
R EPOR T R ESUMES
ED 019 711 24 CG 002 093
AN INVESTIGATION OF NON-INDEPENDENCE OF COMPONENTS OF SCORES
ON MULTIPLE-CHOICE TESTS. FINAL REPORT.
BY- ZIMMERMAN, DONALD W. BURKHEIMER, GRAHAM J., JR.
EAST CAROLINA COLL., GREENVILLE, N.C.
REPORT NUMBER BR-6-6209 PUB DATE 8 MAR 68

CONTRACT OEC-2.-7--066209-0369

ERRS PRICE MF-$0.25 HC-$1.44 34P.

DESCRIPTORS- *TEST RELIABILITY, *MATHEMATICAL MODELS;
COMPUTERS, ITEM ANALYSIS, *OBJECTIVE TESTS,

INVESTIGATION IS CONTINUED INTO VARIOUS EFFECTS OF
NON-INDEPENDENT ERROR INTRODUCED INTO MULTIPLE-CHOICE TEST
SCORES AS A RESULT OF CHANCE GUESSING SUCCESS. A MODEL IS
DEVELOPED IN WHICH THE CONCEPT OF THEORETICAL COMPONENTS OF
SCORES IS NOT INTRODUCED AND IN WHICH, THEREFORE, NO
ASSUMPTIONS REGARDING ANY RELATIONSHIP BETWEEN SUCH
COMPONENTS NEED BE MADE. UTILIZING THIS MODEL, AN EXAMINATION
OF THE DEPENDENCE OF RELIABILITY ON GROUP HETEROGENEITY
REVEALS THAT THE NECESSARY AND SUFFICIENT CONDITIONS UNDER
WHICH THE CLASSICAL EQUATION DESCRIBING THIS RELATIONSHIP
HOLDS. MODELS IN WHICH ASSUMPTIONS OF THESE CONDITIONS ARE
NOT APPLICABLE ARE EXAMINED. COEFFICIENT ALPHA AND OTHER
RELIABILITY ESTIMATES ARE EXAMINED. IT IS FOUND THAT THE
NECESSARY AND SUFFICIENT CONDITIONS FOR THE RELIABILITY OF A
COMPOSITE TEST OF N FARTS TO EQUAL COEFFICIENT ALPHA ARE
IDENTICAL TO THOSE UNDER WHICH RELIABILITY OF A TEST
LENGTHENED N TIMES ZS GIVEN BY THE SPEARMANBROWN FORMULA.
FURTHER, THESE CONDITIONS ARE ANALOGOUS TO THOSE UNDER WHICH
THE RELIABILITY 00 A TEST OF N ITEMS IS EQUAL TO
KUDER-RICHARDSON FORMULA 20. THE INCREASE IN TEST FELIABILITY
WITH INCREASE IN NUMBER OF ALTERNATIVES PER ITEM IS
CONSIDERED. THE DERIVED EQUATION DESCRIBING THIS RELATIONSHIP
IS EXPRESSED TN A FORM SIMILAR TO THE SPEARMAN.-BROWN FORMULA
FOk INCREASE iN RELIABILITY WITH INCREASE IN TEST LENGTH.
(AUTHOR)



Final Report

Project No. 6-8209
Contract No. OEC2-7-068209-0389

AN INVESTIGATION OF NON-INDEPENDENCE OF COMPONENTS
OF SCORES

ON MULTIPLE-CHOICE TESTS

Donald W. Zimmerman
and

Graham J. Burkheimer, Jr.

East Carolina University
Greenville, North Carolina

8 March 1968

The research reported herein was performed pursuant to a contract

with the Office of Education, U. S. Department of Health, Education,

and Welfare. Contractors undertaking such projects under Government
sponsorship are encouraged to express freely their professional judgment
in the conduct of the projects Points of view or opinions stated do
not, therefore, necessarily represent official Office of Education

position or policy.

CO
C'0
C100
C0

U. S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

I



CONTENTS.

SUMMARY
1

INTRODUCTION 4

METHODS 6

FINDINGS 8

PART I 8

PART II 14

PART III 23

CONCLUSIONS 29

REFERENCES 30

ERIC REPORT RESUME . . . . . . . 99999 32

ii



SUMMARY

The problem investigated in this research is that of the non-
independent error component introduced into scores on multiple-choice
tests dui to chance guessing success. This class of error operates
somewhat differently than the random, independent error described in
classical test theory. It differs in two important aspects. First, it
operates unidirectionally, in that it can only increase an individual's
score on a test; secondly, the usual assumption of independence of the
error component of a score can not be made in this case. This is because
such error is negatively correlated with an individual's true score, and
positively correlated with the same class of error on parallel forms of
the test. Since this type of error violates the assumptions made in the
derivation of many of the equations of classical test theory, new
equations must be derived to adequately describe the effects of this
error as reflected in an individual's score.

The method used to investigate the effects of non-independent error
is similar to that which has been employed in the past to investigate other
classes of error. Basic models are adopted and equations are derived from
these models. The major difference in procedure for the purpose of this
research is that the assumption of independence is not made. Further, the
derived equations are validated against the results of computer simulation
techniques. These techniques begin with a prepared distribution of true
scores. An IBM 1620 is then programmed to generate one or more classes of
error corresponding to a particular true score. The sum of the true score
and the error components is then representative of an observed score on a
test. This procedure is repeated to generate data that is a simulation of
results on parallel forms of a test. The resultant data is then subjected
to statistical analysis to obtain descriptive quantities of the scores and
their components. Finally, the equations that have been derived to
describe the effects of the particular class or classes of error generated
by the program are validated against the results.

