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INVESTIGATION IS CONTINUEED INTC VARIOUS EFFECTS CF
NON-INCEFPENDENT ERRCOR INTRODUCED INTC MULTIFLE-CHOICE TEST
SCORES AS A RESULT OF CHANCE GUESSING SUCCESS. A MODEL IS
CEVELOFEL IN WHICH THE CONCEFPT OF THEORETICAL COMFONENTS CF
SCORES 18 NOT INTRCDUCED AND IN WHICH, THEREFCRE, NO
ASSUMPFTIONS REGARDING ANY RELATIONSHIF BETWEEN SUCH
COMPCONENTS NEEC BE MADE. UTILIZING THIS MODEL, AN EXAMINATION
OF THE DEFENDENCE OF RELIATILITY ON GROUF HETEROGENEITY
REVEALS THAT THE NECESSARY AND SUFFICIENT CONDITICONS UNDER
WHICH THE CLASSICAL EQUATICN DESCRIBING THIS RELATIONSHIF
HOLCS. MODELS IN WHICH ASSUMFTIONS OF THESE CONDITIONS ARE
NOT APPLICABLE ARE EXAMINED. COEFFICIENT ALFHA AND OTHER
RELYABILITY ESTIMATES ARE EXAMINED. IT IS FOUND THAT THE
NECESSARY AND SUFFICIENT CONDITIONS FOR THE RELIABILITY CF A
COMPCGSITE TEST OF N FARTS TO EQUAL CCEFFICIENT ALFHA ARE
ICENTICAL TO THOSE UNPER WHICH RELIABILITY CF- A TEST
LENGTHENEE N TIMES 15 GIVEN BY THE SPEARMAN-BRCWN FORMULA.
FURTHER, THESE CONCITIONS ARE ANALCGOUS TO THOSE UNDER WHICH
THE RELINBILITY CF A TEST OF N ITEMS IS EQUAL TO
KUBER-RICHARDSCN FORMULA 2G. THE INCREASE IN TEST FELIABILITY
WITH INCREASE IN NUMBER COF ALTERNATIVES PER ITEM IS
CONSIDERED. THE DERIVED EQUATION DESCRIBING THIS RELATIONSHIF
IS EXPRESSED IN A FORM SIMILAR TO THE SPEARMAN-BROWN FORMULA
FOii UNCREASE iN RELIABILITY WITH INCREASE IN TEST LENGTH.
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SUMMARY

The problem investigated in this research is that of the non-
independent error component introduced into scores on multiple-choice
tests due to chance guessing success. This class of error operates
somewhat differently than the random, independent error described in
classical tes:t theory. It differs in two important aspects. First, it
operates unidirectionally, in that it caan only increase an individual's
score on a test; secondly, the usual assumption of independence of the
error component of a score can not be made in this case. This is because
such error is negatively correlated with an individual's true score, and
positively correlated with the same class of error on parallel forms of
the test. Since this type of error violates the assumptions made in the
derivation of many of the equations of classical test theory, new
equations must be derived to adequately describe the effects of this
error as reflected in an individual's score.

The method used to investigate the effects of non-independent error
is similar to that which has been employed in the past to investigate other
classes of error. Basic models are adopted and equations are derived from
these models. The major difference in procedure for the purpose of this
research is that the assumption of independence is not made. Further, the
derived equations are validated against the results of computer simulation
techniques. These techniques begin with a prepared distribution of true
scores. An IBM 1620 is then programmed to generate one or more classes of
error corresponding to a particular true score. The sum of the true score
and the error compomnents is then representative of an observed score on a
test. This procedure is repeated to generate data that is a simulation of
results on parallel forms of a test. The resultant data is then subjected
to statistical analysis to obtain descriptive quantities of the scores and
their components. Finally, the equations that have been derived to
describe the effects of the particular class or classes of error generated
by the program are validated against the results.

Three distinct problems were investigated in-this research. The first
problem is that of the dependence of test reliability upon the hetero-

geneity of the group tested. In classical theory, this relationship is
described as (52
0

=1-Aa- 2 ).
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In this equation, the reliability of some test administered to a
particular group, A , is related to the reliabilifty of the same test
administered to another group, B; the quantities in the equation are
related to group A or group B by subscripts. A cursory examination of
the equation reveals that the reliabilities will be the same if the
variances are the same, thus reducing the ratio of the variances to 1.
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The derivaiion of this equation is based on certain assumptions concerning
error variance that do nct necessarily hold for certain classes of error.
One such class of error is the non-independent error under consideration.
Another class of error that does not allow such assumptions is ¢he error
connected with item sampling as described by Lord (1955). A general
equation is derived to describe this relationship, and the equation
indicates that the classical equation is valid if and only if the average
individual error variance is the same for the two groups.

