaningless, since as the rocket
moves, the altitude changes and so the density changes.

Thus it can be seen that if factors such as thrust, density, and weight become
interrelated while being subject to considerable variation, the problem of de-
scribing the result of their relationship (for example: How far has the rocket gone
at the end of ten seconds of flight?) would be very nearly impossible without some
means of handling, mathematically, quantities that are in the process of change.

One way to consider the way in which quantities change is to imagine that
instantaneous observations of the process can be made and recorded by some
means. For example, think of an automobile starting on a trip. Its velocity
might be recorded at various times as follows:

Time, seconds Velocity, mph Difference
0 0
2
1 2
2
2 4
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Time, seconds Velocity, mph Difference

3 6

2
4 8

2
5 10

2
6 12

2
7 14

2
8 16

2
9 18

The values in this table mean that at the instant the second hand on the stop
watch shows 4 seconds, the speedometer shows 8 miles per hour, and that at the
instant the stop watch shows 8 seconds the speedometer shows 16 miles per
hour, and so forth, Understand that these were not constant velocities, merely
values of velocity “caught on the fly.”

The inadequacy of the formula d = rf under these circumstances can be under-
stood by attempting to determine how far a car would have traveled by the time
the second hand on the stop watch shows, say, 8 seconds.

Data of the above type can be examined by obtaining differences of adjacent
values as shown by the third column in the table. Notice that the differences in
this example are all equal to 2. This indicates that the velocity, which goes from
0 to 18, is changing at a constant rate; that is, at the end of each second the
velocity is 2 miles per hour more then it was at the end of the previous second.
This change in the velocity is called acceleration. In like manner, velocity can be
considered @ change in distance.

The rate of change in velocity (acceleration) need not be constant, of course.
The following table will demonstrate this.

Time Velocity Acceleration

0 0
2

1 2
4

2 6
6

3 12
8

4 20
10

5 30
12

6 42
14

7 56
16

8 72
18
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0
X6 5 4 3 2 1 0

Fig. 3-14. A Triangular Area To Be Measured

The important idea here is that physical situations, as observed in nature, often
vary with respect to the time during which they occur. It also frequently happens
that acceleration can be observed and measured more readily than velocity.
However, from such measurements it is often necessary to obtain the velocity.
It is, therefore, desirable to be able to operate with these varying quantities
in such a way as to “know where they come from.”” For example, in the tables
given above it would be possible, say, given the acceleration, to construct the
column of velocities. (It has been already shown that, given the velocity, the
acceleration, as represented by the differences, can be obtained.)

Part B

For solving problems associated with changing quantities there are methods
that depend on operations performed upon the successive differences, or sums,
of the quantities in question. The following example shows one such method.
It is applied to the problem of finding the area of a triangle, making use of
several values of z, in the graph, and the corresponding values of y.

Suppose it is desired to obtain the area of the triangle shown in Fig. 3-14.
(Note that the coordinate numbers increase from right to left.)

The following table lists & and ¥ as shown in the graph. For example, forx =1,
y = 7.5, ete. Successive differences of «, successive sums of y, and their products
are also listed.
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x Difference Y Sum Product of difference and sum
0 9.0

1 16.5 16.5
1 7.5

1 13.5 13.5
2 6.0

1 10.5 10.5
3 4.5

1 7.5 7.5
4 3.0

1 4.5 4.5
5 1.5

1 1.5 1.5
6 0.0

54.0 =~ 2= 27.0

This is actually a representation of how one quantity is changing as another
also changes. That is, for different values of z, y also has different values. By
multiplying the differences by their corresponding sums and then taking one
half of the sum of the products, the area is obtained. This, of course, can be done
“the other way”’ as shown below:

x Sum y Difference Product of difference and sum
0 9.0 -

1 1.5 1.5
1 7.5

3 1.5 4.5
2 6.0

5 1.5 7.5
3 4.5

7 1.5 10.5
4 3.0

9 1.5 13.5
5 1.5

11 1.5 16.5
6 0.0

——

54.0 = 2= 27.0

An examination of this procedure indicates that what is happening is that
the triangle is treated, a piece at a time, as a succession of rectangles, as shown
in Fig. 3-15.

To gain some understanding of the above procedure, suppose the formula for
finding the area of a rectangle is known. Then it would be possible to use a
method like the one which follows to determine the area of the triangle.

The area of the lower rectangle is 1.0 by 7.5 and the area of the entire longer
rectangle is 1.0 by 9.0. A good estimate for the area of the part of the triangle
between z = 0 and & = 1 is the average of the areas of the larger and smaller
rectangles, mentioned above; that is:

®H[(1.0 X 9.0) + (1.0 X 7.5)] or (3)(9.0 + 7.5).
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Fig. 3-15. Measuring a Triangular Area by Successive Rectangles

In other words, the smaller rectangle is too small, since part of the tuiangle is
not included; also the larger rectangle is too large, since it includes some area
outside the triangle. The average of the two rectangles is better than either
rectangle, taken by itself. To find the area of the whole triangle one would
proceed across the triangle, taking the average of successive rectangles and
finally obtaining the sum of the average values.

Notice that if the values of « are equally spaced, as in the example, the above
procedure can be simplified. Instead of obtaining the successive subtractions for
each value of z, it is necessary to do so only once, since all differences are the
same. It is customary to refer to this interval by the letter A.

As just shown, the area of the first slice of the triangle would be:

2 (90 +75).
The remaining slices would be as follows:

h (7.5 + 6.0)
2
-g (6.0 + 4.5)

g (4.5 + 3.0)
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’5‘ (3.0 + 1.5)

g (1.5 + 00).

Notice that each value of y, except the first (9.0) and the last (0.0), appears
twice. This mesns that the value 7.5, for example, is multiplied by 2 in the

first expression as well as in the second. Since the several slices have to be added
together to get the final area, it means that the 7.5 is divided by 2 (first expres-
sion), later on (second expression) independently divided by 2, and the results
of these two divisions are subsequently added together. Such divisions can, of
courss, then be avoided, except for the first and last values.

The sum of the above expressions equals the area of the triangle and is equiv-
alent to the more simplified expression below:

Area = h (922 +754+60+ 45430+ 15 + 0—29>

This is known as the trapezoidal rule for numerical integration, since it effec-
tively divides the area into a group of trapezoids which are then added together.
It is noted for its simplicity, since for equaily spaced values of one variable, z,
the corresponding values of the other variable, y, are merely added together
(except for the first and last values which are divided by 2 before adding), and
the sum is multiplied by the value corresponding to the size of the interval. The
principal disadvantage of the method is that for certain types of functions, that
is, those that are not represented by a straight line, as in the above example,
accuracy may not be high.

Part C

A method which is superior to the trapezoidal rule because it provides higher
accuracy is the one known as Simpson’s rule. It is given below for the above ex-
ample, without any development:

Area = g(g.o + 4(7.5) + 2(6.0) + 4(4.5) + 2(3.0) + 4(L5) + 0.0).

This method is a simple one, since for equally spaced intervals all that is
required is (1) to obtain the sum of the even-numbered terms (7.5, 4.5, 1.5) and
multiply by 4, (2) to obtain the sum of the odd-numbered terms except the
first and last (6.0, 3.0), and multiply by 2, (3) obtain the sum of the first and last
terms, and (4) multiply the sum of these three values by h/3. The principal
disadvantage of this method is that an even number of intervals is regaired.

Both methods are widely used in numerical calculations. They consist of
simple repetitive processes that are adaptable to calculation, either with the use
of a desk calculator or a large digital computer.

It is not likely that the area of a triangle would be computed by methods such
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as shown above, but these methods can be applied to other figures the sides of
which are not straight lines.

With a piece of graph paper it is possible to draw a circle and determine its
area by these procedures, although it may be discovered that the area thus
determined will not agree exactly with the area determined by the formula
A = 2 One reason for the lack of agreement is that the measurements cannot
be made accurately enough. However, if the circle is drawn on very large-scale
graph paper with very fine divisions on it, the accuracy can be improved over
that obtained by using a smaller figure and coarse divisions.

All of the above suggests, then, that methods exist for determining the area
of a figure the sides or boundaries of which are expressed by the relationship
between two quantities. For example, if corresponding values of and y were
given for Fig. 3-16, its area could be determined by the above procedures. The
rectangle-averaging process is demonstrated.

The area of the small rectangle is (zz — 1)y: . The area of the larger rectangle
is (x2 — 21)ys . The area between the curve f(x) and the z axis, bounded by the
lines # = x; and x = ., lies between the areas of the two rectangles above;
that is, the area is greater than the lower rectangle with the side 21 , %1 but smaller
than the rectangle with the side x2 , y2 . Again, the average of the two areas is an
approximation of the desired area. The average can be expressed as:

B@: — @)y + (@2 — 2)ye] or @) (@2 — )2 + )

which is essentially the process of finding one-half of the product of differences
and sums.

L
Cd

f(x)

'Zyz
e

[
—

NG '
7 4L

T1 T2

Fig. 3-16. Measuring the Area under a Curve
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The error in this process is related to the change in y over a given interval in
a; that is, as the line connecting and . in Fig. 3-16 takes on greater and greater
curvature, the error introduced by the use of a rectangular strip of a given width
in the manner described above increases. Apparently then, if a figure can be
represented, perhaps on graph paper, and it is possible to determine somehow a
value of y for certain values of z, the area of the figure—within certain limits of
error—can be determined. It is often possible to carry out this process without
actually plotting it on paper. The possibility depends on whether the curve can
be expressed in the form of an equation. If this can be done, the need to plot the
curve and make measurements is eliminated, since the several values of ¥ can be
obtained for the corresponding values of & by numerical processes. Likewise, the
processes of differencing and summing, as indicated above, can also be performed
by repetitive machine processes. For example, consider the relationship expressed
by the eguation:

y =2+ 2
The relationship can be expressed by filling in the following table of values:
y

2
3
6
11
18
27
38

The curve, when plotted, looks like Fig. 3-17.

To obtain greater and greater accuracy in finding the area bounded by the
curve, more values of x may be substituted and the corresponding values of
y obtained. For example, using the above equation, the region between z = 5
and 2 = 6 can be broken down into 100 sections using:

x y

5.00
5.01
5.02 .
5.03 .
ete. ete.

The errors introduced by the averaging process are thus diminished since the
line corresponding to the 1 y» part of the curve comes closer and closer to being
a straight line. If it were perfectly straight, the error would be zero. In general,
the sharper the curve—that is, the greater its curvature—the more values are
needed to preserve accuracy.

An undesirable aspect of such numerical methods is that they call for so
much arithmetic. However, when a computer is used, the added arithmetic
burden is not so important.

Part D

In the early paragraphs of this example, it was pointed out that in certain
physical problems it is important to be able to convert values of acceleration to




st SRR, < %l e it ettt i i e S Lo TS B Sitheiounin

110 COMPUTER ORIENTED MATHEMATICS

30 |-

20 -

0 | | ] | 1 I x
0 1 2 3 4 5 6

Fig. 3-17. Graphofy = x* + 2

corresponding values of velocity. The conversion is accomplished by the mathe-
matical process of integration. Likewise, the areas of figures such as those shown
above are also determined by a process of integration. In both cases—either (1)
in determining velocity, given acceleration cr (2) in determining area, given a
mathemstically described tigure—the process can be of the same type.

The tabulation below shov7s how the sum-difference method, used above to
obtain area, can be applied to the column of accelerations in the earlier example
to produce a column of velocity values. The values of time and acceleration in
Table 3-3 are reproduced from the table in Part A of this example. Column T
is obtained by determing the value of time associated with a particular accelera-
tion. In the differencing process, the acceleration values become offset; they
correspond to a value of time ¢n between the value. recorded for the velocities.
In other words, in the example given below, if the velocities are recorded at 10
and 11 seconds, the difference (acceleration) corresponds to a time somewhere
between 10 and 11 seconds.

Time Velocity Acceleration

—

10 32

11 38 6

e S
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TasLE 3-3
. . Cummulative
fime | Acceleaton | Agtleration | TGl | v ums) (058 QL") o el
velocity
0
2 0.5
1 2 2 2 2
4 1.5
2 2 4 4 6
6 2.5
3 2 6 6 12
8 3.5
4 2 8 8 20
10 4.5
5 2 10 10 30
12 5.5
6 2 12 12 42
14 6.5
7 2 14 14 56
16 7.5
8 2 16 16 72
18 8.5
9

The valae 1.5 in the column headed T in Table 3-3 means that the accelera-
tion value of 4 was some time after one second and some time before two seconds.
The 1.5 is merely an estimate based on the assumption that the situation is
linear; that is, that the yiy. line referred to above is straight, not curved. If it
were not linear, error would be introduced into the integration process. As the
time ‘nterval might be reduced, the errer would also be reduced. This is the
same as the suggestion above (the example using equation y = 2? + 2), where
the number of values in a particular region was increased.

The above processes merely suggest that integration can be performed nu-
merically by using successive values of the function that needs to be integrated.
As pointed out before, Simpson’s rule is superior to the sum-difference method
first described, but is similar in that successive values of the function are
used. Of course, if the function can be easily integrated analytically, there may
not be sufficient reason to do the work numerically.

Very often, however, the function itself is either not available or is too com-
plicated to be solved analy*ically. This is the case in certain types of missile
guidance, for instance, where the output of an electronic component of the guid-
ance system is the value of the acceleration. In effect, this component produces
the equivalent of a series of values (numbers), say, one each 0.01 second. The
information can then be integrated—in a manner somewhat like the methods
shown above—and corresponding values of velocity can be obtained. By further
integrating the values of velocity, again using similar methods, values of distance
can be obtained. This can be diagrammed as follows:
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As a car moves along the road
its distance from the starting
point is changing.

AN

N

The change in distance
is called velocity. If the
velocity is also changing,
it is called

AN

N

Acceleration

and, if one has acceleration, it is possible to work backwards:

Second integration <— First integration <«— Start
gives distance gives velocity

This prineiple, of course, is not applied exclusively to distances, velocities, and
accelerations. It applies also to other situations in which the variables that are
interrelated are subject to change.

The paragraphs below show a process of double integration using the trape-
zoidal rule.

It is helpful to consider the geometric relationship between variables as they
change with respect to time.

Variable (such as veloeity)

Time

Using this representation, the slope of the hypotenuse of the triangle cor-
responds to the rate of change of the variable (called acceleration in the case of
a variable velocity). The rate of change is equal to the tangent of angle B. The
fact that the hypotenuse is a straigbt line indicates that over the period of time
indicated the acce'eration (rate of change of the velocity) is constant.

Suppose in the case of the missile guidance system mentioned above, the
acceleration is found to be 32 over several seconds. This could be tabulated as

follows:
Time Acceleration
14 32
15 32
16 32
17 32
18 32
19 32

20 32

VT AR BRG]
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or geometrically,

14
B 4
T =14 T = 20.

in which the tangent of angle B = 32. :

If tan B = 32 and the time increases from 14 to 20, or a total of 6, V must be
192, since 192/6 = 32. This means that whatever the velocity was at time = 14,
it was greater than that value by 192 when time = 20. There is something miss-
ing, however, if starting at a given time, one desires (1) to integrate the accelera-
tion to obtain the actual velocity and (2) further to integrate the velocity to
obtain the actual distance. The missing element is the knowledge of the situation
prior to the time of interest. (For instance, suppose it is known that during a
trip the automobile’s average velocity increases by 4 miles per hour during each
minute of travel, over a period of six minutes. However, this information by
itself is sufficient neither to determine the actual velocity of the automobile nor
the total distance travelled. It is known only that the velocity and distance are
increasing. Another way of looking at this is to consider the problem of finding
the area under a curve the boundaries of which are not known—that is, it is not
known where the curve begins and erds.) For example, assume that the situation
starts at zero.

«—192

V=0
T=0 T=6

This is the same geometric relationship as the one above, except that the starting
values are now given; that is, it is known that at T = 0, V = 0. Therefore,
knowing the accelerat.on, the time, and the starting values for velocity (and
therefore distance), the following tabulation can be made.
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Distance Velocity  Acceleration

0 0 0
32
32
32
32
32
32

5
8

qc»musoow»-ncl

However, the above triangle might have occurred in either of the situations
shown in Fig. 3-18. In other words, without knowing the starting values (that
is, past history), it is not possible to proceed from a given point in time to obtain
definite values for velocity and distance.

By applying the trapezoidal rule and using the hypothetical accelerations and
starting values given abcve, the following values for velocity are obtained, by
letting # = 1 and integrating the values for acceleration.

Integration 1. Time = 0 to Time = 1:

oo 0, 32\ _
Velocity = 1 (5 + _Q') = 16

Integration 2. Time = 0 to Time = 2:
Velocity = 1 (g + 32 + 3—22-) = 48
Integration 3. Time = 0 to Time = 3:
Velocity = 1 (‘2-’ 432 +32 + ?’-2?) — 80
Integration 4. Time = 0 to Time = 4:
Velocity = 1 (g + 32 + 32 + 32 + 3122-) = 112
Integration 5. Time = 0 to Time = 5:
Velocity = 1(—29+32+32+32+32+3§2-) = 144

Integration 6. Time = 0 to Time = 6:

Velocity = 1 (g-;- 32 + 32 + 32 + 32 + 32 +§§) ~ 176.