Three distinct problems were investigated in this research. The first
problem is that of the dependence of test reliability upon the hetero-
geneity of the group tested. In classical theory, this relationship is
described as ft2

A fi
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In this equation, the reliability of some test administered to a
particular group, A , is related to the reliability of the same test
administered to another group, B; the quantities in the equation are
related to group A or group B by subscripts. A cursory examination of
the equation reveals that the reliabilities will be the same if the
variances are the same, thus reducing the ratio of the variances to 1.



The derivation of this equation is based on certain assumptions concerning
error variance that do net necessarily hold for certain classes of error.
One such class of error is the non-independent error under consideration.
Another class of error that does not allow such assumptions is Zhe error
connected with item sampling as described by Lord (1955). A general
equation is derived to describe this relationship, and the equation

indicates that the classical equation is valid if and only if the average
individual error variance is the same for the two groups.

The second problem investigated is the applicability of coefficient
alpha and other reliability estimates to testing situations in general and
specifically to testing situations where non-independent error may be
present. It is determined that the necessary and sufficient conditions
for coefficient alpha to equal test reliability is the same regardless of
the class or classes of error in operation. It is shown that coefficient
alpha is equal to the reliability of a test if and only if, as the number
of measurements increases without limit, the mean over persons of the
variance over part-tests of the mean part-test scores over repeated

measurements is equal to the variance over part-tests of the means over
persons of the mean part-test scores over repeated measurements. Further,
the Kuder-Richardson formula 20 (Kuder & Richardson, 1937) is equal to the
reliability of a test if and only if all test items satisfy this same
condition. Also, the Kuder-Richardson formula 21 is equal to the reliability
of a test if and only if all test items satisfy this condition and if in
addition, both of the quantities are zero. It is further shown that the
conditions under which a composite test of N parts is equal to coefficient
alpha are identical to the conditions under which the reliability of a

test lengthened N times is given by the Spearman-Brown formula. An
equation describing test reliability when these conditions are not met is
derived. These results support recent findings by Novick & Lewis (1967).

The final problem considered is that of the dependence of test
reliability on the number of alternatives per item. It has been observed
that as the number of alternatives per item increases, test reliability
likewise increases (Lord, 1944; Carroll, 1945; Plumlee, 1952; Zimmerman &
Williams, 1965). It has further been suggested that the relationship can
be described by the Spearman-Brown formula, which was originally developed
to describe increase in test reliability with increase in test length
(Remmers, Kerslake & Gage, 1940). It is found that increase in test
reliabilily with increase in number of alterta,.tives is indicated only

approximately by the SpeaLmdu-BLuwn lormula. An equation is derived that
indicates the relationship much more accurately..

The results of this study are probably not directly applicable to
the solution of the day-to-day problems of testing; however, the findings
do provide a solid foundation for the understanding of the operation of
this particular class of error. Due to the widespread use of multiple-
choice tests, it is probable that non-independent error due to chance
guessing success is present to a large degree in the results of the



majority of tests used in the field of education. An understanding of this
class of error is therefore highly desirable. It is also important in the
development of test theory that one understand the differential operation
of the different classes of error. Hopefully this research will serve not
only as a base but also as a stimulation for further research in fhts area.
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INTRODUCTION

Traditional mental test theory has been largely founded on the
assumption that errors of measurement are independent random variables

with an expected value of zero. When these assumptions are made, certain

intercorrelational terms relating the theoretical components of test
scores are zero, and resultant equations are considerably simplified.

Two basic models have been employed to derive equations in test
theory; however, since the assumption of independence has been made in
the use of both models, similar results have been obtained. The first

model is based on a definition of an observed score on a test as the
sum of two theoretical components, true score and an error component.

This relationship is expressed as 0 = T + E. The alternate model defines

true score as a limit:

t°

H
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T = lim g=1
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- lim g=1
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Where Tj represents the true score for some individual j, 0gj
represents

the observed score of that individual on the gth form of H parallel forms

of a test, and Egj represents the error component of that observed score.

Since, in the limit, the sum of the error components for this individual
over repeated testings is zero; the equation simplifies to a definition

of an individuals true score as the limiting value of the mean of the
frequency distribution of his observed scores over repeated testings
with parallel forms of a test (Gulliksen, 1950).

As an example, independence will be assumed under the specifications

of the first model. Such an assumption implies that the magnitude and

direction of the error component is in no way influenced by the magnitude

of its true score counterpart. It follows from this implication that the

correlation between true scores and corresponding error components is

zero, or rte = 0; it further follows that the correlation between error

components on parallel forms of a test is zero, or ree = O. With this

conclusion, it is relatively easy to develop the classical equations for

the reliability of a test:

2
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where r00 is reliability, s
2

is variance, and the subscripts e, t, and

o refer to observed scores, true scores, and error components respec-

tively. Other equations of classical test theory can likewise be de-

rived with ease once the assumption of independence has been made.

any tests Tresently used are of the multiple-choice type, and it

has been widely recognized that scores on such measuring instruments
will reflect to some extent chance guessing success. Such chance guessing

success is thus a class of error component of the score. It has not been

recognized as widely that this class of error is non-independent. The

relationship of this class of error to true score can be seen in a brief

example. An individual with a true score of ten on a ten-item true-false

test is faced with no items on which to guess the answer. The error com-

ponent of his observed score as a rebult of chance guessing success must

therefore be zero. Another individual with a true score of zero on the

same test may guess on all items, and the error component of his observed

score can rangefrom zero to ten, with an expected value of five. Stated

generally, the lower an individuals true score on a multiple-choice test,
the more items are available for which he can guess the answer; and the
greater the number of items on which he guesses, the greater is his

expected number of successful guesses. From this it follows that the '

correlation existing between true score and this class of error is a

negative one. It also follows that such error components will be posi-

tively correlated with like error components on parallel forms of the

test. A further characteristic of this class of error is that it

operates unidirectionally. That is, such error can only increment an

individual's score.