The second problem investigated is the applicability of coefficient
alpha and other reliability estimates to testing situations in general and
specifically to testing situations where non-independent error may be
present. It is determined that the necessary and sufficient conditions
for coefficient alpha to equal test reliability is the same regardless of
the class or classes of error in operation. It is shown that coefficient
alpha is equal to the reliability of a test if and only if, as the number
of measurements increases without limit, the mean over persons of the
variance over part-tests of the mean part-test scores over repeated
measurements is equal to the variance over part-tests of the means over
persons of the mean part-test scores over repeated measurements. Further,
the Kuder-Richardson formula 20 (Kuder & Richardson, 1937) is equal to the
reliability of a test if and only if all test items satisfy this same
condition. Also, the Kuder-Richardson formula 21 is equal to the reliability
of a test if and only if all test items satisfy this condition and if in
addition, both of the quantities are zero. It is further shown that the
conditions under which a composite test of N parts is equal to coefficient
alpha are identical to the conditions under which the reliability of a
test lengthened N times is given by the Spearman-Brown formula. An
equation describing test reliability when these conditions are not met is
derived. These results support recent findings by Novick & Lewis (1967).

The final problem considered is that of the dependence of test
reliability on the number of alternatives per item. It has been observed
that as the number of alternatives per item increases, test reliability
likewise increases (Lord, 1944; Carroll, 1945; Plumlee, 1952; Zimmerman &
Williams, 1965). It has further been suggested that the relationship can
be described by the Spearman-Brown formula, which was originally developed
to describe increase in test reliability with increase in test length
(Remmers, Karslake & Gage, 1940). It is found that increase in test
reliabiliiy with increase in number of alteructives is indicated only
approximately by the Spearmau-Biuwn formula. An equation is derived that
indicates the relationship much more accurately.’

The results of this study are probably not directly applicable to
the solution of the day-to-day problems of testing; however, the findings
do provide a solid foundation for the understanding of the operation of
this particular class of error. Due to the widespread use of multiple-
choice tests, it is probable that non-independent error due to chance
guessing success is present to a large degree in the results of the




majority of tests used in the field of education. An understanding of this
class of error is therefore highly desirable. It is also important in the
development of test theory that one understand the differential operation

of the different classes of error. Hopefully this research will serve not
only as a base but also as a stimulation for further research in this area.
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INTRODUCTION

Traditional mental test theory has been largely founded on the
assumption that errors of measurement are independent random variables
with an expected value of zero. When these assumptions are made, certain
s intercorrelational terms relating the theoretical components of test
] scores are zero, and resultant equations are considerably simplified.

> Two basic models have been employed to derive equations in test

i theory; however, since the assumption of independence has been made in

‘ the use of both models, similar results have been cbtained. The first
model is based on a definition of an observed score on a test as the

sum of two theoretical components, true score and an error component.
This relationship is expressed as 0 = T + E. The alternate model defirnes
true score as a limit:

1 'rj = lim g=1 - lim g=1 ,

f Hees ™ | Hee ™ {

t

! Where Tj represents the true score for some individual j, 0gj represents

the observed score of that individual on the gth form of H parallel forms

§ E—

of a test, and Egj represents the error component of that observed score.
; Since, in the limit, the sum of the error components for this individual
over repeated testings is zero; the equation simplifies to a definition
of an individuals true score as the limiting value of the mean of the
frequency distribution of his observed scores over repeated testings
with parallel forms of a test (Gulliksen, 1950).

of the first model. Such an assumption implies that the magnitude and
direction of the error component is in no way influenced by the magnitude
of its true score counterpart. It follows from this implication that the
correlation between true scores and corresponding error components is
Zero, Or r,, = 0; it further follows that the correlation between error

E As an example, independence will be assumed under the specifications

= Vew .

components on paraliel forms of a test is zero, or r,, = 0. With this

bl

conclusion, it is relatively easy to.develop the classical equations for
the reliability of a test:

4
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where r , is reliability, gz is variance, and the subscripts e, t, and

o refer to observed scores, true scores, and error components respec-
tively. Other equations of classical test theory can likewise be de-
rived with ease once the assumption of independence has been made.

Many tests presently used are of the multiple-choice type, and it
has been widely recognized that scores on such measuring instruments
will reflect to some extent chance guessing success. Such chance guessing
success is thus a class of error component of the score. It has not been
recognized as widely that this class of error is non-independent. The
relationship of this class of error to true score can be seen in a brief
example. An individual with a true score of ten on a ten-item true-false
test is faced with no items on which to guess the answer. The error com-
ponent of his observed score as a reSult of chance guessing success must
therefore be zero. Another individual with a true score of zero on the
same test may guess on all items, and the error component of his observed
score can range: from zero to ten, with an expected value of five. Stated
generally, the lower an indjviduals true score on a multiple-choice test,
the more items are available for which he can guess the answer; and the
greater the number of items on which he guesses, the greater is his
expected number of successful guesses. From this it follows that the ‘
correlation existing between true score and this class of error is a
negative one. It also follows that such error components will be posi-
tively correlated with like error components on parallel forms of the
test. A further characteristic of this class of error is that it
operates unidirectionally. That is, such error can only increment an
individual's score.

Due to the non-independent nature of this class of error and to its
unidirectional character, the effects of such error can not be effectively
described by the equations of the classical test theory. A considerable
amount of research has been conducted recently to examine some of the
basic properties of this class of error (Burkheimer, 1965; Burkheimer,
Zimmerman & Williams, 1967; Williams & Zimmerman, 1966; Zimmerman &
Williams, 1965, 1967; Zimmerman, Williams & Rehm, 1966). The present
research is an extension of this ongoing investigation.
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METEODS

The investigation into the properties of non-independent error
proceed:d along two lines. The first line was the development of models
from which equations describing the effects of this class of error could
be derived; the second was the development of computer simulation programs
to generate data against which the derived equations could be validated.