The so-called intervals shown above are overlapping; that is, each one goes
back to the beginning. This is to be expected, since the velocity at any time
(say, Time = 5) is dependent on the preceding velocity values; that is, for any
time, all previous (instantaneous) values make a contribution toward the next
value, and so forth. '

The first value above, 16, is only one value of the velocity during the interval
from Time = 0 to Time = 1. (It can be shown that in this interval the velocity
changed from 0 to 32.) The second value above, 48, again represents one value
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Situation A
192

Situation B

Fig. 3-18. Two Kinds of Time-Acceleration-Velocity Relationships
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during the interval from Time = 1 to Time = 2 and takes into account the fact
that at the start of this second interval the velocity was already 32. The com-
puted values are then entered as midvalues in the tabulation below.

Time Distance Velocity* Acceleration

0 0 0 0
16

1 (32) 32
48

2 (64) 32
80

3 (96) 32
112

4 (128) 32
144

b (160) 32
176

6 32

* " a -:in parentheses are explained below.

¢! - the above mid-values, it is convenient for demonstration purposes to
deterw iae the values of velocity at the end of the intervals. For example, since
16 is the mid-value for the first interval and 48 is the mid-value for the second
interval, it is reasonable to assign the average of 16 and 48, or (3)(16 + 48) = 32,
to the end of the first interval. All values in parentheses are obtained in this
manner.

It is now possible to use the trapezoidal rule to obtain the values of distance
by letting » = 1 and integrating the following values for velocity, just obtained:
Time Velocity

0
(32)
(64)
(96)

(128)
(160)

Ok NN ~=O

Integraticn 1. Time = 0 to Time = 1:
Distance = 1 (g -+ %2-) = 16
Integration 2. Time = 0 to Time = 2:
Distance = 1 (g + 32 + 62—4) - 64
Integration 3. Time = 0 to Time = 3:
Distance = 1 (g + 32+ 64 + %) = 144
Integration 4. Time = 0 to Time = 4:

Distance = 1 (g + 32 + 64 + 96 4+ —1—3—8—) = 256
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Integration 5. Time = 0 to Time = 5:

Distance = 1 (g + 32 + 64 + 96 + 128 + 129) = 400.
By considering velocity mid-values, the original tabulation can be completed
as shown below. (That is, an average velocity of 16 for the first second would
give a distance of 16. With anaverage velocity of 48 for the next second, a distance

of 48 would be added, or, 16 + 48 = 64.)

Time Distance Velocity Acceleration

0 0 0 0
16

1 16 (32) 32
48

2 64 (64) 32
30

3 144 (96) 32
112

4 256 (128) 32
144

5 400 (160) 32
176

6 32

Thus the value 16 ror distance means that the velocity at Time = 1 was 32
and, the average velocity was 16 over the interval—therefore the distance over
the interval was also 16.

It is interesting to note that if the completed table, as developed by two
successive integrations of acceleration, is differenced from left to right, the values
for velocity are found to be equal to successive differences of the values of
distance. In like manner, the values for acceleration are seen to be equal to the
differences of successive values of the velocity.

Summary

This chapter contained illustrations of repetitive procedures. Some examples
demonstrated techniques actually employed by persons who use digital com-
puters. All examples suggested repetitive procedures and therefore were appro-
priate to the objective of the chapter: to demonstrate the use of repetitive ~vn -
cedures in problem solving.

The key idea in problem solving with automatic digital computers is repetition.
If a problem has no repetitive characteristics, it is usually easier and faster to
solve it by hand than to program it for a digital computer. Conversely, if enough
repetition is involved in the solution of the problem, the use of modern high-
speed computing devices is probably the only practical approach.

Two types of repetition are recognized in analyzing problems to be solved with
digital computers. One type involves repetition of data. An example of data
repetitior. is the calculation of interest on savings accounts in a bank. Here, the
same relatively simple calculation is repeatedly performed on data that changes
from account to account, from month to month.

The second type of repetition is usually called iteration. It is a method of

TR T IR TIY TR ATy - -
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approaching the solution of a problem by (1) making an estimate of the solu-
tion, (2) evaluating the estimate, (3) developing a new estimate on the basis of
the evaluation, and (4) repeating the cycle again and again until a desired solu-
tion is reached. In some respects, methods based on iterative teciniques are
cut-and-try ones—they may seem to be lacking in the exactness associated with
mathematics. Also, as has been indicated, under some conditions involving
many calculations, it is not certain that the numbers used will produce the
“correct” solution. All this points out that persons who use computers must
(1) be aware of possible difficulties in using numerical methods and (2) under-
stand the importance of numericol analysis in computer-oriented mathematics
as it relates to topics such as convergence as well as the generation and analysis
of errors.

References

For further detail on the subjects treated in this part of Chapter 3, the reader
should consult the following references, which are listed in the Bibliography,
Appendix C: 2, 14, 15, 16, 17, 20, 23, 32, 34, 35, 47, 52, 56, 59, 60, 64, 71.

EXERCISES

1. Figure 3-6 shows a procedure for extracting square root. The process
continues until the test for the absolute value of the difference being less than
0.0001 is satisfied. Modify the procedure so that the test is made not according
to the absolute value 0.0001 but according to 0.001 of the number the root of
which is being sought.

9. Construct a flow diagram for looking up the value of the sine of any angle
between 0 and 360 degrees in a table that has entries only from 0 to 45 degrees.

3. The algebraic signs of the sine and cosine var, according to the quadrant.
Construct a flow diagram that will determine the proper quadrant for all combi-
nations of values such assin ¢ = —0.64279 and cos z = +0.76604.

4. Construct a flow diagram for the linear interpolation process in a table such
as the follswing: .

y ' ®
e 155 19033
156 19312
157 19590
158 19866
159 20140
160 20412

In other words, determiné what value of z corresponds to a given value of ¥,
such as 158.26.

5. For the integers 1, 2, 3, 4, 5, 6, 7, 8, and 9, corresponding to z, compute
values of y according to y = 2% Now take the difference of the adjacent values
thus obtained to produce the progression of odd numbers 1, 3, 5, 7, 9, ete. If
the differences themselves were differenced, all of the values would be constant.
Likewise, if the differences were found once more they would all be zero. Thus
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it is that, for a polynomial of degree =, the (n + 1)th differences are zero. That
is, for 22(n = 2) the n + 1 or third differences are zero.

Note. If a column of differences i constant, the next higher column will
contain all zeros and it will not be necessary to write them down. However, errors
in data may introduce a ‘“roughness” in the differences which can be used, by
working backwards, to locate the error.

(a) Given a set of values of a polynomial, such as 166375, 175616, 185193,
195112, 205379, 216000, 226981, 238328, 250047, and 262144, determine the
degree of the polynomial by taking differences. (b) Prepare a flow diagram to
test for the degree of the polynomial where values are given.

6. Exercise 5 refers to the fact that the (n + 1)th differences of an nth degree
polynomial are zero. Assuming that the following data are obtained from a
source known to be represented by a polynomial of a given degree, construct a
flow diagram to examine the data for the purpose of testing whether or nct the
data are correct. That is, perhaps there has been an error in data transmission
or transcription. The data are: 29791, 32768, 35937, 39304, 42875, 46566, 50633,
54872, 59319, 64000, 68921, 740&8.

Hixt. Correct data will have “‘smooth” differences.

7. (a) Construct » flow diagram for the evaluation, by Simpsons’ rule, of the
expression ¥ = 2? + 2 between x = Qand & = 6 (see graph in Fig. 3-17). (b)
In Example 7, Part C, values of y are given for several values of x. At the end of
Part C it is suggested that smaller differences between adjacent values of x
can be selected to improve the accuracy of the calculation. Modify the diagram
called for in (a) above to include an adjustment of the interval size (for example,
divide it by 2). Include also a means of comparing the two values of the integral
thus obtained. If the values are not different by more than 0.0005, stop. Other-
wise, divide the interval once again and continue the process until the differ-
ence between consecutive trials is equal to, or less than, 0.0005.
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The digital computer is a powerful device for performing numerical calcula-
tions, since it is able to carry out arithmetic operations very rapidly. Some
digital computer applications of this kind were discussed in Chapter 3.

The digital computer, however, is not limited to this kind of work, which is
largely arithmetic. It is also a very powerful device for solving problems that
may be thought to depend more on the manipulation and arrangement of data
than on arithmetic processes involving the data.

These two areas of computer application are not completely separate since,
on the one hand, a purely “mathematical”’ problem usually requires some ar-
rangement or manipulation of data and, on the other hand, a purely ‘“data
processing” problem usually involves some arithmetic.

A way of distinguishing between the two general classes of digital computer
applications is to note that mathematical problems may involve comparatively
few numbers to start with but require extensive and complex operations to be
performed on them. On the other hand, data processing problems may require
comparatively simple operations but involve a very great many numbers.

Each class of problems has its own special requirements, difficulties, and
techniques. It is not appropriate to attempt a comparison of them on the same
scalcs of difficulty, efficiency, or speed, just as it is inappropriate to compare
the difficulty of solving a 20 by 20 set of equations with the difficulty of preparing
a payroll for 25,000 people. These are different classes of problems.

This chapter discusses some applications that depend less on arithmetic
operations than on manipulative operations. The intention is to show that by
the clever use of a few computer operations much useful work can be done.

A general approach that facilitates the solution of certain kinds of problems
is based on a very simple idea: Compare two quantities and, depending on the
result, proceed in one of two directions to the next step—where the process is
repeated, starting with another comparison. This can be demonstrated by the
following example.

Suppose it is desired to find out which person in a group is the tallest. Applying
the above procedure, start by taking any two individuals and selecting the
taller. The shorter of the two is eliminated, the taller one is compared with a
new person, and the cycle is repeated. Eventually the process will eliminate all
but the tallest person. Figure 4-1 illustrates the process, assuming that the two
persons, A and B, are already selected. The diagram does not cover certain
possibilities, such as what should be done if two persons have the same height

120
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SELECT
A AND B
—
_ Yes IS A TALLER \ No
THAN B? /
DISCARD B DISCARD A
ANY LEFT No - No ANY LEFT
\ o IN GROUP? IN GROUP?
Yes Yes
SELECT NEW B SELECT NEW A
A IS TALLEST B IS TALLEST

PROBLEM
SOLVED

Fig. 4-1. Finding the Tallest Person in a Group
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or when t! e last person has been selected. To take care of such possibilities tl..
flow diagram in Fig. 4-1 would have to be modified.

The clever use of this simple idea provides an approach to many problem-
solving situations. It is interesting to consider the possibility that all decisions—
and, therefore, all solutions to all problems (for example, the buying of a house,
the choosing of a wife, the planting of a garden, or the solving of a mathematical
problem) can be reduced to a procedure similar to the one above.

Example 1. An Elimination Process

Consider some of the possibilities of problem solving by the less-than/greater-
than/equal-to procedure.

One application of this procedure is in a game called “Twenty Questions.”
In this game one person thinks of an object and a second person attempts to find
out what the first person is thinking of by asking not more than 20 questions
which are answered either “yes” or “no.” If the person asking the questions is
clever enough to classify his questioning properly, he has a very good chance of
winning every time simply because 20 yes-no decisions can cover a very large
number of items.

After the first question is answered all possible objects are classified into one
of two classes. For example, if the question is “Is the object mineral?” and the
answer given is “No,” then one question eliminates all minerals. Notice that
this is a much better question than “Is the object a pin?”’ because if the answer
is “No,” only all pins are eliminated as a possibility. Since minerals is a wider
classification than pins, the questioning is not approaching an answer as rapidly
as it could.

Notice that with one question it is possible to divide all things into two
classes—the “Yes” and the “No.” The second question will divide one of these
classes into two others, ete.

Another way to look at this is to consider the class of all objects as a line.

The first question essentially divides this line into two parts:

| Not Mineral I Mineral

The second question, in turn, divides one of these sections again.

| Not Mineral |  Mineral

‘ Not Heavy Heavy I
Or, if the circumstances had been different,

| Not Mineral l Mineral '
r | Not Heavy -

Heavy
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In other words, with two questions (“Mineral?” and ‘“Heavy?”) a total of
four classifications is possible:

1. Mineral, heavy

2. Mineral, not heavy

3. Not mineral, heavy

4. Not mineral, not heavy.
A convenient way in which to express this is to let each question correspond to a
position in a binary numeral. For example, let the first position correspond to
“Mineral’”’ and the second to “Heavy.” If the answer ig “Yes” represent it by a

1; if “No,” by a 0.

“Heavy?”’  “Mineral?”’
2nd position  1st position Means
0 0 Not heavy, not mii.eral
0 1 Not heavy, mineral
1 0 Heavy, not mineral
1 1 Heavy, mineral

Observe that this is the same sequence as the first four values in a binary nota-
tion system, as discussed in Appendix A. If a third category, such as ‘“Expen-
sive?” is considered, there will be eight classifications:

«Expensive?’’ “Heavy?’’ “Mineral?’’
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

This is the same sequence as the first eight values in a binary notation system.
In general, the number of classifications is equal to 2¢, where @ stands for the
total of what has been referred to here as “questions.” During this process, of
course, classifications are being excluded with each selection. The number of
classes excluded is equal to 2¥ — 1 where N is equal to the number of the ques-
tion being asked. For example, if there are three questions, there will be 28 = 8
classifications. Also, on the third question 2% — 1 = 7 classifications will have
been eliminated, leaving one. In tabular form:

Classifications Exclusions

(29) @y —1)
1 2 1
2 4 3
3 8 7
4 16 15
5 32 31

20 1,048,576 1,048,575.

This shows that the procedure can be efficient in eliminating items that are not
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required. This is another way of saying that it is efficient in selecting items that
are required. Suppose the above procedure is applied to a four-question game
instead of a twenty-question game, and that the question is: ‘‘What number am 1
thinkirg of from 1 to 16, both inclusive?”” (Suppose the number is 12.) According
to the above table, this should be answered by four questions. For explanation,
note the numbers given after the questions below.

Let question No. 1 be:

“Ts the number greater than 8?”’—Answer: ‘“Yes”
Let question No. 2 be:

“Is the number greater than 12?”—Answer: “No”
Let question No. 3 be:

“Is the number greater than 10?”—Answer: “Ye<”
Let question No. 4 be:

“Is the number greater than 11?”—Answer: ‘“Yes”
Problem solved.

1

2

3

4

5

6

7

8 First midpoint

9
10 Third midpoint
11 Fourth midpoint
12 Second midpoint
13
14
15
16

Notice that in this example, where the numbers Were consecutive, each time
the choice was made around the midpoint of the remaining group, only four
questions' were required to select from 2* = 16 items.

Notice the similarity between this process and the earlier example to compare
the heights of individuals. They are both methods of making a comparison be-
tween two items and on the basis of the result discarding something, and then
making another selection as a basis for the next comparison, ete.

This comparatively simple process can be applied to many data processing
problems since it provides a way for the digital computer to examine a list and
select a particular value from the list. It is similar to the use of a numerical table,
such as a sine or square root table. When an individual uses a sine table to de-
termine the sine of 49 degrees, for example, he does not start at 0 degrees and
proceed one-by-one until he locates 49 degrees. He will probably enter the table
somewhere near the middle and, by a series of successive smaller “juraps,”
arrive at the desired value. The following example shows a computer application
of this technique.

L At e sk T Ve B s A g AT e A
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Example 2. Sorting by Seniority

In a certain company all employees are given a bonus at the end of the year.
The amount of each bonus payment is determined by a separate calculation
procedure corresponding to the number of years of employment. All employees
who have worked for 16 years or more get the same bonus, and all are considered
to have worked at least one year. The computer program calculates the number
of years of employment and, as expressed in the COMPIAC compiler language,
stores this number in a location called YEARS. The following program shows
part of the bonus computation procedure. It would come after that part of the
program in which the length of employment for an individual had been stored
in the location called YEARS.

START BONUS CALCULATION:

YEARS > 8: TWELVE. FOUR.
TWELVE:

YEARS > 12: FOURTEEN. TEN.
FOURTEEN:

YEARS > 14: FIFTEEN. THIRTEEN.
FIFTEEN:

YEARS > 15: BONUS 16. BONUS 15.
TEN:

YEARS > 10: ELEVEN. NINE.
ELEVEN:

YEARS > 11: BONUS 12. BONTUS 11.
THIRTEEN:

YEARS > 13: BONUS 14. BONTUS 13.
NINE:

YEARS > 9: ]?ONUS 10. BONUS 9.

The above steps would be followed by other parts of the program with the fol-
lowing labels, each one of which would carry out tl.e proper calculations for a
given length of employment. Notice that the steps for years les: than eight have
not been included.

BONTUS 16:
BONUS 15:
BONUS 14:
ete.

Example 3. Sorting for Sequence

An important use of a comparison technique is that of sorting numbers into a
particular order. This is a regular part of many data processing functions where
it becomes necessary to arrange items such as payroll numbers or check numbers
into an ascending sequence.

There are many ways of sorting numbers, and the following method serves as
an example. Suppose the first few numbers stored in the computer are in the
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following order, and that any one number appears only once:

41
18

6

2

19

1

62
110
3
1006

The procedure follows:
Select the first two numbers and call them A and B:

A =41
B =18

Q. Is A greater than B? A, Yes.
(If A is greater than B, they are not in ascending order.)
Replace A with next number and try again:

A= 6
B =18

Q. Is A greater than B?  A. No.
(If A is not greater than B, they are in ascending order, but there may still be a
number smaller than what is now called 4.)

Keep this new 4 and replace the B with the next number:

A =6
B =2
Q. Is A greater than B? A. Yes.
(Again, not in order.)
Replace A with the next number:
A =19
B= 2
Q. Is A greater than B? A. Yes.
(Same as before.)
Replace A:
A=1
B =2

Q. Is A greater than B> A. No.
(As before, maybe this is the smallest.)
Replace B:
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A= 1
B = 62
Q. Is A greater than 5?  A. No.
Replace B:
A= 1
B = 110.