Due to the non-independent nature of this class of error and to its

unidirectional character, the effects of such error can not be effectively

described by the equations of the classical test theory. A considerable

amount of research has been conducted recently to examine some of the

basic properties of this class of error (Burkheimer, 1965; Burkheimer,
Zimmerman & Williams, 1967; Williams & Zimmerman, 1966; Zimmerman &

Williams, 1965, 1967; Zimmerman, Williams & Rehm, 1966). The present

research is an extension of this ongoing investigation.



METPODS

The investigation into the properties of non-independent error
proceedld along two lines. The first line was the development of models
from which equations describing the effects of this class of error could
be derived; the second was the development of computer simulation programs
to generate data against which the derived equations could be validated.

In the first stage of the research, the basic models of classical
test theory, as described above, were used as a foundation for equation
derivation. The major difference in terms of deriving equations from these
models in this research was the fact that the assumptions of independence
and zero-value expectancy were not made. Early results indicated that the
classical equations for reliability could be stated in slightly modified
form as follows:

(a
-

1)2s2 s2

r , and r - -J1 (1 - r) eeoo 2 2
t

oo = 1
s2

)

a s
o o

where a is the number of alternatives per item and ree is the correlation
existing between non-independent error components. Other basic
equations developed from these models likewise differed from the analogous
equations of classical test theory. Some of the effects of non-independent
error, however, led to results that were identical to those previously
described in classical theory (e.g. the Spearman-Brown formula; Zimmerman
& Williams, 1966).

An interesting aspect of the derived equations is that they easily
reduce to the classical equations when the number of alternatives increases
without limit, thus reducing the probability of a successful guess, 1/a,
to a limiting value of zero and eliminating this particular class of error.
In the two equations above, fo example, it can be readily observed that
the limit of the ratio (a - 1)'/a2, as is 1; and the equation
reduces to the classical equation. Considering the second equation above
together with the equation for ree,

s
2

t
r
ee

=
a
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e

it is obvious that the limit, as a-loom, of the term
(1

ree) is 1, and
again the equation reduces to the classical equation.

In the later stages of the research, an additional model was utilized.
This model resembles the second model described above in that it considers
the frequency distribution of scores over repeated measurements on parallel
forms of a test and in that it considers the parameters of this distribution
as the number of repeated measurements increases without limit. The model
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differs from the classical model, however, in that it does not introduce

the theoretical concepts of true score and error components. The model,

which is considered in greater d ail in Parts I and II of the following

section, considers the mean of a distribution of observed scores for some

individuali3Opandthevarianceathisdistribution2(a)2. Since(a0 )2.

no assumptions are made under this model of either independence or non-

independence, the model is quite general; and the results obtained from

the model are applicable under either assumption.

A computer simulation technique which had been used quite effectively

previously was further utilized in the present research. The first

program developed was a duplication of the program previously described

(Zimmerman & Williams, 1965). An IBM 1620 was used to generate scores on

a "multiple-choice test" with the probability of a successful guess set

at a value equal to the reciprocal of the number of alternatives per item

on "tests" of varying length.

The procedure was simple in concept. A hypothetical distribution of

true scores was prepared, :7nd for each true score on a "test" of N items,

the computer simulated N-T guessing trials. "Correct guesses" were

summed, and this sum represented the non-independent error component of

an observed score, which was obtained by adding the generated error

component to the respective true score. This procedure was repeated to

generate results comparable to repeated testings on parallel forms of a

test. Finally, the intercorrelation matrix of all possible combinations

of observed scores, true scores, and error components was obtained. With

these results, the equations derived under the assumption of non-

independence were validated.

The second program was an extension of the first, and all steps

through the generation of a non-independent error component were the same.
In this program, however, an additional error component was generated.

The second error component was obtained by a random sampling technique in

such a way that the resulting error component complied with the assumptions

of 4ndependence. Observed score was obtained as before with the exception

that it now consisted of the sum of a true score, an independent error

component, and a non-independent error component. An intercorrelation

matrix was obtained as before. The results of this program were used to

validate the equations previously derived for the case in which several

classes of error components are reflected in an individual's score on a

test (Zimmerman, Williams & Rehm, 1966).

An additional program was placed in operation,which generated error

components of scores of the item-sampling class described by Lord (1955).

The final results of this program became available only recently and have

not yet been fully analyzed.