In the first stage of the research, the basic models of classical
test theory, as described above, were used as a foundation for equation
derivation. The major difference in terms of deriving equations from these
models in this research was the fact that the assumptions of independence
and zero-value expectancy were not made. Early results indicated that the
classical equations for reliability could be stated in slightly modified
form as follows:

(a - 1)252 s2
oo = ) t | and roo =1 - -%(1 - Tae)s
a so SO

where a is the number of alternatives per item and r,, is the correlation
existing between non-independent error components. —  Other basic
equations developed from these models likewise differed from the analogous
equations of classical test theory. Some of the effects of non-independent
error, however, led to results that were identical to those previously

described in classical theory (e.g. the Spearman-Brown formula; Zimmerman
& Williams, 1966).

An interesting aspect of the derived 2quations is that they easily
reduce to the classical equations when the number of alternatives increases
: without limit, thus reducing the probability of a successful guess, 1l/a,
to a limiting value of zero and eliminating this particular class of error.
In the two equations above, foE example, it can be readily observed that
the limit of the ratio (a - 1) /a2, as a-» e , is 1; and the equation
reduces to the classical equation. Considering the second equation above
together with the equation for rg,,

i r =-—=,
ee a 2
e

g2
t
25

it is obvious that the limit, as a-soe, of the term (1 - ry,) is 1, and
again the equation reduces to the classical equation.

In the later stages of the research, an additional model was utilized.
This model resembles the second medel described above in that it considers
the frequency distribution of scores over repeated measurements on parallel
forms of a test and in that it considers the parameters of this distribution
as the number of repeated measurements increases without limit. The model

6 .




differs from the classical model, however, in that it does not introduce
the theoretical concepts of true score and error components. The model,

which is considered in greater dviail in Parts I and II of the following
section, cons1ders the mean of a distribution of observed scores for some

individual j, and the variance of this distribution,(csoj)z. Since

J,
no assumptions are made under this model of either independence or non-
independence, the model is quite general:; and the results obtained from

the model are applicable under either assumption.

A computer simulation technique which had been used quite effectively
previously was further utilized in the present research. The first
program developed was a duplication of the program previously described
(Zimmerman & Williams, 1965). An IBM 1620 was used to generate scores om
a "multiple-choice test" with the probability of a successful guess set
at a value equal to the reciprocal of the number of alternatives per item
on "tests" of varying length.

The procedure was simple in concept. A hypothetical distribution of
true scores was prepared, snd for each true score on a "test" of N items,
the computer simulated N-T guessing trials. 'Correct guesses' were

summed, and this sum represented the non-independent error component of
an observed score, which was obtained by adding the generated error
component to the respective true score. This procedure was repeated to
generate results comparable to repeated testings on parallel forms of a
test. Finally, the intercorrelation matrix of all possible combinations
of observed scores, true scores, and error components was obtained. With
these results, the equations derived under the assumption of non-
independence were validated.

The second program was an extension of the first, and all steps
through the generation of a non-independent error component were the same.
In this program, however, an additional error component was generated.

The second error component was obtained by a random sampling technique in
such a way that the resulting error component complied with the assumptions
of ‘ndependence. Observed score was obtained as before with the exception
that it now consisted of the sum of & true score, an independent error
component, and a non-independent error component. An intercorrelation
matrix was obtained as before. The results of this program were used to
validate the equations previously dervived for the case in which several
classes of error components are reflected in an individual's score on a
test (Zimmerman, Williams & Rehm, 19G6). "

An additional program was placed in operation,which generatel error
components of scores of the item-sampling class described by Lurd (1955).
The final results of this program became available only recently and have
not yet been fully analyzed.




RESULTS

Part I: Dependence of Test Reliability Upon Heterogeneity of
Individual and Group Score Distributions

In the classical test theory the equation

2

0,

@ boy = 1 2A . /OOOA)

B

relates the reliability coefficient of a test obtained in a group, A,
2

with a certain variance of observed scores, croA , to the reliability

coefficient of that test obtained in a group, B, with a different

variance of observed scores, (fg (Gulliksen, 1950). Derivation of the
B .

equation depends upon equating error variance in the two groups, In

the classical theory the distribution of test scores for a given person

over repeated measurements is regarded as the same for all persons and

also the same as total error variance for a group of persons. The pur-

pose of this paper is to determine the necessary and sufficient condi-

tions under which the above equation is valid and to examine modifications

of the equation which are obtained when these conditions are not met.

Definitions

The subscript g, taking on values from 1 to H, will refer to
repeated measurements, and the subscript j, taking on values from 1 to
K, will refer tc persons. We consider the distribution of observed
scores, 0@3 for person j, over H independent repeated measurements.

We consider the distribution of observed scores, OéJ, for this same

person j over H independent repeated parallel measurements. Finall;
we consider the means, 0. and'Uj, and the variances, ((f ) and ( (f ')

T

e XY

of the distributions of scores for person j, where 0, = lim g=l
H = H-boe H
gj -2
where ( ({c,) = lim _g=1 - Oj’ and where similar expressions can
]  Heee H

be written in prime notation.
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Test reliability is defined as follows:

H K H K K
Z Z 0. 0 ZO 0!
g=l j=1 B&J &3 -g=1 j=1 8] g=1l j=1 8]
(2) foo = lim HK ﬁsz , P
Hed o0 :
Go O ‘

and where ﬁ'; is defined by a similar expression in prime notation.
That is, reliability as determined for these K persons is the product-

moment correlation between pairs of repeated parallel measurements, as
the number of pairs increases without limit.