It is not necessary to continue to demonstrate what is happening. The process
of replacing A whenever it is greater than B and by replacing B whenever it is
greater than A results in the smallest number being “worked” into A and never
being replaced.

The only additional thing which needed to be done is to ask, whenever any
replacement is made for either A or B: “Is this the last number to be concerned
with?” As long as the answer is “No,” the process is continuous. Whenever it is
“Yes,” one more comparison needs to be made (with this last number). After
this, whatever remains in 4 is the smallest number of the group, if this last
answer is also “No.” If this last number s “Yes,” B has the smallest number of
the group.

One must n~w simply store this smallest number in a special spot, and elimi-
nate it from the list, thus:

New list Storage

41 1
18
6
2
19
62
110
3
1006

Now begin again, as before, the only difference being tha’ the smallest number
of this cycle is stored in the next position of storage (not on top of the last one).
This general procedure is an iterative one that can be used to arrange numbers
into an ordered sequence.

Fig. 4-2 shows some of the most important steps in this process. There are
certain steps left out of the diagram, some of which are referred to in the text,
an important example being the process of storing the smallest number of each

cyclee

Example 4. An Information Search

One raethod of filing reports and searching for them in a library consists of the
following scheme, which makes use of comparison techniques. Before the system
is installed, a list of words is selected which can be used to describe the expected
reports. For example, in an aircraft plant the words might include “wing,”
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READ FIRST
NUMBER
4)

READ NEXT
NUMBER

(B)

IS A GREATER
THAN B?

REPLACE 4 REPLACE B
WITH NEXT WITH NEXT
NUMBER NUMBER

Fig. 4-2. Arranging Numbers in Ascending Sequence

“tail,” “engine,” “jet,” “‘cockpit,” “automatic,” “pilot,” “radio,” ‘‘electronic,”
and of course many more. Each word would appear on an individual card of the
type shown symbolically in Fig. 4-3. There may be several thousand words in the
lists and new ones can, of course, be added as required. As reports are written,
the filing process consists, first, of assigning each report a serial number. The
report is then checked by the cataloger and that particular serial number is
written down on the cards corresponding to as many of the words in the list as
seem to apply. Suppose, for example, Report No. 1632 describes certain elec-
tronic devices by means of which a pilot can check on engine performance. Out
of the words given above as samples, 1632 can be written on three cards:
«Engine,” “Pilot,” and “Electronic.” If Report No. 1633 concerned wing vibra-
tions caused by jet engines, 1633 can be put on the following three cards out of
the sample list above: “Jet,” “Engine,” and “Wing.” Note that the card with
the word “Engine” now has two numbers. In general, then, all reports which
have anything to do with engines will have their numbers on the “Engine” card
and so on.

To use the system to locate reports, or even general information if the name
(or existence) of a report is unknown, cards are selected from the file which de-
seribe the area of interest, and a comparison is made. Suppose one is interested
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COCKPIT

AUTOMATIC

ELECTRONIC

Fig. 4-3. Classification by Key Words

in automatic electronic devices by means of which the pilot can check engine
performance. The following cards are pulled from the files: “Automatic,” “Elec-
tronic,” “Pilot,” and “Engine.” These are then examined visually and any
serial number which appears on all cards may be that of a report pertaining to
the subject specified. These reports are then pulled from the files and examined.

The above process of selection is one involving comparisons and depends on a
definite repetitive procedure. The cards illustrated in Fig. 4-3 will clarify the
above example, by showing what the cards may look like. Each number on a
given card means that the particular report had something to do with the topic
on the card. In other words, Reports 46, 92, 176, 328, 1633, and 1926 all had
something to do with wings; Reports 77, 61, 132, 1632, and 1996 all had some-
thing to do with pilots; ete. For the particular example above, using the selected
cards, notice that the circled numbers appear on more than one card.

Realize that a person using the system would not know what reports are re-
ferred to on any card; he would merely select the cards he thinks may contain
references to reports of interest and subsequently make comparisons for numbers
that appear on the selected cards.
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This procedure has been applied to computing machines where, instead of the
cards, the numbers as well as descriptive words are recorded on magnetic tape,
as schematically shown below.

%
O

To use the system, a comparison method similar to that already described is used.

Without specifying the details, consider as before that the words ENGINE,
ELECTRONIC, AUTOMATIC, and PILOT define the search to be made and
that they are placed in the machine. These search words can be placed in the
machine in any order, although there would be a time advantage if they were in
the same order as the groups appear on the tape. The first one, ENGINE, is
then placed in a position similar to what was called 4 in the example on sorting.
At this point the tape is caused to move, and the entire first group is brought
from the tape into the machine. (This group corresponds to the WING card.)
The first information of the group (the word WING) is then placed in what was
called B in the sorting example, and a comparison is made for the condition of
equality, as illustrated in Fig. 4-4. In this figure there are steps omitted from the
diagram similar to those left out of the example on sorting. It is intended to
show how groups of data may be treated. Essentially the first word, ENGINE,
is compared as follows:

Read ENGINE (A)

Read WING (B)

Q. Are they equal?

A. No.

(The WING group is not needed.)

[1=] a
<t =2

||

— 176
———328
——1633
——1926
————TAIL
48
—— 162
— 897
— 1164
—ete.

Replace (B), but retain ENGINE (A) to compare with next group:
Holding ENGINE (A)
Re:=d TAIL (B)
Q. Are they equal?
A. No.
(Same as before.)

Replace (B), but retain (A) once more, continuing the procedure until:
Holding ENGINE (A)
Read ENGINE (B)
Q. Are they equal?
A. Yes.
(This group is needed.)
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READ NEXT
REQUEST WORD
INTO (A)

READ WORD
FROM NEXT
TAPE GROUP (B)

COMPARE
DOES A = B?

THIS GROUP IS WANTED. THIS GROUP IS
STORE ENTIRE GROUP FOR NOT NEEDED
NEXT PART OF PROCEDURE AT THIS TIME

Fig. 4-4. Flow Diagrams for Group Selection

Take whole ENGINE group from tape and save it for the next part of the pro-
cedure.

Replace ENGINE (A) with ELECTRONIC. (This is the second search word.)

Start over with (B):
Read ELECTRONIC (A)
Read WING (B)
Q. Are they equal?
A. No.

Replace (B):
Holding ELECTRONIC (A)
Read TAIL (B)
Q. Are they equal?
A. No.

Replace (B).
Ete.
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The procedure will be continued where each of the search words will be com-
pared with the group words on the tape and the appropriate groups removed
from the tape for the next phase.

At this stage four groups have been removed from the tape: ENGINE,
ELECTRONIC, AUTOMATIC, and PILOT. In a manner similar to that al-
ready described, two groups are selected for treatment, say the ENGINE group
and the ELECTRONIC group.

This then puts the following sets of numbers into position.

ENGINE ELECTRONIC
6 13
42 200
1531 1632
1632 1996
1633 2006
1996

In a fashion similar to the sorting example, Item 6 from the ENGINE group,
is compared successively as follows with the numbers of the ELECTRONIC

group:
6 6 6 ete.
13 200 1632

then 42 is compared
42 42 42 ete.

13 200 1632

Finally the equal comparisons are located. They are 1632 and 1996. These two
report numbers, then, are the only ones that need to be compared with any of
the other remaining groups, and they are the only ones in the present example
that will “survive” the comparison process as it is carried to completion. For

example:
“Survivors from Last
Comparision”’ AUTOMATIC
1632 44
1996 72
86
990
1632
1996
2040

As before, comparisons are made:
1632 1632 1632 1632 ete.

44 72 86 990

and the same with 1996.
There will be two survivors out of the AUTOMATIC group, so the comparison

is extended to the PILOT group, as follows:

O
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“Survivors’’ 2ILOT
1632 Yk
1996 61

132
1632
1996

It can be seen, then, that Reports 1632 and 1996 are the only ones that apparently
have something toc do with subjects that can each be described by the words
“gutomatic,” “electronic,” ‘“pilot,” and “engine.” These reports caa then be
pulled from the file and examined. This library searching procedure is charac-
teristic of many now under developraent or in use in various parts of the country.

Example 5. Making a Computer Compose Music

In Chapter 3 there was a discussion of the use of random numbers and some
of their uses in solving problems. A computer application, which will be classed
as nonnumerical, is that of music composition. This example will not cover all
of the details of the process but will suggest a procedure.

When a musician composes a tune he somehow extracts information from his
past experience and on his work sheet proceeds to write down a new note to
follow the last note. This is a repetitive process although it is one that cannot be
well defined and therefore not one that can be programmed for a computer. It is
possible to simulate this process however.

One way to simulate the experience the composer has in his brain is to examine
what he has already done. This can give some hint as to how he thinks. Suppose,
then, we examine a number of tunes which have been composed by a given com-
poser and which are more or jess of the same recognizable type. Suppose also they
are all in the same key. The examination might consist of tabulating the notes of
all tunes in the group and counting how many times certain notes followed
others. For example we might find that 76 percent of the time this composer
followed the note C by the note G, that 22 percent of the time C was followed
by E, and that 2 percent of the time C was followed by D. Similar tabulations
would be prepared for all notes in a real application.

These tabulations represent one expression of the composer’s experience. The
problem to be solved is: How to make use of this experience in composing a new
tune that will reflect this experience?

One way to do this is to have a list of numbers available the range of which is
between 00 and 99, both inclusive, but which are in a random sequence. That is,
their arrangement is of such a character that it corresponds to their having been
selected by chance.

According to the tabulation, C will be followed by G, E, or D, with probabili-
ties of 0.76, 0.22, and 0.02 respectively. This then can be represented by letting
00 and 01 correspond to a D following C, by letting 02 through 23 correspond to
an E, and by letting 24 through 99 correspond to a G.

Now to compose a tune. Assuming that the note C has already been written,
what will the next note be? The procedure is to select a number at random and
see where it falls as defined by the “experience” probabilities for C. This having

e BBl
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been done, repeat the process with a new random number according to the ‘‘ex-
perience”’ probabilities for G or E or D, whichever was selected.

The procedure above does not consider rests or rhythm, which may depend on
“experience” developed by the examination of several preceding notes instead of
the immediately preceding note. This brief procedure is intended only to give a
suggestion of a music composition process. Some elements of a computer program
to carry out the foregoing simplified procedure follow: GENERATE stands for
the statements necessary to obtain a random number and store it in the location
called RANDOM. PRINT stands for the necessary statements to print the letter
specified.

RANDOM (1);
NOTE IS C:
PRINT C,
GENERATE,
RANDOM (1] < 02: NOTE IS D. G OR E.

G OR E:
RANDOM (1] < 24: NOTE IS E. NOTE IS G.

NOTE IS D:
PRINT D,
GENERATE,
RANDOM [1] < ___: NOTE IS —. — OR _.

NOTE IS E:
PRINT E,
GENERATE,
RANDOM [1] < __: NOTE IS _. — OR _.

NOTE IS G:
PRINT G,
GENERATE,
RANDOM [1] < —_: NOTE IS _. — OR _.

The blanks in the last three parts of the program would, of course, be filled in
according to the “experience’” probabilities of those notes. In this example, each
note is considered to be followed by one selected from a group in which there
are not more than three notes. Also there would be additional parts of the pro-
gram corresponding to all of the notes the composer had used. The entire proce-
dure is simple in principle: After a note is selected, print it, and then on the basis
of a chance process, but tempered by “‘experience,” proceed to the next note and
continue this procedure.

Example 6. Making a Computer Play a Tune

Example 5 suggests a related procedure: the generation of tones by computer.
One way that this can be done by digital computer is to realize that between
each two positions of the arithmetic unit there is a wire connection used to trans-
fer the “carry” impulse. That is, between the third and fourth positions in a
decimal machine, if the first three positions all contain 9’s, the fourth will re-
ceive a ‘“carry’”’ when one more is added.
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By making use of this carry facility it is possible to generate tones by computer,
as follows:

Suppose that the wire that is used to transmit the carry impulse is instead
connected “hrough some external electronic circuits including a loud speaker
system. Now if the carry impulse is transmitted, the speaker will ‘“click” in a
way similar to the way the television speaker may click when a house light
switch is turned on.

Our ears recognize tones by their frequencies, therefore, if our ears detect
“clicks” at, say, 440 times per second we will interpret this to be the tone A,

Is there a way, then, of using the computer to produce “clicks” at frequencies
that correspond to tones of the scale, making use of the carry circuit?

Suppose there is a computer that can add numbers at the rate of 10,000 per
second (which is actually a modest rate for modern computers). Suppose also
that the carry circuit connecting the sixth and seventh positions of the counter
is connected to the speaker. The speaker will now click every time the counter
carries into the seventh position, or on every million. Therefore, by causing this
computer to add repeatedly the number 44,000 for one second, this particular
carry circuit would be engaged 440 times, since 44,000 X 10,000 = 440,000,000,
and the loud speaker connected to the circuit would “click’ 440 times per second,
producing the tone A.

Before proceeding further it should be explained that tones of different lengths,
quarter notes, half notes, etc., can be produced in the same way. Recall that the
““clicking” does not have to continue for a second to produce A. It is the rate
of clicking that distinguishes the tone. Thus, if 44,000 were added for one second
it would produce 440 clicks and therefore A, but A would also be produced if
this rate of clicking lasted only one-half second—it would merely be a tone of
shorter duration. Therefore the duration of notes depends on when the process
is stopped. This “stopping’’ process is illustrated for three notes in the piogram
that follows.

To have the program “play a tune” the notes of the tune can be generated
as suggested in Example 5, or entered directly by cards. Let the following notes,
expressed in do-re-mi relationships, have these numerical codes:

Do whole note

Do half note

Do quarter note
Re whole note

Re half note

Re quarter note
Ti dotted half note
Ti half note

Ti quarter note =

1
2
3
4
5
6
7
8
9

Using this code, and letting A be do: the first 6 notes of America, starting at A,
will be as follows:

2,2,5,7,3,5.

For this example assume that these notes will be entered, in order, by cards into
the computer in locations called NOTES. The elements of the program follow.
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NOTES (6),
COUNTER (1);
I=1(1)6
(NOTES [I] < 4: NOTE IS DO. NOTE IS RE OR TI.

NOTE IS DO:
NOTES [I] < 3: WHOLE OR HALF DO. START QUARTER DO.

WHOLE OR HALF DO:
NOTES [I]1 < 2: START WHOLE DO. START HALF DO.

NOTE IS RE OR TI:
NOTES [I] < 7: NOTE IS RE. NOTE IS TI.

NOTE IS RE:
NOTES [I] < 6: WHOLE OR HALF RE. START QUARTER RE.

WHOLE OR HALF RE:
NOTES [I] < 5: START WHOLE RE. START HALF RE.

NOTE IS TI:
NOTES [I] > 8: START QUARTER TI. DOT HALF OR HALF TL

DOT HALF OR HALF TI:
NOTES [I] = 7: START DOT HALF TI. START HALF TI.

START WHOLE DO:
0 — COUNTER (1},

MAKE WHOLE DO:
COUNTER (1] + 44000 — COUNTER (1},
COUNTER (1] = 440000000: RETURN. MAKE WHOLE DO.

START HALF DO:
0 — COUNTER (1],

MAKE HALF DO:
COUNTER (1] + 44000 — COUNTER (1],
COUNTER (1] = 220000000: RETURN. MAKE HALF DO.

START QUARTER DO:
0 — COUNTER (1],

MAKE QUARTER DO:
COUNTER [1] + 44000 — COUNTER (1},
COUNTER (1] = 110000000: RETURN. MAKE QUARTER DO.

RETURN:},
STOP.
STOP:..

To save space, only three of the nine notes are included here. The others would
be developed in the same way using different values to correspond to the different
frequencies. It should be noted that frequencies produced by this procedure will
not be correct because the program is doing other things besides “adding to a
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million,” such as selecting the proper note and checking to determine if it is
time to stop the process. Therefore the number of carry impulses to the loud
speaker will be the wrong number per second. This could be adjusted in actual
practice, of course, by selecting other numbers instead of the 44,000 used here
for A. For example if the “other things” being done by the computer require an
amount of time equal to that needed to perform the addition, it would be neces-
sary to add 88,000 instead of 44,000 to produce the required 440 carry impulses
per second.

EXERCISES FOR CHAPTER 4

1. Example 2 showed a process that started in the middle of an ascending
sequence of numbers and would select a particular one out of all cases having a
value greater than this midpoint value. Prepare a flow diagram and write a
program to continue the process for values tlat are less than the midpoint value.
Do the same thing using “‘equal” instead of “less than” or “oreater than.” How
dees this change the procedure?

2. Example 3 showed a sorting method that resulted in an ascending sequence
having the smallest number “‘on top.” How would the flow diagram be changed
4o make the sequence a descending one? Write a compiler program to do this.

3. In Fig. 4-3 of Example 4 the report numbers within a given group had
previously been arranged into ascending order. What is the advantage of this
having been done before the searching process is begun?

4. In a four-year high school having 1200 students the grade point averages
for all students are arranged in alphabetical order of the students’ names, without
regard to the class year of the students. Each grade point average is coded,
however, to show the student’s particular year in school. The code consists of a
“17 for the first-year students, a “2” for the second year students, ete. A typical
student record is of the form:

3205,

meaning that this pertains to a third-year student with a 2.05 average. Prepare
a flow diagram and program that will arrange the now single alphabetically
arranged list into four lists, one for each class year, in ascending order of grade
point average.