7



RESULTS

Part I: Dependence of Test Reliability Upon Heterogeneity of
Individual and Group Score Distributions

In the classical test theory the equation

2

U o

(1)
O 1 pd2A (1 roo

A)
ro

B

U o
B

relates the reliability coefficient of a test obtained in a group, A,

with a certain variance of observed scores, cr , to the reliability
oA

coefficient of that test obtained in a group, B, with a different

variance of observed scores, cr
o
2

(Gulliksen, 1950). Derivation of the

equation depends upon equating error variance in the two groups, In

the classical theory the distribution of test scores for a given person
over repeated measurements is regarded as the same for all persons and
also the same as total error variance for a group of persons. The pur-

pose of this paper is to determine the necessary and sufficient condi-.

tions under which the above equation is valid and to examine modifications
of the equation which are obtained when these conditions are not met.

Definitions

The subscript g, taking on values from 1 to H, will refer to
repeated measurements, and the subscript j, taking on values from 1 to

K, will refer to persons. We consider the distribution of observed

scores 0 for person j, over H independent repeated measurements.

We consider the distribution of observed scores, t0' for this sameu

person j over H independent repeated parallel measurements. Finally,

we consider the means, O. and 15', and the variances,((r2 ) and ( crhi,
it oj oj

Ogj

of the distributions of scores for person j, where 54 = lim g=1 _,

H J H. co H

2
E Oij 2

where ( ITO ) = lim g=1 - 0i, and where similar expressions can

i H-ove H i

be written in prime notation.
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Test reliability is defined as follows:

H K H K H K

11 . Ox. c,
g=1 j =1 g3 53 - g=1 j=1 gi g=1 j=1

(2) lim HK H2K2°

where qo = lint

H- Oa

G'0 0'0

(:
Z E02 Z ZO
g=1 j=1 gi g=1 j1 gi

H K H K 2

HK H
2
K
2

and where cr
o is defined by a similar expression in prime notation.

That is, reliability as determined for these K persons is the product-
moment correlation between pairs of repeated parallel measurements, as
the number of pairs increases without limit.

The frequency distributions of Ogj and 0
1

over repeated measure-

mentsments for any person j are assumed to be the same, such that (G
o.) =

( (j21 ) and 0 = O. It is not assumed, however, that such distributions
WEND

of J J

are the same for different persons. It follows from the above that
T = 01, q = (r.-1 and /2.---, = 1, where cr and a_, refer to

-6.3 of , / o o. :.
j j

iij o
j

Go . o

the standard deviations of the values over all it persons and /01,171

ii

is the correlation between Oj and 63 for these K persons.

We can consider the covariance term of (2) as the sum of two
quantities,

(3) 1000 Go Gs;
3 04 )Dojo' er 0 ) tr

+ o'v
J

9
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Since the pairs
independent, it

0gj and 0g for

re
/30 06#0%) 0

of repeated parallel measurements for person j are
follows that ip

ojoj o j oj( ) ) the covariance of
/

person j, is zero for all K persons. Therefore,

= p
rjrj a Tij cy tr . Using the

above, together with a standard theorem,

= ( cr2 ) e , where ( cr2 )
oj oj oj

we arrive at the result

2

Go ,2
(I) o )

Poo 2j
1_

j

'Jo

(4)

equalities established

1

Dependence of Reliability Upon Group Heterogeneity

2 2 2 2
From (4), (i (1 - /40 ) = ( cro )A and 17.3 (1 -4000 )=((ro )B.

o
A

o
A J.

1 o .

B i B j

Subtracting the second of these equations from the first and solving
for A) 0 we obtain

/ o oB

"14,2 2 2

o (ao )A ( Go )B

(5) =1_ A (1 -P
t o

j .

°B 20A 0,2°)
+

°B

From (5) it is evident that

2

0°0 2 2

Poo
= 1 - ___A (1 - yoloo )40(4;0 ) = (G ) , that is,

/ B ,,..2 / A j A -j B

V oB

change in reliability with change in group heterogeneity is given by
(1) if and only if the arithmetic mean, over the KA persons in group A,

of the KA variances of observed scores over repeated measurements is

10



equal to the same quantity for the KB persons in group B.

In classical test theory ( cr
oj

) is identified with total error

variance, a quantity which has been regarded as the same for any two
groups. For models in which this condition does not hold, the re-
lationship is given by (5). It should be noted that in the above
derivation 04 has not: been identified with the concept of true score.
Therefore, the conclusions reached hold even if 02i is regarded as the
sum of components which are linearly correlated (Zimmerman & Williams,
1965, 1966). We will now consider two models in which the frequency
distribution of observed scores over repeated measurements varies from
person to person.

Item Sampling Model

Following the model presented by Lord (1955) for sampling of test
2

items from, a population of items, we can write ( a
o

) = 03 (N
)

where N is the number of items. Lord identifies the quantity with

true score, Tj, representing the product of the proportion of items in

the population which are known and the number of test items. For any
two groups, A and B, we have

2 2
140 (N- /40 )2 PoA(N- ) (515.