The frequency distributions of 0gj and Oéj over repeated measure-
ments for any person j are assumed to be the same, such that (G g‘) =
( Gg;) and '63. = 63 It is not assumed, however, that such distributions
are the same for different persons. It follows from the above that
6’0 = (3’('), st = 0'-63 , and /aafé = 1, where GEj and 6'33 refer to

the standard deviations of the b-j values over all X persons and ,0.0 U‘3
i

" A

is the correlation between Bj and 0! for these K persons.

i

We can consider the covariance term of (2) as the sum of two
quantities, K

K

3) Poo Go G, =izt "’fb‘j'aj G"aj Gv; '




Since the pairs of repeated parallel measurements for person j are
independent, it follows that ojo' (G’oj) ( 603), the covaTiance of

Ogj and Oéj for person j, is zero for all K persons. Therefore,
T - 1 ' R
= ) ) . Using the equalities established
[Poo G oG o ijUJ Go; O o, 2
above, together with a standard theorem, )
= —{ Jo,)
j=1 "]

_ 2 2 2, _
G2-= (Goj) + Gb'j , where ( G'Oj) = ’

 —— K

we arrive at the result

2 —_—
— 2
G'oj (Goj)
(4) /ooo = =1 = .
2 2
.G, %,

Dependence of Reliability Upon Group Heterogeneity

2 2 2 2
From (4), GOA (1- /oooA) = ( Goi)A and GoB (1 ',pooB)=(coj)B‘

Subtracting the second of these equations from the first and solving
for POOB, we obtain

2

2 2
0o Qo)) . (00)p
A (1 - ) + j J
00
2 A 2

G, 0,

B B

RN

From (5) it is evident that

2 I

G'o 2 2
= - A - n = ’ h X: ’
foog =17 (L= Lo )8 (B0, = (6,), » that is
O’OB | -

change in reliability with change in group heterogeneity is given by

(1) if and only if the arithmetic mean, over the KA persons in group A,

of the KA variances of observed scores over repeated measurements is

10




equal to the same quantity for the KB persons in group B.

In classical test theory ( G‘g.) is identified with total error
J

variance, a quantity which has been regarded as the same for any two
groups, For models in which this condition does not hold, the re-
lationship is given by (5). It should be noted that in the above
derivation O, has not been identified with the concept of true score.
Therefore, the conclusions reached hold even if 0.. is regarded as the
sum of components which are linearly correlated (Eimmerman & Williams,
1965, 1966). We will now consider two models in which the frequency

distribution of observed scores over repeated measurements varies from
person to person,

Item Sampling Model ‘

Following the model presented by Lord (1955) for sampling of test
2 - -
items from a population of items, we can write ( G,) - O5(N -0 ),
3 N

where N is the number of items. Lord identifies the quantity 33 with

true score, T , representing the product of the proportion of items in

]

the population which are known and the number of test items. For any
two groups, A and B, we have

2 2

(N- ) G (N- ) O=

(Gg )A.:ﬂoA ﬂOA . 0jA and(G'(?;.)B=/‘°B /‘OB ) OB,
] N N J N N

where and are the means over all K persons and all H measure-
M °A °B - -

ments of the Ong and 0ng values. Substituting these results in (5)

and factoring, we obtain

2 N 9 9
(6) =1 = GOA (1- )+[¢bA +/bB -N)(I‘OB -/‘OA%Q@G_']A" G‘Uja i
OOB 0’2 fOOA NGZ .

OB OB

Only if the right-hand term is zero is (1) valid. Otherwise, we can
2 2

2
. substitute in (6) for GojB its equivalent /‘ooB GOB and for O'OjA its

11




' 2
equivalent /’ooA G 0> solve for /’ooB and simplify to obtain

r, g
G, + -N) ( -Mo,)
(7 oo =N 1A - IS:_l./)Oo ) +¢‘6A /%B ,‘OB I A
B ¥ 2 NI A 3
6('.) NG'O
. B, B d

It should be noted that the right hand term becomes zero if ,&OA =/‘°B

or if ,“’A = (N - POB), in which case (7) reduces te

I 2 1
G,
Loop =N | 1-_A@q-Nlp ) Further, if the
N-1 2 « N/ A
. G, ]
I B

2 2
right hand term is not zero, but GojA = GojB’ (7) reduces to

2 ‘
Go (Mo + Mo -N)(/*o - Mo )
/oooB=1' ZA(]__ﬁ)OA).,_ A /‘BZ B /‘A .

G N
OB OB

Chance Success Model
Using the model for chance success presented previously (Zimmerman
& Williams, 1965; Burkheimer, Zimmerman & Williams, 1967) we can write

2
(Go.) = p(N - Oj), where p, the probability of chance success, is
j -

e .,

assumed to be the same for ali persons. Finding the arithmetic mean
2

2
for groups A and B as before gives (Go Jp = p(N-}% ) and (G’o )B =
h| A h|

p(N ‘;/‘OB)' Substituting these results in (5) we have

12




2
/ Qo P(f‘o - /“'o )
® L, =1-_AQ- foo) + — A .