5. How would the program of Exercise 4 be changed to count the number of
studenis in each class?

6. Select 5 nursery rhymes and, after being sure that they are in the same key,
prepare the experience probabilities as suggested in Example 5. It will be de-
sirable to consider a “rest” the same as a note. Select random numbers by making
a set of ten cards numbered from 0 to 9. Put these in a box and shake them.
Select a card and record it as the units digit of a two-place number. Return the
card to the box and shake again. Select a card again and record it as the tens
position of the random number. Compose a tune and play it on the piano.
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Appendixz A
NUMBER NOTATION SYSTEMS

This appendix discusses three computer oriented topics. Although it is not
necessary to master all the fine points of these topics in order to understand and
use digital computers, it is desirable to broaden one’s comprehension of the
digital computer and its applications by supplementing the familiar decimal
system of notation with certain others.

The three topics included in this section are: octal, duodecimal, and binary nota-
tion, used extensively in discussing the internal operations of many digital com-
puters; binary coded decimal, a system used for representing symbols in binary
code; and floating point, a system similar to scientific notation, which is used in
most engineering and scientific computations.

Part I. Octal, Duodecimal, and Binary Notation Systems

In the Introduction the point was made that certain devices (computers) have
been developed to aid in solving both mathematical and nonmathematical (or,
more appropriately, numeric and nonnumeric) problems that have been properly
organized in some sequential fashion.

One topic of interest and importance from both a mathematician’s and digital
computer engineer’s point of view is the study of number notation systems. In
the study of number theory one learns some of the basic properties of numbers.
Among these properties is that the scale of notation may be arbitrarily selected;
that is, our decimal system could be replaced by a different system of notation.
Although it would be confusing to persons trained in the decimal system, another
system would be equally adequate for solving problems.

Since a system of notation is essentially a means of counting, the term different
system means counting by digits that are not repeated, or cycled, at 9, as is done
in the familiar decimal system. That is, when we use 0, 1, 2, 3,4, 5,6, 7, 8, 9,
we start repeating at 10 in the sense that we use the same digits again. This is
illustrated by the following table:
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Notice that in column A each of the digits is used once until all have been used
once; then the cycle is repeated. In column B each of the digits is used ten times
before the next one is used for ten times. Likewise, in column C each digit will
be used 100 times before the next digit is used for its 100 times. In column D
each digit would be used 1000 times; in column E, 10,000, and so forth.

The point to emphasize is that the numeral 10 can have another meaning
than that of designating the total number of fingers, including thumbs, on both
hands. The other meaning is that we can say “10” means “the place where the
system starts repeating.”

With this new meaning of “10” in mind, notice that in column A the digits
change their value every 10° = 1 times. That is, every single time there is a
change in digits. In column B the change is every 10t = 10 times. In column C
the change would be every 102 = 100 times, and so forth. This suggests that any
number can be named using the decimal system of notation. That is, any number
can be thought of as a sum of powers of the base 10 multiplied by an appropriate
number from 0 to 9, inclusive.

For example, 1 2 3 7 can be represented as follows: the 7 corresponding to
position A, the 3 to position B, the 2 to position C, and the 1 to positior D, as
follows:
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D C B A
1 2 3 7

1(10)* + 2(10)2 4 3(10)! + 7{10)°,

1000 + 200 4 30 4 7.
A more general representation of this is to say that any integer N can be

v ritten as follows:

N = C.(10)* + -+ + C2(10)2 + C1(10)* 4 Co(10)°

where the values are rewritten from left to right in order of decreasing powers
of 10, and the C’s represent any one of the digits, including zero.

Consider the second meaning of ““10,” as stated in the paragraph above: “the
place where the system starts repeating.” Assume that “10” means “the place
where the system starts repeating” according to the total number of fingers on
both hands, not including thumbs. With this system we would use: 0, 1, 2, 3, 4,
9, 6, 7. In other words, there are now as many symbols (called digits before)
as there are fingers, not including thumbs.

As before, an array of numerals can oe developed as follows:

C

B

A

Decimal

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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Notice that there is no difference between the general structure of the new
system and the old system: they both cycle or repeat at the numeral “10.” As
can be seen, column A repeats each 8° times; column B repeats each 8! times;
and column C, if extended, would repeat each 82 times. Thus in this system,
known as octal, any integer can be represented as follows:

N = Ca@®)" + - + Ca(8)2 + C:(8)* + Co(8)°

where the (’s again represent any one of the symbols 0, 1,2, 3, 4, 5,6, 7. Of
course, the symbols 8 and 9 are no longer used in the new system. For conveni-
ence in the chart above, the corresponding decimal values are given for the octal
numerals; for example, 32 in decimal notation equals 40 in octal notation, ete.
It is customary to write this as follows:

(32)10 = (40)3 .

The subsecripts 10 and 8 designate the base, or radiz, of this system. Notice
that the base corresponds to the number of different symbols, expressed here in
base 10, required in the system.

The duodecimal system of notation is shown below to indicate how a system
can be developed on a base larger than “the number of fingers on two hands,
including thumbs.”

Duodecimal Octal Decimal
DCB A
00 0 0
01 1 1
0 2 2 2
0 3 3 3
0 4 4 4
0 5 5 5
0 6 6 6
07 7 7
0 8 10 8
09 11 - 9
0 L (lam) 12 10
0 Z (zug) 13 11
10 14 12
11 15 13
1 2 16 14
1 3 17 15
1 4 20 16
15 21 17
1 6 22 18
17 23 19
1 8 24 20
19 25 21
1 L 26 22
1 Z 27 23
2 0 30 24
21 31 25
2 2 32 26
2 3 33 27
2 4 34 28
2 5 35 29
2 6 36 30

(continued next page)
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Duodecimal Octal Decimal
DCBA

37 31
40 32
41 33
42 34
43 35
44 36

As before, any integer can be represented as follows:

N = C,(12)* + .-+ 4+ C3(12)% 4+ C:1(12)* + Co(12)°.

There is something new, however. Instead of leaving out two symbols, 8 and
9, as in the octal system, two additional symbols must be added. These have
been called here L (for lam) and Z (for zug). Lam and zug have no special mean-
ing: they are merely arbitrary names for two arbitrary symbols. Their use also
introduces new terms, such as lamfeen and twenty-zug. Notice that the symbol
“10” still means “the place where the system starts repeating.” For comparison
purposes, the octal and decimal systems are listed alongside the duodecimal. In
particular, for example:

(2L)12 = (42)s = (34)10-

From the computer engineer’s point of view, there are certain advantages to
still another notation system, which is based on two (the total number of thumbs
on both hands).

A reason for wanting this system with a base equal to two is related to the
fact that electronic devices can be developed which do a good job in distinguishing
between the following kinds of situations, which are typical of conditions that
can be experienced using electronic circuitry:

1. Is a switch open or closed?
or

2. Is a voltage present or absent?

In other words, these are situations in which there are only two conditions
possible, not eight, not ten, and not twelve.

Therefore, to match the electronic devices which can only distinguish between
two states or conditions, a binary (base = 2) notation system has certain ad-
vantages.

In principle, the binary notation system is no different from the others: “10”
still means “the place where the system starts repeating,” and any integer can
be represented as follows:

N = Co(2)" 4+ -+ + C2(2)2 + C1(2)! + Co(2)°.

As before, the following list will indicate how this system is used.
Comparison is given with the octal and decimal systems; for example:

(10000): = (20)s = (16)10
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Decimal
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Notice that in column A the cycling is every 2° times; in column B, every 2!
times; in column C, every 2? times; ete.

The purpose of the above material is to give some insight, or feeling, as to
how systems of notation are “put together;” that is, what are their basic ele-
ments. Two related topics will be discussed below: (1) the extension of the above
material to fractions and (2) the method of conversion from one system to
another.

To extend the idea to fractions, first consider the integer:
(137)10.
This can be represented as:

1% 102 + 3 X 101 4 7 X 10°.

« Likewise, a fraction can be similarly represented; for example:
137.642 = 1 X 10* + 3 X 10* 4+ 7 X 10° +
6 X 10! + 4 X 1072 4 2 X 1073,

In other words, the powers of 10 range from zero in a positive direction for
integers and from —1 in a negative direction for fractions. The same situation
prevails regardless of the base or radix in question.

The problem of conversion from one system to another can be thought of as
a determination of the number of groups of 10 within the numeral in question.
In this sense, of course, 10 has the meaning of “the number of items in a repeti-
tive cycle for the given base” (not necessarily the number of fingers, including
thumbs, on both hands).

For example, convert the numeral (12)10 to its octal equivalent. In line with
the paragraph above it is necessary to determine how many (10)s’s are in (12)10.

Of course (10)s = (8)10 (see the conversion table, pages 138-39). Also, it canbe
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stated that
(12)10 = )10 + 410

In other words, (12)1 equals a single value of (8)10 plus a remainder of (4)1.
But, since each (8)10 = (10)s , the above expression can be written as

(14)s .

In general, then, the system is the same as earlier described: The number is
expressed as a sum of powers of other numbers plus a remainder.
In converting from decimal to octal, subtract out powers of 8 as follows:

C B A
8 4 8 4 8

For an 8 a 1 is placed in the C position; for an 8, a 1 is placed in the B position;
and the remainder is placed in the A position. In the above example, (12)10
contains an 8! plus a remainder of 4, hence

i &:‘;_g-\___v.,e“

(12)10 = (14)s.

In like manner,
(27)10 = (33)s
since
(27)10 = 3(8)10 + 1(3)10 -
Also,
(64)10 = (100)s
since (64)y0 is 82 and is recorded in the C column. Note then that:
(19)10 = 1(8)%0 + 1(8)10 + 7(8)1
or
(79)10 = (117)s
and, again,
(142)16 = 2(8)30 + 1(8)1 + 6(8)%0
or
(142);0 = (216)s .

Another way of approaching this problem is to perform successive divisions
by the base to which one wishes to convert, and record the remainders. For

example:
8|142 Remainders
817 + 6
§2 + 1 .~ (142)1 = (216)s,
0 +2

This is essentially the same as the first procedure outlined since it is effectively
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removing powers of 8. After the first division by 8, the number can be considered
as seventeen 8’s plus 6. After the second division the number can be considered
as two 8%'s, plus one 8!, plus 6; thus the octal numeral 216 is obtained.

In the same way powers of 2 can be subtracted to convert from decimal to
binary.

Exampre. Convert (18)10 to binary. Recalling that the powers of 2 are

25 20 P 2 2 2
32 16 8 4 2 1,

begin by subtracting out the largest power of 2, and record a 1 in the correspond-
ing position. The largest power of 2 that can be subtracted from 18 is 2% or 16.
This will call for a 1 to be placed in the fifth position and will leave a remainder
of 2. From this remainder the highest power of 2 which can be subtracted is 2!;
it will call for a 1 to be placed in the second position, and it will leave no re-
mainder. Therefore,

(18)10 = (10010); .
As above, by successive division,

2|18 Remainders
20 +0
22
22
21
0 +1

The study of systems of notation is interesting and can develop an under-
standing of certain properties of numbers. From the point of view of the in-
dividual whose primary task is to solve mathematical problems with the aid of
large digital computers, the subject is of little practical use. The reason for this
is that few, if any, computers require familiarity with any but the decimal sys-
tem, since even those which are fundamentally binary are usually used in con-
junction with compilers and other programming procedures which perform the
necessary conversions from one system to another.

These same techniques of conversion can be applied to the duodecimal system
as well. The interesting aspect of conversion with this system and perhaps with
others, too, is that a new multiplication table is required to perform the succes-
sive divisions. A table for the duodecimal system is given below. Remember
that to convert from one base to another it is necessary to perform successive
divisions by the base to which it is desired to convert. For example, convert
(100);, to its decimal equivalent. Since lam (L) is the duodecimal equivalent of
the decimal 10, division must be by L:

<. (18)10 = (10010),.

+++
OO ==

12 1 0
Ligo Lz Li
L L 0
50 4 1
18
4

or (100);; equals (144)1,.
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DuopecIMAL MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 L z 10
1 1 2 3 4 5 6 7 8 9 L Z 10
2 2 4 6 8 L 10 12 14 16 18 1L 20

6 6 10 16 20 26 30 36 40 46 50 56 60

7 7 12 19 24 27 36 41 48 563 5L 65 70

8 8 14 20 28 34 40 48 54 60 68 74 80

9 9 16 23 30 39 46 53 60 69 76 83 90

Z Z 1L 29 38 47 56 65 74 8 92 L1 Z0

10} 10 20 30 40 50 60 70 80 90 Lo Z0 100

EXERCISES

1. Extend the table showing the duodecimal system to include bases 3, 6,
and 14. (Make up your own symbols as needed.)

9. Convert the following from decimal to binary notation: (a) 36; (b) 151;
(c) 378; (d) 2021. o

3. Convert the following from binary to decimal notation: (a) 101; (b) 1100;
(c) 111101; (d) 10010011.

4. Convert 77 in decimal notation: (a) to octal notation, (b) to binary notation.

5. Compare the octal and binary notation in the previous table and discover
the meaning of the statement: “Octal is a shorthand for binary.”

HINT. 23 = (8)10 = (10)s . In the top line of Exereise 6, below, separate the binary quan-
tity into groups of three, starting at the right, to give 10A 010. Converting each group of
three gives 2A 2.

6. In the following table, numerals having the same value are given in the
same row with column headings that designate different systems of numeration.
For example, decimal 18 is equivalent to octal 22, to binary 10010, or to duodec-
imal 16. Fill in the remaining blank positions.
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Decimal Octal Binary Duodecimal
18 22 10010 16
37
246
75
41
B 144
1000
100
3L
10010000

Part Il. Binary Coded Decimal

One of the most frequent conversions performed by present-day compuiers
is the conversion from decimal to binary notation. Another one is the conversion
from decimal to what is called binary coded decimal—abbreviated BCD—which
is described below. ,

Because such conversions must be performed often in the use of computers,
programs are available for them. Of course, once the programming is done, it
is not necessary to worry about the task from day to day. It is for this reason
that a computer user does not need to have great facility in performing the con-
yersions—the computer can be programmed to do this. However, the techniques
are interesting to many individuals who teach or otherwise use mathematics.
This material is presented for this reason, and also because an added appreciation
for numerical relationships can be developed by acquiring some understanding
of some of the systems of notation.

BCD (binary coded decimal) is a hybrid code of binary and decimal; that is,
each separate decimal digit is represented in binary form. The paragraphs below
describe the conversion of decimal to BCD.

In Part I of this appendix, the binary representations of the decimal digits
0-9 were shown to be as follows.

Decimal Binary

0

1

10
11
100
101
110
111
1000
1001
1010

S UL W= O

[y
SO w3

BCD uses one of the above binary representations for each decimal digit of a
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given numeral. There are certain advantages in handling some types of data if
each decimal digit is handled separately. For example, the decimal numeral 28,
in binary, is as follows:

(28)10 = (11100)2.

Notice, however, that the decimal digits have lost their identity in the binary
form. In BCD, the arrangement is as follows:

2 8
0010 1000

(28)10 = (00101000)]3(;1) .

Here each decimal digit is represented by a four-place binary numeral. As in the
above examples, a division process can produce the conversion. In this case the
binary quantity is divided by the binary equivalent of the decimal 10, or 1010.

10 0
1010]11100 1010[10
1010 0

1000 10
0000

1000

Where, as before, the last remainder (10) after filling out the four positions
becomes 0010, which together with the remainder of 1000 produces 28.

Again, it should be emphasized that this merely shows an iterative process
which may be done by machine, but is not a mathematical application that a
machine user himself must perform. It gives some insight as to what is going on
inside the machine as it converts from one binary representation to another. In
actual practice a different procedure would be used ... one that depends on
principles like those described in the first 2 examples given in Chapter 4.

The following conversion of (4962)1 to BCD extends the above procedure,

First, by methods shown previously:

(4962)10 = (1001101100010): .

Second, the conversion:
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111110000 110001
10101001101100010 1010111110000
1010 1010
10010 1011

1010 1010
10001 10
1010 0
1111 100
1010 _0
1010 . 1000
1010 0
00 10000
0 1010
00 110
0
01
0
10
0
10
100 0
1010/110001 1010(100
— 1010 -0
100 100
0
1001
_0
1001

and, rearranging the remainders, one obtains 0100, 1001, 0110, 0010, or, in dec-
imal notation, 4962.

A BCD code can also be used for other than numeric symbols. Reference to
Fig. 2-3 shows that the letter A corresponds to a “1” in combination with a hole
in the upper level of the card. (This upper level of the card is sometimes cailed
«y” ) If the Y level is given the binary code 11; if the middle level, called “X”’,
is given the binary code 10; and if the lower level, called “zero”, is given the
binary code 01; the alphabetic BCD can be shown to be as follows:

A 110001 J 100001 S 010010
B 110010 KX 100010 T 010011
C 110011 L 100011 U 01 0100
D 110100 M 100100 V 010101

ete. ete. ete.

The numeric codes shown previously can also be written in a six-position form,
like the alphabetic codes, and still be kept consistent by letting the “high-level”
binary code be 00. For example:

1 00 6001
2 00 0010
3 000011
4 00 0100
ete.
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An interesting predicament occurs when one considers that it is necessary to
have a code for a blank space (such as between words) as well as for zero. How
can one distinguish between “blank” and “zero’’? A convention that has been
adopted is to let the blank be represented by 00 0000 and the zero by 00 1010.
Notice that the four right-hand positions for this zero are the binary equivalent
of the decimal 10. If the BCD zero is used in the above examples, they will not
work, since in arithmetic operations zero must be represented by 00 0000, not
00 1010. In nonarithmetic operations, such as printing a telephone bock, the
00 1010 kind of zero can be used. To overcome this difficulty, the programmer
must keep his BCD arithmetic separate from his BCD nonarithmetic, and be
sure, for his arithmetic operations, to convert the 00 1010 to 00 0000. When
it comes to printing the results, he converts the zeros back to 00 1010’s to dis-
tinguish between zeros ard blanks.