A - JA and ( )B =/ B B -oi A
N N N N

where
oA
andp

o
are the means over all K persons and all H measure-

B
ments of the 0

g3A
and 0

MB
values. Substituting these results in (5)

and factoring, we obtain

(6)

.,2

_N) (1,B -140
A
WrjA..L) o

A
2

/goo = - (1- )+ A B/boo

NC;
2B

Only if the right-hand term
2

substitute in (6) for t)
°jB

B

is zero is (1) valid. Otherwise, we can
2

its equivalent /000B croB and for UI ojA its
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2

equivalent rooA G oA, solve for rooB and simplify to obtain

(7) (oo
B

= N
N-1

ki) o (1416 -N) (1°B -/Ao )
A B Br A

- A (1 - N-lrooA) +
fr2 2

oB

It should be noted that the right hand term becomes zero if /LOA 1A0B

or if ploA = (N - B), in which case (7) reduces to

2

ao
poo

B
= N _ A (1 -211/000 ) . Further, if the
N-1

(5°B

N A

rg.
right hand term is not zero, but v

°
= of

B
(7) reduces to

jA

2

cro ( /40 +deo - N) (Po - /4o )

fl
= 1 - A (1 - A ) + A B / B A

°
oB

2 i °oA 2

Uo N 0

B B

Chance Success Model

Using the model for chance success presented previously (Zimmerman

& Williams, 1965; Burkheimer, Zimmerman & Williams, 1967) we can write
2

(G.o) = p(N - 15.), where p, the probability of chance success, is

J

assumed to be the same for all persons. Finding the arithmetic mean
2 2

for groups A and B as before gives (Go )A = ) and ((ro )B =
A

p(N -)Pb
B
). Substituting these results in (5) we have

12
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kl o P (Po -

v)(8) Ao°
= 1 - A (1 - /000 ) + B A

B 2 / A ,,,2

ao
B

k) 0

B

Only under the conditions thattoA

obtained.
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Part II:

Conditions Under Which Coefficient Alpha E uals Test
Reliability: the Case of Heterogeneous Score Distributions

aud Correlated Score Components

Since the original derivation by Kuder and Richardson (1937) of
the formula which Cronbach designated as coefficient alpha the assump-

tions required have been more fully explicated (Jackson & Ferguson,
1941, Guttman, 1945, Gulliksen, 1950, Cronbach, 1951, Novick & Lewis,

1967). Derivations have been based on the classical test theory model

in which true scores and error scores are uncorrelated and error scores

on parallel tests are uncorrelated. The present derivation of coef-
ficient alpha is somewhat different from those which have appeared in
the literature, reveals the necessary and sufficient conditions under
which this quantity is equal to the reliability of the test, and indi-
cates that the formula is valid under certain conditions where the
classical test theory mrdel is not applicable.

Definitions

The subscript i, taking on values from 1 to N, will refer to the

parts of a test.

We consider the distributions of observed part-test scores,
Ogji, and total test scores, Ogg, for person 1 over H independent re-

peated measurements. We further consider the distributions of observed

part-test scores, 0;ji, and total test scores, 0'., foi this same

person iover H indgpendent repeatyl parallel mefiaurements. Also, we

consider the quantities ff and (('ai), which have been defined above.

Analogous quantities, Uji and aryi, define the mean and variance of

part-test scores for person ioveilrepeated measurements.

The reliability of a test is defined as above. The reliability
of a part -test, (Poo)i, is defined in the same way, in terms of Ogji

and 0'...
gJi

It is assumed that, as H increases without limit, the frequency

distributions of Ogg Ogg0'. are the same for any person 1, such that

(0(%) = (52!) and 04 = It is not assumed that such distributions
oj

are the same for ditfereit persons (cf. Zimmerman, Williams &

Burkheimer, 1968). The same concept applies to the part-test scores,

Ogji and 0;ji. It follows from the above that 10 = Go ,I75j = Go]'

andf-joj = 1. Likewise, these relationships hold for the part-test
o

scores.

Another expression for test reliability is given in (4) above,
and an expression for the reliability of part tests can be written as

14



(Ad'
2
o.

= 1 . Here, the terms used are

analogous to their counterparts defined above, where the subscript i
indicates that thry refer only to the ith part of the test.

The following symbols will also be used:

0.

0

WAS

N - 1

K

0

)=1

15
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2 =
tr= is the variance of Oj over all K persons.
m o.

3

2 is the variance of B. over all N part-tests.
"o

i
1

2

(6,7 ) is the variance of 0 for person j over all
-ij j

ij

N part-tests.

ron
Coa om n m

is the variance of 0 over all K persons and
ij

all N part-tests.

is the covariance of 0 for any two part-tests.
gji

OM

/06- a Ci 6 66
is the covariance of 0

ij
for any two part-tests.

jn jm jn jm

Derivation of Coefficient Alpha

Total observed variance can be written as follows:

n=1 m=1

n3m

0 Go Go . Variance of 0nmnm i

N N N

o,
(67... Ai +11p (7, GI; e;can likewise be written a- m 1

2

i

o
ij jn jm jn jm

im1 n=1 m=1
nOm

.
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Subtracting th?. second equation from the first yields

N N N

6'62 --.: 60
2

Gto
2

.. - (G12 ) i + E z (finoriaonTom AnaimMijgaim).oi oij

i=1 n=1 m=1
mint

Relating the second expression in the right hand member of this
equation to equation (3) and following the same argument, it is evident
that this expression is zero. Substituting (14 for its equivalent
valuee and reducing, we arrive at 00 0

j
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follows that (0 )i = Tdr-Ti + cr! - cri . Substitutingoij Old 40 oi

this result in (9) gives
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From the above definition of O. it is evident that

2
NO=

of

Og NGo

Poo

N
Substituting in (10) and solving for

leads to the following result:

i=1 ari4 N ax-o`i

2 2

(11) 4 = N
/ oo N -1

which, except for the right hand term, is identical to a.

Oft

We can write 04 = /boo (0
2

J
). =t3o = . In other words,

o., .

tj

coefficient alpha is equal to the reliability of the test if and only
if, as the number of measurements increases without limit, the mean
over persons of the variances over part-tests of the mean part-test
scores over repeated measurements is equal to the variance over part
tests of the means over persons of the mean part-test scores over
repeated measurements.