B B

Only under the conditions that:/‘OA =/M or that p = 0 is (1)

Op

6btained.

- TerSN .
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Part II:

Conditions Under Which Coefficient Alpha Equals Test
Reliability: the Case of Heterogeneous Score Distributions
aind Correlated Score Components

Since the original derivation by Kuder and Richardson (1937) of
the formula which Cronbach designated as coefficient alpha the assump-
tions required have been more fully explicated (Jackson & Ferguson,
1941, Guttman, 1945, Gulliksen, 1950, Cronbach, 1951, Novick & Lewis,
1967). Derivations have been based on the classical test theory model
in which true scores and error scores are uncorrelated and error scores
on parallel tests are uncorrelated. The present derivation of coef-
ficient alpha is somewhat different from tiose which have appeared in
the literature, reveals the necussary and sufficient conditions under
which this quantity is equal to the reliability of the test, and indi-
cates that the formula is valid under certain conditions where the
classical test theory mrdel is not applicable.

Definitions

The subscript i, taking on values from 1 to N, will refer to the
parts of a test.

We consider the distributions of observed part-test scores,
ogji: and total test scores, 0,., for person j over H independent re-
peated measurements. We further consider the distributions of observed
part-test scores, 0'.., and total test scores, 0',, for this same

. ng
person j over H indépendent repeatﬁd parallel med3urements. Also, we
consider the quantities 0;: and ((fo- ,» which have been defined above.
Analogous quantities, U}i and «;%;i i, define the mean and variance of

r

part-test scores for person j over repeated measurements.

The reliability of a test is defined as above. The reliability
of a part-test, (f%o)i’ is defined in the same way, in terms of ogji
and 0'...
gl

It is assumed that, as H increases without limit, the frequency
distributions of ogj and Oéj are the same for any person j, such that
(G%j) = (G%j) and 0. = 0'. "It is not assumed that such distributions
are the same for di%fereat persons (cf. Zimmerman, Williams &
Burkheimer, 1968). The same concept applies to the part-test scores,

Og4i and oéji' It follows from the above that §, = @, » 54 = 655>
and 3j65 = 1, Likewise, these relationships hold for the part-test

scores,

Another expression for test reliability is given in (4) above,
and an expression for the reliability of part tests can be written as

14




2 2
(G5, )4 (G'ojl)l
( oo)i = 1L =1 - . Here, the terms used are
2 2
Go. G'o
i i

analogous to their counterparts defined above, where the subscript i
indicates that thcy refer only to the ith part of the test.

The following symbols will also be used:

[~ N -

(

15




2 -
G: is the variance of 0, over all K persons.

. j
J
2, = :
G= is the variance of 0i over all N part-tests.
°1
2 -
G- ). is the variance of 0, for person j over all
Oij J 1]
N part-tests.
G- is the variance of 0 _ over all K perscns and
oij : ij
all N part-tests.
G.G is the covariance of 0 , for any two part-tests,
/‘o o0VoVo gji
t"‘ t .
/06 = 66, 66, is the covariance of oij for any two part-tests
jn jm  jn jm

Derivation of Coefficient Alpha

Total observed wvariance can be written as follows:

. Variance of (.-\
;' o, 2 2 o °m6°n6°m j

can likewise be written GE T Z(G- )i +Z Zla 5 5'5 65 .
. J ij jn jm jn  jm

i=] n-l m-l

16
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Subtracting th2 second equation from the first yields

N N N
262 =Y |6 - 6k o + (A, 0GoGo £ s G5.8
Go %3 U°i °1] /aonom onG'om /%jnajm 03a703m).
i=1 n=l m=1

n¥m

Relating the second expression in the right hand member of this
equation to equation (3) and following the same ar ument, it is evident

that this expression is zero. Substituting G- for its equivalent
value Gg and reducing, wc arrive at /a 00 “o

3

O =1 -l —— + =l

2 2 2 2 2 2
Since Galj (Gaij)i+6‘6i and GalJ (Gaij)j + Goj , 1t

follows that (G2 ); = ((;03 )y +G2 - G2 . substituting
i i j i

this result in (9) gives

N
2
G’g 'N(‘Gcg)..)j NG%. NG,
(10) foog 1 - ’f_l__i_ + 1] +___:]_ - i .
2 2 2 2
Uo ‘ Go c"o Go
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From the above definition of 0j it is evident that

2
NG= F
%3 °j /%o
= = . Substituting in (10) and solving for
2 62 N
(o) N 0

v = i
ay o =-N_ 1 izl + ,
/ oo N -1 2

2
i G5 63

which, except for the right hand term, is identical to OL.

—————t

We can write O = /°°°¢> (Gc')z' )j =0

ij = . i

o N

« In other words,

coefficient alpha is equal to the reliability of the test if and only
if, as the number of measurements increases without limit, the mean
over persons of the variances over part-tests of the mean part-test
scores over repeated measurements is equal to the variance over part

tests of the means over persons of the mean part-test scores over
repeated measurements.