There are also BCD codes that correspond to special characters such as
commas, periods, ete. For example, in Fig. 2-16, the card code for a comma is
0-3-8. Its BCD code is 01 1011. In like manner, the card code for a period is
Y-3-8, and its BCD code is 11 1011. Notice that the four right-hand positions
represent the binary quantity corresponding to the sum of the decimal numeric
values in the card, the 8 4 3 in this case.

EXERCIVES

1. Each digit of a BCD numeral is represented by a four-place binary numeral.
What is the largest binary numeral required to represent a single-decimal digit?

9. What is the largest value that can be represented by a four-place binary
numeral?

3. Is the BCD efficient in its use of the binary positions? Does it waste some
positions? How much is lost?

4. How does BCD compare with standard binary notation, as far as con-
venience is concerned, in translation to and from decimal notation?

Part ll. Floating Point

Numbers are represented in computers in binary, decimal, or other schemes
of notation. Regardless of the method, there is often a great deal of difficulty in
planning an extended fixed point calculation. This difficulty lies in the fact that
it is hard to foresee the results of hundreds or thousands of arithmetic steps and
to allow in advance for the necessary contingencies associated with keeping
track of the decimal point. For illustration, assume that the computer stores
numerals of ten decimal digits and sign. The numeral 0002905768 can be stored
in the computer. Since most digital computers do not have a built-in decimal
point, this numeral can represent various magnitudes, depending on where the
decimal point is intended to be. The caret (A ) is used below to show the intended
location of the point; thus, the numeral can represent the integer 2905768 A o.
it can represent the decimal number 29 A 05768,

It is necessary for the programmer to keep track of the decimal point; this
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makes the task of coding complicated. In order to add 29 A05768 to
30002582 A 53, the decimal points must be aligned by shifting. Computers have
operational codes that can be used to shift or move the contents of the arithmetic
unit left or right for this alignment process. If these two numbers are in storage
and are to be added, the larger one in this example will first have to be placed
in the arithmetic unit and then, with a separate instruction, shifted three places
to the left before the second number can be added.

30002582 A 53
29 A 05768

30002611 A 58768

But now the sum has more digits than can be stored in one location, so the
sum must either be rounded to 30002611 A 59 or truncated to 30002611 A 58. As
only ten digits are retained, it is vitally important to keep the ten most signifi-
cant digits; notice the magnitude of error introduced if 02611 A 58768 is retained
in storage and the 3, which is 3 X 107, is “lost.” If the characteristics of a calcula-
tion are unknown, there is always a possibility of accumulating, without realizing
it, a sum or a product of more than ten digits; if the most significant digits are
“lost”, the calculation is worthless.

In addition to these alignment problems, fixed point is also subject to another
limitation. For the computer described here, the largest integer that can easily
be represented is 9999999999 A and the smallest, of course,is — A 9999999999 A .
Various fractions can be represented also, as 3 A 005632027 and — A 0000000001.
In scientific and engineering computation, values such as 9.71 X 10%, 0.365 X
10~%, a ' 2.105 X 10" are frequently needed, and the problem of decimal point
location, or scaling, may become extremely difficult. These problems lead to the
development of another system of rotation called floating point.

Floating-point is a scheme simi’ar to the familiar system called scientific nota-
tion. Here we will take two of the digits and use them as integer exponents of 10.
This means that there are now only eight digits available to represent the signifi-
cant part of a number, but for most data derived from measurements this is
entirely adequate. Now the numeral 3000258253 is interpreted as A 30002582 X
103. The number is expressed with the assumed decimal point on the left followed
by eight digits. The two rightmost digits are the power of 10 which will correctly
position the point. Because the power of 10 can be positive or negative, and it is
convenient to represent this by two digits without sign, the convention used is

Exponent Digits Meaning
53 103
52 102
51 10*
50 100
49 10—
48 102,

The leftmost digit is always signiucant, so the number is always expressed as a
fraction 0.1 < n < 1.0 times some integral power of ten. This is illustrated in the
table (p. 152). Notice that the floating point representation for zero itself falls
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outside of this range. However, zero can be represented by a very small number
such as 0.10000000 X 106-%, or 0.1000000000.

Standard Decimal Notation Scientific Notation! Machine Notation
26.1 0.261 X 102 2610000052
-—0.000000057 —0.57 X 1077 — 5700000043
-~3.1415 —0.31415 X 10t — 3141500051
6563210.887 0.6563210887 X 107 6563210957

1 An alternative notation is shown in the Glossary (Appendix D) under ‘‘floating
point calculation.”

Notice that in the last example there are ten digits in the decimal notation but
this is rounded to eight digits for machine use. Some computers are constructed
to operate in floating point. That is, their electronic circuitry automatically
performs the necessary shifting before addition ete. Other computers do not have
this “built-in” facility, and must be programmed cevecially to do this. In this
latter case, the regular user of the computer is not involved, since the compiler,
discussed in Chapter 2, would have been developed to do the necessary shifting,
ete., for him automatically.

There are programming techniques called “multiprecision” that permit use
of more significant digits than the machine is designed for. For example, in double
precision, each number may be assigned two locations so that the sum or product
could be twice as large as normally accommodated.

The use of floating point notation thus makes the machine notation more like
that used by scientists and engineers and relieves the programmer of many
difficult coding tasks involving scaling of calculations. By floating point notation
the capacity of a storage location has been extended so that a value of 9999999999,
meaning 0.99999999 X 10%, can be stored. Likewise a value of —1000000000,
meaning —0.10000000 X 10~%, can be stored. With this range, most scientific
computation ean be accommodated.

Although floating point arithmetic can relieve a computer user of much labor
in the planning of his problem, it introduces a difficulty as well: It can develop
a false sense of security. In other words, just because it is easy to retain eight
significant digits in a floating point calculation does not mean that the digits are
necessarily “good.” As suggested in the discussion of approximation in Chapter
3, “results are no better than the numbers that produced them.” For example,
in the calculation

A = 7R}

if
R = 3.756 and = is used as 3.14,
R* = 14.107536

and

A = 3.14(14.107536) = 44.29766304.

However, there is some question about the “real’’ accuracy of these figures
beyond the second decimal place simply because = itself was expressed with but

e
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two figures to the right of the decimal point. In floating point notation, however,
the R2 would be retained as 1410753652 and A would be retained as 4429766352,
The “7663” part of A would be “carried along” in subsequent calculations but
is of questionable value. The programmer must still be concerned whether the
result of floating point calculations is “correct,” that is, whether or not the error
introduced by round-off and approximations is within some specified limit.

EXERCISES

1. Express in floating point notation: (a) 1086; (b) 0.025901; (c) 87.6747; (d)
6 X 10%,

2. Write the following floating point numerals in decimal notation: (a)
1234567850; (b) 6300000045; (c) 2820511354 ; (d) 0.1000000062.

3. Write the factors and the product in floating point notation: 31785021 X
71864214 = 2284205551138494.

4. In (3), what is the error that is introduced by expressing the product in
floating point, using the methods of (a) truncation and (b) rounding (if eight
significant digits are retained)?

TN By N U ST L T Y
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Appendiz B
RELATED TOPICS

The purpcse of Appendix B is to bring together certain topics that are related
to the material in the body of this book but that are outside the scope of the four
chapters.

A Square Root Method

In Chapter 3 a method for the extraction of square root was described. There
are several possible methods, and the following shows another approach to the
problem. It is based on an interesting but more complicated method than that
given in Chapter 3. The method is often used by hand-computer operators but
not with large digital computers. It is a demonstration of an iterative process,
and one that introduces some interesting numerical relationships.

Table I lists «, 22, and the differences between successive values of 2* as z
takes on successive positive integral values.

TABLE I
% 22 Difference
0 0
1
1 1
3
2 4
5
3 9
7
4 16
9
5 25
11
6 36

Note that the differences form a series of odd numbers starting with 1. Also
note that, if the first two differences are added, their sum is equal to 2%; if the
first three are added, their sum is equal to 3?; and so on for additional combina-
tions. In other words, the sum of the first « differences is equal to %

If this procedure is reversed, that is, if one subtracts the odd series, one-by-
one, from a number, y, the number of subtractions required to reduce y to zero
is the square root of the number.

The following example demonstrates the method with a perfect square.
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ProsLEM 1. Obtain the square root of 25.

25

:_1 1st subtraction
24

=3 2nd subtraction
21

=5 3rd subtraction
16

—7 4th subtraction
9

. _—-_9 5th subtraction
0

That is, 5 is the square root of 25, as demonstrated by the process, since five sub-
tractions reduced the original quantity to zero.

The following example, similar to the one above, will point out the necessity
for modification of the procedure when roots for other than perfect squares are

sought.
ProsrLEM 2. Obtain the square root of 29.
29
=1 Ist subtraction
28
=3 2nd subtraction
25
—5 3rd subtraction
20
—7 4th subtraction
13
—9 5th subtraction
T4
—-11 7

We know that the root is not 5, but we also know that the usual subtraction
process cannot be continued since the next number to be subtracted, 11, is larger
than 4 and would not reduce the quantity to zero. What to do?

The following paragraphs develop the necessary modifications to the “perfect
square’’ procedure so that it can also be applied to numbers which are not perfect
squares.

An examination of Table I reveals a relationship between the 2 column and
the Difference column. This relationship is that, for a given x, the “next”’ differ-
ence, N, can be represented by the expression

(x + 1).
For example, the next difference beyond z = 4 is equal to

CGr+1Dor2X4)+1=09.
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Likewise, the next difference for + = 26 would be
(2 X 26) + 1 = 53.

This relationship allows one to extend the original table from any arbitrary
point, without starting at the beginning; for example:

x x? Difference
25 625
51
26 676
53
27 729

The reason for wanting to be able to do this is that when the subtraction proc-
ess has reached the point where the next subtraction is not possible without
producing a negative result, as in the example for the square root of 29, it is
necessary to interrupt the procedure, make a modification, and continue in
the same manner as before. '

The modification is essentially a matter of shifting the subtraction process to
the right and continuing, but starting at a new location in the series of odd num-
bers. Multiplication or division of a number by 10 has the effect of shifting the
decimal point one place to the right or left, respectively; and the terms ‘‘shift
right” and “shift ieft”” are frequently used as shorthand expressions for multi-
nlication and division, respectively. Notice that shifting the decimal point in one
direction is equivalent to shifting the number in the other direction.

In operating with squares and square roots it is understood that if a number
is multiplied by 10, its square is multiplied by 100. This is another way of saying
that if one knows the square root of a number, he can obtain the square root of
100 times the number merely by multiplying the square root of the number itself
by 10. For example, since the square root of 25 is 5, the square root of 25 X 100
is equal to 5 X 10, or the square root of 2500 is equal to 50.

To demonstrate this property using the square root method under discussion,
when a shift is required, the following examples are given to obtain the square
root of 4 and 400.

ProsLEM 3. Obtain the square root of 4.

4

:_1_ 1st subtraction
3

=3 2nd subtraction
0

In this case two subtractions reduced the original number to zero; according
to this method, then, the square root is 2.

To demonstrate the method when the shifting process is introduced, start as
before.

4
—1 1st subtraction

3

This time, however, shift and start at a new place in the series of odd numbers.
Consider that by the shifting process the 3 remainder, above, has been changed



L APPENDIX B 157

) to 300 by shifting two places to the right. Recall that a multiplication of a num-

ber by 100, which is the same as a shift of two places to the right, introduces a

change in that number’s square root by a multiplication by 10. The starting
value of the series shown below, 21, will be explained later. The following series
of subtractions shows that, if one starts subtracting with 21, the value 300 will
be reduced to zero in ten steps.

Step

300
=21 1

—

279
—-23 2

256
-25 3

231
=27 4

204
—-29 5
175
—-31 6

144
=33 7

1

—35 8

76

=37 9
39

=39 10
0

The previous single subtraction of 1, which reduced the original 4 to 3, is
equivalent to ten subtractions, had they started with 400 instead of 4, as follows.

Step
400
-1 1
399
-3 2
396
—5 3
301
—7 4
384
-9 5
375
~11 6
364
-13 7
351
-15 8
336
-17 9
319
~19 10

300
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The above illustrates that, after a shift, the next number to subtract is, in this
case, 21. In general, this can be expressed as

N=@28S+1)

where S is equivalent to the number of times that subtraction has taken place
before the shift. That is, after ten subtractions (equivalent to one subtraction
before a shift) the next number to subtract is

N=@2S+1or(2xX10)+1=21

In Problem 2, to obtain the square root of 29, after five subtractions, a shift
was called for. According to the above, the next number to subtract after the
shift would be

N=@28+ 1or (2 X50-+1=101,

noting that the five subtractions before the shift are equivalent to fifty sub-
tractions after the shift.

The next number to subtract, N, after a shift can also be obtained if one knows
the last number subtracted before the shift, L. Note that this is distinct from the
number of #imes subtractions have been performed, as in the relationship just

described.
This new relationship, based on the number subtracted, is

N=10(L-+1) +1.

In the case of the square root of 29,

N =100 + 1) + 1 = 101,

and for the other example,

N=101+1) +1=21

The example given above (extract the square root of 29) is worked out below to
three decimal places. Notice that as additional shifts are called for, the above
formula for N is applied again.

PSR
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29
=1
28
=3
25
=5 5 subtractions
20
=1
13
=9
400| «—— Shift here; N = 1009 + 1) 4+ 1 = 101
- 101
299
—103 3 subtractions
196
~105|_
9100| «— Shift here; N = 10(105 + 1) 4+ 1 = 1061
1061
8039
1063
6976
1065
5911
—1067 8 subtractions
4844

- 1060
3775
~1071
2704

- 1073
1631
—1075

55600 — Shift here; N = 10(1075 + 1) + 1 = 10761
- 10761
44839
- 10763
34076
—10765 5 subtractions
23311
- 10767
12544
~ 10769
1775

The square root of 29, computed this far, is 5.385.
It is advantageous to use the shifting process whenever possible; that is, to
extract the square root of 1234, one might start in either of two ways, as follows:
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EXAMPLE.

1234
=1
1134
—_3;_ 3 subtractions
834
=5 _
334| ——— Shift. N = 106+ 1) + 1 = 61
—61
273
—_—9§
210
—65 5 subtractions

145
67
78
—69;
900| «—— Shift. N = 10(69 + 1) + 1 = 701
—ZQI__ 1 subtraction
19900 «— Shift. N = 10(701 4 1) 4 1 = 7021
—_'_7_0_2_1_ 2 subtractions
12879
—7023

585600 < Shift. N = 10(7023 4 1) + 1 = 70241
—70241

—

515359
— 70243

—

445116
—70245

374871
- 70247 8 subtractions

304624
—70249

234375
—70251

——eeiees

164124
— 70253

93871
— 702556

———

23616

The square root computed thus far, then, is 35.128. By a continuation of the
process any desired degree of accuracy can be obtained.

For any number, the starting procedure is as follows: Divide the number into
groups of two digits each way from the decimal point, and start the subtraction
process under the right-hand digit of the left-most pair as shown (p. 161). The
arrows indicate the position at which the subtraction process should start; that
is, subtract 1.
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67 01
T
4 63 27
T
13 67
T
7 62
T

An interesting point in considering this method is the manner in which the
process converges toward the root. The process approaches the root from the
“low” side; that is, at any given step in the process the approximation to the
root at that point is equal to or less than the root. It is easy to see why this is
so, since the subtraction process, in reducing the number, always selects a value
which is equal to or less than the difference. (Otherwise the result is negative.)
Therefore, at any stage the sum of the “contributions” to the root is equal to or
less than the root. Notice how in the example above the different estimates,
called E below, converge to obtain the square root of 12.34.

E E? (12.34 — E?)
3.0 9.0 3.34

(3.5) 12.25 0.09

8.51) 12.3201 0.0199
(3.512) 12.334144 0.005856
(3.5128) 12.33976384 0.00023616

This method is well suited to hand operations with desk calculators, but would
probably not be used with large digital computers, since certain other methods,
such as the methoa discussed previously, in Chapter 3, are superior.

A Cube Root Method

The following discussion is primarily for the individual who likes to study
numerical relationships and to see what he can discover about these relation-
ships. The procedure developed is a repetitive one and is included for two reasons:
(1) because it is an interesting extension of the square root method previously
described; and (2) because, in the presentation, the study of the relationships
between sets of numbers by the use of differences is demonstrated. In numerical
analysis it is often. advantageous to consider the treatment of differences in order
to plan the solution of problems. This example, like the square root example just
described is intended to demonstrate an iterative process rather than to develop
or recommend a mathematical method.

Table II is similar to the one prepared for square root. The method is of the
same type as that used for square root in that successive subtractions are per-
formed using the first differences of a?. This corresponds to the subtraction of the
series of odd numbers in the square root procedure. Note that the sum of the
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first two values in the column headed “First Differences of X3 equals 2%; the
sum of the first three values equals 33; the sum of the first four values equals 43,
ete.

The other columns of differences are included (1) to illustrate further some of
the points developed in Chapter 3 on the usefulness of examining differences
of successive values of a function as one studies the function; and (2) to aid in
the development of this method of extraction of cube root.