In the classical test theory model 0gj = Tj + Egj

Ogg

=1
and Ti = lim

g
°

H.4.41 H
= 0 , where T and E are true and

gi

error components of scores. In the present derivation
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0
gj

the quantity lim 14=1 has not been identified with the concept
H-000

of true score. If, however, O. is a linear function of T the con-
clusions reached by Novick & Lewis (1967) hold even when 3true and
error components of scores are correlated and when the distributions of
scores over repeated measurements are different 4rom person to person
(Burkheimer, Zimmerman & Williams, 1967, Williams & Zimmerman, 1966,
Zimmerman & Williams, 1965, 1966). That is, even in this case the nec-
essary and sufficient condition for coefficient alpha to equal test re-
liability is that all part-tests be essentially t-equivalent, as de-
fined by Novick & Lewis. We can now write these conditions in the
following form: for every j, 0 = Omj + C , for any n, m - or, that
the mean part-test scores over repeated measurements for person j differ
at most by constants, which must be the same for all K persons, but not
necessarily the same for all part-tests. 2It follows, then, that for all
n and m,/,

onom (i4loo)n (foo)m 'Gon
6om 2 and Po = 1.

'

In other words, the variances of all parts are the same, the inter-
correlations among all parts are the same and equivalent to the re-

liabilityofeachpart,andthecorrelationbetweentheiiiivalues is
unity for all pairs of part-tests. Thus, all parts of the test must be
parallel measurements in the usual sense of "parallel" in test theory,
except for differences in scores by a constant.

The present results are consistent with those obtained by
Jackson and Ferguson (1941) and Gulliksen (1950). The above condition
may be expressed by saying that over repeated measurements the average
covariance between parts within a test must equal the average covariance
for each part. Still another way of expressing the condition is this:
a single administration of a test can yield an estimate of reliability
only if the degree of correlation between parts within the test provides
information as to the correlation which would be obtained over repeated
measurements.

When individual items are considered ce is equivalent to the
Kuder-Richardson formula 20.' That formula, then, is equal to the re-
liability of a test if and only if all test items satisfy the above
conditions.

Equivalence of Coefficient Alpha and

the Spearman-Brown Formula

The conditions under which the reliability of a composite test
of N parts is equal to coefficient alpha are identical to the conditions

under which the reliability of a test lengthened N times is given by
the Spearman-Brown formula. The latter condition is sometimes expressed

19



by saying that the parts added to the original test must all be parallel.

But this is just the condition required fo.x coefficient alpha to equal
the reliability of a composite test. No mquirement need be made in
either case as to the degree of correlation between true and error com-
ponents of scores (Zimmerman .& Williams, 1966).

In the case in which N refers to items, the following statement
can be made: the conditions under which the reliability of a test of N
items is given by the Kuder-Richardson formula 20 are identical to the
conditions under which the reliability of a one-item test lengthened N
times is given by the Spearman-Brown formula'. The relationship can be
seen by letting (AP

o-
) i be the reliability of one part-test, or one

item, before th% test is lengthened. If the above conditions are met

2

GO. NG o

2
and we can substitute in Ot, its equivalent

.

i=1

expression in terms of part-test variances and covariances and write

(12) =
(loci N - 1

N N( Poo) i

1

Ne0i1:14(N -1) (p0);1 ii.(N4)(,4)00)

Relation of the Kuder-Richardson Formula 20 to the
Kuder-Richardson Formula 21

Assume that the conditions for Cit=p are met. Then, when
individual test items are considered, 00

Ce =)/)
o

=
o N

N

1
1

N

)11 ;. (1-0).

Go

expression and reducing, we obtain

20

Expanding this
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where L& is the mean of observed scores over all K persons and all H), -o

repeated measurements. When 0=g
2

i
= 0, this result is equivalent to the

o

Kmder-Richardson formula 21. In other words, the condition required for

the K.-R. formula 20 to equal the reliability of the test is that

(t)61j)j
rr 2

and the condition required for K.-R. 21 is that

(e. )
j

= ca = O.
oij

Derivation of Coefficient Alpha from
Item Sampling Model

An interpretation of the Kuder-Richardson formula 21 can be
based on the model presented by Lord (1955) for the sampling of test
items from a population of items. Lord demonstrated that an individual's

0 ,(N - 0
gi

)

standard error of measurement is estimated by gJ and that when
N - 1

all persons and substituted in the classi-that quantity is averaged over
11.2

cal equation /*oo = 1
Go '

o

the K.-R. formula 21 is obtained. The

K.-R. formula 21, in other words, can be interpreted as an equation for
test reliability for the case in which the observed score distribution
over repeated measurements is identified with variations in score re-
sulting from item sampling.

It should be noted that the above requiremamt that
2 ,.ff2

(61 k)of = . = 0 is implicit in this model. From the concept of

item sampling employed by Lord, it

limit, for

for all j.

any j, Oj

Further,

= lj for all

CT becomes the

21

follows that, as H increases without

i, such that ( a-2 ) becomes zerooij j

same for all i, such that krffi = O.



It should be noted that K.-R. 20 would be equally applicable to this

model.

Let us assume now, that the N items of a test are drawn from N

distinct populations and that the values of Oil for person j may differ.