In the classical test theory model 0 = T + E
H d gl . j 83

- S rew .,

ogj

and T, = lim g7l

= 5 y Where T and E are true and
H o0 H j gJ

error components of scores. In the present derivation
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the quantity l]iim“ el has not been idertified with the concept
-l
of true score. If, however, 0., is a linear function of T the con-
clusions reached by Novick & Ldwis (1967) hold even when Jtrue and
error components of scores are correlated and when the distributions of
scores over repeated measurements are different “rom person to person
(Burkheimer, Zimmerman & Williams, 1967, Williams & Zimmerman, 1966,
Zimmerman & Williams, 1965, 1966). That is, even in this case the nec-
essary and sufficient condition for coefficient alpha to equal test re-
liability is that all part-tests be essentially t-equivalent, as de-
fined by Novick & Lewis. We can now write these conditions in the
following form: for every j, 0 , = Omj + C n’ for any n, m - or, that
the mean part-test scores over répeated meaSurements for person j differ
at most by constants, which must be the same for all K persons, but not
necessarily the same for all part-tests. It fo&lows, then, that for all

n and m,/c’n . (/ooo n (/Doo)m aG "6’0 » and /o°jn°jm 1.

In other words, the variances of all parts are the same, the inter-
correlations among all parts are the same and equivalent to the re-
liability of each part, and the correlation between the &.. values is
unity for all pairs of part-tests. Thus, all parts of the’test must be
parallel measurements in the usual sense of "para11e1" in test theory,
except for differences in scores by a constant.

The present results are consistent with those obtained by
Jackson and Ferguson (1941) and Gulliksen (1950). The above condition
may be expressed by saying that over repeated measurements the average
covariance between parts within a test must equal the average covariance
for each part. Still another way of expressing the condition is this:

a single administration of a test can yield an estimate of reliability
only if the degree of correlation between parts within the test provides
information as to the correlation which would be obtained over repeated
measurements.

When individual items are considered & is equivalent to the
Kuder-Richardson formula 20.° That formula, then, is equal to the re-
liability of a test if and only if all test items satisfy the above
conditions.

Equivalence of Coefficient Alpha and
the Spearman-Brown Formula

The conditions under which the reliability of a composite test
of N parts is equal to coefficient alpha are identical to the conditions
under which the reliability of a test lengthened N times is given by
the Spearman-Brown formula. The latter condition is sometimes expressed

19




by saying that the parts added to the original test must all be parallel.
But this is just the condition required for coefficient alpha to equal
the reliability of a composite test. No requirement need be made in
either case as to the degree of correlatiorn between true and error com-
ponents of scores (Zimmerman .& Williams, 1966).

In the case in which N refers to items, the following statement
can be made: the conditions under which the reliability of a test of N
items is given by the Kuder-Richardson formula 20 are identical to the
conditions under which the reliability of a one-item test lengthened N
times is given by the Spearman-Brown formuli. 'The relationship can be
seen by letting (looo)i. be the reliability of one part-~test, or one
item, before thz test is lengthened. 1If the above conditions are met
N ;
2
Go = NGCZ) and we can substitute in O its equivalent
i i
i=1

expression in terms of part-test variances and covariances and write

. NGgi 3 N( /Ooo) i
NOo, [ (p)]] AR L),

(12) /ooo= N-1

Relation of the Kuder-Richardson Formula 20 to the
Kuder-Richardson Formula 21

Assume that the conditions for Ol = are met. Then, when
individual test items are considered, 00
N i
0i (1-0) .
oL = - N 1 - =1 . Expanding this
00 N - 1 2
P
L. o

expression and reducing, we obtain

20
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Mo - P nGg;
- +
NG 62

0

N
(13) / 00 - N-1 1
- J

where/ﬁko is the mean of observed scores over all K persons and all H '

9

repeated measurements. When (f%& = 0, this result is equivalent to the
Kuder-Richardson formula 21. 1In other words, the condition required for

the K.-R. formula 20 to equal the reliability of the test is that

2 2
((raaj)j = (331 » and the condition required for K.-R. 21 is that

2 - (2 =

Derivation of Coefficient Alpha from
Item Sampling Model

An interpretation of the Kuder-Richardson formula 21 can be
based on the model presented by Lord {1955) for the sampling of test
items from a population of items. Lord demonstrated that an individual's
0.(N-0_.)
standard error of measurement is estimated by &J g
N-1
that quantity is averaged over all persons and substituted in the classi-

and that when

cal equation /°bo =1 i the K.-R. formula 21 is obtained. The
0

K.-R. formula 21, in other words, can be interpreted as an equation for
test reliability for the case in which the observed score distribution
over repeated measurements is identified with variations in score re-
sulting from item sampling.

It should be noted that the above requiremert that

W

2
(G'E,'ij)j = Gﬁi = 0 is implicit in this model. From the concept of

item sampling employed by Lord, it follows that, as H increases without

limit, for any j, 0._i = aij for all i, such that ( G'-cz;' -)j becomes zero
1]
= - 2
for all j. Further, Oi becomes the same for all i, such that (;31 = 0,
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It should be noted that K.-R. 20 would be equally applicable to this
model.

Let us assume now, that the N items of a test are drawn from N
distinct populations and that the values of 013 for person j may differ.

Then, the distribution of observed scores over repeated measurements is
given by a Poisson sequence of trials, ((; ) = NO. (1 -0 ) - N(C’ )j .

Averaging this quantity over all K persons, substituting the result in
equation (4), and simplifying we obtain (11).