TasLe II
. First Second Third Fourth
Differences Differences Differences Differences
X . _of Xt _of X3 —ofX? —of X3
0 0
1
1 1 6
7 6
2 8 12 0
19 . 6
3 27 18 0
37 6
4 64 24 0
61 6
5 125 30 0
91 6
6 216 36 0
127 o
7 343 42 l 0
169 l 6
l 217 6 —
9 729 e | 0
271\ l o |
10 1000 l o |
! T
11 o |
12

First, Table I1 illustrates that, for an expression of degree n, the nth differences
are constant and the (n + 1)th differences are zero.! It is also useful to notice
that in starting with the right-hand column of differences (in this case the fourth
differences), it is possible to work backwards and determine the value of the

11t is useful to consider different ways of constructing columns of differences. For ex-
ample, the second difference can be constructed by considering successive values of the
function in groups of three. If these are called @, b, and ¢, the first differences are (b — a)
and (¢ — b). Also the second difference would be (¢ — ) — (b — @) = ¢ — 2b 4+ a. In
other words, the second difference that results from any three consecutive values is equal
to the sum of the first and third values less twice the second value. This kind of procedure
may be more convenient to program for a computer than the by hand’’ method. Similar
relationships for higher differences can also be developed.

L emnyA
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function. This is shown in the Table II by :he use of arrows. Quantities are to
be added along the diagonal arrows and the sum written at the head of the ver-
tical arrows. For example, start at the fourth difference (which is zero) opposite
the valueof . = 7:0 4+ 6 = 6, 6 + 42 = 48, 48 + 169 = 217, 217 + 512 =
729. In like manner the empty boxes can be filled in; and, this having been done,
starting again at the fourth difference column extend the table as far as desired.

Second, the series to subtract for cube root is more complicated than that used
in the square root example. However the two procedures have the same basic
requirement: after a given subtraction, determine the next number to be sub-
tracted.

For any part of the process where the values to be subtracted are in regular
sequence, it can be seen, by examination of Table II, ‘hat the next value to sub-
tract, N, can be determined if one knows the last value just subtracted, L, and
the number of times subtractions have been performed to this point, P. This
relationship is

N = (L + 6P).
For example, if P = 9 and L = 217,

N =217+ (6 X9)
= 217 + 54
= 271

which is seen to be the next entry in the table.

It would be more convenient however to be able to determine the value of N
solely upon the basis of the number of subtractions performed. This convenience
is to be noted especially when what was referred to in the square root procedure
as “shifting” is required.

An examination of Table IT will show that it is possible to develop the following
relationship to give N for any P,

N=3P(@P+1)+1,
or, for the above example, with P = 9,

N=(3BX9®O+1+1
= (27) (10) + 1
= 271.

The cube root process calls for the grouping of the number into groups of 3,
whereas the square root process called for groups of 2. The following examples
show the process for extracting the cube root.
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ExampirE. Find the cube root of 8:

8| 1 subtraetion (equivalent of 10 for getting N after shift)
-1

7000|<Shift. N=@3B%X10) (10+1) +1=2331
— 331

6669
— 30— N=@X1)01+1)+1=2307

e

6272
— 469l ———— N =(3X12)(12+1) + 1 = 469

ete.

- 721 10 subtractions

This, then, is the equivalent of 20 subtractions, and the 20 may be considered
as

20 = /3000
or -
2.0 = +/8.000.
Without shifting, this example would have been as follows:
8
—1 1st subtraction
7
:_Z 2nd subtraction.
0

ExampLE. Find the cube root of 1906.624:
1906.624 «— 1 subtraction (equivalent of 10)

-1
006 624 «— Shift. N = (3 X 10) 10+ 1) + 1 =331
—331
575 624 2 subtractions
—397

|

178 624 «— Shift. (The next value to subtract would be 469 from 178.) For the first
—43 561 subtraction after the 2nd shift, the original 1 (which had been made the

135 063 equivalent of 10) is now the equivalent of 100, and the 2 subtractions become
—44 287 the equivalent of 20, or 120 total; therefore N = (3 X 120) (120 + 1) +1 =

43561.

|

| |

B | s ©
HHRH3
3 =3 -3
i
I Il o

4 subtractions.

(=]
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The result then is 12.4, or if the number had been 1.906624, the result would
have been 1.24; if the number had been 1906624, the result would have been 124.

As can be seen, this process is complicated and, therefore, not too practical
as a method to extract cube root. It does, however, point out certain numerical
relationships and shows that much can be learned about mathematical expres-
sions by the examination of successive differences of a series of values of the
expressions.

More Numerical Approximations

In Chapter 3, numerical approximations were discussed and some examples
were given. A related technique is that in which one expression is used to approxi-
mate another more complicated expression.

A digital computer can perform a large amount of arithmetic in a short time
but it is generally desirable to reduce operations to the simplest form if for no
other reason than it takes less time to complete a problem if simple and rapid
procedures are used.

The examples below demonstrate some techniques that are useful in deter-
mining expressions that can be used to approximate other expressions.

The relationship between two well-known temperature scales, Centigrade and
Fahrenheit, is expressed as follows:

(F — 32)5
—9 -

This means that for any particular value of F a corresponding value of C can
be located by a substitution and some simple arithmetic. This is a linear rela-
tionship since the independent variable, F), is of the first power. That is to say,
if this relationship is reduced to a graph it will be a straight line. The graph in
Fig. B-1 (p. 166) shows this relationship.

Only a few values were used to construct the graph, and actually only two were
required, since if the original relationship holds, a straight line connecting any
two points and extended in each direction will include all points represented by
the relationship.

In using this graph as an aid to calculation then, to get the value of C for any
F, all that is required is to locate the desired point along the F-scale and erect a
perpendicular to the F-axis through the point of interest. At the point where
this perpendicular intersects the straight line, erect another perpendicular to the
C-axis and read on the C-axis where this perpendicular intersects it.

There are limitations, of course, upon the accuracy of graphical methods since
drawing graphs and reading graphs can only be done to a comparatively low
level of accuracy, unless special procedures, which may be time-consuming, are
used.

The obvious thing to do, of course, if accuracy is desired, is to make a substitu-
tion in the formula given above. It is quite likely that this is what would be done
if one is using a digital computer for a problem which requires conversions be-
tween Centigrade and Fahrenheit.

In summary then, if a relationship between two variables is a linear one (can
be represented by a straight line), it is usually convenient to “substitute in the
formula.”

C =




166

COMPUTER ORIENTED MATHEMATICS

100 -

90 4

80 -

70 4

60 4+

50 4

40 4=

304

20 -

60 140
100 212

10+

0 —C— t t

0 20 40 60 80 100 120 140 160 180 200 220

Fig. B-1. Relation between Fahrenheit and Centigrade Scales

Many relationships, however, are not linear, so they cannot be represented by
a straight line. One of the most common, of course, is that for square root. This
can be expressed as follows:

y = x%.

Figure B-2 shows that this relationship is not a straight line. This is indicated
by the fact that the independent variable, , is not to the first power, but to the
second.

With this graph it is possible, using a technique similar to that described with
the previous linear graph, to select any value of y, and the corresponding value
of z will be the square root of y.

The problem of inaccuracy due to the construction and reading of the graph is
similar to that in the linear case.

Curves that represent other relationships can also be treated in the same way,
such as those including higher powers than the second: (y = 2%). They all have
limitations on accuracy.

Sometimes the “formula” approach is not convenient. For example, the
formula in the square root curve is the square root process itself which is con-
siderably more trouble to carry through than the formula relating C and F in
the first example.

&
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Fig. B-2. Graph of y = x®

The point of the above comparison was to suggest that it would be nice if a
second-degree relationship, or curve, such as y = a? could be represented by a
first-degree or straight-line relationship such as y = 2.

Within limits, this can be dons, and the limits are imposed by the accuracy
required. Another way of saying this is as follows: Let a straight line represent
a curved line provided it is not “too much” different. The diagram in Fig. B-3
demonstrates this point. It is only a reproduction of the previous graph with
certain straight lines connecting certain points.

Notice that if the curve ¥ = a* had been replaced by one of the other linear
expressions, as an approximation to it, certainly the arithmetic in going from
one to the other would be simpler but error would also be introduced. Also notice
that the amount of error is related to “how far the curve is away from the straight
line.” For example, the curve y = 3z, as an approximation for y = 22, is excellent
at the point z = 3. In the same way the curve y = 4z — 3 is an excellent ap-
proximation for y = a? at = 3. This is to say, at the place where one curve
crosses another “‘all is well.” It’s “out in the middle” where the approximations
of curves by straight lines introduce error.
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16 -

14 4

12 -

10 4

y =2z y=4z -3 y =3z y =2
z Y x Y z Y z Y
0 0 0 -3 0 0 0 0
1 1 1 1 1 3 1 2
2 4 2 5 2 6 2 4
3 9 3 9 3 9 3 6
4 16 4 13 4 12 4 8

Fig. B-3. Linear Approximationsof y = x*

With this in mind, notice that the curve y = 4x — 3 is as good as y = 22 at
two points: # = 1 and x = 3. Everywhere else it misses the curve y = a2, but it
does not miss it so much as the curve y = 3x. The distance between the curve
of interest and the curve set to approximate it indicates the level of accuracy to
be expected by that particular approximation. This suggests, therefore, that
curves such as y = a2 might be approximated by more than one straight line,
each one being used for a short distance only, the distance being determined by
how far off the straight line is from the curve. This “how far off”’ is a measure
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Fig. B-4. Line-Curve Approximation Error

of the error, and since some calculations require greater accuracy than others,
different straight lines might be selected. This error is indicated in Fig. B-4.

In other words, in the curve of Fig. B-4, if the error (vertical distance between
the curve and straight line) is not too large for the particular application, one
might just as well use the straight line (and its simpler arithmetic) for all values
of z between the values a and b.

It is easy to imagine, then, a kind of “sliding straight line’’ being moved along
the curve. If the straight line does not fit the curve well enough, that is, make the
error-distance small enough, slide it to a new position. For a given level of error,
the distance between a and b, which defines the straight line, must get shorter
and shorter as the curvature gets sharper and sharper. Likewise, as the curva-
ture gets less and less, and the curve looks more and more like a straight line
the distance between a and b can become larger and larger.

Imagine then that a digital computer, or a person for that matter, could ex-
tract square raot by a method no more complex than that of converting from
Fahrenheit to Centigrade if he had the proper set of linear formulas correspond-
ing to the straight lines sliding around the curve y = a2 The procedure would
simply be (1) determine what the range of interest was (that is, between a and b),
(2) select the corresponding linear approximation that will keep the error small
enough, and (3) calculate.

There is a very important extension to this whole idea that one curve (a straight
line) can be made to approximate another. This extension is that for some curves
it may be more desirable to approximate them by other curves rather than by
straight lines. This may allow greater range (a to b, above) with less error.

For example, in Fig. B-5, in which the errors are exaggerated, Curve B, which
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Error
(greater
than 4)

a

Fig. B-5. Approximating a Curve with Another Curve

is not linear, approximates Curve A with errors that give values that are some-
times less and sometimes greater than the true value. Depending upon the
choice of Curve B, the fit can be made better or worse.

The following non-linear expression, which is not actually plotted but merely
represented in Fig. B-5 by Curve B, can be used to determine the square root of
a number.

Vi = 149 + 2.33z + 2°
T =1 4+ 233z + 14922

This expression, by Hastings, is intended for use in the range 0.1 to 10.0. For
values outside of this range the position of the decimal point can be adjusted so
that the value falls within the range. For example, the value 75.31 cap be con-
sidered to be 0.7531 by moving the decimal point two places to the left for the
calculation. After the calculation the decimal point is moves one place to the
right in the manner described earlier.

The tabulation (p. 171) gives several values of z in the first column. The second
column shows the values of the square root of x as determined by substituting
in the above expression. The third column gives the values as obtained from a
square root table. The last column gives the error. Notice that the error is some-
times + and sometimes —, indicating that the curve represented by the above
non-linear expression oscillates around the curve of the square root function.
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) Hast.i:gs’. From :Place
Given & Approximation Tables Egg
.1 .3175 .3162 +4.0013
) 7102 L7071 +.0031
1. 1.0000 1.0000 .0000
2. 1.4081 1.4142 —.0061
5. 2.2473 2.2360 +.0113
6. 2.4641 2.4494 +.0147
7. 2.6597 2.6457 +.0140
9. 3.0000 3.0000 .0000
10. 3.1492 3.1622 —.0130
75.31 8.7028 8.6781 4 .0247
(.7531) (.87028) (.86781) -+ (.00247)

Another Sorting Procedure

A method of sorting a series of numbers into an ascending sequence was de-
scribed in Chapter 4. There are several methods of sorting, of which the following
is a second example. This technique, like the one in Chapter 4, and in fact many
such systems, is based on successive comparisons of pairs of numbers. To begin,
the first two pairs are compared. If they are in order, the second and third, then
the third and fourth, then the fourth and fifth, etc., are compared until the list is
exhausted. If a particular pair is not in order, these two are reversed and the
process is continued. Such a reversal of a pair may disturb an earlier pair so that,
after reaching the end of the list, the entire procedure must be done once again
from the beginning. Whenever the pair comparisons can be performed, from
start to finish, without a single reversal, the set will be in order.

The columns below show the procedure using the numbers given in the pre-
vious example. The original list was as follows:

41
18

6

2

19

1

62
110
3

1006 .

The first comparison is between 41 and 18. These are not in order, so will be
reversed. After this reversal the list is now:

18
41
6
2

19
ete.

Now the second comparison is made between 41 and 6. These are also out of
order, so they are reversed, and the list now is
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18
6
41
2
19
ete.

At this step 41 is compared with 2 and found to be out of order again. There-
fore this pair is reversed, and the list is now:

18
6
2

41

19

ete.

The effect so far is to “drive” the 41 down in the list. Notice that the order of
the pairs above each reversed pair may be disturbed.

The lists below show the entire procedure. Numbers with asterisks show
reversals.

Trial Trial Trial Trial Trial Trial Trial
Original List No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No.7
41 18 6 2 2 1 1 1
18 41*6 18%2 6 6*1 2 2 2

6 41%2 18 18*1 6 6 6*3 3

2 41*19 19*1 18 18 18*3 6 6

19 41" 19 19 19*3 18 18 18

1 41 41 41-3 19 19 19 19

62 62 62*3 4] 4 41 4] 4]
110 110*3 62 62 62 62 62 62
3 110 110 110 110 110 110 110
1006 1006 1006 1006 1006 1006 1006 1006

Since Trial No. 7 had no reversals, the set is in order.

Binary Arithmetic and Electronics

In Chapter 4 there was a discussion of the process of comparison in certain
digital computer applications. In general this was a sequential, two-step process
of compare--take action, compare--take action, compare--take action. etc.

There is another important idea in the logic of data handling. This is the con-
cept of what might be called simultaneous comparison or coincidence. The idea
depends less on the idea that one thing is smaller or larger than another thing,
but more on the idea of whether two or more things exist at all at a given time.

The example on library searching in Example 4 of Chapter 4 made use of this
idea. In other words the report was, in a sense, defined or selected or located
according to the simultaneous existence of its number on several cards (or tape
groups). That is, the “answer” to the searching problem was associated with the
locating of a set of conditions which, at a given time, merely existed (not taller

or shorter, etc.).
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Another example of the utility of the idea of coincidence, as distinct from the
idea of comparison, described in Chapter 4, is given below.

Four situations need to be understood in order to follow the example.

Situation 1. Addition in the binary number system consists of the four follow-

ing combinations only.

0 0 1 1
+0 +1 +0 +1
0 1 1 1)0

In the right-hand ecombination, the (1) is “carry-over.”

Situation 2. There are electronic devices available that will give out a signal
if, and only if, a given number of simultaneous inputs are entered. This can be
diagrammed as follows:

A—

B— —D

C—

In other words something comes out along the D line only if something goes in
on all three of lines A, B, and C. This is called an “AND device,”” meaning there
is output (D) if inputs at A und B and C exist at the same time.

Situation 8. There are electronic devices available that will give out a signal
if any one of a given set of inputs is entered. This is diagrammed in much the
same way as the AND device above. In this case, however, there will be output
at D if A or B or C provide input. This is called an “OR device,”” and a different

symbol is used.

A—
B— D

C——

Situation 4. In addition to AND devices and OR devices, there are also NOT
devices (sometimes called INVERTERS). For output, the NOT device “inverts”
what it receives as input. That is, for a given operational cycle, if there is an
input signal at A there will not be an output signal at D. Also if there ¢s not an

S T




174 COMPUTER ORIENTED MATHEMATICS

3
3
E
1
i
A

input signal at A, there will be an output signal at D.

Situation 1 shows that for the addition of two one-position binary numbers
there are only four possibilities. If the numbers have two or more positions, such
as

110
+ 111

110

any column except the right-most may be influenced by the carry-over to it from
the column to its right.
Stated another way, in adding two binary numbers, the final answer, or num-
ber, in a given column is dependent upon three things only:
1. The Top number
2. The Bottom number
3. Was there carry-over from the column to the right?
Suppose the following numbers are to be added.