Then, the distribution of observed scores over repeated measurements is

given by a Poisson sequence of trials, (a03 ) = 65J (1 - 03) - N((So )1
ij

Averaging this quantity over all K persons, substituting the result in

equation (4), and simplifying we obtain (11).

In other words, equation (11) gives test reliability for the

case in which the N items of a test are sampled from N distinct popu-

lations of items. The K.-R. formula 20 gives test reliability only if

(ciq. )

i
and6Z are

°ii oi

gives test reliability

equal. Finally, the Kuder-Richardson formula 21

only if both these quantities are zero.



Part III: Dependence of Reliability of Multiple-Choice Tests Upon
Number of Choices Per Item: Prediction From the Spearman-
Brown Formula

It has been known for some time that the reliability of multiple-
choice tests is influenced by the number of choices per item (Remmers,
Karslake & Gage, 1940; Lord, 1944; Carroll, 1945; Plumlee, 1952). Since
the probability of chance success on an item is 1 , where a is the number

a

of choices per item, it is to be expected that error variance introduced

by chance success is a decreasing function of number of choices and test
reliability is an increasing function of number of choices.

Remmers and his associates suggested the relationship could be
described by the Spearman-Brown formula, which is known to indicate
increase in reliability with increase in test length. The formula is

nr
oo

(14) r
noo

=
1 (n - 1) roc.

where r
oo .

is the original reliability
) rnoo is the reliability of the

ii=r411,

test of increased length, and n is the number of times the test is
increased in length. Remmers showed empirically that the reliability
of various tests is approximated by this function, when n refers to
increase in number of choices instead of test length. It has been
pointed out, however, that there is no theoretical basis for predicting
this result (Lord, 1944; Guilford, 1950; Gulliksen, 1950).

Computer Simulated Results

In a previous paper (Zimmerman & Williams, 1965) a computer pro-
gram was used to simulate guessing error in multiple-choice tests.

Distributions of assumed true scores were prepared, and error scores
were generated on the basis of the probabilities to be expected from
chance success due to guessing. The error scores were added to true
scores to obtain observed scores. Finally, product-moment correlations
between different sets of observed scores obtained by repeating the
procedure several times gave an indication of test reliability.

The results of this procedure for tests differing in length and
number of choices are shown in Table 1. The data in this table can be
used to examine the effect of increased test length, as well as increased
number of choices, upon reliability. Apparently, there is an inter-
action between the effects of test length and number of choices.
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TABLE 1

COMPUTER SIMULATED RESULTS FOR RELIABILITY

N = 10

a = 2

N = 10

a = 5

N = 100

a = 2

N = 100

a = 5

*
oo

**00

***
00

****
00

.44 .74 .89 .97

.89 .97

.76 .97

.66 .95

*Reliability given by computer program.
**Reliability given by substituting .44 or .74 in Equation 14.
***Reliability given by substituting .44 or .89 in Equation 18.
****Reliability given by substituting .44 or .89 in Equation 14.

where n = 2.5.

For short tests (N = 10) reliability increases greatly with increase in
number of choices (.44 to .74). For long tests (N = 100) reliability

increases slightly with number of choices (.89 to .97). Also, for 2

choices, reliability increases greatly with test length (.44 to .89).

And for 5 choices reliability increases to a lesser degree with test

length (.74 to .97).

From the table it is seen that the Spearman-Brown formula describes
the increase in reliability with increase in test length for both the
2-choice test'and the 5-choice test (Zimmerman & Williams, 1966).

Consider, now, Remmers' suggestion that the same formula describes
increase in reliability with increase in number of choices. The results

in the table show that there is a greater discrepancy, although the
predicted value for the longer test is close to that indicated by the
program.

Increased Reliability As a Function of
Increased Number of Choices

It is possible to derive a simple equation showing the effect of
increasing the number of choices upon reliability for the case in which

only error due to guessing is present. Reliability is given by

(a - 1) st
(15) r =

oo
(a - 1) st + N -
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where a is the number of choices, 4 is the variance of true scores,.

N is the number of items, and T is the mean of true scores. This

equation gives the value which is approximated by the computer simu-

lation method described above (Burkheimer, 1965; Burkheimer, Zimmerman,

64 Williams, 1967). When the number of choices is increased, we can

write

(16) r
1 .,

oo

(a' - 1) s

(a' - 1) 4 + N - T

where roo' is the reliability for the test with increased number of

choices, a is the original number of choices, a' is the increased num-

ber of choices, and the other symbols are as defined above. Solving

(15) for s2t gives

(N - i) roo

(17) s
t

(a - 1) (1 - roo)
oo

.

Substituting this result in (16) and simplifying, we have

(18) r =roo

(a' - 1) roo

(a - 1) + (a - a')
roo

.

The data presented in Table 1 show that substitution in this equation

yields results close to those indicated by the computer program. The

accuracy is greater than that obtained by using (14) and of the same

order as that obtained by using (14) for increased test length.

If the method employed by Remmers were valid, the ratio a' would
a

be comparable to n in (14), which could be written in this form:

(19) r f l't
00

1 + (p - 1 r

a
1

(3) roo
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Simplifying, we obtain the following result

a' r

(20) r 1 =
00

oo
a + (a' - a) r 00

which can be compared to (18). It is seen, therefore, that equation

(18) differs from the modification of the Spearman-Brown formula

suggested by Remmers only by subtraction of 1 from the a' factor in the

numerator and the a term in the denominator. If both a' and a were

large (14) and (18) would give nearly the same results. For multiple-

choice tests, however, a' and a are relatively small, and some discrep-

ancy can be expected.