In other words, equation (l1l) gives test reliability for the

case in which the N items of a test are sampled from N distinct popu-
lations of items. The K.-R. formula 20 gives test reliability only if

((';'g )j and(§z are equal. Finally, the Kuder-Richardson formula 21
o

i
gives test reliability only if both these quantities are zero.

. Taew .
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Part III: Dependence of Reliability of Multiple~Choice Tests Upon

Number of Choices Per Item: Prediction From the Spearman-
Brown Formula

It has been known for some time that the reliability of multiple-
choice tests is influenced by the number of choices per item (Remmers,
Karslake & Gage, 1940; Lord, 1944; Carroll, 1945; Plumlee, 1952). Since

"the probability of chance success on an item is 1 , where a is the number

a

of choices per item, it is to be expected that error variance introduced
by chance success is a decreasing function of number of choices and test
reliability is an increasing function of number of choices.

Remmers and his associates suggested the relationship could be
described by the Spearman-Brown formula, which is known to indicate
increase in reliability with increase in test length. The formula is

nroo

(14) r
noo 1+ (n-1) r,

where r__ is the original reliability, r

00 is the reliability of the

oo

test of increased length, and n is the number of times the test is
intreased in length. Remmers showed empirically that the reliability
of various tests is approximated by this function, when n refers to
increase in number of choices instead of test length. It has been
pointed out, however, that there is no theoretical basis for predicting
his result (Lord, 1944; Guilford, 1950; Gulliksen, 1950).

Computer Simulated Results

In a previous paper (Zimmerman & Williams, 1965) a computer pro-
gram was used to simulate guessing error in multiple-choice tests.
Distributions of assumed true scores were prepared, and error scores
were generated on the basis of the probabilities to be expected from
chance success due to guessing. The error scores were added to true
scores to obtain observed scores. Finally, product-moment correlations
between different sets of observed scores obtained by repeating the
procedure several times gave an indication of test reliability.

The results of this procedure for tests differing in length and
number of choices are shown in Table 1. The data in this table can be
used to examine the effect ¢f increased test length, as well as increased
number of choices, upon reliability, Apparently, there is an inter-
action between the effects of test length and number of choices.
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TABLE 1

COMPUTER SIMULATED RESULTS FOR RELIABILITY

N =10 N = 10 N = 100 N = 100
a=2 a=>5 a=2 a=>5 !
r * 4 .74 .89 .97
£ . .89 .97
r ik .76 .97 |
r, ok .66 .95

*Reliability given by computer program.

**Reliability given by substituting .44 or .74 in Equation 14.

#*%Reliability given by substituting .44 or .89 in Equation 18.

*%%%Reliability given by substituting .44 or .89 in Equation 14.
where n = 2.5,

For short tests (N = 10) reliability increases greatly with increase in '
number of choices (.44 to .74). For long tests (N = 100) reliability ‘
increases slightly with number of choices (.89 to .97). Also, for 2 |
choices, reliability increases greatly with test length (.44 to .89).
And for 5 choices reliability increases to a lesser degree with test
length (.74 to .97).

From the table it is seen that the Spearman-Brown formula describes
the increase in reliability with increase in test length for both the
2-choice test and the 5-choice test (Zimmerman & Williams, 1966) .
Consider, now, Remmers' suggestion that the same formula describes
increase in reliability with increase in number of choices. The results
in the table show that there is a greater discrepancy, although the
predicted value for the longer test is close to that indicated by the

program,

Increased Reliability As a Function of !
Increased Number of Choices

It is possible to derive a simple equation showing the effect of
increasing the number of choices upon reliability for the case in which -
only error due to guessing is present. Reliability is given by

. 2
(15) r = (a - 1) s§ ’

00 =
(a = 1) s% +N-T
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where a is the number of choices, si is the variance of true scores,.

N is the number of items, and T is the mean of true scores. This
equation gives the value which is approximated by the computer simu-
lation method described above (Burkheimer, 1965; Burkheimer, Zimmerman,
& Williams, 1967). When the number of choices is increased, we can
write

' (a' - 1) s%
(16) ro =

(a' - 1) s2+N-T

where roo' is the reliability for the test with increased number of

choices, a is the original number of choices, a' is the increased num-

ber of choices, and the other symbols are as defined above. Solving

(15) for si gives

| (N-T) r
(17) si = 00 .
(a-1) (1=-r_)

Substituting this result in (16) and simplifying, we have

(a' - 1) oo

18) t

' o * - ]
(a 1) + (a - a') oo

The data presented in Table 1 show that substitution in this equation
yields results close to those indicated by the computer program. The
accuracy is greater than that obtained by using (14) and of the same
order as that obtained by using (14) for increased test length.

If the method employed by Remmers were valid, the ratio a' would

were =
be comparable to n in (14), which could be written in this form:

&) Too

(19) r ' = ‘
14+ (8 -1
(a") roo

(o]¢]
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Simplifying, we obtain the following result

a' r
(290) L P 00

' -
a+ (a a) * o

which can be compared to (18). It is seen, therefore, that equation
(18) differs from the modification of the Spearman-Brown formula
suggested by Remmers only by subtraction of 1 from the a' factor in the
numerator and the a term in the denominator. If both a' and a were
large (14) and (18) would give nearly the same results. For multiple-
choice tests, however, a' and a are relatively small, and some discrep-
ancy can be expected.