C Carry
0 0 1l 1|1 Top

4+ 1 1 0{ 0|1 Bottom

Tmagine that the rectaigle moves from right to left one position at a time as the
adding is done, successively developing the answer one number at a time. In-
cluding the possibilities of carry-over, there are then only eight possible different
conditions to produce a given A in a given rectangle. These are the four above
with carry-over and the four above without carry-over:

0 0 0 0 Carry from previous column = zero
0 011 Top

010 1 Bottom

0110A

and




APPENDIX B 175

1 1 1 1 Carry from previous column = one
0 011 Top

010 1 Bottom

1 001 A

Note that the above are not additions; they are merely conditions of A (in
the rectangle)—the ‘“value” for that column; that is, the carry-overs are not
secorded. In a real problem, they would be taken care of when the rectangle
“moves left.” There are two conditions, that of zero and that of one, which may
exist in three places: Carry, Top, and Bottom, or 23 = 8 in all. Of course there
are only two types of A: 0 and 1. Imagine that both the 0 and 1 conditions pro-
vide short electrical pulses. These pulses may be developed under different
cireumstances but can make an AND device operate if they are intermixed, thus:

0 0 1
c Tl Bl
AND

In other words, referring to the diagram above, something must go into each of
C, T, and B; or, A is not active. That is, in this case, C = 0, T = 0, B=1
Circuits are so arranged that, as shown in Fig. B-6, if T = 0, impulses enter
AND devices 0, 1, 4, 5; and if T = 1, impulses enter AND devices 2, 3,6, 7. In
like manner, for B = 0, impulses enter AND devices 0; 2, 4, 6; and for B = 1,
impulses enter AND devices 1, 3, 5, 7. (See footnote 2.)

Fig. B-6 shows how, by proper connections, the coincidences of conditions
are useful. Suppose we are to add the two numbers below.

0011 1 Top
+1 1 0 0 1 Bottom

Let it be planned that the devices are connected as shown: the top number is
connected to all appropriate T’s, and the bottom number is connected to all
appropriate B’s. (See footnote 2.) As the procedure starts, only the first number
is sensed from Top and Bottom; i.e., 1 and 1. Since there is no carry-over this

2 AND devices can be operated only by ONE impulses. Whenever a diagram calls for a
ZERO, such as in Fig. B-6, the necessary ONE will have been previously produced by
an INVERTER (not shown). An INVERTER will change a ZERO into a ONE. Accord-
ingly, for the T’s, AND devices 2, 3, 6, 7 each reccive their impulses “direct’’, but AND
devices 0, 1, 4, 5 each receive their impulses through a separate INVERTER.

Norte. AND devices 2, 6, 7 will also get T impulses but will not be effective because
either B or C or both B and C will not have the proper condition. In like manner, B im-
pulses will also go to AND devices 1, 5, 7, but for like reasons they will not be effective.
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5th
cycle

0
1

4th 3rd 2nd 1st
cycle cycle cycle cycle
0 1 1 1

1 1 1 I‘L

ae—
l

C T B C_
| | ] L
8 AND’s 8 AND’s
2 OR’s 2 OR’s
to obtain C to obtain A
Delay 1 cycle Register

Fig. B-8. A Block Diagram for Binary Addition

time (it being the first), AND device 3 will be made active because its inputs are
0,1, and 1.

Furthermore, the line from AND device 3 goes to OR device 1 and produces
a 0 condition, which in turn is recorded in the first position of a register used to
develop the sum. The second positions for T and B are then sensed, ete. To take
care of the carry-overs, it is necessary to have another set of AND and OR de-
vices except that the AND devices are wired differently. See Fig. B-7.

Numbers 3, 5, 6, and 7 would be wired - OR device 2, since they are the con-
ditions which produce a carry requirement. Numbers 0, 1, 2, and 4 would be
connected to OR device 1, since they do not produce a carry requirement.
Whereas the outputs of the A set are connected to the register to record the sum,
the outputs of the C set are connected to the C’s of both sets, after being delayed
one-cycle. This delay is so that the carry outputs of one Top and Bottom pair
arrive at the AND devices at the same time that the following pair of numbers
arrive.

In summary then, the two numbers, Top and Bottom, are successively read,
position-by-position (one cycle each), into the AND and OR devices, and the
A’s appear one-by-one in successive pesitions of the register; that is, the first A
appears in the rightmost position of the register; the next A would be shifted
one place to the left; the next, one place to the left of that; and so on. (This
shifting can be accomplished electronically.)

Fig. B-8 shows, in black diagram form, the connections between the A cir-
cuits and the C circuits. There are many details not included and there are




APPENDIX B 179

different and better methods of doing the same job of adding binary numbers in
actual practice. However, the purpose is to demonstrate that from the point of
view of logical processes wiich can also be iterative, the concept of coincidence,
like comparison, is important.

Calculation of Pseudo-Random Numbers

Tn Chapters 3 and 4 the use of random numbers was discussed, but the method
of obtaining random numbers was not mentioned. There are several ways of
generating random numbers, two of which are to roll a die or to flip a coin.

It is often desired to use random numbers when solving mathematical prob-
lems with the aid of a digital computer. One way in which this can be done is to
enter into the computer a list of numbers previously selected by a random process.
With such a list available in the storage unit of the computer, whenever the
problem requires a random number the next one on the list is selected by the
program.

There are advantages to having the computer generate its own random num-
bers as required, since it would then be unnecessary to use storage space to hold
the list. '

Several ways have been devised to generate such numbers. They are called
pseudo-random numbers instead of random numbers since, as will be seen, the
sequences are in a sense predictable. Random number sequences, on the other
hand, by definition, are not predictable.

The method to be described can be seen to be repetitive and therefore nicely
adaptable to a digital computer. The method can be ineffective under some
circumstances when zeroes appear at certain places in the sequence. The method
to be described is called the “center squaring” method. It consists of selecting
a number, squaring it, selecting the center digits of the result, squaring this new
number, ete.

For example, select the number 68342797, and square it.

68342797
X 68342797

4670737901783209

Now select the eight digits in the center of this product and square the number
thus formed:

73790178
X 73790178

5444990369271684,

and, once more:

99036927
X 99036927

9808312909603329.
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After the three cycles, the following numbers would be generated.

65342797
73790178
99036927
31290960

If, as in Example 5 of Chapter 4, random numbers were required they could
be selected by this method using two- digit pairs as follows: 68,34,27,97,73,79,01,78,
ete. Or they could be selected in another order such as 97,78,27,60,27,01,69,09,
ete.

As stated before, any particular generation may not be a good one and may
result, for example, in large numbers of zeros. If t o many zeros show up in a
given product, subsequent squaring processes may cause the entire procedure to
start producing nothing but zeros. To guard against this possibility that a poor
sequence might be generated, the computer can re programmed to check the
sequence of pseudo-random numbers it produces.

One kind of checking procedure is simply to count the separate digits oi the
entire sequence and determine if the distribution of them is what would be ex-
pected. For example, if 1000 digits were examined and it was found that there
were about equal numbers of each of the digits, there would be more reason to
believe that this sequence was a random one than if the distribution contained
no 3’s or 7’s and four-hundred 6’s.

There are other ways of checking sequences that are dependent upon internal
cycles such as the frequency of certain pairs of numbers or short sequences of
three or four digits which appear often. It is also possible to get another measure
of the characteristics of a sequence by determining if there are about the same
number of odd numbers 2s even numbers.

These tests are developed from the fields of statistics and probability and are
mentioned only to suggest general procedures. It is possible to program the
computer to periorm such tests on the numbers it generates and according to
criteria specified by the writer of the program exclude sequences that are not
good ones.

Some Classroom Techniques

There are various devices a:ailable to teachers and students which may be
useful in learning the fu \damentals of computers. The reader is urged to consider
whether such devices are characteristic o1 stored-program computers. If they
are not stored-program devices, their limitations should be recognized. Among the
devices available are the following:

PAPAC, a do-it-yourself paper computer. This device is described in Communications of
the Association for Computing Machinery, Vol. 2, No. 9, September 1959. It consists of a
simple two-register, one-bit, fixed instruction binary digital computer which can be built
in less than one hour from plans shown in the article, using only 3 dozen common pins, a
tube of glue, and a pair of scissors to cut out the plans.

MINIVAC, a small electro-mechanical (relay) type digital computer which includes many
of the basic ideas incorporated in large-scale information-processing machines. Input and




APPENDIX 8 181

output may be either decimal or binary. It is available from Scientific Development Corp.,
372 Main Street, Watertown, Mass.

BRAINIAQC, described as ‘‘the smallest and lowest-cost semi-automatic, general-purpose
digital computer existing,”” comes in a Kit consisting of wire, switches, bulbs, sockets, ete.,
which are assembled by the user. It is available from Berkeley Enterprises, Inc., 815 Wash-
ington Street, R-224, Newtonville 60, Mass.

Other do-it-yourself computers are described in references 36 and A10 in the Bibliography.

Classroom Simulation of a Digital Computer and Flow Diagram

A teaching technique for use in the introduction of the ideas of flow diagram-
ming is based on one which was used to teach the internal operation of the i 3M
650 computer to a group of ninth grade algebra students. The technique con-
sists of the simulation of various parts of the machine by student gro- ps who
then follow the steps in a previously written program to calculate the sum of the
first one-hundred integers. Each group is given the responsibility for performing
the operations of some part of the computer such as the arithmetic register, the
accumulator, the program register, etc. The groups are supplied with instruction
sheets that detail the operations they are to perform, and they record the re-
sults of their operations on slips of paper which are passed from one group to
another to simulate information transfer. The control group keeps track of the
status of each other group and does not permit one operation to start until a
preceding one is completed. The students show considerable enthusiasm for the
“game,” aud are eager to write programs of their own for the “computer” after
they understand what is happening. (See reference 10 in the Bibliography.)

The same idea is applicable to the teaching of flow diagramming and is useful
in demonstrating the dynamic nature of processes for which flow diagrams are
useful.

To implement the idea, each box in an existing flow disgram might be assigned
to a group of students with instructions to perform the operation indicatec in
the box when a slip of paper arrives at their group from some other group. This
precedure is probably of greatest value for younger students since to them the
game aspect of the process is most appealing.

Classroom Simulation of a Serial Binary Counter

The most imnortant element of a serial binary courter is the flip-flop. This is
a device which when impulsed changes its state, whatever it may be. That is,
if it is “off” when impulsed °t is then turned ‘“‘on”. It it was “on” it is turned
“off” when impulsed. “On” might mean to turn a light on, and ‘“off’”” might
mean to turn the light off. Its other characteristic of interest here is that when
it is “on,” and then impulsed, it will pass the impulse to another flip-flop ele-
ment. When it is “off”” and impulsed it will not pass the impulse.
The flip-flop follows these rules then:
1. Elements change state when impulsed.
2. Elements pass impulses they receive if they were “on”’ at the time.
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Three flip-flop stages are represented below by three circles.

S'tage Stage Stage Impulse
No. 3 No. 2 No. 1 source

Oﬁ f) X |
— /
All stages are “off” initially. The first impulse will change stage No. 1 from

“off” to “on” but will not pass the impulse. Therefore, after impulse No. 1, the
three stages are

off Off On.

The next impulse will turn No. 1 “off” but this time will pass the impulse to
No. 2 and it will change to “on”. They now look like this:

Off On Off.

The next impulse will turn No. 1 “on” but not pass the impulse. The three

stages are now:
Off On On.

The next impulse will turn No. 1 “~ff”” and pass the impulse which will turn
No. 2 “off.” No. 2 will also pass the impulse to No. 3 and turn it “‘on.” They are

now as follows:
On Off Off.

If, in the above, all the “on’s” are replaced by 1’s, and all of the “off’s” replaced
by 07, it will be seen that the binary numerals corresponding to 1, 2, 3, 4 have
been developed.

This procedure can be simulated in the classroom by having one student |
represent each of the stages. The students should stand about 2 feet apart, in a i
straight line, facing the class. The state “off”” will be represented by ‘‘arms down ‘
to the sides.” The state “on” will be represented by “right arm up.”

The impulse will be a touch on the left shoulder. The source of impulses can
be another student. The passing of impulses will be done by a student touching
the left shoulder of the student at his right (the next stage) whenever he changes
from “on” to “off”” (lowers his upraired arm). This student simulator of a binary
counter will produce the 1’s and 0’s (arms up or arms down) which correspond
to the binary numerals.

The riiagram below indicates the student arrangement for the simulation of
the counter.

Student
Student Student Student to provide
No. 3 No. 2 No. 1 impulses

Or -Or O O

v

Facing Class
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Appendix D
GLOSSARY

absolute value. The absolute value of a number is a number which is calculated
by the following procedure: For each real number, z, the ubsolute value of z,
written |2 |, is equal to z if  is greater than or equal to zero, and is equal to
—z if z is less than zero. Symbolically:

lz| =xifz 2> 0.
|lz] = —xifx <O0.

accumulator. A device containing a storage register where results are accumu-
lated.

address. A label, name, or number which designates a register, a location, or a
device where information is stored; the part of an instruction which specifies
the location of an operand.

ALGOL. An international language for use in writing algorithms. The name
ALGOL is from ALGOrithmic Language. See compiler.

algorithm. A sequence of well-defined steps leading to the solution of a problem.

analog computer. A computer which represents variables by physical analogies
in continuous form, such as amount of rotation of a shaft, amount o. voltage,
ete. Contrasted to digital computer: the difference is sometimes expressed by
saying that an analog computer measures whereas a digital computer counts.

AND circuit. An electronic circuit which provides an output signal only if all
of the input signals for which it is designed are available simultaneously.

arithmetic operation. A computer operation in which numerical calculations
form the basis of the procedure, the result of which has a number as its value.

arithmetic unit. That component of a computer where arithmetic and logical
operations are performed.

automatic coding. A technique whereby a machine translates a routine written
in symbolic coding to one consisting of machine language.

binary coded decimal. A form of notation by which each decimal digit of a
numeral is converted into a pattern of 1’s and 0’s. For example, the decimal
numeral for the number 12 is coded as: 0001 0010. This is also used for

a @

alfhabetic symbols and for punctuation symbols.

binary digit. A digit in the binary scale of notation; this digit may be only 0
(zero) or 1 (one). Sometimes called a “bit.”

binary number. A number whose name is written in binary notation.

bit. A binary digit.

block diagra 1. See flow diagram.

Boolean algebra. An algebra dealing with classes, propositions, on-off elements,
etc., associated by operators AND, OR, NOT, EXCEPT, IF, THEN, ete.
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(See logical operations.) Named after George Boole, famous English mathe-
matician (1815-64).

branch. See conditional transfer of control.

buffer storage. Any device which temporarily stores information during a
transfer of information. From a programming standpoint, it refers to a device
for matching the speeds of internal computation and an input or output device,
thereby permitting simultaneous computation and input or output.

card. Pasteboard adapted for being punched in a pattern to which meaning may
be assigned. The punched holes are sensed mechanically by metal fingers, elec-
trically by wire brushes, or photoeiectrically, depending upon the particular
device.

card punch. A machine containing a keyboard something like that of a type-
writer and used to punch holes in cards. Also called “keypunch.”

card reader. A machine, operating mechanically, electrically, or photoelec-
trically to sense the presence of holes in cards and to translate the hole pattern
to (usually) a set of electrical signals to be used by a computer, or other device.

cell. A storage location.

character. One of a set of elementary symbols which may be arranged in ordered
groups to express information; these symbols may include the decimal digits
0 through 9, the letters A through Z, punctuation symbols, special input and
output symbols, and any other symbols which a computer may accept.

COBOL (COmmon Business Oriented Language). A language for writing pro-
grams to solve business problems, and which, to some extent, is common to
more than one kind of computer. See compiler.

code (noun). The system of symbols used in preparing instructions for the com-
puter.

code (verb). To write instructions for a computer, either in machine language
or some other language.

collate. To merge items from two or more similarly sequenced files into one
sequenced file without necessarily including all items from the original files.

compile. To produce a machine language program from a program written in
some compiler language.

compiler. A special program for a given machine which will translate instruc-
tions written in a particular program language into machine language in-
structions for that machine.

compiler language. A well-defined language closely related to the language in
which a problem is originally staivd (e.g., English or mathematics). Used to
write programs which are then automatically translated by a compiler into a
machine language program.

computer. Any device capable of accepting information, processing it, and
providing the results of the processing in acceptable form. In this text the
term is most often meant to imply a stored program digital computer.

conditional transfer of control. A point in a routine where one of two or
more choices can be taken as the result of a previous occurrence in the routine.

core storage. A form of high-speed storage in which binary information is
represented by the direction of magnetization of ferromagnetic cores.

cybernetics. The comparative study of the control and internal communication
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systems of information-handling machines and the central nervous systems
of animals and men, in order to understand better the functioning of informa-
tion transfer and processing in such systems.

data processing. A generic term for all of the operations carried out on data
according to precise rules of procedure; a generic term for computing in general
as often applied to business situations.

digital computer. A computer in which informstion is represented in discrete
form, such as by one of two directions of magnetization of a magnetic core, or
by the presence or absence of an electric pulse at a certain point in time. See
analog computer.

error. The amount of loss of precision in a quantity; the difference between an
accurate quantity and its calculated (measured) approximatic... .7rors occur
in numerical methods; méstakes occur in programming, coding, data tran-
scription, and operation of computers; malfunctions occur in computers because
of failures in the performance of machine components.

field. A set of one or more characters treated as a whole; a unit of information.
A collection of characters.

file. A collection of records; an organized vollection of information directed to-
ward some purpose.

fixed point calculation. A system of handling numbers which uses a fixed or
constant location of the point which separates the whole numbers from
fractions. Applies to binary, decimal, or other systems.

flip-flop. An electronic device having but two stable states and thus capable of
storing one binary digit for each state, e.g., “1” or “0”.

floating point calculation. A system of handling numbers whith f®*z given
number uses a separate number to specily the point which separates the whole
part from the fractional part. A decimal number, for example —638,020,000.,
might be represented as —6.3802 X 10°.

flow diagram. A graphic representation of a sequence of operations required to
carry out some procedure.

hardware. The mechanical, magnetic, electric and electronic devices from
which a computer is constructed; or the computer itself as contrasted with its
programs and programming systems. See software.

initialize. To execute the instructions immediately prior to a loop, which set
addresses, counters, etc., to their desired initial values. See also loop.

input. Information transferred from auxiliary or external storage into the
internal storage of a computer.

input unit. A device to transfer information from punched cards, magnetic
tape, or other sources to the electrical impulses used in a computer.

instruction. A set of characters which as a unit causes the computer to perform
one or more of its operations.

iterative procedure. The repetition of a sequence of steps with one or more
variables being assigned different values for each step. These different values
may be developed by the procedure itself. The repetition is stopped, by the
procedure itself, on the basis of previously programmed numerical checks of
its progress.

jump. See unconditional transfer.