Dividing both numerator and denominator of (18) by a - 1 gives

(a' - 1)

00
(21) r =

oo

(a - 1) (a - 1) roo

(a' - 1)

If, now, we define A as the ratio (a - 1) and simplify, we have

(22) roo

Ar
00

1 + (A - 1) r00

which has the same form as the Spearman-Brown fc uula. In other words,

(a' - 1)

Remmers' suggestion is valid if we employ the ratio (a 1) in the

Spearman-Brown formula, but not if we employ the ratio a
1

. It should

be noted that the above equations apply only to the case in which

differences in reliability result from chance success due to guessing.

Dependence of Correlation Between'Error Scores On
Parallel Forms Upon Number of Choices

It is of interest that an equation showing the dependence of the

correlation between error scores on parallel forms of a test upon num-

ber of choices can also be derived. This quantity has been assumed to

be zero in the classical theory of mental tests. However, when chance

success due to guessing is present, as in the case of most multiple-

choice tests, it can be shown that it is positive in value, that it
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decreases with number of choices, and
by an equation similar to (18).

Correlation between error scores

by the following equation:

(23) r
ee

=

s2
t

that the relationship is indicated

on parallel forms is in fact given

s? + (a - 1)(N - i)

where the symbols are as defined above (Burkheimer, 1965; Burkheimer,

Zimmerman & Williams, 1967). When number of choices is increased, we

can write

(24)
ree

s
2

s + (a' - 1) (N -
t

Solving (23) for si gives

2
r (a - 1) (N - i)

(25) st =
ee

(1 - ree)

Substituting (25) in (24) and simplifying leads to this result:

(a - 1) r

(26) r
ee

'

ee

(a' - 1) - (a' - a) ree

Dividing both numerator and denominator of (26) by a' - 1 gives

(27) r =
ee

la - 1)
(a' - 1) ee t

(a' - a) ree

(a' - 1)

If we define B = 1 = (a - 1) and simplify, we have
A (a' - 1)
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Br

(28) r
ee

= ee

1 + (B 1) ree

which, again, has the same form as the Spearman-Brown formula. There
'exists no analogue of this equation in the classical theory of mental
tests. From (26) and (28) it is clear that the degree of correlation
between error scores on parallel forms decreases with an increase in
the number of choices.

The results given by the computer program for ree are shown in

Table 2. Equation (26) predicts accurately the effect of increasing
number of choices upon ree. Another fact of interest shown in the

table is that, if ree is treazed as a reliability coefficient, the

Spearman-Brown formula indicates accurately the change in its value
with change in test length (Zimmerman & Williams, 1966). For longer
tests the correlation between error scores on parallel forms becomes
higher in value, and the degree of change is indicated by the Spearman-
Brown formula.

TABLE 2

COMPUTER SIMULATED RESULTS FOR CORRELATION
BETWEEN ERROR SCORES ON PARALLEL FORMS

N = 10 N = 10 N = 100 N = 100

a = 2 a = 5 a = 2 a = 5

r
ee
*

r
ee
**

r
ee

***

.46 ,17

.18

.89

.90

.65

.67

,66

*Value given by computer program.

**Value given by substituting .46 or .17 in Equation (14).
***Value given by substituting .46 or .89 in Equation (26).
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CONCLUSIONS

The equations derived as a result of this research are theoretical in
nature. Even using the model which does not introduce the theoretical
concepts of true score and error components, it is necessary to rely on a
theoretical distribution of observed scores that would be obtained if one

were able to measure individuals repeatedly on an extremely large number
of parallel forms of some test. Further, the validation procedure used is
a gross simplification of the empirical testing situation. No matter how
complex a computer simulation technique - in this research the complexity
was greatly limited by the limited capacity of the computer used - it is
highly unlikely that one could program all the determinents of human test-
taking behavior.

For these reasons, it is not likely that the results of this research
will have any immediate application to the day-to-day problems of testing.
It is interesting to note, however, that equations derived from the model
of non-independence have been tested on the results obtained in an empirical
situation and that the implications of the theory of non-independence were
supported (Zimmerman, et al., 1966). Certain conclusions can be drawn, of
course, from the results of this work that are applicable to an empirical
situation. The classical equation relating reliability of a test as

established for one group to the reliability that should be obtained for
that test with another group with differing score variability should be
used with caution when the test is of the multiple-choice type. One should

be aware of the limiting assumptions necessary for coefficient alpha and
related equations to be appropriate estimates of test reliability; and
certainly the users of multiple-choice tests should be aware that tests
with a greater number of alternatives per item are generally more reliable
measuring instruments.

It is also considered quite important that one have an understanding
of the implications of the presence of this particular class of error.
Use of multiple-choice tests is widespread, and it is precisely this type
of test that is subject to the appearance of non-independent error due to
chance guseesing success. Since this type of error operates somewhat
differently than the error that has traditionally been considered in test
theory, new equations describing the effects of such error are needed.

Such equations taken with those previously developed in classical theory
should lead to a fuller understanding of an individual's score on a test.

This research is a beginning toward a more general theory of mental
tests that takes into consideration the many classes of error reflected in

an individual's score. Hopefully it will serve as a foundation for further
research into non-independent error operating both alone and in combination

with other classes of error. More important, it may hopefully serve as a

catalyst in precipitating ftlrther research.
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