Dividing both numerator and denominator of (18) by a - 1 gives
(a' - 1)
@-Dr
00
(a-1) + (a' - a)
(@a-1) (a=~1Dr

(a' - 1)
If, now, we define A as the ratio (a - 1) and simplify, we have

A
(22) r ! Foo
1+ QA-1) r,

0

which has the same form as the Spearman-Brown fc. nula. In other words,
(@' - 1
Remmers' suggestion is valid if we employ the ratio ?;‘:‘Iy‘ in the

Spearman-Brown formula, but not if we employ the ratio %l . It should
be noted that the above equations apply only to the case in which
differences in reliability result from chance success due to guessing.

Dependence of Correlation Between Error Scores On
Parallel Xorms Upon Number of Choices

It is of interest that an equation showing the dependence of the
correlation between error scores on parallel forms of a test upon num-
ber of choices can also be derived. This quantity has been assumed to
be zero in the classical theory of mental tests. However, when chance
success due to guessing is present, as in the case of most multiple-
choice tests, it can be shown that it is positive in value, that it
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decreases with number of choices, and that the relationship is indicated
by an equation similar to (18).

Correlation between error scores on parallel forms is in fact given
by the following equation:

2

{23) L S — = ’
ee V) =
st + (a-1N-1T

where the symbols are as defined above (Burkheimer, 1965; Burkheimer,
Zimmerman & Williams, 1967). When number of choices is increased, we
can write :

2

S
(24) | N t —
= 4+ @ - 1O -T)

Solving (23) for s% gives

2 r (a-1(N - T)
(25) s¢ = ee

(1 - ree)
Substituting (25) in (24) and simplifying leads to this result:

(a-1)r
ee

(a' - 1) - (a' - a) r .

(26) ree'

Dividing both numerator and denominator of (26) by a' - 1 gives

{a-1 .
(27) r !'s= @ -1 * .

¢ @-1 @ -a r,
(@' - 1) (a' - 1)

If we define B =1 = (a - 1) and simplify, we have
A (' -1
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1+ @®B-1) Tee

(28) ree'

which, again, has the same form as the Spearman-Brown formula. There

‘exists no analogue of this equation in the classical theory of mental

tests. From (26) and (28) it is clear that' the degree of correlation
between error scores on parallel forms decreases with an increase in
the number of choices.

The resuits given by the computer program for r,e are shown in

Table 2. Equation (26) predicts accurately the effect of increasing
number of choices upon e Another rfact of interest shown in the

table is that, if r__ is treaced as a reliability coefficient, the

ee

Spearman-Brown formula indicates accurately the change in its value
with change in test length (Zimmerman & Williams, 1966). For longer
tests the correlation between error scores on parallel forms becomes

higher in value, and the degree of change is indicated by the Spearman-

Brown formula.
TABLE 2

COMPUTER SIMULATED RESULTS FOR CORRELATION
BETWEEN ERROR SCORES ON PARALLEL FORMS

N = 10 N =10 N = 100 N = 100
a=2 a=>5 a=2 a=>5
I, ¥ .46 ,17 .89 .65
L ‘ .90 .67
T, HHx .18 | .66

*Value given by computer program. '
**Value given by substituting .46 or .17 in Equation (14).
*%*%Value given by substituting .46 or .89 in Equation (26).
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CONCLUSIONS

The equations derived as a result of this research are theoretical in
nature. Even using the model which does not introduce the theoretical
concepts of true score and error components, it is necessary to rely on a
theoretical distribution of observed scores that would be obtained if one
were able to measure individuals repeatedly on an extremely large number
of parallel forms of some test. Further, the validation procedure used is
a gross simplification of the empirical testing situation. No matter how
complex a computer simulation technique - in this research the complexity
was greatly limited by the limited capacity of the computer used - it is
highly unlikely that one could program all the determinents of human test-
taking behavior.

For these reasons, it is not likely that the results of this research
will have any immediate application to the day-to-day problems of testing,
It is interesting to note, however, that equations derived from the model
of non-independence have been tested on the results obtained in an empirical
situation and that the implications of the theory of non-independence were
supported (Zimmerman, et al., 1966). Certain conclusions can be drawn, of
course, from the results of this work that are applicable to an empirical
situation. The classical equation relating reliability of a test as
established for one group to the reliability that should be obtained for
that test with another group with differing score variability should be
used with caution when the test is of the multiple-choice type. One should
be aware of the limiting assumptions necessary for coefficient alpha and
related equations to be appropriate estimates of test reliability; and
certainly the uscrs of multiple-choice tests should be aware that tests
with a greater number of alternatives per item are generally more reliable
measuring instruments.

It is also considered quite important that one have an understanding
of the implications of the presence of this particular class of error.
Use of multiple-choice tests is widespread, and it is precisely this type
of test that is subject to the appearance of non-independent error due to
chance guseesing success. Since this type of error operates somewhat
differently than the error that has traditionally been considered in test’
theory, new equations describing the effects cf such error are needed.
Such equations taken with those previously developed in classical theory
should lead to a fuller understanding of an individual's score on a test.

This research is a beginning toward a more general theory of mental
tests that takes into consideration the many classes of error reflected in
an individual's score. Hopefully it will serve as a foundation for further
research into non-independent error operating both alone and in combination
with other classes of error. More important, it may hopefully serve as a
catalyst in precipitating further research.
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