APPENDIX D 195

!

key punch. See card punch.

library. An organized collection of standard and proven routines and subroutines
which may be incorporated into larger routines.

logical diagram. See flow diagram.

logical operations. Those operations of a computer which are not arithmetic
and not part of input or output, the results of which have true or false as their
values.

loop. A coding technique whereby a group of instructions is repeated with
modification of some of the instructions within the group and/or with modi-
fication of the data being operated upon. Usually consists of initialization,
computing, modification, and testing, although not necessarily in that order.
(Testing refers to the part of the procedure which determines if the process
has been completed.)

machine language. A language for writing instructions in a form to be executed
directly by the computer. Contrasted to symbolic coding languages or other
non-machine languages. See also comptler language.

magnetic core. See core storage.

magnetic tape storage. A storage system in which information is recorded on
the magnetizable surface of a strip of plastic tape.

malfunction. Failure in precision of performance of machine components. Also
see error.

memory. See storage.

merge. To combine items from two or more similarly sequenced files into one
sequenced file, inc uding all items from the original files. .

microsecond. One-millionth of a second.

millisecond. One-thousandth of a second.

mistake. See error.

mnemonic code. An operation code written in a symbolic notation that is
easier to remember than the actual operation code of the machine. Must be
converted to an actual operation code before execution. This conversion is
done as part of another routine or program such as a compiler. (M PY could be
such a code for the operation multiply.)

Monte-Carlo methods. Mathematical methods making use of the theory of
probability and random numbers.

multi-precision (or multiple precision). A term used to indicate a program
that will cause a computer t . iculate using more digits in the calculations
than the arithmetic units ana individual storage locations were originally
designed to use.

nanosecond. A billionth of a second.

‘NOT’ circuit. An electronic circuit which on a given cycle produces output if it
did not receive input, and does not provide output when it does receive input.
(Sometimes called an INVERTER.)

notation syste n for numbers. A systematic use of a particular set of numerals
for the purpose of simplifying numerical calculations. An example is the
familiar positional decimal notation using Arabic numerals. Other numeral
symbols could be used to obtain a decimal positional notation.

ek D T e a
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numeration system. A set of symbols, such as Roman numerals or Arabic
numerals, used to name numbers.

operation code. That part of an instruction designating the operation to be
preformed.

OR circuit. An electronic circuit which provides output if any one of its inputs
is active.

output. Information transferred from the internal storage of a computer to
output devices or external storage.

overflow. The generation of a quantity beyond the capacity of a register; usually
results in a machine stop, or conditional transfer, or an overflow indicator be-
ing turned on.

parameter. A variable in an expression, to which a value is assigned and which
does not change while other variables in the expression take on values selected
according to some particular sequence.

program (noun). A group of related routines that solve a given problem. (Some-
times meant to include flow diagrams as well as the computer instructions.)

program (verb). (1) To plan and organize a group of routines to solve a particu-
lar problem or set of related problems. (2) To write, in some language, the
routines necessary for the solution of the problem. (Depending upon level of
detail, this latter definition may sometimes be called coding.)

punched card. See card.

random numbers. A collection of numbers such that it is not possible to
predict the next number by considering the previous numbers in the collection.
Numbers selected by chance.

read. To transfer information from an input device to internal storage.

record (noun). A collection of fields.

register. (1) A device that can hold information while or until it is used. May
consist of core storage. (2) A particular storage location usually in the arith-
metic section of the computer.

rounding error. The error resulting from dropping certain less significant
digits of a quantity and applying some adjustment to the more significant
digits retained. Sometimes known as round-off error.

routine. A set of computer instructions that carries out some well-defined
function.

simulator. A program or routine corresponding to a mathematical model or
representing a physical model.

software. The piogramming systems required, in addition to the computer
itself, such as a compiler.

sort (verb). To set records in sequence according to some key contained in the
records; for example, in alphabetical or numerical sequence.

storage. Any device into which information can be transferred, which will hold
information and from which the information can be obtained at a later time.

storage location. A place in storage where a unit of data or an instruction may
be stored, identified by an address.

stored-program computer. A computer which can alter its own instructions
in storage as though they were data and which can later execute the altered
instructions.
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subroutine. A routine which may be incorporated into a larger routine. Ire-
quently part of the library of a computer installation.

symbolic coding. Coding in which instructions are written in non-machine
language. That is, coding using symbolie notation for operators, operands, and
locations instead of actual machine instruction codes and addresses.

symbolic logic. Reasoning involving non numerical relations often using special
symbols. Also called “mathematical logic.” See Boolean algebra.

systems analysis. The analysis of activity to determine precisely what must be
accomplished and how to accomplish it.

transfer control. See conditional transfer of control.

translate. To change information from one form of representation, (language),
to another without significantly affecting the meaning.

truncate. To cut off, as is done, for example, in a “truncated pyramid.” In
computing, to drop the digits beyond a certain point in the positional notation
of a number without adjusting the remaining digits. See truncation error and
rounding error.

truncation error. The error resulting from the use of only a finite number of
terms of an infinite series.

unconditional transfer. An instruction to a computer to interrupt an es-
tablished sequence and trarsfer control to some instruction out of the sequence.

word (machine). A set of cuaracters having one addressable location and treated
as one unit.

write. To transfer information from internal storage to an output device or to
auxiliary storage.




Appendixz B
A SHORT HISTORY OF COMPUTERS

The origins of mechanical aids to calculation are lost in the dim memories of
the human race. However, the modern word “calculate,” which is derived from
a Latin word whose meaning was ‘“‘stone’’ or “pebble,” gives some hint as to a
very early aid. It is probable that animals in a flock were counted by pairing one
pebble with one animal, and thus a primitive mechanical aid to computation was
instituted. The fact that Nature provided man with a computational aid (used
in most classrooms even today) in the form of fingers should not be overlooked.
It is no accident that the same word, “digit,” is used to discuss parts of numerals
as well as parts of hands.

Another well-known computing aid, the abacus (and its relatives), is of ancient
origin and is still in use throughout the world. It may be the most efficient
computation device, in terms of investment in equipment and ease of manufac-
ture compared to the extent of computing aid obtained, that man has ever in-
vented.

The history of modern mechanical aids to computation is generally considered
to have started in about the middle of the 17th century when Blaise Pascal, a
19-year-old French mathematical genius, invented a device composed of gears
and wheels which was capable of addition. The stylus-operated pocket adding
machines now available are direct descendents of Pascal’s calculating machine.
Toward the end of the 17th century, Gottfried Wilhelm Leibniz, one of the two
independent inventors of the modern calculus, proposed a machine which would
multiply by repeated addition. Few further significant developments took place
for the next huadred years.

During the early years of the 19th century, Joseph M. Jacquard developed a
punched-card system to control complex weaving patterns on a loom of his
invention. Shortly thereafter, using Jacquard cards to control sequences of
operations, Charles Babbage ii England began work on the most famous ancestor
of the modern large-scale general-purpose computer, the difference engine.

Charles Babbage was a man whose ideas were about 100 years ahead of the
technology of his day. The design of his difference engine contaired ideas which
include most of the basic elements of the modern general-purpose computer. Even
though he was able to persuade the British government to advance him about
£17,000 (almost $1,000,000 by today’s standards) over a period of 10 years, and
although he worked using his own money until his death, he was unable to pro-
duce a working machine. It is an unfortunate fact that, since the technology
necessary for the realization of the difference engine did not develop for almost
100 years, most of Babbage’s work was forgotten, and his ideas concerning appli-
cations of and programming for large-scale computers had to be rediscovered
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independently by the modern inventors of digital computers. Much of what we
do know about Babbage and his work is due to the interest and efforts of Lady
Ada Augusta, Countess of Lovelace, whose writings included also the description
of what is now called “programming” in the modern sense of developing a set of
instructions for a large-scale computer.

During the century following Babbage’s first efforts little was accomplished in
the area of large-scale computation. However, the adding machine and its rela-
tives, desk calculators and accounting machines, as well as machines for hardling
and sorting data on punched cards were developed to a high order of effectiveness
during this period. In fact, H. Hollerith developed a machine to seuse (by electro-
mechanical means) data on punched cards, and Hollerith’s machines were used
to sort and classify data from the 1890 United States census reports. However
these efforts were neither of the scope nor complexity envisioned by Babbage.

By the 1930’s the advances in electrical and mechanical engineering of the
20th century had made possible the realization of Babbage’s ideas, and in 1939
work on a machine developed jointly by Howard Aiken of Harvard University
and by engineers of the International Business Machines Corporation was
started. This machine, the Automatic Sequence Controlled Calculator, or Mark I,
was the first of the modern large-scale calculating machines and included all of
Babbage’s ideas and more besides. The Mark I was an electromechanical machine
and very slow by today’s standards, but in the years after 1944 it performed work
the results of which have been used by most cf the computing laboratories in the
world today.

The first all-electronic machine, the ENTAC (Electronic Numerical Integrator
and Calculator) was developed at the Moore School of Electrical Engineering of
the University of Pennsylvania and was completed in 1946. This machine proved
the feasibility of a really large electronic machine (it contained 18,000 vacuum
tubes) and formed the basis for many future designs.

The major difference between the machines discussed so far and the present
large-scale computing devices is the result of a concept developed, probably
simultaneously, by groups in England and the United States. This concept is
that of storing the program of instructions for the machine in the same manner as
for the data on which the machine operates. This idea makes it possible for the
program to cause the machine to make internal modification to the program while
the machine is running, and this internally modifiable, stored-program concept
has been in many ways the most revolutionary development in the history of
machines. Prior to the development cf this concept it was necessary to prepare
a new program for each change in the kind of calculation to be performed. With
the advent of modifiable stored programs it became possible to prepare a program
which, whe: finished with one set of calculations, would cause the machine to
modify the program to work on a new set of data and then to continue without
human intervention until the required process was complete. The increase in
flexibility in such a system over previous systems was so great as to be truly
revolutionary.

The first machines to utilize fully the stored-program concept was the EDSAC
(Electronic Delay Storage Automatic Computer) of the University Mathe-
matical Laboratory, Cambridge, England; the Electronic Discrete Variable
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Automatic Computer, or EDVAC, built at the University of Pennsylvania; and
the Whirlwind I of the Massachusetts Institute of Technology. Other stored-
program machines based on earlier designs were the Universal Automatic Com-
puter (the famous UNIVAC) designed by Presper Eckert and John Mauchly,
(who had been at the University of Pennsylvania and then at Remington Rand,
now a division of the Sperry Rand Corporation); the Institute for Advanced
Study Computer, IAS, developed under the direction of John von Neu-
mann; and the International Business Machine Corporation 701 Calculator.

Most of the early machines built before 1955 differed from each other in many
details even though they were basically similar in design, but more recent ma-
chines show marked similarities in that they generally possess several units of
which only one is the computer or processor. The other units perform the opera-
tions of control, storage, and input or output of data. Since these units are
available in many configurations depending on the nature of the application, it
is more nearly correct to call such a configuration a computing system rather
than a computer.

While the original computers were built to solve a relatively few but important
scientific problems, the modern computing systems have been used to perform
payroll caleulations, prepare weather forecasts, translate English into Braille,
make airline reservations, and calculate the orbits of satellites, to name just a few
of the many uses to which these systems have been put.

The future applications of such information-processing systems is apparently
limited only by the size and speed of the system and by the ingenuity of the
people who program problems for the systems.

(NorEe. Those interested in a more detailed history of computers may refer to
the article “Caleulating Machines” by H. H. Goldstine in the Encyclopaedia
Brittanica, Vol. 4, 1961.)
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punched, 24, 26, 32, 34, 198
punching machine, 27, 29, 31
reading machine, 33
Carry impulse (carry-over),
134, 173-174
Cataloger, 128
Center squaring, 179
Centrigrade scale, 165
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Crossing-a-street problem, 5-6
Cube root calculation, 161 -
Curve fitting, 166, 169
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Data
card, 31-32
processing, 23, 30, 120, 125,
172
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digits, 72-73, 138
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Dice, 83-85
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Filing, 127
Finding
greatest common divisor, 66—~
69
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Geometric relationships, 112

Goldstine, H. H., 200
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Harvard University, 199
Hastings, Ceeil, 90, 92, 93, 170
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Jacquard, M., 198
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machine programming, 27,
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puter, 133
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Names for compiler, 43, 44, 47
National Council of Teachers
of Mathematies, iii
NELIAC language, 41
Nested-loop processes, 11, 13
Nonlinear relationships, 107,
110, 166, 170
Nonnumerical calculations,
120, 133, 148-149
NOT (device), 174
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138, 143, 145
base of, 141-144
BCD (binary coded decimal),
138, 147
binary, 122, 138, 141-143, 145,
147, 172-173, 178, 181
conversion between, 143, 145,
147
decimal, 138, 141, 146, 151
floating point, 138, 150
octal, 138, 141-143
Numbers
array of, 44, 140
prime, 66
pseudo-random, 82, 179
random, 82
range of, 74, 170
theory of, 138
Numerical
analysis, 66, 74, 99-101, 117,
162
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107, 109-110, 118, 149, 165
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PAPAC, 180
Pascal, Blaise, 198
Pennsylvania, University of,
199
Polynomial, 76, 87, 90, 93
Prime
factors, 66
numbers, 66-68
Problem
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flight-time calculation, 13-14
telephone-dialing, 5, 7
traffic-light, 5-6
Problem solving, 2, 14, 16, 19,
22, 25, 59, 73-74, 81, 83, %4,
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nested-loop, 11, 13
random, 82, 86, 133-134, 179
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38, 40-41, 120, 138, 163, 172
single-loop, 9
Processing, information, 23
Programming, 27, 66-68, 82,
87-88, 145
compiler language, 41-43
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179
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Q

Quadratic equation, 55

R

Radian measure, 89, 59, 93
Radix, 141
Random processes, 82, 86, 133-
134, 179
- Random, pseudo-, 82, 179
Range of numbers, 74, 170
Rate of change, 101-104, 107,
109-110, 112
Rectangle, 46, 105, 108
References, 3
Register, 72, 178
Relationship
inverse, 92, 94
linear, 111, 165-167, 169-170
second-degree or higher, 107,
110, 166, 169-170
Remington Rand Corporation,
200
Repetitive processes, 5, 11, 31,
33, 35-36, 4748, 59, 66, 72,
74-75, 79, 94, 107-108, 117,
120, 128-129, 133
Root
cube, 161
square, 79, 80, 88, 94, 154,
166, 169-170
Round-off (round-off error),
73-74, 77-79, 151
Rule
Simpson’s, 107, 111
trapezoidal, 107, 114, 116

S
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musical, 133-136
temperature, 165, 169
Selection by elimination, 123-
124

Self-modified instructions, 35
Sequential step-by-step proc-
ess, 4, 38, 4041, 120, 138,
163, 172
Serial binary counter, 172, 181
Series calculations, 89-90
Shift right or left, 61, 150-151,
156, 159-160, 163, 170, 175,
178
Simpson’s rule for numerical
integration, 107, 111
Simulation of a computer, 39,
181
Simultaneous equations, 94
Sine function, 87-88, 90-91
Single-loop prccesses, 9
Slide rule, 21-22
Sorting into sequence, 125, 130~
132, 171
Sperry Rand Corporation, 200
Square root calculation, 79-80,
87-89, 94, 154, 156, 167-170
Statement, conditional, 35, 51,
130
Statements for compiler, 44, 47
Storage, 24, 27, 30, 44, 87-83
Stored-program computer, 27,
35, 199
Subseripts, 48, 95, 139-140
Subtraction, 63, 155, 162
Successive
approximations, 95
differences, see Differences
sums, 105, 110
Symbols, 27, 29, 30, 42, 48-50,
140, 142
Symbol convention in flow
diagrams, 109

T

Tabulation, 114, 170
Tally, 38-40
Tangent function, 87, 94, 112

Tape
magnetic, 25, 26
paper, 25, 26
reading machine, 26, 29
Telephone-dialing problem, 5, 7
Temperature scale, 165, 166,
169
Theory of numbers, 138
Tone generation by computer,
120
Traffic-light problem, 5-6
Training for computer field, 2
Trajectory, 102
Translation by computers, 25,
40-42, 46, 200
Trapezoidal rule for numerical
integration, 107, 114-116
Triangle, 87, 106, 112
Trigonometric  relationships,
55, 86, 88-89
inverse, 92-94
Truncation, 74, 151
Twenty questions game, 121

U

UNIVAC, 200
University
Cambridge, 199
Harvard, 199
of Pennsylvania, 199

\'4

Variable(s), 85, 102, 112, 165-
166

Velocity, 86, 103, 109-110, 112,
117

Voltage, 20, 22, 142

Von Neumann, John, 200

A4
Whirlwind I Computer, 200
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